
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A fine-grained and transparent congestion control enforcement schemeA fine-grained and transparent congestion control enforcement scheme

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1145/3232755.3232778

PUBLISHER

Association for Computing Machinery (ACM) © The owners/authors

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Zhang, Yuxiang, Lin Cui, Fung Po Tso, Quanlong Guan, Weijia Jia, and Jipeng Zhou. 2019. “A Fine-grained
and Transparent Congestion Control Enforcement Scheme”. figshare. https://hdl.handle.net/2134/36216.

https://lboro.figshare.com/
https://doi.org/10.1145/3232755.3232778

A Fine-grained and Transparent Congestion
Control Enforcement Scheme

Yuxiang Zhang
Jinan University

Lin Cui
Jinan University

Fung Po Tso
Loughborough University

Quanlong Guan
Jinan University

Weijia Jia
University of Macau

Jipeng Zhou
Jinan University

ABSTRACT
In practice, a single TCP congestion control is often used to
handle all TCP connections on a Web server, e.g., Cubic for
Linux by default. Considering complex and ever-changing
networking environment, the default congestion control al-
gorithm may not always be the most suitable one. Adjusting
congestion control usually to meet different networking sce-
narios requires modification of servers’ TCP stacks. This is
difficult, if not impossible, due to various operating systems
and different configurations on the servers. In this paper, we
propose Mystique, a light-weight and flexible scheme that
allows administrators (or operators) to deploy any congestion
control schemes transparently without changing existing TCP
stacks on servers. We have implemented Mystique in Open
vSwitch (OVS) and conducted extensive test-bed experiments
in public cloud environments. We have extensively evaluated
Mystique and the results have demonstrated that it is able
to effectively adapt to varying network conditions, and can
always employ the most suitable congestion control for each
TCP connection. Mystique can significantly reduce latency by
up to 37.8% in comparison with other congestion controls.

1 INTRODUCTION
Recent years have seen many Web applications moved into
cloud datacenters to take advantage of the economy of scale.
It is well known that Web latency inversely correlates with
revenue and profit [20]. Reducing latency is of profound
importance for providers [7].

In response, administrators (or operators) opt to use net-
work appliances to reduce network latency. For example, TCP
proxies and WAN optimizers are used for such optimiza-
tion [5, 9]. However, these appliances have fixed capacity
and thus do not scale well with rapidly increasing traffic vol-
ume [5]. Besides, many turned to optimizing TCP congestion
control for improving network latency. As a result, plenty of
TCP congestion controls have been proposed, e.g., Reno [13],
Cubic [10] and BBR [4]. However, our extensive evaluations

ANRW ’18, July 16, 2018, Montreal, Quebec, Canada
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

have shown that none of these proposals can constantly outper-
form one another. In fact, they only reach peak performance
when some specific packet loss and network delay conditions
are met, and starts to degrade dramatically when these change.
The degradation of performance caused by inappropriate con-
gestion control algorithms can lead to decreasing throughput
and increasing latency.

In order to better understand such performance diversity,
we performed several experiments by triggering 50MB file
transfer from a Web server (in Guangzhou, China) to two
clients in Beijing (BJ) and New York (NY) , respectively. The
throughput results in Figure 1(a) show that performance of
different congestion controls are varied under different net-
work conditions. For example, Reno has better performance
than Cubic for the transferring from Web to BJ, while per-
forms worse when transmitting from Web to NY. The main
reason is that network conditions are strikingly different for
the two connections, e.g., RTT. Figure 1(b) shows the mea-
sured RTT during experiments for both connections. Even
though both clients connect to the same Web server, their
RTTs are significantly different. RTT of Web→NY is about
10 times longer than that of Web→BJ. Particularly, RTTs
are changed dynamically for both connection. This implies
that the best congestion control may change over time, even
for a single TCP connection. However, congestion controls
are usually determined by TCP stack of servers or changed
on per-socket basis implemented inside application’s source
code.

Furthermore, many Web servers1 in cloud datacenters have
different operating systems and configurations, e.g., Linux or
Windows with different kernel versions and congestion con-
trol algorithms. Considering such diversity and vast number
of Web servers, adjusting congestion controls (e.g., deploying
new advanced algorithms) is a difficult, if not impossible,
task for administrators[6, 12]. Yet, on the other hand, ad-
ministrators sometimes cannot modify servers’ TCP stack
directly because of the security constraints which makes it
more difficult for administrators to meet agreed-upon SLAs
(e.g., latency performance).

1Those Web servers can be either physical servers or VMs in cloud datacen-
ters. For consistency, we use “Web server” to refer both cases.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Congestion Control Algorithms

Cubic Reno BBR Hybla Illinois Vegas

A
v
e
ra

g
e
 T

p
u

t
(M

b
it

s
/s

)

0

1

2

3

4

5

6

7

8
Web to BJ

Web to NY

(a) Performance dynamics

Time (second)

50 100 150 200 250 300 350 400 450 500 550 600
R

T
T

 (
m

s
)

0

100

200

300

400

500
Web to BJ

Web to NY

(b) RTT dynamics

Figure 1: The dynamics of congestion control’s perfor-
mance

Hence, we ask a question: Can we design a fine-grained
congestion control scheme that can always employ the most
suitable congestion control algorithm for each TCP connec-
tion, adapting to network diversities and dynamics, without
modifying TCP stacks of Web servers?

In this paper, inspired by works done in [6] and [12], we
present Mystique, a resilient congestion control enforcement
without changing TCP stack on servers. Advanced TCP con-
gestion control algorithms can be easily implemented by using
APIs provided by Mystique. Moreover, Mystique can effec-
tively adapt to network conditions and dynamically employ
the most suitable algorithm for each connection according to
rules specified by administrators.

The main contributions of this paper are as follows:
(1) We designed Mystique, which allows network adminis-

trators (or operators) dynamically adjusting and deploy-
ing congestion control algorithms without modifying
TCP stacks of servers.

(2) A prototype of Mystique is implemented based on Open
vSwitch (OVS). Mystique is light-weight, containing
only about 1400 lines of code.

(3) Preliminary test-bed experiments are conducted with
Web servers located in AWS cloud. Experiment results
show that Mystique works effectively, reducing latency
by up to 37.8% compared to other schemes.

2 BACKGROUND AND MOTIVATIONS
2.1 Background
Latency for Web service is closely linked to revenue and profit
[7]. Many service providers use network functions such as
TCP proxies and WAN optimizers for reducing latency [5, 9].
However, the scalability is of great challenge. When there
is a burst of requests for service, the performance of such
network functions can be easily saturated due to the limiting
processing capacity.

On the other hand, TCP congestion control is known to
have significant impact on network performance. As a result,
TCP congestion control has been widely studied and many

schemes have been proposed to improve performance [1–
4, 8, 10, 13, 16]. These schemes perform well in their target
scenarios but have varied performance in other circumstances.
However, service providers usually deploy a diversity of Web
servers which may run different versions of operating systems
(e.g., Linux and Windows) and be configured with different
congestion controls. Adjusting TCP stacks for such a large
amount of Web servers could be overwhelming for network
administrators. Specially, in multi-tenants cloud datacenters,
network operators may be prohibited from upgrading TCP
stacks on particular Web servers for security reasons. Further-
more, the congestion control algorithm determined by TCP
stack will take effect on all TCP connections of current server,
which is inconvenient considering network diversities from
all clients to the server (see Section 2.2).

Clearly, it is necessary to provide a mechanism which
allows drop-in replacement of TCP stack for per-flow (as
oppose to per-server) level of granularity, giving network
administrator sufficient control of network resource whilst
improving latency for Web services.

2.2 Problem Exploration
We have seen in Figure 1 that the same congestion control
algorithm may have different performance under different
network environment. To better understand the impact of
network dynamics on congestion control, we conducted a
Mininet [11] based experiment to quantify the performance
variation of TCP congestion controls under different network
conditions The network contains two servers connected to
two switches, respectively, in a line topology.

Based on the results shown in Figure 2, we have three im-
portant observations that highlight the dynamics of congestion
control’s performance

Observation 1: The performance of TCP congestion con-
trol varies under different network delays with constant loss
ratio. Results in Figure 2(a) shows that BBR has the best per-
formance in most scenarios, while Hybla [3] outperforms all
other algorithms at 200ms. Interestingly, BBR’s performance
degrade gradually when network delay is increased, whereas
Hybla’s performance is improved.

Observation 2: The performance of TCP congestion con-
trol varies under different loss ratios with constant delay.
Results in Figure 2(b) shows that all TCP variants have dif-
ferent performance under scenarios with different loss ratio.
Specially, Hybla can have the best performance compared to
other schemes when there is no loss, while BBR has the best
performance with the presence of packet loss. And Illinois
can achieve comparable performance to Cubic when loss ratio
equals to 0 and 1% but get opposite performance under loss
ratio equals to 2% and 3%.

2

Delay (ms)

50 100 150 200 250 300

A
v
e

ra
g

e
 T

p
u

t(
M

b
it
s
/s

).

2

4

8

16

32

64

128

256
Cubic Reno BBR Hybla Illinois Vegas

(a) Performance dynamics

Loss Ratio (%)

0 1 2 3

A
v
e

ra
g

e
 T

p
u

t(
M

b
it
s
/s

).

1

2

4

8

16

32

64
Cubic Reno BBR Hybla Illinois Vegas

(b) RTT dynamics

RTT (ms)

50 100 150 200 250 300

L
o
s
s
 R

a
ti
o

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Hybla BBR

(c) The most suitable CC

Figure 2: Problem exploration

Observation 3: No single congestion control suits all net-
work conditions. Figure 2(c) shows the best performing con-
gestion control for all scenarios with delay ranging from 50ms
to 300ms and loss ratio ranging from 0% to 3% respectively.
Hybla performs well in idle environment and BBR is good at
handling loss albeit not being a loss-based scheme.

2.3 Design Principles
The goal of Mystique is to provide a transparent platform al-
lowing network administrators to dynamically adjusting con-
gestion control in a fine-grained granularity without modify-
ing TCP stacks of web servers. Thus, transparency is the most
important characteristics of Mystique. Mystique should allow
network administrators or operators to enforce advanced con-
gestion controls without touching TCP stacks of servers. De-
ployment and operations of Mystique should be transparent to
both web servers and clients [12, 15, 20]. Besides, Mystique
should be able to apply different congestion controls on a per-
flow basis and switch congestion control according to current
network status, and consume as less resource as possible.

3 MYSTIQUE DESIGN
3.1 Obtaining Congestion Control States
One of Mystique’s tasks is to obtain congestion control states
(e.g., min_rtt, max_bw and loss ratio) on packet level. These
states are then used as inputs of each congestion control algo-
rithm implemented above Mystique.

Since Mystique is implemented in the datapath module
of OVS, all traffic passing through can be monitored. TCP
sequence number can be obtained directly from packets. Sim-
ilar to [12], Mystique adopts una to record the first packet’s
sequence number which has been sent, but not yet ACKed. nxt
is used to record the sequence number of the next packet to be
sent (but not yet received it). Packets between una and nxt are
being transmitted. Each ACK contains an acknowledgement
number (acknum), and una is updated when acknum > una.
When a packet is received from Web servers, nxt is updated if

its sequence number is larger than or equal to current value
of nxt. With una and nxt, detecting packet loss is easy. When
receiving a ACK packet, if acknum ≤ una, the a local dupack
counter is updated. When dupack counts to 3, it means a
packet loss happened [14].

When a new TCP connection is detected, minimal RTT
min_rtt and maximal sending rate max_bw are initialized
to be ∞ and 0 respectively. Flos’s current RTT c_rtt and
current sending rate c_bw are used for record current RTT
and Bandwidth. When ACK arrives, c_rtt can be updated by
computing the difference between ACK and corresponding
arriving timestamps. In the meantime, the size of acknowl-
edged bytes acked can be obtained by acknum - sna. Hence,
c_bw would be equal to (acked / c_rtt). If c_rtt < min_rtt, the
minimal RTT min_rtt would be updated. Similarly, max_bw
is updated when c_bw is larger than max_bw. And max_rtt
could be measured similar to min_rtt and max_bw.

3.2 Implementing Congestion Control
All states above can be obtained by canonical TCP congestion
controls through APIs provided by Mystique (summarized in
Table 1), and then used to compute appropriate congestion
window cwnd. Next, we will use our implementation of BBR
as an example to elaborate how congestion controls are im-
plemented based on Mystique. Other congestion controls can
be implemented in similar way.

In BBR, sender needs to continuously estimate the bot-
tleneck bandwidth (BtlBw) and round-trip propagation time
(RTprop) and let the total data in flight be equal to the BDP
(= BtlBw × RTprop) [4]. By adjusting the cwnd based on
BDP, BBR guarantees that the bottleneck can run at 100 per-
cent utilization and preventing bottleneck starvation but not
overfilling. min_rtt (obtained by getMinRTT()) and max_bw
(obtained by getMaxBW()) are tracked continuously for each
TCP connection. Mystique recognizes them as RTprop and
BtlBw to compute according cwnd.

3

Table 1: Some APIs provided by Mystique

Methods Descriptions
getCRTT() Get state c_rtt’s value
getCBW() Get state c_bw’s value
getMinRTT() Get statemin_rtt’s value
getMaxBW() Get statemax_bw’s value
setPeriod() Set parameter period’s value
setTstep() Set parameter t_step’s value
setBWstep() Set parameter bw_step’s value
isLoss() Offer loss feedback
setCwnd() Set new congestion window

Besides, the original BBR implementation uses 4 modes
to decide how fast to send, i.e., startup, drain, probe_bw and
probe_rtt, which are used to increase sending rate quickly and
estimate whether the pipe’s bandwidth has been fully utilized.
However, it is a obstacle for Mystique to enforcing such 4
modes. Because Mystique is not a host based scheme. Thus
Mystique cannot modify any end-host’s TCP stack directly
which leads to a obstacle of enforcing such 4 modes, espe-
cially forcing server to rapidly increase its sending rate when
server’s congestion window is smaller than Mystique’s cwnd.
Therefore, we seek a tradeoff between such measurement and
cwnd computing.

Mystique defines time unit period (set its value via setPe-
riod()). And every period some states (i.e., min_rtt, max_bw)
would be updated as follow: min_rtt = min_rtt + t_step,
max_bw = max_bw - bw_step. If the new min_rtt is larger
than the RTT under current network condition, min_rtt would
be updated when the next ACK arrives. Otherwise, network
condition has been changed and min_rtt can be updated to
actual minimal RTT with such operation step by step. Also
max_rtt and max_bw are updated similarly. In current Mys-
tique’s implementation, period is set to 5 second, t_step and
bw_step are configured as min_rtt/10 and MSS (via methods
setTstep() and setBwstep()) respectively [19]. Note that in this
section we only provide general idea for the implementation
of congestion control and leave optimal parameter tuning as
an important future work.

3.3 Enforcing Congestion Control
Once the cwnd is ready, the next step is to ensure that a Web
server’s sending rate can adhere to it. TCP provides built-in
functionality that can be reprovisioned for Mystique. Specif-
ically, TCP’s flow control allows a receiver to advertise the
amount of data that it is willing to process via a receive win-
dow (rwnd) [12, 14]. Mystique will overwrite rwnd with its
computed window size cwnd (done by setCwnd()) for restrict-
ing amount of packets sent from clients to Web servers. Of

Algorithm 1 An example of congestion control switching
logic

1: for each incoming TCP ACK do
2: if no Loss then
3: cwnd = TCP_Hybla()
4: else if RTT < 50ms then
5: cwnd = TCP_Illinois()
6: else
7: cwnd = TCP_BBR()
8: end if
9: setCwnd(cwnd)

10: end for

course, in order to preserve TCP semantics, this value is over-
written only when it is smaller than the packets’ original rwnd,
i.e., rwnd = min(cwnd, rwnd). Web servers with unaltered
TCP stacks will naturally follow our enforcement scheme
because the stacks will simply follow the standard.

More specific, there are two conditions when Mystique en-
forces its cwnd. (a) When cwnd in Mystique is smaller than
the congestion window in Web server, modifying rwnd can
limit the sending rate effectively. Mystique takes the control
of server’s congestion control which achieves Mystique’s goal.
(b) When cwnd in Mystique is larger than the congestion win-
dow in Web server, modifying rwnd may not be an effective
method. Hence, Web server’s congestion window must be
kept at a high level to allow Mystique enforcing its cwnd.
In response, Mystique prevents any congestion signals (e.g.,
ECN feedback and three duplicated ACKs) are sent to Web
server to avoid decreasing of Web server’s congestion win-
dow. Moreover, Mystique adopts packets buffering to handle
packet loss and retransmits them if necessary. But, the limita-
tion of Mystique is that it cannot force Web server increasing
sending rate fast. However, with continuous data transmission,
Web server’s congestion window would arrive at a high level
gradually.

3.4 Dynamic Congestion Control Switching

Mystique always tries to assign suitable congestion controls
on a per-flow basis based on each connection conditions.
The most suitable congestion control to be employed can be
either/both determined by current network congestion states
or administrator defined switching logics.

Algorithm 1 shows a simple example of such congestion
control algorithm switching logic. In this example, we recog-
nize BBR, Hybla and Illinois can perform well under most
network environment. BBR outperforms others with the pres-
ence of packet loss. However, the tradeoff mentioned in Sec-
tion 3.2 can lead to lots of bandwidth occupied by BBR. Thus,
Illinois, which outperforms others included BBR when delay

4

is less than 50ms in Figure 1 (Web→BJ), is adopted to cope
with the situation with packet loss in such scenarios. Other-
wise, BBR is used to be the most suitable algorithm. When
no loss is detected, Hybla is convinced to be the most suitable
one.

Since Mystique dynamically employ the most suitable con-
gestion control according to connection conditions, algorithm
switching would happen for a single TCP connection. In this
case, Mystique needs to decide whether some parameters
continue to be updated or re-initialized. In our current imple-
mentation, BBR and Hybla can compute their cwnd based on
the network states obtained by Mystique. However, Illinois
needs assistant parameters α and β to compute cwnd with
additive increasing and multiplicative decreasing. Though
the value of α and β would become useless after switching
from Illinois to others, α and β are updated continuously even
Mystique switches to other algorithms in order to prevent
degrading the performance if switching back to Illinois later.

Finally, based on Mystique, administrators can define more
complex switching logic using more metrics, e.g., loss ratio,
variation of RTT. Due to space limitation, more other logic
are not elaborated here.

3.5 Deployment Locations
Since Mystique is implemented on OVS, it can be easily de-
ployed in three possible locations in cloud datacenters: VMs,
Hypervisors and Routers/Switches. Deploying Mystique in
VMs allows network administrators to setup new Mystique
servers or release old ones dynamically for load-balancing.
While deploying Mystique in Hypervisors allows Mystique to
be easily scaled with numbers of servers in datacenters. It also
minimizes the latency between Mystique and Web servers, i.e.,
VMs. Routers/switches can inherently monitoring all incom-
ing traffic, making Mystique can easily enforce congestion
control without route redirection. Each deployment choice is
suitable for different requirements and scenarios. In practice,
combination of these three deployment choices above can be
considered.

4 PRELIMINARY EXPERIMENTS
4.1 Prototype Implementation
We have implemented a prototype of Mystique on Open
vSwitch (OVS) v2.7.0. About 1400 lines of code are added
to implement Mystique’s basic functions, e.g., tracking con-
gestion control states, managing buffer and switching logic.
Flows are hashed on a 5-tuple (IP addresses, ports and pro-
tocol) to obtain a flow’s state for maintaining the congestion
control state. SYN packets are used to create flow entries
while FIN packets are used to remove flows entries. Other
TCP packets, such as data and ACKs, trigger updates of flow
entries. Read-Copy-Update (RCU) hash tables are used to

Clients

GZ SZ BJ Lon NY

A
v
e
ra

g
e
 T

C
T

 (
s
)

0

5

10

15
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) Small file transfer

Clients

GZ SZ BJ Lon NY

A
v
e
ra

g
e
 T

C
T

 (
s
)

0

200

400

600

800

1000

1200

1400

1600 Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) Large file transfer

Figure 3: The average transfer completion time for both
small file and large file when Mystique is deployed in VM

enable efficient lookups while spinlocks [17] are used on
each flow entry in order to allow for multiple flow entries
to be updated simultaneously. Moreover, skb_clone() is used
for packet buffering to prevent deep-copy of data and multi-
threading technique is used for releasing memory space and
updating congestion control states and parameters

4.2 Testbed Setups
The test-bed consists of 7 servers from AWS clouds. We de-
ploy Mystique and 6 Web servers in Singapore AWS datacen-
ters. In order to obtain an in-depth understanding of Mystique,
our experiments involve 5 clients from all over the world.
They locate at Guangzhou(GZ), Shenzhen(SZ), Beijing(BJ),
New York(NY) and London(Lon). These clients experienced
different RTT and loss ratio when connecting Web servers.
All of these Web servers and clients are connected through
the Internet and equipped with Intel E5-2686 @ 2.30GHz and
4GB memory.

To understand Mystique performance, we compare Mys-
tique with Cubic, Reno, BBR, Hybla and Illinois. We use
Transfer Completion Time (TCT) as the primary performance
metric. For all Web servers, we uploaded two files: small
file (OpenFlow Switch Specification v1.5.1.pdf, 1.2MB) and
large file (Linux kernel 4.13 source code.xz, 95.9MB).

4.3 Evaluation Results
Deployment in VMs: Mystique achieves best performance
among all schemes. Compared to Cubic, Mystique reduces
the average completion time for both small file and large
file by up to 14.29% and 32.5% respectively. Meanwhile
Mystique outperforms Reno (11.33%∼35.14%) among all
clients for both small file and large file. Besides, compared
to BBR, Mystique could reduce TCT by up to 5.81% and
5.05% for small file and large file respectively. And Mystique
outperforms Hybla and Illinois by up to 20.45% and 34.1%
respectively.
Deployment in Hypervisors: Mystique achieves best perfor-
mance, too. Compared to Cubic, Mystique reduces the average
TCT by up to 25.63%. Meanwhile, Mystique outperform Reno

5

Clients

GZ SZ BJ Lon NY

A
v
e
ra

g
e
 T

C
T

 (
s
)

0

5

10

15
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(a) Small file transfer

Clients

GZ SZ BJ Lon NY
A

v
e
ra

g
e
 T

C
T

 (
s
)

0

200

400

600

800

1000

1200

1400

1600
Mystique

Cubic

Reno

BBR

Hybla

Illinois

(b) Large file transfer

Figure 4: The average transfer completion time for both
small file and large file when Mystique is deployed in hy-
pervisors

of concurrent TCP connections

100 500 1K 5K 10K

C
P

U
 U

s
a

g
e

 (
%

)

0

5

10

15 OVS

Mystique

(a) CPU usage

of concurrent TCP connections

100 500 1K 5K 10K

M
e

m
o

ry
 U

s
a

g
e

 (
%

)

0

5

10

OVS

Mystique

(b) Memory usage

Figure 5: The CPU and memory usage of Mystique

(10.72%∼30.76%) among all clients. Besides, compared to
BBR, Mystique could reduce TCT by up to 7.99% and 4.66%
for small file and large file respectively. And Mystique out-
performs Hybla and Illinois by up to 27.9% and 31.48%
respectively. Additionally, by comparing the testbed results
of both deployment in VM and deployment in Hypervisor,
we observe that Mystique on VM achieves comparable per-
formance as it on Hypervisor, even with additional one-hop
delay. Since Mystique is installed in datacenter where latency
is relatively low, such one-hop delay is negligible.
Overhead: We have also evaluated the overhead of Mystique
using test-bed experiments. Both CPU usage and memory
usage are measured by using sar with simulating concurrent
connection. The system-wide CPU overhead of Mystique is
shown in Figure 5(a). While Mystique increases CPU usage
in all cases, the increase is acceptable. The largest difference
is less than 2 percentage points: the OVS and Mystique have
14.1% and 15.8% utilization, respectively for 10K connec-
tions were generated. The system-wide memory overhead
of Mystique is shown in Figure 5(b). Similar to CPU usage,
Mystique increases memory usage in all cases. In the worst
case with 10K that 10K connections, Mystique just uses 3%
memory more.

5 RELATED WORKS
AC/DC [12] and vCC [6] are frontiers which converts de-
fault congestion control into operator-defined datacenter TCP
congestion control. AC/DC suggests that datacenter adminis-
trators could take control of the TCP congestion control of all
the VMs via implementing congestion control on vSwitch. In
the meantime, vCC shares some AC/DC’s goals and design
details. And vCC adopts a translation layer between differ-
ent congestion control algorithms. The evaluation of these
two schemes has demonstrated their excellent performance
in translating congestion control between VMs and actual
network. These two schemes rely on DCTCP’s effectiveness
on loss limitation thus they do not adopt buffer for retransmis-
sion. However, it may work inside datacenters while degrade
performance due to massive packet loss in WAN environment.
Specifically, Mystique was inspired by these two schemes,
with a focuses on Internet services like Web, allowing ad-
ministrators performing fine-grained and dynamic conges-
tion control. Recently, NetKernel [18] provides a vision of
network stack as a service in public cloud which decouples
network stack from OS kernel. NetKernel shares some goals
of Mystique, such as flexibility of deploying new protocols.
However, NetKernel needs to update server’s kernel which
would damage Web service’s functioning. On the contrary,
Mystique prefers unmodifying server’s configurations and
impacting less on Web service.

6 CONCLUSIONS
Each congestion control mechanism has its own suitable role
to play in various network environments while each Web
server may service clients from varied network environment
under single congestion control. In this paper, we presented
Mystique, a resilient transparent congestion control enforce-
ment scheme, which aims to enforce more appropriate con-
gestion control for corresponding network environment with
the purpose of reducing Web service latency. Our prelimi-
nary test-bed results have demonstrated the effectiveness of
Mystique with affordable overhead.

ACKNOWLEDGMENTS
This work has been partially supportedby Chinese National
Research Fund (NSFC) No. 61772235, 61402200 and 61602210;
the Fundamental Research Funds for the Central Universities
(21617409 and 21617408); the UK Engineering and Physical
Sciences Research Council (EPSRC) grants EP/P004407/2
and EP/P004024/1; FDCT 0007/2018/A1, DCT-MoST Joint-
project No. (025/2015/AMJ) of SAR Macau; University of
Macau Funds No. CPG2018-00032-FST & SRG2018-00111-
FST; NSFC Key Project No. 61532013; National China 973
Project No. 2015CB352401; Shanghai Scientific Innovation

6

Act of STCSM No.15JC1402400 and 985 Project of Shang-
hai Jiao Tong University: WF220103001; Science and Tech-
nology Planning Project of Guangdong Province (China):
2014A040401027, 2015A030401043, 2017A040405029 and
2017B030306016.

REFERENCES
[1] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-

Based Congestion Control for the Internet. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 329–342. https://www.usenix.org/
conference/nsdi18/presentation/arun

[2] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. 2007.
YeAH-TCP: yet another highspeed TCP. In Proc. PFLDnet, Vol. 7.
37–42.

[3] Carlo Caini and Rosario Firrincieli. 2004. TCP Hybla: a TCP enhance-
ment for heterogeneous networks. International journal of satellite
communications and networking 22, 5 (2004), 547–566.

[4] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2017. BBR: congestion-based congestion
control. Queue 60, 2 (2017), 58–66.

[5] Xiang Chen, Hongqiang Zhai, Jianfeng Wang, and Yuguang Fang.
2005. A survey on improving TCP performance over wireless networks.
Resource management in wireless networking (2005), 657–695.

[6] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik, Madhusud-
han Ravi, Nick Mckeown, Ittai Abraham, and Isaac Keslassy. 2016.
Virtualized Congestion Control. In ACM SIGCOMM 2016. 230–243.

[7] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan,
Neal Cardwell, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-
Bassett, and Ramesh Govindan. 2013. Reducing web latency: the virtue
of gentle aggression. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 159–170.

[8] Cheng Peng Fu and Soung C Liew. 2003. TCP Veno: TCP enhancement
for transmission over wireless access networks. IEEE Journal on
selected areas in communications 21, 2 (2003), 216–228.

[9] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Under-
standing network failures in data centers: measurement, analysis, and

implications. In ACM SIGCOMM Computer Communication Review,
Vol. 41. ACM, 350–361.

[10] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. Acm Sigops Operating Systems Review
42, 5 (2008), 64–74.

[11] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,
and Nick McKeown. 2012. Reproducible Network Experiments Using
Container-based Emulation. In Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT ’12). ACM, New York, NY, USA, 253–264.

[12] Keqiang He, Eric Rozner, Kanak Agarwal, Yu Jason Gu, Wes Felter,
John Carter, and Aditya Akella. 2016. AC/DC TCP: Virtual congestion
control enforcement for datacenter networks. In ACM SIGCOMM 2016.
ACM, 244–257.

[13] Tom Henderson, Sally Floyd, Andrei Gurtov, and Yoshifumi Nishida.
2012. The NewReno modification to TCP’s fast recovery algorithm.
Technical Report.

[14] V Jacobson, R Braden, and D Borman. 1992. TCP Extensions for High
Performance. RFC Editor. 190–222 pages.

[15] Glenn Judd. 2015. Attaining the Promise and Avoiding the Pitfalls of
TCP in the Datacenter.. In 12nd USENIX NSDI. 145–157.

[16] Shao Liu, Tamer Başar, and Ravi Srikant. 2008. TCP-Illinois: A loss-
and delay-based congestion control algorithm for high-speed networks.
Performance Evaluation 65, 6 (2008), 417–440.

[17] Robert Love. 2005. Linux Kernel Development (Novell Press). Novell
Press.

[18] Zhixiong Niu, Hong Xu, Dongsu Han, Peng Cheng, Yongqiang Xiong,
Guo Chen, and Keith Winstein. 2017. Network Stack as a Service in
the Cloud. In Proceedings of The 16th ACM Workshop on Hot Topics
in Networks (HotNets 17). ACM.

[19] Jon Postel. 1983. The TCP maximum segment size and related topics.
(1983).

[20] Yuxiang Zhang, Lin Cui, Fung Po Tso, Quanlong Guan, and Weijia Jia.
2017. TCon: A Transparent Congestion Control Deployment Platform
for Optimizing WAN Transfers. In IFIP International Conference on
Network and Parallel Computing. Springer, 49–61.

7

https://www.usenix.org/conference/nsdi18/presentation/arun
https://www.usenix.org/conference/nsdi18/presentation/arun

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Background
	2.2 Problem Exploration
	2.3 Design Principles

	3 Mystique Design
	3.1 Obtaining Congestion Control States
	3.2 Implementing Congestion Control
	3.3 Enforcing Congestion Control
	3.4 Dynamic Congestion Control Switching
	3.5 Deployment Locations

	4 Preliminary Experiments
	4.1 Prototype Implementation
	4.2 Testbed Setups
	4.3 Evaluation Results

	5 Related Works
	6 Conclusions
	Acknowledgments
	References

