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Abstract. The aim of this work is to produce and test a robust, distributed, mul-
ti-agent task allocation algorithm, as these are scarce and not well-documented 
in the literature. The vehicle used to create the robust system is the Performance 
Impact algorithm (PI), as it has previously shown good performance. Three dif-
ferent variants of PI are designed to improve its robustness, each using Monte 
Carlo sampling to approximate Gaussian distributions. Variant A uses the ex-
pected value of the task completion times, variant B uses the worst-case scenar-
io metric and variant C is a hybrid that implements a combination of these. The 
paper shows that, in simulated trials, baseline PI does not handle uncertainty 
well; the task-allocation success rate tends to decrease linearly as degree of un-
certainty increases. Variant B demonstrates a worse performance and variant A 
improves the failure rate only slightly. However, in comparison, the hybrid var-
iant C exhibits a very low failure rate, even under high uncertainty. Further-
more, it demonstrates a significantly better mean objective function value than 
the baseline. 

1 Introduction 

The ability to assign tasks well in the light of intrinsic uncertainty is very valuable for 
multi-agent task allocation systems. However, despite the advantages of distributed 
systems [1] very few robust algorithms have been developed with this architecture. To 
date, centralized systems have dominated research focus. This is not surprising since 
distributed task allocation for multi-agent systems operating in uncertain environ-
ments is a challenging problem [2]. One of the main difficulties is that the scheduling 
system must run independently on each agent but must generate the same schedule in 
each case. This can be problematic when connectivity between agents is limited or 
subject to change, when measurements are unreliable, or when information is impre-
cise or vague. These situations typically arise in Search-and-Rescue (SAR) missions 
where each agent may record a different location for each survivor because of inaccu-
racies in sensor readings, and none of the locations may be exact. Furthermore, meas-
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urements of the agents’ positions and velocities may also be uncertain and different 
for each agent.  SAR missions are time-critical and demand a low probability of fail-
ure; it is vital that the assignment is reached quickly and that it represents a robust, 
conflict-free solution, where every survivor is rescued within the given time-frame. 
The main aim of this work is to attempt to address some of these challenges by creat-
ing a robust, distributed, multi-agent task allocation system with a very low failure 
rate.  

To achieve the aim, the Performance Impact algorithm (PI) is used as the baseline 
for building a more robust architecture [3]. The PI algorithm has demonstrated better 
performance than CBBA [4] when solving deterministic model SAR problems, but 
lacks any mechanism for handling uncertainty. Ponda [5] has developed a robust ver-
sion of CBBA using stochastic metrics such as the expected value metric [6] and 
worst-case scenario metric. The approach used here to extend PI is similar, but it 
takes the technique a step further by using a hybrid combination of expected value 
and worst-case scenario metric to improve robustness. The hybrid algorithm consist-
ently demonstrates a very low failure rate and a low number of unallocated tasks in 
model SAR problems. Furthermore, it has a significantly better mean objective func-
tion value when compared to the baseline PI algorithm, and uses far fewer samples 
than Ponda’s model [5].  

2 Related Work 

There is an extensive body of work related to multi-agent task planning, task alloca-
tion, and scheduling with many solutions proposed. These include the Contract Net 
method [7], Markov Random Fields (MRFs) [8], auction-based methods [9], and Dis-
tributed Constraint Optimization methods (DCOPs) [10]. In addition, solution meth-
ods can be sub-divided into optimization and heuristic types, online and offline types, 
and centralized and distributed communication architectures. A good review of the 
different approaches is presented in [11].  

Time-critical, multi-agent, task allocation problems are NP-hard [12] and are thus 
difficult to solve using optimization approaches such as linear programming (LP), 
mixed integer linear programming (MILP), MRFs, and DCOPS. A MILP solution has 
been attempted, but the problem is not time-constrained and only eight agents and six 
targets are tested [13]. Pujol-Gonzalez applies an MRF-based solution to UAV online 
routing using the max-sum algorithm [8], but the problem is also not time-constrained 
and empirical tests restrict the number of UAVs to ten surveying a limited area of 100 
km2. In general, when the number of tasks and agents increases sufficiently, the opti-
mization approach becomes intractable because of the exponential number of con-
straints in the model [14]. 

Heuristic-based methods provide an alternative as scalability is not such a problem. 
Popular heuristic methods include Tabu-search [15], genetic algorithms [16], and 
auction-based techniques [17]. In general, heuristic systems are less complex and 
demonstrate relatively fast execution times, although the trade-off is that they often 
provide sub-optimal solutions.  
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Auction-based heuristic algorithms, a subset of market-based approaches [18] have 
been widely used for solving these problems [19]. The method is easily adapted to a 
decentralized architecture, although this can increase complexity and communication 
overheads [20]. However, auction-based approaches have many benefits including 
high efficiency, good scalability [21], and robustness when implemented within a 
decentralized paradigm.  

  Two particular combinatorial auction-based algorithms lend themselves to the so-
lution of the problems of interest in this paper - CBBA [4] and the PI algorithm [3]. 
Both algorithms use combinatorial auctions, where bundles of tasks are formed. These 
combinatorial methods have exhibited superior performance to single-item auctions 
and have generated good results when compared to optimal centralized approaches 
[22]. It has been shown empirically that the baseline PI algorithm performs better than 
the baseline CBBA algorithm [3], [23], with PI demonstrating a much better success 
rate with different numbers of tasks and agents, and different network topologies. 
However, the papers mentioned do not examine PI’s handling of uncertainty.  

2.1 Incorporating Uncertainty into Task Allocation Algorithms 

To account for uncertainty, many researchers use Monte Carlo sampling tech-
niques to allow the approximation of complex distributions. Undurti and How formu-
late the problem as a Constrained Markov Decision Process (C-MDP) [24]. Their 
method allows risk, defined as the probability of violating constraints, to be kept be-
low a threshold value whilst optimizing the reward. Simulation results showed that 
the algorithm performed well, but the experiments were limited to only two agents. 
An online MDP method is used in [25], but results are inferior to basic reactive ap-
proaches and testing is based on a much simpler problem.  

Maheswaran et al. enable users to encode their intuition as guidance for the system 
[26].  This approach simplifies a scheduling problem by decomposing it into simpler 
problems that can be solved in a centralized fashion. The work of Ramchurn et al. 
follows a similar approach, where human decisions are encoded as additional con-
straints for the optimization [27].  However, in work presented here attention is re-
stricted to solutions that do not involve human intervention. 

Lui and Shell postulate an alternative method that assesses the robustness of any 
given solution to uncertainty given a measure of it [28]. They propose the Interval 
Hungarian Algorithm that provides a tolerance-to-uncertainty metric for a given allo-
cation.  In particular, they compute a set of inputs that yield the same output schedule, 
providing a reliable method for assessing the tolerance of the allocation to uncertain-
ties. 

Creation of a solution that can hedge against uncertainty is an alternative technique 
to those already listed. Ponda implements this by adding probabilistic models of un-
certain variables, Monte Carlo sampling, and stochastic metrics (such as the expected-
value and worst-case scenario) to baseline CBBA to improve its robustness [5]. Simu-
lation results showed improved performance over the baseline, achieving results simi-
lar to centralized approaches. However, the experiments involved only six agents and 
10,000 samples were required. In addition, beyond about twelve tasks the robust algo-
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rithms began to fail. This suggests that further research in this area is needed to ad-
dress the problems.  

3 Methodology 

3.1 Problem Definition 

The problem of interest is documented fully in [3], [23], [29] and [30]. It is the opti-
mal, conflict-free assignment of a set of n heterogeneous agents V = [v1, …, vn]T to an 
ordered sequence of heterogeneous tasks from an m-sized set T = [t1, …, tm]T. Each 
task has a fixed location and a maximum (latest) start time g, i.e., the problem is time-
critical. Each task requires only one agent to service it, and each agent can complete 
only one task at a time, although it can complete other tasks afterwards, if there is 
time. The objective function is the minimization of mean individual task cost over all 
tasks rather than mean completion time for each agent, as the former takes into ac-
count the number of tasks that benefit from the time saving. The constraints are that 
the number of tasks assigned to a particular agent must be less than or equal to the 
total number of tasks, all tasks must be assigned to an agent, each ordered sequence of 
allocations is a subset of the whole set of tasks, tasks cannot be assigned to multiple 
agents, and an agent must complete a task before its latest start time.  

3.2 The PI Algorithm 

The PI algorithm is a distributed, multi-agent task allocation system that runs simulta-
neously on each agent. As in CBBA, the tasks are grouped into bundles that are con-
tinuously updated as the auction proceeds. In CBBA, the agents bid on the bundles 
rather than individual tasks and the bundles are formed by logically grouping similar 
tasks. In contrast, the PI algorithm uses a novel concept called performance impact to 
score and organize the task bundles. These are incrementally built and updated by 
systematically swapping tasks between agents, and then measuring the benefit over all 
tasks using special metrics. The removal performance impact (RPI) measures the 
benefits of removing a task from a bundle and the inclusion performance impact (IPI) 
measures the benefits of adding a task. Full details of the metrics and the PI algorithm 
are presented in [3], [23, [29] and [30]. The details are not reproduced here because of 
space limitations. In addition, for the purposes of this paper, the reader only needs to 
know that the RPI and the IPI are calculated using the time costs ci,k associated with 
each agent i and task k. In addition, creation of a robust scheduler in this way means 
that the methodology can be applied to other task allocation algorithms; it is not lim-
ited to the PI algorithm. 

3.3 The Robust PI Variants 

Each robust PI variant creates robust time cost values ri,k by sampling uncertain varia-
bles from a Gaussian distribution N times. A Gaussian distribution is selected because 
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physical quantities that are the sum of many independent processes (for example 
measurement errors) often have distributions that are nearly normal.  

In variant A, the expected values of the actual time costs are taken as the robust 
time costs, where the expected value of an uncertain variable ζ is calculated as fol-
lows: 
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Thus, in variant A, the robust time costs are given by: 
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In (3), the probability ps of sample s is taken as the combined probability of the com-
ponent uncertain variables. Variant B makes use of the worst-case scenario metric to 
calculate the robust time costs so that: 

 , 1 ,max ( )N
i k s i kr c== . (4) 

Variant C uses a hybrid technique that places a buffer value ψ on the difference be-
tween the expected time cost and the maximum (latest) start time of the task gk. If 

 ,Εk i kg c ψ− <( )  (5) 

is true then the maximum time cost (4) is used for ri,k; the deadline for the task is tight 
so it pays to be pessimistic. In other words, the algorithm is simply more cautious 
about accounting for uncertainty in its allocation. However, if (5) is false then the 
deadline is more flexible and the expected time cost can be used for ri,k as in (3).  

It is important to note that each variant uses the same objective function as the 
baseline, but substitutes the robust time costs ri,k for the measured ones ci,k. Apart from 
sampling and calculating the robust time costs, the procedural details for the robust PI 
algorithms follow the same pattern as the baseline.  
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4 Experimental Design 

4.1 Scenario 

The algorithms are tested on a scenario based on the rescue aspect of a SAR mission. 
The agents are UAVs carrying food and helicopters carrying medicine, and their mis-
sion is to rescue disaster survivors by delivering the supplies to them. Each survivor 
requires either food or medicine and their delivery constitutes the completion of a 
task. The start locations of the UAVs and helicopters are known in advance, as are the 
3-dimensional locations and requirements of the survivors. The world x and y coordi-
nates range from -2500m to 2500m and the z coordinates range from 0m to 1000m. 
The helicopters travel at 30m/s and the UAVs at 50m/s. The mission time limit is set 
at 5000s, the earliest start time for each task is 0s, and the latest start time is a random 
fraction of 5000s that cannot be less than 1500s. The task durations are fixed at 300s 
and 350s for medicine and food delivery respectively. Forty tasks and five vehicles 
are tested in each case.  

4.2 Uncertainty Models 

Three levels of uncertainty (low, medium and high) are considered, which vary ac-
cording to prescribed errors in the key uncertain variables - task location, vehicle 
velocity and task duration. These variables are modelled as Gaussian distributions 
centered on a known mean with standard deviation equal to the estimated error. Mon-
te Carlo sampling is used to allocate a value from the distribution to each uncertain 
variable and this is carried out separately for each vehicle. Relatively large errors are 
modelled for the task location as information relies upon intelligence from mixed 
external sources. UAVs generally use airspeed indicators to measure their velocity 
[31], but these can demonstrate instrument errors of up to about 7m/s [32]. Task dura-
tions are the most uncertain parameters since many sources contribute to them. For 
this reason, relatively large errors are modelled, but the uncertain values are not al-
lowed to fall below their real values by more than 50s as it is assumed that there is a 
minimum time for each. For the low uncertainty case, the errors are 50m for task loca-
tion, 5% for vehicle velocity and 10% for task duration. For the medium case they are 
100m, 10% and 25% respectively, and for the high case they are 200m, 20% and 50% 
respectively. 

4.3 Parameter Setting and Metrics 

Preliminary trials with values between 5s and 40s confirmed that the best value to 
use for ψ in variant C is about 20s, although the algorithm does not appear to be very 
sensitive to the parameter. The size N of the samples is maintained at 100 throughout 
all the experiments, which are conducted using a randomly generated network topolo-
gy where half of all possible connection pairs are set as communicable. This repre-
sents a realistic structure as it is not fully connected and is not as simplistic as a row 
or circular structure.  
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Each algorithm is run 100 times to obtain a percentage failure rate. Success is 
measured by selecting random real values for the uncertain parameters from the 
known probability distributions and calculating the actual number of tasks allocated to 
vehicles using the robust solution. If any tasks are unassigned then the run is counted 
as a failure; a run is only successful when all tasks are allocated. The total number of 
unassigned tasks is also recorded for each algorithm and uncertainty case, as are the 
mean objective function values. 

5 Results 

Figure 1 shows the total number of unassigned tasks across all 100 runs and Figure 2 
shows the percentage failures for each algorithm and each uncertainty case.  

Fig. 1. Unallocated tasks for each algorithm and each uncertainty case 

 

 
 
 

 

 

 

 

Fig. 2. Percentage failures for each algorithm and each uncertainty case 
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Failure to allocate tasks is a serious drawback for CBBA and baseline PI when un-
certainty is modelled. For PI, the problem scales linearly with the level of uncertainty 
in terms of both the failure rate and the number of unassigned tasks. CBBA shows 
100% failure rate for all uncertainty cases, and similar results to PI for the unassigned 
tasks, although it performs slightly better for high uncertainty in this respect. 

Robust PI (A) improves on the baseline performance with less difference between 
the uncertainty cases, but the algorithm does not produce an acceptable failure rate or 
a low enough number of unassigned tasks. Robust PI (B)’s performance is compara-
ble to that of CBBA in terms of the failure rate, and to Robust PI (A) in terms of the 
unassigned tasks. It proves 100% capable of predicting its performance but, in most 
cases, just predicts its own failure.  

Robust PI (C) demonstrates a very low failure rate and low total number of unas-
signed tasks, which can be attributed to the more ‘cautious’ design of the algorithm. 
When the time margin for task completion is tight it acts pessimistically, selecting the 
worst-case metric to calculate the robust task costs. In addition, t-tests comparing the 
mean objective function for baseline PI and variant C reveal that the latter is signifi-
cantly faster in all of the uncertainty cases (low: 1316s vs 1321s, medium: 1322s vs 
1340s, high: 1340s vs 1378s). 

There is a trade-off between a fast run-time and a robust solution; the robust vari-
ants (A and C) that use expected time-costs take about 50 times longer to run than the 
baseline (for example, a 1s run-time for the baseline in the high uncertainty case com-
pares to 47s for variant C). In the baseline, the IPI-calculation dominates, taking up 
about 85% of execution time. Examination of the individual run times for each part of 
PI variants A and C shows that about 78% of run-time is devoted to the MATLAB 
statistical functions associated with determining the expected time costs and the prob-
abilities of the uncertain variables. This is the key factor underlying the longer run-
times. However, the IPI calculation still dominates the remaining routines, taking 
around 20% of total run-time, with actual time spent in the IPI routine longer than for 
equivalent problems solved with the baseline. Around 8 seconds are added to run-
time, which may be attributed to the increase in complexity associated with compu-
ting the expected time costs and probabilities of the uncertain variables. 

6 Conclusions 

CBBA and baseline PI do not handle uncertainty well; a high percentage of the solu-
tions fail to allocate all of the tasks, and the number of unallocated tasks is relatively 
high. Taking the expected value of the time costs reduces the failure rate and the 
numbers of unallocated tasks, but the method is still not reliable enough for time-
critical problems. Using the worst-case scenario metric demonstrates poor perfor-
mance, especially for high uncertainty. However, when a combination of the expected 
value and the worst-case scenario metric is used, the results are greatly improved, in 
terms of both a more robust solution (a 1% to 2% failure rate and low number of unal-
located tasks) and a significantly smaller objective function value for all the uncer-
tainty cases tested.  In addition, only 100 samples are required to achieve this low 
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failure rate, which compares very favourably to the 10,000 samples used by Ponda, 
[5]. However, despite the small sample size, scalability in the numbers of agents and 
tasks is still a problem, with variant C displaying a higher run time compared to the 
baseline. For the model problems tested, one run still completes in a relatively short 
time compared to the mission length, but there is a limit to usability in terms of the 
numbers of tasks and agents because of the increased computation time. Future work 
will aim to improve the efficiency of variant C and then provide estimates of how this 
scales as the number of samples, tasks and agents increases.  

The study of distributed robust optimization remains wide open. Most methods de-
signed for solution of the types of problem discussed in this paper do not consider 
uncertainty in their solutions. Thus, the main contribution here is the successful de-
sign and implementation of a robust distributed system for solving such problems. 
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