B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

i~ ,
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY
AUTHOR/FILING TITLE
____________ Roewe, o
CRGCES NGO e T
_________________ isssogfor

VOL. NO. CLASS MARK

LoAN Cory

e e
! A 4 ey
40 708 B
~ag > R
; /
| 24 MAR 1997
25 4pg 1397

THE NUMERICAL DETERMINATION OF THE EfGENVALUES AND

EIGENVECTORS OF LARGE ORDER SPARSE MATRICES

BY

CHRISTOPHER COLLARD RICK, B.Sc.

A Doctoral Thesis submitted in partial fulfilment
of the requirements for the award of Doctor of

Philosophy of the Loughborough University of Technology

Supervisor: , PROFESSOR D.J. EVANS
. DEPARTMENT OF COMPUTER STUDIES

© CHRISTOPHER COLLARD RICK, 1977.

Loughborough University
of Techno'noy Library

Date NN "”

Class

::c.'_ \58808_/02_

Cm e

DECLARATION

I declare that the following thesis is a record of research
work carried out by me, and that thé thesis is of my own
composition. I also certify that neither this thesis nor the
original work contained herein has been submitted to this or any

other institution for a degree.

C.C. RICK.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Evans for
giving me the opportunity, his guidance and ideas, and a good

push when I needed it.

I am grateful to Drs. Dunbar, Blakemore and Barlow for many
useful and productive discussions. More intangible but equally
important, was the help of H.J. Gould and my parents. Finally I

would like to thank Miss J.M. Briers whose typing was considerably

more than expert,

CONTENTS

CHAPTER 1 - INTRODUCTION
1.1 Introduction . e e e e s
1.2 Some examples of elgenvalue problems Ve ve ve ee s
CHAPTER 2 - BASIC LINEAR ALGEBRAIC THEORY
2.1 Introduction .. o e
2.2 Notation . .. «. +0 +u s
2.3 Eigenvalues e e .
2.4 Methods for obtalnlng elgenvalues and elgenvectors .
CHAPTER 3 - METHODS FOR DETERMINING THE EIGENVALUES AND
EIGENVECTORS OF PERIODIC TRIDIAGONAL MATRICES
3.1 Introduction
3.2 Determination of the Sturm sequence for a symmetrlc
periodic tridiagonal matrix
3.3 Results .., .. . ‘e .
3.4 The application of Balrstows method to f1nd the
eigenvalues of an unsymmetric periodic
tridiagonal matrix cf v e en el e
3.5 Results
3.6 Determination of the elgenvalues of symmetrlc and
unsymmetric matrices by Newton's method .
3.7 Results .,
CHAPTER 4 - NEW STRAGEGIES FOR DERIVING THE EIGENVALUES OF
CENTRO-SYMMETRIC MATRICES
4.1 Introduction .. su ve ve cv w4 te ne o ae 4w ae se s
4.2 Derivation of the Sturm sequénce for a centro-
symmetric matrix
4.3 The calculation of the e1genvectors of a trl—
diagonal centro-symmetric matrix by inverse
' iteration
4.4 Results
4.5 Use of the Sturm sequence algorlthm for general
tridiagonal matrices using parallel processing
4.6 The calculation of the eigenvectors of a symmetric

tridiagonal matrix by inverse iteration .

PAGE

12

17

31
32
40
42
50

54
58

63

64

70

77

80

85

CHAPTER 5 - THE NUMERICAL CALCULATION OF THE EIGENVALUES AND
EIGENVECTORS OF A SYMMETRIC SPARSE QUINDIAGONAL
MATRIX
5.1 Introduction .
5.2 Formulation of the Sturm sequence and calculatlon

of the eigenvalues . .
Calculation of the elgenvectors by inverse

5.3

‘ iteration0 .. .

5.4 Results ve s “ e

5.5 Determination of the Sturm sequence for an un-
symmetric banded matrix and its use in
finding eigenvalues

5.6 Results ..

CHAPTER 6 - THE DETERMINATION OF STURM SEQUENCES FOR SPARSE
BANDED MATRICES

6.1 Introduction

6.2 Sturm sequences for the qu1ndlagona1 and perlodlc
quindiagonal matrices . .

6.3 Eigenvectors of a symmetric perlodlc qu1nd1agonal
matrix e e e

6.4 Results ..

6.5 Sturm sequences for further banded systems

6.6 The determination of the Sturm sequence for a
symmetric banded matrix and the rounding
error analysis tv th v ae ee e ee e

CHAPTER 7 - FURTHER RELATED TOPICS
7.1 Introduction
7.2 A method for ut11151ng part1a1 Sturm sequences to

find the eigenvalues of a symmetric matrix .

7.3 A modified Lanczos method to determine the

eigenvalues of a sparse quindiagonal matrix

-

REFERENCES

APPENDIX I

PAGE

92

92

.. 110
. 116

. 120
. 129

133

. 133
. 138

.. 141
. 145

. 153

161

. 161

. 171

177

187

CHAPTER 1

INTRODUCTION

1.1
The aim of the ensuing work is to present a number of numerical

methods which can be used to solve the algebraic eigenproblen,

Ax = Ax , (1.1.1)
where A is a known NxN matrix. The scalar X is an eigenvalue of the
matrix A, and the N-vector x is the corresponding eigenvector,

Equation (1.1.1) is the matrix notation fora set of N linear

equations in N unknowns X5 i=1,2,,..,N,

a1,1%1 " 31,25 ey Xy TR W
By 1%] * B Xt ¥By aXy = AX
> (1.1.2)
A% Ay, %oty Py T My
)

The equations are homogeneous and therefore a trivial solution x=0
exists. However, for certain critical values of the parameter, the
equations(l,1.2) have a finite non-trivial solution in which the relative
values of the variables are defined,but not theiabsolute values, The
parameter is A, the eigenvalue, and the variables make up the eigenvector
x. These values are important, as if for example equations (1.1.,2)
represent some physical system then the eigenvalues and eigenvectors

are significant features of the system,

Many problems arise in engineering and physics that are defined by
partial differential equations. It is the numerical solution of the
partial differential equations by finite difference methods that usually
present an equation of the form (1.1.1) to be solved. Eigenvalue

problems arise less frequently from other sources such as economics,

and information system design.

1.2 SOME EXAMPLES OF EIGENVALUE PROBLEMS

The first physical problem to be considered is that of the small
vibrations of particles on a string under tension. To facilitate
presenfétion of the idea simplifications are made so that the string is
assumed weightless and uniform, with no gravity acting, and motion
perpendicular to the rest position of the string. Attached to the string
are five unequal weights equally spaced, and the string is under tension

P as shown in Figure (1.1.1)

w

FIGURE 1.1.1

Applying Newtons 3rd law of motion to each mass in turn yields the

following equations,

:)
d°x, _ -Px, (x5-%)
™ = 5 P
dt
dzx -P(x,-x.) (x,-x.)
m 2 2 71 + 3 72
2 dt h h
dzx -P(x_-x,) (x_-x
Mg 3 ﬁ Zo-p 3h4 ' (1.2.1)
dt
d2x {x,-x) (x,=x
N 4 _,p o34 5 T4
a h h
) d Xg . (x4—x5) b fé
5 .2 h h /

Letting

1

= (xl,xz,xs,x4,x5) s

and, d

mih/P.l i=1,2,'..,5 »

the system can be written in matrix notation as

2
D dx . Tx ,
at?
where,
d1 o 0 0 0o
0 d2 o 0 0
D = 0O 0 d3 0 0O .
0 o0 O d4 0
c 0 0 O d
L 5
and, ~ .

0o o 1 -2 1

0 o o0 1 -2

b -

If the system vibrates with all masses moving in phase or in direct

opposition, i.e. normal mode operation then,

at?
Substituting equation (1.2.7) in (1.2.4) gives,

2
Dw x = -Tx ’

where the eigenvalues w Wq,W,,We are the normal frequencies

liwz,

motion. Equation (1.2,7) is not exactly of the same form as (1.

of the

1.1)

but can easily be transformed to that form by methods described in

Chapter 2.

(1,2.2)

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.6)

(1,2.7)

(1.2.8)

The next problem to be considered is that of an axially loaded beam
that can rotate at both ends, with the only unconstrained deflection

being vertically at the top, as in Figure (1.2.1),\uitbloaJ P,

|
¢ ¥

p

FIGURE 1.2.1

Assuming the column, of length £, is in equilibrium with small lateral
deflections y(x) and has a bending stiffness EI, it can be shown that

the following differential equation and end conditions must be obeyed,

E?X. + I—)X = 0 \
dxz El
and |
y=0at x=20 (1.2.9)
y=0atx=14
J

To achieve a numerical solution to equation (1.2.9)} a finite difference
approximation to the continuous system can be used. The column is

divided into segments and the displacements (yi, i=l,....,5) are

considered at a number of discrete points, as in Figure (Q.2.2)
‘ p

D

FIGURE 1,2,2

The Taylor series expansion for displacement (y(x)) in terms of values

of the function at adjacent points is,

2 2
y(xsh) = y(x) + B B dy(d, (1.2.10)
dx 2 2
dx
2 2
yix-h) = y(x) - Py b0 Ay, (1.2.11)
dx 2 2
dx
Adding equations (1.2.10) and (1.2.11) gives,
2 dzy(x) 4
y(x+h)+y(x-h) = 2y(x} + h™ ——5=+ O(h") . (1.2.12)

dx
The error term of order (h4) in (1.2.12) is due to truncation of the
series after four terms in the previous two equations. Re-arranging

equation (1.2.12) andl ignoning the omortenm yialdsChe Einita dFloranca spproemitin,

1 %y (x)
== (y(x+h)-2y(x)+y(x-h)) = XX (1.2.13)
2 2
h dx
which can now be written as, >
d
1 _ i,
—§{yi+1-2yi+yi—1) = 5 i=1,2,...5 . (1.2.14)
h dx

Equation (1.2.13) can now be substituted into equation (1.2.9) to yield,

(-y, +2) = Ph’ i=1,2,...,5 1.2.15
ViatYiYio) T OET Vi hSees s (1.2.15)

The end or boundary conditions defined by equation (1.2.9) indicate
that y0=y6=0, while the right hand side of (1.2.15) can be simplified

to,
th ‘ : .
T Xyi, i=1,2,...,5. (1.2.16)

The set of difference equations (1.2.13) can now be written in matrix

form as,
2 -1 0 0 0 A [v,]
-1 2 <1 0 0 Y, Y,
o -1 2 -1 0 . Yz| = A Yz . (1,2.17)
0 o -1 2 -1 Y4 Yy
.9 0 -1 2__, _YS_ _YS

This can be written in matrix notation as equation (1.1,1), where the
eigenvalues represent the buckling loads,

With this type of problem N can becomz very large by making h
smaller or havinglerged giving rise to large sparse matrices. An analytical
solution to equation (1.2.17) is already known, but configurations for
which classical solutions do not exist can be produced by having beams of
non-uniform stiffness, or axial loads varying with x.

For systems that can be defined by a partial differential equation
over a given domain a finite difference approximation to the equations
at grid points on this domain will result in a set of linear simultaneous
equations to be solved. For equilibrium equations or steady state problems
such as those defined, for example, by Laplace's equation applied (say) to
the steady flow of incompressible non-viscous fluid,

3’y U

2y 5 , (1.2.18)

and the heat conduction equation for (say), heat flow in a bar or rod,

2
W _ av
%" 2 , (1.2.19)

an eigenvalue problem does not arise.

Eigenvalue problems can be considered as extensions of equilibrium
problems in which critical values. of certain parameters are required in
addition to the steady state configuration, Most examples of this kind
of problem can be found in problems of buckling and stability of structures,
resonance in acoustics and electrical circuits, and natural frequency
problems in vibrations of systems. A finite difference method 0f solution

will then result in a set of equations of the same form as equation (1.1.1).

CHAPTER 2

BASIC LINEAR ALGEBRAIC THEORY

2.1 INTRODUCTION

In this chapter is presented some of the results of basic matrix
eigenvalue and eigenvector theorems. No attempt is made to give
rigorous proofs as they are well known and can be found in the literature,
References are given where needed, but for a comprehensive treatment of
the relevant subject matter the recommended reading is Wilkinson (1965)
and Hohn (1964}.)

Some of the methods that are modified and used to obtain eigenvalues
in later chapters are described here in their original form. Also, some
of the current methods being used to determine the eigenvalues of dense
matrices and sparse band matrices are also outlined. Their advantages
and disadvantages in dealing with sparse matrices are briefly described,
and it is these methods as programmed in the N.A,G. library that are used

to compare with results obtained from the new algorithms ocutlined in later

chapters,

2.2 NOTATION

A matrix will always be denoted by a capital letter, most commonly
used are the letters C and A. In general where possible C is used to
denotgiﬂymmetric matrices and A for a general matrix which may be
symmetric or ynsymmetric and/or complex. All of the matrices in the
work are square, and unless specifically noted have N rows and N columns
(NN matrices). Unless the elements of the matrix are explicitly defined
the matrix ii:wents, for matrix A say, are denoted by ai,j where i denotes

posi tion in the i? rgxianénjhthe jth column.
The determinant of a matrix will be written either as det (A) or

[A,, and the matrix is said to be singular if the determinant equals zero.

This can be written,
det (A) = |A] =0 (2.2.1)

10

. . . ' . . . -1
If the matyix A is non-singular then its inverse (written as A 7)

exists and is defined by,

aaloal A=1

(2.2.2)

Matrices with large numbers of zero elements are cumbersome and

collections of

difficult to write and |4rge,zero elements are replaced by a space with

a large 0 in it. So that if matrix C is a 5x5 symmetric tridiagonal

matrix thus,

c, b, 0 0 0O
b2 <,y b3 0 o
C = 0 b3 Cq b4 0
0 0 b, ¢, b
B 0o 0 b5 CE

-

¢ b)
b2 02 b3
C = b3 c3 b4
b c b
4 4 75
0
_ b5)

Likewise if A is a 6x6 upper triangular matrix thus,

-51,1 21,2 %1,3 *1,4

0 3,2 83 234

0 0 .a3,3 a3,4
A= 0 o o 3 4

©o 0o 0 0

o o o o0

it would be written for simplicity as,

4.5

22,5

835

4,5

a5 5

0

a

a

a

a

a

1

1,6
2,6
3,6
4,6
5,6

6,6

> (2.2.3)

(2.2.4)

' (2.2.5)

1,1 %1,2 1,3 1,4 %15 %hs

2,2 22,3 %2,4 "2,5 %26
3,3 93,4 %3,5 “3.6
4,4 4,5 4.6

5,5 “5,6

Vectors are represented as underlined lower case letters if they
are column vectors, EClements of that vector have the same letter, Tus
a lower suffix giving the position of that element in the vector. Thuo
corresponding row vector has an upper suffix T. For example if x ‘=

the vector,

| =
I
el
-
-~
)
(8}
~1

T .
then x° is the vector,

T

= iz
X (xl’XZ’XS) .2.2.8)
Eigenvalues are denoted by lower case Greek letters, and th> e
most commonly used is A {lambda). If I is the (NxN} identity matrix,
B —_
L0
I= I , (2.2.9)
0
1
then the matrix Al is written,
5 -
" 0
Al = ~ . ¢ .

f>"

12

The matrix AI is a diagonal matrix with the only non-zero elements on
the main diagonal.
The franspose of a matrix A (say) is denoted by AT, and is the

matrix whose element in the ith TOW, jth column is aj i If the matrix
3

A has complex elements and a; j is the complex conjugate of a, . then

s i,
the matrix A* (the conjugate transpose)} is the matrix whose element
in the ith TOW, jth column is a; i
»

From the above a number of special matrices can be defined.

For a Hermitian matrix A,

A* = A, (2.2.11)
If a matrix C is symmetric,

c'=c . (2.2.12)
If a matrix A is unitary,

A*A = T . (2.2.13)

Finallyarasl orthogonal matrix A is such that,

ATA =1 . (2.2.14)

2.3 EIGENVALUES
The basic algebraic eigenproblem is the determination of X such

that,
Ax = Ax N (2.3.1)

has a non-trivial solution, khere A is a NxN matrix and x is an N
vector then this can be written as,

(A-AI)x = 0, (2.3.2)
It can be shown that there is a non-trivial solution to this problem
if and only if the determinantal equation,

det (A-AI) = 0O (2.3.3)
is satisfied, The determinant of equation (2.3.3) can be expanded

by the Laplace expansion to yield,

2 N
ao + alk + azk +....+aN_lk

This is called the characteristic equation of the matrix A. The N

roots of the polynomial (2.3.4) are the N eigenvalues of the matrix A,
Qigenwdlve

Corresponding to each . of the matrix A, (A), there is at least one

non-trivial vector x for which (2.3.1) is satisfied. This is called

an eigenvector of A corresponding to A.

The elements of A may be complex, but if the matrix A is Hermilian
then all the eigenvalues will be real. If the matrix A is unsymmetric
then some or all of the eigenvalues may be complex.

There are methods for determining eigenvalues, some of which are
described later, which work with the matrix equation (2.3.1) or directly
on the matrix A whereas the methods developed in later chapters are all
concerned with finding the roots of the characteristic equation (2.3.4).
This presents a different emphasis in approach, where, provided the

aeadily
characteristic equation can,be found the structure of the matrix is no

longer important and thus economies in space can be made inside the

computer.

Similarity Transformations

If a matrix A is transformed to R-IAR where R is a non-singular
matrix (i.e., the inverse of R exists) then this is known as a
similarity transformation. The matrices A and R-IAR are said to be
similar, Of particular importance (as discussed in section 5) is the
transformation when R is a unitary matrix, In this case the matrices
A and R-IAR are said to be unitarily similar.

The usefulness of §uch a transformaticn is that the eigenvalues
of a matrix are invariant under the transformation, Therefore,
similar matrices have the same eigenvalues. This can easily be shown

for if

13

LMY oo, (2.3.4)

Ax = AX , (2.3.5)

then,

and?

14
(2.3.6)

®)R 1x (2.3.7)

Clearly the eigenvalues are unchanged and the eigenvectors are pre-

multiplied by R .

1

It can easily be shown that any NxN matrix with N linearly

independent eigenvectors is similar to a diagonal matrix with the N

eigenvalues on the main diagonal. .

The more general

result from Schurs theorem is that any square matrix is unitary similar

to a

triangular matrix with the eigenvalues on the diagonal. So if a

unitary matrix or a sequence of unitary matrices can be found that

transform a matrix to triangular form then the eigenvalues appear on

the main diagonal,

It is this kind of transformation that is the basis

of many methods for determining eigenvalues.

The Jordan Canonical Form

As a general matrix cannot always be reduced to diagonal form it

is of interest to know what is the most compact form a matrix can be

reduced to by similarity transformations.

The most compact form for

a general matrix is the Jordan canonical form which, while of little

practical importance, does help to illustrate the system of eigenvalues

and eigenvectors of a matrix,

Jr(l) = \\ ‘\]

First a sequence of matrices are defined,

J, A = [A\ (2.3.8)

(2.3.9)

15
where r>1, and Jr(A) is an (rxr) matrix with an eigenvalue A of
multiplicity r, but only one eigenvector x where,
X' = (1,0,0,.....,0) . (2.3.10)
The matrix Jr(l) is called a simple Jordan submatrix of order r.

If matrix A is a NxN matrix with s distinct eigenvalues

AoLA

1’,As of multiplicities ml,mz,....,mS where

gree
5
} m, =N , (2.3.11)

the following theorem can be stated.

There exists a non-singular matrix R such that R-IAR has simple
Jordan submatrices Jr(xi) isolated along the diagonal with all other
elements equal to zero. If there are p submatrices of orders rj,
j=1,2,....p associated with any Ai then,

E r; =m, . (2.3.12)
j=1

The matrix R_IAR is called the Jordan canonical form of A, and is
unique apart from the ordering of the submatrices along the diagonal.

If a (NxN) matrix has N distinct eigenvalues the Jordan submatrices
are all of order 1, and the matrix can be reduced to a diagonal matrix,.
If a matrix has fewer than N distinct eigenvalues, and fewer than N
linearly independent eigenvectors the matrix is said to be defective.

A matrix for which there is more than one Jordan submatrix (this
implies there is also more than one eigenvector) associated with Ai
for some value of i is said to be derogatory. Matrices that are
derogatory and/or defective present parfiCular problems when solving

the eigenvalue problem,

Vector and Matrix Norms

It is useful to have some measure of the 'size!' of a vector or

matrix analogous. to the modulus of a complex number. This is achieved

by the use of norms. The norm of a vector is denoted by ||x|| and
satisfies the relations,

||§J| > 0, unless x =0 ,

||k§J| = |k}]|§||, where k is a complex scalar,
Hxeyll < Hxtld Il
The general form of a vector norm : is given by,
[xl1, = g Pelxy e ey PP fo=1,2,%)

The norms that are of most use are for when, p=2 which is commonly
known as the Euclidean length of a vector, and when p=e which
interpreted as the maximum value of |xi|, i=1,2,...,N.

Similarly the norm of a matrix A is denoted by ||A|| and
satisfies the relations,

[|al} > , unless A=0

| |ka|| = || ||A]|, where k is a complex scalar,
[1a«{] < [lali+|[8]],
18]} < [1alls1 1B

For any vector norm there can be defined a corresponding sub-

ordinate matrix norm,

| fax]]
[1al] = max

—— = max ||A£|| .
0 |Ixl| 1lxl}=1

Therefore, the subordinate matrix norm satisfies,
[lax]] < TIall [Ix]]

The matrix norms subordinate to vector norms with p=2,« are,
[iatt,

Al

(maximum eigenvalue of A*A)%,

n

|a
H

max

L
i j 1,)

I ~1Z

(2.

(2.

(2.

. (2.

(2.
(2.
(2.

(2.

(2.

(2.

(2.

(2.

16

.13)
.14)

.15)

.16)

.17)
.18)
.19)

.20)

.21)

.22)

.23)

.24)

17

Normalised Vector

Not to be confused with a vector norm is the normalised vector, a
vector multiplied by a scalar to keep the element size down to
'manageable' figures without changing the direction of the vector.
There are several ways of achieving this, the method used in the work
is described.

If x is an N vector with elements X; i=1,2,...,N then calculate

¥ oash
s= (] x%) , (2.3.25)
i=1 *
and the normalised vector is,
X, X '
T 1 72 N
= [— _= — .3.2
X (el PERRREE S) . (2.3.26)

This ensures that the modulus of every element of the vector is less
than 1, and also,

xTx =1 . (2.3.27)

2.4 METHODS FOR OBTAINING EIGENVALUES AND EIGENVECTORS

The Power Method and Rayleigh Quotient

If A is a (NxN)} matrix with linear elementary divisiors whose

eigenvalues satisfy,

|?\1[=|)\2|= ol L3 £ D N Y 2yl s (e 2 D), (2.4.1)
The eigenvalues Al,hz, Ar are the dominant eigenvalues, By
assumption there exist N linearly independent eigenvectors 51,52, X9
any arbitrary vector Zy can be expressed in the form,
N
2 =) a, X, , (2.4.2)

where a, are scalars, not all zero. The power method is now defined
by the simple iterative scheme

Zy = Azk-l’ k=1,2,3,... (2.4.3)

Then using equation (2.4.3) repeatedly and substituting using (2.4.2),

18

_ a2 _ .3 _ k
. Aik-l = A Zy g = A L SEERRETE A 2
N
= 3 aikix. . (2.4.4)
i=1 *
Provided that GysCose..., 0 AT not all zero the right hand side
' r
of equation (2.4.4) is ultimately dominated by the terms z uilgxi.
i=1
In particular if r=1 and al#o then,
N
k k
2, = Ay (ogx) +izzai(li/h1) x;)
= Ak(a X+ g) (2.4.5)
1711 =k g)
for k sufficiently large, where 2 is a vector with very small elements,
‘The vector z, is an approximation to the un-normalised eigenvector and

k

is accurate if |Iek|| is sufficiently small. To find the corresponding

. .th . .
eigenvalue the i (say) element of two consecutive z, are used ((Ek)l,

k

(Zk+1)i) where,
) _ Lkel
1 = M X)) (2.4.6)
Then,
(2,01 i (o, (x)1 + (g ,4)1)
(z)1 1 (o (x01 + (g)1)
+ Al as k » o . (2.4.7)
The Rayliegh quotient of a matrix A for a non-trivial vector x
is given by, X*Ax
" (2.4.8)
Xx
It can then be shown that
X*AX
11 = max . (2.4.9)
#0 x'x

where Al is the eigenvalue of A with the largest modulus, The largest
eigenvalue of A can therefore be determined using the Rayleigh quotient
and a gradient method to optimise (2.4.9}.

The Rayleigh quotient can also be used in conjunction with the

19

power method to determine the eigenvalue of largest modulus.
If 5# is the vector obtained by the power method from equation

(2.4.3) then,
(EF)TAEF
(EF)TEF 1

where ¢ is a small error term. In general the Rayleigh quotient

s (2.4.10)

corresponding to EF will generally give a better approximation to Al

than the power method.
If Ai is an eigenvalue of matrix A, and Y5 the corresponding

eigenvector then,

T
Yy AY ‘
—_—— = Ai . (2.4,11)

i
This method is described by Wilkinson (1965) where if an

T -
i ¥

approximation to Ai is found (i;) then the eigenvector corresponding
to Xi is determined. The relationship (2.4.11) can be used to refine

the approximation to Ai and the eigenvector Y-

Gaussian Elimination

Gaussian elimination provides the basis for much of the ensuing
work, and so is described in some detail even though it is a widely
known and frequently used method. Again a detailed description of the
method can be found in Wilkinson (1965).

Gaussian elimination is generally used to obtain the solution of
a set of linear equations of the form,

Ax=Db , (2.4.12}
where A is a dense matrix and b a known vector. This is achieved in
practice by Gaussian elimination on the matrix A with the vector b
included as the (n+1)th column. The elimination in A will now be

described.

The elimination in the matrix A takes place in N-1 stages,

20

working on the matrix Al, i=0,1,...,N-2, with elements a; K After
. th . i-1
the (i-1) stage the matrix A has the form,
(-1 ji-1 il IR £ S
1,1 “1,2 1,3 7 " " " T T 7 1,N
0 ai-l ai-l i-1
2,2 2,377t Tt T BN
0 R)
. S . ai-l i-r o éi-l
i,i %i,i+17 77 77 i,N
ai-} i-1 a1—1
Ai-l _ i+1,i%i+1,i+1" T %i+1,N| (2.4.13)
0 ai-l i-1 o ai-l
Ii+2,i i+2,i+1 Ii+2,N
! 1
] i
| i
! [
aii-i éi—l
- Nyi "7 T T T T T TON,N |
Now the elements a;;; i’ j=1,2,...,N-i are eliminated by
»
calculating,
B i-1 i-1
Si+j,i = - ai+j,i/ai,i . : (2.4.14)
and adding s, . ., times row i to row j. It should be noted that

i+j,i

after the ith state the elements in row i+l do not alter value again,

The problem arises that the pivotal element (a;-i) may be zero or
]

close to zero and the division of (2.4.14) cannot be preformed without
overflow or serious growth of rounding errors occurring. There are
three ways of avoiding this,

1) Partial pivoting. The ith column is inspected and the element
a;_i, j=i+1,...,N with largest modulus (aﬁ’i) is determined and
then row k is interchanged with row 1i.

2) Total pivoting. The whole of the matrix a}_i, j,k»1 is inspected

and the element with largest modulus is exchanged with a;-; by
]

performing row and column interchanges.
3} The third method involves replacing the zero a;"i by a small

element €, and continuing the process, This procedure is not

satisfactory for solving linear equations, but if Gaussian

21

elimination is being used in some iterative method, this is an acceptable

procedure { Viz (#.5),

The matrix A, ignoring possible interchanges, has now been

decomposed to the form,

A=10 ,
where,
—0 a0 a0
3,1 21,2 1,3 Tt
1 1

0 a2,2 az,3 e e - =
' 2 2
. ? Az.3 33,47 7°
! i \'\ \\

U = 1 1 (;J"_‘ .
{ i ; \\ -~ ~
) I | - ~
1
L]] -.\ -~
i i : .
i] '
] ! :
0 0 0 -—- - — -« = 00— - - -
1 0
52,1 1 0, N
S5,1 83,2 LT
Sa,1 4,2 P43 SO T~

L = : i \ \\ -\,\ N
\ : ! "\ ~
i | ~ ~
' L l \\
i ' 1 .
\ i] ~
1 1 !
: 5 S mow = === = -
°N,1 °N,2 °N,3

Performing Gaussian elimination on matrix

column of A from equation (2.4.12) gives,

LUx = b ,

Ux =

1 -d

and is known as the

forward substitution stage,

(2.4.15)

(2.4.16)

(2.4.17)

A and vector b as the (N+1)th

(2.4.18)
(2.4.19)

Now in order to

obtain the value of x a backward substitution procedure must be

performed, and this is best described algorithmically as,

22

B N-1 .
X = d/ayn o
for 1 = N-1,N-2,....... 1, doyt (2.4.20)
N . . .
x; = (d; - ¥ X.a?_%)/a}'i
j=isl J1,} 1,1]
The quantity,
N .
v= T &%! ¥ (2.4.21)
R U 1
i=1
~where W is the number of row and/or column interchanges performed
represents the determinant of the matrix A,
Inverse Iteration
Inverse iteration is basically a variation of the power method
of the form defined by
AX-1+1 _ E}
i+l i+l i+l (2.4.22)
z =y /1y,
This is the power method using the inverse of A (A_l] and converges
to the eigenvector of A corresponding to the eigenvalue of A with
smallest modulus. If instead the iteration of (2.4.22) is performed
with the matrix (A-qI) ',
i+l i
(A-qD)y” ~ =2z, (2.4.23)

i+l i+l i+]
2 =y YT,

Fhe vector z converges to the eigenvector corresponding to the
éigenvalue closest to q in the complex plane, Inverse iteration can
érovide rapid convergence to an eigenvector even if the approximation
| .
to the eigenvalue is not goodinitially.

The implementation of the method, particularly for use on a
computer, has been developed by Wilkinson (1965). It can be seen that
the iteration (2.4.23) requires the repeated solution of a set of
linear equations. This can be achieved using Gaussian elimination

withapivoting strategy, Also the LU decomposition of (A-ql) need only

be calculated once making great savings in time during the process,
Therefore, ignoring interchanges for clarity of presentation the

process becomes,

23

Lv = z ,
41 (2.4.24)
Uy — =¥ ’
where,
LU = A-ql . . (2.4.25)}
The first step is omitted for i=0 and the second step replaced by
Uyl = e (2.4.26)

where e is the vector whose elements are all 1. This is equivalent

to letting XP = Le. This starting procedure works well under moest
conditions. In general if q is a close approximation to an eigenvalue
convergence to the appropriate eigenvector occurs.in one or two
iterations, then the Rayleigh quotient is determined and used to define
the eigenvalue. Inverse iteration is the recommended method to obtain

an eigenvector corresponding to a given eigenvalue.

Eigenvalue Bounds

There are two theorems due to Gerschgorin that define bounds for
the eigenvalues of a matrix that are used in conjunction with other
methods: -

Every eigenvalue of the matrix A lies in at least one of the
circular discs with centres ai,i and radii Z#i Iai,jl'

If s of these discs form a connected doiain which is isolated
from the other discs, then there are precisely s eigenvalues of A
within this connected domain.

Of particular importance is the use of these theorems with the
symmetric matrix C, when the maximum and minimum bounds for all
‘eigenvalues can be given as,

min (Ci,i - j;.lci,j‘) g any eigenvalue. of Cgmax(c;

i i TOdf

: +.E.|ci,j|).‘ (2.4.27

Sturm Sequences and Bisection

24

For a symmetric matrix with real eigenvalues the method of bisection

can be used to determine the eigenvalues, Of more importance is the fact

that bisection can be used to determine the pt

h

largest eigenvalue say,

or the number of eigenvalues and their value in the range x to y (say).

It is this ability to determine an eigenvalue independently of any others

in the eigenvalue spectrum that makes the method so powerful and useful.

If C is the symmetri
1,1 C1,2 1,3
€21 2,2 %2,3
]] !
' i)
i 1 !
C = !) t
]]
1 ! 1
) :)
| . |
] ! :
°N,1 N2 ON,3
where,
c. .
1,]

Then Pr(A), the leading principal minor of order r of the matrix

(C-AT) is given by,

cl’l—h c:l,2 c
cz’1 cz’z-k c
t I
' I
' 1
Pr(A)=det ' :
¢ i
! 1
! 1
c! c' c
_r,l r,2
Obviously,

and PO(A) is defined by,

c matrix,

C. .
).l

1,3- - -~ - ---
2,3° " """
]

|

|

]

i

1

H

]

' — -
r,3 -t s "

A = -
Py(1) = det (C-AT)
=1

Py =

]

(2.4.28)

(2.4.29)

(2.4,30)

(2.4.31)

25

The sequence Pi(A), i=0,1,...,N is a sequence of polynomials in XA
for which it can be shown that the zeros of Pr(l) strictly separate
those of Pr~1(k)' It is this property that provides the basis for the
bisection method,

If the sequence Pi(k), i=0,1,..,,N is evaluated for some value of A
then s(A)},is the number of sign agreements between successive members
of this seduence, (e.g. if PO(A)=1, P1(1)=10, P2(3)=-1, P3(1)=—2, P4(l)=-4,
then s(A)=3). If any Pi(A) is evaluated as zero it is taken to have the
same sign as the preceeding membér of the sequence (Pi_lfk)).

The Sturm sequence property theorem can now be stated as:- The
number of agreements in sign s(}) of successive members of the sequence
Pi(l), i=0,1,...,N is equal to the number of eigenvalues of € which
are strictly greater than A.

The operation of the bisection method can now be described as used

h

to obtain the kt largest eigenvalue (Ak) of the matrix C.

By the use of Gerschgorin's theorem two numbers . a,b, can be
cbtained such that,

Sevrenanagh, < b, ' (2.4.32)

where Ai, i=1,2,...,N are the eigenvalues of C. Then the number
(a+b)/2=u1 is determined and the sequence Pi(u), i=0,1,...,N

calculated,>from which can be determined s(ul). If s(ul) is greater

closed.

than or equal toN-¥ithen Ak lies in the, interval [ul,b], else Ak lies

closed
in the, interval [a,ul]. The process is now repeated using whichever

of the two half intervals Ak lies in, with My being calculated as

either (u1+b)/2 or (p1+a)/2. This process can now be repeated, always

using the interval which A, 1lies in, until the width of the interval

k

is small enough to obtain A, to the required accuracy. Wﬂkhfon(msg>P:300'

k

26

Newton-Raphson Iteration and Secant Method

These two methods enable the eigenvalues of - general matrices
to be determined. They are both root finding methods for determining
the zeros of a polynomial, and ﬁre therefore used to find the roots
of the characteristic equation by working with the determinant of the
matrix,

If matrix A is a general matrix then,

PN(A) = det(A - A1)} , (2.4.33)
d
1 [Jr— -
PN(A) Ty det(A - AI) , - (2.4.34)
and PN(A) : - is the value of the characteristic polynomial at A,

which is zero when A is an eigenvalue of A,
" The Newton-Raphson iteration can be defined as,
i .
. . P,.(A7)
Mrboat o N T (e ()#0), \(2.4.35)
i
| PO :
where A} is an initial guess at an eigenvalue. This method has the
usgal convergence properties (i.e. quadratic for single roots) that
the method has when applied to ordinary polynomials. If the matrix
has complex eigenvalues this method will locate them, but to do this
A* must be complex. One of the disadvantages of this method is that
at each step both the determinant and its\differential must be
calculated. If for some matrices it is imptacticable to determine Pﬁ(l)
then in this case the Secant method can be used, which is defined by,
i (Al-xl'l)PN(Al)
A =X - - y (2.4.36)

- 01)
which is the Newton-Raphson iteration with Pﬁ(k) replaced by its

finite difference approximation ;i - i-1
(P (%) - P (7))

g (2.4.37)
(Alall—l)

] i -

This method cannot be used to find eigenvalues in the complex plane fromareal

ﬁtn!yussﬁoso it is only used on symmetric matrices,or unsymmetric matrices where

for instance the physical problem guarantees the existence of real

27

eigenvalues., Two previous determinant evaluations-are required at
convergence

" each step, but starting the process {oguarante¢, can sometimes be a

problem.

This leaves the problem of determining complex eigenvalues for
matrices for which P&(A) cannot be calculated. This is achieved using
Mullers' method which is described in Chapter .5.

With these methods when one eigenvalue has been found steps must
be.taken to avoid re-determining this same eigenvalue. This can be
done simply by dividing PN(A) by the difference of the current guess

detesrmined
from each previouskﬁigenvalue. The new function to be used if the

2 eigenvalues AI,AZ,....,AR have already been found is,
. - 4 .
G, (A1) = P A/ TT (2" (2.4.38)
N N j=1 j

GN(ll) can then be substituted in (2.4,34) and (2.4.35) to effectively

deflate the matrix as each eigenvalue is found.

Transformation Methods

This section briefly describes some of the more popular
transformation methods that can roughly be divided into two categovies;
those that obtain the complete solution, and those that transform
the matrix to some simpler form to allow other efficient methods to
be used (e.g. transformaticn to tridiagonal form, then use bisection).

Given's method consists of performing plane rotations on the
matrix to reduce elements singly or in symmetric pairs to zero in a
set order. This is a similarity transformation leaving the eigenvalues
invariant, the plane rotations being performed by elementary unitary
matrices, If the matrix is Hermitian, reduction to tri-diagonal form
can be guaranteed in a finite number of steps, if the matrix is
unsymmetric then the transformation is to Upper Hessenberg form,

A - more efficient method is the reduction to the same

L

tridiagonal or upper Hessenberg form by the Householder method. This

28

is a similarity transformation by elementary unitary Hermitian matrices

that zero all the required elements in a column at one time (and the
corresponding row for the symmetric case).
The Givens method can be more efficient on sparse matrices, as

it is relatively easy with the method to avoid eliminating elements

which are already zero. The problem with both methods is that little

economy of space can be made when using either method on a computer,

as it is almost impossible to avoid storing the full matrix no matter

how sparse, Also if efficient determination of the eigenvectors is

required, all the transformation matrices must be stored in some form

to obtain the eigenvectors from those of the transformed matrix.

The LR transformation is a similarity transformation developed by

Rutishauser (1958). This consists of decomposing the matrix (A say)

to the form,

where L is unit lower triangular and R is upper triangular. The
similarity transform of A, L—lAL is defined by,

LI = Ll = R L
If the original matrix is A, then the LR method can be written as

1
A

s~1 Ls—-le-l '

As = Rs—lLs-l :

Rutishauser has shown that under certain conditions that as

s, LS+I, and Rs tends to an upper triangular matrix with the

1

This method has a number of drawbacks, such as converging very

eigenvalues of A, situated on the main diagomal.
slowly, and the decomposition breaking down. These have to some
extent been combated by a shift of origin and interchanging rows,

so that the modified algorithm is a powerful method.

(2.4.39)

(2.4.40)

(2.4.41)

The much more powerful QR algorithm was developed in 1961 by
Francis, This is similar to the LR method, but instead of a triangular
decomposition factorises the matrix into the product of a unitary matrix
Q, and an upper triangular matrix R, The algorithm can be defined by

the equations,
H

29

A =QR s A 1 QHA Q =QQRQ = RSQs , (2.4.42)

S s 3 5 $ 58S §8S 58

where Allis the original matrix. Obviously it is a similarity
transformation and AS has the same eigenvalues as Al.

For each step the QR algorithm requires more work than the LR
algorithm, but there is a better guarantee of convergence, which is
more rapid. Even so, a shift of origin can again be introduced to
speed convergence,

Because of practical considerations of work load and difficulites
with the factorisation, the QR method is only used on upper Hessenberg
or symmetric band matrices. When this method is programmed on a
computer, even for large matrices the storage problems are not too
excessive. The method is then the quickest available to obtain all
the eigenvalues of the matrix in question., However in practice only
a few eigenvalues of the matrix may be required allowing other methods
to compete on a time basis, It is for this reason that methods

developed in later chapters are compared whenever possible with QR

and LR methods.

CHAPTER 3

METHODS FOR DETERMINING THE EIGENVALUES AND

EIGENVECTORS OF PERIODIC TRIDIAGONAL MATRICES

30

31

3,1 INTRODUCTION

This Chapter is concerned with finding the eigenvalues of the
periodic tridiagonal matrix. This matrix occurs for ekample in the
‘finite difference approximation to the Sturm-Liouville differential
equation with periodic boundary conditions, the modal analysis of
Floquet waves in a composite material, and other applications
particularly with periodic boundary conditions.
The periodic characteristic Sturm-Liouville problem can be
defined by,
L po0 P ramy 2 My =0, (3.1.1)
where the numerical values of) and y(x) are required over the range
[a,b], with the boundary conditions,
y(a) = y(b) , A (3.1.2)
p(a) $£a) = p(b) L)
The direct substitution for the second derivative in (3.1,1} by

the appreximation

Pi o (vs -y)-pe o (y.-y.)
é%‘(P(X) g§ N i+d i+l ;2 i-3vi7i-1 ’ (3.1.3)

at each of the discrete points xi, i=1,2,...,N, in the interval {a,b]

where Nh=b-a,yields homogeneous linear equations of the form,

Ay = Athy , (3.1.4)
where A is the matrix
a. a a,
1,1 21,2 1,N
1 22,2 22,3 0
33’2 ".\ . - -
R , (3.1.5)
- \\' . - ~ - .

0 o ~ > "N-1,N

?N,1 N,N-1 NN

32

with elements,

- 2 .
a; 3 % Py * Py - b, 151,208,

(3.1.6)
ai,i+1 B 'pi+£‘ ai,i-l = 'pi-i‘ 1=1,2, 00,0,
whera d,N=8,0 8y, = dy e,
The matrix R is a diagonal matrix with elements fi’ i=1,2,...,N, all
greater than zero. Therefore equation (3.1.4) éan be written,
Cu = Au , (3.1.7)
where y = R'ig_ ,
o (3.1.8)
c=hR 5AR :

The matrix C has the same form as A, and equation (3.1.7)
represents the stand#d eigenvalue problem to be solved.

A new formulation of the Sturm sequence for the symmetric
periodic tridiagonal matrix is discussed in detail and its equivalence
to previously obtained sequences is shown. This formulation of the
Sturm sequence is then extended to obtain the sequence for unsymmetric
matrices, The Sturm sequence is then used in an implicit Bairstow
technique to find the eigenvalues of an unsymmetric matrix. Finally
the sequence is used in a Newton type iteration for both symmetric
and unsymmetric matrices and results are compared with the previously

described methods.

3.2 DETERMINATION OF THE STURM SEQUENCE FOR A SYMMETRIC PERIODIC.
TRIDIAGONAL MATRIX

Let C be a symmetric periocdic (NXN) tridiagonal matrix derived
from the finite difference discretisation of a Sturm-Liouville system
as indicated in the previous section. In order to find the eigenvalues
of C a solution must be found to the determinantal equation
det(C-AI) = O , (3.2.1)

where,

33

cl-A b2 b1
b2 c2—§ b3\ 0
bs\‘\“\:“\\
|6-AI| =let R :.‘*.\: T =0 . (3.2.2)
0 IR j\\‘\\\bN
Py \\‘b;\ N

Evans (1971) has shown that the characteristic polynomials of the

matrix (C-AI) are given by the following relationships,

P,(A) =0 , \
P2y =1 ,
PI(A) = cl—k s
P,0) = (c,-MP,(\) - bgPO(A) , o (3.2.3)
PLO) = (c;-MP, [(A) - biP, (A), i=3,...,N-1, J

and
QO(A) = 0 » W
Q) =1 s
QZ(A) = (cz"l) » I (3.2.4)
Q;(l) = (cl-A)Ql-l(;\) = bei_Z()\)s i=31~-':N"'1:)

Finally,
Py(A) = (c-MP, () - b2P (V) - b2Q (N +(-1)N‘12 "Frb (3.2.5)
N N~ TN-1 N N-2 1°N-1 j=1 jrorTee

These polynomials(Pi(A), i=1,N) were obtained from a Laplace
expansion of the matrix (C-~AI), and are the leading principal minors
Hohn (1964)
of |C-?\I|.A These polynomials can now be used in a bisection process
to determine the eigenvalues of the matrix C. Unfortunately even for

small well behaved matrices the polynomials Pi(l), i=1,2,...,N oscillate

wildly between large positive and negative values, even for values of A

‘quite close to an eigenvalue, In an attempt to avoid underflow and
overflow occurring when calculating the sequence in floating point
arithmetic on a computer, the procedure of Barth et al,, (1967) can be
adopted.

The sequence of polynomials Pi(k) and Qi(l),are replaced by a new
sequence of scaled polynomials pi(A) and qi(A) given by,

p; (M)

and .93 ()

The relationships (3.2.3), (3.2.4), and (3.2.5) then become,

34

P./P_ (), (3.2.6)

Q, (A)/P. (M)) (3.2.7)

Po(l) = 1 ’

p; (1) = (c-) :

p,(A) = cz""bg/pﬂ” , L (3.2.8)
: 2 :

pi(k) = ci‘k‘bi/pi_l(l) » 1=3,4,...,N-1, J

whilst the qi(x] after some simple algebraic manipulation become,

1)

9, (1)

4,(1) = (e,-2)/p; (M)

a5(0) = (e5-1) a,(0)/py(0)-baa, (I /o, (MIp5 (1)),
qy (V) = (e;-Na;_; ()/p; (W-bla;_, () /b, (Wp; _, (W),
i=334’---5N »
J
and then finally, N-1

2 2

j=1

Overflow and underflow are now avoided whilst calculating the
pi(A) (i=1,N) and instead of counting the sign changes in Pi(l) as
in the previous procedure (3.2.3) and (3.2,5), the number of negative
signs in the sequence pi(A) are now counted. This indicates the
number of eigenvalues less than A and can be used in the usual’

bisection process in the same way,3s 2 ﬂegatfvo. P.v,(h) irdicatas PLQ\)""?C*-I(}')
are of A dif€erant sign.

r (3.2.9)

(b, /p; (V). (3.2.10)

35

An equivalent sequence to (3.2.8), (3,2,9), and (3,2,10) can be
obtained in a different manner to the Laplace expansion method used
above. The sequence obtained is more efficient to compute than (3.2.8-
3.2.10), and the method by which it is obtained forms the basis for
much of the ensuing analysis. For this reason the method is described
in detail,

.If a Gaussian elimination procedure is performed on the matrix

(€C-AI) the matrix will be transformed to upper triangular form in the

following stages.

By setting
(¢,-2) =5, (1), r,=b , (3.2.11)
then for the first step the matrix becomes,
.EI(A)’ b, r B
0, cyA-ba/s (1), b, ENWENEY
by ez-h Y 0
\‘m\\ RN (3.2.12)
~ - ~ . \\ by
0 eryby/s () TS by, cN-A-ri/sl(A)_
Again setting : 2
Cy=h- bz/sl(k) = sz(k), r, = -rlbz/sl(k), (3.2.13)
the second step of the Gaussian elimination process becomes,
[s (1) b, r]
0 szgl) b3 r,
0 cgmA-bi/s,(0), b, ~. 0 RRWENCY
b4\\\‘~ .. I -~
0 el Tl by '
fl 0 -r2b3,/52(l)) bN cN:i—rf/sl(A)-rg/sz(lzd

(3.2.14)

36

This elimination process is repeated for (N-1) steps and it can easily

be seen that the final form of the matrix then becomes,

SI(A) b2 1
sz(A) b3 R 0 r,
- ‘
53(1) ~ |
\\ ., '
RV : , (3.2.15)
0 ~ . TN i
S
B sy (A) a
where,
so(A) =1 ,)
sl(x) = cl-h .
_ 2
s,(0) = cy-A-b5/s (),
. _ 2 .
si(l) = ci—h-bi/si_l(l) , i=3,4,...,N-1, (3.2.16)
o= h
T, = —ri_lbi/si_l(l), i=2,3,...,N-1,
and finally,
N-1 2
s (N = eyA- jE1 rj/sj(A)-z Ty 1/ Sy g (A -by/sy (A) . J
The sequence si(l), i=1,N is identical to the sequence pi(A), i=1,N,
and their equivalence will now be shown in the following manner.
If (3.2.16) and (3.2.3) are compared it is seen that,
P, (M) .
Sl(;t) = W = CI—JL) (3.2.17)
which on substitution in 52(1) gives,
2 Pl(h)
52(7\) = CZ‘A'bZ/(W) s (3.2.18)

and on clearing terms becomes,

P, (s, (1) = (c,-2)P; (A) —bgPO(A) . (3.2.19)

37

Then by comparing (3.2,19) and (3,2,3), we have,

PL(Ns,(N) = P,(0) (3,2.20)
and therefore,
s,(8) = P,()/P(A) (3.2.21)
If this procedure is continued it can be seen that,
P, ()
51()\) = P. A) = pi(l)) 1=112)---’N'1’ (3'2-22)
i-1
i
and, P.(A) = TT sj(k), i=1,2,...,N-1, (3.2.23)
i=1

From (3.2.16) and (3.2.10) for pN(A) toh%qualhsN(A) the following

relationships must be true,

2 N-1 N-1 r2
bay (A + 26y TT Cby/p00) = § 55 -2byry /sy ()
j=1 j=1 Sj(l)
(3.2.24)
Using continual substitution of the relationship from (3.2.16)
describing the L
Bk S T B P)
sN_l(l) sN_l(l)sN_z(l)
o TPy by Byofys
Sy.1 M sy_p (M sy_ 5 ()
! (3.2.25)
N-1
= 2b) (-bi/s. (M)
1=1]
Substituting for the S5 from (3.2.22)
-2b, T N-1
N"N-1
=07 26 TT (-b,/p, 1)) . (3.2.26)
SN_l(A) N i=1 i’ ti
Therefore subtracting relationship (3.2.26) from (3.2,24) it only
remains to show that,
2 Nl o

i=1

38

or by using equation (3,2,7),

b2 q N1 2
by Qu APy () = L xi/s.() . (3.2.28)
i=1

This is achieved by an inductien proof,

Assume that

2 M-1
Q. (MI/Py () = 121 ri/s; () (3.2.29)

and that, > M-2
b} Q. (AI/P, () = { T; /s () . (3.2.30)

Using the recurrence relationship of (3.2.4) Q {A) can be written as

2

and it therefore follows that,

beM(A)/PM(A) = (e M)Q, ; ()b] /P (A)-b leM L (/P (A) . (3.2.31)

Now by substituting for QM_I(A) and Q (A) from equations

M-2
(3.2.28) and (3.2.29) the relationship (3.2.31) becomes,
2 2
b2Q, (A)/P,(A) = (CM_i)iyil(k) bR ri(l) bMEM(i;A) 5 Srkl) .(3.2.32)
M i=1 %i M i=1
Next the pi(k) can be replaced by all the equivalent si(l)
as given in (3.2.22), and (cM-A) can be replaced using the relation-
ship (3.2.16), then (3.2.32) becomes,
5 b2 M-1 12 5 M-2 1 %
leM(J\)/PM(l) = (;\) (SM(A) (l)) (IZ 5 (7\)) b (z 5 ()\)S (;\) ?E
(3.2.33)
M-1 r? T b2 M-2 r?
o7 sy sy (L 507
=1 %1 M SN sy) 742y sy
b; M-2 12
(3.2.34)

s o Gl E"%iia
M M-1 i=1 i
Now the two terms of opposite sign cancel and all remaining terms can

be placed in the sum to leave,

b2 (A)/P (X)) = ? 2/ A (3.2.35)
R R '2-

This shows that if relationships (3.2.29) and (3.2,30) are true for
any M-1, M-2, then (3,2,35) is true for any M.

If M-2 equals 1 then the L.H,S. of equation (3,2.30) becomes,

2 2
by) by
P €, N

by substituting from equations (3.2.4) and (3.2.3). The right hand

side of equation (3.2.30) after substituting from (3.2.16) becomes,

2 2
B N
Sl(l) (Cl-l)

Therefore from equations (3.2.36) and (3.2.37)} equation (3.2,30) is
shown true when M-2 has the value 1.
If M-1 equals 2 then the L.,H.S. of equation (3.2.29) after

substituting from equations (3.2.3) and (3.2.4) becomes,

2 2 2
bY QM) B (e M) bie,)
P,(}) zZ 2

By taking the R.H.S, of equation {3.2.30) and substituting using

(3.2.16) the expression becomes,

2 2 2
E ri) r1 . r2
2 2,2
Lk
Sl(k) si(k)sz(h]
2 2
S W __*EEL____Q
(cl-x sl(A)sz(A)
_ bf (cz-h)(cl—l)-b§+b§
(c,-1) 2
1 (cl-l)(cz-k- b2
(cl-l)
bf (cpm2)

' 2
(cl-l)(cz—k)—bz

39

(3.2.36)

(3.2.37)

(3.2.38)

(3.2.39)

40

Therefore from equations (3.2,38) and (3.2.39} equation (3.2.29)
is shown true when M-1 has the value 2.
Therefore (3.2.29) and (3.2,30) have been shown true for M-1,M-2,

equal to 2,1, and equation (3,2,27) is proved true by induction for

all M,
It has now been proved that,
P, ()
A = =] =
Si_() ¢S] Pi(?x) s i=1,N , (3.2.40)

1_

for any symmetric periodic tridiagonal matrix. In fact a similar
relationship éan be proved for any unsymmetric periodic tridiagonal
matrix in the same manner,

The sequence pi(h), i=1,N can now be replaced by the sequence
si(A), i=1,N and used in a bisection process to isolate the eigenvalues

of the matrix C as described in Chapter 2.

3.3 RESULTS

. RESU .
The recurren« relationship(2.2.16) was programmed in ALGOL 60 on

the I.C.L. 19045 computer at Loughborough University of Technology,

The procedure is given as program 2 in Appendix 1.

The program was tested on the following 11x11 matrix,

2 -1 -T
12 -1 0
A
~
SN
RN . (3.3.1)
~ . ~
0 \\ \\ \‘\
\\ S -1
~ ~
~ ~
-1 -1 2

The eigenvalues are known and are given by,

Ar =4 sin2 (rw/N) s (3.3.2)

the theoretical and calculated eigenvalues are tabulated and compared

in Table 3,3.1,

the results being rounded to 10 significant figures

A1

i Theoretical A, Actual results i, A, - A,
-1 i i i
~19 -11 -11

1 2.168404345 x 10 1.682132106 x 10 -1.682132084 % 10
2 3.174929341 x 10—1 3,174929343 x 10_1 -0,000000002
3 | 3.174929341 x 107! 3,174929343 x 107! 0 .000000002
4 1.169169974 1.169169974 0 .000000000
5 1.169169974 1.169169974 0, 000000000
6 2.284629676 2.284629677 ~0.000000001
7 | 2.284629677 2.284629677 0.000000000
8 | 3.309721468 3.309721468 0.000000000
9 '3.309721468 3.309721468 0.000000000
10 | 3.918985947 3.918985947 0.000000000
11 3.918985947 3.918985947 0.000000000
/ Z 0, -)2 0.000000003

TABLE 3.3.1

The computer took 2.5 seconds to obtain the results given in
Table (3.3.1), and they can be seen to be accurate to ‘T'decirnﬁl-n~
places. .

Next the solution of a larger problem was sought in which the
resulting matrix is of order 60x60., The theoretical and experimental
values of the ten largest eigenvalues are given in Table 3.3.2,

i Theoretical Ai Actual results Xi /(Ai'ii)z

1 4 ,000000000 4 ,000000000 0,000000000

2 3,984229403 3,984229410 0.000000007

3 3.984229403 3,984229403 0,000000000

4 3.937166322 3,937166330 0,000000008

5 3.937166322 3,937166308 0,000000014

6 3.859552972 3.,859553001 0,000000029

7 3.859552972 3.859552951 0.000000021

8 3.752613360 3.752613370 0.000000010

9 3.752613360 3.752613359 0.000000001

10 | 3.618033989 3.618034000 0.000000021 TABLE 3.3.2

42

The accuracy of these results has been reduced to 8 significant
figures. This is due partly to the size of the matrix, and because
all the eigenvalues except the largest occur in double pairs, and
accuracy is always reduced when finding multiple andclose e¢igenvalues.,

The results are compared with a N.A.G. library routine using an
L.R. procedure to obtain the eigenvalues. The results obtained by the
library routine agreed with the theoretical results to 10 significant

-figures, and were obtained in 75% of the time taken by program 2 (5
seconds). However the workspace required by the N.A.G. library routine
in the computer for storing arrays was O(Nz) whereas the storage used
by program 2 was O(N). It is interesting to note that neither progra;
was able to obtain the roots as double roots, all were given as pairs
of very close roots.

As a final test program Z was Tun on a 300x300 matrix of the same
form as (3.3.1) to obtain the largest and smallest eigenvalues. The

answers (4.000000000, and 0.000000000) were obtained correct to 10

significant figures in 11 seconds.

3.4 THE APPLICATION OF BAIRSTOWS METHOD TO FIND THE EIGENVALUES OF AN
UNSYMMETRIC PERIODIC TRIDIAGONAL MATRIX

Bairstows method is a procedure for finding the real quadratic
factors of a given polynomial, thus determining the roots of the
polynomial in real or complex conjugate pairs. This method is applied
to matrices by finding quadratic factors of the characteristic
pelynomial implicitly, and the eigenvalues are then obtained in pairs
as roots of the quadratic factors,

Let D be an unsymmetric periodic tridiagonal matrix of order N

then, the eigenvalues are given by,

|D-AT |=det

o

d
)}
—
.
s
~ ~
\\ ~
-~ ~
"h.\ "-\ e
. -~ ‘\ = ~ b
~ . <. TN
~ -
~d. ¢ .-
N N

43

(3.4.1)

It can easily be seen, by using (3.2.3),(3.2.4), and (3.2.5) that

the Sturm sequence for the matrix (3.4.1) is given by,

PO
Po(l]
P ()

Py(2)

P, ()
gy ()
Q, (M)
Q,()
Q)

. and

Q; (V)
and finally,
Mey

I

(c,-MP (A) -

(e-MP; (W) -

0
1
(c,-2)

(c5-1)Q,(\)

(ci-

(CN'A)pN-l

Ny () -

)

byd P,

iPip (M), 1=3,4,...

b,d.Q; ,(N), i=4,5,...

- b .d.P

NInPN-2 (M) - Byd

1 lQN—l
N

N
S0V TT bj+(-1)N'1 T d

j=1

)

f (3.4.2)
aN'ls

J

1

q (3.4.3)
JN-1

J
()

(3.4.4)

Since the eigenvalues could be complex the Sturm sequence

cannot be used in a bisection process.

will be used,

Instead Bairstows method

'As the method is quite difficalt a slightly simpler

44

matrix than D will be used as an example to illustrate the algorithm.
This facilitates explanation of the method, and extending the result
to cater for - -. D is a trivial step.

The matrix C is obtained by setting,

(3.4.5)

bi = di’ i=2,N, and a = bl’ ad = d1
in (3.4.1) so that the matrix is now of the form,
cl-l b2 a
b2 cz-l b3
o 0
b3 g i ~ N
(c-A1) = RN (3.4.6)
0 Tl T
fd bN CN‘l
Then from (3.4.2), (3.4.3), and (3.4.4) it can be seen that
- A
P_l(k) =0 , ,
PO(A) =1 s
Pl(l) = cl—x ,
- 2 (3.4.7)
P2(A) = (c2~A)P1(A) - bZPO(A] ,
- 2 .
P.(N) = (c;-MP, [() - biP. ,(A), i=3,... N, |
d
an QM =0 }
QM) =1
Q,(A) = (c,-2)
2 2 (3.4.8)
. 2 .
Qi(l) - (ci")\)Ql_l(A)" bi Qi_z(l): 1_3’- ',N-IJ J
and finally,
2
PN(A) = (CN'A)PN—I(A)_bNPN-Z(A) - ad.a.QN_l(A)
N-1 N
+(-1) (ad+a) [bJ. (3.4.9)
j=2

45

If each of the polynomials Pi(A) i=1,N from equation (3.4.7) and
(3.4.9) are divided by a trial quadratic factor of the form (XZ-EA-F)
say, then a linear remainder, (AiA+Bi, i=1,N) say, is produced. The

polynomials Pi(k) can now be written as,

2 | .
Pi(l) = (A —EA-F)Ri(A) + Ail + Bi‘ i=1,N , (3.4.10)
where Ri(l), i=1,N is a polynomial in A of degree (i-2). Similarly
each of the polynomials Qi(k), i=1,N-1, from (3.4.8) are divided by
the trial quadratic factor (AZ—EA—E) producing a linear remainder,

which is Gil +Hi, i=1,N-1. The polynomials Qi(l) can now be written as,

_— i =
Q;(0) = (A-EA-F)S;(A) + G;A + H,, i=1,N-1. (3.4.11)

Again the Si(l), i=1,N-1 are polynomials in A of degree (i-2).
Now equations (3.4.10) and (3.4.11) are substituted into (3.4.9) to
give,

2 ' _ 2
(A"-EX-F)Ry (A)+A M+B = (cp-A) ((A7-EX-FIR,, | (A)+A, | A+B

N N-lﬂ

2 2
-bN {(x -EA-F)RN_2(1)+AN_2x+BN_2) |
5 (3.4.12)
~a,ad((A -EX-F)SN_I(l)+GN_1A+HN_1)
N-1 N
+(-1) (a+ad) T bi . J
i=2
Next the coefficients of (AZ—EA—F), Xl and AO are equated from
both sides of equation (3.4.12), and the result after some algebraic
manipulation becomes,
. 2 3
RN(A) = (cN—A)RN_I(A) - bNRN_z(A) - a.ad SN-I-AN-I’
2
AN = CNAN_I—AN_IE-BN_I-bNAN_2 - a.ad GN-l R r(3.4.13)
2 N-1 N
By = ¢\ By.1-AyoF “PyBy.p - @-ad My +(-1)77 (arad) ;EE b,)

Now the Pi(l) and Qi(k) can be substituted fTOfﬁj equations
(3.4.10) and (3.4.11)_in equations (3.4.7) and (3.4.8). This

'produces, for the general term,

46

1}

2 2 \
{x -EA-F)Ri(X)+Ai1+Bi (ci-l)((l -El-F)Ri_l(A)+Ai_ A+Bi-D

1

2,2
-b ((A°-EMFR; ,(\)+A; 4B, 1),

2

2 2 .
(x —El-F)Si(A)+GiA+Hi (Ci—l)“k -EA—F)Si‘I(A)+Gi_1X+Hi_1)* i=1,...,N-1,

b2 ((AZEA-F)S, L(A) +G, M,) (-4:19
i i-2 i-27'1-27?
Again the coefficients of (AZ-EA-F), Al and AO are equated from

both sides of equation (3.4.14), and the result after some trivial

algebraic manipulatien is,
Ry = (=N Ry) = A yobf Ry ()
A= BA B b,
By = eyBy oAy gFbB
5,00 = (=08 1) - 6y - by 85,00, G429
6, = (g E)G, My BG
= egHy o6 FbGH;

If it is noted that the starting values for the sequences

Pi[k), and Qi(l) from equations (3.4.7) and (3.4.8) are,

P_l(h) = 0, Po(k) = 1: pl(k) CI“A » QO(A) -

Ql(l) =1 3 Qz(k) = cz"ls

i
o

then the initial values for the sequence (3.4.15) can be obtained
from equation (3.4.10) and (3.4.11)}. The initial values of the

sequence are,

1
o
3

1

]

(=
=]

L}

0, Ay=0, B

o, G0 =0, HO

For any trial value of E and F the coefficients of the quadratic

Ry(2)

SN

0 1, Rl(l)

C
1 1} (3.4.16)
=1

0, Sl(k) =

]
N
[}

t
e
o

factor with starting values given in equation (3.4.16) the sequence
given by equation (3.4.15) can be calculated, then from equation
(3.4.13) the values of AN and BN are obtained. If AN and BN are
zero then the quadratic factor (A2~EA-F) is a factor of PN(A) and a

solution has been found. So the problem is to find an E and F such

47

that the non-linear equations,
Ay(E,F) = By(E,F) =0 . (3.4.17)
For arbitrary values of E and F the relationships (3.4.17) are
not in general satisfied, so correction factors AE, AF must be found

such that,
Ay (E+AE,F+AF) = By (E+AE,F+AF) = 0 . (3.4.18)

This is achieved by dividing Ri(A), i=1,2,...,N and also
Si’ i=1,2,...,N-1, by the same trial quadratic factor. This prbduces
similar recurrence sequences to those obtained above and eﬁables the
corrections td the quadratic factors AE, AF to be calculated.

Synthetic division of the polynomials Ri(A), i=1,N and si(x),

i=1,N-1 by the trial quadratic factor (Az—EA-F) yield,

R, (V) = GEEACB)T, () + LA + M,

, 1 i=1,2,..... ,N-1 (3.4.19)
si(x) = (A -EA_F)Ui(A) + Vil + wi . .
R (V) = (AZ-EA—F)TN(A) £ LA+ M, (3.4.20) .

Substituting in equation (3.4.13) from equations (3.4.19) and (3.4.20)

leaves,
2 _ 2 \
(A“-EA-F)T (4L MMy = (¢ -A) ((A°-EX-F)Tyy_;)Ly My 1)
2 2
b (A"-EA-F) Ty, () +Ly ,aeMy)
2 < (3.4.21)
-a.ad((x —El—F)UN_1+VN_11+ WN-I)
-AN-—I * V.J
Equating the coefficients of (AZ—EA~F), Al and AO in equation
{(3.4.21) gives,
2)
TN(A) = (cN-A)TN_l(l)-LN_l-bNTN_Z-a.ad UN—l
2
LN = (c E)LN 1" N 1 bN N-2 -a,ad VN_1 - (3.4.22)
_ 2
My T ONMerFhyor Moo ®ead g Ay J

Next the Ri(A) and Si(l) in equation (3.4.15) are substituted

from equations (3.4.19) to complete the division yielding,

48

2 . o 2 0
(VP-EA-F)T; (A)+LJM, = (€ -0 (O 7-EX-F)T; | (M)shy (MM,))

1-1

2...2
-Ai_1~bi((x -AE-F)Ti_z(A)+Li_2A+-Mi_a

5) b i=1,...,N-1
(A"-EA-F)U; (R)#V, AW = (e -0) ((A°-EA-F)S, | (A)+V; A+ wi_l)

(3.4.23)
2 2 ...
-Gy 1D ((N-EX-E)S, ,(A)#V; HheW; o))
- - i 2 1 0
I'he coefficients of (A"-EA-F), A", and X7, can now be equated
in equation (3.4.23) and this will yield the following recursive
relationships,
I b \
Ti(A) = G‘i'l)Ti~l(A)"Li-l biri_z(x) ,
2
Li = Cym Dy bl oMy
2
T L T e T O A SO
2 L
Ui(A) = (c.i-)t)ui_](l)—\a’i_l—biui*2 , r i=1,2,...,N-1, (3.4.24)
2
Vi = 0V bV Ny
2
S T e T A e T T
J
Now using the initial values as given in (3.4.16) the initial
values for the sequences given in equations (3.4.24) can be
calculated and are,
T,=0, L,=0, M,=1, T,=0, L,=-1, M, =C_-A
2 2 2 3 3 3 373 (3.4.25)
U2 =0, V2 = (), W2 =0, U3 =0, V3 = 0, U3 =0

Thus for any frial quadratic factor with starting values as given by
equations (3.4.25) the recursive sequeﬁcu of equations (3.4.24)

can be calculated. Then from equation (3.4.22) using the values just
found MN and LN can be obtained. These two values and the values of
AN.and B,, found earlier can now be used to calculate the two correction

N
factors AE, and AF as follows,

a = F LN + E (MN + B LN) ,

B o= (M +EL) M +EL)-al ,
AE = (L (B + B A - (M + ELJAD/S , [(3.4,26)
AF = (uAN - (MN + B LN) (BN + E AN])/S .

49

Now after the corrections have been found new values for E and F
are calculated
E = E + AE, F =F + AF s (3.4.27)
and these are used to form a new quadratic factor (Az-(EA+E)l-(F+AF)).
The whole process can now be repeated with new factors until AN and BN
are zero, or a suitable stopping criterion is achieved. At this point
the quadratic equation,

A2 _EA-F =0 (3.4.28)
is solved to yield the required two eigenvalues. The sequences of
polynomials Ri(k), i=1,2,...,N, and Si(l), i=1,2,...,N-1 of maximum
degree N-2, N-3, respectively defined by equation (3.4.15) and (3.4.13)
can now be used to determine further pairs of eigenvalues in the same
manner. It should be noted that as N has been effectively reduced by
two at each stage the recursive sequences are shorter and further
eigenvalues are progressively quicker and easier to calculate. The
convergence of the algorithm is .- . :.. .i quadratic when close to
a pair of eigenvalues, (Wilkinson, 1965)., However in practical
experiment the algorithm often took a large number of iterations
before it ''settled" on a pair of eigenvalues, and then converged
rapidly. A lot of effort was put into trying to find some way of
getting a close guess to a pair of eigenvalues, thus cutting out the
initial thunting' for a pair to converge to. This failed, mainly
because even if quite close estimates were obtained for a pair of
eigenvalues, the resulting quadratic factors need not be close to
the actual ones. As an example, if the eigenvalues are 0.1 and
1000 then the quadratic factor is 32-100.11 + 100. If estimates are
found of -0.1 and 1000 then the quadratic factor is Az- 999.9)x - 106,

and convergence will be to a different pair of eigenvalues., As there

are N eigenvalues they can be combined to produce N(N-1)/2 quadratic

functions. The fact that there are a large number of factors to
chose from does not increase the probability of finding one, but merely
gservesto slow the convergence process down. For this reason
arbitrary starting values from the diagonal elements are chosen.
The main value of this algorithm is that it can find complex

eigenvalues without having to work in complex arithmetic which is time

consuming on a computer. Also as all correction factors and remainders

can be calculated without explicitly calculating the new polynomials
produced at each stage (Ri(l), Ti(k), i=1,N and Si(l), Ui(k), i=N-1)
no storage need be reserved for them in the computer and thus storage

is kept to a minimum,

3.5 RESULTS

The algorithm to perform the Bairstow method as described in
(3.4) is given in Appendix 1 in program 3. A number of tests were
then used to demonstrate the performance of this algorithm.

First the algorithm was used to find the eigenvalues of a (14x14)
matrix of the same form as that givgn in (3.3.1). These experimental
results were then compared with the theoretical results and found to
be accurate to 9 significant figures as in Table 3.5.1. The program

took 1.5 seconds to obtain the results.

50

Ai F Program 2 Result Theoretical Result
1 1.565437219 x 1071 2.168404325 x 10™1°
2 | o0.1980622644 0.1980622639
3 | 0.1980622637 0.1980622642
4 | 0.7530203958 0.7530203959
5 | 0.7530203961 0.7530203963
6 | 1.554958131 1.554958132
7 | 1.554958134 1.554958132
8 | 2.445041865 2.445041867
o | 2.445041870 2.445041868

10 | 3.242697959 3.242697960

11 3.242697964 3.242697960

12 | 3.801937739 3.801937736

13 | 3.801937739 3.801937736

14 | 4.000000000 4.000000000

TABLE 3.5.1

Next, the algorithm was tried on a (20x20) unsymmetric matrix of

the form,
B!

10

10

10

1

-10

-10
-1 10,
~ ~
- -~
10 RN ~
-~ -
\\\ \\

-10]

~ .10 1

This matrix is also centve-antisymmetric which means the eigen-

values occure in pairs to the same modulus but of different signs.

The results are compared with those obtained from a N.A.G, routine

using a QR process in Table 3.5.2.

51

(3.5.1)

The results were obtained in 7 seconds by program 3, and 3 seconds
by 'the N.A.G. routine.
that an accuracy of at least 9 significant figures has been obtained.

As a final example the program was tested on a $péfse _dmsymmetric

.Aj Program 2 Results N.A.G. Results
1 -19.82166982 -19,82166983
2 19.82166983 19.82166983
3 -19.04739875 -19.04739875
4 19.04739873 19.04739874
5 -18.22010282 ~18.22010282
6 18.22010284 18.22010282
7 -16,21121213 -16.21121213
8 16,21121212 16.21121216
9 -15,14803511 -15.14803512

10 15.14803511 15.14803511

11 -11,79816092 -11.79816093

12 11.79816092 11.79816092

13 -10,85895931 -10.85895931

14 10.85895931 10. 85895932

15 -6,260718898 -6.260718904

16 6.260718898 6.260718899

17 -5,722699838 -5.722699833

18 5.722699838 5,722699838

19 -1,000000000 -0.999999994

20 1.000000000 1.000000002

TABLE 3,5.2

These results, whilst not conclusive, indicate

mataeix. with > . . corner elements of order 14,

accurate to at least 9 significant figures, and were obtained in 4

seconds.

The matrix used was of the form

The results below were

52

—1 9 20
9 2 9
9 3 9
' 9 4
9 5 9 0
9 6 9
9 7 9
9 8 9
9 6 9
0 5 10 9
9 11 9
9 12 9
9 13 9
1 9 14
The eigenvalues of this matrix are
Real Imaginary
1 -13.274701666 0.00000000000
2. -9.6902838613 0. 00000000000
3 -7.1426890350 0.00000000000
4 -3.0104685765 -0.6042324007
5 -3.0104685765 0.6042324007
6 3.7326625824 -1.293792672;
7 3.7326625824 1.293792672 "
8 11.267337419 -1.293792668
9 11,267337419 1.293792668
10 18.010468575 | -0.6042323963
11 18.010468575 0,6042323963
12 22,142689034 0.00000000000
13 24,690283861 0,00000000000
14 28.274701666 0.,00000000000

TABLE 3.5.2

53

(3.5.2)

3.6 DETERMINATION OF THE EIGENVALUES OF SYMMETRIC AND UNSYMMETRIC.
MATRICES BY NEWTON'S METHOD

Other methods for finding the eigenvalues of unsymmetric matrices
of the same form as (3.4.1) have been considered, and here Newton's
method is quite effective,

The method is similar to that described by Evans (1971). First
the sequences (3.4.2), (3.4.3), and (3.4.4) are differentiated with

respect to A to produce,

d . _

d ' ~

ax Pl(h) = Pl(k) = -1,

d ~ p1 = ' '3

ai-Pi(A) = Pi(k) = (Ci_x)pi~1(k) - Pi_l(l)—bidili_z(l),

i=2,3....,N-1,

and, d)

S0 = =0",

£0,00 =) = -1

da 2 2 ?

d = M = _ ' _ '

i=3,4,...,N-1,
with finally,

PL(A) = (ey-MIPY_ (N -Py (M) -byd Py 5 (3)-bd

NINTN-2 ().

L}
1°N-1
Now (3.4.2) and (3.6.3) can be used to find the eigenvalues of

matrix (3.4.1) in a Newton's iterative method of the form,

¥k+ﬂ - W PN(fw)/P&(iw), k30 ,

is an initial estimate.

)

where
When one or more of the eigenvalues has been computed, then in
order to avoid re-determining those eigenvalues already found a
technique known as dividing out the root is needed to suppress the
known eigenvalues, thus instead of iterating with PN(A), GN(A) is

now used where,

/

\

54

»(3.6.1)

r(3.6.2)

(3.6.3)

(3.6.4)

-

55

T
Gy (M) = Py(2)/ i]l(Hi) , (3.6.5)

and Ai,.i=1,2,...,T are the T eigenvalues already found. Now GN(A)

can be differentiated with respect to A giving,

P'()) T
d N NS) -1

ax Gy = 6L () = 6 () (P O (3.6.6)
Newton's iteration is now of the form,
ded 8 GN(A"‘))/GI;I(A@), k¥ (3.6.7)
and substituting for CN(A)/G&(A) using equation (3.6.5) the Newton
iteration becones, .
(}<+1) (k) 1 pn(;\(k)) _ E U\Q() _;\i)'l) , (3.6.8)

(A) i=1
The relationship (3.6.8) can now be used to determine all the eigen-
values of the matrix.

This method was programmed on the I,C,L. 19045 in complex
arithmetic in ALGOL 60, The eigenvalues obtained were all accurate to
machine accuracy. The method however had two drawbacks, which detract
from the usefulness of the method. Firstly for every test matrix of
size larger than 30x30 the values of Pi(l), P{(A), i=1,2,,...,N
oscillated wildly, and at some point overflowed the computer word
length. The problem here is that in the vicinity of an eigenvalue
the values of PN(A), P&(A) are 'well behaved' and do not overflow
the computer word length. However when an estimate at an eigenvalue
is made, after just finding the previous one, there is no guarantee
that this will be close to any remaining eigenvalue and it is at this
point that oscillation can, and usually does, set in. The other draw-
back is that compared to the available N.A.G. routines this method is
a lot slower, and takes from 3 to 4 times longer. As this method is
specialised to a particular type of matrix the storage requirement in

computer memory is Q(2N) (to allow for complex elements) words, whereas

56

the storage requirement for the more generalised N.,A.G, routine is
0(4N2) words,

To overcome the first problem, that of overflow in the computer,
the sequence (3.2.16) can be used instead of sequence (3.4.2). For
the sake of clarity the sequence for a symmetric matrix is considered,
the extension to the unsymmetric case is fairly simple.

First the sequence (3.2.16) is differentiated with respect to A,

to give,
dsg (1))
o TSN =0,
dsl(A)
_-—dl = Si()\) = -1,
. (A
a5) = si(A) = -1 + b2 st (\)/(s (A))2 i=2,3 N-1
dA 7 i ”i-1 i-1 pETE T
and
dr
1
-—_ =r! =0
dx > (3.6.9)
dr,
o T -bi(si-l(A)ri—l_S{-l(l)ri—l)/(si-lch))z’
i=2,3,...,N-1
with
ds. (A) N-1
N s o1 C 2, 2
Y = sy (\) 1 jzl(Zsj(l)rjrj rjbj(l))/(sj(l))
+ 2by sy Ty - "?’r'q-lmrN-l)MsN-l“‘”2
2 2
* by sy 1A/ (s ().)

From equation (3.2.23) it is seen that,
i

P.(A) = T s,(0) , (3.6.10)
i j=1 j

and upon differentiating with respect to A, (3.6.10) becomes,

dP, (A) i i
2 =P = ¥ TTs.00 sty . (3.6.11)
di i k=1 j=1 j k
ik

57

Now from (3.6,10} and (3,.6.11} we have,

P!(X) i
oy - L ¢ 11' s;(0) sy (1))/ 11‘ 5,00 (3.6.12)
Pi(l k=1 j=1 j=1
i#k
. % Sﬁ(m) . (3.6.13)
EEEIEY

Equation (3.6.13) can be substituted into equation (3.6.8) to give,

N T
ALk 0y st /s 0 -} (xk-xj)'l), (3.6.14)
i=1

j=1

This relationship is used instead of (3.6.3) and the eigenvalues
of any order matrix can be found without fear of overflow occurring.
The work involved in calculating the new sequence and Newton's
formula is similar to that of the previous method.

The program to perform the above algorithm is included in
Appendix 1 in program 4.

The sequence for an unsymmetric matrix of the form (3.4.1) is

obtained by similar methods to those already described and is given

below, 1
SO(A) = c]. -A »
8.(x) = ci—l—bidilsi_l(lj, i=2,3,...,N-1,
and
R, = 4 P, = b,
b 1 1 L (3.6.15)
Ri = —Ri_ldi/si_l(l), Pi = Pi_lbi/si_l(k), i=2,3,...,N-1
with finally, N-1
OO = G = T PR/ s ARy /5 DRy /oy O
J
bNdN/SN_ (A

This can now be differentiated with respect to A to give the following

equations

Si(l) = .1,
2 .
= ow]- ! = _
S{()\) 1 bldisi_l()\)/si_l(l), 1 1’230|-,N 1,
and Ri = 0
2 .
RE = d Ry 81 1 (A)-s; J(ORE ()/s; (), i=1,2,...,N-1,
' =
P1 0
1 - _ .)
Py = bRy 453 1 (0-s; (P Sl L), i=1,2, 00 N1,
with finally,
N-1)
! s - - t t - 1
SN 1 izl (si(l)(PiRi + Ripi) si(x)piRi)/si(A)
+ 4y (R (A)-R! 0)/s2 ()
N N- 1 N 1 N- 1 N-1 N-1

+ by (sh Py -5y (APY /s N p

2
+ bydySp_ s)

The sequences of si(k), s{(l), i=1,N obtained in (3.6.15) and
(3.6.16) can now be used in equations (3.6.11)-(3.6.14) to obtain the
eigenvalues of the unsymmetric matrix of (3.4.1). The program to
perform this algorithm is given in Appendix 1 in program 5. It is
written in ALGOL 68R to take advantage of the superior facilities

for handling complex arithmeticim Ehislangquage.

3.7 RESULTS

Program 4 was test run on the 11x11 matrix (3.3.1), the results
were identical to those given in Table 3,3.1, and the coﬁputer took
2 seconds to perform the calculation. Comparison beyond this is not
really meaningful, as with program 4 the eigenvalues are obtained in
no pérticular set order and the most useful feature of the bisection
algorithm is its ability to pick out selected eigenvalues, In this

example all but one of the eigenvalues are double and as a result

58

r (3.6.1¢

convergence in this case was linear (Hildebrand (1974)). The type of

problem where it is preferable to use Newton's method is when all the
eigenvalues are required and none, or at least very few, multiple
roots are expected.

Program 5 was test run on a number of matrices, and these results
are compared in the tables against results obtained from N.A.G. routines,
None of the N.A.G. routines were exactly tailored to fit the particular
problem but it was thought that the routine FO02 AJA was most efficient,
This routine reduces the matrix to upper Hessenberg form using stabilised
similarity transformations, then uses a modified LR algorithm to obtain
the eigenvalues. To test the routine thé matrix (3.3.1) was first tried,

and again the table 3,3.1 was duplicated. As the program was performing

complex arithmetic it took 21 seconds to obtain the answers.
Next an unsymmetric matrix, order 20, of the following form was

tested on the progran,

1,5
2,2,6
4,3,7
2,4,9
3,5,3
5,6,-2 0
6,7,-4
8,8,5
9,9,3
1,10,6 .
2,11,0
3,12,6
0,13,5
5,14,52
4,15,-12
0 2,-1,2
5,-7,2
3,-5,5
5,-100,2
1,-2

™

59

(3.7.1)

The results are compared with those obtained by using the N,A.G,

routine, F02 AJA,

Program 5

N,A,G, Routine

Real

Imaginary

Real

Imaginary

-100,2828912
'-9,315123512
-4,418121111
~3,526424826
-1.340555599
-1.340555599
-0.1133422775

0.6045356208
3,433824914
6.439112820
6.439112820
6.639222683
7.934262224
11,56851719
12,00000000
13.02409163
13.10939899
1495366508
29,30461241

0.000000000
0,000000000
0.000000000
0,000000000
-1,379912314
1,379912314
-2.756343922
0,000000000
0,000000000
-4,516691649
4.516651649
0.000000000
0.000000000
0,000000000
0,00000C0000
0.000000000
0.000000000
0,000000000
0.000000000

-100,2828912
-9,315123513
-4.418121109
-3.526424826
-1.340555600
-1.340555599
-0.1133522791

0.6045356209
3,433824913
6.439112820
6.439112820
6.639222684
7.934262224
11,56851719
12,00000000
13.02409163
13,10939899
14,95366508
29,30461241

0.000000000
0, 000000000
0,000000000
0.000000000
-1.379912312
1,379912312
~2.756343920
0,000000000
0.000000000
-4,516691649
4,516691648
0.000000000
0.000000000
0.000000000
0,000000000
0.000000000
0.000000000
0.000000000
0.000000000

60

TABLE 3.7.1

Program 5 took 32 seconds to obtain the answers ﬁhereas the N,A.G,
routine obtained the answers in 9 seconds, This speed up is always
obtained by transformation metheds compared to a Sturm sequence'method,
when the matrix can be stored in core., llowever as the storage for
program 5 was O(N) words and for the N.A.G, réutine O(NZ) words then it
can be seen that the N,A.G, routine will soon run into storage difficulties

on large matrices, program 5 is then the preferred method to use, This

\

61

method is in general faster than other methods of dealing with this

type of matrix e.g. (Golub 1973)., The accuracy of the results can be
determined and in practice is seen to be accurate on even larger matrices
* (Chapter 5), and the order of matrix that can be readily solved

approaches the amount of core store available on the computer, the only

limiting factor being the time available., For l87ge systems whese the
core sequirments of the NRG loutinas become excassive usiy
equations (3. b1)t(3.018) results were easily obtaimed fov N=200¢s1000

CHAPTER 4

NEW STRATEGIES FOR DERIVING THE EIGENVALUES

AND EIGENVECTORS OF CENTRO-SYMMETRIC MATRICES

62

63

4.1 INTRODUCTION

In this chapter a new strategy is proposed for deriving the

'numerical solution of the matrix eigenvalue equation,
AX = Ax ,) (4.1.1)

i.e. the determination of the eigenvalue and eigenvector X of the
NxN centro-symmetric tridiagonal matrix A as given in (4.2.1}.

The symmetric Gaussian elimination or folding algorithm as
outlined in Evans and Hatzopoulos (1975) is based on the strategy
of performing a‘Gaussian elimination process at the top left hand
and bottom right hand corner of the matrix (A-AI) concurrently. By
noting that the coefficients in the top left hand corner are identical
to the elements in the bottom right hand corner in reverse order when
the matrix A is centro-symmetric,a reduced and compact form of the

Sturm sequence can be obtained and used to isolate the eigenvalues

-~

in a bisection process. ‘\m\\

A similar technique can also be used to derive the eigenvectors
by an inverse iteration process where a Gaussian elimiﬁation process
is carried out in which a pivoting strategy has been incorporated to
maintain numerical stability.

Similar strategies to those outlined above can now be used to
solve equation (4.1.1) using two processors when the matrix A has a
more general form i.e, A is symmetric andktridiagonal. Even though
tﬁe upper left hand, and bottom right hand corner elements are not the
same each processor can commence the Gaussian Elimination process in
opposite corners, and work towards the centre. |

The Gaussian elimination is therefore speeded up by using the
two processors. The algorithms were then run on a parallel processingmachine
with two processors available and resul;s, and the outline of an

improved algorithm given.

4,2 DERIVATION OF THE STURM SEQUENCE FOR A CENTRO-SYMMETRIC MATRIX

Let A be a centro-symmetric (NxN) matrix such that

If each of the sub-diagonal elements bi’ i=2,3,...(N/2)....2 of AN,

-

1

64

(4.2.1)

is now eliminated successively using a Gauss reduction process without

pivoting, it can easily be shown that the matrix (A-X) becomes

Q,(\) b,
SHOR
~
0
o
where Ql(h) = cl—l,

and if N is even,
Q; (1)
Q, (V)

1]

2

or if N is odd,

Q; ()

2

Qi(l) = cN+1"i-A-bN+2-i/Qi—l(A)’ i=2)3)'°

Then Pi(A), (i=O,N,PO(1)=1) the leading principal minors of the

matrix (A-AI) are given by the recursive relationship,

2 .
ci-l—bi/Qi_l(A), i=2,3,...

Che1oi A Praz-1/Y 1 (M)

2 .
c;-A-b1/Q_{ (V) i=2,3,...

N/2,

i=N/2+1,...

» (N+1)/2,

., (N+3)/2,]

(4.2.2)

(4.2.3)

4.2.4)

(4.2.5)

65

-)
P,0) =1 ,
PO = ¢c-h
2
Py(A) = (ep-M)P, (A)-bR(A) ' (4.2,6)
: 2 .
P,(A) = (e;-M)P, ,(A)-biP. ,(A), i=3,....N, J

it can easily be seen from equations (4.2.6), (4.2.5), (4.2,4) and
(4.2.3) that,

P, (A) = Ql(l)QZ(k) 0. (2) , (4.2.7)
and therefore that,

P, (V)
ﬁ;tlfij- = Qi(l) (4.2.8)
The Pi(l), i=1,....,N now form a Sturm sequence for the matriﬁ {(4.2,1)
and as in the previous chapter the signs of the Qi(l) can now be used
in a bisection process to isolate the required eigenvalues as used
by Barth et al (1967), and Strang and Fix (1973).
Now since the matrix A is centro-symmetric, the simple stragegy

of eliminating from both ends of the diagonal of the matrix (A-AI)

simultaneously can easily be shown to yield the following reduced form,

P]
ql(l) b2 .
0 g, bs\
0 qgO 0
“~
0 N~
~ ~
~ ~ ~
0 B 0. . (4.2.9)
\\ '\\ \\
/ SO N
~ a8 o
0 b, q,(1) 0
B b, a;(A)

If N is odd, the submatrix B is given by, ‘

0
qﬂil(k)
2 —

and if N is even, the submatrix B is given by,

If N is odd let,

and if N is even let,

The recursive relationship

2 2
qﬁ:éﬁh)
2
0 bﬂ:i
L 2
qﬁﬁk) bHiE
2 2
2
0 bE:g
- 2
o N-1
=73
g = N¥2
2

written, for N odd,

4

ql(l) = CI“A 3
2
) = ci—)\—bi/qi
2
(A = cs-l-ZbS/qS

s

for N even,

94

q.l()\) = Cl-l »
() = ci-x-bf/qi_
(\) =

s

0
0
2 -

for the qi(l), i=1,2,..

_1()\)] 1=1’2’
L0,
1(A), i=2,3,...

2
a__,(-b/a (),

.,5 can now be

,5-1, ’

)

Thus a unique polynomial sequence of qi(A) i=1,2,...,s have

been developed for the given centro-symmetric matrix, which are the

p’'ivots in a Gaussian elimination process without pivoting,

qi(k).

without explicitly performing the elimination,

The

(4.2.

(4.2.

(4.2,

(4.2.

(4.2.

(4.2.

i=1,s, can now be obtained from equations (4.2.14) or (4.2.15)

66

10)

11)

12)

13)

14)

15)

The half sequences given in (4,2,14) and (4,2,15) are no longer
the usual Sturm sequences for the matrix (4,2,1), so the signs of the

qi(A) i=1,N must be shown to have the same number of negative signs

as the Qi(k) i=1,N,

This is easily done for both odd and even cases, the even case

will only be considered here, the odd case follows similarly.

If we denote s=(N+2)/2, the matrix A in 4.2.1for N even can be

shown thus:-

If now the columns and rows of A are interchanged as follows:-
column s with column N, column s+1 with column N-1, column s+2 with
column N-2, and on until all the columns (except the centre column

in the case when (N-s) is even) have been interchanged,

¢y by
b, ¢, Dby
by ¢

bS
¢, by
b2 clj

The rows

corresponding to the column changes are now interchanged, and the

matrix A becomes,

67

(4.2.16)

1 2
b
b2 cz \\
N \\ \\
N N .
~ \\ “
~ ~ ~
~ ~ N
~ ~
N ~ bS-l
Y A
A = bs—l cS—l 0
0 Cl b
~
0 0
~
b
- S5

of A,

where

Now Gaussian elimination can be performed for the first s-1 rows

]
b
[
~
N
~ ~
~ ~
~ N
~ ~
~ N “s-1 bs-l
bs—l Cs _

which becomes,
R, (A) b,]
0 Ry(N) by
0\\ \\ 0
\\\\ \\
~ \\ \\
~ “ ~
Y \b
\\\\\\ S"l
~
S RS_I(A) 0 bs
0 c b
1 2
0 N
by S0 s
\\ \\ \bs-l
A Y \\
s
- bs bs—l Cs-L_
A} =
R (M) = ¢
- 2 .
R,(A) = c,-bl/R, (M), i=2,3,...,5-1

Performing one more step of elimination

and (4,2.18) becomes,

68

(4.2.17)

(4.2.18)

(4.2.19)

where RS(A) =cy.

If the Gaussian elimination process is now pursued for the

remaining s-2 rows, the matrix becomes

ﬁl(x) b,

RN(KlJ

RI(A) b2
0 RZ(A) b3
o T~. e 0
\\ \\ \\
~ ~ b
~ ‘\ S
S TR0
~
0 RS(A) b2
b c,
2 2 ~
O ~ ~ \\
~ ~ o
~ ~
\ R Y
~
L ben

where

Ry ()

R, (A) =

2
ci-s+1-bi—s+l

2 2
cs-lhbs/Rs—l(A)_bs—llRN-l(A)

/Ri_l(k), 1=S...N—1

Then, from (4,2.19) and (4.2.22) it can be seen that,

R; (1)

and therefore,
Ry(V)

The Ri(l), i=1,N are now the equivalent Sturm sequence for

n

a . i=1,2,...,s-2,

Rs+i—1

2
* Rgp(M-0p/Re 1 ()

|

the matrix A, and the Ri(k) are identical to the qi(k). Therefore

69

(4.2.21)

(4.2.22)

(4.2.23)

(4.2.24)

the qi(k) can be used in a bisection process to isolate the eigenvalues

70

of A, llowever matrix A was obtained from matrix A by a series of
similarity transforms, The two matrices are therefore similar and
have the same eigenvalues,

Therefore, the equations (4,2,14 and (4,2.15} can be used in a
bisection process to determine the eigenvalues of the matrix A in
place of equations (4.2.4) and (4.2.5), provided it is noted that the
qi(l), i=1,s-1 (i=1,s-2 of N is even) occur twice on the main diagonal
of (4.2.9).

The ALGOL 60 program to carry out the above procedure is given in

Appendix 1 in program 6.

4,3 THE CALCULATION OF THE EIGENVECTORS OF A TRIDIAGONAL CENTRO-
SYMMETRIC MATRIX BY INVERSE ITERATION

Suppose V is taken as the initial trial vector, then to find the
eigenvector corresponding to given values of ,Aj(say) using two

steps of inverse iteration, the equations to be solved are,

(A-ljl)?g v, (4.3.1)

followed by,

(A-3DY = X, (4.3.2)
where A is the NxN tridiagonal centro-symmetriclmatrix as given in |
(4.2.1) with N odd or even. Since lj is an accurate eigenvalue two
iterations should be sufficient to obtain a vector of the required
accuracy as indicated by Wilkinson (1962).

The equations above are solved by performing a Gaussian
elimination process with partial pivoting (to ensure numerical
stability) on the L.H.S. of equation (4.3.1), storing the resultant
matrix (A say), and remembering all operations performed on the
original matrix (A-AI) i.e, interchanges and elimination factors.

Wilkinson (1965) has shown that V can now be written as,

1=

= [V].)Vz"\'li’vlﬂ-] »

and initially, E_ [1,1:uvv||||;1] »

and a simple back substitution through the matrix A determines the
vector X, Now a record of the necessary interchanges can be stored
by flags and the required operations can be performed on the vector
X, (i.e. forward substitution), and a further back substitution
through A gives Y, the required eigenvector.

It should now be noted that the eigenvectors of a centro-
symmetric tridiagonal matrix are either symmetric or anti-symmetric,

and take one of the following two forms:

for N even xl , xl , and for N odd x1 R xl
x5 % X,)
*Nnsz2| | *ns2 *N-1 *N-1
2 3
X -X X X
N/2 N/2| N-1,, N-1,,
X) 2 7
: : *N-1 “XN-1
: : 2 2
X2 “Xz X2 —XZ
e S e oo S B s

As the eigenvectors‘are symmetric (or antisymmetric) about the
centre point the elimination procedure can be performed from both
ends of the matrix at once, and as both halves are identical only
half of the original matr{x need be used. However one element in
the other half of the vector must be determined to indicate whether
a given vector is symmetric or antisymmetric.

Hence the variables are eliminated in their natural order but

the pivotal row is selected at each stage, say the (i-l)th {where

1

(4,3.3)

(4.3.4)

(N-1)
2

row having the maximum coefficients of the element X

(i-1) <

At this stage the modified matrix (A-Ain would have the form,

f—

¢, by dg
0 b
N C2 \3 \\\\
. b
S D . 0
Y ~ ~ -
~ = ~ I~ 3
i-1 bi i+l
by &7A by
(A‘?\jl)= .
~
~ _A
bi+1 ci b
0 i+l bi - €i-1
~ ~
~ ~
\\\ ~
L d3

where a bar above an element indicates a possible change (due to

the elimination and interchange process).

At each stage of the computation there are only two rows to

consider, the (i-l)th reduced row and the ith row as yet unchanged.

The pivotal row is,

i1 %t h%a f dia S
and the ith row is,
biXy * (=A% 0 * By

If Ihi|>]E£ y| then the two rows are interchanged by

exchanging the coefficients of the x , k=i,i+l,i+2,

kl

Ci.1 7 P40 i i+l

and noting the interchange. If no interchange occurs this alsc must

be noted, When the variable in the ith

'bi/EE+1 times the (i-l)th row to the ith row, and this factor is
also noted. Since only half the original matrix is being used care

must be taken with the centre elements and the even and odd cases

b. ®c~r, d, ,*Db
1 1

-1, for N odd, and (i-1) < % -1, for N even), as the

—a—

Tow is eliminated by adding

72

,(4.3.5)

(4.3.6)

(4.3.7)

must be considered seperately,

The case when N is even

The matrix (A-AI) is

s=N/2

(A—Ajl) =

even with centre elements detailed for

73

(4.3.8)

If the Gaussian elimination process is now performed with partial

pivoting for the first and last s rows of the matrix, @.3.8) now becomes,

A-)
J .

This leaves the centre elements to be eliminated as,

c
s

s+1

b
S+

s

1

(4.3.9)

(4.3,10)

T4

The rows may be interchanged, the interchange noted, and the
elimination then takes place with the centre elements (4,3,10)

becoming,
és Es+l
. (4,3.11)

ol

0 s+1
As the top and bottom halves of the matrix are the same in
reverse image form, except for the centre elements after elimination

only the upper half of the reduced matrix given below (G say) need

be considered

¢; b, dy
__\
€, bz o 0
_\ h
~ ~
CS ~ ~
~ ~ ~
~ ~ \\
A .
\\. “ S .
G = Som o e 4.3.12
= N 5 “d . (4.3.12)
s=-1 S S+
0 .
cs bS+1
_ “s+1]

This half matrix can now be used with corresponding reduced vectors,

X = (xl,xz,.....xs,xs+l)) (4.5.13)
V= (v APTERERY vs,vs+1) ,

' wa

to complete the back, substitution. The vector of the full matrix is

then,

: X = [xl,...,xs,xs+1,zxs_l, ,le] , (4.3.14)
1if x x is positive or O
X s+l

zZ=
-1 otherwise

The case when N is odd

The matrix (A—AjI) is given with centre elements detailed for

s=(N-1)/2.

75

The case when N is odd

The matrix (AfAjI) is given with centre elements detailed for

s=(N-1)/2,
cl-Aj b2
b2 cz-Aj b3
-~ ~ 0
b ~ -~
3 \\. \\.b
. e s
~ -~
~ ¢c -2. b
~ . 5] s+l
(A-AjI) = bs+1 cs+1_lj bb+1
bs+1 Cs—l \\
0 b T~ .
S\\ \\ b3
S . R cz-hj b2
.
L b2 cl-ll
(4.3.15)

If the Gaussian elimination process is now performed with partial

pivoting for the first and last s rows of the matrix, (4.3.15) becomes,

r_—_ — —
c1 b2 d3 .
- gl ~
0 <, b3 N
~ N \\
\\\\\ \\ N 0
~ ~ \‘ A
~ - ‘-5\
0 Cs-l 5 s+1
0 cs bs+1
(A-AjI)= b, cs+1-ijs+1 (4.3.16)
b c. Q
s+£ 5 ~
~
0 s+1\\ N \\
~ N ~ ~
~ ~ \\ N
~ ~ ~ ~
. — —
. b3 S 0
d3 b2 CL

This leaves the centre elements to be eliminated,

76

cs bs+1 0
bs+1 cs+1"?‘j bs+1 (4,3.17)
0 bs+1 Cs

The rows may be interchanged, the interchange noted, and the elimination

performed for the two remaining rows with the centre elements becoming,

cs b5+1 ds+2
0 cs+1 bs+2 (4.3.18)
0 0 cs+2

As the top and bottom halves of the matrix are the same, in
reverse image form except for the centre elements, after the
elimination process, only the upper half of the reduced matrix given

below (G say) need be considered.

¢ by dg]
i TN
c2 b3 - -
AN 0
~
3 SO .
\\ ~ ~
~ \\ ~
~ - N
G = AN ‘ (4.3.19)
c5-1 bs \?s+1
0 ‘s bs+1 fs+2
c5+1 bs+2
i “s+2!

This half matrix can now be used with corresponding reduced vectors,

)

1<
1

2 (X 3 X e enea, X 3 X X
172 s' s+l 542 (4.3.20)

I =l

= (V aVosener sV, Vo 15V o)
to complete the back substitution. The vector of the full matrix is

then,
X = (xl,.....,xs,xs+1,xs+2,zxs_1,.....,le) s (4.3.21)

1if x_x 20
5 "5+2

. -1 otherwise

The back substitution through G to obtain X with the vector V

as given in (4,3,3), is described in algorithmic form below,

When N is even and s=N/2

X =v /¢

7

s+l s+l “s+l °’
Xs T (Vs'bs+1 S+1]/c ' (4.3.22)
1 (Vi—d1+2 i+2 b1+1 1+1)/ i o 1msths-2,..1

When N is odd and s=(N-1)/2

xs+2 = s+2/ s+2 ? 1
X = (v b .x)/E ,
s+l s+l “s+2 s+2 | (4.3.23)
X = (Vs'ds+2xs+2 s+1 s+1)/c :
X, = (vi'di+2xi+2"bi+1xi+1)/ci , i=s-1,s-2,...,1 |

Now that the vector X has been obtained it can be overwritten
on the vector V, and the remembered operations performed on V. The
back substitution given in (4.3.22) or (4.3.23) can again be performed
and the final vector E can now be used to obtain the required eigen-
vector by using equation (4.3.14) or (4.3.21). The algorithm to carry

out the above procedure is given in Appendix 1 in program 7,

4.4 RESULTS
The test matrix used is given in Gregory and Karney (1969). Let
A= Eii j] be the NxN tridiagonal matrix whose elements are defined by

] -

g = -l D207 302,00,

ai,

a, s, = i0N -1}, - 1,2, 0 ee N= 1 | 4.4.1)
a; jop = (G-DMN1-1) 1223, W,

a; 5 =0, if |i-j|>1, for i,j=1,2,...,N,

So that a 6x6 matrix has the form,

78

-5 5
5 -13 8 0
8 <17 9
0 -17 8 (4.4.2)
8§ +13 5
0
N s -5
.. Theoretically the eigenvalues are given by,
Ai = -(i-1i R i=1,2,...,N (4.4.3)
The eigenvectors x§1) corresponding to each Ai are given by,
i 1 k N-k-1, .j-1. .j-1+k
xgl) = T g (13" (N-i)(Jk)(J K), (4.4,4)
] (: 7} k=0 -t
i-1

for j=1,2,...,N and g=nmin(i,j).

and the symbol (;) denotes the binomial coefficient.

The value of N was chosen to be 10 for the numerical experiments.
The results are given in Table (4.4.1) with the eigenvalue at the head
of its corresponding eigenvector. Thé time taken on the Loughborough
University of Technology computer (ICL 1904S) was 5 seconds.

The results obtained in Table (4.4.1) were found to agree to 10
significant figures with the results given by (4.4.2) and (4,4.3).

Next the program was tested for a matrix of the same form as
{4.4,1) but with N equal to 100. Again the results for both eigen-
values and eigenvectors agreed to at least 10 significant figures

with those obtained for the theoretical férmula.

vy Jigvl

Eigenvalues

Corresponding
Eigenvectors

Eigenvalues

Corresponding

Eigenvectors

1

1

-1.4873125%10 | -2.000000000 _6 000000000 ~1.200000000%101" | -2.000000000*10
3.162277660%10" " | 4,954336943%10 1| 5.222320679*10" 1 | 4.534251929%10" > | -3.367800164*10
3.162277660%107 | 3.853373178*1071 | 1.740776559*10° 1 | -1.511417310%1071 | 4.113766756*107 "
3.162277660*10 1| 2.752409413%107! |-8.703882800%107% | -3.778543275+10™F | 3.178819766%107%
3.162277660*10 1| 1.651445648+107 |-2.611164840%107 " | -3.346709757%107 | -5.609681940%10™%
3.162277660*10" 1| 5.504818825%107 % |-3.481555119%10™ " | -1.295500551*10™ % | -3.365809164%10™ "
3.162277660*107 |-5.504818825+107 % |-3.481553110*10" 1 | 1.295500551%107% | -3.365809164%10™}
3.162277660%10 1| -1.657445648+107 |-2.611164840%107 | 3.346709757*107) | -5.609681940%10" 2
3.162277660%107 1 |-2.752409413*107} |-8.703882800%107% | 3.778543275%107% | -3.178819766%10™
3.162277660+10" |-3.853373178%10" | 1.740776559%10™ 1 | 1.511417310%10°% | 4.113766756%107
3.162277660*10" 1 |-4.954336943*10™ 1 | 5.222329679%107 1 | -4.534251920*10"} | -3.365809164%10"

-3.000000000*10" {-4.200000000%10" |-5.6000000000*10 | -7.2000000000%10! | -9.0000000000*10

-2.148344622%10 1 |-1.167748416*107 1 | 5.269378644%107% | -1.869803980+10°% | -4.535159052%10™°
5.012804118%10" 1| 4.281744193%107 1 |-2.751886625%10™ 1 | 1.308925786*107} 4.081643147%107

-3.580574371*10" 2 |-3.892494721*10" | 5.035184038*10™} | -3.739787960*10™} | -1.632657259*10"*

-3.938631807*10 1 |_2.335406832%107} |-2.459043367*1071 | 5.235703144*107% | 3.809533604*107

-2.148344622*10" 1| 3.113995777%107 1 |-3.278724490*10°} | -2.617851572*107 | -5.714300405%10™
2.148344622%10° 1| 3.113995777*1071 | 3.278724400%107! | -2.617851572#10™} | 5.714300405*107
3.938631807*10 1 |-2,335496832%10" 1 | 2.459043367*10° | 5.235703144%10"% | -3.809533604%10 1
3.580574371*10° 2| -3.892494721%10" 1 {-5.035184038*10" " | -3.739787960*10" > | 1.632657259%10 "

-5.012804118*107 | 4.281744193*107 | 2.751786625*1071 | 1.308925786*107! | -4.081643147+107]
2.148344622*10 " -1.167748416*10'1 -5.269378644%1077 | -1.869893980*10™2 | 4.535159052+107°

6L

80

4,5 USE OF THE STURM SEQUENCE_ALGORITHM FOR_GENERAL TRIDIAGONAL MATRICES
USING PARALLEL PROCESSING

If A is the symmetric tridiagonal (NxN) matrix of general form

given by,
[=
¢, by 5
b, € by
b \\
3 CS N
~ o ~
A= ~ N \\ » (4.5.1)
\\ \\ \b
0 \.\ \\ N
b Y
L N "Nj

then a similar technique to that described in section 4.3 can be used
to carry out an elimination procedure in the matrix (A-AI) from both
ends of the diagonal simultaneously using two processors. (Care must
be taken when dealing with the centre elements, but the sequence
qi(l), i=1,2,...,N so produced can be shown as in Section 4.2 to have
the same values as the Sturm sequence of a similar matrix with selected
columns and rows interchanged,

By using the Gaussian elimination process the sequence for the

case when N is odd and where,

s = (N+1)/2 s (4.5.2)
is as fpllows,
4, (0 = cp-r]
q, (1) = ciLA-bflqi_l(x), 1=2,3,,,.44,5-1
W = eyt ; [(4,5,3)
qi(A) = ci-l-bi+1/qi+1(k), i=N-1,N-2,.,.,5+l,
qs(K) = cspk‘b:/qs—l(l)-bsﬂ/qsﬂ(U’ J

and the case when N is

gives the sequence,

even and where
s = N/2 .

(4.5.4)

81

q; (M) = ¢p-h)

q; (N = ¢;-A-bi/a; (), 22,3, .., .,5,

Ay = ety L (4.5.5)
a; (M) = e;-A-b7 fa. (), i=N-1,N-2,.,,.,5+2

Qg (N = e, -Ab2 la_ (Db /() |

The sequence of qi(l), i=1,2,...,N can now be used in a bisection
process to isolate the eigenvalues of the matrix A as described in
Chapter 2.

The order of the calculation of the qi(A) i=1,N is given in

Figure 1.

Order of Calculation of Elements of Sturm Sequence

N odd, s=(N+1)/2 N even, s=N/2

PROCESSOR 1 PROCESSOR 2 PROCESSOR 1 PROCESSOR 2

() () ()
] 1 ! 1
PROCESSOR e

10R 2

PROCESSOR
1 CR 2

FIGURE 4.5.1

The calculation as in Figure (4.5.1) is performed many times for the

different values of A. The program for calculating the eigenvalues

of a symmetric tridiagonal matrix is given in Appendix 1 in program 8,
This program is written in standard ALGOL 60 except that the |

parallel processing constructs FORK and JOIN have been inserted,

82
These statements indicate where the program, forks to allow the two
processors to work on separate sections independently, and where the
program joins as only one processor can then work on the program after
collecting results from thé sections done in parallel;

Program 8 was run sequentially without fork and join statements
on the I,C,L, 19045 at Loughborough University of Technology. The
results were identical to those obtained using Program 1 and were
arrived at in the same times, which indicates that there was little
inefficiency in splitting the sequences up into two halves, Of course
there were certain overheads introduced by splitting the sequence into
two, but these were negligible compared to the time taken actually
computing the eigenvalues.

Next the program was translated into FORTRAN for use on the
Loughborough University Interdata parallel computer. This configuration
has two model 70 processors sharing a 32K block of core, each also having
32K of private core.

Certain - amendments were made to the program to improve its
efficiency for running in parallel. For example when the two
prdcessors are working and both wish to access different parts of the
same array one processor is held up and has to wait until the other
has finished. This is known as store clashing, and as much data as
possible was put into the private memories to avoid this.

When an efficient program had been obtained (program 9 in the
Appendix) it was tested on a 64%64 matrix. (The program was being run
for timing comparisons so the actual resulfs are not given here, they
were in fact verified correct but the only result required was time
taken}.

-First the program was run seqﬁentially without forks and joins

and it took 24.97 seconds to obtain the results, Next it was run

83
in parallel mode with forks and joins included, and the results were
obtained in 21,07 seconds, Therefore the results obtained when running
in parallel mode were obtained in 84% of the time taken when the program
was run in sequential mode, This result is dissappoinfing as the
parallel method uses more resources for a longer period., During the
calculation neither processor is available for other work yet the two
processors are only working for 54% and 87% of the total time taken.

An alternative method of using the original sequence produced in
section44{? in a parallel fashion was suggested and developed by

Barlow (1977a, 1977b). This method is described briefly here.

a) The maximum and minimum values of the eigenvalues are obtained
using Gerschgorins theorem.

b) A queue is set up using part a) results to initiate it, Each
element in the queue describes the upper and lower bounds of the
interval, how many eigenvalues are below the interval énd how
many eigenvalues above it.

¢} This part of the algorithm is done in parallel. As it becomes
free a processor takes an interval off the queue, bisects it,
and calculates the Sturm sequence for this value, to determine
how many eigenvalues there are in each half of the interval.

There are now several possibilities to follow:-

1) Eigenvalues are in each half interval, in which case both intervals
are put back on the queue, and the processor then chooses the next
interval on the queue,

2) Eigenvalues are in only one half of the interval, in this case
only the full interval is returned to the queue before the
processor moves to the next interval in the queue,

3} The half intervals are less than the desired accuracy. All the

eigenvalues in this interval are considered found and assigned

the mid point value, The interval is then removed from the queue
and the processor returns to the head of the queue,

4) If an interval is found to contain only one eigenvalue,'bisectibn
is continued without recourse to the queue until the eigenvalue
is found correct to the required accuracy. The interval is then
removed from the queue and the processor returns to the queue
to pick up another interval.

The program to perform the above algorithm is given in Barlow (1977a)
and some results using this program are given below,

This program was run using the same (64%64) matrix as before from
which the accuracy of results could be verified. When run sequentially
the program took 20.29 seconds, this is a slight reduction in time of
19% over the original algorithm run sequentially, and a small reduction
in time when run in parallel. When the new algorithm was run in parallel
the time taken was 11.30 seconds. This indicates that run in parallel
the new algorithm takes only 56% of the time taken to run sequentially.
This was the order of speed up that was aimed for in the original
algorithm.

This indicates that for this type of problem it is not good
strategy to obtain information (the Sturm sequence) in a parallel
fashion and use an existing algorithm (bisection), but better to
obtain the information (the Sturm sequence) and then use it in a
parallel manner (Barlow's algorithm) in a new or modified existing
algorithm, . .- .._...-

Barlow's parallel algorithm has two other major advantages. One
is that as the unmodified Sturm sequence is used the parallel algorithm
can be used in conjunction with the Sturm sequences of any matrix.
Therefore this algorithm can be used to find the eigenvalues of any

matrix for which a Sturm sequence exists. The ensuing chapters of

84

this work contain Sturm sequences for mawy - typesof matrix and can be
used in conjunction with the algorithm,

The other major advantagé of the parallel algorithm is that it
can be used in a system with any number of processors, The algorithm
is flexible in that it does not require a set number of processors.
Also during the computation processors can be put to work on the queue
as they become free and taken away as required for other work. The
number of processors working on the problem therefore need not remain
constant. The maximum number of processors that can be used on the
problem without inefficiencies due to waiting for work to become
available is equal to the number of elements in the queue. The length
of this queue starts at one and gradually increases to a maximum of N
and then decreases to zero,

The necessary number of processors can then be switched in as
required by looking at the queue length,

This algorithm is thus very flexible and can be of particular
use in fields such as meteorology weather forecasting where solutions

are required quickly in real time,

4.6 THE CALCULATION OF THE EIGENVECTORS OF A SYMMETRIC TRIDIAGONAL
MATRIX BY INVERSE ITERATION

A similar method to that of section 4.3 can now be used on a
symmetric tridiagonal matrix., If two processors are available the
matrix can be eliminated from both corners at once on the matrix
folding principle, with both halves of the resultant matrix being
noted as the original matrix is no longer centro-symmetric,

If an eigenvalue lj (say) of the matrix A, as given in (4.4.1)
has been found, a Gaussian elimination procedure applied to the

matrix (A-AjI) must be considered for N odd and even separately.

85

The case when N is even

Let

86
s = N/2

1
The Gaussian elimination process with a partial pivoting strategy is

now performed on the first and last s rows of the matrix (A-A.I)
simultaneously by each processor.

(4.6.1)
The resultant matrix is,
¢ by 95
0\ <, b3 d4
LN N ~
~ ~ ~ ~ 0
~ N ~
~ ~ ~ ~
N .« °d
v Y. sy s B
~ 0 Mc' b /
S s+l
"]
bs+1 €Ll 0\ (4.6.2)
N P
5+2 bs+2 Csa2e
~ AN
\\\‘ \\ \\
N\
0 \\ \\ . \
~
\\ \\ . \0
~ \\ ~
| dN bN CH_
The elimination in the submatrix B is now performed by one
processor and the submatrix becomes
Es E+1
S (4.6.3)
0 s+1
The case when N is odd
Let
s = (N-1)/2 (4.6.4)
The Gaussian elimination process with partial pivoting strategy
is now performed on the first and last s rows of the matrix (AAI)
simultaneously by each processor, The resultant matrix is,

87

¢, b, dg
o\ '62\ 53\ d4\]
\\ . S >~
\-:\\ \‘~\\‘\ //////B
SOl o s+1
YO [t Bl O / (4.6.5)
s+1 s+1'Aj 542
Obly S
0 ds+3:\\\‘\\\
~ . \\\ \\\
) dN“Bh N
The elimination in the submatrix B is now performed by one processor
in two stages, the first to eliminate bs+1’
E; E-s+1 ds+2
y; c;+1 bg+2 s (4.6.6)
0 bia Sz
and the second stage is to eliminate bé+2,
‘s E-s+1 ds+2
€1 Peyo (4.6.7)
—c—5+2
The elimination process is essentially the same as that
described in section 4.3. Thebakwerd substitution now takes place
through both halves of the matrix simultaneously to produce a full
vector. The whole process i,e. inverse iteration is then repeated
using the new vector to obtain the required eigenvector as given
earlier,
If the vector
, (4.6.8)

X = (xltxzsﬂtv L) ’XN)

88

is the vector obtained from the back substitution the order of

calculation is as in Figure (4.6.1},

Order in which elimination and back substition are performed

(N odd, s=(N-1)/2) (N even, s=N/2)

PROCESSOR 1 PROCESSOR 2 PROCESSOR 1 PROCESSOR 2

GimD G GEa) GRd)
T]
G @) (i) Gl

1
|
1
I
*
l]
<:;s’bs+1’ s+;) s+2’b +2 /) (: 1’

PROCESS
1 0R 2
1

(—-—-

s+1’ 2

(:js+1’ s+2’ 2 (: cs’bs+1’cs+;)

FIGURE 4.6.1

89

The program to carry out this algorithm is program 10 in Appendix 1,
It is given in standard ALGOL 60 with FORK and JOIN statements added to
indicate which sections are run in parallel, This program as before was
translated into FORTRAN for running on the Interdata system at Loughbpfough
University of Technoiogy.. The FORTRAN program is program 11 in the
Appendix,

Program 11 was then run using a (64%64) matrix for which the eigen-
values were known, to determine all the eigenvectors on the Interdata
parallel computer. When run sequentially without FORK and JOIN statements
this took 11.51 seconds. The program was run in parallel fashion using
both processors and took 9.25 seconds. The parallel version therefore
takes 80% of the time'taken to run sequentially. Thus when run in
parallel the algorithm uses 60% more resources than when run sequentially
to obtain an improvement in time taken of 20%, This inefficiency is due
to several factors, 1) store clashing or queuing up to use the same
array, 2) overheads in performing FORK and JOIN statements which have
been inserted as low level subroutines, 3) one processor always performs
the sequential sections and during this time the other stands idle. For
these reasons the method is very inefficient and is not recommended.

A simple procedure was adopted to produce a fast efficient aigorithm
similar in idea to the method described in section 4.5. Each processor
was given a copy of the input matrix, and the program to obtain eigenvectors
by the normal method. Then each processor was given an eigenvalue and
left to find the eigenvector. When a processor has finished it is given
another.eigenvalue until all vectors are found. On the same test matrix
this method was run sequentially using one processor, and took 11,28
seconds, Then it was run in parallel on two processors taking 5.76
seconds, The time taken running in parallel is reduced to 51.,1% of the

time taken to run sequentially,

This algorithm is preferred as it is very efficient, having
small losses in overheads for parallel running, Also it is very
flexible because any form of inverse iteration can be used in the
method, and any number of processors can be utilised working out as
many eigenvectors in parallel as there are processors available.

The results of sections 4.5 and 4.6.indicate the best approach
to solving problems of the type covered in this chapter. In general,
it is not a good strategy to modify a well known efficient method of
this type (viz, obtaining Sturm sequence, performing inverse iteration)
for use in a parallel fashion, as this will cause too many inefficiencies
and add too many constraints to the method to make it worthwhile, The
inefficiencies are caused by parallel implementation, and waiting while
single processor sections are performed, and the constraints are that
only algorithms for which a parallel implementation can be found can
be used, and these methods will have inherently a fixed number of
processors necessary to perform the calculation. Rather it is a better
strategy to use a proven method and fry and tesbucture this in some
parallel fashion, as has been shown in sections 4.5, and 4.6. These
results are in agreement with some of the comments made by Stone
(Traub, 1973) and possibly indicate the most fruitful areas for
future research in restructuring algorithms suitable for parallel
processing,

More detailed figures and analysis of the results obtained in

sections 4.5 and 4.6 are given by Barlow (1977a, 1977b}.

90

CHAPTER 5

THE NUMERICAL CALCULATION OF THE EIGENVALUES AND EIGENVECTORS

OF A SYMMETRIC SPARSE QUINDIAGONAL MATRIX

91

92

5,1 INTRODUCTION

In this chapter is described the formulation of an algorithm to
determine implicitly the Sturm sequence for a symmetric sparse quindiagonal
matrix of semi-bandwidth p. The sequence is then used in a bisection process
to isolate and determine the eigenvalues of the matrix. Because of the
unique form of the sequence a modification to the bisection algorithm is
suggested which shows marked improvements in time taken when used together
on a computer,

An inverse iteration process initially modified to cope with the
sparsity of the matrix is then derived to determine the eigenvectors of
the matrix. Each of the algorithms described are formulated in a manner
to economise on the use of the storage space in the computer memory.

The final section gives the formulation of a Sturm sequence for the
unsymmetric sparse quindiagonal matrix of semi-bandwidth p. The sequence
is then used in conjunction with Muller's method to obtain the eigenvalues
of the matrix. An inverse iteration procedure similar to the method of

the previous section can then be used to determine the eigenvectors.

5.2 FORMULATION OF THE STURM SEQUENCE AND THE CALCULATION OF THE EIGENVALUES

The eigenvalues of a N*N matrix are given by a determinental
relation which can be expressed as
det (C-AI) =0 ,

which, in full matrix notation, can be written in the form

A P oo oo >
1= h by dp 0 N
by v Cprs bp doer
- . - = - -~ - . 0 ~— -
~ - - — - - had . - - d _
det - _ -~ _ - N |=0 (5.2.1)
d ~ - ~ .~ o
A1 | ~ o bygeyamAiby
~ 4 .

B 0 N bN, CNi

93

Matrices of the form given by C i,e. symmetric, sparse quindiagonal
and of semi-bandwidth p occur frequently in vibration and other problems
associated with second order partial differential equations,

Consider . the two types of electromagnetic wave propogation in a
long conducting cylinder of rectangular cross-section. In the transverse
magnetic wave the magnetic-field vector has no longitudinal component,
while the longitudinal component of the ekectric-field vector vanishes on
the walls of the guide and satisfies the two dimensional equation,

) (32¢ \ a23

— —1 = i, (5.2.1a)
ax 3y .

throughout the cross-section where A is a frequency parameter. In the
transverse electric wave the longitudinal component of the electric-field
vector vanishes, while the longitudinal component of the magnetic-field
vector satisfies (5.2.1a). At the walls the normal derivative of the
longitudinal magnetic field must be zero.

The problem of determining these modes of propagﬂtionTWQMWEﬁﬂemehwﬁbﬂoF
the functions ¢(x,y) and corresponding eigenvalues X which satisfy (5.2.1a)

with the appropriate boundary conditions. This is given in figure (5.2.1)

with 3¢ _ o
LI
~ t —
s 2 1.2 Ry
! —
N R U
- X© oy 9y
1 %:0_,____._.__..___l-___.._.___:\:.._yx
i
\ | E.?.:O
~ | ax
—
N : =
v ! T—

I
(=]
~
~

SIS R

1 > !« 1
|

p
b

W

FIGURE 5,2.1

94

boundary conditions that apply for a transverse electric wave, For a

transverse magnetic wave, it is still equation (5.2.1a) that must be solved,

but with the boundary conditions,

(5.2.1b)

-

n

o

Q

=
p——,
st »
1 i
1+ I+
- (]

Now a grid or lattice can be placed over the waveguide of figure (5.2.1)

with a uniform mesh size of h as in Figure 5.2.1, such that Nh=1 and Mh=2.

T Yy
// /Lfljil[/ i1 $(x,y+h)

"4¢(X,Y)
— - +¢ (x+h,y)
/X ¢(x-h,y)

7
%

¢ (X,Y‘h)
T YNV NN NN
"~ GRID OVER WAVEGUIDE COMPUTATIONAL STENCH;;

\\\\\\\\l\
NN

FIGURE 5.2.2

Then if ¢(x,y) is the value of the function at a point on the grid, ¢(x+h,y)
is the value of the function at the mesh point to the right (in figure 5.2.2),
and ¢(x,y+h) is the value of the function at the mesh point above. Assuming
that ¢(x,y) is sufficiently differentiable then by Taylor's theorem

2,2

plxehy) = 606y) + b 2iy) + B Sy,
ox
2 2 (5.2.1c)
- 9¢ h™ 37¢
¢(X—h,}’) = ¢(XJY) - h B—X'(X:Y) + '2_'—2(XJY)+'--°
X

combining these two equations gives,

2
32¢2(x,y) _ ¢(x+h.Y)-2¢(§,y)+¢(x-h,y) N 0(h4) ’ (5.2.14)
3 X h

95

Similarly for the y direction it can be shown that

2
38 (x,y) = $(x,y+h) -2¢(x,y) +¢(x,y+h) 0(h4) (5.2.1e)

oy h2

The truncation error consisting of the remaining small terms of the
Taylor expansion. Substituting (5.2.1e) and (5.2.1d) into (5.2.1a)
gives the finite difference approximation to the equation at the point

(x,y),
(¢ (xth,y)+¢ (x-h,y)+é(x,y+h)+¢ (x,y-h) -4¢(x,y)) = Ad(x,y) (5.2.1f)

Equation (5.2.1f) can be applied at all the grid points of figure (5.2.2),
taking note of values at the boundary, to give (NxM) simultaneous
equations in ¢(x,y) to be solved. By considering the (NxM) equation

in column order on the grid they can be expreésed in matrix notation as,

AS = 20, | (5.2.g)
when, .
T _
E_ = (¢1’1!¢2’110"‘¢N’1,¢1,2’¢2,2,""’¢N,2""‘¢N’M)$ (S'Z'Ih)
where
¢i’j = ¢(x+ih,y+jh)

The matrix A ig of order (NMxNM) and has the form,

D -1 7

-1 D\-I
\\ "-‘ 0

% P SN
~ - b
A = D , (5.2.1k)
\\ “‘\ \\

0 \‘-\\\‘ \\-I

_ S-1D

where D is the (NxN) matrix,

- —
4 -1
-1 4 -1 0
~ ~
~ ~~
-1 ~ ~
~ ‘\ .
~
-~ ~ ~
~ ~ ~
~ ~ ~
D = ~ ~ ~ N
~ ~ -
~ » ~
~ ™ ~
~ ~
~ ~ \—1
0 RN
~ ~
~ ~
-1 4

and I is the NxN identity matrix. The semi-bandwidth of matrix A is

therefore (ﬁ+1), and it has the same form as matrix C in (5.2.1).

96

(5.2.14)

If a Gaussian elimination process is performed on the matrix (C-AI)

without using a pivoting strategy then, after the first stage of reduction,

the matrix becomes,

c.-r, b2 s d

2
0 cy-A-by/(c)-A), b

p

3 » _bzdp/(cl‘l), dp+1‘

Certain elements of the reduced matrix can now be relabelled in the

following fashion:

Ry St Ry,2 =Py Rip = 9p
2

Ry o= C7aRy /Ry 4

Ry p = “bpdy/ (-0 = Ry Ry /Ry

b3 ’ csﬂl, h =~ ~— 0
0 ,-db./(c.-A) T oa-dZ (e o) ~
P p 2 1 ~ . p 1 ~ .
0 -~ - - -~ - -
p+l RN S
0 =~ . - -~ . -
dy

{(5.2.3)

97

If the relabelled elements are included in the reduced matrix,

(5.2.2) can now be written as

Ry1r Ry, Ri,p 0
O 5 Ry a0 B3 Ry o> Ype1
b3’ csi} ~ ~ R}
bt - . \\\ -~ - N 0 s dN
s \- 2 w
det ~ MRy LR -0,
0, R,) IRRNG ;‘b
~ c -,
p+l ~ . N-1 N
i 0 dN bN cN-i_

(5.2.4)

The next stage of Gaussian elimination is performed and (5.2.4) becomes,

1,1

1,2

2,2

b.
3
2
C3_k-b3/R2,2
b4 N ~
'Rz,pbs/Rz,z
-dp+1b3/R2,2
dp+2
~
N
A ~
§ N
N

l,p
RZ,p dp+1,
Ry p%5/Ra 2 ~dpa1P3/Ra 5
T b
D
T -A-RT
o R R 0 p+17R2,p%41
2 -
‘Rz,p/Rz,h .
p+1 " 2,p p+1/R2,2 cp+l-A-dp+1/R
. S
~
-~ .
S
.
S
Y
N
(5.2.5)

86

99

Again the elements of the matrix that will not be affected by further

steps of the reduction process, except by elimination, can be relabelled as

follows:-
Ry,3= b3 Ryprl = 9pa1
Ry p = "Ry pbs/Rz 2 = Ry oRy 2/Ry 55 Ry i1 ™d5,1bs/Ry 5™Ry 1Rz, 3/Rs 2
R, . = C.-A-b2/R, . = c,-A-R> /R
3,3 - 37 b3/Ry 5 = €57 ARy 2Ry

(5.2.6)

If these relabelled elements are included in the reduced matrix, (5.2.5)

can now be written as:-

R R
R R
broohe Lp 1.p
R, -
0 Ry 5 2.3 Ry oR2 o b Ry e
e Ry 3 by~ . d
b - L - 3,pR3’p > J,p"’l 3 p+2 D+:
\\ =~ ~— -
b4 ~ . ~
~ ~— -~ ~ -~ - 0
\"'\ — -y -
o > /R, R 5 RL R, R
0 0 ’ Rs,p RN CD_J\-Rl,p/Rl,l-R2,p/R2,2’ p+l 2,p 2,p+1" 73,53
det . ~ - 7
. ¢ .- -R R,
0 ? R3,p+1 bp+1 RZ,pRZ,pﬂ/Rz,:’ p+1 2,p+1" 72,2
= b) - "-.‘-‘
™~ hat
dD+2 ™. I
0 \\ 0 ““\ - =~ -~
\\ ~
h h ~
N\ N ~ . b
(5.2.7)

00l

The next stage of Gaussian

R
Rl,z 1,p
R,
R2,2 =+P
- R-
0 e3-a-bs /Rz 2 by 3.p
.
an? R, b,/R. -
0 Aby/Ry T L p°4'R3.3
b_ ~ ~ = ~
-~ - ~ . ~
= ~ o ~ \\ ™~ bp
N Rl /1 1
2
0 0 Rs,pPa/R % Ryp'Ra,2 3.p/R3 3R
bp+1 Rz,p 2 p+1/ 2,2
° ° Ry bRy s R3,peiRs,p/R3 3
/R
p+2 3,p 3,3
o b4dp+2/R3’3 0
™~
~
~
~
-
-
0 S .
~
\\
dy
(5.2.8)

elimination can now be performed and (5.2.7) becomes:-

TR3,p+1%4

bour R

2,p+l

3,p+l

/Rg 3

/R3 3

2,p+1/R2,2

R-- "!
:P/ Iy

3 p+1 3,p

P"'l-k -R

bp+2' p+2 3,p/R3 3
~

2,pR2,p+1/R2,2

bp+2-dp+2R3,p

-d /R

D+2 3,p’ 3,3

/R

3,3

L0t

102

As before the elements of the matrix can be relabelled in the

following fashion:-

R34 =Dy s Rs pe2 = 9pe2

R4.P B R3,pb4/R3,3 - R3,pR3,4/R3,5’R4,p+1=R3,p+1b4/R3’3=R3’p+1R3,4/R3’3
)) .2 i 2

Ry pr2 = “Palp.o/Rg 57 Rg 4Rs [o/Rg 50 Ry g=¢y=A-by/Ry y=c ARy /Ry o

(5.2.9)

The Gaussian elimination and relabelling is continued as above,

and when the elimination is completed after N-1 steps the matrix is of the

form,
Ry Ry o Ry p)
Ry2 Ry Rop Ropa.
~ b
S ~
RS,S ~o Rs'p Rs’p+1‘\ ~ .)
T~ ~ . L ~ < N-p+1,N
-~ -~ T~ —]
\\. \Rl - - 1
~ . p-1,p ~ |
-..R p “‘_ |
P, . |
0 \\ . l
. \‘-. > ~]
ST - S 1
~ .~ Rw
\.‘.R
L NN
(5.2.10)

It can easily be seen from (5.2.3), (5.2.6), (5.2.8) and (5.2.9)

that at each stage of the elimination the new elements Ri j are defined

3

recursively in terms of the previous elements and elements of the
original matrix (C-AI).
From equations (5.2.3), (5.2.6) and (5.2.9) obviously,

R, . =b, , . i=2,p-1
i,i+1 i P (5.2.11)

Riel,i4p = Ypai 7 1=0,N-p,

103

Also,

2
Ry 3= ¢g-ARY 5 /Ry) g ops 152,p-1 (5.2.12)

In equation (5.2.4) the pth element of the main diagonal is,
2

cp-A-Rl’p/Rl,l . (5.2.13)
In equation (5.2.7) the pth element of the main diagonal is now,

cp-A-Ri’p/Rl,l-Rg,p/Rz’z , (5.2.14)
and the p+1th element of the main diagonal is,

cp+1-A_R§,p+l/R2,2 ' (5.2.15)

It can easily be seen from equations (5.2.13), (5.2.14) and (5.2,15)
that for any main diagonal elements, including the first p-1 elements,

the following relationship is true,

p-i

R, . =c,-A-) 2

i,1 i -
j=1

/R i=p,p+l,...N, (5.2.16)

i-p+j,i" "i-p+j,i-p+j’

Equations (5.2.4) shows that the element bp+1 is unaltered after

the first step of elimination, After the next step of elimination from

equation (5.2.7) it can be seen that bp+1 has subtracted from it the term,

R2,pR2,p+1/R2,2 . (5.2.17)

After the next step of elimination bp+1 has a further term

subtracted, and from equation (5.2,8) becomes,

bp+1_R2,pRZ,p+1/R2,2-R3,pR3,p+1/R3,3 (5.2.18)

If the elimination process is continued the final element in

the bP+1 position is labelled R as in (5.2.10).

p,p+l
Following the pattern established in equations (5.2.17} and (5.2.18)

the final value for R can be written as
p,p+l

p-2
Rp!p"‘l = bp+1 - j:l R1+j,pR1+J ‘p+1/R1+j,1+j 2 (5.2.19)

If the relationship for several more Ry
y

a similar fashion, the general term for all Ri

>

easily be recognised,

Ri j elements occurring in (5.2.10).

L]

104

. elements are established in
3 elements (isj, j>p) can

This is given below in the relationships for all

Ry 1=
=D, : = C,-A- S s 4 154,0,...P-1,
R1,1-1 b1 R1, ¢ R —1,1/R1—1,1—1 1=2,3 p-1
Ris1,isp = pei’ i=0,1,...N-p
p+k-i-1
Rei ™ M1 s A Rip+iicRizpei’i Miopejziopey? IR Nl (5 5 00
3= k=i-p+2,...1,
c.-x if i=k
1
L. . = 1b, if i=k+1
k,i i
0 otherwise
Ri,j = 0 otherwise . J

The elements R,
1,]

the computer memory. The matrix given in (5.2.10) becomes,

R L : o : .
Ry,10 Rp20 Ro,p 0
LS ~ R -~
R ~
2’1 h ~ Pnp"l - -~
~ - A - | -~ - -
~ ~ | ~
T . | RN . R
~ sp ! ~ N,p
S. b2 !
TR t
0 p,]. ~ !
~ ~ 1
-~ hl 1
~ . ~ - R I
. N,2
- RN,L
where Ri)j becomes Rjy-iv,
and the associated recursive sequence now becomes,
Ry = Gt
= - 2 .
Ri,2 =By o Ryp = eqhRy H/Ryy 122.3,..0pL,
R. = d, s i=p,p+1,....n,

i,p i

J

. can now be relabelled to facilitate economy of storage in

(5.2.21)

(5.2.22)

105

R, .=0 , i<p and i>2 or, i<j
1,] -
Py /
Ri,k = R,k - JZO Ri,p-—jRi—k,+1,pfl-k—j/Ri-p+j+1,1’ i=p,p+l1,...N,
k=1,2,.....p-1,
c.-A if k=1
i
L= i =
K bi if k=2

0 otherwise
(6.2.22)

The sequence of elements Ri . can now be obtained from the relationship

given in (5.2.22), and Gaussian eliminaticon need not be referred to when
calculating these new or reduced elements,

In the algorithm given as above in (5.2.22) no space is reserved for
the elements Ri 3 for values of i<j, and in all the calcula;ions involving

»

these values of Ri j the procedure is to intercept them by testing for i<j

and branch without carrying them out thus saving time.

If the elements Ri and Ri 2 i=1,....N are now arranged to be stored
3

»1
as two separate vectors, the total storage space needed for the sequence is
Np-p2+3p-3 computer words, (i€ each R:,j con be stored in:a ComputerWOTf_{). .

Since N and p are both often large with N>>p then the storage required
is approximately of the order Np words., If N is approximately equal to p,
then the storage required is approximately qf the order of 3N words,

The repeated divisions by the elements of the array Ri,i initially
appears to be a highly unstable and dangerous practice if any element Ri,i
becomes zerc or nearly zero, However this is dealt with in a similar
manner to the procedure adopted by Barth et al (1967) i.e. by replacing
the zero element Ri,i by a small quantity close to machine zero (i.e. Z'kfl,
where k is the number of binary digits in the mantlssa i)

If P,(3) i=0,N are the leading principal minors of the matrix (C-AI)

then from Martin and Wilkinson (1967) there is the result which can be

106

written in terms of the current notation in (5,2.21) as,

S,
_ i+l

Pigg) = (1)~ Ry 17R2,1°Rg 100 Ry g o (5.2.23)

where Si+1 is the number of interchanges. For this algorithm Sie1 is
S.

always zero and the term (-1) 1+1 can be omitted giving,

Pigg) = Rl’l,Rz,l,.....,Ri+1,l , (5.2.24)

.th . . .

and for the i~ principal minor,

Pi(x) = Rl,l’RZ,l"""'°’Ri,l (5.2.25)
Combining (5.2.24) and (5.2.25) gives,

Pi+(;n

PLOY T el (5.2.26)

Since the polynomials Pi(l) i=0,1,2,...,N form a sequence of the
leading principal minors of |C-AI| where C is a symmetric matrix, then
it is well known that they form a properly signed interleaved sequence
of polyﬁomials (i.e., all Pj(l)>0 for a sufficiently large value of
either positive or negative and the zeros of Pj(k) strictly separate
those of Pj+1(A)). Therefore with the aid of the separation theorem
Wilkinson (1965), it can be shown that the sequence Pi(h), i=0,1,...N
form a Sturm sequence of polynomials in the interval (-«,+<}. The
fundamental property of such polynomials facilitate an easy and simple
method for the calculation of the roots by the process of bisection, i.e,,
the number of disagreements in sign in the sequence Pj(k), j=0,1,2,...N
is equal to the number of roots of PN(A) smaller than A, Since the
elements Ri,l’ i=1,2,...N are ratios of the polynomials Pi(k) as given
in (5.2.26) then it can be shown that the number of negative values of the

elements R,

i1 i=1,2,...,N equals the number of roots of PN(A) smaller

than A,
From Gerschgorin's theorem it is known that the eigenvalues of the

matrix C (5.2.1) are all contained in the union of the N intervals,

107

[¢]
I+

(b, [+]b,, [+1d

i+l J+ld; [y , i=1,2,...,N (5.2.27)

i+p-1

1]

with b =b =0, d =0, i<p, i>N,

N+1 i
Hence upper and lower bounds for the bisection process can be
derived and are given by the expression,
max

min (c; # ([bi|+|bi+1|+|di+p_1|+|di|)) (5.2.28)

The order in which the sequences of R are obtained suggests a

I,J
modification to the bisection algorithm which will in many cases ensure
savings in time over the method used by Barth et al (1967). The sequence
RI,J is obtained in a strict column order whereas in a Gaussian elimination
process work is done on all remaining rows at each stage, and the elements
in the pivotal row are found at the same time,

In the algorithm described by Barth et al (1967) artrial value X (say)
is chosen, and the whole Sturm sequence is calculated using this value, If
k elements of the sequence are negative then X is now used as a lower bound
for the N-k+1 largest eigenvalues, and an upper bound for the k smallest
eigenvalues. The bisection for this particular eigenvalue is then
continued. As each eigenvalue is found, sharper and sharper bounds are
obtained for the remaining eigenvalues. This reduces the number of
bisections necessary to determine later eigenvalues, and makes full use of
the information available. |

As each member of the sequence R I=1,N, is obtained before any

1,1°

work is done towards finding R , the signs of the R sequence can be

1+1,1 I,1
inspected as they are found. If a decision to bisect can be made at this
point the sequence can be recomputed with a new value of XA without any loss
of efficiency.

If, for instance, the smallest eigenvalue is being sought, as soon as

a negative RI 1 I=1,N is obtained the calculation of the sequence can be
s , : . _ . .

108

stopped. It is now known that the value of A chosen is too large, and a
smaller one can be chosen, Calculation of the sequence of R's with the new
value of A can now be started, and the process repeated, Also if, for

h

instance, a larger eigenvalue is being sought (Jt say), and the sequence

has been calculated as far as R with k members of the sequence R 1,I

1,1 L,1°"
being negative. If N-I+k is less than J then the value of X used is too
small. {Less than J eigenvalues below A therefore Jth.has greater value
than A). Calculation of the R's sequence can be stopped and restarted with
a larger value of A,

This method has several advantages. All the computational effort is
involved is solely in determining the particular eigenvalue being sought.
No effort is expended finding bounds of other eigenvalues. -If only a few
eigenvalues are being sought (J say, where J<<N) this method is the most
efficient, For a matrix of semi-bandwidth p the first p-1 members of the

sequence R I=1,N are trivial to compute compared to the remaining

I,1’°
N-P+1 members of the sequence, If, therefore, a decision to stop
calculation of the sequence and bisect for a new value of A can be made
before the calculation of the RP,l begin, great savings in time can be
made.

In practice this algorithm (Program 12A in Appendix 1) is faster than
that of Barth et al (1967) when only a feﬁ eigenvalues are sought. Where

all eigenvalues are to be obtained in all examples tested there have been

smallerdifferences in time between the two algorithms,

109

TYPE OF MATRIX PROGRAM 12A ALGORITHM OF BARTH ET AL.

20%20 matrix 15 seconds 62 seconds
p=11

10 eigenvalues

25%25 matrix 48 seconds 59 seconds
p=15

10 eigenvalues

30x30 matrix 233 seconds 272 seconds
p=22

30 eigenvalues

TABLE 5.2.1

EXAMPLES OF RUN TIMES FOR TWO BISECTION ALGORITHMS

Tewarson (1973} has suggested some improvements in determining the
sequence itself. The drop tolerance is a small value (Tewarson indicates
from experience 1077 is the best value) such that if an off-diagonal

element's (R where J#1) modulus falls below this the element is replaced

I,J
by zero. The pivot tolerance is a minimum value for a pivot (RI 1’ I=1,N)
If a pivot has a modulus less than the pivot tolerance it is replaced.

3

(Tewarson indicates a pivot tolerance of 10~ when 9-10 figures of accuracy

are being sought).
These improvements were included in the algorithm. The biggest effect
was when multiple eigenvalues occurred, the accuracy of (hese were always

improved. Of course all the tests involved increased the time taken by the

algorithm,

110

5.3 CALCULATION OF THE EIGENVECTORS BY INVERSE ITERATION

Suppose x is taken as an initial triaf Vector, then to find the eigen-
vector corresponding to an eigenvalue A (say) derived from (5.2.22) using
two steps of an inverse iteration process the following two equations must
be solved:-

(C-A)x

It

Yy (5.3.1)

and (C-A)z = x {5.3.2)

]|

where C is the quindiagonal matrix as given in (5.2.1).
To enable this to be carried out requires a knowledge of the inverse
of the matrix (C-AI). This can be factorised and written in the fornm,

(C-A1) = LU (5.3.3)

where L is a unit lower triangular matrix, and U is an upper triangular
matrix as given by the triangular decomposition process on the matrix
(C-A1).
If L and U are known then equations (5.3.1) and (5.3,2) can be
solved by a forward and backward substitution process on the right hand
side vector y. The matrices L and U can be determined by a Gaussian
elimination process but in order to ensure numerical stability it is
essential that pivoting techniques be incorporated in the solution process.
The matrix can be split into several arrays, to speed up computation,

and save storage space in the computer. This is carried out as follows:-

,_ ﬂﬂﬂﬂﬂﬂ
Fyp 6 B Y,p-1 U,
E) Fp G5 Hy 0 Vp-17 7" R
~ ~ ™~ ~
~ N ~ ~ t i
~ ~ N ~ i
~ ~ ~ ~ |
SN N0 N | |
~ ~ - ~ ~ i i
~ ~ ~
~ a ~ ~ H ! t
N~ N ~hoo |
~ ~ N ~ 1 |
~ . .6 i
0 \\ N p-2 ; I
~ N !
\\ ~ Fp_z : i
N |
(C-AT)= TEoo1 ! !
I
____________ A
Ap,l psp‘z I !
A t I !
p+l,1 I | '
' | | i
] | '
: | ' !
| AI e _ QI
Al ~ " T m s N,p-2 N,p-1 NN
(5.3.4)

Now the elimination process takes place in three major stages.
STAGE 1 The variables X5 i=1,2,....p-4 are eliminated by using the
following strategy.

At the jth stage (say), the row with the maximum modulus of
coefficient of the xj is selected as the pivot element, Here there

are N-p+3 rows at most to choose from, The J row (will be)},

ijj + Gj+1xj+1 + Hj+2xj+2 k? QJ Kk 2 (5.3.5)
=p-1
the j+1th row 1is
N
Eie1%5 * Fjaa¥en * 65025542 kzp_1Qj*1=kxk ’ (5.3.6)

and the p to Nth rows are denoted by

Am,jxj ¥ Am,j+1xj+1 ¥ Am,j+2xj+2 * K IQm,kxk’m=p‘N
P- (5.3.7)

A . =0 m=p,p+l,...N j=j+3,j+4,...p-2 .
m,] .

111

112

Thus if Ej+1 has a maximum modulus the elements in (5,3.5) and

(5.3.6) are interchanged as follows:-

3 “r
ByeBir G e a2 T80
(5.3.8)
hd =Pr - [
Qj,k Qj+1,k‘ k=p~1,p-2,....N,
and if Ul 3’ 2=N-p+1,N (say) has maximum modulus the elements in
]
(5.3.5) and (5.3.7) are interchanged, i.e.,
“> <> “>
1 T s ST Mege e T Ay e
(5.3.9)

hid) -
Yk~ Qe KoL

The jth element of the interchange vector is now set to zero for
no interchange or to the number of the row with which row j was

interchanged.

To eliminate the j+1th TOW Ej is set to E,

/F., then the following
J+177]

calculations are performed

Fj+1 = Fj+1 - Gj+1Ej’ Gj+2 = Gj+2“”j+25j'
(5.3.10)
Uar,k = Yar,x - Y By Kep-LN,
and the N-p+l rows of A become,
A .=A ./F. m=p,N
m,J m:J/ J P
Am,j+1 = Am,j+1—Gj+1Am,j’ Am,j+2=Am,j+2_zj+2Am,j m=p, N
Am,k = Am,k'Qj,kAm,j’ k=p-1.N (5.3.11)

-2

essentially the same as the first stage, except that there are fewer

STAGE 2 The variables xp_s,xp are now eliminated. This stage is

terms outside the Q submatrix,

For the variable xp-S’ j=p-3 and (5.3.5), (5.3.6} and (5.3.7)

become, N]
Fp-SXp-S + Gp_zxp_2 + k=§—1 Qp—S,kxk ,

3

N
Bp-2%p-3 ¥ Fpo¥p2 ? k=g-1 QK (5.3.12)

N

E X ’ m=p’N H
k=p'$m,k k J

Am,p-3xp-3+Am,p-2xp-2 *

the terms involving m=p,N are now in the subw~matrix

p-1! Gp—l’ Am,p—l’
Q and need not be considered separately,
If EP'Z is the coefficient of xp 5 with maximum modulus the

following elements are interchanged,
Fp-s “Fpe2 G2 ” P Qs T Goge KPELN (5.3.13)

and if HE p-3 (say) is the coefficient of maximum modulus the following
’ - .

elements are interchanged,

Fp-3 7 Aep-3r G2 7 Aepezr Gz T Qe kPN (5.3.14)

The interchange (or no interchange) is again noted in the interchange
vector, Now xp_3 is eliminated in the p—2th row as follows,

B3 = BpofFp 30 Fpp = Fpp = Gpofp 5

G-2,k * G-2,k ~ Y-3,k Op-3+ KP-LN,

and for the elimination in the N-p+1 rows of A,

(5.3.15)

Am,p's) Am,p_sjpp_s. ’

Am,p-2) Am,p—2 - Gp—ZAm,p-S ’

Uk = G,k "~ G-3,k8n,p-30 K7P-1N J
For the variable xp—2’ j=p-2 and (5.3.5), (5.3.6), and (5.3.7)

L m=p,N (5.3.16)

become, g)
F X + X s
p-2 p-2 k=p-1 Qp~2,k k
g
E_ .X + X s r (5.3,17)
p-1p-2 " L) o1, K%
?
A ' + X, , m=p,N
m,p-2%p-2 @, kXe PN
PrePe% yepa) J
the terms involving H , G_ ., G_ and F are now in the sub-matrix
p’ p-17 'p p-1

Q and need not be considered separately,

is the coefficient of x with maximum modulus the

If E__ D2

p-1

following elements are interchanged,

Fp2 “ B Gk Qo KPLN G (5.3.18)

113

114

and if Az . 3(say) is the coefficient of maximum modulus the following
,p-

elements are interchanged,

Fp-2 TRy pe2r Gz Tk P-LN (5.3,19)

and the interchange noted in the interchange vector,

Now xp_z is eliminated in the p-lth row as follows,
Ep-2 = Bpa/Fpp o (5.3.20)
o1k T Bo1,k T Yoz kBpoze KEP-LNS
and for the elimination in the N-p+1 rows of A,
Am,p~2 - Am,p—Z/Fp-Z ?
m=p,N {5,3.21)

Qm,k - Qm,k h Qp—2,kAm,p-2’ k=p-1,N

STAGE 3 The variables X5 s i=p-1,N-1 are now eliminated. The rows of
original matrix (C-AIj with X5 i=p-1,N-1 still to be eliminated are
now wholly contained in the lower p-1 rows of the sub-matrix Q. These
rows form a (p-1)x(p-1) matrix upon which the standard Gaussian elimination
procedure with partial pivoting strategies are performed. The elimination
factors are stored in the lower triangle of Q below the diagonal and
interchanges are noted in the interchange vector,
The information now stored in A,E,F,G,H,Q now provides sufficient

information to solve the equations,

(C-AT})x = y
for any right hand side vector y by the appropriate forward and backward
substitutions. Hence (5.3.1) can be written in the form

LUx = y (5.3.22)
provided the interchanges in L are included.

Wilkinson (1965) has shown that if the initial vector y is of the

form,
y=»Le s (5.3.23)

115

where the vector ET is of the form (1,1,...1), then, substituting
{5.3.23) in (5.3.22) gives the result,

Ux = e , (5,3.24)

where the upper triangular matrix U has the general form:-

Fy G 5. Q,p-17 "7 "7~ QN
RN ~ ~ i
\\\ \\\\.\ 0 Q2,P-1"'—"— — 1
~ ~ H | i
~ . ~ p-2 I .
~ G\ i }
- p_2 i i
U= ! ! (5.3.25)
|
p'2 QP‘Z;P‘l |
~ [
Q])-l,p-l ~ !
~ Ny i
0 \\\ \\ :
~ .
~ ~
\\ .
. N,
With this choice of y, x can be determined using a simple back-
substitution given in algorithmic form as:
)
*n T yn/Qn,n ?
for i = n-1(-1)p-1,
N
= (y, -)} Q .xJQ.,
i i j=i-1 i,i7j7%d
for i = p-2(-1)1, - (5.3.26)

x, = ly; -) Qi,jxj'%i+1xi+l_“i+2xi+2)/Fi’
J=p-1

H =H =06 =0
p-1 p p-1

J
Thus there is no need to determine Le explicitly. To perform the

forward substitution operating on the X:, the stored elimination
factors in E,A, and Q, and the interchange vector IC (ICi, i=1,N-1)

are used in the following manner,

116

(i=1(1)p-2, (if IC;40, ;0 %))
i
Xiv1 = X441 C xiEi-l)
(m=p(1)N, x =x - x.A .)),
m m 1 m.l 9 (5.3.27)

(i=p-1(1)N, (if IC,#0, X, & XICi) ,

(m=i(1)N X, =X - xiQm,i))' J

If the back substitution process described in (5.3.26) is performed
the required eigenvector is now in x,

The number of storage elements s, required for the arrays A,E,F,G,H,
and Q is given by

N-pZe7p-13 = s (5.3.28)

If N and p are very large then the approximate storage required
is,
N -p~ = s, (5.3.29)
The quantity s can easily be seen to be small with large band-

width matrices,

5.4 RESULTS
Results are given for two test matrices of the same form as (5,2.1c),
The first is a (14x14) matrix with semi bandwidth 8, and elements as
those of (5.2,1¢) divided by 4. The eigenvalues of this matrix are given
by the formula, -
1

. 1 im 1 imy . .
li,j =1 - 7 ©os (3) 7 €os (S) i=1,2, j=1,2,...7 (5.4.1)

The answers given in table (5.4.1) agreed with those given by equation
(5.4.1) to 10 significant figures, Each column of table (5,4,1) contains
the eigenvalue at the head of its corresponding eigenvector, The eigen-
vectors also agreed to 10 significant figures with those obtained by the
N.A.G, routine FO2ABA which uses Householders reduction and the QL

algorithm to obtain the eigenvalues and eigenvectors of a symmetric matrix.

0.2880602338

0.3964466094

0.5586582838

t
0.7499999999 | 0.7880602337

.8964466095

0.9413417162

0.1352990250
0. 2500000000
0.3266407412
0.3535533906
0.3266407412.
0. 2500000000”
0.1352990250
0.1352990250
0. 2500000000
0.3266407412
0.3535533906
0.3266407412
\ Q. 2500000000
'0.1352990250

-0. 2500000000
-0.3535533906
-0.2500000000
0.000006G000
0. 2500000000
™ 0.3535533906
0. 2500000600
-0.2459999999
-0.3535533906
-0. 2500000000
.00000000600
. 2500000000
.3535533906

OO OoO0O

. 2500000000

0.3266407412
0. 2500000000
-0.1352990250
-0.3535533906
-0.1352990250
0. 2500000000
0.3266407412
0.3266407412
0.2500000000
-0.1352990250
-0.3535533906
-0.1352990250
0.2500000000
0.3266407412

-0.3535533906
0.0000000000
0.3535533906
0.0000000000

-0.3535533906
0.0000000000
0.3535533906

-0.3535533906
0.0000000000
0.35535533906

- 0.0000000000

-0,3535533906
0.0000000000
0.3535533906

-0.1352990250
-0. 2500000000
-0.3266407412
-0.3535533906
-0.3266407412
-0. 2500000000
-0.1352990250
0.1352990250
0. 2500000000
0.3266407412
0.3535533906
0.3266407412
Q.2500000000
0.1352990250

0

0. 2500000000
0.3535533906
0. 2500000000
0.0000000000
-0. 2500000000
-0,3535533906
-0. 2500000000
-0. 2500000000
-0.3535533906
-0.2500000000
0.0000000000
0.2500000000
0.3535533906
0. 2500000000

0.3266407412
-0.2500000000
~-0.1352990250

0.3535533906
-0.1352990250
-0.2500000000

0.3266407412

0.3266407412
-0.2500000000
-1.1352900250

0.3535533906
-0,1352950250
-0.2500000000

0.3266407412

™

1.058658284

1.103553391

1.211539766

1. 250000000

1.441341717

1,603553391

1,7119387466

-0.3266407412 |

-0, 2500000000
0.1352990250
0.3535533906
0.1352990230

-0, 2500000000

-0.3266407412
0.3266407412
0. 2500000000

~-0.1352990250

-0.3535533906

-0.1352990250
0. 2500000000
0.3266407412

0.2500000000
-0.3535533906
0. 2500000000
0.0000000000
-0. 2500000000
0.3535533906
~0. 2500000000
0. 2500000000
-0.3535533906
0. 2500000000
0.0000000000C
-0.2500000000
0.3535533906
~0. 2500000000

0.1352990250
~0. 2500000000
0 3266407412
-0.3535533906
0.3266407412
-0.2500000000
0.1352990250
0.1352990250
-0.2500000000
0.3266407142
-0.35355335906
0.3266407412
-0. 2500000000
0.1352990250

-0,35355335806
0.0000000000
0.3535533906
G. 0000000000

-0.3535533906
0.0000000000
0.3535533906
0.3535533906
0.0000000000

-0.3535533906
0. 0000000000
0.3535533906
0.0000000000

-0.3535533906

-0.3266407412
0. 2500000000
0.1352990250

-0.3535533906
0.1352990250
0. 2500000000
-0.3266407412
0.3266407412
-0.2500000000
-0.1352990250
0.3535533906

-0.1352990250

-0.2500000000
0.3266407412

-0.2500000000
0.3535533906
-0. 2500000000
0.0000000000
0. 2500000000
-0,3535533906
0. 2500000000
0. 2500000000
-0.3535533906
0.2500000000
0. 0000000000
0.2500000000
0.3535533906
-0.2500000000

-0.1352990250
0. 2500000000
-0.,3266407412
0,3535533906
0.3266407412
0. 2500000000
-0.1352990250
0.1352990250
-0.2500000000
0.3266407412
-0.3535533906
0.3266407412
-0. 2500000000
0.1352990250

TABLE 5.4.1

Lit

118

The second matrix used is of the same form as the first, but is of
order (80x80) with semi-bandwidth 41, Again the eigenvalues of this matrix

are well known, and are given by,

- 1 imy 1 SLI _
Ai,j =1 7 €os (3) 7 cos(41), i=1,2, j=1,2,...40 (5.4.2)

For this matrix eigenvalues 1,11,21,31,41,51,61,7]1 are given in table
(5.4.2) where eigenvalue 1 is the smallest, The results again agreed to
10 significant figures with those obtained using (5.4.2). The eigenvector
associated with. eigenvalue 1 is given in table (5.4.3) and the results

agreed to 10 significant figures with those obtained using the QL algorithm

as before,
No. EIGENVALUE
1 0.2514670994
11 0.4173371499
21 0.7514670994
31 0.8451955545
41 1.011140091
51 1.158964680
61 1.269151367
71 1.610260797

TABLE 5.4.2

*17%20 X217%a0 *11 %0 X61 80
1.195498477%10" % 1.560591587*10™ 1 1.1954984770%10" 2 1.560591586*10™
2.383981293%10" 2 1.551433415%10" 1 2.383981294%1072 1.551433415%107}
3.558473960%107° | 1.5331708145%10™} | 3.558473960%107° | 1.533170814%10°)
4.712084086*10°% | 1.505910955%107} 4.712084086%10 2 1.505910959*10™ 1
5.838041829%1072 | 1.469813818*107 | 5.838041829*10°2 | 1.469813818%10" "
6.929739622%10" 2 1.425091226%10" % 6.929739622%10" > 1.425091226*10" 1
7.980770947% 102 1.372005632+10" 1 7.980770947%10™ 2 1.372005632*107}
8.984967935*.10‘2 1.310868563*10" ! 8.984967950%10™ 1.310868563*10 ™
9.936437559%10" 2 1.242038796*10" 1 9.936437559*10 1.242038796+10 "
1.082959622%10" ! 1.165920251%10" ! 1.082959622+10™2 1.165920251%10" "
1.165920250%1071 | 1.082959623*1071 | 1.165920250%107 1.082959623+10" }
1.242038794%107 9.936437575%10"2 1.242038794*10™ 1 9.936437575+1072
1.310868561*10" 1 8.984967950%10" 2 1.310868562*10 1 8.984967950*10"
1.372005630%10™ 7.980770961%10 1.372005630%107} 7.980770961%10"
1,425091225%107% 6.929739634x107 1.425091225%10°% | . 6.929730634%1072
1.469813817+10° ! 5.838041840%10 2 1.469813817%10 "+ 5.838041840%10" 2
1.505910958%10™* 4.712084094%10™ 2 1.505910958*10 4.,712084094*10"°
1.533170814%10™ 3.558473966%10° 1.533170814*10 ™" 3.558473966*10 2
1.551433414%107} 2.383981298+%10" 2 1.551433414*10" 1 2.383981298*10 2
1.560591587#107 1 1.195498479%10" 2 1.560591586%10™ % 1.195498479%10" %

TABLE 5.4,3

6Ll

5.5 DETERMINATION OF THE STURM SEQUENCE FOR AN UNSYMMETRIC BANDED MATRIX
AND ITS USE IN FINDING EIGENVALUES

The method of obtaining the Sturm sequence for a matrix as explained
in 5.2 can be extended and used on the more diffjcult unsymmetric matrix of
the same form as (5.2.1}. As the matrix is unsymmetric, the Sturm sequence,
once found, cannot be used in a bisection process as any number of the
eigenvalues may be complex. Instead a root finding method normally
associated with polynomial root finding is used. The Sturm sequence is
now utilised to obtain the determinant only of the matrix which can be
used in conjunction with the root finding method to find the roots of the
characteristic equation. Obtaining a suitable differentiated sequence as
described in Chapter 3 for use with Newtons method is impracticable, so
Mullers method is used even though it has several drawbacks. At each
stage the method requires two previous function (determinant) evajyations.
Thus choosing two suitable starting values is a problem, and often a cause
of inefficiencies, The method can, and often does, give a complex
approximation to a real root, but this is in common with many other methods.
There is one square root evaluation at every iteration, which is time
consuming. In fact computationally the single most time consuming operation
in the method is the determination of the square root of a complex number,
but this is very small compared to the amount of work performed in one
iteration.

The matrix for which the sequence is to be found is

120

€ p >
c b
1 2
-~ .
e, C. °
2 2 ~
~ ‘\ ~
Y
~ ~
p ~ OO
“~ by
\\ N
A= v ~ ~
£ ~

121

d i
\\ 0
~
~
\\
0 N
~
Y dN
~ (5.5.1)
~ ~
~ ~
~ ~
~
\\ \\ \\
~ ~ ~
NN bN
\\ ~ .
eN Cu—

As before Gaussian elimination is applied to the matrix (A-AI) without

using a pivoting strategy.

At each stage of the elimination process some

of the elements will be relabelled, and initially the following are re-

labelled:
Ri,p-1+i = di+p_1 , 1i=1,2,...,N-p+l 5.5.2)
RLp+i-1,i = fi+p_1 ’ 1=132,---,N'p+1
i,it1 = Py , 1=2,3,...,p-1 (5.5.3)
lel = cl.‘A bl e2 = RLz’l

Thus before the first step of elimination the matrix now has the form,

F‘l,l Ry 2

RLy,1 2= Ry 5

(A-AD)=

-
RlsP
Ry o+l 0
~
~
Y ~
\R \\
P"Z:P‘l 0 RN‘p+1,N
>~ b
~ ~ . ~ (5.5.4)
~ . ~
~ ~ s
~ ~ ~
~ ~
0 ~ S ~
~ ~ ~
~ - ~
~ . N bN
~ ~ -~
RLN,N*p+1 ~ eN CN-A |

and performing the first step of the elimination will produce,

Ri1 Ry,2 RiLp
- -Rl’pRLZ,I/Rl’l
1,2772,1
0 CpmA- R Ra,s
“ 1,1 ° ~ .
\\ \s.\
3. NN .
~ ~ R
\\\ \‘\\ p'-,P"l
. ~ b
~. ™ - D
\\ T~ R RL
~ e ¢ ~h- I,RE p.l
- ~ 1.1
0 Ry 2R, 1R 0 .. '
~
.
RLP+1,2 = S
L ~ -
.
Sy
Sy
s
S
'
0 -~
\\\
— RLN,p+1,N
(5.5.5)

-~

N-p+1,N|

éct

Now some more elements can be relabelled as follows,

Ry,2 = Sg7ARy oRLy /Ry 1 s
RLg 5 = €50 Ry p = “Ry pRby /Ry 4
RL, 5 = Ry RL (/R)

H]

J

{(5.5.6)

and the next step of the Gaussian elimination process is performed when

the matrix becomes,

123

!

1,2 1,p
R2,2 R2,3 R2,p 2 pel
370 Ry, 5R5,2/R 2 Ry Roptts,2/Re o :,p+1RL',2/R2,2
S \\
.
\-4\ ~ R ?\ .
\ - -
N - p-2,p-1
A 0
~ A > ~ ~ bu
Y ~ -
R R X3 S -FE S
R1 1 p+l
b ¥
0 -RLp’sz’s/Rz’z e, X i
Ry Rl 2/Ra 2 Ry o RL /R,
0 -RL, he1Ry, 3Ry epe1” pe1™ A
RLo1,282,0/R2,2 "Ry paiflpey, 2 Ro 2
' h Y
S~
RLp+2,3 ep+2 -
\\ 0 ~
~ ~
\\ N
~ N
A “~
0 ~
~
RL s
N-p+1,N (5.5.7)

N-p+1,N
Y
S
~b,,
N
~
S~ ¢, -A

y AR

The process of eliminating RL elements and relabelling is now continued

until an upper triangular matrix is left,

Ri,1 R,z Ryp)
Rp,2 Ras 0 "2,0 "2,pn1 _
| ~
RS,S | R3,p+1 S
Y | | = ~
~] \\ ‘\R
\\ | i . N-p+1,N
b S \\
\\ R| |
™~ p-l,p
\ .
R ~
psp\ \\
=~ ~
~
0 NN
- ~
~ ~
~ \R
N N-1,N
Y
.
" oy
(5.5.8)

In this process a sequence of R elements have been produced and
recorded, and a sequence of RL elements which are the last values of
an element in that position in the matrix before elimination., These

RL elements can all be relabelled so that elements in symmetric positions

now have the same indices e.g.,

RL becomes RL
21 1,2 (5.5.9)
RL becomes RL
p,1 1,p
The values of the R.l i’ RLi 3 (i=p,N, j=p,N} can be determined by the
] 3
same method as described in section 5.2, while the Ri i’ RLi j (i=1,p,
» H

j=1,i+1) are determined in the same manner as a normal tridiagonal
sequence.

A further, and final, relabelling of the elements RLi . and Ri

»3

»

can now be performed to maximise efficiency and minimise storage

required when programmed on a computer. The matrix (5.5.8) now becomes,

125

Riii Rao

Ra,1 B3z

oy .

. ~

N

“~

S
“~

R
P.P
I
|
i
|

P

o

2
1
~

R R
p.p-1 “p+l,p

0
Rp+1,p~l ~ . R
i = ~ = N)p
I ™.
|
S
- ~
~ ~ N
™~ ~
~ ~
~ N . - .
Y
> By
Ry, 1

(5.510)

126

and the RL are relabelled similarly,
These R and RL elements can be obtained by Gaussian elimination and

relabelling, or the following recursive formula,

Ri k= 9> RL; o= £, i=p,p+l ..., N,
Ri,k = RLi,k = 0 i<p and k>2,
p-k-1
RLik = %4 - jzo Rl p-i®i-ked,pri-k-3 Ricpgen, 17
i=2,3,,..,N, k=p,p-1,...2,
. p_k_l T(S.S.ll)
Rik ™ Yk - jZO Ry p-3Rbioke1,pr1-koj/ Riopeje1, 10
i=1,2,...,N, k=p,p-1,...2,
ci-h if kel
e, if k=2 for RL,
g, . =4 * 1.k
Lk oy, if k=2 for R,
i i,k
[0 otherwise. J

which was obtained from careful inspection of the elements during the

elimination and relabelling process.

127

If Pi(A), i=1,N are the leading principal minors of the matrix (A-AT)
and therefore PN(A) is the determinant of (A-XI), then the Ri 1(A), i=1,N

are the ratios of the Pi(l) i.e.,

PO Crowm (5.5.12)
Pia1 M)

as shown by Martin (1967).

Therefore, the determinant of the matrix (A-XI) is given by,

PN(A) RI’I(A) Rz’l(l] R (A), (5.5.13)

and in general

Pi(k) Rl’l(A)Rz’l(A)....Ri’l, i=1,2,...N, (5.5.14)

Muller's method is described well in Froberg (1964}, but briefly the
method fits a parabola to three previous function (determinant} evaluations,
and uses this to determine an improved approximation to the root (eigenvalue).

th

So that at the i~ step the previous evaluations are'(fi_z(kl-z), fi_l(ll'l),

fi(Al)) where the A's are approximations to an eigenvalue and fj(AJ)=PN(AJ).

Then if, _ _

hy = M. SR A N R (5.5.15)
the following can be obtained,

g, = £, W5 - £, 6 £ (b +8) (5.5.16)
‘and then,

Yivg = °2fiai/(giiaé§_4fiaiwi[fi*2¢i_f1§i+fi]) (5.5.17)

Then by choosing the sign to make the modulus of the denominator as
large as possible
i+l

i g
S S 70 (5.5i;8)

Now using (5.5.15-5.5.18) the iteration can be continued until
convergence to an eigenvalue. In practice the form,

Iy _ j ¢
g,00) = p)y (5.5.19)

is not used when calculating the results on a computer. The reason is

that outlined in Chapter 3, that the Pi(A) are subject to large cscillations

and overflow occurs. As can be seen when calculating PN(Xj) from (5.5.13)

and (5.5.14) the_quantities Pi(kj), i=1,2,...N are all calculated; and are

all subject to the possibility of overflow., If PN(Aj) is caiculated in the

reverse manner then quantities,
P (M)

j
P, (A7)

, i=N-1,N-2,N-3,,..,0 (5.5.20)

are all calculated and are again subject to overflow.

Instead of PN(Al), RN 1(J\J) can be used, and then,

Iy . j
fj(l) = RN’I(?\) . (5.5.21)

It was found that in practice using (5.5.21) did not affect the
convergence in any way and satisfactory results were obtained without
overflow occuring.

When one eigenvalue had been found it was necessary to deflate the
matrix to prevent redetermination of this eigenvalue. This is achieved
by dividing the function by the difference of the current estimate to an
eigenvalue and all -previously determined eigenvalues. Such that if i
eigenvalues have already been found, then,

. . i .
£.0) =r, ANy TT (-2 (5.5.22)
J Nll k=1 k .
Unfortunately this exact form cannot be used as it can be written,
. . i . .
£y = e fy, TTo -2Ne, 0y . (5.5.23)
i N k=1 k N-1
This is in effect,
i. _ .th . . th .
fj(l) = N degree polynomial/(N-1+i) degree polynomial
(5.5.24)
and fj(lJ) has as an asymptote the line f{A)}=0 and the method always

follows this asymptote, never converging. The solution to this problem

128

129

is a delicate "balancing act", As each eigenvalue is found the polynomial

in the dencminator of (5,5.22) is decreased by one and then fj(A(J)) is

given by,
iy . By, Tres _yd
£,07) = ;[I:RN+1_,{,1(A)/ ll;ll‘(ag—x) (5.5.25)
. . i .
= 3 J J
= P () /Py () ;Dl— (4 -2) (5.5.26)

This gives, in effect, at every stage,

fj(lj) = Nth degree polynomial/(N-—l)th degree polynomial (5.527)

and now the process converges at every step and overflow is avoided. The
effect of using a ratio of the determinant to a minor instead of just the
determinant is discussed in Chapter 7, in connection with the secant method.
At this stage it can be said that in practice this had no effect on
convergence or accuracy at all,

The program to perform this algorithm is given in the Appendix 1 in

program 14,

5.6 RESULTS

Program 14 was run on a number of matrices which were chosen randomly
and compared with results obtained from N,A.G. routine FO2AJA. This
routine reduces the matrix to upper Hessenberg form using stabilised
similarity transformationsfréhen computes the eigenvalues using a modified
LR method. - Program 14 is written in Algol 60, this highlights how
clumsy the language is in handling complex arithmetic. It was found that

for the operations +,-,* it was gquickest and most convenient to write them

explicitly, and for the operations #, and square root they were written as

subroutines. This was because they were used least ~tobe - the most
complex, and also -~ afforded the possibility of introducing scaling if
necessary.

The first matrix used was,a 20x20 matrix with semi-bandwidth 14, and

random integers between 0-9 for the elements on the diagonals, The
eigenvalues are listed, for comparison with those obtained using the
N.A.G. library routine FO2AJA. This routine uses stabilised elementary
similarity transformations to transform the matrix to upper llessenberg
form, then uses the LR algorithm to obtain the eigenvalues. The two
programs were run on the Loughborough University of Technology I.C.L.
1904S computer, and program 14 obtained the eigenvalues in 300 seconds,
while FO2AJA obtained the eigenvalues in 10 seconds. The results are

given in table (5.6.1).

EIGENVALUES FROM PROGRAM 14 EIGENVALUES FROM FO2AJA

REAL IMAGINARY REAL IMAGINARY
-11.64194747 0,000000000 -11.64194748 0.0006000000
~2.,240745232 0.0000C0000 ~2.240745233 0, 000000000
-0.0075399962 | 0,000000000 -0.0075399962 | 0.000000000
1.974288297 0.000000000 1.574288297 0.000000000
2.776414614 ‘-2.222505556 2,776414614 | -2,222505556
2.776414614 2.222505556 2.776414614 2.222505556
3.839793997 0.,000000000 3.839793997 0,000000000
7.349843142 0,000000000 7.349843142 0.000000000
8.757966495 0.0000000060 8.757966495 0.000000000
9,339058777 0.000000000 9.339059777 0.000000000
10,35427842 0.000000000 10.35427842 0.000000000
11,87654137 '0.000000000 11.87654137 (.000000000
13,.73292636 -3.391590422 13.73292636 -3.391590422
13.73292636 3.391590423 13.73292636 3.391590422
16,43962543 0.000000000 16.43962543 0.000000000
18.65614394 0.000000000 18.65614394 0.000000000
21.46577519 (.000000000 21.46577519 0.000000000
24,59456121 0.000000000 24,59456120 0.000000000
27.63531832 0. 000000000 27.63531832 0.000000000
28.65621514 0.000000000 28.65621514 0.000000000

TABLE 5.6.1

130

A second matrix of order 50x50 with elements consisting of integers
between O and 9 was chosen, The results from program 14 are compared
with those of the N,A.G. routine for ten eigenvalues in Table 5.6.2.

The time taken by program 14 was 1610 seconds and the time taken by

FOZAJA was 63 seconds.

EIGENVALUES FROM PROGRAM 14 EIGENVALUES FROM FO2AJA

REAL IMAGINARY REAL IMAGINARY
-9,010258685 0.000000000 -9.,010258684 0.000000000
-0.,6435526709 0,000000000 -0.6435526712 0.000000000
0.5473984273 | -0.06227686443 0.5473984272 | -0.06227686378

0.5473984273

0.06227686442

0.5473984272

0.06227686378

9.307845570 0.000000000 9.307845573 0.000000000
10, 38549187 0.000000000 10, 38549186 0.,000000000
11.49296839 0.000000000 11.49296838 0,000000000
15.79316104 ~ 0,000000000 15,79316104 0.000000000
16.82574875 0.000000000 16.82574875 0.000000000
19.67294860 0.000000000 19.67294860 0.000000000

131

132

CHAPTER b

THE DETERMINATION OF STURM SEQUENCES

FOR SPARSE BANDED MATRICES

133

6.1 INTRCDUCTICN

Using methods similar to those of Chapter 5 it is possible to evaluate
the Sturm sequences for sparse matrices with a more complex structure than
those already described, and so determine a recursive formula for the
sequence, These formulae can then be used in a bisection process or Muller's
method to determine the eigenvalues of the matrix.

No algorithm is given for finding the eigenvectors of each matrix
except for the periodic quindiagonal matrix as it is believed that the method
described by Martin and Wilkinson (1967), and Wilkinson (1972) are the best
available. The reason for this is that as the matrix becomes less sparse,
the complexity of programming to utilise the sparseness is prohibitive
except in the periodic quindiagonal case., The state is reached where, for
large matrices, the space saved is small, and this is taken up by the extra
program steps required to carry out the algorithm, Also the speed in
calculating the vector is not critical, as, compared to the time taken to

obtain an eigenvalue it is very small.

6.2 STURM SEQUENCES FOR THE QUINDIAGONAL AND PERIODIC QUINDIAGONAL MATRICES

The Sturm sequence for a quindiagonal matrix has already been found by
Evans (1975), in the form of a sequence of leading principal minors of the

matrix, obtained by Laplace expansion. The quindiagonal matrix is,

El, b2, a3]
P2 €20 B3 0
35 by Cg
~
A= a4, b4’ ~ (6.2.1)
~ - ~ ~ N
~ N
~ \\ a‘N
A
~ \bN
b
0 \‘ \\
_ ¥ PN N

134

and the sequence obtained for the matrix (A-AI) is,

PO =1 » A
P, = (6-M)P,
_ 2
Pz - (C ")\)p b2 0 »
P, = (C,-A)P, --b2P, _-a2((C, ~A)P, .-a° P,)
i i i-1 "ii-2 71 i-1 i-3 "i-1 i-4
b (6.2.2)
*2a;b; (05 1P 375 29 1P 4"Pi 55121 0P570)
i=3,4,...,N-1,
Py = (cy-A)P p2p _-a ((c AP, -aZ P)
N N-1 N N 2 N N-3 "N-1 N-4
T et T“’r
o +2 (-1)’ b b, .| a P
j=1 N'N-j reN-j+1 T N-J+2 J
The sequence is also given as a sequence of the ratios of the minors to
avoid underflow and overflow on a computer,
= 3
po 1 H
pl = (cl-l) ?
2
pz = (C _h)_bz/pl]
pg = (€5-2)-b /p2 ~a5(¢,=2) /P, p 2250, b /P Py,
: b (6.2.3)
Py = (6 -A)=b2/p -aZ((ey 1 =N [Py 1P Yoo 1 /By 1Py 5P
v = oy -by/py oy ey M APy Py 2y A1 /By- 1P-2Py-3)
.2 Ni 17" b Loy 1P || (a/p)]
j=1 N-j-1"N- ll =N-j+1
' J

The quindiagonal métrix, and the periodic tridiagonal matrix can be

seen to be special cases of the banded quindiagonal matrix given in
Chapter 5 with P=3 or N. As has been shown the sequence (6.2,3) is
équivalent to a sequence obtained from the matrix by elimination with

no interchanges. This fact can be proved directly by a similar method
to that employed in Chapter 3, but involves a lot of diﬁ?cu“'algebra and

serves no useful purpose, so is not included,

The matrix (A-AI) after the elimination process has the form

il

ey

53
1'3 54 0
G Ty S5
~ ~ ~
N ~ ~
~ ~ \\
\\\\ .
\ \\ \S
~ . N
~
~ \rN
A Y
A
Ay
i »
b,
bi-siTi 1795, » 1=3.4,
cl~A s

2
cz-l—rzlql ’

2 2 .
Cy AT /8y 1781/ g0 =34,

N,

J

The sequence a5 i=1,2,...,N can now be used to isolate eigenvalues in

a bisection process, in place of the Pi’ i=1,2,...,N.

Evans (1975) has also given the Sturm sequence for an unsymmetric

matrix and the differentiated sequence for use in conjunction with a

Newtop method.

or by setting P=3 in section 5.6, and using Muller's method,

These can be obtained from an unsymmetric matrix direct,

The matrix

most similar in derivation to the quindiagonal matrix is the periodic

quindiagonal matrix which has six additional elements in the top right

and bottem left

The matrix

hand corners.

has the general form

135

(6.2.5)

(6.2.6)

136

(6.2.8)

Gaussian elimination can now be performed without interchanges on (C-A1)

and the resulting matrix is,

where,

U1 = gl-l

V, = by

U. = c.h- VAU
2 T G Vil

Vi = bimeVin /Ui

u. = A-VZ/U -ez/u
O SRS T U Bd L T

X, = dp, Xy = -V,X /U

Y, =dy, Y, = dg-VoY /U

= ViU 0%/

i=3,4,..

i=3,4,..

i=3,4,...

i=3,4,...

:N"SD

:N'Zs

(6.2.9)

+ (6.2.10)

v =b

=
I

=
]

This recursive sequence is simple and easy to calculate and the Ui’

i=1,2,...,N can be used to isolate the eigenvalues of the matrix C in a

bisection process,

N-1

-X

2
og7he L X/

N Oy

/U

N-SVN-Z N-2

N-3

pA
=1 N-1

N-2
N by - Lovi/y
i=1

N-2
2 2

DR FUAUT AL

i=1

/UN"Z ¥

137

(6.2.10)

There are two different strategies that can be used here to optimise

one of two factors when calculating the eigenvalues on a computer.
bisection algorithm as given by Barth et al (1967) and described in

Appendix 1 can be used.

bisection.

order,

Uy-3°
Uy- 2

VN—l’

VN—S’

VN—2’

UN—l’

Yl ,
X2 R
X3 s
XN—S’
YN-Z’
VN ,

SRR Y

(U Vi Vigo19n-1)

(U Vi V-1 Uysy)

(UN,VN’VN"I .IUN_I)

H]

»

]

]

Here the whole sequence is calculated for every

The sequence given by (6.2.10) can then be calculated in the

J

(6.2.11)

and therefore only eight extra storage locations are required to calculate

the sequence from the given matrix,
procedure described in Chapter 5 where at each stage the sequence is
calculated only as far as is needed for that particular eigenvalue.

this case the elements of the sequence (6.2,10) are calculated in the

This procedure is slower than the

following order,

138

w
ULV,
U, » Vg
Un-3> Vno2?
Uy, - (6.2.12)
O e X0V Uy
L A Yy g Vi Uy
J

and therefore a further 2N storage locations in the computer are required
to calculate this sequence from the given matrix,

So that if, for a large matrix, the eigenvalues are to be found the
algorithm can be chosen to minimise storage requirements or time taken
depending on the machine loading. A similar procedure can be adopted
with the periodic tridiagonal matrix described in Chapter 3. The
Meteorological Office at present are using a similar procedure to that
just described. Here they have large numbers of periodic tridiagonal
matrices to solve whilst predicting weather trends. They have two
algorithms availablé, the one already described by Evans, and one given
by Golubﬂwﬂlaﬂchoose which one to use depending on whether they wish to
minimise space used or time taken,

The two procedures to determine the eigenvalues of the periodic
quindiagonal are given in Appendix 1 in program 15 and 16, The test

results are included in 6.4.

6.3 EIGENVECTORS OF A SYMMETRIC PERIODIC QUINDIAGONAL MATRIX

The eigenvectors of this matrix (6.2.8) can be found using inverse
iteration in a manner that is both efficient and saves storage. The
method is the same as that used for a banded quindiagonal matrix, and a

periodic tridaigonal matrix, and is described briefly here,

The matrix, which is stored as three vectors, has the appropriate

eigenvalue subtracted from the diagonal elements and is stored in 12 vectors

to represent the matrix ready for elimination.

139

V. W_X_Y_ zZ_ : Ql Q2 Q3 |
\\ ‘\\‘_‘“‘_’ 1 | I
U Y \\\ \\\ ! 1 1
~ ~ ~ ~ ~ ‘-Z 1 1 |
~ ~ '\\\\ ~
T ~ A ~ ~ \Y i | !
~ LY ~ \\ \\] . [
N N “ ~ X | |
\\ ~ \\ \w | ' i
TR AL (6.3.1)
h ~ .y l i '
~ ~
~ “~ 1 i 1
~ - I
~ U 1 i
0 ‘\ : [:
S— = - =~ = - - - =-5"T . ' |
t ! |
R — == ===~ -~-~-R Q1 Q2 Q3
where, from (6.2.8)
V = c-A ,)
U=W=0b s
T=X=e¢e s
Y=2=Q1=0 . | (6.3.2)
SI=Q21=d1)
R1=Q3l=d2 »
R2 = Q32 = d3 ,
R =8§=Q2=Q=0 , J

Now the first stage of inverse iteration can be performed, that is, the
elimination to upper triangular form.
At the ith stage (say) there are a possible four interchanges of Vi
with U, ., T. ., S., or R, to choose from or no interchange at all., This
i+l i+2 i i
interchange information is stored in the interchange vector in the ith
position with either the row number the ith row is interchanged with or

a zero (no interchange). So that if Ti+ was the element with largest

2

modulus then the following would be interchanged

Ay ey,
in G-Q2i+2 ?
QB ¢ By,

and the interchange vector would be set,

IC. = i+2 . J
Ui

Now the elements Ujs> T Si’ and Ri are to be eliminated. As

i+2’

an example the element Ti+ will be dealt with in detail, First the

2
elimination factor is calculated (Ti+2/vi) and stored in Ti+2' Then the
ith row times the elimination factor is subtracted from the remainder of

the i+2th TOW,

Uisz = Ui 41 Tie0
Viez ® Viea X500l o
Wivs = Mii3YiusTie2
xi+3 xi+5—zi+4Ti+2
Qo =y Wy,

1
Q25,0 = @24, 5
Q40 = By, 0BT 00 J

This process is continued until the last seven rows where care has
to be taken over which elements are still present. Then, the eigenvector
is set to all 1's and the back substitution takes place. Again care has
to be taken over the initial elements, but if the eigenvector is Q then

th

at the i™ step the back substitution has the form,

Q= Q050 0y 1 Q2% Y

X242 Y 1034372544044V

140

(6.3.3)

(6.3.4)

(6.3.5)

141

As indicated by Wilkinson (1965), two steps of inverse iteration willusuﬂv
gain full accuracy provided there is an accurate approximation to an
eigenvalue. So the second step is started, and this time, only the stored

th

interchanges and elimination factors are used. So that at the i~ stage

ICi is equal to i+2 so two elements are interchanged,

<>
Q,* Q,, (6.3.6)
and when the elimination is carried out for the i+2th row only,

ez = Yo~ Ty, - (6.3.7)

Again care must be taken with the last stages, but when this has been
completed the back substitution is performed the same as in (6.3.5).
At the end of this Q contains the desired eigenvector.

The program to perform this algorithm is given in Appendix 1 in
program 17. The results for this and the preceding section are given in
section 6.4.

It should be noted that 13N extra storage locations are required for
the algorithm, and that due to its complexity no storage savings are made
unless the matrix is large (>30:30). However it is computed in an
efficient fashion with no double indexing and runs efficiently compared

to any other method regardless of the size of the matrix.

6.4 RESULTS

As no useful periodic quindiagonal matrices with known eigenvalues
could be found results were compared with those obtained by a N.A.G.
routine. These are given later, and are found to agree to 10 significant
figures.

First for a number of matrices of different sizes the three variations
of the algorithm (normal, space saving, time saving) were run, on the ICL

19045, and the times taken compared, the results are given in the following

table (6.4.1).

14

TIME TAKEN IN SECONDS TO OBTAIN ALL E1GENVALUES
SPACE SAVING TIME SAVING

MATRIX SIZE | NORMAL ALCORITHM | |\ .00 iTiM PROGRAM 15 | ALGORITHM PROGRAM 16
30 x 30 30 29 27
50 x S0 92 &4 78
80 x RO 237 218 174
90 x 90 308 283 234
100 x 100 381 301 296
110 % 110 465 427 342

TABLE 6.4.1,

The normal algorithm ig the bisectlon algorithm of Barth et al, (1967)

coupled with the inefficient srorape method
Sturm sequence of the macrix.
bisection alporithm as hefore,

sturm sequence of the matrix,

made the space

algorithm,

saving algorithm is 51ightly mare eftficient than the normal

The space

As ¢dn be séen Fram the tabla (6.4"l) the rime efFicient

algorithm males

this figure inereases with larger matrices,

of size 1000%1000 (say),

~%aings In bine of up ta 30% on the normal algorithm,

of (6.2.12) for caleulating the
- saving alpgorirhm uses the same
but aveids using arrays in cdlculating the

Due tu the Facr rthat no array sccesses are

and

Even for a very large matrix

the toral extra storage for the time efficient algorithm

143

1s 2000 computer words, This is a small enough Figure compared to the core
size of most computers to make this the preferred algorithm in most
applications.

A test matrix of order 50 is used to jllustrate the results and the
resultant eigenvalues, and eigenvectors are compared with those obtained
using a N.A.G. library routine. The library routine uscd was FO2ABA which
uses a lousecholders reduction and QL algorithn,

The test matrix has a siwple form consisting of all 1's for the
diagopal elements, all 2's for the sub-diagonal elements, all 1's for the
sub-sub-diagonal c¢lements, and the three corner elements all 0.5, ‘the
matrix is symmetric, and the 50 cigenvalues are all contained in the range
(-5gx27). The ten smallest cigenvalues are given in table (6.4.2) and the

eigenvector corresponding to the tenth in table {(6.4.2) in table (6.4.3).

L TGENVALUES - PROGRAM 16 HIGNNVALUHS-FU!ABA‘
~1.,989932556 ~1,989932555
~1.988566522 ~1.988566522
-1.972569410 -1.972569410
-1.955757440 -1.955757440
-1.913955008 -1.913955008
-1.900012702 -1.900012702
-1.856065127 1856065427
~1.825883875 -1.825883875
-1.778871004 -1. 778871004
~1.737621856 -1.737621850

TABLE 6.4, 2

EIGENVECTOR ELEMENTS

EIGENVALUE ELEMENTS

EIGENVECTOR ELEMENTS

i

EIGENVECTOR ELEMENTS

i
|
|
?

|
| .
X{-X,5 PROGRAM 16 X~} FO2ABA i X=X PROGRAM 16 j X} -XxL FOZABA
=2 - j - i
9.123624343*10° 7 i 9.123524342+*10 2? ; -:.41?433794*10,5 ; -2.417438795*10° ﬁ i
-3.169860411+10:I g -3.1698: 60406*10, % 3.052577011*10_; : 3.052577006*10° 1
-1.366043062*10 | -1.566043063*10 5 1.177897989*10 i 1.4,739,991*10_1 }
2.631330387*10° f 2.631330388%10" - ; -1.374037339*10'1 X -1.374037340*10 - i
-1.253817412*10 i P -1.253817412*10 % | 5.090722328*10 % ! 5.090722330%10 ;5 : i
2,229621417*10° 1 ! 2.229621417*10° 1 ! 9.117364089*10" 3 5 9.117364071*10" < 3 l
-1,169450844*10" s ; -1.169450844*10 3 ; -5.057730172:10 : ; -5.057 130128:i0 L
= % - * ' 7 H _ -
-1.738004344%10 3 -1.;3800§311 10_3 é‘ -1.868700158*10_] : 1.868700157*10_; |
2.391203200*10° 2.391203237*10 3 i 2.569992520*10 -, ; 2.569992520%10 5 |
1.090361934*107 7 2 1.090361928*10 = ? -8.344772451*10 ° 1 -8.347724515*10'; i
9.206764423*10 ; 9.206764425*10'; -1.578145173*10 i ' -1.:,78145174*10'1
- -2 B 2 296771* 2.17 73*1
2.170296771:10 1 -.170296771:10_1 .170_94,;1*10 5 : 202322231*18
1.578145173*10",, 1.578145172*10 -9.20676 4-1*10 5 i - .090361943*10
-* it * - - - 1.

8.347724515*10 7 8.347724523*10 7 £.09036193§*10 3 | 1 *10_5
-2.569992520*10" B -2.569992520*10_) -2.391203193*10 % i -2.391203031 10_3
1.868700158*10° 1.868700157*10 - 1.738004355*10 ; 1.738004237*10_]
5.057730177%10° 2 5.057730212*10" 2 1.169450844*10 1 | 1.169450844*10
-9.117364090*10 3 -9.117364091*10° ; -2.229621417*10 ; -2.229621416*10" 1
Caonear: | Shemmes | lmwwaad | Daenai

- s --- n o 3 — 5 .
i:gggggggsg*}g'} ;.g24037338*10 } ; -2.635330387*10_1 l -2.631330388*10 1
-1,477897989*10 -1.477897988*10_2 1 1.566043062*10_, i 1.566043062%10
-3.052577012*10" I -3.052577021*10”7 3.169860414*10 5.169860424*10 5
2.417438794*10° 2.417438795*10 -9.123624345*10 l -9,123524351*10

TABLE 6.4.3

124!

145

The results for the two programs are in agreement to at least 10
significant figures for most values, This test matrix is also centro-
symmetric, which means the cigenvector (in this case) is anti-centro-symmetric
Therefore the sum of two clements xj,xj (where i+j-1=50) should be zero,

In this respect the Tesults from program 16 were more consistent than those

from the N.A,G. routine,

6.5 STURM SLEQUENCES FOR FURTHER BANDLD SYSTEMS

The next matrix for which the eigenvalues are determined is not one
found commonly in practice, but the sequence is given, as it was used to
provide a convenient "stepping stone" to determine the sequence of a more
useful and more demse matrix in a later section.

The matrix in question has the form:

Now in order to determine a Sturm sequence for this matrix the same

procedure as used in previous chapters is carried out.

146

(6.5.1)

Gaussian elimination

without pivoting is performed, and careful note taken of how each element

is produced then, with judicious relabelling of the elements in the

remaining upper triangular matrix, a matrix of the following form is left,

R R

R

L=

Where the Ri

»

Ry

Ro1

Ri 3

R p

1,1 2,2

2,1

A
Rz 3 Rp p
0
Rs,z 0 . RP,P~1 RP+1,P
~ | ~ N
S
Re 1 > | SRR
\ by
™. ~ | ~o Rye
~ ~ ~
~_ .) Ry, p-1
- -~ I
- . RP,Z
R -
P,L1 =~
O \"- h ~ RN,3
. - '\R
- N, 2
SRy,

€y-A , v Ry2° by

C -A-
27 ARy Ry /Ry

d, i=3,4,...,P-1,
1

e i=P,P+1,...,N,

]

(6.5.2)

. elements are described by the following recursive formula:

(6.5.3)

Ry 2 = b37Ry 3 2Ry /Ry 5
Ri1 = SRy Ry o/Ry g 1Ry 3Ry os
i-k+1
Rik ™ Sk~ 520 R; pojRi-ke1,Pe1-k-5"R
i=P,P+1,...,N,
where
(6. if = P)
1
d. if =3
1
I L i=p,P+1,...,
1,4 C.-X ifg= 1
1
0 otherwiseJ

-

147

i-P+J+1,1

k=p-1,P-2...1,

r (6,5.3)

N,

J

The sequence has been programmed in ALGOL 60 and the program is given in

Appendix 1 in program 18.

No results are given as the matrix is of no

great practical importance, but the exercise was carried out to gain

manipulative skills to cope with more difficult banded systems to come.

The next matrix to be considered is one of more practical importance,

and has the form,

¢ b, dpp dpirpar-= - ~-um
o~ N 0
by € "~ dprrp -~ = dymer o
\\\\ \\ ~ ~ \\ \\
~ ~ ~ ~ \\ .
s -~ N ~ . - dN,M
~ -~ \\ > ~ :
~ - - -
~ ~ ~ i
h ~ \\ \\ 0 \\\ :
C = \\ > e ~
d ~ RN h - dN,P
PP IO
~ ~ ~
d ~ ~ ~
P""l,P"'l ~ . 0 ~ ~ - -
\ '\\ \-\ -~ \\ ~
~ ~ ~ - ~
4 h N T .
MMS AN R N
~ ~ ~ ~
‘ RN S~bo e
0 i Ywe NN

This is a block banded matrix of semi bandwidth M with a block of

width M-P+1,

Typically, a matrix of the form (6.5.4) can arise when a finite

148

difference approximation to the second order partial differential equation

of section 5.2 is used. If, instead of the five point formula, the more

accurate nine point formula is used, a matrix similar to (6.5.4) arises

where M-P+1 is equal to three,

The computational molecule applied to the grid of figure (5.2.2) to

give the nine point formula is given in figure (6.5.1)

¢ (x-h,y+h) 4¢ (x,y+h) ¢ (x+h,y+h)
44(x-h,y) -206(x,y) 4¢ (x+h,y)
¢'(X"h:)"h) 4¢(X:Y‘h) ¢(X+h,)"h)

COMPUTATIONAL MOLECULE FOR 9 POINT FORMULA

In the notation of section 5.2 the nine point formula equivalent to

(5.2.1f) can be given as

FIGURE 6.5.1

- (¢ (x+h,y-h) +¢ (x-h,y-h) +¢(x+h,y+h) +¢ (x-h,y+h) -20(x,y)

+4¢(x-h,y)+4¢{x+h,y) +4¢ (x,y+h) +4¢(x,y-h))

The application of this formula at all the grid points of the system

produces the N (say) simultaneous linear equations which can be written

in matrix form as,

A (x,y)

(6.5.4a)

149

Again the Sturm sequence for the matrix C is found by performing

Gaussian elimination on the matrix (C-AI) without interchanges.

Then by

noting how each element was formed in the remaining upper triangular matrix

and by relabelling the elements a matrix is left of the form,

R

Ri1

1,i
Ry M
i,]

Ri %

i,k

u

i,k

R. R -
i1 Rz P,pRp1,per = Rym
~ ™. R - ~ . ~
‘\\ \\ PI,P"I\\ \\ \\
~ \\ | \\ ~~
- ~ ~
‘.'\\ \\RI \\ \\
~ ~ ~
.~ P,Z\ ~ -
\Rp,l \\ -
- ~
~ ~
\\ \\
s ~
0 ~ S
\\ \
| Y

1 ?
2 -
ci_x'bi/Ri—l,l ,1=2,3, LP-1,
di,i ,1=P,P+1,...M,
di M ,i=M,m+] sN,
0 ,1<j
i-k+l
Yk jzo Rii-3Ri-ke1,1-ke1-37Rj01
i=P,P+1....M, k=i-1,i-2,...1,
M-k+1
2k T jZO Ry MejRickel, Me1-k-3RiMegser, 1
i=M,M+1,...N, k=M-1,M-2,...1,
c., if k=1
1
bi) 1f k=2 i:P,P‘l‘l,...N’

di,k’ if k=P

0 otherwise

(6.5.5)

]

r (6.5.6}

The Ri,l

eigenvalues of matrix C.

19 in Appendix 1.

i=1,N can now be used in a bisection process to isolate the

The algorithm to perform this is given in program

There is no associated algorithm given for the eigenvectors of this

matrix.

The reason for this is that the complexity of programming the

method to take advantage of the sparsity of the matrix, far outweighs any

gains that may be made.

is recommended for use in this case.

Therefore the method described by Martinetal. (1972)

This method is a more general

Inverse Iteration procedure that lo'ses little when used on matrices of the

type (6.5.4).

Once the recursive sequence (6.5.6) had been found, it was an easy

step to find the sequence for another type of matrix closely related in

150

structure to (6.5.1) and (6.5.4).

This matrix has the forn,

[c. b, e d d d ' -
1 P2 ©3 PP 9psl,P+l- - - - “M,M
-,
b, ¢, b, e d ™~ ~
2 "2 T34 P+1,P ™ _ Y 0
™~ -~
~ = ~ ~
[~ b b ~ ~ ~ . d
3 3\ \\ ~ ‘, \\ ~ D"I)N
~ -~ ~ - - Y '
e - -~ ~ N ~ ~
4‘ \\ \\ - \\ \\ ~ dl
\\ - \\ \\ ~ 0 -~ P+1'N
~ \\ ~ ~ ~ ~
SN0 Tl Tl T 4N
d N RN ;
P,P > ~ ~ ~ ™
i’ Y. ~ ~ N ~ (6.5.7)
C= ~ e
1 \\ \\ "-\ \\ \\ ‘\\
] ~ ~ S ~
dl \\ 0 ~ ~ ~ \\ ~
> ~ ~ ~
M,M \\ ~ -~ ~ \\ ~
~ ~ ~ ~ \\ . ™~
‘\ ~ ~ ~ ~ ~ \eN
“ ~ ~ ~ ~ ~
~ f"\\ b ~ ~ ~ ~ b
~ ~ ~ ~ ~
D ~ ~ \\ ~ \\ N
> d \d ~ N e
M,N P,N N bN N _

A typical problem from an engineering application that gives rise to a

matrix of the form {6.5,7) occurs when determining the natural frequencies

of modes of a clamped, square plate.

The natural frequencies and modes of

vibration of the clamped elastic plate are obtained from the eigenvalues A

15

and eigenvectors w(x,y) of,

4 4 4
bu, B, 28 o, (6.5.8)
9X ax dy oy

where x,y are in R, and

Jw
W= === 0 . (6.5.9)

for x,y on B.
R is the region of the square plate and (6.5.9) defines the boundary
conditions on the boundary (B) for clamping on B.

By setting up a grid across the plate and applying the thirteen point
difference formula approximation to equation (6.5.7) at all the grid points,
a set of N (say) linear homogeneous equations are formed. The computational

maelecule for the thirteen point formula is given in figure (6.5.2).

w{x,y+2h)
-8w(x,y+h)
2w (x~h,y+h) 2w{x+h,y+h)
w(x-2h,y) -8w(x-h,h) 200 (x,y) -8w(x+h,y)
- - w(x+2h,y)
2w(x-h:Y-h) - 8w (x’y_h) 2Ld(x+h,y-h)
v w{x,y-2h)

FIGURE 6.5.2

The equations obtained from the approximation to (6.5,8) can be arranged so
that they can be expressed in matrix form as,
Aw o,
where C is defined by (6.5.6). The problem is then that of finding the
eigenvalues and eigenvectors of the matrix C.

Again the practical procedure is to reduce the matrix (C-AI) to upper
triangular form by Gaussian elimination without pivoting and a careful note
taken of how the elements in the matrix were formed.

The resulting matrix

has the form,

152

Ri,t R2,2 Rsps Rp.p Rpe1,p1” ~ = Pu
Y L N
\\ ~ - \\ 0 R ~ ~ -~ 0
~ ~ . ~ P,P-1 ™~ > A
RS ~ . \\ ¢ ~ ~ - - ~
\\ A RS I h ~ ~ ~ ~
N . T SO T AN fm,N
S -~ 1 ~
\\ \\ RP,3 = ~ ® ~ |
. - ~
-~ . - - R)
- RP 9 ~ o ~ N P+1,N

\.\ 3 \\ - \R
Rp,l\ N ~ AN . P:N

~ - s - R ~ .)

=~ ~ ~ |

0 S~ T~ ~ R !
RN ~_ T N3
AN N RN,Z

S~
_ N RN,I
(6.5,10)

where the R elements are defined by the following recursive relationships,

Rl,l = cl—l
Ry,2 =Py
Ry,1 = SRy aRp ofRy 4
Ri,3 = % , 1=3,4,,.,,P-1,
R, . =d. . , i=P,P+1,,..M, r (6.5.11)
i,i i,i
Ri,M = di,M C, E=M,M+1,...,N,
R. , = b.-R, R. /R,
1,2 i"i-1,271,371-2,1 | ie3.4,....p-1,
Ri 1= C372Ry Ry /Ry 1Ry 3Ry 3/Ry 5 g
J

153

ick+1 |
Rik = Si,k~ jzg Ri i-5Ri-ke1, 141-x-0"R541,1°
i=P,P+1,... M, k=i-1,i-2,...1,
M-k+1
Rik™ Sk~ jgg Ri,M-jRi—k+1,M+1-k-j/Ri-M+j+1,1’

1=M+1,M+2,....,N, k=M-1,M-2,...1,

+ (6.5.11)

(¢, if k=1 ,
1

b, if k=2 ,
1

© g = 431 if k=3 I i=P,P+1,...,N,

-1 >
di,k if kzP,
L0 otherwise | J

Now the elements R, i=1,N can be used in a bisection process to

i,1?

isolate the eigenvalues of matrix C. The program to perform this algorithm

is given in Appendix 1 in program 20.

6.6 THE DETERMINATION OF THE STURM SEQUENCE FOR A SYMMETRIC BANDED MATRIX
AND THE ROUNDING ERROR ANALYSIS

The symmetric band matrix C with semi-bandwidth P is defined by,

-
©,0 “9,2%,3%,4 -~~~ -~ - °1.,p
€2,1%,2%,3%,4--~---= % p Cpa 0
€3,1 %3,2 3,3 %,4~-—— — -~ °3,p ©3,p+1 ©3,p+2
= b =~ -~ .\\ ~ - “-.\. \\ - =~ ‘--.\ \\‘\C
) - - - “. N-P+1,N
= - ~ - \‘\ -~ - |
“p, 1 T Yo TN !
\\ ~ — ~ . |
- -~ - S - \\' '
. ~ ~ ~ '
~ ~ ~ -
0 > N N T
| “NN-Pel T T T T T T T T = = =Sy Na1 SNoN

154

Now by performing Gaussian elimination on the matrix (C-AI) without
pivoting, and by relabelling elements as described in detail in Chapter 5

the matrix R is produced,

Ri,1 Ro2 Ryg == ——-- = —-Rpp 7]
Ry1 Rep Ry g-----~ Rp p-1 Rpa1,p 0
Rg1 Rgg---=------ Rpe1,p-1 Rpaa,p
-~ ~ ~ ~
~ ~ ~ .
~ N “~ ~
\\ RN \\ \\
~ \\ . .
\\ \\ ~ R
~ ~ o N,P
R = ~ . ~
N RN,p-1
~ ~ '
~
~ ~ [
0 ~_ o ,
\\ "\ [
~ ~ |
~ ~ R
N N,2
SR
N,1
(6.6.2)
Where the Ri K’ i=k...N, k=1,P are defined by the following recursive
H]
formula,
i-k-1 w
Ry k) = ¢4 i1 - jE Ry, iejRioka1,ie1-k-3"Rj41 1
! (6.6.3)
i=1,...P-1, k=1,...i
J
P-k-1 |
= C -
Ri) = %5 k11 'Zo Ry, P-iRika1,Pa1-k-3 Riopeje1,1
)= s (6.6.4)
i=P,...,N, k=1,...P J

The Ri (A}, i=1,2,...N elements represent the ratios of the leading

»1
principal minors of the matrix (C-AI} and can now be used in a
bisection process to eliminate the eigenvalues of C.

This method applied to this type of matrix is not competitive with
other methods in finding eigenvalues quickly, and is not recommended aé

a useful method, However it is the most general form of a band matrix

and is used to illustrate the rounding error analysis, which can then be

155

applied to the other types of band matrix,

In the analysis the notation of Wilkinson (1963} will be used,
replacing 2"t by €, There are two cases to consider in the calculation of
a Ri,k and the zero in the symmetrically opposite position, for i3P and
i<P, Both cases are very similar and the case for i2P (equation 6.6.4) is
described,

The calculation of Ri is done in P-k steps:

k
Ri?i = ci-k+1,i \
Rgfi = Rg?i = Ry PRiker pkr/Riper,r * eifi
Rgfi = Rgfi "Ry poaRiken,pkRipe21 * Ei?i _ (6.6.5)
Ri:k = R£?;k-1)-Ri,k+1Ri~k+1,2/Ri—k,1 * egfik_l)
Where all Riii’Ri,P-j’Ri—k+1,P+1—k-j’Ri—P+j+1,1 refer to co;puted values,

(j

and €s i is the difference between the accepted R£J% and the exact value
» 3
which could be obtained using the computed values., Summing the equations

(6.6.5} gives:

P-k-1
Rik = Ciokel,i~ jZO Ri,P-iRi-ke1,pe1-k-3/Ri-pejer,1 ¥ &1,k (6-6-6)
where, =, 2, s (P-k-1) (6.6.7)
ei,k = Ei,k Ei,k Ei,k 0.

The production of a zero in the symmetrically opposite position to Ri X

takes place in the same manner, except that when R.1 X is obtained in that

E]

position it is set identically to zero. This is equivalent to performing
the exact operation, and no error is involved. However this still produces errets

in the modification of that row, due to the fact that Ri

/R

:P"j i“P+j+131

will have a rounding error. This means that the error in producing a zero

involves the extra term,

(P-k)

O=Ri " RiRice, 1M1 ¥ 1k (6.6.8)
which is added to (6.6.5). Then the error in that position becomes,
LD @, (P-K)
t
€1 k &5 k 1 k" oo 1 k (6.6.9)
Calculating R(K 1) (say) from (6.6.5) in floating point arithmetic
produces,
p03+1) _ () _
Rivk = Bk = Ry poiRicken,perk i Ricpagen,) (6.6.10)
g+ _ (p(3)
Rivk 7 Btk = Ry poiRioken, perkj/Ricpejan 1 (118p) (red) (1xe),
(6.6.11)
from which can be deduced:
= n(3) (J+1) -1 -1
Ri ookl petoked/Ricpajor,1 = GiaRi) (e 7D (ve)™ (se)
(6.6.12)
where €y < e, £=1,2,3
If \
R = max |RFJ)|
. i,k
i,k
j=0,1,...P-k-1 ! (6.6.13)
and .
R = max |R;
nax IR; 4l J
and then .
g = max (R,R) (6.6.14)
From (6.6.5) it can be seen that,
1l (J+1) r(3)
[e | |R +R /Ri_P+j+1,1| (6.6.15)

1 k' 1,P—jRi-k+1,P+1-k-j

and substituting in (6.6.13) using equation (6.6.10)} gives,

156

| (J+1)| IR(J+1) (J) (R(J) (3;1:1)(1+€1)_1)(1+82)-1(1+33)—1|

< 5.01 gg ,

if ¢ < 1070,

(6.6.16)

157
From (6.6.7) it can be seen that,

€,
i,k

< 5,01 eg(P-k) (6.6.17)
while i=1,2,...N and k=P,P-1,...1, or k=i,i-1,...1,
and from (6.6.9) it can be seen that,

ei K < 5,01 eg (P-k+1) (6.6.18)

while i=2,3,...N and k=P,P-1,....,1 or k=i,i-1,...,1

Therefore the Ri are calculated exactly for the matrix C+F where the matrix

K
F is defined by,

1,1 “2,2 3,3 - - ---%pp
!
€2,2%2,1%3,2 -~ - - - - - - --= - -~ Fp+1,P 0
~ ~
! 1 ~
€3,3 3,2 %3,1 > . N
] ~ \\. > ~ \\
| \\ \\ = ~ ~
| ~ ~ ~ \\
~ . ~
I ~ \\. \“- A
| e - \\ ~ - EN,p
F = . b - . I
~ ~ ~
l ~ - . l
) ~ Iy ~ 1
~ ~
EP,P - ~ T S ;
! N T~ RN :
P+1,P \\ \“ ~ 4
-~ ~ \\. ™~ ~ g
0 T TNl TS N2
~ S
E' e - \\ E' -~ I
| N,P - ®N,2 °N,L
(6.6.19)

Substituting equations (6.6.17) and {(6.6.18) it follows for the matrix F

that,

|F]<5.01eg

The error matrix defined by (6.6.20) is an upper bound only, and in

practice, is seldom achieved.

-——_ - - ..0
——————— 1
- - - - -2
~
~
~
. -
~ ~
~ i ~
~ ~ ~
~ 0~ h
~
p
P-1
|
|
\“‘ l
~
~ ~ |
R a3
~
~ \\
\\ ~ 2
e
~
~o1

for the various types of band matrix.

a (14x14) sparse quindiagonal matrix of semi bandwidth 7 of the same

form as (5.2,1) has the form

= — - = -

e e o

R |
N2
1
¥
i
]
\I
o~
S op
~
P-1 P

For example the error matrix for

154

(6.6.20)

The form of the error matrix is different

159

ol
o
o
|

Fg5.01eg |1 2 2 2 2 2 6 5 4 3 2 1 0 {6.6.21)

Similarly the bounds on rounding errors can be defined for any of

the sparse matrices given in previous chapters.

160

CHAPTER 7/

FURTHER RELATED TOPICS

161

7.1 INTRODUCTION

In this Chapter is described two pieces of work, that, although
complete in themselves indicate areas for further research,

The first section details a method for finding the eigenvalues of a
symmetric matrix in ascending or descending order of magnitude, starting
from the smallest or largest eigenvalue. This method is then speeded up
considerably by the use of Partial Sturm sequences, thus saving the time
used in the heavy workload of calculating the full sequence for every
iteration.

The subsequent sections describe a modification to the Lanczos
method which attempts to extend the range of the method. The Lanczos
algorithm transforms a given matrix to tridiagonal form by a similarity
transformation and finds the eigenvalues of this matrix., This method
suffers from loss in accuracy at the later stages of the transformation
on large matrices giving inaccurate eigenvalues. The modified method
described tries to counteract the loss in accuracy by transforming the
original matrix to a banded matrix, for which the Sturm sequence is now
known, instead of to a strictly tridiagonal form. Hence the eigenvalues
can be determined to a greater accuracy. Also offefed are some ideas for

extending the usefulness of the method.

7.2 A METHOD FOR UTILISING PARTIAL STURM SEQUENCES TO FIND THE EIGENVALUES
OF A SYMMETRIC MATRIX

The method described here is used to determine the eigenvalues of
symmetric sparse quindiagonal matrices of the same form as 5.2.1 by using
the secant method to find the zeroes of the determinental equation

[c - 1] =0 . (7.2.1)
1f PN(A) is the determinant of the matrix (CN—AI) and Ai_l,ki are two

approximations to an eigenvalue then the secant method gives an improved

162

approximation to the eigenvalue (A1+1) as,
i+l ; ahrah
A = A - - - (7.2.2)
(PN(A)*PN(A))

The recursive sequence obtained in section (5.2) for a symmetric sparse
quindiagonal matrix gives the relationship

Ry ;) = PLOY/P, (), =l N . (7.2.3)

The function RN 1(1) therefore has the same zeroes as PN(A) and can be

substituted in (7.2.2) to give,

Aot N, 1o - (7.2.4)

(RN,I(A)'RN,l

If (7.2.2) is multiplied by pN_l(Al)/pN_l(Al) it becomes,

ii-l i i
PR ¢S i L N VI M 08

A = A - ; . . - (7.2.5)
i 1 1i-1 1
(P ()P Y-PL /Py L (7))
Now substituting in equation (7.2.5) using (7.2.3} gives the result
i i-1 i
WL Ai (A7-2)RN,lfk) (7.2.6)
- - i i-1 i-1 i : e

It can be seen that equations (7.2.6) and (7.2.4) differ only
slightly. Obviously both equations converge to zeroes of the determinant
of (C-AI), but the convergence rates of the two equations are possibly
different.

Certainly it can be seen that close to an eigenvalue after a number
of iterations the value of

e = Yoo piy (7.2.7)

will be very small, and therefore the values of P (Al-l) and PN_I(Al)

N-1

will be very close. Therefore the factor PN_l(Al_l)/PN_l(Al) will be

163
very close to unity. This implies that when a value of ki, which, is a
close approximation to an eigenvalue, has been attained, that equations.
(7.2.4) and (7.2.6) have close numerical values and, therefore, the same
rates of convergence.

This leaves the question of what effect does the factor PN_I(Ai_l)/
PN_l(li) have on the convergence of the method when Ai is not close to an
eigenvalué and equation t7.2.4) is used?

The results of a number of tests under varying conditions indicate
that there is negligible difference in timing on a computer between using
equation (7.2.4) and (7.2.6) to find the eigenvalues of a matrix with the
secant method. It is these results that lead to the formulation of the
new sparse secant method, The pro&f that the two different secant formulae
((7.2.6) and (7.2.4)) converge at very similar rates cannot yet be given,
It is intuitively obvious that the convergence rates will be similar, but
a further suggestion is given and looked at from a pracfical viewpoint.

It depends entirely on the starting criteria (which are essentially

chosen at random) what the value ©of A1+1 is, given 11,11'1. If there are

! to A1+1 any number of eigenvalues

large distances between the values li'
could be contained in this range. Thus the method will converge very
slowly until a Ai+1 is found close to an eigenvalue, when convergence is
rapid. So that during this process the ratio PN_I(li-l)/Pan(li) being
far removed from 1 does little to slow down a comparatively very slow
process, and perhaps even fortuitously piaces Ai+1 close to an eigenvalue
thus shortening the search.

It is this apparent leeway, in the early stages of the method at
least, that gave the idea of using a Sturm sequence that was not wholly
complete, but simple to calculate, until the proximity of an eigenvalue

was achieved. At this point the iteration could be switched to use the

correct Sturm sequence to obtain the eigenvalue accurately,

164
A similar process has already been developed by Evans to solve sets
of linear equations which give rise to sparse banded diagonally dominant
matrices. If Gaussian elimination is performed on these matrices no
interchanges occur, The new elements that are created rapidly diminish
to zero along the bands approaching the main diagonal. This is illustrated

for a matrix of the same form as (5.2.2),

s

—

After Gaussian elimination it has the form,

A

ﬁ\\\\\\] (7.2.9)

As the elements in the bands closer to the main diagonal diminish
to almost zero they can be neglected and not even calculated. The
number of bands to be kept to mazintain accuracy varies, but is less

than 5, and the resultant matrix has the form,

, (7.2.10)

where <5,

165

This process is used in solving sets of linear equations and the

backward and forward substitutions (say) through a matrix of the same

form as (7.2.10) are quicker than through a matrix of the same form as

(7.2.9). However both types of matrix produce answers to the same

accuracy,

It was then considered that if the method described in section (5.2)

was used here (i.e., Gaussian elimination without interchanges even on

non-diagonally dominant matrices) some terms could be neglected to speed

up the calculation of RN 1(1). The matrix that is produced by the method

from section (5.2) is,

R1,1

Ry2

R2,1

RN,P-l (7.2.11)
!
~ ~ i
1
]
RN

22

"N,1]

If say only FS of the bands were calculated the matrix would have the form,

R1,1

Ry 2
Ryt

—

R

P,P
Re,p-1 ~ Rpa1,p 0
. ~ >
~ .
Rp pors ~ . ~ . ~on
~ ™~ N, P
~ Y
~ ~ \\R
N N N,P-1 |(7.2.12)
~ ~ 0 ~ :
~ ~ e
- e \R
- ~ N,P-FS
~ ~
~ ~
~ ~
~ - ~
S \RN,2
Re,1

There are obvious savings in time made possible in

calculating fewer terms, but it is quitefobvious that R

166
(7.2.12) by

is inaccurate

unless the matrix is diagonally do
also not accurate bisection cannot
decision during the bisection proc
prevent even a close approximation
This is why'the secant method is u

The elements of the matrix (7

presented in section (5.2) and are

formula
Rp,1 = Gh
Ri,2 =B
Ry 1 = Cyma-Ry Ry S/Ry 1
Rep =9 o
Ri k= "RiketRicpe2,2/Ricpar
FS+1-k
-(if i-k+13P: ¥ R
j=0
k=P-1,P-2,.....P-FS,
i=P,P+1,....... N ,
FS-1
R. ., = b,- R, . .R,
i,2 i 5=0 i,P-j7i-1,P
i=P+1,P+2,
Rj 1 = Ci-A=Ry Ry /R 11
i=P,P+1,...

This sequence was programmed and c
for large numbers of different mat

possible range (i.e. 2,3,...P-3).

N,1

minant. As the Ri 1’ i=P,P+1,...N are
]

be used, This is because one wrong

ess due to an incorrect R, will

i,l1
being obtained to an eigenvalue,
sed,

.2.,12) are obtained by the method

defined by the following recursive

oooooo

i=P,P+1,....N,
,1

/R)

>

i,P-j i-kel,Psl-k-j’ Ri-P+j+1,i

"

(7.2.13)

/R

“1-50i-pejal,1 2

Ri,P—jRi,P-j/Ri+P+j+1,1’

J

ompared to the full sequence (5.2.22)
rices with FS varying over the whole

The comparisons showed that no strong

pattern could be established for the two sequences, no matter how many

terms were kept. The only factor

noticed was that occasionally the values

167

of the Ri,j of the partial sequence followed quite closely in sign and
magnitude those of the full sequence. Although no doubt a detailed
statistical analysis of the two sequences will show a strong correlation.
It was thought therefore that approximations to eigenvalues could be
obtained for little expenditure of time using the partial sequence., Then
at some stage later the full Sturm sequence could be used to obtain the
eigenvalue correctly. The next step was to find the optimum number of
bands to keep (i.e. the size of FS) and the optimum number of iterations

to use the partial Sturm sequence on before switching to the full sequence,
but first the procedure adopted is described.

The secant method as described by Anderson (1975) is used. First,
if say j eigenvalues have been found the matrix must be deflated to avoid
re-determining known eigenvalues. This is achieved by dividing RN,l by
the sum of the differences of the j known eigenvalues from the current

estimate of the j+1th eigenvalue, i.e.

i
By 1/ kgl A5a2d o (7.2.14)

Unfortunately this function has an asymptote on the A axis. To avoid
the method following the asymptote and not converging the numerator is
replaced and (7.2.14) becomes,

i
L R. ../ kil(lj+1-hk) s (7.2.15)

which, after simple algebraic manipulation, can be written
PN/ % (l§+1_lk)pN-j-1 . (7.2.16)
k=1
This does not alter earlier statements concerning convergence of the
secant method, which were illustrated for the simplest case when no
eigenvalue had yet been determined. Function (7.2.15) is more complex
than (7.2.4) and alters the factor which distinguishes it from (7.2.6)

but in no way alters the analysis or suggestion given,

Anderson (1975) has shown that the eigenvalues of a real symmetric

matrix can be obtained in monotonic ascending or descending order using
the secant method. The initial two guesses at an eigenvalue are chosen
outside the eigenvalue range, which is determined using Gerschgorin's
theorem. The secant method then converges to the largest (smallest)
eigenvalue, If the matrix is deflated, and the next two initial
approximations to an eigenvalue are made larger (smaller) than the last
determined eigenvalue, then the method converges to the largest (smallest)
unknown eigenvalue, |

The procedure just described was programmed in ALGOL 60 and is given
in Appendix 1 in program 21, |

The results for this program are summarised in the graph (7.2.17).
Each line represents a different value of FS, or the number of bands
retained, and the variable factor is the number of times the partial
Sturm sequence is used before reverting to the full Sturm sequence. The
results are given as a percentage of the time taken to obtain the results
if a full Sturm sequence only was used. The results were obtained for
a large number of matrices of different sizes with varying bandwidth.
Also varying numbers of eigenvalues were obtained on each occasion,
either all, or some of the largest or émallest.

During the large number of tests it was discovered that if the
partial sequence was used for more than eight iterations the method did
not always determine the eigenvalues in monotonic sequence, and sometimes
converged to spurious ones. For this reason the results are only given
as far as eight iterations with the partial Sturm sequence.

However the graph indicates that no matter how many terms are kept
or for how many attempts, that some improvement in time taken is gained.
The results also show that the number of terms kept makes little
difference to the time saved. The saving seems to be approximately 20%,
and the method is more stable keeping as many terms as possible, When

more bands then half the semi-bandwidth are kept (P/2) the time saving

168 .

100 |

90

Mme
Paken

80

GRAPH 7.2.17

N

PS=/P -

FS: 3 e e o S . N PR WY

FS: 1 [V, m e e e e Attt e e = 1t i st

169

T T) T T

0 1 D 3 4 5 6
' Usage of PSS

4
(oe}

170
deteriorates, but as many as possible should be kept to ensure that the

eigenvalues are determined in the correct order, It is therefore
recommended that the number of bands kept be set to half the semi-bandwidth,
and the partial sequence be used for eight iterations before reverting to
the full sequence,

This method requires further research to fully exploit the possibilites,
For example the number of iterations with the partial Sturm sequence can be
extended past eight. On the occasions when the correct eigenvalues were
obtained in correct sequence, savings of 40% and over were made. Obviocusly
if only the largest 10% (say) of eigenvalues are required then the method
is not effective unless it can guarantee the required eigenvalues. However
it may be possible to extend the method and reap the benefits. There is
‘also the possibility of using a similar procedure on other'types of matrix,
or in conjunction with other root finding methods such as Newton-Raphson
or even Muller's methed.

It is clear, however, that the method in its present form does
represent an advance, For example, the method can rival that of bisection.
On the occasians where it was considered most efficient to use bisection
to find several of the largest or smallest eigenvalues of a symmetric
matrix the partial secant method can be used with large savings in time.

Similar procedures to those adopted in (7.2) were applied to the
method of inverse iteration used on sparse quindiagonal matrices of the
same form as (5.2.1), After considerable programming effort a program
was produced that retained only several bands during the elimination or
forward substitution stage, despite the difficulties caused by inter-
changing rows., This program, when test run, confirmed the fact that the
method was impracticable. This was mainly because the method was so
quick compared to finding the eigenvalues (say), that the effort involved
and the space taken with program steps reduced savings to a small per-

centage (less than 1%). So that the normal inverse iteration procedure

is preferred for finding eigenvectors.

7.3 A MODIFIED LANCZOS METHOD TO DETERMINE THE EIGENVALURS OF . 0 87

QUINDTAGONAL MATRIX .

The Lanczos transformation provides an efficient wetho! for deterrining
the eigenvalues and eigenvectors of a small matrix, T{kis work ~revides =ors
modifications to the method enabling it to bo used op larger mswr ~es. To
best illustrate the methods used they are only discussed for the simpless
case i.e. the real symmetric matrix. The extension tc¢ move difCieult typrs
of matrix is an easy step conceptually, but entails mor=2 wor™ | which tevde
to hide the jdeas being presented. The transformatior cun hrea’ down u
certain conditions and steps taken to recover it. Aggin Zhes: are no
discussed as they have already been widely investigated ond neod no furihey
mention here,

The method has been tested on and is essentially intende! t:r use ov
matrices that are already sparse. This is to provide = ~uick, aney
transformation to a matrix with a more simple Sturm scoae ~o v a vapid
solution., The method can equally well be applied to 2 1. wmagrix, bur
it is doubtful that a solution can be obtained quickey 3 moes accqratety
than the QR or LR methods for this type of matrix. OQOne of the desived
features of the methéd is that no matrix multiplications are nec=d in
the transformation, and thus, if the matrix can be storsd in a s all
number of vectors considerable savings in space are made when the method
is programmed on a computer. This is why it is believed the meth:s (s
most competitive when used on a sparse matrix.

For a detailed analysis of the Lanczos method see Lanczos (1749),
Wilkinson (1959), Causey and Gregory (1961), Paige (1971, 1972).

The Lanczos method is briefly described for the transformati~

172
symmetric matrix.
If A is the (NxN) matrix to be transformed, then an arbitrary N-
vector, 91, is chosen (usually §1=(1,0,0,...0)). Then the vector 22

is determined from the following relationships,

Bjby = Aby - @) by

where, . (7.3.1)

b_Ab

% %

and normalising leaves the vector b2.

The remaining sequence of vectors, bi’ i=3,4,...N+1 are now found

using the following relationships,

Bie1Disn = Aby - b, - Bib. 4, 122,3,...N (7.3.2)
where,
a; = b.Ab,
(7.3.3)
and Bi = Ei—lAEi

As each of the Bihi’ i=2,3,...N is determined it is normalised leaving
the vector Ei' The vectors hi are also orthogonal (Wilkinson (1959)) and

assuming none of these vectors is zero, then must equal zero as it

by
is orthogonal to N non-zero N-vectors. The relationships given by

(7.3.1-3) can be written in matrix form as,

al 82
B, a, B 0
2 2 3
A(P_R....b)=(EE b) ~ ~
12272 T 21220 N PR (7.3.4)
3 ~ ~
~ h ~
~ \\ \\
\\ \\ BN
| 0 BN aﬁ_

If the matrix B is the matrix with the bi as its columns the (7.3.4) is

written

ay By
£, o g
2 2\ 3\ D
B \\\\
B_lAB= 3\ .~ \\ = C
~ LN ~ B
\\ \\ N
0 ol

o NN

Therefore C is a matrix produced by a similarity transform on A, and C
and A have the same eigenvalues. Also if x is an eigenvector of C then
Bx is an eigenvector of A. The matrix A has now been transformed to a
symmetric tridiagonal matrix from which the eigenvalues and eigenvectors
can be quickly and easily found using the bisection method and inverse
iteration.

The main problem caused by this method when used on a computer is
the effect due to rounding errors.

In the later stages of the process a

calculated bi may be orthogonal to the previous vectors (Ei _2), but

1R

it is no longer orthogonal to El‘ 92’ EG’ A good check on this is that

EN+1 which should be zero, often has appreciable length., This fault has
been partially overcome by the introduction of re-orthogonalisation.
This is a process by which the current bi being calculated is made
orthogonal to all the previously calculated vectors. This vector should
already be orthogonal to the previous vectors, but has 'drifted away'

due to rounding errors, hence, re-orthogonalisation. It is easily

described by the relationship used to obtain 9i+1’ which is,
= - \
—tli+1 A}li + aiP_-l Bihi-l
i-2
- z E. = _'l_)..’ , i=2"..’N,
j=1 i,i+1-j—j
where |
al = EIAE]_ »
B1 = EJ-1_]_A£]'_ ’
elgl"'l-j = P—jA.b—i" J=1,2, . ’1-2)

173

(7.3.5)

(7.3.6)

174

As the vector will be orthoegonal to the previous two or three vectors

the corrections needed to re-orthogonalise will only be small, The matrix

C then becomes,

% B3 3%,4°%,5-~---- EN,N
1oy By 84,385,4-- —= —-ENN-1
[}
0% B S5z !
N N -~ t
\:\ SN '
~ N
C = ~ ~ \\ ~ !
= ~ N ~ ~ | (7.3.7)
~ \\ N ~ i
~ - ~ \E
~ . ~ N’S
0 NN,
Y
\\ ~ N
~ ~
i 1 uN |

This matrix C, produces more accurate answers, but it is much more
difficult toobtain eigenvalues from this matrix than from the tridiagonal
matrix (7.3.6).

Some method was desired to retain the orthogonality of the vectors
Ei’ i=1,2....N without completely filling in the upper triangle. A
compromise solution was proposed so that as each Ei i=1,2,...,..,,N was
produced, not only was it made orthogonal to the previous two vectors,
but also it was made orthogonal to one other vector (QN). This, it was
hoped, would substantially reduce the effect of rounding errors by
'pinning' every vector to one of the original pair. The method is as

follows.

Two initial vectors were chosen, normalised and mutually orthogonal.

Typically they were,

b, = (1,0,0...... 0)
, (7.3.8)
I_JN = (0,0,0......1)

Then 92 is defined by the equation

Bbp = Aby - by - Byby s (7.3.9)

175

where
a, = b,Ab
1 =1 , (7.3.10)
By = Dby

Now when 3292 is normalised this effectively removes the factor 82 leaving
the vector EQ.

The vectors Pi’ i=3,4,...N+1 are now determined by the following

relationships,

Bier2isy T ALy - @By - Byb;
where,
¢, = b,Ab, ,
1 -1 =1
B; = b, ,Ab. , (7.3.11)
vi = hAb;

again B, is normalised to remove the factor B. ..
i+l i+l

If B is the matrix with the vectors Ei’ i=1,...N as its columns the

transformations can be written as,

% B, By
By ay By Yo
By @3 " 0 T3
~ \\\\ [
\\\ \\ :
- N
B 1B = RN . = (7.3.12)
~ . ~
~ “~ ~ I
~ ~ 1
0 \\\ \B
NN . N
~ by
By Yo ¥z~ - -~ -~ “ Py ON

The matrix C is not periodic tridiagonal, but the Sturm sequence is very
similar to that given in Chapter 3. The methods described there can be
used to find the eigenvalues of the matrix C efficiently dsing the
bisection method, and also the eigenvectors using inverse iteration.

The Sturm sequence for the matrix C in (7.3.12) is

176

ql(A) = - A,]
s,(A) = 8
q; () = ai-A-Bi/qi_l(A), i=2,3, .. N1,
;00 = y-s; (8 /a, (), i=2,3,...N-2, ! (7.3.13)
Sy.1 (M) = Bymsy (8, /a9y ,(A)
ay(A) = ay - Nil sg(l)/qi(l) ,
i=1

the qi(k) then being used in the bisection process,

The program to carry out this method was written in ALGOL 68 and is
given in Appendix 1 in program 22,

The results show that this method does give some improvement in the
maintenance of the orthogonality of the vectors Ei’ i=1,.,.N thus
improving the results. Typically, with a matrix of order 25 where the
answers for the normal Lanczos method are beginning to deteriorate one
more figure of accuracy is retained by the modified method, The time
taken to perform the transformation for the modified method is not
significantly different to that takem for the normal Lanczos algorithm,
The bisection algorithm for the modified matrix requires approximately
10% more time than for a tridiagonal matrix.

This method, while not by any means producing a completely
satisfactory improvement in performance, does represent a different way
of looking at the Lanczos algorithm. If similar methods are pursued

further aw . ‘: improved algorithm may pe 'developed.:-:..

177

REFERENCES

178

ANDERSON N,, (1975), "On computing eigenvalues of matrices with real
etgenvalues by the secand method",

Royal Inst,Tech, Stockholm, Report, TRITA-NA-7513,

ANDRES T., HOSKINS W.D., McMASTER G.E., (1974), "A coupled algorithm for
the solution of tridiagonal systems",

Comp.J., Vol.17, No.4. P277,

ANDREW A.L., (1973), "The solution of equations tnvolving centro-symmetric
matrices”,

Technometrics, Vol.l5, No,2, P 405,

BARLOW R.H., (1977a), "Performance of a dual processor parallel processing
system'",

Loughborough Univ. of Tech. Dept. Comp.Studies, Report 43.

BARLOW R.H., (1977b), "Parallel algorithms for sorting, quadr&ture, and
etgenvalue determination”,

Loughborough Univ. of Tech. Dept. Comp.Studies, Report 44.

BARTH W., MARTIN R.S., WILKINSON J.H., (1967), "Calculation of the eigen—
values of a symmetric tridiagonal matrix by the method of bisection”,
Numerische M. Vol,9. P.3%6.

u :

BJORCK A., GOLUB G.H., (1975), "Eigenproblems for matrices associated with

periodie boundary conditions'

Linkoping University Report LIH-MAT-R-1574-8,

179

BOHTE Z., (1974), "Errors in Gaussign Elimination'

Publications of the Dept, of Maths, Univ, of Ljubljana, No.6,

BOHTE Z., (1975), "Bounds for rounding errors in Gaussian elimination for
band systems',

J.Inst.Maths.Applics., Vol.16, No.2. P. 133,

BUSINGER P.A., (1971), "Monitoring the numerical stability of Gaussian
elimination’

Numerische Math. Vol.l6. P. 340,

CHOW T.S., KOWALK J.S., (1973), "Sparse matrix problems"

Internat.J.Numer.Methods Eng., Vol.7. P. 21},

CLASEN R.J., (1966), "Techniques for automatic tolerance control in linear
programming"

Comm,A.C.M., Vol.9. P.202.

ERISMAN A,, (1973), "Sfability of triangular factorisation of a sparse
matriz”

Numerische Math., Vol.22. P. 1¥3,

EVANS D.J., ATKINSON L.V., (1970), "An algorithm for the solution of
general three term linear systems",

Computer J., Vol.13, No,3. P. 3223,

EVANS D.J., (1971), "Numerical solution of the Sturm-Lotuville problem
with periodic boundary conditions

Conf. on Applics, of Num.Anal,, Springer Verlag.

EVANS D, J., (1973), "An algorithm for the solution of certain systems of
linear equations',

Computer J,, Vol.15, No.4, P. 356,

_EVANS D.J., (1974), "Software for numerical mathematics conference
proceedings"

Academic Press,

EVANS D.J., (1975), "A recursive algorithm for determining the eigervalues
of a quindiagonal matrix",

Computer J., Vol.18, No.l. P. 710,

EVANS D.J., HATZOPOULOS M., (1976), "The solution of certain banded systems
of linear equations using the folding algorithm”,

Computer J., Vol.19, No.2. P. 184.

FORSYTHE G.E., MOLER C.B., (1967), "Computer solution of linear algebraic
systems" '

Prentice Hall,

GOLUB G.H., ROBERTSON T.N., (1967), "A generalised Bairstow algorithm",

Comm.A,C.M., Vol.10, No.6. £37I.

GOLUB G.H., (1973), "Some modified matrix eigenvalue problems?,

SIAM Review, Vol,15, No,2. P. 3i|8.

GREGORY R,T,, KARNEY D,L., (1969), "4 eollection of matrices for testing
computational algorithms',

Wiley Interscience.

180

HATTER D,J., (1973), "Matrix computer methods of vibration analysis"

Butterworth,

HILDEBRAND F.B., (1968), "Finite difference equations and simulations",

Prentice-Hall,

HILDEBRAND F.B., (1974), "Introduction to numerical analysis”

McGraw-Hill,

HOHN F.E., (1964), "Elementary matriz algebra"

Macmillan.

LYNESS, J.N., (1974), "Computational teehniques based on a Lanczos
representation”,

Math.Comp. Vol.28, P, &I,

MARTIN R.S., WILKINSON J.H., (1965), "Symmetrie decomposttion of positive
definite band matrices”,

Numerische M., Vol.7. P. 256.

MARTIN R.S., WILKINSON J.H., (1967), "Solution of symmetrie and un-
symmetric band equations and the caleulation of eigenvectors of
band matrices™

Numerische M,, Vol.9. P. 279.

MARTIN R.S., WILKINSON J.H., (1968), "Reduction of the symmetric eigen—
problem Ax=)Bx and related problems to standard form',

Numerische M, Vol.11. P. 9q,

181

182

MILLER K.S., (1964), Partigl differentiql equgtions in engineering
problemst

Prentice Hall,

MITCHELL A.P,,(1969), "Computational methods in partial differential
equations"”,

Aberdeen University Press.

PAIGE C.C., (1972), "Computational variants of the Lanczos method for
the etgenproblem”,

J.Inst.Maths,Applics., Vol.10. P.7373

PETERS G., WILKINSON J.H., (1968}, "Eigenvalues of Ax=ABx with band
symmetric A and B",

Computer J., Vol.12, P. 399,

PETERS G., WILKINSON J.H., (1970), "Ax=ABz and the generalised eigenproblem",

SIAM J.Num.Anal., Vol.7, No.4. P. 479,

RALL L.B., (Editor), (1975), "Error in digital computation”,

Wiley.

REID J.K., (1971), "A note on the stability of Gaussian elimination',

J.Inst.Maths Applics., Vol 8, P.374,

REISS E.L., BAUER L., (1972), "Bloek five-diagonal matrices and the
fast numerical solution of the biharmonie equation”,

Maths, of Comp. Vol,26,, No,118, P. 3|,

NHG L Beay Manuar MH,‘;.
NAG LD Oxeon?.

183
REISS E,L,, BAUER L., (1974), 'On the numerical solution of two
dimenstonal elastietty problems',

J. of Comp,Phys. Vol,15, No,1, P.21.

ROSE D.J., WILLOUGHBY R.A, (Editors) (1972), "Sparse matrices and their
application”,

Plenum Press.

SAMEHl A.H., KUCK D.J., (1975), "A parallel Qr-algorithm for tridiagonal
symmetric matrices’,

University of Illinois Report.

SCHWARZ H,R., (1968), "Tridiagonalisation of a symmetric band matrix",

Numerische Math,, Vol.12. ? 231,

STEWART G.W., (1974), "Modifying pitvot elements in Gaussian elimination',

Maths, of Comp. Vol.28, No.126, P. 537.

STEWART G.W., (ROSENFIELD J.L. (ED.)), (1974), "The numerical treatment
of large eigenvalue problems",

Proc, of I.F.I,P, Conf, P. 666,

STONE H.S., (1973), "4An efficient parallel algorithm for a tridiagonal
" linear system!,

J,Assoc ,Comput Mach., Vol,20, P 247.

STRANG G., FIX G., (1973}, "An analysis of the finite element method",

Prentice Hall,

184

SWEET R.A,, (1969), "4 recursive relation for the determingnt of a
pentadiagonal matrix®,

Comm. of A.C.M, Vol,12, P.%3%0,

TEWARSON R.P., (1967), "Row ecolumm permutation of sparse matrices",

Comp.J. Vol.10. P, 300.

TEWARSON R.P., (1969), "The Crout reduction for sparse matrices",

Comp.J., Vol.12, P.15€.

TEWARSON R.P., (1970), "Computations with sparse matrices',

STAM Review, Vol,12.f. 527,

TEWARSON R.P., (1973), "Sparse matrices"”,

Academic Press,

TRAUB J.F., (1964}, "Iterative methods for solving functions of a single
variable",

Prentice Hall,

TRAUB J.F., (1973), "Complexity of sequential and parallel numerical
algorithms”,

Academic Press.

VARGA R,S., (1962), "Matrix iterative analysis’”,

Prentice-Hall,

WALSH J,, (1966), "Numerical analysisy An introduction™,

Academic Press,

1€

WALTMAN W,L,, LAMBERT R.J,, (1965), "T~algorithm for tridagonalisation',

J.SIAM, Vol,13, No.4, P.1065,

WESTLAKE J.R., (1968), "4 handbook of numerical matrix inversion and
solution of linear equations',

John Wiley,

WHITE P.A., (1958), "The computation of eigenvalues and eigenvectors of a
matrix™,

J.SIAM, Vol.6, No.4. P.343.

WILKINSON J.H., (1958a), "The evaluation of the zeros of ill-conditioned
polynomials”,

Numerische M. Vol.l. P.150.

- WILKINSON J.H., (1958b), "The caleulation of the eigenvectors of codiagonal
matrices",

Computer J, Vol.1l. P. 90.

WILKINSON J.H., (1959), '"The calculation of eigenvectors by the method of
Lanczos',

Computer J. Vol.2. P, 3.

WILKINSON J . H., (1960), "Error analysis of floating point computation”,

Numerische M., Vol.2, P, 219,

WILKINSON J H., (196la}, "Error analysis of direct methods of matrix
inversion't, .

J.A.C.M., Vol.8, P.23/.

18

WILKINSON J,H,, (1961b}, "Rigorous error bounds for computed eigenw
systems't,

Computer J,, Vol,4, ¥.220.

WILKINSON J.H., (1962}, "Caleulation of the eigenvectors of a symmetriec
tridiagonal matrix by inverse iteration’,

Numerische M., Vol.4. f. 346&

WILKINSON J.H.,(1963), "Rounding errors in algebraic processes",

H.M.5.0.

WILKINSON J.H.,(1965), "The algebraic eigenvalue problem",

Oxford University Press,

WILKINSON J.H., (1967), "Two algorithms based on successive linear
interpolation”,

Stanford Univ, Report, CS 60,

WILLOUGHBY R, (Ed.), (1969), "Proec. Symp. on sparse matrices and their
applications”,

I.B.M. Report RA1(11707),

WILLOUGHBY R,, ROSE D,J., (Editors) (1970), "Sparse matrix applications",

Plenum Press,

YANG W.H., LEE ©.H., (1974}, "Modal analysis of Floquet wave$ in composite
matertal®,

J,App.Mech, Paper 73-APMW-40,

187

APPENDIX 1

This appendix contains the programs written from the various algorithms
described earlier. The programs are mostly written in I.C.L. 1900 ALGOL 60,
some however are written in ALGOL 68R and FORTRAN IV as implemented on I,C.L.
1900 machines. The first program is a copy of the program in Numerische
Mathematik which is written in the ALGOL 60 reference language as approved

by I.F.I.P. and translated to I.C.L. 1500 ALGOL 60.

188

PROGRAM 1

This program is a copy of the ALGOL program given in Barth et al (1967),
it is included for reference, This program is probably the best and most
efficient form of a general bisection method and is used in this case in
connection with the Sturm sequence for a tridiagonal matrix to determine
its eigenvalues, It is possible with little alteration to insert the Sturm
sequence for any type of matrix and use the program to determine the eigen-
values of this matrix. Many of the programs to follow are written as
modifications to this algorithm,

This program finds the eigenvalues of a tridiagonal matrix as given in
(4.2,1), The Sturm sequence for this matrix as obtained by a Laplace

expansion is

il

Po(})

P (3)

L, P = ¢-h

~) _ (A.1,1)
(c;-M)P; (D)-bIP, ,(A), i=2,N

To avoid numerical problems of underflow and overflow this sequence of
Pi(l) is replaced by a sequence of qi(l) where,
qi(A) = Pi(l)/Pi_l(l), i=1;N (A.1.2)

and the sequence of (A.,1.1) becomes,

{i
7]

ql ()‘) =X »

qi(l)

1

5 (A.1.3)
ci-l-bi/qi_l(l), i=2,N

1)

It is the sequence (A.1,3) that is used in the program, and it is this

section that can be replaced by the Sturm sequence from other matrices,

189

'"PRPCEDURE' BISECT(C,B,BETA,N,M!,M2,EPS1,RELFEH,EPS2,Z,X);

"VALUE' N,M1,M2,EPS1,RELFEH;
'REAL! EPS1,EPS2,RELFEH;
"INTEGER' N,M1,M2,Z;

"ARRAY' C,B,X,BETA;

'"¢OMMENT' C is the diagonal, B the sub-diagonal and BETA the squared sub-

diagonal of a symmetric tridiagonal matrix of order N.

The

eigenvalues LAMBDA[M1],.....LAMBDA[M2], where M2 is not less
than M1 and LAMBDA[I+1] is not less than LAMBDA[I], are
calculated by the method of bisection and stored in vector X,
Bisection is continued until the upper and lower bounds for

an eigenvalue differ by less than EPS1 unless at some stage,
the upper and lower bounds differ only in the least significant

digits,

EPS2 gives an extreme upper bound for the error in any

eigenvalue, but for certain types of matrices the small eigen-

values are determined to a very much higher accuracy.

In this

case, EPS1 should be set equal to the error to be tolerated in

the smallest eigenvalue,
'*BEGIN!
'REAL' H,XMIN, XMAX;
VINTEGER' 1;

It must not be set equal to zero;

'"CPMMENT' calculation of XMIN,XMAX, maximum and minimum values of

eigenvalue range

BETA[1]«B[1]+0;
XMIN«C[N]-ABS(B[N]);
XMAX+C [N]+ABS(B[N]);
'FPR' I+N-1 'STEP'-1'UNTIL' 1 *D@'
'BEGIN®

H<ABS(B[I])+ABS(B[I+1]);

'IF' C[1]+H 'GT' XMAX 'THEN'

XMAX+C[I]+H;

'IF' C[I]-H *LT' XMIN 'THEN' XMIN<«C[I]-H;

*END';

EPS2«RELFEH* (' IF' XMIN+XMAX 'GT' O 'THEN!

XMAX 'ELSE' - XMIN);

'IF' EPS1 'LE' O 'THEN' EPS1<«EPS2;

EPS2+0,5*EPS1+7*EPSZ;

'COMMENT! inner block;

'BEGIN' .
'INTEGER' A,K;
'REAL' Q,X1,XU,X0;
'ARRAY' WU[MI:M2];
XO<XMAX;

'FPR' I«M1 'STEP' 1 'UNTIL' M2 'D@!

'BEGIN!
X[I]+XMAX;
WU[I]+XMIN;

YEND';

Z2+0;

'COMMENT*1oop for the kth eigenvalue;
'FPR' K«M2 'STEP' -1 'UNTIL' M1 'D@?

"THEN!

'BEGIN!
XU+XMIN; '
'FPR' I«K 'STEP -1 'UNTIL' M1 'D@'
'BEGIN®
'IF' XU 'LT" WU[I]
'BEGIN'

XU«WU[I];

'GAT@' CONTIN;

'END!';

'END ! ‘
CONTIN; 'IF' XO 'GT' X[K] 'THEN' XO<X[K];

'FPR' X1+ (XU+X0)/2 ‘WHILE!
X0-XU ‘*GT'2*RELFEH* (ABS (XU)+ABS(X0))+EPS1
|D¢Q

'BEGIN'
I+Z+1;
'COMMENT' this section to the next comment is the
section that can readily be replaced by any
appropriate Sturm sequence;
A+Q;
Q«1;
'FPR' I<1 'STEP' 1 'UNTIL' N 'D@’
'BEGIN'

Q+«C[I]-X1-('IF' Q 'NE' O 'THEN' BETA[I]/Q
'ELSE ABS(B[I])/RELFEH);
*IF' Q<0 'THEN' A<A+l;

'END';
'COMMENT' end of Sturm sequence;
'IF* A 'LT* K 'THEN!

'BEGIN! |
'TF' A 'LT' M1 'THEN' XU+WU[M1]«X1
'ELSE* - .
*BEGIN'
XU+WU[A+1]<X1;
*TF' X[A] 'GT' X1 'THEN' X[A]+X1
'END';
'END'
. TELSE® XO«X1;
'END';
. X[K]«(X0+XU}/2;
'VEND';
YEND' ;

'END';

190

PROGRAM 2

This program finds the eigenvalues of a symmetric periodic tridiagonal

matrix by bisection. It is written as a modification to Program 1.

'PRECEDURE' PBISECT(C,B,BETA,N,M1,M2,EPS]1,RELFEH,EPS2,Z,X);

'VALUE' N,M1,M2,EPS1,RELFEH;

'REAL' EPS1,EPS2,RELFEH;

"INTEGER' N,M1,M2,Z;

YARRAY' C,B,X,BETA;

'CAMMENT' C is the diagonal, B the sub-diagonal, BETA the squared sub-
sub-diagonal, and B[1] the corner element of a symmetric periodic
tridiagonal matrix of order N. The eigenvalues LAMBDA[M1]},.....,
LAMBDA [M2], where M2 is not less than M1 and LAMBDA[I+1] is not
less than LAMBDA[I] are calculated by the method of bisection and
stored in vector X. Bisection is continued until the upper and
lower bounds for an eigenvalue differ by less than EPS1 unless at
some stage, the upper and lower bounds differ only in the least:
significant digits. EPS2 gives an extreme upper bound for the
error in any eigenvalue, but for certain types of matrices the
small eigenvalues are determined to a very much higher accuracy.
In this case EPS1 should be set equal to the error to be tolerated
in the smallest eigenvalue. It must not be set equal to zero;

'BEGIN' '

'REAL' H,XMIN,XMAX;
'INTEGER' I;
'C@MMENT' calculation of XMIN, XMAX, maximum and minimum values of
eigenvalue range
HeABS (B[N])+ABS(B[1]);
XMIN¢C[N]-H;
XMAX+C[N]+H;
'FPR' I+N-1 'STEP -1 'UNTIL' 1 'D@'
*BEGIN!
HeABS(B[I])+ABS(B[I+1]);
"IF' C[I)+H 'GT' XMAX 'THEN' XMAX<C[I]+H;
'IF' C[I]-H 'LT' XMIN ‘'THEN' XMIN«C[I]-H;
'END';
EPS2¢RELFEH#* (' IF* XMIN+XMAX 'GT' O 'THEN' XMAX 'ELSE'-XMIN};
'IF' EPS]1 'LE' O 'THEN' EPS1<EPS52;
EPS2¢0,5*EPS1+7*EPS2Z;
'C@MMENT' inner block;
'BEGIN!
VINTEGER'ALK;
'REAL' Q, X1,XU,XO;RT,Y,U;
'ARRAY' WU[M1:M2];
XO+XMAX;
'FOR' I«M1 'STEP' 1 'UNTIL' M2 'D@’
'BEGIN' '
X[I]+XMAX;
WU[T]+XMIN;
'END';
Z+0;
"CAMMENT' loop for the kth eigenvalue;
'FPR' K#M2 *STEP' -1 'UNTIL' M1l 'D@*
'BEGIN'
XUXMIN;
'FOR' I*K 'STEP' -1 'UNTIL'M1 'D@:

192

'BEGIN'
'TF' XU 'LT! WU[I] 'THEN'
'BEGIN'
XU+WU[I];
'GETEY CONTIN;
'END';
'END*;
C@NTIN: TIF' X0 'GT' X[K] 'THEN' XO+X[K];
'FPAR' X1«(XU+X0)/2 'WHILE' XO=XU 'GT!
2*RELFEH* (ABS (XU) +ABS (X0))+EPS1 'Dp!
'BEGIN®
Z2€Z+1;
'COMMENT' section to compute the Sturm sequence;
A<Q;
QC[1]-X1;
“1IF' Q 'EQ' O 'THEN' Q+ABS(B[I])*RELFEH;
'IF' Q 'LT' O 'THEN' A<«A+l;
RT+B[1];
Y«C[N]-X1;
'FPR' I+2 'STEP' 1 'UNTIL' N 'D@'
'BEGIN
Y«Y-RT*RT/Q;
RT<-RT*B[I1]/Q;
Q«C[I]-X1-BETA[I]/Q;
"IF' Q 'EQ' O 'THEN' Q«ABS(B[I])*RELFEH;
'IF'" Q 'LT'" O 'THEN' A+A+1;
'END' ;
RT<«RT+B[N];
Q+Y-RT*RT/Q;
*IF' Q 'LT' O *THEN' gepn+l;
'"COMMENT' end of Sturm sequence;
'IF' A 'LT' K 'THEN'
*BEGIN!
'IF' A 'LT' M1 'THEN' XUeWU[M1]<X1
'ELSE'
'BEGIN'
XUWU [A+1]+X1;
'IF' X[A] 'GT' X1 'THEN' X[A]+X1;
'END';
YEND'
'ELSE' X0+X1;
'END';
X{K]+(X0+XU)/2;
VEND';
TEND';

'END';

193

PROGRAM 3
. This program finds the eigenvalues of an unsymmetric periodic

tridiagonal matrix of the form of (3.4.6), using Bairstow's method.

'PRCEDURE' BAIRS(C,B,A,AD,N,EPS,EIG,EIGI);

'VALUE' C,B,A,AD,N,EPS;

'ARRAY' C,B,EIG,EIGI;

'REAL' A,AD,EPS;

'INTEGER' N; .

'COMMENT' C is the main diagonal, B the sub-diagonal and A,AD are the
unsymmetric corner elements, N is the order of the matrix, EPS
is set for the required number of figures of accuracy. The results
are given in EIG, EIGI; h

'BEGIN!'

'ARRAY 'BN,GN, AN, L ,M,V,W,E,F,R,X[0:N];

'REAL' J,K,ALF,BET,JC,KC,BT,AAD;

'INTEGER' I,IN,Z,LE;

LE+Z<0;

BT+«1;

'FPR' I«2 'STEP' 1 'UNTIL' N ‘D@'

'BEGIN'
BT«-BT*B[I];
BN[I]«B[I]*B[I];
GN{I]J«AN[I]+0;

'END'Y;

ANJO]+GN[O]+AN[1]+GN[1]+0;

BT«+BT* (A+AD) ;

AAD+A*AD;

J«K«l;

I+0;

LABL:L{I]«V[I]«W[I]«V[I+1]«E[TI]«E[TI+1]«F[I]«F[I+1}«R[I]+R[I+1]«X[I]«X[I+1]+0

L{I+1]+-1;

M{T]«W[I+1]<1;

MII+1]<«C{I+1]-AN[1];

Z+«Z+1; ' .

'FOR' IN«I+2 'STEP'1 'UNTIL' N-1 'Dg'

*BEGIN'
L[IN]«(C[IN-J])}*L[IN-1]-L[IN~2]*BN[IN]-M[IN-1];
M[IN]«C[IN]*M[IN-1]-K*L[IN-1]-BN{IN]*M[IN-2]-AN[IN-1];
V[IN]«(C[IN]-J)*V[IN-1]-BN[IN]*V[IN-2]-N{IN-1};
W[IN]J«C[IN}*W[IN-1]-K*V{IN-1]-BN[IN]*W[IN-2]-GN[I-1];
E[IN]«(C[IN]-J)*E[IN-1]}-F[IN-1]-BN[IN]*E[IN-2];
F{IN]«C[IN]*F[IN-1]-K*E{IN-1]~L[IN-1]}-BN[IN]*F[IN-2];
R{IN]+«(C[IN]-J)*R[IN-1]-X[IN-1]-BN[IN]*R[IN-2]
X[IN]«C[IN]*X[IN-1]-K*R[IN-1]-V[IN-1}-BN{IN]*X[IN-2];

'END!,;

L{N]J«(C[N]~J)*L[N«1]«M[N-1]«BN[N]*L[N-2]-AAD*V[N-1];

M[NJ+C[N]*M[N-1]-K*L[N-1]-BN[N]*M(N-2]-AN[N-1] -AADW [N-1];

M[N]«M[N]+J*L[NI;

E[N]J«{C[N-J])*E[N-1]~F[N-1]-BN[N]*E[N-2]-AAD*R[N-1];

F[N]«C[N I*F[N-1]}-L [N-1]-K*E[N-1]-BN[N]*F[N-2] -AAD*X [N-1];

194

F[N]«F[N]+J*E[N];
ALF+K*E[N]+J*F[N];
BET+F[N}*F[N]-ALF*E[N];
JC+(E[N]*M[N]-F[N]*L{N])/BET;
. KC+(ALF*L[N]-F[N]*M[N])/BET;
K«K+KC;
J+«J+JC;
'*IF' LE 'EQ' 1 'THEN'
'BEGIN'
LE+Q;
I+I+]1;
JC+J*J+4*K;
IF JC 'LT' O 'THEN'
*BEGIN'
JC+-JC; :
EIGI[I]+SQRT{JC)/2;
EIGI[I+1]«-EIGI[I];
EIG[I]+ EIG[I+1]+J/2;
'END?
*ELSE!
*BEGIN®
JC«SQRT(JC)/2;
EIG[I]+J/2-JC;
EIG[I+1]<«J/2+3C;
EIGI[T]«EIGI[I+1]«0;
YEND';
I«I+1;
IF' N-T 'LE 1 'THEN' 'GOTO' LAB3;
'FAR' IN«I-2 'STEP* 1 'UNTIL' N-1 'D@°®
'BEGIN!
AN[IN]<L[IN]; -
GN[INJ+V[IN];
*END';
AN[N}<L[N];
Z+0;
J«K«+C[I];
'GAT@ LAB1;
'END';
'TF' ABS(JC) 'LT' EPS 'AND' ABS(KC) 'LT' EPS 'THEN'
LE+1;
'GPT@' LABI1;
LAB3:'IF' N-I 'EQ' 1 'THEN'
'BEGIN'
EIG[N]+C[N]-L[N-1];
EIGI[N]+0;
'END!;
"END®;

PROGRAM 4
This procedure finds all the eigenvalues of a symmetric periodic

tridiagonal matrix by Newtons method.

"'PRECEDURE' NEWSTURM (C,B,N,EPS,QZR,EIG);

'COMMENT' C is the main diagonal and B[2],....B{N] is the sub-diagonal.
The element B[1] is the corner element. N is the order of the
matrix and EPS the desired accuracy, QIR is the limit of machine
accuracy used to replace zero elements. The eigenvalues are stored
in EIG;

'VALUE' C,B,N,EPS,QZR;

'ARRAY' C,B,EIG;

'INTEGER' N;

'REAL' EPS,QZR;

'BEGIN'

*ARRAY' BN;

'REAL' X,Y,Z,MA,MI,LAMBDA,BT,RT,XD,RTD;
'INTEGER' I,L;

'F@R' 1«1 'STEP' 1 'UNTIL' N 'D@’'
BN[I]+B{I]*B[I];

LAMBDA+1;

L+1;

LABA;'IF' L 'EQ' N+1 'G@T@' EXIT;

LABB:X+C[1]-LAMBDA;

'TF' ABS(X) 'EQ' O 'THEN X+QZR;
XD+Z«-1;
RTD+0;
MA+XD/X;
RT+B[1];
Y«C[N]-LAMBDA;
'FPR' I+l 'STEP' 1 'UNTIL' N-1 ‘D@'
'"BEGIN! '
MI«X*X;
Z¢Z~ (Z*X*RT*RTD-XD*RT*RT) /MI ;
Y<Y-RT*RT/X;
RTD+- (RTD*X-XD*RT}*B[I]/MI;
XD<-1+BN[I]*XD/MI;
RT+-RT*B[1]/X;
X<+C[I]-LAMBDA-BN[I}/X;
*IFt ABS(X) 'EQ' O 'THEN' X<QZR;
MA<MA+XD/X;
'END*;
MI+X*X; ‘
Z+«Z+(BN{N] *XD/MI-2* (RTD*X-XD*RT) *B[N] - 2*RT*RTD*X-XD*RT*RT) /MI ;
RT+RT*BN[N];
X«Y=-RT*RT/X;
MA+MA+Z/X;
'IF* 1 'GE' 2 'THEN'
*FPR' I+1 'STEP' 1 'UNTIL' L-1 'D@!
MAX<MAX-1/ (LAMBDA-EIG[I]);
MAX+1/MAX;
LAMBDA<LAMBDA~MAX;
'TF' ABS(MAX/LAMBDA) 'LT' EPS '@R*' ABS(LAMBDA) 'LT' EPS
*THEN'
'BEGIN'
EIG[L])«LAMBDA;
LAMBDA«LAMBDA+1;

195

196

L«L+1;
'GOTE' LABA;
'END!';
- 'GPTP' LABB;
EXIT:
'END' ;

197

PROGRAM 5

This procedure determines all the eigenvalues of an unsymmetric
periodic tridiagonal matrix using Newton's method. The program is
written in ALGOL-68R to take advantage of the facilities for handling

complex arithmetic.

'PROC' TRINEWT=([]'REAL'C,B,D, 'REAL' EPS,QZR,'INT' N, 'REF'[]'C@MPLEX' EIG):
*BEGIN'
'COMMENT* C is the main diagonal, B[2],....B[N] and D[2],....,D[N] are the
‘ two sub-diagonals., The elements B[1] and D[1] are the corner
elements, N is the order of the matrix and EPS is input as the
desired accuracy. QIR is the limit of machine accuracy and is
used to replace elements close to zero. The eigenvalues are
stored in the complex array EIG. 'COMMENT';
'CMPLEX® P,Q,X,Y,Z,MAX,MIN,LAMBDA,BT,RT,XD,RTD;
{1:N]'COMPLEX*BN;
PINT® Lel;
'REAL' ZER+0,1440;
LAMBDA+1.123;
LABA: (L=N+1!*'GAT@'EXIT) ;
LABB:X+C[1]-LAMBDA;
("ABS' (X)<ZER!X+QZR);
P<0;
QD[1];
RTD+O;
RT+B[1];
XD+-1;
Z+-13
MAX+XD/X;
Y+C[N] -LAMBDA;
'FPR' I 'FR@M' 2 'T@' N-1 'D@'
'BEGIN' -
MIN«X*X;
© Z«Z- (X* (P*RT+RTD*Q) -XD*Q*RT) /MIN;
Y«Y-RT*Q/X;
P« (P*X-XD*Q) *D[I]/MIN;
Q+-Q*D[I]/X;
RTD<(RTD*X-XD*RT) *B [I]/MIN;
XD+-1+BN[I]/X;
RT+-RT*B[1]/X;
X<«C[T]-LAMBDA-BN[I]/X;
('ABS' (X) <ZER{X<QZR);
-~ MAX<MAX+XD/X
YEND';
MIN<X*X; .
Z«Z+(BN[N]*XD-B{N}* (X*P-Q*XD) -D [N] * (X*RTD~-RT*XD} ~X* (Q*RTD+P*RT) ~XD*Q*RT) /MIN;
QQ+D[N]; '
RT<RT+B[N];
X+Y-RT*Q/X;
("ABS! (X) <ZERIX<QZR);
MAX<MAX Z/X;
(L>=21'F@R' I 'T@' L-1 'D@' MAX~MAX-1/(LAMBDA-EIG[I]));
MAX+1/MAX;
LAMBDA<LAMBDA-MAX;

EXIT:
'END';

'IF' 'ABS' (MAX/LAMBDA)<EPS '@R!
*BEGIN?
EIG[L]}«LAMBDA;
LAMBDA+2,98771.,0;
L+L+1;
'GAT@' LABA
'END'
'ELSE!
'GATA' LABB
IFI]

*ABS' (LAMBDA) <EPS 'THEN'

198

199

PROGRAM 6

. This procedure determines the eigenvalues of a symmetric centro-
symmetric matrix by bisection, The diagonal and sub-diagonéls are only
recorded as far as the centre elements +2, as the matrix is centro-

symmetric.

" 'PRYCEDURE' CENTR@BISECT(C,B,BETA,N,M1,M2,EPS1,RELFEH,EPS2,Z,X);

+ 'WALUE' N,M1,M2,EPS1,RELFEH;

'REAL' EPS1,EPS2,RELFEH;

'INTEGER' N,M1,M2,Z;

'ARRAY' C,B,X,BETA;

'COMMENT! C,B, and D are the first N/2+2 elements of the diagonal,
sub-diagonal, and squared sub-diagonal of symmetric, centro-
symmetric tridiagonal matrix of order N. The eigenvalues LAMBDA[M1],
..... ,LAMBDA[M2], where M2 is not less than M1 and LAMBDA[I+1] is not
less than LAMBDA[I+2], are calculated by the method of bisection and
stored in vector X. Bisection is continued until the upper and lower
bounds for an eigenvalue differ by less than EPS1 unless, at some
stage, the upper and lower bounds differ only in the least significant
digits. EPSZ gives an extreme upper bound for the error in any
eigenvalue, but for certain types of matrices the small eigenvalues
are determined to a much higher accuracy. In this case, EPS should
be set equal to the error to be tolerated in the smallest eigenvalue,

It must not be set equal to zero.

'BEGIN' ' ‘
'REAL H,XMIN, XMAX;

"INTEGER' I,N2;
*COMMENT' calculation of XMIN,XMAX, maximum and minimum values of
eigenvalue range
N2«N' /123
XMIN«C[1]-ABS(B[2]);
XMAX+CJ1]+ABS(B[2]};
'FPR' I+N2 'STEP' -1 'UNTIL' 2 'D@!
'BEGIN'
H<ABS (B[I])+ABS (B[I+1];
'IF' C[TI+H 'GT' MAX 'THEN' XMAX<C[I]+H;
'IF* C[I]-H 'LT* MIN 'THEN' XMIN«C[I]-H;
'END';
EPS2+RELFEH* (' IF'XMIN+XMAX 'GT' O 'THEN' XMAX 'ELSE'XMIN);
'IF' EPS1 'LE' O 'THEN' EPSI<EPSZ;
EPS2+0.5%EPS1+7*EPSZ;
'COMMENT' inner block;
'BEGIN'
*INTEGER' A,K;
'REAL' Q,X1,XU,X0;
YARRAY' WU{M1:M2];
X0+XMAX;
'FPR' I«M1 'STEP' 1 'UNTIL' M2 'D@°

XU=XMIN;
'FPR I<K 'STEP' -1 'UNTIL' M1 'Dg@¢
'BEGIN!
'IF' XU 'LT' WU[I] *THEN!
YBEGIN!
XU<WU[I];
"GAT@' CENTIN;
'END';
YEND';
C@NTIN: 'IF'X0 'GT' X{K] 'THEN' XO+X[K];
'FOR X1+(XU+X0}*0,5 'WHILE' XO-XU 'GT!
2*RELFEH* (ABS (XU) +ABS (X0)) +EPS 'Dp"
'BEGIN!
Z«Z+1;
'CAMMENT' Sturm sequence;
A<Q; Q«l;
"FPR' I«1'STEP' 1 'UNTIL' N2 'D@'
'BEGIN!
QeC[I]-X1-('IF' Q 'NE' O 'THEN'
BETA[I]/Q*ELSE'ABS (B[I1]/RELFEH) ;
'TE'Y Q 'LT' O "THEN' A<A+2;
*END',
'IF' N2*2-N'EQ'O'THEN'
*BEGIN'
QeQ-('IF'Q'NE'0' THEN'BETA[N2+1]/Q
'ELSE' ABS(B[N2+1]/RELFEH);
'TEY Q 'LT' O '"THEN' A<A+l;
'END';
'CAMMENT' End of Sturm sequence;
'IF' A 'LT' K '"THEN!
VBEGIN?
'IF' A 'LT' M1 '"THEN' XU«WU|[M1]+X1
'ELSE!
'BEGIN!
XU+WU[A+1]<X1;
'"IF X{A] 'GT' X1 'THEN' X[A]<«X1
TEND';
YEND!
'ELSE' X0+<X1;
YEND! ;
X[K}«(X0+XU)/2;
YEND';
YEND*';

'END';

'BEGIN'

X [T]+XMAX;

WU [T]+XMIN;
YEND':
Z+0;
'COMMENT' Loop for the kth eigenvalue;
'FPR’ K<M2 *'STEP' -1 'UNTIL' M1 'D@!
YBEGIN?

200

201

PROGRAM 7

This procedure determines the eigenvectors of a centro-symmetric

matrix using a modified inverse iteration methed,

'PRPCEDURE' VECTOR(C,B,N,M,EIG,EIGVEC);

'CAMMENT' C is the diagonal and B the sub-diagonal of the tri-diagonal
matrix of order N. Only N '/'2+2 of the elements of C and N'/'2+1
elements of B are used. M is the number of vectors that are required,
The eigenvalues are supplied in EIG and the results are placed in the
rows of EIGVEC; .

'"VALUE' C,B,N,M,EIG;

*ARRAY' C,B,EIG,EIGVEC;

'INTEGER' N,M;

'BEGIN!

"ARRAY' AN,BN,CN,D,S[1:(N+4)'/'2];
'"INTEGER' I,H,L;
TREAL' V;
'"INTEGER' 'ARRAY' IC[1:(N+4)'/'2];
'CAMMENT' Gaussian elimination;
'FPR' L+1 'STEP' 1 'UNTIL' M rtpp?
'BEGIN' HeN'/'2;
CN[1]«C[1]-EIG[L]; IC[1]«0O;
'FOR' T+2 'STEP' 1 'UNTIL' H+2 'D@*
'BEGIN!
D[I]«0; IC[I]«0;
CN[1]<C[I]-EIG[L);

BN[I]«AN[I]<B[I];

"END';

'FPR' I«1 *STEP' 1 'UNTIL' H-1 'D@'

*BEGIN' '
'"IF ABS(CN[I]) 'LT' ABS(AN[I+1]) 'THEN"
'BEGIN'

V«CN[I]; CN[I]«AN[I+1]; AN[I+1]+V;
V+BN[I+1]; BN[I+1]«CN[I+1]; CN[I+1]«V;
V«D[I+2]; D[I+2]«BN[I+2]; BN[I+2]+V;
IC[I]+1;
'END!';
AN[T]<«AN[I+1]/CN[I];
CN{I+1]+CN[I+1]-BN[I+1]*AN[I];
BN[I+2]«BN[I+2]-D[I+2]*AN[I];
'END?';
'COAMMENT' Section to eliminate the centre elements depending on
whether N is odd or even;
*IF' H*2 'EQ' N 'THEN'
*BEGIN' 'C@MMENT' N even;
'IF' ABS(CN{H]) 'LT' ABS(BN[iH+1]) 'THEN'
'BEGIN'
V<+BN[H+1]; AN[H+1]<BN[H+1]«CN[H];
CN[H]<«CN[H+1]«V; IC{H]+1;
'END’
'ELSE!

YEND?
'ELSE
' BEGI

'BEGIN!

CN[H+1]«CN[H]; AN[l+1]«BN[H+1];
'END' 3
AN[H]<AN[H+1]/CN[H];
CN[H+1}«CN[H+1]-BN[H+1]*AN[H] }

N' 'COMMENT' N odd;
BN[H+2]+AN[H+1]; AN[H+2]+BN[H+1];
CN[H4+2])<«CN[H];

VBEGIN!

V<CN[H]; CN[H]«AN[H+1]; AN[H+1]<V;
VeBN[H+1]; BN[H+1]<«CN[H+1]; CN[H+1]«V;
V«D[H+2]; D[H+2]«BN[H+2}; BN[H+2]«V;
IC{H]«1;

'END! ;

AN[H]«AN[H+1]/CN[H];

CN[H+1]«CN[H+1]-AN[H]*BN[H+1];

BN [H+2]«BN[H+2] -AN[H]*D [H+2] ;

'"IF' ABS(CN[H+1]) 'LT' ABS(AN[H+2]) 'THEN!

'BEGIN!

© V<CN[li+1]; CN[H+1]«AN{H+2]; AN[H+2]<«V;
V+BN[H+2}; BN[H+2]«CN[H+2]; CN[H+2]«V;
IC[H+1]«1;

'END? ;

AN[H+1]«AN[H+2]/CN[H+1];

CN[H+2]«CN[H+2] -AN[H+1] *BN[H+2] ;

'END';

He(N-1)'/'2;

'F@R' I«1 *'STEP' 1 'UNTIL' H+2 'DP’

S[I]+1;

'IF' CN[H+2] 'EQ' O 'THEN' CN[H+2]«2+(-37);

'COMMENT' Closest number to machine zero if matrix decomposes.

Back substitution now takes place;

S [H+2]«S[H+2] /CN[H+2];
S[H+1]«(S[H+1]-S[H+2] *BN[H+2]/CN[H+1] ;

'FﬂR'

I«H *STEP' -1 'UNTIL' 1 ‘D@

S[I]+(S[I]-S[I+1]*BN[I+1]-S[I+2]*D[I+2D/CN[I];

'CYMMENT' The forward substitution with stored interchanges and

'lme!

elimination factors is performed;
I«1 *STEP' 1 'UNTIL' H+1 'D@'

'BEGIN'

'END?;

'CﬂMMENT' Back substitution is now performed for the second time;

*IF' IC[I] 'EQ' 1 'THEN'
'BEGIN'
VeS[I]; S[I]«S[I+1]; S[I+1]«V;
'END';
S[I+1]«S[I+1]-S{I]*AN[I];

S[H+2]<S[H+2]/CN[H+2];
S[H+1]«(S[H+1]-S[U+2]*BN[H+2])/CN[H+1];

'F¢R'

I+H '*STEP' -1 *UNTIL' 1 'Dp!

S[1]«(S[I]-S[I+1]*BN[I+1]-S[I+2]*D[I+2])/CN[I];
'COMMENT' Vector is now normalised;

202

203

VS [H+1]*S[H+1];
YIF (H+1)*2 'NE' N 'THEN' WV/2;
'FPR I<«1 'STEP 1 t UNTIL' H ‘'D@'
VeV+S[I]*S[I]}
V«SQRT(V*2);
'FPR' I«1 'STEP' 1 'UNTIL' H+2 ‘D@*
S[1]«S[I]1/V;
'COMMENT' The full eigenvector is now written in EIGVEC;
VS [H+2] *S[H+1- (H+1) *2+N] ;
'IF' V 'LT* N 'THEN'
'BEGIN'
'FPR' I<1 'STEP' 1 'UNTIL' H 'D@!
'*BEGIN'
EIGVEC[L,I]+S[1];
EIGVEC[L,N+1-1]+-S[I];
TEND'; ’
'END?
'ELSE!
'F@R' I<«1 'STEP' 1 'UNTIL' H 'D@!
EIGVEC[L,I]J«EIGVEC{L,N+1-I]+«S[I];
'IF' (H+1)*2 'EQ' N 'THEN'
*BEGIN'
EIGVEC(L,H+1]«S[H+1];
EIGVEC[L,H+2]«+S[H+2];
YEND*
'ELSE!®
EIGVEC[L,H+1]«S[H+1];
YEND!' ;
YEND';

204

PROGRAM 8

This program finds the eigenvalues of a symmetric tridiagonal matrix
using parallel processing on a bisection algorithm, The program is
written in ALGOL 60 with the addition of the FORK and JOIN parallel
processing constructs. These statements are self explanatory and

indicate where parallel processing is performed and where it ends,

'PRGCEDURE' PTRIBIS(C,B,BETA,N,M1,M2,EPS1,RELFEH,EPS2,Z,X);

'WALUE' N,M1,M2,EPS1,RELFEH;

*ARRAY' C,B,X,BETA;

'REAL' EPS1,EPS2,RELFEH;

'INTEGER' N,M1,M2,Z; _

'COMMENT' C is the diagonal, B the sub-diagonal and BETA the squared
sub-diagonal of a symmetric tridiagonal matrix of order N. The
eigenvalues LAMBDA[M1],....LAMBDA{M2], where M2 is not less than
Ml and LAMBDA{I+1] is not less than LAMBDA[I], are calculated by
the method of bisection and stored in the vector X, Bisection is
continued until the upper and lower bounds for an eigenvalue differ
by less than EPS1 unless at some earlier stage, the upper and lower
bounds for an eigenvalue differ only in the least significant digits,
EPS2 gives an extreme upper bound for the error in any eigenvalue but
for certain types of matrices the small eigenvalues are determined to
a very much higher accuracy. In this case, EPS1 should be set equal
to the error to be tolerated in the smallest eigenvalue. It must
not be set equal to zero;

'BEGIN'

'REAL' H,XMIN,XMAX;
'INTEGER' I; .
'CAMMENT' Calculation of minimum and maximum eigenvalue range;
BETA[1]+B[1}0;
XMIN+C{N]-ABS(B[N]);
XMAX«C[N]+ABB(B[N]);
'FPR' 1«N-1 'STEP' -1 'UNTIL' 1 'D@'
*BEGIN'
" H«ABS(B[I])+ABS(B[I+1]);
'IF! C[I]+H 'GT*' XMAX 'THEN' XMAX<C[I]+H;
'IF' C{I]-H 'LT' XMIN 'THEN' XMIN«C[I]-H;
'END';
EPS2+RELFEH*('IF' XMIN+XMAX 'GT' O 'THEN' XMAX 'ELSE' -XMIN);
'IF' EPS! 'LE' O 'THEN' EPS1<EPS2;

EPS2+0 ,S*EPS1+7*EPS2;
'COMMENT' Inner block;
'BEGIN?

TARRAY' WU[M1:M2];

VINTEGER' A,AU,J,K,N2;

'REAL' Q,QU,X1,XU,X0;

_XO<XMAX;

'F@R' I<M1 'STEP' 1 'UNTIL' M2 'D@‘
'BEGIN'

205

X[I]+XMAX;
WU [1]<XMIN;
YEND'
Z+0;
N2«N'/'2;
'COMMENT' Loop for the kth eigenvalue;
'FPR K«M2 '*STEP' -1 'UNTIL' M1 'D@t
*BEGIN! :
XU+XMIN;
'FOR' I<K 'STEP' -1 'UNTIL' MI ‘D@ '
'BEGIN'
"IF' XU 'LT' WU[I] 'THEN'
*BEGIN?
XU<WU[I];
GOTP CONTIN;
*END!;
"END' ;
CONTIN: 'IF' X0 'GT* X[K] 'THEN' XO0«X[K];
'FOR' X1+« (XU+X0)/2 'WHILE' XO-XU 'GT' 2*RELFEH
* (ABS(XU)+ABS(X0))+EPS1 D!

'BEGIN'
Z+Z+1;
'"COMMENT' STURM SEQUENCE;
AU«A+O;
QU«Qe1;
"FPRK'L1,L2;
L1: 'BEGIN' _
'FPR' I+l 'STEP' 1 'UNTIL N2 'D@*
'BEGIN'
QC[I]-X1-("IF' Q
'NE' O *THEN' BETA[I]/Q
'ELSE' ABS(B[I]/RELFEH));
'IF' Q '"LT' O 'THEN' A«A+l
YEND';
TEND';
'GATY' L3;
L2: 'BEGIN'
TFPR' J«N 'STEP' -1 'UNTIL' N-N2+1 'D@!
'BEGIN'
QU«C[J}-X1-('IF' QU 'NE'
O 'THEN' BETA[J+1]/Q 'ELSE!'
ABS(B[J+1]/REL¥EH));
'TE' QU 'LT' O 'THEN' AU+AU+1;
*END';
'END';
L3: 'JPIN' L1,L2:
A+A+AU;
'IF' N2*2-N 'EQ' O 'THEN'
'BEGIN'
Q«QU-('IF' Q 'NE' O 'THEN' BETA[N2+1]/Q
'ELSE' ABS(B[N2+1}/RELFEH));
TEND* -
'ELSE!
'BEGIN'

'IF' QU 'LT' O 'THEN' A<A+l;

206

Q+C[N2+1]-X1~('IF'Q'NE'O' THEN?
BETA[N2+1]/Q 'ELSE' ABS(B[N2+1]/RELFEH)
-('IF' QU 'NE' O 'THEN' BETA[N2+2]/QU
'ELSE' ABS(B[N2+2]/RELFEH));

'END';

'IF' Q 'LT' O 'THEN' A«A+l;

VIF' A, 'LT' K 'THEN!

'BEGIN!
'IFY A 'LT' M1 *THEN!
XU<WU[M1 }+X1}
'ELSE'
'BEGIN®
XU+WU[A+1]+X1;
'IF X[A] 'GT' X 'THEN' X[A]+X1;
'END?;
'END!
'ELSE!
X0«X1
'END';
X[K]+(X0+XU)/2;

'END!
'END!?
'END';

207

PROGRAM 9

This program finds the eigenvalues of a symmetric tridiagonal matrix
using the bisection method, The method is modified by a version of the
folding algorithm (Evans and Hatzopoulos) to enable the program to be run
in a parallel fashion using two processors, The program is written in
standard FORTRAN with the addition of FORK and JOIN routines to allow
parallel processing (Barlow 1977a, 1977b) as implemented on the Loughborough

University of Technology dual processor Interdata 70,

SUBRPUTINE STURMP(C,BB,EIG,NB,EPS,QZRB)

c The main diagonal of the matrix is stored in C, the sub-diagonal
C in BB, NB is the order of the matrix and EPS the accuracy required,
c QZRB is a number close to machine zero, used to replace any zero
c divisiors that occur in the calculation of the Sturm sequencs,
C The resulting eigenvalues are placed in EIG.
DIMENSI@¢N C(81),BB(81),EIG(81),CN(81)
Cﬂ%PON/CU/CN,B(Sl),KXC,KYC,XC,YG,N,M
N=NB
C The eigenvalue bounds are now calculated using Gerschgorins theorem

ANEW=ABS (BB(N))
AMAX=C (N) +ANEW
AMIN=C (N) -ANEW
BB(1)=0
NMIN1=N-1
D@ 101 I=1,NMIN1
ANEW=ABS (BBI) }+ABS(BB(I+1))
ANEWER=C(I)+ANEW
ANEW=C (1) -ANEW
IF (ANEWER ,GT . AMAX) AMAX=ANEWER
IF (ANEW.LT.AMIN) AMIN=ANEW

101 CONTINUE : '
AMIN=AMIN-0.1
AMAX=AMAX+0,1
D@ 102 I=2,N

102 B(I)=BB(I}*BB(I)
M=N/2
L=0

501 IF (L.EQ.N} GPT® 500

C Beginning.of main loop to find Lth eigenvalue
ALAMBA=(AMIN+AMAX) *0.5

502 D@ 103 I=1,N

103 CN(I)=C(I)-ALAMBA
$FPRK 1,2;3

C Entering parallel mode to determine upper and lower halves of

c Sturm sequence simultaneously

504
5003

503
505

104

507

5006
506 .
508

105

509

510

511

513

512

107

500

CONTINUE

KX=0

IF(CN(1)) 5003,504,503
X=QZRB

GPTP 505

KX=1

X=CN(1)

DPp 104 I=2,M
X=CN(I)~B(I)}/X
IF(X.EQ.0.0)X=QZRB
IE(X.LT.0,0)KX=KX+1
CONTINUE

XC=X

KXC=KX

GOTP 3

CONTINUE

KY=0

IF(CN{N)) 5006,507,506
Y=QZRB

GATP 508

KY=1

Y=CN(N)

NMIN1=N-1

NMIN2=N-M+1

JST=2*N-M

D@ 105 I=NMINZ,NMIN1
J=JST-1I '
Y=CN(J)-B(J+1)/Y
IF(Y.EQ.0.0)Y=QZRB
IF(Y.LT.0.0)KY=KY+1
CONTINUE

YC=Y

KYC=KY

$JIPIN

K=KYC+KXC

IF (M*2-N) 509,510,509
X=CN (M+1)-B(M+1) /XC-B(M+2)/YC
GOTY 511
IF(YC.LT.0.0)K=K-1
X=YC-B(M+1)}/XC
IF(X.LT.0.0)K=K+1
IF(L-K}512,513,512
ANEWER=AMIN
AMIN=ALAMBA
ALAMBA=ALAMBA+ (ALAMBA-ANEWER) *0.5
GATP 502

ALAMBA= (ALAMBA+AMIN) *0.5
IF ((ALAMBA-AMIN)}*0.5.GE.EPS)G@TP 502
AMIN=2.0*ALAMBA-AMIN ‘
LPL1=L+1

DO 107 I=LPLI1,K
EIG(I)=ALAMBA

L=K

GATY 501

CONTINUE

RETURN

END

208

209

PROGRAM 10

This program finds the eigenvectors of a symmetric tyidiagonal matrix
by inverse iteration using two processors. The program is written in
standard 1.C.L. ALGOL 60 except for the introduction of 'fork' and 'join'

statements which indicate where parallel processing can be performed.

'PROACEDURE' PARVEC(C,B,N,M,EIG,EIGVEC);

'"CAMMENT! C is the diagonal and B the sub-diagonal of the tridiagonal
matrix of order N, M is the number of vectors required, and the -
number of eigenvalues supplied in EIG. The resulting vectors are
placed in the rows of EIGVEC;

'WALUE' C,B,N,M,EIG; :

'ARRAY' C,B,EIG,EIGVEC;

*INTEGER' N,M;

*BEGIN'

'ARRAY' AN,CN,BN,D,S[1:N];
'INTEGER' I,H,L;
'REAL' V;
'INTEGER' 'ARRAY' IC[1:N];
'F@R' L«1 'STEP' 1 'UNTIL' M ‘D@
'CAMMENT' Loop for each eigenvector;
'BEGIN'
HeNY/ 12,
'COMMENT' Set up work vectors with copy of matrix;
CN[1]«C[1]-EIG[L]; IC[1]«0;
'FPR' I+2 'STEP' 1 'UNTIL' N ‘D@
'BEGIN!
D[I}+IC[1]+0;
CN[I]«C[I]-EIG[L];
BN[I]J«+AN[I]«B[I];
'END';
'CPMMENT' Elimination or forward substitution;
'FPRK' L1,L2;
'COMMENT' Upper half of matrix;
L1: '"FOR' I+N 'STEP' -1 'UNTIL' N-H+2 'D@!
*BEGIN! '
'IF ABS(CN[I]) 'LT' ABS(BN[I]) 'THEN'
*BEGIN' 'C@MMENT' Interchange if necessary;
V<CN[I]}; CN[I]<BNfI]; BN[I]+V;
V<AN[I]};AN[I]«CN[I-1]; CN[I-1]«V;
Ve«D[I]; D{I}«AN[I-1]}; AN[I-1]+V;
IC[I]«1;
'END!;
BN[I]«BN[I]/CN[I];
CN[I-1]«CN[I-1]-BN[I]*AN[I];
AN[I-1]«AN[I-1]-BN[I]*D[1];

YEND';
1GPTR' L3;
L2: 'CPMMENT! Lower half of matrix;
'FPR' I«1 'STEP' 1 'UNTIL'H-1 'p@!
VBEGIN'

*IF' ABS(CN[I]) 'LT' ABS(AN[I+1]) 'THEN'

L3:

L4:

'BEGIN'
V<CN[I]; CN[IJ«AN[I+11; AN[L+1]+V;
V<BN[I+1]; BN[I+1]«CN[I+1]; CN[I+1]<«V;
V<D[I+2]; D[I+2]«+BN[I+2]; BN[I+2]«V;
IC[I]«1;
YEND' ;
AN[I]«AN{I+1]/CN[I];
CN[T+1]«CN[I+11-BN[I+1]*AN[I];
BN[I+2)«BN[I+2]-D[I+2]*AN[I];
'END';
1JPIN' L2,L3;

YCPMMENT* The centre elements must be eliminated, and the

method used depends on whether the matrix is odd or
even. This cannot be done in parallel;

*IF' H*2 'EQ' N 'THEN!'

'"BEGIN' 'CPMMENT' Matrix is even;

'IF* ABS(CN[H]) 'LT' ABS(AN[H+1]) 'THEN'
*BEGIN'
V«CN[H]; CN[H]«AN[H+1]; AN[H+1]+V;
V«BN[H+1]; BN[H+1]+CN[H+1], CN[H+1]+V;
IC{H]«+1;
'END';
AN[H]+AN[H+1]/CN[H];
CN[H+1]«CN[H+1]-BN[H+1]*AN[H];

'END?

'ELSE! :

*BEGIN' *COMMENT' Matrix is order odd;

IF ABS(CN[H]} 'LT' ABS(AN[H+1]) '"THEN'

'BEGIN'
V<CN[H]; CN[H]«AN[H+1]; AN[H+1]+V;
V<BN[H+1]; BN[H+1]«CN[H+1]; CN[H+1]+«V;
V<D[H+2]; D[H+2]«BN[li+2]; BN[H+2]«V;
IC[H]+1;

'END' ;

AN[H]«AN[H+1]/CN[H];

CN[H+1]<CN[H+1]-AN[H] *BN[H+1] ;

BN[H+2]«BN[H+2]-AN[H]*D[H+2];

'IF' ABS(CN{[H+1]) 'LT' ABS(AN[H+2]) 'THEN'

'BEGIN'
V<CN[H+1]; CNfH+1]«AN[H+2]; AN[H+2]}+V;
V<BN[H+2]; BN[H+2]<«CN[H+2]; CN[H+2]<«V;
IC[H+1])«1;

'END' ;

AN[H+1]<«AN[H+2}/CN[H+1];

CN[H+2]+«CN[H+2] AN[H+1]*BN[H+2],

IEND! -

He(N- 1) /'2;

'COMMENT' Set the initial value of the eigenvector to all 1's;

'F@R' I<«l 'STEP' 1 'UNTIL' N 'D@' S[I]}+1; :

'IF' CN[H+2] 'EQ' O 'THEN' CN[H+2]+QZR;

'CAMMENT' QZR is the smallest number on the machine, not zero,
for the decomposing case. Then back substitution is
performed for the centre elements,

S[H+2]+S[H+2]/CN[H+2];

S[H+1]+«(S[H+1] S[H+2]*BN[H+2])/CN[H+1],

'COMMENT' Back substitution is carried out through both halves
of the matrix, at the same time;

'FORK' L4,L5;

'FOR! I+H+3 'STEP' 1 'UNTIL' N 'D@!

210

211

S[I]«(S[1] S[I+1]*AN[I] S[I-2]*D[1])/CN[I];

'GATP' L6;
LS; 'FPR' I<H 'STEP! -1 'UNTIL' 1 'D@!
S[I]«(S[I]~S[I+1]1*BN[I+1]- S[I+2]*D[I+2])/CN[I];
L6: JBIN' L4,L5;

'CPMMENT' Forward substitution or elimination for the second
time., Performed on the eigenvector only using stored
interchanges and elimination factors;

'FPRK' L7,L8;

L7: 'FOR' I+«1 'STEP' 1 'UNTIL' Nt*/t2-1 'D@t
'BEGIN'
'"IF' IC[I] 'EQ' 1 'THEN!
'BEGIN®
V«S[T]; S[I]«S[I+1]; S[I+1]<«V;
'END!';
S[I+1]+S[I+1]~S[I]*AN[I],
IENDI
‘GQTG‘LQ;
L8: 'F@R' I«N 'STEP' -1 'UNTIL' N-N'/'2+2 'pgt
*BEGIN'
"IF' IC[I] 'EQ' 1 'THEN'
'BEGIN!
VS[1]; S[I]«S[I-1]; S[I-1]}«V;
'END';
S[I-1]«S{I-1]-S[I]*BN[I];
YEND?';
L9: 'JPIN' L7,L8;

'COMMENT' Eliminate through the centre elements;
'FOR' I<N'/'2 'STEP' 1 'UNTIL' N-N'/*'2 'DQ'

'BEGIN'
'IF' IC[I] 'EQ' 1 'THEN®
'BEGIN?
VeS{I1]; S[I]«S[I+1]; S[I+1]+«V;
'END!';
S{I+1]«S[I+1]-S[I]*AN{[I};
'END';

S[H+2]+S[H+2]/CN[H+2];
S[H+1]«(S[H+1]-S[H+2] *BN[H+2]) /CN{H+1];
'FPRK’ L10,L11;

L10; 'FPR' T«H+3 'STEP' 1 'UNTIL' N 'D’
S[I]+(S[I)-S[I-1]*AN[I]-S{I-2}*D[I]/CN{I];
GOTP L12;

L11: 'FPR' I+H 'STEP' -1 'UNTIL' 1 'D@’
S[I1«(S[I]-S[I#1]*BN[I+1]- S[I+2]*D[I+2)/CN[IJ,

L12: "JPIN' L10,L11;

V«S[N]*S[N] ;
'FBR' I+l 'STEP' 1 'UNTIL' N-1 'D@¢
V<V+S{[I]*S{1];
Ve1/SQRT (V) ;
'FﬂR I«1 'STEP' 1 'UNTIL' N 'D@'
EIGVEC[L,I]«S[I]*V;
YEND*';
TEND';

212

PROGRAM 11

This program finds the eigenvectors of a symmetric tridiagoﬂdl matyrix
by invexrse itération using two pfocessors. The program is written in
standard FORTRAN with the addition of FORK and JOIN routines as implemented

on the Loughborough University of Technology dual processor Interdata 70.

SUBR@UTINE EIGVEP(C,B,NM,EIG,EIGVEC)
The main diagonal is stored in C, the sub-diagonal in B, the order
-of matrix in NM, and the eigenvalue for which the eigenvector is
required in EIG. The resulting eigenvector is normalised and placed
in EIGVEC.
DIMENSI@N C(81),B(81),EIGVEC{81),AN(81),BN(81)
1 CN(81),D(81),5(81),IC(81)
COMMPN/C3/C(81) ,B(81) ,EIGVEC(81)
COMMPN/C1/AN(81) ,BN(81},CN(81),D(81),S(81),IC{81)
COMMPN/C2/N ‘
C Setting up the.variables in common store
N=NM
IH=N/2 .
CN(1)=C(1)-EIG
1C(1)=0
D@ 102 I=2,N
D(1}=0
IC(1)=0
CN(I}=C(I)-EIG
BN(I)=B(I)
AN(I)=B(1)
102 C@NTINUE
$FPRK 1020,1030;1040
C Program now forks to perform Gaussian elimination from both ends of
c the main diagonal of the matrix simultaneously
1020 CONTINUE
NST=N-IH+2
I=N+1
D@ 103 I1=NST,N
I=1-1
IF(ABS(CN(I)).GE.ABS(BN(I})G@T@ 500
V=CN(I}
CN(I)=BN(I)
BN(I)=V
V=AN(I)
AN(I)=CN(I-1)
CN(I-1)=V
V=D (I)
D(I)=AN(I-1)
AN(I-1)=V
IC(I)=1
500 BN(I)=BN(I}/CN(I)
CN(I-1)=CN(I-1)-BN(I)*AN(I)
AN(I-1)=AN(I-1)-BN(I)*D(I)

oaonon

213

103 CANTINUE
GAT@ 1040
1030 C@NTINUE
JFIN=IH-1
Dp 104 J=1,JFIN
IF(ABS(CN(J)) .GE.ABS(AN(J+1))) G@T@ 501
W=CN(J) .
CN(J}=AN(J+1)
AN(J+1)=W
W=BN (J+1)
BN(J+1)=CN(J+1)
CN({J+1)=W
W=D (J+2)
D(J+2)=BN(J+2)
BN(J+2)=W
- IC(J)=1
501 AN(J)=AN(J+1)/CN{J)
CN(J+1)=CN(J+1)-BN(J+1)*AN(J)
BN (J+2) =BN(J+2) -D{(J+2) *AN(J)
104 CANTINUE

1040 $JPIN
c Elimination of the centre elements is performed seperately to
c allow for N being odd or even

IF(IH*2.NE.N} G@T@ 502
IF(ABS(CN(IH)).GE.ABS(AN(IH+1})) G@T@ 503
V=CN(IH)
CN{IH)=AN(I+1)
AN(IH+1)=V
V=BN(IH+1)
BN(IH+1)=CN(IH+1)
CN(IH+1)}=V
IC(IH+1)}=1

503 AN(IH)=AN(IH+1) /CN(Il}+1)
CN({TH+1)}=CN{IH+1) -BN{IH+1)*AN(IH)
GATY 509

502 IF(ABS(CN(IH)).GE.ABS{AN(IH+1))) GOTO 505
V=CN(IH) :
CN({IH)=AN(IH+1)
AN(IH+1}=V
V=BN(IH+1)
BN(IH+1)=CN(IH+1)
CN(IH+1)=V
V=D (IH+2)
D({IH+2)}=BN{IH+2)
BN(IH+2)=V
IC(IH)=1

504 AN(IH)=AN(IH+1)/CN(IH)
CN(IH+1)=CN(IH+1)-AN(IH)*BN(IH+1)
BN(IH+2)}=BN(IH+2)-AN{IH)*D{IH+2)
IF(ABS{CN(TH+1)).GE.ABS(AN(IH+2)}) G@T@ 505
V=CN (IH+1)
CN{IH+1)=AN(Il1+2)
AN(IH+2)=V
V=BN(IH+2)
BN (IH+2)=CN(IH+2)

505
509

105

1060

106

1070

506
108

1091

507
169
1099

CN({IH+2)=V

IC(IH+1)=]

AN(IH+1)=AN(IH+2) /CN(IH+1)
CN(IH+2)=CN{IH+2)} -AN(IH+1) *BN(IH+2)

IH=(N-1)/2

D@ 105 I=1,N

S(I)=1 '

Replace zero in the decompsing case

IF(CN(IH+2) .EQ.0.0} CN(IH+2)=0.0000001

Back substitution is now performed through the three non zero vectors
of the remaining two triangular half matrices (CN,BN,D}.
S(IH+2)=S(IH+2)/CN(IH+1)
S(IH+1)=(S(IH+1)-S(IH+2)*BN(TH+2)) /CN(IH+1)

$FORK 1060,1070; 1080 ‘

Back substitution is now performed through the remaining half
matrices simultaneously.

CONTINUE

IST=1H+3

DF 106 I=IST,N
S(I}=(S(I)-S{I-1)*AN(I)-S(I-2)}*D(I))/CN(I)

GATY 1080

CONTINUE .

D@ 107 Jl=1,IH

J=IH+1-J1

§$(J)=(5(J)-S(J+1)*BN(J+1)-S(J+2) *D(J+2))/CN(J)
$JBIN

$FORK 1081,1091;1099

A second forward substitution or Gaussian elimination 15 now
performed on the eigenvector (S) using only stored elimination
factors and’ interchanges, again in parallel mode.
CANTINUE .

IFIN=N/2-1

D@ 108 1=1,IFIN

IF(IC(I).NE.1) G@T@ 506

Vv=5(I)

S{I)=S(1I+1)

S(I)1)=v :

S(I+1)=S{I+1)-S(I)*AN(I)

CONTINUE

GOTY 1099

CONTINUE

JIS=N-N/2+2

D@ 109 J1=JIS,N

I=N+N-N/2+¢2+J1

IF(IC(I) .NE.1)GYT@ 507

W=5(1)

S(I)=S(I-1)

S(I-1)=W

S(I~1)=S(I-1)-S(I)*BN(I)

CANTINUE

$JPIN

1ST=N/2

IFIN=N-IST

D@ 110 I=IST,IFIN

IF (IC(I).NE.1) G@T@ 508

214

508
110

1111

111

1121

112
1129

113

114

v=5(I)

- 8(I)=8(1+1})

S(I+1)=V
S(I+1)=S(I+1)-S(I)*AN(I)
CONTINUE
S(IH+2)=S (IH+2)} /CN(TIH+2)
S(IH+1)=(S(IH+1)-S(IH+2)*BN(IH+2))/CN(IH+1)
FORK 1111, 1121; 1129
Back substitution is performed a second time in parallel mode.
CONTINUE
IST=IH+3
Dp 111 E=IST,N
S(I)=(S(I}-S(I-1)*AN(I)-S(I-2)*D(I))/CN(I)
CONTINUE
GPTY 1129
CONTINUE
bp 112 J1=1,IH
[=IH+1-J1
S{I)=(S{1)-S(I+1) *BN(I+1)-S(X+2)*D(I+2))/CN(I}
C@NTINUE
JOIN
V=S (1)*S(1)
The eigenvector is now normalised

DY 113 I=2,N
V=V+5 (1) *S(I)
CONTINUE
V=SQRT(V)

D@ 114 I=1,N
EIGVEC(I)=S(I}/V
CYNTINUE

RETURN

END

215

PROGRAM 12
This procedure uses the Sturm sequence given in section 5.2 and a

bisection method to obtain the eigenvalues of a sparse symmetric quin-

diagonal matrix, The program is written as a modification of PROGRAM 1.

'"PROCEDURE* STURM(C,B,D,N,M1,M2,P,EPS1,RELFEH,EPS2,Z,X);

'"COMMENT' C is the diagonal, B the sub-diagonal, and D the diagonal of
semi-bandwidth P of the matrix of order N {N>4}. The eigenvalues M}
to M2 (MlsM2, eigenvalue 1 being the smallest} are calculated by
bisection and stored in the vector X[1:N]. EPS1 is the accuracy
required and RELFEH is the number closest to machine zero. The
total number of iterations is stored in Z and EPS2 gives the actual
accuracy obtained;

'"VALUE' C,D,N,M1,M2,P,EPS]1,RELFEH;

'ARRAY' C,B,D,X;

'‘REAL' EPS1,EPS2,RELFEH;

*INTEGER' N,P,M1,M2;

'BEGIN'

'ARRAY' R[P:N,3:P],U,V[1:N];
'REAL' XMIN,XMAX,H;
*INTEGER' 1,J;
B[1]+0;
H«ABS (B{N])+ABS(D[N]);
XMAX<C[N]+H;
XMIN<«C[N]-H;
'FPR' I«N-1 *STEP* -1 *UNTIL' 1 'D@°
'BEGIN'
H«ABS(B[I])+ABS(B[I+1]);
*IF' P-I+1 'LE' N 'THEN'
H«t1+ABS (D[P-1+1]);
'IF' I 'GE' P 'THEN'
H+«H+ABS(D[I]);
'IF' C[I]+H 'GT' XMAX 'THEN' XMAX«C[I]+l;
'IF' C[I]-H 'LT' XMIN 'THEN' XMIN«C{I]-H;
'END';
EPS2<RELFEH* ('IF' XMIN+XMAX 'GT' O 'THEN' XMAX 'ELSE' -XMIN);
'IF* EPS1 'LE' O 'THEN' EPSI<EPS2;
EPS240,5*EPS1+7*EPS2;
'FPR' I<«P 'STEP' 1 'UNTIL' N 'Dgp'
R(I,P]«D[I];
'FOR' I+2 'STEP' 1 'UNTIL' P-1 ‘'D@!
V[I]<B[1];
'BEGIN'"
*ARRAY' WU[M1:M2]; 'REAL' S,X1,XU,X0;
'"INTEGER' T,A,K,L;
XO0+XMAX;
"F@R!' I<«M1 'STEP' 1 'UNTIL' M2 'D@!
"BEGIN'
X[I]«XMAX; WU{[I]+XMIN;
'END?';
2+0;
'F@R' L«M2 'STEP' -1 'UNTIL' M1 'D@!
'BEGIN'
XU<XMIN;
'FPR* I«L 'STEP' -1 'UNTIL' M1 'D@!?

216

CONTIN:

'END';

217

'BEGIN'
'IE! XU 'LT' WU[I] 'THEN'
'BEGIN' '
XU«WU[I]; 'GAT@' CONTIN;
YEND';
'END';

'IF' XO 'GT' X{L] 'THEN' X0«X[L];
'FPR' X1« (XU+X0)/2 *WHILE' X0-XU 'GT!
2*RELFEH* (ABS (XU) +ABS (X0)) +EPS1 'D@!
'BEGIN' Z«Z+1; .
U[1] 'IF' C[1]-X1 *EQ' O 'THEN' RELFEH 'ELSE' C[1]-X1;
'FPR' I«2 'STEP' 1 'UNTIL' P-1 'D@®
'BEGIN!
' U[I]«C[I]-X1-V[I]*V[I]/U[I-1];
'IF' U[T] 'EQ' O 'THEN' U[I]-RELFEH;
'END';)
'FPR' I«P 'STEP' 1 'UNTIL' N 'Dp’';
'*BEGIN'
S<R[I,P]+R[I,P]*V[I-P+2]/U[I-P+1];
'FPR' K«P-2 'STEP' -1 'UNTIL' 3 ‘D@
*BEGIN!
'STel-K+1;
S«-S*V[T]/U[T-1];
'IF' T 'GE' P 'THEN'
'FPR' J«P-K-2 *STEP' -1 'UNTIL' O ‘D@’
S<8-R[I,P-J)*R[T,P+1-X-J]/U[I-P+J+1];
R[I,K]+S;
1ENDI; .
S«B[1]-S*V[I-1]/U[1-2];
'TF' I-1 'GE' P 'THEN!
'FOR' J+P-4 'STEP' -1 'UNTIL' O ‘D@
S¢S-R[I,P-J]*R[I-1,P-1-J]/U[I-P+J+1];
V[I]<S;
S+C{I]-X1-S*V[I]/U[I-1];
'"F@PR' J«P-3 'STEP' -1 'UNTIL' O 'D@’
S«S-R[I,P-J)*R{I,P-J]/U[T+P+J+1];
'IF' S 'NE' O 'THEN' U[I]<S 'ELSE'
U[I]<RELFEH;
'END'; A<D;
'FPR' I<«l 'STEP' 1 'UNTIL' N 'D@'
'TF' U{I] 'LT' O 'THEN' A+A+1;
'IF' A 'LT* L 'THEN'
'BEGIN'
*IF' A 'LT' M|'THEN' XU«
WU[M1]+X1; 'ELSE'
VBEGIN'
XU«WU[A+1]+X1;
tIF* X[A] 'GT' X1 'THEN'
X[A]<X1;
YEND';
YEND?
'ELSE' XO0+X1;
'END';
X[L]«(X0+XU)/2;

-YEND"';

YEND';

PROGRAM 12A

This program determines the eigenvalues of a symmetric quin-
diagonal matrix of semi-bandwidth P, using the modified bisection
algorithm of Chapter 5. Also included are the modifications suggested

by Tewarson for small element replacement.

'"PROCEDURE* MBQS(C,B,D,N,N1,N2,P,EPS,QZR,EIG);
'COMMENT' C is the diagonal, B the sub-diagonal, and D the diagonal of
semi-bandwidth P of the matrix of order N. The eigenvalues N1 to
N2 (N22N1, eigenvalue 1 being the smallest) are calculated by the
modified bisection method and stored in EIG[1:N2-N1+1]. EPS1 is
the accuracy required and QZR the number closest to machine zero
(used to prevent zero divisions);
'ARRAY' C,B,D,EIG;
'REAL' EPS,QZR;
'INTEGER' N,P,N1,N2;
'BEGIN'
YARRAY' R[P:N,3:P],U,V[1:N];
'REAL' MIN,MAX,S,H,NEW,NEWER,LAMBDA ;
VINTEGER' I,J,T,K,L,M;
B[1]<0;
H«ABS(B[N])+ABS(D[N]); °
MAX<C[N]+H;
MIN<C[N]-H; :
'FPR' I<N-1 'STEP' -1 'UNTIL' 1 ‘D@’
YBEGIN!
H«ABS (B[I]+ABS(B[I+1]);
'IF! P-I+1 'LE' N 'THEN?
H«H+ABS(D{P-1+1]);
'IF' I 'GE' P 'THEN'
H«H+ABS(D[I]);
*IF' C[I]+H 'GT' MAX 'THEN' MAX<C[I]+H;
'IE! C[I]-H 'LT* MIN 'THEN' MIN<«C[I]-H;

'END';
'FPR' I«P 'STEP' 1 'UNTIL' N 'D@"
R[I,P]«D[I];

'FPR' I<l 'STEP' 1 'UNTIL' P-1 'D@'
V[I]«B[I];

L«N1-1;

LABA: 'IF' L 'GE' N2 'THEN' 'G@T@' EXIT;
LAMBDA+(MIN+MAX) *0.5;
LABB: M«O;
U[1]+«C[1]-LAMBDA;
'IF' U[1] 'LT' O 'THEN' MeM+1;
"IF' L-M 'LT' O 'OR' L-M-N+I 'GT' O 'THEN' 'G@T@' LABC;
'"IF* U[1] 'EQ' O 'THEN' U[1]«QZR;
'FPR! I<2 'STEP' 1 'UNTIL' P-1 'D@'
'BEGIN®
S<«C[I1]-LAMBDA-V[I]*V[I]/U[I-1];
'IF' § 'LT' O 'THEN' MeM+1;
'IF' L-M 'LT' O '@R' L-M-N+I 'GT' O *THEN' 'G@PT@' LABC;

218

LABC:

EXIT:
'END';

219

*IF' S 'NE' O 'THEN' U[I]&S 'ELSE' U[I]«QZR;
' VEND'; '
'F@R' I+P 'STEP' 1 'UNTIL' N 'D@!
'BEGIN! e
S«-R[I,P]*V[I-P+2]/U[I-P+1];
'IF' ABS(S) 'LT' 0.0000001 'THEN' S<R[I,P-1]«0 'ELSEY R[I,Ri]<S;
'FPR' K<P-2 'STEP' -1 'UNTIL' 3 t'D@'
'BEGIN!
T+I-K+1;
S«S*V[T]/U[T-1];
tIF' T 'GE' P 'THEN!'
'FPR' J«P-K-2 'STEP' -1 'UNTIL' O 'DQ'
S<S-R[I,P-J]*R[T,P+1-K-J]/U[I-P+J+1];
'IF' ABS(S) 'GT' 0.0000001 'THEN' R[I,K]«S 'ELSE' R[I,K]«S<O0;
*END';
$+B[I]-S*V([I-1]/U[I-2];
*IFf 1-1 'GE' P 'THEN'
'FPR' J«P-4 'STEP' -1 'UNTIL' O ‘'D@*
S«S-R{I,P-J]*R[I-1,P-1-J]/U[I-P+J+1];
'IF' ABS(S) 'GT' 0.0000001 'THEN' V[I]+S 'ELSE' V[I]+S<0;
S+«C[I1]-LAMBDA-5*S/U[I-1];
'E@R' J<P-3 'STEP' -1 'UNTIL' O 'D@'
S«S-R{I,P-J]*R[I,P-J]/U[I-P+J+1];
TIF' S 'LT' O "THEN' MeM+1;
*IF' L-M 'LT' O 'PR' L-M-N+I 'GT' O 'THEN' ‘G@T@' LABC;
'IF* S 'NE' O 'THEN' U[I]«S 'ELSE' U[I]«QZR;
YEND';
'IF' L-M 'GE' 0 'THEN'
*BEGIN'
_= NEWERMIN;
MIN<LAMBDA;
LAMBDA<LAMBDA+ (LAMBDA-NEWER) *0.5;
lENDl
'ELSE!
'BEGIN!
LAMBDA< (LAMBDA+MIN)*0.5
*TF' (LAMBDA-MIN}*0,5/ABS (LAMBDA) 'LT' EPS
*THEN'
"BEGIN!
MIN«2*LAMBDA-MIN;
'F@R' I«+L+1 'STEP' 1 'UNTIL®
(*IF' M 'GT" N2 '"THEN' N2 'ELSE' M)
'DA' EIG[I-N1+1}LAMBDA;
LM
'GOTO' LABA;
'END!';
'END!;
'G@T@' LABB;

220

PROGRAM 13
The following program is the ALGOL 60 program to determine the
eigenvectors of a banded symmetric quindiagonal matrix of semi-bandwidth

P using inverse -iteration.

'PRGCEDURE' EIGVEC (C,B,D,N,P,M,EIG,VEC);

'COMMENT' C is the diagonal, B the sub-diagonal and D the diagonal of semi-
bandwidth P of the (NxN)} matrix N>4, There are M eigenvectors
required with corresponding eigenvalues stored in EIG. When the
eigenvectors have been determined by inverse iteration they are
stored in the columns of VEC.

'VALUE' C,B,D,N,M,P,EIG;

"ARRAY' C,B,D,EIG,VEC;

" INTEGER' N,P,M;

'BEGIN'

YARRAY' V[1:N,P-1:N],U[P:N,1:P-2],W,Y,[2:P],X[1:P],Z[3:P],VT[1:N];
'REAL' S;
'INTEGER' 'ARRAY' IC[1:N-1];
"INTEGER' 1,J,K,L,R,T;
X[P-1]«Y[P-1]«Z[P]+0;
'FGR R<1 'STEP' 1 'UNTIL' M 'D@!
YBEGIN'
'"COMMENT' This sets up the matrix in U,V,W,X,Y,Z and sets
the initial vector VT to all 1's,
'FPR' I«1 'STEP' 1 'UNTIL' N 'D@'
VT[I]«l;
T+<0;
'FPR' I+«2 'STEP' 1 'UNTIL!' P-2 'D@°'
'BEGIN®
X[1]«C[I]-EIG[R];
Y[I]«W[I]+B[I];
Z[1+1]+0;
'END' ;
W{P-1]«B{P-1];
X[1]«C[1]-EIG[R];
'FPR' I+l 'STEP' 1 'UNTIL' N 'D@'
'*BEGIN'
'FPR' J+P-1 'STEP' 1 'UNTIL' N 'D@!
VII,J]+0;
'END';
'FOR I<1 'STEP' 1 'UNTIL' N 'D@®
*BEGIN?
'FPR' J«1 'STEP' 1 'UNTIL' P-2 D@’
U[1,J]<0;
YEND';
'IF' P-3 'LT' N-P 'THEN'
'BEGIN?
'F@R' I+0 'STEP' 1 'UNTIL' P-3 'D@’
U[P+I,I+1]«D[P+I];
'FPR' I+«P-2 'STEP' 1 'UNTIL' N-P tD@!
V{P+I,I+1]<D[P+I];
'FOR' I+0Q 'STEP1 'UNTIL' N-P 'D@!

V[I+1,P+I]«D[P+I];
VEND!
'ELSE!
*BEGIN' ‘
'FPAR' I+0 'STEP' 1 'UNTIL®' N-P 'Dg?
U[P+1,I+1])«V[I+1 ,P+1]«D[P+I];
'END' ;
'FPR' T+P 'STEP' 1 'UNTIL' N 'D@'
'BEGIN'
V[I,I]+C{I]-EIG[R];
V[I,I-1]<V[I-1,I]«B[I];
'END';
V[P-1,P-1]«C[P-1]-EIG[R];
V[P-2,P-1]+B[P-1];
'FPR' I«1 'STEP' 1 'UNTIL' P-4 'D@!
'BEGIN'

'C@MMENT® First stage of interchange and elimination of

variables in rows 1-P-4, Interchanges noted in

L+0; S«ABS(X[I]):;
'IF' S 'LT ABS(W[I+1]) 'THEN'
'BEGIN'
L«I+1'; SeABS(W[I+1]);
'END'; ‘
'FAR' J<«P 'STEP' 1 'UNTIL' N 'D@®
'IF' S 'LT' ABS(U{J,I]) 'THEN'
'BEGIN'
L+J; S<ABS(U[J,I]);
'END';
IC[I]«L;
'TF' L 'EQ' I+1 'THEN!
*BEGIN!
S«X[1]; X[I]«W[L]; W[L]<S;
S+Y[L]; Y[L]«X[L]; X{L]+S;
S«2[I1+2]; 2[I+2]«Y[I+2]; Y[I+2]+S;
'F@R' J+«P-1 'STEP' 1 ' UNTIL' N 'D@'
YBEGIN'
S«V{I,J]; VII,J]«V[L,J];
VIL,J}+S; ‘
'END!
'ELSE' |
'IF' L 'NE*' QO 'THEN!
*BEGIN!
S«X[I]; X[I]<«U[L,I];
U[L,I]+S;
S«Y[I+1]; Y[I+1]«U[L,I+1];
U{L,I+1]+S;
S«Z[I+2]; Z[I+2]«U[L,I+2];
U[L,T+2]+S;

'BEGIN'
SeV[I,3]; V[I,J1«V[L,J];
V[L,J]+S;
'END!;
*END';
"BEGIN®
S+W[I+1]+W[I+1]/X[I];

'FPR' J«P-1 'STEP' 1 'UNTIL' N ‘D@’

1Cs

221

X{T+41]+X[T+1]-S*Y{I+1];
Y[I+2]Y[I+2]-S*Z[1+2];

'FAR' J«P-1 'STEP' 1 'UNTIL' N 'D@'

V[I+1,J]«V[I+1,J]-S*V[I,J];

'FPR' J«P 'STEP' 1 'UNTIL' N 'D@'

'BEGIN'

'IFt U[J,I] 'NE' O 'THEN'

'BEGIN'

S«U[J,1]1+U[J,I}/X[1];

U[J,T+1]«U[J,I+1]-
U[J,1+2]<«U[J,I+2]-

S*Y[I+1];
S*z[1+2];

'FPR' K«P-1 'STEP' 1 'UNTIL' N 'Dp'
VIJ,K}«V[J,K]-S*V[I,K];

*END?;
'END*;
'END';
'END';
YEND?';
'COMMENT' Elimination of variables P-3 and
seperately as diagonals W,X,Y,Z merge
[+P-3; L+0; S+«ABS(X[I]);
'IF* S 'LT' ABS(W[I+1]) 'THEN'
'BEGIN'
L«I+1; S+ABS(W[I+1]);
'END';
*F@R' J«P 'STEP' 1 'UNTIL'N 'D@'
'IF' S 'LT' ABS(U{J,I]) 'THEN'
*BEGIN?
L+«J; S«ABS(U{J,ID);
'END!';
IC[I}<L;
'IF* L 'EQ' I+l 'THEN'
"BEGIN!
S«X[I}; X{I}«W{L]; W[L]<S;
S«Y[L]; Y[L)<X[L]; X[L]<S;
'FPR' J+P-1 "STEP' 1 'UNTIL' N ‘D@
'BEGIN!
S«V[I,J]; V[I,J]«V[L,J};
'VIL,J]<8;
'END!; .
'END'
'ELSE?
'TF* L 'NE' O 'THEN’
tBEGIN!
S¢X[I]; X[I]«U[L,I]; U[L,I]<S;
S<Y[I+1]; Y[I+1]«U[L,T+1]; U[L,I+1]«5;
'FPR' J«P-1 'STEP' 1 'UNTIL' N 'Dg"'
'BEGIN'
S«V{1,J);V[1,3]«V[L,J]; V[L,J]+S;
TEND';
'END'
'ELSE?
'IF' I, 'NE' O 'THEN'
T'BEGIN'
S¢X[I); X[II+U[L,t]; U[L,T]+S;
S+«Y[I+1]; Y[I+1]«U[L,I+1]; U[L,I+1]+S;
'F@PR' J«P-1 'STEP' 1 'UNTIL' N 'D@!

P-2 performed
into V;

222

223

'BEGIN®
S+V[I,J]; V[I,J]«V[L,J]; V[L,J]<S;

'END';
'END';
SeW[I+1]«W[I+1]/X[1];
X[T+1]«XfTI+1]}-S*Y[I+1];
'F@AR' J<«P-1 'STEP' 1 'UNTIL' N 'D@!
V[I+1,J]«V[I+1,J]-S*V[I,J];
'FAR' J«P 'STEP' 1 'UNTIL' N 'D@}

'BEGIN'
'"IF' U[J,I] 'NE' O 'THEN®
TBEGIN!
SU[J, 1])<u[J,I]/X[I];
U[J,T+1]«U[J,I+1]-S*Y[I+1];
TFPR' K«P-1 *STEP' 1 'UNTIL' N ‘D@’
V[J,K]«V[J,K]-S*V[I,K];
'END';
'END';

IP-2; L«0; S«ABS(X[I]);
'IF' S 'LT' ABS(W[I+1]) 'THEN'
'BEGIN®
L+I+1; S+ABS(W(I+1]);
YEND';
'FPAR' J+P 'STEP' 1 'UNTIL' N 'D@!
'"IF' S 'LT' ABS(U[J,I]) 'THEN'
"BEGIN' '
L«J; S«ABS(U[J,I]);
'END!;
IC[1]<L;
'IF' L 'EQ' I+1 'THEN'
'BEGIN'
SeX[I]; X[I]«W[L]; W[L]<S;
'FPR' Je<P-1 'STEP' 1 ‘'UNTIL' N 'D@’
'BEGIN!
S«v[I,J]; V[I,J]«VIL,J]; V([L,J}<S;
'END';
'END!
'ELSE!
'IF' L 'NE' O 'THEN'
'BEGIN?
SeX[I];X[1]«U[L,I];U[L,I]<S5;
'F@R' J«P-1 'STEP' 1 'UNTIL' N 'Dp'
'BEGIN'
S«V[I,J]; V[I,J)«V{L,J]; V][L,J]«S;
'END?';
'END' ;
S+W[I+1]+W[I+1]}/X[1];
'F@R' J«P-1 'STEP' 1 'UNTIL' N 'D@°’
V[I+1,J]+V[I+1,J]-S*V[I,J];
'FPR' J«P 'STEP' 1 'UNTIL' N 'D@
'BEGIN!
'"IF' U[J,I] 'NE' O *THEN'
'BEGIN'
S<U[J,I]<U{J,11/X[1];
'FAR' K«P-1 'STEP' 1 'UNTIL' N 'D@!
V[J,K]«V[J,K]-S*V[1,K];
TEND';
'END';

LABI:

'COMMENT' The variables to be eliminated are now contained
in the lower P-1 rows of V, and normal Gaussian
elimination is now performed;

'FAR' I+P-1 'STEP' 1 ' UNTIL' N-1 'D@'

'BEGIN?

L+0; S+«ABS(V[I,I]);
'FPR' J+«I 'STEP' 1 'UNTIL' N 'D@’
*IF' § 'LT' ABS(V[J,I]) 'THEN!
'BEGIN!
L«J; S+ABS(V[J,1]);
'END';
IC[I]+L;
'IF' L 'NE' O *'THEN'
'FAR' J+«I 'STEP' 1 'UNTIL' N 'D@!
YBEGIN!
S*V[I,J]; VII,JI«V[L,J]; V[L,J]<S;
'YEND';
'FOR' J+I+1 'STEP' 1 'UNTIL' N ‘DO’
'IF* V[J,I] 'NE' O '"THEN!'
'BEGIN'
S«V[J,I]«V[J,I}/V[I,1];
‘FOR' L+I+1 'STEP' 1 'UNTIL' N 'D@'
V[J,L]+V[J,L]-S*V[I,L];
'END'; .

'END'; .

'IF' V[N,N] 'EQ' O 'THEN' V[N,N]¢RELFEH;

'"CAMMENT® to avoid division by zero in the decomposing case
the last element is replaced by a small number if it is
zero, Back substitution now takes place;

VT[N]+VT[N]/V[N,N];

'F@PR' I+N-1 'STEP' -1 'UNTIL' P-1 'D@'

'BEGIN?
S«VT[1];
'FOR! J«I+1 'STEP' 1 'UNTIL' N ‘D@’
S«S-V[I,J]*VT[J]; <
VT[I]+S/V[I,I];

'END';

'F@R' I+P-2 'STEP' -1 'UNTIL' 1 'D@°®

. YBEGIN'

S<VT[I];

'FPR' J+P-1 'STEP' 1 'UNTIL' N ‘D@
S«SwV[I,JI*VT[J]; ,
VT[I]«(S-Y[I+1])*VT[I+1]-Z[I+2]*VT[I+2])/X[1];

YEND'; '

S+0;

FOl1ARA(1,1,N,0,0,S,VT[I],VT[I],1,5,5);

'"COMMENT' A N.A.G. subroutine is used here to perform double
length accumulation of products whilst normalising the
vector. '

S+1/SQRT(S);

'FPR' 1«1 'STEP' 1 'UNTIL' N ‘D@

VT[1]<VT[1]*S;

'IF' T 'EQ' 1 'THEN' 'G@T@' LAB2:

'CAMMENT' Elimination with interchanges now takes place using
stored information in two major steps;

'FPR' I«1 'STEP' 1 'UNTIL' P-2 'DP!

'BEGIN'

224

LAB2:

. 'END';

'"IFY IC[I] 'NE' O 'THEN®
'BEGIN' '
. SVT[I]; VT[I]<VT[IC[I]];
VT[IC[I]}S;
TEND';
S<VT{I]; _
VT[I+1]«VT[I+1]-S*W[I+1];
'FPR' J+P 'STEP' 1 'UNTIL' N.'D@!
VT[J]«VT[J]-S*U[J,I];
'END'; '
'FPR' I«P-1 'STEP' 1. 'UNTIL' N-1 'D@°'
'BEGIN! :
YIF' IC[I] 'NE' O 'THEN'
YBEGIN!
S«VT[I]; VT[I]+VT[IC[I]];
VT[IC[I]]+S;
'END'; :
S+VT{I];
'FOR' JeI+1 'STEP' 1 'UNTIL' N 'D@!
. VT[II+VT[J]-S*V[J,1];
TEND' ; .
T+T+1;
1GAT@' LAB1; |
'FPR!' J«1 'STEP' 1 'UNTIL' N 'D@'
VEC[J,R]<VT[J];
'END'; '

225

226
PROGRAM 14
This program finds the eigenvalues of an unsymmetric banded quin-
diagonal matrix.of semi-bandwidth P using Mullers method. Al%o inciu&ed
- are the two routines used to perform a complex division, and to find the

' square root of a complex number,

. VPR@CEDURE' MULLER(C,B,D,E,F,N,P,EPS,QZR,EIG,EIGI);
'CQMMENT' The main dlagonal of the matrix of order N is stored in the
vector C. The:two sub-diagonals are stored in B and D, and the
 bands at the semi-bandwidth P are stored in E and F, The accuracy
required is placed in EPS and QZR is the smallest number above :
machine zero to replace zero divisors. The eigenvalues are
placed in EIG,EIGI when determined; '
.'VALUE' c,B,D,E,F,N,P,EP5,QZR;
'ARRAY' C,B,D,E,F, EIG EIGI;
'REAL' EPS,QZR;.
VINTEGER' N,P; _
"BEGIN' _
'ARRAY R,RI,RL,RLI[P:N,3:P]},U,UI,V,VI VL,VLI,SN,SNI,TN,TNI{1:N];
'INTEGER' T,B1,1,J,K,L,M,2;
TREAL' X1 X2 X3 FI F2 F3 X1I1,X2I,X31,F11,F21,F31 ,X,XI G GI,A, AI W,
WI,Y,YI,VS, VSI INT INTILH, HI 'S, SI SL SLI,
VF@R! I+P 'STEP' 1 'UNTIL' 'Dﬂ'
'"CPMMENT' The vectors for calculatmg and storlng the Sturm
' ~ sequence are initialised;
., 'BEGIN' -
©UR[LPID(I];
RL[I,P]+F[I1];
RI[I,P]+RLI[I,P]+0;
'END'; ‘
'FAR' I+«2 'STEP' 1 'UNTIL' P-] D@’
'BEGIN'
S VI[I]+VLI[I] 0;
VL[I]<E[1];
- V[I]+B[I];
. 'END';
Bl«0;
V[1]+VI{1]+VL[1]*VLI[1]+0,
TL+l;
2+0;
X3+C[1]+0 1'
- X3I<0;
- LABY; 'BEGIN'
o Z+Z+1
'IF' C{1]-X3 'EQ' O 'AND' X3I 'EQ' O 'THEN'
'BEGIN'
- U[1]«UI{1]+QZR;
'END?* '
YELSE'.
'BEGIN'
U[1]«C[2]-X3; UI[1]+-X3I;
'END!';
'FPR' I+2 'STEP' 1 'UNTIL' P-1 'D@!

227

'BEGIN!

INTV[I]*VL[I]-VI[I]*VLI[I];
INTI«V[I]*VLI[L]+VL[I]*VI[I];

+ DIV(INT,INTI,U[I-1],UI[I-1],INT,INTI);

'END?
'F¢R'

1BEGIN'

U[I]1+C[I]-X3-INT;

UI[I]«-X3I-INTI;

*IF' U[I] 'EQ' O 'AND' UI[I] 'EQ' O 'THEN'
U[T]+QZR;

I«P 'STEP' 1 'UNTIL' N 'D@'

DIV[VL[I-P+2],VLI[I-P+2] ,U[I-P+1],UI[I-P+1],
INT, INTI};
DIV(V[I-P+2],VI[I-P+2],U[I-P+1],UI[I-P+1],
H,HI);
R[I,P-1]«-R[I,PJ*INT+RI*INTI;
RI{I,P-1}«-RI[I,P]*INT-R[I,P]*INTI;
RL{I,P-1]«~RL[I,P]*H+RLI[I,P]*HI;
RLI[I,P-1]«-RLI[I,P}*H-RL{I,P]*HI;
'FPR' K+P-2 'STEP' -1 'UNTIL' 3 'D@'
'BEGIN' -
T«I-K+1;
DIV(VL[T],VLI[T],U[T-1],UI[T-1],INT,INTI);
PIV(V[T],vI[T],U[I~1},UI[T-1],H,HI);
S+-R{I,K+1]*INT+RI[I,K+1]*INTI;
SI+-R[I,K+1]*INTI-RI[I,K+1]*INT;
SLe-RL[I,K+1]*H+RLI[I,K+1]*HI;
SLI«-RL[I,K+11*HI-RLI[I,K+1]*H;
'IF' T 'GE' P 'THEN'
'F@R' J«P-K-2 'STEP' -1 'UNTIL' O 'D@?
'BEGIN' .
DIV(RL[T,P+1-K-J1,RLI[T,P+1-K-J],
U[I-P+J+1],UI[I-P+J+1],INT, INTD;
DIV(R[T,P+1-K-J],RI[T,P+1-K-J];
U[I-P+J+1],UI[I-P+J+1],H,HI);
S+5-R{I,P-J]*INT+RI[I,P-J]*INTI;
SI+SI-R[I,P-J]*INTI-RI{I,P-J]*INT;
SL+SL-RL[I,P-J]*H+RLI[I,P-J]*HI;
SLI«SLI~RLI[I,P-J]|*H-RL[I,P-J]*HI;
'TEND';
R[I,K]«S;
RI[I,K])+SI;
RL{I,K]+SL;
RLI{I,K]<SLI;
'END?;
DIV(VL[I-1],VLIfI-1],u[1-2],UI[I-2],INT,INTI);
DIV(V[I-1],VI[I-1},U[I-2],UI{1-2],H,HI);
SeB{I]-R[I,3]*INT+RI[I,3]*INTI;
SI+~-R[I,3]*INTI-RI[I,3]*INT;
SL«E[I1]-RL[I,3]*H+RLI[I,3]*HI;
SLI«-RL[I,3]*HI-RLI[I,3]*H;
'IF' I-1 'GE' P 'THEN'
'FPR' J+«P-4 'STEP' -1 'UNTIL' O 'D@'
'BEGIN' '
DIV(RL[I-1,P-1-J],RLI[I-1,P-1,J],
U[I-P+J+1],UI[I-P+J+1],INT,INTI);
DIV(R[I-1,P-1-J],RI[I-1,P-1-J],
U[I-P+J+1],UI[I-P+J+1],H,HI);

228

S¢S-R[I,P-J);*INT+RI[I,P-J]*INTI;
SI+SI-R{I,P-J]*INTT-RI[I,P-J]*INTI;
SL+SL-RL[I,P-J]*H+RLI[L,P-J]*111;
SLI+SLI-RLI[I,P-J]*UERL[I,P-J}*H ;

'END';

V[1]+S;

VI[I]+SI;

VL[I]+SL;

 VLI[I]+SLI;

DIV(V[I],vI[1],0fI-1],UE{1-1],INT,INTI);

S+C[I]-X3-VL[I]*INT+VLI[L}*INTI;

SEX3I-VL[I]*INTt-VLI[I]*1NT;

YFORY J«P-3 'STLEPY -1 CUNTIL' O 'Dpt

*BEGIN'.
DIV(R[I,P-J),RI[L,P-J],UE-P+J+1],
UI[I-P+J+1]),H,HI);
S+S-RL[1,P-JJ*H+RLL[I,P-J)*HI;
SI«SI-RL[I,P-J]*HI-RLI[I,P-J]*1;

YEND';

U[1]+S;

UI[I]+S;

VIF' U[I] *EQ* O 'AND' UI[1] 'EQ' O “PHEN' U[I}QZR;

'END';

'COMMENT' After finding the Sturm sequence it is "deflated"
to prevent redetermination of known eigenvalues;

'FPR' J«2 'STEP' 1 'UNTIL' L 'Dpp?

YBEGIN!

H+EXIG[J-1]-X3;
HI+EIGI[J-1]1-X31;
DIV (U[N+2-0],01 [N+2-0], 10,14, U[N+2-01 UL [N+2-0]);
~YEND';
F3<U|N];

F3I+UI[N];

PR JeN-1 'STEPR' -1 'UNFLIL' N-1+1 '@

'BEGIN'

Hel3; HI€E3T;
F3el*U[J]-UE*UL[I];
F3I+HI*U[J]+H*UL[I);

'END';

ICAMMENT® As three function evaluations at three different points
are required for Mullers method at each step, two are chosen
randomly. The third is found from the previous two using the
Secant formula, and the method can then proceed normally.
The following code governs this process. ‘ '

'IF' B 'LT' 2 "THEN'

VBEGIN'

Y[EY B1 'EQ' O 'THEN'

BEGIN!
Bl«1;
YEARY Jel 'STEP' 1 'ONTILY N ‘D@!
'BEGIN'

SN[JJ<U[J]; SNL[JJ<UE|T];

YEND'Y;

XLeX3; X1IeX31; X3«([1]+1;
Fl<U[N]; F1I<UI{N];
'GATY' LABL;

Fl

"END!

VELSLE!

'BLEGIN®
Bl+2;

'FORY J+l 'STEP' 1 'UNTIL' N 'D@!

'BEGIN'
TN{J]<U[J];
INE[JY«UE[J]);
'END';
X2+X3; X2I1+X31;
F2<U[N]; F2I<U1[N];
HeIN[N]-SN[N];
HI<ENI[N]-SNI[N];
INT+X2-X1;
INTI«X2I-X11;

DIV(H,HI, INT, INTL, W, W1);
DIVCININ],INL[N] W, W1, 0,101 ;

X3¢X2-H;
X31X21-111;
X«X3-X2;
XIeX3I1-X21;
AeX2+X1;
AL+X2I-X11;
DIV(X,XI,A,AL,A,AL);
'GATA LABL;
TENDY
YEND*;

'COMMENT* Mullers formula is now calculated using three previous
function evaluations at points within the c¢igenvalue spcectrum;
Ge(1+2*A)* (F3-F2)-(2*A1)* (F31-F21) - [A*A-AL*AT)*

(F2-F1)+2*A*AT* (1'2)-F11};

GI«(142*A)* (F3I-F21)+2*AT* (F3-F2) - (A*A-AL*Al)*

(F2I-F1I)-(F2-1:1) *2*A*AT;
WeA* (F2-F1) -AI* (F21-F11);,
WI«AI*(F2-F1)+A*(F21-F11);
Y(F3-F2-W)*A- (L3-1L21-WI) *AL;
YI<(F3-F2-WY*AL+ (E3L-J2I-WL)*A;
VS«(1+A) *Y-A1*YI; ‘
VSI+<{1+A) *YI+AL*Y;
Wed* (VS*F3-YSI*F31);
WI«4* (VSI*[3+V5*%131);
Y+G*G-GI*GI-W;
YI<2*G*GI-WI;
ISQRT(Y,YI,Y,YI);
H<G-Y;
HI+GI-YI;
INT+G+Y;
INTI+GI+YI;
W+H*H+[1+1I;
WI«INT*INT+INTI*INTI;
VS+-2*F3* (1+A)+2*F31*A) ;
VSI+-2* (F3*AT+F31*(1+A));
YIF' W *GT' WI 'THEN'
DIV(VS,VSI,H,HT ,A,AD
YELSE!
DIV(VS,VSI,INT,INTIL,A,AT);
WeX*A-X1*AL;
WI+XI*A+X+AT;
HeSQRT{(W*W+WI*WI) ;

'IF' H/SQRT(X3*X3+X3L1*X31) 'LFY EPS PTUENY

229

LAB2:

'BEGIN?

'END*
'ELSE!
'BEGIN'

EIG[L]+X3+W;

EIGT[L]+X3T+WE;
INT<EIG[L]-X1;
INTI<EIGI[L]-X11;
DIV{FY,FL1I, INT,INTL,FL,¥11);
INT+EIG[L]-X2;
INTI<EIGT[L]-X21;
DIV(F2,F21,INT, INTI,F2, 12I),
L+L+1;

Z+0;

U«F2-1'1;

HI+F21-F11;

INT+X2-X1;

INTI«X2FE-X11;

VIEY INT 'EQ' O 'AND' INTL 'LEQ' O
'FTHLEN' INT€LEPS;

X+W;

XE<WI;

DIV HD, INT, INTT, L) ;
DIV(F2,F21,H,HL,H,11);
X3+X2-H;

X31eX2I-HI;

Bl+l;

'TE' L YEQ' N+#1 UTHEN' 'GAI9 LALZ;

'GPt LABL;

- X1eX2; X1I+X21,
X2«X3; X2I+X31;
X3¢X24W; X3T«X21+W;
X<W; XI<WI;
FleF2; F1l1+F2l;
F2+F3; F2I+1'31;
FPR' Jel 'STEP' 1 'UNTIL® N '@
'"BEGIN'
SN[JI<IN[I]; SNL[J]INL[JS];
TNEJ]«U[2]; INLEI]<UL[)]);
YEND';
TGOT@ LABL;

YEND';

'END';

"END?;

'PROCEDURE' DIV(A,B,C,n, LI, F);

'VALUE' A,B,

c,b;

'REAL' A,B,C,D,E

'BEGI

NI
'REAL' H;

LHC*C+D*D;
E«(A*C+B*D} /Il;
Fe«(C*B-A*D} /1
TEND?;

230

231

"PROCEDURE' ISQRT(A,B,C,D);
'"VALUZ! A,B;
'REAL' A,B,C,D;
'BEGIN'
'REAL" R,THI,P;
RSQRT(SQRT(A*A+B*B)) ;
PI+3,1415926536;
'IF'* A 'EQ' O 'TIEN!
'BEGIN'
'IF* B 'GT' O '"THEN?
THI+PI/4
YELSE!
THI«3*P1/4;
'END'
'ELSE'
'IF' B 'EQ' O *'TIHEN?
'BEGIN'
'IF' A 'GT' O 'THEN?
THI«0
'ELSE’
THI+PI/2;
'END*
'ELSE'
YIFY A 'GT' O 'AND' B 'GT' O “IIEN!
THI+ARCTAN (B/A) /2
*ELSE! -
YIF' A 'LT' O 'AND* B 'GT' O 'IHEN?
THI+ (ARCTAN(-A/B)+P1/2) /2
"ELSE!
'IF' A 'GT' O 'AND' B 'LT' O '(lLN®
THI+ (ARCTAN(-A/B)+P1*1.5)/2
'ELSE!
THI+(ARCTAN(B/A) +P 1)/ 2;
C+R*C@S (THI) ;
D+R*SIN(THI};
'YEND';

232

PROGRAM 15

This procedure determines the eigenvalues of a periodic quindiagonal
matrix using the bisection method. The Sturm sequence used is the space

saving algorithm of section 6.2 in a modification of the bisection

algorithm of program 1.

*PROCEDURE' PQUINS{(C,B,D,E,N1,N2,M,EPS,EPS51,QZR,EIG);

'CHOMMENT® C is the main diagonal, B the sub-diagonal, and E the sub-
sub-diagonal of the matrix of order N. The three corner elements
are contained in the vector D. The eigenvalues N1 to N2 (N1gNZ2,
eigenvalue 1 being the smallest) are calculated by bisection and
stored in the vector EIG[1:N]. EPS1 is the accuracy required,
and QZR is the number closest to machine zerc. The total number
of iterations is stored M and EPS2 gives the actual accuracy
attaineds

*VALUE®' C,B,D,E,N,N1,N2,EPS,QZR;

'ARRAY' C,B,D,E,EIG;

'REAL' EPS,EPS1,QZR,EIG;

VINTEGER' N,N1,N2,M;

'BEGIN'

'REAL' MAX,MIN,NEW,NEWER,UNI,UN,VN,U1,V1,U2,v2,S,F,G,H,R,Q;
'INTEGER' I,J,K,L,T;
B[1]<«E[1]+E[2]+0; .
'CAMMENT' The limits on the eigenvalue are now determined (MAX,MIN);
'BEGIN' :
NEW<ABS(B[N])}+ABS(E[N])+ABS(D[2])+ABS(D[3]);
MAX<«C[N]+NEW;
MIN«C{N]-NEW;
NEW<ABS(B[N])+ABS(B[N-1])+ABS(D[1])+ABS(E[N-11);
NEWER<C[N-1] +NEW;
NEW<C[N-1]-NEW;
'TF' NEWER 'GT' MAX 'THEN' MAX<NEWER;
'IF' NEW 'LT* MIN *THEN' MIN<NEW;
NEW<ABS(B[2])+ABS(D[1])}+ABS(D[2])+ABS(E[3]);
NEWER<C{1]+NEW;
NEW<C[1]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAXs-NEWER;
'"IF' NEW 'LT' MIN 'THEN' MIN¢NEW;
NEW<ABS(B[2])+ABS(B[3]1)+ABS(D[3])+ABS(E[4]);
NEWER<C [2] +NEW;
NEW<C[2]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX¢NEWER;
'TF' NEW 'LT' MIN 'THEN' MIN¢NEW;
'FPR' I«3 'STEP' 1 'UNTIL' N-2 'D@°'
'BEGIN?
NEW<ABS (B[I])+ABS(B[I+1])+ABS(E[I])+ABS(E[I+2]);
NEWER<C [I]+NEW;
NEW<C [1]-NEW;
*TF' NEWER 'GT' MAX 'THEN' MAX4NEWER;
'IF' NEW 'LT' MIN 'THEN' MINeNEW;
'END’;
TEND';

EPS1<QZR* ("IF' MIN+MAX 'GT' O *THEN' XMAX 'ELSE'-XMIN):
'IF' EPS 'LE' O 'THEN' EPS+EPS1;
EPS1<0. 5*EPS+7¥EPSL;
V2+B[2];
'BEGIN'
YARRAY' WU[N1:N2]; 'REAL' S,X1,XU,XO0;
'VINTEGER' A;

XOMAX;
'FOR' I<N1 'STEP' 1 'UNTIL® N2 'Dpt
'BEGIN!
X[I]+MAX; WU[I]<MIN;
'END';
M<0;
'F@R' Li«N2 'STEP' -1 'UNTIL' N1 'D{¢
'BEGIN?
XUMIN;
'F@R' I<L 'STEP' -1 ‘UNTIL' N1 'D@°'
'BEGIN'
'IF' XU 'LT" WU[I] 'THEN'
'BEGIN'
XU<WU[I]; 'GRAT@' CONTIN;
'END';
'END'; '
CONTIN: 'IF' X0 'GT* X[L] 'THEN' XO<X[L];

'FPR' X1<+(XU+X0)/2 '*WHILE' X0-XU 'GT'
2*QZR* (ABS (XU) +ABS (X0))+EPS 'D@'
YBEGIN!
McM+1; Ae O3
TCOMMENT' calculation of the Sturm sequence now
takes place to determine the number of negative
elements in the sequence (A);
UI«'IF' C[1]-Xl 'EQ' O 'THEN' QZR 'ELSE' C[1]-X1;
'IF' Ul 'LT' O 'THEN A<A+1;
U2«C[2]}-X1-V2*V2/Ul;
YIFY U2 'LT' O '"THEN' A+«A+];
*IF' U2 'EQ' O 'THEN' U2+QZR; .
G+-D[1]*B[2]/U1;
H«D[3]-B[2]*D[2]/U1;
Re-E[3]*D[1]/U1;
Qe-E[3]*D[2]/U1;
UNI<C[N-1]-X1-D[1]*D[1]1/U1-G*G/U2;
UN<C[N]-X1-Df2]*D[2]/U1-H*H/U2;
VN<B[N]-D[2]*D[1]/U1-G*H/U2;
'FPR' I+«3 'STEP' 1 'UNTIL' N-4 'D@'
'*BEGIN'
V2«B|1]-V2*E[1]/U1;
S«U2;
U2«C[I]-X1-V2*V2/S-E[I]*E[I}/U1;
UleS;)
IF U2 'LT' O '"THEN' A<A+l;
'IF' U2 'EQ' O '"THEN' U2«QZR;
F+V2/Ul;
NEWeR~G*F;
NEWER«Q-H*F;
F<«E[I+1]/UL;
R+«-G*F;
Q<-H*F;
G<NEW;
H<+NEWER;

233

234

UN1<UN1-G*G/U2;
UN«UN-H*H/U2;
VNeVN-G*H/U2;
YENDY;
V2«B[N-3]-V2*E[N-3]/U2;
S<U2;
U2¢C[N-3]-X1-V2*V2/S-E[N-3]*E[N-3]/UL;
Ul<S;
'IF' U2 'EQ' O 'THEN' U2.QZR;
'IF' U2 'LT' O '"THEN' A<A+l;
V1<B[N-2]-V2*E[N-2]/UL;
5U2;
U24C[N-2]-X1-V1*V1/S-E[N-2]*E[N-2]/UL;
'IF* U2 'EQ' O 'THEN' U2+«QZR;
TTF' U2 'LT' O 'THEN' A«A+l;
R<E[N-1]+R;
F<V2/Ul; ’
R«R-G*F;
Q«Q-H*F;
F<E[N-2]/U1;
V2+«B[N-1]-G*F;
H<E[N]-H*F;
UN1«UN1-R*R/S;
UN«UN-Q*Q/S;
VN<VN-R*Q/S;
F<V1/5;
V2+«V2-R*F;
He«H-Q*F; o
UNI+UN1-V2%V2/U2;
'TF' UN1 'EQ' O 'THEN' UN1+QZR
'IF' UN1 'LT' O 'THEN' A<A+l;
UN«UN-H*H/U2;
VN«VN-H*V2/U2; .
UN<«UN-VN*VN/UN1 ;
'IF' UN 'LT' O 'THEN' A<A+1l;
'TF' A 'LT' L 'THEN'
'BEGIN!
TTF* A 'LT' N1 '"THEN' XU<WU[N1]<X1
'ELSE?
'BEGIN'
XUWU[A+1]+X1};
'IF' EIG[A] 'GT' X1 'THEN' EIG[A]+X1
'END';
tEND!
'ELSE!' X0«X1;

YEND';
EIG[L]+«(X0+XU)/2;

'END"' ;
"END' ;
YEND';

235

PROGRAM 16

This procedure determines the eigenvalues of a periodic quindiagonal

matrix using the bisection method. The Sturm sequence used is the time

saving algorithm of section 6.2 in a modified bisection algorithm as

described in Chapter 5.

'PRPCEDURE® PQUINT(CB,D,E,N,N1,N2,M,P,EPS,QZR,EIG);
'*ARRAY' C,B,D,E,EIG;

"INTEGER' N,P,N1,N2,M;

'REAL' EPS,QZR;

1BEGIN'

LABA:

LABB:

*ARRAY' U,V[1:N];

'REAL' MAX,MIN,NEW,NEWER,LAMBDA,S,¥,G,H,R,Q,Ul,V1,UN,VN;

'INTEGER! I,K,L,T;

B[1]«E[1]<E[2]<0;

'COMMENT ' The limits on the eigenvalues are now determined (MAX,MIN);
'"BEGIN'

NEW<ABS (B [N])+ABS(E[N])+ABS(D[2])+ABS(P[3]);

MAX<+C [N]+NEW;

MIN+C{N]-NEW;

NEW<ABS(B{N])+ABS({B[N-1])+ABS(D[1]}+ABS(E[N-1]);

NEWER<C[N-1]+NEW;

NEW<C[N-1]-NEW

'TF* NEWER 'GT' MAX 'THEN' MAX<NEWER;

'IFY NEW 'LT* MIN 'THEN' MINeNEW;

NEW<ABS (B[2])+ABS(D[1])}+ABS(D[2}) +ABS(E[3]);

NEWER<C [1] +NEW;

NEW<C{1]-NEW;

'IF'* NEWER 'GT' MAX 'THEN' MAX«NEWER;

'IF* NEW 'LT' MIN 'THEN' MINeNEW;

NEW<ABS(B[2])+ABS(B[3]}+ABS(D[3])+ABS(E[4]);

NEWER<C[2]+NEW;

NEW+<C [2] -NEW;

'IF' NEWER 'GT' MAX 'THEN' MAXe<NEWER;

IF NEW 'LT' MIN 'THEN' MIN<NEW;

'FPR* I+3 'STEP' 1 'UNTIL' N-2 ‘D@

'BEGIN'
NEW<ABS(B[1})+ABS(B[I+1])+ABS(E[1])+ABS(E[I+2]);
NEWER<«C[I]+NEW;

NEW<C[I]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX¢NEWER;
YIF' NEW 'LT' MIN *THEN' MINeNEW;
YEND*;
*END?;
V[2]+B[2];
L+N1-1; th
'"CAMMENT' Now the major loop is performed to obtain the L eigenvalue;
YIF' L 'GE' N2 '"THEN' 'GOTH' EXIT;
LAMBDA«(MIN+MAX) *0.5;
'BEGIN' K<O;
U{1]«'IF' C[1]-LAMBDA 'EQ' O 'THEN' QZR 'ELSE' C[1]-LAMBDA;
TF U[1] 'LT' O 'THEN' K<K+1;
TIF' L-K 'LT* O "@R' L-K-N+I 'GE' O 'THEN' 'GP1@' LABC;

236

U[2]<C[2] -LAMBDA-V[2]*V{2]/U[1];
'IF' U[2] 'EQ' O 'THEN" U[2]+QZR;
'IF' U[2] 'LT' O 'THEN! K<«K+l1;
'TF' L-K 'LT' O '¢R' L-K-N+I 'GE' O 'THEN' 'G@T@' LABC;
YRR I+«3 'STEP' 1 'UNTIL' N-2 'D@!
'BEGIN!
VII]«B{I}-V[I-1]*E[I]/U[I-2];
U{I]«C[1]-LAMBDA-V[I]*V[I]/U[I-1]-E[I]*E[1]/U[1-2];
'IF' U[I] 'EQ' O 'THEN' U[I]+<QZR;
YIF' 'LT' O 'THEN' K<K+1;
. 'IF' L-K 'LT" 0 'OR' L-K-N+I 'GE' O 'THEN' 'G@AT@' LABC;
'‘END"'; .
Ge-D[1]*B[2]/U[1];
HD[3]-B[2}*D[2]/Uf1];
Re-E[3]*D[1]/U[1];
Q«-E[3]*D[2]/U[1];
U1<C[N-1]-LAMBDA-D[11*D[1]/U[1]-G*G/U[2];
UN<«C [N]-LAMBDA-D[2]*D[2]/U[1] -H*H/U[2] ;
VN«<B[N]-D[2]*D[1]/U[1]-G*H/U[2];
'FOR' I«3 'STEP' 1 'UNTIL' N-4 ‘D¢
'BEGIN'
F<V[I]/U[I-1];
NEW<R-G*F;
NEWER<Q-H*F;
F<«E[I+1]/U(I-1};
R«-G*F;
Qe-H*F;
G+NEW;
H«NEWER;
Ul<U1-G*G/U[I];
UN«UN-H*H/U[1];
VN<VN-G*H/U[I];
'END"';
R<E[N-1]+R;
F<+V[N-3]/U[N-4];
R<R-G*F;
QeQ-H*F;
F<E[N-2]/U[N-4];
V1<B[N-1]-G*F;
H<E[N]-H*F;
Ul<U1-R*R/U[N-3];
UN<«UN-Q*Q/U[N-3]:
VN+VN-R*Q/U[N-3]; A
F«V[N-2]/U[N-3];
V1+V1-R*F;
HeH-Q*F;
U1<U1-V1*V1/U[N-2];
TIF' Ul 'EQ' O '"THEN' Ul<QZR;
VIF' Ul 'LT' O '"THEN' K<K+1;
UN<UN-H*H/U[N-2];
VN<VN-H*V1/U[N-2];
UN<UN-VN*VN/U1;
'IF' UN 'LT' O 'THEN' K«¢K+1;
'END';
LABC:'IF' L-K 'GE' O 'THEN!
'BEGIN'
NEWER<«MIN;
MIN<LAMBDA ;
LAMBDA+LAMBDA+ (LAMBDA-NEWER) *0.5;

237

'END'
'ELSE!
"BEGIN'
LAMBDA< (LAMBDA+MIN) *0.5;
'TF* (LAMBDA-MIN}*0.5/ABS(LAMBDA)} 'LT' EPS 'TIHEN'
'BEGIN'
MIN«2* LAMBDA-MIN;
'FPR' I<L+1 'STEP' 1 'UNTIL' ('IF' K 'GT' N2 'THEN®
N2 'ELSE' K) 'D@!
EIG[L-N1+1]<LAMBDA;
L<K;
'G@ETA' LABA;
'END';
tEND';
'GPTP' LABB:
EXIT:

'END',;

238

PROGRAM 17

This procedure determines the eigenvectors of a symmetric periodic
quindiagonal matrix using inverse iteration. The procedure is modified
to economise on storage by taking advantage of the large number of zero

elements.

'PRPCEDURE' PQVEC(C,B,E,Al,A2,A3,EIG,L,N,VEC);

'COMMENT' C is the diagonal, B the sub-diagonal, and E the sub-sub-
diagonal of the (NxN) input matrix. The elements in the corners
corresponding to positions (1,N-1), (1,N), (2,N) are Al,A2,A3.
EIG is where the L eigenvalues are input, and later overwritten
by the Rayleigh quotient. The eigenvectors are stored in the
columns of VEC.

'VALUE' C,B,E,Al1,A2,A3,L,N;

YARRAY' C,B,E,EIG,VEC;

'REAL' Al,A2,A3;

'INTEGER' L,N;

'BEGIN'

'INTEGER' 'ARRAY' IC[1:N];
'ARRAY' R,S,T,U,V,W,X,Y,Z,Q1,Q2,Q3,Q[1:N];
'REAL' D,D1,D2,D3,D4;
'INTEGER' I,J,K,M;
'F@R' M«l 'STEP'! 1 ' UNTIL' L 'D@'
'BEGIN’ . th
'C@MMENT' This is the major loop to determine the M
eigenvector. First the vectors representing the input
matrix are initialised;
'FPR' I«1 'STEP' 1 'UNTIL' N 'D@'
'BEGIN!
T[I]W[I]«X[I]«U[1]+0;
- V[I]<C[I]-EIG[M];
IC[I]«0;
Q{I]«1;
Y[I]«Z[1]«Q1[1]«Q2[1]+Q3[1]«S[I]«R[1]<0;
*END';
'FOR' I«2 'STEP' 1 'UNTIL' N-2 'Dp!
U[T]«W[I]«B[I];
'FPR' 1«3 'STEP' 1 'UNTIL' N-1 'D@'
T[I}«X[I]<E[I];
Q2[1]+S[1]«Al;
X[N-2]+«X[N-1]«W[N-2]+V[N-2]«V[N-1]«V[N]«0;
Q3[1]+R[1]+A2; '
Q3[2]«R[2]+A3;
Q2[N]«Q3[N-1]+B[N];
Q1[N~1]+Q2[N-2]«B[N-1];
Q1[N-3]«B[N-2];
Q3[N}+C[N]-EIG[M];
Q2[N-1J«C[N-1]-EIG[M];
Q1[N-2]«C[N-2]-EIG[M];
Q1[N}+Q3[N-2]<E[N];
Q2[N-3]«T[N-1]<«E[N-1];

QL[N-4]+E[N-2];
S[N-3]<E{N-11;

'CPMMENT

the first N-4 columns

'FPR' I«1 'STEP' 1 'UNTIL' N-4 ‘D@’
'BEGIN!

D3<«ABS(R[L]);

DA<ABS(V[I]);

D<ABS(U[I+1]);

D1<ABS(T[I+2]);

D2<ABS(S[I]);

'IF' D 'GT' D1

TAND® D 'GT' D3

TAND' D 'GT' D4

'THEN'

VBEGIN!
IC[1]«I+1;
DeV[I]; V[I]«U{I+1]; U[I+1]<D;
DeW[I+1]; W[I+1]«V[I+1]; V[I+1]<D;
DX[I+42]; X[I+2)eW[I+2]; W[I+2]<D;
D«Y[I+3]; Y[I+3]<«X[I+3]; X[I+3]<D;
D«Z[I+4]; Z[I+4]<«Y{I1+4]; Y[I+4])<D;
DeQl[I]; QI[I]«Q1[I+1]; QL[I+1]«D;
DeQ2[I]; QZ[I]+Q2[I+1]; Q2[1+1]«D;
D«Q3[1]; Q3[I]«Q3[I+1]; Q3[I+1]«D;

YEND'!

'ELSE!

*IF' D1 'GT® D2

'AND' D1 'GT' D3

YAND' D1 'GT' D4

"THEN'

'BEGIN!
IC{I]«I+2;
D<V[I]; V{I]«T[I+2]; T[I+2]«D;
DeW[I+1]; W[I+1]<U[I+2]; U[I+2]«D;
DeX[I+2]; X[I+2]«V[I+2]; V[I+2]<D;
DeY[I+3]); Y[I+3]<W[I+3]; W[I+3]«D;
D«Z[I+4]); Z[I+4] X[I+4]; X[I+4]<D;
DeQL[I]; QL{I]«Q1[I+2]; Q1[I+2]«D;
D«Q2[I]; Q2[1]+Q2[1+2]; Q2[1+2]«D;
D«Q3[I]; Q3[1]«Q3[I+2]; Q3[I+2]«D;

'END!

'ELSE?

'TFt D2 'GT' D3

'AND' D2 'GT' D4

'"THEN!

'BEGIN?
DeV[1]; V[I]+S[I]; S[I]«D;
DeW[I+1]; W[I+1]<«S[I+1]; S[I+1]<D;
DeX[I+2]; X[I+2]«S{I+2]; S[I+2]<D;
DeY[I+3]; Y[I+3]«S[1+3]; S[I+3]<D;
D«X[I+4]; Z[I+4]«S[1+4]; S[I+4]<«D;
D«Q1[I]; Q1[I]«Q1[N-~1]; Q1{N-1]«D;
D«Q2[I]; Q2[I]<«Q2[N-1]; Q2[N-1]«D;
D«Q3[I]; Q3[1]«Q3[N-1]; Q3[N-1]«D;
IC[I]«N-1;

'END?

Now the elimination process can be performed in

239

240

'ELSE!
'IF' D3 'GT' D4
'THEN!
'BEGIN'
DeV[I]; V[I]«R[I]; R[I]«D;
DeW[I+1]; W[I+1]«R[I+1]; R[I+1]+«D;
DeX[I+42); X[I+2]«R[I+2]; R[1+2]«D;
D«Y[TI+3]; Y[I+3]«R[I+3]; R[I+3]<D;
D«Z[I+4]; Z{I+41«R[I+4]; R[I+4]«D;
D«QL[I]; QI[I]«Q1[N]; Q1[N]+D;
D«Q2[I]; Q2[I]«Q2[N]; Q2([N]}«D;
D«Q3[1]; Q3[I1«Q3[N]; Q3[N]«D;
IC[I]+N;
YEND';
U[T]«U[I+1]/V[I];
T[I]<T[I+2]/V][I];
S[1]«s[I]/V[I1];
RIIJ«R[I]/V[I];
V[I+1]+V[I+1]-W[I+1]*U[1];
WI+2]«W[I+2]-X[1+2]*U[I];
X{I+3]«X[1+3]-Y{I+3]*U[1];
Y[I+4]<Y[I+4]-Z[I+4]*U[1];
U[I+2]«U[I+2]-W[I+1]*T[I];
V[1+2]«V[I+2]-X[I+2]*T[I];
W[I+3]<W[I+3]-Y[I+3]*T[I];
X[I+4]«X{I+4]-Z[I+4]*T[I];
S{I+1]«S{TI+1]-W[I+1]*S[I];
S[I+2]«S[1+2]-X[I+2]*S[1];
S[I+3]«S[1+3]-Y[1+3]*S[I];
S[1+4]+S[I+4]-Z[1+4]*S[I];
R{I+1]«R{I+1]-W[I+1]*R[1];
R[I+2]«R[I+2]-X[I+2]*R[1];
R[I+3]«R[I+3]-Y[I+3]*R[I];
R[I+4]«R[I+4]-Z[1+4]*R[I];
QL[I+1]<«Q1[I+1]-Q1[I]}*U[I];
Ql[I+2]«Q1[I+2]-Q[I]*T[I];
QI[N-1]«QI[N-1]-QL[I]*S[I];
Q1 [N]«Q1[N]-Q1[I]*R[I];
Q2[I+1]+Q2[I+1]-Q2[I]*U[I];
Q2[I+2]«Q2[1+2]-Q2[1]*T[I];
Q2[N]«Q2[N]-Q2[I]*R[I];
Q2[N-1]+Q2[N-1]-Q2[I]*5[1];
Q3[I+1]«Q3[1+1] Q3[I]*U[I],

Q3i1+2]+Q3;I+21 []]
'END'Q N]+Q3 N ?*R[I] 3
'CQMMENT' The elimination in the last four columns now
has to be performed seperately; First in column (N-3);
T[N-1]«S[N-31;
D«ABS (U [N-2]) ;
DI«ABS(T[N-11);
D2+ABS (R[N-3]);
D3+«ABS{V[N-3]);
YIF' D 'GT!' D1
YAND' D 'GT' D2
YAND' D 'GT' D3
'THEN?

'BEGIN?
D+V[N-3]; V[N-3]<U[N-2]; U[N-2]+D;
D+Q1[N-3]; Q1[N-3]«Q1[N-2]; Q1{N-2]+D;
D<Q2[N-3]; Q2[N-3]«Q2[N-2]; Qz[N-2]+D;
D+Q3[N-3]; Q3[N-3]«Q3[N-2]; Q3[N-2]«D;
IC[N-3]«N-2;
YEND'?
'ELSE!
'IF' D1 'GT' D2
YAND' D1 'GT' D3
'THEN*
YBEGIN?
IC[N-3]-N-1;
D+V[N-3]; V[N-3]«T{N-1]; T[N-1]+D;
D+Q1{N-3]; QI[N-3]«Q1{N-1]; QI[N-1]+«D;
D«Q2[N-3]; Q2[N-3]«Q2[N-1]; QZ[N-1]+D;
D+Q3([N-3]; Q3[N-3]«Q3[N-1]; Q3{N-1]«D;
'END?
VELSE!
YIF' D2 'GT' D3
YTHEN! '
YBEGIN!
D«V[N-3]; V[N-3]<R[N-3]; R[N-3]<D;
D«Q1[N-3]; Q1[N-3]«QL[N]; QL[N]<D;
D+Q2[N-3]; Q2[N-3]«Q2[N]; Q2[N]<D;
D«Q3[N-3]; Q3[N-3]«Q3[N]; Q3[N]«D;
IC{N-3]N;
'END?;
U[N-3]«U[N-2]/V[N-3];
T[N-3]<«T[N-1]/V[N-3];
R[N-3]«R[N-3]/V[N-3];
Q1[N-2]«QL[N-2]-U[N-3]*Q1[N-3];
Q2[N-2]<Q2[N-2]-U[N-3]*Q2[N-3];
Q3[N-2]<Q3[N-21-U[N-3]*Q3[N-3];
Q1[N-1]+Q1[N-1]-Q[N-3]*T[N-3];
Q2[N-1]+«Q2[N-11-Q2[N-3]*T[N-3];
Q3[N-1]«Q3{N-1]-Q3[N~3]*T[N-3];
Q1[N]«Q1[N]-Q1[N-3]*R[N-3];
Q2[N]+Q2[N]-Q2[N-3]*R[N-3];
Q3[N]<+Q3[N]-Q3[N-3]*R[N-3];

'COMMENT' Elimination is now performed in column N-2;

D+ABS(QL[N-1]); D1<«ABS{Q1[N]);

D2«ABS(Q1[N-2]);

'TF' D 'GT' D1

YAND' D 'GT' D2

"THEN'

YBEGIN!
D+Q1[N-2]; Q1[N-2]«QL[N-1]; Q1[N-1]+D;
D«Q2{N-2]; Q2[N-2}«Q2[N-1]; Q2[N-1]+D;
D<Q3[N-2]; Q3[N-2]«Q3[N-1]; Q3[N-1]<D;
IC[N-2]eN-1;

YEND!

*IF' D1 'GT' D2

"THEN!

'BEGIN!

D«Q1[N-2]}; QL[N-2]«Q1[N]; Q1[N]<D;

241

24:¢

D+Q2[N-2]; QZ[N-2]«Q2[N]; QZ[N]+D;
D<Q3[N-2]; Q3[N-2]+«Q3[N]; Q3[N]«D;
IC[N-2]-N;

YEND';

Q1 [N-1]+Q1[N-1]/Q1[N-2];

Q1[N]«Q1[N]/Q1[N-2];

Qz[N-1]+Q2[N-1]-Q1 [N-1]#Q2 [N-2];

Q3[N-1]+Q3[N-1]-Q3[N-2]*Q1[N-1];

Q2 [N]«Q2 [N]-Q1 [N]*Q2[N-2];

Q3[N]+Q3[N]-Q1 [N]*Q3[N-2]; |

'C@MMENT' Elimination is finally performed in column N-1;

'IF' ABS(Q2[N]) 'GT' ABS(QZ2[N-11)

"THEN®

'BEGIN®

D<Q2[N}; Q2[N]«Q2[N-1]; Q2[N-1]«D;

D«Q3[N]; Q3[NI«Q3{N-1]; Q3[N-1]<D;
IC[N-1]<N;

'END?;

Q2[N]+Q2[N]/Q2[N-1] ;

Q3[N]«Q3[N]-Q2[N]*Q3[N-1];

'IF' Q3[{N] 'EQ' O 'TIHEN' Q3[N]+0.0000000001; .

'COMMENT' In the decomposing case Q3[N] is replaced to avoid
division by zero. The initial back substitution now
takes place;

Q[N]+Q[N]/Q3[N];

Q[N-1]«(Q[N-1]-Q3[N-11*Q[N]}/Q2[N-1];

Q[N-2]«(Q[N-2]-Q3[N-2]*Q[N]-Q2[N-2]*Q[N-1])/Q1[N-2];

Q[N-3]«(Q[N-3]-Q3[N-3]*Q[N]-Q2 [N-3]*Q[N-1]-Q1 [N-3]*Q{N-2]/V[N-3];

'FPR' I+N-4 *'STEP' -1 'UNTIL' 1 'D@*

Q[I]«(Q[I]-Q3[1]*Q[N]-Q2[I]*Q[N-1]-Q1[I]*Q[N-2]
~W[I+1)*Q[I+1]-X[I+2]*Q[I+2]-Y[I+3]*Q[I+3]-
Z[1+4]*Q[1+4])/V]I];

'‘CAMMENT' Elimination with improved eigenvector estimate is
now performed. This time the stored interchanges and
elimination factors only are used;

'FPR' I«1 'STEP' 1 'UNTIL' N-4 'D@'

YBEGIN®
'IF' IC[I] 'NE' O 'THEN'
*BEGIN'
'END'D+Q[I]; QII]«Q[IC[I1}; Q[IC[I]]+«D;

QI+1]«Q[I+1]-U[I]*Q[1];
Q[I+2]«Q[I+2]-T[1]*Q[I];
Q[N-1]<Q[N-1]-s[1]*Q[I];
Q[N]«Q[N]-R[I]*Q[I];

'END'; :

'IF' IC[N-3] 'NE' O 'THEN'

*THEN'

'BEGIN'

o D«Q[N-3]; Q[N-31«Q{IC[N-3]]; Q[IC[N-3]]«D;

] Dt;

Q[N-2]+Q{N-2]-Q[N-3]*U[N-3];

Q[N-1]<+Q[N-1]-Q[N-3]*T[N-3];

Q[N]«QN-Q[N-3]*R[N-3];

'IFt IC[N-2] 'NE' O 'THEN!

'END';

243

'BEGIN!
D+Q[N-2]; Q[N-2]«Q[IC[N-2]]; Q[IC[N-2]]+D;

YEND!';

QN-1]+Q[N-1]-Q[N-2]*Q1[N-1];

Q[N]«QIN1-Q[N-2]*Q1N];

'IF' IC[N-1] 'NE' O 'THEN'

'BEGIN'

. D+Q[N-1]; QIN-1]<Q[N]; Q[N]<«D;

'END';

QINI+Q[N]-QIN-1]*Q2[N];

'COMMENT' Back substitution is now performed for the final
time;

Q[N]«Q[N]/Q3[N];

Q[N-1]1«(Q[N-1]-Q3{N-1]*Q[N]}/Q2[N-1];

Q[N-2]+(Q[N-2]-Q3{N—2]*Q[N]—Q2[N-2]*Q[N-11]/Ql[N-2];

Q[N-3]«(Q[N-3]-Q3[N-3]*Q[N]-Q2[N-3]*Q[N-1]-
Q1[N-3]*Q[N-2])/V[N-3];

'F@R' I+N-4 'STEP' -1 'UNTIL' 1 'D@!

Q[I}«(Q[I]-Q3[I]*Q[N]-Q2[1]*Q[N-1]-Q1[I]*Q[N-2]
~W[I+1]*Q[I+1]-X[1+2]*Q[I+2]-Y[I+3]*Q[I+3]
~Z[I+4]*[(1+4])/V[I];

'COMMENT! Now the eigenvector is normalised and stored in the
appropriate column of VEC;

D+Q[1]*Q[1];

'FPR' I+2 'STEP' 1 'UNTIL' N *'D@!

D«D+Q[I]*Q[1];

D«1/SQRT(D);

'FPR' I«1 'STEP' 1 'UNTIL' N ‘D@’

VEC[I,M]«Q[I]*D;

'C@MMENT' The Rayleigh Quotient is calculated to improve the
estimate of the eigenvalue;

D1«(C[1]*VEC[1,M]+B[2]*VEC[2,M]+E[3]*VEC[3,M]
+A1*VEC[N-1,M]+A2*VEC[N,M])*VEC[1,M];

D1«D1+(B[2]*VEC[1,M]+C[2]*VEC[2,M]+B[3]*
VEC[3,M]+E[4]*VEC[4 ,M] +A3*VEC [N,M])*VEC{2,M];

'FPR' I+3 'STEP' 1 'UNTIL N-2 'D@'

D1<D1+(C[I]*VEC[I,M]+B[I]*VEC[I-1,M]+E[I]*VEC[I-2,M]
+B[I+1]*VEC[I+1 ,M]+E[I+2]*VEC[I+2,M])*VEC[I, M];

D1+D1+({C[N-1]*VEC[N-1,M]+B[N]*VEC[N,M]+B[N-1}*VEC[N-2,M]
E[N-1]*VEC[N-3 ,M]+A1*VEC[1,M])*VEC[N-1,M];

D1+D1+ (C[N]*VEC[N,M]+B[N]*VEC[N-1,M]+E [N]*VEC[N-2,M]
+A3*VEC[2,M]+A2*VEC[1,M]) *VEC[N,M]; EIG(M) D13

'END';

244

PROGRAM 18

This program determines the eigenvalues of a symmetric matrix
using the modified bisection algorithm of Chapter 5. The matrix used
is septdiagonal with a band at semi-bandwidth P, and quindiagonal in

the centre.

'"PROCEDURE' SDEMB(C,B,D,E,N,N1,N2,P,EPS,QZR,EIG);

'CAMMENT' C is the diagonal, B, the sub-diagonal, D the sub-sub-
diagonal and E is the band at semi-bandwidth P of the matrix of
order N. N1 is the number of the smallest eigenvalue required
and N2 the largest. EPS is the required accuracy and QZR the
closest number to machine zero (substituted to avoid zero
divisions), The eigenvalues are stored in the first (N2-N1+1)
elements of EIG;

'ARRAY' C,B,D,E,EIG;

'INTEGER' N,P,N1,N2;

'REAL' EPS,QZR;

'BEGIN'

'ARRAY' W,U,V, [1:N],R[P:N,4:P];
TREAL' MAX,MIN,NEW,NEWER,LAMBDA,S;
'INTEGER' I1,J,K,L,M,T;
'BEGIN?'
'CAMMENT' Bounds for the whole eigenvalue range are now
determined (MAX,MIN);
NEW<ABS(B[N])+ABS[D[N])+ABS(E[N]);
BilE[2]«E[1]<0;
MAX«C [N]+NEW;
MIN«C [N]-NEW;
'FPR' I«1 'STEP' 1 'UNTIL' N-1 'D@’
YBEGIN'
NEW<ABS (B[I])+ABS(B[I+1])+ABS(E[I])+("IF® I+2
'GE' N 'THEN' O 'ELSE' ABS(E[I+2]));
'IF* P-1+I 'LE' N 'THEN'
NEW<NEW+ABS(D[P-1+1]);
'IF' I 'GE' P 'THEN'
NEW<«NEW+ABS(D{I]);
NEWER«C [1]+NEW;
NEW«C[I]-NEW;
'IF' NEWER 'GT' MAX *'THEN' MAX<NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN«NEW;
'END';
'END';
'FPR' I<P 'STEP' 1 'UNTIL' N 'D@'
R[{I,P]«D{I];
'FPR' I«3 'STEP' 1 'UNTIL® P-1 D@’
W[I]«E[I];
V[1]«W[2]+W[1]+0;
V[2]<B[2];
LeNI1-1;
LABA: 'IF' L 'GE' N2 'THEN' 'GOTO"' EXIT;

LABB:

LABC:

'CPMMENT' Major loop for the L' eigenvalue;
LAMBDA+ (MIN+MAX) *0.5;

'BEGIN'

'C@MMENT' Calculation of the Sturm sequence;
U[1]<C[1]-LAMBDA;
Me0;

>
'IF' U[1] 'LT' O "THEN' MeM+1;

'IF' L-M 'LT' O '@R' L-M-N+I 'GE' O 'THEN' 'G@PT@' LABC;

'IF' U[1] 'EQ' O *THEN' U[1]<QZR;
U[2]<Cf2]-LAMBDA-B[2]*B{2]/U[1];
*IF' U[2] 'LT' O "THEN' MeM+1;

'IF' L-M 'LT' O 'PR' L-M-N+I 'GE' O 'THEN'

'"IF' U[2] 'EQ' O 'THEN' U[2]<QZR;
'FPR' I<3 'STEP' 1 'UNTIL' P-1 'D@'
'BEGIN!

V[I]«B[I]-V[I-1]*W[I1}/U[I-2];

U{I)«C[I]-LAMBDA-V[I]*V[I]/U[I-1]-W[I}*W[I]/U[I-2];

'TF' D[I] 'LT* O'THEN' MeM+l;

'IF' L-M 'LT' O '@R' L-M-N+I 'GE*' O 'THEN' 'G@T@' LABC;

'IF' U[I] 'EQ' O 'THEN' U[I]«QZR;

"END';
'FPR' I<P 'STEP' 1 'UNTIL' N 'D@'
1BEGIN®

'FPRY KeP-1 'STEP' -1 'UNTIL®' 4 'D@!
'BEGIN'

T«I-K+1;

S«-R[I,K+1]*V[T]/U[T-1];

IF K+2 'LE' P 'THEN'

S<S-R[I,K+2]*W[T1/U[T-2];

'IF' T 'GE* P 'THEN'

'FOR' J«P-K-3 'STEP' -1 'UNTIL' O *‘D{!?

S+S-R[I,P-J]*R[T,P+1-K-J]/U[I-P+J+1];

R[I,K]+S;
'END';
S<E{1]-S*V[I-2]/U[I-3]-R[I,5]*W[I-2]/U[I-4];
YIFt I-2 'GE' P 'THEN!
'FPR' J<P-6 'STEP' -1 'UNTIL®' O 'D@°
S«S-R[I,P-J]*R[I-2,P-2-J]/U[I-P+J+1];
W[I]+S;
S«B[I]-S*V[I-1]/U[I-2]-R[I,4]*W[I-1]/U[I-3];
'IF* I-1 'GE' P 'THEN!
'FPR' J+P-5 'STEP' -1 'UNTIL®' O 'D@!
S¢S-R[I,P-J]*R[I-1,P-1-J]/U[I-P+J+1];
V[1]<S;
S«C[1]-LAMBDA-S*S/U{I-1]-W[I]*W[I]/U[I-2];
'FOR!' J«P-4 'STEP' -1 'UNTIL' O 'D@:
S«¢S-R[I,P-J]*R[I,P-J]/U[I-P+J+1];
TIFt § 'LT' O 'THEN' MeM+1;

'IF' L-M 'LT' O 'PR' L-M-N+I 'GE' O 'THEN' 'G@T@' LABC;

'IF' S 'NE' O 'THEN' U[I]eS 'ELSE' U[I]<QZR;

"END';

1END' ;
'IF' L-M
tBEGIN'

'GE' O 'THEN'

NEWER+MIN;
MIN<LAMBDA ;
LAMBDA«LAMBDA+ (LAMBDA-NEWER)*0.5;

'END!

'G@T@' LABC;

245

246

'ELSE!
'BEGIN'
LAMBDA+ (LAMBDA+MIN) *0.5;
'IF' (LAMBDA-MIN)*0.5/ABS(LAMBDA) 'LT' EPS 'THEN!
'BEGIN!
MIN«2 *LAMBDA-MIN;
'FPR' I«L+1 'STEP' 1 'UNTIL!
(*IF' M 'GT' N2 'THEN' N2 'ELSE' M) 'D@'
EIG[I-N1+1]+LAMBDA;
LeM;
'GOT@' LABA;
TEND!
'END'; 'GOTO*' LABB;
EXIT: 'END';

247

PROGRAM 19

This program determines the eigenvalues of a symmetric sparse
banded matrix using the modified bisection algorithm of Chapter 5.
The matrix for this algorithm has bands between semi-bandwidth P and

M and is tridiagonal in the centre.

'PRCEDURE' SBBTMB(C,B,D,N,N1,N2,P,M,EPS,QZR,EIG);

'CAMMENT! C is the diagonal, B the sub-diagonal, and D the bands at
semi-bandwidth P to M of the Nth order matrix. N1 is the number
of the smallest eigenvalue required, and N2 the largest. EPS is
the required accuracy and QZR the closest number to machine zero
(substituted to avoid zero divisions). The eigenvalues are stored
in the first (N2-N1+1) elements of EIG;

'ARRAY' C,B,D,EIG;

VINTEGER' N,P,M,N1,N2;

'REAL' EPS, QZR;

'BEGIN?!

YARRAY' R[P:N,3:M],U,V[1:N];
'REAL' MAX,MIN,NEW,NEWER,LAMBDA,S;
'INTEGER' 1,J,K,L,Z,T;
'BEGIN!
'CAMMENT' The bounds on the complete eigenvalue range are
determined (MAX,MIN);
B[1]<0;
NEW<ABS(B[N]);
'FPR' I+P 'STEP' 1 ‘UNTIL' M 'D@!'
NEW<NEW+ABS(D[N,1]);
MAX<C[N]+NEW;
MIN«C{N]-NEW;
'FPR' I«1 'STEP' 1 'UNTIL' N-1 'D@!
'BEGIN!
NEW<ABS (B{I])+ABS(B[I+1]);
'FPR® J+P 'STEP' 1 'UNTIL'
'IF' M-1+I 'LE' N '"THEN' M
'ELSE' M+M-I-P 'D@'
NEW<NEW+ABS (D[I+J-1,J]);
'‘FPR* J 'IF' I 'LT' M 'THEN' 1 'ELSE' M
*STEP' -1 'UNTIL' P 'Dp?
NEW.NEW+ABS(D[I,J]);
NEWER.C [I]+NEW;
NEW<C [I]+NEW;
'TF* NEWER 'GT' MAX 'THEN' MAX<NEWER;
YIF' NEW 'LT' MIN 'THEN' MIN<NEW;
'END';
"END' ;
'C@MMENT' The elements of the Sturm sequence are now initialised;
'F@R' I<P 'STEP' 1 'UNTIL' M ‘D@
R[I,I}«D[I,I];
'FPR' I+M 'STEP' 1 'UNTIL' N 'D@°
R[I,M]«D[I,M];
'FPR' I+«1 'STEP' 1 'UNTIL' P-1 *D@®

LABA;

LABB:

248

V[I1«B[1];
L«N1-1;
'IF' L 'GE' N2 'THEN' 'G@T@' EXIT;
'COMMENT' Major loop for the Lth eigenvalue;
LAMBDA<«(MIN+MAX) *0,5;
YBEGIN!
'CPMMENT' Calculation of the Sturm sequence;
U[1]«C[1]-LAMBDA;
Z+0;
'IF' U[1] 'LT* O 'THEN' Z<Z+1;
'TF' L-Z 'LT' O 'R’ L-Z-N+I 'GE' O 'THEN' 'G@T@' LABC;
'IF' U[1] 'EQ' O 'THEN' U[1}«QZR;
'FPR' I+2 'STEP' 1 'UNTIL' P-1 ‘'pg°
'BEGIN'
U[TI]«C[1]-LAMBDA-V{I]*V[I]/U[I-1];
'IFt U[I] 'LT' O 'THEN' Z«Z+1;
'IF* L-Z 'LT' O '@R' L-Z-N+4'GE' O 'THEN' 'G@T@' LABC;
1TF' U{I] 'EQ' O 'THEN' U[I}QZR;
YEND';
'FOR'FP 'STEP' 1 'UNTIL' M 'DO!'
'BEGIN'
R[I,I-1]«-R[I,I]*V[2]/U[1];
'FOR' K«I-2 'STEP' -1 'UNTIL' 3 'DO!
'BEGIN'
T+I-K+1;
S«-R{I,K+1]*V{T]/U[T-1];
'IF' T 'GE' P 'THEN'
'FPR' J«I-K-2 'STEP' -1 'UNTIL' O 'D@'
S«S-R[I,I-J]*R[T,T-J]/U[J+1];
'IF' K 'GE' P 'THEN' S«S+D[I,K];
R[I,K]<S;
'END';
S«B[I]-S*V[I-1]/U[I-2];
*IF' I-1 'GE' P 'THEN!
'FPR' J«I-4 'STEP' -1 'UNTIL' O 'D@®
8¢S-R[I,I-J]*R[I-1,I-1-J]/U[J+1];
V[I]+S;
S«C[I1]-LAMBDA-V{I]*V[I]/U{1-1];
'F@R' J«I-3 'STEP' -1 'UNTIL' O 'D@'
S<S-R[I,I-J]*R[I,1-J]1/U[J+1];
'TF' S 'LT' O 'THEN' Z«Z+1;
'IF' L-Z 'LT' O 'gR' L-Z-N+I'GE' O 'THEN' 'G@T@' LABC;
'TF* S 'NE' O 'THEN' U[I]«S 'ELSE] U[I]«QZR;
'END' ;
'FPR' I+«M+1 *STEP' 1 'UNTIL' N ‘D@
'BEGIN'
R[I,M-1]«-R[I,M]*V[I-M+2]/U[I-M+1];
'F@R' K«M-2 'STEP' -1 'UNTIL' 3 'DQ°
'BEGIN?
T+I-K+1;
S«-R[I,K+1]*V[T]/U[T-1];
'IF' T 'GE' P 'THEN!
'FOR' J<M-K-2 'STEP' -1 ' UNTIL' O 'D@!
S¢S-R[I,M-J]*R[T,M+1-K-J]/U[I-M+J+1];
'IE' K 'GE' P 'THEN' S«S+D[I,K];
R[I,K]<S;
'END';
S«B[I]-S*V[I-1]/U[I-2];

LABC:

'IF' I-1 'GE' P 'THEN!
'FPR' J«M-4 'STEP' -1 'UNTIL' O 'D@°'
S«S-R[I,M-J]*R[1-1,M-1-J]/U[I-M+J+1];
VII]+S;
S«C[I1]-LAMBDA-V[I]*V[I]/U[I-1];
'FPR' J+«M-3 'STEP' -1 'UNTIL' O 'D@!'
S«S-R[I,M-J]*R[I,M-J]/U[I-M+J+1];
'IF' § 'LT' O '"THEN' Z<Z+1;
'IF' L-Z 'LT' O "@§R' L-Z-MT'GE' O 'THEN! 'GAT@'
'IF' S 'NE' O 'THEN' U[I]«S 'ELSE' U[I]<QZR;
YEND';
YEND?';
*IF' L-Z 'GE' O 'THEN!
YBEGIN'
NEWER<MIN
MIN+«LAMBDA ;
LAMBDA LAMBDA+ (LAMBDA-NEWER)*0.5;
*END'
YELSE!
*BEGIN!
LAMBDA+(LAMBDA+MIN) *(.5;
'IF' (LAMBDA-MIN)*0.5/ABS(LAMBDA) 'LT' EPS *THEN!
'BEGIN?
MIN<«2*LAMBDA-MIN;
'FOR' I<L+1 'STEP' 1 'UNTIL!
(*IF' 2 'GT' N2 'THEN' N2 'ELSE'Z)} ‘D@
EIG[I-N1+1]+LAMBDA;
L+Z;
'GATP' LABA;
TEND';
TEND';
'G@T@ ' LABB;

EXIT:
'END' ;

LABC;

249

PROGRAM 20

This program determines the eigenvalues of a symmetric sparse

banded matrix

using the modified bisection algorithm of Chapter 5.

The matrix fpr this algorithm has bands between semi-bandwidth P and

M, and is quindiagonal in the centre.

'PRACEDURE SBBQMB(C,B,D,E,N,N1,N2,P,M,EPS,QZR,EIG);
'"COMMENT' C is the diagonal, B the sub-diagonal, E the sub-sub-diagonal,

and D the

bands at semi-bandwidth P to M of the (NxN) matrix. N1 is

the number of the smallest eigenvalue required and N2 the largest.
EPS is the required accuracy and QZR the closest number to machine
zero (substituted to avoid zero divisions). The eigenvalues are

stored in the first (N2-N1+1) elements of EIG;
'ARRAY' C,B,D,E,EIG;
'INTEGER' N,P,N1,N2,M;
'REAL' EPS, QZR;
'BEGIN?
'ARRAY' R[P:N,4:M],V,U,W[1:N];
'REAL' MAX,MIN,NEW,NEWER,LAMBDA,S;
*INTEGER' I,J,K,L,Z,T;
'BEGIN!

'C#MMENT' Bounds for the complete eigenvalue range are

determined (MAX,MIN);
B[1]<E[1]«E[2]<0;
NEW<ABS (B[N])+ABS[E[N]);
'FPR' I<P 'STEP' 1 'UNTIL' M 'D@!
NEW<NEW+ABS(D[N,I]);
MAX<C [N]+NEW;
MIN<C[N]-NEW;
'FPR' I«l 'STEP' 1 'UNTIL' N-1 'D{'
'BEGIN'

NEW<ABS (B[1])+ABS(B[I+1])+ABS(E[I])+

('"IF* I 'NE' N-1 'THEN' ABS(E[I+2])'ELSE' O),

'F@R' J<P 'STEP' 1 'UNTIL!' 'IF' M-1+I 'LE!
N 'THEN' M 'ELSE!' M+M-I-P 'D@'
NEW<NEW+ABS (D[1+J-1,J])
'FPRY tIF* I 'LT' M 'THEN' I 'ELSE' M
'STEP' -1 'UNTIL' P 'D@!
NEW<NEW+ABS (D[1,J]) ;
NEWER<C [1]+NEW;
NEW<C[1]-NEW;
'IFY NEWER 'GT' MAX 'THEN' MAX<NEWER;
"IFt* NEW 'LT* MIN 'THEN' MIN<NEW;
YEND';
'END!;
TFPR' I<P 'STEP' 1 'UNTIL' M 'D@?
R[I,I]«D[I,I];
'FPR' I«M 'STEP' 1 'UNTIL' N tD@
R[I,M]+D[I,M];
'FPR' I+3 'STEP' 1 'ONTIL' P-1 D@
W{I]«E[I];

250

LABA:

LABB:

V[1]+W[1]«W[2]+0;
V[2}«B[2];
LeN1-1;
'IF' L 'GE' N2 'THEN' 'G@T@' EXIT;
LAMBDA+«(MIN+MAX) *0.5;
'BEGIN!
Z<0;
Uf1]«C[1]-LAMBDA;
*IF' U{1] 'LT' O 'THEN' Z<Z+1;
'IF' L-Z 'LT' O 'PR' L-Z-N+I'GE' O 'THEN' ' G@T@' LABC;
'IF' U[1] 'EQ' O 'THEN' U[1]<QZR;
U[2]«C[2]-LAMBDA-V[2]*V[2]/U[1];
'IF* U[2] 'LT' O 'THEN' Z+«Z+1;
IF L-Z 'LT' O '@R' L-Z-N+I'GE' O 'THEN' 'G@T@' LABC;
*IF' U[2] 'EQ' O 'THEN' Z<Z+l;
'FPAR' I+«3 *'STEP' 1 'UNTIL' P-1 'D@'
'BEGIN?
V[I]<B[I]-V[I-1]*W[I]/U[I-2];
U[1]«C[I]-LAMBDA-V[I]*V[I]/U[I-1]-W[I]*W[L]/U[I-2];
*IF' U[I] 'LT' O 'THEN' Z+«Z+1;
'TF' L-Z 'LT' O '¢R' L-Z-N+I *'GE' O 'THEN' 'G@T@' LABC;
'END';
'FPR' I<P 'STEP' 1 'UNTIL' M 'D@®
'BEGIN'
SR[I,I-1] -R[I,I]*V[2]/U[1];
SR[I,I-2] -8*V[3]/U[2]-R[I,I]*W[3]/U[1];
'FOR' K«I-3 'STEP' -1 'UNTIL' 4 'D@'
'BEGIN!
T+I-K+1
S-S*V[T]/U[T-1]1-R[I,K+2]*W[T]/U[T-2];
'IF' T '"GE' .P 'THEN'
'FPR' J«I-K-3 'STEP' -1 'UNTIL' O 'D@!
S5¢5-R[I,I-J]*R[T,T-J)/U[J+1];
'IF' K 'GE' P 'THEN' S<S+D[I,K];
R[1,K]<S;
'END';
S«E[1]-5*V[I-2]/U[1-3]-R[I,51*W[I-2]/U[I-4]};
'IF* I-2 'GE' P 'THEN!
'FPR' J«I-6 'STEP' -1 'UNTIL' O 'D@!
S«S-R[I,I-J]*R[I-2,1-2-J]/U[J+1];
W[I]+S;
S<B[1]-S*V[I-1]/U[I-2]-R[I,4]*W[I-1]/U[I-3];
'IF' I-1 'GE' P 'THEN!
'FPR* J«I-5 'STEP' -1 'UNTIL' O 'D@!
S«S-R[I,I-J}*R[I-1,I-1-J]/U[J+1];
V[1]+S;
S«C[I]-LAMBDA-S*S/U[I-1]-W[I]*W[I]/U{I-2];
"PPR' J<«I-4 'STEP' -1 'UNTIL' O ‘'D@!
S+S-R[I,I-J]*R{1,I-J]/U[I+1];
'IF' S 'LT' O 'THEN' Z<Z+1;
'IF' L-Z 'LT" O '@R' L-Z-N+I *GE' O 'THEN' 'G@T@®' LABC;
'"IF' S 'NE' O 'THEN' U[I]«S 'ELSE' U[I]<«QZR;
'END?';

251

252

'FAR' I+M+1 'STEP' 1 'UNTIL' N 'D@*
'BEGIN'
SR[I,M-1]-R[I MI*V[E-M+2]/U[I-M+1];
SeR[I,M-2)¢-S*V{I-M+3]/U[I-M+2]-R{I ,M]*W[I-M+3]/U[I-M+1];
"FPR' K+«M-3 'STEP' -1 'UNTIL' 4 'D@!'
'BEGIN?
T<«I-K+1;
S«-8*V[I]/U[T-1]-R[I,K+2]*W[T]/U[T-2];
'IF' T 'GE' P 'THEN'
'FPR' J«M-K-3 'STEP' -1 *UNTIL' O ‘D!
S¢S-R[I,M-J]*R[T,M+1-K-J]/U[I-M+J+1];
'IF' K 'GE' P 'THEN' S«S+D[I,K];
R[I,K]<S; -
YEND';
S<«E[I]-S*V[I-2]/U[1-3]-R{I,5]*W[I-2]/U[1-4];
'IF' I-2 'GE' P 'THEN'
'FPR' J«M-6 'STEP' -1 'UNTIL' O 'D@'
S¢S-R[I ,M-J]*R[I-2,M-2-0]/U[I-M+J+1];
W[I]+S;
S«B[I]-S*V[I-1]/U[I1-2]-R[I,4]*W[I-1]/U[X-3];
'IFt I-1 'GE' P 'THEN'
'FPR' J«M-5 'STEP' -1 'UNTIL' O 'D@'
S<S-R[I,M-J]*R[I-1,M-1-J]/U[I-M+J+1];
V[I]<S;
S«C{1]-LAMBDA-S*S/U[I-1]-W[I]}*W[I]/U[I-2];
'F@R' J<M-4 'STEP' -1 'UNTIL' O ‘D@®
S«S-R[I,M-J]*R[I ,M-J]/U[I-M+J+1];
VIF' S 'LT' O 'THEN' Z+<Z+1;
'IF' L-Z 'LT' O 'PR' L-Z-N+I 'GE' O 'THEN' 'GOTO' LABC;
*IF' S 'NE' O 'THEN' U[I]«S 'ELSE' U[I]<QZR;
'END';
'END';
LABC: 'IF* L-Z 'GE' O 'THEN!
YBEGIN'
NEWER<MIN;
MIN<LAMBDA;
LAMBDA+«LAMBDA+ (LAMBDA-NEWER) *0.5;
'END*
'ELSE!
'BEGIN!
LAMBDA+(LAMBDA+MIN) *0.5;
'"IF' (LAMBDA-MIN)*0.5/ABS{LAMBDA) ‘'LT' EPS ‘'THEN'
'BEGIN!
MIN«2*LAMBDA-MIN;
'F@R' I+«L+1 'STEP' 1 'UNTIL®
("IF*Z 'GT' N2 'THEN' N2 'ELSE' Z) 'D@'
EIG[I-N1+1}«LAMBDA;
L<Z;
'GATA LABA;
'END*;
TEND!' ;
'GPT@' LABB;
EXIT:
YEND';

253

PROGRAM 21

This program performs the Partial Secant method on symmetric
banded quindiagonal matrices., The secand method is modified by the use
of Partial Sturm Sequences, to speed it up, and the method’proposed by
Anderson (1975) to determine eigenvalues in ascending or descending
order. The program has been left in a 'rough' form as improvements
are still being made, and in this form it is easier to follow. It is
set up to determine eigenvalues starting with the minimum eigenvalue,

but can be easily changed to determine the largest in descending order.

'PROCEDURE' PSS(C,B,D,N,P,N1,EPS,QZR,EIG);

'C@MMENT!' C is the main diagonal, B the sub-diagonal, and D the diagonal
at semi-bandwidth P of the (NxN) symmetric matrix. EPS is the
accuracy required, and QZR the number closest to machine zero,
used to avoid zero divisions N1 eigenvalues are required starting
with the smallest, and are stored in the first N1 elements of EIG;

'ARRAY' C,B,D,EIG;

'REAL' EPS,QZR;

'INTEGER' N,P,N1;

'BEGIN'

'ARRAY' R[P:N,3:P],U,V,S[O:N];
'INTEGER' X,FS,I1,J,K,L,Z,T;
'REAL' X1,X2,B1,F1,A,MAX,MIN,NEW,NEWER;
'BEGIN'
'COMMENT' Both the max and min of the eigenvalue range are
determined (MAX,MIN) as they are used as an initial guess
depending on whether the smallest or largest eigenvalues
are required;
NEW<ABS(B[N])+ABS(D[N]); B[1]+0;
MAX+C[N]+NEW;
MIN«C[N]-NEW;
'FgR' I«l1 'STEP' 1 'UNTIL' N-1 ‘D@
'BEGIN'
NEW«ABS (B[1])+ABS(B[I+1]);
*IF' P-1+I 'LE' N 'THEN'
NEW<NEW+ABS (D[P-1+1]);
'IF' I 'GE' P 'THEN' NEW<NEW+ABS(D[I]);
NEWER<+C[I]+NEW;
NEW<C [1]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX<NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN<NEW;
'END';
'END';
U[0]+S[0]+1;
'FPR' I+«P 'STEP' 1 'UNTIL' N 'D@°’
R[I,P]«D[1];

LAB1:

'F@R' I<+2 'STEP' 1 'UNTIL' P-1 'D@!
V[I]+B[I];
B1<0;
X1+X2«MIN-1;
L«l;
Z+0;
X+8;
FSeP'/'2;
'COMMENT' The number of times that the Partial Sturm Sequence will
be used before switching to the full sequence is preset to 8.
The number of hands retained in the Partial sequence is preset
to half the semi-bandwidth;
2<Z+1
'"CPMMENT!' The initial P-1 elements of the Sturm sequence can now
be calculated, as they are the same for both the partial and
full sequences;
U[1]<Cl1]-X2;
'IF' U[1] 'EQ' O 'THEN' U[1]«QZR;
'FPR' I«2 'STEP' 1 'UNTIL' P-1 'D@'
'BEGIN' '
U[I]«C[1]-X2-V[I]*V[I]/U[1-1];
tIF' U[I] 'EQ' O 'THEN' U[I]+«QZR;
'END*Y;
'IF' Z 'LE' X 'THEN!'
'BEGIN'
'CAMMENT' If less than X(8) iterations have been completed
then the Partial Sturm Sequence is used;
'FPR' I<P 'STEP' 1 'UNTIL' N tD@!
'BEGIN'
A«R[I,P-1]+-R[I,P]*V[I-P+2]/U[I-P+1];
'F@R' K«P-2 'STEP' -1 'UNTIL' P-FS 'D@'
VBEGIN®
T<I-K+1
AA*V[I]/U[T-1];
'TF' T 'GE' P 'THEN'
'FPR' J«FS+1-K 'STEP' -1 'UNTIL' O 'D@'
A<A-R[I,P-J]*R[T,P+1-K-J]/U[I-P+J+1];
R[I,K]+A;
YEND';
A<B[I];
'IF' I-1 'GE' P 'THEN'
'F@R' J«FS-1 'STEP' -1 'UNTIL' QO 'D@!'
A<A-R[1,P-J]*R[I-1,P-1-J]/U{I-P+J+1];
V{I]eA; '
A<C[I1]-X2-A*A/U[I-1];
'FOR' J<FS 'STEP' -1 'UNTIL' O 'D@!
A<A-R[I,P-J]*R[I,P-J]/U[1-P+J+1];
'IF' A 'NE' O 'THEN' U[I]JeA'ELSE' U[I]+«QZR;
'END?;
'END!
'ELSE’
'BEGIN'

'"COMMENT' After X(8) iterations the full Sturm sequence is used;

"FPR' I+P 'STEP' 1 'UNTIL' N 'Dg°
'BEGIN'
A<R[I,P-1]«-R{I,P]*V[I-P+2]/U[I-P+1];

254

255

'‘FPR' K«P-2 'STEP' -1 'UNTIL' 3 'D@*
*BEGIN! ’
T«I-K+1;
A«-A*V[T]/U[T-1];
'IF' T 'GE' P 'THEN'
'FAR' J+«P-K-2 'STEP' -1 'UNTIL' O 'D@!
A<A-R[I,P-JJ*R[T,P+1-K-J]/U[I-P+J+1];
R[I,K]«A;
TEND!';
A<B[I]-A*V[I-1]/U[I-2];
'IF'* I-1 'GE' P 'THEN!
'FPR' J+P-4 'STEP' -1 'UNTIL' O 'DQ!
A<A-R[I,P-J]*R[I-1,P-1-J]/U[1-P+J+1];
VII]«A;
A«C[I]-X2-A*A/U{I-1];
'FPR' J«P-3 'STEP' -1 'UNTIL' O 'D¢*
A«A-R[I,P-J]*R{I,P-J]/U[I-P+J+1];
'IF' A 'NE' O 'THEN' U[I]<«A 'ELSE' U[I]<«QZR;
*END';

'END!;

'CAMMENT' To avoid redetermining known eigenvalues the sequence
is divided by these eigenvalues;

'F@R' J«2 'STEP' 1 'UNTIL' L 'D@°®

U[N+2-J]«U[N+2-J]/(EIG{J-1]-X2);

'IF' B1 'EQ' O 'THEN'

*BEGIN' '

Blel;

X2+MIN;

'FAR' I+«1 'STEP' 1 'UNTIL' N ‘D@
S[I1+«U[I];

'GPT@' LAB1;

'END';

Flels

'FPR' I+N *STEP' -1 'UNTIL' 1 'Dp!

F1«<F1*S[I]/U[1};

'IF' F1 TEQ' 1 'THEN' F1+F1+QZR;

Fl«(X2-X1)/(1-F1);

LAB3;

T1CPMMENT ' A number of tests are made to ensure that convergence
to an eigenvalue until: the correction factor (Fl) is less
than the required accuracy (EPS)}, more than 9 iterations
have been performed;

'IF' Z 'LT' O 'THEN';

'BEGIN!

EIG[L]+X2-F1;

S[N-L]«S[N-L]/(*IF' EIG[L]-X1 'EQ' O 'THEN' EPS 'ELSE' EIG[L]-X1};
Z+0; :

LeL+1;

'IF' L 'EQ' N1+1 'THEN' 'G@T@' EXIT;

MIN«EIG{L-1]+0.1;

X1+X2MIN-1;

Bl<O;

1GATEY LABL;

'END';

'IF* ABS(F1/(X2-F1)) 'LT' EPS 'AND' Z 'GT' X+l 'THEN' Z«-Z-2;

'"IF' ABS(F1/(X2-F1)) 'LT' EPS*0.1 'AND' ABS(Z) 'GT' X+2 fTHEN'

256

'BEGIN!
Z€Z+2;
"GATP' LAB3;
YEND'; -
X1eX2: '
X2¢X2-F1;
'FPR* I«1 'STEP' 1 'UNTIL' N 'D@'
S[I]+U[1]; '
'GPT@' LABI1;
EXIT:
'END!;

PROGRAM 22

This program is a modification to the Lanczos method for symmetric
matrices as described in Chapter 7, and is programmed in Algol 68R.
The procedure NORM is used, and simply normalises a given vector. Also
the operators * and - have been defined for multiplication of two vectors,
a vector and a matrix, a scalar and a vector, and subtraction of two

vectors. These are simple routines and are not included.

'PR@AC* ML=([,]'REAL'A, 'INT'N,N1,N2, 'REAL'EPS,QZR, '"REF ' [] 'REAL'EIG) :
'BEGIN? "
'C*' A is the input matrix of order N, NI is the number of the
smallest eigenvalue required, N2 the largest. EPS is the accuracy
required, and QZR the number closest to machine zero used to avoid
division by small numbers. The eigenvalues are stored in the first
NZ2-N1+1 elements of EIG. 'C';
[1:N,1:N]'REAL' X;
[1:N]'REAL* B,C,D,G;
'REAL' MAX,MIN,NEW,NEWER,LAMBDA;
'INT' §,L,K; _
'FG’R' I 'Tﬂ' N 'Dﬂ'
(X[1,1]«X{I,N]<0);
X[1,1]«X[N,N]+1;
LABl: D+A*X[,1]};
C{1]«X[,1]*D;
B[1]«X[,N]*D;
G[1)«(X[,1]*A*X[,N];
X[,23¢D-(CI1]*X[,1])- (B[1]*X[,N]);
NORM(X[,2]);
DA*X[,2];
B[2]«X[,1]*D;
Cf2]«X[,2]*D;
'FER' I 'FREM' 3 'TO' N-1 'D@?
'BEGIN!
G[I-1]«X[,N]*D;
X[,1]«D- (C[I-1]*X[,I-1])-(B[I-1]*X[,I-2]}-(G[I-1]*X[,N]);
NORM(X[,1});
DA*X[,I];
B[I]<«X[I-1]*D;
C[I]<X[,I]*D
'END';
X[,N]eD- (C[N-1]*X[,N-1])- (BN-1]*X[,N-2]);
N@RM(X[,N]);
DA*X[,N];
B[N]<X{,N-1]*D;
C[N]«X[,N]*D;
'C' The original matrix has now been transformed by the Lanczos
method to one with main diagonal C, sub-diagonal B, with the
remaining elements in the Nth row and column contained in G.

257

LABA:

LABB:

258

The matrix.is symmetric and has the same eigenvalues as A so
bisection is now performed on thlS matrix. 'C?;
'BEGIN'

'END';

L+N1-

'C' Limits are determined for the complete eigenvalue range
(MAX,MIN}. 'C';

MAX<'ABS' (B[2])+'ABS' (B[1]);

MIN<C[1]-MAX;

MAX<«C[1]+MAX;

'FPR' I ‘FREM' 2 'T@' N-2 'Dg@'

'BEGIN!
NEW«+'ABS* (B[I+1])}+'ABS* (B[I])+'ABS' (G[I]):
NEWER<C [T]+NEW;

NEW<C [I1]-NEW;
(MAX<NEWER ! MAX<NEWER) ;
(MIN>NEW IMIN<NEW) ;
VEND';
NEW<'ABS' (B{N])+'ABS' (B[N-1]);
NEWER<C [N-1]+NEW;
NEW<C[N-1]-NEW;
(MAX<NEWER | MAX<NEWER) ;
(MIN>NEW!MIN<NEW) ;
NEW<'ABS' (B[1])+'ABS' (B{N]);
'FPR' I 'FROM' 2 'TO' N-2 'D@'
NEW<NEW+'ABS' (G[1]);
NEWER<C [N]+NEW;
NEW<C[N]-NEW;
(MAX<NEWER | MAX<NEWER) ;
(MINSNEW!MIN<NEW) ;
"REAL' ZER+0.1470;
1-

(L>-N2"G¢T¢' EXIT);

'C*' This is the major loop for the Lth eigenvalue. 'C'
LAMBDA+(MIN+MAX)*0.5;

'BEGIN'

'C' The Sturm sequence is now calculated, then bisection
performed. 'C';
'REAL' S,T,V;
K+0;
S+C[1]-LAMBDA;
(S<01K 'PLUS' 1);
('ABS' (S)<ZERIS+«QZR);
T+G[1];
V«C[N]-LAMBDA;
'‘F@R' I 'FROM' 2 TO' N-2 'D@!
'BEGIN'
V<V-T*T/S;
T«G[I]-T*B[1]/S;
S+C[I]-LAMBDA-B[I]*B{1]/S;
(S<0!K 'PLUS' 1);
('ABS' (5)<ZER! S«QZR);
TEND';
V<V-T*T/S
T«B[N]-T*B[N-1]/S;
S<C[N-1]-LAMBDA-B[N-1]*B[N-11/S;
(S<O!K'PLUS' 1);
(*ABS' (S)<ZER!S<«QZR};
S«V-T*T/S;
(S<O!K 'PLUS' 1);

259

'END!;
'IF! L-K >=0'THEN'
"BEGIN!
NEWER<MIN;
MIN«<LAMBDA ;
LAMBDA+LAMBDA+ (LAMBDA-NEWER) *0. 5
'END!
'ELSE!
'BEGIN?
LAMBDA+ (LAMBDA+MIN) *0.5;
'IF' (LAMBDA-MIN)*0.5/'ABS'LAMBDA<EPS
'"THEN'
'BEGIN'
MIN+«2*LAMBDA-MIN;
'F@R' 1 'FROM' L+1 'T@' (K>N2IN2!K) ‘D@’
EIG{I-N1+1]<LAMBDA;
L<K;
'GAT@' LABA
'END' 'FI!
'END''FI!;
1GATA' LABB
EXIT:
'END';

i

