

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

/

,I.' .

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

RI c.~ C -- - - ----_.- -- --- --+ -------- ----- - - --- -- - -- -- - --

ACCESSION/COPY NO.

_________________ I 'fi~_~_~_~/~~ __________________ _
VOL. NO. CLASS MARK

LoAoJ COPY

o ;[C.-1SJ7

2r~1997
.,-

'~. 2 5 APR 1997

'F,:.):'...IQP\1
/~

/ " .
'. t ,-/ 13,',1 -/
l/'

,

0:1'555'0'8 '02 .' "

1~1I111~11~11~~~flllllllfllllfllllllllllllll

THE NUMERICAL DETERMINATION OF THE EIGENVALUES AND

EIGENVECTORS OF LARGE ORDER SPARSE MATRICES

BY

CHRISTOPHER COLLARD RICK, B.Sc.

A Doctoral Thesis submitted in partial fulfilment

of the requirements for the award of Doctor of

Philosophy of the Loughborough University of Technology

Supervisor: , PROFESSOR D.J. EVANS
. DEPARTMENT OF COMPUTER STUDIES

© CHRISTOP~lliR COLLARD RICK, 1977.

Loughborough University
of Tet"n~'':'Iny llbr2ry

Date Nw. 'IJ
Class

Ace.

\ <{. ~r. cg LO'J.. No.

DECLARATION

I declare that the following thesis is a record of research

work carried out by me, and that the thesis is of my own

composition. I also certify that neither this thesis nor the

original work contained herein has been submitted to this or any

other institution for a degree.

C.C. RICK.

, -, ,
, I," . I" •

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Evans for

giving me the opportunity, his guidance and ideas, and a good

push when I needed it.

I am grateful to Drs. Dunbar, Blakemore and Barlow for many

useful and productive discussions. More intangible but equally

important, was the help of H.J. Gould and my parents. Finally I

would like to thank Miss J.M. Briers whose typing was considerably

more than expert.

CONTENTS

CHAPTER 1 - INTRODUCTION

1.1 Introduction•....... .
1.2 Some examples of eigenvalue problems

CHAPTER 2 - BASIC LINEAR ALGEBRAIC THEORY

2.1
2.2
2.3
2.4

Introduction
Notation ...
Eigenvalues .

..

Methods for obtaining eigenvalues and eigenvectors

CHAPTER 3 - METHODS FOR DETERMINING THE EIGENVALUES AND
EIGENVECTORS OF PERIODIC TRIDIAGONAL MATRICES

PAGE

2
3

9
9

12
17

3.1 Introduction• .• 31
3.2 Determination of the Sturm sequence for a symmetric

periodic tridiagonal matrix. 32
3.3 Results •. .. •• .• 40
3.4 The application of Bairstows method to find the

eigenvalues of an unsymmetric periodic
tridiagonal matrix 42

3.S Results.. 50
3.6 Determination of the eigenvalues of symmetric and

unsymmetric matrices by Newton's method. 54
3.7 Results.. .. •.• •. 58

CHAPTER 4 - NEW STRAGEGIES FOR DERIVING THE EICENVALUES OF
CENTRO-SYMMETRIC MATRICES

4.1 Introduction• .. •. 63
4.2 Derivation of the Sturm sequence for a centro-

symmetric matrix 64
4.3 The calculation of the eigenvectors of a tri-

diagonal centro-symmetric matrix by inverse
iteration• 70

4.4 Results.. .. •.• 77
4.5 Use of the Sturm sequence algorithm for general

tridiagonal matrices using parallel processing 80
4.6 The calculation of the eigenvectors of a symmetric

tridiagonal matrix by inverse iteration 85

CHAPTER 5 - THE NUMERICAL CALCULATION OF THE EIGENVALUES AND
EIGENVECTORS OF A SYMMETRIC SPARSE QUINDIAGONAL
MATRIX

PAGE

5.1 Introduction, 92
5.2 Formulation of the Sturm sequence and calculation

of the eigenva1ues • .. .• 92
5.3 Calculation of the eigenvectors by inverse

iteration •' •. .. 110
5.4 Results ..•..... " ., 116
5.5 Determination of the Sturm sequence for an un­

symmetric banded matrix and its use in
finding eigenva1ues 120

5.6 Results " ... , .. 129

CHAPTER 6 - THE DETERMINATION OF STURM SEQUENCES FOR SPARSE
BANDED MATRICES

6.1 Introduction 133
6.2 Sturm sequences for the quindiagona1 and periodic

quindiagona1 matrices 133
6.3 Eigenvectors of a symmetric periodic quindiagona1

matrix, 138
6.4 Results ., , 141
6.5 Sturm sequences for further banded systems 145
6.6 The determination of the Sturm sequence for a

symmetric banded matrix and the rounding
error analysis " .,• .. 153

CHAPTER 7 - FURTHER RELATED TOPICS

7.1 Introduction 161
7.2 A method for utilising partial Sturm sequences to

find the eigenva1ues of a symmetric matrix. 161
7.3 A modified Lanczos method to determine the

eigenva1ues of a sparse quindiagona1 matrix 171

REFERENCES 177

APPENDIX I 187

1

CHAPTER 1

I NTRODUCTI ON

2

1.1

The aim of the ensuing work is to present a number of numerical

methods which can be used to solve the algebraic eigenproblem,

Ax = h (1.1.1)

where A is a known NxN matrix. The scalar A is an eigenvalue of the

matrix A, and the N-vector x is the corresponding eigenvector.

Equation (1.1.1) is the matrix notation for a set of N linear

equations in N unknowns x., i=1,2, ..• ,N,
1

al,lxl + a l ,2x2+······+a l,NxN = AX l

a2,lxl + a 2,2x2+······+a2,NxN = AX 2

The equations are homogeneous and therefore a trivial solution x=o

exists. However, for certain critical values of the parameter, the

(1.1.2)

equations(I.1.2) have a finite non-trivial solution in which the relative

values of the variables are defined,but not the~absolute values. The

parameter is A,. the eigenvalue, and the variables make up the eigenvector

x. These val~es are important, as if for example equations (1.1.2)

represent some physical system then the eigenvalues and eigenvectors

are significant features of the system.

Many problems arise in engineering and physics that are defined by

partial differential equations. It is the numerical solution of the

partial differential equations by finite difference methods that usually

present an equation of the form (1.1.1) to be solved. Eigenvalue

problems arise less frequently from other sources such as economics,

and information system design.

3

1.2 SOME EXAMPLES OF EIGENVALUE PROBLEMS

The first physical problem to be considered is that of the small

vibrations of particles on a string under tension. To facilitate

presentation of the idea simplifications are made so that the string is

assumed weightless and uniform, with no gravity acting, and motion

perpendicular to the rest position of the string. Attached to the string

are five unequal weights equally spaced, and the string is under tension

P as shown in Figure (1.1.1)

m3
m

2

m4

mS

P x2 x3 x4 Xs P

h h h h h h

FIGURE 1.1.1

Applying Newtons 3rd law of motion to each mass in turn yields the

following equations,

2 (x2-xl) d xl -Px
ml dt2 = __ 1 + P

h h

2 -P(x2-xl) (x3-x2) d x2
+ P m2 --2 =

dt h h

2 -P (x3-x2) (x3-x4) d x3
- P (1.2.1) m3 --2 =

dt h h

2 (x3-x4) (x4~xS) d x4 = + P P m4 dt2 --h-- h

2 (x4 -xS) d Xs
+ P - P

Xs
mS

dt 2 = h h

Letting

and,

the system can be

where,

D =

and,

T =

d. = m. hiP,
1 ~

written in matrix notation as

D
d2x T x =
dt 2

d1 0 0 0 0

0 d2 0 0 0

0 0 d3 0 0

0 0 0 d
4 0

0 0 0 0 d
S

-2 1 o o o

1 -2 1 o o

o 1 -2 1 o

o 0 1 -2 1

o 0 o 1 -2

If the system vibrates with all masses moving in phase or in direct

opposition, i.e. normal mode operation then,

d
2
x

2 -w x

Substituting equation (1.2.7) in (1.2.4) gives,

2
D w x = -Tx

where the eigenva1ues w1,w2,w3,w4'wS are the normal frequencies of the

motion. Equation (1.2.7) is not exactly of the same form as (1.1.1)

but can easily be transformed to that form by methods described in

Chapter 2.

4

(1,2.2)

(1.2.3)

(1.2.4)

(1.2.S)

(1.2.6)

(1.2.7)

(1.2.8)

The next problem to be considered is that of an axially loaded beam

that can rotate at both ends, with the only unconstrained deflection

being vertically at the top, as in Figure (1.2.1),withID'..l P,

I
1

p

1
\l

FIGURE 1.2.1

Assuming the column, of. length ~, is in equilibrium with small lateral

deflections y(x) and has a bending stiffness El, it can be shown that

the following differential equation and end conditions must be obeyed,

and

Py =
El

o

5

y = 0 at x = 0 (1.2.9)

y = 0 at x = t

To achieve a numerical solution to equation (1.2.9) a finite difference

approximation to the continuous system can be used. The column is

divided into segments and the displacements (y., i=1, ,5) are
1

considered at a number of discrete points, as in Figure ~.2.2)

FIGURE 1. 2.2

6

The Taylor series expansion for displacement (y(x)) in terms of values

of the function at adjacent points is,

hdy (x) h2 2
y(x+h) y(x) d y(x)-+ (1.2.10) = + . + T ' . , ... , dx dx2

hdl(x) h2 2
y(x.h) = y(x) d lex) (1.2.11) - dx

+ T 2 I •••••• J

dx

Adding equations (1.2.10) and (1.2.11) gives,

2
h2 d y(x)

dx2 y(x+h)+y(x-h) = 2y(x) + (1.2.12)

The error term of order (h4) in (1.2.12) is due to truncation of the

series after fo!).'!'" terms in the previous two equations. Re-arranging

equation (1.2.12) Mol j9""crl'liv~ th~~l>rt~.,.", 1fiszl",t~Il.~,:"jtJL,I,f{~ ... a",cQ app.ro~,,,,,~tigl1)

:2 (y(x+h) -2y(x)+y(x-h)) = d2:~~) (1. 2 .13)

which can now be written as,

1
--2(Y' 1- 2y .+y . 1) = h 1+ 1 1-

2
d y.

1
--" J i=l,2, ... 5 .
dx~

(1.2.14)

Equation (1.2.13) can now be substituted into equation (1.2.Q) to yield,

Ph 2
;;;: El Yi , i=1,2, •.. ,5 (1.2.15)

The end or boundary conditions defined by equation (1.2.9) indicate

that YO=Y6=0' while the right hand side of (1.2.15) can be simplified

to,

i=1,2, ... ,5. (1.2.16)

The set of difference equations (1.2.13) can now be written in matrix

form as,

2 -1 0 0 0 Yl Yl
-1 2 .1 0 0 Y2 Y2
0 -1 2 -1 0 Y3 -- A Y3 (1.2.17)

0 0 -1 2 -1 Y4 Y4
0 0 0 -1 2 Y5)'5

7

This can be written in matrix notation as equation (1.1.1), where the

eigenvalues represent the buckling loads,

With this type of problem N can becO?>'l" very large by making h

smaller or ~alli1l11',"goQ, giving rise to large sparse matrices. An analytical

solution to equation (1.2.17) is already known, but configurations for

which classical solutions do not exist can be produced by having beams of

non-uniform stiffness, or axial loads varying with x.

For systems that can be defined by a partial differential equation

over a given domain a finite difference approximation to the equations

at grid points on this domain will result in a set of linear simultaneous

equations to be solved. For equilibrium equations or steady state problems

such as those defined, for example, by Laplace's equation applied (say) to

the steady flow of incompressible non-viscous fluid,

= 0 , (1.2.18)

and the heat conduction equation for (say), heat flow in a bar or rod,

au
at=

an eigenvalue problem does not arise.

(1.2.19)

Eigenvalue problems can be considered as extensions of equilibrium

problems in which critical values of certain parameters are required in

addition to the steady state configuration. Most examples of this kind

of problem can be found in problems of buckling and stability of structures,

resonance in acoustics and electrical circuits, and natural frequency

problems in vibrations of systems. A finite difference method of solution

will then result in a set of equations of the same form as equation (1.1.1).

8

CHAPTER 2

BASIC LINEAR ALGEBRAIC THEORY

2.1 INTRODUCTION

In this chapter is presented some of the results of basic matrix

eigenvalue and eigenvector theorems. No attempt is made to give

rigorous proofs as they are well known and can be found in the 1i terature.

References are given where needed, but for a comprehensive treatment of

the relevant subject matter the recommended reading is Wi1kinson (1965)

and Hohn (1964).

Some of the methods that are modified and used to obtain eigenva1ues

in later chapters are described here in their original form. Also, some

of the current methods being used to determine the eigenvalues of dense

matrices and sparse band matrices are also outlined. Their advantages

and disadvantages in dealing with sparse matrices are briefly described,

and it is these methods as programmed in the N.A.G. library that are used

to compare with results obtained from the new algorithms outlined in later

chapters.

2.2 NOTATION

A matrix will always be denoted by a capital letter, most commonly

used are the letters C and A. In general where possible C is used to
raai

denote,symmetric matrices and A for a general matrix which may be

symmetric or ~nsymmetric and/or complex. All of the matrices in the

work are square, and unless specifically noted have N rows and N columns

(NxN matrices). Unless the elements of the matrix are explicitly defined

the

?"SI ti07l '''' the

matrix elements, for matrix A

h
p.sit(", i. h

.t d . h· t 1 1, rowan J.t e) co umn.

say, are denoted by a .. where i denotes
1,)

The determinant of a matrix will be written either as det (A) or

IAI, and the matrix is said to be singular if the determinant equals zero.

This can be written,

9

det (A) = IAI = 0 (2.2.1)

-1
If the matrix A is non-singular then its inverse (written as A)

exists and is defined by,

A A-I = A-I A = I

Matrices with large numbers of zero elements are cumbersome and
collect;.,.. of

difficult to write and t~~9 •• zero elements are replaced by a space with

a large 0 in it. So that if matrix C is a SxS symmetric tridiagonal

matrix thus,

cl b2
0 0 0

b2 c
2

b
3

0 0

C
0 b3

c
3 b4 0

=

0 0 b4 c4 bs

0 0 0 bs Cs

it would be written for simplicity as,

cl b2

b2 c
2

b
3

0

C = b3
c

3
b

4

0
b

4
c

4
b

s

bs Cs

Likewise if A is a 6x6 upper triangular matrix thus,

a l 1 , a l 2 , a l ,3 a l ,4 a l 5 , a l ,6

0 a 2 2 a2 3 a 2,4 a2 5 a 2 6 , , , ,
0 0 a3 3 a 3 4 a3 5 a3,Q , , ,

A =
0 0 0 a4 ,4 a4 ,s a4,6

0 0 0 0 as,S as ,6

0 0 0 0 0 a6 ,6

it would be written for simplicity as,

10

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

1 1

a l I a l 2 a l 3 a l 4 aI,S
-,

a~_ .• 6; , , , ,

a 2 2 , a 2 3 , a 2 ,4 <12 5 , a 2 ,6

a 3 3 , a 3 4 , a 3 5 , a 3 6 ,
A = C2.2.o)

a 4 4 a4 5 a 4 6 , , ,

0 as 5 as 6 , ,

a 6 6 ,

Vectors are represented as underlined lower case letters if 'c"ey

are column vectors. Elements of that vector have the same lette:,-, '::1:

a lower suffix giving the posi tion of that element in the vector. ''';'CO

corresponding row vector has an upper suffix T. For example if v .'

the vector,

T
then x is ti,e vector,

x =

x
1

Eigenvalues are denoted by lower case Greek letters, and th-,· ,'"

most commonly used is A (lambda). If I is the (NxN) identity mutT.;',

1

1 o

I = , . 1

o
1

then the matrix AI is written,

o
AI =

o

(2.2.7)

12

The matrix AI is a diagonal matrix with the only non-zero elements on

the main diagonal.

The transpose of a T matrix A (say) is denoted by A , and is the

matrix whose element in the 1· th . th l' If h . row, J co umn 1S a... t e matr1x
J,1

A has complex elements and a~ . is the complex conjugate of a. . then
1,J 1,J

the matrix A* (the conjugate transpose) is the matrix whose element

in the ith row, jth column is a~ ..
J,1

From the above a number of special matrices can be defined.

For a Hermitian matrix A,

A* = A

If a matrix C is symmetric,

If a matrix A is unitary,

A*A = I

Finallya~lorthogonal matrix A is such that,

ATA = I

2.3 EIGENVALUES

The basic algebraic eigenproblem is the determination of A such

that,
Ax = AX

has a non-trivial solution) ~here A is a NxN matrix and x is an N

vector then this can be written as,

(A-AI)~ = 0 .

It can be shown that there is a non-trivial solution to this problem

if and only if the determinantal equation,

det (A-AI) = 0

is satisfied. The determinant of equation (2.3.3) can be expanded

by the Laplace expansion to yield,

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)

(2.3.1)

(2.3.2)

(2.3.3)

13

(2.3.4)

This is called the characteristic equation of the matrix A. The N

roots of the polynomial (2.3.4) are the N eigenvalues of the matrix A.
(lI"~efl>J,$ll/e

Corresponding to each of the matrix A, (A), there is at least one

non-trivial vector x for which (2.3.1) is satisfied. This is called

an eigenvector of A corresponding to A.

The elements of A may be complex, but if the matrix A is J./e-rmitia1l

then all the eigenvalues will be real. If the matrix A is unsymmetric

then some or all of the eigenvalues may be complex.

There are methods for determining eigenvalues, some of which are

described later, which work with the matrix equation (2.3.1) or directly

on the matrix A whereas the methods developed in later chapters are all

concerned with finding the roots of the characteristic equation (2.3.4).

This presents a different emphasis in approach, where, provided the

"'~ilr
characteristic equation can,be found the structure of the matrix is no

longer important and thus economies in space can be made inside the

computer.

Similarity Transformations

If a matrix A is transformed to R-IAR where R is a non-singular

matrix (i.e., the inverse of R exists) then this is known as a

similarity transformation. The matrices A and R-IAR are said to be

similar. Of particular importance (as discussed in section 5) is the

transformation when R is a unitary matrix, In this case the matrices

-1
A and R AR are said to be uni tarily simi lar.

The usefulness of such a transformation is that the eigenvalues

of a matrix are invariant under the transformation. Therefore,

similar matrices have the same eigenvalues. This can easily be shown

for if
Ax = AX (2.3.5)

then,

and,

Clearly the eigenvalues are unchanged and the eigenvectors are pre­

multiplied by R- l

It can easily be shown that any NxN matrix with N linearly

independent eigenvectors is similar to a diagonal matrix with the N

14

(2.3.6)

(2.3.7)

eigenvalues on the main diagonal. ' The more general

result from Schurs theorem is that any square matrix is unitary similar

to a triangular matrix with the eigenvalues on the diagonal. So if a

unitary matrix or a sequence of unitary matrices can be found that

transform a matrix to triangular form then the eigenvalues appear on

the main diagonal. It is this kind of transformation that is the basis

of many methods for determining eigenvalues.

The Jordan Canonical Form

As a general matrix cannot always be reduced to diagonal form it

is of interest to know what is the most compact form a matrix can be

reduced to by similarity transformations. The most compact form for

a general matrix is the Jordan canonical form which, while of little

practical importance, does help to illustrate the system of eigenvalues

and eigenvectors .of a matrix.

First a sequence of matrices are defined,

J
l

(A) = [A] (2.3.8)

A 1

A 1 0 ., , , ,
J (A) = , (2.3.9)

r ,
,

0
, , ,

1 ,
'A

..

where r>l. and J (A) is an (rxr) matrix with an eigenvalue A of
r

multiplicity r. but only one eigenvector ~ where.

T
x - (1.0.0 •.....• 0)

The matrix Jr(A) is called a simple Jordan submatrix of order r.

If matrix A is a NxN matrix with s distinct eigenvalues

s
L

i-I
m. - N

1

the following theorem can be stated.

-1 There exists a non-singular matrix R such that R AR has simple

Jordan submatrices J (A.) isolated along the diagonal with all other
r 1

elements equal to zero.

j-l.2 ••.•. p associated

If there are p submatrices of orders r .•
J

with any A. then.
1

I r. = m.
j-l J 1

The matrix R-lAR is called the Jordan canonical form of A. and is

unique apart from the ordering of the submatrices along the diagonal.

1 5

(2.3.10)

(2.3.11)

(2.3.12)

If a (NxN) matrix has N distinct eigenvalues the Jordan submatrices

are all of order 1. and the matrix can be reduced to a diagonal matrix.

If a matrix has fewer than N distinct eigenvalues. and fewer than N

linearly independent eigenvectors the matrix is said to be defective.

A matrix for which there is more than one Jordan submatrix (this

implies there is also more than one eigenvector) associated with A.
1

for some value of i is said to be derogatory. Matrices that are

derogatory and/or defective present particular problems when solving

the eigenvalue problem.

Vector and Matrix Norms

It is useful to have some measure of the 'size' of a vector or

matrix 'a'YlII/o,:Yousc. to the modulus of a complex number. This is achieved

by the use of norms. The norm of a vector is denoted by II~II and

satisfies the relations,

II~II > 0, unless ~ = 0 ,

Ilk~11 = Ikl II~II, where k is a complex scalar,

The general form of a vector norm is given by,

The norms that are of most use are for when, p=2 which is commonly

known as the Euclidean length of a vector, and when p=oo which

interpreted as the maximum value of Ix. I, i=1,2, ... ,N.
1

Similarly the norm of a matrix A is denoted by I IAI I and

satisfies the relations,

IIAII >, unless A=O

IlkA11 = Ikl IIAII, where k is a complex scalar,

IIA+BII ~ IIAII+IIBII,

IIABII ~ IIAlhIIBII·

For any vector norm there can be defined a corresponding sub-

ordinate matrix norm,

IIA~II
max --- = max IIAxl1
-gO II~II 11~11=1-

Therefore, the subordinate matrix norm satisfies,

The matrix norms subordinate to vector norms with p=2,oo are,

IIAI12 = (maximum'eigenvalue of A*A)!,
N

IIA II 00 = max)' la. ·1
i j::l 1,)

16

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)

(2.3.24)

17

Normalised Vector

Not to be confused with a vector norm is the normalised vector, a

vector multiplied by a scalar to keep the element size down to

'manageable' figures without changing the direction of the vector.

There are several ways of achieving this, the method used in the work

is described.

If x is an N vector with elements x.,
1

N
s = n

i=l

and the normalised vector is,
T xl x2 xN x = () Si' s;" s;

i=1,2, .•. ,N then calculate

This ensures that the modulus of every element of the vector is less

than 1, and also,

2.4 METlIODS FOR OBTAINING EIGENVALUES AND EIGENVECTORS

The Power Method and Rayleigh Quotient

If A is a (NxN) matrix with linear elementary divis ior.s whose

eigenva1ues satisfy,

(2.3.25)

(2.3.26)

(2.3.27)

(2.4.1)

The eigenva1ues A1 ,A 2, ..•.. Ar are the dominant eigenva1ues. By

assumption there exist N linearly independent eigenvectors ~1'~2"""~'

any arbitrary vector ~ can be expressed in the form,

N
= L

i=l
CL x.

1 -1

where Cl. are scalars, not all zero. The power method is now defined
1

by the simple iterative scheme

k=1,2,3, •.•

(2.4.2)

(2.4.3)

18

Then using equation (2.4.3) repeatedly and substituting using (2.4.2),

2
~ ; A~_l ; A ~-2

3 k
; A ~_3; A!o

N
; L k a.A.x.

111
(2.4.4)

i;l

Provided that a l ,a2, ,ar are not all zero the right hand side

of equation (2.4.4) is ultimately dominated by the terms

In particular if r;l and al#O then,

k N k
z ; A (al~l + L a. (A./A l) ~i)
-=k 1 i;2 1 1

r k L a.A.x ..
. 1 1 1 1 1;

(2.4.5)

for k sufficiently large, where ~ is a vector with very small elements.

·The vector zk is an approximation to the un-normalised eigenvector and

is accurate if II£k l I is sufficiently small. To find the corresponding

eigenvalue the ith (say) element of two consecutive zk are used ((~)i,

(z~+l)i) where,

~+l ;

Then,

(~+l)i
Al

(a l (~l) i + (~+l) i)

(~)i
;

(a l (~l)i + (~)i)

+ Al as

The Rayliegh quotient of a matrix A for

is given by, x'Ax
,

x x

It can then be shown that

max
gO

x'Ax

x'x

(2.4.6)

k-+ oo • (2.4.7)

a non-trivial vector x

(2.4.8)

(2.4.9)

where Al is the eigenvalue of A with the largest modulus. The largest

eigenvalue of A can therefore be determined using the Rayleigh quotient

and a gradient method to optimise (2.4.9).

The Rayleigh quotient can also be used in conjunction with the

power method to determine the eigenvalue of largest modulus.

If xk is the vector obtained by the power method from equation

(2.4.3) then,

(!bTAl
(!bTl

where £ is a small error term. In general the Rayleigh quotient

corresponding to ~k will generally give a better approximation to Al

than the power method.

If A. is an eigenvalue of matrix A, and y. the corresponding
1 -1

eigenvector then,

T
y. Ay.
-1 -1 = A.

T 1

l.i l.i
This method is described by Wilkinson (1965) where if an

approximation to Ai is found (~i) then the eigenvector corresponding

to~. is determined. The relationship (2.4.11) can be used to refine
1

the approximation to A. and the eigenvector y ..
1 -1

Gaussian Elimination

Gaussian elimination provides the basis for much of the ensuing

work, and so is described in some detail even though it is a widely

19

(2.4.10)

(2.4.11)

known and frequently used method. Again a detailed description of the

method can be found in lVilkinson (1965).

Gaussian elimination is generally used to obtain the solution of

a set of linear equations of the form,

Ax = b (2.4.12)

where A is a dense matrix and b a known vector. This is achieved in

practice by Gaussian elimination on the matrix A with the vector b

th included as the (n+l) column. The elimination in A will now be

described.

The elimination in the matrix A takes place in N-l stages,

working on the matrix Ai. i=O.1 ••.•• N-2. with elements a~ k' After
) .

the (i-I) th stage

i-I
a l 1

•
o

the matrix A
i
- l has the form.

i-I
a l 2

•
i-I

a 2 2
• o

, . 0

i-I --------a
1.N
i-I --------a

, 2 ,N

i-I i-I a.. a --
1,1 i,i+l

I

'i-l
- - a i,N

20

i-I i-I
ai+i,i ai + 1 ,i+l-·

i-I ---a
i+l.N (2.4.13)

o i-I i-I
ai + 2 ,i ai + 2 ,i+-1 -,

:i-1
aN .

• 1

i-I - - - a
i+2.N

I

i-I
Now the elements ai +j •i • j=1.2 •.•.• N-i are eliminated by

calculating.
i-I i-I

s ... = - a .. . /a ..
1+J,1 1+),1 1,1

and adding si+j.i times row i to row j. It should be noted that

f h' th a ter t e 1 state the elements in row i+l do not alter value again.

The problem arises that the pivotal element i-I may be zero (a. .) or
1.1

(2.4.14)

close to zero and the division of (2.4.14) cannot be preformed without

overflow or serious growth of rounding errors occurring. There are

three. ways of avoiding this.

1) Partial pivoting. The ith column is inspected and the element

i-I .. 1 N' hId 1 (i· ')· d . d d a ..•)=1+ •...• WIt argest mo u us ak . IS et ermIne an
J J 1 J 1

then row k is interchanged with row i.

2) Total pivoting. i-I The whole of the matrix a. k' j.k>i is inspected
) .

and the element with largest modulus is exchanged with i-I by a. l,i

performing row and column interchanges.

3) The third method involves replacing the i-I zero a .. by a small 1.1

element E. and continuing the process. This procedure is not

satisfactory for solving linear equations. but if Gaussian

21

elimination is being used in some iterative method, this is an acceptable

procedure (Vil. C~. 5).

The matrix A, ignoring possible interchanges, has now been

decomposed to the form,

A = LU

where,
0 0 0

a1 1 , a1 2 , a1 3 ,
0

1 1
a2 2 a2 3 , ,
0

2
a3 3 ,

u =
0

,
,

I I

0 0 0 - - -

1 0

s2 1 1 0 ,

s3 1 s3 2 1 ,
, ,

s4,1 s4 2 s '.
4,3 ,

L =

I I

sN 2
s - ...

sN 1 N,3 , ,

2
a3 4 -,
, ,

, ,

, , ,
, ,

, , , ,

- - - - -

o - - a 1,N
1 - - - a 2,N
2 --------a 3,N

, '. ,
,

, N-1 - - - - - 0 aN N ,

0

, ,
,

, ,
, , , , , 0 , , ,

,
- _ SNJN-l 1

(2.4.15)

(2.4.16)

(2.4.17)

Performing Gaussian elimination on matrix A and vector b as the (N+1)th

column of A from equation (2.4.12) gives,

LUx = b

Ux = L -lb = d

and is known as the forward substitution stage. Now in order to

obtain the value of ~ a backward substitution procedure must be

performed, and this is best described a1gorithmica11y as,

(2.4.18)

(2.4.19)

I

The quantity.

for i = N-l.N-2 •••....• l. do

N . 1 . 1 r 1- 1-
X. = (d. - L x.a ..)/a ..

1 1 j=i+l J I.J 1.1

N
V = TT a~-~ (_l)W

i=l 1.1

where W is the number of row and/or column interchanges performed

represents the determinant of the matrix A.

Inverse Iteration

Inverse iteration is basically a variation of the power method

of the form defined by

Ali +
l

i+l
z

= z
i

This is the power method using the inverse
I

-I of A (A) and converges

to the eigenvector of A corresponding to the eigenvalue of A with

smallest modulus. If instead the iteration of (2.4.22) is performed

-1 with the matrix (A-qI) •

the vector z converges to the eigenvector corresponding to the

rigenvalue closest to q in the complex plane. Inverse iteration can

provide rapid convergence to an eigenvector even if the approximation
I

to the eigenvalue is not good;"lI::ially.

The implementation of the method. particularly for use on a

22

(2.4.20)

(2.4.21)

(2.4.22)

(2.4.23)

computer. has been developed by Wilkinson (1965). It can be seen that

the iteration (2.4.23) requires the repeated solution of a set of

linear equations. This can be achieved using Gaussian elimination

with.pivoting strategy. Also the LU decomposition of (A-qI) need only

be calculated once making great savings in time during the process.

Therefore, ignoring interchanges for clarity of presentation the

process becomes,
i Lv = z

23

i+l) (2.4.24)
Ur. = v

where,
LV = A-qI . (2.4.25)

The first step is omitted for i=O and the second step replaced by

U1'.1 = ~ (2.4.26)

where e is the vector whose elements are alII. This is equivalent

o to letting 1'. = Le. This starting procedure works well under 7nost

conditions. In general if q is a close approximation to an eigenvalue

convergence to the appropriate eigenvector occurs in one or two

iterations, then the Rayleigh quotient is determined and used to define

the eigenvalue. Inverse iteration is the recommended method to obtain

an eigenvector corresponding to a given eigenvalue.

Eigenvalue Bounds

There are two theorems due to Gerschgorin that define bounds for

the eigenvalues of a matrix that are used in conjunction with other

methods:-

Every eigenvalue of the matrix A lies in at least one of the

circular discs with centres a .. and radii L la .. I.
1,1 j#i 1,J

If s of these discs form a connected domain which is isolated

from the other discs, then there are precisely s eigenvalues of A

within this connected domain.

Of particular importance is the use of these theorems with the

symmetric matrix C, when the maximum and minimum bounds for all

eigenvalues can be given as,

min
i

(c .. - L~. ·Il:: a~y eigenvalue
1,1 '4' 1,J

Jr1

of C :: max(c ..
i 1 J 1

+ Lie. ·1). (2.4.27:
'4' 1,J
Jr1

Sturm Sequences and Bisection

For a symmetric matrix with real eigenvalues the method of bisection

can be used to determine the eigenvalues. Of more importance is the fact

that bisection can be used to determine the pth largest eigenvalue say,

or the number of eigenvalues and their value in the range x to y (say).

It is this ability to determine an eigenvalue independently of any others

in the eigenvalue spectrum that makes the method so powerful and useful.

If C is the symmetric matrix,

- -c 2,N

24

C = (2.4.28)

where,
c .. = c ..
1,J J ,1

Then P (A), the leading principal minor of order r of the matrix
r

(C-AI) is given by,

P (A)=det
. r

Obviously,

and PO(A) is

c' r,2

defined by,

I

I
C
r,3

PU(A)

PO(A)

=

=

det

1

-c 2,r

I

(C-AI)

c -A r,r

\

(2.4.29)

(2.4.30)

(2.4.31)

The sequence P.(A). i=O.I ••••• N is a sequence of polynomials in A
1

for which it can be shown that the zeros of P (A) strictly separate
r

those of Pr_leA). It is this property that provides the basis for the

bisection method.

If the sequence Pi (A). i=O.I •..•• N is evaluated for some value of A

then SeA) ,is the number of sign agreements between successive members

then s(A)=3). If any P.(A) is evaluated as zero it is taken to have the
1

same sign as the preceeding member of the sequence (P. I(A)).
1-

The Sturm sequence property theorem can now be stated as:- The

number of agreements in sign seA) of successive members of the sequence

PiCA). i=O.I ••..• N is equal to the number of eigenvalues of C which

are strictly greater than A.

The operation of the bisection method can now be described as used

to obtain the kth largest eigenvalue (Ak) of the matrix C.

By the use of Gerschgorin's theorem two numbers ,a.b, can be

obtained such that.

25

a < Al :; A2 :; A3:; :;A
N

< b • (2.4.32)

where A .• i=I.2 •...• N are the eigenvalues of C. Then the number
1

(a+b)/2=~1 is determined and the sequence Pi(~)' i=O.I •...• N

be determined s(~l)'
, clooe4

calculated. from which can

than or equal to N-k.lthen
close 4

Ak lies in the. interval

If s(~l) is greater

in the,interval [a'~ll. The process is now repeated using whichever

of the two half intervals Ak lies in. with ~2 being calculated as

either (~I+b)/2 or (~I+a)/2. This process can now be repeated. always

using the interval which Ak lies in. until the width of the interval

is small enough to obtain \ to the required accuracy. Wil/(i" son (Iq,.,)1'.30 0.

26

Newton-Raphson Iteration and Secant Method

These two methods enable the eigenvalues of general matrices

to be determined. They are both root finding methods for determining

the zeros of a polynomial, and are therefore used to find the roots

of the characteristic equation by working with the determinant of the

matrix.

If matrix A is a general matrix then,

= det(A - AI)

d
= dA det(A - AI)

is the value of the characteristic polynomial at A,

which is zero when A is an eigenvalue of A.

The Newton-Raphson iteration

PN(A
i

)

can be defined as,

pI (Ai)
N

where Ai is an initial guess at an eigenvalue. This method has the

~~al convergence properties (i.e. quadratic for single roots) that

the method has when applied to ordinary polynomials. If the matrix

has complex eigenvalues this method will locate them, but to do this

A~ must be complex. One of the disadvantages of this method is that

at each step both the determinant and its1differential must be

calculated. If for some matrices it is impT4Cto°cable to determine P N (A)

then in this case the Secant

__ --------------------~Ai+l = Ai _

method can be used,
(Ai_Ai-l)p (Ai)

N

(P (Ai)_P (Ai-I))
N N

which is defined by,

,

(which is the Newton-Raphson iteration with PN(A) replaced by its

finite difference approximation i ° i-I
I i (PN(A) - PN(A))

P
N

(A) = •. I
(A 1 _A 1

-)

(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37)

This method cannot be used to find eigenvalues in the complex plane f.fP," HoU(

litif/~UIHlt)sO it is only used on symmetric matrices ,or unsymmetric matrices where

for instance the physical problem guarantees the existence of real

eigenvalues. Two previous determinant evaluations are required at
cO'7IV'Q.""gt-nC(

each step, but starting the process to '3<Jo'l'ant~e 0 can sometimes be a

problem.

This leaves the problem of determining complex eigenvalues for

matrices for which PN(A) cannot be calculated. This is achieved using

MulIers' method which is described in Chapter,S.

With these methods when one eigenvalue has been found steps must

be taken to avoid re-determining this same eigenvalue. This can be

done

from

simply by dividing PN(A) by the difference of the current guess
tA4tU'ml<'ed

each previous~eigenvalue. The new function to be used if the

27

(2.4.38)

i GN(A) can then be substituted in (2.4.34) and (2.4.35) to effectively

deflate the matrix as each eigenvalue is found.

Transformation Methods

This section briefly describes some of the more popular

transformation methods that can roughly be divided irito two cate9o~i~S,

those that obtain the complete solution, and those that transform

the matrix to some simpler form to allow other efficient methods to

be used (e.g. transformation to tridiagonal form, then use bisection).

Given's method consists of performing plane rotations on the

matrix to reduce elements singly or in symmetric pairs to zero in a

set order. This is a similarity transformation leaving the eigenvalues

invariant, the plane rotations being performed by elementary unitary

matrices. If the matrix is Hermitian, reduction to tri-diagonal form

can be guaranteed in a finite number of steps, if the matrix is

unsymmetric then the transformation is to Upper Hessenberg form.

A more efficient method is the reduction to the same

28

tridiagonal or upper Hessenberg form by the Householder method. This

is a similarity transformation by elementary unitary Hermitian matrices

that zero all the required elements in a column at one time (and the

corresponding row for the symmetric case).

The Givens method can be more efficient on sparse matrices, as

it is relatively easy with the method to avoid eliminating elements

which are already zero. The problem with both methods is that little

economy of space can be made when using ei"ther method on a computer,

as it is almost impossible to avoid storing the full matrix no matter

how sparse. Also if efficient determination of the eigenvectors is

required, all the transformation matrices must be stored in some form

to obtain the eigenvectors from those of the transformed matrix.

The LR transformation is a similarity transformation developed by

Rutishauser (1958). This consists of decomposing the matrix (A say)

to the form,

A = LR (2.4.39)

where L is unit lower triangular and R is upper triangular. The

similarity transform of A, L-IAL is defined by,

L-IAL = L-l(LR)L = RL •

If the original matrix is Al then the LR method can be written as

: }
Rutishauser has shown that under certain conditions that as

s-, L 71, and R tends to an upper triangular matrix with the
s s

eigenvalues of Al situated on the main diagonal.

This method has a number of drawbacks, such as converging very

slowly, and the decomposition breaking down. These have to some

extent been combated by a shift of origin and interchanging rows,

so that the modified algorithm is a powerful method.

(2.4.40)

(2.4.41)

29

The much more powerful QR algorithm was developed in 1961 by

Francis. This is similar to the LR method, but instead of a triangular

decomposition factorises the matrix into the product of a unitary matrix

Q, and an upper triangular matrix R. The algorithm can be defined by

the equations,

A = Q R s s s
A - QHA Q - QHQ R Q R Q s+l s s s s s s s = ss' (2.4.42)

where Al is the original matrix. Obviously it is a similarity

transformation and As has the same eigenvalues as Al'

For each step the QR algorithm requires more work than the LR

algorithm, but there is a better guarantee of convergence, which is

more rapid. Even so, a shift of origin can again be introduced to

speed convergence.

Because of practical considerations of work load and difficulites

with the factorisation, the QR method is only used on upper Hessenberg

or symmetric band matrices. When this method is programmed on a

computer, even for large matrices the storage problems are not too

excessive. The method is then the quickest available to obtain all

the eigenvalues of the matrix in question" However in practice only

a few eigenvalues of the matri,x may be required allowing other methods

to compete on a time basis. It is for this reason that methods

developed in later chapters are compared whenever possible with QR

and LR methods.

CHAPTER 3

r1ETHODS FOR DETERMINING THE EIGENVALUES AND

EIGENVECTORS OF PERIODIC TRIDIAGONAL MATRICES

30

3.1 INTRODUCTION

This Chapter is concerned with finding the eigenvalues of the

periodic tridiagonal matrix. This matrix occurs for example in the

finite difference approximation to the Sturm-Liouville differential

equation with periodic boundary conditions, the modal analysis of

Iloquet waves in a composite material, and other applications

particularly with periodic boundary conditions.

The periodic characteristic Sturm-Liouvi11e problem can be

defined by,
d !!1: dx (p(x) dx) + q(x)y + Ar(X)y = 0 ,

where the numerical values of A and y(x) are required over the range

[a,b], with the boundary conditions,

yea) = y(b)

Pea) dY(a) = p(b) dY(b)
dx dx

}
The direct substitution for the second deri vati ve in (3.1.1) by

the approximation

d !!1: - (p(x)) '" dx dx
Pi+!(Yi+l-Yi)-Pi-!(Yi-Yi-l)

h2

at each of the discrete points Xi' i=1,2, ... ,N, in the interval [a,b]

where Nh=b-a,yields homogeneous linear equations of the form,

where A is the matrix

al,l al 2 , al N ,

a2 1 , a2 2 , a2 3 , 0 , ,
a3 2

, "-, , ,
"-, ,

"-, , , "- "-,
"- , aN_l,N

0
,

"-
"-

'-

aN,l aN,N_l aN N ,

31

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

wi th elements,

2 } ai,i = (Pi+i + Pi-I) - qih ,i=1,2, •.. ,N,

ai,i+l = -Pi+I' ai,i_l = -Pi-I' i=1,2, .•. ,N •

vJh~.,.4. _"rI=Il"o la.,,: d~,rI·tI.
The matrix R is a diagonal matrix with elements f., i=1.2" •. ,N, all

1

greater than zero. Therefore equation (3.1.4) can be written,

where

Cu = AU

r. = R-!~
c = h 2R-!AR- I }

The matrix C has the same form as A, and equation (3.1.7)

represents the st~71d~" eigenvalue problem to be solved.

A new formulation of the Sturm sequence for the symmetric

32

(3.1.6)

(3.1.7)

(3.1.8)

periodic tridiagonal matrix is discussed in detail and its equivalence

to previously obtained sequences is shown. This formulation of the

Sturm sequence is then extended to obtain the sequence for unsymmetric

matrices. The Sturm sequence is then used in an implicit Bairstow

technique to find the eigenvalues of an unsymmetric matrix. Finally

the sequence is used in a Newton type iteration for both symmetric

and unsymmetric matrices and results are compared with the previously

described methods.

3.2 DETERMINATION OF TIlE STURM SEQUENCE FOR A SYMMETRIC PERIODIC

TRIDIAGONAL MATRIX

Let C be a symmetric periodic (NxN) tridiagonal matrix derived

from the finite difference discretisation of a Sturm-Liouvi1le system

as indicated in the previous section. In order to find the eigenvalues

of C a solution must be found to the determinantal equation

det(C-AI) = 0 (3.2.1)

where,

33

c -A
1

b2

b2 C2-A b3 o , ,
b3

, "-
, , , ,

I C-AI I =&tt
,

= 0 (3.2.2) ,

0

b l

,
, b

N

Evans (1971) has shown that the characteristic polynomials of the

matrix (C-AI) are given by the following relationships,

Po(A) = 1

PI (A) = cI-A

P 2 (A) (c 2-A)P l (A) 2
= - blo(A)

. 2
Pi (A) = (c. -A)P. 1 (A) - b.P. 2(A), i=3, .•. ,N-l,

1 1- 1 l-

and
QO(A) = 0

Ql (A) = 1

Q2(A) = (c2-A)

2
= (c.-A)Q. leA) - b.Q. 2(A),

1 1- 1 1-
i=3, ... ,N-l,

Finally,
2 N-l N

- blQN_l CA) +(-1) 2 Jrb .•
J =1 J

These polynomials(P. (A), i=l,N) were obtained from a Laplace
1

expansion of the matrix (C-AI), and are the leading principal minors
lIo~~ (/qblJ-)

of IC-AII.~ These polynomials can now be used in a bisection process

to determine the eigenvalues of the matrix C. Unfortunately even for

(3.2.3)

(3.2.4)

(3.2.5)

small well behaved matrices the polynomials P. (A), i=1,2, •.• ,N oscillate
1

wildly between large positive and negative values, even for values of A

34

quite close to an eigenvalue, In an attempt to avoid underflow and

overflow occurring when calculating the sequence in floating point

arithmetic on a computer, the procedure of Barth et aI" (1967) can be

adopted.

The sequence of polynomials Pi (A) and Qi (A) .are replaced by a new

sequence of scaled polynomials p.(A) and q. (A) given by,
1 1

p. (A) :: P. (A)/P. leA)
1 1 1-

and . qi (A) = Qi (A) /P i (A)

The relationships (3.2.3), (3.2.4), and (3.2.5) then become,

PO(A) = 1

Pi (A) = (cl-A)

P2 (A)
2 = C 2-A-b/Pl (A)

2 p.(A) = c.-A-b'/p. l(A) , i=3,4, •.. ,N-l,
1 1 1 1-

whilst the q.(A) after some simple algebraic manipulation become,
1

= (C2-A)/Pl(A)
2

= (c3-A) q2(A)/P3(A)-b3ql (A)/(P2(A)P3(A)),

q. CA)
1

2
= (c.-A)'!. l(A)/p. (A)-b.q. 2(A)/f>. (A)p. 1 CA)),

1 1- 1 1 1- \"1 1-

i=3,4, ... ,N J

and then finally, N-l
2bN Tf-(b'/p.(A)).

j =1 .1 ~

Overflow and underflow are now avoided whilst calculating the

p. (A) (i=l,N) and instead of counting the sign changes in P.(A) as
1 1

in the previous procedure (3.2.3) and (3.2.5), the number of negative

signs in the sequence p. (A) are now counted. This indicates the
1

number of eigenvalues less than A and can be used in the usual'

(3.2.6)

(3.2.7)

(3.2.8)

(3,2.9)

(3.2.10)

bisection process in the same way, ~, a l1e!j4tiv/l. r'(~) 'o.{'c.lltAS P.(t)+- R-, (I-)
aN .of Cl c{iffe..-"",t ~i3n1·

An equivalent sequence to (3.2.8), (3.2.9), and (3.2,10) can be

obtained in a different manner to the Laplace expansion method used

above. The sequence obtained is ?not(~mcI2't1t to compute than (3.2.8-

3.2.10), and the method by which it is obtained forms the basis for

35

much of the ensuing analysis. For this reason the method is described

in detail.

If a Gaussian elimination procedure is performed on the matrix

(C-AI) the matrix will be transformed to upper triangular form in the

following stages.

By setting
(3.2.11)

then for the first step the matrix becomes,

sI (A), b2 r l

0 2 , c2-A-b 2/S l (A), b3 -rIb/sI (A)

b3
c3- A "- 0 ,

"- " , "- , " (3.2.12)
" " ,

"-

0
, ,

" "
" " b , , N , , 2

0 , -rIb/sI (A) , b
N

, cN-A-r /sl (A)

Again setting
(3.2.13)

the second step of the Gaussian elimination process becomes,

sI (A) b2 r l

0 S2~A) b
3 r 2

0 C3-A-b;/S2(A) , b4 -r2b3/s 2(A)
"- 0

b4
,

" " " "- "-

,
0 "- '.

bN ,
-.... 2 2

0 0 -r2b3 / s2(A) bN cN-A-rl/sl(A)-r2/s2(A)

(3.2.14)

36

This elimination process is repeated for (N-l) steps and it can easily

be seen that the final form of the matrix then becomes,

sI (~) b2 r 1

s2 (A) b3
r 2

" 0 S3(Aj' " "-
, "-,

"-"- , "-
"- "-

"-
" "-

0
"- ., I "- ,

brir N-l "-

" "-
, sN (A)

where,
sa(A) = 1

sI (A) = cl-A

s2 (A)
2 = c2-A-b/s l (A)

s. (A) 2 = c.-A-b./s. 1 (A)
1 1 1 1-

i=3,4, ... ,N-l,

r
1

= bl

r. = -r. lb./s. 1 (A),
1 1- 1 1-

i=2,3, ..• ,N-l,

and finally, N-l
sN (>-) = cN-A- L

j=l

The sequence s.(A), i=l,N is identical to the sequence p. (A), i=l,N,
1 1

and their equivalence will now be shown in the following manner.

If (3.2.16) and (3.2.3) are compared it is seen that,

Pl(A)

r;;-w =

which on substitution in s2(A) gives,

2 PI (A)
s2(A) = c 2-A-b2/(p (A))

a
and on clearing terms becomes,

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

Then by comparing (3.2,19) and (3,2.3), we have,

and therefore,

If this procedure is continued it can be seen that,

and,

s. (A)
1

=

P. (A) =
1

p. (A)
1

P. leA)
1-

=p.(A),
1

i

TT
j=l

s. CA),
J

i=l,2, ... ,N-I,

i=1,2, ••. ,N-l.

37

(3.2.20)

(3.2.21)

(3.2.22)

(3.2.23)

.... Prom (3.2.16) and (3.2.10) for PN(A) to equal~sN(A) the following

relationships must be true,

(-b./p. (A))
J 1

Using continual substitution of the relationship from (3.2.16)

describing the r.,
1

=
N-l

2bN L
i=l

substituting for the s. from (3.2.22)
1

=
N-l

2b
N
If
i=l

(-b./s. (A))
1 1

(-b./p. (A))
1 1

Therefore subtracting relationship (3.2.26) from (3.2.24) it only

remains to show that,

2
bl qN_l(A) =

N-l
L

i=l

2 r./s. (A)
1 1

(3.2.24)

(3.2.25)

(3.2.26)

(3.2.27)

or by using equation (3,2,7),

2
r./s. CId

1. 1.

This is achieved by an induction proof,

Assume that
M-I

= L
i=l

2 r./s. (A)
1. 1.

and that, M-2
= L r~/s.(A)

i=l 1. 1.

Using the recurrence relationship of (3.2.4) QM(A) can be written as

2
QH(A) - (CM-A)QM_I(A) - bM QM_2(A) ,

and it therefore follows that,

38

(3.2.28)

(3.2.29)

(3.2.30)

2 2 2 2
blQM(A)/PM(A) = (CM-A)QM_I (A)b/PM(A)-b~hQM_I (A)/PM(A) . (3.2.31)

Now by substituting for QM_l(A) and QM_2(A) from equations

(3.2.28) and (3.2.29) the relationship (3.2.31) becomes,

2 2 M-I 2 M-I r. r. (CM-A)PM_1(A) 2 b
M

P
M

_2(A)
L

1. L 1.
blQiA)/PM(A) =

PM(A) si (A) PM(A) ~O() .(3.2.32)
i=l i=l 1.

Next the p. (A) can be replaced by all the equivalent s. (A)
1. 1.

as given in (3.2.22), and (cM-A) can be replaced using the relation-

ship (3.2.16), then (3.2.32) becomes,

2 b2 M-I 2 1 r. M-2 M cL 1.)_b 2(L I 1 bIQM(A)/PM(A) = (sM(A)+ s (A)) SM(A) si(A) M i=l SM(A)SM_l(A)

2 M-I r.
= L --,:1.~ +

i=l si(A)

M-I i=l

Now the two terms of opposite sign cancel and all remaining terms can

be placed in the sum to leave,

2
bIQM(A)/PM(A)

M

= L
i=l

2 r./s. (A)
1. 1.

(3.2.33)

(3.2.34)

(3.2.35)

r'?-
1

siC

This shows that if relationships (3.2.29) and (3.2.30) are true for

any M-I, M-2, then (3,2,35) is true for any M.

If M-2 equals 1 then the L.H.S. of equation (3,2.30) becomes,

=

by substituting from equations (3.2.4) and (3.2.3). The right hand

side of equation (3.2.30) after substituting from (3.2.16) becomes,

Therefore from equations (3.2.36) and (3.2.37) equation (3.2.30) is

shown true when M-2 has the value 1.

If M-I equals 2 then the L.H.S. of equation (3.2.29) after

substituting from equations

2
bl Q2(A)

P2(A)
=

2 (c -A) (c -A)-b 212

By taking the R.H.S. of equation (3.2.30) and substituting using

(3.2.16) the expression becomes,

2

I
i=l

2 r.
1

=

=

(1 + Sl(A)S2(A))

2 2 (C2-A) (c l -A)-b2+b 2
2

(Cl-A) (C2-A- b2)
(cl-A)

39

(3.2.36)

(3.2.37)

(3.2.38)

(3.2.39)

40

Therefore from equations (3.2.38) and (3.2.39) equation (3.2.29)

is shown true when M-I has the value 2.

Therefore (3,2.29) and (3.2,30) have been shown true for M-l,M-2,

equal to 2,1, and equation (3.2.27) is proved true by induction for

all M.

It has now been proved that,
P. (A)

s.(A) = p1 (X) = p.(A) ,
1 • 1 1

1-

i=l,N

for any symmetric periodic tridiagonal matrix. In fact a similar

relationship can be proved for any unsymmetric periodic tridiagonal

matrix in the same manner.

The sequence p.(A), i=l,N can now be replaced by the sequence
1

(3.2.40)

Si(A), i=l,N and used in a bisection process to isolate the eigenvalues

of the matrix C as described in Chapter 2.

3.3 RESULTS

The recul")'~"'cerelationship(;.1..l6) was programmed in ALGOL 60 on

the I.C.L. 19045 computer at Loughborough University of Technology.

The procedure is given as program 2 in Appendix 1.

The program was tested on the following llxll matrix,

2 -1 .1

-1 2 -1 0
"

-1 2 ...

" '-
" ... " " ... " "

, ...
"

... ,
0 " " , -1 ... , , ...

-1 -1 '2

The eigenvalues are known and are given by,

A = 4 sin
2

(rTI/N)
r

(3.3.1)

(3.3.2)

the theoretical and calculated eigenvalues are tabulated and compared

in Table 3,3.1, the results being rounded to 10 significant figures

i

-----------------1-----------------=:------- ---------::.:::- --- -- -- --
Theoretical ~. I Actual results A. A. - A.

1 __ +-_______ ._1. __ : ___ . ____________ :__ _ 1 1 ___ -1

2.168404345 x 10-19 T 1.682132106 x 10-11 -1.682132084 x 10-11
1

2

3

4

3.174929341 x 10-1 3.174929343 x 10-1 -0.000000002

3.174929341 x 10- 1 3.174929343 x 10-1 0;000000002

1.169169974 1.169169974 0.000000000

5 1.169169974

6 2.284629676

7 2.284629677

8 3.309721468

9 3.309721468

10 3.918985947

11 3.918985947

1.169169974

2.284629677

2.284629677

3.309721468

3.309721468

3.918985947

3.918985947

/
11 _ 2
L (A.-A.)

i=l 1 1

TABLE 3.3.1

0.000000000

-0.000000001

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000003

The computer took 2.5 seconds to obtain the results given in

Table (3.3.1), and they can be seen to be accurate to 9 decinn~1

pl<lcQ.G ..

Next the solution of a larger problem was sought in which the

resulting matrix is of order 60x60. The theoretical and experimental

values of the ten largest eigenva1ues are given in Table 3.3.2.
-

i Theoretical Actual results - Ih._i.)2 Ai Ai 1 1

1 4.000000000 4,000000000 0.000000000

2 3.984229403 3.984229410 0.000000007

3 3.984229403 3.984229403 0.000000000

4 3.937166322 3.937166330 0.000000008

5 3.937166322 3.937166308 0.000000014

6 3.859552972 3.859553001 0.000000029

7 3.859552972 3.859552951 o . 000000021

8 3.752613360 3.752613370 0.000000010

9 3.752613360 3.752613359 o . 000000001

41

10 3.618033989 3.618034000 o .000000021 TABLE 3.3.2

The accuracy of these results has been reduced to 8 significant

figures. This is due partly to the size of the matrix, and because

all the eigenvalues except the largest occur in double pairs, and

accuracy is always reduced when finding multiple (l'l\<lc/ose ei91l-nlfa/c.le$.

The results are compared with a N.A.G. library routine using an

As a final test program 2 was run on a 3oox300 matrix of the same

form as (3.3.1) to obtain the largest and smallest eigenvalues. The

answers (4.000000000, and 0.000000000) were obtained correct to 10

significant figures in 11 seconds.

3.4 THE APPLICATION OF BAIRSTOWS METHOD TO FIND THE EIGENVALUES OF AN

UNSYMHETRIC PERIODIC TRIDIAGONAL MATRIX

Bairstows method is a procedure for finding the real quadratic

factors of a given polynomial, thus determining the roots of the

polynomial in real or complex conjugate pairs. This method is applied

to matrices by finding quadratic factors of the characteristic

polynomial implicitly, and the eigenvalues are then obtained in pairs

as roots of the quadratic factors.

Let D be an unsymmetric periodic tridiagonal matrix of order N

then, the eigenvalues are given by,

42

43

cI-A b2 dl

d2 C2-A b3 0 , ,
d3

.... ,
ID-AI I=det

.... , = 0 (3.4.1) ,
0

.... , , bN
....

.... ,
bl

.... dN . cN-A

It can easily be seen, by using (3.2.3),(3.2.4), and (3.2.S) that

the Sturm sequence for the matrix (3.4.1) is given by,

and

P_l(A) = 0

Po(A) = 1

PI CA) = cI-A

P2(A) = (c2-A)P l (A) - b2d2P
O

(A)

.
P. CA) = (C.-A)P. 1 (A) - b.d.P. 2(1.),

1 1 1- 1 1 1-

%(A) = 0

Ql (A) = 1

Q2(A) = (C2-A)

Q3(A) = (c3-A)Q2(A) - b3d3Ql (A)

i=3,4 •... ,N-I,

= (C.-A)Q. 1(1.) - b.d.Q. 2(A), i=4,S, ... ,N-l
1 1- 1 1 1-

and finally,

Since the eigenvalues could be complex the Sturm sequence

cannot be used in a bisection process. Instead Bairstows method

will be used. As the method is quite qiF{iC"lt a slightly simpler

(3.4.2)

(3.4.3)

(3.4.4)

matrix than D will be used as an example to illustrate the algorithm.

This facilitates explanation of the method, and extending the result

to cater for . , D is a trivial step.

The matrix C is obtained by setting,

in (3.4.1) so that the matrix is now of the form,

cl-A b2 a

b2 c2-A b3
"- 0 b3

C -A'" "-
3 "-

"- " "
(C-AI) " "-

= " "- "- "-

" " " "- "- "-
"- "-

" "- bN 0 "- "
ad ' b

N C -A N

Then from (3.4.2), (3.4.3), and (3.4.4) it can be seen that

and

P -1 (A) = 0

PO(A) = 1

PI (A) = cl-A

P 2(1.) = (c 2-A)P l (A)

.
P. (A)

1

%(A) = 0

Q
l

(A) = 1

Q2(A) = (c 2-A)

2
blo(A)

Q. (A) = (c.-A)Q. l(A)- b1~ Q. 2(1.), i=3, ... ,N-l, 1 1 1- 1-

and finally,

44

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)

If each of the polynomials P.(~) i=l,N from equation (3.4.7) and
1

(3.4.9) are divided by a trial quadratic factor of the form (~2_EX_F)

say, then a linear remainder, (A.X+B., i=l,N) say, is produced. The
1 1

polynomials P.(X) can now be written as,
1

P.(X) ~ (X2-EX-F)R.(X) + A.X + B
1
.,

111
i=l,N

where R.(X), i=l,N is a polynomial in X of degree (i-2). Similarly
1

each of the polynomials Q.(X), i=l,N-l, from (3.4.8) are divided by
. 1

the trial quadratic factor (X 2_EX_f) producing a linear remainder,

45

(3.4.10)

which is G. X +H., i=l,N-l. The polynomials Q. (X) can now be written as,
1 1 1

2 Q. (X) = (X -D-F)S. (X) + G. X + H. ,
1 1 1 1

i=l,N-l.

Again the S. (X), i=l,N-l are polynomials in X of degree (i-2).
1

Now equations (3.4.10) and (3.4.11) are substituted into (3.4.9) to

give,

(X 2-EX-F)RN(X)+ANX+BN = (CN-X)«X2_EX-F)RN_l(X)+AN_lX+BN_V

2 2
-bN «X -EX-F)RN_2(X)+AN_2X+BN_2)

2 -a. adCCX -D-F)SN_l (X)+GN_l X+IIN_l)

N-l N
+(-1) (a+ad) TT bi .

i=2
2 1 0 Next the coefficients of (X -EX-F), X and X are equated from

both sides of equation (3.4.12), and the result after some algebraic

manipulation becomes,

N
TT b.
i=2 1

Now the P. CA) and Q. (X) can be substituted f'ro..jt:· equations
1 1

(3.4.10) and (3.4.11) in equations (3.4.7) and (3.4.8). This

produces, for the general term,

(3.4.11)

(3.4.12)

(3.4.13)

46

2 2
-b. ((A -EA-F)R. 2(A)+A. 2A+B. 1),

1 1- 1- 1-

i=l, ... ,N-l,
2

(A -EA-F)S.(A)+G.A+H.
1 1 1

2
= (ei -A)((A -EA-F) Si_l (A)+Gi _l A+lli _l)

2 2
-b. ((A -EA-F)S. 2(A) +G. 2AH . 2),

1 1- 1- 1-

Again the coefficients of (A 2_EA_F), Al and 1.° are equated from

both sides of equation (3.4.14), and the result after some trivial

algebraic manipulation is,

R. (A)
1

A.
1

B.
1

Si (A)

G.
1

2
= (c.-A) R. l(A) - A. I-b. R. 2(1.)

1 1- 1- 1 1-
2 .

= (c. -E)A. I-B. 1 -b.A. 2
1 1- 1- 1 1-

2 = c.B. I-A. IF-b.B. 2 ' 1 1- 1- 1 1-

2
= (c.-A)S. 1(1.) - G. 1 - b. S. 2(1.)

1 1- 1- 1 1-

2
= (c.-E)G. I-H. l-b.G. 2

1 1- 1- 1 1-

2
= c .H. I-G. IF-b.H. 2 ' 1 1- 1- 1 1-

If it is noted that the starting values for the sequences

PiCA), and Qi(A) from equations (3.4.7) and (3.4.8) are,

P_l(A) =0, Pl(A) =cl-A

Q
l

(A) = 1

= 0,

then the initial values for the sequence (3.4.15) can be obtained

from equation (3.4.10) and (3.4.11). The initial values of the

sequence are,

RO(A) = 0, A = 0, BO = 1, RI (A) = 0, Al = -1, Bl = Cl} °
SOlA) = 0, G = 0, HO = 0, SI (A) = 0, Gl = 0, 11 = 1

° 1

For any trial value of E and F the coefficients of the quadratic

factor with starting values given in equation (3.4.16) the sequence

given by equation (3.4.15) can be calculated, then from equation

(3.4.13) the values of AN and BN are obtained. If AN and BN are

zero then the quadratic factor (A 2_EA_F) is a factor of PN(A) and a

solution has been found. So the problem is to find an E and F such

(3.4.14)

(3.4.15)

(3.4.16)

that the non-linear equations.

AN(E.F) = BN(E.F) = 0

For arbitrary values of E and F the relationships (3.4.17) are

not in general satisfied. so correction factors aE. aF must be found

such that,
~(E+aE,F+aF) = BN(E+aE,F+aF) = 0 .

This is achieved by dividing Ri(A), i=1,2 •.•• ,N and also

Si' i=1,2, .•• ,N-l, by the same trial quadratic factor. This produces

similar recurNnce sequences to those obtained above and enables the

corrections to the quadratic factors aE, aF to be calculated.

Synthetic division of the polynomials R. (A), i=l,N and S. (A).
1 1

i=l,N-l by the trial quadratic factor (A 2_EA_F) yield,

Ri (A) = (A2 -EA-F)T. P) + L.A + M. :} 1 1 1 i=1,2, ..•.. ,N-l
S. (A) = (A

2
-EA-F) U. P) + V. A + W.

1 1 1 1

RN(A) = (A
2
-EA-F) TNP) + LN A + MN

47

(3,4.17)

(3.4.18)

(3.4.19)

(3,4.20) .

Substituting in equation (3.4.13) from equations (3.4.19) and (3.4.20)

2 (cN-A) (CA -EA-F)TN_l (A)+LN_l A+MN_l)

2 2
-bN((A -EA-F)TN_2(A)+LN_2A+MN_2)

2
-a.ad((A -EA-F)UN_l+VN_lA+ WN_l)

(3.4.21)

-A
N

_l .

~quating the coefficients of 0 2 -EA-F), Al and AO in equation

(3.4.21) gives,

2
= (cN-A)TN_l(A)-LN_l-bNTN_2-a.ad UN_l

2
= (CN-E)LN_l-MN_l-bNLN_2-a,ad VN_l (3.4.22)

2
= ~NMN_l-FLN_l-bNMN_2-a.ad WN_l-AN_l

Next the R.(A) and S.(A) in equation (3.4.15) are substituted
1 1

from equations (3.4.19) to complete the division yielding,

48

(A
2

-EA-F)T.(A)+L.),+M. = (c.-A) ((A2_ IJ)'-1')T. ltA)+!.. I A+M. I)
1 1 1 1 1- 1- 1-

2 2
-A. I-b. ((A -AE-F)T. 2(A)+L. '11. + M. 2:'

1- 1 1- 1-~ 1-~

(A
2

-EA-F)lI.(A)+V.A+W. = (C.-A)((A2_ IJA - F)S. I(A)+V. 11.+ W. I)
i=I, •.. ,N-I

1 1 1 1 1- 1- 1-

-G. l-b~((A2_IlA-F)S. 2(A)+V. 2A+W. 2)
1- 1 1- 1- 1-'

The coefficients of (1.
2

-EA-F), A I, and 1.0 , can now be equated

in equation (3.4.23) and this will yield the following recursive

relationships,

= (c .-A)T. I(A)-L. l-b~T. 2(A)
1 1- 1- 1 1-

lI. (A)
1

2
= (c.-J)L. l-b.L. 2-M. I'

1 1- 1 1- 1-

2
= c .M. I-KL . l-b .M. 2-A. I ' 11- J- 11- 1-

2
= (c.-A)lI. J(A)-V. l-b . U. 'I'

1 1- 1- 1 1-.

2
= (c.-J)V, l-b . V. 2-W, I '

1 1- 1 1- 1-

2
=: c.W. I- KV . l- b. W. 2-G. I' 11- 1- 11- 1-

j.;;;1,2, ... ,N-I.

Now using the initial values as givcll ill (3.4.16) the initial

values for the sequences given in equations (3.4.24) can be

calculated and are,

T2 :;,; 0, L2 = 0, M2 = I , T3 = 0, 1.3 = -I , ~13 = C
3

-A
3
~

lI2 :;,; 0, V2 = 0, W2 = 0, lI3 = 0, V3 ;; 0 J lI3 = 0

Thus for any trial quadratic factor with starting values as given

equations (3.4.25) the recursive sequence of equations (3.4.24)

by

can be calculated. Then from equation (3.4.22) using the values just

found ~ and LN can be obtained. These two values and the valuos of

(3.4.23)

(3.4.24)

(3.4.25)

~ and BN found earlier can now be used to calculate the two correction

factors liE, and lIF as follows,

u = I' LN + E (MN
+ E L

N
) ,

Il = (~ + Il LN) (M
N

+ E L
N

) - uLN

liE = (~(BN + E AN) - (M
N

+ IJ LN)AN)/tl
(3.4.26)

llI' = (uA
N

- (M
N

+ E L
N

) (UN + Il AN))/I!

49

Now after the corrections have been found new values for E and F

are calculated

E = E + liE, F = F + llF (3.4.27)

and these are used to form a new quadratic factor (A2-(Ell+E)A-(F+llF)).

The whole process can now be repeated with new factors until AN and BN

are zero, or a suitable stopping criterion is achieved. At this point

the quadratic equation,

2
A -EA-F = 0

is solved to yield the required two eigenvalues. The sequences of

(3.4.28)

polynomials Ri(A), i=1,2, •.. ,N, and Si(A), i=1,2, ... ,N-l of maximum

degree N-2, N-3, respectively defined by equation (3.4.15) and (3.4.13)

can now be used to determine further pairs of eigenvalues in the same

manner. It should be noted that as N has been effectively reduced by

two at each stage the recursive sequences are shorter and further

eigenvalues are progressively quicker and easier to calculate. The

convergence of the algorithm is ",," ""~ quadratic when close to

a pair of eigenvalues, (Wilkinson, 1965). However in practical

experiment the algorithm often took a large number of iterations

before it "settled" on a pair of eigenvalues, and then converged

rapidly. A lot of effort was put into trying to find some way of

getting a close guess to a pair of eigenvalues, thus cutting out the

initial 'hunting' for a pair to converge to. This failed, mainly

because even if quite close estimates were obtained for a pair of

eigenvalues, the resulting quadratic factors need not be close to

the actual ones. As an example, if the eigenvalues are 0.1 and

1000 then the quadratic factor is A2_100.1A + 100. If estimates are

2 found of -0.1 and 1000 then the quadratic factor is A - 999.9A - 100,

and convergence will be to a different pair of eigenvalues. As there

are N eigenvalues they can be combined to produce N(N-l)/2 quadratic

50

functions. The fact that there are a large number of factors to

chose from does not increase the probability of finding one, but merely

serveGto slow the convergence process down. For this reason

arbitrary starting values from the diagonal elements are chosen.

The main value of this algorithm is that it can find com~lex

eigenvalues without having to work in complex arithmetic which is time

consuming on a computer. Also as all correction factors and remainders

can be calculated without explicitly calculating the new polynomials

produced at each stage (R.(A), T.(A), i=l,N and S.(A), U.(A), i=N-l)
1 1 1 1

no storage need be reserved for them in the computer and thus storage

is kept to a minimum.

3.5 RESULTS

The algorithm to perform the Bairstow method as described in

(3.4) is given in Appendix 1 in program 3. A number of tests were

then used to demonstrate the performance of this algorithm.

First the algorithm was used to find the eigenvalues of a (14x14)

matrix of the same form as that given in (3.3.1). These experimental

results were then compared with the theoretical results and found to

be accurate to 9 significant figures as in Table 3.5.1. The program

took 1.5 seconds to obtain the results.

51

A. Program 2 Result Theoretical Result
1

1 1.565437219 x 10-11 2.168404325 x 10-19

2 0.1980622644 . 0.1980622639

3 0.1980622637 0.1980622642

4 0.7530203958 0.7530203959

5 0.7530203961 0.7530203963

6 1.554958131 1. 554958132

7 1.554958134 1. 554958132

8 2.445041865 2.445041867

9 2.445041870 2.445041868

10 3.242697959 3.242697960

11 3.242697964 3.242697960

12 3.801937739 3.801937736

13 3.801937739 3.801937736

14 4.000000000 4.000000000

TABLE 3.5.1

Next, the algorithm was tried on a (20x 20) unsymmetric matrix of

the form,

-1 10 -10

10 1 -10 0
-10 -1 10,

, (3.5.1)
10 , , "-

"- ,
"- , -10 ,

0
, , ,

10
,

-10 1

This matrix is also cenNo-antisymmetric which means the eigen-

values occure in pairs to the same modulus but of different signs.

The results are compared with those obtained from a N.A.G, routine

u~ing a QR process in Table 3.5.2.

/

--
A. Program 2 Results

J
N.A.G. Results

1 -19.82166982 -19.82166983

2 19.82166983 19.82166983

3 -19.04739875 -19.04739875

4 19.04739873 19.04739874

5 -18.22010282 -18.22010282

6 18.22010284 18.22010282

7 -16.21121213 -16.21121213

8 16.21121212 16.21121216

9 -15.14803511 -15.14803512

10 15.14803511 15.14803511

11 -11. 79816092 -11.79816093

12 11.79816092 11.79816092

13 -10.85895931 -10.85895931

14 10.85895931 10.85895932

15 -6.260718898 -6.260718904

16 6.260718898 6.260718899

17 -5.722699838 -5.722699833

18 5.722699838 5.722699838

19 -1.000000000 -0.999999994

20 1.000000000 1. 00000000 2

TABLE 3.5.2

The results were obtained in 7 seconds by program 3, and 3 seconds

by 'the N.A.G. routine. These results, whilst not conclusiVe, indicate

that an accuracy of at least 9 significant figures has been obtained.

As a final example the program was tested on a .sptl-rse . u'Ylsymmetric

')'Tlat-rix', With· ".' corner elements of order 14. The results below were

accurate to at least 9 significant figures, and were obtained in 4

seconds.

The matrix used was of the form

52

53

1 9 20

9 2 9

9 3 9

9 4 9

9 5 9 0
9 6 9

9 7 9

9 8 9

9 9 9 (3.5.2)

0 9 10 9

9 11 9

9 12 9

9 13 9

1 9 14

The eigenva1ues of this matrix are

------_ ..
Real Imaginary

1 -13.274701666 0.00000000000

2_ -9.6902838613 0.00000000000

3 -7.1426890350 0.00000000000

4 -3.0104685765 -0.6042324007

5 -3.0104685765 0.6042324007 -

6 3.7326625824 -1. 293792672

7 3.7326625824 1.293792672 -

8 11.267337419 -1.293792668

9 11.267337419 1.293792668

10 18.010468575 -0.60423~'3%3

11 18.010468575 0.6042323963 -.
12 22 .142689034 0.00000000000

13 24.690283861 0.00000000000

14 28.274701666 0.00000000000

TABLE 3.5.2

54

3.6 DETERMINATION OF TIlE EIGENVALUES OF SYHMETRIC AND lJNSYMMETRIC.

MATRICES BY NEIHON'S METHOD

Other methods for finding the eigenvalues of unsymmetric matrices

of the same form as (3.4.1) have been considered, and here Newton's

method is quite effective.

The method is similar to that described by Evans (1971). First

the sequences (3.4.2), (3.4,3), and (3.4.4) are differentiated with

respect to A to produce,

d
Po(A) 0 dA PO(A) = =

d
PICA) -1 dA PI (A) = = , (3.6.1)

d P! (A) (c.-A)P! I(A) P. I (A)-b.d.l'! 2(A), dA PICA) = =
1 1 1- 1- 1 1 1-

i=2,3 •... ,N-I,

and, d
dA QI (A) = Qi (A) = 0- ,

d Q!P) -I dA Q2 (A) = = ,
(3.6.2)

d Q! (A) (c.-A)Q! I(A)-Q. I(A)-b.d.Q! 2(A), dA Qi(A) = =
1 1 1- 1- 1 1 1-

i=3,4, ..• ,N-1.

wi th finally,

PN(A) = (cN-A)PN_I(A)-PN_I(A)-bNdNPN_2(A)-bldIQN_1 (A). (3.6.3)

Now (3.4.2) and (3.6.3) can be used to find the eigenvalues of

matrix (3.4.1) in a Newton's iterative method of the form,

{k.+l) = AIN - P N (AW) /1' N cl~, k~O, (3.6.4)

where {O)is an initial estimate.

When one or more of the eigenvalues has been computed, then in

order to avoid re-determ'ining those eigenvalues already found a

technique known as dividing out the root is needed to suppress the

known eigenvalues, thus instead of iterating with PN(A), GN(A) is

now used where,

55

T
GN(A) = PN(A)/ IT (A-A.) (3.6.5)

i=l 1

and Ai' i=1.2 •...• T are the T eigenva1ues already found. Now GN(A)

can be differentiated with respect to A giving.

T

L
i=l

Newton's iteration is now of the form.

AiJ<+l) = 1.09 - GN(A~/GN(A~.

and substituting for GN(A)/GN(A) using equation (3.6.5) the Newton

iteration becomes.

The relationship (3.6.8) can now be used to determine all the eigen-

values of the matrix.

This method was programmed on the I.C.L. 1904S in complex

(3.6.6)

(3.6.7)

(3.6.8)

arithmetic in ALGOL 60. The eigenvalues obtained were all accurate to

machine accuracy. The method however had two drawbacks. which detract

from the usefulness of the method. Firstly for every test matrix of

size larger than 30x30 the values of P. (A). P!(A). i=1.2 •...• N
1 1

oscillated wildly. and at some point overflowed the computer word

length. The problem here is that in the vicinity of an eigenva1ue

the values of PN(A). PN(A) are 'well behaved' and do not overflow

the computer word length. However when an estimate at an eigenvalue

is made. after just finding the previous one. there is no guarantee

that this will be close to any remaining eigenva1ue and it is at this

point that oscillation can. and usually does. set in. The other draw-

back is that compared to the available N.A.G. routines this method is

a lot slower. and takes from 3 to 4 times longer. As this method is

specialised to a particular type of matrix the storage requirement in

computer memory is 0(2N) (to allow for complex elements) words. whereas

the storage requirement for the more generalised N.A.G. routine is

2 0(4N) words.

To overcome the first problem, that of overflow in the computer,

the sequence (3.2.16) can be used instead of sequence (3.4.2). For

56

the sake of clarity the sequence for a symmetric matrix is considered,

the extension to the unsymmetric case is fairly simple.

First the sequence (3.2.16) is differentiated IVith respect to A,

to give,

and

with

ds 1 (A)
= sI' (A) = -1 , dA

ds. (A)
1.

dA = S!(A) = -1 + b~ s! l(A)/(s. 1(A))2,i=2,3, ... ,N-l
1. 1. 1.- 1.-

= rt :;;; 0
1

= r! = -b. (s. l(A)r! l-s! l(A)r. l)/(s. lCA))2,
1 1 1- 1- 1- 1- 1-

i=2,3, ... ,N-l

N-l
= -1 - L (2s.(A)r.r!

j=l J J J

2 2 r.s!(A))/(S.(A))
J J J

+ 2bN(sN_l (A)rN_l - sN_l(A)rN_l)/(SN_l(A))2

From equation (3.2.23) it is seen that,
i

P. (A) = TT sJ' (A)
1. j =1

and upon differentiating with respect to A, (3.6.10) becomes,

dP. (A)
1

dA

i
=P!CA) = L

1. k=l

i
(TTs.CA)

j =1 J
j;-!k

(3.6.9)

(3.6.10)

(3.6.11)

57

Now from (3.6.10) and (3.6.11) we have,

P! (A) i i i
1 = 2 (IT s. CA) sk (A)) / IT s. (A) P';l'5T ,
1 k=l j=l J j=l J

(3.6.12)

jik

i S! CA)
= 2 J

s.(A) j=l J

(3.6.13)

Equation (3.6.13) can be substituted into equation (3.6.8)

T

to give,

2 (Ak_A.)-l),
j =1 J

N
- 1/(2 s! CA)/s. CA) -

i=l 1 1

This relationship is used instead of (3.6.~) and the eigenvalues

of any order matrix can be found without fear of overflow occurring.

The work involved in calculating the new sequence and Newton's

formula is similar to that of the previous. method.

The program to perform the above algorithm is included in

Appendix 1 in program 4.

The sequence for an unsymmetric matrix of the form (3.4.1) is

obtained by similar methods to those already described and is given

below,

solA) = cl -A ,

s. (A) = c.-A-b.d./ 5 • leA),
1 1 1 1 1-

i=2,3, ... ,N-I,

and

= -R. Id.! s. 1 CA),
1- 1 1-

with finally,

SN(A) = cN-

PI = b,

P. = P. Ib./s. leA), i=2,3, ... ,N-l
1 1- 1 1-

(3.6.14)

(3.6.15)

This can now be differentiated with respect to A to give the following

equations

...•

and

with

Si (A) - .1 •

S!(A) - .1-b.d.s! I(A)/S~ l(A),
1 1 1. 1- 1-

i=l ,2" .. ,N-l,

R' 1

R!
1

P' 1

P!
1

finally,

S' N

- 0

- d.(R. IS! I(A)-5. l(A)R! l)/S~ l(A), i=1,2, •.. ,N-l,
1 1- 1- 1- 1- 1-

= 0

= b.(P. IS! l(A)-s. I(A)P! ,)/s~ l(A) , i=1,2, ..• ,N-1,
1 1- 1- 1- 1-" 1-

N-l
= -1 - I

i=1
(s.(A)(P!R. + R!P.) - S!(A)P.R.)/s~(A)
11111 111 1

The sequences of S. (A), S!(A), i=l,N obtained in (3.6.15) and
1 1

(3.6.16) can now be used in equations (3.6.11)-(3.6.14) to obtain the

eigenva1ues of the unsymmetric matrix of (3.4.1). The program to

perform this algorithm is given in Appendix 1 in program 5. It is

written in ALGOL 68R to take advantage of the superior facilities

for handling complex arithmetic i 1'1 t h ,'S IljT1~Ua ge.

3.7 RESULTS

Program 4 was test run on the 11x1l matrix (3.3.1), the results

were identical to those given in Table 3.3.1, and the computer took

2 seconds to perform the calculation. Comparison beyond this is not

really meaningful, as with program 4 the eigenvalues are obtained in

no particular set order and the most useful feature of the bisection

algorithm is its ability to pick out selected eigenvalues. In this

example all but one of the eigenvalues are double and as a result

58

(3.6. H

convergence in this case was linear (Hildebrand (1974}). The type of

problem where it is preferable to use Newton's method is when all the

eigenvalues are required and none, or at least very few, multiple

roots are expected.

Program 5 was test run on a number of matrices, and these results

are compared in the tables against results obtained from N.A.G. routines.

None of the N.A.G. routines were exactly tailored to fit the particular

problem but it was thought that the routine F02 AJA was most efficient.

This routine reduces the matrix to upper Hessenberg form using stabilised

similarity transformations, then uses a modified LR algorithm to obtain

the eigenvalues. To test the routine the matrix (3.3.1) was first tried,

and again the table 3.3.1 was duplicated. As the program was performing

complex arithmetic it took 21 seconds to obtain the answers.

Next an unsymmetric matrix, order 20, of the following form was

tested on the program,

1,5

2,2,6

4,3,7

2,4,9

3,5,3

5,6,-2

6,7,-4

8,8,5

9,9,3

-3

o

59

1,10,6
(3.7.1)

o

2

2,11,0

3,12,6

0,13,5

5,14,52

4,15,-12

2,-1,2

5,-7,2

3,-5,5

5,-100,2

1,-2

The results are compared with those obtained by using the N,A.G.

routine, F02 AJA.

Program 5 N.A.G. Routine

Real Imaginary Real Imaginary
._-

-100.2828912 0.000000000 -100.2828912 0.000000000

-9.315123512 0.000000000 -9.315123513 0.000000000

-4.418121111 0.000000000 -4.418121109 0.000000000

-3.526424826 0.000000000 -3.526424826 0.000000000

-1.340555599 -1.379912314 -1.340555600 -1.379912312

-1.340555599 1.379912314 -1.340555599 1.379912312

-0.1133422775 -2.756343922 -0.1133422791 -2.756343920
0.6045356208 0.000000000 0.6045356209 0.000000000

3.433824914 0.000000000 3.433824913 0.000000000

6.439112820 -4.516691649 6.439112820 -4.516691649

6.439112820 4.516691649 6.439112820 4.516691648

6.639222683 0.000000000 6.639222684 0.000000000

7.934262224 0.000000000 7.934262224 0.000000000

11 ,'56851719 0.000000000 11,56851719 0,000000000

12.00000000 0.000000000 12,00000000 0,000000000

13.02409163 0.000000000 13.02409163 0,000000000

13.10939899 0.000000000 13.10939899 0.000000000

14.95366508 0.000000000 14.95366508 0.000000000

29.30461241 0.000000000 29.30461241 0.000000000

TABLE 3.7.1

Program 5 took 32 seconds to obtain the answers I,hereas the N ,A.G,

routine obtained the answers in 9 seconds, This speed up is always

obtained by transformation methods compared to a Sturm sequence method,

when the matrix can be stored in core. However as the storage for

program 5 was O(N) words and for the N.A.G. routine 0(N
2

) words then it

60

can be seen that the N.A.G, routine will soon run into storage difficulties

on large matrices, program 5 is then the preferred method to use. This

\

61

method is in general faster than other methods of dealing with this

type of matrix e.g. (Golub 1973). The accuracy of the results can be

det~Tl)1Ii~Qd. and in practice is seen to be accurate on even larger matrices

(Chapter 5). and the order of matrix that can be readily solved

approaches the amount of core store available on the computer. the only

limi ting factor being the time available. fo-r III1'~Q sJ stetm$ whel'e tn~
Co-f"l2 1"12~£/iltl71Jemts or th~ NAG Qouti!lQS b~corm~ excassivll.UsillJ
e~r)~tio1)s ('1,.b./5)t('U.lb) .. l2sults W(do{'"l2... e~s;& "~ttl.ilfla.c{~o.,,. N~2()OtDIOOO_

CHAPTER 4

NEW STRATEGIES FaR DERIVING THE EIGENVALUES

AND EIGENVECTaRS aF CENTRa-SYMMETRIC MATRICES

62

4.1 I NTRODllCTI ON

In this chapter a new strategy is proposed for deriving the

numerical solution of the matrix eigenvalue equation,

63

A~ = A~ , (4.1.l)

i.e. the determination of the eigenvalue and eigenvector ~ of the

NxN centro-symmetric tridiagonal matrix A as given in (4.2.1).

The symmetric Gaussian elimination or folding algorithm as

outlined in Evans and lIatzopoulos (1975) is based on the strategy

of performing a Gaussian elimination process at the top left hand

and bottom right hand corner of the matrix (A-AI) concurrently. By

noting that the coefficients in the top left hand corner are identical

to the elements in the bottom right hand corner in reverse order when

the matrix A is centro-symmetric,a reduced and compact form of the

Sturm sequence can be obtained and used to isolate the eigenvalues

in a bisection process.

A similar technique can also be used to derive the eigenvectors

by an inverse iteration process where a Gaussian e.limination process

is carried out in which a pivoting strategy has been incorporated to

maintain numerical stability.

Similar strategies to those outlined above can now be used to

solve equation (4.l.l) using two processors when the matrix A has a

more general form i.e. A is symmetric and tridiagonal. Even though

the upper left hand, and bottom right hand corner elements are not the

same each processor can commence the Gaussian Elimination process in

opposite corners, and work towards the centre.

The Gaussian elimination is therefore speeded up by using the

two processors. The algorithms were then run on a parallel processl"9 m3,hi7le

with two processors available and results, and the outline of an

improved algorithm given.

64

4.2 DERIVATION OF THE STURM SEQUENCE FOR A CENTRO.SYMl-IETRIC MATRIX

Let A be a centro.symmetric (NxN) matrix such that

Cl b2

b2 c2 b3 o , ,
b , ,

3 , ,

A"

, ,
, , , , ,

(4.2.1)

, ,
, "

, ' , b
" 3 ,

If each of the sub-diagonal elements bi' i=2.3 •... (N/2) ..•. 2·of A-M.

is now eliminated successively using a Ga.L/ss reduction process without

pivoting. it can easily be shown that the matrix (A-M) becomes

Ql(A) b2 ,
Q2 (A) " , 0 ,

" " , , , " , " , " " " • b ,
0 , N ,

• QN(A~

where Ql (A) = cl-A.

and if N is even,

Q. (A)
1

2 = c.-A-b./Q. 1(1.), i=2.3 N/2.
1 1 1-

2
= cN 1 .-A-bN 2 ./Q. 1(1.). i=N/2+l •...• N. + -1 + -1 1-

} Q. (A)
1

or if N is odd,

Qi(A) = Ci-A-b~/Qi2l (A), i=2,3, .• :~(N+l)/2, }

Q.(A) = cN 1 .-A-bN 2 ./Q. 1(1.)' 1-2,3, ... ,(N+3)/2,
1 + -1 + -1 1-

Then PiCA), (i=O,N.PO(A)=l) the leading principal minors of the

matrix (A.AI) are given by the recursive relationship,

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

Po (A) = 1

PI (A) = cl-A

P 2(A)
2 = (c2-A)P l (A)-b2PO(A)

2
P.(A) = (c.-A)P. I(A)-b.P. 2(A), i=3, ... ,N,

1 1 1- 1 1-

it can easily be seen from equations (4.2.6), (4.2.5), (4.2.4) and

(4.2.3) that,

Pi (A) = Q
l

(A)Q2(A) Qi (A) ,

and therefore that,

P. (A)
1

65

(4.2.6)

(4.2.7)

(4.2.8)

The PiCA), i=I, .•.. ,N now form a Sturm sequence for the matrix (4.2.1)

and as in the previous chapter the signs of the Q. (A) can nOlv be used
1

in a bisection process to isolate the required eigenvalues as used

by Barth et al (1967), and Strang and Fix (1973).

Now since the matrix A is centro-symmetric, the simple stragegy

of eliminating from both ends of the diagonal of the matrix (A-AI)

simultaneously can easily be shown to yield the following reduced form,

o

,
"­

'-

o
'-

" '- " 0 '0 "B
, , "

" '- "
" " " " " ' q3 (A) . 0

"
" b 3 q2 (A)

If N is odd, the submatrix B is given by,

(4.2.9)

o

qN+l CA) bN+3
0 2 2

B 0
qN+3(A)

0 = -2-

0 bN+3 qN+l(A)
-2- -2-

and if N is even, the submatrix B is given by,

qN(A)

2

B = 0

0

If N is odd let,

and if N is even let,

s =

s =

bN+2
-2-

qN+2 (A)
-2-

b
N

_
2

-2-

N-l
2

N+2
2

o

o

The recursive relationship for the q.(A), i=1,2, ..• ,s can now be
1

written, for N odd,

ql(A) = c -A 1 ,
2

i=1,2, ... ,s-l, qi (A) = c.-A-b./q. 1 (A)
1 1 1-

q (A)
2

= c -A-2b Iq leA), s s s s-
for N even,

ql (A) = cl-A
2

i=2,3, ... ,s-l, q. (A) = c.-A-b./q·l(A),
1 1 1 1-

q (A)
2

= q I(A)-b Iq leA) s s- 5 5-

Thus a unique polynomial sequence of qi(A) i=1,2, ... ,s have

been developed for the given centro-symmetric matrix, which are the

p'ivots in a Gaussian elimination process without pivoting. The

66

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

(4.2.15)

qi(A), i=l,s, can now be obtained from equations (4.2.14) or (4.2.15)

wi thout explicitly performing the elimination.

The half sequences given in (4,2,14) and (4,2,15) are no longer

the usual Sturm sequences for the matrix (4,2,1), so the signs of the

q. (A) i=l,N must be shown to have the same number of negative signs
1

as the Q.(A) i=l,N,
1

This is easily done for both odd and even cases, the even case

will only be considered here, the odd case follows similarly.

If we denote s=(N+2)/2, the matrix A in 4.2, 1 for N even can be

shown thus:-

cl b2

b2 c2 b
3

b
3

c
3

, , ,

A =

~ ,
~ , , ,

, ,

0

, , , , ,
, ,

b ' s-l

,

,
b
s-l

b s c s-l

b s-l
,

,

o

, ,
, ,

, ,
, ,

, , , , , , , ,
b

3 , c
3 ,

b
3

c2 b
2

b2 cl

If now the columns and rows of A are interchanged as follows:-

column s with column N, column s+l with column N-l, column s+2 with

column N-2, and on until all the columns (except the centre column

in the case when (N-s) is even) have been interchanged. The rows

corresponding to the column changes are now interchanged, and the

matrix A becomes,

67

(4.2.16)

A=

of A,

where

Cl b2
...

b2 c2
...

...
... , , , ,
"- ... , , , ... , o

, , , , , b , , 5-1 , ,
b '

5-1

0

c 5-1

0

b
5

Now Gaussian elimination can be

which becomes,

RI (A) b2

0 R2(X) i?3
"- "-

0 "- "-
"- '- ,

... ...
'- ...

'- '- , , , , , , ,
... ,

'- ...

0

R (A) = cl 1
2 R. (A) = c.-b./R. 1(A),

1 1 1 1-

0 b 5

cl b2 , ,
b2

, , , "-... , , ,
" , , ,

, c
5-1

b 5-1 ,
b 5-1 c 5

performed for the first 5-1 rows

0

,
b 5-1

...
R

s
_
1

(A) 0 b 5

0 Cl b2
, ,

b2
, "-, ,

... ... , 'b
'- "- 5-1 , ,

S '- 1
...

b c 5-1 5 5-

i=2,3, ... ,5-1)
Performing one more step of elimination and (4.2.18) becomes,

68

(4.2.17)

(4.2.18)

(4.2.19)

Rl(A) b2

0 R2{A) b
3

-.. -.. , -..
0 -.. -..

-.. -.. -..
" -.. -.. "--.. -..
-.. ,

-.. ,
-..

0

-..
-..

b s
" ,

RS_l{A) 0
-..

R (A) s
-..

0

b2
" "

o

b2
-..

c2 ,
-..

-..
-..

-..

b s

69

" ,

"
-.. -.. b

, s-1
" b,

s-l

where RS{A) = cl'

If the Gaussian elimination process is now pursued for the

remaining s-2 rows, the matrix becomes

RICA) b 2
-.. -..

" -..
" , , -.. , , , , 0

" "

o

where

0

b s

, b
s-l

Then, from (4.2.l9) and (4.2.22) it can be seen that,

= R • 1 CA)
S+1-

,

and therefore, 2
RN{A) = Rs_l{A)-b2!Rs_l{A)

The R.{A), i=1,N are now the equivalent Sturm sequence for
1

'-.. 2
c l-b /R s- s s

(4.2.20)

(4.2.2l)

(4.2.22)

(4. 2.23)

(4.2.24)

the matrix A, and the R.{).) are identical to the q. (A). Therefore
1 1

the q.{A) can be used in a bisection process to isolate the eigenvalues
1

of A. IIowever matrix A was obtained from matrix A by a series of

similarity transforms, The two matrices are therefore similar and

have the same eigenvalues.

Therefore, the equations (4.2.14) and (4.2.15) can be used in a

bisection process to determine the eigenvalues of the matrix A in

place of equations (4.2.4) and (4.2.5), provided it is noted that the

q. (A), i=l,s-l (i=l,s-2 of N is even) occur twice on the main diagonal
1

of (4.2.9).

The ALGOL 60 program to carry out the above procedure is given in

Appendix I in program 6.

4.3 TIlE CALCULATION OF THE EIGENVECTORS OF A TRIDIAGONAL CENTRO­

SYMMETRIC MATRIX BY INVERSE ITERATION

Suppose'!... is taken as the initial tri ~I vector, then to find the

eigenvector corresponding to given values of X.(say) using two
J

steps of inverse iteration, the equations to be solved are,

70

(A-X.I)X = V ,
J - -

(4.3.1)

followed by,
(A-X.l)Y = X ,

J - -

where A is the NxN tridiagonal centro-symmetric matrix as~ven in

(4.2.1) with N odd or even. Since A. is an accurate eigenvalue two
J

iterations should be sufficient to obtain a vector of the required

accuracy as indicated by Wilkinson (1962).

The equations above are solved by performing a Gaussian

elimination process with partial pivoting (to ensure numerical

stability) on the L.H.S. of equation (4.3.1), storing the resultant

matrix CA say), and remembering all operations performed on the

original matrix (A-H) i. e. interchanges and elimination factors.

Wilkinson (1965) has shown that V can now be written as,

(4.3.2)

and initially. v = [l,l,q, .. ",l]

and a simple back substitution through the matrix A determines the

vector X. Now a record of the necessary interchanges can be stored

by flags and the required operations can be performed on the vector

!. (i.e. forward substitution). and a further back substitution

through A gives ~, the required eigenvector.

It should now be noted that the eigenvectors of a centro-

symmetric tridiagonal matrix are either symmetric or anti-symmetric,

and take one of the following two forms:

for N even , and for N odd

XN/ 2 xN/ 2
x

N
_

l
x
N

_
l

-2- -2-

xN/ 2 -xN/2 x
N

_
l x

N-l" l --zo-l 2
x

N
_

l -x
N

_
I

-2- -2-

As the eigenvectors are symmetric (or anti symmetric) about the

centre point the elimination procedure can be performed from both

ends of the matrix at once, and as both halves are identical only

half of the original matrix need be used. However one element in

the other half of the vector must be determined to indicate whether

a given vector is symmetric or antisymmetric.

Hence the variables are eliminated in their natural order but

the pivotal row is selected at each stage, say the (i_l)th (where

71

(4,3.3)

(4.3.4)

(i-I) ~ (N;l) -I, for N odd, and (i-I) ~ ~ _1, for N even), as the

row having the maximum coefficients of the element x. I'
1-

At this stage the modified matrix (A-A.I) would have the form,
J

(A-A·I) =
J

cl

0
....

bz
Cz

"-
"-

([3
"-

b3 "-
"-

....

"
....

" " 0

... , ,
"- ...

'- -' "
,

b. c. 1 1- 1

c.-A 1 ,

o

0

di +l

bi +l
....

"
bi +l

, _A b. c. 1 1

di +l b. c
i

_
l 0

1 , ,
"-

" 0 "-"- "-.... - IlZ

,
d

3 Cl

where a bar above an element indicates a possible change (due to

the elimination and interchange process).

At each stage of the computation there are only two rows to

consider, the (i_l)th reduced row and the ith row as yet unchanged.

The pivotal row is,

and the ith row is,

If Ib.I>lc. 11 then the two rows are interchanged by
1 1-

exchanging the coefficients of the xk ' k=i,i+l,i+Z,

c. 1 ~ b.,
1- 1

b. <7 c.-A.,
1 1 J

and noting the interchange. If no interchange occurs this also must

be noted. When the variable in the ith row is eliminated by adding

b / - . h (. 1) th h . th d h· f . - . c. 1 t1mes t e 1- row to t e 1 row, an t 1S actor 1S
1 1+

also noted. Since only half the original matrix is being used care

must be taken with the centre elements and the even and odd cases

72

,(4.3.5)

(4.3.6)

(4.3.7)

must be considered seperate1y.

The case when N is even

The matrix (A"AI) is even with centre elements detailed for

s=N/2

c1"A j
bz

b
Z CZ"A j

" b
3 "-

" , , ,

o

"­
,
"

,
"-

"
'- b

s
"

" b s ,
c "A­

s J

b s+l
'-

o

b s+l
'-

c "A- " s J
" '-,

b
3

, , ,
'-

'-
C~"Aj b

3

b
Z

73

(4.3.8)

If the Gaussian elimination process is now performed with partial

pi voting for the first and last s rows of the matrix, (4.3.8) now becomes,

cl bZ d
3 - ,

0 Cz b
3 " ,

"
,

"
" c

3
, , , " ,

, , , , "- , ,
"- "- , , "- ,

"
c s-l ,

, 0

o

,
,

b d s+l s

c b
s s+l

b c s+l B

d s+l b s

" " , ,
"

o

o , ,
c '
s-l "
" , ,

" " "- "

"
-c3

, ' -b3 , ,
d3

,
,.

Cz
b

2

This leaves the centre elements to be eliminated as,

(4.3.9)
•

"
0

cl

(4.3.10)

The rows may be interchanged, the interchange noted. and the

elimination then takes place with the centra elements (4,3,10)

becoming.

:S+l]

s+l

As the top and bottom halves of the matrix are the same in

reverse image form. except for the centre elements after elimination

only the upper half of the reduced matrix given below (G say) need

be considered

Cl b2 d
3 ... 0 c2 b
3

...
...

... ...
c

3
"- ...
" "-... "

,
" ,

"
...

" ...
... "- ...

... "- ...
G = ,- ,

b
,

c d s+l () s-l s
=

Cs b s+l
= c s+l

This half matrix can now be used with corresponding reduced vectors.

v = (vl .v2•• vs.vs+l)
watJ

: }
x = (xl .x2•• x.x 1)
- S 5+

to complete the back. substitution. The vector of the full matrix is

then.
x = [xl ••••• x.x l'zX l.· .• ··.zxll - 5 5+ 5-

if x x 1 x s+

otherwise

is positive or O} 1

The case when N is odd

The matrix (A-A.I) is given with centre elements detailed for
J

s=(N-l)/2.

74

(4.3.11)

(4.3.12)

(4.3.13)

(4.3.14)

The case when N is odd

The matrix (A-~.I) is given with centre elements detailed for .. J

s=(N-l)/2.

(A-A. I) =
J

o

....

" ,

o

c -L b 5 J s+l

cs+l-A j bs +l

b c -A~
s+l 5 J '

b s
....

,

,
" " ' b

... 3
"

75

(4.3.15)

If the Gaussian elimination process is now performed with partial

pivoting for the first and last s rows of the matrix, (4.3.15) becomes,

(A-A.I)=
J

cl

0

"

1)2

c2

" "-
" "

d
3

"-

1)3 " "-
" "-

"- "-"- "-"- "-
"-

... ,
" '0 c s-l

0

o

"- 0
"-, "-

0 d 5+1 s

c bs +l s

b cl-A. b 5+1 s+l s+ J

I) c Q
5+1 s

"-
d " ...

s+l "- ...
" , " "-

" "- "
" "

"
"

This leaves the centre elements to be eliminated,

(4.3.16)

" ... ,
" " ,- ,

c 0
s

b
2 cl

76

~

'0 0 C 5 5+1

b 5+1 Cs+I-Aj
b 5+1 (4.3.17)

0 b 5+1 c 5

The rows may be interchanged, the interchange noted, and the elimination

performed for the two remaining rows with the centre elements becoming,
=

c b 5+1 d 5+2 s

0 c 5+1 b 5+2
=

° 0 c 5+2

As the top and bottom halves of the matrix are the same, in

reverse image form except for the centre elements, after the

elimination process, only the upper half of the reduced matrix given

below (G say) need be

cl b2

c2

G =

considered.

d3
b

3
"-

"-
c3

"

" . ,
"- "-

"-

"-
"

o

"-

" "

, " "
"­

" ,- '
c 5-1

0

"-

" b 'd 5+1 s
=

c b s+l d s+2 s =
c 5+1 b s+2

= c s+2

(4.3.18)

(4.3.19)

This half matrix can now be used with corresponding reduced vectors,

f = (xl'x2 ••..•. ,xs,xs+l'xS+2)

V = (vl'v2' ..•.. ,vs,vs+l'vs+2))
to complete the back substitution. The vector of the full matrix is

then,
x = (xl'• ,x,x I'x. 2'zX 1' .•... ,zx l) , - 5 5+ 5+ 5-

[
z = {1_lif Xs xs+2 >- O} 1

otherwise

(4.3.20)

(4.3.21)

77

The back substitution through G to obtain X with the vector V

as given in (4,3,3). is described in algorithmic form below,

When N is even and s=N/2

x = v /c 5+1 5+1 5+1

x = (v -b X)/c (4.3.22) 5 5 5+1 5+1 5

Xi = (vi-di+2xi+2-bi+lxi+l)/Ci • i=s-1.s-2 •...• l

When N is odd and s=(N-l)/2

x = v /c 5+2 5+2 5+2

x = (VS+l-bs+2xs+2)/cS+l 5+1 (4.3.23) =
x = (v -d x -b x) re 5 5 5+2 5+2 5+1 5+1 5

x. = (vi-di+2xi+2-bi+lxi+l)/Ci i=s-l. 5-2 1
1

Now that the vector X has been obtained it can be overwritten

on the vector ~. and the remembered operations performed on~. The

back substitution given in (4.3.22) or (4.3.23) can again be performed

and the final vector X can now be used to obtain the required eigen-

vector by using equation (4.3.14) or (4.3.21). The algorithm to carry

out the above procedure is given in Appendix 1 in program 7.

4.4 RESULTS

The test matrix used is given in Gregory and Karney (1969). Let

A = [a .. j be the NxN tridiagonal matrix whose elements are defined by
1. J

a .. =
1.1

-[(2i_l)(N_l)_2(i_1)2 j

= i (N a i • i +l -i). to 1,1, 11-'.
ai •i _l = (i-l)(N+l-i) • 1:1,) N,

a ..
1,]

= 0 , if li-j I> 1. for i.j=1.2 N.

So that a 6x6 matrix has the form.

(4.4.1)

78

.5 5

5 ·13 8 0

8 ·17 9

9 -17 8 (4.4.2)

0 8 -13 5

5 -5

". theoretically the eigenvalues are given by,

Ai = - (i-lli i=1,2, ... ,N

The eigenvectors x~i) corresponding to each A.
J 1

1

(~-l)
1-1

~
k=O

are given by,

(4.4.3)

(4.4.4)

for j=1,2, ..• ,N and q=min(i,j).

and the symbol (~) denotes the binomial coefficient.
J

The value of N was chosen to be 10 for the numerical experiments.

The results are given in Table (4.4.1) with the eigenvalue at the head

of its corresponding eigenvector. The time taken on the Loughborough

University of Technology computer (ICL 19045) was 5 seconds.

The results obtained in Table (4.4.1) were found to agree to 10

significant figures with the results given by (4.4.2) and (4.4.3).

Next the program was tested for a matrix of the same form as

(4.4.1) but with N equal.to 100. Again the results for both eigen-

values and eigenvectors agreed to at least 10 significant figures

with those obtained for the theoretical formula.

Eigenva1ues

Corresponding
Eigenvectors

Eigenva1ues

Corresponding

Eigenvectors

-1.4873125*10- 1

3.162277660*10- 1

3.162277660*10-1

3.162277660*10- 1

3.162277660*10- 1

3.162277660*10- 1

3.162277660*10- 1

3.162277660*10
-1

3.162277660*10- 1

3.162277660*10-1

3.162277660*10- 1

-3.000000000*101

-2.148344622*10-1

5.012804118*10- 1

-3.580574371*10- 2

-3.938631807*10- 1

-2.148344622*10- 1

2.148344622*10- 1

3.938631807*10-1

3.580574371*10- 2

-5.012804118*10- 1

2.148344622*10-1

-2.000000000

4.954336943*10- 1

3.853373178*10- 1

2.752409413*10- 1

1.651445648*10-1

5.504818825*10- 2

-5.504818825*10- 2

-1.657445648*10-1

-2.752409413*10- 1

-3.853373178*10-1

-4.954336943*10- 1

-4.200000000*101

-1.167748416*10- 1

4.281744193*10-1

-3.892494721*10-1

-2.335496832*10- 1

3.113995777*10- 1

3.113995777*10- 1

-2.335496832*10-1

-3.892494721*10- 1

4.281744193*10-1

-1.167748416*10-1

-6.000000000 -1.200000000*101. -2.000000000*10
1

5.222329679*10- 1 4.534251929*10- 1 -3.367809164*10- 1

1.740776559*10-1 -1.511417310*10- 1 4.113766756*10-1

-8.703882800*10- 2 -3.778543275*10- 1 3.178819766*10- 1

-2.611164840*10- 1 -3.346709757*10- 1 -5.609681940*10- 2

-3.481553119*10-1 -1.295500551*10-1 -3.365809164*10- 1

-3.481553119*10- 1 1.295500551*10-1 -3.365809164*10- 1

-2.611164840*10- 1 3.346709757*10- 1 -5.609681940*10- 2

-8.703882800*10- 2 3.778543275*10-1 -3.178819766*10- 1

1.740776559*10-1 1.511417310*10-1 4.113766756*10- 1

5.222329679*10-1 -4.534251929*10-1 -3.365809164*10- 1

-5.6000000000*10
1

-7.2000000000*10
1

-9.0000000000*10
1

5.269378644*10- 2 -1.869893980*10- 2 -4.535159052*10- 3

-2.751886625*10-1 1.308925786*10-1 4.081643147*10- 2

5.035184038*10-1 -3.739787960*10- 1 -1.632657259*10- 1

-2.459043367*10-1 5.235703144*10-1 3.809533604*10-1

-3.278724490*10-
1

-2.617851572*10- 1 -5.714300405*10-1

3.278724490*10-1 -2.617851572*10-1 5.714300405*10-1

2.459043367*10-1 5.235703144*10-1 -3.809533604*10-1

-5.035184038*10- 1 -3.739787960*10- 1 1.632657259*10-
1

2.751786625*10-1 1.308925786*10-1 -4.081643147*10-1

-5.269378644*10- 2 -1.869893980*10- 2 4.535159052*10- 3

80

4,5 USE OF TIlE STURM SEQUENCE ALGORITHM FOR GENERAL TRIDIAGONAL MATRICES

USING PARALLEL pROCESSING

If A is the symmetric tridiagonal (NxN) matrix of general form

given by,

cl b2

b2
c

2
b

3
0

,
b

3
c

3
, ,

, ,
" A = , , ,

....
"- "- " , ,

, "bN 0
.... ,

'b
,

N cN

then a similar technique to that described in section 4.3 can be used

to carry out an elimination procedure in the matrix (A-AI) from both

ends of the diagonal simultaneously using two processors. Care must

be taken when dealing with the centre elements, but the sequence

q.(A), i=1,2, ... ,N so produced can be shown as in Section 4.2 to have
1

(4.5.1)

the same values as the Sturm sequence of a similar matrix with selected

columns and rows interchanged.

By using the Gaussian elimination process the sequence for the

case when N is odd and where,

is as follows,

ql (A) =

q. (A) =
1

qN(A) =

s = (N+l)/2

c l - A

. 2
c.-A-b./q. leA),

1 1 1-

c -A
N.

i=2,3", .•. ,s-1

(4.5.2)

(4.5,3)
q. (A) =

1

2
ci-A-bi+l/qi+l (A), i=N-l,N-2,.,.,s+1,

q (A) = s c _A_b
2
/q l(A)-b l/q leA),

5 S 5- s+ 5+

and the case when N is even and where

s = N/2

gives the sequence,

(4.5.4)

ql (A) " cl-A •

qi (A)
2

i=2,3, .. , "S, = Ci-A-bi!qi_l(A).

qN(A) = CN-A •
q. (A)

2 i=N-l.N-2 •.•.• s+2 = Ci-A-bi+l/qi+l(A) l.

qs+l (A)
2 2

/qs (A) = c -A-b /q (A)-b • s+l s+2 s+2 s+l

The sequence of qi(A). i=1.2 ••..• N can now be used in a bisection

process to isolate the eigenvalues of the matrix A as described in

Chapter 2.

The order of the calculation of the q. (A) i=l.N is given in
l.

Figure 1.

Order of Calculation of Elements of Sturm Sequence

N odd. s=(N+l)/2

PROCESSOR 1 PROCESSOR 2

PROCESSOR
1 OR 2

N even. s=N/2

PROCESSOR 1 PROCESSOR 2

PROCESSOR
1 OR 2

FIGURE 4.5.1

The calculation as in Figure (4.5.1) is performed many times for the

different values of A. The program for calculating the eigenvalues

of a symmetric tridiagonal matrix is given in Appendix 1 in program 8.

This program is written in standard ALGOL 60 except that the

parallel processing constructs FORK and JOIN have been inserted.

81

(4.5.5)

These statements indicate where the program, (orks to allow the two

processors to work on separate sections independently, and where the

program joins as only one processor can then work on the program a(ter

collecting results (rom the sections done in parallel.

Program 8 was run sequentially without fork and join statements

on the I.C.L. 19045 at Loughborough University of Technology. The

results were identical to those obtained using Program 1 and were

arrived at in the same times, which indicates that there was little

inefficiency in splitting the sequences up into two halves. Of course

there were certain overheads introduced by splitting the sequence into

two, but these were negligible compared to the time taken actually

computing the eigenvalues.

Next the program was translated into FORTRAN for use on the

Loughborough University Interdata parallel computer. This configuration

has two model 70 processors sharing a 32K block of core, each also having

32K of private core.

Certain amendments were made to the program to improve its

efficiency for running in parallel. For example when the two

processors are working and both wish to access different parts of the

same array one processor is held up and has to wait until the other

has finished. This is known as store clashing, and as much data as

possible was put into the private memories to avoid this.

When an efficient program had been obtained (program 9 in the

Appendix) it was tested on a 64 x64 matrix. (The program was being run

for timing comparisons so the actual results are not given here, they

were in fact verified correct but the only result required was tilue

taken).

First the program was run sequentially without forks and joins

and it took 24.97 seconds to obtain the results. Next it was run

82

in parallel mode with forks and joins included, and the results were

obtained in 21,07 seconds, Therefore the results obtained when running

in parallel mode were obtained in 84% of the time taken when the program

was run in sequential mode. This result is dissappointing as the

parallel method uses more resources for a longer period. During the

calculation neither processor is available for other work yet the two

processors are only working for 54% and 87% of the total time taken.

An alternative method of using the original sequence produced in

section4.4.2 in a parallel fashion was suggested and developed by

Barlow (1977a, 1977b). This method is described briefly here.

a) The maximum and minimum values of the eigenvalues are obtained

using Gerschgorins theorem.

b) A queue is set up using part a) results to initiate it. Each

element in the queue describes the upper and lower bounds of the

interval, how many eigenvalues are below the interval and how

many eigenvalues above it.

c) This part of the algorithm is done in parallel. As it becomes

free a processor takes an interval off the queue, bisects it,

and calculates the Sturm sequence for this value, to determine

how many eigenvalues there are in each half of the interval.

There are now several possibilities to follow:-

1) Eigenvalues are in each half interval, in which case both intervals

are put back on the queue, and the processor then chooses the next

interval on the queue.

2) Eigenvalues are in only one half of the interval, in this case

only the full interval is returned to the queue before the

processor moves to the next interval in the queue.

3) The half intervals are less than the desired accuracy. All the

eigenvalues in this interval are considered found and assigned

83

the mid point value, The interval is then removed from the queue

and the processor returns to the head of the queue,

4) If an interval is found to contain only one eigenvalue. bisection

is continued without recourse to the queue until the eigenvalue

is found correct to the required accuracy. The interval is then

removed from the queue and the processor returns to the queue

to pick up another interval.

The program to perform the above algorithm is given in Barlow (1977a)

and some results using this program are given below.

This program was run using the same (64 X64) matrix as before from

which the accuracy of results could be verified. When run sequentially

the program took 20.29 seconds, this is a slight reduction in time of

19% over the original algorithm run sequentially, and a small reduction

in time when run in parallel. When the new algorithm was run in parallel

the time taken was 11.30 seconds. This indicates that run in parallel

the new algorithm takes only 56% of the time taken to run sequentially.

This was the order of speed up that was aimed for in the original

algorithm.

This indicates that for this type of problem it is not good

strategy to obtain information (the Sturm sequence) in a parallel

fashion and use an existing algorithm (bisection), but better to

obtain the information (the Sturm sequence) and then use it in a

parallel manner (Barlow's algorithm) in a new or modified existing

algori thm •. . . -: - . ---""'--

Barlow's parallel algorithm has two other major advantages. One

is that as the unmodified Sturm sequence is used the parallel algorithm

can be used in conjunction with the Sturm sequences of any matrix.

Therefore this algorithm can be used to find the eigenvalues of any

matrix for which a Sturm sequence exists. The ensuing chapters of

84

this work contain Sturm sequences for 17I~ny· type~of matrix and can be

used in conjunction with the algorithm.

The other major advantage of the parallel algorithm is that it

can be used in a system with any number of processors. The algorithm

is flexible in that it does not require a set number of processors.

Also during the computation processors can be put to work on the queue

as they become free and taken away as required for other work. The

number of processors working on the problem therefore need not remain

constant. The maximum number of processors that can be used on the

problem without inefficiencies due to waiting for work to become

available is equal to the number of elements in the queue. The length

of this queue starts at one and gradually increases to a maximum of N

and then decreases to zero.

The necessary number of processors can then be switched in as

required by looking at the queue length.

This algorithm is thus very flexible and can be of particular

use in fields such as meteorology weather forecasting where solutions

are required quickly in real time.

4.6 TIlE CALCULATION OF TIlE EIGENVECTORS OF A SYMMETRIC TRIDIAGONAL

MATRIX BY INVERSE ITERATION

A similar method to that of section 4.3 can now be used on a

symmetric tridiagonal matrix. If two processors are available the

matrix can be eliminated from both corners at once on the matrix

folding principle, with both halves of the resultant matrix being

noted as the original matrix is no longer centro-symmetric.

If an eigenvalue X. (say) of the matrix A, as given in (4.4.1)
J

has been found, a Gaussian elimination procedure applied to the

matrix (A-X.I) must be considered for N odd and even separately.
J

85

The case when N is even

Let
s = N/2

The Gaussian elimination process with a partial pivoting strategy is

now performed on the first and last s rows of the matrix (A-A.I)
J

simultaneously by each processor. The resultant matrix is,

Cl b2 d
3

0 c2 b
3

d
4 , , , ,

" "
, , , , , , ,

" ,
"

, 'd , , , s+l , "
,

, 0 " c' b ' s s+l

bl!
s+l c' s+l

d s+2 b s+2
" , ,

0
,

"

"" o

,
,

"

,
,

"

o

,
, , , ,

, ,
, " "
"

, ,
dN

-

" , , 0 ,
bN cN !..!.

The elimination in the submatrix B is now performed by one

processor and the submatrix becomes

~s+ll
s+l

The case when N is odd

Let
s = (N-l)/2

The Gaussian elimination process with partial pivoting strategy

is now performed on the first and last s rows of the matrix (JI,A.I)
J

simultaneously by each processor. The resultant matrix is,

86

(4.6.1)

(4.6.2)

(4.6.3)

(4.6.4)

-
1)2 d3 Cl

0 c
2

b3 d4
" " " 0

"- " " "-
" " " " " " B

"- " " " "- " " "- " d "- "- " s+l
" "- "

" 0 "- C' " b ' 0 s s+l

b s+l c5+1- Aj b
5+2

0 b ' 5+2 c' 5+2 0

"
d "- " "-

0 5+3 , " "-
" 0

"
"- " " , , " "- - ,

d
N

' b
N

c
N

The elimination in the 5ubmatrix B i5 now performed by one processor

in two stages, the first to eliminate bs+l '

C b d
s+2 s s+l

0 c' s+l b" s+2

0 b ' s+2 C' s+2

and the second stage is to eliminate b ' 2' s+

b s+l d s+2

c b s+l s+2

Cs + 2

The elimination process is essentially the same as that

described in section 4.3. Theh'k" .. ~ substitution now takes place

through both halves of the matrix simultaneously to produce a full

vector. The whole process i.e. inverse iteration is then repeated

using the new vector to obtain the required eigenvector as given

earlier.

If the vector

87

(4.6.5)

(4.6.6)

(4.6.7)

(4.6.8)

is the vector obtained from the back substitution the order of

calculation is as in Figure (4.6.1),

Order in which elimination and back substition are performed

(N odd, s=(N-1)/2)

PROCESSOR 1

PROCESSOR
1 OR 2

c' bit
5+1' 5+2

PROCESSOR 2

c' b I
5+2' 5+2

cbe
5+1) 5+2' 5+

I

Q

(N even, s=N/2)

PROCESSOR 1 PROCESSOR 2

c b d
5+2' 5+2' 5+2

--~-~, ----\ c' b
U

'-_-----'s~',,~ 5+ l' 5 + 1_
PROCESSOR

1 OR 2

FIGURE 4.6.1

88

The program to carry out this algorithm is program 10 in Appendix 1.

It is given in standard ALGOL 60 with FORK and JOIN statements added to

indicate which sections are run in parallel, This program as before was

translated into FORTRAN for running on the Interdata system at Loughborough

University of Technology. The FORTRAN program is program 11 in the

Appendix.

Program 11 was then run using a (64X64) matrix for which the eigen­

values were known, to determine all the eigenvectors on the Interdata

parallel computer. When run sequentially without FORK and JOIN statements

this took 11.51 seconds. The program was run in parallel fashion using

both processors and took 9.25 seconds. The parallel version therefore

takes 80% of the time taken to run sequentially. Thus when run in

parallel the algorithm uses 60% more resources than when run sequentially

to obtain an improvement in time taken of 20%. This inefficiency is due

to several factors, 1) store clashing or queuing up to use the same

array, 2) overheads in performing FORK and JOIN statements which have

been inserted as low level subroutines, 3) one processor always performs

the sequential sections and during this time the other stands idle. For

these reasons the method is very inefficient and is not recommended.

A simple procedure was adopted to produce a fast efficient algorithm

similar in idea to the method described in section 4.5. Each processor

89

was given a copy of the input matrix, and the program to obtain eigenvectors

by the normal method. Then each processor was given an eigenvalue and

left to find the eigenvector. When a processor has finished it is given

another eigenvalue until all vectors are found. On the same test matrix

this method was run sequentially using one processor, and took 11.28

seconds. Then it was run in parallel on two processors taking 5.76

seconds. The time taken running in parallel is reduced to 51.1% of the

time taken to run sequentially.

This algoJ;ithm is pre);'erred as it is very efficient, having

small losses in overheads for parallel running, Also it is very

flexible because any form of inverse iteration can be used in the

method, and any number of processors can be utilised working out as

many eigenvectors in parallel as there are processors available.

The results of sections 4.5 and 4.6 indicate the best approach

to solving problems of the type covered in this chapter. In general,

it is not a good strategy to modify a well known efficient method of

this type (viz. obtaining Sturm sequence, performing inverse iteration)

for use in a parallel fashion, as this will cause too many inefficiencies

and add too many constraints to the method to make it worthwhile. The

inefficiencies are caused by parallel implementation, and waiting while

single processor sections are performed, and the constraints are that

only algorithms for which a parallel implementation can be found can

be used, and these methods will have inherently a fixed number of

processors necessary to perform the calculation. Rather it is a better

strategy to use a proven method and try and testo-uctqre this in some

parallel fashion, as has been shown in sections 4.5, and 4.6. These

results are in agreement with some of the comments made by Stone

(Traub, 1973) and possibly indicate the most fruitful areas for

future research in restructuring algorithms suitable for parallel

processing.

More detailed figures and analysis of the results obtained in

sections 4.5 and 4.6 are given by Barlow (1977a, 1977b).

90

CHAPTER 5

THE NUMERICAL CALCULATION OF THE EIGENVALUES AND EIGENVECTORS

OF A SYMMETRIC SPARSE QUINDIAGONAL MATRIX

91

92

5.1 INTRODUCTION

In this chapter is described the formulation of an algorithm to

determine implicitly the Sturm sequence for a symmetric sparse quindiagonal

matrix of semi-bandwidth p. The sequence is then used in a bisection process

to isolate and determine the eigenvalues of the matrix. Because of the

unique form of the sequence a modification to the bisection algorithm is

suggested which shows marked improvements in time taken when used together

on a computer.

An inverse iteration process initially modified to cope with the

sparsity of the matrix is then derived to determine the eigenvectors of

the matrix. Each of the algorithms described are formulated in a manner

to economise on the use of the storage space in the computer memory.

The final section gives the formulation of a Sturnl sequence for the

unsymmetric sparse quindiagonal matrix of semi-bandwidth p. The sequence

is then used in conjunction with Muller's method to obtain the eigenvalues

of the matrix. An inverse iteration procedure similar to the method of

the previous section can then be used to determine the eigenvectors.

5.2 FORMULATION OF TIlE STURM SEQUENCE AND THE CALCULATION OF THE EIGENVALUES

The eigenvalues of a NXN matrix are given by a determinental

relation which can be expressed as

det (C-AI) = 0 ,

which, in full matrix notation, can be written in the form
(- - - - - p
c - N 1

b2 ,

b2 c2 -A '_ ~3'-- -
det

d
P

d 0
p+l -0 - dN

- - - - -

- --
--

- -)
d
P

0 - --

d p+l
o

bN:; ,- cN_l-~ ,bN

bN, cN-A

= 0 (5.2.1)

93

Matrices of the form given by C i,e. symmetric, sparse quindiagonal

and of semi-bandwidth p occur frequently in vibration and other problems

associated with second order partial differential equations,

Consider the two types of electromagnetic wave propogation in a

long conducting cylinder of rectangular cross-section, In the transverse

magnetic wave the magnetic-field vector has no longitudinal component,

while the longitudinal component of the eectric-field vector vanishes on

the walls of the guide and satisfies the two dimensional equation,

(S.2.la)

throughout the cross-section where A is a frequency pa'rameter. In the

transverse electric wave the lon9itudinal component of the electric-field

vector vanishes, while the longitudinal component of the magnetic-field

vector satisfies (S.2.1a). At the walls the normal derivative of the

longitudinal magnetic field must be zero.

The problem of determining these modes of propagation r ... q.~i'fe~d.t<.r11li",~ti""c~
\

the functions ~(x,y) and corresponding eigenvalues A which satisfy (S,2.1a)

with the appropriate boundary conditions. This is given in figure (5.2.1)

with acp
/ / / / / / / / / r y / / I ay t 9//

I
~ '---.
~ I

----~ a2~ I a2cp ----'-..... _(_ +1 :-2) = A~
------a 2 I ---a~ - "-

x 1 ay
I

------1 -= 0 - - - - - - - -- -------- - - x ax

I
'-..... a~ _ 0
"- oX -
'-..... ---'----. ---I

----/ / / / / / / I: / / /~~ = 0//
I Y

~(___ 1 ___ ~) ___ 1 --~l

FIGURE 5.2. 1

94

boundary conditions that apply for a transverse electric wave. For a

transverse magnetic wave, it is still equation (5.2.la) that must be solved,

but with the boundary conditions,

</> = 0, on
{

X = ± 1
C5.2.lb)

Y = ± !

Now a grid or lattice can be placed over the waveguide of figure C5.2.l)

with a uniform mesh size of h as in Figure 5.2.1, such that Nh=l and Mh=2.

1/ / / / / /~/ / / / /
I /"

j
'-,- -------------- ~

HX,y+h)

-4</>Cx,y)
~ - - - ----- -------I ~

/x
----t---~Hx+h,y)

I I

I I
I

I I
I I
I I

/ If--.. h / / / / / / / / / / / / /
" GRID OVER WAVEGUIDE

~
/

FIGURE 5.2.2

H xch,y)

</>Cx,y-h)

COMPUTATIONAL STaJC/L "

Then if </>Cx,y) is the value of the function at a point on the grid, </>Cx+h,y)

is the value of the function at the mesh point to the right Cin figure 5.2.2),

and </>Cx,y+h) is the value of the function at the mesh point above. Assuming

that </>Cx,y) is sufficiently differentiable then by Taylor's theorem

Hx+h,y) a</>
= </>Cx,y) + h axCx,y)

h2 a2</>
+ T -zCx,y)+ ••••

ax

h2 a2</> + T -zCx,y)+ ••.•
ax

</>Cx-h,y) = </>Cx,y) - h ~!Cx,y)

combining these two equations gives,

</>Cx+h,y)-2</>Cx,y)+</>Cx-h,y) + OCh4) ,

h
2

C5.Z.lc)

C5.2.l<1)

Similarly for the y direction it can be shown that

t(x,y+h)-2t(x,y)+t(x,y+h) + O(h4)

h2

The truncation error consisting of the remaining small terms of the

Taylor expansion. Substituting (S.2.le) and (S.2.ld) into (S.2.la)

gives the finite difference approximation to the equation at the point

(x,y) ,

-(t(x+h,y)+t(x-h,y)+t(x,y+h)+t(x,y-h)-4t(x,y)) = At(X,y)

95

(S.2.le)

(S.2.If)

Equation (S.2.lf) can be applied at all the grid points of figure (5.2.2),

taking note of values at the boundary, to give (NXM) simultaneous

equations in t(x,y) to be solved. By considering the (NXM) equation

in column order on the grid they can be expressed in matrix notation as,

when,

where

t .. = Hx+ih,y+jh) .
1, J

The matrix A is of order (NMxNM) and has the form,

D -I

-I D -I , ...
0 , ,

,
-I, , , , "-

A =
, , , , ,

, "-, ,
"-

0 , , , , , -I , , ,
, , ,

-I D

where D is the (NxN) matrix,

(S.2.g)

(5.2.1h)

(S.2.lk)

96

4 -1

-1 4 -1 0
" " "- "-

-I " " "-
"

,
"-

"- " , "-

0 "-= " "- "-, "- "-
(s.2.H)

" " , " " " " " -1 0 " " "- "
" "

"- " -1 4

and I is the NXN identity matrix. The semi-bandwidth of matrix A is

therefore (N+I), and it has the same form as matrix C in (5.2.1).

If a Gaussian elimination process is performed on the matrix (C-AI)

without using a pivoting strategy then, after the first stage of reduction,

the matrix becomes,

cl-A, b2

0
2

c2-A-b/ (cl-A),

o

b3
,

,-dpb/ (cl-A)

d
p+l,

o

,

b
3 ,

c3-A,

o

,

,

'd
N

d
P

-b 2d/(c I -A), d p+l-
,

, 0 ,

,

,

,

Certain elements of the reduced matrix can now be relabelled in the

following fashion:

R 2,p

R = d ,
l,p P

0

' - dN

'-

(5.2.2)

(5.2.3)

97

If the relabelled elements are included in the reduced matrix,

(5.2.2) can now be written as

RI I' RI 2' R , , l,p 0
0 R2 2' b3 R2 ' d p+I , ,p

....
b3, C3-A -

0
.... d

N - 2
det c -A-RI/RI l' = 0 p ,p, ,

....
0 R , 2,p

0
.... cN_I-A, bN d p+l

0 d

N
bN CN-A

(5.2.4)

The next stage of Gaussian elimination is performed and (5.2.4) becomes,

Rl,l Rl ,2

R2,2 b_
0 ~

0
2

C3-A-b3/R2,2 b4 ,

" " ,
,

b~ ... , ,
... , , , " "- "

"
...

,
b

0 -Rz b3/R2 2 P 0 ,p ,

0 -dp+1b3/R2,2

d p+2
0 "

" "
"

0 "
" "-

"
" " dN

R l,p

R 2,p d p+l

-dp+1biR:,2 d -R, b_/R," ... ,p.) .::., ..

...
" 0 b

D

"
C -A-Ri /Rl 1 P ,p, b -R d /R p+l 2,p p+l 2,2

2 •
-RZ,/R2,2

, "-

b -R d /R C -A-d~ /R' p+l 2,p p+l 2,2 p+l p+l 2,2,
...

..... "-
" "-

"- ,
"-

" "-

" " "-
" ...

......

(5.2.5)

0

n+2

"

"
'.

....

...
....

....
"- ,

"-
...

" " bN

"

...

l
!
!

...
, d"

- b
S

,
I

' I
C -AI
N-1

..0
CD

99

Again the elements of the matrix that will not be affected by further

steps of the reduction process, except by elimination, can be relabelled as

follows: -

R = d 2,p+l p+l

= -R2,pR2,3/R2,2' R =-d b /R =R R /R 3,p+l p+l 3 2,2 2,p+l 2,3 2,2

(5.2.6)

If these relabelled elements are included in the reduced matrix, (5.2.5)

can now be written as:-

RI,I RI ,2 R R
I,p I,p

0 R2 ,2
Ro _

R., R2 .0:.,..) ... ,p ,p

0 R_ b 4' , ~,3

-- '- R R
-- - 3,p 3,p

-- --- - -b4 -- --... - -- -- -- --- - -- - -- ., - ,
0 0 R -- c -). -Ri /RI I-R; /R., 0' 3,p --det

'D ,p, _,p _,_

--
0 R_ 1 ..),p+

b --R R /R p+1 2,p 2,p+l 2,~' ---d --p+2 --, 0
0

, , , , ,
d
N

(5.2.7)

R2 , p+l

K. 1 d d
.),p+ p+2 p+: -

0

b I-R., R., /R __
p+ -JP ~,p+ .),..)

., -c
])+1 - -R~ /R o-.,_

.:..,p+ ~,- ----- -- -- ----
--,

b
N -

0

--- -

- -

-- -

-

-

d~

b~

C
N

4

=0

....
o
o

The next stage of Gaussian elimination can now be performed and (5.2.7) becomes:-

Rl,l Rl 2 R l,p ,
0 RZ,2 R, '1.. 1 0 -, P -,p+ ,

'1._ '1._ 1 j 0 C_-A-b:/RZ 2 b4 J,p '),p+ :>+2 .J ., , , ~

-R_ b/R3 - -R3 1b/ R3- -b ~d1'+zlR3~3 ~ 0 C!-A-b~/R3,; -,),P ,.> ,p+ ,.) , -- d
..... ,

b_ ,
N :,.,. ,

.... ,
0

.... , -.... -..... b p , ,
.... - , - , ,

..... C -). -Ri /Rl 1 b -R R /R, , -d R /R P ,p, 1'+1 2,p 2,p+1 ~,_ p+2 3,p 3,3
b 2 2

-R R /R
0 0 0 -R_ b4/R3 - R2,p/RZ,Z-R3,p/R3,3 .) ,p ,.> p 3,p+1 3,p 3,3 ,

b -R R /R C .,l, -R- /R b -d R /R p+l Z,p Z,P+l 2,Z p+1 2,p+l Z,2 p+2 p+Z 3,p 3,3 , 0 0 -R3 ,p+l b /R3,3 -R R /R -R; /R__ -3,p+1 3,p 3,3 ,p .),.) , , ,
-d R /R b -d R /R cp+2-). -d;+zlR3:3' , 0 -b4dp+zlR3,3 0

p+2 3,p 3,3 p+2 p+2 3,p 3,3
.... ,

"- "- , - "- bN
-..

.... -......
.... -" "- "- - --..

--- "-0 "-
.... "--.. - "-

"-

-b cN->-dN N
-" (5.2.8)
0 ...

102

As before the elements of the matrix can be relabelled in the

following fashion:-

R = d 3,p+2 p+2

(5.2.9)

The Gaussian elimination and relabelling is continued as above,

and when the elimination is completed after N-I steps the matrix is of the

form,

RI I RI ,2 R , l,p

R2 2 R2 3 R , , 2,p
0

R 2 ,p+ I , , --'- R , R
,

-- --R3 3 3,p , ,
'- I -- , , I

3,p+1 -- -- HN_p+I,N -- -- --,
-- - R I -- , p-l,p --

-- -- ,
-- ,

,
R

0
p,p

It can easily be seen from (5.2.3), (5.2.6), (5.2.8) and (5.2.9)

that at each stage of the elimination the new elements R. . are defined
1, J

recursively in terms of the previous elements and elements of the

original matrix (C-AI).

From equations (5.2.3), (5.2.6) and (5.2.9) obviously,

Ri,i+l = b. i=2,p-I, } 1

R. I . = d , i=O,N-p,
1+ ,l+p p+i

(5.2.10)

(5.2.11)

Also,

2
R .. = c.-A-R .. l/R. 1 . I' i=2,p-l (5.2.12)

1,1 1 1,1- 1- ,1-

In equation (5.2.4) the pth element of the main diagonal is,

2
C -A-RI/RI 1 P ,p,

(5.2.13)

In equation (5.2.7) the pth element of the main diagonal is now,

2 2
Cp-A-Rl,/Rl,1-R2,/R2,2 (5.2.14)

and the p+lth element of the main diagonal is,

2
c -A-R2 /R 2 (5.2.15) p+l ,p+l 2,

It can easily be seen from equations (5.2.13), (5.2.14) and (5.2.15)

that for any main diagonal elements, including the first p-l elements,

the following relationship is true,

p-i
R .. = c.-A- r
1,1 1 j=l

2 R. . ./R. .. ., i=p,p+l, ... N, 1-p+),1 1-p+),1-p+) (5.2.16)

Equations (5.2.4) shows that the element b 1 is unaltered after p+

the first step of elimination. After the next step of elimination from

equation (5.2.7) it can be seen that b has subtracted from it the term, p+l

R R /R 2,p 2,p+l 2,2

After the next step of elimination b 1 has a further term p+

subtracted, and from equation (5.2.8) becomes,

b -R R /R -R R /R p+l 2,p 2,p+l 2,2 3,p 3,p+l 3,3

If the elimination process is continued the final element in

the b 1 position is labelled R 1 as in (5.2.10). p+ p,p+

(5.2.17)

(5.2.18)

Following the pattern established in equations (5.2.17) and (5.2.18)

the final value for R can be written as p,p+l

p-2

Rp,p+l = bp+l j~l Rl+j,pRl+j,p+l/Rl+j,l+j , (5.2.19)

103

If the relationship for several more R. . elements are established in
1,)

a similar fashion, the general term for all R .. elements (i~j, j>p) can
1,)

easily be recognised. This is given below in the relationships for all

R .. elements occurring in (5.2.10).
1,)

R .. 1 = b.
1,1- 1

R .. 1,1
2

= c.-A-R. 1 ./R. 1 . l' i=2,3, ... p-l,
1 1-,1 1- ,1-

Ri+l,i+p = dp+i ' i=O,I, ... N-p

p+k-i-l

104

Rk . ,1
= g,k .

,1 L
j=l

R. . ,_ R.. ., /R. . , . . ,i=p ,p+ 1, ... N,
1-P+) ... 1-p+) i 1-p+) ,1-p+) (5.2.20)

k=i-p+2, ... i,

c.-A if i=k 1

\. = b. if i=k+l ,1 1

0 otherwise

R. . = 0 otherwise
1,)

The elements R. . can now be relabelled to faci li tate economy of storage in
1,)

the computer memory. The matrix given in (5.2.10) becomes,

RI I' R2 2' R , , p,p
0 , ...

R2 I
"- R ...

"- p,p-l ... , "- ,
I I
I R ...

" I N,p
... R '2 I (5.2.21) ... p,

I
" '-

0 R ...
P ,I "-... '-...

... '- I

... RN;2
RN 1

'tIIQ1'a Ri>i I>u""u~ RJ,i·i+l,
,

and the associated recursive sequence now becomes,

Rl,l = Cl-A

b. 2 i=2,3, ... p-l, R. 2 = R. 1 = c.-A-R. zlR. I' 1, 1 1, 1 1, 1- (5.2.22)

R. = d. i=p,p+l, n, l,p 1

R •. = 0
1,)

i<p and i>2 or, i <j

p-k-l
L R. . R. k Ilk ./R. . 1 l' j=O 1,P-J 1-+ ,P+, - -J 1-p+J+,

C.-A if k=l
1

'\ = bi if k=2

o otherwise

105

'- 1 N / I-P,p+ J'.')

k=1,2, .•••. p~l,

(5.2.22)

The sequence of elements R. . can now be obtained from the relationship
1, J

given in (5.2.22), and Gaussian elimination need not be referred to when

calculating these new or reduced elements.

In the algorithm given as above in (5.2.22) no space is reserved for

the elements R .. for values of i<j, and in all the calculations involving
1,J

these values of R. . the procedure is to intercept them by testing for i<j
1,J

and branch without carrying them out thus saving time.

If the elements R. I and R. 2' i=l •.... N are now arranged to be stored
1, 1,

as two separate vectors, the total storage space needed for the sequence is

Np_p2+3p_3 computer words,(it ~ach R',j C~l1 be .. t01'eo{i11:.~C"/I1PuteT'"o'T.4). , .

Since Nand p are both often large with N»p then the storage required

is approximately of the order Np words. If N is approximately equal to p,

then the storage required is approximately of the order of 3N words.

The repeated divisions by the elements of the array R .. initially
1,1

appears to be a highly unstable and dangerous practice if any element R. .
1,1

becomes zero or nearly zero. However this is dealt with in a similar

manner to the procedure adopted by Barth et al (1967) i.e. by replacing

-ktl the zero element R .. by a small quantity close to machine zero (i.e. 2 ,
1,1

where k is the number of binary digits in the '1YI a71tlssa ,) •

If P.(A) i=O,N are the leading principal minors of the matrix (C-AI)
1

then from Martin and Wilkinson (1967) there is the result which can be

106

written in terms of the current notation in (5.2.21) as,
si+1

Pi +1(A) = (-1) R1,1'R2,1'R3,1' •... .,Ri+1,1' (5.2.23)

where s. 1 is the number of interchanges. For this algorithm s. 1 is
1+ 1+

always zero and the term (_1)si+1 can be omitted giving,

Pi+l(A) = R1,1'R2,1'·····,Ri +l ,1

and for the l
·th . . 1 . pr1nc1pa m1nor,

(5.2.24)

(5.2.25)

Combining (5.2.24) and (5.2.25) gives,

P. (1t)
1+1

P. CA) = Ri+l,l
1

(5.2.26)

Since the polynomials Pi (A) i=O,1,2, ... ,N form a sequence of the

leading principal minors of le-All where C is a symmetric matrix, then

it is well known that they form a properly signed interleaved sequence

of polynomials (i.e., all P.(A»O for a sufficiently large value of
J

either positive or negative and the zeros of P.(A) strictly separate
J

those of Pj+l(A)). Therefore with the aid of the separation theorem

Wilkinson (1965), it can be shown that the sequence PICA), i=O,l, ••• N

form a Sturm sequence of pOlynomials in the interval (-~,+~). The

fundamental property of such polynomials faci 1i tate an easy and simple

method for the calculation of the roots by the process of bisection, i.e.,

the number of disagreements in sign in the sequence P.(A), j=O,1,2, •.• N
J

is equal to the number of roots of PN(A) smaller than A. Since the

elements R. l' i=1,2, ... N are ratios of the polynomials P. CA) as given
1, 1

in (5.2.26) then it can be shown that the number of negative values of the

elements Ri,l' i=1,2, .•. ,N equals the number of roots of PN(A) smaller

than A.

From Gerschgorin's theorem it is known that the eigenvalues of the

matrix e (5.2.1) are all contained in the union of the N intervals,

with bl = bN+l = 0, d. = 0, i<p, i>N.
1

) i=1,2, ... ,N

Hence upper and lower bounds for the bisection process can be

derived and are given by the expression,

max
min (c. ± (lb. 1+1 b. 11 + Id. 11+1 d. I))
ill 1+ l+p- 1

The order in which the sequences of RI J ~Te obtained suggests a ,

(5.2.27)

(5.2.28)

modification to the bisection algorithm which will in many cases ensure

savings in time over the method used by Barth et al (1967). The sequence

RI,J is obtained in a strict column order whereas in a Gaussian elimination

process work is done on all remaining rows at each stage, and the elements

in the pivotal row are found at the same time.

In the algorithm described by Barth et al (1967) a trial value A (say)

is chosen, and the whole Sturm sequence is calculated using this value. If

k elements of the sequence are negative then A is now used as a lower bound

for the N-k+l largest eigenvalues, and an upper bound for the k smallest

eigenvalues. The bisection for this particular eigenvalue is then

continued. As each eigenvalue is found, sharper and sharper bounds are

obtained for the remaining eigenvalues. This reduces the number of

bisections necessary to determine later eigenvalues, and makes full use of

the information available.

As each member of the sequence RI l' I=l,N, is obtained before any ,
work is done towards finding RI +l ,l' the signs of the RI ,l sequence can be

inspected as they are found. If a decision to bisect can be made at this

point the sequence can be recomputed with a new value of A without any loss

of efficiency.

If, for instance, the smallest eigenvalue is being sought, as soon as

a negative RI l' I=l,N is obtained the calculation of the sequence can be ,

107

stopped. It is now known that the value of A chosen is too large, and a

smaller one can be chosen. Calculation of the sequence of R's with the new

value of A can now be started, and the process repeated. Also if, for

th instance, a larger eigenvalue is being sought (J say), and the sequence

has been calculated as far as RI,l with k members of the sequence RL,l,L=l,I

being negative. If N-I+k is less than J then the value of A used is too

small. (Less than J eigenvalues below A therefore Jth has greater value

than A). Calculation of the R's sequence can be stopped and restarted with

a larger value of A.

This method has several advantages. All the computational effort is

involved is solely in determining the particular eigenvalue being sought.

No effort is expended finding bounds of other eigenvalues. If only a few

eigenvalues are being sought (J say, where J«N) this method is the most

efficient. For a matrix of semi-bandwidth p the first p-l members of the

sequence RI l' I=l,N are trivial to compute compared to the remaining ,
N-P+l members of the sequence. If, therefore, a decision to stop

calculation of the sequence and bisect for a new value of A can be made

before the calculation of the Rp 1 begin, great savings in time can be ,
made.

In practice this algorithm (Program 12A in Appendix 1) is faster than

that of Barth et al (1967) when only a few eigenvalues are sought. Where

all eigenvalues are to be obtained in all examples tested there have been

smal~~ifferences in time between the two algorithms.

108

TYPE OF MATRIX PROGRAM 12A ALGORITHM OF BARTIl ET AL.

20x20 matrix 15 seconds 62 seconds

p=ll

10 eigenvalues

25x25 matrix 48 seconds 59 seconds

p=lS

10 eigenvalues

30x30 matrix 233 seconds 272 seconds

p=22

30 eigenvalues

TABLE 5.2.1

EXAMPLES OF RUN TIMES FOR TWO BISECTION ALGORITIIMS

Tewarson (1973) has suggested some improvements in determining the

sequence itself. The drop tolerance is a small value (Tewarson indicates

from experience 10-7 is the best value) such that if an off-diagonal

element's (RI J where Jfl) modulus falls below this the element is replaced
•

by zero. The pivot tolerance is a minimum value for a pivot (RI l' I=l,N) ,
If a pivot has a modulus less than the pivot tolerance it is replaced.

-3 (Tewarson indicates a pivot tolerance of 10 when 9-10 figures of accuracy

are being sought).

These improvements were included in the algorithm. The biggest effect

was when multiple eigenvalues occurred, the accuracy of these were always

improved. Of course all the tests involved increased the time taken by the

algorithm.

109

5.3 CALCULATION OF TIlE EIGENVECTORS BY INVERSE ITERATION

Suppose ~ is taken as an initial tri .. r vector, then to find the eigen­

vector corresponding to an eigenvalue A (say) derived from (5.2.22) using

two steps of an inverse iteration process the follO\~ing two equations must

be solved:-

and

(C- AI)~ = ~

(C- AI)=. = ~

where C is the quindiagonal matrix as given in (5.2.1).

(5.3.1)

(5.3.2)

To enable this to be carried out requires a knowledge of the inverse

of the matrix (C-H). This can be factorised and written in the form,

(C-H) = LU (5.3.3)

where L is a unit lower triangular matrix, and U is an upper triangular

matrix as given by the triangular decomposition process on the matrix

(C-AI) •

If Land U are known then equations (5.3.1) and (5.3.2) can be

solved by a forward and backward substitution process on the right hand

side vector y. The matrices Land U can be determined by a Gaussian

elimination process but in order to ensure numerical stability it is

essential that pivoting techniques be incorporated in the solution process.

The matrix can be split into several arrays, to speed up computation,

and save storage space in the computer. This is carried out as follows:-

110

(C-AI)=

A p,l

Ap+l,l ,
I

I
I

o

"

, ,

" ,
" ,

"

,
,

"

0

" " , , " " " " ,
"

" ,lIp_
2

" " ,
.... '" 'G ", p-2 " , , " ,

,
" F p-2

" E p-l

- A 2 p,p-

AI
N,p-2

Now the elimination process takes place in three major stages.

STAGE I The variables xi' i=l, 2, p-4 are eliminated by using the

following strategy.

A h .th t t e) stage (say), the row with the maximum modulus of

coefficient of the x. is selected as the pivot element. Here there
)

are N-p+3 rows at most to choose from. The

FjXj + Gj+IXj +1 + Hj+2Xj+2 +

the j+lth row is

th and the p to N rows are denoted by

jth row (will be),

~ Q. kXk '
k=p-l),

N
A . x. + A . IX. I + A . 2x , 2 m,)) m,)+)+ m,)+ J+ + L ~n kXk ,m=p,N

k=p-l '

A • = 0
m, J

m=p,p+I, .•• N j=j+3,j+4, ••• p-2 .

111

(5.3.4)

(5.3.5)

(5.3.6)

(5.3.7)

Thus if E. 1 has a mal\imum modulus the elements in (5.3.5) and
]+

(5.3.6) are interchanged as followSl-

G <>F
j+l j+l'

k=p_l,p_2, N,

and if U ., t=N-p+l,N (say) has maximum modulus the elements in
R,,J

(5.3.5) and (5.3.7) are interchanged, i.e.,

k=p-l,N

(5.3.8)

(5.3.9)

The jth element of the interchange vector is now set to zero for

no interchange or to the number of the row with which row j was

interchanged.

To eliminate the j+lth row Ej is set to Ej+l/F j , then the following

calculations are performed

Qj+l,k = Qj+l,k - Qj,kEj' k=p-l,N,

and the N-p+l rows of A become,

A . = A ./F.
m,] m,]]

m=p,N

(5.3.10)

A . 1 = A . I-G. lA ., A . 2=A . 2- Z. 2A . m=p,N m,]+ m,J+ J+ m,] m,]+ m,J+ J+ m,J

A k = A k-Q· kA . , k=p-l,N
ID, rn,], m,]

STAGE 2 The variables x 3'x 2 are now eliminated. This stage is
p- p-

essentially the same as the first stage, except that there are fewer

terms outside the Q submatrix.

For the variable x 3' j=p-3 and (5.3.5), (5.3.6) and (5.3.7)
1'-

become, N

L
k=p-l

F 3x 3 + G 2x 2 + p- 1'- p- 1'-

N
E x +F x + \ Q x
p-2 1'-3 1'-2 1'-2 L. ']l-2,k k ' k=p-l

N

Am p_3xp_3+Am p-2xp_2 + L ~ kXk' m=p,N ,
, , k=p-l '

(5.3.11)

(5.3.12)

112

th~ t~rms involving lip-I' Gp_I' Am,p_l' m9p,N are now in the sub~matrix

Q and need not be considered separately.

If E 2 is the coefficient of x 3 with maximum modulus the
p- p-

following elements are interchanged,

G .. F
p-2 p-2' Qp-3,k .. ~-2,k' k=p-l,N, (5.3.13)

and if IIt ,p_3 (say) is the coefficient of maximum modulus the following

elements are interchanged,

Fp_3 " At ,p_3' Gp_2 .. At ,p_2' ~-3,k .. Qt,k' k=p-l,N . (5.3.14)

The interchange (or no interchange) is again noted in the interchange

vector. Now x 3 is eliminated in the p_2th row as follows, p-

E p-3 = E 2/F 3' p- p-
F
p-2 = F - G E p-2 p-2 p-3

~-2,k = ~-2,k - ~-3,k Gp_3' k=p-l,N,

and for the elimination in the N-p+l rows of A,

Am,p_3 = Am,p_3/Fp_3

A =A -G A m,p-2 m,p-2 p-2 m,p-3

~,k = ~,k - ~_3,kAm,p_3' k=p-l,N

)

m=p,N

For the variable x 2' j=p-2 and (5.3.5), p- (5.3.6), and (5.3.7)

become, N
Fp_2xp_2 + 2 ~_2,kxk

k=p-l

N

2
k=p-l

E x +
p-l p-2

N

2
k=p-l

A x + m,p-2 p-2

the terms involving 11 ,G I' G and Flare now in the sub-matrix p p- p p-

Q and need not be considered separately.

If E 1 is the coefficient of x 2 with maximum modulus·the
p- p-

following elements are interchanged,

o "0 k=p-l,N, 11-2,k V-l,k'

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

113

and if A 3(say) is the coefficient of maximum modulus the following
R.,p-

elements are interchanged,

F"A 0 "Q k"p-l,N , p-2 R.,p-2' ~-2,k R.,k'

and the interchange noted in the interchange vector.

Now x 2 is eliminated in the p_lth row as follows,
p-

E p-2

o =0 -0 E k=p-l,N,
~-l,k ~-l,k ~-2,k p-2'

and for the elimination in the N-p+l rows of A,

A = A IF m,p-2 m,p-2 p-2
,

Q k" Q k - 0 kA , k=p-l,N rn, rn, 11-2, m,p-2

m=p,N

(5,3,19)

) (5.3.20)

(5.3.21)

STAGE 3 The variables x., i=p-I,N-I are now eliminated.
1

The rows of

original matrix (C-AI) with x., i=p-l,N-l still to be eliminated are
1

now wholly contained in the lower p-l rows of the sub-matrix Q. These

rows form a (p-l)x(p-l) matrix upon which the standard Gaussian elimination

procedure with partial pivoting strategies are performed. The elimination

factors are stored in the lower triangle of Q below the diagonal and

interchanges are noted in the interchange vector.

The information now stored in A,E,F,G,H,Q now provides sufficient

information to solve the equations,

(C-AI)! = r.
for any right hand side vector y by the appropriate forward and backward

substitutions. Hence (5.3.1) can be written in the form

LUx = r. (5.3.22)

provided the interchanges in L are included.

Wilkinson (1965) has shown that if the initial vector Z is of the

form,
r. = L e (5.3.23)

114

where the vector eT is of the form (1, I, .. , I), then, substi tuting

(5,3,23) in (5,3,22) gives the result,

Ux = e

where the upper triangular matrix U has the general form:-

... ... " ... " "-
" " ...

.... "-
.... "-....

" "-
" "-

U =

o

o
H
1'-2

"-
G p-2

F p-2

QI,p-l- - - - Ql,N

Q2 ,p-l - - - - - - -
I

I
I

~-2,p-l
....

~-I,P-l "

....
" ...

QN,N

With this choice of 2:, ~ can be determined using a simple back-

substitution given in algorithmic form as:

xn = yn/~,n

for i = n-l(-l)p-l,
N

x. = (y. - L Q .. x.¥Q ..
1 1 ._. 1 1,)) 11

)-1-

for i = 1'-2(-1)1,

N

xi = (Yi -._L lQi,jXj-Qi+lxi+I-lli+2xi+2)/Fi'
)-P- J

Hp_l = Hp = Gp_l = 0

Thus there is no need to determine Le explicitly, To perform the

forward substitution operating on the x,, the stored elimination
1

factors in E,A, and Q, and the interchange vector rc (rC i , i=l,N-1)

are used in the following manner,

115

(5,3,24)

(5,3,25)

(5,3,26)

116

(i=1(1)p~2, (if redo,

(m=p(l)N, x = x - x.A .))
m m 1 m,l (5.3,27)

(i=p~l(l)N, (if rCi~o,

(m=i (l)N x = x - x.o .)). m m 1111,1

If the back substitution process described in (5.3.26) is performed

the required eigenvector is now in ~.

The number of storage elements s, required for the arrays A,E,F,G,H,

and Q is given by

2 2
N -p +7p-13 = s (5.3.28)

If Nand p are very large then the approximate storage required

is,

(5.3.29)

The quantity s can easily be seen to be small with large band-

width matrices.

5.4 RESULTS

Results are given for two test matrices of the same form as (5.2.lc).

The first is a (14xI4) matrix with semi bandwidth 8, and elements as

those of (5.2.lc) divided by 4. The eigenvalues of this matrix are given

by the formula,

, 11 (ill) 1 (jll) Ai, j = - 4' cos 3 - 4' cos 8 i=1,2, j=1,2, ... 7 (5.4.1)

The answers given in table (5.4.1) agreed with those given by equation

(5.4.1) to 10 significant figures. Each column of table (5.4.1) contains

the eigenva1ue at the head of its corresponding eigenvector. The eigen-

vectors also agreed to 10 significant figures with those obtained by the

N.A.G. routine F02ABA which uses Householders reduction and the QL

algorithm to obtain the eigenvalues and eigenvectors of a symmetric matrix.

0.2880602338 0.3964466094 0.5586582838 0.7499999999 ! 0.7880602337 0.8964466095 0.9413417162

0.1352990250 -0.2500000000 0.3266407412 -0.3535533906 i -0.1352990250 0.2500000000 0.3266407412
0.2500000000 -0.3535533906 0.2500000000 0.0000000000 I -0.2500000000 I 0.3535533906 -0.2500000000
0.3266407412 -0.2500000000 -0.1352990250 0.3535533906 i -0.3266407412 0.2500000000 -0.1352990250
0.3535533906 0.0000000000 -0.3535533906 0.0000000000 ! -0.3535533906 I 0.0000000000 0.3535533906
0.3266407412, 0.2500000000 -0.1352990250 -0.35355339061 -0.3266407412 1-0.2500000000 -0.1352990250
0.2500000000- ~ 0.3535533906 • 0.2500000000 0.0000000000 -0.2500000000 ! -0.3535533906 -0.2500000000 I

\

0.1352990250 0.2500000000 0.3266407412 0.3535533906 -0.1352990250 -0.2500000000 0.32664074121
0.1352990250 -0.2499999999 0.3266407412 -0.3535533906 0.1352990250 -0.2500000000 0.3266407412\
0.2500000000 -0.3535533906 0.2500000000 0.0000000000 0.2500000000 -0.3535533906 -0.2500000000
0.3266407412 -0.2500000000 -0.1352990250 0.3535533906 0.3266407412 -0.2500000000 -0.1352990250
0.3535533906 0.0000000000 -0.3535533906 0.0000000000 0.3535533906 0.0000000000 0.35355339061
0.3266407412 0.2500000000 -0.1352990250 -0.3535533906 0.3266407412 0.2500000~00 -0.1352990250

\ 0 . 2500000000 0.3535533906 0.2500000000 0.0000000000 0.2500000000 0.3535533 06 -0.2500000000
'0.1352990250 0.2500000000 0.3266407412 ! 0.3535533906 0.1352990250 0.2500000000 0.3266407412 ,

1
, I

1.058658284 1.103553391 1. 211939766 1.250000000 1. 441341717 1.603553391 i 1. 7119397466 ,
-0.3266407412 0.2500000000 0.1352990250 -0.3535533906 I -0.3266407412 -0.2500000000 -0.1352990250
-0.2500000000 -0.3535533906 -0.2500000000 0.0000000000 0.2500000000 0.3535533906 0.2500000000
0.1352990250 0.2500000000 o 3266407412 0.3535533906 0.1352990250 -0.2500000000 -0.3266407412
0.3535533906 0.0000000000 -0.3535533906 0.0000000000 -0.3535533906 0.0000000000 0.3535533906
0.1352990250 -0.2500000000 0.3266407412 -0.3535533906 0.1352990250 0.2500000000 0.3266407412

-0.2500000000 0.3535533906 -0.2500000000 0.0000000000 0.2500000000 -0.3535533906 0.2500000000
-0.3266407412 -0.2500000000 0.1352990250 0.3535533906 -0.3266407412 0.2500000000 -0.1352990250
0.3266407412 0.2500000000 0.1352990250 0.3535533906 0.3266407412 0.2500000000 0.1352990250
0.2500000000 -0.3535533906 -0.2500000000 o . 0000000000 -0.2500000000 -0.3535533906 -0.2500000000

-0.1352990250 0.2500000000 0.3266407142 -0.3535533906 -0.1352990250 0.2500000000 0.3266407412
-0.3535533906 o . 0000000000 -0.3535533906 O. OOOOOOOOOO 0.3535533906 0.0000000000 -0.3535533906
-0.1352990250 -0.2500000000 0.3266407412 0.3535533906 -0.1352990250 0.2500000000 0.3266407412

0.2500000000 0.3535533906 -0.2500000000 0.0000000000 -0. 2500000000 0.3535533906 -0.2500000000
0.3266407412 -0.2500000000 0.1352990250 -0.3535533906 0.3266407412 -0.2500000000 0.1352990250

TABLE 5.4.1

118

The second matrix used is of the same form as the first, but is of

order (80x80) with semi-bandwidth 41. Again the eigenvalues of this matrix

are well known, and are given by,

1 i1r 1 ~ \,j = 1 - 4 cos (T) - 4 cos(41), i=I,2, j=I,2, ... 40 (5.4.2)

For this matrix eigenvalues 1,11,21,31,41,51,61,71 are given in table

(5.4.2) where eigenvalue 1 is the smallest. The results again agreed to

10 significant figures with those obtained using (5.4.2). The eigenvector

~ssociatecl·with. eigenvalue 1 is given in table (5.4.3) and the results

agreed to 10 significant figures with those obtained using the QL algorithm

as before.

No. EIGENVALUE

1 0.2514670994

11 0.4173371499

21 0.7514670994

31 0.8451955545

41 1.011140091

51 1.158964680

61 1. 269151367

71 1.610260797

TABLE 5.4.2

X1-X20 x21-x40 x41 -x60 x61-x80

1.195498477*10-2 1.560591587*10-1 1.1954984770*10-2 1.560591586*10-1

2.383981293*10-2 1.551433415*10-1 2.383981294*10-2
1.551433415*10-1

3.558473960*10-2 1.5331708145*10-1 3.558473960*10-2 1.533170814*10.1

4.712084086*10-2 1.505910959*10-1 4.712084086*10-2 1.505910959*10-1

5.838041829*10- 2 1.469813818*10-1 5.838041829*10- 2 1.469813818*10-1

6.929739622*10- 2 1.425091226*10-1 6.929739622*10- 2 1.425091226*10-1

7.980770947*10- 2 1.372005632*10-1 7.980770947*10- 2 1.372005632*10-1

8.984967935~10-2 1.310868563*10-1 8.984967950*10-2 1.310868563*10-1

9.936437559*10- 2 1.242038796*10-1 9.936437559*10- 2 1.242038796*10-1

1.082959622*10-1 1.165920251*10-1 i.082959622*10- 2 1.165920251*10-1

1.165920250*10-1 1.082959623*10-1 1.165920250*10-1 1.082959623*10-1

1.242038794*10-1 9.936437575*10- 2 1.242038794*10-1 9.936437575*10. 2

1.310868561*10-1 8.984967950*10- 2 1.310868562*10-1 8.984967950*10- 2

1.372005630*10-1 7.980770961*10- 2 1.372005630*10-1 7.980770961~10-2
1.425091225*10-1 6.929739634*10-~ 1.425091225*10-1 _ 6.929739634*10- 2

1.469813817*10-1 5.838041840*10- 2 1.469813817*10-1 5.838041840*10- 2

1.505910958w10-1 4.712084094*10- 2 1.505910958*10-1 4.712084094*10- 2

1.533170814*10-1
3.558473966*10-2 1.533170814*10-1

3.558473966*10-2

1.551433414*10-1 2.383981298*10- 2 1.551433414*10-1 2.383981298*10- 2

1.560591587*10-1 1.195498479*10- 2 1.560591586*10-1 1.195498479*10-2

TABLE 5.4.3

5.5 DETERMINATION OF TIlE STURM SEQUENCE FOR AN lJNSYMMETRIC BANDED MATRIX

AND ITS USE IN FINDING EIGENVALUES

The method of obtaining the Sturm sequence for a matrix as explained

in 5.2 can be extended and used on the more dirricult unsymmetric matrix of

the same form as (5.2.1). As the matrix is unsymmetric, the Sturm sequence,

once found, cannot be used in a bisection process as any number of the

eigenvalues may be complex. Instead a root finding method normally

associated with polynomial root finding is used. The Sturm sequence is

now utilised to obtain the determinant only of the matrix which can be

used in conjunction with the root finding method to find the roots of the

characteristic equation. Obtaining a suitable differentiated sequence as

described in Chapter 3 for use with Newtons method is impracticable, so

Muller's method is used even though it has several drawbacks. At each

stage the method requires two previous function (determinant) eva,juations.

Thus choosing two suitable starting values is a problem, and often a cause

of inefficiencies. The method can, and often does, give a complex

approximation to a real root, but this is in common with many other methods.

There is one square root evaluation at every iteration, which is time

consuming. In fact computationally the single most time consuming operation

in the method is the determination of the square root of a complex number,

but this iS,very small compared to the amount of work performed in one

iteration.

The matrix for which the sequence is to be found is

120

121

(P J

cl b2 d p, 0

r
,

" e2 C2 " " " " " " " " " " " 0 " p " " " " , ,
"

, 'd

1 " "
..., N " "

A =
,

" (5.5.1) ,
" ,

f " " " p 0 ,
" " "

,
" " "

,
" " " " , ,

" " " bN 0 , " " , " , "
,

fN e 'c
N N

As before Gaussian elimination is applied to the matrix (A-AI) without

using a pivoting strategy. At each stage of the elimination process some

of the elements will be relabelled, and initially the following are re-

labelled:

Ri,p_l+i = d. 1 i=l,2, •.• ,N-p+l } l+p-

RL p+i-l,i = f. 1 i=l,2, ... ,N-p+l 1+p-

(5.5.2)

Ri,i+l = b. i=2,3, •.. ,p-l } 1

RI,I = Cl-A e2 = RL 2,l
(5.5.3)

Thus before the first step of elimination the matrix now has the form,

RI 1 Rl ,2 R , l,p

RL2,l C2"A R R 0 2,3 " 2,p+l
" " " e3 " "

....
" " " ,

"
,

"-
" " R p-2,p-l 0 RN_p+1,N " " " " " "- b " " " " p

(A-AI)= " " (5.5.4) ,
" " RL " " " "

....
p,l " "- "-.... "

RLp+l ,2 "
" 0 "-

"-"-.... " " " "- "
,

0 "- " bN " " "
" " "- " RL " eN C -A N,N-p+l N

and performing the first step of the elimination will produce,

rl,l RI,.? R
i I, P

-RI RL Z /Rl 1 R, 1 0

I Rl ,2RLZ,1
' P , , - ,p+ ...

0 c 2- A- Ro - ,
RI 1

,
I ... ," ,

I
,

... " , ,
"- R i "- ... :-l-p+l,NI e3 "- :

"- "-

0 "- "- R ... "- p-2,p-l ... "-... "-
"- "- b ...

"-"- p

I

...
... , , , "-... ... "-

"- R RL , ... _A_ l,p p,l I e c
p ... p Rl,l "-

0 -RI ZRL l/Rl 1 "-, p, , 0 "- , ... ,
"-... "-

"- "- "-
"-

"-RLp+l,Z "-...
"- "-,

"- "- "-.... "- "- "- bN
"- "-.... 0 "- , ...

-1-R~,p+l,N ... eN c n

(5.5.5)

123

Now some more elements can be relabelled as follows,

R2 = -RI RL2 l/RI I JP ,p, J

(5.5.6)

and the next step of the Gaussian elimination process is performed when

the matrix becomes,

•

~

jRI,1 RI Z R , l,p

I 0
I RZ Z RZ,3 R Ro I
I , 2,p ,p.
I

I
C3-A-RZ,3RL3,2/RZ,2 R_ 4 -R., RL_ .,/Ro ., -R., IRL- .,/Ro ., R_ .,

I ~, w,p .J, _,_ ... ,p+ ",... ...,- ",p+",
.... , , , ,

"- , ,
"-

~ '4, "- R p-2,p:1 ,
-R"_p+I,'1 "-

....
.... 0 b ,

.... 1)
....

.... R RL , "- -A_ l,p p,l
b , c -, P RI,l p+l ,

0 0 -RL .,R., ./R., ., e p, ... _,.J ... , ... P -R2 RL /R.,., RZ lRL .,/R.,., ,p p, .. ,- ,p. p,... ..,-

0 -RL2 lRZ 3/RZ 0 e - C - A - b p+2 ,p+ , , .. p+l p+l
.....

RL R /R ·R RL /R
,

.... p+I,2 Z,p 2,Z 2,p+l p+l,2 2,2
....

RL "-
p+2,3 e p+2

0
, "-

" , , "- "-
.... ,b

N
,

.... "-
" , ,

0 , ,

I
....

" ,

L
, ,, ,

"- ,
RLN_p+1,N ,e'i C -A

(5.5.7) N I\:

"""

125

The process of eliminating RL elements and relabelling is now continued

until an upper triangular matrix is left,

RI,I RI 2 R l,p ,
0

R2 2 R2,3 0 R R , 2,p 2,p+l ,
R3,3 R3,p+1

,
"-

"- ,
" I ...

"-, ,
'R ... "-

"- N-p+I,N , ...
"- "-...

"-
I "-

-.. R p-l,p , ,
"-

R ,
p,p "-... "-... "-

0
-.. "-,

"-"- "-... "-
"- "-... RN_I N ,

"-

~,N

(5.5.8)
In this process a sequence of R elements have been produced and

recorded, and a sequence of RL elements which are the last values of

an element in that position in the matrix before elimination. These

RL elements can all be relabelled so that elements in symmetric positions

now have the same indices e.g.,

RL2,l becomes RL I ,2) (5.5. 9)

RL I becomes RLI p, ,p

The values of the R .. , RL .. (i=p,N, j=p,N) can be determined by the
1,J 1,]

same method as described in section 5.2, while the R .. , RL .. (i=l,p,
1,J 1,J

j=i,i+l) are determined in the same manner as a normal tridiagonal

sequence.

A further, and final, relabelling of the elements RL .. and R ..
1,J 1,]

can now be performed to maximise efficiency and minimise storage

required when programmed on a computer. The matrix (5.5.8) now becomes,

RI I R2,2 R , p,p

R2 I R3 2 0 R p,p-l R 0 , , p+l,p
.... I

....
....

.... I
....

"- R p+l,p-l "- R N,p "- R' ,
"- p,2

"-
....

.... R
p,l ,

"-
"-

....
"-"- "-0 "- ,
"- ,

" "- "-,
"

.... "RN 2 , ,
....

RN, I

(5.510)
and the RL are relabelled similarly,

These Rand RL elements can be obtained by Gaussian elimination and

relabelling, or the following recursive formula,

R. k = 1,

R. k = 1,

RL. k 1,

R. k =
1,

L k = 1,

=

di ,

RL. k 1,

g,. k 1,

g,i k ,

c. -X 1

e.
1

b.
1

0

RL. k = f. , i=p,p+I, •..... N, 1, 1

= 0 i<p and k>2,

p-k-I
I RL. .R. k Ilk ./R. . I l' j=O 1,P-J 1- + ,p+ -.-J 1-P-J+,

i=2,3, ... ,N, k=p,p-I, •.. 2,

p-k-I
I

j=O
R. . RL. k I I k . /R. . 1 I' 1,P-J 1- + ,p+ - -J 1-p+J+,

i=I,2, ... ,N, k=p,p-I, ..• 2,

if k=l

if k=2 for RL. k 1,

if k=2 for R. k 1,

otherwise.

(5.5.11)

w~ich was obtained from careful inspection of the elements during the

elimination and relabelling process.

126

If P. (A), i=l,N are the leading principal minors of the matrix (A-AI)
1

and therefore PN(A) is the determinant of (A-AI), then the Ri,l (A), i=l,N

are the ratios of the P.(A) i.e.,
1

P. (A)
1 = R. leA)

1,
(5.5.12)

as shown by Martin (1967).

Therefore, the determinant of the matrix (A-AI) is given by,

(5.5.1 3)

and in general

Muller's method is described well in Froberg (1964), but briefly the

method fits a parabola to three previous function (determinant) evaluations,

127

and uses this to determine an improved approximation to the root (eigenvalue).

So that at the ith step the previous evaluations are·(f. 2(A i - 2), f. l(Ai - l),
1- 1-

fi(A
i
)) where the A'S are approximations to an eigenvalue and fj(Aj)=PN(A

j
).

Then if,

•. = h./h. l' 6
J
. = 1 + .J'

J J J-

the following can be obtained,

and then,

2 2
g. = f. 2.' - f. 16. + f. (•. + 6.)

1 1- 1 1- 1 1 1 1

.1'+1 = -2f.o./(g.±/g~-4f.o .•. [f. 2.·- f . o.+f.])
1 1 1 1 1 1 1 1- 1 ~Il 1

Then by choosing the sign to make the modulus of the denominator as

large as possible
,i+l = ,i h
A A + ~i+l i

Now using (5.5.15-5.5.18) the iteration can be continued until

convergence to an eigenvalue. In practice the form,

fj (A
j

) = PN(A
j

)

(5.5.15)

(5.5.16)

(5.5.17)

(5.5.18)

(5.5.19)

is not used when calculating the results on a computer. The reason is

that outlined in Chapter 3. that the P.(A) are subject to large oscillations
1

and overflow occurs. As can be seen when calculating PNUj) from (5.5.13)

and (5.5.14) the quantities P.(A j). i=1.2 •.•• N are all calculated. and are
. 1

all subject to the possibility of overflow. If PN(A j) is calculated in the

reverse manner then quantities.

PNPh

Pi(A
j
)

• i=N-l.N-2.N-3 •...• 0

are all calculated and are again subject to overflow.

Instead of PN(A
i
). RN.l(A

j
) can be used. and then.

fj(A
j
) = RN.l(A

j
)

It was found that in practice using (5.5.21) did not affect the

(5.5.20)

(5.5.21)

convergence in any way and satisfactory results were obtained without

overflow occuring.

When one eigenvalue had been found it was necessary to deflate the

matrix to prevent redetermination of this eigenvalue. This is achieved

by dividing the function by the difference of the current estimate to an

eigenvalue and all ·previously determined eigenvalues. Such that if i

eigenvalues have already been found. then.

f.(A j) = R (A j)/
J N.l

i

TT
k=l

Unfortunately this exact form cannot be used as it can be written.

This is in effect.

(5.5.22)

(5.5.23)

f .. (A j) = Nth degree polynomial/(N-l+i) th degree polynomial
J

and f.(A j) has as an asymptote the line f(A)=O and the method always
J

(5.5.24)

follows this asymptote. never converging. The solution to this problem

128

is a delicate "balancing act". As each eigenvalue is found the polynomial

in the denominator of (5.5.22) is decreased by one and then f.(A(j») is
J

given by,

i+l . i .
" J --rr J 11 RN+ l _k I CA)/ O'.e,-A)
k=l ' ~=l

(5.5.25)

= (5.5.26)

This gives, in effect, at every stage,

j th . th f. (A) = N degree polynomIal/(N-l) degree polynomial (5.527)
J

and now the process converges at every step and overflow is avoided. The

effect of using a ratio of the determinant to a minor instead of just the

determinant is discussed in Chapter 7, in connection with the secant method.

At this stage it can be said that in practice this had no effect on

convergence or accuracy at all.

The program to perform this algorithm is given in the Appendix 1 in

program 14.

5.6 RESULTS

Program 14 was run on a number of matrices which were chosen randomly

and compared with results obtained from N.A.G. routine F02AJA. This

routine reduces the matrix to upper Ilessenberg form using stabilised
Imd

similarity transformations,~then computes the eigenvalues using a modified

LR method. frogram 14 is written in Algol 60, this highlights how

clumsy the language is in handling complex arithmetic. It was found that

for the operations +,-,. it was quickest and most convenient to write them

explicitly, and for the operations f, and square root they were written as

subroutines. This was because they were used least ",to b(! the most

complex, and also afforded the possibility of introducing scaling if

necessary.

The first matrix used was,a 20x20 matrix with semi-bandwidth 14, and

129

130

random integers between 0-9 for the elements on the diagonals. The

eigenva1ues are listed, for comparison with those obtained using the

N.A.G. library routine F02AJA. This routine uses stabilised elementary

similarity transformations to transform the matrix to upper lIessenberg

form, then uses the LR algorithm to obtain the eigenva1ues. The two

programs were run on the Loughborough University of Technology I.C.L.

19048 computer, and program 14 obtained the eigenva1ues in 300 seconds,

while F02AJA obtained the eigenva1ues in 10 seconds. The results are

given in table (5.6.1).

EIGENVALUE8 FROM PROGRAM 14 EIGENVALUE8 FROM F02AJA

REAL IMAGINARY REAL IMAGINARY

-11.64194747 0.000000000 -11.64194748 0.000000000

-2.240745232 0.000000000 -2.240745233 0.000000000

-0.0075399962 0.000000000 -0.0075399962 0.000000000

1. 974288297 0.000000000 1. 974288297 0.000000000

2.776414614 -2.222505556 2.776414614 -2.222505556

2.776414614 2.222505556 2.776414614 2.222505556

3.839793997 0.000000000 3.839793997 0.000000000

7.349843142 0.000000000 7.349843142 0.000000000

8.757966495 0.000000000 8.757966495 0.000000000

9.339058777 0.000000000 9.339059777 o . 000000000

10.35427842 0.000000000 10.35427842 0.000000000

11.87654137 0.000000000 11.87654137 0.000000000

13.73292636 -3.391590422 13.73292636 -3.391590422

13.73292636 3.391590423 13.73292636 3.391590422

16.43962543 0.000000000 16.43962543 0.000000000

18.65614394 0.000000000 18.65614394 0.000000000

21.46577519 0.000000000 21.46577519 0.000000000

24.59456121 0.000000000 24.59456120 0.000000000

27.63531832 0.000000000 27.63531832 0.000000000

28.65621514 0.000000000 28.65621514 0.000000000

TABLE 5.6.1

A second matrix of order 50x50 with elements consisting of integers

between 0 and 9 was chosen. The results from program 14 are compared

with those of the N.A.G. routine for ten eigenvalues in Table 5.6.2.

The time taken by program 14 was 1610 seconds and the time taken by

F02AJA was 63 seconds.

EIGENVALUES FROM PROGRAM 14 EIGENVALUES FROM F02AJA

REAL IMAGINARY REAL IMAGINARY

-9.010258685 0.000000000 -9.010258684 0.000000000

-0.6435526709 0,000000000 -0.6435526712 0.000000000

0.5473984273 -0.06227686443 0.5473984272 -0.06227686378

0.5473984273 0.06227686442 0.5473984272 0.06227686378

9.307845570 0.000000000 9.307845573 0.000000000

10.38549187 0.000000000 10.38549186 0.000000000

11.49296839 0.000000000 11.49296838 0.000000000

15.79316104 0.000000000 15.79316104 0.000000000

16.82574875 0.000000000 16.82574875 0.000000000

19.67294860 0.000000000 19.67294860 0.000000000

TABLE 5.6.2

131

CHAPTER 6

THE DETERMINATION OF STURM SEQUENCES

FOR SPARSE BANDED MATRICES

133

6.1 INTRODUCTION

Using methods similar to those of Chapter 5 it is possible to evaluate

the Sturm sequences for sparse matrices with a more complex structure than

those already described, and so determine a recursive formula for the

sequence. These formulae can then be used in a bisection process or Muller's

method to determine the eigenvalues of the matrix.

No algorithm is given for finding the eigenvectors of each matrix

except for the periodic quindiagonal matrix as it is believed that the method

described by Martin and Wilkinson (1967), and Wilkinson (197Z) are the best

available. The reason for this is that as the matrix becomes less sparse,

the complexity of programming to utilise the sparseness is prohibitive

except in the periodic quindiagonal case. The state is reached where, for

large matrices, the space saved is small, and this is taken up by the extra

program steps required to carry out the algorithm. Also the speed in

calculating the vector is not critical, as, compared to the time taken to

obtain an eigenvalue it is very small.

6.2 STURM SEQUENCES FOR TilE QUINDIAGONAL AND PERIODIC QUINDIAGONAI. MATRICES

The Sturm sequence for a quindiagonal matrix has already been found by

Evans (1975), in the form of a sequence of leading principal minors of the

matrix, obtained by Laplace expansion. The quindiagonal matrix is,

l' bz, as

Z' cZ' bS' a4 ,
"

as' bs , cS' " "
" "

0

" " "-
a4, b4, " " A = " " " " " " " ... " ... " "

" "-

" (6.Z.l)
" " "-

" "-

"
,

"- aN
"- " "- " "- " "

" " "- bN " " o

and the sequence obtained for the matrix (A-AI) is,

Po =

PI =

P2 =

P. =
1

1

(Cl-A)PO
2

(C 2-A) p l-bl 0

2 2
-A)P. 3-a~ lP, 4) (c.-A)P. l-b.P. 2- a.((c. 1

1 1- 1 1- 1 1- 1- 1- 1-

+2a.b.(b. lP, 3-b . 2q· lP, 4+b . 3a . la. 2P, 5-····) 1 1 1- 1- 1- 1- 1- 1- 1- 1- 1-

i=3,4, ... ,N-l,

The sequence is also given as a sequence of the ratios of the minors to

avoid underflow and overflow on a computer.

Po = I

PI = (cl-A)
z

Pz = (cZ-A) -b/PI
z 2

P3 = (c3-A) -b3/P2 -a3 (c 2-A) /(p2p~2a3b2b3/(P2PI)'

The quindiagonal matrix, and the periodic tridiagonal matrix can be

seen to be special cases of the banded quindiagonal matrix given in

Chapter 5 with P=3 or N. As has been shown the sequence (6.2.3) is

equivalent to a sequence obtained from the matrix by elimination with

no interchanges. This fact can be proved directly by a similar method

to that employed in Chapter 3, but involves a lot of diFf,-cult algebra and

serves no useful purpose, so is not included.

134

(6.2.2)

(6.Z.3)

The matrix (A-AI) after the elimination process has the form

q3 r 4 s5
, , , , , ,

, , ,
, ,

"- , , , , , , , sN , , , , r , N , ,
qN

where.

=

r. = b.-s.r. l/q· 2
1 1 1 1- 1-

i=3,4, ... ,N J

i=3,4, ... ,N J

The sequence qi' i=1.2 •...• N can now be used to isolate eigenvalues in

a bisection process. in place of the Pi' i=1,2 •...• N.

Evans (1975) has also given the Sturm sequence for an unsymmetric

matrix and the differentiated sequence for use in conjunction with a

Newton method. These can be obtained from an unsymmetric matrix direct.

or by setting P=3 in section 5.6. and using Muller's method. The matrix

most similar in derivation to the quindiagonal matrix is the periodic

quindiagonal matrix which has six additional elements in the top right

and bottom left hand corners.

The matrix has the general form

135

(6.2.5)

(6.2.6)

136

Cl b
2

e
3 d l

d2 ,
b2 c2 b3

... d3 ,
0 "-

,
e3 b

3 c3
,

"- ,
... , ,

.... "- "- ... "-
"- , ... "-"- "-

C = , ... ,
(6.2.8) ,

,eN ... ,
... , , "- "-0

,
dl ,

',bN
"-... ... b ... d2

d
3

... e ... cN N N

Gaussian elimination can now be performed without interchanges on (C-AI)

and the resulting matrix is,

Yl = d2, Y2 = d3-V2Yl /U
l

X. = -X. lV,/U. I-X. 2e ./U. 2
1 1- 1 1- 1- 1 1-

i:;;3,4'~ •. JN-3,

Y. = -Y. lV,/U, l-Y' 2e ./u. 2
1 1- 1 1- 1- 1 1-

i=3,4, ... ,N-2,

137

V
N

_
I = bN_I-XN_3VN_2/UN_2

N-3 2 2 U
N

_
I

= c -1.- L X/U i -VN_ /UN_2 N-I i=l

N--2 2
VN = b - L V/Ui N i=l

(6.2.10)

N-2 2 2
UN = cN-A - L Y/Ui-VN/UN_l i=l

This recursive sequence is simple and easy to calculate and the U. ,
1

i=I,2, ... ,N can be used to isolate the eigenvalues of the matrix C in a

bisection process.

There are two different strategies that can be used here to optimise

one of two factors when calculating the eigenvalues on a computer. The

bisection algorithm as given by Barth et al (1967) and described in

Appendix I can be used. Here the whole sequence is calculated for every

bisection. The sequence given by (6.2.10) can then be calculated in the

order,

Ul
, Xl ' YI (lJWVWVN_l,UN_l) ,

U2 ' V2 , X2 ' Y2 (lJN,VN,VN_I,UN_I) ,

U3 ' V3 ' X3 ' Y3 (UN,VN,VN_I,UN_l) ,

(6.2.11)

U
N

_
3

, VN_3' X
N

_
3

, YN-3, (UN,VN,VN_I,UN_I) ,

U
N

_
2

, V
N

_
2

, YN- 2,

V
N

_
I

, UN_I' VN ' UN

and therefore only eight extra storage locations are required to calculate

the sequence from the given matrix, This procedure is slower than the

procedure described in Chapter 5 where at each stage the sequence is

calculated only as far as is needed for that particular eigenvalue. In

this case the elements of the sequence (6.2.10) are calculated in the

138

following order.

Ul • V2

U2 • V 3

UN_3 • VN_2 •

UN_2•
(6.2.12)

Xl • X2 • X3•• ..•......• XN_3.VN_l·UN_l·

Yl • Y2 • Y3••····•···· ,YN_2,VH'UN•

and therefore a further 2N storage locations in the computer are required

to calculate this sequence from the given matrix.

So that if. for a large matrix. the eigenvalues are to be found the

algorithm can be chosen to minimise storage requirements or time taken

depending on the machine loading. A similar procedure can be adopted

with the periodic tridiagonal matrix described in Chapter 3. The

Meteorological Office at present are using a similar procedure to that

just described. Here they have large numbers of periodic tridiagonal

matrices to solve whilst predicting weather trends. They have two

algorithms available. the one already described by Evans. and one given

by Golub(\'lJ), <l7JJchoose which one to use depending on whether they wish to

minimise space used or time taken.

The two procedures to determine the eigenvalues of the periodic

quindiagonal are given in Appendix 1 in program 15 and 16. The test

results are included in 6.4.

6.3 EIGENVECTORS OF A SYMMETRIC PERIODIC QUINDIAGONAL MATRIX

The eigenvectors of this matrix (6.2.8) can be found using inverse

iteration in a manner that is both efficient and saves storage. The

method is the same as that used for a banded quindiagonal matrix. and a

periodic tridaigonal matrix. and is described briefly here.

139

The matrix, which is stored as three vectors, has the appropriate

eigenvalue subtracted from the diagonal elements and is stored in 12 vectors

to represent the matrix ready for elimination.

v w X y Z Ql Q2 Q3 ... , ... ,
0 ,

U , , , , , , ,
Z "- , ... , ,

.... "-
, ... ,

T , , y "- "- X
"-... ... "- ... W , ... "- (6.3.1)

"- ... ,
'v ... "-...

0
, U ... ,

S- - S ' T
, I

R- - - - - ... - - - - - R Ql Q2 Q3

where, from (6.2.8)

V = C-A

U = W = b

T = X = e

y = Z = Ql = 0 (6.3.2)

SI = Q21 = dl

RI = Q\ = d2

R2 = Q32 = d3

R = S = Q2 = Q3 = 0

Now the first stage of inverse iteration can be performed, that is, the

elimination to upper triangular form.

At the ith stage (say) there are a possible four interchanges of V.
1

with Ui +l , Ti+2' Si' or Ri to choose from or no interchange at all. This

interchange information is stored in the interchange vector in the ith

position with either the row number the ith row is interchanged with or

a zero (no interchange). So that if T. 2 was the element with largest
1+

modulus then the following would be interchanged

V <7 T
i i+2

Wi+l <7 Ui +2

Xi+2 <7 Vi+Z

Yi+3 <7 Wi+3

Z. 4 <7 X. 3
1+ 1+

Qli <7 Ql i +2 '

Q2i <7 Q2i+2 '

Q\ <7 Q\+2 '

and the interchange vector would be set,

le. = i+Z
1

Now the elements Ui+l' Ti+Z' Si' and Ri are to be eliminated. As

an example the element T. Z will be dealt with in detail. First the 1+

elimination factor is calculated (T. Z/V.) and stored in T. 2' Then the
1+ 1 1+

ith row times the elimination factor is subtracted from the remainder of

h . zth t e 1+ row,

Ui +Z = Ui +2-Wi+lTi+Z

Vi+Z = Vi+Z-\+ZTi +Z

Wi+3 = Wi +3-\+3Ti+Z

\+3 = \+3- Zi+4Ti+Z

Ql i +Z = Ql. Z-Ql. T. Z 1+ 1 1+

Q2i+Z = QZi+2-QZiTi+Z

Q3i +Z = Q3. Z-Q3.T. 2
1+ 1 1+

This process is continued until the last seven rows where care has

to be taken over which elements are still present. The~ the eigenvector

is set to alII's and the back substitution takes place. Again care has

to be taken over the initial elements, but if the eigenvector is Q then

at the ith step the back substitution has the form,

140

(6.3.3)

(6.3.4)

(6.3.5)

141

As indicated by Wilkinson (1965), two steps of inverse iteration will u 11j

gain full accuracy provided there is an accurate approximation to an

eigenvalue. So the second step is started, and this time, only the stored

interchanges and elimination factors are used. So that at the ith stage

IC. is equal to i+2 so two elements are interchanged,
1

Qi" Qi +2

and when the elimination is carried out for the i+2th row only,

Again care must be taken with the last stages, but when this has been

completed the back substitution is performed the same as in (6.3.5).

At the end of this ~ contains the desired eigenvector.

The program to perform this algorithm is given in Appendix 1 in

program 17. The results for this and the preceding section are given in

section 6.4.

(6.3.6)

(6.3.7)

It should be noted that l3N extra storage locations are required for

the algorithm, and that due to its complexity no storage savings are made

unless the matrix is large (>30,00). However it is computed in an

efficient fashion with no double indexing and runs efficiently compared

to any other method regardless of the size of the matrix.

~.4 RESULTS

As no useful periodic quindiagonal matrices with known eigenvalues

could be found results were compared with those obtained by a N.A.G.

routine. These are given later, and are found to agree to 10 significant

figures.

First for a number of matrices of different sizes the three variations

of the algorithm (normal, space saving, time saving) were run, on the ICL

1904$, and the times taken compared, the results are given in the following

table (6.4.1).

TI ~IE TAKEN IN SECONDS TO OBTAIN ALL E1GENVA~UF.S

."';r)A'E: SAVINC; T1Mf SAV ING
HATRIX S I :lE, NQR~IAL A~C:()R Il'HN

ALGOR ITHM PROGRAM 15 A tGOR (TIi~1 PROGRAM 16

30)(30 :10 '29 27

5U x 50 92 84 78

80 x !l0 237 'l18 174

!J() x ~O 308 28~ 234

lOO x I ()O 381 ':.\;;1 29G

110 x I I () 46S 427 342-

The normal aJgorirhm Is the blsectl.,,, algorithm of ffdrrh et al. (1967)

coupled with the illefficient :rt"rdge m~th",d cof (6.2..12) for calculating the

Sturm sequet:<;:e of the 1113rr-lx. The sfiace !i~Vill(! algori rhm uses the Sttme

Stur", setluence of the nr"trl~. lJue tCl thl! f.<:t that nQ ""'ay dCC.,sSes are

made the spaCe s~vi"g ~Ill'>r·ithn' is slightly mor<:, "fticien! thall the nO['mal

algorithm. A~ "'all be Secn f"OILl the r~bl .. (6.4 .. r) rh ... rime effki,,"t

algorithm lIIat..es -- saViJlgs in ti"nre I~f 1J1:l t-o 30% on r-hl'l n(trmal algorithm, and

this figure illc..I·e'a~.e$ \'tj th lar~er mdt ri~~s. c,v","n fof'" a v~ry lArge matrix

of size 10001<1000 (say). the total extra SIor8gc f.)r th~ rime efficient algorithm

is 2000 computer words. This is a small enough figul"c cOl1lpared to the core

si ze of most computers to make this the pref'H'l'ed alg(u'i thm in 1I10st

applications.

A test matrix of order 50 is used to illustrate the results and the

resultant cigenvalucs) and eigcllvecturs arc compared with those obtajned

using a N.A.G. library routine. The I ihrary routine used Has F02ABA Hhich

uses a llouseho Iders reJuct i on and QL al gor i thm.

The test JIIatrix has a simple form consisting of all lis for the

diagonal elements, all 2's for the slIh-Jiagonal elements, all l's for the

sub-sub-Jiagonal elements, anJ the three corner elements all O.S. The

matrix is symmetric, alld the 50 eigullva]tlCs arc all cOlltained in the range

(-5~~~7). The ten smallest eigcnvalues are given in tahle (6.4.2) and the

eigenvector corresponJing to the tenth in tahle (6.4.2) ill tahle (6.4.3).

I! IGI:NVAI.III:S-I'HOCHAM 1 b
- '-'---.~ .. ---,---.- "-._._-----_._,---

-1.989932556

-I. aH85b6522

-I. 972S6!H)()

-1.95S7574·10

- 1 .913955008

-1.900012702

-1.856065127

-1.82S81l387S

-1.778871004

-1.737621856

t: I (a 'NV A I.II1:S - 1'D2A BA

··1.989!)32SSS

-1.9H85(,65n

-I. 972569410

-1.95575744()

-1.913!J5500H

-1.90()()1270.!

-1.8560(,5127

-1.825H83875

-1.771l87100·1

-I. 73762185&

143

i
,

; I
EIGENVECTOR ELEMENTS EIGENVALUE ELEME:<ITS

,
EIGENVECTOR ELEMENTS EIGENVECTOR ELEMENTS I I

x1-x25 PROGRAM 16 I ,
x

26
-x

SO
PROGRAM 16 x

26
-x

SO
F02ABA

I

I xi-x25 F02ABA i I
I I

-? -' ;
-2.417438794*10-~ -2.~17438795*10=;

I
9.123624343*10 ; 9.123524342*10 "? :

, I

-3.169860411+10=1 -3.16981 60406*lg~~ I 3.052577011*10-- 3.052577006*10 -
1.~77897989*10=i ,

1.477897991*10- 1 -1.566043062*10_ 1 -1.566043063*10_ 1 I
-1.374037340*10-~ I 2.631330387*10_

1 2.631330388*10_
1 -1.374037339*10 ? I

I 5.090722328*10-~ , 5.090722330*10-~ -1.253817412*10_
1 -1.253817412*10_ 1

, I 2.229621417*10_ 1 2.229621417*10_ 1 9.117364089*10-: 9.117364071*10-: I I -1.169450844*10 _ -1.169450844*10 _ -5.057730172*10-~ -5.057730128*10-~ I

I
-1.738004344*10-: -1.~380043i1*10-: , -1.868700158*10=i -1.868700157*10=i I
2.391203200*10-~ 2.391203237*10-~ i 2.569992520*10 ? I 2.569992520*10 ? I

I
! 1.090361934*10 ~ 1.090361928*10-~ ; -8.344772451*10-' I -8.347724515*10=~ I

9.206764423*10-- 9.206764425*10=i i -1.578145173*10=i i -1.578145174*10_ 1
I I -2.170296771*10=i -2.170296771*10_

1 i 2.170296771*10 ? I 2.170296773*10_, ,
-9.206764421*10-~ -9.206764431*10_; 1.578145173*10_, 1. 578145172*10 ? I I I 8.347724515*10_

1 8.347724523*10=1 I -1.090361936*10-: i -1.090361943*10_3 I
i

? -91?0-19-*10-~ i -2.569992520*10_ 1 -2.569992520*10_
1 -~.~ - ~ ~ ~ i -2.391203031*10 _

I 1. 738004355*10=t i 1.738004237*10=t 1.868700158*10_ 3
1.868700157*10 _

I
5.057730177*10_ 2 5.057730212*10=~ I 1.169450844*10_ 1 I 1.169450844*10_

1 ,
I

I -9.117364090*10 ? -9.117364091*10_; I -2.229621417*10_ 1
, -2.229621416*10_ 1 5.176034959*10-;

I
I

I
5.176034963*10_; 1.246880589*10_1

, 1.246880588*10_1 I
-5.090722328*10=1 -5.090722331*10_

1 1.253817412*10_1 I 1.253817413*10_1 1.374037339*10_
1

1.374037338*10_
1

I
-2.631330387*10_ 1 I -2.631330388*10_ 1 -1.477897989*10_? -1.477897988*10 ? 1.566043062*10_,

,
1.566043062*10 ? I -3.052577012*10_ 1 -3.052577021*10=~

I
3.169860414*10_2

I
3.169860424*10-;

2.417438794*10 2.417438795*10 -9.123624345*10 -9.123524351*10-"

TABLE 6.4.3

145

The resul ts for the two progl'ams are in agreement to at least 10

significant figures for 1II0St values, This test matrix is also centro-

synunetric, which mcans the eigenvector (in this case) is anti-centro-synunetric

Therefore the sum of two elements x. ,x. (where i+J' -1;50) should be Zero.
J J

In this respect the results from program 16 were 1II0re consistent than those

from the N.A,G, routine,

6.5 STLJRM SEQUENCES FOR I'lJHTIIER BANIiED S YS'IH1S

The next mutrix for which the eigcllvalllcs are deterlllined is not one

found commonly ill practice, but the sequellce is given, as it was llsed to

provide a convenient "stepping stulle" to dctcrlllillc the sequence of a more

useful and lIIore Qe1lse matrix ill a latcr section.

The matrix ill question has the forlll:

146

Cl b2 d3 e p , "-
b2 c2 b3

, "- 0
"- ,

"- "- , "-d
3 b3 "- ,

"- "-
"- , "- 0 "-, "- , , , "-, "-

, , , ,
"-

, ,
"- , eN , , , , , , , , , , , , ,

"-, , ,
C = , "- , (6.5.1) , ,

ep
, , "-"- ,

'd
"- 0 , , "- N

"- ,
"-

, ,
"- "-

, , ,
"- ' b "- , , " , N

0
"- , , , ,

, d ' "-, eN N
bN cN

Now in order to determine a Sturm sequence for this matrix the same

procedure as used in previous chapters is carried out. Gaussian elimination

without pivoting is performed, and careful note taken of how each element

is produced then, with judicious relabelling of the elements in the

remaining upper triangular matrix, a matrix of the following form is left,

RI 1 , R2 2 , R3,3 Rp P ,

R2 1 R3 2 Rp P-l R 0
, , 0 , P+l,P

" I "- "-

R3 1 "
,

" "-
" I " , ,

" "-
R~ P " ,

"- "- " , , " I 'RN,p_l ,
"- ... I (6.5.2)

Rp ,2 ...
Rp 1

,

0
... ,

"- RN,3
"- "-...

... RN 2 ...
... ,

... RN,l

Where the R.
1,j

elements are described by the following recursive formula:

RI 1 = cl-A R2 2 = b2 , ,

R2 1 = C2- A- R2 2R2 2/Rl 1 (6.5.3) , , , ,

R. 3 = d. i=3,4, ... ,P-l, 1, 1

R. P = e. i=P,P+l, ... ,N,
1, 1

R. 2 = b.-R. 1 2R. 3/R. 2 1 1, 1 1-, l~ 1- J

,i=3,4, ... P-I,

R. 1 = c.-X-R. 2R. 2/R·_l l-R. 3/Ri_2 1
1, 1 1, 1, 1 J 1.. J

,i=3,4, ... P-l,

i-k+l
R. k =
1, 8 k - .20 Ri,P_jRi_k+l,P+l_k_j/Ri_P+J+l,l

J=

i=P,P+l, .•. ,N, k=P-l,P-2 •.• l,

147

where (6.5.3)

e. if = P
1

d. if = 3
1

b. if = 2
= 1

8. t
1, c. _A ife= 1

i=P,P+l, ... ,N J

1

0 otherwise

The sequence has been programmed in ALGOL 60 and the program is given in

Appendix 1 in program 18. No results are given as the matrix is of no

great practical importance, but the exerci se was carried out to gain

manipulative skills to cope with more difficult banded systems to come.

The next matrix to be considered is one of more practical importance,

and has the form,

cl b2 dp P dp+l,p+l-- - - _dM M , ,
... "- 0 b2 c2 " dp+ 1 ,P dM M-I "-

'-
, "-

"- "- "- " "- "- "- "- ,
" "- " " '- "- " dN M "- "-

" '- "- '-
'- "-

,
'- "- '-

"- '- '-"- "- "- 0 "-
'- " "- '- "- "-

'- "- " I

C '-= '- " "- dN P
dp P " '- "-

,
"- "-, ,

" "- "-

" 0
"- '- "-

d " '- "- "-P+l,P+l " '-

" '- "-,
" " "- "- "-

"- "-'- ... '- , "- " '- "
d "- '- "- "-

M,M " '- " bN "- '- '-
" " "-

"- "- "- "-

0 "-
'd -- dN,p

'- b cN N,M N

(6.5.4)

This is a block banded matrix of semi bandwidth M with a block of

width M-P+l.

Typically, a matrix of the form (6.5.4) can arise when a finite

difference approximation to the second order partial differential equation

of section 5.2 is used. If, instead of the five point formula, the more

accurate nine point formula is used, a matrix similar to (6.5.4) arises

where M-P+l is equal to three.

The computational molecule applied to the grid of figure (5.2.2) to

give the nine point formula is given in figure (6.5.1)

~(x-h,y+h) 4$(x,y+h) $(x+h,y+h)

4$(x-h,y) -20$(x,y) 4 $(x+h,y)

~(x-h,y-h) 4$(x,y-h) $(x+h,y-h)

COMPUTATIONAL MOLECULE FOR 9 POINT FORMULA

FIGURE 6.5.1

148

In the notation of section 5.2 the nine point formula equivalent to

(5.2.lf) can be given as

-($(x+h,y-h)+$(x-h,y-h)+$(x+h,y+h)+$(x-h,y+h)-20(x,y)

+4$(x-h,y)+4$(x+h,y)+4$(x,y+h)+4$(x,y-h)) = A$(X,y) (6.5.4a)

The application of this formula at all the grid points of the system

produces the N (say) simultaneous linear equations which can be written

in matrix form as,

149

Cx = AX

Again the Sturm sequence for the matrix C is found by performing

Gaussian elimination on the matrix (C-AI) without interchanges. Then by

noting how each element was formed in the remaining upper triangular matrix

and by relabelling the elements a matrix is left of the form,

RI 1 R2 2 R R RM M 0 , , P~P pt-l,p+r ,
-... -... 0 -... -... -... -... , , RPI, P-l -... , , , -... , ,

-... , , , -... I "-
RN,M , -... "--... I , -...

'Rp 2
,

-... "--... ,
-... , ,

"--... I

'Rp 1
, ,RN,p+l -... (6.5.5) , -...

"--...
, RN,p , -...

-... -... , I
0

-... -... , -... I
-... ,

, , I ,
RN 2 , , , , ,
RN 1 ,

Where the R elements are obtained by using the following recursive formula,

Rl,l = C I-A
2 ,i=2,3, ... ,P-l, R. 1 = C .-A-b./R. 1 1 1, 1 1 1-,

R. = d. ,i=P,P+l, ... M,
1,i l,i

,i=M,m+l ... ,N, R. M = d. M 1, 1,

R. = 0 1,j
,i<j

i-k+l
R. k = L k 1, 1, I R. . .R. k 1 . k 1 .IR. 1 . 1 1-) 1- - 1- + -))+) =0' ,.

i=P,P+l. .•. M, k=i-l,i-2, ••. 1,

M-k+l
R. k = L k
1, 1, j~O Ri,M_jRi_k+l,M+l_k_j/Ri_M+J+l,l'

L k = 1,

if k=l c i '

bi , if k=2

d. k' if k~P
1,

o otherwise

i=M,H+l, ..• N, k=M-l,M-2, .•. 1,

i=P,P+l, ... N,

(6.5.6)

The R. 1 i=l,N can now be used in a bisection process to isolate the
1,

eigenvalues of matrix C. The algorithm to perform this is given in program

19 in Appendix 1.

There is no associated algorithm given for the eigenvectors of this

matrix. The reason for this is that the complexity of programming the

method to take advantage of the sparsity of the matrix, far outweighs any

gains that may be made. Therefore the method described by M4f"ti" ~t~l. (1972)

is recommended for use in this case. This method is a more general

Inverse Iteration procedure that lo.'ses little when used on matrices of the

type (6.5.4).

Once the recursive sequence (6.5.6) had been found, it was an easy

step to find the sequence for another type of matrix closely related in

structure to (6.5.1) and (6.5.4). This matrix has the form,

"
" ,

"

dp p ,

"

"

" ,

" "
" , " , ,

" ,
... " ...

,

,
" " "

" o

" ,
,

o
dM N

I '
, I

"

, I
, d

l'+l,N

" dp N ,

150

C= I ,
I

, (6.5.7) ...
" ...

,

" ...
,

" o "

" " " ,

o

"
"

" " , ,

"

"­
"

'-
"

,

'eN
" c

N

A typical problem from an engineering application that gives rise to a

matrix of the form (6.5.7) occurs when determining the natural frequencies

of modes of a clamped, square plate. The natural frequencies and modes of

vibration of the clamped elastic plate are obtained from the eigenvalues A

151

and eigenvectors w{x,Y) of,

AW (6.5.8)

where x,y are in R, and

aW
W = ax = 0 (6.5.9)

for X,y on B.

R is the region of the square plate and (6.5.9) defines the boundary

conditions on the boundary (B) for clamping on B.

By setting up a grid across the plate and applying the thirteen point

difference formula approximation to equation (6.5.7) at all the grid points,

a set of N (say) linear homogeneous equations are formed. The computational

molecule for the thirteen point formula is given in figure (6.5.2).

w{x y+2h) ,

-8w{x,y+h)
2w (x-h,y+h) 2w{x+h,y+ h)

w{x - 2h, y) -8w{x-h,h) 20w{x,y) -8w{x+h,y)

w{x+2h,y)

2w (x-h,y-h) -8w{x,y-h) 2w{x+h,y-h)

w{x,y-2h)

FIGURE 6.5.2

152

The equations obtained from the approximation to (6.5.8) can be arranged so

that they can be expressed in matrix form as,

Cw = AW

where C is defined by (6.5.6). The problem is then that of finding the

eigenvalues and eigenvectors of the matrix C.

Again the practical procedure is to reduce the matrix (C-AI) to upper

triangular form by Gaussian elimination without pivoting and a careful note

taken of how the elements in the matrix were formed. The resulting matrix

has the form,

RI,1 R2 2 R3 3 Rp P Rp+ I, !5+1 - - ~,M , , , ... , , "- , 0 , , 0 Rp,P_I
,

"- , ...
"- "- "- "- ,

"- , "- I , "-, ...
I

,
"-

...
"- , "-

RM N "- ... , "- "-
"- ,

Rp' 3
,

I ' ... "-
, "- , I

"-
, "- ... , , R I , "-...

Rp,2 "- "- P+I,N
"- "- ,

... "-... Rp N
Rp 1

... ...
"- ... , , , "- ... , "- "-

"- ,
0

... ... "- I "-
"-

,
I ...

"-
, RN,3 "-

, ,
, ,

RN 2 "- ,
"- ,

RN, I ,

(6.5.10)

where the R elements are defined by the following recursive relationships,

RI I = cI-A ,

R2 2 = b2 ,

R2 I = C2-R2,2R2,2/RI,I ,
R. 3 = e. i=3,4"."P-l)
1, 1

R. = d. i=P ,P+l J" .M, 1,i l,i
(6.5.11)

R. M = d. M i;;:M,M+l, ... ,N,
1, 1,

R. 2 =
1,

R. I =
1,

b.-R·_ l 2R. 3/R'_2 I } 1 1 J 1, 1 , . 4
1=3, ""JP-I,

c.-A-R. 2R. 2/R'_I I-R. 3R. 3/R'_2 1 1 1, 1, 1 J 1, 1, 1 ,

i~k+1

R. k = 8. k - L R. . .R. k 1 IlK JfR. 1 l' 1, 1, j=O 1,1-J 1- + , + -.. J+,

R. k =
1.

8.
1.k

M-k+l
L

j=O

i=P. P+1" ..• M. k=i-1. i-2 •.•• 1.

R. M .R. k 1 M 1 k .fR. M . 1 l' 1, -J 1- + , + - -] 1- +J+ ,

i=M+l.M+2 •....• N. k=M-l.M-2 ••.• l. ,.

153

(6.5.11)

c. if k=l
1

b. if k=2
1

8 = e. if k=3 i,k 1

d. k if HP,
1,

o otherwise

i=P,P+l, ... ,N,

Now the elements R. l' i=l,N can be used in a bisection process to
1,

isolate the eigenva1ues of matrix C. The program to perform this algorithm

is given in Appendix 1 in program 20.

6.6 TilE DETERMINATION OF THE STURM SEQUENCE FOR A SYMMETRIC BANDED MATRIX

AND THE ROUNDING ERROR ANALYSIS

The symmetric band matrix C with semi-bandwidth P is defined by,

c1 • l Cl 2 Cl 3 Cl 4 - - - - - - c1 ,P • • ,
c2 1 c2 2 c2 3 c2 4 - - - -- -- c2 P c2,P+l 0 , • , , •
c3 1 c3 2 c3 3 c3 4 - - - - - - c3 , P c c3,P+2 , , , 3,P+l - , , , ,

....
.... , , , , cN_P+1,N

c= I ,
cr 1

, I , , , , , I

0 cN_l,N
.... , ,

C - -
N,N-P+l - - - - - - - - - cN,N_l - CN,N

(6.6.

154

Now by performing Gaussian elimination on the matrix (C-AI) without

pivoting, and by relabelling elements as described in detail in Chapter 5

the matrix R is produced,

Rl,l R2 2 R3 3 - - - - - - - _ Rp ,P , ,

R2 1 R3 2 R -- - - - Rp,P_l R , , 4,3 P+l,P

R P+1,P R3 1 R4 2 - - - R , , P+l,P-l , "- "- '-
"- "- "- " "- "- , " , "-

"- " "-
" "-,

"-, , ,
"-

"- "-
"- ,

"-
R ~ "-

"-
"- "-.... "-

"- ,

"-
"-

"- "-0 " "-
"-

"- "-
"- "-

,
"-

"-

Where the R. k' i~k ... N, k~l,P are defined by the following recursive
1,

formula,

R. k(A) ~
1,

C. . -
1-k+l,1

R. k(A) ~ c. k 1 .
1, 1-+,1

i-k-l
~ R. . . R. k 1 . 1 k ./R. 1 1 j~ 1,1-J 1- + ,1+ - -J J+,

i~l, ... P-l, k~l, ... i

P-k-l

j~O Ri,P_jRi_k+l,P+l_k_j/Ri_P+j+l,l

i~P, ..• ,N, k~l, ..• P

The R. l(A), i~1,2, ... N elements represent the ratios of the leading
1,

principal minors of the matrix (C-AI) and can now be used in a

bisection process to eliminate the eigenvalues of C.

0

"

"-

"-

This method applied to this type of matrix is not competitive with

other methods in finding eigenvalues quickly, and is not recommended as

a useful method. However it is the most general form of a band matrix

RN P ,

RN,p_l

I
RN,2

RN 1 ,

(6.6.2)

(6.6.3)

(6.6.4)

and is used to illustrate the rounding error analysis, which can then be

applied to the other types of band matrix.

In the analysis the notation of Wilkinson (1963) will be used,

-t replacing 2 by €. There are two cases to consider in the calculation of

a R. k and the zero in the symmetrically opposite position, for i~P and
1,

i<P. Both cases are very similar and the case for i~P (equation 6.6.4) is

described.

The calculation of R. k is done in P-k steps:
1,

R(O)
i,k = ci_k+l,i

R(1) = R(O)
Ri,pRi_k+l,P_k+l/Ri_P+l,l i,k i,k

R (2) = R (1)

+ € (1)
i,k

(2)

1 5~

i ,k i, k - Ri ,p_IRi_k+l,P_k/ Ri_P+2,1 + €. k 1, (6.6.5)

R. k 1,
= R (P-k-l) -R R /R (P-k-l)

i,k i,k+l i-k+l,2 i-k,l + €i,k

(j)
Where all R. k,R. P .,R. kiP 1 k .,R. P . 1 1

1, 1, -] 1- + , + - ... J 1- +J+ ,

and €~jk) is the difference between the accepted
1,

refer to computed values,

R~j) and the exact value
1,k

which could be obtained using the computed values. Summing the equations

(6.6.5) gives:

P-k-l
R. k 1,

= c -i-k+l,i I
j=O

R. P .R. kIP 1 k ./R. P . 1 1 + €. k (6.6.6) 1, -] 1- + , + - -] 1- +J+ , 1,

where,
(1)

€. k 1,
+

(2)
€. k 1,

(P-k-l)
+ +€. k

1,

The production of a zero in the symmetrically opposite position to R. k
1,

(6.6.7)

takes place in the same manner, except that when R. k is obtained in that
1,

position it is set identically to zero. This is equivalent to performing

the exact operation, and no error is involved. However this still produces r.I"s

in the modification of that row, due to the fact that R. P .fR. P . 1 1
1, -] 1- +J+ ,

will have a rounding error. This means that the error in producing a zero

involves the extra term,

(P-k) ° = R. k - R. kR. k 1 l/R. k 1 1 + . k 1, 1, 1 .. +, 1- + J 1,

which is added to (6.6.5). Then the error in that position becolnes,

~, = ~(1) + ~(2) + + (P-k)
I;.i,k ~i,k ~i,k ... , ... Ei,k

Calculating R(j+1) (say) from (6.6.5) in floating point arithmetic
i,k

produces,

R (j+1)
i,k

= f" (R (. j) R R /R)
~ 1,k - i,P-j i-k+1,P+1-k-j i-P+j+1,1 '

156

(6.6.8)

(6.6.9)

(6.6.10)

R (j+1)
i,k R. P .R. k 1 P 1 k ./R. P . 1 1(1+E2) (l+E 3)) (1+E1),

1, -] 1- + , + - -] 1- +J+ ,

(6.6.11)

from which can be deduced:

where

If

and

and then

R. P .R. k 1 P 1 k .fR. P . 1 1 1, -J 1- + , + - -J 1- +J+ ,

ER, < E, R,=1,2,3.

R = max I R~j) I
i,k l,k

j=O,l, ..• P-k-1

. .
IR. k I R = max

i,k 1,

. ~

g = max (R, R)

(J') (J'+l) -1 -1)-1 = (R. -R. (l+E)) (l+E) (l+E 1,k l,k 1 2 J

(6.6.12)

(6.6.13)

(6.6.14)

From (6.6.5) it can be seen that,

I
j+11 _ I (j+1) (j) I

E. k - R. k -R. k+R. P .R. k 1 P 1 k .fR. P . 1 1 1, 1, 1, 1, -] 1- + , + - -J 1- +J+ ,
(6.6.15)

and substituting in (6.6.13) using equation (6.6.10) gives,

< 5.01 eg • (6.6.16)

Prom (6.6.7) it can be seen that,

E. k < 5.01 Eg(P-k)
1,

while i=1,2, .•• N and k=P,P-l, ..• l, or k=i,i-l, ... l,

and from (6.6.9) it can be seen that,

E' < 5.01 Eg (P-k+l)
i,k

while i=2,3, ... N and k=P,P-l, ...• ,l or k=i,i-l, ... ,l

15'1

)
(6.6.17)

(6.6.18)

Therefore the R. k are calculated exactly for the matrix C+F where the matrix
1,

F is defined by,

El,l E2 2 E3 3 - - - - - - - - - - Ep P , , ,
I

E2 1 E3 2 - Ep+ 1, P 0 E2 2 - - - - - - - -- - -, , , , ,
ES,3 ES 2 E3 1 "- , ,

"-, , "- ,
'- '- "- ,

" "- '- ,
"-

" " '- "-

" "
,

'- " '- '-

"- '- "- '-

"- "- " "- "- EN,P "- '- '-
F = '- '- " r

'- "- '-

" "- "- I

" '- '-
I '- "- ,

EP,P "- "- '-
"-

'-

'- , '-
E' , "-
P+l,P "-

, , , ,
E' '- " '- "- , '- EN 2 '- '-

'- " '-
,

0 '- '- " '- '- '-

EN,p - - - - - - '-
EN 2 EN,l ,

(6.6.19)

Substituting equations (6.6.17) and (6.6.18) it follows for the matrix F

that,

15u

0 0 0_ - - - - - - _. 0

1 1 1- - - - - - - -1 0
"- 0 1 2 2- "- 2 1 0 - -,

"
... ,

" "- , , , "- "- "- , "- "-
"- ,

"- "- , , , , ,
" "- , , ,

"
,

"-, , , , , , , , , P P-l P-2 - - - - - 1 , 0 , ,
"-

P P P-l ;::- - - - - - -'·2 1
"-

IFI~5.01£g P-l P "-,
"- "-

1 2 3 , "-
, , "- ,

2
.... P-l "-

, "-1 ,
.... , , ,

"- , "- "- , ,
1 , ,

"- , ,
"- I "- ,

"- 3 ... ,
"- , "- "- , , , , "- , ,

.... "- , , , I
"- "-

, , ...
0

"- , 2 3 ... "- P P-l "-
"- ,

"- , ,
"- 1 2 - - - - - - - P-l P P

(6.6.20)

The error matrix defined by (6.6.20) is an upper bound only, and in

practice, is seldom achieved. The form of the error matrix is different

for the various types of band matrix. For example the error matrix for

a (14x14) sparse quindiagonal matrix of semi bandwidth 7 of the same

form as (5.2.1) has the form

159

0 0 0

1 1 0 0 1 0
0

1 1 0 1 1 0

1 1 0 1 1 1 0

1 1 0 1 1 1 1 0
0

1 1 1 1 1 1 1 0

F~5.0l Eg 1 2 2 2 2 2 6 5 4 3 2 1 0 (6.6.2l)

1 2 2 2 2 6 6 5 4 3 2 1 0

1 2 2 2 5 6 6 5 4 3 2 1

1 2 2 4 5 6 6 5 4 3 2

1 2 3 4 5 6 6 5 4 3

1 2 3 4 5 6 6 5 4

0 1 2 3 4 5 6 6 5

1 2 3 4 5 6 6

Similarly the bounds on rounding errors can be defined for any of

the sparse matrices given in previous chapters.

160

CHAPTER 7

FURTHER RELATED TOPICS

7. 1 I NTRODUCTI ON

In this Chapter is described two pieces of work, that, although

complete in themselves indicate areas for further research.

The first section details a method for finding the eigenvalues of a

symmetric matrix in ascending or descending order of magnitude, starting

from the smallest or largest eigenvalue. This method is then speeded up

considerably by the use of Partial Sturm sequences, thus saving the time

used in the heavy workload of calculating the full sequence for every

iteration.

The subsequent sections describe a modification to the Lanczos

method which attempts to extend the range of the method. The Lanczos

algorithm transforms a given matrix to tridiagonal form by a similarity

transformation and finds the eigenvalues of this matrix. This method

suffers from loss in accuracy at the later stages of the transformation

on large matrices giving inaccurate eigenvalues. The modified method

described tries to counteract the loss in accuracy by transforming the

original matrix to a banded matrix, for which the Sturm sequence is now

known, instead of to a strictly tridiagonal form. Hence the eigenvalues

can be determined to a greater accuracy. Also offered are some ideas for

extending the usefulness of the method.

7.2 A METHOD FOR UTILISING PARTIAL STURM SEQUENCES TO FIND TIlE EIGENVALUES

OF A SYMMETRIC MATRIX

The method described here is used to determine the eigenvalues of

symmetric sparse quindiagonal matrices of the same form as 5.2.1 by using

the secant method to find the zeroes of the determinental equation

161

Ic - HI = 0 . (7.2.1)

If PN(A) is the determinant of the matrix (CN-AI) and Ai-I,Ai are two

approximations to an eigenvalue then the secant method gives an improved

approximation to the eigenvalue

i+l i
A = A -

(Ai+l) as,

(Ai_Ai-l)p (Ai)
N

162

(7.2.2)

The recursive sequence obtained in section (5.2) for a symmetric sparse

quindiagonal matrix gives the relationship

R. 1(1.) = P. (A)/P. 1(1.), i=l. N
1, 1 1-

The function RN,l(A) therefore has the same zeroes as PN(A) and can be

substituted in (7.2.2) to give,

(Ai_Ai-l)R (Ai)
Ai _ _ __ ,---.:.:N,,-,~l_-:r-;­

i i-I
(RN,l(A)-RN,l (A))

If (7.2.2) is multiplied by PN_l(Ai)/PN_l(Ai) it becomes,

Now substituting in equation (7.2.5) using (7.2.3) gives the result

It can be seen that equations (7.2.6) and (7.2.4) differ only

(7.2.3)

(7.2.4)

(7.2.5)

(7.2.6)

slightly. Obviously both equations converge to zeroes of the determinant

of (C-AI), but the convergence rates of the two equations are possibly

different.

Certainly it can be seen that close to an eigenvalue after a number

of iterations the value of

£ = (7.2.7)

i-I i will be very small, and therefore the values of PN_l(A) and PN_l(A)

i-I i will be very close. Therefore the factor PN- l (A)/PN- l (A) will be

very close to unity. This implies that when a value of Ai, which, is a

close approximation to an eigenvalue, has been attained, that equations

(7.2.4) and (7.2.6) have close numerical values and, therefore, the same

rates of convergence.

This leaves the question of what effect does the factor P (A i - l)/
N-l

PN_l(Ai) have on the convergence of the method when Ai is not close to an

eigenvalue and equation (7.2.4) is used?

The results of a number of tests under varying conditions indicate

that there is negligible difference in timing on a computer between using

equa tion (7.2.4) and (7.2.6) to find the eigenval ues of a matrix with the

secant method. It is these results that lead to the formulation of the

new sparse secant method. The proof that the two different secant formulae

((7.2.6) and (7.2.4)) converge· at very similar rates cannot yet be given.

It is intuitively obvious that the convergence rates will be similar, but

a further suggestion is given and looked at from a practical viewpoint.

It depends entirely on the starting criteria (which are essentially

i+l . i i-I chosen at random) what the value~f A is, gIven A ,A If there are

i 1 i+l large distances between the values A - to A any number of eigenvalues

could be contained in this range. Thus the method will converge very

1 1 '1' i+l. f d 1 . 1 h . s ow y untl a A IS oun c ose to an elgenva ue, w en convergence IS

rapid. i-I i
So that during this process the ratio PN_l(A)/PN_l(A) being

far removed from 1 does little to slow down a comparatively very slow

i+l process, and perhaps even fortuitously places A close to an eigenvalue

thus shortening the search.

It is this apparent leeway, in the early stages of the method at

least, that gave the idea of using a Sturm sequence that was not wholly

complete, but simple to calculate, until the proximity of an eigenvalue

was achieved. At this point the iteration could be switched to use the

correct Sturm sequence to obtain the eigenvalue accurately.

163

164

A similar process has already been developed by Evans to solve sets

of linear equations which give rise to sparse banded diagonally dominant

matrices. If Gaussian elimination is performed on these matrices no

interchanges occur. The new elements that are created rapidly diminish

to zero along the bands approaching the main diagonal. This is illustrated

for a matrix of the same form as (5.2.2),

(7.2.8)

After Gaussian elimination it has the form,

o
(7.2.9)

o

As the elements in the bands closer to the main diagonal diminish

to almost zero they can be neglected and not even calculated. The

number of bands to be kept to maintain accuracy varies, but is less

than 5, and the resultant matrix has the form,

(7.2.10)

o

where r<s.

This process is used in solving sets of linear equations and the

backward and forward substitutions (say) through a matrix of the same

form as (7.2.10) are quicker than through a matrix of the same form as

(7.2.9). However both types of matrix produce answers to the same

accuracy.

It was then considered that if the method described in section (5.2)

was used here (i.e., Gaussian elimination without interchanges even on

non-diagonally dominant matrices) some terms could be neglected to speed

up the calculation of RN,l(A). The matrix that is produced by the method

from section (5.2) is,

RI 1 R2 2 Rp P , , , ,

R2 1 R3 2 Rp,P_l
,

0 "-, , "-

0
,

I "- "-
R3 1 " "-, " "-... ...

, "- , ,

"-
"-

"-, "-
"- RN P

"-
,

"

165

Rp 2
C = , , - (7.2.11)

,
RN,p_l ,

"
Rp,l "

0 "-... "-

I

.... , ... ,
" , , ,

If say only FS of the bands were calculated the matrix would have the form,

Rl,l R2 2 , Rp P ,

R2 1 R3 2 0 R , R 0 , , :P,P-l P+ 1 JP ,
"- "-

R3 1 "- , ,
, R , ... ,

"- P,P-FS , "-
,

.... ... "- "- ' RN,p
.... , ... ,

.... 'R "- "- (7.2.12; C =N,P-l

" 0 ,
" "-

,
....

"- "- 'RN,p_FS "-

0
... ,

"-... "-
" "-"- '-RN,2 -,

'RN,l

There are obvious savings in time made possible in (7.2.12) by

calculating fewer terms. but it is quite obvious that RN 1 is inaccurate
•

unless the matrix is diagonally dominant. As the R. l' i=P.P+I •.•• N are
1.

also not accurate bisection cannot be used. This is because one wrong

decision during the bisection process due to an incorrect R. 1 will
1.

prevent even a close approximation being obtained to an eigenvalue.

This is why the secant method is used.

The elements of the matrix (7.2.12) are obtained by the method

presented in section (5.2) and are defined by the following recursive

formula

RI 1 = Cl-A, ,
R. 2 = b. i=2.3, P,
1. 1

R. 1 = C.-A-R. 2R. /R. 1 I' i=2,3, ••••.. P-I,
1, 1 1, 1, 1-,

R. P = d. i=P,P+I, N,
1, 1

R. k = -Ri ,k+I Ri_P+2,2fRi_P+I,l 1,

FS+l-k
-(if i-k+l>-P: j~O Ri,P_jRi_k+I,P+I_k_jfRi_P+j+l.i) ,

166

k=P-I,P-2, P-FS, (7.2.13)

R. 2 =
1,

i=P,P+I,•.• N

b.-
1

FS-I
L

j=O
R. P .R. 1 P 1 .fR. P . 1 1 1, -J 1- , - -J 1- +J+ ,

i=P+I,P+2 ••.••.... N,

FS
R. 1 = C. -A-R. 2R. 2fR . 1 1 - L R. P .R. P .fR. P . 1 l'

1,. 1 1, 1, 1-, j =0 1, - J l, - J 1. + + J + ,

i=P,P+I, .•..••.... N .

This sequence was programmed and compared to the full sequence (5.2.22)

for large numbers of different matrices with FS varying over the whole

possible range (i.e. 2,3, •.. P-3). The comparisons showed that no strong

pattern could be established for the two sequences, no matter how many

terms were kept. The only factor noticed was that occasionally the values

of the R .. of the partial sequence followed quite closely in sign and
1,)

magnitude those of the full sequence. Although no doubt a detailed

statistical analysis of the two sequences will show a strong correlation.

It was thought therefore that approximations to eigenvalues could be

obtained for little expenditure of time using the partial sequence. Then

at some stage later the full Sturm sequence could be used to obtain the

eigenvalue correctly. The next step was to find the optimum number of

bands to keep (i.e. the size of FS) and the optimum number of iterations

to use the partial Sturm sequence on before switching to the full sequence,

but first the procedure adopted is described.

The secant method as described by Anderson (1975) is used. First,

if say j eigenvalues have been found the matrix must be deflated to avoid

re-determining known eigenvalues. This is achieved by dividing RN 1 by ,
the sum of the differences of the j known eigenvalues from the current

estimate of the j+lth eigenvalue, i.e.

167

(7.2.14)

Unfortunately this function has an asymptote on the A axis. To avoid

the method following the asymptote and not converging the numerator is

replaced and (7.2.14) becomes,

RN lRN_l l·· .. · .. ·RN_· / f (A~ l-Ak) ,
"), k=l)+

(7.2.15)

which, after simple algebraic manipulation, can be written

i
(A. l-Ak) PN . 1

)+ -)-
(7.2.16)

This does not alter earlier statements concerning convergence of the

secant method, which were illustrated for the simplest case when no

eigenvalue had yet been determined. Function (7.2.15) is more complex

than (7.2.4) and alters the factor which distinguishes it from (7.2.6)

but in no way alters the analysis or suggestion given.

Anderson (1975) has shown that the eigenvalues of a real symmetric

matrix can be obtained in mono tonic ascending or descending order using

the secant method. The initial two guesses at an eigenvalue are chosen

outside the eigenvalue range, which is determined using Gerschgorin's

theorem. The secant method then converges to the largest (smallest)

eigenvalue. If the matrix is deflated, and the next two initial

approximations to an eigenvalue are made larger (smaller) than the last

determined eigenvalue, then the method converges to the largest (smallest)

unknown eigenvalue.

The procedure just described was programmed in ALGOL 60 and is given

in Appendix 1 in program 21.

The results for this program are summarised in the graph (7.2.17).

Each line represents a different value of FS, or the number of bands

retained, and the variable factor is the number of times the partial

Sturm sequence is used before reverting to the full Sturm sequence. The

results are given as a percentage of the time taken to obtain the results

if a full Sturm sequence only was used. The results were obtained for

a large number of matrices of different sizes with varying bandwidth.

Also varying numbers of eigenvalues were obtained on each occasion,

either all, or some of the largest or smallest.

During the large number of tests it was discovered that if the

partial sequence was used for more than eight iterations the method did

not always determine the eigenvalues in monotonic sequence, and sometimes

converged to spurious ones. For this reason the results are only given

as far as eight iterations with the partial Sturm sequence.

However the graph indicates that no matter how many terms are kept

or for how many attempts, that some improvement in time taken is gained.

The results also show that the·number of terms kept makes little

difference to the time saved. The saving seems to be approximately 20%,

and the method is more stable keeping as many terms as possible. When

more bands .then half the semi-bandwidth are kept (P/2) the time saving

168

100

90

%
rime

raken

80

1 2

GRAPH 7.2.17

FS=' ~

FS='/p - ------

FS= 3 -----

FS:; 1 -_.- ...

3 4
Usage of J:'SS

169

, , ,
5 6 7 8

deteriorates, but as many as possible should be kept to ensure that the

eigenvalues are determined in the correct order. It is therefore

recommended that the number of bands kept be set to half the semi-bandwidth,

and the partial sequence be used for eight iterations before reverting to

the full sequence.

170

This method requires further research to fully exploit the possibilites.

For example the number of iterations with the partial Sturm sequence can be

extended past eight. On the occasions when the correct eigenvalues were

obtained in correct sequence, savings of 40% and over were made. Obviously

if only the largest 10% (say) of eigenvalues are required then the method

is not effective unless it can guarantee the required eigenvalues. However

it may be possible to extend the method and reap the benefits. There is

also the possibility of using a similar procedure on other types of matrix,

or in conjunction with other root finding methods such as Newton-Raphson

or even Muller's method.

It is clear, however, that the method in its present form does

represent an advance. For example, the method can rival that of bisection.

On the occasions where it was considered most efficient to use bisection

to find several of the largest or smallest eigenvalues of a symmetric

matrix the partial secant method can be used with large savings in time.

Similar procedures to those adopted in (7.2) were applied to the

method of inverse iteration used on sparse quindiagonal matrices of the

same form as (5.2.1). After considerable programming effort a program

was produced that retained only several bands during the elimination or

forward substitution stage, despite the difficulties caused by inter­

changing rows. This program, when test run, confirmed the fact that the

method was impracticable. This was mainly because the method was so

quick compared to finding the eigenvalues (say), that the effort involved

and the space taken with program steps reduced savings to a small per­

centage (less than 1%). So that the normal inverse iteration procedure

.is preferred for finding eigenvec':ors.

7.3 A. MODIFIED LANCZOS METIIOD TO DETERMINE 11IE EIGE!\'l(' :"'J,',: 'j" .1

QUINDIAGONAL MATRIX

The Lanczos transformation provides an -efficient 'i1l~rf"'" fOT d.!'te~'~~·l;.,!g

the eigenvalues and eigenvectors of a smal] "Iatrix. ·Tt.d·; werK .. ··~ovide$· ',o'ns

modifications to the method enabling it to b'J used on ',"'ger '~3":':' . es To

best illustrate the methods used they are only discuss.:c fol' <::le .,'1I\p: .,,;';

case i.e. the real symmetric matrix. The ex';ension tc .~.,::, .. " cl,f'tlcuit tll'c';

of matrix is an easy step conceptually, but entails mc~"~ wor'- wh Ich .,'. '0" <:,

to hide the ideas being presented. The transformatior ':CI" ':'·'.,.J",I,ololn ~

certain conditions and steps taken to recover it. Ag<.'.n ~.hc·S) .He 1\"

discussed as they have already been widely investigate(:1.1'''': """,,' -no fllrl heT

mention here.

The method has been tested on and is essentiall y int"n<A,,; I· 'Y' t.\S e 0,
matrices that are already sparse. This is to prov;,de " .",; .. -:k.

transformation to a matrix with a more simple Sturm :".

solution. The method can equally well be applied to .' J. '.)'IIQC'(I x, t;, ... ,

it is doubtful that a solution can be obtained quich,l L' n::;,", ,u<.l,,.."te~y

than the QR or LR methods for this type of matrix. Onc of th'! oIesl .-eo\

features of the method is that no matrix multiplications are nec·,·'·oI 1,1

the transformation, and thus, if the matrix can be stored in a; ... 11

number of vectors considerable savings in space are mace when tll(' rI'1 .. tho~

is programmed on a computer. This is "hy it is believed the meth ... is

most competitive when used on a sparse matrix.

For a detailed analysis of the Lanczos method see Lanczos (l"a.'3),

Wilkinson (1959), Causey and Gregory (1961), Paige (1971, 1972).

The Lanczos method is briefly described for the transformatj"

symmetric matrix.

If A is the (NxN) matrix to be transformed, then an arbitrary N-

vector, ~l' is chosen (usually ~l=(l,O,O""O)). Then the vector ~2

is determined from the following relationships,

where,

a = 1

and normalising leaves the vector b2.

The remaining sequence of vectors, bi , i=3,4, ... N+l are now found

using the following relationships,

~i+l~i+l = Ab. - a.b. - ~. b. 1 i=2,3, .•. N
-1 1-1 1-1-

where,

} a. = b.Ab.
1 -1 -1

and ~i = ~i_lA~i

As each of the ~.b., i=2,3, ..• N is determined it is normalised leaving
1-1

172

(7.3.1)

(7.3.2)

(7.3.3)

the vector b .• The vectors b. are also orthogonal (Wilkinson (1959)) and
--1. -1

assuming none of these vectors is zero, then ~+l must equal zero as it

is orthogonal to N non-zero N-vectors. The relationships given by

(7.3.1-3) can be written in matrix form as,

a l ~2

~2 a 2 ~3 0
, ,

~3 " ' , ' , , , , ,
o

,
,
,

, , , , , , ,
~N

~N

aN

If the matrix B is the matrix with the b. as its columns the (7.3.4) is
1

written

(7.3.4)

173

"'1 a2

a2 "'2 a3 0 "- "-
.... "-

"- "-a3 C (7.3.5) = , "-
"- aN " ..

o

Therefore C is a matrix produced by a similarity transform on A, and C

and A have the same eigenvalues. Also if x is an eigenvector of C then

Bx is an eigenvector of A. The matrix A has now been transformed to a

symmetric tridiagonal matrix from which the eigenvalues and eigenvectors

can be quickly and easily found using the bisection method and inverse

iteration.

The main problem caused by this method when used on a computer is

the effect due to rounding errors. In the later stages of the process a

calculated bi may be orthogonal to the previous vectors (~i-l'~i-2)' but

it is no longer orthogonal to ~l' ~2' ~3' A good check on this is that

EN+l which should be zero, often has appreciable length. This fault has

been partially overcome by the introduction of re-orthogonalisation.

This is a process by which the current b. being calculated is made
1

orthogonal to all the previously calculated vectors. This vector should

already be orthogonal to the previous vectors, but has 'drifted away'

due to rounding errors, hence, re-orthogonalisation. It is easily

described by the relationship used to obtain b. l' which is,
-1+

where

_b
1
'+1 = Ab. + ",.b. - a.b. 1 -1 1-1 1-1-

i-2
I

j=l

= b.Ah. ,
-1 -1

= b. lAb.
-1- -1

E:. • 1 . b.
1,1+ -)-)

, i=2, ... ,N,

J= 1 , 2, ••• ,i - 2 •

(7.3.6)

174

As the vector will be orthogonal to the previous two or three vectors

the corrections needed to re.orthogonalise will only be small. The matrix

C then becomes,

1 <X2 tl3 e4,3 eS,4 - - - - - - eN N-l ,
I

1 <X3 tl4 eS 3 t , ,
" "

,
" t

" " " " ,
" " "- " " " " " " " " c = "- " "- " (7.3.7)

"-"- " "
" " " " , "- "- eN 3

" "
,

0 ,
" " " " tlN
" " " " 1 <XN

This matrix C, produces more accurate answers, but it is much more

difficul t to obtain eigenvalues from this matrix than from the tridiagonal

matrix (7.3.6).

Some method was desired to retain the orthogonality of the vectors

b., i=1,2 •••. N without completely filling in the upper triangle. A
-1

compromise solution was proposed so that as each b. i=1,2, •••.• ,N was
-1

produced, not only was it made orthogonal to the previous two vectors,

but also it was made orthogonal to one other vector (~). This, it was

hoped, would substantially reduce the effect of rounding errors by

'pinning' every vector to one of the original pair. The method is as

follows.

Two initial vectors were chosen, normalised and mutually orthogonal.

Typically they were,

£.1 = (1,0,0 ..•... 0) }
~ = (0,0,0 •...•. 1)

(7.3.8)

Then £.2 is defined by the equation

tl 2£.2 = A£.l - <Xl£.l - tll~ (7.3.9)

175

where
= a l E.l A£.l } (7.3.10)

SI = ~A£.l

Now when S2E.2 is normalised this effectively removes the factor 82 leaving

the vector £'2.

The vectors b .• i=3.4 •.•. N+l are now determined by the following
-1

relationships.

where.

a. =
1

Si =

Yi =

= Ab.
-1

b.Ab.
-1 -1

b. lAb.
-1- -1

~b. -1

a.b. - S.b. 1
1-1 1-1-

again 8i +l is normalised to remove the factor 8i +l .

(7.3.11)

If B is the matrix with the vectors b .• i=I •••. N as its columns the
-1

transformations can be written as.

a l 82 SI

S2 a2 S3 Y2

S3 a3
"- 0 Y3 ,

"- " I "- " "- "- ,
"- " ,

B-IAB "- " = " , "- = C (7.3.12)
"- , "-

"- "- "
0 " "- " I

" "-
,

SN "- "-, , ,
SI Y2 Y3 - - - - - - - SN aN

The matrix C is not periodic tridiagonal. but the Sturm sequence is very

similar to that given in Chapter 3. The methods described there can be

used to find the eigenvalues of the matrix C efficiently using the

bisection method. and also the eigenvectors using inverse iteration.

The Sturm sequence for the matrix C in (7.3.12) is

176

5 1 (1.) = SI

2
q.(A) = ".-A-S./q. 1(1.), i=2,3,,,.N-l,

1 1. 1. 1-

S.(A) = y.-S. l(A)S./q. 1(1.), i=2,3, ... N-2,
1 1 1- 1 1-

(7.3.13)

SN_l(A) = SN- SN_2(A)SN_l/qN_2(A)

N-l 2()/ L Si A qi (A)
i=l

the q. (A) then being used in the bisection process.
1

The program to carry out this method was written in ALGOL 68 and is

given in Appendix 1 in program 22.

The results show that this method does give some improvement in the

maintenance of the orthogonality of the vectors b., i=l, ••. N thus
-1

improving the results. Typically, with a matrix of order 25 where the

answers for the normal Lanczos method are beginning to deteriorate one

more figure of accuracy is retained by the modified method. The time

taken to perform the transformation for the modified method is not

significantly different to that taken for the normal Lanczos algorithm.

The bisection algorithm for the modified matrix requires approximately

10% more time than for a tridiagonal matrix.

This method, while not by any means producing a completely

satisfactory improvement in performance, does represent a different way

of looking at the Lanczos algorithm. If similar methods are pursued

further a'Tl improved algorithm may be '~ .. v",loped." ' ..

177

REFERENCES

178

ANDERSON N,. (1975). ('On aomputing eigenva~ues of matI'iaes with I'eal

eigenvalues by the seaand method".

Royal Inst. Tech. Stockholm, Report, TRITA-NA-7513.

ANDRES T., 1I0SKINS W. D., McMASTER G. E., (1974), "A aoupled algoI'ithm foI'

the soZution of tI'idiagonal systems".

Comp.J., Vo1.l7, No.4. P.377.

ANDREW A.L., (1973), "The solution of equations involving aentI'o-syrrmetI'ia

matI'iaes ".

Technometrics, Vol. 15 • No. 2. P. !t05.

BARLOW R.II., (1977a), "PeI'formance of a dual pI'oaessoI' paraUel pI'oaessing

system".

Loughborough Univ. of Tech. Dept. Comp.Studies, Report 43.

BARLOW R.II., (1977b), "Parallel algoI'ithms foI' sOI'ting. quadmtuI'e. and

eigenvalue deteI'mination".

Loughborough Univ. of Tech. Dept. Comp.Studies, Report 44.

BARTII W., MARTIN R. S., WILKINSON J .11., (1967), "Calaulation of the eigen-

values of a syrrmetI'ia tI'idiagonal matI'ix by the method of biseation".

Numerische M. Vol.9. p. %'6.

tI

BJORCK A., GOLUB G.H., (1975), "EigenpI'oblems foI' matI'iaes assoaiated with

peI'iodia boundaI'Y aondi tions "

Linkoping University Report LIH-MAT-R-1974-B.

BOIITE Z" (1974), IIErrors in Gauilsian EHmination"

Publications of the Dept. of Maths. Univ, of Ljubljana, NO,6.

BOIITE Z., (1975), "Bounds for rounding errors in GauBsian elimination for

band systems",

J.lnst.Maths.Applics., VOl.16, No.2. P.13'3.

BUSINGER P.A., (1971), "Monitoring the numericaL stability of Gaussian

elimination"

Numerische Math. Vol.16. P. 31,0.

CHOW T.S., KOWALK J.S., (1973), "Sparse matrix probLems"

Internat.J .Numer.Methods Eng., Vol. 7. P. 2.11.

CLASEN R.J., (1966), "Techniques for automatic toLerance controL in linea!'

programming"

Comm.A.C.M., Vo1.9. P.90..1.

ERISMAN A., (1973), HStabiLity of triangular factorisation of a sparse

matrix"

Numerische Math., Vo1.22. P. 1S'3.

EVANS D.J., ATKINSON L.V., (1970), "An algorithm for the soLution of

generaL three term lineal' systems",

Computer J., Vol.l3, No.3. P. '32.3.

EVANS D.J., (1971), "NumericaL soLution of the Stum-LoiuviZLe problem

with periodic boundary conditions"

Conf. on Applies. of Num.Anal., Springer Verlag.

179

EVANS D,J" (1973), '~n algorithm f~r the solution of ~ertain systems of

linear equations".

computer J" Vol.1S, No.4. P. 356 .

. EVANS D.J., (1974), "Software for numerical mathematics conference

proceedings"

Academic Press.

EVANS D.J., (1975), I~ recursive algorithm for determining the eigenvalues

of a quindiagonal matrix",

Computer J., Vol.18, No.l. P. 70.

EVANS D.J., HATZOPOULOS M., (1976), "The solution of certain banded systems

of linear equations using the folding algorithm",

Computer J., Vol.19, No.2. P. Ig4-.

FORSYTHE G.E., MOLER C.B., (1967), "Computer solution of linear algebraic

systems"

Prentice /la1l.

GOLUB G.H., ROBERTSON T.N., (.1967), "A generalised BairstoUJ algorithm",

Comm.A.C.M., Vol.lO, No.6. P.371.

GOLUB G,H., (1973), "Some modified matrix eigenvalue problems",

SIAM Review, Vo1.1S, No,2. P. 31e.

GREGORY R,T" KARNEY D,L., (1969), ,~ coZlection of matrices for testing

computationaZ algorithms 11,

Wiley Interscience.

180

HATTER D,J., (1973), "Matrix computer methods of vibration anal1Jsis"

Butterworth.

HILDEBRAND F. B., (1968), "Finite difference equations and simulations",

Prentice-Ha11.

HILDEBRAND F.B., (1974), "Introduction to numerical analysis"

McGraw-Hill.

HOHN F.E., (1964), "Elementary matrix algebra"

Macmillan.

LYNESS, J.N., (1974), "Computational techniques based on a Lanczos

representation",

Math.Comp. Vo1.28. P. 'ill.

MARTIN R.S., WILKINSON J.II., (1965), "Syrrunetric decomposition of positive

definite band matrices",

Numerische M., Vol. 7. P. -;sS'.

MARTIN R.S., WILKINSON J .11., (1967), "solution of syrrunetric and un­

syrrunetric band equations and the calculation Of eigenvectors of

band matrices"

Numerische 1-1., Vol.9. P .. n,,!.

MARTIN R.S., WILKINSON J.H., (1968), I~eduction of the syrrunetric eigen­

problem A!£=AB!£ and related problems to standard form",

Numeri.sche M. Vo1.11. P. "Iq.

181

MILLER K,S" (1964), P~~ti~Z diffe~enti~Z equations in enginee~ing

prob lems (t

Prentice Hall,

MITCIIELL A,P,.(1969). "Computational methods in partial differential

equa tions ",

Aberdeen University Press.

PAIGE C.C., (1972). "Computational variants of the Lanczos method for

the eigenproblem",

J. Inst .Maths .Applies., Vol.10. r. '373.

PETERS G., WILKINSON J .H., (1969), "Eigenvalues of A:£=AB:£ with band

symmetric A and B",

Computer J., Vol.12. P. 3 '1$'.

182

PETERS G., WILKINSON J .H., (1970), "A:£=AB:£ and the generalised eigenproblem",

SIAM J.Num.Anal., Vol.7, No.4. P.47'l,

RALL L.B., (Editor), (1975), "Error in digital computation",

Wiley.

REID J. K., (1971), "A note on the stability of Gaussian elimination",

J.lnst.Maths,Applies" Vo1,8, 1'.374-.

REISS E.L., BAUER L., (1972), "Block five-diagonal matriaes and the

fast numerical solution of the biha1'monic equation",

Maths, of Comp. Vo1.26 .. No,H8. P. '311.

L..l13f{A (l.y MFt-NI1AL

l-TV. O'f,Fo{2.T?

REISS E,L" BAUER L" 0974). ('On the nUfllerica~ so~ution of wo

dimensiona~ elasticity proMems rt,

J, of Comp,Phys. Vol,IS, No,l, P.~I.

ROSE D.J., WILLOUGIIBY R.A, (Editors) (1972), "Sparse matrices and their

application",

Plenum Press.

SAMEH A.H., KUCK D.J., (1975), ,~ parallel QR-algorithm for tri:diagonal

syrrunetric matrices",

University of Illinois Report.

SCHWARZ H. R., (1968), "Tridiagona lisation of a syrrunetric band matrix",

Numerische Math., Vo1.l2. 9. :l~1.

STEWART G.W., (1974), "Modifying pivot elements in Gaussian eZimination",

Maths. of Comp. Vo1.28, No.126. P.5"'3"1.

STEWART G.W., (ROSENFIELD J.L. (ED.)), (1974), "The numerioal treatment

of ~arge eigenvalue problems",

Proc. of I.F.I.P. Conf, P.666.

STONE H.S., (1973), '~n efficient parallel algorithm for a tridiagonal

linear system",

J,Assoc.Comput,Mach .. Vol,20, Po :z.1.

STRANG G., FIX G •• (1973). "An analysis of the finite element method",

Prentice Hall,

183

SWEET R.A,. 0969). /lA l'?cu;r$ive ;relation fo;r the dete;rl1!inant of a

pentadiagonal matr1,.x".

Comm. of A.C.M. Vol.12. 1'.330.

TEWARSON R.P •• (1967), "Row column pe!'lllUtation of pare matrice$".

Comp.J. Vo1.10. p,100.

TEWARSON R. P.. (1969). "The Crout reduction for sparse matriaes".

Comp.J .• Vo1.12. 1'.1$6'.

TEWARSON R. P .• (1970). "Computations with sparse matrices".

SIAM Review. Vo1.12. P. 5:;1.1.

TEWARSON R.P •• (1973), "Sparse matrices".

Academic Press.

TRAUB J.F .• (1964), "Iterative methods for solving functions of a single

variab le ".

Prentice Hall.

TRAUB J.F .• (1973). "Complexity of sequential and paraUeZ numerical

algorithms It.

Academic Press.

VARGA R,S •• (1962). ''Matrix iterative analysis".

Prentice-Hall.

WALSH J,. (1966). "Numerical analysis., An introduction".

Academic Press,

184

WALTMAN W,L" LAMBERT R"J" (1965), w;r.-a~gorithm for tridagonaUsation",

J,SIAM, Vol,13, No,4, p'I065.

WESTLAKE J.R., (1968), ,~ handbook of numeriaa~ matrix inversion and

solution of Unear equations",

John Wiley.

WHITE P.A., (1958), "The aomputation of eigenvalues and eigenveators of a

matrix""

J.SIAM, Vol.6, No.4. p.'3Q3.

WILKINSON J .H., (1958a), "The evaluation of the zeros of ill-aonditioned

polynomials",

Numerische M. Vol.l. 1'. /$0.

WILKINSON J.H., (1958b), "The aa~aulation of the eigenveators of aodiagonal

matriaes" ,

Computer J. Vol.l. P. "10.

WILKINSON J.H., (1959), "The aalaulation of eigenveators by the method of

Lanazos",

Computer J. Vo1.2. P.I*g.

WILKINSON J ,H., (1960), "Error analysis of floating point aomputation",

Numerische M., Vol. 2. P. '31 q .

WILKINSON J ,H., (1961a), "Error analysis of direat methods of matrix

inversion ",

J.A,C.M., Vol,8, P.'7-'iN.

WILK!NSON J ,11" (l96lb) I ('RigoX'oUs eX'!'oX' bounds foX' C!o"IPuted eigen~

systems",

Computer J., Vol,4. 9. ~ ~o.

WILKrNSON J .11., (1962), "Calculation of the eigenvectoX's of a symmetric

tridiagonal matrix by inverse iteration",

Numerische M., Vol.4. p. '36e.

WILKrNSON J .H., (1963), "Rounding errors in algebraic processes",

H.M.S.O.

WILKrNSON J .H., (1965), "The algebraiC! eigenvalue problem",

Oxford University Press.

WHKrNSON J .H., (1967), "Two algorithms based on successive linear

interpolation",

Stanford Univ. Report, CS 60.

WHLOUGHBY R. (Ed.), (1969), "PPoc. Symp. on sparse matrices and their

applications",

!.B.M. Report RA1(11707) ,

WHLOUGIIBY R., ROSE D.J., (Editors) (1970), "Sparse matrix applications",

Plenum Press,

YANG VV.H., LEE E.H., (1974), 'WodaZ analysis of Floquet wave~ in composite

materia l ",

J,App,Mech, Paper 73.APMW·40.

18

APPENDIX 1

This appendix contains the programs written from the various algorithms

described earlier. The programs are mostly written in I,C.L. 1900 ALGOL 60,

some however are written in ALGOL 68R and FORTRAN IV as implemented on I.C.L.

1900 machines. The first program is a copy of the program in Numerische

Mathematik which is written in the ALGOL 60 reference language as approved

by I.F.I.P. and translated to I.C.L. 1900 ALGOL 60.

187

188

PROGRAM 1

This program is a copy of the ALGOL program given in Barth et al (1967),

it is included for reference. This program is probably the best and most

efficient form of a general bisection method and is used in this case in

connection with the Sturm sequence for a tridiagonal matrix to determine

its eigenvalues. It is possible with little alteration to insert the Sturm

sequence for any type of matrix and use the program to determine the eigen-

values of this matrix. Many of the programs to follow are written as

modifications to this algorithm.

This program finds the eigenvalues of a tridiagonal matrix as given in

(4.2.1). The Sturm sequence for this matrix as obtained by a Laplace

expansion is

PO(A) = 1, PICA) = cl-A
2 P.(A) = (C.-A)P. l(A)-b.P. 2(A),

1 1 1- 1 1-
i=2,N }

(A.l.l)

To avoid numerical problems of underflow and overflow this sequence of

P.(A) is replaced by a sequence of q. CA) where,
1 1

q. (A) = P. (A)/P. l(A), i=l;N
1 1 1-

(A.I. 2)

and the sequence of (A.I.l) becomes,

ql(A) = cl-A
2

q.(A) = c.-A-b./q. leA),
~ 1 1 1-

i=2,N }
(A. I. 3)

It is the sequence (A.I.3) that is used in the program, and it is this

section that can be replaced by the Sturm sequence from other matrices.

'PR~CEDURE' BISECT(C,B,BETA,N,Ml,M2,EPS1,RELFEH,EPS2,Z,X);
'VALUE' N,Ml,M2,EPS1,RELFEH;
'REAL' EPSI,EPS2.RELFEH;
'INTEGER' N.MI,M2,Z;
'ARRAY' C,B,X,BETA;
'~OMMENT' C is the diagonal, B the sub-diagonal and BETA the squared sub­

diagonal of a symmetric tridiagonal matrix of order N. The
eigenvalues LAMBDA[MI], .•••• LAMBDA[M2]. where M2 is not less
than Ml and LAMBDA[I+l] is not less than LAMBDA[I]. are
calculated by the method of bisection and stored in vectorX.
Bisection is continued until the upper and lower bounds for

'BEGIN'

an eigenvalue differ by less than EPSl unless at some stage,
the upper and lower bounds differ only in the least significant
digits. EPS2 gives an extreme upper bound for the error in any
eigenvalue, but for certain types of matrices the small eigen­
values are determined to a very much higher accuracy. In this
case, EPSI should be set equal to the error to be tolerated in
the smallest eigenvalue. It must not be set equal to zero;

'REAL' H,XMIN.XMAX;
'INTEGER' I;
'C~MMENT' calculation of XMIN,XMAX, maximum and minimum values of

eigenvalue range
BETA[l]+B[l]+O;
XMIN+C[N]-ABS(B[N]);
XMAX+C[N]+ABS(B[N]);
'F~R' I+N-l 'STEP'-l'UNTIL' 1 'D~'
'BEGIN'

H+ABS(B[I])+ABS(B[I+l]);
'IF' C[I]+H 'GT' XMAX 'THEN' XMAX+C[I]+H;
'IF' C[I]-H 'LT' XMIN 'THEN' XMIN+C[I]-H;

'END';
EPS2+RELFEH*('IF' XMIN+XMAX 'GT' 0 'THEN'

XMAX 'ELSE' - XMIN);
'IF' EPSl 'LE' 0 'TI1EN' EPS1+EPS2;
EPS2+O.5*EPS1+7*EPS2;
'C~MMENT' inner block;
'BEGIN'

'INTEGER' A,K;
'REAL' Q,Xl,XU,XO;
'ARRAY' WU[Ml:M2];
XO+XMAX;
'F~R' I+Ml 'STEP' 1 'UNTIL' M2 'D~'
'BEGIN'

X[I]+XMAX;
WU[I]+XMIN;

'END';
Z+O;
'C~MMENT'loop for the kth eigenvalue;
'F~R' K+M2 'STEP' -1 'UNTIL' Ml 'D~'
'BEGIN'

XU+XMIN;
'F~R' I+K 'STEP -1 'UNTIL' Ml 'D~'
'BEGIN'

'IF' XU 'LT' WU[I] 'THEN'
'BEGIN'

XU+WU[I];
'G~T~I C~NTIN;

'END';

189

C~NTIN;

'END' ;
'END' ;

'END' ;

'END'
'IF' XO 'GT' X[K) 'THEN' XO+X[K);
'F~R' Xl+(XU+XO)/2 'WHILE'

XO-XU 'GT' 2*RELFEH* (ABS (XU) +ABS (XO)) +EPSl
'D~'

'BEGIN'
Z+Z+l;
'COMMENT' this section to the next comment is the
section that can readily be replaced by any
appropriate Sturm sequence;
A+O;
Q+l;
'F0R' 1+1 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

Q+C[I)-Xl-('IF' Q 'NE' 0 'THEN' BETA[I)/Q
'ELSE ABS(B[I))/RELFEH);

'IF' Q<O 'THEN' A+A+l;
'END' ;
'C0MMENT' end of Sturm sequence;
'IF' A 'LT' K 'THEN'
'BEGIN'

'END'

'IF' A 'LT' Ml 'THEN' XU+WU[Ml)+Xl
'ELSE'
'BEGIN'

XU+WU[A+l)+Xl;
'IF' X [A) 'GT' Xl 'THEN' X [A)+Xl

'END' ;

'ELSE' XO+Xl;
'END' ;
X[K)+(XO+XU)/2;

190

PROGRAM 2

This program finds the eigenvalues of a symmetric periodic tridiagonal

matrix by bisection. It is written as a modification to Program 1.

'PR0CEDURE' PBISECT(C,B,BETA,N,Ml,M2,EPSl,RELFEH,EPS2,Z,X):
'VALUE' N,Ml,M2,EPSl,RELFEH:
'REAL' EPSl,EPS2,RELFEH:
'INTEGER' N,Ml,M2,Z:
'ARRAY' C,B,X,BETA:
'C0MMENT' C is the diagonal, B the sub-diagonal, BETA the squared sub­

sub-diagonal, and B[l] the corner element of a symmetric periodic
tridiagonal matrix of order N. The eigenvalues LAMBDA[Ml], ••.•• ,
LAMBDA[M2], where M2 is not less than Ml and LAMBDA[I+l] is not
less than LAMBDA[I] are calculated by the method of bisection and
stored in vector X. Bisection is continued until the upper and
lower bounds for an eigenvalue differ by less than EPSl unless at
some stage, the upper and lower bounds differ only in the least
significant digits. EPS2 gives an extreme upper bound for the
error in any eigenvalue, but for certain types of matrices the
small eigenvalues are determined to a very much higher accuracy.
In this case EPSl should be set equal to the error to be tolerated
in the smallest eigenvalue. It must not be set equal to zero:

'BEGIN'
'REAL' H,XMIN,XMAX;
'INTEGER' I;
'C0MMENT' calculation of XMIN, XMAX, maximum and minimum values of

eigenv'alue range
f~ABS(B[N])+ABS(B[I]);
XMINt-C[N]-H;
XMAX+C[N] +H;
'F0R' I+N-I 'STEP -1 'UNTIL' 1 'D0'
'BEGIN'

~ABS(B[I])+ABS(B[I+I]);
'IF' C[I]+H 'GT' XMAX 'THEN' nlAX+C[I]+II;
'IF' C[I]-H 'LT' XMIN 'THEN' XMIN+C[I]-II;

'END' ;
EPS2+RELFEH*('IF'XMIN+XMAX 'GT' 0 'THEN' XMAX 'ELSE'-XMIN):
'IF' EPSI 'LE' 0 'THEN' EPSl+EPS2;
EPS2+0.5*EPSl+7*EPS2:
'C0~ENT' inner block:
'BEGIN'

'INTEGER' A, K:
,'REAL' Q, XI,XU,XO:RT, Y ,U;
'ARRAY' WU[MI:M2];
Xo+XMAX;
'F0~ I+Ml 'STEP' I 'UNTIL' M2 'D0'
'BEGIN'

X[I]+XMAX:
WU [I]+XMIN:

'END' :
Z+O:
'C0MMENT' loop for the kth eigenvalue:
'F0R' K+M2 'STEP' -1 'UNTIL' Ml 'D0'
'BEGIN'

Xu+XMIN;
'F0R' I+K 'STEP' -1 'UNTI L' Ml 'D0'

191

C0NTIN:

'BEGIN'
'IF' XU 'LT' WU[I] 'THEN'
'BEGIN'

XU<-II'U[I) ;
'G0T0'C0NTIN;

'END' ;
'END' ;
'IF' XO 'GT' X[K] 'TlIEN' XO+X[K];
'F0R' X1+CXU+XO)/2 'WHILE' XO-XU 'GT'

2*RELFEH*CABSCXU)+ABSCXO))+EPS1 '00'
'BEGIN'

Z+Z+1;
'C0MMENT' section to compute the Sturm sequence;
A+O;
Q<-C[1]-X1;
'IF' Q 'EQ'. 0 'THEN' Q+ABSCB [I]) *RELFEH;
'IF' Q 'LT' 0 'THEN' A+A+1;
RT+B[1);
Y+C [N]-Xl;
'F0R' 1+2 'STEP' 1 'UNTIL' N '00'
'BEGIN'

Y+Y-RT*RT/Q;
RT+-RT*B[I]/Q;
Q<-C[I]-X1-BETA[I]/Q;
'IF' Q 'EQ' 0 'THEN' Q+ABSCB[I])*RELFEH;
'IF' Q 'LT' 0 'THEN' A+A+1;

'END' ;
RT+RT+B[N);
Q+Y-RT*RT/Q;
'IF' Q 'LT' 0 'THEN' A~A+1;
'C0MMENT' end of Sturm sequence;
'IF' A 'LT' K 'THEN'
'BEGIN'

'IF' A 'LT' M1 'TlIEN' XU<-WU[M1]+Xl
'ELSE'
'BEGIN'

XU<-II'U[A+1]+X1;
'IF' X[A) 'GT' Xl 'THEN' X[A)+Xl;

'END' ;
'END'
'ELSE' XO+Xl;

'END' ;
X[K]+CXO+XU)/2;

'END' ;
'END' ;

'END' ;

192

PROGRAM 3

. This program finds the eigenvalues of an unsymmetric periodic

tridiagonal matrix of the form of (3.4.6), using Bairstow's method.

'PR0CEOURE' BAIRS(C,B,A,AO,N,EPS,EIG,EIGI);
'VALUE' C,B,A,AO,N,EPS;
'ARRAY' C,B,EIG,EIGI;
'REAL' A,AO,EPS;
'INTEGER' N;
'C0MMENT' C is the main diagonal, B the sUb-diagonal and A,AO are the

unsymmetric corner elements. N is the order of the matrix, EPS
is set for the required number of figures of accuracy. The results
are given in EIG, EIGI;

'BEGIN'
'ARRAY'BN,GN,AN,L,M,V,W,E,F,R,X[O:N];
'REAL' J,K,ALF,BET,JC,KC,BT,AAO;
'INTEGER' I,IN,Z,LE;
LE+Z+O;
BT+l;
'F0R' 1+2 'STEP' I 'UNTIL' N '00'
'BEGIN'

BT+-BT*B [I];
BN[I]+B[I]*B[I];
GN[1]+AN[I]+O;

'END' ;
AN [O]+GN [O]+AN [1]+GN [1]+0;
BT+BT*(A+AO);
AAD+A*AO;
J+K+l;
1+0;

193

LABI:L[1]+V[1]+W[1]+V[1+I]+E[1]+E[I+l]+F[I]+F[I+I]+R[I]+R[I+I]+X[I]+X[I+I]+O
L[I+l]+-l;
M[I]+W[I+I]+I;
M[I+I]+C[I+I]-AN[I];
Z+Z+I;
'F0R' IN+I+2 'STEP'I 'UNTIL' N-I '00'
'BEGIN'

L[IN]+(C[IN-J])*L[IN-l]-L[IN-2]*BN[IN]-M[IN-I];
M[IN]+C[IN]*M[IN-I]-K*L[IN-l]-BN[IN]*M[IN-2]-AN[IN-I];
V[IN]+(C[IN]-J)*V[IN-I]-BN[IN]*V[IN-2]-N[IN-I];
W[IN]+C[IN]*W[IN-I]-K*V[IN-I]-BN[IN]*W[IN-2]-GN[I-I];
E[IN]+(C[IN]-J)*E[IN-I]-F[IN-I]-BN[IN]*E[IN-2];
F[IN]+C[IN]*P[IN-l]-K*E[IN-l]-L[IN-l]-BN[IN]*P[IN-2];
R[IN]+(C[IN]-J)*R[IN-l]-X[IN-I]-BN[IN]*R[IN-2]
X[IN]+C[IN]*X[IN-I]_K*R[IN-I]-V[IN-I]-BN[IN]*X[IN-2];

'END' ;
L[N]+(C[N]-J)*L[N-l]-M[N-l)-BN[N]*L[N-2)-AAO*V[N-l];
M[N]+C[N]*M[N-l]-K*L[N-I]-BN[N]*M(N-2)-AN[N-I]-AAO~[N-l];
M[N]+M[N]+J*L[N];
E[N]+(C[N-J))*E[N-I]-P[N-I)-BN[N]*E[N-2]-AAO*R[N-l];
P[N]+C[N]*P[N-I]-L~-I]-K*E[N-I]-BN[N]*P[N-2]-AAO*X[N-I];

F[N]+F[N]+J*E[N];
ALF+K*E[Nj+J*F[N];
BET+F[N]*F[N]-ALF*E[Nj;
JC+(E[Nj*M[Nj-F[N]*L[N]l/BET;
KC+(ALF*L[N]-F[N]*M[N]/BET;
K+K+KC;
J+J+JC;
, IF' LE 'EQ' 1 'TIlEN'
'BEGIN'

LE+{);
I+I+l;
JC+J*J+4*K;
'IF' JC 'LT' 0 'THEN'
'BEGIN'

JC+-JC;
EIGI[I]+SQRT(JC)/2;
EIGI[I+I]+-EIGI[I];
EIG[Ij+ EIG[I+l]+J/2;

'END'
'ELSE'
'BEGIN'

JC+SQRT(JC)/2;
EIG[I]+J/2-JC;
EIG[I+l]+J/2+JC;
EIGI[I]+EIGI[I+I]+O;

'END' ;
I+I+l;
'IF' N-I 'LE' 1 'THEN' 'GOTO' LAB3;
'F0R' IN+I-2 'STEP' 1 'UNTIL' N-l 'D0'
'BEGIN'

AN [IN]+L [IN];
GN [IN]+\{ IN] ;

'END' ;
AN[N]+L[N];
Z+{) ;
J+K+C [I];
'G0T0' LAB1;

'END' ;
'IF' ABS(JC) 'LT' EPS 'AND' ABS(KCl 'LT' EPS 'TIlEN'
LE+l;
'G0T0' LAB1;

LAB3: 'IF' N-I 'EQ' 1 'THEN'
'BEGIN'

EIG[N]+C[N]-L[N-l];
EIGI [N]+O;

'END' ;
'END' ;

194

PROGRAM 4

This procedure finds all the eigenvalues of a symmetric periodic

tridiagonal matrix by Newtons method.

'PR~CEOURE' NEWSTURM (C.B.N.EPS.QZR,EIG);
'C~MMENT' C is the main diagonal and B[2] •.... B[N] is the sub-diagonal.

The element B[l] is the corner element. N is the order of the
matrix and EPS the desired accuracy. QZR is the limit of machine
accuracy used to replace zero elements. The eigenvalues are stored
in EIG;

'VALUE' C,B.N,EPS,QZR;
'ARRAY' C,B.EIG;
'INTEGER' N;
'REAL' EPS,QZR;
'BEGIN'

'ARRAY' BN;
'REAL' X,Y,Z.MA.MI.LAMBOA.BT.RT.XO.RTO;
'INTEGER' I,L;
'F~R' 1+1 'STEP' 1 'UNTIL' N 'O~'
BN[I]+B[I]*B[I];
LAMBOA+l;
L+l;

LABA:'IF' L 'EQ' N+l 'G~T~' EXIT;
LABB:X+C[l]-LAMBOA;

'IF'ABS(X) 'EQ' 0 'THEN X+QZR;
XO+Z+-l;
RTD+O;
MA+XO/X;
RT+B[l];
Y+C[N]-LAMBOA;
'F~R' 1+1 'STEP' 1 'UNTIL' N-l 'O~'
'BEGIN'

MI+X*X;
Z+Z-(Z*X*RT*RTO-XO*RT*RT)/MI;
Y+Y-RT*RT/X;
RTD+-(RTO*X-XO*RT)*B[I]/MI;
XD+-l+BN[I]*XO/MI;
RT+-RT*1l [I]/X;
X+C[I]-LAMBOA-BN[I]/X;
'IF' ABS(X) 'EQ' 0 'THEN' X+QZR;
MA+MA+XO/X;

'ENO' ;
MI+X*X;
Z+Z+(BN[Nj*XO/MI-2*(RTO*X-XO*RT)*B[N]-2*RT*RTO*X-XO*RT*RT)/MI;
RT+RT*BN [N];
X+Y-RT*RT/X;
MA+MA+Z/X;
'IF' 1 'GE' 2 'THEN'
'F~R' 1+1 'STEP' 1 'UNTIL' L-l 'O~'
MAX+MAX-l/(LAMBOA-EIG[I]);
MAX+l/MAX;
LAMBOA+LAMBOA-MAX;
'IF'ABS(MAX/LAMBOA) 'LT' EPS '~R' ABS(LAMBOA) 'LT' EPS
'THEN'
'BEGIN'

EIG[L]+LAMBOA;
LAMBOA+LAMBOA+l;

195

L+L+l' ,
, G!3T!3' LABA,'

'END' , ,
. 'G!3T!3' LABB'

EXIT: '
'END' , ,

196

PROGRAM 5

This procedure determines all the eigenvalues of an unsyrnmetric

periodic tridiagonal matrix using Newton's method. The program is

written in ALGOL-68R to take advantage of the facilities for handling

complex arithmetic.

'PROC' TRINEWT=([]'REAL'C,B,D,'REAL' EPS,QZR,'INT' N,'REF'[]'C0MPLEX' EIG):
'BEGIN'

'COMMENT' C is the main diagonal, B [2], ••.. B [N] and D [2], ..•. ,D [N] are the
two sub-diagonals. The elements B[l] and D[l] are the corner
elements, N is the order of the matrix and EPS is input as the
desired accura~y. QZR is the limit of machine accuracy and is
used to replace elements close to zero. The eigenvalues are
stored in the complex array EIG. 'COMMENT';

'C0MPLEX' P,Q,X,Y,Z,MAX,MIN,LAMBDA,BT,RT,XD,RTD;
[1:N]'C0MPLEX'BN;
'INT' L+l;
'REAL' ZER+O,lt40;
LAMBDA+l. 123 ;

LABA: (L=N+l! 'G0T0'EXIT);
LABB:X+C[l]-LAMBDA;

('ABS' (X)<ZERI~QZR);
P+O;
Q+D[l]:
RTD+O;
RT+B[l]:
XD+-1;
Z+-l:
MAX+XD/X;
Y+C[N]-LAMBDA;
'F0R' I 'FR0M' 2 'T0' N-l 'D0'
'BEGIN'

MIN+X*X:
Z+Z-(X*(P*RT+RTD*Q)-XD*Q*RT)/MIN;
Y+Y-RT*Q/X:
P+-(P*X-XD*Q)*D[I]/MIN;
Q+-Q*D[I]/X;
RT~(RTD*X-XD*RT)*B[I]/MIN;
XD+-1+BN[I]/X;
RT+-RT*B[I]/X;
X+C[I]-LAMBDA-BN[I]/X;
('ABS'(X)<ZERIX+QZR);
MAX+MAX+XD/X

'END' ;

197

MIN+X*X;
Z+Z+(BN[N]*XD-B[N]*(X*P-Q'X~-D[N]*(X*RTD-RT*XD)-X*(Q*RTD+P*RT)-XD*Q*RT)/MIN;
Q+Q+D[N] :
RT+RT+B [N] :
X+Y-RT*Q/X;
('ABS'(X)<ZERIX+QZR);
MAX+MAX Z/X;
(L>=2I'F.0R' I 'T"'" L-l ,[)~, MAX<-MAX-l/(LAMBDA-EIG[I]));
MAX+l/MAX;
LAMBDA+LAMBDA-MAX;

EXIT:
'END' ;

'IF' 'ABS' (MAX!LAMBDA) <EPS '0R' 'ABS' (LAMBDA) <EPS 'TIIEN'
'BEGIN'

EIG[L)+LAMBDA;
LAMBDA+2. 9871 1 .0;
L+L+l;
'G0T0' LABA

'END'
'ELSE'
'G0T0' LABB
'FI'

198

PROGRAM 6

This procedure determines the eigenvalues of a symmetric centro-

symmetric matrix by bisection. The diagonal and sub-diagonals are only

recorded as far as the centre elements +2. as the matrix is centro-

symmetric.

'PR0CEDURE' CENTR0BISECT(C.B.BETA.N.Ml.M2.EPSl.RELFEH.EPS2.Z.X);
'VALUE' N.Ml.M2.EPSl.RELFEH;
'REAL' EPSl.EPS2.RELFEH;
'INTEGER' N,MI.M2.Z;
'ARRAY' C,B,X,BETA;
'COMMENT' C,B, and D are the first N/2+2 elements of the diagonal.

sUb-diagonal. and squared sub-diagonal of symmetric. centro-

199

symmetric tridiagonal matrix of order N. The eigenvalues LAMBDA [Ml],
.••..• LAMBDA[M2]. where M2 is not less than Ml and LAMBDA[I+l] is not
less than LAMBDA[I+2]. are calculated by the method of bisection and
stored in vector X. Bisection is continued until the upper and lower
bounds for an eigenvalue differ by less than EPS1 unless. at some
stage, the upper and lower bounds differ only in the least significant
digits. EPS2 gives an extreme upper bound for the error in any
eigenva1ue, but for certain types of matrices the small eigenva1ues
are determined to a much higher accuracy. In this case. EPS should
be set equal to the error to be tolerated in the smallest eigenvalue.
It must not be set equal to zero.

'BEGIN' .
'REAL H.XMIN,XMAX;
'INTEGER' I.N2;
'COMMENT' calculation of XMIN,XMAX. maximum and minimum values of

eigenvalue range
N2+-N'/'2;
XMIN+-C[I]-ABS(B[2]);
XMAX+-C[l]+ABS(B[2]);
'F0R' I+-N2 'STEP' -1 'UNTIL' 2 'D0'
'BEGIN'

H+-ABS(B[I])+ABS(B[I+1];
'IF' C[Il+H 'GT' MAX 'THEN' XMAX+-C[I]+II;
'IF' C[I]-I! 'LT' MIN 'THEN' XMIN+-C[I]-II;

'END' ;
EPS2+-RELFEH*('IF'XMIN+XMAX 'GT' 0 'THEN' XMAX 'ELSE'XMIN);
'IF' EPSI 'LE' 0 'THEN' EPSl+-EPS2;
EPS2+-O.5*EPSI+7*EPS2;
'C0MMENT' inner block;
'BEGIN'

'INTEGER' A.K;
'REAL' Q,X1,XU,XO;
'ARRAY' WU[MI:M2];
XO+-XMAX;
'F0~ I+Ml 'STEP' 1 'UNTIL' M2 'D0'

C0NTIN:

'BEGIN'
X [I]+XMAX;
WU[I]+XMIN;

'END' ;
Z+O;
'C0MMENT' Loop for the kth eigenvalue;
'F0R' K+M2 'STEP' -1 'UNTIL' Ml 'D0'
, BEGIN'

XU+XMIN;
'F0R I+K 'STEP' -1 'UNTIL' Ml 'D0'
'BEGIN'

'IF' XU 'LT' WU[I] 'THEN'
'BEGIN'

XU+WU[I);
'G0T0' C0NTIN;

'END' ;
'END' ;
'IF'XO 'GT' X[K] 'THEN' XO+X[K];
'FOR Xl+(XU+XO)*O.5 'WHILE' XO-XU 'GT'
2*RELFEH*(ABS(XU)+ABS(XO))+EPS 'D0'
'BEGIN'

Z+Z+l;
'C0MMENT' Sturm sequence;
MO; Q+l;
'F0R'I+l'STEP' 1 'UNTIL' N2 'D0'
'BEGIN'

Q+C[I)-Xl-('IF' Q 'NE' 0 'THEN'
BETA[I]/Q'ELSE'ABS(B[I]/RELFEII);
'IF' Q 'LT' 0 'THEN' A+A+2;

'END' ;
'IF' N2*2-N'EQ'O'THEN'
'BEGIN'

Q+Q-('IF'Q'NE'O'THEN'BETA[N2+l]/Q
'ELSE' ABS(B[N2+l]/RELFEH);
'IF' Q 'LT' 0 'THEN' A+A+l;

'END' ;
'C0MMENT' End of Sturm sequence;
'IF' A 'LT' K 'THEN'
'BEGIN'

'IF' A 'LT' Ml 'THEN' XU+WU[Ml]+Xl
'ELSE'
'BEGIN'

XU+WU[A+l]+Xl;
'IF X[A] 'GT' Xl 'THEN' X[A]+Xl

'END' ;
'END'
'ELSE' XO+Xl;

'END' ;
X[K]+(XO+XU)/2;

'END' ;
'END' ;

'END' ;

200

PROGRAM 7

This procedure determines the eigenvectors of a centro-symmetric

matrix using a modified inverse iteration method.

'PR~CEDURE' VECTOR(C,B,N,M,EIG,EIGVEC);
'C~MMENT' C is the diagonal and B the sub-diagonal of the tri-diagonal

matrix of order N. Only N '/'2+2 of the elements of C and N'/'2+l
elements of B are used. M is the number of vectors that are required.
The eigenvalues are supplied in EIG and the results are placed in the
rows of EIGVEC;

'VALUE' C,B,N,M,EIG;
'ARRAY' C,B,EIG,EIGVEC;
'INTEGER' N,M;
'BEGIN'

'ARRAY' AN,BN,CN,D,S[l:(N+4)'/'2];
'INTEGER' I,H,L;
'REAL' V;
'INTEGER"ARRAY' IC[l:(N+4)'/'2];
'C~MMENT' Gaussian elimination;
'F~R' L+l 'STEP' 1 'UNTIL' M 'D~'
'BEGIN' H+N'/'2;

CN[l]+C[l]-EIG[L]; IC[l]+O;
'F~R' 1+2 'STEP' 1 'UNTIL' H+2 'D~'
'BEGIN'

D[I]+0; IC[I]+O;
CN[I]+C[I]-EIG[L];
BN[I]+AN[I]+B[I);

'END' ;
'F~R' 1+1 'STEP' 1 'UNTIL' 11-1 'D~'
'BEGIN'

'IP ABS (CN [I]) 'LT' ABS (AN [1+ 1]) 'THEN'
'BEGIN'

V+CN[I); CN[I)+AN[I+l); AN[I+l]+V;
V+BN[I+l]; BN[I+l)+CN[I+l]; CN[I+l]+V;
V+D[I+2]; D[I+2)+BN[I+2]; BN[I+2)+V;
IC[I]+l;

'END' ;
AN[I)+AN[I+l)/CN[I);
CN[I+l)+CN[I+l)-BN[I+l)*AN[I);
BN[I+2)+BN[I+2]-D[I+2)*AN[I];

'END' ;
'C0MMENT' Section to eliminate the centre elements depending on

whether N is odd or even;
'IF' H"2 'EQ' N 'THEN'
'BEGIN' 'C~MMENT' N even;

'IF' ABS(CN[H)) 'LT' ABS(BN[l!+l)) 'THEN'
'BEGIN'

'END'

V+BN[H+l]; AN[H+l)+BN[II+l)+CN[H);
CN[H)+CN[H+l)+V; IC[H)+l;

'ELSE'

201

'BEGIN'
CN [11+ l]+CN [11]; AN [11+ l]+BN [11+ 1] :

'END' :
AN[H]+AN[II+l]/CN[II] :
CN[Il+1]+CN[Il+1]-BN[H+1J*AN[II] I

'END'
'ELSE'
'BEGIN' 'C0MMENT' N odd;

BN[II+Z]+AN[H+1]: AN[Il+2hBN[II+1]:
CN[II+~]+CN[II]:
'BEGIN'

V+CN[II]: CN[Il]+AN[H+l]: AN[II+1]+V:
V+BN[H+l]: BN [H+l]+CN [11+1] : CN[II+1]+V:
V+D[Il+2]: D[H+2]+BN[H+2]: BN[H+2]+V:
IC[Il]+l;

'END' :
AN[H]+AN[Il+l]/CN[Il];
CN[II+1]+CN[Il+1]-AN[Il]*BN[II+1]:
BN[H+Z]+BN[H+2]-AN[Il]*D[Il+Z]:
'IF' ABS(CN[H+1]) 'LT' ABS(AN[II+Z]l 'THEN'
'BEGIN'

V+CN[II+1]: CN[II+1]+AN[Il+Z]: AN[II+2]+V;
V+BN[II+Z]: BN[Il+Z]+CN[II+Z]: CN[II+2]+V:
IC[II+1]+1:

'END' :
AN[H+1]+AN[H+Z]/CN[II+1]:
CN[H+2]+CN[II+2]-AN[II+l]*BN[H+2]:

'END' :
H+(N-1l' / '2;
'F0R'I+1 'STEP' 1 'UNTIL' H+2 '00'
S[I]+l:
'IF' CN[II+2] 'EQ' 0 'TIIEN' CN[Il+2]+2t(-37l:
'C0MMENT' Closest number to machine zero if matrix decomposes.

Back substitution now takes place:
S [1l+2]+S [H+2]/CN[II+Z];
S [H+ l]+(S [ll+ 1]-S [11+ Z] *BN [H+ Z D/CN [ll+ 1] :
'F0R' 1+11 'STEP' -1 'UNTIL' 1 '00'
S[I]+(S[I]-S[I+1]*BN[I+1]-S[I+Z]*D[I+Z]/CN[I];
'C0MMENT' The forward substitution with stored interchanges and

elimination factors is performed:
'F0R' 1+1 'STEP' 1 'UNTIL' H+1 '00'
'BEGIN'

'IF' IC[l] 'EQ' 1 'THEN'
'BEGIN'

V+S[I]; S[I]+S[I+1]; S[I+1]+V;
'END' :
S[I+1]+S[I+1]-S[I]*AN[I]:

'END' ;
'C0MMENT' Back substitution is now performed for the second time;
S[H+Z]+S[II+2]/CN[H+2]:
S [ll+ l]+(S [ll+ 1]-S [II+Z] * BN [II+Z]) /CN [11+ 1] ;
'F0R' 1+11 'STEP' -1 'UNTIL' 1 '00'
S[I]+(S[I]-S[I+1]*BN[I+1]-S[I+Z]*D[I+Z]l/CN[I];
'C0MMENT' Vector is now normalised:

202

V+S[H+1)*S[H+1):
'IF (H+1)*2 'NE' N 'TIIEN' V+-V/2i
'F0R 1+1 'STEP 1 , UNTIL' H 100'
V+V+S[I)*S[I] ;
V+SQRT(V*2):
'F0R'I+1 'STEP' 1 'UNTIL' H+2 '00'
S[I)+S[I)/V:
'C0MMENT' The full eigenvector is now written in EIGVEC:
V+S[H+2)*S[H+1-(H+1)*2+N);
'IF' V 'LT' N 'THEN'
'BEGIN'

'F0R' 1+1 'STEP' 1 'UNTIL' H '00'
'BEGIN'

EIGVEC[L,I)+S[I):
EIGVEC[L,N+1-I)+-S[I):

'END' :
'END'
'ELSE'
'F0R' 1+1 'STEP' 1 'UNTIL' H '00'
EIGVEC[L,I)+EIGVEC[L,N+1-I)+S[I):
'IF' (H+l)*2 'EQ' N 'THEN'
'BEGIN'

EIGVEC[L,H+l)+S[H+1):
EIGVEC[L,H+2)+S[H+2);

'END'
'ELSE'
EIGVEC[L,H+1)+S[H+1) :

'END' :
'END' :

203

PROGRAM 8

This progr~m finds the eigenva1ues o~ a symmetric tridiagonal matrix

using parallel processing on a bisection algorithm. The program is

written in ALGOL 60 with the addition of the FORK and JOIN parallel

processing constructs. These statements are self explanatory and

indicate where parallel processing is performed and where it ends.

'PR0CEDURE' PTRIBIS(C,B,BETA,N,Ml.M2,EPSl,RELFEH.EPS2,Z,X):
'VALUE' N,M1,M2,EPS1.RELFEH:
'ARRAY' C,B,X,BETA;
'REAL' EPSl.EPS2.RELFEH:
'INTEGER' N.M1.M2.Z;
'C0MMENT' C is the diagonal. B the sub-diagonal and BETA the squared

sub-diagonal of a symmetric tridiagona1 matrix of order N. The
eigenva1ues LAMBDA[Ml) •.••. LAMBDA[M2). where M2 is not less than
M1 and LAMBDA[I+1) is not less than LAMBDA[I), are calculated by
the method of bisection and stored in the vector X. Bisection is
continued until the upper and lower bounds for an eigenva1ue differ
by less than EPS1 unless at some earlier stage. the upper and lower
bounds for an eigenva1ue differ only in the least significant digits.
EPS2 gives an extreme upper bound for the error in any eigenva1ue but
for certain types of matrices the small eigenva1ues are determined to
a very much higher accuracy. In this case. EPS1 should be set equal
to the error to be tolerated in the smallest eigenvalue. It must
not be set equal to zero;

'BEGIN'
'REAL' H.XMIN.XMAX:
'INTE,GERi I: ,
'C0MMENT' Calculation of minimum and maximum eigenva1ue range:
BETA [l)+-B [1)<-0;
XMIN+-C[N)-ABS(B[N)):
XMAX+-C[N)+AlE(B[N)):
'F0R'I+-N-1 'STEP' -1 'UNTIL' 1 'D0'
'BEGIN'

H+-ABS(B[I))+ABS(B[I+1)):
'IF' C[I)+H 'GT' XMAX 'THEN' XMAX+-C[I)+II:
'IF' C[Ij-H 'LT' XMIN 'THEN' XMIN+-C[I)-II:

'END' ;
EPS2+-RELFEH*('IF' XMIN+XMAX 'GT' 0 'THEN' XMAX 'ELSE' -XMIN):
'IF' EPSl 'LE' 0 'THEN' EPS1+-EPS2:
EPS2+-O.S*EPSl+7*EPS2:
'C0MMENT' Inner block;
'BEGIN'

'ARRAY' WU[Ml:M2):
'INTEGER' A.AU.J. K.N2:
'REAL' Q.QU.Xl.XU.XO:

. XO+-XMAX;
'F0R' I+-Ml 'STEP' 1 'UNTIL' M2 'D0'
'BEGIN'

204

X [I]+XMAX;
WU[I]+XMIN;

'END'1
Z+O;
N2+N'/'2;
'C0MMENT' Loop for the kth eigenva1ue;
'F0R K+M2 'STEP' -1 'UNTIL' M1 'D0'
'BEGIN'

XU+XMIN;
'F0R'I+K 'STEP' -1 'UNTIL' M1 'D0'
'BEGIN'

'IF' XU 'LT' WO[I] 'TIIEN'
'BEGIN'

XU+WU[I];
G0T0 C0NTI N;

'END' ;
'END' ;

C0NTIN: 'IF' XO 'GT' X[K] 'THEN' XO+X[K];

L1:

L2:

L3:

'FOR' X1+(XU+XO) /2 'WHILE' XO-XU 'GT' 2*RELFElI
*(ABS(XU)+ABS(XO))+EPS1 'D0'

'BEGIN'
Z+Z+l ;
'C0MMENT' STURM SEQUENCE;
AU+A+O;
QU+Q+1 ;
'F~RK' Ll,L2;
'BEGIN'

'F0R' 1+1 'STEP' 1 'UNTIL N2 'D~'
'BEGIN'

Q+C[I]-X1-('IF' Q
'NE' 0 'THEN' BETA[I]/Q
'ELSE' ABS(B[I]/RELFEH));
'IF' Q 'LT' 0 'TIIEN'A+A+1

'END' ;
'END' ;
'G~T0'L3;
'BEGIN'

'F~R' J+N 'STEP' -1 'UNTIL' N-N2+1 'D~'
'BEGIN'

QU+C[J]-X1-('IF' QU 'NE'
o 'THEN' BETA[J+1]/Q 'ELSE'
ABS(B[J+1]/RELFEH));
'IF' QU 'LT' 0 'TIIEN' AU+AU+1;

'END' ;
'END' ;
'J~IN' L1,L2:

A+A+AU;
'IF'N2*2-N 'EQ' 0 'TIIEN'
'BEGIN'

Q+QU-('IF' Q 'NE' 0 'TIIEN' BETA[N2+1]/Q
'ELSE' ABS(B[N2+1]/RELFEH));

'END'
'ELSE'
'BEGIN'

'IF' QlJ 'LT' 0 'THEN' A+A+l;

205

'END'
'END' ;

Q+C[N2tl)-Xl-('IF'Q'NE'O'THEN'
BETA[N2+1)/Q 'ELSE' ABS(B[N2+1)/RELFEH)
-('IF' QU 'NE' 0 'THEN' BETA[N2+2)/QU
'ELSE' ABS (B [N2+2) /RELFEH)) ;

'END' ;
'IF' Q 'LT' 0 'THEN' A+A+l;
'IF' A. 'LT' K 'THEN'
'BEGIN'

'IF' A 'LT' Ml 'THEN'
XU+WU[Ml)+Xl;
'ELSE'
'BEGIN'

XU+WU[A+l)+Xl;
'IF X[A) 'GT' X 'THEN' X[A]+Xl;

'END' ;
'END'
'ELSE'
XO+Xl

'END' ;
X[K)+(XO+XU)/2;

'END'

206

PROGRAM 9

This program finds the eigenvalues of a symm.etric tridiagonal matrix

using the bisection method. The method is modified by a version of the

folding algorithm (Evans and Hatzopoulos) to enable the program to be run

in a parallel fashion using two processors. The program is written in

standard FORTRAN with the addition of FORK and JOIN routines to allow

parallel processing (Barlow 1977a, 1977b) as implemented on the Loughborough

University of Technology dual processor Interdata 70.

SUBR~UTINE STURMP(C,BB,EIG,NB,EPS,QZRB)
C The main diagonal of the matrix is stored in C, the sub-diagonal
C in BB. NB is the order of the matrix and EPS the accuracy required.
C QZRB is a number close to machine zero, used to replace any zero
C divisiors that occur in the calculation of the Sturm sequence.
C The resulting eigenvalues are placed in EIG.

OIMENSI~N C(8l),BB(8l),EIG(8l),CN(8l)
C0MMON/CUjCN,B(81),KXC,KYC,XC,YC,N,M
N=NB

C The eigenvalue bounds are now calculated using Gerschgorins theorem
ANEW=ABS(BB(N))
AMAX=C(N)+ANEW
AMIN=C(N)-ANEW
BB(1)=O
NMINl=N-l
O~ 101 I=l,NMINl
ANEW=ABS(BBI))+ABS(BB(I+l))
ANEWER=C(I)+ANEW
ANEW=C(I)-ANEW
IF (ANEWER.GT.AMAX)AMAX=ANEWER
IF(ANEW.LT.AMIN)AMIN=ANEW

101 C~NTINUE
AMIN=AMIN-O.l
AMAX=AMAI+O.l
00 102 I=2,N

102 B(I)=BB(I)*BB(I)
M=N/2
L=O

501 IF (L.EQ.N) G~T~ 500
C Beginning. of main loop to find Lth eigenva1ue

ALAMBA=(AMIN+AMAX) *0.5
502 00 103 I=l,N
103 CN(I)=C(I)-ALAMBA

$F~RK 1,2;3
C Entering parallel mode to determine upper and lower halves of
C Sturm sequence simultaneously

207

1 C0NTlNUE
KX;O
If(CN(l)) 5003,504,503

504 X;QZRB
G0T0 505

5003 KX;l
503 X;CN(l)
505 D0 104 I;2,M

X;CN(I)-B(I)/X
IF(X.EQ.O.O)X;QZRB
IF(X.LT.0.0)KX;KX+1

104 C0NTINUE
XC;X
KXC;KX
G!ilT!il 3

2 C0NTINUE
KY;O
IF(CN(N)) 5006,507,506

S07 Y;QZRB
G0T0 508

S006 KY;l
506. Y;CN(N)
508 NMIN1;N-1

NMIN2;N-M+1
JST;2*N-M
D!il 105 I;NMIN2,NMINI
J;JST-I .
Y;CN(J)-B(J+1)/Y
IF(Y;EQ.O.O)Y;QZRB
IF(Y. LT.O. 0) KY;KY+l

105 C0NTINUE
YC;Y
KYC;KY

3 $J0IN
K;KYC+KXC
IF(M*2-N) 509,510,509

509 X"CN(M+l)-B(M+l)/XC-B(M+2)/YC
G0T0 511

510 IF(YC.LT.O.O)K;K-l
X;YC-B(M+l)/XC

511 IF(X.LT.0.0)K;K+1
IF(L-K}512,513,512

513 ANEWER;AMIN
AMIN;ALAMBA
ALAMBA;ALAMBA+(ALAMBA-ANEWER)*O.S
G0T0 S02

512 ALAMBA;(ALAMBA+AMIN)*O.S
If((ALAMBA-AMIN)*0.5.GE.EPS)G0T0 502
AMIN;2.0*ALAMBA_AMIN
LPL1;L+1
DO 107 I;LPL1,K

107 EIG(I);ALAMBA
L;K
G0T0 501

500 C0NTINUE
RETURN
END

208

PROGAAM 10

This program finds the eigenvectors of a symmet;r;ic tridiagonal matrix

by inverse iteration using two processors. The program is written in

standard I.C.L, ALGOL 60 except for the introd~ction of 'fork' and 'join'

statements which indicate where parallel processing can be performed.

'PR~CEDURE' PARVEC(C,B,N,M,EIG,EIGVEC);
'C~MMENT' C is the diagonal and B the sub-diagonal of the tridiagonal

matrix of order N. M is the number of vectors required, and the
number of eigenvalues supplied in EIG. The resulting vectors are
placed in the rows of EIGVEC;

'VALUE' C,B,N,M,EIG;
'ARRAY' C,B,EIG,EIGVEC;
'INTEGER' N ,M;
'BEGIN'

'ARRAY' AN,CN,BN,D,S[l:N];
'INTEGER' I,H,L;
'REAL' V;
'INTEGER' 'ARRAY' IC[I:N];
'P0R' L+l 'STEP' 1 'UNTIL' M 'D0'
'C0MMENT' Loop for each eigenvector;
'BEGIN'

H+N'/'2;
'C0MMENT' Set up work vectors with copy of matrix;
CN[l]+C[I]-EIG[L]; IC[I]+O;
'F0R' 1+2 'STEP' 1 'UNTIL' N 'D0'
'BEGIN'

D[I]+IC[I]+O;
CN[I]+C[I]-EIG[L];
BN[I]+AN[I]+B[I];

'END' ;
'C0MMENT' Elimination or forward substitution;
'F0RK' Ll,L2;
'C0MMENT' Upper half of matrix;

LI: 'F0R'I+N 'STEP' -1 'UNTIL' N-H+2 'D0'
'BEGIN'

'IF ABS (CN [I II 'LT' ABS (BN [Ill 'THEN'
'BEGIN' 'C0MMENT' Interchange if necessary;

V+CN[I]; CN[I]+BN[I]; BN[I]+V;
V+AN[I];AN[I]+CN[I-l]; CN[I-l]+V;
V+D[I]; D[I]+AN[I-l]; AN[I-I]+V;
IC[I]+l;

'END' ;
BN[I]+BN[I]/CN[I];
CN[I-l]+CN[I-I]-BN[I]*AN[I];
AN[I-l]+AN[I-l]-BN[I]*D[I];

'END' ;
'G~T~' L3;

L2: 'C~MMENT' Lower half of matrix;
'F0R' 1+1 'STEP' I 'UNTIL'H-l '00'
'BEGIN'

'IF' ABS(CN[Ill 'LT' ABS(AN[I+Ill 'THEN'

209

, BEGJN'
V+CN[lJ i CN[l]+AN[I+l] i AN[I+IJ+Vi
V+BN[I+l]i BN[I+IJ+CN[I+IJ: CN[I+IJ+V;
V+D[I+2J; D[I+2J+BN[I+2]; BN[I+2]+V:
IC(I]+1:

'END' ;
AN[I]+AN[I+lJ/CN[IJ:
CN[I+lJ+CN[I+l]-BN[I+lJ*AN[IJ:
BN[I+2]+BN[I+2J-D[I+2]*AN[I]:

'END' :
L3: 'J~IN' L2,L3:

'C~MMENT' The centre elements must be eliminated, and the
method used depends on whether the matrix is odd or
even. This cannot be done in parallel:

'IF' H*2 'EQ' N 'THEN'
'BEGIN' 'C9lMMENT' Matrix is even:

'IF' ABS(CN[HJ) 'LT' ABS(AN[H+lJ) 'THEN'
'BEGIN'

V+CN[HJ: CN[H]+AN[H+lJ i AN[II+lJ+V:
V+BN[II+l] i BN[H+l]+CN[H+l] i CN[H+lJ+Vi
IC [HJ.;-l :

'END' :
AN[H]+AN[H+lJ/CN[H]:
CN[H+lJ+CN[II+lJ-BN[II+lJ*AN[II]i

'END'
'ELSE'
'BEGIN' 'C9lMMENT' Matrix is order odd:

'IF' ABS(CN[HJ) 'LT' ABS(AN[H+lJ) 'THEN'
'BEGIN'

V+CN[H]; CN[H]+AN[H+l]; AN[H+l]+V;
V+BN[H+l]; BN[H+l)+CN[H+l]: CN[H+l)+V:
V+D[H+2]; D[H+2)+BN[H+2]; BN[H+2]+V;
IC(H]+l:

'END' ;
AN[H)+AN[H+l)/CN[H];
CN[H+l)+CN[H+l]-AN[H)*BN[H+l);
BN[H+2)+BN[II+2]-AN[H)*D[H+2];
'IF' ABS(CN[H+lJ) 'LT' ABS(AN[H+2J) 'THEN'
'BEGIN'

V+CN[H+l]: CN[H+l]+AN[II+2); AN[H+2)+V;
V+BN[H+2); BN[H+2)+CN[II+2): CN[H+2)+V:
IC(H+l)+l:

'END',:
AN[H+:l]+AN[H+2)/CN[lI+l] ;
CN[H+2]+CN[H+2]-AN[H+l]*BN[II+2):

'END' :
H+(N-l) '/'2:
'C9lMMENT' Set the initial value of the eigenvector to alII's;
'F9lR' 1+1 'STEP' 1 'UNTIL' N 'D9l' S(I)+l:.
'IF' CN[H+2] 'EQ' 0 'THEN' CN[H+2)+QZR:
'C9lMMENT' QZR is the smallest number on the machine, not zero,

for the decomposing case. Then back substitution is
performed for the centre elements.

S[H+2]+S[H+2)/CN[H+2]:
S[H+l)+(S[H+l]-S[II+2)*BN[H+2)J/CN[H+l):
'C~MMENT' Back substitution is carried out through both halves

of the matrix, at the same time:
'F9lRK' L4,LS:

L4: 'F9lR' 1+H+3 'STEP' 1 'UNTIL' N 'D9l'

210

S[I)+(S[I).S[Itl)*AN[I)-S[I-2)*D[I)l/CN[I)i
'G0T(/I' L6;

LS: 'F0R' 1+11 'STEP' -1 'UNTIL' ~ '00'
S[I)+(S[I)-S[I+l)*BN[I+l)-S[I+2)*D[I+2)1/CN[I)i

L6: 'J0IN' L4,LSi
'C(/IMMENT' Forward substitution or elimination for the second

time. Performed on the eigenvector only using stored
interchanges and elimination factors;

'F0RK' L7,L8;
L7: 'F0R' 1+1 'STEP' I 'UNTIL' N'/'2-1 '00'

'BEGIN'
'IF' IC[I) 'EQ' 1 'THEN'
'BEGIN'

V+S[I); S[I)+S[I+l); S[I+I)+V;
'END' ;
S[I+l)+S[I+I)-S[I)*AN[I);

'END' ;
'G0T0'L9;

L8: 'F0R' I+N 'STEP' -1 'UNTIL' N-N'/'2+2 '00'
'BEGIN'

'IF' IC [I) 'EQ' 1 'TIIEN'
'BEGIN'

V+S[I); S[I)+S[I-l); S[I-I)+V;
'END' ;
S[I-I)+S[I-I)-S[I)*BN[I);

'END' ;
L9: 'J0IN' L7,L8;

'C0MMENT' Eliminate through the centre elements;
'F0R' I+N'/'2 'STEP' 1 'UNTIL' N-N'/'2 '00'
, BEGIN'

'IF' IC[!] 'EQ' I 'THEN'
'BEGIN'

V+S[I); S[I)+S[I+l); S[I+l)+V;
'END' ;
S[I+I)+S[I+I)-S[I)*AN[I);

'END' ;
S[II+2)+S[II+2)/CN[Il+2);
S[II+l)+(S[II+l)-S[II+2)*BN[II+2)l/CN[H+l);
'F0RK'LlO,Lll;

LID: 'F0R' I+H+3 'STEP' 1 'UNTIL' N '0(/1'
S[I)+(S[I)-S[I-l)*AN[I)-S[I-2)*D[ID/CN[I);
G0T0 Ll2;

Lll: 'F0R' I+H 'STEP' -1 'UNTIL' 1 '00' .
S[I)+(S[I)-S[I~I)*BN[I+I)-S[I+2)*D[I+2D/CN[IJ;

L12: 'J0IN' LlD,Lll;
V+S[N)*S[N);
'F0R' 1+1 'STEP' 1 'UNTIL' N-l '00'
V+V+S[I)*S[I);
V+l/SQRT(V);
'F0R 1+1 'STEP' 1 'UNTIL' N '00'
EIGVEC[L,I)+S[I]*V;

'END' ;
'END' ;

211

PROGRAM II

This program finds the eigenvectors of a symmetric tridiagona1 matrix

by inverse iteration using two processors. The program is written in

standard FORTRAN with the addition of FORK and JOIN routines as implemented

on the Loughborough University of Technology dual processor Interdata 70.

SUBR0UTINE EIGVEP(C,B,NM,EIG,EIGVEC)
C The main diagonal is stored in C, the sub-diagonal in B, the order
C .. of matrix in NM, and the eigenva1ue for which the eigenvector is
C required in EIG. The resulting eigenvector is normalised and placed
C in EIGVEC.

0lMENSI0N C(81),B(81),EIGVEC(81),AN(81),BN(81)
1 CN(81),0(81),S(81),IC(81)

C0MM0N/C3/C(81) ,B(81) ,EIGVEC(81)
C0MM0N/C1/AN(81),BN(81),CN(81),O(81),S(81),IC(81)
C0MM0N/C2/N

C Setting up the. variables in common store
N=NM
IH=N/2
CN(l)=C(l)-EIG
IC(l)=O
00 102 1=2,N
0(1)=0
Icel)=O
CN(I)=C(I)-EIG
BN(I)=B(I)
AN(I)=B(I)

102 C0NTlNUE
$F0RK 1020,1030;1040

C Program now forks to perform Gaussian elimi.nation from both ends of
C the main diagonal of the matrix simultaneously
1020 C0NTlNUE

NST=N-IH+2
I=N+1
00 103 I1=NST ,N
1=1-1
IF(ABS(CN(I)).GE.ABS(BN(I))G0T0 500
V=C;N(I)
CN(I)=BN(I)
BN(I)=V
V=AN(I)
AN(I)=CN(I-1)
CN(I-l)=V
V=O(I)
0(1)=AN(I-1)
AN(I-1)=V
lcel) =1

500 BN(I)=BN(I)/CN(I)
CN(I-1)=CN(I-1)-BN(I)*AN(I)
AN(I-1)=AN(I-1)-BN(I)*0(I)

212

103 C{I!NTINUE
G{I!T{I! 1040

1030 C{I!NTINUE
JFIN=IH-l
D{I! 104 J=l,JFIN
IF(ABS(CN(J)).GE.ABS(AN(J+1))) G{I!T{I! 501
W=CN(J) .
CN(J)=AN(J+l)
AN(J+1)=W
W=BN(J+l)
BN(J+1)=CN(J+l)
CN(J+1)=W
W=D(J+2)
D(J+2)=BN(J+2)
BN(J+2)=W
IC(J)=l

501 AN(J)=AN(J+1)/CN(J)
CN(J+1)=CN(J+1)-BN(J+1)*AN(J)
BN(J+2)=BN(J+2)-D(J+2)*AN(J)

104 C{I!NTlNUE
1040 $J{I!IN
C Elimination of the centre elements is performed seperate1y to
C allow for N being odd or even

IF(lH*2.NE.N) G{I!T{I! 502
IF(ABS(CN(IH)).GE.ABS(AN(IH+1))) G{I!T{I! 503
V=CN(III)
CN(IH)=AN(l+l)
AN(IH+l)=V
V=BN(ffi+l)
BN (IH+ 1) =CN (III+ 1)
CN(IH+1)=V
lC (IH+ 1) =1

503 AN(IH)=AN(IH+1)/CN(III+1)
CN(IH+1)=CN(IH+1)-BN(IH+l)*AN(lH)
G{I!T{I! 509

502 IF(ABS(CN(IH)) .GE.ABS(AN(IH+1))) GOTO 505
V=CN(IH)
CN (IH) =AN (IH+1)
AN(IH+1)=V
V=BN(IH+l)
BN(lH+l)=CN(IH+1)
CN(IH+1)=V
V=D(IH+2)
D(IH+2)=BN(IH+2)
BN(IH+2)=V
lC(IH)=l

504 AN (IH)=AN(III+1)/CN(I11)
CN (IIl+1) =CN(IH+1) -AN(IH) *BN(III+1)
BN(IH+2)=BN (III+2) -AN(IH) *D(IH+2)
IF(ABS(CN(IH+1)) .GE.ABS(AN(IH+2))) G{I!T{I! 505
V=CN(IIl+l)
CN (IH+1) =AN(IlI+2)
AN(IH+2) =V
V=BN (IH+2)
BN(IH+2) =CN(IH+2)

213

CN(III+2)=V
lC(IlI+1)=l

505 AN (IH+ 1) =AN (I1h2) /CN (I 11+ 1)
CN(IH+2)=CN(III+2)-AN(III+1)*BN(III+2)

509 IH=(N-1)/2
D~ 105 I=l,N

105 S(I)=l
C Replace zero in the decompsing case

IF(CN(IH+2) .EQ.O.O) CN(IH+2)=O.000000l
C Back substitution is now performed through the three non zero vectors
C of the remaining two triangular half matrices (CN,BN,D).

S (IH+2) =S (IH+2) /CN (III+ 1)
S(IH+1)=(S(IH+1)-S(IH+2)*BN(IH+2))/CN(IH+1)
$FORK 1060,1070; 1080

C Back substitution is now performed through the remaining half
C matrices simultaneously.
1060 C~NTINUE

IST=IH+3
D~ 106 I=IST ,N

106 S(I)=(S(I)-S(I-1)*AN(I)-S(I-2)*D(I»/CN(I)
G0T0 1080

1070 C~NTINUE
D~ 107 Jl=l, IH
J=IlI+1-J1

107 S(J)=(S(J)-S(J+1)*BN(J+1)-S(J+2)*D(J+2))/CN(J)
1080 $J0IN

$FORK 1081,1091;1099
C A second forward substitution or Gaussian elimination is now
C performed on the eigenvector (S) using only stored elimination
C factors and' interchanges, again in parallel mode.
1081 C0NTINUE

IFIN=N/2-1
D0 108 1=1, IFIN
IF(IC(I).NE.1) G~T0 506
V=S(I)
S(I)=S(I+1)
S(I)l)=V

506 S(I+1)=S(I+1)-S(I)*AN(I)
108 C~NTINUE

G~T~ 1099
1091 C~NTINUE

JIS=N-N/2+2
D~ 109 J1=JIS ,N
I=N+N-N/2+2-J1
IF(IC(I).NE.1)G0T~ 507
Wo'S (I)
S(I)=S(I-1)
S(I-1)=W

507 S(I-1)=S(I-1)-S(I)*BN(I)
109 C~NTINUE
1099 $J~IN

IST=N/2
IFIN=N-IST
D~ 110 I=IST,IFIN
IF (IC(I).NE.1) G~T0 508

214

y=S (I)
. S(.I)=S(I+1)

S(I+1)=V
508 S(I+l)=S(I+l)-S(I)*AN(I)
110 C0NTI NUE

S(IH+2)=S(IH+2)/CN(IH+2)
S (IH+ 1) = (5 (IH+ 1) -S (IH+2) * BN (IH+2)) /CN (111+ 1)

FORK 1111, 1121; 1129
C Back substitution is performed a second time in parallel mode.
1111 C0NTINUE

IST=IH+3
D0 III I=IST ,N
S(I)=(S(I)-S(I-l)*AN(I)-S(I-2)*D(I))/CN(I)

III C0NTINUE
G0T0 1129

1121 C0NTINUE
D0 112 Jl=l,IH
I=IH+1-Jl
S(I)=(S(I)-S(I+1)*BN(I+1)-S(I+2)*D(I+2))/CN(I)

112 C0NTINUE
1129 J01N

V=S (1) *S (1)
C The eigenvector is now normalised

D0 113 1=2,N
V=V+S(I)*S(I)

113 C0NTINUE
V=SQRT(V)
D0 114 1=1,N
EIGVEC(I)=S(I)/V

114 C0NTINUE
RETURN
END

215

PROGRAM 12

This procedure uses the Sturm sequence given in section 5.2 and a

bisection method to obtain the eigenvalues of a sparse symmetric quin-

diagonal matrix. The program is written as a modification of PROGRAM 1.

'PR~CEDURE' STURM{e,B,D,N,Ml,M2,P,EPS1,RELFEH,EPS2,Z,X);
'C~MMENT' e is the diagonal, B the sub-diagonal, and D the diagonal of

semi-bandwidth P of the matrix of order N (N)4). The eigenvalues Ml
to M2 (MbSM2, eigenvalue 1 being the smallest) are calculated by
bisection and stored in the vector X[l:N]. EPSl is the accuracy
required and REL'FEH is the number closest, to machine zero. The
total number of iterations is stored in Z and EPS2 gives the actual
accuracy obtained;

'VALUE' C,D,N,Ml,M2,P,EPS1,RELFEH;
'ARRAY' e,B,D,X;
'REAL' EPS1,EPS2,RELFEH;
'INTEGER' N,P,Ml,M2;
'BEGIN'

'ARRAY' R[P:N,3:P],U,V[1:N];
'REAL' XMIN,XMAX,H;
, INTEGER' I,J;
B[l]*<l;
H+ABS{B{N])+ABS{D[N]);
XMAX+C (N] +H;
XMIN+C [N]-H;
'F0R' I+N-l 'STEP' -1 'UNTIL' 1 'D0'
'BEGIN'

H+ABS{B[I])+ABS{B[I+l]);
'IF' P-I+l 'LE' N 'THEN'
H+H+ABS{D[P-l+I]);
, IF' I ' GE' P 'THEN'
H+H+ABS{D[I]) ;
'IF' e[I]+H 'GT' XMAX 'THEN' XMAX+C[I]+II;
'IF' C[I]-H 'LT' XMIN 'THEN' XMIN+C[I]-II;

'END' ;
EPS2+RELFEH*{'IF' XMIN+XMAX 'GT' 0 'THEN' XMAX 'ELSE' -XMIN);
'IF' EPSl 'LE' 0 'THEN' EPS1~EPS2;
EPS2~O.5*EPS1+7*EPS2;

'F0R' I+P 'STEP' 1 'UNTIL' N 'D0'
R[I,P]+D[I] ;
'F0R' 1+2 'STEP' 1 'UNTIL' P-l 'D0'
V[I]+B[I];
'BEGIN'

'ARRA~ WU[Ml:M2]; 'REAL' S,Xl,XU,XO;
'INTEGER' T,A,K,L;
XO<-XMAX;
'F0R' l+Ml 'STEP' 1 'UNTIL' M2 'D0'
'BEGIN'

X[I]+XMAX; WU[I]+XMIN;
'END' ;
Z+O;
'F0R' L+M2 'STEP' -1 'UNTIL' Ml 'D0'
'BEGIN'

XU+XMIN;
'F0R' I+L 'STEP' -1 'UNTIL' Ml '00'

216

C~NTlN:

'BEGIN'
'IF' XU 'LT' WU[I] 'THEN'
'BEGIN'

XurWU[I]; 'G~T~' C~NTIN;
'END' ;

'END' ;
'IF' XO 'GT' X[L] 'TllEN' XO<-X[L];
'F~R' Xl+-(XU+XO)/2 'WHILE' XO-XU 'GT'

2*RELFEH*(ABS(XU)+ABS(XO))+EPSl 'D~'
'BEGIN' Z+Z+l;

U[l] 'IF' C[l]-XI 'EQ' 0 'THEN' RELFEH 'ELSE' C[l]-Xl;
'F~R' 1+2 'STEP' 1 'UNTIL' P-l 'D~'
'BEGIN'

U[I]+C[I]-XI-V[I]*V[I]/U[I-l];
'IF' U[I] 'EQ' 0 'THEN' U[I]-RELFEH;

'END' ;
'F~R' I+P 'STEP' 1 'UNTIL' N 'D~';
'BEGIN'

S+R[I,P]+R[I,P]*V[I-P+2]/U[I-P+l];
'F~R' K+P-2 'STEP' -1 'UNTIL' 3 'D~'
'BEGIN'

I!!.T+I_K+lo ,
S+-S*Y[T]/U[T-l];
'IF' T 'GE' P 'THEN'
'F~R' J+P-K-2 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J]*R[T,P+I-K-J]/U[I-P+J+l];
R [I, K] +S;

'END' ;
S+B[I]-S*V[I-l]/U[I-2];
'IF' I-I 'GE' P 'THEN'
'F~R' J+P-4 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J]*R[I-l,P-l-J]/U[I-P+J+l];
V[I]+S;
S+C[I]-XI-S*V[I]/U[I-l];
'F~R' J+P-3 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J]*R[I,P-J]/U[I+P+J+l];
'IF'S 'NE' 0 'TIIEN' U[I]+S 'ELSE'
U[I]+RELFEH;

'END';A+O;
'F~R' 1+1 'STEP' 1 'UNTIL' N 'D~'
'IF' U[I] 'LT' 0 'TIIEN' A+A+l;
'IF' A 'LT' L 'THEN'
'BEGIN'

'IF' A 'LT' MI'TIIEN' XU ...
WU[Ml]+Xl; 'ELSE'

'BEGIN'
XU+WU [A+l]+Xl;
'IF' X[A] 'GT' Xl 'THEN'

X[A]+Xl;
'END' ;

'ENU'
'ELSE' XO+Xl;

'END' ;
X[L]+(XO+XU)/2;

·'END' ;
'END' ;

'END' ;

217

PROGRAM l2A

This program determines the eigenvalues of a symmetric quin-

diagonal matrix of semi-bandwidth P, using the modified bisection

algorithm of Chapter 5. Also included are the modifications suggested

by Tewarson for small element replacement.

'PR0CEDURE' MBQS(C,B,D,N,Nl,N2,P,EPS,QZR,EIG);
'C0MMENT' C is the diagonal, B the sub-diagonal, and D the diagonal of

semi-bandwidth P of the matrix of order N. The eigenvalues NI to
N2 (N2~Nl, eigenvalue 1 being the smallest) are calculated by the
modified bisection method and stored in EIG[1:N2-Nl+l]. EPSl is
the accuracy required and QZR the number closest to machine zero
(used to prevent zero divisions);

'ARRAY' C,B,D,EIG;
'REAL' EPS,QZR;
'INTEGER' N,P,Nl,N2;
'BEGIN'

'ARRAY' R[P:N,3:P],U,V[1:N];
'REAL' MIN,MAX,S,H,NEW,NEWER,LAMBDA;
'INTEGER' I,J,T,K,L,M;
B[l]+O;
H+ABS(B[N])+ABS(D[N]); ,
MAX+C[N]+H;
MIN+C[N]-Hj
'F0R' I+N-l 'STEP' -1 'UNTIL' 1 'D0'
'BEGIN'

H+ABS(B[I]+ABS(B[I+l]:J;
'IF' P-I+l 'LE' N 'THEN'
H+II+ABS(D[P-l+I]);
'IF' I 'GE' P 'THEN'
H+II+ABS(D[I]) ;
'IF' C[I]+H 'GT' MAX 'THEN' MAX+C[I]+H;
'IF' C[I]-H 'LT' MIN 'THEN' MIN+C[I]-H;

'END' ;
'F0R' I+P 'STEP' 1 'UNTIL' N 'D0'
R[I ,P]+D[I];
'F0R' 1+1 'STEP' 1 'UNTIL' P-l 'D0'
V[I]+B[I] ;
L+Nl-l;

LABA: 'IF' L 'GE' N2 'THEN' 'G0T0' EXIT;
LAMBDA+(MIN+MAX)*O.5;

LABB: M+O;
U[l]+C[l]-LAMBDA;
'IF' U[l] 'LT' 0 'THEN' M+M+l;
'IF' L-M 'LT' 0 'OR' L-M-N+I 'GT' 0 'THEN' 'G0T0' LABC;
'IF' U[l] 'EQ' 0 'THEN' U[l]+QZR;
'F0R' 1~2 'STEP' 1 'UNTIL' P-l 'D0'
'BEGIN'

S+C[I]-LAMBDA-V[I]*V[I]/U[I-l];
'IF'S 'LT' 0 'THEN' M+M+l;
'IF' L-M 'LT' 0 '0R' L-M-N+I 'GT' 0 'THEN' 'G0T0' LABCj

218

'IF'S 'NE' 0 'THEN' U[I]t-S 'ELSE' U[I]+QZR;
'END' ;
'F~R' I+P 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

S+-R [I, P)*Y[I-P ... 2l/U [I-P ... l] ;
'IF' ABS(S) 'LT' 0.0000001 'TIIEN' S+R[I,P-l]+O
'F~R' K+P-2 'STEP' -1 'UNTIL' 3 'D~'
'BEGIN'

T+I-K+l;
S+S*Y[TJ/U[T-l);
'IF' T 'GE' P 'THEN'
'F~R' J+P~K-2 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J)*R[T,P+l-K-J)/U[I-P+J+l];
'IF' ABS(S) 'GT' 0.0000001 'TIIEN' R[I,K]+S 'ELSE' R[I,K]+S~O;

'END' ;
S~B[I)-S*Y[I-l)/U[I-2];
'IF' I-I 'GE' P 'THEN'
'F~R' J+P-4 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J)*R[I-l,P-l-J]/U[I-P+J+l);
'IF' ABS(S) 'GT' 0.0000001 'THEN' Y[I)+S 'ELSE' Y[I)+S+O;
S+C[I)-LAMBDA-S*S/U[I-l);
'F~R' J+P-3 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J)*R[I,P-J]/U[I-P+J+l);
'IF'S 'LT' 0 'THEN' M+M+l;
'IF' L-M 'LT' 0 '~R' L-M-N+I 'GT' 0 'THEN' 'G\'1T\'1' LABC;
'IF'S .'NE' 0 'THEN' U[I)+S 'ELSE' U[I]+QZR;

'END' ;
LABC: 'IF' L-M 'GE' 0 'TIIEN'

'BEGIN'

EXIT:
'END' ;

_"';> NEWER+MIN;
MIN+LAMBDA;
LAMBDA+LAMBDA+(LAMBDA-NEWER) *0.5;

'END'
'ELSE'
'BEGIN'

LAMBDA+(LAMBDA+MIN) *0. 5
'IF' (LAMBDA-MIN)*O.5/ABS(LAMBDA) 'LT' EPS
'THEN'
'BEGIN'

MIN+2*LAMBDA-MIN;
'F\'1R' I+L+l 'STEP' 1 'UNTIL'
('IF' M 'GT' N2 'TIlEN' N2 'ELSE' M)
'D\'1' EIG[I-Nl+l]+LAMBDA;
L+M;
'GOTO' LABA;

'END' ;
'END' ;
'G~T\'1' LABB;

219

PROGRAM 13

The following program is the ALGOL 60 program to determine the

eigenvectors of a banded syn~etric quindiagonal matrix of semi-bandwidth

P using inverse iteration.

'PR0CEDURE' EIGVEC (C,B,D,N,P,M,EIG,VEC);
'C0MMENT' C is the diagonal, B the sub-diagonal and 0 the diagonal of semi­

bandwidth P of the (NXN) matrix N>4. There are M eigenvectors
required with corresponding eigenvalues stored in EIG. When the
eigenvectors have been determined by inverse iteration they are
stored in the columns of VEC.

'VALUE' C,B,D,N,M,P,EIG;
'ARRAY' C,B,D,EIG,VEC;
'INTEGER' N,P,M;
'BEGIN'

'ARRAY' V[1:N,P-l:N),U[P:N,1:P-2),W,Y,[2:P),X[1:P).Z[3:P).VT[1:N);
'REAL'S;
'INTEGER' 'ARRAY' IC[l:N-l);
'INTEGER' I,J,K,L,R,T;
X[P-l)+Y[P-l)+Z[P)+O;
'F0R R+l 'STEP' 1 'UNTIL' M '00'
'BEGIN'

'C9MMENT' This sets up the matrix in U,V,W,X,Y,Z and sets
the initial vector VT to alII's.

'F0R' 1+1 'STEP' 1 'UNTIL' N '00'
VT[I)+l;
T+O;
'F0R' 1+2 'STEP' 1 'UNTIL' P-2 '00'
'BEGIN'

X[I)+C[I)-EIG[R);
Y[I)+W[I)+B[I) ;
Z[I+l)+O;

'END' ;
W[P-l)+B[P-l) ;
X[l)+C[l)-EIG[R);
'F0R' 1+1 'STEP' 1 'UNTIL' N '00'
'BEGIN'

'F0R' J+P-l 'STEP' 1 'UNTIL' N '00'
V[I,J)+O;

'END' ;
'F0R 1+1 'STEP' 1 'UNTIL' N '00'
'BEGIN'

'F0R' J+l 'STEP' 1 'UNTIL' P-2 '00'
U[I,J)+O;

'END' ;
'IF' P-3 'LT' N-P 'THEN'
'BEGIN'

'F0R' 1+0 'STEP' 1 'UNTIL' P-3 '00'
U[P+I,I+l]+D[P+I);
'F0R' I+P-2 'STEP' 1 'UNTIL' N-P '00'
V[P+I,I+l)+D[P+I);
'F0R' 1+0 'STEPl 'UNTIL' N-P '00'

220

V[I+1,P+I)+D[P+I):
'END'
'ELSE'
'BEGIN'

'F0R' 1+0 'STEP' 1 'UNTIL' N-P 'D0'
U[P+I,I+1)+V[I+1 ,P+1)+D[P+I):

'END' :
'F0R' I+P 'STEP' 1 'UNTIL' N 'D0'
'BEGIN'

V[I,I)+C[I)-EIG[R):
V[I,I-1)+V[I-1,1)+B[I):

'END' :
V[P-1,P-1)+e[P-l)-EIG[R):
V[P-2,P-1)+B[P-1):
'F0R' 1+1 'STEP' 1 'UNTIL' P-4 'D0'
'BEGIN'
'C0MMENT' First stage of interchange and elimination of

variables in rows 1-P-4. Interchanges noted in IC;
L+O; S+ABS(X[I)):
'IF'S 'LT ABS(W[I+lj) 'THEN'
'BEGIN'

L+I+l': S+ABS(W[I+l)):
'END' :
'F0R' J+P 'STEP' 1 'UNTIL' N 'D0'
'IF' S 'LT' ABS(U[J, I]) 'THEN'
'BEGIN'

L+J: S+ABS(U[J,I)):
'END' :
IC[I)+L:
'IF' L 'EQ' 1+1 'THEN'
'BEGIN'

S+X[I): X[I)+W[L): W[L)+S:
S+Y[L): Y[L)+X[L): X[L)+S:
S+Z[I+2): Z[I+2)+Y[I+2): Y[I+2)+S:
'F0R' J+P-1 'STEP' 1 ' UNTIL' N 'D0'
'BEGIN'

S+V[I,J): V[I,J)+V[L,J):
V[L,J)+S:

'END'
'ELSE'
'IF' L 'NE' 0 'THEN'
'BEGIN'

S+X[I): X[I)+U[L,I):
U[L,I)+S:
S+Y[I+l): Y[I+l)+U[L,I+l):
U[L,I+l)+S:
S+Z[I+2): Z[I+2)+U[L,I+2):
U[L,I+2)+S:
'F0R' J+P-l 'STEP' 1 'UNTIL' N 'D0'
'BEGIN'

S+V[I,J); V[I,J)+V[L,J):
V[L,J)+S;

'END' :
'END' :
'BEGIN'

S+W[I+l)+W[I+l)/X[I):

221

X[I+l)+X[I+l)-S*Y[I+l);
Y[I+2)+Y[I+2)-S*Z[I+2);
'F~R' J+P-l 'STEP' 1 'UNTIL' N 'D~'
V[I+l,J)+V[I+l,J)-S*V[I,J);
'F~R' J+P 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

'IF' U [J, I) 'NE' 0 'THEN'
'BEGIN'

S+U[J,I)+U[J,I)/X[I);
U[J,I+l)+U[J,I+l)-S*Y[I+l);
U[J,I+2)+U[J,I+2)-S*Z[I+2);
'F0R' K+P-l 'STEP' 1 'UNTIL' N 'D~'
V[J,K)+V[J,K)-S*V[I,K);

'END' ;
'END' ;

'END' ;
'END' ;

'END' ;
'C0MMENT' Elimination of variables P-3 and P-2 performed

seperately as diagonals W,X,Y,Z merge into Vj

I+P-3; L+O; S+ABS(X[I));
'IF'S 'LT' ABS(W[I+l)) 'THEN'
'BEGIN'

L+I+l; S+ABS(W[I+l));
'END' ;
'F0R' J+P 'STEP' 1 'UNTIU N '00'
'IF'S 'LT' ABS(U[J,I)) 'THEN'
'BEGIN'

L+J; S+ABS(U[J,I));
'END'i
IC[I)+Li
'IF' L 'EQ' 1+1 'THEN'
'BEGIN'

S+X[I); X[I)+W[L)i W[L)+S;
S+Y[L); Y[L)+X[L)i X[L)+S;
'F~R' J+P-l 'STEP' 1 'UNTIL' N '00'
, BEGIN'

S+V[I,J)i V[I,J)+V[L,Jj;
·V[L,Jj+Si

'END' ;
'END'
'ELSE'
'IF' L 'NE' 0 'THEN'
'BEGIN'

S+X[Ij; X[Ij+U[L,Ij; U[L,Ij+S;
S+Y[I+lj; Y[I+lj+U[L,I+lji U[L,I+l)+S;
'F~R' J+P-l 'STEP' 1 'UNTIL' N '00'
'BEGIN'

S+V[I,Jj;V[I,Jj+V[L,Jj; V[L,Jj+Si
'END'i

'END'
'ELSE'
'IF' L 'NE' 0 'THEN'
'BEGIN'

S+X[Ij; X[I)+U[L,Ij; U[L,I)+Si
S+Y[I+l); Y[I+lj+U[L,I+lji U[L,I+l)+Si
'F0R' J+P-l 'STEP' 1 'UNTIL' N '00'

222

, BEGIN'
S+V[I,J); V[I,J)+V[L,J); V[L,J)+5;

'END' ;
'END' ;
S+W[I+1)+W[I+1)/X[I);
X[I+1)+X[I+1)-S*Y[I+1);
'F~R' J+P-1 'STEP' 1 'UNTIL' N 'D~'
V[I+l,J)+V[I+l,J)-S*V[I,J);
'F~R' J+P 'STEP' 1 'UNTIL' N 'D0:
'BEGIN'

, IF' U [J , I) 'NE' 0 'TIIEN'
, BEGIN'

S+U[J,I)+U[J,I)/X[I);
U[J,I+1)+U[J,I+1)-S*Y[I+1);
'F~R' K+P-1 'STEP' 1 'UNTIL' N '00'
V[J,K)+V[J,K)-S*V[I,K);

'END' ;
'END' ;
I+P-2; L+D; S+ABS(X[I));
'IF'S 'LT' ABS(W[I+1)) 'THEN'
'BEGIN'

L+I+1; S+ABS(W(I+1));
'END' ;
'F0R' J+P 'STEP' 1 'UNTIL' N 'D~'
'IF' S 'LT' ABS(U [J ,I]) 'TIlEN'
'BEGIN' .

L+J; S+ABS(U[J,I));
'END' ;
IC[I)+L;
'IF' L 'EQ' 1+1 'THEN'
'BEGIN'

S+X[I); X[I)+W[L); W[L)+S;
'F~R' J+P-l 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

S+V[I ,J); V[I ,J)+V[L,J); V[L,.J)+S;
'END' ;

'END'
'ELSE'
'IF' L 'NE' 0 'THEN'
'BEGIN'

S+X[I);X[I)+U[L,I);U[L,I)+S;
'F~R' J+P-1 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

S+V[I,J); V[I,J)+V[L,J); V[L,J)+S;
'END' ;

'END' ;
S+W[I+1)+W[I+1)/X[I);
'F0R' J+P-1 'STEP' 1 'UNTIL' N 'D0'
V[I+1,J)+V[I+1,J)-S*V[I,J);
'F~R' J+P 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

, IF' U [J , I) 'NE' 0 'TIlEN'
'BEGIN'

S+U[J,I)+U[J,I)/X[I);
'F~R' K+P-1 'STEP' 1 'UNTIL' N 'D~'
V[J,K)+V[J,K)-S*V[I,K);

'END' ;
'END' ;

223

LABl:

'C0MMENT' The variables to be eliminated are now contained
in the lower P-l rows of V, and normal Gaussian
elimination is now performed;

'F0R' I+P-l 'STEP' 1 ' UNTIL' N-l '00'
'BEGIN'

L+O; S+ABS(V[I,I));
'F0R' J+I 'STEP' 1 'UNTIL' N '00'
'IF'S 'LT' ABS(Y[J,I]) 'THEN'
'BEGIN'

L+J; S+ABS(V[J,I));
'END' ;
IC[I)+L;
'IF' L 'NE' 0 'THEN'
'F0R' J+I 'STEP' 1 'UNTIL' N '00'
'BEGIN'

S+V[I,J); V[I,J]+V[L,J]; V[L,J)+S;
'END';
'FOR' J+I+l 'STEP' 1 'UNTIL' N 'DO'
'IF' V[J ,I) 'NE' 0 'THEN'
'BEGIN'

S+V [J, I)+V[J, I)/V[I, I) ;
'F0R' L+I+l 'STEP' 1 'UNTIL' N '00'
V[J,L)+V[J,L)-S*V[I,L);

'END' ;
'END' ;
'IF' V[N,N) 'EQ' 0 'WEN' V[N,N)';RELFEII;
'C0MMENT' to avoid division by zero in the decomposing case

the last element is replaced by a small number if it is
zero. Back substitution now takes place;

VT [N)+VT [Nj/V [N ,N] ;
'F0R' I+N-l 'STEP' -1 'UNTIL' P-l '00'
'BEGIN'

S+VT[I);
'F0~ J+I+l 'STEP' 1 'UNTIL' N '00'
S+S-V[I,J)*VT[J);
VT[I)+S/V[I,I) ;

'END' ;
'F0R' I+P-2 'STEP' -1 'UNTIL' 1 '00'
'BEGIN'

S+VT[I);
'F0R' J+P-l 'STEP' 1 'UNTIL' N '00'
S+S.V[I,J)*VT[J]; .
VT[I)+(S-Y[I+l)*YT[I+l)-Z[I+2)*VT[I+2])/X[I);

'END' ;
S+O;
FOlARA(l, l,N,O,O,S, YT[I), VT[I] ,I ,S,S);
'C0MMENT' A N.A.G. subroutine is used here to perform double

length accumulation of products whilst normalising the
vector.

S+l/SQRT(S);
'F0R' 1+1 'STEP' 1 'UNTIL' N '00'
VT[I)+VT[I]*S;
'IF' T 'EQ' 1 'THEN' 'G0T0' LAB2:
'C0MMENT' Elimination with interchanges now takes place using

stored information in two major steps;
'F0R' 1+1 'STEP' 1 'UNTIL' P-2 '00'
'BEGIN'

224

'IF' IC[I] 'NE' 0 'THEN'
'BEGIN'

S+VT[I]; VT[I]+VT[IC[Ii];
VT[IC[I]]+S;

'END' ;
S+VT[I];
VT[I+l]+VT[I+l]-S*W[I+l];
'P~R' J+P 'STEP' 1 'UNTIL' N·'D~'
VT[J]~VT[J]-S*U[J.I];

'END' ;
'P~R' I+P-l 'STEP' 1 'UNTIL' N-l 'D~'
'BEGIN'

'lP' IC[I] 'NE' 0 'THEN'
'BEGIN'

S+VT[I]; VT[I]+VT[IC[I]];
VT [IC[I Jl+S;

'END' ;
S+VT[I];
'P~R' J+I+l 'STEP' 1 'UNTIL' N 'D~'
VT[J]+VT[J]-S*V[J,I];

'END' ;
T+T+l;
'G~T~' LABl; ,

LAB2: 'P~R'. J+l 'STEP' 1 'UNTIL' N 'D~'
VEC [J ,R]+VT [J] ;

'END' ;
·'END' ;

225

PROGRAM 14

This program finds the eigenvalues of an unsymmetric banded quin-

diagonal matrix of semi-bandwidth P using MulIers method. Also included

are the two routines used to perform a complex division, and to find the

square root of a complex number.

'PR!ilCEDURE' MULLER(C,B,D,E, F, N,P, EPS,QZR,EIG,EIGI) ;
'C!ilMMENT' The main diagonal of the matrix of order N is stored in the

vector C. The-two sub-diagonals are stored in Band D, and the
bands at the semi-bandwidth P are stored in E and F. The accuracy
required is placed in EPS and QZR is the smallest number above
machine zero to replace zero divisors. The eigenvalues are
placed in EIG,EIGI when determined;

. 'VALUE , C,B,D,E,F,N,P,EPS,QZR;
'ARRAY' C,B,D,E,F,EIG,EIGI;
'REAL' EPS,QZR;
'INTEGER' N,P;
'BEGIN'

'ARRAY R,RI,RL,RLI[P:N,3:P),U,U1,V,V1,VL,VLI,SN,SN1,TN,TN1[1:N);
'INTEGER' T,Bl,1,J,K,L,M,Z;
'REAL' Xl,X2 ,X3 ,F! ,F2 ,F3 ,XlI ,XU ,X31 ,FlI ,F21 ,F31 ,X,X1 ,G,GI ,A,AI, W, .

WI,Y,YI,VS,VS1,INT,INTI,H,H1,S,SI,SL,SLI;
'F!ilR' I+P 'STEP' 1 'UNTIL' N 'D0'
'C0MMENT' The vectors for calculating and storing the Sturm

sequence are initialised;
, 'BEGIN' .

R[I,P)+D[I) ;
RL [I ,P)+F [1);
RI [I,P)+RLI[I,P)+O;

'END' ;,
'F0R' 1+2 'STEP' 1 'UNTIL' P-l 'D0'
'BEGIN'

VI [I)+VLI [I) 0;
VL[I)+E[I) ;
V[1)+B[I] j

'END' ;
Bl+O;
V[l]+VI [I)+VL[l)+VLI [l]+Oj

. L+l;
Z+O;
X3+C[l)+O.I;
X3I+O;

LABl: 'BEGIN'
Z+Z+1
'IF' C[l)-X3 'EQ' ° 'AND' X31 'EQ' 0 'THEN'
'BEGIN'

U[l)+uI [l)+QZR;
'END'
'ELSE'
'BEGIN'

U[l)+C[l)-X3; UI[l)+-X3I;
'END' ;
'F{ilR' 1+2 'STEP' 1 'UNTIL' P-l 'D0'

226

'BEGIN'
INT~V[I]*VL[I]-VI[I]*VLI[I];
INTI~V[I]*VLI[I]+VL[I]*VI[I];
DIV(INT,INTI,U[I-I],UI[I-I],INT,INTI);
U[I]+C[I]-X3-INT;
UI [I]~-X3I-INTI;
'lP' Uti] 'EQ' 0 'AND' UI[I] 'EQ' 0 'TIIEN'
U[I]+QZR;

'END' ;
'P0R' I~P 'STEP' 1 'UNTIL' N 'D0'
'BEGIN'

DIV[VL[I-P+2],VLI[I-P+2],U[I-P+1].UI[I-P+1].
INT, INTI) ;
DIV(V[I-P+2].VI[I-P+2].U[I-P+1].UI[I-P+1].
H.HI);
R[I.P-l]+-R[I,P]*INT+RI*INTI;
RI[I.P-l]+-RI[I,P]*INT-R[I,P]*INTI;
RL[I,P-1]~-RL[I.P]*H+RLI[I.P]*HI;
RLI[I,P-l]~-RLI[I.P]*H-RL[I,P]*HI;
'P~R' K+P-2 'STEP' -1 'UNTIL' 3 'D~'
'BEGIN'

T~I-K+l;

DIV(VL[T].VLI[T].U[T-I].UI[T-I].INT,INTI);
DlY{V[T],VI[T],U[I-l],UI[T-1],H,HI);
S~-R[I,K+l]*INT+RI[I,K+l]*INTI;
SI+-R[I,K+1]*INTI-RI[I,K+1]*INT;
SL+-RL[I,K+1]*H+RLI[I,K+l]*HI;
SLI+-RL[I,K+l]*HI-RLI[I,K+I]*H;
'lP' T 'GE' P 'THEN'
'F~R' J+P-K-2 'STEP' -1 'UNTIL' 0 'D~'
'BEGIN'

DIV(RL[T,P+I-K-J],RLI[T,P+1-K-J],
U[I-P+J+l] ,UI[I-P+J+l] ,INT,INTn;
DIV(R[T,P+I-K-J],RI[T,P+I-K-J]i
U[I-P+J+l],UI[I-P+J+1],H.HI):
S+S-R[I,P-J]*INT+RI[I,P-J]*INTI:
SI+SI-R[I,P-J]*INTI-RI[I,P-J]*INT:
SL+SL-RL[I,P-J]*H+RLI[I,P-J]*HI:
SLI+SLI-RLI[I,P-JJ*H-RL[I,P-J]*HI;

'END' ;
R[I,Kl+S; .
RI[I,Kl+SI;
RL[I,KJ+SL;
RLI[I,K]+SLI;

'END' ;
DIV(VL[I-1],VLI[I-11,U[I-21,UI[I-2],INT,INTI);
DIV(V[I-1],VI[I-I],U[I-2],UI[I-2],H,HI);
S+B[Il-R[I,3]*INT+RI[I,3]*INTI;
SI+-R[I,31*INTI-RI[I,31*INT;
SL+E[I]-RL[I,3]*H+RLI[I,31*HI:
SLI+-RL[I.3]*HI-RLI[I,3]*H:
'lP' I-I 'GE' P 'THEN'
'P~R' J+P-4 'STEP' -1 'UNTIL' 0 'D~'
'BEGIN'

DIV(RL[I-l,P-I-J],RLI[I-I,P-l,J],
U[I-P+J+l] ,UI[I-P+J+l1 ,INT,INTI);
DIV(R[I-l,P-1-J],RI[I-1,P-I-Jl,
U[I-P+J+l1,UI[I-P+J+1],H,HI);

227

S+S-R [I. P-J) ; *INT+RI (I • P-J] *INTI ;
SI+SI-R[I.P-J)*INTI-RI[I.P-J)*INTI;
SL+SL-RL (I • P-J) *1I+R1.1 [[. P-J) "Ill ;
SLI +SLI -RLI [I. P-.1] "III-IU. [l • P-.1]"H

'END' ;
V [1]+S;
VI[I)+SI;
VL [I]+SL;
VLr [I)+SLI;
DIV(V[I).VI[I) .U[I-l].lIl (1-1] .1NT,INTI);
S+C (1)- X3- V L (I j" [NT + V L I (I) * 1 NTI ;
S!<--X3I-VL (I)"INTl-VU (I] * IN'!';
'F0R' .1"-1'-3 'STEP' -I 'IINTIL' 0 'IJ0'
'BEGIN'

DIV(R(I.P-J) ,RI[I.I'-.I) ,1111-1'+.1+1),
UI [r-p+J+I) ,II,III);
S+S-RL [1.1'-.1] "1I+RLl [1,1'-.1 j "Ill;
SI+SI-RL[I ,P-.l)'III-IlLI [I ,1'-.1]*11;

'END' ;
U[1]+S;
Ur[I]+S;
'IF' U[I] 'EQ' 0 'ANll' Illlll 'EQ' 0 'TIIEN' lI[I)+QZR;

'END' ;
'C0MMENT' After fi ndi ng the S tU1"m se1lut)nctl it is "deflated"

to prevent redett)rulination of known ei genv!llues;
'F0R' J+2 'STEP' I 'UNTIL' L '1l0'
'BEGIN'

II+EIG(.J-I]-X3;
IIl+EIGI[J-n-X31;
IJIV(U[N+2-J] ,Ul!N+2-.Jj ,1I,1I1,II[N+2-Jj ,1I1IN+2-JJ);

'END' ;
F3+UIN] ;
F3I+UI [N];
, F0R' J+-N -I ' STE 1" -I 'lINn L' N - 1.+ 1 ' lli6 '
, BEGIN'

IhF3; 1lI+ I' 3 I ;
F3+I\"U [J]-IIP U I [.J) ;
F3I .. ~U·U(J]+1I"Ul [.I];

'END' ;
'C0MMENT' As three function evaluutions ut three different points

are required for Mullers method at each step, two are chosen
randomly. The third is found from the previous two using the
Secant formula, and the method can then proceed normally.
The following code gover-ns this process.

'IF' Bl 'LT' 2 'TIIEN'
'BEGIN'

'IF' III 'EQ' 0 'TIIEN'
'BEGIN'

81 .. -1;
'F0ft' J d 'STl!P' 1 'lINn L' N '1li6'
'BEGIN'

SN[Jj<lJ[J]; SNL[.Jj<UJ[.Ij;
'END' ;
XL+X3; XlI .. X3I; X3<QII+I;
FhIJ[N]; FlI+LJI IN];
'G0Ti6' LABI;

228

'END'
'ELSE'
'BEGIN'

B1+2;
'I'~R' J+l 'STEP' I 'UNTIl.' N 'D~'
'BEGIN'

TN[.J)<U[.J] ;
TNI [./]t-UI [J];

'ENIJ' ;
X2,-X3; X2h-X31;
F2+LJ [N]; F2I t-UI [N] ;
IJt-TN [NFSN IN];
HI+TNI[N]-SNI[N];
INT+X2-Xl;
INTl+X2I-XII ;
IJIV(H,HI,INT,INTl,W,I~I) ;
DIV(TN[N] ,'I'Nl [NJ ,W,WI,II,III);
X3+X2-1I;
X31+X2I-1I1;
X+X3-X2;
XI+X31-X21;
A+X2TXl;
Al+X2I-XI I;
DIV(X,XI,A,AI,A,AI);
'G~T~' LABI;

'END' ;
'END' ;
'C~MMENT' Mullers fOl'llllll" is now calculated using three previous

function evaluations at points within the cigenvalue spe..:trum;
G+(1+2*A)*(F3-F2)-(2*AI)O(F31-1'21)-(A*A-AI*AI)'

(F2-Fl)+2*A"AI* (1'2J -I'll);
GI+(!+2*A)O(F31-F21)+Z*AI*(F3-1'2)-(A*A-AI*AI)*

(F21-FII)-(1'2-1'1)*Z"A*AI;
W+A* (1'2-1'l) -AI" (1'21 -I'll);
Wl+AI*(F2-Fl)+A*(1'21-Fll) ;

Y+(F3- F2-W) *A- (I' 3- 1'21 - W 1)* A I;
YI+(F3-F2-W)*AI+(F31-F2I-WI)*A;
VS+(!+A)*Y-AI*YI;
VSI+(l+A)*YI+Aloy;
W+4* (VS*F3-VSI*F31);
WI+4*(VSI*F3+VS k F3J) ;
Y+G*G-GI*GI-W;
Yl+2*G*GI-WI;
ISQRT (Y, YI, Y, Y I) ;
lI+G-Y;
Ill+GI-YI ;
INT+G+Y;
INTI+<a+YI;
W+H*Il+lIhllI ;
Wl+INT*INT+INTl*INTl ;
VS+-2*F3*(1+A)+2"F3I k AJ;
VSI+-2* (F3*AI+1'31" (ItA)) ;
'IF' W 'GT' WI 'TIIEN'
lJIV(VS,VSI ,11 ,Ill ,A,Al)
'ELSE'
DIV(VS,VSI,INT,JNTl,A,At) ;
W+X"A-XI "AI;
WI+XI"A+X+AI;
H,-SQRT(W"W+WI*WI) ;
'IF' H/SQRT(X3"X3+X31*XSIJ '1.'1" I:PS 'TIIEN'

229

'BEGIN'
EIGfLJ+X3+W;
EIUf [L]<X3I+Wl;
INT.EIG [L] -XI;
INTI+EIGf [L] -XII;
IJIV(FI,FII,lNT,INTI ,FI,I'I/);
lNT+EIG[LI-X2;
INTI<EIGI [LI-X21;
lJIV(F2,F21 ,INT,INTI,F2,F2f);
I.+L+l ;
Z-(-O;
11+1'2-1'1 ;
ItI<-F2I-FlI ;
INT<-X2-Xl ;
INTI+X21-Xll ;
'IF' INT 'EQ' 0 'AND' INTl '1:<)' II
'TIIEN' INT+EPS;
X+W;
Xl<WI;
DIV(Il,IlI, IN'J',IN'J'I ,11,111) ;
DIV(F2,F2I ,II,III,II,III};
X3<-X2-1I;
X3l+X2! -Ill;
BI+! ;
'IF' L 'EQ' N+I ''J'IIEN' 'C;~T~' LAII2;
'G~'J'~' LABI;

, END'
'ELSE'
'BEGIN'

XI+X2; XlI+X21;
X2+X3; X2I+X31;

X3.X2+W; X3I+X21+W;
X+W; XI<WI;
1'1+-1'2; 1'11+1'21;
1'2+1'3; 1'21< 1'3 r ;
'F~n' J+1 'STEP' I 'IJNTl L' N 'IJW
'BEGIN'

SN [J J<TN 1.1 J; SN It.J J ,TNI 1.11;
TN [J I <u [.J I; TN I [J J <lll [.J I ;

'END' ;
'G~'J'\:l' LAB1;

, END' ;
LAB2: 'END' ;
'END' ;

'pnOCEDunE' DIV(A,B,C,II,E,r);
'VALUE' A,B,C,O;
'nEAL' A,B,C,D,E,F;
'BEGIN'

'REAL' 11;
II'-C*C+I)*O;
E+-(A*C+B*I))/II;
F+ (C' B-A *D} Ill;

'END' ;

230

'PROC'ilJUIW' ISQRT('\,B,C,lJ);
'VAL!!"' A,B;
'REAL' A,B,C,D;
'BEGIN'

'REAL' R,TlIl,i';
R SQRT(SQRT(A*A+B*B));
1'1+3.1415926536 ;
, IF' A 'EQ' 0 '111EN'
'BEGIN'

'IF' B '(iT' 0 'TIIEN'
TIII+PI/4
'ELSE'
TIU 3·PI/4;

'END'
'ELSE'
'IF' B 'EQ' 0 'THEN'
'BEGIN'

'IF' A 'GT' 0 'TIIEN'
TIII O
'ELSE'
TIII PI/2;

'END'
'ELSE'
'IF' A 'GT' 0 'AND' B 'GT' () 'TllliN'
THI ARCTAN (B/ A) / 2
'ELSE'
'IF' A 'LT' 0 'AND' B 'GT' 0 'TIIEN'
TB!+ (ARCTAN (-A/B) +1'1/2) /2
'ELSE'
'IF' A 'GT' 0 'AND' B 'LT' 0 'TIIEN'
TH!+ (ARCTAN (-A/B) +1'1* 1.5) / 2

'ELSE'
THI (ARCTAN (B/ A) +1' V/2;
C R·C\'\S (Till) ;
[}t-R'SIN(111I) ;

'END' ;

231

PROGRAM 15

This procedure determines the eigenvalues of a periodic quindiagonal

matrix using the bisection method. The Sturm sequence used is the space

saving algorithm of section 6.2 in a modification of the bisection

algorithm of program 1.

'PR~CEDURE' PQUINS(C,B,D,E,Nl.N2,M,EPS,EPSl.QZR,EIG);
'C~MMENT' C is the main diagonal, B the sub-diagonal, and E the sub­

sub-diagonal of the matrix of order N. The three corner elements
are contained in the vector D. The eigenvalues NI to N2 (Nl~N2.
eigenvalue 1 being the smallest) are calculated by bisection and
stored in the vector EIG[l:N]. EPSl is the accuracy required,
and QZR is the number closest to machine zero. The total number
of iterations is stored M and EPS2 gives the actual accuracy
attained;

'VALUE' C,B,D,E,N,Nl.N2,EPS,QZR;
'ARRAY' C,B,D,E,EIG;
'REAL' EPS,EPSl.QZR.EIG;
'INTEGER' N,Nl,N2,M;
'BEGIN'

'REAL' MAX,MIN,NEW,NEWER,UNI,UN,VN,Ul,Vl,U2,V2,S,F,G,H,R,Q;
'INTEGER' I,J,K,L,T;
B[1]+E[1]+E[2]+O;
'C~MMENT' The limits on the eigenvalue are now determined (MAX,MIN);
'BEGIN'

NEW+ABS(B[N])+ABS(E[N])+ABS(D[2])+ABS(D[3]);
MAX+C [N] +NEW;
MIN+C[N]-NEW;
NEW+ABS(B[N])+ABS(B[N-l])+ABS(D[l])+ABS(E[N-l]);
NEWER+C[N-I]+NEW;
NEW+C[N-l]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN~NEW;

NEW+ABS(B[2])+ABS(D[I])+ABS(D[2])+ABS(E[3]);
NEWER+C[l]+NEW;
NEW+C [I]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MA~-NEWER;

'IF' NEW 'LT' MIN 'THEN' MINfNEW;
NEW+ABS(B[2])+ABS(B[3])+ABS(D[3])+ABS(E[4]);
NEWER+C[2]+NEW;
NEW+C[2]-NEW;
'IF' NEWER 'GT' MAX 'THIlN' MAX<-NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN~-NEW;

'F~R' 1+3 'STEP' I 'UNTIL' N-2 'D~'
'BEGIN'

NEW+ABS(B[I])+ABS(B[I+I])+ABS(E[I])+ABS(E[I+2]);
NEWER+C [I] +N EW;
NEW+C[I]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX~NEWER;

'IF' NEW 'LT' MIN 'THEN' MIN~NEW;
'END' ;

'END' ;

232

EPSl+QZR*('IF' MIN+MAX 'GT' 0 'THEN' XMAX 'ELSE'-XMIN);
'IF' EPS 'LE' 0 'THEN' EPS+EPSl;
EPSl+O.5*EPS+7*EPSl; ,
V2+B[2]:
'BEGIN'

'ARRAY' INU[Nl:N2]; 'REAL' S,Xl,XU,XO;
'INTEGER' A;
XO+MAX;
'F0R' I+Nl 'STEP' 1 'UNTIL' N2 'D~'
'BEGIN'

X[I]+MAX: WU[I]+MIN;
'END' :
M+O;
'F0R'L+N2 'STEP' -1 'UNTIL' NI 'D0'
'BEGIN'

XU+MIN:
'F~R' I+L 'STEP' -1 'UNTIL' NI 'D~'
'BEGIN'

'IF' XU 'LT' WU[I] 'THEN'
'BEGIN'

XU+WU[I]; 'G~T~' e~NTIN;
'END' ;

'END' :
eONTIN: 'IF' XO 'GT' X[L] 'THEN' XO+X[L];

'F~R' Xl+(XU+XO)/2 'WHILE' XO-XU 'GT'
2*QZR*(ABS(XU)+ABS(XO))+EPS 'D~'

'BEGIN'
M+M+l;A~ 0;
'e~MMENT' calculation of the Sturm sequence now
takes place to determine the number of negative
elements in the sequence (A);
Ul+'IF' e[l]-XI 'EQ' 0 'THEN' QZR 'ELSE' C[l]-Xl;
'IF' Ul 'LT' 0 'THEN A+A+l;
U2+C[2]-Xl-V2*V2/Ul;
'IF' U2 'LT' 0 'THEN' A+A+l;
'IF' U2 'EQ' 0 'THEN' U2+QZR:
G+-D[1]*B[2]/Ul;
H+D[3]-B[2]*D[2]/Ul;
R+-E[3]*D[1]/Ul;
~-E[3]*D[2]/Ul:
UNl+C[N-l]-Xl-D[1]*D[1]/Ul-G*G/U2;
UN+C [N]-Xl-D [2] *D [2] /Ul-H*H/U2;
VN+B[N]-D[2]*D[1]/Ul-G*II/U2;
'F~R' 1+3 'STEP' 1 'UNTIL' N-4 'D~'
'BEGIN'

V2+B[I]-V2*E[I]/Ul:
S+U2;
U2+C[I]-Xl-V2*V2/S-E[I]*E[I]/Ul;
Ul+S; ,
'IF' U2 'LT' 0 'THEN' A+A+l;
'IF' U2 'EQ' 0 'THEN' U2+QZR;
F+V2/Ul;
NEW<-R-G*F;
NEWfR+-Q-H*F;
F+E[I+l]/Ul;
R+-G*F;
Q+-H*F;
G+NEW;
H+NEWER;

233

UNI+UNI-G*G/U2;
UN+UN-H*II/U2;
VN+VN-G*II/U2;

'END' ;
V2+B[N-3j-V2*E[N-3j/UI;
5+U2;
U2+C[N-3j-XI-V2*V2/S-E[N-3j*E[N-3j/UI;
U1+S;
'IF' U2 'EQ' 0 'THEN' U2+QZR;
'IF' U2 'LT' 0 'THEN' A+A+I;
VI+B[N-2j-V2*E[N-2j/UI;
S+U2;
U2+C[N-2j-XI-VI*VI/S-E[N-2j*E[N-2j/1I1;
'IF' U2 'EQ' 0 'THEN' U2+qZR;
'IF' U2 'LT' 0 'THEN' A+A+I;
R+E[N-Ij+R;
F+V2/UI;
R+R-G*F;
Q+Q-H*F;
F+E[N-2j/UI;
V2+B[N-Ij-G*F;
H+E[Nj-H*F;
UNI+UNI-R*R/S;
UN+UN-Q*Q/S;
VN+VN-R*Q/S;
F+VI/S;
V2+V2-R*F;
H+H-Q*F;
UNI+UNI-V2*V2/U2;
'IF' UNl 'EQ' 0 'THEN' LJNI+qZR
'IF' UNl 'LT' 0 'THEN' A+A+I;
LJN+UN-H*H/U2;
VN+VN-H*V2/U2; \
UN+UN-VN*VN/UNI;
'IF' UN 'LT' 0 'THEN' A+A+I;
'IF' A 'LT' L 'THEN'
'BEGIN'

'IF' A 'LT' NI 'TIIEN' XU+WU[Nlj+XI
'ELSE'
'BEGIN'

XLJ+WU[A+lj+XI;
'IF' EIG[Aj 'GT' Xl 'TIIEN' EIG[Aj+XI

'END' ;
'END'
'ELSE' XO+Xl;

'END' ;
EIG[Lj+(XO+XU)/2;

'END' ;
'END' ;

'END' ;

234

PROGRAM 16

This procedure determines the eigenvalues of a periodic quindiagonal

matrix using the bisection method. The Sturm sequence used is the time

saving algorithm of section 6.2 in a modified bisection algorithm as

described in Chapter 5.

'PR0CEDURE' PQUINT(Cft,D,E,N,Nl,N2,M,P,EPS,QZR,EIG);
'ARRAY' C,B,D,E,EIG;
'INTEGER' N,P,Nl,N2,M;
'REAL' EPS,QZR;
'BEGIN'

'ARRAY' U,V[l:N];
'REAL' MAX,MIN,NEW,NEWER,LAMBDA,S,F,G,II,R,Q,Ul,Vl,UN,VN;
'INTEGER' I,K,L,T;
B [l]+E [l]+E (2]<-{);
'C0MMENT' The limits on the eigenvalues are now determined (MAX,MIN);
'BEGIN'

NEW+ABS(B[N])+ABS(E[N])+ABS(D[2])+ABS(D[3]);
MAX+C[N]+NEW;
MIN+C[N]-NEW;
NEW+ABS(B[N])+ABS(B[N-l])+ABS(D[l])+ABS(E[N-l]);
NEWER+C[N-l]+NEW;
NEW+C[N-l]-NEW
, IF' NEWER 'GT' MAX 'TIIEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;
NEW+ABS(B[2])+ABS(D[l])+ABS(D[2])+ABS(E[3]);
NEWER+C[l]+NEW;
NEW+C[l]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;
NEW+ABS(B[2])+ABS(B[3])+ABS(D[3])+ABS(E[4]);
NEWER+C [2]+NEW;
NEW+C[2]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;
'F0R' 1+3 'STEP' 1 'UNTIL' N-2 'D0'
'BEGIN'

NEW+ABS(B[I])+ABS(B[I+l])+ABS(E[I])+ABS(E[I+2]);
NEWER+C[I]+NEW;
NEW+C[I]-NEW;
'IF' NEWER 'GT' MAX 'TIIEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;

'END' ;
'END' ;
V[2]+B[2];
L+Nl-l;
'C0MMENT' Now the major loop is performed to obtain the Lth eigenvalue;

LASA: 'IF' L 'GE' N2 'THEN' 'G)'lT)'l' EXIT;
LAMBDA~(MIN+MAX)*O.5;

LABB:'BEGIN' K+O;
U[l]+'IF' C[l]-LAMBDA 'EQ' 0 'TlIEN' QZR 'ELSE' C[l]-LAMBDA;
'IF' U[l] 'LT' 0 'THEN' K+K+l;
'IF' L-K 'LT' 0 '0R' L-K-N+I 'GE' 0 'THEN' 'G0T0' LABC;

235

U[2]+e[2]-LAMBDA-V[2]*V[2]/U[1];
'IF' U[2] 'EQ' 0 'THEN' U[2]+QZR;
'IF' U[2] 'LT' 0 'THEN' K+K+l;
'IF' L-K 'LT' 0 '0R' L-K-N+I 'GE' 0 'THEN' 'G0T0' LABC;
'F0R' 1+3 'STEP' 1 'UNTIL' N-2 '00'
'BEGIN'

V[I]+B[I]-V[I-l]*E[I)/U[I-2);
U[I)+e[I]-LAMBDA-V[I)*V[I)/U[I-l]-E[I)*E[I)/U[I-2];
, IF' U [I] , EQ' 0 'THEN' U [I) +QZR ;
'IF' 'LT' 0 'THEN' K+K+l;
'IF' L-K 'LT' 0 'OR' L-K-N+I 'GE' 0 'THEN' 'G0T0' LABC;

'END' ;
G+-D[1]*B[2]/U[1);
H+D[3)-B[2)*D[2)/U[1] ;
R+-E[3]*D[1]/U[1);
Q+-E[3)*D[2)/U[1];
Ul+C[N-l)-LAMBDA-D[1]*D[1]/U[1]-G*G/U[2];
UN+C[N)-LAMBDA-D[2]*O[2)/U[1]-H*H/U[2);
VN+B[N)-D[2)*D[1)/U[1]-G*H/U[2];
'F0R' 1+3 'STEP' 1 'UNTIL' N-4 'D0'
'BEGIN'

F+V[I]/U[I-l) ;
NEW+R-G*F;
NEWER+Q-H*F;
F+E[I+l]/U(I-l] ;
R+-G*F;
Q+-H*F;
G+NEW;
H+NEWER;
Ul+UI-G*G/U[I);
UN+UN-H*II/U[I];
VN+VN-G*H/U[I);

'END' ;
R+E[N-l)+R;
F+V[N-3)/U[N-4);
R+R-G*F;
Q+Q-H*F;
F+E[N-2)/U[N-4];
Vl+B[N-l]-G*F;
H+E[N]-H*F;
Ul+U1-R*R/U[N-3];
UN+UN-Q*Q/U[N-3];
VN+VN-R*Q/U[N-3);
F+V[N-2)/U[N-3];
Vl+Vl-R*F;
1I-<f1-Q*F;
Ul+UI-Vl*Vl/U[N-2);
'IF' Ul 'EQ' 0 'THEN' Ul+QZR;
'IF' Ul 'LT' 0 'THEN' K+K+l;
UN+UN-H*H/U[N.2);
VN+VN-H*Vl/U[N-2];
UN+UN-VN*VN/Ul;
'IF' UN 'LT' 0 'THEN' K+K+l;

'END' ;
LABC: 'IF' L-K 'GE' 0 'THEN'

'BEGIN'
NEWER+MIN;
MIN+LAMBDA;
LAMBDA+LAMBDA+(LAMBDA-NEWER) *0.5;

236

'END'
'ELSE'
'BEGIN'

LAMBDA+(LAMBDA+MIN) *0.5;
'IF' (LAMBDA-MIN) *0.5/ABS (LAMBDA) 'LT' EPS 'TIIEN'
'BEGIN'

MIN+2*LAMBDA-MIN;
'F0R' I+L+l 'STEP' 1 'UNTIL' ('IF' K 'GT' N2 'THEN'

N2 'ELSE' K) 'D0'
EIG [I -Nl+l]+LAMBDA;
L+K;
'G0T0' LABA;

'END' ;
'END' ;
'G0T0' LABB;

EXIT:
'END' ;

237

PROGRAM 17

This procedure determines the eigenvectors of a symmetric periodic

quindiagonal matrix using inverse iteration. The procedure is modified

to economise on storage by taking advantage of the large number of zero

elements.

'PR~CEDURE' PQVEC(C,B,E,Al,A2,A3,EIG,L,N,VEC);
'C~MMENT' C is the diagonal, B the sub-diagonal, and E the sub-sub­

diagonal of the (NxN) input matrix. The elements in the corners
corresponding to positions (l,N-l), (l,N), (2,N) are Al,A2,A3.
EIG is where the L eigenvalues are input, and later overwritten
by the Rayleigh quotient. The eigenvectors are stored in the
columns of VEC.

'VALUE' C,B,E,Al,A2,A3,L,N;
'ARRAY' C,B,E,EIG,VEC;
'REAL' Al,A2,A3;
'INTEGER' L ,N;
'BEGIN'

'INTEGER' 'ARRAY' IC[l:N];
'ARRAY' R,S,T,U,V,W,X,Y,Z,Ql,Q2,Q3,Q[l:N];
'REAL' D,Dl,D2,D3,D4;
'INTEGER' I,J,K,M;
'F~R' Mrl 'STEP' 1 ' UNTIL' L 'D~'
'BEGIN'

'C~MMENT' This is the major loop to determine the Mth
eigenvector. First the vectors representing the input
matrix are initialised;

'F~R' 1+1 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

T[I]+W [I]+X [I]+U [1]+0;
V[I]+C[I]-EIG[M];
IC(I]+O;
Q[I]+l;
Y[I]+Z[I]+Ql[I]+Q2[I]+Q3[I]+S[I]+R[I]+O;

'END' ;
'F~R' 1+2 'STEP' 1 'UNTIL' N-2 'D~'
U [I]+W [I]+B [I] ;
'F~R' 1+3 'STEP' 1 'UNTIL' N-l 'D~'
T[I]+X[I]+E [I];
Q2[1]+S[l]+Al;
X[N-2]+X[N-l]+W[N-2]+V[N-2]+V[N-l]+V[N]+O;
Q3[l]+R[l]+A2;
Q3[2]+R[2]+A3;
Q2[N]+Q3[N-l]+B[N];
Ql[N-l]+Q2[N-2]+B[N-l];
Ql[N-3]+B[N-2];
Q3[N]+C[N]-EIG[M];
Q2[N-l]+C[N-l]-EIG[M];
Ql[N-2]+C[N-2]-EIG[M];
Ql[N]+Q3[N-2]+E[N];
Q2[N-3]+T[N-l]+E[N-l];

238

Q1[N-4]+E[N-2];
5[N-3]+E[N-1] ;
'C~MMENT' Now the elimination process can be performed in

the first N-4 columns
'F~R' 1+1 '5TEP' 1 'UNTIL' N-4 'D~'
'BEGIN'

D3+AB5(R[I]) ;
D4+AB5 (V [I]) ;
D+AB5(U[I+1]) ;
D1+ABS(T[I+2]) ;
D2+AB5 (5 [I]) ;
'IF' D 'GT' D1
'AND' D 'GT' D3
'AND' D 'GT' D4
'THEN'
'BEGIN'

IC[I]+I+1;
D+V[I]; V[I]+U[I+1]; U[I+1]+D;
D+W[I+1]; W[I+1]+V[I+1]; V[I+1]+D;
D+X[I+2]; X[I+2]+W[I+2]; W[I+2]+D;
D+Y[I+3]; Y[I+3]+X[I+3]; X[I+3]+D;
D+Z[I+4]; Z[I+4]+Y[I+4]; Y[I+4]+D;
D+Ql[I]; Q1[I]+Ql[I+1]; Q1[I+1]+D;
D+Q2[I]; Q2[I]+Q2[I+1]; Q2[I+1]+D;
D+Q3[I]; Q3[I]+Q3[I+1]; Q3[I+1]+D;

'END'
'ELSE'
'IF' D1 'GT' D2
'AND' D1 'GT' D3
'AND' D1 'GT' D4
'THEN'
'BEGIN'

IC[I]+I+2;
D+V[I]; V[I]+T[I+2]; T[I+2]+D;
D+W[I+1]; W[I+1]+U[I+2]; U[I+2]+D;
D+X[I+2]; X[I+2]+V[I+2]; V[I+2]+D;
D+Y[I+3]; Y[I+3]+W[I+3]; W[I+3]+D;
D+Z[I+4]; Z[I+4] X[I+4]; X[I+4]+D;
D+Q1[I]; Q1[I]+Ql[I+2]; Q1[I+2]+D;
D+Q2[I]; Q2[I]+Q2[I+2]; Q2[I+2]+D;
D+Q3[I]; Q3[I]+Q3[I+2]; Q3[I+2]+D;

'END'
'ELSE'
'IF' D2 'GT' D3
'AND' D2 'GT' 04
'THEN'
'BEGIN'

'END'

D+V[I]; V[I]+5[I]; 5[1]+0;
D+W[1+1]; W[I+1]+5[I+1]; 5[1+1]+D;
D+X[I+2]; X[I+2]+5[1+2]; 5[1+2]+0;
D+Y[I+3]; Y[1+3]+S[1+3]; 5[1+3]+0;
0+X[I+4]; Z[I+4]+5[1+4]; 5[1+4]+0;
D+Q1[I]; Ql[I]+Ql[N-1]; Q1[N-l]+D;
D+Q2[I]; Q2[1]+Q2[N-1]; Q2[N-l]+D;
D+Q3[I]; Q3[I]+Q3[N-l]; Q3[N-l]+0;
IC[I]+N-1;

239

'ELSE'
'IF' D3 'GT' D4
'THEN'
'BEGIN'

O+V[I]; V[I]+R[I]; R[I)+D;
D+W[I+l); WII+l)+R[I+l); R[I+l)+D;
O+X[I+2); X[I+2)+R[I+2); R[I+2)+D;
O+Y[I+3); Y[I+3)+R[I+3); R[I+3)+D;
O+Z[I+4); Z[I+4)+R[I+4); R[I+4)+D;
D+Ql[I); Ql[I)+Ql[N); Ql[N)+D;
D+Q2[I); Q2[I)+Q2[N); Q2[N)+D;
D+Q3[I); Q3[I)+Q3[N); Q3[N)+D;
IC[I)+N;

'END' ;
U[I)+U[I+l)/V[I];
T[I)+T[I+2)/V[I);
S[I)+S[I)/V[I);
R[I)+R[I)/V[I);
V[I+l)+V[I+l)-W[I+l)*U[I);
W[I+2)+W[I+2)-X[I+2)*U[I);
X[I+3]+X[I+3)-Y[I+3)*U[I);
Y[I+4]+Y[I+4)-Z[I+4)*U[I);
U[I+2)+U[I+2)-W[I+l)*T[I);
V[I+2)+V[I+2)-X[I+2)*T[I);
W[I+3]+W[I+3)-Y[I+3)*T[I);
X[I+4)+X[I+4)-Z[I+4)*T[I);
S[I+l)+S[I+l)-W[I+l)*S[I);
S[I+2]+5[I+2)-X[I+2)*S[I);
S[I+3]+S[I+3]-Y[I+3]*S[I];
S[I+4]+5[I+4]-Z[I+4]*S[I);
R [I + l)+R [I + l)-W [I + 1] *R [I) ;
R[I+2]+R[I+2]-X[I+2]*R[I];
R[I+3]+R[I+3]-Y[I+3]*R[I];
R[I+4]+R[I+4]-Z[I+4]*R[I];
Ql[I+l]+Ql[I+l]-Ql[I]*U[I];
Ql[I+2]+Ql[I+2]-Ql[I]*T[I];
Ql[N-l]+Ql[N-l]-Ql[I]*S[I];
Ql[N]+Ql[N]-Ql[I]*R[I];
Q2[I+l]+Q2[I+l]-Q2[I]*U[I);
Q2[I+2)+Q2[I+2)-Q2[I)*T[I];
Q2[N]+Q2[N]-Q2[I)*R[I);
Q2[N-l)+Q2[N-l)-Q2[I)*S[I);
Q3[I+l]+Q3[I+l)-Q3[I]*U[I);
Q3~I+2l+Q3fI+21-Q3fIl*TfIl; Q3 N-l +Q3 N-l -Q3 I *S I ;

'END,q3 N]+Q3[N -Q3 Ij*R[I); ,
'C~MMENT' The elimination in the last four columns' now

has to be performed seperately; First in column (N-3);
T [N-l)+S [N-3);
D+ABS (U [N-2)) ;
D1+ABS(T[N-l]) ;
D2+ABS(R[N-3)) ;
D3+ABS(V[N-3]) ;
'IF' D 'GT' Dl
'AND' D 'GT' D2
'AND' D 'GT' D3
'THEN'

240

'BEGIN'
D+V[N-3]; V[N-3]+U[N-2]; U[N-2]+D;
D+Ql[N-3]; Ql[N-3]+Ql[N-2]; Ql[N-2]+D;
D+Q2[N-3]; Q2[N-3]+Q2[N-2]; Q2[N-2]+D;
D+Q3[N-3]; Q3[N-3]+Q3[N-2]; Q3[N-2]+D;
le [N-3]+N-2;

'END'
'ELSE'
'IF' Dl 'GT' D2
'AND' Dl 'GT' D3
'THEN'
'BEGIN'

IC[N-3]+N-l;
D+V[N-3]; V[N-3]~T[N-l]; T[N-l]+D;
D+Ql[N-3]; Ql[N-3]+Ql[N-l]; Ql[N-1J+D;
D+Q2[N-3]; Q2[N-3]+Q2[N-l]; Q2[N-l]+D;
D+Q3[N-3]; Q3[N-3]+Q3[N-l]; Q3[N-l]+D;

'END'
'ELSE'
'IF' D2 'GT' D3
'THEN'
'BEGIN'

D+V[N-3]; V[N-3]+R[N-3]; R[N-3]+D;
D+Ql[N-3J; Ql[N-3]+Ql[N]; Ql[N]+D;
D+Q2[N-3]; Q2[N-3]+Q2[N]; Q2[N]+D;
D+Q3[N-3]; Q3[N-3]+Q3[N]; Q3[N]+D;
IC[N-3]+N;

'END' ;
U[N-3]+U[N-2]/V[N-3]j
T[N-3]+T[N-l]/V[N-3];
R[N-3]+R[N-3]/V[N-3];
Ql[N-2j+Ql[N-2]-U[N-3]*Ql[N-3];
Q2[N-2]+Q2[N-2]-U[N-3]*Q2[N-3];
Q3[N-2]+Q3[N-2]-U[N-3]*Q3[N-3];
Ql[N-l]+Ql[N-l]-Q[N-3]*T[N-3];
Q2[N-l]+Q2[N-l]-Q2[N-3]*T[N-3];
Q3[N-l]+Q3[N-l]-Q3[N-3]*T[N-3];
Ql[N]+Ql[N]-Ql[N-3]*R[N-3];
Q2[N]+Q2[N]-Q2[N-3]*R[N-3]j
Q3[N]+Q3[N]-Q3[N-3]*R[N-3]j
'C0MMENT' Elimination is now performed in column N-2;
D+ABS(Ql[N-l]); Dl+ABS(Ql[N]);
D2+ABS(QI[N-2]);
'IF' D 'GT' Dl
'AND' D 'GT' D2
'THEN'
'BEGIN'

'END'

D+QI[N-2]; Ql[N-2]+Ql[N-I]; QI[N-l]+D;
D+Q2[N-2]; Q2[N-2]+Q2[N-1]; Q2[N-l]+D;
D+Q3[N-2]; Q3[N-2]+Q3[N-l]; Q3[N-l]+D;
IC [N-2]+N-I;

'IF' Dl 'GT' D2
'THEN'
'BEGIN'

D+Ql[N-2]; QI[N-2]+QI[N]; Ql[N]+D;

241

D+Q2[N-2]; Q2[N-2]+Q2[N]; Q2[N]+D;
D+Q3[N-2J; Q3[N-2]+Q3[N]; Q3[N]+D;
IC[N-2]+N;

'END' ;
Ql[N-l]+Ql[N-l]/Q1[N-2];
Ql[N]+Ql[N]/Q1[N-2];
Q2[N-l]+Q2[N-l]-Ql[N-l]*Q2[N-2];
Q3[N-l]+Q3[N-l]-Q3[N-2]*Ql[N-l];
Q2[N]+Q2[N]-Ql[N]*Q2[N-2];
Q3[N]+Q3[N]-Ql[N]*Q3[N-2];
'CI'IW.IENT' Elimination is finally performed in column N-l;
'IF' ABS(Q2[N]) 'GT' ABS(Q2[N-l])
'THEN'
, BEGIN'

D+Q2[N]; Q2[N]+Q2[N-l]; Q2[N-l]+D;
D+Q3[N]; Q3[N]+Q3[N-l); Q3[N-l]+D;
IC[N-l]+N;

'END' ;
Q2[N]+Q2[N]/Q2[N-l];
Q3[N]+Q3[N]-Q2[N]*Q3[N-l];
'IF' Q3[N] 'EQ' 0 'TIlEN' Q3[N]+o.OOOOOOOOOl;
'CI'IMMENT' In the decomposing case Q3[N] is replaced to avoid

division by zero. The initial back substitution now
takes place;

Q[N]+Q[N]/Q3[N];
Q[N-l]+(Q[N-l]-Q3[N-l]*Q[N))/Q2[N-l];
Q[N-2]+(Q[N-2]-Q3[N-2]*Q[N]-Q2[N-2]*Q[N-l])/Ql[N-2];
Q[N-3]+(Q[N-3]-Q3[N-3]*Q[N)-Q2[N-3]*Q[N-l]-Ql[N-3]*Q[N-2U!V[N-3];
'FI'IR' I+N-4 'STEP' -1 'UNTIL' 1 'D~'
Q[I]+(Q[I]-Q3[I]*Q[N]-Q2[I]*Q[N-l]-Ql[I]*Q[N-2]

-W[I+l]*Q[I+l]-X[I+2]*Q[I+2]-Y[I+3]*Q[I+3]­
Z[I+4]*Q[I+4])/V[I];

'C~MMENT' Elimination with improved eigenvector estimate is
now performed. This time the stored interchanges and

elimination factors only are used;
'F~R' 1+1 'STEP' 1 'UNTIL' N-4 'D~'
'BEGIN'

'IF' IC[l] 'NE' 0 'THEN'
'BEGIN'

D+Q[l]; Q[I]+Q[IC[Ill; Q[IC[Ill+D;
'END' ;
Q[I+l]+Q[I+l]-U[I]*Q[I];
Q[I+2]+Q[I+2]-T[I]*Q[I];
Q[N-l]+Q[N-l]-S[I]*Q[I];
Q[N]+Q[N]-R[I]*Q[I];

'END' ;
'IF' IC[N-3] 'NE' 0 'THEN'
'THEN'
'BEGIN'

D+Q[N-3]; Q[N-3]+Q[IC[N-3]]; Q[IC[N-3]]+D;
'END' ;
Q[N-2]+Q[N-2]-Q[N-3]*U[N-3];
Q[N-l]+Q[N-l]-Q[N-3]*T[N-3];
Q[N]+QN-Q[N-3]*R[N-3];
'IF' IC[N-2] 'NE' 0 'THEN'

'END' ;

'BEGIN'
D+Q[N-2]; Q[N-2]+Q[IC[N-2]]i Q[IC[N-2]]+D;

'END' ;
Q[N-l]+Q[N-l]-Q[N-2J*Ql[N-l];
Q[N]+Q[N]-Q[N-2]*Ql[NJ;
'IF' IC[N-l] 'NE' 0 'THEN'
'BEGIN'

D+Q[N-l]; Q[N-l]+Q[N]; Q[N]+D;
'END' ;
Q[N]+Q[N]-Q[N-l]*Q2[N];
'C~MMENT' Back substitution is now performed for the final

time;
Q[N]+Q[N]/Q3[N];
Q[N-l]+(Q[N-l]-Q3[N-l]*Q[N])/Q2[N-l];
Q[N-2]+(Q[N-2]-Q3[N-2]*Q[N]-Q2[N-2]*Q[N-l]VQl[N-2];
Q[N-3]+(Q[N-3]-Q3[N-3]*Q[N]-Q2[N-3]*Q[N-lf-

Ql[N-3]*Q[N-2])/V[N-3];
'F~R' I+N-4 'STEP' -1 'UNTIL' 1 'D~'
Q[I]+(Q[I]-Q3[I]*Q[N]-Q2[I]*Q[N-l]-Ql[I]*Q[N-2]

-W[I+l]*Q[I+l]-X[I+2]*Q[I+2]-Y[I+3]*Q[I+3]
-Z[I+4]*[[I+4])/V[I];

'C~MMENT' Now the eigenvector is normalised and stored in the
appropriate column of VEC;

D+Q[l]*Q[l] ;
'F~R' 1+2 'STEP' 1 'UNTIL' N 'D~'
D+D+Q[I]*Q[I] ;
D+l/SQRT(D);
'F~R' 1+1 'STEP' 1 'UNTIL' N 'D~'
VEC[I,M]+Q[I]*D;
'C~MMENT' The Rayleigh Quotient is calculated to improve the

estimate of the eigenvalue;
Dl+(C[1]*VEC[1,M]+B[2]*VEC[2,M]+E[3]*VEC[3,M]

+Al*VEC[N-I,M]+A2*VEC[N,M])*VEC[1,M];
Dl~DI+(B[2]*VEC[1,M]+C[2]*VEC[2,M]+B[3]*

VEC[3,M]+E[4]*VEC[4,M]+A3*VEC[N,M])*VEC[2,M];
'F~R' 1+3 'STEP' I 'UNTIL N-2 'D~'
Dl~Dl+(C[I]*VEC[I,M]+B[I]*VEC[I-l,M]+E[I]*VEC[I-2,M]

+B[I+l]*VEC[I+l,~]+E[I+2]*VEC[I+2,M])*VEC[I,M];
Dl+Dl+(C[N-l]*VEC[N-l,M]+B[N]*VEC[N,M]+B[N-l]*VEC[N-2,M]

E[N-l]*VEC[N-3 ,M]+Al*VEC[l,M])*VEC[N-l,M];
Dl+Dl+(C[N]*VEC[N,M]+B[N]*VEC[N-l,M]+E[N]*VEC[N-2,M]

+A3*VEC [2 ,M] +A2*VEC [1 ,M])*VEC [N,M] ; EIGo.o~D1;
'END' ;

243

PROGRAM 18

This program determines the eigenvalues of a symmetric matrix

using the modified bisection algorithm of Chapter 5. The matrix used

is septdiagonal with a band at semi-bandwidth P, and quindiagonal in

the centre.

'PR0CEDURE' SDEMB(C,B,D,E,N,Nl,N2,P,EPS,QZR,EIG):
'C~MMENT' C is the diagonal, B, the sub-diagonal, D the sub-sub­

diagonal and E is the band at semi-bandwidth P of the matrix of
order N. NI is the number of the smallest eigenvalue required
and N2 the largest. EPS is the required accuracy and QZR the
closest number to machine zero (substituted to avoid zero
divisions). The eigenvalues are stored in the first (N2-Nl+l)
elements of EIG:

'ARRAY' C,B,D,E,EIG:
'INTEGER' N,P,Nl,N2;
'REAL' EPS,QZR;
'BEGIN'

'ARRAY' W,U,V,[1:Nj,R[P:N,4:P1.
'REAL' MAX,MIN,NEW,NEWER,LAMBDA,S:
'INTEGER' I,J,K,L,M,T;
'BEGIN'

'C~MMENT' Bounds for the whole eigenvalue range are now
determined (MAX,MIN):

NE~ABS(B[N1)+ABS[D[N1)+ABS(E[N1):
B[Jj.-E [21+E [11+0;
MAX+C [N1 +NEW;
MIN+C[N1-NEW;
'F~R' 1+1 'STEP' 1 'UNTIL' N-l 'D~'
'BEGIN'

NE~ABS(B[I1)+ABS(B[I+l1)+ABS(E[I1)+('IF' 1+2
'GT' N 'THEN' 0 'ELSE' ABS(E[I+21)):

'IF' P-l+I 'LE' N 'THEN'
NEW+NEW+ABS(D[P-l+I1);
'IF' 1 'GE' P 'THEN'
NEW+NEW+ABS(D[I1);
NEWER+C[I1+NEW;
NEW+C [I1-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX+NEIVER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;

'END' ;
'END' ;
'F~R' I+P 'STEP' 1 'UNTIL' N 'D~'
R[I,P1+D[I1;
'F~R' 1+3 'STEP' 1 'UNTIL' P-l 'D~'
W[I1+E[I1;
V[ll+W[21+W[ll+O;
V[21+B[21;
L+Nl-l;

LABA: 'IF' L 'GE' N2 'THEN' 'GOTO' EXIT;

244

'C~MMENT' Major loop for the Lth eigenvalue;
LAMBDA+(MIN+MAX)*0.5;

LABB: 'BEGIN'
'C~MMENT' Calculation of the Sturm sequence;
U[l]+C[l]-LAMBDA;
M+D;
'IF' U[l] 'LT' 0 'THEN' M+M+l;
'IF' L-M 'LT' 0 '~R' L-M-N+I 'GE' 0 'THEN' 'G~T~' LABC;
'IF' U[l] 'EQ' 0 'THEN' U[I]+QZR;
U[2]+C[2]-LAMBDA-B[2]*B[2]/U[I];
'IF' U[2] 'LT' 0 'THEN' M+M+l;
'IF' L-M 'LT' 0 '~R' L-M-N+I 'GE' 0 'THEN' 'G~T~' LABC;
'IF' U[2] 'EQ' 0 'THEN' U[2]+QZR;
'F~R' 1+3 'STEP' 1 'UNTIL' P-l 'D~'
'BEGIN'

V[I]+B[I)-V[I-l)*W[I)/U[I-2);
U[I)+C [I)-LAMBDA-V[I] *V [IJlU [I-l)-W[I] *W [I)/U [1-2] ;
'IF' U[I) 'LT' o 'THEN' M+M+l;
'IF' L-M 'LT' 0 '~R' L-M-N+I 'GE' 0 'THEN' 'G~T~' LABC;
'IF' U[I) 'EQ' 0 'THEN' U[I)+QZR;

'END' ;
'F~R' I+P 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

'F~R' K+P-l 'STEP' -1 'UNTIL' 4 'D~'
'BEGIN'

T+I-K+l;
S+-R[I,K+l)*V[T)/U[T-l);
'lP' K+2 'LE' P 'THEN'
S+S-R[I,K+2]*W[T)/U[T-2];
'lP' T 'GE' P 'THEN'
'FOR' J+P-K-3 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J)*R[T,P+l-K-J]/U[I-P+J+l];
R [I ,K)+S;

'END' ;
S+E[I]-S*V[I-2)/U[I-3)-R[I,5]*W[I-2]/U[I-4);
'IF' 1-2 'GE' P 'THEN'
'F~R' J+P-6 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J)*R[I-2,P-2-J]/U[I-P+J+l);
W[I)+S;
S+B[I)-S*V[I-l]/U[I-2)-R[I,4]*W[I-l]/U[I-3);
'IF' 1-1 'GE' P 'THEN'
'F~R' J+P-5 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J]*R[I-l,P-l-J]/U[I-P+J+l);
V[I)+S;
S+C[I]-LAMBDA-S*S/U[I-l)-W[I]*W[I)/U[I-2);
'F~R' J+P-4 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,P-J]*R[I,P-J]/U[I-P+J+l];
'IF'S 'LT' 0 'THEN' M+M+l;
'IF' L-M 'LT' 0 '~R' L-M-N+I 'GE' 0 'THEN' 'G~T~' LABC;
'IF'S 'NE' 0 'THEN' U[I]~S 'ELSE' U[I)+QZR;

'END' ;
'END' ;

LABC: 'IF' L-M 'GE' 0 'THEN'
'BEGIN'

NEWER+MIN;
MIN+LAMBDA;
LAMBDA+LAMBDA+ (LAMBDA-NEWER) *0. 5;

'END'

245

'ELSE'
'BEGIN'

LAMBDA+(LAMBDA+MIN) *0.5;
'IF' (LAMBDA-MIN) *0. 5/ABS (LAMBDA) 'LT' EPS 'TIIEN'
'BEGIN'

MIN+2 *LAMBDA-MIN;
'F~R' I+L+l 'STEP' 1 'UNTIL'
('IF' M 'GT' N2 'THEN' N2 'ELSE' M) 'D~'
EIG[I-Nl+l]+LAMBDA;
L+M;
'G~T~' LABA;

'END'
'END'; 'GOTO' LABB;

EXIT: 'END';

246

PROGRAM 19

This program determines the eigenvalues of a symmetric sparse

banded matrix using the modified bisection algorithm of Chapter 5.

The matrix for this algorithm has bands between semi-bandwidth P and

M and is tridiagonal in the centre.

'PR~CEDURE' SBBTMB(C,B,D,N,Nl,N2,P,M,EPS,QZR,EIG);
'C~MMENT' C is the diagonal, B the sub-diagonal, and 0 the bands at

semi-bandwidth P to M of the Nth order matrix. NI is the number
of the smallest eigenvalue required, and N2 the largest. EPS is
the required accuracy and QZR the closest number to machine zero
(substituted to avoid zero divisions). The eigenvalues are stored
in the first (N2-Nl+l) elements of EIG;

'ARRAY' C,B,D,EIG;
'INTEGER' N,P,M,Nl,N2;
'REAL' EPS, QZR;
'BEGIN'

'ARRAY' R[P:N,3:M),U,V[l:N);
'REAL' MAX,MIN,NEW,NEWER,LAMBDA,S;
'INTEGER' I,J,K,L,Z,T;
'BEGIN'

'C~MMENT' The bounds on the complete eigenvalue range are
determined (MAX,MIN);

B[l)+O;
NEW+ABS(B[N)) ;
'F~R' I+P 'STEP' 1 'UNTIL' M 'D~'
NEW+NEW+ABS (0 [N, I)) ;
MAX+C[N)+NEW;
MIN+C[N)-NEW;
'F~R' 1+1 'STEP' 1 'UNTIL' N-l 'D~'
'BEGIN'

NEW+ABS(B[Ij)+ABS(B[I+lj);
'F~R' J+P 'STEP' 1 'UNTIL'
'IF' M-l+I 'LE' N 'THEN' M
'ELSE' M+M-I-P 'D~'
NEW+NEW+ABS(D[I+J-l,J));
'F~R' J 'IF' I 'LT' M 'THEN' I 'ELSE' M
'STEP' -1 'UNTIL' P 'D~'
NEW+NEW+ABS(D[I ,J]);
NEWER..G [Ij+NEW;
NEW+C[Ij .. NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;

'END' ;
'END' ;
'C~MMENT' The elements of the Sturm sequence are now initialised;
'F~R' I+P 'STEP' 1 'UNTIL' M 'D~'
R[I,I)+D[I,I) ;
'F~R' I+M 'STEP' 1 'UNTIL' N 'D~'
R[I,Mj+D(I,Mj;
'F~R' 1+1 'STEP' 1 'UNTIL' P-l 'D~'

247

V[I]+B[I] ;
L+N1-1;

LABA: 'IF' L 'GE' N2 'THEN' 'G\<1T\<1' EXIT;
'C\<1MMENT' Major loop for the Lth eigenva1ue;
LAMBDA+(MIN+MAX)*O.5;

LABB: 'BEGIN'
'C0MMENT' Calculation of the Sturm sequence;
U[l]+C[l]-LAMBDA;
Z+O;
'IF' U[l] 'LT' 0 'THEN' Z+Z+l;
'IF' L-Z 'LT' 0 '0R' L-Z-N+I 'GE' 0 'THEN' 'G0T0' LABC;
'IF' U[l] 'EQ' 0 'THEN' U[l}-QZR;
'F0R' 1+2 'STEP' 1 'UNTIL' P-1 'D0'
'BEGIN'

U[I]+C[I]-LAMBDA-V[I]*V[I]/U[I-1];
'IF' U[I] 'LT' 0 'THEN' Z+Z+l;
'IF' L-Z 'LT' 0 '0R' L-Z-N+.1'GE' 0 'THEN' 'G0T0' LABC;
'IF' U[I] 'EQ' 0 'THEN' U[I}-QZR;

'END' ;
'FOR'I<-P 'STEP' 1 'UNTIL' M 'DO'
'BEGIN'

R[I,I-1]+-R[I,I]*V[2]/U[l];
'FOR' K+I-2 'STEP' -1 'UNTIL' 3 'DO'
'BEGIN'

T+I-K+1;
S+-R[I,K+1]*V[T]/U[T-1];
'IF' T 'GE' P 'THEN'
'F0R' J+I-K-2 'STEP' -1 'UNTIL' 0 'D0'
S+S-R[I,I-J]*R[T,T-J]/U[J+1];
'IF' K 'GE' P 'THEN' ~S+D[I,K];
R[I,K]+S;

'END' ;
S+B[I]-S*V[I-1]/U[I-2];
'IF' I-I 'GE' P 'THEN'
'F0R' J+I-4 'STEP' -1 'UNTIL' 0 'D0'
S+S-R[I,I-J]*R[I-1,I-1-J]/U[J+1];
V[I]+S;
S+C[I]-LAMBDA-V[I]*V[I]/U[I-1];
'F0R' J+I-3 'STEP' -1 'UNTIL' 0 'D0'
S+S-R[I,I-J]*R[I,I-J]/U[J+1];
'IF'S 'LT' 0 'THEN' Z+Z+l;
'IF' L-Z 'LT' 0 '0R' L-Z-N+I'GE' 0 'THEN' 'G0T0' LABC;
'IF'S 'NE' 0 'THEN' U[I]~S 'ELSE] U[I]+QZR;

'END' ;
'F0R' I+M+1 'STEP' 1 'UNTIL' N 'D0'
'BEGIN'

R[I,M-1]+-R[I,M]*V[I-M+2]/U[I-M+1];
'F0R' K+M-2 'STEP' -1 'UNTIL' 3 'D0'
'BEGIN'

T+I-K+1;
S+-R[I,K+1]*V[T]/U[T-1];
'IF' T 'GE' P 'THEN'
'F0R' J+M-K-2 'STEP' -1 ' UNTIL' 0 'D0'
S+S-R[I,M-J]*R[T,M+1-K-J]/U[I-M+J+1];
'IF' K 'GE' P 'THEN' S+S+D[I,K];
R[I,K]+S;

'END' ;
S+B[I]-S*V[I-1]/U[I-2];

248

'IF' I-I 'GE' P 'TIIEN'
'F~R' J+M-4 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,M-J]*R[I-l,M-1-J]/U[I-M+J+1];
V[I]+S;
S+C[I]-LAMBDA-V[I]*V[I]/U[I-l];
'F~R' J+M-3 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,M-JJ*R[I,M-J]/U[I-M+J+1];
'IF'S 'LT' 0 'THEN' Z+Z+1;
'IF' L-Z 'LT' 0 '~R' L-Z-M'I'GE' 0 'THEN' 'G~T~' LABC;
'IF'S 'NE' 0 'THEN' U[I]+S 'ELSE' U[I]+QZR;

'END' ;
'END' ;

LABC: 'IF' L-Z 'GE' 0 'THEN'
'BEGIN'

NEWER+MIN;
MIN+LAMBDA;
LAMBDA LAMBDA+(LAMBDA-NEWER)*O.5;

'END'
'ELSE'
'BEGIN'

LAl-IBDA+(LAMBDA+MIN) *0.5;
'IF' (LAMBDA-MIN) *0. 5/ABS (LAMBDA) 'LT' EPS 'THEN'
'BEGIN'

MIN+2*LAMBDA-MIN;
'FOR' I+L+1 'STEP' 1 'UNTIL'
('IF' Z 'GT' N2 'THEN' N2 'ELSE'Z) 'D~'
EIG[I-N1+1]+LAMBDA;
L+Z;
'G~T~' LABA;

'END' ;
'END' ;
'G~T~'LABB;

EXIT:
'END' ;

249

PROGRAM 20

This program determines the eigenvalues of a symmetric sparse

banded matrix using the modified bisection algorithm of Chapter 5.

The matrix for this algorithm has bands between semi-bandwidth P and

M, and is quindiagonal in the centre.

'PR~CEDURE SBBQMB(C,B,D,E,N,N1,N2,P,M,EPS,QZR,EIG);
'C~MMENT' C is the diagonal, B the sub-diagonal, E the sub-sub-diagonal,

and D the bands at semi-bandwidth P to M of the (NxN) matrix. NI is
the number of the smallest eigenva1ue required and N2 the largest.
EPS is the required accuracy and QZR the closest number to machine
zero (substituted to avoid zero divisions). The eigenva1ues are
stored in the first (N2-Nl+l) elements of EIG;

'ARRAY' C,B,D,E,EIG;
'INTEGER' N,P,Nl,N2,M;
'REAL' EPS, QZR;
'BEGIN'

'ARRAY' R[P:N,4:M],V,U,W[l:N];
'REAL' MAX,HIN,NEW,NEWER,LAMBDA,S;
'INTEGER' I,J,K,L,Z,T;
'BEGIN'

'C~MMENT'. Bounds for the complete eigenva1ue range are
determined (MAX,MIN);

B[l]+E[l]+E[2]+O;
NEW+ABS(B[N])+ABS[E[N]);
'F~R' I+P 'STEP' 1 'UNTIL' ~I 'D~'
NEW+NEW+ABS(D[N,I]);
MAX+C[N]+NEW;
MIN+C[N]-NEW;
'F~R' 1+1 'STEP' 1 'UNTIL' N-l 'D~'
'BEGIN'

NEW+ABS(B[I])+ABS(B[I+l])+ABS(E[I])+
('IF' I 'NE' N-l 'THEN' ABS(E[I+2]) 'ELSE' 0);

'F~R' J~P 'STEP' 1 'UNTIL' 'IF' M-1+1 'LE'
N 'THEN' M 'ELSE' M+M-I-P 'D~'

NEW+NEW+ABS(D[I+J-1,J]);
'F~R' 'IF' I 'LT' M 'THEN' I 'ELSE' M

'STEP' -1 'UNTIL' P 'D~'
NEW+NEW+ABS(D[I,J]);
NEWER+C[I]+NEW;
NEW+C[I]-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;

'END' ;
'END' ;
'F~R' hP 'STEP' 1 'UNTIL' M 'D~'
R[I,I]+D[I,I] ;
'F~R' I+M 'STEP' 1 'UNTIL' N 'D~ ,
R[I,M]+D[I,M] ;
'F~R' 1+3 'STEP' 1 'UNTIL' P-1 'D~'
W[I]+E [I];

250

V[1]+W[1]+W[2]+O;
V[2]+B[2];
L+Nl-l;

LABA: 'IF' L 'GE' N2 'THEN' 'GI/lTI/l' EXIT;
LAMBDA+(MIN+MAX) *0.5;

LABB: 'BEGIN'
Z+O;
U[I]+C[I]-LAMBDA;
'IF' U[I] 'LT' 0 'THEN' Z+Z+I;
'IF' L-Z 'LT' 0 'I/lR' L-Z-N+l'GE' 0 'THEN' , GI/lTI/l' LABG;
'IF' U[I] 'EQ' 0 'THEN' U[l]+QZRi
U[2]+G[2]-LAMBDA-V[2]*V[2]/U[I];
'IF' U[2] 'LT' 0 'THEN' Z+Z+I;
'IF' L-Z 'LT' 0 '0R' L-Z-N+I'GE' 0 'THEN' 'G0TI/l' LABGi
'IF' U[2] 'EQ' 0 'THEN' Z+Z+I;
'FI/lR' 1+3 'STEP' 1 'UNTIL' P-l 'D0'
'BEGIN'

V[I]+B[I]-V[I-l]*W[I]/U[I-2];
U[I]+C[I]-LAMBDA-V[I)*V[I)/U[I-l)-W[I)*W[I)/U[I-2)i
'IF' U[I) 'LT' 0 'THEN' Z+Z+li

'IF' L-Z 'LT' 0 '0R' L-Z-N+I 'GE' 0 'THEN' 'G0T0' LABG;
'END' ;
'F0R' I+P 'STEP' 1 'UNTIL' M 'Dill'
'BEGIN'

S+R[I,I-l) -R[I,I)*V[2]/U[I]i
S+R[I,I-2] -S*V[3)/U[2)-R[I,I)*W[3)/U[I)i
'FI/lR' K+I-3 'STEP' -1 'UNTIL' 4 'Dill'
'BEGIN'

T+I-K+l
S+-S*V[T)/U[T-l)-R[I,K+2)*W[T)/U[T-2)i
'IF' T 'GE' P 'THEN'
'FiIlR' J+I-K-3 'STEP' -1 'UNTIL' 0 'Dill'
S+S-R[I,I-J)*R[T,T-J)/U[J+l)i
'IF' K 'GE' P 'THEN' S+S+D[I,K)i
R[I,K)+Si

'END'i
S+E[I)-S*V[I-2)/U[I-3]-R[I,51*W[I-2]/U[I-4]i
'IF' 1-2 'GE' P 'THEN'
'FiIlR' J+I-6 'STEP' -1 'UNTIL' 0 'Dill'
S+S-R[I,I-J)*R[I-2,I-2-J)/U[J+l);
W[I]+S i
S+B[I)-S*V[I-l)/U[I-2]-R[I,4)*W[I-l)/U[I-3);
'IF' I-I 'GE' P 'THEN'
'FiIlR' J+I-5 'STEP' -1 'UNTIL' 0 'Dill'
S+S-R[I,I-J)*R[I-l,I-l cJ)/U[J+l)i
V[I)+Si
S+C[I]-LAMBDA-S*S/U[I-l]-W[I)*W[I)/U[I-2);
'F0R' J+I-4 'STEP' -1 'UNTIL' 0 'DI/l'
S+S-R[I,I-J)*R[I,I-J]/U[I+l);
'IF'S 'LT' 0 'THEN' Z+Z+I;
'IF' L-Z 'LT' 0 'iIlR' L-Z-N+I 'GE' 0 'THEN' 'GiIlTI/l' LABG;
'IF'S 'NE' 0 'THEN' U[I)+S 'ELSE' U[I]+QZRi

'END'i

251

'F~R' 1+M+l 'STEP' 1 'UNTIL' N 'D~'
'BEGIN'

S+RII,M-IJ~-R[I,M]*Y[I-M+2]/U[I-M+l]j
S+R[I,M-2]~-S*V[I-M+3]/U[I-M+2]-R[I,M]*W[I-M+3]/U[I-M+l]j
'F~R' K~~-3 'STEP' -1 'UNTIL' 4 'D~'
'BEGIN'

T+I-K+lj
S+-S*Y[I]/U[T-l]-R[I,K+2]*W[T)/U[T-2)j
'IF' T 'GE' P 'THEN'
'F~R' J+M-K-3 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,M-J)*R[T,M+I-K-J)/U[I-M+J+l)j
'IF' K 'GE' P 'THEN' S+S+D[I,K]j
R[I,K]+Sj

'END' j
S+E[I)-S*V[I-2)/U[I-3)-R[I,5)*W[I-2)/U[I-4)j
'IF' 1-2 'GE' P 'THEN'
'F~R' J+M-6 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,M-J)*R[I-2,M-2-J]/U[I-M+J+l)j
W[I)+Sj
S+B[I)-S*V[I-l)/U[I-2)-R[I,4)*W[I-l)/U[I-3]j
'IF' 1-1 'GE' P 'THEN'
'F~R' J+M-S 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,M-J)*R[I-l,M-I-J]/U[I-M+J+l]j
V[I)+Sj
S+C[I)-LAMBDA-S*S/U[I-l)-W[I)*W[I)/U[I-2)j
'F~R' J+M-4 'STEP' -1 'UNTIL' 0 'D~'
S+S-R[I,M-J)*R[I,M-J)/U[I-M+J+1)j
'IF'S 'LT' 0 'THEN' Z+Z+lj
'IF' L-Z 'LT' 0 '~R' L-Z-N+I 'GE' 0 'THEN' 'GOTO' LABCj
'IF'S 'NE' 0 'THEN' U[I]+S 'ELSE' U[I]+QZRj

'END' ;
'END' ;

LABC: 'IF' L-Z 'GE' 0 'THEN'

EXIT:
'END' ;

'BEGIN'
NEWER+MIN;
MIN+LAMBDA;
LAMBDA+LAMBDA+ (LAMBDA-NEWER) *0. Sj

'END'
'ELSE'
'BEGIN'

LAMBDA+(LAMBDA+MIN)*O.Sj
'IF' (LAMBDA-MIN) *0. S/ABS (LAMBDA) 'LT' EPS 'THEN'
'BEGIN'

MIN+2*LAMBDA-MIN;
'F~R' I+L+l 'STEP' 1 'UNTIL'
('IF' Z 'GT' N2 'THEN' N2 'ELSE' Z) 'D~'
EIG[I-Nl+1]+LAMBDAj
L+Z;
'G~T~' LABA;

'END' ;
'END' ;
'G~T~' LABB;

252

PROGRAM 21

This program performs the Partial Secant method on symmetric

banded quindiagonal matrices. The secand method is modified by "the use

I
of Partial Sturm Sequences, to speed it up, and the method proposed by

Anderson (1975) to determine eigenvalues in ascending or descending

order. The program has been left in a 'rough' form as improvements

are still being made, and in this form it is easier to follow. It is

set up to determine eigenvalues starting with the minimum eigenvalue,

but can be easily changed to determine the largest in descending order.

'PR0CEDURE' PSS(C,B,D,N,P,Nl,EPS,QZR,EIG);
'C0MMENT' C is the main diagonal, B the sub-diagonal, and D the diagonal

at semi-bandwidth P of the (NXN) symmetric matrix. EPS is the
accuracy required, and QZR the number closest to machine zero,
used to avoid zero divisions NI eigenvalues are required starting
with the smallest, and are stored in the first NI elements of EIG;

'ARRAY' C,B,D,EIG;
'REAL' EPS,QZR;
'INTEGER' N,P,Nl;
'BEGIN'

'ARRAY' R[P:N,3:P),U,V,S[O:N);
'INTEGER' X,FS,I,J,K,L,Z,T;
'REAL' Xl,X2,Bl,Fl,A,MAX,MIN,NEW,NEWER;
'BEGIN'

'COMMENT' Both the max and min of the eigenvalue range are
determined (MAX,MIN) as they are used as an initial guess
depending on whether the smallest or largest eigenvalues
are required;
NEW+ABS(B[N))+ABS(D[N)); B[l)+O;
MAX+C [N) +NEW;
MIN+C[N)-NEW;
'F0R' 1+1 'STEP' 1 'UNTIL' N-l 'D0'
'BEGIN'

NEW+ABS(B[I))+ABS(B[I+l));
'IF' P-l+I 'LE' N 'THEN'
NEW+NEW+ABS(D[P-l+I));
'IF' I 'GE' P 'THEN' NEW+NEW+ABS(D[I));
NEWER+C[I)+NEW;
NEW+C [I)-NEW;
'IF' NEWER 'GT' MAX 'THEN' MAX+NEWER;
'IF' NEW 'LT' MIN 'THEN' MIN+NEW;

'END' ;
'END' ;
U[O)+S[O)+lj
'F0R' I+P 'STEP' 1 'UNTIL' N 'D0'
R[I ,P)+D [I);

253

'PI/IR' 1+2 'STEP' 1 'UNTIL' P-l '01/1'
VII]+B[I] ;
B1+0;
Xl +X2-<-MIN -1;
L+l;
Z+O;
X+S:
FSt-P' /'2:
'CI/IMMENT' The number of times that the Partial Sturm Sequence will

be used before switching to the full sequence is preset to S.
The number of hands retained in the Partial sequence is preset
to half the semi-bandwidth:

LABl: Z+Z+l
'CI/IMMENT' The initial P-l elements of the Sturm sequence can now

be calculated, as they are the same for both the partial and
full sequences;

U[1]+C[l]-X2:
'IF' U[l] 'EQ' 0 'THEN' U[l]+QZR:
'FI/IR' 1+2 'STEP' 1 'UNTIL' P-l '01/1'
'BEGIN'

U[I]+C[I]-X2-V[I]*V[I]/U[I-l]:
'IF' U[I] 'EQ' 0 'THEN' U[I]+QZR:

'END' :
'IF' Z 'LE' X 'THEN'
'BEGIN'

'C0MMENT' If less than X(S) iterations have been completed
then the Partial Sturm Sequence is used:

'F0R' I+P 'STEP' 1 'UNTIL' N '00'
'BEGIN'

A+R[I,P-l]+-R[I,P]*V[I-P+2]/U[I-P+l]:
'F0R' K+P-2 'STEP' -1 'UNTIL' P-FS '00'
'BEGIN'

T+I-K+l
A+-A*V[I]/U[T-l];
'IF' T 'GE' P 'THEN'
'F0R' J+FS+l-K 'STEP' -1 'UNTIL' 0 '00'
A+A-R[I,P-J]*R[T,P+l-K-J]/U[I-P+J+l]:
R [1, K]+A;

'END' :
MB [I] :
'lP' I-I 'GE' P 'THEN'
'F0R' J+FS-l 'STEP' -1 'UNTIL' 0 '00'
A+A-R[l,P-J]*R[I-l,P-l-J]/U[I-P+J+l]:
V[I]+A;
A+C[I)-X2-A*A/U[I-l):
'F0R' J+FS 'STEP' -1 'UNTIL' 0 '00'
A+A-R[I,P-J)*R[I,P-J)/U[I-P+J+l):
'IF' A 'NE' 0 'THEN' U[I~A'ELSE' U[I)+QZR;

'END' :
'END'
'ELSE'
'BEGIN'

'C0MMENT' After X(S) iterations the full Sturm sequence is used:
'P0R' I+P 'STEP' 1 'UNTIL' N '00'
'BEGIN'

A+R[I,P-l)+-R[I,P)*V[I-P+2)/U[I-P+l):

254

LAB3:

'F~R' K+P-2 'STEP' -1 'UNTIL' 3 'D~'
'BEGIN'

T+I-K+1 ;
A+-A*V[T]/U[T-1] ;
'IF' T 'GE' P 'THEN'
'F~R' J+P-K-2 'STEP' -1· 'UNTIL' 0 'D~'
A,A-R[I,P-J]*R[T,P+I-K-J]/U[I-P+J+l];
R[I,K]+A;

'END' ;
A+B[I]-A*V[I-l]/U[I-2];
'IF' 1-1 'GE' P 'THEN'
'F~R' J+P-4 'STEP' -1 'UNTIL' 0 'D~'
A+A-R[I,P-J]*R[I-l,P-1-J]/U[I-P+J+1];
V[I]+A;
A+C[I]-X2-A*A/U[I-l];
'F~R' J+P-3 'STEP' -1 'UNTIL' 0 'D~'
A+A-R[I,P-J]*R[I,P-J]/U[I-P+J+l];
'IF' A 'NE' 0 'THEN' U[I]+A 'ELSE' U[I]+QZR;

'END' ;
'END' ;
'C~MMENT' To avoid redetermining known eigenvalues the sequence

is divided by these eigenva1ues;
'F~R' J+2 'STEP' 1 'UNTIL' L 'D~'
U[N+2-J]+U[N+2-J]/(EIG[J-l]-X2);
'IF' B1 'EQ' 0 'THEN'
'BEGIN'

B1+1;
X2+MIN;
'F~R' 1+1 'STEP' 1 'UNTIL' N 'D~'
S[I]+U[I];
'G~T~' LAB1;

'END' ;
Fl+1;
'F~R' I+N 'STEP' -1 'UNTIL' 1 'D~'
F1+F1*S[I]/U[I];
'IF' F1 'EQ' 1 'THEN' F1+F1+QZR;
F1+(X2-X1)/(1-F1);

'C~MMENT' A number of tests are made to ensure that convergence
to an eigenva1ue until: the correction factor (Fl) is less
than the required accuracy (EPS), more than 9 iterations
have been performed;

'IF' Z 'LT' 0 'THEN';
'BEGIN'

EIG[L]+X2-Fl;
S[N-L]+S[N-L]/('IF' EIG[L]-X1 'EQ' 0 'THEN' EPS 'ELSE' EIG[L]-Xl);
Z+O;
L+L+1;
'IF' L 'EQ' N1+1 'THEN' 'G~T~' EXIT;
MIN+EIG[L-l]+O.l;
Xl+X2t-MIN-1;
Bl+O;
'G0T~' LABl;

'END' ;
'IF' ABS(F1/(X2-F1)) 'LT' EPS 'AND' Z 'GT' X+1 'TIIEN' Z+-Z-2;
'IF' ABS(Fl/(X2-Fl)) 'LT' EPS'O.l 'AND' ABS(Z) 'GT' X+2 'THEN'

255

'BEGIN'
Z+Z+2;
'G~T~' LAB3;

'END' ;
Xl+X2;
X2+X2-Fl ;
'F~R' 1+1 'STEP' 1 'UNTIL' N 'D~'
S [I]+U[I];
'G~T~' LAB1;

EXIT:
'END' ;

256

PROGRAM 22

This program is a modification to the Lanczos method for symmetric

matrices as described in Chapter 7, and is programmed in Algol 68R.

The procedure NORM is used, and simply normalises a given vector. Also

the operators * and - have been defined for multiplication of two vectors,

a vector and a matrix, a scalar and a vector, and subtraction of two

vectors. These are simple routines and are not included.

'PR0C' ML=([,]'REAL'A,'INT'N,NI,N2,'REAL'EPS,QZR,'REF'[]'REAL'EIG):
'BEGIN'

'C' A is the input matrix of order N. NI is the number of the
smallest eigenvalue required, N2 the largest. EPS is the accuracy
required, and QZR the number closest to machine zero used to avoid
division by small numbers. The eigenvalues are stored in the first
N2-NI+I elements of EIG. 'C';
[1:N,I:N]'REAL' X;
[1:N]'REAL' B,C,D,G;
'REAL' MAX,MIN,NEW,NEWER,LAMBDA;
'INT' S,L,K;
'F0R' I 'T0' N '00'
(X[I,I]+X[I,N]+O);
X[I,I]+X[N,N]+l;

LAB1: D+A*X[,l];
C[I]+X[,l]*D;
B[l]+X[,N]*D;
G[l]+(X[,I]*A*X[,N] ;
X [,2]+0- (C [1] *X[,l])- (B[l] *X[,N]);
N0RM(X[,2]) ;
D+A*X[,2] ;
B[2]+X[,1]*D;
C[2]+X[,2]*D;
'F0R' I 'FR0M' 3 'TO' N-1 '00'
'BEGIN'

G[I-I]+X[,N]*D;
X[,r]+D-(C[I-1]*X[,I-1])-(B[I-1]*X[,I-2])-(G[I-1]*X[,N]);
NORM (X [, I]) ;
D+A*X[,I] ;
B[I]+X[I-1]*D;
C[Ij+X[,I]*D

'END' ;
X[,N]~D-(C[N-1]*X[,N-1])-(B[N-I]*X[,N-2]);
N0RMCX[,N]) ;
D+A*X[,N] ;
B[N]+X(,N-1]*D;
C [N]+X [,N] *0;
'C' The original matrix has now been transformed by the Lanczos
method to one with main diagonal C, sub-diagonal B, with the
remaining elements in the Nth row and column contained in G.

257

The matrix is symmetric and has the same eigenva1ues as A so
bisection i.s now performed on this matrix. 'C';
, BEGIN'

'C' Limits are determined for the complete eigenva1ue range
(MAX,MIN). 'C';
MAX+'ABS' (B[2])+'ABS' (B[l]);
MIN+C[l]-MAX;
MAX+C [1] +MAX;
'F~R' I 'FR~M' 2 'TJt' N-2 'D~'
, BEGIN'

NElq+'ABS' (B[I+1])+'ABS' (B[I])+'ABS' (G[I]);
NEWER+C[I]+NEW;
NEW+C[I]-NEW;
(MAX<NEWERlMAX+NEWER);
(MIN>NEWIMIN+NEW);

'END' ;
NEW+'ABS' (B[N])+'ABS' (B[N-1]);
NEWER+C[N-1]+NEW;
NEW+C[N-l]-NEW;
(MAX<NEWERlMAX+NEWER);
(MIN>NEWIMIN+NEW);
NEW+'ABS' (B[l])+'ABS' (B[N]);
'F~R' I 'FROM' 2 'TO' N-2 'D~'
NEW+NEW+'ABS' (G[I]);
NEWER+C[N]+NEW;
NEW+C [N] -NEW;
(MAX<NEWERlMAX+NEWER);
(MIN>NEWIMIN+NEW);

'END';'REAL' ZER~O.lt70;
L+Nl-l;

LABA: (L>~N2!'G~T~' EXIT);
'C' This is the major loop for the Lth eigenva1ue.'C';
LAMBDA+(MIN+MAX) *0. 5;

LABB: 'BEGIN'
'C' The Sturm sequence is now calculated, then bisection
performed. 'C';
'REAL' S,T,V;
K+O;
S+C [1] - LAMBDA;
(S<OIK 'PLUS' 1);
('ABS' (S)<ZERIS+qZR);
T+G[l];
V+C[N]-LAMBDA;
'F~R' I 'FROM' 2 TO' N-2 'D~'
'BEGIN'

V+V-T*T/S;
T+G[I]-T*B[I]/S;
S+C[I]-LAMBDA-B[I]*B[I]/S;
(S<OIK 'PLUS' 1);
('ABS'(S)<ZERI S+QZR);

'END' ;
V+V-T*T/S
T+B[N]-T*B[N-1]/S;
S+C[N-l]-LAMBDA-B[N-1]*B[N-l]/S;
(S<O!K'PLUS' 1);
('ABS'(S)<ZER!S+QZR);
S+V-T*T/S;
(S<O!K 'PLUS' 1);

258

EXIT:

'END' ;
'IF' L-K >=O'THEN'
'BEGIN'

NEWER+MIN;
MIN+LAMBDA;
LAMBDA+LAMBDA+(LAMBDA-NEWER)*0.5

'END'
'ELSE'
'BEGIN'

LAMBDA+(LAMBDA+MIN) *0.5;
'IF' (LAMBDA-MIN)*0.5/'ABS'LAMBDA<EPS
'THEN'
'BEGIN'

MIN+2*LAMBDA-MIN;
'F~R' I 'FROM' L+l 'T~' (K>N2IN2IK) 'D~'
EIG[I-Nl+l]+LAMBDA;
L+K;
'G~T~' LABA

'END' 'FI'
'END"FI';
'G.i1Tj1l' LABB

'END' ;

259

