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CHAPTER 1

INTRODUCTION



1.1 THE EquaTioNs oF MATHEMATICAL PHYSICS

The mathematical formulation of many problems in physics,
engineering and economics leads to a relationship between certain
unknown quantities (such as distance, pressure, temperature, volume,
cost, etc.) and their rate of change with regard to a single independenﬁ
variable usually representing time, length or angle. This relationship
is called an ordinary differential equation. Any of such mathematical
formulatiéns can lead to a single differential equation or to a set of
differential equations.

The exact solution to an ordinary differential equation in an
interval I on the real line is some function which satisfies the
differential equation at every point within the interval. For instance,
the motion of a body falling freely from rest uﬁder the gravitational

acceleration g is completely described by the relationship

2
_d__;.- = -g (1.1.1)
dt

g/

FIGURE (1.1)
The gravitational acceleration acts in the opposite direction

to the increasing distance axis as indicated in figure (1.1).



If the initial height of the body is specified as. sy at time
t=0, the relationship given by equation (1.1.1) is satisfied
at anj interval of time t30 by the function s=s(t) given.by
s(t) = s, “1gt? . (1.1.2)
For a specified interval T on the real line, it is not
always possible to obtain the exact solution te a given
ordinary differential equation. TFor instance, the analytic

solution to the Van-der-Pol oscillator:
a%y 2. dy
— =~ e(l-y")=E=+ y =0; 0 . (1.1.3)
2 dx
dx
is not known. In an attempt to obtain the numerical

solution to such differential equations, there are three basic

approaches:

(a) The Analytic Approximate Method:

This approach represents the solution te a given differential
equation by the sum of a finite number of independent functions.
For example, the solution is represented by a truncated power
series or the first few terms of an expansion in orthogonal
functions or possibly by an asymptotic series, e¢.f. boundary
layer theory in fluid dynamics. These methods are better

suited to hand computation but Fox (1962) introduced .

automatic computation to numerical integration schemes based
on Chebyshev polynomials developed by Lanczos (1938) and
Clenshaw (1957). Lanczos {1938} based his scheme on polynomial
approximations of the form Pn(x) = § brxr and perturbed the

r=0
right hand side of the differential equation by the term 1 Tn(x)



to obtain the coefficients of the polynomial, where 7 is a

real variable and Tn(x) is the Chebyshev polynomial given by ‘
Tn(x) = ¢cos n(cos_lx) s —ksxgl (1.1.4)

Clenshaw (1957) concerned himself wifﬁ polynomial |

approximations of the form ‘

n
P (x) = rZO b T_(x) (1.1.5)

where Tr(x), r=0,1,...,n are Chebyshev polynomials as given | i
‘by equation (1.1.4),Fox (1962) demonstrated a.close relationship

between these two schemes. He also discussed various aspects of

these schemes for both initial value and boundary value problems.

Details of further work in this area are available in Clenshaw

(1962), Lanczos (1957),.Fox and Parker (1968), Lyche (1972) and

Clenshaw and Norton (1963). This approach is however constrained

by £he fact that it is only applicable to differential equations

whose coefficients are polynomial functions of the independent

variable. The scheme is particularly well suited to boundary

value problems.

(b) The Spline Function Approximate Method:

This approach searches for a global approximate solution
to any given initial value proﬁlem over the entire interval I
~of integration (i.e. a continuous solution z = z(x) is sought
for in the interval I). The solution is approximated on the
interval L by an interpo}ating pqunomial sm(x) of degree m
with the property that sm(x) possesses continuous derivatives
up to and including order m~1. Localzo et.al. (1967) devebped
schemes for generating the spline approximations to an initial ‘

value problem. Blue (1969) established the increased accuracy
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(although with increased complexity) in the application of spline
function approximate method to solving non-linear boundary value

problems.

(c) Finite Difference Approximate Methods:

This approach is based on the.principle of discretization.
Approximate values are sought at a sequence of discrete poiﬁts
on the interval I usually denoted by

{xi:xi=xi_1 + h, i=1,2,....} (1.1.6)
if h is the mesh-size. The approach furnishes a set of values
{yi} corresponding to the mesh points given by equation (1.1.6).
The approximate solution y; to the exact sclution y(xi) at
X = X, thus contain a discretization error e, = yi-y(xi). Any
good algorithm based on discretization will control the
discretization errors.  This approéch has two distinct classes:
(1) One step methods — which only fequire the solution y, at

X = X, obtain the next approxim i . = x,
: to a PP ate solution y1+1 at x x1+1

(ii) Multistep methods - which require a certain number of past
solutions Yis¥i 1sY5_peees to obtain = the approximate solution

at x = x

Yi+1 i+1°

The finite difference approximate methods are generaliy well
suited to automatic computation and hence are more frequently used
and universally applicable.

- Localzo and Schoenberg (1967) estahlished a theorem which
links the spline function approximate methods to the finite

difference approximate methods. For example if the trapezoidal
rule, given by N .
Veep = Ve * 3 L+ £ 1), t=0,1,... (1.1.7)

t+1
E&here {fi, i=0,1,...} are the values of the derivatives at the

mesh pointé] is repeatedly applied on every sub-interval of I



as defined by equatioﬁ (1.1.6), it is equivalent to approximating

the solution y(x) gleobally on the interval I by a quadratic spline.
We shall adopt the finite difference approximate approach

in the development of the new numerical integration algorithms.

The other two approaches could also have been adopted except that

the constraint on the analytic approximate appreach would

definitely limit the range of application of the work.




1.2 THE OrRDER AND DEGREE oF ORDINARY DIFFERENTIAL

EQUATIONS

If the highest derivative that occurs in a differential

n

equation is g—%-, then the differential equation is said to be

dx

of order n. For example, the differential equation (1.1.1) is
of order 2. The degree of a differential equation is the power
to which the highest derivative is raised, e.g. the differential
equation (1.1.1) is of degree 1.
The general form of an ordinary differential equation of
order n is given by
F(x,y,y(l),.....,y(n)) =0 - (1.2.1)

where x is the independent variable, y = y(x) the unknown

function and

denotes the ith total derivative of y(x) with respect to x,
Since little can be said about equation (1.2.1), it is
assumed that it can be solved locally for the nth derivative

of y(x) to give _
@ - emy,y P,y D) (1.2.2)

The implicit function theorem (Apostol,T.M. 1965) gives the
conditions which the function F in equation (1.2.1) must
satisfy to be able to obtain equation (1.2.2). Equation
-(1.2.25 is the normal form for the nth order ordinary
differential equation.

We now consider a closed and bounded interval

I = a<x<h _ (1.2.3)

on the real line as our interval of integration., We denote
by Cn, a complex n-dimensional space. Let n = (nl,....,nn)

be a fixed point in ¢” and §§f1;f2,...fn), an n~tuple of



continuous functions, Le a mapping of R = IxC" into C" such
that for everyxe I and y = (yi,...,yn) ech

d
£y =y=Fec”.

We shall consider in general, the initial value problem

t

¥y

]

£(x,y) 3 124

y(a) = n: o

Equation (1.2.4) conétitutes a system of n first.order
ordinary differential equations. By suitable substitutions,
every nth order ordinary differential equations of the form
given by equation. (1.2.2) can be traﬁsformed into a system
of n first order ordinary differential equations of the form
(1.2.4). For example, the differential equation (1.1.3) which

is of second order cam be reduced to a system of two first

order ordinary differential equations as follows:

v =¥
and (1.2.5)

"Yl -y,
and substituting these in equations‘(1.1.3) we obtain

yg = s(l-yi)y2 ¥ s (1.2.6)
Hence the problem (1.1.3) is transformed to the first order
systems:

Y1 59,
(1L.2.7)

T =

2
= e(l-yl)yz-yl .




1.3 Vector NorMS

As we intend to treat initial value problems in the form
given by equation (1.2.4), it is worthwhile to discuss briefly
the concept of vector norms. There are many possible vector
norms.but we shall concern ourselves with the three most.
commonly applied in practice. A vector norm denoted by [|.||p@'¥0(
p>0 is a non-negative function on the space ¢™ with the
following properties:

, N
For arbitrary vectors y and y* in C and a complex number o,

(a) ||1J|p > 0 - if y#0 | (1.3.1)

®) lay] IP = |<>Ll-[[z||p O (1.3.2)
* .

ey ||y+y*| lp < |yl [p g |y |[p . (1.3.3)

Equation (1.3.3) is known as the triangle inequality.
We now give some examples of the vector norms:
The Lp norm is defined as

1

IZI ly |pT i lspee
|[zJ|p = i=1 1 (1.3.4)

max Iy.| if p=o .
1<isn

The most widely used of these norms are:

.. (i} the Sum Tlorm given by

[zl = irzll AR | (1.3.5)
(ii) the Euelidean norm given by
g, =« iilyf)%, (1.3.6)
and finally,
(iii) the maximum norm given by
Hyll, = max [y.] . (1.3.7)



In all our applications of vector norms, we shall adopt
the maximum norm and denote this as [|.[]. This choice is
due to the fact that the maximum norm is more powerful and
is comparatively easier to apply than either the gum norm

or the Euclidean norm.



10

1.4 THE ExisTENCE AND UNIQUENESS THEOREM

The integral of an th order differential equation contains
n constants of integration. In other words, this integral
constitutes a family of curves in c". A particular curve in c"
is only defined if numerical values are attached to the n
constants of integration. This is equivalent to specifying
the n initial conditions

»

yi(a) =n; i=1,...,n (1.4.1)
for the system (1.2.4).
Before considering conditions for the existence and
uniqueness of solutions to an initial value problem, we give
the following definition.
The function f = £(x,y) in equation (1.2.4) is said to Sutafj

" . Lipschitz condition of order one in y uniformly in X,

if there is a constant L such that the following relation holds,

£,y - £6,901] 5 L]y - v#] | (1.4.2)

for all (x,y) and (x,y*) ¢ R.

We now impose the following constraints on the space c':

for every ¥y = (yl""’yn) e c",

1] i <.

We now state the standard theorem which guarantees the
é;iggenée of a unique solution to an initial value problem
of the form given in equation (1.2.4).

The existence theorem is as follows:
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Theorem (1.1)

Let the function f = f(x,y) be continuous in the infinite S**f
R=1 xc,’f ﬁh’ﬁﬂz | !Z.] |<» and satisfy equation. (1.4.2); Then, the
rinitial value problem given by equations (1.2.4) has a unique
solution y = y{(x) defined on the interval I.
Proof'

If a solution vector z(x) actually exists which satisfies
thé initial condition y(a) =n, then from equation (1.2.4),
this solution must satisfy the integral equation

y(x) =n + fo(u,z(u))da . (1.4.3),

Conversely, if y = ;ﬁx) is continuous and satisfies equation
(1.4.3), then it is differentiable and satisfies the equation
(1.2.4). The integral equation can now be solved iteratively
by Picard's method as follows:

Start -  with,

Zﬁb](x) =n

and then generat€ . the sequence of vector valued functions:

. X
y_[r+1j (x) = n+ I E(us:‘_f_[r] (¢))da, r=0,1,... . {1'4'4)
a .

We now wish to show that the sequence of functions {zﬁi](x)}

converges absolutely and uniformly to y(x) and that the limit
function satisfies the integral equation (1.4.3). By taking

the norm of the difference of two successive functions

generated by equation (l.4.4), we have the following relation:

T e 3 PRTRTY A J:g(m,z[rj(u))du]_
e [ ey wnal

| ‘IXE(u,z[r] (a))—i(u,z&*ﬂ (a)]da] l (1.4.5)

I

I

"

y |
I | |£(“sz[r] (&D"i(d,y_[r_ﬂ (a))}]de
a



12

Since £ = f(x,y) satisfies @ Lipschitz condition, we have
e,y F @) - fey EH e < sl oo, a

We now substitute this in equation (1.4.5) to get,
X
2 E 6o - yHlewl) <1 [ 5@ -y EF @, a
_ a
By similar argument, we have the relation:
— |ly£‘] G-y F Tl < Lf |y <a>—z[”'2]<a>l_|aa. a

By repeating this procedure (r-2) times, we obtain

Similarly, using equation (1.4.14) in equation (1.4.9) gives

HY[] (X)"Y[]( ) < —-—[ (a-a) 240

M'L2

- (x-a)> (1.

.4.6)

4.7)

4.8)

X
1z - ol < 11158 @B @)oo (1.4.9)
a
and finally,
%
Hz[z]'(x)-z[ﬂ )] < LJ llzﬂ:I (ot)-l[o:l(oe)”du. (1.4.10)
a
But
X
B w8l = 1in+ [zemae- ol
: a
“11f £, mac]
leeoilea (1.4.10)
a
Since the function f = f(x,y) is continuous in a closed
interval I, then f£ is bounded i.e. there exist a constant
M <« guch that
| Gl | < (1.4.12)
for all (x,y) € R.
---Using equation (1.4.12) in equation (1.4.11) we obtain,
X
”._X.[l] (x)-_y_[()] (x)ll <M Jadd = M(x~a) (1.4.13)
and this in equati‘on (1.4.10) yields
Ily[] (x)-—y[] (x)H < IM J (a=a)do - = ML (X a) (1.4.14) |

4.15)



By continuing with this procedure, equation (1.4.7) gives the

result

[“*1]< )-y[ﬂc W < g G )t
[r+1]

X[r+]‘J (x) = i[OJ_'_ io [11:3"'1] (X)_ZL—S'J (x)j

The function y (%) can be expressed as

By applying equations (1.4.4) and (1.4.16) in equation
(1.4.17) we have

oS eofetnte 3 e e

Now the series

E M L(x—a)|8+l
s=0

L’ (s+1)!

is absolutely and uniformly convergent. Hence the sequence
. . ] .

of continuous finctions {ytd (x)} converges uniformly to

y(x} on the interval I and the limiting function y(x) is

necessarily continuous. The limiting function y(x) is given

by

X
y(x) = lim y_[r] (x) = n + lim I i(a,ltr_l] {a))do

hanar = “a

X
= n+ Jalim £,y 0 @)ao

X

= 1+I fla,y(e))do
a

Equation (1.4.20) implies that the limiting function

y(x) satisfies the integral equation and hence the differential

equation (1.2.4) for any arbitrary n e c".

Next we discuss the uniqueness of the solutiom.

Suppose there is another solution z(x) to the initial value

problem (1.2.4) with z(a) = n . z(x) must satisfy the integral

equation (1.4.3). Hence

X
E(X) =N+ [E(asi(a))da-

a

(1.4.16)

(1.4.17)

(1.4.18)

(1.4.19)

(1.4.20)

(1 4.01)



By sﬁbtracting equation (1.4.4) from equation (1.4.21) and
taking norms, we obtain
X
Ilz-_<x>~;r_5f”1:l ] = HI £(a,2(0))da -
. a X Eﬂ
£(o,y 9 (2))dal |
a

. ‘
3 f Hz@-sF @yllas
a
For r=0, equation (1.4.22) gives

. X
ey ool < 1 [ acomlle
a
But

HzGo-nll= Hze) + (] ¢ Hze{{+{]al]

g k1+k1 = k2 say .

Hence, equation (1.4.23) implies
z(x)~y [ @] s Lk, (x~a)

For r=2, we have

Lz(x—a)2

Hzeoy B el <, B

and in general, we have

8
z&x)-y (=) @1 s x, LG&-a)]

3!
Hence

1im H_z_(x)-z_[s](x)ll =0

g>o

Thefefore,

z(x) = lim }_;_ESJ(X) = y{x) o

5>»

Hence, the limiting function y(x) is the unique solution to
the initial value problem (1.2.4).

It is very essential to ascertain the existence of
solutions to an initial value problem before we embark on

obtaining its numerical solution. Some numerical integration

14

(1.4.22)

(1.4.23)

(1.4.24)

(1.4.25)

(1.4.26)
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schemes will still give results although meaningless even though

the initiglvalue problem has no solutiomor it has a solution but it is not
unique. For instance, the initial value problem
.Y‘=-»/1? 3 y(0) =1
does not satisfy the.Lipschitz condition in y at x = 0 since
of

3y
x=0

although |£(x,y)| <1 # #.
In fact, the family of solutions is

y = cos(x+a)-, o real }
y = +1 is thus a solution of a special kind.

If this problem is solved with any numerical integration
scheme which does not make use of higher derivatives of f£(x,y)
the values returned will be y = +1 for all values of x.

In passing, we remark - that any desired accuracy in the
numerical integration of an initial value problem can be
attained(if the problem satisfies &. Lipschitz condition
with respect to the dependent variable) by choosing a
sufficiently small mesh size. However, the effect of rounding

off errors is magnified owing to the larger computation

involved with decreasing mesh size,
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1.5 Some ExaMmPLES

_ We now discuss briefly some physical problems which lead to
ordinary differential equations céntaiﬁing discontinuities as
well as those ordinary differential equations whose solutions
are periodie.

The problem (1.1.1) can be considered as a practical exaﬁple
of a system of ordinéry differential equations with discontinuous
derivatives if the objects dropped were inelastic. The motion is
completely destroyed at the point of impact with the ground.

Examples of systems of ordinary differential equa;ions having
oscillatory (in particular, periodic) solutions are of considerable
interest in stability theory in control. lotable amongst these
equations are the celebrated problems of the Van-der—-Pol oscillator

and the Rayleigh's oscillator.

a) The Van-der-Pol Oscillator

The Van-der-Pol oscillator with control is given by the equation
Y (l-yP)y" + ay + k = 0 (1.5.1)

where u,k and a are positive real numbers and k is the control |
parameter. The system (1.5.1) has attracted much attention in
- control theory since it was fi;st discussed by B. Van-der-Pol in
1926, The attraction is perhaps due to the curious nature of its
phase portraits which provide an excellent example of the limit
cycle approached both from within and without by the phase trajectories;
The phase portrait of the problem (1.5.1) for u = +2, and

control k = =0.5 has been obtained by Fatunla (1972) (see figure 1.2).




e e Rt o AT Em mm

" FIGURE 1.2
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The problem (1.5.1) is solved with the new schemes to be given

later for the case uw = 0.01, a =1 and k = 0,

Rayleigh's Equation

The Rayleigh$oscillator is given by the differential

equation:
s+ ky' + nly = 0. o 1.5.2)

Lord Rayleigh (1894) in his 'Theory of Sound' argued that
the problem (1.5.2) defines a steady vibration if k = 0 and
that if k is positive, the vibration will die down and if k
is negative, the vibration will incr;ase without limit. This
problem is solved for k = 0, n = 1 with all the new numerical

integration procedures given in Chapters IV, V and VI.
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1.6 THE ExisTing HUMERICAL INTEGRATION SCHEMES

;

As the main ohjective of this text 1s to develop some new
integration algorithms for solving initial value problems in
ordinary differential equations containing discontinuities as
well as those whose gglutions are oséillatory, we shall give a
brief account of past activities in.these areas s

Amongst the existing schemes is one by Géran Fick (1971)
which is a modification of the IBM subroutine named DHAMDI and is
based on - . Hamming's predictor corrector scheme. The scheme
identifies the poinf of discontinuity if the mesh size has been
halved a certain number of times and the numerical solution does
not meet the tolerance requirement. Another scheme to solve
discontinuous systems was developed by O'Regan (1970). His
Alpha scheme is based on the fourth order Runge—Kﬁtta integration
scheme whilst a detector function is introduced which identifies
the point of discontinuity when there is a change in the sign of
the detector function. This procedure makes use of Newton-Raphson's
iteration scheme to solve a non-linear equation for the fraction of
the current stepsizetedetermine . the point of discontinuity. The
resultant scheme yields a third order Runge-Kutta algorithm, The

latest effort in this area includes the work of Hay et.al (1974)
méﬁﬁ used a sequence of detector functions to locate the points of
discontinuity. The point of discontinuity is identified with the

change in the sign of one of the detector functions.
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Gautschi (1961) developed é muitistep scheme for solving
ordinary differential eqﬁations having periodic solutions. His
integration algorithm is based onr annihilating trigonometric _ |
polynomials up to a desired degree. As the coefficients of the
resultant multistep schemes are functions of the peried of

the solution, an a priori knowledge of the period is essential.
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1.7 PrREVIEW

In the subsequent chapters, new explicit one-step and linear
multi-step numerical integration schemes are proposed with the
view of obtaining maximum stability characteristics.

Chapter II gives a brief background of some numeriecal methods
thaf are relevant to the development of the new integration schemes
proposed in subsequent chapters. A brief account of Gautschi 's
integration scheme as well as Lambert and Shaw's integration schemes
is also given.

Chapter III deals exclusively with the adaptation . of the
Gragg,Bulirsch and Stoer algorithm to solve initial value ﬁroblems
containing &iscoﬁtinuities.

In Chapter IV, we propose - a new variaﬁle order one step
integration scheme. The scheme is based on representing the
solution in every sub-interval by the combination of a polynomial
and trigonometric or hyperbolic interpolant. The convergence and
stability of the scheme are also established.

In Chapter V, an explicit linear multistep scheme is developed.
It is based on the same set of interpolants as in Chapter IV.

Finally, in Chapter VI we develop a linear multistep scheme
to integrate special second order systems. A brief comparison of
““the new schemes proposed in Chapters IV, V and VI with some of

the existing schemes is presented.



CHAPTER [1

" BACKGROUND NUMERTCAL ANALYSIS
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2.1 InTrRODUCTION

In this chapter, we shall discuss briefly some of the.basic
numerical. analysis which is relevant to the development of the
new integration algorithms in the subsequent chapters. The
discussion includes:

(a) - difference operators.

(b) .. finite difference approximate methods for solving initial
value problems in ordinary differential equations

{(c) some finite difference methods for solving special pfoblems.
in ordinary differential equations namely

(i) Gautschi's multistep methods for solving initial value
problems having periodic or oscillatory solutions osme

(ii) Lambert and Shaw's algorithm for solving initial value

problems whose solutions contain singularities.

2.2 THE DIFFERENCE (OPERATORS

Let {xt, t=0,1,... be the mesh points on the interval I
defined by the equation (1.1.6). Suppose the values {yt: yt=y(xt)
t=0,1,...} of the function y=y(x) are known at these mesh points.

We first introduce the shift operator denoted by E and
defined by

By = £=0,1 (2.2.1)
yt Yt'i‘k’ L E L] oL
where k is a real number.

We now define the following difference operators:
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(a) the forward difference operator denoted by A and defined by

BYe = Yee1 T Yt
1 0
= F yt E yt
= (E—l)yt (2.2.2)

(b} the backward difference operator denoted by V and defined by

VI = Ve T Y1

|
=]
i
ot
|
e
o
a

(2.2.3)

]
~
[
!
=
|
o
g
rt

(c) the central difference operator denoted by & and defined by

Ve = Yeay T Veoy

t Te

(E%—E_%)yt . 7 (2.2.4)

These operators satisfy the commutative, associative and
distributive laws.
The higher order forward differences can be obtained as

follows:

>
o
il

_13\P
(E~1) Ve

2 -
L DT Oy

=0 t

P
) DEE (2.2.5)

=0 ) yt+p-r
Similar expressions can be obtained for the backward and
central differences,.

We end this section with the statement of the following
theorem whose proof is available in Young and Gregory (1973).

Theorem 2.1

If £(x) is a polynomial of degree <n, then
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(i) @) =o,
(ii) V'£(x) = 0,

(ii1) ") = 0.

2.3 ONE-Step MeTHoDS FOR SoLviING DRDINARY DIFFERENTIAL

EQUATIONS

A general one-step scheme for obtaining the numerical solution

of the initial value problem (1.2.4) can be written in the form:

Yp=2>

Yeu1 = Lt + hgﬁxt,zt;h),t=0,1,... ' (2.3.1)

where the increment function ¢ = ij,z;h) is determined by the
function £ = f(x,y) and is a function of xﬁ,zt and h only.
We now give the following definitions:

Definition (2.3.1)

If p is the largest integer for which the difference between

the numerical solution y

Yiqq 8t x=% ., given by equation (2.3.1)

and the theoretical solution y(x_ ) satisfies the following

t+l

relationship:

Tpa1 ~ PACHRD B 0(hP+1), . (2.3.2)

-.then the one~step scheme given by equation (2.3.1) is said

to be of order p.

Definition (8.3.2)

The one-~step scheme defined by equation (2.3.1) is said
to be consistent with the initial value problem (1.2.4) if

the increment function satisfies the following relation!



Definition (2.3.3)

The one step scheme defined by equation (2.3.1) is
said to be convergent for arbitrary initial value n and

arbitrary xeI if,

lim = v(x)
0 Ly = X&)

X, 7*X
t

Henricli (1962) proved that if the increment function
¢ = ¢(x,y;h) is continuous in the interval I with respect
to x,y and h; and if it satisfies a Lipschitz condition
with respect to y in the region'R, then the one step scheme

(2.3.1) is convergent if and only if it is consistent.

Definition (2.3.4)

A one step scheme is said to be stable if for each
differential equation satisfying @& Lipschitz condition,
there exists positive constants ho and k such that the
difference between two different numerical solutions y
and y* each satisfying equation (2.3.1) is such that

3, - g21] < Kl In=g#] |

for all Oshsho, where

25

(2.3.3)

(2.3.4)

(2.3.5)
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2.4 ExpriciT LINEAR MULTISTEP METHODS FOR INTEGRATIMG
SysTEMS oF ORDINARY DIFFERENTIAL CQUATIONS

A general linear explicit multistep scheme of step number

k can be written in the form:

EO 0:Fie; = B Z Bifys (2.4.1)

where ft+J f(x

’Yt+ B and{uj,Bj; j=0,1,...k} denote

real constants with the following constraints,
o t 0, B, = 0and o] +[8,] >0.

Definition (2.4.1)

The linear multistep scheme given by equation {(2.4.1) is
said to bé convergent for all initial value%problems subject
to the hypothesis of theorem (1.1), if the relation

| lim _
o e =YD (2.4.2)
th=x—~a )

holds for all xeI and for all solutions {yt} of the difference
equation (2.4,1) satisfying the starting conditions
y, = nu(h) ' (2.4.3)

H
for which

lim ny (h) = (2.4.4)
0
u=0,1,....,k1.
With the view of defining the order of the linear multistep
scheme of the form given'by equation (2.4.1), we as in Hentici
(1962), associate with equation (2.4.1) a linear difference

operator given by

L [y;n = I Ex y Gerjh)=he.y " (x+jh)] (2.4.5)
j=0
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- - «
for an arbitrary function y{(x)eC L—a,lﬂ .
The Taylor's series expansion of y(x+jh) at x gives
w a1 .
. h
yaeim) =y + ) HEL W, (2.4.6)
i=1 '
and the Taylor's series expansion of y'(x+jh) at x gives
© i .
. +
v'(x+ih) = y'(x) + E S%Ql_ y(l 1)(X) » _ (2.4.7)
i=1
Using equations (2.4.6) and (2.4.7) in equation (2.4.5)

and collecting terms, we obtain

,Z [y(x);ﬂ = Z _éihiy(i) (2.4.8)

1=0
where Cyi» i=0,1,... are constants.

Definition (2.4.2)

The difference operatorag dsfined by equation (2.4.8)
and the associated linear multistep scheme given bj‘equation

(2.4.1) are said to be of order p if

_ c, = 0 igp
+ r
and Cp+1 0 \
The constants cs i=0,1,2,... in equation (2.4.8) are
\
given as follows:
)
c, = o,
0 s20
i i |
C = i.OL.‘ B- (2-409)
) b qeo B i=0 *
and
k k
1 .Y 1 .r~1 =2.,3
c =_._'|Z 1“‘__'__'.___1'{1 B_)r gty e [
L i (r-1)! 120 i

The parameters {%’Bj; j=0,1,...,k} can be obtained from

equation (2.4.9). The local truncation error at X=X

for an explicit linear mulristep scheme is simply
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- the difference between the theoretical solution given by
y(xt+k) and the numerical solution Yesk obtained by (2.4.1) «
The definition makes the simplifying assumption that there

were no previous errors il.e. y = y(xt+j), j=0,1,...,k-1.

t+]j
Definition (2.4.3)

The linear multistep method given by equation (2.4.1) is
said to be consistent if it has order p>1 i.e. that the first
two constants o and y in equation (2.4.9) should wvanish,

This implies

k
Y o« =0 (2.4.10)
j=o0
k k
and Yije, = Y B. (2.4.11)
=0 j=0 3
The first characterstic polynomial p(s) of (2.4.1) is
defined by
k .
o(s) = Yo, s (2.4.12)
j=o0 !
and the second characteristic polynomial o(s} is given by
k .
o(s) = ) B, s = . (2.4.13)
i=0
From equations (2.4.10) to (2.4.13), we can deduce that
the multistep scheme given by equation (2.4.1) is consistent
if and only if the character istic polynomials satisfy the
following conditions
- p(l) =0
p'(l) =0(l) (2.4.14)

Definition (2.4.4)

The linear multistep scheme given by equation (2.4.1)

is said to be zero-stable if no root of the.first characterstic
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polynomial has modulus greater than unity and that every root
of unit modulus is simple,
Henrici (1962) established that the mecessary and sufficient

conditions for the linear multistep scheme given by equation

(2.4.1) to be convergent is that it be consistent apd zero-stable.

2.5 MuLTISTEP SCHEMES FOR PERIODIC OR (SCILLATORY
SysTEMs . (GauTscHI 1961)

Gautschi (1961) formulated alnon—linear multistep scheme
for solving initial value problems whose solutions.are periodic
or oscillatory with known periods. The scheme integrates exactly
appropriate trigonometric polynomials of given orders in pfecisely
the same manner that the classical methods integrate exactly
algebraic polynomials of given orders.

If the known or estimated period of the solution to an

initial value problem is T, the frequency is then given by

W= T—21 *
Gautschi's multistep method is then defined by
k k
Y a,y.,.=hs} B ()£ .. (2.5.1)
PR j=0 t4]
where % = +1  and v = wh

(2.5.2)

Definition (2.5.1)

The multistep scheme given by equations (2.5.1) and
(2.5.2) is said to be of trigonometric order r relative to
the frequency w if the associated linear difference operator

aEm defined by the relationship;
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i ~15

2 ;] =

a;y(x+jh)-hB, (v)y' (x+jh)] (2.5.2)

]

for an arbitrary y{x) eCmEa,b]

satisfies the following conditions:

@4 [1m] =o, (2.5.3)
®) £ [cos(suxysn] = £ [sin(se)sn] = 0, s=1,2,...,r (2.5.4)
@ f Jeos(eDax)sh] anda £ [sin((r+1)ex)sn] (2.5.5)

are not both identically zero.

The trigonometric order r of a multistep scheme is
less than the algebraic order p és equation (2.5.4) requires
two conditions for each s31 instead of the one condition in
equation (2.4.9).

Gaufschi proved the following result on the trigonometric
order attainable by the multistep scheme given by equation
(2.5.1) with a given step number k. He showed that for any
given set of coefficients {uj, j=0,1,...,k} satisfying the

relation

K
Yo, =0, (2.5.6)
j=0 ] . ’

there exists a unique explicit method of ¢lass (2.5.1) whose

trigonometric order r=ik and that if the frequency w vanishes,

then the scheme (2.5.1) reduces to a linear multistep scheme

with algebraic order p=2r.

The Adams' type method with step number k=2 is given

as follows:
Yeeg = Veaq * h[so(v)ft + el(v)ft+1] . (2.5.7)

1. 1.2 1 4
BO(V) h §(1+ 12V + "EGV +‘¢0¢--), (2-5-8)
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and
B,(v) = %—(1 - %-v e A TP (2.5.9)

. Equations (2.5.7) to (2.5.9) yield a multistep scheme
of trigonométric order r=1 and algebraic order p=2.
If the step number k=4, the multistep integration
formula is given By:

Yees = T3 +'h[?30(v)ft TR ME Y B,

* B3("’)ft+3;], (2.5.10)

with coefficients given by
1 2 11 4
Bplv) = (1+ 7YV Y5V toeeeds (2.5.11)

421 2 1921 4

Bl(v) =ﬂ(1"mv +T32-6v + ...), (2.5.12)‘
_59,, 923 2, 15647 4
Bz(v) = 24(1 708 + 21240 ----), (2.5-13)
_ 55, 95 2 79 4
-and B )y 24( iV + w55 V S S I (2.5.14)

Equations (2.5.10) to (2.5.14) yield a multistep scheme of

trigonometric order r=2 and 2lgebraic order p=4.

2.6 SpeciAL MeTHoDS FOR SoLving INITIAL VALUE PROBLEMS

WHoSE SoLuTions PossEss SINGULARITIES

Lambert and Shaw (1965, 1966) developed both the one-:
step and multistep schemes which are based on localwn-polynomial

interpolating functions. They suggested the local interpolant;
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’

L : : -
¥ ax 4 B]A+xf{, if M¢{o,1,...,L}
i=0 '
F(x) = i L _ (2.6.1)
) aixl + g]A+xF410g1A+x[ if M¢{0,1,...,L}
20 A

where L is a positive integer, § and {ai, i=0,1,...,L} are

real undetermined coefficients; M and A are real parameters

which control the nature and position of the singularities.
The L+2 undetermined coefficients are eliminated by.

imposing the following constraints on the interpolant (2.6.1):

v = Fx)) _ (2.6.2)
and yé1)= F(l)(xt), i=1,...,L+1

The resultant integration formulae are given as follows:
L+1

=y + % v, Get L) |
Tl T T L T My ¢
L
M
(t) .
(e ey O
A(t)+xt jo1 b A(t)+xt
Myt {0,1,...,L}, (2.6.3)
and ‘
. . LM
L .1 4 T (E) L+1 (L+1)
Vesr = Ve _21 ir yél) . D O NLRL X
= L - [
Mgyt @My
M
h (t)
(I+ ) log (1+ ) -
A(t)f“ﬁ( | Ae)™e
1 t .
L hcl.i_l i-1 1

i=1 ircA(t)+xt)' 520 My~

MGF {o,1,...,L}




where

uf = n{m-1}.....(m~r), (2.6.5)

for a non-negative integer r and the parameters M(t)’

A(t) are given by ) (L+2) .2
e )
Moy = L+1i+ ( (L+2))2 @) _(1+3) (2.6.6)
_ Ve Iy Ve
and 1+2) (@L+D)
yt yt
A(t) = -—xt + ( (L+2))2 ) (L+1) _ (L+3) (2.6.7)
Ve Ye Te
M(t) and A(t) are the estimates of the parameters - )
and A at x = X .
Both the one-step integration formulae given by
equations (2.6.3) and (2.6.4) are of order L+l and the
local truncation error is given by
. -L- +1
» s OIH(t) 1Y(L )“
U SR S P R = (2.6.8)

t+; s=L+2

s~L-1
A (py*=e) J

‘With agmgiven by equation (2.6.5) .

We shall use a similar approach as in this section
to develop new integration formulae for solving initial
value problems in ordinary differential equations whose
solutions are oscillatory. The new integration formulae
will be compared with the integration procedure discussed

in section (2.5).



CHAPTER TII

A RATIONAL EXTRAPOLATION SCHEME FOR INTEGRATING
SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS
CONTAINING DISCONTINUITIES
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3.1 INTRODUCTION

In this ¢hapter, an adaptation of the work of Bulirsch

“and Stoer (1966) together with Gragg's modified midpoint

scheme (1964) is presented for the integration of systems of
ordinary differential equations containing discontinuities., Certain
detector functions are introdgced and the points of discontinuity
are defined as the intersection of the solution to the iﬁitial

value problem with the zeros of the given algebraic equations.

Since the detector functions in general have not only the
independent variable as argument but alsc the solution vector

of the initial value problem, it is desirable to determine the
solution to the initial value problem very accurately. The

rational extrapolation scheme has distinguished itself amongst

the best of numerical integration schemes for solving initial

value problems in ordinary differential equations (Hull et Al») 1972)
It is therefore not out of place t§ adapt the same scheme to
integrate systems of ordingry differential equations having
discontinuous derivatives. Certain properties of the extrapolation
procedure are exploited to accelerate the accurate determination

of the points of discontinuity.



3.2 FORMULATION OF THE PROBLEM

We consider the initial value problem,

o

Y.
i -~ iy, (xy) eR
y(@ =n

and the discontinuity condition is given by,
Y(XQZ) = Qs

We now make the simplifying assumption that each

component fi = fi(x,z) of £ given by equation (3.2.1) is

at least piecewise continuous in x within the chosen
interval I.

It is desired to determine the intersection of the

solution vector of problem (3.2.1) with the zeros of the

function v = y(x,y) defined by equation (3.2.2) in the

region R.
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(3'2f1)

(3.2.2)

An integer N is chosen to obtain a uniform mesh-size,

_ b-a
b=

With this mesh-size, the interval I is subdivided as

N-1
I = UI
r

r=0

where each subinterval I is given by

L= oxswx g o= x+ b, r=0,1,...,N-1,

Hence, the relation
Ir(\ Ir+l = X1’ r=0,1,...,N-1
holds.

In the next section, we shall develop the Gragg-

Bulirsch-Stoer algorithm for solving systems of ordinary

differential equations of the form (3.2.1).

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)
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3.3 THE GrAGG-BULIRSCH-STOER ALGORITHM FOR SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS

We shall apply the Gragg-Bulirsch-Stoer algorithm over each
subinterval Ir’ r=0,1,...,N-1 as defined in equations (3.2.4) to
(3.2.6). As the sensitivity of the extrapolation procedure to
round off errors increases with the order of extrapolation, we
limit our choice of the order of extrapolation to the range
4<m<8 in all the numerical applicationms.

Choose h O<h _<h such that

0° o
et (3.3.1)
0
is an integer.
A set of megh points,
£, = x, ¥ sh, 8=0,1,...,% (3.3.2)
are obtained on the interval Ir’ OzrgN-1., Equation
(3.3.2) gives EO =x, andER’= X 4y
We now consider a sequence of mesh-sizes defined by
h
-1 . .
{hj:ho = h; b, = —%—- , 3=1,2,...,m } (3.3.3)

where m is the order of extrapolation.
By using the sequence of mesh-sizes given by equation
(3.3.3), we can generate a sequence of integers:

{h.:0, = 2o
J 1] hj

If the solution to the initial value problem (3.2.1)

] j=0,1,...,m}, (3.3.4)

at x = 60 is given by
() =B (3.3.5)
where
B = (Bi,ﬂz,-----,Bn), ‘ (3.3.6)

then yi(go) =Bi; i=1,2,...,n.
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For each component Y; of the solution vector y, we shall
use the sequence of step—lengths given by equation (3.3.3) to
generate m+l estimates of the theoretical sclution yi(x) at

X =X

. T esti a ive
WL hese estimates are given by

{Yi (Xr+1’

h,) ; j=0,1,...,m} . (3.3.7)
and it is known that they all have error expansions in

. .2 ‘ . P . . .
powers of h'. Hence, a suitable linear combination yields

the formula

2m+2

ZA VY O0poh) =y G )+ 0BT, dm1,2, 00

j=o d,m i r+l’
(3.3.8)
where the coefficilents of the lower order terms in the
error expansion in h2 have been eliminated. This linear
combination of the estimates given‘by equation (3.3.7) is
equivalent (as m;m) to extrapolating to h=0  a rational
function passing through the points:

{(h »¥5 (x h.)), j=0,1,...,m}. (3.3.9)

r+1’

To generate the estimates in equation (3.3.7), Gragg
(1964) formulated a modification of the midpoint scheme
as follows:

The starting values are obtained as

: : . h.

i . i ‘
Ty = 8,5 i=l,..0m5 Z5 = By + 5~ £,(,,8), i=1,...n

(3.3.10)
We then evaluate

, . h.

i i .
Y, =Y, ¢ hj £, (5 + —23-,53), i=1,....,n and

i i (3.3.11)
ZS+1 = ZS + hj fi(ES + hJ "Y-S+1.) . 1:1 - ,n}!



where
o _ el 2 n
Es = (ZS,ZS.....ZS),
and
_ ol 2 n
Yo 7 Oy s+1°* " Tgul

A smoothing procedure is then carried out at

x = as follows:

£,
J
Let
i Sl
LRCH DI S
1 |
and . ; hj
P (Ezjshj) = _Zﬂ'j -Tfi(gﬁj,Yﬂ.)‘

We then obtain the wvalues

i < 1 i
To G5y »hy) = AUTG b+ PRCE, Lh]L

J ]

Gragg (1964) emphasized that in T;(ER ,hj), the
leading unstable component of the discretization error
has been eliminated and Stetter (1969) deduced that

T;'(E2 ’hj) is always 'asymptotically strongly stable'.

i

This is consequent upon the smoothing procedure at the
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(3.3.12}

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

end of the subinterval as illustrated by equations (3.3.14)

to (3.3.16). Gragg (1964),(1965) showed that T;(gg hy)

; .2,
has an error expansion in h™ i.e.

: m s 25
T, (x,h) = y.(x) + ] A (x)h
j i L s
g=1
where the coefficients A;(x), s=1,2,...m are independent

of the mesh-size h. Equations (3.3.10) to (3.3.16) are

(3.3.17)

computed for each of the m+l mesh sizes defined by equation

(3.3.3). The quantities {T;(gﬂ ,hj), j=0,1,...,m} thus

]

obtained will constitute the entries of the first column of



the T tables illustrated in table (3.3.25). As the quantities

in equation (3.3.17) are known to have error expansion in h2,

it is natural to want to obtain a suitable linear combination

with the intent to eliminate some of the coeffieients in the

. error terms. This is precisely the essence of the polynomial

or rational extrapolation schemes. In most cases, the rational

extrapolation scheme as proposed by Bulirsch and Stoer (1966)

is more accurate than the polynomial extrapolation proposed
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by both Aitken (1932) and Neville (1934) (see Joyce,D.C. (1970)).

Hence we adapt the rational extrapolation scheme to discontinuous

systems of ordinary differential equationms.

If we define the functions S;(h), V;(h) as follows:

S;(h) = R;p(x) + R;l(x) h2 +...+Rép(x)h2?,
and
Vrin(h) = Vj;o(x) + Vi/l(:-:)h2 +...+Vriﬂ,d (x)th,
where oy ) ' o
¢ ='Eﬂ , the integral part of 5
and d = mc

then, the rational extrapolation procedure determines

a unique rational function
i

i Sm(h)

Rp(h) = ——

Vm(h)

. . i _ .
which passes through the points {(hj,Tj(xr+1,hj»d-O,1,..

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

. Sm}.

The rational function R;(h), given by equation (3.3.21)

is subject to the following constraints:

i i .
R (h,) = Tm(gzj,hj), §=0,1,4.0,m ¢

Y at h=0 is then given by

The extrapolated value T
O,m

(3.3.22)
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-3
I

_ o1
Rme)

-l Lo (3.3.23)

mr+l’
which can be computed recursively from equation (3.3.17)
by the following algorithm as formulated by Bulirsch

and Stoer (1966) i.e.

i
T, = 0
1,71
i _ i
0 7T ety
i i
T, - T.
Ti _ Ti . jHi,k-1 jok-1
S Tik o Tivlk-l 2 i i
h, T, ~T
i N O PR £ A 0 8 0
h. i i
Itk Tiel,k-1"5541,k-2
i=1,2,,.,n

. §=0,1,..,m (3.3.24)
k=1l,....,m
The last equation in algorithm (3.3.24) connects the elements
in position (j,k-1), (j,k),(j+l,k-2) and (j+l,k-1) of the
Ti tables in computing the element in the (j,k)th position of

the T' table as illustrated below,

T -Table
i i i i i
TO,O T0,1 TO,Z"' T "'TO,m~1 TO,m
i i i i
Ty,o T1,1 T A1 ,me1
i i 1 -
Ta0  T2,1 T2,2 p
1
| | i , 7
| | L. (3.3.25)
| Tt
| | m-2,2
. | -
k1 1
To-1,0 Tm-1,1
Tl
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The last m columns of table (3.3.25) are computed with the
algorithm (3.3.24). At each step of integrationm, the;e are
n such tables; one table for-each component of the initial.
value problem.

The following two theorems whose proofs are available
in Gragg (1965) givé a necessary and sufficient condition
for the convergence of the algorithm (3.3.24).

Theorem 3.1

A necessary and sufficient condition that

i
éiz Tqm = yi(xr+1) (3.3.26)

for all functions T;(xr+1,h) continuous from the right at

h=0 is that

sup hk+1

kz0 hk

<1 (3.3.27)

where sup represents least upper bound.
Theorem 3.2

If T}(xr+l,h) has an error expansion of the form (3.3.17)
then as ko
2 o—y )= (D02 ...l som?y. (3.3.28)
km i+l hk ' hk+m m+1 hk .

If in addition, we have that

hk+l
Py

inf > 0, (3.3.29)

then there exists constantsEm, such that

.1 . ’ )
Tg,m ™ T3 @)l < By Beeee LR (3.3.30)

Whilst equation (3.2.28) states that the entries
of each column of table (3.3.25) converges faster to yi(xr+1)
than the preceeding column to its left, equation (3.3.30)

asserts that the entries of the principal diagonal of the. same



table converges to yi(xr+1) faster than those of any column.
Also equation (3.3.28) gives anrestiméte of the truncation
error at any location of table (3.3.25).

In the next section, we shall consider the convergence

criteria of algorithm (3.3.24).

42
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3.4 THe StoppINg CRITERIA FOR THE ALGORITHM (3.2.24)

Let e denote a specified tolerance and assume that we
are computing the kth column of table (3.3.25) for 1<kgm.
Suppose we have just computed the jth (where 1<jgm) element of
column k., As an estimate of the truncation error, we obtain

the difference e, as

Tt -t ]

T. ,-T.
. Lok -1,k (3.4.1)
() o D

Equation (3.4.1) is in fact an estimate of the mixed error.
This choice is simply because mixed error gives a reasonable
measure of error for initial value problems with partly small
solutions and partly large solutions.

If it is observed that

-
'ei <e, (3.4.2)
we update the ith component of v(x .) with Ti i.e. set
P P I j-1,k °°
x,) =T (3.4.3)
YiV¥ea1 -1,k * 4
, :
If the relation (3.4.2) holds for i=1,2,...,n, we
P _
proceed to the next interval Ir+l of integration. ’
However, if equation (3.4.2) is violated by at least
one component ys(xr+1) say Of,ZﬁXr+l) i.e.
s s 8
1TO,m T1,m—1| >€(|T1,m-1| +1) J (3.4.4)

we increase the order of extrapolation m by two if the

current order 'm<8 and repeat the integration procedure in

the interval I.- However, if the current order of extrapolatign
is the maximum allowed (i.e. m=8 for our case), we repeat the

integration procedure in the interval Ir with smaller stepsize.

'



It is usual to halve the stepsize.
It is possible that we shall encounter a point of
discontinuity within the interval Ir. The next section deals

with methods of coping with such a situation,
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3.5 THe TREATMENT oF DISCONTINUITIES

In this section, we shall obtain a sequence of subintervals

{Ir A’A =0,1,...} which contracts to the point of discontinuity.
H] .

If L(Ir denotes the length of the subinterval Ir with

:?\) Y

Ir,O = Ir’ then

r,0

For A>0, we shall obtain the result

-Am
L{I .) =2 .L(Iro)

£h ,
= 27", (3.5.2)
The occurrence of any discontinuity in the interval

Ir glven by

|
|
|
|
|
|
|
L(I ) = h. (3:5.1) :
|
|

H SXEX

. a1 r=0,1,...,8~1

is detected with the éhange in the gign of the discontinuity
function y=y(x,y). In obtaining the elements of the first
column of the Ti—tables given by equation (3.3.25), we first
generate the last elements i.e. the vector Im given bj

1 2 n

T (Tm,O’ Tm,O""’Tm,O) (3.5.,3)
rather than the first element T, given by
1 2 n
ID = (TQQ’TQD"""TQD Yo (3.5.4)

- This approach saves n function evaluations if there is a
point of discontinuity in the interval L. The computation
of the vector Em’ given by equation (3.5.3) entails a

division of the interval Ir into 2™ equal subintervals:

Xr = €0<El<g2 Cean LA <€2m = xr+1 = Xr+h (3.5-5)
iqe-J . |
= 2 1= 2 '
Ej F?O + thm 1] J 0,1,--- m (3.5-6) :
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with hm given by equation (3.3.3) and £m given by equation (3.3.4) ¢
The existence of a point of discontinuity in the interval I£
is indicated by the following relation:
V(€8 .7, L) 50 (3.5.7)
‘m M
with 8 defined by equation (3.3.6) and Em defined by
equation (3.5.3).
If the relation (3.5.7) holds, we now try to locate the
poinf of discontinuity in one of the subintervals
{ui Pug o= Eisxs€i+1, 1=0,1,...2m-1} . (3.5.8)
Clearly, we observe that the interval Ir relates to the
subintervals Uss i=0,1i...ﬂn-l as follows:
m -1

Ir =.U U.i - I (3-5.9)
1=0

Let the vector gg be defined by

1.2 n '
* =
z% (YS,YS,....,YS) | (3.5.10)

whose elements are obtained by equatiors (3.3.10) and (3.3.11)

We then obtain s* gs

s# = min {s:v(Ey,8) ¥ (E,,2%) 5 O,
s

| s=1,2,...2 1} .+ (3.5.11)
If we define t* by
ko= gk=1 (3.5.12)
~.equation (3.5.11) indicates that the point of discontinuity
lies within the subinterval

Uy = Epy $X SE o (3.5.13)

The normal integration procedure is now carried out

over the interval I¥ defined by

I? = gosxsgt* o (3.5.14)
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Thus we have succeeded in cuén{énlfj¥'the point of
discontinuity to within the interval

T, = uk ' (3.5.15)

defined by eguation (3.5.13). The length of the interval

is given as

L(Ir,l) - hm
=2 " . - (3.5.16)
The interval Ir+1 = xrsxsxr+1 is now replaced by the

interval Ir 1 given by equations (3.5.15) and (3.5.13) and
>
the mesh size h is replaced by hm'
As it is clearly evident that the new subinterval

Ir+1 contains a point of dicsontinuity, the process (3.5.1)

to {3.5.16) is repeated to generate

Lo I goees

At the kth iteration, we obtain the interval Ir " of
¥

. yete.,

length

L(Ir,k

It is obvious that
lim L(I_ ) =0
e TF

and hence the sequence {Ir k} thus generated converges to the
L

- point of discontinuity from the left.
For instance with an initial step size h=l, and order of
extrapolation m=6, the point of discontinuity is located

correctly to within an accuracy of
mk _ 2—(4)(6)

2-24
z 1077

2

]

in four iterations.
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2.6 COMPUTATIONAL RESULTS

Example 3.6.1

We first consider the scalar initial value problem
dy L /3t
3 - [-yre2 2] | (3.6.1a)

y(0) = 0
over the interval Osxg2.
The discontinuity condition is given by

Y(x,y) = YZ-Z‘ v © (3.6.1b)

The numerical integration procedure was implemented
with uniform mesh size h=0.13 and the order of extrapolation
allowed to vary in the range 65ms8. The allowable tolerance
is e = 10°°,

As can be ohserved in table (3.6.1) below, the point

of discontinuity is located as

(x=1.2882992", y = 1.4142135:)

in four iterations.




ORDER OF
EXTRAPOLATION

0.0000000
0.1300000
0.2600000
0.3900000
0, 5200000
0.6500000
0.7800000
0.9100000
1.0400000
1.1700000
1.2878125
1.2882886
1.2882990

1.2882992

TABLE 3.6.1

0.0000000
0.2118423
0.4098710
0.5936920
0.7628328
0.9167143
1.0546044
1.1755377
1.2781610
1.3603783
1.4140406
1.41420098
1.4142135

1.4142135

8
i0 th+1

0.00000
0.58899
0.65374
0.73196
0.83964
0.98153

0.29395
0.37398
0.48749
0.76689
0.91822
0.00000
0.00146

0.01746

49
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Example 6.3.2

We now consider the case of an inelastic body falling
freely under gravity. It is dropped from a height of 64 feet
abéve the ground. We wish to determine its velocity when it
reaches the ground as well as the duration of motiomn.

Let g denote thé acceleration due to gravity where
g = 32 feet/secz.- The problem can be formulated as follows:

Let zgyl,yz)T and the range of integration is Osx<w-‘

| If, q denotes the height and Yy the velocity, then

we obtain the initial value problem

y ) 1 y 0
E% - oo s (3.6.2a)
Yy c 0 Iy g
where
¥, €0) 64
= . (3.6.2b)
¥,(0) 0
We define the discontinuity function as
2
Y&y = vy (3.6.2c)

Details of the numerical results are given in
table (3.6.2) below. The point of discontinuity was
Aobtained at x = 2, ¥y = 0, v, = 64,
Hence a body falling freely under the gravitational
acceleration from a height of 64 feet reaches the ground

after two seconds with a velocity of 64 feet/second.



ORDER OF
EXTRAPOLATION

.0000000
.3300000
.6600000
. 9900000
.3200000
.6500000
. 9800000
.3993359
.9999956

. 0000000

TABLE 3,6.2

64.0000000
62.2576000
57.0304000
48.3184000
36.1216000
20.4400000
1.2736000
0.0424929
0.0002832

0.0000000

0.0000000
10;5606000
21.1200000
31.6800000
42,2400000
52.8000000
62.,3600000
63.9787500
63.9938580

64.0000000

10 (1)
10 th+1

0.00000
0.07480
0.00000
0.00000
0.00000
0.00000
1.02832
0.00000

0.00121

0.00000

51

10 _(2)
10 th+1

0.00000
0.00000
0.11024
0.00000
0.11024
0.08819
0.07349
0.07278
0.00000

0.07276
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Example 3.8.3

We finally considered the scalar problem

X 0£x350,5
y' = (3.6.3a)
1~x 0.5¢x£1.0
with initial condition‘
y(@©) =0 (3.6.3b)

cover the range Ogxgl.

The discontinuity condition is specified as

v 0% xg 0.5

y(x,y) =
-y 0.5sxs1

The system (3.6.3a) is continuous but does not have a

continuous derivative, Hence it violates the conditions

of theorem (1.1).

The point of discontinuity was located at the point
"(x=0.5, y=0.125).

Details of the numerical results are given in table (3.6.3)

below. In this example, we integrate beyond the point of

discontinuity.




ORDER OF
EXTRAPOLATION

TABLE 3.6.3

0.13000000
0,13000000
0.13000000
0.13000000
0.10968750
0.00028564
0.00002678
0.00000007
0,13000000
0.13000000
O.i3000000

0.10999999

0.00000000
0.13000000
0.26000000
0.39000000
0.49968749
0.49997314
0.49999992
0.50000000
0.63000000
0.76000000
0.89000000

1.00000000

0.00000000
0.00845000
0.03380000
0.076050d0
0.12484379
0.12498657
0.12499996
0.12500000
0.18155000
0.22120000
0.24395000

0.24999999

8
10 th+1

0.00000
0.00000
0.00000
0.07654
0.13987
0.09314
0.09313
0.00000
0.06412
0.05263
0.00000

0.18626

53
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3.7 CoNCLUSION

This approach locates the point of discontinuity to any
desired accuracy in a geometfic progression with common ratio
2™, (45mg8) where m is the order of extrapolation.

However, the scheme is liable to fail if the point of
discontinuity is a local minimum or maximum of the solution

vector.



CHAPTER [V

A VARIABLE ORDER ONE-STEP ALGORITHM FOR THE
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION
WITH OSCILLATORY SOLUTIONS -
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4,1 INTRODUCTION

In Lambert and Shaw (1966), a class of two-point formulae

for the numerical solution of the initial value problem
yU=EaY), v =y, (4.1.1)
whose soluti;ns may contain singularities 18 introduced.

These formulae are based on the representation of the
solution to the initial value problem (4.1.1) by a non-polynomial
interpolant (2.6.1) which contains two real parameters which are
automatically chosen and revised as the computation progresses.
These parameters generally converge to some suitable values which
are used to re-integrate the given system. ' The parameters control
the position and nature of the singularities in the solution to the
problem (4.1,1).

In this chapter; an alternative strategy is outlined in which
new integration formulae are developed by representing the solution
to (4.1.1) by a combination of a polynomial and trigonometric ot
hyperbolic interpolant. Each interpolant contains two real
parameters which are accurately determined numerically at each
step of integration. The algorithm is adaptive in the sense that
we automatically vary the degree of the polynomial part of the
interpolant or switch from trigonometric interpolant to hyperbolié
interpolantbrvice versa) accordingly.as the need arises. In the
practical cases investigated, . polynomial orders of one or two

were found sufficient to obtain reasonable acecuracy.

As our approach is component applicable to systems of ordinary

differential equations, we shall derive the integration formulae

for the scalar case for the sake of clarity. However, the practical

applications include systems of ordinary differential equations.




4,2 DEFINITION OF THE LocAL INTERPOLANT

We shall consider the initial value problem of the form

y' = £(x,y) , y(a) = n ' (4.2.1)

An integer N is chosen to define a uniform mesh-size h as

_ . b=a
h = N * (4.2-2)

A sequence of mesh-points 1S then defined as

{xt:xt = a+th, t=0,1,...,N} ° (4.2.3)

If we define the subintervals {Iﬁ} guch that:

= £x5
I Xt X

. , t=0,1,...,N-1; (4.2.4)

t+1
then the interval I=a{x*b can be expressed as:

N-1
I= U I, . (4.2.5)
t=0

Equation (4.2.5) is a division of interval I into N equal
subintervals.

On every subinterval I, we assume that the solution to
the initial value problem (4.2.1) is locally represented by

the interpolant

L
3 r .
Ft(x) = rzoarx + bt 51n(Ntx+At) , aL+O (4.2.6)

where the integer L >0 is the degree of the polynomial

part of the interpolant;bt and (ar,r=0,1....L) are real
rppdetermined coefficients whilst Nt and At are real parameters
to be accurately determined at each step of integration,

Let us define the polynomial Pt(x) by;
L .
_ r
Ct(X) = Yax (4.2.7)
=0 ,
and the function Qt(x) by;
Qt(x) = 51n(Ntx + At) . (4.2.8)

The interpolant (4.2.6} is then given by

Fo () =E () + b0 (x) - (6.2.9)
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,3 DERIVATION OF THE INTEGRATION FORMULAE

Let the numerical solution to the initial value problem

{(4.2.1) at x=x_ be Y, and the theoretical solution be y(xt).

t

Under the assumption that the function f=f (x,y) belongs to
the class Cm[é,g], we impose the following constraints on the
interpolating function (4.2.6):

- (a) That the interpdantagsumes the solution teo (4.2.1) at the

polnts x = X, and x =X ,q> Lee.

Ft(xt) =7y, ' , (4.3.1)

and ¥ (

Xt+l) = Veel (4.3.2)

(b) That the first and higher order derivatives of the
interpolant coincide with the funection f=f(x,y), its first
and higher derivatives up to the (L+1)th derivative at the

point x = X s i.e.

s s-1
d d ‘
— F 2=
8 t(x) X=X s—1 £Gx,y) X=X

dx t dx
Y=Yt
- g-+)
- of % 2) + f(X ) afL(x,Y)

9% 24 X=X

t

Y=Yt

Te=1, 2, L41 . (4.3.3)

The constraints (4.3.1) to (4.3.3) will suffice to
elimiﬁate the undetermined coefficients. For the sake of clarity,.
we shall give details of tﬁe derivation of the integration
for™ilas for the case when the polynomial part of the interpolant
EE(X) is of degree one (i.e. L=1). We shall state the results for
the cases when dggree L of Et(x) the polynomial part of the

interpolating function (4.2.6) is greater than one.



oy
()

By impoging: the constraints (4.3.1) and (4.3.2) on
the interpolant (4.2.6) we obtain the following formulae:

Yo =3 *oagx t bt51n(Ntxt + At) (4.3.4)
and

a + btsin(N x

eXeap t At) . (4.3.5)

Yed1 T %0 T 21%Fen1

By subtracting equation (4.3.4) from equation (4.3.5)

and applying equétion {(4.2.3), we have the relation:

Vesl = yt = alh + st?,ln((Ntxt + At) + Nth) u

sin(x, + AJ] ¢ (4.3.6)
The immediate objective is to rid equation (4.3.6) of

the remaining undetermined coefficients (i.e. and bt).

1
If the constraint (4.3.3) is now imposed on equation
(4.2.6) we obtain:

f(xt,yt) =a, + Ntbtcos(Ntxt + At) R (4.3.7)

and (1) - 2 .
f _(Xt,yt) Nt bt 51n(Ntxt+At) R (4.3.8)

Equation (4.3.8) implies that:

‘ ~f (lzxt ,Yt)
bt = =3 R (4.3.9)
Nt 51n(Ntxt + At)

and using equation (4.3.9) in equation (4.3.7) gives the

relationship:
e Py
a; = [?(xt,yt) + ———iﬁ:——ﬂ-—— cot(Ntxt+Ati]- {4.3.10)

We can now use equations (4.3.9) and (4.3.10) to

eliminate the undetermined coefficientg bt and a, from equation

1
(4.3.6) to yield:
h

Ne

- (1)
Yeep = Y * EGRLY,) + £ (x5, ot (N x +A )
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- = . [éln((Ntxt+At)+Nth)~31n(Ntxt+Atz]-
Nts:l.n (Ntxt+At)

(4.3.11)

By using similar arguments as in procedure (4.3.4) to
(4.3.10) we obtain the following formulae when the polynomial
part of the interpolant (4.2.6) are as follows:

/

ForEt(x) of degree 2 i.e. (L=2)

(1)
Yeep = Ve ¥ BE(ELY) 7g-f (xL57,)
2
b @)
; 5 f (xt,yt) tan(Ntxt + At)
N
c
€@

»Y,. )
t . )
- . hYy -
N3 PSRN Es:.n((Ntxt+At)+Nt )
t ttt

sin( x +A )]  (4.3.12)

For Et(x) of degree 3 (i.e. L=3)

2
h 1 2
Vepp = ¥ T REGLLY) + 5o £ Ve Y £ D (x eV
2
h (3) h (3)
7— £ (xt,yt)cot (Ntxt+At) + ——f (thYt)
N 2N
t t
(3)
D T ¢ P . ey
. t’’'t . ]:51n((Ntxt+At)+Nth) 51n(Ntxt+Atﬂ
Nt31n(Ntxt+At)
(4.3.13)
" and finally,
For Et (x) of degree 4 (i.e. L=4)
4 i
h 1 h 4
yt+1 = Yt + z v f l’(l-l'.’)g)- T f( )(Xt’yt)
i=1 N
' t
RE () b ()
* - £ (xp,y dtan (N x, +A ) + 6N B0 Gxuyy)

t



4
-h_ f(h)(x sV Ytan(N _x_+A )
£t tt t
24N
t
4
f (thyt) —_ .
+ 5 .Lgln((Ntxt+At)+Nth)~51n(Ntxt+Ati] .
Ntcos(NtXt+At)

(4.3.14)
In equations (4.3.11) to (4.3.14), the parameters
Nt and At are still to be determined. Their values will

be obtained in the next section,



.U DETERMINATION OF THE PARAMETERS HT AND AT

AND TRUNCATIOM ERRORS

In this section, we shall obtain the error expansions
in h for the one-step integration formulae given by equatiens
(4.3.11) to (4.3.14). The parameters Nt and At are then
obtained by essuriny thitthe first two terws in these error
expansions_[ﬂ vanish, As in the previous section, we shall
give detailed arguments when the polynomial gt(x) of the
interpolating function is linear in x (i.e. L=1).

If the numerical solution vy approximates the theoretical

t+l

solution y(xt+1) at x=x_.., with x = xt+h, the Taylor's

t+1 t+1

series expansion for y(x_ ,) at X=X, yields:

t+1
y(F ) = y(E D)

g 8
- h_ g (=)
=y, + 321 7 £ (x.,y,) « (4.4.1)

The usual trigonometric addition formulae give the following
relationship 1i.e.
51n((Ntxt+At)+Nth) = 51n(Ntxt+At)cos(Nth)
+cos(Ntxt+At)31n(Nth) . (4.4.2)

Also, the Maclaurin's series gives:

- . (Nth)Zi
COS(Nth) = iZO(-l) -—"(-:'Z—i—)-—!-‘-' (4.4.3)
and | SR
sin(Nth) = ]-_ZO (~-1) W . (4.4.‘?‘)

The truncation error at x = x is denoted by T,

t+1 1

and is defined as the difference between the numeric al

‘solution and the theoretical solution , i.e.

Tt+l = y(xt+1) - Yt+1 . (4.4.5)
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' If we now substitute equations {(4,.3.11) and (4.4.1) in
equation (4.4.5), we obtain the following expression for the

truncation error:

Tes1 = [&(Xt) * 2 g (s~ 1)(x »Y i] - {y, +hf(xt,y )

h (1)
+ ﬁ; f (xt,yt)cot(Ntxt+At)
f(l)(xt’yt)
- sin( (N _x, +A_)+N_h)
stin(N % +A ) - teotot
t tt 't

- sin(N x +A )]} - (4.4.6)

By making the simplifying assumption that there is no
previous error (i.e. that y(xt) = yt), then the truncation
error Tt+1 at x=x,_ 4 8iven by equation (4,4.6) can be

expressed as follows:

f(S"'l) ( (1)(}{

h h '
Tee1 = ) 'l 2Y) -y £ prYe)cot(Nyx +A.)
5=2 t
f(l)fxt,yt)
+ [sin((N_x_+A )+N_h)
N2 sin(N_=x_+A)) te to¢
t t't Tt
~sin(N x +A.)] - (6.4.7)
By using the relationship (4.4.2) in (4.4.7) we have
o £(s=1) h ()
Z (%, - §, £77 (xy 7, Jeot (N x +A,)
1 1
f( )(thyt) ' ( )(Xt’yt
+ ———————<os(N h) + cot(N x +A. ) x
Nz Nz t7t Tt
t ‘ t
1
sin{N_h) — v (6.4.8)
t N2

t
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As we are interested in an error expansion in the mesh
size h, we use the identities (4.4.3) and (4.4.4) in equation

(4.4,8) to yield

_ h (s-1) b (1) |
Tee1 ™ Szz o7 f (eay) + f B (xpay ot (px A L)

t
£ ,y) {E( i (Nth)zi]
- — Tt -1 N
Ni 1=0 (21):
(L 2i+1
_ £ (thy ) (N A E (_1> (Nth) .
g cotNyx +A) |2, G
N, .
f(l)(xt,yt)
- . (4.4.9)
N
T

Equation (4.4.9) thus expresses the truncation error at

X=X .1 85 @ polynomial in the mesh-~size h. By énsaklnj-ﬂymk Wl

first two terms in the error expansiom in h . vanish, we
obtain the values of the parameters Nt and At as:
3 1
-f( ) (X ’yt 2
N, = D (4.4.10)
: (x.57,)
and )
o) BTy )
A = icot - Nx (4.4.11)
t 5 N f(].)(X ) tt
| Tt £ Yt

The truncation error is now expressed as:

v (2s-1) 25-2_(1)
T, = Z Kooy [f JCRERLIC S CIR)|

o 23+1 - ‘
I h (28) s, 25— 1 (2)
Y s22 @ DyT [' (Xt,Y ) +(-1} N (x,»¥ i}
(4.4.12)
In general, for an arbitrary degree L of the polynomial

E;(x) in the interpolant (4.2.6), the parameters Nt and AL

are given by:
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Dy}
Ne =1 £t (4.4.13)
f(L)(x y,.)
t*t
and either (L+1) \
-1 f (thYt)
A = cot -N x {4.4.14)
t N f(L)(X ) tTt .
t £ )
when L is odd or (L41) N
-1 -f (Xt:yt) )
A = tan -N x (4.4.15)
t N f(L) (x ) t't
t £* Yt
/
when L is even.
By using equations (4.4.13) to (4.4.15) in the truncation
errors, they are finally expressed as follows:
WhenEt(x) is of degree I1=1,
_f h28 [f(zs 1)(X 7, ) +(=1) N 2s~L~1 (L)( i]=
] ]
Teal ™ el (2807
© 2s5+1
h (2s) _1ySy 257L-l(L¥1)
¥ S=E+1 (Zs+1) ! [£97% Gy 1 G y)]

(4.4.16)

When Et(x) is of degree L=2

© Zs+1
(28) 2s L (L)
- ‘—‘——-'r £ (x_,7.) +(-1)°N x,_,y.)
Teol ™ sala1 (25*1) k Ty Yt]
% 2s
h (2s-1) _7y5+1 25-1-2 (L+1)
* s=§+1 (2s)! (£ ' (=¥ ¢ L7 N £ <Xt’yti]
(4.4.17)
When Et(x) is of degree L=3
oz 23
- h (2s-1) _y48+1 2s-1-1_(L)
Tes1 T S=E+1 [¢DH E (xpy )+ 17 £ gy,
©  2g+1
h (2s) s+l 25 -L-1,.(L+1)
. Tt ]__f (X 'Y J+(-1) f (x t,yt):[

(4.4.18)
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and finally

When Et(x) is of degree L=4

o 23+1
(2s) s+1 2 L (L)
’.I.‘t+1 = Z (2s5+1)! rf (x Ve +(-1) Ny ’ (x t’yt)]
" -t(‘—~ 20D oy s 0o 252 D oy ]

(4.4.19)




4,5 FinaL INTEGRATION FORMULAE

In this section, we shall use the Maclaurin's series
expansion for cos(Nth) and sin(Nth) given by equations (4.4.3)
and (4.4.4), the trigonqme;ric addition formula given by
equation’(4.4.2) as well as the expressions for the parameters
Nt and At as given in equations (4.4.13) to (4.4.15) to obtain
the final integration formula for the case when Ei(x) is of degree
one.

\
From equation (4.4.14), we have |
(L+1) :
£ (Xt’yt) |
\

\

cot (N x _+A ) = . (4.5.1)

tt ¢t

wE ) Ly

By using the addition formula given by equation (4.3.2)}; and
equations (4.5.1),(4.4.13),(4.4.3) and (4.4.4) in the
integration formula given by equation (4.3.11), the final

integration formula is given by:

(1)

Vel = ¥ hf(xt’yt) - ;2 t’yt)[CQS(N h)= 1:]
t
(2)
£ (x ,y,) _
t*7¢ )
TS [Sln(Nth) - N (4.5,2)
t

The final integration formulae for higher degrees of the

polynomial E£(x) are given as follows,

When Et(x) is of degree L=2, we have:

L r

_ h (r-1)

Yeap = Ve * rzl £ (x,57,)
(3)
f (X i ) - (N h)

¥ —— L cos® )~ [1~——T}

N
t




o7

(2)
T £ (x Y )
_____3__t__t_ [Sin(Nth)—Nttﬂ (4.5.3)

Ny

When_Et(x) is cubic(i.e. L=3), we have

b .r
_ h™ _(r-1)
Veap T Ve 7 rzl — t (xpoye)
{3) 2
£7(x_,v.) (N _h)
+ -——Zt——i— {cos(Nth) - [1—7?——]}
N . :
t
(4) 3
+ f5 {sin(Nth) - [Nth- (Nth) ]} (4 5 4)
Ny 3! T

and finally

When the polynomial EE(X) is of degree four (i.e. L=4), we

have

L r

- h (r-1)
yt""l - Yt + rz ;_!" £ (Xt,Yt)
4 3
£ ) (¥, h)
+ T {Sln(Nth)‘[Nth“ -T:——]}
t .
(5 2 4
£ (% 5,0 (N_h) (N_h)
: t’’t ' t t .
- T {COS(Nth) - [1_ —2'—:——-- + 4:—3}
t
. (4.5.5)
With the definition (2.3.1) and the fermulae for the
truncation errors given by equations (4.4.16) to (4.4.19)
we establish the following relation between the degree L of
the polynomial EL(X) in the interpolating function (4.2,6)
. and the order p of the corresponding integration formulae

given by equations (4.5.2) to (4.5.5).

L p

1 4

9 5 (4.5.8)

3 6

4 7

In general, we conclude that if the degree of the polynomial

Et(x) in the interpolating funection (4.2.6} is L, the resulting




integration formula is of order p given by the relation:

p=L+3Q & (4.5!7)
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B.6 STABILITY OF THE INTEGRATION FORMULAE

In this section, we shall investigate the stability
properties of the integration formulae given by equations {(4.5.2)
to (4.5.5). We shall give details for only the scheme of order
four as the argument for the higher order schemes followsan
ideﬁtical pattern.

By re-introducing the Maclaurin's series expansions for

sin(Nth) and cos(Nth) equation (4.5.2)._gU$LJ

Yeay = Ve ¥ PEGRLYL) -
2i-2
® . (N h)
hzf(l)(xt,yt) ¢ )} D “TEETT-"“ )
‘= : -9
1—% . (N h)il —,')
it
h3f(2)(xt’yt)( izl(—l) SO ’
(4.6.1) |
We now define the increment function ¢ = ¢ (x,y:h) of
the one—-step integration formula (4.5.2) as
w0 . 2i-2
8 Goysh) = £Goy-bE D,y (7 (IR
i=1 (21)!
2.(2) S i (N2
LR ANECH O I A DB (4.6.2)

1=l
The fourth order integration scheme given by equation (4.6.1)
can then be expressed as
Yepy = ¥ h¢(xt,yt;h), (4.6.3)
with the increment function ¢(x,y;h) given by equation (4.6.2),

Equation (4.6.,3) is the normal form for the one step scheme

for solQing initial value problems in ordinary differentiél

equations.



Lemma 4.1

1f the function F=f(x,y) ¢ Cm[é,ﬁl, then f(x,y),f(l)(x,y)
and f(z)(x,y) satisfy {QH;Lipschitz condition.
Proof

If £ = f(x,y) ¢ Cﬁ%,@], then for (x,y) and (x,y*) in R,
the mean value theorem gives

EGy) - EGy9) = 35 (L3 (5-%)

where (x,¥) is within the interval defined by the points (x,y)
and (x,y*). We can now choose L, such that

af (x,vy)
oy

< @ .

L, = sup '
(x,y)eR

By taking the norm of both sides of equation (4.6.4)
and applying equation (4.6.5) we have

[£(x, ) - £Ce,y%)| = |E££§;X_ G-v*) <L, |y

We have thus established that f(x,y) € Cm[é,ﬁl implies

that £(x,y) satisfies the Lipschitz condition. Since

f(x,¥v) ¢ Cm[é,ﬁl, then f(l)(x,y) £ Cm[é,ﬂ] and this in turn
implies that f(z)(x,y) € Cm[é,ﬁl. By using similar arguments
for f(l)(x,y) and f(z)(x,y) as those for f(x,y), we can obtain

constants L1<Do and L2<oo such that,

|f(1)(x,y) - f(l)(x,y*)ls Lliy'y*l

and
1£P Gy - £ @ ymls 1l y-yd

for arbitrary points (X,y) and (x,y*} in R. We have thus
established the Lemma (4.1).

The following Lemma will be useful in proving that the
inerement function ¢ = ¢(x,y;h) defined by equation (4.6.2)
satisfies the Lipschitz condition. The proof of the Lemma

is available in Jones and Jordan (1969} volume 1.
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(4.6.4)

(4.6.5)

(4.6.6)

(4.6.7)

(4.6,8)



. 71

Lemma 4.2

Consider the power series

Gy = ] ext v (4.6.9)
i=0 |
I
f lim  [Ci+1
1

exists and is denoted by %‘, then the power series(k(x)
given by equation (4.6.9) converges absolutely for |x|< A
and diverges for [x|>A. A is called the radius of convergence
of the power series.

Finally, the following theorem will be required in
establishing the stability of the integration formulae given

by equation 64.5.2) to (4.5.5).

Theorem 4.1
The increment function ¢ = ¢(x,y;h) defined by equation
(4.6.2) satisfies the Lipschitz condition.
Proof: |
Let (x,y) and (x,y*) be points in R, and the function
¢ = ¢{x,y;h) is.given by equation (4.6.2}, We wish to exhibit
a constant L*<« such that
[6 Gx,y30) ~¢ (x,y%50) | & Lijy-y*| . (4.6.11)
By using equation (4.6.2) in the left hand side of equation
(4.6}11), we obtain
| loGx,y5h) = ¢ (x,y*;h)]
=| [£ (x,y)-£ (x,5%)] +h[f (1 (x,y*)-f(l) (x,)] X

o . 2i-2
§ ot G ] 2 [E @ x50y -£ P (x,y7]

(21):

i=1

T o . 2i~2
4 i (Nh)
x { L D7 o ]

i=1

(4.6.12)
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Using the triangle inequality in equation (4.6.12) we obtain
the following relationship

o (x,y3h) -6 (x,y%50)] ¢

o0 . 2i-2
1 1 Nh
lf(X,Y)"f(X,Y*)l"‘hlf( )(X,Y*)"f( )(x,y)H Z (-1)1 %2—;.%' I
i=1 '
oo . 2i-2
. _1yi (Nh)
e 25D yn - £ P eopl] LY @i |
(4.6.13)
We have obtained the Lipschitz constants L*,L1 and L2
respectively for the functions f(x,y),f(l)(x,y) and f(z)(x,y)
from Lemma (4.1).
Let R1 be the radius of convergence of the power series
S A (4.6.14)
kh &) = CINN 6.1
i=1
and RZ’ the radius of convergence of the power series
o0 . 2i-2
= _1yt vy . (4.6.15)
ke = L D7 Gy
i=1
By applying Lemma (4.2) to the two power series k&(x) and
LQZ(X) as defined by equations (4.6.1%) and (4.6.15), we
obtain R1= © and R2= w, Hence if the mesh-gize h and the
first parameter N satisfy the condition:
(Nh| < @ J (4.6.16)
then the two power series kﬁ(x) and &5(x) both converge
absolutely = - .i' ?5=t0 ky<® and k2<“ resPecLQJQLj
We now have the following result from equation (4.6.13):
‘¢(X:Y;h)'¢ (x,y*;h) | §
2
(Ly#Ly kb + Lokoh Yy-v*| \ (4.6.17)

If we set

% 2
L =1L+ lelh + L2k2h <o (4.6.18)



then equation (4.6.17) yields
[€x,y3h) - dx,y;h)|< L* [y=y* |

We have thus proved that the increment function to the
integration formula (4.5.2) and defined by equation (4.6.2)
satisfies - . Lipschitz condition. We are now well equiped
to establish the stability of formula (4.5.2)., We now
present- the following theorem:
Theorem 4.2

TIf the increment function ¢ = ¢ (x,y;h) satisfies the
Lipschitz condition, then the one step scheme defined by
equations (4.6.2) and (4.6.3) is stable.
Proof:

Let y{(x) and ¥*(x) 5e two different numerical solutions of

the initial value problem (4.2.1) with initial conditions:

y(a) =n; and y*(a) =n* (4.6.18)

Then by applying equation (4.6.3), y(x) and y*(x) satisfy

respectively the following relations:

Ve T Ve

and

*
Ty

Subtracting equation (4.6.20) from equation (4,6.19), we get

yovE =y vig * (e v - (x _puyE_ 5B ¢ (4.6.21)

By taking the norms of both sides of equation (4.6.21) we get
% = -y& . -7 * .
|Yt-yt| | (Yt_l yt_1)+hE}b(Xt_lsyt_1 ’h) ¢th_lpyt_1’h)J|
and applying the triangle inequality in the last equation,

we obtain the relation;

*
vyl sly_gvi g |+ Blo G 1oy -0 G v%_ 50 |(4.6.22)

* b (x_15Y_p3h) (4.6.19)

* * 3 * - 3
Vi ¥ ek _pyE_ ) (4.6.20)
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Since by theorem (4.1) the increment function
$ = ¢{x,y;h) satisfies G. Lipschitz condition in y, there
exists a constant L*<% guch that
'¢‘Xt-1’yt-i;h) =0 (e ps¥E W [sxly i e (4.6.23)

Using equation (4.6.23) in equation (4.6.22) gives the
following relationship:

|y -vils (enL®) |y -yx ] e (4.6.24)
By a similar argument to the above, the relatiom, ) ‘

|7, 7vE_ s Qened [y, o-yi o hetdu (4.6.25) ‘

This process can be repeated t-1 times to obtain '

| *|< 1+hL¥) | *|

Yo Yyls ( ) 1y,7vE
and finally

ly -vls (Lenl#)[n-n*|.
Hence, by repeated backward substitution we obtain the
following relationship from equation (4.6.2),

ly,v4 s @sn® nns] (4.6.26)
By setting _ ' |
k= (1+hL#)F < o |

equation (4.6.26) gives

ly vxls & Inmnx] (4.6.27) \

Equation (4.6.27) establishes the stability of the
'~ one step integration formula (4.5.2) whichtas been
proved to be of order four,
By using similar arguments for the higher order schemes

given by equations (4.5.3) to (4.5.5) we can also establish

their stability,




4.7 CONVERGENCE

We shall discuss briefly in this section, the cbnvergence
and consistency properties of the one-step schemes given by
equations (4.5.2) to (4.5.5}.

With the dgfinitions (2.3.2) and (2.3.3), we now use a
theorem given by Henrici (1962):

Let the increment function ¢ = ¢$(x,y;h) of a one step
scheme be continuous in x,y and h for agxsgh, Oshsho and for
all y in —e<y<e and if it satisfies a Lipschitz condition in
the same region, a necessary and sufficient condition for
convergence of the one-step scheme is that it is consistent.

We now apply this theorem to the fourth - order one
step scheme given by equations (4.6.2) and (4.6.3). We have
established in Theorem (4.1) that the increment function
¢ = ¢ {x,y;h) as defined by equations (4.6.2) satisfies the
Lipschitz condition with respect to v. ¢= ¢£x,y:h) is also
continuous in x,y and h and satisfies the consistency criteria
given by the definition (2.3.2). Hence the fourth order one
step scheme given by equation (4;5.2) is consistent. By the
above theorem, we can assert that the same scheme is convergent.
An identical argument can be made for the higher order integration
schemes given by eguations (4.5.3) to (4.5.5).

We shall discuss in the next section, the alternative
interpolating function in the event of the failure_of the interpolating

function (4.2,6),
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.8 ALTERNATIVE INTERPOLANT

In the eventuality that the interpolating funétionggiven by
equation (4.2.6) fails as a result of the parameter Nt vanishing
or becoming infinite, indeterminate or complex and if varying
theckgree of the polynomial part of the interpolant is of no

avail, we use the alternative interpolant given by:

L
F = r 1
L 0O Zarxt + b sinh(N x +A) (4.8.1)
r=0 ‘
By following the same procedure as outlined in sections
(4.3) to (4.5), for the interpolating function (4.2.6) we
obtained the following results:
(a) The parameters Nt and At are now given as follows:
(L+2) i
t f(L)(X

(4.8.2)
£27¢) J .

f(L+1)(x

and
e V)

(L)
Nt? (Xt’yt)

_ ~1
At = coth

- Ntxt (4.8.3)

when the degree L of the polynomial part of equation (4.8.1)

is odd or

-1 f(LH')(xt

>¥¢) - N.x (4.8.4)

A = tanh X

t

@€
Ntf (Xt’yt)

when L is even.
(b) The final integration formulae are given as follows:
(i) For L=1

- L i}
Voo = Y, * REGLY) * £ (x 3, ) [cosh(w h)-1]

+ f(z)(xt,yt) [sinp(Nth) - Nth] ' (4.8.5)




(ii) For L=2,
r
h -
B, f(1: 1)(x

L
Vear = Ve * L e7e)
r=1
(2)
£z ,y,)
+ t .
N3t [sinh (v n)-N 1]
t
(3)
£ (x_,y.) :
* 4t t {f;osh(Nth){Ii+(Nth)j]2 } (4.8.6)
N 9T .
t
(iii) For L=3
L r
yt+1 = yt + Z _Ir-_l_!_ f(r 1)(xt,yt)
r=1
(3)
£ (x ,y.) 2
* _....._a_t_...L. {COSh(Nth)—D—*’ (Ni'.‘.h) ]}
N 21
t
(4)
f (x_,v,) 3
+ 't . (N. h
._-__NS_—. {31nh(Nth)-l:Nth+ 31': )]} _(4..8.7)
and finally t
{iv) For L=4
L r
Vo1 = Te * L %T x 1)(Xt’yt)
r=1
(4)
f (x_,v.) 3
* 5 £t {sinh(Nth)-[Nth+ (Nth) ]}
N 3T
t
(5)
£ (x,57,) 2 4
* 6t t {cosh(Nth) -[1+(Nth) +(Nth) ]}
N 2! 4!

(4.8.8)
(¢) The truncation errors for the integration schemes of various

orders are obtained by using the following expansions:

o 21
cosh (vn) = § WM (4.8.9)
i=0 "D




|
/3 ‘
\
‘ \
and ‘
co 2i+]
simh(¥ h) = 7§ (N b) (4.8.10) \
i=0 T(ZiF)7
instead of the sine and cosine expansions used in section 4.
The truncation errors are now as follows:
(i) For L=1
. E hZS [f(Zs—l)(X )_NZS—L-l f(L)(x il*
t+l _ (2s N £2¥e’ e t* 7t
s=L+2 . ,
o 2s+1 2 -1~
W2 O oy BT D oy 3]
1
obq @) (4.8.11)
(ii) For L=2 ‘
s+1
_ (23) Sy oy 28-L (L)
Teel = s=L+1 (23)i E (poy) — Ny £ (Xt’yt):[ \
® 28
7 B (23—13 g 252 (D) s \
] ’
+ Spaf2stl) N t |
(4.8.12)
(iii) For L=3 ‘
=5 2 - 2g-1,~
12s [E(2s 1)(x v )N s-L lf(L)(x 5 il
t+l = s=L+l ‘
o 2g+]
h (2s) L 2s-L-1_(L+1)
+ SEL (23%-1)'.[f Gepoyy) ~ £ oyl
{(iv) For L=4 - '
—_ h25+1 f(ZS)(x v~ NZs -1 (L)< L.y ]
T . = Zs+1)! e t
t+1 L
- 5 n?s O (g ya2s 20D (o 5]
* oo (28)1 e ¥’ Eeo¥eid o
(4.8.14)

We observed from equations (4.8.11) to (4.8.14) that the
degree L of the polynomial part of the interpolating function

(4.8.1) and the order p of the resultant integration formulae

and finally (4.8.13)
\
\
|
|
\
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satisfy the relation given‘by equation (4.5.7).

(d) We shall now discuss briefly, the stability and convergence
charactersitics of the one step integration formulae given in
equations (4.8.5) to (4.8.8). By using the equations (4.8.9)
and (4.8.10) in the fourth érder integration formula (4.8.55,

we obtain |

2i-2

=Vt h[f(x »Y e )+-hf(1)(x ERIE z (¥ h)

y
e+l —1(21)'

2i-2
e e Py (] O
i=1 (21+1)' ‘ (4.8.15)

We now define the increment function ¢ = ¢(x,y:;h) as:
2i-2

Kh) )

Peysh) = £Gey) +he D (x,y) (2&2,

e 02t @D 2,9y ¢ { %g%%TTT )y (4.8.16)

Using equation (4.8.16) in (4.8.15), the fourth
order scheme given by equation (4.8.5) Cmin bLe ,.e,xpfefﬁr"—ﬂ’ ed
Veep = ¥, ¥ BUGxLYGR) o | O Gsan
The increment function } = Y{x,y;h) given by equation
(4.8.16) is continuous in %,y and h and satisfies the
Lipschitz condition with respect to y. Hence, by making

similar argumente for Y(x,y;h) as those made for ¢{x,y;h)

~in sections (4.6) and (4.7), we can establish that the

" integration formula defined by equation (4.8.5) is stable

and convergent. Identical results hold for the higher order
formulae defined by equations (4.8.6) to (4.8.8).
Some possible causes of the failure of the integration
schemes are:
(a) the parameter‘Nt vanishing.or becoming infinite,

indeterminate or complex.



(b) the argument z darc tanh does not lie in the range
-1<z<]

(c) the argument of arc coth lies cutside the range z<-1 and

z>1,

In the event that any of the conditioms (a), (b} or (c)
does occur, we vary the degree of the polynomial part of the
interpolant (4.8.1). If this does not remedy the situation,
we switch to the interpolating funmction (4.2.6).

The failure (b) and (c) rarely occur. Cases of failure

(a) occurmng are treated in the numerical applications

discussed in the next section.
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1,9 APPLICATIONS AND MUMERICAL RESULTS

Exgmple (4.8.1)

- We first consider the scalar initial value problem
y' = =(yHE 3=l C(4.9.1)
over the range 0<xs<T.

The theoretical solution of problem (4.9.1) in the
specified range is y(x)=éosx. The numerical solution was
obtained with uniform mesh-size h=f%—using schemes of orders
4,5,6 and 7. For the integration schemes of orders 5 aund 7,
the parameter N_ was indeterminate at x=0. Hence, in each
case, there was a switch to the integration scheme of order
6 as the specified maximum available order is 7. The parameter
Nt was constant with unit value throughout the interval of
integration, The parameter At has constant value + — in the

2

T .
range 0£x$+ and constant value - % in the range %$X$ﬂ. We can
observe from Table 4,9.1 that the numerical results obtained
by the fourth order integration scheme are correct to 10decimal

places.




10

0.31415926
0.31475926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926

0.31415926

TABLE 4.9.1

Fourth Ovder Schemes

X
t

0.00000000
0.31415926
0.62831852
0.94247778
1.25663704
1.57079630
1.88495556
2.19911482
2.51327408
2,82743334

3.14159265

NUMER ICAL
Ve

SOLUTION

1.00000000
0.95105652
0.80901700
0.,58778527
0.30901701
0.00000003
.30901696
.58778522
.80901697
.95105650

.000000C0

0.00000000

MIXED ERROR
FOR ORDER 4

1010 7.,

<. 00000000
0.00000000
0.20110252
0.50407026
0.80595885
1.39152460
0.69479214
0.59571942
0.32176404

0.03729239

MIXED ERROR
FOR ORDER 6

1010 T

0.00000555
0.07458479
0.04022050
0.04582456
0.08337505
0.36497019
0.05558337
0.04582457
0.00000000

0.07458479

0.03637978



Example 4.9.2

We also consider the ekample given by Amdursky and Ziv(1974).

The system is given by

]
41 0 ! 71
= (4.9.2)
, _8 1
X

where B is a real constant. The general solution of problem (4.9.2)
is

yl(x) = A sin(Blogx)+B cos(Blogx)

yz(x) '—'BE-‘& cos(Blogx)-B sin(Blogxﬂ /=
We obtained the numerical solution of problem (4.9.2) in the
interval e2$x59, where e=2,7182818 with a uniform step size
h=0.1. The following numerical valueé are assigned to the
real numbers A,B and B: |

A=1, B=1 and B=1 ;

thus giving the initial conditions

yl(ez) =1 and
2, _ 1
yz(e)_'—_z— i
e

Details of the numerical results are given in tables (4.9.2A)

and (4.9.2%)



TABLE 4.9.2%

10

11

12

13

14

15

16

17

MIXED ERROR

X, Nél) Aél) Yél) 10" XTéii
7.3890561 0.4686608 ~-1.7841529 1.00000000 0.00000000
7.4890561 0.4462486 -1.6109432 1.0413275 0.0524669
7.5890561 0.4246877 -1.4393799 1.0802870  0.0565208
7.6890561 0.4038547 -1.2686623 1.1168977 0.0526561
7.7800561 0.3836360 —-1.0980135 1.1511833  0.0434288
7.8890561 0.3639247 =-0.9266579 1.1831711  0.0289282
7.9890561 0.3446179 =-0.7537964 1.2128918  0.0124286
8.0890561 0.3256132 -0.5785795 1.2403792  0.0073397
8.1890561 0.3068057 -0.4000722 1.2656697  0.0288383
8.2890561 0.2880840 -0.2172096 1.2888020 0.0514988
8.3890561 0.2693245 -0.0287342 1.3098170  0.0759153
8.4890561 0.2503841  0.1668964 1.3287572  0.1015428
8.5890561 0.2310889 0.3716535 1.3456666 0.1274249
8.6890561 0.2112150 0.5881757 1.3605905 0.1541131
§.7890561 0.1904553 0.8201953 1.3735754  0.1809199
$.8990561 0.1683542 1.0733758 1.3846685 0,2083318
8.9890561 0.1441603 1.3571882 1.3939178  0.2364615
9.0000000 - - 1.4013717  0.2645724



10

11

12

13

14

15

16

17

Xt
7.3890561
7.4890561
7.5890561
7.6890561
7.7890561
7.8890561
7.9890561
8.0890561
8.1890561
8.2890561
8.3890561
8.4890561
8.5890561
8.6890561
8.7890561
8.8890561
8.9890561

9.0000000

TABLE 4.9.25

v
2.1071631
1.7079582
1.4630608
1.2921509
1.1634728
1.0616019
0.9780172
0.9075732
0.8469524
0.7939055
0.7468446
0.7046117
0.6663388
0.6313598
0,5991532
0.5693035

0.5415739

(2)
Ay

-15,1163220
=12.2370060

=-10.4633550

-9.2188272
-8.2755737
-7.5228248
-6.8995709
-6.3688757
-5.906%9497
=5.4976599
=-5.1296142
=4.7944973
-4.4860675
-4.1995259
=3.9311043
-3.6777870

~3.4371180

v
0.4251683
0.4014065
0.3778151
0.3544389
0.3313180
0.3084884
0.2859818
0.2638267
0.2420478
0.2206671
0.1997035
0.1791732
0.1590902
0.1394661
0.1203106
0.1016315
0.0834346

0.0657246

MIXED ERROR
7 23

100 =T 3
0.0000000
0.1884658
0.2946419

0.3733226

10.4358793

0.4864398
0.5298624
0.5660654
0.5981931
0.6260311
0.6496155
0.6704590
0.6894045
0.7054440
0.7190403
0.7309764
0.7407268

0.7485812



Example 4.9.3

We also consider the scalar initial value problem
y' = -Zxy + 4x, y(0)=3 .(4.9.3)

in the interval 0¢xg1.025. The theoretical solution to
problem (4.9.3) is y(x)=eﬁx2 + 2.

The numerical solution to problem (4.9.3) was obtained
with an initial stepsize h=0.1 and specified tolerance e=10~8.
As the solution to the problem is not oscillatory, there was
a switch to the hyperbolic interpolant in the range 0.55xg0.7125.
The non—-oscillatory nature of the problem also accounts for the

small stepsize required to obtain the desired accuracy.

Details of the numerical results are given in table (4.9.3).




INDEX h
1 0.10000

1 0.,05000

1 0.02500

1 0.02500

1 0.02500
1 0.02500
2 0.01250
2 0.00625

1 0.02500

1 0.02500

1 0.02500

n

INDEX

INDEX

Xt
0.00000
0.10000
0.20000
0.30000
0. 40000
0.50000
0.60625
0.71250
0.82500
0.92500

1.02500

TABLE 4.9.

Nt
2,4433378
2.3699187
2.2326413
1.9678116
1.3446956
2.2300382
4.0541435
4.,6610851
3.6347782

3.1622777

3

Ay

e

1.05712060 3.0000000

1.5891165
1.6477103
1,7972221
2,2070509
—-1.5702748
-2.8667117
-3.2860414
=2.5345045

-2.1554240

2.9900498
2.9607895
2.9139312
2.8521438
2.7788008
2.6924363
2.6019047
2.5063004
2.4250175

2.3497191

1 Polynomial and Trigonometric Interpolant

2 Polynomial and Hyperbolic Interpolant

3
10 th+1
0.00G00
0.20715
0.56800

0.63949

0.74041

0.87724

0.92930

0.91063

0.32123

0.54808

0.63686

&



Example (4.9.4)

We finally consider the Van~der=Pol oscillator in the form

yi=y,, v,0)=0
Loz (4.9.4)

Yy = 0-01(1-yi)y2-yl, y,(0)=1

oﬁer the range 0§x£6.

The numericdl solution to the initial value problem (4.9.4)
was obtained using the following integration schemes:
(a) the fourth order one-step scheme as given by equation (4.5.2)
(b) the Krogh's variable order Adams scheme (The Numerical Algorithm .
Group's version).
(c) the Gfagg-Bulirsch-Stoer (G-B-S) rational extrapolation scheme.

All the numerical integration subroutines are written in
FORTRAN IV for the ICL 1904A computer with single precision
arithmetic,

A uniform mesh size of h=0.0375 was specified in the three
~ schemes. The new integration algorithm varied its order at the
mesh points x=0, x=1.5 and x=4.6875. Whilst the new algorithm
required 171 function evaluations, Krogh's scheme required 453
function evaluations and the G-B-S scheme required 37,020 function
evaluations. Also, the total machine time required by the new
scheme was 63 seconds whilst Krogh's scheme required 69 seconds
and the G~B-5 scheme required 91 seconds. The running cost for
the new scheme under the accounting system operational on the
Loughborough University machine was 38 pence whilst the running
cost for Krogh's scheme was 39 pence and 49 pence for the G-B-5
scheme .

The details of the numerical results are given in table (4.9.4).
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FOURTH ORDER ONE STEP

X
0.00000000

0.30000000
0.60000000
0.90000000
1.20000000
1.50000000
1.80000000
2,100000600
2, 40000000

2.70000000.

3.00000000
3.30000000
3.600000600
3.90000000
4,20000000
4,50000000

. {
4,80000000

5.10000000
5.40000000
5,70000000
6,00000000

SCHEME

Y
000000000

0.29595737
0.56624448
0.78645340

0.93663469
1.00320104
0.98015691
0.86954204
0.68113086
0.43151588
0.14270079

~0.015971789

-0.44872183
-0.69828521
-0.88581762
-0.99433194
-1.01403600
-0.94315793

-0.78798032

-0.56218592
-0.28565523

Y
1.00060000
0.95816542
0.83005702
0.62681152
0.36677933
0.07364129

-0.22611779

~0.50583247

-0.74094526

-0.91082896

~1.00026329

-1.00071514

~0.91138069

~0.73970197
~0.50098678
~0.21695595
0.08658086
0.38241170
0.64443656
0.84972276
0.98012923

TABLE 4.9.4

KROGH VARTABLE ORDER

Y
0.00006000
0.29595737
0.56624448
0.73645340
0.93663469
1.00320104
0.98015691
0.86954204
0.68113087
0.43141490
0.14270081

-0.15971786
-0.44872180
~0.69828519
-0.88581760
-0.99433193
~1.014G3600
-0.94315794
-0.78798033
-0.56218595
~0.28565527

Y
1.00006000
0.95816542
0.83005702
0.62681152
0.36677933
0.07364129

-0.22611777

-0.50583245

~0.74094524

-0.91082894

-1.00026329

-1.00071515

-0.91138071

-0.73970199

-0.50098681

-0.21695598

+0.08658083
0.38241166
0.64443653
0.84972273
0.98012921

GRAGG~BULIRSCH-STCER

Y
0.00006000
0.29595738
0.56624449
0.78645341
0.93663469
1.00320105
0.98015691
0.86954203
0.68113085
0.43151587
0.14270077

~0.15971790
-0.44872184
-0.69828522
-0.88581763
-0.99433195
-1.01403600
-0.94315792
-0.78798029
-0.56218589
-0.28565519

Y
1.00080000
0.95816542
0.83005701

0.62681151-

0.36677931
0.07364127
~0.22611779
-0.50583247
-0.74094526
~0.91082896
~1.00026330
~1.00071514
-0.91138069
~0.73970195
~0.50098676
-0.21695592
0.08658089
0.38241172
0.64443659
0.84972277
0.98012924
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4,10, ConclLusIoN

Rqueﬁm%ﬁ;tQ#g s (4.9.1), we observed that the numerical
integration procedure developed in this chapter will allow
relatively large integration step—sizes and still maintains a
high degree of accuracy particularly when the‘theoretical
solution contains sine and cosine functions.

The fact that the proposeﬁ one~step scheme uses higher
order derivatives of the given differential equations enables
us to obtain - .Ct:; “ solution to probleﬁ\(4.9.1) at x=0
where the initial value problem has no unique solution as it
fails to satisfy the hypothesis of theorem (1.1).

The main disadvantage of the propesed scheme is the requirement
to obtain higher order derivatives of f(x,y) analytically. 1In

some problems these are readily obtainable. qll the same, we

shall remedy this situation in the next Chapter,



CHaPTER V

AN EXPLICIT MULTISTEP MUMERICAL INTEGRATION SCHEME
FOR SOLVING SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS
WITH OSCILLATORY SOLUTIONS



5.1 InTRODUCTION

In Lambert and Shaw (1965) and Shaw (1967), some linear
multistep integration formulae were formulated to solve initial
value problems of the form

y' = £(x,y), y(a) =n.. (5.1.1)
These numerical integration schemes are based on the
representation of the solution to the initial‘value pfoblem
(5.1.1) by non-polynomial interpolants as given by equation
(2.6.1), The resultant integration formulae are particularly
well suited to solving initial value problems whose solutions
contain singularities. |

In Chapter IV, we proposed a stable and convergent one-step
integration scheme for solving imitial value problems of the form
(5.1.1). The numerical integration schemes are based on a local

representation of the solution on every subinterval

It=xtsx5xt+1, t=0,1,... by either the interpolating function,
L r
Ft(x) = Z a x + bt 51n(Ntx+At) & (5.1.2)
r=0
or
L T
F (x) = rzoarx + b, sinh(N x+A,) (5.1.3)

where L is a non-negative integer; b_ and {ar,r=0,1,...,L}

are real undetermined coefficients and Nt’At are real parameters
which are evaluated at each step of the integration procedure.
The determination of the parameﬁers Nt and At however requires
the analytic evaluation of higher derivatives of f=f(x,y) given
by equation (5.1.1). As this could be'vgry cumbersome

particularly if £(x,y) is a very complicated expression, we shall
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develop in this chapter, a linear multistep scheme which
circumvents the analytic determination §f the higher derivatives
of f{x,v). However, we now have to solve a pair of trigonometric
(or hyperbolic) equations for the paraméters Nt and At' A device
is also introduced for obtaining good initial estimates for these |
parameters as the effectiveness of the Newton iteration method is |
eritically dependent on the choice of these estimates. The starting
|
values for the mulé;step formulae are obtained from the version of

the Gragg-Bulirsch-Stoer rational extrapolation scheme discussed in

Chapter III. The proposed scheme is convergent and zero-stable.
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0.2 INTERPOLATING FUNCTIONS AND DETERMINATION OF THE

PARAMETERS i AND Ar

We shall denote by k the stepnumber of the multistep
integration formulae and any necessary additional starting values
{(i.e. yl,yz,...,yk_l) are cbtained with the variabie order Gragg—
Bulirsech-Stoer algorithm discussed in Chapter IIL.

Let us assume that the numerical solutiomns LS RTETERS A
have been obtained at the points NP ST LRTE ST respectively.

We now wish to obtain the numerical solution Ypsp 3t the point

X=X
Let
k-1
I% = 5) I.,; for OstsN-k, (5.2.1)
1=0
be the union of the subintervals It’It+1""’It+k-1 defined

by equations (4.2.3) and (4.2.4).

Over the inte&val I*, the solution to each equationm in
the initial value problem is represented by the interpolating
function (5.1.2).

We shall denote by - ‘ ft+j’ the value of the
function f(x,y) at the point_x=xt+j,y=yt+j. In an attempt to
eliminate the undetermined coefficients in the interpolating
function (5.1.2), the following constraints are imposed on
the interpolant (5.1.2):

(a) the interpolating function should pass through the points

1(x.,.,5..:2,5=0,1,...,k}

t+177 )

i.e.

¥

t(xt+j) = Yt+j’ 3=0,1,...,k (5.2.2)



oI

(b) the first derivative of the interpolating function must

gsatisfy the differential equation (5.1.1}) at those points

specified in condition (a). i.e.
dFt(x)

dx
X=X

= fyqs 300,00 k1 (5.2.3)

o
Equations (5.2.2) and (5.2.3) respectively imply . that

the relations

L .
izo aix;j + btsin(Ntxt+j+At) = Yeaio j=0,1,...,k  (5.2.4)
and
oL i .
izo ia;x + thtcos(NtXt+j+At) = ft+j’ 3=0,1,.0.,k=1
(5.2.5)
hold.

The forward difference operator A discussed iﬂ Chapter II
has the following relationship with the derivative fi=f(xi’yi)
of y at X=X, !
Ayi = hfi . . (5.2.6)
As the polynomial part of the equation (5.2;5) is of
degree at most L-1; theorem (2.1) imﬁlies that the application
of the operator A% to both sides of equation (5.2.5) will

annihilate the polynomial part. This gives

L L
thtA cos(Ntxt+j+At) = A ft+j .

L
A ft+j
b, = , J=0,1,...,k=1 « (5.2.7)

L
e
NtA cos(Ntxt+J At)

In particular by setting j=0,1,2 in equation (5.2.7), the

undetermined coefficient bf can be obtained as either
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b _ A ft
t
N .A%cos(N x +A )
ov
L
oL bt
t L
N .
g cos(Ntxt+1+At)
or
L
ATE
b, = £r2 . (5.2.8)
t A cos(Nt 42 At)

Hence, the following equations are obtainable from equation

(5.2.8):

_ L L
Rl(Nt,At) = A cos(NtXt+At) . A ft+1

L L, _
A cos(Ntxt+1+At).A ft—O,
(5.2.9)

R, (N A = aVcos (i Faghy) ale

+1 £+2

L
ATcos (X xt+2+A )A £ e+1 =0,
(5.2.10)

and finally,
R (N ,A) = ALcos(N % A )A £,
3Vt t+2

ALcos(Ntxt+At)ALft+2=0 .
(5.2.11)
Any two.pairs of the equations (5.2.9) to (5.2.11) can
be solved for the parameters Nt and At.
We now give a detailed discussion of the determination

of the parameters N_ and At by using equations (5.2.9) and

t
(5.2.10) for the case when the polynomial part of the interpelant

(5.1.2) is of degree one (i.e. L=1), We adopt the Newton

. iteration scheme.
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Simplifying equations (5.2.9) we get

)[bos(N <E-

Rl(Nt’At) = t* t+1

SIS I
cos (Ntxt+At)] (€ oy 7E,) [eos My p*h)-cos WNox, o+, )] =0

(5.2.12)
and similarly from equation (5.2.10), we have

R, (N ,A.) = (f Y[eos (N 5 y+A ) —cos (N %, +A J]

t+3 t+2 t X2

_(f

erg Eppp) [cos (o o*A )—cos (W x *A J]=0" + (5.2.13)

tT+2

We now apply the Newton Raphson iteration scheme to
obtain the roots N? and A? of the trigonometric functions
Ry (N ,A) and R, (N ,A).

The choice of reasonable initial estimates Ngé] and Ag@]'
at t=0 is very important for the comvergence of the Newton
iteration. Hence, a scheme is proposed to give these initial
estimates. The higher order derivatives of thg function
f=f(x,y) in equations (4.4.13) to (4.4.15) are replaced by their

equivalent forward differences. For instance,

y.) AS+1Y0 )
0’70 _— (5.2.14)
hs+l

f(s)(x

iz

By using the relation (2.2.5) in equation (5.2.14),

we have
1
1 S% Y , s+l
-1)* ( )y
Sl 2o

* (5-2.15)

-r¥1

The initial estimates of the parameters Nt and At are

then given by either the equat1oﬂs

Ay
Ngoj . I:..___Z or (5.2.16)
A7y,

d 3 .
* A[] cot = & Yo - Nuﬂ.x H

;IEI“EE——- 0 0’?

o *° Yol

Nl—‘

(5.2.17)




or by the following equations:

o
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[ .5
N(]):O] = |78y |, . (5.2.18)
3
and ' - g Yo
g Ex R
0 -1 - 0 0
AO = tamn EEH?;—]*NO .XO . {(5.2.19)
" 0 " tyO

These estimates are now improved upon Ey the Newton
iteration method which is discussed below.

At the ith iteration of the Newton Raphson's scheme,
the partial derivatives of equations (5.2.12) and (5.2.13)

with respect to Nt at Nt=NEﬂ and At = AEJ:-I are - given by

SN LA ) :
Rl’Nt_ £t N=N[1_‘_]
t t
A =A[i]
sin(erx +A]:i:‘)_.x sin(N[ﬂx .,.A[i] )]

t+2-ft+1) Ect+1 t T+l

sin (N l:ﬂx o tAL E:I )*""X 18 in (N B]x "'AEEJ ):I

-(f

£er7ED) Ext+2

RZ’N.: (N.,4) i
N =N[i]
t ot
A =A[1]
( 43 ft+2) E{t+251n(N[] t+2+A[])—x Sll’l(N[ﬂXt 1+At[l:l

+(ft+2"ft+1)[xt+3

By also obtaining the partial derivatives of equations
(5.2.12) and (5.2.13) with respect to the parameter At at

Nt=Nt[i] and At=AtEi:[, we obtain:

. [d i . i ilq .
Sln(Nt]JXt+3+A£])-Xt+251n(N£ﬂxt+2+AE1)]

(5.2.20)

(5.2.21)



o3

(N, ,8,)

R
LAttt ¥

- N =N, i

L

_(f

) Sln(N[l +A )-m.n(NE]x +A[] )]

t+2 t+l t Tt+l

£ binols, Bl

and finally,

+1+A[])] (5.2.22)

t+1 a2 e

R (¥ ,A )

Z’At t° t ! _N[i:]
t ot

A =A[i:[

) 51n(N []x “'A[i])—sin(Nu]

t+3" t+2 t+2

-(£

ey

+H(E t+1)]:‘°'1“(N t+3+Ap)*sm(N[:l] t+2'+At[1]] - (5.2.23)

t+1 t

Let J denote the determinant of the Jacobian of the

functions Rl(Nt,At) and Rz(Nt’At)’ i.e.

e @ A [ [
Rl,Nt(Nt AL ) Rl,At(Nt ,Agj)

| B [l],AtI:l]) Ry, (Ntci—]At[g? |

The correction terms 5N].Fi], 5AtEi] for Nt[i] and Ap;l at

.th , . .
the it iteration of the Newton Raphson's scheme are given by:

—

] - [1,T q, 4, |
dNi[l | ’—RZ’At(NtEﬂ,AI}])’ -Rz’Nt(NEI,At L1y

= J—-l

na e R N

1N
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R, (N Ei:l,AE]j)
(5.2.24)
R, (Nt[i], Agﬂ)
The new estimates of the parameters N? and Ai are given
by

NE‘+1] - Nt[iJ+ (sNt[i], (5.2.25)

a . . .
- At[l"l] - A£1]+ _6AE1], (5.2.26)

vhere 5N£;Jand 5A£I] are given by equation (5.2,24).
If we define the correction vectorGQI}]by
saltl = ¢ Nt[l:! AElI)T,. (5.2.27)
the Newton iteration is then halted when the condition

ool || <€ ax (5.2.28)

is satisfied; where € ax is the allowable tolerance.

From practical experience, it may be desirable to set

1

6 . . . . ' .
€ ax > 10 ~ as it may be impracticable {or time consuming)

for the Newton method to obtain accuracy which is less thgn
1078,
We denote the terminal values obtained by the Newton

method as N? and At and are given as follows:

N¥ = 1lim N[l:] (5.2.29)

t {0 t

and ;
: A* = lim A[]'] . (5.2.30)

t P t

In the next section, the parameters N: and Ai
together with the undetermined coefficient bt given by
equation (5.2.8) will be used to develop a linear multistep

scheme to solve the initial value problems of the form (5.1.1).
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5.3 DERIVATION OF THE INTEGRATION FORMULAE

In this section, we shall eliminate the remaining undetermined
coefficients {ar,r=0,1,...,L} in the interpolating function (5.1.2)
to obtain a coﬁsistent and zero-stable (convergent) linear multi-
step scheme.

We introduce the function Z 4t defined by,

= - % * '
Zepi = Vesi b Sln(NtXt+ +At) | (5.3.1)
whose derivative z;+i is then given by
r = N %
Ziai ft+ N h cos(Ntxt+1+A*) . (5.372)

Fquations (5.3.1) and (5.3.2) are then used in

equations (5.2,4) and (5.2.5) to yield

i

z ., = Z a.x,_ .. (5.3.3)
£+ joo 1 t+]
and
ia, 5.3.4
120 i t+J * ( ‘
We now introduce the consistency parameters
{aj,ﬁj;j=0,l,...,k} such that aO,BO are not both zero and
set Bk=0 as we are only interested in an explicit formula.
For j=0,1,...,k; we multiply equation (5.3.3) by aj
and multiply equation (5.3.4) by —th and add columnwise
to give:
k
.2 - e B =
EO ]t J z J t*]
L k .
i
Y a. [ Y a.x, . - ih z B.x }1 (5.3.5)
i=0 * j=0 1t 3 t+

As we are only interested in an Adam's type of linear
multistep method, we assign the following values to the

consistency parameters:
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ay = -1, a = +1 ; and

0 for j=0,....,k~1; j# 1 . (5.3.6)

n

o,
i
This choice of parameters gives

k .
} o, =0 (5.3.7)

which is the first consistency condition for a general linear
multistep scheme given by equation (2.4.10).
By applying equations8(5.3.6) and (5.3.7) in equation
k5.3.5), we have
k-1

k
%,z . = h B.z' .
-EO et jZO iTt4]

: \
\
\
\
\
\

I ~1t

['Z . YB.xt r ], (5.3.8)
=) 15=0 % t+3 j=oJ 3 |

By allowing the coefficients of a, to vanish in equation
(5.3.8) (for i=1,Z2,...,L), we obtain
; k-1 i
) %5 ¥eey T ih z BJ t+J -
for i=1l,...,L . (5.3.9)
There is no loss of generality in assigning the following
values
X, = 0 and h=1 (5.3.10)

in equation (5.3.9) to obtain
L i-1
Joda, =i ) ] 8; = 0 for i=1,...,L. (5.3.11)

With a choice of L such that
= k-3 (5.3.12)
equation (5.3.11) will give a set of k-3 equations in the k

unknowns BO’BI""Sk-l and thus allowing three degrees of freedom.
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For the case L=1 and k=4, equation (5.3.11) gives one
"equation in four unknowns 80,81,82 and.83. This equation is
the second consistency condition given by equation (2.4.11).

By setting i=2,3 ana 4 in equation (5.3.11) we solve for

81,82 and 63 to give

Bl = 1.875
52 = =1.125 - (5.3.13)
B3 = 2.625 .

The parameter BO is then obtained by using equation
(5.3.13) in equation (5.3.11) for i=l to obtain

BO = -0.375 | (5.3.14)

The above procedure makes equation (5.3.8) a linear
multistep formula. We can associate with (5.3.8) a linear
difference operator dencted byJE such thatjg operating on an

arbitrary function z(x) ¢ CmEt,‘tﬂ gives the following relationship
k-1

FAEIORIIEED) a;z(etih)-h s | Biz' Gx#jh).  (5.3.15)
. ] 0

j=0 S
Replacing z(x+jh) and z'(x+jh) by their respective Taylors

series expansion at the point x in equation (5.3.15), we then

obtain
i Eé(x);ﬂl = coz(x) + ¥ cihlz(l)(x)
| i=1
where the constants css i=0,1,... are given as follows,
i
e, = o
0 320 ]
k k
c; = E ja. - E (6+3:16)
j=t 3 =0
k
k .r=1
.I 1 ' B.,r=2,3,...
c_ = L z ] 0[j ) ;“ ! J i ’ '
r r! j=1 J=1

By setting cf?o, {=0,1,...4 in equation (5.3.16), we obtain
exactly the same set of linear systems from which we solved for

%,... % to obtain the values in equations (5.3.13) and (5.3.14).
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If we take equation (5.3.8) with the coefficient of a, set

1

to zero and substituting equationt (5.3.1) and (5.3.2), we then

have the final integration formula as

% kil
-h § B.f .
4= 3 t+J j20 J ]

k
jzouj[; .~b 31n(N§xt+ A*i]
-hzsj[ft+j—Ngbtcos(N§Xt+j+A§i] .

From equation (5.2.8) the undetermined coefficient b,

given by

Ao

t N* Acos(N*x

t+2 t)

P IPY

*Y - E3 *
+At) cos(Ntxt+2+A )]

N*Ibos(Nt 43

(5.3.17)

is now

(5.3.18)

By using equation (5.3.18) in equation (5.3.17) and

re—arranging terms, we now have the final integration formula as:

k=1 k 1
= = o, £ .
Vek jzo ey ZOBJ t+)
+ €rr3fia)
N*[pos(N*xt 3+A§)-cos(Ntx +A*X]
k k-1
1 % %) ~N%
[.jzo uj51n(Ntxt J+A ) N h JZ B. cos(N

In general the parameter bt is given by
L

ﬁ _ )
t L
* * + A%
NtA cos(Ntxt+2 At)

and the final integration formula is given by

+A§5] +(5.3.19)

(5.3.20)
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k'il k-1
¥y = - 0,y .. + Nih.z B.f .
erk j=o0 3 "1 =0 1
L
) BE .,
1, X
N* 3 *
tA cos(Ntxt+2+At)
k e
. x N . .
[ézoujSln(NtXt+j+At) Nt?EEjCOS(NtXt+j+Ati] (5.3721)

where {Bj, j=0,1,...,k-1} are obtaiﬁed from the k set of
linear equations obtained by setting i=1,2,...,k in equation
(5.3.11).
With the consistency parameters {aj,j=0,l,...4} specified
by the equations (5.3.6),(5.3.13) and (5.3.14), the linear
multistep scheme given by the equation (5.3.19) is of order 4.
The scheme is also consistent as the consistency pérametérs
have been derived to satisfy the consistency equations (2.4.10)
and (2.4.11).
The first characteriStic polynomial of the linear multistep
scheme given by equation (5.3.19) is
o(s) = 5= s (5.3.22)
which has the following roots:
s=0,1, - 7 % i g”: . (5.3.23)
As all the roots of the first characteristic polynomial of
equatién (5.3.19) lie within a unit cirecle and the principal
root is a simple root, then by definition (2.4.4), the linear
multistep formula (5.3.19) is zero-stable.

From the following theorem of Henrici (1962) which states

that the necessary and sufficient condition for a linear multistep
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scheme to be convergeﬁt is that it be consistent and zero-stable,
we can rightly assert that the linear multistep scheme given by
equation (5.3.19) is convergent.

The parameters N?,A% are used as the initial estimates in

* the next interval I, of integration i.e.

ol

= % = i
BT =N, e=0,1,..., Nk (5.3.24)
RO - -
ASY = A%, £=0,1,...,N-k . (5.3.25)

In the event that the Jacobian of the functions Rl(Nt’At)
and Rz(Nt,At) is singular, a new pair of equations is chosen
from equations (5.2.9) to (5.2.11). However, if all possible
choices of pairs yield unsatisfactory results, we switch to
the alternative interpolating funetion (5.1.3). A brief
discussion on the alternative integration formula based on the
interpolating function (5.1.3) will be given in the next

gection,



5.0 THE ALTERNATIVE INTERPOLANT

In this section, we shall give a brief account of the
alternative interpolating funection (5.1.3) to the interpolant
(5.1.2).

The solution to the initial value problem (5.1.1) is locally
represented over the interval I* defined in (5.2.1) by the

interpolating function
L .
i . .
Ft(x) = iZoaix + bt51nh(Ntx+At). (5.4.1)

By using the same arguments for the interpolant (5.4.1)
as for interpolant (5.1.2), we obtain the following results:

(a) the undetermined coefficient b, ig given by

ALft+.
bt = 7 ] ’j=0,1,...,k-1) (5.4.2)
NtA COSh(NtXt+j+At)

(b) the parameters N and At can be obtained from any pair of
the following set of functioms

L L
Rl(Nt,At) = A coSHStXt+At).A £

L L, _

A cosh(Ntxt+1+At).A ft— 0, (5.4.3)
R, (N _,A ) = ALcosh(N X . +A ) ALf -
27t 1 o T t+2

ALcosh(N X, . ,tA) ALf =0 {(5.4.4)

t7t+2 t0° t+1 ’ o

R (N, ,A,) = Alcosh (N x__+A ).a"F -
3% COSBAR X e /2 L¢

|
<

L L
A cosh(Ntxt+At).A ft+2 = (5.4.5)

Equations (5.4.3) to (5.4.5) are obtained by setting j=0,1,2

in equation (5.4.2),
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(c) the initial estimates Ngﬁland Agb]of the parameters NS,AS

are given by either

4 3
0
Ng] RS (5.4.6)
2
and A Yo
Ay
9] -1 0 [7]
A[ = coth ~_ -N .a (5.4.7)
o ! [(1' 2 ’
NG ™4 ¥ ° |
or by the equations
5
0 N (5.4.8)
A'yo
and
4
AgO] = tanh L &Y, -NEO]a (5.4.9)
o5, | Mo A
NS4 Ay,
Equations (5.4.6) to (5.4.9) are obtained by replacing
higher derivatives of f(x,y) in the equations (4.8.2) to
(4.8.4) by the equivalent forward differences.
(d) the final integration formula is given by:
k-z']. kil
v = - . v . + h o« B.f .
t+k j=0 3 Tt 520 4 T
L
A
ft+2
ok Alcosh(uEx, L +A%) :
t o GOSN R ™o
,[ k k-1
i % *) ~N*h+ 'B: * %
Z or.j 51nh(Ntxt+j+At) Nth .ZBJ COSh(NtXt.+j+At)] (5.4.10)
j=0 =0
where h
N*¥ = 1im N El (5.4.11)
t e t[] .
A% = 1im A - - (5.4.12)
£ iw €

1
and  the sequence {Nt[]"],Agl], i=1,...} are the approximate

roots of Rl(Nt’At) and RZ(Nt’At) which are generated by the
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Newton method,
In case the integration formula given by equation (5.4.10)
fails because of the parameter N, vanishing or 'Baéonethfﬁou«Fh.x

switch to the interpolating function (5.1.2).
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5.5 APPLICATIONS AND NUMERICAL RESULTS

Pxample (5.5.7)

We now consider the scalar initial value problem
y' = -/1—y2 , y(a) = cos a (5.5.1)

over the range <xgm . The theoretical solution of the

L
10
problem (5.5.1) over the specified range is
y(x) = cos x.

The initial estimates of the parameters Nt and At are
obtained as:
NO[O:[= 0.98179374
AOEO:1= 1.69468235  »

The integration was performed with a uniform mesh-size h= %%

EJ

The numerical solution was started away from x=0 as the
problem (5.5.1) does not satisfy the hypothesis of theorem
{(1.1) at x=0.

Details of the numerical results are given in table (5.5.1).
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TABLE (5.5.1)

Ngo] = 0,98179374

AEOJ = 1.69468235

t NO. OF ,
§$g§g¥IONS #t e K Yo 10 e
0 4 0.31415926 1.0000007  1.5707955 0.95105652 0.00000
1 2 0.47123889 0.9999989  1,5707974 0.89100654 0.09962
2 2 0.62831852 1.,0000032 1.5707919 0.80901702 0.09404 -
3 2 0.78539815 0.9999985 1.5707986 0,70710681 0.08460
4 1 0.94247778 0.9999985 1.5707986 0.58778529 0.12446
5 2 1.09955741 1.0000037 1.5707909 0.45399054 0.16241
6 2 1.25663704 0.9999943  1.5708053 0.30901705 0.23576
7 1 1.41371667 0.9999940 1.5708057 0.15643451 0.21375
8 2 1.57079630 1.0000026 1.5707921 0.00000005 0,26212
9 2 1.72787593 1.0000002 1.5707961 =0.15643440 0,27809
10 2 1.88495556 0.9999967  1.5708018 ~0.30901694 0.17926
11 2 2.04203519 1.0000048 1,5707878 ~0.45399044 0.16566
12 2 2.19911482 0.9999967  1.5708028 ~0,58778520 0.16873
13 2 2.35619445 0.9999989  1.5707983 ~0.70710674 0.09151
14 2 2.51327408 1.0000098 1.5707737 ~0.80901695 0.10015
15 - 2.67035371 - - ~0.89100649 0.07438
16 - 7.82743334 - - ~0.95105650 0.02741
17 - 2.98451297 - - ~0.98768832 0,04912
18 - 3.14159265 - - 0.07632

~1.00000000
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Emampie (5.5,2)

We also consider the initial value problem of Schweitzer (1974)

given by:

' - .

A1 1 1 Y1 sin x
= + 3

‘ " — —_ [

Y5 1 2 Vo 2 {cosx~sinx)
\
, (5.5.2)

¥, (® 0
2 (0) \1

over the range Ogxgr.
The theoretical solution to the syStem (5.5.2) in the
specified range is
yl(x) sin X%
yz(x) cos X

The numerical solution was obtained with a uniform mesh-size

o
h—.é_o—.
The initial estimates of the parameters are given as:

[0 _
NO,l = 1.41197420
[ .
AO,I = 0,11112352

and
[0] .
NO,Z = 0.99505019
A[(ﬂ = 1.68870386
0,2 -

Details of the numerical results are given in tables

(5.5,2a) and (5.5.2b).




t NO. OF
NEWTON
ITERATION

0 6

1 2

2 2

3 2

4 2

5 2

6 2

7 2

8 2

9 2

10 2
11 2
12 2
13 2
14 2
15 3
16 3
17 -
18 -
19 -
20 -

TABLE (5.5.2a)

0.00000000
0.15707963
0.31415926 -
0.47123889
0.62831852
0.78539815
0.94247778
1.09955741
1.25663704
1.41371667
1.57079630
1.72787593
1.88495556
2.04203519
2.19911482
2.35619445
2.51327408
2.67035371
2.82743334
2.98451297
3.14159265

1,0000019
1.0000053
0.9999848
1.0000195
.9999779
.0000256
.9999699
.0000356
.9999592
.0000398
.9999651
.0000469
.9999144
.0001499
.9997400
.0004633
.9991316

—

O H O H O H O I O » O ~ O

A%
t

0.00000003
-0.00000003
0,000001 30
-0.00000393
0.00000785
-0.00001432
0.00002432
-0,00003888
0.00005722
-0.00006932
0.00007132
~0.00010703
0.00021732
-0.00041286
0.00075868
~0.00140147
0.00269235

Yt,l
0.00000000
0.15643446
0.30901699
0.45399050
0.58778524
0.70710678
0.80901698
0.89100653
0.95105650
0.98768835
0.99999998
0.98768837
0.95105650
0.819100655
0.80901700
0.70710683
0.58778521
0.45399064
0.30901689
0.15643467
1.00000000

107XTt+1,1
0.00000
0.04219
0.09763
0.03936
0.02126
0.03520
0.04340
0.05248
0.06660
0.07632
0.09684
0.10978
0.11948
0.033
0.11045
0.14257
0.48340
0.69677
1.13746
1.13681
1.96611
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TABLE (5,5.2b)

£ ooy Xe o N Af 2 Ye,2 107XTt+1,2
ITERATION -

04 0.00000000 0.99999996 1.5707963 1.00000000 O.00000
1 2 0.15707963 0.99999962 1.5707984 0.98768834 0.09396
2 2 0.31415926 1.0000151 1.5707818 0.95105651 0.08331
3 2 0.47123889 0,9999735 1.5708279 0.89100652 0.07095
4 2 0.62831852 1.0000408 1.5707412 0.80901700 0.01963
5 2 0.78539815 0.9999343  1.5708924 0.70710678 0.06018
6 2 0.94247778 1.0001147 1.5706209 0.58778527 0.05531
7 2 1.09955741 0.9997664 1.5711613 0.45399050 0.10031
8 2 1.25663704 1.0008089 1.5695258 0.30901703 0.12626
9 2 1.41371667 1.0007450 1.5696261 0.15643447 0.19219

10 3 1.57079630 0.9997980 1.5711155 0.00000005 O.23836

11 2 1.72787593 1.0001824  1.5705043 -0.15643446 0.19378

12 2 1.88495556 0.9997519  1.5712085 —0.30901698 0.11378

13 3 2.04203519 1.0003081  1.5702510 —0.45399052 ©.38254

14 3 2,19911482 0.9996277 1.5715125 -0.58778516 0.38153

15 3 2.35619445 1.0004596  1.5698189 -0.70710686 0.62036

16 3 2.51327408 0.9994182  1.5721769 —0.80901686 0.62575

17 - 2.670353711 - - -0.89100667 0.88692

18 - 2.82743334 - - -0.95105628 1.11933

19 - 2.98451297 - - -0.98768865 1.61092

20 - 3.14159265 - - -1.00000000 2.10282
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Example (5,5.3)

We also consider the system

1
N 0 o 41

(5.5.3)
' _ L1
) %2 x| 172

over the interval 7.38905610sx<8.98905610 with initial

conditions

1

Yl(a) 1

]

yz(a) 0.42516833
where a = 7.38905610.
The computation was completed with a uniform mesh size-

of h=0.1. The initial estimates of parameters are given by

o] .
NO,I = 0.45730571
EO]
0
Ao,l = ~1.68002638
and
[o] _
NO,Z = 1.96633719
6] _
AO,Z = =14.04732875

Details of the mnumerical results are given in tables

{(5.5.3.a) and (5.5.3b).




NO.OF

NEWTON

ITERATIONS
4

6
9
9
13
16
8
15
3

11

TABLE (5.5.3a)

wiol 0.45730571

9,1

[}
'A°,1= ~1.68002638
t . Xt N§’1
0  7.38905610 0.4356458
1 7.48905610 0.4119962
2 7.58905610 0.3998252
3 7.68905610 0.3700663
4 7.78905610 ©0.3517235
5 7.88905610 0.3426462
6  7.98905610 0.3113717
7  8.08905610 0.2944521
8  8.18905610 0.2883406
9  8.28905610 ©,2531217
10 8.38905610 * 0.2371443
11 8.48905610 0.2341942
12 8.58905610 0.1905928
13 8.68905610 -
14 8,78905610 -
15 8.88905610 -
16  8.98905510 -

A%
t

~1.5280714
-1.3370577
-1.2359248
-0.9810982
-0.8190168
-0.7366731
-0.4442881
-0.2809082
-0.2205216
0,1379613
0.3060069
0.3376040
0.8182852

115

Yt sl

1.00000000
1.04132752
1.08028699
1.11689773
1.15118345
1.18317107
1.21289184

1.24037929

1.26566957
1.28880209
1.30981705
1.32875693
1.34566660
1.36059045
1.37357500
1.38466850
1.39391758

6

10 th+

0.00000
0.00418
0.00527
.00623
.36750
.00196

.05815
04245
0.03104
0.01801
0.11055
0.00710
0.03971
0.19191
0.02773
0.10814

O 0o 0 o o o

03444



TABLE (5,5 +3b)

Ng?l = 1.96633719
fo]
Bg,p = T14.04732875

NO.OF | 3 6
NEWTON t - Xy N2 A o LA 10 T,
ITERATIONS

6 0 7.38905610 1.5760359 -11.2858253 0,42516833 0.00000
5 1 7.48905610 1.3724154 =9,8070483 0.40140655 0.00329
5 2 7.58905610 1.2262821 -8,7393236 0,37781517 0.00329
5 3 7.68905610 1.1109863 -7.8907389 0.35443898 0.00329
5 4 7.78905610 1.0175952 ~7.1975520 0.33131763 0.36287
4 5 7.88905610 0,9436730 ~-6.6435050 0.30848809 0.26902
4 6 7.98905610 0.8771 &4 -6.1393280 0.28598162 0.21651
4 7 8.08905610 0,8182216 -5.6876621 0.26382606 0.55344
4 8 8.18905610 0.7721938 -5.3301387 0.24204741 0.41530
4 9 8.28905610 0.7261200 -4.9671397 0.22066680 0.34360
4 10 8.38905610 0.6827084 ~4.6200680 0.19970275 0.68269
10 11 8.48905610 0.6514154 ~-4.365 428 0.17917270 0.50778
4 12 8.58905610 0.6159374 -4.0726420 0.15908980 0.42887
- 13 8.68905610 - - 0.13946534 0,77925
- 14 8.78905610 - - 0.12031009 0.56714
- 15 8.88905610 - - 0.10163100 0.48782
- 16 8.98905610 - - 0.08343378 0.85443
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We also obtained the numerical solution to the initial

. value problem (5.5.3) using the following numerical integration
schemes:

(a) the variable order Gragg-Bulirsch-Stoer algorithm with
orders lin the range 6$Mg8.

(b) EKrogh's variable order Adams method and

(¢) the one-step scheme proposed in chapter IV.

Apart from Krogh's algorithm which requires a very small.
mesh-size to generate the required starting values, the integration
procedures were carried out with a uniform mesh size of h=0.05.

The details of the numerical results are given in Tables
(5.5.3c) to (5.5.3f).‘

Whilst thé one—step scheme proposed in chapter IV compares
favourably with Krogh's scheme in terms of efficiency and
accuracy, the linear multistep scheme proposed in this chapter
has a smaller truncation error than the variable order Gragg-
Bulirsch-Stoer algorithm despite the fact that the degree of
éccuracy in this scheme is limited by the aceuracy to which

+
the oscillatory parameters Nt and ﬁi are obtained,



GRAGG-BULIRSCH-STOER RATIONAL EXTRAPOLATION SCHEME

TABLE ( 5.5.3¢)

ORDER M: 6sMg8

X
7.38905610
7.48905610
7.58905610
7.68905610
7.78905610
7.88905610
7.98905610
8.08905610
8.18905610
8.28905610
8.38905610
8.48905610
8.58905610
8.68905610
8.78905610
8.88905610

8.98905610

H=0.05

A

1.00000000
1.04132749
1.08028699
1.11689773
1.15118329%
1,18317105
1.21289174
1.24037913
1.26566962
1.,28880197
1.30981695
1.32875712
1.34566651
1.36059045
1.37357535
1.38466846

1.39391772

¥y

0.42516833
0.40140654
0.3%781517
0.35443898
0.33131809
0.30848842
0.28598187
0.26382672
0.24204789
0.22066718
0.19970353
0.17917326
0.15909026
0.13946618
0.12031068
0.10163149

0.08343466

108XT1

0.00000
0.21539
0.32178
0.18698
0.43699
0.72587
1.03045
1.36791
1.72773
2.10128
2.49607
2.89631
3.31714
3.74680
4,18672
4.63651

5.08666

3
10 xT2

0.00000

0.61680
0.95133
1,28228
1.61252
1.92924
2.24703
2.5449

2.83207
3.11458
3.37703
3.63112
3.86164
4.08938
4.28416
4.47329

4.64193



0.

0.

0.

0,

0.

0.

OI

0.

OD

0.

0

0

H
00625
01250
02500
05000
05000
05000
05000
05000
05000

05000

.05000

.05000

.05000

.05000

.G500

.05000

05000

TABLE (5!5}3d)

KROGH's VARIABLE ORDER ADAM's

X
7.38905610
i.48905610
7.58905610
7.68905610
7.78905610
7.88905610
7.98905610
8.08905610
8.18905610
8.28905610
8.38905610
8.48905610
8.58905610
8.68905610
8.78905610
8.88905610

8.98905610

|
1.00000000
1.04132752
1.,08028700
1.11689774
1.15118331
1.18317107
1.21289177
1.24037916
1.26566967
1.28880202
1.30981701
1.32875719
1.34566659
1.36059054
1.37357545
1.38466857

1.39391784

Ty
0.42516833
0.40140655
0.37781517
0.35443898
0.33131811
0.30848844
0.28598189
0.26383675
0.24204792
0.22066722
0.19970357
0.17917330
0.15909030
0.13946623
0.12031072
0.10163153

0.08343471

108xT1

0.00000
0.32222
0.29030
0.26328
0.24353
0.21596
0.19991
0.17667
0.15350
0.13606
0.11214
0.09748
0.07569
0.05795
0.03985

0.02014

0.00426

IOSXT2

0.00000
0.28893
0.29546
0.30217
0.31370
0.31750
0.33042
0.33276
0.33537
0.34482
0.34691
0.35387
0.35153
0.36125
0.35339
0,35641

0.35971



X
7.38905610
7.48905610
7.58905610
7.68905610
7.78905610
7.88905610
7.98905610
8.08905610
8.18905610
8.28905610
8.38905610
8.48905610
8.58905610
8.68905610
8.78905610

8.88905610

TABLE (5.5.3e)

FOURTH ORDER ONE STEP FORMULA (CHAPTER 1V)

1

1.

1.

1,

1

N

.0413275
.0802870
.1168977
.1511833
.1831711
.2128918
.2403792
.2656697
.2888020
.3098170

.3287572

34566656
3605905

3735754

3939178

H=0.05

,Y2

.00000000 0.42516833

0.40140655
0.37781519
0.35443898
0.33131810
0.30848843
0,28598189
0.26382675
0.24204792
0.22066721
0.19970357
0.17917329

0.1590%029

0.13946622

0.12031072

0.08343470

8

107%T

0'

0,

0.

0.

0

0

1
00000

33077
30289

27497

.25029
.21396
.18873
.15524
.12203
.09028
.05103
.01875
.01799
.05117
.08706

.15622

108xT2

0.00000
0.37823
0.44596
0.49852
0.54598
0.57941
0.61756
0.64134
0.66269
0.68845
¢.70443
0.73263
0.73162
0.75029
0.75037

0.76407
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X

7.38905610
7.48905610
7.58905610
7.68905610
7.78905610
7.88905610
7.98905610
8.08905610
8.18905610
8.28905610
8.38905610
8.48905610
8.58905610
8.68905610
8.78905610
8.88905610

8.98905610

TABLE (5.5.3f)

LINEAR MULTISTEP SCHEME (CHAPTER V)

Y

1.00000000
1.04132751
1.08028700
1.11689772
1,15118330
1.18317107
1.21289176
1.24037915
1.26566966
1.28880200
1.30981699
1.32875717
1.34566656
1.36059051
1.37357542
1.38466853

1.39391778

H=0.05
T
0.42516833
0.40140654
0.37781515
0.35443896
0.33131808
0.30848840
0.28598186
0.26382671
0.24204787
0.22066717
0.19970352
0.17917324
0.15909025
0.13946618
0.12031066

0.10163149

0.08343466

108xTi

0.00000
0.85544
0.30569
0.25641
0.08997
0.21996
0.34853
0.42479
0.11111
0.65359
0.92547
0.57051
1.06394
1.50476
1.11397
1.54571

2,28377

108xT2
0.00000
0.65911
0.188604
1.79557
2.62959
3.46230
3.02981
3.68022
4,38708
3.76385
4.34148
5.01575
4.23388
4,77740
5.44368
4.53306

5.01751



CHaPTER VI

A LINEAR MULTISTEP SCHEME FOR SOLVING A
SPECTAL CLASS OF SECOND ORDER DIFFERENTIAL
EQUATIONS WITH OSCILLATORY SGLUTIONS



122

6.1 INTRODUCTION

Shaw (1967) proposed a multistep integration formula
for solving initial value problems of the form

(r) _
A 6.1.1)

Y(l)(a) =Ny, i=6,1,...,r-1 for rzl.

The numericél integration procedure was based on the
representation of the solution y(x) to problem (6.1.1) by
the interpolating function
L+1 .
F(x) = ] ax , Lelax (6.1.2)
=0
and is pérticularly well suited to systems of ordinary
differential equations whose solutions contain singulérities.
Henrici (1962) and Lambert (1973) both discussed linear
multistep methods for obtaining the numerical solutions of
second order ordinary differential equations in the form
(6.1.1). The linear k-step methods are of tﬁe form:
k
jzo Teaj = [ BJ e+ (6.1.3)
where & = +1 and ]a0]+180l50.
In chapter V, we proposed a linear ﬁultistep scheme
for integrating systems of the form,
y' = £(x,y), y(@) =n, (6.1.4)
whose solutions are known to be oscillatory. The
integration scheme was based on the local representation
of the solution to (6.1.4) by éither a combination of a

polynomial and trigonometric function or a polynomial and

hyperbolic function. This approach requires a transformation



of the second order differential equation

v = £(x,y) (6.1.,5)
into a first order system u'=v; v'=f (x,u,v) where u=y and
v=y', The introduction of the first derivative explicitly
into an equation in which it does not appear approximately
doubles the amount of computation. The increase;iﬁ\the computation an
increase the tendency of the propagation of round off errors »
For the sake of computational efficiency and to achieve a
higher degree of accuracy, we shall use a similar approach
as in chapter V to develop a linear multistep scheme to
integrate directly special second order systems of the
form (6.1.5) whose solutions are known to be of an

oscillatory nature.



6,2 THE INTERPOLATING FUNCTION AND THE DETERMINATION

OF THE PARAMETERS [l AnD A,

We shall denote by k, the stepwmumberof the linear multistep

scheme to solve the initial value problem

y"' = £(x,y) ,

y@ = n , ' (6.2.1)
y'(a) = n* .
The necessafy additional starting values{yl,yz, ..... ’yk—l}

are obtained by the variable order Gragg-Bulirsch-Stoer
algorithm as discussed in chapter ITI.

In order to obtain the numerical solution Yesr &C

X=X 1o the solution to problem (6.2.1) is locally represented
over the interval .
k-1
* =
I .U L (6.2.2)
=0
by the interpolating function
' L+l -
F () = rzoarx + b sin(¥ xta ),L31 o (6.2.3)

where L is a positive integer, bt and"{ar,r=0,1,...,L+1}
are real undetermined coefficients whilst Nt and At are the
oscillatory parameters whose values are obtained to a
specified degree of accuracy at each step of the integration
procedure.

As the interpolating funcrion (6.2.3) is required to pass

through the points {(xt+ j),j=0,l,...,k}, the first set

j’yt+

of constraints on the interpolant are then given by

L+1

r .
Ft(x) ) = Z arxt+j + bt31n(NtXt+j+At)—yt+j,
X=X_. . r=0

t+]
j=0,1,...,k. (6.2.4)



The interpolating function (6.,2.6) is also expected to
satisfy the differential equation (6,2.1) at the mesh points

{xt+j’ 5=0,1,...,k}. Hence the second set of constraints are

given by
szt(X) L+1 s
“"E‘E—— = _; 1(1-1)aixt+j -
& X=X = i
t+]
sz sin{N x  .+A )=f
t't tTe+y e eyl
i=0,1,...,k-1 » (6.2.5)

According to theorem (2.1), the Lth forward difference
will annihilate all polynomials of degree less than L.
Hence, applying the operator At to both sides of equation

(6.2.5) gives the relationship:

L 2, L . .. .
A ft+j = -Ntbtﬂ sln(Ntxt+j+At), 1=0,1,...,k-1. (6.2.6)

Equation (6.2.6) implies that,

2 L s j=0,1,---,k"1;(6;2;7)
AL

Nt 51n(Ntxt+j+At)
In particular, for j=0,1,2 we have

L
A ft

L
N .
A Sln(NtXt+At)

1
At

N ALsin(Ntx

e+ tAy)

2 L
N AT si
N s1n(Ntxt+2+At)

From equation (6.2.8) we obtain the following three

trigonometric functions in the parameters N and Az




Il

Rl(Nt,At)

I

RZ(Nt’At) A

and finally,

L
A ft 0°

1

RB(Nt’At)

L L,
A ft.A 51n(Ntxt+1

L
+A )=
t) ATE

£+l

L . L
f +1.A 51n(Ntxt+2+At)—A ft

16

L : —
oA 51n(Ntxt+At)«O,

A s:.n(Ntxt+1 c

A 51n(N X, +A )-A f A sin(N eFet

(6.2.9)
+A )=0,

(6.2.10)

A0 .

(6.2.11)f

The values of the parameters N: and Ai can be obtained

by using any of the standard algorithms for solving systems

of nonlinear equations in any pair of the equations (6.2.9)

to (6.2.11}).

For example, we shall adopt the Newton

iteration scheme to obtain the roots Ni and A% from equations

(6.2.9) and (6.2.10) for the case L=1 and k=4.

Equation (6.2.9) is now given by:

Ry MNsa) = (Beypt
(it

and
RZ(Nt’At) B (ft+3
“Erp7t

t+l

)Esm(Nt t+ 1+At)—Sln(NtXt+2+Atﬂ=0

t+2

t+1

)Eﬂn(N %, +A ) sul(N x

)

I:s in(N_x

[éln(N

t t+1

t t+2

WA Yead
At) 81n(Ntxt+ +4A

+A )-sin(N x

t

t t+3

t+1 t)j

2

(6.2.12)

]

A )0+ (6.2.13)

We denote the partial derivatives of Rl(Nt’At) and RZ(Nt’At)

with respect to the parameters Nt and At as follows:

R =
1,8,

1,4

BNt

A

3Ry (N_,A.)

t

t

Ry

and R

N

“2,A

t

3R2(Nt,At)

BNt

BR, (N, ,A ) |

A

t



From equation (6,2,12) and (6.2.13), these partial derivatives

are given as follows:

R = (f

1,9, t+2” t+1)E< cos (N x +A )-x 1(:':’5(l\ltx1:+1+A1:):I

~E gD l-—;{t+1°°S (N g A )% gcos (N x o+ t)j

{(6.2.14)
R2’Nt = (ft+3fft+2)[}t+lcos(Ntxt+l+At)-x 2cos(N Xt+2+Ath
—(ft+2-ft+1)[3t+2COS(NtXt+2+At)_ t+ 3cos(N xt+3+A ]
{6.2.15)
Rl,At = (€, pq) [cos rx+a, )-cos (Nx, 1 +4,)]
-(f,,~f )['cos(Nt ceptA)cos (N x  +A )],
(6.2.16)
and finally,
Rz,At = Gzt I-'.Co“e’(Nf: t+1+At)~C°S(NtXt+2+At)]
(€ gy [eos (N x o+ ) —cos WX g*A ]
(6.2.17)

r. .
Let Négjand Agi] denote the estimates of the roots N? and
A* at the ith iteration of the Newton Raphson root finding
[i] [i] ks [1]
scheme, and Rl N . 1 A and R2 A denote the
partial derlvatlves of the functlons R (N A ) and R (N YA )
'at N =N [:]and A -A [i] The determinant of the Jacobian J

of the functions Rl(Nt,At) and RZ(Nt’At) is denoted by J and

given by
[1] (]
Re, N, Ria .
J = . (6,2.18)
i i
-]




The correction terms GNt[l], 6At[1-1 are obtained as

-1

T = Y
SAt[i] —Rl[ﬂ | R[i] R[i] (6

1,N 2

where

il HIENE
Rl[]_ Rl(NEJ,AE ), . (6

and ['i]_ [1:[ [i
Ry =R, (N ,At]) . (6

The improved parameters are expressed as:

Nt[i+1]= Nt[i] s Nt[i:[, ®
and AEi+1J= A[i] + & A]:i:| . (6
t t t
If we define the corrector vector do as:
sa = (vl a7 6
- t j A

the Newton iteration is halted when

[18all < e

where € ax is the allowable tolerance.

.2.19)

. 2'. 20)

.2.21)

.2.22)

.2.23)

.2.24)

The limiting values of the parameters are then given as:

e i
Nt = iino Nt[] , (6
and , A% = lim AE‘] ) (6
oo

As it is desirable to have good initial estimates

NOEQ—-I, A(),-—O]of the parameters Ni and A'ﬂé‘ in order to ascertain

.2.25)

.2,26)

the convergence of the Newton's iteration, we propose a scheme

gsimilar to the one used in chapter V,
The initial estimates NO[O]and AOI:OJ are obtained from

equations (4.4.13) to (4.4.15) and are given by either
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T A4y
NOEO:I = [;-*-5_-9-——] , (6.2.27)
Ayo

and

3 3
Ay .
D- cot | ey e "Nc[):O].a . (6.2.28)

or

Ay : |
[0] [ 0] : (6.2.29)

3
A YO

4
[o] -1 {27 o]
AO = tan m— ""NO - N (6.2.30)
o "~ Y

0

and

The starting values of the multistep scheme which
are generated by the variable order Gragg-Bulirsch-Stoer
algorithm are wused in equations (6.2.27) to (6.2.30).

The approximate roots Nt and A? given by equation
(6.2.25) and (6.2.26) will be used in the final integration
formula to obtain the numerical solution Visie 36 XE o

t>0, The derivation of the integration formula will be

discussed in the next section.



6.3 THE DERIVATION OF THE INTEGRATION FORMULAE

In this section, we shall eliminate the undetérmined
coefficients {ar,‘r=0,1,...,L+1} in the interpeolating function
(6.2.4) as well as to obtain values for the consistency
parameters {uj,Bj; 3=0,1,...,k}. These parameters are determined
's0 as to ensure the consistency and zero-stability of the resultant
linear multistep formula for solving the initial value problems
of the form (6.2.1) whose solutions are oscillatory.

Let the function zt+i be defined as:

Zoei = Veri ~ bt51n(Ntxt+i + At) . ‘ (6.3.1)
The second derivative zt+ of 2,4 18 then given by
2 .
n - .
Zl i ft+i + Ntthln(Ntxt+i+At) ‘ | (6.3.2)

We now combine equations (6.3.1) and (6.3.2) with equations

(6.2.4) and (6.2.5) to obtain

L+1 i
Zpi " .Z aixt+j . (6.3.3)
i=0
and
Lxl i-2
L] - . 1 ‘-“ - -
2" st iZo i(i l)aixt+j {6 3 4)

We shall now use equations (6.3.3) and (6.3.4) to
geﬁerate the consistency parameters {uj,Bj;j=O,1,...,k}.
At the moment, we only know that these parameters are real
numbers. For j=0,1,...,k; we multiply equation (6.3.3) by

mj and equation (6.3.4) by —é%. and add columnwise to obtain

2

E uJ t+] E B} t+]

T a1 et z
= a, o,x - h i{i- l)B x ] s (6.3.5)
j=0 & 520 37t+i o t+j




13]

Since we are only interested in an explicit scheme,

Bk is set to zero., It is also assumed that uk%O and that

|0"0I+lso'l>0'
With consistency criteria in mind, the parameters

'{aj,j=0,1.,,..,k} are obtained from the following equations:

k
X a. =0, (6.3.6)
and

Z:ja =0 . (6.3.7)
j=0 j _

For the case L=1 and k=4, equations (6.3.6) and (6.3.7)
constitute a linear system containing two equations and five
unknowns Ga0ysCy sy and 0, As the system is under-determined,

we have three degrees of freedom, In all practical applications,

-

we set
ay = o,
a, = o,
and @, = +1. (6.3.8)

By using the values in equation (6.3.8) in equations
(6.3.6) and (6.3.7), we obtain
al = 0.5,
ay = -1.5 . (6.3.9)
By using equations (6,3.6) and (6.3.7) in equation
(6.3.5), the coefficients of a, and al.vanish and equation
{6.3.5) is reduced to the form

k

jzoaj t+] E BJ t+]
Ll 2 k-1 i
=] a EI NP ) i(i-l)ijté] . (6.3.10)
i=2 =0 j=0




132

We still have to determine the parameters 60,81,82, and 33.
There is no loss of generality in setting the coefficients of
3y, 84, 8y and as to zero in equation (6.3.10). This gives

k s k-1

L ogxl, s = h? J i(i-l)ijtli , 122,3,4,5 « (6.3.11)
j=0 i=0

We now set h=1 and xt=0 in equation (6,3.11) to obtain

k ., k-1

) jlaj = ¥ i(i—l)sj i2, 1=2,3,4,5 . (6.3.12)
j=0 j:o ’

The system of linear equations (6.3.12) is solved to give:

60 = -0.083333
Bl = 0.375
(6.3.13)
8, =0
and 83 = 1.208333. .

This procedure makes equation (6.3.10) an explicit linear

multistep formula with an associated linear equationo£>w}ich

can be written as

k-1
j=0
for an arbitrary function z(x) ¢ Cm[h,ﬁ].

k 2 g
éel:z(x);lﬂ = Zajz(x+jh)-h . sz"(x+jh), - (6.3.14)
j=0

On obtaining the Taylor's expansion of z(x+jh) and

z"(x+jh) about the point x and substituting in equation

(6.3.14) to give,

L 26510 = eozx)e bz D ). ve B2 (e)e. . (6.3.15)
° 1- r. ° .

where
j
C = u‘,
o 320 ]
k
cq = Zgjaj R (6.3.16)



1 & 2 lf
Cn = 77 E j-a “. B !
227 L3 T 55
k kel
1 -2
r : _E_ %3 (r-2)2j§1 178y ’r'2’3’---. .

The constants Cr’ r=0,1,... will be used later in determining
the order and convergence properties of the linear multistep

formula.

From equation (6.2.7), we can obtain the parameter bt

as
-(£_ .~f_ ,)
b = £+3_ t+2 . (6.3.17)
N E;].n(N +At)—51n(Ntxt+2+At):[

t t+3

We can now write equation (6.3.10) with the
coefficients of {ai, i=0,1,...,L+1} set t§ zero i..e.Jthe
right hand side of equation (6.3.10) vanishes identically.
Hence we havé:

lfcz _h2 z B 1 (6.3.18)

.2 . -0
jo0 3 et 5%t =0
By using equations (6.3.1) and (6.3.2) in equation

(6.3.18), we obtain

k
jZ—.oaj Eyt+_1 —b sin (Ngxtﬂ +A*)]
Z 8. Eﬁtﬂ N* b 51n(N;:'¢xt+ +A*):l v (6.3.19)

We eliminate the parameter bt from equation (6.3.19)
by using equation (6.3.17). The final integration formula

is now given Dby
k-1 k-1

2
y =- Ya,y.,. -h" ) B.f .
t+k =0 47EH j=0 1t
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-(ft+3?ft+2)
+ e e . — X
%“ (g1 % FAER) —gin (N* ®) |-
Nt [%ln(Ntxt+3 At) sln(Ntxt+2+Atj]
k k-]
[ 7 a.sin(sx__ . +A%) + NaZ b T B,sin(Wx_ ,+A%)]
. i tTe+] Tt t BT tTe+] Tt A
3=0 1=0
(6.3.20)
According to Henrici (1962}, the explicit linear
multistep formula (6.3.20) together with the linear
operatorii is said to be of order p if the constants
C. r=0,1,... defined by equations (6.3.16) are such that
cr = 0 for r<p+l
and cp+2%0 . (6.3.21)

Hence the linear multistep scheme (6.3.20) obtained by
setting L=1 and k=4 is of order p=4%.
The linear multistep method given by equation (6.3.20)
is said to be convergent if for all functions f£=f(x,y)
satisfying the conditions of theorem (1.1) and all constants
n,n*;
if y(x) is the solution to the initial value problem
(6.2.1) such y(a) = n; y'(a) =n*,
lim v, = y(x) (6.3.22)

0
X, X

t
holds for all x ¢ [},ﬁ] and for all sequences {yt} defined
by equation (6.3.20) with the starting values v, = nu(h)

satisfying the conditions

lim ﬂu(h) = Ny
0
and
iim nu(h)-no(h) - n*. (6.3.23)
0 uh .

for » = 0,1,...,k-1,
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We now define the first and second characteristic polynomialg

of the linear multistep method as follows:

k .
o(s) = ] o,8’ (6.3.24)
j=o0 3
and
k .
o(s) = 7 8.8’ . (6.3.25)
The method is said to be consistent if it is at least
of order p=1 i.e, e, =€ TCy = 0. This implies that,
1) =p'(1) =0,
and p "(1) = 20(1) . (6.3.26)

The first consistency condition in equation (6.2.26)
indicates that the first characteristic polynomial of a
consistent linear multistep method should héve a repeated
root at s=+1,

If we now use equations (6.3.8) and (6.3.9) in equation

(6.3.24), we have

p(s) = }2--(254 - 333 + 8) 5 (6.3.27)
whose roots are
s = +1{double), s=0 and s= ~ %- - {(6.3.28)

Also, we have that p"(1) = 2¢(1). Hence, the linear
multistep formula (6.3.20) is consistent.

The linear multistep method (6.3.20) is said to be
zero-stable if no root of the first characteri§tic
polynomial p(s) has modulus greater than one, and if every
root of modulus unity has multiplicity not exceeding two.

From equations (6.3.27) and (6.3.26) we observe that

linear multistep formula (6.3,20) is zero stable and hence by

a theorem in Henrici (19623/the formula (6.3.20) is convergent.




In the event that the interpolating function (6.2.3)
p?oves.qgsatisfactory as a result of the parameter Ng Vanishung
orlﬁbtéom?“ﬂ [ infinite or complex, a new pair of equations 1s
.choséﬁ:from equations (6.2.%) to (6.2.11). However if all
possible pairs of equations fail to give the desirable values
of Ni and Aﬁ, the alternative interpolant to be considered

in the next section can be applied.



...........

In the event that Fhe interpolating function (6.2.3) is

unsuitablé, we introduce the alternative interpolant:
Ft(x) = LEI arxr + btsinh(Ntx+At) . (6.4.1)
=0

" The undetermined coefficients bt,{ar,r=0,1,...,L+1} as well
as the parameters Nt and At are identical to those of the
interpolating function (6.2.3).

By adopting an identical procedure as in sectiomns (6.2)
and (6.3) to the interpolating function (6.4.1), we obtain
the followiﬁg results:

{(a) The parameter bt is now given by:

L
A f e
b = £ , §=0,1,.4.,k-1

2 L.
NTA sinh(N x ,+A
t ( t t+] t) (6.4.2)

(b) The hyperbolic functions to be solved for the parameters

Nt and At are given as follows:

L L .
.Rl(Nt’At) = A ft+1'A sxnh(Ntxt+At)
L, L. _
—A7f, A Slnh(NtXt+l+A )=0, (6.4.3)
R.(N.,A) = AYf . .Alsinh(N x_ .+A ) -
o (Npshy prg o0 SO E 1™
ALf AL inh (N +A ) =0 (6.4.4)
t"‘l' 51n txt+2 £ = P
and L L
,R3(Nt’At) = A ft'A‘Slnh(Ntxt+2+At) -
abe alsinhN x4A) =0+ (6.4.5)
t+2° £ttt te

As before, we solve any two suitable pairs of the

equations (6.4.3) to (6,4.5) for the parameters Nt and At"



The limiting values of these parameters are denoted by N: and

A*.
t

(¢) The initial estimates Néﬁj and Agﬁjused in the Newton

iteration to generate N% and Aﬁ are given either as:

4y }
0 2

. Ay
and 0 3
A
AU— coth ! —10“——. BN TR
MO R
or Yo
%
[6]_ [a70
3 ¥
ATy
and 0
W0, 1|2 Yo
0 = tanh NCEO]_AB Ng a

(6.4.6)

(6.4.7)

(6.4.8)

(6.4.9)

Equations (6.4,6) to (6,4.9) are obtained by replacing

the higher order derivatives of f(x,y) in equation (4.8.2)
to (4.8.4) by the equivalent higher forward differences.

(d) The final integration formula for the case L=1 and

k=4 is given as follows:
k-1 5 k=1
= - +
Tesk jZoajytﬂ' h .z Bjft+j

€3

+ 2
* 3 *
Nt [blnh(Ntxt

+A%)=ginh (N#*x

*
+3 7t t t+2+At)]

=1
[ Z o 51nh(Nt c 2,2

j=o 3 j=0 3

5 HA-NET b Z B sinh (Nix_

4y tAE )]

(6.4.10)

By following the same procedure as in section (6.3) we



can readily establish that the linear multistep formula given
by equation (6.4.10) is consistent and zero stable and hence

convergent.

1%
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6.5 ApPLICATIONS AND NUMERICAL RESULTS

We consider the &qﬂ{eigh's oscillator equation given by
(1.5.2) for fhe case k=0 and n=1. This vields the system,
| y' = -y . (6.5.1)
The numerical solution to the problem {6.5.1) was obtained in
the range Osxg<q with three sets of initial conditionsi—
(a) The first set of initial conditions are given as follows,
y(©) =0,
and y'(@) =1. (6.5.2)
The problem (6.5.1) with the initial conditions éiven by
equation (6.5.2) has theoretical solution
y(x) = sin(x) . (6.5.3)
Details of numerical results are given in table (6.5.1a).
(b) The second set of initial conditions are specified as:
y(@© =1,
y'(0) =0 . (6.5.4)
With these initial walues, the problem (6.5.1) has the
theoretical solution
y(x) = cos x (6.5.5)
The details of the numerical results are available in tabe
(6.5.1b).
(¢) Finally, we assign the initial values:
y(0) = 1,
y'@©) =1, (6.5.6)
to the pfoblem (6.5.1). This yields a theoretical solution
y{x) = sin x + cos x.
The details of the numerical solution are given hy table

(6.5.1c).
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NO. OF
NEWTON

TABLE (6.5,1a)

Ng(zl = 0.98659652

A 6 13617502

0

X
t

ITERATIONS

6

T T T e e

1

0.00000000
0.15707963
0.31415926
0.47123889
0.62831852
0.78539815
0.94247778

1.09955741

1.25663704
1.41371667
1.57079630
1.72787593
1.88495556
2.04203519
2.19911482
2.35619445
2.51327408
2.67035371
2.82743334
2.98451297
3.14159265

N
t

0.9999999".
0.9999999
1.0000000
1.0000000
1.0000000
1.0000000
1,0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.,0000000
1,0000000

A
t

0.0000000
0.0000001
©.0000001
0,0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000001
0.0000000
0.0000000
0.0000001
0.0000000
0.0000001
0.0000000
0,0000000

—

Yt
0.0000000
0.15643 446
0.30901699
0.45399050
0.58778525
0.70710678
0.80901699
0.89100652
0.95105652
0.98768834
1.00000001
0.98768835
0.95105653
0.89100654

.0.809%01702

0.70710681
0.58778529
0.45399054
0,30901704
0.15643451
0.00000000

14

8
10 th+1

0.00000
0.67337
0.57362
0.48390
0.26624
0.27448
0.28195
0.28357
0.28230
0.27820
0.26921
0.25807
0.24128
0.22278
0.19748
0.17049
0.13335
0.08782
0.02863
0.03885
0.13890



o
o

t NO. OF
NEWTON
TTERATIONS

0 4
1 2
2 2
3 1
4 1
5 1
6 1
7 1
8 1
9 1

- 10 1

11 1
12 1
13 1
14 1
15 1
16 1
17 -
18 -
19 ~

TABLE (6.5.1b)

N[OJ = 0.98659652

0

Agoj = 1,72836577

X

0.00000000
0.15707963
0.31415926
0.47123889
0.62831852
0.78539815
0.94247778
1.09955741
1.25663704

1.41371667
1.57079630
1.72787593
1.88495556
2.04203519
2.19911482
2.35619445
2.51327408
2.67035371
2.82743334
2.98451297
3.14159265

N

0.9999980
1.0000008
0.9999997
.0000001
1.0000000
1.0000000
1,0000000
1,0000000
1.0000000
1,0000000
1.0000000
1
1
1
1
1
1

—

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

B

1.5707963
1.5707963
1.5707964
1.5707963
1.5707964
1.5707963
1.5707964
1.5707964
1.5707964
1.5707963
1.5707963
1.5707964
1.5707963
1.5707963
1.5707964
1.5707963
1.5707964

Ye

1.,00000000
0.98768834

0.95105651

0.89100652
0.80901699
0.70710677
0.58778525

0.45399049:

0.30901699

0.15643446

0.00000000
-0.15643446
-0.30901699
-0.45399049
~0.58778524
~0.70710678
~0.80901698
~0.89100651
~0.95105651
~0.98768834
~1.00000000

1

8
10 th+1

0.00000
0.99420
0.50121
0.75607
0.79637
1,01652
1.24184
1,48623
1,75310
2.05377
2.39258
2.02908
1.71391
1.43243
1.17677
0.94322
0.71995
0.51328
0.31288
0.12043
0.70577



t NO. OF

NEWION

ITERATIONS
5

A R e R - " e iy UL By N B e o

| I o T e T e e T e T = N = B = T =
O W o N oYy W=D
1 1 I I R e R T i o R T SR Y SR S TR S S NI R N3

0.00000000
0.15707963
0.31414926
0.47123889
0.62831852
0.78539815
0.94247778
1.09955741
1.25663704
1.41371667
1.57079630
1.72787593
1.88495556
2.04203519
2.19911482
2.35619445
2,51327408
2.67035371
2.82743334
2.98451297
3,14159265

TABLE (6.5.1c)

.05782428

94022931
Nt

1.0000009
0.9999993
1.,0000006
0.9999992
0.9999996
1.0000001
1.0000000
1,0000000
1.00C0000
1.0000000
1.0000001
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000

—

A

0.7853975
0.7853987
0.7853977
0.7853988
0.7853985
0,7853981
0.7853982
0.7853981
0.7853982
0.7853982
0,7853981
0.7853982
0.7853981
0.7853982
0.7853981
0.7853981
0.7853982

e

1.00000000
1.14412281
1.26007351
1.34499703
1.39680226
1.41421358
1,39680227
1.34499705
.26007355
.14412285
.00000005
.83125393
.64203958
.43701609
.22123181
.00000007

o O O O O =

-0.22123167
-0.43701595
-0,64203945
-0,83125381
-1.00000000
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108th+1
0,00000
0.30609
0.89498
0.58580
0.51850
0.62325
0.73099
0.82967
0.92846
1.02346
1.11831
1.21421
1.30760
1.40885
1.51464
1.62612
1.11815
0.73797
0.45064
0.21892
0.02474
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With the view to compare and contrast the new numerical
integration schemes developed in chapters IV,V and VI with
some standard existing schemes, test runs were cérried out on
the problem (6.5.1) with the initial conditions specified by
(6.5.2).

Apart from the new schemes, the problem was alsq solved
using the foilowing standard numerical integration schemes:

(a) Gragg-Bulirsch-Stoer algorithm as discussed in chapter III.
(b) Gaﬁtschi's multistep scheme as discussed in chapter II and
(¢) Krogh's variable order Adam's scheme (the Numerical Algorithm
Group's version).

The details of the numerical results are given in tables
(6.5.1d) to (6.5.1le). |

Apart from Krogh's method, all the schemes maintained an
accuracy of 10—8 with uniform integration mesh size of h=§% .
In fact, the one step scheme still maintained the same degree
of acecuracy with a uniform mesh-size of h=f%-as shown in table
(6.5.1g).

With a uniform mesh size of h=§%UGautschi's scheme of
trigonometric order one produced a smaller truncation erfor
than fhe variable order Gragg—-Bulirsch-Stoer algorithm of
order in (6<mg8), The linear multistep method proposed in
chapter ﬁ produced better results than Gautschi'’s scheme
whilst in turn, the special multistep scheme of chapter VI

has even smaller truncation errors than the scheme proposed

in chapter V. The one step scheme proposed in chapter IV
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provided the most accurafe results as the oscillatory parameters

Nt and At are accurately determined at each step of the
integration procedure. The degree of accuracy of the linear
multistep formulae developed in chapters V and VI ié

constrained by the fact that the parameters Nt and At are

determined to a limited degree of accuracy.



H
0.01963495
0.03926991
0.07853982
0.07853982
0.07853982
0.,07853982
0.07853982
0.07853982
0.15707963
0.15707963

0.15707963

TABLE (6.5.1d)

- KROGH'S VARIABLE ORDER ADAMS

INITIAL STEPSIZE H=0.15707963

X

0.00000000
0.31415926
0.62831852

0.94247778

1.25663704
1.57079630
1.88495556
2.19911482
2.51327408
2.82743334

3.14159265

Y
0 .00660000
0.30901699
0.58778524
0.80901698
0.95105651
1,00000000
0.95105653
0.80901702
0.58778529
0.30901704

0.00000000 -

10 XTH-I

0

0

0.

0.

0.

8

.00000
.00056
.00046
.00121
.00075
.00000
.00075
.00281

00560

00500

02288

146



ORDER OF
EXTRAPOLATION

Q o O 0 0O 0 G 00 0B 0 O O CO O O B O o o O

TABLE (6.5.1?)

GRAGG-BULIRSCH-STOER

H

.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.157079 3
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
.15707963
0.15707963

O O 0O O 0O O O O O 0O O 0 0 0 0 000 0o 0o

0.00000000
0.15707963
0.31415926

0.47123889

0.62831852
0.78539815
0.94247778
1.09955741
1.25663704
1.41371667
1.57079630
1.72787593
1.88495556
2,04203519
2.19911482
2.35619445
2.51327408
2.67035371
2.82743334
2,98451297
3.14159265

Y

0.00000000
0.15643446
0.30901699
0.45399050
0.58778525
0.7071678

0.80901699
0.89100652
0.95105651
0.98768834
1.00000000

'0.98768833

0.95105651
0.89100651
0.80901698
0.70710676
0.58778523
0.45399048
0.30901698
0.15643445
0.00000000

8
10 th+1

0.00000
0.16862
0.23123
0.24445
0.20713
0.36399
0.40180
0.36360
0.25322
0.25843
0.00146
0.51320
0.92373
1,42056
2.01465
2,71329
3.28104
3.95201
4.74154
5.67513
6.89314
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H

0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963

0.15707963

TABLE (6,5.1f)

GAUTSCHI'S SCHEME

X

0.00000000
0.31415926
0.62831852
0.94247778
1.25663704
1.57079630
1.88495556
2.19911482
2.51327408
2.82743334

3.14159265

Y

0.00000000
0.30901699
0.58778525
0.80901700
0.95105652
1.00000000
0.95105652
(¢.80901700
0.58778525
0.30901699

0.006000000

1052, ,

0.00000
0.34879
0.56639
0.59647
0.45385
0.13606
0.37628
1.12255
2.17346
3.65822

5.85113




H

0.31415926

0.31415926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926
0.31415926

0.31415926

TABLE (6.5.1g)

X

0.00000000

0.31415926
0.62831852
0.94247778
1.25663704
1.57079630
1.88495556
2.19911482
2.,51327408
2.82743334

3.14159265

ONE STEP SCHEME (CHAPTER 1IV)

ONE STEP ORDER 4

Y
0.00000000
0.30901699
0.58778524
0.80901698
0.9510565T
1,00000000
0.95105653
0,80901702
0.58778529
0,30901704

0.00000000

107xT
Q.
0.
0.
0.

0.

0

8

00000

00000

00092

00161

00261

.00363 -
.00336
.00362
.00367
.00111

.00531

1



TABLE (6.5.1h)

LINEAR MULTISTEP SCHEME (CHAPTER V)

H
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15767963
0.15707963
0.15707963
0.15707963
0.15707963

0.15707963

X
. 00000000
.31415926
.62831852
94247778
.25663704
.57079630
.88495556
.19911482
.51327408
.82743334

.14159265

Y
0.00000000
0.30901699
0.58778524
0.80901698
0.95105651
0.99999999
0.95105652
0.80901702
0.58778526
0.30901702

0.,00000000

0]

(41

8

.00000
57362
.19155
05992
.02312
.71159
42551
.43438
44622
.19115

.08836
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TABLE (6.5,11i)

SPECTAL MULTISTEP SCHEME (CHAPTER VI)

H
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963
0.15707963

0.15707963

X
0.00000000
0.31415926

0.62831852

0.94247778

1.25663704
1.57079630

1.88495556

- 2.,19911482

2.51327408
2.82743334

3.14159265

Y
0.00000000
0.30901699
0,58778525
0.80901699
0.95105651
1.00000001
0.95105653
0.80901702
0.5877852¢9

0.30901704

0.00000000

107xT
t

8

0.00000

0

0

OI

0.

.57362
.26624
.28195
.i8230
.26921
24128
.19748

.13335

02863

13890

+1
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SUMMARY OF RESULTS
TABLE (6.5.17)

GRAGG- |
BULIRSCH- ermer op |WLTISTEP | MULTISTER
STOER cavrscHr |SUERE OF |schrvE SCHEME
H= B= oanTEn Ty [CHAPTER v | CcHAPTER VI
KROGH'S METHOD (015707963 [015707963| ;> H=0.157063 | #=0.15707963
8 6418 8 8. 3
X B 10°%T B 10°%T, | 03159265 [10°xT 10%T
t+l (10 X?t-'-l t+1 1 108xTpe1 t+1 t+1
0.00000000 | 0.01963495 | 0.00000] 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
0.31415926 | 0.03926991 | ©0.00056| 0.23123 | 0.34879 | 0.00036 | 0.57362 [0.57362
0.62831852 | 0.07853982 | 0.00046| 0.20713 | 0.56639 | 0.00092 | 0.19155 |0.26624
0.94247778 | 0.07853982] 0.00121| 0.40180 | 0.59647 | 0.00161 | 0,05992 |0.28195
1.25663704 | 0.07853982| 0.00075| 0.25322 | 0.45385 | 0.00261 | 0.02312 | 0.28230
1.57079630 | 0.07853982| 0.00000| ©0.00146 | 0.13606 | ©0.00363 | 0.71159 | 0.26921
1.88495556 | 0.07853982| 0,00075| 0.92373 | 0.37628 | 0.00336 | 0.42551 |0.24128
2.19911482 | 0.07853982 0,00281] 2.01465 { 1.12255 | 0.00362 | 0.43438 |0.19748
2.51327408 | 0.15707963| 0.00560| 3.28104 | 2.17346 | 0.00367 | 0.44622 |0.13335
2.82743334 | 0,15707963| ©0.00500| 4.74154 | 3.65822 | 0.00111 | 1.19115 |0.02863
3.14159265 | 0.15707963) 0.02288 6.89314 | 5.85113 | 0.00531 | 4.08836 | 0.13890




6,6 CONCLUDING REMARKS

The new one step integration scheme proposed in chapter IV
is particularly accurate for oscillatory systems of both linear
and nonlinear form. In cases where accuracy is essential and
desirable we highly recommend this stheme. The fact that the
scheme is capable of using felatively larger integration
stepsizes than the other existing numerical integration formulae
is a great asset.For linear.oscillatory systems, both the linear
"multistep schemes proposed in chapters V and VI are competitive
with the standard existing integration procedures. For the second
order oscillatory systems in which the first derivative does mnot
appear explicitly, the integration formulae developed in chapter VI
is very efficient ané gives more accurate results than the

integration formulae developed in chapter V.
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