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CHAPTER 1 

INTRODUCTION 



1 

1.1 THE EQUATIONS OF MATHEMATICAL PHYSICS 

The mathematical formulation of many problems in physics, 

engineering and economics leads to a relationship between certain 

unknown quantities (such as distance, pressure, temperature, volume, 

cost, etc.) and their rate of change with regard to a single independent 

variable usually representing time, length or angle. This relationship 

is called an ordinary differential equation. Any of such mathematical 

formulations can lead to a single differential equation or to a set of 

differential equations. 

The exact solution to an ordinary differential equation in an 

interval I on the real line is some function which satisfies the 

differential equation at every point 'within the interval. For instance, 

the motion of a body falling freely from rest under the gravitational 

acceleration g is completely described by the relationship 

d
2

s 

~ 

g 

f 

dt
2 = -g 

FIGURE (1.1) 

The gravitational acceleration acts in the opposite direction 

to the increasing distance axis as indicated in figure (1.1). 

(1.1.1) 



If the initial height, of the body is specified as s0 at time 

t=O, the relationship given by equation (1.1.1) is satisfied 

at any interval of time t':O by the function s=s(t) given by 

2 s(t) = s
0 

-!gt • 

For a specified interval I on the real line, it is not 

always possible to obtain the exact solution to a given 

ordinary differential equation. For instanc~ the analytic 

solution to the Van-der-Pol oscillator: 

2 dy 
- e(l-y )dx + y = 0; e>O 

is not known. In an attempt to obtain the numerical 

solution to such differential equations, there are three basic 

approaches: 

(a) The Analytia Approximate Method: 

2 

(1.1.2) 

(1.1.3) 

This approach represents the solution to a given differential 

equation by the sum of a finite number of independent functions. 

For example, the solution is represented by a truncated power 

series or the first few terms of an expansion in orthogonal 

functions or possibly by an asymptotic series, c.f. boundary 

layer theory in fluid dynamics. These methods are better 

suited to hand computation but Fox (1962) introduced , 

automatic computation to numerical integration schemes based 

on Chebyshev polynomials developed by Lanczos (1938) and 

Clenshaw (1957). Lanczos (1938) based his scheme on polynomial 

approximations of the form P (x) = 
n 

n 

I 
r=O 

r b x and perturbed the 
r 

right hand side of the differential equation by the term T T (x) 
n 



to obtain the coefficients of the polynomial, where T is a 

real variable and T (x) is the Chebyshev polynomial given by 
n 

T (x) 
n 

-1 
= cos n(cos x) ; -l~x~l 

Clenshaw (1957) concerned himself with polynomial 

approximations of the form 

P (x) = 
n 

n 
L b T (x) 

r=O r r 

where T (x), r=O,l, ••• ,n are Chebyshev polynomials as given 
r 

by equation (1.1.4).Fox (1962) demonstrated a close relationship 

between these two schemes. He also discussed various aspects of 

3 

(1.1.4) 

(1.1.5) 

these schemes for both initial value and boundary value problems. 

Details of further work in this area are available in Clenshaw 

(1962), Lanczos (1957), Fox and Parker (1968), Lyche (1972) and 

Clenshaw and Norton (1963). This approach is however constrained 

by the fact that it 1s only applicable to differential equations 

whose coefficients are polynomial functions of the independent 

variable. The scheme is particularly well suited to boundary 

value problems. 

(b) The sp1ine Function Approximate Method: 

This approach searches for a global approximate solution 

to any given initial value problem over the entire interval I 

of" integration (i.e. a continuous solution z = z(x) is sought 

for in the interval I). The solution is approximated on the 

interval I by an interpolating polynomial s (x) of degree m 
m " 

with the property that s (x) possesses continuous derivatives m 

up to and including order m-1. Localzo et.al. (1967) devebped 

schemes for generating the spline approximations to an initial 

value problem. Blue (1969) established the increased accuracy 
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(although with increased complexity) in the application of spline 

function approximate method to solving non-linear boundary value 

problems. 

(a) Finite Difference Approximate Methods: 

This approach is based on the principle of discretization. 

Approximate values are sought at a sequence of discrete points 

on the interval I usually denoted by 

{x.:x.=x. 1 + h, i=l,2, •••• } 
l. l. I.-

if h is the mesh-size. The approach furnishes a set of values 

{y.} corresponding to the mesh points given by equation (1.1.6). 
1 

The approximate solution y. to the exact solution y(x.) at 
1 1 

x = x. thus contain a discretization error e. = y.-y(x.). Any 
1 1 1 l. 

good algorithm based on discretization will control the 

discretization errors. This approach has two distinct classes: 

(i) One step methods -which only require the solution y. at 
1 

x = xi to obtain the next approximate solution yi+l at x 

(ii) Multistep methods - which require a certain number of past 

the approximate solution 

yi+l at x = xi+l" 

The finite difference approximate methods are generally well 

(1.1.6) 

suited to automatic computation and hence are more frequently used 

and universally applicable. 

Localzo and Schoenberg (1967) established a theorem which 

links the spline function approximate methods to the finite 

difference approximate methods. For example if the trapezoidal 

rule, given by 
~ (f yt+l = yt + + ft+l), t=O,l, •.• 2 t (1.1. 7) 

[where {fi' i=O,l, ••• } are the values of the derivatives at the 

mesh point>i:} is repeatedly applied on every sub-interval af I 



as defined by equation (1.1.6), it is equivalent to approximating 

the solution y(x) globally on the interval I by a quadratic spline. 

We shall adopt the finite difference approximate approach 

in the development of the new numerical integration algorithms. 

The other two approaches could also have been adopted except that 

the constraint on the analytic approximate approach would 

definitely limit the range of application of the· work. 

5 



1.2 THE ORDER AND DEGREE OF ORDINARY DIFFERENTIAL 

EQUATIONS 

If the highest derivative that occurs in a differential 

equation is 

of order n. 

of order 2. 

n . 
d Y , then the differential equation is said to be 
dxn 

For example, the differential equation (1.1.1) is 

The degree of a differential equation is the power 

to which the highest derivative is raised, e.g. the differential 

equation (1.1.1) is of degree 1. 

The general form of an ordinary differential equation of 

order n is given by 

(1) (n) 
F(x,y,y , ••••. ,y ) = 0 

where x is the independent variable, y = y(x) the unknown 

function and 
(i) 

y = i=l, .... ,n 

d lh • th 1 d • . f ( ) . h enotes. e 1. tota er1.vat1.ve o y x w1.t respect to x. 

Since little can be said about equation (1.2.1), it is 

assumed that it can be solved locally for the nth derivative 

of y(x) to give 
(n) (1) (n-1) 

y = G(x,y,y , •••• ,y ) 

The implicit function theorem (Apostol,T.M. 1965) gives the 

conditions which the function F in equation (1.2.1) must 

satisfy to be able to obtain equation (1.2.2). Equation 

(1.2.2) is the normal form for the nth order ordinary 

differential equation. 

We now consider a closed and bounded interval 

6 

(1.2.1) 

(1.2.2) 

I = a:;:x:;:b (1.2.3) 

on the real line as our interval of integration. We denote 

by en, a complex n-dimensional space. Let n = (n1 , •••• ,n) 
- n 



continuous functions, ~a mapping of R = Ixen into en such 

h f I d ( ) ~ en t at or everyx £ an x_ = Y1, • • .,yn ~ 

f ( ) , d" en • 
- x,x_ = X. = d; £ 

We shall consider in general, the initial value problem 

x_'= f(x,x_) 

x_ (a) = n • 

Equation (1.2.4) constitutes a system of n first order 

ordinary differential equations. By suitable substitutions, 

every nth order ordinary differential equations of the form 

given by equation, (l. 2. 2) can be transformed into a system 

of n first order ordinary differential equations of the form 

7 

(1.2.4). For example, the differential equation (1.1.3) which 

is of second order can be reduced to a system of two first 

order ordinary differential equations as follows: 

and 

y' = y 
l 2 

and substituting these in equations (1.1.3) we obtain 
' 2 

Yz = e<l-yl)y2 - Y1 • 

Hence the problem (1.1.3) is transformed to the first order 

systems: 

y' = 
1 Y2 

2 Yz = £(l-yl)y2-yl • 

(1.2.4) 

(1.2.5) 

(1.2.6) 

(1.2.7) 
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1.3 VECTOR NORMS 

As we intend to treat initial value problems in the form 

given by equation (1.2.4), it is worthwhile to discuss briefly 

the concept of vector norms. There are many possible vector 

norms but we shall concern ourselves with the three most 

commonly applied in practice. A vector norm denoted by 11.1 lP· tor 
p>O is a non-negative function on the space Cn with the 

following properties: 

n 
For arbitrary vectors z and z* in C and a complex number a, 

(a) 

(b) 

(c) 

IIYII > 0 - p 

llaYII = - p 

lly+y*ll -- p 

if xjo 

Equation (1.3.3) is known as the triangle inequality. 

We now give some examples of the vector norms: 

The L norm is defined as 
p 

= 

The most widely used of these norms are: 

--- -- - - ··-·· (i) the sum norm given by 
n 
I IY .I • 

1 i=l 

(ii) the Euelidean norm given by 

( 

and finally, 

(iii) the maximum norm given by 

max 
l~i~n 

if l~p<oo 

ifp=oo • 

(1.3.1) 

(1.3.2) 

(1.3 .3) 

(1.3 .4) 

(1.3.5) 

(1.3.6) 

(1.3.7) 



In all our applications of vector norms, we shall adopt 

the maximum norm and denote this as I I .1 I. This choice is 

due to the fact that the maximum norm is more powerful and 

is comparatively easier to apply than either the s;,um norm 

or the Euclidean norm. 

9 
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1.4 THE EXISTENCE AND UNIQUENESS THEOREM 

th 
The integral of an n order differential equation contains 

n constants of integration. In other words, this integral 

constitutes a family of curves in en. A particular curve in en 

is only defined if numerical values are attached to the n 

constants of integration. This is equivalent to specifying 

the n initial conditions 

y. (a) = TJ. , i=l, ... ,n 
1 1 

for the system (1.2.4). 

Before considering conditions for the existence and 

uniqueness of solutions to an initial value problem, we give 

the following definition. 

(1.4.1) 

The function!_= !_(x,y) in equation (1.2.4) is said to s~t;,f::t 

-ov Lipschitz condition of order one in~ uniformly in x, 

if there is a constant L such that the following relation holds, 

ll!_(x,y) - !_(x,y*) 11 ~ Lll~- ~*I I 
for all (x,~) and (x,y*) £ R. 

n We now impose the following constraints on the space e : 

for every 

We now state the standard theorem which guarantees the 

existence of a unique solution to an initial value problem 

of the form given in equation (1.2.4). 

The existence theorem is as follows: 

(1.4.2) 
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Theorem (1.1) 

Let the function i_ = i_(x,z) be continuous in the infinite 5~'-f' 

R :1 J<C, rt f,x& llrJ I <oo and satisfy equation (1. 4. 2). Then, the 

initial value problem given by equations (1.2.4) has a unique 

solution y = y(x) defined on the interval I. 

Proof: 

If a solution vector ~(x) actually exists which satisfies 

the initial condition ~(a) = ~· then from equation (1.2.4), 

this solution must satisfy the integral equation 

y(x) = ~ + Jxf(a,~(a))da • 
a 

Conversely, if y = ~(x) is continuous and satisfies equation 

(1.4.3), then it is differentiable and satisfies the equation 

(1.2.4). The integral equation can now be solved iteratively 

by Picard's method as follows: 

Start with, 

ioJ(x) = n 

and then generate , the sequence of vector valued functions: 

y[!+ij (x) = !l + ri_(a,z_[r] (a))da, r=O,l, •••• 
a 

We now wish to show that the sequence of functions {y[r](x)} 

converges absolutely and uniformly to y(x) and that the limit 

function satisfies the integral equation (1.4.3). By taking 

the norm of the difference of two successive functions 

generated by equation (1.4.4), we have the following relation: 

llz.Gc+tJ - I.[r](x)ll = 11 Ul + J:i_(a,irJ(a))d~-

[!l + J\ca,z_[!-:ij (a))du] 11 
a . 

(1.4.3)' 

(1.4.4) 

= I f[<a,z_[!J (a))-i_(u,yCr-1] (a)]dall (1.4.5) 
a 

:;; rlli_(a,y[r] (a))-i_(a,y[r-l] (a)) llda 
a 
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Since i_ = i_(x,y) satisfies .Q.:. Lipschitz condition, we have 

We now substitute this in equation (1.4.5) to get, 

III.[!+l](x) -I_(rJ(x)ll ii L rllx.[r](a) -x.fr-l](a)llda, (1.4.7) 
a 

By similar argument, we have the relation: 

llirJ (x)-x.rF-D (x) 11 :; L r 11 y[r-:0 (a)-x. 1!:-2] (a) 11 da. (1.4. 8) 
a 

By repeating this procedure (r-2) times, we obtain 

11 I_ [
3] (x) -x. [2] (x) 11 ii L Jll I_ [2J (a) -x. [lJ (a) 11 da 

a 
and finally, 

11 }'_ [2] (x) -x. (l] (x) 11 ii L r 11 }'_ [l] (a) -x. [o) (a) 11 da • 
a 

But 

llx.m (x)-x.l9] (x)ll = ll.'l + ri_(a,_I]_)da- .'lll 
a 

=I I J\ca,_Il)dall 
a 

:;filfCa·,_Il)llda 
a 

Since the function i_ = i_(x,I_) is continuous in a closed 

interval I, then i_ is bounded i.e. there exist a constant 

M < "'such that 

lli_Cx,I_) 11 <M 

for all (x,I_) e R. 

Using equation (1.4.12) in equation (1.4.11) we obtain, 

and this in equation (1.4.10) yields 

llx. [2} (x)-z [1] (x) 11 < LM J\a-a)da · = ML (~?/ . 
a 

Similarly, using equation (1.4.14) in equation (1.4.9) gives 

r31 [21 ML 2 Jx 2 
11 I. L:~ (x) -x. :.J (x) 11 < 2T (a-a) da 

a 
ML

2 
3 = 3! (x-a) , 

(1.4.9) 

(1.4.10) 

(1.4.11) 

(1.4.12) 

(1.4.13) 

(1.4.14) 

(1.4.15) 



. . 

By continuing with this procedure, equation (1.4.7) gives the 

result 

llir+l] (x)-z[rJ (x) 11 < ~:])! (x-a/+l • 

The function z (F+l] (x) can be expressed as 

By applying equations (1.4.4) and (1.4.16) in equation 

(1.4.17) we have 

11 x_fr+ l] (x)//~lb:J.I/+ 
r 

I 
s=O 

MLS 
(s+l)! 

Now the series 
r 

I 
s=O 

M 
L 

[L(x-a)]s+l 
(s+l)! 

( ) s+l x-a • 

is absolutely and uniformly convergent. Hence the sequence 

of continuous fUnctions {x_[rJ (x)} converges uniformly to 

x_(x) on the interval I and the limiting function x_(x) is 

necessarily continuous. The limiting function x_(x) is given 

by 

x_(x) = lim z[r] (x) = 
r->oo 

= n + J:lim E_(o:,z[r-i] (o:))do: 
r-+oo 

= 2l + r E_(o:,x_(o:))do: 
a 

Equation (1.4.20) implies that the limiting function 

z(x) satisfies the integral equation and hence the differential 

equation (1.2.4) for any arbitrary 2l 8 en. 

Next we discuss the uniqueness of the solution. 

Suppose there is another solution ~(x) to the initial value 

problem (1.2.4) with ~(a) = n ~(x) must satisfy the integral 

equation (1.4.3). Hence 

~(x) = 2l + fxE_(o:,~(o:))do:. 
a 

J3 

(1.4.16) 

(1.4.17) 

(1.4.18) 

(1.4.19) 

(1.4.20) 



By subtracting equation (1.4.4) from equation (1.4.21) and 

taking norms, we obtain 

li~(x)-y_{j+jJ (x)ii = I f!_(a,~(a))da-
a J\ (a,y_ [!:] (a) )dajj 

a 

gives For r=O, equation (1.4.22) 

~~~(x)-y_[l](x)ll ~ L n I z (a) -.!!.11 da 
a 

But 

Hence, equation (1.4.23) implies 

jj!. (x) -y_ m (x) jj :i Lk2 (x-a) 

For r=2, we have 

11~ (x)-y_ [z] (x) 11 
2 2 

~ k2 
L (x-a) 

2~ 

and in general, we have 

11 z (x) -y [s] (x) 11 ~ kz 
[L(x-a)J" • 

s~ 

Hence 

lim ll!.(x)-y_[s] (x)ji = 0 
s+oo 

Therefore, 

!_(X)= lim y_(_;;J(x) = y_(x) 
s+oo 

• 

• 

• 

Hence, the limiting function y(x) is the unique solution to 

the initial value problem (1.2.4). 

It is very essential to ascertain the existence of 

solutions to an initial value problem before we embark on 

obtaining its numerical solution. Some numerical integration 

14 

(1.4.22) 

(1.4 .23) 

(1.4.24) 

(1.4.25) 

(1.4.26) 
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schemes will still give results although meaningless even though 

the initial value problem has no solution or it has a solution but it is not 

unique. For instance, the initial value problem 

y' = - /1-y
2 

; y(O) = 1 

does not satisfy the Lipschitz condition in y at x = 0 since 

~~ = ~ = 00 

x=O /1-y~lx=O 

although lf(x,y)l ~1 ¥ x. 

In fact, the family of solutions is 

y = cos(x+a) , a real ; 

y = + 1 is thus a solution of a special kind. 

If this problem is solved with any numerical integration 

scheme which does not make use of higher derivatives of f(x,y) 

the values returned will be y = +1 for all values of x. 

In passing, we remark·that any desired accuracy in the 

numerical integration of an initial value problem can be 

attained(if the problem satisfies a. Lipschitz condition 

with respect to the dependent variable) by choosing a 

sufficiently small mesh size. However, the effect of rounding 

off errors is magnified owing to the larger computation 

involved with decreasing mesh size. 
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1.5 SoME EXAMPLES 

We now discuss briefly some physical problems which lead to 

ordinary differential equations containing discontinuities as 

well as those ordinary differential equations whose solutions 

are periodic. 

The problem (1.1.1) can be considered as a practical example 

of a system of ordinary differential equations with discontinuous 

derivatives if the objects dropped were inelastic. The motion is 

completely destroyed at the point of impact with the ground. 

Examples of systems of ordinary differential equations having 

oscillatory (in particular, periodic) solutions are of considerable 

interest in stability theory in control. Nbtable amongst these 

equations are the celebrated problems of the Van-der-Pol oscillator 

and the Rayleigh's oscillator. 

a) The Van-der-PoZ OsciZZator 

The Van-der-Pol oscillator with control is given by the equation 

2 y"!l(l-y )y' + ay + k = 0 (1.5.1) 

where ~,k and a are positive real numbers and k is the control 

parameter. The system (1.5.1) has attracted much attention in 

- control theory since it was first discussed by B. Van-der-Pol in 

1926. The attraction is perhaps due to the curious nature of its 

phase portraits which provide an excellent example of the limit 

cycle approached both from within and without by the phase trajectories. 

The phase portrait of the problem (1.5.1) for ~ = +2, and 

control k = -0.5 has been obtained by Fatunla (1972) (see figure 1.2). 
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The problem (1.5.1) is solved with the new schemes to be given 

later for the case V = 0.01, a = 1 and k = 0. 

Rayleigh's Equation 

The Rayleigh~oscillator is given by the differential 

equation: 

2 y" + ky' + n y = 0 • (1.5.2) 

Lord Rayleigh (1894) in his 'Theory of Sound' argued that 

the problem (1.5.2) defines a steady vibration if k = 0 and 

that if k is positive, the vibration will die down and if k 

is negative, the vibration will increase without limit. This 

problem is solved for k = 0, n = 1 with all the new numerical 

integration procedureSgiven in Chapters IV, V and VI. 



1.6 THE EXISTING [JUME.RICAL INTEGRATION SCHEMES 

As the main objective of this text is to develop some new 

integration algorithms for solving initial value problems in 

ordinary differential equations containing discontinuities as 

well as those whose solutions are oscillatory, we shall give a 

brief account of past activities in these areas•. 
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Amongst the existing schemes is one by Goran Fick (1971) 

which is a modification. of the IBM subroutine named DHAMDI and is 

based on Hamming's predictor corrector scheme. The scheme 

identifies the point of discontinuity if the mesh size has been 

halved a certain number of times and the numerical solution does 

not meet the tolerance requirement. Another scheme to solve 

discontinuous systems was developed by O'Regan (1970). His 

Alpha scheme is based on the fourth order Runge-Kutta integration 

scheme whilst a detector function is introduced which identifies 

the point of discontinuity when there is a change in the sign of 

the detector function. This procedure makes use of Newton~Raphson's 

iteration scheme to solve a non-linear equation ~or the fraction of 

the current stepsize~determine the point of discontinuity. The 

resultant scheme yields a third order Runge-Kutta algorithm. The 

latest effort in this area includes the work of Hay et.al (1974) 

who used a sequence of detector functions to locate the points of 

discontinuity. The point of discontinuity is identified with the 

change in the sign of one of the detector functions. 



Gautschi (1961) developed a multistep scheme for solving 

ordinary differential equations having periodic solutions. His 

integration algorithm is based on annihilating trigonometric 

polynomials up to a desired degree. As the coefficients of the 

resultant multistep schemes are functions of the period of 

the solution, an a priori knowledge of the period is essential. 

20 



1.7 PREVIEW 

In the subsequent chapters, new explicit one-step and linear 

multi-step numerical integration schemes are proposed with the 

view of obtaining maximum stability characteristics •. 
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Chapter II gives a brief background of some numerical methods 

that are relevant to the development of the new integration schemes 

proposed in subsequent chapters. A brief account of Gautschi 's 

integration scheme as well as Lambert and Shaw's integration schemes 

is also given. 

Chapter III deals exclusively with the adaptation . of the 

Gragg,Bulirsch and Stoer algorithm to solve initial value problems 

containing discontinuities. 

In Chapter IV, we propose a new variable order one step 

integration scheme. The scheme is based on representing the 

solution in every sub-interval by the combination of a polynomial 

and trigonometric or hyperbolic interpolant. The convergence and 

stability of the scheme are also established. 

In Chapter V, an explicit linear multistep scheme is developed. 

It is based on the same set of interpolants as in Chapter IV. 

Finally1 in Chapter VI we develop a linear multistep scheme 

to integrate special second order systems. A brief comparison of 

the new schemes proposed in Chapters IV, V and VI with some of 

the existing schemes is presented. 



CHAPTER II 

BACKGROUND NUMERICAL ANALYSIS 
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2.1 INTRODUCTION 

In this chapter, we shall discuss briefly some of the basic 

numerical analysis which is relevant to the development of the 

new integration algorithms in the subsequent chapters. The 

discussion includes: 

(a) difference operators 

(b) finite difference approximate methods for solving initial 

value problems in ordinary differential equations 

(c) some finite difference methods for solving special problems 

in ordinary differential equations rot<-me.0:J 

(i) Gautschi's multistep methods for solving initial value 

problems having periodic or oscillatory solutions,~~ 

(ii) Lambert and Shaw's algorithm for solving initial value 

problems whose solutions contain singularities. 

2.2 THE DIFFERENCE OPERATORS 

Let {xt' tzO,l, ••• } be the mesh points on the interval I 

defined by the equation (1.1.6). Suppose the values {yt: yt=y(xt) 

t=O,l, ••• } of the function y=y(x) are known at these mesh points. 

We first introduce the shift operator denoted by E and 

defined by 

yt+k' tzO, 1, , , • , (2.2.1) 

where k is a real number. 

We now define the following difference operators: 
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(a) the forward difference operator denoted by ~ and defined by 

~yt = yt+l - yt 

1 0 
= E yt - E yt 

= (E-l)yt (2.2.2) 

(b) the backward difference operator denoted by V and defined by 

Vyt = yt - yt-1 

0 -1 
= E yt - E yt 

-1 
= (1-E )yt (2.2.3) 

(c) the central difference operator denoted by 8 and defined by 

oyt = yt+! - yt-! 

E!y 
-1 

= - E 2y 
t t 

= (E LE-! )y t • (2.2.4) 

These operators satisfy the commutative, associative and 

distributive laws. 

The higher order forward differences can be obtained as 

follows: 

= I 
r=O 

(2.2.5) 

Similar expressions can be obtained for the backward and 

central differences. 

We end this section with the statement of the following 

theorem whose proof is available in .Young and Gregory(l973). 

Theorem 2.1 

If f(x) is a polynomial of degree <n, then 
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(i) n 
/::, f {x) = o, 

(ii) n 
'f/ f (x) = 0, 

(iii) 
n o f (x) = Q, 

2.3 ONE-STEP METHODS FOR SOLVING ORDINARY DIFFERENTIAL 

EQUATIONS 

A general one-step scheme for obtaining the numerical solution 

of the initial value problem (1.2.4) can be written in the form: 

(2.3.1) 

where the increment function!= !(x,z;h) is determined by the 

function f = f(x,~) and is a function of xt,~t and h only. 

We now give the following definitions: 

Definition (2.3.1) 

If p is the largest integer for which the difference between 

the numerical solution ~t+l at x=xt+l given by equation (2.3.1) 

and the theoretical solution ~(xt+l) satisfies the following 

relationship: 

p+l 
~+1- ~(xt+l) = O(h ), 

·--·-·············· .. then the one-step scheme given by equation (2.3.1) is said 

to be of order p. 

Definition (2.3.2) 

The one-step scheme defined by equation (2.3.1) is said 

to be consistent with the initial value problem (1.2.4) if 

the increment function satisfies the following relation! 

(2.3.2) 



Definition (2. 3. 3) 

The one step scheme defined by equation (2.3.1) is 

said to be convergent for arbitrary initial value ~ and 

arbitrary x tl if, 

lim 
h+O 
x +x 

t 

Yt = I_(X) ' 

Henrici (1962) proved that if the increment function 

f = f(x,x;h) is continuous in the interval I with respect 

to x,I_ and h; and if it satisfies a Lipschitz. condition 

with respect to l. in the region R, then the one step scheme 

(2.3.1) is convergent if and only if it is consistent. 

Definition (2.3.4) 

A one step scheme is said to be stable if for each 

differential equation satisfying A Lipschitz condition, 

there exists positive constants h
0 

and k such that the 

difference between two different numerical solutions l. 

and l.* each satisfying equation (2.3.1) is such that 

for all O~h~h0 , where 

y(a) = n - -
and y*(a) = n*, 

25 

(2.3.3) 

(2.3.4) 

(2.3.5) 
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2.4 EXPLICIT LINEAR MULTI STEP METHODS FoR INTEGRATING.· 

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

A general linear explicit multistep scheme of step number 

k can be written in the form: 

k 
I a.y +. 

• 0 J t J J= 

k 
= h I 

j=O 
s .£ +' J t J 

where ft+j = f(xt+j'Yt+j); and{aj,Sj; j=O,l, •.• k} denote 

real constants with the following constraints, 

ak f o_, tlk = o and ja0 j +I t>0 1 > o. 

Definition (2.4.1) 

The linear multistep scheme given by equation (2.4.1) is 

said to be convergent for all initial value .problems subject 

to the hypothesis of theorem (1.1), if the relation 

lim 
h+O 

th=x-a 

(2.4.1) 

(2.4.2) 

holds for all xsi and for all solutions {yt} of the difference 

equation (2.4,1) satisfying the starting conditions 

y = n (h) 
)l )l 

(2.4.3) 

for which 
lim n (h) = 11 , 
h+O Jl 

(2.4.4) 

\l = 0,1, .... ,k-1. 

With the view of defining the order of the linear multistep 

scheme of the form given by equation (2.4.1), we as in Henrici 

(1962), associate with equation (2.4.1) a linear difference 

operator given by 
k 

£ [y(x); tU = I ~.y(x+jh)-h8.y' (x+jhl] 
j=O J J 

(2.4.5) 



------------------------- ----- ---

for an arbitrary function y(x)~c"'Gt,~. 

The Taylor's series expansion of y(x+jh) at x gives 

y(x+jh) = y(x) + I 
i=l 

(t~) i y<i) (x) 

and the Taylor's series expansion of y'(x+jh) at x gives 

y' (x+jh) = y' (x) + L 
i=l 

(jh)i (i+l)() 
• 1 Y X 
L 

• 

Using equations (2.4.6) and (2.4.7) in equation (2.4.5) 

and collecting terms, we obtain 
00 

.L[y(x);Ej = 
'\ hi (i) L c. y 

i'=O 1 

where c., i=O,l, ... are constants. 
1 

Definition (2.4.2) 

The difference operatorJE defined by equation (2.4.8) 
I . . 

and the associated linear multistep scheme given b~·equation 

(2.4.1) are said to be of order p if 

c. = 0 is:;:p 
1 " 

and + 0 cp+l 

The constants c., i=O,l,2, ••• in equation (2.4.8) are 
1 I 

given as follows: 
k 

CO = I Cl.. 

i=O 1 

k k 
cl = I iet. - I s. 

i=O- 1 i=O 1 

and 
k 
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(2.4.6) 

(2.4.7) 

(2.4.8) 

(2.4.9) 

. I r:;:::2, 3, ••. 

i=O 

The parameters {~,S.; j=O,l, ••• ,k} can be obtained from 
J J 

equation (2.4.9). The local truncation error at x=xt+k 

for an explicit linear multistep scheme is simply 

• 



--------------------------------------------------------------------------------------

the difference between the theoretical solution given by 

y(xt+k) and the numerical solution yt+k obtained by (2.4.1) • 

The definition makes the simplifying assumption that there 

were no previous errors i.e. yt+" = y(x .), j=O,l, .•• ,k-1. 
J t+J. 

Definition (2.4.3) 

The linear multistep method given by equation (2.4.1) is 

said to be consistent if it has order p>-1 i.e. that the first 

two constants c
0 

and c
1 

in equation (2.4.9) should vanish. 

This implies 
k 
I a. = 0 

j=O J 
k k 

and I ja. = I s. • 
j=O J j=O J 

The first characteristic polynomial p(s) of (2.4.1) is 

defined by 

P (s) = 
k 
I a. sj 

j=O J 

and the second characteristic polynomial a(s) is given by 

k 
a (s) = I S. sj 

j=O J 
• 

From equations (2.4.10) to (2.4.13), we can deduce that 

the multistep scheme given by equation (2.4.1) is consistent 

if and only if the characteristic polynomials satisfy the 

following conditions 

p (1) = 0 

p'(l) = o(l) • 

Definition (2.4.4) 

The linear multistep scheme given by equation (2.4.1) 
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(2.4.10) 

(2.4.11) 

(2.4.12) 

(2.4.13) 

(2.4.14) 

is said to be zero-stable if no root of the first character~tic 
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polynomial has modulus greater than unity and that every root 

of unit modulus is simple. 

Henrici (1962) established that the necessary and sufficient 

conditions for the linear multistep scheme given by equation 

(2.4.1) to be convergent is that it be consistent and zero-stable. 

2.5 f~ULTISTEP ScHEMES FOR PERIODIC OR OSCILLATORY 

SYSTEMS. (GAUTSCHI 1961) 

Gautschi (1961) formulated a non-linear multistep scheme 

for solving initial value problems whose solutions are periodic 

or oscillatory with known periods. The scheme integrates exactly 

appropriate trigonometric polynomials of given orders in precisely 

the same manner that the classical methods integrate exactly 

algebraic polynomials of given orders. 

If the known or estimated period of the solution to an 

initial value problem is T, the frequency is then given by 

21T • 1.!) = r 
Gautschi 1 s multistep method is then defined by 

k k 
z: <l/t+j = h•/:13.(v) ft+j 

j=O j=O J 

where (lk = +1 and V = wh • 

Definition (2.5.lJ 

The multistep scheme given by equations (2.5.1) and 

(2.5.2) is said to be of trigonometric order r relative to 

the frequency w if the associated linear difference operator 

oe defined by the relationship; 
w 

(2.5.1) 

(2.5.2) 



k 

J. ",[y(x);h] = I[a.y(x+jh)-hS. (v)y'(x+jh)] 
j =0 J J 

for an arbitrary y(x) e C
00

[a, b] 

satisfies the following conditions: 

(a)l [1 ;1i] =o, 
/;J 

(b)£ [cos(sWK) ;t!} = j_ r;in(swx) ;h] = 0, s=l,2, •.• ,r 
. /;J eft 

(e)! tu [cos ((r+l) wx) ;ij and 

are not both identically zero. 

The trigonometric order r of a rnultistep scheme is 

less than the algebraic order p as equation (2.5.4) requires 

two conditions for each s~l instead of the one condition in 

equation (2.4.9). 

30 

(2.5.2) 

(2.5.3) 

(2.5.4) 

(2.5.5) 

Gautschi proved the following result on the trigonometric 

order attainable by the multistep scheme given by equation 

(2.5.1) with a given step number k. He showed that for any 

given set of coefficients {a., j=O,l, ••• ,k} satisfying the 
J 

relation 
k 
L a, = 0, 

j=O J 

there exists a unique explicit method of class (2.5.1) whose 

(2.5.6) 

trigonometric order r=!k and that if the frequency tu vanishes, 

then the scheme (2.5.1) reduces to a linear multistep schema 

with algebraic order p=2r. 

The Adams' type method with step number k=2 is given 

as follows: 

(2.5. 7) 

where 
+ ......... ) ' (2.5.8) 
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and 
3 1 2 1 4 

Sl (v) = Z (l - 4 V + 120 V + • •" • •) (2.5.9) 

Equations (2.5.7) to (2.5.9) yield a multistep scheme 

of trigonometric order r=l and algebraic order p=2. 

If the step number k=4, the multistep integration 

formula is given by: 

(2.5.10) 

with coefficients given by 

9 1 2 11 4 
=24(l + 4 V + 120 V + • • • •) ' (2.5.11) 

37 421 2 1921 4 
= 24 (l- 444 V + 13320 V + • • •) ' (2.5.12) 

s2(v) = ~~(1- ~~~ v
2 

+ ~~~:b v
4 

+ .••• ), (2.5.13) 

and 55 95 2 79 4 
S3(v)'=24(l-132v + 792 v + •••• ). (2.5.14) 

Equations (2.5.10) to (2.5.14) yield a multistep scheme of 

trigonometric order r=2 and algebraic order p=4. 

2.6 SPECIAL METHODS FOR SOLVING INITIAL VALUE PROBLEMS 

WHOSE SoLUTIONs PossEss SINGULARITIEs 

Lambert and Shaw (1965:, 1966) developed both the one-

step and multistep schemes which are based on local~n-polynomial 

interpolating functions. They suggested the local interpolant; 



F(x) 

L i ,M L -a. x + Bl A+x 1 · , if Mf{ 0,1, ••• , L} 
i=O 1 

L 

l: 
i=O 

a.xi + SIA+xrlogiA+xl if MdO,l, ••• ,L} 
1 

where Lis a positive integer, B and {a., i=O,l, ••• ,L} are 
1 

real undetermined coefficients; M and A are real parameters 

which control the nature and position of the singularities. 

The L+2 undetermined coefficients are eliminated by 
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(2.6.1) 

imposing the following constraints on the interpolant (2.6.1): 

and 

y t = F (xi:) , 

yt+l = F(xt+l)' 

(i)=F(i)( ) 
yt xt ' 

(2.6.2) 

i=l, ... ,L+l • 

The resultant integration formulae are given as follows: 

M l (t) . 
Cl, 1 h . 1 

~~ ~(t)+xJ 

Hrtlf {O,l, ••• ,L}, (2.6.3) 

and 

L 

l: 
i=l 

hi (i) 
., y + 
1. t 

1\tf {O,l, ••• ,L} (2.6.4) 



where 

Clm = m(m-l) •.••• (m-r), 
r 

for a non-negative integer r and the parameters M(t)' 

A(t) are given by 
(y ~L+2)) 2 

H(t) ~ L+l+ ( (1+2)) 2 (1+ 1) 
) 

(L+3) 
yt - yt yt 

and (1+2) (1+ 1) 
yt yt 

A(t) 
~ -xt + 2 (1+1) (1+3) (y ~1+2)) yt yt 

M(t) and A(t) are the estimates of the parameters ~ 

and A at x ~ xt. 

Both the one-step integration formulae given by 

equations (2.6.3) and (2.6.4) are of order 1+1 and the 

local truncation error is given by 

"' 
M(t) -1-1 (1+1) 

Tt+l I 
hs (s) "'s-1-2 Yt 

~ 

ST yt 
s~1+2 

with Cll'lr,>given by equation (2.6.5) , 
s 

(A(t) +xt) 
s-1-1 

• 

We shall use a similar approach as in this section 

to develop new integration formulae for solving initial 

value problems in ordinary differential equations whose 
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(2.6.5) 

(2.6.6) 

(2.6.7) 

(2.6.8) 

solutions are oscillatory. The new integration formulae 

will be compared with the integration procedure discussed 

in section (2.5). 



CHAPTER Ill 

• 
A RATIONAL EXTRAPOLATION SCHEME FOR INTEGRATWG 

SYSTEf~S OF ORDINARY DIFFERENTIAL EQUATIONS 

CONTAINING DISCONTINUITIES 
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3.1 INTRODUCTION 

In this Chapter, an adaptation of the work of Bulirsch 

and Stoer (1966) together with Gragg's modified midpoint 

scheme (1964) is presented for the integration of systems of 

ordinary differential equations containing discontinuities. Certain 

detector functions are introduced and the points of discontinuity 

are defined as the intersection of the solution to the initial 

value problem with the zeros of the given algebraic equations. 

Since the detector functions in general have not only the 

independent variable as argument but also the solution vector 

of the initial value problem, it is desirable to determine the 

solution to the initial value problem very accurately. The 

rational extrapolation scheme has distinguished itself amongst 

the best of numerical integration schemes for solving initial 

value problems in ordinary differential equations (Hull et <J-, 1 
1 172 ) 

It is therefore not out of place to adapt the same scheme to 

integrate systems of ordinary differential equations having 

discontinuous derivatives. Certain properties of the extrapolation 

procedure are exploited to accelerate the accurate determination 

of the points of discontinuity. 
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3.2 FORMULATION OF THE PROBLEM 

We consider the initial value problem, 

dz 
dx = i_(x,x_) Cx,z) E R (3.2.1) 

x_(a) = .!!. 

and the discontinuity condition is given by, 

y(x,x_) = 0• (3.2.2) 

We now make the simplifying assumption that each 

component f. = f.(x,y) off given by equation (3.2.1) is 
l. l. - -

at least piecewise continuous in x within the chosen 

interval I. 

It is desired to determine the intersection of the 

solution vector of problem (3.2.1) with the zeros of the 

function y = y(x,x_) defined by equation (3.2.2) in the 

region R. 

An integer N is chosen to obtain a uniform mesh-size, 

b-a 
h = --. N 

With this mesh-size, the interval I is subdivided as 

N-1 
I = UI 1 

r 
r=O 

where each subinterval Ir is given by 

(3.2.3) 

(3.2.4) 

\ ~= xlX:::xr+l = xr + h, r=O,l, ••• ,N-1, (3.2.5) 

Hence, the relation 

(3.2.6) 

holds. 

In the next section, we shall develop the Gragg-

Bulirsch-Stoer algorithm for solving systems of ordinary 

differential equations of the form 0.2.1). 
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3.3 THE GRAGG-BULIRSCH-S~OER ALGORITHM FOR SYSTEMS 

OF ORDINARY DIFFERENTIAL EQUATIONS 

We shall apply the Gragg-Bulirsch-Stoer algorithm over each 

subinterval I , r=O,l, ••• ,N-1 as defined in equations (3.2.4) to 
r 

(3.2.6). As the sensitivity of the extrapolation procedure to 

round off errors increases with the order of extrapolation, we 

limit our choice of the order of extrapolation to the range 

4:>~8 in all the numerical applications. 

Choose h
0

, O<h
0
:>h such that 

is an integer. 

h 
t = ho 

A set of mesh points, 

(3.3.1) 

~s = xr + sh, s=O,l, ••• ,t (3.3.2) 

are obtained on the interval I , O::;r::;N-1. Equation 
r 

(3.3.2) gives ~O = xr and~!i = xr+l" 

We now consider a sequence of mesh-sizes defined by 
h. 1 

= _J..:.!:. {hj:h
0 

= h; hj 2 , j=l,2, ••• ,m} 

where m is the order of extrapolation. 

(3.3.3) 

By using the sequence of mesh-sizes given by equation 

(3.3.3), we can generate a sequence of integers: 

{!i.:!i. = ~ , j=O,l, ••• ,m}, 
J J j 

If the solution to the initial value problem (3.2.1) 

at x = ~0 is given by 

}'.(~0) = 13 

where 

s = (Sl,S2, ••••• ,f3n), 

then Yi<~o) =S.; i=1,2, ... ,n. 
~ 

(3.3.4) 

(3.3.5) 

(3.3.6) 
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For each component y. of the solution vector y, we shall 
1 -

use the sequence of step-lengths given by equation (3.3.3) to 

generate m+l estimates of the theoretical solution y.(x) at 
1 

x = xr+l' These estimates are given by 

{y. (x +l'h.) ; j=O,l, ... ,m} 
1 r J 

(3.3.7) 

and it is known that they all have error expansions in 

powers of h
2

• Hence, a suitable linear combination yields 

the fomula 

m 
L A. , y. (x 

1 
,h.) 

j =O J ,m 1 r+ J 

2m+2 = y. (x 
1

) + 0 (h ) , i=l, 2, ... , n 
1 r+ 

where the coefficients of the lower order terms in the 

error expansion in h2 have been eliminated. This linear 

combination of the estimates given by equation (3.3.7) is 

equivalent (as m+oo) to extrapolating to h~O 

function passing through the points: 

{ (h. , y. (x 
1

, h. ) ) , j ~o, 1, ••• , m}, 
J '- r+ J 

a rational 

To generate the estimates in equation (3.3.7), Gragg 

(1964) formulated a modification of the midpoint scheme 

as follows: 

The starting values are obtained as 

(3.3.8) 

(3.3.9) 

Yi · 1 zi a ~ f ( 0 ) • 1 o =Si''-~ , ... ,n; o = ~i + 2 i i;o•.t:.' 1 ~ , ... n 

(3.3.10) 

We then evaluate 

yi i+ h. 
= h. f. (i; + --f;!;)· i=l, .... ,n and s+l s J ]. s 

zi zi + 
(3.3.11) 

= h. f. (i; + h.,Y 
1
), i==l, .. .. ,n; s+l s J ]. s J --s+ 



where 

and 

A smoothing procedure is then carried out at 

x =~ as follows: 
L 

J 
Let 

i u (~9, ,h.) 
j J 

and 

We then obtain the values 

i 
T. (~, , h.) 

J ,_. J 
J 

i 
Gragg (1964) emphasized that in T.(~9. ,h.), the 

J j J 

leading unstable component of the discretization error 

has been eliminated and Stetter (1969) deduced that 

T~(~9. ,h.) is always 'asymptotically strongly stable'. 
J j J 

This is consequent upon the smoothing procedure at the 

38 

(3.3.12) 

(3.3.13) 

(3.3.14) 

(3.3 .15) 

(3.3.16) 

end of the subinterval as illustrated by equations (3.3.14) 

to (3.3.16). Gragg (1964),(1965) showed that i 
T.(~, ,h.) 

h . . h2 as an error expans1on 1n i.e. 

i T.(x,h) = y.(x) + 
J ]_ 

m 

I 
s=l 

J ,_. J 
J 

. 2s 2 2 
Al-(x)h + O(h m+ ) 

s 

where the coefficients Ai(x), s=l,2, ••. m are independent 
s 

of the mesh-size h. Equations (3.3.10) to (3.3.16) are 

(3.3.17) 

computed for each of the m+l mesh sizes defined by equation 

(3.3.3). The quantities 

obtained will constitute 

{T~(~9. ,h.), j=O,l, ••• ,m} thus 
J j J 

the entries of the first column of 



the Ti tables illustrated in table (3.3.25). As the quantities 

in equation (3.3.17) are known to have error expansion in h
2, 

it is natural to want to obtain a suitable linear combination 

with the intent to eliminate some of the coeffieients in the 

error terms. This is precisely the essence of the polynomial 

or rational extrapolation schemes. In most cases, the rational 

extrapolation scheme as proposed by Bulirsch and Stoer (1966) 

is more accurate than the polynomial extrapolation proposed 
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by both Aitken (1932) and Neville (1934) (see Joyce,D.C. (1970)). 

Hence we adapt the rational extrapolation scheme to discontinuous 

systems of ordinary differential equations. 

and 

where 

If we define the functions Si(h), Vi(h) as follows: m m 

i 
= \o(x) 

i 2 i 2c 
+ Rm). (x) h + ••• +Rey:(x)h J 

. i i 2 i 2d 
v~ (h) = Vm,O (x) + vm). (x)h + ••• +Vm,d (x)h , 

and d = m-e 

m , the integral part of 
2 

then, the rational extrapolation procedure determines 

function 
. si (h) 

R 1 (h) = _:m;:.-_ 
m v1 (h) 

m 

a unique rational 

(3.3.18) 

(3.3.19) 

(3 .3 .20) 

(3.3.21) 

which passes through the points {(h. ,T~(x 
1
,h. ))J=O,l, ••• ,m}. 

J J r+ J 

The rational function Ri(h), given by equation (3.3.21) 
m 

is subject to the following constraints: 

i 
= T (~J!. ,h.), j=O,l, •.• ,m 

m j J 

i The extrapolated value T
0 

at h=O is then given by 
,m 

(3.3.22) 
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(3.3.23) 

which can be computed recursively from equation (3.3.17) 

by the following algorithm as formulated by Bulirsch 

and Stoer (1966) i.e. 

i 
T. l = 0 
],-

i i T. O = T.(x 1,h.) J, J r+ J 

= 

i=1,2, .. ,n 

.j=O,l, .. ,m 

k=l, •••• ,m 

Ti 
j+l,k-1 

i i 
Tj+l,k-1- Tj,k-1 

T~ -T~ . J - ~+l,k-1 ~,k-1 -1 
T1 -T

1 

j+l,k-1 j+l,k-2 

(3.3.24) 

The last equation in algorithm (3.3.24) connects the elements 

in position (j,k-1), (j,k),(j+l,k-2) and (j+l,k-1) of the 

Ti bl . • h 1 . h (. k)th . . f ta es 1n comput1ng tee ement 1n t e J, pos1t1on o 

i the T table as illustrated below, 

i 
ro,o 

i 
Tl,O 

i 
T2 0 

' I 
I 

I 

I. 
T1 
m-1,1 

i T -Table 

i i 
To,z------ --To,m-1 

i 
r1,2 

Ti / 
12,2 / 

/ 

I . / 
T1 
m-2,2 

/ 

Ti 
' l,m-1 

/ 

(3.3.25) 
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The last m columns of table (3.3.25) are computed with the 

algorithm (3.3.24). At each step of integration, there are 

n such tables; one table for each component of the initial 

value problem. 

The following two theorems whose proofs are 8Vailable 

in Gragg (1965) give a necessary and sufficient condition 

for the convergence of the algorithm (3.3.24). 

Theo:r>em J. 1 

A necessary and sufficient condition that 

lim T~ = y. (x 
1

) 
~u l. r+ m><» 

(3.3.26) 

i 
for all functions T.(x 

1
,h) continuous from the right at 

J r+ 

h=O is that 

sup 
k~O 

< 1 

where sup represents least upper bound. 

Theo:r>em 3.2 

(3.3.27) 

i 
If T.(x 1,h) has an error expansion of the form (3.3.17) 

J r+ 

then as k:+oo 

If in addition, we have that 

. f ~+l > 0 
Ln ~ J 

then there exists constants E , 
m 

l~oi - y.(x +l).[ < E +1 ,m 1 r · m 

such that 

2 2 
Ilk····· .hk+m' 

Whilst equation (3.2.28) states that the entries 

(3.3.29) 

(3.3.30) 

of each column of table (3.3.25) converges faster to y.(x 
1

) 
· 1 r+ 

than the preceeding column to its left, equation (3.3.30) 

asserts that the entries of the principal diagonal of the.same 



table converges to yi(xr+l) faster than those of any column. 

Also equation (3.3.28) gives an estimate of the truncation 

error at any location of table (3.3.25). 

In the next section, we shall consider the convergence 

criteria of algorithm (3.3.24). 

42 
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3.4 T~E StOPPIN~ C~!TE~IA FOR THE ALGORITHM (3.2.24) 

Let E denote a specified tolerance and assume that we 

th 
are computing the k column of table (3.3.25) for l~k~m. 

Suppose we have just computed the jth (where l<j~m) element of 

column k. As an estimate of the truncation error, we obtain 

the difference e. as 
1 

IT~ k-T~-1 kl 
e. = J, J ' 

1 <IT1-l,kl +1) 

Equation (3.4.1) is in fact an estimate of the mixed error. 

This choice is simply because mixed error gives a reasonable 

(3.4.1) 

measure of error for initial value problems with partly small 

solutions and partly large solutions. 

If it is observed that 
~ 

e. < 
1 

E > (3.4.2) 

we update the 
.th component of y_(xr+l) with i i.e. 1 Tj-l,k set 

(3.4.3) 

, 
If the relation (3.4.2) holds for i=l,2, ••• ,n, we 

/ 

proceed to the next interval I of integration. r+l 

However, if equation (3.4.2) is violated by at least 

JTos - Tls -11 >e:(JTls -11 + 1) ,m ,m ,m / 
(3.4.4) 

we increase the order of extrapolation m by two if the 

current order•m<8 and repeat the integration procedure in 

the interval Ir. However, if the current order of extrapolation 

is the maximum allowed (i.e. m=8 for our case), we repeat the 

integration procedure in the interval I with smaller stepsize. 
r 



It is usual to halve the stepsize. 

It is possible that we shall encounter a point of 

discontinuity within the interval I • The next section deals 
r 

with methods of coping with such a situation. 
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3.5 T~E TREATMENT o~ DtstoNTINUITIEs 

In this section, we shall obtain a sequence of subintervals 

{I ,,A =0,1, ••• } which contracts to the point of discontinuity. r,A 

If L(I J denotes the length of the subinterva1 I with 
r,~~.. r,A 

I = I , then 
r,O r 

L(I 
0

) = h. r, 

For :>..>0, we shall obtain the result 

L(I ,) = 2-:>..m.L(I ) 
r,~~.. r,O 

The occurrence of any discontinuity in the interval 

Ir given by 

x ~x~x 
1

, r=O,l, ... ,N-1 r r+ 

is detected with the change in the sign of the discontinuity 

function y=y(x,y). In obtaining the elements of the first 

column of the Ti-tables given by equation (3.3.25), we first 

generate the last elements i.e. the vector T given by 
-m 

1 2 n 
T = (T O' T 0 , ... ,T 0) -m m, m, m, 

rather than the first element !o given by 

1 2 n !o = (T~0 ,Tqp•····•Tqp )• 

This approach saves n function evaluations if there is a 

point of discontinuity in the interval I • The computation 
r 

of the vector T , given by equation (3.5.3) entails a 
-m 

m division of the interval I into 2 equal subintervals: 
r 

:i,e ") 
~j = ~0 + j.hm, j=O,l, ••• ~ 

=X +h 
r 

(3.5.1) 

(3.5.2) 

(3.5 .• 3) 

(3.5.4) 

(3.5.5) 

(3.5.6) 
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with h given by equation (3.3.3) and ~ given by equation (3.3.4) • m m 

The existence of a point of discontinuity in the interval Ir 

is indicated by the following relation: 

y(~o&). y(~~ ,!. ) ~ o 
m m 

with a defined by equation (3.3.6) and T defined by 
-m 

equation (3.5.3). 

If the relation (3.5.7) holds, we now try to locate the 

point of discontinuity in ·one of the subintervals 

{u. : u. = ~.:;x~~. 1, i=O,l, ••• ~ -1} 
1. l. 1. 1.+ m 

Clearly, we observe that the interval I relates to the 
r 

subintervals ui, i=O,l, ••• ,m-1 
lm -1 

I = Uu. 
r i=O 1 

as follows: 

• 

Let the vector Z* be defined by 
-s 

Z* -s 
1 2 n 

= (Y 'y ' .. • . 'y ) s s s 

whose elements are obtained by equatiorn (3.3.10) and (3.3.11) 

We then obtain s* as 

s* = min 
s 

{s:y(<;0 ,j~) .y(~ ,Z*) :; o, s-s 

If we define t* by 

t* = s*-1 

s=l,Z, ••• ~ } 
m 

equation (3.5.11) indicates that the point of discontinuity 

lies within the subinterval 

The normal integration procedure is now carried out 

over the interval I* defined by 
r 

(3.5.7) 

(3.5.8) 

(3.5.9) 

(3.5.10) 

(3.5.11) 

(3.5.12) 

(3.5.13) 

(3.5.14) 
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Thus we have succeeded in c_C,...,{ •.,; "j · the point of 

discontinuity to within the interval 

I = u* (3.5.15) r,l t 

defined by equation (3.5.13). The length of the interval 

is given as 

h 
m 

= 2~ 

The interval I 
1 

= x ~x~x 
1 

is now replaced by the 
r+ r r+ 

interval I 1 given by equations (3.5.15) and (3.5.13) and r, 

the mesh size h is replaced by h • 
m 

As it is clearly evident that the new subinterval 

Ir+l contains a point of dicsontinuity, the process (3.5.1) 

to (3.5.16) is repeated to generate 

I 2, I 
3

, .... ,etc. r, r, 

A h kth . . b . h . 1 f t t e 1terat1on, we o ta1n t e 1nterva I o r,k 

length 

L(I k) = 2-mk.h 
r, 

It is obvious that 

lim L(r k) = 0 
k+<» r, 

(3.5.16) 

and hence the sequence {I k} thus generated converges to the r, 

point of discontinuity from the left. 

For instance with an initial step size h=l, and order of 

extrapolation m=6, the point of discontinuity is located 

correctly to within an accuracy of 

2-mk = 2-(4)(6) 

= 2-24 

: lo-7 

in four iterations. 



3.6 COMPUTATIONAL RESULTS 

Example 3.6.1 

We first consider the scalar initial value problem 

dy = [-(x+y)+212] ~ 
dx 

y(O) = 0 

over the interval O~x~2. 

The discontinuity condition is given by 

2 y(x,y) = y -2 • 

The numerical integration procedure was implemented 

with uniform mesh size h=O.l3 and the order of extrapolation 

allowed to vary in the range 6~~8. The allowable tolerance 

is E = 10-8 . 

As can be observed in table (3.6.1) below, the point 

of discontinuity is located as 

(x=l.2882992 , y = 1.4142135 ) 

in four iterations. 

48 

(3.6.la) 

(3.6.lb) 
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TABLE 3.6.1 

ORDER OF X 
8 

EXTRAPOLATION 
y 10 xTt+l 

6 0.0000000 0.0000000 0.00000 

8 0.1300000 0.2118423 0.58899 

8 0.2600000 0.4098710 0. 6537 4 

8 0.3900000 0.5936920 0.73196 

8 0.5200000 0.7628328 0.83964 

8 0.6500000 o. 9167143 0.98153 

8 0.7800000 1.0546044 0.29395 

8 0.9100000 1.1755377 0.37398 

8 1.0400000 1.2781610 0.48749 

8 1.1700000 1.3603783 0.76689 

8 1.2878125 1.4140406 0.91822 

6 1.2882886 1. 4142098 0.00000 

6 1. 2882990 1.4142135 0.00146 

6 1.2882992 1.4142135 0.01746 



Example 6.3.2 

We now consider the case of an inelastic body falling 

freely under gravity. It is dropped from a height of 64 feet 

above the ground. We wish to determine its velocity when it 

reaches the ground as well as the duration of motion. 

Let g denote the acceleration due to gravity where 

g = 32 feet/sec
2

• The problem can be formulated as follows: 

T Let yf_y1 ,y2) and the range of integration is O:Ox<oo. 

If, y1 denotes the height and y
2 

the velocity, then 

we obtain the initial value problem 

where 

d 
dx 

= 

We define the discontinuity function as 

2 y(x,y) = yl 

Details of the numerical results are given in 

table (3.6.2) below. The point of discontinuity was 

obtained at x = 2, y
1 

= 0, y
2 

= 64. 

Hence a body falling freely under the gravitational 

acceleration from a height of 64 feet reaches the ground 

after two seconds with a velocity of 64 feet/second. 

50 

(3. 6. 2a) 

(3.6.2b) 

(3. 6. 2c) 
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TABLE 3.6.2 

ORDER OF X y1 y2 1010 T{1) 1010 T{2) 
EXTRAPOLATION X t+1 X t+1 

8 0.0000000 64.0000000 0.0000000 0.00000 0.00000 

8 0.3300000 62.2576000 10.5600000 0.07480 0.00000 

8 0.6600000 57.0304000 21.1200000 0.00000 0.11024 

8 0.9900000 48.3184000 31.6800000 0.00000 0.00000 

8 1.3200000 36.1216000 42.2400000 0.00000 0.11024 

8 1.6500000 20.4400000 52.8000000 0.00000 0.08819 

8 1.9800000 1.2736000 62.3600000 1.02832 0.07349 

8 1.9993359 0.0424929 63.9787500 0.00000 0.07278 

8 1.9999956 0.0002832 63.9998580 0.00121 0.00000 

8 2.0000000 0.0000000 64.0000000 0.00000 0.07276 
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ExanpZe 3,6,3 

We finally considered the scalar problem 

y' = { X 

1-x 

O~x~0.5 
(3.6.3a) 

0,5:;~1.0 

with initial condition 

y(O) = 0 (3.6.3b) 

over the range 0~~1. 

The discontinuity condition is specified as 

o:sx:so.s 
y(x,y) 

0.5 ~ X ~ 1 ' 

The system (3.6.3a) is continuous but does not have a 

continuous derivative. Hence it violates the conditions 

of theorem (1.1). 

The point of discontinuity was located at the point 

, (x=O.S, y=O.l25). 

Details of the numerical results are given in table (3.6.3) 

below. In this example, we integrate beyond the point of 

discontinuity. 
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TABLE 3.6.3 

ORDER OF 
H 8 

EXTRAPOLATION X y 10 xTt+1 

6 0.13000000 0.00000000 0.00000000 0.00000 

6 0.13000000 0.13000000 0.00845000 0.00000 

6 0.13000000 0.26000000 0.03380000 0.00000 

6 0.13000000 0.39000000 0.07605000 0.07654 

6 0.10968750 0.49968749 0.12484379 0.13987 

6 0.00028564 0.49997314 0.12498657 0.09314 

6 0.00002678 0.49999992 0.12499996 0.09313 

6 0.00000007 0.50000000 0.12500000 0.00000 

6 0.13000000 0.63000000 0.18155000 0.06412 

6 0.13000000 0.76000000 0.22120000 0.05263 

6 0.13000000 0.89000000 0.24395000 0.00000 

6 0.10999999 1.00000000 0.24999999 0.18626 



3.7 CONCLUSiON 

This approach locates the point of discontinuity to any 

desired accuracy in a geometric progression with common ratio 

2-m, (4~~8) where m is the order of extrapolation. 

However, the scheme is liable to fail if the point of 

discontinuity is a local minimum or maximum of the solution 

vector. 
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CHAPTER IV 

A VARIABLE ORDER ONE-STEP ALGORITHi1 FOR THE 
NUf·1ERI CAL SOLUTION OF ORDINARY DIFFERENTIAL EQU.'-\TimlS 

WITH OSCILLATORY SOLUTIONS 
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4.1 INTRODUCTION 

In Lambert and Shaw (1966), a class of two-point formulae 

for the numerical solution of the initial value problem 

y' = f(x,y), y(xo) = Yo (4.1.1) 

whose solutions may contain singularities is introduced. 

These formulae are based on the representation of the 

solution to the initial value problem (4.1.1) by a non-polynomial 

interpolant (2.6.1) which contains two real parameters which are 

automatically chosen and revised as the computation progresses. 

These parameters generally converge to some suitable values which 

are used to re-integrate the given system. · The parameters control 

the position and nature of the singularities in the solution to the 

problem (4.1.1). 

In this chapter, an alternative strategy is outlined in which 

new integration formulae are developed by representing the solution 

to (4.1.1) by a combination of a polynomial and trigonometric or 

hyperbolic interpolant. Each interpolant contains two real 

parameters which are accurately determined numerically at each 

step of integration. The algorithm is adaptive in the sense that 

we automatically vary the degree of the polynomial part of the 

interpolant or switch from trigonometric interpolant to hyperbolic 

interpolant(.rvice versa) accordingly. as the need arises. In the 

practical cases investigated, polynomial orders of one or two 

were found sufficient to obtain reasonable accuracy. 

As our approach is component applicable to systems of ordinary 

differential equations, we shall derive the integration formulae 

for the scalar case for the sake of clarity. However, the practical 

applications include sy,.tems of ordinary differential equations. 
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4.2 DEFINITION OF THE LOCAL lNTERPOLANT 

We shall consider the initial value problem of the form 

y' = f(x,y) , y(a) = n (4.2.1) 

An integer N is chosen to define a uniform mesh-size h as 

h 
b-a 

= --· N 

A sequence of mesh-points is then defined as 

{xt:xt = a+th, t=O,l, ••. ,N} • 

If we define the subintervals { \} such that: 

It= xt:;~xt+l' t=O,l, ••• ,N-1; 

then the interval I=a~~b can be expressed as: 

N-1 
u \• 
t=O 

I = 

Equation (4.2.5) is a division of interval I into N equal 

subintervals. 

On every subinterval It, we assume that the solution to 

the initial value problem (4.2.1) is locally represented by 

the interpolant 

L 
I a xr + bt sin(Ntx+At) , ~fO 

r=O r 

where the integer L >0 is the degree of the polynomial 

(4.2.2) 

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

part of the interpolant;bt and (ar,r=O,l •••• L) are real 

undetermined coefficients whilst N and At are real parameters 
. t 

to be accurately determined at each step of integration. 

Let us define the polynomial Pt(x) byj 
L 

~t(x) = I a xr 
r=O r 

and the function Qt (x) by j 

Qt(x) = sin(Ntx +At) 

The interpolant (4.2.6) is then given by 

F t (x) = f (x) + b Q (x) t t t 

(4.2.7) 

(4.2.8) 

(4.2.9) 
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4.3 DERIVATION oF THE lrnEGRATION FoR~1ULAE 

Let the numerical solution to the initial value problem 

(4.2.1) at x=xt be yt and the theoretical solution be y(xt). 

Under the assumption that the function f=f(x,y) belongs to 

the class c~[a,~, we impose the following constraints on the 

interpolating function (4.2.6): 

(a) That the interpclantassumes the solution to (4.2.1) at the 

points x = xt and x =xt+l' i.e. 

F (x ) = y 
t t t (4.3.1) 

I 

and 
• (4.3.2) 

(b) That the first and higher order derivatives of the 

interpolant coincide with the function f=f(x,y), its first 

and higher derivatives up to the (L+l)th derivative at the 

point x = xt' i.e. 

ds 
s 

dx 

= 
~s-2) afx, j ) 

ax 
+ f(x,y) 

Js-•l 
af'(x,y) 

ay x=xt 

y=y 
t 

s=· 1, 2, ••• L+ 1 

The constraints (4.3.1) to (4.3.3) will suffice to 

(4.3.3) 

eliminate the undetermined coefficients. Bor the sake of clarity, 

we shall give details of the derivation of the integration 

formULa for the case when the polynomial part of the interpolant 

ft(x) is of degree one (i.e. L=l). We shall state the results for 

the cases when degree L of Et(x) the polynomial part of the 

interpolating function (4.2.6) is greater than one. 
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By imposing the constraints (4.3.1) and (4.3.2) on 

the interpolant (4.2.6) we obtain the following formulae: 

(4.3.4) 

and 
(4.3.5) 

By subtracting equation (4.3.4) from equation (4.3.5) 

and applying equation (4.2.3), we have the relation: 

sin(Ntxt + AtD , 

The immediate objective is to rid equation (4.3.6) of 

(4.3.6) 

the remaining undetermined coefficients (i.e. a
1 

and bt) • 

If the constraint (4.3.3) is now imposed on equation 

(4.2.6) we obtain: 

f(xt,yt) = a1 + Ntbtcos(Ntxt +At) , 

and 
f(l)(xt,yt) = -N~ bt sin(Ntxt+At) 

Equation (4.3.8) implies that: 

= 

and using equation (4.3.9) in equation (4.3.7) gives the 

relationship: 

We can now use equations (4.3.9) and (4.3.10) to 

(~.3.7) 

(4.3.8) 

(4.3.9) 

eliminate the undetermined coefficients bt and a
1 

from equation 

(4.3.6) to yield: 
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(4.3.11) 

By using similar arguments as in procedure (4.3.4) to 

(4.3.10) we obtain the following formulae when the polynomial 

part of the interpolant (4.2.6) are as follows: 
I 

ForE t (x) of degree 2 i.e. (1~2) 

(4.3.12) 

For Et(x) of degree 3 (i.e. 1~3) 

h3 (2) +-f (x y) 6 t, t 

h 2 (3) 
+ -- f (x ,y ) 

2N t t 
t 

(3) 
f (xt, y t) 

N~sin(Ntxt+At) 
(4.3.13) 

and finally, 

For Et(x) of degree 4 (i.e. 1~4) 

4 hi (i-1) h (4) 
~ yt + i~l i! f l•.,,,)- N4 f (xt'yt) 

t 

+ ~:3 f(4)(xt,yt)tan(Ntxt+At) + ~~~ f(4)(xt,yt) 

t 



-----~----

In equations (4.3.11) to (4.3.14), the parameters 

Nt and At are still to be determined. Their values will 

be obtained in the next section. 
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(4.3.14) 



11, 4 D ETERM I NATION OF THE PARAMETERS ilT AND ,\ 

AND TRUNCATIOtJ ERRORS 

In this section, we shall obtain the error expansions 

in h for the one-step integration formulae given by equations 

(4.3.11) to (4.3.14). The parameters Nt and At are then 

obtained by e»3t>rin~ tl-<tthe first two terms in these error 

expansions vanish. As in the previous section, we shall 

give detailed arguments when the polynomial £t(x) of the 

interpolating function is linear in x (i.e. L=l). 
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If the numerical solution yt+l approximates the theoretical 

solution y(xt+l) at x=xt+l' with xt+l = xt+h, the Taylor's 

series expansion for y(xt+l) at x=xt yields: 

s 
= y + 

t L h (s-1) 
-, f (x ,y ) • (4.4.1) 
s. t t s=l 

The usual trigonometric addition formulae give the following 

relationship i.e. 

sin((Ntxt+At)+Nth) = sin(Ntxt+At)cos(Nth) 

+cos(Ntxt+At)sin(Nth) • (4.4.2) 

Also, the Maclaurin's series gives: 
(N h)2i 00 

(-l)i cos(Nth) 1: 
t (4.4.3) = (2i)! i=O 

(N h)2i+l and 00 

(-l)i sin(Nth) = I t • (4.4.4) (2i+l)! i=O 

The truncation error at x = xt+l is denoted by Tt+l 

and is defined as the difference between the numerical 

·solution and the theoretical solution, i.e. 

• (4.4.5) 



If we now substitute equations (4.3.11) and (4.4.1) in 

equation (4.4.5), we obtain the following expression for the 

truncation error: 

By making the simplifying assumption that there is no 

previous error (i.e. that y(xt) = yt), then the truncation 

error Tt+l at x=xt+l given by equation (4,4.6) can be 

expressed as follows: 
"' s 

T = 
t+l I ~. 

s=2 ' 

-sin(Ntxt +AtD 

By using the relationship (4.4.2) in (4.4.7) we have 

~ hs (s-1) h (1) 
Tt+l = s~2 ST f (xt'yt) .-. Nt f (xt'yt)cot(Ntxt+At) 
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(4.4.6) 

(4.4.7) 
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As we are interested in an error expansion in the mesh 

size h, we use the identities (4.4.3) and (4.4.4) in equation 

(4.4,8) to yield 

T = t+l. 

{1) 
(Nth)2i J f (xt 'y t) [ r c-l)i 

N2 (2i)! i=O t 
{1) [Jo (-l)i 

(N h)2i+J . f (xt,yt) 
cot (Ntxt +At) t + 

N2 (2i+l)! 
t 

• (4.4.9) 

Equation (4.4.9) thus expresses the truncation error at 

x=xt+l as a polynomial in the mesh-size h, By e>'l&u.6nj +k"-k ..W 

first two terms in the ~rror expansion in h vanish, we 

obtain the values of the parameters Nt and At as: 

Nt 
[-£{3) (xt,yt~j! 

= 
(1) 

and 
f (xt,yt) [ ,,, , 

At 
-1 f (xt,yt) 

- N X 'cot (l) = 
• Ntf (xt'ytJ 

t t 

(4.4.10) 

(4.4.11) 

The truncation error is now expressed as: 
oo 2s 
~ h (, (2s-l) s. 2s-2 {1) ;1 
L (2s)! Lf (xt,yt)+(-l) Nt f (xt'yt0 

s=3 · . 
00 

+ J: 
s=2 

h2s+l 

(2s+l)! 

In general, for an arbitrary degree L of the polynomial 

£t(x) in the interpolant (4.2.6), the parameters Nt and At 

are given by; 

(4.4.12) 



and either 

when L is odd or 

-1 
At = tan 

when L is even. 

-N X 
t t 

By using equations (4.4.13) to (4.4.15) in the truncation 

errors, they are finally expressed as follows: 

When~ t (x) is of degree L=l, 

(4.4.13) 

(4.4.14) 

. (4.4.15) 

+ ~ hZs+
1 

[f(2s) (x )+ (-1)sN 2s-L-1f (L+1) ( f1 
L (2s+l)! L' t'Yt t xt ,y t ~ 

s=L+1 

When Et(x) is of degree 1=2 

T = t+1 

When Et (x) is 

I 
s=L+1 

of degree 1=3 

(4 .4.16) 

(4.4.17) 

(4.4.18) 
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and finally 

When ~t(x) is of degree 1=4 

T = 
t+l 

"" h2s+l 

L (2s+l)! 
s=L 

+ 
"" 2s 

L h(2s)! 
s=L 

(4.4.19) 



IJ.5 FINAL INTEGRATION FORMULAE 

In this section, we shall use the Maclaurin's series 

expansion for cos(Nth) and sin(Nth) given by equations (4.4.3) 

and (4.4.4), the trigonometric addition formula given by 

equation (4.4.2) as well as the expressions for the parameters 

Nt and At as given in equations (4.4.13) to (4.4.15) to obtain 
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the final integration formula for the case when tt(x) is of degree 

one. 

From equation (4.4.14), we have 

f(L+l)( ) xt,yt 
• 

By using the addition formula given by equation (4.3.2); and 

equations (4.5.1),(4.4.13),(4.4.3) and (4.4.4) in the 

integration formula given by equation (4.3.11), the final 

integration formula is given 

f(2) (xt'yt) 

N3 
t 

The final integration formulae for higher degrees of the 

polynomial tt(x) are given as follows; 

When [t(x) is of 

yt+l = 

+ 

degree L=Z, we have: 
L hr (r-1) 

yt + I rT f (xt'yt) 
r=l 

(4.5.1) 

(4.5.2) 



+ 

+ 

and finally 

When the polynomial £t(x) is 

have 
L hr 

yt+l = yt + 1: rT r=l 

f(4) (xt,yt) 
+ 

N5 
t 

3 
- [N h- (Nth) } } 

t 3! 

of degree four (i.e. L=4), we 

(r-1) 
f (xt 'Y t) 

{sin(Nth)-[Nth-
(Nth) 3 

3! 
:_]} 
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(4.5.3) 

(4.5.4) 

(5) (Nth) 2 (Nth)4 f (xt,yt) 
{cos(Nth) - [1- + ]} 

N6 
t 

2! 4! 

With the definition (2.3.1) and the formulae for the 

truncation errors given by equations (4.4.16) to (4.4.19) 

we establish the following relation between the degree L of 

the polynomial Et(x) in the interpolating function (4.2.6) 

.... and the order p of the corresponding integration formulae 

given by equations (4.5.2) to (4.5.5). 

L P 

1 
2 
3 
4 

4 
5 
6 
7 

In general, we conclude that if the degree of the polynomial 

(4'.5.5) 

(4.5.&) 

[t(x) in the interpolating function (4.2.6) is L, the resulting 



integration formula is of order p given by the relation: 

p=L+3. 
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(4.5.7) 



IL6 STABILITY OF THE INTEGRATION FORMULAE 

In this section, we shall investigate the stability 

properties of the integration formulae given by equations (4.5.2) 

to (4.5.5). We shall give details for only the scheme of order 

four as the argument for the higher order schemes follo~an 

identical pattern. 

By re-introducing the Maclaurin's series expansions for 

sin(Nth) and cos(Nth) equation (4.5.2). ~;,.,.._... 

oo • (N h)2i-2 
~ ~ t 

. ~ ( -l) -;-;(2~i') ,, .-_-? 
~-J . (N h)h ~ 
~ ~ t ) 
i~l (-1) (2i+l)! 

) 

• 
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(4.6.1) 

We now define the increment function~~ ~(x,y;h) of 

the one-step integration formula (4.5.2) as 
"' . 2i-2 

<P(x,y;h) ~ f(x,y)-hf(l) (x,y) ( L (-l)~(Nth) ) 
i=l (2i)! 

00 

I <-1> i 
i~l 

(N ]j)!i-2 
t 

(2i+l} ! 
• 

The fourth order integration scheme given by equation (4.6.1) 

can then be expressed as 

(4.6.2) 

(4.6.3) 

with the increment function ~(x,y;h) given by equation (4.6.2). 

Equation (4.6.3) is the normal form for the one step scheme 

for solving initial value problems in ordinary differential 

equations. 



Lerruna 4.1 

If the function f=f(x,y) e C
00

[a,b} 1 then f(x,y),f(l)(x,y) 

and f(Z)(x,y) satisfy q _ Lipschitz condition. 

Proof 

If f = f(x,y) £ C~,~, then for (x,y) and (x,y*) in R, 

the mean value theorem gives 

f(x,y) - f(x,y*) = at (x,y) (y-y*) 
ay 

where (x,y) is within the interval defined by the points (x,y) 

and (x,y*). We can now choose L* such that 

sup I 
(x,y)eR 

af(x,y) I 
Cly 

< 00 • 

By taking the norm of both sides of equation (4. 6. 4) 

and applying equation (4.6.5) we have 

lt(x,y)- f(x,y*)l = IH (x,y) (y-y*) I ~L* I y-y* I • ay 

We have thus established that f(x,y) e coo[a,b} implies 

that f(x,y) satisfies the Lipschitz condition. Since 

f(x,y) £ C
00

[a,b}, then f(l)(x,y) £ C
00

[a,b] and this in turn 

implies that f(Z)(x,y) e Coo[a,bJl. By using similar arguments 

for f(l)(x,y) and f(Z)(x,y) as those for f(x,y), we can obtain 

and 

I f(l) (x,y) - f(l) (x,y*)l~ L
1

1 y-y*l 

I f(Z) (x,y) - f(Z) (x,y1<)\::; L)y-y*l 

for arbitrary points (x,y) and (x,y*) in R. We have thus 

established the Lemma (4.1). 

The following Lemma will be useful in proving that the 

increment function~ = ~(x,y;h) defined by equation (4.6.2) 

satisfies the Lipschitz condition. The proof of the Lemma 

is available in Jones and Jordan (1969) volume 1. 

70 

(4.6.4) 

(4.6.5) 

(4.6. 6) 

(4.6.7) 

(4.6.8) 
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LerrD'lla 4. 2 

Consider the power series 

{;r(x) = i c.x 
1 

(4.6.9) 

If 
lim 
i+oo lc!~1~ 

1 

1 exists and is denoted by -· , then the power series (ir(x) 
A 

(4.6.10) 

given by equation (4.6.9) converges absolutely for lxl< A 

and diverges for lxi>A. A is called the radius of convergence 

of the power series. 

Finall~, the following theorem will be required in 

establishing the stability of the integration formulae given 

by equation (4.5.2) to (4.5.5). 

Theorem 4.1 

The increment function~ = ~(x,y;h) defined by equation 

(4.6.2) satisfies the Lipschitz condition. 

Proof: 

Let (x,y) and (x,y*) be points in R, and the function 

~ = ~(x,y;h) is given by equation (4.6.2). We wish to exhibit 

a constant L*<oo such that 

l~(x,y;h) -~(x,y*;h)l ~ L*ly-y*l ( 4. 6. 11 ) 

By using equation (4.6.2) in the left hand side of equation 

(4.6.11), we obtain 

~~(x,y;h) - Hx,y*;h) I 
=I !j(x,y)-f(x,y*)] +h[f(l) (x,y*)-f(1) (x,y)] 

[I (-l)i (~h~2i-2l +h2 [f (2) (x,y*)-f (2) (x,y)] 
. 1 (21). J 
1= 

-[ "" i (Nh) 2i -2] 
iil (-1) (2i+l): X • 

X 

(4.6.12) 
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Using the triangle inequality in equation (4.6.12) we obtain 

the following relationship 

\~(x,y;h) -~(x,y*;h)\ ~ 

(1) (1) "' . (Nh) 2i -2 
\f(x,y)-f(x,y*)\+hlf (x,y*)-f (x,y)ll L (-1)

1 
(2')' I 

i=l 1 • 
"' . 

+ h21f(2)(x,y*)- f(2) (x,y)\\i~l (-1)1 
(Nh)2i-2 
(2i+l)! I 

(4.6.13) 

We have obtained the Lipschitz constants L*,Ll and L2 

respectively for the functions f(x,y),f(l)(x,y) and f( 2)(x,y) 

from Lemma (4.1). 

Let R
1 

be the radius of convergence of 

~ (-l)i (Nh)2i-2 

the power series 

IJ1 (x) = L ( 2 ·), 
i=l 1 • 

and R2, the radius of convergence of the power series 

"' (Nh)2i-2 
W2(x) = I (-1) i • 

i=l (2i+l)! 

By applying Lemma (4.2) to the two power series 01(x) and 

W
2

(x) as defined by equations (4.6.14) and (4.6.15), we 

obtain R
1
= "' and R2= "'· Hence if the mesh-size h and the 

first parameter N satisfy the condition: 

INhl < "' J 

then the two power series ~l (x) and ~k(x) both converge 

absolutely 

(4.6.14) 

(4.6.15) 

(4.6.16) 

We now have the following result from equation (4.6.13): 

If we set 

I Hx,y;h)-Hx,y*;h) I :i 

(L*+L1k1h + L2k2h
2

)1 \y-y*l (4.6.17) 

(4.6.18) 
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then equation (4.6.17) yields 

I <j(x,y;h) - <j(x,y;h)l < L* I y-y* I • 
We have thus proved that the increment function to the 

integration formula (4.5.2) and defined by equation (4.6.2) 

satisfies et. Lipschitz condition. We are now well equip ed 

to establish the stability of formula (4.5.2). We now 

present· the following theorem: 

Theorem 4.2 

If the increment function~= ~(x,y;h) satisfies the 

Lipschitz condition, then the one step scheme defined by 

equations (4.6.2) and (4.6.3) is stable. 

FToo[: 

Let y(x) and Y*(x) be two different numerical solutions of 

the initial value problem (4.2.1) with initial conditions: 

y(a) = n; and y*(a) = n* (4.6.18) 

Then by applying equation (4.6.3), y(x) and y*(x) satisfy 

respectively the following relations: 

(4.6.19) 

and 

(4.6.20) 

Subtracting equation (4.6.20) from equation (4.6.19), we get 

By taking the norms of both sides of equation (4.6.21) we get 

and applying the triangle inequality in the last equation, 

we obtain the relation; 

* lyt-ytl :slyt-F~-11+ hiHxt-l'yt_l;h)-Hxt-l'y~-l;h) 1·<4.6.22) 



Since by theorem (4.1) the increment function 

~ = ~(x,y;h) satisfies ~ Lipschitz condition in y, there 

exists a constant L*<oo such that 

J~(xt-l'yt-l;h) -~(xt-l'y~-l;h)J~L*Jyt-1-y~-lJ • 

Using equation (4.6.23) in equation (4.6.22) gives the 

following relationship: 

By a similar argument to the above, the relation, 

This process can be repeated t-1 times to obtain 

* Jy2-y2J~ (l+hL*) Jyl-ytJ 

and finally 

Hence, by repeated backward substitution we obtain the 

following relationship from equation (4.6.2), 

Jy -y*J ~ (l+hL*)t In-n*! 
t t 

By setting 

k = (l+hL*)t < oo 

equation (4.6.26) gives 

• 

Equation (4.6.27) establishes the stability of the 

one step integration formula (4.5.2) whichms been 

proved to be of order four. 

(4.6.23) 

(4.6.24) 

(4.6.25) 

(4.6.26) 

(4.6.27) 

By using similar arguments for the higher order schemes 

given by equations (4.5.3) to (4.5.5) we can also establish 

their stability. 



4.7 CoNVERGENCE 

We shall discuss briefly in this section, the convergence 

and consistency properties of the one-step schemes given by 

equations (4.5.2) to (4.5.5). 

With the definitions (2.3.2) and (2.3.3), we now use a 

theorem given by Henrici (1962): 

Let the increment function~ = ~(x,y;h) of a one step 

scheme be continuous in x,y and h for a~~b, O~~h0 and for 

all y in -oo<y<oo and if it satisfies a Lipschitz condition in 

the same region, a necessary and sufficient condition for 

convergence of the one-step scheme is that it is consistent. 

We now apply this theorem to the fourth order one 

step scheme given by equations (4.6.2) and (4.6.3). We have 

established in Theorem (4.1) that the increment function 

~ = ~(x,y;h) as defined by equations (4.6.2) satisfies the 

Lipschitz condition with respect to y. ~= ~~x,y;h) is also 

continuous in x,y and h and satisfies the consistency criteria 

given by the definition (2.3.2). Hence the fourth order one 

step scheme given by equation (4.5.2) is consistent. By the 

75 

above theorem, we can assert that the same scheme is convergent. 

An identical argument can be made for the higher order integration 

schemes given by equations (4.5.3) to (4.5.5). 

We shall discuss in the next section, the alternative 

interpolating function in the event of the failure of the interpolating 

function (4.2.6). 



4' 8 J~LTERNATIVE I~JTERPOLANT 

In the eventuality that the interpolating function given by 

equation (4.2.6) fails as a result of the parameter Nt vanishing 

or becoming infinite, indeterminate or complex and if varying 

thedegree of the polynomial part of the interpolant is of no 

avail, we use the alternative interpolant given by: 
L 

F (x) = L a xr + btsinh(Ntxt +At) • 
t r=O r t 

(4.8.1) 

By following the same procedure as outlined in sections 

(4.3) to (4.5), for the interpolating function (4.2.6) we 

obtained the following results: 

(a) The parameters Nt and At are now given as follows: 

Nt 
=[ f(L+2)(xt'yt)] ~ 

(L) 

and 
f (xt,yt) 

(4.8.2) 

['(C•ll( ) I -1 xt,yt 
At = coth 

Ntf(L) (xt ,y t) 
- Ntxt (4.8.3) 

when the degree L of the polynomial part of equation (4.8.1) 

is odd or 

when L is even. 

N f(L)(x y) 
t t' t 

- N X 
t t 

(b) The final integration'formulae are given as follows: 

(i) For L=l 

'1) 
Yt+l = yt + hf(xt,yt) + f' (xt,yt)[cosh(Nth)-~ 

+ f(Z)(xt,yt) [sinh(Nth)- Nth] 

(4.8.4) 

(4.8.5) 
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(ii) For 1=2, 
1 

I 
r=l 

r 
~ f(r-1) (x ) 
r! t ,y t 

f(2)(x y) 
+ t' t 

N3 
t 

(3) 
+ f (xt' y t) (N h) 2 
----,~_::_ { ·"osh(N h)-{1+ t J } 

N4 t 2! . 
t 

. (4.8.6) 

(iii) For 1=3 
1 r ( 
\' ~ f r-l)(x ) 
L r! t'Yt 

r=l 

(4.8.7) 

and finally 

(iv) For 1=4 
1 hr 
I rr 

r=l · 

(4.8.8) 

(c) The truncation errors for the integration schemes of various 

orders are obtained by using the follo~ing expansions: 
"" (N h)2i 

cosh (Nth) = I t 
i=O (2i)! 

(4.8.9) 



and 
ro 

2: 
i=O 

(N h)Zi+l 
t 

(2i+l)! 
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(4.8.10) 

instead of the sine and cosine expansions used in section 4. 

The truncation errors are now as follows: 

(i) For L=l 
ro 

2: 
s=L+Z 

ro hZs+l [f(Zs) (x ,y )-NZs-L-lf(L+l) (x ,y )] · 
(Zs+l)! t t t t t {4.8.11) 2: 

s=L+l 

(ii) For L=Z 
00 

2: 
Tt+l = s=L+l 

hZs+l 

(2s)! 

oo Zs 

+ L ~Zs+l)! s=L+I 

(iii) For L=3 

and finally 

(iv) For L=4 
00 

2: 
s=L 

+ 

(4.8.12) 

(4.8.13) 

-lf (Zs-1) ( )-N2s-L-2f (L+l) ( 5] 
~·~ t ~·Yt " 

(4.8.14) 

We observed from equations (4.8.11) to (4.8.14) that the 

degree L of the polynomial part of the interpolating function 

(4.8.1) and the order p of the resultant integration formulae 
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satisfy the relation given by equation (4.5.1). 

(d) We shall now discuss briefly, the stability and convergence 

charactersitics of the one step integration formulae given in 

equations (4.8.5) to (4.8.8). By using the equations (4.8.9) 

and (4.8.10) in the fourth order integration formula (4.8.5), 

we obtain 

00 

+ h2 (2) ( ) ( ~ (N h)Zi-2 
t )} f xt'yt L 

i=l (2i+l): (4.8.15) 

We now define the increment function~= ~(x,y;h) as: 

(1) oo (Nh)2i-2 
~(x,y;h) = f(x,y) +hf (x,y) <J

1 
(Zi): ) 

(Nh)2i-2 
(2i+l)! ) • 

Using equation (4.8.16) in (4.8.15), the fourth 

(4 .8.16) 

order scheme given by equation (4.8.5) cnn be R-><P'e.gse..d "-' 

yt+l = yt + hw(xt,yt;h) (4.8.17) 

The increment function ~ = ~(x,y;h) given by equation 

(4.8.16) is continuous in x,y and hand satisfies the 

Lipschitz condition with respect to y. Hence, by making 

similar arguments for w(x,y;h) as those made for ~(x,y;h) 

in sections (4.6) and (4.7), we can establish that the 

integration formula defined by equation (4.8.5) is stable 

and convergent. Identical results hold for the higher order 

formulae defined by equations (4.8.6) to (4.8.8). 

Some possible causes of the failure of the integration 

schemes are: 

(a) the parameter Nt vanishing.or. becoming infinite, 

indeterminate or complex. 



(b) the argumentz ~arc tanh does not lie in the range 

-l<z<l 

(c) the argument of arc coth lies outside the range z<-1 and 

z>l. 

In the event that any of the conditions (a),(b) or (c) 

does occur, we vary the degree of the polynomial part of the 

interpolant (4.8.1). If this does not remedy the situation, 

we switch to the interpolating function (4.2.6). 

The failure (b) and (c) rarely occur. Cases of failure 

(a) occurring are treated in the numerical applications 

discussed in the next section. 

80 



81 

4.9 APPLICATIONS AND i·lLf1ERICAL RESULTS 

Exampl-e (4.9.1) 

We first consider the scalar initial value problem 

y' = -(1-/) ~ , y{O)=l (4.9.1) 

over the range O~~n. 

The theoretical solution of problem (4.9.1) in the 

specified range is y(x)=cosx. The numerical solution was 

obtained with uniform mesh-size h-1~ using schemes of orders 

4,5,6 and 7. For the integration schemes of orders 5 and 7, 

the parameter Nt was indeterminate at x=O. Hence, in each 

case, there was a switch to the integration scheme of order 

6 as the specified maximum available order is 7. The parameter 

Nt was constant with unit value throughout the interval of 

integration. n The parameter At has constant value + 2 
n 

range O~x~2 and constant value n • h n 
2 1n t e range ~x~n. 

in the 

We can 

observe from Table 4.9.1 that the numerical results obtained 

by the fourth order integration scheme are correct to 10 decimal 

places. 
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TABLE 4.9.1 

Fourth ~der Schemes 

NUMERICAL MIXED ERROR !1IXED ERROR 
t h xt yt FOR ORDER 4 FOR ORDER 6 

10 
1010 T SOLUTION 10 Tt+1 

0 0.31415926 0.00000000 1.00000000 0.00000000 o.ooooo&M 

1 0.31475926 0.31415926 0.95105652 0.00000000 0.07458479 

2 0.31415926 0.62831852 0.80901700 0. 20110252 0.04022050 

3 0.31415926 0.94247778 0.58778527 0.50407026 0.04582456 

4 0.31415926 1. 25663704 0.30901701 0.80595885 0.08337505 

5 0. 31415926 1. 57079630' 0.00000003 1.39152460 0.36497019 

6 0.31415926 1. 88495556 -0.30901696 0.69479214 0.05558337 

7 0.31415926 2.19911482 -0.58778522 0.59571942 0.04582457 

8 0.31415926 2.51327408 -0.80901697 0.32176404 0.00000000 

9 0.31415926 2.82743334 -0.95105650 0.03729239 0.07458479 

10 0.31415926 3.14159265 -1.00000000 0.00000000 0.03637978 
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Example 4. 9. 2 

We also consider the example given by Amdursky and Ziv(l974). 

The system is given by 

(4.9.2) 

where S is a real constant. The general solution of problem (4.9.2) 

is 

y
1

(x) =A sin(Slogx)+B cos(Slogx) 

y
2

(x) =SQ\ cos(Slogx)-B sin(Slogx5.]/x 

We obtained the numerical solution of problem (4.9.2) in the 

interval e 2~x~9, where e=2.7182818 with a uniform step size 

h=O.l. The following numerical values are assigned to the 

real numbers A,B and S: 

A=l, B=l and S=l J 

thus giving the initial conditions 

2 
yl (e ) = 1 and 

2 1T 
y2(e ) =-2 e 

A 
Details of the numerical results are given in tables (4.9.2 ) 

B 
and (4.9.2 ) , 



TABLE 4.9.2A 

MIXED ERROR 

t xt 
N(1) 

t 
A (1) 

t 
y(1) 

t 
107 xT(1) 

t+1 

0 7.3890561 0.4686608 -1.7841529 1.00000000 0.00000000 

1 7.4890561 0.4462486 -1.6109432 1.0413275 0.0524669 

2 7.5890561 0.4246877 -1.4393799 1.0802870 0.0565208 

3 7.6890561 0.4038547 -1.2686623 1.1168977 0.0526561 

4 7.7890561 0.3836360 -1.0980135 1.1511833 0.0434288 

5 7.8890561 o. 3639247 -0.9266579 1.1831711 0.0289282 

6 7.9890561 0.3446179 -0.7537964 1. 2128918 0.0124286 

7 8.0890561 0.3256132 -0.5785795 1.2403792 0.0073397 

8 8.1890561 0.3068057 -0.4000722 1. 2656697 0.0288383 

9 8.2890561 0.2880840 -0.2172096 1.2888020 0.0514988 

10 8.3890561 0.2693245 -0.0287342 1.3098170 0.0759153 

11 8.4890561 0.2503841 0.1668964 1. 3287572 0.1015428 

12 8.5890561 0.2310889 0.3716535 1.3456666 0.1274249 

13 8.6890561 0.2112150 0.5881757 1.3605905 0.1541131 

14 8.7890561 0.1904553 0.8201953 1. 3735754 0.1809199 

15 8.8990561 0.1683542 1.0733758 1.3846685 0.2083318 

16 8.9890561 0.1441603 1.3571882 1.3939178 0.2364615 

17 9.0000000 1.4013717 0. 2645724 
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TABLE 4.9.2B 

MIXED ERROR 

t xt 
N(2) A (2) y(2) 107 T (2) 

t t t X t+1 

0 7.3890561 2.1071631 -15.1163220 0.4251683 0.0000000 

1 7.4890561 1. 7079582 -12.2370060 0.4014065 0.1884658 

2 7.5890561 1.4630608 -10.4633550 0.3778151 0.2946419 

3 7.6890561 1.2921509 -9.2188272 0.3544389 0.3733226 

4 7.7890561 1.1634728 -8.2755737 0.3313180 0.4358793 

5 7.8890561 1.0616019 -7.5228248 0.3084884 0.4864398 

6 7.9890561 0.9780172 -6.8995709 0.2859818 0.5298624 

7 8.0890561 0.9075732 -6.3688757 0.2638267 0.5660654 

8 8.1890561 0.8469524 -5.9069497 0.2420478 0.5981931 

9 8.2890561 0.7939055 -5.4976599 0.2206671 0.6260311 

10 8.3890561 0.7468446 -5.1296142 0.1997035 0.6496155 

11 8.4890561 o. 7046117 -4.7944973 0.1791732 0.6704590 

12 8.5890561 0.6663388 -4.4860675 0.1590902 0.6894045 

13 8.6890561 0.6313598 -4.1995259 0.1394661 0.7054440 

14 8.7890561 0.5991532 -3.9311043 0.1203106 o. 7190403 
I 

. I 

I 

15 8.8890561 0.5693035 -3.6777870 0.1016315 0.7309764 

16 8.9890561 0.5415739 -3.4371180 0.0834346 o. 7407268 

17 9.0000000 0.0657246 o. 7485812 



Example 4.9.3 

We also consider the scalar initial value problem 

y' = -Zxy + 4x, y(0)=3 (4.9.3) 

in the interval O~x~l.025. The theoretical solution to 
2 -x problem (4.9.3) is y(x)=e + 2. 

The numerical solution to problem (4.9.3) was obtained 

with an initial stepsize h=O.l and specified tolerance e=lO-S 

As the solution to the problem is not oscillatory, there was 

a switch to the hyperbolic interpolant in the range 0.5~x~0.7125. 

The non-oscillatory nature of the problem also accounts for the 

small stepsize required to obtain the desired accuracy. 

Details of the numerical results are given in table (4.9.3). 



87 

TABLE 4.9.3 

INDEX h xt Nt At yt 
8 

10 xTt+l 

1 0.10000 0.00000 2.4433378 1.05712060 3.0000000 o.ooooo 

1 0.05000 0.10000 2.3699187 1.5891165 2.9900498 0.20715 

1 0.02500 0.20000 2.2326413 1.6477103 2.9607895 0.56800 

1 0.02500 0.30000 1.9678116 1. 7972221 2.9139312 0.63949 

1 0.02500 0.40000 1.3446956 2.2070509 2.8521438 0.74041 

1 0.02500 0.50000 2.2300382 -1.5702748 2.7788008 0.87724 

2 0.01250 0.60625 4.0541435 -2.8667117 2.6924363 0.92930 

2 0.00625 0.71250 4.6610851 -3.2860414 2.6019047 0.91063 

1 0.02500 0.82500 3.6347782 -2.5345045 2.5063004 0.32123 

1 0.02500 0.92500 3.1622777 -2.1554240 2.4250175 0.54808 

1 0.02500 1.02500 2. 3497191 0.63686 

INDEX = 1 Polynomial and Trigonometric Interpolant 

INDEX = 2 Polynomial and Hyperbolic Interpolant 



Example (4,9.4) 

We finally consider the Van-der-Pol oscillator in the form 

Yi = y2 ' yl (0) = 0 

2 Yz = O.Ol(l-y1)y2-y1 , y2 (0)=l 

over the range O'x~6. 

(4.9.4) 

The numericm solution to the initial value problem (4.9.4) 

was obtained using the following integration schemes: 

(a) the fourth order one-step scheme as given by equation (4.5.2) 

(b) the Krogh's variable order Adams scheme(The Numerical Algorithm 

Group's version). 

(c) the Gragg-Bulirsch-Stoer (G-B-S) rational extrapolation scheme. 

All the numerical integration subroutines are written in 

FORTRAN IV for the ICL 1904A computer with single precision 

arithmetic. 

A uniform mesh size of h=0.0375 was specified in the three 

schemes. The new integration algorithm varied its order at the 

mesh points x=O, x=l.5 and x=4.6875. Whilst the new algorithm 

required 171 function evaluations, Krogh's scheme required 453 

function evaluations and the G-B-S scheme required 37,020 function 

evaluations. Also, the total machine time required by the new 

scheme was 63 seconds whilst Krogh's scheme required 69 seconds 

and the G-B-S scheme required 91 seconds. The running cost for 

the new scheme under the accounting system operational on the 

Loughborough University machine was 38 pence whilst the running 

cost for Krogh's scheme was 39 pence and 49 pence for the G-B-S 

scheme. 
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The details of the numerical results are given in table (4.9.4). 



TABLE 4.9.4 

FOURTH ORDER ONE STEP KROGH VARIABLE ORDER GRAGG-BULIRSCH-STOER 

&3 SCHEME 
X ¥1 y y y y y 

0.00000000 0.00000000 1.oooi\oooo o.oooo6ooo 1.ooooi\ooo o.oooo6ooo 1. oooi\oooo 

0.30000000 0.29595737 0.95816542 0.29595737 .0. 95816542 0.29595738 0.95816542 

0.60000000 0.56624448 0.83005702 0.56624448 0.83005702 0.56624449 0.83005701 

0.90000000 0. 78645340 0.62681152 0.736!,5340 0. 62681152 0.78645341 0,62681151 

1.20000000 0.93663469 0.36677933 0.93663469 0.36677933 0.93663469 0.36677931 

1.50000000 1.00320104 0.07364129 1.00320104 0.07364129 1.00320105 0.07364127 

1.80000000 0.98015691 -0.22611779 0.98015691 -0.22611777 0.98015691 -0.22611779 

2.10000000 0.86954204 -0.50583247 0.86954204 -0.50583245 0.86954203 -0.50583247 

2.40000000 0.68113086 -0.74094526 0.68113087 -0.74094524 0. 68113085 -0.74094526 

2.70000000 0.43151588 -0.91082896 0.43141490 -0.91082894 0.43151587 -0.91082896 

3.00000000 0.14270079 -1.00026329 0.14270081 -1.00026329 0.14270077 -1.00026330 

3.30000000 -0.015971789 -1.00071514 -0.15971786 -1.00071515 -0.15971790 -1.00071514 

3.60000000 -0.44872183 -0.91138069 -0.44872180 -0.91138071 -0.44872184 -0.91138069 

3.90000000 -0.69828521 -0.73970197 -0.69828519 -0.73970199 -0.69828522 -0.73970195 

4.20000000 -0.88581762 -0.50098678 -0.88581760 -0.50098681 -0.88581763 -0.50098676 

4.50000000 -0.99433194 -0.21695595 -0.99433193 -0.21695598 -0.99433195 -0.21695592 
( 

4.80000000 -1.01403600 0.08658086 -1.01403600 +0.08658083 -1.01403600 0.08658089 

5.10000000 -0.94315793 0.38241170 -0.94315794 0.38241166 -0.94315792 0,382!.1172 

5.40000000 -0.78798032 0.64443656 -0.78798033 0.64443653 -0.78798029 0.64443659 

5.70000000 -0.56218592 0.84972276 -0.56218595 0. 84972273 -0.56218589 0.84972277 

6.00000000 -0.28565523 0.98012923 -0.28565527 0.98012921 -0.28565519 0.98012924 



L!.lO, CONCLUSION 

r:,-0 ~ """'"'"~ s ..... t. <..a (4.9.1), we observed that the numerical 

integration procedure developed in this chapter will allow 

relatively large integration step-sizes and still maintains a 

high degree of accuracy particularly when the theoretical 

solution contains sine and cosine functions. 

The fact that the proposed one-step scheme uses higher 

order derivatives of the given differential equations enables 

us to obtain solution to problem' (4.9.1) at x=O 

where the initial value problem has no unique solution as it 

fails to satisfy the hypothesis of theorem (1.1). 
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The main disadvantage of the proposed scheme is the requirement 

to obtain higher order derivatives of f(x,y) analytically. In 

some problems these are readily obtainable. ~11 the same, we 

shall remedy this situation in the next chapter.· 



----------------~~------

CHAPTER V 

Atl EXPLICIT r1ULTISTEP NU11ERIC~L INTEGRATI0N SCHE~E 
FOR SOLVIriG SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

WITH OSCILLATORY SOLUTIONS 



5.1 INTRODUCTION 

In Lambert and Shaw (1965) and Shaw (1967), some linear 

multistep integration formulae were formulated to solve initial 

value problems of the form 

y' = f(x,y), y(a) = n • (5.1.1) 

These numerical integration schemes are based on the 

representation of the solution to the initial value problem 

(5.1.1) by non-polynomial interpolants as given by equation 

(2.6.1). The resultant integration formulae are particularly 

well suited to solving initial value problems whose solutions 

contain singularities. 

In Chapter IV, we proposed a stable and convergent one-step 

integration scheme for solving initial value problems of the form 

(5.1.1). The numerical integration schemes are based on a local 

representation of the solution on every subinterval 

It=xt~x~xt+l' t=O,l, •.• by either the interpolating function, 

or 

L 
L a xr 

r=O r 

L 
L arxr + bt sinh(Ntx+At) 

r=O 

where Lis a non-negative integer; bt and {ar,r=O,l, ••• ,L} 

(5.1.2) 

(5.1.3) 

are real undetermined coefficients and Nt,At are real parameters 

which are evaluated at each step of the integration procedure. 

The determination of the parameters Nt and At however requires 

the analytic evaluation of higher derivatives of f=f(x,y) given 

by equation (5.1.1). As this could be 'very cumbersome 

particularly if f(x,y) is a very complicated expression, we shall 
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develop in this chapter, a linear multistep scheme which 

circumvents the analytic determination of the higher derivatives 

of f(x,y). However, we now have to solve a pair of trigonometric 

(or hyperbolic) equations for the parameters Nt and At. A device 

is also introduced for obtaining good initial estimates for these 

parameters as the effectiveness of the Newton iteration method is 

critically dependent on the choice of these estimates. The starting 
) 

values for the multistep formulae are obtained from the version of 

the Gragg-Bulirsch-Stoer rational extrapolation scheme discussed in 

Chapter Ill. The proposed scheme is convergent and zero-stable. 
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5.2 INTERPOLATING FUNCTIONS AND DETERMINATION OF THE 

PARM1ETERS !IT AND AT 

We shall denote by k the stepnumber of the multistep 

integration formulae and any necessary additional starting values 

(i.e. y
1

,y
2

, ••• ,yk_
1

) are obtained with the variable order Gragg­

Bulirsch-Stoer algorithm discussed in Chapter Ill. 

Let us assume that the numerical solutions yt,yt+l'''''yt+k-l 

have been obtained at the points xt,xt+l''''xt+k-l respectively. 

We now wish to obtain the numerical solution yt+k at the point 

x=xt+k' 

Let 
k-1 

I*= ~It+' for O~t~N-k, 
i=O ~ 

be the union of the subintervals It,It+l'''''It+k-l defined 

by equations (4.2.3) and (4.2.4). 

Over the interval I*, the solution to each equation in 

(5.2.1) 

the initial value problem is represented by the interpolating 

function (5.1.2). 

We shall denote by ft+j' the value of the 

function f(x,y) at the point x=xt+j'y=yt+j' In an attempt to 

eliminate the undetermined coefficients in the interpolating 

function (5.1.2), the following constraints are imposed on 

the interpolant (5.1.2): 

(a) the interpolating function should pass through the points 

i.e. 
(5.2.2) 



(b) the first derivative of the interpolating function must 

satisfy the differential equation (5 .1.1) a't those points 

specified in condition (a). i.e. 

dF t (x) 

dx 
= ft+j' j=O,l, ••• ,k-1, (5.2.3) 

x=x • 
t+J 

y=yt+j 

Equations (5.2.2) and (5.2.3) respectively imply that 

the relations 

L 

z: 
i=O 

and 
L 

y . , j=O,l, ••• ,k 
t+] 

(5.2.4) 

z: 
i=O 

. i-1 
1.a. x . ]. t+J + btNtcos(Ntxt+j+At) = ft+j' j=O,l, ••• ,k-1 

(5.2.5) 

hold. 

The forward difference operator ~ discussed in Chapter II 

has the following relationship with the derivative f.=f(x.,y.) 
]. ]. ]. 

of y at x-x • - i 0 

~y. = hf. 
]. 1 

As the polynomial part of the equation (5.2.5) is of 

(5.2.6) 

degree at most L-1; theorem (2.1) implies that the application 

L of the operator ~ to both sides of equation (5.2.5) will 

annihilate the polynomial part. This gives 

i.e. 

b = 
t 

L 
~ f . • 

t+J 

, j=O,l, ••• ,k-1 
L 

Nt~ cos(Ntxt+j+At) 
(5.2.7) 

In particular by setting j=0,1,2 in equation (5.2.7), the 

undetermined coefficient bt can be obtained as either 
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t,Lf 
bt = t 

L 
Nt.r:, cos(Ntxt+At) 

or 
L 

bt = 
(:, ft+l 
L 

Nt.r:, cos(Ntxt+l+At) 
or 

L 

bt = 
(:, ft+2 

(5.2.8) 
Nt. f:,Lcos(Ntxt+2+At) 

• 

Hence, the following equations are obtainable from equation 

(5.2.8): 

(5.2.9) 

(5.2.10) 

and finally, 

L L 
= a cos(Ntxt+Z+At)r:, ft 

L L 
A cos(Ntxt+At)A ft+ 2=o 

(5.2.11) 

Any two pairs of the equations (5.2.9) to (5.2.11) can 

be solved for the parameters Nt and At. 

We now give a detailed discussion of the determination 

of the parameters Nt and At by using equations (5.2.9) and 

(5.2.10) for the case when the polynomial part of the interpolant 

(5.1.2) is of degree one (i.e. L=l). We adopt the Newton 

iteration scheme. 
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Simplifying equations (5.2.9) we get 

Rl (Nt'At) = (ft+2-ft+l) (cos(Ntxt+l+At~- -

(5.2.12) 

and similarly from equation (5.2.10), we have 

R2 (Nt,At) = (ft+3-ft+ 2)[cos(Ntxt+2+At)-cos(Ntxt+l+AtjQ 

We now apply the Newton Raphson iteration scheme to 

obtain the roots N~ and A~ of the trigonometric functions 

Rl (Nt,At) and R2 (Nt,At). 

The choice of reasonable initial estimates N~ci) and AioJ 

at t=O is very important for the convergence of the Newton 

iteration. Hence, a scheme is proposed to give these initial 

estimates. The higher order derivatives of the function 

f=f(x,y) in equations (4.4.13) to (4.4.15) are replaced_ by their 

equivalent forward differences. For instance, 
(s) s+l 

t (xo,yo) ~ r,. Yo • 
hs+l 

By using the relation (2.2.5) in equation (5.2.14), 

we have 

1 
hs+l 

s+l 
I" 1 r s+l 
L (- ) ( r )ys-r+l 

r=O 

The initial estimates of the parameters Nt and At are 

then given by either the 

and 

N[o] 
0 

-1 
cot 

(5.2.14) 

(5.2.15) 

(5.2.16) 

(5. 2. 17) 



or by the 

and 

These estimates are now improved upon by the Newton 

iteration method which is discussed below. 

At the ith iteration of the Newton Raphson's scheme, 

the partial derivatives of equations (5.2.12) and (5.2.13) 

with respect to Nt at N =N[iJ and A = A[i] are given by 
t t t t 

A =A[iJ 
t t 

= 

-(f -f )'X sin(NUl +A[iJ)-xsin(N[i]x+A[i])-, 
t+2 t+l ~t+l t t+l t t t t t ~ 

+ (ft+l-ft) [xt+ 2sin(Nf~t+2+AfiJ )-xt+l sin(Nfilxt+l+At] )] , 
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(5.2.18) 

(5.2.19) 

(5.2.20) 

+(f -f )Gx s1"n(N[~ +A[i])-x s1"n(N[.;J +A[i});, • (5 2 21) 
t+2 t+ 1 t t+3 t '"xt+3 t t+2 t "xt+2 t ~ • • 

' 

By also obtaining the partial derivatives of equations 

(5.2.12) and (5.2.13) with respect to the parameter At at 

N =N[i] and A =A[i] we obtain: 
t t t t ' 



N =N t.J 
t t 

A =A[ij 
t ' 
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= 

+ (f -f ) [sin(N [i] x +A[~-sin(N[i] x +A[i] )j 
t+ 1 t t t+2 t t t+ 1 t J (5.2.22) 

and finally, 

.. (5.2.23) 

Let J denote the determinant of the Jacobian of the 

J = 

R. (N [i]A[i]) 
:L N t ' t 

' t 

• 
R (N [iJA [g) 

2 ,A t ' t 
t . 

The correction terms oN~q oA[i]for N(}.]and A[:IJat 
1 t t t 

the ith iteration of the Newton Raphson's scheme are given by: 

oN~i] R (N [iJAiiJ) -R (N [i] A [iJ) 
1 -1 2A t 't ' 2,Nt t ' t ' t = J 

oA [J w rq R (N[DA [i]) -Rl A (Nt ,At ' t 
' t l,Nt t ' t 

)<.. 
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• (5.2.24) 

The new estimates of the parameters N* and A* are given 
t t 

by 

and 

N(i+l] 
t 

oN[iJ 
t ' 

A[i+l] = A[it oA[i] 
t t t ' 

where ONfiJand OAfiJ are given by equation (5.2.24). 

If we define the correction vectoro~[i]by 

the Newton iteration is then halted when the condition 

is satisfied; where E is the allowable tolerance. max 

From practical experience, it may be desirable to set 

-6 ' 
c ~ 10 as it may be impracticable (or time consuming) max 

(5.2.25) 

(5.2.26) 

(5.2.27) 

(5.2.28) 

for the Newto~method to obtain accuracy which is less th~ 

10-6 . 

We denote the terminal values obtained by the Newton 

method as N* and A* and are given as follows: 
t t 

N* lim N[i] (5.2.29) 
t i+«> t 

and 
A[i) A* = lim (5.2.30) 

t 
i·+OO 

t 

In the next section, the parameters N~ and A~ 

together with the undetermined coefficient bt given by 

equation (5.2.8) 'will be used to develop a linear multistep 

scheme to solve the initial value problems of the form (5.1.1). 
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5.3 DERIVATION OF THE INTEGRATION FORMULAE 

In this section, we shall eliminate the remaining undetermined 

coefficients {a ,r=O,l, ••• ,L} in the interpolating function (5.1.2) r . 

to obtain a consistent and zero-stable (convergent) linear multi-

step scheme. 

We introduce the function z . defined by, 
t+~ 

zt+i = yt+i- btsin(N~xt+i+A~) 

whose derivative zt' . is then given by 
+1 

• 

Equations (5.3.1) and (5.3.2) are then used in 

equations (5.2.4) and (5.2.5) to yield 

and 

L . 

zt+J" = I a.xt~+. 
i=O 1 J 

z' . 
t+j 

L . i-1 
= L ~a.xt+" 

i=O .~ J • 
We now introduce the consistency parameters 

{aj,Sj;j=O,l, .•• ,k} such that a
0
,e

0 
are not both zero and 

set Bk=O as we are only interested in an explicit formula. 

For j=O,l, ••• ,k; we multiply equation (5.3.3) by cr. 
J 

and multiply equation (5.3.4) by -hS. and add columnwise 
J 

to give: 
k 
I a.z . 

j=O J t+J 

k I 

-h·I B.zt. 
j=O J +J 

= 

L k 
I a. [I cr.x~+· 

i=O ~ j=O J J 

. ~-k . ~ 
- ~h I s.x . 

j=O J t+J • 

As we are only interested in an Adam's type of linear 

multistep method, we assign the following values to the 

consistency parameters: 

(5.3.1) 

(5.3.2) 

(5.3.3) 

(5.3.4) 

(5.3.5) 
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"1 
~ -1, Cl ~ +1 ; and 

k 

Cl. ~ 0 for j~o, •••• ,k-1; jof 1 • J 
(5.3.6) 

This choice of parameters gives 

k 
I Cl. = 0 

j~o J I 
(50 3 0 7) 

which is the first consistency condition for a general linear 

multistep scheme given by equation (2.4.10). 

By applying equationS(5.3.6) and (5.3.7) in equation 

(5.3.5), we have 

k 
I 
j~o 

k-1 
CI.Z • - h 

J t+J 
. I s.z'+ 0 

J t J 

~ 

j~O 

L k . 
I a.[I a.xt1 .-ih 
i~l 1 j=O J +J 

k-1 0 1 
• Is.x~:.]. 
j~oJ J 

(5.3.8) 

By allowing the coefficients of a. to vanish in equation 
1 

(5.3.8) (for i~1,2, ... ,L), we obtain 

k 

I 
j~o 

i 
CI,X • - ih 

J t+J 

for i~l, ••• ,L • (5.3.9) 

There is no loss of generality in assigning the following 

values 

xt ~ 0 and h~l 

in equation (5.3.9) to obtain 

k .i k-1 
I J Cl. - i I 

j~o J j=O 

With a choice of L such that 

L ~ k-3 

.i-ls 
J 0 

J 
~ 0 for i=l, ... ,L. 

equation (5.3.11) will give a set of k-3 equations in the k 

(5.3.10) 

(5.3.11) 

(5.3.12) 

unknowns s
0
,s

1
, ••• sk-l and thus allowing three degrees of freedom. 
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For the case L=l and k=4, equation (5.3.11) gives one 

equation in four unknowns S0 ,e
1

,S2 and s
3

• This equation is 

the second consistency condition given by equation (2.4.11). 

By setting i=2,3 and 4 in equation (5.3.11) we solve for 

s
1

, s2 and s3 to give 

sl = 1.875 

Bz = -1.125 (5.3.13) 

s3 = 2.625 .. 
The parameter S

0 
is then obtained by using equation 

(5.3.13) in equation (5.3.11) for i=l to obtain 

s
0 

= -o.375 
\ 

(5.3.14) 

The above procedure makes equation (5.3.8) a linear 

multistep formula. We can associate with (5.3.8) a linear 

difference operator denoted by~ such thatoe operating on an 

arbitrary function z(x) E c""[;..~ gives the following relationship 
k k-1 

1 [Z(x) ;llJ = I a.zcx+jh)-h. I s.z' cx+jh). (5.3.15) 
j=OJ · j=O J 

Replacing z(x+jh) and z'(x+jh) by their respective Taylors 

series expansion at the point x in equation (5.3.15), we then 

obtain 
00 

I c.hiz(i)(x) 
. 1 ~ 
~= 

where the constants ci, i=O,l, ••• are given as follows, 

c = 
0 

k 

I "· j=O J 

k k 
I ja. -

j=l J 
I s. 

j=O J 
(5. ;./(,) 

k k .r-1 
1 L .r 1 l. J B.,r=2,3, ... 

J "· - (r-1)! J c = 
r! J r j=l J=l 

By setting cf=O, r=O,l, ••• 4 in equation (5.3.16), we obtain 

exactly the same set of linear systems from which we solved for 

• 

~···· ~ to obtain the values in equations (5.3.13) and (5.3.14). 
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If we take equation (5.3.8) with the coefficient of a1 set 

to zero and substituting equation (5.3.1) and (5.3.2), we then 

have the final integration formula as 

k-1 
- h I S.f +' = 

j=O J t J 

k 
I ot. 1y .-b sin(N*x .+A*)] 

j=O JL't+J t t t+J t 

-hiS. [f .-N*btcos(N*txt .+A*)'l J t+J t +J t '..l 
(5.3.17) 

.From equation (5,2.8) the undetermined coefficient bt is now 

given by 

By using 

= 
N*t • llcos (N*x +A*) t t+2 t 

(ft+3-ft+2) 
:; . 

N* (cos (N*x 3+A*) -cos (N*x 2+A*)J t t t+ t t t+ t 

equation (5.3.18) in equation (5.3.17) and 

(5. 3.18) 

re-arranging terms, we now have the final integration formula as: 

yt+k 

+ 

k-1 
=- I 

j=O 

k-1 
otjyt+j + h L S.f . . J t+J J=O 

( f -f ) t+3 t+2 
N* [cos (N*x +A*)-cos (N*x +A*)"~ t t t+3 t t t+2 t j 

k k-1 

X 

[ l: 
j=O 

ot.sin(N*x .+A*)-N*h • I S.cos(N*x .+A*j].(5.3.19) 
J t t+J t t j=O J t t+J t 

In general the 

= 

parameter b is given by 
L t 

{I ft+2 

N* llLcos(N*x 
2
+A*) 

t t t+ t 

and the final integration formula is given by 

(5. 3. 20) 



= 
k-1 

- I "· 
j=O J 

k-1 
N~h ·I S.f . 

• 0 J t+j j= 

t::,Lf 
t+2 

+ --~--~=-------
N*t::,1cos(N*x +A*) 

X 

t t t+2 t 

k ~-· 
[I a.sin(N*x .+A*)-N*hi~Lcos(N*x .+A*)] 
j =0 J t t+ J t t j = c J t t+ J t 

where {S., j=O,l, ••• ,k-1} are obtained from the k set of 
J 

(5.3.21) 

linear equations obtained by setting i=l,2, ••• ,k in equation 

(5.3.11). 

With the consistency parameters {a.,j=O,l, .•• 4} specified 
J 

by the equations (5.3.6),(5.3.13) and (5.3.14), the linear 

multistep scheme given by the equation (5.3.19) is of order 4. 

The scheme is also consistent as the consistency parameters 

have been derived to satisfy the consistency equations (2.4.10) 

and (2 .4.11). 

The first characterCstic polynomial of the linear multistep 

scheme given by equation (5.3.19) is 

p(s) = s4- s 

which has the following roots: 

01 _ _!_+1.13 
s= ' ' 2 - 2 • 

As all the roots of the first characteristic polynomial of 

(5.3.22) 

(5.3.23) 

equati~n (5.3.19) lie within a unit circle and the principal 

root is a simple root, then by definition (2.4.4), the linear 

multistep formula (5.3.19) is zero-stable. 

From the following theorem of Henrici (1962) which states 

that the necessary and sufficient condition for a linear multistep 
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scheme to be convergent is that it be consistent and zero-stable, 

we can rightly assert that the linear multistep scheme given by 

equation (5.3.19) is convergent. 

The parameters N~,A~ are used as the initial estimates in 

the next interval It+l of integration i.e. 

N[o1 = N* t=O,l, ••• ,N-k (5.3.24) t+l t 

AtQJ = A* • t=O,l, ••• ,N-k • (5.3.25) t+l t 

In the event that the Jacobian of the functions R
1

(Nt,At) 

and R2 (Nt,At) is singular, a new pair of equations is chosen 

from equations (5.2.9) to (5.2.11). However, if all possible 

choices of pairs yield unsatisfactory results, we switch to 

the alternative interpolating function (5.1.3). A brief 

discussion on the alternative integration formula based on the 

interpolating function (5.1.3) will be given in the next 

section. 



106 

5,4 THE ALTERNATIVE !NTERPOLANT 

In this section, we shall give a brief account of the 

alternative interpolating function (5.1.3) to the interpolant 

(5.1.2). 

The solution to the initial value problem (5.1.1) is locally 

represented over the interval I* defined in (5.2.1) by the 

interpolating function 
L i 

Ft(x) = I a.x + btsinh(Ntx+At). (5.4.1) 
i=O 1 

By using the same arguments for the interpolant (5.4.1) 

as for interpolant (5.1.2), we obtain the following results: 

(a) the undetermined coefficient bt is given by 

/',Lf 
t+" 

bt = L ,j=O,l, ••• ,k-1; (5.4.2) 
Nt/', cosh(Ntxt+j+At) 

(b) the parameters Nt and At can be obtained from any pair of 

the following set of functions 

L w~:, L 
R1(Nt,At) = /::, cos'~'txt+At).t, ft+l-

t,
1

cosh(Ntxt+l+At).t,
1
ft= 0, (5.4.3) 

Rz (Nt ,At) 
L L = /::, cosh(Ntxt+l +At) .t, ft+2 -

L L 
/::, cosh(Ntxt+Z+At).t, ft+l = o, (5.4.4) 

R3 (Nt ,At) 
L L 

= /::, cosh(Ntxt+Z+At).t, ft 

L L 
/::, cosh(Ntxt+At)./', ft+Z = o. (5.4.5) 

Equations (5.4.3) to (5.4.5) are obtained by setting j=O,l,2 

in equation (5.4.2). 
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(c) the initial estimates N~01and A~0Jof the parameters N~,A~ 
are given by either 

N[o] = 
[<Yor 0 

and 

'Yo [ 
3 J A(~ = -1 11 Yo [o] 

0 coth _ [QJ 2 -N0 .a 
No .~; Yo 

or by the equations 

N[o]= 
[11:Yo r 0 

and 
!1 Yo 

A[o] = tanh -l [
114

Yo J -N[o] 0 [o]3 o·a ' No . !1 Yo 

Equations (5.4.6) to (5.4.9) are obtained by replacing 

higher derivatives of f(x,y) in the equations (4.8.2) to 

(4.8.4) by the equivalent forward differences. 

(d) the final integration formula is given by: 

k-1 k-1 
yt+k = - L cr. 

. 0 J J= 
y . + h • L S.f . 

t+J j=O J t+J 

+ N* /;Lcosh(N*x 
2

+A*) 
t t t+ t 

X 

(5 .4 .6) 

(5. 4. 7) 

(5.4.8) 

(5.4.9) 

k 

[ I "· 
j=O J 

k-1 
-N*h • Is· 

t • OJ J= 
cosh(N*x .+A*U (5.4.10) 

t t+J t 

where 
N* = lim N[i] 

t i-><» t 
A [i] A* = lim 

t i- t 

and the sequence {Nfi] ,Afq i=l, •.• } are the approximate 

roots of R1 (Nt,At) and R2 (Nt,At) which are generated by the 

(5.4.11) 

(5.4.12) 
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Newton method. 

In case the integration formula given by equation (5.4.10) 

fails because of the parameter Nt vanishing or ·bu.:o.,...:...,j co ... plcz.>< 

switch to the interpolating function (5.1.2). 
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5, 5 Af>PLICAT IONS AND NUMERICAL RESULTS 

Example (5. 5. 7) 

We now consider the scalar initial value problem 

y' = -/i-y2 , y(a) = cos a 

1T 
over the range 10 ~x~11 • The theoretical solution of the 

problem (5.5.1) over the specified range is 

y(x) = cos x. 

The initial estimates of the parameters Nt and At are 

obtained as: 

0.98179374 

1.69468235 

(5.5.1) 

The integration was performed with a uniform mesh-size h= ~ 20 • 

The numerical solution was started away from x=O as the 

problem (5.5.1) does not satisfy the hypothesis of theorem 

(1.1) at x=O. 

Details of the numerical results are given in table (5.5.1). 
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TABLE (5,5.1) 

NfoL o.98179374 

A5QJ = 1. 69468235 

t NO. OF 7 
NEWTON xt N* A* y 10 xTt+1 
ITERATIONS t t t 

0 4 0.31415926 1.0000007 1.5707955 0.95105652 0.00000 

1 2 0.47123889 0.9999989 1.5707974 0.89100654 0.09962 

2 2 0.62831852 1.0000032 1.5707919 0.80901702 0.09404 

3 2 0.78539815 0.9999985 1.5707986 0. 70710681 0.08460 

4 1 0.94247778 0.9999985 1.5707986 0.58778529 0.12446 

5 2 1.09955741 1.0000037 1.5707909 0.45399054 0.16241 

6 2 1.25663704 0.9999943 1.5708053 0.30901705 0.23576 

7 1 1.41371667 0.9999940 1.5708057 0.15643451 0.21375 

8 2 1.57079630 1.0000026 1. 5707921 0.00000005 0.26212 

9 2 1.72787593 1.0000002 1.5707961 -0.15643440 0.27809 

10 2 1.88495556 0.9999967 1.5708018 -0.30901694 0.17926 

11 2 2.04203519 1.0000048 1.5707878 -0.45399044 0.16566 

12 2 2.19911482 0.9999967 1.5708028 -0.58778520 0.16873 

13 2 2.35619445 0.9999989 1.5707983 -o. 707106 7 4 0.09151 

14 2 2.51327408 1.0000098 1.5707737 -0.80901695 0.10015 

15 2.67035371 -0.89100649 0.07438 

16 2.82743334 -0.95105650 0.02741 

17 2.98451297 -0.98768832 0,04912 

18 3.14159265 -1.00000000 0.07632 
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Example {5,5,2) 

We also consider the initial value problem of Schweitzer(l974) 

given by: 

y' 
1 

y' 
2 

= 

over the range O~x~w. 

-1 

1 

0 

1 

1 sin x 
+ 

-2 2(cosx-sinx) 

The theoretical solution to the system (5.5.2) in the 

specified range is 

[

sin xl 

COS X 

(5.5.2) 

The numerical solution was obtained with a uniform mesh-size 

1f 
h-20 • 

The initial estimates of the parameters are given as: 

N[o] = 1.41197420 
0,1 

A[o] = 0.11112352 
0,1 

and 

N[o] = 0.99505019 
0,2 

A[o] = 1.68870386 
0,2 

Details of the numerical results are given in tables 

(5.5,2a) and (5.5.2b). 
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TABLE (5,5,2a) 

t NO. OF xt N* A* y 
t,1 107xT t+1,1 NEWTON t t 

ITERATION 
0 6 0.00000000 1.0000019 0.00000003 0.00000000 0.00000 

1 2 0.15707963 1.0000053 -0.00000003 0.15643446 0.04219 

2 2 0.31415926 0.9999848 0,00000130 0.30901699 0.09763 

3 2 0.47123889 1.0000195 -0.00000393 0.45399050 0.03936 

4 2 0.62831852 0. 9999779 0.00000785 0.58778524 0.02126 

5 2 0.78539815 1.0000256 -0.00001432 0. 70710678 0.03520 

6 2 0.94247778 0.9999699 0.00002432 0.80901698 0.04340 

7 2 1.09955741 1.0000356 -0.00003888 0.89100653 0.05248 

8 2 1.25663704 0.9999592 0.00005722 o. 95105650 0.06660 

9 2 1.41371667 1.0000398 -0.00006932 0.98768835 0.07632 

10 2 1.57079630 0.9999651 0.00007132 0.99999998 0.09684 

11 2 1. 72787 593 1.0000469 -0.00010703 0.98768837 0.10978 

12 2 1.88495556 0.9999144 0.00021732 0.95105650 0.11948 

13 2 2.04203519 1.0001499 -0.00041286 0.819100655 0.033 

14 2 2.19911482 0.9997400 0.00075868 0.80901700 0.11045 

15 3 2.35619445 1.0004633 -0.00140147 0. 70710683 0.14257 

16 3 2.51327408 0.9991316 0.00269235 0.58778521 0.48340 

17 2.67035371 0.45399064 0.69677 

18 2.82743334 0.30901689 1.13746 

19 2.98451297 0.15643467 1.13681 

20 3.14159265 1.00000000 1.96611 
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TABLE (5,5.2b) 

t NO.OF 
xt N* A~,2 y 7 

NEWTON t,2 t,2 10 xTt+1 , 2 
ITERATION 

0 4 0.00000000 0.99999996 1.5707963 1.00000000 0.00000 
1 2 0.15707963 0.99999962 1.5707984 0.98768834 0.09396 
2 2 0.31415926 1.0000151 1. 5707818 0.95105651 0.08331 
3 2 0.47123889 0.9999735 1.5708279 0.89100652 0.07095 
4 2 0.62831852 1.0000408 1.5707412 0.80901700 0,01963 
5 2 o. 78539815 0.9999343 1.5708924 0. 70710678 0.06018 
6 2 0. 94247778 1.0001147 1.5706209 0.58778527 0.05531 
7 2 1.09955741 0.9997664 1.5711613 0.45399050 0.10031 
8 2 1. 25663704 1.0008089 1.5695258 0.30901703 0.12626 
9 2 1.41371667 1.0007450 1.5696261 0.15643447 0.19219 

10 3 1. 57079630 0.9997980 1.5711155 0.00000005 0,23836 
11 2 1. 72787593 1.0001824 1. 5705043 -0.15643446 0.19378 
12 2 1. 88495556 0.9997519 1.5712085 -0.30901698 0.11378 
13 3 2.04203519 1.0003081 1.5702510 -0.45399052 0.38254 
14 3 2.19911482 0.9996277 1.5715125 -0.58778516 0.38153 
15 3 2.35619445 1.0004596 1.5698189 -0.70710686 0.62036 
16 3 2.51327408 0.9994182 1.5721769 -0.80901686 0,62575 
17 2.67035371 -0.89100667 0.88692 
18 2.82743334 -0.95105628 1.11933 
19 2.98451297 -0.98768865 1. 61092 
20 3.14159265 -1.00000000 2.10282 



Example (5,5.3) 

We also consider the system 

1 

1 
X Yz 

over the interval 7.38905610~x~8.98905610 with initial 

conditions 

y
1

{a) = 1 

y2(a) = 0.42516833 

where a= 7.38905610. 

(5.5.3) 

The computation was completed with a uniform mesh size-

of h=O.l. The initial estimates of parameters are given by 

and 

Jo] 
0,1 
0 

A[o] 
0,1 

N[o] 
0,2 

A[o] 
0,2 

= 0.45730571 

= -1.68002638 

= 1. 96633719 

= -14.04732875 • 

Details of the numerical results are given in tables 

(S.5.3.a) and (S.S.3b). 



TABLE (5,5.3a) 

N~011~ o.45730571 
' 

[o] 
A0 , 1~ -1.68002638 

NO.OF 
Ntl A* 6 t xt y 10 xTt+1 NEWTON t t,1 

ITERATIONS 
4 0 7.38905610 0.4356458 -1.5280714 1.00000000 0.00000 
6 1 7.48905610 0.4119962 -1.3370577 1.04132752 0,00418 
9 2 7.58905610 0.3998252 -1.2359248 1.08028699 0.00527 

9 3 7.68905610 0.3700663 -0.9810982 1.11689773 0.00623 

13 4 7.78905610 0.3517235 -0.8190168 1.15118345 0.06750 
16 5 7.88905610 0.3426462 -0.7366731 1.18317107 0,00196 

8 6 7. 98905610 0.3113717 -0.4442881 1. 21289184 0,03444 

15 7 8.08905610 0.2944521 -0.2809082 1.24037929 0.05815 

3 8 8.18905610 0.2883406 -0.2205216 1.26566957 0.04245 

9 9 8.28905610 0.2531217 0.1379613 1.28880209 0.03104 

4 10 8.38905610 0.2371443 0.306oo69 1.30981705 0.01801 

11 11 8.48905610 0.2341942 0.3376040 1. 3287 5693 0.11055 

·8 12 8.58905610 0.1905928 0.8182852 1.34566660 0,00710 

13 8.68905610 1. 36059045 0.03971 

14 8.78905610 1.37357500 0.19191 

15 8,88905610 1.38466850 0.02773 

16 8.98905510 1.39391758 0.10814 
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TABLE (5 ,5 .3b) 

N[o) = 1. 96633719 0,2 

[o) 

A0,2 = -14,04732875 

NO.OF 6 
NEWTON t xt N* A* y 

t,2 10 xTt+1 t,2 t,2 
ITERATIONS 
6 0 7.38905610 1.5760359 -11.2858253 0.42516833 0.00000 

5 1 7.48905610 1.3724154 -9.8070483 0.40140655 0.00329 

5 2 7.58905610 1. 2262821 -8.7393236 0.37781517 0.00329 

5 3 7.68905610 1.1109863 -7.8907389 0.35443898 0.00329 

5 4 7.78905610 1.0175952 -7.1975520 0.33131763 0.36287 

4 5 7.88905610 0.9436730 -6.6435050 0.30848809 0.26902 

4 6 7.98905610 0.8771 44 -6.1393280 0.28598162 0.21651 

4 7 8.08905610 0.8182216 -5.6876621 0.26382606 0.55344 

4 8 8.18905610 o. 7721938 -5.3301387 0.24204741 0.41530 

4 9 8.28905610 0.7261200 -4.9671397 0.22066680 0.34360 

4 10 8.38905610 0.6827084 -4.6200680 0.19970275 0.68269 

10 11 8.48905610 0.6514154 -4.365 428 0.17917270 0.50778 

4 12 8.58905610 0.6159374 -4.0726420 0.15908980 0.42887 

13 8.68905610 0.13946534 0. 77925 

14 8.78905610 0.12031009 0.56714 

15 8.88905610 0.10163100 0.48782 

16 8.98905610 0.08343378 0.85443 
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We also obtained the numerical solution to the initial 

, value problem (5.5.3) using the following numerical integration 

schemes: 

(a) the variable order Gragg-Bulirsch-Stoer algorithm with 

orders in the range 6~~8. 

(b) Krogh's variable order Adams method and 

(c) the one-step scheme proposed in chapter IV. 

Apart from Krogh's algorithm which requires a very small 

mesh-size to generate the required starting values, the integration 

procedures were carried out with a uniform mesh size of h=0.05. 

The details of the numerical results are given in Tables 

(5.5.3c) to (5.5.3f). 

Whilst the one-step scheme proposed in chapter IV compares 

favourabl~ with Krogh's scheme in terms of efficiency and 

accuracy, the linear multistep scheme proposed in this chapter 

has a smaller truncation error than the variable order Gragg­

Bulirsch-Stoer algorithm despite the fact that the degree of 

accuracy in this scheme is limited by the accuracy to which 

the oscillatory parameters N; and A~ are obtained. 
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TABLE ( 5.5.3c) 

GRAGG-BULIRSCH-STOER RATIONAL EXTRAPOLATION SCHEME 

ORDER M: 6::M::8 

H=O.D5 

X y1 Y2 
8 10 xT

1 
8 10 xT2 

7.38905610 1.00000000 0.42516833 0.00000 o.ooooo 

7.48905610 1.04132749 0.40140654 0.21539 0.61680 

7.58905610 1.08028699 0.37781517 0.32178 0.95133 

7.68905610 1.11689773 0.35443898 0.18698 1.28228 

7. 78905610 1.15118329 0.33131809 0. 43699 1.61252 

7.88905610 1.18317105 0.30848842 0. 72587 1.92924 

7.98905610 1.21289174 0.28598187 1.03045 2.24703 

8.08905610 1.24037913 0.26382672 1.36791 2.5449 

8.18905610 1. 26566962 0.24204789 1. 72773 2.83207 

8.28905610 1.28880197 0.22066718 2.10128 3.11458 

8.38905610 1. 30981695 0.19970353 2.49607 3.37703 

8. 48905610 1.32875712 0.17917326 2.89631 3.63112 

8.58905610 1.34566651 0.15909026 3.31714 3.86164 

8. 68905610 1.36059045 0.13946618 3.74680 4.08938 

8.78905610 1.37357535 0.12031068 4.18672 4.28416 

8.88905610 1.38466846 0.10163149 4.63651 4.47329 

8.98905610 1. 39391772 0.08343466 5.08666 4.64193 
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TABLE (5,5,3d) 

KROGH 1 s VARIABLE ORDER ADAM's 

H X y1 y2 
8 8 10 xT

1 
10 xT

2 

0.00625 7.38905610 1.00000000 0.42516833 0.00000 0.00000 

0.01250 7.48905610 1.041327 52 0.40140655 0.32222 0.28893 

0.02500 7.58905610 1.08028700 0.37781517 0.29030 0.29546 

0.05000 7.68905610 1.11689774 0.35443898 0.26328 0.30217 

0.05000 7.78905610 1.15118331 0,33131811 0.24353 0.31370 

0.05000 7.88905610 1.18317107 0.30848844 0.21596 0.31750 

o.osooo 7. 98905610 1.21289177 0.28598189 0.19991 0.33042 

0.05000 8.08905610 1.24037916 0.26383675 0.17667 0.33276 

0.05000 8.18905610 1.26566967 0.24204792 0.15350 0.33537 

0.05000 8.28905610 1.28880202 0.22066722 0.13606 0.34482 

0.05000 8.38905610 1.30981701 0.19970357 0.11214 0.34691 

0.05000 8.48905610 1.32875719 0.17917330 0.09748 0.35387 

0.05000 8.58905610 1.34566659 0.15909030 0.07569 0.35153 

0.05000 8.68905610 1.36059054 0.13946623 0.05795 0.36125 

0.0500 8.78905610 1.37357545 0.12031072 0.03985 0.35339 

0.05000 8.88905610 1.38466857 0.10163153 0.02014 0.35641 

0.05000 8.98905610 1.39391784 0.08343471 0.00426 0.35971 
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TABLE (5.5.3e) 

FOURTH ORDER ONE STEP FORMULA (CHAPTER IV) 

H=0.05 

X y1 y2 
8 10 xT

1 
8 10 xT

2 

7.38905610 1.00000000 0.42516833 0.00000 0.00000 

7. 48905610 1.041327 5 0.40140655 0.33077 0.37823 

7.58905610 1.0802870 0.37781519 0.30289 0.44596 

7.68905610 1.1168977 0.35443898 0.27497 0.49852 

7.78905610 1.1511833 0.33131810 0.25029 0.54598 

7.88905610 1.1831711 0.30848843 0.21396 0.57941 

7.98905610 1.2128918 0.28598189 0.18873 0.61756 

8.08905610 1. 2403792 0.26382675 0.15524 0.64134 

8.18905610 1. 2656697 0.24204792 0.12203 0.66269 

8.28905610 1.2888020 0.22066721 0.09028 0.68845 

8.38905610 1.3098170 0.19970357 0.05103 0.70443 

8.48905610 1.3287572 0.17917329 0.01875 0.73263 

8.58905610 1.3456666 0.15909029 0.01799 0.73162 

8.68905610 1.3605905 0.13946622 0.05117 0. 75029 

8.78905610 1.3735754 0.12031072 0.08706 0.75037 

8.88905610 1.3939178 0.08343470 0.15622 0. 76407 



TABLE (5.5.3f) 

LINEAR MULTISTEP SCHEME (CHAPTER V) 

H=0.05 

X y1 Y2 
8 10 xT

1 
8 10 xT

2 

7.38905610 1.00000000 0.42516833 0.00000 0.00000 

7.48905610 1.04132751 0.40140654 0.85544 0.65911 

7.58905610 1.08028700 0.37781515 0.30569 0.1886o4 

7.68905610 1.11689772 0.35443896 0.25641 1. 79557 

7.78905610 1.15118330 0.33131808 0.08997 2.62959 

7.88905610 1.18317107 0.30848840 0.21996 3.46230 

7. 98 905610 1. 21289176 0.28598186 0.34853 3.02981 

8.089o5610 1.24037915 0.26382671 0.42479 3.68022 

8.18905610 1. 26566966 0.24204787 0.11111 4 .38708 

8.28905610 1.28880200 0.22066717 0.65359 3.76385 

8.38905610 1. 30981699 0.19970352 0.92547 4.34148 

8.48905610 1.32875717 0.17917324 0.57051 5.01575 

8.58905610 1.34566656 0.15909025 1.o6394 4.23388 

8.68905610 1.36059051 0.13946618 1.50476 4.77740 

8.78905610 1.37357542 0.12031066 1.11397 5.44368 

8.88905610 1.38466853 0.10163149 1.54571 4.53306 

8.98905610 1.39391778 0.08343466 2.28377 5.01751 



CHAPTER VI 

A LINEAR MULTISTEP SCHEf~E FOR SOLVIrlG A 
SPECIAL CLASS OF SECOND ORDER DIFFERENTIAL 

EOU.~TIONS \41TH OSCILLATORY SOLUTIONS 
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6.1 INTRODUCTION 

Shaw (1967) proposed a multistep integration formula 

for solving initial value problems of the form 

y (r) = f (x,y) 

y(i)(a) = n., i=O,l, ... ,r-1 for r~l. 
1 

The numerical integration procedure was based on the 

representation of the solution y(x) to problem (6.1.1) by 

the interpolating function 

F(x) = 
1+1 0 

L a.x
1 

, L+l~r 
i=O 

1 

and is particularly well suited to systems of ordinary 

(6.1.1) 

(6.1.2) 

differential equations whose solutions contain singularities. 

Henrici (1962) and Lambert (1973) both discussed linear 

multistep methods for obtaining the numerical solutions of 

second order ordinary differential equations in the form 

(6.1.1). The linear k-step methods are of the form: 

k 
L S.f . 

j=O J t+J 

In chapter V, we proposed a linear multistep scheme 

for integrating systems of the form, 

(6.1.3) 

y' = f(x,y), y(a) = n , (6.1.4) 

whose solutions are known to be oscillatory. The 

integration scheme was based on the local representation 

of the solution to (6.1.4) by either a combination of a 

polynomial and trigonometric function or a polynomial and 

hyperbolic function. This approach requires a transformation 
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of the second order differential equation 

y" = f (x,y) (6,1.5) 

into a first order system u'=v; v'=f(x,u,v) where u=y and 

v=y'. The introduction of the first derivative explicitly 

into an equation in which it does not appear approximately 

doubles the amount of computation. The increase. in the computation c:an 

increase the tendency of the propagation of round off errors • 

For the sake of computational efficiency and to achieve a 

higher degree of accuracy, we shall use a similar approach 

as in chapter V to develop a linear multistep scheme to 

integrate directly special second order systems of the 

form (6.1.5) whose solutions are known to be of an 

oscillatory nature. 
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6,2 THE INTERPOLATING fUNCTION AND THE DEtERMINATION 

OF THE PARAMETERS fiT AND AT 

We shall denote by k, the step-nu~~~of the linear multistep 

scheme to solve the initial value problem 

y" = f (x,y) , 

y(a) = n (6.2.1) 

y' (a) = n* 

The necessary additional starting values{y
1

,y
2

, ••.•• ,yk_1 } 

are obtained by the variable order Gragg-Bulirsch-Stoer 

algorithm as discussed in chapter III. 

In order to obtain the numerical solution yt+k at 

x=xt+k' the solution to problem (6.2.1) is locally represented 

over the interval 
k-1 

I*= V \+i 
i=O 

by the interpolating function 

L+l 
I a xr + btsin(Ntx+At),L>-1 

r=O r 

where Lis a positive integer, b and {a ,r=O,l, .•. ,L+l} 
t r 

(6.2.2) 

(6.2.3) 

are real undetermined coefficients whilst Nt and At are the 

oscillatory parameters whose values are obtained to a 

specified degree of accuracy at each step of the integr~tion 

procedure. 

As the interpolating func•ion (6.2.3) is required to pass 

through the points {(xt+j'Yt+j),j=O,l, ••• ,k}, the first set 

of constraints on the interpolant are then given by 

F t (x) I x=x 
t+j 

= 
L+l 
I a xr . + b sin(Ntxt+"+A )=y ., 

r=O r t+ J t J t t+ J 

j=O,l, •.• ,k. (6.2.4) 
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The interpolating function (6,2.6) is also expected to 

satisfy the differential equation (6,2.1) at the mesh points 

{x ., j=O,l, ••• ,k}. Hence the second set of constraints are 
t+J 

given by 

dZ.. t (x) 

dx2 
X"'X • 

t+J 

= 
L+l . 

\' . (. 1) 1-2 L 1.. 1- a.x . -
i=O 1 t+J 

j=O,l, ... ,k-1 • 

According to theorem (2.1), the Lth forward difference 

will annihilate all polynomials of degree less than L. 

L Hence, applying the operator ~ to both sides of equation 

(6.2.5) gives the relationship: 

~Lft+j = -N~bt~Lsin(Ntxt+j+At)' j=O,l, ••• ,k-1. 

(6.2.5) 

(6.2.6) 

Equation (6.2.6) implies that, 

-~Lf . 
----,

2
-,L,..,t:.:+_,_J _____ , j=O,l, ... ,k-1.(6.2.7) = 

N ~ sin(Ntxt .+A ) 
t +J t 

In particular, for j=O,l,Z we have 

= 

= 

= 

-~Lf 
t 

N~ ~Lsin(Ntxt+l+At) 

-~Lf 
t+2 

N~ ~Lsin(Ntxt+Z+At) • 

From equation (6.2.8) we obtain the following three 

trigonometric functions in the parameters Nt and At: 

(6.2.8) 
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(6.2.9) 

(6.2.10) 

and finally, 

R3(Nt,At) ~ ~Lft+2 .~Lsin(Ntxt+At)-~Lft.~Lsin(Ntxt+ 2+At)~O • 

(6.2.11) 

The values of the parameters N~ and A~ can be obtained 

by using any of the standard algorithms for solving systems 

of nonlinear equations in any pair of the equations (6.2.9) 

to (6.2.11). For example, we shall adopt the Newton 

iteration scheme to obtain the roots N~ and A~ from equations 

(6.2.9) and (6.2.10) for the case L~l and k=4. 

and 

Equation (6.2.9) is now given by: 

Rl (Nt'At) = (ft+ 2-ft+l) ~in(Ntxt +At)-sin(Ntxt+l+At)] -

(ft+l-ft) Gin(Ntxt+l +At)-sin (Ntxt+2 +At2J=o (6.2.12) 

R2 (Nt,At) = (ft+J-ft+2)[sin(Ntxt+l+At)-sin(Ntxt+2+At)] 

-(ft+2-ft+l)~in(Ntxt+2+At)-sin(Ntxt+ 3+Atlf0•(6.2.13) 
We denote the partial derivatives of R1 (Nt,At) and R2 (Nt,At) 

with respect to the parameters Nt and At as follows: 

Rl N 
ilR1(Nt,At) 

R2 N 
8R2 (Nt,At) 

= = 

' t ilNt , t ilNt 

Rl A 
8R1 (Nt'At) 

•nd R2 A 
8R2 (Nt ,At) 

= = 
, t ilAt , t ilAt 
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From equation (6,2,12) and (6.2,13), these partial derivatives 

are given as follows: 

-(ft+ 1-ft) G't+l cos (Ntxt+l +At)-xt+2cos (Ntxt+2 +At!] ' 

(6.2.14) 

-(ft+2-ft+1)~t+2cos(Ntxt+2+At)-xt+3cos(Ntxt+3+At~' 

(6.2.15) 

(6.2.16) 

and finally, 

(6.2.17) 

Let N[i]and A[i] denote the estimates of the roots N* and 
t t t 

A* at the ith iteration of the Newton Raphson 
t 

root finding 

and R~il denote the h d R[i] R[i] R[i] se erne, an 
1,Nt' 2,Nt ' 1,At 

' t 
partial derivatives of the 

at N =N [{)and A =A [i] 
functions R1 (Nt,At) and R2 (Nt,At) 

. t t t t . The determinant of the Jacobian J 

of the functions R1 (Nt,At) and R2 (Nt,At) is denoted by J and 

given by 

R[i] R[i] 

J 
1 ,Nt 1 ,At 

(6.2.18) = 

R[i] 
2,Nt 

R[ij 
2,At 



The correction terms <SNPJ, oAPJ are obtained as 

["fll -1 [R[;J -R[\] J =-J 2,At 2,Nt 

llA [(] -R[i] R[i] 
t l,At l,Nt 

where 

and 

The improved parameters are expressed as: 

N[i+l]= N[i] + ll N[i] 
t t t • 

and A[i+l]= A[i] + ll A[i] 
t t t • 

If we define the corrector vector lla as: 

lla = <oN [iJ llA [i] l 
t • t 

the Newton iteration is halted when 

I 1<~~1 I < € 
rnax ' 

where s is the allowable tolerance. max 

['fD] 
R((j 

2 

128 

(6.2.19) 

(6.2.20) 

(6.2.21) 

(6.2.22) 

(6.2:23) 

(6.2.24) 

The limiting values of the parameters are then given as: 

N* = lim [i] 
t i -t-oo 

Nt (6.2.25) 

and 
A* = lim A[i] 

t i-+«> t (6.2.26) 

As it is desirable to have good initial estimates 

N~oJ, Af
0
Jof the parameters N~ and A~ in order to ascertain 

the convergence of the Newton's iteration, we propose a scheme 

similar to the one used in 

The initial estimates 

chapter V. 

N[o]and A[0tre 
0 0 

obtained from 

equations (4.4.13) to (4.4.15) and are given by either 
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= (6,2,27) 

and 

(6.2.28) 

or 

(6.2.29) 

and 

A[ot 
0 

(6.2.30) 

The starting values of the multistep scheme which 

are generated by the variable order Gragg-Bulirsch-Stoer 

algorithm are used in equations (6.2.27) to (6.2.30). 

The approximate roots N~ and A~ given by equation 

(6.2.25) and (6.2.26) will be used in the final integration 

formula to obtain the numerical solution yt+k at x=xt+k' 

t~O. The derivation of the integration formula will be 

discussed in the next section. 
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6,3 THE DERIVATION'OF THE INTEGRATION FORMULAE 

In this section, we shall eliminate the undetermined 

coefficients {ar,'r=O,l, •.• ,L+l} in the interpolating function 

(6.2.4) as well as to obtain values for the consistency 

parameters {a.,B.; j=O,l, •.. ,k}. These parameters are determined 
J J 

so as to ensure the consistency and zero-stability of the resultant 

linear multistep formula for solving the initial value problems 

of the form (6.2.1) whose solutions are oscillatory. 

Let the function z . be defined as: 
t+~ 

zt+i = yt+i- btsin(Ntxt+i +At) • 

The second derivative z" . of z . is then given by 
t+~ t+~ 

z~+i = ft+i + N~btsin(Ntxt+i+At) • 
We now combine equations (6.3.1) and (6.3.2) with equations 

(6.2.4) and (6.2.5) 

and 

to obtain 
1+1 

i 
a.xt . 
~ +J 

z . 
t+~ I 

i=O 

L+l 
~ . (. 1) i -2 
L, ~ ~- aixt+J" . 

i=O 

We shall now use equations (6.3.3) and (6.3.4) to 

generate the consistency parameters {a.,B.;j=O,l, ••• ,k}. 
J J 

At the moment, we only know that these parameters are real 

(6.3.1) 

(6.3.2) 

(6.3.3) 

(6.3.4) 

numbers. For j=O,l, ••• ,k; we multiply equation (6.3.3) by 

a. and equation (6.3.4) by -h~. and add columnwise to obtain 
J ' J 

k k 
I a.zt+J" - h

2 I B.z'' . 
j=O J j=O J t+J 

L+l [ k i 2 k I a. I a.x . - h I 
i=O ~ j=O J t+J j=O 

. (. 1) i-2u ~ ~- B.x . • 
J t+J 

(6.3.5) 
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Since we are only interested in an explicit scheme, 

Sk is set to zero. It is also assumed that ak~O and that 

With consistency criteria in mind, the parameters 

{a.,j=O,l.,, •• ,k} are obtained from the following equations: 
J 

and 

k 
I a. 

j=O J 

k 

0 ' 

I ja. = 0 • 
j=O J 

(6.3.6) 

(6.3.7) 

For the case 1=1 and k=4, equations (6.3.6) and (6.3.7) 

constitute a linear system containing two equations and five 

unknowns a
0

,a
1

,a
2

,a
3 

and a
4

• As the system is under-determined, 

we have three degrees of freedom. In all practical applications, 

we set 

and 

By using the values in equation (6.3.8) in equations 

(6.3.6) and (6.3.7), we obtain 

a 1 = 0.5 , 

a3 -1.5 . 

By using equations (6.3.6) and (6.3.7) in equation 

(6.3.5), the coefficients of a0 and a
1 

vanish and equation 

(6.3.5) is reduced to the form 

k 
I a.zt+' 

j=O J J 

1+1 

k-1 
- h

2 I s.z" . 
. 0 J t+J J= 

(6.3.8) 

(6.3.9) 

= I 
k . 

a. [I a.x~+' 
l. j=O J J 

2 k-1 • ~ 
- h I i(i-l)S.xl.-. , (6.3.10) 

j =0 J t+ i=2 



We still have to determine the parameters s
0
,s

1
,s

2
, and s

3
• 

There is no loss of generality in setting the coefficients of 

a2 , a3 , a4 and a5 to zero in equation (6.3.10). This gives 

132 

k • 
I a.x\. = 

j=O J t J 

k-1 . 
h

2 I i(i-l)B.xt1-~ , i=2,3,4,5 • (6.3.11) 
j=O J +J . 

We now set h=l and xt=O in equation (6.3.11) to obtain 

k . 
I .1 

J "'· = 
j=O J 

k-1 
I i(i-l)s. 

j=O J 

i-2 
J i=2,3,4,5 • (6.3.12) 

The system of linear equations (6.3.12) is solved to give: 

and 

s0 = -0.083333 

s1 = o.37s 

s2 o 

1.208333 

(6.3.13) 

• 

This procedure makes equation (6.3.10) an explicit linear 

multistep formula with an associated linear equation! which 

can be written as 
k k-1 

£[z(x);~ = Ia.z(x+jh)-h2• I S.z"(x+jh), 
j=OJ j=O J 

(6.3.14) 

for an arbitrary function z (x) e: Coo [a, b] • 

On obtaining the Taylor's expansion of z(x+jh) and 

z"(x+jh) about the point x and substituting in equation 

(6 .3 .14) to give, 

.P r :t ( 1) r (r) 
d-.. Lz(x);~ = c 0 z(x)+c 1hz (x)+ •• +crh· z (x)+._.(6.3.15) 

where 
k 

c = I a.' 0 j=O J 

k 
cl = I ja. (6.3.16) 

j=O J 



k 
j2 (:1. ~ 1: tl. , 

J j=O J 

1 k 1 
er = -r' I { "'1· - 7(r-=_:.,;2') ! 

' j=O 
,r=2,3, ... • 

The constants c , r=O,l, •.• will be used later in determining 
r 

the order and convergence properties of the linear multistep 

formula. 

From equation (6.2.7), we can obtain the parameter bt 

as 

b = 
t 

We can now write equation (6.3.10) with the 

coefficients of {ai' i=O,l, ••• ,L+l} set to zero i.e.Jthe 

right hand side of equation (6,3.10) vanishes identically. 

Hence we have: 
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k 
I"' .z . 

j=O J t+J 

k-1 
- h

2 I tl.z" . 
j=O J t+J 

(6.3.18) 
::. 0· 

By using equations (6.3.1) and (6.3.2) in equation 

(6.3.18), we obtain 

k 
I a. [Y .-btsin(N*xt+'+A*j} 

. 0 J t+] t J t 
J= 

2 k-1 2 
-h I S. [ft .+N* b sin(N*x .+A*)] = 0 , 

j=O J +J t t t t+J t 

We eliminate the parameter bt from equation (6.3.19) 

by using equation (6,3.17). The final integration formula 

is now given by 
k-1 
) a].yt+J' 
yO 

k-1 
2 

- h I s.ft . 
• 0 J +J J= 

(6.3.19) 



J3ll 

+ 
N*2 'sin(N*x +A*)-sin(N*x, +A*)1 

t L' t t+3 t t t+2 t 'J 

X 

k 
[I a.sin(N*x .+A*) 

. 0 J t t+J t J= 

2 2 k-1 
+ N* h I ~.sin(N*x .+A*)] • 

t j=O J t t+J t 

According to Henrici (1962), the explicit linear 

multistep formula (6.3.20) together with the linear 

operatorJ: is said to be of order p if the constants 

er' r=O,l, ••• defined by equations (6.3.16) are such that 

c = 0 for r~p+l 
r 

and cp+z#'O 

Hence the linear multistep scheme (6.3.20) obtained by 

setting L=l and k=4 is of order p=4. 

(6.3.20) 

(6.3.21) 

The linear multistep method given by equation (6.3.20) 

is said to be convergent if for all functions f=f(x,y) 

satisfying the conditions of theorem (1.1) and all constants 

11, n*; 

if y(x) is the solution to the initial value problem 

(6.2.1) such y(a) = n; y'(a) =n*, 

lim 
h+O 
xt+x 

y = y(x) 
t 

holds for all x £ [a,b] and for all sequences {yt} defined 

by equation (6.3.20) with the starting values y = n (h) 
1.1 1.1 

satisfying the conditions 

and 

lim 
h+O 

lim 
h+O 

for 1.1 = O,l, .•• ,k-1. 

n (h) 
1.1 

= n, 

= 

(6.3.22) 

(6.3.23) 



135 

We now define the first and second characteristic polynomials 

of the linear multistep method as follows: 
k . 

and 

p(s) = I <>.sJ 
j=O J 

a(s) = 
k . 
I s. SJ 

j=O J 
.. 

The method is said to be consistent if it is at least 

of order p~l i.e. c
0 

= c1 = c2 = 0. This implies that, 

p(l) = p'{l) = o, 

and p "(1) = 2a(l) • 

The first consistency condition in equation (6.2.26) 

indicates that the first characteristic polynomial of a 

consistent linear multistep method should have a repeated 

root at s=+l. 

(6.3.24) 

(6 .3 .25) 

(6.3.26) 

If we now use equations (6.3.8) and (6.3.9) in equation 

(6.3.24), we have 

p(s) = t (2s 4 - 3s
3 

+ s) 

whose roots are 

1 
s = +l(double), s=O and s=- 2 

Also, we have that p"(l) = 2o (1). Hence, 

multistep formula (6.3.20) is consistent. 

The linear multistep method (6.3.20) 

) 

the linear 

is said to 

zero-stable if no root of the first characteris;tir 

be 

polynomial p(s) has modulus greater than one, and if every 

root of modulus unity has multiplicity not exceeding two. 

From equations (6.3.21) and (6.3.26) we observe that 

(6.3.27) 

(6.3.28) 

linear multistep formula (6.3.20) is zero stable and hence by 

a theorem in Henrici (1962~ the formula (6.3.20) is convergent. 
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In the event that the interpolating function (6,2,3) 

proves unsatisfactory as a result of the parameter N* J~";" t...:...5 
t 

b · · a infinite or complex, a new pair of equations_ is or, -t(..om""" J 

, chosen from equations (6.2.9) to (6.2.11). However if all 

possible pairs of equations fail to give the desirable values 

of N~ and A~, the alternative interpolant to be considered 

in the next section can be applied. 
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5,4 THE: ~~t:TERNAtiVE INtERPOLATING FliNctloN 

In the event that the interpolating function (6,2.3) is 

unsuitable, we introduce 
L+l 

F t (x) = L 
r=O 

the alternative interpolant: 

The undetermined coefficients b ,{a ,r=O,l, ••• ,L+l} as well 
t r 

as the parameters Nt and At are identical to those of the 

interpolating function (6.2.3). 

(6.4.1) 

By adopting an identical procedure as in sections (6.2) 

and (6.3) to the interpolating function (6.4.1), we obtain 

the following results: 

(a) The parameter bt is now given by: 

j=O,l, ... ,k-1 

(6.4.2) 

(b) The hyperbolic functions to be solved for the parameters 

Nt and At are given as follows: 

and 

R1(Nt,At) = ~Lft+l'~1sinh(Ntxt+At) 

-~1ft.~Lsinh(Ntxt+l+At)=O, 

R2(Nt,At) = ~Lft+2'~Lsinh(Ntxt+l+At) -

~Lft+l'~1sinh(Ntxt+2+At) = 0 

As before, we solve any two suitable pairs of the 

• 

equations (6.4.3) to (6.4.5) for the parameters Nt and At. 

(6.4.3) 

(6.4.4) 

(6 .4 .5) 



The limiting values of these parameters are denoted by N* and 
t 

A*. 
t 

(c) The initial estimates NfoJ and Af0Jused in the Newton 

iteration to generate N* and A* are given either as: 
t t 

and 
[ <YoJ! 

t. Yo 

[o]_ -1~ ~'>
3

Yo ] _ [o] . A0 - coth [OJ 2 N0 .a, 
No .t. Yo 

[ ::::J' . 
or 

and 

[o]_ -1 [~'>4Yo j- R A0 - tanh [0] 3 NQ·a . 
No .t. Yo 

Equations (6.4.6) to (6.4.9) are obtained by replacing 

the higher order derivatives of f(x,y) in equation (4.8.2) 

to (4.8.4) by the equivalent higher forward differences. 

(d) The final integration formula for the case L=l and 

k=4 is given as follows: 

k-1 k-1 
- _I "jY t+j 

2 
yt+k = + h I s. ft+. 

J=O j=O J J 

X + 
N* 2 rsinh(N*x +A*)-sinh(N*x +A*)] t I-' t t+3 t t t+2 t 

k-1 

(6.4.6) 

(6.4.7) 

(6.4.8) 

(6.4.9) 

k 2 2 [ I a.sinh(N*x .+A*)-N* h 
. 0 J t t+J t t 

I s.sinh(N*x .+A*)] • 
j=O J t t+J t J= 

(6.4.10) 

By following the same procedure as in section (6.3) we 



can readily establish that the linear multistep formula given 

by equation (6,4,10) is consistent and zero stable and hence 

convergent. 

TI9 
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6,5 APPLicAtioNs ~No NuMERICAL REsuLTs 

We consider the ~a'j!,eigh' s oscillator equation given by 

(1.5.2) for the case k=O and n=l. This yields the system, 

y" = -y • (6.5.1) 

The numerical solution to the problem (6.5.1) was obtained in 

the range O~x:;:.11 with three sets of initial conditions:-

(a) The first set of initial conditions are given as follows, 

y(O) = 0 , 

and y' (0) = l . 

The problem (6.5.1) with the initial conditions given by 

equation (6.5.2) has theoretical solution 

y(x) = sin(x) • 

Details of numerical results are given in table (6.5.la). 

(b) The second set of initial conditions are specified as: 

y (0) = l ' 

y'(O)=O. 

With these initial values, the problem (6.5.1) has the 

theoretical solution 

y(x) = cos x 

The details of the numerical results are available in tane 

(6.5.lb). 

(c) Finally, we assign the initial values: 

y(O) = l, 

y t (0) = l ' 

to the problem (6.5.1). This yields a theoretical solution 

y(x) = sin x + cos x. 

The details of the numerical solution are given my table 

(6.5.1c). 

(6.5.2) 

(6.5.3) 

(6.5.4) 

(6.5.5) 

(6.5.6) 
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TABLE (6,5,1a) 

N~~= 0.98659652 

AtoJ= o.13617502 

t NO. OF 
10

8
xTt+1 NEWTON X N A yt 

ITERATIONS t t t 

0 6 0.00000000 0.9999999 0.0000000 0.0000000 0.00000 

1 1 0.15707963 0.9999999 0.0000001 0.15643446 0.67337 

2 1 0.31415926 1.0000000 0.0000001 0.30901699 0.57362 

3 1 0.47123889 1.0000000 0,0000000 0.45399050 0.48390 

4 1 0.62831852 1.0000000 0.0000000 0.58778525 0.26624 

5 1 0.78539815 1.0000000 0.0000000 0.70710678 0.27448 

6 1 0.94247778 1.0000000 0.0000000 0.80901699 0.28195 

7 1 1.09955741 1.0000000 0.0000000 0.89100652 0.28357 

8 1 1.25663704 1.0000000 0.0000000 0.95105652 0.28230 

9 1 1. 41371667 1.0000000 0.0000001 0.98768834 0.27820 

10 1 1. 57079630 1.0000000 0.0000000 1.00000001 0.26921 

11 1 1. 72787593 1.0000000 0.0000000 0.98768835 0.25807 

12 1 1. 88495556 1.0000000 0.0000001 0.95105653 0.24128 

13 1 2.04203519 1.0000000 0.0000000 0.89100654 0.22278 

14 1 2.19911482 1.0000000 0.0000001 0.80901702 0.19748 

15 1 2.35619445 1.0000000 0.0000000 0.70710681 0.17049 

16 1 2.51327408 1.0000000 0.0000000 0.58778529 0.13335 

17 2.67035371 0.45399054 0.08782 

18 2.82743334 0.30901704 0.02863 

19 2.98451297 0.15643451 0.03885 

20 3.14159265 0.00000000 0.13890 
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TABLE (6.5.1b) 

N~o] = o. 98659652 

A~o] = 1. 72836577 

t NO. OF 8 
NEWTON xt Nt At \ 10 xTt+l 
ITERATIONS 

0 4 0.00000000 0.9999980 1.5707963 1.00000000 0.00000 

1 2 0.15707963 1.0000008 1.5707963 0.98768834 0.99420 

2 2 0.31415926 0.9999997 1.5707964 0.95105651 0.50121 

3 1 0.47123889 1.0000001 1.5707963 0.89100652 0.75607 

4 1 0.62831852 1.0000000 1.5707964 0.80901699 0.79637 

5 1 0.78539815 1.0000000 1. 5707963 0. 70710677 1.01652 

6 1 0. 94247778 1.0000000 1. 5707964 0.58778525 1.24184 

7 1 1.09955741 1.0000000 1.5707964 0.45399049· 1.48623 

8 1 1.25663704 1.0000000 1.5707964 0.30901699 1. 75310 

9 1 1.41371667 1.0000000 1.5707963 0.15643446 2.05377 

10 1 1.57079630 1.0000000 1. 5707963 0.00000000 2.39258 

11 1 1. 72787593 1.0000000 1.5707964 -0.15643446 2.02908 

12 1 1.88495556 1.0000000 1.5707963 -0.30901699 1. 71391 

13 1 2.04203519 1.0000000 1.5707963 -0.45399049 1.43243 

14 1 2.19911482 1.0000000 1.5707964 -0.58778524 1.17677 

15 1 2.35619445 1.0000000 1. 5707963 -0.707106 7 8 0.94322 

16 1 2.51327408 1.0000000 1.5707964 -0.80901698 0.71995 

17 2.67035371 -0.89100651 0.51328 

18 2.82743334 -o.9510S651 0.31288 

19 2.98451297 -0.98768834 0.12043 

20 ' 3.14159265 -1.00000000 0.70577 
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TABLE (6,5.1c) 

N~o] = 1.05782428 

A~OJ = 0. 94022931 

t NO. OF 
8 NEWTON xt N At yt 10 xTt+1 ITERATIONS t 

0 5 0.00000000 1.0000009 0.7853975 1.00000000 o.ooooo 

1 2 0.15707963 0.9999993 0. 7853987 1.14412281 0.30609 

2 2 0.314149261.0000006 0.7853977 1.26007351 0.89498 

3 2 0.47123889 0.9999992 0.7853988 1.34499703 0.58580 

4 1 0.62831852 0.9999996 0.7853985 1.39680226 0.51850 

5 1 0.78539815 1.0000001 0.7853981 1. 41421358 0.62325 

6 1 0.94247778 1.0000000 0.7853982 1. 39680227 0.73099 

7 1 1.09955741 1.0000000 0.7853981 1. 34499705 0.82967 

8 1 1.25663704 1.0000000 o. 7853982 1.26007355 0.92846 

9 1 1.41371667 1.0000000 0.7853982 1.14412285 1.02346 

10 1 1.57079630 1.0000001 0.7853981 1.00000005 1.11831 

11 1 1. 72787593 1.0000000 0.7853982 0.83125393 1. 21421 

12 1 1. 88495556 1.0000000 0.7853981 0.64203958 1.30760 

13 1 2.04203519 1.0000000 0.7853982 0.43701609 1.40885 

14 1 2.19911482 1.0000000 0.7853981 0.22123181 1.51464 

15 1 2.35619445 1.0000000 0.7853981 0.00000007 1.62612 

16 1 2.51327408 1.0000000 0.7853982 -0.22123167 1.11815 

17 2.67035371 -0.43701595 0.73797 

18 2.82743334 -0.64203945 0.45064 

19 2.98451297 -0.83125381 0.21892 

20 3.14159265 -1. 00000000 0.02474 
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With the view to compare and contrast the new numerical 

integration schemes developed in chapters IV,V and VI with 

some standard existing schemes, test runs were carried out on 

the problem (6,5.1) with the initial conditions specified by 

(6.5.2). 

Apart from the new schemes, the problem was also solved 

using the following standard numerical integration schemes: 

(a) Gragg-Bulirsch-Stoer algorithm as discussed in chapter III. 

(b) Gautschi's multistep scheme as discussed in chapter II and 

(c) Krogh's variable order Adam's scheme (the Numerical Algorithm 

Group's version). 

The details of the numerical results are given in tables 

(6.5.ld) to (6.5.le), 

Apart from Krogh's method, all the schemes maintained an 

accuracy of 10-8 with uniform integration mesh size of h-;0 . 

In fact, the one step scheme still maintained the same degree 

of accuracy with a uniform mesh-size of h-;0 as shown in table 

(6.5.lg). 

With a uniform mesh size of h-;01Gautschi's scheme of 

trigonometric order one produced a smaller truncation error 

than the variable order Gragg-Bulirsch-Stoer algorithm of 

order in (6~~8), The linear multistep method proposed in 

chapter V produced better results than Gautschi's scheme 

whilst in turn, the special multistep scheme of chapter VI 

has even smaller truncation errors than the scheme proposed 

in chapter V. The one step scheme proposed in chapter IV 
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provided the most accurate results as the oscillatory parameters 

Nt and At are accurately determin~d at each step of the 

integration procedure. The degree of accuracy of the linear 

multistep formulae developed in chapters V and VI is 

constrained by the fact that the parameters Nt and At are 

determined to a limited degree of accuracy. 
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TABLE (6.5.1d) 

KROGH 1 S VARIABLE ORDER ADAMS 

INITIAL STEPSIZE H=0.15707963 

H X y 8 
10 xT~~~ 

0.01963495 0.00000000 0.00000000 0.00000 

0.03926991 0.31415926 0.30901699 0.00056 

0.07853982 0.62831852 0.58778524 0.00046 

0.07853982 0.94247778 0.80901698 0.00121 

0.07853982 1.25663704 o. 95105651 0.00075 

0.07853982 1.57079630 1.00000000 0.00000 

0.07853982 1. 88495556 0.95105653 0.00075 

0.07853982 2.19911482 0.80901702 0.00281 

0.15707963 2.51327408 0.58778529 0.00560 

0.15707963 2.82743334 0.30901704 0.00500 

0.15707963 3.14159265 0.00000000 0.02288 
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TABLE (6,5,1e) 

GRAGG-BULIRSCH-STOER 

ORDER OF 
H X y 8 

EXTRAPOLATION 10 xTt+l 

6 0.15707963 0.00000000 0.00000000 o.ooooo 
8 0.15707963 0.15707963 0.15643446 0.16862 

8 0.15707963 0.31415926 0.30901699 0.23123 

8 0.15707963 0.47123889 0.45399050 0.24445 

8 0.15707963 0.62831852 0.58778525 0.20713 

8 0.15707963 0.78539815 0.7071678 0.36399 

8 0.15707963 0. 94247778 0.80901699 0.40180 

8 0.15707963 1.09955741 0.89100652 0.36360 

8 0.15707963 1. 25663704 0.95105651 0.25322 

8 0.15707963 1.41371667 0.98768834 0.25843 

6 0.15707963 1.57079630 1.00000000 0.00146 

8 0.157079 3 1. 72787593 0.98768833 0.51320 

8 0.15707963 1.88495556 0.95105651 0.92373 

8 0.15707963 2.04203519 0.89100651 1.42056 

8 0.15707963 2.19911482 0.80901698 2.01465 

8 0.15707963 2.35619445 0. 70710676 2. 71329 

8 0.15707963 2.51327408 0.58778523 3.28104 

8 0.15707963 2.67035371 0.45399048 3.95201 

8 0.15707963 2.82743334 0.30901698 4.74154 

8 0.15707963 2.98451297 0.15643445 5.67513 

8 0.15707963 3.14159265 0.00000000 6.89314 



r---------------------------------------------------------------------- -

ll.i8 

TABLE (6, 5 .lf) 

GAUTSCHI 1 S SCHEME 

R X y 8 10 xT .. , 1 

0.15707963 0.00000000 0.00000000 0.00000 

0.15707963 0.31415926 0.30901699 0.34879 

0 .15"1'07963 0.62831852 0.58778525 0.56639 

0.15707963 0.94247778 0.80901700 0.59647 

0.15707963 1.25663704 0.95105652 0.45385 

0 .15' 707963 1.57079630 1.00000000 0.13606 

0.15707963 1. 88495556 0.95105652 0.37628 

0.15707963 2.19911482 0.80901700 1.12255 

0.15707963 2.51327408 0.58778525 2.17346 

0.15707963 2.82743334 0.30901699 3.65822 

0.15707963 3.14159265 0.00000000 5. 85113 
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TABLE (6.5,1g) 

ONE STEP SCHEME (CHAPTER IV) 

ONE STEP ORDER 4 

H X y 8 
10 xT t+• 

0.31415926 0. 00000000' 0.00000000 0.00000 

0.31415926 0.31415926 0.30901699 0.00000 

0.31415926 0.62831852 0.58778524 0.00092 

0.31415926 0.94247778 0.80901698 0.00161 

0.31415926 1.25663704 0. 95105651' 0.00261 

0.31415926 1.57079630 1.00000000 0.00363 

0.31415926 1.88495556 0.95105653 0.00336 

0.31415926 2.19911482 0.80901702 0.00362 

0.31415926 2.51327408 0.58778529 0.00367 

0.31415926 2.82743334 0.30901704 0.00111 

0.31415926 3.14159265 0.00000000 0.00531 
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TABLE (6;5,1h) 

LINEAR MULTISTEP SCHEME (CHAPTER V) 

H X y 8 10 xT t...., 

0.15707963 0.00000000 0.00000000 0.00000 

0.15707963 0.31415926 0.30901699 0• 5'736)-. 

0.15707963 0.62831852 0.58778524 0.19155 

0.15707963 0.94247778 0.80901698 0.05992 

0.15707963 1. 25663704 0.95105651 0.02312 

0.15707963 1. 57079630 0.99999999 0. 71159 

0.15707963 1. 88495556 0.95105652 0.42551 

0~15707963 2.19911482 0.80901702 0.43438 

0.15707963 2.51327408 0.58778526 1. 44622 

0.15707963 2.82743334 0.30901702 1.19115 

0.15707963 3.14159265 0.00000000 4.08836 



151 

TABLE (6,5.li) 

SPECIAL MULTISTEP SCHEME (CHAPTER VI) 

H X y 8 
10 xTt+1 

0.15707963 0.00000000 0.00000000 0.00000 

0.15707963 0.31415926 0.30901699 0.57362 

0.15707963 0.62831852 0.58778525 0.26624 

0.15707963 0.94247778 0.80901699 0.28195 

0.15707963 1. 25663704 0.95105651 0.28230 

0.15707963 1. 57079630 1.00000001 0.26921 

0.15707963 1.88495556 0.95105653 0.24128 

0.15707963 2.19911482 0.80901702 0.19748 

0.15707963 2.51327408 0.58778529 0.13335 

0.15707963 2.82743334 0.30901704 0.02863 

0.15707963 3.14159265 0.00000000 0.13890 



SUMMARY OF RESULTS 

TABLE (6.5.1j) 
N 
~· GRAGG.o 

BULIRSCH-
ONE STEP MULTI STEP MULTI STEP 

STOER GAUTSCHI SCHEME OF SCHEME SCHEME 
H= H= ORDER 4 CHAPTER V CHAPTER VI 

CHAPTER IV 
KROGH' S METHOD 015707963 OJ.5707963 H=. H=O .15701963 H=0.15707963 

8 6~M~8 8 8 8 
X H 10 xTt+1 108xTt+1 

10 xT 
1 0311i159265 10 xTt+l 10 xTt+1 . t+ 108xT-... 1 

0.00000000 0.01963495 0,00000 o.ooooo 0.00000 0.00000 0.00000 0.00000 

0.31415926 0.03926991 0.00056 0.23123 0.34879 0,00036 0.57362 0.57362 

0.62831852 0.07853982 0,00046 0.20713 0.56639 0,00092 0.19155 0.26624 

0.94247778 0.07853982 0,00121 0.40180 0.59647 0,00161 0.05992 0.28195 

1. 25663704 0.07853982 0,00075 0.25322 0.45385 0.00261 0,02312 0.28230 

1.57079630 0.07853982 0.00000 0.00146 0.13606 0.00363 0.71159 0.26921 

1.88495556 0.07853982 0,00075 0.92373 0.37628 0.00336 0.42551 0.24128 

2.19911482 0.07853982 0,00281 2.01465 1.12255 0,00362 0.43438 0.19748 

2.51327408 Q,15707963 0,00560 3.28104 2.17346 0.00367 0.44622 0.13335 

2.82743334 0.15707963 0,00500 4.74154 3.65822 0.00111 1.19115 0.02863 

3.14159265 0.15707963 0.02288 6.89314 5.85113 0,00531 4.08836 0.13890 



6,6 CbNcLdbiNG REMARKS 

The new one step integration scheme proposed in chapter IV 

is particularly accurate for oscillatory systems of both linear 

and nonlinear form. In cases where accuracy is essential and 

desirable we highly recommend this ~heme. The fact that the 

scheme is capable of using relatively larger integration 

stepsizes than the other existing numerical integration formulae 

is a great asset.for linear oscillatory systems, both the linear 

multistep schemes proposed in chapters V and VI are competitive 

with the standard existing integration procedures. For the second 

order oscillatory systems in which the first derivative does not 

appear explicitly, the integration formulae developed in chapter VI 

is very efficient and gives more accurate results than the 

integration formulae developed in chapter V. 
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