i1 M Loughborough
 University

This item was submitted to Loughborough's Research Repository by the author.
ltems in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A blackboard-based system for learning to identify images from feature data
PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Margaret Norman

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Norman, Margaret. 2019. “A Blackboard-based System for Learning to Identify Images from Feature Data”.
figshare. https://hdl.handle.net/2134/22013.

https://lboro.figshare.com/

 B1LDSC e~ DX AT

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR/FILING TITLE

. o o o i e g —— e = -— o —— - -

. VOL. NO. CLASS MARK

LoAs cofy 30 .U 1985

%992 - wﬁ%ﬁ 9 g JUN 1996

_ 4 18 JAN 2000
gy | T

30@
30:@

R T

A BLACKBOARD-BASED SYSTEM FOR LEARNING TO IDENTIFY
IMAGES FROM FEATURE DATA

by

Margaret Norman, M.A., M.Sc.

A Doctoral Thesis
submitted in partial fulfiiment of the requirements
for the award of Doctor of Philosophy
of the Loughborough University of Technology

January 1991

SUPERVISOR: Dr. C.J. Hinde
Department of Computer Studies

-
i pahhorouch University
of Tooknalyay Dty

:mf.:;;“;wxlj

i
;
1
’a
i

L P _,_.=_.,_§
-2 036000 %47

WAy oo 63

'CONTENTS

PAGE

ACKNOWLEDGEMENTS vii
ABSTRACT . viii
LIST OF FIGURES ix
LIST OF TABLES Xi
CHAPTER 1: INTRODUCTION

1.1. BACKGROUND AND PROJECT AIMS 1

1.2. DESCRIPTION OF THE FEATURE MATCHER 1

1.3. CHARACTERISTICS AND LIMITATIONS OF THE

FEATURE MATCHER 4

1.4. APPROACH 6

1.5. RESEARCH CONSIDERATIONS AND OBJECTIVES 7

1.6. THESIS ORGANISATION 8
CHAPTER 2: PATTERN RECOGNITION

2.1. WHAT IS PATTERN RECOGNITION? ' 10

2.2. CATEGORISATION : "

2.3. DESIGN AND RECOGNITION - FORM AND FUNCTION 12
2.4. SIMPLIFYING THE PROBLEM:

DISCRIMINANT DESCRIPTIONS 14
2.5. REPRESENTATION ISSUES - LAYERED DESCRIPTIONS 15
2.6. REPRESENTATION SYSTEMS - 20
2.6.1. Feature vectors | 20
2.6.2. Predicate calculus 21
2.6.3. Conceptual graphs 22
2.6.4. Frames 22

2.7. ALTERNATIVE APPROACHES TO RECOGNITION 23

| PAGE
2.8. SUMMARY AND CONGLUSIONS 26

CHAPTER 3: RULE INDUCTION

3.1. MACHINE LEARNING - AN OVERVIEW 28
3.2. RULE INDUCTION IN PATTERN RECOGNITION 30
3.3. REQUIREMENTS FOR RULE INDUCTION © 32
3.4. EVALUATION CRITERIA FOR INDUCTIVE ALGORITHMS 34
3.4.1. Fields of application 35
3.4.2. Sources of input data 37
3.4.3. Search patterns - ' 40
3.4.4. Rule modification techniques 42

3.4.5. Types of output:
conjunctive and disjunctive rules - 45
3.5. SUMMARY AND CONCLUSIONS ' 47

CHAPTER 4: BLACKBOARD SYSTEMS
4.1. THE BLACKBOARD CONCEPT:

HISTORICAL BACKGROUND 48

4.2. BLACKBOARD ARCHITECTURE 49

4.3. ADVANTAGES AND DISADVANTAGES 51
4.4. APPLICATION-SPECIFIC AND GENERAL-PURPOSE

SYSTEMS 52

4.5. EXAMPLES OF APPLICATION-SPECIFIC SYSTEMS 53

4.5.1. Hearsay-l| 53

4.5.2. HASP 54

4.5.3. UMass Schema System 56

4.6. EXAMPLES OF GENERAL-PURPOSE SYSTEMS 57

PAGE

4.6.1. AGE 57
4.6.2. The Edinburgh Prolog Blackboard Shell 58
4.6.3. Hearsay-lll 60
4.7. SUMMARY AND CONCLUSIONS | 61

CHAPTER 5: DEALING WITH UNCERTAINTY

5.1. SOURCES AND TYPES OF UNCERTAINTY 63
5.2. APPROACHES TO HANDLING UNCERTAINTY 64
5.3. NUMERIC METHODS
5.3.1. Probability Theory and Bayesian Inference . 67
5.3.2. Dempster-Shafer Theory 70
5.3.3. MYCIN's Certainty Factors 73
5.3.4. Prospector 74
5.4. FUZZY SETS 76
5.4.1. FRIL 80
5.4.2. A Fuzzy Rule-Based Production System 82
5.5. TRUTH MAINTENANCE 83
5.5.1. The Origins of Truth Maintenance 83
5.5.2. Justification-Based Truth Maintenance
Systems 85
5.5.3. Assumption-Based Truth Maintenance
Systems ' 86
5.5.4. REVgraph's Consistency Maintenance 87
5.5.5. VICTORS 89
5.5.6. LUMP 90
5.6. OTHER METHODS 91
5.6.1. Cohen's Endorsements 91

5.6.2. Logical formulation of linguistic ideas 93

ans

' PAGE

5.6.3. Bundy's Incidence Calculus g 94
5.6.4. Lp logic 95
5.7. CONCLUSIONS 97

CHAPTER 6: RECOGNISING AN OBJECT USING FEATURE DATA

-6.1. INTRODUCTION: DESCRIPTION OF THE PROBLEM 98
6.2. APPROACH 99
6.3. PRELIMINARIES: DATA PREPARATION . - 106 -
6.4. DESCRIPTION OF THE SINGLE-OBJECT SYSTEM 108

6.4.1. Editing the feature data 108
6.4.2. The rule induction stage | 109
6.4.3. The recognition stage 111
6.4.4. The feedback stage | 113

6.5. RUNNING THE SYSTEM 114

CHAPTER 7: TESTING THE SINGLE-OBJECT SYSTEM |
7.1. INTRODUCTION | “o 116

7.2. TEST USING SYNTHETIC DATA 116
7.2.1. Data preparation 1“17
7.2.2. Testresults 118
7.2.3. Conclusions - 124

7.3. TESTS USING IMAGES OF CARS 125
7.3.1. Data preparation ' 125
7.3.2. Tests conducted and results obtained 134
7.3.3. Conclusions | 139

CHAPTER 8: DEVELOPMENT .OF THE FINAL SYSTEM
8.1. SYSTEM STRUCTURE 142

PAGE -

8.2, DESIGN OF THE BLACKBOARD SYSTEM 146
8.2.1. Introduction 148
8.2.2. Required system behaviour 148
8.2.3. Knowledge sources 151
8.2.4. Blackboard organisation 152
8.2.5. The controller and scheduler 157

8.2.6. Miscellaneous processes: initialisation,

user consultation 163

8.3. THE KNOWLEDGE SOURCES : 166
8.3.1. Introduction 166
8.3.2. Editor : 167
8.3.3. Learner 167
8.3.4. Recogniser 168
8.3.5. Acceptor 169
8.3.6. Selector 171
8.3.7. Feedback 171
8.3.8. Remover 172
8.3.9. Knowledge Source utilities 172
8.4. RUNNING THE SYSTEM 173

CHAPTER 9: TESTING THE IMAGE IDENTIFIER

9.1. INTRODUCTION 175
9.2. TESTS USING SYNTHETIC DATA 176
9.2.1. Data Preparation 176
9.2.2. Background checks 179
9.2.3. Tests conducted and results obtained 185
9.2.4. Conclusions 189

9.3. TESTS USING PHOTOGRAPHS OF TRAFFIC 190

PAGE

9.3.1. Data Preparation 191
9.3.2. Background checks 195
9.3.3. Tests conducted and results obtained 197

9.3.4. Conclusions 198

CHAPTER 10: DISCUSSION

10.1. SUMMARY OF WHAT HAS BEEN ACHIEVED 200
10.2. SUGGESTIONS FOR FURTHER WORK 203
10.3. CONCLUSIONS 205
REFERENCES AND BIBLIOGRAPHY 207

APPENDIX A: LISTING OF IMAGE IDENTIFIER

(RECOGNISE2) 218
APPENDIX B: EDITED LISTINGS OF TEST RUNS 262
RECOGNISE1 test with quads data 263
RECOGNISE1 tests with images of cars : 265
Background checks on shapes 282
RECOGNISE2 tests with shapes data : 284

RECOGNISE2 test with traffic data 7 301

Vi

ACKNOWLEDGEMENTS

| would like to express my thanks to the following people:

Dr. C.J. Hinde, my supervisor, for his patient and friendly assistance
and help throughout this project, much good advice and loan of many
useful books and journals.

Dr. P. Fretwell and Dr. R.W. Series at R.S.R.E. Malvern for their advice
and help, supplying the car images used for the tests of the initial
system and several useful references, and entertaining me so well on my
visits to Malvern.

Professor E.A. Edmonds, my director of research, for overseeing the
project so competently and thus helping to ensure that it was completed
on schedule.

The many other members of staff at Loughborough who helped to
solve various problems.

Simon Polovina for the illustration of a conceptual graph in Chapter

Last, but by no means least, my husband Eddie and daughters

Katherine, Elizabeth and Jennifer for all their support..

vii

ABSTRACT

A blackboard-based system which learns recognition rules for
objects from a set of training examples, and then identifies and locates
these objects in test images, is presented. The system is designed toc use
data from a feature matcher developed at R.S.R.E. Malvern which finds the
best matches for a set of feature patterns in an image. The feature
patterns are selected to correspond to t);pical object parts which occur
with relatively consistent spatial relationships and are sufficient to
distinguish the objects to be identified from one another.

The learning element of the system develops two separate sets of
rules, one to identify possible object instances and the other to attach
probabilities to them. The search for possible object instances is
exhaustive; its scale is not great enough for pruning to be necessary.
Separate probabilities are established empirically for all combinations
of features which could represent object instances. As accurate
probabilities cannot be obtained from a.set of preselected training
examples, they are updated by feedback from the recognition process.

The incorporation of rule induction and feedback into the blackboard -
system is achieved by treating the induced rules as data to be held on a
secondary blackboard. The single recognition knowledge source
effectively contains empty rules which this data can be slotted into,
allowing it to be used to recognise any number of objects - there is no-
need to develop a separate knowledge source for each object. Additional
object-specific background information to aid identification can be added
by the user in the form of background checks to be carried out on
candidate objects.

The system has been tested using synthetic data, and successfully
identified combinations of geometric shapes (squares, triangles etc.).
Limited tests on photographs of vehicles travelling along a main road

were also performed successfully.

vili

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 4.1

Figure 5.1.

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9

Figure 7.10

Figure 8.1.
Figure 8.2.

Figure 9.1.

LIST OF FIGURES =

An 'is-a-kind-of' tree

An 'is-a-component-of' tree

A conceptual graph

An image recognisable as a car

An image recognisable as a person

Recognition requiring background knowledge
Structure of a Blackboard System
A simple hierarchy with 'is-a’ links

Quad Picture 1

Quad Picture 2

Quad Picture 3

Quad Picture 4

Quad Picture 5

Four typical photographs of cars

The processed image of a car

Histograms of wheel and wheel arch diameters
Feature patterns for car recognition

Typical features detected in an image of a car

at an angle

Plan of a two-tier blackboard system

The system structure

The first six shapes, with vertices numbered

PAGE

18
18
22
24
24
25

49

92

119
120
121
122
123
126
127
129
133

138

143
145

177

Figure 9.2.
Figure 9.3.
Figure 9.4.
Figure 9.5.
Figure 9.6.
Figure 9.7.
Figure 9.8.
Figure 9.9.
Figure 9.10.

Feature patterns for shape recognition

The first set of training images for shapes

The first set of test images for shapes

The rectangles, with vertices numbered

The training image for rectangles

The second set of test images for shapes
Typical traffic photographs - car and van

More traffic photographs - big and small lorries

Feature patterns for traffic identification

PAGE

178
180
181
182
182
183
192
193
196

Table 7.1.

Table 7.2.

Table 7.3.

Table 8.1.

Table 8.2.

LIST OF TABLES

Car wheel and wheel arch measurements
Car window measurements

Car top measurements
Knowledge Source requirements for Blackboard

access

Knowledge Source bid ratings |

Xi

PAGE

128
131
132

155
161

CHAPTER 1

INTRODUCTION
1.1. BACKGROUND AND PROJECT AIMS.

The Royal Signals and Radar Establishment (R.S.R.E.) at Malvern have
been engaged in a considerable amount of research in visual pattern
recognition, much of which has been concerned with interpreting
photographs of outdoor scenes. A particular area of study has been the
location and identification of cars and other vehicles in black-and-white

images of road scenes.

One technique which R.S.R.E. have been working on is feature matching.
The intention of their project was to produce a program which would find
the ten 'best matches' for a given pattern {e.g. part of a car - a wheel
shape, or a window shape) in a line-edged picture, giving mean x and y

co-ordinates and a rating or cost for each match found.

The initial motivation for this research was the desire to find some
way to utilise the output from such a feature matcher in a system which
would learn to locate and identify the vehicles in a road scene, or to

perform other similar pattern recognition tasks.

1.2. DESCRIPTION OF THE FEATURE MATCHER.

The feature matcher is based on a modification of the connected word
recognition algorithm used extensively in speech recognition (Holmes, '88).

This algorithm matches acoustic patterns for all the words to be

feboghised to .the inco‘mihg spéech signal; Orie broblem with'fhé matchiﬁg
is that the speed of speaking varies; there may be differences in time
scale between two utterances of the same word. A mathematical
technique known as dynamic programming (or dynamic time warping, when
applied to speech recognition) is used to compensate for time scale
variations. This technique finds the least-cost path which matches frames
of the speech pattern to frames of a word pattern, with the constraint that
paths may advance one frame along either or both of the patterns being
matched at each step. If d(i,j) is a measure of the difference between
frame i of the speech pattern and frame j of the template, D(i,} is the
accumulated cost of the best path from the start of the match to (i,j) and p
is a penalty to be attached to a one-frame time distortion, then as (i,j) can
be reached from (i-1,j), (i-1,j-1) or (i,j-1),

D(i,j) = min{D(i-1,j)+p,D(i-1,j-1),D(i,i-1)+p} + d(i,j).
As all paths start from (1,1),

D(1,1) = d(1,1).
These formulae can be used to draw up an accumulated cost matrix and

thus to establish the match cost.

The E.L.S. (Edge List Search) technique for feature matching (Varga et
al., '89) uses dynamic programming, applying it to spatial distortion
instead of temporal distortion. It is reference-data driven rather than
observed-data driven: data is found to match a given reference shape
rather than shapes being found to match given data, because the image data
can be expected to contain a large amount of background information which
does not require identification; observed-data driven techniques are more
applicable to areas such as speech recognition where the data is

one-dimensional rather than two-dimensional.

The first stage of the iniage processing involves using an 6pérator
based on the Sobel edge convolution to obtain a line-edge description. An
algorithm which determines, normalises and thresholds the total change in
line orientation within an eight-connected line segment is then applied to
remove 'rough’ lines representing vegetation in the background of the
image. The resulting edge map is broken up into isolated line segments by
removing points with more than two edge point neighbours and arbitrarily
breaking closed shapes. Very short (one or two pixel) {ine segments are
removed, as these generally represent noise. The outcome of the
processing is a list of line-segments, each of which is recorded in both .
forward and reverse directions in the form of a list specifying the

horizontal and vertical position and orientation of each pixel.

A 'linkage' matrix which specifies allowed connectivities between
segments is drawn up by applying a threshold to the Euclidian distance
between segment ends. This matrix is used to reduce the size of the

search space and thus speed up the search.

The reference mode! consists of a set of templates, or feature
patterns, which are long unbroken edge segments. The system uses a
one-pass dynamic programming technique to find sequences of ochserved
segments which match each pattern, assigning a local match cost, which is
a function of connectivity, segment shape and orientation, and an
accumulated cost based on the best sequence of matches to date, to each

match.

Segment transitions are recorded in a decision matrix or linked list.
When the end of the template is reached, the lowest accumulated cost is

~ selected as the starting point for a traceback to give the sequence of

Segments which répresent the optimal match. If identified segments are
deleted after traceback, the process can be repeated to yield a complete

set of graded matches.

1.3. CHARACTERISTICS AND LIMITATIONS OF THE MATCHER.

The patterns for which matches are to be sought obviously need to be
selected with care if the output of the matcher is to be useful. The
approach which was initially adopted was to select a clear edged picture
of a typical car, edit it to remove irregularities and breaks in the lines,
then to select segments of this picture corresponding to standard car parts
for matching. The segments initially used were: car wheel, wheel arch,

front window, rear window, roof/bonnet shape.

The matcher is intended to be sensitive to the exact shape of the
pattern, so it is important that the patterns used should be as typical as
possible of the car parts which they are intended to locate. There are
considerable differences between the shapes of parts on different models
of car; some experimentation may be necessary to decide which patterns
will give the best matches on the widest possible range of models. As any
one car is unlikely to be typical in all respects, it may be best to use a
window shape from one picture, a roof shape from another etc. In order to
match all examples adequately, it may be necessary to use more than one

pattern for each part.

The size of the palterns is also significant; where, for example, the
pattern being matched is a circle (car wheel shape), good match ratings

will only be obtained from circles of the same size as the pattern. A

square of approximately the same size may produce a better fating than a
circle which is too big or too small. If vehicle parts are to appear
approximately the same size in all the pictures to be studied, it is
important that all vehicles should be photographed from approximately the

same distance - from a fixed position alongside a road, for example.

The variations in size and shape which inevitably occur in 'real’ data
mean that the matcher has to be fairly flexible if it is to pick up a useful
proportion of the vehicle parts being sought, and this flexibility means
that it will also inevitably detect a considerable number of 'false’
features: windows in buildings in the background, small bushes etc. may be
identified as possible car wheels or windows, and wheels and windows
may be mistaken for one another or the same image feature may be
identified as both. Initial trials suggested that the match ratings would
not be a reliable indicator of the presence or absence of a car part, and
that all matches whose ratings exceeded a threshold value (which would
depend on the size and shape of the pattern) would have to be considered by

the vehicle recognition process.

Another problem when using 'real’ data is that the features being
sought often do not show up well in photographs, and may be lost
altogether during the initial processing of the image to extract edges.
Wheels are particularly difficult to pick up, especially in poor lighting
conditions. The body outline may also not be clear, particularly if a
vehicle is dark in colour and is photographed against a dark background.
The list of matches found may, therefore, include only a few vehicle parts

even if a complete, unoccluded vehicle appears in the photograph.

The amount of information provided on each match is limited to the

pattern identifier, mean x and y co-ordinates and a rating (on which

limited reliance can be placed). The task, therefore, is to develop a system
which will learn to identify objects, given just the co-ordinates of a set

of features of which a small proportion may belong to instances of one or

more of the categories of object being sought.

1.4. APPROACH.

The learning and recognition problem outlined above may be split up
into a number of sub-problems, which overlap one another to some extent.
The first task is to select for each category of object to be identified a
set of parts and corresponding feature patterns which should be sufficient
to identify the object and to distinguish it from all the other possible
objects. A set of pictures must then be obtained which show aé wide a
range of instances of the object as the system is intended to be able to
identify, and training data must be obtained from these pictures for use in
learning an object description. This training data should include feature
match data on the pictures, and data giving the locations of all the

relevant parts of each object instance.

The training data must be used to develop a set of rules which define
the object in terms of the parts being matched and the relationships
between these parts. The rules must contain sufficient information to
allow the recogniser to identify and group together the features which

could correspond to a single object instance.

The complete set of object parts may be sufficient to give a positive

identification, but it must be borne in mind that when using real data, only

a few of the parts of any object instance may be detected. The
identification rules must include some means of determining the likelihood
that any incomplete part set represents an object instance. If the training
data has been carefully preselected, it will not be possible to determine
such likelihoods from this data; some form of continued learning, using
feedback about the performance of the recogniser on real data, will ha{ve to

be employed.

Finally, the recognisers for several different types of object must be
linked together, along with a program for determining which data should be
submitted to which recogniser, a means of resolving conflicts between the
recognisers and a continued learning system for updating probabilities, to
produce an integrated recognition system. Some means must be found of
enabling the various elements of the system to interact and communicate
with one another; a blackboard system would seem to offer the appropriate

capabilities.

1.5. BESEARCH CONSIDERATIONS AND OBJECTIVES.

The main area of this research is pattern recognition, particularly the
use of rule induction in developing pattern descriptions to enable effective
visual identification of objects. The research objectives here are first, to
study previous work in pattern recognition - both visual identification and
pattern recognition in general - and to determine how to adapt existing
methods to deal with the novel type of data being used here, and second, to
look at rule induction techniqués and determine how they can best be
applied to the development of the appropriate rules from the training data

available and how continued induction can be used to update the rules in

the light of the experience gained by the system in operation.

A secondary area of interest is the use of blackboard systems for
controlling the interaction of diverse knowledge sources to solve complex
problems. Blackboard systems have already been used for a number of
applications in the pattern recognition field, but existing systems use
knowledge sources which are independent of one ancther; the major
concern here is to find a way of adapting the standard blackboard model to
allow one knowledge source (the learner)} to modify and update other

knowledge sources (the recognisers).

The final topic for research is methods of t;andling uncertainty, both
numerically and symbolically. Uncertainty arises here in the identification
of image features, the selection of groups of features which represent
different parts of a single object, the assignment of probabilities to
feature set/object part-sét pairs and the resolution of conflicts between
recognisers; appropriate methods need to be identified to deal with each of

these.

1.6. THESIS ORGANISATION.

The following four chapters of this thesis contain literature surveys
covering the areas of research outlined in the previous section: pattern
recognition in Chapter 2, rule induction, including its application to
pattern recognition, in Chapter 3, blackboard systems in Chapter 4 and

methods of handling uncertainty in Chapter 5.

The development and testing of the programs which have been

‘pkoducl:ed is covered b'y the next four cha'pters: ChapterG is on the désig'n of
a system which will deal with a single obj.ect, Chapter 7 describes the
testing of this system, Chapter 8 explains how it was incorporated into a
blackboard system to produce an image identifier capable of learning to
recognise a range of different objects, and Chapter 9 describes the image
identifier tests. Finally, Chapter 10 summarises what has been achieved
and contains suggestions for further work. Appendix A contains a full

listing of the image identifier system and Appendix B contains edited test

runs.

CHAPTER 2
PATTERN RECOGNITION

2.1. WHAT IS PATTERN RECOGNITION?

Firstly, what is recognition? A dictionary definition of recognise is:
'to know again; to identify as known or experienced before; .. .".
Recognition depends first on knowledge; in order to be able to recognise
something, you need to know what that something is, to have a definition
that enables the 'something' to be distinguished from all other possible
things.

A pattern is not just a single, unique thing but an exemplar of a group
of things. Learning a pattern implies learning a description which enables
members of this group to be identified. Unless the group concept is very
tightly defined, learning an adequate description will involve collating
knowledge gained from a number of examples. Pattern recognition, then,
implies learning descriptions of conceptual groups from sets of examples,
then applying these descriptions to enable the correct classification of

new examples.

The pattern to be recognised can be a visual pattern, a sound pattern
or a more abstract pattern such as a winning position in a game of chess, a
type of mathematical equation or the pattern of characteristics that
distinguish the members of a biological species. Computer pattern
recognition has found numerous applications, including robot vision
systems, speech recognition systems, theorem provers and medical

diagnosis systems.

10

2.2. CATEGORISATION.

The learning and utilisation of categories is one of the basic
processes of human thought. There are estimated to be more than seven
million discernible colours; since it is obviously impractical to have this
many different colour names, we group them into a very much smaller
number of categories to enable us to refer to them (Bruner et al., '56).
Similarly, we group people into the categories 'men' and 'women', 'adults’
and 'children'; we group buildings into 'houses', 'shops', ‘offices’ etc. The
categories we use depend on our language, our culture and our experience;
they are to some extent individual, but if our category names are to be
used for communication purposes there has to be some consensus about

what defines a member of a particular category.

Categories can themselves be categorised, for example as affective,
functional or formal (Bruner et al.). The members of an affective category
evoke a common affective response. An old parlour game inveolves guessing
the person someone is thinking of by asking them questions such as: "lf
this person were an animal, what animal would they be? If they were a
colour, what colour would they be?" The person, the animal and the colour
belong to the same affective category. Such categories are difficult to
define, and frequently nameless. Functional or utilitarian categories are
easier to define: they consist of objects which fulfil a specific task
requirement. Formal categories are still more tightly defined, by a
specific set of attributes which their members possess. There are close
links between these types of category; an affective or functional category
can be converted into a formal category by developing rules which specify

what its members have in common.

11

What is needed for pattern recognition by computer is just such a set
of rules; the pattern to be recognised must be developed into a formal
category. Determining the form and content of the rule set is the first
major problem facing the designer of a recognition system. Moreover, the
pattern attributes contained in the rule specifications must be ones which
can be assessed readily from the information input to the recognition
system. Herein lies a second major problem: where the input is, for
example, a visual image, the extraction of the required attributes may be a
faf from elementary task. A large amount of preprocessing may be
necessary to obtain a description of the object to be recognised in an

appropriate form for presentation to the recognition program.

2.3. DESIGN AND RECOGNITION - FORM AND FUNCTION.

~ Consider the problem of defining the category ‘car'. Whatis a car?
We cannot say that a car must have a roof, a certain number of windows
and four wheels, as we can find examples of cars which do not have these
attributes. Our description of a complex artifact like this is likely to be

couched in terms of function rather than form.

Functional definitions of categories form one of the start points of
the design process. The fundamental problem in design can be described
from a functional viewpoint as:

Given: a specification of functions which are required and functions which
can be provided
Find: a constructed structure from within the design task environment

which satisfies the specification (and possibly certain restrictions).

12

| (Freeman & Newell, '71), where the task environmént cohsists of a set of
structures and a set of functions such that:

1. Each structure provides certain functions.

2. For each function it provides, a structure requires certain other
functions to be provided.

3. A functional connection can occur between two structures if one
provides a function provided by the other.

4. A constructed structure consists of a set of structures and functional
connections between them, and provides/requires the functions
provided/required by its components and not involved in the functional

connections.

The recognition problem can be seen as the reverse of this design
problem: for recognition, the constructed structure is given and its

functional specification is to be identified and categorised.

A purely functional approach to either design or recognition has
several limitations. Not all objects can be described adequately in terms
of function; in many domains a mixed approach, such as Essence
descriptions which contain both functional and spatial information
(Fretweli et al., '87) may be more appropriate. Where a functional
description of an object can be given, it may not be possible to relate the
function of the whole object to' the functions of particular sub-parts, or to
derive the object's function from the functions of sub-parts. It is also not
easy to define a general-purpose set of basic functions from which
descriptions of a wide range of objects could be built up - a necessity if
methods are not to be restricted to use in very limited task domains (Di

Manzo et al., '85).

13

If thé recdg nition process bégins with visual data, re!atibnsh'ips
between form and function need to be established. The mapping of form to
function is many-to-many - most functions can be provided by more than
one form, and most forms can perform more than one function, so the space
of possible solutions to a problem will generally be large. Reasoning
between structure and function in the domain of hand tools is described in
(Brady et al., '84).

2.4, LEM: D T [PTIONS.

The pattern recognition problem can be made simpler by considering
discriminant descriptions rather than characteristic descriptions. A
characteristic description is one which distinguished objects in a given
category or class from all other possible objects; a discriminant
description describes one class of objects in the context of a fixed set of
other classes of object (Dietterich & Michalski, '79). Characteristic
descriptions are used to answer questions such as "is this a car?' or, more
generally, "Is there a car in this scené?": discriminant descriptions are -

used to answer questions such as "Is this car a Ford or a Vauxhall?".

When discriminant descriptions are used any attributes which are
shared by all the categories under consideration can be ignored, so these
descriptions are generally simpler than characteristic descriptions. The
existence of a fixed range of options also allows the use of elimination
techniques to aid identification, and of 'best fit' methods of

categorisation.

A common way of simplifying the recognition problem is to consider

14

an artificial world, e.g. the Blocks world (Winston, '75), where théré'is- -
only a limited range of possible objects which can be distinguished by the
values of a small number of different attributes. Each combination of
possible values of the attributes defines a pattern class; a concept is
represented by one of these classes, or by a conjunction of several classes.

Recognition here is effectively a discrimination problem.

Recognition in the Blocks world is an artificial problem, but there are
many real-world problems which can be tackled by using discriminant
- descriptions, text recognition being an obvious example. The study of
discrimination problems can also prove useful in the development and.
'testing of techniques for later application to more difficult

characterisation problems.

2.5. REPRESENTATION ISSUES - LAYERED DESCRIPTIONS.

One of the basic requirements of any rule-based pattern recognition
system is a representation system, to be used for both the rules which
define category membership and the descriptions of objects to be
categorised. The representation system must incorporate terms to
represent the (physical and/or functional) attributes of an object and, if
appropriate, some say of representing structural information i.e. the
relationship between the components of an object. Structural information
can be incarporated in the vocabulary of the representation language, or be

conveyed by its syntax.

Each term in a definition can itself be defined. A tetrahedronis a

solid with four faces, each of which is a triangle. A triangle is a planar

15

figure with three sides, each of which is a straig ht line. A straight line is -

.. .. The definition process must, of course, stop somewhere - with a set

of fundamental concepts, or primitives, whose definitions are assumed to

be known (Sowa, '84). The vocabulary of the representation language could
consist of just these primitives, more elaborate concepts being expressed

in terms of these, but the use of such a restricted language would make
descriptions of all but the simplest objects extremely long and complex.
Incorporating terms representing higher-level concepts into the language
will allow shorter definitions to be formulated, at the cost of increasing

the size and complexity of the representation language itself.

One way of using high-level terms while keeping the representation
language simple is to layer the representation. A bottom layer description
is formulated in terms of primitive concepts; this is then used as the
starting point for the formulation of another description in terms of rather
more advanced concepts, which can be used in turn to develop yet another
description, and so on. Each term in a description generally replaces a
group of terms in the previous description, so the length of the description
decreases as the complexity of the terms from which it is composed
increases. As each layer uses its own vocabulary, which need not, and in
general does not, include all the terms in the previous layer's vocabulary,
the overall size of the vocabulary does not increase unduly as the process

advances.

Layered technigues were not developed solely to allow the use of
different representation systems within a single pattern recognition
system; one of the early goals of Artificial Intelligence research was to
find ways to replicate the working of the human brain by layers of neurons,

which led to the development of neural nets and layered threshold

16

mechanisms with very similar 'repr'eséritatid'nal mechanisms for allrl'ayérs.
(Ashby, '60; Arbib, '72).

A layered approach to the analysis of visual images was pioneered by
Marr (Marr, '79; Garnham, '87). He carried out the computation of 3-D
models from grey-level descriptions in three main stages, employing two
intermediate levels of representation: the primal sketch, which represents
the significant intensity changes in the image, with tokens standing for
regions and their boundaries, and the 21,2 D sketch, which represents the

orientation and approximate distance from the viewer of surfaces.

There is a difference between moving from descriptions of individual
components to a description of a composite object, and moving from a
general object description to a more specific obj'ect description: going
from 'four straight lines' to 'quadrilateral' is not the same as going from
‘quadrilateral' to 'square’. There are two different hierarchies in
operation, characterised by the relations 'is-a-component-of and
'is-a-kind-of'. The way in which these two hierarchies tie in with a
layered approach to object description is not entirely straightforward.
They can be depicted as trees, the 'is-a-kind-of' tree having a genus or
supertype as its root, with branches leading to subtypes, and the
'is-a-component-of' tree having a composite object as its root, with
branches leading to components. (See Figures 2.1, 2.2). A move up
from one level of description to the next corresponds to a move down
through the ‘is-a-kind-of' tree, or a move up through the

'is-a-component-of' tree.

(Smith & Medin, '81) describes three ways of viewing concept

descriptions. The classical viewpoint considers a concept to be defined by

17

vehicle

)

2 wheeled vehicle 4 wheeled vehicle vehicle with more than
/ \ / \ four wheels
bicycle motorbike ca lorry bus

Figure 2.1. An'is-a-kind-of' tree.

AN

chassis body
front rear front rear bonnet
wheels wheels windows windows

Figure 2.2. An 'is-a-component-of' tree.

its genus or supertype and a set of necessary and sufficient conditions
that differentiate it from other species of the same genus; the

probabilistic viewpoint is that a concept is defined by a collection of
features, and everything that has a preponderance of those features is an
instance of the concept; the prototype viewpoint considers that a concept
is defined by a characteristic prototype, and an object is an instance of the
concept whoserp_rototype it resembles most closely. The-se views all seem
to be concerned more with discriminant descriptions than with

characteristic descriptions, and help to show how the distinction between

18

characteristic and discriminant descriptions relates to the layered
approach to description. With discriminant descriptions, the top layer -
the supertype - has already been fixed; the recognition task involves

identifying the correct element of the layer below this.

Much of the information which is shown explicitly in low level
descriptions is conveyed implicitly by higher level descriptions. Moving
from inter-related components to a composite object is equivalent to
making structural information implicit; moving from a supertype to a
subtype means making non-structural information implicit. It may be
advantageous for the description process to be halted at a stage where

information which is important for recognition is still explicitly stated.

The information implicit in a given type can be regarded as a list of
properties associated with the type. The idea of a hierarchy of types is
one of the fundamental concepts underlying the design of the
object-oriented programming language SMALLTALK (Goldberg & Robson,
'89); every object in SMALLTALK is an example of a type which occupies a
clearly defined position in the type hierarchy, and each of these types has
a set of properties associated with it. SMALLTALK supports inheritance of
properties, i.e. every subtype automatically has all the properties
associated with its supertype, so when a new subtype is defined only those
properties which are exclusive to it need be specified. The use of
inheritance thus reduces the size of property lists. As a type is fully
defined by its properties, the property list can be used for recognition
purposes: an example of a supertype which has all the properties of a given

subtype must be an example of that subtype.

19

2.6. REPRESENTATION SYSTEMS.

The task of selecting an appropriate representation system can be
compared with the task of choosing a programming language for a
particular application. In a sense all programming languages are
equivalent, in that they all ultimately instruct the computer to carry out
the same basic operations, but as different languages have been designed
to suit different purposes the wrong choice can make the programmer's
task infinitely harder. Similarly with representation systems; the critical
factors to be taken into account when making a choice are different, but

the same principles apply.

A wide variety of different representation systems have been used for
pattern recognition and machine learning. These include predicate
calculus, production rules, hierarchical descriptions, semantic nets,
frames and scripts (Dietterich & Michalski, '83). Usually the same
representation is used for both the input data and the rules, but this is not
universal (Forsyth & Rada, '86). Those described here are all
general-purpose; there are also a number of systems which have been
developed for use in specific task domains, such as that developed by
Buchanan for Meta-DENDRAL (Buchanan, Feigenbaum & Lederberg, '71).

2.6.1. Feature vectors.

The simplest type of representation for input data, the feature vector
is an array of numbers which characterise the state of different attributes
of an example. It can be used together with several different types of rule
format; for example, ID3 (Quinlan, '82) uses feature vectors to induce a

decision tree. It is only suitable for problems where examples can be

20

described fully by a limited set of attribu{es, each of which can take only
a small number of different values. Itis most commonly used where no
structural information is involved, though it is possible to transform
structural descriptions into feature vectors (Wysotzki, Kolbe & Selbig,
'81).

2.6.2. Predicate calculus.

First-order predicate calculus (FOPCQC) is a logic system devised by the
German mathematician Frege. Sentences, or well-formed formulae, in
FOPC are made up from predicates which take one or more arguments,
constant terms, variables, logical connectives (the Boolean operators) and
universal and existential quantifiers, following clearly defined formation
rules. Inference rules determine how one formula can be derived from
others. (Garnham, '87).

Predicate calculus has several important advantages as a knowledge
representation system: it is a language with machine-independent
semantics, it forms the basis of the logic programming language Prolog, it
enables the use of bottom-up and top-down problem solving (by performing
resolutions on the left-hand and right-hand clauses in a formula) and it
contains uniform proof procedures that can prove any true theorem in
finite time. However, it also has some drawbacks: FOPC does not allow the
quantification of predicates, and it does not support certain types of
human reasoning such as the use of defaults (Gabrielides, '88).
Consequently though some systems, for example Shapiro's Model inference
System (Shapiro, '82) employ pure FOPC, others such as Michalski's INDUCE
(Dietterich & Michalski, '79) use extensions to it.

21

2.6.3. Conceptual graphs.

Conceptual graphs have evolved from the existential graphs which

Pierce used as a notation for logic; they are a variant of first-order logic

which enjoy the advantages of having a direct mapping to and from natural

language and having direct extensions to modal logic and other forms of

reasoning.

A conceptual graph is a finite, connected, bipartite graph composed of

nodes linked by arcs. There are two different types of node: one type,

normally drawn as a box, is used to represent concepts and the other,

drawn as a circle, is used to represent conceptual relations. An example is

shown in Figure 2.3.

MAN: John

LOVE

WOMAN:ANN

Figure 2.3. A conceptual graph.

Winston's concept learning system (Winston, '75) uses a graph

representation where concepts are represented by circles and

relationships are indicated by labelled arrows connecting these circles.

2.6.4. Frames

A frame is a data structure which can be used to describe either

classes or instances. Itis a network of nodes and relations, which

22

represents things which are known to be true about the class and has
terminals or slots to which assignments may be made. Markers may be
used to specify conditions to be met by assignments, e.g. ranges of
expected values, default values; procedures may also be attached to slots

to drive the problem-solving behaviour of the system (Minsky, '75).

Collections of related frames may be linked together into a frame
system, where the effects of actions are mirrored by transformations
between the frames of the system, For visual scene analysis, for example,
the different frames may represent a scene from different viewpoints.
--One image understanding system based on frames, FABIUS (Rosin, '88),

represents objects and their subcomponents by hierarchies of frames.

2.7. ALTERNATIVE APPROACHES TO RECOGNITION.

Classical machine-vision techniques involve extracting progressively
higher-level deécriptions of the whole of a visual image. Only when a
complete top-level description has been derived is recognition attempted.
This bottom-up, breadth-first approach is computationally expensive and
time-consuming, and its success depends on sufficient information being
present in the original image. Studies of the way in which humans
recognise objects and the types of information which they utilise have led
to the development of alternative approaches which seem to be more

suitable for many computer pattern recognition problems.
It is often possible to recognise an object from just a vague outline

or a description of its general structure - most people would have no

difficulty in identifying the objects in Figures 2.4 and 2.5 asacarand a

23

person resp'ecitively. With a more detailed image, a preliminary
identification of an object can be effected by considering its outline or
structure, then this identification can be confirmed by checking that the
details are consistent with it. Alternatively, a tentative recognition could
be based on the identification of a small detail - a particular configuration
of lights on a car, or a manufacturer's logo - and the way in which this
detail relates to the object as a whole could be studied to provide

confirmation.

AN

Figure 2.4. An image recognisable as a car.

Figure 2.5. Animage recognisable as a person.

24

Background knowledge about what objects are likely to be found in a
given location, which objects tend to occur together, what spatial
relationships can be expected to hold between them ete. can sometimes

prove useful. For example, the small blurred shape shown in Figure 2.6 is

- 4

Figure 2.6. Recognition requiring background knowledge.

impossible to identify if considered in isolation, but if we are told that
the surrounding area has been identified as sky, our knowledge of what
objects are commonly observed in the sky allows us to propose two

possible identifications: it could be a bird or an aegroplane.

Many systems use ideas like these as part of a combined bottom-up
and top-down approach. Often the image is analysed bottom-up to a
certain level, then a top-down technique is used to select promising

areas for a more detailed depth-first search.

One vision system which uses a combination of bottom-up and

25

top-down techniques is Ohta's recogniser of outdoor colour scenes (Oﬁta, |
'85). Here the bottom-up process generates a plan of the large areas
(patches) in the image. The top-down process fixes the interpretation of
the large patches, then attempts to interpret smaller patches in the

context of these. Whenever the top-down process makes a decision which
may affect the interpretation of the whole scene, for example fixing the

position of the horizon, the bottom-up process reevaluates its plan.

2.8. SUMMARY AND CONCLUSIONS.

Pattern recognition is in general a complex problem; if it is to be
solved successfully it may need to be simplified and/or to be split up

into a number of sub-problems.

The first step in the recognition process is the formal definition of
the problem: the development of sets of rules which define membership
of the pattern categories under consideration. A representation language
must be selected for these rules. Ideally the hypotheses of the rules
should be represented in the same language as the input data, so that the
rules can be applied directly to the data, but often this will not be
possible - one cannot, for example, define visual patterns such as-the
objects in a typical road scene in terms of the pixel values in which
visual input data is normally supplied - so a layered approach will have
to be adopted, using one or more intermediate levels of representation.
Additional sets of rules will then be required to define the terms used in
each representation layer with respect to the terms used in the preceding

layer.

26

" The development of rule sets may be time-consuming and difficutt
The rules may be formulated by a human expert, or induced from examples
of the behaviour required of them (see Chapter 3), or a combined approach
may be adopted: formulate approximate rules, then refine them by testing

their performance in classifying examples.

When the representation system(s) and rule set(s) have been
determined, the recognition task will still not necessarily be
straightforward. Ambiguities or inadequacies in the data or rules may
make smooth progress from the input data through any intermediate
levels of representation to a unique identification impossible. it may be
necessary to employ background knowledge about the problem domain to
guide the recognition process, to use interpolation or default values to
deal with gaps in the data, and to use symbolic or numerical methods to

handle the uncertainties which arise (see Chapter 5).

Despite the difficﬁlties, a number of systems have been developed
which work well in limited problem domains such as the identification of
soybean diseaées (Michalski, '78), the analysis of chess end-game
positions (Quinlan, '82) and the understanding of speech using a limited
vocabulary (Erman et al., '88). However, this is an area where there

remains a great deal of scope for further research.

27

CHAPTER3
RULE INDUCTION

3.1. MACHINE LEARNING - AN OVERVIEW.

Machine learning is one of the most important topics of modern
Artificial Intelligence research. It has three main aims: to enable
computers to perform intelligent tasks so that people need not do them, to
get computers to do things that people cannot do (or cannot do fast
enough), and to simulate human thought processes and thus help to increase

our understanding of them (Simon, '83).

Learning can be defined as anything which produces adaptive changes
in a system which enable it to perform the same task, or tasks drawn from
the same population, more effectively or more efficiently next time. ltis
not just the acquisition of new knowledge; this definition of learning
makes it clear that is not the mere possession of knowledge but the ability

to apply it which is important.

Machine learning systems can be classified by the ways in which they
represent knowledge, by their domains of application or by the learning
strategies which they employ. The learning strategy depends on the |
amount of inference which has to be performed to transform the knowledge
with which the system is supplied into a form in which it can be used
effectively. At one extreme are systems which do not have to perform any
inference because their input data has been carefully selected and
organised by a teacher, and has only to be stored in memory and then
recalled when required. At the other extreme are systems which infer all
the knowledge they need to perform their task from raw, unprocessed data.

Most systems fall somewhere between these two poles - they are supplied

28

with data which has been pre-processed to some extent, but which

requires further modification before it can be applied effectively.

The tasks which a learning system has to perform may include:
translation from an input language into an internal representation
language, imposing a logical ordering on facts, integrating new data with
existing knowledge, inducing rules, drawing analogies, interpolating data,
generating queries and finding and resolving inconsistencies. The
particular combination of tasks which a system performs is the basis of
this classification of learning strategies (Carbonell, Michalski & Mitchell,:
'83):

- learning by rote - no significant inference is performed.

- learning by instruction - the learner may perform some translation,
organisation and integration of knowledge.

- learning by analogy - facts and skills are transformed and/or
augmented for application to new tasks.

- learning from examples - the learner induces concept descriptions
from pre-classified examples.

- learning from observation and discovery - a general form of

unsupervised inductive learning and theory formation.

The classification of strategies is not a rigid one, as some strategies
combine elements of several different approaches to learning and the .
distinctions between different approaches are often somewhat blurred. To
illustrate the fuzziness of the boundary between rote learning and rule
induction, consider a pattern recognition system which stores descriptions
of patterns and their classifications for use in classifying new patterns.
Some logical ordering must be imposed on the stored information to enable
facts to be retrieved from memory quickly and easily. A natural ordering

would be the grouping together of descriptions which have common

29

elements. Where all the instances in a group have not only a common set
of descriptors but also a common classification, it would seem reasonable
to infer that this set of descriptors implies the classification. A rule
could be formulated:

<descriptor set> implies <classification>
which could then be used to classify new examples. Rule induction can
thus be seen as a natural extension of the imposition of a logical ordering
on data; a rule set is, at its simplest, just a succinct way of representing

information about a group of examples.

Some machine learning programs produce 'black-box’' programs which
perform the required task without making it clear how they are doing it, or
what rules they are employing. They generally have a mathematical bias;
their knowledge may be encoded in the form of a covariance matrix or an
optimised set of coefficients, which will mean little or nothing even to an
expert in the field in which they are designed to operate (Forsyth & Rada,

- '86). Black box systems can be very efficient, but they have the drawback
that if errors creep in, for example because of some inadequacy in the set
of training data, they are almost impossible to find. The fact that such
systems are unable to offer any coherent explanation as to how their
conclusions have been reached may also reduce the reliance which people

are prepared to place on their resuits.

3.2, RULE INDUCTION IN PATTERN RECOGNI|TION.

We can all recognise a car when we see one, but would find it hard to
codify the knowledge which enables us to do this. The difficulty of
establishing rules for the solution of 'real world' problems is one of the

main stumbling blocks in the development of pattern recognition programs

30

and Expert Systems; (Michie, '86) calls it 'the Feigenbaum bottleneck' after |
Edward Feigenbaum, one of the pioneers in this field (Buchanan,Feigenbaum
& Lederberg, '71; Feigenbaum, '83). The problem of extracting rules from
human experts can be bypassed if computers ¢an be enabled to induce rules

for themselves.

Induction can be regarded as the reverse of deduction: given a rule,
deduction leads to the results of its application; given a set of resuits,
induction leads to a rule which could have produced them. But induction is
a less certain process than deduction; if a rule is known to be true then
deductions made from it can be firmly relied upon, but an induced rule can
be similarly relied upon only if the set of facts from which it was induced
is complete, i.e. if it contains every fact which could be deduced from the
rule. In pattern recognition, rules are generally induced from incomplete
training sets, which is a powerful technique but one which needs to be
handled with caution. The risks are particularly great when rules are
induced from only positive examples of their behaviour; where there is
nothing to indicate how a rule should not behave, i.e. which patterns do not
belong to the category being defined, there is a clear danger thatthe

induced rules will be excessively general.

On the positive side, the use of rule induction makes programs less
domain specific, more easily adapted to other areas of application. if a
program to recognise instances of a particular pattern has been based on a
set of preformulated rules, developing another program to solve a
different, but related, recognition problem will involve a great deal of
rewriting; if, however, the original program has been based on an induction
algorithm which will derive the rules from a set of examples, all that has
to be done to convert the program is to replace the original example set

with a new example set.

31

| Although the main practical applications of rule induction systems
are in real world situations, many algorithms have been developed through
work on comparatively simple pattern recognition problems where the
‘correct' rules can be determined easily. This has the advantage of
allowing the efficiency of the algorithm to be assessed before it is applied
to more complex tasks. Common simplifications include studying regular
polyhedra (the 'Blocks World"), photographing objects against a plain
background rather than in their normal settings, and restricting training

examples to pictures of single unoccluded objects.

3.3. REQUIREMENTS FOR RULE INDUGTION.

(Michalski, '83) gives the following general paradigm for inductive
inference:
Given: (i) observational statements that represent specific knowledge
about some objects or processes

(if) a tentative inductive assertion (which may be null)

(iiiy background knowledge that defines assumptions and
constraints, and any relevant problem domain knowledge including
preference criteria for solutions
Find: an inductive assertion that weakly implies the observational

statements and satisfies the background knowledge.

When the inductive assertion being sought is a set of concept
descriptions, the observational statements required will take the form of
a training set of instance descriptions together with their classifications.
Where a single concept description is being sought, the classifications
will be 'positive' and 'negative’ if the training set includes both examples

of the concept, and counter-examples; if only positive examples are used,

32

the classification will be implicit.

The task of finding the required concept description{(s) can be viewed
as a search through a space of possible descriptions, and the presence or
absence of an initial tentative description helps to determine the direction

of the search: top-down or bottom-up.

Background knowledge about the problem and problem domain may be
used explicitly during the induction process to guide the search for rules
and prune the search tree, or may be employed only at the setting-up stage
to assist in the selection of an appropriate training set, representation

language(s) for the training set and rules, and induction algorithm.

A wide range of different rule induction algorithms have been derived,
for use in a range of different task domains. The selection of a suitable
algorithm for a particular task will depend on a number of different
factors; (Ross, '89) gives the following list, which is by no means
exhaustive:

- are all the examples available immediately, or is the learning to be
done incrementally?

- is the order of the training examples significant?

- how reliable are the example classifications?

- are all the attributes known to be relevant?

- is anything known about the relationships between any attribute
values?

- is'there any significance to correlations between the values of
different attributes?

- can the program generate and test new examples?

To these, one could add:

33

- does the example set consist entirely of positive examples, or of -
positive and negative examples, or positive examples and 'near misses'?
- are the rules to be induced known to be conjunctive, or might they
be disjunctive?
The choice of algorithm will clearly be less restricted if the system
designer can select the composition, ordering and\representation of the

training set than if any of these aspects of the set are fixed in advance.

3.4. EVALUATION CRITERIA FOR INDUCTIVE ALGORITHMS.

As inductive algorithms have been developed to solve a very wide
range of different problems, it is not possible to give a direct comparison
of their efficiency by showing how well each of them can solve one
particufar problem. Most comparative studies have concentrated instead
on specific issues - for example, (Dietterich & Michalski, '83) compared
five different systems for determining a characteristic description of a
single concept using the following evaluation criteria:

1. Adequacy of the representation language used.

2. Rules of generalisation implemented.

3. Computational efficiency (estimated from hand simulations of the
methods on a very simple problem). .

4. Flexibility and extensibility.

(Bundy, Silver & Plummer, '85) used a rather different approach, analysing
seven different rule- and concept-learning programs with the aim of
extracting and explaining the techniques used, identifying the range of
applicability of each technique and establishing the relationship between
different techniques designed to accomplish the same task. Other authors

have simply described a range of different systems, leaving the reader to

34

draw comparisons between them (Quinlan, '82; Gabrielides, '88). The
approach adopted here is to examine the field subject-by-subject rather

than system-by-system.

3.4.1. Fields of application.

The fields in which learning systems have been used include:

- agriculture

- physics and chemistry

- cognitive modelling

- computer programming, expert systems

- education

- game playing

- image recognition and speech recognition

- mathematics

- medical diagnosis

- Music

- natural language processing

- physical object characterisation

- planning and problem-solving

- robotics

- sequence prediction.-
(Carbonell, Michalski & Mitchell, '‘83). Some systems are very
domain-specific, in that the learning algorithms they use incorporate in
their design a great deal of background knowledge about the problem
domain; others are more general-purpose, using either very little domain
knowledge or knowledge which can be separated easily from the learning
algorithm and substituted with knowledge about a different domain if
required. The systems which are most worth studying are obviously those

which are either specific to the domain under consideration (in this case,

35

visual pattern recognition) or general-purpose; howeVer; a brief study of -
systems specific to other domains is also worthwhile as these may
contain some interesting new techniques which could be adapted for use

elsewhere.

A classic example of a domain-specific program is Meta-DENDRAL
(Buchanan, Feigenbaum & Lederberg, '71), which infers rules for the
analysis of chemical data from a mass spectrometer. This program uses a
three-stage process, firstly explaining the experimental data from each
substance, then generalising the results, and finally organising the
‘generalisations into a unified theory. The detailed implementation
employs a great deal of domain knowledge, but the same overall plan could
be used in other fields where considerable amounts of data from different

problem instances require analysis.

Shapiro's Model Inference System (MIS) (Shapiro, '82) began life as a
debugger for Prolog computer programs, but was developed into an
automatic program synthesizer. This is much less domain-specific than it
may at first appear, as programs could be synthesised for use in a range of
different domains. One of the examples given of its use, however, the
inference of a context-free grammar, employs domain-specific knowledge

in the design of a specialist refinement operator.

The idea of allowing packages of domain-specific knowledge to be
incorporated intc a general-purpose system is exemplified by the STAR
methodology (Michalski, '83). This uses as its description language a form
of annotated predicate calculus, where each descriptor is assigned an
annotation containing relevant background knowledge such as its domain
and type, its relationship with other descriptors, the type of objects with

which it can be used and the operators which are applicable to it. The

36

method allows the use of task-specific generalisation rules and preference

criteria.

An example of a general-purpose system is ID3 (Quinlan, '82), which
produces a decision tree for classifying sets of instances described by
feature vectors, using either a cost basis or an information-theoretic
approach to select attributes on which to partition the training set. ID3
was originally used for the analysis of chess end-games, but uses no
knowledge specific to this problem domain. However, the approach used
places fairly severe restrictio;ls on the types of probiem to which it can be
applied: it has problems in dealing with incomplete and/or uncertain data
(Hart, '86), and all tests have to be in the form of a comparison between a
single variable and a constant (Forsyth & Rada, '86). Descendants of ID3
such as NEDDIE (Kodratoff et al., '88) incorporate such improvements as the
use of a chi-squared test of attribute reliability, and termination if the
overall reliability falls below a threshold, to circumvent some of the

limitations of the original program.

3.4.2. Sources of input data.

Two main types of inductive learning can be distinguished: learning
from examples, or concept acquisition, which aims at producing
descriptions for classifying objects on the basis of their attributes or
properties, and learning by observation, or descriptive generalisation,
where the goal is to determine a general description characterising a
collection of objects or observations. Concept acquisition includes the
learning of both characteristic and discriminant descriptions of classes of
objects, and the inference of sequence extrapolation rules; descriptive
generalisation covers such problems as theory formation, discovering

patterns in observational data and the determination of taxonomic

37

descriptions (Michalski, '83).

The distinction is really between learning to distinguish concepts
which are known to the teacher, from preselected examples, and
discovering concepts which have not been identified in advance. Generally
the machine learning aspects of pattern recognition can be regarded as
concept acquisition as the aim is to find some practical way of

- distinguishing examples of known classes.

AM, a system which develops mathematical concepts (L.enat, '83) is a
good illustration of descriptive generalisation. This system consists of a
set of primitive mathematical concepts together with a large number of
domain-specific heuristic rules which guide it in deciding which areas to
explore, defining new concepts, recognising simple relationships between
- concepts and estimating how interesting each concept is. It has no 'target’
concepts; it simply aims at maximising the interest ratings of the

concepts it discovers.

Learning from examples can be subdivided into different categories
according to the source of the examples: a teacher, the external
environment or, in some cases, the system itself. Systems designed to use
examples supplied by a teacher typically incorporate these examples one at
a time into a rule set or concept description which becomes progressively
more accurate as the number of examples used increases. Winston's
concept learner (Winston, '75) operates in this way: it uses a positive
example of the concept to be learnt to form an initial mode! which is then
modified through comparison with each new example or near-miss.
Hayes-Roth's SPROUTER (Dietterich & Michalski, '83) follows a similar
pattern.

38

‘The performance of systems which build up concepts incrementally by
considering examples one at a time may be substantially affected by the
order in which the examples are presented (McGregor, '88), so where it is
impossible or impracticable for the examples to be ordered by a teacher,
for example because data is being obtained directly from the external
environment, a system which deals with a large set of examples at once
may be more appropriate. This set of examples can then be ordered or

grouped as required by the system itself.

Loisell and Kodratoff describe one method of grouping examples
according to resemblances between them; they classify differences
revealed by comparison of examples as highly ambiguous, ambiguous or
discriminant near misses, then use these to rate the examples as highly
comparable, comparable or separable, This produces a way of partitioning
the example set so that examples not in the same subset show a maximum
of differences. (Loisel & Kodratoff, '81).

Mitchell's Version Space strategy (Mitchell, '79) works by
representing the set of all concept descriptions consistent with the
observed training examples, using one example at a time to reduce the size
of this version space. This system can select the next example to consider
from a set of possibilities by considering which example comes closest to
matching half of the descriptions in the version space, thus imposing its

own ordering on the example set.

Instead of merely imposing their own ordering on an existing set of
training examples, some systems have the ability to generate examples for
themselves to resolve any ambiguities they discover. This method can, of
course, only be used if a teacher or oracle is available to provide the

correct classifications for the examples generated. Shapiro's MIS has this

39

facility, as does Sammut's concept Iearnér'(Sammut, '81'), which starts
with a positive instance of the concept to be learnt, generalises this and
then tests the validity of its generalisation by generating new examples

which satisfy it.

3.4.3. Search Patterns.

Rule induction can be regarded as a search problem; the induction
program must search through a space of possible rules in order to find the
correct one(s). The rule space is partially ordered by the
‘more-specific-than’ relation, which imposes a tree structure on it
(Mitchell, '79). The search can be conducted in several different ways:
depth first, breadth first, specific-to-general, general-to-specific or a

combination of these.

Systems which employ a depth-first search strategy maintain a
single current hypothesis, modifying or replacing this if a contradiction is
discovered i.e. they test all the training examples against each rule in turn
until a satisfactory rule set has been discovered. Breadth-first
strategies, on the other hand, maintain a set of hypotheses, eliminating
elements of this set when coniradictions arise i.e. they test all the rules
against each training example in turn. A breadth-first search has the
advantage that training examples need not be retained once they have been
examined; the drawback, though, is that for any reascnably complex
problem the set of possible rules will be vast. The impracticability of
formulating and examining every possible rule explains why the majority
of systems, including Shapiro's MIS, Quinlan's ID3 and Winston's concept

learner, operate depth-first.

A compromise approach is the beam search where the nodes at each

40

level of the search tree are pruned, only a limited number being retained
for use in propagating new nodes. Dietterich & Michalski's Induce 1.2 uses
this technique: it starts by selecting a random subset of the training
examples to form its initial set of concept descriptions, generalises each
description in this set by a single application of each of its generalisation
rules in turn, then prunes the set of generalisations to a predetermined
size, retaining those descriptions which are least complex and cover most
examples. Any descriptions which cover enough of the examples are
entered in the final rule set; the remaining elements of the pruned set are
further generalised, until enough rules have been found. This system is
quite efficient but not optimal, as generalisations which would lead to

good descriptions may be pruned. (Forsyth & Rada, ‘86).

Specific-to general search strategies typically start with an initial
hypothesis formulated from a single positive example of the concept being
learnt, then generalise this to cover further positive examples.
General-to-specific strategies start with a very general rule, then
restrict it to eliminate negative examples. The majority of systems use
training sets containing both positive and negative examples, and so use a
combined approach: if the current rule set correctly classifies an example,
no alteration is made to the rules; if the system fails to classify a
positive example, or incorrectly classifies it as negative, the rules are
made more general; if the system incorrectly classifies a negative

example as positive, the rules are made maore specific.

Rather than modifying the same working hypothesis in two different
directions, depending on the types of error which are encountered,
Mitchell's version space strategy (Mitchell, '79) and Young, Plotkin & Linz's
focussing technique (Bundy et al., '83) both maintain two separate

hypotheses, one overly general and the other overly specific. Positive

41

examples are used to make the specific hypothesis more general, and
negative examples to make ihe general hypothesis more specific, until the
two coincide. This bidirectional approach is an interesting idea, but
unfortunately it can only be applied breadth-first (if a depth-first search
were to be used, the two hypotheses would not necessarily coincide
eventually, but could well bypass one another), which severely restricts

the range of problems for which it can be used.

3.4.4, Rule Modification Technigues.

Most rule induction programs use the following main control loop:
Until the rules are satisfactory:
1. ldentify a fault with a rule
2. Modify the rule to remove the fault. |
The part of the system which identifies faulty rules is the critic; the part

which modifies the rules is the modifier (Bundy et al., '83).

The critic will be activated when the rule set fails to classify a
training example correctly, i.e. when a wrong classification has been
obtained or when the program has failed to produce any classification.
Where examples are classified by the application of a single rule,
identifying the faulty rule poses no problems; where a sequence of rules
have been applied, it will be necessary to examine a trace of the

classification process in order to locate the fault.

The problem of identifying faulty rules has been analysed by Shapiro.
He identifies three types of fault in a Prolog rule set: termination with
incorrect output, termination with missing output and non-termination.
His MIS deals with the first of these, incorrect output, by single-stepping

through the trace, checking each rule until the fault is discovered, or by a

42

divide-and-query algorithm: check the rule which will divide the program
trace into halves, then select the appropriate half on which to iterate the .
procedure. The algorithm which deals with missing output finds a goal
which is uncovered, i.e. cannot be unified with the head of any clause. In
cases of non-termination, the trace is examined to find two consecutive
calls which breach the well-founded ordering determined by the maximum
depth of any computation of a procedure (Shapiro, '82). The application of
these critic algorithms requires the system to have access t0 an oracle or

database from which the answers to queries ¢an be obtained.

The methods implemented by the modifier fall into two main groups:
generalisation or de-refinement techniques, and specialisation or
refinement techniques. Specialisation is the opposite of generalisation, so
the specialisation methods tend to be generalisation methods applied in
reverse; for example, a rule can be generalised by dropping a condition

from its hypothesis and specialised by adding a condition to it.

(Michalski, '83) distinguishes between two different types of
generalisation rule - selective rules, where every descriptor in the
generalisation is used in the initial example descriptions, and constructive
rules, where new descriptors are used. His selective rules are:

- dropping a condition

- adding an alternative to a condition

- extending the range of values of a descriptor - for example, closing
an interval

- climbing the generalisation tree, i.e. replacing a set of values of a
structured descriptor with a value which is the lowest parent node of all
the values in the set

- turning a constant into a variable

- turning a conjunction into a disjunction

43

- extending'the domain of a quantifier e.g. replacing an existential
quantifier with a universal quantifier
- inductive resolution
- the extension against rule: produ_ces the most general statement

consistent with a positive example and a negative example of a concept.

Not all of these rules are applicable to all problems. For example, the
climbing the generalisation tree rule can only be used with structured
descriptors, and the range of values of a descriptor can be extended only if
the values are ordered in some way. The rules implemented by a particular
system tend, therefore, to depend on the application for which it is being

used.

Constructive generalisation techniques are even more application
dependent as a considerable amount of background knowledge has to be
used in order to derive new descriptors which are relevant to the problem.
They typically involve identifying relationships and interdependence
between descriptors, or common groupings of descriptors which can be
replaced by a new combination descriptor. Few systems for learning from
examples employ constructive generalisation; it is commoner in systems
which learn by observation, such as the BACON system (Langley, Bradshaw
& Simon, '83).

Specialisation methods are similarly application-dependent to some
extent. Shapiro's MIS, which homes in on the correct rules by taking large
steps in the specific-to-general direction, using the single rather crude
generalisation technique of dropping the last conjunct from the hypothesis
of a rule, then taking small steps back in the general-to-specific
direction, uses a specific refinement algorithm for the inference of

definite clause grammars. Its general refinement algorithm implements

44

these techniques:
- closing a clause
- instantiating variables
- unifying two input variables
- adding an output producing goal

- adding a test predicate.

3.4.5. Types of output: conjunctive and disiunctive rules.

The rule or set of rules which is the output of a rule learning program
can be represented in a wide variety of different ways which are all
logically equivalent to:

<Hypothesiss> implies <Conclusions.

In the case of single concept learning programs, the conclusion -
membership of the concept class - is usually implicit. The hypothesis is

the concept description.

The hypothesis may be conjunctive or disjunctive. A conjunctive
hypothesis is of the form:

Condition1 and Condition2and and ConditionN.
Disjunctive rules can be written as a disjunct of conjuncts:

(Condia and Cond2a and . .) or (Condib and .Cond2band ..)or...
or as a set of conjunctive rules, since the rule

A orBimpliesC
is equivalent to the rules

A implies C and

B implies C.
It is not true, however, to say that all rule sets with more than one
element are essentially disjunctive. A set of (conjunctive) rules is

conjunctive if all the rules in it have different conclusions, disjunctive

45

only if there exist two rules in the set with different hypotheses but the

same congclusion.

Specialising disjunctive rules presents no particular problems; where
a disjunctive rule incorrectly classifies a negative example as positive,
the disjunct(s) requiring specialisation will be the one(s) which the
example erroneously satisfies. When generalising a disjunctive rule,
however, the situation is more complex. A positive example which has not
been correctly classified by a rule could be covered by applying a rule of
generalisation to any of the existing disjuncts in the hypothesis, or by
creating an entirely new disjunct. Search spaces of possible disjunctive
rules tend, therefore, to be substantially larger than search spaces of

possible conjunctive rules.

The majority of rule induction systems develop conjunctive rule sets;
there are few examples of effective disjunctive systems. One simple
disjunctive algorithm, designed to handle correctly classified examples
presented as sets of ordered attribute values, was developed by Ross:

Select a positive example to form the initial version of the concept.

Given a new positive example:

form the meet of one component of the concept disjunct and
the new example, check this for validity against all negative
examples. If valid, replace the component with the meet; if
invalid, repeat with another component or if no more
components remain to be checked, form a new component.

Given a new negative example:

check against all components of the concept; eliminate any
components which are invalidated and reprocess the positive
examples which supported them,

(Ross, '89). Another disjunctive technique is 'refocussing', a modification

46

of Mitchell's focussing technique (B'und'y ot él;, '8'5).

3.5. SUMMARY AND CONCLUSIONS.

Attempts to solve a wide variety of learning problems in many
different fields have led to the development of a range of systems which
have some common characteristics, but have been tailored to cope with

different types of input and to provide different types of output.

The identification or development of a system to handle a particular
task should be begun by analysing the possible starting points for the
induction, and defining the output which is required in as much detail as
possible. The starting points will be determined by the type, quantity and
quality of data which is available, and the types of preprocessing which
could be applied to it; the types of rule which are to be induced will depend
on the task which the rules are to perform, i.e. the kinds of questions to

which they will be expected to provide answers.

Specification of the input and output will place significant
constraints on the choice of learning method, but there may be additional
constraints as well: the type of equipment which is available and the speed
with which the system is required to operate, for example. The large
number of factors to be taken into account in selecting an appropriate
system suggests that despite the wide choice of systems available, it will
often be necessary to substantially modify an existing system or to

develop a completely new one to deal with a new application.

47

CHAPTER 4
BLACKBOARD SYSTEMS

4.1. THE BLACKBOARD CONCEPT: HISTORICAL BACKGROUND.

The blackboard system is an attempt to model the behaviour of a
group of experts collaborating to solve a problem; they cluster around a
blackboard on which information about the problem is written, and each
one selects the information which they can use, synthesises new
information from it and places this on the blackboard to be used in turn by

the others.

The basic idea is similar to that of Selfridge's Pandemonium model of
human pattern recognition, developed in 1959 (Lindsay and Norman, '77).
This feature analysis model employs several sets of demons: image demons
record the initial signal image, feature demons search the image for
particular characteristics, then cognitive demons, each of which is |
responsible for recognising one particular pattern, scan the output of the
feature demons and start yelling if they find any of the characteristics
they require. The more relevant characteristics théy find, the louder they
yell. A decision demon listens to the resulting 'pandemonium' and selects
the pattern associated with the cognitive demon which is yelling loudest
as the most likely explanation of the signal. The demons thus collaborate
to solve the recognition problem; substitute writing on a blackboard for

yelling and you have a blackboard model.

The term "blackboard’ was first introduced by Newell, who used this
idea in the development of the production system (Newell and Simon, '72).
The first of the modern generation of blackboard systems was used to

control the Hearsay-ll speech understanding system (Erman et al., '80).

48

This has beén:followed by a host 6f other systems, used for é wide range of
applications including signal interpretation, 3-D molecular structure
modelling and planning. There have also been some attempts to produce
general-purpose blackboard systems which ¢an be tailored to specific
applications, for example the Hearsay-lIl system (Erman, London and
Fickas, '88), and tools which knowledge engineers can use to help design
systems, such as AGE (Nii and Aiello, '88).

4.2. BLACKBOARD ARCHITECTURE.

A blackboard system has two main components: the knowledge
sources, independent sources of problem-specific knowledge to be used to
solve the problem (the system equivalent of the human experts in the
original model), and the blackboard data structure, which holds the
problem data and through which the knowledge sources communicate and
interact with one another (Engelmore, Morgan and Nii, '88). (See Figure

4.1). There must also be a control component, which is generally

KNOWLEDGE BLACKBOARD KNOWLEDGE
SOURCE \ SOURCE
\\] E ot ry /
>< Entry I/
KNOWLEDGE /,,9 Entry KNOWLEDGE
SOURCE Entry & SOURCE

Figure 4.1. Structure of a Blackboard System.

49

application-specific. Control information may be held on the blackboard or

in a separate module.

The blackboard data structure is generally hierarchical - knowledge is
represented at several different levels, each of which has its own
vocabulary. The blackboard may be partitioned into several different
hierarchies. This is done for efficiency, so that knowledge sources do not

consider data which cannot be relevant to them.

The knowledge sources are mainly responsible for taking information
from one or more parts {sections or levels) of the blackboard and
transforming it into information to be entered into the same or other parts
of the board. There may also be special knowledge sources which perform
tasks such as scheduling operations and checking to see if the termination

conditions are met.

The normal cycle of activity is as follows: the system controller
determines which of the knowledge sources are capable of utilising the
information currently held on the blackboard and determines which of the
possible operations should be executed first, then the selected operation is
carried out. This produces changes in the information on the blackboard, so
the controller is reactivated to assess the new situation and the cycle is
repeated. The pre-conditions for each knowledge source, i.e. the
information which they require, must obviously be specified so that the
controller can determine which operations could be performed; some means
must also be provided for assigning an order of priority to the operations,
for example by assessing the usefulness and/or reliability of the potential

output. (Jones and Millington, '86).

50

4.3, ADVANTAGES AND DISADVANTAGES.

The main advantage of blackboard systems is that they allow difficuit
problems to be solved in stages using a variety of methods, without the
need to specify in advance the order in which the methods are to be
applied. They have a modular structure, so knowledge sources can be
developed, implemented and tested independently and new knowledge can

be incorporated easily into an existing system when it becomes available.

The blackboard structure is particularly well suited to
experimentation. Simply by adjusting the control module and varying the
priorities attached to different knowledge sources, alternative
configurations can be evaluated and compared for efficiency and accuracy

in finding correct solutions to a problem.

Where the most efficient solution method for a particular problem has
already been established, however, the use of a blackboard is usually less
efficient than direct implementation of the algorithm. Scheduling the
operations to be carried out can take up a good deal of processing time; if
the appropriate order of operations for part or all of the solution process
is already clear, this order should be specified and the operations carried

out without reference to the blackboard control module,

I it is clear which knowledge source information is intended for, it
is obviously faster and more efficient to pass the information to that
knowledge source directly instead of via the blackboard. Itis also
undesirable to use the blackboard at intermediate stages within the
operation of a single knowledge source; where knowledge sources are
carrying out multi-stage operations, they need to be provided with

facilities for storing intermediate results using their own internal data

51

~ structures so that data is not translated from one format to another and

back again unnecessarily. (Erman et al., '88).

4.4. APPLICATION-SPECIFIC AND GENERAL-PURPOSE SYSTEMS.

The blackboard concept was originally developed in response to the
need to find ways of tackling the problem of speech understanding by
computer. It was soon realised that the ideas which had been used here
could be applied to problems in other fields as well, and a number of other
applications were develbped which, though differing in detail, all shared

the same general approach.

Some of the variations between early systems reflected the fact that
different problems required different solution methods; others arose
because lack of detailed information about existing systems meant that
many teams of designers had no other option than to start from scratch in |
producing their own versions of standard blackboard components. To help
avoid such duplication of effort, several attempts were made to produce
multi-purpose systems or blackboard shells which could be tailored to suit

different applications.

Attempts to use blackboard shells in more problem fields inevitably
revealed some limitations; new ideas had to be introduced, which in turn
could be abstracted and implemented in another generation of shells,
leading on to yet more applications. The general trend might be expected
to be for each new generation of systems and shells to be more elaborate
and complex than the last, but this has not always been the case. As new
ideas have been incorporated into systems, some existing ideas have been

dropped, either because they have been superseded or because they have

52

been shown to be of limited applicability. Some designers have also
deliberately sought to produce systems which are easy to understand and

use, sacrificing flexibility where necessary for the sake of simplicity.

4.5, EXAMPLES OF APPLICATION-SPECIFIC SYSTEMS.

The systems which are described here have been selected to indicate
the types of application for which blackboards have been used, and to give
some impression of the wide variations in the way in which the basic

concepts have been implemented.

4.5.1. Hearsay-ll (Erman et al., '80).

The first application of the blackboard principle was to speech
“ recognition; the Hearsay-ll system was developed to recognise sentences
constructed from a 100 word vocabulary, and was very successful,

praducing correct interpretations in approximately 90% of cases.

The system, written in SAIL, an Algol-60 dialect, uses six different
levels of representation: segments of digitised speech, syllables, words,
word-sequences, phrases and sentences. It includes thirteen knowledge
sources, which create hypotheses at each leve! from information on the
level below, control the number of hypotheses generated at each level,
check for consistency and credibility of hypotheses, parse word sequences,
predict words to follow or precede a phrase, check for termination and
generate an interpretation of the final sentence to be passedto an -

information retrieval system.

Approximate knowledge is used in places for efficiency and

53

processing speed; for example, the full word-sequence parser is slow to
run, so possible word sequences are checked first using an approximate
parser which rapidly weeds out many unacceptable sequences, leaving only

a small number to be checked by the full parser.

The control system allocates resources to the most promising actions
by estimating the probable effects of an action, deducing its global
significance and comparing it with other potential actions. Each
knowledge source has a stimulus frame (a set of hypotheses which satisfy
its pre-conditions) and a response frame (a stylised description of its
actions) which are used together with global state information to

calculate priorities.

Processing was at first opportunistic and data-directed, that is,
promising hypotheses generated at one level were immediately followed up
at other levels, but this was found to be inefficient at lower levels
because of the inaccuracy of the credibility ratings. Completely
processing one level before starting on the next proved more effective up

to word-sequence level.

4.5.2. HASP (Nii et al., '88).

The HASP system was developed to interpret continuous sonar signals
from hydrophone arrays used to monitor areas of ocean. The original
intention was to produce a DENDRAL-like expert system, but this was
shown to be impractical and a blackboard model was adopted instead. The
main difference between the HASP problem and the Hearsay-Il problem is
that Hearsay was required to interpret independent utterances whereas
HASP was interpreting a continuous signal, considering the current data in

conjunction with its analyses of previous data.

54

HASP, like Hearsay-ll, uses several différent Ie;veis of keprésentétiori |
- in this case, sonogram lines, harmonics, sources, vessels and at the top
level a situation board which contains the current model of the ocean
scene. The knowledge sources in HASP are also organised in a hierarchy,
with sources called specialists, whose task is to put inferences on the
current best hypotheses, on the bottom level, activators, which know when
to use the various specialists, on the next level and a strategy knowledge

source on top.

The specialist knowledge sources contain both 'textbook' knowledge
and heuristics obtained from human experts. As the system maintains a
top-level current best hypothesis from which new hypotheses are evolved,
top-down, model-driven techniques are used as well as bottom-up,
data-driven techniques. Extracting useful information from large amounts
of data with a poor signal-to-noise ratio is computationally very
expensive; using a top-down approach to 'tune’the search by generating
signal expectations can reduce the problem to more manageable

proportions.

The analysis carried out is time-dependent, and this aspect is handled
by a mechanism called clock events. Specialist knowledge sources can put
requests for recall at specific times, to review information and hypothesis

elements, on a clock-event list.

The system produces explanations of its hypotheses in a similar way
to expert systems, but as many of the inference steps in the development
of a hypothesis are of limited interest, a special knowledge source is used

to identify and present to the user the most important events.

55

4.5.3. UMass Schema System (Draper et é!., '88).

Most vision systems are designed to perform specific tasks and are
difficult to adapt to other uses because of the amount of domain-specific
knowledge which they employ. This system arose from an attempt to
produce a general-purpose vision system, by linking together many
special-purpose ones. It was intended to be able to cope with such
problems as the absence of experts able to introspect about their vision
expertise, the difficulty of indexing into a potentially vast knowledge base
of objects, the degree of uncertainty inherent in vision data and the vast

quantity of data which is usually involved.

The system contains a number of single-object vision systems -
schema - which co-operate and compete to arrive at a consistent
interpretation of the image. It is modular: no schema depends on the
internal details of any other schema, so new schemas can be added and
existing ones modified easily, and a blackboard is used for all
communication between schemas. However, the schemas are not all
uniquely constructed; the system provides a set of knowledge sources and
representations which are useful for any knowledge recognition, and the
schemas contain information about which of this knowledge is relevant and
when and how it should be applied. This information comprises an
object-specific problem space definition, control knowledge for traversing
the problem space and a function to translate evidence from knowledge

sources into a degree of confidence in the presence of an object.

Instantiated copies of a schema, called schema instances, are invoked
to identify instances of the schema's object class. These instances can be
invoked by the user, but are more often invoked by each other, to gain

support for hypotheses, to account for inexplicable data or to predict the

56

existence of objects which can be expected to ocour with a
currently-believed object. The system starts by invoking an instance of a
general scene schema such as road-scene or house-scene, which then
invokes instances of schemas for objects likely to be found within the
scene, then these in turn invoke more schemas until the analysis is

complete.

The Schema system has been designed to run in a parallel
environment, which removes many of the scheduling problems which
sequential blackboard systems suffer from: instead of having to decide
which operation has the highest priority and so should be executed first,

many operations are executed at once.

4.6. EXAMPLES OF GENERAL-PURPOSE SYSTEMS.

4.6.1. E (Nii and Aiell

AGE (Attempt to GEneralise) was conceived as a set of building-block
programs covering common artificial intelligence techniques, together
with an intelligent front end which would assist a user in constructing a
blackboard system from them. Written in INTERLISP, the functions it
provides include a user tutorial, debugging facilities, automatic generation

of a system reference manual and a graphic interface.

The AGE blackboard contains hierarchically structured hypothesis
elements, integrated by links representing support from above
(expectation-links) or from below (reduction-links). The structure of the
hierarchy may be simple or complex. Hypothesis elements can be generated

by inference rules in the knowledge sources, and can also be generated and

57

named in advance by the user. They rhay include credibility 'ratings', '

calculated usirig preprogrammed procedures or user-provided algorithms.

The domain-specific knowledge needed by systems developed using
AGE can be contained in one or more knowledge sources. These knowledge
sources are used to create and modify hypothesis elements and
relationships between elements. Each of them has associated with it lists
of preconditions for its invocation, pairs of hypothesis levels that it spans
and links it generates, a hit strategy to be used for the rules and a facility
for binding variables. There may also be higher-level knowledge sources

which manipulate the domain-specific knowledge sources.

Control components are needed to specify the input data format,
initialisation function, processing method, rules for determining the next
step in the processing and selecting the relevant knowledge source to
carry it out, termination conditions and post-processing functions.
Standard control components are provided, but user-written procedures

may be substituted where required.

The AGE system has been widely distributed and used for applications
ranging from a small system to solve cryptogram problems to TRICERO, a
multisensor data-fusion system using separate blackboard subsystems
(Williams, '88).

4.6.2. The Edinburgh Prolog Blackboard Sheill (Jones et al., ‘88).

The Edinburgh system has been designed as an experimental tool,
using the pattern-matching facilities built in to Prolog to simplify the

implementation of the blackboard concept.

58

The blackboard structure is not defined explicirtly; the user assigns
indexes to entries, the choices of which determine the regions and levels
into which the data will be organised. Blackboard data entries are Prolog
unit clauses of the form:

bb(Tag,Status,Index,Fact,ConfidenceFactor)
where Tag is a system-supplied identifier, Status is a system-supplied
indicator of whether the entry is current or defunct and ConfidenceFactor
is a user-defined term or system default representing a degree of belief.
Relations between entries are shown explicitly by Prolog clauses of the
form:

supports(SupportingTag,SupportedTag).

The knowledge sources which contain the domain-specific knowledge
required by the system must be supplied by the user as Prolog rules:

if Condition then Body to Effect est Est
where Condition is a test for the presence or absence of some combination
of blackboard entries, Body and Effect specify the action of the rule and

Est is a rating which is used by the scheduler.

The blackboard holds the agenda of tasks to be performed, in the form
of knowledge source activation records (KSARs). Placing the agenda on the
blackboard makes it possible for the scheduler to be implemented as a

knowledge source which manipulates the agenda.
As a small-scale experimental tool, the Edinburgh shell has been

tested on small applications such as the modelling of users of

command-driven systems.

59

4.6.3. Hearsay-lll (Erman et al.. '88).

The ideas implemented in the speech-understanding system
Hearsay-Il have been abstracted, extended and generalised to produce
Hearsay-lll, a domain-independent framework for knowledge-based expert
systems which is based on a relational database written in AP3 with
control facilities in INTERLISP.

The designers aimed to provide the following facilities:
- support for the codification of diverse sources of knowledge
- support for the application and co-operation of these knowledge sources
- the ability to represent and manipulate competing solutions
- the ability to reason about partial solutions
- facilities for describing and applying consistency constraints
- support for long-term development of large systems, allowing

experimentation with various knowledge sources and application schemes.

As Hearsay-lll is intended to be used for large-scale applications,
the scheduling problem is expected to be complex and is itself handled by a
blackboard approach, using scheduling knowledge sources to handle such
tasks as the assignment of priorities to knowledge source activation
records. The blackboard is therefore split into two parts, which can be
further subdivided by the user if required: the domain biackboard, used to
hold a domain model and partial solutions, and the scheduling blackboard,

used for performance reasoning.

The system was tested on small applications such as the solution of
cryptarithmetic problems; full-scale applications include a system for
constructing formal specifications of programs from informal

specifications.

60

4.7. SUMMARY AND CONCLUSIONS.

Blackboard systems are clearly a very useful tool for coordinating the
use of a variety of different sources of knowledge to derive a solution to a
problem incrementally. They are particularly well suited to use in problem
domains which lend themselves to hierarchical structuring, to the
development of partial solutions to problems which cannot be solved
completely because of inadequate or uncertain data, and to developing
methods for tackling complex problems where a solution strategy cannot

be specified completely in advance.

Pattern recognition, in which hierarchically layered representations,
uncertainties in the data and multi-directional approaches to finding
solutions are commonplace, is an ideal field in which to use a blackboard
approach, so it is unsurprising that many of the systems which have been

developed fall within this field.

Rule induction has an important role to play in pattern recognition, as
was indicated in Chapter 3; some of the knowledge sources required for a
pattern recognition blackboard system could be induced from sets of
training examples. These knowledge sources could be developed
independently and then incorporated inte the blackboard system, or
alternatively the induction process could form an integral part of the
system: solutions verified by a high-level knowiedge source, or by the
system user, could be fed back to be used in modifying and updating the
rules, producing a recognition system which learns from the experience

gained by solving problems.

A rule induction or feedback module which developed and updated

knowledge sources would not, strictly speaking, be a knowledge source

61

itself, but a meta-khowledge source, as the data it operated on would be
not the problem data held on the blackboard but the knowledge sources
themselves. One would effectively have a two-tier blackboard system,
with the knowledge sources which made use of one blackboard being held
themselves on another blackboard to be accessed by the meta-knowledge
sources. Such a system would have to be written in a language such as
Prolog which does not make a clear distinction between program and data.
The Edinburgh Prolog blackboard shell (Jones et al., '88) would therefore
appear to be a suitable starting point for the development of such a

system.

62

CHAPTER5
DEALING WITH UNCERTAINTY

5.1. SOURCES AND TYPES OF UNCERTAINTY.

The problems with which Artificial Intelligence is concerned are
inherently uncertain - it is the lack of certainty, the need to make sense of
incoherent or incomplete information, which gives rise to the need for

'intelligent’ problem-solving behaviour. (Hinde, '85;'86).

Uncertainty can arise from a variety of sources; it can manifest itself
in the problem data, in facts and in rules (Fox, '86). (Kodratoff et al., '88)
describes these sources and types of uncertainty:

- unreliability of data due to symbolic noise {vagueness or ambiguity
in the meaning of a term) or uncertainty in the measure of an attribute

- human-induced errors: assigning wrong values to attributes,
misclassifying examples or giving too many or too few descriptors

- omission of necessary examples from a training set

- deficiencies in the description language used

- uncertainty in the problem domain

- noise in background knowledge.
(Schutzer, '87) gives some further examples: uncertainty about
interactions between plan steps in a planning problem, uncertainty about
the actions or intentions of an opponent in strategic planning, and
problems with input data, including inaccuracy, incompleteness, disparity
of sources, asynchronicity, inconsistency, variations in granularity and
difficulties in data extraction, which mean that the data 'represents a kind

of bounded ignorance'.

63

" The uncertainty which is inherent in a system can be distinguished
from the uncertainty introduced when modelling it using a particular
representation system, which arises from vagueness in our perception and
judgment of it. These distinct types of uncertainty may be best handled by
different methods, numeric methods being more appropriate for the

former, and symbolic methods for the latter. (Wise, '86).

5.2. APPROACHES TO HANDLING UNCERTAINTY.

The designers of A.l. systems can adopt two different approaches to
the modelling of intelligent (human) behaviour: the understanding-oriented
approach, aimed at duplicating the way in which humans operate, and the
performance-oriented approach, aimed at producing the same results as a
human would produce by whatever method seems most effective.
(Spiegelhalter, '86). The various approaches which have been developed for
dealing with uncertainty reflect this division as well as the differences
between the types of uncertainty which arise in different problem

domains.

Humans often use vague, ill-defined terms when describing their
reasoning processes; the difficulties involved in translating vague
expressions into numeric terms without introducing an unjustifiable level
of precision can be circumvented by using a symbolic approach. The use of
symbols allows one not only to reason under uncertainty, as with a numeric

approach, but also to reason with or about uncertainty (Fox, '86; Hinde,'86).

Expert Systems often employ IF...THEN rules obtained from human

experts, with associated certainty factors which may show various forms

64

' of bias: people's estimates of probabilities tend to be influsnced by such
factors as the ease with which they can recall or imagine an event (which
leads to a bias towards specifics rather than generalities) and the degree

of 'representativeness’ which an event appears to display (which means,

for example, that if a coin is to be tossed six times, 'HHTHTH' will be

judged a more probable outcome than ‘'HHHHHH'). (Wise, '86). If the biases-
can be recognised, it should be possible to remove or reduce their effects;
the results obtained will then be more accurate, but less 'human’. The main
advantage of using such rule-based systems is the ease with which their

conclusions can be explained to the user.

Performance-oriented approaches are frequently based on probability
theory or an extension, simplification or adaptation of it. Probability
theory is the oldest and most widely used method of handling uncertainty,
and is derived from a formal description of rational behaviour.
Probabilities are a function of two things: the proposition under
consideration, and the evidence at hand. Their precise magnitude is usually
less important than the reasoning behind it, the context in which it applies
and the sources of information which would cause it to change. Probability
theory is unique in its ability to process context-sensitive beliefs, and it
has been shown that for aﬁy reasonable scoring rule, any scalar measure of
uncertainty is either worse than or equivalent to it. (Pearl, '88; Wise, '86).
However, its use does present some problems: there may be insufficient
data available to allow a full probability distribution to be specified
accurately, with traditional probability theory ignorance cannot be
distinguished from uncertainty, the computational cost may be excessive,
and if approximations and simplifications have to be made the results

obtained may not be accurate.

65

The need to express ignorance, as opposed to uncertainty, has led to

the development of methods based on intervals: the range of probabilities
which could be assigned to a hypothesis is given, with the lower limit of
the interval based on the weight of the evidence supporting the hypothesis,
and the upper limit calculated from the weight of evidence against it, or

the support for its negation. The width of the interval represents the

degree of ignorance, or lack of evidence.

There is a clear difference between the concept of probability and the
concept of truth. A probability of 0.5 attached to a hypothesis does not
mean that it is half-true; hypotheses are either true or false, and
probabilities can be regarded merely an estimate of the relative
likelihoods of these two alternatives. The idea of reasoning with truth
rather than with probability - or with belief, as the truth or falsehood of
hypotheses will, in general, not be known - has led to the development of
truth maintenance systems, which are used to establish sets of mutually
consistent hypotheses. Truth maintenance can be linked with probabilistic
methods: the use of a preference ordering of assumptions will ensure that
the 'most probable' solutions to a problem are explored first. (Hinde et al.,
'89).

(Pearl, '88) gives the following classification of methods for handling
uncertainty:

logicist - uses nonnumerical techniques, primarily non-monotonic
logic.

neo-calculist - uses mathematical representations, with new calculi
to circumvent the perceived deficiencies in traditional probability
calculus (Dempster-Shafer calculus, fuzzy logic etc.)

neo-probabilist - remains within the framework of traditional

66

probability theory

heuristic - uncertainties are not made explicit, but are embedded in
domain-specific procedures and data structures.
Here, methods are reviewed under four different headings: numeric
methods, which covers traditional probability theory and related methods
such as Dempster-Shafer theory and the use of certainty factors, methods
derived from fuzzy set theory, truth maintenance, and other methods

(mainly symbolic).

5.3. NUMERIC METHODS.

5.3.1. Probability Theory and Bayesian Inferen

Mathematical probapi[ity theory was developed to help explain random
physical phenomena, where the frequencies of occurrence of each of a set
of mutually exclusive states which an object can take on tend to approach
stable values as the number of independent trials increases (Schutzer, '87).
The classical definition of probability is:

If a single trial of a chance situation can have one of N exhaustive,
mutually exclusive and equally likely outcomes and if f of those N
possibilities are favourable to an event A, then the probability of A, p(A) is

equal to f/N.

The conditional probability of an event A given an event B, p(A|B), is
defined by:
p(AlB) = p(A andB) (if p(B) > 0)
p(B)
If A and B are independent events, then p(A[B) = p(A) and

67

p(A and B) = p(A).p(B).
(Kotz and Stroup, '83).

Bayesians see the conditional relationship p{(A|B) as more basic than
that of joint events, so belief in joint events is computed from conditional
relationships:

p(A and B) = p(A|B).p(B).

= p(B|A).p(A).
This leads to the inversion formula:
p(Hle) = p{elH).p(H)
p(e)

where p(H) is the prior probability of H and p(H|e) is the posterior
probability of H given evidence e. The inversion formula ¢an be used to
update beliefs in response to evidence. The formula can also be given in an
odds-likelihood form:

O(Hle) = L(e|H).O(H)
where O(H|e) is the posterior odds p(H|e)/p(notH|e), L(e|H) is the likelihood
ratio p(e|H)/p(e|notH) and O(H) is the prior odds on H, p(H)/p(notH). (Pearl,
'88).

Two events A and B are said to be conditionally independent given C if:
P(A and B|C) = p(A|C).p(B|C}

If A and B are conditionally independent given C or notC, then the formula:
p(ClAandB) = p(AlC) . pBIC) . p(C)
p(notClAand B) p(AlnotC) p(B|notC) p(notC)

can be derived from Bayes' rule. The assumption of conditional

independence allows a large set of events to be split into a network of

local event groups (LEGs) to simplify calculations. (Wise, '86).

68

It has been shown (Johnson, '86) that the conditional independence
assumptions which would permit updating of the probabilities of
hypotheses on the basis of multiple items of new evidence cannot hold;
however, methods based on these assumptions, though not theoretically

justifiable, may produce useful results (see Section 5.3.4).

A probabilistic model is normally specified by a joint distribution
function, which assigns a non-negative weight to every elementary event
(every conjunction in which each atomic proposition occurs once) such that
the weights add up to 1. The distribution function may be specified by an
algebraic expression (in the case of continuous random variables), or

indirect methods such as network representations may be used.

The assumptions on which the theory is based should not raise any
insuperable difficulties: a 'catch-all' can be included if necessary to
ensure exhaustiveness, the hypothesis space can be refined beyond binary
propositions o form multi-valued variables which each reflect a set of
mutually exclusive hypotheses, and intermediate variables can be
introduced to induce conditional independence - for example, medical
symptoms which are linked together can be identified as a 'syndrome'.
(Pearl, '88; Shepherd & Hinde, '89).

The specification of an accurate, coherent set of prior probabilities is
often a major problem. If only some of the required parameters can be
. obtained, the maximum entropy principle - which states that as much
uncertainty should be retained (as few hidden assumptions should be made)
as possible - can be used to estimate the rest. If the specified parameters

are non-coherent, the model may need to be adjusted.

69

Probabilities can be regarded as unknown parameters which have
distributions; if a probability is considered as a proportion in a (possibly
imaginary) sample, then a 95% confidence interval can be established
around it using binomial sampling theory (Spiegelhalter, '86). Vectors of
0's and 1's can be used to represent probabilities, each bit position
representing a possible state of the world, so each vector is a Monte Cario

sampling of possible states (Wise, '86).

5.3.2. Dempster-Shafer Theory.

The Dempster-Shafer theory of evidence was designed to handle cases
where the probability distribution is incompletely known; it has the ability
{(which traditional probability theory lacks) to distinguish between
uncertainty and ignorance. It has an underlying logical semantics so it can
be implemented in a propositional logic system in a straightforward
manner (Provan, '90), and it has the ability to model the narrowing of the

hypothesis set with accumulation of evidence (Gordon & Shortliffe, '85).

The frame of discernment, T, is an exhaustiVe set of mutually
exclusive hypotheses. Evidence disconfirming an element of T ¢an be
interpreted as support for the remaining elements, but there is nothing to
indicate how the support should be divided between them. Instead of
enforcing an arbitrary division, D-S theory allots belief not just to single
elements, but to all subsets of T. The impact of each piece of evidence is
represented by a basic probability assignment {bpa) which assigns a
number in [0,1] to every subset of T such that the numbers sumto 1. As
the elements of T are exhaustive the empty set, @, must be assigned a
belief of 0. The belief assigned to a subset A is denoted m(A). Any

uncommitted belief is assignedto T.

70

Belief in a proper subset of the frame of discernment entails belief in
supersets which contain it, so another function must be used to specify the
total belief in a subset: given a bpa, m, the corresponding belief function
Bel assigns to every subset A of T the sum of beliefs committed to every
subset of A by m. For a single-element subset A, Bel(A) = m(A); as the

beliefs assigned by m must sum to 1, Bel{(T) = 1.

Bel(A) represents the necessary support for a subset A; (1-Bel(A"))
represents the possible support for A, or the plausibility of A. The belief
interval for A is [Bel(A),(1-Bel(A"))). The width of this interval can be
regarded as the amount of uncertainty with respect to a hypothesis, given

the evidence.

To determine the combined effect of two pieces of evidence, their

belief functions must be combined. Given two belief functions Bely and
Belp with corresponding bpa's m¢ and mp the combined belief function
Belq+ Bels can be determined by first calculating the combined bpa,
my+mMo. Dempster's rule defines my+ma(A) to be the sum of all products

of the form m4(X).mo(Y), where A is the intersection of X and Y. This rule

may assign a non-zero belief to the empty set, so the bpa has to be
normalised: if the value initially assigned to @ is k, then m4+mo(Q) is set

to 0 and the values assigned to all non-empty subsets of T are divided by
(1-k).

One problem with Dempster-Shafer theory (Gordon & Shortliffe, '85)

is that as a set with n elements has 2" subsets, if the frame of

71

discernment Is large the number of computations required will be vast.
Barnett proposed a method for reducing the computations from exponential
time to polynomial time, based on the assumptions that evidence will

apply to single elements of the frame of discernment or their negations

and that evidences can be reordered. His method involves combining all the
evidence applying o any one singleton or negation, then combining

pairwise the resulting bpa's for each singleton and its negation, then

finally combining the resulting n bpa's.

(Gordon & Shortliffe, '85) suggest a computationally tractable
approach for applying the theory in a hierarchical hypothesis space, which
involves pruning the network of subsets of T to a tree in which each node
below T has a unique parent by removing subsets of no semantic interest.
Generally the negations of hypotheses in the tree will not themselves be in
the tree, so disconfirming evidence must be associated directly with the
disconfirmed hypothesis; an approximation is used to combine
disconfirming evidence, displacing belief upwards towards T to avoid

consideration of subsets not in the tree.

(Provan, '90) describes how VICTORS (Provan, '87), an ATMS-based
high level vision system (described in section 5.5.5), was extended using
Dempster-Shafer theory to test how assigning weights, calculated by
determining how far constraints are satisfied, to assumptions would
affect its performance. Heuristic approximation algorifhms were used to

simplify the computations.
The theory shows a discontinuous sensitivity to small probabilities;

ignoring 'negligible events' can have radical effects, so caution must be

used when making simplifying assumptions. (Wise, '86).

72

5.3.3. MYCIN's Certainty Factors.

The Certainty Factors method developed for use in MYCIN (Buchanan &
Shortliffe, '84), an Expert System for medical diagnosis, and since used in
several other systems, is an approximation to probability theory which
simplifies the computations required. With this method, the degree of
belief in a proposition is represented by two numbers, the measure of
belief (MB) and the measure of disbelief (MD), both of which vary between
0 and 1; the certainty factor, cf is equal to MB-MD and varies between -1
and +1. (Wise, '86).

The certainty factor attached to an if evidence then hypothesis rule
determines to what extent the evidence should change the degree of belief
in the hypothesis. Certainty factors can be defined in terms of prior and
posterior probabilities:

cf(Hle) = p(Hle) - p{H) if p(H|e) > p(H)

1-p(H)
Hle) - p(H if p(H) > p(H|e)
p(H)
where p(H) is the prior probability of H and p(H|e) is the posterior
probability of H given e.

Where two items of evidence bear on the same hypothesis, the
certainty factor z resulting from the combination of certainty factors x

and y is defined by:

Z=X+Yy-XYy (x,y 20)
X+Y (x.y of opposite sign)
1 - min{x],lyl)

73

X +Y + Xy (xy<0)
This combination function is not derived from the definition given above
and is not consistent with it, but was proposed as a commutative,

associative approximation (Heckerman, '86).

BACH (Sabolevitch, '85) is a production-based expert system which
uses certainty factors, together with a truth maintenance system (see
section 5.5) to produce a consistent view of activity in an area under
surveillance from military intelligence reports. It uses a frame-like
system to represent units; the frames have slots which include the unit
internal ID, the certainty factor, and an assumption list and justification
(used by the TMS). Reports are assumed to be independent of each other but
units are not, so if a new unit's antecedents include a new report, its
certainty factor is calculated using a MYCIN-type formula, but if a rule
concerns units only the maximum of their certainty factors is assigned to

its conclusion.

5.3.4. Prospector (Gaschnig, '82).

Three different types of relation specifying how a change in the
probability of one assertion affects the probability of other assertions are
used in Prospector, an Expert System intended to help geologists in

exploring for hard-rock mineral deposits.

The Prospector knowledge base contains models of certain classes of
ore deposits, each encoded as an independent, hierarchically structured
inference network. The terminal nodes in the networks represent field
evidence; other nodes represent hypotheses. The system operates by

matching field data supplied by the user against the models; it requests

74

additional information when necessary, informing the user of the
geographical rationale for its questions, and provides a summary of its

findings.

Logical relations are employed where the truth value of a hypothesis
is completely determined by the truth values of the assertions that define
it. Conjunction (AND), disjunction (OR) and negation (NOT) operations are
used. Where a hypothesis is defined by the conjunction of several pieces of
evidence, the probability assigned to the hypothesis is the minimum of the
evidence probabilities; for disjunction, the maximum is taken. These
computations correspond to the standard fuzzy set union and intersection

formulas (see Section 5.4).

With second type of relations, plausible relations, the assertions are
related to the hypotheses by rules with associated rule strengths which
measure the degree to which a change in the probability of the assertion
changes the probability of the hypothesis. The odds-likelihood form of

- Bayes' rule is used to compute the hypothesis probability. (The theoretical
background of this rule is somewhat shaky - see Section 5.3.1. - but it still
produces satisfactory results). Certainties are expressedon a-5to 45
scale, with linear interpolation between these extremes; the system
translates these certainty values into probabilities (odds) to perform its
calculations, then translates these back into certainty values when

communicating with the user.

When assertions must be considered in a particular sequence the third
type of relations, contextual relations, are used. Contexts specify
conditions that must be met before an assertion can be used in the

reasoning process.

75

54. EUZZY SETS.

The observation that attempts to model inexact concepts by formal
systems of increasing precision lead to decreasing validity and relevance
led Zadeh to propose the use of fuzzy set theory, a generalisation of
traditional set theory which has found applications in numerous fields,
including:

- pattern recognition

- clustering

. political geography

- decision-making

- robot planning

- chromosome classification

- medical diagnosis

- engineering design

- systems modelling

- process control

- social interaction systems

- structural semantics

(Gaines, '76).

Fuzzy sets are based on the idea of continuously graded degrees of

membership of sets; the characteristic function of an ordinary set
pa(x): U->{0.1} wherep(x)=0 xinA -

Ux)=1 xnotinA

is replaced, for a fuzzy set, with a characteristic function of the form

76

pAK): U->[0,1]
which specifies the ‘degree of membership of x in A'. With this definition
- ‘crisp’ concepts. can still be represented adequately, but there is no
necessity to assign artificial boundaries to concepts which are inherently

vague.

The standard set operations - union, intersection, complementation -
can be defined for fuzzy sets in several different ways. The definitions
which are most commonly used are:

A union B = {max(a(x),b(x)}/x|x is an element of U}

A intersection B = {min{a(x),b(x))/x|x is an element of U}

A’ = {{1-a(x))/x|x is an element of U}

It can be shown that these definitions of union and intersection are the

ohly ones which are consistent with the requirements that the operations
should reduce to the normal set operations for degrees of membership of 0
and 1, that they should be order-preserving and continuous, and that the
normal associativity, commutativity, distributivity and idempotence rules
should be obeyed. If the distributivity and idempotence requirements are
dropped, which may be considered desirable for reflecting natural language
usage, then Zadeh's alternative definitions can be used:

A union B = {(a(x) + b{x) - a(x).b(x))/x|x is an element of U}

A intersection B = {{a{x).b{x))/x|x is an element of U}

(Gaines, '76). As well as the standard set operations, there is a range of
operations which are specific to fuzzy sets, for example concentration,
which reduces the degree of membership of elements which are 'only
partly’ in the set, normalisation, which adjusts the degrees of membership-
so that at least one element is 'totally' in the set, intensification and

fuzzification.

77

Imprecise statements can be modelled as fuzzy sets using linguistic
variables - variables whose values are natural language expressions
referring to some quantity of interest. These expressions can be
represented by fuzzy sets composed of the possible values that the
quantity of interest can assume. Forexample, if the quantity of interest
could assume an integer value between 1 and 10, the expression 'few' could
be represented by

{0.4/1,0.8/2,1/3,0.4/4}

The natural language expressions normally form a structured finite set,
with syntactic rules for generating expressions and semantic rules for
associating fuzzy sets with them. Primary terms are modelled by fuzzy
sets, and hedges (very, quite etc.) are modelled by fuzzy set operations.
(Schmucker, '84),

Fuzzy set theory can be used to extend classical logic to produce a
fuzzy logic in which the constraint that every statement must be either
absolutely true or absolutely false no Iohger applies. The compositional
rule of inference, which states that if R is a fuzzy relation from U to V and
X is a fuzzy subset of U, the fuzzy subset of V which is induced by X is
given by the composition of R and X, can be used when variables range over
finite sets. It includes as a special case a generalisation of modus ponens:

lf XisBthenYis C

Xis A

YisD .
where X and Y are variables in universes U and V respectively, A and B are

fuzzy subsets of U, and C and D are fuzzy subsets of V.

78

An alternative approach to approximate reasoning is truth value
restriction: the degree to which the actual value of a variable agrees with
its antecedent value in a production can be represented as a fuzzy subset
of a truth space and used in a fuzzy deduction process to determine the
corresponding restriction on the truth value of the right hand side of the

production (Nafarieh, '88).

The concept of fuzziness can be extended to mathematical structures,
replacing the concept of the value of a variable with 'the degree of
membership of a value', as a result of which values seem to play the role
of functions and non-fuzzy functions become functionals (Gaines, '76), and
to the domains of interest of sets: operations which map a fuzzy set and
domain of interest into a new fuzzy set and new domain of interest can be
used, for example, to fuzzify algorithms for manipulating black-and-white

images for application to grey-scale images (Edmonds, '81).

One problem with fuzzy set theory is that there is no proof that it
models perception or judgment, and no clearly defined way of determining
if a given membership function is 'right' (Wise, '86). The theory assumes
that grades of membership of property categories may be expressed by
functions, the values of which submit to the conventional arithmetic
operations, and if unary operations such as the transformation of fuzzy
sets with hedges are to be meaningful, a ratio scale must be used for
subjective measurements. Franksen's investigation of the empirical
justification of the assumptions made shows that for fuzzy sets
representing a large variety of psychophysical continua and corporate
utility under risk, a power function is an appropriate form of membership
grading (Franksen, '78); little other research has been conducted in this

drea.

79

Other problems with Zadeh's fuzzy logic include extreme vagueness of
results in fuzzy conditional propositions, and weaknesses in the ways in
which chain reasoning, conjunctive fuzzy conditional propositions and

combination of evidence are dealt with (Nafarieh, '88).

54.1. ERIL (Baldwin et al.. '88).

FRIL (Fuzzy Relational Inference Language) is a logic programming
language which extends Prolog to represent doubt and uncertainty
associated with both facts and rules, using support pairs which define
intervals containing point value probabilities. The use of support pairs is
a compromise between using single probability values and using fuzzy sets
- the intention is to aveid introducing an unjustifiable degree of precision,
while keeping the computational burden to a minimum. The underlying
Support Logic programming theory is more strongly related to a
generalisation of probabilistic reasoning than to fuzzy reasoning, but FRIL

includes a mechanism for representing and reasoning with fuzzy sets.

The first number in each support pair, the lower limit, represents
necessary support; the second represents poésible sqpport. A total lack of
evidence will be represented by the support pair [0,1]. With FRIL, a lack of
evidence supporting a proposition is not interpreted as support for its
negation; the following relationships apply:

Necessary support for P + Necessary support against P < 1

Necessary support for P = 1 - Possible support against P

Necessary support against P = 1 - Possible support for P.

The probability of a proposition is evaluated by:

80

1. Determining a proof path for the proposition, ignoring any éséigﬁed
probabilities.

2. Evaluating the probability associated with the proposition using this
proof path.

3. Repeating steps 1 and 2 for all other possible proof paths.

4. Combining the results into a final probability interval.

When evaluating the probability associated with a proof path, FRIL
assumes independence unless told otherwise. Conditional probabilities can
be entered in the knowledge base if they are known. When combining the
support from different proof paths, the default method assumes that the
unknown probability lies within the intervals defined by each of the
support pairs being combined, and so uses an intersection rule, which can
yield a fairly narrow support pair interval even when the intervals
contributing to it are quite wide. This method assumes that thers is a
degree of dependence between the inferences from different support paths. '
An alternative method, the Dempster rule, can be specified where the

sources of inference are independent and conflicts may occur.

The standard Prolog unification algorithm is extended in FRIL to
include a form of semantic unification. Semantic terms such as 'tall',
‘average_height', 'short’ can be defined using fuzzy sets such that there is
a partial match between them; the unification process allows, for example,
support for a person being tall to be deduced from the fact that they are

known to be of average height.
FRIL has been used for numerous Al applications, including

probabilistic reasoning in scene analysis, radioactive waste safety

assessment, experience bases using conceptual graphs, software

81

dependability modelling and Expert Systems for the effect of stress on

operator performance, aircraft design and chemical plant control.

5.4.2. A Fuzzy Rule-Based Production System (Nafarieh, '88).

The fuzzy logic incorporated in this system, which was developed and
tested on target detection and recognition from temporal sequences of
forward-looking infra-red (FLIR) and TV images, was intended not only to
cope with the complexity of the problem and the uncertainty in the data,
but also to facilitate the provision of a natural language interface to mid-
and high-level subsystems, to increase the believability of results by
relaxing perceived precision and, using contextual knowledge, to enable
conflicting interpretations to be resolved and the initial analysis of the

system to be refined.

The system has three phases: prescreening, scene recognition and
contextual knowledge-based validation. The first phase uses rules such as:

If: range is long

Then: prescreened window size is small
where the terms 'long', 'small' are defined by fuzzy sets. The mapping of
measurements to linguistic terms employs the definition of the 'Hamming

distance' between two fuzzy sets:
d(A,B) = 2 [LA(X) - na{xi)] (for finite sets)

i
The scene recognition stage segments, recognises and labels scene

components, distinguishing between various man-made objects (armoured

personnel carriers, tanks) and natural objects (the sky, fields, trees). The

82

final stage resolves any conflicts in the results. A fuzzy k-nearest
neighbour algorithm is used to produce class memberships for test
vectors, based on class memberships of the training data and distances of
the test data from the training data; these memberships are mapped to

linguistic confidence values.

The system was compared with a rule-based system which used
Dempster-Shafer theory, selectively extracting groups of four features at
a time, generating confidences and combining these with previously

generated confidences. The fuzzy system produced better results.

5.5. TRUTH MAINTENANCE.

5.5.1. The Qrigins of Truth Maintenance.

Truth maintenance systems (TMSs) were developed to support the use
of non-monotonic reasoning in problem solving. This type of reasoning may
be appropriate when knowledge of a problem is incomplete and default
assumptions must be made to enable a solution to be found, when the
universe of discourse is changing or when temporary assumptions are used
to test a possible solution (Frost, '86). The truth maintenance concept is
based on the use of belief values which, unlike truth values, are subject to
alteration and revision in the light of new evidence; TMSs are designed to
be used by deductive systems to maintain logical relations among beliefs,
to modify the belief structure when premises are changed and to use the
logical relations to trace the source of contradictions or failures, leading

to more efficient backtracking (McAllester, 78).

83

The development of TMSs stemmed from Stallman and Sussman's
work, (Stallman & Sussman,'77), which aimed at improving the behaviour
of chronological backtracking in combinatorial search problems such as
electronic circuit analysis by recording dependencies as the search
progressed - dependency directed backtracking (DDB). (Shanahan &
Southwick, '89).

There are two main types of TMS. The earlier type,
justification-based systems (JTMSs) such as those produced by Doyle
(Doyle, '79b) and McAllester (McAllester, '78), store as fundamental data
the immediate justifications for inferences, maintaining a single
consistent hypothesis and using DDB to restore consistency by rejecting an
assumption when contradictions are discovered. These systems have
several limitations:

- only one solution can be considered at a time, alternative solutions
cannot be compared

- the current choice set can only be changed by introducing a
contradiction which cannot be removed later, so switching states is
difficult

- their machinery is cumbersome

- if some but not all of the inferences based on an assumption set
have been derived when a contradiction is found, the work may have to be
repeated later if the complete set of inferences is required.

(de Kleer, '84).

The later assumption-based systems (ATMSs), which were developed
by de Kleer in an attempt to solve these problems, record the fundamental
assumptions on which inferences rest, maintaining multiple

self-consistent but mutually inconsistent sets of hypotheses or contexts.

84

(Shanahan & Southwick, '89). However, they too h'av'e limitations:

- if only one solution is required they are hopelessly inefficient

- they may search regions of the solution space which DDB would
avoid

- debugging is difficult; intermediate states represent pieces of many
solutions, and it can be hard to tell which is causing problems.
(de Kleer & Williams, '86).

The development of a combined system which was intended to have
the advantages of both types and the disadvantages of neither, using DDB to
provide the search strategy with a coarse focus and to handle control
assumptions, and an ATMS to provide an additional level of discrimination
and to handle non-control assumptions, is described in (de Kleer &

Williams, '86). ATMSs have also been implemented with some form of
rating system to ensure that the most promising solutions are investigated
first (Hinde et al., '89; Provan, '90).

5.5.2. Justification-Based Truth Maintenance Systems.

The JTMS developed by Doyle is generally considered to be the first
true TMS. It operates by keeping track of which statements, assumptions
and hypotheses are currently believed (IN) and which are not currently
believed (OUT). (Doyle, '79b).

Doyle’'s JTMS employs two data structures: nodes, which represent
beliefs, and justifications, which represent reasons for beliefs. Each node
has one or more justifications-associated with it. A node is IN if and only
if at least one of its justifications is valid. There are two different types

of justification, support-list justifications and conditional-proof

85

justifications. Support list justifications have two parts: én in-list
containing nodes used in the derivation of the belief, all of which must be
IN for the justification to be valid, and an out-list, all the nodes in which
must be OUT for validity. The out-list is used to allow assumptions to be
retracted; if the out-list of an assumption A contains the node notA, the
assumption will be retracted automatically if it leads to a contradiction.
(Norman, '87). Conditional-proof justifications are used when the status
of the node depends on the validity of a hypothetical argument; they have
three parts, a consequent, an in-list and an out-list, and are valid if the
consequent is IN whenever each node in the in-list is IN and each node in
the out-list is OUT.

The JTMS maintains a single consistent context (the current set of IN
nodes) by using DDB to restore consistency when a contradiction arises.
The nodes which contribute to the contradiction are found by tracing
through the dependency structure, one of them is chosen as the culprit and
rejected, and all justifications which depend on this node are checked for

validity. (Shanahan and Southwick, '89).

A simplified JTMS was developed by McAllester. His system allows
propositions to have one of three truth values, true, false or unknown, and
represents all logical relations between propositions as disjunctive
clauses; this representation makes no distinction between antecedents and

consequents, which simplifies the backtracking process. (McAllester, '78).

5.5.3. Assumption-Based Truth Maintenance Systems.

The ATMS described in {de Kleer, '86a) was designed to allow a

problem database to contain unresolved inconsistencies, so that the |

86

problem solver could follow more than one search path through the solution
space at once and compare alternative solutions with one another. It was
also intended to increase the ease with which results obtained in one
region of the space could be carried over into other regions, by recording

derivations in the most general way possible.

ATMS nodes have a label, supplied by the ATMS, which determines the
environments or contexts in which the datum holds by specifying the
minimal sets of assumptions from which it can be derived. A premise has
an empty label; the label of an assumption specifies a single assumption
set which contains only the assumption itself. Nodes also have
justifications supplied by the problem solver giving the parent nodes from

which they were derived.

A special node is used to represent falsity. The assumption sets
specified for this node are 'nogood' sets - sets from which inconsistencies
have been derived. These sets are used to partition the space into
self-consistent environments, and thus to ensure that inconsistencies are
- not propagated: when computing a node label, the system checks the

assumption sets and removes any which contain 'nogood’ sets.
5.5.4, REVgraph' nsistency Maintenance (Bowen & Mayhew, '88

The REVgraph is a 3-D model used in the construction of a
geometrically consistent description of a scene from a description of the
edge segments in a pair of stereo images. The edges are typically
fragmented; the reasoning system uses both bottom-up and top-down
processing to complete broken edges, find vertices and identify and

describe regions, using rules such as "if 3 lines can be extended to meet at

87

a point, hypothesise a vertex at that point” and an object-oriented
algorithm which focuses on wires (edges) which have been identified as

'interesting'.

The initial data is ambiguous rather than wrong, so the system used
to control the uncertain reasoning is called a Consistency Maintenance
System (CMS) rather than a TMS. The CMS is context-based: a contextis a
subset of the database within which there are no contradictions and no
paths of justification are incomplete, and is represented by a list of
integers each representing a point at which a contradictory context was
split. The set of contexts in which a justification is valid is the
intersection of the sets of contexts in which its premises are valid; the
set of contexts in which a fact is valid is the union of the sets of contexts

in which its justifications are valid.

The CMS data structure is a directed graph consisting of 'fact’ nodes
(representing items in the database) and 'data dependency* (DD) nodes

(representing justifications). The information associated with a fact node

is:
support-by list list of all DD-nodes (justifications)
support-for list list of all DD-nodes for which this fact is a
premise
value pointer to the database
context list list of contexts of which this fact is a member
contradictions list of contradictions of which this fact is a part

The information associated with a DD-node is:

premises list fact nodes required to make this deduction
consequence pointer to the result of the deduction (a fact node)
rule identifier pointer to the rulebase |

88

~ context list list of contexts in which this justification is valid
disallowed list list of contexts ruled out by contradiction
There are two types of justification: rigorous justifications {for
derivations from logical implications) and heuristic justifications (for

derivations from heuristics).

The CMS explores alternative solutions in parallel and allows partial
solutions to be examined. Its main disadvantage is that it is very slow if
the number of contexts is large. When an n-element nogood set is found,
each context containing this set can be split into 2" new contexts
containing subsets of it. Attempts have been made to reduce the number of
contexts created after the discovery of an inconsistency by considering
only maximal proper subsets of the nogood set and using background
knowledge to identify trustworthy elements of it, but keeping the number

of contexts within reasonable bounds clearly presents problems.

5.5.5. VICTORS (Provan, '87).

VICTORS is a vision system which aims to identify two-dimensional
puppet figures, consisting of a number of parts (head, body, arm etc.) each
with rotatory, translational and scaling degrees of freedom with respect
to the parts to which they are joined, from input data consisting of sets of

four points which represent the vertices of overlapping rectangles..

The data is preprocessed to determine the areas and orientations of
rectangles and the overlaps between rectangles, then passed through a set
of filters which place restrictions on acceptable assignments of parts to
rectangles. Parts which are tightly constrained (for example, the trunk,

which must be overlapped by five other parts) are identified as 'seeds' and

89

used as the starting points for determining sets of locally consistent
constraints, then an ATMS is used to establish global consistency,
producing a set of dependency graphs - nodes interconnected by constraints

- from which puppet figures can be identified.

The use of an ATMS enables the system to provide trace explanations
for part assignments, allows holonomic constraints to be defined with
variable geometry, permits the exploration of multiple solutions
simultaneously, enables the database to be updated with the input of new
information, produces robust behaviour with noisy data and occluded or
incomplete figures and demonstrates the necessity of using
domain-dependent constraints to reduce the search space. There is,
however, a price to be paid for these advantages: the ATMS is the most

computationally expensive part of the VICTORS system.

55.6. LUMP (Hinde et al., '89)."

A blackboard system combined with an ATMS and a 'soft focussing'
rating system forms the basis of LUMP (Loughborough University
Manufacturing Package), a process planning system which serves as an
integrating framework for a number of subsystems. lis input,
constructive solid geometry strings, comes from a designer system and its
output is numerical machine codes or programs which are passed on to
factories. There are four major subsystems:

1. A Prolog procedure 1o translate the input data into manufacturing
features

2. A Prolog planner to generate the generic operations used to manufacture
a component

3. A proprietary relational DBMS containing information about the

90

properties and relationships of the machines and tools in a factOry

4. A numerical code generation package.

The subsystems interact through a blackboard whose entries have
assumption bases attached to them. Modal tags indicate whether entries
follow necessarily from their antecedents, when their assumption bases
are formed from the union of their antecedents’ assumption bases, or
represent one of a range of possibilities, when they have a new assumption
attached to them to prevent any inconsistency which arises from being

propagated back to their antecedents.

The ATMS allows the system to reason with several possible
solutions at once, but the rating system should ensure that the 'most
obvious' solution is considered first. Ratings can never increase, and will
generally decrease, as the formation of a solution progresses; the system
will always work on the solution whose current rating is highest,
switching to another solution when the rating drops. This should ensure

efficiency without sacrificing exhaustiveness.

5.6. OTHER METHODS.

5.6.1. Cohen's Endorsements (Wise. '86).

The essential idea behind the Endorsements method proposed by Paul
Cohen is that numeric certainty labels are of limited value without some
knowledge of the evidence on which they are based. His method associates
with each hypothesis a body of endersements, which represent reasons for

believing or disbelieving the hypothesis. These allow the certainty to be

91

assigned to the hypothesis to be judged in the light of what the result is to
be used for (Spiegelhalter, "86).

The endorsements can be interpreted in two ways: as a method of
keeping track of what has been conditioned on, or as a way of coding

correlations into networks. {(Wise, '86).

Cohen's example application is GRANT, a system for finding agencies
to fund a research proposal. Classes of research interests are arranged in
a hierarchy; it is assumed that agencies will specify the largest class
which contains only their interest, and that sibling classes (distinct
sub-classes of a single parent class) will not overlap. Suppose that a

class A has sub-classes B and C (Figure 5.1). The link between Aand B

A

B| |[cC

Figure 5.1. A simple hierarchy with 'is-a' links.

represents a positive endorsement as an agency which is interested in A

will also be interested in its sub-class; the "is-a, is-a-inverse” link

92

between B and C represents a negative endorsement as the assumptions
imply that an agency which has expressed an interest in B will not be

interested in C.

The method does not include any general scheme for comparing two

bodies of endorsements; they can just be pairwise ranked (Neapolitan, '90).

5.6.2. Logical formulation of linquistic ideas (Fox, '86).

Fox places the emphasis on describing rather than measuring
uncertainty, using qualitative rather than quantitative knowledge. His
method uses logical formulations of terms which people use to describe
uncertainty, for example:

possible: S is possible if no conditions necessary for S are violated

plausible: S is plausible if S is possible and the arguments for S are
stronger than the arguments against S

probable: S is probable if S is possible and there is at least one item
of evidence in favour of S

centain: S is certain if a sufficient condition for S is true.

The use of this kind of gualitative representation may reduce the need
for precise quantitative assumptions to be made, thus producing a robust
system. This method also facilitates the exploitation of analogy,
generalisation and causal reasoning in hypothesis formation, allowing
patterns in the data to be utilised and enabling the decision to be made to
be structured into separate components - features which should

compensate for any loss of precision in comparison with numeric methods.

The terms used are applied uniformly to facts, data and rules.

93

Nominal labels are attached to statements by counting their 'pros' and
'cons' and making comparisons with logically exclusive alternatives. This
is a statistically weak method, but is suitable for use in problem domains
where a high degree of precision in the measurement of uncertainty is not
required. The application described in (Fox, '87), PSYCO (Production
SYstem COmpiler), is a small system for medical diagnosis; in this field a
strict probabilistic ranking of possible diagnoses is inappropriate as, fof
example, a doctor would attach more significance to a 10% probability of

cancer than to a 75% probability of a common cold.

The method can be combined with numerical methods to allow precise
calculations to be carried out where necessary, for example when a close

decision between two alternatives has to be made.

5.6.3. Bundy's Incidence Calculus (Corlett & Todd, '86).

As the use of purely probabilistic methods requires a complete set of
correlations which are frequently not available, Bundy proposed mixing
probabilities with first-order logic in his Incidence Calculus. A
probability distribution is posited over a collection of possible incidents,
each of which gives a complete specification of the truth values of atomic
sentences. Each sentence can then be assigned a probability equal to the

measure of the set of possible incidents in which it is true. (Bacchus, '88).

If the set if incidents in which an event E is true is represented by
i(E) and the (finite) set of all possible incidents is represented by w, then

if (E) =w then E is true

if i(E) ={} then E s false

94

p(E)=liE)l (assuming each incident is equally likely)

wi

This approach has several problems associated with it: statistical
generalisations cannot be represented (Bacchus, '88), the inference
mechanism is unsatisfactory, a computationally expensive inconsistency
detection mechanism must be employed when assigning incidences to
mutually exclusive events, and the probabilities assigned to the
conjunctions of independent events will vary with the way in which
incidents are assigned to the events, the distributions of the probabilities

being both complex and difficult to analyse (Corlett & Todd, '86).

A variant of the Incidence Calculus which avoids these problems and
is amenable to statistical analysis, the Monte Carlo method, is described
in (Corlett & Todd, '86). This method has the unusual (and perhaps
undesirable) characteristic of sometimes drawing different conclusions

from the same data on different occasions.

5.6.4. Lp logic (Bacchus, '88).

The logical formulation Lp proposed by Bacchus extends Bundy's idea
of mixing probability with first-order logic to allow the use of random
variables, by specifying a probability distribution over the domain of
discourse rather than over the sentences of the language. It permits
closed formulas such as:

Bark(Fido)

which must have a probability of either 0 (false) olr 1 (true), and also

95

permits open formulas such as:

[Bark(x)|Dog(x)ly > 0.5

where x can be interpreted as being a random variable bounded by the
probability term formed by the square brackets, to represent statistical

generalisations (in this case, 'more than 50% of all dogs can bark).

Lp can represent empirical probabilities which take the form of
statistical statements, but cannot represent a subjective probability .
assignment to a closed formula; however, Bacchus combines Lp with an
inductive mechanism for assigning degrees of belief to sentences based on
the empirical generalisations expressed in the logic, using an inductive
assumption of randomness. For example, if it is known that 90% of dogs
bark and Fido is a random dog, then the degree of belief assigned to
bark(Fido) is 0.9. Such degrees of belief cannot be expressed directly in
Lp; only the statistical information from which they can be generated can
be expressed. The calculated degree of belief will depend on what
knowledge is used in the inductive step of randomisation; the maximum
possible amount of knowledge is used, following the partial ordering of
knowledge ' ‘

a > bifa-> b is deducible from the knowledge base.

Lp and the belief mechanism together offer plausible inductive
inference and sound deductive inference, but the knowledge base must be
organised efficiently to ensure that the relevant facts are deduced quickly

and a time limit must be applied to deduction as Lp is undecidable.

96

" 5.7. CONCLUSIONS,

The methods for handling uncertainty which have been reviewed here
cover a very wide range. They aim to handle many different types of
uncertainty and ignorance, and each has its own strengths and weaknesses.
There is no one method which can be considered best for all Al systems; it
may be necessary for a system to use a different method for each of the

different types of uncertainty which arise within it.

When selecting methods, it is important to note the assumptions -
both explicit and implicit - which are made, and to consider their
appropriateness to the problem domain. 1t is also important to consider
the degree of accuracy which is required in the results; there is no point in
carrying out lengthy and elaborate calculations to determine exact

probabilities if only approximate figures are required.

For a pattern recognition system where the aim is to establish the
most probable consistent interpretation of the objects in an image, an
appropriate choice would seem to be to use an approximate numeric method
to establish a preference ordering for possible object identifications.
Truth maintenance could be used to resolve inconsistencies between
identifications, if the advantages-it offered were sufficient to justify the

computational overheads.

97

~ CHAPTER6
RECOGNISING AN OBJECT USING FEATURE DATA

6.1. INTRODUCTION: DESCRIPTION OF THE PROBLEM.

The overall aim of this research was the production of a system
which could learn 10 recognise complex artifacts such as cars in visual
images from the output of a feature matcher which finds the best matches
for a set of simple feature patterns in an image, giving meanx and y
co-ordinates and a rating for each match. It was intended that the final
system should be able to identify and locate all the instances of a number
of different objects in an image, including partial and occluded views of
objects, giving the probability that an instance of an object exists ata
given location where insufficient information is available for a positive
identification to be made. This system would consist of a number of single
object recognisers each comprising a set of probabilistic rules for
recognising members of a particular category of objects, together with
such ather knowledge sources as might be required, working in
collaboration through a blackboard to arrive at the most probable

identification of all the objects in a test image.

Rather than developing each single object recogniser independently, it
was decided that a program should be written which would induce a set of
rules for recognising members of a category of objects from a set of

training examples.
To ensure accuracy in the descriptive element of the induced rules,

the training examples would have to be carefully selécted to ensure that

they fully define the object category. The drawback with this is that

98

probabilistic rules developed using a preselected set of imagés could not

be expected to reflect accurately the probabilities which would apply when
using the recogniser with images which had not been subjected to the same
selection process. It was therefore decided that some provision should be
made for updating the probabilistic element of the rules, using feedback

information on the results of the recognition process.

The initial requirement was therefore to produce a three-stage
system which would:
1. Induce a set of probabilistic rules defining a category of objects from
feature data obtained from a set of training examples.
2. Utilise the rules developed in Stage 1 to recognise instances of the
object category in test images.
3. Update the probabilistic element of the rules, using feedback data
obtained from Stage 2. .

This chapter describes the development of the rule
induction/recognitioh/feedback system; the following chapter gives the
results of tests conducted on it using both synthetic data and real images

showing side views of cars.

6.2. APPROACH.

The approach to be adopted is largely determined by the
characteristics of the feature matcher. This takes a set of fairly small,
simple feature patterns and finds the features in an image which could
match each pattern, giving the pattern number, mean x and y co-ordinates

and a rating for each match. The matching is shape, size and arientation

99

dependent.

If the object to be recognised is large and complex, it will not be
possible to use a feature pattern which will match the whole object image;
rather, patterns which match small parts of the object will have to be
used. A set of suitable object parts and a corresponding set of patterns

must therefore be selected. The selection of these parts and patterns may
| present considerable difficulties, particularly if members of the object

category differ very noticeably from one another in appearance.

An insistence on a one-to-one correspondence between object parts
and feature patterns would make the selection of appropriate part and
pattern sets almost impossible for many categories of object, so the
system must allow for a many-to-many correspondence: a single object
part may be matched by more than one feature pattern, and a single feature
pattern may match more than one object part. This means that the part set
may contain several parts of the same size and shape, e.g. the wheels of a
car, and that variations in the size and shape of a part can be allowed for

by using several different patterns to match it.

The object part set and feature pattern set selected must obviously
be large enough to enable the object to be recognised to be distinguished -
from all other objects which may be expected to occur in the images, but
as the running time of the system and the size and complexity of the
induced rule set will depend on the number of parts and patterns used, the
numbers of both must be kept to a minimum. The system should, ideally,
allow the user to experiment with different compositions of sets so that

minimal sets can be identified easily.

100

With objects such as cars where the size and shape of a part can
differ considerably from one model to another, the use of a strictly limited
pattern set will not allow a highly-rated match to be obtained for every
image feature corresponding to an object part, and the match ratings
cannot be expected to be a reliable indicator of the probability that an
object part has been detected. it therefore seemed appropriate to simply
apply a threshold to the ratings: to establish, by examination of the feature
data obtained from training examples, the minimum rating which is to be
accepted for each pattern, to discard all matchings with ratings below this
threshold and to treat all matches with ratings above the threshold as
being of equal value. The levels at which the thresholds are set must be
low enough for the vast majority of features corresponding to object parts
to be preserved. With low thresholds, however, the data can be expected to
contain a considerable amount of noise, i.e. features which do not
correspond to object parts, and the design of the system must allow for
this.

The rules to be induced by the first stage of the system are to be used
to perform two distinct functions: to identify sets of features which could .
correspond to object instances, and to attach probabilities to these sets.
It was decided that the task of designing the system should be made easier
by using a separate set of rules for each function. This would also
simplify the implementation of the feedback stage, as only the
probabilistic rules would require updating, the identification rules being

fixed by the induction process.
The identification of possible object instances in recognition tests

involves finding subsets of the set of features found by the feature

matcher whose elements could represent distinct parts of an object, and

101

checking the relationships between the elements of each such subsetto
determine whether the relationships which hold between the corresponding
object parts are satisfied. The identification rules must, therefore, ‘
specify both feature pattern/object part correspondences (to enable the
object parts which individual features could represent to be identified)

and the relationships which hold between object parts.

If the feature patterns have been specifically chosen to match
particular object parts, the part/pattern correspondences could be
specified by the user. However, in the final multi-object recognition
system a standard set of features may be used to identify parts of all the
objects to be recognised, so the correspondences will not necessarily be
known to the user; also, the determination of a minimal acceptable pattern
set may be easier if the system has the ability to establish the
correspondences for itself. They can be established quite easily by
comparing the feature data and object data from training examples.
Patterns which perform poorly can be eliminated by determining the
proportion of features of each pattern whose co-ordinates match those of
a particular object part, and recording a correspondence only if the

proportion exceeds some preset limit.

The relationships between object parts must be determined from the
object-part data which is supplied to the system; to allow comparisons
with the feature data to be made, this should include the mean x and y
co-ordinates of each part. As the object may be located anywhere within
the image frame, what is significant is not the absolute co-ordinates of a
part, but its co-ordinates .relative to some other part or some fixed point
on the object. With a system which is intended to recognise partial and

occluded views of objects, any of the parts may be missing from the part

102

set, so it is not practicable to select one particular part as the origin for
an object-based co-ordinate system; the simplest approach is to base the
relationship rules on the co-ordinate differences between pairs of parts.

It was decided that the rules should specify just the maximum and
minimum x and y co-ordinate differences between each ordered pair of

parts.

One possible drawback with this approach is that using the horizontal
and vertical distances between parts rather than the length and direction
of a straight line joining them will make the system sensitive to the
orientation of the object, but as the feature matcher is itself
orientation-sensitive, this cannot be considered to be a major problem. If
an object may occur in several different orientations, recognition can best
be accomplished by treating each orientation as a different object-view,
to be handled by its own rule set. This has the advantage of providing the
user of the (multi-object) system with additional information: the
recogniser will specify not only the location of the object, but also its

orientation.

Another potential disadvantage is that the rule set will not explicitly
state any higher-level part relationships such as the relationships
between the distances between different pairs of parts - the fact that the
wheel arches on a car must be the same distance apart as the wheels, for
example, will not be apparent. However, such relationships may be
implicit in the set of part-pair distance limits: the limits placed on the
distances between the wheels and the corresponding wheel arches will
imply a limit on the difference between the wheel distance and the wheel

arch distance.

103

The identification of maximum and minimum distances, with the
assumption that any distance lying between these extremes will be
accepted as valid, does not allow for the possibility that the permissible
distances between a pair of parts may not be capable of being represented
by a single closed interval. Where it appears that a disjunction of several
intervals would be a more appropriate representation, the same approach
as was suggested for the recognition of different orientations of an object
could be adopted: the object category could be split into sub-categories.
For example, if the ranges of wheel distances for standard saloon cars and
. for limousines could be seen to be disjoint, and it seemed desirable to
eliminate wheel pairs whose distances fell between these ranges (perhaps
because such wheel pairs might belong to vans), then 'saloon’ and 'limo'
could be recognised independently. However, this should rarely be
necessary; even where distances do fall into several disjoint ranges,
intermediate distances will not normally be obtained from other objects
which could be expected to occur, so amalgamating the ranges will not give

rise to recognition errors.

The distances between features can be expected to ihfluence the
probability that a feature set corresponds to an object instance, but the
relationships between distances and probabilities cannot be specified
easily. With naturally occurring objects, the distribution bf values of a |
particular dimension will often follow a predictable pattern - a normal
distribution, for example - which cah be defined by a simple mathematical
formula, but with man-made artifacts the same does not apply; the
distribution of car wheel distances, for example, will not appear as a
smooth curve, but will have peaks whose heights are determined by the
relative popularity of different models. Specifying the distribution

function for each relevant dimension, and using these for the

104

determinatidn: of probabilities, would involve the de\)éldpnﬁenf of a vast
and very unwieldy set of probabilistic rules. It therefore seemed
necessary to apply a thresholding technique yet again, limiting the use of
feature co-ordinates to the identification of candidate feature sets and

basing the assignment of probabilities to these sets on other criteria.

The only other information available for use in the derivation of
probabilistic rules was the set of object parts to which the elements of a
feature set might correspond, and the set of patterns used to identify the
features, so it was decided that a table of rules should be drawn up
specifying empirical probabilities based on these factors. It was felt that
a single feature should not be considered to provide adequate evidence of
the existence of an object instance, so the rule table should contain an

entry for every set of two or more object parts and corresponding pattern
set. If there are n object parts, and part i can be matched by p; different
patterns, the total ﬁumber of entries in such a table can be shown to be
n n
IT (pj+1) - Z pi - 1
i=1 i=1

For an object set of four parts, two maiched by a single pattern and the
other two by two different patterns, there will be (2x2x3x3)-(1+1+2+2)-1

= 29 table entries; for a set of five parts, two matched by one pattern, two
by two patterns and one by three patterns, there will be
(2x2x3x3x4)-(1+1+2+2+3)-1 = 134 entries. Despite the simplifications
adopted, then, the task of inducing an adequate rule set for an object with

even a very limited number of parts will clearly be quite large.

105

The probabilities can be derived by establishing, for each part
set/pattern set combination, the number of feature sets in the training
images which satisfy the identification rules and so could be recognised as
- object instances, and the number of these which correspond to actual
| object instances. Dividing the latter number by the former number will

yield the required probability.

If the results obtained from the recognition stage are to be used to
update the probabilities, it will be necessary to store the two numbers
used in the probability calculation so that these can be incremented and

the probability recalculated when required.

6.3. PRELIMINARIES: DATA PREPARATION.

Before deriving a rule set for a new object view, a set of training
images showing the full range of instances of the object view to be
recognised must be obtained. These training examples will be used to
determine the maximum and minimum distances between each pair of
object parts; the distance limits cannot be adjusted by feedback, so it is
important that the examples show all possible extremes of object size and
orientation. Then the object parts to be feature-matched must be
selected, named and numbered. The parts used must be ones which. occur in
reasonably consistent positions in all instances of the object view, and
have shapes which can be matched by a small number of patterns. There
must be sufficient parts to definitely identify the object and to
distinguish it from any other objects which could be expected to occur in
the images, but no more than are required for effective recognition as the

addition of a single element to the part set can be expected to

108

approximately double the running time of the system. The list of parts
must be entered using the format:

part_list(Objectview,[1,PartName1],[2,PartName2],. D-

The next stage is the selection of the feature patterns to be used. The
feature matcher is sensitive to size and orientation as well as shape, so it
may be necessary to use more than one pattern to match a single object
part - for example, a car wheel may be matched by several circles of
differing diameters - but the number of patterns used must be kept down
as far as possible as the addition of an extra pattern will have a similar
effect to the addition of an.extra part on the system's running speed. A
single pattern may be used to match more than one object part, where
appropriate - the front and back wheels of a vehicle, for example, may be
matched by the same pattern(s). The patterns should be numbered, then the
images should be fed through the feature-match program (or the matches
identified manually) and the features found should be entered in the form:

feature(PicNo,PatternNo,X,Y,Rating).

The object-view instances in each picture must then be identified and
numbered (a training picture may include several object instances), and the |
co-ordinates of each object part must be determined. The object part data
should be compared with the feature data to ensure that a sufficient
proportion of object parts have been identified by the matching process; if
the hit-rate is too low, alterations must be made to the part set and/or
pattern set. The object part data should be entered using the format:

object_part(Objectview,PicNo,InstanceNo,PartNo,X,Y).

The comparison of the object part data and feature data will also

allow appropriate rating thresholds to be determined for each feature

107

pattern. The thresholds should be set low eno'ugh for the ratingé of the
vast majority of features representing object parts to exceed them; as the
system has quite a high noise tolerance, it is better to include spurious
features than to exclude features representing object parts. The
thresholds should be entered in the form:

rating_threshold(PatternNo,Threshold).

6.4. DESCRIPTION OF THE SINGLE-OBJECT SYSTEM.

6.4.1. Editing the feature data.-

The top-level edit predicate is used to prepare feature data for use
by the rule induction and recognition programs. It can be used to edit all
the available feature data, by entering the goal

edit.
or to edit the data from a single specified picture:

edit(PicNo).

The editing process starts by removing all features whose ratings are
below the threshold value, then checks the remaining features for
duplication: if an image feature has been matched by more than one pattern
{(which may occur if, for example, the image feature is a circle the
diameter of which falls between the diameters of two pattern circles)
then only the highést-rated feature match is preserved. Two matches will
be considered to be duplicates of one another if their x and y co-ordinates
differ by less than 3. The remaining features are numbered, and recorded
using the format:

edfeature(PicNo,FeatureNo,PatternNo,X,Y).

108

The final function of edit is to set the list of identified features in
the picture to the empty list, [J. This list is used during the recognition

process.

6.4.2. The Rule Induction Stage.

The rule induction process uses all the available edited feature data,
so it is necessary to ensure that edited data from pictures not included in
the training set is not available to it. This can be achieved by delaying
loading feature data from test pictures until the induction process is
complete, or by specifying the pictures in the training set at the edit

stage.

The first part of the process involves marrying together the
object-part data and the feature data from the training examples. This is
accomplished by the predicate feature_match, which checks each feature
in turn to see if a corresponding object part can be found (for
correspondence, the X and Y co-ordinates of the feature and the object part
must both differ by less than 3) and makes the appropriate entry in the
matched_feature table:
matched_feature(Object,PicNo,FeatNo,PatNo,Inst,PartNo).
where Inst and PartNo identify the corresponding object part if one has

been found, and are set to 0 otherwise.

One of the ways in which the matched_feature table is used is in the
determination of pattern/object part correspondences by the
pattern_match predicate: if a sufficient proportion, say 5%, of the
features of a given pattern number have been matched to object parts of a

given part number, then an entry is made in the match table:

109

match(Object,PartNo,PatternNo).

The maximum and minimum X and Y co-ordinate differences between
each pair of object parts are then calculated from the object part data by
the predicate set_limits, and recorded in the distance_limits table in the
form:

distance_limits(Object,Part1,Part2,MinX,MaxX,MinY,MaxY).

No allowance is currently made in these limits for possible slight
discrepancies between object part co-ordinates and the corresponding
feature co-ordinates; introducing some tolerance in the limits would,

however, be a simple matter if it were to be considered necessary.

The main part of the rule induction phase is the calculation of the
probability that a given set of features will correspond to an instance of
the object, given that the feature patterns match the elements of some
subset of the object parts and that the feature co-ordinates satisfy the
relevant distance limits. This is effected by the predicate make_sets,
which calls the subsidiary predicate find_sets to form every such set of
two or more features in the training examples, using the information in the
matched_feature, match and distance_limits tables, and counts both the
total number of sets (Sets) and the number whose elements all match parts |
of a single known object instance (Matches) for every distinct part
selt/pattern set pair, recording the results in the set_probability table in
the form:

set_probability(Object,PartSet,PatternSet,Sets,Matches).
The relevant probability is not stored explicitly, but can be calculated
readily from this table when required; the percentage probability is
(100"Matches)/Sets. The information is stored in this form for ease of

updating by the feedback process.

110

The find_sets predicate makes full use of the automatic
backtracking facility built in to Prolog. It operates by first invoking the
subsidiary predicate find _pairs to form every possible ordered set of two
different object parts and all the two-element feature sets corresponding
to each of them, then invoking the find_multiples predicate to 'grow’ the
feature sets by adding features which could correspond to higher-numbered
parts. its insistence that the part sets should be arranged in part number

order ensures that sets will not be duplicated.

The find_pairs predicate checks the co-ordinate differences
between pairs of features against relevant entries in the distance_limits
- table, then stores feature pairs together with part pairs whose limits they
satisfy in a within_limits table, using entries of the form:
within_limits(Object,PicNo,PartPair,FeaturePair).
Find_multiples uses this table rather than the distance_limits table
when growing feature sets, to avoid repeating the calculations required to

check limits.

The three sets of induced rules - the match, distance_limits and

set_probability tables - are listed for inspection by the user. -

6.4.3. The Recoagnition Stage.

For recognition, the image has first to be fed through the feature
matcher and the resulting feature data edited as for the training images.
The test picture number and the object view to be sought are specified
using the goal:

search(Object,PicNo).

111

The threshold pfo'bability to be act:epted for recognition can also be
specified if required:

search(Object,PicNo,Threshold).
The default threshold is 100%, but a much lower threshold will be required
if the feedback faCiIity is to be invoked after the recognition stage, to

ensure that no object instances in the picture escape recognition.

Feature sets corresponding to possible quect instances are identified
by the search_sets predicate, which calls the find_set predicate used in
the rule induction stage, then calls add_to_list to assign each feature
set a number, calculate the probability that it represents an object |
instance using the information in the set_probability table, and insert the
set number and probability in a list arranged in decreasing order of

probability.

When this list is complete, the report predicate is invoked to notify
the user of the results of the search. The first element of the listis
checked to see if its probability exceeds the threshold value. If so, the
feature set is checked to see if it contains any previously identified
features and, if it does not, presented to the user for acceptance or
rejection. When a set is accepted, the features in it are added to the list
of identified features for the picture (which was initialised as part of the
editing process), a new object instance is created and the relevant object:
parts are recorded for use by the feedback process. The first element of
the list is then discarded, and the process is repeated until the probability

threshold is passed or the list is empty.

112

6.4.4. The Feedback Stage.

The feedback stage uses the object part data recorded at the
conclusion of the recognition stage and the relevant predicates from the

rule induction stage to update the set_probability table.

Note that the function of the feedback stage is just to update
probabilities; the distance limits cannot be altered, or the set of
probabilities calculated using the original limits would be invalidated. If
an object instance which occurs in a test picture is not recognised because
i:t falls outside the range determined by the training examples, then if the
recognition program is required to recognise such instances the rule
induction stage must be repeated, with the test picture included in the set

of training examples.

If the recognition process has identified only some of the features
corresponding to parts of an object instance, because some of the feature
distances fall within the limits and others fall outside them, the feedback
process should not be invoked as it would produce variable results: some
probabilities would be made more accurate, others less so. Only complete,

accurate recognition results should be used for feedback.
The modified set_probability table is listed at the conclusion of the

feedback stage, but the match and distance_limits tables are not listed as

they are not altered by feedback.

113

' 6.5. RUNNING THE SYSTEM.

'RECOGNISE1 was written in Cprolog on the VAX 11/750. Itis run by
typing:

cprolog
to enter the Prolog interpreter, then when the prompt appears entering the
names of the master file specifying the program files to be used:

[master].
and the data files for the training examples, e.g.:

[quadtest].

The feature data on the training examples is edited by entering the
goal:

edit.
When the system responds with

yes
the rule induction stage can be invoked by entering

learn(Object).
The rule sets are printed out at the conclusion of the learning stage, which
should only take a minute or two if the number of training examples is not
too great. When the prompt reappears a test picture file can be loaded,
then edited using:

edit(PicNo).

The object which has been learnt can then be sought by entering the goal:
search(Object,PicNo).

or search(Object,PicNo,ProbThreshold).

When a feature set/part set is presented for acceptance or rejection,

114

the user must enter

a.
to acceptit, or

r.
to rejectit. At the conclusion of the recognition process another test
picture file can be loaded, or the feedback facility can be invoked by
entering the goal:

feedback(Object,PicNo).

Appendix B contains edited listings of the test runs (which are
described in Chapter 7).

115

CHAPTER 7
TESTING THE SINGLE-OBJECT SYSTEM

7.1. INTRODUCTION.

The original intention to test the system on data produced by
R.S.R.E.'s feature matcher had to be abandoned as problems with the
feature matcher meant that appropriate data could not be supplied on
time. The initial testing was, therefore, carried out using synthetic data;
for the main tests, R.S.R.E. supplied processed images from which feature
data was extracted manually, using a process as close to that used by the

feature matcher as possible.

The use of synthetic data had the advantage of allowing some of the
system's capabilities - particularly, its ability to cope with noise - to be
demonstrated more systematically than would have been possible if only

'real' data had been used.

The test on processed images of cars was expected to provide a good
illustration of the problems which could be expected to arise in selecting
appropriate sets of object parts and patterns for matching, and in using a

training set which may not fully define the object to be recognised.

7.2, TEST USING SYNTHETIC DATA.

The synthetic data was specially devised for this test, and was
intended to test the system's capability to deal with noise, its ability to

distinguish different object parts represented by identical shapes and its

116

| capacity to handle picturés containing more than one objéct instance.
The object used was a quadrilateral, quad, with two circles, a square and

a triangle at its vertices.

7.2.1. Data Preparation.

The selection of object parts and feature patterns presented no
problems; the object parts to be matched were the vertex shapes:

1 left_circle

2 square

3 right_circle

4 triangle
and the feature patterns used were:

i circle

2 square

3 triangle

The distance limits between quad vertices were predetermined and
the training examples, pictures 1, 2, 3 and 4, were carefully devised to
fully define these limits. Pictures 1, 2 and 3 each contained one instance
of a quad; picture 4 contained two quads. Spurious features were added
to bring the total number of features in each picture to twelve: four
circles, four squares and four triangles. These 'noise' features were not
placed randomly; their positions were selected to ensure that several
partial feature sets could be found among them, but the only complete
sets of four features which satisfied the distance limits were the actual

quad instances.

The test, picture 5, also contained twelve features, of which just

117

one set of four features represented a complete quad, but several pairs of =~

features could represent part of a quad.

Figures 7.1 to 7.5 show all the pictures used, with the features
displayed on a 120x120 grid. The quad vertices are shaded for ease of

identification.

7.2.2. Test Results.

A listing of the system run is given in Appendix B. The rule
induction process correctly identified all the object part/feature pattern
matches and the vertex distance limits. As all the object instances in
the training examples were complete, i.e. they all contained all four
object parts, the Matches figures in the set-probability table entries
could be expected to equal the total number of training instances; the row
of fives in the table thus provides confirmation that the table is correct.
The Sets figures in the table could be expected to decrease as the size of
the pattern/part sets increased, reaching the number of Matches for a |

complete part set; this, again, can be seen to apply.

A search of picture 5 with a probability threshold of 10%, low
enough to pick up all the feature sets with a positive probability of
representing an object instance, produced four feature sets: one complete
set of four features, with a 100% probability, and three smaller sets
with lower probabilities. A visual inspection will confirm that these
represent all the possible quads in the picture. (Thé sets are shaded
differently in Figure 7.5; note that the circle at (60,110) is contained in
two different sets, and so is shaded with both horizontal and vertical

lines.)

118

(0,0) (120,0)
/\
JARN
/
2
10
N
AR D
)\ |
%
7 7 /N
% % \
(0,120) (120,120)

Figure 7.1. Quad Picture 1.

119

(0,0) (120,0)

ANTZN
VAR
D
2\
V%))
22,
N4
)
%
4R %%
L/ 7.7
(0,120) (120,120)

Figure 7.2. Quad Picture 2.

120

(0,0) (120,0)

N

N

A
>

\
DN

N

1

(0,120) (120,120)

Figure 7.3. Quad Picture 3.

121

(0,0) (120,0)
/N\
/ 1\
£)
e
)\
%iﬁ /N
2 7
@) 718
(0,120) (120,120)

Figure 7.4. Quad Picture 4.

122

(0,0) (120,0)

AN
A
A NN
J===N NN
T it
\{/ i 2
(0,120) (120,120)

Figure 7.5. Quad Picture 5.

123

Accepting the complete feature set, rejecting the three partial sets
and invoking the feedback procedure yielded an updated set-probability
table with most of the Sets figures showing an increase compared with
those in the original table, and the Matches figures all increased to 6.
Alternative tables could be obtained by accepting and rejecting different

combinations of sets.

7.2.3. Conclysions.

This test, though limited in its scope, can be considered to have been
a complete success; the results showed that the system can perform as
required when presented with data of this type, and can produce a set of
rules which constitute an effective component of a recognition program

even when presented with only a very limited amount of training data.

It was shown that the system can cope weli with noisy data; the
presence of a large proportion of spurious features did not hinder the

recognition process.

Despite the fact that the quad instances in the training examples
were all complete, the recognition program was able to pick up the
feature sets in the test example which could represent partial or
occluded images of quads. Partial objects could be recognised because in
the determination of set probabilities all feature sets are used, not just
maximal feature sets. If the program were to be altered to calculate
probabilities from just maximal sets, the probabilities assigned to
partial sets would reflect the number of occurrences of partial objects in
the training pictures; the partial quads would not then be recognised. It

was felt that the ability to recognise partial objects even when these

124

were not included in the training set was a useful one, $0 no such

alteration was made.

7.3. TESTS USING IMAGES OF CARS.

The main tests were carried out using images of cars supplied by _
R.S.R.E., Malvern. Twenty-one photographs showing side views of various
models of car, all facing to the right, were selected and processed: the
boundaries between areas of different intensity were extracted, then the
resulting line images were filtered to remove line segments whose
changes in direction exceeded a given threshold. Figure 7.6 shows four
typical photographs; Figure 7.7 shows the processed image produced from

one of them.

7.3.1. Data Preparation.

A preliminary visual examination of the images suggested that the
object parts which offered most potential for matching were the wheels,
wheel arches, windows and the roof/windscreen/bonnet section. A
careful examination of these parts was carried out to enable appropriate

feature patterns to be selected.

The positions of the car wheels were indicated by circles of varying
sizes, corresponding to either a small wheel hub, a targe hub or the tyre.
The wheel archeé appeared in most of the images as semi-circles. The
wheel circles and wheel arch semi-circles were measured, tabulated (see
Table 7.1) and plotted on a histogram (Figure 7.8). It can be seen that

there was a considerable amount of overlap between wheel diameters and

125

Figure 7.6. Four typical photographs of cars.

126

R S e N N
LT e ::-v"'".". N !..'- Nake 0 .'.w‘l":.'":"'""-"5§:_*‘:?-f-:i.?"-' ..'ll.',::—.-_.—_..._ﬁ_idj.
-,-"'"'_'“-_-:_ L ' ! ' ' PR _'_q"_ Lt '"_1'_"::‘ 'l..:"_'_ B ‘-1' 7y _'.!‘ -T'II- -E:.‘
T ' COTT T ' ':n":ol ' _._-.;--:'.‘ . '—‘l'.‘l -l.l'- -c"'_—.!l. -:..:- N o
S EIE TIPS EEEDC IR ”--Z----'ri'.f-- =1 - '.-"3?'{-1

) . . e LA ||
------------------------------------- - . .‘-.. - - - - - (] - -

R TR KU
i’:l — — — : 1f.v""fi"|"'fg?|":'-?!§:[7 - ":"—“ -
L _:_ _'l_ _:_ i v J'.i :_ 1' . f. A '_-.__':'. ‘-'-.-""_.."_":..'::. ‘ '..".'-L.. }'! - '.'I:, ’

Co g l!) _I..' ".f"lt.‘ _!l ':l IR | R | ST I |

L e f:L"i"l ;-.5 ”ﬂ [I P || | :3_:‘[Il

" L] - I‘. ; - I- b t "‘; -l“.-\ *.ﬂ ll l ‘.I " .‘VI"‘-ll] : |- " k] N B ; J- - 1 h h ‘.;)
- U SRR i v sy e 1 SR [—'-’;F W -

A e i g~ B Srod o SO Y RO TR SO % LY I | £ N A 7 £ N I ol N

R i?"'r‘-f"‘"-—-"'I'-Jll‘l 4 --H-Ll-'-{'?‘-—'-n'|—:-:,. i At

! .-J.Ig-, s (e VL B e e
| i ‘L..:-r""'__‘,_':-ﬂ';_;._-'..:-;-,-'--*--"-'.:.t"_-;-d;:--.' e R S T -;.,_I
N R e DR | IR TR TS | I c=souq SR IURUUR P

| = W= o et
Bt tmiomme i e T TR AT T T
- — _ '!.-"‘":_ . —7"'-._". . o |) '.' - ll L
S ey L e
AT T e e [RS
R N S ek

e e 2 e - I B
------------ e el]
f - Anw—— __-_-: ._:—. T e b 3
Do R,
u.u”-_-;—';-;i‘ : :mtm.:;_m_::____’__-:m
| Ll b Sanessasees e

Figure 7.7. The processed image of a car.

127

image No. Wheel dia. (mm.) Wheel arch dia. (mm.)
Rear Front Rear Front

1 14 14 23 24

2 13 13 24 24

3 7 8 20 20
4 14 15 21 21
19 - - -

5 12 12 23 23

6 14 14 - 25
21 20 - -

7 13 - 29 29
19 19 - -

8 16 - 24 27
19 19 - -

9 8 8 25 25
14 14 - -

10 10 - 20 20
) 13 - - -

11 8 - 20 22
12 12 - -

12 25 21 25 27

13 - 15 26 26
- 21 - -

14 14 14 25 26
- 25 - -

15 - 14 - 23
- 20 - -

16 11 - 20 17

17 - - 12 16
18 13 12 24 21
20 - - -

19 12 12 22 17
18 - - -

20 9 - 20 -
13 13 - -

19 19 - -

21 10 10 15 19

Table 7.1. Car whee! and wheel arch measurements.

128

BRI

RN

B]

SR %«Aﬁ%fﬁ%

MOaOaOaEHEEHHhTa.
A R R

RSN
T ETTTTTYTTTTTITITTGGRY

R

10
9
8
7
6

SooUBLINDD0 JO "ON

wn < (8] o — o

29
28 30

25 27

23

1

2

22 24 26

0
(tyre)

2

(wheei arch)

large hub)

(

(small hub)

Diameter (mm.)

circles

©
©
=
2

circles

wheel arch semi

PN

Figure 7.8. Histogram of wheel and wheel arch diameters.

129

wheel arch diameters. It was decided that the majority of
both could be detected if circles 9, 13 and 20mm. in diameter and a

semi-circle 24mm. in diameter were used as patterns.

The windows presented rather more problems. In many of the
images, the car windows were indistinct - the window area frequently
contained so many lines that it was impossible to decide which
represented the windows. Where a clear outline could be seen, the top
length, height and base length were measured; the results are given in
Table 7.2. No patterns could be selected which would identify more than
a small proportion of windows, so it was decided to drop windows from

the part set unless they proved necessary for recognition.

For the car top - the roof/windscreen/bonnet section - the length of
the roof line, the distance for which the bonnet remained approximately
horizontal and the vertical distance between the roof and the bonnet were
measured. The results are given in Table 7.3. Two car top patterns were
selected, with vertical roof/bonnet distances of 14mm. and 17mm. The
roof and bonnet lengths for both patterns were set at the minima for the

images used, 30mm. and 20mm. respectively.

The initial feature set thus consisted of the six patterns shown in
Figure 7.9, and the object part set consisted of five parts - two wheels,

two wheel arches and the car top.

Unfortunately R.S.R.E.'s pattern matcher could not be used on the
images, so the feature matching was carried out manually, trying to
ensure that the data obtained was as close as possible to that which

would have been produced by the feature matcher. It was assumed that

130

Image No Rear window Front window
Top Height Base Top Height Base
(mm.) (mm.) (mm.) (mm.) (mm.) {mm.)
1 19 17 32 15 | 17 30
2 - - - - - -
3 20 11 30 14 11 24
4 20 14 32 20 14 33
5 - - - - - -
6 18 12 34 19 12 32
7 18 14 32 - - -
8 16 13 28 - - -
9 20 14 32 17 14 30
10 14 9 21 13 9 23
11 - - - - - -
12 20 13 32 19 14 40
13 14 15 25 10 14 22
14 20 14 32 15 14 30
15 - - - - - -
16 - - - - - -
17 - - - - - -
18 20 13 24 13 13 27
19 - - - - - -
20 - - - - - -
21 - - - - - -

Table 7.2. Car window measuremehts.

131

Image No. Roof length | Roof/bonnet | Bonnet length
distance
(mm.) (mm.) (mm.)
1 45 17 35
2 38 16 30
3 40 13 30
4 50 17 20
5 30 14 30
6 40 17 30
7 50 17 30
8 50 17 30
9 40 15 30
10 30 12 20
11 35 15 30
12 50 18 30
13 30 18 20
14 40 17 20
15 50 17 20
16 60 17 20
17 55 17 20
18 50 17 25
19 60 15 20
20 40 14 20
21 30 13 20

Table 7.3. Car top measurements.

132

) O

\

Figure 7.9. Feature patterns for car recognition.

133

the circle patterns would identify circles in the images with diameters |
within 2mm. of the pattern diameter; comparable allowances were made
when matching the other patterns. The matches were rated out of 100,
and only features with ratings of at least 40 were noted. This manual
matching identified features corresponding to at least three of the five

car parts in each image, and very few spurious features as none of the
patterns occurred frequently in the image backgrounds. The system could
be expected to perform adequately with this data, so no changes were

made to the part or pattern sets.

The object part data consisted of the co-ordinates of those parts'
which could be clearly identified in the images; where the relevant area
of an image was indistinct, no attempt was made to estimate the part
co-ordinates. The data obtained from many of the pictures was therefore
incomplete - this would allow the system's ability to learn from partial
data to be investigated. The missing daté related to parts for which no
corresponding features had been identified by the matching process, so
only the distance limits calculated by the system would be affected by
the omissions; the match and set_probability tables should be the same

as would have been obtained if complete part data had been available.

7.3.2. Tests Conducted and Results Obtained.

Both the training set and the recognition tests had to be drawn from
the twenty-one car images available. An initial set of system runs were
executed using data from just the first six images, with each in turn as
the recognition test and the other five as the training set; these runs
were intended to test the adequacy of the object part and pattern sets, to

give some indication of how the choice of training and test images would

134

affect the results obtained, and to reveal what problems the use of an

inadequate training set would create.

With a set of just five training examples, the induction process
could not be expected to yield full, accurate rule sets. In some of the
runs the match tables were incomplete, as some of the part/pattern
correspondences could only be deduced from one of the six images. All of
the distance limits tables were complete, but the figures they contained
varied considerably - most of the twenty ranges specified in each table
were too narrow. None of the set_probability tables were complete; a
full table would contain 173 entries, whereas these had between 61 and
85 entries, the shorter set_probability tables being produced where the

match table was incomplete.

To allow for the omissions in the set_probability table, the
threshold probability for recognition was set at 0%. Despite the apparent
inadequacy of the rule sets, the recognition process identified some of
the features corresponding to car parts and thus correctly located the car
in five out of the six runs, though in only one case was the identified set
complete. In one run, two separate sets of two car parts were identified,
but these could not be recognised as belonging to the same car because of
a deficiency in the distance_limits table. In another run, a wheel and the
corresponding wheel arch were picked up but the system incorrectly
identified them as the front wheel and arch before correctly identifying
them as the rear wheel and arch. The correctly identified (part number,
pattern number) sets for each image were: '

Image 1:{(3,4).(1,2)}

Image 2: {(5,6),(4,4),(3,4),(2,2),(1,2)}

Image 3: {(4,4),(3,4)}

135

Image 4: -
Image 5: {(5,5),(4,4)},{(3,4),(1,2)}
Image 6: {(4,4),(1,2)}

The fact that five out of six cars were recognised despite the
smaliness of the training sets suggests that the part set and pattern set
used were adequate. To check for redundancy in the sets, the results
given above can be examined to determine where recognition would have
failed if any of the parts or patterns had been omitted. It can be seen
that if part 2 (the front wheel), part 5 (the car top) and patterns 1, 3 and
6 had not been used, the five cars would still have been found. However,
it was felt that the parts and patterns would all be required for
recognition of the cars in some of the later images, so no alterations

were made to the sets.

The feedback process was invoked at the end of each recognition
run. If the results used for feedback are accurate and complete, the same
set_probability table should be obtained as would result from including
the test image in the training set, so to produce a table for comparison
the rule induction process was run with all six images in the training set.
As expected, the required table was only produced by the run where the
‘accepted’ set was complete; feeding back incomplete information
produced variable results, improving the accuracy of some entries but

reducing the accuracy of others.

Although the results obtained from the initial runs were not all
equally good, the range of variation in performance suggested that
selection of an appropriate training set is not as critical to success as

had been expected. It was therefore decided that for the tests using all

136

twenty-one images, the training sets should be selected randomly.

The second set of runs were conducted using every fifth image
(starting, in successive runs, with images 1, 2, 3, 4 and 5) for
recognition, the remaining images forming the training set. As the
feedback process had been tested adequately by the initial runs, it was
not invoked here; the same rules were used for all the recognition tests

in each run.

With the size of the training set approximately tripled, these runs
could have been expected to produce markedly better results. The induced
rule sets did, indeed, appear to show a definite improvement over those
obtained in the initial runs, the ranges specified in the distance_limits
tables being wider and the set_probability tables having more entries,
but the recognition results were much the same - again, the system
generally identified some of the object parts, but not all of them. This is
perhaps partly because the higher-numbered images varied more than the-
low-numbered ones used for the initial tests - with a wider variety of
images, a larger training set will presumably be required to produce

comparable results.

The car which was completely identified in the first set of runs
was initially only partially identified in the second set of runs, despite
the increase in training set size. This was because the relevant
probabilities given by the set_probability tables decreased, rather than
increasing, as the set size increased. As feature sets are offered to the
user for acceptance or rejection in decreasing order of probability rather
than decreasing order of magnitude, this led to subsets of the correct

feature set being presented before the full set. If a subset is accepted,

137

its features will be labelled "identified' and subsequent sets cbntaining |
any of these features will be rejected by the system without reference to
the user - but the user cannot be expected to reject a correct subset

without knowing whether the full set will be presented later.

This problem could be seen to have arisen because in some of the
images, spurious features occurred in close proximity to features
corresponding to object parts. For example, the image set included
several cars pictured at a slight angle, with both the front and the rear
edges of the windscreen visible. The feature sets for these images
contained two car top features which were too far apart for either of
them to have been rejected as a duplicate, but close enough for both to
fall within the specified distances from the wheels and wheel arches.
(See Figure 7.10). The system thus produced two complete feature sets,
only one of which could be considered correct, from one (correct) set of
wheels and wheel arches, leading to a lower probability being assigned to

a complete set than to a wheels/wheel arches set.

Figure 7.10. Typical features detected in an image of a car

at an angle.

138

For the final two runs, all twenty-one images were used as the
training set, then the five images from which the least successful
recognition results had been obtained in the previous runs were used for
testing. The first of these runs used the original definition of duplicates:
features whose x and y co-ordinates differed from one another by less
than 3. For the second run, the limit was raised from 3 to 5 to exclude a
larger number of features. In both runs, features were only accepted if
their co-ordinates exactly matched those of the corresponding object

parts.

The system should, of course, be able to identify completely any car
image which is exactly the same as one in the training set, so the
recognition results from these two runs should have been perfect. In the
fiest run, if all partial feature sets were rejected the system did
eventually offer a complete, correct feature set for acceptance in each
case, but the number of sets which had been assigned higher probabilities
was sometimes very considerable: for one image, forty-nine sets had to
be rejected before the required set was given. Relaxing the definition of
duplicates drastically reduced this problem; in the second run, for four
out of the five tests the first set offered was correct. However,
recognition failed on the fifth test because the ‘correct' feature had been
rejected in favour of a higher-rated duplicate. If features 'within
duplicate range' of the object parts had been accepted, the results would

have been perfect.

7.3.3. Conclusions.

The recognition of cars from real images presented far more

problems than the recognition of specially devised objects from pictures

139

which had been carefully compiled for the purposé. The main problem
proved to be not selecting appropriate object parts and feature patterns
for matching, but obtaining a set of training images which would fully
define the dimensions of the object and the required part/pattern
correspondences. The small set of images available clearly did not
constitute an adequate training set; a much larger number of images,
carefully selected to show all possible variations in car sizes and part
shapés, would be required for the induction of a full and accurate set of

rules for recognition.

The training and test images used contained only positive examples
of cars - there were no negative examples or 'near misses’. The fact that
positive probabilities of recognition were obtained even when the test
car image lay partly outside the range specified by the training examples
suggests that the system will have problems detecting 'near misses’; this
approach seems most appropriate for use with fuzzy object categories,
where there is no definite boundary beyond which the recognition process

should definitely fail.

The test using synthetic data showed that the system can cope well
with background noise, but these tests revealed that object-based noise -
spurious 'shadow' features detected in the near vicinity of object parts -
is much more of a problem. Background noise can be eliminated
effectively by the distance-limits rules, but these will not eliminate all
object-based noise unless the limits are much more tightly defined than
is likely to be the case with a broad object category such as cars. The
edit module does remove duplicateé, i.e. features which lie very close to
higher-rated features, but as 'shadows’ can be more distinct than object

parts in the processed images, there is a clear risk that the 'real’ feature

140

will be discarded and the 'shadow’ retained, so relaxing the definition of
duplicates to remove a larger number of features does not appear to be a
good option for solving the 'shadow' problem unless the user is prepared
to accept object parts being located to ‘within duplicate range'. The best
approach seems to be to take care to select for feature matching object

parts which are rarely 'shadowed'.

If a set of just two features is to be considered sufficient to give a
positive probability of object recognition, there are obvious dangers in
selecting a part set which contains pairs of parts such as the front wheel
and wheel arch and the back wheel and wheel arch of a car which can
easily be mistaken for one another, The risk of confusion arising here
could perhaps have been avoided by treating a wheel and the
corresponding arch as a single object part, to be matched by composite
circle/semi-circle feature patterns. The rating thresholds for the
patterns could be set low enough to ensure detection of the part if either

the wheel or the arch were to be clearly visible in the image.

Despite the fact that the training sets and the object part set used
had significant deficiencies, the system performed surprisingly well,
locating the cars successfully in most of the tests conducted. ltis clear
that as well as offerihg the potential for inducing reliable, accurate
recognition programs ‘from comprehensive training sets, this system can
be used to produce a program which, though far from perfect, can yield

useful results even when only minimal training data is available.

141

CHAPTER 8
DEVELOPMENT OF THE FINAL SYSTEM

8.1. SYSTEM STR RE.

The aim of this project was to produce a system which would learn
to recognise a number of different objects/object views from feature
data and data giving the locations of object parts in a set of training
images, then use the induced recognition rules to provide the most
probable identifications of the objects in test pictures, using feedback
information about the accuracy of the results to update the probabilistic
element of the rules. Such a system would contain a considerable number
of components, and it was intended that a blackboard system should be
used to enable these components to communicate with one another and to

access the image data.

A standard blackboard system comprises a blackboard data structure
and a set of independent knowledge sources, together with a control
component/scheduler (see Section 4.2.). Sevéral systems have been
developed for image Understanding applications; these include the UMass
Schema System (Draper et al., '88), described in Section 4.5.3., and Nagao
et al.'s system for analysis of complex aerial photographs (Nagao et al.,
'88). Both these systems have separate independent knowledge sources
for each type of object to be recognised, together with a number of
object-independent knowledge sources. Neither system employs rule:
induction or feedback - their object-specific knowledge sources were

developed separately, then incorporated into the blackboard system.

If a learning element is to be included in the system, clearly it will

142

not be possible to have a separate, independent, immutable knowledge
source for each type of object. It was suggested in Section 4.7. that a
two-tier blackboard system could be used, with the problem data on the
bottom tier, the object recognition knowledge sources on the top tier and
the rule induction and feedback modules, which would act as
meta-knowledge sources using the object recognition knowledge sources

as data, above both, as indicated in Figure 8.1.

Meta-knowledge sources

v N\

Learner Feedback

l I

Top tier blackboard

Recognition knowledge sources

:

Bottom tier blackboard

Problem data

Figure 8.1. Plan of a two-tier blackboard system.

The system is to be based on the single-object learner/recogniser
system described in Chapter 6. Each object recogniser will consist of the
recogniser program described in Section 6.4.3., together with the
object-specific rules developed by the learner described in Section 6.4.2.
Rather than duplicating the recogniser program in each of a set of |

independent object recogniser knowledge sources, it seems sensible to

143

treat the recogniser program as one knowledge source whibh acts in
co-operation with each set of object-specific rules. It is these rules,

rather than the recogniser program, which are subject to alteration, so
the recogniser program can be removed from the top-tier blackboard,

leaving it holding just the induced rules.

The system is to be written in Prolog, which does not oblige the
programmer to distinguish between program and data, so the induced
rules, which are treated as data by the learner and feedback modules, can
also be treated as data by the recogniser program; the two-tier
blackboard can thus be replaced by two parallel blackboards, one

containing problem data and the other containing recdgnition data.

Figure 8.1. shows the learner and feedback modules accessing just
the top-tier blackboard, but in fact both need to have access to the
bottom tier as well. There are also other knowledge sources, such as the
edit module described in Section 6.4.1., which operate on the problem |
data. None of the knowledge sources use all the types of data which are
held on the two blackboards; the required structure of the system can be
clarified by partitioning both blackboards, and allowing the knowledge
sources access to only those sections which are relevant to their

operation.

The final structure is depicted in Figure 8.2. It can be seen that the
novel two-tier system has been translated into something very similar to
a standard blackboard system; it would be possible to replace the two
parallel blackboards with a single blackboard partitioned into two
sections, one holding the problem data and the other holding the

recognition data, but it was felt that retaining separate blackboards for

144

the two types of data would make the Way in which the system is

constructed clearer.

PROBLEM DATA EDITOR RECOGNITION DATA
Features Object name
LEARNER
. Matches
Edited features Distance limits
RECOGNISER
Possible 6bjects
» FEEDBACK Set probabilities
Objects Occurrences
BACKGROUND
¢ KNOWLEDGE/
USER

Figure 8.2. The system structure.

It is the decision to treat the induced rules as data which has made
this simplification possible. The use of Prolog as a programming
language makes the implementation of this decision a trivial matter - in
Prolog, the translation of a statement from the status of 'rule' to that of
'data’ does not require any alteration of structure or format - but the
same approach could be adopted , though with more difficulty, were a

procedural, rather than declarative, language to be used. A procedural

145

orogram could be provided with é set of standard rule patterns éontaihing
variables rather than constants, and each rule could be represented by a
list of data items comprising a pattern identifier and a list of values to
which the variables in the pattern are to be instantiated. For example,
the rule:

If shape is circle and size is small then object is ball
could be represented by:

Pattern1: If shape is X and size is Y then object is Z

DATA: 1,circle,small,ball

The original intention was to base the blackboard system on either
the Edinburgh Prolog blackboard shell (Jones et al., '88) described in
Section 4.6.2. or the LUMP truth-maintained blackboard (Hinde et al., '89)
described in Section 5.5.6., but both of these seemed unnecessarily
complex - they offered facilities which would not be required here - so
to ensure that the basic system structure would not be 'buried’ in
unnecessary complications, a simple blackboard was written from
scratch. The design of the system as a whole is described in the next
section; the knowledge sources are described in more detail in Section

8.3, and the testing of the complete system is described in Chapter 9.

8.2. DESIGN OF THE BLACKBOARD SYSTEM.
8.2.1. Introduction.
The first stage in designing a software system normally involves

establishing exactly what task the system is required to perform: what

sort of input will be provided, what options should be available to the

146

system user and what output is to be produced, then breaking the task
down into separate stages and drawing up a flowchart which depicts
these stages and the way in which they follow on from one another,

illustrating graphically the way in which the system will operate.

If the system is intended to exhibit intelligent behaviour, such a
specification of the operations to be performed and the order in which
they are to take place cannot be considered appropriate - an A.l. system
is not intended to follow a preset path, but to decide for itself at each
stage of its operation which of the actions available to it should be
performed next in the light of the circumstances under which it is
running, basing its decisions on heuristic rules, estimates and measures
of the expected utility of various operations etc. However, a detailed
analysis of the behaviour required of the system is still a prerequisite of

the design task. The target behaviour is described in Section 8.2.2.

For a blackboard system, there are three distinct major elements to
be designed: the blackboard itself (or blackboards, if more than one is to
be used), the knowledge sources and the controller/scheduler. The
designs of these are inter-related, and are also related to the nature of
the problem(s) to be solved and the structure of the problem space. As
this blackboard system was based on an existing system {the
single-object recogniser) from which the main knowledge sources were
derived, the knowledge sources are considered first heré, in Section
6.2.3, followed by the blackboard structure in Section 6.2.4. and the
control element in Section 6.2.5. (With a system designed from scratch,
or based on a general-purpose blackboard shell, a different design order
might be more appropriate). Other aspects of the system such as the

initialisation process and the user interface are described in Section

147

6.2.6. There is inevitably a certain amount of overlap between the
sections; the design of the blackboard structure, for example,

necessitated changes to the knowledge sources.

8.2.2. Required system behaviour.

The behaviour required of the blackboard system is an extension of
the behaviour of the single-object system; the data format should not
require any alteration, and when presented with data on a single object
this system should produce the same results as the single-object system,
though the required operations (editing feature data from training
examples, learning recognition rules, editing data from a test image,
searching for possible object instances, confirming/rejecting possible
objects, feeding back results to update the rules) should be programmed
automatically by the blackboard controller instead of being specified

individually by the user.

Where a number of different objects are to be identified, the user
should be able to supply either a separate set of training data for each
object, or a composite training set containing data on all the
objects/object views to be learnt; in the latter case, it should be
possible for a single training image to contain instances of more than one
object. it should not be necessary for the user to specify the object(s) to
be learnt; when the system is presented with part data for an unknown

object, the object should be learnt automatically.

When all previously unknown objects have been learnt, the feature
data from training examples could be deleted, or it could be retained for

use as negative examples of future objects to be learnt. It was decided

148

that the latter approach should be adopted, as the inclusion of additional
negative examples in a training set should improve the accuracy of the
induced probabilities. (It is assumed that training data will include part
data for gll the objects in each image which the system has not already
learnt and may be required to identify, so earlier sets of training
examples will not include unrecognised instances of a new object to be
learnt). Similarly, all new images, including training images for new
objects to be learnt, should be regarded as test images for all previously
learnt objects and recognition results from them should be used for
feedback purposes - this will ensure that where a separate set of
training images is provided for each object to be learnt, the order of

presentation of the training sets will not affect the results obtained.

Feature data from test images could be similarly preserved for
inclusion in future training sets, but as test images will not be subject
to the same vetting procedure as training images it was felt that they
could not be guaranteed not to contain unidentified instances of a new
object, and if all data were to be preserved the system would eventually
become choked with data and the running speed would deteriorate, so it
was decided that feature data from test images should be deleted at the

end of the feedback process.

When searching test pictures, the system should search for the most
likely object first, estimating relative likelihoods by counting the
number of occurrences of each object. Feature sets which have a high
probability of representing instances of an object should be accepted or
rejected immediately, and the component features should be marked as
'identified' so that the system need not search for less likely objects if

there are no appropriate features remaining unidentified. Decisions on

149

feature sets with lower probabilities should be deferre'd'until the search
procedure has been completed. The user should be able to adjust the
probability thresholds for immediate decisions and deferral during the
operation of the system, to allow for the fact that probabilities

calculated by the system may be very inaccurate initially, but will
improve in accuracy as the number of images examined increases.
Separate thresholds could be set for each object, but it was decided that

for simplicity the same thresholds would be applied to all objects.

The single-object system reférred all acceptance/rejection
decisions to the user, but it was thought desirable to automate the
decision-making process as far as possible in the final system. It should
be possible to specify object-specific background checks to be conducted
on candidate feature sets. Any sets which fail the checks should be
rejected immediately; of the sets which pass, those with probabilities
above the immediate decision threshold should be accepted automatically
and only those with lower probabilities on which a deferred decision is

required should be referred to the user.

The results of each search conducted should be used for feedback
purposes, but where the objects in an image have been satisfactorily
identified without searching for all known objects, it was decided that
further searches should not be conducted merely to obtain further data-

for feedback.

The single-object system provided an automatic printout of all the
recognition rules at the conclusion of the learning process, and of the
set-probability rules after feedback. This is not required here; instead,

the user should be able to request a printout of the rules for a specified

150

object.

The system could run through all the operations available to it
before consulting the user for further instructions (automatic bid
execution), or consult the user at the conclusion of each separate
operation (manual bid execution). The user should be able to decide which
of these options is required, and it should be possible to switch from one

to the other during the operation of the system.

This specification will mean that there are a considerable number of
options available to the user. Some choices will have to be made as part
of the system initialisation procedure; it was decided that to detail the
options available during a system run, the final facility to be

incorporated should be a 'help' module.

8.2.3. Knowledge sources.

The editor, learner, recogniser and feedback modules described in
Chapter 6, with such modifications as proved necessary, formed the main
knowledge sources for the system. It was decided that the background
knowledge/user box in Figure 8.2. should be represented by two
knowledge sources, Acceptor and Selector: the system user would select
an acceptance threshold and a referral threshold, which could be adjusted
when required during the operation of the system; feature sets with
probabilities equal to or above the acceptance threshold would be handled
by the Acceptor, which would deal with them automatically, without
referral to the user, and feature sets with probabilities between the
referral threshold and the acceptance threshold would be handled by the

Selector which would refer its decisions to the user for

151

confirmation/rejection, sets with probabilities below the referral

threshold being discarded.

This arrangement allows the user to gradually relinquish control of
the image identification process as feedback improves the accuracy of
the probabilities assigned to feature sets; the intention is that initially
the acceptance threshold should be set at above 100% and the referral
threshold should be set at 0%, then the acceptance threshold should be
lowered and the referral threshold raised until eventually the two

coincide, when the identification process would be entirely automatic.

An additional knowledge source, Remover, is required to remove data
on test images from the blackboard after the identification process has
been completed. There are thus seven knowledge sources altogether:
Editor, Learner, Recogniser, Feedback, Acceptor, Selector and Remover.

The internal operation of these is described in Section 8.3.

8.2.4. Blackboard organisation.

In order to establish which information should be held on each of
the blackboards and how it could best be organised, the inputs, outputs
and data to be read were determined for each of the knowledge sources to
be used. The distinction between inputs and data to be read was made so
that blackboard entries which would be altered or deleted by the
knowledge source (the inputs) could be distinguished from those which
would be required but would remain unchanged (the read data). Inputs
which are altered also appear in the outputs list; inputs which are
deleted do not.

152

The information for each knowledge source was as follows:

Knowledge
Source

Editor

Learner

Recogniser

Acceptor

Selector

Feedback

Input:
Read:

Output:

Input:

Read:

Output:

Input:
Read:

Output:

Input:

Read:

Output:

Input:

Read:

Output:

Input:

Read:

Cutput:

Problem data

features
edited features
identified_features

object parts

edited features

edited features

feature sets
probability list

probability list
identified_features
feature sets
object parts
identified features

probability list
identified_features
feature sets

object parts
identified_features

object parts
feature sets
edited features

153

Recognition data

rating thresholds

list of object names
occurrences

object part list
match table
distance_limits table
set_probability table
list of object names
occurrences

match table
distance_limits table
set_probability table

occurrences

occurrences

occurrences

occurrences

set_probability table

set_probability table

Remover Input: edited features -
identified_features
feature sets
Read: - -
Output: - -

After analysis of this information, grouping together items which
commonly occur together, and taking into account the structure of the
problem space, it was decided that it would be most convenient to
arrange the problem blackboard in four sections, one for unedited feature
data, one for edited feature data, one for possible objects and one for
actual objects, and that these sections should contain:

problembb1: unedited features

problembb2:. edited features, identified features

problembb3: feature sets, probability list

problembb4: object parts
The recognition blackboard was also arranged in four sections,
containing:

recognisebb1: object names, part lists, rating thresholds

recognisebb2; maich table, distance_limits table

recognisebb3: set_probability table

recognisebb4: occurrences

| The input/read/output requirements for each knowledge scurce are

summarised in Table 8.1.

For clarity, it was decided that the same format should be used for
all entries on both blackboards:
<Blackboardnamesbb<SectNo>(<Datatype>,(<Dataltemss)).

For example, edited features would be entered on the problem blackboard

154

Knowledge Source | Problembb Section Recognisebb Section
“Input Read Output Input Read Output
Editor 1 - 2 - 1 -
Learner 4 2 - 1,4 1 1,2,3,4
Recogniser - 2 3 - 2,3 -
Acceptor 3 3 2,4 4 - 4
Selector 3 3 2,4 4 - 4
Feedback 2,34 - - 3 - 3
Remover 2,3 - - - - -

Table 8.1. Knowledge Source Requirements for Blackboard

Access.

in the form:
problembb2(feature,(PicNo,FeatureNo,PatternNo,X,Y)).
and matches would be entered on the recognition blackboard as:
recognisebb2(match,(Object,PartNo,PatternNo})).
The knowledge sources were modified as necessary to use these data
formats. (No changes were made to the format of data internal to a
knowledge source, e.g. the matched_feature table used by Learner, so that

such internal data could be distinguished easily from blackboard entries).

The input data format is the same as for the single-object system:
the object data supplied consists of a part list for each object to be
recognised and rating thresholds for each feature pattern, the training
data consists of a list of features and object_parts for each image, and

the test data consists of just features, with the formats:

155

part_list(Object,[(1,PartName1),(2,PartName2),...]).
rating_threshold(PatternNo,Threshold).
feature(PicNo,PatternNo,X,Y,Rating).
object_part(Object,PicNo,InstNo,PartNo,X,Y).

When data is read in a special predicate, bb_enter, is called tc enter it
on the blackboards: part lists and rating thresholds on recognisebb1,

feature data on problembb1 and object_part data on problembb4.

Information about new blackboard entries is passed to the
controller/scheduler (see Section 8.2.5), which checks to see which
knowledge sources require these entries, notifies their bidders so they
can bid for the operations they could perform, and schedules the bids. As
features and object_parts are entered in batches, notifying the controller
of each individual entry would be very inefficient; instead, bb_enter
flags each type of entry, using

bb_entered(object_part,Object,PicNo).
and bb_entered(feature,PicNo).

When all possible entries have been made, the flags are checked and the

appropriate notifications are carried out. -

The final task performed by bb_enter is to identify and label
training images, to distinguish them from test images. This is necessary -
because the feature data from test images is to be removed after
identification, while the feature data from training images is to be
retained. The predicate training is used to identify training images; the
format is simply

training{PicNo).

156

The training clauses are not held on either of the blackboards as they
contain ‘system' information required only during the process of making

and scheduling bids, not problem or recognition data.

8.2.5. The controller and scheduler.

The controller/scheduler of a blackboard system is responsible for
selecting operations to be performed, and instructing their execution; it
must be able to identify the possible knowledge source operations which
could be carried out at any point, and to assign an order of priorities to
these operations so that those with the highest priority can be selected
for execution first. . (See Section 4.2.). 1t must also allow the user to .
intervene where necessary during the operation of the system, to enter

new data or to examine the state of the blackboard.

The design process can be simplified by separating the control and
scheduling functions: the scheduler is then responsible for maintaining a
list of ranked knowledge source bids, which specify potential operations
and their priorities, and the controller is responsible for selecting the
highest-ranked bid from this list and instructing its execution, and for
liaising with the system user. As the design of the controller will
depend on whether the maintenance of an up-to-date bid list can be
carried out independently by the scheduler, or requires supervision by the

controller, the design of the scheduler is considered first.

The starting point for the development of a method for making and
ranking bids was again an analysis of the knowledge sources: the
pre-conditions which must be satisfied before each knowledge source can

make a bid to perform its operation and the restrictions on the order in

157

which the bids can be executed were analysed as follows:

Editor Pre-conditions: New entries of feature data on
problembb1 _
Restrictions: Must be the first bids executed
Learner Pre-conditions: New entries of object part data on

problembbd4, object name not in list of learnt objects
Restrictions: Must follow all editor bids to ensure
edited feature data is available for all images in training
set; must precede Recogniser bids, so as many different

objects as possible can be sought in test images

Recogniser Pre-conditions: New entries of edited feature data on
problembb?2, object in list of learnt objects, no object part
data for this image, object on problembb4
Restrictions: Recogniser bids should be executed in

decreasing order of no. of occurrences of object

Acceptor 'Pre-conditions: New probability list on problembb3,
probability of first element in list is equal to or above
acceptance threshold
Restrictions: Must precede Recogniser bids, so if
all possible features in image have been identified

recognition of further objects can be aborted

Selector Pre-conditions: New probability list on problembb3

Restrictions: must follow all Recogniser bids

158

Feedback Pre-conditions: Probability list removed from
problembb3
Restrictions: Must precede Recogniser bids, so that
probabilities used by Recogniser are as up-to-date as

possible.

Remover Pre-conditions: Probability list removed from
problembb3, image not a training example

Restrictions: Must follow Feedback bids

All the knowledge sources have as one of their pre-conditions the
addition of an entry to, or the removal of an entry from, the problem
blackboard so it was decided that these events should be used to trigger

the bid creation process.

The triggering condition for a knowledge source is specified by a
wants or wants_removed clause which comes at the start of its bidder
program file and has the format:

wants(KS,PBBSection,Datatype).

or wants_removed(KS,PBBSection,Datatype).

The way in which the triggers are used is as follows: when one of
the knowledge sources or the data entry process described in the previous
section enters some new data on the problem blackboard, a clause of the
form:

new_entries([[PBBSection1,Datatypei,(Datat)],

. .. . [PBBSectionm,Datatypem,(Datam)]]).
is used to invoke the new_entries predicate, which takes each new

entry in turn and searches for all the wants clauses which match it.

159

Similarly, when data is removed from the blackboard, a clause of the
form:

removed_entries([[PBBSection1,Datatype1,(Data2)],

. . . - [PBBSectionn,Datatypen,(Datan)]l).

is used to invoke removed_entries, which searches for matches
between data which has been removed and wants_removed clauses.
Whenever a match is found, the relevant information is passed on to the
knowledge source bidder by:

make_bid(KnowledgeSource,[PBBSection,Datatype,Data]).

The make_bid predicate for each knowledge source, the definition
of which forms the main part of the bidder program file, is responsible
for checking any remaining pre-conditions, making bids and passing them
on to the scheduler. Ratings could be attached to the bids by either
make_bid or the scheduler; it was decided that as the rating given to a
bid would depend on the knowledge source, this task should also be

assigned to make_bid.

The bid ratings are required to embody the restrictions given in the -
above analysis of knowledge sources. These give the following partial
ordering of the knowledge source operations (where < is to be interpreted
as "must precede”):

Editor < Learner < Recogniser

Acceptor < Recogniser < Selector

Feedback < Recogniser < Remover
To obtain a complete ordering, it is necessary to establish orders of
priority for the operations which must precede and succeed Recogniser
bids. The pre-conditions for bid execution are such that Learner,

Acceptor and Feedback bids cannot exist for the same image at the same

160

time, so the relative priorities attached to these operations are
irrelevant. Similarly, Selector and Remover bids cannot exist for the
same image at the same time, so these operations too can be ordered
randomly. It was decided that the following total ordering should be
used:

Editor < Learner < Feedback < Acceptor < Recogniser < Selector <

Remover.

The operations with the highest precedence must be awarded the
highest ratings; the priority to be given to Recogniser bids is to depend
on the number of occurrences of the object being sought, so a range of
ratings is required for Recogniser. The ratings selected are shown in
Table 8.2.

Knowledge Source Rating B
Editor 100
Learner 90
Feedback 80
Acceptor 70
Recogniser 40 - 60
Selector 30
Remover 20

Table 8.2. Knowledge Source Bid Ratings.

The bid details are passed to the scheduler by:

161

schedule(KnowledgeSource,(BidData),Rating).
The operation performed by schedule consists merely of inserting the
bid details into a bid list arranged in decreasing order of rating. This list
is set up during the system initialisation process (described in Section
6.2.6).

When the bid creation and scheduling process has been completed,
execution of the system will continue from the point at which it was
interrupted, i.e. from the clause following the new_entries or
removed_entries clause. As the operations which will be interrupted
for bid creation do not use the bid list, which is 'system’ information,
used only by the controller and scheduler (which do not have access to the
problem blackboard and so cannot instigate the bid creation process
themselves}, the creation of new bids will not have any effect on the way
in which the interrupted operation is carried out. The new_entries and
removed_entries clauses can therefore be placed at any point from
where they will be called exactly once during the execution of the

process during which the blackboard changes they refer to are made.

The decision to call the bid creation and scheduling process directly
from the knowledge sources and the data entry process makes it
independent of the blackboard controller, thus simplifying the design of
the control mechanism. The basic control loop is very simple:

(1). Remove the top-ranked bid from the bid list.

(2). Execute this bid.

(3). Repeat from (1) until the bid list is empty. |
This loop needs to be modified slightly to allow the system user to
intervene when necessary. The specification given in Section 8.2.2.

requires the user to be given the option of automatic bid execution (the

162

controller consults the user for further instructions only when the bid
list is empty) or manual bid execution (the user is consulted after each
operation), which can be achieved by replacing stage (3) above by:
(3a). If manual bid execution selected
Then consult user
Eise Repeat from (1) until bid list is empty.
This modified loop is embodied in the controller predicate run. The
user's choice of manual or automatic bid execution, which is established
as part of the initialisation process and can be altered during the user
consultation process (see Section 6.2.6), is recorded by:
autorun(m). _ (manual)

or autorun(a). (automatic)

8.2.6. Miscellaneous processes: initialisation, user consultation.

The initialisation process, init, is responsible for establishing a
number of different parameters and variables. The process sets the
initial values of the bid list (system information, not held on a
blackboard) and the list of learnt object names (on recognisebb1), both
empty lists, and the total number of object occurrences provided as
training examples or recognised in test images (on recognisebb4; required
in the calculation of Recogniser bid ratings), initially zero. The
user-selectable parameters are read in; these are the duplicates limit
(i.e. the distance within which features are to be regarded as duplicates,
which was fixed in the single-object system, but is selectable here), the
acceptance and referral thresholds (discussed in Section 8.2.3) and the

choice of manual or automatic bid execution.

The read routines used provide basic error-trapping: for numbers the

163

minimum and maximum acceptable values are specified and checked, for
characters a list of alternatives is specified and checked. For the
duplicates limit, the range of acceptable values is 0 to 10; features are
regarded as duplicates only if the distance between them is strictly less
than the limit, so a limit of O will mean that no features will be rejected

as duplicates. The acceptance and referral thresholds are specified as
percentage probabilities; candidate feature sets will be automatically

accepted as object instances if their probability is equal to or above the

acceptance threshold, so while the system is being trained, when no
automatic acceptance is required, this threshold must be set at above
100; the maximum and minimum values here are therefore 0 and 110,
with a suggested start level of 110. The minimum value for the referral
threshold is also 0, and its maximum value is equal to the acceptance

threshold (which is set first).

-When the initialisation process is complete control is passed to the
user consultation process, consult_user, which is also called whenever
the bid list is empty and - in the case of manual bid execution - after the
execution of each bid. This process provides the user with the facilities
outlined in the system specification in Section 8.2.2. There is a help
facility, advertised every time consult_user is called, which lists the
options available. These depend to some extent on whether manual or
automatic bid execution has been selected; help has been designed to
give only those options which currently apply. The full range of
possibilities is:

- read in a data file
- execute the next bid (manual bid execution only)
- switch to automatic (manual bid execution only)

- switch to manual (automatic bid execution only)

164

- view the recoghnition rules for an object

- alter the acceptance/referral thresholds

- quit the system.
Commands not on the list of options will not be recognised; if the user
wishes to perform an operation which has not been specified, this can
best be accomplished by quitting the system (quit.), then returning when

the operation has been completed by entering consult_user. or run.

The command to read in a data file is:

[Filename].
This will read only a single file - a list of file names is not acceptable.
When a file has been read, the system will call bb_enter to enter the
data it contains on the problem blackboard; this in turn will initiate the
bid creation process, and Learner bids for any new objects on which
training data has been provided will be scheduled. If automatic bid
execution has been selected, the bids on the bid list will be executed
before the user is consulted again. This means that if data from a set of
training examples is contained in a number of different files, they must
be read in together by listing them in a single master file; if the user
attempts to read them sequentially, the object(s) will be learnt from
just the data in the first file. With manual execution the files can be

read in sequentially.
The commands to switch from manual to automatic bid execution or
vice-versa, auto. and man., are straightforward: the existing autorun

clause is retracted and a new one is substituted.

The recognition rules for an object can be viewed by entering:

show_rules(Object).

165

The print format used for the recognition rules in the single-aobject
system has been altered considerably to improve readability. The new
format can be seen from the listings of sample system runs in Appendix
B.

To alter the thresholds for acceptance and referral, the command is
alter. The system prints out the current values, then prompts the user
to enter the new ones. Both values must be entered even if only one is to

be changed.

8.3. THE KNOWI EDGE SOURCES.

8.3.1. Introduction.

Each of the knowledge sources used in this system has the same
overall format. There is a master file which specifies all the program
files which constitute the knowledge source; the first program file is the
bidder, which is followed by between one and eight files which make up

the body of the knowledge source.

The bidders also share a common format: they start with a wants or
wants_removed clause, followed by make_bid, as described in Section
8.2.5, then end with an execute clause which gives instructions for the
execution of a bid created by make_bid. There is no reason why the first
two components could not be duplicated to correspond to alternative sets
of pre-conditions for bid creation, but this was not necessary for this

application.

166

The sections of the single-object system, RECOGNISE1, described in
Chapter 6 on which the Learner, Recogniser and Feedback knowledge
sources were based were not independent of one another; the recogniser
and feedback modules both used some predicates defined for the earner.
To ensure independence of the knowledge sources, all shared predicates
have been grouped together as 'knowledge source utilities'; the only
predicates defined in a particular knowledge source are those which are
specific to that knowledge source. The individual knowledge sources are
described in Sections 8.3.2. to 8.3.8, and the utilities are described in
Section 8.3.9.

8.3.2. Editor.

Editor's function is to edit the feature data for an image. It takes
the image features from problembb1, removes duplicates and those with
ratings below the appropriate rating threshold, numbers those remaining -
and enters them on problembb2. It also initialises the list of identified

features on problembb2.

The edit program file is virtually the same as the edit file in
RECOGNISET, described in Section 6.4.1. The only changes made are the
addition of a new_entries clause and those changes necessitated by the

fact that the data used is now held on the blackboards.

8.3.3. Learner.

Learner is responsible for learning the recognition rules for an
object. It adds the object name to the list of learnt object names on

recognisebb1, develops match and distance_limits rules and places them

167

on recognisebb2, and develops set_probability rules which it places on
recognisebb3. It then counts the number of occurrences of the object in
the training set, placing this on recognisebb4 and also adding it to the
total number of occurrences on recognisebb4. Learner uses, but does not ‘
alter, all the available edited feature data on problembb2, adds features
which match object parts to the list of identified features on

problembb2, and uses then removes the object part data on problembb4 .

The rule induction process, which is the central part of Learner's
function, is the same as the rule induction stage of the single-object
system, described in Section 6.4.2. The program files used - learn,
pattern_match and limits, which are contained in Learner itself, and
feature_match, make_sets, find, check_match and check_limits,
which are contained in Utilities as they are shared with other knowledge
sources - differ only slightly from those described in Section 6.4.2,
However, rather than printing out the rules as was done in the
single-object system, Learner follows the rule induction process by
counting and removing object instances, using the new Ultilities program

file remove_instances (described in Section 8.3.9).

8.3.4. Recoqniser.

The formation of feature sets which could correspond to instances
of an object, placing these on problembb3, and the insertion of the object,
set number and probability of each setinto a probability list arranged in
descending order of probability, also on problembb3, is the task carried

out by the Recogniser knowledge source.

Recogniser has a slightly more complex bidder than most of the

168

other knowledge sources, as it may be required to make not just one bid

at a time, but several - one for each of the objects which could be sought

in an image. The bids are assigned ratings which depend on the number of
occurrences of the object, so that the objects which have occurred most
frequently in the past, and so can be considered the most likely to be

found in a new image, are sought first.

The program files used, search and add in Recogniser, and
make_sets, find, check_match and check_limits in Utilities, have
been adapted from those used in the recognition stage of the
single-object system, described in Section 6.4.3, the functions of which
~ have been divided between Recogniser, Acceptor and Selector. The main
alteration to search is the inclusion of a check to ensure that image
contains at least two unidentified features which could correspond to
parts of the object being sought, the search being aborted if it does not.
More extensive changes have been made to add: a single probability list is
used for all the searches conducted on an image, so entries in the list
now have to specify the object sought as well as the feature set number -
and probability; feature sets are not entered in the list unless their
probability is equal to or above the referral threshold; and when a new
set is added to the list, the new predicate remove_subsets is called to
find and remove any subsets of it already in the list. This last change,
which will ensure that only maximal feature sets are considered as
potential object instances, should prevent some of the problems which

arose during the testing of the single-object system (see Section 7.3.2).

8.3.5. Acceptor.

Feature sets in the probability list on problembb3 whose

169

probabilities exceed the acceptance threshold set by the user are handled
by Acceptor. Acceptance of such sets as object instances is not
automatic; Acceptor checks to ensure that they do not contain any
features which have already been identified, then carries out
object-specific background checks before deciding whether they should
be accepted or discarded. When a set is accepted, the user is notified,
the list of identified features on problembb?2 is updated and the relevant

object parts are entered on problembb4.

Acceptor contains just one program file, accept, but also uses the
identify and write_set files in Utilities, which it shares with
Selector. All these files are derived from the RECOGNISE1 file report,
described in Section 6.4.3. The operation of accept is straightforward,;
it operates on each element of the probability list whose probability
exceeds the acceptance threshold in turn, carrying out the checks
described above then, if these succeed, calling write_set to write out
the feature set, writing "Accepted” beneath it, and calling identify to

record the newly identified object instance.

The background checks, which are called by:
background_check(Object,PicNo,Parts,Features)
must be programmed by the user, and entered into the system at the same
time as the object part lists and rating thresholds. They can be used to
check more complex relationships between potential object parts than
the simple distance limits which are checked when feature sets are
constructed. They are not optional; if no checks are required for a
particular object, then an empty check must be specified:

background_check(Object,_, ,_) :- L

170

8.3.6. Selector.

Selector's function corresponds to that of the report predicate in
the recognition stage of the single-object system (Section 6.4.3). It
removes the probability list for an image from problembb3, checks each
element in turn, refers those which pass the checks to the user for
acceptance or rejection, then records the parts of accepted object

instances on problembb4.

The program file select is very similar to accept, having been
derived from the same source; it only differs in that it does not compare
probabilities with the acceptance threshold, and refers sets which
satisfy the checks to the user for acceptance or rejection rather than

accepting them automatically.

8.3.7. Eeedback.

Feedback is responsible for updating the recognition blackboard in
accordance with the results of the image identification process. It
removes object part data from problembb4 and uses this, in conjunction
with feature set data on problembb3 (which it alters, but does not
remove), to update the set-probability rules on recognisebb3 and the

occurrences on recognisebb4.
Like Recogniser, Feedback has a bidder which can make several bids

at a time, one for each object which has been sought in the image; these

bids, however, are all given the same rating.

171

The program file feedback is the same as the file used in
RECOGNISE1 (Section 6.4.4), but for the fact that the old instruction to
list the updated set-probability rules has been replaced by a call to
remove_instances (in Utilities). The feature_match and

check_match files in Utilities are also used.

8.3.8. Remover.

This very simple knowledge source is a garbage collector: it clears
out the features, list of identified features (problembb2) and feature
sets (problembb3) for a test image when they are no longer required. The
single program file, remove, contains just the appropriate

retract/retractall commands.

8.3.9. Knowledge Source Utilities.
The files contained in Utilities are as follows (those described as
being 'from RECOGNISE1' are taken from the single-object system, with

slight modifications to allow for changes in data format):

general_utilities: updated version of RECOGNISE1 utilities, used by

various knowledge sources and system processes.

make_sets, find, check_limits: from RECOGNISE1, used by Learner and

Recogniser.

feature_match, check_match: from RECOGNISE1, used by Learner and
Feedback.

172

identify: adapted from part of RECOGNISE1 report, used by Acceptor and
Selector to record a feature set which has been accepted as an object
instance i.e. to add the features to the list of identified features on
problembb2, number the instance and record the object parts on
problembb4.

write_set: adapted from part of RECOGNISET report, used by Acceptor

and Selector to write out feature sets/part sets.

remove_instances: new file, used by Learner and Feedback to remove
object part data from problembb4 and update object occurrences/total

occurrences on recognisebb4.

8.4. RUNNING THE SYSTEM.

This system, RECOGNISEZ2, was written in Cprolog like its
predecessor, RECOGNISE1. Itis very simple to use, as most operations
are carried out automatically by the blackboard controller. It can be run
by first entering the Prolog interpreter, then when the prompt appears,
entering:

[recognise?2/master].

This master file contains instructions to load the system program files,
knowledge sources and utilities. When these have been loaded, the
system has to be initialised by entering:

init.

The initialisation process prompts the user to enter the duplicates limit
and acceptance and referral thresholds, and to select manual or

automatic bid execution. (See Section 8.2.6). When the process is

173

complete, the system responds:

What now?

(Enter "help." to view options)
The options available are described in Section 8.2.6. There is no need for
the user to supply specific instructions for the system to learn
recognition rules for an object, or to search a test image; all that is
necessary is to specify the data files to be read in, then the appropriate

operations will be carried out automatically.

The system informs the user of the operations which are being
carried out and the fesults obtained, with the exception of recognition
rules, which are displayed only on request. If automatic bid execution
has been selected, the user is only consulted when (s)he is required to
accept or reject a feature set with a probability between the referral and
acceptance thresholds, and when the bid list is empty, i.e. when no
further operations can be performed until more data has been supplied.
With manual bid execution the user is also consulted after each
operation, but has only to enter

run.

to instruct the next operation to be performed.

A full listing of RECOGNISE? is provided in Appendix A; Appendix B

contains sample runs.

174

CHAPTER 9
TESTING THE IMAGE IDENTIFIER

9.1. INTRODUCTION.

The image identifier, RECOGNISEZ2, could not be tested using data
from the feature matcher because suitable data could not be obtained
from R.S.R.E., so the tests, like the RECOGNISE1 tests described in

Chapter 7, had to be conducted using synthetic data and 'semi-real’ data.

It was not felt necessary to provide a further demonstration of the
capabilities which RECOGNISE2 has in common with RECOGNISE1, so the
synthetic data was specially devised to examine how well the system
succeeded in providing the additional facilities outlined in the
specification in Section 7.2.2. The tests were particularly intended to
illustrate its ability to distinguish between a considerable number of
different objects, including objects which differed from one another only
in size or only in orientation, and to show how it could cope with the
introduction of a scond training set containing data on new objects after

the objects in the initial training set had been learnt.

The 'semi-real' data consisted of feature data extracted manually
from a set of photographs of traffic - cars, vans and lorries - on a
moderately busy road in Loughborough. The tests conducted on this data
were intended to give some idea of the kind of results which could have
been obtained if the data which had been expected from R.S.R.E. had

materialised.

175

9.2. TESTS USING SYNTHETIC DATA.

The objects selected for identification in these tests were simple
geometric figures: squares, triangles and rectangles. The system was to
be presented with test images containing a number of different figures,
including some which overlapped or partially occluded one another, and

was to identify the shape, size and orientation of each of them.

Eight different objects were chosen: squares of two size ranges (big
and little), right-angled isosceles triangles with four different
orientations, and two rectangles, one taller than it was broad, the other
broader than it was tall. Two sets of training examples were to be
provided, one for the squares and triangles and one for the rectangles, and
there were to be two sets of four test images, the first set containing
just the squares and triangles and the second set containing all eight

objects.

9.2.1. Data Preparation.

The first six objects to be learnt are shown in Figure 9.1. The
object parts selected for feature-matching were the vertices of the
shapes, so these have been numbered in the figure; they are named
top-left, top-right, bottom-right, bottom-left and right-angle, as
appropriate. The vertices can all be matched by twelve feature patterns,
four right angles and eight 459 angles, which are shown in Figure 9.2.
(The right angles will, of course, also match the vertices of the
rectangles, so no further feature patterns will be required when the set

of objects is expanded).

176

big square
4 3
little square 1 D 2
4 3
1 2
triangle1
3 3 1
triangle?2
3 2
triangle3
2 L
triangle4
1 3

Figure S.1. The first six shapes, with vertices numbered.

177

1. r- 5. N 9.
2] 6 \ 10.
3. _| 7. 7 11.

4. |_ 8. /l 12,

Figure 9.2. Feature patterns for shape recognition.

The feature matcher specifies the mean x and y co-ordinates of each
of the matches it finds, but it was decided that to simplify the manual
matching used as a substitute for the feature matcher, the x and y
co-ordinates of the vertex points should be substituted. However, this
means that where more than two lines meet at a-point, all the vertices
formed will have the same co-ordinates - for example, if two lines cross
one another at right angles, four right angle vertices all with the
co-ordinates of the crossing point will be obtained. As these vertices
are not merely duplicates of one another and none of them may be

discarded, the system's duplicates limit must be set at 0.

If several different vertices occurred at the same co-ordinates as

an object part in the training images, the system could, as a result, come

178

N NV Z

up with a large number of spurious object part/feature pattern matches.
To ensure that only the correct matches would be found, it was therefore
decided that the training examples used should show disjoint object
instances. The maximum and minimum dimensions of each object could
be specified by just two instances, so only two training examples, each
containing one instance of each of the six objects, were required (see

Figure 9.3).

The first set of test images is shown in Figure 9.4. The images do
'not increase significantly in complexity because it was hoped that after
the feature sets found in the first two tests (Shapes3 and Shapes4) had
been accepted or rejected manually, with the acceptance limit at 110,
the acceptance limit could be lowered to demonstrate the use of Acceptor |

to automatically accept high-probability sets in Shapes5 and Shapes6.

The rectangles to be learnt from the second training set are shown
in Figure 9.5, with their vertices numbered in the same way as the earlier
shapes. These, {00, can be learnt from just two training instances each;
the single image which comprises the second training set is shown in
Figure 9.6. Figure 9.7. shows the four images which make up the second
set of tests - again, it is intended that acceptance or rejection of feature
sets should be manual for the first two (Shapes8 and Shapes9), and

automatic for the second two (Shapes10 and Shapesi1).

9.2.2. Backaround Checks.

The recognition rules induced by the Learner will ensure that the
distances between pairs of features in candidate feature sets fall within

the appropriate limits, but this is not sufficient to guarantee that

179

(0.0) (120,0)

Shapes1
(0,120) (120,120)
0,0) (120,0)
Shapes2

(0,120) (120,120)

Figure 9.3. The first set of training images for shapes.

180

(0.0) (120,0) (0.0) (120,0)

(0,120) (120,120) (0,120) (120,120)
Shapes3 Shapes4

(0.0) (120,0) (0.0} {120,0)

(0,120) (120,120) (0,120) (120,120)
Shapes5 Shapes6

Figure 9.4. The first set of test images for shapes.

181

rectangle1
4 3
1 2

rectangle2
4 3

Figure 9.5. The rectangles, with vertices numbered.

(0,0) (120,0)

Shapes?

(0,120) (120,120)

Figure 9.6. The training image for rectangles.

182

(0.0} {(120,0) (0.0) (120,0)

(0,120) ' (120,120) (0,120) (120,120)
Shapes8 Shapes9

(0.0) (120,0) (0.0) {120,0)

(0,120) (120,120) (0,120) (120,120)
Shapesi0 Shapesi1

Figure 9.7. The second set of test images for shapes.

A

183

candidate squares will be square, and candidate triangles will be
isosceles. For example, if the sides of a big square could be between 40
and 60 units long, a rectangle with width 60 units and height 40 units
would satisfy the induced rules. However, the background checks facility

can be used to eliminate candidates which are not of the right shape.

The background checks are specified in the shapescheck program
file, which is to be loaded into the system together with the object part
lists and rating thresholds (contained in shapesgen, rectanglesgen).
No checks are necessary on rectangles as any rectangle which satisfies
the distance limit rules will be acceptable, so empty checks must be
specified for these:

background_check(rectanglet,_,_,):- L.

background_check(rectangle2, , ,):- .

For squares and triangles, the checks must allow for the fact that
candidate feature sets may not be complete. If a feature set contains
just two adjacent vertices of a square, or the right angle and one other
vertex of a triangle, no checks will be necessary; however, checks must
be made on two-element sets containing the opposite vertices of a
possible square or the two 459 vertices of a possible triangle, and on alll
sets of three or more features. The two-element checks specify the
object name and part set, then pass the picture number and feature
numbers to opposite_corners, which succeeds if the absolute values of
the differences between the x co-ordinates and the y co-ordinates of the
features are equal:

background _check(Object,PicNo,PartSet,[F1,F2]) :-

) _

opposite_corners(PicNo,[F1,F2]).

184

The checks on larger feature sets pass the picture number and the first

three feature numbers to equal_sides, which succeeds if any two of the

three features are the same distance apart:
background_check(_,PicNo,[F1,F2:Rest]) :-

member(F3,Rest),

*y

equal_sides(PicNo,[F1,F2,F3]).

The calls to opposite_corners and equal_sides are preceded by
cuts (I) to ensure that the call to background_check will fail if they
fail; this allows the shapescheck file to be concluded with an empty
check to cover all object/part set combinations which have not already

been specified.

9.2.3. Tests conducted and results obtained.

Two system runs were carried out using the shapes data. The first
run was a straightforward test of the operation of the system; the second
run was intended to show how the recognition rules induced for
rectangles would be affected by the stage at which the rectangles
training data was introduced (before or after the first set of tests).

Edited listings of both runs are provided in Appendix B.

For the first run, the system was initialised with a duplicates limit
of 0, acceptance threshold of 110 (no automatic acceptance), referral
threshold of O (referral to user of all candidate feature sets) and
automatic bid execution. The training data on the first six shapes,
shapes1 and shapes2, was loaded together with the shapesgen and

shapescheck files; the system automatically proceeded to edit the

185

training data and to learn rules for the shapes.

When first test file, shapes3, had been loaded the system searched
for all the shapes except triangle3 (which could not be present as the
data did not include any features to match its 459 angles) in the order in
which the shapes had been learnt - with exactly two occurrences of each
shape in the training images, the numbers of occurrences could not yet
 have any effect on the search order. The feature sets found in the image
were all assigned probabilities of 100%, as would be expected; the five
shapes were all correctly identified and were accepted by the user, and
two (correct) partial feature sets which were also found were rejected.
When the recognition process was complete, the rules for four of the
shapes sought were updated by feedback (no feature sets had been found
for the other shape, triangle4), and the test data was removed from the
blackboard.

For the second test, shapes4, the search order was affected by the
numbers of occurrences of each shape, the shape which had appeared
twice in shapes3, little_square, being sought first. The procedure the

system followed and the results it obtained were again satisfactory.

After the second test, show_rules was used to request a printout
of the recognition rules for each object. After so few examples, the
probability rules necessarily showed a low level of accuracy,
probabilities of 100% being given for many partial sets; far more precise
probabilities would be required for the automatic acceptance procedure
to work perfectly, but to check its operation the acceptance threshold

was nonetheless lowered to 100 before the next test.

186

The object instances in shapes5 were such that, despite the
inaccuracy of the rules, the results obtained by the automatic acceptance
procedure were perfect. The small square in the image was found first,
and accepted. The system then searched for big squares, but none of the
partial big squares it found had high enough probabilities for immediate
acceptance, so it deferred judgement on these and went on to search for
triangles. When the four triangles had all been found and accepted, the
partial big squares could all be rejected as they contained features which
had already been identified, so there was no need to refer any partial sets

to the user for decisions.

The results obtained from shapes6, in contrast, clearly reveal the
dangers inherent in using automatic acceptance prematurely. The system -
again began by searching for little squares, but the probabilities of two
of the partial little squares found had not yet been established accurately
and were still set at 100%, so these were erroneously accepted; the false
identification of their features meant that the big square in the image
was automatically rejected. (The triangles in shapes6 were, however,

identified correctly).

The acceptance threshold was altered back to 110 before
rectanglesgen and the rectangles training image, shapes7, were
loaded. The recognition rules for rectangles were printed out as soon as
they had been learnt, for later comparison with the rules learnt in the
second system run; the fact that the partial set probabilities were not all
100% showed that the first set of training images had been correctly

included in the rectangles training set.

The results obtained from shapes8 and shapes9, which had both

187

been designed to contain large numbers of partial feature sets, to try to
ensure that the probability tables would be as accurate as possible (given
the limited number of images used) for the final two tests, were as
expected. The incorporation of the rectangles into the set of learnt
objects had clearly been successful. The feedback of faulty information
from shapes6 meant that the probability assigned to the complete big
square in shapes8 was too low, but with referral to user rather than

automatic acceptance for these tests, this did not matter much.

The acceptance threshold was again reduced to 100 before loading
shapes10, a fairly difficult test image containing partially occluded
object instances. In this test, four objects were accepted automatically,
three of them correctly and one (a partial triangle for which inadequate
rules had been developed) incorrectly; a further eight feature sets,
including sets corresponding to the remaining three objects in the image,
were referred to the user. The final test, shapes11, contained a mixture
of overlapping objects and partial objects, six of which were correctly

accepted automatically, the remainder being correctly referred.

The probability tables were printed out again at the end of the run.
Most of the tables had improved in accuracy since the earlier printout,
but the table for big squares showed a marked deterioration. This was
because the feature sets corresponding to some of the instances of
rectangles had satisfied the recognition rules for the big square. These
sets had not been accepted {or offered for acceptance) as big squares
because they failed to satisfy the background checks, but they had still
been used for feedback purposes, to update the big square probability
table.

188

The second system run was initialised with the same thresholds as
the first, but with manual bid execution to allow all the training data to
be loaded at the start of the run. When the data had been loaded the help
facility was invoked, and the command to switch to automatic execution
was entered to allow the rules to be learnt automatically. The rules for
both types of rectangle were printed out, and could be seen o be
identical to those obtained in the first run. The first set of tests were
then repeated, this time with the acceptance threshold held at 110 for all
four of them; the results were basically the same as those obtained in
the first run, except that some possible partial rectangles were found
(and rejected), and the inclusion of shapes? in the training set for the
little square had improved the accuracy of its probability table
sufficiently for only one partial little square to have to be rejected
before the system correctly identified the big square in shapes6. The
second set of tests were not repeated, as it was felt that nothing further

could be learnt from these.

9.2.4. Conclusions.

These tests were, on the whole, very satisfactory; the system
appeared to meet the specification given in Chapter 8 in every respect.
The image identification results obtained were not perfect, but this was
more because insufficient data was used to allow accurate probabilities
to be established than because the system did not work as it was

intended to.
The recognition task selected for these tests was one which

required the use of background checks, as well as the induced recognition

rules, to distinguish between some of the objects occurring in the

189

images. The incorporation of background checks into the system
significantly increases its flexibility and the range of problems to which

it cou!d be applied, but the facts that these checks were not taken into
account when determining probabilities, and that without these checks
some of the rectangles could be mistaken for squares, meant that low
probabilities were established for big squares in the first test run. It
would be possible to alter the system to enable checks to be carried out
when feature sets are first created, which would improve the accuracy of
the probabilities induced in this situation, but this modification does not
seem desirable. It would increase the running time, as it would obviously
take longer to check every feature set than to check just those maximal
sets which represent possible object instances; more importantly, it
would affect the overall structure of the system. The learning and
recognition stages would be less self-contained if pre-programmed
background knowledge were to be introduced earlier in the identification
process; the acceptance/rejection stage appears to be a more appropriate
place for this type'of knowledge to be employed. In view of the fact that
all the probabilities for an object are affected when such problems arise,
a better approach might be to set separate acceptance/referral
thresholds for each object, using lower thresholds for objects which

suffer from interference from other similar objects.

9.3. TESTS USING PHOTOGRAPHS OF TRAFFIC.

For these tests, photographs were taken of traffic travelling along
the main road outside Loughborough University. The photographs were all
taken from approximately the same location, at a sufficient distance

from the side of the road for the largest vehicles to just fit within the

190

frame. The background varied slightly, depending on the angle at which
the camera was held; it consisted of some small trees, a hedge and a row
of houses, some of which had satellite dishes on their walls which could

be mistaken by a feature matcher for car wheels.

Thirty-two photographs were selected for the tests. They showed
four different types of vehicle: cars, vans, small lorries and big lorries,
all facing to the right. (Other vehicles, e.g. motorbikes, buses, occurred
too infrequently to be included). The sixteen photographs which appeared,
from a brief visual inspection, to contain the most extreme examples of
each vehicle type were chosen to form the training set. They each
showed just one vehicle; there were five instances of cars, five vans,
four small lorries and two big lorries. The remaining sixteen
photographs, which were to be used as recognition tests, showed nine
cars, three vans, four small lorries and three big lorries - a total of
nineteen vehicles as three of these photographs showed two vehicles

each.

9.3.1. Data Preparation.

Unfortunately R.S.R.E.'s pre-processor, which was applied to the car
photographs used for the tests described in Section 7.3., was unavailable
for use with these traffic photographs; the feature patterns had to be
selected, and the matches found, directly from the photographs
themselves rather than from edged and filtered images. Figures 9.8 and
9.9 show typical training pictures; it can be seen from these that the
task of measuring vehicle parts was not an easy one, and the results
obtained can be expected to correspond only roughly to those which would

have been obtained if the pre-processor and feature matcher had been

191

Figure 9.8. Typical traffic photographs - car and van.

192

Figure 9.9. More traffic photographs - big and small lorries.

193

available.

The procedure followed was approximately the same as that
described in Section 7.3.1., and so is not described in detail here. As the
photographs were taken at a sufficient range for big lorries to fit into
the frame, the cars appeared at a much smaller scale than those in the
earlier tests; the variations in window shape became insignificant at
this scale, and the co-ordinate differences between the wheels and the
wheel arches could no longer be determined reliably, so a different set of

car parts had to be selected for matching. The car parts used this time |

were:
1 front_wheel
2 rear_wheel
3 top
4 front_window.

The tops of the vans were not of a distinctive enough shape to be matched

reliably, so only three van parts were used:

1 front_wheel
2 rear_wheel
3 front_window.

The part set for smali lorries, the back parts of which varied

considerably, was:

1 front_wheel

2 rear_wheel
-3 cab_top

4 cab_window

and for the large lorries with five pairs of wheels, the part set was:
1 wheeli (front wheel) |
2 wheel2

194

wheel3

wheel4

a A~ W

wheel5 (rear wheel)
6 cab_top.
The feature patterns selected are shown in Figure 9.10. (All

measurements in millimetres).

It was assumed, when identifying features in the photographs, that
satellite dishes would be recognised as small wheels (pattern 1),
complete house windows would be recognised as van/lorry windows
(pattern 6), and house windows which were partially occluded by the
hedge would be recognised as car windows (pattern 5}, so a large number
of features could be expected to be found in each photograph. The
features were given ratings of up to 100; the thresholds were all set at
50, and features whose ratings would be below the thresholds were not
included in the data, as they would in any case be eliminated by the
editing procedure, which left between ten and twenty features per
photograph. As the object parts selected for matching, though difficult
to measure accurately, were easy to locate in the photographs, the object

part data provided for the training pictures was complete.

9.3.2. Background checks.

No background checks were carried out; as this was the main
application for which the system was designed, it was considered that it
should be possible to obtain adequate results without them. A program

file specifying ‘empty’ checks was therefore drawn up.

195

2.
3.
4.

@ 5. °

I
5 .

1

Figure 9.10. Feature patterns for traffic identification.

196

11

9.3.3. _Tests conducted and results obtained.

For the tests conducted using the traffic data the duplicates limit
was set at 3 and the acceptance and referral thresholds at 110 and 0
respectively. The training data was all loaded at the start of the system
run, then when the objects had been learnt the test files were loaded one
at a time. The test photographs were shuffled before being numbered, so

the order of the tests was random.

In the first run, the system failed to find all the appropriate
part/feature pattern matches - in particular, some of the
window/window pattern matches were missed. This was because a given
- proportion of features of a particular pattern must match instances of a
part for a match between the part and the pattern to be recognised; there
were so many windows in the photographs that the proportions of
matches were too low. The pattern_match file was edited to reduce
the proportion required from one in ten to one in twenty, and the system

was re-run,

When the correct match tables had been established the recognition
results obtained were very impressive, seventeen of the nineteen
vehicles being identified correctly. The two which were missed were a
large lorry, with just its cab and the front two wheels visible, and a van,

the wheel hubs of which were unusually faint.

As the training sets were small some of the distance limits learnt
by the system were inevitably too narrow, so not all the parts of each
vehicles were found - five of the vehicles were identified by just a pair

of parts, the average being just under three parts per vehicle. However,

197

so long as sufficient parts were found for the system to make a positive
identification the failure to find the remaining parts cannot be regarded

as a problem.

There were very few incorrect identifications. Just twelve
candidate sets had to be rejected, including ten pairs of satellite dishes
which were incorrectly identified as pairs of wheels; as a result of their
rejection the probability attached to a pair of car wheels declined
steadily from 50% after training to under 35% at the end of the run, and
the probability attached to a pair of van wheels similarly declined, |
showing that such recurring errors could eventually be eliminated by
raising the referral threshold. One other rejected set was the top and
rear wheel of a car pictured at an angle, a problem which was discussed
in Section 7.3.2, and the final one was the front and rear wheels of a
small lorry in the first test picture, which were identified first as
wheels 2 and 3 of a large lorry. The system also found the cab top of the
small lorry; had this picture occurred later in the run, the correct three
part set would have been assigned a higher probability than the incorrect

two part set, so the error would not have occurred.

A listing of the test is included in Appendix B.

9.3.4. Conclusions.

The system produced excellent results on this test after the
pattern_match file had been altered to allow the correct part/pattern
matches to be found, the only errors arising being ones which couid be
eliminated by using a more adequate training set and allowing the system

to run for long enough for accurate probabilities to be established and

198

reliable acceptance and referral thresholds to be set.

The pattern_match table could, perhaps, be established more
reliably by comparing the number of part/feature matches with the
number of parts rather than the number of features; the system would
then be less sensitive to the occurrence of large numbers of features of a

particular pattern in the background of the images.

It must be borne in mind when assessing the results that the feature
data used was obtained by manual matching, not by the feature matcher
program. Where any doubt existed as to whether a background feature
matched a given feature pattern, the match was included, so this data
should have contained at least as much noise as 'real' data would have
done, but the test still cannot be expected to give a totally accurate
impression of how well the feature matcher/image identifier

combination would work.

199

CHAPTER 10

DISCUSSION
10.1. ARY BEEN IE .

This project was essentially practical in its objectives; the aim was
to produce a working image identifier. Its practicality was somewhat
marred by the fact that the development of the feature matcher program
which was to provide the input data (Varga et al., '89; Series et al., '89)
was discontinued before appropriate data for the system tests had been
produced, so the testing had to be carried out using synthetic data and
feature data extracted manually from processed images and photographs.
The results obtained from the synthetic data were very satisfactory; this
does not, of course, guarantee that the feature matcher/image identifier
combination would have worked well, but the indications are that it would

have done.

The keynote throughout the design and development of the image
identifier was simplicity - in each design area, the simplest techniques
which were consistent with satisfactory performance were adopted, and
approximations were made whenever these would not compromise the
quality of the output. The overall design of the system was simplified by
splitting the design process into two stages: developing a recogniser for a
single object, then incorporating this recogniser into a blackboard system

to produce the image identifier.
When establishing recognition rules for objects, only the simplest

relationships between object parts - the distance limits between pairs of

parts - were considered; the rules based on these relationships proved

200

adequate, so there was no need to consider more complex relationships.

A major consideration in most applications of Artificial Intelligence
is how to control searches and how best to prune search trees. When
searching for feature sets which could represent object instances, it was
decided that the simplest method would be to prune before and after the
search, not during it. The features were pruned to remove duplicates and
features with low ratings, then an exhaustive search was conducted for
sets of the remaining features which satisfied the distance limits, and at
the end these sets were pruned, where necessary, by carrying out
background checks and eliminating sets with low probabilities. The
decision not to carry out any pruning during the search meant that
probabilities would not be required at this stage, so the process of
identifying candidate feature sets could be separated from the process of
attaching probabilities to them. This in turn meant that the introduction

of feedback to update the probabilities was straightforward.

Chapter 5 contains a description of a large number of methods qf
handling uncertainty, most of which are conceptually or computationélly
quite complex, but here again the simplest method was adopted:
probabilities were established empirically by counting feature sets. The
scale of the problem was such that probabilities could be established from
first principles for every combination of feature sets and object part sets
of interest, so there was no need to consider how the probabilities were
related to one another, to try to establish dependencies between pieces of

evidence or to adopt rules for combining probabilities.

The fact that probabilities were established before conducting

background checks on candidate feature sets meant that the probabilities

201

assigned to checked sets might not be accurate. However, the main
function of the probability measures was to rank candidate sets; as the
inaccuracies introduced by the background checks would not normally
significantly affect the rankings, they could be disregarded safely.

Problems would only arise where the background checks were necessary to
distinguish two different objects from one another, when separate
probability thresholds might have to be applied to each object to ensure

that the results obtained would be correct. (See Section 9.2.4).

The construction of the blackboard system was again simplified as
far as possible. The controlling and scheduling functions of the blackboard
were reduced to a minimum by having each knowledge source assign
ratings to its own bids rather than having the scheduler calculate bid
ratings. As the knowledge sources all performed distinctly different
functions, there was no need to consider whether any of the bids in the bid
list had become redundant and should be removed when a knowledge source
operation had been carried out; this, too, simplified the control element of

the system.

The designers of most of the general-purpose blackboard systems
reviewed in Section 4.6 adopted the policy of attempting to build in all the
facilities which might be required for any application. This blackboard
illustrates an alternative approach: producing a minimal system to which
only those facilities which are definitely required can be added ensures

that the final system will not be burdened with unnecessary overheads.
The incorporation of rule induction and feedback into the blackboard

system caused the greatest problems, but a neat solution was found to the

, difficulties this raised: the rules were treated as data and held on a

202

secondary blackboard. The recogniser knowledge source was effectively a
general-purpose recogniser containing empty rule slots which could be
customised to recognise a particular object by inserting the appropriate

rule data into these slots. This technique should be fairly generally
applicable as rule induction systems are almost invariably constrained to

induce rules of a limited number of different patterns.

The use of standard rule patterns meant that all possible objects
must be recognisable by the same types of rules; this could limit the
applicability of the system, so it was decided that a facility to
incorporate different types of recognition rules into the system, in the
form of background checks, should be provided. The background checks, of

course, are not induced - they are programmed by the system user.

The net effect of all these simplifications is that a system has been
produced which is conceptually quite simple and easy to understand, and
runs quite quickly because of the very small number of calculations
required, but nevertheless identifies the objects in test images
effectively even when presented with very limited amounts of training

data.

10.2. SUGGESTIONS FOR FURTHER WORK.

The image identifier which has been developed can be regarded as a
basic experimental system to which a number of extra facilities could be
added. Some of these facilities would require close rco-operation between
the image identifier and the feature matcher, which could not be achieved

while the feature matcher was unavailable; others would depend on the

203

particular application for which the system was to be used.

The system currently operates in a bottom-up manner - the
identification of images proceeds through several clearly defined stages
(identification of image features, formation of feature sets, selection of
candidate sets which represent object instances) which are always carried
out in the same order. 1t would perhaps be useful to introduce a top-down
glement: an initial set of feature patterns could be used to identify areas
of the image which contained object instances, then the feature matcher
could be re-invoked to search these areas for further features which would
confirm the identity of the objects. Restricting the search for the
secondary set of features to specific areas of the image should speed up

the matching process significantly.

The running time of the identifier is heavily dependent on the number
of parts in each object; the inclusion of one additional object part will
approximately double the number of different feature sets to be
considered. The identification of objects with large numbers of parts
could perhaps be tackled best by adopting a layered approach. The objects
could be split into sub-assemblies; when these sub-assemblies have been
identified from the primary features which match their paris they could
themselves be entered on the problem blackboard as secondary features, .

from which the objects could then be identified.

The system currently notifies the user of the objects it has
identified, but makes no attempt to put this information to any further use.
An Interpreter knowledge source, which would be invoked after Selector
and before Feedback, could be included to produce an interpretation of the

results; this could be a verbal description of the image (for example,

204

"there is a small lorry facing right in the centre of the image, with a car
facing right to the left of it"), or a graphical representation of the objects
which have been identified. Alternatively, any specific information which
might be required for a particular application of the system could be

extracted from the output.

10.3. CONCLUSIONS.

A new approach to the identification of objects in visual images has
been developed. The approach uses the data produced by a feature matcher
program developed at R.S.R.E. Malvern, which finds the best matches for a
set of feature patterns in a preprocessed image. It involves first
identifying individual image features which could correspond to specific
parts of objects, then forming sets of these features which could
correspond to complete objects, the rules governing the formation of
feature sets being learnt from training examples in which the locations of
object parts are specified. The technique is simple, very tolerant of noise,

requires minimal computation and appears to produce very good results.

The system has been implemented using a blackboard system in which
the learning element has been incorporated by the simple expedient of
treating the induced rules as data. This allows a range of different
objects to be recognised by a single recogniser knowledge source; new
objects can be introduced without any alteration to the program, producing

a degree of flexibility which is unusual in image identification systems.

There is considerable scope for continued development; the inclusion

of a top-down element, the introduction of a layered technique for the

205

identification of more complex objects and/or the addition of an
interpreter to further process the output could increase the system's speed

and versatility.

Tests have been conducted using synthetic data, with very promising
results; the system was able to identify .geometric shapes such as squares
and triangles even where the shapes overlapped or were partially occluded.
Further tests using feature data extracted manually from photographs of
vehicles travelling along a main road showed that cars, vans and lorries

could be distinguished from one another with a high degree of reliability.

206

REFERENCES AND BIBLIOGRAPHY

Arbib M.A. 1972: The Metaphorical Brain, An Introduction to Cybernetics

as Artificial Intelligence and Brain Theory. John Wiley
& Sons.

Ashby W.R. 1960: Design for a Brain. John Wiley & Sons.

Bacchus, F. 1988: Bepresenting and Reasoning with Probabilistic
Knowledge. University of Alberta Ph.D. Thesis.

~Baldwin J.F. 1983: E.R.LL. - An Inference Language Based on Fuzzy Logic.

Expert Systems '83, Churchill College, Cambridge
14 - 16 Dec. 1983.

Baldwin J.F., Martin T.P. & Pilsworth B.W. 1988:

Support Logic Programming. In: FRIL Tutorial Manual,
FRIL Systems Ltd.

Barrow H.G. 1989: A.l.. Neural N rks an ly Vision
A.1.S.B. Quarterly No. 69, pp. 6 - 25.

Bobrow D.G. & Collins A. 1975:
: Bepresentation and Understanding. Academic Press.

Boden M. 1977: Artificial Intelligence and Natural Man.
The Harvester Press.

Bodington R. & Elleby P. 1988:
lustificati | A tion B | Trut
Maintenance Systems: When and How to Use Them.
Workshop on Reason Maintenance Systems & their
Applications, University of Leeds, 14-15 April 1988.

Bodington R.M., Sullivan G.D. & Baker K.D. 1990:

Experiments on the use of the ATMS to label features
for object recognition. Proc. of First European
Conference on Computer Vision (ECCV 90), Antibes,
France, April 1990. pp. 542 - 551.

207

Bowen J.B. & Mayhew J.E.W. 1988:
nsisten in nce in Vgraph Environment.
Workshop on Reason Maintenance Systems & their
Applications, University of Leeds, 14-15 April 1988.

Brady M. 1986: i ision - The A f lligent R .
Addison-Wesley Al Masters. pp. 7 - 63.

Brady M., Agre P.E., Braunegg D.J. & Connell J. 1984:

Ihe Mechanic's Mate. Proc. of 6th European Conference
on A.l, ECAI-84, Pisa, ltaly 5-7 Sept. 1984.

Bratko 1. 1986: Prolog Programming for Artificial Intelligence.
Addison-Wesley.

Bruner J.S., Goodnow J.L. & Austin G.A. 1956:
A Study of Thinking. John Wiley & Sons.

Buchanan B.G., Feigenbaum E.A. & Lederberg J. 1971:
istic Programmin Formation i
Science. IJCAI-2, London, 1971. pp. 40 - 48.

Buchanan B.G. & Shortliffe E.H. 1984:
Rule-Based Expert Systems, The MYCIN Experiments of
the Stanford Heuristic P inq_Project.
Addison-Wesley.

Bundy A, Silver B. & Plummer D. 1983:
An Analytical Comparison Rule Learnin
Programs. Expert Systems '83, Churchill College,
Cambridge 14-16 Dec. 1983.

Bundy A., Silver B. & Plummer D. 1985:
An Analytical G . : Rule | .
Programs. Artificial Intelligence Vol. 27 No.2.
pp. 137 - 181.

Carbonell J.G., Michalski R.S. & Mitchell T.M. 1983:

An Qverview of Machine Learning. In: Machine Learning
An A.l. Approach. Ed. Michalski, Carbonell & Mitchell.
Tioga Press.

208

Clocksin W.F. & Mellish C.S. 1984:
Programming in Prolog 2nd Edition. Springer-Verlag.

Corlett R.A. & Todd S.J. 1986:
A Monte Carlo Approach to Uncertain Inference.

In: Artificial Intelligence and its Applications. Ed. Cohn
& Thomas. John Wiley & Sons. pp. 127 - 137.

de KleerdJ. 1984: Choices without Backtracking. Proc. of Conference of

the American Association for Artificial Intelligence,
Austin, Texas, August 1986. pp. 79 - 85.

de Kleer J. 1986(a): An Assumption-based T.M.S. Artificial Intelligence
Vol. 28 pp. 127 - 162.

de Kleer J. 1986(b): Extending the ATMS. Artificial Intelligence Vol. 28
pp. 163 - 196.

de Kleer J. 1986(c): Problem Solving with the ATMS. Artificial
Intelligence Vol. 28 pp. 197 - 224,

de Kleer J. & Williams B.C. 19886:

Back to Backtracking: Controlling the ATMS. Proc. of
5th National Conference on A.l., AAAI-86, August 1986.

Dietterich T.G. & Michalski R.S. 1979:
Learning and Generalization of Characteristic
D iptions: Evaluation Criteri 1 C i
Review of Selected Methods. IJCAI-'79 Vol. 1
np. 223 - 231.

Dietterich T.G. & Michalski R.S. 1983:
A rative Review of Sel Meth for rnin
from Examples. In: Machine Learning An A.l. Approach,
Ed. Michalski, Carbonell & Mitchell. Tioga Press.
pp. 41 - 81.

DiManzo M., Adorni G., Giunchiglia F. & Ricci F. 1985:
Building Functional Descriptions. Proc. of 5th

International Conference on Robot Vision and Sensory
Controls, Amsterdam, 29-31 Oct. 1985. pp. 403 - 412,

209

Dodd D.H. & White R.M. 1980:
Cognition: Mental Structures and Processes. Allyn &

Bacon.

Doyle J. 1979(a): A Glimpse of Truth Maintenance. 1JCAI-'79 Vol. 1
pp. 232 - 237.

Doyle J. 1979(b): A Truth Maintenance System. Artificial Intelligence
Vol. 12. pp. 231 - 272.

Draper B.A., Collins R.T., Brolio J., Hanson A.R. & Riseman E.M. 1988:
i Developmen lackboard-

Schema System for Image Understanding. In:
Blackboard Systems. Ed. Engelmore & Morgan.

Addison Wesley.
Duda R.O. & Hart P.E. 1973:
lassificati n Analysis. John
Wiley & Sons.
Edmonds E.A. 1981: Domains of Interest in Fuzzy Sets. Int. Journal of

Man-Machine Studies No. 15 pp. 461 - 468.

Engelmore R.S. & Morgan A.J. (Eds.) 1988:
Blackboard Systems. Addison Wesley.

Engelmore R.S., Morgan A.J. & Nii H.P. 1988:

Blackboard Systems - Introduction. In: Blackboard
Systems. Ed. Engelmore & Morgan. Addison Wesley.

Erman L.D., Hayes-Roth F., Lesser V.R. & Reddy D.R. 1988:
The H -1l h Understandin m;
nteqgrating Know I rtainty. In:
Blackboard Systems. Ed. Engelmore & Morgan.
Addison-Wesley.

Erman L.D., London P.E. & Fickas S.F. 1988:

The Design and an Example Use of Hearsay-lll. In:
Blackboard Systems. Ed. Engelmore & Morgan.

Addison-Wesley.

210

Farreny H. 1989: A.L and Expertise; Heuristic Search, Inference Engines,
Automatic Proving. Ellis Horwood.

Feigenbaum E.A. 1983: Knowledge Engineering: The Applied Side. In:
Intelligent Systems - the Unprecedented Opportunity.

Ed. Hayes & Michie. Ellis Horwood.

Forsyth R. & Rada R. 1986: hine Learning: lications in Ex
Systems and Information Retrieval. Ellis Horwood.
Fox J. 1986: nowl Decision Maki nd Un inty.

In: Artificial Intelligence and Statistics. Ed. Gale.
Addison-Wesley. pp. 57 - 76.

Fox J. 1987: Dealing With Uncertainty. In: Intelligent

Knowledge-Based Systems - An Introduction. Ed.
O'Shea, Self & Thomas. Harper & Row. pp. 52 - 67.

Franksen O.l. 1978: On Fuzzy Sets, Subjective Measurements. and Utility.
Workshop on Fuzzy Reasoning: Theory and Applications.

Queen Mary College, Univ. of London. 15 Sept. 1978.

Freeman P. & Newell A. 1971:

A Model for Functional Reasoning in Design. IJCAI-2,
London, 1971. pp. 621 - 640.

Fretwell P., Goillau P. & Hearn D.B. 1987:
Using the Essence of an Object in Computer Becognition.
Research Note SP4, R.S.R.E. Pattern Processing and
Machine Intelligence Division. March 1987. '

Fretwell P. & Goillau P.J. 1887: Linguistic Definition of ric Models in
Computer Vision. In: Lecture Notes in Computer Science
Vol. 301. Ed. Kittler. Springer-Verlag. pp. 306 - 314,

Frost R.A, 1986: Introduction to Knowledge Based Systems. Collins.

Gabrielides G. 1988: A System that Learns to Recognise 3-D Objects.

Loughborough University of Technology Ph.D. Thesis.

Gaines B.R. 1976: Foundations of Fuzzy Reasoning. Int. Journal of
Man-Machine Studies. No. 8. pp. 623 - 668.

211

Gale W.A. 1986: Adificial Intelligence and Statistics. Addison-Wesley.
Garnham A. 1987: Adificial Intelligence - An Introduction. Routledge &

Kegan Paul.

Gaschnig J. 1982: Prospector: An Expert System for Mineral Exploration.
In: Introductory Readings in Expert Systems. Ed.
Michie. Gordon & Breach. pp. 47 - 64,

Goldberg A. & Robson D. 1989:
Smalitalk-80, the Language. Addison-Wesley.

Gordon J. & Shortliffe E.H. 1985:
Meth r Manaqing Evi ial R ning in
Hierarchical Hypothesis Space. Artificial Intelligence
Vol. 26 No. 3 pp. 323 - 357.

Hart A. 1986: Knowledge Acquisition for Expert Systems. Kegan Paul.

Heckerman D. 1986: ilistic Interpretations for MYCIN' in
Eactors. In: Uncertainty in Artificial Intelligence. Ed.
Kanal & Lemmer. Elsevier. pp. 167 - 196.

Hinde C.J. 1985: Aificial Intelligence and Expert Systems. In:

Further Developments in Operational Research.
Ed. Rand & Eglese. Pergamon Press.

Hinde C.J. 1986: Euzzy Prolog. in: Int. Journal of Man-Machine Studies
Vol. 24 pp. 569 - 595.

Hinde C.J., Bray A.D., Herbert P.J., Launders V.A. & Round D. 1989:
Truth Maj nce Appr Pr Planning.
In: Artificial Intelligence in Manufacturing. Ed. Rzevski.
Springer-Verlag. pp. 171 - 188.

Holmes J.N. 1988: Speech Synthesis and Recognition. Van Nostrand
Reinhold. pp. 102 - 127.

Johnson R.W, 1986: Independence and Bayesian Updating Methods.
Artificial Intelligence Vol. 29 No. 2. pp. 217 - 222.

212

Jones J. & Millington M. 1986:

An Edinburgh Prolog Blackboard Shell. University of
Edinburgh Dept. of Artificial Intelligence Research
Paper No. 281.

Kodratoff Y., Manago M. & Blythe J. 1988:

Generalization and Noise. In: Knowledge Acquisition
for Knowledge-Based Systems. Ed. Gaines & Boose.
Academic Press. pp. 301 - 324,

Kodratoff Y. 1988: Introduction to Machine Learning. Pitman.

Kotz S. & Stroup D.F. 1983: Educated Guessing. Marcel Dekker.

Laird P.D. 1988: Learning from Good and Bad Data. Kluwer Academic

Press.

Langley P., Bradshaw G.L & Simon H.A. 1983:
Redi ing Chemi ith the BACON System.

In: Machine Learning: An Artificial Intelligence
Approach. Ed. Michalski, Carbonell & Mitchell. Tioga
Press. pp. 307 - 329.

Lindsay P.H. & Norman D.A. 1977:
Human Information Processing. Academic Press.

Loisel R. & Kodratoff Y. 1981:

| ing (C lex) Strugtural D ot f
Examples. IJCAI-'81 Vol. 1. pp. 141 - 143.

Marr D. 1979: Representing and Computing Visual Information.
In: Artificial Intelligence: An MIT Perspective.

Ed. Winston & Brown. MIT Press. pp. 17 - 80.

McAllester D.A. 1978: A Three-Val Truth Maintenan m. M.I.T.
Al Memo 473.

McGregor J.N. 1988: The Effects of Order on Lga ning Classificati ons by
Example: rigti imal

Artificial Intelligence Vol. 34 No. 3. pp. 361 - 370.

213

Maclennan B.J. 1983: Principles of Programming Languages: Design,
Evaluation and Implementation. Holt-Saunders.

Mamdani E.H. & Gaines B.R. 1981:
Fuzzy Reasoning and its Applications. Academic Press.

Michalski R.S. 1983: A Theory and Methodology of Inductive Learning. In:
Machine Learning An A.l. Approach. Ed. Michalski,

Carbonell & Mitchell. Tioga Press.

Michalski R.S., Carbonell J.G. & Mitchell T.M. (Eds.) 1983:
Machine Learning An Al Approach. Tioga Press.

Michie D. 1986: On Machine Intelligence. Ellis Horwood.

Michie D. & Bratko I. 1986: Expert Systems - Automating Knowledge
Acquisition. Addison-Wesley Al Masters. pp. 7 - 20.

Minsky M. 1975: A Framework for Bepresenting Knowledge. In: The
Psychology of Computer Vision. Ed. Winston.

McGraw-Hill. pp. 211 - 277.

Mitchell T.M. 1979: An A is of lizati rch Pr
IJCAI-'79 Vol. 1 pp. 577 - 582.

Nafariech A. 1988: A Appr Inference in Approxim R nin
and its Application to Computer Vision. University of

Missouri-Columbia Ph.D. Thesis.

Nagao M., Matsuyama T. & Mori H. 1988:
St L Analysis of C lex Aerial P! hs.
In: Blackboard Systems. Ed. Engelmore & Morgan.
Addison-Wesley.

Neapolitan R.E. 1990: Probabilistic Reasoning in Expert Systems.
John Wiley & Sons. pp.1-94.

Newell A. & Simon H.A. 1972:
Human Problem Solving. Prentice-Hall.

214

Nii H.P. & Aiello N. 1988:
Eneralize): A Knowl -B
ildi nowl
Blackboard Systems. Ed. Engelmore & Morgan.
Addison-Wesley.

Norman M. 1987: A Prolog Set-theoretic Equation Solver. Loughborough
University of Technology M.Sc. Thesis.

Ohta Y. 1985: Knowledge-Based Interpretation of Qutdoor Natural
Color Scenes. Pitman.

Pearl J. 1984: Heuristics - Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley.

Pearl J. 1988: Probabilistic Reasoning in Intelligent Systems:
N rk lausible Inference. Morgan Kaufmann.

Provan G.M. 1987: Efficiency Analysis of Multiple-Context TMSs in Scene
Representation. University of Oxford Technical Report

OU-RRG-87-9.

Provan G.M. 1990: nalysi wi ntati hemes f

High level Vision. Proc. of First European Conference on
Computer Vision (ECCV 90), Antibes, France, April
1990. pp. 537 - 541,

Quinlan J.R. 1982: Semi-Autonomous Acquisition of Pattern-Based
Knowledge. In: Machine Intelligence 10. Ed. Hayes,

Michie & Pao. Ellis Horwood.

Rosin P. 1988: Model-Driven Im n nding - a Frame-B
Approach. City University Ph.D. Thesis.

Ross P. 1989: Advanced Prolog Techniques and Examples. Addison

Wesley.

Sammut C. 1981: Concept Learning by Experiment. I[JCAI-'81 Vol. 1.
pp. 104 - 105.

Schmucker K.J. 1984: Fuzzy Sets. Natural Language Computations. and
Risk Analysis. Computer Science Press.

215

Schutzer D. 1987. Adificial Intelligence, An Applications-Oriented
Approach. Van Nostrand Reinhold. pp. 36 - 42,

Series R.W.,, Radford C.J., Varga M.J., Fretwell P, & Sleigh A.C. 1989:
mparison of Approach F re D i
Proc. of 5th Alvey Vision Conference, Reading, 1989.

Shanahan M. & Southwick R. 1989:

N ies in Artificial
Intelligence. Ellis Horwood.
Shapiro E.Y. 1981: An Algorithm th Theories from F

IJCAI-'81 Vol. 1. pp. 446 - 451.

Shapiro E.Y. 1982: Algorithmic Program Debugging. MIT Press.

Shepherd A. & Hinde C.J. 1989:
Mimicki Training Ex for A

Training Needs Analysis. In: Developmg Skills with

Information Technology. Ed. Bainbridge & Quintanilla.
John Wiley & Sons. pp. 153 - 176.

Simon H.A. 1983: Why Should Machines Learn? In: Machine Learning
An A.l. Approach. Ed. Michalski, Carbonell & Mitchell.
Tioga Press.

Smith E.E. & Medin D.L. 1981:
Categories and Concepts. Harvard University Press.

Sobolevitch N. 1985: i f the Battlefie| n
Current Holdings (BACH) Expert System. Ist

International Expert Systems Conference. London,
1-3 Oct. 1985. pp. 41 - 69.

Sowa J.F. 1984: | Str res: Information Pr ing in Mind
and Machine. Addison-Wesley.

Spiegelhalter D.J. 1986:

Systems. In: Artificial Intelligence and Statistics.
Ed. Gale. Addison-Wesley. pp. 17 - 55.

216

; Stallman R. & Sussman G. 1977:

! E R . n l Di I
Backtracking in m f r-Al ir
Analysis. Artificial Intelligence Vol. 9. p. 135.

Sterling L. & Shapirc E. 1986:
he A log: Advan Programming Techni .
~ MIT Press.

Varga M.J., Radford C.J., Series R.W. & Sleigh A.C. 1989:
A Tywo-st AUt tic Obiect Identificat
Technigue. Private communication.

Varga M.J.,, Sleigh A.C. & Series R.W. 1989
lication of D i Pr mmin
Identification. 5th International Conf. on Image
Analysis and Processing, ltaly, Sept '89.

Walker E.L. & Herman M. 1988:
G tric R ing for Constructing 3D S
Descriptions from Images. Artificial intelligence
Vol. 37 pp. 275 - 290.

Winston P.H. 1975: Learning Structural descriptions from Examples. In:
The Psychology of Computer Vision. Ed. Winston.

McGraw-Hill. pp. 157 - 209.

Winston P.H., Binford T.O., Katz B. & Lowry M. 1983:
| ina Physical D - E Functional
Definitions, Examples and Precedents. MIT A.l. Memo.

Wise B.P. 1986: An Experimental Comparison of Uncertain Inference
Systems. Carnegie-Mellon University Ph.D. Thesis.

pp. 1-61.

Wysotzki F., Kolbe W. & Selbig J. 1981:
in ructured Examples - an_Algebrai
Approach. IJCAL-'81 Vol. 1. pp. 153 - 158.

Zadeh L.A. 1986: P i fficient for dealing wi
Uncertainty in Al: A Negative View. In: Uncertainty in

Artificial Intelligence. Ed. Kanal & Lemmer. Elsevier.
pp. 103 - 116.

217

APPENDIX A

Listing of the Image Identifier
(RECOGNISEZ2)

218

/* recognise2/master */
P L T T T T T T

Jh Rkkk RECOGNISE2 Master File A
J* kkkkkdkhkkkhhkkhkbhkdkkkkdhkhhhhhkdhdhhhhhhhhhrhhdhhhhhdhhhhkhhhhhhhdh */

s=[run].
s=[consult]).
:-[enter].
:—[changes].
:=[schedule].
:—[show].
t—[utilities _master].
:—{editor_master].
:=[learner_ master].
:—-[recogniser_master].
:-[acceptor_master].
:~({selector_master].
:~[feedback master].
t=[remover_ master].

219

/* recognise2/init */
R LR A et e T Ty T T AT PR T2 ey

Initialisation *kkk
PR L St Tt T T e T e T

/* hkkhk

/* The initialisation process sets up the bid list, list of names
/* of learnt objects and no. of cbject cccurrences, reads in the

/* duplicates 1

/* set acceptance and referral to the user and manual/automatic
/* bid execution selector, then calls consult_user.

init:-

assert(bid_list([])),
assert (recognisebbl (object_names, ([]1))),

- assert (recognisebb4 (occurrences, (total,0))),

nl,

write(’Duplicates limit? 7),

read number (Dup, [0,10]),
asserta(duplicates_limit(Dup)),

write(/Percentage prob. threshold for automatic’),
write(’ acceptance?’),nl,

write(’ (For no automatic acceptance, enter 110) ‘),
read_number (Accept, [0,110]),
asserta(acceptance_threshold(Accept)},
write(’Percentage prob. threshold for referral to user?
read_number (Refer, [0,Accept]),

asserta(referral threshold(Refer)),

write(’/Bid execution manual (m) or automatic (a)? /),
read_char (Autorun, {a,m}),

assert (autorun (Autorun)),

consult_user.

220

it, percentage probability thresholds for feature

oy

recognisez/run */
L T T

hkkk Run the system kkkk X/
e T e L e r T L et 22 T L O

run removes the top bid from the bid list and executes it. If #*/

/%
/* manual/automatic execution selector is set to automatic it then */
/* runs the next bid; if the selector is set to manual, or if */
/* the bid list is empty, it calls consult_user. */
run:-

bid list([]),’

write(’Bid list empty’),nl,

consult user. _
run:-

bid_list(i((Function,Data),Rating)|Rest]), ,
retract(bid_list([((Function,Data),Rating) |Rest])),
assert (bid_list(Rest}),
execute(Function,Data),

(autorun(a), !, run; consult_user).

221

/* recognise2/consult */
/* khkkhhkkhhkhhkkhkhhkhkkhhhhhhhkhhkhhkhdhkhkhdddhikddhhddhsdkiikkdkihkkkhkkh */

/% kkkk Consult system user kkkk %/
/* KRR AKKAARRR AR IEAR A Rkhhkkkhkhkhkhkhkhhhkkhkhkhkkhhkkhhkhhihhhhhkkhhhk */

/* consult_user is called between bids (manual bid execution) or */
/* when the bid list is empty (automatic bid execution). It */
/%* includes a ’help’ module. */

consult user:-
nl,
write(’What now?’),nl,
write(’ (Enter "help." to view options)’),nl,
read(Command) ,nl,
execute command (Command) .

execute command (help)
write('Options available are:’), nl,
write(’Read in a data file: "[filename]."'),nl,
(autorun(m),
write(’Execute the next bid: "run."’}, nl, ‘
write(’sSwitch to automatic bid execution: "auto."’),
nl, !;
write(’Switch to manual bid execution: "man."’),nl),
write(’/View the recognition rules for an object: ’),
write('"show _rules(Object)."’),
wrlte(’Alter acceptance/referral threshold5° "alter."’},nl,
write(’/Quit the system: "quit."’),
nl,

consult;pser.
execute_command (quit):- !,
execute_command({run) :- run.

execute command([Filename])’-
“consult(Filename),

bb_enter,
(autorun(a), run;
consult_user).

execute_command (show rules(Object))'-
“show _rules(Object),
consult user,

execute command (auto) :-
retract (autorun(m)),
assert (autorun(a)),
run.

execute command(man) :-
retract(autorun(a)),
assert (autorun(m)),
run.

execute command(alter):-

acceptance threshold(Al),

write(’Current automatic acceptance threshold is /),
write(Al), nl,

write(’New value? ’),read number(A2,[0,110]),
retract (acceptance threshold(Al)),
asserta(acceptance_threshold(A2)),
referral_threshold(R1),

write(’Current threshold for referral to user is ’),
write(R1}, nl,

222

write(’/New value? ’),read number(R2,[0,100]),
retract(referral threshold(Rl)),
asserta(referral threshold(Rz)),

consult user.

execute command(_) :~

“nl, write(’Unrecognised command’),nl,
consult user.,

223

recognise2/enter */
e e L p e T Y T e T T Y

*
*

* kkkk Enter problem data on the blackboard kkkk &/
k RAKRERARIAIREAIREIARIRRRFARRIRRIRARKRRAIRIARRRAIR KA KRR Kk Ak hhkE X/

/* bb_enter is used to enter data on the problem blackboard. As */
/* features and object parts are normally entered in batches, these*/
/* entries are flagged (using bb entered) so that new_entry can be */
/* called for each batch rather than for each individual entry. */

bb_enter:-
feature(PicNo, PatNo,X,Y, Rating),
assert(problembhl(feature (PicNo,PatNo,X,Y,Rating))),
retract(feature(Pich,PatNo,X,Y,Rating)),

(bb_entered(feature, PicNo) ;
assert (bb entered(feature PicNo))),
!,bb_enter.

bb . enter:-
object_part (Object, PicNo, Inst, PartNo,X,Y),
assert(problembb4(object_part (Object PlcNo Inst,PartNo,X,Y))),
retract(object part(Object,PicNo,Inst, PartNo X Y)),

(bb entered(object_part Object PicNo),
assert (bb entered(object_part Object Pich)) Y,
!,bb_enter. :

bb_enter:-
part_list(Object,List),
assert(recognisebbl(part list, (Object,List))),
retract(part_list(Object, LlSt)),
!, bb_enter.

bb_enter:-
rating_threshold (F,T),
assert(recognisebbl(ratlng thresholq, (F,T))),
retract(rating threshold(F,T)),
!,bb_enter.

bb_enter:-
bb_entered(feature,PicNo),
new entry([problembbl feature, (PicNo) 1),
retract(bb_entered(feature,PicNo)),
{,bb_enter.

bb_enter:-
bb_entered(object_part,oObject,PicNo),
(trainlng(PlcNo), !; assert(training(PicNo))),
new_entry ({problembb4,cbject_part, (Object,PicNo) }),
fetract(bb entered(object_part Object,PicNo)),

bb_enter.

bb enter.

224

* % ¥ ¥

recognise2/changes */
kkkhkkhkkkhhkhhhkikkhhkhkkhkhhkkkkhkkhkhkhkhhkhhkhkkhkhhkhhhRhkkhhhhkhkhhkikhhkhkdhkikn

*kkk Check blackboard changes, make new bids
Fededdededededededdekdddddt sk dededededededede ded koo ke ek ok gk de e e ok ok ok ok ok e ek

ek kk

/* new_entries/removed_entries are called when entries are added
/* to/removed from the problem blackboard. The knowledge sources
/* which are interested in the changes are then invited to make

/* new bids.
new_entries([]):~- !.

new entries([First]Rest])'-
new_entry(First),
new_entries(Rest).

new_entry([Section,Datatype,Data]):-
wants(KS,Section,Datatype),
make bld(KS [Section Datatype,Data]),

fail,
new_entry(_).

removed_entries({3}):- !.

removed_entries([First]Rest]):~
(First),

removed ent
removed_entr

removed_entry([Section,Datatype,Data]):~
“wants_removed(KS, Section,Datatype),
make bid(Ks, [Section Datatype,Data]),

fail,
removed_entry(_).

es{Rest).

225

*/
x/
*/

*/
*/
*/

/* recognise2/schedule #*/
AR T e T T E I T LA

J* hkkk Insert new bids in bid list kkkk */
P T T T T L L L L L T T Ay

schedule(Function,Data,Rating):-

bid_1ist(List),

(member{ ((Function,Data) ,Rating),List), !;:
insertl(((Function,Data),Rating),List,NewList),
retract(bid_list(List)),
assert(bid_list(NewList))).

226

/*recognise2/show*/

khkkhkhhhkhhkhkhhkhhkkhkhhkhkhkkhkhhkhhhhhkhkhkkkhkhkhhhhkhhkhhkhkhkhkhkhhhhkhhhkkhhkikk */

kkkk Show kkkk */
R L T T T T Y

show_rules(Object) can be called by the user to list the *
recognition rules for an Object which has been learnt. *

show_rules(Object):-

list_matches(Object),
list_limits(Object),
list_sets(Object).

list_matches(Object):-

nl,

write(’/Part/Pattern No. matches:’),
nl,

write _matches (Object).

write_matches(Object):-

recognisebb2 (match, (Object,PartNo,PatternNo)),
recognisebbl (part_list, (Object,Parts)),

member((PartNo PartName) Parts),

write(PartName) wrlte(' Pattern’),write(PatternNo),nl,
fail

write_matches(Object).

list limits(Object):-

nl,
write(’Distance limits(Partl,Part2,MinX,MaxX,MinY, MaxY)"),

nl,
wrlte_llmits(Object)

write_limits(Object):-

recognisebb2 (distance_limits, (Object,Parti,Part2,
MinX,MaxX,MinY,KMaxY)),

recognisebbl(part list, (Object,Parts)),

member ((Partl,PartNamel), Parts),

member { {Part2, PartName2), Parts),

write(PartNamel) ,write(’,’),write(PartName2),
write(’,’),write(MinX),write(’,’),write(MaxX),
write(’,’),vwrite(MinY) ,write(’,’),write(Maxy),

nl, '

fail.

write_limits(Object).

list_sets(Object):-

nl,
write('Set probabilities(PartSet,PatternSet,Featuresets,’),
write(’Matches):’), nl,

write_sets(Object).

write_sets(Object):-

recognisebb3 (set_probability, (Object,PartSet,PatternsSet,
Sets,Matches)),

write(PartSet),write(’,?),write(Patternset) ,write(’,’),

write(Sets),write(’,’),write(Matches),

nl,

fail,

write_sets(Object).

227

/*recognise2/utilities master*/
VR R L L e LI Y

[k dkkx Utilities Master File khkkk */
R L L R g e A st T T T T e T

'—[general utllities}.

~[check_limits].
-[feature match].
—-[check match].
-[identify].
-[write_set].
-[remove_instances].

.. .' .. e 08 '. .

228

/*recognise2/general utilities#*/
R L T T T e R Y

Sk kkkk General Utilities AhRR k/
S KARARERAAKKRRRRRAAARKARRRRRAIRRRRRARRARRRRRRA IR AR AARA AR ARRRIRAR %/

member (A, [A]_]).
member (A, [__ X]) : - member(A,X).

nonmember(A,X) :-
member (A,X), !, fail.
nonmember (A, X) .

disjoint(X,Y):-
member(A,X),
member (A,Y),
!, fail.

disjoint(X,Y).

add(A,X,X) :-
(aA,x), !.
add(A,X, [A|X]). ‘

unite([],X,X):~ !.
unite({A|X],¥,U):-
. unite(x Y, 02),
add (a,U2,U).

near(X,Y):-
duplicates_limit (Dup),
Diff is X-Y,
Diff < Dup,

read_char(Inputl,List):-
read (Input2),
(member (Input2,List), Inputl = Input2, !;
write('Unacceptable input - try again? ’),
read_char(Inputl,List)).

read_number (Inputl, [Min,Max]}):-
read(Input2),

(Input2 >= Min, Input2 =< Max, Inputl = Input2, !:
write(’Unacceptable input - try again? ’),
read number(Inputl, [Min,Max})).

inserti((a,B),[],[(A,B))]

insert1((al, 131) [(A2 Bz)iR],[(Al Bl1), (A2,B2) |R]):~
Bl >= B2,

insertl((m,m) [(A2 B2) |R], [(A2,B2) |New]) :-
insertl((Al,Bl),R,New).

insert((a,B,C),[1,[(A,B,C)]):= !.
msert((Al 131 LC1), E(Az ,B2,C2) |R1, [(Al,B1,C1), (A2,B2,C2) |R]) :-
= C2

insert((Al Bl ,C1), [(A2,B2,C2) [R}1, [(A2,B2,C2) |New]) :~
insert((Al B1,Cl1),R New), !,

delete(X, [X|List],List).

delete(X,[¥|List], EYLFewList]):-
delete(X,L NewList).

229

/* recognise2/make sets */
J* RERRRKEKKIARKIIRERARAARRKARKRARRARRKRARAARRARRR KRR AR AR RAAARAAR £/

Jx hkkk Make Part Sets hkkk %/
e R L e T T L T Y

* make sets(Cbject) finds all the sets of features which could */
* represent sets of Object parts, checks to see which of these */
/* sets match known instances of Object, then counts the no. of */
/* feature sets and the no. of matches for each set of Object parts*/
/* and corresponding set of feature patterns, recording these in %/
* the set_probability table on recognisebb3. The probability that#/
* a set of features will represent an instance of Object can be %/
/* calculated from the appropriate entry in this table; the */
/* percentage probability is (100*Matches)/Sets. */
make _sets(Cbject):-
find_set(Object,PicNo, Parts, Patterns, Features),
check match(Object PicNo,Parts Features Inst),
assert (problembb3 (feature_set, (Object, PlCNO 0,Parts,
Patterns Features, Inst))),
upgate_probability(ObJect ,Parts, Patterns Inst),
fail.
make sets(Object):-
(

retractall (matched feature(Object,_,_,_,_,_)):true),
(retractall (within limits(Object, ,__)): e),
(retractall(problembb3(feature set, (Obj PRI

230

recognise2/find */
R R Ty

*
*x

* kkkk Find Feature Sets kkkk */
L e T T T Y

/* find_set(Object,PicNo,Parts,Patterns,Features) returns a list of*/
/* two or more object parts (arranged in descending order of part #*/
/* no.) and a list of features in the specified picture which could*/
/* represent these parts, checking for feature pattern/object part */
/* matches and satisfaction of the limits on x and y co-ordinate */

/* differences between pairs of object parts. */
/* Repeated calls to find set will yield all such part lists/ */
/* feature lists, starting with those with only two elements. *

/* Longer lists are found by adding higher-numbered parts to the #*/
/* start of existing part lists. */

find_set(Object,PicNo, Parts,Patterns,Features):~
find_pairs(Object,PicNo, Parts, Patterns,Features).

find_set (Object,PicNo, Parts, Patterns, Features) :-
find_multiples(Object,PicNo, Parts, Patterns, Features).

/* Find two-element part lists/feature lists * /

find_pairs(Object,PicNo, {Partl,Part2], [Patternl,Pattern2], (F1,F2]):~
recognisebbl (part_list, (Object,PartList)),
member ((Part2,),PartList),
member ((Partl,_) ,PartList),
Partl > Part2, |
recognisebb2 (match, (Object,Partl,Patternl)),
problembb2 (feature, (PicNo,F1,Patternl, X1,Y1)),
recognisebb2 (match, (Object,Part2,Pattern2)),
problembb? (feature, (PicNo, F2,Pattern2,X2,Y2)),
check_limits(Object,Partl,X1,Y1,Part2,X2,Y2),
assert(within limits(Object, PicNo, [Partl,Part2], [F1,F2])).

/* Find larger feature list */

find_multiples (Object,PicNo, [Part2,Partl|Rest], [Pattern2|Patterns],
[F2|Features]):-
problembb3 (feature set, (Object,PicNo,_,[Partl|Rest],Patterns,
Features,)),
recognisebbl (part_list, (Object,PartList)),
member ((Part2,) ,PartList),
Part2 > Partl,
recognisebb?2 (match, (Object, Part2, Pattem?2)),
problembb2 (feature, (PicNo,F2,Pattern2,X,Y)),
check pair_ limits(Object,PicNo,Part2,F2, [Partl|Rest],Features).

231

/* recognise2/check limits */
B L L Y

J* hkkk Check Distance Limits kkkk */
AR L T T T Ty

/* check limits(Object,PartNol,X1,Y1,PartNo2,X2,Y2) succeeds if the*/
/* features whose locations are (x1 Yl) and (xz Y2) satisfy the */
/* distance limits between PartNol and PartNo2 of Object */

check limits(Object,PartNol,X1,Y1, PartNo2,X2,Y2):-
recognisebbz(distance 1imits (Object PartNol, PartNo2,
MinX,MaxX, HlnY JMaxy)),
DiffX is X1-X2, DiffX >= MinX, DiffX =< Maxx
DiffY is Y1-Y2, DiffY >= MinY, DiffY =< Maxy.

/* check_pair_limits(Object,PicNo,PartNo,FNo,PartSet,FSet) succeeds*/
/* if [FNolFSet] could represent [PartNoIPartSet}, i.e. if all the */

/* appropriate distance limits are satisfied. */
/* The limits are checked by looking to see if the relevant two- */
/* element part sets and feature sets have been entered in the */
/* within limits table. *

check _pair_limits(Object,PicNo,PartNo,FeatureNo,[],([]).

check_pair_limits(Cbject,PicNo,PartNol,FNol, [PartNo2|RestParts],
[FNo2]RestF]):-
within limits(Object,PicNo, { PartNol,PartNo2), [FNol,FNo2]),
check pair_ limits(Ohject PicNo, PartNol, FNol RestParts,
RestF).

232

* recognise2/feature match */

P e T L T T T
*
*

J* kkkk Match Features to Object Parts hkkk */
PR T T T e L T L T T T Ty

* feature match(Object) checks all features against parts of known*/
/* instances of the object for co-ordinate matches; the feature */
/* details are recorded with the matching part no. and cobject */
/* instance no. (or 0,0 if no match) in the matched feature table. */
feature match(Object):~-

“feature_match(Object,PicNo),
fail.
feature match(Object).

feature_match (Object,PicNo):-
“problembb2 (feature, (PicNo, FeatureNo, PatternNo, X1,Y1)),
magch feature(Object PicNo, FeatureNo PatternNo,X1,Y1l),
fail.

feature match(Object,PicNo).

match_feature(Object,PicNo,FeatureNo,PatternNo,X1,Y1):—
r
(problembb4 (object_part, (Object,PicNo,Inst,PartNo,
X2,Y2)),
X1 = X2, Y1 = Y2,
problembe(ldentified features, (PicNo, List)),
retract (problembb2 (identified features, (PicNo,List))),
assert (problembb2 (identified features,
(PicNo, {FeatureNo|List]}))),
17
Inst is 0, PartNo is 0),
assert (matched_feature(Object, PicNo,FeatureNo, PatternNo,
Inst,Partio)).

233

/* recognise2/check match */

/* *** */

J* kkkk Match Feature Sets

*kkk /

/* S de g de g d dede e e de g ode bk de ke ok Ko de dededeok dede ke ke dede dede o dede de e de ke ok ke ke e o dede o ke g g de dede K ke ke ke kede */

/* check match(Object,PicNo,PartSet,FeatureSet,Inst) checks to see */
/* if all the features in FeatureSet match the appropriate parts of*/
/* an instance of the Object, and sets the value of Inst to the */

/* instance number or, if there is no match, to 0.

*/

check _match(Object,PicNo, [Partl,Part2], [Featurel,Feature2],Inst):~

matched feature(Object PicNo Featurel, Inst, Partl),
matched_feature(Cbject,PicNo,Feature2,_,Inst,Part2),
{.

check_match(Object,PicNo, [Partl|RestP), {Featurel|RestF],Inst):~

matched feature(Object PicNo, Featurel, _+Inst, Partl),

problembb3 (feature set,(Object PicNo,_,RestP, ,RestF,Inst)),
!.

check match(Object,PicNo,Parts, Features,0).

/* update probability(Object,PartSet,Patternset,Inst) adds

/* information about a feature set which has been checked for an *

/* object instance match to the appropriate entry in the
/* set_probability table.

update_probability(Object,PartSet, PatternsSet,Inst):-

I

(' recognisebb3(set _probability, (Cbject,PartSet,
Patternset,Sets,Matches)),

retract(recognisebb3 (set_probability, (Object,PartSet,

Patternset,Sets,Matches))),
!;
Sets is 0, Matches is 0
NewSets is Sets+1,
(Inst>0, NewMatches is Matches+l, !:
NewMatches is Matches
assert (recognisebb3 (set_probability, (Object, PartSet,

),

),

PatternSet,NewSets,NewMatches))).

234

/* recognise2/identify */
P e e T L T T L L T

S Rkkk Identify a Feature Set as an Object Instance khkk &/
IR T L R L e e e e L 2 T Y

identify(Object, PicNo, Parts, Features) : -
problembb2 (identified_features, (PicNo,IdList)),
unite(IdList,Features, NewIdList),
retract (problembb2 (identified features, (PicNo,IdList))),
asserta(problembb2 (identified features, (PicNe,NewIdList))),
record_instance(Object,PicNo, Parts, Features).

record_instance(Object,PicNo,Parts,Features) :-
(instances(0bject,PicNo,Current),
Next is Current+l,
retract (instances(Object,PicNo,Current)),
!;
Next is 1
assert (instances(Cbject,PicNo,Next)),
record parts(Object,PicNo,Next, Parts,Features),
new_entry([problembb4, object part, (Object,PicNo)1l).

),

record_parts(Object,PicNo,Inst,[],[]):- !.
record_parts(Object, PicNo, Inst, [PartNo|RestParts],
[FeatureNo|RestFeatures]) :-
problembb? (feature, (PicNo, FeatureNo, PatternNo, X, Y)),
assert (problembb4 (object_part, (Object,PicNo,Inst,PartNo,

X,¥)))
record;parts(Object,PicNo,Inst,RestParts,ﬁestFéatures).

235

/* recognise2/write */
I R R h R T

J* Rkkk Write an Object Part Set and Candidate Feature Set *¥%k* &/
/* Rhkkkkhkkhkhkhkhkhhkhkhhkhkhkkkhkhkthkhkhhhhhkkhkkhkkhkhkhkhkkhhhkhhkhhkkhkkhkhkhkhdhikih */

write_set(Object,PicNo,Parts,Features) :-
nl, writej'Object:) ,write(Object),nl,
fwrite (Object, PicNo, Parts, Features),

fwrite(Ob%ect,PicNo,[],[]):- l.

fwrite (Object, PicNo, [Partl|RestP], [F1|RestF)):

recognisebbl (part_list, (Object,Parts)),
member ((Partl,Name) ,Parts),
write(Name) ,write(’,’),
problembb?2 (feature, (PicNo,F1,_,X,Y)),
write(’(’),write(X) ,write(’,’),write(¥Y),write(’)’),nl,
fwrite (Object, PicNo,RestP,RestF).

236

* recognises/remove 1instances */
/* L o T T T T T T Y P TR T T PP Py */

J* kkkk Count and Remove Object Instances hhkk k/
JF RKEARERARAKRARKRRARKIARARRARIERERARRRE KSR AR SRR AA IR AR Ak Ah AR AR kh Ak X/

remove_instances(Object) ;-
problembb4 (object part, (Object,PicNo, , , ,)),
femove _instances (Object, PicNo),
remove instances(Object).
remove_instances(Object).

remove_instances (Object, PicNo) :- .
problembb4 (object_part, (Object,PicNo,Inst, , ,_)),
retractall(problembb4(objectwpart (Object PlCNO Inst rr_))),
recognisebb4 (occurrences, (Object,N)),
N1l is N+1,
retract(recognisebb4(occurrences,(Object,N)
assert (recognisebb4 (occurrences, (Object,N1)
recognisebb4 (occurrences, (total,M)),
Ml is M+1,
retract (recognisebb4 (occurrences, (total,M))),
assert(recognisebb4(occurrences,(total,Ml))),
!, remove_instances (Object, PicNo) .

remove instances(object PicNo).

)).
)),

237

/* recognise2/editor_master */
*

/* khkd

*** */
Fditor Master File kkkk *

/* kkkhkhhkkhhhhhhkhhkhkhhkhhkhkhkhhhkhhhhhkhhhhkhkkkhhhhhhkkhhkkhhhkhhhihkk */

-
.
»
.

-{editor bidder].
~-[edit].

238

/* recognise2/editor _bidder #*/
P b R L T L T L e T e L T Ty
*

PR Editor Bidder kkhk &/
IR L L T L L T e T T e Ty

wants (editor,problembbl, feature) .

make bid (editor, [problembbl, feature, PicNo]) :-
schedule (editor, (PicNo),100).

execute(editor, (PicNo)):~
edit (PicNo).

239

= rec 1seZ/edit *
/
S dikdkkdhhdekhkkhkhhhhhhhkhhhihkhhhhhhhhhkkkkhhkrhihkrhhhhkhhkhhkhh &/

YAREL I Edit Feature Data- khkk k/
/* khkkhkkkhkhkhhkhhhkhkhhkhkhkkhhhhkhhkhhkhkhhkkhhkhhkbhhhhhkhhhhkhkihhkihhikhkkkihhkihk */

/* edit(PicNo) removes from the list of features for PicNo all */
/* features whose ratings are below the appropriate threshold value*/
/* and all duplicates (i.e. features whose distance from another, */
/* higher~-rated, feature is less than the duplicates limit), then */
/* numbers the features remaining in each picture and moves them */
/* from problembbl to problembhb2. */

edit (PicNo):-
:{ite('Editing picture:’),write(PicNo),
L)
remove_low_ratings(PicNo),
remove_duplicates(PicNo),
count_features (PicNo),
assert (problembb2(identified_features, (PicNo,[]))),
new_entry([problembb2, feature,(PicNo)])

remove_low_ratings(PicNo):=-
problembbl (feature, (PicNo, PatternNo, X, ¥,Rating)),
cognisebbl(rating threshold, (PatternNo,Threshold)),
Rating < Threshold,
rezract(problembbl(fEature,(PicNo,PatternNo ,X,¥,Rating)})),
fail.
remove_low_ratings(PicNo).

remove duplicates{PicNo):-
problembbl (feature, (PicNo, Patternl,X1,Y¥1,Ratingl)),
problenbbl (feature, (PicNo,Pattern2,X2,¥2,Rating2)),
near(X1,Xx2),
near(¥Y1,Y2),
Ratingl > Rating2,
reEract(problembbl(feature,(PicNo,Patternz,xz,Yz,RatingZJ)),
fail.

remove_duplicates(PicNo).

count_features(PicNo):-
problembbl(feature (PicNo, PatternNo, X, ¥, Rating)),
assign_number (PicNo, PatternNo, X, Y),
re}ract(problembbl(feature,(PlcNo ,PatternNo, X,Y,Rating))},
fail.

count_features(PicNo):-
retract (feature_number (PicNo,_)).

assign_number (PicNo,PatternNo,X,Y) :~
(feature number(PlcNo No),
FNo is No+1l,
fetract(feature_number(PicNo,No)),
FNo is 1),
assert (problembb2 (feature, (PicNo,FNo,PatternNo,X,¥))),
assert (feature number(PicNo,FNo)).

240

/* recognise2/learner_master */
J* RRARREERRERIRARRAKTARRRRRRRRRRARKAARRRRRRAKRRARRKRRAR KRR RIARAR &/

J* kkkk Learner Master File khkk x/
R T T T T e T L T T T T

:=[learner_bidder].
:t=[learn].
:-[pattern match}.
:~[limits].

241

/* recognise2/learner_bidder */
I L L Ty T T e T Y

[* kiR learner Bidder Akkk k/
IR L L L L

wants(learner, problembb4 ,object_part).

make bid(learner, [problembb4,object part, (Object,PicNo)])):-
recognisebbl (ocbject_names,Names),
member (Object, Names) ,
!.

make_bid(learner, [problembb4,cbject part, (Object,PicNo)]):~-
schedule(learner,(Object) 90).

execute(learner, (Object)):-
learn(Object).

242

/=™ recognisez/learn */
S kkkkkkhhhhhhhkihhkdkkkhikhihhhhhhhhkhkhhhhhkhdhdkkbhhhhhkhdhhhhhkr &/

Jx Rikkk Learning Recognition Rules for an Object hhkk */
PR e L e e L e

learn(Object): -
assert (recognisebb4 (occurrences, (Object,0))),
write(’Learning: ’), write(Object),nl,
feature match(Object),
pattern match(Object),
set_limits(Object),
make_sets(Object),
recognisebbl (object_names, (List)},
retract({recognisebbl (object names, (List))),
assert (recognisebbl (object names, ([Object|List]))),
remove_instances (Object),
!,
new_entries([}).

243

/* recognise2/pattern_match */
[k AERERIAREIIIRRAARKTRRERARIRIRIIRIARIRIARRRRIR R RIIIARRIRRAA AR, * /

J* hkkk Find matching pattern no./part no. pairs *hkkk &/
/* *** */

/* pattern match(Object) counts the no. of features of each patternt/
/* which match each object part, and enters the pattern no. and */
/* part no. in match table if (no. of features)/(no. of matches)<s, */
/* i.,e., if at least 20% of features of the pattern match the part.

pattern_match(Object):-
matched_feature(Object,PicNo,FeatureNo,PatNo,Inst,PartNo),
ingrement(Object , PatNo PartNo),
fail.

pattern _match(Object):~-
“find good matches(Object),
fail.

pattern match(Object):-
(retractall (feature count(_,_)):true).

increment(Object PatNo, PartNo) : -
{ feature _count (PatNo, Features),
NewFeatures is Features+l,
retract (feature count(PatNo Features)),

1
NewFeatures is 1),
assert (feature_count (PatNo,NewFeatures)),
(PartNo>0,
(match count(Object PartNo, PatNo,M),

NewM 1s M+1,
retract (match_count(Object,PartNo,PatNo,M)),
L
NewM is 1),
assert(match_ ccunt(Object PartNo,PatNo,NewM)), !;
true),
!.

find_good_matches(Object):-
match_count (Object, PartNo, PatNo, M),
feature count(PatNo, Features),
dhgeh_prebability(Object ,PartNo,PatNo,M, Features),
fail.

find_good_matches(Object).

check probability(Object,PartNo, PatNo,M, Features):-
!

InvProb is Features/M,

(InvProb<10,
assert(recognisebe(match (Cbject, PaxrtNo,PatNo))) ;
true Y.

retract (match_ count(ObJect PartNo, PatNo,M}).

244

/™ IeCOgnises/ L1miLs =/

/* dkdkddekhddeddhddkddkddkkded b kdddddddhdkkkidhhkkdhkidhikkikkskkkkikkhk */

/* hehdkk

Set Distance Limits *kkk */

/* khhkhkkhkhhkkhkhkhhkkkhhhkhkhhhhhhhikhhkhhkkkkhkhhhhhhkhkhhdhhhhhhkkhkkh */

/* set limits(Object) finds the maximum and minimum x and y co-ord.*/
/* differences between each pair of Object parts and records then */
/* in the distance_limits table on recognisebb2. */

set_limits(Object) -

recognisebbl (part_list, (Object,Parts)),
member ((PartNol,) ,Parts),
member ((PartNo2,), Parts),
PartNel > PartNo2,
set part | limits(Object PartNol,PartNo2).

set _1imits (Object).

set_part | llmits(Object PartNol,PartNo2) : -
problembb4(object_part (Object,PicNo, Inst, PartNol,X1,Y1)),
problembhb4 (object part, (Object, PlcNo,Inst PartNo2,%2,Y2)),

DiffX is X1-X2,
Diffy is Y1-Y2,

update_limits(Object,PartNol, PartNo2,DiffX,DiffY),

fail.

update_limits(Object,PartNol,PartNo2,DiffX,DiffY):-

{ recognisebbz(distance limits, (Object,PartNol,PartNo2,

(

MinX, MaxX, MinY,Maxy)),

DiffX<MinX, NMinx is DiffX, NMaxX is MaxX, !:
NMinX is MinX,

(DiffX>MaxX, NMaxX is Diffx, !;

NMaxX is Maxx),
Diffy<MinY, NMinY is DiffY, NMaxY is Maxy, !:;
NMinY is MlnY,

(Diffy>Max¥, NMaxY is Diffy;

NMaxY is MaxY

)},
retract (recognisebb2 (distance_ limits, (Object, PartNol

i:

PartNo2,MinX,MaxX, MinY ,MaxY))),

NMinX is DiffX, NMMaxX is DiffX,
MMinY is Diffy, NMaxY is Diffy).
assert (recognisebb2 (distance_limits, (Object,PartNo1l, PartNoz

inX,NMaxx NMinY, NMaxY))) .

245

recognisez/recogniser_master */
Tk kR REAKRARREIREKRARAIRR KRR RRRRAR AR kAR R AR AR RRIk Ak hdhkhhhhrhhhhih *

hhAR Recogniser Master File kkkk &/
/* Khkkhkkkhkhhhhkkhhhdkkkdedhdkihdkiddkddhihkhhhthdihihidkkkddkikikk ki */

/*
/*
*

:=[recogniser bidder].
t—-[search].

246

D ——— |
/* recognise2/recogniser bidder */
/* RARRRRAARRARAAARKRARRTAARAARRARRRAR AR R AR R KRR R A ARk k khh kR4 */

bdadadod Recogniser Bidder hkkh &/
/* *** */

wants (recogniser,problembb2, feature).

make_ bid(recogniser, [problembb2, feature, (PicNo)]):—
check recognisers(PicNo)

check_recognisers(PicNo):-
recognisebbl (ocbject names, (Names)),
member (Object,Names) ,
check recogniser(Object PicNo),

fail.
check . recogniser(Object,PicNo):-
(problembb4 (object_part, (Object,PicNo, , , ,)}, §;

recognisebb4 (occurrences, (Cbject,N)),

recognisebbd4 (occurrences, (total,M)),

Rating is (40 + (20*N)/M),

schedule (recogniser, (Object, PicNo) ,Rating)
!.

execute (recogniser, (Object,PicNo)) : =
search (Object, PicNo)

247

/*

recognise2/search */
O T T T T Y

kikk Search a Picture C kkkk %/
T Tt g T T e T

search(Cbject, PicNo) : -

problembb2 (identified_features, (PicNo,IdentList)),

recognisebb2 (match, (Object, Part1 ,Patternl)),

problembb2 (feature, (PicNo,F1 Patternl,)

normember (F1, IdentList),

recognisebbz(match,(Object,Partz,PatternZ)),

Part2 > Partl,

problembb?2 (feature, (PicNo,F2,Pattern2,_,)),

nomnember(F2,IdentList),

(F1 > F2; F2 > F1),

write('Searching plcture:) ,write(PicNo),write(’ for: ‘'),
write(Object), nl,

initialise(Object,PicNo),

search_sets(Object, PicNo),

search(Object, PicNo).

initialise(Object, PicNo) :~

(problembb3 (probability list, (PlCNO List)),
assert(problembb3(probabillty list, (PlcNo,[])))),
assert (current_num(Cbject,PicNo,0)).

search_sets(Object,PicNo):~

find set(Object PicNo, Parts,Patterns, Features),
add_to_list(Object, PicNo Parts Patterns Features),
fail.

search_sets(Object,PicNo):-

new entry([problembbB,probability list, (Cbject,PicNo) }).

248

/* recognisezsaaa */
J* ARRERARRRIRIAIRRKIAKKKRKEKERARKRRRARRARKRARRRARKARRARRARARKIRAR &/

[k hkkk Add a new feature set to probability list *kkk */
P T T T T S T T T T e e e e P L T Sy

/* add_to_list assigns a mmber to a newly-formed feature set */
/* finds the probability that it represents an object instance, */
/* then if this probability exceeds the referral threshold, */

/* removes any subsets of this feature set from the probablllty */
/* list and inserts the object/number/probability into the list. */

add’ to_list(Object,PicNo,Parts,Patterns ,Features) : =
(recognisebb3(set;probability,(Object Parts,Patterns,
Sets,Matches)),
Prob is (100*Matches)/Sets;
Prob is 0),
current_num{Object, PicNo CUrrent),
Next is Current+l,
retract (current_num(Object,PicNo,Current)),
assert (current_num(Object, PicNo Next)),
assert (problembb3 (feature_. set,(Object PicNo,Next,Parts,
Patterns, Features ,nil))),
(referral_threshold (Refer),
Prob >= Refer,
problembh3 (probability list, (PicNo,List)),
remove_subsets (Object, PlcNo,Parts Features, List, List2),
insert((Object,Next,Prob),List2 ,List3),
retract(problembbB(probablllty llst (PlcNo List))},
?ssert(problembb3(probab111ty list, (PlCNO List3))),
| true),

remove_subsets(_,_,[P1,P2),_,List,List).
remove subsets(Object PicNo,Parts F, [(Object,No, Prob) |Rest1],Rest2) :~
sub_feature set(Object,PicNo,Parts,F No),
remove_subsets (Object, PicNo,Parts,F, Rest1 Rest2).
remove_subsets (Objectl,PicNo,Parts F,[(Object2 No Prob)]Restl],
[(Object2,No,Prob) |Rest2]) :~
remove_subsets(Objectl,PicNo,Parts,F,Restl Rest2)
remove_subsets(Object, PicNo,Parts,F,[] (1)

sub_feature_set (Object,PicNo,Partsl,F1,No):-
problembb3 (feature set (Object PicNo,No,Parts2, ,F2,)),
matching : subsets(Partsz Partsl,F2, Fl)

matching_subsets([],P,[],F).

matching subsets([PllRestPl] [P1|RestP2] [F1|RestF1], [FllRestF2])°-
matching subsets(RestPl RestP2, RestFl Resth)

matching_subsets (Partsi, [P1|RestP2] Featuresl [F1|RestF2]):~
matching_: subsets(Partsl RestPZ Featuresl (RestF2).

249

/* recognise2/acceptor master */
P T T s L T e T e T

Sk Fkkk Acceptor Master File , kkkk %/
PR e T

:-{acceptor_bidder].
t~[accept].

250

. |
/* recognise2/acceptor bidder */
/% ek dkk ke kk Ak RARRRTRRIAI R AR* AR AR R AR IR Rk kR hAkkdh Rk AR AR IARAII AR */

/* Khkk Acceptor Bidder *kkk k)
AR L R L T Y

wants (acceptor,problembb3, probability list).

make_bid (acceptor, [problembb3,probability list, (Object,PicNo)]):-
acceptance_threshold{Accept),
problembb3 (probability list, (PicNo,[(_,_,Prob)|_1}),
Prob >= Accept,
schedule (acceptor, (PicNo), 70).

execute (acceptor, (PicNo)) : -
accept (PicNo).

251

/* recognise2/accept */
/% koo dkdodokdoidddedkdohokdob kR ko ko ko Rk kdokk Rk kkkk ok kk kA kkkk */

* %%k Accept feature sets with probabilities above threshold ** x/
/* o Je Je e e e Je e Je Fe g e g e de de K e e de K de de g de e de Te e B do de e de e dede do Je de Fe g de K g e Fo b de K de de e do ke de ok T g do ke de Kk */

accept (PicNo) : =
problembbB(probablllty list, (PicNo,List)),
accept list(PicNo,List).

accept_list(PicNo, [(Object,No,Prob) |Rest]) : -
acceptance_threshold(Accept),
Prob >= Accept,
check_set (Object,PicNo,No),
accept 1ist(PicNo Rest)

accept_list(_,).

check_set(Object,PicNo,No) :-
problembb3(feature set, (Object,PicNo,No, Parts,_,Features,_)),
problembb2 (identified features (PlCNO IdentLlst)),
member (X,Features),
member (X, IdentList),
!.

check_set {Object,PicNo,No) :-
problembb3(feature_set,(Object,PicNo,No,Parts,_,Features,_)),
background_ check(Object PicNo, Parts, Features),
write_set(Object,PicNo,Parts Features),
wrlte('Accepted.') nl, nl
identify (Cbject, PlCNO Parts,Features),

check set(_,_,).

252

/* recognise2/selector master */
J* RERRRRKRRRRIIAKRAIKEIRARRRRRARRERRR A AR RRRIRARRRIIhAhhhhhhhhhhrh &

/* *kkk

Selector Master File hhkk Kk

/* hkhkhkkhkkhhkhkkhkhkhkhhkhkkhhkhhhdkhkhhkhhhhhkhhhkhkhkhhhhkhhkhkhhkhkhkhkhhhhkdkk */

~[selector_bidder].
-{select].

253

/* recognise2/selector bidder */
P R s L R T s T L A Y

/% hkkk Selector Bidder Akkk X/
/* AREKEEERREAKERAERERRERARRRRERRERRRRARRRRAKERRARREEERARRE AR A AR A Akhkhk ki */

wants(selector, problembb3, probability list).

make_bid(selector, [problembb3,probability list, (Object, PicNo)])'-
schedule (selector, (PicNo),30).

execute (selector, (PicNo)):-
select(PicNo).

254

/* recognise2/select */
YR T T T Y

J* Rhkk Select Sets to be Accepted as Object Instances kkkk %/
/* Khkhkkkhhikhkhkhhhkkhhkhkhhhkhhkhhhhkhkhhkhhkkkhkhhkhhkhhhhkhkhhhkhhhhhkhkhhkithihihkik */

/* select(PicNo) lists, in descending order of probability, sets */
/* of previously unrecognised features in the specified picture */
/* which could represent known cbjects. The user is asked to */
/* accept or reject each set; accepted sets are recorded as known */
/* instances of the appropriate object. */

select (PicNo):~-
problembb3 (probability list, (PicNo,List)),
report_list(PicNo,List),
;ftract(problembb3(probability_list,(PicNo,List))),

removed_entry([problembb3,probability list, (PicNo)]).

report_list(PicNo, [(Object,No,Prob) |Rest}) :~
report_set(Object,PicNo,No,Prob},
report list(PicNo,Rest).
report_list(,).

report_set (Object, PicNo,No,Prob) : -
problembb3 (feature set, (Object,PicNo,No,Parts, ,Features,)),
problembb2 (identified_features, (PicNo,IdentLisE)),
member (X, Features),
Tember(X,IdentList),
report_set (Cbject,PicNo,No, Prob) : -
problembb3 (feature_set, (Object,PicNo,No,Parts, ,Features,)),
(background_check (Object,PicNo, Parts, Features),
write _set(Object,PicNo,Parts,Features),
Yrite('Probability: *) ,write(Prob) ,write(’%’),nl,
[
ask_user (Object, PicNo, Parts, Features) ;
true).

ask_user (Object, PicNo, Parts,Features): -
write(’Accept (a) or reject (r)?’), .
- read_char(Reply,[a,r]),
(Reply = a, .
identify(Object, PicNo, Parts, Features),
L
true).

255

recognise2/feedback master */
ARRAEAKAREEREERIRARERRERRRARRRXRRRRRR AR AR AR RRR AR NIk A kR hhkhr *

hkkk Feedback Master File kkkk */
Ahkhkhkhkkkkkkhkhkkhkkkkkkkkkkkhkhhkhkhkkhkhkkkkhhkkhkhkhkhkhkkkhhhhkhkkhkhkkkkkd */

:-[feedback bidder].
:-[feedback}].

* ¥

»

SN
»*

256

/™ recognisez/reedback bidder */
Jx ARARRRRAEARKAXRERRETRRIARIARRRAIARE IR ARRERRARRARA KRR RI I ARAAAR &/

Sk khkk Feedback Bidder Ahkk */
/* hhkkkkhkkhkkihkhhkkhkhkkhkhkhkhkhkkhhhkdhkhhkhkhthkhkhkhkhhkhhhhkhkitikhkhkhkhhkkhkhkhkihkhkkhki */

wants_removed (feedback,problembb3,probability list).

make_bid(feedback, [problembb3, probability list, (PicNo)]):-
check_objects(PicNo).

check_objects(PicNo):~
recognisebbl (object hames, (Names)),
member(Ob'iject ,Names),
sought (Object, PicNo) ,
sclixedule (feedback, (Object, PicNo),80),
fail.

check_objects(PicNo).

sought (Object, PicNo) :-
problembb3 (feature_set, (Object, PicNo, et 1_1_))

execute(feedback, (Object PicNo)) -
feedback (Object, PicNo) .

257

/* recognise2/feedback */
/% ARERERRARARIREAAARIIIRERRANRIAIARRRRRERRERARRERRIIIRR AR AR IRAR &/

/* Update probabilities using feedback from the recognition process*/
PR i L Ly N S Y 1 T it T4

feedback (Object,PicNo) s~
write(’Feedback: ’),write(Object),
write(’, Picture *),write(PicNo),
nl,

feature match(Cbject,PicNo),
match_sets (Object, PicNo),
remove_instances(Object,PicNo).

match_sets(Object,PicNo) :-
problembb3 (feature set, (Object,PicNo,SetNo,Parts,Patterns,
Features nil)),
check _match(Object,PicNo,Parts,Features Inst),
update_probability(Object Parts Patterns ,Inst),
retract(problembb3(feature_ set, (Object PICNO SetNo Parts,
Patterns, Features nil))),
assert (problembh3 (feature_set, (Object, PicNo SetNo, Parts,
Patterns,Features,Inst))),
fail.
match_sets(Object, PicNo) .

258

* recognise2/remover master */
SR REREERERRRRRRRRRRERARARAERRAARIARRRRRRRRRRARAERRERAR AR R IR AR AR &/
*

L Remover Master File *kkk */
R L st et e s S e T T e T

:-[remover_bidder].
:=[remove].

259

/* recognise2/remove */
/* ARk AkkAhkkhkkhRkhkhkhkhkdkhkhhkkhkhkhkhkhkkhkhkhkkhhkhkhkhkhhhhkhhhhhkhkhkhhkhhhhkt *

[Kkkk Remove Data AkkR R/
R T e L Ll L L L L T T e T e e T Y

remove (PicNo) : -

write(’Removing: ’),write(PicNo),nl,
retractall(problembbz(feature,(PicNo, —t)Y,
retract(problembbz(identified features, (PlcNo,List))),

e)))
!. :

261

APPENDIX B

Edited Listings of Test Runs

RECOGNISE1 test with quads data
RECOGNISE1 tests images of cars
Background checks on shapes
RECOGNISE?2 tests with shapes data
RECOGNISE? test with traffic data

262

PAGE

263
265
282
284
301

/* AAAAAAR IR R K AR KA R I AR AR A RR A AR AR KRR AR KA R AR KARR AR AR A AR IR AR AR A A kA kK

/*

/* Training set: quad pictures 1,2,3,4.
/* AE A AR A AL KA A AR A A ARARAA AR AAAR AR IR A AARA A AR A AR AR AR AR AR AR AR A AR R

1 % cprolog

RECOGNISEl LISTING
Test: guad picture 5.

C Prolog version l.5a.ikbs
% Restoring file /usr/lib/prolog/saved states.d/Prologl.5a
| ?-[master,quadtest]).

.

yes

| ?-learn(gquad}).

match(PartNo,PatternNo) ,Part name:

match(1l,1)
match(3,1)
match(2,2}
match(4, 3)

left circle
right_circle
square
triangle

*/
*/

*/

distance_ limits(Partl,Part2, MinX,MaxX,MinY, MaxY):
distance_limits(2,1,40,60,0,20)

distance limits(3,1,20,60,-30,-10)

distance limits(3,2,-20,0,-40,-10)

distance limits(4,1,0,30,-80,-40)

distance limits(4,2,-60,-10,-80,-50)
distance:limits(4,3,—60,—10,—70,~20)

set probability(PartSet,PatternSet,FeatureSets,Matches):
set probability((2,1]),[(2,1],8,5)

set probability({3,1),[1,1],7,5)

set probability([4,1),(3,1],14,5)
set probability((3,2],(1,2),13,5)
set_probability([4,2],[3,2],11,5)
set probability({4,31,(3,1],10,5)
set probability([3,2,1],[1,2,1],6,5)
set probability([4,2,1},(3,2,11,5,5)
set probability([4,3,11,(3,1,1},6,5)
set:probability([4,3,2],[3,1,2],8,5)
set probability([4,3,2,1},{3,1,2,1],5,5)
yes

| ?-[guadb].

quad5 consulted 576 bytes 0.31668 sec.

yes
| ?-edit(5).

yes
{ ?-search(guad,5,10}.

Object: quad

PartSet, FeatureSet, Probability:
(4,3,2,1],(3,40,30)(1,80,50)(2,90,80)(1,40,70},100%
Accept (a) or reject (r)z

a.
Object: quad

PartSet, FeatureSet, Probability:
{4,31,¢(3,30,90)(1,60,110),50%
Accept (a) or reject (r)?

r.
Object: -quad

PartSet, FeatureSet, Probability:
[4,21,(3,10,20}(2,60,90),45.455%

26%

Accept (a) or reject (r}?

r.

Object: quad

PartSet, FeatureSet, Probability:
[4,11,(3,60,70)(1,60,110),35,714%
Accept (a) or reject (r)z

r.

yes
| ?-feedback(quad,b).

set_probability(PartSet,PatternSet,FeatureSets,Matches):
set probability([2,1],(2,1},9,6)
set probability(l{] 8,6)
set probability({
set probability(l[
set probability(]
set probability(|
set probability(|
set probability(|
set probability([
set probability((

(

3,
4,
3,
4,
4,
3,
4,
4,
— 4'
set probability((4,

1
1
2
2
3
2
2
3
3
3

I I L T T e e e e

1
3
1
3
3
1

~ wwwl—‘l—‘[\)[\.}i—‘l—‘
———e Y e e e e

P e R I S

yes
| 2~
$Prolog execution halted

264

/* R TS LA EERE S LR E SRS SRR SSEEIEEEAEEEE S EE LA EELEEEEEE LSS, */

/*
/*
/*
/*
/*
/*

%

e R e

éargen consulted 372 bytes 0.18334 sec.

cf2
cp2
cf3
cp3
cfd
cpd
cf5
cpb
cfé
cpb

ctestl consulted 3700 bytes 2.5 sec.

yes
| ?

yes

accurate,

cprolog

consulted
consulted
consulted
consulted
consulted
consulted
consulted
consulted
consulted
consulted

-edit.

RECOGNISEl LISTING
Training set: car images 2,3,4,5,6.
AAKRKAKAKARRAA R KA AARKRARAAARL AR AR AKRRRAR AR AAR AR R AR kAR R AR A RALR

432 bytes
260 bytes
288 hytes
260 bytes
384 bytes
260 bytes
384 bytes
260 bytes
384 bytes
260 bytes

| ?-learn(car).

match(PartNo,PatternNo),Part name:

match(5,6)
match(1,1)
match{(2,1)
match(l,3}
match(2,3)
match(5

top

rear wheel
front whee
rear_wheel
front whee
top

rear_wheel
front whee
rear arch

front arch

Prolog version 1.5a.ikbs
Restoring file /usr/lib/prolog/saved_states.d/Prologl.5a
?-[master,ctestl].

0.25 sec.
0.15 sec.

0.18333 sec.
0.16667 sec.
0.23334 sec.

0.15 sec.

0.21667 sec.

0.15 sec.

0.21667 sec.

0.15 sec.

1
1

1

Test: car image 1.

Shows the effect of using feedback with incomplete part set.
Some of the entries in the set probability table are made more
others less so.

distance limits(Partl,Part2,MinX,MaxX,MinY,MaxY¥):
distance limits(2,1,123,144,-3,6)
distance limits(3,1,-1,2,-18,-8)

distance limits(3,2,-145,-121,-24,-9)
distance limits(4,1,125,143,-16,-8)

distance limits(4,2,-1,2,-17,-9)
distance limits{(4,3,123,144,-2,7)

distance limits(5,1,85,97,-51,-43)
distance_limits(5,2,-50,-36,-51,-42)
distance_limits(5,3,83,95,-36,-27)
distance_limits(5,4,-49,-35,-36,-29)

set probability(PartSet,PatternSet,FeatureSets,Matches):
set probability((2,1],[1,1].2,1)
set probability([2,1],{1,3],1,0)

set probability{{2,1],
set probability([2,
set probability([2,

[3
1],12
11,102

L4
L

.3
.3
;2

Sl b hed

1,1
(1,0
(3,3

et Yttt Tt

265

*/
*/
*/

*/
*/
*/

lllllll

A

B T i e e T e et i B e T e T e e ame e Hae W o] Ll - - b - -~ -~ -
AAA A CSC O AN OO Ar-lt1 MO A A~ M= N s e
. m k m R om ok om R om oM A e om o omowom ~ e om o e owow .- omowoR o ow o= kA
A MOA A A A A A A MMM A A A A AT AT A A A A A A N A A A AN v s e e w W e

S — A~ T — — T —— — i~ — — T~ p— p— T T p— — i~ w Wy e W w L . T S Y VO S S S Y L T S T S Y NN YN
O MO MO A~ A MO Medrd T (e (N e e s R e e e e r T R e e R P e e T R e T AR T L n B R e w w

I L T L AN NNANMM N A AN N AN A AN AN S S g <o s
AN AAMA AN NN AMAND SN AT AMAN 2 e s s R e e e e R m e n s e R s e e R A sy N R n w R a . SRR e e R s s .
L e L. T L T N e i e R B N F e Nt N e e et BN B~ = B B B R~ I s o L R i o L L Gl R B = s R R T M T e R Ve M Ve N s BN s)

L e e Y e e N e e e N e R e W e N e W e K e B N e e R e e e e B O e T e N N N N T L L . T T Ty PRV S Ty S P Sy Sy W]

MEANMEANMMN A NENMNE NN A NN ' YL ONUNSLSFOOVONTYTOOINNTOOONOONOTONTOIONOU ~ = s s n = o~

L T L T S L T L W [P U I W I Sy B W R Wi W [V Wy SRy S USSRl BT WS Sy S iy W W gy —"y ey o pam—ry w—" y w—w y ey ww yawr e g e e e E e e B B e § o}

llllllllllllllll = v v v wm o n s s AT A A A A A A A A A A A A A A A A A A A I NINI NI IO OO N

P ey p— g T)) iy (] G g —] () e pe— p—) pe— fe— e F) e ey Y, W R M R M R M M R R R R M M R % W L e L R T T O R N L

I L T e Y L . T O . T O . T T O O N . . T T T N e T T - -

D B D D D D T D D By B D g e Bt D D D D D Dt g D Dt D D B D D D B D D e B D D D D D D D D D D D D D B D D D D D D D B D D P D D P D P
N N e N N A R I R A S A S I R £ S R S I € N R S I RIS I R I I ORISR A SRR e S DS A £ i ik 6
B S N N I P N L P e e T [e I
Hre A A~ A A A~ A A A~ AA A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAA A A A A A A A A A A A A A
e e R e T g
lQoo000000000008000.00
PR A R R B B B B I B T L T O T e e s T T s e A = T s IR B T o o T s T T O O T o O T T o S SO o SO SO O o o o O O o T B o S o T 4 T O o O T O DO 4« O T 4 4
Lo00n000.0.00
CO0OO0000DO0O0O0OO0O0OQOO00DO0OOO0OO0OO0COCOO0ODOOCOQOODODOOOO0OOOOOOOO0OODOOCCOCODOO0O0OOC0O0COOODOODOO0OO0
R R R T W S B o O W T W R W W e W e U B U W W N U N R N I N W Y N Y L T VW VRV Y
Pﬂ D.._ D._ p_ P_ D._ P_ p_ D.~ nJ P_ p_ D..“ D.__ D.._ D.__ D.._ D._ P_ D.._ D.._ P_ D._ D.__ D.__ P_ D.._ D.._ D.__ Pm P_ D.._ D.._ D;_ p_ D.._ D.__ D.__ p_ P_ D.._ D.__ D.._ D.._ P_ P_ D.._ D.._ D‘__ D.._ D.._ D.._ p_ P_ D.._ D.._ P_ p_ P_ P_ D.._ P_ p_ D.._ p_ D.._
FE QNSNS RS RIT AR RIS RS RS RS RS RXB RN E RN RS TS RS 'S R S S RS RS RS TS RS RS RS RS JUR RS 'S RS e TS S ST RVS S R S S B RS NS NS TS S RS QNS NS RSt & S RS QU IS RS BE S S i gl il n
VOOV LYYWV OLOOLOOLLOOLYLOLOOOLLOLOLLOOOLOOD
nrnYLURURLRYIUORUROIUMUOUOROLURTRIUDODUOLRODMRVLUVOROLVLDOWLDAOAVRVLOLULUULLTODUBRLRAVLLLWLWLWLLHLYWVW

266

set probability([5,
set probability([S5,
set probability([4,
set probability(([5,
set probability([5,
set probability([5,
set probability((5,
set probability([5,
set probability([5,
set probability([5,
set probability((5,
set probability({5,
set probability([5,
set probability(([5,

Wb SR O NN NWR N R
LI T TR R S WP Y S S Sy)
BIBMLWEEY = wm wm ™ % % ™ w ™
— ettt b 2 B e R O L B
TN M M e e e e et et e s’ e Y

BRAMAMNES % = = = 5 % &2 &% %
S h s s PR REREPRWRER

OO Oy U o o oo ol ol oD P o D
" M om oM oM W W m oM om oW om omow
[N A N SN A N O T - L AV I Sl o)
L I R L e e T e O)

[l all mll et T T T e e T T T

L L R S N WE 6 Re R e BN R)

MNP R R
- et e s et et et i) A e ik

P
=
— s e e

“ wm wm ™

fon e K R T T R A R . L T . T Y

yes
| 2-[cfl].

cfl consulted 384 bytes 0.21668 sec.

yes
| 2-edit(1).

ves
| ?-search(car,1,0).

Object: car

PartSet, FeatureSet, Probability:
{4,2),(4,69,140)(2,69,154),60%
Accept (a} or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[3,1],(4,69,140)(2,69,154),50%
Accept {a} or reject (r)z

a.

yes
| ?-feedback(car,l).

set probability{PartSet,PatternsSet, FeatureSets,Matches):
set probability(12,1],{21,1]1,2,1)

set probability((2,1],[1,3],1,0)

set probability([2,1],[3
set probability((2,1},I
set probability([2,1],]
set probability([3,1],{
set probability([3,11,
set probability({
set probability(|
set probability([
set probability(|[
set probability([
set probability((
set probability(|
set probability(|
set probability([
set probability([
set probability(|
set probability(][
set probability([
set probability(|
set probability([
set probability(|
set probability(]
set probability([

BEBNWRMNMPWNRPRNWERNDWRNE W Woww
L R T T S e e e L LS e e i v i e iy e
RFaRMNDWRNEWRNMNORFEEEWRRRDEP WE
- M M M m wm m ™ WM ™M M m M M N W wm m W m w wm
F R ERPR PR OWRRE R HOWROR O WO -
T N Vol et Teppt e ot e e eml et T Mt Mt bt Nt el Nt el Wbt o™ et it

" M M WM m m owm WM WM WM m WM oM WM W WM oM W W M Om w o

4,1}
4,1}
4,1]
5,1]
5,1]
5,1}
5,1]
5,1]
3,2]
3,2]
4,2]
4,2]
5,2]
5,2]
5,2]
5,2]
4,3]
5,3)

267

e~

P " — o — p— —p— p— T —— i — W W

T A OO AM A MO A=l A rd A —mr/—me—

rrrrrrrrrrrrrrrrrr - eyl

el e e R e e R R Nl N B I N B I B SR

I~ — —— —— T~ — P~ — "~ — p—— —p— p— o — p— o~ — — o~ —— o W L w owme— NN

ffffffffffffffffffffffffffffffff 1113332222232122124444

113111111133111112311111111311112 lllllllllll L R L
Pt T T T . . T T O T T T e . 1112222222244444444444))
N N r i rm e e e R e e e e e O A A P P e A e S P e I S R e e e e R R m e e R M M R m R R m M a om e m o owm wSH)
S A EH MMM NN NN AN NN ANNAA NN AN IS IIIIITLLIIOOD O S -
e N = m 2 & o = & oa m om om oA W % A m W D T T T T R . k. T S Vi WSy S Ry o Y]

et AT A A M ANNNNNNNS T YOS SRS TTLSITIOOTODODONNDIOONOOIIU ~ ~ o~ &
L B o N T R L T e N L N L . T T T e T S e A T N S Py Sy S iy Sy sy sy ey ary sy sy s e ey e o N o B B)

TSI FIOONILIFOOILINDNLSOONUNODSNONDWOEINWOLE « & & v s s & n 6 s s NN

o sl Al A Al AT A S AT A AT A A A A A A NN NNNNMMMMNANANCNNNNONNNNN NN MMM s -

Ll e N e B O . T O T N T I T T L T T T O o T S e]

eI NN NN N NN MMM S MMM ST TN ST O STONE MST N SE T a s S Y < ed (

L R R T O T O . T T O T L T L T S LT O T - o

wnMmS OO NSTNNUUMSFONIN=TN I OONNOWnSTNOSFOOnnOunnrnn<snnhndnD=rtumunum,mun o=y

Al alalakalabalalalalalalalakalalalalalalalalalalabalalalalalalalakalalalalalalalalalabalalabalaaakalalalalalalalala
FE RN IS g RES RS RS BT RS QUS NS RS BN ET IR RD REE NS S RN RS R E QT AT RS R RET NS T RFE REE RS RS S DS BT SEE RS RS R SR e T RS RS R S BT SR RS RS GRS RS R B R R g
Rl Rl R R e I e R R T B R R I R Rl Rl e e i R T T B B O B R I R R I R I R R R R
A A AAAAA A A A A A A A A A AA A~ A A~ AAAAAAAAAAAAAAA~AAAAAAAAA~AAA~A A A~
e R R e T S B e B e e R el e e L e R R e R R R Rl e e R R e e e e R R
LJoo0000000000000000000000 00000000000 0000000000000000000000.00
[B T T T L T (o e T T T A O T A TR o T O T o S o O o 4w o O SO O O o T o o O O o o o O o o S o o O o o S o O o o O o O o T (0 o O o T o T DO o B T o O o 0 T o O 0 T o T 0
Q0000000000000 00
000 O0CO0O0CODOO0O0O0O0O0000COCLOO0D0C0O00OCO0O0OO0DO0ODOOQOO0ODOOOOCOOQDOO0CODO0O0DOODO0ODOODOOO
I W R R I R B U U W R N R U U L ¥ W U N L T N Y VY Y
p_D._P_P_D._D.__D.__p_D.._D._P_P_D.._D._Pwp_p_o._D,__DL_D.__D.._D.._D.__D._D.._D.._D.._P_P_D.__P_p_D.__p_P_D.._D.._P.D.__D.._DL_D.._D.._D.__pFD._P_D._D.._D._P_D._D._p"p_D._D.._D.._P
FRRNS RN RN R ANE NS R =T I RNERNT VS QR RS RUT RN REE RE QR R RN U U IS NN QT R TP T T RN T RN E NS 'S QNS REE R RS RS R B T N T T N RNT RE R NT IR N R R R RN RNE R T T S N
Qo000 LOLLOLYYOLVYOLOLLLLYLOLOYYOLOLOLYLROLOLLOOOLOOLAOLLYWOOLOLOOLLOLODODOOLOLOLLOLOOLO
NYNULVLWLLYLVRRTONVLLILNNANODRULLALDODAUDURNLURULYLLLDULARANNRRANRRRONWUOBARRNNNWYWYNWINATW

Prolog execution halted

yes
| ?-
%

268

/* AR R A A A AR AR AR AR AR AR A AR AR ALRAA KRR AA AR AR ARR AN A A A A A A AR A AR AR ARk h &k */

/¥ RECOGNISE1l LISTING % /
/% Training set: car images 1,3,4,5,6. Test: car image 2. */
/* AR AR KA R AR AR A AR R A AR AR RARKAA AR R A AR ARRKA R AR A AR AR A A A R Ak kA hhrhakk */

/* Shows successful recognition with just five training examples */
| ?-learn(car).

match{PartNo,PatternNo),Part name:
match(5,6) top

match(l,1) rear_wheel
match(2,1) front_wheel
match(1,3) rear wheel
match{2,3) front_wheel
match(5,5) top
match{l,2) rear wheel
match(2,2) front wheel
match(3,4) rear_arch
match(4, 4) front_arch

distance limits(Partl,Part2,MinX,MaxX,MinY,MaxY):
distance limits(2,1,123,148,-8,6)
distance limits(3,1,-1,2,-18,-8)
distance_limits(3,2,—148,—121,—24,-6)
dlstance_11m1t5(4,l,125 151, -8)
distance limits(4,2,- 17 -9)
distance 11m1t5(4,3,123 151 ~10 7)
distance_limits(5,1,85,97,-57,—43)
distance limits(5,2,-54,-36,-51,-42)
distance limits(5,3,83,95,-43,-27)
distance limits(5,4,-57,-35,~36,-29)

set _probability(PartSet,PatternSet,FeatureSets, Matches):
set_probability([2,1], {l 11,2,1)

set probablllty([z 1],[
set probability({2,1],
set probability([2
set probability([
set probability(|(
set probablllty([
set probability([
set probablllty([
set _probability({|
set_probability([
set probability({
set _probability(]
set probability(|
set probability((
set probablllty([
set probablllty({
set probablllty([
set probablllty([
set probability((
set probablllty([
set _probability(]
set probability(|
set probablllty([
set probability((
set probability({
set probability([
set probablllty([
set probablllty([
set probability({

-~ m N mmmcn.n-mmu‘!c\.::..n.h.rsmmmm-m,n..n-.bmwwl—'

L B R e S . T ST T T T e O T S

UuﬂhwbkﬁkﬁdhhwdwF“NDJHBJHBMAHWONFﬂNFJNU“Jw

]
]
)
]
]
]
]
]
]
]
]
]
]
]
]
]
}
]
]
]
|
]
]
]
]

i T B NFJWF‘hFJNUHAUHUwFJNbJﬁbﬂwF”ﬁhHuHFJH
Wt be m m % om om o omom omomomom omom omom om o omom om om owm m m

e RN AR R WR W R W WEWeO o

el el el el T T T . T T T T T R . T
W

B B B 00 o 1 G G0 W B B0 B B B B9 B0 B0 12 12 1 Feb 2 1= 18 1 bt = 7

r
’
L
r
[
L
I
r
’
L
r
r
r
r
L
!
f
!
I
r
[
L4
f
[
f
r
!

2
3
3
4
4
5
5
5
5
3
3
4
4
5
5
5
5
4
5
5
5
5
3
4
5
5

O
—_— e

- m w ™

e —n o —n—— i — p————

A AT AN A A A s . .

T — P p— P p— N p— " = — A p— o e e m m m om m w om o w om o] NN

OSedrf MMM AN A A AN eA A=A AN S e . .

rrrrrrrrrrrrrrrrrrrrrrrr e A s R B s N e e e I I
Ned e A T M A A A NN M e A A A M A N~ & v m m v m e ks e A e e
rrrrrrrrrrrrrrrrrrrrrrrr N s A B et A= I~ S I I~ A - s]
P gy — — ey) e— Ty p— pe— T e p—) P e) pe— e £ ey Y -~ ~ - L L L T A . T VR U SRR R Y

LMWV OIS OO TFUIN<WOWIOMWOL « « % & & v o n % . i
et et e) et Nt fr?)] et) mad et b et vt) b et et et f? et At (A fy) iy e ey p (R ey i L — % M
rrrrrrrrrr L N i [N [e i s e e i S T B R K |

) e ey Y e e)) e) [Py g P e g Fey ey ey ey gy e e P o om R M R om owm R om R m om owm R m a

A A A AN A A A A A AN NN NN Moo oo

ffffffffff L T . T T O . T T R

NN ANNONMOMMMMO MY ST MNMONMONETPEP PN MOS0 S s sy S S S S S

ffffffffffffffffffffffffffffff

el e e Rl e Eal akal el s Eal a R ala la R a el el e L el a A e Al a e Fa R e R e alal e B R e R a |
FE R QIS RNE RIS RIEREE RS RUE RN S NS RS RS R R RS R RS R NS RS RS BEE JET SRR BN SR R RS RS RS RS RS RS RS T BT B RS NN |
N P T e e
1=ttt --{t- t1 -4~ - 4~~~ -l A"~~~
MR B P S I A SO R S PR P i 0 S i S (R SV A S O e S
Lo000000000 0000000000000 0000000000000000.0.0.0
(o B o I I B s o O o T T 1 B R T A1 T o T T s T I T o T i T e T O B R R R 1 T i T o T o T T T e T T T T 4+
Jon0000000000000000000000000000000000000080.00
O00DO0OOOCO0O0O000O0ODNDODOOQOCOOOOLODO0DOO0OODCCOO0OO0ODDOODODOOODOO0OCO0OC0O
[N A W I T W W O W W B O W T T T T T N T T YY" " T
bbb o o o o o o D T D D B D i o D D D B B D B B D B D i B B i e Do e e e e e
PSRN RS RN R R E RS RS R R RS S S S R RS RS R NS S RS S TS S 'S RS S R RS S TS RS S R R S R BT R S R |
QoL rvreorLeeLLoLYLOLOLLYLOLOVLLLQOOLOQODOCOOLOLODOLDOODOO D OO OO LO0OO QDD
nrnwOUBnuuOh oLV ORONOILOoOULNDULWYWLOOTOUL R OLLOUOLDYLwLUULNLLL Oy

yes

i ?-search(car,2,0).

15,4,3,2,11,(6,155,119)(4,197,154)(4,60,153}(2,197,168)(2,60,170),100%

™

o+
-~
P |
-
fa)

]

O e

(o) —

“ b

ny —

-~ +

+4 (8]

[+1] [t}

[45] i

Q [

"] ¥

=]

+ &
- o]
[

U B —
1]

- s
e I
+ 4
O w o
o+ ©
il Q
00 8]
O m = o

a.

yes

?-feedback(car,2).

Matches):

et,FeatureSets,

— —— . pr— — p— pr— — S—

lllllllll

1) ey — — ey — —
A M eA MM et M0
A ~ & & & e on e -~
R e N Nas Ul U NiaNEg]
o e e e et e

fffffff

et et e e) et) e ad

ty(P
ity(
ity(
ity(
ity
ity{
ity(
ity(
ity
ity (

1

il
1
il

i
i

probab
set probabil

probabil

probab

set_probab

set probabil

set probabil
set probabil
set probabil

set probab
set
set

set

— o — S~ — — o p—

—rded A A=~ -
T — T — — T — p— T p— T S~ p— o~ e e o wm W om owm ow owme— N] — . — p— o — s p— " p— pp— g o p— p— prn
A OO At r1 A A rd Al A A Nlmr —mr— e ————— L oW OO ITrMNOOINONSTNN
ffffff L L L O Y o I I e A IR N I B o B i T N T e L S
AN A NN A A A A N AN A A A A AN « s v s v e s s e e s Al AT A AT N O NN

fffffff T MM A M A A N NN A A NSNS PP LI = w2 w8 & & % & o a s s o oMM NN NN ™M eI
= OIMON TN v s A e R e R R R R R R R R oW o o LI L Sy i i B e Y IS S e B B i o T o B o T o S e A L T - o
L T el AN NPT DL IIUONNNNWNMDNLE «~ =« ¢« = & n m =% m s % a = s s LRI e ot I I e e n s i s s s i S o
L e B R T N T T e L T L T U Y U U SR S N A S i e F ey y e paary B B et T K B N e e T e T A N T e L LR S
H AN ONNHMONTOOW0IOFUONOMWMWMIGN « « v« & = % & 8 amferd MO CINM IO S < ST A0 S SO S D PO WD WD 0D
e m R R N et et e et e Rt et e it et e et e bl e i el PO TR A A AT O O AT . A R A R m e W D T T U U VO A TRl S Ry S S S S G PSP S I S S S—" S g —

TLUOWNMOWE « « « » & = % & = = v e e e e HeA AT A A ANNNNNN TSP OOLSFOTOW ~ & & = % % % & . ow o on v o= ow

L . T O L T . T T . T e . T T T e O N T U T L A N . L S Y

el e EaA R Al A o e LA R A A Rl a e Rl R e R a o a R a e e Ea o e e R a b a R a B a e e a el a e lal a R alakaEak a Eak sl e Eakalala Eakal
F RS S RS DTS RS S S RS IS R W R I S S S S S S S S S TS RS RS RS RS R RS S S S R RS S S S R S TS T Y RS R 'S RS S ' RS R IS S RS S R RS [RE RN S TS 'S p'E s |
B A e ' 0 Y R o i O B A BN B R P g
el e~~~ ~~ T~~~ T~~~ 1~~~ T~~~ ~"~ -1~~~ "~~~ T~~~ -~~~ 1T~~~ A" A~~~
IR PR S i e S G S e G S S (0 S o G G g s U o S s g 0 B i (P VR R 5 S S
2 0000000000000 000000 000 0000000000000 0000 0000090000000 0000000000.0.0,0
o oo m o oo mImMmad oo ooC oo oo oonoooco oo soomMOCocloCoaooooRomodoonommno ool
Jo00o000000000000000 00000 000000000000 00000000000000000$000000000000.00.0
OQO0ODQOCOOoO0O0O0COO0OCOO0OCOCOO0O0ODO0O0O0DO0CODOO0ODCOCO0OCOOO0O0O0O0D0DOODOODOOCOOODCOODO0O0D00000C0G
I e N W N O T e N o R O A N N o R N T T L I T W e O I R L o N N T I O I N e W W W W T " "I S S "I ¥
ke o oo Do e o Do o o e i Dot o o B o o i D e D o i D o D o D D o i o Do o o i e B i S B o e i o e e i o D B e e b B D
FORNERNT AN R RS RS RS R RS RS RS RN S RS R R RS S RN RS e R S W R RS 'S R RS T RS I IS RS R R S S S RS S RS RS R RS S NS R RN NS RS R RS aE S DR REE TS RNE RN RN RN R RN E NS
QLT LOLOOLVLOOODOCUQUDL OO OOV OO
R LALLM LUAOADUL Y OOV O OO O uOOLLMNULuOoUu o uauuatryewyem

OCCoCOIFMNMNOMNNrm

[T ey W |
A =TI AN~ -
., o~ ™y
N A e r—— . .
S MM OO NN <
O] = &« » n a mow aomowow
=T ON NN N =T o= o=
e L L . T T S S S S
YT TONO
D T e L Sy —
TR OO L OOO OO~ o~
L ST SR S Sy ST]
LV R T O e e T
et e e — e — —
s e A A A NN
L T L. . T S S -~
AN N MMM
L T O N

A At T 40 B o £ 0T 0 Bl s b i A o

Pl et B B R e B R B
HPPPRPLODLDPODPPRPOR
el Rl e s R e B
AAA A AAAA A A A
A R e s a e R
Q00000000000
O RGO~ QO[OS O T ©
00000000000
00000000000
T Y " Y
OO ORNUOR
HPLWPLOLD LR PP
COOO0QOQOAOLQOLOOCOLOLLOE
nuunuuuntunuuunauy

i
% Prolog execution halted

yes

272

/* Shows the effect of extending the definition of duplicates */

Sk KkkkdkkkkkhkkhhkRA KRR IRk hhhhhhhhhkhkhhkhhhhhRhhhkhhkhkhkhkakh %/
/% RECOGNISEl LISTING

/* Training set: all 21 car images.

Test:

*
car images 4,14,16,17,20*/

/* KhkkhhhAhhkdhhhbhhRhkhhhhdbddhhdhhhhohhhhkhhhdh kg hk ok hddedkdoddhok kel deododbe ok ke */

| ?-search{car,4,0).

Object: car

PartSet, FeatureSet, Probability:

[2,1}:,(1,200,172)(1,70,170),66.667%
Accept {(a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,2),(5,163,122)(1,200,172),60%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,2).,¢(5,163,122)(3,199,166),60%
Accept (a) or reject (r)z

r.
Object: car

PartSet, FeatureSet, Probability:
i{5,21,(5,160,124)(1,200,172),60%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,21,(5,160,124)(3,199,166),60%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,1},(5,167,120}(1,70,170),57.143%
Accept (a} or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
{5,11,(5,163,122){(1,70,170),57.143%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,1},(5,160,124)¢(1,70,170},57.143%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:

[5,2,1},(5,163,122)(1,200,172)(1,70,170),50%

Accept (a) or reject (r)?
r.
Object: car

PartSet, FeatureSet, Probability:

{5,2,11,(5,160,124)(1,200,172)(1,70,170),50%

Accept (a) or reject (r}?
r.
Object: car

PartSet, FeatureSet, Probability:
[2,11,(3,199,166)(1,70,170),50%
Accept (a) or reject (r)?

273

r.

Object: car

PartSet, FeatureSet, Probability:
[2,11,(3,199,166)(3,70,166),50%

Accept (a) or reject {(r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[5,2,1),(5,163,122)(3,199,166)(1,70,170),33.333%
Accept (a) or reject (r}?

r.

Object: car

PartSet, FeatureSet, Probability:
[5,2,11,(5,160,124)(3,199,166){(1,70,170),33.333%
Accept (a) or reject (r)?

r'

Object: car

PartSet, FeatureSet, Probability:
{5,2,1},(5,163,122)(3,199,166)(3,70,166),25%
Accept (a) or reject (r)?

a.

yes

| ?-search(car,14,0).

Object: car

PartSet, FeatureSet, Probability:
(5,2,1]),(6,160,115){2,215,166)(2,53,158),100%
Accept (a) or reject (r}?

r.

Object: car

PartSet, FeatureSet, Probability:
[2,1),(2,215,166)(2,53,158)},100%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
{4,1),(4,214,147)(2,53,158),91.667%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
(4,11,¢4,216,151)(2,53,158),91.667%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
f4,2,1),(4,214,147}(2,215,166){2,53,158),88.889%
Accept {a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
(4,2, 1],(4 216, 151)(2 215,166)(2,53, 158) 88.889%
Accept {a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[3,2],(4,53,141)(2,215,166),88.889%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[3,21,(4,52,144)(2,215,166),88.889%

274

Accept (a) or reject (r}z

r.

Object: car

PartSet, FeatureSet, Probability:
i3,2,11,(4,53,141)(2,215,166){(2,53,158),87.5%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
{3,2,1),(4,52,144)(2,215,166)(2,53,158),87.5%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,2],(6,160,115)(2,215,166),87.5%
Accept (a) or reject (r)?

r

Object: car

PartSet, FeatureSet, Probability:
[4,3),(4,214,147)(4,53,141),85.714%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
(4,31,(4,214,147)(4,52,144),85.714%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
(4,3]1,(4,216,151)(4,52,144),85.714%

Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[5,3,2),(6,160,115)(4,53,141)(2,215,166},83.333%
Accept (a) or reject (r})?

r.

Object: car

PartSet, FeatureSet, Probability:
(5,3,21,(6,160,115)(4,52,144)(2,215,166),83.333%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
(4,3,11,¢4,214,147)(4,53,141)(2,53,158},81.818%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
(4,3,3%],(4,214,147)(4,52,144)(2,53,158),81.818%
Accept {a) or reject (r})?

r.
Object: car

PartSet, FeatureSet, Probability:
{4,3,11,(4,216,151)¢(4,52,144)(2,53,158),81.818%

Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
(5,4,2,1),(6,160,115)(4,214,147)(2,215,166)(2,53,158),80%
Accept {a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,4,2,1]1,(6,160,115)(4,216,151)(2,215,166}(2,53,158),80%
Accept (a} or reject (r)?

275

r.

Object: car

PartSet, FeatureSet, Probability:
[5,3,2,1],(6,160,115)(4,53,141)(2,215,166)(2,53,158),80%
Accept (a) or redject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
{5,3,2,1),(6,160,115)(4,52,144)(2,215,166)(2,53,158),80%
Accept (a) or reject (r)z

r.
Object: car

PartSet, FeatureSet, Probability:
(4,3,2),(4,214,147)(4,53,141)(2,215,166),77.778%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[4,3,2),(4,214,147)(4,52,144)(2,215,166),77.778%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
(4,3,2),(4,216,151)(4,52,144)(2,215,166),77.778%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,1),(6,160,115)(2,53,158),77.778%
Accept (a) or reject {(r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,1],(6,155,115)(2,53,158),77.778%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
14,3,2,1),(4,214,147)(4,53,141)(2,215,166){(2,53,158),75%
Accept (a) or reject (r)?

r. :

Object: car

PartSet, FeatureSet, Probability:
[4,3,2,11,(4,214,147)(4,52,144)(2,215,166)(2,53,158),75%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
{4,3,2,1),(4,216,151)(4,52,144)(¢(2,215,166)(2,53,158),75%
Accept (a}) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,4,21,(6,160,115)(4,214,147)(2,215,166),75%
Accept (a) or reject (r)?

.

Object: car

PartSet, FeatureSet, Probability:
{5,4,21,(6,160,115)(4,216,151)(2,215,166),75%
Accept (a) or reject (r)?

r,
Object: car

PartSet, FeatureSet, Probability:
[5,41,(6,160,115)(4,214,147),72.727%
Accept (a) or reject (r)?

r.

276

Object: car

PartSet, FeatureSet, Probability:
[5,4},(6,160,115)(4,216,151}),72.727%

Accept (a) or reject (r)z

r.

Object: car

PartSet, FeatureSet, Probability:
[(5,4,1),(6,160,115)(4,214,147)(2,53,158),71.429%
Accept (a) or reject (r)?

r.

Cbject: car

PartSet, FeatureSet, Probability:
{5,4,1],(6,160,115)(4,216,151)(2,53,158),71.429%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[5,4,3,2]1,(6,160,115)(4,214,147)(4,53,1412)(2,215,166),66.667%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
(5,4,3,21,(6,160,115)(4,214,147)(4,52,144)(2,215,166),66.667%
Accept (a) or reject (r)z

r.

Object: car

PartSet, FeatureSet, Probability:
{5,4,3,21,(6,160,115)(4,216,151)(4,52,144)(2,215,166),66.667%
Accept {(a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[5,4,3]1,(6,160,115)(4,214,147)(4,53,141),66.667%
Accept (a) or reject (r})>

r.

Object: car

PartSet, FeatureSet, Probability:
{5,4,31,(6,160,115)(4,214,147)(4,52,144),66.667%
Accept (a) or reject (r)z

r.

Object: car

PartSet, FeatureSet, Probability:

[5,4, 3],(6 160, 115)(4 216,151)(4,52,144),66.667%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[5,3),(6,160,115)(4,53,141),66.667%

Accept {(a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
{5,3),(6,160,115)(4,52,144),66.667%

Accept (a) or reject (r)z

r.

Object: car

PartSet, FeatureSet, Probability:
(5,3),(6,155,115)(4,53,141),66.667%

Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
[5,3},(6,155,115)(4,52,144) ,66.667%

Accept (a) or reject (r)?

r.

Object: car

277

PartSet, FeatureSet, Probability:
[5,4,3,2,1),(6,160,115)(4,214,147)(4,53,141)(2,215,166)(2,53,158),60%
Accept {a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,4,3,2,11,(6,160,115)(4,214,147)(4,52,144)(2,215,166)(2,53,158),60%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
{5,4,3,2,11,(6,160,115)(4,216,152}(4,52,144)(2,215,166)(2,53,158),60%
Accept {a) or reject (r}?

a.

yes
| ?-search{car,16,0}.

Object: car

PartSet, FeatureSet, Probability:
[5,3,2,1),(5,164,116)(4,94,145)(1,200,156)(1,94,164}),100%
Accept (a) or reject (r)?z

a.

Object: car

PartSet, FeatureSet, Probability:
[5,1),(6,163,113)(3,94,156),0%

Accept (a) or reject (r)?

r.

yes

| ?-search{car,17,0).

Object: car

PartSet, FeatureSet, Probability:
(5,11,(5,140,108){(1,75,138},57.143%
Accept {(a} or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,1],(6,158,103)(1,75,138),33.333%
Accept (a) or reject (r)?

a.

yes

i ?-search(car,20,0).

Object: car

PartSet, FeatureSet, Prcbability:
[5,2,1],(6,156,123)(2,196,167)(2,65,160),100%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[2,1),(2,196,167)(2,65,160),100%
Accept (a) or reject (r})?

r.
Object: car

PartSet, FeatureSet, Probability:

278

13,2),(4,65,146)(2,196,167),88.889%
Accept (a) or reject (r)z

r.
Object: car

PartSet, FeatureSet, Probability:
(3,2,1],(4,65,146)(2,196,167)(2,65,160),87.5%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
(5,2},(6,156,123)(2,196,167),87.5%

Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
(5,3,2],(6,156,123})(4,65,146)(2,196,167),83.333%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
(5,3,2,1]1,(6,156,123)(4,65,146)(2,196,167)(2,65,160),80%
Accept (a) or reject (r)?

a.

yes
| 2-
% Prolog execution halted

/* ARKRRIAAAKRFA KRR A AN A ARAKR AR A AT AN KA ARA AR A A XA AR A A AR AR A b I AR Rk ARk kK */

/* RECOGNISE]l LISTING WITH DEFINITION OF DUPLICATES EXTENDED */

S* Training set, test as before */
/'k AR RS RS SR EES SR L EEFMEEEEELEE LSS EEEFEEEEEEESENTEEEEEEEEEEEE RS LR */

| ?-search(car,4,0).

Object: car

PartSet, FeatureSet, Probability:
(5,2,1),(5,163,122)(3,199,166)(3,70,166),100%
Accept (a) or reject (r)?

Sa,

yes

| ?-search(car,14,0).

Object: car

PartSet, FeatureSet, Probability:
(5,4,3,2,11,(6,160,115)(4,216,151)(4,52,144)(2,215,166)(2,53,158},100%
Accept (a) or reject (r)z .

a.

yes

*

| ?-search{car,16,0).

Object: car

PartSet, FeatureSet, Probability:
[5,2,1]1,(6,163,113)(1,200,156)(1,94,164}),100%
Accept (a) or reject (r)?

r.

279

Object: car

PartSet, FeatureSet, Probability:
[3,2,1],(4,94,145)(1,200,156)(1,94,164),100%
Accept (a) or reject (r)?

r.

Object: car

PartSet, FeatureSet, Probability:
{5,2},(6,163,113)(1,200,156),100%

Accept (a) or reject (r)z

r.
Object: car

PartSet, FeatureSet, Probability:
(3,2],(4,94,145)(1,200,156),100%
Accept (a) or reject {(r)?

r.
Object: car

PartSet, FeatureSet, Probability:
(2,1},(1,200,156)(1,94,164),100%
Accept (a) or reject (r}?

r.

Object: car

‘PartSet, FeatureSet, Probability:
{5,1]1,(6,163,113)(1,94,164) ,66.667%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[4,23,(4,94,145)(1,94,164),60%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[4,2],(4,94,145)(3,94,156),50%
Accept {(a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
{3,1),(4,94,145)(1,94,164),50%
Accept (a) or reject (r}?

r.
Object: car

PartSet, FeatureSet, Probability:
[5,2,11,(6,163,113)(1,200,156)(3,94,156),0%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
{3,2,1],(4,94,145)(1,200,156){3,94,156),0%
Accept (a) or reject (r)z

r.
Object: car

PartSet, FeatureSet, Probability:
[5,1),(6,163,113}(3,94,156),0%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
[3,1],(4,94,145)(3,94,156),0%
Accept (a) or reject (r)?

r.
Object: car

PartSet, FeatureSet, Probability:
([2,13,(1,200,356)(3,94,156),0%
Accept (a) or reject (r)?

r.

280

yes

.

| ?-search(car,17,0).

Object: car

PartSet, FeatureSet, Probability:
[5,11,(5,140,108)(1,75,138),100%
Accept (a) or reject (r)z

a.

yes

| ?-search(car,20,0).

Object: car

PartSet, FeatureSet, Probability:
[5,3,2,1),(6,156,123)(4,65,146)(2,196,167)(2,65,160),100%
Accept (a) or reject (r)?

a.

yes
| 2-

-]

% Prolog execution halted

281

/* recognise2/shapescheck */
/* dhkhkkhkkhkkhhkkkhkhkhkhhkhhkkkhkkhhhkhhhkhkhkhkdhkkikhhhkkkhkkkhkhkhkhkhkhkhkkkhkhkkhhkhkkhkhkikiik

S hkkk Background Checks on Shapes
/* Rhkkkhkhkhhhkhhkkhkkhhkkkkkhhikhhhkhkhhkhhihkkhhhkhhhhhhkkkkkkhkhhkhhikhhhkkkxhkhiki

/* No checks on rectangles.

background_check (rectanglel, PlcNo, 2)
background_check (rectangle2,PicNo, ,&)

/* Checks that all other potential shapes have two adjacent sides of
/* ecual length.

background | check(big_square,PicNo, [3,1], [F1,F2]):~-

opp051te corners(PlcNo [F1,F2]).
background check(big_square,PicNo, [4,2], [F1,F2]):-

opp051te corners (PicNo, [F1, F21).
background check(little scuare,PicNo,[3,1],[F1,F2]):-

opp051te corners (PicNo, [F1,F2]).
background check(little square,PicNo,[4,2],[F1,F2]):~

opp051te corners(PlcNo [F1,F2]).
background |_check(trianglel,PicNo,[3,2],[F1,F1]):~-

opp051te_corners(P1cNo,[Fl,Fz]).
background_check(triangle2,PicNo,[3,2],[F1,F2]):-
1

oﬁposite_corners(PicNo,[Fl,Fz]).
background_check(triangle3,PicNo,(3,2],[F1,F2]):-
1

oépositeLporners(PicNo,[Fl,F2]).
background check(triangle4,PicNo,(3,2],(F1,F2]):-
] .

b
opposite corners(PicNo, {F1,F2]).
background_check(_,PicNo,_,[F1,F2]):- !.

background check(_,PicNo,_,[F1,F2|Rest]):~
member (F3,Rest) ,
'

*r
equal sides(PicNo,[F1,F2,F3]).

equal_sides(PicNo, (F1,F2,F3]):~-
problembb2 (feature, (PicNo,F1, ,X1,Y1)),
problembb?2 (feature, (PicNo,F2, ,X2,Y2)),
problembb2 (feature, (PicNo,F3, ,X3,Y3)),
L1 is (X1 + Y1 - X3 - ¥3),
I2 is (X2 + Y2 - X1 - Y1),
I3 is (X3 + ¥3 - X2 - ¥2),
(L1 > 0, D1 is L1; D1 is ~11),
(L2 > 0, D2 is L2; D2 is -12),
(L3 > 0, D3 is L3; D3 is -L3),
equal length(D1,D2,D3).

opposite_corners(PicNo, [F1,F2]):-
problembb?2 (feature, (PicNo,Fl, ,X1,Y1)),
problembb?2 (feature, (PicNo,F2, ,X2,Y2)),
(X1 > X2, Ll is X1 -~ X2; L1 is X2 - X1),
(Y1 > Y2, 12 is Y1 - ¥2; L2 is ¥2 - Y1),
Ll = 12,

equal_length(Ll,I12,L3):-

282

Ll = L2' 1.
equal_length(Ll,L2,L3) :-

I2 = L3, 1.
equal_length(Ll,L2,L3):-
3 =11, !.

283

/* hhkkkhkkhkhkhkhkhhhkhkhkhkdkkhhkhkhhkhkhhkhkhkhkhkhkhkhkhhkhhhkhhhkhhkhkhkhkkhkhhkhkkhhhkhkhikiks

Sx kkkk RECOGNISE2 LISTING %ok kk

/* *%*% Rectangles training data loaded after first set of tests *
PR T L L Ty

21 % prolog

C Prolog version 1.5a.ikbs _

% Restoring file /usr/lib/prolog/saved_states.d/Prologl.5a
| ?- [master].

yes
| ?- init.

Duplicates 1imit? 0.

Percentage prob. threshold for automatic acceptance?
(For no automatic acceptance, enter 110) 110.
Percentage prob. thresheld for referral to user? 0.
Bid execution manual (m) or automatic (a)? a.

What now?
(Enter "help." to view options)
|: [test].

shapescheck consulted 2268 bytes 0.11667 sec.
shapesgen consulted 984 bytes 0.083334 sec.
shapesl consulted 2000 bytes 0.23333 sec.
shapes2 consulted 2000 bytes 0.23333 sec.
test consulted 7252 bytes 0.73333 sec.
Editing picture:2

Editing picture:1l

Learning: triangle4

Learning: triangle3

Learning: triangle2

Learning: trianglel

Learning: little square

Learning: big_square

Bid list empty

What now?
(Enter "help." to view options)
| : [shapes3].

shapes3 consulted 1008 bytes 0.1 sec.
Editing picture:3
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:

for: triangle4
for: triangle2
for: trianglel
for: little_ square
for: big_square

Wwiwww

Object: big_square
bottom_left, (10,50)
bottom_right, (50,50)
top_right, (50,10)

top_left, (10,10)
Probability: 100%

Accept (a) or reject (r)?a.

284

* ¥ ¥ *

Object: big_square
bottom_right, (110,70)
top_right, (110,20)
Probability: 100%

Accept (a) or reject (r)?r.

Object: little square
bottom_left, (90,70)

bottom right, (110,70)
top_right, (110,50)
top_left, (90,50)
Probability: 100%

Accept (a) or reject (r)?a.

Object: little_square
bottom_left, (30,70)
bottom_right, (50,70)
top_right, (50,50)

top_left, (30,50)
Probability: 100%

Accept (a) or reject (r)?a.

Object: little_square
bottom_right, (110, 50)
top_right, (110,20)
Probability: 100%

Accept (a) or reject (r)?r.

Cbhject: trianglel

bottom, (50,70)

right, (20,30)

right_angle, (50,30)
Probability: 100%

Accept {a) or reject (r)?a.

Object: triangle2

left, (80,20)

bottom, {(110,50)
right_angle, (110,20)
Probability: 100%

Accept (a) or reject (r)?a.

Feedback: triangle2, Picture 3
Feedback: trianglel, Picture 3
Feedback: little_square, Picture 3
Feedback: big square, Picture 3
Removing: 3

Bid list empty

What now?
(Enter "help." to view options)
| : [shapes4].

shapes4 consulted 1056 bytes 0.11667 sec.
Editing picture:4
Searching picture:
Searching picture:
Searching picture:
Searching picture:

for: little_square
for: trianglel
for: big_square
for: triangle3

b b b

285

Object: triangle3

top, (115, 70)

left, (95,90)

right_angle, (115,90)
Probability: 100%

Accept (a) or reject (r)?a.

Object: big_square
bottom_left, (55,80)
bottom_right, (115,80)
top_right, (115, 20)
top_left, (55,20)
Probability: 100%

Accept (a) or reject (r)?a.

Object: big_square
top_right, (55, 40)

top_left, (5,40)
Probability: 100%

Accept (a) or reject (r)?r.

Object: trianglel

bottom, (35,70)

right, (65,40)

right_angle, (35,40)
Probability: 100%

Accept (a) or reject (r)?za.

Object: little_square
bottom_left, (5,70)
bottom_right, (35,70)
top_right, (35,40)

top left, (5,40)
Probability: 100%

Accept (a) or reject (r)?a.

Feedback: triangle3, Picture 4
Feedback: trianglel, Picture 4
Feedback: little_square, Picture 4
Feedback: big_square, Picture 4
Removing: 4

Bid list empty

What now?
(Enter "help." to view options)
| : show_rules(big square).

Part/Pattern No. matches:
top_left, Patternl
top_right, Pattern2
bottom_right, Pattern3
bottom_left, Pattern4

Distance limits(Partl,Part2,MinX,MaxX,MinY,Max¥):
top_right,top_left,40,60,0,0
bottom rlght top_left,40,60,40,60
bottom_right,top_ rlght 0,0 40 60
bottom left,top left,o0,0, 40 60
bottom_left,top_ rlght ~60 0,40,60

286

bottom left,bottom right,-60,-40,0,0

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,131,[12,1],5,4
(3.13,(3,1],9,4
{4,1],{4,1],5,4
[3,23,[3,2],6,4
[4,2),[4,2],5,4
[4,3],(4,3),4.,4
{3,2,1),(3,2,1],5
[4,2,11,(4,2,1),4
[4,3,1],([4,3,1],5
{4,3,2]),[4,3,2],4
[(4,3,2,1},(4,3,2 14,4

What now?

(Enter '"help." to view options)

: show_rules(little_square).

What now?
(Enter "help." to view options)
|: <er.

Current automatic acceptance threshold is 110
New wvalue? 100.

Current threshold for referral to user is 0
New value? 0.

What now?
(Enter "help." to view options)
| : [shapes5].

shapes5 consulted 864 bytes 0.1 sec.
Editing picture:5
Searching picture: 5 for: little square

Object: little_square
bottom_left, (80,60)
bottom right, (100,60)
top_right, (100,40)
top_left, (80,40)
Accepted.

Searching picture: 5 for: big_ square
Searching picture: 5 for: triangle3

Object: triangle3
top, (100,60)

left, (60,100)
right_angle, (100,100)
Accepted.

Searching picture: 5 for: triangle2

Object: triangle2
left, (10,20)

287

bottom, (60,70}
right_angle, (60,20)
Accepted.

Searching picture: 5 for: triangle4

Object: triangle4
right, (60,100)

top, (40,80)

right angle, (40,100)
Accepted.

Object: triangle4
right, (50,60)

top, (20,30)
right_angle, (20,60)
Accepted.

Feedback: triangle4, Picture 5
Feedback: triangle3, Picture 5
Feedback: triangle2, Picture 5
Feedback: little_square, Picture 5
Feedback: big square, Picture 5
Removing: 5

Bid list empty

What now?
(Enter "help." to view options)
| : [shapes6].

Bid list empty

What now?
(Enter "help." to view options)
| : alter.

Current automatic acceptance threshold is 100
New value? 110.

Current threshold for referral to user is 0
New value? 0.

What now?
(Enter "help." to view options)
: [rectanglesgen].

rectanglesgen consulted 264 bytes 0.016691 sec.
Bid list empty

What now?
(Enter "help." to view options)
| : [shapes?].

shapes7 consulted 1600 bytes 0.18334 sec.

Editing picture:7
Learning: rectangle2

288

Learning: rectanglel
Bid list empty

What now?
(Enter "help." to view options)
| : show_rules(rectanglel).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
{2z,11,12,11,3,2
(3,1]1,[(3,1],2,2
(4,11,(4,11,4,2
[(3.2],[(3,2],4,2
(4,2],[4,2]1,3,2
(4,31,(4,3],3,2
(3,2,1]1,[3,2,1]
(4,2,1],[4,2,1]
(4,3,1],(4,3,1]
(4,3,2],04,3,2]
{4f3'2]‘1]’[4l3l l2'2

What now?

(Enter "help." to view options)
| : show_rules(rectangle2).

» L] L] - - -

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,1],02,1],4,2
(3,13,03,11,3,2
(4,1],(4,1],2,2
(3,2],[3,2]1,2,2
(4,2],[4,2]),2,2
(4,3]),[4,3],4,2
(3,2,11,(3,2,1]1,2
[4,2,1],[4,2,1];2
(4,3,11,[4,3,1],2
[(4,3,2]),[4,3,2],2
[41‘3’2’1}'[47312 '2,2

What now?

(Enter "help." to view options)

| : [shapes8].

shapes8 consulted 2544 bytes 0.26667 sec.
Editing picture:8
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:

for: little_square
for: triangle4
for: triangle3
for: triangle2
for: trianglel
for: big square
for: rectangle2
for: rectanglel

0000000 MW

Object: rectanglel
bottom_left, (10,40)
bottom right, (60,40)
top_right, (60,10}

289

top_left, (10,10)
Probability: 100%
Accept (a) or reject (r)za.

Object: rectanglel
bottom_left, (50,80)
bottom_right, (100,80)
top_left, (50,40)
Probability: 100%

Accept (a) or reject (r)?r.

Object: rectanglel
bottom_left, (50, 60)
top_right, (100, 30)
top_left, (50,30)
Probability: 100%

Accept (a) or reject (r)?r.

(another 25 candidates)

Feedback: triangle4, Picture 8
Feedback: triangle3, Picture 8
Feedback: triangle2, Picture 8
Feedback: 1little_square, Picture 8
Feedback: big sguare, Picture 8
Feedback: rectangle2, Picture 8
Feedback: rectanglel, Picture 8
Removing: 8

Bid list empty

What now?
(Enter "help." to view options)
| : [shapes9].

What now?
(Enter "help." to view options)
|: alter.

Current automatic acceptance threshold is 110
New value? 100.

Current threshold for referral to user is 0
New value? 0.

What now?
(Enter "help." to view options)
| : [shapes1o0].

shapesl0 consulted 1824 bytes 0 20006 sec.
Editing picture:10
Searching picture: 10 for: little square

Object: little square
bottom_left, (60,60)
bottom_right, (80,60}
top_right, (80,40)

290

top_left, (60,40)
Accepted.

Searching picture: 10 for: triangle4

Object: triangle4
right, (50,70)

top, (30,50)
Accepted.

Searching picture: 10 for: triangle3
Searching picture: 10 for: triangle2
Searching picture: 10 for: trianglel

Object: trianglel
right, (80,30)

right angle, (50,30)
Accepted.

Searching picture: 10 for: big square
Searching picture: 10 for: rectangle2
Searching picture: 10 for: rectanglel

Object: rectanglel
bottom left, (40,90)
bottom_right, (90,90)
top_right, (90,50)
top_left, (40,50)
Accepted.

Cbject: triangle3

left, (0,90)

right_angle, (30,90)
Probability: 87.5%
Accept (a) or reject (r)?za.

(ancther 7 candidates)

Feedback: triangled4, Picture 10
Feedback: triangle3, Picture 10
Feedback: trianglel, Picture 10
Feedback: little_square, Picture 10
Feedback: big_square, Picture 10
Feedback: rectangle2, Picture 10
Feedback: rectanglel, Picture 10
Removing: 10

Bid list empty

What now?

(Enter "help." to view options)

| : [shapesll].

shapesll consulted 2064 bytes 0.23345 sec.
Editing picture:11

Searching picture: 11 for: little_square

Object: little_square

291

bottom_left, (50,80)
bottom_right, (70,80)
top_right, (70,60)
top_left, (50,60)
Accepted.

Searching picture: 11 for:

Object: triangled
right, (90,50)

top, (70,30)
right_angle, (70,50)
Accepted.

Searching picture: 11 for:

Object: triangle3
top, (60,40)

left, (30,70)

right angle, (60,70)
Accepted.

Searching picture: 11 for:
Searching picture: 11 for:
Searching picture: 11 for:

Object: triangle2
left, (70,10)

bottom, (110,50)
right_angle, (110,10}
Accepted.

Object: triangle2
left, (80,100)
right_angle, (110,100)
Accepted.

Searching picture: 11 for:
Searching picture: 11 for:

Object: rectangle2
bottom_left, (20,60)
bottom_right, (40, 60)
top_right, (40,10)
top_left, (20,10)
Accepted.

Object: triangle4

top, (110,80)

right_angle, (110,100)
Probability: 85.714%
Accept (a) or reject (r)za.

(another 6 candidates)

What now?

triangle4

triangle3

trianglel
big_square
triangle2

rectanglel
rectangle2

292

(Enter "help." to view options)
: show_rules(big _square).

- » » -

Set probabilities(PartSet,PatternsSet,FeatureSets,Matches):
{2,1),(2,1),11,5 y
(3,2,11,(3,2,11,9,5
(4,2,1]1,(4,2,1],8,5
(4,3,2],(4,3,2],11,6
(4,3,2,11,(4,3,2,11,8,5
(3,11,{3,1),29,5
(4,1],(4,1],15,5
(3,2),1(3,2],18,7
[4,231,14,2],25,6
[4,3]),04,31,16,6
{4,3,1}1,{4,3,1],13,5

What now?
(Enter "help." to view options)
| : show_rules(little_square).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
{2,131,[2,1),19,10
[(3,2],13,1),12,9
{4,1),[4,1],19,10
{3,21,(3,21,19,9
(4,2),(4,2],11,10
(4,3},(4,3],19,10
(3,2,1},(3,2,1],10,9
(4,2,11,(4,2,1),11,10
(4,3,1],(4,3,1],10,9
(4,3,2],[4,3,2],9,9
(4,3,2,1],(4,3,2,1],9,9

What now?
(Enter "help." to view options)
| : show_rules({trianglel).

. - . -

What now?
(Enter "help." to view options)
| : show_rules(rectanglel).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,11,12,11,7,5
{4,1],[4,1],10,4
[3,2],(3,2),9,5
t4,31,04,3],7,4
[3,2,1]1,(3,2,1},5,
(4,2,1]1,[4,2,1],5,
(4,3,11,[04,3,1),5,
[4,3,2],(4,3,2],4,
(4,3,2,1],(4,3,2,1
{3,13,3,1],12,5

14,4

293

[4,2]1,(4,2]1,10,4

What now?
(Enter "help." to view options)
| : show_rules(rectangle2).

- . - *

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,1},[(2,1],16,4
(3,1),(3,1],11,5
(4,1},(4,1],8,6
(3,23,[3,2],8,4
(4,2],(4,2]),7,4
(4,31,(4,3),15,5
[3,2,1]1,(3,2,1],4,4
(4,2,1),[4,2,1],5,4
[4,3,11,(4.3,11,7,5
[4,3,2],(4,3,2],5,4
(4,3,2,11,(4,3,2,1],4,4

What now?

(Enter "help." to view options)
|+ quit.

yes

| 2-

% Prolog execution halted

294

/* khkkhkhhkdhhhhhhhhhkkhhkdthrhdhkohhhhhkhhdrhdhhhkhkkhkhhhhdhhrkhkhhhhkhk

[* KEkEk RECOGNISE2 LISTING
/* **%%x All training data loaded at start of system run

% d % &
sk %k ok

/* hhkhkkhkhkhihkhkhhkhhkhkhkhhkhkkhkikkkkkhkhkkhkkhhkhhhkhhhkhhkkhkhkkhkhhhhkhhkkhkk

21 % prolog

C Prolog version 1.5a.ikbs

% Restoring file /usr/lib/prolog/saved_states.d/Prologl.5Sa
| ?- [master].

yes

Duplicates 1limit? 0.

Percentage prob. thresheld for automatlc acceptance’
(For no automatic acceptance, enter 110) 110.
Percentage prob. threshold for referral to user? 0.
Bid execution manual (m) or automatic (a)? m.

What now?
(Enter "help." to view options)
[+ [test].

shapescheck consulted 2268 bytes 0.13333 sec.
shapesgen consulted 984 bytes 0.083335 sec.
shapesl consulted 2000 bytes 0.21667 sec.
shapes2 consulted 2000 bytes 0.25 sec.

test consulted 7252 bytes 0.7 sec.

What now?
(Enter "help." to view options)
| : [rectanglesgen].

rectanglesgen consulted 264 bytes 0.016668 sec.

What now?
(Enter "help." to view options)
| : [shapes7].

shapes7 consulted 1600 bytes 0.18333 sec.

What now?
(Enter '"help." to view options)
| : help.

Options available are:

Read in a data file: "[filename].™

Execute the next bid: "run."

Switch to automatic bid execution: "auto.™

View the recognition rules for an cobject: "show rules(object)
Alter acceptance/referral thresholds: "alter."

Quit the system: "quit."

What now?
(Enter "help." to view options)
| : auto.

Editing picture:7

295

*/
*/
*/
*/

Editing picture:2
Editing picture:1l
Learning: rectangle2
Learning: rectanglel
Learning: triangle4
Learning: triangle3
Learning: triangle2
Learning: trianglel
Learning: little square
Learning: big_square
Bid list empty

What now?
(Enter "help." to view options)
| : show_rules(rectanglel).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,1],(2,11,3,2

(3,1),03,1},2,2

(4,1),(4,1],4,2

(3,2),[3,2],4,2

(4,2]),04,2],3,2

(4,3]1,(4.,31.3,
(3.2,13,(3,2,1
(4,2,1],(4,2,1
[4,3,1],[4,3,1
(4,3,21,(4,3,2
[41‘3!‘2'1].'[4’3 121‘2

What now?

(Enter "help." to view options)
| : #BbapenddeZrectangle2).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,1],(2,1]),4,2
[(3,11,[(3,1],3,2
(4,1],(04,1]),2,2
(3,21,[3,2],2,2
[(4,2],04,2),2,2
(4,3),[4,3]),4,2
[(3,2,11,(3,2,1]
(4,2,1],(4,2,1]
(4,3,1],[4,3,1]
[4,3,2],[4,3,2]

[

2
2
2
2
(4,3,2,1),(04,3,2,

r
r
!
r
2 P 2,2

What now?
(Enter "help." to view options)
: [shapes3].

shapes3 consulted 1008 bytes 0.11668 sec.
Editing picture:3

Searching picture: 3 for: rectangle2
Searching picture: 3 for: rectanglel
Searching picture: 3 for: triangle4
Searching picture: 3 for: triangle2

296

‘Searching picture: 3 for: trianglel
Searching picture: 3 for: little_square
Searching picture: 3 for: big_square

Object: little square
bottom_left, (90,70)
bottom_right, (110, 70)
top_right, (110,50)
top_left, (90,50)
Probability: 100%

Accept (a) or reject (r)?a.

Object: little square
bottom_left, (30,70)
bottom_right, (50,70)
top_right, (50,50)

top_left, (30,50)
Probability: 100%

Accept (a) or reject {r)?a.

Object: trianglel

bottom, (50,70)

right, (90,30)

right_angle, (50,30)
Probability: 100%

Accept (a) or reject (r)?a.

Object: triangle2

left, (80,20)

bottom, {(110,50)
right_angle, (110, 20)
Probability: 100%

Accept (a) or reject (r)?a.

Object: big_square
bottom left, (10,50)
bottom_right, (50,50)

top right, (50,10)

top_left, (10,10)
Probability: 66.667%
Accept (a) or reject (r)?a.

Feedback: rectangle2, Picture 3
Feedback: rectanglel, Picture 3
Feedback: triangle2, Picture 3
Feedback: trianglel, Picture 3
Feedback: little_square, Picture 3
Feedback: big_square, Picture 3
Removing: 3

Bid list empty

What now?
(Enter "help." to view options)
! [shapes4].

shapes4 consulted 1056 bytes 0.11667 sec.
Editing picture:4

Searching picture: 4 for: little_square
Searching picture: 4 for: trianglel
Searching picture: 4 for: big square

297

Searching picture: 4 for: rectangle2
Searching picture: 4 for: rectanglel
Searching picture: 4 for: triangle3

Object: triangle3

top, (115,70)

left, (95,90)

right angle, (115,90)
Probability: 100%

Accept (a) or reject (r)?a.

Object: rectanglel
bottom_left, (55,80)
bottom_right, (115,80)
top_left, (55,40)
Probability: 100%

Accept (a) or reject (r)?r.

(another 6 candidates)

. L] [- - *

What now?
(Enter '"help." to view options)
|: [shapes5].

shapes5 consulted 864 bytes 0.11669 sec.
Editing picture:s

Searching picture::
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:
Searching picture:

for: little square
for: trianglel
for: big square
for: triangle3
for: triangle2
for: rectangle2
for: rectanglel
for: triangle4

oo

Object: triangle4

right, (60,100)

top, (40,80)

right angle, (40,100)
Probability: 100%

Accept (a) or reject (r)?a.

(another 4 candidates)

What now?
(Enter "help." to view options)
|: [shapesé].

shapes6 consulted 1488 bytes 0.15002 sec.
Editing picture:6

Searching picture: 6

Bid list empty

What now?
(Enter "help." to view options)

298

| : show_rules(big_square).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,1],(2,1],8,5
(3,1},(3,1],11,5
(4,11,(4,1],9,5
(3,231,03,2]1,12,5
(4,23,(4,2]1,20,5
(4,331,(4,3]1,8,5
(3,2,13,{3,2,1),7,
(4,2,1],(4,2,1],6,
(4,3,1],(4,3,1],7,
(4,3,2],(4,3,2],8,
(4,3,2,1]),(4,3,2,1},6,5

What now?

(Enter "help." to view options)
| : show_rules(little_square).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(2,1],(2,1]1,9,6
(3,1],(3,1]1,6,6
(4,2],(4,2],6,6

(3,2,1),(3,2,1),6,6
(4,2,11,(4,2,1},6,6
(4,3,1),(4,3,1),6,6
(4,3,2],[4,3,2],6,6
(4,3,2,1),(4,3,2,1],6,6

(4,1),[4,1],9,6
(3.2]),(3,2],9,6
(4,3),[4,3],10,6

What now?
(Enter "help." to view options)
¢ show_rules(trianglel).

What now?
(Enter "help." to view options)
: show_rules(tecdngydBl) .

L] - . L]

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(3,2,13,[3,2,1],2,2

{4,3,2,1]1,(4,3,2,1],2,2

{3,13},[3,13,4,2

t4,1]1,04,1},7,2

[412!‘1]'[412l1
(4,3,11,[4.,3,1
(3,2]1,[3,2],8,
(4,21,[4,2]1,5,
(4,3,2],[4,3,2
(2,1],[2,1],s6,

/3,2
13,2

]
]
2
2
1,3,2
2

299

(4,31,04,3],6,2

What now?
(Enter "help." to view options)
| : show_rules (rectangle2).

Set probabilities(PartSet,PatternSet,FeatureSets,Matches):
(3,2,1),[3,2,1],2,2

[4,2,1],([4,2,1],2,2

(4,3,2,1]1,[4,3,2,1),2,2

(2,11,(2,13,9,2

(3,13,{3,1).,4,2

[4,1),(4,1],3,2

{3,2]1,(3,2]),4,2

[4,2],(4,2],4,2

(4,31,(4,3),10,2
{4,3,1),[4,3,1],3,2
(4,3,2]1,(4.3,2],4,2

What now?

(Enter "help." to view options)
| : help.

Options available are:

Read in a data file: "[filename]."

Switch to manual bid execution: "man."

View the recognition rules for an object: "show_rules(Object)."
Alter acceptance/referral thresholds: '"alter."

Quit the system: "quit."

What now?

(Enter "help." to view options)
]+ quit.

yes

| 2-

% Prolog execution halted

300

21

hhkkkhkkhhkhkhkdkhhdhhkhhkhkhkkhkhkhhkikhkkhkkhkhhhhhkhkhkhkhhhkhhktrthhhhkhkdhdhdhkhhkk

*kkk RECOGNISE2 LISTING Jk ke

Tk kk Traffic data e ok ke ke
hkhhhhkkhhkdkkhhhhhkhhhhdhkkh R hk kAR Ak khhh Ak hhkhkhhhhddhkdhhdk

% prolog

C Prolog version 1.5a.ikbs
% Restoring file /usr/lib/prolog/saved_states.d/Prologl.5a

| rl
- Ld

yves
| ird

?- [master].

- L] . .

Ha init.

Duplicates 1imit? 3.

Percentage prob. threshold for automatic acceptance?
(For no automatic acceptance, enter 110) 110.
Percentage prob. thresheld for referral to user? 0.
Bid execution manual (m) or automatic (a)? a.

What now?
(Enter "help." to view options)

tra
tra
tra
tra
tra
tra

[ttest].

fficgen consulted 840 bytes 0.066668 sec.
fficcheck consulted 176 bytes 0.016667 sec.
fficl consulted 4832 bytes 0.5 sec.

ffic2 consulted 4860 bytes 0.53333 sec.
ffic3 consulted 3664 bytes 0.38333 sec.
ffic4 consulted 1920 bytes 0.21667 sec.

ttest consulted 16292 bytes 1.8 sec,

Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing

Learning:
Learning:
Learning:

picture:16
picture: 15
picture:14
picture:13
picture:12
picture:1l1
picture: 10
picture:9
picture:8
picture:?
picture:6
picture:s
picture:4
picture:3
picture:2
picture:1

van

Learning: car
Bid list empty

big lorry
small lorry

What now?

(Enter "help." to view optlons)

shopwrules(car).

Part/Pattern No. matches:

501

* N ¥ ¥

rear_wheel, Patternl
front_wheel, Patternl
top, Pattern4
front_window, Pattern5 -

Distance limits(Partl,Part2,MinX,MaxX,MinY,MaxY):
rear_wheel,front wheel,-92,-41,0,1

top, front_wheel,-16,-11,-16,-15

top, rear_wheel,28,79,-17,-16

front_window, front_wheel,-24,-20,-17,-12
front_window, rear_wheel,20,72,~17,-13
front_window,top,-12,-7,-1,3

Set probabilities(PartsSet,PatternSet, FeatureSets,Matches):
(2,1),f1,1},10,5
(3,1),{4,1],5,5
[4,1),(5,1],5,5
[3,2),[4,1],5,5
(4,2],[5,1],6,5
(4,3),[5,4],6,5
(3,2,11,[04,1,1]
(4,2,1]),([5,1,1]
{4,3,1],[5,4,1]
{4,3,2],[5,4,1]
(4,3,2,1],[5,4,

What now?
(Enter "help." to view options)
|: [trafficlol].

trafficl0l consulted 720 bytes 0.10001 sec.
Editing picture:101

Searching picture: 101 for: wvan

Searching picture: 101 for: car

Searching picture: 101 for: small lorry
Searching picture: 101 for: big lorry

Object: big_lorry
wheel3, (139,133)

wheel2, (237,132)
Probability: 100%

Accept (a) or reject (r)?r.

Object: small lorry
cab_top, (245,103)
rear_wheel, (139,133)

front wheel, (237,132)
Probability: 100%

Accept (a) or reject (r)za.

Feedback: big_lorry, Picture 101
Feedback: small_lorry, Picture 101
Removing: 101

Bid list empty

What now?
(Enter "help." to view options)
|: [trafficlo02].

trafficl02 consulted 720 bytes 0.10005 sec.

302

Editing picture:io2
Searching picture: 102 for: wvan
Searching picture: 102 for: car

Object: car

front_window, (194,110)

rear wheel, (170,123)
front_wheel, (216,123)
Probability: 100%

Accept (a) or reject {(r)?za.

Feedback: van, Picture 102
Feedback: car, Picture 102
Removing: 102

Bid list empty

What now?
(Enter "help." to view options)
: [trafficl03].

trafficl03 consulted 816 bytes 0.1167 sec.
Editing picture:103

Searching picture: 103 for: car

Searching picture: 103 for: small lorry
Searching picture: 103 for: van

Searching picture: 103 for: big lorry

Object: big_lorry

wheelS, (68,145)

wheel2, (212,148)

wheell, (272,148)
Probability: 100%

Accept (a) or reject (r)?a.

Feedback: big_lorry, Picture 103
Removing: 103
Bid list empty

What now?
(Enter "help." to view options)
|: [trafficlo4].

trafficl04 consulted 720 bytes 0.083362 sec.
Editing picture:104

Searching picture: 104 for: car

Searching picture: 104 for: small_lorry
Searching picture: 104 for: van

Searching picture: 104 for: big lorry

Object: big lorry

wheel4, (100,139)

wheel3, {125,139)

wheell, (286,142)
Probability: 100%

Accept (a) or reject (r)?a.

Feedback: big lorry, Picture 104

Removing: 104
Bid list empty

303

What now?
(Enter "help." to view options)
| : [(trafficl05].

trafficl05 consulted 816 bytes 0.083358 sec.
Editing picture:105

Searching picture: 105 for: car

Searching picture: 105 for: van

Object: car

front_window, (360,110)

top, (367,108)

rear_wheel, (336,125)
Probablllty. 100%

Accept (a) or reject (r)?a.

Object: car

top, (52,116)

rear_wheel, {18,133)
Probability: 100%

Accept (a) or reject (r)?r.

Object: car

front_window, (46,118)

rear wheel (18 133)
Probablllty 85.714%
Accept (a) or reject (r)?a.

Feedback: van, Picture 105
Feedback: car, Picture 105
Removing: 105

Bid list empty

What now?
(Enter "help." to view optlons)
| : [trafflClOS]

trafficl06 consulted 480 bytes 0.050057 sec.
Editing picture:106

Searching picture: 106 for: small_lorry
Searching picture: 106 for: big lorry

Object: small lorry
cab_top, (257,123)
rear_wheel, {144,150)

front wheel (251,151)
Probability: 100%

Accept (a) or reject (r)?a.

Feedback: big lorry, Picture 106
Feedback: small_ lorry, Picture 106
Removing: 106

Bid list empty

What now?
(Enter "help." to view options)
|: [trafficlo7].

trafficl07 consulted 672 bytes 0.083333 sec.
Editing picture:107

304

Searching picture: 107 for: car
Searching picture: 107 for: small lorry
Searching picture: 107 for: van
Searching picture: 107 for: big_lorry

Object: small_lorry
cab_top, (225,100)
rear_wheel, (142,125)

front _wheel, (221,125)
Probability: 100%

Accept (a) or reject (r)?a.

Object: car

rear wheel, (101, 80)
front_wheel, (150,80)
Probability: 50%

Accept (a) or reject (r)?r.

Object: van

rear_wheel, (101,80)
front_wheel, (150,80)
Probability: 28.571%
Accept (a) or reject (r)?r.

Feedback: small lorry, Picture 107
Feedback: van, Picture 107
Feedback: car, Picture 107
Removing: 107

Bid list empty

What now?
(Enter "help." to view options)
| : [(trafficlos8].

trafficl08 consulted 816 bytes 0.083337 sec.
Editing picture:108

Searching picture: 108 for: car

Searching picture: 108 for: small_lorry
Searching picture: 108 for: van

Searching picture: 108 for: big_lorry.

Object: car

front_window, (250,119)
rear_wheel, (225,135)
Probability: 88.889%
Accept (a) or reject (r)?a.

Object: car

rear_wheel, (214,87)
front_wheel, (262,87)
Probability: 46.154%
Accept (a) or reject (r)?r.

Object: van

rear_wheel, (214,87)

front wheel, (262,87)
Probability: 26.667%
Accept (a) or reject (r)?r.

Feedback: van, Picture 108

305

Feedback: car, Picture 108
Removing: 108
Bid list empty

What now?
(Enter "help." to view options)
|: [traffic109].

trafficl09 consulted 816 bytes 0.083346 sec.
Editing picture:109

Searching picture: 109 for: car

Searching picture: 109 for: van

Object: car

front_window, (227,105}

top, (235,103)

rear_wheel, (205,120)
Probability: 100%

Accept (a) or reject (r)?za.

Object: car

rear_wheel, (125,75)
front_wheel, (175,75)
Probability: 40%

Accept (a) or reject (r)?r.

Object: van

rear_wheel, (125,75)
front_wheel, (175, 75)
Probability: 23.529%
Accept (a) or reject (r)?r.

Feedback: van, Picture 109
Feedback: car, Picture 109
Removing: 109

Bid list empty

What now?
(Enter "help." to view options)
|+ [trafficli0].

trafficll0 consulted 816 bytes 0.10001 sec.
Editing picture:110

Searching picture: 110 for: car

Searching picture: 110 for: van

Object: car
front_window, (192,107)
rear_wheel, (169,123)
Probability: 90.909%
Accept (a) or reject (r)?a.

Object: car

rear_wheel, (109,78)
front_wheel, (160,78)
Probability: 37.5%
Accept (a) or reject (r)?r.

Object: van
rear_wheel, (109,78)

306

front_wheel, (160,78)
Probability: 21.053%
Accept (a) or reject (r)?r.

Feedback: van, Picture 110
Feedback: car, Picture 110
Removing: 110

Bid list empty

What now?
(Enter "help." to view optlons)
| (trafficlll].

trafficlll consulted 912 bytes 0.10004 sec.
Editing picture:111

Searching picture: 111 for: car

Searching picture: 111 for: van

Object: van

front_window, (230,110)

rear wheel, (183,133)
front_wheel, (240,132)
Probability: 100%

Accept {a) or reject (r)?a.

Object: car

rear_wheel, {206,86)

front wheel {255,86)
Probablllty 35.294%
Accept (a) or reject (r)?r.

Object: van

rear_wheel, (206,86)

front wheel (255,86)
Probability: 19.048%
Accept (a) or reject (r)?r.

Feedback: wvan, Picture 111
Feedback: car, Picture 111
Removing: 111

Bid list empty

What now?
(Enter "help." to view options)
| : [trafficl12}.

trafficl12 consulted 768 bytes 0.083354 sec.
Editing picture:112

Searching picture: 112 for: car

Searching picture: 112 for: van

Object: van

front_window, (210,110}
rear_ wheel, (171,132)
front_wheel, (221,131)
Probability: 100%

Accept (a) or reject (r)?a.

Feedback: van, Picture 112
Feedback: car, Picture 112

307

Removing: 112
Bid list empty

What now?
(Enter "help." to view options)
|+ [trafficl13].

trafficl13 consulted 624 bytes 0.066687 sec.
Editing picture:113

Searching picture: 113 for: car

Searching picture: 113 for: small_lorry
Searching picture: 113 for: van

Searching picture: 113 for: big lorry

Removing: 113
Bid list empty

What now?
(Enter "help." to view options)
|: [trafficll4].

trafficll4 consulted 864 bytes 0.1 sec.
Editing picture:114

Searching picture: 114 for: car
Searching picture: 114 for: van

Object: car

front_window, (51,133)
rear_wheel, (27,146)
front_wheel, (71,145)
Probability: 100%

Accept (a) or reject (r)?a.

Object: car
front_window, (351,127)

rear wheel, (331,140)
Probability: 91.667%
Accept (a) or reject (r)?a.

Feedback: van, Picture 114
Feedback: car, Picture 114
Removing: 114

Bid list empty

What now?
(Enter "help." to view options)
|: [trafficlls5].

trafficll5 consulted 576 bytes 0.066699 sec.
Editing picture:115

Searching picture: 115 for: car

Searching picture: 115 for: van

Object: car
front_window, (142,108)

top, (149,106)

rear_wheel, (119,123)

front _wheel, (162,122)
Probability: 100%

Accept (a) or reject (r)?a.

308

Feedback: van, Picture 115
Feedback: car, Picture 115
Removing: 115

Bid list empty

What now?
(Enter "help." to view options)
| : [(trafficlle].

trafficllé consulted 528 bytes 0.066691 sec.
Editing picture:116

Searching picture: 116 for: car

Searching picture: 116 for: small lorry
Searching picture: 116 for: wvan

Object: small_lorry
cab_top, (247,118)
front_wheel, (240,145)
Probability: 100%

Accept (a) or reject (r)?za.

Feedback: small lorry, Picture 116
Removing: 116
Bid list empty

What now?
(Enter "help." to view options)
: show_rules(car).

Set probabilities(PartSet,PatternSet, FeatureSets,Matches):
{2,13,(1,1],23,8

[3,13,(4,1],9,6

{4,13,(5,1]1,10,8

{3,2},[4,1],10,8

{4,2},(5,2],15,14

(4,3},(5,4]1,12,8
[(3,2,11,[4,1,1],
{4,2,1]),([5,1,1],
(4,3,1),(5,4,1],
{4,3,2]),[5,4,1],
[4,3,2,1],[5,4,1

6,6
8,8
8,6
8,8
,1],6,6
What now? ,

(Enter "help." to view options)

: quit.

yes
P~

% Prolog execution halted
22 %
script done on Wed Jan 2 15:48:51 1991

309

