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ABSTRACT 

A blackboard-based system which learns recognition rules for 

objects from a set of training examples, and then identifies and locates 

these objects in test images, is presented. The system is designed to use 

data from a feature matcher developed at R.S.R.E. Malvern which finds the 

best matches for a set of feature patterns in an image. The feature 

patterns are selected to correspond to typical object parts which occur 

with relatively consistent spatial relationships and are sufficient to 

distinguish the objects to be identified from one another. 

The learning element of the system develops two separate sets of 

rules, one to identify possible object instances and the other to attach 

probabilities to them. The search for possible object instances is 

exhaustive; its scale is not great enough for pruning to be necessary. 

Separate probabilities are established empirically for all combinations 

of features which could represent object instances. As accurate 

probabilities cannot be obtained from a set of preselected training 

examples, they are updated by feedback from the recognition process. 

The incorporation of rule induction and feedback into the blackboard 

system is achieved by treating the induced rules as data to be held on a 

secondary blackboard. The single recognition knowledge source 

effectively contains empty rules which this data can be slotted into, 

allowing it to be used to recognise any number of objects - there is no 

need to develop a separate knowledge source for each object. Additional 

object-specific background information to aid identification can be added 

by the user in the form of background checks to be carried out on 

candidate objects. 

The system has been tested using synthetic data, and successfully 

identified combinations of geometric shapes (squares, triangles etc.). 

Limited tests on photographs of vehicles travelling along a main road 

were also performed successfully. 
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CHAPTER 1 

INTRODUCTION 

1.1. BACKGROUND AND PROJECT AIMS. 

The Royal Signals and Radar Establishment (R.S.R.E.) at Malvern have 

been engaged in a considerable amount of research in visual pattern 

recognition, much of which has been concerned with interpreting 

photographs of outdoor scenes. A particular area of study has been the 

location and identification of cars and other vehicles in black-and-white 

images of road scenes. 

One technique which R.S.R.E. have been working on is feature matching. 

The intention of their project was to produce a program which would find 

the ten 'best matches' fora given pattern (e.g. part of a car - a wheel 

shape, or a window shape) in a line-edged picture, giving mean x and y 

co-ordinates and a rating or cost for each match found. 

The initial motivation for this research was the desire to find some 

way to utilise the output from such a feature matcher in a system which 

would learn to locate and identify the vehicles in a road scene, or to 

perform other similar pattern recognition tasks. 

1.2. DESCRIPTION OFTHE FEATURE MATCHER. 

The feature matcher is based on a modification of the connected word 

recognition algorithm used extensively in speech recognition (Holmes, '88). 

This algorithm matches acoustic patterns for all the words to be 
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recognised to the incoming speech signal. One problem with the matching 

is that the speed of speaking varies; there may be differences in time 

scale between two utterances of the same word. A mathematical 

technique known as dynamic programming (or dynamic time warping, when 

applied to speech recognition) is used to compensate for time scale 

variations. This technique finds the least-cost path which matches frames 

of the speech pattern to frames of a word pattern, with the constraint that 

paths may advance one frame along either or both of the patterns being 

matched at each step. If d(i,il is a measure of the difference between 

frame i of the speech pattern and frame j of the template, D(i,il is the 

accumulated cost of the best path from the start of the match to (i,j) and p 

is a penalty to be attached to a one-frame time distortion, then as (i,il can 

be reached from (i-1,j), (i-1,j-1) or (i,j-1), 

O(i,il = min{0(i-1,il+p,O(i-1,j-1 ),O(i,j-1 )+p} + d(i,il. 

As all paths start from (1,1), 

0(1,1) = d(1,1). 

These formulae can be used to draw up an accumulated cost matrix and 

thus to establish the match cost. 

The E.L.S. (Edge List Search) technique for feature matching (Varga et 

aI., '89) uses dynamic programming, applying it to spatial distortion 

instead of temporal distortion. It is reference-data driven rather than 

observed-data driven: data is found to match a given reference shape 

rather than shapes being found to match given data, because the image data 

can be expected to contain a large amount of background information which 

does not require identification; observed-data driven techniques are more 

applicable to areas such as speech recognition where the data is 

one-dimensional rather than two-dimensional. 
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The first stage of the image processing involves using an operator 

based on the Sobel edge convolution to obtain a line-edge description. An 

algorithm which determines, normalises and thresholds the total change in 

line orientation within an eight-connected line segment is then applied to 

remove 'rough' lines representing vegetation in the background of the 

image. The resulting edge map is broken up into isolated line segments by 

removing points with more than two edge point neighbours and arbitrarily 

breaking closed shapes. Very short (one or two pixel) line segments are 

removed, as these generally represent noise. The outcome of the 

processing is a list of line segments, each of which is recorded in both 

forward and reverse directions in the form of a list specifying the 

horizontal and vertical position and orientation of each pixel. 

A 'linkage' matrix which specifies allowed connectivities between 

segments is drawn up by applying a threshold to the Euclidian distance 

between segment ends. This matrix is used to reduce the size of the 

search space and thus speed up the search. 

The reference model consists of a set of templates, or feature 

patterns, which are long unbroken edge segments. The system uses a 

one-pass dynamic programming technique to find sequences of observed 

segments which match each pattern, assigning a local match cost, which is 

a function of connectivity, segment shape and orientation, and an 

accumulated cost based on the best sequence of matches to date, to each 

match. 

Segment transitions are recorded in a decision matrix or linked list. 

When the end of the template is reached, the lowest accumulated cost is 

selected as the starting point for a traceback to give the sequence of 
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segments which represent the optimal match. If identified segments are 

deleted after traceback, the process can be repeated to yield a complete 

set of graded matches. 

1.3. CHARACTERISTICS AND LIMITATIONS OF THE MATCHER. 

The patterns for which matches are to be sought obviously need to be 

selected with care if the output of the matcher is to be useful. The 

approach which was initially adopted was to select a clear edged picture 

of a typical car, edit it to remove irregularities and breaks in the lines, 

then to select segments of this picture corresponding to standard car parts 

for matching. The segments initially used were: car wheel, wheel arch, 

front window, rear window, roof/bonnet shape. 

The matcher is intended to be sensitive to the exact shape of the 

pattern, so it is important that the patterns used should be as typical as 

possible of the car parts which they are intended to locate. There are 

considerable differences between the shapes of parts on different models 

of car; some experimentation may be necessary to decide which patterns 

will give the best matches on the widest possible range of models. As any 

one car is unlikely to be typical in all respects, it may be best to use a 

window shape from one picture, a roof shape from another etc. In order to 

match all examples adequately, it may be necessary to use more than one 

pattern for each part. 

The size of the patterns is also significant; where, for example, the 

pattern being matched is a circle (car wheel shape), good match ratings 

will only be obtained from circles of the same size as the pattern. A 
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square of approximately the same size may produce a better rating than a 

circle which is too big or too small. If vehicle parts are to appear 

approximately the same size in all the pictures to be studied, it is 

important that all vehicles should be photographed from approximately the 

same distance - from a fixed position alongside a road, for example. 

The variations in size and shape which inevitably occur in 'real' data 

mean that the matcher has to be fairly flexible if it is to pick up a useful 

proportion of the vehicle parts being sought, and this flexibility means 

that it will also inevitably detect a considerable number of 'false' 

features: windows in buildings in the background, small bushes etc. may be 

identified as possible car wheels or windows, and wheels and windows 

may be mistaken for one another or the same image feature may be 

identified as both. Initial trials suggested that the match ratings would 

not be a reliable indicator of the presence or absence of a car part, and 

that all matches whose ratings exceeded a threshold value (which would 

depend on the size and shape of the pattern) would have to be considered by 

the vehicle recognition process. 

Another problem when using 'real' data is that the features being 

sought often do not show up well in photographs, and may be lost 

altogether during the initial processing of the image to extract edges. 

Wheels are particularly difficult to pick up, especially in poor lighting 

conditions. The body outline may also not be clear, particularly if a 

vehicle is dark in colour and is photographed against a dark background. 

The list of matches found may, therefore, include only a few vehicle parts 

even if a complete, unoccluded vehicle appears in the photograph. 

The amount of information provided on each match is limited to the 
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pattern identifier, mean x and y co-ordinates and a rating (on which 

limited reliance can be placed). The task, therefore, is to develop a system 

which will learn to identify objects, given just the co-ordinates of a set 

of features of which a small proportion may belong to instances of one or 

more of the categories of object being sought. 

1.4. APPROACH. 

The learning and recognition problem outlined above may be split up 

into a number of sub-problems, which overlap one another to some extent. 

The first task is to select for each category of object to be identified a 

set of parts and corresponding feature patterns which should be sufficient 

to identify the object and to distinguish it from all the other possible 

objects. A set of pictures must then be obtained which show as wide a 

range of instances of the object as the system is intended to be able to 

identify, and training data must be obtained from these pictures for use in 

learning an object description. This training data should include feature 

match data on the pictures, and data giving the locations of all the 

relevant parts of each object instance. 

The training data must be used to develop a set of rules which define 

the object in terms of the parts being matched and the relationships 

between these parts. The rules must contain sufficient information to 

allow the recogniser to identify and group together the features which 

could correspond to a single object instance. 

The complete set of object parts may be sufficient to give a positive 

identification, but it must be borne in mind that when using real data, only 
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a few of the parts of any object instance may be detected. The 

identification rules must include some means of determining the likelihood 

that any incomplete part set represents an object instance. If the training 

data has been carefully preselected, it will not be possible to determine 

such likelihoods from this data; some form of continued learning, using . 
feedback about the performance of the recogniser on real data, will have to 

be employed. 

Finally, the recognisers for several different types of object must be 

linked together, along with a program for determining which data should be 

submitted to which recogniser, a means of resolving conflicts between the 

recognisers and a continued learning system for updating probabilities, to 

produce an integrated recognition system. Some means must be found of 

enabling the various elements of the system to interact and communicate 

with one another; a blackboard system would seem to offer the appropriate 

capabilities. 

1.5. RESEARCH CONSIDERATIONS AND OBJECTIVES. 

The main area of this research is pattern recognition, particularly the 

use of rule induction in developing pattern descriptions to enable effective 

visual identification of objects. The research objectives here are first, to 

study previous work in pattern recognition - both visual identification and 

pattern recognition in general - and to determine how to adapt existing 

methods to deal with the novel type of data being used here, and second, to 

look at rule induction techniques and determine how they can best be 

applied to the development of the appropriate rules from the training data 

available and how continued induction can be used to update the rules in 
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the light of the experience gained by the system in operation. 

A secondary area of interest is the use of blackboard systems for 

controlling the interaction of diverse knowledge sources to solve complex 

problems. Blackboard systems have already been used for a number of 

applications in the pattern recognition field, but existing systems use 

knowledge sources which are independent of one another; the major 

concern here is to find a way of adapting the standard blackboard model to 

allow one knowledge source (the learner) to modify and update other 

knowledge sources (the recognisers). 

The final topic for research is methods of handling uncertainty, both 

numerically and symbolically. Uncertainty arises here in the identification 

of image features, the selection of groups of features which represent 

different parts of a single object, the assignment of probabilities to 

feature seUobject part-set pairs and the resolution of conflicts between 

recognisers; appropriate methods need to be identified to deal with each of 

these. 

1.6. THESIS ORGANISATION. 

The following four chapters of this thesis contain literature surveys 

covering the areas of research outlined in the previous section: pattern 

recognition in Chapter 2, rule induction, including its application to 

pattern recognition, in Chapter 3, blackboard systems in Chapter 4 and 

methods of handling uncertainty in Chapter 5. 

The development and testing of the programs which have been 
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produced is covered by the next four chapters: Chapter 6 is on the design of 

a system which will deal with a single object, Chapter 7 describes the 

testing of this system, Chapter 8 explains how it was incorporated into a 

blackboard system to produce an image identifier capable of learning to 

recognise a range of different objects, and Chapter 9 describes the image 

identifier tests. Finally, Chapter 10 summarises what has been achieved 

and contains suggestions for further work. Appendix A contains a full 

listing of the image identifier system and Appendix B contains edited test 

runs. 
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CHAPTER 2 

PATTERN RECOGNITION 

2.1. WHAT IS PATTERN RECOGNITION? 

Firstly, what is recognition? A dictionary definition of recognise is: 

'to know again; to identify as known or experienced before; .. .'. 

Recognition depends first on knowledge; in order to be able to recognise 

something, you need to know what that something is, to have a definition 

that enables the 'something' to be distinguished from all other possible 

things. 

A pattern is not just a single, unique thing but an exemplar of a group 

of things. Learning a pattern implies learning a description which enables 

members of this group to be identified. Unless the group concept is very 

tightly defined, learning an adequate description will involve collating 

knowledge gained from a number of examples. Pattern recognition, then, 

implies learning descriptions of conceptual groups from sets of examples, 

then applying these descriptions to enable the correct classification of 

new examples. 

The pattern to be recognised can be a visual pattern, a sound pattern 

or a more abstract pattern such as a winning pOSition in a game of chess, a 

type of mathematical equation or the pattern of characteristics that 

distinguish the members of a biological species. Computer pattern 

recognition has found numerous applications, including robot vision 

systems, speech recognition systems, theorem pravers and medical 

diagnosis systems. 
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2.2. CATEGORISATION. 

The learning and utilisation of categories is one of the basic 

processes of human thought. There are estimated to be more than seven 

million discernible colours; since it is obviously impractical to have this 

many different colour names, we group them into a very much smaller 

number of categories to enable us to refer to them (Bruner et aI., '56). 

Similarly, we group people into the categories 'men' and 'women', 'adults' 

and 'children'; we group buildings into 'houses', 'shops', 'offices' etc. The 

categories we use depend on our language, our culture and our experience; 

they are to some extent individual, but if our category names are to be 

used for communication purposes there has to be some consensus about 

what defines a member of a particular category. 

Categories can themselves be categorised, for example as affective, 

functional or formal (Bruner et al.). The members of an affective category 

evoke a common affective response. An old parlour game involves guessing 

the person someone is thinking of by asking them questions such as: "If 

this person were an animal, what animal would they be? If they were a 

colour, what colour would they be?" The person, the animal and the colour 

belong to the same affective category. Such categories are difficult to 

define, and frequently nameless. Functional or utilitarian categories are 

easier to define: they consist of objects which fulfil a specific task 

requirement. Formal categories are still more tightly defined, by a 

specific set of attributes which their members possess. There are close 

links between these types of category; an affective or functional category 

can be converted into a formal category by developing rules which specify 

what its members have in common. 
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What is needed for pattern recognition by computer is just such a set 

of rules; the pattern to be recognised must be developed into a formal 

category. Determining the form and content of the rule set is the first 

major problem facing the designer of a recognition system. Moreover, the 

pattern attributes contained in the rule specifications must be ones which 

can be assessed readily from the information input to the recognition 

system. Herein lies a second major problem: where the input is, for 

example, a visual image, the extraction of the required attributes may be a 

far from elementary task. A large amount of preprocessing may be 

necessary to obtain a description of the object to be recognised in an 

appropriate form for presentation to the recognition program. 

2.3. DESIGN AND RECOGNITION - FORM AND FUNCTION. 

Consider the problem of defining the category 'car'. What is a car? 

We cannot say that a car must have a roof, a certain number of windows 

and four wheels, as we can find examples of cars which do not have these 

attributes. Our description of a complex artifact like this is likely to be 

couched in terms of function rather than form. 

Functional definitions of categories form one of the start points of 

the design process. The fundamental problem in design can be described 

from a functional viewpoint as: 

Given: a specification of functions which are required and functions which 

can be provided 

Find: a constructed structure from within the design task environment 

which satisfies the specification (and possibly certain restrictions). 
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(Freeman & Newell, '71), where the task environment consists of a set of 

structures and a set of functions such that: 

1. Each structure provides certain functions. 

2. For each function it provides, a structure requires certain other 

functions to be provided. 

3. A functional connection can occur between two structures if one 

provides a function provided by the other. 

4. A constructed structure consists of a set of structures and functional 

connections between them, and provides/requires the functions 

provided/required by its components and not involved in the functional 

connections. 

The recognition problem can be seen as the reverse of this design 

problem: for recognition, the constructed structure is given and its 

functional specification is to be identified and categorised. 

A purely functional approach to either design or recognition has 

several limitations. Not all objects can be described adequately in terms 

of function; in many domains a mixed approach, such as Essence 

descriptions which contain both functional and spatial information 

(Fretwell et aI., '87) may be more appropriate. Where a functional 

description of an object can be given, it may not be possible to relate the 

function of the whole object to the functions of particular sub-parts, or to 

derive the object's function from the functions of sub-parts. It is also not 

easy to define a general-purpose set of basic functions from which 

descriptions of a wide range of objects could be built up - a necessity if 

methods are not to be restricted to use in very limited task domains (Di 

Manzo et aI., '85). 

13 



If the recognition process begins with visual data, relationships 

between form and function need to be established. The mapping of form to 

function is many-to-many - most functions can be provided by more than 

one form, and most forms can perform more than one function, so the space 

of possible solutions to a problem will generally be large. Reasoning 

between structure and function in the domain of hand tools is described in 

(Brady et aI., '84). 

2.4. SIMPLIFYING THE PROBLEM: DISCRIMINANT PESCRlpTIONS. 

The pattern recognition problem can be made simpler by considering 

discriminant descriptions rather than characteristic descriptions. A 

characteristic description is one which distinguished objects in a given 

category or class from all other possible objects; a discriminant 

description describes one class of objects in the context of a fixed set of 

other classes of object (Dietterich & Michalski, '79). Characteristic 

descriptions are used to answer questions such as "Is this a car?' or, more 

generally, "Is there a car in this scene?"; discriminant descriptions are· 

used to answer questions such as "Is this car a Ford or a Vauxhall?". 

When discriminant descriptions are used any attributes which are 

shared by all the categories under consideration can be ignored, so these 

descriptions are generally simpler than characteristic descriptions. The 

existence of a fixed range of options also allows the use of elimination 

techniques to aid identification, and of 'best fit' methods of 

categorisation. 

A common way of simplifying the recognition problem is to consider 
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an artificial world, e.g. the Blocks world (Winston, '75), where there is 

only a limited range of possible objects which can be distinguished by the 

values of a small number of different attributes. Each combination of 

possible values of the attributes defines a pattern class; a concept is 

represented by one of these classes, or by a conjunction of several classes. 

Recognition here is effectively a discrimination problem. 

Recognition in the Blocks world is an artificial problem, but there are 

many real-world problems which can be tackled by using discriminant 

descriptions, text recognition being an obvious example. The study of 

discrimination problems can also prove useful in the development and 

testing of techniques for later application to more difficult 

characterisation problems. 

2.5. REPRESENTATION ISSUES - LAYERED DESCRIPTIONS. 

One of the basic requirements of any rule-based pattern recognition 

system is a representation system, to be used for both the rules which 

define category membership and the descriptions of objects to be 

categorised. The representation system must incorporate terms to 

represent the (physical and/or functional) attributes of an object and, if 

appropriate, some say of representing structural information i.e. the 

relationship between the components of an object. Structural information 

can be incorporated in the vocabulary of the representation language, or be 

conveyed by its syntax. 

Each term in a definition can itself be defined. A tetrahedron is a 

solid with four faces, each of which is a triangle. A triangle is a planar 

15 



figure with three sides, each of which is a straight line. A straight line is 

.... The definition process must, of course, stop somewhere - with a set 

of fundamental concepts, or primitives, whose definitions are assumed to 

be known (Sowa, '84). The vocabulary of the representation language could 

consist of just these primitives, more elaborate concepts being expressed 

in terms of these, but the use of such a restricted language would make 

descriptions of all but the simplest objects extremely long and complex. 

Incorporating terms representing higher-level concepts into the language 

will allow shorter definitions to be formulated, at the cost of increasing 

the size and complexity of the representation language itself. 

One way of using high-level terms while keeping the representation 

language simple is to layer the representation. A bottom layer description 

is formulated in terms of primitive concepts; this is then used as the 

starting point for the formulation of another description in terms of rather 

more advanced concepts, which can be used in turn to develop yet another 

description, and so on. Each term in a description generally replaces a 

group of terms in the previous description, so the length of the description 

decreases as the complexity of the terms from which it is composed 

increases. As each layer uses its own vocabulary, which need not, and in 

general does not, include all the terms in the previous layer's vocabulary, 

the overall size of the vocabulary does not increase unduly as the process 

advances. 

Layered techniques were not developed solely to allow the use of 

different representation systems within a single pattern recognition 

system; one of the early goals of Artificial Intelligence research was to 

find ways to replicate the working of the human brain by layers of neurons, 

which led to the development of neural nets and layered threshold 
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mechanisms with very similar representational mechanisms for all layers. 

(Ashby, '60; Arbib, '72). 

A layered approach to the analysis of visual images was pioneered by 

Marr (Marr, '79; Garnham, '87). He carried out the computation of 3-D 

models from grey-level descriptions in three main stages, employing two 

intermediate levels of representation: the primal sketch, which represents 

the significant intensity changes in the image, with tokens standing for 

regions and their boundaries, and the 21/2 D sketch, which represents the 

orientation and approximate distance from the viewer of surfaces. 

There is a difference between moving from descriptions of individual 

components to a description of a composite object, and moving from a 

general object description to a more specific object description: going 

from 'four straight lines' to 'quadrilateral' is not the same as going from 

'quadrilateral' to 'square'. There are two different hierarchies in 

operation, characterised by the relations 'is-a-component-of and 

'is-a-kind-of'. The way in which these two hierarchies tie in with a 

layered approach to object description is not entirely straightforward. 

They can be depicted as trees, the 'is-a-kind-of' tree having a genus or 

supertype as its root, with branches leading to subtypes, and the 

'is-a-component-of' tree having a composite object as its root, with 

branches leading to components .. (See Figures 2.1 , 2.2). A move up 

from one level of description to the next corresponds to a move down 

through the 'is-a-kind-of'tree, or a move up through the 

'is-a-component-of' tree. 

(Smith & Medin, '81) describes three ways of viewing concept 

descriptions. The classical viewpoint considers a concept to be defined by 
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its genus or supertype and a set of necessary and sufficient conditions 

that differentiate it from other species of the same genus; the 

probabilistic viewpoint is that a concept is defined by a collection of 

features, and everything that has a preponderance of those features is an 

instance of the concept; the prototype viewpoint considers that a concept 

is defined by a characteristic prototype, and an object is an instance of the 

concept whose prototype it resembles most closely. These views all seem 

to be concerned more with discriminant descriptions than with 

characteristic descriptions, and help to show how the distinction between 
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characteristic and discriminant descriptions relates to the layered 

approach to description. With discriminant descriptions, the top layer -

the supertype - has already been fixed; the recognition task involves 

identifying the correct element of the layer below this. 

Much of the information which is shown explicitly in low level 

descriptions is conveyed implicitly by higher level descriptions. Moving 

from inter-related components to a composite object is equivalent to 

making structural information implicit; moving from a supertype to a 

subtype means making non-structural information implicit. It may be 

advantageous for the description process to be halted at a stage where 

information whic.h is important for recognition is still explicitly stated. 

The information implicit in a given type can be regarded as a list of 

properties associated with the type. The idea of a hierarchy of types is 

one of the fundamental concepts underlying the design of the 

object-oriented programming language SMALL TALK (Goldberg & Robson, 

'89); every object in SMALL TALK is an example of a type which occupies a 

clearly defined position in the type hierarchy, and each of these types has 

a set of properties associated with it. SMALL TALK supports inheritance of 

properties, i.e. every subtype automatically has all the properties 

associated with its supertype, so when a new subtype is defined only those 

properties which are exclusive to it need be specified. The use of 

inheritance thus reduces the size of property lists. As a type is fully 

defined by its properties, the property list can be used for recognition 

purposes: an example of a supertype which has all the properties of a given 

subtype must be an example of that subtype. 
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2.6. REPRESENTATION SYSTEMS. 

The task of selecting an appropriate representation system can be 

compared with the task of choosing a programming language for a 

particular application. In a sense all programming languages are 

equivalent, in that they all ultimately instruct the computer to carry out 

the same basic operations, but as different languages have been designed 

to suit different purposes the wrong choice can make the programmer's 

task infinitely harder. Similarly with representation systems; the critical 

factors to be taken into account when making a choice are different, but 

the same principles apply. 

A wide variety of different representation systems have been used for 

pattern recognition and machine learning. These include predicate 

calculus, production rules, hierarchical descriptions, semantic nets, 

frames and scripts (Dietterich & Michalski, '83). Usually the same 

representation is used for both the input data and the rules, but this is not 

universal (Forsyth & Rada, '86). Those described here are all 

general-purpose; there are also a number of systems which have been 

developed for use in specific task domains, such as that developed by 

Buchanan for Meta-DENDRAL (Buchanan, Feigenbaum & Lederberg, '71). 

2.6.1. Feature vectors. 

The simplest type of representation for input data, the feature vector 

is an array of numbers which characterise the state of different attributes 

of an example. It can be used together with several different types of rule 

format; for example, ID3 (Quinlan, '82) uses feature vectors to induce a 

decision tree. It is only suitable for problems where examples can be 
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described fully by a limited set of attributes, each of which can take only 

a small number of different values. It is most commonly used where no 

structural information is involved, though it is possible to transform 

structural descriptions into feature vectors (Wysotzki, Kolbe & Selbig, 

'81). 

2.6.2. Predicate calculus. 

First-order predicate calculus (FOPC) is a logic system devised by the 

German mathematician Frege. Sentences, or well-formed formulae, in 

FOPC are made up from predicates which take one or more arguments, 

constant terms, variables, logical connectives (the Boolean operators) and 

universal and existential quantifiers, following clearly defined formation 

rules. Inference rules determine how one formula can be derived from 

others. (Garnham, '87). 

Predicate calculus has several important advantages as a knowledge 

representation system: it is a language with machine-independent 

semantics, it forms the basis of the logic programming language Prolog, it 

enables the use of bottom-up and top-down problem solving (by performing 

resolutions on the left-hand and right-hand clauses in a formula) and it 

contains uniform proof procedures that can prove any true theorem in 

finite time. However, it also has some drawbacks: FOPC does not allow the 

quantification of predicates, and it does not support certain types of 

human reasoning such as the use of defaults (Gabrielides, '88). 

Consequently though some systems, for example Shapiro's Model Inference 

System (Shapiro, '82) employ pure FOPC, others such as Michalski's INDUCE 

(Dietterich & Michalski, '79) use extensions to it. 
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2.6.3. Conceptual araphs. 

Conceptual graphs have evolved from the existential graphs which 

Pierce used as a notation for logic; they are a variant of first-order logiC 

which enjoy the advantages of having a direct mapping to and from natural 

language and having direct extensions to modal logic and other forms of 

reasoning. 

A conceptual graph is a finite, connected, bipartite graph composed of 

nodes linked by arcs. There are two different types of node: one type, 

normally drawn as a box, is used to represent concepts and the other, 

drawn as a circle, is used to represent conceptual relations. An example is 

shown in Figure 2.3. 

MAN:John ~ LOVE~ WOMAN:Ann 

Figure 2.3. A conceptual graph. 

Winston's concept learning system (Winston, '75) uses a graph 

representation where concepts are represented by circles and 

relationships are indicated by labelled arrows connecting these circles. 

2.6.4. Frames. 

A frame is a data structure which can be used to describe either 

classes or instances. It is a network of nodes and relations, which 
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represents things which are known to be true about the class and has 

terminals or slots to which assignments may be made. Markers may be 

used to specify conditions to be met by assignments, e.g. ranges of 

expected values, default values; procedures may also be attached to slots 

to drive the problem-solving behaviour of the system (Minsky, '75). 

Collections of related frames may be linked together into a frame 

system, where the effects of actions are mirrored by transformations 

between the frames of the system, For visual scene analysis, for example, 

the different frames may represent a scene from different viewpoints. 

One image understanding system based on frames, FABIUS (Rosin, '88), 

represents objects and their subcomponents by hierarchies of frames. 

2.7. ALTERNATIVE APPROACHES TO RECOGNITION. 

Classical machine-vision techniques involve extracting progressively 

higher-level descriptions of the whole of a visual image. Only when a 

complete top-level description has been derived is recognition attempted. 

This bottom-up, breadth-first approach is computationally expensive and 

time-consuming, and its success depends on sufficient information being 

present in the original image. Studies of the way in which humans 

recognise objects and the types of information which they utilise have led 

to the development of alternative approaches which seem to be more 

suitable for many computer pattern recognition problems. 

It is often possible to recognise an object from just a vague outline 

or a description of its general structure - most people would have no 

difficulty in identifying the objects in Figures 2.4 and 2.5 as a car and a 
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person respectively. With a more detailed image, a preliminary 

identification of an object can be effected by considering its outline or 

structure, then this identification can be confirmed by checking that the 

details are consistent with it. Alternatively, a tentative recognition could 

be based on the identification of a small detail- a particular configuration 

of lights on a car, or a manufacturer's logo - and the way in which this 

detail relates to the object as a whole could be studied to provide 

confirmation. 

Figure 2.4. An image recognisable as a car. 

Figure 2.5. An image recognisable as a person. 
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Background knowledge about what objects are likely to be found in a 

given location, which objects tend to occur together, what spatial 

relationships can be expected to hold between them etc. can sometimes 

prove useful. For example, the small blurred shape shown in Figure 2.6 is 

Figure 2.6. Recognition requiring background knowledge. 

impossible to identify if considered in isolation, but if we are told that 

the surrounding area has been identified as sky, our knowledge of what 

objects are commonly observed in the sky allows us to propose two 

possible identifications: it could be a bird or an aeroplane. 

Many systems use ideas like these as part of a combined bottom-up 

and top-down approach. Often the image is analysed bottom-up to a 

certain level, then a top-down technique is used to select promising 

areas for a more detailed depth-first search. 

One vision system which uses a combination of bottom-up and 
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top-down techniques is Ohta's recogniser of outdoor colour scenes (Ohta, 

'85). Here the bottom-up process generates a plan of the large areas 

(patches) in the image. The top-down process fixes the interpretation of 

the large patches, then attempts to interpret smaller patches in the 

context of these. Whenever the top-down process makes a decision which 

may affect the interpretation of the whole scene, for example fixing the 

position of the horizon, the bottom-up process reevaluates its plan. 

2.8. SUMMARY AND CONCLUSIONS. 

Pattern recognition is in general a complex problem; if it is to be 

solved successfully it may need to be simplified and/or to be split up 

into a number of sub-problems. 

The first step in the recognition process is the formal definition of 

the problem: the development of sets of rules which define membership 

of the pattern categories under consideration. A representation language 

must be selected for these rules. Ideally the hypotheses of the rules 

should be represented in the same language as the input data, so that the 

rules can be applied directly to the data, but often this will not be 

possible - one cannot, for example, define visual patterns such as the 

objects in a typical road scene in terms of the pixel values in which 

visual input data is normally supplied - so a layered approach will have 

to be adopted, using one or more intermediate levels of representation. 

Additional sets of rules will then be required to define the terms used in 

each representation layer with respect to the terms used in the preceding 

layer. 
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The development of rule sets may be time-consuming and difficult. 

The rules may be formulated by a human expert, or induced from examples 

of the behaviour required of them (see Chapter 3), or a combined approach 

may be adopted: formulate approximate rules, then refine them by testing 

their performance in classifying examples. 

When the representation system(s) and rule set(s) have been 

determined, the recognition task will still not necessarily be 

straightforward. Ambiguities or inadequacies in the data or rules may 

make smooth progress from the input data through any intermediate 

levels of representation to a unique identification impossible. It may be 

necessary to employ background knowledge about the problem domain to 

guide the recognition process, to use interpolation or default values to 

deal with gaps in the data, and to use symbolic or numerical methods to 

handle the uncertainties which arise (see Chapter 5). 

Despite the difficulties, a number of systems have been developed 

which work well in limited problem domains such as the identification of 

soybean diseases (Michalski, '78), the analysis of chess end-game 

positions (Quinlan, '82) and the understanding of speech using a limited 

vocabulary (Erman et aI., '88). However, this is an area where there 

remains a great deal of scope for further research. 
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CHAPTER 3 

RULE INDUCTION 

3.1. MACHINE LEARNING - AN OVERVIEW. 

Machine learning is one of the most important topics of modern 

Artificial Intelligence research. It has three main aims: to enable 

computers to perform intelligent tasks so that people need not do them, to 

get computers to do things that people cannot do (or cannot do fast 

enough), and to simulate human thought processes and thus help to increase 

our understanding of them (Simon, '83). 

Learning can be defined as anything which produces adaptive changes 

in a system which enable it to perform the same task, or tasks drawn from 

the same population, more effectively or more efficiently next time. It is 

not just the acquisition of new knowledge; this definition of learning 

makes it clear that is not the mere possession of knowledge but the ability 

to apply it which is important. 

Machine learning systems can be classified by the ways in which they 

represent knowledge, by their domains of application or by the learning 

strategies which they employ. The learning strategy depends on the 

amount of inference which has to be performed to transform the knowledge 

with which the system is supplied into a form in which it can be used 

effectively. At one extreme are systems which do not have to perform any 

inference because their input data has been carefully selected and 

organised by a teacher, and has only to be stored in memory and then 

recalled when required. At the other extreme are systems which infer all 

the knowledge they need to perform their task from raw, un processed data. 

Most systems fall somewhere between these two poles - they are supplied 
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with data which has been pre-processed to some extent, but which 

requires further modification before it can be applied effectively. 

The tasks which a learning system has to perform may include: 

translation from an input language into an internal representation 

language, imposing a logical ordering on facts, integrating new data with 

existing knowledge, inducing rules, drawing analogies, interpolating data, 

generating queries and finding and resolving inconsistencies. The 

particular combination of tasks which a system performs is the basis of 

this classification of learning strategies (Carbonell, Michalski & Mitchell, 

'83): 

- learning by rote - no significant inference is performed. 

- learning by instruction - the learner may perform some translation, 

organisation and integration of knowledge. 

- learning by analogy - facts and skills are transformed and/or 

augmented for application to new tasks. 

- learning from examples - the learner induces concept descriptions 

from pre-classified examples. 

- learning from observation and discovery - a general form of 

unsupervised inductive learning and theory formation. 

The classification of strategies is not a rigid one, as some strategies 

combine elements of several different approaches to learning and the 

distinctions between different approaches are often somewhat blurred. To 

illustrate the fuzziness of the boundary between rote learning and rule 

induction, consider a pattern recognition system which stores descriptions 

of patterns and their classifications for use in classifying new patterns. 

Some logical ordering must be imposed on the stored information to enable 

facts to be retrieved from memory quickly and easily. A natural ordering 

would be the grouping together of descriptions which have common 
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elements. Where all the instances in a group have not only a common set 

of descriptors but also a common classification, it would seem reasonable 

to infer that this set of descriptors implies the classification. A rule 

could be formulated: 

<descriptor set> implies <classification> 

which could then be used to classify new examples. Rule induction can 

thus be seen as a natural extension of the imposition of a logical ordering 

on data; a rule set is, at its simplest, just a succinct way of representing 

information about a group of examples. 

Some machine learning programs produce 'black-box' programs which 

perform the required task without making it clear how they are doing it, or 

what rules they are employing. They generally have a mathematical bias; 

their knowledge may be encoded in the form of a covariance matrix or an 

optimised set of coefficients, which will mean little or nothing even to an 

expert in the field in which they are designed to operate (Forsyth & Rada, 

'86). Black box systems can be very efficient, but they have the drawback 

that if errors creep in, for example because of some inadequacy in the set 

of training data, they are almost impossible to find. The fact that such 

systems are unable to offer any coherent explanation as to how their 

conclusions have been reached may also reduce the reliance which people 

are prepared to place on their results. 

3.2. RULE INDUCTION IN PATTERN RECOGNITION. 

We can all recognise a car when we see one, but would find it hard to 

codify the knowledge which enables us to do this. The difficulty of 

establishing rules for the solution of 'real world' problems is one of the 

main stumbling blocks in the development of pattern recognition programs 
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and Expert Systems; (Michie, '86) calls it 'the Feigenbaum bottleneck' after 

Edward Feigenbaum, one of the pioneers in this field (Buchanan,Feigenbaum 

& Lederberg, '71; Feigenbaum, '83). The problem of extracting rules from 

human experts can be bypassed if computers can be enabled to induce rules 

for themselves. 

Induction can be regarded as the reverse of deduction: given a rule, 

deduction leads to the results of its application; given a set of results, 

induction leads to a rule which could have produced them. But induction is 

a less certain process than deduction; if a rule is known to be true then 

deductions made from it can be firmly relied upon, but an induced rule can 

be similarly relied upon only if the set of facts from which it was induced 

is complete, i.e. if it contains every fact which could be deduced from the 

rule. In pattern recognition, rules are generally induced from incomplete 

training sets, which is a powerful technique but one which needs to be 

handled with caution. The risks are particularly great when rules are 

induced from only positive examples of their behaviour; where there is 

nothing to indicate how a rule should not behave, i.e. which patterns do not 

belong to the category being defined, there is a clear danger that the 

induced rules will be excessively general. 

On the positive side, the use of rule induction makes programs less 

domain specific, more easily adapted to other areas o/application. If a 

program to recognise instances of a particular pattern has been based on a 

set of preformulated rules, developing another program to solve a 

different, but related, recognition problem wilLinvolve a great deal of 

rewriting; if, however, the original program has been based on an induction 

algorithm which will derive the rules from a set of examples, all that has 

to be done to convert the program is to replace the original example set 

with a new example set. 
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Although the main practical applications of rule induction systems 

are in real world situations, many algorithms have been developed through 

work on comparatively simple pattern recognition problems where the 

'correct' rules can be determined easily. This has the advantage of 

allowing the efficiency of the algorithm to be assessed before it is applied 

to more complex tasks. Common simplifications include studying regular 

polyhedra (the 'Blocks World'), photographing objects against a plain 

background rather than in their normal settings, and restricting training 

examples to pictures of single unoccluded objects. 

3.3. REQUIREMENTS FOR RULE INDUCTION. 

(Michalski, '83) gives the following general paradigm for inductive 

inference: 

Given: (i) observational statements that represent specific knowledge 

about some objects or processes 

(ii) a tentative inductive assertion (which may be nUll) 

(iii) background knowledge that defines assumptions and 

constraints, and any relevant problem domain knowledge including 

preference criteria for solutions 

Find: an inductive assertion that weakly implies the observational 

statements and satisfies the background knowledge. 

When the inductive assertion being sought is a set of concept 

descriptions, the observational statements required will take the form of 

a training set of instance descriptions together with their classifications. 

Where a single concept description is being sought, the classifications 

will be 'positive' and 'negative' if the training set includes both examples 

of the concept, and counter-examples; if only positive examples are used, 
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the classification will be implicit. 

The task of finding the required concept description(s) can be viewed 

as a search through a space of possible descriptions, and the presence or 

absence of an initial tentative description helps to determine the direction 

of the search: top-down or bottom-up. 

Background knowledge about the problem and problem domain may be 

used explicitly during the induction process to guide the search for rules 

and prune the search tree, or may be employed only at the setting-up stage 

to assist in the selection of an appropriate training set, representation 

language(s) for the training set and rules, and induction algorithm. 

A wide range of different rule induction algorithms have been derived, 

for use in a range of different task domains. The selection of a suitable 

algorithm for a particular task will depend on a number of different 

factors; (Ross, '89) gives the following list, which is by no means 

exhaustive: 

- are all the examples available immediately, or is the learning to be 

done incrementally? 

- is the order of the training examples significant? 

- how reliable are the example classifications? 

- are all the attributes known to be relevant? 

- is anything known about the relationships between any attribute 

values? 

- is there any significance to correlations between the values of 

different attributes? 

- can the program generate and test new examples? 

To these, one could add: 
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- does the example set consist entirely of positive examples, or of 

positive and negative examples, or positive examples and 'near misses'? 

- are the rules to be induced known to be conjunctive, or might they 

be disjunctive? 

The choice of algorithm will clearly be less restricted if the system 
< 

designer can select the composition, ordering and representation of the 

training set than if any of these aspects of the set are fixed in advance. 

3.4. EVALUATION CRITERIA FOR INDUCTIVE ALGORITHMS. 

As inductive algorithms have been developed to solve a very wide 

range of different problems, it is not possible to give a direct comparison 

of their efficiency by showing how well each of them can solve one 

particular problem. Most comparative studies have concentrated instead 

on specific issues - for example, (Dietterich & Michalski, '83) compared 

five different systems for determining a characteristic description of a 

single concept using the following evaluation criteria: 

1. Adequacy of the representation language used. 

2. Rules of generalisation implemented. 

3. Computational efficiency (estimated from hand simulations of the 

methods on a very simple problem). 

4. Flexibility and extensibility. 

(Bundy, Silver & Plummer, '85) used a rather different approach, analysing 

seven different rule- and concept-learning programs with the aim of 

extracting and explaining the techniques used, identifying the range of 

applicability of each technique and establishing the relationship between 

different techniques designed to accomplish the same task. Other authors 

have simply described a range of different systems, leaving the reader to 
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draw comparisons between them (Quinlan, '82; Gabrielides, '88). The 

approach adopted here is to examine the field subject-by-subject rather 

than system-by-system. 

3.4.1. Fields of application. 

The fields in which learning systems have been used include: 

- agriculture 

- physics and chemistry 

- cognitive modelling 

- computer programming, expert systems 

- education 

- game playing 

- image recognition and speech recognition 

- mathematics 

- medical diagnosis 

- music 

- natural language processing 

- physical object characterisation 

- planning and problem-solving 

- robotics 

- sequence prediction. 

(Carbonell, Michalski & Mitchell, '83). Some systems are very 

domain-specific, in that the learning algorithms they use incorporate in 

their design a great deal of background knowledge about the problem 

domain; others are more general-purpose, using either very little domain 

knowledge or knowledge which can be separated easily from the learning 

algorithm and substituted with knowledge about a different domain if 

required. The systems which are most worth studying are obviously those 

which are either specific to the domain under consideration (in this case, 
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visual pattern recognition) or general-purpose; however, a brief study of 

systems specific to other domains is also worthwhile as these may 

contain some interesting new techniques which could be adapted for use 

elsewhere. 

A classic example of a domain-specific program is Meta-DENDRAL 

(Buchanan, Feigenbaum & Lederberg, '71), which infers rules for the 

analysis of chemical data from a mass spectrometer. This program uses a 

three-stage process, firstly explaining the experimental data from each 

substance, then generalising the results, and finally organising the 

generalisations into a unified theory. The detailed implementation 

employs a great deal of domain knowledge, but the same overall plan could 

be used in other fields where considerable amounts of data from different 

problem instances require analysis. 

Shapiro's Model Inference System (MIS) (Shapiro, '82) began life as a 

debugger for Prolog computer programs, but was developed into an 

automatic program synthesizer. This is much less domain-specific than it 

may at first appear, as programs could be synthesised for use in a range of 

different domains. One of the examples given of its use, however, the 

inference of a context-free grammar, employs domain-specific knowledge 

in the design of a specialist refinement operator. 

The idea of allowing packages of domain-specific knowledge to be 

incorporated into a general-purpose system is exemplified by the STAR 

methodology (Michalski, '83). This uses as its description language a form 

of annotated predicate calculus, where each descriptor is assigned an 

annotation containing relevant background knowledge such as its domain 

and type, its relationship with other descriptors, the type of objects with 

which it can be used and the operators which are applicable to it. The 
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method allows the use of task-specific generalisation rules and preference 

criteria. 

An example of a general-purpose system is ID3 (Quinlan, '82), which 

produces a decision tree for classifying sets of instances described by 

feature vectors, using either a cost basis or an information-theoretic 

approach to select attributes on which to partition the training set. ID3 

was originally used for the analysis of chess end-games, but uses no 

knowledge specific to this problem domain. However, the approach used 

places fairly severe restrictions on the types of problem to which it can be 

applied: it has problems in dealing with incomplete and/or uncertain data 

(Hart, '86), and all tests have to be in the form of a comparison between a 

single variable and a constant (Forsyth & Rada, '86). Descendants of ID3 

such as NEDDIE (Kodratoff et aI., '88) incorporate such improvements as the 

use of a chi-squared test of attribute reliability, and termination if the 

overall reliability falls below a threshold, to circumvent some of the 

limitations of the original program. 

3.4.2. Sources of input data. 

Two main types of inductive learning can be distinguished: learning 

from examples, or concept acquisition, which aims at producing 

descriptions for classifying objects on the basis of their attributes or 

properties, and learning by observation, or descriptive generalisation, 

where the goal is to determine a general description characterising a 

collection of objects or observations. Concept acquisition includes the 

learning of both characteristic and discriminant descriptions of classes of 

objects, and the inference of sequence extrapolation rules; descriptive 

generalisation covers such problems as theory formation, discovering 

patterns in observational data and the determination of taxonomic 
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descriptions (Michalski, '83). 

The distinction is really between learning to distinguish concepts 

which are known to the teacher, from preselected examples, and 

discovering concepts which have not been identified in advance. Generally 

the machine learning aspects of pattern recognition can be regarded as 

concept acquisition as the aim is to find some practical way of 

distinguishing examples of known classes. 

AM, a system which develops mathematical concepts (Lenat, '83) is a 

good illustration of descriptive generalisation. This system consists of a 

set of primitive mathematical concepts together with a large number of 

domain-specific heuristic rules which guide it in deciding which areas to 

explore, defining new concepts, recognising simple relationships between 

concepts and estimating how interesting each concept is. It has no 'target' 

concepts; it simply aims at maximising the interest ratings of the 

concepts it discovers. 

Learning from examples can be subdivided into different categories 

according to the source of the examples: a teacher, the external 

environment or, in some cases, the system itself. Systems designed to use 

examples supplied by a teacher typically incorporate these examples one at 

a time into a rule set or concept description which becomes progressively 

more accurate as the number of examples used increases. Winston's 

concept learner (Winston, '75) operates in this way: it uses a positive 

example of the concept to be learnt to form an initial model which is then 

modified through comparison with each new example or near-miss. 

Hayes-Roth's SPROUTER (Dietterich & Michalski, '83) follows a similar 

pattern. 
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The performance of systems which build up concepts incrementally by 

considering examples one at a time may be substantially affected by the 

order in which the examples are presented (McGregor, '88), so where it is 

impossible or impracticable for the examples to be ordered by a teacher, 

for example because data is being obtained directly from the external 

environment, a system which deals with a large set of examples at once 

may be more appropriate. This set of examples can then be ordered or 

grouped as required by the system itself. 

Loisell and Kodratoff describe one method of grouping examples 

according to resemblances between them; they classify differences 

revealed by comparison of examples as highly ambiguous, ambiguous or 

discriminant near misses, then use these to rate the examples as highly 

comparable, comparable or separable, This produces a way of partitioning 

the example set so that examples not in the same subset show a maximum 

of differences. (Loisel & Kodratoff, '81). 

Mitchell's Version Space strategy (Mitchell, '79) works by 

representing the set of all concept descriptions consistent with the 

observed training examples, using one example at a time to reduce the size 

of this version space. This system can select the next example to consider 

from a set of possibilities by considering which example comes closest to 

matching half of the descriptions in the version space, thus imposing its 

own ordering on the example set. 

Instead of merely imposing their own ordering on an existing set of 

training examples, some systems have the ability to generate examples for 

themselves to resolve any ambiguities they discover. This method can, of 

course, only be used if a teacher or oracle is available to provide the 

correct classifications for the examples generated. Shapiro's MIS has this 
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facility. as does Sammut's concept learner (Sammut, '81). which starts 

with a positive instance of the concept to be learnt, generalises this and 

then tests the validity of its generalisation by generating new examples 

which satisfy it. 

3.4.3. Search Patterns. 

Rule induction can be regarded as a search problem; the induction 

program must search through a space of possible rules in order to find the 

correct one(s). The rule space is partially ordered by the 

'more-specific-than' relation, which imposes a tree structure on it 

(Mitchell, '79). The search can be conducted in several different ways: 

depth first, breadth first, specific-ta-general, general-ta-specific or a 

combination of these. 

Systems which employ a depth-first search strategy maintain a 

single current hypothesis, modifying or replacing this if a contradiction is 

discovered i.e. they test all the training examples against each rule in turn 

until a satisfactory rule set has been discovered. Breadth-first 

strategies, on the other hand, maintain a set of hypotheses, eliminating 

elements of this set when contradictions arise i.e. they test all the rules 

against each training example in turn. A breadth-first search has the 

advantage that training examples need not be retained once they have been 

examined; the drawback, though, is that for any reasonably complex 

problem the set of possible rules will be vast. The impracticability of 

formulating and examining every possible rule explains why the majority 

of systems, including Shapiro's MIS, Quinlan's 103 and Winston's concept 

learner, operate depth-first. 

A compromise approach is the beam search where the nodes at each 
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level of the search tree are pruned, only a limited number being retained 

for use in propagating new nodes. Dietterich & Michalski's Induce 1.2 uses 

this technique: it starts by selecting a random subset of the training 

examples to form its initial set of concept descriptions, generalises each 

description in this set by a single application of each of its generalisation 

rules in turn, then prunes the set of generalisations to a predetermined 

size, retaining those descriptions which are least complex and cover most 

examples. Any descriptions which cover enough of the examples are 

entered in the final rule set; the remaining elements of the pruned set are 

further generalised, until enough rules have been found. This system is 

quite efficient but not optimal, as generalisations which would lead to 

good descriptions may be pruned. (Forsyth & Rada, '86). 

Specific-to general search strategies typically start with an initial 

hypothesis formulated from a single positive example of the concept being 

learnt, then generalise this to cover further positive examples. 

General-to-specific strategies start with a very general rule, then 

restrict it to eliminate negative examples. The majority of systems use 

training sets containing both positive and negative examples, and so use a 

combined approach: if the current rule set correctly classifies an example, 

no alteration is made to the rules; if the system fails to classify a 

positive example, or incorrectly classifies it as negative, the rules are 

made more general; if the system incorrectly classifies a negative 

example as positive, the rules are made more specific. 

Rather than modifying the same working hypothesis in two different 

directions, depending on the types of error which are encountered, 

Mitchell's version space strategy (Mitchell, '79) and Young, Plotkin & Linz's 

focussing technique (8undy et aI., '83) both maintain two separate 

hypotheses, one overly general and the other overly specific. Positive 
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examples are used to make the specific hypothesis more general, and 

negative examples to make the general hypothesis more specific, until the 

two coincide. This bidirectional approach is an interesting idea, but 

unfortunately it can only be applied breadth-first (if a depth-first search 

were to be used, the two hypotheses would not necessarily coincide 

eventually, but could well bypass one another), which severely restricts 

the range of problems for which it can be used. 

3.4.4. Rule Modification Techniques. 

Most rule induction programs use the following main control loop: 

Until the rules are satisfactory: 

1. Identify a fault with a rule 

2. Modify the rule to remove the fault. 

The part of the system which identifies faulty rules is the critic; the part 

which modifies the rules is the modifier (Bundy et aI., '83). 

The critic will be activated when the rule set fails to classify a 

training example correctly, i.e. when a wrong classification has been 

obtained or when the program has failed to produce any classification. 

Where examples are classified by the application of a single rule, 

identifying the faulty rule poses no problems; where a sequence of rules 

have been applied, it will be necessary to examine a trace of the 

classification process in order to locate the fault. 

The problem of identifying faulty rules has been analysed by Shapiro. 

He identifies three types of fault in a Prolog rule set: termination with 

incorrect output, termination with missing output and non-termination. 

His MIS deals with the first of these, incorrect output, by single-stepping 

through the trace, checking each rule until the fault is discovered, or by a 
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divide-and-query algorithm: check the rule which will divide the program 

trace into halves, then select the appropriate half on which to iterate the 

procedure. The algorithm which deals with missing output finds a goal 

which is uncovered, i.e. cannot be unified with the head of any clause. In 

cases of non-termination, the trace is examined to find two consecutive 

calls which breach the well-founded ordering determined by the maximum 

depth of any computation of a procedure (Shapiro, '82). The application of 

these critic algorithms requires the system to have access to an oracle or 

database from which the answers to queries can be obtained. 

The methods implemented by the modifier fall into two main groups: 

generalisation or de-refinement techniques, and specialisation or 

refinement techniques. Specialisation is the opposite of generalisation, so 

the specialisation methods tend to be generalisation methods applied in 

reverse; for example, a rule can be generalised by dropping a condition 

from its hypothesis and specialised by adding a condition to it. 

(Michalski, '83) distinguishes between two different types of 

generalisation rule - selective rules, where every descriptor in the 

generalisation is used in the initial example descriptions, and constructive 

rules, where new descriptors are used. His selective rules are: 

- dropping a condition 

- adding an alternative to a condition 

- extending the range of values of a descriptor - for example, closing 

an interval 

- climbing the generalisation tree, i.e. replacing a set of values of a 

structured descriptor with a value which is the lowest parent node of all 

the values in the set 

- turning a constant into a variable 

- turning a conjunction into a disjunction 
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- extending the domain of a quantifier e.g. replacing an existential 

quantifier with a universal quantifier 

- inductive resolution 

- the extension against rule: produces the most general statement 

consistent with a positive example and a negative example of a concept. 

Not all of these rules are applicable to all problems. For example, the 

climbing the generalisation tree rule can only be used with structured 

descriptors, and the range of values of a descriptor can be extended only if 

the values are ordered in some way. The rules implemented by a particular 

system tend, therefore, to depend on the application for which it is being 

used. 

Constructive generalisation techniques are even more application 

dependent as a considerable amount of background knowledge has to be 

used in order to derive new descriptors which are relevant to the problem. 

They typically involve identifying relationships and interdependence 

between descriptors, or common groupings of descriptors which can be 

replaced by a new combination descriptor. Few systems for learning from 

examples employ constructive generalisation; it is commoner in systems 

which learn by observation, such as the BACON system (Langley, Bradshaw 

& Simon, '83). 

Specialisation methods are similarly application-dependent to some 

extent. Shapiro's MIS, which homes in on the correct rules by taking large 

steps in the specific-to-general direction, using the single rather crude 

generalisation technique of dropping the last conjunct from the hypothesis 

of a rule, then taking small steps back in the general-to-specific 

direction, uses a specific refinement algorithm for the inference of 

definite clause grammars. Its general refinement algorithm implements 
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these techniques: 

- closing a clause 

- instantiating variables 

- unifying two input variables 

- adding an output producing goal 

- adding a test predicate. 

3.4.5. Types of output: conjunctive and disjunctive rules. 

The rule or set of rules which is the output of a rule learning program 

can be represented in a wide variety of different ways which are all 

logically equivalent to: 

<Hypothesis> implies <Conclusion>. 

In the case of single concept learning programs, the conclusion -

membership of the concept class - is usually implicit. The hypothesis is 

the concept description. 

The hypothesis may be conjunctive or disjunctive. A conjunctive 

hypothesis is of the form: 

Condition1 and Condition2 and ..... and ConditionN. 

Disjunctive rules can be written as a disjunct of conjuncts: 

(Cond1a and Cond2a and .. ) or (Cond1b and .Cond2b and .. ) or ... 

or as a set of conjunctive rules, since the rule 

A or B implies C 

is equivalent to the rules 

A implies C and 

B implies C. 

It is not true, however, to say that all rule sets with more than one 

element are essentially disjunctive. A set of (conjunctive) rules is 

conjunctive if all the rules in it have different conclusions, disjunctive 
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only if there exist two rules in the set with different hypotheses but the 

same conclusion. 

Specialising disjunctive rules presents no particular problems; where 

a disjunctive rule incorrectly classifies a negative example as positive, 

the disjunct(s) requiring specialisation will be the one(s) which the 

example erroneously satisfies. When generalising a disjunctive rule, 

however, the situation is more complex. A positive example which has not 

been correctly classified by a rule could be covered by applying a rule of 

generalisation to any of the existing disjuncts in the hypothesis, or by 

creating an entirely new disjunct. Search spaces of possible disjunctive 

rules tend, therefore, to be substantially larger than search spaces of 

possible conjunctive rules. 

The majority of rule induction systems develop conjunctive rule sets; 

there are few examples of effective disjunctive systems. One simple 

disjunctive algorithm, designed to handle correctly classified examples 

presented as sets of ordered attribute values, was developed byRoss: 

Select a positive example to form the initial version of the concept. 

Given a new positive example: 

form the meet of one component of the concept disjunct and 

the new example, check this for validity against all negative 

examples. If valid, replace the component with the meet; if 

invalid, repeat with another component or if no more 

components remain to be checked, form a new component. 

Given a new negative example: 

check against all components of the concept; eliminate any 

components which are invalidated and reprocess the positive 

examples which supported them. 

(Ross, '89). Another disjunctive technique is 'refocussing', a modification 
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of Mitchell's focussing technique (8undy et aI., '85). 

3.5. SUMMARY AND CONCLUSIONS. 

Attempts to solve a wide variety of learning problems in many 

different fields have led to the development of a range of systems which 

have some common characteristics, but have been tailored to cope with 

different types of input and to provide different types of output. 

The identification or development of a system to handle a particular 

task should be begun by analysing the possible starting points for the 

induction, and defining the output which is required in as much detail as 

possible. The starting points will be determined by the type, quantity and 

quality of data which is available, and the types of preprocessing which 

could be applied to it; the types of rule which are to be induced will depend 

on the task which the rules are to perform, Le. the kinds of questions to 

which they will be expected to provide answers. 

Specification of the input and output will place significant 

constraints on the choice of learning method, but there may be additional 

constraints as well: the type of equipment which is available and the speed 

with which the system is required to operate, for example. The large 

number of factors to be taken into account in selecting an appropriate 

system suggests that despite the wide choice of systems available, it will 

often be necessary to substantially modify an existing system or to 

develop a completely new one to deal with a new application. 
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CHAPTER 4 

BLACKBOARD SYSTEMS 

4.1. THE BLACKBOARD CONCEPT: HISTORICAL BACKGROUND. 

The blackboard system is an attempt to model the behaviour of a 

group of experts collaborating to solve a problem; they cluster around a 

blackboard on which information about the problem is written, and each 

one selects the information which they can use, synthesises new 

information from it and places this on the blackboard to be used in turn by 

the others. 

The basic idea is similar to that of Selfridge's Pandemonium model of 

human pattern recognition, developed in 1959 (Lindsay and Norman, '77). 

This feature analysis model employs several sets of demons: image demons 

record the initial signal image, feature demons search the image for 

particular characteristics, then cognitive demons, each of which is 

responsible for recognising one particular pattern, scan the output of the 

feature demons and start yelling if they find any of the characteristics 

they require. The more relevant characteristics they find, the louder they 

yell. A decision demon listens to the resulting 'pandemonium' and selects 

the pattern associated with the cognitive demon which is yelling loudest 

as the most likely explanation of the signal. The demons thus collaborate 

to solve the recognition problem; substitute writing on a blackboard for 

yelling and you have a blackboard model. 

The term 'blackboard' was first introduced by Newell, who used this 

idea in the development of the production system (Newell and Simon, '72). 

The first of the modern generation of blackboard systems was used to 

control the Hearsay-II speech understanding system (Erman et aI., '80). 
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This has been followed by a host of other systems, used for a wide range of 

applications including signal interpretation, 3-0 molecular structure 

modelling and planning. There have also been some attempts to produce 

general-purpose blackboard systems which can be tailored to specific 

applications, for example the Hearsay-Ill system (Erman, London and 

Fickas, '88), and tools which knowledge engineers can use to help design 

systems, such as AGE (Nii and Aiello, '88). 

4.2. BLACKBOARD ARCHITECTURE. 

A blackboard system has two main components: the knowledge 

sources, independent sources of problem-specific knowledge to be used to 

solve the problem (the system equivalent of the human experts in the 

original model), and the blackboard data structure, which holds the 

problem data and through which the knowledge sources communicate and 

interact with one another (Engelmore, Morgan and Nii, '88). (See Figure 

4.1). There must also be a control component, which is generally 

KNOWLEDGE 
BLACKBOARD 

KNOWLEDGE 
SOURCE SOURCE 

Entry 

Entry 

KNOWLEDGE 
Entry 

KNOWLEDGE 
SOURCE Entry SOURCE 

Figure 4.1. Structure of a Blackboard System. 
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application-specific. Control information may be held on the blackboard or 

in a separate module. 

The blackboard data structure is generally hierarchical - knowledge is 

represented at several different levels, each of which has its own 

vocabulary. The blackboard may be partitioned into several different 

hierarchies. This is done for efficiency, so that knowledge sources do not 

consider data which cannot be relevant to them. 

The knowledge sources are mainly responsible for taking information 

from one or more parts (sections or levels) of the blackboard and 

transforming it into information to be entered into the same or other parts 

of the board. There may also be special knowledge sources which perform 

tasks such as scheduling operations and checking to see if the termination 

conditions are met. 

The normal cycle of activity is as follows: the system controller 

determines which of the knowledge sources are capable of utilising the 

information currently held on the blackboard and determines which of the 

possible operations should be executed first, then the selected operation is 

carried out. This produces changes in the information on the blackboard, so 

the controller is reactivated to assess the new situation and the cycle is 

repeated. The pre-conditions for each knowledge source, i.e. the 

information which they require, must obviously be specified so that the 

controller can determine which operations could be performed; some means 

must also be provided for assigning an order of priority to the operations, 

for example by assessing the usefulness and/or reliability of the potential 

output. (Jones and Millington, '86). 
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4.3. ADVANTAGES AND DISADVANTAGES. 

The main advantage of blackboard systems is that they allow difficult 

problems to be solved in stages using a variety of methods, without the 

need to specify in advance the order in which the methods are to be 

applied. They have a modular structure, so knowledge sources can be 

developed, implemented and tested independently and new knowledge can 

be incorporated easily into an existing system when it becomes available. 

The blackboard structure is particularly well suited to 

experimentation. Simply by adjusting the control module and varying the 

priorities attached to different knowledge sources, alternative 

configurations can be evaluated and compared for efficiency and accuracy 

in finding correct solutions to a problem. 

Where the most efficient solution method for a particular problem has 

already been established, however, the use of a blackboard is usually less 

efficient than direct implementation of the algorithm. Scheduling the 

operations to be carried out can take up a good deal of processing time; if 

the appropriate order of operations for part or all of the solution process 

is already clear, this order should be specified and the operations carried 

out without reference to the blackboard control module. 

If it is clear which knowledge source information is intended for, it 

is obviously faster and more efficient to pass the information to that 

knowledge source directly instead of via the blackboard. It is also 

undesirable to use the blackboard at intermediate stages within the 

operation of a single knowledge source; where knowledge sources are 

carrying out multi-stage operations, they need to be provided with 

facilities for storing intermediate results using their own internal data 
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structures so that data is not translated from one format to another and 

back again unnecessarily. (Erman et aI., '88). 

4.4. APPLICATION-SPECIFIC AND GENERAL-PURPOSE SYSTEMS. 

The blackboard concept was originally developed in response to the 

need to find ways of tackling the problem of speech understanding by 

computer. It was soon realised that the ideas which had been used here 

could be applied to problems in other fields as well, and a number of other 

applications were developed which, though differing in detail, all shared 

the same general approach. 

Some of the variations between early systems reflected the fact that 

different problems required different solution methods; others arose 

because lack of detailed information about existing systems meant that 

many teams of designers had no other option than to start from scratch in 

producing their own versions of standard blackboard components. To help 

avoid such duplication of effort, several attempts were made to produce 

mUlti-purpose systems or blackboard shells which could be tailored to suit 

different applications. 

Attempts to use blackboard shells in more problem fields inevitably 

revealed some limitations; new ideas had to be introduced, which in turn 

could be abstracted and implemented in another generation of shells, 

leading on to yet more applications. The general trend might be expected 

to be for each new generation of systems and shells to be more elaborate 

and complex than the last, but this has not always been the case. As new 

ideas have been incorporated into systems, some existing ideas have been 

dropped, either because they have been superseded or because they have 
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been shown to be of limited applicability. Some designers have also 

deliberately sought to produce systems which are easy to understand and 

use, sacrificing flexibility where necessary for the sake of simplicity. 

4.5. EXAMPLES OF APPLICATION-SPECIFIC SYSTEMS. 

The systems which are described here have been selected to indicate 

the types of application for which blackboards have been used, and to give 

some impression of the wide variations in the way in which the basic 

concepts have been implemented. 

4.5.1. Hearsay-II (Erman et al.. '80), 

The first application of the blackboard principle was to speech 

.. recognition; the Hearsay-II system was developed to recognise sentences 

constructed from a 100 word vocabulary, and was very successful, 

producing correct interpretations in approximately 90% of cases. 

The system, written in SAIL, an Algol-60 dialect, uses six different 

levels of representation: segments of digitised speech, syllables, words, 

word-sequences, phrases and sentences. It includes thirteen knowledge 

sources, which create hypotheses at each level from information on the 

level below, control the number of hypotheses generated at each level, 

check for consistency and credibility of hypotheses, parse word sequences, 

predict words to follow or precede a phrase, check for termination and 

generate an interpretation of the final sentence to be passed to an 

information retrieval system. 

Approximate knowledge is used in places for efficiency and 
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processing speed; for example, the full word-sequence parser is slow to 

run, so possible word sequences are checked first using an approximate 

parser which rapidly weeds out many unacceptable sequences, leaving only 

a small number to be checked by the full parser. 

The control system allocates resources to the most promising actions 

by estimating the probable effects of an action, deducing its global 

significance and comparing it with other potential actions. Each 

knowledge source has a stimulus frame (a set of hypotheses which satisfy 

its pre-conditions) and a response frame (a stylised description of its 

actions) which are used together with global state information to 

calculate priorities. 

Processing was at first opportunistic and data-directed, that is, 

promising hypotheses generated at one level were immediately followed up 

at other levels, but this was found to be inefficient at lower levels 

because of the inaccuracy of the credibility ratings. Completely 

processing one level before starting on the next proved more effective up 

to word-sequence level. 

4.5.2. HASP (Nii et al.. '88). 

The HASP system was developed to interpret continuous sonar signals 

from hydrophone arrays used to monitor areas of ocean. The original 

intention was to produce a DENDRAL-like expert system, but this was 

shown to be impractical and a blackboard model was adopted instead. The 

main difference between the HASP problem and the Hearsay-II problem is 

that Hearsay was required to interpret independent utterances whereas 

HASP was interpreting a continuous signal, considering the current data in 

conjunction with its analyses of previous data. 
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HASP, like Hearsay-II, uses several different levels of representation 

- in this case, sonogram lines, harmonics, sources, vessels and at the top 

level a situation board which contains the current model of the ocean 

scene. The knowledge sources in HASP are also organised in a hierarchy, 

with sources called specialists, whose task is to put inferences on the 

current best hypotheses, on the bottom level, activators, which know when 

to use the various specialists, on the next level and a strategy knowledge 

source on top. 

The specialist knowledge sources contain both 'textbook' knowledge 

and heuristics obtained from human experts. As the system maintains a 

top-level current best hypothesis from which new hypotheses are evolved, 

top-down, model-driven techniques are used as well as bottom-up, 

data-driven techniques. Extracting useful information from large amounts 

of data with a poor signal-to-noise ratio is computationally very 

expensive; using a top-down approach to 'tune' the search by generating 

signal expectations can reduce the problem to more manageable 

proportions. 

The analysis carried out is time-dependent, and this aspect is handled 

by a mechanism called clock events. Specialist knowledge sources can put 

requests for recall at specific times, to review information and hypothesis 

elements, on a clock-event list. 

The system produces explanations of its hypotheses in a similar way 

to expert systems, but as many of the inference steps in the development 

of a hypothesis are of limited interest, a special knowledge source is used 

to identify and present to the user the most important events. 
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4.5.3. UMass Schema System (Draper et al .. '881. 

Most vision systems are designed to perform specific tasks and are 

difficult to adapt to other uses because of the amount of domain-specific 

knowledge which they employ. This system arose from an attempt to 

produce a general-purpose vision system, by linking together many 

special-purpose ones. It was intended to be able to cope with such 

problems as the absence of experts able to introspect about their vision 

expertise, the difficulty of indexing into a potentially vast knowledge base 

of objects, the degree of uncertainty inherent in vision data and the vast 

quantity of data which is usually involved. 

The system contains a number of single-object vision systems -

schema - which co-operate and compete to arrive at a consistent 

interpretation of the image. It is modular: no schema depends on the 

internal details of any other schema, so new schemas can be added and 

existing ones modified easily, and a blackboard is used for all 

communication between schemas. However, the schemas are not all 

uniquely constructed; the system provides a set of knowledge sources and 

representations which are useful for any knowledge recognition, and the 

schemas contain information about which of this knowledge is relevant and 

when and how it should be applied. This information comprises an 

object-specific problem space definition, control knowledge for traversing 

the problem space and a function to translate evidence from knowledge 

sources into a degree of confidence in the presence of an object. 

Instantiated copies of a schema, called schema instances, are invoked 

to identify instances of the schema's object class. These instances can be 

invoked by the user, but are more often invoked by each other, to gain 

support for hypotheses, to account for inexplicable data or to predict the 
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existence of objects which can be expected to occur with a 

currently-believed object. The system starts by invoking an instance of a 

general scene schema such as road-scene or house-scene, which then 

invokes instances of schemas for objects likely to be found within the 

scene, then these in turn invoke more schemas until the analysis is 

complete. 

The Schema system has been designed to run in a parallel 

environment, which removes many of the scheduling problems which 

sequential blackboard systems suffer from: instead of having to decide 

which operation has the highest priority and so should be executed first, 

many operations are executed at once. 

4.6. EXAMPLES OF GENERAL-PURPOSE SYSTEMS. 

4.6.1. AGE (Nii and Aiello, '88l. 

AGE (Attempt to GEneralise) was conceived as a set of building-block 

programs covering common artificial intelligence techniques, together 

with an intelligent front end which would assist a user in constructing a 

blackboard system from them. Written in INTERLlSP, the functions it 

provides include a user tutorial, debugging facilities, automatic generation 

of a system reference manual and a graphic interface. 

The AGE blackboard contains hierarchically structured hypothesis 

elements, integrated by links representing support from above 

(expectation-links) or from below (reduction-links). The structure of the 

hierarchy may be simple or complex. Hypothesis elements can be generated 

by inference rules in the knowledge sources, and can also be generated and 
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named in advance by the user. They may include credibility ratings, 

calculated using preprogrammed procedures or user-provided algorithms. 

The domain-specific knowledge needed by systems developed using 

AGE can be contained in one or more knowledge sources. These knowledge 

sources are used to create and modify hypothesis elements and 

relationships between elements. Each of them has associated with it lists 

of preconditions for its invocation, pairs of hypothesis levels that it spans 

and links it generates, a hit strategy to be used for the rules and a facility 

for binding variables. There may also be higher-level knowledge sources 

which manipulate the domain-specific knowledge sources. 

Control components are needed to specify the input data format, 

initialisation function, processing method, rules for determining the next 

step in the processing and selecting the relevant knowledge source to 

carry it out, termination conditions and post-processing functions. 

Standard control components are provided, but user-written procedures 

may be substituted where required. 

The AGE system has been widely distributed and used for applications 

ranging from a small system to solve cryptogram problems to TRICERO, a 

multisensor data-fusion system using separate blackboard subsystems 

(Williams, '88). 

4.6.2. The Edinburgh Prolog Blackboard Shell (Jones et aI., '881. 

The Edinburgh system has been designed as an experimental tool, 

using the pattern-matching facilities built in to Prolog to simplify the 

implementation of the blackboard concept. 
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The blackboard structure is not defined explicitly; the user assigns 

indexes to entries, the choices of which determine the regions and levels 

into which the data will be organised. Blackboard data entries are Pro log 

unit clauses of the form: 

bb(Tag,Status,lndex,Fact,ConfidenceFactor) 

where Tag is a system-supplied identifier, Status is a system-supplied 

indicator of whether the entry is current or defunct and Confidence Factor 

is a user-defined term or system default representing a degree of belief. 

Relations between entries are shown explicitly by Prolog clauses of the 

form: 

supports(SupportingTag,SupportedTag). 

The knowledge sources which contain the domain-specific knowledge 

required by the system must be supplied by the user as Prolog rules: 

if Condition then Body to Effect est Est 

where Condition is a test for the presence or absence of some combination 

of blackboard entries, Body and Effect specify the action of the rule and 

Est is a rating which is used by the scheduler. 

The blackboard holds the agenda of tasks to be performed, in the form 

of knowledge source activation records (KSARs). Placing the agenda on the 

blackboard makes it possible for the scheduler to be implemented as a 

knowledge source which manipulates the agenda. 

As a small-scale experimental tool, the Edinburgh shell has been 

tested on small applications such as the modelling of users of 

command-driven systems. 
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4.6.3. Hearsay-Ill (Erman et al.. 'SSl. 

The ideas implemented in the speech-understanding system 

Hearsay-II have been abstracted, extended and generalised to produce 

Hearsay-Ill, a domain-independent framework for knowledge-based expert 

systems which is based on a relational database written in AP3 with 

control facilities in INTERLlSP. 

The designers aimed to provide the following facilities: 

- support for the codification of diverse sources of knowledge 

- support for the application and co-operation of these knowledge sources 

- the ability to represent and manipulate competing solutions 

- the ability to reason about partial solutions 

- facilities for describing and applying consistency constraints 

- support for long-term development of large systems, allowing 

experimentation with various knowledge sources and application schemes. 

As Hearsay-Ill is intended to be used for large-scale applications, 

the scheduling problem is expected to be complex and is itself handled by a 

blackboard approach, using scheduling knowledge sources to handle such 

tasks as the assignment of priorities to knowledge source activation 

records. The blackboard is therefore split into two parts, which can be 

further subdivided by the user if required: the domain blackboard, used to 

hold a domain model and partial solutions, and the scheduling blackboard, 

used for performance reasoning. 

The system was tested on small applications such as the solution of 

cryptarithmetic problems; full-scale applications include a system for 

constructing formal specifications of programs from informal 

specifications. 
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4.7. SUMMARY AND CQNCLUSIQNS. 

Blackboard systems are clearly a very useful tool for coordinating the 

use of a variety of different sources of knowledge to derive a solution to a 

problem incrementally. They are particularly well suited to use in problem 

domains which lend themselves to hierarchical structuring, to the 

development of partial solutions to problems which cannot be solved 

completely because of inadequate or uncertain data, and to developing 

methods for tackling complex problems where a solution strategy cannot 

be specified completely in advance. 

Pattern recognition, in which hierarchically layered representations, 

uncertainties in the data and multi-directional approaches to finding 

solutions are commonplace, is an ideal field in which to use a blackboard 

approach, so it is unsurprising that many of the systems which have been 

developed fall within this field. 

Rule induction has an important role to play in pattern recognition, as 

was indicated in Chapter 3; some of the knowledge sources required for a 

pattern recognition blackboard system could be induced from sets of 

training examples. These knowledge sources could be developed 

independently and then incorporated into the blackboard system, or 

alternatively the induction process could form an integral part of the 

system: solutions verified by a high-level knowledge source, or by the 

system user, could be fed back to be used in modifying and updating the 

rules, producing a recognition system which learns from the experience 

gained by solving problems. 

A rule induction or feedback module which developed and updated 

knowledge sources would not, strictly speaking, be a knowledge source 
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itself, but a meta-knowledge source, as the data it operated on would be 

not the problem data held on the blackboard but the knowledge sources 

themselves. One would effectively have a two-tier blackboard system, 

with the knowledge sources which made use of one blackboard being held 

themselves on another blackboard to be accessed by the meta-knowledge 

sources. Such a system would have to be written in a language such as 

Prolog which does not make a clear distinction between program and data. 

The Edinburgh Prolog blackboard shell (Jones et aI., '88) would therefore 

appear to be a suitable starting point for the development of such a 

system. 
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CHAPTER 5 

DEALING WITH UNCERTAINTY 

5.1. SOURCES AND TYPES OF UNCERTAINTY. 

The problems with which Artificial Intelligence is concerned are 

inherently uncertain - it is the lack of certainty, the need to make sense of 

incoherent or incomplete information, which gives rise to the need for 

'intelligent' problem-solving behaviour. (Hinde, '85;'86). 

Uncertainty can arise from a variety of sources; it can manifest itself 

in the problem data, in facts and in rules (Fox, '86). (Kodratoff et aI., '88) 

describes these sources and types of uncertainty: 

- unreliability of data due to symbolic noise (vagueness or ambiguity 

in the meaning of a term) or uncertainty in the measure of an attribute 

- human-induced errors: assigning wrong values to attributes, 

misciassifying examples or giving too many or too few descriptors 

- omission of necessary examples from a training set 

- deficiencies in the description language used 

- uncertainty in the problem domain 

- noise in background knowledge. 

(Schutzer, '87) gives some further examples: uncertainty about 

interactions between plan steps in a planning problem, uncertainty about 

the actions or intentions of an opponent in strategic planning, and 

problems with input data, including inaccuracy, incompleteness, disparity 

of sources, asynchronicity, inconsistency, variations in granularity and 

difficulties in data extraction, which mean that the data 'represents a kind 

of bounded ignorance'. 
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The uncertainty which is inherent in a system can be distinguished 

from the uncertainty introduced when modelling it using a particular 

representation system, which arises from vagueness in our perception and 

judgment of it. These distinct types of uncertainty may be best handled by 

different methods, numeric methods being more appropriate for the 

former, and symbolic methods for the latter. (Wise, '86). 

5.2. APPROACHES TO HANDLING UNCERTAINTY. 

The deSigners of A.I. systems can adopt two different approaches to 

the modelling of intelligent (human) behaviour: the understanding-oriented 

approach, aimed at duplicating the way in which humans operate, and the 

performance-oriented approach, aimed at producing the same results as a 

human would produce by whatever method seems most effective. 

(Spiegelhalter, '86). The various approaches which have been developed for 

dealing with uncertainty reflect this division as well as the differences 

between the types of uncertainty which arise in different problem 

domains. 

Humans often use vague, ill-defined terms when describing their 

reasoning processes; the difficulties involved in translating vague 

expressions into numeric terms without introducing an unjustifiable level 

of precision can be circumvented by using a symbolic approach. The use of 

symbols allows one not only to reason under uncertainty, as with a numeric 

approach, but also to reason with or about uncertainty (Fox, '86; Hinde,'86). 

Expert Systems often employ IF ... THEN rules obtained from human 

experts, with associated certainty factors which may show various forms 
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of bias: people's estimates of probabilities tend to be influenced by such 

factors as the ease with which they can recall or imagine an event (which 

leads to a bias towards specifics rather than generalities) and the degree 

of 'representativeness' which an event appears to display (which means, 

for example, that if a coin is to be tossed six times, 'HHTHTH' will be 

judged a more probable outcome than 'HHHHHH'). (Wise, '86). If the biases 

can be recognised, it should be possible to remove or reduce their effects; 

the results obtained will then be more accurate, but less 'human'. The main 

advantage of using such rule-based systems is the ease with which their 

conclusions can be explained to the user. 

Performance-oriented approaches are frequently based on probability 

theory or an extension, simplification or adaptation of it. Probability 

theory is the oldest and most widely used method of handling uncertainty, 

and is derived from a formal description of rational behaviour. 

Probabilities are a function of two things: the proposition under 

consideration, and the evidence at hand. Their precise magnitude is usually 

less important than the reasoning behind it, the context in which it applies 

and the sources of information which would cause it to change. Probability 

theory is unique in its ability to process context-sensitive beliefs, and it 

has been shown that for any reasonable scoring rule, any scalar measure of 

uncertainty is either worse than or equivalent to it. (Pearl, '88; Wise, '86). 

However, its use does present some problems: there may be insufficient 

data available to allow a full probability distribution to be specified 

accurately, with traditional probability theory ignorance cannot be 

distinguished from uncertainty, the computational cost may be excessive, 

and if approximations and simplifications have to be made the results 

obtained may not be accurate. 
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The need to express ignorance, as opposed to uncertainty, has led to 

the development of methods based on intervals: the range of probabilities 

which could be assigned to a hypothesis is given, with the lower limit of 

the interval based on the weight of the evidence supporting the hypothesis, 

and the upper limit calculated from the weight of evidence against it, or 

the support for its negation. The width of the interval represents the 

degree of ignorance, or lack of evidence. 

There is a clear difference between the concept of probability and the 

concept of truth. A probability of 0.5 attached to a hypothesis does not 

mean that it is half-true; hypotheses are either true or false, and 

probabilities can be regarded merely an estimate of the relative 

likelihoods of these two alternatives. The idea of reasoning with truth 

rather than with probability - or with belief, as the truth or falsehood of 

hypotheses will, in general, not be known - has led to the development of 

truth maintenance systems, which are used to establish sets of mutually 

consistent hypotheses. Truth maintenance can be linked with probabilistic 

methods: the use of a preference ordering of assumptions will ensure that 

the 'most probable' solutions to a problem are explored first. (Hinde et aI., 

'89). 

(Pearl, '88) gives the following classification of methods for handling 

uncertainty: 

logicist - uses non numerical techniques, primarily non-monotonic 

logic. 

neo-calculist - uses mathematical representations, with new calculi 

to circumvent the perceived deficiencies in traditional probability 

calculus (Dempster-Shafer calculus, fuzzy logic etc.) 

neo-probabilist - remains within the framework of traditional 
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probability theory 

heuristic - uncertainties are not made explicit, but are embedded in 

domain-specific procedures and data structures. 

Here, methods are reviewed under four different headings: numeric 

methods, which covers traditional probability theory and related methods 

such as Dempster-Shafer theory and the use of certainty factors, methods 

derived from fuzzy set theory, truth maintenance, and other methods 

(mainly symbolic). 

5.3. NUMERIC METHODS. 

5.3.1. Probability Theorv and 8ayesian Inference. 

Mathematical probability theory was developed to help explain random 

physical phenomena, where the frequencies of occurrence of each of a set 

of mutually exclusive states which an object can take on tend to approach 

stable values as the number of independent trials increases (Schutzer, '87). 

The classical definition of probability is: 

If a single trial of a chance situation can have one of N exhaustive, 

mutually exclusive and equally likely outcomes and if f of those N 

possibilities are favourable to an event A, then the probability of A. p(A) is 

equal to fiN. 

The conditional probability of an event A given an event 8, p(AIB), is 

defined by: 

p(AIB) = piA and B) (if p(B) > 0) 

p(B) 

If A and B are independent events, then p(AIB) = p(A) and 
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p(A and B) = p(A).p(B). 

(Kotz and Stroup, '83). 

Bayesians see the conditional relationship p(AIB) as more basic than 

that of joint events, so belief in joint events is computed from conditional 

relationships: 

p(A and B) = p(AIB).p(B). 

= p(BIA).p(A). 

This leads to the inversion formula: 

p(Hle) = p(eIH).p(H) 

p(e) 

where p(H) is the prior probability of Hand p(Hle) is the posterior 

probability of H given evidence e. The inversion formula can be used to 

update beliefs in response to evidence. The formula can also be given in an 

odds-likelihood form: 

O(Hle) = L(eIH).o(H) 

where O(Hle) is the posterior odds p(Hle)/p(notHle), L(eIH) is the likelihood 

ratio p(eIH)/p(elnotH) and O(H) is the prior odds on H, p(H)/p(notH). (Pearl, 

'88). 

Two events A and B are said to be conditionally independent given Cif: 

p(A and BIC) = p(AIC).p(BIC) 

If A and B are conditionally independent given C or notC, then the formula: 

p(CIA and B) = p(AIC) . p(BIC) . ..Q.(Ql 

p(notClA and B) p(AlnotC) p(BlnotC) p(notC) 

can be derived from Bayes' rule. The assumption of conditional 

independence allows a large set of events to be split into a network of 

local event groups (LEGs) to simplify calculations. (Wise, '86). 
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It has been shown (Johnson, '86) that the conditional independence 

assumptions which would permit updating of the probabilities of 

hypotheses on the basis of multiple items of new evidence cannot hold; 

however, methods based on these assumptions, though not theoretically 

justifiable, may produce useful results (see Section 5.3.4). 

A probabilistic model is normally specified by a joint distribution 

function, which assigns a non-negative weight to every elementary event 

(every conjunction in which each atomic proposition occurs once) such that 

the weights add up to 1. The distribution function may be specified by an 

algebraic expression (in the case of continuous random variables), or 

indirect methods such as network representations may be used. 

The assumptions on which the theory is based should not raise any 

insuperable difficulties: a 'catch-all' can be included if necessary to 

ensure exhaustiveness, the hypothesis space can be refined beyond binary 

propositions to form multi-valued variables which each reflect a set of 

mutually exclusive hypotheses, and intermediate variables can be 

introduced to induce conditional independence - for example, medical 

symptoms which are linked together can be identified as a 'syndrome'. 

(Pearl, '88; Shepherd & Hinde, '89). 

The specification of an accurate, coherent set of prior probabilities is 

often a major problem. If only some of the required parameters can be 

. obtained, the maximum entropy principle - which states that as much 

uncertainty should be retained (as few hidden assumptions should be made) 

as possible - can be used to estimate the rest. If the specified parameters 

are non-coherent, the model may need to be adjusted. 
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Probabilities can be regarded as unknown parameters which have 

distributions; if a probability is considered as a proportion in a (possibly 

imaginary) sample, then a 95% confidence interval can be established 

around it using binomial sampling theory (Spiegelhalter, '86). Vectors of 

O's and 1's can be used to represent probabilities, each bit position 

representing a possible state of the world, so each vector is a Monte Carlo 

sampling of possible states (Wise, '86). 

5.3.2. Dempster-Shafer Theo[y. 

The Dempster-Shafer theory of evidence was designed to handle cases 

where the probability distribution is incompletely known; it has the ability 

(which traditional probability theory lacks) to distinguish between 

uncertainty and ignorance. It has an underlying logical semantics so it can 

be implemented in a propositional logic system in a straightforward 

manner (Provan, '90). and it has the ability to model the narrowing of the 

hypothesis set with accumulation of evidence (Gordon & Shortliffe, '85). 

The frame of discernment, T, is an exhaustive set of mutually 

exclusive hypotheses. Evidence disconfirming an element of T can be 

interpreted as support for the remaining elements, but there is nothing to 

indicate how the support should be divided between them. Instead of 

enforcing an arbitrary division, D-S theory allots belief not just to single 

elements, but to all subsets of T. The impact of each piece of evidence is 

represented by a basic probability assignment (bpa) which assigns a 

number in [0,1] to every subset of T such that the numbers sum to 1. As 

the elements of T are exhaustive the empty set, 0, must be assigned a 

belief of o. The belief assigned to a subset A is denoted m(A). Any 

uncommitted belief is assigned to T. 
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8elief in a proper subset of the frame of discernment entails belief in 

supersets which contain it, so another function must be used to specify the 

total belief in a subset: given a bpa, m, the corresponding belief function 

8el assigns to every subset A of T the sum of beliefs committed to every 

subset of A by m. For a single-element subset A, 8el(A) = m(A); as the 

beliefs assigned by m must sum to 1, 8el(T) = 1. 

8el(A) represents the necessary support for a subset A; (1-8el(A')) 

represents the possible support for A, or the plausibility of A. The belief 

interval for A is [8el(A),(1-8el(A'))]. The width of this interval can be 

regarded as the amount of uncertainty with respect to a hypothesis, given 

the evidence. 

To determine the combined effect of two pieces of evidence, their 

belief functions must be combined. Given two belief functions 8el1 and 

8el2 with corresponding bpa's m1 and m2, the combined belief function 

8el1+ 8el2 can be determined by first calculating the combined bpa, 

m1+m2' Dempster's rule defines m1+m2(A) to be the sum of all products 

of the form m1 (X).m2(Y)' where A is the intersection of X and Y. This rule 

may assign a non-zero belief to the empty set, so the bpa has to be 

normalised: if the value initially assigned to 0 is k, then m1+m2(0) is set 

to 0 and the values assigned to all non-empty subsets of T are divided by 

(1-k). 

One problem with Dempster-Shafer theory (Gordon & Shortliffe, '85) 

is that as a set with n elements has 2n subsets, if the frame of 
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discernment is large the number of computations required will be vast. 

Barnett proposed a method for reducing the computations from exponential 

time to polynomial time, based on the assumptions that evidence will 

apply to single elements of the frame of discernment or their negations 

and that evidences can be reordered. His method involves combining all the 

evidence applying to anyone singleton or negation, then combining 

pairwise the resulting bpa's for each singleton and its negation, then 

finally combining the resulting n bpa's. 

(Gordon & Shortliffe, '85) suggest a computationally tractable 

approach for applying the theory in a hierarchical hypothesis space, which 

involves pruning the network of subsets of T to a tree in which each node 

below T has a unique parent by removing subsets of no semantic interest. 

Generally the negations of hypotheses in the tree will not themselves be in 

the tree, so disconfirming evidence must be associated directly with the 

disconfirmed hypothesis; an approximation is used to combine 

disconfirming evidence, displacing belief upwards towards T to avoid 

consideration of subsets not in the tree. 

(Provan, '90) describes how VICTORS (Provan. '87). an ATMS-based 

high level vision system (described in section 5.5.5), was extended using 

Dempster-Shafer theory to test how assigning weights, calculated by 

determining how far constraints are satisfied. to assumptions would 

affect its performance. Heuristic approximation algorithms were used to 

simplify the computations. 

The theory shows a discontinuous sensitivity to small probabilities; 

ignoring 'negligible events' can have radical effects, so caution must be 

used when making simplifying assumptions. (Wise, '86). 
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5.3.3. MYCIN's Certainty Factors. 

The Certainty Factors method developed for use in MYCIN (Buchanan & 

Shortliffe, '84), an Expert System for medical diagnosis, and since used in 

several other systems, is an approximation to probability theory which 

simplifies the computations required. With this method, the degree of 

belief in a proposition is represented by two numbers, the measure of 

belief (MB) and the measure of disbelief (MD), both of which vary between 

o and 1; the certainty factor, cf is equal to MB-MD and varies between -1 

and + 1. (Wise, '86). 

The certainty factor attached to an if evidence then hypothesis rule 

determines to what extent the evidence should change the degree of belief 

in the hypothesis. Certainty factors can be defined in terms of prior and 

posterior probabilities: 

cf(HJe) = pCHJe) - pCH) 

1 - p(H) 

pCHJe) - pCH) 

p(H) 

if p(HJe) > p(H) 

if p(H) > p(HJe) 

where p(H) is the prior probability of Hand p(HJe) is the posterior 

probability of H given e. 

Where two items of evidence bear on the same hypothesis, the 

certainty factor z resulting from the combination of certainty factors x 

and y is defined by: 

z = x + y - x.y 

x+y 

1 - min(JxJ,JyJ) 

(x,y ;:: 0) 

(x,y of opposite sign) 
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x+y+xy (x y < 0) 

This combination function is not derived from the definition given above 

and is not consistent with it, but was proposed as a commutative, 

associative approximation (Heckerman, '86). 

BACH (Sobolevitch, '85) is a production-based expert system which 

uses certainty factors, together with a truth maintenance system (see 

section 5.5) to produce a consistent view of activity in an area under 

surveillance from military intelligence reports. It uses a frame-like 

system to represent units; the frames have slots which include the unit 

internal ID, the certainty factor, and an assumption list and justification 

(used by the TMS). Reports are assumed to be independent of each other but 

units are not, so if a new unit's antecedents include a new report, its 

certainty factor is calculated using a MYCIN-type formula, but if a rule 

concerns units only the maximum of their certainty factors is assigned to 

its conclusion. 

5.3.4. Prospector (Gaschnig, '82). 

Three different types of relation specifying how a change in the 

probability of one assertion affects the probability of other assertions are 

used in Prospector, an Expert System intended to help geologists in 

exploring for hard-rock mineral deposits. 

The Prospector knowledge base contains models of certain classes of 

ore deposits, each encoded as an independent, hierarchically structured 

inference network. The terminal nodes in the networks represent field 

evidence; other nodes represent hypotheses. The system operates by 

matching field data supplied by the user against the models; it requests 
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additional information when necessary, informing the user of the 

geographical rationale for its questions, and provides a summary of its 

findings. 

Logical relations are employed where the truth value of a hypothesis 

is completely determined by the truth values of the assertions that define 

it. Conjunction (AND), disjunction (OR) and negation (NOT) operations are 

used. Where a hypothesis is defined by the conjunction of several pieces of 

evidence, the probability assigned to the hypothesis is the minimum of the 

evidence probabilities; for disjunction, the maximum is taken. These 

computations correspond to the standard fuzzy set union and intersection 

formulas (see Section 5.4). 

With second type of relations, plausible relations, the assertions are 

related to the hypotheses by rules with associated rule strengths which 

measure the degree to which a change in the probability of the assertion 

changes the probability of the hypothesis. The odds-likelihood form of 

Bayes' rule is used to compute the hypothesis probability. (The theoretical 

background of this rule is somewhat shaky - see Section 5.3.1. - but it still 

produces satisfactory results). Certainties are expressed on a -5 to +5 

scale, with linear interpolation between these extremes; the system 

translates these certainty values into probabilities (odds) to perform its 

calculations, then translates these back into certainty values when 

communicating with the user. 

When assertions must be considered in a particular sequence the third 

type of relations, contextual relations, are used. Contexts specify 

conditions that must be met before an assertion can be used in the 

reasoning process. 
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5.4. FUZZY SETS. 

The observation that attempts to model inexact concepts by formal 

systems of increasing precision lead to decreasing validity and relevance 

led Zadeh to propose the use of fuzzy set theory, a generalisation of 

traditional set theory which has found applications in numerous fields, 

including: 

- pattern recognition 

- clustering 

- pOlitical geography 

- decision-making 

- robot planning 

- chromosome classification 

- medical diagnosis 

- engineering design 

- systems modelling 

- process control 

- social interaction systems 

- structural semantics 

(Gaines, '76). 

Fuzzy sets are based on the idea of continuously graded degrees of 

membership of sets; the characteristic function of an ordinary set 

)lA(X): U -> {O.1} where )l(x) = 0 x in A 

)l(X) = 1 x not in A 

is replaced, for a fuzzy set, with a characteristic function of the form 
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)lA(X): U -> [0,1] 

which specifies the 'degree of membership of x in A'. With this definition 

'crisp' concepts can still be represented adequately, but there is no 

necessity to assign artificial boundaries to concepts which are inherently 

vague. 

The standard set operations - union, intersection, complementation -

can be defined for fuzzy sets in several different ways. The definitions 

which are most commonly used are: 

A union 8 = {max(a(x),b(x))/xlx is an element of U} 

A intersection 8 = {min(a(x),b(x))/xlx is an element of U} 

A' = {(1-a(x))/xlx is an element of U} 

It can be shown that these definitions of union and intersection are the 

only ones which are consistent with the requirements that the operations 

should reduce to the normal set operations for degrees of membership of 0 

and 1, that they should be order-preserving and continuous, and that the 

normal associativity, commutativity, distributivity and idempotence rules 

should be obeyed. If the distributivity and idempotence requirements are 

dropped, which may be considered desirable for reflecting natural language 

usage, then Zadeh's alternative definitions can be used: 

A union B = {(a(x) + b(x) - a(x).b(x))/xlx is an element of U} 

A intersection B = {(a(x).b(x))/xlx is an element of U} 

(Gaines, '76). As well as the standard set operations, there is a range of 

operations which are specific to fuzzy sets, for example concentration, 

which reduces the degree of membership of elements which are 'only 

partly' in the set, normalisation, which adjusts the degrees of membership 

so that at least one element is 'totally' in the set, intensification and 

fuzzification. 
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Imprecise statements can be modelled as fuzzy sets using linguistic 

variables - variables whose values are natural language expressions 

referring to some quantity of interest. These expressions can be 

represented by fuzzy sets composed of the possible values that the 

quantity of interest can assume. For example, if the quantity of interest 

could assume an integer value between 1 and 10, the expression 'few' could 

be represented by 

{0.4/1,0.8/2,1/3,0.4/4} 

The natural language expressions normally form a structured finite set, 

with syntactic rules for generating expressions arid semantic rules for 

associating fuzzy sets with them. Primary terms are modelled by fuzzy 

sets, and hedges (very, quite etc.) are modelled by fuzzy set operations. 

(Schmucker, '84). 

Fuzzy set theory can be used to extend classical logic to produce a 

fuzzy logic in which the constraint that every statement must be either 

absolutely true or absolutely false no longer applies. The compositional 

rule of inference, which states that if R is a fuzzy relation from U to V and 

X is a fuzzy subset of U, the fuzzy subset of V which is induced by X is 

given by the composition of R and X, can be used when variables range over 

finite sets. It includes as a special case a generalisation of modus ponens: 

If X is B then V is C 

X isA 

Vis 0 

where X and V are variables in universes U and V respectively, A and Bare 

fuzzy subsets of U, and C and D are fuzzy subsets of V. 
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An alternative approach to approximate reasoning is truth value 

restriction: the degree to which the actual value of a variable agrees with 

its antecedent value in a production can be represented as a fuzzy subset 

of a truth space and used in a fuzzy deduction process to determine the 

corresponding restriction on the truth value of the right hand side of the 

production (Nafarieh, '88). 

The concept of fuzziness can be extended to mathematical structures, 

replacing the concept of the value of a variable with 'the degree of 

membership of a value', as a result of which values seem to play the role 

of functions and non-fuzzy functions become functionals (Gaines, '76), and 

to the domains of interest of sets: operations which map a fuzzy set and 

domain of interest into a new fuzzy set and new domain of. interest can be 

used, for example, to fuzzify algorithms for manipulating black-and-white 

images for application to grey-scale images (Edmonds, '81). 

One problem with fuzzy set theory is that there is no proof that it 

models perception or judgment, and no clearly defined way of determining 

if a given membership function is 'right' (Wise, '86). The theory assumes 

that grades of membership of property categories may be expressed by 

functions, the values of which submit to the conventional arithmetic 

operations, and if unary operations such as the transformation of fuzzy 

sets with hedges are to be meaningful, a ratio scale must be used for 

subjective measurements. Franksen's investigation of the empirical 

justification of the assumptions made shows that for fuzzy sets 

representing a large variety of psychophysical continua and corporate 

utility under risk, a power function is an appropriate form of membership 

grading (Franksen, '78); little other research has been conducted in this 

area. 
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Other problems with Zadeh's fuzzy logic include extreme vagueness of 

results in fuzzy conditional propositions, and weaknesses in the ways in 

which chain reasoning, conjunctive fuzzy conditional propositions and 

combination of evidence are dealt with (Nafarieh, '88). 

5.4.1. FRIL (Baldwin et al.. '881. 

FRIL (Fuzzy Relational Inference Language) is a logic programming 

language which extends Prolog to represent doubt and uncertainty 

associated with both facts and rules, using support pairs which define 

intervals containing point value probabilities. The use of support pairs is 

a compromise between using single probability values and using fuzzy sets 

- the intention is to avoid introducing an unjustifiable degree of precision, 

while keeping the computational burden to a minimum. The underlying 

Support Logic programming theory is more strongly related to a 

generalisation of probabilistic reasoning than to fuzzy reasoning, but FRIL 

includes a mechanism for representing and reasoning with fuzzy sets. 

The first number in each support pair, the lower limit, represents 

necessary support; the second represents possible support. A total lack of 

evidence will be represented by the support pair [0,1]. With FRIL, a lack of 

evidence supporting a proposition is not interpreted as support for its 

negation; the following relationships apply: 

Necessary support for P + Necessary support against P ::; 1 

Necessary support for P = 1 - Possible support against P 

Necessary support against P = 1 - Possible support for P. 

The probability of a propOSition is evaluated by: 
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1. Determining a proof path for the proposition, ignoring any assigned 

probabilities. 

2. Evaluating the probability associated with the proposition using this 

proof path. 

3. Repeating steps 1 and 2 for all other possible proof paths. 

4. Combining the results into a final probability interval. 

When evaluating the probability associated with a proof path, FRIL 

assumes independence unless told otherwise. Conditional probabilities can 

be entered in the knowledge base if they are known. When combining the 

support from different proof paths, the default method assumes that the 

unknown probability lies within the intervals defined by each of the 

support pairs being combined, and so uses an intersection rule, which can 

yield a fairly narrow support pair interval even when the intervals 

contributing to it are quite wide. This method assumes that there is a 

degree of dependence between the inferences from different support paths. 

An alternative method, the Dempster rule, can be specified where the 

sources of inference are independent and conflicts may occur. 

The standard Prolog unification algorithm is extended in FRIL to 

include a form of semantic unification. Semantic terms such as 'tall', 

'average_height', 'short' can be defined using fuzzy sets such that there is 

a partial match between them; the unification process allows, for example, 

support for a person being tall to be deduced from the fact that they are 

known to be of average height. 

FRIL has been used for numerous AI applications, including 

probabilistic reasoning in scene analysis, radioactive waste safety 

assessment, experience bases using conceptual graphs, software 
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dependability modelling and Expert Systems for the effect of stress on 

operator performance, aircraft design and chemical plant control. 

5.4.2. A Fuzzy Rule-Based Production System (Nafarieh, '88). 

The fuzzy logic incorporated in this system, which was developed and 

tested on target detection and recognition from temporal sequences of 

forward-looking infra-red (FUR) and TV images, was intended not only to 

cope with the complexity of the problem and the uncertainty in the data, 

but also to facilitate the provision of a natural language interface to mid­

and high-level subsystems, to increase the believability of results by 

relaxing perceived precision and, using contextual knowledge, to enable 

conflicting interpretations to be resolved and the initial analysis of the 

system to be refined. 

The system has three phases: prescreening, scene recognition and 

contextual knowledge-based validation. The first phase uses rules such as: 

If: range is long 

Then: prescreened window size is small 

where the terms 'long', 'small' are defined by fuzzy sets. The mapping of 

measurements to linguistic terms employs the definition of the 'Hamming 

distance' between two fuzzy sets: 

d(A,B) = (for finite sets) 

The scene recognition stage segments, recognises and labels scene 

components, distinguishing between various man-made objects (armoured 

personnel carriers, tanks) and natural objects (the sky, fields, trees). The 
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final stage resolves any conflicts in the results. A fuzzy k-nearest 

neighbour algorithm is used to produce class memberships for test 

vectors, based on class memberships of the training data and distances of 

the test data from the training data; these memberships are mapped to 

linguistic confidence values. 

The system was compared with a rule-based system which used 

Dempster-Shafer theory, selectively extracting groups of four features at 

a time, generating confidences and combining these with previously 

generated confidences. The fuzzy system produced better results. 

5.5. TRUTH MAINTENANCE. 

5.5.1. The Origins of Truth Maintenance. 

Truth maintenance systems (TMSs) were developed to support the use 

of non-monotonic reasoning in problem solving. This type of reasoning may 

be appropriate when knowledge of a problem is incomplete and default 

assumptions must be made to enable a solution to be found, when the 

universe of discourse is changing or when temporary assumptions are used 

to test a possible solution (Frost, '86). The truth maintenance concept is 

based on the use of belief values which, unlike truth values, are subject to 

alteration and revision in the light of new evidence; TMSs are designed to 

be used by deductive systems to maintain logical relations among beliefs, 

to modify the belief structure when premises are changed and to use the 

logical relations to trace the source of contradictions or failures, leading 

to more efficient backtracking (McAllester, '78). 
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The development of TMSs stemmed from Stall man and Sussman's 

work, (Stallman & Sussman:77), which aimed at improving the behaviour 

of chronological backtracking in combinatorial search problems such as 

electronic circuit analysis by recording dependencies as the search 

progressed - dependency directed backtracking (DDB). (Shanahan & 

Southwick, '89). 

There are two main types of TMS. The earlier type, 

justification-based systems (JTMSs) such as those produced by Doyle 

(Doyle, '79b) and McAllester (McAllester, '78), store as fundamental data 

the immediate justifications for inferences, maintaining a single 

consistent hypothesis and using DDB to restore consistency by rejecting an 

assumption when contradictions are discovered. These systems have 

several limitations: 

- only one solution can be considered at a time, alternative solutions 

cannot be compared 

- the current choice set can only be changed by introducing a 

contradiction which cannot be removed later, so switching states is 

difficult 

- their machinery is cumbersome 

- if some but not all of the inferences based on an assumption set 

have been derived when a contradiction is found, the work may have to be 

repeated later if the complete set of inferences is required. 

(de Kleer, '84). 

The later assumption-based systems (ATMSs), which were developed 

by de Kleer in an attempt to solve these problems, record the fundamental 

assumptions on which inferences rest, maintaining multiple 

self-consistent but mutually inconsistent sets of hypotheses or contexts. 
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(Shanahan & Southwick, '89). However, they too have limitations: 

- if only one solution is required they are hopelessly inefficient 

- they may search regions of the solution space which DDB would 

avoid 

- debugging is difficult; intermediate states represent pieces of many 

solutions, and it can be hard to tell which is causing problems. 

(de Kleer & Williams, '86). 

The development of a combined system which was intended to have 

the advantages of both types and the disadvantages of neither, using DDB to 

provide the search strategy with a coarse focus and tohandle control 

assumptions, and an ATMS to provide an additional level of discrimination 

and to handle non-control assumptions, is described in (de Kleer & 

Williams, '86). ATMSs have also been implemented with some form of 

rating system to ensure that the most promising solutions are investigated 

first (Hinde et aI., '89; Provan, '90). 

5.5.2. Justification-Based Truth Maintenance Systems. 

The JTMS developed by Doyle is generally considered to be the first 

true TMS. It operates by keeping track of which statements, assumptions 

and hypotheses are currently believed (IN) and which are not currently 

believed (OUT). (Doyle, 79b). 

Doyle's JTMS employs two data structures: nodes, which represent 

beliefs, and justifications, which represent reasons for beliefs. Each node 

has one or more justifications associated with it. A node is IN if and only 

if at least one of its justifications is valid. There are two different types 

of justification, support-list justifications and conditional-proof 
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justifications. Support list justifications have two parts: an in-list 

containing nodes used in the derivation of the belief, all of which must be 

IN for the justification to be valid, and an out-list, all the nodes in which 

must be OUT for validity. The out-list is used to allow assumptions to be 

retracted; if the out-list of an assumption A contains the node notA, the 

assumption will be retracted automatically if it leads to a contradiction. 

(Norman, '87). Conditional-proof justifications are used when the status 

of the node depends on the validity of a hypothetical argument; they have 

three parts, a consequent, an in-list and an out-list, and are valid if the 

consequent is IN whenever each node in the in-list is IN and each node in 

the out-list is OUT. 

The JTMS maintains a single consistent context (the current set of IN 

nodes) by using DDB to restore consistency when a contradiction arises. 

The nodes which contribute to the contradiction are found by tracing 

through the dependency structure, one of them is chosen as the culprit and 

rejected, and all justifications which depend on this node are checked for 

validity. (Shanahan and Southwick, '89). 

A simplified JTMS was developed by McAllester. His system allows 

propositions to have one of three truth values, true, false or unknown, and 

represents aUlogical relations between propositions as disjunctive 

clauses; this representation makes no distinction between antecedents and 

consequents, which simplifies the backtracking process. (McAllester, '78). 

5.5.3. Assumption-Based Truth Maintenance Systems. 

The ATMS described in (de Kleer, '86a) was designed to allow a 

problem database to contain unresolved inconsistencies, so that the 
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problem solver could follow more than one search path through the solution 

space at once and compare alternative solutions with one another. It was 

also intended to increase the ease with which results obtained in one 

region of the space could be carried over into other regions, by recording 

derivations in the most general way possible. 

ATMS nodes have a label, supplied by the ATMS, which determines the 

environments or contexts in which the datum holds by specifying the 

minimal sets of assumptions from which it can be derived. A premise has 

an empty label; the label of an assumption specifies a single assumption 

set which contains only the assumption itself. Nodes also have 

justifications supplied by the problem solver giving the parent nodes from 

which they were derived. 

A special node is used to represent falsity. The assumption sets 

specified for this node are 'nogood' sets - sets from which inconsistencies 

have been derived. These sets are used to partition the space into 

self-consistent environments, and thus to ensure that inconsistencies are 

. not propagated: when computing a node label, the system checks the 

assumption sets and removes any which contain 'nogood' sets. 

5.5.4. REVaraph's Consistency Maintenance (Bowen & Mayhew, '88 ). 

The REVgraph is a 3-~ model used in the construction of a 

geometrically consistent description of a scene from a description of the 

edge segments in a pair of stereo images. The edges are typically 

fragmented; the reasoning system uses both bottom-up and top-down 

processing to complete broken edges, find vertices and identify and 

describe regions, using rules such as "if 3 lines can be extended to meet at 
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a point, hypothesise a vertex at that point" and an object-oriented 

algorithm which focuses on wires (edges) which have been identified as 

'interesting' . 

The initial data is ambiguous rather than wrong, so the system used 

to control the uncertain reasoning is called a Consistency Maintenance 

System (CMS) rather than a TMS. The CMS is context-based: a context is a 

subset of the database within which there are no contradictions and no 

paths of justification are incomplete, and is represented by a list of 

integers each representing a point at which a contradictory context was 

split. The set of contexts in which a justification is valid is the 

intersection of the sets of contexts in which its premises are valid; the 

set of contexts in which a fact is valid is the union of the sets of contexts 

in which its justifications are valid. 

The CMS data structure is a directed graph consisting of 'fact' nodes 

(representing items in the database) and 'data dependency' (DD) nodes 

(representing justifications). The information associated with a fact node 

is: 

support-by list 

support-for list 

value 

context list 

contradictions 

list of all DD-nodes (justifications) 

list of all DD-nodes for which this fact is a 

premise 

pointer to the database 

list of contexts of which this fact is a member 

list of contradictions of which this fact is a part 

The information associated with a DD-node is: 

premises list 

consequence 

rule identifier 

fact nodes required to make this deduction 

pointer to the result of the deduction (a fact node) 

pOinter to the rulebase 
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context list 

disallowed list 

list of contexts in which this justification is valid 

list of contexts ruled out by contradiction 

There are two types of justification: rigorous justifications (for 

derivations from logical implications) and heuristic justifications (for 

derivations from heuristics). 

The CMS explores alternative solutions in parallel and allows partial 

solutions to be examined. Its main disadvantage is that it is very slow if 

the number of contexts is large. When an n-element nogood set is found, 

each context containing this set can be split into 2n new contexts 

containing subsets of it. Attempts have been made to reduce the number of 

contexts created after the discovery of an inconsistency by considering 

only maximal proper subsets of the nogood set and using background 

knowledge to identify trustworthy elements of it, but keeping the number 

of contexts within reasonable bounds clearly presents problems. 

5.5.5. VICTORS {Provan, '871. 

VICTORS is a vision system which aims to identify two-dimensional 

puppet figures, consisting of a number of parts (head, body, arm etc.) each 

with rotatory, translational and scaling degrees of freedom with respect 

to the parts to which they are joined, from input data consisting of sets of 

four points which represent the vertices of overlapping rectangles. 

The data is preprocessed to determine the areas and orientations of 

rectangles and the overlaps between rectangles, then passed through a set 

of filters which place restrictions on acceptable assignments of parts to 

rectangles. Parts which are tightly constrained (for example, the trunk, 

which must be overlapped by five other parts) are identified as 'seeds' and 
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used as the starting points for determining sets of locally consistent 

constraints, then an ATMS is used to establish global consistency, 

producing a set of dependency graphs - nodes interconnected by constraints 

- from which puppet figures can be identified. 

The use of an ATMS enables the system to provide trace explanations 

for part assignments, allows holonomic constraints to be defined with 

variable geometry, permits the exploration of multiple solutions 

simultaneously, enables the database to be updated with the input of new 

information, produces robust behaviour with noisy data and occluded or 

incomplete figures and demonstrates the necessity of using 

domain-dependent constraints to reduce the search space. There is, 

however, a price to be paid for these advantages: the ATMS is the most 

computationally expensive part of the VICTORS system. 

5.5.6. LUMP (Hinde et aI., '89). 

A blackboard system combined with an ATMS and a 'soft focussing' 

rating system forms the basis of LUMP (Loughborough University 

Manufacturing Package), a process planning system which serves as an 

integrating framework for a number of subsystems. Its input, 

constructive solid geometry strings, comes from a designer system and its 

output is numerical machine codes or programs which are passed on to 

factories. There are four major subsystems: 

1. A Prolog procedure to translate the input data into manufacturing 

features 

2. A Prolog planner to generate the generic operations used to manufacture 

a component 

3. A proprietary relational DBMS containing information about the 
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properties and relationships of the machines and tools in a factory 

4. A numerical code generation package. 

The subsystems interact through a blackboard whose entries have 

assumption bases attached to them. Modal tags indicate whether entries 

follow necessarily from their antecedents, when their assumption bases 

are formed from the union of their antecedents' assumption bases, or 

represent one of a range of possibilities, when they have a new assumption 

attached to them to prevent any inconsistency which arises from being 

propagated back to their antecedents. 

The ATMS allows the system to reason with several possible 

solutions at once, but the rating system should ensure that the 'most 

obvious' solution is considered first. Ratings can never increase, and will 

generally decrease, as the formation of a solution progresses; the system 

will always work on the solution whose current rating is highest, 

switching to another solution when the rating drops. This should ensure 

efficiency without sacrificing exhaustiveness. 

5.6. OTHER METHODS. 

5.6.1. Cohen's Endorsements (Wise. '86). 

The essential idea behind the Endorsements method proposed by Paul 

Cohen is that numeric certainty labels are of limited value without some 

knowledge of the evidence on which they are based. His method associates 

with each hypothesis a body of endorsements, which represent reasons for 

believing or disbelieving the hypothesis. These allow the certainty to be 
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assigned to the hypothesis to be judged in the light of what the result is to 

be used for (Spiegelhalter, '86). 

The endorsements can be interpreted in two ways: as a method of 

keeping track of what has been conditioned on, or as a way of coding 

correlations into networks. (Wise, '86). 

Cohen's example application is GRANT, a system for finding agencies 

to fund a research proposal. Classes of research interests are arranged in 

a hierarchy; it is assumed that agencies will specify the largest class 

which contains only their interest, and that sibling classes (distinct . 

sub"classes of a single parent class) will not overlap. Suppose that a 

class A has sub-classes Band C (Figure 5.1). The link between A and B 

A 

B c 
Figure 5.1. A simple hierarchy with 'is-a' links. 

represents a positive endorsement as an agency which is interested in A 

will also be interested in its sub-class; the "is-a, is-a-inverse" link 

92 



between Band C represents a negative endorsement as the assumptions 

imply that an agency which has expressed an interest in B will not be 

interested in C. 

The method does not include any general scheme for comparing two 

bodies of endorsements; they can just be pairwise ranked (Neapolitan, '90). 

5.6.2. Logical formulation of linguistic ideas (Fox, '86). 

Fox places the emphasis on describing rather than measuring 

uncertainty, using qualitative rather than quantitative knowledge. His 

method uses logical formulations of terms which people use to describe 

uncertainty, for example: 

possible: S is possible if no conditions necessary for S are violated 

plausible: S is plausible if S is possible and the arguments for S are 

stronger than the arguments against S 

probable: S is probable if S is possible and there is at least one item 

of evidence in favour of S 

certain: S is certain if a sufficient condition for S is true. 

The use of this kind of qualitative representation may reduce the need 

for precise quantitative assumptions to be made, thus producing a robust 

system. This method also facilitates the exploitation of analogy, 

generalisation and causal reasoning in hypothesis formation, allowing 

patterns in the data to be utilised and enabling the decision to be made to 

be structured into separate components - features which should 

compensate for any loss of precision in comparison with numeric methods. 

The terms used are applied uniformly to facts, data and rules. 
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Nominal labels are attached to statements by counting their 'pros' and 

'cons' and making comparisons with logically exclusive alternatives. This 

is a statistically weak method, but is suitable for use in problem domains 

where a high degree of precision in the measurement of uncertainty is not 

required. The application described in (Fox, 'S7), PSYCO (Production 

SYstem COmpiler), is a small system for medical diagnosis; in this field a 

strict probabilistic ranking of possible diagnoses is inappropriate as, for 

example, a doctor would attach more significance to a 10% probability of 

cancer than to a 75% probability of a common cold. 

The method can be combined with numerical methods to allow precise 

calculations to be carried out where necessary, for example when a close 

decision between two alternatives has to be made. 

5.6.3. 8undy's Incidence Calculus (Corlett & Todd, 'S6). 

As the use of purely probabilistic methods requires a complete set of 

correlations which are frequently not available, 8undy proposed mixing 

probabilities with first-order logic in his Incidence Calculus. A 

probability distribution is posited over a collection of possible incidents, 

each of which gives a complete specification of the truth values of atomic 

sentences. Each sentence can then be assigned a probability equal to the 

measure of the set of possible incidents in which it is true. (8acchus, 'SS). 

If the set if incidents in which an event E is true is represented by 

i(E) and the (finite) set of all possible incidents is represented by w, then 

if i(E) = w then E is true 

if i(E) = {} then E is false 
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p(E) = lliEll . (assuming each incident is equally likely) 

Iwl 

This approach has several problems associated with it: statistical 

generalisations cannot be represented (Bacchus, '88), the inference 

mechanism is unsatisfactory, a computationally expensive inconsistency 

detection mechanism must be employed when assigning incidences to 

mutually exclusive events, and the probabilities assigned to the 

conjunctions of independent events will vary with the way in which 

incidents are assigned to the events, the distributions of the probabilities 

being both complex and difficult to analyse (Corlett & Todd, '86). 

A variant of the Incidence Calculus which avoids these problems and 

is amenable to statistical analysis, the Monte Carlo method, is described 

in (Corlett & Todd, '86). This method has the unusual (and perhaps 

undesirable) characteristic of sometimes drawing different conclusions 

from the same data on different occasions. 

5.6.4. Lp logic rBacchus. '88). 

The logical formulation Lp proposed by Bacchus extends Bundy's idea 

of mixing probability with first-order logic to allow the use of random 

variables, by specifying a probability distribution over the domain of 

discourse rather than over the sentences of the language. It permits 

closed formulas such as: 

Bark(Fido) 

which must have a probability of either 0 (false) or 1 (true). and also 
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permits open formulas such as: 

[Bark(x)IDog(x)]x > 0.5 

where x can be interpreted as being a random variable bounded by the 

probability term formed by the square brackets, to represent statistical 

generalisations (in this case, 'more than 50% of all dogs can bark). 

Lp can represent empirical probabilities which take the form of 

statistical statements, but cannot represent a subjective probability 

assignment to a closed formula; however, Bacchus combines Lp with an 

inductive mechanism for assigning degrees of belief to sentences based on 

the empirical generalisations expressed in the logic, using an inductive 

assumption of randomness. For example, if it is known that 90% of dogs 

bark and Fido is a random dog, then the degree of belief assigned to 

bark(Fido) is 0.9. Such degrees of belief cannot be expressed directly in 

Lp; only the statistical information from which they can be generated can 

be expressed. The calculated degree of belief will depend on what 

knowledge is used in the inductive step of randomisation; the maximum 

possible amount of knowledge is used, following the partial ordering of 

knowledge 

a> b if a -> b is deducible from the knowledge base. 

Lp and the belief mechanism together offer plausible inductive 

inference and sound deductive inference, but the knowledge base must be 

organised efficiently to ensure that the relevant facts are deduced quickly 

and a time limit must be applied to deduction as Lp is undecidable. 
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5.7. CONCLUSIONS. 

The methods for handling uncertainty which have been reviewed here 

cover a very wide range. They aim to handle many different types of 

uncertainty and ignorance, and each has its own strengths and weaknesses. 

There is no one method which can be considered best for all AI systems; it . 

may be necessary for a system to use a different method for each of the 

different types of uncertainty which arise within it. 

When selecting methods, it is important to note the assumptions -

both explicit and implicit - which are made, and to consider their 

appropriateness to the problem domain. It is also important to consider 

the degree of accuracy which is required in the results; there is no point in 

carrying out lengthy and elaborate calculations to determine exact 

probabilities if only approximate figures are required. 

For a pattern recognition system where the aim is to establish the 

most probable consistent interpretation of the objects in an image, an 

appropriate choice would seem to be to use an approximate numeric method 

to establish a preference ordering for possible object identifications. 

Truth maintenance could be used to resolve inconsistencies between 

identifications, if the advantages it offered were sufficient to justify the 

computational overheads. 
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CHAPTER 6 

RECOGNISING AN OBJECT USING FEATURE DATA 

6.1. INTRODUCTION: DESCRIPTION OF THE PROBLEM. 

The overall aim of this research was the production of a system 

which could learn to recognise complex artifacts such as cars in visual 

images from the output of a feature matcher which finds the best matches 

for a set of simple feature patterns in an image, giving mean x and y 

co-ordinates and a rating for each match. It was intended that the final 

system should be able to identify and locate all the instances of a number 

of different objects in an image, including partial and occluded views of 

objects, giving the probability that an instance of an object exists at a 

given location where insufficient information is available for a positive 

identification to be made. This system would consist of a number of single 

object recognisers each comprising a set of probabilistic rules for 

recognising members of a particular category of objects, together with 

such other knowledge sources as might be required, working in 

collaboration through a blackboard to arrive at the most probable 

identification of all the objects in a test image. 

Rather than developing each single object recogniser independently, it 

was decided that a program should be written which would induce a set of 

rules for recognising members of a category of objects from a set of 

training examples. 

To ensure accuracy in the descriptive element of the induced rules, 

the training examples would have to be carefully selected to ensure that 

they fully define the object category. The drawback with this is that 
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probabilistic rules developed using a preselected set of images could not 

be expected to reflect accurately the probabilities which would apply when 

using the recogniser with images which had not been subjected to the same 

selection process. It was therefore decided that some provision should be 

made for updating the probabilistic element of the rules, using feedback 

information on the results of the recognition process. 

The initial requirement was therefore to produce a three-stage 

system which would: 

1. Induce a set of probabilistic rules defining a category of objects from 

feature data obtained from a set of training examples. 

2. Utilise the rules developed in Stage 1 to recognise instances of the 

object category in test images. 

3. Update the probabilistic element of the rules, using feedback data 

obtained from Stage 2. 

This chapter describes the development of the rule 

induction/recognition/feedback system; the following chapter gives the 

results of tests conducted on it using both synthetic data and real images 

showing side views of cars. 

6.2. APPROACH. 

The approach to be adopted is largely determined by the 

characteristics of the feature matcher. This takes a set of fairly small, 

simple feature patterns and finds the features in an image which could 

match each pattern, giving the pattern number, mean x and y co-ordinates 

and a rating for each match. The matching is shape, size and orientation 
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dependent. 

If the object to be recognised is large and complex, it will not be 

possible to use a feature pattern which will match the whole object image; 

rather, patterns which match small parts of the object will have to be 

used. A set of suitable object parts and a corresponding set of patterns 

must therefore be selected. The selection of these parts and patterns may 

present considerable difficulties, particularly if members of the object 

category differ very noticeably from one another in appearance. 

An insistence on a one-ta-one correspondence between object parts 

and feature patterns would make the selection of appropriate part and 

pattern sets almost impossible for many categories of object, so the 

system must allow for a many-ta-many correspondence: a single object 

part may be matched by more than one feature pattern, and a single feature 

pattern may match more than one object part. This means that the part set 

may contain several parts of the same size and shape, e.g. the wheels of a 

car, and that variations in the size and shape of a part can be allowed for 

by using several different patterns to match it. 

The object part set and feature pattern set selected must obviously 

be large enough to enable the object to be recognised to be distinguished 

from all other objects which may be expected to occur in the images, but 

as the running time of the system and the size and complexity of the 

induced rule set will depend on the number of parts and patterns used, the 

numbers of both must be kept to a minimum. The system should, ideally, 

allow the user to experiment with different compositions of sets so that 

minimal sets can be identified easily. 
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With objects such as cars where the size and shape of a part can 

differ considerably from one model to another, the use of a strictly limited 

pattern set will not allow a highly-rated match to be obtained for every 

image feature corresponding to an object part, and the match ratings 

cannot be expected to be a reliable indicator of the probability that an 

object part has been detected. it therefore seemed appropriate to simply 

apply a threshold to the ratings: to establish, by examination of the feature 

data obtained from training examples, the minimum rating which is to be 

accepted for each pattern, to discard all matchings with ratings below this 

threshold and to treat all matches with ratings above the threshold as 

being of equal value. The levels at which the thresholds are set must be 

low enough for the vast majority of features corresponding to object parts 

to be preserved. With low thresholds, however, the data can be expected to 

contain a considerable amount of noise, i.e. features which do not 

correspond to object parts, and the design of the system must allow for 

this. 

The rules to be induced by the first stage of the system are to be used 

to perform two distinct functions: to identify sets of features which could 

correspond to object instances, and to attach probabilities to these sets. 

It was decided that the task of designing the system should be made easier 

by using a separate set of rules for each function. This would also 

simplify the implementation of the feedback stage, as only the 

probabilistic rules would require updating, the identification rules being 

fixed by the induction process. 

The identification of possible object instances in recognition tests 

involves finding subsets of the set of features found by the feature 

matcher whose elements could represent distinct parts of an object, and 
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checking the relationships between the elements of each such subset to 

determine whether the relationships which hold between the corresponding 

object parts are satisfied. The identification rules must, therefore, 

specify both feature pattern/object part correspondences ( to enable the 

object parts which individual features could represent to be identified) 

and the relationships which hold between object parts. 

If the feature patterns have been specifically chosen to match 

particular object parts, the part/pattern correspondences could be 

specified by the user. However, in the final multi-object recognition 

system a standard set of features may be used to identify parts of all the 

objects to be recognised, so the correspondences will not necessarily be 

known to the user; also, the determination of a minimal acceptable pattern 

set may be easier if the system has the ability to establish the 

correspondences for itself. They can be established quite easily by 

comparing the feature data and object data from training examples. 

Patterns which perform poorly can be eliminated by determining the 

proportion of features of each pattern whose co-ordinates match those of 

a particular object part, and recording a correspondence only if the 

proportion exceeds some preset limit. 

The relationships between object parts must be determined from the 

object-part data which is supplied to the system; to allow comparisons 

with the feature data to be made, this should include the mean x and y 

co-ordinates of each part. As the object may be located anywhere within 

the image frame, what is significant is not the absolute co-ordinates of a 

part, but its co-ordinates relative to some other part or some fixed point 

on the object. With a system which is intended to recognise partial and 

occluded views of objects, any of the parts may be missing from the part 
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set, so it is not practicable to select one particular part as the origin for 

an object-based co-ordinate system; the simplest approach is to base the 

relationship rules on the co-ordinate differences between pairs of parts. 

It was decided that the rules should specify just the maximum and 

minimum x and y co-ordinate differences between each ordered pair of 

parts. 

One possible drawback with this approach is that using the horizontal 

and vertical distances between parts rather than the length and direction 

of a straight line joining them will make the system sensitive to the 

orientation of the object, but as the feature matcher is itself 

orientation-sensitive, this cannot be considered to be a major problem. If 

an object may occur in several different orientations, recognition can best 

be accomplished by treating each orientation as a different object-view, 

to be handled by its own rule set. This has the advantage of providing the 

user of the (multi-object) system with additional information: the 

recogniser will specify not only the location of the object, but also its 

orientation. 

Another potential disadvantage is that the rule set will not explicitly 

state any higher-level part relationships such as the relationships 

between the distances between different pairs of parts - the fact that the 

wheel arches on a car must be the same distance apart as the wheels, for 

example, will not be apparent. However, such relationships may be 

implicit in the set of part-pair distance limits: the limits placed on the 

distances between the wheels and the corresponding wheel arches will 

imply a limit on the difference between the wheel distance and the wheel 

arch distance. 
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The identification of maximum and minimum distances, with the 

assumption that any distance lying between these extremes will be 

accepted as valid, does not allow for the possibility that the permissible 

distances between a pair of parts may not be capable of being represented 

by a single closed interval. Where it appears that a disjunction of several 

intervals would be a more appropriate representation, the same approach 

as was suggested for the recognition of different orientations of an object 

could be adopted: the object category could be split into sub-categories. 

For example, if the ranges of wheel distances for standard saloon cars and 

for limousines could be seen to be disjoint, and it seemed desirable to 

eliminate wheel pairs whose distances fell between these ranges (p~rhaps 

because such wheel pairs might belong to vans), then 'saloon' and 'lima' 

could be recognised independently. However, this should rarely be 

necessary; even where distances do fall into several disjoint ranges, 

intermediate distances will not normally be obtained from other objects 

which could be expected to occur, so amalgamating the ranges will not give 

rise to recognition errors. 

The distances between features can be expected to influence the 

probability that a feature set corresponds to an object instance, but the 

relationships between distances and probabilities cannot be specified 

easily. With naturally occurring objects, the distribution of values of a 

particular dimension will often follow a predictable pattern - a normal 

distribution, for example - which can be defined by a simple mathematical 

formula, but with man-made artifacts the same does not apply; the 

distribution of car wheel distances, for example, will not appear as a 

smooth curve, but will have peaks whose heights are determined by the 

relative popularity of different models. Specifying the distribution 

function for each relevant dimension, and using these for the 
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determination of probabilities, would involve the development of a vast 

and very unwieldy set of probabilistic rules. It therefore seemed 

necessary to apply a thresholding technique yet again, limiting the use of 

feature co-ordinates to the identification of candidate feature sets and 

basing the assignment of probabilities to these sets on other criteria. 

The only other information available for use in the derivation of 

probabilistic rules was the set of object parts to which the elements of a 

feature set might correspond, and the set of patterns used to identify the 

features, so it was decided that a table of rules should be drawn up 

specifying empirical probabilities based on these factors. It was felt that 

a single feature should not be considered to provide adequate evidence of 

the existence of an object instance, so the rule table should contain an 

entry for every set of two or more object parts and corresponding pattern 

set. If there are n object parts, and part i can be matched by Pi different 

patterns, the total number of entries in such a table can be shown to be 

n 

IT (Pi + 1) 

i=1 

n 

1 

For an object set of four parts, two matched by a single pattern and the 

other two by two different patterns, there will be (2x2x3x3)-(1 + 1 +2+2)-1 

= 29 table entries; for a set of five parts, two matched by one pattern, two 

by two patterns and one by three patterns, there will be 

(2x2x3x3x4)-(1+ 1 +2+2+3)-1 = 134 entries. Despite the simplifications 

adopted, then, the task of inducing an adequate rule set for an object with 

even a very limited number of parts will clearly be quite large. 
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The probabilities can be derived by establishing, for each part 

seVpattern set combination, the number of feature sets in the training 

images which satisfy the identification rules and so could be recognised as 

object instances, and the number of these which correspond to actual 

object instances. Dividing the latter number by the former number will 

yield the required probability. 

If the results obtained from the recognition stage are to be used to 

update the probabilities, it will be necessary to store the two numbers 

used in the probability calculation so that these can be incremented and 

the probability recalculated when required. 

6.3. PRELIMINARIES: DATA PREPARATION. 

Before deriving a rule set for a new object view, a set of training 

images showing the full range of instances of the object view to be 

recognised must be obtained. These training examples will be used to 

determine the maximum and minimum distances between each pair of 

object parts; the distance limits cannot be adjusted by feedback, so it is 

important that the examples show all possible extremes of object size and 

orientation. Then the object parts to be feature-matched must be 

selected, named and numbered. The parts used must be ones which.occur in 

reasonably consistent positions in all instances of the object view, and 

have shapes which can be matched by a small number of patterns. There 

must be sufficient parts to definitely identify the object and to 

distinguish it from any other objects which could be expected to occur in 

the images, but no more than are required for effective recognition as the 

addition of a single element to the part set can be expected to 
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approximately double the running time of the system. The list of parts 

must be entered using the format: 

parUist(Objectview,[1 ,PartName1 ],[2, PartName2], ••.••• ]). 

The next stage is the selection of the feature patterns to be used. The 

feature matcher is sensitive to size and orientation as well as shape, so it 

may be necessary to use more than one pattern to match a single object 

part - for example, a car wheel may be matched by several circles of 

differing diameters - but the number of patterns used must be kept down 

as far as possible as the addition of an extra pattern will have a similar 

effect to the addition of an extra part on the system's running speed. A 

single pattern may be used to match more than one object part, where 

appropriate - the front and back wheels of a vehicle, for example, may be 

matched by the same pattern(s). The patterns should be numbered, then the 

images should be fed through the feature·match program (or the matches 

identified manually) and the features found should be entered in the form: 

feature(PicNo,PatternNo,X,V,Rating). 

The object-view instances in each picture must then be identified and 

numbered (a training picture may include several object instances), and the 

co-ordinates of each object part must be determined. The object part data 

should be compared with the feature data to ensure that a sufficient 

proportion of object parts have been identified by the matching process; if 

the hit-rate is too low, alterations must be made to the part set and/or 

pattern set. The object part data should be entered using the format: 

object-part(Objectview,PicNo,lnstanceNo,PartNo,X,V). 

The comparison of the object part data and feature data will also 

allow appropriate rating thresholds to be determined for each feature 
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pattern. The thresholds should be set low enough for the ratings of the 

vast majority of features representing object parts to exceed them; as the 

system has quite a high noise tolerance, it is better to include spurious 

features than to exclude features representing object parts. The 

thresholds should be entered in the form: 

rating_threshold(PatternNo,Threshold). 

6.4. DESCRIPTION OF THE SINGLE-OBJECT SYSTEM. 

6.4.1. Editing the feature data.· 

The top-level edit predicate is used to prepare feature data for use 

by the rule induction and recognition programs. It can be used to edit all 

the available feature data, by entering the goal 

edit. 

or to edit the data from a single specified picture: 

edit(PicNo). 

The editing process starts by removing all features whose ratings are 

below the threshold value, then checks the remaining features for 

duplication: if an image feature has been matched by more than one pattern 

(which may occur if, for example, the image feature is a circle the 

diameter of which falls between the diameters of two pattern circles) 

then only the highest-rated feature match is preserved. Two matches will 

be considered to be duplicates of one another if their x and y co-ordinates 

differ by less than 3. The remaining features are numbered, and recorded 

using the format: 

edfeatu re( PicNo, Featu reN o,PatternNo,X, V). 
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The final function of edit is to set the list of identified features in 

the picture to the empty list, O. This list is used during the recognition 

process. 

6.4.2. The Rule Induction Stage. 

The rule induction process uses all the available edited feature data, 

so it is necessary to ensure that edited data from pictures not included in 

the training set is not available to it. This can be achieved by delaying 

loading feature data from test pictures until the induction process is 

complete, or by specifying the pictures in the training set at the edit 

stage. 

The first part of the process involves marrying together the 

object-part data and the feature data from the training examples. This is 

accomplished by the predicate feature_match, which checks each feature 

in turn to see if a corresponding object part can be found (for 

correspondence, the X and Y co-ordinates of the feature and the object part 

must both differ by less than 3) and makes the appropriate entry in the 

matched_feature table: 

matched_feature(Object,PicNo,FeatNo,PatNo,lnst,PartNo). 

where Inst and PartNo identify the corresponding object part if one has 

been found, and are set to 0 otherwise. 

One of the ways in which the matched_feature table is used is in the 

determination of pattern/object part correspondences by the 

pattern_match predicate: if a sufficient proportion, say 5%, of the 

features of a given pattern number have been matched to object parts of a 

given part number, then an entry is made in the match table: 
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match(Object,partNo,PatternNo). 

The maximum and minimum X and Y co-ordinate differences between 

each pair of object parts are then calculated from the object part data by 

the predicate seUimits, and recorded in the distance_limits table in the 

form: 

distance Jim its(Object,Part1,Part2,MinX,MaxX,Min Y ,MaxY). 

No allowance is currently made in these limits for possible slight 

discrepancies between object part co-ordinates and the corresponding 

feature co-ordinates; introducing some tolerance in the limits would, 

however, be a simple matter if it were to be considered necessary. 

The main part of the rule induction phase is the calculation of the 

probability that a given set of features will correspond to an instance of 

the object, given that the feature patterns match the elements of some 

subset of the object parts and that the feature co-ordinates satisfy the 

relevant distance limits. This is effected by the predicate make_sets, 

which calls the subsidiary predicate find_sets to form every such set of 

two or more features in the training examples, using the information in the 

matched_feature, match and distance_limits tables, and counts both the 

total number of sets (Sets) and the number whose elements all match parts 

of a single known object instance (Matches) for every distinct part 

set/pattern set pair, recording the results in the set-probability table in 

the form: 

set-probability(Object,PartSet,PatternSet,Sets,Matches). 

The relevant probability is not stored explicitly, but can be calculated 

readily from this table when required; the percentage probability is 

(100*Matches)/Sets. The information is stored in this form for ease of 

updating by the feedback process. 
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The find_sets predicate makes full use of the automatic 

backtracking facility built in to Prolog. It operates by first invoking the 

subsidiary predicate find-pairs to form every possible ordered set of two 

different object parts and all the two-element feature sets corresponding 

to each of them, then invoking the find_multiples predicate to 'grow' the 

feature sets by adding features which could correspond to higher-numbered 

parts. Its insistence that the part sets should be arranged in part number 

order ensures that sets will not be duplicated. 

The find-pairs predicate checks the co-ordinate differences 

between pairs of features against relevant entries in the distance_limits 

table, then stores feature pairs together with part pairs whose limits they 

satisfy in a within_limits table, using entries of the form: 

within_limits(Object,PicNo,PartPair,FeaturePair). 

Find_multiples uses this table rather than the distance_limits table 

when growing feature sets, to avoid repeating the calculations required to 

check limits. 

The three sets of induced rules - the match, distance_limits and 

setJlrobability tables - are listed for inspection by the user .. 

6.4.3. The Recognition Stage. 

For recognition, the image has first to be fed through the feature 

matcher and the resulting feature data edited as for the training images. 

The test picture number and the object view to be sought are specified 

using the goal: 

search(Object,PicNo). 
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The threshold probability to be accepted for recognition can also be 

specified if required: 

search(Object,PicNo,Threshold). 

The default threshold is 100%, but a much lower threshold will be required 

if the feedback facility is to be invoked after the recognition stage, to 

ensure that no object instances in the picture escape recognition. 

Feature sets corresponding to possible object instances are identified 

by the search_sets predicate, which calls the find_set predicate used in 

the rule induction stage, then calls add_to_list to assign each feature 

set a number, calculate the probability that it represents an object 

instance using the information in the setJ)robability table, and insert the 

set number and probability in a list arranged in decreasing order of 

probability. 

When this list is complete, the report predicate is invoked to notify 

the user of the results of the search. The first element of the list is 

checked to see if its probability exceeds the threshold value. If so, the 

feature set is checked to see if it contains any previously identified 

features and, if it does not, presented to the user for acceptance or 

rejection. When a set is accepted, the features in it are added to the list 

of identified features for the picture (which was initialised as part of the 

editing process), a new object instance is created and the relevant object 

parts are recorded for use by the feedback process. The first element of 

the list is then discarded, and the process is repeated until the probability 

threshold is passed or the list is empty. 
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6.4.4. The Feedback Stage. 

The feedback stage uses the object part data recorded at the 

conclusion of the recognition stage and the relevant predicates from the 

rule induction stage to update the set""probability table. 

Note that the function of the feedback stage is just to update 

probabilities; the distance limits cannot be altered, or the set of 

probabilities calculated using the original limits would be invalidated. If 

an object instance which occurs in a test picture is not recognised because 

it falls outside the range determined by the training examples, then if the 

recognition program is required to recognise such instances the rule 

induction stage must be repeated, with the test picture included in the set 

of training examples. 

If the recognition process has identified only some of the features 

corresponding to parts of an object instance, because some of the feature 

distances fall within the limits and others fall outside them, the feedback 

process should not be invoked as it would produce variable results: some 

probabilities would be made more accurate, others less so. Only complete, 

accurate recognition results should be. used for feedback. 

The modified set....probability table is listed at the conclusion of the 

feedback stage, but the match and distance_limits tables are not listed as 

they are not altered by feedback. 
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6.5. RUNNING THE SYSTEM. 

'RECOGNISE1' was written in Cprolog on the VAX 111750. It is run by 

typing: 

cprolog 

to enter the Prolog interpreter, then when the prompt appears entering the 

names of the master file specifying the program files to be used: 

[master]. 

and the data files for the training examples, e.g.: 

[quadtest]. 

The feature data on the training examples is edited by entering the 

goal: 

edit. 

When the system responds with 

yes 

the rule induction stage can be invoked by entering 

learn(Object). 

The rule sets are printed out at the conclusion of the learning stage, which 

should only take a minute or two if the number of training examples is not 

too great. When the prompt reappears a test picture file can be loaded, 

then edited using: 

edit(PicNo). 

The object which has been learnt can then be sought by entering the goal: 

search(Object,PicNo). 

or search(Object,PicNo,ProbThreshold). 

When a feature seUpart set is presented for acceptance or rejection, 
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the user must enter 

a. 

to accept it, or 

r. 

to reject it. At the conclusion of the recognition process another test 

picture file can be loaded, or the feedback facility can be invoked by 

entering the goal: 

feedback(Object,PicNo). 

Appendix B contains edited listings of the test runs (which are 

described in Chapter 7). 
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CHAPTER 7 

TESTING THE SINGLE·OBJECT SYSTEM 

7.1. INTRODUCTION. 

The original intention to test the system on data produced by 

R.S.R.E.'s feature matcher had to be abandoned as problems with the 

feature matcher meant that appropriate data could not be supplied on 

time. The initial testing was, therefore, carried out using synthetic data; 

for the main tests, R.S.R.E. supplied processed images from which feature 

data was extracted manually, using a process as close to that used by the 

feature matcher as possible. 

The use of synthetic data had the advantage of allowing some of the 

system's capabilities· particularly, its ability to cope with noise - to be 

demonstrated more systematically than would have been possible if only 

'real' data had been used. 

The test on processed images of cars was expected to provide a good 

illustration of the problems which could be expected to arise in selecting 

appropriate sets of object parts and patterns for matching, and in using a 

training set which may not fully define the object to be recognised. 

7.2. TEST USING SYNTHETIC DATA. 

The synthetic data was specially devised for this test, and was 

intended to test the system's capability to deal with noise, its ability to 

distinguish different object parts represented by identical shapes and its 
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capacity to handle pictures containing more than one object instance. 

The object used was a quadrilateral, quad, with two circles, a square and 

a triangle at its vertices. 

7.2.1. Data Preparation. 

The selection of object parts and feature patterns presented no 

problems; the object parts to be matched were the vertex shapes: 

1 left_circle 

2 square 

3 righCcircle 

4 triangle 

and the feature patterns used were: 

1 circle 

2 square 

3 triangle 

The distance limits between quad vertices were predetermined and 

the training examples, pictures 1, 2, 3 and 4, were carefully devised to 

fully define these limits. Pictures 1, 2 and 3 each contained one instance 

of a quad; picture 4 contained two quads. Spurious features were added 

to bring the total number of features in each picture to twelve: four 

circles, four squares and four triangles. These 'noise' features were not 

placed randomly; their positions were selected to ensure that several 

partial feature sets could be found among them, but the only complete 

sets of four features which satisfied the distance limits were the actual 

quad instances. 

The test, picture 5, also contained twelve features, of which just 
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one set of four features represented acomplete quad, butseveral pairs of 

features could represent part of a quad. 

Figures 7.1 to 7.5 show all the pictures used, with the features 

displayed on a 120x120 grid. The quad vertices are shaded for ease of 

identification. 

7.2.2. Test Results. 

A listing of the system run is given in Appendix B. The rule 

induction process correctly identified all the object part/feature pattern 

matches and the vertex distance limits. As all the object instances in 

the training examples were complete, i.e. they all contained all four 

object parts, the Matches figures in the set-probability table entries 

could be expected to equal the total number of training instances; the row 

of fives in the table thus provides confirmation that the table is correct. 

The Sets figures in the table could be expected to decrease as the size of 

the pattern/part sets increased, reaching the number of Matches for a 

complete part set; this, again, can be seen to apply. 

A search of picture 5 with a probability threshold of 10%, low 

enough to pick up all the feature sets with a positive probability of 

representing an object instance, produced four feature sets: one complete 

set of four features, with a 100% probability, and three smaller sets 

with lower probabilities. A visual inspection will confirm that these 

represent all the possible quads in the picture. (The sets are shaded 

differently in Figure 7.5; note that the circle at (60,110) is contained in 

two different sets, and so is shaded with both horizontal and vertical 

lines.) 
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Figure 7.1. Quad Picture 1. 
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Figure 7.2. Quad Picture 2. 
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Figure 7.3. Quad Picture 3. 
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Figure 7.4. Quad Picture 4. 
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Figure 7.5~ Quad Picture 5. 
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Accepting the complete feature set, rejecting the three partial sets 

and invoking the feedback procedure yielded an updated set-probability 

table with most of the Sets figures showing an increase compared with 

those in the original table, and the Matches figures all increased to 6. 

Alternative tables could be obtained by accepting and rejecting different 

combinations of sets. 

7.2.3. Conclusions. 

This test, though limited in its scope, can be considered to have been 

a complete success; the results showed that the system can perform as 

required when presented with data of this type, and can produce a set of 

rules which constitute an effective component of a recognition program 

even when presented with only a very limited amount of training data. 

It was shown that the system can cope well with noisy data; the 

presence of a large proportion of spurious features did not hinder the 

recognition process. 

Despite the fact that the quad instances in the training examples 

were all complete, the recognition program was able to pick up the 

feature sets in the test example which could represent partial or 

occluded images of quads. Partial objects could be recognised because in 

the determination of set probabilities all feature sets are used, not just 

maximal feature sets. If the program were to be altered to calculate 

probabilities from just maximal sets, the probabilities assigned to 

partial sets would reflect the number of occurrences of partial objects in 

the training pictures; the partial quads would not then be recognised. It 

was felt that the ability to recognise partial objects even when these 

124 



were not included in the training set was a useful one, so no such 

alteration was made. 

7.3. TESTS USING IMAGES OF CARS. 

The main tests were carried out using images of cars supplied by 

R.S.A.E., Malvern. Twenty-one photographs showing side views of various 

models of car, all facing to the right, were selected and processed: the 

boundaries between areas of different intensity were extracted, then the 

resulting line images were filtered to remove line segments whose 

changes in direction exceeded a given threshold. Figure 7.6 shows four 

typical photographs; Figure 7.7 shows the processed image produced from 

one of them. 

7.3.1. Data Preparation. 

A preliminary visual examination of the images suggested that the 

object parts which offered most potential for matching were the wheels, 

wheel arches, windows and the roof/windscreen/bonnet section. A 

careful examination of these parts was carried out to enable appropriate 

feature patterns to be selected. 

The positions of the car wheels were indicated by circles of varying 

sizes, corresponding to either a small wheel hub, a large hub or the tyre. 

The wheel arches appeared in most of the images as semi-circles. The 

wheel circles and wheel arch semi-circles were measured, tabulated (see 

Table 7.1) and plotted on a histogram (Figure 7.8). It can be seen that 

there was a considerable amount of overlap between wheel diameters and 
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Figure 7.6. Four typical photographs of cars. 
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Figure 7.7. The processed image of a car. 
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Image No. Wheel dia. (mm.) Wheel arch dia. (mm. 
Rear Front Rear Front 

1 14 14 23 24 
2 13 13 24 24 
3 7 8 20 20 
4 14 15 21 21 

19 - - -
5 12 12 23 23 

6 14 14 - 25 
21 20 - -

7 13 - 29 29 
19 19 - -

8 16 - 24 27 
19 19 - -

9 8 8 25 25 
14 14 - -

10 10 - 20 20 
13 - - -

11 8 - 20 22 
12 12 - -

12 25 21 25 27 
13 - 15 26 26 

- 21 - -
14 14 14 25 26 

- 25 - -
15 - 14 - 23 

- 20 - -

16 11 - 20 17 
17 - - 12 16 
18 13 12 24 21 

20 - - -
19 12 12 22 17 

18 - - -
20 9 - 20 -

13 13 - -
19 19 - -

21 10 10 15 19 

Table 7.1. Car wheel and wheel arch measurements. 
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Figure 7.B. Histogram of wheel and wheel arch diameters. 
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wheel arch diameters. It was decided that the majority of 

both could be detected if circles 9, 13 and 20mm. in diameter and a 

semi-circle 24mm. in diameter were used as patterns. 

The windows presented rather more problems. In many of the 

images, the car windows were indistinct - the window area frequently 

contained so many lines that it was impossible to decide which 

represented the windows. Where a clear outline could be seen, the top 

length, height and base length were measured; the results are given in 

Table 7.2. No patterns could be selected which would identify more than 

a small proportion of windows, so it was decided to drop windows from 

the part set unless they proved necessary for recognition. 

For the car top - the roof/windscreen/bonnet section - the length of 

the roof line, the distance for which the bonnet remained approximately 

horizontal and the vertical distance between the roof and the bonnet were 

measured. The results are given in Table 7.3. Two car top patterns were 

selected, with vertical roof/bonnet distances of 14mm. and 17mm. The 

roof and bonnet lengths for both patterns were set at the minima for the 

images used, 30mm. and 20mm. respectively. 

The initial feature set thus consisted of the six patterns shown in 

Figure 7.9, and the object part set consisted of five parts - two wheels, 

two wheel arches and the car top. 

Unfortunately R.S.R.E.'s pattern matcher could not be used on the 

images, so the feature matching was carried out manually, trying to 

ensure that the data obtained was as close as possible to that which 

would have been produced by the feature matcher. It was assumed that 
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Image No) Rear window Front window 
Top Height Base Top Height Base 
(mm.) (mm.) (mm.) (mm.) (mm.) (mm.) 

1 19 17 32 15 1 17 30 ; 

2 - - - - - -
3 20 11 30 14 11 24 
4 20 14 32 20 14 33 
5 - - - - - -

6 18 12 34 19 12 32 
7 18 14 32 - - -
8 16 13 28 - - -
9 20 14 32 17 14 30 
10 14 9 21 13 9 23 

11 - - - - - -
12 20 13 32 19 14 40 
13 14 15 25 10 14 22 
14 20 14 32 15 14 30 
15 - - - - - -

16 - - - - - -
17 - - - - - -
18 20 13 24 13 13 27 
19 - - - - - -
20 - - - - - -
21 - - - - - -

Table 7.2. Car window measurements. 
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Image No. Roof length Roof/bonnet Bonnet length 
distance 

(mm.) (mm.) (mm.) 

1 45 17 35 
2 38 16 30 
3 40 13 30 
4 50 17 20 
5 30 14 30 

6 40 17 30 
7 50 17 30 
8 50 17 30 
9 40 15 30 
10 30 12 20 

11 35 15 30 
12 50 18 30 
13 30 18 20 
14 40 17 20 
15 50 17 20 

16 60 17 20 
17 55 17 20 
18 50 17 25 
19 60 15 20 
20 40 14 20 
21 30 13 20 

Table 7.3. Car top measurements. 
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Figure 7.9. Feature patterns for car recognition. 
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the circle patterns would identify circles in the images with diameters 

within 2mm. of the pattern diameter; comparable allowances were made 

when matching the other patterns. The matches were rated out of 100, 

and only features with ratings of at least 40 were noted. This manual 

matching identified features corresponding to at least three of the five 

car parts in each image, and very few spurious features as none of the 

patterns occurred frequently in the image backgrounds. The system could 

be expected to perform adequately with this data, so no changes were 

made to the part or pattern sets. 

The object part data consisted of the co-ordinates of those parts 

which could be clearly identified in the images; where the relevant area 

of an image was indistinct, no attempt was made to estimate the part 

co-ordinates. The data obtained from many of the pictures was therefore 

incomplete - this would allow the system's ability to learn from partial 

data to be investigated. The missing data related to parts for which no 

corresponding features had been identified by the matching process, so 

only the distance limits calculated by the system would be affected by 

the omissions; the match and setJ)robability tables should be the same 

as would have been obtained if complete part data had been available. 

7.3.2. Tests Conducted and Results Obtained. 

Both the training set and the recognition tests had to be drawn from 

the twenty-one car images available. An initial set of system runs were 

executed using data from just the first six images, with each in turn as 

the recognition test and the other five as the training set; these runs 

were intended to test the adequacy of the object part and pattern sets, to 

give some indication of how the choice of training and test images would 
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affect the results obtained, and to reveal what problems the use of an 

inadequate training set would create. 

With a set of just five training examples, the induction process 

could not be expected to yield full, accurate rule sets. In some of the 

runs the match tables were incomplete, as some of the part/pattern 

correspondences could only be deduced from one of the six images. All of 

the distance limits tables were complete, but the figures they contained 

varied considerably - most of the twenty ranges specified in each table 

were too narrow. None of the set.."probability tables were complete: a 

full table would contain 173 entries, whereas these had between 61 and 

85 entries, the shorter setJ)robability tables being produced where the 

match table was incomplete. 

To allow for the omissions in the setJ)robability table, the 

threshold probability for recognition was set at 0%. Despite the apparent 

inadequacy of the rule sets, the recognition process identified some of 

the features corresponding to car parts and thus correctly located the car 

in five out of the six runs, though in only one case was the identified set 

complete. In one run, two separate sets of two car parts were identified, 

but these could not be recognised as belonging to the same car because of 

a deficiency in the distance_limits table. In another run, a wheel and the 

corresponding wheel arch were picked up but the system incorrectly 

identified them as the front wheel and arch before correctly identifying 

them as the rear wheel and arch. The correctly identified (part number, 

pattern number) sets for each image were: 

Image 1: {(3,4),(1 ,2)} 

Image 2: {(5,6),(4,4),(3,4),(2,2),(1 ,2)} 

Image 3: {(4,4),(3,4)} 
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Image 4:-

Image 5: {(5,5),(4,4)},{(3,4),(1 ,2)} 

Image 6: {(4,4),(1 ,2)} 

The fact that five out of six cars were recognised despite the 

smallness of the training sets suggests that the part set and pattern set 

used were adequate. To check for redundancy in the sets, the results 

given above can be examined to determine where recognition would have 

failed if any of the parts or patterns had been omitted. It can be seen 

that if part 2 (the front wheel), part 5 (the car top) and patterns 1, 3 and 

6 had not been used, the five cars would still have been found. However, 

it was felt that the parts and patterns would all be required for 

recognition of the cars in some of the later images, so no alterations 

were made to the sets. 

The feedback process was invoked at the end of each recognition 

run. If the results used for feedback are accurate and complete, the same 

setJ)robability table should be obtained as would result from including 

the test image in the training set, so to produce a table for comparison 

the rule induction process was run with all six images in the training set. 

As expected, the required table was only produced by the run where the 

'accepted' set was complete; feeding back incomplete information 

produced variable results, improving the accuracy of some entries but 

reducing the accuracy of others. 

Although the results obtained from the initial runs were not all 

equally good, the range of variation in performance suggested that 

selection of an appropriate training set is not as critical to success as 

had been expected. It was therefore decided that for the tests using all 
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twenty-one images, the training sets should be selected randomly. 

The second set of runs were conducted using every fifth image 

(starting, in successive runs, with images 1,2,3,4 and 5) for 

recognition, the remaining images forming the training set. As the 

feedback process had been tested adequately by the initial runs, it was 

not invoked here; the same rules were used for all the recognition tests 

in each run. 

With the size of the training set approximately tripled, these runs 

could have been expected to produce markedly better results. The induced 

rule sets did, indeed, appear to show a definite improvement over those 

obtained in the initial runs, the ranges specified in the distance_limits 

tables being wider and the setJlrobability tables having more entries, 

but the recognition results were much the same - again, the system 

generally identified some of the object parts, but not all of them. This is 

perhaps partly because the higher-numbered images varied more than the· 

low-numbered ones used for the initial tests - with a wider variety of 

images, a larger training set will presumably be required to produce 

comparable results. 

The car which was completely identified in the first set of runs 

was initially only partially identified in the second set of runs, despite 

the increase in training set size. This was because the relevant 

probabilities given by the setJlrobability tables decreased, rather than 

increasing, as the set size increased. As feature sets are offered to the 

user for acceptance or rejection in decreasing order of probability rather 

than decreasing order of magnitude, this led to subsets of the correct 

feature set being presented before the full set. If a subset is accepted, 
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its features will be labelled 'identified' and subsequent sets containing 

any of these features will be rejected by the system without reference to 

the user - but the user cannot be expected to reject a correct subset 

without knowing whether the full set will be presented later. 

This problem could be seen to have arisen because in some of the 

images, spurious features occurred in close proximity to features 

corresponding to object parts. For example, the image set included 

several cars pictured at a slight angle, with both the front and the rear 

edges of the windscreen visible. The feature sets for these images 

contained two car top features which were too far apart for either of 

them to have been rejected as a duplicate, but close enough for both to 

fall within the specified distances from the wheels and wheel arches. 

(See Figure 7.10). The system thus produced two complete feature sets, 

only one of which could be considered correct, from one (correct) set of 

wheels and wheel arches, leading to a lower probability being assigned to 

a complete set than to a wheels/wheel arches set. 

Figure 7.10. Typical features detected in an image of a car 

at an angle. 
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For the final two runs, all twenty-one images were used as the 

training set, then the five images from which the least successful 

recognition results had been obtained in the previous runs were used for 

testing. The first of these runs used the original definition of duplicates: 

features whose x and y co-ordinates differed from one another by less 

than 3. For the second run, the limit was raised from 3 to 5 to exclude a 

larger number of features. In both runs, features were only accepted if 

their co-ordinates exactly matched those of the corresponding object 

parts. 

The system should, of course, be able to identify completely any car 

image which is exactly the same as one in the training set, so the 

recognition results from these two runs should have been perfect. In the 

first run, if all partial feature sets were rejected the system did 

eventually offer a complete, correct feature set for acceptance in each 

case, but the number of sets which had been assigned higher probabilities 

was sometimes very considerable: for one image, forty-nine sets had to 

be rejected before the required set was given. Relaxing the definition of 

duplicates drastically reduced this problem; in the second run, for four 

out of the five tests the first set offered was correct. However, 

recognition failed on the fifth test because the 'correct' feature had been 

rejected in favour of a higher-rated duplicate. If features 'within 

duplicate range' of the object parts had been accepted, the results would 

have been perfect. 

7.3.3. Conclusions. 

The recognition of cars from real images presented far more 

problems than the recognition of specially devised objects from pictures 
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which had been carefully compiled for the purpose. The main problem 

proved to be not selecting appropriate object parts and feature patterns 

for matching, but obtaining a set of training images which would fully 

define the dimensions of the object and the required part/pattern 

correspondences. The small set of images available clearly did not 

constitute an adequate training set; a much larger number of images, 

carefully selected to show all possible variations in car sizes and part 

shapes, would be required for the induction of a full and accurate set of 

rules for recognition. 

The training and test images used contained only positive examples 

of cars - there were no negative examples or 'near misses'. The fact that 

positive probabilities of recognition were obtained even when the test 

car image lay partly outside the range specified by the training examples 

suggests that the system will have problems detecting 'near misses'; this 

approach seems most appropriate for use with fuzzy object categories, 

where there is no definite boundary beyond which the recognition process 

should definitely fail. 

The test using synthetic data showed that the system can cope well 

with background noise, but these tests revealed that object-based noise -

spurious 'shadow' features detected in the near vicinity of object parts -

is much more of a problem. Background noise can be eliminated 

effectively by the distance-limits rules, but these will not eliminate all 

object-based noise unless the limits are much more tightly defined than 

is likely to be the case with a broad object category such as cars. The 

edit module does remove duplicates, i.e. features which lie very close to 

higher-rated features, but as 'shadows' can be more distinct than object 

parts in the processed images, there is a clear risk that the 'real' feature 
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will be discarded and the 'shadow' retained, so relaxing the definition of 

duplicates to remove a larger number of features does not appear to be a 

good option for solving the 'shadow' problem unless the user is prepared 

to accept object parts being located to 'within duplicate range'. The best 

approach seems to be to take care to select for feature matching object 

parts which are rarely 'shadowed'. 

If a set of just two features is to be considered sufficient to give a 

positive probability of object recognition, there are obvious dangers in 

selecting a part set which contains pairs of parts such as the front wheel 

and wheel arch and the back wheel and wheel arch of a car which can 

easily be mistaken for one another. The risk of confusion arising here 

could perhaps have been avoided by treating a wheel and the 

corresponding arch as a single object part, to be matched by composite 

circle/semi-circle feature patterns. The rating thresholds for the 

patterns could be set low enough to ensure detection of the part if either 

the wheel or the arch were to be clearly visible in the image. 

Despite the fact that the training sets and the object part set used 

had significant deficiencies, the system performed surprisingly well, 

locating the cars successfully in most of the tests conducted. It is clear 

that as well as offering the potential for inducing reliable, accurate 

recognition programs from comprehensive training sets, this system can 

be used to produce a program which, though far from perfect, can yield 

useful results even when only minimal training data is available. 
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CHAPTERS 

DEVELOPMENT OF THE FINAL SYSTEM 

8.1. SYSTEM STRUCTURE. 

The aim of this project was to produce a system which would learn 

to recognise a number of different objects/object views from feature 

data and data giving the locations of object parts in a set of training 

images, then use the induced recognition rules to provide the most 

probable identifications of the objects in test pictures, using feedback 

information about the accuracy of the results to update the probabilistic 

element of the rules. Such a system would contain a considerable number 

of components, and it was intended that a blackboard system should be 

used to enable these components to communicate with one another and to 

access the image data. 

A standard blackboard system comprises a blackboard data structure 

and a set of independent knowledge sources, together with a control 

componentlscheduler (see Section 4.2.). Several systems have been 

developed for image understanding applications; these include the UMass 

Schema System (Draper et aI., '88), described in Section 4.5.3., and Nagao 

et al.'s system for analysis of complex aerial photographs (Nagao et aI., 

'88). Both these systems have separate independent knowledge sources 

for each type of object to be recognised, together with a number of 

object-independent knowledge sources. Neither system employs rule 

induction or feedback - their object-specific knowledge sources were 

developed separately, then incorporated into the blackboard system. 

If a learning element is to be included in the system, clearly it will 
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not be possible to have a separate, independent, immutable knowledge 

source for each type of object. It was suggested in Section 4.7. that a 

two-tier blackboard system could be used, with the problem data on the 

bottom tier, the object recognition knowledge sources on the top tier and 

the rule induction and feedback modules, which would act as 

meta-knowledge sources using the object recognition knowledge sources 

as data, above both, as indicated in Figure 8.1. 

Meta-knowledge sources 

/ ~ 
Learner I I Feedback 

~ 

11' 11' 

Top tier blackboard 

Recognition knowledge sources 

; 
Bottom tier blackboard 

Problem data 

Figure 8.1. Plan of a two-tier blackboard system. 

The system is to be based on the single-object learner/recogniser 

system described in Chapter 6. Each object recogniser will consist of the 

recogniser program described in Section 6.4.3., together with the 

object-specific rules developed by the learner described in Section 6.4.2. 

Rather than duplicating the recogniser program in each of a set of 

independent object recogniser knowledge sources, it seems sensible to 
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treat the recogniser program as one knowledge source which acts in 

co-operation with each set of object-specific rules. It is these rules, 

rather than the recogniser program, which are subject to alteration, so 

the recogniser program can be removed from the top-tier blackboard, 

leaving it holding just the induced rules. 

The system is to be written in Prolog, which does not oblige the 

programmer to distinguish between program and data, so the induced 

rules, which are treated as data by the learner and feedback modules, can 

also be treated as data by the recogniser program; the two-tier 

blackboard can thus be replaced by two parallel blackboards, one 

containing problem data and the other containing recognition data. 

Figure 8.1. shows the learner and feedback modules accessing just 

the top-tier blackboard, but in fact both need to have access to the 

bottom tier as well. There are also other knowledge sources, such as the 

edit module described in Section 6.4.1., which operate on the problem 

data. None of the knowledge sources use all the types of data which are 

held on the two blackboards; the required structure of the system can be 

clarified by partitioning both blackboards, and allowing the knowledge 

sources access to only those sections which are relevant to their 

operation. 

The final structure is depicted in Figure 8.2. It can be seen that the 

novel two-tier system has been translated into something very similar to 

a standard blackboard system; it would be possible to replace the two 

parallel blackboards with a single blackboard partitioned into two 

sections, one holding the problem data and the other holding the 

recognition data, but it was felt that retaining separate blackboards for 
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the two types of data would make the way in which the system is 

constructed clearer. 

PROBLEM DATA 

Features 

Edited features 

Possible objects 

Objects 

EDITOR 

LEARNER 

RECOGNISER 

FEEDBAC 

BACKGROUN 
KNOWLEDG 
USER 

Figure 8.2. The system structure. 

RECOGNITION DATA 

Object name 

Matches 
Distance limits 

Set probabilities 

Occurrences 

It is the decision to treat the induced rules as data which has made 

this simplification possible. The use of Prolog as a programming 

language makes the implementation of this decision a trivial matter - in 

Prolog, the translation of a statement from the status of 'rule' to that of 

'data' does not require any alteration of structure or format - but the 

same approach could be adopted, though with more difficulty, were a 

procedural, rather than declarative, language to be used. A procedural 
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program could be provided with a set of standard rule patterns containing 

variables rather than constants, and each rule could be represented by a 

list of data items comprising a pattern identifier and a list of values to 

which the variables in the pattern are to be instantiated. For example, 

the rule: 

If shape is circle and size is small then object is ball 

could be represented by: 

Pattern1: If shape is X and size is Y then object is Z 

DATA: 1,circle,small,ball 

The original intention was to base the blackboard system on either 

the Edinburgh Prolog blackboard shell (Jones et aI., '88) described in 

Section 4.6.2. or the LUMP truth-maintained blackboard (Hinde et aI., '89) 

described in Section 5.5.6., but both of these seemed unnecessarily 

complex - they offered facilities which would not be required here - so 

to ensure that the basic system structure would not be 'buried' in 

unnecessary complications, a simple blackboard was written from 

scratch. The design of the system as a whole is described in the next 

section; the knowledge sources are described in more detail in Section 

8.3, and the testing of the complete system is described in Chapter 9. 

8.2. DESIGN OF THE BLACKBOARD SYSTEM. 

8.2.1. Introduction. 

The first stage in designing a software system normally involves 

establishing exactly what task the system is required to perform: what 

sort of input will be provided, what options should be available to the 
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system user and what output is to be produced, then breaking the task 

down into separate stages and drawing up a flowchart which depicts 

these stages and the way in which they follow on from one another, 

illustrating graphically the way in which the system will operate. 

If the system is intended to exhibit intelligent behaviour, such a 

specification of the operations to be performed and the order in which 

they are to take place cannot be considered appropriate - an A.!, system 

is not intended to follow a preset path, but to decide for itself at each 

stage of its operation which of the actions available to it should be 

performed next in the light of the circumstances under which it is 

running, basing its decisions on heuristic rules, estimates and measures 

of the expected utility of various operations etc. However, a detailed 

analysis of the behaviour required of the system is still a prerequisite of 

the design task. The target behaviour is described in Section 8.2.2. 

For a blackboard system, there are three distinct major elements to 

be designed: the blackboard itself (or blackboards, if more than one is to 

be used), the knowledge sources and the controllerlscheduler. The 

designs of these are inter-related, and are also related to the nature of 

the problem(s) to be solved and the structure of the problem space. As 

this blackboard system was based on an existing system (the 

single-object recogniser) from which the main knowledge sources were 

derived, the knowledge sources are considered first here, in Section 

6.2.3, followed by the blackboard structure in Section 6.2.4. and the 

control element in Section 6.2.5. (With a system designed from scratch, 

or based on a general-purpose blackboard shell, a different design order 

might be more appropriate). Other aspects of the system such as the 

initialisation process and the user interface are described in Section 
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6.2.6. There is inevitably a certain amount of overlap between the 

sections; the design of the blackboard structure, for example, 

necessitated changes to the knowledge sources. 

8.2.2. Required system behaviour. 

The behaviour required of the blackboard system is an extension of 

the behaviour of the single-object system; the data format should not 

require any alteration, and when presented with data on a single object 

this system should produce the same results as the single-object system, 

though the required operations (editing feature data from training 

examples, learning recognition rules, editing data from a test image, 

searching for possible object instances, confirming/rejecting possible 

objects, feeding back results to update the rules) should be programmed 

automatically by the blackboard controller instead of being specified 

individually by the user. 

Where a number of different objects are to be identified, the user 

should be able to supply either a separate set of training data for each 

object, or a composite training set containing data on all the 

objects/object views to be learnt; in the latter case, it should be 

possible for a single training image to contain instances of more than one 

object. It should not be necessary for the user to specify the object(s) to 

be learnt; when the system is presented with part data for an unknown 

object, the object should be learnt automatically. 

When all previously unknown objects have been learnt, the feature 

data from training examples could be deleted, or it could be retained for 

use as negative examples of future objects to be learnt. It was decided 
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that the latter approach should be adopted, as the inclusion of additional 

negative examples in a training set should improve the accuracy of the 

induced probabilities. (It is assumed that training data will include part 

data for all the objects in each image which the system has not already 

learnt and may be required to identify, so earlier sets of training 

examples will not include unrecognised instances of a new object to be 

learnt). Similarly, all new images, including training images for new 

objects to be learnt, should be regarded as test images for all previously 

learnt objects and recognition results from them should be used for 

feedback purposes - this will ensure that where a separate set of 

training images is provided for each object to be learnt, the order of 

presentation of the training sets will not affect the results obtained. 

Feature data from test images could be Similarly preserved for 

inclusion in future training sets, but as test images will not be subject 

to the same vetting procedure as training images it was felt that they 

could not be guaranteed not to contain unidentified instances of a new 

object, and if all data were to be preserved the system would eventually 

become choked with data and the running speed would deteriorate, so it 

was decided that feature data from test images should be deleted at the 

end of the feedback process. 

When searching test pictures, the system should search for the most 

likely object first, estimating relative likelihoods by counting the 

number of occurrences of each object. Feature sets which have a high 

probability of representing instances of an object should be accepted or 

rejected immediately, and the component features should be marked as 

'identified' so that the system need not search for less likely objects if 

there are no appropriate features remaining unidentified. Decisions on 

149 



feature sets with lower probabilities should be deferred until the search 

procedure has been completed. The user should be able to adjust the 

probability thresholds for immediate decisions and deferral during the 

operation of the system, to allow for the fact that probabilities 

calculated by the system may be very inaccurate initially, but will 

improve in accuracy as the number of images examined increases. 

Separate thresholds could be set for each object, but it was decided that 

for simplicity the same thresholds would be applied to all objects. 

The single-object system referred all acceptance/rejection 

decisions to the user, but it was thought desirable to automate the 

decision-making process as far as possible in the final system. It should 

be possible to specify object-specific background checks to be conducted 

on candidate feature sets. Any sets which fail the checks should be 

rejected immediately; of the sets which pass, those with probabilities 

above the immediate decision threshold should be accepted automatically 

and only those with lower probabilities on which a deferred decision is 

required should be referred to the user. 

The results of each search conducted should be used for feedback . 

purposes, but where the objects in an image have been satisfactorily 

identified without searching for all known objects, it was decided that 

further searches should not be conducted merely to obtain further data­

for feedback. 

The single-object system provided an automatic printout of all the 

recognition rules at the conclusion of the learning process, and of the 

set-probability rules after feedback. This is not required here; instead, 

the user should be able to request a printout of the rules for a specified 
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object. 

The system could run through all the operations available to it 

before consulting the user for further instructions (automatic bid 

execution), or consult the user at the conclusion of each separate 

operation (manual bid execution). The user should be able to decide which 

of these options is required, and it should be possible to switch from one 

to the other during the operation of the system. 

This specification will mean that there are a considerable number of 

options available to the user. Some choices will have to be made as part 

of the system initialisation procedure; it was decided that to detail the 

options available during a system run, the final facility to be 

incorporated should be a 'help' module. 

8.2.3. Knowledge sources. 

The editor, learner, recogniser and feedback modules described in 

Chapter 6, with such modifications as proved necessary, formed the main 

knowledge sources for the system. It was decided that the background 

knowledge/user box in Figure 8.2. should be represented by two 

knowledge sources, Acceptor and Selector: the system user would select 

an acceptance threshold and a referral threshold, which could be adjusted 

when required during the operation of the system; feature sets with 

probabilities equal to or above the acceptance threshold would be handled 

by the Acceptor, which would deal with them automatically, without 

referral to the user, and feature sets with probabilities between the 

• referral threshold and the acceptance threshold would be handled by the 

Selector which would refer its decisions to the user for 
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confirmation/rejection, sets with probabilities below the referral 

threshold being discarded. 

This arrangement allows the user to gradually relinquish control of 

the image identification process as feedback improves the accuracy of 

the probabilities assigned to feature sets; the intention is that initially 

the acceptance threshold should be set at above 100% and the referral 

threshold should be set at 0%, then the acceptance threshold should be 

lowered and the referral threshold raised until eventually the two 

coincide, when the identification process would be entirely automatic. 

An additional knowledge source, Remover, is required to remove data 

on test images from the blackboard after the identification process has 

been completed. There are thus seven knowledge sources altogether: 

Editor, Learner, Recogniser, Feedback, Acceptor, Selector and Remover. 

The internal operation of these is described in Section 8.3. 

8.2.4. Blackboard organisation. 

In order to establish which information should be held on each of 

the blackboards and how it could best be organised, the inputs, outputs 

and data to be read were determined for each of the knowledge sources to 

be used. The distinction between inputs and data to be read was made so 

that blackboard entries which would be altered or deleted by the 

knowledge source (the inputs) could be distinguished from those which 

would be required but would remain unchanged (the read data). Inputs 

which are altered also appear in the outputs list; inputs which are 

deleted do not. 
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The information for each knowledge source was as follows: 

Knowledge Problem data Recognition data 
Source 

Editor Input: features 
Read: rating thresholds 
Output: edited features 

identified_features 

Learner Input: object parts list of object names 
occurrences 

Read: edited features object part list 
Output: - match table 

distance_limits table 
setJ)robability table 
list of object names 
occurrences 

Recogniser Input: 
Read: edited features match table 

distance_limits table 
setJ)robability table 

Output: feature sets 
probability list 

Acceptor Input: probability list occurrences 
identified_features 

Read: feature sets 
Output: object parts occurrences 

identified_features 

Selector Input: probability list occurrences 
identified_features 

Read: feature sets 
Output: object parts occurrences 

identified_features 

Feedback Input: object parts setJ)robability table 
feature sets 
edited features 

Read: 
Output: - setJ)robability table 
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Remover Input: 

Read: 

edited features 
identified_features 
feature sets 

Output: -

After analysis of this information, grouping together items which 

commonly occur together, and taking into account the structure of the 

problem space, it was decided that it would be most convenient to 

arrange the problem blackboard in four sections, one for unedited feature 

data, one for edited feature data, one for possible objects and one for 

actual objects, and that these sections should contain: 

problembb1 : 

problembb2: 

problembb3: 

problembb4: 

unedited features 

edited features, identified features 

feature sets, probability list 

object parts 

The recognition blackboard was also arranged in four sections, 

containing: 

recognisebb1: object names, part lists, rating thresholds 

recognisebb2: match table, distance limits table 

recognisebb3: set"'probability table 

recognisebb4: occurrences 

The inpuVread/output requirements for each knowledge source are 

summarised in Table 8.1. 

For clarity, it was decided that the same format should be used for 

all entries on both blackboards: 

<Blackboardname>bb<SectNo>«Datatype>,«Dataltems»). 

For example, edited features would be entered on the problem blackboard 
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Knowledge Source Problembb Section Recognisebb Section 
. Input Read Output Input Read Output 

Editor 1 - 2 - 1 -
Learner 4 2 - 1,4 1 1,2,3,4 

Recogniser - 2 3 - 2,3 -
Acceptor 3 3 2,4 4 - 4 

Selector 3 3 2,4 4 - 4 

Feedback 2,3,4 - - 3 - 3 

Remover 2,3 - - - - -

Table 8.1. Knowledge Source Requirements for Blackboard 

Access. 

in the form: 

problembb2(feature,(PicNo,FeatureNo,PatternNo,X,Y». 

and matches would be entered on the recognition biackboard as: 

recognisebb2(match,(Object,PartNo,PatternNo». 

The knowledge sources were modified as necessary to use these data 

formats. (No changes were made to the format of data internal to a 

knowledge source, e.g. the matched_feature table used by Learner, so that 

such internal data could be distinguished easily from blackboard entries). 

The input data format is the same as for the single-objett system: 

the object data supplied consists of a part list for each object to be 

recognised and rating thresholds for each feature pattern, the training 

data consists of a list of features and objectJ)arts for each image, and 

the test data consists of just features, with the formats: 
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parUist(Object. [(1. PartName1 ).(2.PartName2) •••. ]). 

rating_threshold(PatternNo.Threshold). 

feature(PicNo.PatternNo.X.Y.Rating). 

object.JJart(Object.PicNo.lnstNo. PartNo.X. V). 

When data is read in a special predicate, bb_enter, is called to enter it 

on the blackboards: part lists and rating thresholds on recognisebb1 , 

feature data on problembb1 and object-part data on problembb4. 

Information about new blackboard entries is passed to the 

controllerlscheduler (see Section 8.2.5), which checks to see which 

knowledge sources require these entries, notifies their bidders so they 

can bid for the operations they could perform, and schedules the bids. As 

features and object-parts are entered in batches, notifying the controller 

of each individual entry would be very inefficient; instead, bb_enter 

flags each type of entry, using 

bb_entered(object-part.Object.PicNo). 

and bb_entered(feature.PicNo). 

When all possible entries have been made, the flags are checked and the 

appropriate notifications are carried out. . 

The final task performed by bb_enter is to identify and label 

training images, to distinguish them from test images. This is necessary 

because the feature data from test images is to be removed after 

identification, while the feature data from training images is to be 

retained. The predicate training is used to identify training images; the 

format is simply 

training(PicNo). 
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The training clauses are not held on either of the blackboards as they 

contain 'system' information required only during the process of making 

and scheduling bids, not problem or recognition data. 

8.2.5. The controller and scheduler. 

The controllerlscheduler of a blackboard system is responsible for 

selecting operations to be performed, and instructing their execution; it 

must be able to identify the possible knowledge source operations which 

could be carried out at any point, and to assign an order of priorities to 

these operations so that those with the highest priority can be selected 

for execution first. . (See Section 4.2.). It must also allow the user to 

intervene where necessary during the operation of the system, to enter 

new data or to examine the state of the blackboard. 

The design process can be simplified by separating the control and 

scheduling functions: the scheduler is then responsible for maintaining a 

list of ranked knowledge source bids, which specify potential operations 

and their priorities, and the controller is responsible for selecting the 

highest-ranked bid from this list and instructing its execution, and for 

liaising with the system user. As the design of the controller will 

depend on whether the maintenance of an up-to-date bid list can be 

carried out independently by the scheduler, or requires supervision by the 

controller, the design of the scheduler is considered first. 

The starting point for the development of a method for making and 

ranking bids was again an analysis of the knowledge sources: the 

pre-conditions which must be satisfied before each knowledge source can 

make a bid to perform its operation and the restrictions on the order in 
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which the bids can be executed were analysed as follows: 

Editor 

Learner 

Pre-conditions: 

problembb1 

Restrictions: 

New entries of feature data on 

Must be the first bids executed 

Pre-conditions: New entries of object part data on 

problembb4, object name not in list of learnt objects 

Restrictions: Must follow all editor bids to ensure 

edited feature data is available for all images in training 

set; must precede Recogniser bids, so as many different 

objects as possible can be sought in test images 

Recogniser Pre-conditions: New entries of edited.feature data on 

Acceptor 

Selector 

problembb2, object in list of learnt objects, no object part 

data for this image, object on problembb4 

Restrictions: Recogniser bids should be executed in 

decreasing order of no. of occurrences of object 

Pre-conditions: New probability list on problembb3, 

probability of first element in list is equal to or above 

acceptance threshold 

Restrictions: Must precede Recogniser bids, so if 

all possible features in image have been identified 

recognition of further objects can be aborted 

Pre-conditions: 

Restrictions: 

New probability list on problembb3 

must follow all Recogniser bids 
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Feedback 

Remover 

Pre-conditions: 

problembb3 

Restrictions: 

Probability list removed from 

Must precede Recogniser bids, so that 

probabilities used by Recogniser are as up-to-date as 

possible. 

Pre-conditions: Probability list removed from 

problembb3, image not a training example 

Restrictions: Must follow Feedback bids 

All the knowledge sources have as one of their pre-conditions the 

addition of an entry to, or the removal of an entry from, the problem 

blackboard so it was decided that these events should be used to trigger 

the bid creation process. 

The triggering condition for a knowledge source is specified by a 

wants or wantsJemoved clause which comes at the start of its bidder 

program file and has the format: 

wants(KS,PBBSection,Datatype). 

or wants_removed(KS,PBBSection,Datatype). 

The way in which the triggers are used is as follows: when one of 

the knowledge sources or the data entry process described in the previous 

section enters some new data on the problem blackboard, a clause of the 

form: 

new_entries([[PBBSection1 ,Datatype1 ,(Data1)], 

•••• [PBBSectionm,Datatypem,(Datam)]]). 

is used to invoke the new_entries predicate, which takes each new 

entry in turn and searches for all the wants clauses which match it. 
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Similarly, when data is removed from the blackboard, a clause of the 

form: 

removed_entries([[PBBSection1 , Datatype1 ,(Data2)], 

•••• [PBBSectionn,Datatypen,(Datan)]]). 

is used to invoke removed_entries, which searches for matches 

between data which has been removed and wants_removed clauses. 

Whenever a match is found, the relevant information is passed on to the 

knowledge source bidder by: 

make_bid(KnowledgeSource,[PBBSection,Datatype,Data]). 

The make_bid predicate for each knowledge source, the definition 

of which forms the main part of the bidder program file, is responsible 

for checking any remaining pre-conditions, making bids and passing them 

on to the scheduler. Ratings could be attached to the bids by either 

make_bid or the scheduler; it was decided that as the rating given to a 

bid would depend on the knowledge source, this task should also be 

assigned to make bid. 

The bid ratings are required to embody the restrictions given in the 

above analysis of knowledge sources. These give the following partial 

ordering of the knowledge source operations (where < is to be interpreted 

as "must precede"): 

Editor < Learner < Recogniser 

Acceptor < Recogniser < Selector 

Feedback < Recogniser < Remover 

To obtain a complete ordering, it is necessary to establish orders of 

priority for the operations which must precede and succeed Recogniser 

bids. The pre-conditions for bid execution are such that Learner, 

Acceptor and Feedback bids cannot exist for the same image at the same 
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time, so the relative priorities attached to these operations are 

irrelevant. Similarly, Selector and Remover bids cannot exist for the 

same image at the same time, so these operations too can be ordered 

randomly. It was decided that the following total ordering should be 

used: 

Editor < Learner < Feedback < Acceptor < Recogniser < Selector < 

Remover. 

The operations with the highest precedence must be awarded the 

highest ratings; the priority to be given to Recogniser bids is to depend 

on the number of occurrences of the object being sought, so a range of 

ratings is required for Recogniser. The ratings selected are shown in 

Table 8.2. 

Knowledge Source Rating 

Editor 100 

Learner 90 

Feedback 80 

Acceptor 70 

Recogniser 40 - 60 

Selector 30 

Remover 20 

Table 8.2. Knowledge Source Bid Ratings. 

The bid details are passed to the scheduler by: 
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schedule(KnowledgeSource,(BidData),Rating). 

The operation performed by schedule consists merely of inserting the 

bid details into a bid list arranged in decreasing order of rating. This list 

is set up during the system initialisation process (described in Section 

6.2.6). 

When the bid creation and scheduling process has been completed, 

execution of the system will continue from the point at which it was 

interrupted, i.e. from the clause following the new_entries or 

removed_entries clause. As the operations which will be interrupted 

for bid creation do not use the bid list, which is 'system' information, 

used only by the controller and scheduler (which do not have access to the 

problem blackboard and so cannot instigate the bid creation process 

themselves), the creation of new bids will not have any effect on the way 

in which the interrupted operation is carried out. The new_entries and 

removed_entries clauses can therefore be placed at any point from 

where they will be called exactly once during the execution of the 

process during which the blackboard changes they refer to are made. 

The decision to call the bid creation and scheduling process directly 

from the knowledge sources and the data entry process makes it 

independent of the blackboard controller, thus simplifying the design of 

the control mechanism. The basic control loop is very simple: 

(1). Remove the top-ranked bid from the bid list. 

(2). Execute this bid. 

(3). Repeat from (1) until the bid list is empty. 

This loop needs to be modified slightly to allow the system user to 

intervene when necessary. The specification given in Section 8.2.2. 

requires the user to be given the option of automatic bid execution (the 
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controller consults the user for further instructions only when the bid 

list is empty) or manual bid execution (the user is consulted after each 

operation), which can be achieved by replacing stage (3) above by: 

(3a). If manual bid execution selected 

Then consult user 

Else Repeat from (1) until bid list is empty. 

This modified loop is embodied in the controller predicate run. The 

user's choice of manual or automatic bid execution, which is established 

as part of the initialisation process and can be altered during the user 

consultation process (see Section 6.2.6), is recorded by: 

autorun(m). (manual) 

or autorun( a). (automatic) 

8.2.6. Miscellaneous processes: initialisation, user consultation. 

The initialisation process, init, is responsible for establishing a 

number of different parameters and variables. The process sets the 

initial values of the bid list (system information, not held on a 

blackboard) and the list of learnt object names (on recognisebb1), both 

empty lists, and the total number of object occurrences provided as 

training examples or recognised in test images (on recognisebb4; required 

in the calculation of Recogniser bid ratings), initially zero. The 

user-selectable parameters are read in; these are the duplicates limit 

(Le. the distance within which features are to be regarded as duplicates, 

which was fixed in the single-object system, but is selectable here), the 

acceptance and referral thresholds (discussed in Section 8.2.3) and the 

choice of manual or automatic bid execution. 

The read routines used provide basic error-trapping: for numbers the 
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minimum and maximum acceptable values are specified and checked, for 

characters a list of alternatives is specified and checked. For the 

duplicates limit, the range of acceptable values is 0 to 10; features are 

regarded as duplicates only if the distance between them is strictly less 

1!:illn the limit, so a limit of 0 will mean that no features will be rejected 

as duplicates. The acceptance and referral thresholds are specified as 

percentage probabilities; candidate feature sets will be automatically 

accepted as object instances if their probability is equal to or above the 

acceptance threshold, so while the system is being trained, when no 

automatic acceptance is required, this threshold must be set at above 

100; the maximum and minimum values here are therefore 0 and 110, 

with a suggested start level of 110. The minimum value for the referral 

threshold is also 0, and its maximum value is equal to the acceptance 

threshold (which is set first). 

When the initialisation process is complete control is passed to the 

user consultation process, consult_user, which is also called whenever 

the bid list is empty and - in the case of manual bid execution - after the 

execution of each bid. This process provides the user with the facilities 

outlined in the system specification in Section 8.2.2. There is a help 

facility, advertised every time consult_user is called, which lists the 

options available. These depend to some extent on whether manual or 

automatic bid execution has been selected; help has been designed to 

give only those options which currently apply. The full range of 

possibilities is: 

- read in a data file 

- execute the next bid (manual bid execution only) 

- switch to automatic (manual bid execution only) 

- switch to manual (automatic bid execution only) 
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- view the recognition rules for an object 

- alter the acceptance/referral thresholds 

- quit the system. 

Commands not on the list of options will not be recognised; if the user 

wishes to perform an operation which has not been specified, this can 

best be accomplished by quitting the system (quit.), then returning when 

the operation has been completed by entering consulcuser. or run. 

The command to read in a data file is: 

[Filename]. 

This will read only a single file - a list of file names is not acceptable. 

When a file has been read, the system will call bb_enter to enter the 

data it contains on the problem blackboard; this in turn will initiate the 

bid creation process, and Learner bids for any new objects on which 

training data has been provided will be scheduled. If automatic bid 

execution has been selected, the bids on the bid list will be executed 

before the user is consulted again. This means that if data from a set of 

training examples is contained in a number of different files, they must 

be read in together by listing them in a single master file; if the user 

attempts to read them sequentially, the object(s) will be learnt from 

just the data in the first file. With manual execution the files can be 

read in sequentially. 

The commands to switch from manual to automatic bid execution or 

vice-versa, auto. and man., are straightforward: the existing auto run 

clause is retracted and a new one is substituted. 

The recognition rules for an object can be viewed by entering: 

show_rules(Object). 
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The print format used for the recognition rules in the single-object 

system has been altered considerably to improve readability. The new 

format can be seen from the listings of sample system runs in Appendix 

B. 

To alter the thresholds for acceptance and referral, the command is 

alter. The system prints out the current values, then prompts the user 

to enter the new ones. Both values must be entered even if only one is to 

be changed. 

8.3. THE KNOWLEDGE SOURCES. 

8.3.1. Introduction. 

Each of the knowledge sources used in this system has the same 

overall format. There is a master file which specifies all the program 

files which constitute the knowledge source; the first program file is the 

bidder, which is followed by between one and eight files which make up 

the body of the knowledge source. 

The bidders also share a common format: they start with a wants or 

wants_removed clause, followed by make_bid, as described in Section 

8.2.5, then end with an execute clause which gives instructions for the 

execution of a bid created by make_bid. There is no reason why the first 

two components could not be duplicated to correspond to alternative sets 

of pre-conditions for bid creation, but this was not necessary for this 

application. 
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The sections of the single-object system, RECOGNISE1, described in 

Chapter 6 on which the Learner, Recogniser and Feedback knowledge 

sources were based were not independent of one another; the recogniser 

and feedback modules both used some predicates defined for the learner. 

To ensure independence of the knowledge sources, all shared predicates 

have been grouped together as 'knowledge source utilities'; the only 

predicates defined in a particular knowledge source are those which are 

specific to that knowledge source. The individual knowledge sources are 

described in Sections 8.3.2. to 8.3.8, and the utilities are described in 

Section 8.3.9. 

8.3.2. Editor. 

Editor's function is to edit the feature data for an image. It takes 

the image features from problembb1 , removes duplicates and those with 

ratings below the appropriate rating threshold, numbers those remaining 

and enters them on problembb2. It also initialises the list of identified 

features on problembb2. 

The edit program file is virtually the same as the edit file in 

RECOGNISE1, described in Section 6.4.1. The only changes made are the 

addition of a new_entries clause and those changes necessitated by the 

fact that the data used is now held on the blackboards. 

8.3.3. Learner. 

Learner is responsible for learning the recognition rules for an 

object. It adds the object name to the list of learnt object names on 

recognisebb1, develops match and distance_limits rules and places them 
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on recognisebb2, and develops set-probability rules which it places on 

recognisebb3. It then counts the number of occurrences of the object in 

the training set, placing this on recognisebb4 and also adding it to the 

total number of occurrences on recognisebb4. Learner uses, but does not 

alter, all the available edited feature data on problembb2, adds features 

which match object parts to the list of identified features on 

problembb2, and uses then removes the object part data on problembb4 . 

The rule induction process, which is the central part of Learner's 

function, is the same as the rule induction stage of the single-object 

system, described in Section 6.4.2. The program files used - learn, 

pattern_match and limits, which are contained in Learner itself, and 

feature_match, make_sets, find, cheek_match and check_limits, 

which are contained in Utilities as they are shared with other knowledge 

sources - differ only slightly from those described in Section 6.4.2. 

However, rather than printing out the rules as was done in the 

single-object system, Learner follows the rule induction process by 

counting and removing object instances, using the new Utilities program 

file remove_instances (described in Section 8.3.9). 

8.3.4. Recogniser. 

The formation of feature sets which could correspond to instances 

of an object, placing these on problembb3, and the insertion of the object, 

set number and probability of each set into a probability list arranged in 

descending order of probability, also on problembb3, is the task carried 

out by the Recogniser knowledge source. 

Recogniser has a slightly more complex bidder than most of the 
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other knowledge sources, as it may be required to make not just one bid 

at a time, but several - one for each of the objects which could be sought 

in an image. The bids are assigned ratings which depend on the number of 

occurrences of the object, so that the objects which have occurred most 

frequently in the past, and so can be considered the most likely to be 

found in a new image, are sought first. 

The program files used, search and add in Recogniser, and 

make_sets, find, check_match and check_limits in Utilities, have 

been adapted from those used in the recognition stage of the 

single-object system, described in Section 6.4.3, the functions of which 

have been divided between Recogniser, Acceptor and Selector. The main 

alteration to search is the inclusion of a check to ensure that image 

contains at least two unidentified features which could correspond to 

parts of the object being sought, the search being aborted if it does not. 

More extensive changes have been made to add: a single probability list is 

used for all the searches conducted on an image, so entries in the list 

now have to specify the object sought as well as the feature set number 

and probability; feature sets are not entered in the list unless their 

probability is equal to or above the referral threshold; and when a new 

set is added to the list, the new predicate remove_subsets is called to 

find and remove any subsets of it already in the list. This last change, 

which will ensure that only maximal feature sets are considered as 

potential object instances, should prevent some of the problems which 

arose during the testing of the single-object system (see Section 7.3.2). 

8.3.5. Acceptor. 

Feature sets in the probability list on problembb3 whose 
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probabilities exceed the acceptance threshold set by the user are handled 

by Acceptor. Acceptance of such sets as object instances is not 

automatic; Acceptor checks to ensure that they do not contain any 

features which have already been identified, then carries out 

object-specific background checks before deciding whether they should 

be accepted or discarded. When a set is accepted, the user is notified, 

the list of identified features on problembb2 is updated and the relevant 

object parts are entered on problembb4. 

Acceptor contains just one program file, accept, but also uses the 

identify and write_set files in Utilities, which it shares with 

Selector. All these files are derived from the RECOGNISE1 file report, 

described in Section 6.4.3. The operation of accept is straightforward; 

it operates on each element of the probability list whose probability 

exceeds the acceptance threshold in turn, carrying out the checks 

described above then, if these succeed, calling write_set to write out 

the feature set, writing "Accepted" beneath it, and calling identify to 

record the newly identified object instance. 

The background checks, which are called by: 

background_check(Object,PicNo,Parts,Features) 

must be programmed by the user, and entered into the system at the same 

time as the object part lists and rating thresholds. They can be used to 

check more complex relationships between potential object parts than 

the simple distance limits which are checked when feature sets are 

constructed. They are not optional; if no checks are required for a 

particular object, then an empty check must be specified: 

background_check(Object,_,-,~ :- I. 
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8.3.6. Selector. 

Selector's function corresponds to that of the report predicate in 

the recognition stage of the single-object system (Section 6.4.3). It 

removes the probability list for an image from problembb3, checks each 

element 'in turn, refers those which pass the checks to the user for 

acceptance or rejection, then records the parts of accepted object 

instances on problembb4. 

The program file select is very similar to accept, having been 

derived from the same source; it only differs in that it does not compare 

probabilities with the acceptance threshold, and refers sets which 

satisfy the checks to the user for acceptance or rejection rather than 

accepting them automatically. 

8.3.7. Feedback. 

Feedback is responsible for updating the recognition blackboard in 

accordance with the results of the image identification process. It 

removes object part data from problembb4 and uses this, in conjunction 

with feature set data on problembb3 (which it alters, but does not 

remove), to update the set-probability rules on recognisebb3 and the 

occurrences on recognisebb4 .. 

Like Recogniser, Feedback has a bidder which can make several bids 

at a time, one for each object which has been sought in the image; these 

bids, however, are all given the same rating. 
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The program file feedback is the same as the file used in 

RECOGNISE1 (Section 6.4.4), but for the fact that the old instruction to 

list the updated set-probability rules has been replaced by a call to 

remove_instances (in Utilities). The feature_match and 

check_match files in Utilities are also used. 

8.3.8. Remover. 

This very simple knowledge source is a garbage collector: it clears 

out the features, list of identified features (problembb2) and feature 

sets (problembb3) for a test image when they are no longer required. The 

single program file, remove, contains just the appropriate 

retract/retract all commands. 

8.3.9. Knowledge Source Utilities. 

The files contained in Utilities are as follows (those described as 

being 'from RECOGNISE1' are taken from the single-object system, with 

slight modifications to allow for changes in data format): 

genera,-utilities: updated version of RECOGNISE1 utilities, used by 

various knowledge sources and system processes. 

make_sets, find, check_limits: from RECOGNISE1, used by Learner and 

Recogniser. 

feature_match, cheek_match: from RECOGNISE1, used by Learner and 

Feedback. 
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identify: adapted from part of RECOGNISE1 report, used by Acceptor and 

Selector to record a feature set which has been accepted as an object 

instance i.e. to add the features to the list of identified features on 

problembb2, number the instance and record the object parts on 

problembb4. 

write_set: adapted from part of RECOGNISE1 report, used by Acceptor 

and Selector to write out feature sets/part sets. 

remove_instances: new file, used by Learner and Feedback to remove 

object part data from problembb4 and update object occurrences/total 

occurrences on recognisebb4. 

8.4. RUNNING THE SYSTEM. 

This system, RECOGNISE2, was written in Cprolog like its 

predecessor, RECOGNISE1. It is very simple to use, as most operations 

are carried out automatically by the blackboard controller. It can be run 

by first entering the Prolog interpreter, then when the prompt appears, 

entering: 

[recognise2/master]. 

This master file contains instructions to load the system program files, 

knowledge sources and utilities. When these have been loaded, the 

system has to be initialised by entering: 

init. 

The initialisation process prompts the user to enter the duplicates limit 

and acceptance and referral thresholds, and to select manual or 

automatic bid execution. (See Section 8.2.6). When the process is 
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complete, the system responds: 

What now? 

(Enter "help." to view options) 

The options available are described in Section 8.2.6. There is no need for 

the user to supply specific instructions for the system to learn 

recognition rules for an object, or to search a test image; all that is 

necessary is to specify the data files to be read in, then the appropriate 

operations will be carried out automatically. 

The system informs the user of the operations which are being 

carried out and the results obtained, with the exception of recognition 

rules, which are displayed only on request. If automatic bid execution 

has been selected, the user is only consulted when (s)he is required to 

accept or reject a feature set with a probability between the referral and 

acceptance thresholds, and when the bid list is empty, i.e. when no 

further operations can be performed until more data has been supplied. 

With manual bid execution the user is also consulted after each 

operation, but has only to enter 

run. 

to instruct the next operation to be performed. 

A full listing of RECOGNISE2 is provided in Appendix A; Appendix B 

contains sample runs. 
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CHAPTER 9 

TESTING THE IMAGE IDENTIFIER 

9.1. INTRODUCTION. 

The image identifier, RECOGNISE2, could not be tested using data 

from the feature match er because suitable data could not be obtained 

from R.S.R.E., so the tests, like the RECOGNISE1 tests described in 

Chapter 7, had to be conducted using synthetic data and 'semi-real' data. 

It was not felt necessary to provide a further demonstration of the 

capabilities which RECOGNISE2 has in common with RECOGNISE1, so the 

synthetic data was specially devised to examine how well the system 

succeeded in providing the additional facilities outlined in the 

specification in Section 7.2.2. The tests were particularly intended to 

illustrate its ability to distinguish between a considerable number of 

different objects, including objects which differed from one another only 

in size or only in orientation, and to show how it could cope with the 

introduction of a scond training set containing data on new objects after 

the objects in the initial training set had been learnt. 

The 'semi-real' data consisted of feature data extracted manually 

from a set of photographs of traffic - cars, vans and lorries - on a 

moderately busy road in Loughborough. The tests conducted on this data 

were intended to give some idea of the kind of results which could have 

been obtained if the data which had been expected from R.S.R.E. had 

materialised. 
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9.2. TESTS USING SYNTHETIC DATA. 

The objects selected for identification in these tests were simple 

geometric figures: squares, triangles and rectangles. The system was to 

be presented with test images containing a number of different figures, 

including some which overlapped or partially occluded one another, and 

was to identify the shape, size and orientation of each of them. 

Eight different objects were chosen: squares of two size ranges (big 

and little), right-angled isosceles triangles with four different 

orientations, and two rectangles, one taller than it was broad, the other 

broader than it was tall. Two sets of training examples were to be 

provided, one for the squares and triangles and one for the rectangles, and 

there were to be two sets of four test images, the first set containing 

just the squares and triangles and the second set containing all eight 

objects. 

9.2.1. Data Preparation. 

The first six objects to be learnt are shown in Figure 9.1. The 

object parts selected for feature-matching were the vertices of the 

shapes, so these have been numbered in the figure; they are named 

top-left, top-right, bottom-right, bottom-left and right-angle, as 

appropriate. The vertices can all be matched by twelve feature patterns, 

four right angles and eight 450 angles, which are shown in Figure 9.2. 

(The right angles will, of course, also match the vertices of the 

rectangles, so no further feature patterns will be required when the set 

of objects is expanded). 
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big square 1 ..... ---.. 2 

2 1 2 
triangle4 

1----- 3 

Figure 9.1. The first six shapes, with vertices numbered. 
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1 . r 5. 9. 

2. 6. 10. 

3. ..J 7. 7 11 . 

4. L 8. 12. 

Figure 9.2. Feature patterns for shape recognition. 

The feature matcher specifies the mean x and y co-ordinates of each 

of the matches it finds, but it was decided that to simplify the manual 

matching used as a substitute for the feature matcher, the x and y 

co-ordinates of the vertex points should be substituted. However, this 

means that where more than two lines meet at a point, all the vertices 

formed will have the same co-ordinates - for example, if two lines cross 

one another at right angles, four right angle vertices all with the 

co-ordinates of the crossing point will be obtained. As these vertices 

are not merely duplicates of one another and none of them may be 

discarded, the system's duplicates limit must be set at o. 

If several different vertices occurred at the same co-ordinates as 

an object part in the training images, the system could, as a result, come 
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up with a large number of spurious object part/feature pattern matches. 

To ensure that only the correct matches would be found, it was therefore 

decided that the training examples used should show disjoint object 

instances. The maximum and minimum dimensions of each object could 

be specified by just two instances, so only two training examples, each 

containing one instance of each of the six objects, were required (see 

Figure 9.3). 

The first set of test images is shown in Figure 9.4. The images do 

not increase significantly in complexity because it was hoped that after 

the feature sets found in the first two tests (Shapes3 and Shapes4) had 

been accepted or rejected manually, with the acceptance limit at 110, 

the acceptance limit could be lowered to demonstrate the use of Acceptor 

to automatically accept high-probability sets in Shapes5 and Shapes6. 

The rectangles to be learnt from the second training set are shown 

in Figure 9.5, with their vertices numbered in the same way as the earlier 

shapes. These, too, can be learnt from just two training instances each; 

the single image which comprises the second training set is shown in 

Figure 9.6. Figure 9.7. shows the four images which make up the second 

set of tests - again, it is intended that acceptance or rejection of feature 

sets should be manual for the first two (Shapes8 and Shapes9), and 

automatic for the second two (Shapes1 0 and Shapes11). 

9.2.2. Background Checks. 

The recognition rules induced by the Learner will ensure that the 

distances between pairs of features in candidate feature sets fall within 

the appropriate limits, but this is not sufficient to guarantee that 
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Figure 9.3. The first set of training images for shapes. 
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Figure 9.4. The first set of test images for shapes. 
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1 ...... ------....... 2 
rectangle1 

4 ..... ------.... 3 

1 ...... --....... 2 

rectangle2 

4 ..... --.... 3 

Figure 9.5. The rectangles, with vertices numbered. 

( 0,0 ( 12 0,0) 

Shapes? 
(0,120) (120,120) 

Figure 9.6. The training image for rectangles. 
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Figure 9.7. The second set of test images for shapes. , 
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candidate squares will be square, and candidate triangles will be 

isosceles. For example, if the sides of a big square could be between 40 

and 60 units long, a rectangle with width 60 units and height 40 units 

would satisfy the induced rules. However, the background checks facility 

can be used to eliminate candidates which are not of the right shape. 

The background checks are specified in the shapescheck program 

file, which is to be loaded into the system together with the object part 

lists and rating thresholds (contained in shapesgen, rectanglesgen). 

No checks are necessary on rectangles as any rectangle which satisfies 

the distance limit rules will be acceptable, so empty checks must be 

specified for these: 

background_check(rectangle1,-,-,-' :- !. 

background_check(rectangle2,-,_,-' :- !. 

For squares and triangles, the checks must allow for the fact that 

candidate feature sets may not be complete. If a feature set contains 

just two adjacent vertices of a square, or the right angle and one other 

vertex of a triangle, no checks will be necessary; however, checks must 

be made on two-element sets containing the opposite vertices of a 

possible square or the two 450 vertices of a possible triangle, and on all 

sets of three or more features. The two-element checks specify the 

object name and part set, then pass the picture number and feature 

numbers to opposite_corners, which succeeds if the absolute values of 

the differences between the x co-ordinates and the y co-ordinates of the 

features are equal: 

background_check(Object,PicNo,PartSet,[F1,F2]) :-

!, 

opposite_corners(PicNo,[F1,F2]). 
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The checks on larger feature sets pass the picture number and the first 

three feature numbers to equaLsides, which succeeds if any two of the 

three features are the same distance apart: 

background_checkL,PicNo,[F1,F2:RestJ) :­

member(F3,Rest), 

I ., 

equal_sides(PicNo,[F1,F2,F3J). 

The calls to opposite_corners and equal_sides are preceded by 

cuts (I) to ensure that the call to background_check will fail if they 

fail; this allows the shapescheck file to be concluded with an empty 

check to cover all objecVpart set combinations which have not already 

been specified. 

9.2.3. Tests conducted and results obtained. 

Two system runs were carried out using the shapes data. The first 

run was a straightforward test of the operation of the system; the second 

run was intended to show how the recognition rules induced for 

rectangles would be affected by the stage at which the rectangles 

training data was introduced (before or after the first set of tests). 

Edited listings of both runs are provided in Appendix 8. 

For the first run, the system was initialised with a duplicates limit 

of 0, acceptance threshold of 110 (no automatic acceptance), referral 

threshold of 0 (referral to user of all candidate feature sets) and 

automatic bid execution. The training data on the first six shapes, 

shapes1 and shapes2, was loaded together with the shapesgen and 

shapescheck files; the system automatically proceeded to edit the 
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training data and to learn rules for the shapes. 

When first test file, shapes3, had been loaded the system searched 

for all the shapes except triangle3 (which could not be present as the 

data did not include any features to match its 450 angles) in the order in 

which the shapes had been learnt - with exactly two occurrences of each 

shape in the training images, the numbers of occurrences could not yet 

have any effect on the search order. The feature sets found in the image 

were all assigned probabilities of 100%, as would be expected; the five 

shapes were all correctly identified and were accepted by the user, and 

two (correct) partial feature sets which were also found were rejected. 

When the recognition process was complete, the rules for four of the 

shapes sought were updated by feedback (no feature sets had been found 

for the other shape, triangle4), and the test data was removed from the 

blackboard. 

For the second test, shapes4, the search order was affected by the 

numbers of occurrences of each shape, the shape which had appeared 

twice in shapes3, little_square, being sought first. The procedure the 

system followed and the results it obtained were again satisfactory. 

After the second test, show_rules was used to request a printout 

of the recognition rules for each object. After so few examples, the 

probability rules necessarily showed a low level of accuracy, 

probabilities of 100% being given for many partial sets; far more precise 

probabilities would be required for the automatic acceptance procedure 

to work perfectly, but to check its operation the acceptance threshold 

was nonetheless lowered to 100 before the next test. 

186 



The object instances in shapes5 were such that, despite the 

inaccuracy of the rules, the results obtained by the automatic acceptance 

procedure were perfect. The small square in the image was found first, 

and accepted. The system then searched for big squares, but none of the 

partial big squares it found had high enough probabilities for immediate 

acceptance, so it deferred judgement on these and went on to search for 

triangles. When the four triangles had all been found and accepted, the 

partial big squares could all be rejected as they contained features which 

had already been identified, so there was no need to refer any partial sets 

to the user for decisions. 

The results obtained from shapes6, in contrast, clearly reveal the 

dangers inherent in using automatic acceptance prematurely. The system 

again began by searching for little squares, but the probabilities of two 

of the partial little squares found had not yet been established accurately 

and were still set at 100%, so these were erroneously accepted; the false 

identification of their features meant that the big square in the image 

was automatically rejected. (The triangles in shapes6 were, however, 

identified correctly). 

The acceptance threshold was altered back to 110 before 

rectanglesgen and the rectangles training image, shapes7, were 

loaded. The recognition rules for rectangles were printed out as soon as 

they had been learnt, for later comparison with the rules learnt in the 

second system run; the fact that the partial set probabilities were not all 

100% showed that the first set of training images had been correctly 

included in the rectangles training set. 

The results obtained from shapes8 and shapes9, which had both 
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been designed to contain large numbers of partial feature sets, to try to 

ensure that the probability tables would be as accurate as possible (given 

the limited number of images used) for the final two tests, were as 

expected. The incorporation of the rectangles into the set of learnt 

objects had clearly been successful. The feedback of faulty information 

from shapes6 meant that the probability assigned to the complete big 

square in shapes8 was too low, but with referral to user rather than 

automatic acceptance for these tests, this did not matter much. 

The acceptance threshold was again reduced to 100 before loading 

shapes10, a fairly difficult test image containing partially occluded 

object instances. In this test, four objects were accepted automatically, 

three of them correctly and one (a partial triangle for which inadequate 

rules had been developed) incorrectly; a further eight feature sets, 

including sets corresponding to the remaining three objects in the image, 

were referred to the user. The final test, shapes11, contained a mixture 

of overlapping objects and partial objects, six of which were correctly 

accepted automatically, the remainder being correctly referred. 

The probability tables were printed out again at the end of the run. 

Most of the tables had improved in accuracy since the earlier printout, 

but the table for big squares showed a marked deterioration. This was 

because the feature sets corresponding to some of the instances of 

rectangles had satisfied the recognition rules for the big square. These 

sets had not been accepted (or offered for acceptance) as big squares 

because they failed to satiSfy the background checks, but they had still 

been used for feedback purposes, to update the big square probability 

table. 
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The second system run was initialised with the same thresholds as 

the first, but with manual bid execution to allow all the training data to 

be loaded at the start of the run. When the data had been loaded the help 

facility was invoked, and the command to switch to automatic execution 

was entered to allow the rules to be learnt automatically. The rules for 

both types of rectangle were printed out, and could be seen to be 

identical to those obtained in the first run. The first set of tests were 

then repeated, this time with the acceptance threshold held at 110 for all 

four of them; the results were basically the same as those obtained in 

the first run, except that some possible partial rectangles were found 

(and rejected), and the inclusion of shapes7 in the training set for the 

little square had improved the accuracy of its probability table 

sufficiently for only one partial little square to have to be rejected 

before the system correctly identified the big square in shapes6. The 

second set of tests were not repeated, as it was felt that nothing further 

could be learnt from these. 

9.2.4. Conclusions. 

These tests were, on the whole, very satisfactory; the system 

appeared to meet the specification given in Chapter 8 in every respect. 

The image identification results obtained were not perfect, but this was 

more because insufficient data was used to allow accurate probabilities 

to be established than because the system did not work as it was 

intended to. 

The recognition task selected for these tests was one which 

required the use of background checks, as well as the induced recognition 

rules, to distinguish between some of the objects occurring in the 
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images. The incorporation of background checks into the system 

significantly increases its flexibility and the range of problems to which 

it could be applied, but the facts that these checks were not taken into 

account when determining probabilities, and that without these checks 

some of the rectangles could be mistaken for squares, meant that low 

probabilities were established for big squares in the first test run. It 

would be possible to alter the system to enable checks to be carried out 

when feature sets are first created, which would improve the accuracy of 

the probabilities induced in this situation, but this modification does not 

seem desirable. It would increase the running time, as it would obviously 

take longer to check every feature set than to check just those maximal 

sets which represent possible object instances; more importantly, it 

would affect the overall structure of the system. The learning and 

recognition stages would be less self-contained if pre-programmed 

background knowledge were to be introduced earlier in the identification 

process; the acceptance/rejection stage appears to be a more appropriate 

place for this type of knowledge to be employed. In view of the fact that 

all the probabilities for an object are affected when such problems arise, 

a better approach might be to set separate acceptance/referral 

thresholds for each object, using lower thresholds for objects which 

suffer from interference from other similar objects. 

9.3. TESTS USING PHOTOGRAPHS OF TRAFFIC. 

For these tests, photographs were taken of traffic travelling along 

the main road outside Loughborough University. The photographs were all 

taken from approximately the same location, at a sufficient distance 

from the side of the road for the largest vehicles to just fit within the 
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frame. The background varied slightly, depending on the angle at which 

the camera was held; it consisted of some small trees, a hedge and a row 

of houses, some of which had satellite dishes on their walls which could 

be mistaken by a feature matcher for car wheels. 

Thirty-two photographs were selected for the tests. They showed 

four different types of vehicle: cars, vans, small lorries and big lorries, 

all facing to the right. (Other vehicles, e.g. motorbikes, buses, occurred 

too infrequently to be included). The sixteen photographs which appeared, 

from a brief visual inspection, to contain the most extreme examples of 

each vehicle type were chosen to form the training set. They each 

showed just one vehicle; there were five instances of cars, five vans, 

four small lorries and two big lorries. The remaining sixteen 

photographs, which were to be used as recognition tests, showed nine 

cars, three vans, four small lorries and three big lorries - a total of 

nineteen vehicles as three of these photographs showed two vehicles 

each. 

9.3.1. Data Preparation. 

Unfortunately R.S.R.E.'s pre-processor, which was applied to the car 

photographs used for the tests described in Section 7.3., was unavailable 

for use with these traffic photographs; the feature patterns had to be 

selected, and the matches found, directly from the photographs 

themselves rather than from edged and filtered images. Figures 9.8 and 

9.9 show typical training pictures; it can be seen from these that the 

task of measuring vehicle parts was not an easy one, and the results 

obtained can be expected to correspond only roughly to those which would 

have been obtained if the pre-processor and feature matcher had been 
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Figure 9.8. Typical traffic photographs - car and van. 
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Figure 9.9. More traffic photographs - big and small lorries. 
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available. 

The procedure followed was approximately the same as that 

described in Section 7.3.1., and so is not described in detail here. As the 

photographs were taken at a sufficient range for big lorries to fit into 

the frame, the cars appeared at a much smaller scale than those in the 

earlier tests; the variations in window shape became insignificant at 

this scale, and the co-ordinate differences between the wheels and the 

wheel arches could no longer be determined reliably, so a different set of 

car parts had to be selected for matching. The car parts used this time 

were: 

1 fronCwheel 

2 reacwheel 

3 top 

4 front_window. 

The tops of the vans were not of a distinctive enough shape to be matched 

reliably, so only three van parts were used: 

1 fronCwheel 

2 reacwheel 

3 fronCwindow. 

The part set for small lorries, the back parts of which varied 

considerably, was: 

1 fronCwheel 

2 rear_wheel 

3 cab_top 

4 cab_window 

and for the large lorries with five pairs of wheels, the part set was: 

1 wheel1 (front wheel) 

2 wheel2 
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3 wheel3 

4 wheel4 

5 wheelS (rear wheel) 

6 cab_top. 

The feature patterns selected are shown in Figure 9.10. (All 

measurements in millimetres). 

It was assumed, when identifying features in the photographs, that 

satellite dishes would be recognised as small wheels (pattern 1), 

complete house windows would be recognised as van/lorry windows 

(pattern 6), and house windows which were partially occluded by the 

hedge would be recognised as car windows (pattern 5), so a large number 

of features could be expected to be found in each photograph. The 

features were given ratings of up to 100; the thresholds were all set at 

50, and features whose ratings would be below the thresholds were not 

included in the data, as they would in any case be eliminated by the 

editing procedure, which left between ten and twenty features per 

photograph. As the object parts selected for matching, though difficult 

to measure accurately, were easy to locate in the photographs, the object 

part data provided for the training pictures was complete. 

9.3.2. Background checks. 

No background checks were carried out; as this was the main 

application for which the system was designed, it was considered that it 

should be possible to obtain adequate results without them. A program 

file specifying 'empty' checks was therefore drawn up. 
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Figure 9.10. Feature patterns for traffic identification. 

196 



9.3.3. Tests conducted and results obtained. 

For the tests conducted using the traffic data the duplicates limit 

was set at 3 and the acceptance and referral thresholds at 110 and 0 

respectively. The training data was all loaded at the start of the system 

run, then when the objects had been learnt the test files were loaded one 

at a time. The test photographs were shuffled before being numbered, so 

the order of the tests was random. 

In the first run, the system failed to find all the appropriate 

part/feature pattern matches - in particular, some of the 

window/window pattern matches were missed. This was because a given 

proportion of features of a particular pattern must match instances of a 

part for a match between the part and the pattern to be recognised; there 

were so many windows in the photographs that the proportions of 

matches were too low. The pattern_match file was edited to reduce 

the proportion required from one in ten to one in twenty, and the system 

was re-run. 

When the correct match tables had been established the recognition 

results obtained were very impressive, seventeen of the nineteen 

vehicles being identified correctly. The two which were missed were a 

large lorry, with just its cab and the front two wheels visible, and a van, 

the wheel hubs of which were unusually faint. 

As the training sets were small some of the distance limits learnt 

by the system were inevitably too narrow, so not all the parts of each 

vehicles were found - five of the vehicles were identified by just a pair 

of parts, the average being just under three parts per vehicle. However, 
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so long as sufficient parts were found for the system to make a positive 

identification the failure to find the remaining parts cannot be regarded 

as a problem. 

There were very few incorrect identifications. Just twelve 

candidate sets had to be rejected, including ten pairs of satellite dishes 

which were incorrectly identified as pairs of wheels; as a result of their 

rejection the probability attached to a pair of car wheels declined 

steadily from 50% after training to under 35% at the end of the run, and 

the probability attached to a pair of van wheels similarly declined, 

showing that such recurring errors could eventually be eliminated by 

raising the referral threshold. One other rejected set was the top and 

rear wheel of a car pictured at an angle, a problem which was discussed 

in Section 7.3.2, and the final one was the front and rear wheels of a 

small lorry in the first test picture, which were identified first as 

wheels 2 and 3 of a large lorry. The system also found the cab top of the 

small lorry; had this picture occurred later in the run, the correct three 

part set would have been assigned a higher probability than the incorrect 

two part set, so the error would not have occurred. 

A listing of the test is included in Appendix B. 

9.3.4. Conclusions. 

The system produced excellent results on this test after the 

pattern_match file had been altered to allow the correct part/pattern 

matches to be found, the only errors arising being ones which could be 

eliminated by using a more adequate training set and allowing the system 

to run for long enough for accurate probabilities to be established and 
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reliable acceptance and referral thresholds to be set. 

The pattern_match table could, perhaps, be established more 

reliably by comparing the number of part/feature matches with the 

number of parts rather than the number of features; the system would 

then be less sensitive to the occurrence of large numbers of features of a 

particular pattern in the background of the images. 

It must be borne in mind when assessing the results that the feature 

data used was obtained by manual matching, not by the feature match er 

program. Where any doubt existed as to whether a background feature 

matched a given feature pattern, the match was included, so this data 

should have contained at least as much noise as 'real' data would have 

done, but the test still cannot be expected to give a totally accurate 

impression of how well the feature match er/image identifier 

combination would work. 

199 



CHAPTER 10 

DISCUSSION 

10.1. SUMMARY OF WHAT HAS BEEN ACHIEVEp. 

This project was essentially practical in its objectives; the aim was 

to produce a working image identifier. Its practicality was somewhat 

marred by the fact that the development of the feature matcher program 

which was to provide the input data (Varga et aI., '89; Series et aI., '89) 

was discontinued before appropriate data for the system tests had been 

produced, so the testing had to be carried out using synthetic data and 

feature data extracted manually from processed images and photographs. 

The results obtained from the synthetic data were very satisfactory; this 

does not, of course, guarantee that the feature matcher/image identifier 

combination would have worked well, but the indications are that it would 

have done. 

The keynote throughout the deSign and development of the image 

identifier was simplicity - in each design area, the Simplest techniques 

which were consistent with satisfactory performance were adopted. and 

approximations were made whenever these would not compromise the 

quality of the output. The overall design of the system was simplified by 

splitting the design process into two stages: developing a recogniser for a 

single object, then incorporating this recogniser into a blackboard system 

to produce the image identifier. 

When establishing recognition rules for objects. only the Simplest 

relationships between object parts - the distance limits between pairs of 

parts - were considered; the rules based on these relationships proved 
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adequate, so there was no need to consider more complex relationships. 

A major consideration in most applications of Artificial Intelligence 

is how to control searches and how best to prune search trees. When 

searching for feature sets which could represent object instances, it was 

decided that the simplest method would be to prune before and after the 

search, not during it. The features were pruned to remove duplicates and 

features with low ratings, then an exhaustive search was conducted for 

sets of the remaining features which satisfied the distance limits, and at 

the end these sets were pruned, where necessary, by carrying out 

background checks and eliminating sets with low probabilities. The 

decision not to carry out any pruning during the search meant that 

probabilities would not be required at this stage, so the process of 

identifying candidate feature sets could be separated from the process of 

attaching probabilities to them. This in turn meant that the introduction 

of feedback to update the probabilities was straightforward. 

Chapter 5 contains a description of a large number of methods of 

handling uncertainty, most of which are conceptually or computationally 

quite complex, but here again the simplest method was adopted: 

probabilities were established empirically by counting feature sets. The 

scale of the problem was such that probabilities could be established from 

first principles for every combination of feature sets and object part sets 

of interest, so there was no need to consider how the probabilities were 

related to one another, to try to establish dependencies between pieces of 

evidence or to adopt rules for combining probabilities. 

The fact that probabilities were established before conducting 

background checks on candidate feature sets meant that the probabilities 
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assigned to checked sets might not be accurate. However, the main 

function of the probability measures was to rank candidate sets; as the 

inaccuracies introduced by the background checks would not normally 

significantly affect the rankings, they could be disregarded safely. 

Problems would only arise where the background checks were necessary to 

distinguish two different objects from one another, when separate 

probability thresholds might have to be applied to each object to ensure 

that the results obtained would be correct. (See Section 9.2.4). 

The construction of the blackboard system was again simplified as 

far as possible. The controlling and scheduling functions of the blackboard 

were reduced to a minimum by having each knowledge source assign 

ratings to its own bids rather than having the scheduler calculate bid 

ratings. As the knowledge sources all performed distinctly different 

functions, there was no need to consider whether any of the bids in the bid 

list had become redundant and should be removed when a knowledge source 

operation had been carried out; this, too, simplified the control element of 

the system. 

The designers of most of the general-purpose blackboard systems 

reviewed in Section 4.6 adopted the policy of attempting to build in all the 

facilities which might be required for any application. This blackboard 

illustrates an alternative approach: producing a minimal system to which 

only those facilities which are definitely required can be added ensures 

that the final system will not be burdened with unnecessary overheads. 

The incorporation of rule induction and feedback into the blackboard 

system caused the greatest problems, but a neat solution was found to the 

difficulties this raised: the rules were treated as data and held on a 
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secondary blackboard. The recogniser knowledge source was effectively a 

general-purpose recogniser containing empty rule slots which could be 

customised to recognise a particular object by inserting the appropriate 

rule data into these slots. This technique should be fairly generally 

applicable as rule induction systems are almost invariably constrained to 

induce rules of a limited number of different patterns. 

The use of standard rule patterns meant that all possible objects 

must be recognisable by the same types of rules; this could limit the 

applicability of the system, so it was decided that a facility to 

incorporate different types of recognition rules into the system, in the 

form of background checks, should be provided. The background checks, of 

course, are not induced - they are programmed by the system user. 

The net effect of all these simplifications is that a system has been 

produced which is conceptually quite simple and easy to understand, and 

runs quite quickly because of the very small number of calculations 

required, but nevertheless identifies the objects in test images 

effectively even when presented with very limited amounts of training 

data. 

10.2. SUGGESTIONS FOR FURTHER WORK. 

The image identifier which has been developed can be regarded as a 

basic experimental system to which a number of extra facilities could be 

added. Some of these facilities would require close co-operation between 

the image identifier and the feature matcher, which could not be achieved 

while the feature matcher was unavailable; others would depend on the 
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particular application for which the system was to be used. 

The system currently operates in a bottom-up manner - the 

identification of images proceeds through several clearly defined stages 

(identification of image features, formation of feature sets, selection of 

candidate sets which represent object instances) which are always carried 

out in the same order. It would perhaps be useful to introduce a top-down 

element: an initial set of feature patterns could be used to identify areas 

of the image which contained object instances, then the feature matcher 

could be re-invoked to search these areas for further features which would 

confirm the identity of the objects. Restricting the search for the 

secondary set of features to specific areas of the image should speed up 

the matching process significantly. 

The running time of the identifier is heavily dependent on the number 

of parts in each object; the inclusion of one additional object part will 

approximately double the number of different feature sets to be 

considered. The identification of objects with large numbers of parts 

could perhaps be tackled best by adopting a layered approach. The objects 

could be split into sub-assemblies; when these sub-assemblies have been 

identified from the primary features which match their parts they could 

themselves be entered on the problem blackboard as secondary features, 

from which the objects could then be identified. 

The system currently notifies the user of the objects it has 

identified, but makes no attempt to put this information to any further use. 

An Interpreter knowledge source, which would be invoked after Selector 

and before Feedback, could be included to produce an interpretation of the 

results; this could be a verbal description of the image (for example, 
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"there is a small lorry facing right in the centre of the image, with a car 

facing right to the left of it"), or a graphical representation of the objects 

which have been identified. Alternatively, any specific information which 

might be required for a particular application of the system could be 

extracted from the output. 

10.3. CONCLUSIONS. 

A new approach to the identification of objects in visual images has 

been developed. The approach uses the data produced by a feature match er 

program developed at R.S.R.E. Malvern, which finds the best matches for a 

set of feature patterns in a preprocessed image. It involves first 

identifying individual image features which could correspond to specific 

parts of objects, then forming sets of these features which could 

correspond to complete objects, the rules governing the formation of 

feature sets being learnt from training examples in which the locations of 

object parts are specified. The technique is simple, very tolerant of noise, 

requires minimal computation and appears to produce very good results. 

The system has been implemented using a blackboard system in which 

the learning element has been incorporated by the simple expedient of 

treating the induced rules as data. This allows a range of different 

objects to be recognised by a single recogniser knowledge source; new 

objects can be introduced without any alteration to the program, producing 

a degree of flexibility which is unusual in image identification systems. 

There is considerable scope for continued development; the inclusion 

of a top-down element, the introduction of a layered technique for the 
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identification of more complex objects and/or the addition of an 

interpreter to further process the output could increase the system's speed 

and versatility. 

Tests have been conducted using synthetic data, with very promising 

results; the system was able to identify geometric shapes such as squares 

and triangles even where the shapes overlapped or were partially occluded. 

Further tests using feature data extracted manually from photographs of 

vehicles travelling along a main road showed that cars, vans and lorries 

could be distinguished from one another with a high degree of reliability. 
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APPENDIX A 

listing of the Image Identifier 
(RECOGNISE2) 
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/* recognise2/master */ 
/* *************************************************************** */ 
/* **** RECOGNISE2 Master File **** */ 
/* *************************************************************** */ 
:-[init]. 
:-[run]. 
:-[consult]. 
:-[enter] • 
:-[changes] • 
:-[schedule] • 
:-[show]. 
:-[utilities_master]. 
:-[editor_master}. 
:-[learner_master]. 
:-[recogniser_master]. 
:-[acceptor_master]. 
:-[selector_master]. 
:-[feedback master]. 
:-[remover_master]. 
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/* recognise2/init */ 
/* *************************************************************** */ 
/* **** Initialisation **** */ 
/* *************************************************************** */ 
/* The initialisation process sets up the bid list, list of names */ 
/* of learnt objects and no. of object occurrences, reads in the */ 
/* duplicates limit, percentage probability thresholds for feature */ 
/* set acceptance and referral to the user and manual/automatic */ 
/* bid execution selector, then calls consult_user. */ 

init:-
assert(bid_Iist([)), 
assert (recognisebb1 (Object_names, ([)), 
assert (recognisebb4 (occurrences, (total,O»), 
nI, 
write('Duplicates limit? '), 
read_number(Dup,[0,10), 
asserta(duplicates_limit(Dup», 
write('Percentage prob. threshold for automatic'), 
write(' acceptance?'),nl, 
write('(For no automatic acceptance, enter 110) '), 
read_number (Accept, [0,110), 
asserta(acceptance_threshold(Accept», 
write('Percentage prob. threshold for referral to user? '), 
read_number (Refer, [O,Accept), 
asserta(referral_threshold(Refer», 
write('Bid execution manual (m) or automatic (a)? '), 
read_char (Autorun, [a,m)) , 
assert(autorun(Autorun», 
consul t_ user. 
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I_ recogn1se2/run -I 
/* *************************************************************** */ 
/* **** Run the system **** */ 
/* *************************************************************** */ 

/* run removes the top bid from the bid list and executes it. If */ 
/* manual/automatic execution selector is set to automatic it then */ 
/* runs the next bid: if the selector is set to manual, or if */ 
/* the bid list is empty, it calls consult_user. */ 

run:-

run:-

bid_list([J), . 
write('Bid list empty'),nl, 
consul t_ user • 

bid list([«Function,Data),Rating) IRest]), . 
retract(bid_Iist([«Function,Data),Rating) IRest]», 
assert(bid_Iist(Rest», 
execute (Function, Data) , 
(autorun(a), I, run: consult_user). 
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/* recognise2/consult */ 
/* *************************************************************** */ 
/* **** Consult system user **** */ 
/* *************************************************************** */ 
/* consult_user is called between bids (manual bid execution) or */ 
/* when the bid list is empty (automatic bid execution). It */ 
/* includes a 'help' module. */ 

consult user:-
-nl, 

wtite('What now?') ,nI, 
write('(Enter "help." to view options)') ,nI, 
read(Cammand),nl, 
execute_oommand(Command). 

execute_command(help):-
write('Options available are:'), nI, 
write('Read in a data file: "[filename]."') ,nl, 
( autorun(m) , 

write ('Execute the next bid: "run."'), nI, 
write('Switch to automatic bid execution: "auto."'), 
nl, !; 
write('Switch to manual bid execution: "man."') ,nl), 

write('View the recognition rules for an object: '), 
write('''show rules(Object)."'), nl, 
write('Alter-acceptance/referral thresholds: "alter."'),nl, 
write('Quit the system: "quit."'), 
nl, 
consul t_ user. 

execute_command(quit):- !. 

execute command(run):- run. 

execute command«(Filename]):-
-consult(Filename) , 

bb_enter, 
( autorun(a), run; 

consult_user 

execute_command(show_~es(Object»:­
show_rules (Ob]ect) , . 
consult_user. 

execute_command(auto):­
retract(autorun(m», 
assert(autorun(a», 
run. 

execute command (man) :­
-retract(autorun(a», 
assert(autorun(m», 
run. 

execute_command(alter):­
nl, 

) . 

acceptance_threshold (AI) , 
write ( 'current automatic acceptance threshold is '), 
write(Al), nI, 
write('New value? '),read_number(A2,[O,llO]), 
retract(acceptance threshold(Al», 
asserta(acceptance-threshold(A2», 
referral_threshold(Rl), 
write('Cllrrent threshold for referral to user is '), 
write(Rl), nI, 

222 



write('New value? '),read_number(R2,[O,lOO), 
retract(referral_threshold(Rl», 
asserta(referral_threshold(R2», 
consult_user. 

execute_cononandL) :-
nl, write ('Unrecognised cononand'), nI, 
consul t_ user. 
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I" recognise2/enter *1 
1* ***""*"*""*****"""*****"******""*"****"""""*********"****""*"** "I 
I" **** Enter problem data on the blackboard **** "I 
1* *"*********""*"****"""*****"""*****"""*"****""*********"******" *1 
1* bb enter is used to enter data on the problem blackboard. As *1 
1* features and object parts are normally entered in batches, these*1 
1* entries are flagged (using bb_entered) so t.J:1at new_entry can be *1 
I" called for each batch rather than for each ~ndividual entry. *1 

bb enter:-
- feature (PieNo,PatNo,X, Y,Rating), 

assert (problembbl (feature, (PicNo,PatNo,X,Y,Rating») , 
retract(feature(PieNo,PatNo,X,Y,Rating», 
( bb entered(feature,PicNo); 

assert(bb_entered(feature,pieNo» ), 
I,bb enter. . 

bb enter:- -
- object-part(Object, PicNo,Inst,PartNo,X,Y), 

assert (problembb4(object-part,(Object,PieNo,Inst,PartNo,X,Y»), 
retract(object-Part(Object,PicNo,Inst,PartNo,X,Y», 
( bb entered(object~rt,Object,PieNo); 

assert(bb_entered(object~rt,Object,PicNO» ), 
1 ,bb_enter. 

bb enter:-
- part list (Object, List) , 

assert(recognisebbl(part list, (Object,List»), 
retract(part_list(Object;List», 
1 ,bb enter. 

bb enter:- -
- rating threshold (F,T), 

assert(recognisebbl(rating threshold,(F,T»), 
retract(rating_threshold(F;T», 
1 ,bb_enter. 

bb_enter:-
bb entered(feature,PicNo), 
new_entry([problembbl,feature, (PicNo)]), 
retract(bb_entered(feature,PicNo», 
I,bb enter. 

bb enter:- -
- bb_entered(object~rt,Object,PieNo), 

( training (PicNo), I; assert(training(PieNo» ), 
new_entry([problembb4,object-Part, (Object,pieNo)]), 
retract(bb_entered(object~rt,object,PieNo», 
1 ,bb_enter. . 

bb_enter. 
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/* recognise2/changes */ 
/* *************************************************************** */ 
/* **** Check blackboard changes, make new bids **** */ 
/* *************************************************************** */ 

/* new_entries/removed_entries are called When entries are added */ 
/* to/removed from the problem blackboard. The knowledge sources */ 
/* which are interested in the changes are then invited to make */ 
/* new bids. */ 
new_entries([):- I. 

new_entries([FirstIRest):-
new entry(First), 
new:entrles(Rest) • 

new_entry([Section,Datatype,Data):-
wants (KS, Section, Datatype) , 
make_bid(KS,[Section,Datatype,Data), 
faiL 

new_entryL) • 

removed_entries([):- I. 

removed_entries([FirstIRest]):-
removed_entry(First), 
removed_entries(Rest). 

removed_entry([section,Datatype,Data]):­
wants_removed(KS,Section,Datatype), 
make_bid(KS,[Section,Datatype,Data]), 
faiL 

removed_entry(-> • 
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1* recognise2/schedule */ 
1* *************************************************************** */ 
1* **** Insert new bids in bid list **** */ 
1* *************************************************************** */ 

schedule(Function,Data,Rating):­
bid list(List), 
(- member«(Function,Data),Rating),List), !: 

insertl«(Function,Data) ,Rating) ,List,NewList) , 
retract(bid_list(List», 
assert(bid_list(NeWList» ). 
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/*recognise2/show*/ 
/* *************************************************************** */ 
/* **** Show **** */ 
/* *************************************************************** */ 

/* show_rules(Object) can be called by the user to list the 
/* recognition rules for an Object which has been learnt. 

show rules(Object):-
- list matches(Object), 

list=limits(Object), 
list_sets(Object). 

list matches(Object):-
- nI, 

write('Part/Pattern No. matches:'), 
nI, 
write matches(Object). 

write_matches(Object):­
recognisebb2(match,(Object,PartNo,PatternNo», 
recognisebbl(part_list,(Object,Parts», 
member«PartNo,PartName),Parts), 
write(PartName),write(', Pattern'),write(PatternNo),nl, 
fail. 

write matches(Object). 

list_limits(Object):­
nI, 
write('Distance limits(Partl,Part2,MinX,MaxX,MinY,MaxY):'), 
nI, 
write limits(Object). 

write_limits(Object):­
recognisebb2(distance_limits,(Object,Partl,Part2, 

MinX,MaxX,MinY,MaxY», 
recognisebbl(part_list,(Object,Parts», 
member«Partl,PartNamel),Parts), 
member«Part2,PartName2),Parts), 
write(PartNamel),write(','),write(PartName2), 

write(','),write(MinX),write(','),write(MaxX), 
write(','),write(MinY),write(','),write(MaxY), 

nI, 
fail. 

write_limits(Object). 

list_sets(Object):­
nI, 
write('set probabilities(PartSet,PatternSet,FeatureSets,'), 

write('Matches):'), nI, 
write_sets(Object). 

write_sets(Object):­
recognisebb3(set-probability,(Object,Partset,Patternset, 

Sets,Matches», 
write(PartSet),write(','),write(PatternSet),write(','), 
write(Sets),write(','),write(Matches), 
nI, 
fail. 

write_sets(Object). 
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/*recognise2/utilities_master*/ 
/* *************************************************************** */ 
/* **** utilities Master File **** */ 
/* *************************************************************** */ 

:-[general_utilities). 
:-[make_sets) • 
:-[find). 
:-[check_limits). 
:-[feature_match). 
: - [check match). 
:-[identIfy). 
:-[write_set) • 
:-[remove_instances). 

228 



/*recognise2/general_utilities*/ 
/* *************************************************************** */ 
/* **** General utilities **** */ 
/* *************************************************************** */ 

member(A, [AI_) • 
member(A,[_ X):- member(A,X). 

nonmember(A,X):-
member(A,X), I, fail. 

nonmember(A,X) • 

disjoint(X,y):-
member(A,X) , 
member (A, Y), 
I, fail. 

disjoint(X,y). 

add(A,X,X):-
member (A,X) , I. 

add(A,X, [AIX)) • 

unite([) X,X):- I. 
unite([AjX),y,U):-

unite(X,y,U2), 
add(A,U2,U). 

near(X,Y):­
duplicates_limit(Dup), 
Oiff is X-Y, 
oiff < Cup, 
Oiff > -DIp. 

read_char(Inputl,List):­
read(Input2), 
( member(Input2,List), Inputl = Input2, !; 

write ('Unacceptable input - try again? '), 
read_char (Inputl, List) ). 

read_number(Inputl,[Min,Kax):-
read(Input2), 
( Input2 >= Min, Input2 =< Max, Inputl = 

write('Unacceptable input - try again? 
read_number(Inputl,[Min,Kax) 

insertl«A,B),[],[(A,B)]):- !. 
insertl«Al,Bl),[(A2,B2)IR),[(Al,Bl),(A2,B2) IR]):-

Bl >= B2, I. 
insertl«Al,Bl),[(A2,B2) IR),[(A2,B2)INeW):­

insertl«Al,Bl),R,New). 

Input2, !; 
'), 

) . 

insert ( (A,B,C), [), [(A,B,C»)):- !. 
insert«Al,Bl,Cl),[(A2,B2,C2) IR),[(Al,Bl,Cl),(A2,B2,C2) IR):­

Cl >= C2, I. 
insert«Al,Bl,Cl),[(A2,B2,C2) IR),[(A2,B2,C2) INew):­

insert«Al,Bl,Cl),R,New), !. 

delete(X'[XIList),List). 
delete(X,[Y List)'IY'NewList]):-

delete(X,L st,NewList). 
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/* recognise2/make_sets */ 
/* *************************************************************** */ 
/* **** Make Part Sets **** */ 
/* *************************************************************** */ 

/* make_sets (Object) finds all the sets of features which could */ 
/* represent sets of Object parts, checks to see which of these */ 
/* sets match known instances of Object, then counts the no. of */ 
/* feature sets and the no. of matches for each set of Object parts*/ 
/* and corresponding set of feature patterns, recording these in */ 
/* the set...,probability table on recognisebb3. The probability that*/ 
/* a set of features will represent an· instance of Object can be */ 
/* calculated from the appropriate entry in this table; the */ 
/* percentage probability is (lOO*Matches)/Sets. */ 

make sets(Object):-
- find_set(Object,pidNo,Parts,Patterns,Features), 

check match(Object,PicNo,Parts,Features,Inst), 
assert (problembb3 (feature_set, (Object,PidNo,O,Parts, 

Patterns,Features,Inst»), 
update...,probability(Object,Parts,Patterns,Inst), 
fail. 

make sets(Object):-
- ( retractall(matched_feature(Object,_,_,_,_,_»;true), 

( retractall(within_limits(Object,_,_,_»;true), 
( retractall(problembb3(feature_set,(Object,_,_,_,_, 

_,_»); true). 
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/* recognise2/find */ 
/* *************************************************************** */ 
/* **** Find Feature Sets **** */ 
/* *************************************************************** */ 

/* find_set(Object,PicNo,Parts,Patterns,Features) returns a list of*/ 
/* two or more object parts (a=anged in descending order of part */ 
/* no.) and a list of features in the specified picture which could*/ 
/* represent these parts, checldng for feature pattern/object part */ 
/* matches and satisfaction of the limits on x and yea-ordinate */ 
/* differences between pairs of object parts. */ 
/* Repeated calls to find_set will yield all such part lists/ */ 
/* feature lists, starting with those with only two elements. */ 
/*. Longer lists are found by adding higher-numbered parts to the */ 
/* start of existing part lists. */ 

find set(Object,picNo,Parts,Patterns,Features):-
- find~irs(Object,PicNo,Parts,Patterns,Features). 

find set(Object,PicNO,Parts,Patterns,Features):-
- find_multiples(Object,PicNo,Parts,Patterns,Features). 

/* Find two-element part lists/feature lists */ 

find~irs(Object,picNO,[Part1,Part2],[Pattern1,Pattern2],[F1,F2]):­
recognisebb1(part_list,(Object,PartList», 
member«Part2,_) ,PartList), 
member ( (Part1,_) ,PartList), 
Part1 > Part2, 
recognisebb2(match,(Object,Part1,Pattern1», 
problembb2(feature,(PicNo,F1,Pattern1,Xl,Y1», 
recognisebb2(match,(Object,Part2,Pattern2», 
problembb2(feature,(PicNo,F2,Pattern2,X2,Y2», 
check limits (Object,Part1,Xl, Y1,Part2,X2, Y2) , 
assert(within_Iimits(Object,PicNo,[Part1,Part2],[F1,F2]». 

/* Find larger feature list */ 

find_multiples (Object, PicNo, [Part2,Part1IRest],[Pattern2lpatterns] , 
[F2 IFeatures]):­

problembb3(feature_set,(Object,PicNO,_,[Part1IRest],patterns, 
Features, », 

recognisebb1(part_Iist,(Object,PartList», -
member«Part2,_) ,PartList), 
Part2 > Part1, 
recognisebb2(match,(Object,Part2,Pattern2», , 
problembb2(feature,(PicNo,F2,Pattern2,X,Y», 
check~ir_Iimits(Object,PicNo,Part2,F2,[Part1IRest],Features). 
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/* recognise2/check_limits */ 
/* *************************************************************** */ 
/* **** Check Distance Limits **** */ 
/* *************************************************************** */ 

/* check limits(Object,PartNol,Xl,Yl,PartNo2,X2,Y2) succeeds if 
/* features whose locations are (Xl, Yl) and (X2, Y2) satisfy the 
/* distance limits between PartNol and PartNo2 of Object 

check_limits(Object,PartNol,Xl,Yl,PartNo2,X2,Y2):-
recognisebb2(distance limits, (Object,PartNol,PartNo2, 

, - MinX,MaxX,MinY,MaxY», 
DiffX is Xl-X2, DiffX >= MinX, DiffX =< MaxX, 
DiffY is Yl-Y2, DiffY >= MinY, DiffY =< MaxY. 

the*/ 
*/ 
*/ 

/* check~ir_limits(Object,PicNo,PartNo FNo,Partset,FSet) 
/* if [FN0IFset] could represent [PartNoiPartset], Le., if 
/* appropr ate distance limits are satisfied. 

succeeds*/ 
all the */ 

/* The limits are checked by looking to see if the relevant two­
/* element part sets and feature sets have been entered in the 
/* within limits table. 

check~ir_limits(Object,PicNo,PartNo,FeatureNo,[],[]). 

check~ir_limits(Object,PicNo,partNol,FN01,[PartNo2IRestparts], 
[FN021 RestF]) :-

within limits (Object, PicNo, [PartNol,partNo2], [FNol,FNo2]), 
check-Pair_limits(Object,picNo,PartNol,FN01,RestParts, 

RestF). 
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1* recognise2/feature_match *1 
1* *************************************************************** *1 
1* **** Match Features to Object Parts **** *1 
1* *************************************************************** *1 

1* feature_match(Object) checks all features against parts of known*1 
1* instances of the object for co-ordinate matcbesr the feature *1 
1* details are recorded with the matching part no. and object *1 
1* instance no. (or 0,0 if no match) in the matched_feature table. *1 

feature match(Object):-
--feature match(Object,PicNo), 

fail. -
feature_match(Object). 

feature_match(Object,PicNo):­
problembb2(feature,(PicNo,FeatureNo,PatternNo,Xl,Yl», 
match_feature(Object,PicNo,FeatureNo,PatternNo,Xl,Yl), 
fail. 

feature_match(Object,PicNo). 

match_feature(Object,PicNo,FeatureNo,patternNo,Xl,Yl):-
1 , 
( problembb4(object~rt,(Object,PicNo,Inst,PartNo, 

X2,Y2», 
Xl = X2, Yl = Y2, 
problembb2(identified features,(PicNo,List», 
retract(problembb2(identified features, (PicNo,List»), 
assert(problembb2(identified features, 

(PicNo,[FeatUreNoIList)), , . . , 
Inst is 0, PartNo is 0), 

assert(matched feature(Object,PicNo,FeatureNo,PatternNo, 
- Inst,PartNo». 



/* recognise2/check_match */ 
/* *************************************************************** */ 
/* **** Match Feature Sets **** */ 
/* *************************************************************** */ 

/* check_match(Object,PicNo,Partset,FeatureSet,Inst) checks to see */ 
/* if all the features in FeatureSet match the appropriate parts of*/ 
/* an instance of the Object, and sets the value of Inst to the */ 
/* instance number or, if there is no match, to o. */ 

check_match(Object,PicNo,[Partl,Part2],[Featurel,Feature2],Inst):-
matched feature(Object,PicNo,Featurel, ,Inst,Partl), 
matched-feature(Object,PicNo,Feature2,-,Inst,Part2), 
I. - -

check_match(Object,PicNo,[Part1IRestP],[FeaturelIRestF],Inst):­
matched_feature(Object,PicNo,Featurel,_,Inst,Partl), 
problembb3(feature_set,(Object,PicNo,_,Restp,_,RestF,Inst», 
1 • 

check_match(Object,PicNo,Parts,Features,O). 

/* update-probability(Object,Partset,Patternset,Inst) adds */ 
/* information about a feature set which has been checked for an */ 
/* object instance match to the appropriate entry in the */ 
/* set-probability table. */ 

update-probability(Object,Partset,Pattern5et,Inst):-
1 , 
( recognisebb3(set-probability,(Object,Partset, 

Pattern5et,Sets,Matches», 
retract (recognisebb3 (set-probability, (Object,Partset, 

Patternset,Sets,Matches»), 
1 : 
Sets is 0, Matches is 0 ) , 

NeWSets is Sets+l, 
( Inst>O, NewMatches is Matches+l, !: 

Ne~atches is Matches ) , 
assert (recognisebb3 (set-probability, (Object,partset, 

Pattern5et,NeWSets,NewMatches»). 
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1* recognlse2/1dentlfy *1 
1* *************************************************************** *1 
1* **** Identify a Feature set as an Object Instance **** *1 
1* *************************************************************** *1 

identify(Object,picNo,Parts,Features):­
problembb2(identified_features,(picNo,IdList», 
unite(IdList,Features,NewIdList), 
retract(problembb2(!dentified features,(PicNO,IdList»), 
asserta(problembb2(!dentified=features,(PicNo,NewIdList»), 
record_instance(Object,PicNo,parts,Features). 

record_instance(Object,picNo,Parts,Features):-
( instances(Object,PicNo,CUrrent), 

Next is CUrrent+ 1, 
retract(instances(Object,PicNo,CUrrent», 
1 ; 
Next is 1 ), 

assert(instances(Object,PicNo,Next», 
record~(Object,PicNo,Next,Parts,Features), 
new_entry([problembb4,object-part,(Object,PicNo»)). 

record~(Object,PicNo,Inst,[),[):- 1. 
record~(Object,PicNo,Inst,[PartNoIRestparts), 

[FeatureNoIRestFeatures):­
prOblembb2(feature,(picNo,FeatureNo,PatternNo,X,Y», 
assert (problembb4 (object-part, (Object,PicNo,Inst,PartNo, 

X,Y»), 
record~(Object,PicNo,Inst,Restparts,RestFeatures). 
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1* recognise2/write *1 
1* *************************************************************** *1 
1* **** write an Object Part set and candidate Feature set **** *1 
1* *************************************************************** *1 

write_set(Object,PicNo,Parts,Features):-
nl, write('Object: '),write(Object),nl, 
fwrite(Object,picNo,Parts,Features), 
1 • 

fwrite(Object,picNo,[],[]):- I. 
fwrite (Object, PicNO, [Partl!Restp],[F1IRestF]):­

recognisebbl(part_ ist,(Object,Parts», 
member «partl, Name) ,Parts), 
write(Name),write(','), 
problembb2(feature,(PicNo,Fl, ,X,Y», 
write('('),write(X),write(','),write(Y),write(')'),nl, 
fwrite(Object,PicNo,RestP,RestF). 



/W recogn~se~/remove_~ns~es W/ 
1* *************************************************************** *1 
1* **** Count and Remove Object Instances **** *1 
1* *************************************************************** *1 

remove instances(Object):-
- problembb4(object~rt,(Object,PicNo,_,_,_,_», 

remove_instances(Object,PicNo), 
I, 
remove instances(Object). 

remove_instances(Object). 

remove_instances(Object,PicNo):- . 
problembb4(object~rt,(Object,PicNo,Inst,_!_,_», 
retractall(problembb4(object~,(Object,p~cNo,Inst,_,_,_»), 
recognisebb4(occurrences,(Ob)ect,N», 
Nl is N+l, 
retract (recognisebb4 (occurrences, (Object,N»), 
assert (recognisebb4 (occurrences, (Object,Nl»), 
recognisebb4(occurrences,(total,M», 
Ml is MH, 
retract (recognisebb4 (occurrences, (total,M»), 
assert (recognisebb4 (occurrences, (total,Ml»), 
I, remove instances (Object, picNo) • 

remove_instances(Object,PicNO). 
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/* recognise2/editor_master */ 
/* ******************************************* •••••• * •••••••••••••• / 
/. * •• * Editor Master File **.* */ 
/* * •• *.**.*.*****.* •• *.*****.** •••• *.** ••• *** ••• ****.**** •• ****.* */ 

:-[editor_bidder). 
:-[edit). 
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/* recognise2/editor_bidder */ 
/* *************************************************************** */ 
/* **** Editor Bidder **** */ 
/* *************************************************************** */ 

wants(editor,problembbl,feature). 

make_bid (editor, [problembbl,feature,PicNo]):­
schedule (editor, (PicNO),lOO). 

execute (editor, (PicNo»:-
edit(PicNo). 
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/W recogn~Se2/ec11t *1 
1* *************************************************************** *1 
1* **** Edit Feature Data **** *1 
1* *************************************************************** *1 
1* edit(PieNo) removes from the list of features for pieNo all *1 
1* features whose ratings are below the appropriate threshold value*1 
1* and all duplicates (i.e. features whose distance from another, *1 
1* higher-rated, feature is less than the duplicates limit), then *1 
/* numbers the features remaining in each picture and moves them */ 
/* from problembbl to problembb2. *1 

edit(PieNo):-
write('Editing picture:') ,write (PieNo) , 
nl, 
remove_Iow_ratings(pieNo), 
remove_duplicates(PieNo), 
count features (PieNo) , 
assert(problembb2(identified_features,(PicNO,[)), 
new_entry([problembb2,feature,(PieNo»)). 

remove low ratings(PicNo):-
- problembbl(feature,(PieNo,PatternNo,X,Y,Rating», 

recognisebbl(rating threshold,(PatternNo,Threshold», 
Rating < Threshold,-
retract (problembbl (feature, (PieNo,PatternNo,X,Y,Rating»), 
fail. 

remove_Iow_ratings(picNO). 

remove_duplicates(PieNo):­
problembbl(feature,(PieNo,Patternl,Xl,Yl,Ratingl», 
problembbl(feature,(PieNo,Pattern2,X2,Y2,Rating2», 
near(Xl,X2), 
near(Yl,Y2), 
Ratingl > Rating2, 
retract (problembbl (feature, (PieNo,Pattern2,X2,Y2,Rating2»), 
fail. 

remove_duplicates(PieNo). 

count features (PieNo) :-
- problembbl(feature,(PieNo,PatternNo,X,Y,Rating», 

assign number(PieNo,PatternNo,X,Y), 
retract (problembbl (feature, (PieNo,PatternNo,X,Y,Rating»), 
fail. 

count features (PieNo) :-
- retract(feature_number(PieNo,_». 

assign number(PieNo,PatternNo,X,Y):-
- ( feature_number (PieNo,No) , 

FNo is NoH, 
retract(feature_number(PicNo,No», 
I ; 
FNo is 1 ), 

assert (problembb2 (feature, (PicNo,FNo,PatternNO,X,Y»), 
assert(feature number(PieNo,FNo». 
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/* recognise2/learner_master */ 
/* *************************************************************** */ 
/* **** Learner Master File **** */ 
/* *************************************************************** */ 
:-[learner_bidder). 
:-[learn). 
:-[pattern_match). 
:-[limits). 
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1* recognise2/1earner_bidder *1 
1* *************************************************************** *1 
1* u .. * Leamer Bidder **** *1 
1* *************************************************************** *1 

wants(learner,problembb4,object~rt). 

make_bid(leamer,[problembb4,object~rt,(Object,PicNo)]):­
recognisebbl(object_names,Names), 
member(Object,Names), 
I. 

make_bid(leamer,[problembb4,object~rt,(Object,PicNO)]):­
schedule(leamer,(Object),90). 

execute (leamer, (Object»:-
leam(Object) • 
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/W recognlse2/1earn *1 
1* *************************************************************** *1 
1* **** Learning Recognition Rules for an Object **** *1 
1* *************************************************************** *1 
learn(Object):-

assert (recoqnisebb4 (occurrences, (Object,O»), 
write ('Learninq: '), write(Object),nl, 
feature_match(Object), 
pattern match (Object) I 
set_ltmIts(Object), 
make_sets(Object), 
recognisebbl(object_names , (List» I 

retract(recognisebbl(object names, (List»), 
assert(recoqnisebbl(Object names I ([ObjectIList]»), 
remove_instances (Object) I -

I, 
new_entries([]) • 
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/* recognise2/pattern_match */ 
/* *************************************************************** */ 
/* **** Find matching pattern no./part no. pairs **** */ 
/* *************************************************************** */ 

/* pattern_match(Object) counts the no. of features of each pattern*/ 
/* which match each object part, and enters the pattern no. and */ 
/* part no. in match table if (no. of features)/(no. of matches)<5,*/ 
/* Le. if at least 20% of features of the pattern match the part. */ 

pattern_match(Object):- . 
matched feature(Object,PicNo,FeatureNo,PatNo,Inst,PartNo), 
increment (Obj ect, PatNo, PartNo) , 
fail. 

pattern_match(Object):­
find_good_matches(Object), 
fail. 

pattern_match(Object):­
(retractall(feature_count(_,_»:true). 

increment(Object,PatNo,PartNo):-
( feature_coun~(PatNo,Features), 

NewFeatures ~s Features+l, 
retract (feature_count (PatNo, Features) ), !: 
NewFeatures is 1 ) , 

assert(feature_count(PatNo,NewFeatures», 
( PartNo>O, 

1 • 

( match count(Object,PartNo,PatNo,M), 
NewM Is MH, 
retract(match_count(Object,PartNo,PatNo,M», 
1 : 
NewM is 1 ), 

assert(match_count(Object,PartNo,PatNo,NewM», I: 
true ), 

find_good_matches(Object):-
match_count (Object, PartNo, PatNo,M) , 
feature count(PatNo,Features), 
chec~robability(Object,PartNo,PatNo,M,Features), 
fail. 

find_good_matches(Object). 

check-probability(Object,PartNo,PatNo,M,Features):­
I, 
InvProb 
( 

is Features/M, 
InvProb<10, . 
assert (recognisebb2 (match, (Object,PartNo,PatNo»): 
true ), 

retract(match_count(Object,PartNo,PatNo,M». 
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/W recogn~se",/J..L1IU.= W/ 
1* *************************************************************** *1 
1* **** set Distance Limits **** *1 
1* *************************************************************** *1 

1* set limits(Object) finds the maximum and minimum x and y co-ord.*1 
1* differences between each pair of Object parts and records then *1 
1* in the distance_limits table on recognisebb2. *1 

set_limits(Object):-
recognisebbl(part list, (Object,Parts», 
member «PartNOl,_), Parts) , . 
member ( (PartNo2, -> , Parts) , 
PartNol > PartNo2, 
set~rt_limits(Object,PartNol,PartNo2). 

set_limits(Object). 

set~rt limits(Object,PartNol,PartNo2):­
problembb4(object~rt,(Object,PicNo,Inst,PartNOl,Xl,Yl», 
problembb4(object~rt,(Object,PicNo,Inst,PartNo2,X2,Y2», 
DiffX is XI-X2, 
Difty is YI-Y2, 
update_limits(Object,PartNol,PartNo2,DiffX,Difty), 
fail. 

update_limits(Object,PartNol,PartNo2,DiffX,DiffY):­
I, 
( recognisebb2(distance limits, (Object,PartNol,PartNo2, 

Minx,Maxx,MinY,MaxY) ) , 
( DiffX<Minx, NMinX is DiffX, NMaxx is Maxx, I; 

NMinx is Minx, 

( 

( DiffX>MaXX, NMaxx is DiffX, !; 
NMaxx is Maxx ) ) , 

DiffY<MinY, NMinY is Difty, NMaxY is MaxY, I; 
NMinY is MinY, 
( DiffY>MaxY, NMaxY is Difty; 

NMaxY is MaxY ) ) , 
retract (recognisebb2 (distance limits, (Obj ect, PartNol, 

partNo2,Minx,Maxx,MinY,MaxY»), 
I; 
NMinX is DiffX, NMaxx is DiffX, 
NMinY is Ditty, NMaxY is DitfY ) , 

assert(recognisebb2(distance limits, (Object, PartNol, PartNo2, 
NMiriX,NMaxx,NMinY,NMaxY»). 
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/W recogn~se~/recogn~ser_mas~r w/ 
/* *************************************************************** */ 
/* **** Recogniser Master File **** */ 
/* *************************************************************** */ 

:-[recogniser_bidder). 
:-[search). 
:-[add). 



1* recognise2/recogniser_bidder *1 
1* *************************************************************** *1 
1* **** Recogniser Bidder **** *1 
1* *************************************************************** *1 
wants(recogniser,problembb2,feature). 

make_bid (recogniser, [problembb2,feature, (PicNo)]):­
check_recognisers(PicNo). 

check recognisers(PicNo):-
- recognisebbl(object_names, (Names», 

member(Object,Names), 
check_recogniser(Object,PicNO), 
fail. 

check reoogniser(Object,picNo):- . 
- ( problembb4 (objectJlart, (Object,PicNo,_,_,_,_», I ~ 

recognisebb4(occurrences,(Object,N», 
recognisebb4(occurrences,(total,M», 
Rating is (40 + (20*N)/M), 
schedule (recogniser, (Object,PicNo),Rating) 

I . 

execute (reoogniser, (Object,PicNo»:­
search(Object,PicNo). 
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/* recognise2/search */ 
/* *************************************************************** */ 
/* **** Search a Picture **** */ 
/* *************************************************************** */ 

search(Object,PicNo):-
prOblembb2(identified features, (PicNo,IdentList», 
recognisebb2(match,(Object,Partl,Patternl», 
problembb2(feature,(PicNo,Fl,Patternl,_,_», 
nonmember (Fl, IdentList) , 
recognisebb2(match,(Object,Part2,Pattern2», 
Part2 :. Partl, 
prOblembb2(feature,(PicNo,F2,Pattern2,_,_», 
nonmember(F2,IdentList) , 
(Fl> F2: F2 > Fl), 
write('Searching picture: '),write(PicNo),write(' for: '), 

write (Object) , nI, . 
initialise(Object,piCNo), 
search_sets(Object,PicNO), 
1. 

search(Object,PiCNo). 

initialise(Object,PicNo):-
( problembb3(probability list, (PicNo,List»,!: 

assert(problembb3(probability_list,(PicNO,[)) ), 
assert(current_num(Object,PiCNo,O». 

search_sets(Object,PicNo):-
find set(Object,PicNo,Parts,Patterns,Features), 
add_to_list(Object,picNo,parts,patterns,Features), 
fail. 

search sets(Object,PicNo):-
- new_entry([problembb3,probability_list,(Object,PiCNo»)). 

248 



/W recogn~se~/aaa w/ 
/* *************************************************************** */ 
/* **** Add a new feature set to probability list **** */ 
/* *************************************************************** */ 

/* add_to_list assigns a number to a newly-formed feature set, */ 
/* finds the probability that it represents an object instance, */ 
/* then if this probability exceeds the referral threshold, */ 
/* removes any subsets of this feature set from the probability */ 
/* list and inserts the object/mnnber/probability into the list. */ 

add'to list(Object,PicNo,Parts,Patterns,Features):-
- - ( recognisebb3(set-probability,(Object,Parts,Patterns, 

Sets,Matches», 
Prob is (lOO*Matches)/Sets: 
Prob is 0 ), 

current_num(Object,PicNo,current), 
Next is CUrrent+l, 
retract(current_num(Object,PicNo,CUrrent», 
assert(current num(Object,PicNo,Next», 
assert (problembb3 (feature_set, (Object, PicNo, Next, Parts, 

Patterns,Features,nil»), 
( referral_threshold(Refer), 

I. 

Prob >= Refer, 
problembb3(probability list, (PicNo,List», 
remove_subsets(Object,picNo,parts,Features,List,List2), 
insert ( (Object,Next,Prob) ,List2,List3), 
retract (problembb3 (probability_list, (PicNo,List»), 
assert (problembb3 (probability_list, (PicNo,List3»), 
I : 
true ), 

remove subsets( , , [Pl,P2], ,List,List). 
remove-subsets(ObJect,PicNo7Parts,F,[(Object,No,Prob)IRestl],Rest2):­

- sub_feature_set(Object,picNo,Parts,F,No), 
remove_subsets(Object,PicNo,Parts,F,Restl,Rest2). 

remove_subsets(Objectl,PicNO,Parts,F,[(Object2,No,Prob)IRestl], 
[(Object2,No,Prob) IRest2]):­

remove_subsets(Objectl,PicNo,Parts,F,Restl,Rest2). 
remove_subsets(Object,PicNo,Parts,F,[],[]). 

sub_feature_set(Object,picNo,Partsl,Fl,No):-
problembb3(feature set, (Object,PicNo,No,Parts2, ,F2, », 
matching_subsets(Parts2,Partsl,F2,Fl). --

matching_subsets([],P,[],F). 
matching_subsets([PIIRestpl],[PlIRestp2],[FlIRestFl],[F1 IRestF2]):­

matching subsets(Restpl,RestP2,RestFl,RestF2). 
matching_subsets(Partsl,[PlIRestP2],Featuresl,[F1 IRestF2]):­

matching_subsets(Partsl,RestP2,Featuresl,RestF2). 
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/* recognise2/acceptor_master */ 
/* *************************************************************** */ 
/* **** Acceptor Master File **** */ 
/* *************************************************************** */ 

:-[acceptor_bidder). 
:-[accept). 
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1* recognise2/acceptor_bidder *1 
1* *************************************************************** *1 
1* **** Acceptor Bidder **** *1 
1* *************************************************************** *1 

wants(acceptor,problembb3,probability list). 

make_bid (acceptor, [problembb3,probability_list, (Object,picNo»)) :­
acceptance threshold(Accept), 
problembb3(probability_list,(PicNo,[(_,_,Prob) 1_)), 
Prob >= Accept, 
schedule (acceptor, (PicNo),70). 

execute (acceptor, (PicNo»:­
accept(PicNo). 
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/* recognise2/accept */ 
/* *************************************************************** */ 
/* **** Accept feature sets with probabilities above threshold ** */ 
/* *************************************************************** */ 

accept(PicNo):­
problembb3(probability_list,(PicNo,List», 
accept_list(PicNo,List). 

accept_list (PicNo, [(Object,No,Prob) IRest]):­
acceptance_threshold(Accept), 
Prob >= Accept, 
check_set(Object,PicNo,No), 
accept_list(PicNo,Rest). 

accept_list(_,_). 

check set(Object,PicNo,No):-
- problembb3(feature set, (Object, PicNo, No, Parts,_, Features, », 

problembb2(identifIed_features,(PicNo,IdentList», -
member(X,Features), 
member(X,IdentList), 
I . 

check_set(Object,PicNo,No):­
problembb3(feature_set,(Object,picNo,No,Parts,_,Features,_», 
background_check(Object,PicNo,Parts,Features), 
write set(Object,picNo,Parts,Features), 
write('Accepted.'),nl,nl, 
identify(Object,PicNo,Parts,Features), 
I . 

check set( , , ). - - --
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1* recognise2/selector_master *1 
1* *************************************************************** *1 
1* **** Selector Master File **** */ 
/* *************************************************************** */ 

:-[selector_bidder). 
:-[select). 
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/* recognise2/selector_bidder *1 
/* *************************************************************** */ 
/* **** Selector Bidder **** */ 
/* *************************************************************** */ 
wants(selector,problembb3,probability_list). 

make_bid(selector,[problembb3,probability_list,(Object,PieNo)]):­
schedule (selector, (PicNo),30). 

execute(selector, (PieNo) ):-
select(PicNo). 
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/* recognise2/select */ 
/* *************************************************************** */ 
/* **** Select sets to be Accepted as Object Instances **** */ 
/* *************************************************************** */ 
/* select(PicNo) lists, in descending order of probability, sets */ 
/* of previously unrecognised features in the specified picture */ 
/* which could represent known objects. The user is asked to */ 
/* a=ept or reject each set: accepted sets are recorded as known */ 
/* instances of the appropriate object. */ 

select(PicNo):-
problembb3(probability_list,(PicNo,List», 
report list(PicNo,~st), 
retract (prOblembb3 (probability_list, (PicNo,List»), 
nl, 
removed_entry([problembb3,probability_list,(PicNO)]). 

report_list(PicNo,[(Object,No,Prob)IRest]):­
report_set(Object,picNo,No,Prob), 
report_list(PicNo,Rest). 

report_list(_,_). 

report set(Object,picNo,No,Prob):-
- problembb3(feature set, (Object,PicNo,No,Parts, ,Features, », 

problembb2(identlfIed_features,(PicNo,IdentList», -
member(X,Features), 
member(X,IdentList), 
1 • 

report_set(Object,PicNo,No,Prob):-
prOblembb3(feature set, (Object,PicNo,No,Parts, ,Features, », 
( background-check(Object,PicNo,Parts,Features),-

write_set(Object,picNo,parts,Features), 
write('Probability: '),write(Prob),write('%'),nl, 
1 , 
ask_user(Object,picNo,Parts,Features): 
true ). 

ask_user(Object,PicNo,Parts,Features):­
write('A=ept (a) or reject (r)?'), 
read_char(Reply,[a,r]), 
( Reply = a, 

identifY(Object,picNo,Parts,Features), 
1 : 
true ). 
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/* recognise2/feedback_master */ 
/* *************************************************************** */ 
/* **** Feedback Master File **** */ 
/* *************************************************************** */ 
:-[feedback_bidder). 
:-[feedback). 
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/- recogn~se2/ree<1DaCk_b1dder */ 
/* *************************************************************** *1 
1* **** Feedback Bidder **** *1 
1* *************************************************************** *1 
wants_removed(feedback,problembb3,probability_list). 

make_bid(feedback,[problembb3,probability_list,(PicNo»)):­
check_Objects(PicNo). 

check objects (PicNo) :-
- recognisebbl(object_names,(Names», 

member(Object,Names), 
SQught(Object,picNo), 
schedule (feedback, (Object,PicNo),80), 
fail. 

check_objects(PicNO). 

sought(Object,PicNo):- . 
problembb3(feature_set,(Object,PicNO,_,_,_,_,_», 
1 • 

execute (feedback, (Object,PicNo»:­
feedback(Object,PicNo). 
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/* recognise2/feedback */ 
/* *************************************************************** */ 
/* Update probabilities using feedback from the recognition process*/ 
/* *************************************************************** */ 

feedback(Object,PicNo):-
write('Feedback: '),write(Object), 

write(', picture '),write(PicNo), 
ru, 
feature_match(Object,PicNO), 
match_sets(Object,PicNo), 
remove_instances(Object,picNO). 

match sets(Object,picNo):-
- problembb3(feature_set,(Object,PicNo,SetNo,Parts,Patterns, 

Features,nil», 
check_match(Object,PicNo,Parts,Features,Inst), 
update-probability(Object,Parts,Patterns,Inst), 
retract (problembb3 (feature_set, (Object, picNo, SetNo, Parts, 

Patterns,Features,nil»), 
assert (problembb3 (feature_set, (Object, PicNo, SetNo, Parts, 

Patterns,Features,Inst»), 
fail. 

match_sets(Object,picNo). 
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1* recognise2/ r emover_master *1 
1* *************************************************************** *1 
1* **** Remover Master File **** *1 
1* *************************************************************** *1 

:-(remover_bidder]. 
:-(remove]. 
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/* recognise2/remove */ 
/* *************************************************************** *1 
/* **** Remove Data **** *1 
/* *************************************************************** *1 

remove(PicNo):-
write('Removing: ') ,write (PicNo) ,nI, 
retractall(problembb2(feature,(PicNo, , , , »), 
retract(problembb2(identified featureS,(PIcNo,List»), 
retractall(problembb3(feature:set, (_,PicNo,_,_,_,_,_») , 
I. 
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APPENDIX B 

Edited Listings of Test Runs 

RECOGNISE1 test with quads data 

RECOGNISE1 tests images of cars 

Background checks on shapes 

RECOGNISE2 tests with shapes data 

RECOGNISE2 test with traffic data 
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/* *************************************************************** */ 
/* RECOGNISE1 LISTING */ 
/* Training set: quad pictures 1,2,3,4. Test: quad picture 5. */ 
/* *************************************************************** */ 

1 % cprolog 
C Prolog version 1.5a.ikbs 
% Restoring file /usr/lib/prolog/saved states.d/prologl.5a 
I 7-[master,quadtest]. -

yes 
I 7-learn(quad). 

match(PartNo,PatternNo),Part name: 
match(1,1) left circle 
match( 3,1) right circle 
match(2,2) square 
match(4,3) triangle 

distance limits(Part1,Part2,MinX,MaxX,MinY,MaxY): 
distance-limits(2,1,40,60,0,20) 
distance-limits(3,1,20,60,-30,-10) 
distance-limits(3,2,-20,0,-40,-10) 
distance-limits(4,1,0,30,-80,-40) 
distance-limits(4,2,-60,-10,-80,-50) 
distance limits(4,3,-60,-10,-70,-20) 

set probability(partSet,patternSet,FeatureSets,Matches): 
set-probability([2,1],[2,1],8,5) 
set-probabil i ty ( [ 3 , 1] , [ 1,1] ,7,5) 
set-probability([4,1],[3,1],14,5) 
set probability([3,2],[1,2],13,5) 
se t - P robabil it y ( [ 4 , 2 ] , [ 3 ,2] ,11 , 5 ) 
set-probabili ty( [4,3], [3,1],10,5) 
set-probability([3,2,1],[1,2,1],6,5) 
set-probability([4,2,1],[3,2,1],5,5) 
set-probability([4,3,1],[3,1,1],6,5) 
set-probability([4,3,2],[3,1,2],8,5) 
set=probability( [4,3,2,1], [3,1,2,1] ,5,5) 

yes 
I 7-[quad5]. 

quad5 consulted 576 bytes 0.31668 sec. 

yes 
17-edit(5). 

yes 
I 7-search(quad,5,10). 

Object: quad 
PartSet, FeatureSet, probability: 
[4,3,2,1],(3,40,30)(1,80,50)(2,90,80)(1,40,70),100% 
Accept (a) or reject (r)? 
a. 
Object: quad 
PartSet, FeatureSet, probability: 
[4,3],(3,30,90)(1,60,110),50% 
Accept (a) or reject (r)? 
r. 
Object: quad 
PartSet, FeatureSet, Probability: 
[4,2],(3,10,20)(2,60,90),45.455% 
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Accept (a) or reject (r)? 
r. 
Object: quad 
PartSet, FeatureSet, probability: 
[4,1],(3,60,70)(1,60,110),35.714% 
Accept (a) or reject (r)? 
r. 

yes 
I ?-feedback(quad,5). 

set probability(partSet,patternSet,FeatureSets,Matches): 
se t - P robab i li ty ( [ 2 , 1] , [ 2,1 ] ,9,6 ) 
set-probability([3,1],[1,1],8,6) 
set-probability([4,1],[3,1],17,6) 
set-probability([3,2],[1,2],15,6) 
set-probability([4,2],[3,2],14,6) 
set-probability([4,3],[3,1],13,6) 
set-probability([3,2,1],[1,2,1],7,6) 
set-probability([4,2,1],[3,2,1],6,6) 
set-probability([4,3,1],[3,1,1],7,6) 
set-probability([4,3,2],[3,1,2],lO,6) 
set=probability([4,3,2,1],[3,1,2,1],6,6) 

yes 
I 7-
%prolog execution halted 
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/* *************************************************************** */ 
/* RECOGNISE1 LISTING */ 
/* Training set: car images 2,3,4,5,6. Test: car image 1. */ 
/* *************************************************************** */ 

/* Shows the effect of using feedback with incomplete part set. */ 
/* Some of the entries in the set probability table are made more */ 
/* accurate, others less so. - */ 

1 % cprolog 
C Prolog version 1.Sa.ikbs 
% Restoring file /usr/lib/prolog/saved states.d/prologl.5a 

?-[master,ctest1]. -

cargen consulted 372 bytes 0.18334 sec. 
cf2 consulted 432 bytes 0.25 sec. 
cp2 consulted 260 bytes 0.15 sec. 
cf3 consulted 288 bytes 0.18333 sec. 
cp3 consulted 260 bytes 0.16667 sec. 
cf4 consulted 384 bytes 0.23334 sec. 
cp4 consulted 260 bytes 0.15 sec. 
cf5 consulted 384 bytes 0.21667 sec. 
cp5 consulted 260 bytes 0.15 sec. 
cf6 consulted 384 bytes 0.21667 sec. 
cp6 consulted 260 bytes 0.15 sec. 
ctest1 consulted 3700 bytes 2.5 sec. 

yes 
I ?-edit. 

yes 
I ?-learn(car). 

match(partNo,patternNo) ,Part name: 
match(5,6) 
match(l,l) 
match(2,1) 
match(1,3) 
match(2,3) 
match(5,5) 
match(1,2) 
match(2,2) 
match(3,4) 
match(4,4) 

top 
rear wheel 
front wheel 
rear wheel 
front wheel 
top 
rear wheel 
front wheel 
rear arch 
front arch 

distance limits(Part1,part2,Minx,MaxX,MinY,MaxY): 
distance-limits(2,1,123,144,-3,6) 
distance-limits(3,1,-1,2,-18,-8) 
distance-limits(3,2,-145,-121,-24,-9) 
distance-limits(4,1,125,143,-16,-8) 
distance-limits(4,2,-1,2,-17,-9) 
distance-limits(4,3,123,144,-2,7) 
distance-limits(5,1,85,97,-51,-43) 
distance-limits(5,2,-50,-36,-51,-42) 
distance-limits(5,3,83,95,-36,-27) 
distance=limits(5,4,-49,-35,-36,-29) 

set probability(partSet,PatternSet,FeatureSets,Matches): 
set-probability([2,1],[l,1],2,1) 
set-probability([2,1],[l,3],1,0) 
set-probability([2,1],[3,3],1,1) 
set-probability([2,1],[2,3],1,0) 
set=probability([2,1],[2,2],3,3) 
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set probability([3,1],[4,3],1,O) 
set-probability([3,1],[4,1],2,1) 
set-probability([3,1],[4,2],6,3) 
set-probability([4,1],[4,3],1,O) 
set-probability([4,1],[4,1],1,1) 
set-probabi1ity([4,1],[4,2],3,3) 
set-probability([5,1],[6,3],1,O) 
set-probability([5,1],[6,2],1,1) 
set-probability([5,1],[5,1],4,1) 
set-probability( [5,1], [5,3] ,2,1) 
set-probability([5,1],[5,2],2,1) 
set-probabil ity ( [ 3,2] , [ 4 , 1] ,1,1 ) 
set-probability( [3,2], [4,2] ,3,3) 
set-probabi1ity([4,2],[4,3],1,O) 
set-probabi1ity([4,2],[4,1],2,1) 
set-probability( [4,2], [4,2] ,5,3) 
set-probability( [5,2], [6,2] ,1,1) 
se t - P robabi li ty ( [ 5, 2] , [ 5, 1] , 3 , 1 ) 
set - probabil ity ( [ 5 , 2] , [ 5, 3 ] ,2,1 ) 
set-probability( [5,2], [5,2] ,1,1) 
set-probability([4,3],[4,4],4,4) 
set-probabili ty( [5,3], [6,4],1,1) 
set - probabi li ty( [5,3] , [5,4] ,3,2) 
se t - probabil ity ( [ 5, 4] , [ 6 , 4 ] ,1,1 ) 
set-probability([5,4],[5,4],2,2) 
set-probability( [3,2,1], [4,1,1],1,1) 
set-probability([4,2,1],[4,1,1],1,1) 
set-probability([S,2,1],[S,1,1],3,1) 
set-probability([S,2,1],[S,1,3],1,O) 
set-probability([S,2,1],[S,3,3],1,1) 
set-probability([3,2,1],[4,2,3],1,O) 
set-probability([4,2,1],[4,2,3],1,O) 
set-probability([S,2,1],[6,2,3],1,O) 
set-probability([S,2,1],[6,2,2],1,1) 
set-probability([S,2,1],[S,2,2],1,1) 
set-probability([3,2,1],[4,2,2],3,3) 
set-probability([4,2,1],[4,2,2],3,3) 
set-probability([4,3,1],[4,4,3],1,O) 
set-probability([S,3,1],[6,4,3],1,O) 
set-probability([S,3,1],[6,4,2],1,1) 
set-probability([4,3,1],[4,4,lJ,1,1) 
set-probability([S,3,1],[S,4,1],1,1) 
set-probability([S,3,lJ,[5,4,2],2,1) 
set-probabili ty( [4,3,1], [4,4,2],3,3) 
set-probability([S,4,1],[6,4,3J,1,O) 
set-probability([5,4,1],[6,4,2J,1,1) 
se t - probabil i ty ( [ 5 , 4 , 1 J , [ 5, 4 , 1] ,1 , 1 ) 
set-probability([S,4,1],[5,4,2],1,1) 
set-probability([5,3,2],[6,4,2J,1,1) 
Set_probability([4,3,2],[4,4,1J,1,1) 
set-probability([S,3,2J,[S,4,lJ,1,1) 
set-probability( [5,3,2J, [5,4,2] ,1,1) 
set-probability([4,3,2],[4,4,2],3,3) 
set-probability([5,4,2J,[6,4,2J,1,1) 
Set_probability( [5,4,2J, [5,4,lJ ,1,1) 
set-probability( [5,4,2], [5,4,2] ,1,1) 
set-probability([5,4,3],[6,4,4J,1,1) 
se t - probabi li ty ( [ 5, 4 , 3 ] , [ 5, 4 , 4 ] ,2 ,2) 
set-probabi1ity([4,3,2,1],[4,4,1,1),1,1) 
set-probability([S,3,2,1],[5,4,1,l),1,1) 
set-probability([5,4,2,1],[5,4,1,l),1,1) 
set-probability([4,3,2,1],[4,4,2,3),1,O) 
set-probability([5,3,2,1],[6,4,2,3],1,O) 
set-probability([S,4,2,1],[6,4,2,3],1,O) 
set-probability([S,3,2,1],[6,4,2,2),1,1) 
set=probability([5,4,2,1],[6,4,2,2],1,1) 
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set probability([5,3,2,1],[5,4,2,2],1,1) 
set - probabil i ty ( [ 5, 4 , 2 , 1] , [ 5,4 , 2 , 2] ,1,1 ) 
set-probability([4,3,2,1],[4,4,2,2],3,3) 
set-probability([5,4,3,1],[6,4,4,3],1,0) 
set-probability([5,4,3,1],[6,4,4,2],1,1) 
set - probabi li ty ( [ 5, 4 , 3, 1] , [ 5, 4 , 4 ,1] ,1,1 ) 
set-probability([5,4,3,1],[5,4,4,2],1,1) 
set-probability( [5,4,3,2], [6,4,4,2] ,1,1) 
se t - probabi li ty ( [ 5, 4 , 3 , 2 ] , [ 5, 4 , 4 , 1] ,1 , 1 ) 
set-probabili ty( [5,4,3,2], [5,4,4,2] ,1,1) 
set-probability([5,4,3,2,1],[5,4,4,1,1],1,1) 
set-probability([5,4,3,2,1],[6,4,4,2,3],1,0) 
set-probability([5,4,3,2,1],[6,4,4,2,2],1,1) 
set=probability([5,4,3,2,1],[5,4,4,2,2],1,1) 

yes 
I ?- [ cfl] . 

cf1 consulted 384 bytes 0.21668 sec. 

yes 
I ?-edit (1) • 

yes 
I ?-search(car,I,O). 

Object: car 
PartSet, FeatureSet, probability: 
[4,2],(4,69,140)(2,69,154),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[3,1],(4,69,140)(2,69,154),50% 
Accept (a) or reject (r)? 
a. 

yes 
I ?-feedback(car,l). 

set probability(partSet,patternSet,FeatureSets,Matches): 
set-probability( [2,1], [1,1] ,2,1) 
set-probability( [2,1], [1,3] ,1,0) 
set-probability([2,1],[3,3],I,I) 
se t-p robabil it y ( [ 2 , I] , [ 2 , 3 ] , 1 , ° ) 
set-probability( [2,1], [2,2] ,3,3) 
set-probability( [3,1], [4,3] ,1,0) 
set-probability( [3,1], [4,1] ,2,1) 
set-probability( [4,1], [4,3],1,0) 
set-probability([4,1],[4,1],I,I) 
set-probabili ty( [4,1], [4,2] ,3,3) 
set-probabili ty( [5,1], [6,3] ,1,0) 
set-probability([5,1],[6,2],1,1) 
set-probability([5,1],[5,1],4,1) 
se t - P robabi li ty ( I 5,1] , [ 5,3 ] ,2,1 ) 
set-probability( [5,1] ,[5,2] ,2,1) 
set-probability([3,2],[4,1],I,I) 
set-probability([3,2],[4,2],3,3) 
set-probability([4,2],[4,3],I,O) 
set-probability([4,2],[4,1],2,1) 
set-probability([5,2],[6,2],I,I) 
set-probability([5,2],[5,1],3,1) 
set-probability([5,2],[5,3],2,1) 
set-probability([5,2],[5,2],I,I) 
set-probability([4,3],[4,4],4,4) 
set=probability([5,3],[6,4],I,I) 
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set_probability([5,3],[5,4],3,2) 
set probability([5,4],[6,4],l,l) 
set=probability([5,4],[5,4],2,2) 
set probability([3,2,l],[4,l,l],l,l) 
set-probability([4,2,l],[4,l,l],l,l) 
set-probability([5,2,l],[5,l,l],3,l) 
set-probability([5,2,l],[5,l,3],l,O) 
set-probability([5,2,l],[5,3,3],l,l) 
set-probability([3,2,l],[4,2,3],l,O) 
set-probability([4,2,l],[4,2,3] ,1,0) 
set-probability([5,2,l],[6,2,3],l,O) 
set-probability([5,2,l],[6,2,2],l,l) 
set-probability([5,2,l],[5,2,2],l,l) 
set-probability([3,2,l],[4,2,2],3,3) 
set-probability([4,2,l],[4,2,2],3,3) 
set-probability([4,3,l],[4,4,3],l,O) 
set-probability([5,3,l],[6,4,3],l,O) 
set-probability([5,3,l],[6,4,2],l,l) 
set-probability([4,3,l],[4,4,l],l,l) 
set-probability([5,3,l],[5,4,l],l,l) 
set-probability([5,3,l],[5,4,2],2,l) 
set-probability([4,3,l],[4,4,2],3,3) 
set-probability([5,4,l],[6,4,3],l,O) 
set-probability([5,4,l],[6,4,2],l,l) 
set-probability([5,4,l],[5,4,l],1,1) 
set-probability([5,4,1],[5,4,2],1,1) 
set-probability([5,3,Z],[6,4,Z],1,1) 
set-probability([4,3,Z],[4,4,1],1,1) 
set-probability([5,3,2],[5,4,1],1,1) 
set-probability([5,3,Z],[5,4,Z],1,1) 
set-probability([4,3,Z],[4,4,2],3,3) 
set-probability([5,4,Z],[6,4,2],1,1) 
set-probability([5,4,2],[5,4,1],1,1) 
set-probability([5,4,Z],[5,4,2],1,1) 
set-probability([5,4,3],[6,4,4],1,1) 
set-probability([5,4,3],[5,4,4],Z,2) 
set-probability([4,3,2,1],[4,4,1,1],1,1) 
set-probability([5,3,Z,1],[5,4,1,1],1,1) 
set-probability([5,4,Z,1],[5,4,1,1],1,1) 
set-probability([4,3,Z,1],[4,4,Z,3],1,0) 
set-probability([5,3,Z,1] ,[6,4,2,3],1,0) 
set-probability([5,4,Z,1],[6,4,Z,3],1,0) 
set-probability([5,3,Z,1],[6,4,Z,Z],1,1) 
set-probability([5,4,2,1],[6,4,2,2],1,1) 
set-probability([5,3,Z,l],[5,4,Z,2],l,l) 
set-probability([5,4,Z,l],[5,4,2,2],l,1) 
set-probability([4,3,Z,1],[4,4,2,Z],3,3) 
set-probability([5,4,3,l],[6,4,4,3],l,O) 
set-probability([5,4,3,1],[6,4,4,Z],l,1) 
set-probability([5,4,3,l],[5,4,4,l],l,l) 
set-probability([5,4,3,l],[5,4,4,2],l,l) 
set-probability([5,4,3,2],[6,4,4,2],l,l) 
set-probability([5,4,3,Z],[5,4,4,1],l,1) 
set-probability([5,4,3,2],[5,4,4,Z],l,1) 
set-probability([5,4,3,2,l],[5,4,4,l,l],1,1) 
set-probability([5,4,3,Z,1] ,[6,4,4,2,3],1,0) 
set-probability([5,4,3,Z,l],[6,4,4,2,2],1,1) 
set-probability([5,4,3,2,l],[5,4,4,2,2],l,l) 
set-probability([3,l],[4,Z],7,4) 
set=probability([4,2],[4,2],6,3) 

yes 
I 7-
% prolog execution halted 
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/* *************************************************************** */ 
/* RECOGNISE1 LISTING */ 
/* Training set: car images 1,3,4,5,6. Test: car image 2. */ 
/* *************************************************************** */ 

/* Shows successful recognition with just five training examples */ 

?-learn(car). 

match(PartNo,PatternNo),Part name: 
match(5,6) 
match(l,l) 
match(2,l) 
match(1,3) 
match(2,3) 
match(5,5) 
match(l,2) 
match(2,2) 
match(3,4) 
match(4,4) 

top 
rear wheel 
front wheel 
rear wheel 
front wheel 
top 
rear wheel 
front wheel 
rear arch 
front arch 

distance limits(partl,part2,MinX,MaxX,MinY,MaxY): 
distance-limits(2,1,123,l48,-8,6) 
distance-limits(3,1,-1,2,-18,-8) 
distance-limits(3,2,-148,-l21,-24,-6) 
distance-limits(4,l,125,151,-24,-8) 
distance-limits(4,2,-1,3,-17,-9) 
distance-limits(4,3,l23,15l,-lO,7) 
distance limits(5,1,85,97,-57,-43) 
distance-limits(5,2,-54,-36,-51,-42) 
distance-limits(5,3,83,95,-43,-27) 
distance=limits(5,4,-57,-35,-36,-29) 

set probability(partSet,patternSet,FeatureSets, Matches): 
set-probability([2,l],[l,1],2,1) 
set-probability([2,1],[l,3],1,O) 
set-probability([2,1],[3,l],1,O) 
set-probability([2,l],[3,3],1,1) 
set-probability([2,l],[2,2],3,3) 
set-probability([3,1],[4,l],2,1) 
set-probability([3,l],[4,2],5,3) 
set-probability([4,l],[4,1],l,l) 
set-probability([4,1],[4,2],3,3) 
set-probability([5,1],[6,2],l,l) 
set-probability([5,l],[5,1],4,1) 
set-probability([5,1],[5,3],2,1) 
set-probability([5,1],[5,2],2,1) 
set-probability([3,2],[4,1],1,1) 
set-probability([3,2],[4,2],3,3) 
set-probability([4,2],[4,l],2,l) 
set-probability([4,2],[4,2],5,3) 
set-probability([5,2],[6,2],1,1) 
set-probability([5,2],[5,1],3,1) 
set-probability([5,2],[5,3],2,1) 
set-probability([5,2],[5,2],l,1) 
set-probability([4,3],[4,4],4,4) 
set-probability([5,3],[6,4],1,1) 
set-probability([5,3],[5,4],3,2) 
set=probability([5,4],[6,4],1,1) 
set_probability([5,4],[5,4],2,2) 
set probability([3,2,1],[4,1,l],1,1) 
set-probability([4,2,1],[4,l,1],l,l) 
set-probability([5,2,1],[5,l,1],3,l) 
set=probability([5,2,1],[5,l,3],l,O) 
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set_probability([5,2,1],[5,3,1],2,0) 
set_probability([5,2,1],[5,3,3],1,1) 
set_probability([5,2,1],[6,2,2],1,1) 
set probability([5,2,1],[5,2,2],1,1) 
set-probability([3,2,1],[4,2,2],3,3) 
set-probability([4,2,1],[4,2,2],3,3) 
set-probability([5,3,1],[6,4,2],1,1) 
set-probability( [4,3,1], [4,4,1],1,1) 
set-probability([5,3,1],[5,4,1],1,1) 
set-probability( [5,3,1], [5,4,2] ,2,1) 
set-probabi1ity([4,3,1],[4,4,2],3,3) 
set-probability([5,4,1],[6,4,2],1,1) 
set-probability( [5,4,1], [5,4,1],1,1) 
set-probability([5,4,1],[5,4,2],1,1) 
set-probability([5,3,2],[6,4,2],1,1) 
set-probability([4,3,2],[4,4,1],1,1) 
set-probability([5,3,2],[5,4,1],1,1) 
set-probability([5,3,2],[5,4,2],1,1) 
set-probability([4,3,2],[4,4,2],3,3) 
set-probability([5,4,2],[6,4,2],1,1) 
set-probability( [5,4,2], [5,4,1],1,1) 
set-probability([5,4,2],[5,4,2],1,1) 
set-probability([5,4,3],[6,4,4],1,1) 
set-probability( [5,4,3], [5,4,4] ,2,2) 
set - probabili ty( [4,3,2, I] , [4,4,1,1] ,1,1) 
set-probability( [5,3,2,1], [5,4,1,1] ,1,1) 
set-probability([5,4,2,1],[5,4,1,1],1,1) 
set-probability([5,3,2,1],[6,4,2,2],1,1) 
set-probability([5,4,2,1],[6,4,2,2],1,1) 
set-probability([5,3,2,1],[5,4,2,2],1,1) 
set-probability([5,4,2,1],[5,4,2,2],1,1) 
set-probabili ty( [4,3,2,1], [4,4,2,2] ,3(3) 
set-probability([5,4,3,1],[6,4,4,2],1,1) 
set-probability([5,4,3,1],[5,4,4,1],1,1) 
set-probability([5,4,3,1],[5,4,4,2],1,1) 
set-probability([5,4,3,2],[6,4,4,2],1,1) 
set-probability([5,4,3,2],[5,4,4,1],1,1) 
set-probability([5,4,3,2],[5,4,4,2],1,1) 
se t - P robabi li ty ( [ 5, 4 , 3 , 2 , 1] , [ 5, 4 , 4 , 1 , 1] , 1 , 1 ) 
set-probability([5,4,3,2,1],[6,4,4,2,2],1,1) 
set=probability([5,4,3,2,1],[5,4,4,2,2],1,1) 

yes 

I ?-search(car,2,0). 

Object: car 
PartSet, FeatureSet, probability: 
[5,4,3,2,1],(6,155,119)(4,197,154)(4,60,153)(2,197,168)(2,60,170),100% 
Accept (a) or reject (r)? 
a. 

yes 
I ?-feedback(car,2). 

set probability(partSet,patternSet,FeatureSets, Matches): 
set-probability( [2,1], [1,1] ,2(1) 
set-probabili ty( [2,1], [1,3] ,1,0) 
se t - probabil i ty ( [ 2,1] , [ 3 , 1] ,1,0 ) 
set-probability( [2,1], [3,3] ,1(1) 
set-probability( [3,1], [4,1] ,2,1) 
set-probability([4,1],[4,1],1,1) 
set - probabil i ty( [5,1] , [5,1] ,4(1) 
set-probability([5,1],[5,3],2,1) 
set=probability([5,1],[5,2],2,1) 
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set_probability([3,2],[4,l],l,1) 
set_probability([4,2],[4,1],2,1) 
set probability( [5,2], [5,1] ,3,1) 
set=probability([5,2],[5,3],2,1) 
set probability( [5,2] ,[5,2] ,1,1) 
set-probability ( [ 5,3] , [ 5,4] ,3,2 ) 
set-probability([5,4],[5,4],2,2) 
set-probability( [3,2,1], [4,1,1] ,1,1) 
set-probability( [4,2,1], [4,1,1] ,1,1) 
set - probabili ty( [5,2,1] , [5,1,1] ,3,1) 
set-probability( [5,2,1], [5,1,3] ,1,0) 
set-probability( [5,2,lj, [5,3,1] ,2,0) 
set-probability( [5,2,1], [5,3,3],1,1) 
se t - P robabi li ty ( [ 5 , 2 , 1] , [ 5,2 , 2] ,1, 1 ) 
set-probability( [4,3,1], [4,4,1],1,1) 
set-probability( [5,3,1], [5,4,1] ,1,1) 
set-probability( [5,3,1] ,[5,4,2] ,2,1) 
set-probability([5,4,1],[5,4,1],1,1) 
set-probability( [5,4,1], [5,4,2],1,1) 
set-probability([4,3,2],[4,4,1],1,1) 
se t - probabil i ty ( [ 5, 3 , 2 ] , [ 5,4 , 1] ,1 , 1 ) 
se t - probabi 1 ity ( [ 5, 3 , 2] , [ 5,4,2 ] ,1 , 1 ) 
set-probability([5,4,2],[5,4,1],1,1) 
set-probability([5,4,2],[5,4,2],1,1) 
set-probability([5,4,3],[5,4,4],2,2) 
set-probability([4,3,2,1],[4,4,1,1],1,1) 
se t - P robabil ity ( [ 5, 3,2, 1] , [ 5 , 4 ,1, 1] , 1 , 1 ) 
set-probability([5,4,2,1],[5,4,1,1] ,1,1) 
set-probability([5,3,2,1],[5,4,2,2],1,1) 
set-probability([5,4,2,1],[5,4,2,2] ,1,1) 
set-probability([5,4,3,1],[5,4,4,1],1,1) 
set - probabil ity ( [ 5, 4 , 3 , 1] , [ 5, 4 ,4 , 2] , 1 , 1 ) 
set-probability([5,4,3,2],[5,4,4,1],1,1) 
set-probability([5,4,3,2],[5,4,4,2],1,1) 
set-probability([5,4,3,2,1],[5,4,4,1,1],1,1) 
set-probability([5,4,3,2,1],[5,4,4,2,2],1,1) 
set-probability([2,1],[2,3],1,0) 
set-probability( [2,1], [2,2] ,4, 4) 
set-probabili ty( [3,1], [4,3],1,0) 
se t -pr obabil ity ( [ 3, 1] , [ 4 , 2 ] , 7, 4 ) 
se t - probabil ity ( [ 4, 1] , [ 4 , 3 ] , 1 , ° ) 
set-probability( [4,1], [4,2],4,4) 
set-probability( [5,1], [6,3] ,1,0) 
set-probability([5,1],[6,2],2,2) 
set-probability( [3,2], [4,2] ,4,4) 
set-probability([4,2],[4,3],1,0) 
set - p robabil ity ( [ 4 , 2] , [ 4 , 2 ] ,7 ,4 ) 
set-probability( [5,2], [6,2] ,2,2) 
set-probability([4,3],[4,4],5,5) 
se t - probabi 1 ity ( [ 5, 3 ] , [ 6 , 4] , 2 , 2 ) 
set-probabili ty( [5,4] ,[ 6,4] ,2,2) 
set-probability([3,2,1],[4,2,3],1,0) 
se t -pr 0 ba b il it Y ( [ 4 , 2 , 1] , [ 4 , 2, 3] , 1 , ° ) 
set-probability([5,2,1],[6,2,3],1,0) 
set-probability([3,2,1],[4,2,2],4,4) 
se t - P robabil i ty ( [ 4 , 2 , 1] , [ 4 ,2, 2] , 4 , 4 ) 
set-probability( [5,2,1], [6,2,2] ,2,2) 
set-probability( [4,3,1], [4,4,3] ,1,0) 
set-probability([5,3,1],[6,4,3],1,0) 
se t - probabil i ty ( [ 4 , 3,1] , [ 4 ,4,2] ,4,4 ) 
set - probability( [5,3,1] ,[ 6,4,2] ,2,2) 
set-probabili ty( [5,4,1], [6,4,3],1,0) 
se t - P robabil ity ( [ 5 , 4 , 1] , [ 6 , 4 , 2] , 2, 2 ) 
set-probabili ty( [4,3,2] , [4,4,2],4,4) 
set-probability( [5,3,2], [6,4,2] ,2,2) 
set=probability( [5,4,2], [6 ,4, 2],2,2) 
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set_probability( [5,4,3), [6,4,4) ,2,2) 
set_probability([4,3,2,l),[4,4,2,3),1,0) 
set probability([5,3,2,l),[6,4,2,3),1,0) 
set-probability( [5,4,2,1), [6,4,2,3),1, 0) 
set=probability([4,3,2,1],[4,4,2,2),4,4) 
set probability([5,3,2,1],[6,4,2,2),2,2) 
set-probability( [5,4,2,1) ,[6,4,2,2) ,2,2) 
set-probability( [5, 4, 3, 1], [6, 4, 4, 3),1,0) 
set-probability([5,4,3,l),[6,4,4,2),2,2) 
set-probability( [5,4,3,2), [6,4,4,2) ,2,2) 
set-probability([5,4,3,2,l),[6,4,4,2,3),1,0) 
set=probability([5,4,3,2,l),[6,4,4,2,2],2,2) 

yes 
I ?-
% prolog execution halted 
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/* Shows the effect of extending the definition of duplicates */ 

1* *************************************************************** *1 
/* RECOGNISEI LISTING */ 
/* Training set: all 21 car images. Test: car images 4,14,16,17,20*/ 
/* *************************************************************** */ 

?-search(car,4,0). 

Object: car 
PartSet, FeatureSet, probability: 

[2,1J,(1,200,172)(1,70,170),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[5,2J,(5,163,122)(1,200,172),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2J,(5,163,122)(3,199,166),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
Partset, FeatureSet, probability: 
[5,2),(5,160,124)(1,200,172),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2),(5,160,124)(3,199,166),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,1),(5,167,120)(1,70,170),57.143% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,1),(5,163,122)(1,70,170),57.143% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,1],(5,160,124)(1,70,170),57.143% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2,1],(5,163,122)(1,200,172)(1,70,170),50% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2,1],(5,160,124)(1,200,172)(1,70,170),50% 
Accept (a) or reject (r)? 
r • 
Object: car 
PartSet, FeatureSet, probability: 
[2,1],(3,199,166)(1,70,170),50% 
Accept (a) or reject (r)? 
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r. 
Object: car 
PartSet, FeatureSet, probability: 
[2,1J,(3,199,166)(3,70,166),50% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, Featureset, probability: 
[5,2,1J,(5,163,122)(3,199,166)(1,70,170),33.333% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[5,2,1J,(5,160,124)(3,199,166)(1,70,170),33.333% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2,lJ,(5,163,122)(3,199,166)(3,70,166),25% 
Accept (a) or reject (r)? 
a. 

yes 

?-search(car,14,0). 

Object: car 
PartSet, FeatureSet, probability: 
[5,2,1J,(6,160,115)(2,215,166)(2,53,158),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[2,lJ,(2,215,166)(2,53,158),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
Partset, FeatureSet, Probability: 
[4,1J,(4,214,147)(2,53,158),91.667% 
Accept (a) or reject (r)? 
r. 
Obj ect: car 
PartSet, FeatureSet, Probability: 
[4,1J,(4,216,151)(2,53,158),91.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,2,1J,(4,214,147)(2,215,166)(2,53,158),88.889% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,2,1J,(4,216,151)(2,215,166)(2,53,158),88.889% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[3,2],(4,53,141)(2,215,166),88.889% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[3,2],(4,52,144)(2,215,166),88.889% 
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Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[3,2,1),(4,53,141)(2,215,166)(2,53,158),87.5% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[3,2,1),(4,52,144)(2,215,166)(2,53,158),87.5% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2),(6,160,115)(2,215,166),87.5% 
Accept (a) or reject (r)? 
r. 
Obj ect: car 
PartSet, FeatureSet, probability: 
[4,3),(4,214,147)(4,53,141),85.714% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,3),(4,214,147)(4,52,144),85.714% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,3),(4,216,151)(4,52,144),85.714% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,3,2],(6,160,115)(4,53,141)(2,215,166),83.333% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,3,2),(6,160,115)(4,52,144)(2,215,166),83.333% 
Accept (a) or reject (r)? 
r • 
Object: car 
PartSet, FeatureSet, probability: 
[4,3,1),(4,214,147)(4,53,141)(2,53,158),81.818% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,3,1),(4,214,147)(4,52,144)(2,53,158),81.818% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[4,3,1],(4,216,151)(4,52,144)(2,53,158),81.818% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[5,4,2,1],(6,160,115)(4,214,147)(2,215,166)(2,53,158),80% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,2,1],(6,160,115)(4,216,151)(2,215,166)(2,53,158),80% 
Accept (a) or reject (r)? 
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r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,3,2,1],(6,160,115)(4,53,141)(2,215,166)(2,53,158),80% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,3,2,1],(6,160,115)(4,52,144)(2,215,166)(2,53,158),80% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,3,2],(4,214,147)(4,53,141)(2,215,166),77.778% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[4,3,2],(4,214,147)(4,52,144)(2,215,166),77.778% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[4,3,2],(4,216,151)(4,52,144)(2,215,166),77.778% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,1], (6,160,115) (2,53,158),77.778% 
Accept (a) or reject (r)? 
r. 
Obj ect: car 
PartSet, FeatureSet, probability: 
[5,1] ,(6,155,115)(2,53,158),77.778% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,3,2,1],(4,214,147)(4,53,141)(2,215,166)(2,53,158),75% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,3,2,1],(4,214,147)(4,52,144)(2,215,166)(2,53,158),75% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,3,2,1],(4,216,151)(4,52,144)(2,215,166)(2,53,158),75% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,2],(6,160,115)(4,214,147)(2,215,166),75% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,2],(6,160,115)(4,216,151)(2,215,166),75% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4],(6,160,115)(4,214,147),72.727% 
Accept (a) or reject (r)? 
r. 
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object: car 
PartSet, FeatureSet, probability: 
[5,4),(6,160,115)(4,216,151),72.727% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[5,4,1),(6,160,115)(4,214,147)(2,53,158),71.429% 
Accept (a) or reject (r)? 
r • 
Object: car 
Partset, FeatureSet, probability: 
[5,4,1),(6,160,115)(4,216,151)(2,53,158),71.429% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,3,2),(6,160,115)(4,214,147)(4,53,141)(2,215,166),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,3,2),(6,160,115)(4,214,147)(4,52,144)(2,215,166),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,3,2),(6,160,115)(4,216,151)(4,52,144)(2,215,166),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,3),(6,160,115)(4,214,147)(4,53,141),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, Featureset, probability: 
[5,4,3),(6,160,115)(4,214,147)(4,52,144),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[ 5, 4, 3] , ( 6 , 16 0, 115 ) ( 4 , 216 , 151 ) ( 4 , 52, 144 ) , 66. 667 % 
Accept (a) or reject (f)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,3),(6,160,115)(4,53,141),66.667% 
Accept (a) or reject (f)? 
r. 
Object: car 
PartSet, Featureset, probability: 
[ 5 , 3 ) , ( 6 , 16 ° , 115) ( 4, 52, 144 ) , 66. 667 % 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[5,3) ,(6,155,115) (4,53,141) ,66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[5,3],(6,155,115)(4,52,144),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
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PartSet, FeatureSet, probability: 
[5,4,3,2,1],(6,160,115)(4,214,147)(4,53,141)(2,215,166)(2,53,158),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,3,2,1],(6,160,115)(4,214,147)(4,52,144)(2,215,166)(2,53,158),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,4,3,2,1],(6,160,115)(4,216,151)(4,52,144)(2,215,166)(2,53,158),60% 
Accept (a) or reject (r)? 
a. 

yes 

?-search(car,16,O). 

Object: car 
PartSet, FeatureSet, probability: 
[5,3,2,1],(5,164,116)(4,94,145)(1,200,156)(1,94,164),100% 
Accept (a) or reject (r)? 
a. 
Object: car 
PartSet, FeatureSet, probability: 
[ 5,1] , ( 6 , 163 , 113 )( 3 ,94 ,156 ) ,0% 
Accept (a) or reject (r)? 
r. 

yes 

?-search(car,17,O). 

Object: car 
PartSet, FeatureSet, probability: 
[5,1],(5,140,108)(1,75,138),57.143% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,11,(6,158,103)(1,75,138),33.333% 
Accept (a) or reject (r)? 
a. 

yes 

I ?-search(car,20,O). 

Object: car 
PartSet, FeatureSet, probability: 
[5,2,1],(6,156,123)(2,196,167)(2,65,160),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[2,1],(2,196,167)(2,65,160),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
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[3,2],(4,65,146)(2,196,167),88.889% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[3,2,1],(4,65,146)(2/196,167)(2/65,160),87.5% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2],(6,156,123)(2,196,167),87.5% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,3,2],(6,156,123)(4,65,146)(2/196,167),83.333% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[5,3,2,1],(6,156,123)(4/65,146)(2,196,167)(2/65,160),80% 
Accept (a) or reject (r)? 
a. 

yes 
I ?-
% Prolog execution halted 

1* *************************************************************** *1 
/* RECOGNISE1 LISTING WITH DEFINITION OF DUPLICATES EXTENDED */ 
/* Training set, test as before */ 
1* *************************************************************** */ 

?-search(car,4,0). 

Object: car 
PartSet, FeatureSet, probability: 
[5,2,1],(5,163,122)(3/199/166)(3,70,166),100% 
Accept (a) or reject (r)? 
a. 

yes 

I ?-search(car,14/0). 

Object: car 
PartSet, FeatureSet, Probability: 
[ 5, 4 / 3 , 2 , I] , ( 6 , 16 0, 115) ( 4 / 216 , 151) ( 4 , 52 , 144 ) ( 2, 215 , 166 ) ( 2 , 53, 158 ) , 100 % 
Accept (a) or reject (r)? 
a. 

yes 

I ?-search(car,16/0). 

Object: car 
PartSet, FeatureSet, probability: 
[5,2,1],(6,163,113)(1,200,156)(1,94,164),100% 
Accept (a) or reject (r)? 
r. 
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Object: car 
PartSet, FeatureSet, probability: 
[3,2,1],(4,94,145)(1,200,156)(1,94,164),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2],(6,163,113)(1,200,156),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[3,2],(4,94,145)(1,200,156),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[2,1],(1,200,156)(1,94,164),100% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,1],(6,163,113)(1,94,164),66.667% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,2],(4,94,145)(1,94,164),60% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[4,2],(4,94,145)(3,94,156),50% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[3,1],(4,94,145)(1,94,164),50% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[5,2,1],(6,163,113)(1,200,156)(3,94,156),0% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[3,2,1],(4,94,145)(1,200,156)(3,94,156),0% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[ 5, 1] , ( 6 , 163, 113 ) ( 3 , 94 , 156 ) ,0 % 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, Probability: 
[3,1],(4,94,145)(3,94,156),0% 
Accept (a) or reject (r)? 
r. 
Object: car 
PartSet, FeatureSet, probability: 
[2,1],(1,200,156)(3,94,156),0% 
Accept (a) or reject (r)? 
r. 
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yes 

I ?-search(car,17,0). 

Object: car 
PartSet, FeatureSet, probability: 
[5,1),(5,140,108)(1,75,138),100% 
Accept (a) or reject (r)? 
a. 

yes 

I ?-search(car,20,0). 

Object: car 
PartSet, FeatureSet, probability: 
[5,3,2,1),(6,156,123)(4,65,146)(2,196,167)(2,65,160),100% 
Accept (a) or reject (r)? 
a. 

yes 
I ?-
% prolog execution halted 
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1* recognise2/shapescheck *1 
1* ********************************************************************* 
1* **** Background Checks on Shapes 
1* ********************************************************************* 

1* No checks on rectangles. 

background_check(rectanglel,picNo,_,_):- !. 
background_check(rectangle2,PicNo,_,_):- !. 

1* Checks that all other potential shapes have two adjacent sides of 
1* equal length. 

background_check(big_square,PicNo,[3,l),[Fl,F2):-
! , 
opposite corners(PicNo,[Fl,F2). 

background_check(big_square,picNo,[4,2),[Fl,F2):­
I · , 
opposite corners(PicNo,[Fl,F2). 

background_check(little_square,PicNO,[3,l),[Fl,F2):­
! , 
opposite corners(PicNo,[Fl,F2). 

background_check(little_square,picNO,[4,2),[Fl,F2):­
! , 
opposite corners (PicNo, [Fl,F2). 

background_check(trianglel,PicNo,[3,2),[Fl,Fl):­
! , 
opposite_corners (PicNo, [Fl,F2). 

background_check(triangle2,PicNo,[3,2),[Fl,F2):­
I · , 
opposite_corners (PicNo, [Fl,F2). 

background_check(triangle3,PicNo,[3,2),[Fl,F2):­
! , 
opposite corners(PicNo,[Fl,F2). 

background_check(triangle4,picNo,[3,2),[Fl,F2):­
I · , 
opposite_corners(PicNo,[Fl,F2). 

background_check(_,PicNo,_,[Fl,F2):- !. 

background_check(_,PicNo,_,[Fl,F2IRest):­
member (F3 , Rest) , 
I · , 
equal_sides(PicNo,[Fl,F2,F3]). 

equal sides (PicNo, [Fl,F2,F3):-
- problembb2(feature,(PicNo,Fl, ,Xl,Yl», 

problembb2(feature,(PicNo,F2,=,X2,Y2», 
problembb2(feature,(PicNo,F3, ,X3,Y3», 
Ll is (Xl + Yl - X3 - Y3), -
L2 is (X2 + Y2 - Xl - Yl), 
L3 is (X3 + Y3 - X2 - Y2), 
(Ll> 0, Dl is Ll; Dl is -Ll), 
(L2 > 0, D2 is L2; D2 is -L2), 
(L3 > 0, D3 is L3; D3 is -L3), 
equal_length(Dl,D2,D3). 

opposite_corners(PicNo,[Fl,F2]):­
problembb2(feature,(PicNo,Fl, ,Xl,Yl», 
problembb2(feature,(PicNo,F2,-,X2,Y2», 
(Xl> X2, Ll is Xl - X2; Ll is X2 - Xl), 
(Yl > Y2, L2 is Yl - Y2; L2 is Y2 - Yl), 
Ll = L2. 

equal_length(Ll,L2,L3):-
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L1 = L2, !. 
equallength(Ll,L2,L3):­

- L2 = L3, !. 
equal_length(Ll,L2,L3):­

L3 = Ll, !. 
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/* **************************************************************** * 
/* **** RECOGNISE2 LISTING **** * 
/* **** Rectangles training data loaded after first set of tests * * 
/* **************************************************************** * 

21 % prolog 
C Prolog version 1.5a.ikbs 
% Restoring file /usr/lib/prolog/saved_states.d/Prologl.5a 
I ?- [master]. 

yes 
I ?- init. 

Duplicates limit? o. 
Percentage prob. threshold for automatic acceptance? 
(For no automatic acceptance, enter 110) 110. 
Percentage prob. threshold for referral to user? o. 
Bid execution manual (m) or automatic (a)? a. 

What now? 
(Enter "help." to view options) 
I: [test]. 

shapescheck consulted 2268 bytes 0.11667 sec. 
shapesgen consulted 984 bytes 0.083334 sec. 
shapesl consulted 2000 bytes 0.23333 sec. 
shapes2 consulted 2000 bytes 0.23333 sec. 
test consulted 7252 bytes 0.73333 sec. 
Editing picture:2 
Editing picture:l 
Learning: triangle4 
Learning: triangle3 
Learning: triangle2 
Learning: trianglel 
Learning: little square 
Learning: big square 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [shapes3]. 

1008 bytes 0.1 sec. shapes3 consulted 
Editing picture:3 
Searching picture: 3 
Searching picture: 3 
Searching picture: 3 
Searching picture: 3 for: 

for: 
for: 
for: 

Searching picture: 3 for: 

Object: big_square 
bottom left, (10,50) 
bottom-right, (50,50) 
top_right, (50,10) 
top left, (10,10) 
Probability: 100% 

triangle4 
triangle2 
triangle1 
little_square 
big_square 

Accept (a) or reject (r)?a. 
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Object: big_square 
bottom_right, (110,70) 
top_right, (110,20) 
Probability: 100% 
Accept (a) or reject (r)?r. 

object: little_square 
bottom_left, (90,70) 
bottom_right, (110,70) 
top_right, (110,50) 
top_left, (90,50) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: little_square 
bottom_left, (30,70) 
bottom_right, (50,70) 
top_right, (50,50) 
top left, (30,50) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: little_square 
bottom right, (110,50) 
top right, (110,20) 
Probability: 100% 
Accept (a) or reject (r)?r. 

Object: triangle1 
bottom, (50,70) 
right, (90,30) 
right angle, (50,30) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: triangle2 
left, (80,20) 
bottom,C110,50) 
right_angle, (110,20) 
Probability: 100% 
Accept Ca) or reject (r)?a. 

Feedback: triangle2, Picture 3 
Feedback: triangle1, Picture 3 
Feedback: little square, Picture 3 
Feedback: big square, Picture 3 
Remov ing : 3 -
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [shapes4]. 

1056 bytes 0.11667 sec. shapes4 consulted 
Editing picture:4 
Searching picture: 4 
Searching picture: 4 
Searching picture: 4 
Searching picture: 4 

for: 
for: 
for: 
for: 

little square 
triangle1 
big_square 
triangle3 
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object: triangle3 
top, (115,70) 
left, (95,90) 
right angle, (115,90) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: big_square 
bottom left, (55,80) 
bottom-right, (115,80) 
top right, (115,20) 
top=left, (55,20) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: big_square 
top_right, (55,40) 
top left, (5,40) 
Probability: 100% 
Accept (a) or reject (r)?r. 

Object: triangle1 
bottom, (35,70) 
right, (65,40) 
right angle, (35,40) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: little square 
bottom_left, (5,70) 
bottom right, (35,70) 
top_right, (35,40) 
top left, (5,40) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: triangle3, Picture 4 
Feedback: triangle1, Picture 4 
Feedback: little_square, Picture 4 
Feedback: big_square, Picture 4 
Removing: 4 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: show_rules(big_square). 

Part/Pattern No. matches: 
top left, Pattern1 
top-right, Pattern2 
bottom right, Pattern3 
bottom=left, Pattern4 

Distance limits(Part1,Part2,MinX,MaxX,MinY,MaxY): 
top_right,top_left,40,60,0,0 
bottom_right, top_left, 40, 60,40, 60 
bottom_right, top_right, 0, 0,40,60 
bottom left,top left,0,0,40,60 
bottom=left,top=right,-60,-40,40,60 
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bottom_left,bottom_right,-60,-40,0,0 

set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1], [2,1] ,5,4 
[3,1], [3,1] ,9,4 
[4,1], [4,1] ,5,4 
(3,2], [3,2] ,6,4 
[4,2], [4,2] ,5,4 
[4,3],[4,3],4,4 
[3,2,1],[3,2,1],5,4 
[4,2,1],[4,2,1],4,4 
[4,3,1], [4,3,1],5,4 
[4,3,2],[4,3,2],4,4 
[4,3,2,1],[4,3,2,1],4,4 

What now? 
(Enter "help." to view options) 
I: show_ru1es(little_square). 

. . . . . . 

What now? 
(Enter "help." to view options) 
I: ~lter. 

Current automatic acceptance threshold is 110 
New value? 100. 
Current threshold for referral to user is 0 
New value? O. 

What now? 
(Enter "help." to view options) 
I: [shapes5]. 

shapes5 consulted 864 bytes 0.1 sec. 
Editing picture:5 
Searching picture: 5 for: little_square 

Object: little_square 
bottom left, (80,60) 
bottom-right, (100,60) 
top_right, (100,40) 
top_left, (80,40) 
Accepted. 

Searching picture: 5 for: big_square 
Searching picture: 5 for: triangle3 

Object: triang1e3 
top, (100,60) 
left, (60,100) 
right angle, (100,100) 
Accepted. 

Searching picture: 5 for: triangle2 

Object: triangle2 
left, (10,20) 
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bottom, (60,70) 
right angle, (60,20) 
Accepted. 

Searching picture: 5 for: triangle4 

Object: triangle4 
right, (60,100) 
top, (40 ,80) 
right_angle, (40,100) 
Accepted. 

Object: triangle4 
right, (50,60) 
top, (20,30) 
right angle, (20,60) 
Accepted. 

Feedback: triangle4, Picture 5 
Feedback: triangle3, Picture 5 
Feedback: triangle2, Picture 5 
Feedback: little square, Picture 5 
Feedback: big_square, Picture 5 
Removing: 5 
Bid list empty 

What now? 
(Enter "help." to view options) 
I : [shapes6] • 

. . . . 
Bid list empty 

What now? 
(Enter "help." to view options) 
I : alter. 

Current automatic acceptance threshold is 100 
New value? 110. 
Current threshold for referral to user is 0 
New value? o. 

What now? 
(Enter "help." to view options) 
I: [rectanglesgen]. 

rectanglesgen consulted 264 bytes 0.016691 sec. 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [shapes7]. 

shapes7 consulted 1600 bytes 0.18334 sec. 
Editing picture:7 
Learning: rectangle2 
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Learning: rectangle1 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: show_rules(rectangle1). 

Set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1], [2,1],3,2 
[3,1], [3,1],2,2 
[4,1], [4,1],4,2 
[3,2], [3,2],4,2 
[4,2], [4,2],3,2 
[4,3], [4,3],3,2 
[3,2,1],[3,2,1],2,2 
[4,2,1],[4,2,1],2,2 
[4,3,1], [4,3,1] ,2,2 
[4,3,2],[4,3,2],2,2 
[4,3,2,1],[4,3,2,1],2,2 

What now? 
(Enter "help." to view options) 
I: show_rules(rectangle2). 

Set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1], [2,1] ,4,2 
[3,1],[3,1],3,2 
[4,1], [4,1] ,2,2 
[3,2],[3,2],2,2 
[4,2], [4,2] ,2,2 
[4,3],[4,3],4,2 
[3,2,1],[3,2,1],2,2 
[4,2,1],[4,2,1],2,2 
[4,3,1],[4,3,1],2,2 
[4,3,2],[4,3,2],2,2 
[4,3,2,1],[4,3,2,1],2,2 

What now? 
(Enter "help." to view options) 
I: [shapes8]. 

2544 bytes 0.26667 sec. shapes8 consulted 
Editing picture:8 
Searching picture: 8 
Searching picture: 8 
Searching picture: 8 
Searching picture: 8 
Searching picture: 8 
Searching picture: 8 
Searching picture: 8 
Searching picture: 8 

Object: rectangle1 
bottom left, (10,40) 
bottom=right, (60,40) 
top right, (60,10) 

for: 
for: 
for: 
for: 
for: 
for: 
for: 
for: 

little_square 
triangle4 
triangle3 
triangle2 
triangle1 
big_square 
rectangle2 
rectangle1 
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top_left, (10,10) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: rectanglel 
bottom_left, (50,80) 
bottom_right, (100,80) 
top_left, (50,40) 
probability: 100% 
Accept (a) or reject (r)?r. 

Object: rectanglel 
bottom left, (50,60) 
top right, (100,30) 
top_left, (50,30) 
Probability: 100% 
Accept (a) or reject (r)?r. 

(another 25 candidates) 

Feedback: triangle4, Picture 8 
Feedback: triangle3, Picture 8 
Feedback: triangle2, Picture 8 
Feedback: little_square, Picture 8 
Feedback: big_square, Picture 8 
Feedback: rectangle2, Picture 8 
Feedback: rectanglel, Picture 8 
Removing: 8 
Bid list empty 

What now? 
(Enter "help." to view options) 
I : [shapes9] • 

. . . . . 
What now? 
(Enter "help." to view options) 
I : alter. 

Current automatic acceptance threshold is 110 
New value? HlO. 
Current threshold for referral to user is 0 
New value? o. 

What now? 
(Enter "help." to view options) 
I: [shapeslO]. 

shapeslO consulted 1824 bytes 0.20006 sec. 
Editing picture:10 
Searching picture: 10 for: little_square 

Object: little_square 
bottom_left, (60,60) 
bottom_right, (80,60) 
top_right, (80,40) 
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top left, (60,40) 
Accepted. 

Searching picture: 10 

Object: triangle4 
right, (50,70) 
top, (30,50) 
Accepted. 

Searching picture: 10 
Searching picture: 10 
Searching picture: 10 

Object: trianglel 
right, (80,30) 
right_angle, (50,30) 
Accepted. 

Searching picture: 10 
Searching picture: 10 
Searching picture: 10 

Object: rectanglel 
bottom left, (40,90) 
bottom-right, (90,90) 
top_right, (90,50) 
top_left, (40,50) 
Accepted. 

Object: triangle3 
left, (0,90) 

for: 

for: 
for: 
for: 

for: 
for: 
for: 

right angle, (30,90) 
Probability: 87.5% 
Accept (a) or reject (r)?a. 

. . . . . . 
(another 7 candidates) 

triangle4 

triangle3 
triangle2 
trianglel 

big_square 
rectangle2 
rectanglel 

Feedback: triangle4, Picture 10 
Feedback: triangle3, Picture 10 
Feedback: trianglel, Picture 10 
Feedback: little square, Picture 10 
Feedback: big_square, Picture 10 
Feedback: rectangle2, Picture 10 
Feedback: rectanglel, Picture 10 
Removing: 10 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [shapesll]. 

shapes11 consulted 2064 bytes 0.23345 sec. 
Editing picture:11 
Searching picture: 11 for: little_square 

Object: 
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bottom_left, (50,80) 
bottom_right, (70,80) 
top_right, (70,60) 
top_left, (50,60) 
Accepted. 

Searching picture: 11 for: triangle4 

Object: triangle4 
right, (90,50) 
top, (70,30) 
right angle, (70,50) 
Accepted. 

Searching picture: 11 for: triangle3 

Object: triangle3 
top, (60,40) 
left, (30,70) 
right_angle, (60,70) 
Accepted. 

Searching picture: 11 for: triangle1 
Searching picture: 11 for: big square 
Searching picture: 11 for: triangle2 

Object: triangle2 
left, (70,10) 
bottom, (110,50) 
right_angle, (110,10) 
Accepted. 

Object: triangle2 
left, (80,100) 
right_angle, (110,100) 
Accepted. 

Searching picture: 11 for: rectangle1 
Searching picture: 11 for: rectangle2 

Object: rectangle2 
bottom_left, (20,60) 
bottom right, (40,60) 
top right, (40,10) 
top_left, (20,10) 
Accepted. 

Object: triangle4 
top, (110,80) 
right_angle, (110,100) 
Probability: 85.714% 
Accept (a) or reject (r)?a. 

(another 6 candidates) 

What now? 
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(Enter "help." to view options) 
I: show_rules (big_square) • 

set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1], [2,1],11,5 
[3,2,1],[3,2,1],9,5 
[4,2,1],[4,2,1],8,5 
[4,3,2],[4,3,2],11,6 
[4,3,2,1],[4,3,2,1],8,5 
[3,1],[3,1],29,5 
[ 4, 1] , [ 4 , 1] , 15,5 
[3,2] , [3,2] , 18,7 
[4,2], [4,2] ,25,6 
[4,3],[4,3],16,6 
[4,3,1],[4,3,1],13,5 

What now? 
(Enter "help." to view options) 
I: show_rules(little_square). 

set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1], [2,1] ,19,10 
[3, 1] , [3, 1] , 12 ,9 
[4,1], [4,1] ,19,10 
[3,2],[3,2],19,9 
[4,2],[4,2],11,10 
[4,3], [4,3] ,19,10 
[3,2,1],[3,2,1],10,9 
[4,2,1],[4,2,1],11,10 
[4,3,1],[4,3,1],10,9 
[4,3,2],[4,3,2],9,9 
[4,3,2,1],[4,3,2,1],9,9 

What now? 
(Enter "help." to view options) 
I: show_rules(trianglel). 

What now? 
(Enter "help." to view options) 
I: show_rules(rectangle1). 

set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1],[2,1],7,5 
[4,1], [4,1] ,10,4 
[3,2], [3,2] ,9,5 
[4,3],[4,3],7,4 
[3,2,1],[3,2,1],5,5 
[4,2,1], [4,2,1],5,4 
[4,3,1],[4,3,1],5,4 
[4,3,2],[4,3,2],4,4 
[4,3,2,1],[4,3,2,1],4,4 
[3,1], [3,1],12,5 
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[4,2],[4,2],10,4 

What now? 
(Enter "help." to view options) 
I: show_rules(rectangle2). 

Set probabi1ities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1],[2,1],16,4 
[3,1], [3,1] ,11,5 
[4,1], [4,1] ,8,6 
[3,2], [3,2] ,8,4 
[4,2], [4,2],7,4 
[4,3],[4,3],15,5 
[3,2,1],[3,2,1],4,4 
[4,2,1],[4,2,1],5,4 
[4,3,1],[4,3,1],7,5 
[4,3,2],[4,3,2],5,4 
[4,3,2,1],[4,3,2,1],4,4 

What now? 
(Enter "help." to view options) 
I: quit. 

yes 
1 ?-
% Prolog execution halted 
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/* *************************************************************** */ 
/* **** RECOGNISE2 LISTING **** */ 
/* **** All training data loaded at start of system run **** */ 
/* *************************************************************** */ 

21 % prolog 
C Prolog version 1.5a.ikbs 
% Restoring file /usr/lib/pro1og/saved_states.d/Prolog1.5a 
1 ?- [master]. 

yes 
1 ?- init. 

Duplicates limit? o. 
Percentage prob. threshold for automatic acceptance? 
(For no automatic acceptance, enter 110) 110. 
Percentage prob. threshold for referral to user? o. 
Bid execution manual (m) or automatic (a)? m. 

What now? 
(Enter "help." to view options) 
I: [test]. 

shapes check consulted 2268 bytes 0.13333 sec. 
shapesgen consulted 984 bytes 0.083335 sec. 
shapes 1 consulted 2000 bytes 0.21667 sec. 
shapes2 consulted 2000 bytes 0.25 sec. 
test consulted 7252 bytes 0.7 sec. 

What now? 
(Enter "help." to view options) 
I: [rectanglesgen]. 

rectang1esgen consulted 264 bytes 0.016668 sec. 

What now? 
(Enter "help." to view options) 
I: [shapes7]. 

shapes7 consulted 1600 bytes 0.18333 sec. 

What now? 
(Enter "help." to view options) 
I: help. 

options available are: 
Read in a data file: "[filenarne]." 
Execute the next bid: "run." 
Switch to automatic bid execution: "auto." 
View the recognition rules for an object: "show_rules(Object)." 
Alter acceptance/referral thresholds: "alter." 
Quit the system: "quit." 

What now? 
(Enter "help." to view options) 
I: auto. 

Editing picture:7 
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Editing picture:2 
Editing picture:1 
Learning: rectangle2 
Learning: rectangle1 
Learning: triang1e4 
Learning: triangle3 
Learning: triangle2 
Learning: triang1e1 
Learning: little square 
Learning: big square 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: show_rules(rectanglel). 

Set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1], [2,1] ,3,2 
[3,1], [3,1] ,2,2 
[4,1],[4,1],4,2 
[3,2], [3,2] ,4,2 
[4,2], [4,2] ,3,2 
[4,3], [4,3] ,3,2 
[3,2,1],[3,2,1],2,2 
[4,2,1],[4,2,1],2,2 
[4,3,1],[4,3,1],2,2 
[4,3,2],[4,3,2],2,2 
[4,3,2,1],[4,3,2,1],2,2 

What now? 
(Enter "help." to view options) 
I: ~haaEftnq£e~rectangle2). 

Set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1],[2,1],4,2 
[3,1], [3,1] ,3,2 
[4,1], [4,1] ,2,2 
[3,2], [3,2] ,2,2 
[4,2], [4,2] ,2,2 
[4,3], [4,3] ,4,2 
[3,2,1], [3,2,1] ,2,2 
[4,2,1],[4,2,1],2,2 
[4,3,1],[4,3,1],2,2 
[4,3,2],[4,3,2],2,2 
[4,3,2,1],[4,3,2,1],2,2 

What now? 
(Enter "help." to view options) 
I: [shapes3]. 

shapes3 consulted 1008 bytes 0.11668 sec. 
Editing picture:3 
Searching picture: 3 for: rectangle2 
Searching picture: 3 for: rectangle1 
Searching picture: 3 for: triangle4 
Searching picture: 3 for: triangle2 



Searching picture: 3 for: triang1e1 
Searching picture: 3 for: little square 
Searching picture: 3 for: big_square 

Object: little_square 
bottom left, (90,70) 
bottom-right, (110,70) 
top right, (110,50) 
top-left, (90,50) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: little_square 
bottom left, (30,70) 
bottom-right, (50,70) 
top_right, (50,50) 
top left, (30,50) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: triang1e1 
bottom, (50,70) 
right, (90,30) 
right angle, (50,30) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: triang1e2 
left, (80,20) 
bottom, (110,50) 
right angle, (110,20) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: big_square 
bottom left, (10,50) 
bottom-right, (50,50) 
top_right, (50,10) 
top_left, (10,10) 
Probability: 66.667% 
Accept (a) or reject (r)?a. 

Feedback: rectang1e2, Picture 3 
Feedback: rectang1e1, Picture 3 
Feedback: triang1e2, Picture 3 
Feedback: triang1e1, Picture 3 
Feedback: little square, Picture 3 
Feedback: big square, Picture 3 
Removing: 3 -
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [shapes4). 

1056 bytes 0.11667 sec. shapes4 consulted 
Editing picture:4 
Searching picture: 4 
Searching picture: 4 
Searching picture: 4 

for: 
for: 
for! 

little square 
triangle1 
big_square 
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Searching picture: 4 for: rectangle2 
Searching picture: 4 for: rectangle1 
Searching picture: 4 for: triangle3 

Object: triangle3 
top, (115,70) 
left, (95,90) 
right_angle, (l15,90) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: rectanglel 
bottom left, (55,80) 
bottom-right, (115,80) 
top left, (55,40) 
Probability: 100% 
Accept (a) or reject (r)?r. 

(another 6 candidates) 

What now? 
(Enter "help." to view options) 
I: [shapes5]. 

864 bytes 0.11669 sec. shapes5 consulted 
Editing picture:5 
Searching picture: 5 
Searching picture: 5 
Searching picture: 5 
Searching picture: 5 
Searching picture: 5 
Searching picture: 5 
Searching picture: 5 
Searching picture: 5 

for: 
for: 
for: 
for: 
for: 
for: 
for: 
for: 

little_square 
triangle1 

Object: triangle4 
right, (60,100) 
top, (40,80) 
right angle, (40,100) 
Probability: 100% 

big square 
triangle3 
triangle2 
rectangle2 
rectangle1 
triangle4 

Accept (a) or reject (r)?a. 

(another 4 candidates) 

What now? 
(Enter "help." to view options) 
I : [shapes6] • 

shapes6 consulted 1488 bytes 0.15002 
Editing picture:6 
Searching picture: 6 . . . . 
Bid list empty 

What now? 
(Enter "help." to view options) 
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Set probabilities (Partset, PatternSet, FeatureSets,Matches) : 
[2,1], [2,1] ,8,5 
[3,1], [3,1],11,5 
[4,1], [4,1],9,5 
[3,2] , [3 , 2] , 12 , 5 
[4,2], [4,2],10,5 
[4,3],[4,3],8,5 
[3,2,1],[3,2,1],7,5 
[4,2,1],[4,2,1],6,5 
[4,3,1],[4,3,1],7,5 
[4,3,2],[4,3,2],8,5 
[4,3,2,1],[4,3,2,1],6,5 

What now? 
(Enter "help." to view options) 
I: show_rules(little_square). 

Set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2,1], [2,1] ,9,6 
[3,1], (3,1],6,6 
[4,2], [4,2] ,6,6 
[3,2,1],[3,2,1],6,6 
[4,2,1],[4,2,1],6,6 
[4,3,1],[4,3,1],6,6 
[4,3,2],[4,3,2],6,6 
[4,3,2,1],[4,3,2,1],6,6 
[4,1], [4,1],9,6 
[3,2],[3,2],9,6 
[4,3] , [4,3] , 10,6 

What now? 
(Enter "help." to view options) 
I: show_rules(triangle1). 

What now? 
(Enter "help." to view options) 
I: show_rules(re~aag~ee1). 

Set probabilities(Partset,PatternSet,FeatureSets,Matches): 
[3,2,1],[3,2,1],2,2 
[4,3,2,1],[4,3,2,1],2,2 
[3,1],[3,1],4,2 
[4,1],[4,1],7,2 
[4,2,1],[4,2,1],3,2 
[4,3,1],[4,3,1],3,2 
[3,2], [3,2] ,8,2 
[4,2], [4,2] ,5,2 
[4,3,2],[4,3,2],3,2 
[2,1], [2,1] ,6,2 
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[4,3], [4,3] ,6,2 

What now? 
(Enter "help." to view options) 
I: show_rules(rectangle2). 

set probabilities(partSet,PatternSet,Featuresets,Matches): 
[3,2,1], [3,2,1] ,2,2 
[4,2,1],[4,2,1],2,2 
[4,3,2,1],[4,3,2,1],2,2 
[2,1], [2,1] ,9,2 
[3,1], [3,1] ,4,2 
[4,1],[4,1],3,2 
[3,2], [3,2] ,4,2 
[4,2], [4,2] ,4,2 
[4,3],[4,3],10,2 
[4,3,1], [4,3,1] ,3,2 
[4,3,2],[4,3,2],4,2 

What now? 
(Enter "help." to view options) 
I: help. 

options available are: 
Read in a data file: "[filename]." 
switch to manual bid execution: "man." 
View the recognition rules for an object: "show_rules(Object)." 
Alter acceptance/referral thresholds: "alter." 
Quit the system: "quit." 

What now? 
(Enter "help." to view options) 
I: quit. 

yes 
1 ?-
% Prolog execution halted 
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/* **************************************************************** * 
/* **** RECOGNISE2 LISTING **** * 
/* **** Traffic data **** * 
/* **************************************************************** * 

21 % prolog 
C Prolog version 1.5a.ikbs 
% Restoring file /usr/lib/prolog/saved_states.d/Prolog1.5a 
1 ?- [master]. 

. . . . 
yes 
1 ?- init. 

Duplicates limit? 3. 
Percentage prob. threshold for automatic acceptance? 
(For no automatic acceptance, enter 110) 110. 
Percentage prob. threshold for referral to user? o. 
Bid execution manual (m) or automatic (a)? a. 

What now? 
(Enter "help." to view options) 
I: [ttest]. 

trafficgen consulted 840 bytes 0.066668 sec. 
trafficcheck consulted 176 bytes 0.016667 sec. 
traffic1 consulted 4832 bytes 0.5 sec. 
traffic2 consulted 4860 bytes 0.53333 sec. 
traffic3 consulted 3664 bytes 0.38333 sec. 
traffic4 consulted 1920 bytes 0.21667 sec. 
ttest consulted 16292 bytes 1.8 sec. 
Editing picture:16 
Editing picture:15 
Editing picture:14 
Editing picture:13 
Editing picture:12 
Editing picture:11 
Editing picture: 10 
Editing picture:9 
Editing picture:8 
Editing picture:7 
Editing picture:6 
Editing picture:5 
Editing picture:4 
Editing picture:3 
Editing picture:2 
Editing picture:1 
Learning: big_lorry 
Learning: small lorry 
Learning: van -
Learning: car 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: sho~rules(car). 

Part/Pattern No. matches: 
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rear wheel, Pattern1 
front wheel, Pattern1 
top, Pattern4 
front window, PatternS 

Distance limits(Part1,Part2,MinX,MaxX,MinY,MaxY): 
rear wheel, front wheel,-92,-41,O,l 
top,front_wheel,=16,-11,-16,-15 
top,rear_wheel,28,79,-17,-16 
front window, front wheel,-24,-20,-17,-12 
front-window, rear wheel,20,72,-17,-13 
front-window,top,=12,-7,-l,3 

Set probabilities(PartSet,PatternSet,FeatureSets,Matches): 
[2, I], [1, I], 10,5 
[3,1], [4,1],5,5 
[4,1],[5,1],5,5 
[3,2], [4,1],5,5 
[4,2], [5,1],6,5 
[4,3], [5,4],6,5 
[3,2,1],[4,1,1],5,5 
[4,2,1],[5,1,1],5,5 
[4,3,1],[5,4,1],5,5 
[4,3,2],[5,4,1],5,5 
[4,3,2,1],[5,4,1,1],5,5 

What now? 
(Enter "help." to view options) 
I: [traffic101]. 

traffic101 consulted 720 bytes 0.10001 sec. 
Editing picture:101 
Searching picture: 101 for: van 
Searching picture: 101 for: car 
Searching picture: 101 for: small_lorry 
Searching picture: 101 for: big_lorry 

Object: big_lorry 
whee13,(139,133) 
whee12,(237,132) 
Probability: 100% 
Accept (a) or reject (r)?r. 

Object: small_lorry 
cab_top, (245,103) 
rear wheel, (139,133) 
front wheel, (237,132) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: big_lorry, Picture 101 
Feedback: small lorry, Picture 101 
Removing: 101 -
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic102]. 

traffic102 consulted 720 bytes 0.10005 sec. 
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Editing picture:102 
Searching picture: 102 for: van 
Searching picture: 102 for: car 

Object: car 
front_window, (194,110) 
rear_wheel, (170,123) 
front wheel, (216,123) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: van, Picture 102 
Feedback: car, Picture 102 
Removing: 102 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic103]. 

traffic103 consulted 816 bytes 0.1167 sec. 
Editing picture:103 
Searching picture: 103 for: car 
Searching picture: 103 for: small_lorry 
Searching picture: 103 for: van 
Searching picture: 103 for: big_lorry 

Object: big_lorry 
whee15, (68,145) 
whee12,(212,148) 
wheel1,(272,148) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: big_lorry, Picture 103 
Removing: 103 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic104]. 

traffic104 consulted 720 bytes 0.083362 sec. 
Editing picture:104 
Searching picture: 104 for: car 
Searching picture: 104 for: small_lorry 
Searching picture: 104 for: van 
Searching picture: 104 for: big lorry 

Object: big_lorry 
whee14,(100,139) 
whee13, (125,139) 
wheel1, (286,142) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: big_lorry, Picture 104 
Removing: 104 
Bid list empty 
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What now? 
(Enter "help." to view options) 
I: [trafficI05]. 

traffic105 consulted 816 bytes 0.083358 sec. 
Editing picture:105 
Searching picture: 105 for: car 
Searching picture: 105 for: van 

Object: car 
front window, (360,110) 
top, (367,108) 
rear wheel, (336,125) 
Probability: 100% 
Accept (a) or reject (r)?a. 

object: car 
top, (52,116) 
rear wheel, (18,133) 
Probability: 100% 
Accept (a) or reject (r)?r. 

Object: car 
front window, (46,118) 
rear wheel, (18,133) 
Probability: 85.714% 
Accept (a) or reject (r)?a. 

Feedback: van, Picture 105 
Feedback: car, Picture 105 
Removing: 105 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic106]. 

traffic106 consulted 480 bytes 0.050057 sec. 
Editing picture:106 
Searching picture: 106 for: small_lorry 
Searching picture: 106 for: big lorry 

Object: small_lorry 
cab_top, (257,123) 
rear wheel, (144,150) 
front wheel, (251,151) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: big_lorry, Picture 106 
Feedback: small lorry, Picture 106 
Removing: 106 -
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic107]. 

traffic107 consulted 672 bytes 0.083333 sec. 
Editing picture:107 
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Searching picture: 107 for: car 
Searching picture: 107 for: small_lorry 
Searching picture: 107 for: van 
Searching picture: 107 for: big lorry 

Object: small_lorry 
cab_top, (225,100) 
rear wheel, (142,125) 
front_wheel, (221,125) 
probability: 100% 
Accept (a) or reject (r)?a. 

Object: car 
rear_wheel, (101,80) 
front wheel, (150,80) 
Probability: 50% 
Accept (a) or reject (r)?r. 

Object: van 
rear wheel, (101,80) 
front wheel, (150,80) 
Probability: 28.571% 
Accept (a) or reject (r)?r. 

Feedback: small_lorry, Picture 107 
Feedback: van, Picture 107 
Feedback: car, Picture 107 
Removing: 107 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic108]. 

traffic108 consulted 816 bytes 0.083337 sec. 
Editing picture:108 
Searching picture: 108 for: car 
Searching picture: 108 for: small_lorry 
Searching picture: 108 for: van 
Searching picture: 108 for: big_lorry_ 

Object: car 
front window, (250,119) 
rear_wheel, (225,135) 
Probability: 88.889% 
Accept (a) or reject (r)?a. 

Object: car 
rear wheel, (214,87) 
front wheel, (262,87) 
Probability: 46.154% 
Accept (a) or reject (r)?r. 

Object: van 
rear wheel, (214,87) 
front wheel, (262,87) 
Probability: 26.667% 
Accept (a) or reject (r)?r. 

Feedback: van, Picture 108 
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Feedback: car, picture 108 
Removing: 108 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic109). 

traffic109 consulted 816 bytes 0.083346 sec. 
Editing picture:109 
Searching picture: 109 for: car 
Searching picture: 109 for: van 

Object: car 
front_window, (227,105) 
top, (235,103) 
rear wheel, (205,120) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: car 
rear_wheel, (125,75) 
front wheel, (175,75) 
Probability: 40% 
Accept (a) or reject (r)?r. 

Object: van 
rear wheel, (125,75) 
front wheel, (175,75) 
Probability: 23.529% 
Accept (a) or reject (r)?r. 

Feedback: van, Picture 109 
Feedback: car, Picture 109 
Removing: 109 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [trafficllO). 

traffic110 consulted 816 bytes 0.10001 sec. 
Editing picture:110 
Searching picture: 110 for: car 
Searching picture: 110 for: van 

Object: car 
front_window, (192,107) 
rear wheel, (169,123) 
Probability: 90.909% 
Accept (a) or reject (r)?a. 

Object: car 
rear wheel, (109,78) 
front wheel, (160,78) 
Probability: 37.5% 
Accept (a) or reject (r)?r. 

Object: van 
rear wheel, (109,78) 
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front_wheel, (160,78) 
Probability: 21.053% 
Accept (a) or reject (r)?r. 

Feedback: van, Picture 110 
Feedback: car, Picture 110 
Removing: 110 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic111]. 

traffic111 consulted 912 bytes 0.10004 sec. 
Editing picture:111 
Searching picture: 111 for: car 
Searching picture: 111 for: van 

Object: van 
front window, (230,110) 
rear_wheel, (183,133) 
front_wheel, (240,132) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: car 
rear_wheel, (206,86) 
front_wheel, (255,86) 
Probability: 35.294% 
Accept (a) or reject (r)?r. 

Object: van 
rear_wheel, (206,86) 
front_wheel, (255,86) 
Probability: 19.048% 
Accept (a) or reject (r)?r. 

Feedback: van, Picture 111 
Feedback: car, Picture 111 
Removing: 111 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic112]. 

trafficl12 consulted 768 bytes 0.083354 sec. 
Editing picture: 112 
Searching picture: 112 for: car 
Searching picture: 112 for: van 

Object: van 
front_window, (210,110) 
rear_wheel, (171,132) 
front wheel, (221,131) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: van, Picture 112 
Feedback: car, Picture 112 
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Removing: 112 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic112]. 

traffic113 consulted 624 bytes 0.066687 sec. 
Editing picture:113 
Searching picture: 113 for: car 
Searching picture: 113 for: small_lorry 
Searching picture: 113 for: van 
Searching picture: 113 for: big lorry 

Removing: 113 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic114]. 

traffic114 consulted 864 bytes 0.1 sec. 
Editing picture:114 
Searching picture: 114 for: car 
Searching picture: 114 for: van 

Object: car 
front window, (51,133) 
rear_wheel, (27,146) 
front_wheel, (71,145) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Object: car 
front_window, (351,127) 
rear_wheel, (331,140) 
Probability: 91.667% 
Accept (a) or reject (r)?a. 

Feedback: van, Picture 114 
Feedback: car, Picture 114 
Removing: 114 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic115]. 

trafficl15 consulted 576 bytes 0.066699 sec. 
Editing picture:115 
Searching picture: 115 for: car 
Searching picture: 115 for: van 

Object: car 
front_window, (142,108) 
top, (149,106) 
rear_wheel, (119,123) 
front_wheel, (162,122) 
Probability: 100% 
Accept (a) or reject (r)?a. 
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Feedback: van, Picture 115 
Feedback: car, Picture 115 
Removing: 115 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: [traffic116]. 

trafficl16 consulted 528 bytes 0.066691 sec. 
Editing picture:116 
Searching picture: 116 for: car 
Searching picture: 116 for: small_lorry 
Searching picture: 116 for: van 

Object: small_lorry 
cab_top, (247,118) 
front wheel, (240,145) 
Probability: 100% 
Accept (a) or reject (r)?a. 

Feedback: small_lorry, Picture 116 
Removing: 116 
Bid list empty 

What now? 
(Enter "help." to view options) 
I: show_rules (car) . 

Set probabilities (PartSet, PatternSet, Featuresets,Matches) : 
[2,1], [1,1] ,23,8 
[3,1], [4,1] ,9,6 
[4,1], [5,1] ,10,8 
[3,2],[4,1],10,8 
[4,2],[5,1],15,14 
[4,3],[5,4],12,8 
[3,2,1], [4,1,1] ,6,6 
[4,2,1],[5,1,1],8,8 
[4,3,1],[5,4,1],8,6 
[4,3,2],[5,4,1],8,8 
[4,3,2,1], [5,4,1,1] ,6,6 

What now? 
(Enter "help." to view options) 
I: quit. 

yes 
1 ?-
% Prolog execution halted 
22 % 
script done on Wed Jan 2 15:48:51 1991 
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