

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

'.

.'

LOUGHBOROUGH
UNIVERSITY' OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

"

~V"T-' ~. \J. N ' ---- ----- ----- ---- -t-- _________ L. _____ -------

, ACCESSION/COPY NO.

_________________ ~m>.::r~~.t1:2~ _______________ ,'
'VOL. NO. CLASS MARK

30

f 5 r'1AY 1:;58 25 JUN 1999

28 JUN 1996

21 ,.II\!i>l\1 1!;!l7

1111111111111111111

LOAD BALANCING STRATEGIES FOR

DISTRIBUTED COMPUTER SYSTEMS

By

Wajeeh Uddin Nakhshab Butt

B.Sc.(Eng.), M.S.

A doctoral thesis submitted in partial fulfillment

of the requirements for the

A ward of the Degree of

Doctor of Philosophy

of Loughborough University of Technology

January 1993

@Wajeeh Uddin Nakhshab Butt 1993

"If""",,;!"" :)~,ro '-)'1, !.jt \ J''''~ ,.(it"~ '"

'). !'II r-t,,;, .; J ... ~)' ,11)'

,
1-------1
I" 0 "f-uo 7'1/,6 -''"'--''--~----

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis,

that the original work is my own except as specified in acknowledgements

or in footnotes, and that neither this thesis nor the original work contained

herein has been submitted to this or any other institution for a higher degree.

Wajeeh Uddin Nakhshab Butt

Abstract

The study investigates various load balancing strategies to improve
the performance of distributed computer systems. A static task al
location and a number of dynamic load balancing algorithms are
proposed, and their performances evaluated through simulations.
First, in the case of static load balancing, the precedence con
strained scheduling heuristic is defined to effectively allocate the
task systems with high communication to computation ratios onto
a given set of processors.
Second, the dynamic load balancing algorithms are studied using a
queueing theoretic model. For each algorithm, a different load in
dex has been used to estimate the host loads. These estimates are
utilized in simple task placement heuristics to determine the prob
abilities for transferring tasks between every two hosts in the sys
tem. The probabilities determined in this way are used to perform
dynamic load balancing in a distributed computer system. Later,
these probabilities are adjusted to include the effects of inter-host
communication costs.
Finally, network partitioning strategies are proposed to reduce the
communication overhead of load balancing algorithms in a large
distributed system environment. Several host-grouping strategies
are suggested to improve the performance of load balancing algo
rithms. This is achieved by limiting the exchange of load informa
tion messages within smaller groups of hosts while restricting the
transfer of tasks to long distance remote hosts which involve high
communication costs.
Effectiveness of the above-mentioned algorithms is evaluated by
simulations. The model developed in this study for such simula
tions can be used in both static and dynamic load balancing envi
ronments.

To my parents,

Insha Fatima and Munir Hussain

and

to the memory of my Uncle,

. N azir H ussain.

Acknowledgements

lwish to express my sincere thanks and gratitude to my supervisor, Profes

sor D.J. Evans, for his constant advice, interest and above all, encouragement

throughout my research, as well as his endeavours in reading the manuscript

of this thesis.

I would also like to convey my deep gratitude to the Ministry of Science

and Technology, Govt. of Pakistan, for their financial support without which

this thesis would never have been completed.

Eternal thanks to my parents, brothers and sisters, for their immense love,

encouragement and their sound belief in my success, without which this work

would have been inconceivable.

My bona fide thanks are conferred to my brother, Dr. S. A. Butt, for

his constant encouragement and support, throughout the duration of my

research.

Much appreciation goes to my wife, Guriya, whose dedicated love, faith

and reassurance, gave me credence to complete my writing up.

Contents

1 INTRODUCTION 1

1.1 Distributed Computer Systems 1

1.2 The Research Problem 3

1.3 . Aim Of The Study .. 5

1.4 An Outline Of The Thesis 7

2 BACKGROUND IN SCHEDULING THEORY 10

2.1 Introduction 10

2.2 The Scheduling Problem . 11

2.3 Basic Definitions 13

2.3.1 Resource Characterisation 13

2.3.2 Task System Characterisation 14

2.3.3 Centralized Versus Distributed. 14

2.3.4 Non-Preemptive Versus Preemptive 16

2.3.5 Task-Transfer Mechanism 16

2.4 Scheduling Algorithms 17

2.4.1 Optimal Scheduling Algorithms 17

2.4.2 Heuristic Scheduling Algorithms . 19

1

3 A REVIEW OF LOAD BALANCING STRATEGIES 20

3.1 Introduction...... 20

3.2 Static Load Balancing 23

3.2.1 List Scheduling 23

3.2.2 Graph-Theoretic Models 27

3.2.3 Clustering Techniques 31

3.3. Dynamic Scheduling 35

3.3.1 Dynamic Algorithms 36

3.3.2 Adaptive Algorithms

4 DESIGN AND IMPLEMENTATION OF THE SIMULA

TION MODEL

4.1 Introduction..

4.2 Simulator Design Issues . .

4.2.1 System Abstraction For Simulation

4.3 Simulation Model For Static Load Balancing .

4.3.1 Precedence Graph Initialization ...

4.3.2 Processor And Network Initialization

4.3.3 Data Input And Error Checking . .

4.3.4 Queueing And Event Handling.

4.3.5 Main Scheduler

4.3.6 Output Table .

4.3.7 Gantt Chart ..

45

50

50

51

52

58

58

60

62

62

63

65

65

4.4 Extensions To The Simulator For Dynamic Load Balancing . 70

4.5 Performance Metrics 76

5 A STUDY ON TASK ALLOCATION IN DISTRIBUTED

11

COMPUTER SYSTEMS

5.1 Introduction.......

5.2 Assumptions And Definitions .

5.3 The Task Allocation Heuristics

79

79

81

83

5.3.1 Simple Load Balancing Heuristic 83

5.3.2 The Precedence Constrained Scheduling Heuristic 85

5.4 Experimental Results .

5.4.1 Example 1 .

5.4.2 Example 2 .

5.5 Conclusions and Future Directions ,

88

89

95

· 100

6 DYNAMIC LOAD BALANCING USING TASK-TRANSFER

PROBABILITIES 102

6.1 Introduction.. · 102

6.2 Model And Assumptions . · 104

6.3 Effectiveness Of Some Simple Dynamic Load Balancing Strate-

gies · 110

6.3.1 Random Policy · 110

6.3.2 Threshold-Window Policy · 112

6.3.3 Performance Evaluation By Simulation · 115

6.4 Dynamic Load Balancing Using Task-Transfer Probabilities .. 127

6.4.1 Dynamic Task-Transfers Using Estimated Service Times128

6.4.2 Dynamic Task-Transfers Using The Combined Effect

Of Task Arrivals And Departures In A Distributed

Computer System. 132

6.4.3 Dynamic Task-Transfers Using Queue-Length As The

Load Index 135

III

7

8

A

B

C

D

6.5 Simulation Results And Discussion

6.6 Dynamic Load Balancing With Communications .

6.6.1 Performance Results

· 138

· 149

· 151

LOAD BALANCING WITH NETWORK PARTITIONING

USING HOST GROUPS 155

7.1 Introduction · 155

7.2 The Network Partitioning · 157

7.3 The Host Group Model . . · 160

·7.4 Effectiveness Of Host Group Strategies For Load Balancing. · 162

7.4.1 Intra-Cluster Load Balancing Strategy · 163

7.4.2 Inter-Cluster Load Balancing Strategy · 164

7.4.3 Membership-Exchange Strategy · 168

7.4.4 The Joint Membership Strategy · 171

7.5 Simulation Model And Performance Evaluation · 172

CONCLUSIONS AND FUTURE DIRECTIONS 188

8.1 Conclusions · 188

8.2 Suggestions For Further Research · 192

Inter-task Communication Times (Chapter 5) 210

Performance Measures (Chapter 5) 212

Important Data-Structures Used in Simulations 215

Selected Software Examples 217

iv

Chapter 1

INTRODUCTION

1.1 Distributed Computer Systems

A distributed computer system is composed of a collection of indepen

dent processor-memory pairs which are interconnected by a communication

network and logically integrated by a distributed operating system. The

communication subnet may comprise a geographically widely-dispersed col

lection of communication processors or of a local area network [Stankovic

1984].

Distributed computer systems have attracted increasing interest and have

been the topic of research for more than two decades now. With advances in

VLSI technology, the cost of microprocessors is falling substantially making

multiple processor systems more economical and highly attractive. Despite

the promising nature and the suitabili ty of application of distributed com

putation, serious academic and pragmatic problems arise which limit the

performance of distributed systems. Such problems need to be solved before

any assessment of the potential of this idea can be made. A distributed oper-

1

ating system appears to its users as an ordinary centralised system that runs

on multiple independent processors. The key idea in a distributed operating

system is to make use of the multiple resources in a distributed environ

ment invisible to the user. A distributed operating system is a program that

controls the resources of several computers connected with a network and

provides its users with an interface that is more convenient to use than the

underlying bare machine. In a true distributed system, users are not aware

of where their processes are run and files kept. Whereas, the design of a

distributed operating system is very vital in facilitating the users to effi

ciently exploit the resources of a distributed system, several factors present

in a distributed environment limit the performance of such systems. One

'of the most important physical limitations that effects the performance of

a distributed system is the interprocess communication, which depends on

the topology of the inter-connecting network and the link bandwidths. An

other fundamental problem in distributed systems is the lack of global state

information. It is generally a bad idea, from the point of view of reliability,

to collect complete information about any aspect of the system in a single

centralised table. This lack of up-to-date information makes things difficult

and requires new protocols to be designed for the purpose of collection of

information from distributed sources. Some of the important issues, in the

design of distributed systems, in which current research is proceeding are.

• Communication Primitives

• Na~ing and Protection'

• Fault Tolerance

• Resource Management

2

1.2 The Research Problem

One of the major research issues associated with the design of distributed

computer systems is load balancing. It is similar to the problem of task

scheduling in a centralised processor. At present, the solution of the problem

of scheduling in a single processor system is highly developed and automated.

Users need not worry about the architecture and the management functions

within the system and may concentrate on the actual problem at hand. With

the introduction of distributed computing, the problem of resource manage

ment extends to the discovery of all the resources in the system and their

efficient utilization. Users should perceive the entire distributed system as a

single integrated system and not be able to differentiate between accessing a

locally available resource from a remote one.

Load balancing is included in the area of resource management. This is a

policy used to allocate processor resources to a set of tasks which are being

executed in a multiple processor environment. Automatic allocation allows

user programs to be unaware of the amount of resources available at a certain

time, and allows a fair and consistent policy to be applied throughout the

system to optimise the allocation. Optimal load balancing is an NP-complete

problem which requires exponential time complexity [Ullman 1975]. There

fore, the alternative is to find a suboptimal or a heuristic algorithm for an

efficient and close to optimal load balancing policy. The objective of task

allocation is to allocate tasks among processors and to co-ordinate their par

allel execution in order to minimise total completion time and total inter-task

communication overhead. A task is a program module that is free to reside

on any processor in a distributed system. The problem of mapping a given

3

number of simultaneously executable tasks on a number of processors which

are available at that particular instant in such a manner so that a maximum

performance or a minimum task turn-around time is obtained is called static

load balancing. There are conflicting issues of limiting total communication

cost function and achieving the maximum parallelism by assigning tasks to

different processors. In order to take advantage of parallelism, tasks should

be distributed over as many processors as possible. On the other hand, the

communication cost introduced due to this parallelism may outweigh the

improved performance which is achieved through the use of multiple proces

sors. Precedence among the tasks, creation of new tasks, and size of the tasks

(in terms of the processor time and memory requirements) introduce further

complexity into the load balancing issue.

In contrast to this, dynamic load balancing has more realistic assumptions.

In this case, jobs! with unknown characteristics arrive at each geographically

distributed host in some unpredictable manner. This problem is different

than that of the static task allocation mentioned above. Under these as

sumptions, the load balancing is performed at a higher level in which several

tasks belonging to the same application are considered as a single job. The

objective of the task allocation algorithms used for these models is to im

prove the system-wide load balancing and job response times. To reflect the

frequently changing state of the system, load information amongst the hosts

is exchanged either periodically or on demand. Load balancing decisions are

based on the current system state information which is available at each host.

1 a job consists of one or more tasks communicating with each other

4

Majority of the research scientists in the past have concentrated on the

above-mentioned two types of scheduling problem. In the first instance,

the problem arises due to a conflict in achieving maximum parallelism by

load balancing and reducing the communication costs simultaneously. In the

second case, the following problems arise.

• Task execution times are not known in advance. There are no simple

ways to obtain good estimates of task execution times.

• Task arrivals, and hence the load on each host, are unpredictable.

• There is no global system state information available. For dynamic load

balancing, load information messages need to be exchanged frequently

amongst the hosts of the distributed system. The overheads involved

in collecting this information should be kept to a minimum.

• The load balancing algorithms should be simple, efficient and stable.

A complex algorithm may involve large overheads that outweigh the

potential benefits obtained from load balancing.

Several studies were performed in the past to solve the above-mentioned

problems. These studies were based on different sets of assumptions for the

task system and the communication network parameters. Load balancing in

distributed computer systems remains an open research problem and needs

further study to enhance the performance of such systems.

1.3 Aim Of The Study

The issue involving load balancing in distributed computer systems is a

complex one and several parameters need to be considered simultaneously

5

for an effective solution. It is very difficult to consider all such parameters

as it makes the computational model intractable and difficult to solve. In

the past, several static and dynamic load balancing algorithms have been

proposed to improve the performance of distributed computer systems. The

algorithms proposed in these studies consider a subset of these parameters

based on a number of assumptions. The strengths of these algorithms lie

in the nature of assumptions made about the distributed load balancing

problem. While this problem has been investigat~d by many researchers,

it has not been fully explored with all possible alternative approaches and

strategies. The complexity of load balancing algorithms and the potential

benefits which can be obtained from load balancing still remain questionable

issues.

In this study, a static load balancing and several dynamic load balancing

algorithms are proposed and evaluated for their performance in a distributed

computer system. A static task allocation heuristic is proposed to solve the

max-min2 problem. Its performance is compared with two other simple task

allocation heuristics.

The dynamic load balancing algorithms make task transfer decisions based

on the current state of the system. Each algorithm uses a different parameter

to estimate the load on each host. These estimates are used to find the

task transfer probabilities for transferring tasks between two hosts in the

system. The results indicate that good performances can be achieved by

using the queue-length iLlone as the load estimate on a host. Later, some

simple modifications were introduced to keep the communication costs as

2Maximizing parallelism and minimizing the communication costs

6

low as possible. The algorithms are simple and can be used for dynamic load

balancing very effectively.

Finally, a few simple network partitioning and grouping strategies are pro

posed. These add a new dimension to the solution techniques for the load

balancing problem. The effectiveness of such strategies is not fully explored

in this study.

An event-oriented simulation model is developed to study the performance

of the above-mentioned load balancing heuristics. Several important char

acteristics of both the deterministic and non-deterministic load balancing

models are incorporated into the design of the simulator.

1.4 An Outline Of The Thesis

The thesis is organized into eight chapters. A brief overview of the contents

of each chapter is outlined here. Chapter 1 provides a concise introduc

tion to distributed computer systems and some important issues related to

distributed computing that effect the performance of such systems. It also

describes the nature of the load balancing problem and the contribution of

this study.

Chapter 2 presents some important concepts in the scheduling theory as

sociated with this subject. It also gives the background of the scheduling

problem and some definitions useful for understanding the material presented

in this thesis.

7

Chapter 3 provides a comprehensive review of the related literature. All

the research undertaken in the area of load balancing has been classified into

a number of categories depending on the computational model used to attack

the problem of load balancing.

Chapter 4 provides the simulation model design and implementation de

tails. This simulation model is used in the subsequent chapters to study

the performance of the proposed algorithms. The task-transfer mechanisms

used and the overheads of load information distribution are also introduced

here. A number of performance metrics are required to evaluate the perfor

mance of load balancing algorithms. The two performance metrics used in

this study, average task response time and load imbalance, are introduced in

this chapter.

Chapter 5 presents a static task allocation strategy used to improve the

performance of deterministic task systems with high communication to com

putation ratios. The Precedence Constrained scheduling heuristic is pro

posed to minimize the inter-task communication times and to balance the

load across the processor network simultaneously. The performance of this

heuristic is compared with two other simple heuristics and demonstrated

through examples. The schedule completion time is used to measure the

performance of these heuristics.

Chapter 6 focusses on dynamic load balancing issues in a distributed com

puter system. It describes the queueing theoretical model used to represent

the non-deterministic load balancing in a distributed computer system com

prising of four independent hosts. Two simple load balancing algorithms,

8

one based on periodic load information broadcasts and the other based on

asynchronous load information messages, are proposed and evaluated. Next, ,

a number of probability-based dynamic load balancing algorithms, each us

ing a different load index, are proposed and their performances evaluated.

Later, simple modifications are suggested to improve the performance of these

algorithms by adjusting the task-transfer probabilities to minimize the com

munication costs. The performance metrics used are the average response

time, the load imbalance and the percentage task transfers.

Chapter 7 introduces some simple network partitioning techniques and

proposes several host-grouping strategies to reduce the communication over

head costs of the dynamic load balancing algorithms. By limiting the load

information distribution and task-transfers within a host-group, the scalabil

ity of load balancing algorithms can be improved and large communication

delays can be avoided.

Finally, Chapter 8 presents the conclusions and suggestions for further

research in this area.

9

Chapter 2

BACKGROUND IN

SCHEDULING THEORY

2.1 Introduction

This chapter provides the background study of multiprocessor scheduling

theory. In the case of multiprocessor systems, task allocation to different

processors is also considered as a part of the scheduling process. In this

study, only loosely coupled multiprocessors are considered. The work pre

sented in this thesis is aimed at finding efficient heuristics for task allocation

in a di';tributed computer system. The difference in a message passing mul

tiprocessor system and a distributed system is that of the inter-connection

network and the inter-processor communication delays. The task scheduling

function can be defined as the allocation of available processing resources to

a set of tasks over a certain period of time. Most of the earlier work in multi

processor scheduling is based on the deterministic scheduling theory. When

the deterministic or the stochastic theory is used, to specify the scheduling

10

parameters to evaluate the scheduling algorithms, it is referred to as the

deterministic or probabilistic scheduling theory respectively.

The problem of scheduling in a multiple processor sytem is known to be an

NP-complete in its general form [Ullman 1975]. When an optimal solution

cannot be found in polynomial time, scheduling heuristics are used to provide

fast sub-optimal solutions.

The work presented in this thesis concentrates on proposing new heuristics

based on both the deterministic and the probabilistic models of scheduling.

In this chapter, an attempt is made to give all the relevant information on

scheduling theory necessary to understand and evaluate the work presented

in later chapters. The scheduling problem and its background are briefly

described in the next section. A general computational model for determin

istic scheduling will be presented in the next section. The remaining sections
\

will provide definitions of the performance criteria used for evaluating the

scheduling algorithms and describe the computational complexity of such

algorithms.

2.2 The Scheduling Problem

The problem of scheduling was first encountered in the classic job-shop or

assembly line problems in Operations Research [cf. Coffman and Denning

1973]. There was a considerable amount of operations research on partially

ordered sets of tasks of interest in job shops. Later, these techniques were

applied to solve the problem of task scheduling in a multiple processor system

environment. The problem specified was to efficiently allocate and schedule

11

a partially ordered set of tasks, with known execution times, to a number

of identical processors. When the task system parameters are assumed to

be known and all the tasks are simultaneously available for execution, the

scheduling problem is categorized as deterministic or static scheduling.

The deterministic scheduling theory is applicable to a limited number of

applications. In a large number of applications, the task behaviour and the

inter-task communications among a set of tasks cannot be determined in ad

vance. For a more realistic representation of the task system parameters, the

probability models were used to capture the non-deterministic and unpre

dictable behaviour of tasks. This type of scheduling is categorized as prob

abilistic or dynamic scheduling. In the early 1960s, several attempts were

made to apply the results obtained from queueing theory to solve the prob

abilistic scheduling problem [Coffman and Denning 1973) [Krishnamoorthi

1966). Many researchers have used the term "load balancing" for multipro

cessor scheduling. Load balancing is achieved by balancing the load across

all the processors by using task allocation heuristics. The proper schedul

ing of tasks allocated to a processor can achieve increased performances.

Scheduling a number of heavily inter-communicating tasks, resident on dif

ferent processors, simultaneously reduces the cOmlnunication delays as well

as improves the task response times.

Currently, enormous research efforts are concentrated around the area of

dynamic load balancing in distributed computer systems. Sufficient work,

however, is also being carried out in the area of static task allocation and

scheduling in multiprocessor systems. A comprehensive review on dynamic

and static load balancing strategies will be presented in chapter 3.

12

A gener~l computational model for deterministic scheduling is presented

in the next section.

2.3 Basic Definitions

The computational models used to study the static and dynamic load

balancing strategies will be described briefly in chapters containing work

relevant to them. In this section, a few basic definitions are described that

are essential to the understanding of both static and dynamic scheduling

systems.

2.3.1 Resource Characterisation

The resources of a computer system are categorized into two classes, namely

shared resources and dedicated resources. The. computational units, i.ej pro

cessors, fall into the category of dedicated resources. There is a certain num

ber of dedicated resources of each type. A task cannot be executed on more

than one processor concurrently. Similarly, no other tasks can be executed

on a processor already occupied by a task.

The distributed computer systems are categorized as homogeneous and

heterogeneous computer systems. A homogeneous system is a: collection

of hosts l with identical hardware and software capabilities. On the other

hand, the hosts of a heterogeneous system have a number of incompatibili

ties. These incompatibilities arise due to different processing powers of the

hosts, operating systems and file servers etc ..

1 A host is an independent computer system on the network

13

2.3.2 Task System Characterisation

The task systems can be characterised in two different ways. In the first

case, the task system is represented by a single Directed Acyclic Graph(DAG)

[Coffman and Denning 1973J or a fully connected undirected graph [Stone

1978J. This task system consists of a set of co· operating and communicating

tasks that belong to a single application. In this case, the task execution

times and the inter-task communications are known and it is assumed that

all the tasks are available for execution after meeting the precedence con

straints. This type of task systems are used to study the performance of
• static scheduling algorithms in multiprocessor systems.

In the second case, a large number of applications are considered for con

current scheduling. The tasks are considered as independent entities. The

task arrival and task processing times are assumed as unknown. In these

systems the inter-task communications are not considered, as a task usually

represents a complete application. The scheduling problem is transformed

into a load balancing problem and the tasks are transferred among the pro

cessors to in'crease the utilization of the processing resources. The load in

formation estimates are exchanged amongst the processors periodically or on

demand. The transfer decisions are based on this load information.

2.3.3 Centralized Versus Distributed

If the task of collecting the system load information and making the load

balancing decisions is assigned to a single processor, it is called physically

non-distributed or centralized load balancing. On the other hand, if all the

processors in the system make a collective effort towards load balancing, it

14

is called physically distributed load balancing.

Several studies have been performed using the centralized load balancing

strategies [Ephremides et. al. 1980) [Hajek 1984) [Zhou 1988). Centralized

solutions are generally considered unattractive for the distributed systems.

It has been widely accepted that the centralized load balancing algorithms

tend to create performance bottlenecks and single points of failure. Also,

the performance of these algorithms degrades with any increase in the size

of the distributed system. However, [Zhou 1988) has shown that the best

solution is environment and problem dependent. The study indicates that

the centralized approach to information distribution and task placement may

be simple as well as efficient provided that the interprocessor communication

is relatively efficient and the system scale is limited (up to 50-100 hosts).

The distributed algorithms are considered a more suitable and natural

choice for load balancing in the distributed computer systems. These do

not cause communication bottlenecks as those introduced by a single central

load despatcher used in centralized load balancing algorithms. It also in

creases the system reliability and availabilty of system resources in the case

of any failures. If a processor fails, the load balancing process will continue

among all other processors in the system which is not the case in centralized

scheduling. The majority of current research is focussed on finding efficient

sub-optimal distributed algorithms for load balancing. The distributed al

gorithms are further classified into co-operative and non-cooperative. In the

former, the local schedulers at each processor co-operate and make decisions

that are based on the situation in the whole system. In the latter, the local

schedulers make decisions independently that are based on the locally avail-

15

able information. The majority of work presented in this thesis is based on

co-operative distributed load balancing algorithms.

2.3.4 Non-Preemptive Versus Preemptive

A scheduling algorithm is non-preemptive if a task which once starts ex

ecution, continues without interruption until its completion. On the other

hand, in a preemptive scheduling algorithm, once a task starts execution, it

can be interrupted only to be restarted later from the point of its last in

terruption. In non-preemptive scheduling algorithms, there is exactly one

execution interval for each task, while in those produced by a preemptive

one, there might exist more than one non-overlapping execution intervals for

each task.

2.3.5 Task-Transfer Mechanism

In dynamic load balancing algorithms, tasks are transferred from heavily

loaded to lightly loaded processors to achieve increased performances. Two

types of mechanisms are used to transfer the tasks; a task placement mech

anism and a task migration mechanism. In the earlier, once a task starts

execution on a processor, this task cannot be transferred and will stay on the

originating processor for its lifetime. In task migration, however, a currently

executing task can be transferred to a remote processor for further execution

to improve the load balancing. In the case of task placement, load informa

tion is used to create new processes at the lightly loaded processors instead

of trying to move running processes. In task migration, the code, data and

the environment of the running process ,are moved to resume the execution

of the process on a remote processor. These variables and data structures

16

related to the process are scattered inside the operating system and involve

large amounts of communication overhead which makes it infeasible with

out implementing special protocols for this purpose in the system. Actually

migrating running processes is trivial in theory, but close to impossible in

practice [Tanenbaum and Renesse 1985]. The task placement algorithms in

cur low overheads and can be easily implemented in a majority of operating

systems, whereas only a few operating systems in practice support task mi

grations. The load balancing algorithms proposed in this thesis assume task

placement model.

2.4 Scheduling Algorithms

A s~heduling algorithm is a procedure that produces a schedule for a given

task system. The efficiency and the performance of such algorithms varies

with the assumptions made about the task system and other system param

eters. There are a few optimal scheduling algorithms for restricted assump

tions of the task system and the number of processors available. In this

section, optimality of scheduling algorithms will be considered and special

cases of optimal and non-optimal algorithms will be presented.

2.4.1 Optimal Scheduling Algorithms

If a scheduling algorithm produces an optimal solution for every given

task system then it is called an optimal. algorithm. The number of possible

schedules for each task system depends on the number of tasks (n) in the

system. In the majority of cases, an optimal algorithm will go through an

exhaustive search of all schedules to find an optimal o~e. These algorithms

require considerably large computation times (exponential) and are not suit-

17

able for an environment where low response times are expected from such

algorithms. An optimal algorithm is considered efficient only if it requires a

reasonable computation time to produce an optimal solution. The complex

ity of such algorithms is bounded by a polynomial of small degree and the

algorithms are termed polynomial algorith,,!,s. There are few known polyno

mial algorithms for the scheduling problem with a severely restricted set of

assumptions. Polynomial algorithms are obtained in the following two cases.

• When the task graph is a tree and the tasks are assumed to have the

same execution time.

• When there are only two processors available with an arbitrary task

graph and tasks have identical executio~ times (see [Lewis and EI

Rewini 1992]).

However, the general scheduling problem has been reported to be an NP

complete problem. Also, the scheduling problem is NP-complete even for the

following simple cases.

• Scheduling an arbitrary task graph with unit-time tasks on an arbitrary

number of processors.

• Scheduling with two processors and an arbitrary task graph with tasks

having one or two. units of execution time (see [Lewis and EI-Rewini

1992]).

It shows that the scheduling problem in its simplest form is intractable and

cannot be solved in polynomial time. Therefore, to consider more realistic

static and dynamic task scheduling models, sub-optimal heuristic algorithms

18

are designed. In the next section, heuristic scheduling algorithms are briefly

discussed.

2.4.2 Heuristic Scheduling Algorithms

In the last section, it was shown that the efficient optimal schedules cannot

be designed even for the simplest cases of the general scheduling problem. ,
The scheduling problem becomes a lot more complex when the inter-task

and the inter-processor communications are considered along with an arbi

trary task graph and arbitrary number of available processors. The heuristic

scheduling algorithms provide near optimal schedules with low computational

complexity and easy implementation. These algorithms are easy to under

stand and provide reasonably good schedules in a small amount of time which

is very important for any process running as a part of the operating system.

Different heuristics are compared on the basis of efficiency and performance.

The time complexity of the heuristic algorithm is used as a measure of ef

ficiency and the performance is measured by finding how often the solution

falls near the optimal solution. Alternatively, different heuristics can be com

pared for a given performance index. A heuristic is said to be better than

another heuristic if solution falls closer to optimality more often or the time

taken by the heuristic in finding the final solution is less.

19

Chapter 3

A REVIEW OF LOAD

BALANCING STRATEGIES

3.1 Introduction·

Although the past two decades have seen major advancements in the field

of distributed computing, its evergrowing use has raised several issues which

are currently under study and are aimed to exploit the potential power of

distributed computer systems. A number of studies [Tilborg and Wittie 1981 J

[Stankovic 1984J [Tantawi and Towsley 1986J [Stankovic et. al. 1978J [Enslow

. 1978J have reported on the importance of the load balancing issue to enhance

the performance of such systems. This chapter provides a comprehensive

review of a wide variety of techniques and methodologies employed for load

balancing in distributed computer systems. The problem of load balancing in

distributed systems is similiar to the scheduling problem in a single processor

system [Coffman and Denning 1973J. However, as the work presented in the

present study is aimed at load balancing in distributed computer systems,

20

the latter will not be considered in our discussion.

Load balancing comes under the area of resource management. It is simil

jar to the problem of task scheduling in a centralised processor. Its objective

is to allocate tasks amongst processors and to co-ordinate their parallel exe

cution in order to minimise the total completion time and the total inter-task

communication overhead. A task is a program module that is free to reside

on any processor in a distributed system. Given a number of simultaneously

executable tasks and a number of processors at an instant, the problem of

mapping these tasks to the processors to' achieve a maximum performance

or a minimum task turn-around time is called load balancing. There are·

conflicting issues of limiting total communication cost function and getting

the maximum parallelism by assigning tasks to different processors. In or

der to take full advantage of parallelism, tasks should be distributed over

as many processors as possible. On the other hand, the communication

costs introduced due to such parallelism may outweigh the improved perfor

mance achieved through the use of multiple processors. Precedence among

the tasks, the creation of new tasks and the size of tasks (in terms of the

processor time and memory requirements) introduce further complexity into

the load balancing issue. Due to the conflicts in achieving the goals of maxi

mizing throughput, minimizing response time and keeping the load uniform,

many of the researchers try to evaluate different compromises and trade-offs.

Despite the fact that work performed to date is based on the concept of co

scheduling, which takes inter-process communication patterns into account

while scheduling to ensure that all members of a group run at the same

time. Other researchers have worked on a totally different concept of finding

clusters of tasks working together and placing these on the same machine

21

to reduce the costs of inter-task communication. Yet some other researchers

have tried to balance the load on all the processors by preventing a situation

in which some processors are overloaded while others remain empty. Each of

these different approaches to scheduling makes different assumptions about

what is known and what is most important. The people trying to run a group

of tasks on the same machine to reduce the communication cost assume that

any task can run on any machine, that the computing needs of each task

are known in advance and that the inter-task communication traffic between

. each pair of tasks is also known in advance. In contrast to this, the people

involved in dynamic load balancing have more realistic assumptions and as

sume that nothing about the future behaviour of a task is known. They are

not particularly worried about finding optimal algorithms with weak assump

tions, and instead are more interested in devising suboptimal algorithms or

. heuristics that can actually be used in real systems.

Recently, several models of distributed task scheduling systems have been

developed. Most of the work done is based on list scheduling [Adam et.

a!. 1974) [Blazewicz et. a!. 1986) [Rewini and Lewis 1990) [Price and

Salama 1990) [Shirazi and Wang 1988), queuing models, graph-theoretic mod

els [Bokhari 1979) [Lo 1984) [Indurkhya and Stone 1986) and Markov decision

theory, and is good for static load balancing with a few exceptions of dynamic

load balancing. Dynamic load balancing is a non-deterministic funCtion of

the current state and system parameters, which is an NP-complete problem

and cannot be solved in polynomial time complexity. As a result, most of

the designers have tried to attack this problem using heuristics.

22

3.2 Static Load Balancing

Most of the static load balancing algorithms are deterministic. For the pur

pose of static load balancing, it is assumed that the system consists of a fixed

number of tasks, each with a known processor time and memory require

ments. It is further assumed that the inter-task communication patterns

among a set of tasks is already known. These algorithms are designed for a

given topology of the underlying multiple processor network.

3.2.1 List Scheduling

Several optimal and sub-optimal list schedules have been proposed in the

literature. List schedules are classified as those schedules in which tasks are

ordered in a priority list for processing. Priority of each task included in the

list is determined by the scheduling heuristic applied. List schedules are best

suited to the scheduling problems where the task system is represented by a

precedence graph and the number of processors in the network is known.

[Adam et. al. 1974] provides a comparison of list schedules for parallel pro

cessing systems. The problem consists of scheduling a set of partially ordered

tasks on two or more processors. In this study, inter-task and inter-processor

communications are not considered. Several simple algorithms based on level

priorities and a random priority schedule are compared with the optimal

schedule. The level of a precedence graph is defined in a similiar way to pre

viously published work [Coffman and Denning 1973]. The results obtained

are suggestive that the algorithm based on Highest Levels First with Esti

mated Times (HLFET) performed better than heuristics based on Highest

Co-levels First with estimated and no estimated times and the random one.

23

HLFET also proved to be near-optimal in both the deterministic and non

deterministic cases. However, it is not clear why this heuristic is superior to

all others.

[Shirazi and Wang 1988] presents two static task scheduling heuristics with

assumptions similar to those described in [Adam et. al. 1974]. The first

heuristic function Heaviest Node First (HNF) assigns the highest priority to

the heaviest node at each level. This algorithm uses level by level information

of the precedence graph to distribute the tasks. The second heuristic is

based on the classical Critical Path Method (CPM) [Coffman and Denning

1973]. This heuristic is called Weighted Length (WL) and calculates the

priority of each task by comparing the weight of the tasks in the subgraphs

which are dependent on this task. A task with largest weighted length is

given the highest priority. Simulations were run for these two heuristics

and the CPM heuristic. Simulations carried out by the author suggest that

there is no significant difference among the performance of these heuristics.

However, it is indicated by simulations that the Weighted Length (WL) is

better than the other two. The complexity results show that the complexity

of HNF allocation heuristic is O(nlog n) while the complexity of WL and

CPM heuristics is O(n2). Therefore, considering the insignificant difference

in simulation results, it can be proposed that the HNF algorithm is a better

choice of the two.

A more recent work on static task distribution with comparatively more re

alistic assumptions for distributed systems has been described in [Rewini and

Lewis 1990]. The computational model included in this study consists of a set

of precedence constrained tasks with arbitrary communication among them

24

/

on a set of homogeneous processors taking contention into consideration. A

Mapping Heuristic (MH) has been shown to map. the tasks of the precedence

graph onto the given processor network. In a way similar to that described in

[Adam et. al. 1974], the level of each node is used to determine its schedul

ing priority. However, as the communication delays along the path of a node

are also considered in determining the level priority for a node, the problem

of finding levels could be considerably difficult if arbitrary communication

delays are considered. The performance of MH heuristic was demonstrated

through an example precedence graph obtained from an atmospheric science

application. In this example, constant inter-task communication times were

considered and a hypercube processor inter-connection topology was used.

However, it remains unclear how this heuristic will behave for precedence

graphs of other computation to communication ratios and for communication

times with larger variance. The effect of proposed scheduling heuristic was

also studied for different processor inter-connection topologies. Contention

arises when several tasks on different elements are waiting for· communica

tion across a common channel. This contention may have adverse effects on

the performance of a distributed system, if two communicating tasks were

scheduled on the processors that used this busy channel. [Rewini and Lewis

1990J have presented a modified MH heuristic which also takes into account

the communication channel contention at the time of making scheduling de-

clslOns.

[Price and Salama 1990] present several approaches to statically assign and

schedule the tasks in order to achieve maximum parallelism and minimum

communication overhead in both fully-connected and hypercubl" multipro

cessor networks. The computational model is similiar to the one in [Rewini

25

and Lewis 1990] except that communication resource contention is not con

sidered. Three simple heuristics are described. First heuristic is called the

list heuristic, in which its tasks are initially sorted in order of increasing total

communication. The reasoning for this sorting being that the task that will

be assigned in the very beginning will not be based on the cost of communi

cation with other tasks. Henceforth, they should be ones that communicate

least so that minimum information is ignored. Each task from the ordered

list is scheduled on a processor at the ~earJies~ time such that communication

among assigned tasks is minimised and also the precedence constraints are

not violated. Second heuristic is called the Cluster Heuristic and is. based

on clustering together of the tasks, with high communication costs and on

the same processor. First of all the list of task~ is sorted in the order of de

creasing communication costs. This is done to form the clusters of tasks with

high communication costs first. Each time a new pair of tasks is considered,

and if neither of the two is assigned then both are assigned to a least loaded

processor. If one task is already assigned, the other is assigned to the same

processor unless a specified load threshold has been exceeded. In case of

exceeding the specified load threshold for a processor, the task is assigned to

a least loaded processor. This load threshold is specified to achieve a certain

degree of load balancing, which prevents large clusters that would result in

poor utilization Of parallel processing. In the last phase of this heuristic, the

tasks are ordered within each cluster with respect to precedence constraints.

Also, sub sequences of tasks are arranged in time to enforce precedence con

straints among tasks that belong to different clusters. The last is called the

Exchange Heuristic and is based on the pairwise exchanges of tasks with

the goal of decreasing communication costs. Exchanges are made only if

26

precedence constraints are not violated. It is an iterative-improvement algo

rithm that begins with any initial feasible assignment of tasks to processors

and time-periods. At each iteration, a selection is made of that pair whose

exchange would yield the greatest improvement in the objective. Computa

tional results on a large number of test data are presented in this paper and

are consistent with the intuitive expectations about the communication costs

and schedule lengths. Overall, the List heuristic outperforms the other two

simple heuristic methods, producing both shorter schedule lengths and lower

communication costs.

3.2.2 Graph-Theoretic Models

A large number of algorithms for this type of scheduling use Graph-Theoretic

Models. The system can be represented as a graph, with each task a node

and each pair of communicating tasks connected by an arc labeled with the

data rate between them. [Stone and Bokhari 1978) have presented the al

gorithm for finding the optimal allocation of a fixed number of tasks on a

two processor system using the minimal cut method for network flow graphs.

They have modified the network flow graph by adding additional nodes for

the two processors and extending the arcs from each of the task nodes to the

processors. The weights of the new edges are such that the edge to one pro

cessor carries the execution cost of that task on the other processor. A cut

set in this graph is a collection of edges which if removed from the graph may

disconnect one processor from the other. Further details of this algorithm can

be found in [Stone 1978). Each cutset in the graph corresponds in a one-to

one fashion with the task assignment. The optimal assignment corresponds

to a minimal weight cutset. Also presented in their publication is a very sim-

27

pIe algorithm for calculating optimum assignment for tasks under varying

load conditions. The assumptions made in the above mentioned work that

all system parameters are fixed except the load on a processor, which are not

very realistic assumptions in terms of dynamic scheduling. The basic idea is

that for systems in which a single processor load factor is the only variable

parameter, optimum assignments can be made by calculating all critical load

factors ahead of time and by comparing the computed load factors against

the actual load factors experienced at a certain time. A major problem with

these algorithms is the difficulty faced while finding an optimal assignment

in situations where either or both processors have memories of limited size.

This idea of cutset used for two processor systems is extended even further

. for three processor systems by defining the notion of a tri-cutset. The ba

sic idea behind this algorithm is to run a network flow algorithm between

each possible pair of processors in the graph. A tri-cutset in a graph with

three processors is a subset of arcs of a graph which if removed partitions

the graph into three distinct subgraphs, each with processor node of its own.

Actual details of the algorithm are complex and are mentioned in [Stone

1978J. ·whereas it finds the minimum tri-cutset very efficiently for almost

all graphs. There are some graphs for which the algorithm fails to find the

optimal assignment, but it does help to indicate that a suboptimal solution

exists. [Stone and Bokhari 1978J present a dynamic assignment problem for

a two processor case which is summarised in the next section.

[Lo 1984J presents an algorithm which operates on the network model of

the n-processor system based on a known result [Stone 1977J. This algo

rithm consists of three parts namely,: (1) ITERATIVE, (2) LUMP, and (3)

GREEDY. In each iteration of Part 1, the Max Flow/Min Cut Algorithm

28

is applied for each processor node to determine the subset of tasks assigned

to each node. Each iteration might result in a partial assignment such that

there remain some tasks which are left unassigned at the completion of each

iteration. A new graph is constructed with the remaining unassigned tasks.

This is repeated until the assigning of all tasks is completed, none is left for

assigning in the last iteration. Proofs of the fact that no two processors are

assigned the same task and the iteration task does halt are presented in [Lo

1983]. Part 2 of the algorithm computes a lower bound on the cost of an

optimal n-way cut for the remaining network under the condition that more

than one processor be utilised in the corresponding assignment.

L =The lower bound on the cost of an n-way cut

t =A task

Trem =A set of remaining tasks

C(P., Pi) =The cost of the minimum cut for some arbitrarily chosen two

processors.

The lower bound is compared with the cost of assigning all the remaining

tasks to a single processor, and the cheaper of the two is applied. This resul

tant assignment in combination with the assignment from Part 1 is optimal.

Part 3 of this algorithm locates clusters of tasks among which communication

costs are large. Tasks in a cluster are then assigned to the same processor.

The resultant assignment in this case might be suboptimal.

29

The above mentioned algorithm uses the sum of total execution and com

munication costs as the performance criterCla which is to be optimised. In

this case, no explicit effort is made to utilise more processors in order to

reduce the response time of the set of tasks. The use of total execution

and communication costs as the performance measure often results in as

signments which utilise only a few of the available processors. In the next

algorithm, [Lo 1984) adds interference costs to the performance criteria of

algorithm Iji.ej sum of execution and communication costs. Interference cost

is categorised in two types, that is processor-based interference costs and

communication-based interference costs. Processor based interference costs

involve contention between tasks for the resources of the processor to which

the tasks are assigned, they incur task switching overhead, synchronization

for access to shared resources, cpu time and, I/O etc. Communication-based

interference costs are due to the contention for message buffers and for syn

chronization for message-passing. These in turn depend on the inter-task

communication services provided by the processor involved in order to send

and receive messages. The last algorithm presented by Lo considers the

problem of task assignment to minimise total execution and communication

costs subject to a constraint on the number of tasks which are assigned to

each processor. Simulation results presented in the same paper indicate that

there are advantages as well as disadvantages to each of the above-mentioned

performance criteria which is the simplest and which provides a good mea

sure of the global resource usage. However it does not provide the required

degree of parallelisation and hence the response time of the set of tasks is

high. Although an addition of interference costs makes a better utilization of

all processors and improves the overall performance but it introduces a great

30

deal of complexity to the problem, because the jobs of measuring interference

costs with a reasonable accuracy is very difficult.

3.2.3 Clustering Techniques

. [Gylys and Edwards 1976) whose work describes various clustering tech

niques for efficient workload partitioning on a distributed system. Their

work is amongst the earlier efforts in exploring the clustering methods. Sim

ple clustering heuristics were applied. Every pair of processors was marked as

eligible for fusion into a single processor. Only in cases, where the fusion of a

pair of processors into a single processor would eliminate the greatest amount

of communication traffic, then the fusion is performed and the workloads are

coalesced. The pair that could not be fused is eliminated from the list of

eligible pairs. The second heuristic consists of assigning an initial centroid

for each processor. Distance is calculated from the centroid of each cluster

to the program that needs to be assigned. This program is assigned to the

nearest cluster and the cluster centroid is adjusted accordingly. This study

indicates that non-hierarchical cluster analysis techniques produce good sub

optimal solutions .. Nevertheless, clustering methods may fail to produce a'

good solution for situations where the hardware resources are tight relative

to the workload.

[Efe 1982) suggests a Module Clustering Algorithm (MCA) and a Module

Re-assignment Algorithm (MRA). that work together for load balancing in

a distributed system. MCA is used to form module clusters 'based on a

criteria of minimizing on the total inter-module communication costs. After

the initial assignment of these module clusters, if the load is unbalanced

across the distributed system, MRA is activated for the load balancing. This

31

algorithm works sufficiently well for most of the cases, fails only in some

special cases.

[Price and Krishnaprasad 1984] present heuristics for software allocation in

heterogeneous distributed computer systems. Heuristics based on iterative

assignment-improvement, quadratic programming, and clustering methods

are described. In this section, I will only consider the clustering heuristic

in detail. Clustering algorithm is carried out in two phases. In the first

phase, pairs of tasks are considered in the order of decreasing inter-task

communications. If none of the tasks in the pair is already assigned, both

are assigned to a processor that improves the overall completion time of the

schedule. In situations where one task in the pair is already assigned, the

other task is also assigned to the same processor. In the second phase, tasks

still unassigned after the completion of first phase, are allocated to processors

on the basis of least execution costs and memory capacity constraints. The

performance of clustering heuristic was studied for different computation to

communication ratios for the task system. Clustering produced very good

results for problems with high communication to computation ratios.

Although [Price and Salama 1990] suggest several heuristics for task al

location in a homogeneous distributed system. I will only consider cluster

heuristic for this discussion. Cluster heuristic presented in this paper is

designed to cluster the tasks for minimizing the inter-task communications

while preserving the precedence constraints among the tasks. Tasks which

are sorted in the order of decreasing pairwise communications in the first

phase are assigned to the processors in the next phase. If one task in the

pair is already assigned, the other task is assigned to the same processor.

32

If none of the tasks is assigned, both are assigned to the same processor.

Every time a task is assigned to a processor, its load is compared to a spec

ified load threshold. If the processor load exceeds the threshold value, the

new task is assigned to the least loaded processor in the system. This helps

to keep the load balanced across the distributed system. Next, all the tasks

within the clusters are arranged to satisfy the precedence constraints. Finally,

some tasks are shifted to later time periods to enforce precedence constraints

among tasks that belong to different clusters. The tests performed suggest

that the cluster heuristic tends to cluster tightly-coupled tasks and hence

may produce lower communication costs at the expense of longer schedule

length. With the incorporation of load balancing constraint, schedule length

can be improved.

[Wu and Sweeting 1992] introduce a new approach for static load balanc

ing. This approach uses clustering techniques to solve the task assignment

and network structure problem at the same time. Such heuristics can be

efficiently utilized for the distributed systems with re-configurable message

passing networks such as those in transputer networks. Task clustering and

re-assignment techniques, similiar to the ones described in [Efe 1982], are

used for the assignment of task clusters to processors and to load balancing.

A Link Number Reduction Algorithm (LNRA) is used to find the suitable

network structure for the proposed task assignment. Finally, task schedul

ing is performed to arrange tasks within one processor or amongst different

processors to minimize idle time which could be spent in waiting for com

munications. At the time of task assignment and scheduling, the precedence

constraints among the tasks are not considered. No performance measures

are provided for these algorithms. There applicability for various scheduling

33

problems is not clearly described.

[Ousterhout 1982) presents several algorithms based on the concept of co

scheduling. The author takes into account various inter-task communication

patterns and collectively schedules all such tasks which belong to a given

group. A group of tasks consists of all those tasks that communicate with

each other. It is assumed that a sufficiently large number of machines are

available· to handle the largest group. It is also assumed that each such

machine is multiprogrammed with N slots. The algorithm described uses a

conceptual matrix in which a column consists of all the tasks that are in a

particular slot of different machines. The basic idea is to have each processor

use a round-robin scheduling algorithm with all processors first running the

task in their slot 0, then slot 1 and so on. To keep the time slices synchronised

among all the processors of the distributed system, a broadcast message can

be used for task switching. Several other improvements on this algorithm

are described in the same publication. One of these breaks the matrix into

rows and concentrates all these rows to form a single long row. If there are

'n' number of machines then each of the 'n' consecutive slots belongs to a

different machine. To allocate a new task group, an n slot wide window ·is

laid over the long row in such a manner that the left most slot inside the

window becomes full and the slot outside the left most edge of the window is

empty. In cases where the number of empty slots available is not sufficient for

all the tasks on the task group the window is moved by one slot to the right.

This algorithm is repeated until sufficient empty slots become available in

the window for all the tasks on the task group. Ousterhouts' paper discusses

several other methods in detail and presents some performance results.

34

3.3 Dynamic Scheduling

Efficient static scheduling algorithms may provide optimal performance

with the assumptions that all parallel tasks are known 'a priori'. This type

of scheduling is not very efficient for real time systems, in which a parallel

. computation is modelled by a dynamically created task precedence graph.

During the lifetime of a distributed task, it may spawn new tasks or destroy

the current tasks. This new set of tasks needs to be dynamically mapped

onto the network nodes using only partial knowledge of the global network

state. This scheduling problem is considerably more difficult than the already

difficult static scheduling problem. Algorithms for dynamic task scheduling

are classified as either placement or migration schemes [Reed 1984]. A task

placement algorithm assigns tasks to nodes before the task begins execution.

All the tasks execute where placed initially, even if moving tasks might re

duce the load imbalance. A task migration algorithm can move tasks after

their initial placement. Migration algorithm might seem superior, but these

involve great overheads in moving the task execution state. The hardest

part is not moving the code, the data and the registers, but moving the en

vironment such as the current position of the open files, pointers and file

descriptions etc. All these problems are related to moving variables and data

structures that are scattered inside the operating system. The superiority

of placement or migration depends on the structure of the parallel compu

tation. In the present discussion on dynamic scheduling techniques, some

quasi-dynamic algorithms that lie somewhere in the middle of the spectrum

between static and dynamic algorithrris will also be considered.

35

3.3.1 Dynamic Algorithms

[Chow and Kohler 1979] have used the queueing network model for the

performance study of a heterogeneous multiple processor system. Both the

cases ora deterministic and a non·deterministic routing are considered. In

the non-deterministic case, each newly arrived job selects one of the proces

sors with a fixed branching probability. Since the branching probabilities are

fixed, therefore it can be argued that the solution is non-deterministic but

not a dynamic one. For dynamic routing strategies, these branching proba

bilities must change over time thus reflecting the load changes in the system.

The branching probabilities are assumed to be directly related to the service

rate of each processor in the system, independent of other state parameters.

Authors have compared and analyzed several adaptive job routing strate

gies. Their studies indicate that queueing network models based on static

non-deterministic branching probabilities may be inadequate for modelling

distributed systems employing the dynamic load balancing policies.

[Smith 1980] presents· the earliest work on task allocation in distributed

systems using bidding algorithms. A contract net protocol was designed to

provide a mechanism for interaction between nodes with tasks to be executed

and nodes ready to execute tasks. A manager is responsible for monitoring

the execution of a task and processing the results of its execution, whereas

a contractor is responsible for the actual execution of the task. A node can

take either role dynamically during the course of problem solving. In brief,

available contractors evaluate the task announcements from the managers

and submit bids for the suitable ones. The managers evaluate the bids and

award contracts to the appropriate nodes. Different criteria can be used for

36

estimating the value of a bid. The overheads involved in such algorithms

depend on the level of complexity used for implementing the negotiation

process.

[Reed 1984J investigates the behaviour of different types of inter-connection

networks under varying workloads and the feasibility of distributed schedul

ing. The work presents results of a large scale simulation study and es

tablishes some important features for dynamic schedulers. Some general

observations from his simulation results are given below.

• Selection of a particular network must be made with a knowledge of

communication patterns and task sizes required by an algorithm.

• The maximum task branching factor, which means how many tasks can

. be formed by a task at a certain time, has to be constrained depending

on the degree of a node in the network (network connectivity).

• Mean ratio of computation to communication time must be considered.

• Dynamic task scheduling using only locally available information seems

feasible for the class of algorithms represented by dynamically changing

precedence graphs.

• For newly created tasks, it is important to assign the task to the nodes

that are near to the point of task creation.

Despitethe above observations [Reed 1984J did not propose any specific al

gorithms, but suggested that heuristic algorithms can be applied for efficient

dynamic scheduling.

37

[Gao et. al. 1984] have proposed two algorithms to equalize loads on hosts

in a homogeneous distributed computer systems. A periodic load information

distribution protocol is used and the tasks are transferred once during each

load update interval. The task arrival rate and the total amount of unfinished

work on each host are used as the load estimates. Average response time and

load imbalance are used as the performance metrics. A cost function compris

ing of number of task transfers and the inter-processor communication cost

between two hosts is rriinimized using the linear programming techniques.

[Tilborg and Wit tie 1981] describe a distributed scheduling technique called

the wave scheduling that maps dynamically created groups of tasks onto mul-

, ticomputer network nodes which are readily available. The positive aspect

of wave scheduling is that it doesn't make any assumptions about the arrival

of tasks, inter-task communication patterns and task resource requirements,

which makes it more attractive. On the other hand, the negative aspect of

wave scheduling is that it does not permit dynamic creation of tasks. Wave

scheduling uses the concept of task forces, which consists of a group of co

operating tasks. These task forces can not create new tasks after they have

begun execution. In wave scheduling, the processing nodes are arranged hi

erarchially by assigning a manager to a small subset of nodes. In cases where

a large number of resulting managers exist, these are further subdivided by

the assignment of managers on a higher level in the tree and so on. Such

management of the hierarchy does not necessarily correspond to physical con

nections between nodes. To avoid communication bottlenecks, each node can

only exchange control information one level upward or downward. A man

ager node at each level of the hierarchy maintains only the summaries of the

resource information known to its subnodes. The simulation studies [Tilborg

38

Super-manager

Managers

Managers

Figure 3.1: Manager Hierarchy in Wave Scheduling

and Wittie 1981] suggest that hierarchies with efficient communication paths

can be created.

As mentioned above, each of the managers keeps information about the

available number of the computation nodes in their subtree. If we suppose

that a task force needing S nodes is created at an arbitary node and K is the

fraction of idle nodes that can be safely scheduled. At an arbitary time t, a

manager might schedule task forces containing no more than

S = K[1 - Util(t)]W tasks

39

Util(t) is the fraction of computation nodes, in a subtree of W nodes,

that are being utilised during a given time t.

If a task force is created at a manager which does not have the required·

number of nodes to schedule all tasks, the request is passed up the tree until a

manager with sufficient available nodes is found. On the other hand, if a task

force is created at a manager which has surplus number of available nodes

than those which are actually required, this request is passed down the tree

until it reaches a manager that minimally satisfies the requirements. Since the

children of manager nodes are also managers except those at the leaf nodes of

a tree, there is a competition amongst the managers of a subtree for acquiring

the computation nodes. If S nodes are required to schedule a task force, a

manager usually reserves R 2: S nodes. A request for R nodes is divided

among the submanagers of a task force manager and is propagated down the

hierarchy as a wave of requests, hence the name wave scheduling. A request

generated from the parent takes precedence over the requests generated at the

local node. When the request reaches the lowest level, managers then reserve

as many of the requested nodes as possible. These managers then tell their

managers about how many nodes were reserved. Managers at each level await

the responses from their submanagers before advising their parent manager

about how many nodes were reserved. After these results are propagated

to the requesting manager, and the sufficient nodes are not reserved, the

scheduling pass fails and this manager issues a command releasing all the

nodes. At a later time, the task force manager will make another attempt.

If the requesting manager fails, even after several attempts, it will pass the

task force upward to its parent and the process for reserving nodes will be

repeated. There are two important factors that determine the performance

40

of wave scheduling.

• The management hierarchy should be arranged such that the commu

nication delays are minimised .

• Reservation costs for the computation nodes should be low;

[Barak and Shiloh 1985] introduce three algorithms that work together for

dynamic load balancing in a distributed computer system. These algorithms

have been designed for their use in MOS (Multicomputer Operating System)

described in [Barak and Litman 1985]. Barak proposes a pre-emptive load

balancing algorithm for a multicomputer system having a homogeneous node

architecture and a communication network that completely connects all the

nodes by allowing direct communication between any pair of nodes. They

introduce a local load algorithm, used by each processor to monitor its own

load; the exchange algorithm, for exchanging load information among the

processors, and finally the task migration algorithm that uses this load in

formation to dynamically migrate tasks from overloaded to underloaded pro

cessors. During the course of execution, if the workloads of the processors

become unbalanced, a task can be migrated to an underloaded processor to

continue its execution. This algorithm utilises the task migration feature of

MOS to reduce the response time and hence increase the overall performance

of the system. Measurements of the instantaneous processor load show rapid

fluctuations, which might mislead to inaccurate processor load information.

A processor might indicate a low load value, since at the time of measure

ment all the tasks were waiting for the completion of I/O operations. A short

time later, a task might migrate from a loaded processor to this processor

and find that the load of this processor is at a higher level than the processor

41

from which the task migrated. To avoid such cases, the algorithm descibed

uses an average value of load over a certain period of time. Further details of

these algorithms and the performance results, related to MOS, can be found

in [Barak and Shiloh 1985].

[Lin and Keller 1987] proposed and analysed a class of distributed schedul

ing algorithms based on gradient planes. In such algorithms based on gradi

ent plane, an idle node requests tasks from its immediate neighbours, which

are directly connected to it. If any of the neighbouring nodes is over-loaded

with excess tasks awaiting execution, a task is transferred to an idle node.

If none of the neighbours is overloaded, the request for tasks is modified and

propogated to more distant nodes. A potential is associated with each node

based on its current load. Idle nodes, being least busy, have the lowest po

tential. Excess tasks flow along gradients to these nodes of lowest potential.

There is no actual implementation of such an algorithm but several simu

lations on randomly distributed data are performed to assess the efficiency

of this algorithm. The gradient model of distributed scheduling does not

readily I accommodate a collection of co-operating tasks.

[Wang and Morris 1985] have presented and compared several source

initiative and server-initiative load sharing strategies with a varying level

of information exchange among the nodes. It has been indicated that server

initiative algorithms have the potential of outperforming source-initiative al

gorithms for the same level of information available at each node. It has

shown that the server-initiative strategies degrade more gracefully under

server failures since a failed server will cease to request more work.

42

[Stankovic 1985] has proposed and analyzed an adaptive decentralized job

scheduling strategy based on an application of Bayesian decision theory. This

strategy devides the scheduling function into two parts: a decentralized job

scheduler (DJS) and a decentralized process scheduler (DPS). The heuristic

used for DJS was very simple and was run infrequently to keep the overhead

costs low. A DPS was proposed to deal with multiple modules of a job in

execution (i.e; processes). The heuristic suggested for DJS stores a table of

maximizing actions at each node. Each controller informs a centralized com

ponent of its true state and observed state periodically. This information

is used to dynamically recalculate the individual probability distributions

needed by each of the controllers. Heuristics were tested for different param

eter thresholds and their performances were compared. Both the static and

the dynamic models for probability assignments were studied.

[Leland and Ott 1986] performed an exhaustive study of process behaviour

in the VAXjUNIX1 environment and used this information to evaluate the

performance of load balancing with process migration and initial placement

strategies. The results showed good performances for simple load balancing

heuristics under workloads reflecting the actual behaviour of processes. The

stability and the scalability of the proposed heuristics was not considered in

their study.

[Zhou 1988] has studied dynamic load balancing using a simulation model

driven by job traces collected from VAXjUNIX environment. Several repre

sentative load balancing algorithms were studied under moderate to heavy

loads. This study revealed that load balancing algorithms using periodic and

1 UNIX is a registered trademark of AT&T Bell Laboratories

43

non-periodic information distribution mechanisms yield comparable perfor

mances. It was also observed that the scalability of load balancing algorithms

is limited to a few tens of hosts. Furthermore, the results indicate that the

centralized approach to load distribution and job placement may be simple

and efficient when the inter-processor communication is relatively efficient

and the system scale is limited.

[Perihelion 1989] provides support for coarse grained parallelism, in which

the smallest unit of parallelism is called a task. A task is a self-contained

unit which has been separately compiled and linked. A group of tasks re

lated in this manner is called a task force. A piece of code known as the Task

Force Manager (TFM) is responsible for mapping these task forces onto the

available processors in the most efficient possible way. The Task Force Man

ager is a distributed server and it is assumed that each of its components

provides some information about its resource requirements. The Task Force

Manager is a distributed server. It is hierarchially organised and consists of a

number of identical servers distributed throughout the network. Each of the

TFMs controls a different area of the network. TFM analyzes the current

state of the network and distributes the component tasks of the task force to

the most suitable processing elements. The criteria for distribution include

the resource requirements of particular component tasks, connectivity of the

task force, and the current status of the network. It is not described what

heuristics are used for scheduling, however it seems that the heuristics used

are very much similar to the wave scheduling techniques described earlier in

this chapter. Also it is not clear how the current network status is measured

and what factors are considered. Further, it does not state how the inter-task

communication patterns and other resource requirements for the titsk force ,

44

are estimated. It is also not shown how the heuristics used for the task force

manager scale with the increasing size of the hierarchy.

[Mirchandaney et. al. 1990b) have analyzed the effects of delays on simple

load sharing strategies in distributed systems. The load sharing strategies

considered were based on probe limits for searching an eligible host for load

balancing. The communication delays in tranferring tasks were assumed

to be non-negligible. Forward and reverse probes represented the source

initiated and server-initiated algorithms respectively. The results indicated

that for low to moderate loads and high transfer delays, load balancing was

not beneficial. However, for moderate to high loads, substantial benefits are

obtained from load sharing even at high transfer delays. It was also observed

that an algorithm that utilizes both the forward and reverse probes gives the

best performance, but generates high probing overheads.

[Blake 1992) studies the problem of assigning independent tasks in a multi

computer system to minimize completion time. It was assumed that each task

requires execution on a single processor and an estimate of the tasks' maxi

mum execution time is available. Several dynamic load balancing heuristics,

differing in efficiency and effectiveness, were examined. The results indicate

that in many situations, a more complex scheduling algorithm fails to out

perform relatively simpler schedulers.

3.3.2 Adaptive Algorithms

Adaptive algorithms constitute a subset of above-mentioned dynamic al

gorithms. In adaptive algorithms, the system state information may be used

to modify the parameters of the algorithm, or even to choose which load

45

balancing strategy is to be used. As a simple example, sender-initiated al

gorithms tend to perform better than the receiver-initiated algorithms when

the overall system load is low. When the system load is high, the sender

initiated algorithms perform disasterously. Therefore, an adaptive algorithm

might choose to follow a sender-initiated strategy when the system load is

low, and may switch to a receiver-initiated strategy when the load becomes

high. Some of the adaptive load balancing algorithms are described below.

[Bryant and Finke11981] have described a new algorithm based on a load

estimation method, a co-operation policy and a load balancing policy. Job

transfers are achieved through process migration. Load estimates are ob

tained from the remaining processing time of a job. Four different methods

are described to estimate remaining processing times. Co-operation policy

is used to form temporary pairings between processors. This policy helps to

reduce the overhead which is due to periodic unlimited broadcasts. Load es

timation policy and the co-operation policy are utilized in the load balancing

process. Current load estimates are used to form pairs that differ greatly in

load. This algorithm is very complex and it is not clear if the performance

gain is worth the added complexity.

[Livny and Melman 1982] have presented three dynamic load balancing al

gorithms for a homogeneous broadcast distributed system. Each host in the

distributed system is modelled as an M/M/l queue [Kleinrock 1976]. The

necessity of load balancing process in a distributed system is indicated with

the help of analytical results. It is shown that for more than 10 servers in a

queueing system, almost all the time a customer is waiting for service at one

server while another server in the system is idling. The three algorithms are

46

compared with the extreme cases of no load balancing (independent M/M/1

queues) and ideal load balancing (M/M/N queues). For all the three algo

rithms, expected turn-around time and channel utilization are compared for

varying parameters, such as number of servers and server utilizations. Each

algorithm performs well under a certain set of system parameters.

[Krueger and Finkel1984) have proposed a strategy where jobs are assigned

to the hosts in such a way that each host has nearly the same workload.

The jobs are transferred from an above-average-load to a below-average-load

processor.

[Stankovic 1984a) presents three simple adaptive load balancing algorithms.

All these algorithms are compared under light, moderate and heavy load con

ditions. Communication delays across the subnet are assumed to be constant

and the task transfer delays are derived from communication delays in the

subnet and are proportional to the size of the job being transferred. It was

shown that the tuning was necessary for improved performances and should

be adaptive. Additional tests were performed by varying the cost incurred

by the scheduling algorithms and its effect on the response time was studied.

[Ch~u and Abraham 1982) developed an algorithm to determine a min

imal cost task-processor assignment for a given heterogeneous distributed

system. A distributed program is represented by an operational precedence

graph that describes probabilistic branching as well as concurrent execution

in the program. Dynamic task execution is modelled with a continuous-time

. discrete-space semi-Markov process with rewards[Kleinrock 1975). This al

gorithm is not purely dynamic as it is assumed that all the required data

47

is available. However, it does capture the dynamic behaviour of distributed

programs.

[Eager et. al. 1986] provide the analytic model to compare the perfor

mance of simple adaptive load sharing policies with the complex ones. Two

simpler load balancing policies are compared with a more complex policy that

uses more state information. The important result of this paper is that the

complex policy does not perform significantly better than that of the simpler

policies. This suggests that a more complex usage of state information is of

little benefit. It is also established that less complex policies are inherently

less susceptible to instability due to processor thrashing.

[Mirchandaney et. al. 1990] have proposed two adaptive load sharing al

gorithms for heterogeneous distributed systems. Two types of heterogeneous

models are studied. In the first type the hosts have the same processing rates

but arrival rate of the local jobs at hosts may not be the same. In the second

case arrival rates are the same whereas the processing rates may differ. The

two algorithms are called Forward and Reverse probe algorithms depending

on whether the algorithm is activated at the arrival of an external job or de

parture of a completed job at a host. The probe limit of these algorithms is

adjusted dynamically to improve the response times and reduce the unneces

sary overhead due to frequent probes thus making these algorithms adaptive.

These algorithms were analyzed by modelling each host by a Markov chain.

The performance of these algorithms is measured analytically and simula

tions were run to validate the analytical results.

48

The work was aimed to survey various techniques which have been de

veloped for load balancing in the multiple processor system. Efficient load

balancing techniques provide higher performance as these help improve the

response time for tasks in multiprocessor systems.

In this chapter, both the static and dynamic scheduling techniques were

discussed. In the case of static scheduling, the problem of load balancing

is reduced to a problem of mapping tasks onto the available network nodes.

In static algorithms, it is assumed that a complete future knowledge of be

haviours of the program is available. Despite the assumption of available

information about the inter-task communication patterns, the scheduling

problem is still difficult, because usually the task communication patterns

do not exactly match the network node connectivity. Many researchers have

attacked the static scheduling as a graph-theoretic problem. Most of this

work is directed towards finding the clusters of tasks with tight coupling by

partitioning the graph into a number of subgraphs (equal to the number of

available processors). Due to the nature of the assumptions made in static

scheduling, it has no potential use in the real systems with tasks showing

dynamic behaviour.

The researchers doing load-balancing typically make the realistic assump

tion that nothing about the future behaviour of a task is known and many

diverse techniques have been developed for this type of scheduling. Dynami

cally created tasks are assigned to network nodes in real-time by a distributed

scheduling algorithm executing on the multicomputer network. Most of the

algorithms, developed so far, do not take task migration into consideration

due to a large amount of overhead associated with it.

49

Chapter 4

DESIGN AND

IMPLEMENTATION OF

THE SIMULATION MODEL

4.1 Introduction

This chapter provides the design and implementation details of the sim

ulation model developed for the performance study of different scheduling

techniques in a distributed computer system environment. The simulation

model so provided can be used to develop new heuristics for efficient load

balancing and scheduling of multiple processor systems. All the important

features required by several load balancing algorithms are incorporated in

the design of this model. The design efforts are concentrated at capturing

the characteristics of both the deterministic and the probabilistic models for

load balancing. Routines are also provided to simulate the communications

and task transfer facilities in a dynamic load balancing enviroment.

50

Several simulation modelling approaches are available for studying the per

formance of computer systems. The two most commonly used approaches

are the event-oriented and the process-oriented models. The event-oriented

simulations are generally used for small-to-medium scale models, whereas

the process-oriented simulations are preferable for large scale models. The

design approach followed is based on an event-oriented simulation model.

The entire simulator is implemented in the C programming language under

the Unix system environment. In addition, interfaces to some NAG library

routines are provided. These routines were used for generating the required

probability distributions and to solve simple linear programming problems.

Input and output interfaces for the simulation model are not sophisticated

yet serve the required purpose with ease and efficiency. A special piece of

software was written to provide a visual interface for displaying the Gantt

charts in a deterministic model of scheduling. This software was coded using

the Sunview pixrect library routines. All the simulations presented in this

thesis were carried out using this model.

4.2 Simulator Design Issues

The design of a simulator and the level of detail needed for its implemen

tation, called system abstraction, is very closely related to the nature of the

problem and the data available to represent the work at this level. In this

study, the nature of the problem is sub-divided into two main parts: i) task

allocation and scheduling and ii) distributed computer system and commu

nication parameters. Whereas, the workload characterisation is to represent

the task system and its related parameters.

51

o host

communication link

"" , "" \ /

'<"" \ // "" , \/ ",,"" , /\
1----"1\ - - - - "'-,(- -\ - -l----{

\ /, \
\ ;I' ,\
\ // , \
\ / '~ ~"'4-- communication

subnet

Figure 4.1: A Distributed Computer System

4.2.1 System Abstraction For Simulation

System abstraction is a very important step in the design of a simulation

model. This specifies the facilities and operations involved in accomplishing

the work at a level of detail suitable to the problem under study. The oper

ations and other details given in this subsection are valid for both the static

and dynamic load balancing paradigms.

52

A Distributed Computer System

The distributed computer system under consideration is illustrated in Fig.4.1.

A distributed system is a collection of a number of hosts l inter-connected by

a reliable communication network. Each host has its own central processing

unit (CPU), Input/Output (I/O) and memory etc. In this study, a dis

tributed computer system is represented by a graph G(H,E), where a node

'H' represents a host and an edge 'E' represents a communication link in the

system. It is assumed that the 'n' hosts are physically and functionally iden

tical. It is also assumed that each host has an unlimited amount of memory,

therefore any number and size of tasks can be handled. In this model, each

host is approximated as an infinite queueing model. The model is illustrated

in Fig.4.2.

The simulator treats a processor as an independent entity represented by

a data structure. There is a set of attributes related to this entity and a set

of events are defined to effect the state of this entity. These sets of attributes

and events are described next.

processor {

integer

integer

integer

}

server;

load..vector{n};

linknum;

lThe terms processor and host are interchangeably used in this thesis

53

server local queue
es IDea I task arrivals local departur ..

remo te arrivals remote depar

r-'- r-'-

C c n n
0 o e
me mt
mt m

'-r- --:-
local queue server

remo te arrivals remote depar

IDea I task arrivals
.. I Dca I departur

Figure 4.2: An Infinite Queueing Model

The attribute server is a unique identifier for each processor, The Second

attribute load_vector is. used to save the load information received from all

other processors in the system. Finally, the attribute linknum is defined to

store the total number of communication links attached to this processor.

The events related to the processor are schedule, request, and release,

Schedule Event: The arrival of a local task is announced through the

schedule event. All the remote task arrivals are placed at the end of the

waiting queue if the processor is busy.

Request Event: Each arriving task on a processor requests an immedi

ate service.

54

tures'

tures'

es

If the requested processor is idle, it starts processing the task otherwise

the task is placed at the end of the processor queue. The placement of the

task in the processors' queue depends on the priority discipline used for the

scheduling of tasks on the processor.

Release Event: Whenever a processor finishes processing a currently exe

cuting task, it calls the release event. This event updates the state of the

processor and schedules a task from the head ofthe processors' waiting queue.

The Communication Network

Here, the level of detail used in simulating the communication network is.

described. Considering the distributed load balancing, it is very important

for a simulator to provide mechanisms for studying the overheads invloved

in distributing the load information and transferring the tasks across the

underlying communication network. It was assumed that the processors are

inter-connected in an arbitrary fashion. In this implementation of the sim

ulator, only periodic message broadcasts were simulated. However, other

message communication methods can be implemented with minor modifica

tions.

The data structures used for the two simulated entities, a link and a

packet are given below.

link {

integer end!;

integer end2;

integer busy;

55

integer

}

packet {

integer

integer

integer

integer

}

link_capacity;

type;

src_processor;

sequence;

msgJen;

where, end1 and end2 are used to identify the processors at the ends of

the communication link. The attribute busy is used to check the status' of

the communication link. The final attribute link_capacity specifies the trans

mission rate of the communication link in bits/second. The data structure

packet is used to carry the messages across these communication links. The

type of the packet is used to take different actions on the receiving processor

depending on the value of type. Other attributes specify the originating pro

cessor of the packet, the packet sequence number to avoid repeated messages

and the length of the message contained in the packet.

Task System

Here, it is described how a task is viewed by the simulation model and

what operations are performed on it. The operations specified for tasks

are the same in both the static and the dynamic scheduling environments.

Specifying the characteristics of the task system for scheduling is called the

56

workload characterisation. A separate workload characterisation is required

for static and dynamic load balancing paradigms. The data structure used

to represent a task in the simulation system is given below.

task {

integer id;

integer status;

integer processor;

integer service_time;

integer arrivaUime;

integer starUime;

integer finish_time;

}

The attribute status indicates if the task was executed locally or remotely.

The processor attribute stores the processor identification where the task was

executed. The last two attributes are used to store the times when the task

started the execution, which is different than the task arrival time, and when

the task finished executing. The service time required for the task is given by

the service_time attribute. Other important characteristics of a task system

consist of the inter-task communication times and the precedence relations

among the tasks. These are described in the next section.

57

4.3 Simulation Model For Static Load Balancing

This section provides the implementation details of the simulation model.

The simulation model described here can be used for performance evaluation

of static load balancing strategies. Several extensions were made to make

this model suitable for dynamic load balancing strategies. These extensions

will be described in the next section. Several components of the simulator

described in this section are common to the operation of both the static and

dynamic load balancers.

The entire simulator can be sub-divided into the following major modules.

• Precedence Graph Input and Initialization

• Processor and Network Initialization

• Data Input and Error Checking

• Routines for Queuing and Event Handling

• Main Scheduler

• Output table giving required performance measures

• Gantt Chart Display

4.3.1 Precedence Graph Initialization.

With the advancement of distributed processing, there have been signif

icant advances in the area of partitioning the large programs into smaller

modules to run on several machines in parallel. Throughout this discussion,

a program module will be referred to as a task. These tasks can be considered

as a set of co-operating processes designed to solve a well-defined problem.

58

It was assumed that the order in which these tasks are executed and the

inter-task communication costs are known. It was further assumed that the

size of each task is known, irrespective of the fact that it mayor may not

be the suitable grain size for the most efficient solution. The best way to

describe this set of tasks is in the form of a Precedence Graph. The sim

ulator was designed to obtain the precedence relation information from an

input file called PREC_GRAPH. For each task 'T' in the precedence graph,

there is one line that gives the dependencies for this task and all the other

tasks. A small example file is given below and the corresponding precedence

graph is shown in FigA.3. An alternate method which generates the task

graphs randomly was also designed. In this case, a fixed number of nodes

were randomly distributed among different levels and the nodes at each level

were randomly inter-connected. The node execution times and the commu

nication times were randomly generated.

-Input File Format :

Tl

T2

T3 > Tl: C13

T4 > Tl: C14

T5

T6 > T3: C36 ,T4: C46

T7 > T4: C47 ,T5: C57

T8 > T4: C48 ,T6: 68,T7: C78

In the file description given above, tasks Tl, T2 and T5 are independent

of any other tasks and are ready for scheduling at any time, whereas task T3

59

Figure 4.3: An Example Precedence Graph

will have to wait for task Tl to finish before it can start execution.

Another parameter stored in this file was the inter-task communication

costs. Each task dependency carries some communication cost. These com

munication costs are specified next to each dependent task separated by a

colon. These values are read from the file and stored in the form of a con

nectivity matrix C[iJI shown diagrammatically in FigAA.

4.3.2 Processor And Network Initialization

The problem of static scheduling in a distributed system is simply described

as a mapping function from a set of tasks onto the available number of pro

cessors. Therefore, it is very important to consider the underlying processor

network architecture at the time of task scheduling. When the distributed

computer system is mentioned, it means a multiprocessor or a multi com-

60

1 for I Is a predecessor of I

1 ~ 1.1 ~ m
C[I,J1 =

o for I is n01 a predecessor of I

1~1.I~m

Figure 4.4: A connectivity matrix for inter-task communications

puter system. The type of architecture that is currently being considered, is

that of a multicomputer system in which there is a loose coupling among the

individual computers. However, everything described here applies equally

well to multiprocessing systems with message passing as a communication

primitive. In the current implementation of the simulator, it is assumed that

the processors are inter-connected in an arbitrary configuration. It is as

sumed that all the processors are homogeneous (identical). The assumption

of homogeneous processors as opposed to the heterogeneous ones reduces the

complexity of the scheduling algorithm and helps to concentrate on the actual

problem of scheduling. The simulator does provide the facility for consider

ing the heterogeneous processor case, though the heterogeneity is limited to

the processing speeds only. All the information about the inter-connection

topology and the link bandwidths is stored in the file called NET_CONFIG.

This file also stores the distance between each two nodes measured in hops.

At the time of initialization, the simulator reads this distance into an array

hops[i,jj, where each element of the array gives the distance from processor

61

'i' to processor 'j'.

4.3.3 Data Input And Error Checking

The execution times for all the tasks and the inter-task communication

times are entered at run time. The simulator provides separate routines

for error checking for the data entered at the run time and the data stored

in the input files. These routines provide the mechanism for checking the

unrealistic or false data and prompts for re-entering the correct values. The

values for task service times and the inter-task communications are taken

froni the profiles of some real programs using finite element techniques. These

times can be generated from different probability distributions. Routines for

random, exponential, Erlang, and hyper-exponential variate generation are

also provided in the simulator.

4.3.4 Queueing And Event Handling

This section describes two basic and very important functions used in

the implementation of the simulator. These functions are related to the

queueing management of the processors and the event handling mechanism.

In the simulation model, a processor comprises a single queue and a single

server. Whenever a reservation for a processor is requested for a task, if the

processor is free then it is reserved for the requested task. This reservation

of the processor by the task implies that the task execution is started. If the

requested processor is busy then the task enters the processors' queue. When

the executing task releases the processor, the task at the head of the queue

re-issues the request for the processor. Queues are ordered on the basis of

priority. If the two queue entries have equal priority, these are ordered on a

62

first in, first out basis. There is no limit on the processor queue lengths.

Another data-structure of important concern is the event-list. Since it is a

discrete event simulator, all the events happen in discrete time. ScheduleO

and causeO are two routines used to add and remove the entry from the

event-list respectively. An event-list entry contains the event number, the

inter-event time, and a task associated with the event. The event number

indicates the type of event associated with this event-list entry, Le; task

execution start or task execution finish etc. The event-list is ordered in

ascending values of the event occurrence times. The entries with the same

event occurrence times are ordered on the basis of arrival. Simulated time is

represented by a global variable using the unit time approach. The simulator

increments the time by small increments and then checks to see if there are

any events that can occur. Further information about the management of

the simulation time is described in the next section.

4.3.5 Main Scheduler

This is the mainO routine for the simulator, where the actual heuristic

for scheduling is implemented. The major steps performed in the scheduler

routine are described below .

• Call the initialization routine for setting up the simulation environment.

Reset the simulation clock .

• Take the tasks from the ready queue (these tasks are ready to execute at

the start and are not waiting for any other tasks to finish) and schedule

for execution. Record the simulation time as the task execution start

time.

63

The following steps are repeated until all the tasks finish execution.

• Check for the tasks in the waiting queue (these tasks are waiting for

other tasks to finish) If a task, is ready then calculate the tasks execu

tion start time and schedule for execution. A waiting tasks' execution

start time is calculated by adding the largest finishing time among its

predecessor tasks finishing times to any communication delays among

the two tasks.

• Next step is to remove an entry from the head of the event-list and check

for the event type and the associated task. There are three different

types of events corresponding to start, continue and finish execution of

the associated task. If the event is start execution, then the following

steps are carried out to find the suitable processor for scheduling this

task.

Next step is dependent on the task allocation strategy used for load

balancing.

• In the simplest heuristic, a randomly chosen processor is considered

for execution. Where the distribution of the tasks on the processors is

uniform.

• Once the task is allocated to a processor then it is scheduled for the ex

ecution event, where the simulation clock is incremented on each event

occurrence and all the executing tasks are checked for the finish times.

Whenever a tasks' finish time gets equal to the current simulation time,

this task is scheduled for the finish execution event.

64

• In the finish execution event, the finished task releases the processor.

If the processor queue is not empty then the task at the queue head is

removed and scheduled for the start execution event on that processor.

If the processor queue is empty then the processor is left idle .

• The simulation program terminates when all the tasks finish execution.

4.3.6 Output Table

At the end of the simulation run, each processors' statistics are printed in

a table. For each processor, mean busy period, utilization and the average

queue length are measured and printed in this table. These measures indicate

the load distribution on the network of processors. The final value of the

simulation clock is also printed.

4.3.7 Gantt Chart

The final task schedule for all the processors is best represented by a Gantt

chart. Gantt chart provides a very clear picture of each processors' busy and

idle periods. It also shows the start and finishing times for each task.

Special software was written to provide this facility for the simulator. This

software is developed using the Sunview2 graphics routines on a Sun Sparc

station. The program was written in C language using the Sun View tool

layer or application layer. The application layer provides a set of high level

objects that can be used for designing various applications and tools. The

implementation of these objects is similiar to the objects used in an object

oriented programming environment. The objects provided by the SunView

2SunView and Sun· spare-station are trademarks of Sun Mierosystems, Incorporated.

65

application layer include windows of different types, menus, and scrollbars,

etc. Most of the functionality of the window system is based around a win

dow abstraction. In this section, the functionality and the characteristics

of windows used in implementing the Gantt chart display will be described.

Several routines are provided to access the screen for drawing. The interface

to these routines is provided through the pixwin library package. All the

functions described in the pixwin library are based on the pixrect library

functions.

The Pixrect graphics library contains routines for performing low-level

raster operations to develop device-independent applications for Sun prod

ucts. It is a low-level graphics package sitting on top of the display device

drivers. For further explanation, it is important to define some important

terms.

Pixel: A pixel is the smallest possible picture element that can be displayed.

A pixel is defined by an address that specifies its location on the screen and a

value that controls the color display. The pixel address is absolute or relative

to some other rectangular subregion of the screen.

Bitmap: A bitmap is a rectanglar region on the screen. A bitmap can con

sist of one to several pixels in it. A pixrect bitmap can be up to 215 - 1 pixels

wide and up to (215 - 1) pixels high.

Pixrect: All the routines provided in the Pixrect library operate on an ob

ject called a pixrect. A Pixrect is defined similar to an instance of a class

used in an object-oriented programming environment. It consists of the data

(bitmap data) and the operations to be performed on this data.

In drawing the Gantt chart, the following basic steps were performed .

• Creating a window for drawing and specifying its attributes.

66

• Drawing the Gantt chart and adding text to it .

• Closing the window.

In creating a window for drawing the Gantt chart, the following routines

were used.

window _createO

canvas_pixwinO

In the process of creating a window for drawing the Gantt chart, the first

step was to create a base frame using the window_createO routine. A frame

itself is not very useful for drawing, however, it provides the facility to ma

nipulate the window by changing its size or moving it to a different location,

etc. The routine window_createO is called once again to create a canvas3 •

The difference between the two calls to the window_createO routine is that

of the parameters passed to it. In the first call, a pointer to the structure

"FRAME" was passed. Whereas, in the second call, a pointer to the struc

ture "CANVAS" was passed. These structures are specified in the header

files sunview.h and canvas.h respectively. After these windows were created,

the next step was to provide the access to the canvas for drawing the Gantt

chart. For this purpose, canvas_pixwinO routine was used to obtain a handle

for the canvas, called a pixwin. This pixwin was used in the subsequent rou

tines for drawing. The routines from the pixwin library were used to access

the pixels for drawing on the canvas. The two basic routines used for this

purpose are given below.

3 A canvas is a window into which one can draw

67

pw_vectorO

pw_textO

Both these routines require the pixwin of the canvas as an argument. This

pixwin is returned by a prior call to canvas_pixwinO. The routine pw_vector

draws a vector from (x1,y1) to (x2,y2) in the addressed pixwin. These co

ordinate values are passed as arguments to the pw_vectorO. All the boxes

representing the task execution times and the diagonal lines representing the

inter-task communications are drawn using this routine.

Since the task execution times and the inter-task communications had a

large variance, it was not possible to provide a single scale for drawing the

Gantt chart. The Gantt chart values cannot be directly entered as the co

ordinates of the pw_vectorO as there is a limit on the maximum value of x

and y that can be drawn on the canvas. Similarly, to draw a task of execution

time equal to 1, an x value of 10 is required to show it clearly in the Gantt

chart.

The next step was to display the text corresponding to the times of task

execution start, communication delay start, task execution end, and the com

munication delay end. This was done using the routine pw_textO. This

routine takes a string of characters as an argument and displays it onto the

addressed pixwin. To display any text, first it was read into a character string

using the sprintfO routine and later the pointer to this string was passed to

the pw_textO. This routine also requires a (x,y) value to determine the

68

5 8 50 55 96 196 202 , 8 11 b< 141 151 206
5 8 11 ,< 57 98 161 206 , " 11 ,< 118 166 241 281

P
r
0
c
e
5
5

0
r

52 57 291
0 101 141

50 55 156

Time ------?

Figure 4.5: An Example of Gantt Chart

location of the text.

A Gantt chart for a large number of processors and tasks can be displayed

on a window of full screen size. An example of a Gantt chart is shown in

FigA.5. The boxes filled with the diagonal lines indicate that the processor

is busy, whereas the empty boxes are the idle period. The boxes filled with

horizontal lines indicate the communication delays suffered by a task before

it starts execution. The start time for each task is displayed below the Gantt

chart, where the finish times are given above. The inner-most lines give the

times for processor PI and the outermost lines give the times for processor

Pn (for n-processor Gantt chart).

69

292

PI

P2

P3

P4

4.4 Extensions To The Simulator For Dynamic Load

Balancing

In the last section, it was assumed that the simulations will be carried out

for a deterministic model of load balancing. The workload used in simula

tions was determined at the time of initialization and no information policy

was used to distribute the current state of each processor. To simulate a

dynamic load balancing algorithm, it is very important to characterize the

load in a more realistic and non-deterministic way and to provide mecha

nisms for load information distribution. Since, the work presented in this ,

thesis used a queueing theoretic model to study the performance of dynamic

load balancing strategies, therefore the parameters used in simulations were

derived from the queueing theory.

Inter-arrival and Service Times: Poisson distribution is very commonly

used in the analysis of queueing systems. It is assumed that the task size and

the task arrival distribution are unknown at the time of making a dynamic

load balancing decision. The memoryless property of a Poisson distribution

makes it suitable for simulating the task arrival and service times in such

systems. For these simulations, task service times were generated from Pois

son distributions, whereas the task inter-arrival times were generated from

negative exponential distribution. NAG4 Fortran Library routines G05DBF

and G05ECF [NAG 1990] were used to generate pseudo-random numbers

from negative exponential and Poisson distribution respectively. Interfaces

were provided to call these routines in the 'C' programs.

Task Transfers: While simulating the static load balancing environment,

4NAG is a registered trademark of Numerical Algorithms Group Limited

70

local queue server

new task arrIval lb 1--+-'-

to remote host

Figure 4.6: Transfers before scheduling

no consideration was given to task transfers as the task placement decisions

are made only once during the lifetime of a task. In dynamic load balancing,

a task may be transferred to some other processor for an improved response

_ time. There are two possible ways to simulate the task transfers. One way

is to only transfer newly arrived tasks from a heavily loaded host to a lightly

loaded host. In this case, once the hosts are identified as heavily loaded or

lightly loaded, a fixed number of newly arrived tasks is transferred to balance

the load of the system. Second method is to remove a task from the queue of

a heavily loaded host and to place it in a lightly loaded hosts' queue. Both

these methods were implemented in the simulation model. The cost of trans

ferring a task can be estimated from the mean service time of the task and

the communication cost of the link between the two hosts. Both the methods

of transferring a task are depicted in Fig.4.6 and Fig.4.7.

Simulating The Probabilities: The dynamic load balancing algo

rithms described in chapter 6 use probabilities for transferring tasks among

the hosts. To simulate the probabilities accurately is not an easy problem.

71

- local queue server
new task arrival

I---ll b I---+-...

T 10\ I
'9'

to remote host .

Figure 4.7: Transfers after scheduling

However, a simple method was adapted in the simulations for generating the

approximate probabilities. The probabilities for transferring the tasks be

tween any two hosts were multiplied with a constant value of 10 (a value

obtained as an estimate of average task arrivals during a specified time inter-·

val) to obtain the number of tasks that need to be transferred for a transfer

probability of 0.1. The probability of processing a task locally was also deter-
. .

mined from these probabilities. Whenever a new task arrives, it is transferred

to a destination host with the highest transfer probability. After each task

transfer to a host, a value of 0.1 is subtracted from the transfer probability

to that host. Once all the probabilities reach a value of 0, the old probability

values are restored and the process is repeated. New probabilities are com

puted at each execution of the load balancing algorithm.

Message Broadcasts: The dynamic load balancing algorithms execute in

a distributed fashion on each host in a distributed computer system. These

algorithms use global state information to make load balancing decisions.

Each host has a load table which contains the most recent information of load

72

state of other hosts in the system. Load information messages are exchanged

among the hosts to keep these tables updated. Various communication pro

tocols are used for this purpose. It is very important to study the overheads

of such protocols on the load balancing algorithms. This simulator provides

a simple periodic broadcast protocol to distribute each hosts' load informa

tion. Any other protocols can also be incorporated into this simulator with

minor modifications. The percentage of the overhead introduced by a proto

colon each communication link is also measured. The additional overhead

on the communication links due to task transfers was also simulated. For

, the given communication link capacities, the amount of time that a link was

utilized by a load balancing algorithm was measured to obtain estimates of

this overhead.

Simulation Transient Removal: The initial part of the simulations is

called the transient state or the warm up state. The problem of identifying

the transient state and to delete the results collected during this period is

called the transient removal. Most simulations are designed to study the sys

tem performance under stable conditions. In simulating the task scheduling

problem using an infinite queueing model, it is important to wait till the host

queues are filled and the system is operating in a steady-state. The effect of

initial transient for scheduling in a distributed computer system is illustrated

in FigA.8.

There are several heuristic methods for the transient removal [Jain 1991].

Among these various methods, the first proper initialization method was cho

sen for transient removal. To implement this method, the queues of all the

hosts were filled with some tasks before starting the scheduling simulation.

The number of tasks was determined from the previous simulations. This

73

Transient Removal
100 r------,------,---,.----,.----,.-------"

8 0..-.-.. ----···.+.-----------

60 -._-;-1_.

-····---·--t-- 1--·_·-·-_··_----+----+-_·

20 -.~-~. ----I----~·

50 500 1000 1500
time units

2000

Figure 4.8: The Initial Transi~nt Removal

74

2500 3000

method was rejected as it complicated the measurement of response times of

the tasks in the system. Later, the method of initial data deletion was se

lected and implemented. The length of the transient interval was determined

by studying the previous simulations.

Confidence Interval: As mentioned earlier, all the performance measure

ments were collected during the steady-state operation of the system. It is

expected that the averages obtained during the steady-state do not change

considerably. However, the randomness in the parameters used for the sim

ulations does cause the observations to change for different runs even during

the steady state. A confidence interval is used to specify ,the range in which

the sample mean lies to the actual mean. To reduce the effect of randomness,

, several samples were obtained for each simulation run. A different seed value

was used for each random number generator to reduce the effect of corre

lation. A large number of samples (30) was used to obtain high confidence

levels. The confidence interval was estimated using the 't' distributions for

the sample mean.

Confidence Interval = +tet/2j N - 1 8/N1
/

2

where et is called the confidence coefficient. For a 95% confidence interval,

et has a value of 0.05. S / Nl/2 is the standard deviation of the distribution

of the sample mean. For N samples of X and a mean sample value of X, it

is given as,

N

8
2 = L (Xi _X)2/(N -1)

;=1

75

4.5 Performance Metrics

A number of various performance metrics are required to evaluate the

performance of load balancing algorithms in a distributed computer system.

In a static task allocation and scheduling system, a deterministic model with

a limited number of processors and tasks is used. Therefore, the performance

of such a system can be best studied with the use of a Gantt chart. The Gantt

chart described in section 4.3.7 was used to evaluate the performance of static

task allocation strategies presented in chapter 5. A Gantt chart specifies the

distribution of the tasks on the processors and the total completion time of

the task system on a given distributed system.

Gantt charts cannot be readily applied to measure the performance of dy

namic load balancing algorithms. The overheads involved in dynamic load

balancing and the order of task execution cannot be easily presented by Gantt

charts. The performance metrics used in this study are the mean response

time, the load imbalance and the percentage task transfers. The mean re

sponse time of a task is defined as the amount of time a task stays in the

system. It consists of the processing time, queueing delays, and the possible

communication delays in transferring a task during its lifetime. A major

objective of this study is to reduce the mean response time of a task.

A simple mathematical model for calculating the mean response time is given

below.

The parameters used are:

aJ = Arrival time of task j at a local processors' queue.

76

dj = Departure time of a task j from a local processor.

aj = Arrival time of task j at the server.

Xj = Communication costs for transferring a task j to a remote processor for

execution and receiving the results.

Sj = Service time for task j.

n = Total number of processors in the system.

m = Number of tasks serviced on one processor.

The placement of an incoming task is decided by the load balancing policy.

An incoming task from a user terminal is entered into the queue of a local

processor or transferred to a remote processor for execution.

aj = aj + [1 - SjJxj/2

A processor is represented by an infinite queueing model with a single

server and a single queue (M/M/I). If there is no other task in the processors'

queue, then the task receives an immediate service. If the server is busy, then

a task has to wait Wj time, depending on the number of tasks in the servers'

queue, before it receives service.

, The time of the tasks' departure from the queue is given by,

d~ = a~ + w,
3 3 '

This is also the tasks' arrival time at the server,

After a task has received service and the results, in case of a remote

execution, are returned, the departure time of a task from the server is given

by,

77

dj = aj + Sj + [1 - 8j]xj/2

The response time of a task j on any processor can be given by,

rj = dj - aJ

For m tasks arriving on each processor and n processors in the distributed

computer system, the mean response time (R) is given by,

n m n

R=LI>;(Emi
1=1 j=l 1=1

Next, the load imbalance is defined to observe the difference of loads among

the processors in the distributed system. It is defined as the average of the

root mean square difference in the loads of every two processors in the system

at a given instant of time.

load Imbalance(t) = {L [load;(t) -loadj(tW /[n(n - 1)/2]P/2
i#<j

where load of each processor is determined by multiplying the queue

length of a processor with the mean service time.

78

Chapter 5

A STUDY ON TASK

ALLOCATION IN

DISTRIBUTED COMPUTER

SYSTEMS

5.1 Introduction

This chapter concentrates on the problem of static task allocation in a

distributed computer system. The problem of scheduling in distributed sys

tems is divided into two major categories, i.ej static scheduling and dynamic

scheduling. The static scheduling is best represented with a deterministic

model in which all the parameters related to the task behaviour, inter-task

communication and the inter-processor communication are assumed to be

known 'a priori'. Furthermore, in the static scheduling, all the scheduling

decisions are made before any task starts execution. In the case of dynamic

79

scheduling, the task behaviour and the communication patterns are only

known at run-time and load information is exchanged periodically or on de

mand amongst the processors for load balancing purposes. Static scheduling

can be effective for dedicated applications in which the task behaviour and

inter-task communication can be approximated and the underlying proces

sor and network resources do not change. In this study, the term distributed

system is used for any multiple processor or multiple computer system inter

connected in an arbitrary fashion. The task allocation strategies are used

to map a given application program onto a given distributed system. Such

strategies are particularly useful for systems running dedicated distributed

processing applications [Enslow 1978]. The task allocation strategies are used

to minimize the completion time of a single application at a time. Each ap

,plication is considered independently of the other application programs for

scheduling purposes. An application program consists of a set of indepen

dent and inter-communicating program modules called tasks. These tasks

are represented by a precedence constrained graph [cf. chapter 4]. Through

out this chapter, the word scheduling stands for both task allocation and

task scheduling. Task allocation helps in balancing the load on given proces

sors and minimizing the communication costs, whereas task scheduling may

improve the overall completion time for a given task allocation scheme.

Several different models have been proposed to solve the problem of static

scheduling. The major approaches used for solving the static scheduling

problem are graph-theoretic, list scheduling, clustering and queueing theory

[cf. chapter 3]. The assumptions made about the task system differ for all

the above mentioned approaches. The task system used for scheduling in

this study is represented with a precedence constrained graph with varying

80

inter-task communication times. Such a task system is best solved by using

the list scheduling heuristics.

The optimal task scheduling that minimizes total execution time is known

to be NP-complete even for a set of tasks that do not communicate [Ullman

1975]. The purpose of this study is to find new heuristics that can be applied

towards finding near optimal schedules. Finally, the effectiveness of some

simple heuristics in improving the overall completion time of the task sched

ule is demonstrated through examples. The final task schedules for different

task allocation heuristics are represented by Gantt charts.

5.2 Assumptions And Definitions

It is assumed that all the necessary information related to the application

is available in the form of a precedence graph (DAG). This information can

be extracted from the original application program [Ward and Romero 1984].

In this precedence graph, the weight of each node represents the size of the

task and the edges represent the communication delay in transferring the

control and synchronization information.

It is assumed that the topology of the processor inter-connection network

is known. It is a loosely coupled multiprocessor system with identical pro

cessors. It is also assumed that each processor can overlap communications

with the processing. Furthermore, all the tasks running on the same proces

sor incur a negligible (zero) communication cost.

Since the purpose of this study is to investigate and propose an efficient

heuristic for the allocation of task systems with varied computation to com-

81

munication ratios, therefore different communication costs are assigned with

each edge of the precedence graph. Several other researchers have assumed

similar computational models with identical communication costs [Shirazi

and Wang 1988) [Rewini and Lewis 1990).

Next, some definitions are described which will be used for discussions in

the remaining sections.

• Length of a path is the summation of execution times, represented by

a node, and the communication delays, represented by an edge, along

the path.

• The Longest Path for a node X is a path from the root node of the

precedence graph to the node X, whose length is the longest path among

all possible paths from the root node to X.

,
• A Predecessor of a task X is a task Y that finishes its execution before

the task X can start execution. Task X can be termed as the successor

of task Y.

• An immediate predecessor (successor) of a task X is a task that is one

level above (below) the task X in the precedence graph.

• A task is said to be ready, if it is ready to be assigned to a proces

sor. Such a task has no parent tasks or all of its parent tasks have

already been assigned to some other processor for execution and the

communication time between this task and its parents have elapsed.

• The remaining processing time of a processor i, RPTi , for 1 :::; i :::;

no. of processors, is the total time needed for the processor i to finish

82

all the tasks assigned to it up to the current time. It can also be seen

as an estimate of the current load on a processor.

5.3 The Task Allocation Heuristics

In the current implementation of this simulator, the task allocation heuris

tics are static and the task graph is assumed to be deterministic. Therefore,

this scheduler is useful for compile time partitioning and scheduling [Sarkar

1989]. Using the simulator described in chapter 4, some simple heuristics

were incorporated and their effect on the schedules' completion time was

studied. The two heuristics called the simple load balancing and the prece

dence constrained load balancing were proposed and their performances were

compared with each other and with a uniform load balancing case. In the

case of uniform load balancing, each ready task was allocated to a randomly

selected processor. The random selection was uniformly distributed among

all the processors. All the tasks in the queue of a processor are executed in

the First-in-First-out order. The other two heuristics are described below.

5.3.1 Simple Load Balancing Heuristic

The simple load balancing derives its name from a very simple heuristic

used to allocate the tasks of a precedence graph to a given set of processors to

distribute the computational load in the most efficient way. The aim of this

heuristic is to minimize the completion time of the schedule by distributing

the load evenly across the distributed system. This heuristic does not make

any effort to reduce the communication delays by considering the inter-task

communications at the time of making a scheduling decision. However, it

does take the inter-processor communications into account when more than

83

one processor has the lowest accumulated time.

In most of the task allocation problems where the communication delays

are not considered or fixed communication delays are considered irrespective

of the task allocation, the level of a task in the precedence graph is fixed

[Adam et. al. 1974] [Coffman and Denning 1973]. This level is determined

for each task by calculating the length of the longest path from this task

to the exit task. When the communication delays are effected by the loca

tion of a task on a processor, the level of a task cannot be determined in

advance. The heuristics described here make use of the co-level of a task

which is determined after all the preceding tasks are allocated and their

inter-communication times are known. A co-level defined in [Coffman and

Denning 1973] is the same as the length of the longest path for a task defined

in the previous section.

The major steps of this heuristic are outlined below.

• Input a precedence graph with n tasks and their inter-communication

times. Also, input the parameters related to the communication net

work.

• All the tasks without any precedent tasks are kept in the ready list.

R = {n I all the tasks preceding task i have already been allocated}

• If ready list is not empty repeat the following.

- Dequeue a task T at the head of the ready list.

- Find a set S = {Pi I Pi = min(RPn), for 1 ~ i ~ n}

-IfISI>l

84

{Allocate task Tto processor Pin SIP = min{hops(P,Ppred)}},

where, Ppred is the processor where a task preceding task T

is scheduled.

- Allocate task T to the only processor in S.

- After the communication time between the task T and any of its

children has elapsed, remove the edge from the task T to

that child.

- Remove task T from the ready list.

- Check for any other ready tasks and update the ready list. Repeat .

• Output the Gantt chart and other performance statistics.

The simple load balancing heuristic allocates a new task to the most lightly

loaded processor available in the system that time. It does not consider

the inter-task communication delays at the time of making the scheduling

decisions. If there is more than one processor with the same minimum load,

then it chooses a processor that is minimum hops away from the-processor

where its precedent task is allocated.

5.3.2 The Precedence Constrained Scheduling Heuristic

This heuristic is designed to efficiently allocate the task systems with high

inter-tasklcommunication'. costs on a set of available processors. It is commonly

proposed to schedule several precedent tasks of a task on the same processor.

Based on the observations from different schedules produced for a number of

applications, it was noticed that in most of the cases there are only one or

two tasks that produce the long delay paths. If a new task is scheduled on a

85

processor with the longest delay precedent task, this task can start execution

immediately after the preceding task finishes without any communication

delays. Here it must be noticed that all the other precedent tasks to this

task had finished earlier and the communications were completed.

Intuitively, it might appear that this type of heuristic alone may con

siderably improve the overall completion time of the schedule. From the

experiments, it was noticed that this type of heuristic tends to imbalance the

load on the processors. Though it works better than the one in which all the

precedent tasks are scheduled on the same processor .

.. A number of dynamic load balancing algorithms use a parameter called the

load threshold to determine a heavily or a lightly loaded status of a proces

sor [Zhou 1988] [Eager et. aI. 1986] [Boutaba and FolIiot 1990]. So far, the

idea of determining the load threshold for load balancing is only applied in

dynamic load balancing algorithms. In this study, a method of determining

the load threshold from the task graph for application in static allocation

strategies is defined. There is a trade-off between the maximum parallelism

that can be achieved and the communication costs. In trying to achieve the

maximum parallelism by distributing tasks on different processors, one might

end up in high communication costs sometimes resulting in communication

network congestion. On the other hand, an attempt to schedule all the re

lated tasks on. the same processor to avoid the communication costs might

result in overloading some processors and a poor utilization of the others. It

is, therefore, necessary to incorporate heuristics for minimizing the commu

nication costs and also to set a threshold value for the load on each processor

at the same time.

86

A very simple method is used to calculate the value for the load threshold

used in the precedence constrained scheduling heuristic.,

LT = Load Threshold.

m = Total number of tasks.

n = Total number of processors.

1 = Number of levels in the precedence graph.

Xi = Execution time for task i.

m

LT = (L:X;jm)t + max(Xi)
;=1

Where t is a parameter that depends on the average number of tasks

available at each level of the precedence graph. It is computed in the following

way.

t = l(m/l)/nJ

Next, some important steps of the precedence constrained scheduling

heuristic are described.

• Input a precedence graph with n tasks and their inter-communication

times. Also, input the parameters related to the communication net

work.

• All the tasks without any precedent tasks are kept in the ready list.

R = {Ti I all the tasks preceding i have already been allocated} .

• If ready list is not empty repeat the following.

r

87

- Dequeue a task T at the head of the ready list.

- Find a processor P = {P I task i with max(co - level(i) + com(i, T))

is scheduled on P}, where i E S, and S is a set of parents of T.

- If RPTp < LT

Allocate task T to processor P.

- Else delete P from the set of parents and repeat the last three steps.

- After the communication time between the task T and any of its

children has elapsed, remove the edge from the task T to

that child.

- Remove task T from the ready list.

- Check for any other ready tasks and update the ready list. Repeat .

• Output the Gantt chart and other performance statistics.

5.4 Experimental Results

The experiments were carried out by using the static simulation model

described in chapter 4. The performance criterion used was the minimiza

tion of the overall completion time and the results were displayed using the

Gantt charts. Other statistical results were also presented to support the

results. From these experiments, some intuitive but important facts were

verified. The effects of scheduling a task on the processor where a preceding

task with largest communication cost is scheduled were studied. Scheduling

a task on such a processor where one of its precedent tasks is scheduled im

proves the overall completion time of the schedule. This results from the fact

that the cost of inter-task communication for the two tasks is eliminated in

88

G

T8 "cw

Figure 5.1: Task Graph used for Scheduling (Gantt Charts; Figures 5.2-5.4)

I

this processor. To maximize this effect, a task from a set of preceding tasks

was chosen which corresponded to the longest path leading to this task. The

degree of improvement in the overall completion time of the schedule using

this type of heuristic entirely depends on the computation to communica

tion ratio of the task system. Considerable improvements in the schedule

were achieved for the task sytems with lower computation to communication

ratios.

5.4.1 Example 1

The task graph (Fig 5.1) used in the following experiment is one of the

several systematically generated test data sets described in [Price and Salama

1990]. These data sets have been described to expose the strengths and

89

weaknesses of different scheduling heuristics. It consists of 27 tasks with

execution times ranging from 5 to 50 time units. Execution times for all the

tasks and the inter-task communication times used in these experiments are

given in Appendix A.

Figures 5.2-5.4 below show the Gantt charts for the schedules produced

by the simulator. Figure 5.2 is produced under the conditions where there is

uniform load balancing. Task arrival is uniformly distributed over a number

of processors. Since the number of tasks is uniformly distribut,ed over a

number of processors, and as there are no subsequent task transfers, the load

allocated to each processor is nearly the same .

. Figure 5.3 is produced under the conditions of simple load balancing. In

this case, each new task is assigned to an idle processor if available, or to a

processor with minimum queue length. In cases where more than one idle

or minimum queue length processors exist, a processor that is nearest (min

imum hops away) to the processor, where the preceding task was allocated,

is selected.

Figure 5.4 is produced under the conditions where a new task is scheduled

on the processor with the longest path preceding task. If the processor with

the longest path preceding task is already overloaded then a processor with

the next longest path preceding task is selected.

Several interesting results were revealed from these schedules. In Figure

5.2, with uniform load balancing, nearly equal number of tasks are allocated

to each processor. One might conceive that this heuristic will give good

performance due to uniform allocation of tasks. However, such a heuristic

90

..

30 55 65 125 . .3'
10 50 7~S 17S 255 2.' 265

20 ., '05 23' 3ea .20
1> 31 SO '"' 13' 315 0.0 ."

p
r
0
c
• ,
• ,. 55 90 100
0 20 708' ,as 335 . .10
r 0 " 50 13' 2.' 255 265

20 " 55 100 ."

T1me ____ a_)

Figure 5.2: Gantt Chart with Uniform Load Balancing (Experiment 1)

can only perform well when task execution times are identical and inter

task dependencies are not considered. For applications with widely varying

task execution and inter-task communication times used, it results in a poor

performance as no intelligence is used to utilize the idle or lightly I01l;ded

processors. In this schedule, several tasks are queued on the already busy

processors, where as some other processors are idle at that time. It can be

seen from task graph (Fig.5.l) that tasks Tl to T4 are ready for simultane-
(

ous execution. Tasks Tl to T3 are executed simultaneously on three different

processors. Task T4, initiated on' processor P2, awaits tasks T3 on proces

sor P2 to finish before it can start execution. Since the current status of

processors is not used when allocating tasks , Task T4 is not executed on

processor P4 which is idle at that time. The schedule produced, without load

91

PI

P2

25 45
nu 55
~u &u

10 30

p
r
0

c
e
s
s 0 15 35
0 0 20 55
r O· 10 3055

0 25 45

65 75
bb 80

~u
70 85

70 85
80

65 95
65

130
IOu
110

120
130

Time ------>

,

175
lbU195 205 250

220 230

170 220
185 195 240

260

Figure 5.3: Gantt Chart with Simple Load Balancing (Experiment 1)

265

PI

P2

P3:

balancing,)las a large completion time of 435 time units. This large comple

tion time is mainly due to the lack of co-ordination among the processors to

share each others load. As shown in Fig.5.2, each processor is idle or busy

communicating with some other processor for a large percentage of the total

completion time.

In the next schedule ~hown in Fig.5.3, an attempt is made to extract maxi

mum parallelism by trying to distribute the tasks evenly among the available

number of processors without violating any precedence constraints. In con

trast to uniform load balancing where each ready task was allocated to a

randomly chosen processor, in this heuristic each new task is scheduled for

execution on the most lightly loaded processor available. This technique

92

shows considerable improvement in the overall completion time of the sched

ule. This type of schedule takes full advantage of the parallelism inherent in

the task graph. This effort to load balancing by distributing the load over

all.the processors conflicts with the idea of the minimization of the inter-task

communication times. The completion time of the schedule in this case is

265 time units, which is an improvement of 39 percent over the schedule

produced with uniform load balancing. Also, as shown in Fig.5.3, there are

fewer idle times which are caused by the precedence constraints amongst the'

tasks.

\ Finally, the Gantt Chart of Fig 504 shows further improvement in the ,
overall completion time of the schedule. In this case, the placement decision

ofa newly arrived task is based on the location of the precedent task with the

longest delay path. Here, it is noticed that the number of tasks in the system

is not uniformly distributed over the number of processors. It is also noticed

that several tasks are waiting in the queues of some processors while other

processors are idle. Both these situations indicate the load imbalance in the

system. Looking at the task graph (Fig.5.1) and the Gantt Chart (Fig.5A)

simultaneously, it is easy to find out the cause of this load imbalance. Task

TI is scheduled on processor P4 for execution. Task T5 is dependent on

task TI and is waiting for TI to finish before it can start execution. Task

T5 is scheduled to run on the same processor as task TI to cut down the

communication cost between the two tasks. Similar is the case with task Tll

waiting for task T5 to. finish. Next, looking at the task graph, it was found

that task Tl9 is dependent on Tll and T12. After task Tll has finished,

task Tl9 is waiting for Tl2 to finish before it starts execution. Task Tl2 is

scheduled to execute at time 95 on processor P2. If task Tl9 is scheduled to

93

:,1 '

I • : ..

10

15

P
r
0

c
e
s
s
0

r

0
0 15
0
0 10

20
25

20

20

25
20

30

35

..
... ..

50

50
35

60
bU

70

70
60
60

~ ,'.
" ,''. ' .. ~

85 125 175 185 195
7b 95 110 145 190 200 210 215

95 llU 120

PI

P2

P3

P4

95 110
75 95 110 145 190 200 210

85 125 175 185

Time ------)

Figure 5.4: Gantt Chart with Precedence Constrained Load Balancing (Ex-

periment 1)

94

execute on processor P4 instead of processor P2, it will have to experience

further delay due to communications between T12 and T19 before it can

start execution. This attempt to minimize the communication cost conflicts

with the uniform loading of the processors, and leaves processor P4 lightly

loaded. This schedule has a completion time of 215 time units, which gives a

further improvement of nearly 20 percent over the schedule with simple load

balancing.

Some of the other performance measures for each schedule are given in

Appendix B. In the worst case, with uniform load balancing, average pro

cessor utilization is approximately 40 percent. With simple load balancing,

average processor utilization increases to 55 percent. Precedence constrained

scheduling introduces a further increase to 65 percent in the average uti

lization. The maximum average processor utilization, that can be achieved,

depends on the communication-computation ratio of the task system.

5.4.2 Example 2

The task graph (Fig.5.5) used in this example is an extension of the graph

used in [Rewini and Lewis 1990]. There is a large variance among the task

sizes and the communication delays are higher. There are 30 tasks with

execution times ranging from 5-50 time units. These tasks are scheduled on

4 processors inter-connected in the form of a ring topology.

The task system used in this example has inherently more parallelism

than the task system used in the previous example. All the tasks at each

stage are enabled for execution at the same time. The behaviour of this task

system is similiar to the behaviour of barrier synchronization problems, in

which several tasks execute concurrently and then wait at a common point

95

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

"" r. ~, ",.ok Graph used. {or Sc'ned.u\in~ (Fi~res 5,6 and 5,7)

"l~ure ;) ,iJ' ~ "'"

96

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

p
r
o
c
• • • o
r

10 25(40 g~ 70 100
6.

30 tlU
~~ SS

65 90
as 95

15 30 SO 65 SO

115
U>
U>

150 190

o 10 25 SO as us 150
15 <10 so 70

Tima ------>

370 . 390

2<5 '" 390
"40 2BS 325

3SO 370

3SO 370

Figure 5.6: Gantt Chart with Uniform Load Balancing (Experiment 2)

425

PI

P2

P3

P'l

(called barrier) for synchronization before a new set of tasks starts execution.

Schedules with uniform load balancing, with simple load balancing and

with precedence constrained load balancing were produced using this task

graph. As compared to the task graph in the previous example, this task

graph has more tasks and the average size of the tasks is also larger. Com

pletion time of the schedule with uniform load balancing (Fig. 5.6) is 425 time

units, this is nearly the same as for the previous example. Lesser completion
•

times indicate more parallelism among the set of tasks in this example. In

the case of uniform 10%\ balancing, this parallelism is utilized by the initial

uniform distribution of tasks among the processors. This can also be con

firmed by comparing the utilization figures for the two schedules provided in

Appendix B.

97

Gantt Charts produced for schedules with simple load balancing and with

precedence constrained load balancing had slightly different schedules with

the same completion time. Only the Gantt Chart for the latter is shown

in Fig.5.7. Completion time of these schedules is 280 time units, which is

an improvement of nearly 36 percent over the schedule with uniform load

balancing. The reasons for this improvement are very intuitive and similiar

to the ones described in the previous example.

Eq~al completion times for the two schedules is an interesting result, which

indicates that scheduling a new task on a processor with the largest delay

precedent task does not further improve the schedule. Now, looking carefully

at Fig.5.5 and Fig.5.7, it was found that each new task (Tasks T22 to T30)

depends on a set of equal delay precedent tasks. For example, Task T26

depends on all the four tasks (T22-T25). In this case, scheduling T26 on a

processor with anyone of these four tasks does not minimize the communi

cation costs, since T26 cannot start until each of these four tasks is finished

and communications have elapsed. This suggests that precedence constrained

load balancing does not perform any better than simple load balancing for

this particular type of applications (represented by a task graph with constant

delay paths at each level and high computation to communication ratio). If

scheduling of all preceding tasks of a task on the same processor is consid

ered, it might be useful for only applications having a very low computation

to communication ratios. Though it causes a considerably large imbalance

in the processor loads, it might still produce a schedule with improved com

pletion time. If such a scheduling policy is applied on this example, tasks

T2 to T4 and tasks T18 to T30 will be scheduled on the same processor.

Therefore, half of the total load will be assigned to a single processor.

98

..

40 65 80 90 135 195 245
40 . 70 ~u 10[135 l~t> 245 10
45 ot> 80 ~u 140 200 ~.qt> 280

4U oU It> Elt> 1'1 U ~UU 245

p
r
0

c
e
s
s
0

r

15 40 60 75 100 160 225
15 45 65 80 105 160 225 270

0 10 40 70 90 110 155 225
15 40 65 80 105 155 225

Time ------)

Figure 5.7: Gantt Chart with Precedence Constrained Load Balancing (Ex

periment 2)

99

PI

P2

P3

P4

Now, looking at the two schedules carefully (Fig.5.6 and Fig.5.7), it was

noticed that there was not much difference in communication costs for the

two schedules. All the performance gain came from the simple load balancing.

5.5 Conclusions and Future Directions

The assumption of a precedence graph with known execution times and

interprocessor communication costs does not capture the dynamic behaviour

of the real task systems. However, it simplifies the scheduling problem and

helps to concentrate on other critical issues common to both the static and

the dynamic schedulers. In this study, I have tried to experiment with two

central issues in scheduling i.e; minimization of interprocessor communica

tion costs and the load imbalance. It was shown that for an efficient solution

to the scheduling problem, it is very important to have a compromise be

tween [maXImizingl .. the parallelism and minimizing the communications. It is

suggested that an appropriate choice of scheduling heuristics that minimize

the communication costs and set an upper threshold for the load on each

processor to avoid the load imbalance can provide improved performances.

Such a heuristic works well for a wide range of computation to communica

tion ratios and, therefore, can be used with a large number of applications.

It might also be interesting to investigate the usefulness of load threshold

(LT) formula in a dynamic scheduling environment. This can be done by

estimating the mean service time of the system over a certain period that

corresponds to 'L,X;fm in our case. Similarly 't' can be approximated by

estimating the average number of task arrivals in the system during an in

terval equal to the mean service time. In future, it will be interesting to

study the effect of task ordering with precedence constrained scheduling on

100

the completion time of the schedule. In this study, it was assumed that the

task size is known. In practice, it is very difficult to analyze the behaviour

of a task and to provide good estimates on a tasks' execution time.

101

Chapter 6

DYNAMIC LOAD

BALANCING USING

TASK-TRANSFER

PROBABILITIES

6.1 Introduction

In the preceding chapter, the work performed concentrated on determin

istic scheduling techniques which made use of list scheduling to achieve load

balancing. It was assumed that all the parameters related to the task system

and the communication network were known at the time of making load bal

ancing decisions. In this chapter, the research undertaken is focussed on job l

allocation strategies that perform dynamic load balancing in a distributed

1 A job may consist of more than one inter-communicating tasks. In this discussion,

the word task is used instead of job

102

computer system. All the dynamic load balancing solutions are suboptimal

and heuristic. A load balancing algorithm should be distributed, efficient

and stable. It is assumed that the information about the task behaviour and

the network parameters are not known in advance. The dynamic algorithms

described, try to obtain load estimates on the frequently changing load con

ditions on the hosts in a distributed computer system. These load estimates,

obtained by monitoring the system for a specified interval, are utilized in

making efficient load balancing decisions dynamically.

In the past, several studies have been carried out on dynamic load bal

ancing strategies with an aim to improve the performance of the system. A

review of such strategies is described in chapter 3. In the majority of dynamic

load balancing algorithms an information update policy is used to exchange

the load information amongst the hosts in the distributed system. A load

threshold is determined using the available load information. Each host in

the system compares its load with a certain load threshold to make a decision

for the transfer of tasks.

In section 3 of this chapter, two simple dynamic load balancing algorithms

are described to demonstrate the effectiveness of such algorithms to enhance

the performance of distributed systems. In most of the cases, queue-length

is chosen as the load index and the load threshold is based on the average

value of the load.

In section 4, an attempt is made to explore the factors that contribute to

the load imbalance in a distributed computer system. The effects of task

arrival distribution and service time distribution on the performance of a

103

distributed computer system were studied. The arrival and service time

estimates were obtained and the load balancing was performed using these

estimates. It was assumed that each host broadcasts its estimated load infor

mation to every other host in a homogeneous distributed computer system.

Each host computes the probabilities of transferring a task to every other host

in the system. These probabilities were changed dynamically over a fixed in

terval of time. Average response time was used as the performance metric

for comparing different cases. Root mean square difference in host loads was

measured to compare the performance of load balancing in different cases.

[Gao et. al. 1984J have described two static load balancing algorithms. In

these algorithms, necessary parameters required by each algorithm are ex

changed amongst all the hosts periodically for the purpose of load balancing.

The two algorithms perform load balancing by balancing average arrival rates

and the amount of unfinished work on each host respectively. In these algo

rithms, for given communication cost between any two hosts and the number

of job transfers between any two hosts, the cost function is minimised using

linear programming techniques. It was observed that any such solution that

involves linear programming is very expensive for a load balancing algorithm.

A load balancing algorithm has to be very fast and efficient to achieve high

performance in a distributed computer system. The algorithms suggested in

this paper are simple and fast and provide high performances.

6.2 Model And Assumptions

To study the performance of non-deterministic, dynamic load balancing al

gorithms, it is very important to formulate the dynamic scheduling problem

104

in terms of a probability model. Probability models are more realistic than

deterministic models as the former can capture the time varying character

istics of a distributed scheduling problem. When these probability models

are used to study the properties of dynamic scheduling techniques they take

the form of queueing systems [Coffman and Denning 1973]. The dynamic

scheduling problem is very complex in nature and requires a large number of

parameters to be considered for high performance gain. At the same time,

when there is a large number of inter-related parameters under consideration,

it becomes very important to make simplifying assumptions for a mathemat

ically tractable queueing model.

Queueing systems are a powerful tool for performance analysis and pre

diction and have been extensively used for modelling computer systems. In

agreement with many researchers, the work was performed using queueing

models. The models, though simple when compared with those proposed by

other researchers, were very useful and served the required purpose.

In the formulation of the queuing model, each host in the distributed sys

tem is represented by an M/M/1 model. A single server queue with Poisson

arrivals and exponentially (negative) distributed service times is considered.

where,

A(x) = 1 - e-~" for x 2: 0

and

Sex) = 1 - e-I''' for x 2: 0

where A(x) and Sex) are arrival and service distributions respectively.

105

Arrival Time = ~

and

S . T' 1 ervlce Ime = -
p

The work, presented in this chapter, was performed using an infinite

queueing model. There was no limit on the queue length and the task schedul

ing was based on First in First out (FIFO) mechanism.

The model used can be best described by Fig. 6.1. This figure presents

\. four hosts in a distributed computer system inter-connected by an arbitrary

. communication network. This simplified host model has four major compo

nents of our interest. These include a load balancing component, a queue for

waiting tasks, a server as the processing unit, and a communication network

for task transferrence between any two hosts.

>';(t) = Task arrival rate at host i, this information is updated in each

host after a broadcast interval of At.

p;(t) = Task service rate at host i, updated in each network host i after

an interval At.

L:!.t = Time interval between two successive information update messages.

>.:(t) = Task arrival rate at host i, after the load balancing has been

performed

The load balancing component 'lh', also referred to as the job dispatcher,

decides whether a newly arrived job will be executed locally or remotely. In

our experiments, no cost is associated with the load balancing component.

P;j = Probability of task transferrence from host i to host j

106

---~ E;., Pj;. Aj I-'R~e"-m~O:L!t",,e __
Transfers

A3 ---.,...,-,
I--~

Figure 6.1: A queueing network model for dynamic load balancing

n n

A:(t) = Ai(t) - 2.:: PijAi(t) + 2: PjiAj(t)
j=u j==1 1

Inter-processor
Communication

Network

In the above equation, L: PijAi are the tasks outgoing from the host hi,

whereas I: PjiAj are the incoming tasks to the host hi. A large difference

between these two components will eJ;lsure that there is no load thrashing

amongst the hosts. Similarly, the task transferrence rate Xij, can be formu

lated as,

Xij(t) = PjiAj(t) - PijAi(t)

If Xij is positive then tasks are transferred from host i to host j, if Xij is

negative then the tasks are transferred in the opposite direction.

107

The work performed assumes that the network is comprised of hosts with

identical processing capabilities. For such a homogeneous distributed sys

tem, varying service times indicate that the size of tasks entering the hosts

are different on separate hosts. Furthermore, different task arrival rates are

used for different hosts. These varying arrival and service rates enable us

to introduce the imbalance among the hosts which is a characteristic of any

true distributed system.

To simplify this model, it was assumed that the communication costs be

tween any two hosts are the same. Considering such an assumption reflects

these communication costs in such a way that it does not effect the load

balancing results.

For load balancing purposes, it is very important that each host is kept

informed of the current state of the system. For current studies, system state

depends on the load condition of each host in the system. At any time, each

host in the system stores a vector of length equal to the total number of hosts

in the system. An element of this vector keeps the current load status on a

host in the system.

To keep this information up-tO-date, different protocols are designed which

exchange this information amongst the hosts in a distributed system. An

underlying protocol that distributes each host load among all other hosts

in the system periodically after each time interval of tit is assumed. The

length of the time interval (tit) can be adjusted such that the requirements

of the load balancing algorithm are met effectively as well as commmunication

overhead due to information exchange is minimised.

108

load;(t) is the load vector stored by host i at time instant t. Whenever

an information update message from a host j is received at host i, qj(t) in

load vector load; (t) is updated.

To measure the effectivenesss of load balancing algorithms, two perfor

mance metrics were used.· These are load imbalance [Gao et. al. 1984] and

average response time. Load imbalance is defined as the root mean square

difference among the host load.

load imbalance(t) = {L [load;(t) -loadj(tW/[n(n -1)/2W/2

;"'i

Where average response time is the average time spent by each job in

the system. Response time of a single job is the time elapsed between its

submission to its completion.

A simulation model was designed for the dynamic load balancing environ

ment. For this study, the task inter-arrival times and the task service times

were generated from a negative exponential distribution. A task despatcher

was simulated to allocate tasks to the processors in First-Come-First-Serve

(FCFS) order. All the results were recorded once the initial transient period

had elapsed and the simulation system was running in a steady state.

109

6.3 Effectiveness Of Some Simple Dynamic Load Bal

ancing Strategies

In a distributed computer system, it is quite common that some hosts

are heavily loaded while others are lightly loaded at a particular instant

of time. This results in a very poor performance of the system. Dynamic

algorithms react to the changes in the system state dynamically. In this

section, two simple dynamic load balancing strategies are proposed and their

effectiveness is evaluated through simulation studies. The simulation model

and the performance metrics used for this study are described in the previous

section.

6.3.1 Random Policy

It is a very simple non-deterministic policy that uses current state of the

system to dynamically transfer the jobs amongst hosts for load balancing.

The current state of the system comprises of the load status of each host.

The information regarding the load of each host is distributed amongst all

the hosts in the system. In a distributed system, all activities concerning

the collection of status information and the decision to balance the load are

performed by all hosts. The load of a host is determined by the total number

of jobs present in the hosts' queue. Each host maintains an information table

that contains the load of each host in the system. For the host 'i', the load

at time t is denoted by qi(t).

Each host in the system uses the load information table to estimate the

average load of the system. The average load calculated in this manner is

purely an estimate as it may not reflect the actual average load at that in-

110

stant of time. For shorter information update intervals, these estimates will

provide a better reflection of the actual load. However, running the informa

tion update policy frequently, incurs a large overhead on the communication

subnet resulting in the performance degradation of the distributed system.

The random policy uses the estimated average load to transfer tasks from

the heavily loaded hosts to one of the other hosts in the system chosen

randomly. Another parameter used is called the 'bias', it offsets the effects

of communication delays in transferring the jobs between two hosts.

, This algorithm repeats after each update interval. The algorithm is dis

tributed and is executed by each host independently. Important steps for the

execution of this algorithm are described below.

ALGO RIT H M : 1* random * /
for i=1 to no. of hosts {

}

if (q;(t) 2:: (q";{t) + bias) {

while(dest=i) {

dest=random(l,n)

}

transfer[i][dest) = q;(t) - (q";{t) + bias)

}

111

In this algorithm qi(t) + bias determines the load threshold for each host.

Any host that has jobs in excess of the load threshold is considered to be

heavily loaded. Any jobs over the load threshold are transferred to a ran

domly chosen host.

This algorithm is not purely dynamic. Load balancing is performed on

the basis of load information available from the previous interval and a fixed

number of tasks are transferred in the subsequent interval. A purely dy

namic algorithm reacts to any changes in the system load immediately. Such

algorithms are described in the next section.

6.3.2 Threshold-Window Policy

This algorithm transfers tasks from the heavily loaded hosts to the lightly

loaded hosts dynamically. A host is categorized as lightly or heavily loaded

on the basis of a defined threshold-window. All the hosts lying outside the

upper edge of the window are defined as heavily loaded, whereas the ones

lying below the lower edge of the window are defined as lightly loaded. A

threshold-window is defined by setting an upper load threshold (UT) and a

lower load threshold (LT). All the hosts lying within the window are neutral

and do not want to participate in load balancing.

In this algorithm, each host monitors its load continuously. If a hosts'

current load falls below the lower threshold, it sets a RECV flag to indicate

its acceptance for receiving any transferred tasks from some other host. The

flag condition is distributed to all the hosts in the system.

112

On the other end, if a hosts' current load is greater than the upper thresh

old then this host transfers one task to each of the hosts with a RECV flag.

After the task is transferred, this flag is reset. The lower threshold is adjusted

such that if a majority of hosts in the system is heavily loaded, transferring

one task from every such host to a lightly loaded host will not exceed the

latters' load above the upper threshold.

This algorithm does not require periodic broadcasts for distributing load

information. However, a message is broadcast to all other hosts whenever

a host sets its RECV flag. It indicates that if the threshold-window is ad

justed carefully, this algorithm will provide improved performances with low

communication overhead. It is also expected that for light system loads such

algorithms will perform better than the algorithms using frequent periodic

load updates.

An improvement in this algorithm was made by introducing task-transfers

to randomly chosen hosts if no lightly loaded host was available. In this

case, better performances can only be achieved if a good estimate of average

load on the system is available. Important steps for the execution of this

algorithm are given below.

ALGORITHM: 1* threshold-window */
for i = 1 to no. of hosts {

if(q,(t) < LT) {

RECV[iJ= 1;

brdcst (RECV [i]);

113

}

}

for i = 1 to no. of hosts {

if(q;(t) > UT) {

}

}

for j = 1 to no. of hosts {

if(RECV[j]==l) {

transfer[iJU]++j

RECV[j]=Oj

}

}

The information exchange mechanism used in threshold-window algorithm

requires a lightly loaded host to transmit its Hag condition to all the hosts

whenever its load falls below the lower threshold and the Hag is set to '1'.

The minimum interval between two broadcast messages is set equal to the

maximum possible task-transfer delay between any two hosts. A transmission

delay parameter was used in our simulations to simulate the average delay in

getting this information through to all the hosts in the system. On the other

hand, if a heavily loaded host finds its load greater than the upper threshold,

it transfers a task to each host with a RECV Hag set and resets. the Hag to

'0'. Since several tasks can be transferred from heavily loaded hosts to a

lightly loaded host, therefore the frequency of RECV message broadcast is

important to the performance of this algorithm.

114

Host 1 2 3 4

Inter-Arrival Time 11 15 20 12

Service Time 10 8 12 10

Table 6.1: Queueing Parameters Used For Simulations

6.3.3 Performance Evaluation By Simulation

The performance of the two algorithms was evaluated using the simulation

model described in chapter 4. These algorithms were proposed to study

the effectiveness of simple load balancing policies. The mean values used

to generate the arrival and service distributions are described in Table 6.1.

These parameter values are also used in [Gao et. al. 1984], and were used

here to provide a qualitative comparison with their results.

To maintain the simplicity of these algorithms, commonly used heuristics

were incorporated. For Random policy, it was assumed that the load infor

mation is broadcast periodically and load balancing decisions were made by

comparing each hosts' load with an estimate of the average load. Hence,

this algorithm uses the global load information for making task-transfer de

cisions. [Zhou 1988] has compared the performance of a random algorithm

with several other simple algorithms using trace-driven simulations. In his

studies, the Random algorithm makes decisions on the basis of local load

information. The authors' results have shown that the performance of the

random algorithm are comparable to several other algorithms.

115

The Random algorithm described here was expected to perform better

than the random algorithm which used local load information. Performance

metrics used for the evaluation are described in section 6.2. Fig. 6.2 shows

the response time curve for different lengths of the information update inter

val. Each point of the curve is obtained from an average of several samples.

The response time curve indicates the degradation of performance by increas

ing the interval length. For interval lengths from 200 to 1200, the gradual

increase in response times indicates the importance of frequent load infor

mation exchange. This curve nearly flattens for the interval lengths greater

than 1200 indicating that the amount of load balancing performed is not

sufficient to balance the load across the system. For interval lengths greater

\ than 1200, the estimates obtained for the average load may not reflect the

load variations during longer intervals thus leading to inefficient load balanc

ing decisions. Furthermore, this algorithm is not purely dynamic and a fixed

number of tasks are transferred by heavily loaded hosts after each interval.

The number of tasks transferred is equal to the number of tasks in excess of

the load threshold. This algorithm is executed at the time of every new load

update, therefore, fewer tasks are transferred for longer update intervals in

comparison to the shorter ones.

A dynamic load balancing policy cannot achieve higher performances by

simply balancing the load amongst all the hosts in the distributed system

while neglecting the communications related issues. In a distributed system,

it is very important to consider the impact of a load balancing policy on the

communication subnet. In estimating the response times, the communication

delays offered in transferring the tasks were not considered. However, a

parameter 'bias' was used to define the load threshold. The value of bias

116

Response Time vs. Update Interval
70 .----1--...,.---.,..--.---....,.----,.--.,-----,-----,

I 1 I I -
60 -------r----J.-------~~ -----~------L-----l--------

~ I 1 I
i I l I ',1

50 -- -1---+--:--+---+---+---+---+---i '----
! ' I 1 i I

i i
I I ,

I I I ,
1000 1200 1400 1600 1800 2000
IntelYtlllength

Flg.6.2: Average Task Response Times for Random Policy.

Percentage Transfers vs. Update Interval
e.----.,..----....,.---_.,..----...,.----.,..~--~----_,__--_.,..----,

s------L---J----- I ____ -l----J- _____ ~-------I-- ----- __ _
I I I I I I I

i 4------r----r-------l-----------
I
-- -- ---~ - - . -L • - .' .\- •• -• - \- ••• -_.

~ 3 ----------r------1- -- I'J---------.L -_.- -+------1------1-------1---------
~ I 1 I I i ! I -.:l i I I I i !

I ! I - t : , I
2 --I I ,-. ----! ! r-----

! +- - , I I
1 -----+----;-- - - -I: f I

I I I ! , I
O~~~~~~~~~~~~~~~~~~~~~~~~

~ ~ 600 600 1000 lm 1~ 1600 1600 ~
Inf8tVsllength

Fig.6.3: Percentage Task-Transfers for Random Policy.

117

should be adjusted such that it is greater than the average cost in trans

ferring a task between any two hosts in the system. In this study, bias is

assigned a fixed value of '2'. If a hosts' load is greater than the average value

by an amount less than or equal to bias, better response times are expected

in executing these tasks locally than remotely. However, introducing the bias

in defining the load threshold does not solve the communications problem, as

the frequency of load update messages and a large number of task transfers

may cause unexpected queueing delays in the network and create bottlenecks.

To investigate the impact of this algorithm on the communications network,

the amount of task transfers for different update interval lengths was studied.

Fig. 6.3 shows the percentage of task transfers for different load update

intervals. This curve shows that there is a considerable reduction in percent

age of task transfers up to an interval length of 1200 and remains constant

thereafter. Due to the random selection of a destination host for transferring

a task from a heavily loaded processor, it was expected that this algorithm

might cause processor thrashing by choosing another heavily loaded host. It

was noticed that the amount of processor thrashing .was very small and a

large number of transfers were useful for balancing the load. This was prob

ably due to the small number of simulated hosts and the choice of arrival and

service parameters. In a small system with unbalanced load, there is a large

probability that given a heavily loaded host, any other randomly chosen host

will be a·lightly loaded one. Also, as mentioned above, the Random algo

rithm described here transfers a limited number of tasks during each interval

and these tasks are transferred on the basis of a global load information avail

able at each host. If the distributed system is very large and the overall load

on the system is moderate to high, this algorithm is susceptible to processor

118

thrashing.

Now looking at the two figures (6.2 and 6.3) simultaneously, the conflict

ing issue of reducing the communication costs and achieving the maximum

parallelism is observed. On one end, higher response times were achieved at

the cost of frequent broadcasts and high transfers, whereas, at the other end,

communications overhead was reduced for relatively poor response times.

Next, the performance of threshold-window algorithm was evaluated and

compared with the Random algorithm. The major difference between the two

policies is that of the information update mechanism. The threshold-window

'policy does not use periodic broadcasts and instead relies on asynchronous

messages for transmitting required load information. It is a server-initiated

algorithm.

The two main factors that influence the performance of the threshold

window algorithm are the window size and the message transmission delay.

The performance of this algorithm was studied for a large number of different

window sizes. Fig. 6.4 presents the load imbalance amongst the hosts of the

distributed system for different window sizes. As expected, any changes in

the size or the selection of upper and lower thresholds had a considerable

effect on the load imbalance and average response times. Amongst a limited

number of experiments on window sizes and window ranges, it was observed

that the best performances were achieved for a window size of 5 with the

thresholds of LT = 5 and UT = 10. It was also observed that there are

relatively fewer task transfers for this window size as compared to the other

two. This can be explained as a result of choosing a small value for the

119

Load Imbalance

100r---~----~------------------------n

LT=5,UT=20
1

i I
90-LT=10;UT"15- --r .---+-

1 I _._.- I

1 !

! ._-----_._+
i

LT=5, !JT=10: I I I . I I 1 ---- . I; :
BO -------l----+----,-------~-----------L---.----~

1 I:
, i i

I, '1 I
, I • I,,' '

70 .,.----!~l\~-_,------:~rl--/\-f!f_y-,'\:-'l--I--\-----1/1---------+
1" \ I, I I 1..... I ,(I I ',' 1\ i

I i \ '~rl I " i~ I, \ ,1 ,

j 60
.~

,I ; \ 't . I 'I : \ \ 'I' ,
",; \/! i ! \.1''..,
III i I i : : : " , -- :I/-/.-r-----r--:----r-·--~---------:---\l--\ .

, j\ 1 I ! : I '"

v' ; \1' /\ i l' !ii . I 'Ii ; \. !.~ t. , ',1 f. A,·. . ~ , ~. , \ . .: I' 'I' ,
50 --I-l----f.J---W-·i\-l::: '-i,L'~~--\i-\-----~j-:~-\ .. ---, .. ,

1 I ,\, ' . ,,! ; ~ ~ : I • / I . j'. ,
1\ ; i ~''; 'I' \,! \ I 1 '. i \ N
I.' I I I; ~ ',': .i¥ 1 I '" Vi

-H-·-- --I\--I---·~-.:.:·---, -\-_ " __ ... __ ... c .. _ ... ___ ,,_.... ·--it 40
, I

I I

, I I

30 .--.- -- -----.-+---- --j- --. ---·--+---·---··----1----
I I ' I I

i I ! I
20 u-~~~I~~~~I~~~~~~~: ~~~~I ~~~~

50 500 1000 1500 2000 2500
IntwvaJ length

3000

Flg.6.4: Load Imbalance Comparison of Threshold-Window Algorithm
For Different Window Sizes.

120

lower threshold. As already mentioned, this algorithm is a server-initiated

algorithm [Wang and Morris 1985] and the transfers can only take place when

a lightly loaded server announces its willingness to accept some extra tasks·

for processing. For a smaller value of lower threshold, the chances are reduced

that a host will be available to share the load from other heavily loaded hosts.

Hence, a proper selection of the lower threshold is crucial to the operation

of this algorithm. A too low value will reduce the overhead of task transfers

but it might limit the amount of load balancing. On the other hand, if the

value of lower threshold is too high, it might result in a poor load balancing

by reducing the number of hosts eligible for transferring a task. Similiar

arguments are valid for the choice of a proper upper threshold. From Fig.

6.4, a very high load imbalance was observed for an upper threshold of 20. In

this case, upper threshold was much higher than the average load value of the

system, hence a very small number of hosts were eligible for transferring tasks

for the purpose of load balancing. When lower threshold was increased to

10 and the upper threshold was decreased to 15, a considerable reduction in

the load imbalances was achieved. A further decrease in the upper threshold

resulted in improved performances. It suggests that the upper threshold of 10

and the lower threshold of 5 manage each host to maintain its load within a

close range of the average load of the system. In a real distributed computer

system, the average load of the system is changing dynamically, therefore it

is very difficult to obtain a single estimate of average load for adjusting the

thresholds. However, if the window size is increased and proper threshold

values are selected, small changes in the average load values can be effectively

handled by this algorithm. The load imbalance and the response times given

in Table 6.2 indicate the performance dependence of this algorithm on the

121

LOWER THRESHOLD LT=5 LT=lO LT=5

UPPER THRESHOLD UT=20 UT=15 UT=lO

RESPONSE TIMES 55 49 41

Table 6.2: Average Response Times for Threshold-Window Algorithm

choice of window thresholds.

Next, the value of the message broadcast period was varied and its effect

on the response times and task-transfers was studied. Figure 6.5 shows the

average response time for different values of the message broadcast period.

It is shown that the average response times are very high for the values of

message b,roadcast period less than the mean task service time. Since task

. transfers were free in these simulations and it was assumed that an eligible

task is immediately transferred to a lightly loaded host without any delay, the

frequency of RECV message broadcasts less than the mean task service time

floods a lightly loaded host and causes processor thrashing subsequently. It

can be seen that the best performances for this algorithm are achieved when

the message broadcast period is set in the range of 1-3 times the mean task

service time. For a small distributed system of four hosts, when the message

broadcast period increases beyond three times mean task service time then

the average response times start increasin~. This increase in the response

times is due to the limit on load balancing imposed by a larger RECV mes

sage broadcast period. In this way, a heavily loaded host is not informed of a

lightly loaded host even though there are some lightly loaded hosts in the sys

tem. If the message broadcast period is set large, load balancing performance

can be improved by either increasing the number of tasks transferred

122

Response TIme VB. Message BroadcaSt Delay
80r-~,---r--~--r-~---r--~--r--'---r--'1--'

I , [
! ' - , 70 ----!---+--+- I

I ! ,I. I
)·-··-····1····;······1······ '.. .. -.. .-... -... ·······1······1······
i i i I',' '[' I
I _J~ I ,_---'-_'-... _._

50 - I I 'i ,i

! I I i i ' I ,
I ! I !
I ' 40~~~~~~~~~~~~~~~~~~~~~~~~

100 200 300 400 500 600 700 800 900 1000 1100 1200
mtlSugll bfOlJdc.ost de/Sf (IImll un/I$)

Flg.6.5: Response Time For Different Message Delays (Threshold-Window).

Percentage Task Transfers VB. M_ge Broadcaat Delay
20,---,---,---,---,--,---,,---,--,---,---,----,--,

! 1 I i l

'I' i
--+--.~' -~L-~--lS

I I I I
i I i I

~ 10 ····-·+-···-·l··· ···········i· ·· .. -r··· .. +·····-·1·-··· ··t·-· .. ·-1·-····.!····· ··i-·l···········
~- I I . I ; t : 8. :!, '[I' , : : , I , I' .

.-+-: i I i 11 I ~I-t-·
o L~I==~~~l::t'::C::C=dI~jl==~~·~

100 200 300 400 500 600 700 800 900 1 000 11 00 1200
mtlSugll bfOlJdc.ost de/ay (IImll un/I$)

Flg.6.6: Percentege Task-Transfers for Different Message Delay Periods.

(Threshold-Window Algorithm)

123

rar dom
---l..-

threshojdowlndow 90 ------_ ~,_

Load Imbalance

f' i\\'!~ ,-----+----1 ,,-.
/ \

A .i \ II
J

; i

/' jV \ ,.'.'
j \ , :y\ j i i ~i\\ A

,/'! i \, ! \,; i j , ,~ j'
! \ i l\ i \/ 'l \.j V \j \
!! I i . ~ \
/

'
v '\ , , I,j i

! li '
! I ' \

i ! I .. lA
, '\' \ / ,I , , I'
V ~ I

---- -- -- -1- - - -.---- - -- ---, - - -

30 I, ,

50 500
,

1000
, , , ,

1500
time units

2000

I\N

, , I , ,
2500 3000

FIg,6,7: Load Imbalance Comparison of Random and Threshold
Window Algorithms,

124

by a heavily loaded host at the receipt of a RECV message or by allowing

a heavily loaded host to send a task to a randomly chosen host if the RECV

flag is not set. The threshold-window with random task transfers will be

discussed later in this section.

In Fig. 6.6, the effect of message broadcast period on the number of

tasks transferred is studied. The results indicate very high percentage of

tasks transfered for message broadcast periods less than 30. Looking at the

response times and percentage task-transfers simultaneously, it is suggested

to use the message broadcast periods that provide reasonable response times

with small percentage of tasks transfers, i.ej 40-200. These values largely

depend on the size of the distributed system, the overall load conditions and

the difference of load among the hosts.

Fig. 6.7 provides a load imbalance comparison between the Random al

gorithm and the threshold window algorithm for a broadcast period of 400.

Random algorithm gives low load imbalance at the cost of higher task trans

fers and expensive periodic broadcasts amongst all the hosts. For a broadcast

period of 400, the percentage of task transfers for Random algorithm is over

4 while it is slightly over 1 for the threshold-window algorithm. It should

also be noted here that the periodic message broadcasts for threshold-window

algorithm are only from lightly loaded hosts.

As already mentioned, the choice of upper and lower thresholds greatly

effects the performance of threshold-window algorithm. It was decided to

improve the performance of this algorithm by setting two upper thresholds.

Whenever, a heavily loaded host reaches the first upper threshold, it checks

125

~
~
~
·Si
"tl

Load Imbalance

160.---~----~-----'-----r----'---~

I
no oad balancl~g

-I
thresho d-wlndow+r~ndom _._.- I

random I
--- I

120 . -~---

~ SO 1---+---+---+-·---1---1---

50 500 1000 1500
time units

2000 2500 3000

Flg.6.S: Load Imbalnace Comparison of Random and Modified
Threshold-Window Algorithms

126

if the RECV flag of a host is set and transfers the load to that host. If a

heavily loaded host does not find RECV flag set for a considerable amount

of time and reaches the second upper threshold, it transfers a task to one

of the hosts selected randomly. Fig.6.8 compares the load imbalance perfor

mance of modified threshold-window and Random algorithm for a broadcast

period of 200 time units. It was observed that the modified threshold-window

algorithm gives a better performance than the Random algorithm at com

paratively lower communication costs. It should also be noticed that, in the

worst case when the lower and upper threshold are not chosen carefully or

there are large load variations, this algorithm will achieve some degree of

load balancing by transferring tasks to randomly chosen hosts.

6.4 Dynamic Load Balancing Using Task-Transfer Prob

abilities

In this section, various dynamic load balancing strategies are proposed and

the factors influencing their performance in a distributed system environment

are discussed. Several dynamic algorithms, ranging from very simple ones to

really complex ones, have been designed to improve the performance of load

balancing in distributed systems [Eager et. al. 1986]. All these algorithms

have shortcomings in terms of the assumptions made concerning the task

model and the processing system. The dynamic algorithms, presented here,

assume a distributed computer system with the following properties.

• Task transfers are through task placement and not task migration.

This reduces the cost of task transfers and can easily be implemented

in many systems.

127

• Task behaviour is completely unknown. No assumptions are made

about the task size or the distribution of task arrival.

• All the processors are identical.

• After a fixed interval of time, each processors' current load is distributed

to all other processors in the system.

• Task transfer decisions are made at the time of arrival of each task.

In these algorithms, based on the current state of -the system load, task

transfer probabilities were computed for each host in the system. These

probabilities, denoted by Pij are between a host i and every other host j.

Task transfer probabilities are computed at the end of each periodic interval

and subsequently adjusted after the transfer of each newly arrived task.

,
6.4.1 Dynamic Task-Transfers Using Estimated Service Times

In the first case, mean service rate was used as the load index to perform

the dynamic load balancing. In this model, during a given time interval,

mean service rate J!. can be estimated by keeping record of the total time

used by the host in serving tasks and the number of task departures during

that interval. Therefore, at a particular instant of time t,

where,

1 ~t
Si(t) = J!.i(t) = di(t)

Si(t) = Total service time for local jobs and remote jobs ~t

di (t) = Total tasks leaving the host in ~t

128

similarly,

where n is the total number of hosts in the system. The necessary condition

for load balancing using this algorithm is that at least one host in the system

is heavily loaded and constantly processing tasks. If a host was idle at any

time during the load update period, its service time is set equal to zero.

ft(t) is the average service rate for the entire system. The dynamic load

. balancing algorithm using mean service rate as the load index is given below.

This algorithm is executed at the end of each load information distribution

interval.

ALGORITHM I

For i = 1 to number of processors in the system {

estimate the service time ft(t) from the load updates

received in the last interval.

}

for i = 1 to number of processors{

if (S;(t) ?: S(t) + f)
1* add host to the donor group * /

donor++i

else if (S;(t) < S(t) - E)

/* add host to the a~ceptor group * /
acceptor++i

}

129

1* Determine the weight for donor hosts for finding transfer probabilities * /
for i = 1 to all donors

1* excess tasks on hosts i compared to the average * /
W(t) = (S,(t)-S(t)) •

S,(t) ,

1* finally calculate the probabilities for the transference of tasks among

donor and acceptor hosts * /
for i = 1 to all donors {

for j = 1 to all acceptors {

Pij = (Sj(t)/ Ej~:ccePtor8 Sj(t»W;

}

}

/* probability that a task will be executed on the local hosts * /
for i = 1 to all donors {

}

p.. - 1 0 _ ,\,~1I dono .. p. ... ,-. 4=1 'J'

The algorithm described above attempts to improve the performance of a

distributed system by balancing the load through the estimated service time

on each host. Each host estimates its own service time during each interval

and distributes this information to all the other hosts. After this information

is passed to all the hosts in the network, transfer probabilities are carried out

for each host. These transfer probabilities are used to transfer tasks during

. the next interval for the purpose of load balancing.

130

[Gao et. al. '1984] have introduced the idea of donor and acceptor hosts

to indicate the load levels in each host. A donor host is a heavily loaded

host and is capable of transferring a few tasks to an acceptor host, a lightly

loaded host, for an improved performance. These definitions also apply in

this study.

Given the estimates of service times for each host, the next step is to check

if a host is a donor or an acceptor. To check this, each host compares its

average service time with the average service time over the whole system and

if the difference exceeds a threshold f2 then this host is categorized as a donor

host. The value of f varies with the processing speed of hosts, the task size,

and the communication parameters of the network. The value of f should

be such that the load values equal to f, in excess of the average load value,

when transferred to a remote host do not provide any performance gain. Any

load values greater than average load upto an f should be executed locally

as the waiting time at local host might be lesser than the time spent in

communications for transfer to a remote host. Similarly, if the estimated

service time of it host is less than the average service time of the system by

an amount greater than f , this host is categorised as an acceptor host.

Remaining steps of the algorithm are carried out by the donor hosts. After

a host has been categorized as a donor host, this host determines the weight

factors to compute the transfer probabilities. This weight factor is defined

as the ratio of excess load as compared to the overall average load of the

system.

2 An < is similar to the parameter 'bias' used earlier

131

Before defining the transfer probabilities, it is important to define the term

Acceptance Ratio.
",,~II .".p'." 8. (/)-8. (/) . A t Rt' L..,=l I I ccep ance a to = E;~tccepcor. Sj{t)

Hosts with smaller service times have high acceptance ratios. Therefore,

more tasks from donor hosts are transferred to the acceptor hosts with higher

acceptance ratios.

Finally task-transfer probabilities are determined between a donor and

acceptor host by multiplying the weight factor of each donor host with the

corresponding acceptance ratios of the acceptors.

6.4.2 Dynamic Task-Transfers Using The Combined Effect Of Task

Arrivals And Departures In A Distributed Computer Sys

tem

In the previous algorithm, task departures from a host were considered to

estimate the service times for the purpose of load balancing. By taking task

departures, over a: given period of time, into consideration, it is possible to

get an estimate of the average task size on a host and to determine that a

host is idle in case of no departures. This limited amount of information

may not be sufficient for efficient load balancing, as the load on a host is also

dependent on the arrival pattern of the tasks. Therefore, the next algorithm

takes both the arrivals and departures into consideration for making a load

balancing decision.

In this algorithm, the following values are recorded, during each interval

(~t), to be utilized in making load balancing decisions.

132

d;(t) = Number of tasks leaving host i at time instant t.

a;(t) = Number of tasks arriving at host i at time instant t.

These values are distributed to every other host periodically after .6.(t)

interval.

o;(t) = a;(t) -- d;(t)

o;(t) is the load on each host during an interval .6.(t)

Average load over the entire system is given by,

8;(t) = L:~-1 o;(t)
n

Here, n is the number of hosts in the distributed computer system.

ALGORITHM II :

for i=l to n {

if (o;(t) ~ 8(t) + E)

1* Add a host to the donor group * /
donor++;

}

else if ((o;(t) ::; 8(t) -- E)){

1* Add a host to the acceptor group * /
acceptor++;

}

133

1* Determine the weights for donor hosts for finding the transfer probabilities * /
for i = 1 to all donors {

W;(t) = o;(t) - 6(t)

}

/* Finally calculate the probabilities for the transferrence of tasks amongst

the donor and acceptor hosts * /
for i = 1 to all donors {

for j = 1 to all acceptors {

P;j(t) = ((6(t) - OJ(t))(W;(t)/ L-~~ldonor. W;))/d(t)

}

}

This algorithm is very much similar to the first algorithm described. The

only difference is the load index. In this case it is expected that the load index

will reflect a better estimate of each hosts' load. By monitoring the arrivals

and departures, on each host during the interval !It, it can be estimated how

the load will vary during the next interval.

This can be expected on the basis that there is a greater likelihood that

the events that happened in the immediate past will be happening in the

immediate future.

The weight factors are determined by the difference of the hosts' load level

and the average load of the system. To estimate the probability of tasks that

need to be transferred from a donor, the ratio of this weight to the total

weight of the whole system is calculated. To find the probability of task-

134

transfer, from a donor to a particular acceptor, the weight ratio is multiplied

with the acceptance level of the acceptor. The acceptor level is determined

by the difference in the average load of the system and the current load on

the acceptor. The larger the difference the higher the acceptance level. In

the end, the resultant is normalised by the average number of jobs processed

during the interval to get the final probability.

6.4.3 Dynamic Task-Transfers Using Queue-Length As The Load

Index

The algorithm described in this section is based on a widely used load in

dex, Le., queue-length, for dynamic load balancing in a distributed computer

system. A large number of research efforts have been directed on finding

a useful load balancing policy using queue-length as the load index. It is

generally believed that if task behaviour is known in advance, efficient load

balancing strategies can be devised. One of the major unknowns in task be

haviour is the overall processing time required for the completion of a task.

The previous two algorithms, attempted to improve the performance of a

distributed system using the estimates of task arrivals and task processing

times. The combined effect of the arrival and service rates is automatically

reflected into the queue-lengths of a host. Instead of estimating these quanti

ties independently and using these for load balancing purposes, queue-length

estimates of different hosts are used to perform the load balancing.

Like the previously described two algorithms, this algorithm is distributed

and runs on each host periodically. The initial steps of finding the average

load on each host and identifying the donor and the acceptor hosts are similar

to the ones described earlier.

135

Instantaneous queue length for each host 'i' is represented by qi(t) and

is broadcast to all hosts in the system periodically. Average load over the

distributed system during each interval is given by:

. q(t) = L: qi(t)
n

where n is the total number of hosts in the system.

ALGORITHM III :

for i = 1 to no. of processors {

if qi(t) > q(t) + f
/* Add host to the donor group * /

donor++j

else if qi(t) < q(t) - f

/* Add host to the acceptor group * /
acceptor++j

}

for i = 1 to all donors {

Wl(t) = qi(t) - q(t)

}

for j = 1 to all acceptors {

wja(t) = q(t) - qj(t)

}

/* Determine the weights for finding transfer probabilities * /

136

for i = 1 to all donors {

for j = 1 to all acceptors {

W;j(t) = (Wl(t)f L,:~ldonor. W/(t))W;"(t)

}

}

f* Calculate the transfer probabilities between each donor and acceptor hosts * f
for i = 1 to all donors {

for j = 1 to all acceptors {

Pij(t) = W;j(t)f L,:~ldonor. W;j(t)

}

}

In this algorithm, the weight factors for the donor, W d and acceptor hosts,

wa are determined by comparing each hosts' queue length with the average

length of the system. Next, the transfer weights between a donor 'i' and an

acceptor host 'j', W;j, is calculated by multiplying the ratio of the donors'

weight to the sum of all donors' weights with each acceptors' acceptance

level. An acceptors' weight is taken as its acceptance level. The transfer

probabilities for a donor 'i' and an acceptor 'j', Pij is simply the ratio of

transfer weight of these two hosts to the sum of all transfer weights.

These task-transfer probabilities are adjusted after each task transfer for

dynamic load balancing.

137

6.5 Simulation Results And Discussion

The simulations were carried out to study the performance of algorithms

described in the previous section. The simulation model was based on the

assumptions and characteristics described in section 6.2. In these simula

tions, it was assumed that the load information for each host is immediately

available to every other host in the system for making transfer decisions.

In real systems there is a considerable delay in spreading this information

across the system. The delays in distributing load information depend on the

communication capabilities and the communication protocols of the network.

However, the effect of transfer delays is considered while defining the load

threshold of each host. As described in section 6.2, parameter f is used to

minimize the effect of these delays on load balancing decisions.

The interval between two successive updates is varied to study the effect of

the frequency of load information updates on the load balancing algorithms.

The choice of a suitable period length is necessary for a good load balancing

algorithm with minimum overhead on the communication subsystem.

The parameters used to generate the arrival and service rates are the same

as described by [GAO et. al. 1984], given in Table 6.1. These parameters are

selected such that the utilization, p, of the queueing system is in the stable

region.

(p =)..j p.) < 1

138

· For each algorithm, the load imbalance and the average response time of

tasks was compared with the no load balancing case. A 'no load balancing'

can be viewed as an independant M/M/1 queueing system, where each ar

riving task on a host resides on the same host for its lifetime, independent of

the load on this host. An ideal load-balancing system can be viewed as an

M/M/m queuing system. If a single central queue is used and each task is

sent to a processor on demand, the system will behave similar to an M/M/m

queuing system. All the results, shown in Figures 6.9-6.11 are obtained for an

update interval of 200. It is commonly believed that with known task sizes,

the performance of load balancing algorithms can be increased tremendously.

Figure 6.9 presents the load imbalance curves for the no load balancing and

load balancing using estimated service times. From the no load balancing

curve, it can be observed that as long as the new tasks are arriving and the

host queues are full, the overall load imbalance tends to increase. These

results are very sensitive to the arrival and service rate distributions. The

amount of load imbalance is dependent on the arrival and service parame

ters used for each host. The curve generated for load balancing algorithm

using estimated service time as the load index improves the performance by

decreasing the load imbalance. However, the low performance gain can be

associated to some extent with the small variations of service rate among

the hosts. The load imbalance is reasonably controlled for the first half of

the curve and then it gradually increases and then again falls to the same

initial range. These fluctuations in the load imbalance could be the cause

of largely varying arrival rates among the hosts. These un-controlled arrival

rates make the behaviour of the load balancing algorithm unpredictable.

139

160

,

- --, ---

Dynamic Load Balancing Using Service Times

No load balancing

~:tml -.. --,..

I " 1'\ ,', ,\
;' ,' "
~ , , ,
I' '.' "' , ' , '

:",_1 ~ ~ , '.. :.,
, '" "~I i\ : • i-' ,'",,', I,' 80 1---_+_--c'~-",--_+_-!--___4-"---- ---.-.----_.-----... -_.--- ---

J
",' 1" " I ,\. ~ ',.. ,

" I , ' " " ,
" ;, I' ,," ~ , .. " I , , I' .. ,"

f.l\,t' I
' ,
',' !

500 1000 1500
Umeunlts

2000 2500 - 3000

Fig.6.9: Loac;t Imbalance For Algorithm I vs. No Load Balancing

140

160

Dynamic Load Balancing Using Arrlvals+Departures

rr---t----h
No load balancln~
~

Algorithm 11

r ,-_-+-"_-_. -_-+.....J

. ..
"

• , .' , I..,' . , " " . It I .. " 1\

... , ,\ ,',: " ' '.,'.... " I ,
, " I I"~ "
f , , ' .. , \' ", , " .. , " ,

40_-.tLJ-['" ------ ------- L lJL __________ ------~ __ __ ::~j ___ \/ ___ :'
" I' .. " . , , , ,

I- ".' "

r

I
I

0 , , I , , , , , ,
500 1000 1500 2000 2500 3000

Umsunlts

Fig.6.10: Load Imbalance For Algorithm 11 vs. No Load Balancing

141

Figure 6.10 shows the performance curve for load balancing algorithm that

uses the estimates of both the arrival and service rate, to make the task

transfer decisions. In this case, it was observed that there was considerable

improvement in the load balancing. The load imbalance was nearly uniform

over the whole simulation"period. There were no wide variations in the load

imbalance as observed in the first case. It indicates that a combination of

arrival and service rates can be effectively used to determine a load index for

good load balancing. Such algorithm performs well for widely varying task

arrivals and task sizes, thus the performance of load balancing algorithms

can be increased tremendously.

The estimates used in this algorithm are achieved dynamically from the

tasks executing in the previous interval. The next algorithm does not utilise

any such estimates of task size or task arrivals.

Figure 6.11 shows the performance of load balancing using queue length

as the load index. The queue length was chosen as the load index based

on the intuition that both the arrival rate and the service time of a host

are reflected in its queue-length. In all the three algorithms described, load

balancing decisions are made on the basis of load conditions observed during

the last update interval. The effect of load estimates obtained in the past

intervals is not considered.

In this figure, a further improvement in the performance of load balancing

is observed. This suggests that the automatic reflection of arrival and

142

Dynamic Load Balancing Using Queue Length

'1 ,I
1
.
1
,. 'i I No lo1~anclng I

160 ·················-···-····f····-··-······-·······-···· ••.•...•••..• _-...-••• , ••••• ····--··1--·-----·--··-,··-·--····--1
Aldorlthm III I !

. 1----- i I
i

I

120·-----·--'- _._,

I
, I

1

I !I !
i I

) 80
! I . [I i

................... _ _.l._ __ _ ___ -.... --.. --.-.. --....... --.-.... -.. -.,.--..... --._ ... -.... -... -.. .. -......... -.. - -.. i .. .
I I! 1

11 i i : I I.
1

I I I I .\ I, , . , , I" I , 'I
' • ,',; , , ' , " 'It !

, '" i ' ,I - i'," t, I~ j ,\. ':1
' I, 'j I.,' I I,'" , .. ,. , I, ".l I I '" 40 "-" L_ " t--,/;,!,-,:-,--"-t--:--,-,' .. L-........ __ !._,;-,_ _I_ +-;-. . ., I " I I \I, '" " , I'., , '" 1 .' '. " ' I." .." 1 ' ,.,,' 1'1" ,1 j'"'. ,,' : .. , .. , ! ' .. ,' I

I I I I I
I ! i

500 1000 1500
t/fT7(J un/1$

2000

I ,
2500 3000

Flg.6.11: Load Imbalance For Algorithm III vs. No Load Balancing

143

Load Imbalance
120 r----,-----r, ----~----~i----~----~

Algorithm III 1,1

I

AI90tithm 11
'"1""-

f-
/' 1\
~\,j \ /'
1\' \
i ;/ \'1
i \

~, 1 \'1" I"'" j'
j \/,j \

AI9~~~~m I

j
,. ., I ,. .,. N

80 1-----+-,-\:4' , I,--t-----if----i
. ,,f, l' !\ (il\., j

/ \. / \ /1 Vi /\ i
1 I! I1 '\/" "I , ..,~ . v

~! y
I I
\ ;
\i

' ..
. " . , ;' , r

! I

I • j!\ 1"'./ ']': j\ ;\
I~,~ ',' , , , \' , • I • I

:: ,: : I : ',' q" '~' :' , , :, I I • " , , ., ,vt_'jl. .

40 ~ I-it~ -r/ -:- : -~ I-~'T:V
r ~ : I

" " •

I, , , " ,

500 1000

I
I ,

1500
Um9unlts

, ,
2000 2500 3000

Fig.6.12: Load Imbalance Comparison for Algorithms I, 11, and III
144

service times in the queue-length provides a better measure of the load

on a host, as compared to obtaining the separate independent estimates for

arrival and service times. It also involves lesser overhead in maintaining and

distributing the load information.

The relative performances of the three algorithms are described in Fig.

6.12 with their corresponding load imbalance curves. As already mentioned,

the load imbalance for Algorithm II and Algorithm III was considerably

lower than Algorithm I. For smaller interval lengths, it was observed that

there were not significant differences between the performances of Algorithm

I I and I I I. An interval length of 200 was used for the results in Fig.6.12. For

larger intervals, Algorithm 1I1performed significantly better than Algorithm

I I. This is probably due to the nature of parameters used in determining the

load estimates. The arrival and service time parameters used in Algorithm I I

change more frequently than the queue-length, therefore the load estimates

obtained for the former are not very effective for longer update intervals.

It is very important for a dynamic load balancing algorithm to be stable.

In distributed computer systems, frequent changes in the load of hosts and

the out-of-date information may lead to inefficient load balancing decisions.

The selection of update interval is very crucial in dynamic load balancing

algorithms. The length of this interval should be greater than the average

task service time and the average communication delay, across the network.

In this model of the distributed computer system, it was assumed that the

tasks are immediately transferred between any two hosts, which helps to

provide us with an updated load information of each host instantly for an

efficient load balancing decision. In real environment, these algorithms may

145

ALGORITHM NO LOAD BALANCING I 11 III

AVERAGE RESPONE TIME 77 57 46 43

Table 6.3: Average Response Times For Algorithms I, Il, and Ill.

show some instability due to processor thrashing. This processor thrashing

is caused by unnecessary exchange of tasks between two processors due to

incorrect load balancing decisions, based on out-of-date information. How

ever, with a proper adjustment of the load threshold, these algorithms can

avoid processor thrashing.

The average response time of the three algorithms are given in Table 6.3.

These response times are precisely due to the waiting time in the processors'

queue and the processing time of the task.

Next the performance of algorithm III was studied by changing the in

formation update period lengths. As already mentioned, the frequent infor

mation update messages incur a large amount of overhead and are likely to

degrade the performance of distributed systems due to communication bot

tlenecks. Therefore, it is necessary to find the interval lengths that provide

good response times with a manageable amount of communication overheads.

Figures 6.13-6.14 show the response time and percentage task-transfers for

different interval lengths. In Fig. 6.13, the response times obtained for Al

gorithm I I I show a gradual increase with an increase in the interval lengths.

For longer intervals, load estimates do not capture fine load variations. These

estimates are used to calculate the probabilities for transferring the tasks '

146

Update Interval vs, Response Time

ror---~---'----r---~---'----r---~---.----'

.~/
60 -----.- ___ L. ___ _+ ____ . __ ._. '-"--'--' ~. ::::::+--.----.- ----.--

~ ~

I /v
50 7:'
V

800 1000 1200 1400 1600 1600 2000
Inl9lVBllength

Fig.6.13: Average Task Response Times for Algorithm Ill.

Update Interval vs. Percentage Transfers
14.---~---.----r_--_r---,----._--_r----r_--,

12 [---+----+--+----f--.--- _._--.. ----.---... -.- .---..... -.............. -........... "

I

i':=-~----~=~==
~ '\. I

"'...... I 4----.--t-"'-..... """" .
1---.1.

2 .. --.---...-....... ___ r---r-1'-'---'-"-l--T::::=:t===t==J
O~~~~~~~~~~~~~~~~~~~~~W

200 400 600 800 1000 1200 1400 1600 1800 2000
Inl9fYSllength

Fig.6.14: Percentage Task· Transfers for Algorithm Ill.
147

which remain effective during the succeeding interval until new estimates

are obtained. With large interval lengths, the difference in the estimated

and actual load increases and the probabilities based on these estimates are

used for longer intervals hence effecting the performance of load balancing.

However, comparing the performance of Algorithm III with Random and

threshold-window algorithms that transfer tasks once during the whole in

terval length, the former gives very good performances for longer interval

lengths as it tries to adapt with the dynamically changing load conditions on

the hosts.

\ Fig. 6.14 shows a sharp decrease in the percentage task-transfers for an

increase in the interval lengths up to 600. After the interval length of 600,

there is a gradual decrease up to the interval length of 1200. From 1200 on

wards the percentage of task transfers stays nearly constant. Looking at the

response times and the percentage transfers for Algorithm I I I, it can be sug

gested that very good performances can be achieved for the interval lengths

of 400 and 600 with low task-transfers and response times. With a proper

choice of the interval length, a suitable compromise between communication

costs due to task-transfers and response times can be achieved. It should be

noted here that with an increase in the interval length, the communication

overhead due to periodic load information broadcasts is greatly reduced.

[Gao et. al. 1984] have used a similar model to study the performance

of load balancing algorithms. The two algorithms described in the authors'

study transfer a fixed number of tasks during each interval. The load es

timates used to make the load balancing decisions are based on the task

arrivals and the amount of unfinished work. The authors' results indicate

148

that the algorithm using arrival rate as the load index performs poorly as

corn pared to the estimate of the total unfinished work. The total unfinished

work on each host is estimated from the estimate of the mean service time

of local tasks on the host multiplied by the queue-length. It should be noted

here that if the service time of the local tasks on a host is low, the tasks

wi th larger service times will be constantly transferred to this host and yet

unaccounted for in the load estimate, thus resulting in poor load balancing.

The algorithms described in this study take both the local and remote tasks

into account for estimating the current load on a host. These algorithms

make dynamic load balancing decisions for transferring newly arrived tasks

after the task-transfer probabilities have been computed. Algorithm I I and

Algorithm III give a better performance as compared to Algorithm I.

6.6 Dynamic Load Balancing With Communications

The dynamic load balancing algorithms discussed so far in this chapter do

not consider communication costs while making the task-transfer decisions for

load balancing. For load balancing, tasks are transferred from heavily loaded

hosts to the lightly loaded hosts. A task on a heavily loaded host may be

eligi ble for transfer to more than one lightly loaded hosts. A suitable choice of

the lightly loaded host that minimizes the transfer costs can further improve

the response time of the task. In this section, Algorithm I I I described

previously is modified to include the inter-host communication costs. The

host model and the parameters used are the same as described in section 2

of this chapter.

149

COMMUNICATION LINK Cl2 C13 CH C23 C24 C34

HIGH COMMUNICATIONS 16 2 8 6 4 16

LOW COMMUNICATIONS 8 1 4 3 2 8

Table 6.4: Inter-host communication parameters

The communication subnet is considered to be fully connected and the

communication costs for· each link are given in Table 6.4. The communi

cation costs considered here simply reflect the possible delays experienced

by a task between two hosts. These delays could be due to the link speed, .

communication interface or network congestion etc. A set of high and low

communication costs was considered to study the performance of the modi

fied algorithm.

In Algorithm I I I, after the weights have been assigned to each donor

acceptor pair based on the current system load, these weights are subse

quently adjusted to reflect the inter-host communication costs. Following

steps are carried out to find new weights used in determining the task-transfer

probabilities.

Wlj = Weights determined in Algorithm III for each donor i and accep

tor j.

newWoj = Weights determined after the inter-host communications are con

sidered, for donor i and acceptor j,

max_com, = maximum communication cost between a host i and one of the

acceptors.

150

Algorithm:

for i = 1 to all donors {

for j = 1 to all acceptors {

max..com; = max{Oij}

} } for i = 1 to all donors {

for j = 1 to all acceptors {

if (Oij < max..comi){

newWij = Wij + ((max..comi - Oij)/max..comi)

}

else{

neWWij = Wij - ((max..comi - Oij)/max..comi)

}

}

}

new Wij determin"'ed in this way was used to compute the probabilities, Pi;'

for transferring tasks from a host i to a host j, as described in the previous

section.

6.6.1 Performance Results

Simulations were performed to evaluate the performance of the modified

algorithm. The simulation model parameters were the same as used for Al

gorithm Ill. Two different sets of communication parameters used in simu

lations are given in Table 6.4. The performance was measured by comparing

the results obtained for this alg~rithm with those of Algorithm I H. The

151

ALGORITHM HIGH COMMUNICATION LOW COMMUNICATION

COSTS COSTS

ALGORITHM 1 Il 66 51

MODIFIED

ALGORITHM 1 Il 55 47

Table 6.5: Average Response Times for Modified Algorithm 111.

performance measures used were the average response time and the load im

balance. As expected, significant improvements in the response times were

achieved. When the difference of communication costs amongst the com-

, munication links is higher, larger improvements in the response time were

achieved. The average response times achieved for the two types of commu

nication costs are given in Table 6.5.

The effect of the modified algorithm on the load imbalance for high and

low communications costs is shown i~ Fig.6.15 and Fig.6.16 respectively. It

appears that the improvement in the response times was achieved at the

cost of higher load imbalances. Algorithm III which only tries to balance

the load amongst the hosts without taking communications into consider

ation, has low load imbalance values: The conflicting issue of minimizing

the communication costs and maximizing the load balance is apparent from

the results of the response times and load imbalance. In Fig.6.16, the load

imbalance for modified algorithm is compared with Algorithm 11 I for lower

communication costs. In this case, the increase in the load imbalance for the

modified algorithm is not very high and better response times were achieved

with small adjustments in the host loads.

152

Load Imbalance (High Communications)
60 r-----------------------__ ----~------M

11 11 AlgorH"," III (M~dlfled)1
r I I -'-'-,\; ,.

'" I i!1 Algorithm 11 11

I "4 I ~ ','\;, I - I
i' ' V! '------+------i-------' I
,i ! I ! I ! ' , . , I,

50------,1-------.,' -,- - "i---"
"I ,,' ,"\ ,',\1," ,
!jl ili 'I ,'"I ;

", ,! j ! i i i ~! ~ 1\ il!i I \ Ip !
, , i !' i '" !!, ii i I i i"'! 'i ! 'i 'i, "it 'I;' ii,!! i l
, i, 'j i 'V~ , 'j i ! I! ,'" ,
j i! ;i i i Ii;. i; ! I ; ! i J j ;
j i! ii' I ' i! i;!,' ",! 'i '
i 'HI \ r! I i ! ii! i I i'/ i! ' i
i ,,' i It I i i!, ,! '; !;',..; j

\ .
. ," .. " .""".; .. ,., "" ... 1"·· .. ",,· .. ·1..··,1

i !i'
lA i ~'il { ! V

, , I

j ~ ~ LJ I : \ ij
I " I ' ,
I I;

30 ------:-------1--------+-----+--
I I
, I
I '

I '

20

I

!
I
I
I

i I I, , , ! , ,
500 1000

I '

I ,
I

, 1- " ,

1500
Umeunlts

2000
, , , ,

2500 3000

Fig.6.15: Load Imbalance for Algorithm'" and Modified
Algorithm'" (With High Communications)

153

Load Imbalance (Low Communications)
60 ~--~----~----~----------~----~

!
I
I Algorithm'" (Mbdified)

I I I
I Alg~~~m I'"

~-t~--l\I.----! _ .. --.--
i I I . Nil! :-, li

j i lA ' !

I-

50

j '1 0 '! ':
Ql II! Ili\ ,\;\1.11 \
~ ! I !! ii ". " i! ! jl ~ ! I! I II! 1\' !\ !' I1 i :'
~ \ ! I ! n ~ . .J' \ 1 ~ ,! • 11, f '---J ,s 40 ',"'---lr 'I\\-lilf------\--j!- i! -,!V-~,.I-A1rJV----l '
- ". I, '", \/~ ." ",;,", i i
~ I- /.; 'i {' ii !,'.i 'V' ,! ,",,1 , q \ i . "
~~ !t •• '. 'I .. • I

oS;! , i '!; V il I i ; \ ; ! ! i i'
ii i!1 '~ lii~ !! I i
\ , i! , ri' i I !!, i
, " " " , !! ' "'1' !, :j , I i! , ~, /,
,! !,' 'I' I \,~. " . ! I I " I! .
!, I" , ; ~ ; .' , d : t i i ! ! 1 ; : 30 .- ···,------i--------------~-----------I--·----------l--------,---- 1 -;------;-

, , 'I I"

20

, ' ,
; '; ! I ~
i i t

i i I-

I

I

I-

I I

I I i .. • I ••• I .
500 1000 1500 2000 2500 3000

time units

Flg.6.16: Load Imbalance For Algorithm'" And Modified
Algorithm'" (WIth Low Communication Costs)

154

Chapter 7

LOAD BALANCING WITH

NETWORK PARTITIONING

USING HOST GROUPS

7.1 Introduction

As mentioned earlier, every dynamic load balancing algorithm consists of

an information policy which is used to distribute load information amongst

hosts of the distributed system. This load information is susequently used

to make task transfer decisions for balancing the load across the distributed

system. In the previous chapters, major emphasis was given to the design

of load balancing algorithms with the assumptions of a periodic broadcast

mechanism for load information distribution. There were no efforts made to .

reduce the communication costs incurred by such algorithms. The commu

nication overhead for load balancing algorithms is dependent on both the

information policy and the load balancing policy used. Information policy

155

decides the nature of the information which needs to be distributed and about

the protocol to be used to distribute such information. Similarly, the amount

of tasks transferred and the destination of such tasks is determined by the

load balancing policy. The communication overhead also depends on the

number of hosts and inter-connection topology of communication network in

the distributed system. As the number of hosts and the size of the commu

nication network increases, communication delays increase and tend to cause

communication bottlenecks. Furthermore, with an increase in the number of

hosts in the system, each host needs to increase its table space for maintain

ing the load information. As the table size increases, the computation time

for maintaining the load information also increases.

In this chapter, an attempt is made to suggest various network partitioning

techniques which could improve the performance of large distributed com

puter systems. The study presented here is suitable for a large distributed

computer system with several hosts. These systems are distributed over

large geographical areas and their hosts are inter-connected with long haul

communication lines. The techniques presented here are aimed at reducing

the communication overhead introduced by load balancing algorithms by re

stricting the application of these algorithms to a group of hosts. Several

different criteria can be used for the grouping of these hosts. The present

study assumes the geographical partitioning of the network along the natu

ral boundaries of the geographical regions. Subsequently, the host grouping

strategies are modified to achieve better load balancing performances.

Each host group is considered as a complete system. In this way, the load

balancing process is limited to the host group by identifying the heavily and

156

lightly loaded hosts within the group and transferring tasks amongst them.

It is expected that introducing such techniques would reduce the overhead

in maintaining the load table and distributing the load information.

The next section describes some techniques for network partitioning and

discusses the rationale for grouping the hosts to reduce the overheads. The

remaining sections describe some simple network partitioning techniques and

their performance through simulations.

7.2 The Network Partitioning

It is a very common practice to increase the size of communication networks

for increased availability and reliability of the computing resources. However,

at certain times, further increase in the computing resources creates problems

for the software which manages these resources. To simplify the management

of resources in a large distributed system, a reverse process is suggested

to partition a large physical network into relatively small sized logical sub

networks. From a dynamic load balancing perspective, if a dynamic load

balancing algorithm is applied directly to a large distributed system, it would

require a large amount of overhead in maintaining the load table, distributing

the required load information and transferring the tasks to achieve a required

performance measure. The partitioning of a large network into smaller units

reduces the number of hops and hence the communication cost incurred in

load balancing.

There are several possible ways of partitioning a communication network.

The two major categories can be described as;

157

• Hierarchical Partitioning

• Flat Partitioning

The relative performances of both types of partitionings mentioned above

. are subject to the implementation of the load balancing algorithm. The wave

scheduling technique [cf. chapter 3) implements load balancing by scheduling

task forces on a hierarchically organized network of processors. It involves

extra overhead to maintain the hierarchy and the messages exchanged among

different layers of the hierarchy add to the total communication costs. Fur

thermore, wave scheduling is not appropriate for all applications, since it

deals tasks with sizes typical of the processes on a uniprocessor. However,

any load balancing algorithm can easily be applied to the fiat partitioned

network without any extra overhead. The network is broken down into sev

eral small host groups. In this case, all the hosts in different host groups lie

at the same level. The above mentioned approaches are illustrated in Fig. 7.1

and Fig.7.2.

There are several factors to be considered at the time of partitioning a

network. The two major ones include the size of the parti tions or host groups

and the criteria for grouping the hosts together. The size of the host groups

can be fixed or changed dynamically in which case hosts can join or leave a

group over a given time. However, the number of hosts in a group depends

on the overall size of the network and on the criteria used to form the host

groups. There are several criteria that can be used to form the host groups

some of which include the geographical location of a processor, load on a

processor and the transmission capacity of the links etc. The grouping of

158

o A Host

A Logical Relationship

Figure 7.1: A Hierarchical Partitioning of the Distributed Computer System

o A Host

A link

Figure 7.2: A Flat Partitioning of a Distributed Computer System

159

....

hosts on the basis of geographical location is very simple and partitions the

network along the natural boundaries. All the hosts located within the same

geographical region are the members of the same host group. The second

method is to consider the load on each host for making the host groups. This

requires an additional overhead of distributing the load information amongst

all the hosts prior to partitioning of the network into various host groups.

This information is used to rank the processors and form the host groups on

the basis of these rankings.

Since the load on hosts changes dynamically, it might be necessary to

repeat this process periodically. Another drawback is that the hosts grouped

together on the basis of load might be located at large physical distances

which might introduce large overheads in transferring tasks within the same

host group. The final criteria of grouping the hosts based on the transmission

link capacities tries to bring together hosts which are inter-connected with

links of similar transmission capacities.

The work presented in this chapter is based on fiat partitioning with geo

graphical location as the host grouping criterea. In the next section, the idea

of grouping hosts is further explained.

7.3 The Host Group Model

The idea of grouping hosts together to reduce the inter-processor commu

nication costs is similar to that of clustering techniques used for task systems

to cut down the inter.-task communication costs. Several load balancing algo

rithms based on task clustering techniques have been proposed and studied in

160

the literature [cf. chapter 3]. However, a few researchers have concentrated

on clustering the processors to improve the load balancing performance. The

task clustering techniques are not very suitable for dynamic load balancing

strategies due to the assumptions of a deterministic task system. Whereas,

the host grouping techniques presented in this chapter can be easily adapted

by any dynamic load balancing algorithm. No attempts are made to bring

the tasks with high inter-task communications together on the same pro

cessor. By restricting the task transfers within the same host group, some

reduction in communication costs are achieved.

The basic idea of a host group model was proposed as a way to support

multicasts in an internet environment .. Existing communication standards

such as the OSI 1 reference model support message communication only to a

single destination [Tanenbaum 1986]. This type of communication is called

unicast. It is costly to unicast separate copies of the same message to a

set of different destinations. Multicast is the delivery of a packet to some

specified subset of possible destinations [Aguilar 1984]. In this study, the

multicasts will not be treated in detail. The purpose of introducing mul

ticasts was to familiarize with the message communication techniques that

can be incorporated in conjunction with the host group model to improve

the performance of message communications in the large area communica

tion networks. [Deering 1988] defines two different types of host groups. In

a closed group, only the members of the same group are allowed to commu

nicate among each other, whereas in an open group, a sender need not be a

member of the destination group. The grouping strategies proposed in this

study can be implemented using one of these models.

lOpen Standards Interface

161

As mentioned earlier, the work presented in this chapter is based on fiat

partitioning. The host groups are formed along the geographical boundaries.

Each host in a group is called a member of the group. It is assumed that

a host can join or leave any host group. A host can also change its mem

bership from one host group to another dynamically [Deering 1988]. Host

groups are formed at the time of initialization. Only the hosts within the

same host group interact with each other to make the load balancing de

cisions. Each host in the host group stores a table which keeps the load

information of all other hosts in that group. One of the hosts from each host

group is designated as the group manager. All the group managers interact

and exchange load information messages amongst each other. In this way,

the group managers incur additional overhead of distributing and managing

load information among themselves. The purpose of group managers is to

provide a global load balancing.

7.4 Effectiveness Of Host Group Strategies For Load

Balancing

In this section, a simple dynamic load balancing strategy is proposed and

its effectiveness for several different host grouping techniques is studied in

subsequent sections. The performance of these strategies is studied through

simulations. The network is partitioned on the basis of the geographicalloca

tion of the hosts. All the hosts lying within the same geographical area belong

to the same host group. The current installations of local-area networks pro

vide communication facilities that are several times faster than those of the

long-haul networks. Therefore, it is assumed that the communication cost of

162

transferring a task within the host group is smaller as compared to the cost

in transferring the task to a different host group.

The load balancing algorithm, considered in this study, captures the im

portant characteristics of a majority of dynamic load balancing algorithms.

• It is assumed that the task arrivals and the task service times are

unknown at the time of making load balancing decisions.

• The periodic broadcast mechanism is used to distribute the load infor

mation amongst the hosts.

• A host is categorized as heavily loaded or lightly loaded on the basis

, of load threshold. The load threshold is determined from the average

load of the hosts over the entire distributed system.

The distributed system comprises of several hosts inter-connected in an

arbitrary fashion. All the hosts are assumed to be identical. In the remaining

section, host grouping strategies are described in detail.

7.4.1 Intra-Cluster Load Balancing Strategy

It is the simplest form of host grouping strategy proposed for load balanc

ing. In this strategy, the host groups are formed on the basis of geographical

location of hosts. The load balancing is performed locally among the hosts

of each group. No attempt is made to provide the load balancing across the

boundaries of the host groups. All the load information messages and other

load balancing activities are limited to the scope of the host group.

163

This strategy breaks the network into several smaller network components

which work independently from each other. Therefore, this strategy does not

provide global distributed load balancing. However, this strategy provides.

some insight into the potential benefits from the partitioning techniques. It

is expected that several heavily loaded hosts will find a suitable lightly loaded

host within their own host group and may not need to transfer tasks to a

remote host from some other group. Such a strategy will result in large

reductions of the communication costs in load balancing. If there are large

differences in the load levels amongst the host groups, this strategy will result

in a poor global load balancing.

7.4.2 Inter-Cluster Load Balancing Strategy

The intra-cluster load balancing strategy fails to provide global load bal

ancing for the distributed systems. This strategy is a modification of the

intra-cluster load balancing strategy and tries to extend the load balancing

activities across the entire network. The host group model of this strategy

is shown in Fig. 7 .3. This strategy and the ones proposed in the following

sections are fully distributed in the case of load balancing within the host

groups, whereas these are partially central~zed for the load balancing among

the host groups. This centralized aspect is introduced by the fact that the

inter-cluster load balancing decisions are made by the group managers. If a

group manager fails then the host group will not be able to participate in

the global load balancing. This strategy can be viewed at two levels .

• Load balancing within a host group.

• Load balancing among all the host groups.

164

o A Host

A Physical Link
A Logical Link

Figure 7.3: The Host Group Model For Inter-Cluster Load Balancing Strat-

egy

Load balancing within a host group is similar to the one described for intra

cluster load balancing. As mentioned above, to achieve the global distributed

load balancing, it is very important to provide sufficient interaction among

the host groups. It is very likely that, at a certain time, all the hosts of a

host group are busy whereas those of some other host group are sitting idle.

If the load balancing is performed within these host groups, no significant

performance gains will be achieved. Therefore, it is necessary to transfer

some tasks from the heavily loaded to the lightly loaded host groups. The

following modifications are introduced to perform the load balancing among

the host groups .

• Each host group designates one of its hosts as the group manager.

165

• The load information is exchanged periodically among the group man

agers.

"

• Task transfers among the host groups are established through the group

managers.

Several different criteria can be used to select a group manager. One cri

terion is to choose a host with the lightest load among all those included

in the group. The reason to select a host with the lightest load is that the

group manager has to carry out additional responsibilities and load balanc

ing activities. However, the frequent changes in the host loads make this

approach infeasible and rather costly. The overheads involved in such an ap

proach may exceed the performance gains from load balancing. The second

approach is to select a host that provides efficient and fast communication

facilities. It is easy to select such a host at the time of system initialization.

Furthermore, since all the tasks are transferred through group managers and

load information is exchanged periodically among the group managers, this

approach will provide better performance. The second approach is assumed

in this study.

It is one of the responsibilities of the group manager to provide sufficient

information about the load levels within a host group. Two different methods

are suggested here which could be used to estimate the load levels of host

groups. The first involves finding the average of host loads in the group

periodically. This average load on each host group is distributed among all

the host groups. This information is used to find the average load on the

network. Load balancing among the host groups is performed by using the

average network load as the load threshold to identify the heavily loaded

166

and the lightly loaded host groups. The second method involves simply

UShlg the instantaneous load on the group manager as an indicator of the

average load on each host in the host group. This approach is based on the

expectation that the load on each host in the host group is nearly the same

as the average of load on all hosts in the host group. This depends on the

performance of load balancing within the host group. If the performance of

the load balancing algorithm within the host group is high, there is a good

chance that the load on all hosts in the group will almost be identical. In

this case, the load information is exchanged among all the group managers

. and the load balancing is performed on the basis of the load threshold which

is determined from the average load on all group managers.

The load information is exchanged at two levels. First, there is load infor

mation exchange among all the hosts in the same group periodically. Second,

there is an exchange of load information among the group managers. The

frequency of the load updates can be adjusted to achieve required load bal

ancing performance.

To balance the load over the entire network, tasks are transferred from

the heavily loaded to the lightly loaded host groups. These task transfers

are allowed only among the group managers and not to any other members

of the host group. As already mentioned, it is assumed that there are high

speed transmission facilities provided among the group managers. If several

tasks are transferred from the group manager of a heavily loaded to the

group manager of a lightly loaded host, the group manager of the Jormer . .

will become lightly loaded in its own group. Nevertheless, the local load

balancing algorithm will transfer tasks from other hosts of the group to the

167

group manager, hence lowering the load level of the host group.

The inter-cluster load balancing will prove useful in the situations where

there are large differences among the host group loads. For small differences

in the loads, its performance is comparable to the intra-cluster load balancing.

For small differences in the host group loads, it is beneficial to keep the

frequency of load updates at very low levels among the group managers.

7.4.3 Membership-Exchange Strategy

The strategies introduced in the preceding sections are based on fixed geo

graphical partitions of the network into the host groups and the members of

a group remain in that group forever. This strategy and the one described in

the forthcoming section are based on a slightly different concept of the host

membership. In these strategies, hosts are allowed to change their member

ships in an attempt to improve the load balancing performance.

The membership-exchange strategy is an improvement over the inter-cluster

load balancing strategy. The network is partitioned and the host groups are

formed in a way similar to the inter-cluster load balancing strategy. The

following parameters are exchanged among the host groups during each in

formation update interval.

• An instantaneous load value on each host for load balancing within a

cluster.

• An instantaneous load value on each group manager for inter-cluster

load balancing.

• An average load value estimated on each host group to make member

ship exchange decisions.

168

o A Host

A Physical Link
A Logical Link

Figure 7.4: The Network Partitioning For The Membership-Exchange Strat-

egy

In the membership exchange strategy, different host gro~ps of the network

try to exchange their members to improve the load balancing performance.

Since the partitioning of the network is based on geographical boundaries,

and as no consideration was given to the individual host loads, a high load

imbalance is expected among the host group loads. The inter-cluster strategy

will transfer several tasks among the host groups to achieve the desired load

balancing performance.

- In the membership-exchange strategy, the load on each host is continuously

monitored to pnd the average load value during a specified interval. This

average host load is used to determine the average load on each host group

169

and the average load of the entire network.

f(ti) = q(ti) . x
n

Average Load = E[f(t)] = L f(ti). Atlt

where,

q(t) =Queue-length as a function of time.

x=Mean task execution time.

and, At = ti - ti-l

i=l

These two measures are used to categorize the host groups as heavily or

lightly loaded. Using this information, pairs of most heavily and most lightly

loaded host groups are formed. The next step involves choosing a host each

with the highest and lowest average loads from the heavily loaded and the

lightly loaded host groups respectively. These two hosts exchange their mem

berships and this process continues until the difference among the host groups

is very small.

This strategy tries to minimize the transfers of tasks among the host groups

with membership exchange mechanism. However, it violates the geographical

partitioning of the host groups. A host group may have one or more host

members from a distant geographical region. This strategy tries to bring

some hosts from heavily loaded host groups into lightly loaded host groups

and vice versa. In this way the hosts with large differences in their loads

are grouped together in a single host group. As a consequence, the task

transfers are shifted from the inter-cluster level to the intra-cluster level. The

information necessary to improve the load balancing is propagated relatively

quick~ than before. Fig.7.4 illustrates the membership-exchange strategy.

170

o A Host

A Physical Link
A Logical Link

Figure 7.5: Network Partitioning For The Joint Membership Strategy

7.4.4 The Joint Membership Strategy

This strategy tries 'to improve the load balancing performance by extending

its membership to the hosts of other host 'groups. A host can be a member
, .

of more than one host group. It is similar to a closed group model proposed

by [Deering 1988]. In this case, the size of a host group increases with the

number of joint memberships. This strategy provides some degree of load

sharing between a heavily and a lightly loaded host group. In the present

study, a lightly loaded host, which is a member of a lightly loaded host group,

is offered joint membership by a heavily loaded host group.

The ,parameters: exchanged during the load update period are the same
'.

as those described above for the membership-exchange policy. The average

171

load on the host groups is used to determine both the heavily and the lightly

loaded host groups. After the identification of both the heavily and the lightly

loaded host groups, a suitable candidate from the latter group is offered. a

membership in a heavily loaded host group. The term load is used for the

average load on the host and not for the instantaneous load. The choice of

a host for the joint membership is for the one which has the least load in a

lightly loaded host group. In this way, this least loaded host, belonging to

a lightly loaded host group, offers its services to share the load of a heavily

loaded host group.

If a host group changes its status from a heavily loaded to that of a lightly

loaded one, it cancels all the joint memberships of its hosts. Fig.7.5 illustrates

the host group structure for the joint membership strategy.

7.5 Simulation Model And Performance Evaluation

The performance of the network partitioning strategies was evaluated through

simulations. The simulation model described i!l chapter 4 was used for the

evaluation of performance. Each host of the distributed computer system

was modelled as an M/M/1 queueing system. The task service times were

generated from an exponential distribution with a different mean value for

each host. The average of these mean values was 8. The distributed system

comprised of 16hosts. Initially, the network was divided into four fix;ed sized

partitions called host groups with each host group consisting of four hosts.

One of the hosts in each such group was designated as the group manager.

The distributed computer system used for simulations is illustrated in Fig.

7.6.

172

It was assumed that the network is completely connected. To simulate the

geographical partitioning of the network, the transfer costs associated with

the tasks transferred within a host group were lower than the transfer costs

for the tasks transferred among the host groups via group managers. The

transfer costs used in the simulations were assigned fixed values independent

of the size of the tasks transferred. The transfer costs used for the tasks

transferred within the host groups, and for the tasks transferred among the

host groups were 1 (nearly, 12% of the mean task service time) and 3 (36%

of the mean task service time) respectively.

The following assumptions were made about the distributed system.

• All the hosts in the distributed system were assumed to be identical.

It is assumed that the hosts are loosely coupled in a large scale com

munication network environment.

• It was assumed that the host group model proposed in [Deering 1985)

can be adapted for load balancing strategies described here.

• The inter-task or the inter-processor communications were not consid

ered, however, the inter-processor communications are partly reflected

in the transfer costs mentioned next.

• The transfer costs were chosen to reflect the physical proximity of the

hosts. The smaller transfer costs were associated with the tasks trans

ferred within a local area network as compared with those in a wide

area network.

• The transfer of tasks is based on the task placement model. A task

already in execution is non-transferrable.

173

o A Host

A L1nk

Figure 7.6: The Distributed System Model Used For Simulations

The load balancing algorithm used to measure the performance of host

grouping strategies is based on a load: threshold value which is determined

from the average of loa~ Qn the hosts participating in the load balancing. The

load information is exchanged periodically amon'g the participating hosts. All

the hosts compare their load with the load threshold value to determine their

status. Separate load update intervals were used for load balancing within

and amongst the host groups.

The simulations were carried out for each type of grouping strategies. The

performance metrics used for the evaluation of these strategies included the

average response time of a task and the load imbalance among the hosts of

the distributed computer system [cf. chapter 4). The measurements were

174

obtained from the average of several samples which were obtained from each

simulation run. All the recorded values were within a confidence interval of

95 percent. The performance of the strategies was compared amongst each

other and with a 'no load balancing' case. It should be noted here that there

are no communication costs involved in the 'no load balancing' case, as all

the tasks execute on the host of their origin.

The average response times were plotted against the increasing host loads.

The increase in the host loads is obtained by increasing the task arrival

rate on each host for the same task service times. The load imbalance was

recorded after an interval of 30 time units while the system was running in

a steady-state.

Fig. 7.7 shows the average response time against increasing arrival rates for

the intra-cluster load balancing strategy. In this case, the load balancing was

performed only within but not among the host groups. Its performance is

compared with the no load balancing case. Since all of the host groups are

isolated from each other and no task transfers can take place between the

hosts of two different groups, the chances of finding a lightly loaded host for a

heavily loaded host are limited in this case. Despite this limitation, there is a

large improvement in the average response time of a task for the intra-cluster

load balancing compared with that of the no load balancing. Therefore, the

result obtained suggests that for very large distributed computer systems, in

order to avoid the complexity of managing a large number of resources and to

minimize the communication costs, a better utilization of the resources can be

achieved by partitioning the system into smaller logical network components

for the purposes of load balancing. If some of the host groups are very

175

Average Response Time

240 -- '---,-+------ -----+,-,----...
no load balancing' I

I -- I

Ilntra-cluster I. I. I ' . 1 1 ,I

i ! i I ,/1
180 '"' .. ,-, .-"'----"--.-"'+----.------,·---,--·_-·--·---t-· ------/-'-,'-

! ' I '..... i
1 /. I

i I '/
"""'+"'-""'-""--'""-"""'""'""'r:---",""-,--"",-II'-" .--;:;A"'" "-"""'+

I ' . i

60---'..-1 ! 1-//
i " --:;;"'~"1AI' ___ --i-__

. i i _"".-- I I ._,_......!
~~~-~--~.-=,-=.-=·-=·=·=-·:-Ji~~~I~~~~~~ 

0.5 0.6 0.7 0.8 
BnMlmM 

(TImes tE·t) 

0.9 1 1.1 

Fig.7.7: Average Response Time Comparison of Intra-Cluster Strategy 
With 'No Load Balancing'. 

Average Response Time 

i 
240- notoadbalancfng'j --,-,- -'-'~,-,-' 

Intra-cluster 
1 _.-

Inter-cluster , /~ 

180 ........ , · .. ··,··1 ............. " ........... , ............. "-+ "'''''''".,.,,'''"""'''''''''" "".,,----+ ""."." ........ -.-.... -.. ~ '.,." .... , .... _-_ ......... , ...... ,..... ......... . ... /.t·:,,.1 .. · 
!I> i " / ; 

""ill jl fi j! i /~ / : It' / : 
120 ---':1'--"'- '-,"-'- ·-)""-'~/---"t 

! ./"t ! 
, /" i , 

1 1 I ''_ 
I I ' ....-/,-
!, .'-.,,0 ""; i 

60 --i--I ~;:-;:-r,-----I-----r 
20 --"---r--:"'..::"-- I I i 

0.5 0,6 0.7 0.8 
IIrrfvtJl mm 

(TIm6S tE.f ) 

0.9 1 1.1 

Flg.7.S: Average Response Time Comparison of Inter-Cluster and Intra
Cluster Strategies With 'No Load BalanCing', 

176 



heavily loaded, whereas others are very lightly loaded, it is expected that 

this strategy will not prove very effective. 

An improvement in the average response times was observed by providing 

load balancing among the clusters in addition to the intra-cluster load bal

ancing. Fig. 7.8 shows the average response times for the inter-cluster load 

balancing strategy. Despite higher costs for the task transfers amongst the 

host groups, a noticeable improvement in the average response times was 

achieved for higher load values. It indicates that the delays experienced by 

tasks in the queues of a host group are larger than the transfer costs in case 

of a remote execution. However, for light loads it was observed that the 

intra-cluster strategy performs slightly better than the inter-cluster strategy. 

This clearly shows that the loads are not heavy enough to support task

transfers amongst the host groups. These results are in agreement with the 

results obtained in [Mirchandaney 1989] for high task transfer costs and light 

loads. However, as the arrival rate increases and the difference in the loads 

of hosts with dissimilar service rates becomes pronounced, the performance 

improvement introduced by the inter-cluster strategy can be noticed. 

Also, the load of a host manager did not provide a good estimate of the av

erage load of the host group due to relatively infrequent periodic broadcasts. 

By performing the intra-cluster load balancing frequently, better estimates 

of the average load of the host group will be reflected in the group managers' 

load. In Fig.7.8, the update interval used for exchanging load information 

among the group managers was larger than the update interval used for 

hosts within individual host groups. While the former was 400 time units, 

the interval in the case of the latter was 200 time units only. The degree of 

177 

• 



interaction for load balancing among the host groups can be controlled by 

increasing the length of the update interval used among the group managers. 

A further improvement in the response times will result for lower task trans

fer costs amongst the host groups. In these simulations, the transfer costs 

used among the host groups were three times higher than those assumed for 

the task transfers within the host groups. 

If the difference of the load levels amongst the host groups is not very large, 

this strategy will perform similar to the intra-cluster load balancing strategy. 

Later, it was thought that the inter-cluster load balancing strategy can be 

further improved by modifying the host grouping criteria. In this study, it 

was not investigated how the load balancing performance will vary subse

quent to any changes in the size of the host groups. However, it is expected 

that an increase in the size of a host group will improve load balancing as 

the probability of finding a suitable host to transfer the load within the host 

group increases. The next strategy evaluated does not change the host group 

size, but it does effect the group memberships. 

Fig.7.9 and Fig.7.1O illustrate the performance of mem .bership-exchange 

strategy and compare it with the intra-cluster and inter-cluster load bal

ancing strategies. It outperforms the two startegies by achieving major re

ductions in the average task response times. These reductions in the average 

response times were achieved by grouping together such hosts that contdbute 

to an effectiv~ load balancing. In the load balancing process, the hosts of 

the network are categorized in three different ways. These comprise heavily, 

lightly and moderately loaded hosts. As those with the moderate loads do 

not actively participate in the load balancing process, the tasks can only be 

178 



Average Response Time 

I Intra~e~ I I 
1 8o--mfmbers!!I~X~ang ... · __ .. __ .1.... ____ ... __ ... ___ ....... ·---·-··---.... ·-·-t·_···-·_·--··· 

I i I 
I i I 

I i i 
---'f-' _____ i 

i , .... "1 
I ' ./ I' 

I I ./ 
.. " , I· , 

! j , ",~/~/ i 
60·--··1··......····_·1······ .j.:::;;:;;o ..... ~:.+... .-... ........ [ 

I I _.-"1 i i , . ...,._._.-. I i I 
~~:J'~~==::==::::==l'~~~~~~~~li~~~~~: 

0.5 0.8 0.7 0.8 0.9 1 1.1 
snIvBI mfll 

(TImes 1£·1) 

Flg.7.S: Average Response Time Comparison of Membership-Exchange 
Strategy With Intra-Cluster Strategy 

Average Response Time 

180 ..... ·····i· .. ,~II~ste~··-·· .. - .. ····l .. --: .. · .. ··....·····J··-·----___ .... 1. ................. _ 
membershlp-exchnage I I 

I --- ' I : 

i ' 

~ 120 

J 
--I----+-----r-, 

! ,,/1 
I I ./ j I, ./ ! 

1 
i ! / I 
, I " I i ". I 
I --80 _ .... _ ......... _ .. __ .-.-.. -.. , .. -- ----.. -... -.-1 .... - .... .'-: .. ~·--·---t 

i! .~.~.; I 

l~J,I~~~::ei ::~~:-I'=-='-~'_-~--_'~-_I~~~~l'~~~~U ' -·--1 I ~ _._.-.;-._._- I 

0.5 0.8 0.7 0.8 0.9 1 1.1 
8nfvaI mfll 

(TImes 1E-1 ) 

Fig. 7.10: Average Response Time Comparison of Membership-Exchange 
With Inter-Cluster Strategy 

• 
179 



transferred from a heavily loaded to a lightly loaded host. In the case of 

the inter-cluster load balancing, the difference among the host loads within 

a single group may not be sufficient to provide an effective load balanc

ing. However, the difference among the host groups may be large and this 

information needs to be distributed across the entire network so that the 

task transfers could be arranged among the hosts of different host groups. 

The membership-exchange strategy improves its performance by bringing to

gether the hosts belonging to different groups into a single group for a more 

frequent information exchange and direct transfers between the two hosts 

involved in the process of load balancing. Also, it is expected that the av

erage load value obtained for a host group provides a better estimate for 

load balancing than the average load value obtained for the entire network 

to balance the load among the host groups. Therefore, better estimates are 

. obtained for the amount of tasks that need to be transferred between the 

hosts when the two hosts, eligible for load balancing, are in the same host 

group. The aging of information as it travels through the system and the 

delays in making the transfer decisions and causing the required transfers 

support such a strategy. Furthermore, it was observed that the intra-cluster 

strategy performs better than the inter-cluster strategy for light load condi

tions. As shown in both figures, the membership-exchange strategy performs 

well for light loads as well. It indicates that even the slightest differences in 

the loads, under light load conditions, are detected and adjusted for improve

ments. The task transfer costs for the tasks transferred within the groups 

and those transferred among the host groups were similar to the ones used 

for the inter-cluster load balancing strategy. 

180 



180 

~ 120 

i 
60 

20 

Average Response Time 

0.7 0.8 0.9 1 1.1 
errIvBl fBte 

(TImes 1E-1 ) 

Fig. 7.11: Average Response Time Comparison of Joint-Membership 
Strategy With Intra-Cluster Strategy 

Average Response Time 

Iter-cluster 

1010 -m.!~..!!ershlp 

/ 

,/ 

V // 

/// ~ ,/ 

...-
~ .-' ~ -' -~-. ._0_- . ------

0.5 0.6 0.7 0.8 0.9 1 1.1 
anIvsI fBirJ 

rnlTl9s 1E-1) 

Flg.7.12: Average Response Time Comparison of Joint-Membership 
Strategy With Inter·Cluster Strategy 

181 



For heavy system loads, significantly improved response times were achieved. 

All the: efficiencyJ stems from bringing together the hosts sui table for load bal

ancing into the same group. The cost of such a strategy depends on the 

frequency of the host exchanges performed amongst the host groups. 

Fig.7.ll and Fig.7.12 show the performance of the joint membership strat

egy for load balancing. Its performance is compared with intra-cluster and 

inter-cluster load balancing strategies. It is recalled that the joint member

ship strategy tries to improve load sharing in a distributed computer system 

by extending the membership of lightly loaded hosts from lightly loaded host 

groups to heavily loaded host groups. If all the host groups are moderately 

loaded, this strategy will operate like the inter-cluster strategy and will show 

an improvement in the average response times for all load conditions. A host 

working as a joint member provides a bridge between the two host groups 

and tries to bring the average load on these host groups to the same level. In 

this way, instead of providing a single group manager as an interface amongst 

the host groups, several other hosts participate in sharing the load. Also, a 

joint member extends the size of a host group which increases the availability 

of the resource. 

Finally, Fig.7.13 illustrates the average response time curves for all the 

host grouping strategies. As expected, all these strategies improve the per

formance of a distributed system by providing adequate load balancing as 

compared to the 'no load balancing' case. Among these four strategies, while 

the membership-exchange strategy shows the best, the intra-cluster strat

egy gives the worst performance in comparison to others. It is important to 

mention here that the performance of all these strategies is largely dependent 

182 



240 

Average Response Time 
I 

I. , 
..... _,_ .. _.~. ___ . no.!~!'_~ .. ~~!~-~~!,~g,_j_,. ,., _________ L_,, ____ .. _____ ; -,---~--/l 

'i , i • .;..... i ' I 

I! " i 
I • 

Intra-cluster 
-.;._ .. -

InteJ-Cluster 
I 

-I--
I 
, I 

membershlp-exchnaga I , 
I 

• • • • • • • • 
,l i( 

" /1 , : ] 

i : " / I 180 __ ________ ~,~o-, __ , ____ --- I------t---------':---T7': 

60 

;,' ! ,: 
" .I I 

,': / I 
" i ! I 

" / I : ! I 
" ..1 I : ,! I 

, ~ 

IOlntom:m bershlp i 

I I .,' '/1 ! 

, , '. I I ' 
j i !'.'I i 

,~-- --J-···------·-----·----1---/--·"----li---/·····-·- --

: " i I ,/ • ,I /' I , 
I· • ; 

: ! j, .I 
, • ! I, I 
/ i ; i 

'1 "/ • 
: I ! I / 

: I' / I .I 
: / I / • I i / I I 

: , i I V 
, i,' " 

I • .( I ".' 
.... . -.-.. -.--,-------+--... -,---~---.. t~-,--:;; ... t~·-I·,---iv-~:_ ... ----.,..--------.. ·-t'· 

1 ! ; I' ,"" ( 
i, / " i ",' 

,~ /" /.
'! /.. .. /~. I 

. -,': ~ . .,. . . 
I ...... ." 

! ,,1' _ ";;" 

,..t'~~--

20~-~'~-~-~-::J:~~~~~~~~~LL~~ 
0.5 0.6 0.7 0.8 0.9 

arrival rate 
(TImes 1£-1) 

1 1.1 

Fig.7.13: Average Response Time Comparison of All Strategies. 

183 



on the characteristics of the algorithm used for the dynamic load balanc

ing. The host grouping strategies are proposed for the class of algorithms 

where hosts of a distributed system frequently exchange their system state in

formation to perform the load balancing. The improved task response times 

for the membership-exchange strategy suggest that the host loads be used as 

the host grouping criteria. Since the host loads change frequently, a frequent 

regrouping of host groups will be required to meet this criteria. Instead, the 

membership-exchange strategy starts with geographically partitioned groups 

and performs load balancing by grouping together the hosts with large load 

differences from different groups. In this way, the overhead due to periodic 

regrouping of all hosts on the basis of load is avoided and only a few hosts 

are exchanged for the sake of load balancing. performance improvement. 

Finally, Fig. 7.14 and Fig. 7 .15 are shown to illustrate the load imbalance 

among all the hosts of the distributed system for different host grouping 

strategies. These results were obtained for moderate system loads and update 

interval lengths of 200 and 400 for load balancing within and amongst the 

host groups respectively. In Fig.7.14, low load imbalance is achieved for 

both the intra-cluster and inter-cluster strategies as compared to 'no load' 

balancing. However, slightly better load balancing is achieved for intra

cluster as compared to the inter-cluster strategy. Despite of this imbalance 

in loads, better response times were achieved for inter-cluster strategy for 

moderate to heavy loads. For the given cost ratio of 1 to 3 for task transfers 

within and amongst the host groups, these results suggest that intra-cluster 

strategy should be used for light to low moderate loads and inter-cluster 

strategy to be used for moderate to high loads. 

184 



load Imbalance 
100 ~--------------------~--~------~ 

e. no load balancing 

e. 
i 

I 

80 ................. :::::~ ... .................. I .......................... l} ........................................ . 
--- I A 

60 

... 
, 

~ ~\" 
I' [I 

40 I·JA·L 
\ " 

" ~ 

30 600 1200 
tlmBunhs 

1800 2400 

Flg.7.14: Load Imbalance Comparison of Intra-cluster, Inter-cluster 
strategies and 'noload balancing'. 

185 



Load Imbalance 

Inter.cluster I 

! 11 

membershlp.exchange 
, I 
j , 

! i i 80 """" """""-IOlnt-m8"1berehlp,-"-"",, '''-r-"'''-'''''''"'-"''-'''''"''''''''-"""1-"""'"''''''''"-'''"""''''''''''''''' 

- -;-- I ! 

I i 
I I 
I 

I I 

4 I 
I ' \ I"~ 
1

1

: [' \ 

I 1 I 
I r ," I 
f 

• I I 
40 A"·' """""""": "-"""""--"""",,"""",,"" " '''-''''''""--""''I~~-"""\"""""-"---

,ll . I \ I' 
I ' ..' " 

. " .. I "I' , . . i 11 '1 vi 1,/1 I "r'~\ 
i l "~I,I'I' i I'i\~i 
'1 \ 'I."i l ' ~l~1 AilA 1\ t·j VI \ J 

I i' I Vii" iV\ i\I(\' 1'\" I11 I I . 11 I, I \ f'.! . . I I 
1I\,,,jl, j ~ \J I, ",Vi .i'; \ 

30 

I \~ /!", Vii ,'i Y 1/\ "," ii I 
I ',,<,1" ·v· i ., -. i~I·I" .. ii, ',/, ~. \'1\ .. • 

I 
I 

600 1200 
tlmtI units 

1800 2400 

Fig.7.15: Load Imbalance comparison of Joint-Membership, 
Membership-Exchange and Inter-Cluster Strategies. 

186 



Fig.7.15 compares the load imbalance of inter-cluster, membership-exchange 

and joint membership strategies. It appears that the difference in load im

balance for inter-cluster and joint membership strategies is small while the 

difference between these two and the exchange-membership strategy is sig

nificant. The membership-exchange strategy dynamically changes the host 

group memberships and brings together the hosts with large differences in 

their loads. In this way, the information is quickly propagated and load 

estimates are more accurate as well as the task transfers are established im

mediately leading to an overall improved load balancing performance. The 

small values of load imbalance of membership-exchange and joint member

ship strategies as compared to inter-cluster strategy indicate that better load 

estimates are obtained for hosts within a host group resulting in accurate load 

balancing decisions. When the two hosts involved in load balancing are sep

arated by long distance, by the time the load information is propagated and 

the required task transfers are implemented, the load on these hosts may 

change significantly resulting in poor load balancing .. 

187 



Chapter 8 

CONCLUSIONS AND 

FUTURE DIRECTIONS 

8.1 Conclusions 

An increasingly large amount of work has been performed in the area 

of static and dynamic load balancing. The basic intent of this study was 

to consider those important factors that influence the performance of load 

balancing in a distributed computer system and to propose strategies for 

improving the performance of such a system. 

To study the performance of static and dynamic load balancing algorithms, 

a simulation model was designed. The simulation model described in chapter 

4 provides all the basic routines which are important and are useful in the 

evaluation of load balancing heuristics. 

A static task allocation heuristic is presented in chapter 5. It attempts 

to deal with two central issues of static task allocation and scheduling, i.e., 

188 



minirrilzation of inter-task communication costs and the load imbalance. The 

study performed on a task system with high inter-task communication costs 

indicates that it is very important to have a compromise between maxirrilz

ing the parallelism and minirrilzing the communications. Also, for such sys

tems with high inter-task communication costs, The Precedence Constrained 

scheduling heuristic described in chapter 5 gives a good performance. Such a 

heuristic works well for a wide range of computation to communication ratios 

and, therefore, can be utilized in a large number of applications. The results 

suggest that an appropriate choice of task allocation heuristics, that helps 

minirrilze the communication costs and set an upper threshold for the load 

on each processor in order to avoid the load imbalance, can provide improved 

perf<;>rmances. 

As static task allocation heuristics which are available at the present time 

are not highly practical and have limited applications, a more realistic model 

of task systems is considered in chapter 6. Here, several quasi-dynamic and 

dynamic load balancing algorithms are considered. In this case, the inter-task 

communications are not considered due to the fact that the complete jobs 

are transferred among the hosts. Nevertheless, the inter-processor communi

cations are central to the operation of these algorithms. The inter-processor 

communication costs depend on the information policy used to distribute the 

load information and the number of tasks transferred. A periodic broadcast 

is used in the study which distributes the load information amongst hosts of 

the distributed system but with an exception of threshold-window algorithm 

where load information is broadcast periodically from lightly loaded hosts 

only. 

189 



The results show that the simpler algorithms such as those of Random 

and Threshold-Window can achieve good load balancing performances under 

certain conditions. If a comprehensive policy is used for distributing the load 

information and any changes in the host loads are propagated immediately, 

the performance of any simple load balancing algorithm is comparable to a 

more complex one. First, comparing the Random and Threshold-Window 

algorithms, the former that used a better load update policy gave better 

performance than the latter for update intervals above 200 time units. In 

contrast, when period lengths in the order of two to three times the mean task 

service time were used for the threshold-window algorithm, performances 

better than the Random algorithm were achieved. This suggests that the 

frequency of load information exchanges can only be determined from the 

characteristics of the load balancing algorithm. A more frequent information 

exchange will only introduce extra overheads on the communication subnet 

whereas an out-of-date information will result in incorrect load balancing 

decisions, hence degrading the performance of distributed systems. 

When more complex algorithms based on task-transfer probabilities were 

used for dynamic load balancing, better performances were achieved for Al

gorithms II and I II but Algorithm I performed poorly. In this case, the 

difference in the performance of these algorithms was caused by the choice 

of respective load indices which were used for estimating the load on each 

host. The choice of a load index reflects the quality of information exchanged 

amongst the hosts. These algorithms transfer the newly arrived tasks dynam

ically which make use of the transfer probabilities which are determined from 

the load estimates obtained from the previous interval. The load estimates 

obtained from service and arrival rate change quickly and do not reflect any 

190 



loads accumulated over the previous intervals, therefore resulting in poor load 

balancing for longer load update interval lengths. In contrast to this, queue 

lengths tend to change slowly and provide better load estimates for load bal

ancing. Algorithm III gives an improved load balancing performance for a 

wide range of interval lengths. 

It is also shown that when communication delays are significant, improved 

performances for such algorithms can be achieved by properly reflecting the 

interprocessor communication costs in determining the task-transfer proba

bilities. These improvements in the average task response times are achieved 

at the cost of slight increase in the load imbalance. 

One of the major issues concerning the efficiency and effectiveness of dy

namic load balancing algorithms is their scalability. All distributed systems 

are expanded over time for achieving increased availability and reliability of 

resources. As the size of the distributed system increases, the overheads of 

a load balancing algorithm may increase resulting in a poor scalability. In 

chapter 7, several strategies are presented for network partitioning to limit 

the scope of load balancing algorithms to such host groups which each con

tains only a small number of hosts. Initially, these host groups are formed 

on the basis of geographical partitioning of the network. One of the hosts is 

designated as manager in each host group. A certain degree of interaction is 

provided amongst the managers to implement global load balancing. Major 

reductions in communication overhead are achieved by limiting the exchange 

of load update messages within smaller groups of hosts while restricting the 

transfer of tasks to long distance remote hosts which involve high communi

cation costs. The results indicate improved load balancing performances for 

191 



strategies that modify host group memberships dynamically with changing 

load conditions on hosts. The change in group memberships should be lim

ited to minimize its related overheads. This study suggests that when load 

balancing is provided within the host groups only and with a minimum of 

interaction among these host groups, the performance achieved is compara

ble to that of any other more complex strategy for light load conditions. For 

heavy load conditions, however, strategies that work on dynamically changing 

host memberships with changing load conditions show large improvements 

in the load balancing performance. 

8.2 Suggestions For Further Research 

. The aim of this study was to point out the problems faced with static and 

dynamic load balancing strategies and to provide efficient solutions to these 

problems. Like any other research study, many questions remain unanswered 

and require further attention. 

When considering static task allocation strategies, it is assumed that the 

information relating the task system is available in the form of a prece

dence graph. Also, simple FIFO scheduling was used to execute the tasks 

allocated to a processor. Instead, it will be interesting to study the perfor

mance of Precedence Constrained scheduling heuristic when tasks with low 

communication costs with their successors are executed first. This ordering 

of tasks may result in minimizing any possible idle times. Furthermore, a 

precedence graph does not represent two simultaneously inter-communicating 

tasks. These tasks must be scheduled simultaneously on two different pro

cessors. A large number of applications consist of such tasks and need to 

192 



be represented in the task system. A more realistic task system model is 

considered in dynamic load balancing environment discussed below. 

In evaluating the proposed dynamic load balancing algorithms in chapter 

6, a fixed set of arrival and service parameters is chosen. These parameters 

reflect moderate loads in distributed systems with small variations in arrival 

and service times. It will be interesting to study the behaviour of these 

algorithms for light and heavy load conditions in a distributed computer 

system. Also, larger differences in arrival and service times may be used to 

study the pronounced effects of load balancing. 

Although an attempt is made to study the communication overhead of 

. these algorithms by comparing the percentage task transfers, in future, it 

is recommended to consider effects of transfer delays and the inter-processor 

co~munications to measure the communication overhead of such algorithms. 

The transfer delays should be derived relative to the task sizes. 

Finally, host grouping strategies are proposed to reduce the amount of high 

communication overheads incurred by load balancing in large distributed 

computer systems. As the results indicate, significant improvements in load 

balancing performance can be achieved with high reductions in communi

cation costs by restricting the task transfers and load update messages to 

nearby hosts. Due to the time constraint, very limited results are obtained 

and thus require further research to fully explore these strategies. In this 

study, average response time and load imbalance measures are obtained for 

light, moderate and heavy load cqnditions. In future, it will be interesting 

to study the amount of reduction in communication costs for each strategy. 

193 



Also, the effects of changing the size of the network and the size of the host 

groups on the performance of the host grouping strategies would be a good 

topic for further investigation. 

194 



References 

[Adam et. al. 1974] T. L. Adam et. al. A Comparison of List Schedules 

for Parallel Processing Systems, Communication of the ACM, 

vo1.17, no.12, December 1974. 

[Aguiler 1984] L. Aguiler. Datagram Routing for Internet Multicasting, Com

munications of ACM, pp.58-63, September 1984. 

[Andre et. a1.1988] F. Andre et. al. Synchronization of Parallel Programs, 

Published by North Oxford Academic, 1988. 

[Angouras 1991] G. N. Angouras. Scheduling of Parallel Programs on 

Multi-Programmed Parallel Processor Systems, Technical Re

port; CSRD Report 1160, University of Illinois at Urbana

Champaign, January 1991. 

[Barak and Shiloh 1985] A. Barak and A. Shiloh. A Distributed 'Load

balancing Policy for a Mu/ticomputer, Software-Practice and 

Experience, vol. 15, no. 9, pp. 901-913, September 1985. 

[Basu et. al. 1989] A. Basu et. al. Performance of Loosely Synchronous Al

gorithms on a Message Passing Multiprocessor, Proc. Indo-US 

195 



Workshop on Spectral Analysis in One and Two Dimensions, 

New Delhi, November 1989. 

[ Baumgartner and Wah 1988] K. M. Baumgartner and B.W. Wah. A Global 

Load Balancing Strategy for a Distributed Computer System, 

IEEE Technical Report, Dept. of Electrical and Computer En

gineering and the Co-ordinated Sciences, University of Illinois 

at Urbana-Champaign, pp.93-102, September 1988. 

[ Baumgartner and Wah 1988] K. M. Baumgartner and B.W. Wah. GAM

MON: A Load Balancing Strategy for Local Computer Systems 

with Multiaccess Networks, IEEE Transactions on Computers, 

vol. 38, no. 8, pp.1098-ll09, August 1989. 

[Baumgartner et. al.1989] K. M. Baumgartner et. al. Implementation of 

Gammon: An Efficient Load Balancing Strategy for a Local 

Computer System, Int. Conf. on Parallel Processing, Comp. 

Syst. Group, University of Illinois at Urbana-Champaign, pp.77-

80, 1989. 

[Blake 1992] B. A. Blake. Assignment of Independent Tasks to Minimize 

Completion Time, Software Practice and Experience, vol. 22(9), 

pp.723-34, September 1992. 

[Blazewicz et. al1986] J. Blazewicz et. al. Scheduling Multiprocessor Tasks 

to Minimize Schedule Length, IEEE Transactions on Computers, 

vol. 35, no. 5, pp.389-393, May 1986. 

[Boglaev 1991] Y. P.·Boglaev. Exact Dynamic Load Balancing of MIMD Ar

chitecture with Linear Programming Algorithms, Parallel Com-

196 



puting, Computer Science Division, Russian Academy of Sci

ences, pp.615-623, October 1991. 

[Bokhari 1979] S. Bokhari. Dual Processor Scheduling With Dynamic Reas

signment, IEEE Transactions on Software Engineering, vol. se-9, 

July 1979. 

[Bowen et. a!. 1988] N. S. Bowen et. a!. Hierarchial Workload Allocation for 

Distributed Systems, ICPP, vol. 2, pp.102-109, 1988. 

[Boutaba and Folliot 1990] R. Boutaba and B. Folliot. Multi-Criteria Algo

rithm for Repartition in Heterogeneous System, Technical Re

port, Laboratory of Methodology in Architecture and Systems 

Information, 1990. 

[Bryant and Finke11981] R. M. Bryant and R. A. Finkel. A Stable Dis

tributed Scheduling Algorithm, Proc. 2nd Int. Conf. Distributed 

Computer System Los Alamintos, Calis, pp.314-323, 1981. 

[Butt and Evans 1992] W. U. Butt and D. J. Evans. A Simulation Model 

for Task Scheduling in Distributed Systems, Parallel Computing 

and Transputer Applications, IOS Press, Amsterdam, ISBN:84-

87867-13-8 CIMNE, Barcelona, 1992. 

[Casavant and Kuh11987] T. L. Casavant and J. G. Kuhl. Analysis of Three 

Dynamic Distributed Load-Balancing Strategies with Varying 

Global Information Requirements, IEEE Transactions on Com

puters, pp.185-192, 1987. 

[Casavant and Kohl 1988] T. L. Casavant and J. G. Kohl. A Taxonomy of 

Scheduling in General-purpose Distributed Computer Systems, 

197 



IEEE Transactions on Software Engineering, vol. 14, no. 2, 

pp.141-154, February 1988. 

[Chatterjee and Bassiouni 1987] S. Chatterjee and M. A. Bassiouni. Analysis 

of Waiting Time in Polling Networks With Bribing Priority, 

Technical Report, University of Central Florida, vol. 2. no. 4, 

October 1987. 

[Chou and Abraham 1982] T. C. K. Chou and J.A. Abraham. Load Balanc

ing in Distributed Systems, IEEE Transactions on Software En

gineering, vol. 8, no. 4, ppAOI-413, July 1982. 

[Chow and Kohler 1979] Y. C. Chow and W. H. Kohler. Models for Dynamic 

Load Balancing in a Heterogeneous Multiple Processor Systems, 

IEEE Transactions on Computers, vol. c-28, no. 5, May 1979. 

[Chu et. al. 1980] W. W. Chu et. al. Task Allocation in Distributed Data 

Processing, ~EEE Computer, University of California, pp.57-59, 

November 1980. 

[Coffman and Denning 1973] E. G. Coffman and P. J. Denning. Operating 

Systems Theory, Published by Prentice Hall, 1973. 

[Cybenko 1987] G. Cybenko. Dynamic Load Balancing for Distributed Mem

ory Multiprocessors, Journal of Parallel and Distributed Com

puting vol. 7, part 2, pp.279-301, 1987. 

[Darte 1991] A. Darte. Two Heuristics for Task Scheduling, Technical Re

port, Laboratory for Parallel Information, pp.I-21, September 

1991. 

198 



[Deering and Cheriton 1985] S. E. Deering and D. R. Cheriton. Host Groups: 

A Multicast Extension to the Internet Protocol, RFC 966, SRI 

Network Information Center, December 1985. 

[Deering 1988] S. E. Deering. Multicast Routing in Internetworks and Ex

tended LANs, SIGCOMM, pp.55-64, 1988. 

[Deering 1988a] S. E. Deering. Host Extensions for IP Mu/ticasting, RFC 

1054, SRI Network Information Center, May 1988. 

[Diab and Harmoush 1990] H. Diab and W. Harmoush. Packet Queuing 

Simulation for Parallel Processing Systems, Technical Report, 

American University of Beirut, pp.13, September 1990. 

\ [Eager et. a!. 1986] D. L. Eager et. a!. Adaptive Load Sharing in Homoge

neous Distributed Systems, IEEE Transactions On Software En

gineering, vo!. 12, no. 5, pp.662-668, May 1986. 

[Eckhouse et. a!. 1978] R. H. Eckhouse et. a!. Issues in Distributed 

Processing-An Overview of Two Workshops, Computer: Army 

Research Office, National Science Foundation, pp.22-26, Jan

uary 1978. 

[Efe 1982] K. Efe. Heuristic Models of Task Assignment Scheduling in Dis

tributed Systems, IEEE Computer, pp.50-56, June 1982. 

[Enslow 1978] P. H. Enslow Jr. What Is A "Distributed" Data Processing 

System, Computer, vo!. 11, pp.13-21, January 1978. 

[Ephremides et. a!. 1980] A. Ephremides et. a!. A Simple Dynamic Routing 

Problem, IEEE Transactions on Automatic Control, vo!. 25, 

pp.690-693, August 1980. 

199 



[Foschini and Salz 1978) G. J. Foschini and J. Salz. A Basic Dynamic Rout

ing Problem and Diffusion, IEEE Transactions on Communica

tions, vol. 26, no. 3, pp.320-327, March 1978. 

[Frank et.a!. 1985) Frank et. al. Multicast Communication on Network Com

puters, IEEE Transactions on Software Engineering, pp.49-61, 

May 1985. 

[Gao et. al. 1984) C. Gao et. al. Load Balancing Algorithm in Homogeneous 

Distributed Systems, IEEE Technical Report No.UIUC-DCS-84-

1168, Department of Computer Science, University of Illinois at 

Urbana-Champaign, pp.302-306, 1984. 

[Gil1991) J. Gil. Fast Load Balancing on a PRAM, Technical Report, Uni

versity of British Colombia, pp.1-14, June 1991. 

[Grama et. al. 1991) A.Y. Grama et. al. Experimental Evaluation of Load 

Balancing Techniques for the Hypercube, Technical Report: 

Dept. of Computer Science, University of Minnesota, Minneapo

lis, MN 55455, USA., 1991. 

[Gottlieb 1992) I. Gottlieb. Deterministic Task Distribution in the Butterfly, 

Technical Report, Bar-Han University, Israel. 1992. 

[Greenberg and Jacquet 1991) A. Greenberg and P. Jacquet. Load Balanc

ing in Multiprocessor Architecture, Technical Report: no. 1370, 

National Institute for Research in Information and Automatic, 

January 1991. 

200 



[Gylys and Edwards 1976] V. B. Gylys and J. A. Edwards. Optimal Parti

tioning of Workload for Distributed Systems, Technical Report, 

Texas Instruments Incorporated, pp.353-357, 1976. 

[Hac and Jin 1987] A. Hac and X. Jin Dynamic Load-balancing in a Dis

tributed System Using a Decentralized Algorithm, Proc. 7th 

IEEE International Conference on Distributed Computing Sys

tems, pp. 170-177, Sept. 23-25,1987. 

[Hac and Johnson 1988] A. Hac and J. Johnson. Dynamic Load Balancing 

Through Process and Read-Site Placement In A Distributed Sys

tem, AT & T Technical Journal, September/October 1988. 

[Hac and Jin 1990] A. Hac and X. Jin. Dynamic Load Balancing in a Dis

tributed System Using a Sender-Initiated Algorithm, J. Systems 

Software, vol. II, part 2, pp.79-94, 1990. 

[Hajek 1984] B. Haj,ek. Optimal Control Of Two Interacting Service Stations, 

IEEE Transactions on Automatic Control, vol. 29, pp.491-499, 

June 1984. 

[Indurkhya and Stone 1986] B. Indurkhya and H. S. Stone. Optimal Par

titioning of Randomly Generated Distributed Programs, IEEE 

Transactions on Software Engineering, vol. 12, no. 3, pp.483-

489, March 1986. 

[Jaffe and Moss 1981] J. M. Jaffe and F. H. Moss. A Responsive Distributed 

Routing Algorithm For Computer Networks, IEEE Transactions 

on DCS, pp.348-353, 1981. 

201 



[Jain 1991] R. Jain. The Art Of Computer Systems Performance Analysis, 

Published by John Wiley and Sons, Inc., 1991. 

[Jensen 1978] E. D. Jensen. The Honeywell Experimental Distributed Proces

sor, Computer, vol. I1, January 1978. 

[Jereb and Pipan 1991] B. Jereb and 1. Pipan. The Problem of Scheduling 

Nondeterministic Task Systems, Technical Report, 1991. 

[Joosen and Verbaeten 1992] W. Joosen and P. Verbaeten. Dynamic Load 

Balancing in Adaptive Parallel Applications, Preliminary Paper 

for the NATO Advanced Research Workshop on Software for 

Parallel Computation, pp.1-12, 1992. 

[Kleinrock 1976] L. Kleinrock. Queueing Systems Theory, vol. 1, WHey, 

Newyork, USA., 1976. 

[Krishnamoorthi and Wood 1966] B. Krishnamoorthi and R. C. Wood. Time 

Shared Computer Operation With Both Interarrival and Service 

Time Exponential, J. ACM, vol. 13, no. 3, pp.317-338, July 

1966. 

[Krueger and Finke11984] P. Krueger and R. Finkel. An Adaptive Load 

Balancing Algorithm For A Muiticomputer, Computer Science 

. Technical Report no. 539, Computer Science Department, Uni

versity of Wisconsin, Madison, 1984. , 

[Kruskal and Weiss 1984] C. P. Kruskal and A. Weiss. Allocating Indepen

dent Subtasks on Parallel Processors, Technical Report, Dept. of 

Compt. Science, University of Illinois at Champaign-Urbabna, 

1984. 

202 



• 

[Lawler et. al. 1982) E. L. Lawler et. al. Recent Developments in Determinis

tic Sequencing and Scheduling, Technical Report: Deterministic 

and Stochastic Scheduling, pp.35-73, 1982 . 

[Legge and Ali 1990) G. Legge and M. Ali. Unix File System Behaviour 

and Machine Architecture Dependency, Vol. 20, pp.1077-1096, 

November 1990. Dept. of Comp. Science, University of North 

Texas, Texas, U.S.A. 1990. 

[Leland and Ott 1986) W. E. Leland and T. J. Ott. Load-balancing Heuris

tics and Process Behaviour, Proc. ACM Sigmetrics Conf., pp. 

54-69, May 1986. 

[Lewis 1989) T. G. Lewis. Parallel Programming Support Environment Re

search, Technical Report, Oregon Advanced Computing Insti

tute, 1989. 

[Lewis and El-Rewini 1992) T. G. Lewis and H. El-Rewini. Introduction to 

Parallel Computing, Prentice-Hall International Editions, USA., 

ISBN 0-13-498916-3, 1992. 

[Lin and Keller 1987) F. C. H. Lin and R. M. Keller. The Gradient Model 

Load Balancing Method, IEEE Transactions on Software Engi

neering, January 1987. 

[Lint and Agerwala 1981) B. Lint and T. Agerwala. Communication Issues 

in the Design and Analysis of Parallel Algorithms, IEEE Trans

actions on Software Engineering, vol. 7, no. 2, pp.174-188, 

March 1981. 

203 



[Livny and Melman 1982] M. Livny and M. Melman. Load Balancing in Ho

mogeneous Broadcast Distributed Systems, Proc. Modeling Per

form. Eval. Comput. Sys., ACM SIGMETRICS, pp.45-55, 1982. 

[Lo 1983] V. M. Lo. Task Assignment in Distributed Systems, Technical 

Report, Dept. of Computer Science, University of Illinois at 

Urbana- Champaign, October 1983. 

[Lo 1984] V. M. Lo. Heuristic Algorithms for Task Assignment in Dis

tributed Systems, IEEE 4th Int. Conf. on Distributed Computer 

Systems-Proceedings, pp.30-39, 1984. 

[Ma et. al. 1982] P. R. Ma et. al. A Task Allocation Model for Distributed 

Computing Systems, IEEE Transactions on Computers, vol. 31, 

no. 1, pp.41-47, January 1982. 

[MacDougall 1987] M. H. MacDougall. Simulating Computer Systems, Com

puter Systems Series, The MIT Press, 1987. 

[McGregor and Boorstyn 1975] P. V. McGregor and R. R. Boorstyn. Opti

mal Load Balancing in a Computer Network, Proc. 1975 Inter

national Conference Communication, vol. Ill, part 40, pp.14-19. 

September 1975. 

[Mirchandaney et. al. 1990] Mirchandaney et. al. Adaptive Load Sharing in 

Heterogeneous Distributed Systems, Journal of Parallel and Dis

tributed Computing, vol. 9, no. 4, pp.331-346, August 1990. 

[Mirchandaney et. al. 1990b] Mirchandaney et. al. Analysis of the Effects of 

Delays on Load Sharing, IEEE Transactions on Computers, vol. 

38, no. 11, pp.1513-1525, November 1990. 

204 



[Misra 1986] J. Misra. Distributed Discrete-Event Simulation, Computing 

Surveys, vol. 18, no. 1, March 1986. 

[NAG 1990] Numerical Algorithms Group Inc. NAG Fortran Library, Mark 

14, vol. 7, ISBN: 1-85206-053-0, 1st. Edition, April 1990. 

[O'Leary et. al. 1982] D. P. O'Leary et. al. A Transportable System for Paral

lel Processing, Technical Report, University of Maryland, chap

ter 3, pp.25-34, 1982. 

[Ousterhout 1982] J. K. Ousterhout. Scheduling Techniques For Concurrent 

Systems, In Proceedings Of The Third International Conference 

On Dist. Comp. Sys., IEEE, New York, pp.20-30, 1982. 

[Perihelion 1989] Perihelion Software Limited. The Helios Operating System, 

ISBN: 0-13-386004-3, Prentice Hall, 1989. 

[Price and Krishnaprasad 1984] C. C. Price and S. Krishnaprasad. Software 

Allocation Models For Distributed Computing Systems, IEEE 

Proc. 4th Int. Conf. on Distributed Computing Systems, pp.40-

48, 1984. 

[Price and Salama 1990] C. C. Price and M. A. Salama. Scheduling of 

Precedence-Constrained Tasks on Multiprocessors, The Com

puter Journal, vol. 33, no. 3, pp.219-229, February 1990. 

[Ramamoorthy et. alI972] C. V. Ramamoorthy et. al. Optimal Scheduling 

Strategies in a Multiprocessor Systems, IEEE Transactions on 

Computers, February 1972. 

205 



[Reed 1984] D. A. Reed. The Performance of Multimicocomputer Networks 

Supporting Dynamic Work- loads, IEEE Transactions on Com

puters, vol. 33, no. 11, pp.1045-1050, November 1984. 

[Rewini and Lewis 1990] H. E. Rewini and T. G. Lewis. Scheduling Parallel 

Program Tasks onto Arbitary Target Machines, Journal of Par

allel Distributed Computing, vol. 9, pp.138-153, January 1990. 

[Ryou and Wong 1989] J. Ryou and J. S. K. Wong. A Task Migration Algo

rithm for Load Balancing in a Distributed System, Proc. Hawaii 

Int. Conf. on System Sciences. IEEE Transactions on Comput

ers, vol. 11, pp.1041-1048, 1989. 

[Sahni 1984] S. Sahni. Scheduling Multipipeline and Multiprocessor Comput

ers, Technical Report, pp.333-337, 1984. 

[Sarkar 1989] V. Sarkar. Partitioning and Scheduling Parallel Programs for 

Multiprocessors, Published by Pitman Publishing, 1989. 

[Shen and Tsai 1985] C. C. Shen and W. H. Tsai. A Graph Matching Ap

proach to Optimal Task Assignment in Distributed Computing 

Systems Using a Minimax Criterion, IEEE Transactions on 

Computers, vol. c-34, no. 3, March 1985. 

[Shirazi and Wang 1988] B. Shirazi and M. Wang. Design and Analysis of 

Heuristic Functions for Static Task Distribution, IEEE Trans

actions on Computers, pp.124-131, July 1988. 

[Smith 1980] R. G. Smith. High Level Communication a~d Control in a Dis

tributed Problem Solver, IEEE Transactions on Computers, vol. 

c-29, no. 12, December 1980. 

206 



[Stankovic 1984] J. A. Stankovic. A Perspective on Distributed Computer 

Systems, IEEE Transactions on Computer, vo!. c-33, no. 12, 

December 1984. 

[Stankovic 1984a] J. A. Stankovic. Simulations of Three Adaptive, Decen

tralized Controlled, Job Scheduling Algorithms, Computer Net

works, vo!. 8, pp.199-217, December 1984. 

[Stankovic 1985] J. A. Stankovic. An Application of Bayesian Decision The

ory to Decentralized Control of Job Scheduling, IEEE Transac

tions on Computers, vo!. c·34, no. 2, February 1985. 

[Stone 1978] H. S. Stone. Critical Load Factors in Two-Processor Distributed 

Systems, IEEE Transactions on Software Engineering, vo!.se·4, 

no.3, pp.254·258, May 1978. 

[Stone and Bokhari 1978] H. S. Stone and S. H. Bokhari. Control of Dis

tributed Processes, IEEE Computer, pp.97·106, July 1978. 

[Sun 1990] Sun Microsystems Inc. Sun View Programmers Guide, No. 825-

1253·01, Printed in USA, 1990. 

[Sun 1990b] Sun Microsystems Inc. Sun View System Programmers Guide, 

Pixrect Reference, No. 825-1249-01, Printed in USA, 1990. 

[Tanenbaum 1981] A. S. Tanenbaum. Network Protocols, Computer Surveys, 

vo!. 13, no. 4, pp.453-487, December 1981. 

[Tanenbaum and Renesse 1985] A. S. Tanenbaum and R. V. Renesse. Dis

tributed Operating Systems, Computing Survey, vo!. 18, no. 4, 

pp.419-470, July 1985. 

207 



[Tanenbaum and Renesse 1986] A. S. Tanenbaum and R. V. Renesse. 

Technical Report: Vrijie University, Amsterdam, The 

Netherlands.pp.420-467, 1986. 

[Tantawi and Towsley 1985] A. N. Tantawi and D. Towsley. Optimal Static 

Load Balancing in Distributed Computer Systems, Journal of 

the Association for Computing Machinery, vol. 32, no. 2, pp.445-

465, April 1985. 

[Towsley 1986] D. Towsley. Allocating Programs Containing Branches and 

Loops Within a Multiple Processor System, IEEE Transactions 

on Software Engineering, vol. se-12, no. 10, pp.1018-1024, Oc

tober 1986. 

[Thomasian 1987] A. Thomasian. A Performance Study of Dynamic Load 

Balancing in Distributed systems, IEEE DCS, pp.178-184, 1987. 

[Tilborg and Wittie 1981] A. M. V. Tilborg and L. D. Wit tie. Distributed 

Task Force Scheduling in Milticomputer Networks, in Proc. 

AFIPS, 1981. 

[Ullman 1975] J. D. Ullma~. NP-Complete Scheduling Problems, Journal of 

Computer and System Sciences, no. 10, pp.384-393, 1975. 

[Vornberger 1988] O. Vornberger. Load Balancing in a Network of Transput

ers, vol. 312 pp.116-126, 1988. 

[Wang and Morris 1985] Y. T. Wang and R. J. T. Morris. Load Sharing in 

Distributed Systems, IEEE Transactions on Computer, vol. c-34, 

no. 3, March 1985. 

208 



[Ward and Romero 1984] M. O. Ward and D. J. Romero. Assigning Parallel

Executable, Intercommunicating Subtasks to Processors, IEEE 

Transactions on Computers, pp.392-394, 1984. 

[Wikstron et. a!. 1982] Wikstron et. a!. Myths of Load Balancing, Technical 

Report: Dept. of Comp. Sciences, Iowa State University, Ames, 

1982. 

[Wu and Sweeting 1992] S. S. Wu and D. Sweeting. Heuristic Algorithms for 

Task Assignment and Scheduling in a Processor Network, Tech

nical Report; Department of Aeronautical Engineering, Queen 

Mary and Westfield College, London El 4NS., pp.1-24, March 

1992. 

[Zaks 1985] S. Zaks. Optimal Distributed Algorithms for Sorting and Rank

ing, IEEE Transactions on Computers, vo!. c-34, no. 4, pp.376-

379, April 1985 

[Zhou 1988] S. Zhou. A Trace-Driven Simulation Study of Dynamic Load 

Balancing, IEEE Transactions on Software Engineering, vo!. 14, 

no. 9, September 1988. 

209 



Appendix A 

Inter-task Communication 
Times (Chapter 5) 

X[1]=10 X[2] =15 X[3] =20 X[4] =25 
X[5]=10 X[6]=15 X[7]=20 X[8] =25 
X[9]=30 X[10]=35 X[11]=10 X[12]=15 
X[13]=20 X[14] =25 X[15]=10 X[16] = 15 
X[17]=20 X[18]=25 X[19] =35 X[20] =40 
X[21]=45 X[22]=50 X[23] = 10 X[24]=10 
X[25]=10 X[26]= 10 X[27] =5 

Execution Times for the Task Graph (Figure 5.1) 

C[l ][5] =C[5][1] = 10 
C[2][7] = C[7][2] = 1 0 

, C[3][9] = C[9][3] = 1 0 
C[5][11] =C[ll ][5] = 10 
C[6][13] = C[13][6] = 1 0 
C[7][14] = C[14][7] = 10 
C[8][16] = C[16][8] = 10 
C[9][17] = C[17][9] = 10 
C[ll ][19] =C[19][11] = 10 
C[17][20] = C[20][17] = 1 0 
C[13][21] = C[21 ][13] =20 
C[16][22] = C[22][16] =20 
C[21 ][23] = C[23][21] = 1 0 
C[23][25] = C[25][23] = 1 0 
C[14][27] = C[27][14] =20 
C[25][27] = C[27][25] =20 

C[2][6] = C[6][2] = 1 0 
C[3][8] = C[8][3] = 1 0 
C[4][10] =C[10][4] = 10 
C[6][12] = C[12][6] = 10 
C[7][13] =C[13][7] = 10 
C[8][15] =C[15][8] = 1 0 
C[9][16] =C[16][9] = 1 0 
C[l 0][18] =C[18][10] = 1 0 
C[12][19] =C[19][12] = 1 0 
C[ 1 8][20] = C[20][ 18] = 1 0 
C[19][21] =C[21 ][19] = 1 0 
C[20][22] = C[22][20] = 10 
C[22][24] = C[24 ][22] = 10 
C[24 ][26] = C[26][24] = 1 0 
C[15][27] = C[27][15] = 20 
C[26][27] = C[27][26] = 20 

Inter-task Communication Times for the Task Graph in Figure 5.1. 

210 



X[l)=10 
X[5)=25 
X[9)=20 
X[13)=15 
X[17) = 10 
X[21)=40 
X[25) =40 
X[29) =20 

X[2) = 10 
X[6) =30 
X[10)=25 
X[14)=20 
X[lS)=25 
X[22) =40 
X[26)=20 
X[30) = 10 

X[3) = 15 
X[7) = 10 
X[11)=30 
X[15)=25 
X[19) =30 
X[23) =40 
X[27) =20 

X[4) =20 
X[S) = 15 
X[12)=10 
X[16) =30 
X[20) =35 
X[24) =40 
X[2S) =20 

Execution Times for the Task Graph (Figure 5.5) 

C[ 1 )[2) = C[2)[l) = 5 
C[ 1 )[4) = C[4)[l) = 5 
C[ 1 )[6) = C(6)[l) = 5 
C[ 1 )[S) = C[S)[l) = 5 
C[ 1 )[ 10) = C[ 1 0)[ 1) = 5 
C[l )[12) = C(12)[l) =5 
C[l )[14) =C[14)[l) =5 
C[l )[16) =C[16)[l) =5 
C[2)[lS) = C[lS)[2) = 10 
C[4)[lS) =C[lS)[4) = 15 
C[6)[19) = C[19)[6) = 15 
C[S)[19) = C[19)[S) = 15 
C[ 101[20) = C[20)[1 0) = 1 0 ' 
C[12)[20) =C(20)[12) = 15 
C[14)[21) =C[21 )[14) = 15 
C[16)[21) =C[21 )[16) = 15 
C[ 1 S)[22) = C(22)[lS) = 15 
C[20)[22) = C(22)[20) = 15 
C[1S)[23) = C(23)[lS) = 20 
C(20)[23) = C(23)[20) = 15 
C[lS)[24) = C(24)[lS) = 25 
C[20)[24) = C[24 )[20) = 10 
C[lS)[25) = C[25)[lS) = 25 
C[20)[25) = C[25)[20) = 10 
C[22)[26) = C[26)[22) = 20 
C[24)[26) =C[26)[24) =25 
C[22)[27) = C[27)[22) = 20 
C[24)[27) = C[27)[24) = 25 
C[22)[2S) = C[2S)[22) = 20 
C[24)[2S) =C[2S)[24) =25 
C[22)[29) = C(29)[22) = 20 
C[24)[29) =C[29)[24) =25 
C[26)[30) = C[30)[26) = 20 
C[2S)[30) = C(30)[2S) = 25 

C[1)[3) = C[l )[3) = 5 
C[l)[5)=C[5)[l)=5 
C[ 1 )[7) = C(7)[ 1) = 5 
C[l )[9) = C(9)[l) = 5 
C[l)[ll) =C[ll)[l) =5 
C[l )[13) =C[13)[l) = 5 
C[l )[15) = C[15)[l) = 5 
C[l )[17) = C[17)[l) = 5 
C(3)[lS) = C[lS)[3) = 1 0 
C[5)[lS) = C[lS)[5) = 15 
C[7)[19 = C[19)[7) = 15 
C[9)[19) = C[19)[9) = 15 
C[ 11 )[20) = C(20)[ 11) = 1 0 
C[ 13)[20) = C[20)[ 13) = 1 5 
C[15)[21) =C[21)[15) = 15 
C(17)[21) =C[21)[17) = 15 
C(19)[22) = C[22)[19) = 15 
C[21 )[22) = C(22)[21) = 15 
C(19)[23) = C(23)[19) = 15 
C[21 )[23) = C[23)[21) = 15 
C[19)[24) = C(24)[19) = 15 
C[21 )[24) = C(24)[21) = 15 
C[19)[25) = C(25)[19) = 15 
C[21 )[25)= C[25)[21) = 15 
C(23)[26) = C(26)[23) = 25 
C[25)[26) = C(26)[25) = 25 
C[23)[27) = C[27)[23) = 25 
C[25)[27) = C[27)[25) = 25 
C[23)[2S) = C[2S)[23) = 25 
C[25)[2S) = C[2S)[25) = 25 
C(23)[29) = C(29)[23) = 25 
C(25)[29) = C(29)[25) = 25 
C(27)[30) = C(30)[27) = 25 
C(29)[30) = C(30)[29) = 25 

,Inter-task Communication Times for Task Graph in Figure 5.5. 
211 



Appendix B 

Performance Measures (Chapter 5) 

PERFORMANCE MEASURES 

MODEL: scheduler model TIME: 435.000 

MEAN BUSY MEAN QUEUE TASKS 
PROCESSOR UTIL. PERIOD LENGTH ASSIGNED QUEUE 

processor! 11 0.4460 24.250 0.202 8 3 

processor!21 0.5379 33.429 0.046 7 1 

processor!31 0.3747 23.286 0.064 7 

processor! 41 0.2368 20.600 0.076 5 2 

Performance Measures for Schedule in Gantt Chart (Figure 5.2) 

PERFORMANCE MEASURES 

MODEL: scheduler model TIME: 265.000 

MEAN BUSY MEAN QUEUE TASKS 
PROCESSOR UTIL. PERIOD LENGTH ASSIGNED QUEUE 

processor! 11 0.6792 25.714 0.226 7 3 

processor!21 0.7547 25.000 0.132 8 2 

processor!31 0.6415 24.286 0.170 7 2 

processor! 41 0.3396 18.000 0.075 5 2 

Performance Measures for Schedule in Gantt Chart (Figure 5.3) 

212 



PERFORMANCE MEASURES 

MODEL: scheduler model TIME: 215.000 

MEAN BUSY MEAN QUEUE TASKS 
PROCESSOR UTIL PERIOD LENGTH ASSIGNED QUEUE 

processor[l) 0.5581 20.000 0.302 6 3 

processor[21 1.0000 19.545 0.302 11 3 

processor[31 0.9070 27.857 0.000 7 0 

processor[ 41 0.1395 10.000 0.000 3 0 

Performance Measures for Schedule in Gantt Chart (Figure 5.4) 

PERFORMANCE MEASURES 

MODEL: scheduler model TIME: 425.000 

MEAN BUSY MEAN QUEUE TASKS 
PROCESSOR UTIL PERIOD LENGTH ASSIGNED QUEUE 

processor[ 11 0.6471 30.556 0.871 9 6 

processor[21 0.5294 28.125 0.471 8 5 

processor[31 0.4235 25.714 0.259 7 4 

processor[41 0.3647 25.833 0.412 6 4 

Performance Measures for Schedule in Gantt Chart (Figure 5.5) 

213 



PERFORMANCE MEASU~ES 

MODEL: scheduler model TIME: 280.000 

MEAN BUSY MEAN QUEUE TASKS 
PROCESSOR UTIL. - PERIOD LENGTH ASSIGNED QUEUE 

processor[ 11 0.8393 33.571 0.518 7 3 

processor[21 0.9643 33.750 0.571 8 3 

processor[31 0.8393 29.375 0.607 8 3 

processor[ 41 0.8036 32.143 0.554 7 3 

Performance Measures for Schedule in Gantt Chart (Figure 5.7) 

214 



Appendix C 

Important Data-Structures Used In 
. Simulations 

,+ Definitions and Data-structures used in the simulations of various load· 
balancing strategies +, 

#define ON 1 
#define OFF 0 
#define TRUE 1 
#define FALSE 0 
#define MAX_LNKS 20 
#define MAX_NODES 4 
#define max_brdth 60 
#define max _path 25 
#define group_size 4 

define random(min,max) ((rand!) % (max-min + 1)) + minI 

#define MAX_SEQ 
#define Ib _ exec 
#define X_cost 
#define nump 
#define numt 

int TRACE; 

2000 
o 
o 
16 
6400 

int FLAG[nump + 1]; 

typedef struct token! 

id; 
status; 
processor; 

,+ changes with the no. of packets transmitted +, 

,+ A TASK +, 
int 
int 
int 
int x _ time[nump + 1]; ,+ Execution time for a 

int 
int 
int 

}TASKS; 

arrival; 
st_time; 
finish_time; 

task on different processors +, 

215 



typedefstruct link{ ,+ A LINK +, 

int end1; 
int end2; 
int busy; 
int Ink_cap; 

}LlNK; 

typedef struct 
int 

node{ 
id; 
cluster; 

,+ A HOST +, 

int 
int 
int 
int 

LINK 
int 

}NODE; 

linknum; 
server; 
load_vector[nump + 1 )[2); 

IinkJd[MAX_LNKS); 
recvd[MAX_SEQ); 

,+ keeps the global 
load info, 1 is old and 2 is new +, 

typedef struct 
int 

group{ ,+ A HOST GROUP +, 
id; 

int hostnum; 
int host[nump + 1); 
int manager; 

}GROUP; 

typedef struct 
int 

location{ ,+ Used to store a pixels' location +, 
id; 

int xmid; 
int ybottom; 

}LOCATION; 

typedef struct pack{ ,+ A PACKET +, 
int type; 
int src_processor; 
int seq; 

int msg_len; 
}PACK; 

typedef struct event{ ,+ AN EVENT +, 
PACK packet; 
int delay; 
struct event +next_ event; 

}EVENT; 

int 
int 
int 
int 

sim_time,transmitted; 
ave util,sum Ink; 
util]ime[nump + 1 )[MAX_LNKS); 
pack_count[nump + 1 )[MAX_LNKS); 
maxq_len[nump + 1)[MAX_LNKS); 
node processor[nump + 1); 

int 
struct 
PACK deque[}; ,+ packet received on a link and broadcasted 

216 



on all other incident links +, 
EVENT +enque(); 
EVENT +que[nump + 1 HMAX_LNKS]; 
int que_len[nump + 1 HMAX_LNKS]; 
double ranf(), expntl(), erlang(); 

,. definitions'used in implementing a randomly created task graph +, 

int proc_gen; 
int level_cnt[max_path + 1],level[max_path + 1 Hmax_brdth + 1]; 

217 



Appendix D 

Selected Software Examples. 

1* This program simulates the static task allocation strategy described in 
chapter 5. Several other routines are called inside, which are defined in other 
files. The routine display() defined at the end of this program is used to 
display the Gantt chart, described in Chapter 4. 
*1 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "smpl.h" 
#include "sched.h" 
#define busy 1 

1* libraries and definitions used in the implementation of Gantt chart *1 

#include <suntool/sunview.h> 
#include <suntool/tty.h> 
#include <suntool/canvas.h> 
#include <sunwindow/pixwin.h> 
#include <sunwindow/window_hs.h> 
#include <suntool/scrollbar.h> 
#define pr_line_h_DEFINED 
#include < pixrectlpr )ine.h> 
#define font_ offset(font) (-font- > pf _char['n'].pc _home. y) 
#define font_height(font) (font- > pf_ defaultsize. y); 

#define LEFT_MARGIN 5 
#define RIGHT_MARGIN 5 
#define BOTTOM_MARGIN 5 
#define SUBWINDOW_SPACING 5 

#define CANVAS1_WIDTH 100 
#define CANVAS1_HEIGHT 100 
#define CANVAS2_WIDTH 1000 
#define CANVAS2_HEIGHT 1000 

. extern struct token task[numt + 1]; 1* array of tasks, where each task is a 
structure *1 

218 



extern struct node ' processor[nump + 1]; '" array of the processors ., 

int running[nump + 1]; 
extern int LT; 
extern int La; 
extern int SUM_EXEC; 
extern int ready[numt + 1]; '" This list stores the ready tasks "' 
extern int 11[512],13[512]; 
extern int waiting[numt + 111numt + 1]; 

to finish "' 
extern int comm[numt + 111numt + 1]; 
extern int prec[numt + 111numt + 1]; 
extern int hop[nump + 111nump + 1]; 

in hops "' 

'" Tasks waiting for their preceding tasks 

'" Inter-task communication times "' 
'" Dependency between two tasks +, 
'" Distance between two hosts measured 

extern real clock; '" simulation time "' 
int event; 

int com_delay[numt + 1]; 
int order[numt + 1]; 
int displayO; ,. displays the Gantt chart for the current schedule +, 
Canvas canvas1, canvas2; 
Pixwin +pw1, "pw2; ,. handles used to access a window +, 
Rect framerect; 
PIXFONT "font; 

int mainO{ 

int iter=O; 
int releas = 0; 
real, sim_time; 
int temp,set,max_com,max_finish,min_hop; 
int total_ comm; 
int idle,minim,done,origin; 
int i,j,k,l,m,s,loop,count,ord = 1; 
int totalJesponse; 
int task _ submit_ time[numt + 1]; 
int load[nump + 1]; 
int pr _ order[numt + 1]; 
int released[numt + 1],scheduledlnumt + 1]; 
TASKS +p; 

printf("Do you want to set TRACE ON? Enter (1 ):"); 
scant(" %d" ,& TRACE); 
total_ comm = 0; 
for(m = 1; m < = numt; m + +) 

com_delay[m] = 0; 
initO; ,+ Initialization routine for setting up the 

simulation environment "' 
smpl(O, "scheduler model"); 
for(i=1; i< =numt+1; i+ +) 

released[i] = scheduledli] = 0; 
for(i=1; i< =nump; i+ +) 

load[i] =0; 
for (i=1; i< =nump; i+ +l{ 

219 



/+ 

+/ 

} 

processor[i].server =facility("processor" ,1); /+ A single que-single 
server facility + / 

for (i=1; i< =numt; i+ +l{ 
if(ready[i] = = Ol{ 

continue; 

} 

} 
schedule(1,clock,ready[i]); /+ Schedule the independent processes + / 
task _ submiUime[ready[iJ] = (int)clock; 

loop=numt; 
s=1; 
while (loop) 
( 

printf("ln"); 
printf("ln"); 
for(k=1; k< =numt; k+ +) 
pr _ order[k) = 0; 
count =0; 

for(k=1; k< =numt; k+ +l{ 
for(l= 1; 1< =numt; 1+ + l{ 

if(waiting[k)[1) = = 1 11 ready[l) = = k) 
break; 

if (I = = numtl{ 
max_com=O; 
max_finish =0; 

for(m=1;m< =numt;m+ +l{ 
if(prec[k)[m) = = TRUEl{ 

} 
} 

} 

if(task[m). finish_time> max _finish) 
max_finish =task[m).finish_time; 

if(task[k).processorl = task[m).processor) 
if(comm[k)[m) + task[m). finish_time 

max_finish = comm[k)[m) + task[m). 

/+ tasks are ordered on the bases of the task-size + / 

} 
} 

count+ +; 
pr_order[count) =k; 
printf("order-count = %dln",pr_order[count]); 

} 

for(k=1; k< =count; k+ +l{ 
if(pr_order[k) = =0) 

break; 
for(l=1; 1< =count; 1+ +l{ 

220 



if (I > k){ 
if(pr_order[l] = =0) 

break; 

} 

if(task[pr _ order[k)].x _ timet 1] < = task[pr _ order[l]].x_time[ 1 ]) 
continue; 

e(se{ 

} 

temp =pr_order[k]; 
pr _order[k] = pr _ order[l]; 
pr_order[l] =temp; 

} 
} 

for(k=l; k< =count; k+ +) 
printf("task order is %d\n" ,pr_order[k]); 

for(k=l; k< = count; k+ +){ 
if(pr_order[k] = =0) 

break; 
if(scheduled[pr_order[klll = 1){ 

printf("clock •• = %f\n" ,clock); 
schedule(l ,clock + (real)k,pr_order[k]); 

task_submit_time[pr_order[k)] = (int)clock; 

) 
} 

task[pr _ order[k)].st_time = max_finish; 
ready[pr _order[kll = pr _ order[k]; 

cause(&event, &i); 
printf("event no = %d and task no = %d\n" ,event, i); 
p = &task[i]; 
if(event= =3) 

p-> finish_time = (int)clock; 
if(event = = 2 && scheduledli] = = 0) 

event =4; 
printf("clock = %f\n" ,clock); 
switch(event) 
{ 

case 1: if(scheduledlill = 1){ 
done=O; 
temp=O; 
set=O; 
idle = random(l ,nump); 
printf("task %d initiated on processor %d\n" ,i,idle); 

t* Largest communication time among all the preceding tasks is considered 0 t 

to max_com=O; 
for(k=l;k< = numt;k + +)( 

if(prec[p-> id][k] = ,. TRUEJ{ 
if(task[p-> id].processorl =task[k]. processor) 

if(comm[p-> id][k] > max _ com) { 
max _ com = comm[p-> id][k]; 
max _finish = task[k]. finish_time; 
temp = task[k].processor; 
printf("temp = %f\n" ,temp); 

221 



} 
} 

} 
./ 

/. Determine the scheduled task's start time ./ 

for(m = 1; m< =numt; m + + l{ 
if(prec[p-> id](m] = = TRUEl{ 

} 
} 

if((comm[p->id](m] +task[m].finish_time) > = max_finishl{ 
max_finish =task[m].finish_time; 
temp=m; 
com_delay[p-> id] =0; 

} 

for(k=l; k< =numt; k+ +l{ 
if((prec[p->id](k] = =TRUE) && (k 1= temp)){ 

if((comm[p->id](k] +task[k].finish_time) > = 
task[temp]. finish_time){ 

} 
} 

} 

if(task[ temp]. processorl = task[k]. processor) { 
max_finish =task[k].finish_time + comm[p-> id](k]; 
com_ delay[p-> id] = comm[p- > id](k]; 

} 

if(temp 1= O){ 
if(((Ioad[task[temp].processor] + task[p-

>id].x_time[task[temp].processor]) <= LT) && 
(I3[processor[task[temp].processor].server] < = LQ)){ 

idle =task[temp].processor; 
set=l; 

} 

} 

} 

else{ 

} 

max_finish =0; 
for(m=l;m< =numt;m+ +l{ 

if(prec[p-> id](m] = = TRUEl{ 

if(comm[p-> id](m] + task[m].finish_time > max_finish){ 
max_finish = comm[p-> id](m] +task[m].finish_time; 

com_delay[p- > id] = comm[p- > id](m]; 
} 

} 

tasklil.st time = max finish; 
} - -

/+ Find a non-busy processor, that's minimum hops away from the 
processor where the task initiated ./ 

if(set = = Ol{ 
origin = idle; 
if(runninglidle] = = busyl{ 

done=O; 

222 



lengthln" ,idle); 

'* (load[j) < = L T)){ *' 

lengthln" ,idle); 

for(k=l; k< =nump; k+ +)( 
if(running[k) = = O){ 
idle=k; 

min_hop = hop[origin)[k]; 
done=l; 

} 

break; 
} 

for(k=l; k< =nump; k+ +){ 
if(running[k) = = O){ 
if(hop[origin)[k) < min_hop){ 

min_hop = hop[origin)[k); 
. idle=k; 

} 
} 
if(k= =nump && done= = 1) 

printf("task %d scheduled on idle processor %dln" ,i,idle); 
} 
if(donel = 1){ 

} 

forij=l; j< =nump; j+ +){ 
if(l3[processor[j).server) = =O){ 

idle=j; 

} 
} 

min_ hop = hop[origin)[j); 
done=l; 
break; 

forij = 1 ; j < = nump; j + +){ 
if(l3[processor[j].server) = =O){ 

if(hop[origin)[j) < min_hop){ 
min_hop = hop[origin)[j]; 

} 
} 

idle=j; 

ifij = =nump && done= = 1) 
printf(" scheduled on processor %d with 0 q-

} 

if(donel = 1){ 

} 
} 

} 

minim = 13[processor[origin).server); 
forij=l; j< =nump; j+ +)( 

} 

if((minim> = 13[processor[j).server)) && 

if(minim> 13[processor[j).server)){ 
minim = 13[processor[j).server); 
idle=j; 

} 

. printf("scheduled on processor %d with min. q-

if(request(processor[idle) .server,i, 1) I = Ol{ 
load[idhi) = load[idle) +task[i).x_time[idle); 
scheduled[p- > id) = 1 ; 
printf(" All the processors are busy:ln"); 

223 



printf("processor[%d) q
length = %d\n" ,s,13[processor[idle).server)); 

} 
else{ 

scheduled[p- > id) = 1 ; 
released[p- > id) = 1 ; 

'* Largest communication time among all the preceding tasks is considered *' 
'* max_com=O; 

for(k=l;k< =numt;k+ +){ 
if(prec[p-> id)[k) = = TRUE){ 

if(task[p-> id).processorl =task[k).processor) 
if(comm[p-> id)[k) > max_ coml{ 

} 

max_com = comm[p-> id)[k); 
printf("max-com = %f\n" ,max_com); 

total comm = total comm + commij)[k); 
- } -

'* 
((int)clock-p- > st_time); 

*' 

case 2: 

'* 

*' 

clockl{ 

} *' if(p- > sUime < = (int)clockl{ 
if(com_delay[p-> id) > ((int)clock-p-> st_time)) 

com_ delay[p-> id) = com _ delay[p-> id)-

} 

} 

com_delay[p-> id) =0; 
p- > st_time = (int)clock; 

p- > processor = idle; 
load[idle) + = task[i).x time[idle);· 
running[idle) = busy; -
printf("processor start time = %d\n" ,p- > st_time); 
schedule(2,clock,i); 

break; 

printf("sUime = %d\n",p->st_time); 
printf("x_time = %d\n" ,p- > x_time[p-> processor)); 
if ((p-> st_time + p->x_time[p-> processor)) < = clockl{ 

printf("x-time = %d\n" ,p-> x_time[p- > processor)); 
schedule(3,0.0,i); 
scheduled[i] =0; 

} 
else{ 

releas=O; 
for(k=l; k< =numt; k+ +){ 

if(scheduled[k) = = 1 && released[k] = = 1l{ 
if ((task[k).st_time +task[k).x_time[p- > processor)) < = 

schedule(3,clock + numt,k); 
scheduled[k) = 0; 
releas= 1; 

} 
} 

224 



} 

} 
if(scheduled[i) = = 1){ 

schedule(2,clock,i); 
if(releasl = 1) 

clock=clock+ 1.0; 
} 

break; 

case 3: release(processor[p-> processor).server,i); 
idle = p- > processor; 
load [idle) - = task[i).x_time[idle); 
order[ord) = i; 
ord+ +; 
for(k=1; k< =numt; k+ +) 

waiting[k)[i) =0; 
running[p- > processor) = 0; 
loop--; 
break; 

case 4: printf("process %d already finishedln" ,i); 
break; 

} 

total response = 0; 
for(j ;;; 1 ;j < = numt;j + + l{ 

printf("task %d response time = %dln" ,j,(task[j).finish_time
task_submit_time[j))); 

} 

totalJesponse = totaUesponse + (task[j).finish_time-task_submit_time[j)); 
} 
printf("Mean Task Size = %dln",(SUM_EXEC/numt)); 
printf("total response = %dln" ,totaLresponse); 
printf("Mean Response Time = %dln",totaUesponse/numt); 

printf(" All the processes executed in %f time unitsln" ,clock); 
printf("completion time = %f\n" ,clock); 
reportf(); 

if(TRACE= =OFFl{ 
display(); 

} 

display(){ 

int j,k,m; 
int ready_count=O; 
int count,diff,pr_no,greater; . 
int task_st_trak[numt+ 1 ),task_fin_trak[numt + 1); 

int ytop, ybottom,horz _Iin,xleft[nump + 1 ),xright[nump + 1 ); 
int xright_ trak[nump + 1 ),xbase[nump + 1 ); 
int I_com[nump + 1), r_com[nump+ 1),ybase,ybase1; 

char tex[20),sUex[20),fin_tex[20); 

225 



LOCATION locat[numt + 1); 
Tty tty; 
Frame frame; 
static Notify_value catch _resize(); 
Scroll bar sb; 
int diag_top,diag_bot; 
int tty_fd; 

frame=window_create(NULL, FRAME,WIN_WIDTH, 1000, WIN_HEIGHT, 1000, 
FRAME_LABEL, "Scheduler Model", 0); 

tty=window_create(frame, TTY, 0); 
tty_fd= (int)window_get(tty, TTY_TTYJD); 

canvas2 = window _create(tty, CANVAS, CANVAS _AUTO_SHRINK, FALSE, 
WIN HORIZONTAL SCROLLBAR, scrollbar create(SCROLL LINE HEIGHT, 10, 
SCROLL_BUBBLE_MARGIN,4,O), 0); - --

canvasl =window_create(NULL, FRAME, 0); 
pwl = canvas pixwin(canvasl); 
pw2 = canvas=pixwin(canvas2); 

font = pf _ defaultO; 

resize(frame); 
(void) notify_interpose _event_func(frame, catch _resize, NOTIFY_SAFE); 

j=O; 
ybase= 100; 
for(k= 1; k< =nump; k+ + l{ 

I_com[k) =r_com[k) =0; 
xright trak[k) = 0; 
xbase[k) = 50; 
xleft[k) = xbase[k); 

} 
count = numt; 
while(countl = Ol{ 

j + +; 
pr_no =task[order[jll.processor; 
ytop =ybase + (pr_no)*50; 
ybottom =ytop +49; 
diff =task[order[j)). finish time-task[order[jll.st time; 
greater = 0; - -

'* Record the maximum communication delay between this process and any of its 
precedents *' 

for(m=l; m< =numt; m+ +l{ 
if(prec[order[j))[m) = = 1 l{ 

'* scale adjustments *' 

task[m). finish_time); 

if(task_fin_trak[m) > greaterl{ 
greater = task_fin _trak[m); 

if(xleft[pr_no) < greaterl{ 
if(task[order[j)).sUimel =task[m).finish_time && 

xleft[pr _no) = greater + (task[order[j)).st_time-

else 

226 



xleft[pr _no] = greater; ,+ + (task[order[jll.st_time-
task[m].finish_time]; "' 

} 
} 

} 
} 
xright[pr_no] = xleft[pr_no] + diff +30; 

'" Adjust the new processes finish time with the previously finished processes 
according to the scale "' 

for(m=l; m< =j-l; m+ +l{ 
if(task[order[jll.finish_time > task[order[mll.finish_time) 

if(xright[pr _no] < task_Jin_trak[order[m]]) 

xright[pr _no] = task _fin_trak[order[mll + task[order[jll. finish _time
task[order[mll.finish time; 

} -

'* Adjust the' processors, if two tasks have the same start times "' 

for(m=l; m< =j·l; m+ +l{ 
if(task[order[j]].sUime = = task[order[mll.st_time) 

xleft[pr_no] =task_st_trak[order[mll; ,+ . 
task[order[mll.x_time[pr_no]·30; *' 

} 

for(m=l; m< =j·l; m+ +){ 
if(task[order[j]].st_time = = task[order[mll.finish_time) 

xleft[pr no] =task fin trak[order[mll; 
} - - -
for(m=l; m< =j-l; m+ +){ 

if(task[order[j]].st_time > task[order[mll.finish_time) 
if(xleft[pr _no] < = task_fin _trak[order[m]]) 

xleft[pr_no] =task_fin_trak[order[mll + (task[order[j]].st_time-
task[order[mll.finish_time); . 

} 

'* Adjust the processors, if two tasks have the same finish times "' 

for(m=l; m< =j-l; m+ +){ 

} 

if(task[order[jll.finish_time = = task[order[mll. finish_time) 
xright[pr _no] = task _fin_trak[order[mll; 

if(com_delay[order[j]] 1= O){ 
greater =0; 
I_com[pr_no] = xleft[pr_no]; 
xleft[pr _no] = xleft[pr _no]; '* + com_ delay[order[j]]; *' 
for(m= 1; m< =numt; m+ + l{ 

} 

if(prec[order[j]][m] = = 1l{ 
if(task_fin_trak[m] > greaterl{ 

greater = task_fin _ trak[m]; 
} 

} 

if(xrighurak[pr_no] < greater) 

227 



} 

{ 

} 

I_com[pr_no) = greater; 
printf("greater = %dln" ,greater); 

else 
{ 

} 

I_com[pr_no) =xright_trak[pr_no); 
printf("xright trak = %dln" ,xright_trak[pr_no)); 

r_com[pr_no) =xleft[pr_no); 
printf("task %d Icom %d = In" ,0rder[j),I_com[pr_no)); 
printf("rcom %d = In" ,r_com[pr_no)); 

sprintf(tex, "T%d" ,0rderUl); 
sprintf(fin_tex, "%d", task[order[jll. finish_time); 
sprintf(st_tex, "%d", task[order[jll.sUime); 

pw vector(pw2, xleft[pr no), ytop, xright[pr no),ytop,PIX SRC,l); 
pw - vector(pw2, xleft[pr-no), ybottom, xright[pr no),ybott-om,PIX SRC,l); 
pw - vector(pw2, xleft[pr-no), ytop, xleft[pr no),yhottom,PIX SRC~l); 
pw = vector(pw2, xrighdPr _no), ytop, xright[pr _no), ybottom,PIX _SRC, 1 ); 
diag_bot =xleft[pr_no) + 3; 
diag_top =xleft[pr_no); 
while(diag_bot < = xright[pr _ no]){ 

} 

pw_vector(pw2, diag_top, ytop, diag_bot,ybottom,PIX_SRC,l); 
diag_bot = diag_bot + 3; 

diag_ top = diag_ top + 3; 

'* Print start and finish times for all the tasks on all the processors ., 

pw_text(pw2,xleft[pr_no) + 5,(ytop +ybottom),2,PIX_SRC, O,tex); 
pw_text(pw2,xright[pr_no),ybase + 30-(pr_no'12),PIX_SRC, O,fin_tex); 

pw_text(pw2,xleft[pr_no),ybase + (nump + 1) '50 + (pr_no'15l,PIX_SRC, 

task_st_trak[order[jll = xleft[pr _no); 
task_fin _ trak[order[j)) = xright[pr _no); 

xright_trak[pr_no) =xright[pr_no); 
xlefdpr_no) =xright[pr_no); 

,. Draw the horizontal line pattern to indicate the communication time elapsed ., 

if(com_delay[order[j)) 1= Ol{ 
pw_vector(pw2, I_com[pr_no), ytop, r_com[pr_no),ytop,PIX_SRC,l); 

pw vector(pw2, I com[pr no), ybottom, r com[pr no),ybottom,PIX SRC,l); 
pw=vector(pw2, Ccom[pr=no), ytop, Lcom[pr_"o)-:¥bottom,PIX_SRC,l); 
pw_vector(pw2, r_com[pr_no), ytop, r_com[pr_no),ybottom,PIX_SRC,l); 

horz _!in = ytop + 2; 
while(horz_lin < = ybottom){ 

pw vector(pw2,1 com[pr no) , horz lin, r corn [pr no), 
horzJin,PIX_SRC,l); - - - - - -

} 
} 

horz_lin = horz_lin + 2; 

228 



>"); 

count--; 
} 

pw_text(pw2,30,ytop-32,PIX_SRC, 0, "PO); 
pw_text(pw2,30,ytop-16,PIX_SRC, 0, "r·); 
pw_text(pw2,30,ytop,PIX_SRC, 0,"0"); 
pw_text(pw2,30,ytop + 16,PIX_SRC, 0, ·c"); 
pw_text(pw2,30,ytop + 32,PIX_SRC, O,"e"); 
pw_text(pw2,30,ytop + 48,PIX_SRC, 0, ·s·); 
pw_text(pw2,30,ytop + 64,PIX_SRC, 0, "s·); 
pw_text(pw2,30,ytop+ 80,PIX_SRC, 0, "0"); 
pw_text(pw2,30,ytop + 96,PIX_SRC, 0, "r·); 
pw_text(pw2,(50 +xright[pr_noll/2,ytop + (nump+ 1 ) "50,PIX_SRC, 0, "Time ------

for(m = 1; m< =nump+ 1; m+ +l{ 
pw_vector(pw2, 50, ybase+50"(m), 

xright[pr nol,ybase + 50"(m),PIX SRC, 1); 
}- -
pw_vector(pw2, 50, ybase+50, 50,ybase +50"(nump+ 1 ),PIX_SRC, 1); 
pw_vector(pw2, 50, ybase+50, xright[pr_nol,ybase+ 50,PIX_SRC, 1); 

ybase 1 = CANVAS2 HEIGHT + 50; 
if(ready_count= = 1)( 

10cat[ll.id = 1; 
locat[ II.xmid = 1 000/2; 
10catlll. ybottom = ybase 1 + 30; 
pw_vector(pwl ,locat[11.xmid-l0, locat[ll.ybottom-20, 10cat[ll.xmid + 1 0, 

10cat[ll.ybottom + 10,PIX_SRC, 1); 
pw _ vector( pwl ,Iocat[ 11. xmid-l 0, locat[ 11. ybottom, locat[ 11. xmid + 1 0, 

10cat[ll.ybottom,PIX_SRC, 1); 
pw_ vector(pwl ,locat[ll.xmid-l 0, locat[ll.ybottom-20, 10cat[ll.xmid-l 0, 

10cat[11.ybottom,PIX_SRC, 1); 
pw_vector(pwl ,locat[ll.xmid + 1 0, locat[ll.ybottom-20, 10catlll.xmid + 1 0, 

10cat[ll.ybottom,PIX SRC, 1); 
} -

} 

window _ main_loop(frame); 
exit(O); 

static Notify_value 

{ 

} 

catch Jesize(frame, event, arg, type) 
Frame frame; 
Event "event; 
Notify _arg arg; 
Notify_event_type type; 

Notify_value value; 

value = notify _next_ event_func(frame,event,arg, type); 
if(event_action(event) = = WIN_RESIZE) 

resize(frame); 
return(value); 

resize(frame) 

229 



( 
Frame frame; 

Rect *r; 
int canvas2_width; 
int stripeheight; 

if((int)window _get(frame, FRAM E_ CLOSED)) 
return; 

r=(Rect *) window_get(frame, WIN_RECT); 
framerect = or; 
stripeheight = (int) window_get(frame, WIN_TOP _MARGIN); 
canvas2_ width = CANVAS2 _WIDTH + (int) scrollbar _get(SCROLLBAR, 

SCROLL_THICKNESS); 
window _set(canvas2, 

WINj<, 0, 
WIN_Y, 0, 
WIN_WIDTH, CANVAS2_WIDTH, 
WIN_HEIGHT, CANVAS2_HEIGHT, 
0); 

window_set(canvas1, 
WIN_X, framerect.r_width-CANVAS1_WIDTH-LEFT_MARGIN-

SUBWINDOW _SPACING, 
WIN_Y, 0, 
WIN_WIDTH, framerect.r _ width-CANVAS2 _WIDTH-LEFT _MARGIN-

SUBWIN DOW _SPACING-RIGHT _MARGIN, 
WIN_HEIGHT, framerect.r _ height-CANVAS2 _HEIGHT-stripeheight-

SUBWINDOW _SPACING-BOnOM_ MARGIN, 
0); 

} 

230 



," 
•••••••••••••••••••• " 
• • 
• Dated: February 1.92. " 
• Written By: Wajeeh Butt " 
••••••••••••••••••••• • 

This is the main program that implements the probabilistic queueing 
model for a multiple server system as in the figure 2. Each host is 
modelled as a M'M'1 queue. 

Each host broadcasts the load information to each other host periodically. 
Each host estimates the average queue length over the whole system. 
During the next interval. based on average q-Iength • load balancing is 
performed dynamically by finding out the transfer probabilities. 

"' 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "smpl.h" 
#include "sched.h" 
#define busy 1 

extern struct token task[numt+ 1]; ,. array of tasks. where each task is a 
structure +, 

extern int evl; 
extern struct node processor[nump + 1]; ,. array of the processors "' 

,. status of a processor +, int running[nump +.1]; 
extern int 11[4024].13[4024]; 
extern int hop[nump + 1 ][nump + 1]; 
extern real clock; ,. simulation time ., 
extern short jf; ,. used to store the value of seed ., 
int period = 0; ,. used to send the load information updates 

int 
int 

periodically·' 
flag; 
MIG[nump + 1 ][nump + 1]; 

processors ., 
double P[nump + 1 ][nump + 1]; 
double rate[nump + 1 ][nump + 1]; 

FILE "fd; 
PACK transfer_pack; ., 
int interval = 400; 
int sample; 
int bias=2; 
threshold ., 
int q mean[nump + 1]; 
int sinUime=O; . 
int total_res; 
int task_submit_time[numt + 1]; 
response time of a task ., 
void _ weight(); 

,. Number of tasks transferred between two 

'" Stores the task-transfer probability ., 
,. used to determine the probability for the 
next task arrival +, 
,. A packet simulating the task transfer overhead 

,. load update interval·' 
'" Number of sample runs for each simulation +, 
,. A bias value used to determine the load 

,. Stores the value of average queue-length "' 

,+ Used to calculate the task response times +, 
,. Task submission time used to calciJlate the 

231 



double unbalanceO; ,+ Calculates the load imbalance +, 
double Avg_ W[nump + 1]; 
double P _ sum[nump + 1]; ,+ Sum of probabilities +, 
double old_P[nump + 1 ](nump + 1]; 
int load[nump + 1]; 
int done[numt + 1]; 
long totalJesponse; 
int event; 
int C[nump + 1 ](nump + 1]; ,+ Stores the inter-processor communication times +, 
int recent_ update[nump + 1 ](nump + 1]; 

int main(argc,argv] 

int argc; 
char +argv[]; 

{ 
int numtask,numproc; ,+ Used to store the argument values· +, 
int try=O,iter; 
int donor,acceptor; ,+ Indicates the number of donor and 

acceptor hosts +, 
int donorq_sum,newW_sum; 
int ex_value = 0; 
int releas = 0; 
int Ib Jeleas = 0; 
int A_index[nump + 1]; ,+ Used to save the identification of an acceptor 

host +, 
int D _index[nump + 1]; ,+ Used to save the identification of a donor host +, 

. int delta_qd[nump + 1]; 
int delta_qa[nump+1]; 
int transfer[nump + 1 ](nump + 1]; 
double rms[1000]; 
double W[nump + 1]; 
double newW[nump + 1 ](nump + 1]; 
int lock; 
int hi; ,+ keeps count of the heavily loaded processors +, 
double ex_clock=O; 
double max_P; 
int temp,set,max_com,max_finish,min_hop; 
int RECV[nump + 1]; 
int total_comm,balancer[nump + 1]; ,+ com_delay[numt + 1] +, 
int greater ,pr _ no, idle, minim, select, origin, ready _count; 
int i,j,k,l,m,s,link,loop,count,diff,ord = 1; 
int Ib _ start[numt + 1]; 

int task_trak[numt + l],pr_order[numt + l],order[numt + l],released[numt + 1], 
Ib released[numt + 1 ],scheduled[numt + l],lb scheduled[numt + 1]; 

- TASKS +p; -
FILE +fd1, +fopenO; 

if(argcl = 3l{ 
printf("Usage: find pattern\n"]; 
exit(O); 

} 
while(--argc > O){ 

232 



if(argc = = 2l{ 
numtask = (int)argv[l); 

} 
if(argc = = 1l{ 

numproc = (int)argv[argc); 
} 

} 
if((fdl =fopen("crapl":w")) = = NULLl{ 

fprintf(stderr, "Cannot open the file 'imbalance' to write\n"); 
exit(l ); 

} 
if((fd =fopen("statcrapl", "WO)) = =NULL){ 

fprintf(stderr:Cannot open the file 'stat' to write\n"); 
exit(l ); 

} 
printf("Do you want to set TRACE ON? Enter (1 ):"); 
scanf(" %d" ,&TRACE); 
TRACE=l; 
for(i= 1; i< = 1000; i + +) 
rms[iJ =0; 
for(i= 1; i< =nump; i+ +) 
for(j= 1; j< =nump; j+ +) 

ave_util[iJ[j) =0; 

sample=O; 
while(sample < = 10l{ 

sample+ +; 
jf = stream(sample); 
printf("seed = %d\n" ,stream(sample)); 
iter=O; 
clock=O.O; 
sim_time =0; 
period =0; 
ex_value =0; 
releas =0; 
Ib _releas = 0; 
ex_clock = 0; 
totalJes = 0; 
smpl(O, "scheduler model"); 
reset(); 
init(); ,+ Initialization routine for setting up the 

simulation environment *' 
,~ initializations for the broadcast routine +, 

for(i= 1; i< =nump; i+ +l{ 

} 

for(j = 1; j < = nump; j + + ){ 
util_time[iJ(j) =0; 

} 

transmitted = 0; 

for(i= 1; i< =numt+ 1; i+ +) 
released[iJ = Ib_released[iJ = scheduled[iJ = Ib_scheduled[iJ = 0; 

for(i= 1; i< = numt; i + + l{ 
done[iJ=O; 

} 

233 



for(i = 1; i < = nump; i + +) 
forU = 1 ; j < = nump; j + +) 

transfer[i)[j) = MIG[i)[j] =0; 

for(i = 1; i < = nump; i + +) 
WIil = Avg_WIil =0.0; 

for(i = 1; i < = nump; i + +) 
RECVIil = load[i] = 0; 

for (i=1; i< =nump; i+ +) 
processor[il.server =facilityC"processor", 1); ,. A single Que-single 

server facility ., 
for (i = 1; i < = nump; i + +) 

balancerlil =facility("balancer", 1); ,. A load balancing 
component associated with each processor ., 

period = interval; 
loop=numt; 
while (loop) 
{ 

if(TRACE= =2){ 
printf( "\n"); 
printf("\n"); 

} 
for (i=1; i< =numt; i+ +l{ 
if(done[i] = = Ol{ 

if(((int)clock = = tasklil .arrival) && (scheduledlil = = O)){ 
schedule(4, (real) (tasklil .arrival). i); 

} 
} 

} 

task_submit_timelil =tasklil.arrival; 
task(il.st_time = (int)clock; 
Ib_startlil = tasklil .arrival; 
donelil = 1; 

for(k= 1; k< =nump; k+ + l{ 

,. Each processor's own load is updated immediately·' 

processor[k].Ioad_ vector[k)[2) = 13[processor[k).server]; 
} 
if(lock = = 50){ 

iter+ +; 
rms[iter) = rms[iter) + unbalanceO; 
'lock=O; 

} 

,. Based on the information exchange for the Queue-length calculate the mean 
Que-'ength for load balancing ., 

if(((int)c1ock = = (period-1)) && (clock 1= ex_ value)){ 
ex_value = clock; 

weightO; 

,. Find the donor and acceptor host groups ., 

234 



donor=O; 
acceptor =0; 
donorq_sum =0; 

for(i=1; i< =nump; i+ +1{ 
if(l3[processor[i].server) > (q_mean[i) +bias)1{ 

donor+ +; 
D Jndex[donor) = i; 
delta_qd[i) = 13[processor[i).server)-(q_mean[i) + bias); 
donorq_sum = donorq_sum + delta_qd[i); 

} 
} 

forU=1; j< =nump; j+ +1{ 
if(l3[processor[j).server) < (q_mean[j)-bias)){ 

acceptor + +; 
A Jndex[acceptor) = j; 
delta_qa[j)';' (q_mean[j) + bias)-

13[processor[j) .server); 
} 

} 

,. Calculate the weight factors to determine the probabilities ., 

for(i= 1; i< = donor; i+ +1{ 
W[D Jndex[iJI = (double) delta_qd[D Jndex[iJI'donorq_sum; 

printf("W[%d) = %f\n" ,D Jndex[i),W[DJndex[i))); 
} 

,+ Multiply the weight factors with the corr!,!sponding acceptance ratios ., 

for(i = 1; i< = donor; i + + I{ 
if(D _index[ill = 01{ 

forU = 1 ; j < = acceptor; j + + I{ 
if(AJndex[j1l =01{ 

newW[D _index[i))[A_index[j)) = W[D _index[iIJ 'delta _ qa[A _index[j)) 

} 
} 

} 
} 

,. Determine the transfer probabilities ., 

for(i = 1; i< =nump; i+ +) 
P_sum[i] =0; 

for(i = 1; i < = nump; i + +) 
forU=1; j< =nump; j+ +) 

old_P[iJ[j) = P[i)[j) =0.0; 

for(i = 1; i < = donor; i + +){ 
if(DJndex[i1l =O){ 
forU = 1 ; j < = acceptor; j + + I{ 

if(AJndex[jll =O){ 

old_P[D Jndex[i))[AJndex[j)) = P[D Jndex[i))[A _index[jIJ = (double)newW[D _index[i))[A _ind 
ex[jIJ'newW _sum; 

235 



} 

} 
} 

} 

} 

for(j = 1; j< =donor; j+ + l{ 
old_P[DJndex[j)][O] = P[D_index[j)][O] = 1.0-P _sum[DJndex[jll; 

} 

for(i=l;i< =nump; i+ +) 
W[i]=O.O; 
for(j = 1 ; j < = nump; j + +) 

newW[i]Ul = 0.0; 

'* Check the clock value and broadcast the load information of each processor 

load *' 
if((int)clock = = (period + interval-2)) 

period = period + interval; 

dist_monitor(); '* Save the old load information for calculating the rate of change of Que *' 
if(TRACE = = 2l{ 

[2]; 

for(k=l; k<=nump; k+ +l{ 
printf("LOAD TABLE FOR PROCESSOR %d\n" ,k); 
for(l=l; 1< =nump; 1+ +l{ 

} 
} 

processor[k].load _ vector[lH 1] = processor[k].load _ vector[l] 

printf("load on processor %d = %d\n" ,k,13[processor[l].server]); 

} 

for(k=l; k< =nump; k+ +l{ 
for(l= 1; 1< =nump; 1+ + l{ 

} 

if( (int)clock = = recent_ update[kHIl + period-intervall{ 
processor[k].load _ vector[1][2] = 13[processor[l] .server]; 

} 
} 

if(evl = = Ol{ 
event=8; 

} 
else{ 

cause(&event, &il; 
p = &task[i]; 
if(TRACE = = 2l{ 

printf("event no = %d and task no = %d\n" ,event,i); 
} 
if(event = = 6) 

p-> finish_time = (int)time(); 

236 



} 
if(event = = 5 && scheduledli] = = 0) 

event= 7; 
if(TRACE = = 2) 

printf("clock = %f\n" ,clock); 
switch(event) 
{ 

case 1: 

ifUb_scheduled[ill = 1 l{ 
select = p- > processor; 

} 
else{ 

} 

select = p- > processor; 

if(request(balancerlselect],i,l)1 = Ol{ 

Ib _ scheduled lp- > id] = 1 ; 
p- > processor = select; 

if(TRACE = = 2) 
printf("balancerl%d] q-

length = %dln" ,select,13Ibalancerlselect]]); 

case 2: 

} 
else{ 

Ib_scheduledlp-> id] = 1; 
Ib released lp- > id] = 1 ; 
if Ub_startlp-> id] < = (int)clockl{ 

Ib _startlp- > id] = (int)clock; 
. } 

} 
break; 

p- > processor = select; 
schedule(2,clock,i); 

Ib releas = 0; 
for(k=l; k< =numt; k+ +l{ 

ifUb scheduledlk] = = 1 && Ib releasedlk] = = 1 l{ 
if((int)clock > = Ub_startlkJ + Ib_exec)l{ 

schedule(3,clock,k); 
Ib_scheduledlk] =0; 

} 
} 

} 
Ib _releas = 1 ; 

ifUb_scheduledlil = = 1 l{ 
schedule(2,clock,i); 
ifUb_releasl = 1) 

} 
break; 

clock = clock + 1.0; 
+ + lock; 

if((int)clock > = Ub_startlp-> id] +Ib_execll{ 
release(balancerlp- > processor],i); 

237 



schedule(3,0.0,il; 
} 
else{ 

schedule(2,0.0,il; 
} 
clock = clock + 1.0; 
break; 

case 3: release(balancer(p->processor],i); 
schedule(4,clock,i); 

case 4: 

select = p- > processor; 
break; 

'* Check the load on all processors and based on the 
probabilities assign the task to the lightly loaded 
processor *' 

temp=O; 
if(scheduled[ill = 1l{ 

if(TRACE= =21 
printf("task %d initiated on processor 

%d\n" ,i,task[i].processorl; 

} 

origin =task[i].processor; 
task[i].status = 0; 

. idle = origin; 
forij=O; j< =nump; j+ +l{ 

if(idle 1= jl{ 
if(P[idle]Ul > 0.0l{ 

} 
} 

max _P = P[idle][j]; 
temp=j; 
break; 

if(ij = = numpl && (try> = 10)){ 
try =0; 

} 

for(k=l; k< =nump; k+ +l{ 
forU = 1; 1< = nump; 1+ + l{ 

P[k][ll = old_P[kHl]; 
} 

} 
for(k=O; k< =nump; k+ + l{ 

if(idle 1= kl{ 

} 
} 

if(P[idle][k] > Cl{ 
max_P = P[idle][k]; 
temp=k; 
break; 

} 

for(k=O; k< =nump; k+ +l{ 
if(idle I = kl{ 

if(P[idle][k] > max_Pl{ 

238 



} 
} 

} 

max_P = P[idle][k]; 
temp=k; 

if((temp 1= 0] && (temp 1= origin)l( 
transfer[idle][temp] + +; 
transfer_pack. type = 1 ; 
transfer _pack. src_processor = idle; 
transmitted + +; 
transfer pack.seq ':transmitted; 
transfer pack.msg len =task[i].x time[1]; 
for(k=;; k< = processor[idle].linknum; k+ + l( 

} 

if(processor[idle].linkJd[k].end2 = =temp) 
link=k; 

printf(·temp = %dln· ,temp); 
printf(·i and j are %d and %dln· ,idle,link]; * / 
que [idle] [link] = enque(idle,link,O, &transfe r _pack); 
idle=temp; 
task[i].status = 1; 
C[idle][temp] = 160000/processor[idle].link_id[link].ink_cap 

task[i].x_time[1] =task[i].x_time[1] + (160000/processor[id 
le].link_id[link].lnk _cap); 

} 

} 
else{ 

} 

task[i].processor = idle; 
P[origin][temp] = P[origin][temp]-0.1; 

P[origin][O] = P[origin][O]-0.1; 

printf(·inside idle = %dln· ,idle); 

printf(·idle = %dln· ,idle); * / 

if(request(processor[idle].server,i,1)1 = Ol{ 
load [idle] = load [idle] + task[i].x _ timet 1]; 
scheduled[p- > id] = 1 ; 
task[i].processor = idle; 

1* printf(· All the processors are busy:ln·); 
printf(·processor[%d] q-

length = %dln· ,idle,13[processor[idle].server]); * / 

} 
else{ 

scheduled[p- > id] = 1; 
released[p- > id] = 1 ; 

if(p->st_time < = (int)clockl{ 
p- > st time = (int)clock; 

} 
p-> processor = idle; 
load[idle] + = task[i].x_time[1]; 
running [idle] = busy; 
if(TRACE = = 2) 

printf(·process start time = %dln·,p->st_time); 

239 



'* 

'* 

'* 
*' 

'* 

case 5: 

schedule(5,clock,i); 
} 

break; 

if(TRACE = = 2l{ 
printf("st_time = %dln",p->st_time); 
printf("x_time = %dln",p->x_time[l)); 

} 
releas =0; 
for(k=l; k< =numt; k+ +l{ 

if(scheduled[k] = = 1 && released[k] = = 1l{ 
if ((task[k].st time + task[k].x time[l)) < = (int)clockl{ - -

schedule(6.0.0,k); 

} 
} 

} 

scheduled[k] = 0; 
releas = 1; 

iflscheduledli] = = 1l{ 
schedule(5.clock.il; 
schedule(2.0.0.i); 
if(releasl = 1l{ 

} 
} 

break; 

clock=clock+ 1.0; 
+ +Iock; 

*' 

case 6: release(processor[p-> processor].server,il; 

case 7: 

printf("%d processor is releasedln",p-> processor); *' 
idle = p-> processor; 
load lid le] - = task[i].x_time[l]; 

order[ord] = i; 
ord+ +; 

for(k=l; k< =numt; k+ +) 
waiting[kllil = 0; 

running[p-> processor] = 0; 
loop--; 
break; 

if (TRACE = = 2) 
printf("process %d already finishedln" ,il; 

break; 
case 8: clock = clock + 1.0; 

+ + lock; 
break; 

default: iter--; 

} 

clock+ +; 
break; *' 

240 



} 
for(j = 1 ;j< =numt;j + + l{ 

if(TRACE = = 2) 
printf("task %d response time = %dln",j,(task[j).finish_time-

task _ submit_ time[j])); 

I· 

total res = total res + (taskijl.finish time-task submit timeij]); 
} - - - - -

total_response = totalJesponse + (totaUes/numt); 

printf(" procl proc2 
for(j = 1 ;j < = numt;j + + l{ 

printf("task %d ",il; 
switch(task[j). processor) 
{ 

proc3 proc4 

case 1: printf(" %dln",task[j).x_time[I]); 
break; 

proc5In"); 

case 2: printf(" %dln" ,task[j).x_time[I]); 
break; 

case 3: printf(" %dln" ,taskijl.x_time[I]); 
break; 

case 4: printf(" 
%dln" ,task[jI.x_time[I]); 

break; 
case 5: printf(" 

%dln" ,taskijl.x_time[I]); 
. . break; 

} 
} 

·1 
for (i = 1; i < = nump; i + + l{ 

for (j=I; j< =nump; j+ +l{ 
<. if((i I = il && (transferlilljl > 0)) 

fprintf(fd, "tasks transferred from %d to %d = 
%dln" ,i,j, transferlillill; 

} 
} 
for (i = 1; i < = nump; i + +){ 

} 

for (j = 1 ; j < = processor[il.linknum; j + + l{ 
ave_utillilijl = ave_utillil[j) + utiUimelilljl; 

} 

fprintf(fd."Mean Task Size = %dln" ,(SUM_EXEC/numt)); 
fprintf(fd, "total response = %dln" ,totaIJesponse); 

fprintf(fd," All the processes executed in %f time unitsln" ,clock); 
I· printf("total communication cost is %f time unitsln" ,total_comm); ·1 

fprintf(fd."completion time = %1\n" ,clock); 

} 
reportf(); 

fprintf(fd."Mean Response Time = %dln",total_response/sample); 
for (i=I; i< =nump; i+ +){ 

for (j = 1; j < =processorlil.linknum; j + + l{ 
fprintf(fd, "percent link utilization[%dll%dl = 

%fln" ,i, processor[il.linkJd [j). end2, (( (doubl e)ave _ utillil [jl/sample) + 1 00.0) /(int)clock); 

241 



} 
} 

for(i=40; i< =100; i+ +1{ 
fprintf(fd1, "%f %7 .4I\n" ,(float)((i-39) '50),rms[i]/sample); 

} 

} 

void weight() 
( 

int i,j; 
int sum[nump + 1); 
int W[nump + 1 )[nump + 1); 

for(i=1; i< =nump; i+ +)( 
sum[i) =0; 
for(j = 1 ; j < = nump; j + + l{ 

sum[i] = sum[i) + 13[processor[j).server); 
} 
q_mean[i] = (int)ceil((double)sum[i]/nump); 

I' printf("q_mean on processor %d = %dln" ,i,q_mean[iJ); '1 
} 

} 

double unbalance() 
{ 

int i,j; 
double sum,phi; 

sum=O.O; 
for(i=1; i< =nump; i+ +1{ 

for(j=1; j< =nump; j+ +l{ 
if(j > il{ . 

sum =sum + (((1 0·13[processor[i).server))-
(1 0*13[processor[j).server)))· (( 1 0*13[processor[i].server)H 1 0·13[processor[j).server)))); 

} 

} 

} 
} 

phi = sqrt(sum/(double)((nump*(nump-1 11/211; 
return(phi); 

242 



, . 
•••••••••••••••••••••••• 
• • 
• Dated: June 25.92. • 
• Written By: Wajeeh Butt • 
•••••••••••••••••••••••• 

This program impements the joint membership cluster load balancing strategy. 
It implements the queueing model for a multiple server system. Each host is 
modelled as a M'M'1 queue. . , 

The instantaneous and the average queue length values are estimated for each 
host and exchanged amongst all the hosts in the system. 
Initially the network is partitioned into equal size host groups. Based on 
the load information estimates available at each host. a lightly loaded host 
in a lightly loaded host group is offered the joint membership from a . 
heavily loaded hosts. The details of the Algorithm are described in section 
7.6 . . , 
#include <stdio.h> 
#include < stdlib.h > 
#include <math.h> 
#include "smpl.h" 
#include "sched.h" 
#define busy 1 
#define cluster_sum .4 

extern struct token task[numt + 1]; ,. array of tasks. where each task is a 
structure ., 

extern int evl; 
extern struct node processor[nump + 1]; 
extern struct group cluster[cluster_sum + 1]; 
devide the whole network ., 
int running[nump + 1]; 
extern int LT; 
extern int LO; 
extern int SUM_EXEC; 

,. array of the processors ., 
,. different clusters (host groups) 

extern double mu[nump + 1]; ,. Service time of each processor is stored to 
determine the unfinished work for finding the load imbalance ., 
extern int ready[numt+ 1].11[4024].13[4024]; 
extern real 15[4024]; ,. saves the values of queue-length and time 
product used to calculate the average queue-length ., 
extern int hop[nump + 1 ][nump + 1]; 
extern real clock; ,. simulation time ., 
extern short jf; 
extern int managers[cluster_sum + 1]; 
extern double transfer delay[nump + 1 ][nump + 1]; . 
simulate the task transfer delay between two hosts. ., 

,. A value used to 

int period = 0; ,. used to send the load information updates 
periodically within the group ., 

int net_period = 0; ,. used to send the load information updates 
periodically among the managers ., 

int MIG[nump + 1 ][nump + 1]; 

243 



double rate[nump + 1 Hnump + 11; /* used to determine the probability for the 
next task arrival *' 

FILE *fd; 
int group_interval = 200; /* load update interval used for hosts within a host group 

*' int net_interval = 600; '* load update interval used for host group managers for 
load balancing amongst the host groups *' 
int sample; 
int bias=1; 
int net_bias =3; 
int CLmean[cluster_suml; 
int q_mean_network; 
double lambda; 
double total_res; 
int task_submit_time[numt + 11; 

void weightO; 
void avgQO; 
double unbalanceO; 
int load[nump + 11; 
double avg_load[nump + 11; 
double avg_ q[cluster _sum + 11; 
double avg_ Q; 
int done[numt + 11; 
double totalJesponse; 
int event; 
int recent_update[nump+ 1 )[nump+ 1); 

int main(argc,argv) 

int argc; 
char *argv[); 

{ 
int token,numtask,numproc; 

/* To calculate the response time 

ofatask *' 

/* int flag 1[nump + 11, flag[numt + 11; */ 
int flag; 
int iter; 
int number,number1,donor,acceptor; 
int ex_value = 0; 
int pr_value = 0; 
int releas =0; 
int Ib Jeleas = 0; 
int sim_time; 
int 0 _index[cluster _sum + 11,A _index(cluster _sum + 11; 
double rms[1000); 
int lock; 
int hi; /* keeps count of the heavily loaded processors * / 
double ex_clock=O; 
int pr_clock=O; 
int net_clock = 0; 
int temp,next,recv,set,max_com,max_finish,min_hop; 
int save,save 1,save2; 
int RECV[nump + 11; 
int total_comm,balancer[nump + 1); /* com_delay[numt+ 11 */ 
int greater ,pr _ no,idle, minim,select,origin, ready_count; 
int i,i,k,l,m,s,loop,count,diff,ord = 1; 

244 



double min,minload,max; 
int Ib_start[numt+ 1 I; 

int task trak[numt + 11,pr order[numt + 1 I,order[numt + 1 I,released[numt + 1 I, 
Ib released[numt + fi,scheduled[numt+ 11,lb scheduled[numt + 1 I; 

- TASKS +p; -
FILE +fd1, +fd2, +fopen(); 

if(argcl =3){ 

} 

printf("Usage: find pattern\n"); 
. exit(O); 

while(--argc > Ol{ 
if(argc = = 2l{ 

,+ printf("Total no. of tasks for current simulation = %s\n" ,argv[argcJ); +, 
numtask = (int)argv[l I; 

} 
if(argc = = 1 l{ 

,+ printf("Total no. of processors for current simulation = 
%s\n" ,argv[argcJ); +, 

,+ 

+, 

numproc = (int)argv[argcl; 

.> 
} 
if((fd1 =fopen("inbalancejnt5", "WO)) = = NULLl{ 

fprintf(stderr, "Cannot open the file 'inbalance' to write\n"); 
exit(l ); 

} . 
if((fd2 =fopen("responsejnt5", "WO)) = = NULLl{ 

} 

fprintf(stderr, "Cannot open the file 'response' to write\n"); 
exit(l I; 

if((fd =fopen("stat4x4m", "WO)) = = NULLl{ 

} 

fprintf(stderr, "Cannot open the file 'stat' to write\n"); 
exit(l ); 

,+ printf("Do you want to set TRACE ON? Enter (1 ):"); 
scanf("%d" ,& TRACE); +, 

TRACE = 1; 

lambda = 6.0; 
while (lambda < = 16l{ 
lambda = lambda + 1 .0; 
init(); ,+ Initialization routine for setting up the 

simulation environment +, 
total_response = 0.0; 
sample=O; 
for(i=l; i< =1000; i+ +) 

rms[iJ =0.0; 
while(sample < = 10l{ 

sample + +; 
,+ jf = stream(sample); 

printf("seed = %d\n" ,stream(sample)); +, 
iter=O; 
clock=O.O; 
period =0; 

245 



ex_value = 0; 
pr_value = 0; 
releas=O; 
IbJeleas=O; 
ex_clock = 0; 
total_res = 0.0; 
smpl(O, "scheduler model"); 
reset(); 
for(i= 1; i< =numt+ 1; i+ +) 

released[i) = Ib_released[iJ = scheduled[iJ = Ib_scheduled[iJ = 0; 

for(i=l; i< =numt; i+ +)( 
done[iJ =0; 

} 

for(i=l; i< =nump; i+ +) 
for(j = 1 ; j < = nump; j + + ) 

MIG[iJ[j] = 0; 

for(i = 1; i < = nump; i + +) 
RECV[i] = avg_load[iJ = load[i) = 0; 

for (i=1; i< =nump; i+ +) 
processor[iJ.server=facility("processor",l); ,+ A single que-single 

server facility ., 
for (i = 1; i < =nump; i + +) 

balancer[iJ =facility("balancer" ,1); ,+ A load balancing 
component associated with each processor ., 

,+ printf("all the tasks have been scheduled\n"); +, 
period = group Jnterval; 
net_period = neUnterval; 
loop=numt; 
while (loop) 
( 

if(TRACE = = 2l{ 
printf("\n"); 
printf("\n"); 

} 
for (i = 1; i < = numt; i + + l{ 
if(done[i] = = Ol{ 

if(((int)clock= =task[iJ.arrival) && (scheduled[i] = =Oll{ 
schedule(4, (real) (task[iJ .arrival) ,i); 
task_submit_time[i] = task[iJ.arrival; 
task[iJ .st_ time = (int)clock; ,+ Ib_start[iJ =task[i].arrival; ., 

) 
} 

} 

done[i] = 1; 

,+ Each processor's average q-Iength ., 

for(k= 1; k< =nump; k+ + l{ ,+ printf("processor %d average q-Iength = 
%f\n" ,k,15[processor[k].server + 111clock); +, 

} 
for(k= 1; k< =nump; k + + l{ 

246 



'* Each processor's own load is updated immediately *' 
processor[k].load vector[k][2] = 13[processor[k].server]; 

} -
if(lock = = 30){ 

iter+ +; 

} 

rmsliter] = rms[iter] + unbalance(); 
lock=O; 

,+ Based on the information exchange for the queue-length calculate the mean 
que_length for load balancing +, 

,+ 

'* 

if(((int)clock= = (period-1)) && (clock 1= pr_value)1{ 
pr_value = clock; 
weight(); 

} 

if(((int)clock= = (net_period-l)) && (clock 1= ex_value)){ 
ex_value = clock; 

avgQ(); 

donor=O; 
acceptor = 0; 
for(i=l; i< = cluster_sum; i+ +1{ 

o Jndexlil = A _indexlil = 0; 
} 

for(i=l; i< = cluster_sum; i+ +1{ 

} 

if(avg_qlil > = avg_Q+ 1){ 
donor+ +; 

} 

printf("donor = %dln" ,donor); +, 
o Jndex[donor] = i; 
printf("donor cluster = %dln",D_index[donor]); +, 

if(avg_ qlil < = avg_ Q-ll{ 
if(clusterlil.hostnum > cluster_suml{ 

} 

} 

forti = cluster_sum + 1; j < = cluster[i].hostnum; j + + I{ 
clusterlil.hostnum--; 
clusterlil.host[j] = 0; 

} 

acceptor + +; 
printf("acceptor = %dln" ,acceptor); +, 
A _index[acceptor] = i; 
printf("acceptor cluster = %dln" ,AJndex[acceptor]); *' 

for(i= 1; i< = donor; i+ + I{ 
if(D_indexlil = =0) 

break; 
else{ 
save = 0 _indexlil; 
forti = 1; j< =acceptor; j + +)( 

if(A JndexGl = = 0) 
break; 

else{ 
minload =avg_Ioad[cluster[AJndex[jll.host[lll; 

247 



for(k=l; k< =cluster[AJndexUll.hostnum; k+ +l{ 
if(cluster[A index[j]].host[kll = cluster[A index[j]].managerl{ 

if(avg_load[cluster[AJndexUll.host[kll <: minloadl{ 

} 
} 

} 

minload =avg_load[cluster[A_indexUll.host[kll; 
save2 = cluster[A_indexUll.host[kl; 

recv=O; 
for(k=l; k< =cluster[savel.hostnum; k+ +l{ 

if(cluster[savel.host[kl = = save2l{ 
recv=l; 

} 
} 

break; 

if(recv = = Ol{ 

} 

cluster[savel.hostnum + +; 
cluster[savel.host[cluster[savel.hostnuml = save2; 

for(k=l; k< = cluster_sum; k+ +l{ 

transfer _ delay[cluster[savel. host[kll [save21 = transfer _ delay[save21 [cluster[savel. host[kll 
=2.0; . 

} 
} 

} 

for(j=l; j< =cluster_sum; j+ +l{ 
printf("cluster[%dl.host = %d\n" ,j,clusterUl.hostnum); 

} 

} 
} 

} 

/* performs the dequeing and transfer of jobs between two managers *1 

if(clock 1= ex_clockl{ 
ex clock = clock; 
for(j =1; j < =nump; j + + l{ 

for(k=l; k< =nump; k+ +l{ 
set=O; 
if(MIGU)[kl > Ol{ 

/* printf("mig[%d)[%dl = %d\n" ,j,k,MIG[j)[k)); * / 
token =dq(processor[j).server); 
MIG[j)[kl--; 

/* flag[tokenl = 1; *1 
flag=l; 
set=l; 
break; 

} 
} 

if(set= = 1) 
break; 

} 
} 

248 



'" Check the clock value and broadcast the load information of each processor 

load "' 

if ((int)clock = '= periodl{ 
'" dist monitor(); 

if(clock > 2000.0){ "' 
for{l=1; 1< =cluster_sum; 1+ +l{ 

hl=O; 
for(j = 1 ; j < = clusterlll.hostnum; J + + l{ 

if{l3[processor[cluster[l).host[jll.server] > q_mean[l]) 
hl+ +; 

} 
for(j = 1; j < = clusterlll.hostnum; j + + l{ 

if((l3[processor[clusterlll.host[j]].server] - q_mean[l]) > biasl{ 

'" if 01 =kl{ "' 
for(k=1; k< =clusterlll.hostnum; k+ +1{ 

if( {l3 [processor[cluster[l]. host[kll.server]) < (q_ mean[l]-bias) I{ 

'" -bias "' MIG[cluster[l].host[j]][cluster[l].host[kll = ({l3[processor[cl 
usterlll.host[jll.server] - (q_mean[l] '" bias))); 

'" 

} 
} 

break; 

} 
} 
} 
if(((int)clock > = period) && ((int)clock I =pr_clock)){ 
pr_clock = (int)clock; 
forO = 1; j< =cluster_sum; j + + I{ 

for(k= 1; k< =cluster[j].hostnum; k+ + I{ 
temp =0; 
if(q_mean[j] > = 11{ 

• 
while((temp = cluster[j].host[random(1 ,cluster[j).hostnum)]) = = cluster[j).host[k)); 

if((l3[processor[cluster[j).host[kll.server) - q mean[j]) > = 
(bias"2 + MIG[cluster(j].host[kllltemp])){ -

MIG[cluster[j).host[kllltemp] = MIG[cluster[j).host[kllltemp) + 1; 
printf(" %d tasks transferred to random processor 

%dln", MIG[cluster[j). host[kllltemp), temp); 

"' 
} 

} 

} 

} 
} 

} 

if (clock = = (period + group JntervaF1 )) 
period = period + groupJnterval; 

'* Save the old load information for calculating the rate of change of que *' 
if(TRACE = = 21{ 

for(k= 1; k< =nump; k+ + I{ 
printf("LOAD TABLE FOR PROCESSOR %dln" ,k); 
for{l = 1; 1< =nump; 1+ + I{ 

249 



[2]; 
processor[k].load_ vector[l][ 11 = processor[k].load_ vector[l] 

printf("load on processor %d = %d\n" ,k,13[processor[l].server]); 
} 

} 
} 

if ((int)clock = = net_period){ 
hl=O; 
forU = 1; 1< =cluster_sum; 1+ + I{ 

} 

ifU3[processor[cluster[l].manager].server] > q_mean_network) 
hl+ +; 

forU = 1; 1< =cluster_sum; 1+ + I{ 
if((l3[processor[cluster[l].manager].server] - q_mean_network) > 

for(k=1; k< =cluster_sum; k+ +1{ 
if( U3[processor[cluster[k]. manager]. server]) < 

(q_ mean _ network-net_ bias)){ '" -bias "' 
MIG[cluster[l].manager][cluster[k].manager] = ((I3[process 

or[cluster[l].manager].server] - (q_mean_network + net_bias))); 

'" 

break; 
} 

} 
} 

} 
} 

if(((int)clock > = net_period) && ((int)clock 1= net_clock)1{ 
net_clock = (int)clock; 

for(j=1; j< =cluster_sum; j+ +1{ 
temp =0; 
if(q_mean_network > = 11{ 
while((temp = managers[random( 1,4)]) = = managers[j]); 

if((l3[processor[managersGll.server] - q mean network) > = 
(net_bias "4 + MIG[managers[j]](temp])){ --

MIG[managersG]](temp] = MIG[managers[j]][temp] + 1; 
printf(" %d tasks transferred to random manager 

%d\n", MIG [managers[j]]][temp], temp); 

"' 

} 
} 

} 
} 

if(clock = = (net_period + net)nterval-1 )) 
net_period = net_period + netJnterval; 

if(evl = = 01{ 
event = 8; 

} 
else{ 

250 



'* 

'* 

cause(&event, &i); 
p = &task[i); 
if(TRACE = = 2l{ 

printf("event no = %d and task no = %dln" ,event,i); 
} 
if(event = = 6) 

p- > finish_time = (int)time(); 
} 
if (event = = 5 && scheduled [i) = = 0) 

event=7; *' 
if(TRACE = = 2) 

printf("clock = %f\n" ,clock); 
switch(event) 
{ 

case 1: 

if(lb_scheduled[iJl = 1l{ 
select = p- > processor; 

} 
else{ 

select = p- > processor; 

} 
printf("select = %dln" ,select); *' 
if(request(balancer[select),i,l)1 = Ol{ . 

Ib_scheduled[p-> id) = 1; 
p-> processor = select; 

if(TRACE = = 2) 
printf("balancer[%d) q-

length = %dln" ,select,13[balancer[select))); 

case 2: 

} 
else{ 

} 
break; 

Ib_scheduled[p-> id) = 1; 
Ib Jeleased[p-> id) = 1 ; 

if(lb_start[p->id) < = (int)clockl{ 
Ib _ start[p- > id) = (int)clock; 

) 
p- > processor = select; 
schedule(2,clock,i); 

Ib releas = 0; 
for(k=l; k< =numt; k+ +l{ 

} 

if(lb_scheduled[k) = = 1 && Ib_released[k) = = 1l{ 

} 

if((int)clock > = (lb_start[k) + Ib_execll{ 
5ch edule(3 ,clock, k); 

} 

Ib _ scheduled[k) = 0; 
IbJeleas=l; 

if(lb_scheduled[iJ = = 1){ 

251 



'* 

'* 

*' 

} 

schedule(2,clock,i); 
schedule(5,c1ock,i); *' 
ifUb_releasl = 1) 

clock = clock + 1.0; 
+ + lock; 

break; 

if((int)clock > = (Ib_start[p-> id] +Ib_exec)){ 
release(balancer[p- > processor],i); 
schedule(3,0.0,i); 

} 
else{ 

schedule(2,0.0,i); 
} 
clock = clock + 1.0; 
break; 

case 3: release(balancer[p-> processor],i); 
schedule( 4 ,clock, i); 

case 4: 

select = p- > processor; 
break; 

'* Check the load on all processors and based on the 
probabilities assign the task to the lightly loaded 
processor *' 

if(scheduled[ill = 1){ 
if(TRACE = = 2) 

printf("task %d initiated on processor 
%d\n" ,i, task[i]. processor); 

} 

origin = task[i] .processor; 
idle = origin; 

'* printf("inside idle = %d\n" ,idle); *' '* Check for the upper threshold, If the current load exceeds the upper 
threshold then perform load balancing *' 

if(scheduled[p->id] = = 1){ 
idle = p- > processor; '* if(clock > 2000.0){ *' 

for(k=l; k< =nump; k+ +)( 
next =0; 
if((MIG[idle][k] >0)&& (flag = = 1)){ 

p- > st_time = p- > st_time + transfer _ delay[idle][k]; '* MIG[idle][k]--; 
flag[p-> id] = 0; *' '* printf(" a task transferred from %d to 

%d\n" ,idle,c1uster[processor[idle].cluster].host[k]); ., 
idle=k; 
p- > processor = idle; 

252 



} 

'* 

} 
} 

next= 1; 
flag =0; 
break; 

printf("idle = %dln" ,idle); *' 
if(request(processor[idle].server,i,1)1 =OJ{ 

load [idle] = load [idle] +taskli].x_time[1]; 
scheduled[p-> id] = 1; 
task[i].processor = idle; '* printf(" All the processors are busy:ln"); 

printf("processor[%d] q-
length = %dln" ,idle,13[processor[idle].server]); *' 

case 5: 

'* 

} 
else{ 

scheduled[p- > id] = 1 ; 
released[p- > id] = 1; 

if(p->st_time <;. (int)clockJ{ 
p- > st time = (int)clock; 

) 
p- > processor = idle; 
loadlidle] + = task[i].x_time[1]; 
running[idle] = busy; 
if(TRACE = = 2) 

printf("process start time = %dln",p->st time); 
schedule(5,clock,i); -

} 
break; 

if(TRACE = = 2J{ 
printf("st_time = %dln",p->st_time); 
printf("x_time = %dln",p->x_time[1]); 

} 
releas=O; 
for(k=1; k< =numt; k+ +J{ 

if(scheduledlk] = = 1 && released[k) = = 1 J{ 
if ((task[k).sUime +task[k).x_time[1]) < = (int)clockJ{ 

schedule(6,0.0,k); 

} 
} 

} 

scheduled[k) = 0; 
releas= 1; 

if(scheduled[i] = = 1 J{ 
schedule(5,clock,i); 
schedule(2,0.0,i); 
if(releas! = 1 J{ 

} 
} 

break; 

clock=clock+ 1.0; 
+ + lock; 

253 

*' 



'0 

'0 

0, 

,0 

} 

case 6: release(processor[p- > processor).server,i); 

case 7: 

printf("%d processor is releasedln" ,p- > processor); 0, 
idle = p-> processor; 
load[idle)-= task[iJ.x_time[l); 

order[ord) = i; 
ord+ +; 

for(k=l; k<=numt; k+ +) 
waiting[kHi) = 0; 

running[p- > processor) = 0; 
loop--; 
break; 

if(TRACE = = 2) 
printf("process %d already finishedln" ,i); 

break; 
case 8: clock=clock+ 1.0; 

+ + lock; 
break; 

default: iter--; 
clock+ +; 
break; 0, 

} 

for(j = l;j < = numt;j + +)( 
if(TRACE = = 2) 
printf("task %d response time = %dln",j,(task[j).finish time.' 

task_submit_timeij))); 

,0 

total_res = totalJes + (double)(task[j).finish_time-task_submit_time[j)); 
} 
total_response = totaUesponse + (double)(totaIJes'numt); 

printf(" procl proc2 
for(j = 1 ;j < = numt;j + + )( 

printf("task %d ",il; 
switch (task[j). processor) 
{ 

proc3 proc4 

case 1: printf(" %dln" ,task[j).x_time[l)); 
break; 

proc5In"); 

case 2: printf(" %dln",task[j).x_time[l)); 
break; 

case 3: printf(" %dln",task[j].x_time[1)); 
break; 

case 4: printf(" 
%dln", task[j].x _ time[l)); 

break; 
case 5: printf(" 

%dln" ,task[j].x_time[l)); 
break; 

} 
} 

254 



*' '* fprintf(fd."Mean Task Size = %dln",(SUM_EXEC'numt)); 
fprintf(fd."total response = %f\n" ,totaIJesponse); 

fprintf(fd." All the processes executed in %f time unitsln" ,clock); *' 
'* printf("total communication cost is %f time unitsln",total_comm); *' 
'* fprintf(fd."completion time = %f\n" ,clock); *' 

reportf(); 
} 

'* fprintf(fd."Mean Response Time = %f\n",totaUesponse'sample); *' 

fprintf(fd2, "%f %7 .4f\n" ,lambda, totaLresponse'sample); 

if(lambda';' = 13){ 
for(i =20; i< =99; i + +){ 

fprintf(fd1," %f % 7.4f\n" ,((float)(i-19)*30),rms[i)'sample); 
} . 

} 
} 

} 

void weight()· 
{ 

int i,i, temp,sum[cluster _sum + 1); 

temp=O; 
for(i = 1; i < = cluster_sum; i + + ){ 

sum[i) =0; 
for(j = 1 ; j < = cluster[i).hostnum; j + +){ 

sum[i) = sum[i) + 13[processor[cluster[i).host[j)).server); 
} 
q_ mean[i) = (int)ceil( (double)sum [i]'cluster[i] .hostnum); 

'* printf("q_mean for cluster%d = %dln" ,i,q_mean[iJ); *' 
temp =temp + q_mean[i); 

} 
q_mean_network= (int)ceil((double)temp'cluster_sum); 

'* printf("q_mean_network = %dln",q_mean_network); *' 
} 

void avgQ() 
{ 

'* 

int i,j; 
double temp,sum[cluster_sum + 1); 

for(i=l; i< = cluster_sum; i+ +){ 
sum[i) =0; 
for(j=l; j< =cluster[i).hostnum; j+ +){ 

sum[i) = sum[i) + (l5[processor[cluster[i).host[j)).server + 1I1clock); 

} 

} 
avg_q[i) = sum[i]'cluster _sum; 
printf("avg_q[%d) = %f\n" ,i,avg_q[i)); 

for(i=l; i< =nump; i+ +){ 

*' 
avg_load[i) = (l5[processor[i).server+ 111c1ock); 

255 



'* printf("average q on proc %d = %f\n" ,i,avgJoad[i)); *' 
temp = temp + avg_loadlil; 

} 
avg_ 0 = temp'nump; 

'* printf(Waverage 0 for the network = %f\n",avg_OI; *' 
for(i=1; i< =nump; i+ +l{ 

15[processor[i].server + 1) =0.0; 
} 

} 

double unbalanceO 
{ 

int i,j; 
double sum,phi; 

sum=O.O; 
forti = 1; i< =nump; i + + I{ 

forij=1; j< =nump; j+ +I{ 
ifij > il{ 

sum = sum + (((mu(iJ *13[processor[i).server))
(mu [j) *13 [processor[j) . server)) I * ((mulil *13[ processorlil .server) I- . 
(mu[j) *13 [processor[j). server)) I I; 

} 

} 

} 
} 

phi = sqrt(sum/(double)((nump *(nump-1 ))'2)); 
retuni(phil; 

256 



j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

I 
j 


