
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Automatic parallelization of programsAutomatic parallelization of programs

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Md Yazid Mohd Saman

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 2.5 Generic (CC BY-NC-ND 2.5) licence. Full details of this licence are available at:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LICENCE

CC BY-NC-ND 2.5

REPOSITORY RECORD

Saman, Mohammad Yazid M.. 2019. “Automatic Parallelization of Programs”. figshare.
https://hdl.handle.net/2134/27235.

https://lboro.figshare.com/

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

__________ ___ ?_~:!!!.~_,.I----~.:-t!.---------- -- ,-

------------------------------- --- ------------_ ... -
ACCESSION/COPY NO.

(1\tO\l6'3D'L ----------------- ... --- -----------------------------
VOL. NO. CLASS MARK

0401169022

I I 111111111111111111111111

AUTOMATIC PARALLELIZATION
OF PROGRAMS

by

MD YAZID MOHD SAMAN

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy

of the LOllghborough University of Technology

July 1993

© by Md Yazid Mohd Saman, 1993

· "' b:.~

I

[fn the dVame. of dlfU, dl-1o~t gw.do=, dl-1o~t dl-1E.u!i{u.f

Pw.iu. to dlfU, ..£oui of the 'UniIJE.U.E..

dl-1ay PE.aa and Pw.YE.U !BE. u.pon df~

9-inaf Pwphet and dl-1E.~~n9E.~ .

.. :- '

.i

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work
submitted in this thesis, that the original work is my
own except as specified in acknowledgements or in
footnotes, and that neither the thesis nor the original
work contained therein has been submitted to this or any
other institution for a higher degree.

Md Yazid Mohd Saman

ACKNOWLEDGEMENTS

I would like to express my thanks and gratitude to my
Director of Research, Professor D. J. Evans for his
invaluable help, guidance, supervision and support
throughout my research.

I also would like to thank the staff in the Department of
Computer Studies, Loughborough University of
Technology for the assistance they gave, Associate
Professor Dr. Baharom Sanugi for reading a draft of my
thesis and all of my friends for their encouragement and
advice.

Finally, I would
their love and
thoroughly read

like to thank my father and mother for
encouragement, my wife Meriam (who

a draft of this thesis) and our children,
Nabilah, Aaina and Imran, for their constant love,
devotion and patience. May Allah reward them all.

The financial support to do this research was provided
by Universiti Pertanian Malaysia.

ABSTRACT

Parallelizing Compilers have emerged to be a useful tool in the
development of parallel programs. Most programmers are used to
writing sequential programs. .With the advent of parallel
machines, the task of writing parallel programs has become both
time-consuming and difficult. One way to help programmers to
write parallel programs is to have a software tool that will
parallelize sequential programs. This tool should be able to
recognize any parts of a sequential program that can be
parallelized. Then, it is transformed automatically by the tool into
its parallel version.

The main focus of this thesis is to investigate the methods for
automatic parallelization of sequential programs. It includes a
study on the data dependence analysis that can be performed on
sequential programs. This is one of the most important parts in a
parallelizing compiler. The dependence analysis described here is
based on the Bernstein Sets (BSs) [Bernstein (1966)] and the
dependence tests, called the Bernstein Tests (BTs), developed by
Williams (1978). A software tool is developed to determine the
BSs and to implement the BTs. The tool also determines program
granularity sizes for parallel executions by scheduling the parallel
parts of programs for shared-memory parallel computers. This
thesis also studies the parallelization of loops, another major topic
in a parallelizing compiler. The BTs developed by Williams are
extended to handle these loops. These tests are called the
Bernstein Loop Tests (BL Ts). Apart from these tests, the thesis
also discusses the loop transformation techniques that can be
carried out, based on information provided by the BSs and the
BLTs. The thesis also studies the Inter-procedural Analysis (IPA)
which determines information on variables that can be
propagated back when a procedure is called. Finally, a technique
to verify the correctness of parallel programs is presented. The
whole discussion presented in this thesis is based on the Bernstein
Sets.

T ABLE OF CONTENTS

CHAPTER 1: INTRODUCTION TO PARALLELIZATION OF
PROGRAMS

1.1. IN1RODUCTlON .. 2
1.2 THE ROLE OF A PARALLELIZlNG COMPILER 3

1.3 ORGANIZATION OF THE THESIS ... 7

CHAPTER 2: FUNDAMENTAL CONCEPTS OF PARALLEL

PROGRAMMING

2.1 IN1RODUCTION ... l 0
2.2 PARALLEL COMPUTER ARCHlTECTURES 1 1

2.2.1 The Shared-Memory Multi-processor
Systems ... 12
2.2.2 The Message-Passing MUlti-processor
Systems ... 13
2.2.3 The Array Processors .. 14
2.2.4 The Pipelined Processors ... 1 5
2.2.5 Data Flow Computers (Data Driven) 1 7

2.3 ACHIEVING PARALLELISM ... l 8
2.4 ELEMENTS OF PARALLEL LANGUAGES .. 2 0
2.5 PARALLEL PROGRAMMING ON A SEQUENT

BALANCE SYSTEM .. 2 4
2.5.1 Process Synchronization ... 24

2.6 PROBLEMS WHEN WRITING PARALLEL
PROGRAMS ... 26

2.7 SUMMARY .. 2 7

CHAPTER 3: DATA DEPENDENCE ANALYSIS

3.1 IN1RODUCTlON .. : .. 29
3.2 THE BERNSTElN METHOD ... 3 2
3.3 THE GRAPH-BASED METHOD ; 3 4

3.4 THE DIOPHANTINE ANALYSIS4 1

3.5 CONlROL DEPENDENCES .. 4 4
3.6 SUMMARy .. 44

i

CHAPTER 4: A TOOL FOR AUTOMATIC DETERMINATION OF
PARALLELISM

4.1 INTRODUCTION ... 47
4.2 DETECTION OF IMPLICIT PARALLELISM4 8

. 4.3 SCHEDULING OF CONCURRENT STANZAS4 9
4.4 DETERMINATION OF STANZA GRANULARITY 53
4.5 TAG: A TOOL FOR AUTOMATIC DETERMINATION
OF PROGRAM GRANULARITY .. 5 6

4.5.1 The AnaIyser .. .5 8
4.5.2 The Detector .. 59

4.5.3 The Scheduler ... 60
4.5.4 The Merger .. 68

4.6 EXAMPLE OU1PUT OF TAG .. 70
4.7 SCHEDULING OF PARALLEL LOOPS .. 9 5
4.8 SUMMARy .. 96

CHAPTER 5: DETECTION OF LOOP PARALLELISM AND
TRANSFORMATIONS

5.1 INTRODUCTION ... 9 9
5.2 PARALLELISM IN LOOPS ... 1 00

5.3 DATA REFERENCE DIRECTIONS .. 1 06
5.4 THE BERNSTEIN LOOP TESTS (BLTS) .. 1 09

5.4.1 Summary of the BLTs .. 112
5.4.2 Nested Loops ... 114

5.5 EXAMPLES OF THE APPLICATION OF THE BLTS 115

5.6 TRANSFORMATION OF LOOPS .. 124
5.6.1 Loop Parallelization and Vectorization 124
5.6.2 Definitions of fetch and store directions 127

5.7 TRANSFORMATION TECHNIQUES FOR SCALAR
VARIABLES ... 1 2 8
5.8 TRANSFORMATION TECHNIQUES FOR ARRAY

VARIABLES ... 133

5.9 RELATED ISSUES ON LOOP DEPENDENCES 1 46

5.10 SUMMARy ... 150

ii

CHAPTER 6: INTER-PROCEDURAL ANALYSIS

6.1 IN1RODUCTlON ... 152
6.2 ALlASING PROBLEM .. 153

6.2.1 Parallelization of procedure calls 155

6.2.2 In-line Expansion156
6.2.3 Inter-procedural Constant Propagation 158

6.2.4 Collection of Reference Information 1 5 9
6.3 BERNSTEIN SETS FOR PROCEDURE CALLS l 62

6.3.1 Simple-Call Algorithm .. .1 62
6.3.2 Example of handling call-by-value
parameters .. 164
6.3.3. Example of handling call-by-reference
parameters .. 166

6.3.4 Handling array variables ... 167
6.3.5 Limitations of the Simple-Call Algorithm l 67

6.4 AN IMPROVED ALGORITHM ... 170

6.5 A GENERAL SOLUTION1 7 3

6.6 EXAMPLE OF SOLUTIONS .. .1 8 1

6.7 PROCEDURE CALLS IN LOOPS ... 186
6.7.1 Handling array variables ... 186

6.8 SUMMARy .. 190

CHAPTER 7: VERIFICATION OF PARALLEL PROGRAMS

7.1 IN1RODUCTION ... 192
7.2 METHODS FOR PROVING PROGRAMS ... 19 3

7.3 SYMBOLIC EXECUTION .. 1 9 4
7.4 OTHER RELATED WORK ... 1 9 9

7.4.1 The stanza approach .. 199
7.4.2 The axiomatic approach ... 2 0 0
7.4.3 Formal methods .. .2 0 1

7.5 VERIFYING PARALLEL STANZAS ... 2 0 1
7.5.1 The BT Assertion ... 202

7.5.2 Critical Sections .. 203

7.6 VERIFYING PARALLEL LOOPS ... 207

7.7 SUMMARy .. 212

iii

CHAPTER 8: SUMMARY AND CONCLUSIONS

8.1 INTRODUCTION ... 215
8.2 DEPENDENCE ANALYSIS AND SCHEDULING OF

ST ANZAS ... 2 1 6
8.3 LOOP DEPENDENCES AND TRANSFORMA TIONS 21 8

8.4 IN1ER-PROCEDURAL ANALYSIS ... 218
8.5 VERIFICATION OF PARALLEL PROGRAMS 219

8.6 FUTURE RESEARCH .. 22 0

REFERENCES .. 2 2 3

APPENDIX A: TAG MAIN ROUTINE .. 244

APPENDIX B: THE SCHEDULER ROUTINE. .. 2 46

APPENDIX C: THE MERGER ROUTINE. .. 256

APPENDIX D: THE BERN STEIN LOOP TESTS .. 2 6 4

iv

CHAPTER 1

INTRODUCTION TO PARALLELIZATION
OF PROGRAMS

1.1. INTRODUCTION

Today, computers are a common phenomenon in our daily life.
They can be found everywhere such as in offices, in schools and at
home. They are widely used as a tool for solving numerical and
non-numerical problems. These computers are simple to use and
very fast in computation. With the advancement of sophisticated
micro chip design, they are getting smaller and cheaper. In the
last decade, their architectures have shifted widely from what has
been known as 'single-processor computers' to 'multi-processor
computers'. These multi-processor computers are also known as
'Parallel Computers' or 'Supercomputers'. They are capable of
producing better and faster performance as more than one
processor can work in parallel to· solve different parts of a single
problem [Almasi and Gottlieb (1989), Hwang and Briggs (1984),
Zima and Chapman (1990)].

Most of the currently available supercomputers are designed to be
used for solving very large scientific and engineering problems
[Almasi and Gottlieb (1989), Hwang and Briggs (1984), Zima and
Chapman (1990)]. With the introduction of inexpensive but highly
efficient commercial multi-processor computers such as the
Sequent Balance [Osterhaug (1987), Thakkar et al. (1988)], a wide
range of applications ,'/$ being developed and solved on them.
One such application which needs enormous computational
resources is the weather forecasting problem where massive data
are gathered and have to be processed in time before the weather
arrives. Another example of the usefulness of a parallel computer
is in its application in the research on structural biology where the
structure of DNA can be determined efficiently. The high
performance that these machines produce has led to more people
from different fields to benefit from them.

Computers have to be programmed in order to fully utilize them.
Programs are instructions written either in the low-level
languages (such as machine and assembly languages) or the high
level languages (such as FORTRAN, C, Pascal or PLl) [Almasi and
Gottlieb (1989)]. Apart from these programming languages,
software packages such as the fourth-generation languages are

2

also available for users to develop application software to solve
their problems [Meehan (1990)]. The task of programming has
now become more difficult and expensive because of the
complexity of the problems and the higher labour cost. For the
sequential programs, however, they can still be run on the parallel
computers but the time taken to execute them will be the same as
running on single-processor computers.

1.2 THE ROLE OF A PARALLELIZING COMPILER

To achieve the high performance of parallel computers,
programmers have to write parallel programs. One of the main
tasks is to identify parts of the programs that are to be executed
in parallel. These parts are then expressed in certain parallel
language constructs for execution. This process is an essential
part· of parallel programming. It is important to execute as many
independent operations concurrently as possible on different
processors of the parallel computers. This is not as easy as
writing the equivalent sequential programs. Identifying and
keeping track of these independent operations is very time
consuming and error prone especially in big programs. This is
particularly crucial for those parts which are less apparent to
programmers. If this is not performed to great extent, it will
hinder parallelism and will cause slower computation due to the
sequential execution of the program.

One way to develop a parallel program is to write its sequential
version in the initial stage. This program is then transformed into
its parallel form by a sophisticated software tool such as the
parallelizing compiler. It should be able to detect, either
automatically or with users' help, any form of parallelism that
exists and to carry out the transformation process. This
transformation tool is also very useful for any existing sequential
software. Hence, a good and efficient parallelizing compiler is an
important and essential tool to aid the general programmers in
writing parallel programs.

3

The parallelizing compiler. or sometimes referred to as a
sopercompiler. is a software system that compiles programs
targeted for execution on a parallel architecture system [Leung
(1990). Padua et a1. (1980). Padua and Wolfe (1986). Wolfe
(1989a. 1989b). Zima and Chapman (1990)]. Figure 1.1 shows an
example of the design of a parallelizing software system adapted
from Zima and Chapman (1990). It performs either
v e c tor i z a t ion of program to generate vector codes or
parallelization to produce codes for a multi-processor system.
Examples of such systems are the Parafrase [Leasure (1985).
Polychronopoulos et a1. (1990)]. PFC [Alien and Kennedy (1984b)].
Rn [(Cooper et a1. (1986)]. PTOOL [Alien et a1. (1986)]. Faust
[Guarna et a1. (1989)]. Superb [Zima et a1. (1988)]. ToolPack [CowelI
(1988). CowelI and Thompson (1990)]. KAP [Davies et a1. (1986).
Huson et a1. (1986). Macke et a1. (1986)]. Start/Pat [Appelbe and
Smith (1989)] and PTRAN [Cytron et a1. (1990)].

As mentioned earlier. one of the principle tasks performed by a
supercompiler is to detect any parallelism in a source program.
This is carried out in the Data Dependence Analysis (DDA)
[Alien and Kennedy (1987). AlIen et a1. (1987). Banerjee (1988).
Burke et a1. (1988). CalIahan et al. (1987). Li (1989). Li et a1.
(1989). Li and Yew (1990). WilIiams (1978). Wolfe (1989a.
1989b). WoIfe and Banerjee (1987)]. It involves a detailed
examination of the program on how its variables are being
referenced. The result of the analysis will appear in the form of
dependence relations between parts of the program. Most of
the work that has been carried out on the DDA represents the
dependence relations in the form of a dependence graph. In
this thesis. however. the information gathered are saved in the
Bernstein Sets (BSs) [Bernstein (1966). Williams (1978)]. The
DDA is performed on the BSs to determine the paralIelizable parts
of a program.

4

Sequential programs

, It
Scanning
Parsing
Semantic Analysis
Syntactic Normalization
Syntactic Simplification
Flow Analysis
Dependence Analysis

, I-
Intermediate

Representation

,

Vectorization/Parallelization
Transformation

,
Vector/Parallel

Program

Figure 1.1: The structure of a ParalIeIizing Compiler

5

For a sequential program, the parts that offer the best
opportunities amenable to parallelism are the loops [All en and
Kennedy (1984a, 1987), D'Hollander (1989), Harrison and Chow
(1991), lackson (1985), Midkiff and Padua (1986, 1987), Mohd
Saman and Evans (1993), Padua and Wolfe (1986), Saltz et a1.
(1989, 1991), Wolf and Lam (1991), Wolfe (1986, 1988, 1990),
Zima and Chapman (1990)]. Loop iterations can be executed on
different processors in a concurrent manner if they are
independent of each other.

Array references in the loop body are the main cause of the data
dependences. One iteration may be modifying an element which
is being referenced by another. Hence, the usage of arrays in
loops have been a major target to be analysed for program
parallelization. Once the dependence relations have been
established by the DDA, the loops pass through a transformation
process. It will perform two tasks: removal of those data
dependences that inhibit parallelism and generation of parallel (or
vector) codes. Some of the well-known loop transformation
techniques are loop distribution, statement reordering and loop
interchanging [Lewis and El-Rewini (1992), Zima and Chapman
(1990)].

One of the programming paradigms that has been proposed in
program writing is the structured or procedural programming
[Kruse (1984), Welsh and McKeag (1980)]. This technique
introduces procedures that can be called from either the
procedures themselves or other parts of a program. This has
become one major problem encountered in the DDA. A call mayor
may not be modifying a global variable, depending on the way the
parameters are passed. This problem needs another detailed
analysis called the Inter-Procedural Analysis (IPA) [Barth
(1978), Burke and Cytron (1986), Callahan et a1. (1986), Li (1989),
Schouten (1990), Triolet et a1. (1986)]. It involves collecting
information on the usage of variables in a procedure when a call is
found.

6

1.3 ORGANIZATION OF THE THESIS

The research presented in this thesis covers the various aspects of
a supercompiler. Specifically, its main focus is to study the
methods in the automatic determination of implicit parallelism
that exists in sequential programs, based on the Bernstein Sets
(BSs) [Bernstein (1966)] and the sets of dependence tests
developed by Williams (1978). It includes a detailed study on the
applications of the method in the design of a software tool to
perform the extraction of parallelism and the determination of
task granularity. A method to detect parallelism in loops, called
the Bernstein Loop Tests (BLTs) [Mohd-Saman and Evans (1993)]
and the analysis on effects of procedure calls on parallelism,
through IPA, are also thoroughly studied. Another topic that is
also addressed is the problem of verifying the correctness of
parallel programs.

The thesis is organized as follows. Chapter 2 gives a brief
discussion on the concepts of parallel computer architectures and
parallel programming. In Chapter 3, a survey on the methods for
the detection of parallelism is presented. This mainly focuses on
the various strategies for the Data Dependence Analysis (DDA).
Chapter 4 gives a detailed design on a software tool called TAG
that can determine any parallelism in sequential programs
automatically. It also includes discussions on the scheduling of
concurrent parts of a program and the determination of their
granularity. Chapter 5 presents a set of tests (Le., the BLTs) to
detect parallelism in loops and techniques on how the loops can be
transformed into parallel forms, based on the results of the BL Ts.
The effects of procedure calls on the detection of parallelism and
how IPA IS performed, based on the BSs, are given in Chapter 6.
Chapter 7 proposes methods to verify the correctness of parallel
programs using the Symbolic Execution method, combined with
the dependence tests developed in this thesis. Finally, Chapter 8
summarises and gives conclusions on the topics discussed
throughout the thesis.

7

Before proceeding, it should be noted that the following groups of
terms take the same meaning in their own group and may be used
interchangeably throughout the thesis.

a.
b.

concurrent, parallel
parallel machine
processor system

and contemporary
(system), supercomputer and multi-

c. supercompiler, parallelizing compiler and optimizing
compiler

d. tasks, process and stanzas (defined in chapter 3)

8

CHAPTER 2

FUNDAMENTAL CONCEPTS OF
PARALLEL PROCESSING

2.1 INTRODUCTION

The notion of parallelism exists in our every day life. An example
is in a bank which has more than one customer counter. It lets
the different parts of the system. be serviced concurrently in a
much faster and efficient way. The desire to achieve results in
the same manner for a large problem on a computer, has led to
the development and advancement of supercomputers and their
related software tools. In Hwang (1989), supercomputers are
defined as the fastest computers at any point of time. If
compared to today's computer mainframes, they are many times
faster in effective speed. This is mainly achieved by the parallel
architectures that form the backbone of the systems.

The von N eumann architecture model was the first accepted
concept in the development of memory-stored electronic
computers. With the introduction of the world's first electronic
computer, ENIAC in 1946, computers have passed through several
phases of development. ILLIAC IV with 64 processing elements
was the first operational supercomputer built [Karplus (1989),
Kuck (1968)]. The popular Cray-l supercomputer which was
capable of 130 Mflops (million of floating point operations per
second) marked the beginning of a commercial use. The present
day outstanding performance of the available parallel machines is
still subject to further research for improvement. Now the
availability of the supercomputers and their power has made
them more accessible to a wider range of users. However, the
computer manufacturers have to provide software tools in order
to help users to fully utilize the machines. Parallelizing compilers
are one such tool [AlIen (1988), Appelbe and Smith (1989),
Callahan et al. (1987), Cowell and Thompson (1990), Hiranandani
et al. (1992), Kuck et al. (1984), Polychronopoulos et al. (1990),
Wolfe (1989b)].

In this chapter, fundamental concepts in parallel processing are
briefly presented. These include the general parallel computer
architectures in Section 2.2 and the concepts of parallel
programming in Section 2.3 to Section 2.S.

10

2.2 PARALLEL COMPUTER ARCHITECTURES

The architectures for parallel computers can be classified as one of
the following configurations [Almasi and Gottlieb (1989), Hwang
and Briggs (1984), Hwang (1989), Karplus (1989), Perrot (1987),
Williams (1990)].

a. Multi-processor Systems
b. Array Processor Systems
c. Pipelined Computers
d. Data Flow Computers

The first type, the Multi-processor systems are computers with a
set of independent and autonomous processors. They can be
divided into two categories, the Shared-Memory Multi-processor
Computers and the Message-Passing Multi-processor Computers.
For the second configuration, the Array Computers, arrays of
processing elements receive the same instruction from one main
control. In the third configuration, the Pipelined Computers, their
operations are processed successively by separate hardware units.
The last architecture, the Data Flow Machines are designed for a
fully maximum parallel computation.

The Flynn's taxonomy is one way to categorize the structures of
computer systems [Almasi and Gottlieb (1989), Flynn (1972),
Williams (1990)]. They are as follows.

(a) SISD - Single instruction stream, single data stream. This is
the von Neumann uniprocessor computer model.

(b) SIMD - Single instruction stream, multiple data stream. The
Array and Pipelined computers are examples of this type.

(c) MISD - Multiple instruction stream, single data stream. No
known machine has been built for this type.

11

(d) MIMD - Multiple instruction stream, multiple data stream.
This includes the Multi-processor systems.

2.2.1 The Shared.Memory Multi-processor Systems

The Shared-Memory Multi-processor Systems (SMSs), sometimes
called the Tightly-Coupled System, has a set of processing
elements (PEs) and a pool of memory available to all processors
through which they communicate [Almasi and GottIieb (1989),
Hwang and Briggs (1984), Perrot (1987)]. This type of
architecture is iIIustrated in figure 2.1. Examples of SMSs
include the Sequent Symmetry and Balance, AIIiant FX/8, and the
Encore MuItimax. Due to the problem imposed by the
communication through the shared memory, they usually have a
relatively small number of PEs. For example, the Sequent Balance
8000 and the Encore Multimax can only have at most 12 and 20
processors respectively.

Autonomous Processors

P1 P2 P3 ••• Pn

• • •
Shared Memories

Figure 2.1: Configuration of the Shared-Memory Multi-processor
System

12

2.2.2 The Message-Passing Multi-processor Systems

In the Message-Passing Multi-processor Systems (MPSs), each
autonomous processor (PE) in the systems has its own local
memory, as shown in figure 2.2. These systems are also known
as the Local Memory Systems, Loosely-Coupled Systems or the
Distributed-Memory Systems. Communications among the
processors are performed through a message transfer system.
The Intel Hypercubes (iPSC/l, iPSC/2 and iPSC/860 models with
128 PEs), BBN Butterfly (128 PEs), Ametek System 14 (256 PEs),
NCUBE Hypercube (1024 PEs) and the Transputer systems (T414,
T212 and T800 models) are examples of the MPSs [Almasi and
GottIieb (1989), Freeman and Phillips (1992), Hwang and Briggs
(1984)]. In general, these systems have a much greater number
of PEs than that of the SMSs.

P1 P2 P3

Private Memories

••• Pn

• • • Mn

Autonomous
Processors

Figure 2.2: Configuration of the Message-Passing Multi-processor
System

13

2.2.3 The Array Processors

The Array Processors are parallel computers which have a
number of PEs where each one of them obeys the same instruction
issued by a single control unit but they operate.- on different local
data [Almasi and Gottlieb (1989), Hwang and Briggs (1984), Perrot
(1987)]. Figure 2.3 illustrates this configuration. Examples of
these machines are the Active Memory Technology Distributed
Array Processor, the Goodyear Aerospace Corporation Massively
Parallel Processor and Connection Machines of the Thinking
Machines.

P1

M1

Control Unit

P2 P3
•

M2 M3

Pi - processing element
Mi - memory module

• •

Figure 2.3: An Array Processor Machine

14

Pn

Mn

2.2.4 The Pipelined Processors

The Pipelined Processors are SIMD computers that have an
architecture in which a series of operations are streamed into
their multiple processors at the same time and executed in an
overlapped manner [Almasi and Gottlieb (1989). Hwang and
Briggs (1984). Perrot (1987). WiIliams (1990)]. They are also
caIIed Pipelined Vector Processors that can handle vector
instructions with vector operands. The Cray family
supercomputers and the Fujitsu VP2600/l0 supercomputer are
examples of this type of architecture. Figure 2.4 shows the
executions of four series of operations by four processors in an
overlapped manner. The Instruction PipeIining is one
classification of a PipeIined Processing and it is shown in figure
2.5. Other classifications include the Arithmetic PipeIining and the
Macro PipeIining. A systoIic array is one type of a pipeIined
computer with more than one dimension.

P4 041 042 043 044

P3 031 032 033 034

P2 021 022 023 024

P1 011 012 013 014

TIME----.... ~

Figure 2.4: Pipelined operations

15

INSTRUCTION
STREAM

,
FETCH

I

DECCDE

,
EXECUTE

,
STORE

,

Figure 2.5: Four stages of Instruction Pipelining that are
overlapped

16

2.2.5 Data Flow Computers (Data Driven)

Conventionally, the computers adopt the von Neumann model of
architecture which is based on the stored instructions controlled
by a program counter. This leads to the sequential execution of a
program. In a Data Flow computer, however, a different execution
approach is followed to achieve maximum parallelism [Almasi and
Gottlieb (1989), Dennis (1980), Hwang and Briggs (1984), Perrot
(1987)]. Basically, an execution of an instruction proceeds as soon
as its operands are available. Therefore, the flow of computation
is not controlled by a program counter but by the availability of
data in the program. However, there is a precedence constraint
for each operation imposed by the algorithm used. This is to
ensure the correctness of the result produced. Figure 2.6 shows
an example of a Data Flow execution. An example of this machine
is the Manchester Data Flow Machine [Gurd et a1. (1985)].

a b c d

Figure 2.6: Data Flow execution of (a+b)x(c-d)

17

2.3 ACHIEVING PARALLELISM

Parallelism in a computer system can be achieved through two
ways, MULTIPROGRAMMING (or Timesharing) and
MULTITASKING [Osterhaug (1987)]. Multiprogramming allows
several jobs (or programs) to be processed at the same time and
this will give the maximum throughput of the computer. This is
common on most computers nowadays which allow more than
one user to log on to the machines, although they have one
processor [Evans (1990), Hansen (1973), Silberschatz (1991)]. In
the other situation, Multitasking, a program is broken up into
several processes (tasks or parts) and each one of these processes
will be handled by the different available processors. This will
give the shortest processing time to solve a problem.

The Operating System in a computer, such as UNIX, is able to
handle Multiprogramming by allocating jobs in a ready queue to
the CPU as soon as it is free. The jobs are given time slices to be
processed [Bach (1986), Hansen (1973), Silberschatz (1991)]. If
the processing of a job exceeds its time slice, it is pre-empted and
it will join the ready queue again and this allows other jobs to be
executed. Hence, from the user point of view, parallelism through
multiprogramming is achieved. Figure 2.7 illustrates this
multiprogramming environment.

DYNIX, an operating system for the Sequent Parallel Machine,
allows Multitasking as well as Multiprogramming [Osterhaug
(1987)]. It has library commands to create processes and to
synchronize them such as the FORK, JOIN and LOCK instructions.
Thus, it is .left to the programmer to write a parallel program
specifying which tasks are to be executed in parallel. An
illustration of fork and join operations is shown in figure 2.8.

18

preemption

USERS

CPU

end

ready
queue

Figure 2.7: Multiprogramming model for a uniprocessor
computer

19

JOB

,
, , • ,

r-'-- r-'--

~~ T1 T2 T3 • • • -
, , ,

,

Figure 2.8: Multitasking Environment

2.4 ELEMENTS OF PARALLEL LANGUAGES

,
l Tnl

FDRK
OPERATION

TASKS

JOIN
OPERATION

To take advantage of the capabilities provided by the parallel
machines, programs have to be written and coded in a specific
way in a parallel language. To develop a program, the first step
is to choose the most appropriate algorithm. Then the data
structure is selected followed by coding the algorithm.
Examples of the languages available for parallel programming
include ADA [Gehani (1984)], OCCAM [Pountain and May (1987)],
Concurrent Pascal [Hansen (1975)], CSP [Hoare (1978)], Multilisp
[Halstead (1985)], COOL [Chandra et al. (1990)], Concurrent C++
[Gehani and Roome (1988)], Presto [Bershad et al. (1988)], SISAL
[Garsden and Wendelborn (1990)] and V-Pascal [Tsuda and
Kunieda (1992)].

Writing the codes for a parallel program can be categorized into
three manners. First, as coarse grain where a program is
organized into procedures (as processes), second, as medium
grain where the parallelism is organized at loop level (loop
iterations as processes) and third, as fine grain where parallelism
is expressed at basic block level, statement level and expressions
[Polychronopoulos (1988)].

20

Languages with parallel constructs allow programmers to
manually insert directives where the parallelism can be achieved
[Almasi and Gottlieb (1989), Andrew and Schneider (1983),
Freeman and Phillips (1992), Hwang and Briggs (1984), Perrot
(1987)]. These directives usually define:

a. a set of subtasks to be executed in parallel

b. the start and stop of their execution

c. the coordinating and interaction while the parallel tasks are
executing.

Some examples of the parallel constructs that are usually found in
languages include the following [Almasi and Gottlieb (1989),
Hwang and Briggs (1984)]:

a. parbegin/parend (or cobegin/coend)
b. fork/join
c. doall (or forall, pardo, doaccross)
d. synchronization primitives:

- test-and-set
- semaphores
- barriers

Figures 2.9 and 2.10 show an example of a parallel program with
parbegin-parend constructs and its flow control respectively.
These constructs specify the parts of the program that can be
executed in parallel. Delimiters begin-end indicate the normal
sequential statements.

For a Shared-Memory Multi-processor System, a parallel language
must be able to create (spawn) new processes, destroy processes
and identify processes. It should also be able to differen tiate
variables which are globally accessible to all processors as well as
those local to a given processor. Apart from these operations,

21

there should also be a way to synchronize processes through the
use of the shared memory.

The requirements for a parallel language intended for a Message
Passing Multi-processor System include similar capabilities of
creating, destroying and identifying processes as in the Shared
Memory Systems. However, it should also have the ability to
specify explicitly the methods of communication between
processes through send and receive commands either on a one
to-one basis or in a broadcast style.

statement-A
PARBEGIN

statement-B
BEGIN

statement-C
PARBEGIN

statement-D
statement-E

PAREND

statement-F
FND

statement-G
PAREND

statement-H

Figure 2.9: A program with PARBEGIN-PAREND

22

A

c ,
• i

B D E G

t
f +
F

1

H

Figure 2.10: The flow control of the program in fig. 2.9

23

2.5 PARALLEL PROGRAMMING ON A SEQUENT BALANCE
SYSTEM

For a Shared-Memory Multi-processor Computer such as the
Sequent Balance 8000, two types of multitasking programming
methods are available for the users to implement their programs.
They are Data Partitioning and Function Partitioning [Osterhaug
(1987)]

Data Partitioning allows the users to create multiple identical
tasks (or processes). It then assigns a portion of the data to each
process. This is also called homogeneous multitasking since it
involves identical tasks execution in parallel. This kind of
programming is well suited to executing loop iterations in parallel
such as the matrix multiplication and the Fourier Transformation.
Figure 2.11 shows a segment of a C program performing the Data
Partitioning strategy with static scheduling.

The other technique, Function Partitioning, allows the users to
create multiple unique processes running in parallel, each
accessing a shared data set. This method, also called
heterogeneous multitasking, is suitable for applications with tasks
of different operations but on the same set of data, such as the
flight simulation and the program compilation.

2.5.1 Process Synchronization

When many processes which are running in parallel, try to modify
a shared variable, they have to be synchronized. This can be
controlled by shared data structures called semaphores. The
simplest of all semaphores is called a lock that allows a user to
create a critical code region that can be accessed by only one
process. Other forms of semaphores include the 0 rd e ri ng
semaphore and the countinglqueueing semaphore.

24

#include <stdio.h>
#include <parallel/microtask.h> r microtasking routine header *1
#include <parallel/parallel.h> r standard parallel library header *1
#define SIZE 10 /* size of matrices *1

/* Global shared memory data *1

shared float a[SIZE](SIZE]; 1* first array * I
shared float b[SIZE](SIZE]; r second array *1
shared float c[SIZE][SIZE]; r result array *1

mainO
(

}

void init_matrixO, mjorkO, m_kill_procsO, matmulO, print_matsO;

init_matrix(a,b); 1* initialise data *1
m_set_procs(nprocs); /* set no. of processes *1
m_fork(matmul,a,b,c); /* execute parallel loop *1
m_kill_procsO; 1* kill child processes *1
print_mats(a,b,c); 1* print results *1

/* matrix multiply function *1
void matrnul(a,b,c)
float a[][SIZE], b[][SIZE], c[][SIZE];
(

int i,j,k,nprocs;

nprocs = m~et_numprocsO; 1* get no. of processes *1
for (i=m~et_myidO; i<SIZE; i+=nprocs)
(

for (j=O; j<SIZE; j++)
(

}
}

for (k=O; k<SIZE; k++)
c[i][k] += a[illj] * b[j][k];

} 1* matrnul *1

Figure 2.11: A segment of matrix multiplication program
performing the Data Partitioning [Osterhaug (1988)]

25

Apart from the semaphores, other ways to synchronize the
execution of parallel processes include the use of events and
barriers. Events can have two values: posted and cleared.
Processes will have to wait for an event until another process
posts the event before proceeding. On the other hand, a barrier is
a synchronization point where a process waits at a barrier until
other processes arrive before it can proceed. Detailed discussions
on these synchronization statements are given in Osterhaug
(1987).

2.6 PROBLEMS WHEN WRITING PARALLEL PROGRAMS

With the new parallel machines, there are several problems that
are mostly encountered by users when writing programs [Evans
and Williams (1978), Williams (1978)]. Among these problems
are the following.

a. The programmer has to detect and express manually all
possible parallelism in his programs. This includes
performing the dependence analysis and inserting the
synchronization statements in places where shared data are
being modified. This is a very difficult task.

b. S. mall changes in the programs will require the programs to
be reorganized and reanalysed.

c. Existing programs on which a lot of time, effort and money
have been spent, need to be rewritten in order to take
advantage of the capabilities offered by the parallel
machines.

Another way to develop a program for a parallel machine is to
write it in a sequential way. This program can then be
transformed into its parallel version by a sophisticated software
tool. This tool should be able to detect automatically any
form of parallelism that exists and transform it into its parallel
form. Extensive research work has been carried out to alleviate

26

the above-mentioned problems. They include the data
dependence analysis and the program transformation [Alien and
Kennedy (1987), Banerjee (1988), Cowell and Thompson (1990),
Guarna et al. (1989), Williams (1978), Wolfe (1989)].

2.7 SUMMARY

Nowadays, parallel computers have become a major tool that are
widely used. The architectural advancement has greatly
improved their performance since they were first introduced.
Their prices have decreased and a lot of software tools are now
available for the users. This has led to many people from
different fields to use them. In the beginning, their
computational power is left to the programmers to be
manipulated to the fullest extent, but now, there are several
commercial software tools, such as KAP [Huson et al. (1986),
Macke et al. (1986)], that will aid the parallel programming.
Parallel languages are now designed to include more instructions
for programmers to use to exploit the parallel capabilities of the
machine.

As pointed out in this chapter, there is a great need for an
automatic software tool that will aid users in writing parallel
programs. This includes performing the dependence analysis and
transforming a program already written in a sequential manner
(which most programmers nowadays are used to) into a
parallel form and to take advantage of the fast concurrent
processing available on these new parallel computers.

27

CHAPTER 3

DATA DEPENDENCE ANALYSIS

3.1 INTRODUCTION

As pointed out in Chapter 1. an analysis called the D a t a
Dependence Analysis (DDA), is one of the most important
tasks in a parallelizing compiler that automatically detects
parallelism in sequential programs. This analysis will give
information on the inter-relation of statements (or groups of
statements). based on how the data in the program is computed
and used. Figure 3.1 illustrates the various ways data
dependences occur in programs. They may also apply to loop
iterations as figure 3.2 shows. Another type of dependence that is
usually found in programs is the Control Dependence which
occurs when conditional statements are present. Once these
dependences within a program unit have been determined. they
may be removed by code modification or the required
synchronization points and parallel mechanisms can be set to
transform its parts to correctly run in parallel.

The DDA has been studied thoroughly for many years by
researchers in the field of parallelizing compilers [AlIen and Cocke
(1976), AlIen et al. (1983), AlIen and Kennedy (1987), Banerjee
(1988), Bernstein (1966). Kuck (1978). Kuck et al. (1981). Li
(1989). Muchnick and Jones (1981), Polychronopoulos (1988),
Williams (1978). Wolfe (1989a, 1989b)]. Different techniques
have been employed to perform it. The majority of the work has
focused on determining data dependences in loops. This chapter
presents a survey on the various techniques performed by the
DDA. They are classified into three main groups: the Bernstein
Method, the Graph.based Method and the Diophantine
Analysis. Section 3.2 discusses the Bernstein Method and in
Section 3.3. the Graph-based method is outlined. Detection of data
dependences in loops using the Diophantine Analysis is discussed
in Section 3.4 while Section 3.5 briefly explains the Control
Dependence. Section 3.6 summarises the chapter.

29

S1:

S2:

~~b+C;

d :=0 -e;

(a) Store first/Fetch later dependence

S1:

S2:

b:~+C;

@:= doe;

(b) Fetch first/Store later dependence

S1:

S2:

(c) Store dependence

Figure 3.1: Sources of Data Dependences between statements

30

FOR i := 1 to n DO
BEGIN

S1: @ := b[i) + cri);

S2: d[i) :~i~~ - e[i);

e-.o

(a) Store first/Fetch later dependence

r
X
1

iterations

r- "'7""\
X X X
2 3 4

(b) Dependences between iterations

Figure 3.2: Data Dependence in a loop

31

~
X
5

3.2 THE BERNSTEIN METHOD

The Bernstein Method is a concept originally forwarded by
Bernstein (1966) to determine implicit parallelism in sequential
programs. It is based on the set formation containing variables in
programs. The sets show how the variables are being used, i.e.,
fetched and stored. These sets are termed as the Bernstein Sets
(BSs) in this thesis and consist of W, X, Y and Z sets. They are
defined below.

Williams (1978) has shown some approaches to detect parallelism
in a sequential program, based on the BSs. She has developed a
set of conditions to test parts in the program to determine
whether they can be executed in parallel or not. These parts of
the program are called stanzas. Each stanza will have its own
BSs containing W, X, Y and Z sets.

DEFINITIONS 3.1

(i) A stanza is either a single program statement or a group of
statements appearing adjacently in a computer program and
intended to be executed one after the other.

(jj) The Bernstein Sets (BSs) consist of four sets defined as
follows:

a. W set - set of variables fetched during execution of
stanza

b. X set - set of variables stored during execution of
stanza

c. Y set - set of variables which involves a fetch and
one of the succeeding operations is a store

d. Z set - set of variables which involves a store and one
of the succeeding operations is a fetch

32

Figures 3.3 and 3.4 show examples of stanzas and their BSs.
Williams has defined six classes of relationship that can exist
between stanzas in ALGOL-type programs. They are termed as
Contemporary, Prerequisite, Conservative, Commutative,
Consecutive and Synchronous. These relationships indicate the
dependences between stanzas for data during execution. Detailed
discussions are given in Williams (1978).

Contemporary stanz~J the relationships that ca: dealt with in
this thesis, are the parallel tasks which can be executed on
different processors at the same time if there exist no inter
stanza dependences. These inter-stanza dependences exist if
one stanza refers to a variable whose value is altered by another
stanza. To test for this contemporary property between two
stanzas, they must satisfy three conditions which are termed as
the Bernstein Tests (BTs).

DEFINITION 3.2

The Bernstein Tests (BTs) between two stanzas i and j, are
tests to determine whether they can be run concurrently or not,
i.e., if they satisfy all of the following three conditions:

BT1: (XivYivZj)n(WjvYjVZj) =0

BT2: (WjvYjvZj)n(XjvYjvZj) =0

BT3: (XjvYjvZj)n(XjvYjvZj) =0

The above conditions are for shared-memory computers only.
The operators "v" and "n" are set operators for 'union' and
'intersection' respectively. The symbol "0" denotes an empty or
null set. Note that BTJ, BT2 and BT3 in definition 3.2 correspond
to testing the data dependences in figure 3.1(a), (b) and (c)
respectively. Figures 3.3 and 3.4 show examples of contemporary
and non-contemporary stanzas respectively. By applying the
BTs above, it can be concluded that both stanzas in figure 3.3(a)
are contemporary (see figure 3.3(c» and thus can be executed in

33

parallel. However, the stanzas in figure 3.4(a) are not
contemporary because of the presence of data dependences on
variables a and f, as the tests in figure 3.4(c) show.

An implementation of the software modules called the Analyser
and the Detector to perform the above testing and how they can
be embedded into an existing compiler has also been described in
Williams (1979). Apart from the stanzas derived from groups of
statements, Williams has also studied how the Bernstein method
can be used to detect parallelism in programs .containing
conditional statements, loops and procedure calls. Chapter 5 of
this thesis will extend the work on loops to explore the uses of the
BTs and the BSs in making decisions for the detection of data
dependences and loop transformations. Data dependences caused
by procedure calls will be treated in Chapter 6.

3.3 THE GRAPH·BASED METHOD

This method initially is based on the Bernstein method to derive
information for data dependences. However, graphs are used to
represent the information captured showing the dependences
between the statements (or groups of statements) in a program
unit [Ferrante et al. (1987), Kuck (1978), Kuck et al. (1981, 1984),
Lewis and El-Rewini (1992), Padua and Wolfe (1986), Wolfe
(1989b), Zima and Chapman (1990)]. Two types of graphs have
been popularly employed: the Data Dependence Graph and the
Iteration Space Graph. In gathering information on data
dependences, each statements in the program is analysed and the
I Nand 0 U T sets are determined. Three types of data
dependences are defined and they are termed as F low
dependeoces, Antidependences and Output dependences.

34

stanzas I

a := b + c;
x := vI;

c := a - i;

(a) Two stanzas

W. X. Y and Z sets

W I - (b,vl,i }

Xl - {x }

YI - {c }

Zl - { a }

stanza 2

d := e + f;
y := v2;

j := j - d;

W2 - { e,f,v2 }

X2 - { y}

Y2 - {j }
Z2- { d }

(b) The Bernstein Sets for stanzas in (a)

(Xl u YI u Z1) n (W2 u Y2 u Z2) = 0
(WI u YI u Z1) n (X2 u Y2 u Z2) = 0

(Xl u YI u Z1) n (X2 u Y2 u Z2) = 0

(c) The Bernstein Tests

Figure 3.3: Example of contemporary stanzas

35

stanzas 1

a:= b + c;
d := e * f;
g := h - i;

(a) Two Stanzas

W. x. Y and Z sets

W 1 - { b,c,e,f,h,i }

Xl - { a,d,g }

Yl - 0

Zl - 0

stanza 2

j := a / I;
m:= n + 0;

f := q - r;

W 2 - { a,l,n,o,q,r }

X2 - { j,m,f }

Y2 -0
Z2 -0

(b) The Bernstein Sets for stanzas in (a)

(Xl v Yl v Z1) (') (W2 v Y2 v Z2) = { a }
(Wl v YI v Z1) (') (X2 v Y2 v Z2) = { f)
(Xl v Yl v Z1) (') (X2 u Y2 v Z2) = 0

(c) The Bernstein Tests

Figure 3.4: Example of non-contemporary stanzas

36

DEFINITIONS 3.3

(i) The IN set contains all variables in the right-hand-side of
an assignment statement.

(ii) The OUT set contains variables in the left-hand-side of an
assignment statement.

(iii) To determine the
two statements,
must be true.

existence of data dependences between
sI and s2, all of the following conditions

a. flow dependences (fd)

OUT(sl) n /N(s2) ~ (0

b. Antidependences (ad)

/N(sl) n OUT(s2) ~ (0

c. Output dependences (od)

OUT(sl) n OUT(s2) ~ (0

(iv) A Data Dependence Graph (DD G) of a program is a graph
containing nodes representing the statements and edges
representing the dependences (either fd, ad or od) between
the statements.

(v) An Iteration Space Graph (ISG) of a d-nested loop is a
graph representing a d-dimensional discrete cartesian space
where each axis of the space corresponds to a loop counter.

Similar to the Bernstein Tests, definitions 3.3iii(a), iii(b) and iii(c)
correspond to detecting data dependences in figure 3.1(a), (b) and
(c) respectively. After determining the data dependences and
building the DDG, the compiler can begin the optimization
process and restructure the program into a parallel form.

37

Figure 3.5 shows an example of a DDG. Loop distribution and
node splitting are some of the transformation techniques that are
based on a DDG [Lewis and El-Rewini (1992), Zima and Chapman
(1990)].

In the other type of graph, the ISG, data dependences are
represented by arrows from the point corresponding to one
iteration to another whenever there exists statements Si and Sj in
the loop such that Sj is dependent on Si, for each pair of iterations
where i #- j. An example of an ISG is illustrated in figure 3.6 for a

two-dimensional nested loop. This representation is suitable for
detecting Wavefront parallelism for the loop skewing
transformation technique [Aiken and Nicolau (1990), Lewis and
EI-Rewini (1992)].

The Graph-based Method has been the major technique employed
by most researchers in the field of parallelization of programs. A
group of researchers at the University of Illinois, USA, led by
David Kuck has been working on a project called Parafrase [Kuck
et aI. (1984), Padua and Wolfe (1986), Polychronopoulos (1990)].
Their programming languages are Fortran and C. A similar project
called the Parascope project, has been carried out at Rice
University [Callahan and Kennedy (1987)]. This project
concentrates on developing an integrated system environment
suitable for parallel programming mainly for the Fortran
language. It consists of several modules which will assist users to
program applications with parallel capabilities. The group has
developed a system called the Parallel FORTRAN Converter (or
PFC) that automatically vectorizes Fortran programs by
performing a sophisticated analysis of dependences [Allen and
Kennedy (1984b)]. Another group of researchers at the IBM T.!.
Watson Research Center is also working on a project that will
parallelize FORTRAN programs [Burke et aI. (1988), Cytron et aI.
(1990)]. Its main module is called the Parallel TRANslator (or
PTRANS) which can perform program transformation of
Fortran programs from a sequential version to a parallel form.
The DDG and the ISG are some of the main data structures
maintained in the development of their systems.

38

81: a: .. 1.0;
82: b:= a + 3.142;
83: a:= 1/3· (c -d);
84: a:= (b· 3.8) / 2.7183;

(a) Group of four statements

fd

od

fd - flow dependence
ad - anti dependence
od - output dependence

(b) Data dependences of segment in (a)

Figure 3.5: Example of a Data Dependence Graph [Zima and
Chapman (1990)]

39

For i := 1 to 5 do
For j := 1 to 4 do

x[i+l,j+l] := x[i,j] + y [i,j];

(a) Two-dimensional nested loop

1 j loop 4

1

i loop

5 0 o o o

(b) The Iteration Space Graph with dependences

~--~

Figure 3.6: An Iteration Space Graph [Lewis and EI-Rewini
(1992)]

40

3.4 THE DIOPHANTINE ANALYSIS

The Diophantine Analysis involves numerical algorithms in
finding data dependences in sequential loops. Loops are
potentially suitable for parallelization where their iterations can
be executed independently of each other on different processors.
Many algorithms have been developed for this scheme [Banerjee
(1988), Goff et al. (1991), Kong et al. (1991), Leung (1990), Li
(1989), Maydan et al. (1991), Pugh (1992), Wolfe (1989b)].

The techniques in this analysis can be classified as Exact Tests (or
definite) if they either determine the data dependences or
independences. If they neither ascertain data dependences nor
independences then they are called Inexact Tests (or indefinite)
[Lewis and EI-Rewini (1992), Zima and Chapman (1990)]. In the
algorithms, Linear Diophantine Equations and greatest-common
divisor (GCD) algorithm are used to analyse the dependences. The
equations represent the dependences caused by the array
subscripts in the loops.

DEFINITIONS 3.4

(i) GCD(il, ...•• ,in) of n numbers is the maximum { b such that
ij I b for all 1 ~ j ~ n } where a I b means b divides a iff
there is an integer x such that a = bx.

(ii) A Linear Diophantine Equation has the following form:

n
L ai Xi = c
i=1

where n:21, c and ai are integers for all i, not all ai = 0 and xi
are integer variables. A Diophantine equation has a solution
if! GCD(a1,· .. , an) I c.

Solving a system of Diophantine Equations will give the result of
the dependence test for a loop. If there is a solution, data

41

dependence is assumed.
data dependence and the

If no solution exists, then there is no
loop iterations are parallelizable. Figure

3.7 illustrates the use of this technique in the Exact Test for a
single dimensional loop. Note that the loop index variables must
be linear and do not contain symbolic terms.

The Diophantine Analysis becomes computation ally expensive
and inefficient when applied to loops with arbitrarily many
variables, i.e., with many nested loops. No efficient method has
yet been developed [Li (1989)]. Thus weaker algorithms than the
Exact Test have been proposed such as the GCD Test, the Bounds
Test and the Banerjee Test. Detailed discussions of these methods
can be found in Allen and Kennedy (1987), Banerjee (1988), Lewis
and EI-Rewini (1992), Li (1989), Wolfe (1989b), Zima and
Chapman (1990).

Several other algorithms have been proposed to determine exact
solutions in the Diophantine Analysis. The Lambda-test is one
such algorithm that efficiently tests for data dependence to give a
precise result [Li (1989), Li et al. (1989), Li and Yew (1990)]. This
test is particularly effective in handling coupled subscripts, i.e.,
subscripts with some loop index appearing in more than one
dimension. Another technique, called the I-test, has been
proposed to produce a definite positive answer [Kong et al.
(1991)]. It is a refinement of the GCD and Banerjee tests which
checks for the existence of integer solutions. Pugh (1992) has
developed the Omega-test, based on integer programming. Li and
Yew (1990) have argued that an integer programming method is
extremely slow. However, Pugh has showed that his technique
can be used to determine an integer solution for an arbitrary set
of linear equations and inequalities. In Goff et al. (1991), another
test, called the Delta-test, which is based on classifying pairs of
sub scripted variable references, is said to produce a solution.
Another method using the Diophantine Analysis has also been
described by Maydan et al. (1991).

42

FOR i := 1 to 101 do
BEGIN

a[2*i] := __ _
__ := a[3*i+198];

END;

The Diophantine equation: 2x = 3y + 198
where: 1 ~ x, y ~ 101

GCD(2,-3) = 1

General solutions: x = 3t + 396
y = 2t + 198

where t is an arbitrary integer.

The constraints on t:

1 ~ 3t + 396 ~ 101
1 ~ 2t + 198 ~ 101

Conclusion:

=> -131 ~ t ~ -99
=> -98 ~ t ~ -49

Since t ~ -99 contradicts -99 ~ t, then the Diophantine

Equation. does not have a solution that satisfies the given
constraints. Hence, the loop iterations are independent.

Figure 3.7: Diophantine Analysis for the Exact Test [Lewis and
EI-Rewini (1992)]

43

3.5 CONTROL DEPENDENCES

Most of the discussions on dependences in programs have
concentrated on the Data Dependence. Another type of
dependence, called the Control Dependence, is one that appears in
programs containing conditional statements [~llen et al. (1983),
Cytron et al. (1990, 1991), Ferrante et al. (1987), Padua and Wolfe
(1986), Zima and Chapman (1990)]. As an example, in the
following conditional statement:

IFa>bTHEN
max := a

ELSE

max := b;

the two statements 'max := a' and 'max := b' are control dependent
on the condition 'a > b'. To represent these dependences, Control
Flow Graphs are used [Zima and Chapman (1990)].

There have been several proposals suggested on how to handle
the control dependences. One technique is to transform them into
data dependences which are then treated as discussed in the
previous sections [AlIen et al. (1983), Padua et al. (1980), Padua
and Wolfe (1986)]. This scheme is briefly discussed in Chapter 5
of this thesis. Some authors have suggested a method to combine
both the data dependence and the control dependence in one
representation such as the program dependence graph (PDG).
Details can be found in Ferrante et al. (1987).

3.6 SUMMARY

This chapter has presented a survey on the methods performed in
the Data dependence analysis (DDA). The DDA is an important
part of a parallelizing compiler in discovering any implicit
parallelism that may exist in sequential programs. The three
main categories of techniques mainly used to perform the DDA
surveyed in this chapter are the Bernstein Method, the Graph
based Method and the Diophantine Analysis.

44

Most of the work on the DDA carried out by researchers are based
on the Graph-based method. The Bernstein Method, however, has
not been pursued in great detail, except by WilIiams (1978). In
this thesis, the Bernstein Method becomes the basis of the
research study. The third category of techniques, the Diophantine
Analysis, is particularly suited in detecting dependences in loops.
They give quite accurate results for array references with
complicated subscript expressions. However, their computation
may be slow especially when the level of nesting in the loops
increases.

45

CHAPTER 4

A TOOL FOR AUTOMATIC
DETERMINATION OF PARALLELISM

4.1 INTRODUCTION

With the availability of the multi-processor computer, in which
each processor can execute different parts of a program in
parallel, the task of programming in parallel has increased.
Programs targeted for parallel execution have to be coded in a
special way in order to take advantage of the parallel
capabilities provided by the machines. The programmer must be
able to carry out analysis to identify any parallelizable parts and
to ensure that they are free from any data dependences. These
tasks can be greatly reduced if there exists a sophisticated
software tool to perform the analysis automatically.

Implementations of such a software tool, commonly known as the
parallelizing compiler, are already available. With their aid, a
programmer can write a program without having to think in
parallel terms. The program can then be analysed and
transformed into its parallel version. Ideally, the whole process
of compiling and restructuring a program should be done by the
compiler itself [Allen (1988), Allen and Kennedy (I 984b), Appelbe
and Smith (1989), Cowell and Thompson (1990), Guarna et al.
(1989), Kuck et al. (1984), Polychronopoulos (1988)].

The next step after the development of a parallel program, is to
map or schedule the concurrent tasks in the program onto a target
parallel machine [Kruatrachue and Lewis (1988),
Polychronopoulos (1988)]. The scheduling process, carried by the
operating systems, has to be performed with an objective of
attaining an optimal overall execution time for the program. This
consideration involves many factors such as the size of the tasks,
their communication times, the number of processors and the
strategy of task assignment to processors.

The main problem addressed in this chapter is the determination
of implicit parallelism in a sequential program and how to
maximize it during scheduling. It includes an automatic
identification of the size of task granularity that gives the best
execution performance of the program. Any implicit parallelism

47

that exists will be determined by partitioning the program into
concurrent tasks called stanzas [WiIliams (1978)]. These stanzas
are then scheduled on a shared-memory parallel computer to
find the optimal execution time and the optimal stanza
granularity. Heuristics are developed to find these solutions. A
software tool has been developed to carry out the above functions.

The organization of this chapter is as follows. . Section 4.2 briefly
explains the concepts used in the determination of implicit
parallelism in sequential programs. Sections 4.3 and 4.4 discuss
the issues in the stanza scheduling and in the determination of
optimal stanza granularity respectively. In Section 4.5, a
description of the software tool called TAG is given with some
example outputs in Section 4.6. Section 4.7 gives a brief comment
on scheduling of loops and in Section 4.8 a summary of the
chapter is given.

4.2 DETECTION OF IMPLICIT PARALLELISM

As discussed in Chapter 3, Williams (1978) has developed
approaches to detect implicit parallelism in a sequential
program. The program is partitioned into groups of statements
called stanzas. She develops a set of conditions (termed as the
Bernstein Tests (BTs) in this thesis) to test the stanzas to
determine whether they can be executed in parallel or not. The
technique is based on the Bernstein Sets (BSs) [Bernstein (1966)].
Based on this concept, this chapter studies how the inter-relations
of stanzas due to data dependences affect their scheduling for the
shortest execution time. Figure 4.1 shows the whole process of
detecting any implicit parallelism in sequential programs. The
information about the usage of variables in the stanzas will be in
the form of the BSs.

48

Sequential I
program --1 1 Analyser

Stanzas I
I-----I.~ Detector t-...... ~,Dependence

Relations

Figure 4.1: Determination of implicit parallelism in sequential

programs

4.3 SCHEDULING OF CONCURRENT STANZAS

Programs containing concurrent stanzas (or tasks) need to be
scheduled or mapped carefully onto a multi-processor system
during execution [Bokhari (1988), Duda (1988), Girkar and
Polychronopoulos (1988), Kruatrachue and Lewis (1988),
Polychronopoulos (1988), Sahni (1984), Sarkar (1989)]. The main
goal is to determine the best schedule which will give an optimal
execution time, that is, the shortest
the program on a certain parallel

possible execution time for
processor system. As an

example, if a program has n independent concurrent stanzas, each
of size e, then these stanzas can be run on n processors in the unit
time of e as compared to (e*n) units of time for a sequential
execution. However, if some of the stanzas are dependent on
others (called the predecessor stanzas), then they have to be
assigned to processors with great care in order to get an optimal
execution time and to have maximum parallelism.

Program scheduling can be divided into two categories, static
scheduling and dynamic scheduling. The static scheduling is
performed at compile time, before the program is actually
executed. It is based on the global program information gathered
during compilation and it is an approximation. The second
scheme, the dynamic scheduling is done at run-time and this
incurs an overhead in assigning the stanzas to processors.
However, it has the capability to schedule the stanzas with more
information readily available. The goals of dynamic scheduling
are to have a well balanced load for all processors by keeping

49

them as busy as possible and to keep the run-time overhead
minimum [Polychronopoulos (1988)].

The scheduling problem has been studied theoretically and has
been shown to be NP-complete [Coffman (1976), Garey and
Johnson (1979), Sahni (1984)]. This means that, to obtain an
optimal solution in its general form will require a considerably
large (that is, exponential) computation time. However, heuristics
can be developed that will produce near optimal solutions. These
heuristics are simple, easy to implement and usually have low
complexity [Butt (1993), Kruatrachue and Lewis (1988)].

A common scheme in stanza scheduling is the list scheduling
[Ad am et al. (1974), Lewis and EI-Rewini (1992)]. In this scheme,
a stanza is assigned as soon as a processor is available. However,
before the processor can execute the stanza, it is kept idle while
waiting for all of its predecessor stanzas to complete their
executions. In the list scheduling, load balancing is a strategy
where it tries to ensure that all processors are kept as busy as
possible at all time and that they finish at the same time [Butt
(1993), Kruatrachue and Lewis (1988)].

In general, the input to a scheduling process (called a scheduler)
are a set of stanzas, their sizes, the communication costs and the
dependence relations between the stanzas. The output is a
schedule for a multi-processor system. Before scheduling begins,
the relevant information have to be determined first. The
stanzas can be formed and their sizes estimated during the
compilation of the program. The dependence relations are
derived by performing the dependence tests on the stanzas.

The communication overhead is due to inter-stanza data
dependences and synchronization of stanzas [Axelrod (1986),
Duda (1988), Kruatrachue and Lewis (1988), Li and Abu-Sufah
(1985), Su (1992)]. The inter-stanza overhead is the extra time
needed for data transfer from one processor to another.
Synchronization on the other hand, creates a situation
stanzas have to wait until others have completed their

50

where
jobs in

order to be able to proceed in execution.
the barrier instruction [Osterhaug (1987)].

An example of this is
In this chapter, only

overheads due to data transfer are considered and it is assumed
to be constant. Figure 4.2 illustrates the effects of the
communication overhead on the processor allocation. Cl and C2
are the communication times needed for data transfers. It shows
in figure 4.2(e) that the presence of large overhead for the data
transfer from PI to P2 (as compared to the size of stanza 2)
prevents stanzas 2 and 3 from being executed in parallel.

In conclusion, having more than one processor to solve a
problem does not automatically guarantee that the execution
time will be shorter. Sometimes, to run the same program on
a single-processor machine can be a lot faster because there is
no communication overhead. If a program is scheduled by
ignoring the overhead, then a perfectly balanced load with all
processors finishing at time Tbalance can be achieved. However, if
the program is scheduled with the aim of minimizing overhead,
then it will give an unbalanced load on the processors with all
finishing at different times. The last processor finishes at time
T overhead with Toverhead < TbaJance. This is the min-max problem
that a scheduler has to solve, i.e., to produce a schedule with
maximum parallelism and with minimum overhead [Kruatrachue
and Lewis (1988)].

51

a. A task graph

P1 P1 P2

1 1

2 2 3

3

b. Sequential Execution c. No communication

P1 P2 P1

1 , 1
'f
C2

2 C2 2 -.
3

3 1

d. C2 $; size(2) e. C2 > size(2)

Figure 4.2: Effects of communication overhead

52

4.4 DETERMINATION OF STANZA GRANULARITY

The determination of stanza granularity is a partitioning problem.
It is a process of breaking down a program into a set of stanzas
(tasks) suitable for parallel execution [Girkar (1991), Kruatrachue
and Lewis (1988), Kwan et al. (1990), McCreary and Gill (1989),
Polychronopoulos (1988), Sarkar (1989)]. A grain is defined as a
module containing one or more stanzaS that has to be executed in
a sequential manner by a single processor. Polychronopoulos
(1988) defines the size of a stanza derived entirely from the
syntax of the underlying language. For languages such as Pascal, C
and Fortran, the stanzas are the loop body, procedure calls and
basic assignment blocks (BAS). Williams (1978) has limited the
maximum size of a stanza to be a group of statements with a
maximum number of variables of 15 and it is not necessarily a
BAS. This however, does not ensure an optimal stanza size. In
this chapter, a stanza can be a statement, a block of statements
delimited by begin-end block as in Pascal, a loop or a procedure
call.

The problem is to determine the best stanza size that will give the
shortest execution time. A large grain size will limit potential
parallelism. Small grain, however, will result in greater
communication overhead and may cause execution time
degradation. This needs a good automatic merging (or packing)
strategy to decide which stanzas are best executed on the same
processor. Together with the scheduling process, they will have
to balance between the possible parallelism and the
communication overhead to achieve the best grain size. It has
been shown that the general solution to this granularity problem
is NP-complete but a near-optimal solution to a subproblem
can be determined [Garey and Johnson (1979), Kruatrachue and
Lewis (1988), Sarkar (1989)]. In this chapter, a heuristic is
developed to determine this near-optimal stanza size.

The way stanzas are merged is crucial. Sometimes, merging
produces groups of stanzas which give degrading execution time.

53

This is illustrated in figure 4.3. The main factors that govern this
merging operation are the stanza size, the communication times
and the dependence relations. It is essential to determine before
merging, the effects of these factors. If it proves to degrade the
schedule time, then the stanzas should be left unmerged.
However, since the study described in this chapter involves
heuristics, then improved solutions cannot always be guaranteed.
This is because the merging operation restructures the
dependence relations of the new sets of stanzas and this may
create less parallelism.

Most of the work done by researchers assumes an input to a
scheduler is a parallel program in the form of task graph. Kwan
et al. (1990) uses the Critical Path Analysis to improve the
performance of parallel programs. Aggregating tasks by forming
clans as grains have been proposed by McCreary and Gill (1989).
These clans can then be assigned to parallel processors to achieve
an optimal execution time. Sarkar (1989) proposes two models
for partitioning and scheduling task graphs, called the macro
dataflow model (compile-time partitioning and run-time
scheduling) and the compile-time scheduling model (partitioning
and scheduling at compile-time). Polychronopoulos (1988) also
uses the task graphs to model the program to be scheduled. A
Critical Process Size (CPS) is estimated for each task and the size of
processes are determined, based on this CPS. The CPS is the
minimum size of a process whose execution time is equal to the
overhead that it incurs during scheduling. Kruatrachue and Lewis
(1988) have developed a method to optimize parallel programs
called grain packing which will reduce total parallel execution
time by balancing the sequential execution time and
communication time. Their Duplicating Scheduling Heuristic
duplicates tasks where necessary to reduce overall communication
delays and maximizing parallelism at the same time.

54

size=14

(a) A stanza with two predecessors

1 2 1

1 2 1
14 4 1

3

(i) unmerged

2

" 9
3

3 9

(ii) merged

(b) Merging degrades the performance if Comm=10

1 2 1

1 2 1

--115 1 4
2

9
3

3 3 9

. (i) unmerged (ii) merged

(b) Merging improves the performance if Comm=20

Figure 4.3: The effects of stanza and communication sizes on
merging operation.

55

Bieler (1990) has studied the partitioning of parallel programs
written in UNITY by developing the d-graphs of the programs.
These d-graphs are then mapped onto a parallel processor. d
graphs are graphs with two edges, weak edges and solid edges.
Statements connected by weak edges are suitable for allocation in
different processors.

4.5 TAG: A TOOL FOR AUTOMATIC DETERMINATION OF
PROGRAM GRANULARITY

In this section, a software tool called TAG (Tool for Automatic
determination of program Granularity) for detecting potential
parallelism in a sequential program in the form of stanzas is
presented [Evans and Mohd-Saman (1993)]. These stanzas are
then scheduled by TAG for a shared-memory multi-processor
system. It is extended to find the best stanza size (or the grain
size) for near-optimal parallel execution time by the process of
scheduling and merging. Its overall structure is shown in figure
4.4. It contains four main modules:

a. the ANALYSER module which scans a sequential program
and forms the basic stanzas

b. the DETECTOR module which performs the dependence test
(BTs) to determine which stanzas are concurrent

c. the SCHEDULER module which schedules the stanzas onto a
multi-processor system to give the fastest parallel execution
time

d. the MERGER module which merges stanzas to determine
program granularity

Appendix A shows the main program for TAG while AppendiX B
and Appendix C contain the codes for the Scheduler and Merger
modules respectively. The Analyser and Detector modules are
similar to those described in Williams (1978).

56

C sequential program

Ir

ANALYSER

~- --..
, •

I
DETECTOR

I- - --
r

SCHEDULER

1-- --
, r

MER3ER

1-- --
r

C end::>

;:>

U

~ • Basic stanzas

• Symbol Table

~ • Dependence Table
• Contemporary Table

~ .Schedule
eGranularity

~. New set of stanzas

Figure 4.4: The Overall Structure of TAG Software Tool

57

4.5.1 The Analyser

The Analyser module accepts a subset of Pascal program as input
and performs a lexical analysis to check its syntactic correctness
[Aho et al. (1986)]. It then forms the basic stanzas based on each
statement (or block of statements). Each statement is analysed
to determine the contents of the BSs, i.e, the W, X, Y and Z sets. It
also estimates the sequential execution time and the
communication time for each stanza for the purpose of
scheduling. Figure 4.5 shows the declaration of a stanza. In
scanning the source program, all variable names found in it are
stored in a symbol table. The BSs structure only keeps the index
values of the variables in the symbol table. This Analyser can be
modified and adapted to accept other programming languages
such as MODULA-2 [Walmsley and Williams (1990)] or C

[Kernighan and Ritchie (1988)]. Figure 4.6 shows an example of a
program and its corresponding information on single-statement
stanzas in terms of the BSs.

For the timing estimates, an arbitrary unit value is assigned to
the execution time and the communication time of each stanza.
This suffices since this study is concerned with the relative
behaviour of the scheduling process. The times may assume any
other values. Thus, for conformity, the assignment statement and
the addition operation take I unit of time each and the
multiplication operation takes 10 units of time. The time for
a stanza to communicate to other stanzas is assumed to be a
constant for all stanzas and is read at the beginning of the
execution of TAG. It usually takes a value between IQ to 20 units
of time.

58

struct bernstein
{

int stanzatype; /* type of stanza */
int etime; /* execution time */
int ctime; /* communication time */
int bcnt[4]; /* W,X,Y,Z set counters */
int bset[4][maxident]; /* W,X,Y,Z set contents */

} stanza

Figure 4.5: Definition of a stanza

4.5.2 The Detector

The list of stanza information in the form of BSs derived by the
Analyser module is then passed to the Detector module. This
module performs the BTs on the BSs to determine the data
dependences. To do this, tables of XYZ and WYZ (i.e., (X u Y u Z)
and (W u Y u Z)), are first formed, based on the contents of the
BSs. Then the (') operation is applied to the contents of the XYZi
and WYZj, where 1 :5: i, j:5: number of stanzas and i ~ j. For the u
and (') operations, they are performed in bit-wise method. For this

purpose, two working spaces are used and they are set to 0 or 1 to
indicate the presence of each variable, based on its position in the
symbol table.

The Detector will create two tables as outputs, the Dependence
Table and the Contemporary Table. The Dependence Table gives
information about the predecessor stanzas on which another
stanza depends for data during execution. The Contemporary
Table contains groups of stanzas which are concurrent and can
be executed in parallel. Figure 4.7 shows examples of a
Dependence Table and a Contemporary Table of the simple
program from figure 4.6(a). Figure 4.7(b) indicates that stanzas 1,
2 and 3 are independent and stanzas 4, 5 and 6 have predecessor

59

stanzas. There are four concurrent groups in the Contemporary
Table as shown by figure 4.7(c).

4.5.3 The Scheduler

By using the information available in
Dependence Table and the Contemporary

the basic stanzas, the
Table, the Scheduler

determines the best schedule by assigning the stanzas onto a
parallel machine with two or more processors. This is done by
balancing the communication time and the maximum parallelism
that can be achieved. A 'quick and dirty' algorithm is used to
generate the schedule as fast as possible [Spyropoulos (1979)].
At the end of the process, it estimates the parallel execution time
and the sequential time. From these two results, the speed-up
value is derived as follows.

speed-up = parallel execution time
sequential time

Figure 4.8 shows a series of schedules for the program in figure
4.6(a).

In the stanza assignment to processor, the main strategy used by
TAG is called the largest-contemporary-stanza-first
allocation. In this scheme, for each group of stanzas in the
Contemporary Table, their contents are sorted in descending
stanza size order. Then for each stanza S in the sorted group,
its predecessor stanzas are determined from the Dependence
Table. If S is independent (Le., it has no predecessors), then it is
allocated to a processor with the lowest current finishing time.
Figure 4.9 shows an example of this process.

60

program pr46;
begin

n1 := a1 *b1;
n2 := a2*b2;
n3 := a3*b3;
n4 := n1;
n5 := n2-n3;
n6 := n4*n5;

end.

(a) A simple program

W X Y Z EXEC COMM
STANZA sets sets sets sets TIME TIME

1 a1 n1 12 20
b1

2 a2 n2 12. 20
b2

3 a3 n3 l2. 20
b3

4 n1 n4 :l 20

5 n2 n5 3 20
n3

6 n4 n6 12. 20
n5

Total sequential time = 53

(b) The Bernstein Sets

Figure 4.6: An example program with its BSs

61

(a) A task graph for the program in figure 4.6(a)

stanza
1

2
3
4

5
6

- [predecessor stanza set}

-0
-0
-0
- (1 }
- (2, 3 }

- (4, 5 }

b. Dependence Table

stanza
1 -
2 -
3 -
4 -
5 -
6 -

{ concurrent set }
(2 3 6}
(3 4}
(4}
(5}
o
o

c. Contemporary Table

Figure 4.7: Dependence and Contemporary Tables

62

(a)

0-

10-

20-

30-

40-

50-

53-

Pl

1.

2

3

4

5

6

sequential
execution

Pl P2
0-

1 2

10-

3 : : :
: : :
: : :
: : :
: : :
: : :
: : :

20- o 0 0

: : :
: : :
: : :

I-- :::
4 :::

I-- o 0 0

: : : o 0 0

: : : : : :
: : : : . :

30- : : :
00 0

I--
5

I--
6

40- o 0

: :
: :
o 0

::
o 0

o 0

47-

(b) 2-processor
schedule

0-

10-

20-

30-

40-

47-

(c)

Pl P2 PJ

123

4 : : : : : : - : :: : : :
: : : : : : : :
o 0 0 : : : : :
o 0 0 : : : ::
::: o 0 0 ::
: : : : : : o 0

o 0 0 : : : : :
o 0 0 I:: : :
o 0 0 : :: : :
o 0 0 : : :

: : :
o 0 0

I::
: : :
: : :
o 0 0

: : :
:n

, I--
5

::
: : I-- ::
: : 6 o 0

:: o 0

o 0 : :
: :
o 0

00 o 0

o 0 : :
o 0 ::
: : o 0

o 0 o 0

o 0 ::

3-processor
schedule

Figure 4.8: The schedules generated for the program in figure
406(a)o

63

Let finish_time(S) be the finish time for stanza S on a processor
and comm(S) be the communication time for the processor
executing S to transfer its value to other processors. Therefore, if
it is assumed that:

finish_time(S3)<finish_time(S2)<finish_time(S4)<fini sh_time(S 1)

then stanza S5 is allocated on processor 3 since finish_time(S3) is
the lowest of all.

However, if S is not independent but has all of its predecessor
stanzas allocated already, then it will be assigned to a processor
with the earliest execution time after considering the effects of
communication overhead. In general, to assign the stanza, the
finishing times of all of its predecessors are checked first. It is
then assigned to a processor with the highest (finish_time +
communication time). An illustration of the scheduling for a non
independent stanza is given in figure 4.10. If it is assumed that
the communication times are the same and constant, then stanza
S5 (which depends for data on SI, S3 and S4) is assigned to
processor 1 since (finish_time(SI) + comm(SI» is the highest.
This will minimize the processor idle time and hence the total
execution time. Its starting time will be at the next highest time,
that is, at (finish_time(S4)+comm(S4» because:

(finish_time(S4)+comm(S4» > (finish_time(S3)+comm(S3»

The shaded area in the chart for figure 4.10 is the communication
delay time for PI. For those stanzas which have one or more
of their predecessor that has not been assigned yet, their
allocations are delayed until later. The general scheduling
algorithm is shown in figure 4.11.

64

P1 P2 P3 P4

83
82

81 e 84

Figure 4.9: Allocation of an independent stanza S5

65

P1 P2 P3 P4

83
82

81 84

comm

Figure 4.10: Allocation of a non-independent stanza, S5

66

INPUT: List of stanzas, Contemporary Table, Dependence
Table

OUlPUT: A Schedule Table for a multi-processor with n
processors

BEGIN

FND

FOR each group i of the concurrent stanza in the
Contemporary Table,

BEGIN

FND

SORT the stanzas into a descending order of stanza
size and call it the Sorted Group

FOR each stanza S in the Sorted Group
BEGIN

FND

DETERMINE the Predecessor Stanzas of S from
the Dependence Table

IF S is independent
THEN allocate it to an available processor

having the lowest finishing execution
time

IF S is dependent on other stanzas AND all of
the predecessor stanzas have been
allocated,

THEN assign S on a processor of a predecessor
stanza with the highest (finishing
execution time + communication time)

ELSE delay its allocation

CALCULA TB the estimated parallel execution time

Figure 4.11: Algorithm for scheduling stanzas

67

4.5.4 The Merger

In order to reduce the communication overhead, some stanzas
have to be merged so that they will be executed on the same
processor. This is performed by the Merger module which forms
bigger stanzas from the basic ones. It is assumed that this process
will add the execution times of the stanzas but still maintain
the same communication time [Kruatrachue and Lewis (1988)].
The merging of stanzas is based on the following principles.

Given a stanza S and its predecessors PSs:

a. they will be merged if none of PSs has been merged with
others.

b. let PSi be the largest of all PSs and comm(PSs) be the

communication times for PSs to transfer data to any other
stanzas. Then for all PSj (where i ;t j), they are merged with
PSi iff:

~omm(PSj» > (size(PSi~'

Otherwise they are left unmerged. This is to ensure that the
merge operation will not give a new stanza whose execution
time is higher than that of the unmerged stanzas. Figure 4.3
shown earlier illustrates this point.

When the BSs of two stanzas are merged, it produces new BSs
whose contents depends on which sets the variables are members
of before merging. For example, if a variable v is a member of
the X set in BSI and it is also a member in the W set in BS2, then
it will be included in the Z set of the resulting BSs. Figure 4.12
shows the algorithm to merge any two BSs of stanzas i and j
resulting in stanza k. It should be noted that MERGE(SI,S2) will
not necessarily give the same result as MERGE(S2,SI).

68

INPUT: Stanzas Si (with Wi,Xi,Yi,Zi sets) and
Sj (with Wj,Xj,Yj,Zj sets)

OUTPUT: Stanza Sk (with Wk,Xk,Yk,Zk sets)

BEGIN

fNI)

FOR each variable v in the Wi,Xi,Yi and Zi sets of Si,
search for it in stanza Sj.

BEGIN

fNI)

IF v is an element of Wi
IF v an element of Wj or NOT found,
THEN v is an element of Wk
ELSE v is an element of Yk

IF v is an element of Xi
IF v an element of Xj or NOT found,
THEN v is an element of Xk
ELSE v is an element of Zk

IF v is an element of Yi
THEN v is an element of Yk
IF v is an element of Zi
THEN v is an element of Zk

FOR all variable v in stanza Sj NOT found in stanza Si
then v is an element of its original set of stanza Sk

Figure 4.12: The Merge Algorithm

69

Once the merging process has been completed, an average
granularity size of the new stanzas and new dependence relations
are determined. Then, another process of scheduling is carried
out to determine a new schedule with another estimated
parallel execution time and speed-up factor. This process of
merging and scheduling is repeated until no more merging
operation is carried out. A schedule with the best execution
time will be taken as the near-optimal execution time and its
average stanza size is the near-optimal average grain size. Figure
4.13 illustrates the effects of merging for stanzas in figure 4.6(b).

4.6 EXAMPLE OUTPUT OF TAG

In this section, more examples of the output of TAG are presented.

EXAMPLE 4.6.1: Figure 4.14 shows a simple program that
performs a summation of (ai * aj) and its graphical representation
in the form of a task graph depicting the inter-dependence of the
statements.

Figure 4.15 shows an output produced by the Analyser module. It
gives information for the BSs of each stanza for the program. Note
that the communication time for each stanza has been fixed as 10
units during execution. This can be changed to other values. The
Dependence Table and the Contemporary Table produced by the

. Detector module are shown in figure 4.16.

The diagrams in figure 4.17 show the first merging operation of
stanzas 9, 10 and 13 to form a new stanza 9 and stanzas 11, 12
and 14 to form a new stanza 10. They are merged after
considering the effects of their sizes and the communication
overhead. Stanzas I, 2 and 9 or stanzas 3, 4 and 10 or stanzas 5, 6
and 11 or stanzas 7, 8 and 12 have not been merged because
merging will degrade their execution times.

70

(a) Stanzas 2,3 and 5 are merged

W X Y Z EXEC COMM
STANZA sets sets sets sets TIME TIME

1 al nl 1!1 20
bl

2 nl n4 ~ 20

3 a2 n5 n2 2y. 20
b2 n3·
a3
b3

4 n4 n6 1.':l 20
n5

Total sequential time = 53

(b) The new Bernstein Sets after merging

Figure 4.13: Merging of stanzas of the program in figure 4.6

71

Figure 4.18 shows a new set of stanzas produced after the first
merging operation. Note that stanzas 1 to 8 are the same as
previous stanzas and stanza 11 is the same as stanza 15. Stanza 9
and 10 are the new merged stanzas. Stanza 9 in this table comes
from stanzas 9, 10 and 13 and stanza 10 from 11, 12 and 14. The
new Dependence Table and the Contemporary Table after the first
merging process are shown in figure 4.19.

In the second merging operation, stanzas 9, 10 and 11 are merged.
Figure 4.20 gives an illustration of their merging. The new set of
stanzas after the second merging is shown in figure 4.21. In
figure 4.22 are the revised Dependence Table and Contemporary
Table after the second merging.

As a conclusion, TAG arrives at the final result after performing
two merging operations. The third merging does not produce any
new stanzas and hence it stops. Table 4.1 shows the performances
produced by the schedules generated before and after the two
merging operations. It indicates that the best execution time of
2.91 speed-up value comes with a schedule for a 8-processor
parallel machine after the second merging operation (column 4
row 7). The average granularity size is 11.33 which has nearly
doubled from the original size of 6.80. Figure 4.23 shows the
grains of stanzas that give the best schedule.

The performances shown in Table 4.1 are for the program that has
a communication time of 10 units. The diagrams in figure 4.24
show the effects of a higher communication time on the merging
operation.
time and it

In this case, 20 units is fixed for the communication
results in different groups of stanzas being merged.

In the first merging operation, four groups of stanzas are merged.
If this is compared with the diagrams in figures 4.17 and 4.20,
different groups are being merged. In the second merging
operation, only one group is merged. Table 4.2 shows its
performances where the best schedule has a speed-up value of
2.04 on a 4-processor machine. Figure 4.25 illustrates the grains

72

of stanzas for this particular schedule. The speed-up is lower than
that with 10 unit of communication time (see figure 4.23(b» and
it is achieved after the second merging. However, the average
stanza size is about three times bigger than the original size (that
is 20040).

number of before merging first merging second
I processors merging

2 1.65 1.65 1.50
3 2.00 2.00 1.79
4 2.12 2.55 2.22
5 2.17 2.55 2.22
6 2.55 2.55 2.22
7 2.17 2.62 2.83
8 2.17 2.62 2.91

average 6.80 9.27 11.33
granularity

Table 4.1: The performances of example 4.6.1 with 10 units of
communication time

,
number of before merging first merging second

I processors merging
2 1.42 1.42 1.38
3 1.50 1.50 1.89
4 1.50 1.50 2.04
5 1.32
6 1.73
7 1.32
8 1.32

average 6.80 14.57 20.40
! granularity

Table 4.2: Performances of example 4.6.1 with 20 units of
communication time

73

program example_ 4_6_1;
begio

eod.

01 := a1 *b1;
02 := a2*b2;
03 := a3*b3;
04 := a2*b4;
05 := a5*b5;
06 := a6*b6;
07 := a7*b7;
08 := a8*b8;
09 := 01+02;
010 := 03+04;
011 := 05+06;
012 := 07+08;
013 := 09+010;
014 := 011+012;
015 := 013+014;

(a) A simple program

(b) A task graph

Figure 4.14: Example 4.6.1 aod its task graph

74

w x y Z EXEC COMM
STANZA sets sets sets sets TIME TIME

1 a1 n1 1 1 10
b1

2 a2 n2 1 1 10
b2

3 a3 n3 1 1 10
b3

4 a2 n4 1 1 10
b4

5 a5 n5 11 10
b5

6 a6 n6 11 10
b6

7 a7 n7 11 10
b7

8 a8 n8 11 10
b8

9 n1 n9 2 10
n2

10 n3 nlO - 2 10
n4

11 n5 nIl 2 10
n6

12 n7 n12 - 2 10
n8

13 n9 n13 - 2 10
n10

14 nIl n14 - 2 10
n12

15 n13 n15 - 2 10
n14

Total sequential time = 102

Figure 4.15: A set of stanzas produced by the Analyser

75

Stanza no. - { Predecessor stanzas }

1 -0
2 -0
3 -0
4 -0
5 -0
6 -0
7 -0
8 -0
9 - { 1 2 }

10 - { 3 4 }
11 - { 5 6 }
12 - { 7 8 }
13 - { 9 ID}
14 - { 11 12}
15 - { 13 14}

(a) Dependence Table

stanza - { concurrent stanzas }

1 - { 2 3 4 5 6 7 8 13 14 }
2 - { 3 4 5 6 7 8 13 14 }
3 - { 4 5 6 7 8 9 14 }
4 - { 5 6 7 8 9 14 }
5 - { 6 7 8 9 10 14 }
6 - { 7 8 9 10 14 }
7 - { 8 9 10 11 15 }
8 - { 9 10 11 15 }
9 - { 10 11 12 15 }
10 - { 11 12 15 }
11 - { 12 13}
12 - { 13}
13 - { 14 }
14 -0
15 -0

Table

Figure 4.16: The Dependence Table and the Contemporary Table
generated by the Detector module

76

Figure 4.17: The first merging process of example 4.6.1
(communication time = 10 units)

77

w x y Z EXEC COMM
STANZA sets sets sets sets TIME TIME

1 al nl 11 10
bl

2 a2 n2 1 1 10
b2

3 a3 n3 11 10
b3

4 a2 n4 1 1 10
b4

5 a5 n5 11 10
b5

6 a6 n6 11 10
b6

7 a7 n7 11 10
b7

8 a8 n8 11 10
b8

9 nl n13 - n9 6 10
n2 nl0
n3
n4

10 n5 n14 - nIl 6 10
n6 n12
n7
n8

11 n13 n15 - 2 10
n14

Total sequential time = 102

Figure 4.18: A new set of stanzas after the first merging

78

Stanza no. - (Predecessor stanzas }

1 -0
2 -0
3 -0
4 -0
5 -0
6 -0
7 -0
8 -0
9 - (1 2 3 4 }
10 - (5 6 7 8 }
11 - (9 1O}

(a) Dependence Table

stanza - { concurrent stanzas }

1 - (2 3 4 5 6 7 8 11}
2 - (3 4 5 6 7 8 11}
3 - (4 5 6 7 8 11}
4 - (5 6 7 8 11}
5 - (6 7 8 9 }
6 - (7 8 9 }
7 - { 8 9 }
8 - (9 }
9 - (1O}
10 -0
11 -0

(b) Contemporary Table

Figure 4.19: The new Dependence Table and the Contemporary
Table after the first merging

79

Figure 4.20: Second merging operation of example 4.6.1
(communication time = 10 units)

80

w x y Z EXEC COMM
STANZA sets sets sets sets TIME TIME

1 al nl 1 1 10
bl

2 a2 n2 1 1 10
b2

3 a3 n3 1 1 10
b3

4 a2 n4 1 1 10
b4

5 as n5 11 10
b5

6 a6 n6 11 10
b6

7 a7 n7 11 10
b7

8 a8 n8 11 10
b8

9 nl n15 - n13 14 10
n2 n14
n3 n9
n4 nl0
n5 nil
n6 n12
n7
n8

Total sequential time = 102

Figure 4.21: The new set of stanzas after second merging

81

Stanza no. - { Predecessor stanzas }

1 - 0
2 - 0
3 - 0
4 -0
5 -0
6 -0
7 -0
8 -0
9 -{ 1 2 3 4 5 6 7 8}

(a) Dependence Table

stanza - { concurrent stanzas }

1 - { 2 3 4 5 6 7 8 }
2 - { 3 4 5 6 7 8 }
3 - { 4 5 6 7 8 }
4 - { 5 6 7 8 }
5 - { 6 7 8 }
6 - { 7 8 }
7 - { 8 }
8 -0
9 -0

(b) Contemporary Table

Figure 4.22: The new Dependence Table and Contemporary
Table after the second merging

82

(a) 9 grains of stanzas .,
0-

1

10-

P1 P2 P3 P4 P5 • P6 P7 PS
0-

1 2 3 4 5 6 7 S '0-

,
'0-

•
• 0-

10- ,
: :: ::: · . : ::: : : : : : : .0-· :: : · . : · . : : : : · .. · ..
: · . · .. : : : : : : :: : · .. · .. 6

: · . I:: : : : : : : : : : : · . · .. 60-
: · . · .. · .. : : : : : : : :: · ..
: · . : : : · .. :: : : : : : :: · ..
: : : : : : · .. : : : : · . : · . · .. 7
: · . · .. : : : · . : : : : : · . · .. 70-

20- : · . · .. : : : · . : : : : : · . : : : - · .. · . : · . : : : : :: : : · . : . .
9 : : : · . : : : : : : : : : : : 8 · . · .. 00-: · . · . : : : : : : : : : · .. : . .
10 : : : · . : : : : : : : : : : · . · ..

: : : · . : :: : : : · . : :: : · ..
11 : · . · . : : :: : : : : : : : : I:: '0- 0

: · . : : : · . : : : : · . · .. :: : 10 12 :: : : : : · .. :: · .. · .. :: :
: · . : : : · .. :: : · . · .. : : : 11

30- 13 100· ... · .. · . : · . · .. · .. : : : 1>
: : : · .. · . : · . :: : · .. · ..

14 : : : I:: : :: : 13 · . · . · .. · ..
: : : · .. · . : : : : : : : : : · .. ,.

15 · .. · .. :: : · . : : : · . : · ..
" 35- 102-

(b) The schedule for the grains (speed-up = 2.91)

Figure 4.23: The schedules for example 4.6.1

83

First merging +

Second merging +

Figure 4.24: The merging of stanzas from example 4.6.1 with 20
units of communication time

84

(a) grains of stanzas

P1 P2 P3 P4
0-

1 3 5 7

2 4 6 8

10- 9 10 11 12

20-

: : : : : : .. : : : :
: : : : : : : : : : :

30- : : : : : : : : : : :
: : : : : : : : : : :
: : : : : : : : : : :
: : : : : : : : : : :
: : : : : : : : : : :

40- : : : : : : : : : : :
: : : : : : : : :

I- : : : : : : : : :
13 : : : : : : : : :
14 : : : : : : : : :
15 : : : : : : : : :

50- L.........J._-L_L....J

(b) the best schedule (speed-up = 2.04)

Figure 4.25: The grains of stanzas for example 4.6.1 with the
communication time = 20 units

85

EXAMPLE 4.6.2:

In the following example, as shown in figure 4.26, the program
has a different dependence structure. Figure 4.27 shows a series
of merging operations performed ,on the stanzas of the program.
Table 4.3 shows its performances obtained by TAG.

number before first second third fourth
of merging merging merging merging merging
procs.

2 0.94 0.95 1.07 1.29 1.23

3 1.23 1.23 1.23 1.29

4 1.14 1.16 1.23

5 1.14 1.21

6 1.14
average 5.27 6.44 8.29 11.60 19.33
gran.

Table 4.3: Performances of example 4.6.2 with 20 units of
communication time

The above table shows that the execution times can be worse than
that of the sequential run (see row with 2 processors). These are
the effects of the high communication time of 20 units. However,
after the merging operation, it begins to improve. The best time is
achieved on 2 and 3-processor machines after the third merging
(speed-up factor of 1.29). For the 2-processor machine, after the
fourth merging, however, the performance degrades to 1.23. This
is due to the less parallelism that exists after the merging and the
merged stanzas have more predecessors that need to be
considered in the scheduling. Figure 4.28 shows the 2-processor
schedule generated for the groups of stanzas that gives the near
optimal solution.

86

program par_4_6_2;
begin

nl := al-bl;
n2 := a2*b2;
n3 := a3*b3;
n4 := 10;
n5 := a5-1O;
n6 := a6+b6;
n7 := n5+n6;
n8 := n4*n7;
n9 := n8+n3-1O;
nlO := n9+n2;
nIl := nIO/nl;

end.

W X Y Z EXFC mMM
STANZA sets sets sets sets TIME TIME

I al n I 2 20
b I

2 a2 n2 11 20
b2

3 a3 n3 11 20
b3

4 n4 I 20
5 a5 n5 2 20
6 a6 n6 2 20

b6
7 n5 n7 2 20

n6
8 n4 n8 11 20

n7
9 n8 n9 3 20

n3
10 n9 nlO - 2 20

n2
11 nlO nIl 11 20

nl

Total sequential time = 58

Figure 4.26: The second example 4.6.2

87

"rst merging

Second mergiy

4

Figure 4.27: The merging sequence of example 4.6.2
(communication time = 20 units)

88

20-

1

5
30-

6

4

40- 7

8

9
SO-

lO

11
58-

(b) sequential
execution

3 2
4
5
6

10- 7 f-
8 1
9 l-· ..

· ..
20- · .. · .. · .. · .. · .. · ..
30- · ..

f- · ..
10 · ..

,....- · ..
11 · ..

40- · ..
· ..

45-

(c) the best
schedule
(speed-up=1.29)

Figure 4.28: The best grains for example 4.6.2

89

EXAMPLE 4.6.3:

The third example, adapted from [Kruatrachue and Lewis (1988)]
is shown in figure 4.29. Table 4.4 shows the speed-up factors for
the program. Figures 4.30, 4.31 and 4.32 show the first and
second merging operations and the best schedule generated
respectively.

number of before merging first merging second
processors merging

2 1.19 1.20 0.98
3 1.25 1.25 1.21
4 1.16 1.17
5 1.16
6 1.17

average 8.12 10.62 12.55
granularity

Table 4.4: Performances of example 4.6.3 with 20 units of
communication time

This example has a complex dependence structure. Merging of
one group of stanzas may alter the dependences of other stanzas.
However, TAG manages to determine the speed-up value of 1.25
as its best solution.

90

program par_4_6_3;
begin

end.

a := 1;
C .- 3' .- .
b := 2*5;
d := 4;
e := 5-3;
f ·- 6' .- .
g := a*b;
h := c*d;
i := d*e;
j := e*f;
k := d*f;
I := j*k;
m := 4*1;
n := 3*m;
o := n*i;
p := o*h;
q := p*g;

Figure 4.29: The third example 4.6.3

91

First merging

Figure 4.30: First merging of the third example (comm = 20)

92

Second merging

Figure 4.31: Second merging of the third example (comm = 20)

93

P1
0-

10-

20-

,
JO- ,

0

40-

SO-
10

60-
u

70-

12

BO-

13

,,-

14

100-

"
110-

16
120-

17
130-

138-

(a) sequential
execution

., ., PJ
0-

5

• 2

10-r- '"
,

::: " , t-; t:: '" : :: '" t::

~
: 11 sn

20- '" u:

• 10

JO-

:a , 11
u;
I::

40- t::
:n
:::
: :: :11 12
n: '" SO- n: 11:
:: I '" In '" r,;-:: : '" ::: t::

'0- n: :1:
:n :n
:u '" :n '" 74 n: '" 70- I:: 1:1
::1 '" a: 1:1
:n ::1 r,;-
'" '" 80- 11: '" :n '" :u '" '" '" '" '" ~ to- u; : II
::: '" :u '" '" '" ::: '" 'i7 100· n: , " :u '" :u 1:1
IU H:
:u '" 110-

(b) before
merging

., ., .,
0-

2 5

• '7 •
10- , r,;

f-
'" r-Ut :: :

'" I::
20- IU Ul

:: :
nz , :::
tI: ::t
u: lit

,0- '" :::

'" '" 11; 11

'" tn

'" : I:
40- '" n :

I:; '" :n n: f7, IU Il:
:n I::

SO- '" n :

'" 11 :
I:: 1:: r-
:n 11: 13
:: : :;:

60- I:: In
:n :::
: It 11:
11 : '" ~ n: :::

70- '" I::
n: u:
u: Ut
n: :11 r-;, :n :n

80- u: :n
11: 11:

'" '" '" u:
n: lI: ~ to- In n:
I:: In
:11 :n

'" I::
:n It: r-

lOO- n: :: : 17
I:: I::
:: I ;::
::: :11
::1 I::

110-

(c) first
merging

Figure 4.32: The schedules for the third example

94

4.7 SCHEDULING OF PARALLEL LOOPS

To parallelize a sequential program, the best opportunities can be
found in the loops [Alien and Kennedy (1984a), Banerjee
(1988), Li and Yew (1990), Mohd-Saman and Evans (1993), Padua
and Wolfe (1986), Wolfe (l989b), Wolfe and Banerjee (1987)].
The loop iterations can be executed concurrently if they are
independent. Data dependences are usually caused by references
to array elements and scalar variables which are modified by
more than one iteration. Determination of data dependences in
loops has been a major research work. Mohd-Saman and Evans
(1993) have developed the Bernstein Loop Tests (BLTs) to
determine loop parallelism. Non-independent loops can only be
parallelized after their dependences have been removed by loop
transformations or by inserting synchronization statements. The
BLTs and the loop transformation techniques are discussed in
Chapter 5 of this thesis.

Scheduling of loops on multi-processor systems has been
discussed by several researchers [Beckman and Polychronopoulos
(1991), Foster (1991), Polychronopolous (1988), Saltz et al.
(1991)]. Loop iterations can be scheduled statically or
dynamically. For static scheduling, the user or the compiler
decides which iterations are to be allocated to a given processor.
This eliminates the run-time overhead. However, information of
the number of iterations to schedule and the number of
processors are sometimes known at run-time. Furthermore,
iterations can have different execution times due to the presence
of conditional statements. This creates the problem of unknown
sizes if they are to be assigned statically.

A general solution for this problem is to distribute the loop
iterations to processors based on their availability. This can be
done dynamically and three methods have been suggested
[Polychronopoulos (1988)]. The first strategy is called self
scheduling where an idle processor selects a single iteration of a
parallel loop for execution. This is good for load balancing

95

especially if the iteration is large compared to the iteration
fetching overhead. The second scheme, chunk scheduling,
allocates a fixed number of iterations to an idle processor. This
reduces the overhead in fetching the iterations but it cannot
provide a good balanced load for all of the processors. The third
method combines the above two schemes. It is called guided-self
scheduling. The strategy is that, at the beginning of the execution,
a chunk of iterations is assigned and this is decremented in the
next iteration fetching until all iterations are exhausted. It is
claimed that the third scheme gives the best result in load
balancing and reduces run-time overhead.

TAG can be extended to handle parallelization of loops and their
scheduling. Thus, any loops in programs can be tested for
parallelism and those found to be parallelizable, can be
scheduled on a multi-processor system. Those loops whose
iterations cannot be run in parallel will be treated as single
stanzas. Thus, a granularity of program containing straight line
codes and loops can easily be determined automatically.

4.8 SUMMARY

This chapter has discussed several related issues, namely, the
detection of implicit parallelism in a sequential programs, the
scheduling of stanzas and the determination of the best stanza
granularity. In detecting any parallelism that may exist in a
sequential program, the BTs have been used. A software tool
called TAG has been developed to perform the above functions.
The best grain size of a program is determined by merging and
scheduling the stanzas repeatedly.

Stanza formation developed by Williams (1978) and Evans and
Williams (1978) provides a useful way to determine potential
parallelism that may exist in programs. The information
available in a stanza is used in performing the dependence
analysis. Most of the work done by other researchers has based
their dependence analysis on the data-flow graphs [AlIen and
Cocke (1976), AlIen and Kennedy (1987), Burke et al. (1988),

96

Muchnick and Jones (1981), Sarkar (1989), Wolfe (1989b), Wolfe
and Banerjee (1987)].

The main goal of scheduling the stanzas of a program is to
determine its shortest execution time. The study described in this
chapter has show~. that the communication overhead between
processors due to data dependences can cause execution time
degradation. Hence, the scheme that performs the scheduling
should be able to assign stanzas to processors in such a way that it
minimizes the overhead and maximizes the parallelism in order to
obtain the optimal time. This problem of finding an optimal
solution is intractable. However, near-optimal solutions using
heuristics can be obtained and this has been discussed in detail in
this chapter.

The process of merging of stanzas to form stanzas with bigger
granularity has been used in order to find a faster execution
time. This needs to be performed carefully. An improved
execution time is only possible if the communication time that
exists after merging is less with respect to the stanza size and the
program still has adequate parallelism. This, however, is not
always the case. Merging can also cause execution time
degradation. Thus, the heuristic proposed in this chapter only
merges stanzas if it proves to give better results.

97

r

CHAPTER 5

DETECTION OF LOOP PARALLELISM
AND TRANSFORMATIONS

5.1 INTRODUCTION

The parts of a sequential program which offer the best
opportunities for parallelism are the loops. The iterations in a
loop can be parallelized if all of them are independent, i.e., there
is no data dependence between them. Inter-iteration data
dependences are usually caused by references by an iteration to
array elements modified by other iterations. In the case of scalar
variables in the loops, data dependences occur if they are
involved in store operations in the different iterations.

To detect any data dependences in a loop, the statements in its
body have to be analysed. There are several research works on
the detection of parallelism in loops. Most of them are based on
the graph theory and the Diophantine Equations [Allen and
Kennedy (1987), Burke et al. (1988), Kong et al. (1991),
Krothapalli and Sadayappan (1991), Li (1989), Li et al. (1989),
Saltz et al. (1989), Tang et al. (1990), Wolf and Lam (1991), Wolfe
(1988)]. In order to execute the iterations which have data
dependences concurrently, the loops have to be modified to
eliminate any dependences that exist. In cases where data
dependences cannot be removed, synchronization statements are
inserted in the loops [Midkiff and Padua (1986)].

In this chapter, a technique to detect parallelism in loops is
described. It is based on the Bernstein Sets (BSs) and the
Bernstein Tests (BTs) [Bernstein (1966), Evans and Williams
(1978), Williams (1978)]. This technique, called the Bernstein
Loop Tests (BL Ts), is well suited for loops containing array
variables as well as scalar variables. The notations called the
Data Reference Directions (DRDs) are used for the array
variables to indicate how they are being referenced by the loop
body in the different iterations. These directions are formulated
so that the dependence tests performed on the statements in the
loop body will derive results that will show whether the loop
iterations are parallelizable or not. This technique is discu ssed
from Section 5.2 to Section 5.5.

99

This chapter also discusses the various transformation techniques
that can be applied to loops in order to execute them in parallel.
Before any kind of transformation is performed, extensive
analysis on the loop body· has to be carried out in the DDA. The
information provided by the BSs and the results of the BLTs will
be used in making the decision on how the loops are best
transformed. The techniques discussed in this chapter are well
known techniques in compiler writing and parallelization of
programs [Aho et al. (1986), Padua and Wolfe (1986),
Polychronopoulos (1988), Wolfe (1989b), Zima and Chapman
(1990)]. They will be discussed from Section 5.6 to Section 5.8. In
Section 5.9, related issues concerning loop dependences are
discussed while Section 5.10 summarises the whole chapter.

5.2 PARALLELISM IN LOOPS

The example in figure 5.1 shows a loop with three statements and
their corresponding BSs. By inspecting the stanzas of each
iteration shown in figure 5.1(c), they show that there are data
dependences caused by variables a, band d. These variables are
involved in store operations. This is clearly indicated by the
contents of the BSs of the loop body as in figure 5.1(b) where a
and b are the variables in the X set and variable d in the Y set.
Thus, the types of BSs can indicate the data dependences. They
are X, Y and Z sets that contain variables involved in store
operations.

On the other hand, loop iterations which contain array variables
can be executed in parallel if there are no conflicting fetch/store
operations to the same array variables with two or more different
indices. This means. there must be no multiple fetch and store
operations on the same array elements by the different iterations.
As an example, for the loop in figure 5.2(a), each iteration will be
making references to array elements a, band c without having to
cross the boundary as figure 5.2(b) shows. Thus, the iterations
can be executed in parallel. This is called loop - j n d e pen den t
dependence [AlIen and Kennedy (1987), Padua and Wolfe
(1986), Wolfe (1989b), Wolfe and Banerjee (1987)].

100

for i := 1 to n do
begin

a := b + c; ... sI
b := a - 10; ... s2
d := c + d; ... s3

end;

(a) A loop with scalar variables

w X Y Z

sI: c,b a
s2: a b
s3: c d

(b) The BSs of the statements of the loop in (a)

it!:lratiQn 1 it!:lratiQn 2 UI iteration n

a:= b + c; a := b + c; a := b + c;
b := a - 10; b := a - 10; b := a - 10;
d := c + d; d:= c + d; d := c + d;

(c) n iterations with data dependences

Figure 5.1: A non-paraBelizable loop due to store and fetch
operations

101

for i := 1 to n do
begin

a[i] := b[i] + cri];
b[i] := a[i] + k;

end;

(a) a loop with n iterations

iteration 1
a[l] := b[l]+c[l];
b[l] := a[l]+k;

iteration 2
a[2] := b[2]+c[2];
b[2] := a[2]+k;

tot iteration n
a[n] := b[n]+c[n];
b[n] := a[n]+k;

(b) n iterations which can be executed on n processors

Figure 5.2: A parallelizable loop containing array variables

for i := 1 to n do
begin

a[i+l] := b[i] + cri]; ... SI
b[i-l] := a[i] + k; ... S2

end;

(a) A loop with data dependences

iteration 1
a[2] := b[I]+c[I];
b[O] := a[I]+k;

iteration 2
a[3] := b[2]+c[2];
b[l] := a[2]+k;

t ..

(b) n iterations with data dependences

iteration n
a[n+ 1] := b[n]+c[n];
b[n-l] := a[n]+k;

Figure 5.3: Data dependences due to array variables

102

However, for a loop such as in figure 5.3(a) the iterations are not
independent because data dependences cross the boundary for
the array a and array b. Iteration 2 fetches the element a[2]
while in iteration 1, the same element is being stored with a
value. The same problem applies to array b. There are data
dependences between i-th iteration and (i±l)-th iteration. This is

shown in figure 5.3(b). The data dependences caused by the
arrays a and b are called the forward dependence and the
backward dependence respectively. These are also called
loop-carried dependences [Lewis and EI-Rewini (1992), Padua
and Wolfe (1986), Wolfe (1989), Zima and Chapman (1990)].

As mentioned in Chapter 3, Williams (1978) has implemented a
set of dependence tests called the Bernstein Tests (BTs) to
determine whether any two stanzas are contemporary or not, that
is, whether they can be executed in parallel or not. The tests can
easily handle sets containing scalar variables as in the stanzas
shown in figure 5.1 or individual single array elements such as
a[10] (that is a single array 'a' element with a constant index
value of 10).

To determine if loops can be parallelized or not, Williams
considers each iteration as a stanza with individual array
elements as part of the contents in the BSs. Then the BTs are
applied to all stanzas to determine which iterations are
parallelizable. In this technique, a lot of stanzas have to be
formed, i.e., depending on the size of the lower and upper limit of
the loops, as well as the tests to be applied. As an example,
consider the example in figure 5.4. The loop in figure 5.4(a) will
give the individual stanzas (with the loop body taken as a stanza)
for each iteration as in figure 5.5, based on the general BSs as
shown in figure 5.4(b). Clearly, the BTs developed by Williams
will show that there are data dependences between iterations
due to the array references caused by a[i+l] and a[i] and b[i-l]
and b[i].

103

for i := 1 to 10 do
begin

end;

a[i+l] := b[i-l] + cri];
b[i] := a[i] + k;
cri] := b[i] + m;

(a) A loop with array references

W

b [i-I]

a[i]
k, m

x y

a[i+ 1] cri]

z

b[i]

(b) The general BSs for loop body in (a)

Figure 5.4: Williams' general iteration stanzas

For the loop tests developed in this chapter, instead of forming a
number of stanzas for each iteration, the BSs are formed either for
the whole loop body (i.e., one stanza only) or for each statement in
the loop body (Le., many stanzas). These BSs will contain array
variables with Data Reference Directions (DRDs), denoting how
they are being referenced. A set of tests called the
Bernstein Loop Tests (BL Ts) will handle specifically these BSs

to detect any data dependences caused by the array variables.
No modification is needed for scalar variables.

104

b[O] a[2] c[1] b[l] ... i = I
a[l]

k, m

b[l] a[3] c[2] b[2] ... i = 2
a[2]

k, m

b[2] a[4] c[3] b[3] ... i = 3
a[3]

k, m

b[3] a[S] c[4] b[4] ... i = 4
a[4]

k, m

b[8] a[lO] c[9] b[9] ... i = 9
a[9]

k, m

b[9] a[ll] c[lO] b[lO] ... i = 10
a[lO]
k,m

Figure 5.5: Williams' individual iteration BSs for the loop in
figure S.4.

10S

5.3 DATA REFERENCE DIRECTIONS

Allen and Kennedy (1987), Allen et a1. (1987), Wolfe (1989),
Wolfe and Banerjee (1987) and Zima and Chapman (1990) have

used the data dependence directions for specifying how
iterations in loops are data dependent-related. They define the
notations <, > and = to denote these directions. Forward direction
'<' denotes a dependence which crosses an iteration boundary

forward (i.e., from iteration i to iteration i+l). Backward direction
'>' denotes a dependence which crosses an iteration boundary
backward (Le., from iteration i to iteration i-I). Equal direction

'=' denotes dependence which does not cross an iteration .

•
The same notations will be used in this chapter to enable the loop
iterations to be tested for data dependence. However, here they

denote how array elements are being referenced with respect to
the i-th iteration. They will be called the Data Reference

Directions (DRDs). The symbols <, > and = denote Forward

Reference, Backward Reference and Equal Reference
respectively. Associated with these reference directions and the
results of the loop tests are the distances of the directions and
the distances of dependences. They are defined below.

DEFINITIONS 5.1

Let A to be an array variable, i to be a loop index and const to
be a constant. Data Reference Directions (DRDs) are:

a. a Forward Reference «) which is a reference to an array
variable of the form A[i+constj with respect to i-th iteration.

b. a Backward Reference (» which is a reference to an
array variable of the form A[i-constj.

c. an Equal Reference (=) which has an array reference of
the form A[ij

106

A study by Shen et al. (1989) shows that over 75% of array
subscripts found in library packages are of the form [i±con st].

Hence, the subscript expressions defined above are adequate
enough to be used in extraction of some parallelism in programs.
Loops containing array variables with expressions other than
those defined above will be assumed to be non-parallelizable.

DEFINITIONS 5.2

(i) For a subscript {i±constj, the distance of direction is the
value of const.
references.

This applies to forward and backward

(iiJ A distance of dependence is the difference between two
iterations in accessing the array location. Let dl be the
distance of direction of one reference and d2 be the other
distance. Then the distance of dependence is Idl.d21.

These DRDs and the distances of directions will be augmented with
the array names in the BSs. The notation "a[>!]" denotes an array
variable a of one dimension with a backward reference direction
of distance -1 from the i-th iteration. An Equal Reference
Direction has a zero distance. The single-statement stanzas for the
example in figure 5.3 will give the BSs with DRDs as shown in
figure 5.6. The loop body in figure 5.4(a) has a stanza with the
corresponding BSs with DRDs as shown in figure 5.7. A stanza of
the following form:

a[i] := a[i] + b[i-l] + c[i+3];

will have the following BSs with directions.

w x y z

c[<3],b[>!] a[=]

107

w x y

SI: b[=] a[<l] -

c[=]

S2: a[=] b[>l]

k

z

Figure 5.6: BSs for the loop in figure 5.3

w

b[>l]

a[=]

k,m

x

a[<l]

y z

c[=] b[=]

Figure 5.7: BSs with DRDs and direction distances for the loop in
figure 5 .4(a)

108

To test for the data dependences between the iterations, the BL Ts
will be applying a slightly different 11 (AND) operation. Since the

array variables in the BSs have reference directions augmented to
them, the 11 operations will be based on the intersection

operations as given in figure 5.8. A new symbol "*,, is introduced
to represent "<>" as a single character.

5.4 THE BERNSTEIN LOOP TESTS (BL TS)

As mentioned earlier, the BTs implemented by Williams can be
applied to stanzas with scalar variables or specific individual
single array elements (such as a[lO] in Pascal). To detect any
data dependences involving general array references, the tests are
entended to enable them to handle variables with DRDs. These
tests will be called the Bernstein Loop Tests (BLTs). The BLTs
will be derived to handle two different cases: fetch/store
dependence and store dependence. They will handle all forms of
scalar and array references. In the following discussion, a stanza
is derived from statements in the loop body. Let there be n
stanzas Si where 1 !> i !> n, each containing W, X, Y and Z
sets. Let WYZ be (W u Y u Z) and XYZ be (X u Y u Z).

11 operation = > <

= = > <
> > > *
< < * <

Figure 5.8: AND '11' operations for DRDs

109

CASE 1; Fetch-Store Dependence

There must be no dependences between a set of memory
locations between the stanzas in the loop body that are fetched
during execution of the stanza Si and those that are stored during
the execution of stanza Sj and vice versa. This means that, the

following condition:

BLTl: WYZi () XYZj

where 1 S; i, j S; n, n = number of stanzas

must be 0. If array variables are involved, all DRDs resulted

from the tests must be of Equal Reference Direction or of
Forward/Backward Reference Directions with zero dependence
distances. This kind of data dependence is usually caused by
the loop statements of the following form (with forward and
backward directions):

for i:=1 to n do
begin

a[i] := ; { array variable dependence }
... := a[i±c] ... ;
... := b[i±c] ... ;

b[i] := ;
cri] := c[i±c] ;

:= d ... ; { scalar variable dependence }
d ·- . . - ,
e := ;

:= e ... ;
f := f ... ;

end;

Therefore, BL Tl will detect any fetch/store dependences due to

array and scalar variables.

110

CASE 2; Store Dependence

For any scalar and array variables in the loop, there must not be
any dependence between iterations due to the memory
locations stored between anyone or more stanza. In the case of
scalar variables, if the following test:

XYZi () xyz' . ~
where 1 ~ ~ ~ n, n = number of stanzas

does not give 0 results, then it indicates data dependence exists.

This kind of dependence is usually caused by the loop
statements of the form (for all i and j):

for i:=l to n do
begin

end;

· ... ,
a := ... ;

b := b + ... ;
... ,

On the other

give results
hand, if array variables are present, then BL T2 must

having Forward and/or Backward directions with
non-zero dependence distances to indicate data dependence.
Results which are 0 or contain variables with Equal direction or

with zero dependence distances imply that there are no data
dependences. If i * j then the dependence is usually caused by
the loop statements of the following form:

for i:=l to n do
begin

end' ,

· ... ,
a[i] := ... ;
a[i±c] := ... ;

· ... ,

111

This test does not apply for i - j since the dependence distances
produced will always be zero.

It should also be noted that, if there exists data dependences as
indicated by the results of the BL Ts, the dependence distances can
be checked further. If they are greater than or equal to the loop
bound, then it can be concluded that there are no data
dependences. The following example has a dependence distance
of 5, which is equal to the loop bound and thus the iterations are
independent.

for i := 1 to 5 do
begin

a[i] := ...
... := a[i+5] ...

end;

Furthermore, the dependence distances (either forward or
backward) may indicate partial parallelization if they are· greater
than 1. Zero distances imply independence between the
iterations.

5.4.1 Summary of the BL Ts

In order for the original BTs developed by Williams to handle
array variables, they are extended to handle the DRDs to become
BL Ts and become as follows.

BLT1: WYZi !l XYZj
where 1 :s; i,j :s; n, n = number of stanzas·
XYZj !l XYZj
where 1 :s; ij :s; n, n = number of stanzas

To determine the existence of data dependences in a loop that
contains n stanzas Si and Sj (where 1 :s; i,j :s; n):

112

a. for scalar variables:

BLTl (Si, Sj) '" 0 for all i and j
BLT2 (Si, Sj) '" 0 for all i and j I t.oE j

b. for array variables:

BLTl (Si,Sj)",,0 or produces Forward/Backward

directions with non-zero dependence distances,
for all i and j

B L T2 (Si,Sj) "" 0 or produces Forward/Backward
directions with non-zero dependence distances,
for all i and j, i<j

For dependences due to array variables, the results produced
by the above tests will be checked based on the decision rules as
in figure 5.9. An implementation of the BLTs is given in Appendix
D

If the result produced by the BLTs is or contains:

i. 0

ii. =
iii. <
iv. >
v. *

direction
direction
direction
direction

no dependence

no dependence
forward dependence
backward dependence
<> dependence which indicates
that there is a partial parallelization
between two iterations
with distances of directions dl and
d2 and dl < d2. The distance of
the dependence is d2 -d 1 .

Figure 5.9: Decisions rules for the data dependence in loops

113

5.4.2 Nested Loops

The DRD notations can be extended for nested loops where a
vector of reference directions is formed for each array
variable. For each direction, a distance is associated with it. Note
that only perfectly nested loops with proper loop level indices are
considered in this section. They are of the following form.

for il := ...
begin

for i2 := ...
begin

for in := ...
begin

BODY(il,i2, ... ,in);
end {for in}

end (for i2)
end {for il}

Consider the following perfectly nested loop with two levels.

for il := 1 to n do
begin

for i2 := 1 to n do
begin

a[i,j] := b[i,j] + c[ij];
end {for i2}

end {for il}

The corresponding BSs for the loop body are as follow.

114

W x Y Z

b[=.=] a[=.=]
c[=.=]

In applying the BLTs. the positions of the directions should match
those on the same level. For example. consider the following BSs
and the array b.

W

b[=,>2]

a[=.=]

x

a[=.=]
b[=.>l]

Y Z

The outcome of the test WYZ 11 XYZ is decided as follows.

b 11 b giving result

level - -- -- -- - - - - ---- - -- -- - - -- -- - - -- -- - - -- - -- - ---
1 = 11 = giving =
2 giving

5.5 EXAMPLES OF THE APPLICATION OF THE BLTS

In this section. examples will be shown to test the validity of the
BLTs.

EXAMPLE 5.1: In the following example. each statement in the
loop body is treated as a single stanza.

for i := 1 to n do
begin

a[i] := a[i] + a[i+l]; ... SI
a[i-l] := k; ... S2

end;

115

w

SI: a[<I]
S2: k

WYZ

x

SI: a[<I], a[=] a[=]
S2: k a[>I]

Y

a[=]

The results of the BL Ts are as follows.

a. WYZll1 XYZ2 = (a[*2], a[>1] }
b. XYZl 11 WYZ2 =0
c. XYZl I1XYZl =0
d. XYZ2 11 XYZ2 = 0
e. WYZll1 XYZl = { a[<I], a[=] }
f. WYZ2 11 XYZ2 = 0
g. XYZll1 XYZ2 = { a[>1] }

z

(scalar only }
(scalar onl y }

The conclusions of the tests are that there are 3 dependences due
to array variables (one within SI and two between SI and S2)
and there is no dependence due to scalar variables.

116

EXAMPLE 5.2: In this example, the loop body is taken as a
stanza.

program prloop;
begin

end.

for i:=1 to 10 do
begin

end;

a[i+l] := b[i-I] + cri];
b[i] := a[i] * k;
cri] := b[i] - I;
d[i] := d[i+ I] * k;
aa := bb + cc;
gg := aa - hh + i;

for i:=1 to n do
begin

end;

a[i] := a[i+ I] * mm;
b[i-I] := b[i+l] * mm;
kk := kk + 10;
aa := bb + cc;

117

CONTENTS ofrul STANZAS

STANZA # W sets X sets Y sets Z sets

1 b[>l] a[<l] c[=] b[=]

a[=] d[=] aa
k gg
d[<l]

bb

cc
hh
i

2 a[<l] a[=] kk
mm b[>l]

b[<l] aa

bb

cc

118

CONTENTS of all WYZ and XYZ sets

STANZA # WYZ sets XYZ sets

1 i a[<l]
b[>l] c[=]
c[=] b[=]
b[=] d[=]
a[=] aa
k gg
d[<l]
aa
bb
cc
hh

2 a[<l] b[>l]

bb a[=]
cc aa
mm kk
b[<l]

kk

119

LOOP DEPENDENCE ANALYSIS

[DIRECTION symbols: < : forward, > : backward, = : equal, * : <>]

WYZ () XYZ for stanza 1:

Array dependence: (b[>l], c[=], b[=], a[<l], d[<l])
Scalar dependence - (aa)

XYZ () XYZ for stanza 1:

Scalar dependence - (aa, gg)

WYZ () XYZ for stanza 2:
Array dependence: (a[<l], b[*2])

Scalar dependence - (kk)

XYZ () XYZ for stanza 2:

Scalar dependence - (aa, kk)

The conclusions of the tests are as follows.

(i) for loop I, there are dependences due to scalar variables aa
(fetch/store dependence) and gg (store dependence). There
are also dependences caused by the array variables a, band
d.

(ii) for loop 2, there are data dependences due to scalar
variables aa (store dependence) and kk (fetch/store
dependence). There are also dependences caused by array
variables a and b.

120

EXAMPLE 5.3: In the following example, a nested loop of two
dimensions, adapted from Zima and Chapman (1990), is
considered.

for i := 1 to n do
begin

for j := 1 to n do
begin

c[i,j] := a[i,j] * b[i,j]; ... SI
a[i+l,j+l] := c[i,j-2]12 + c[i-l,j]*3; ... S2

d[i,j] := d[i-l,j-l] + 1; ... S3
b[i,j+4] := d[i,j] - 1; ... S4

end
end

CONTENTS of all STANZAS

STANZA # W sets

SI

S2

S3

S4

a[=,=]

b[=,=]

C[=,>2]

c[>l,=]

d[>l,>l]

d[=,=]

X sets Y sets Z sets

c[=,=]

d[=,=]

b[=,<4]

121

CONTENTS of all WYZ and XYZ sets

STANZA # WYZ sets XYZ sets

SI a[=.=] c[=.=]
b[=.=]

S2 C[=,>2] a[<I.<l]
C[>I.=]

S3 d[>I,>I] d[=.=]

S4 d[=.=] b[=.<4]

LOOP DEPENDENCE ANALYSIS

[DIRECTION symbols: < : forward. > : backward. = : equal. * : <>]

WYZ (') XYZ for stanza 1:
Array dependence = 0
Scalar dependence = 0

WYZ (') XYZ for stanza 2:
Array dependence = 0

Scalar dependence = 0

WYZ (') XYZ for stanza 3:

Array dependence - { d[>l.> I] }
Scalar dependence = 0

WYZ (') XYZ for stanza 4:
Array dependence = 0

Scalar dependence = 0

122

XYZ (') XYZ for all stanzas:
Scalar dependence = I2J

WYZ (') XYZ for stanzas I and 2:
Scalar dependence = I2J

Array dependence: { a[<!,<!], c[=,>2], c[>!,=] }

WYZ (') XYZ for stanzas 1 and 3:
Scalar dependence = I2J

Array dependence = I2J

WYZ (') XYZ for stanzas 1 and 4:
Scalar dependence = I2J

Array dependence = { b[=,<4] }

WYZ (') XYZ for stanzas 2 and 3:
Scalar dependence = I2J

Array dependence = I2J

WYZ (') XYZ for stanzas 2 and 4:
Scalar dependence = I2J

Array dependence = I2J

WYZ (') XYZ for stanzas 3 and 4:
Scalar dependence = I2J

Array dependence: (d[=,=])

The conclusions of the tests are as follows.

1. The test between stanzas SI and S2 shows that there are
forward and backward dependences (Le., a cycle) between
the two of them, due to array a and array c.

2. There is a forward dependence between stanzas SI and S4
in the inner loop.

3. There are backward dependences in stanza S3.

123

5.6 TRANSFORMATION OF LOOPS

Loop transformation has been a major focus in the parallelization
of sequential programs [Alien (1988), AlIen and Kennedy (1984a),
Appelbe and Smith (1989), Banerjee. (1988), Burke et al. (1988),
CaIlahan et al. (1987), Cytron (1986), lackson (1985), Kuck et al.
(1981), Li (1989), Midkiff and Padua (1986, 1987), Padua and
W01fe (1986), Saltz et al. (1989), Wolf and Lam (1991), Wolfe
(1986, 1988)]. Before any. transformation can be performed,
extensive analysis has to be carried out to determine the data
dependence between the iterations. The BL Ts discussed above
are also able to carry out this analysis.

This section describes the application of' some transformation
techniques on loops for parallelization. They include the code
modification to eliminate data dependences, if possible, or the
insertion of proper synchronization constructs so t,hat the
iterations will still be able to be executed in parallel even though
dependences exist. Most of the work done by other researchers
uses the DDG to decide on which transformation methods'Xfo be
applied. However, the techniques described in this section are
based on the BSs and the BLTs. The discussion assumes a source
level transformation.

5.6.1 Loop Parallelization and Vectorization

There are two types of program transformations: paraIlelization
and vectorization [Padua and Wolfe (1986), Polychronopoulos
(1988), Zima and Chapman (1990)]. Vectorization is a process of
transforming loops into vector codes for vector computers"
whereas parallelization is a transformation process mainly
targeted for shared-memory parallel machines.

For vector codes such as in Fortran 8x [Albert et al. (1988)], if
arrays A, Band C are declared as:

DIMENSION A(1 :n,1 :m), B(1 :n,1 :m), C(1 :n,1 :m)

124

then the statement:

A(l :n) = B(l :n) * C(l :n)

is functionally equivalent to the following loop.

for j := 1 to m do
begin

for i := 1 to n do
begin

A[i,j] = B[i,j] * C[ij]
end

end

The assignment statement:

A(i,1 :m:2) = B(i-l ,m:l :-2)

is equivalent to the loop:

for j := 1 to m step 2 do
begin

A[i,j] = B[i-l,m+l-j];
end

The inner j loop of the following nested loop:

for i := 1 to n do
begin

for j := 1 to n do
C[i,j] = C[i-l,j] - D[i-lj+l];

end;
end;

can be vectorized as follows.

125

for i := 1 to n do
begin

C[i,l:n] = C[i-l,l:n] - D[i-l,2:n+l]
end

In the parallelization of loops, there are two types of parallel loops
to be generated: the doall loops and the doC(cross loops.
Iterations of a doall loop must be completely independent
whereas iterations in a dOClcross loop have to be synchronized to
achieve parallelism. Figure 5.10 shows examples of a doall loop
and a doqcross loop adapted from Polychronopoulos (1988).

doall i = 1,100
a(i) = b(i) * c(i) + d(i);
b(i) = c(i) / d(i-l) + a(i);
if c(i) < 0 then c(i) = a(i) * b(i);

end all

(a) a doall loop

doacross i = 1,100
S: a(i) = b(i) * c(i) + d(i);

SEND_SIGNAL(S);

WAIT_SIGNAL(S,i-3);

SI: b(i) = c(i) / d(i-l) + a(i-3);
end all

(b) a 4oacross loop with synchronization statements

Figure 5.10: Parallelization of loops

126

5.6.2 Definitions of fetch and store directions

The application of the BLTs on loops will produce results that can
be classified as the Forward/Store (FS). Forward/Fetch (FF).
Backward/Store (BS) or Backward/Fetch (BF). These definitions
will be used to decide how the loops can be transformed.

a. Results of the test (XYZj (') XYZj)

This test will detect any dependences caused· by simultaneous
store operations, so the letter X will be appended to each
classification.

i. X-Forward/Store (XFS) - if the forward dependence involves a
store as for the array a below:

a[i] := p;
a[i+ 1] := q;

a[i+l] := q;
a[i] := p;

ii. X-Backward/Store (XBS) - if the backward dependence
involves a store as for the array a below:

a[i-l] := q;
a[i] := p;

<R a[i] := q;

a[i-l] := p;

b. Results of the test (WYZj (') XYZj)

This test will detect any data dependences due to fetch first and
store later operations (that is Y) or dependences due to store
first and fetch later operations (that is Z). Hence a letter Y or Z
will be appended to each classification.

i. Y and Z-Forward/Store (YFS and ZFS) if the forward dependence
involves a store as for the array a below. The values fetched are
new values.

127

YFS
p := a[i];
a[i+ 1] := q;

ZFS
a[i+l] := p;
q := a[i];

ii. Y and Z-Forwardlfetch (YFF and ZFF) if the forward dependence
involves a fetch as for the array a below. The values fetched are
old values.

YFF
q := a[i+ 1];

a[i] := p;
a[i] := p;

q := a[i+l];

1Il. Y and Z-Backward/StQre (YBS and ZBS) if the backward
dependence involves a store as for the array a below. The
values fetched are old values.

YBS
p := a[i];
a[i-l] := q;

a[i-l] := p;
q := a[i];

iv. Y and Z-Backward/Fetch (YBF and ZBF) if the backward
dependence involves a fetch as for the array a below. The
values fetched are new values.

YBF
q := a[i-l];
a[i] := p;

ZBF
a[i] := p;
q := a[i-l];

5.7 TRANSFORMATION TECHNIQUES FOR SCALAR
VARIABLES

If a loop with scalar variables is tested to have data dependences,
the BSs of the loop body can be used to show how a loop can be
transformed. In this section, some of the well known
transformation methods are discussed. The application of these
methods is based on the contents of the BSs. For example,
consider the loop and its corresponding BSs shown in figure

128

5.11. The variable c is involved in store and fetch operations
and this causes data dependence between iterations. Undefined
results may be stored or fetched if the loop is parallelized. The
variable c is a member of Z set. If the iterations are to be
executed in parallel, care must be taken to ensure that the
value of c is properly maintained.

for i:=1 to n do
begin

end;

• .. t

c := a[i] + a[i+ 1] + a[i+2];
if c > m[i] then m[i] := c;
... ,

(a) a loop with scalar data dependences

Yi. X Y Z

a[=] m[=] c
akl]
ak2]

(b) The Bernstein Sets

Figure S.I1: Scalar variables data dependences

Based on the types of the BSs which contain the variables, the
following transformation decisions can be made. Note that a
stanza is the whole loop body.

I. Variables in the W set

Scalar variables in this set do not have
involve only fetch operations, so,
executed in parallel.

129

any

each

effect since they
iteration can be

Il. Variables in the X set

Scalar variables in this set involve only store operations and
this could give undefined values by the concurrent execution of
the iterations in the loop. Since their values will not be fetched
by any iteration, they become redundant and may be moved out
of the loop. However, their values in the last iteration have to
be computed and saved for later references. Alternatively, they
can be renamed with array variables or declared as local
variables.

Ill. Variables in the Y set

The values of the variables in this set will be first fetched and
later stored, so the data dependences can be eliminated by scalar
renaming (discussed below) or declared as local variables for each
iteration.

IV. Variables in the Z set

The values of these variables will be stored and later fetched, thus
they can be treated as local variables in each iteration or
eliminated by scalar renaming or scalar forward substitution.

Below, some of the well known transformation techniques
suitable for transforming loops with scalar variables are discussed
[Aho et al. (1986), Padua and Wolfe (1986)], Polychronopoulos
(1988), Zima and Chapman (1990)].

1. Scalar forward substitution

In this technique, each occurrence
with its corresponding expression.

of a variable is substituted
In the following example:

130

for i := 1 to n do
begin

x := i*i - k; ... sI

sum[x] := sum[x,x+5] + a[i]; ... s2

end

the variable x causes the data dependence. Since its value is first
evaluated, its occurrence in the succeeding statements can be
replaced by the expression evaluated earlier. This will eliminate
the data dependence. Hence, the statement 82 can be modified to:

sum[i*i - k] := sum[i*i - k,i*i - k+5] + a[i];

Since the variables involved must be initially stored and later
fetched, then they must be members of the Z set (with the loop
body taken as a single stanza). If the variables involve, in a new
store operation, then care has to be taken so that the new value
substituted is the latest assigned expression. A main
disadvantage of this technique is that it increases the run-time
needed to evaluate each expressions repeatedly.

n. Scalar renaming (expansion)

In this technique, the scalar variable
eliminate any data dependences.

is given a different name to
This is usually done by

renaming it with a temporary array variable. For example,
consider the following loop.

131

for i:=l to n do
begin

a := 10;
x := a + b;

end;

The variables a and x which cause
renamed with array names such

the data dependences, can be
as NEWa[i] and NEWx[i]

respectively. The transformed loop is as follows which does not
have any dependences.

for i:=1 to n do
begin

NEWa[ij := 10;
NEWx[i] := NEWa[i] + b;

end;

This technique applies to scalar variables in the X, Y and Z sets of
the BSs. However, if the variables in Y set are involved in a
statement such as a := a + 1 (i.e., a is called a reduction variable),
then they cannot be renamed as in the above method since each
iteration will be using and updating the value. One main
shortcoming of this technique is that it increases the use of
variables in the program.

Ill. Constant Propagation

This is a common technique in optimizing compilers which
determines the values of constants in programs. These values are
then propagated throughout the programs. This technique
eliminates the need for run-time evaluation of the values.
Consider the following example.

132

for i:=1 to n do
begin

pi := 3.142; ... SI
twopi := 2*pi; ... S2
arr[i) := twopi * rad[i) * rad[i); ... S3

end; '.

The variables pi and twopi can be determined as constants since
they are assigned with constant values. Consider the BSs of the
loop body.

w x Y z

SI: pi
S2: pi twopi
S3: twopi arr[i)

rad[i)

From the first BSs, pi is assigned a constant value since there are
no other variables in the other sets. This value is then fetched
and later stored in twopi, thus showing that twopi is also a
constant. Therefore, the loop can be transformed into vector
instructions as follows.

pi := 3.142;
twopi := 6.284;
arr[1 :n) := twopi * rad[l :n) * rad[1 :n);

5.8 TRANSFORMATION TECHNIQUES FOR ARRAY
VARIABLES

In this section, some transformation methods suitable for loops
containing array variables are discussed. These methods are
standard techniques for program transformation and are widely
discussed in the literature [AlIen and Kennedy (1987), Ebenstein
and Mcdermott (1990), Lewis and EI-Rewini (1992), Padua and

133

Wolfe (1986), Polychronopoulos (1988), Smith and Appelbe
(1989), Wolfe (1989b), Zima and Chapman (1990)]. Here, the
rules for transformation are based on the contents of the BSs and
the results of BL Ts.

I. Loop distribution

In this technique, a
distribute the control

loop is broken into several loops to
over groups of statements in its body. This

is particularly convenient for vectorization. As an example, the
single loop below has a YFF dependence caused by array a.

for i:=1 to n do
begin

cri] := a[i+2] * b[i]; ... SI
a[i] := b[i] + cri]; ... S2

end

It can be transformed to become two loops as follows.

for i:=l to n do
begin

cri] := a[i+2] * b[i];
end

for i:=l to n do
begin

a[i] := b[i] + cri];
end

Then they can be vectorized to become:

c(1 :n) = a(1 :n+2) * b(1 :n)
b(1 :n) = b(1 :n) + c(1 :n)

The semantics of the statements are preserved since the fetched
element of a[i+2] in SI contains its old value. In the following
example, the array a has a XFS data dependence.

134

for i:=1 to n do

begin

end;

a[i] := p;
a[i+ 1] := q;

It can also be distributed into two loops to become:

for i:=1 to n do
begin

a[i] := p;
end;

for i:=1 to n do
begin

a[i+l] := q;

end;

The vectorized statements are as follows.

a[1:n] := p;
a[2:n+ 1] := q;

In general, the rules for this transformation are as follows:

a. the variables are store dependent This usually appears in
initialization loops.

b. the statements do not have forward and backward
dependences (Le., in a cycle) such as in the following

example. Statements SI and S2 contain an array a that has
a forward dependence and array b that has a backward
dependence. This means that, they cannot be separated into
different loops.

135

for i:=1 to n do
begin

end;

a[i+l] := b[i-l] + cri];
b[i] := a[i] * d[i];
cri] := b[i] + d[i];

... SI

... S2

... S3

However, the statement S3 has an Equal dependence with SI
and S2 and hence the whole loop can be distributed as
follows.

for i:=1 to n do
begin

end;

a[i+l] := b[i-l] + cri];
b[i] := a[i] * d[i];

for i:=1 to n do
begin

cri] := b[i] + d[i];
end;

... SI

... S2

... S3

c. the variables are NOT YBF or YFS because loop distribution
destroys the dependences and the new values of the arrays
are not properly accessed.

ii. Statement reordering

This method involves exchanging the textual positions of two
statements in a loop body. The following loop cannot be
vectorized due to the presence of a data dependence on array a
which is YBF. The values fetched are new values that are assigned
by the other statement, except for the first element.

136

for i:=l to n do
begin

end

cri] := a[i-l] - 4;
a[i] := b[i] * 2;

If the statements are reordered, the loop becomes:

for i:=l to n do
begin

end

a[i] := b[i] * 2;
cri] := a[i-l] - 4;

Now the data dependence of array a has a ZBF dependence where
the fetched values of a[i-l] are new values. Thus, the loop can be
distributed and vectorized.

a[l:n] = b[l:n] * 2
c[l:n] = a[O:n-l] - 4

In general, the conditions for this kind of transformation are as
follows.

a. For the scalar variables, they are members of the W or X
sets only and NOT members of the Y and Z sets

b. For the array variables, the types of dependence are YFS
and YBF. These dependences involve new values that are
being fetched initially. Hence, the statement with the fetch
operation may be reordered to appear later in the sequence
of iteration execution.

c. For the array variables, there are NO equal (=) dependence
directions after the BLTs have been applied, i.e., there are no
loop-independent dependences on any variables such as the
array a in the following example. Note that array b has a

137

YFS dependence.

for i:= 1 to n do
begin

a[i] := b[i];
b[i+ 1] := a[i] + .. ,

end

iii. Loop interchange

In this technique, any two levels of a perfectly nested loop are
exchanged. For the example below, the BLTs will indicate that the
inner loop is unparallelizable, since there is a forward dependence
for the j loop for array a[=,<]. If the loop statements are
interchanged, the new inner loop can then be parallelized.

for i:=1 to n do
begin

for j:=1 to n do
begin

a[i,j+l] := a[ij] * b[i,j];
end

end

The interchanged version is as follow.

for j:=1 to n do
begin

for i:=1 to n do
begin

a[i,j+ 1] := a[ij] * b[i,j];
end

end

After interchanging, the outer j loop will be executed sequentially
while the inner i loop can be executed concurrently. This is
suitable for vectorization as in the following form.

138

for j:=1 to n do
begin

a[i:n,j+l] := a[i:n,j] * b[i:n,j];
end

However, for parallelization, the earlier version (before
interchanging) is preferable since then there will be less
overheads incurred in executing the outer loop concurrently.

For a nested loop such as in the above example, this will involve
more than one direction for the array variables, that is, a vector
of reference directions is needed. Let D be a vector of data
dependence directions:

D = (dl,d2, ... ,dn) with dj = «,>,=,*),
for all 1 ~ i ~ n, n = number of dimensions

The necessary condition for this kind of transformation is that,
given a nested loop of n dimensions, two loop statements with
array directions A[... ,di, ... ,dj, ...] cannot be interchanged if one of
them (i.e., di or dj) has a forward direction and the other one has a

backward direction. This means that if an array has directions
such as A[... ,<, ... ,>, ...], it indicates that the two loops are not
interchangeable.

iv. Index set splitting

In this technique, the loop is divided into two or more loops with
partial size. The loops can then be executed concurrently. The
following example:

for i := 1 to 200 do
begin

end

b[i] := a[201-i] + cri];
a[i] := c[i-l] * 2;

139

can be split into two loops to become:

for i := 1 to 100 do
begin

end

b[i] := a[201-i] + cri];
a[i] := c[i-l] * 2;

for i := 101 to 200 do
begin

end

b[i] := a[201-i] + cri];
a[i] := c[i-l] * 2;

This technique requires an extraction of the distance of the
dependence in order for the loop bound to be split properly. In
the above example, the distance is 200.

v. Node splitting

This method breaks expressions occurring in statements into
several parts. This involves a lower level treatment of
expressions in statements of the loops. The arrays involved must
be those which do not contribute to any results in the BLTs such
as arrays c and d as in the following example.

for i := 1 to n do
begin

b[i] := a[i] + cri] * d[i]; ... SI
a[i+ 1] := b[i] * (d[i] - cri]; ... S2

end

140

The expression in SI can then be split as in the following example,
with t1 and t2 as temporary variables.

for i := 1 to n do
begin

end

t1 [i] := cri] * d[i];
t2[i] := d[i] - cri];
b[i] := a[i] + t1 [i];
a[i+ 1] := b[i] * t2[i];

The first two statements of the loop can be vectorized as follows.

t1[l:n] := c[l:n] * d[l:n];
t2[1 :n] := d[l :n] - c[l :n];
for i := 1 to n do
begin

end

b[i] := a[i] + t1[i];
a[i+ 1] := b[i] * t2[i];

vi. Loop blocking.

One way to transform a loop with a dependence distance ~ 2 is

to perform the loop blocking transformation [Padua and Wolfe
(1986), Polychronopoulos (1988)]. It creates doubly nested loops
out of a single loop, by organizing the computation in the original
loop into chunks of approximately equal size. This is also called
partial parallelization mentioned in Section 5.4 above. It is often
used to manage vector registers, caches or local memories with
small sizes. Consider the following loop.

for i := 1 to n do
begin

end;

p := a[i];
a[i+k] := ... ;

141

For the index reference in the form 'i+k', where k ~ 2, the loop

can be transformed into the following form.

for j := 1 to n STEP k do
parfor i := j to min(j+k-l,n) do
begin

end;

. ... ,
p[i] := a[i];
a[i+k] := ... ;
... ,

vii. Array Alignment

Array alignment is a technique which involves adjusting the array
reference to eliminate the data dependences. It transforms a
loop-carried dependence into a loop-independent dependence. In
the following example, there is a loop-carried dependence caused
by array a.

for i:=1 to n do
begin

end;

a[i] := b[i+l] - c[i-l];
d[i] := a[i-l] + e[i];

The data dependence can be eliminated by array alignment as in
the following code:

for i:= Oto n do
begin

if i > 0 then a[i] := b[i+l] - c[i-l];
if i < n then d[i+ 1] := a[i] + e[i+ 1];

end;

Variables involved are usually of the types YBS and ZBS such as
a[i-l] above where they can be aligned to a[i]. This is allowed

142

since the backward reference is a reference to an old value.

viii. Loop unrollin&

This technique makes one or more copies of the loop body and
thus increases the stride. This will reduce the control overhead in
executing the loops as in the following example.

for i := 1 to 1000 do
begin

a[i] := b[i+2] * a[i-l];
end

It can be unrolled to become a loop with a stride of 2 which has
only 500 (i.e., 50% less) iterations to be generated.

for i := 1 to 1000 step 2 do
begin

end

a[i] := b[i+2] * a[i-l];
a[i+l] := b[i+3] * a[i];

A similar technique cal1ed loop replication makes copies of
statements in loop body without changing the stride [AlIen and
Kennedy (1987)]. Consider the fol1owing example.

for i := 1 to n do
begin

end

a[i] := b[i] * cri];
d[i] := a[i] * a[i-l];

It has a ZBP dependence caused by operations on array elements
a[i] and a[i-l]. To be able to perform array alignment, as discussed
above, the first statement can be replicated and the array element
a[i] in the second and third statement renamed to NEWa[i].

143

for i := 1 to n do
begin

a[i] := b[i] * cri];
NEWa[i] := b[i] * cri];
d[i] := NEWa[i] * a[i-l];

end

The loop can then be distributed and aligned as follows, thus
eliminating all data dependences.

for i := 1 to n do
NEWa[i] := b[i] * cri];

for i := 0 to n do
begin

if (i > 0) then a[i] := b[i] * cri];
if (i < n) then d[i+ 1] := NEWa[i+ 1] * a[i];

end

ix. Array renaming (or variable copying)

Scalar renaming is useful for eliminating data dependences
involving scalar variables. For array variables, they can also be
renamed to eliminate data dependences. Consider the following
example where there is a data dependence on array a which is
ZFF.

for i:=l to n do
begin

end;

a[i] := b[i] + cri];
d[i] := a[i] + a[i+ 1];

It can be transformed into the following version after renaming
the array a[i] to NEWa[i], thus eliminating the data dependence.

144

for i:=l to n do
NEWa[i] := a[i];

for i:=l to n do
begin

a[i] := b[i] + cri];
d[i] := a[i] + NEWa[i+ 1];

end;

The loops can then be vectorized as follows.

NEWa[l :n] := a[l :n];
a[l:n] := b[l:n] + c[l:n];
d[l:n] := a[l:n] + NEWa[2:n+1];

For this technique, the array variables must be of the types YFF,
ZFF, YBS or ZBS as derived by the BLTs, to enable them to be
renamed with different array names. This is because the
forward reference is a reference to an old value. In the previous
example, a[i+1] refer to old values of a and thus can be renamed.

x. Synchronization statements.

In some cases, data dependences cannot be eliminated at all.
When array variables with complex array subscripts, such as
coupled subscripts or array subscripts or those other than
(i±const), are met, usually data dependence is assumed to exist.

Since the dependences are difficult to be eliminated, the
synchronization instructions such as LOCK and UNLOCK (for shared
memory machines) are used [Midkiff and Padua (1987), Tang et
al. (1990), Wolfe (1988)]. These instructions will create the
critical regions in which only one process will be able to execute
its critical region at a time. The following example shows one loop
with LOCK and UNLOCK statements.

145

for i:=l to n do
begin

end;

LOCK;
if a[i] > max then

max := a[i];
UNLOCK;

xi. Idiom recognition

In this technique program sections are detected and recognized to
perform some particular functions for which an efficient
implementation exists. Examples of such functions are
and PRODUCT(a) [Zima and Chapman (1990)].

special
SUM(a)

Table 5.1 gives a summary of the transformation techniques that
can be performed, based on the results of the BL Ts.

5.9 RELATED ISSUES ON LOOP DEPENDENCES

As discussed in Section 5.4 above, the BLTs can handle BSs
containing array variables. DRDs are attached to the array names,
indicating how they are being referenced. The subscripts that are
allowed are simple expressions of the forms [i±constant].
However, Shen et aI. (1989) have showed that there are other
forms of complex subscript expressions commonly found in
programs, although they are not found as frequent as the simple
expressions allowed by BLTs. These complex expressions include
coupled subscripts (i.e., loop indices appearing at any level),
nonlinear subscripts, array subscripts and symbolic subscripts.
The BL Ts will assume that there are data dependences when these
kinds of array subscripts are encountered.

146

X-Forward/Store (XFS) Loop distribution

X-Backward/Store (XBS) Loop distribution

Y -Forward/Store (YFS) Statement reordering
Loop blocking

Y -ForwardlFetch (YFF) Loop distribution
Array renaming
Loop blocking

Y -Backward/Store (YBS) Loop distribution,
Array renaming,
Array alignment

Y-BackwardIFetch (YBF) Statement reordering

Z-Forward/Store (ZFS) Loop distribution
Loop blocking

Z-ForwardlFetch (ZFF) Statement reordering
Array renaming
Loop blocking

Z-Backward/Store (ZBS) Statement reordering,
Array renaming,
Arrav alignment

Z-BackwardIFetch (ZBF) Loop distribution,

Table 5.1: Loop transformations and the dependence types

147

Handling complex subscript expressions has been studied by
several researchers using numerical methods [Banerjee (1988), Li
and Yew (1990), Wolfe (1989) and Zima and Chapman (1990)].
They are discussed in Chapter 3. Solutions for array subscripts
have been discussed by Polychronopoulos (1988). Apart from
these problems, loops sometimes contain non-uniform loop
indexing, procedure calls and conditional statements. This
increases the complexity of the loop analysis for data dependence.
For procedure calls, they can be handled by the Inter-procedural
Analysis (IPA) and this is discussed in Chapter 6. The problem
caused by non-uniform loop indexing needs modification before
any analysis and transformation can be performed. An example
of such a loop is as follows.

for i := 100 downto 1 do
for j := 5 to 100 step 3 do

This can be overcome by normalizing the loop indexing so that
each loop will start from 1 with a stride of 1. This, however, will
complicate the subscript expressions in the loop body and thus
making it more difficult to be handled by the BLTs.

Another problem that is encountered by the dependence analysis
is symbolic subscripts where the subscripts contain variables
[Haghighat (1990)]. Sometimes, this can be solved by constant
propagation. However, in some cases, the actual values of the
symbolic expressions are only known at run-time. One simple
solution is to generate conditional vectorized statements [Luecke
et al. (1991)]. Consider the following example.

for i:=1 to n do
a[i+k] := a[i]!b[i] + cri];

If the value of k is not known at compile time, the translation
could look like the following code.

148

if (k < 1 or k>= n) then
a[k+l:n+k] := a[l:n] / b[l:n] + c[l:n]

else
for i:=1 to n do

a[i+k] := a[i]!b[i] + cri];

The presence of complex control flow in loops also poses problems
for the BL Ts. This creates the control dependence between two
or more statements in a loop as mentioned in Chapter 3. This
dependence prevents the execution of one statement while
executing the other [Allen et al. (1983). Ferrante et al. (1987).
Padua et al. (1980). Riseman (1972)]. One simple solution to this
problem is to convert them into data dependences. Logical
variables are introduced to control execution of statements.
Consider the following example.

for i := 1 to n do
begin

end

if a[i] > 0 then
a[i] := b[i] + cri];

The control dependence can be removed as follows.

for i := 1 to n do
begin

t := a[i] > 0;
if (t) then a[i] := b[i] + cri];

end

The vectorized form of the above loop makes use of the where
statement. as in Fortran 8x. and they are as follows.

t[1 :n] := a[1 :n] > 0;
where (t[1 :n)) a[1 :n] := b[1 :n] + c[1 :n];

149

5.10 SUMMARY

This chapter has described the Bernstein Loop Tests (BLTs) to
detect parallelism in loops. Their iterations can be parallelized
if there are no
dependences are

data dependences. These inter-iteration data
usually caused by the references (i.e., fetch and

store operations) of the same array elements by the different
iterations.

The BL Ts are able to detect parallelism in loops containing array
variables as well as the scalar variables. The Data Reference
Directions (DRDs) have been used to indicate how the array
variables are being referenced by the various iterations.
These directions «, > and =) are augmented with the array
names in the BSs. However, the subscript expressions allowed by
the BL Ts are simple expressions and this may not uncover most of
the parallelism that exists.

This chapter has also discussed the transformation techniques that
can be carried out on loops. The rules for transformation
developed in this chapter are based on the BL Ts as well as the
contents of the BSs. Once the data dependences have been
ascertained, the loops will then be transformed by modifying
their codes to remove the dependences. Combinations of
techniques can be used to do the transformations. The process
must ensure that the semantics of the loops are maintained. For
those loops whose dependences cannot be eliminated, certain
synchronization constructs such as LOCK and UNLOCK are
inserted. As a conclusion, this chapter has showed that the BSs
and the results of the BLTs are very useful in making decisions on
the type of transformation methods to be carried out in the
parallelization of programs.

150

CHAPTER 6

INTER-PROCEDURAL ANALYSIS

6.1 INTRODUCTION

Much effort has been made on performing the dependence
analysis on sequential programs in the attempt to parallelize
them, especially the loops [AlIen and Kennedy (1984a, 1984b,
1987), AlIen et al. 1987b), Banerjee (1988), Burke et al. (1988),
Callahan et al. (1987), Kuck et al. (1981, 1984), Li and Yew
(1990), Mohd-Saman and Evans (1993), Padua and Wolfe (1986),
Wolfe (1989a, 1989b), Wolfe and Banerjee (1987)]. However,
program restructurers sometimes have to make some
conservative assumptions as to whether to carry out the
parallelization or not, due to insufficient information caused by
the invocations of procedure calls [Banning (1979), Barth (1978),
Burke and Cytron (1986), Callahan et al. (1986), Callahan and
Kennedy (1987), Cooper and Kennedy (1988, 1989), Cooper et al.
(1986), Havlak and Kennedy (1991), Li (1989), Li and Yew (1988),
Schouten (1990), Triolet (1985), Triolet et al. (1986)].

Introduction of procedures in a program causes certain
information on the usage of the variables to be hidden from being
analysed for optimization and parallelism. Procedures that are
called may be modifying some common or global variables and
may inhibit any form of parallelism. Hence, an Inter-procedural
Analysis (IP A) is greatly needed as part of the dependence
analysis. It will give the compiler more information to decide on
the status of the data dependence in loops and programs. This is
one of the most important aspects in the implementation of a
parallelizing software tool.

This chapter discusses the needs for IPA and its methods in
collecting information regarding procedure calls and the usage of
variables in procedure bodies. The focus is how to propagate
information about variables in a procedure body back to the
calling point. It proposes a new way to handle inter-procedural
information by using the Bernstein Sets [Bernstein (1966), Mohd
Saman and Evans (1993), Williams (1978)]. The discussions in
this chapter are as follows. Section 6.2 discusses the aliasing
problem. Section 6.3 to Section 6.6 present algorithms to collect

152

information related to procedure calls. This information is to be
used in the BTs and the BLTs. Calls in loops are treated in Section
6.7 and Section 6.8 summarises the chapter.

6.2 THE ALIASING PROBLEM

Discussions on the Inter-procedural Analysis (IPA) are usually
focused on the problem of aliasing caused by procedure calls.
They include determining information on the aliased variables in
procedures and collection of reference information of the objects
in the procedure body. This reference information relates to
when and how the objects are referenced [Schouten (1990)]. It
will be used in the DDA to discover any parallelism that may exist.
This chapter addresses the aliasing problem that is mainly caused
by parameter passing in the procedure calls.

DEFINITION 6.1

Aliasing is a situation that occurs when two or more variable
names refer to the same object.

In programming languages, variable aliasing usually occurs when
the names are declared explicitly as in FORTRAN Equivalence or C
Union or Pascal Variant Record. Aliasing may also occur when two
or more parameters have the same name passed to the called
procedure. In using pointers, aliasing may arise when two or
more pointers are set to point to the same object. All these
situations should indicate data dependence in the DDA although
the names involved are different. Figure 6.1 shows the examples
caused by program declarations aliasing, pointer aliasing and
parameter aliasing. Parameter alia sing can also occur when a
global variable is passed to a procedure where there are
references or modifications on the actual global variable. Consider
the following example where the parameter x is declared as a
parameter for call by reference.

153

declare gvar global;
perform_proc(gvar);
procedure perform_proc(x);
begin

... : x := ... ;

... := gvar; ...
end;

Since the global variable gvar is passed to x, then x will be aliased
with the actual gvar in the body of the procedure.

Equivalence A(1,1),B(I,1),C(lOO)
Union { int x; int y; char c; float f }
Record

x: integer;
case y of

end;

a: (p:integer;)
b: (q:real;)

(a) Aliasing by declaration

ptr := new(rec);
ptr2 := ptr;

(b) Pointer Aliasing

Call P(A,A,B)

PROCEDURE p(x,Y;L)

(c) Parameter Aliasing

(FOR1RAN)
(C)
(Pascal)

Figure 6.1: Examples of the various aliasings

154

6.2.1 ParalleIization of procedure calls

Statements in straight line codes containing procedure calls needs
further analysis to discover whether they are parallelizable or not.
The statement Cl and loop Ll in figure 6.2 can be executed in
parallel if the compiler can discover that the array R is not
modified in the procedure P. By inspecting the statements, Cl and
Ll are actually parallelizable since there are no data dependences
that exist between them. However, if Cl is changed to P(R,S,Q,N),
then the IPA should detect a dependence caused by the array R
and hence Cl and Ll should not be parallelized.

In another case, the loop L2 in the procedure body in figure 6.2,
needs IPA to discover if Y or Z are not aliased with X in the
different iterations. If they are not, then the loop iterations can
be run in parallel.

For the loop L1 shown in figure 6.3, the call in its body may
present some problem to decide whether its iterations are
parallelizable or not. They are parallelizable only if the compiler
can establish the reference pattern of the array A in the
procedure P. This means that, the compiler needs to know
whether any other elements of A are being referenced or not
when the procedure is called.

I

P(Q,R,S,N); ------------Cl
FOR I := 1 TO N DO -----------Ll

SUM := SUM+R[I]

PROCEDURE P(X,Y,z,N) - - - - -PI
BEGIN

END

FOR I :=1 TO N DO-----L2
X[I] := Y[I] + Z[I]

Figure 6.2: Parallelizable straight line codes of Cl and L1

155

FOR I := 1 TO N DO-----------Ll
A[I] := P(A,I,N)

PROCEDURE P(x,I,N)

BEGIN

END

FOR I := 1 TO N DO

X[I] := X[I]/N

-----Pl

-----L2

Figure 6.3: Parallelizable loop Ll

6.2.2 In-line Expansion

A way to solve the above problem so that the DDA can be carried
out without IPA, is to perform in-line expansion on the
procedure calls [Cooper et al. (1991), Davidson and Holler (1988)].
This means that the body of the called procedure will replace each
point of the procedure call. Great care must be taken in
substituting the appropriate procedures so that the expanded
program still preserves the semantics of the original program. An
example of in-line expansion is shown in figure 6.4.

Apart from eliminating the need for IPA, in-line expansion has
other advantages. It gives an opportunity to discover more fine
grain parallelism since all statements are at the same level. It
also removes the overheads normally incurred when calls are
made. These overheads occur when the contents of registers are
saved and restored and in transferring control to and from the
called procedure.

This method however, has several limitations. In the worst case,
it will increase the program size exponentially. It also destroys
the modularity of the program and makes it very difficult to
understand. Also the program becomes less maintainable. Since
the modularity is lost, linking compiled procedures cannot be done

156

and this may incur more compiling time. Furthermore, recursive
calls are difficult to handle. Apart from this, local variables at
lower levels now become global, thus introducing additional data
dependence and may inhibit parallelism. However, there are
several studies that show in-line expansion is still a useful method
for reducing execution time and it is implemented in several
compilers [Cooper et al. (1991), Davidson and Holler (1988)].

nos := square(p);
for i := 1 to 10 do

perform_add_array(a,b,c,nos);

procedure square(q);
begin

end;

r := q * q;
return r;

procedure perform_add_array(x,y,z,n);
begin

end· ,

for i := 1 to n do
xCi] := y[i] + z[i];

return x;

(a) An example segment of a program before in-lining

nos := p * p;
for i := 1 to 10 do ()O5

for i2 := 1 tO
A

do
a[i2] := b[i2] + c[i2];

(b) An in-lined program

Figure 6.4: Example of an in-line expansion

157

6.2.3 Inter-procedural Constant Propagation

Inter-procedural Constant Propagation (ICP) is an important
strategy to determine, at compile time, the values of some
variables passed to procedures, which are constant during
execution [Aho et a!. (1986), CalIahan et a!. (1986), Schouten
(1990), Wegman and Zadeck (1991)]. This will eliminate the
occurrence of variable aliasing. Since it is performed at compile
time and the values of the variables have already been
determined, it will save execution time.

ICP has several important effects. Different codes may be
generated if values of some variables are known such as in the
following source code.

if (i <> 0) then perform](a,b,c);

If it can be determined that i will always have a zero value then
the codes for 'perform_P' do not have to be generated at all.

Another example where ICP will be useful is that in the
determination of a paralIelizable loop. Consider a loop in the
following example.

procedure proc(a,k)
begin

. ... ,
for i := 1 to 10 do

a[i] := a[i+k] + 10;

end' ,

. ... ,

If ICP can determine that k = 0, then the loop is paralIelizable. If

k > 0 or k < 0, then there is a forward or backward dependence of
loop iterations. If nothing is known then the loop has to be
executed sequentialIy.

158

ICP is useful especially for in-line expansion. It can improve the
source code considerably. Consider the program segment in figure
6.5(a). Figure 6.5(b) shows the in-lined code produced after ICP
has been performed.

The simplest way to perform the ICP is to trace the execution of
the program and gather the information about the values of
variables involved. If any of them have constant values, they can
be substituted. However, a variable may takes different values,
depending on the input and the parameter passed. Discussions on
the various implementations of this technique are given in several
literature [Aho et al. (1986), Callahan et al. (1986), Wegman and
Zadeck (1991)]

6.2.4 Collection of Reference Information

Several techniques have been proposed on how to collect the
information in IPA about the effects of procedure calls on the
variables that will be used in the dependence tests. Barth (1978)
refers this information as 'summary data flow information'.

(a) Li (1989) uses data structures called Atom and Atom Images,
to keep track of every linear subscript expression in every array
reference in a procedure. These data structures also keep
information on the bounds on the iteration variables in terms of
loop invariants and outer loop iteration variables. Then any
standard dependence tests can be applied on these atom images to
detect any data dependences.

(b) Triolet has suggested a system of linear inequalities to
represent referenced regions of an array, resulting in a convex
hull in the k-dimensional array reference space [Triolet (1985),
Triolet et al. (1986)]. This system of inequalities is used in the
dependence tests.

159

program prog;
begin

perform_proc(1,2,3);
end.

procedure perform_proc(a,b,c);
begin

i := 10 * c;
if (i <> 0) then j := a else j := b;
k := j * j;
I := 10;
write(i,j,k,I);

end;

(a) An example of program

program prog;
begin

write(30,I,I,lO);
end.

(b) An in-lined version after ICP

Figure 6.5: Example of Inter-procedural Constant Propagation

160

(c) Burke and Cytron (1986) have suggested the use of array
linearization. For a statement such as the following:

a[i,j] := b[i,j];

the two references are MEM[N*(i-l)+j+Ka] for array 'a' and
MEM[N*(i-l)+j+Kb] for array 'b'. Ka and Kb are the starting
locations of arrays 'a' and 'b', both of size N x N, in memory. This
automatically detects any aliasing.

(d) Restricted Regular Section Descriptors (RRSD) are another form
of representation of sections of array references [Callahan and
Kennedy (1987)]. Any two regions that intersect can be found by
merging them.

(e) Triplets described in [Schouten (1990)], extends the RRSD to
use triplets of the form ij = 1 : u : s, where 1 is the lower limit on ij,
u is an upper limit and s is the stride. For nested loops:

for i1 = 11 to hI step sI do

end

for i2 = 12 to h2 step s2 do
... ; A[il,i2, ...] := ... ; ... ;

end

the triplet region is A[11 : hI : sI, 12 : h2 : s2, ...]. This triplet
region is then used in the dependence tests as described by
Banerjee and Wolfe [Banerjee (1988) and Wolfe and Banerjee
(1987)].

(f) Data Access Descriptors (DAD) described in [Balasundram and
Kennedy (1989)] give array regions with simple sections. Simple
sections can be merged to determine any intersection.

(g) Cooper and Kennedy (1988, 1989) have developed a method
called the binding multigraph to solve the IPA problem. A
binding multigraph represents bindings of formal parameters.

161

Each node in a graph represents a formal parameter and an edge
represents a binding of parameter n to parameter q through some
call. The graph is traversed depth-first, propagating the
information upwards.

In this chapter another method, using the BSs is proposed as a
way to collect information in the IPA [Bern stein (1966), Mohd
Saman and Evans (1993), Williams (1978)].

6.3 BERNSTEIN SETS FOR PROCEDURE CALLS

The BSs have proved to be very useful in testing for parallelism
in programs. Williams (1978) has developed a set of tests, termed
as the Bernstein Tests (BTs) that can determine parallelism in
straight line codes. Mohd-Saman and Evans (1993) have
developed the Bernstein Loop Tests (BLTs) for testing loop
dependence. These tests are discussed in Chapter 5 of this thesis.
The presence of procedures in programs, however, needs further
treatment on how the BSs can be used to maintain the flow of
information from the calling part of the program to the called
procedure body.

6.3.1 Simple-Call Algorithm

To derive the actual BSs of procedure calls, Williams has
suggested the method of 'joining' the BSs of the call statement
and the BSs of the procedure body that will give the actual BSs of
the call that can be used in the BTs. In this section, this algorithm,
which is termed as Simple-Call Algorithm (SCA), will be
discussed to derive the actual BSs of the procedure call. Later,
this scheme will be improved.

Consider the program segment in figure 6.6 which has a statement
SI and a call statement Cl to the procedure body PI. The task
now is to determine whether SI can be executed concurrently
with Cl or not. The BSs of SI are trivial but for Cl, the procedure
body needs to be analysed. First, the BSs of PI (body of the
procedure) are formed. The variable t in PI is just a local variable

162

which will not have any effect on the dependence test between SI
and Cl and hence it (and any local variables) will be ignored.
Other variables found in the procedure that are not declared
locally are taken as global variables. They will be included in the
the BSs of the procedure body because
global variables in the procedure
dependence.

any modification on these
body may affect the

The contents of the BSs of Cl initially depend on the mechanisms
of the parameter passing used in the definition of the procedure.
If call-by-name is used, then the actual parameters become
members of the W set. This is because initially the values of the
actual parameters will be fetched and passed to the formal
parameters of the procedure. There are no values stored back to
the actual parameters at the end of the call. On the other hand, if
call-by-reference is used, the actual parameters will be included
in the Y set since they will be fetched first and will later be stored
at the end of the call. Then the BSs of Cl and PI are merged to
form the actual BSs of Cl that can be used in the BTs and BLTs.
The process of merging is the actual propagation of information
from the body of the procedure back to the calling statement.
This Simple-Call Algorithm (SCA) is given in figure 6.7. The
algorithm for MERGE for any two stanzas is given in Chapter 4. It
should be noted that the MERGE operation is not commutative
because MERGE(a,b) may not give the same result as MERGE(b,a).

a := b + c; -----------------------------S 1
CALL perform_p(a,b,c); ---------------CI

PROCEDURE perform_p(q,r,s); ---------Pl
V AR t INTEGER; { t - local variable, u global variable }
BEGIN

END;

t := r + q;
s := t;
u := s;

Figure 6.6: Parallelism of SI and Cl

163

SIMPLE·CALL ALGORITHM (SCA)
INPUT: A call C to procedure P with actual parameters AP
OUTPUT: BSs of the call C (BScall)

BEGIN
(1) BSinit = FORM_BS(C): form the initial BSs of the call.
(2) BSproc = FORM_BS(P): form the BSs of P by including

only the global variables.
(3) BScall = MERGE(BSinit.BSproc): propagation of

information from body of P to C

Figure 6.7: Simple·Call Algorithm

6.3.2 Example of handling call· by· value parameters

For the program segment in figure 6.6 above. if the mechanism for
passing of parameters is call·by·value. then the initial BSs of the
call. Cl. will have all of its actual parameters classified as
members of the W set (BSinit). Then the BSs of the call are
merged with the BSs of P (BSproc) to give the actual BSs of Cl
(BScall). Figure 6.8 shows the BSs of Cl before and after merging

and the dependence tests between SI and Cl. The BTs can then
be applied on the BSs of SI and Cl to show that SI and Cl cannot
be run concurrently due to conflicting read and write operations
on the variable a (see figure 6.8(e».

164

w x y Z

b,c a

(a) The BSs for SI

w X y Z
a,b,c -

(b) The BSinit for Cl for call-by-value

w X y Z

u

(c) The BSproc of PI

w X y Z
a,b,c u

(d) The actual BScall of Cl after propagation

WYZSI nXYZCI =0
XYZSl n WYZ Cl = { a)
XYZSI nXYZCl =0

(e) BTs on SI and Cl

Figure 6.8: Dependence tests for the example in figure 6.6

165

6.3.3 Example of handling call-by-reference parameters

If call-by-reference is used, the actual parameters will be
classified as members of the Y set in the initial BSs of Cl. This has
to be dealt in two cases. In the first case, if there is no actual
parameter duplication, i.e., all of the actual parameters are of
different names, such as in p(a,b,c), then the actual BSs of Cl can
be derived by using the same strategy used for handling call-by
value as discussed in Section 6.3.2 above. Figure 6.9 shows an
example of call-by-reference derivation of BSs of Cl for the
program segment in figure 6.6. In the second case, calls with
duplicating parameters create situations that have more than one
occurrence of the same variable in the BSs. This will be discussed
in Section 6.3.5 below.

w x Y z
a,b,c -

(a) The initial BSs for Cl (BSinit)

w x Y z
u a,b,c-

(b) The actual BScall of Cl after propagation

Figure 6.9: Deriving actual BSs for Cl for call-by-reference for
example in figure 6.6

166

6.3.4 Handling array variables

For the program segment such as in figure 6.2, the task is to
determine if array A is modified by the procedure PI or not. In
this case, the textual array name such as A(I) will be used in the
BSs. To solve this, the same method discussed in Sections 6.3.1,
6.3.2 and 6.3.3 above, will be used to form the BSs of PI as figure
6.10 shows. It shows that all of the sets are empty since there is
no global variable found in the procedure body (figure 6.10 (a».
The actual parameters of Cl will form the initial BSs of Cl as in
figure 6.IO(b). Figure 6.l0(c) shows the final BSs of Cl after
merging.

6.3.5 Limitations of the Simple·Call Algorithm

The SCA that has been described in Section 6.3.1 above poses two
problems:

(a) it is not accurate enough to determine more parallelism
(b) the problem of handling aliasing.

For the first problem, since it assumes that for call-by-reference,
the values of the actual parameters are first fetched and later
written at the end of the call, it could fail to detect that the
parameters passed were actually not modified at all in the body of
the procedure. This may inhibit parallelism since there is no
store operation involved. An example of such a call is shown in
figure 6.11. The parameters passed are only referenced in the
procedure body but not modified at all. The above technique will
put the variables band c in Cl as members of the Y set. Hence it
will detect a data dependence between Al and Cl but in actual
case there is none since the variables should be part of the W set.
However, if the call Cl is changed to p(a,b), then a data
dependence should be detected due to conflicting read and write
operations on the variable a.

167

w x y z

(a) Original BSs of PI (i.e., empty)

w x y z
Q,R,S,N

(b) The initial BSs of Cl

w x y z
Q.R,S,N

c The BSs after mer in of Cl and PI

Figure 6.10: Formation of the BSs of the call Cl in figure 6.2

a := b+c; -------------AI
p(b,c); ---------------C I

PROCEDURE p(q,r); ---------PI
V AR t INTEGER; { t - local variable }
BEGIN

FND;

t := q + r; --------------S I
prin t(t,q ,r); ---- -------- S2

Figure 6.11: A procedure call with fetch operations only

168

For the second problem (also mentioned earlier in Section 6.3.3
above), duplicating actual parameters in a call (such as p(a,a,b) for
program in figure 6.6), presents the aliasing problem. This means
that variables q and r both are referring to variable a. One way to
solve this problem is that only one of the aliased variables is
chosen. If the aliased names are in the same Y set, then only one
of the actual duplicating variables will be used. It is enough to
contribute for the dependence test. If the duplicating names
appear in different sets, such as, one in the W set and the other in
the Y set, then the name in the Y set is used. The one in the W set
will be discarded. This is because a member of Y set contributes
stronger in the dependence analysis since the Y set forms a main
part in the BTs and the BL Ts.

To illustrate this point, consider the program in figure 6.6 and
assume that the first parameter of procedure perform_p is passed
by call-by-name and the second and third by call-by-reference.
Now consider a call perform_p(a,a,b). An example of the BSs
resulted from the aliasing problem for procedure perform_p is
shown in figure 6.12.

W x Y z
a a,b <----- only one a in Y set is used

(a) The BSs for Cl before propagation

W x Y z
u a,b

b The BSs of Cl after mer in with the BSs of PI

Figure 6.12: Call-by-reference with aliasing problem

169

6.4 AN IMPROVED ALGORITHM

In this section, an improved method of IPA, called the B S • Call
Algorithm (BCA), using the BSs will be presented to solve the
problems mentioned in Section 6.3.5 above. This method will
check the data flow in the body of the procedure and determine
the actual BSs of the call which will indicate if any of the variables
passed have been modified or not. If any modifications are made,
the variables will be part of either X or Y or Z set, otherwise they
will be in the W set. This is particularly important if aliasing has
occurred, because it will alter the contents of the BSs. The
improved algorithm will automatically handle this problem during
the analysis. Call-by-reference type of parameter passing will be
used in the following discussion. For call-by-name, since the
actual parameters will not be modified at all, they will always be
part of the W set of the call. First, a Parameter Bind Set (PBS) is
defined.

DEFINITION 6.2

Parameter Bind Set (PBS) is a set of <ap!p> tupleSwhere ap is
an actual parameter of the call and fp is a corresponding formal
parameter defined in the called procedure.

An example of a PBS for call Cl in figure 6.11 is {<b,q>,<c,r>} where
b will be passed to q and c to r. The principle idea of the BeA is as
follows. First, the initial BSs of the call (BSinit) and the BSs of each
statement in the procedure body (BSindiv) are formed. All actual
parameters will be in W set of (BSinit) while (BSindiv) contain all
global variables and call-by-reference formal parameters. Then
the actual parameters in PBS are substituted in the procedure BSs
(BSindiv). Finally, all of the BSs are merged to form the actual BSs
of the call (BScall). The steps to derive these BSs are given in
figure 6.13. It assumes that there are no other procedure calls in

the bodies of the procedures called. This will be discussed later in
Section 6.5.

170

The MERGE operation in step (5) of the BCA automatically places
any aliased variables in the same set, thus eliminating its
potential problem. The BSproc that are formed will contain any
referenced-only parameters in the W set and any modified
parameters in the X, Y or Z set. This is the actual information that
needs to be propagated back to the calling statement and this is
achieved in the last MERGE operation in step (6). Figure 6.14
shows how the actual BSs of the call in figure 6.11 is derived. The
BSs in figure 6.14(e) shows that the actual parameters are
members of the W set but not part of the Y set which could
indicate a data dependence if analysed by the simple-call
algorithm.

BS-CALL ALGORITHM mCA)
INPUT: A call C to procedure P with actual parameter AP and
formal parameters FP
OUTPUT: The BSs of the call (BScall)
BEGIN
(1) BSinit = FORM_BS(C): put AP in the W set
(2) BSindiv = FORM_BS(P): BSs for procedure body
(3) CREATE_PBS(AP,FP): include only the call-by-reference

parameters
(4) SUB STITUTE(PBS,BSindiv): substitute each PBS into BSindiv
(5) BSproc = MERGE(All BSindiv): eliminating aliases
(6) BScall = MERGE(BSinit.BSproc): propagation
END

Figure 6.13: The BS-Call Algorithm (BCA) to derive the actual
BSs of a call statement

171

Y:l. x y Z

b,c

(a) The BSinit of Cl

W X Y Z

SI: q,r
S2: q,r

(b) The BSindiv of the 2 statements in PI

{<b,q>,<c.r> }

(c) The PBS for the call

W X Y Z

SI: b,c
S2: b,c

(d) The BSindiv of the 2 statements after PBS substitution

W X Y Z
b,c

(e) The final BSs of BScaIl

Figure 6.14: Finding actual BSs of the call for figure 6.11 using
the BS-Call Algorithm

172

6.5 A GENERAL SOLUTION

The method described in Section 6.4 above, assumes that there
are no calls in the procedure body. This is not always the case
because a program may contain more than one procedure. The
main program may have more than one call in its body and
subsequently in the called procedures. In this section, the effects
of calls, whether recursive or non-recursive, found in the
procedure body will be studied. A general solution, which is an
iterative algorithm, enhanced from the BS-Call Algorithm (BCA),
will be developed to handle information in all procedures
involved in the calls.

DEFINITION 6.3

Recursive Procedures are procedures which call themselves,
either directly or indirectly through some other procedures that
they call.

Figure 6.15 shows a direct recursive procedure and indirect
recursive procedures. An iterative algorithm, which is called the
BS·Program Algorithm (BPA), will analyse all procedure calls
found in a program. It will form sets of BSs for each procedure in
terms of the actual parameters passed from any procedures. Note
that the main program is considered as a procedure.

Hence, for any calls found in a procedure, the bodies of the called
procedures will be analysed and the information gathered is
propagated back to the caller in terms of the actual parameters of
the first call. In order to handle this, a Call Chain is first
determined.

DEFINITION 6.4

Given a call to procedure P with actual parameter AP, a Call
Chain (CC) is a sequence of procedures connected through calls in
P and in the called procedures, each time substituting AP in the
calls.

173

This Call Chain (CC) can be determined by tracing the first call to
a procedure, say P, and to calls in the body of P, each time
substituting the actual parameters of P in a call. Figure 6.16
shows the algorithm to derive a call chain for calling procedure P
with actual parameter A. The worklist chain, generated by
JoinChain, is a set of <P,A> tuple of the called procedure P and with
actual parameter A. For a non-recursive procedure this call chain
shows a sequence of procedures starting from procedure P until a
procedure, say Q, that does not have any calls (checked by
NOCALL(P», is reached. For a recursive call, the last procedure in
the chain is the one which contains a call with the actual
parameters already performed above in the chain. When the
worklist chain does not change in its contents (checked by
SAME(A», it shows the last procedure in the call chain has been
reached.

In general, the main procedure in a program will be calling the
procedures defined in it and a procedure may be called from more
than one calling point or site with different arguments. This will
give a general structure for calls in a program called the Call
Chain Tree.

DEFINITION 6.5

A CALL CHAIN TREE (CCT) is the complete call chain for a
given program, starting with the main program as the root node of
the tree and the procedures called as its internal nodes. The
leaves are the last procedures in the call chains.

For an example of a CCT, consider a program called PROG whose
main routine calls three procedures, PI, P2 and P3. The first
procedure PI calls Q which calls R which then calls S. The second
procedure, P2 only calls Q. The third, P3 calls T which calls Rand
U. For this program, the CCT is shown in figure 6.17.

174

procedure p(a)
begin

... ; p(i); ..
end;

(a) Direct recursive procedure

procedure p(a)
begin

... ;q(i); ...
end;

procedure q(a)
begin

if a > 10 then p(i) else print(a);

end;

(b) Indirect recursive procedures

Figure 6.15: Recursive and non-recursive procedures

175

procedure p(a)
begin

... ;q(i); ...
end;

procedure q(a) {no calls in this procedure }
begin

end;

(c) Non-recursive procedures

Figure 6.15: Recursive and non-recursive procedures
(continued)

FIND _ CALL_ CHAIN(P,A)
INPUT: A caIIed procedure P and actual parameter A
OUTPUT: A CaII Chain(P) and maxchain, the number of
procedures in the chain
BEGIN

"END

if NOCALL(P) or SAME(A) then RETURN (P)
else

chain = JoinChain(P, Find_CaICChain(Q,A»;

maxchain = Length(Chain);

Figure 6.16: Recursive derivation of Call Chain

176

Starting from the procedures in the leaves of the tree, the BSs are
formed and propagated upwards by traversing the reversed
branches until the main program is found.

There are branches of a CCT which are the same such as Q, R, and
S, called from PI and P2, and Rand S called from Q and T, as
shown in figure 6.17. If the branches have the same actual
parameters passed to them (for example, PI calls Q(a) and P2 also
calls Q(a», they can be combined to form only one branch. Figure
6.18 shows the CCT with combined branches. This will save space
and time to derive the BS of any call in the upper part of the tree.

After building the CCT, the BPA will analyse all the called
procedures and propagate the information upwards in bottom-up
fashion along the branches of the CCT. The algorithm is given in
figure 6.19. In this algorithm, Find_Call_Chain (P,A) builds the
CCT. FORM_BS(CCT(prog» forms the individual BSs for statements
in the procedure body. SUBSTITUTE(A,BSs) will substitute the
actual parameter A in the individual BSs. The first MERGE
operation in that algorithm merges all individual BSs of a
procedure while the second MERGE propagates the variable
information upwards. The diagram in figure 6.20 illustrates the
whole picture in deriving the BSs for a procedure P which has a
call chain to Q, Rand S. The initial BSs of any call found in a
procedure will have the actual parameters in the W set.

177

P1

J ,
R ,
S

PROG

P2

J
• R

• S

P3 ,
~

R U

• S

Figure 6.17: A Call Chain Tree (CCT)

PROG

P1 P3 ,
T ,

R
U ,

S

Figure 6.18: Combined branches of CCT

178

US-PROGRAM ALGORITHM
INPUT: A program PROG with a set of calls and a set of
procedures Ps
OUTPUT: Sets of BSs for PROG and Ps
BEGIN

FND

FOR each call to P in PROG
BEGIN
(I) CCT(PROG) = FIND_CALL_CHAIN(P,A)
(2) BSindiv(i) = FORM_BS(CCT(PROG»,

1 ~ i ~ maxchain (maxchain derived in (1»
(3) SUBSTITUTE(A,BSindiv(i», 1 ~ i ~ maxchain

(4) FOR ch = (maxchain-I) DOWNTO 1

FND

BEGIN
(4.1) BSproc(ch+l) = MERGE(AIl BSindiv(ch+I»
(4.2) MERGE(BSindiv(ch,i),BSproC<ch+ I»:

FND

propagate BSproc<ch+l) by merging
BSindiv(ch,i) (Le., the i-th BSindiv(ch) that
contains the call) with BSproc<ch+l»

Figure 6.19: BS-Program Algorithm (BPA)

179

Call chain Individual BSs of procedures

p

propa gate

merge • .. .J

merge
• prop agate

prop agate

merge • s

Figure 6.20: Example of call chain and derivation of BSs

180

6.6 EXAMPLE OF SOLUTIONS

In this section examples will be given to demonstrate the
application of IPA using the Bernstein Sets.

Example 6.1; Non-recursive procedures

Program Exl
Global variable: x, y;

main program;
begin

end;

read(i,j);
P(i,j);

procedure P(a,b);
begin

Q(a); x := a; a:=lO;
end;

procedure Q(b);
begin

b:= b/lOO; R(x); y := x;
end;

procedure R(c);
begin

print(c);
end;

By tracing the call, the following sequence of call chain is formed.

call P(i,j) -> P calls Q(i) -> Q call R(x) -> R

181

The sequence stops at R since it does not have any other call in its
body. Thus, the call chain derived for the calls in the program Exl
is as follows.

main call ••• > P ••• > Q ••• > R

For each procedure in the call chain, the BSs are formed. Then the
merging and propagating of information in the BSs are carried out
to determine the actual BSs of the main call. The whole process is
depicted as follows. Note that the four columns represent W, X, Y
and Z sets.

initial BSs of call final BSs of call

~ i ,j - - - I _J j y I i,x .
I I

.. i . · - i
merge

x y .
i x · - i x - . ~ I - y i,x I . I - i · - . i - -

proc. P after propagation

i i
merge . - · - . .

~ X - . ·
~ - • -. - .

x Y . ·
proc. Q after propagation

x . . . -.J
proc. R

182

c-

. I-

Example 6.2; Direct recursive procedure.

Consider a call P(x,y,i) to the following recursive procedure which
is called directly. Variables x and y are global.

procedure P(a,b,c)
begin

b := x; if (..) then P(a,b,c); ... := y;
end;

The call trace is as follows.

main calls P(x,y,i).> P calls P(x,y,i)

thus giving the call chain:

main call ... > P

The formation of the BSs is shown in the diagram below.

x,i . y · Final BSs of call

•

x,Y,i . · · Initial BSs of call

propagate

x Y . ·
merge

x,y,i - · - ~ x,i . . Y ~

Y - · ·

Individual BSs of P

183

Example 6.3; Indirect recursive procedures

Consider the indirect recursive procedures below and a call
P(a,b,c).

procedure P(a,b,c)
begin

Q(a,b,c);
end;

procedure Q(x,y,z)
begin

x:= ... ;
••. ;= y;

if (...) then P(x,y,g);
end;

{ g is a global variable }

By tracing the calls, there is a repeating call in the last procedure
Q which calls P(a,b,g). Hence, that will be the end of the call chain.

Call P(a,b,c) -> P calls Q(a,b,c) -> Q calls P(a,b,g) ->
P calls Q(a,b,g) -> Q calls P(a,b,g)

The call chain is as follows.

main call ---> P ---> Q ---> P ---> Q

The formation of the final BSs of the call is shown below.

184

initial BSs final BSs of call

L:a=,b:,C~--L~~~--~~b_,c_,g~~~a-L~

BSs of P after propagation

a

BSs of 0 after propagation

BSs of P after propagation

L...a_,b_,g...1.--...1.---L..----.i---ll·~11 b,g I - I a 1- 1-

BSs of 0

b

a,b,g

a

185

6.7 PROCEDURE CALLS IN LOOPS

As stated in Chapter 5, loops have been a major topic in the
research in parallelization of programs. They provide the best
opportunities for parallelism where each iteration in the loops
may be executed in parallel. [AlIen and Kennedy (1984a, 1984b,
1987), Banerjee (1988), Li (1989), Mohd-Saman and Evans (1993),
Wolfe (1986, 1988, 1989b), Wolfe and Banerjee (1987)]. The
presence of procedure calls within a loop body makes the
dependence analysis of the loop more difficult. One of the main
criticism on some commercial compilers/vectorizers is that they
do not vectorize all loops containing procedure calls in them
[Blume and Eigenmann (1992), Eigenmann and Blume(1991)].

Figure 6.21 shows a loop Ll with a procedure call Cl to procedure
PI. The problem is to ascertain whether the loop iterations of Ll
can be executed concurrently or not. If information on the usage
of the shared variables in PI is not available, then the
compiler/restructurer has to assume that data dependence exists
between loop iterations. If scalar variables are involved as in
figure 6.21, the BS-Call Algorithm (BCA) described above is
sufficient to determine the BSs of the call. On the other hand, for
array variables, they present a problem on how to decide on the
reference directions before the BL Ts can be applied.

6.7.1 Handling array variables

The BL Ts discussed in Chapter 5 will detect loop parallelism
containing array references but it assumes that the loops do not
contain any procedure calls. The tests use the Data Reference
Directions (DRDs) (=, > and <) to indicate the pattern of array
references in the loops. Hence, the existence of procedure calls to
procedures with array variables needs to be carefully analysed to
include the use of the DRDs in the procedure body. Consider the
program segment in figure 6.22 which has a loop containing a
procedure call with the manipulation of array elements. Assume
that the parameter passing is call-by-reference. The task is to

186

determine whether the loops Ll and L2 are parallelizable or not.
The method described in Section 6.5 will be used but in forming
the BSs of the call to a procedure which contains array variables,
DRDs will be included.

FOR i := 1 to 10 DO-----------Ll
BEGIN

p(a,b,c); ---------------Cl
END;

PROCEDURE p(q,r,s); ---------Pl
V AR t INTEGER; (t - local variable, u global variable }
BEGIN

END;

t := r + q;
s := t;

u := s;

Figure 6.21: A loop with a procedure call

FOR I := 1 TO N DO------------------Ll
FOR J := 1 TO N DO------------------L2
BEGIN

A[I,J] := B[I,J] + ClI,J]; ---------SI
P(A,B ,C,l); ------------------C 1

PROCEDURE P(Q,R,S,L); ------------Pl
V AR INTEGER K;
BEGIN

END;

FORK:= 1 TONDO
Q[L.K] := R[L.K) + S[L,K];

Figure 6.22: A loop with array variables

187

The general strategy in forming the BSs of the call is the same as
h d· d' 1M. . H . t e one Iscusse In ;\prevIOus sectIon. owever, SInce array

names are involved, the formation of the BSs is done as follows.

FORM BS(procedure with array):

Form the BSs for each statement in procedure P to include
all the array variables. A '*' or '<' or '>' direction will be
used for the direction of the array variables if the array is
referenced or modified over a different range of indices.
Otherwise the '=' direction is used as part of the array
name. '*' is used if more than one array element is
being modified or referenced.

Figure 6.23 shows the contents of the BSs of Cl for the loop in
figure 6.22. The resulting BSs of Cl shown in figure 6.23(d) can
then be used in the BL Ts which should show that the outer I loop
is parallelizable but not the inner J loop.

There are several other cases that have to be considered in
determining the direction of an array name when forming the BSs
of procedures. If a whole array is passed during a call, the
directions formed are the same as shown in figure 6.23. In
another situation, if the same call is made but the body of the
procedure contains loop statements such as in the following
example:

for L := 1 to n do
for K := 1 to n do

Q[L,K] := R[L,K] + S[L,K];

then the arrays with directions are Q[*,*], R[*,*] and S[*,*]. This is
because Q, Rand S are being fetched/stored over a range of
values. If there are no loops, then the arrays with directions are
Q[=,=], R[=,=] and S[=,=].

188

If the body of the procedure contains the following loop:

for K := 1 to n do
Q[L+const.K] := ... ;

then the directions of Q will be Q[<. *]. On the other hand. if the
array reference is of the form Q[L-const.K]. then the directions are
Q[>. *]. If a single array element is passed such as in the following
call:

w
B[=.=]
C[=.=]

call P(a[i.j] •...);

x
A[=.=]

(a) The BSs of SI

w
R[=.*]

S[=.*]

x
Q[=.*]

(b) The BSs of PI

y

y

{<A.Q>. <B.R>. <cs>. <l,L>}

(c) The PBS of the call

w
B[=.*]
C[=.*]

x
A[=.*]

y

z

z

z

(d) The BSs of Cl after parameter replacement of PI

Figure 6.23: Dependences with array references of the loop in
figure 6.22

189

then it will be treated as a single variable and the array with
directions will be of the form a[=,=].

The examples above can be extended to any array of any
dimension. Once the BSs of the call ~e been derived, the BL Ts can
be applied to determine the loop parallelism.

6.8 SUMMARY

Most compilers which perform global optimization face problems
when they encounter procedure calls. They do not have enough
information on whether any global variables are being modified
or not by the called procedures. The main problem caused by
procedures in programs is that they may introduce aliasing of
variables. Thus, conservative assumptions are usually made, i.e.,
data dependence exists and no parallelization is carried out. This
chapter has discussed the needs for Inter-procedural Analysis
(IPA) to be carried out as part of the dependence analysis. It

analyses the usage of variables in procedure bodies when calls are
made.

The Bernstein Sets (BSs) have been shown to provide a good and
efficient way to handle inter-procedural information which can
then be used by the BTs and the BLTs. The strategy proposed in
this chapter shows how to capture the inter-procedural
information as part of the contents of the BSs. It involves
deriving the initial BSs of the calls which are later merged with
the BSs of the statements in the procedure body to form the actual
BSs of the call. This method can also handle direct or indirect
recursive calls. A call chain is first determined and then the BSs
are formed from the procedures in the chain.

One main advantage of using the BSs as shown in this chapter is
that no modification is needed either on the BTs and BLTs or on
how the BSs are formed. No extra information needs to be stored
in the BSs except the variables that are involved in the programs.

190

CHAPTER 7

VERIFICATION OF PARALLEL
PROGRAMS

7.1 INTRODUCTION

One of the main and fundamental objectives in wntmg computer
programs is ensuring their reliability so that they are free from
any errors and bugs. The programmer should take every
precaution that the program written will at least provide safe
operations. This is particularly important for systems with critical
applications such as the aircraft flight control and the nuclear
reactor safety which demand high safety and reliability
requirements [Leveson (1986), Moser and Melliar-Smith (1990)].
It has been recognized that the proofs for program correctness
are of great importance as an attempt to achieve error-free
programs. To prove the correctness of programs means that the
programs are verified to behave as they were intended to do
[Dijkstra (1976)].

With the advent of parallel machines, there is a greater need to
make sure that parallel programs also behave reliably. The
results of parallel programs can be very unpredictable as many
processes are executed at the same time. This will greatly
enhance the probability of a programmer to make mistakes.

This chapter deals with methods to prove the correctness of
parallel programs where they present problems that are not
found in sequential programs. This is because more than one part
of the programs can be executed concurrently. The organization
of this chapter is as follows. Section 7.2 briefly explains the
various techniques used for program verification. In Section 7.3,
the Symbolic Execution (SE) method for verifying the correctness
of programs is presented. Then an overview of the work by other
researchers is presented in Section 7.4. In Section 7.5, a
method of proving the correctness of parallel parts of programs
called stanzas, based on the Bernstein Tests developed by
WiIIiams (1978), is presented, followed by Section 7.6 which
discusses a method of verifying the correctness of fixed parallel
loops based on the Bernstein Loop Tests (BLTs). Section 7.7
summarises the whole chapter.

192

7.2 METHODS FOR PROVING PROGRAMS

One way to obtain the confidence in one's program is to test it
with several small test data. This is called program testing
[Cherniavsky and Smith (1986), Frankl and Weyuker (1986), King
(1976), Sneed (1986)]. A proper choice of sample data is critical
in this method so as to ensure that the program will operate
correctly and safely over some domain of inputs. However, this
method does not ensure complete correctness over all sets of data.
Another method that has been proposed is program proving
[Hantler and King (1976), Hoare (1969), King (1976), Owicki and
Gries (1976)]. This allows a programmer to prove, formally, that a
program meets its requirements or specifications for all
executions without having to be executed at all. This is done by
giving some exact specifications of the intended behaviour of the
program and these specifications will be verified for their
consistency. This method lets the programmer verify a program
over wider ranges of the intended data.

In this chapter, the concept of a verification method called the
Symbolic Execution (SE) [Hantler and King (1976), King (1976),
Young and Taylor (1986)] will be extended to verify parallel
programs. The main idea is that, apart from verifying the
correctness of each individual program in sequential manner,
other forms of correctness properties that are inherent in parallel
systems, such as mutual exclusion and freedom from modifying
shared variables, will have to be proved. This will be solved by
introducing new assertions, called the BT Assertion and the B LT
Assertion. This chapter assumes a general programming
language such as Pascal extended with parallel constructs such as
Lock and Unlock statements.

Several researchers have been working on proving the
correctness of sequential programs [Clarke and Richardson
(1984), HantIer and King (1976), Kemmerer and Eckman (1985),
King (1976)]. There are also researchers who have been dealing
with the correctness of parallel programs such as ADA and CSP

193

[Apt (1986), Oillon (1988, 1990), Oillon et al. (1988), Guaspari et
al. (1990)], Misra and Chandy (1981), Owicki and Gries (1976),
Gries (1977), WilIiams (1978)]. An overview of the different
techniques for proving the correctness of programs will be given
and they are divided into four approaches:

(a) the SE approach
(b) the stanza approach,
(c) the axiomatic approach and
(d) formal methods.

7.3 SYMBOLIC EXECUTION (SE)

In program proving, one method that has been used is the
Symbolic Execution (SE). It has been shown to be a useful and
successful approach in verifying the correctness of sequential and
parallel programs [Clarke and Richardson (1984), Cohen et al.
(1982), Oillon (1988, 1990), Oillon et al. (1988), Hantler and King
(1976), Howden (1977), Kemmerer and Eckman (1985), King
(1976)]. In this method, the intended behaviour of the program is
specified in terms of correctness assertions or simply
assertions. Sometimes they are called the specification of the
program. These assertions are usually in the form of predicate
logic. By using this approach, algebraic symbols are used to
represent input values of a program. These symbols are then
manipulated by the program to derive some logical expressions.
These expressions are then checked against the restrictions on the
values of the variables in the program, written in the form of
assertions, to deduce the program correctness.

DEFINITIONS 7.1

(i) A procedure is said to be correct (with respect to its input
and output assertions) if the truth of its input assertion
upon procedure entry ensures the truth of its 0 ut put
assertions upon procedure exit.

194

(ii) An Input (or entry) Assertion specifies assumptions of
the values of the variables when the program is invoked.

(iii) An Output (or exit) Assertion specifies the intended
behaviour of the program when it reaches some later or
final stage, i.e., when it terminates.

(iv) Loop Assertion (or
Assertion) specifies
conditional loops.

Loop Invariant or Inductive
the condition of execution for

When a program is executed by giving some symbolic values for
its inputs, symbolic expressions representing the values of the
variables encountered are formed. Path Conditions (PCs) (or
Verification Conditions (VCs» are also generated. These PCs are
used in deciding which path to take when conditional statements
are met. At the end of the execution the values of PCs (or VCs)
are then verified against the assertions provided in the program.
The type of correctness to be established is called par t i a I
correctness, i.e., a program or part of a program is said to be
correct if the truth of its entry ensures the truth of its exit and
there is no guarantee of termination [Hantler and King (1976),
Williams (1978)].

The SE is useful in program testing, debugging and verification
and has several advantages. It may represent a large class of
normal execution. If normal numerical values are used, it will
only show an instance of the execution for some specific data.
Another advantage is that the symbolic expressions that are
formed for each variable encountered, can show the relationship
each one has with other variables and its environment. If specific
testing is needed for specific input values at any stage, then the
numerical values need only to be substituted in the symbolic
expressions to derive their actual values. This technique can also
easily be automated by designing a software tool, called Symbolic
Executor [Dillon (1988), Harrison and Kemmerer (1988)]. SE has
been used as the main strategy in some automated systems to
verify the correctness of sequential programs such as Dissect

195

system [Howden (1977)], Effigy system [King (1976)], SELECT
[Boyer et a1. (1975)] and Unisex system [Kemmerer and Eckman
(1985)].

As discussed in Hantler and King (1976), to prove the correctness
of programs, input and output assertions are provided as part of
the programs. The input assertion is a statement of the form
ASSUME «expression» and usually appears on an entry of a
procedure. The output assertion is a statement of the form
PROVE «expression» and appears immediately before the
RETURN statement of a procedure. For the loop assertion, the
statement is of the form ASSERT«expression». An example of
a simple procedure with input and output assertions, slightly
modified from Hantler and King (1976), is shown in figure 7.1.

1 procedure ABS(X);
2 var X,Y : integer;
3 begin
4 ASSUME (true);
5 ifX<Othen
6 Y:= -X;
7 else Y := X;
8 PROVE «Y = X' or Y = -X') and

Y >= 0 and X = X');
9 return (Y);
10 end;

Figure 7.1: Procedure ABSOLUTE with correctness assertions

To verify the correctness of procedure ABS in figure 7.1, during
the SE, the input variable X is given a symbol (such as vall or
val2, etc) and then one hopes to obtain logical expressions over
the input symbols as the values of the output symbols. These
results are then checked against the output assertions (such as
the one stated in the PROVE assertion in line 8 of the example) to
deduce its correctness or incorrectness. When the SE is

196

performed, the state of program execution is maintained. This
consists of the values of the variables in symbolic form, the
statement counter showing the next statement to be executed and
a path condition (PC) which describes the conditions when
conditional statements are found. A symbolic execution tree may
also be generated showing the graphical representation of the SE.
It will lead to results whether the program is verified correct or
not. To verify the correctness of loops in programs, the loop
assertion can be inserted and checked. Figure 7.2 shows an
example showing the use of a loop assertion.

procedure GCD(m,n)
var m,n,a,b: integer;
begin

ASSUME(m>O and n>O);

end;

a:= m;
b := n;
while (a <> b) do
begin

end;

ASSERT«a,b) = (m,n) and a <> b);
if (a>b) then

a := a - b
else b := b - a;

PROVE (3 = (m,n»;
return(a);

{ Note: Cr"!) =- r- means (is the GCD of p and i. }

Figure 7.2: Procedure with loop assertion

Symbolic Evaluation as described in Clark and Richardson (1984),
is an SE technique for software testing. It provides path selection
and test data selection based on the symbolic values of PCs.
Ploedereder (1984) has also described the use of Symbolic

197

Evaluation in deriving information about the static and dynamic
semantics of programs. This information is then stored in a
program data base to be used by tools supporting program
development and validation. Examples of such tools are
assignment set/use analysis, dynamic lifetime analysis, analysis of
aliasing and verification of program correctness.

Dillon (1988, 1990), Dillon et al. (1988), Guaspari et al. (1990) and
Harrison and Kemmerer (1988) have presented several ideas for
proving ADA Tasking based on the SE. The central issues involved
in proving ADA programs are the concurrent tasks and the
handling of communication through rendezvous. The ideas
developed by Dillon, Harrison and Kemmerer are based on the SE
with the interleaving approach and isolation approach. Guaspari
et al. (1990) have developed an automated system called the
Penelope verification editor, a prototype system for an
interactive development and verification of ADA programs. Using
the same strategy as in the SE approach, VCs are generated by the
system and the verification is carried out incrementally. Penelope
uses a specification language called Larch/ADA Specification
Language to describe the specification of ADA subprograms and
packages (as annotations). VCs generated are verified by the user
within Penelope.

Good et al. (1979) have adopted a different way of keeping
information about the values of the program that can be used for
verification. It uses a method called message buffers as the sole
process coordination. They have developed a language called
Gypsy which allows concurrent processing. All inter-process
communication is via these message buffers. A complete history
of process interaction, based on the information from message

• buffers, IS kept to be analysed during verification. Gypsy allows
the programmers to place assertions in the program for proving
its correctness. These assertions refer to message buffers and the
respective transaction history of the program.

198

7.4 OTHER RELATED WORK

Apart from the SE technique, other approaches have been taken to
analyse program correctness.

7.4.1 The stanza approach

Williams (1978) has developed several relationships to test for
parallelism between blockS of statements called stanzas. She has
also discussed the correctness of parallel stanzas using the
technique of SE to show the behaviour of the stanzas based on the
new relationships. The following terms are used in conjunction
with proving the correctness of parallel stanzas.

DEFINITIONS 7.2

(i) antecedent - a condition expected to be true on entry to
a program.

(ii) consequent - a condition expected to be true when a
program ends.

(iU) symbolic execution networks - a method to analyse the
symbolic execution o[parallel programs or stanzas which
allow variables to be accessed by more than one stanza.

Williams has described the proofs for correctness of a parallel
program written explicitly using the relationships she has
developed. The technique of SE is used to indicate how the
correctness of programs using the new relationships may be
proved. The correctness of parallel stanzas for a machine with
shared memory and one with a private memory has been proved
by developing an execution tree network.

199

7.4.2 The axiomatic approach

Owicki and Ories (1976) and Ories (1977) have discussed a
method to verify properties of parallel programs. They base their
work on the axiomatic approach developed by Hoare (1969) who
has formulated a set of axioms for partial correctness of
programs. The axioms give the meanings of program statements
in terms of assertions about variables in the programs.

The notation {P} S {Q}, which informally means: if P is true
before execution of S, then Q will be true when S terminates, is
called a statement of partial correctness; where termination of S
must be established by other means. P is called the
precondition and Q the postcondition. They are the assertions
inserted in the programs. Misra and Chandy (1981) have
described a similar solution written for CSP programs. The
termination problem of parallel programs has been addressed by
Apt (1986).

Owicki and Ories have defined a deductive system to offer a
better approach in proving the correctness of parallel programs.
They use auxiliary variables added to a parallel program as an aid
to prove that it is correct. With this technique, the properties of
parallel programs such as the mutual exclusion, freedom from
deadlock and program termination can be proved to behave
correctly. To prove these, an assertion I(r), the invariant for
resource r, is introduced. I(r) must be true when parallel
execution begins and remain true at all times outside the critical
section for r. They have defined two axioms: parallel execution
axiom and critical section axiom:

a. Parallel Execution Axiom

If (PI) SI (Ql) and (P2) S2 (Q2) and ... and (Pn) Sn (Qn) and
no variable free in Pi or Qi is changed in Sj (iif'j) and all

variables in I(r) belong to resource r, then:

200

(PI /\ P2 /\ ... /\ Pn /\ I(r)}

resource r: cobegin Sill S2 11 ... 11 Sn coend
(Ql/\ Q2/\ ... /\ Qn /\ I(r)}

b. Critical Section Axiom

If (I(r) /\ P /\ B} S (I(r) /\ Q} and I(r) is the invariant from the

cobegin statement, and no variable free in P or Q is changed
in another process, then {P} with r when B do S {Q}

7.4.3 Formal methods

Formal methods are mainly used in the development of programs
[Boiten et a1. (1992), Bowen (1988), Ehrig et a1. (1992a, 1992b),
Hall (1988), Masterson et a1. (1988), McParland and Kilpatrick
(1988), Wordsworth (1988»). The main idea is to develop a
formal specification of a problem before attempting to write the
program. Once these specifications have been developed, they
can be verified to ensure their correctness. Then they are
transformed into correct programs. This is claimed to lead to a
more accurate solution. The Vienna Development Method (VD M)
and the Z specification language have been the most widely used
methods to form specifications of programs.

7.S VERIFYING PARALLEL STANZAS

Williams (1978) has defined a stanza as a group of one or more
statements that has to be executed sequentially. She has also
developed a set of relationships between stanzas and a set of tests
to determine parallelism between two or more stanzas. Based on
this idea, this chapter shows how the tests can be adapted in the
SE technique to verify parallel stanzas.

In order to perform the verification, the problem will be tackled
in two separate ways. First, the correctness of each stanza in a
sequential manner is determined. In this case, it can be verified
by using the sequential SE model as outlined in Section 7.3
above. Second, the correctness of the parallel stanzas is

201

determined by checking the consistency of their parallel
properties. This involves ensuring that any shared variables are
not being fetched and stored at the same time by the
concurrent stanzas. Any conflicting fetch and store operations
may cause the shared variables to be undefined if not properly
synchronized.

For the sequential verification, the programmer places input,
output and loop assertions which will be verified during the SE.
Formation of Boolean assertions for programs has been discussed
thoroughly in Gries (1981). On the other hand, to verify the
parallel properties of the stanzas, their BSs are first formed. The
BT Assertion and BLT Assertion will be formulated to be part of
the verification scheme, that can be used with the BSs.

7.5.1 The BT Assertion

Williams has defined that two or more stanzas are contemporary
(or concurrent), Le., they can be executed in parallel, if the
application of the Bernstein Tests (BTs) is successful. The BTs
consist of the following tests which should give empty results to
indicate that data dependence does not exist:

a. WYZi (l XYZj = 0

b. XYZi (l XYZj = 0

for all 1 :s; i, j S n, i ,;,. j
for all 1 :s; i, j S n, i L. j

In this section, the BTs will be used as an assertion in order to
verify the parallel property between two or more stanzas. It will
be called the Bernstein Test Assertion or simply the B T
Assertion (BTA). It will be as follows:

PROVE(BT A).

The BTA is of the following form, where there are n stanzas i and j
(i ,;,. j).

BTA: «wyZi (l XYZj) = 0) 1\ «xyZi (l XYZj) = 0)

202

During the course of the SE, the BSs can be determined for the
stanzas. Hence, by combining the input and output assertions
together with the BTA, any two or more parallel stanzas in a
straight line code can be proved for their correctness. The model
for this kind of proof is shown in figure 7.3. It will show, if there
exists or not, any conflicting fetch and store operations that can
cause indefiniteness of results. If the BTA gives non-empty
results, then it can be concluded that the parallel execution of the
two stanzas is not correct. Figure 7.4 and figure 7.5 show two
examples of parallel stanzas and their BSs. The BTA will verify
that the parallel property of the two stanzas is preserved because
there are no shared variables involved.

stanza i stanza j

input assertion Qi input assertion Qj

codes for stanza i codes for stanza j

output assertions Pi output assertions Pj

BT assertion

Figure 7.3: Model for verifying the correctness of parallel
stanzas using the BT Assertion

7.5.2 Critical Sections

The correctness of parallel stanzas, when critical sections are
included, poses another problem. Critical sections are
implementations of the parallel property called the mutual
exclusion. They will ensure that the stanzas are
sequentially to preserve the correctness of the values
variables. In this case, another set, called the Shared

203

executed
of shared
Variable

Set (SVS) will be introduced. An SVS contains all variables that
are found in a critical section of a stanza. Since the critical section
has eliminated the problem of concurrent fetch and store, the
members of SVSs will be removed from the WYZ and the XYZ sets
in the BTA. This will ensure the correctness of the parallel
stanzas. Hence, the assertion is modified as follows.

BTA: «(WYZi - SVSi) ('\ (XYZj - SVSj» = 0) 1\

«(XYZi - SVSj) ('\ (XYZj - SVSj» = 0)

Figure 7.6 shows two parallel stanzas with critical sections. The
codes in between the LOCK and UNLOCK regions are the critical
regions. Only one stanza can execute its own critical region at one
time. When the SVS is deleted from the XYZ and WYZ sets, the
BTA will show that there is no concurrent fetch and store
operations.

204

procedure ROOT(a,b,c)
var a,b,c,tl,t2,t3,t4: integer;

rI, r2 : real;
begin

ASSUME(a>O);
if (a > 0) then
begin

tI := - to;
t2 := b * b;

t3 := 4 * a * c;
t4 := 2 * a;
if t2 > t3 then
begin

end;

rI := (tl + SQR(t2-t3»/t4;
r2 := (tl - SQR(t2-t3»/t4;

end;
PROVE «a > 0 and (b*b>4*a*c» or

(a > 0 and (b*b<4*a*c» or
(a <= 0»

end of ROOT;

(a) Root program

Figure 7.4: Examples of parallel stanzas

205

procedure REM(x,y)
var x,y,r,q:integer;
begin

ASSUME(O<=x and O<y);
r := x;

q := 0;
ASSERT«x=y*q+r) and (r>=O) and (pO»;
while r >= y do
begin

end;

r := r - y;

q := q + 1;

PROVE(O <= r < y and x = y*q+r);
end of REM;

(b) Remainder program

Figure 7.4: Examples of parallel stanzas (continued)

w

a

b

c

x

r1
r2

y

(c) BSs for ROOT

z

t 1
t2
t3
t4

w x y z

x r

y q

(d) BSs for REM

Figure 7.5: The Bernstein Sets for programs in Fig. 7.4.

206

ASSUME(true);
max:=O;
LOCK;
read(a);
if (a > 0 and a > max) then

max := a;
print(a,max);
UNLOCK;
PROVE(max>=O)

(a) Stanza 1

W x Y z
max -
a

(c) BSs for stanza 1

SYS
a

max

ASSUME(true);
min:=999;
LOCK;
read(a);
if (a < min) then

min := a;
print(a,min);
UNLOCK;
PROVE(min <= 999)

(b) Stanza 2

W x Y z
min -
a

(d) BSs for stanza 2

Figure 7.6: Stanzas with critical sections

7.6 VERIFYING PARALLEL LOOPS

SYS
a
min

Detection of parallelism in loops has been a major research topic
reported in several papers [Alien et al. (1987), Mohd-Saman and
Evans (1993), Banerjee (1988), Wolfe (1989b)]. There is a great
need to ensure that the loop iterations that can be executed in
parallel will give the correct results. In this section, a verification
technique for fixed parallel loops is presented. Mohd-Saman and
Evans (1993) have proposed the Bemstein Loop Tests (BLTs) to
test for parallelism in loops. These tests have been fully
described in Chapter 5 of this thesis. Similar to the BTA described
in Section 7.4 above, the BL Ts can be used as an assertion in
verifying the correctness of fixed parallel loops.

207

A loop with n iterations can be treated as having n stanzas, one
stanza for each iteration. Then, the BTA, described in Section 7.4,
can be used to test the correctness of any two or more iterations
and thus the correctness of the loop. However, the presence of
array references in the loop body creates difficulty in determining
the dependence between iterations. The BL Ts which use the data
reference directions of >, < and =, for array variables, have been
shown to be an efficient way to test for loop parallelism.

Another assertion called the BL T Assertion (BL T A) will be
formed to be part of the method to verify the correctness of the
parallel loops. In order to do this, input and output assertions
together with the BL T A will be placed in the loops. Hence, it
must be shown that, given an input assertion P, for the loop to be
true,

(a) the output assertion Q must be true in a sequential manner

(b) the BLTA must be non-empty (of any scalar variables)
and the results for directed variables (Le., array) must be of
Equal direction.

In order to check for (b), two sets RI and R2 are defined as
follows.

Let RI = WYZi (1 XYZj for all i and j
Let R2 = XYZi (1 XYZj for all i and j) t ~ j

For all I ~ i, j ~ n, n = number of stanzas in the loop body

Let ELEMENT(D,R) be the direction:

D (EQUAL, FORWARD, BACKWARD)

in set R. Assume that any FORWARD/BACKWARD direction with
zero distance is similar to EQUAL. The BLTA will be of the
following form.

208

PROVE(BL T A)

where BLTA consists of the following assertion:

(RI = 01\ ELEMENT(EQUAL,RI» 1\ (R2 = 01\ ELEMENT(EQUAL,R2))

This assertion reads as follows:

The parallel property of the loop is preserved if (RI is 0
AND EQUAL is the only direction of all array variables in RI)
AND (R2 must be empty AND EQUAL is the direction of all
array variables in R2).

Consider the fixed parallel loop in figure 7.7 which has n iterations
with three statements in the loop body. Assume that, when the
loop is executed, n processes are created and scheduled to run on
n processors. The execution tree is shown in figure 7.8. In
verifying the correctness of such a loop, the individual BSs for the
statements in the body of the loop are first determined. This can
be done as the SE is performed on the body of th~ loop. At the
end of the SE, if the loop stanza is verified to be correct
sequentially, then the BL TA will be checked and verified.
Therefore, for a loop to be verified as correct, the BLTA must be
true and the correctness of its body in a sequential manner must
also be determined.

To handle mutual exclusions in fixed parallel loops, similar to the
method described in Section 7.5.2, SVSs for the loop body have to
be formed first. Then RI and R2 are modified as follows.

RI = (WYZi - SVSi) ('\ (XYZj - SVSj)
R2 = (XYZi - SVSi) ('\ (XYZj - SVSj) i ~ J
for all I :s; i,j :s; n, where n = number of stanzas in a loop

For a conditional loop, the SE technique as described by Hantler
and King (1976) with the loop assertions inserted in the program,
will suffice in verifying its correctness.

209

SO;
LOOP i := 1 TO n DO
BEGIN

FND

ASSUME(Pi)
SI;
S2;
S3;
PROVE(Qi)

PROVE(BL T Assertion)
S4

Figure 7.7: Verification of a fixed parallel loop

210

G
iter. 1

81
82
83

Note:

••••

iter.2 iter.3 iter.n

81 81 •••• 81
82 82 82
83 83 83

P - input assertion for the loop body
Q - output assertion for the loop body
BLTA - BLT Assertion for loop body

Figure 7.8: N processes for the loop in figure 7.7

211

7.7 SUMMARY

The research on proving the correctness of programs has received
a lot of attention. When reliability and safety are critical then
software development needs special tools to help the
programmers develop correct and reliable software.· This chapter
has presented simple methods in verifying the correctness of
parallel programs. It also has given an overview of the research
work that have been carried out in this particular field.

For parallel programs, especially the fixed parallel loops, great
care has to be given in proving them correct. This is because
many processes are running at the same time and are able to
modify variables shared among them. It has been demonstrated
that the Bernstein Test developed by Williams (1978) and the
Bernstein Loop Test developed by Mohd-Saman and Evans (1993)
can be conveniently used to verify the properties of parallel
stanzas and loops.

One of the methods for verifying the correctness of sequential
programs is the Symbolic Execution (SE) [Hantler and King (1976),
King (1976)]. In this method, correctness assertions are placed as
part of the program. The program is then executed symbolically
to determine if the assertions are correct or not. This method
ensures a large class of inputs can be carried out for execution. In
this chapter, it ha~~howrl how the SE can be integrated with
Bernstein Method assertions to verify the properties of parallel
programs and loops. These assertions are called the BT Assertion
and the BL T Assertion.

The use of SE in verifying the correctness of programs still needs a
lot of attention and improvement. In the SE, Verification
Conditions (VCs) are generated. VCs tend to be large formulae and
this is one of the shortcomings of using the SE. If VCs cannot be
proved, it could mean three possible explanations. First, the
method of proving the YCs is inadequate. Second, there are
actually errors in the program and third, the assertions supplied
by the programmers are insufficient.

212

Interactive incremental development and verification of programs
offers an applicable way to develop error free programs such as in
the Penelope system [Guaspari et al. (1990)]. The role of the
programmer with the help of a tool to verify a program
interactively, may present a better development strategy rather
than having a batch type of program verification. Assertions can
be supplied one by one as the development of the program gets
bigger and bigger. These assertions can be modified during
development and verification may be carried~'fn those parts which
have only been modified. However, De Milo et al. (1979) have
argued that program proving using the mathematical approach is
still a very difficult task.

213

CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 INTRODUCTION

Most of the computer programs currently available are written
in a sequential manner which suits the architecture of a single
processor computer. With the availability of the multi-processor
computer. in which each processor can execute different parts of a
program in parallel. the task of programming in parallel has
increased. Sequential programs have to be transformed into their
parallel version to take advantage of the fast and concurrent
processing. Old programs (or dusty decks) have to be rewritten
and this will take a lot of time and effort. Hence. a software tool
that can automatically parallelize a sequential program is greatly
needed to transform existing programs as well as to ease the
programming tasks of programmers who are already familiar with
sequential programming. A Parallelizing Compiler is one such
tool that is able to perform the whole process of compiling and
restructuring [Appelbe and Smith (1989). Guama et al. (1989).
Polychronopoulos et al. (1990)].

Numerous research work ha~f been conducted since the sixties
when the interest in parallel computing began to emerge [Allen
and Cocke (1976). Baer (1973). Bemstien (1966). Burke et al.
(1988). Callahan et al. (1987). Gonzalez (1972). Kuck et al. (1972).
Padua and Wolfe (1986). Polychronopoulos (1988). Tjaden
(1970). WiIliams (1978)]. The main objective of the various
researches is to develop techniques to extract parallelism and to
perform program transformation. Most of the work so far has
concentrated on the Fortran language because it has been the
most popular and widely used language for numerical
computation. However. some work has been done on other
languages such as C and Pascal [Gabber et al. (1993). Huson et al.
(1986). Polychronopoulos et al. (1990). Tsuda and Kunieda
(1992)].

This thesis has focused its study on the determination of implicit
parallelism in sequential programs. It is based on the Bemstein
Sets [Bemstein (1966)] and the sets of tests developed by
Williams (1978). The topics that have been studied include:

215

a. the design of a software tool that can determine parallel
parts, called stanzas, of a sequential program and their
scheduling on a shared-memory multi-processor system.
The tool is also capable of solving the problem of
determining optimal stanza granularity.

b. the detection of parallelism in sequential loops and their
transformation into parallel forms.

c. the Inter-procedural Analysis which involves gathering
information when a procedure call is made.

d. verification of the correctness of parallel stanzas.

This chapter will summarise and then conclude the topics
discussed throughout the thesis. Section 8.2 gives a summary and
conclusion for Chapter 4 which has detailed discussion on the
implementation of TAG, a software tool to detect parallelism in
sequential programs and to determine stanza granularity. In
Section 8.3, a summary and conclusion on the Bernstein Loop
Tests and loop transformations, discussed in Chapter 5, will be
presented. Inter-procedural analysis discussed in Chapter 6 is
summarised in Section 8.4. The applicability of the Bernstein
Method to form as assertions to be used for program verification
will be concluded in Section 8.5. Finally, Section 8.6 will suggest
some further research that can be carried out in this field.

8.2 DEPENDENCE ANALYSIS AND SCHEDULING OF STANZAS

Apart from the problem of the Ifdusty decks!' programming in
parallel is a very . difficult and tedious task since most
programmers are familiar with writing sequential programs. It
involves identifying those parallel parts in the programs and
coding them using parallel constructs. Hence, programmers need
softw;ge tools such as the Parallelizing Compiler, to help them
carr~ this type of programming as easily as possible without
many difficulties.

216

Data dependence analysis (DDA) is a major operation that has to
be carried out by a parallelizing compiler. It performs the
detection of independent operations in user programs. Detailed
examination of the program is carried out on how the data is
referenced, especially in those involving array elements. It will
determine whether the different references can take place
simultaneously or not.

Much effort has been made on designing good algorithms for the
DDA. Chapter 3 has surveyed the various techniques used. One of
them is the Bernstein Method which forms the basis of the study
discussed in this thesis. In Chapter 4, an implementation of the
Bernstein Tests (BTs) in a software tool called TAG, is presented.
It also includes discussions on the problem of scheduling and
granularity of stanzas. In this thesis, the Bernstein Method has
demonstrated to be a viable and useful way to perform the DDA.
The BSs contain information that can be used for testing
parallelism between stanzas of a program.
the BSs forms a natural way to indicate
stanza.

The individual set in
the flow of data in a

Scheduling is a scheme that allocates stanzas or tasks to
processors in a parallel computer. One of the goals of scheduling
parallel or concurrent stanzas is to achieve an optimal overall
execution time of the program. This is not a simple task to do
since utilizing more than one processor usually incurs some
overhead caused by inter-task communication. This
communication overhead is an extra time needed for the data
transfer between processors and it is mainly caused by the data
dependences that exists between the concurrent stanzas. This will
make some of the processors idle waiting for some stanzas to
finish their executions. Trying to achieve an optimal execution
time for concurrent programs sometimes leads to unbalanced use
of the processors. Therefore, the scheduling technique should
have a capability to balance between maximizing the parallelism
and minimizing the overhead of communication. This problem is
also related to the determination of an optimal stanza grain size
which has been acknowledged to be very difficult to solve.

217

However, the study conducted in this research has showed that a
heuristic with repeated scheduling and merging can produce near
optimal stanza size (see Chapter 4).

8.3 LOOP DEPENDENCES AND TRANSFORMATIONS

Loops have been the main focus that are analysed because they
provide the best opportunities for parallelism. Most of the
research work has concentrated on designing accurate algorithms
to deal with complicated array subscripts in the DDA. Once the
dependences have been identified, the loops can then be
transformed into parallel forms so that they can be executed
concurrently.

Chapter 5 has described a set of tests, called the Bernstein Loop
Tests (BLTs), that can be applied to loops to detect whether their
iterations can be run concurrently or not. The BLTs use the Data
Reference Directions (DRDs) for array references. This enables the
tests to determine if multiple accesses to array elements occur or
not between iterations.

Based on the results of the BLTs and the types of the BSs involved,
loops can be transformed into parallel forms, as discussed in
Chapter 5. There are several schemes that can be used to do the
modifications and most of them are readily found in optimizing
compilers. Examples of such techniques are forward substitution,
scalar renaming and loop distribution. Those parts of the program
whose data dependences cannot be eliminated can still be
parallelized but only after synchronization statements are
introduced. This in one of the main tasks of a Parallelizing
Compiler, i.e, transforming serial programs into parallel versions.

8.4 INTER-PROCEDURAL ANALYSIS

Procedure calls in programs is another important factor that may
hinder detection of parallelism. The nature of procedures is that
they hide certain information such as the detailed array
references from being analysed directly by a simple DDA. This

218

information is usually passed through parameters. Hence, the
DDA should be extended to perform the Inter-procedural Analysis
(IPA) to uncover more parallelism that may exist when procedure
calls are made.

In . Chapter 6, the collection of information in IPA, based on the
Bernstein Method, has proved to be an easy and feasible method.
This information can then be readily used in the BTs and the BLTs
without any modifications to the tests or the BSs. The IPA can
handle any call to procedure with call-by-value and call-by
reference types of parameter passing. It also handles recursive
procedures efficiently.

8.S VERIFICATION OF PARALLEL PROGRAMS

As mentioned earlier, writing a parallel program is a very
difficult, time-consuming and tedious task. Programmers tend to
make mistakes unknowingly. Therefore, there is a great need to
ensure that the program written is error-free and correct. This
problem of correctness relies heavily on the capabilities of the
programmers. One simple way is by testing the finished
programs with sets of data but this may not give total correctness.
Proving correctness has also been done theoretically by using
formal methods. Programs are modelled mathematically and then
proved. This method has been argued to be a tedious and time
consuming process because the arguments involved can be large.
However, the need for verifying the correctness will remain a
very interesting area of research in the future.

One technique
Execution (SE).

that has been widely used is the Symbolic
Chapter 7 has showed that this technique can be

easily applied to verify parallel stanzas. This is done by
performing the SE extended with a new assertion (apart from the
input and output assertions) called the BT Assertion (BTA) to test
for the parallel properties of any two stanzas. Another assertion,
the BL T Assertion (BL TA) allows loops targeted for parallel
execution to be verified. Information for the BT A and BL T A can
be readily collected by the SE during its verification process.

219

Chapter 7 has also described how stanzas with the presence of
critical sections can be verified using this technique.

8.6 FUTURE RESEARCH

As stated earlier, the goal of the research presented in this thesis
is to study methods for the determination of parallelism in
programs. Related topics include stanza scheduling, program
transformations and verification of program correctness. This
thesis has discussed a number of topics that certainly need
further investigation.

a. The Bernstein Method has not been pursued by many
researchers. Hence its applicability and suitability has not
been fully analysed and tested. This thesis has showed its
power and usefulness. Now a full implementation in its
complete form should present a radical change from the
usual method conducted by other researchers.

b. This thesis has not performed any comparative study
between the Bernstein Method and other method for the
DDA. This performance study should give the real indication
of its usefulness.

c. The BTs and the BLTs are tests applied on sets. The
Diophantine Analysis (Le., numerical method) described in
Chapter 3 does not come into this category. It would be
interesting to investigate the possibility of integrating the
Bernstein Method with this numerical method.

d. In this thesis, the BTs and the BL Ts are used to detect
parallelism involving scalar variables and array references.
However, programming languages contain other forms of
memory accesses. Notably is the use of pointers such as in
the C and Pascal languages. Several techniques have been
suggested [Hendren and Nicolau (1989)] but the Bernstein
Method should be able to handle this kind of programming
construct and this needs further investigation.

220

e. Currently, object-oriented programming languages are
becoming widely in use such as the C++ Language
[Stroustrup (1986)]. These languages provide object
encapsulation and thus can be represented as stanzas. This
needs a further study since handling of objects throughout
an object-oriented program needs an extensive use of the
IPA. The methods described in this thesis could be useful in
performing such;process.

f. In verification of programs, the BTs and the BLTs have been
used as assertions together with the Symbolic Execution (SE).
Apart from the SE technique, the use of formal methods to
verify progralI1S' is gaining acceptance. One way is to use a
specification language such as the VDM or Z to develop a
correct program [Bowen (1988), McParland and Kilpatrick
(1988)]. Correctness is verified at the specification level
before the development of the actual program. The BTs and
the BLTs should offer an interesting way if they could be
modelled in the specification program in the development of
parallel software.

221

REFERENCES

Adam T.L., Chandy, K.M. and Dickson, J.R. (1974) "A Comparison of
List Schedules for Parallel Processing Systems",
Communications of The ACM 17, no. 12, pp: 685-690

Aho, A.V., Sethi, Rand Ullman, J.D. (1986) "Compilers Principles,
Techniques and Tools", Addison-Wesley

Aiken, A. and Nicolau, A. (1990) "Fine-grain Parallelization and
the Wavefront Method", in Languages And Compilers for
Parallel Computing (D. Gelernter, A. Nicolau and 0 Padua:
Editors), Pitman, pp: 1-16

Albert, E., Knube, K., Lukas, J.D., Steele Jr, G.L. (1988) "Compiling
Fortran 8x Array Features for the Connection Machine
Computer System", Proc. ACM/Sigplan, pp: 42-56

AlIen, F.E. (1988) "Compiling for Parallelism: An Overview",
Parallel Systems and Computations, Ed: G Paul and GS
Almasi, North-Holland, pp: 3-13.

AlIen, F.E. and Cocke, J. (1976) "A Program Data Flow Analysis
Procedure", Comm. of ACM Vol 19-3, pp: 137-147

Allen, J.R., Kennedy, K., Porterfield, C. and Warren, J. (1983)
"Conversion of Control Dependence to Data Dependence",
10th ACM Symp. on Principles of Prog. Lang, pp: 177-189

Allen, J.R. and Kennedy, K. (1984a) "Automatic Loop Interchange",
Proe. of SIGPLAN Symp. on Compiler Constructions, pp: 233-
246 ..

Allen, R.A. and Kennedy, K. (1984b) "PFC: A Program to Convert
Fortran to Parallel Form", In Tutorial Supercomputers:
Design and Applications, Ed: Hwang, K., IEEE Computer Soc.,
pp: 186-203

Allen, R., Baumgartner, D., Kennedy, K. and Porterfield, A. (1986)
"PTOOL: A Semi-automatic Parallel Programming Assistant",

223

Computer Science Technical Rep. COMP TR86-31, Rice
University, Houston, TX.

Allen, R. and Kennedy, K. (1987) "Automatic Translation of
FORTRAN programs to Vector form", ACM Trans. on Prog.
Lang. and Syst., Vol. 9, No. 4, pp: 491-542.

Allen, R., Callahan, D. and Kennedy, K. (1987) "Automatic
Decomposition of Scientific Programs for Parallel Execution",
Proc. of 14th ACM Symp. on Principle of Prog. Lang, pp: 63-
76.

Almasi, S.A and Gottlieb, A., (1989) "Highly Parallel Computing",
The Benjamin/Cummings Publishing Comp. Inc.

Andrew, G.R. and Schneider, F.B., (1983) "Concepts and Notations
for Concurrent Processing", Computing Surveys 15, pp: 3-43

Appelbe, B. and Smith, K., (1989) "Start/Pat: A Parallel
programming Toolkit", IEEE Software, pp: 29-38.

Apt, K.R. (1986) "Correctness Proofs of Distributed Termination
Algorithms", ACM Transaction on Programming Languages
and Systems, Vol. 8, No. 3, pp: 388-405

Axelrod, T.S. (1986) "Effects of Synchronization Barriers on
Multiprocessor performance", Parallel Computing 3, pp: 129-
140. North-Holland.

Bach, M.J. (1986) "The Design of the UNIX Operating System",
Pren tice-Hall

Baer, J.L. (1973) "A Survey of Some Theoretical Aspects of
Multiprocessing", Computing Surveys, Vol. 5-1, pp: 31-80.

Balasundram, V. and Kennedy, K., (1989) "A Technique for
Summarizing Data Access and its Use in Parallelism

224

Enhancing Transformation", Proc. SIGPLAN Conf. on Prog.
Lang., pp:41-53.

Banerjee, U. (1988) "Dependence Analysis for Supercomputing",
Kluwer Academics Publishers

Banerjee, U. (1990) "A Theory of Loop Permutations", in
Languages And Compilers for Parallel Computing (D.
Gelernter, A. Nicolau and 0 Padua: Editors), Pitman, pp: 54-
74

Banning, J.P. (1979) "An Efficient Way to Find the Side Effects of
Procedure Calls and the Aliases of Variables", 6th ACM
Symp. on Prin. of Prog. Lang., pp: 29-41.

Barth, I.M. (1978) "A Practical Inter-procedural Data Flow
Analysis Algorithm", Communication of the ACM 21-9, pp:
724-736

Beckmann, C.I. and Polychronopoulos, C.D. (1991) "The Effect of
Scheduling and Synchronization Overhead on Parallel Loop
Performance", CSRD Report No. 1111, Center For
Supercomputing Research and Development, Univ. of Illinois
at Urbana-Champaign

Bernstein, A.I., (1966) "Analysis of programs
Processing", lEE Trans. on Elec. Comp. Vol 1
763.

for Parallel
EC-15, pp: 757-

Bershad, B.N., Lazowska, E.D. and Levy, H.M. (1988) "PRESTO: A
System for Object-oriented Parallel Programming",
Software-Practice and Experience, Vol 18(8), pp: 713-732

Bieler, F. (1990) "Partitioning Programs into Processes", Proc. of
Ioint Int. Conf. on Vector and Parallel Processing, CONPAR
90-VAPP IV, Springer-Verlag, pp: 513-524.

225

Blume, W. and Eigenmann, R. (1992) "Performance Analysis of
Parallelizing Compilers on the Perfect Benchmarks
Programs", CSRD Report No. 1218, Center For
Supercomputing Research and Development, Univ. of Illinois
at Urbana-Champaign

Boiten, E.A., Partsch, RA., Tuijnman, D. and Volker, N. (1992) "How
to produce correct Software - An Introduction to Formal
Specification and Program Development by
Transformations", The Computer Journal, Vol. 35, No. 6, pp:
547-554

Bokhari, S.H. (1988) "Partitioning Problems in Parallel, Pipelined,
and Distributed Computing", IEEE Trans. on Computers, Vol.
37, No. I, pp: 48-57

Bowen, J.P. (1988) "Formal Specification in Z as a Design and
Documentation Tool", 2nd IEE/BCS Conf. Software Engin., pp:
164-168

Boyer, R.S., Elspas, B. and Levitt, K.N. (1975) "SELECT - A Formal
System for Testing and Debugging Programs by Symbolic
Execution", Reliable Software Intl. Conf., pp: 234-245

Burke, M and Cytron, R. (1986) "Inter-procedural Dependence
Analysis and Parallelization", ACM SIGPLAN Symposium on
Compiler Construction pp: 162-175

Burke, M., Cytron, R., Ferrante, J., Hsieh, W., Sarkar, V., Shield,
D., (1988) "Automatic Discovery of Parallelism: A Tool and
an Experiment (Extended Abstract)", Proc. of the
ACM/SIGPLAN PGEALS, pp: 77-84.

Butt, W. (1993) "Load Balancing Strategies for Distributed
Computer Systems", PhD Thesis, Loughborough Univ. of Tech

226

Callahan, D., Cooper, K.D., Kennedy, K. and Torczon, L. (1986)
"Inter-procedural Constant Propagation", SIGPLAN Notices
Vol. 21, Part 7, pp: 152-161.

Callahan, D. and Kennedy, K. (1987) "Analysis of Inter-procedural
Side Effects in a Parallel Programming Environment",
Supercomputing 1st Conf, Lecture Notes in Computer
Science, No. 297, pp: 138-171.

Callahan, D., Cooper, K.D., Hood, R.T., Kennedy, K., Torczon, L.,
Warren, S.K., (1987) "Parallel Programming Support in
Parascope", Parallel Computing in Science and
Engineering, Lecture Notes in Computer Science 295.

Chandra, R., Gupta, A. and Hennesy, J.L. (1990) "COOL: a Language
for Parallel Programming", in Languages And Compilers for
Parallel Computing (D. Gelernter, A. Nicolau and D Padua:
Editors), Pitman, pp: 126-148

Cherniavsky, J.C. and Smith, C.H. (1986) "A Theory of Program
Testing with Applications" Proc. of Workshop on Software
Testing, Canada, Computer Society Press, pp: 110-121

Clarke, L.A. and Richardson, D.J. (1984) "Symbolic Evaluation - an
Aid to Testing and Verification", Software Validation, H. L.
Hausen (editor), North-Holland, pp: 141-167

Coffman Jr, E.G. (1976) "Computer and Job-shop Scheduling
Theory", John-Wiley.

Cohen, D., Swartout, W. and Balzer, R. (1982) "Using Symbolic
Execution to Characterize Behaviour", ACM SIGSOFf Software
Eng. Notes, Vol. 7 No. 5, pp: 25-32

Cooper, K.D., Kennedy, K. and Torczon, L. (1986) "The Impact of
Inter-procedural Analysis and Optimization in the Rn
Programming Environment", ACM Trans. on Prog. Lang. and
Syst., Vol. 8, No. 4, pp: 491-523.

227

Cooper, KD. and Kennedy, K (1988) "Inter-procedural Side-effect
Analysis in Linear Time", Proc. of SIGPLAN, Conf. on Prog.
Lang.: Design and Implementation, 1988, pp: 57-66.

Cooper, KD. and Kennedy, K. (1989) "Fast Inter-procedural Alias
Analysis", 16th ACM Symp. on Principles of Prog. Lang., pp:
49-59

Cooper, KD., Hall, M.W. and Torczon, L., (1991) "An Experiment
with In-line Substitution", Software-Practice and Experience,
Vol 21(6), pp: 581-601.

Cowell, W.R. (1988) "Users' Guide to Toolpack/l Tools for Data
Dependency Analysis and Program Transformation",
Argonne National Lab.

Cowell, W.R. and Thompson, C.P., (1990) "Tools to aid in
Discovering Parallelism and Localizing Arithmatic in Fortran
Programs", Software-Practice and Experience, Vol 20(1), pp:
25-47.

Cytron, R., (1986) "Doacross: Beyond Vectorization for Multi-
processors (extended abstract)", Proc. of Int. Conf. on Parallel
Proc., pp:836-844.

Cytron, R., Ferrante, J. and Sarkar, V. (1990) "Experiences Using
Control Dependences in PTRAN", in Languages And
Compilers for Parallel Computing (D. Gelernter, A. Nicolau
and D Padua: Editors), Pitman, pp: 186-212

Cytron, R., Ferrante, J, Rosen, B.K., Wegman, M.N. and Zadeck, F.K.
(1991) "Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph", ACM Transaction on
Programming Languages and Systems, Vol. 13, No. 4, pp:
451-490

228

D'Hollander, E.H. (1989) "Partitioning and Labeling of Index Sets in
Do Loops with Constant Dependence Vectors", Proc. Int. Conf.
on Parallel Proc, pp: II-139-144.

Davidson, J.W. and Holler, A.M., (1988) "A Study of a C Function
In-liner", Software-Practice and Experience, Vol 18(8), pp:
775-790.

Davies, J., Huson, C., Macke, T., Leasure, B. and Wolfe, M. (1986)
"The KAP/S-l: An Advanced Source-to-Source Vectorizer for
the S-1 Mark Ha Supercomputer", Proc. of Intl. Conf on
Parallel Processing, pp: 833-835.

De Millo, R.A., Lipton, R.J. and Pedis, A.J., (1979) "Social Processes
and Proofs of Theorems and Programs", Communication of
the ACM 22-5, p:271-280

Dennis, J.B. (1980) "Data Flow Supercomputers", IEEE Computer,
pp: 48-56

Dijkstra, E.W. (1976) "A Discipline of Programming", Prentice-Hall.

Dillon, L.K. (1988) "Symbolic Execution-based Verification of ADA
Tasking Programs", 3rd IEEE Int. Conf. on ADA Applic. and
Env., pp: 3-13

Dillon, L.K., (1990) "Verifying General Safety Properties of ADA
Tasking Programs", IEEE Trans. on Software Eng., Vol. 16-1

Dillon, L.K., Kemmerer, R.A. and Harrison, L.J. (1988) "An
Experience with Two Symbolic Execution-Based Approaches
to Formal Verification of ADA Tasking Programs", 2nd
Workshop on Software Testing, Verification and Analysis,
pp: 114-122.

Duda, A. (1988) "On the Tradeoff Between Parallelism and
Communication", Proc. of the 4th Int. Conf. on Modeling

229

Techniques and Tools for Computer
Evaluation, pp: 323-334.

Performance

Ebenstein, S.E. and Mcdermott, T.L. (1990) "Optimizing Techniques
for Parallel Processing", Software-Practice and Experience,
Vol 20(8), pp: 833-849.

Ehrig, H., Mahr, B., Classen, I. and Orejas, F. (1992a) "Introduction
to Algebraic Specification. Part 1: Formal Methods for
Software Development", The Computer Journal, Vol. 35, No.
5, pp: 460-467

Ehrig, H., Mahr, and Orejas, F. (1992b) "Introduction to Algebraic
Specification. Part 2: From Classical View to Foundations of
System Specification", The Computer Journal, Vol. 35, No. 5,
pp: 468-477

Eigenmann, R. and Blume, W. (1991) "An Effectiveness Study of
Parallelizing Compiler Techniques", CSRD Rpt. No. 1090
University of Illinois USA.

Evans, D.J. (1990) "Multitasking Strategies in Parallel
Computer Studies 557, Loughborough University

Computing",
of Tech.

Evans, D.J and Williams S.A., (1978) "Analysis and Detection of
Parallel Processable Code", The Computer Journal, Vol. 23,
no. I, pp:66 - 72.

Evans, D.J. and Mohd-Saman, M.Y. (1993) "Determination of
Parallelism in Programs", In Software for Parallel
Computation (Ed: Kowalik, J.S. and Grandinelti, L.) Springer
Verlag.

Ferrante, J., Ottenstein, K.J. and Warren, J.D. (1987) "The Program
Dependence Graph and Its Use in Optimization", ACM Trans.
on Prog. Lang. and Syst., Vol. 9, No. 3, pp: 319-349.

230

Flynn, M.J. (1972) "Some Computer Organizations and Their
Effectiveness", IEEE Trans. on Computers, Vol. C-21, No. 9,
pp: 948-960

Foster, I. (1991) "Automatic Generation of Self-Scheduling
Programs", IEEE Trans. on Parallel and Distributed Systems,
Vol. 2-1, pp: 68-78

Frankl, P.G. and Weyuker, E.J. (1986) "Data Flow Testing in the
Presence of Unexecutable Paths" Proc. of Workshop on
Software Testing, Canada, Computer Society Press, pp: 4-13

Freeman, T.L. and Phillips, C. (1992) "Parallel Numerical
Algorithms", Prentice Hall.

Gabber, E., Averbach, A. and Amiram, Y. (1993) "Portable,
Parallelizing Pascal Compiler", IEEE Software, pp: 71-81.

Garey, M.R. and Johnson, D.S., (1979) "Computers and
Interactability: A guide to the Theory of NP-Completeness",
WH Freemen and Company.

Garsden, H. and Wendelborn, A. L. (1990) "A Comparison of
Microtasking Implementations of the Applicative Language
SISAL", Proc. of Joint Int. Conf. on Vector and Parallel
Processing, CONPAR 90-VAPP IV, Springer-Verlag, pp: 697-
708.

Gehani, N. (1984) "ADA Concurrent Programming", Prentice-Hall.

Gehani, N.H. and Roome, W.D. (1988) "Concurrent C++: Concurrent
Programming with Class(es)", Software-Practice and
Experience, Vol 18(12), pp: 1157-1177.

Girkar, M.B. and Polychronopoulos, C.D. (1988) "Partitioning
Programs for Parallel Execution", Supercomputing ACM
Proc. of Intl. Conf, St. Malo, France, pp: 216-229.

231

Goff, G., Kennedy, K. and Tseng, C. (1991) "Practical Dependence
Testing", Proc. of ACM SIGPLAN 1991 Conf. on Prog. Lang.
Design and ImpI. Toronto, Canada, pp: 15-29 ..

Gonzalez, M.J. (1972) "Parallel Task Execution in Decentralized
System", IEEE Transactions on Computer 21, no. 12, pp:
1310-1322.

Good, DJ., Cohen, R.M. and Keeton-WiIIiams, J. (1979) "Principles of
Proving Concurrent Programs in Gypsy", 6th ACM Symp. on
Principles of Programming Language, pp: 42-52.

Gries, D. (1977) "An Exercise in Proving ParaIIel Programs Correct",
Communication of the ACM 20-12, p:921-930

Gries, D. (1981) "The Science of Programming", Springer-VerIag.

Guarna, V.A., Gannon, D., Jablononowski, D., Malony, A.D. and
Gaur, Y. (1989) "Faust: An Integrated Environment for
parallel programming", IEEE Software, pp: 20-26.

Guaspari, D., Marceau, C. and Polak, W. (1990) "Formal Verification
of ADA Programs", IEEE Trans. on Software Eng., Vol. 16-9.

Gurd, J.R., Kirkham, C.C. and Watson, I. (1985) "The Manchester
Prototype Dataflow Computer", Communications of The ACM
28, no. I, pp: 34-55.

Haghighat, M.R. (1990) "Symbolic Dependence Analysis for High
Performance ParaIIeizing Compilers", CSRD Rpt. No. 995 MSc
Thesis, University of Illinois USA.

Hall, P.A.V. (1988) "Towards Testing with Respect to Formal
Specification", 2nd IEE/BCS Conf. Software Engin.,.pp: 159-
163

232

Halstead, R.H. Jr. (1985) "Multilisp : A Language for Concurrent
Symbolic Computation", ACM Transactions on Programming
Languages and Systems 7, no 4, pp: 501-538.

Hansen, P.B. (1973) "Operating System Principles", Prentice Hall.

Hansen, P.B. (1975) "The Programming Language Concurrent
Pascal", IEEE Transactions on Software Engineering SE-I, no
2, pp: 199-207.

Hantler, S.L. and King, J.C. (1976) "An Introduction to proving
Correctness of programs", ACM Computing Surveys Vol 8
No. 3, pp: 331-353

Harrison, L.J. and Kemmerer, R.A. (1988) "An Interleaving
Symbolic Execution Approach for the Formal Verification of
Ada Programs with Tasking", Proc. of Third IEEE Conf. on
Ada: Application and Environment, pp: 15-26.

Harrison Ill, W.L. and Chow, J.H. (1991) "Dynamic Control of
Parallelism and Granularity in Executing Nested Parallel
Loops", CSRD Report No. 1167, Center For Supercomputing
Research and Development, Univ. of Illinois at Urbana
Champaign.

Havlak, P. and Kennedy, K. (1991) "An Implementation of
Interprocedural Bounded Regular Section Analysis", IEEE
Transactions on Parallel and Dist. Syst., Vol. 2-3, pp: 350-
360.

Hendren, L.J. and Nicolau, A. (1989) "Interference Analysis Tools
for Parallelizing Programs with Recursive Data Structures",
Proc. Int. Conf. on Supercomputing, Greece, pp: 205-214.

Hiranandani, S., Kennedy, K. and Tseng, C.W. (1992) "Compiling
Fortran D for MIMD Distributed-Memory Machines",
Communications of the ACM 35, no. 8, pp: 66-80.

233

Hoare, C.A.R. (1969) "An axiomatic basis for computer
programming", Comm. of the ACM 12-10, pp: 576-583

Hoare, C.A.R. (1978) "Communicating Sequential Processes",
Comm. of The ACM 21, no. pp: 666-677.

Howden W.E. (1977) "Symbolic Testing and the DISSECT Symbolic
Evaluation System", IEEE Trans. on Software Eng., Vol. SE-3,
No. 4, pp: 266-278

Huson, C., Macke, T., Davies, J., Wolfe, M. and Leasure, B. (1986)
"The KAP/205: An Advanced Source-to-Source Vectorizer
for the Cyber 205 Supersomputer", Proc. of 1986 Intl. Conf
on Parallel Processing, pp: 827-832.

Hwang, K. and Briggs, F.A. (1984) "Computer Architecture and
Parallel Processing", Mc Graw-Hill.

Jackson, D.T. (1985) "Data Movement on DOALL Loops", CSRD
Report 524, University of Illinois.

Kemmerer, R.A. and Eckman, S.T. (1985) "UNISEX: a UNIx-based
Symbolic EXecutor for Pascal", Software-Practice and
Experience, Vol. 15(5), pp: 439-458.

Kernighan B.W. and Ritchie, D.M. (1988) "The C programming
Language", Prentice-Hall.

King, J.C., (1976) "Symbolic Execution and Program Testing",
Communication of the ACM 19, 7, pp:385-394

Kong, X., Klappholz, D. and Psarris, K. (1991) "The I Test: an
Improved Dependence Test for Automatic Parallelization
and Vectorization", IEEE Transactions on Parallel and Dist.
Syst., Vol. 2-3, pp: 342-348.

Krothapalli, V.P. and Sadayappan, P. (1991) "Removal of
Redundant Dependences in DOACROSS Loops with Constant

234

Dependences", IEEE Trans. on Parallel and Distributed
Systems, Vol. 2-3, pp: 281-289.

Kruatrachue, B. and Lewis, T. (1988) "Grain Size Determination for
Parallel Processing", IEEE Software, pp: 23-32

Kruse, R.L. (1984) "Data Structures and Program Design", Prentice
Hall

Kuck, D.J. (1968) "ILLIAC IV: Software and Application
Programming", IEEE Transactions on Computer 17, no. 8, pp:
758-770.

Kuck, D.J. (1978) "The Structure Of Computers and Computations",
Volume 1, John Wiley and Sons, New York.

Kuck, D.J., Muraoka, Y., Chen, S.C. (1972) "On The Number Of
Operations Simultaneously Executable in Fortran-Like
Programs and their resulting Speedup", IEEE Transactions on
Computer 21, no. 12, pp: 1293-1310.

Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B. and Wolfe, M. (1981)
"Dependence Graphs and Compiler Optimizations", Proc. Conf.
8th. ACM Symp. on Principles of Prog. Lang., pp: 207-218.

Kuck, D.J., Kuhn, R.H., Leasure, B. and Wolfe, M. (1984) "The
Structure of an Advanced Retargetable Vectorizer", In
Tutorial Supercomputers: Design and Applications, Ed:
Hwang, K., IEEE Computer Soc., pp: 163-178

Kwan, A.W., Bic, L. and Gajski, D.D (1990) "Improving Parallel
Program Performance Using Critical Path Analysis", in
Languages And Compilers for Parallel Computing (D.
Gelernter, A. Nicolau and D Padua: Editors), Pitman, pp: 358-
373

235

Leasure, B. (1985) "The P ARAFRASE Project's Fortran Analyser
Major Module Documentation", CSRD Report 504, University
of Illinois.

Leung, B.P. (1990) "Issues on the Design of ParaIIeIizing
Compilers", CSRD Report 1012, University of Illinois.

Leveson, N.G. (1986) "Software Safety: Why, What and How", ACM
Computing Surveys, VoI. 18-2, pp: 125-163.

Lewis T. G. and EI-Rewini, H. (1992) "Introduction to Parallel
Computing", Prentice Hall.

Li, Z. (1989) "Intra-procedural and Inter-procedural Data
Dependence Analysis for Parallel Computing", CSRD Rpt. No.
910, PhD thesis, University of Illinois.

Li, Z. and Abu-Sufah, W. (1985) "A Technique for Reducing
Synchronization Overhead in Large Scale Multiprocessor",
Proc. 12th Int. Symp. on Computer Arch., Boston MA, pp:
284-291

Li, Z. and Yew, P.C. (1988) "Efficient Inter-procedural Analysis for
program ParaIIeIization and Restructuring", Proc of the
ACM/SIGPLAN PPEALS, pp: 85-99.

Li, Z., Yew, P.C. and Zhu, C.Q. (1989) "Data Dependence Analysis on
Multi-dimensional Array References", Proc. Int. Conf. on
Supercomputing, Greece, pp: 215-224.

Li, Z and Yew, P.C. (1990) "Some results on Exact Data Dependence
Analysis", In Languages and Compilers for Parallel
Computing (D Gelernter, A Nicolau and D Padua: Editors),
Pitman, pp: 374-395.

Luecke, G., Haque, W., Hoekstra, J., Jespersen, H. and Coyle, J.
(1991) "Evaluation of Fortran Vector Compilers and

236

Preprocessors", Software-Practice and Experience, Vol 21(9),
pp: 891-905.

Macke, T., Huson, C., Davies, J., Leasure, B. and Wolfe, M. (1986)
"The KAP/ST-lQO: A Fortran Translator the ST-I00
Attached Processor", Proc. of Intl. Conf. on Parallel
Processing, pp: 171-175.

Masterson, J.J., Ishaq, K., Patel, S., Norris, M.T. and Orr, R.A. (1988)
"Intelligent Tools for Formal Specification", 2nd IEE/BCS
Conf. Software Engin, pp: 149-153

Maydan, D.E., Hennessy, J.L. and Lam, M.S. (1991) "Efficient and
Exact Data Dependence Analysis", Proc. of ACM SIGPLAN
1991 Conf. on Prog. Lang. Design and Impl. Toronto, Canada,
pp: 1-14.

McCreary, C. and Gill, H. (1989) "Automatic Determination of Grain
Size for Efficient Parallel Processing", CACM Vol 32-9, pp:
1073-1078.

McParland, P. and Kilpatrick, P. (1988) "Software Tools for VDM",
2nd IEE/BCS Conf. Software Engin., pp: 154-158

Meehan, D. (1990) "An Introduction to Fourth Generation
Languages", Stanley Thomes.

Midkiff, S.P. and Padua, D.A. (1986) "Compiler Generated
Synchronization for DO Loop", Proc. of 1986 Intl. Conf on
Parallel Processing, pp: 544-551.

Midkiff, S.P. and Padua, D.A. (1987) "Compiler Algorithms for
Synchronization", IEEE Trans. on Computers, Vol. C-36-12,
pp: 1485-1495.

Misra, J. and Chandy, K.M. (1981) "Proofs of Netwroks of
Processes", IEEE Trans. on SE, Vol. SE-7, No. 4, pp: 417-426

237

Mohd-Saman, M.Y. and Evans, D.J. (1993) "Investigation of a Set
of Bernstein Tests for the Detection of Loop ParalIelization",
Parallel Computing 19, pp:197-207

Moser, L.E., and Melliar-Smith, P.M. (1990) "Formal Verification of
Safety-critical Systems", Software-Practice and Experience,
Vol 20(8), pp: 799-821.

Muchnick, S.S. and Jones, N.D. (1981) "Program Flow Analysis:
Theory and Applications", Englewood Cliff, N.J, Prentice
Hall.

Osterhaug, A. (1987) "Guide to Parallel Programming", 2nd
Edition, Sequent Computer Systems.

Owicki, Sand Gries, D. (1976) "Verifying Properties of Parallel
Programs: An Axiomatic Approach", Communication of the
ACM 19, 5, pp: 279-285

Padua, D.A., Kuck, D.J. and Lawrie, D.H. (1980) "High-speed Multi
processors and Compilation Techniques", IEEE Trans. on
Computers, Vol. C-29, No. 9, pp: 763-776.

Padua, D.A. and Wolfe, M.J. (1986) "Advanced Compiler
Optimizations for Supercomputers", CACM Vol. 29, no 12,
pp: 1184-1201.

Perrot, R.H. (1987) "Parallel Programming", Addison-Wesley.

Ploedereder, E. (1984) "Symbolic Evaluation as a Basis for
Integrated Validation", Software Validation, H. L. Hausen
(editor), North-Holland, pp: 167-185

Polychronopoulos, C.D., (1988) "Parallel programming and
Compilers", Kluwer Academics Publisher.

Polychronopoulos, C.D., Girkar, M. B., Haghighat, M.R., Lee, C.L.,
Leung, B.P. and Schouten, D.A. (1990) "The Structure of

238

Parafrase-2: an Advanced Parallelizing Compiler for C and
FORTRAN", In Languages and Compilers for Parallel
Computing (D Gelernter, A Nicolau and D Padua: Editors),
Pitman, pp: 423-453

Pountain, D. and May, D. (1987) "A Tutorial Introduction to OCCAM
Programming", INMOS.

Pugh, W. (1992) "A Practical Algorithm for Exact Array
Dependence Analysis", Comm. of ACM, Vol. 35-8, pp: 102-
114.

Riseman, E.M. (1972) "The Inhibition of Potential Parallelism by
Conditional Jumps", IEEE Transactions on Computer 21, no.
12, pp: 1405-1411.

Sahni, S. (1984) "Scheduling Multi-pipeline and Multi-processor
Computers", IEEE Trans. on Computers, Vol. C-33, No. 7, pp:
637-645

Saltz, J.H., Mirchanhaney, R. and Crowley, K. (1989) "The
DoConsider Loop", Proc. Int. Conf. on Supercomputing 1989,
Greece, pp: 29-40

Saltz, J.H, Mirchandaney, R. and Crowley, K. (1991) "Run-time
Parallelization and Scheduling of Loops", IEEE Trans. on
Computers, Vol. 40-5, pp: 603-611

Sarkar, V. (1989) "Partitioning and Scheduling Parallel Programs
for Multiprocessors", Pitman.

Schouten, D.A. (1990) "An overview of Inter-procedural
Analysis Techniques for high performance parallelizing
compiler", CSRD Rpt. No. 1005, University of Illinois.

Shen, Z., Li, Z. and Yew, P. (1989) "An Empirical Study on Array
Subscripts and Data Dependencies", Proc. Int. Conf. on
Parallel Proc., pp: 11-145-152.

239

Silberschatz, A. (1991) "Operating System Concepts", Addison
Wesley.

Smith, K. and Appelbe, B. (1989) "Interactive Conversion of
Sequential to Multitasking Fortran", Proc. Int. Conf. on
Supercomputing, Greece, pp: 225-234.

Sneed H.M. (1986) "Data Coverage Measurement in Program
Testing" Proc. of Workshop on Software Testing, Canada,
Computer Society Press, pp: 34-40

Spyropoulos, C.D. (1978) "Analysis of Job Scheduling Algorithms
for Heterogenous Multiprocessor Computing Systems", PhD
Dissertation, Loughborough Univ. of Tech.

Stroustrup, B. (1986) "The C++ Programming Language", Addison
Wesley.

Su, H.M. (1992) "On Multi-processor Synchronization and Data
Transfer", CSRD Report 1176, University of Illinois.

Tang, P., Yew, P.C. and Zhu, C.Q. (1990) "Compiler Techniques for
Data Synchronization in Nested Parallel Loops", CSRD Rpt. No.
1092 University of Illinois USA, (Also in Proc. Int. Conf. on
Supercomputing, Holland, Vol. I, pp:177-186, 1990)

Thakkar, S., Gifford, P. and Fielland, G. (1988) "The Balance Multi
processor System", IEEE Micro, pp: 57-69.

Tjaden, G .S. (1970) "Detection and Parallel Execution of
Independent Instructions", IEEE Transactions on Computer
19, no. 10 , pp: 889-895.

Triolet, R. (1985) "Inter-procedural
Restructuring with PARAFRASE",
University of Illinois.

240

Analysis for
CSRD Rpt.

Program
No. 538,

Triolet, R., Irigoin, F. and Feautrier, P. (1986) "Direct Parallelization
of Call Statements", ACM/SIGPLAN Symposium on Compiler
Construction. pp: 176-185.

Tsuda, T. and Kunieda, Y. (1992) "V-Pascal: An Automatic
Vectorizing Compiler for Pascal with No Language
Extensions", in High Performance Computing: Research and
Practice in Japan, Edited by R Mendez, John WHey.

Walmsley, S.W. and Williams, S.A. (1990) "Basically MODULA-
2", Chartwell-Brau.

Wegman, M.N. and Zadeck, F.K. (1991) "Constant Propagation with
Conditional Branches", ACM Trans. on Prog. Lang. and Syst.,
Vol. 13, No. 2, pp: 181-210.

Welsh, J. and McKeag, M. (1980) "Structured System
Programming", Prentice-Hall Int.

Williams, S.A. (1978) "Approaches to the Determination for
Parallelism for Computer Programs", PhD Loughborough
University of Technology.

Williams, S.A. (1990) "Programming Models for Parallel Systems",
John WHey.

Williams, S. and Evans, DJ. (1980) "An Implicit Approach to the
Determination for Parallelism", Intern. J. Computer Math,
Vol. 8, pp: 51-59.

Wolf, M. E. and Lam, M. S. (1991) "A Loop Transformation Theory
and an Algorithm to Maximize Parallelism", IEEE
Transactions on Parallel and Dist. Syst., Vol. 2-4, pp: 452-
471

Wolfe, M. (1986) "Advanced Loop Interchanging", Proc. of 1986
Int. Conf. on Parallel proc. pp: 536-543.

241

Wolfe, M. (1988) "Multiprocessor Synchronization for Concurrent
Loops", IEEE Software, pp: 34-42.

Wolfe, M. (1989a) "Automatic Vectorization, Data Dependence and
Optimizations for Parallel Computers" in Parallel Processing
for Supercomputers and Artificial Intel. (Ed: K. Hwang and D
Degroot), McGraw-Hill, pp: 409-440

Wolfe, M. (1989b) "Optimizing Supercompilers for
Supercomputers", Pitman London.

Wolfe, M. (1990) "Loop Rotation", In Languages and Compilers for
Parallel Computing (D Gelernter, A Nicolau and D Padua:
Editors), Pitman, 1990, pp: 531-553.

Wolfe, M and Banerjee, U. (1987) "Data dependence and its
application to parallel processing", International Journal of
Parallel Programming, Vol 16 No 2, pp: 137-178.

Words worth, J.B. (1988) "Specifying and Refining Programs with
Z", 2nd IEE/BCS Conf. Software Engin., pp: 8-16

Young, M. and Taylor, R.N. (1986) "Combining Static Concurrency
Analysis with Symbolic Execution" Proc. of Workshop on
Software Testing, Canada, Computer Society Press, pp: 170-
178

Zima, H.P., Bast, H.J. and Gerndt, M. (1988) "SUPERB: A Tool for
Semi-automatic MIMD/SIMD Parallelization", Parallel
Computing 6, pp: 1-18, North-Holland

Zima, H.P. and Chapman, C. (1990) "Supercompilers for Parallel
and Vector Computers", ACM Press, Addison Wesley

242

APPENDIX A

TAG MAIN ROUTINE

/**
TAG (Tool for Automatic Determination of Program Ganularity)
The following are the main routines:

ANAL YZER - to form stanzas
DETECTOR - to perform the Bernstein Tests (BTs)
SCHEDULER - to schedule stanzas on a

shared-memory machine
MERGER - to merge stanzas

Note: Analyzer and Detector routines are similar to those
described by Williams (1978).
**/

tagO
{

int i,j,k,maxpar,parcnt; float acc;

analyzerO; /* scans input program & form stanzas */
prtstanzaO; /* prints stanzas */
calsetO; /* form WYZ and XYZ tables */
findepO; /* perform the Bernstein Tests */
maxpar = printcttabO; /* prints contemporray table */
/* for proc=2 to max. parallel stanzas generate schedules */
for (i=l; k=maxpar; i++)

acc = acctab[l)[i] = genschedule(i); /* generate schedule */
printaccO; /* prints speedup table */
/* merging dependent stanzas */
j = stanzacnt;
parcnt = mergestanzaO; /* merges stanzas */
/* repeat scheduling & merging until no merging occurs */
while (parcnt != j)
{

}

stanzacnt = parcnt; /* saves last count of stanzas */
prtstanza(bst); /* prints new set of stanzas */
calsetO; /* forms new XYZ ans WYZ tables */
findepO; /* performs BTs on new stanzas */
maxpar = printcttabO; /* prints new contemporary table */
/* for proc=2 to max. par. stanzas, gen. new schedules */
for (k=l; k<=maxpar; k++)

acc = acctab[l][k] = genschedule(k);
printaccO; /* prints speedup table */
j = stanzacnt;
parcnt = mergestanzaO; /* merge again */

printfC'\n END of TAG\nn);
} /* detectorO * /

244

APPENDIX B

THE SCHEDULER ROUTINE

/*
THESCHEDULERROUTINE

- generating schedule for a shared-memory computer
- take a group of contemporary stanzas
- based on longest execution time first

1. take a stanza with the longest exec time
2. check its dependencies
3. assign a cpu to it or delay it

*/

#include <stdio.h>
#inc1ude <string.h>
#inc1ude <ctype.h>
#include "parh.h"

#define UNDEF -9
#define INDEP -999

int deptable2[lOO][20];
int cttab2[lOO][20];
float acctab[lOO][lOO];

/* dependency table */
/* contemporary table */

/* speedup table */

struct schtab /* schedule table * /
(

);

int stno; /* stanza number */
int begtime; /* begin time */
int fintime; /* finish time */

struct cpustat /* cpu status info * /
(

);

/*

*/

int ctim;
int clev;

/* cpu latest stanza completion time */
/* and its level */

scheduler - assigning stanzas to cpus with optimum exec time

float scheduler(win)
int win;
(

int maxlev,maxcpu,maxtime,stpred,cpu;
int stn,cgroup,st,i,j,k,l,m,level;
int Hev,jcpu,sttim;
int ct,stime,stpred2,jcpu2;
int delay,gcnt,fcpu,cput,fint,ftime;

246

/* final schedule (level x processor) */
struct schtab schedule[1000][20];
struct cpustat cpucom[20]; /* cpu status infomation */
/* which cpu was st assigned - 0 level, 1 - cpu */
int cpust[20][2];
int stab[100];
int contab[lOO];
float acc;

/* temp area for sorting */
/* list of stanzas already scheduled * /

/* Initialization */
maxcpu = 0; maxlev = 0;
for (i=O; k=stanzacnt; i++)
{

cpust[i][O] = UNDEF; /* cpu where st is assigned */
contab[i] = 0; /* all stanzas marked as not scheduled yet */

for (j=I; j<=stanzacnt+l; j++)
{

schedule[i]fj].stno = UNDEF;
schedule[i]fj].begtime = UNDEF;
schedule[i]fj].fintime = UNDEF;

)
)
for (i=l; k=win; i++)
{

)

{

cpucom[i].ctim = 0;
cpucom[i].cIev= -1;

/* cpu latest completion time */
/* cpu latest completion time - level */

/* start with the 1st stanza in a concurrent group */
cgroup=O;
while (cgroup<=stanzacnt)

k = 0;
/* check if not scheduled yet */
if (!contab[cgroup])

{
stab[k++] = cgroup;

contab[cgroup] = 1; /* mark it as to be scheduled */
)

/* get the predecessor stanzas - for each, check if scheduled
already or not */
gcnt = cttab2[cgroup][0];

for (i=l; k=gcnt; i++)
if (!contab[cttab2[cgroup] [ill)

{
stab[k] = cttab2[cgroup][i];

247

}
contab[stab[k++]] = 1; /* mark each one to be scheduled */

/* sort the out according to descending exec time */
gcnt = k-l;
for (i=O; kgcnt; i++)

(

for U=i+l; j<=gcnt; j++)
{

{

I = stab[i]; m = stabfj];
if (stanza[l].etime < stanza[m].etime)

for (k = j-l; k >= i; k--)
stab[k+ 1] = stab[k];

stab[i] = m;
}

}

/* assign stanza in stab starting with the one with
highest etime */

for (stn=O; stn<=gcnt; stn++)

{

st = stab[stn];
/* check if st is independent or not */
if (deptable2[st][O) == 0)

/* st indep - can be scheduled on any available processor so
find the lowest starting time */

sttim = 999;
for (i = 1; i <= win; i++)
{

if (cpucom[i).ctim < sttim)
{

sttim = cpucom[i).ctim; /* the lowest time */
cpu = i; /* and the proc. */

}
}

}
else

(/* STANZA IS DEPENDENT ON OTHER STANZAS.
st depend on stanzas in deptable2[st), so
find the highest level st can be assigned &
on cpu with the least load
NOTE: stanzas in deptable2[st) must have already been

assigned cpu
*/

/* check if all predecessor stanzas have been assigned */

248

{

delay = 0; /* flag to delay assignment of stanza or not */
for (i=l; i<=deptable2[st][0]; i++)

stpred = deptable2[st][i]; /* predecessor stanza * /
if (cpust[stpred][O] == UNDEF)

{ /* predecessor not assigned yet
so dont assign this stanza yet * /

delay = 1;
break;

}
}

if (delay) /* delay its assignment */
{

contab[st] = 0; /* reset as not scheduled yet */
continue; /* go get next stanza in stab * /

} else
{ /* stanza st can be assigned find highest predecessor

stanza finish time - ftime * /
ftime = -999; fcpu = 999;
for (i=l; k=deptable2[st][0]; i++)

{
stpred = deptable2[st][i];/* predecessor stanza */

ilev = cpust[stpred][O]; /* its level */
jcpu = cpust[stpred][I]; /* its cpu */
if (schedule[iJev][jcpu].fintime > ftime)
{ /* best time so far & its current finsih time */
ftime = schedule[ilev][jcpu].fintime;

fcpu = cpucomUcpu].ctim;
} else

}
}

if (schedule[iJev][jcpu].fintime == ftime &&
cpucomUcpu].ctim < fcpu)

{ /* same finish time but lower current proc. time */
ftime = schedule[ilev][jcpu].fintime;

fcpu = cpucomUcpu].ctim;

/* finding the cpu with lowest starting time for st */
sttim = 999;
for (i=l; i<=deptable2[st][0]; i++)

{
stpred = deptable2[st][i]; /* predecessor stanza */

jcpu = cpust[stpredHl]; /* and its cpu */
stime = -1;
for (j=I; j<=deptable2[stHO]; j++)

{

249

}

}

{

stpred2 = deptable2[stlU];
jcpu2 = cpust[stpred2][1];

if (jcpu == jcpu2)
ct = cpucom[jcpu].ctim;

else

/* predecessor stanza */
/* and its cpu */

ilev = cpust[stpred2][0]; /* and its level */

}
}

}

}
ct = stanza[stpred2].ctime+schedule[ilev] [jcpu2].fintime;

if (ct < ftime)
ct = ftime;

if (ct > stime)
srime = ct;

if (stime < sttim)
{ sttim = srime; cpu = jcpu; }

/* finally save everything * /
fint = sttim + stanza[st].etime; /* finish time */

level = cpucom[cpu].clev + I;
schedule[level][cpu].stno = st; /* assign stanza to cpu */
schedule[level][cpu].begtime = sttim; /* its start time */
schedule[level][cpu].fintime = fint; /* and its finish time */
cpucom[cpu].ctim = fint; /* cpu latest completion time */

cpucom[cpu].clev = level;
cpust[st][O] = level; /* st is assigned at level level */
cpust[st][l] = cpu; /* st is assigned to proc cpu */
if (level> maxlev) /* maximum level for printing */
maxlev = level;

if (cpu> maxcpu)
maxcpu = cpu;

cgroup = cgroup + I; /* get next group */
} /* while (cgroup<stanzacnt) */

/* prints schedule * /
fprintf(fs,"\nSCHEDULE (no. of proc. = %d)\n",win);
/* find hingest finish time */
maxtime = 0;
for (i=l; k=maxcpu; i++)

if (cpucom[i].ctim > maxtime)
maxtime = cpucom[i].ctim;

/* calculate sequantial time & save it in i * /

250

(

}

caltime(&i,&j);
acc = (float) i{(float) maxtime; /* speedup value */
/* prints speed up value

first, check if schedule has been printed before */
if (!maximacpu[maxcpu])

maximacpu[maxcpu] = I;
/* print gantt chart * /

prtchart(maxcpu,maxlev ,&schedule[O] [O],maxtime);
fprintf(fs,''\n==> TOTAL PAR execution time = %d",maxtime);

fprintf(fs,''\n SEQ execution time = %d" ,i);
fprintf(fs,''\n SPEEDUP = %5.2f\n",acc);

return(acc); /* saved in a performance table - acctab */
} /* schedulerO */

/*
prtchart - printing the gantt chart based on info in schedule[]

*/
prtchart(maxp,lev ,schedule ,maxt)
int lev,maxp,maxt; /* max. level & proc no. & max par time */
struct schtab schedule[1000][20];
{

int i,j,k,l,maxft,mark,scale,last,chart[1 000] [30];
int spc=-3, col=-2, row=-I, compact = 0;

/* initialise chart to be empty */
for (i=O; k1000; i++)
(

}

for U=O; j<=maxp*2; j++)
chart[iJU] = spc;

maxft = 0; /* maximum height */
for (i=O; k=lev; i++)
for 0=1; j<=maxp; j++)

if (schedule[iJU].fintime > maxft)
maxft = schedule[ilU].fintime;

if (maxft > 40) /* check if too high */
{

compact = I; /* yes, so set compact printing */
for (i=l; k=maxp; i++)
(

for 0=0; j<=lev; j++)
{

schedule[j][i].begtime = schedule[j][i].begtime / 2;
schedule[j][i].fintime = schedule[j][i].fintime / 2;

251

}

}
/* adjust */

for (j=0; j<=lev; j++)
{

{

}
}

if (scheduleU][i].stno != UNDEF
&& scheduleU][i].fintime - scheduleU][i].begtime < 2)

last = scheduleU][i].fintime;
scheduleU][i].fintime = scheduleU][i].begtime + 2;

if (last == scheduleU+1][i].begtime)
scheduleu+ 1] [i].begtime = schedule[j] [i].fintime;

}
/* for each stanza, setup its location on chart */
maxft = 0;
for (i=O; k=lev; i++)
{

}

k = 1;
for (j=I; j<=maxp; j++)
{

}

/* put the '-' between begin and finish time */
chart[schedule[i][j].begtime][k] :: row;
chart[schedule[i][j].fintimej[k] = row;
/* put the stanza no in chart * /

1 = schedule[i][j].begtime;
chart[l+ 1][k] = schedule[i][j].stno;
if (1+1 == schedule[i][j].fintime)

chart[schedule[i][j].fintime+ Ij[k] = row;
/* find the largest finish time */
if (schedule[i][j].fintime > maxft)

maxft = schedule[i][j].fintime;
k = k+2;

/* put the '-' for first and last row of chart */
for (i=O; k=maxp*2; i++)
{

}

chart[Oj[i] = row;
chart[maxft][i] = row;

/* if (compact) maxft = maxft/2 + 1; */
/* put the 'I' for column marking */

i=O;
while (k=maxft)

252

{

}

for (j=0; j<=maxp*2; j=j+2)
{

chart[ilUl = col;
}
i = i+ 1;

fprintf(fs,"\nVERTICAL GANTI CHART maxft = %d (CPU = %d)\n",
maxft, maxp);

/* printing the actual chart vertically * /
fprintf(fs,"\n ");
for (i=l; k=maxp; i++)

fprintf(fs,"PROC %2d ",i);
fprintf(fs, ''\o\n'');

k = 0; mark = 0;
if (compact) scale = 5;
else scale = 10;
for (i=O; k=maxft; i++)
{

if (compact) mark = k*2;
else mark = k;
if (i == maxft)

{

}

fprintf(fs,"%3d-" ,maxt);
chart[i][maxp*2+1] = maxt;

else if «k%scale) == 0 && mark < maxt)
{

fprintf(fs,"%3d-",mark);
chart[i][maxp*2+1] = mark;

} else
{

}

fprintf(fs,"%4c",' ');
chart[i][maxp*2+1] = -99;

k = k + 1;
for (j=0; j<=maxp*2; j++)
{

if (chart[i][j] == row)
fprintf(fs,"%s"," -----");

else if (chart[i][j] == col)
{

}

if (chart[i][j-l] == row)
fprintf(fs,"%s"," ----I");

else fprintf(fs, "%5c" ,'1');

253

else if (chart[i][j] == spc)
fprintf(fs,"%5c",' ');

else fprintf(fs,"%5d" ,chart[i][j]+ 1);
}

fprintf(fs, ''\0 ");
}

fprintf(fs, ''\o\n ");
fprintf(fm," %3d\n" ,maxp);

for (i=O; k=maxft; i++)
(

}

for 0=0; j<=maxp*2+1; j++)
fprintf(fm, "%5d" ,chart[i] [j]);

fprintf(fm, ''\0'');

return;
} /* prtchart * /

254

APPENDIX C

THE MERGER ROUTINE

/*
MERGER ROUTINE:
STRATEGY:

- merging 2 or more stanzas if all pred st are not merged yet
with others
- co mm & size are main factors for consideration

*/

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "parh.h"

int deptable2[50H20]; /* dependence table */
int gtab[maxstanzaHmaxstanza]; /* group to be merged */
int gtab2[maxstanzaHmaxstanza]; /* temp. group to be merged */
struct bernstien newst,newst2; /* BSs after merging */

/*
MERGING MODULE: mergestanza - merging stanzas
*/
mergestanzaO
{

int i,j,gi,st,stl,st2,bm,cnt;
int tt2,tt,bigst,bigsize;
int mcnt,grain,ncnt;
int mset[maxstanza];
float gran;
/* group of stanzas to be merge * /
int mtab[maxstanzaHmaxstanza];
/* marker for stanzas not yet merged */
int mmerg[maxstanza];
struct bernstien *pstl;
/* new stanza formed */
struct bernstien nst[maxstanza];

/* Initialise tables */
for (i=O; k=stanzacnt; i ++)
{

}

mtab[iHO] = 0;
gtab[iHO] = 0;
mmerg[i] = 0;

st = 0;

/* set counter */
/* set counter */

/* marker - not merged yet */

while (st<=stanzacnt)
{

256

cnt = deptable2[stj[0]; /* no. of stanzas st depend on */
bm = 0; mcnt = 0;

if (cn!>l) /* merge st with 2/more predecessor stanzas */
{ /* initialise set of stanzas to be merged as none * /
for (i=l; k=cnt+l; i++)

mset[i] = -1;
/* find the largest pred stanza * /

bigsize = -999; bigst = -888;
for (i=l; k=cnt; i++)
{

{

}
}

stl = deptable2[stj[i];
if (mmerg[stl] > 0)
bm = 1;
if (stanza[stl].etime > big size)

bigsize = stanza[stl].etime;
bigst = stl;

/* preds st are already merged with others or reserved
so mark those not merged yet as reserved */

if (bm == 1)
{

}

for (i=l; k=cnt; i++)
{

stl = deptable2[stj[i];
/* reserve all pred st * /
if (mmerg[stl] == 0) mmerg[stl] = 2;

}
if (mmerg[st] == 0) mmerg[st] = 2;

else
{ /* st & pred st may be merged - depends on comm + size */
for (i=l; k=cnt; i++)

{

{ /* determine comm & size to find if need to merge */
stl = deptable2[stj[i];

if (stl != bigst)

{

It = stanza[stl].etime + stanza[stl].ctime;
tt2 = bigsize + stanza[stl].etime;

if (11 > 112)

mset[++mcnt] = stl;
bigsize = bigsize + stanza[stl].etime;

} else mmerg[stl] = 2;
} else mset[++mcnt] = st1;

257

}
}

}
mset[++mcnt] = st;

/* save mset in mtab for merging later */
if (bm == 0 && mcnt > 2)

{

}

for (i=l; k=mcnt; i++)
{

}

sa = mset[i];
mtab[st][i] = st2;
mmerg[st2] = I;

mtab[st] [0] = mcnt;
mmerg[st] = I;

++st;
} /* while (st <= stanzacnt) */

/* merging group of stanzas saved in mtab */
fprintf(fo,"\nMERGE GROUPS\n");
ncnt = -I;
st=O;

{
while (st<=stanzacnt)

if (mtab[st][O] > 2) /* more than 1 stanzas to be merged? */
{

for (i=l; k=mtab[st][O]; i++)
(

st2 = mtab[st][i];
fprintf(fo,"%d ",sa+I);

} fprintf(fo, "\n ");
/*so merge them */

++ncnt;
pstl = &stanza[mtab[st][lll;
/* merge all stanzas in the group */

for (i=2; k=mtab[st][O]; i++)
(

}

st2 = mtab[st][i];
merge(pstl,&stanza[st2]); /* merge operation */

pstl = &newst2; /* result in newst */

gtab[ncnt][O] = mtab[stj[O] + gtab[ncnt][O];
gi = gtab[ncnt][O];
if (gi == 0)

for 0=1; j<=mtab[stj[O]; j++)

258

gtab[ncntj(++gi] = mtab[stlU];
else
for (i=l; k=mtab[stj(O]; i++)
(

)

for 0=1; j<=gtab[ij(O]; j++)
(++gi; gtab2[ncnt][gi] = gtab[i] [j];)

/* save in nst: new stanza after merging */
nst[ncnt].etime = newst.etime;
nst[ncnt].ctime = newst.ctime;

for (i=O; k=3; i++)
(

)

nst[ncnt].bcnt[i] = newst.bcnt[i];
for 0=0; j<=newst.bcnt[i]; j++)

nst[ncnt].bset[iJrj] = newst.bset[ilU];

) else
if (mmerg[st] == 0 11 mmerg[st] == 2)
{ /* st cannot be merged with any stanza ? */

/* so copy the stanza into the new stanza */
++ncnt;
if (gtab[ncntj(O] == 0)

gtab[ncntj(l] = st;
else for 0=1; j<=gtab[st][O]; j++)

gtab2[ncntJrj] = gtab[st]Ul;
gtab[ncntj(O] = gtab[stj(O];
nst[ncnt].etime = stanza[st].etime;
nst[ncnt].ctime = stanza[st].ctime;

for (i=O; k=3; i++)
(

nst[ncnt].bcnt[i] = stanza[st].bcnt[i];
for 0=0; j<=stanza[st].bcnt[i]; j++)

nst[ncnt].bset[ilU] = stanza[st].bset[ilU];
)

)
for (i=l; k=stanzacnt; i++)

{
if (i > ncnt) gtab[stj(i] = 0;
else
(

}
)

for 0=1; j<=gtab2[stj(O]; j++)
gtab[st] [j] = gtab2[st] [j];

gtab[stj(O] = gtab2[stj(0];

++st;

259

} /* while (st <= stanzaent) */
fprintf(fo, "\n");
fprintf(fo,''\nNo of new stanzas: %d (Old=%d)\n", nent+l,

stanzaent+ 1);
/* nent < stanzaent if ther were some merge op */
if (nent != -1 && nent != stanzaent)

}

{ /* save back nst into stanza */
grain = 0;

{
for (st=O; st<=nent; st++)

grain = grain + nst[st).etime;
stanza[st).etime = nst[st).etime;
stanza[st).etime = nst[st).etime;

for (i=O; k=3; i++)
{

stanza[st).bent[i) = nst[st).bent[i);
for (j=0; j<=nst[st).bent[i); j++)

stanza[st).bset[i)[j] = nst[st).bset[iJU);
}

}

/* printing granularity size * /
gran = (float) grain / (float) (stanzaent+l);
fprintf(fo,''\nOLD Granularity size (%d/%d): %S.2f\n", grain,

stanzaent+ 1 ,gran);
if (nent 1= -1) stanzaent = nent;
gran = (float) grain / (float) (stanzaent+l);
fprintf(fo,''\nNEW Granularity size (%d/%d): %S.2f\n", grain,

stanzaent+ 1 ,gran);
return(nent); /* return no. of new stanzas */

} /* mergestanza * /

eheekbs(st,id)
struet bernstien *st;
int id;
{

int val,i, ws;

val = undef;
for (ws=O; ws<=3; ws++)
{

for (i=O; k=st->bent[ws); i++)
if (st->bset[ws][i) == id)

{
val = 200+ws;
break;

260

}

}
if (val != undef)

break;

return(val);
} /* checkbs */

/* merge - merging 2 stanzas */
/* - result stanza in newst * /
merge(stl,st2)
struct bernstien *stl, *st2;
(

int i,j,k, wset,cnt,idx;

for (i = 0; i <= 3; i++)
newst.bcnt[i] = -1;

if (stl == st2)
(

}

newst.stanzatype = -1;
newst.etime = stl->etime;
newst.ctime = stl->ctime;

for (i=O; k=3; i++)
(

}

for U=O; j<=stl->bcnt[i]; j++)
newst.bset[i] fj] = stl->bset[i] fj];

newst.bcnt[i] = stl->bcnt[i];

return;

newst.etime = stl->etime + st2->etime;
newst.ctime = stl->ctime + st2->ctime;

for (i=O; k=3; i++)
{

for (j=0; j<=stl->bcnt[i]; j++)
(

(

idx = stl->bset[i][j];
wset = checkbs(st2,idx);

switch (i+200)

case setw: if (wset == setw 11 wset == undef)
k = 0;
else k = 2; break;

case setx: if (wset == setx 11 wset == undef)
k = 1;
else k = 3; break;

case sety: k = 2; break;

261

}

}

}

case setz: k = 3; break;

cnt = ++newst.bcnt[k];
newst.bset[k][cnt] = idx;

/* repeat for j-th stanza to copy those vars not
defined in i-th stanza*/

for (i=O; k=3; i++)
{

}

for (j=0; j<=st2->bcnt[i]; j++)
(

{

}
}

idx = st2->bset[i][j];
wset = checkbs(stl,idx);

if (wset == undef)

wset = ++newst.bcnt[i];
newst.bset[i][wset] = idx;

/* copy new merged stanza into another one */
newst2.stanzatype = -1;
newst2.etime = newst.etime;
newst2.ctime = newst.ctime;

for (i=O; k=3; i++)
{

}

for (j=0; j<=newst.bcnt[i]; j++)
newst2.bset[i][j] = newst.bset[i][j];

newst2.bcnt[i] = newst.bcnt[i];

} /* merge */

262

APPENDIX D

THE BERNSTEIN LOOP TESTS

/*
DllID.C - Implementation of the Bernstein Loop Tests (BL Ts)

- which use the Data Reference Directions (DRDs) in
handling the array references.

*/

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "parh.h"
#define maxdepvar 100

/* stanzas in loops * /
extern int loopstat[maxstanzaj(2];
extern int loopcnt; /* loop count * /
extern struct deprec /* dependence record */
(

int depst;
char depvar[15]; /* id can causes dependence */
int depdir[5]; /* and their directions */

} loopvar[maxdepvar];

/*
Detector - the Bernstein Loop Tests

- detects relationships between stanzas in LOOPS only
*/
int detector(bst)
int bst;
(

int i,j,k,parcnt;
float acc;

calsetO; /* Forms WYZ & XYZ sets tables */
sloopdepO; /* find dependence in loops only */
printf("\nEND of Bernstein Loop Tests (BLTs)\n");

} /* detectorO */

/* calculate total seq. exec. time & total comm. time */
caltime(tt,ct)
int *tt, *ct;
(

int i;

*tt = 0; *ct = 0;
for (i=O; k=stanzacnt; i++)
(

264

}

*tt = *tt + stanza[ij.etime;
*ct = *ct + stanza[ij.ctime;

} /* caltime * /

/*
printstanza - prints details of a stanza
*/
printstanza(bst)
int bst;
{

int wset, max, i, j, k, et, tt;

/* prints all stanzas * /
fprintf(fo,"\nSTANZA # %13s%13s%13s%13s%8s%8s\n",
"W sets","X sets","Y sets","Z sets","ETIl\ffi","CTIl\ffi");

for (i=l; k=77; i++) fprintf(fo,"=");
for (i=O; k=stanzacnt; i++)
{

{

}

switch (stanza[ij .stanzatype)

case 300 : fprintf(fo,"\n%2d
case 301 : fprintf(fo,''\n%2d
case 302 : fprintf(fo,''\n %2d
case 303 : fprintf(fo,''\n %2d
case 304 : fprintf(fo,''\n%2d
case 305 : fprintf(fo,''\n%2d
case 306 : fprintf(fo,''\n %2d
case 307 : fprintf(fo,''\n%2d
case 308 : fprintf(fo, ''\n%2d
case 309 : fprintf(fo,''\n%2d
case 310 : fprintf(fo,''\n%2d
default : fprintf(fo,''\n%2d

asgn",i+l); break;
cond",i+l); break;
then",i+l); break;
else",i+l); break;
for ",i+l); break;
proc",i+l); break;
read",i+l); break;
writ" ,i+ 1); break;
whiI",i+l); break;
rept" ,i + 1); break;
untl",i+l); break;

",i+l); break;

max = stanza[ij.bcnt[Oj; /* find max. set content */
for (j=0; j<=3; j++)

if (stanza[ij .bcnt[j] > max)
max = stanza[ij.bcnt[j];
if (max == -1)

fprintf(fo, "% 13s% 13s% 13s% 13s%8d%8d\n"," -"," -"," -"," -",
stanza[ij .etime,stanza[il.ctime);

else
for (k=O; k<=max; k++)

{
if (k > 0) fprintf(fo," ");

for (wset=O; wset<=3; wset++)

265

{
if (k > stanza[i].bcnt[wset])

fprintf(fo,"% 13s"," -");
else fprintf(fo,"%13s",

symtab[stanza[i] .bset[wset] [k]] .symname);
}

if (k == 0)
fprintf(fo, "%8d%8d\n" ,stanza[i] .etime,stanza[i] .ctime);

else fprintf(fo,''\n'');
}

}
for (i=l; k=77; i++) fprintf(fo,"=");
fprintf(fo, ''\n ");
caltime(&tt,&ct); /* calculate sequential & comm times */
fprintf(fo,"%61s%8d%8d\n" ,

"Total sequential time & communication time = ", tt,ct);
} /* printstanza * /

/*
oropt - OR operation bet 2 sets
*/
oropt(bitl,bit2,bit3 ,bit4)
int bitl [], bit2[], bit3[],bit4[];
{

int i,j,found;

for (i=O;kmaxidcnt;i++)
bit4[i] = bitl[i] I bit2[i] I bit3[i];

} /* oropt */

/*
getvar(id) - get the name variable for array
*/
getvar(id,idvar)
char idvar[maxkwlen];
int id;
{

int i;

for (i=O; (kmaxkwlen && symtab[id].symname[i] != '['); i++)
idvar[i] = symtab[id].symname[i];

idvar[i] = '\0';
} /* getvar * /

/*

266

and opt - AND operation bet 2 sets
*/
andopt(bi tl, bit2,bit3,dbit,dvar)
int bitl[], bit2[], bit3[];
char dbit[20][maxidcnt];
char dvar[20][maxkwlen];
(

int i,j ,k,l,found;
char varl [maxkwlen], var2[maxkwlen];

I = -1' ,
for (i=0;k20;i++) dbit[i][O] = -1; /* initialize results */
for (i=O;kmaxidcnt;i++)

{
bit3[i] = bitl[i] & bit2[i]; /* normal AND operation */
/* AND operation for array directions */

if (bit! [i] == 2)
{

getvar(i,&varl [OD;
for (j=0; j < maxidcnt; j++)

{
if (bit2Ul == 2)

(

(

getvar(j,&var2[OD;
if (strcmp(varl,var2) == 0)

1++;
strcpy(dvar[l],varl);

for (k=O; k<5; k++)
{

{
switch (symtab[i].symdir[kD

case forward:

{
switch (symtabUl.symdir[kD

case forward: dbit[l][k] = forward; break;
case backward: dbit[l][k] = forback; break;
case equal: dbit[l][k] = forward; break;
case nodir: dbit[l][k] = nodir; break;

} break; •
case backward:

{
switch (symtabUl.symdir[k])

case forward: dbit[l][k] = forback; break;
case backward: dbit[l][k] = backward; break;
case equal: dbit[l][k] = backward; break;

267

)
)

)

)

)
)

case nodir: dbit[l][k] = nodir; break;
) break;

case equal:

(
switch (symtab[j] .symdir[k])

case forward: dbit[l][k] = forward; break;
case backward: dbit[l][k] = backward; break;

case equal: dbit[l] [k] = equal; break;
case nodir: dbit[l][k] = nodir; break;

) break;
case nodir: dbit[l][k] = nodir; break;
) /* switch (symtab[i].symdir[k]) */

) /* andopt * /

/*
setbit - set the bit position for variables for OR opt
*/
setbit(bi ts, whatset,st)
int bits[], whatset. st;
{

int i;

for (i=O; kmaxidcnt; i++) bits[i] = 0; /* initialise */
/* set proper bit to 1 * /
for (i=O; k=stanza[st].bcnt[whatset-200]; i++)

bits[stanza[st].bset[whatset-200][ill = 1;
} /* setbit * /

/*
setbit2 - set the bit position for variables for AND OPT
*/
setbi t2(whatset. s t. bi ts)
int bits[], whatset. st;
{

int i;

for (i=O; kmaxidcnt; i++) bits[i] = 0; /* initialise */

{

/* set proper bit according to scalar or array types */
switch (whatset)

268

}

case wyzs:
for (i=O; i<=wyz[st] .setcnt; i++)

if (symtab[wyz[st].set[ill.symtype == scalar)
bits[wyz[st].set[ill = I;

else
bits[wyz[st].set[ill = 2;

break;
case xyzs:

for (i=O; i<=xyz[st].setcnt; i++)
if (symtab[xyz[st].set[ill.symtype == scalar)
bits[xyz[st].set[ill = 1;

else
bits[xyz[st].set[ill = 2;

break;

} /* setbit2 */

/*
bitcount - counts no. of 1 in set bits
*/
int bitcount(bits)
int bits[];
{

int i,bc;

bc = -1;
for (i=O; i<maxidcnt; i++)

if (bits[i] == 1) bc++;
return(bc);

} /* bitcount * /

/*
calset - calculates Table (Xi or Yi or Zi) and (Wi or Yi or Zi)
*/
calsetO
{

int i,ibit,st,k,kk,icnt; char dchar;
int bitl [maxidcnt], bit2[maxidcnt];
int bit3[maxidcnt], bit4[maxidcnt];

for (st=O; st<=stanzacnt; st++)
{ /* calculates set table (Wi or Yi or Zi) */

setbit(bitl ,setw ,st);
setbit(bi t2,sety ,st);
setbit(bi t3 ,setz,st);
oropt(bitl,bit2,bit3,bit4); /* OR operation */

269

}

k = 0;
wyz[st] .setcnt = -1;
for (ibit=O;ibit<maxidcnt;ibit++)
if (bit4[ibit))

{

}

wyz[st].setcnt++;
wyz[st].set[k++] = ibit;

/* calculates table (Xi or Yi or Zi) */
setbit(&bitl [0] ,setx,st);
oropt(bitl,bit2,bit3,&bit4[0)); /* OR operation */

k = 0;
xyz[st].setcnt = -1;
for (ibit=O;ibit<maxidcnt;ibit++)
if (bit4[ibit))

{

}

xyz[st] .setcnt++;
xyz[st].set[k++] = ibit;

/* prints contents of WYZ and XYZ tables */
fprintf(fo,"\nCONTENTS of all WYZ and XYZ sets\n");
fprintf(fo,"\nSTANZA # %24s%25s\n","WYZ sets"," XYZ sets");
for (i=l; k=58; i++) fprintf(fo,"=");

for (i=O; k=stanzacnt; i++)
(

fprintf(fo, "\n%2d - ",i+ 1);
if (wyz[i].setcnt > xyz[i].setcnt)

icnt = wyz[i].setcnt;
else icnt = xyz[i].setcnt;

if (icnt < 0)
fprintf(fo, "%20s%22s\n"," -"," -");

else
for (k=O; k<=icnt; k++)

{
if (k > 0) fprintf(fo," ");
if (k > wyz[i].setcnt) fprintf(fo,"%20s

else
(

" ''_"). , ,

fprintf(fo, "%20s ",symtab[wyz[i] .set[k)) .symname);
for (kk=O; kk<5; kk++)

fprintf(fo, "%c" ,symtab[wyz[i] .set[k)) .symdir[kk]);
}

if (k > xyz[i].setcnt) fprintf(fo,"%20s\n","-");

270

}

else
(

}
}

fprintf(fo,"%20s ",symtab[xyz[i].set[k]].symname);
for (kk=O; kk<5; kk++)

fprintf(fo, "%c" ,symtab[xyz[i] .set[k]] .symdir[kk]);
fprintf(fo,'''n ");

for (i=l; k=58; i++) fprintf(fo,"="); fprintf(fo,"\n");
} /* calset * /

/*
sloopdep - determine dependence of loop iterations
*/
sloopdepO
{

int st,i,j,1cnt;
int bitl [maxidcnt], bit2[maxidcnt];
int bit3[maxidcnt];
char dbit[20] [maxidcnt];
char dvar[20][maxkwlen];

/* initialization * /
for (st=O; st<=stanzacnt; st++)

{
loopvar[st].depst = -1; /* initialise stanza no */

for (i=O; k5; i++) /* initialise directions */
loopvar[st].depdir[i] = nodir;

}
fprintf(fo,'''nLOOP DEPENDENCE ANAL YSIS\n");
fprintf(fo,'''n[DIRECTION symbols: < - forward, > - backward,");
fprintf(fo," = - equal, * - <>J\n");
/* to determine if loop are paraIIelizable or not */
lcnt = 0; /* loop variables count that cuase dependence */
for (st=O; st<=loopcnt; st++)
{

{

fprintf(fo,'''n*** LOOP no. %d (stanza %d - %d) ***\11",
st+ 1,loopstat[st] [0]+ 1,loopstat[st] [1]+ 1);

for (i=loopstat[st][O]; k=loopstat[st][I]; i++)

for (j=i; j<=loopstat[st][I]; j++)
(

fprintf(fo,'''nWYZ and XYZ for stanza %d & %d:",i+l,j+l);
sdoandop(1,i,j,&lcnt); /* and op */

'f (j 1- .) 1 .- 1

271

}

}
}

{

}

fprintf(fo,"\nWYZ and XYZ for stanza %d & %d:",j+l,i+I);
sdoandop(2,i,j,&lcnt);

fprintf(fo,"\nXYZ and XYZ for stanza %d & %d:",i+l,j+I);
sdoandop(3,i,j,&lcnt);

} /* sloopdep */

/*
AND operation for scalar and array with directions and
prints results
*/
sdoandop(tt,sti,s tj ,lcnt)
int tt,sti,stj, *lcnt;
{

int i,j;
int bitl [maxidcnt], bit2[maxidcnt], bit3[maxidcnt];
char dbit[20][maxidcnt], dvar[20][maxkwlen];

int pps = I, ppa = I;

{

}

switch (tt) /* tt indicates which BTs test to perform */

case I: /* WYZ(i) AND XYZ(j) */
setbit2(wyzs,sti,&bitl [0));
setbit2(xyzs,stj,&bit2[0]);

break;
case 2: /* XYZ(i) AND WYZ(j) */

setbit2(wyzs,stj,&bitl [0));
setbit2(xyzs,sti,&bit2[0]);

break;
case 3: /* XYZ(i) AND XYZ(j) */

setbit2(xyzs,sti,&bitl [0]);
setbit2(xyzs,stj,&bit2[0]);

break;

/* normal bit operation and prints results * /
andopt(bitl ,bit2,&bit3 [0] ,&dbit[O] [0] ,&dvar[O] [0]);

if (tt == 1 && sti == stj) pps = I;

{
if (pps && ppa)

if (bitcount(bit3) != -I)
{ /* test fails due to non-empty result set * /

fprintf(fo,"\nScalar dependence - ",sti + I);

272

}

{

}
}

for (i=O; kmaxidcnt; i++)
if (bit3[il == 1)

fprintf(fo, "%s ",symtab[il.symname);
loopvar[*lcntl.depst = sti;

strcpy(loopvar[(*lcnt)++ l.depvar ,symtab[i l.symname);

else fprintf(fo,"\nNO scalar dependence");

pps = 1; ppa = 1;
if (tt == 3 && sti == stj) ppa = 0;

if (pps && ppa)
{

fprintf(fo,"\nArray dependence ");
for (i=O; k20; i++)
{

}

if (dbit[ij[Ol != -I)
{

loopvar[*lcntl.depst = sti;
strcpy(loopvar[(*lcnt)++ l.depvar,dvar[i]);

/* fprintf(fo,"\n%d. %s[",i+ l,dvar[i]); */
fprintf(fo,"%s[",dvar[il);

for (j=0; j<5; j++)
{

}

if (dbit[ilUl == forward 11 dbit[ilOl == backward 11

dbit[ilfj] == equal 11 dbit[ilUl == forback)
fprintf(fo, "%c" ,dbit[il [j]);

loopvar[*lcnt-l1.depdirfj] = dbit[il Ol;

fprintf(fo, "1 ");
} else break;

}
fprintf(fo,"\n");

} /* sdoandop * /

273

