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ABSTRACT 

The computer performance has been improved tremendously since the development of the first all

purpose, all electronic digital computer in 1946. However, engineers, scientists and researchers keep 

making more efforts to further improve the computer performance to meet the demanding 

requirements for many applications. 

There are basically two ways to improve the computer performance in terms of computational speed. 

One way is to use faster devices (VLSI chips). Although faster and faster VLSI components have 

contributed a great deal on the improvement of computation speed, the breakthroughs in increasing 

switching speed and circuit densities of VLSI devices will be diflicult and costly in future. The other 

way is to use parallel processing architectures which employ multiple processors to perform a 

computation task. When multiple processors working together, an appropriate architecture is very 

important to achieve the maximum performance in a cost-effective manner. Systolic arrays are ideally 

qualified for computationally intensive applications with inherent massive parallelism because they 

capitalize on regular, modular, rhythmic, synchronous, concurrent processes that require intensive, 

repetitive computation. 

This thesis can be divided into three parts. The first part is an introductory part containing Chap. I 

and Chap. 2. The second part, composed of Chap. 3 and Chap. 4 concerns with the systolic design 

methodology. The third part deals with the several systolic array design for different applications. 

The systolic array architecture in parallel processing came as a product of certain environment, the 

means and the background knowledge for its realisation. The needs can be outlined as the ever

increasing tendency for faster computations, especially in areas like real-time signal processing and 

large-scale scientific computation. The means were provided by the remarkable advances in VLSI 

technology and computer aided design (CAD). Finally the background includes the applications of 

parallel processing and the design of parallel computers of various architectures including pipelined 

vector processors, SIMD architectures, array processors, MIMD architectures and so on. 

Ever since H.T. Kung proposed the systolic architecture in 1978, its elegant solution to demanding 

problem and its potential performance have attracted great attention. Systolic arrays have find 

applications in matrix arithmetic, signal processmg, image processing, solution of differential 



equations, data structure, graph algorithms, computer aided design (CAD), and so forth. Many systolic 

algorithms have been designed for a great diversity of areas. Few problems resist attack from systolic 

arrays. A lot of efforts have been made to implement the systolic array in a VLSI chip, in a 

programmable processor array, or in a reconfigurable systolic array. While systolic arrays were 

originally used for fixed or special purpose architecture, the systolic array concept has been extended 

to general-purpose SIMD and MIMD architectures. 

One of the important design problems in systolic array processing is the development of systematic 

methodology for transforming an algorithm represented in some high-level constructs into asystolic 

architecture specified by the timing of data movement and the interconnection of processing elements 

such that the design requirements can be satisfied. Among a number of systolic design methodologies, 

two types of systematic design methodologies have been studied in this thesis. The first method starts 

from the RlA (regular iterative algorithm) representations of a given algorithm, extracts the data 

dependency from the RlA algorithm, and then map the algorithm into a systolic array by using 

algebraic approach. This method is applied to the matrix-matrix multiplication problem. We have 

obtained 19 different systolic designs for the matrix multiplication problem. A detailed performance 

analysis for all the 19 designs is presented. Based on the performance measures, we can choose the 

right design for given requirements. The other design method we have studied uses the SFG (signal 

flow graph) of a given algorithm to design systolic arrays through graphic mapping and retiming. An 

algorithm is first represented by a DG (dependence graph). Then the DG is mapped into an SFG by 

a graph projection. Cut-set retiming procedure is then applied to the obtained SFG to derive a regular 

and temporally localized SFG, from which a systolic array design is immediately available. Systolic 

arrays for matrix triangularisation, including both LU decomposition and QR decomposition, have 

been designed using this method. 

A number of systolic arrays have been designed in this thesis for different application areas. Firstly, 

we designed a systolic array for linear and inverse matrix system. The systolic array combines LU (or 

QR) decomposition, backward and forward substitution, and matrix multiplication into a trapezoidal 

array. The array can be used to solve a variety of linear systems and other problems such as matrix 

multiplication. When QR decomposition is used, the systolic array can solve linear least square 

problems or perform pseudo-inverse computation. Then a systolic array is designed to compute the 

Schur complement which often occurs in the domain decomposition method and other problems in 

linear algebra such as the numerical solution of elliptic partial differential equations and sparse linear 

system. A systolic array architecture has been designed and simulated for QR decomposition of block 
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structured sparse systems which find applications in areas such as photogrammetry, Doppler radar 

positioning, geodetic problems, cluster analysis and pattern matching. A novel systolic array is derived 

for computing matrix inversion by Newton Iteration which has a good feature that some simper initial 

approximations can always guarantee a convergence. A systolic array architecture for Capon's DOA 

estimation in sonar and radar applications is derive<;l based on the QR decomposition technique. 

Finally a novel linear systolic array for conjugate gradient (CG) algorithm is proposed to solve linear 

system efficiently. 

Systolic array architecture is an formidable approach to exploiting massive parallelism with a minimum 

communication overhead. Featuring modularity, regularity and local communication, systolic arrays 

are amendable to VLSI implementation. VLSI technology advances, parallel processing and 

demanding scientific and engineering applications have made the systolic array architecture a leading 

approach for handling computationally intensive applications. Systolic arrays hold great promise to 

be a pervasive form of massive parallel processing in demanding applications. 

KEYWORDS 

Systolic Array; Systolic Algorithm Design; Parallel Processing; Computer Architectues; Matrix 

Computations; Linear Systems; Least Squares; Systolic Array Applications 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

T· HE ever-increasing demands for computation speed and. performance in the areas such as real

time signal and image processing, scientific computing, weather forecasting, control, 

communication, simulation, design and artificial intelligence strongly indicate the need for tremendous 

computation capability. These demands necessitate a revolutionary super-computing technology 

[KungSY88a] [KungSY85a]. 

The computation speed has been increasing with the advancement of illlegraled circuit,· (le) since the 

late 1960s. Faster and faster very large scale illlegralioll (VLSI) electronic components have 

contributed a great deal on the improvement of computation speed. However, the breakthroughs in 

increasing switching speeds and circuit densities of VLSI devices will be difficult and costly in the 

future because circuit densities are fast approaching the limits of optical resolution. Even if switching 

times become instantaneous, distances between components may not become small enough to make 

a real increase in computation speed [Evans86]. 

The logical solution to this problem is the use of parallelism by simultaneously executing operations 

in multiple processors. In the situation where many processing elements (PEs) are connected together 

to achieve higher speed, computer architecture is of paramount importance for speeding up the system 

performance. Different kinds of parallel architectures have been applied in many computer systems 

and the usage of parallel architectures has been contributing more and more to the speed improvement 

of computer systems. 

Systolic array architecture is one kind of parallel architectures and it possesses some promlsmg 

features of utilizing VLSI technology for many important scientific computations and real time signal 

and image processing applications. 

Sec. 1.1 Introduction 
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The availability oflow-cost, high density, fast VLSI devices makes high-speed, parallel processing of 

large volumes of data practical and cost-effective [Mead80] [KungSY85b]. The more and more 

sophisticated computer-aided design (CAD) facilities bring about a major breakthrough in the design 

and application of massively parallel processors. The using of CAD considerably reduces the design 

cost and design period of a VLSI device. The parallel precessing together with the VLSI and CAD 

technologies makes feasible ultrahigh throughput and cost-effective computing devices. 

The needs for great computational power by scientific and engineering applications keep increasing 

and it seems that these needs are unlimited. No matter how fast a computer of today is, a faster 

computer for tomorrow is demanded. The infinitively complex physical world is the driving power 

behind this demands. On the other hand, the technology advancement in VLSI, parallel architectures 

and CAD provide the potential improvement on computer systems in terms of speed and 

performance/cost ratio. 

In this introductory chapter, we begin with an overview of the history of computers and the evolution 

of the integrated circuits (lC) technology. Then we survey the parallel architectures in computer 

systems. These areas have a very close relationship to systolic array processing. 

1.2 Overview of Computer System History 

1.2.1 The Definition a/Computers 

A computer is a device that solves problems by applying prescribed operations on data entered into 

it. This definition of a computer is given by The New Encyclopredia Britannica [Gwinn89]. There are 

two basic types of computers analog and digital. The analog computer operates on data represented 

by variable physical quantities, such as voltages, and measured continously. By contrast, the digital 

computer works with numbers, words, and symbols expressed as digits, which it manipulates and 

counts discretely. A third general class of computers, the hybrid computer, combines the features of 

the other two and utilizes both analog and discrete representations of data. 

The majority of computers in use today are of the digital variety. Extremely versatile, digital 

computers can carry out multitude of varied tasks from routine accounting and bookkeeping to the 
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control of spacecraft and analysis of scientific data. We will refer computers to digital type hereafter 

if no confusion is caused by doing so. 

The term computer did not possess the above meaning until 1950s. In US Military nomenclature 

through the World War IT, it referred to a person who did calculations, usually for artillery trajectories, 

often with the use of mechanical calculators or matrices of numbers called firing tables. The term 

migrated to electronic devices by the 1950s. It became firmly attached to electronic devices that 

manipulate digital data according to standardized order to perform calculations and other tasks 

[Leghart89]. 

1.2.2 The Evolution o/Computers 

Early Developments. The computer history may date back to much earlier time. From the time man 

first started using arithmetic, he has been inventing devices to aid him in handling numbers [Bartee72] 

[Gwinn89]. One of the earliest and most ingenious examples of an aid to computation is the abacus. 

This primitive (4000 to 3000 B.C.) predecessor of modem computers consists of a rectangular frame 

carrying several parallel wires. Each wire supports a number of beads which are free to slide along 

the length of the wire. By manipulating the beads, a skilful operator can add, subtract, multiply, and 

divide with amazing speed. 

Mechanical calculating machines were invented in Europe during 17th century. The first such device 

was an adding machine built in 1642 by the French scientist and philosopher Blaise Pascal. In 1673, 

the German mathematician Gottfried Wilhelm Leibniz constructed a calculating machine which could 

not only add and subtract but also multiply, divide and extract square roots. 

In 1939 John V. Atanasoff, a U.S. mathematician and physicist, built a breadboard prototype of an 

electro-mechanical digital computer, a feature of which was the first known use of electronic vacuum 

tubes for computation. In the same year, Howard Aiken ofHarvard University, in association with 

International Business Machines (mM) Corporation, began work on a fully automatic large-scale 

calculator. This work resulted the machine called Automatic Sequence Controlled Calculator, 

commonly known as the Harvard Mark 1. This was an enormous electro-mechanical machine whose 

operations were controlled by a sequence of instructions coded on punched paper tape. 
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The First Generation. Since the development of the Mark I, the digital computer has evolved at an 

extremely rapid pace. J. Presper Echert and John W. Mauchly, both of the University of Pennsylvania, 

ushered in the first generation of modem computers with the ENIAC (Electronic Numerical Integrator 

and Calculator). Completed by 1946, ENIAC was the first all-purpose, all electronic (primarily 

vacuum tubes) digital computer. The ENIAC could execute up to 5,000 basic arithmetic operations 

per second which was more than 1,000 times faster than its electro-mechanical predecessors. Other 

'notable first generation electronic digital computers included EDVAC (Electronic Discrete Variable 

Automatic Computer), EDSAC (Electronic Delay Storage Automatic Calculator), UNIV AC 

(Universal Automatic Computer). By 1952, mM had announced its 701 electronic calculator which 

used tube memory, magnetic drums, and magnetic tapes [Hwang84]. 

The Second Generation. The second generation computers began in 1952, when machines employing 

semiconductor devices known as transistors (which were invented in 1948) became commercially 

available. The first transistorized digital computer, TRADIC, was built by Bell Laboratories in 1954. 

The small size oftransistor, its greater reliability, and its comparatively low power consumption made 

it far superior to vacuum tube. By using transistors in control, arithmetic and logic circuits, along with 

an improved magnetic core memory, computer manufactures were able to produce more efficient, 

smaller, and faster (up to 100,000 instructions per second) digital systems. Another main advancement 

in the second generation computer is the development of the high level languages. Fortran (fonnula 

translation), Cobol (common business oriented language) and Algol (Algorithmic language) were 

appeared in 1956, 1959 and 1960 respectively. 

The Third Generation. The machines of this period began making heavy use of integrated circuits 

(ICs). In the small and medium scale integrated (SSI and MSI) circuits, many (up to hundreds of) 

transistors and other components are fabricated and packaged together in a single small container. The 

use ofICs permitted the construction of mainframe (large-scale) computers of higher operating speeds, 

capacity, and reliability at low cost. Their implementation also enabled engineers to design 

minicomputers. The next major development was large-scale integration (LSI), which made it possible 

to pack thousands of transistors and related devices on a single integrated circuit. Such microcircuitry 

yield two devices that revolutionized computer technology. The first of these devices was the 

microprocessor, Often referred to as "a computer on a chip", the microprocessor is an integrated 

circuit that contains all the arithmetic, logic, and control circuitry necessary to serve as a central 

processing unit (CPU). The second important device that emerged from LSI technology was the 

random-access memory (RAM) chip used in constructing semiconductor memory units in lieu of 
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magnetic core memory. Core memory was still used in CDC-6600 and other machines but, by 1968, 

many faster computers like CDC-7600, began to use solid-state memories (RAM). Many high

performance computers, like mM 360/91, Illiac IV, Cyber-175, STAR-lOO developed in the early 

seventies, belong to the third generation computers. 

The Fourth Generation. The computers from 1980s have often been referred to as fourth generation 

though the differences between them and third-generation systems are not always clear. Most of their 

distinguishing features are attributable to very large-scale integration (VLSI). This technology has 

vastly increased the circuit density of microprocessor, memory, and support chips. The VLSI 

technology enables to integrate into a single chip hundreds of thousands to a few millions of parts. 

The reduction in cost associated with these developments has been the main factors in making possible 

the production of microcomputers for use in homes and schools. On the other hand, high density and 

low cost VLSI chips allow to construct very high speed supercomputers. Parallel processing 

architectures was widely used in the high performance computers of this generation. Examples of he 

fourth generation computers include Cyber-205 (1982), mM 3081 (1980), Cray X-MP (1983) and 

Fujitsu VP-200 (1983). Today's fastest supercomputers can carry out up to 100,000 million floating

point operations per second (mflops). 

The Future Generation. How machines can be made faster and how can they be made smarter are 

two perennial questions that have confronted the future computing field. The future generation 

computers will be faster by featuring an internal structure that allows parallel processing namely, the 

simultaneous execution of several or many separate operations by means of numerous integrated 

circuits. The future generation computers will also become smarter by incorporating artificial 

intelligence (AI) [Torrer085]. In order to construct a smarter computer system, a very fast 

computational power is required in order to process many information on which the smarter system 

makes decision. 

To get a better view of the computer technology evolution, Figure 1.1 illustrates the past growth and 

future projections for the performance of supercomputers and mainframe computers. Sources are from 

[Halem89], [HPCR93], [IEEE89], [Miller89], [peterson89], [Riganati84], [Smith90] and [Torrer085]. 
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Figure 1.1. Past growth and future projections for computer performance 

1.2.3 The Varieties a/Computers 

The above discussion mainly concerns the most advanced computer systems of their own times in 

terms of performance. These systems are often referred to supercomputers and mainframe computers. 

The advancement in supercomputers and mainframe computers has been paralleled by the introduction 

of minicomputers, workstations, personal computers, and microprocessors. For the high performance 

supercomputers and mainframe computers, the thrust has been to increase performance while 

maintaining price, while for the low-performance, low-price end of the product spectrum, the thrust 

has been to maintain performance while reducing cost. To sum up, computer system can be 

categorized as follows. 

Super Computers: The world's fastest, most powerful computers available at any given 

time. Super computers are typically significantly more powerful than other computers. 

They are used in science, engineering, and research for the most difficult processing 

challenges, such as weather forecasting. 

Mainframe Computers: Large, general-purpose computers that serve hundreds or 

thousands of users, all tied to a corporate data processing centre. 
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Mini-Supercomputers: Computers that handle complex mathematical computations for 

engineers, scientists, and researchers. Usually, mini-supercomputers deliver a quarter to 

half the performance of a supercomputer at only one-tenth the cost. 

Minicomputers: Minicomputers can handle the general needs of more than 100 users 

who typically work on terminals wired to the computer. 

Workstations: High-performance computers used by engineers, scientist, and technical 

professionals who need superior graphics. Workstations can offer the nearly same 

performance of minicomputer while severing less users than minicomputers. 

Personal Computers (Microcomputer): General purpose desktop computers that use 

16- or 32-bit, even 64-bit, microprocessors. Personal computers are very popular today 

due to the increasing performance and decreasing prices. 

Microprocessors: A microprocessor is defined as the central arithmetic and logic unit of 

a computer, together with associate circuitry, scaled down to fit on a single silicon chip 

(sometimes several chips) holding many thousands (may be up to a few millions with the 

state-of-the-art technology) of transistors, resistors and similar circuit elements. 

Microprocessors are at the opposite end to supercomputers. They have found wide applications in 

engineering and industrial applications. The evolution of microprocessor technology has been 

proceeding at an amazing pace. The first microprocessor, the 4-bit Intel 4004, was fabricated in 1971 

by Intel. Subsequently, 8-bit, 16-bit and 32-bit microprocessors were introduced in 1972, 1974, and 

1981 respectively [Gupta83] [Gupta87]. The 64-bit microprocessors are also commercially available 

today. The number of devices per chip, the clock frequency and the overall throughput have increased 

tremendously during the last two decades. Today's microprocessors can integrate one or two millions 

transistor inside a single chip with a peak performance up to 100 mega flops which is approximately 

equivalent to the performance of a second or third generation supercomputer. The Intel i860 64-bit 

microprocessor [Kohn89] and the INMOS T9000 transputer [May92] are typical examples of such 

high performance 64-bit microprocessors. 

In contrast to the general-purpose microprocessors, a special class of microprocessor, called digital 

signal processing (DSP) microprocessors, has been progressing at a fast pace during the last two 

decades. To meet the special requirements of digital signal processing applications, DSP 

microprocessors have one feature: speed in the execution of certain ~Igorithms [Morris86]. Since the 

first DSP microprocessor, the Intel2920 appeared in 1982, many types ofDSP microprocessors have 

been developed with more and more powerful processing capabilities. 
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1.2.4 General Purpose Versus Special Purpose 

While the general-purpose supercomputer can provide the high speed in the cost of high expenses, 

increasing interest, attention and effort have been paid to the special purpose super-performance 

computer systems which comprise the cost and the generality. Due to the limited demand for a 

particular special-purpose super machine, their developmental cost must be justified against the need 

to solve the problem in a time more acceptable than that of a general-purpose machine of similar cost 

[Norrie84]. A common example of this may be in weather forecasting. A special purpose weather 

forecasting computer may be able to generate more accurate weather predictions than a general

purpose machine of the same cost. Fortunately, new innovative architectures, CAD and VLSI are 

helping to bring the costs of special-purpose machines down, and make them more feasible. 

Special purpose computers can be divided into two categories. In the first of these categories, the 

architecture is modeled to reflect the physical structure of the problem to be solved. An early example 

of this is a finite-element solving computer being constructed by NASA, which employs an array of 

microprocessors, one for each node in the finite-element model [Jordan79]. In the second category 

of special-purpose machines, the architecture is designed to reflect the general solution method for a 

class of problems. 

With the advancement in VLSI technology, it is now possible for customers to construct their own 

special purpose systems with much less costs than supercomputers by utilizing multiple VLSI devices 

such as DSP microprocessors in parallel. Some of such systems can outperform even conventional 

supercomputers [Gunzinger92] at lower cost. For example, the GFII system with a maximum of 566 

DSP processors has a peak performance of 11 GFlops [Witbrock90]. 

The evolution of computer technology is a history of increasing the computational power. Although 

today's computers are very powerful in terms of processing speed, many applications demand more 

powerful computers for solving problems faster or solving larger problems. The advancement of VLSI 

technology make it possible to construct cost-effective parallel processing system with a large number 

of processing elements to achieve higher performance. 
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1.3 Evolution of le Technology 

Integrated circuit technology and computer technology are interdependent despite their relative 

independent origins [Burger84)' On the one hand, computers, as major component of IC design 

systems (CAD) that aid and automate VLSI design process, have permitted major advances in IC 

complexity. On the other hand, advances in IC technology have made high-capacity semiconductor 

devices readily available and have enabled us to design new classes of computing devices, such as 

systolic arrays that offer substantial performance gain via massive parallelism and local communication. 

1.3.1 Five Generations ofJes 

The evolution of IC technology can be divided Table 1. I. Five Generations of ICs 

into five generations which are not congruent 

with the five generations of computers. The five 

generaiions of ICs have been derived from the 

progress of device technology over the last 

several decades. Small, medium, large, very 

large, and ultra large scale integration-or SSI, 

MSI, LSI, VLSI and ULSI-are represented by 

ranges of chip complexity such that the upper 

limit on each range is 32 times the lower limit. 

Generation 

SSI 

MSI 

LSI 

VLSI 

ULSI 

Complexity 

2-64 

62-2000 

2000-64,000 

64,000-2,000,000 

2,000,000-64,000,000 

Table 1.1 lists the five generations of le with their complexities in terms of the number of components 

in a single package. The specific values of these limits are not universally accepted, but the general 

nature of the approach is [Burgur84). Today's technology is at the intersection edge of VLSI and 

ULSI. 

Shortly after the germanium transistor was demonstrated in the late 1940's, effort were initiated to 

make a transistor in silicon. By the mid-1950's silicon transistors had become available, and the 

technology of this material was rapidly advancing. By 1960, photolithography, oxide masking, and 

impurity diffusion techniques were being applied to produce high performance transistors. 

Since its invention in 1959, the IC has undergone rapid growth in which chip complexity figured 

prominently. After 1959, le chip complexity doubled every year. In 1973, complexity had reached 
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nearly 8000 components per chip. Complexity doubled every 1.5 to two years later on. This 

progression is known as Moore's Law [Moore75]. The complexity growth has been slow down 

recently as the technology is fast approaching to its limit. 

IC technologists often describe IC evolution in terms of,feal/l/'e size, or the linewidth of the smallest 

dimension to be fabricated in silicon. In metal-oxide semiconductor (MOS) technology, feature size 

is the field-effect transistor gate length. In bipolar technology, it is the emitter width. In 1960, 

photolithography produced linewidth of about 37 !lm. In 1984, devices with feature sizes of2 !lm are 

in production. Today's technology can fabricate devices with feature sizes of less than 0.5 !lm. 

Another important factor to describe IC technology is chip size. Complexity growth is not only due 

to feature size reduction but depends also on increases in chip size. Chip area has increased by two 

order of magnitude in the last three decades as silicon substrate quality and process controls have 

advanced to permit economically acceptable yields at these chip sizes. 

32 

• Feature Size fJlm) 
. . 

Com ponents/Ch' 
16 ... ; .................... : .................... ; ... . 

................... ; ............. . 
Chip Size (mm» 

100 ............ .................. . 
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Year 

Figure 1.2 Integrated circuit complexity trends 
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Figure 1.2 shows the IC technology evolution in terms of complexity, feature size, and chip area 

[Burger84) [Hurst92). 

Many other parameters, such as wafer size, number of chips per wafer, chip costs, gate density, and 

production levels, may be used to trace the progression ofIC technology. Of these, IC technology 

is especially impressive when viewed in terms of cost decreases. The IC technology today are more 

impressive by using the CAD for design automation which even make it possible to produce custom, 

limited-production parts at low cost. 

1.3.2 VLSI Technology Constrain Is 

There are currently two popular semiconductor device technology: bipolar and metal-oxide 

semiconductor (MOS). Although new technologies combining features of both are emerging, some 

important differences between bipolar and MOS devices exist. While bipolar technology is faster, 

MOS technology, offers higher density integration and consumes less power. VLSI technology offers 

promising potential but creates new design constraints. The key design criteria for VLSI architectures 

are listed as follows [Randell82) [KungSY88b]: 

• Critical design complexity and essential CAD tools 

• Modularity and effective utilization of building blocks 

• Simple and regular data and control paths 

• Localized or reduced interconnections 

• Balance between inputloutput (1/0) and computation 

• Extensive con currency (i.e., pipeline and/or parallel processing) 

• Synchronous versus asynchronous implementation considerations 

• Programmability 
• 

• Adequate reconfigurability and fault tolerance 

• Balanced array and chip partitioning. 

As long as communication in VLSI remains restrictive, locally interconnected arrays will be of great 

importance. An increase in efficiency can be expected if the algorithm arranges for a balanced 

distribution of work load while observing the requirement ofiocality, i.e., short communication paths. 

These properties of load distribution and information serves as a guideline to the designer of VLSI 

algorithms and eventually lead to new VLSI architecture design. 
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1.3.3 VLSI Architecture Design Principles 

Scaling ElTect. The growth ofIC complexity and capability has been due to a combination of a down 

scaling of the feature size and up scaling of the chip size, both subject to the constraint of reasonable 

yield. VLSI architecture enjoys a major advantage of being very scalable technologically [Mead80]. 

This means that the efforts of architectural redesign will be minor when the device technology is scaled 

down to the submicron level. 

In the scaling of geometry, it is often assumed that all the dimensions as well as the voltages and 

currents on the chip are scaled down by a factor u (an u greater than I implies that the sizes or levels 

are shrinking). When scaling down the linear dimensions of a transistor by u, the number of transistors 

that can be placed on a chip of given size is scaled up by u'. 

The switching delay of a transistor is scaled down at least by u due to the fact that the channel length 

is decreased by a factor u. This means that gate delay decrease with scaling. 

Scaling also affects the interconnections between devices. Since the cross-sectional area of the 

conductor is decreased by a factor of u 2 and the lenf,>th of the conductor is decreased by u, the increase 

of resistance is in proportion to u. At the same time, scaling down implies changes of capacitance of . 

the interconnection. Regarding the conductor as one plate of a parallel-plate capacitor, scaling down 

of both linear dimensions of the plate by u implies that a decrease of the capacitance by u'. However, 

scaling down also implies a decrease by u of the thickness of the oxide insulating layer separating the 

plates of the capacitor. Hence the capacitor of a fixed interconnection scales down by u. Therefore 

the RC (resistor-capacitor) time constant and the interconnection delay are unchanged because the 

scaling up of resistance and down of capacitance exactly cancels. 

Although the scaling process has many beneficial effects, in contrast, interconnection problems become 

very severe due to increased chip size. Eventually, chip cost, performance, and speed are determined 

primarily by interconnect delay and area. 

Stuffing ElTect. It is clear that since gate delays decrease with scaling, whereas interconnection delays 

remain constant with scaling, eventually the speed at which a circuit can operate will be dominated by 
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interconnect delays rather than device delays. However, this situation is actually somewhat worse than 

the above considerations imply, due to the factor of stuffing. 

Assume that circuits are consist of randomly connected logic elements. Stuffing means that the length 

of the interconnections do not scale down with the inverse of a, as was assumed in scaling. In 

practice, as the complexity of the circuit increases, the distance over which interconnections must be 

maintained on a chip of fixed area may stay roughly constant. It has been argued from statistical 

considerations [Keyes79) that a good approximation to the maximum length of interconnection 

required is given by 

where A represents the area of the chip. Therefore, if scaling occurs and chip size is also increased, 

the interconnection problem becomes further exacerbated. When the delay time of the circuit depends 

largely on the interconnection delay instead of the logic gate delay, minimal and local interconnections 

will become an essential factor for an effective realization of the VLSI circuits. 

Regularity and Modularity, In VLSI design, the overall architecture should be as regular and 

modular as possible, thus reducing design error, time and cost. Any form of regularity, as derived by 

a careful algorithmic design, may prove useful for mapping algorithms onto architectures. The 

building-block concept is also instrumental and important in VLSI design. The building-block 

approach may be combined with high level CAD tools, such as silicon compilers, to give the VLSI 

designer a tremendous amount of flexibility to cope with the ever-increasing complexity of VLSI 

design. 

I/O Constraints. With the increasing complexity of VLSI device, the number ofI/O pins becomes a 

critical factor for VLSI design. Very often parallel signal communication wires for each node in many 

directions is required. A good design should take into account the constraints on I/O pins and 

resultant costs in terms of area and time. 

Pipeline and Parallel Processing. Throughput rate is the overriding factor dictating the system 

performance. Extensive use of concurrency by pipeline and parallel processing is required in order to 

maximize the throughput. 
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Hierarchical Design and CAD Techniques. The growth in VLSI complexity has made hierarchical 

CAD techniques necessary. Such approaches are imperative due to the extremely large number of 

components per chip in the current VLSI technology. The development of hierarchical and structured 

design methodology and simplified VLSI design rules allow VLSI chips to be designed quickly. 

In addition to the above mentioned aspects for VLSI design, there are other aspects required to be 

considered when design a VLSI device. The choice between synchronous and asynchronous clocking 

become very crucial for complex VLSI systems. Programmability and reconfigurability allow the 

designed VLSI systems to have more flexibility to meet the requirements of different applications. 

Fault tolerant property can improve the yield rate of VLS I devices. 

1.4 Parallel Computer Architectures 

Many scientific and technological problems demand more and more powerful computational 

capabilities. The history of computer technology evolution has clearly indicated the continuous 

performance improvement of computer systems since the invention of the first computer. Although 

faster and faster electronic devices with increasing switching speed and circuit density contribute very 

much to the performance improvement of computer systems, they cannot alone meet the ever

increasing requirements in a cost effective way, especially in the case where the switch speed and 

circuit density are fast approaching the limits of optical resolution. Parallel processing is a natural and 

logical choice for further improving computer performance. The evolution of computer systems has 

been on evidence that increasing computer performance is due to not only using high speed electronic 

devices but also using parallel processing architectures. Massively using parallelism to achieve further 

performance improvement in addition to the improvement due to reducing switching delays has been 

bringing about significant breakthrough in computer technology. 

The concept of parallelism breaks with the classical approach of obtaining speed by performing each 

operation more rapidly. In parallel computation, the speed increase comes from the simultaneous 

execution of operations. Once many processing elements are put together, architecture, which defines 

how different processing elements cooperate and how data communicate, plays a very important role 

in the parallel computer system design. In this section, we will have a brief overview of the computer 

architectures. 
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1.4.1. Flynn's Taxonomy 

Flynn's taxonomy [Flynn66] classifies architectures on the presence of single or multiple streams of 

instruction and data. This yields the four categories below: 
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iigure 1.3 The four types of computer architectures (a) SISD; (b) SIMD; (c) MISD; (d) MIMD 
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SISD (Single Instruction Single Data stream)-defines serial computers as shown in Figure 

1.3a. 

• SIMD (Single Instruction Multiple Data stream)-involves multiple processors 

simultaneously executing the same instruction on different data as shown in Figure 1.3b. 

• MISD (Multiple Instruction Single Data stream}--would involve multiple processors applying 

different instructions to a single datum; this hypothetical possibility is generally unrealistic but 

which Flynn affirms to include specialized streaming organizations as shown in Figure 1.3c. 

• MIMD (Multiple Instruction Multiple Data stream)-involves multiple processors 

autonomously executing diverse instructions on diverse data as shown in Figure 1.3d. 

Although these distinctions provide a useful shorthand for characterizing architectures, they are 

insufficient for c1assitying various modem computers. For example, pipelined vector processors merit 

inclusion as parallel architectures, since they exhibit substantial concurrent arithmetic execution and 

can manipulate hundreds of vector elements in parallel. However, they are difficult to accommodate 

within Flynn's taxonomy, because they lack processors executing the same instruction in SIMD and 

lack the asynchronous autonomy of the MIMD category. Duncan's taxonomy [Duncan90] attempted 

to cope with the encountered problems in Flynn's taxonomy. 

lA.2 Duncan's Taxonomy 

Since 1980s, a wide variety of new computer architectures for parallel processing have been innovated 

by extending the major approaches to parallel computing developed in 1960s and 1970s. Because the 

diversity of parallel architectures, diverse definition have been proposed for parallel architectures. 

Flynn's taxonomy [Flynn66] based on instruction and data stream has been widely adopted. Recently, 

Duncan proposed a taxonomy which placed recent architecture innovations in the broader context of 

parallel architectures and in a coherent framework [Duncan90]. The proposed taxonomy satisfies the 

following set of imperatives: 

• Exclude architectures incorporating only low-level parallel mechanism that have become 

commonplace features of modem computers; 

• Maintain elements of Flynn's useful taxonomy based on instruction and data streams; 

• Include pipelined vector processors and other architectures that intuitively seem to merit 

inclusion as parallel architectures, but which are difficult to gracefully accommodate within 

Flynn's scheme. 
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Figure 1.4 High-level taxonomy of parallel computer architectures 

Under these conditions, a parallel archileclure can be defined as an explicit, high-level framework for 

the development of parallel programming solutions by providing multiple processors, whether simple 

or complex, that cooperate to solve problems through concurrent execution. Figure lA shows the 

Duncan's taxonomy which uses high-level categories to delineate the principle approaches and to 

define a coherent spectrum of architectural alternatives. Definitions for different categories are briefly 

provided below. 

1.4.2.1 Synchronous Architectures 

Synchronous parallel architecturescoordinate concurrent operations in lock step through global clocks, 

central control units or vector unit controllers. 
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Pipelined vector processors. 

Vector processors are 

characterized by multiple, 

pipelined functional units, which 

implement arithmetic and 

Boolean operations for both 

vectors and scalars and which 

can operate concurrently. Such 

architectures provide parallel 
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through a functional unit pipeline and by streaming the output results of one unit into the pipeline of 

another as input. Figure 1.5 shows a representive pipelined architecture having a vector addition unit 

consisting of six pipeline stages. If each pipeline stage has a cycle time of 20 nanoseconds(ns), then 

120 ns elapse from the time operands a I and h I enter stage I until result c I is available. When the 

pipe line is filled, however, a result is available every 20 ns. 

SIMD architectures. SIMD architectures (Figure 1.3b) typically employ a central control unit, 

multiple processors, and an interconnection network (IN) for either processor-to-processor or 

processor-to-memory communications. The control unit broadcasts a single instruction to all 

processors, which execute the instruction in lockstep fashion on local data. The IN allows instruction 

results calculated at one processor to be communicated to another processor for use as operands in 

a subsequent instruction. 

Under the SIMD architectures, 

there are two sub-categories 

which are namely processor 

array architecture and associate 

memory processor architecture. 

A processor array architecture 
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parallel computer with multiple 
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can operate in parallel in a lockstep fashion. A typical processor array architecture is depicted in 

Figure 1.6. 

An associative memory processor 

architecture computer uses special 

comparison logic to access stored 

data in parallel according to its 

contents. Figure 1. 7 shows the 

characteristic functional units of an 

I Bit Control Array Controlle 

associative memory processor. A 

control unit (serial computer) reads 

and executes instructions, invoking 

a specialized array controller when 
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enable the program controller (serial computer) and associative memory to share data." 

Systolic architectllres. . The systolic 

architectures were first introduced in 1978 by 

Kllng and Leiserson [KungHT78] as high-

performance, special-purpose VLSI 

computer systems that are suitable for 

specific application requirements that must 

balance intensive computations with 

Host 

Memory 

PE 

demanding I/O bandwidths [KungHT80a] Figure 1,8 Systolic architecture 

[KungHT82a]. Syslolic archileclllres 

PE 

(systolic arrays) are organized as networks which are composed of a large number of identical, 

elementary cells (or processing elements) which are locally connected. Data in systolic arrays are 

pulsed in rhythmic fashion from memory and through the cells before returning to memory (see Figure 

1.8). A global clock and explicit timing delays synchronize the system. Modular processors united 

by regular and local interconnections provide basic building blocks for a variety of special-purpose 

systems. Systolic arrays address the performance requirements of special-purpose systems by achieving 

significant parallel computations and by avoiding I/O and memory bandwidth bottlenecks. 
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1.4.2.2 MIMD Architectures 

MIMD architectures (Figure 1.3d) employ multiple processors that execute independent instruction 

streams using local data. MIMD can support parallel solutions that require processors to operate in 

a largely autonomous manner. Although software processes executing on MIMD architectures are 

synchronized by passing messages through an interconnection network or by accessing data in shared 

memory, MIMD architectures are asynchronous computers, characterized by decentralized hardware 

control. MIMD computers support high level parallelism (sub program and task levels). 

Distributed memory architectures. Distributed 

memory architectures (Figure 1.9) connect 

processing nodes, consisting of an autonomous 

processor and its local memory, with a 

processor-to-processor interconnection network. 

Nodes share data by explicitly passing messages 

through the interconnection network, since there 

is no shared memory. Various interconnection 

network topologies have been 

proposed to support architectural 

expendability and provide 

efficient performance for parallel 

programs with different 

interprocessor communication 

patterns. 

MIMD 

topologies 

Examples of the 

interconnection 

includes ring 

topology, mesh topology, tree 

topology, hypercube topology, 

and reconfigurable topology as 

shown in Figure 1.10. 
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Figure 1.9 Distributed memory architecture 
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Figure 1.10 MIMD interconnection network topologies: (a) ring; 
(b); mesh; (c) tree; (d) hypercube; (e) tree mapped to a 
reconfigurable mesh 
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coordination by providing a global, shared memory that each processor can address. Typically, each 

processor in a shared memory architecture also has a local memory used as a cache. Shared memory 

computers do not have some of the problems encountered by message-passing architectures, such as 

message latency as data is queued and forwarded by intermediate nodes. However, other problems, 

such as data access synchronization and cache coherency, must be solved. 

Figure 1.11 illustrates some 

shared memory architectures 

with different interconnections. 

Time shared buses offers a fairly 

simple way to give multiple 

processors access to a shared 

memory as shown in Figure 

1.11 a. A single, time shared bus 

can accommodates a small 

number of processors (from 4 to 

20) since only one processor 

accesses the bus at any given 

time. Crossbar interconnections 

use a crossbar switch to connect 

processors to memories as shown 

in Figure I. I lb. Crossbar 

interconnections also limit the 

number of processors to be used 

p p p 
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Figure 1.11 MIMD shared memory architectures: (a) bus 
interconnection; (b) crossbar; (c) multistage interconnection 
network. 

(from 4 to 16). Multistage interconnection networks (Figure I.llc) strike a comprise between the 

price/performance alternatives offered by crossbars and buses. 

1.4.2.3 MIMD Paradigms 

MIMD/SIMD hybrids, dataflow architectures, reduction machines, and wavefront arrays all pose a 

similar difficulty for an orderly taxonomy of parallel architectures. Each of these architectural types 

is predicated on MlMD principles of asynchronous operation and concurrent manipulation of multiple 

instruction and data streams. However, each of these architectures is also based on a distinctive 
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organizing principle as fundamental to its overall design as MIMD characteristics. Therefore, these 

architecture are described under MIMD based architectural paradigms [Duncan90]. 

MIMD/SlMD architectures. MIMD/SIMD hybrid 

architectures allow selected portions of a MIMD 

architecture to be controlled in SIMD fashion. Figure 

1.12 conceptually shows a MIMD/SIMD hybrid 

architecture. 

Datanow architectures. The fundamental feature of 

dataflow architectures is an execution paradigm in 

which instructions are enabled for execution as soon as 

all of their operands become available. Thus, the 

sequence of executed instructions is based on data 

dependencies, allowing dataflow architectures to exploit 

concurrencyat the task, routine, and instruction levels. 

Figure 1.13 depicts a dataflow architecture executing 

dataflow graphs of program fragment. 

(b) Node 1 (a) a=b+c 
b=d+e 
c=f*g 

MIMD operation 

SIMD slave processors 

Figure 1.12 MIMD/SIMD architecture 

Node I Node 2 

Node 3 

Figure 1.13 Dataflow architecture 

(c) Node I 

d= 1 ;e=3 ;f=5 ;g=7 

Node 6 Node 7 

Figure 1.14 Reduction architecture: (a) program; (b) demand token production; (c) result token 
production. 
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Reduction architectures. Reduction, or demand driven, architectures [Treleaven82] implement an 

execution paradigm in which an instruction is enabled for execution when its results are required as 

operands for another instruction already enabled for execution. Figure 1.14 illustrates a simplified 

reduction architecture. Figure 1.14a shows the program to be performed by the architecture. Figure 

1.14b shows all the demand tokens produced by the program as they propagate down the tree. Figure 

1.14c shows the last two result tokens produced as then are passed to the root node. 

Wavefront array architectures. 

Wavefront array processors 

combine systolic data pipelining 

with an asynchronous dataflow 

execution paradigm. S.Y. Kung 

developed wavefront array 

concepts in the early 1980s 

[KungSY82a]. Wavefront and 

systolic architectures are both 

characterized by modular 

processors and regular, local 

interconnection networks. 

However, wavefront arrays 

replace the global clock and 

explicit time delays used for 

synchronizing systolic data 
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handshaking as the mechanism 

for coordinating interprocessor data movement. Thus, when a processor has performed its 

computations and is ready to pass data to its successor, it informs the successor, sends data when the 

successor indicates it is ready, and receives an acknowledgement from the successor. The handshaking 

mechanism makes computational wavefronts pass smoothly through the array without intersecting, as 

the array's processor act as a wave propagating medium. In this manner, correct sequencing of 

computations replaces the correct timing of systolic architectures. Figure I. 15 depicts a two 

dimensional wavefront architecture for matrix multiplication. 
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1.5 Organization of the Thesis 

We have briefly overview the computer history which clearly indicates the ever-increasing demand of 

computational speed and, of course, ever increasing effort to improve the performance of computer 

systems. The availability oflow-cost high-density, high speed VLSI devices makes it possible to build 

up massively parallel processors with a reasonable cost. Parallel architectures have been significantly 

contributing to computer speed increase. The current VLSI technology, on the other hand, put some 

constraints on computer architecture. Systolic array and wavefront array architectures are very 

amenable to VLSI implementation, since they feature the important properties of modularity, 

regularity, local interconnection, and highly pipelined multiprocessing. 

This thesis stress the systolic array processing and its applications in scientific computation and real 

time signal processing. This thesis can be divided into three parts. First part is an introductory part 

containing both an introduction to broad areas related to systolic array processing and a detailed 

introduction to systolic array processing itself The second part is concerned with design 

methodologies of systolic algorithms. The third part designs a number of systolic arrays for different 

applications. Finally a summary and a list of references end the thesis. 

1.5.1 Part 1: Introduction 

Part 1 forms the introductory part of the thesis and it consists of Chap. I and Chap. 2. Chap. 1 

gives an introduction to broader areas which systolic array processing closely relates to, including 

computer evolution, VLSI technology advancement and parallel architectures. Systolic array 

architecture is one class of parallel computer architectures and it best meets the requirements by 

VLSI technology. Systolic array architecture provides promising solutions to many large-scale 

scientific computation applications and real time signal/image processing applications. 

Chap. 2 is an overview of the systolic array architecture itself. In Chapter 2, we mainly stress the 

following problems: 

• What is a systolic array architecture? 

• Why do we use systolic array architectures? 

• How to c1assity systolic architectures? 

• What problems can systolic array architectures solve? 
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• What kinds of systolic array systems have been implemented? 

• How to design systolic array architecture? 

1.5.2 Part 2: Systolic Array Design Methodologies 

Part 2 introduces two types of the most popular systematic design methodologies for systolic arrays. 

Some systolic arrays for important matrix computations, including matrix multiplication and matrix 

triangularization, are designed as examples to illustrate the methodologies. 

Chapter 3 deals with the reglllar iterative algorithms (RIA) approach for designing systolic arrays. 

The matrix-matrix multiplication serves an example for the design method. 

Chapter 4 addresses the signalflow graph (SFG) method for systolic array design. The QR and LU 

decomposition systolic arrays are designed by the SFG technique. 

1.5.3 Part 3: Systolic Array Architectures and Applications 

A number of systolic arrays have been designed in this thesis for different application areas. Firstly, 

we designed a systolic array for linear and inverse matrix system. The systolic array combines LU (or 

QR) decomposition, backward and forward substitution, and matrix multiplication into a trapezoidal 

array. The array can be used to solve a variety of linear systems and other problems such as matrix 

multiplication. When QR decomposition is used, the systolic array can solve linear least square 

problems or perform pseudo-inverse computation. Then a systolic array is designed to compute the 

Schur complement which often occurs in the domain decomposition method and other problems in 

linear algebra such as the numerical solution of elliptic partial differential equations and sparse linear 

system. A systolic array architecture has been designed and simulated for QR decomposition of block 

structured sparse systems which find applications in areas such as photogrammetry, Doppler radar 

positioning, geodetic problems, cluster analysis and pattern matching. A novel systolic array is derived 

for computing matrix inversion by Newton Iteration which has a good feature that some simper initial 

approximations can always guarantee a convergence. A systolic array architecture for Capon's DOA 

estimation in sonar and radar applications is derived based on the QR decomposition technique. Finally 

a novel linear systolic array architecture is proposed for conjugate gradient (CG) algorithm. 
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1.6 Summary 

The systolic array architecture in parallel processing came as a product of a certain environment, that 

encompassed the needs (the possible applications); the means (the appropriate technology); and the 

background knowledge for its realization [Evans91]' The needs can be outlined as the ever-increasing 

tendency for faster and more complex computations, especially in areas like real-time signal processing 

and large-scale scientific computation. The evolution of computer history has been witnessing the 

increasing demands for more powerful computational facilities and the unremitting efforts to meet the 

demands. The means were provided by the remarkable advances in VLSI technology and CAD tools. 

which make it feasible to implement a large scale parallel processing system by carefully designing the 

architectures. Finally, the background includes the applications of parallel architectures in the form 

of parallel algorithms and the design of parallel computers. 

Systolic array architecture, as a subclass of parallel computer architectures, features modularity, 

regularity, and local interconnection. Due to these features, systolic arrays are best amendable to 

VLSI implementation. Therefore, systolic arrays provide a promising solution to many 

computationally intensive problems encountered in the areas such as real-time signal and image 

processing and large scale scientific computations. 
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OVERVIEW OF SYSTOLIC ARRAY 

ARCHITECTURES 

2.1 What is a Systolic Array? 

s YSTOLIC architectures were first introduced in 1978 by H.T. Kung and C.E. Leiserson 

[KungHT78] as high-performance, special-purpose VLSI computer systems that are suitable 

for specific application requirements or to off-load computations that are especially taxing to general 

purpose computer. 

The term sys/olic is in fact taken from the Greek word systole (crv<HOAll). The physiology term 

systole and diastole are used to describe the rhythmic contraction of the heart as blood is pumped 

around the human body. The body itself is composed of approximately 1000 million million cells. 

Cells of the same kind are grouped into tissues which have special tasks to perform. One of the 

many tasks of the blood is to deliver oxygen to all the body tissues. The cells need oxygen to live 

and use it to perform chemical reactions which produce energy and maintain bodily functions. The 

reactions also produce waste matter which the blood carries away from the cells to organs that 

dispose of it. Blood returning from tissues to the heart passes through the lungs where it exchanges 

carbon dioxide and waste gas accumulated from the cells for more oxygen. Full of the oxygen, 

the blood returns to the heart and is pumped out to the tissues again. This simple description gives 

an analogy to systolic processing. 

In systolic computation body, cells and tissues are replaced by simple processing elements grouped 

into arrays which have specialized tasks or algorithms to perform. The circulating blood is 

replaced by the concept of data flow and individual blood cells carrying oxygen are replaced by 

discrete pieces of data. The processing element perform simple computations on the data when it 

arrives and generate results, these results are passed on from processing element to processing 

element as data flows around the system. New data is entered and old data removed as the data 
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flow passes through some external device (called the host) made up from a more conventional 

computer architecture. 

There are a number of "definitions" of systolic arrays [KungHT7S] [UllmanS4] [KungSYSSb] 

[Megson92] [Evans91] [Johnson93]. According to Kung and Leiserson [KungHT7S], we have the 

following definition: 

"A Sysrolic sysrem is a nerwork (If processors wi1ich rhyrhmically compure and pass data 

through rhe sysrem . .. 

~ell~we present a more coherent and detailed definition for systolic array. 

Definition: A systolic array is a computing system which possesses the following features: 

• [01] Nerwork. It is a computing network employing a number of processing elements 

(or cells) with interconnections. 

• [02] Rhyrhm. The data are computed and passed through the network in a rhythmic 

and recurrent manner. 

• [D3] Synchrony. The execution of instructions and the communication of data are 

timed by a global clock. 

• [04] Modulariry. The network consists of one or, at most, a few types of processing 

elements. 

• [05] Regulariry. The interconnections between cells are regular and homogeneous. 

The numbers of interconnections for processing elements are independent on the 

problem size. 

• [06] Localiry. The network manifests a locally communicative interconnection 

structure. 

• [07] Boundary. Only boundary cells in the network communicate with the outside 

world. 

• [OS] Exrensihiliry. The computing network may be extended indefinitely. 

• [09] Pipelinahiliry. The network exhibits a linear rate pipelinability, i.e. it should 

achieve an O(M) speedup, in terms of processing rate, where M is the number of 

processing elements. Here the term speedup denotes the ratio of the processing time 

in a single processor to the processing time of M processors for performing the same 

tasks. 
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The above definition can be exemplified 

with the help of Figure 2.1, which is a 

typical arrangement of systolic system. A 

linear array of processing elements (PEs) is 

connected to form a computing network 

Host 

[0 I]. The processing elements perform Figure 2.1 A typical systolic system 

computations on the data when they arrive 

Chap. 2 

and generate results; these results are passed on from one processing element to the next processing 

element in a similar manner to the rhythmic blood pumping of a human body [02]. The whole 

array of processing element is timed by a global clock in order to coordinate the computations and 

communications [03]. The systolic system consists of only a single type of PEs and hence exhibits 

the modularity [04]. The interconnections between cells are homogeneous by receiving data from 

left neighbour and send data to right neighbour. The number of interconnections for processing 

elements is fixed to be 2 here no matter what is the size of problem to be solved [05]. The PEs 

in the array communicate only to its nearest (left and right) neighbours [06] except for the 

boundary PEs (the leftmost and the rightmost PEs) which can communicate to the outside world, 

i.e. the host in this case [07]. This array can be easily expanded from one size to another size 

depending on the size of problem to be solved and the performance to be achieved [08]. The array 

also exhibits a linear rate pipelinability. That is, if the processing time of a single PE for solving 

a certain problem is T, then the processing time of M PEs for solving the same problem is reduced 

by O(M) [09]. 

The above definition for systolic array is in a very strict sense and it provides a strict framework 

for the systolic architecture. The features in the definition can be used to distinguish systolic array 

architecture from other parallel architectures. However, when implementing a systolic architecture 

in a hardware system, many trade-off may be made. Some items in the definition may be loosen 

in order to meet technology constraints and/or performance requirements. For example, some real 

systolic systems allow a certain degree of global communication and some are implemented in 

asynchronous way. In practice, as long as a computational system satisfies most of the item listed 

in the definition and distinguishable from other parallel architectures, we can call such a system 

as a systolic array architecture. 
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It is also noticed that qualitative definition has been employed in the above definition. We will 

introduce another definition of systolic array using a quantitative model (in Chap. 3). 

Now let us conclude this section by the following passage quoted from the introduction of C. E. 

Leiserson's thesis [Leiserson81]: 

"Systolic systems are an alfempt to capture the concepts of parallelism, pipe lining and 

interconnection structures in a unified framework of mathematics and engineering. They 

embody engineering techniques such as mUltiprocessing and pipelining together with the more 

theoretical ideas of cellular automata and algorithms, and therefore are an excellent subject 

of investigation from a combined standpoint. " 

2.2 Why Systolic Architectures? 

To answer this question, we can consider the following two aspects: the external causes and the 

internal causes. The external causes include of technology advances in VLSI, intensive uses of 

parallel processing and demanding scientific applications. These aspects form the environment for 

systolic array processing. The internal causes are due to the essential characteristics of systolic 

architectures themselves: simple and regular design, con currency and communication, and 

balancing computation with 110. 

2.2.1 The External Causes 

Three factors have contributed to systolic array's evolution into a leading and promising approach 

for handling computationally intensive applications: technology advances, parallel processing, and 

demanding scientific applications. 

VLSI Technology Advances. Advances in VLSI technology complement the systolic array's 

qualification as one of the preferable architectures for many computationally intensive applications. 

Density of VLSl devices has been increasing due to the photolithography technology advance. 

Faster and faster gate switching speed can be achieved due to scaling effect when feature size is 
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reduced. Larger chip area size can host more components in a single silicon package. Wafer scale 

integration (WSI) promises a further growth of the number of components in a single package. 

Economical design and fabrication processes produce less expensive systolic chips, even in small 

quantities. Better design tools allow arrays to be designed more efficiently. A systolic cell can be 

fully simulated before fabrication, reducing the chances that it will fail to work as designed. With 

advances in simulation techniques, fully tested, unique cells can now be quickly copied and 

arranged in regular, modular arrays. As VLSI designs become more complicated, "systolicizing" 

them provides an efficient way to ensure fault tolerance; any fault tolerance precautions built into 

one cell are extensible to all cells. 

Relatively new field-programmable gate array (FPGA) technology permits a reconfigurable 

architecture and this makes systolic array more flexible. Different systolic array topologies and 

different cell function can be con figured on site without change hardware. 

Parallel Processing. Past efforts to add concurrency to conventional von Neumann computer 

architecture have yield coprocessors, multiprocessing units, data pipelining, and array processors. 

Systolic arrays combine features from all of these architectures in a massively parallel architecture. 

A systolic array can act as a coprocessor, can contain multiple processors, and can act as a pipeline 

(maybe n-dimensional pipeline). 

Demanding Scientific Applications. The technology growth of the last three decades has produced 

computing environments that make it feasible to attack demanding scientific applications on a large 

scale. Large-matrix computation, feature extraction, radar and sonar signal processing, image 

processing, weather forecasting are only a few examples. As history shows, when many computers 

work on a wide variety of ap'plications, they develop new applications requiring more demanding 

computational performance. Many applications today require massive, repetitive and rhythmic 

parallel processing. Systolic arrays are right candidates for these applications. 

2.2.2 The Internal Causes 

The technology advances in VLSIIWSI make systolic arrays feasible. The evolution of parallel 

processing introduced many parallel architectures which provide the basic element of systolic 
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architecture, e.g. multiprocessors, pipelining. The demanding scientific applications, especially 

those requiring massive and repetitive computations, necessitate a new architecture. These aspects 

form the external driving forces for systolic architecture. 

More importantly, systolic array themselves feature the following essential characteristics: simple 

and regular design, concurrency and communication, and balancing computation with I/O 

[KungHT82al. These features make systolic architecture best fit the current technology advances 

and requirements. 

2.2.2.1 Simple and Regular Design 

In VLSI technology, the cost of components is dropping dramatically; however, the cost of design 

grows with the complexity of the system. By using a regular and simple design and exploiting the 

VLSI technology, great savings in design cost can be achieved. 

Systolic architecture is based on a very few types of basic cells, as we have discussed, and this is 

the first advantage it has over an architecture that is based on many different types of complex 

cells. The second advantage is that the regular and local interconnection of cells considerably eases 

the arrangement of component in space and reduces the communication latency. In the simplest 

case, that of linear arrays as shown in Figure 2.1, we can say that every systolic algorithm leads 

directly to a scheme for its implementation in silicon. Furthermore, simple and regular systems 

are likely to be modular and therefore adjustable to various performance goals. For example, 

systolic arrays are adaptable to the size and nature of the problem under attack. 

Finally, regular and simple design leads the testability of systolic architecture. We can make use 

of the regularity of the architecture to develop a sequence of tests on the basis of the characteristics 

of a single cells. Then this test sequence can be applied to test all the cells of the same type. 

2.2.2.2 Concurrency and Communication 

Since the technological trend clearly indicates a diminishing growth rate for component speed, any 

major improvement in computation speed must come from the concurrent use of many processing 

elements. The degree of concurrency in a VLSI computing structure is largely determined by 
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underlying algorithm. Massive parallelism can be achieved if the algorithm is designed to 

introduce high degrees of pipelining and multiprocessing. When a large number of processing 

elements work simultaneously, coordination and communication become significant-especially 

with VLSI technology where routing costs dominate the power, time, and area required to 

implement a computation [Hwang84]. 

Systolic architecture supports high degrees of concurrency, and in the mean time employs only 

simple, regular communication and control to allow efficient implementation. The locality of inter

processor communications is another attractive feature of systolic architecture. 

2.2.2.3 Balancing Computation with I/O 

VLSI systems are well suited to the implementation of compure-bound computations, rather than 

to I/O-bound. In a compute-bound computation, the number of elementary computations is larger 

than the number of 110 operations that have to be performed. The other case is 1I0-bound 

computation which is not suited to VLSI implementation because the number of I/O ports is 

limited. For example, the multiplication of two matrices of size n Xn requires 0(n3) multiplications 

for 3n2 I/O operations-this is a compute-bound computations. On the other hand, the addition 

of two matrices requires n2 additions for 3n2 110 operations, and is, therefore, 1I0-bound. 

Bottlenecks to speed up a computation are often due to limited system memory bandwidth, so called 

von Neumann borrlenecks, rather than limited processing capabilities. This problem can certainly 

be expected for 110 bound computations, but with a conventional architectural approach, it may 

be present even for compute-bound computations. For every operation, at least one or two 

operands have to be fetched from or stored to memory, so the total amount of I/O is proportional 

to the number of operations rather than the number of inputs and outputs. Thus, a problem that 

was originally compute-bound can become I/O-bound during its execution. This unfortunate 

situation is the result of mismatch between the computation and the architecture. Systolic 

architecture, which ensures mUltiple computations per memory access, can speed up compute

bound computations without increasing I/O requirements. 

The ultimate performance goal of an array processor system is a compurarion rare rhar balance (he 

available I/O bandwidrh wirh rhe hosr. With the relatively low bandwidth of current 110 devices, 
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to achieve a faster computation rate it is necessary to perform multiple computations per 110 

access. For example, the systolic array in Figure 2.1 can perform multiple computations per 110 

access to the host. However, the repetitive use of a data item requires it to be stored inside the 

system for a sufficient length of time. In other words, the 110 problem influences not only the 

required 110 bandwidth but also the required internal memory. Hence, it becomes very important 

to arrange a computation, together with an appropriate memory structure and I/O bandwidth so that 

computation time is balanced with 110 time. 

2.3 Classifications of Systolic Architectures 

Systolic arrays are a new class of "pipelined" array architectures, pioneered by H.T. Kung, which 

are becoming increasingly attractive because of continuous advances in VLSIIWSI technology. As 

already mentioned, a systolic system is a "network of processors which rhythmically compute and 

pass data through the system". Since their introduction, systolic array architectures have undergone 

a rapid development. Different types of systolic arrays have been designed for a very large number 

of applications. 

In this section, we present several classification schemes for systolic architectures. These 

classification schemes are based on the following aspects respectively: 

• Array geometry pattern; 

• Application scope; 

• Implementation level; 

• Granularity; 

• Data/Instruction Stream; 

• Design Restriction. 

2.3.1. Array Geometry Pattern 

Systolic arrays can assume many different 

structures for different compute-bound 

problems. Various systolic array 

Table 2.1 Array geometry pattern schemes 

,/ Linear array 

,/ Orthogonal array 

,/ Triangular array 

,/ Hexagonal array 

,/ Tree 

,/ Other complex pattern 

Sec. 2.3 Classifications of Systolic Architectures 34 



Overview of Systolic Array Architectures 

Linear Array 

Orthogonal Array 

Hexagonal Array 

Figure 2.2 Systolic array configuration geometries 
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configurations have been developed to best match the problems under attack. The main categories 

of systolic arrays according to their geometry is listed in Table 2.1. 

Figure 2.2 shows some systolic array configurations according to their geometric patterns. Other 

varieties of systolic array configurations includes torus array, ring array, trapezoid array and so on. 

Different geometries of systolic arrays can be used to best fit specific problems in order to achieve 

best desired performance. For example, a square array can efficiently implement matrix-matrix 

multiplication while a triangular array is good at matrix triangularization. Systolic arrays with 
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other geometric patterns also exist (e.g. a combination of triangular and rectangular array). 

Systolic arrays of higher dimensions than 2 is also possible although they are not very common. 

2.3.2 Application scope 

There exist not only algorithm specific Table 2.2 Application scope classification scheme 

systolic arrays, but also class specific 

systolic arrays, and furthermore, general 

purpose systolic arrays (see Table 2.2). 

Although systolic arrays were initially 

introduced as algorithm specific VLSI 

./ Algorithm specific systolic array 

./ Class specific systolic array 

./ General purpose systolic array 

arrays, class specific and general purpose systolic arrays have received much attention recently 

[Johnson93]. 

Algorithm Specific Array. Algorithm specific arrays are specially designed for one particular 

algorithm in order to achieve the best performance. By their nature, such specific architectures 

come in a large variety of forms. 

Class Specific Array. Class specific arrays can be adapted to a variety or a class of algorithms. 

The adaption to different algorithms is usually through programming. The array topology of a 

class specific systolic array is usually fixed. 

General Purpose Array. General purpose systolic arrays can be adapted to broad areas of 

applications via programming processing elements and reconfiguring array interconnections. 

2.3.3 Implementation Level 

Systolic arrays can be implemented in 

different ways according to different level 

of hardware to be used. Many nodes of 

systolic arrays can be implemented in a 

single VLSI/WSI package. A node can be 

Table 2.3 Implementation level classification scheme 

./ Chip level systolic array 

./ Board level systolic array 

./ System level systolic array 
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implemented by using a single chip processors, e.g. transputers, TMS320 series digital signal 

processors (DSP). Of course, systolic array nodes can also be composed of a number of devices 

and components which are accommodated in a board with more complexity (and perhaps higher 

performance). Table 2.3 lists the classification scheme of systolic architectures based on 

implementation methods. 

Chip Level Systolic Array. Processor elements of a chip level systolic array are many-peT-chip 

and are compatible with custom VLSI design. Processing elements of chip level systolic arrays are 

usually simple and primitive. Systolic arrays of this category are dedicated and hard-wired systems 

which can not be easily reprogrammed to perform other tasks besides the original task. A number 

of chips can be connected together to form a larger size of array. 

Board Level Systolic Array. Processor elements of a board level systolic array are implemented 

in a single chip (maybe with a small number of other supporting devices), and are usually 

compatible with many commercially available microprocessors. A board level systolic array 

usually has a certain degree of programmability which allow different tasks to be implemented in 

the same architecture. 

System Level Systolic Array. Processor elements of a system level systolic array are implemented 

in one or few circuit boards (maybe even an complete computing system). The processing elements 

may be relative autonomous computing units. Systolic arrays of this category usually have a small 

number of PEs (on the order of ten) due to the limitation of the system size, power dissipation, and 

interconnection problem. A high degree of flexibility for implementing different types of tasks is 

usually provided. 

2.3.4 Granularity 

A computation task can be performed in different Table 2.4 Granularity classification scheme 

levels of parallelism according to granularity. A 

computation task can be divided into a number of 

subtasks, or block. A computation task can also be 

implemented in word level, where operations of 

individual PEs are based on words of data, e.g., 
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./ Bit level systolic array 

./ Word level systolic array 
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floating point numbers. The lowest level of parallelism for a digital system is the bit level. 

Systolic array also can exploit the parallelism in this level (see Table 2.4). 

Bit Level Systolic Array. Bit level systolic arrays [McCanny82] [McCanny84] [McCanny86] 

exploit bit level parallelism with the finest granularity to perform a computational task. Bit level 

systolic arrays were proposed to improve the pipelining rate of systolic arrays and to better utilize 

the current integration level of VLS[ technology. 

Word Level Systolic Array. Word level systolic arrays exploit word level parallelism. The PEs 

of such arrays carry out operations on words of operands which consist of a number of bits. 

Block Level Systolic Array. Block level systolic arrays exploit subtask-based parallelism. PEs 

for such arrays are usually programmable processor with significant local memory [Friedlander87] 

[Johnson93]. Block level systolic arrays divides applications into parallel subtasks that utilize local 

data. Each PE executes a series of instructions on a block of local data in a sequential/concurrent 

way, then communicates with its neighbours by sending and receiving the result based on block 

data. 

2.3.5 Data/Instruction Stream 

Inside a parallel computer architecture, 

there are basically two type of streams: 

data stream and instruction stream. If 

data stream systolically moves through 

a processing array, we called this kind 

Table 2.5 Date/Instruction stream classification scheme 

./ (Data) systolic array 

./ Instruction systolic array 

of array data systolic array, or simply systolic array by dropping "data" from the term. If 

instruction stream systolically, i.e., in a rhythmic, regular and pipelined manner, moves through 

a processing array, this kind of array is called instruction systolic array. 

Data Systolic Array. A data systolic array features rhythmic, local, regular and pipelined 

communication. The input data as well as partial results flow through the array in asystolic 

organization. 
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Instruction Systolic Array (lSA). An instruction systolic array employ processors which have 

simple control unit but no control core. Instructions, rather than data, are pumped through a mesh 

connected array of processors. In an ISA, program (set of instructions) executes as it filters 

through the array, making it easy to execute a pipelined sequence of programs [Megson92] 

[Lang86]. 

2.3.6 Design Restriction 

Systolic arrays were originally designed as Table 2.6 Design restriction classification scheme 

special purpose, VLSI oriented, cost 

effective computer systems to off-load 

regular, compute-bound computations 

[KungHT82a]. However, with the 

developments of VLSl technology, 

./ Hard systolic array 

./ Hybrid systolic array 

./ Soft systolic array 

programming languages, systolic algorithms and computer architectures, systolic array can be 

implemented in many ways by releasing some design restrictions as discussed in Sec. 2.1 

[01]-[09]. Table 2.6 gives another classification schemes for systolic arrays based on design 
-

restrictions. We then define the following classes of systolic arrays [Evans9Ia] [Megson92] 

[Bekakos80]. 

Hard Systolic Array. Hard systolic array is characterised by a very low degree of 

programmability implied by the control and switching logic built into circuits of actual designs. 

Such designs are highly desirable from a VLSl viewpoint but make the design inherently special 

purpose because of limited flexibility. Arrays of this class most likely have planar geometric 

patterns due to VLSI technology constraints. Broadcasting to PEs is avoided as the least amount 

of area in a chip is required. 

Hybrid Systolic Array. Hybrid systolic arrays permit a medium degree of flexibility perhaps 

implemented by microprogramming or simple control tags (added to the data). Programmability 

is allowed so that a number of cell types can be implemented by the same processor, thereby 

offering greater flexibilities. Broadcasting may be allowed in some extend and the planarity 

restriction is relaxed. 
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Soft Systolic Array. Soft systolic arrays provide a high degree of programmability. The 

interconnection structure is used as a 'harness' or data structure expressing the amount of 

parallelism to be exploited rather than a machine architecture. The emphasis is on retaining 

systolic computation as a design principle, and the mapping of the algorithm onto an available 

parallel architecture. Soft systolic arrays may result a decrease in speed and efficiency because of 

communication and processor time sharing by simulating the array architectures. In addition, they 

do not have to be fabricable, but must be simulatable in some appropriate programming languages, 

e.g., OCeAM, CONCURRENT PROLOG. The broadcast is allowed in a soft systolic array. The 

restrictions on original systolic design is loosen in a great extend. 

It is imJXlrtant torecognize that hard systolic array is a subset of hybrid systolic array, and hybrid 

systolic array is a subset of soft systolic array, Originally, systolic array design was restricted to 

the first class, but a movement to the second and the third classes comes recently as a result of 

commercially available general-purpose parallel processors. 

2.4 Applications of Systolic Arrays 

Systolic arrays feature the important properties of modularity, regularity, local communication, a 

high degree of pipelining, and high synchronized mUltiprocessing. Since systolic principles were 

introduced by H.T. Kung in late 1970s, systolic arrays have found numerous applications covering 

many imJXlrtant scientific and engineering areas. Few problems have resisted attack from systolic 

arrays [Quinton91]. 

In this section, we overview the existing systolic arrays in order to show the extend to which 

systolic arrays have been used. We divide the systolic applications into three domains: numerical 

applications, signal and image processing application, and non-numerical applications. The 

emp~asis here is what systolic arrays are able to. do. Even though all the systolic arrays we are 

about to discuss are not implemented (or implementable) in VLSI, they clearly show the 

applicability of systolic arrays to broad areas. 
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2.4.1 Numerical Applications 

Matrix Arithmetic 

• Matrix-vector multiplication [KungHT79] [Evans9la] 

• Matrix-matrix multiplication [KungHT79] [KungHTSOa] 

• Multiplication of band matrices [[KungHTSOa] [KungHTS5] [NavarroS6] 

• Matrix triangularization (LU decomposition) [KungHTSOa] [GentlemanSI) [OnagaS6] 

• Solution of triangular systems [KungHT79] [KungHTSOa] [EvansS3] 

• Solution of linear systems [Tasic93] [Wan93b] 

• Cholesky decomposition [GentlemenSI] [SchreiberS4] [Moonen91 b) 

• QR decomposition [GentlemanSI] [HellerS3] 

• Singular value decomposition (SVO) [FinnS2] [BrentS3b] [BrentS4] [BrentS5] [IpsenS4] 

• Eigenvalue problems [BrentS5][SchreiberS2][Schreiber84] [ScottS6] [EvansS9] [Lam91] 

• Matrix inversion [RoteS5] [Evans9Ib] [Quinton9l] 

• Matrix permutation [Rajopadhye90] 

• Matrix transposition [O'LearyS7] [Rajopadhye90] [Megson92] 

• Matrix exponential [Evans9Ic] 

• Solution of Toeplitz systems [BrentS3a] [OelosmeS6] [KungSYS3] 

• Least Squares [Moonen9Ia] [KalsonS5] 

Solution of Difference and Differential Equations 

• Solution of linear ODE (ordinary differential equations) [EvansS7] 

• Romberg integration [EvansS6b] 

• Boundary value problem of ODE [Evans93a] 

• POE (partial differential equations) [LawS5][MelhemS3] 

• Multigrid method for linear POE [Hoppe86] 

Polynomial Operations 

• Polynomial multipliCation [KungHTS2b] 

• Polynomial division [Brent83a] [ZahS5] [Reilly86] 

• Polynomial evaluation [Hurson86] 

• Polynomial greatest common divisor (GCO) [Brent81] [Brent83a] 

• Polynomial equations [Margaritis92] 
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• Polynomial interpolation [Schroder9l] 

Discrete optimization 

• Dynamic programming [Guibas79] [LuokaSS] 

• Algebraic path problem [LewisS6] [Lewis91] [RoteSS] [Quinton91] 

• Assignment problem [SchwiegelshohnSS] [Megson90b] 

2.4.2 Signal and Image Processing Applications 

Signal Processing 

• Discrete Fourier Transform (OFT) [KungHTSOa] [KungHTSSa] [Siu91] 

• Fast Fourier Transform (FFT) [KungS2b] [AhmedS2] [AliaS4] [Sarkar90] 

• Two dimensional FFT [GertnerS7] 

• Convolution [KungHTS2a] [BaudetS3] 

• Two dimensional convolution [BaudetS3] [KungHTSI] 

• Median smoothing [OflazerS3] [Chang90] 

• FIR and HR filter [RaoS4] [KungHTSOb] [Shanbhag91] [Woods90] 

• Inversion of finite Radon transform 

• Hardmard transform [KungSYSSb] 

• Walsh transform 

• Kalman filter [KungSYSSb] [SungS7] [MitcheIl90] [KungSY91] 

• Cosine transform [SikstromS7] [Ma91] [Chang91] 

• Adaptive lattice filter [Lewis90] 

• Nonlinear adaptive filtering [McWhirter9l] 

• Speech recognition [CharotS6] 

• Adaptive beamforming [McWhirterS3][HargraveS6][WardS4] [Takao91] 

• High resolution direction estimation [Robertson91] [Wan93a] 

• CFAR detection [Hwang91] 

• Neural network [Cong90] 

• High order statistics [Manolakos9lJ 

bnage Processing [FuSS] [KungSYSSb] [KittlerS6] 

• Convolution [KungSYSSb] 
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• Image enhancement [Fisher82] [Oflazer83] [Nicolas85] 

• Histogram computation 

• Image statistics [Fisher82] 

• Contrasting 

• Image segmentation [Tyagi90] 

• Geometrical transformations 

• Image reconstruction [Zhang90] 

• Stereo-matching 

• Image compression [Cappello86] [Fang91] [Panchanathan91] 

• Edge detection [KungSY88b] 

• Contour detection 

• Connected regions detection [Nudd85] 

• Hough transform [Chuang85] [KungSY88b] [VanSwaaij90] 

2.4.3 Non-Numerical Applications 

Data structu res 

• Stack and queue [Guibas82] 

• Searching [Bentley79] 

• Priori ty queue 

• Sorting [Ericson90] 

Graph algorithms 

• Transitive closure [KungSY88b] [Quinton91] [Moreno92] 

• minimum spanning trees 

• connected components 

• Intersection of polygons [Umeo89] 

• Hidden surface removal [Das90] 

• Planar convex hull [Chazelle84] 

Identification 

• String matching [Apostolico84] [Megson90a] 

• Pattern matching [Apostolico84] 
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• Maximal common substring [Apostolic084] 

• Detection of repetitions in a string 

• Recognition of context-free languages [Cheng85] 

Computer aided design (CAD) 

• Net extraction [Kane87a] 

• Lattice polygon processing [Kane87b] 

• Design rule checking [Kane87c] 

• Electronic circuit layout [Rutenbar88] 

2.5 Example Systolic Architectures 

In Sec. 2.4 we have discussed the applications of systolic array architectures. Numerous systolic 

algorithms have been developed and studied. However, very few systolic algorithms are directly 

mapped and implemented in hardware. This may be due to the following two factors: (a) the time 

that has passed since the invention of the systolic principle (1978) has not. been long enough for the 

construction of full-scale systems [Quinton91]; (b) the VLSl technology together with the CAD has 

not been so advanced that a custom systolic implementation can be achieved at a very low cost in 

small quantities although the potential of this capability is very evident. In addition to 

implementing systolic array in chip level which aims at special-purpose or fixed-function 

architecture, more flexible and versatile general purpose systolic architectures have become a new 

trend for systolic implementation. 

2.5.1 Special Purpose Systolic Arrays 

Below we introduce several special purpose systolic array implemented in silicon. These systolic 

arrays features many processing elements in a single silicon chip by using VLSI technology. They 

are custom designed for each application. As special purpose arrays, they have a very small or 

the least degree of flexibility and programmability while aiming to acquire the best performance. 

Pattern Matcher. The first attempt for implementing systolic array in a silicon chip was the 

pattern matcher of Foster and Kung [Foster80j. The pattern matcher systolic array was consist of 
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8 x2 bit-level comparators and was able to handle pattern matching problems of eight two-bit 

patterns. The chip was implemented using NMOS technology (not VLSI technology) with a very 

small number of components inside the chip. 

GAPP. The first parallel processor on a chip using systolic architecture and taking the form of a 

VLSI device has been given the name Geometric Arithmetic Parallel Processor or GAPP by the 

NCR company [Davis84] [KungSY88b][Quinton91]. The chip is sealed inside a 84-bin package. 

GAPP contains a rectangular grid of 6x 12 I-bit microprocessors. Each of the 72 processing 

elements contains an ALU, 128 bits of RAM and bidirectional communication lines connected to 

its four nearest neighbours: North, South, East and West. All basic logical and arithmetic 

operations are executed within one cycle. Each PE receives its instructions as 13 bit words. A 

power of 28 million bit additions per second can be obtained. Many GAPP chips can be placed 

on a board to build up arbitrarily large arrays of processors in 6 x 12 increments. The packages 

are designed to interface directly. GAPP immediately found application in signal processing, 

pattern recognition and image processing. 

Bit Slice Correlator. The idea of using systolic arrays at the bit level was developed by McCanny 

and McWhirter [McCanny82], who demonstrated that many of the components required in digital 

signal and information processing applications can be implemented as systolic arrays of bit level 

processing elements based on a gated full adder function. A high-performance bit-sliced correlator 

based directly on this idea has been designed by [Corry83] and further developed by Marconi 

Electronic Devices. The systolic chip constitutes a 64 x 10 bit-level processing elements to compute 

64 stage correlator of 4 bit input data. The chip has been designed and fabricated in CMOS 

technology. It comprises approximately 43,000 transistors and can handle data at sample rates up 

to 35 MHz. It has been designed in such a way that it can be cascaded to increase the number of 

correlation stages, the reference word length and the data word length. 

Systolic Array Graphics Engine. Pixel processing is the most fundamental performance bottleneck 

in high end two or three dimensional graphics systems. Systolic array graphics engine (SAGE) has 

been designed to processing pixels at extremely rapid rates. In 1984 a 2D SAGE test chip with 256 

Pixel Processor was implemented at Cornell University [GharachorI0085]. Each pixel processor 

contains two address comparators, colour buffer and video cells. The chip contains 25,000 of 4 

micron NMOS transistors and was clocked at 100 nsec. A 3D SAGE has been implemented in 
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1988 by Matsushita Corp. The 3D SAGE chip was implemented with 1.2 micron CMOS 

technology using 330,000 transistors for 256 Pixel Processors [Nishizawa88]. Another SAGE chip 

was implemented with one million 1.2 micron CMOS transistors and clocked at 40 nsec 

[Gharachorlo088]. 

Cellular Rotator Array. In image processing, real-time projection for an image of I K x I K pixels 

requires a huge amount of computations (a lot of Givens rotations). A cellular rotator systolic 

array chip was designed by Burleson and Scharf [Burleson88] to solve this computationally 

intensive problem. The chip used CMOS technology and had a clock speed of 32 MHz. It 

contains 138,000 transistors in a 5 x3 array of rotators, each of which performs rotations at 2 MHz 

(for 16-bit data) using bit-serial CORDlC (COordinated Roration Dlgiral Compurer) arithmetic. 

The resulting performance is 180 Mfrops (Million Fractional Operations Per Second), or a rotation 

rate of 30 MHz. It is worth to mention that the custom design of the chip took only 10 man-week 

for logic design and 8 man-week for full custom design and veri fication due to the use of systolic 

principle. 

HDTV Filtering Chip Set. High Definition Television (HDTV) will require calculation intensive 

image processing algorithms for real-time operations. A chip set optimized for large kernel 2D 

transversal filters, including a programmable delay line and a filter chip has been designed 

[Joanblanq90]. The filter chip is made of a mono-dimensional array of 8 multiply-add cells with 

8-bit data, 12-bit coefficients and 30-bit full precision output. The delay line chip perform delays 

from 4 to 2051 clock cycles for an 8-bit data word. By using 8 of the filter chips and 15 of the 

delay line chips, a systolic array architecture for 16 x 16 symmetric filter can be constructed. Both 

the chips have been implemented in the I Ilm, double metal CMOS technology at 54 MHz. A 

single filter chip can achieve a performance of 1.7 giga MAC (Multiply-ACcumulate) per second. 

2.5.2 General Purpose SysfOlic Arrays 

The more specialized the hardware, the higher the performance; but cost per application also rises 

and flexibility decreases. Therein lies the attractiveness of general purpose systolic architectures. 

Table 2.7 lists most of the recent programmable and reconfigurable, general-purpose systolic arrays 

reported in literature. Below we will give a brief introduction to some of these general purpose 

systolic arrays. 
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Table 2.7 Example Systolic Architectures 

~Slem Name 
eveloper 

Development 
Slage 

Programmable Systolic Chip Architecture 
Camegie Mellon University 

Prototype 

Warp . U.. Commercial 
Carnegll: Mellon mvers\ty 

iWarp 
Carnegie Mellon University 

ProlOtype 

MICMACS Prototype 
IRISA, France 

~stOlic/Cellular Architecture 
ughes Research Laboratories 

Prototype 

Saxpy·IM Commercial 
Computer Corp. 

Computer for Experimental SAR 
Norwegian Defense Res. Estab. 

Prototype 

Cellular Array Processor Commercial 
Fujtsu Laboratories, Japan 

PICAPJ Prototype 
University of Paris 

PSDP Research 
Univ. of South Florida 

&~indrical Banyan MuJticomputer Research 
mv. of Texas at AUstin 

Splash Systolic Engine 
Super Comp. Research Centre 

Prototype 

Cellular Array logic 
Edinburgh University, UK 

Prototype 

Programmable Adaptive Computing Engine Research 
Umversity of Wales, UK 

Confi~urable Functional Array Research 
Tsing ua University. Beijing 

Topology Key Features References 

Linear Early tredeccssor of Warps; I Fisher841 
9 Cells 8 bit Ixed-point ALUs 

Linear 
10 Cell!. 

32-bit floating-point multiplication: block processing; 100 mflops IAnnara871 

8 x8 array Warp cdl without on-chip memory; 
expandable to 1024 cdls 

(Borkar88J 

Linear 16-bit fixed point malh; broadcast data; [Frison891 
18 cdls 90 mops 

16 x 16 array J2-bit fixed-function units Iprzytila88J 

Linear J2·bit floating-point capability; broadcast and global data; block processing; I (Foulser871 
32 cells gflops 

Four 8 x 16 arrays 
512 cl!lIs 

Bit-serial cellular 110; 32-bit floating point multipliers in each cell; 320 mflops [Towrud881 

16 x 16 array Block processing; floating-point math; image oriented IIshii881 

8x8 array 16-bit word h:ngth; image oriented Ilindscog861 

4-bit word length; wafl!r-scale design (landis911 

Packet-switchl!d programmabll! topology with programmable cell!' (Malek891 

linear FPGA-reconfigurable cell architecture based on commercial chip IGokhale90] 
32 cells 

)6 x 16 array FPGA-reconfigurable cdl architecture based on commercial chip [Kean891 

Function unilS embedded in each cell; reconfigurable connections in cell as well 
as programmable topology 

(Jones891 

Configurable array topology and cell architecture IWenyang91 ) 
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Programmable Systolic Chip Architecture. The systolic model was born at Carnegie-Mellon 

University in 1978. To show its validity, H.T. Kung and his team developed the programmable 

systolic chip (PSC) architecture. The PSC was designed to be a circuit which is suitable for 

systolic architecture and is sufficiently flexible for use as a building block for different types of 

arrays. The PSC exhibited the following features: 

• Three 8-bit input ports and three 8-bit output ports for data; 

• Three I-bit input and three I-bit output control ports; 

• One 8-bit ALU capable of double precision arithmetic 

• Multiplier-accumulator 

• Sixty-four word (60-bits wide) program memory 

• Sixty-four 9-bit words of internal register storage 

• Three 9-bit buses 

A demonstration system was constructed around a SUN workstation host. In May 1984, a linear 

array of 9 PSCs could perform a bidirectional convolution of size 512 x512 every 1.8 seconds 

using 8-bit data. 

WARP. Warp is a systolic machine composed of 10 cells, each of which has a power of 10 

Mflops. Warp is connected to a UNIX workstation and is accessed via procedure calls. A high

level language, called W2, is used to program the machine. The principal application domains for 

Warp are scientific computation, signal and image processing. 

The design of the Warp machine began in 1984 and the first prototype was operational in 1986. 

The machine has been commercialised by the General Electric Company since 1987. 

Figure 2.3 shows the 

structure of Warp. 

It contains three 

elements: the Warp 

itself, the interface 

and the host. The 

Warp processors 

Adr 
1 

Host 
A 
I 
J 

Interface 

perform the Figure 2.3 The Warp machine architecture 
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computation. The interface controls inputs and outputs between Warp and the host, and generates 

addresses and data, and handles the results returned by Warp. Furthermore, the host executes those 

parts of the application program that cannot be handled by the Warp processor, for example taking 

global decisions, or the control of certain scientific routines. 

Each cell is a microprogrammable processor with horizontal microcode. It contains its own 

sequencer as well as 8K microcode instruction memory. There are two communication channels 

X and Y for each cell. Addresses and control signals pass along the dedicated address channel Adr. 

The direction of the flow along the Y channel can be reconfigured for the specific algorithm being 

executed. The interface handles all communication between the host and the Warp processor and 

provides all the control signals necessary to drive the Warp array. The host consists of a Sun 

workstation which acts as the masrer conrroller and of a microprocessor called the exrernal hosr 

whose role is to control peripherals and to manilge the data required by the computations performed 

by Warp. 

The performance of the Warp is impressive 

when one takes its cost into account. The 

speed-up with respect to a VAX 11/780 varies 

between a few dozen and several hundred 

times, according to the type of algorithm. 

Statistics obtained from 72 different program 

have shown that Warp achieves at least 28 

Mflops, with its maximum speed being around 

100 Mflops. 

iWarp. The iWarp system is a distributed 

memory, m ul ti p le-i n structi on -mu I ti pie-data 

(MIMD) multicomputer. A 2D toroidal array 

of cells (Figure 2.4) characterizes the system 

architecture. This architecture supports both· 

message-passing and systolic communications 

efficient! y [Peterson91]. 
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Each cell holds one iWarp microprocessor and its local memory. The iWarp microprocessor 

contains an integrated communication agent, allowing an iWarp cell to connect to each of its four 

nearest neighbours via eight 40 Mbytes/s buses (four input and four output). The total 

communication bandwidth is 320 Mbytes/s. Each processor connects to its local memory via a 64-

bit bus with 180 Mbytes/s bandwidth. The iWarp microprocessor is a very powerful processor 

which is capable of 100 million-operations-per-second (MOPS) per cell, including 20 Mflops of 

single precision, IEEE floating-point operations. The chip holds more than 650,000 transistors and 

is fabricated in a I I-'m CHMOS IV, two-layer metal process. The chip measures 

14.55mm x 13.46mm, packaged in a 271-pin PGA. The first such chip was fabricated in December 

of 1989. 

The iWarp consists of 8 x 8 iWarp cells with a peak performance of 1.28 Gtlops. The iWarp can 

be expandable to 1024 cells with a peak performance of 20 Gflops. 

The iWarp machine can be programmed to operate as a pool of individual communicating 

processors using standard high-level language C and Fortran or as an array using parallel program 

generators (PPG). The PPGs use knowledge of a specific application area, such as image 

processing or signal processing, to automate the detailed implementation of programming parallel 

machines. 

Cellular Array Processor 

(CAP). Cellular array processor 

developed by Fujitsu Laboratory 

has a standard configuration of 

256 cells in a two dimensional 

16x16 array. The array 

topology resembles the surface 

of a torus. Each cell is 

connected to four adjacent 

neighbours; cells at the 

boundaries are connected to 

cells at the opposite sides. In 

addition to intercell connections, 

Host 
Computer 

Color 
Monitor 

ciF iJl'?{:j~J 
cr· : --r -.I : L.,- -.I : 

_··:··· .... ·:1··'j· .... :.,:± ... ·D .... 
, . . . , , , . . , . , 

: --i- --i-c --'-' 

Figure 2.5 CAP architecture 
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the common command bus links all cells to the host computer, and the common video bus links all 

cells to the video interface (Figure 2.5). 

Each cell in CAP consists of a general purpose microprocessor, local memory, and a CAP-VLSI 

chip. The CAP-VLSI chip is a key processor component. It has two independent common bus 

interfaces for data broadcasting and six serial communication ports for local data communication. 

The chip also has realtime image data handling capabilities [lshii88]. 

CAP can perform ray tracing very efficiently, and the performance increases linearly with the 

number of cells. In addition to image generation, CAP can also find applications in VLSI logic 

simulation, routing, and placement. 

2.6 Systolic Array Design Methodologies 

One of the important design problems in systolic array processing is the development of a 

systematic methodology for transforming an algorithm represented in some high-level constructs 

into a systolic architecture, or systolic algorithm, specified by the timing of data movements and 

the interconnection of processing elements such that the design requirements are satisfied. 

Different design methodologies have been proposed for the systolic architecture design. Among 

other issues, these methods differ in the way that the original algorithms are represented. Nineteen 

systematic methods for synthesizing systolic arrays were reviewed by Fortes et al. in [Fortes88]; 

new ones have been proposed since then. The original algorithm can be represented in the forms 

of algebraic expressions, graphical descriptions, and high-level languages. Accordingly, various 

methodologies can be grouped into the following classes: 

Algebraic Expressions. Algebraic descriptions of algorithms include vector operators [Gannon82], 

a canonical algebraic representation [KungHT83], recurrence equations [Miranker84] [Li83] 

[Cappello83] [Quinton84] [Delosme86], regular iterative expressions [Jagadish87] [Rao88], indexes 

of nested loops [Moldovan83] [Moldovan86] [Fortes85] [Lee88], space-time transformations 

[Cappello84J, and affine recurrence equations [Yaacoby88]. 
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Graph-based Description. Graphical notations to describe an algorithm include signal flow graphs 

(SFG) [KungSY88b], dataflow graphs [Koren83], multi mesh graphs [Moreno92], and other types 

of graphs [Schwartz84] [Ramakrishnan83]. 

High Level Languages. The use of high level languages as description tool has been reported in 

[Lam85] [Chen86] [Chapman86]. 

The common 

characteristic of 

most these 

methodologies is 

the use of a 

transformational 

Regularization Mapping 

I I 
stage Regularized stage Systolic 

Algorithm 
Algorithm Array 

Figure 2.6 The stages in a transformational design methodology 

approach: systolic architectures are derived by transforming the original algorithm description that 

is unsuitable for direct VLSI or systolic implementation. Starting from a representation of an 

original algorithm, a transformational design methodology consists of two stages [Moren092]: 

algorithm regularization and array mapping (see Figure 2.6). 

The regularization stage corresponds to the derivation of a regularized representation of an 

algorithm from an original admissible form. The regularized representation has as its objective the 

description of the algorithm in a manner suitable for manipulation in the remaining steps of a 

particular method. Consequently, different approaches are characterized by different regularized 

representations. 

On the other hand, the mapping stage uses the regularized description to determine the topology 

and structure of the array, the characteristics of cells, the allocation of data and operations to cell, 

the dataflow, the 110, the control and so on. 

The two most popular types of algorithm representation are algebraic expressions and graphical 

descriptions. In algebraic based methods the regularized descriptions given as a set of algebraic 

expressions, and transformations are applied to these expressions to obtain an implementation. 

Common types of algebraic descriptions are regular iterative algorithms (RIA) [Jagadish87] 
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[Ra088], uniform recurrence equations (URE) [Quinton84], {{{fine recurrence equ(f(ions (ARE) 

[Yaacoby88]. We will discuss the RIA method in Chap. 3 in detail. 

A different line of research uses graphical notations to describe an algorithm. Examples are the 

signal flow graph (SFG) method [Kung88b], and the mu/timesh graph (MMG) [Moren092]. 

Graph-based methods represent an algorithm as a graph, and apply transformation to the graph to 

render it more suitable for later steps. The regularized graph is then mapped onto an array either 

directly or through other intermediate representations. Chap. 4 will discuss the SFG method. 

The above mentioned design methodologies allow systematic synthesizing for systolic arrays. 

Another important issue for systolic array design is the automation of these transformational design 

methodologies. A number of ongoing attempts to develop synthesis software tools have been 

made. Some most notable attempts among these are ADVIS [Moldovan87] , DIASTOL 

[Gachet86], SDEF [Engstrom87] and VACS [KungSY88c]. Systolic synthesis tools are still at 

early stages of development and a fully integrated system is still some way off although some 

progress towards usable software tools is gaining momentum [Megson92]. 

2.7 Some Related Issues to Systolic Architecture 

2. 7. J Performance of Systolic Architecture Versus Other Parallel Architectures 

There are a number of measures for the performance of a parallel architecture. Some important 

measures include performance, cost, and performance-cost ratio. The performance-cost measure 

may be the most important consideration when comparing different architectures. When considering 

the cost-performance measure of a parallel architecture, speed up factor and efficiency of the 

architecture are usually used to measure the performance of a parallel architecture. Below we will 

mainly concern with the speedup and efficiency of a parallel architecture. This by no means 

indicates that other measures are not important. 

The speedup of a parallel architecture can be defined as the ratio of its processing time to that of 

a sequential, single-processor computer for a given problem: 

Sec. 2.7 Some Related Issues to Systolic Architecture S3 



Overview of Systolic Array Architectures Chap. 2 

S=TIT , p (2.1) 

where T, is the time on a sequential computer and Tp is the time on a parallel computer. 

The efficiency of a parallel computer can be defined as the ratio of its speedup to the number of 

processors employed in the parallel computer: 

S T, 
E=-=--

N TxN 
p 

where N is the number of processors employed in the parallel computer. 

(2.2) 

The ideal performance characteristics for an N identical processor system, on which a given 

problem could be partitioned into N similar tasks, would be the linear relationship between speedup 

versus the number of processors. The efficiency of such an ideal parallel computing system is 

100%. 

The most straightforward approach to parallel architectures may be to connect a number of CPUs 

to a common bus. However, speedup of such a parallel system improves linearly with the number 

of processors only up to the point that bus-contention problems become the limitation. Minsky's 

famous conjecture is that, for a broad range of algorithms, the conflict between N processors for 

access to shared resources along the common bus limits the speed up improvement to log,N. 

Modern supercomputer designers have utilized a number of parallel processing stratagems to 

improve on this state of affairs and are achieving performance improvements commensurate with 

Amdahl's law [Whitehouse851. Consider a computing problem, which can be executed by a 

uniprocessor in unit time, T, = I. Let t; be the probability of assigning the same problem to i 

processors working equally with an average load d, = I/i per processor. Furthermore, assume 

equal probability of each operating mode using i processors, that is t; = I1 N, for N operating 

modes: i= 1,2, ... , N. The average time required to solve the problem on an N-processor system 

is given below: 

N 1 N 1 
T = Lf:d=-"-

p "N~' I-I j-l I 
(2.3) 
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The average speedup is obtained as the ratio of T, = I to Tp; that is 

s= T,=~<~ 
Tp t ~ inN 

i-I i 

Chap. 2 

(2.4) 

Systolic architecture, however, yields a 

perfectly speedup improvement factor of N. 

or a perfect constant efficiency regardless of 

the number of processors. We will exemplifY 

this attractive characteristics of systolic 

architecture in Chap. 3 when we analyse the 

performance of various systolic arrays for 

matrix multiplication. Figure 2.6 graphically 

depicts the speedup achieved through 

parallelism for the three cases of Minsky's 

conjecture, Amdahl's law, and systolic arrays. 
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2.7.2 Area-Time Complexity Theory 
Figure 2.6 Speedup of N-processor parallel system 

over a single processor 

Complexity theory attempts to provide systematic information about algorithmic complexity in 

order to estimate the algorithm complexity quantitatively. A model for VLSI computation is often 

based on a "grid model" [Preparata84]. Area-time complexity measures have received special 

attention. They depend on two factors, computation time (7) and chip area (A). Generally, area

time measuresf(A. T), can be detined as: 

(2.5) 

where 0: and. pare nonnegative constants. The above area-time measure is a monotonic and 

quasi-homogeneous function of A and T [Frtlmkin92]. The monotonic property indicates that the 

area-time measure satisfies: 

(2.6) 

The quasi-homogeneous property indicates that the complexity measure is independent on units of 

the scale we measure A and T. i.e., 
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(2.7) 

If a=1 and P=O, we havef{T,A)=A. This measure can be used in the design of calculators 

because we do not worry about time but to reduce the size and weight as much as possible. If a =0 

and P = 1, we have f{T,A) = T. This measure can be used in the design of devices of a 

supercomputer where we want to reduce processing time at any cost. If a = 1 and p = 1 , we have 

f{T,A)=AT. This measure takes into account the area and the processing time to the equal extent. 

In the literature on VLSI complexity, the following complexity measure has been accepted as a 

reasonable performance measure for VLSI algorithms [McEvoy91]: 

f(A,1)=AT 2 (2.8) 

Systolic arrays and systolic algorithms are also based on "grid model". Area-time measures, 

especially the AT2 measures, are useful for VLSI implementation of systolic designs. These 

measures can be also used to measure the lower and upper bounds of many computation algorithms. 

2.7.3 Systolic Arrays Versus Wave/rant Arrays 

As mentioned in Chap. I, wavefront arrays combine systolic data pipelining with an asynchronous 

dataflow execution paradigm. Both systolic arrays and wavefront arrays are characterized by 

regularity, modularity, locality and pipelinability. A simple way to compare systolic arrays and 

wavefront arrays is [KungSY88b]: 

Wave/ram array = sysrnlic array + data flow computing 

Systolic arrays are defined in a strict sense as a synchronous architecture, although many 

implementation of systolic arrays (especially those general purpose systolic arrays) have adopted 

asynchronous control mechanisms. Since clocking scheme is a critical factor for large-scale 

systems, the global synchronization often incurs severe hardware burdens in terms of clock skew, 

that is, each PE in the array may not receive the clock signal at the same time. This may be due 

to the different path lengths from the clock generator to each PE, or other reasons, such as process 

variations for different clock paths. To overcome clock path problems, special clock schemes have 

been developed. For example, an H-tree scheme can be used to distribute the clock signal to 
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regular arrays such that every PE has the same distance from the clock generator as illustrated in 

Figure 2.7. 

Though H-tree schemes can solve the. clock 

path length problem, the issue of the clock 

skew problem is not completely resolved. The 

timing analysis of H-tree clocking distribution 

synchronous system showed [KungS Y82b 1 that 

the clock skew time are of O(N 3) where N is 

number of PEs in the array. This will degrade 

systolic array efficiency very significantly when 

N is large. 

Wavefront arrays adopt asynchronous scheme Figure 2.7 H-tree layout for clocking a square 

without involving global clock. Information array 

transfer in wavefront arrays is by mutual 

convenience and agreement between each processing element and its immediate neighbours. 

Whenever the data is available, the transmitting PE informs the receiver of that fact, and the 

receiver accepts the data whenever it is convenient for it to do so. This scheme can be 

implemented by means of a handshaking protocol. Wavefront arrays may be extended indefinitely 

without degrading performance. 

In general, a systolic array is useful when the PEs are simple and primitive modules, since the 

handshaking hardware in a wavefront array would represent a non-negligible overhead for such 

applications. On the other hand, a wavefront array is more applicable when the modules of the PEs 

are more complex (such as floating-point multiply-and-add), when synchronization of a large array 

becomes impractical. 

2.8 Summary 

Systolic arrays were first introduced by H.T. Kung and Leiserson as high-performance, special

purpose VLSI computer systems. A systolic array is a network of processors which rhythmically 
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compute and pass data through the system. A systolic array is characterised by the combination 

of the following features: synchrony, modularity, regularity, locality, and pipelinability. 

Systolic arrays adopt simple and regular design and are best amendable to VLSI implementation. 

Systolic arrays employ massive parallelism of multiple processing elements to achieve a linear rate 

of speedup. They also use regular and local communication and can be expanded to different sizes 

for different performance. Systolic arrays balance computation with liD by performing multiple 

computations per 110 access and are applicable to many compute-bound problems. 

Various systolic arrays have been designed and studied in the last two decades. Systolic arrays 

have found numerous applications in many important scientific and engineering areas such as 

matrix computations, real-time signal processing and image processing. 

Some systolic arrays have been implemented in dedicated VLSI devices in order to achieve the best 

performance possible. Programmable systolic arrays and recontigurable systolic arrays are very 

appealing when system f1exibilities are considered. Systolic principles can also be applied to 

general purpose computers and some commercially available systems of such have been developed. 

While implementing systolic arrays on silicon can maximally utilizing the hardware resources to 

achieve the best performance for a specific problem, programmable and reconfigurable general 

purpose systolic arrays provide flexibility and are capable of solving various kinds of 

computationally intensive problems. 

Systematic synthesizing systolic array has received much attention and different kinds of 

synthesizing methods have been developed with different kind of capabilities. Most of the popular 

systolic array design methodologies use transformational approach. Automation of synthesizing 

procedure is still a challenging task and some attempts to develop synthesis software tools are 

ongoing. 

Featuring modularity, regularity and local communication, systolic arrays are amendable to VLSI 

implementation. Systolic arrays combine pipelining, array-processing and mutiprocessing to 

produce a high-performance parallel computer system. Systolic arrays provide an encouraging 

solution for many scientific and engineering problems such as real-time signal and image 

processing, artificial intelligence, and large scale scientific computations. 
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SYSTOLIC ARRAY SYNTHESIS USING RIA 

REPRESENTATIONS 

3.1 Introduction 

T HE evolution in VLS I technology has had a great impact on computer architecture. Many 

existing algorithms in matrix computations, pattern recognition, signal and image processing 

can be implemented on a VLSI chip using multiple, regularly connected processing elements (PEs) to 

exploit the great potential of pipelining and multiprocessing. This type of array processor is referred 

to as systolic array. In addition to implementing systolic arrays in VLSI devices, systolic approach is 

in fact has a wider applicability. There exists a large number of systolic algorithms that is not practical 

to map directly onto hardware in order to produce a special-purpose device, but they perform very 

efficiently when implemented on appropriate parallel computers. Therefore, systolic array or systolic 

algorithm design plays an important role in VLSI implementation of an algorithm as well as in efficient 

mapping of an algorithm to an existing parallel computing architecture. 

One of the important design problems in systolic processing is the development of a systematic 

methodology for transforming an algorithm represented in some high-level constructs into asystolic 

architecture specified by the timing of data movement and the interconnection of processing elements 

such that the design requirements are satisfied [Fortes88]. 

The common characteristic of most proposed methodologies for systolic array design is the use of 

transformational approach-i.e., systolic architectures are derived by transforming the original 

algorithm descriptions that are unsuitable for direct VLSI or systolic implementation. Distinct 

transformational systems for systolic architecture design can be characterized by how algorithms are 

described, what formal models are used, how systolic architectures are specified, and what types of 

transformation are used on and between these representations. 
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The transformational systolic architecture design systems can be visualized as a three-dimensional 

space, where dimensions (or axes) are associated with the algorithm representation, algorithm model, 

and architecture specification. To the axis of algorithm representation, we associate different forms 

or levels to present an algorithm to the transformational system. The axis of algorithm model shows 

different levels of abstraction used to represent relevant features of the algorithm. The axis of 

architecture specification is associated with the hardware model or level of design in which the systolic 

array is described [Fortes88]. 

This three dimensional space 

can be graphically depicted as 

a Y chart as shown in Figure 

3.1, where directed arcs can· 

be drawn to illustrate 

transformations that map a 

gIven representation into 

another representation in the 

same axis and level (a self 

loop), in the same axis and 

different level, or between 

distinct dimensions. 

The systolic array design 

methodology of using regular 
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Figure 3.1 Y chart for transformational systems. 

iterative algorithm (RIA) were first introduced by S.K. Rao [Ra085]. This methodology starts with 

the so-called RIA and then extracts an index space and a reduced dependence graph (RDG). Next, 

an iteration space is selected. A schedule can be obtained by finding the solution of a linear 

programming problem. The compatibility between a schedule and iteration space can validate if a 

feasible design can be achieved. The array topology can be obtained by mapping the points on the 

index space into the processor space which is a complementary space to iteration space. The 

interconnections between processors can be determined by mapping the index displacement vector to 

the processor space. Figure 3.2 shows the Y chart of this methodology. 
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The RIA design methodology 

for systolic arrays are similar 

to the methodologies 

independently derived by 

several authors 

[Moldovan83] 

[Li85]. 

[Quinton84] 

The RIA 

methodology generalizes and 

extends this class of 

methodology by introducing 

the iteration space and the 

dependencies of different 

variables in the iteration. 
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Figure 3.2 Overview ofR[A design methodology 

Because a wide range of engineering problems are shown to be members of regular iterative 

algorithms, the R[A methodology can be applied to systematically designing systolic architectures for 

many applications. The ulliform recurrellce equaliol/S (UREs) ofQuinton's method, another well

known algebraic transformational approach for systolic array synthesis [Quinton84] [Quinton91], are 

a subclass of RIAs. 

The RIA design methodology can produce,( multiple choices of architectures each with its latency, 

iteration interval, and schedule for a given algorithm. The design process of RIA methodology can 

be fully automated. 
.1 v> Jp "f'" ~ wr \\ 7 
\1\0 \ r" r;, • ~to"'. 

e/'I' ~ 

~ 
(,,,<0. ..........,.') 

In the following section, we first define the re!,'lJlar iterative algorith RIA) and introduce some other 

basic concepts. Algorithms to solve a wide range of engineering problems are shown to be member - ~ 

of this class .. [n Sec. 3.3, a systematic procedure is described to obtain a variety of systolic array 

architectures suitable for implementing a given regular iterative algorithm. [n Sec. 3.4, an example of 

the use of this design methodology to the matrix-matrix multiplication problem is presented and 

different systolic designs are produced by this methodology. Sec 3.5 presents the performance analysis 

on the various systolic designs for the matrix-matrix multiplication algorithm. Sec. 3.6 gives a formal 

definition of a systolic array using the R[A concepts. Sec. 3.7 summarizes the chapter. 
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3.2 Basic Concepts and Definitions 

3.2.1 On the Exploitation of Parallelism in Algorithms 

An Algorithm takes concrete form only through the language expressing it. It has been recognized 

for some time that for the purpose of extracting the parallelism in an algorithm, standard sequential 

programming languages such as Fortran and Pascal are ill-suited vehicles for expressing the algorithm. 

An algorithm written in these languages has built-in ordering of computations which most often 

obscures any parallelism present in the algorithm. Furthennore, ever since the days when core memory 

was a costly resource to be sparingly used, one has been conditioned to think in terms of minimizing 

the storage required by the program, and hence encouraged to overwrite on variables as much as 

possible. Such overwriting further compounds the problem of extracting the parallelism from the 

program. 

Single Assignment Algorithm. The so-called Sillgle Assigllmelll Lallgllage, for example, provides 

the means for overcoming the difficulties mentioned above by requiring that every variable defined in 

the program takes on a unique value during the course of computation. Thus assignment statement 

of the form" a:=a+b" is not allowed since the variable a appears on both sides of the statement. If 

an algorithm is expressed as a Sillgle AssigllmclIl Algorilhm, viz, as a program in the single 

assignment language, then one can conceive of automated procedures for extracting the parallelism 

in the algorithm, with no further effort required of the user. 

Dependence Graph. Given.a single assignment algorithm, it is possible to capture the information 

regarding the parallelism in the algorithm by means of a depelldellce graph. This graph has one node 

for each of the variables in the algorithm and a directed arc from node x to node y if and only if 

variable y is computed using the value of x in the algorithm. The dependence graph of a single 

assignment algorithm specifies a parlial orderillg among the computations in the algorithm; that is, 

if there is a directed path in the dependence graph form node x to node y, then the computation 

represented by node y must be executed after the computation represented by node x is completed, 

no matter how many processors are brought to bear upon the problem. In such a case, one would say 

that y is dependent upon x, and if a path from x to y is an edge, this dependence is direct. From this 

observation, one can infer that Ihe lellglh of Ihe IOllgesl palh, also referred as the crilical path 
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[Jagadish87] in the dependence graph is a lower bound for the total time required for executing the 

algorithm, independent of the number of processors used in this execution. 

Suppose that one wishes to obtain an implementation of the algorithm that is optimal with respect to 

the total time required for executing the algorithm. One simple and brute-force method for achieving 

this object is to use a distinct processor for executing the computation represented by every node in 

the dependence graph. This, in general, leads to a very inefficient use of the computational resources, 

since each processor is active only for a constant period of time, which could be a minute fraction of 

the time required for completing the algorithm. To achieve a better utilization of these resources, it 

is necessary to reuse the same processor for handling a large number of computations. In general, the 

set of computations can be arbitrarily partitioned and assigned to different processors. 

Schedule. In determining an implementation for the algorithm, one must not only specifY the 

processor at which each computation is to be performed, but also assign a time at which it is to be 

executed by the processor. This mapping of computations into time slots is referred to as the 

construction ofa schedllle for the computations. A schedule must satisfY the precedence constraints 

imposed by the dependence graph of the algorithm and must also be such that no two computations 

assigned to the same processor are expected to be executed at the same time. A schedule must also 

take into account the communication constraints among the processors. That is, if variable x is 

computed by processor Pr and if x is required as an input to the computation of variable y at processor 

P ,then the schedule for execution of y must include the time required to communicate the value of 
y 

x from P to p. Clearly, for different partitions of the nodes in the dependence graph, the 
r y 

interprocessor communications required will differ in general. 

The problem of determining an optimal schedule, i.e., one that minimizes the total time for the 

execution of the algorithm, is extremely hard even if the interprocessor communication is assumed to 

be instantaneous. Indeed, it has been proved to be NP-complete even in the presence of many 

simplifYing assumptions. If communication constraints have to be taken into account as well, then the 

problem becomes even more intractable, thereby forcing one to seek ways of exploiting any available 

structures in the algorithm. 

Regular Iterative Algorithms. Regular iterative algorithms (RI As) are a special subclass of single 

assignment algorithms for which many of the difficulties discussed above can be successfully 
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overcome. Indeed, for an RIA, one can ensure that all computations assigned to the same processor 

can be described by the same simple instruction. For instance, if this instruction is a multiply 

operation, then one can replace this processor by a simple serial multiplier element. Furthermore, for 

an RIA, one can ensure that the interprocessor communication required is fixed and can be 

implemented using a few dedicated links. A further attraction of this class is that the schedule for the 

algorithm can be constructed to be "periodic" so that the necessary delays on the interprocessor links 

can be implemented using shift registers and Last-In-First-Out buffers alone, without any additional 

control circuitry. Finally, RIAs form an extremely useful subclass of single assignment algorithms. 

3.2.2 Definition of Regular Iterative Algorithm 

Below, we will present a formal definition of Regular Iterative Algorithm and then provide some 

examples of RI As. 

Definition: A regular iterative algorithm is defined by the triple {l, X, F} where 

1 is the index space which is the set of all lattice points enclosed within a specified region in 

S-dimensional Euclidean space, 

X is the set of V variables that are defined at every point in the index space, where the variable 

x. defined at the index point k will be denoted as x{k) and takes on a unique value in any 
J J 

particular instance of algorithm, and 

F is the set offunctional relations among the variables, restricted to be such that if x,(k) is 

computed using x{k-d.), then 
J J' 

d /1 is a constant vector independent of k and the extent of the index space, and for 

every I contained in the index space, x{l) is computed using x(1-d)(if x{l-d .. ) falls 
I J }l J JI 

outside the index space, then this is an external input to the algorithm). 

Central to the concept ofa regular iterative algorithm is the notion of the Inder Space. It is specified 

by a set of constraints such that any integer vector ;= (i I' i 2, ... , i sf belongs to the index space if it is 

a "feasible" vector for the set of constraints. Such a vector is said to represent an index point, and is 

also referred to as an index vector. For example: 
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1= '1"2.···.'s E. if and only if 0 s i .sN for all j 

J 

defines an index space that is the S-dimensional hypercube of length N. 

Chap. 3 

(3.1) 

At any particular point in the index space, every variable assumes a unique value that is either an input 

to the algorithm, or is computed as a function of the values of variables at other index points in the 

index space. Thus the defining equation for a variable, say x, at the index point k can be expressed 
J 

as 

(3.2) 

where the constraint of regularity requires that the vectors dj, are independent of the index point k and 

the extent of the index space I. These vectors d .. will be referred to as il/dex displacemel// vec/ors 
J' 

in what follows. 

The set of equations for evaluating each of the variables at a particular index point is referred to as an 

iteratiol/ IIl/i/. It should be noted that the function f., in Eq. (3.2) could vary with k and thus the 

regularity constraint that we impose upon the algorithm is only on the dependence relations and not 

on the functional relations. Furthermore, the function ft, could involve conditional, provided the 

differences between branches are not in the dependencies. For instance 

xci, k)=x(i-I, k) +k' xci, k- 1 ),,'.1, '-1) 

(i k)={ i 'y(i-2, k+ I)+x(i, k), for even i 

y, -i 'y(i-2,k+I)+x(i,k), for odd i 

(3.3) 

is a regular iterative algorithm whereas 

x(i, k)=x(i/2, k/2) +x(i -I, k) (3.4) 

is not. Following are a few more examples of RIAs. 

Example 1. An urn contains N red balls and N green balls. The following experiment is conducted 

repeatedly until the urn is empty or exactly one ball remains. 

Two balls are picked at random trom the urn. If they are of the same colour, then one of these 

is replaced in the urn. If they are of different colours, then both are discarded. 
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To determine the probability that the urn is empty at the end of the experiment, one can derive a 

recursive algorithm, using elementary counting arguments. Let p(i,j) denote the probability that the 

urn becomes empty if there are i red balls andj green balls to begin with. Then 

( 
.. ) i(i-I) p(i-I ,j)+j(j - I) p(i,j- I) +2ij p(i -I ,j-I) 

p IJ = , 
(i+j)(i+j-I) 

1 ~i,j<N (3.5) 

with prO, 0)= I, p(i, 0)=0 for all i>O and p(O,j)=O for all.J>O. 

Example 2. Consider the following simple sorting algorithm referred to as selection sort. Given a 

list ofNnumbers {xci)}, first determine the largest number in the list and delete it from the list. Then 

from the (N-l) numbers in the remaining list, delete the largest number and so on iteratively until the 

list is empty. 

To write this algorithm in single assignment form, let thejth instance of the list be given by {x(i,)}, 

where i ranges from I to (N:j). In addition, let m(iJ) be the largest number in the segment 

{ x(k,j), k= 1 to i} of the list. Then 

x(i,j), if i= I 
m(i,j)= 

max{ m(i -I ,j), x(i,j)} , otherwise 
(3.6) 

undefmed, if i= I 
x(i-I,j+I)= 

min {m(i- 1 ,j), x(i,j)} , othenvise 

The calculations in Eq. (3.6) must be carried out forj=1 to N-l, and i=1 to N:j. 

Example 3. Consider the multiplication of two matrices A(N,xN3) and B(N3xN,) to give a resulting 

matrix C(N,xN,). In a fairly straightforward way one can obtain a regular iterative algorithm that 

performs the desired computation: 

for i=1 10 NI' j=1 10 N" k=1 10 N3 

a(ii,k)=a(ii-I,k) 

b(ii,k)=b(i-U,k) 

c(ii,k)~c(i i,k-I) +a(ii,k-I) b(ii,k-I) 

end 

with 

a(i,O,k)=a;k c(ii,O)=O 
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The desired elementsc
ij 

are obtained as c(ij,N3)' with c(ij,n) representing the partial sum of the first 

11 terms of the summation for ciF Notice that the a and h terms have to be "propagated" through the 

algorithms so that they would be available at the appropriate places. 

The regular iterative algorithms, as shown in the above examples, have the following features: 

• They are in the single assignment format. 

• Each variable in RIAs is identified by a label (p in Example I, for instance) and an index vector 

(k=[i, jl' in Example I). The range of the index vector, which in general can be S-dimensional 

with S~ 1, forms the index space. For instance, in Example I, the index space is two

dimensional and is described by an (NxN) square grid (Figure 3.3a) whereas in Example 2 it 

is a triangular (Figure 3.3b) and in Example 3 it is a cuboid (Figure 3.3c). At each integer 

point in the index space, a set of V labels is used to denote the distinct variables (V= 1,2 and 

3 for Examples I, 2 and 3 respectively). 

• The main feature of these algorithms is the regularity of the direct dependencies among the 

variables with respect to the index points. That is, if x(k) is computed using the value of 

y(k-d), then the index displacement vector ,I, corresponding to this direct dependence, is the 

same regardless of the index point k In Example I for instance, p(i,j) is directly dependent 

on, say, p(i-l ,j) irrespective of the particular value of i and}. As a consequence of this 

regularity, the dependence graph of an RIA has an iterative structure, which can be clearly 

demonstrated by drawing the dependence graph (DG) within the index space (Figure 3.4). 

j 1 A • • • • "., 
N • 
2 •• • 2 • • • • • • • • •• 

~ i .-, 
2 N , 2 "., 
(a) (b) 

Figure 3.3 The index spaces of the RIAs in Examples 1-3 
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Reduced Dependence Graph. The 

fine structure in the dependence 

graph of an RIA is concisely 

captured in the concept of a Reduced 

Dependence Graph (RDG) /~ 

/~ 

/~ 

~ ~ 

~ Ji: 
[KungHT79]. In general, the RDG 

of an RIA has V nodes, one for each 

of the indexed variables in the RIA; it 

has a directed arc from node x to 

~i~ ~~ 
/~ ~ )( • 

node y, if y(k) is computed using the 

value of x(k-tl) for some d; finally, 

each directed arc is assigned a vector 

weight representing the displacement 

. :f ~.i-( 

(c) 

of the index point across the direct Figure 3.4 The DGs of the RIAs in Examples 1-3 

dependence. The RDGs for the RIAs 

/~ 

in Examples 1-3 are shown in Figure 3.5. The RDG together with the specification of the index space, 

will combine to form a complete description of the dependence graph. Given the RDG and a 

specification of the index space, one has all the information necessary to determine asystolic 

implementation for the RIA 

~( [0 0 I] T 

[I I{ 

m~J) () ~ 

[00]'( -}o 1]' 
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,_/ C ~ xc5 (~r tJ 
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(a) 
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Figure 3.5 The RDGs for RIAs in Examples 1-3 

Algorithms that at first glance may appear not to be an RIA can sometimes be transformed into an RIA 
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if additional variables are included whose sole purpose is to "propagate" certain values from one part 

of the index space to another. For some algorithms, one may need to transform the index space, even 

possibly in some nonlinear way for one or more of the variables. Using such simple manipulations, 

many interesting problems can be solved by means of regular iterative algorithms. 

There are two points with regard to RI As that worth remark. The first is that the concept of an 

iteration is naturally introduced, and this concept is different from the concept of time. Computations 

belonging to the same iteration unit would, in general, not all occur simultaneously (and could, in fact, 

be displaced from one another by arbitrarily large amounts) in time. On the other hand, certain 

computations belonging to distinct iterations could be performed at the same time. Iteration is a 

property of the algorithm while time is a property of its implementation. The mapping from the 

iteration to time will be discJssed in the next section. 

The other point worth noticing is fairly obvious. The dependencies between neighbouring iteration 

units are different for different variables. This corresponds to the fact that index displacements have 

been obtained for each pair of variables separately rather than only between iteration units. 

In this section, we have introduced the basic concepts of the exploitation of parallelism and regular 

iterative algorithms. In the next section, we will investigate how systolic architectures can 

systematically be derived from given RIAs. 

3.3 A Systolic Array Architecture Synthesis Procedure 

3.3.1 Processor Space and lterut ion Space 

We wish to implement an RIA defined over an .S'-dimensional hyper-cubic index space of size 

NxNx ... xN on a I-dimensional systolic array (mesh-connected array of processors). (Extension to the 

case of a rectangular index space is conceptually easy but notationally cumbersome.) Along each 

coordinate axis of this array, there are O(N) processors, though the exact number required has not yet 

been determined. We can·call this I-dimensional Cartesian space the processor space (P) for an 

implementation of the algorithm (P also denotes an Sxt matrix when we project the index points to 

the processor space). 
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Each index point can now be projected on to the processor space by means of some "many-to-one" 

mapping that assigns a unique processor to the iteration unit corresponding to each index point. Each 

processor is responsible for the execution of several iteration units. We shall restrict the projections 

to be linear. 

Let the subspace of the index space complementary to the processor space be called the iteration 

space (l!) (U is also referred to as an SX/I matrix where 1+/1 =S when we project the index points into 

the iteration space). Every index point can then be expressed uniquely as a linear combination of two 

points, one in each subspace. These points are the projections of the index point on to the respective 

subspaces. 

Even though we started out by defining a processor space first, the choice of iteration space is more 

fundamental. The reason is that if two index points k, and k2 are such that their vector difference lies 

entirely within the iteration space (k ,- k2 = Ua for some vector a), then the corresponding computations 

are mapped to the same processor. Thus the mere choice of the iteration space dictates which index 

points shall be. computed by which processors, through the order in which these computations are 

performed (or a time schedule) has not yet been specified. Given the iteration space, one may pick any 

complementary processor space, the choice affecting only the way in which the processors are 

numbered. For convenience, we shall always choose the processor space to be orthogonal to the 

iteration space. 

To visualize this process, consider a three-dimensional index space for some algorithm. Choose a 

vector for the (one-dimensional) iteration space. Now project the cube along the direction of the 

vector on to a plane that is perpendicular to it. The projected images of the index points on this plane 

represent the processors in the corresponding implementation. The images of several index points will 

overlap indicating that the associated iteration units must all be executed on the same processor. 

It is easy to see that the number of image points does not change if the plane is tilted about so long as 

the plane is not rendered parallel to the iteration vector. Think of a three-dimensional grid of point 

objects suspended in space. Shine light on these object from a source at infinity so that all the light 

rays are parallel to the desired iteration vector. Capture the shadow of the grid points on a screen 

which represents the processor space. Clearly, a different shadow will form if the light shines from 

a different directions, but the same shadow will merely be compressed or enlarged along one axis or 
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the other as the screen is tilted about. In other words, given the iteration vector, any complementary 

processor space yields the same mapping. 

Given a decomposition of the index space into the processor space and the iteration space, one can 

determine the necessary interconnections among the processors by projecting on to the processor 

space interconnections between index points that already exist in the index space. The 

interconnections in the index space are specified by the algorithm. lfin iteration unit k, the variable x/k) 

is computed using the value of x/k-tl), then there is an arc from index point k-d to index point k. 

Ifthese index points map on to different processors then the variable x.(k -tl) must be transferred from 
J 

the processor corresponding to the first variable to the processor corresponding to the second. We 

require that this data transfer occur directly without hopping from processor to processor. Since, for 

an RIA, the index displacements for the variables participating in each iteration unit are similar, their 

projection on to the processor space results in a regular interconnection pattern of processors and this 

satisfies the important property of systolic array: regularity. 

We shall follow the convention of describing all vector spaces by means of integer basis vectors each 

with) as the greatest common divisor of all elements. 

The partitioning of the index space into the processor space and the iteration space provides a 

complete description of the directions of data flow in the implementation. One must next determine 

a schedule for the computation performed at each processor such that the available computational 

resources are utilized to the fullest extent possible. 

3,3,2 Obtaining a Schedule 

The most important requirement of a schedule of computation is obvious-no computation must be 

scheduled before all its inputs have been computed. In another word, if variable x/k) is computed 

using variable x(k-d . .), then the time /(x.(k» at which x,(k) is computed and the time /(x(k-d.» at 
J JI I } JI 

which x(k-d .. ) is computed must satisty the following relation: 
J J' 

(3.8) 

where h .. is the time required to compute x.(k) given x(k-d . .). )fwe let the unit time for asystolic 
JI I J JI 
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clock as I, the time h .. should be a positive integer, indicating the number of clock clicks required to 
J' 

complete the computation. 

The time at which each variable is computed can be assumed as a sum of two terms, one representing 

the time at which this particular iteration unit begins computing, and the other representing the time 

at which this particular variable is computed within the iteration unit. Consider the first term first. As 

variables are propagated through the array, they suffer a delay at step of propagation. 

Correspondingly, one would expect a skew between the times at which corresponding computations 

are initiated in different processors, this skew being a linear function of the processor coordinates. 

Similarly, within a processor, one would hope that every iteration unit is similarly computed and 

therefore required the same amount of time. Putting these together, one can expect the time at which 

each iteration unit commences to be a linear function of its index point. The following discussion will 

based on this linear function assumption. 

If a linear schedule is considered, we can let A =(AI' A
2

, ... , AS)T be an Sx I constant vector and let 

quantity y. be a scalar constant that is specific to each variable x.. Then we can write 
. J J 

(3.9) 

The above scheduling strategy is called a IlI/irOrm affine schedule. By substituting Eq. (3.9) into Eq. 

(3.8), we have 

(3.10) 

If we combine all such inequalities for every dependence in the algorithm, we obtain a single matrix 

inequality, called the Schedule COllstraint Inequality 

where 

(3.11 ) 

(a) C is the familiar V>:E edge-vertex incidence matrix or the cOllnection matrix, commonly 

used in circuit analysis [Hayt78]. It has E columns (where E is the number of edges in the 

RDG), one for each of the edges in the RDG, and V rows, one for each of the nodes in the 

RDG. The (m, n)th element of C, Cm.' is + I if edge n terminates in node ni, is -I if edge n 

originates from node m, and is zero otherwise (if edge n both originates and terminates at node 

ni, then also C is zero). m. 
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(b) n is the SxE illdex di.lplacel11elltl11atrix, in which the I11th column is the vector weight, or 

the index displacement, on the I11th edge in the RDG. 

(c) y is the Vx 1 vector obtained by stacking all y, corresponding to all variables in the 

appropriate order, consistent with the arrangement of the rows in the connection matrix. 

(d) " is the Ex I vector obtained by stacking all hj; corresponding to all the edges in the RDG. 

Eq. (3.11) can be further expressed as 

yTG~hT or GTy~h (3.12) 

wherey T=(YI'Y2'···'Yv'}./'}.2'···'}.s) and G=[~]. 

Thus from RDG of the given algorithm, one can obtain the G matrix (combination of the C and n 
matrices), and !Tom the hardware that is to be used one can obtain the h vector. Given these, one has 

simply to find a value ofy that satisfY Eq. (3.12), and the problem for finding a schedule becomes 

simply one of obtaining feasible solution to a linear programming problem. If such a solution exists, 

it can be found by well-known techniques, and there are also techniques to determine whether there 

is a solution or not. 

One characteristic of any algorithm is its critical path, or the longest sequence of operations that must 

succeed one another. No matter how many processors are employed to solve a problem, it takes time 

at least proportional to the length of the critical path. For a given RIA, with the index space being an 

S-dimensional hypercube ofiength of N, let the critical path be O(N ~. If all the elements of y were 

to be constants independent of N, then the schedule, being a linear function of index vector as 

expressed in Eq. (3.9), would be only O(N). Therefore, such a constant vector y can be only found 

for problems that have a critical path that is O(N). In other words, an RIA with a uniform affine 

schedule must have a critical path of O(N). Most interesting algorithms do indeed have such a critical 

path of O(N). However, there are some that do not, and for these, obviously a solution cannot be 

found to Eq. (3.12). Ifno solution.exists to the schedule constraint inequality, one may still be able 

to obtain a valid schedule for the algorithm. The tactic is to split the iteration unit into several pieces, 

with no cyclic dependence between pieces, and separately obtain a schedule for each piece by solving 
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a smaller schedule constraint inequality. These schedule can then be knit together to obtain a global 

schedule. Further details on this tactic can be found in [Ra085]. 

3.3.3 Compatibility a/Schedule and Iteration Space 

Having found one or more schedules for the algorithm, one must choose one that results in a "good" 

implementation. Specially, we require that the computations to be performed well all evenly 

distributed so that we need as few processors as possible. Remember that if the critical path of an 

algorithm is O(N), the schedule achieved will be at least O(N). 

Compatibility Theorem. If U, the basis for iteration space, be of dimension II~ c, and be such that 

(3.13) 

then the RIA can be executed in time O(N ') for the schedule and iteration space chosen. 

Proof Consider the time required for computing the values of the variable x. alone on the resulting 
} 

systolic array. From Eq. (3.9), the values of x. will be computed at O(N) distinct steps. For any two 
} 

index points kl and k
2

, the values of xlk
l

) and x/k
2

) will be assigned to the same time step provided 

(3.14) 

Further, xlk
l
) and xlk

2
) will be computed by the same processor if 

(3.15) 

for some constant vector a
j 

of appropriate dimensions. Thus x/k
l

) and x/k
2

) will be assigned to the 

same processor and will be computed at the same time step provided 

)..TUa.=O 
} 

(3.16) 

If).. and U meet the requirement ofEq. (3.13), then there can at most be O(N,-I) difference linear 

independent choices for a
j 

within the index space that satisfY Eq. (3.16). Therefore, for the 

computation of xi' at each distinct computational step, each processor will require O(N ,-I) time. 

Since there are O(N) such steps, the total time required by the systolic array for computing x. at all 
} 
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index points is O(N "). Using similar argument for each of other variables in turn, it can be seen that 

the total time required for completing the algorithm is O(N ") as desired. • 
If C=1I= I, the critical path is O(N) and the iteration space becomes a single vector. According to 

the compatibility theorem, the RIA can be executed in time O(N). At each distinct processing 

step, each processor will require O( I) time which is independent on the problem size N. If x/k ,) 
and x/k2) are computed by same processor, i.e., 

k -k =aU , 2 (3.17) 

then we have 

(3.18) 

Thus the compatibility theorem in the case ofll=c=1 implies that if xlk,) and xlk
2

) are computed by 

the same processor, then they must not be assigned to the same step in the schedule. 

When we allow the dimension of the iteration basis to be greater than I, i.e., 11> I, at a distinct 

computation step, each processor will require O(N "-I) time which is dependent on the size of the 

problem. That means, there are some loop operations inside an individual PE which require to be 

completed within a systolic clock tick. This choice of 11 thus results a trade-off between the number 

of processing elements and the complexity of the processing elements. In common situations or in a 

strict sense, a systolic array should use a single vector as their iteration space in order to obtain the 

simplest PEs possible. The choice of iteration space with 11> I is actually a type of partitioning of the 

systolic array with /F I. Therefore, in a wide sense, the derived array with iteration space 11> I is also 

referred as to a systolic array. In a strict sense, systolic array should be the array derived by choosing 

11=1. 

3.3.4 A Step-by-Step Synthesis Procedure 

We now summarize the synthesis procedure discussed above: 

Step l. Given an RIA with a critical path of O(N c:J (where c= I) defined over an S-dimensional index 

space, choose t and 11 such that 1+11=8 and Il~C. For such a choice of 11, the algorithm could 

potentially be completed in O(N") time with O(N') processors. 
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Step 2. Obtain a schedule in the manner suggested in the previous subsection, and choose a 11-

dimensional subspace of the index space to be iteration space, ensuring that the requirement of 

Compatibility Theorem is satisfied. 

Step 3. Map the points on the index space into the processor space by means of the matrix U of 

vectors that form the basis for the iteration space and the matrix P of vectors that form the basis for 

the processor space (complementary to the iteration space). For simplicity, we assume that the choice 

of spaces has been made such that each vector in U is orthogonal to each vector in P, i.e., UTp=O. 

The computations at index point k will be performed at the processor whose location is defined by 

u=pTk (3.19) 

where u is the vector representing the coordinates of the processor in the processor space. 

Step 4. Determine the interconnections between the processors. The index displacement vectors of 

an RIA contain full information about the flow of data from one index point in the algorithm to 

another. An index displacement is simply the difference between the coordinates of two index points 

that have a dependence between them. Therefore, an index displacement vector d can be mapped into 

the iteration space and processor space respectively by following relations 

and 

U =pT d 
J (3.20) 

(3.21) 

The coefficients u
J 

and ~J obtained in Eq. (3.20) and Eq. (3.21) explicitly represent the processor 

and iteration components of the index displacement d, and hence give a complete description of the 

data flow through the systolic array. 

Step 5. Various properties of interest can be measured for each array obtained through the procedure 

above. These properties could include, for example, the throughput, the exact number of processors 

required, the communication requirement, the kind of initialization required, and so forth. Thus a 

designer could select the array best suited for his particular application. 
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3.4. Systolic Array Design for Matrix Multiplication 

In this section, we shall apply the synthesis procedure presented above to the very fundamental matrix 

multiplication algorithm. By using the methodology, many different designs of systolic arrays for the 

matrix multiplication problem can be systematically obtained. 

3.4.1 Dense Matrix Multiplication 

Consider the multiplication of two matrices A(N\xN3) and B(N3xN2) to give a resulting matrix 

CCN\xN2). In a fairly straightforward way one can obtain a regular iterative algorithm that performs 

the desired computation: 

for ;=1 to NI' j=1 to N 2, k=1 to N, 

a(ij,k)=a(ij-I,k) 

b(ij,k)=b(i-Ij,k) 

e(i j,k)=e(i j,k-I) +a(i j,k-I) b(i j,k-I) 

end 

with 

a(i,O,k)=a,. e(ij,O) = 0 

(3.22) 

The desired elementse .. are obtained as e(iJ·,N3)' with c(ij,n) representing the partial sum of the first 
'J 

11 terms of the summation for CiF Figure 3.6 depicts the index space, the dependence graph (DG) 

and the reduced dependence ·graph (RDG) for the matrix multiplication problem. 
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Figure 3.6 Matrix multiplication: (a) Index space; (b) DG; (c) RDG 
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Now we use the step-by-step procedure as discussed in the previous section to design the systolic 

arrays for the matrix multiplication algorithm. 

Step 1. As mentioned earlier, the matrix multiplication problem is of dimension of .'1=3. The algorithm 

has a minimum VO latency of o (N,) , or a critical path of O(N,) because each product element cif is 

obtained by summing up O(N,) terms (hence c=I). We can choose t=2 and I/=\. Then the choice of 

iteration space reduces to the choice of a single three-dimensional vector. For each choice of this 

iteration vector, a different geometry of implementation is obtained. 

Step 2. From the RDG, we can obtain the connection matrix 

o 0 0 -I 0 

c= 0 0 0 0-1 

000 

(3.23) 

where the first three columns capture the connections of each a, h, c, upon themselves, and the last 

two columns show the two edges, one from the node a to c, the other from h to c. The dependence 

matrix corresponding to this edge ordering can be given by 

o I 000 

D= I 0 0 0 0 

001 

(3.24) 

Ifwe assume that it takes exactly one time unit to evaluate any of three equations in the iteration unit, 

then we have 

h=[1 I I I I}' (3.25) 

Then we can formulate the schedule constraint inequality as follows 

0 0 0 -I 0 

0 0 0 0 -I 

0 0 0 I I 
[y. Yb Ye Ai A. A.] ;, [I I I I I]. (3.26) 

) 0 I 0 0 0 

0 0 0 0 

0 0 I I 
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Since the critical path is of length O(N l). the Y quantities have been assumed to be constants 

independent of the index. 

A solution to this system of inequalities is given by Y.=Yb=Y,=O and ",= .. / ... =1. This leads to 

t(a(k))=t(b(k))=t(c(k))=i +} +k. In other words, all variables associated with the index point k= [i } kf 
complete evaluation at time i+j+k. Therefore, any iteration vector not orthogonal to [1 I I f will 

satisfY the requirement of the compatibility theorem. 

We can choose the iteration space to be the vector U=[O 0 If and it is obvious that the iteration 

vector satisfies the condition of the compatibility theorem. The processor space which IS 

complementary to the processor space can then be given by 

o 
p=O (3.27) 

o 0 

Step 3. The index points k= [i j k]' in the index space can be mapped into the processor space as 

follows 

[I 0 0] [i [i] a=pTk= j = 
o I ° k j 

(3.28) 

This means that the computation at index points k=[i j kIT will be performed at the processor located 

at a = [i JY. Hence a NI xN 2 rectangular array of processing elements is formed by this projection. 

Step 4. The interconnection of the array can be obtained by mapping the index displacement vector 

into the processor space. For the matrix multiplication algorithm above, the index displacements are 

all unit vectors along the coordinate axes of the index space, that is, d •• =[O I 0]', dbb=[1 0 of and 

d,,=db,=d,,=[O 0 I]'. For the iteration space and processor space we have chosen, the index 

displacement vectors can be mapped into the processor space and iteration space by Eqs. (3.20) and 

(3.21). Mapping the index displacements into the processor space results a .. = [0 If, a bb = [1 0)' 

and a =a b =a =[0 0)' and mapping the index displacements into the iteration space results 
QC C cc 

p •• = P bb =0 and p" = P b, = P" = I. Thus a and b, respectively, are transmitted vertically and horizontally 

in the processor array, while c is transmitted along the iteration axis within the same processor. The 
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resulting matrix multiplication systolic array is the well-known systolic array first presented by H.T. 

Kung in [KungHT78] (see Figure 3.7). 

Similarly through picking different choices of the iteration space, we can obtain the different types of 

systolic arrays. It is clear that there are infinite number of different choices for the iteration space. 

Each of this will correspond to a different array. In practical, however, we wish to limit the arrays 

generated to have not just local but nearest communication. 

Table 3.1 Summary of different systolic arrays for matrix multiplication 

Iteration Space Proc(:ssor Space NlIIllhcr of Processors Schedull! 

UT pT I N,=N,=N,=N I r( a(k» = r(b (k» = r( c(k» 

I [0 0 I], [0 0 -11 [100: 0 I 01 NI"N~ IN'I 

2 [0 I 0], [0 -I 01 1100:00 I1 NIAN) IN'I i+j+k 

3 [100],[-1001 [0 I 0: 0 0 I I N,!'N3 LN'I 

4 [0 I I]. [0 -I -11 [I 00: 0 -I I I N,(N,+N,-I) i+j+k 

5 [01-1].[0-1 I1 1100: 0 I I I 12N'-NI i+2j+k 

6 [10 IJ. [-10 -IJ 1010:10-11 N ,(N, + N, -I) i+j+k 

7 [10 -11.1-10 I1 10 I 0: 1011 12N'-NI 2i+J+k 

8 LI I DJ. [-I -I 01 [001';1-101 N,(N,+N,-I) i+j+k 

9 [I -I 0]. [-I 101 [00 I: I 101 12N'-NI 2i+j+k 

10 [11 I], [-I -I -I] 101-1:2-1-11 
N,N,' NI', .N,N, 

11 [I I -I], [-I -I I] 10 I I: 2 -I I I -NI-N~ -N) + I 

12 LI-II],[-II-II [0 I I: 2 I -11 
j"fj+k 

13 I-I I ILlI -1-11 10 I -I: 2 I I I 
13N'-3N.I I 

14 [2 I I]: 1-2 -I -11 10 I -I: -I I I1 2N,N,'(N,-2)(N,.N,-I) i+j+k 

15 [2 I -I]: [-2 -I I] 1011:1-111 14N'-SN.2 I 

16 [0 I IJ. [0 -I -IJ 1100: 0 -I I I wN 
I 

i+j+k 

17 [0 I -I], [0 -I I1 [I 00: 0 I IJ i+2j+k 

18 [I I I], [-I -I -11 [0 I -1:2 -I -I I WI "'2 i+j+k 

19 [11-1],1-1-1 I1 10 I I: 2 -I I I 
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If we restrict the iteration vector to be U = [11, 11, 1131' where II,E { -I, 0, I} for i= I, 2, 3, that is, the 

element of the iteration vector is either one of the three values ~ 1,0 and I. This constraint can meet 

the nearest communication requirement. It is then a simple combinatorial exercise to show that there 

are 26 different choices of an iteration vector (noticing that zero length vector is not valid to be an 

iteration vector). Because two iteration vectors pointing to the opposite directions generate the same 

systolic array, we can obtain 13 different systolic arrays for the matrix multiplication algorithm. 

In addition to the above choices of iteration space, there are still other candidates that meet the nearest 

neighbour communication requirements. The choices of U=[2 I If and U=[2 1 -1]' are two 

examples which also satisfY the requirement of nearest neighbour communication. Actually any 

iteration vector with one element being ±2 and the other two elements being ± 1 will result asystolic 

array of nearest communication. This leads to 24 choices of iteration vector, or 12 systolic arrays, 

under the nearest communication constraint, although only 2 systolic arrays are listed in Table 3.1. 

Table 3.1 summarizes the obtained 15 different systolic arrays as well as another 4 arrays for band 

matrix multiplication to be discussed later. It lists the iteration space, processor space in the 2nd and 

3rd columns respectively, where the processor space matrix P is written in a compact format with the 

semicolon separating the different rows of the matrix (a convention used in the computer language 

MA TLAB). The number of processor used by each systolic array design is provided in the 4th 

column, and the numbers inside the brackets are for the case of N, =N,=N3=N. The feasible schedule 

for each design is given in the last column in the table. 

Notice that in Table 3.1 some designs have different schedules from t(a(k»=t(b(k))=t(c(k))=i+j+k in 

order to satisfY the compatibility theorem. In this case of the matrix multiplication algorithm, a 

schedule with A being not orthogonal to the iteration vector U will be a feasible schedule according 

to the compatibility theorem. For example, the systolic array design of version 9 has a schedule 

t(a(k»=t(b(k»=t(c(k»=2i+j+k where A =[2 I If is not orthogonal to the iteration vector 

U=[I -I 0]'. 

Step 5. Figures 3.7-3.21 (as given at the end of this chapter) show the different versions ofsystolic 

array designs for the matrix multiplication algorithm. Version 1 in Figure 3.7 is the well-known array 

first presented by H.T. Kung in [KungHT78]. In this array, the c .. values are stationary while the G .. 
~ ~ 

move from bottom to top and the b 'j move from left to right. At the end of the computation, the C'j 
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values are held in the array's cells and therefore some mechanism should be adopted to drive the result 

out of the array [Quinton91]. 

There are another two types of orthogonal systolic arrays. In Version 2 systolic array (in Figure 3.8), 

the values of matrix JJ move from left to right and the values of C move form bottom to top in a 

pipeline way. The values of matrix A are required to be preloaded in the array cell. Version 3 (in 

Figure 3.9) is similar to Version 2, with A and C moving and IJ stationary. 

Version 4 (in Figure 3.10), Version 6 (in Figure 3.12) and Version 8 (in Figure 3.14) are rectangular 

arrays. These arrays feature that all the input data and output data are circulating. One matrix moves 

horizontally rrom left to right, while the other two matrices move vertically in opposite directions. The 

circulation of the input and output data is an obvious advantage because they allow the extraction of 

results in an immediate way. The cost for this advantage is that more PEs are required to complete 

the same computations and less efficiency can be achieved. This will be investigated in more details 

in the next section. 

Version 5 (in Figure 3.11), Version 7 (in Figure 3.13) and Version 9 (in Figure 3.15) are another 

group of rectangular arrays. These arrays also feature that all the input data and output data are 

circulating. One matrix moves horizontally from left to right, while the other two matrices move 

vertically in the same direction from bottom to top but in different speed. Notice that the small black 

dots on the arcs of these arrays represent a unit time delay. The schedule for these arrays are also 

different from the other versions of systolic arrays as listed in Table 3. I. 

Version 10 (in Figure 3.16) is a hexagonal systolic array. In this systolic array, the three matrices A, 

Band C are input to the array diagonal by diagonal in three different directions. Versions 11- \3 (in 

Figures 3.17-3.19 respectively) also take a hexagonal geometry. In these three systolic arrays, one of 

the three matrices A, JJ and C moves through the arrays diagonal by diagonal, while the other two 

matrices move through the arrays anti-diagonal by anti-diagonal. 

Versions 14 and 15 (in Figures 3.20 and 3.21 respectively) can be also regarded as hexagonal arrays 

although they have different geometrical form from Versions 10-\3. The data movement in these 

arrays is more complicated. These arrays also have a larger number of PEs than the rest of the systolic 

arrays in Table 3.1 when NI =N
2
=N)=N. 
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More details on the performance analysis of these array will be treated in the next section before we 

discuss the band matrix multiplication. 

3.4.2 Band Matrix Multiplication 

As discussed above, the number of PEs in the systolic arrays for dense matrix multiplication depends 

on the dimension of the input matrices A and B. When the matrices A and B are banded, especially 

when the bandwidth is far less than the matrix dimension, it is not efficient for the systolic array 

discussed above to perform the banded matrix multiplication. In this sub-section, we will design 

several band matrix multiplication systolic arrays which can be directly derived from some of the dense 

matrix multiplication array discussed earlier. 

We say that a matrix A El!. ~." is a band matrix if a,/O whenever i~j+p andj>i+q, where p is called 

lower balldwidth and q is called upper halll./width. The total bandwidth of such a matrix is w=p+q+ I. 

Below is an example ofa band matrix withp=2 and q=3: 

x x x x 

x x x x x 

x x x x x x 

x x x x x x 

A= 
x x x x x x 

x x x x x x (3.29) 
x x x x x x 

x x x x x 

x x x x 
x x x 

where x's designates arbitrary nonzero entries. 

Version 16. We first consider the case where A is a dense matrix and B is a band matrix (similar 

designs can be obtained when A is a band matrix and B is a dense matrix). Observing Version 4 

systolic array discussed earlier, we find that the matrix B enters into the systolic array in a diagonal 

by diagonal fashion. Therefore it is straightforward for us to obtain a systolic array with less PEs for 

the case of B being a band matrix by removing the rows of the PEs corresponding to those diagonals 

with zero elements. Fi!,'llre 3.22 shows the obtained systolic array where N,=N2=N3=N=4 and P=(FI. 
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Version 17. When we examine Version 5 systolic array, we can find that the matrix B enters the 

systolic array in an anti-diagonal by anti-diagonal fashion. Therefore it is not straightforward to use 

the procedure as used in Version 16 systolic array to obtain a new array for the band matrix case. 

However, we know that matrix multiplication can be expressed as 

all a l2 
... a lN b 11 b" ... bIN a lN a" all bNI bN1 

. .. bNN 

a'l all ... am b21 bll bm am all a" 
C=AB= (3.30) 

b" b" b2N 

aNI aN] ... aNN bNI bN] ... bNN aNI aN] aNN b ll b12 bIN 

Eq. (3.30) shows that reordering the columns of A while in the same time reordering the rows of B 

correspondingly will result the same matrix product. Notice that the elements of matrices A and B 

in the right-hand-side ofEq. (3.30) are arranged in anti-diagonal way. Thus we can reorder the inputs 

of Version 5 systolic array and then remove the PEs in the rows corresponding to those zero diagonals 

of B. The resulting systolic array is shown in Figure 3.23 and we will show in the next section that 

this version has a higher efficiency than Version 16. 

Version. IS. Now we consider the situation when both A and JJ are band matrices. Assume that A 

and B have bandwidths of w 1 and w, respectively. Version 10 systolic array can be used in this case 

because both A and JJ flow into the array in a diagonal by diagonal fashion. The obtained systolic 

array for band matrix multiplication after removing those redundant PEs in Version 10 systolic array 

is shown in Figure 3.24. This array was first proposed by Kung and Leiserson [KungHT79) 

[Leiserson81 ). 

Version 19. By applying the technique as shown in Eq. (3.30), we can derive another systolic array 

for the matrix multiplication of two band matrices from Version II systolic array. The resulting 

systolic array is shown in Figure 3.25. This array was first proposed by Weiser and Davis [Weiser81)' 

We will show in the next section that this array performs better than Version 18 systolic array. 

In this section we have together designed 19 different types of systolic arrays for the matrix 

multiplication algorithm. The first 15 systolic arrays are for the dense matrix multiplication; the 16th 

and 17th are for the multiplication of a dense matrix and a band matrix; the last 2 designs are for the 

multiplication of two band matrices. Using the design procedure, we can also design one-dimensional 
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array by selecting a 2-dimensional iteration space. More details on the one dimensional systolic array 

design for matrix multiplication are referred to [Jagadish87]. 

3.5 Systolic Array Performance Analysis 

3.5.1 The Definition ofSyslOlic Array Performance Measures 

There are different performance measures for a 

systolic array. The most basic and widely used 

performance measures for a systolic array are 

listed in Table 3.2. 

Table 3.2 Systolic array performance measures 

Array size (A). The number of processing 

elements (PEs) in the array. The array size 

obviously determines the basic hardware cost 

for implementing the systolic array. The array 

size can be determined when projecting the 

index points to processor space. 

A 

T 

a 

p 

S 

E 

10 

AP 

Array size 

Computation time 

Pipelining period 

Block pipelining period 

Speedup 

Efficiency of the array 

I/O Channels 

Area-time complexity 

Computation time (7). The computation time for a given algorithm can be divided into two terms. 

The first term is the time interval between starting the first computation and finishing the last 

computation of a problem instance by the systolic array. This time can be expressed as 

Tc = max [ t(xik,»-t(x,(k1» J + I 
1., lld, x,.xJEX 

(3.31) 

The second term, denoted by T
d

, is the sum of the time for the input data required by the first 

computation to propagate to the appropriate PE from certain boundaries of the systolic array, and 

the time for the result generated by the last computation to propagate to the boundary of the systolic 

array. 

Pipelining period (a). The time interval between two successive computations in a PE. In other 

words, the processor is busy for one out of a time intervals. Given a systolic schedule 
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t(x.(k)) = A Tk+y. 
J J (3.32) 

and a projection vector u, the pipelining period can be calculated as 

a =A TU (3.33) 

To verify Eq.(3.33), we note that the pipelining period equals the time between two consecutive 

computations for a processor [Ra085] [KungSY88b]. If the iteration vector (or projection vector) 

is u (with I as the greatest common divisor of its element) and k is a point in the index space, then k 

and k+u represent the indices of two consecutive nodes that are projected to the same processor. 

Therefore, the pipelining period a is equal to the separation between the computation times of these 

two nodes, i.e., 

(3.34) 

Block pipelining period (P). The time interval between the initiations of two successive problem 

instances by the processor array. The block pipelining period is actually the largest lime .Ipall of any 

PE in the array, where the time span indicates the difference between the last time step and the first 

step a PE is busy for the given algorithm. 

Speedup (5). When a given problem is processed by a systolic array, the speed up of the systolic array 

can be defined as the ratio of its processing time to that of a single processor, i.e. 

S=T/T (3.35) 

where T, is the time on a single processor for a given algorithm. When M instances of problems are 

fed into the systolic array to be processed in a pipeline way, the total time required for a single process 

is MT, and the total time required for the systolic array is T +(M-I)I3. Thus the speedup of the systolic 

array becomes 

MT 
S = 6 

M T+(M-l)~ 

T 
S =lim S =-' 

- M 
M-- ~ 

(3.36) 

Efficiency (E). The efficiency of the array is defined as the ratio of its speedup to the number of PEs 

in the array 
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S T, 
E=-=--

A TxA 

The efficiency for multiple problem instances can be given by 

SM MT, 
E =-=----'--

M A A[T+(M-IWl 

S. T, 
E=-=-

- A A~ 

Chap. 3 

(3.37) 

(3.38) 

I/O channels (/0). The number of 110 lines to communicate with the outside world (the host 

computer or other devices) is another important performance measure. Input/Output channels are 

directly tied to hardware cost in terms of 110 pins of a VLSI chip or I/O wires of a circuit board. The 

number of 110 channels can be derived from the projected systolic array directly. 

Area-time Complexity (A P). This is a combination of two factors A and T There are different kinds 

of area-time complexity measures (see Sec. 2.7.2 for more details). The A P is the most useful area

time complexity measure for array processors. It provides a useful measure for the hardware cost

effectiveness. In the case of many problem instances to be processed, the average time for a single 

problem instance is approaching to the block pipelining period p. Thus, the area-time complexity 

measure becomes A p '. 

It is worth pointing out that some of the measures introduced above may be of special interest for 

some cases, while other measures may be of interest for other cases. For example, when we consider 

a single problem with finite input data, the computation time T is perhaps a more important criteria 

than the pipelining period. When we consider a single problem instance with indefinite input data, such 

as filtering in DSP applications, the pipelining period a, instead of the computation time T, may 

become the focal point of the array performance. When many problem instances are to be processed 

by the same systolic array, we should be more concerned with the block pipelining period p. 

3.5.2 Performance Analysis of the Matrix Multiplication Systu/ic Array.\' 

We consider Version I systolic array. The array has A =N,xN2 PEs. The computation time can be 

obtained by 
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(3.39) 

The time for unloading the result from the systolic array is at least 

(3.40) 

The pipelining rate a can be calculated by plugging ~ =[1 I I)' and u=[O 0 II' into Eq. (3.34) 

,,=[1 I 1)'[0 0 1]= I (3.41 ) 

The block pipelining period p is N3 and it is the time period one row of A or one column of B passes 

through a corresponding PE in the array. 

Because a single processor requires T, =NlxN,xN3 time for the matrix multiplication algorithm, the 

speed up (if we ignore the time Ta) is 

(3.42) 

The efficiency of the systolic array is given by 

E. = I (3.43) 

The array has NI +N2 input channels and NI +N2 output channel. The area-time complexity becomes 

AIl 2=N N ",2 
1 r' 3 (3.44) 

Similarly, we can obtain the performance measures of all the systolic arrays for the matrix 

multiplication algorithm. Table 3.3 summarizes the obtained results for the four main measures A, T, 

a and p. Table 3.4 presents more performance measures of the obtained systolic arrays with 

NI =N2=N3=N for the convenience of comparison. With these performance measures, one can find out 

the best choice for his specific application. For instance, if one wish to achieve the best efficiency for 

the case of multiple problem instances, the choices will be Versions I, 2 and 3 for dense matrix 

multiplication. From Table 3.4, it is clear that Version 17 is superior to Version 16 in most 
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performance measures, and that Version 19 is better than or at least same as Version 18 in all the 

performance measures listed in the table. 

3.6 Definition of Systolic Array 

In Sec 3.2, we introduced the definition of a regular iterative algorithm (RlA). Using the R1A 

definition as a vehicle, now we turn to a formal definition of a systolic array [Ra088]. The following 

formal definition is consistent with the definition given in Sec. 2.1. 

Definition of a Systolic Array: A systolic array (in a strict sense with 1/= I) is characterized by the 

sets {P, ~ ,X, D p' Fl where 

P is the processor space which is the set of all lattice points enclosed within a specified region 

in I dimensional Euclidean space; 

1: represents the beats of the systolic clock; 

X is the set·of V variables that is computed by every processor in the processor space and at 

every beat of the systolic·c1ock during the execution of the array; 

D is the set of processor displacements that defines the interconnection links in the processor 
p 

array so that 

if d is a member of D , then there is an interconnection link from the processor at 
p 

location p to the processor at location (p+d) irrespective of the particular value of p, 

if variable x computed at beat 1: by the processor at location p is transferred across the 

link to the processor at location (l'+d), then this data transfer occurs regardless of the 

particular values of 1: and p; 

F is the set of functional dependencies that relate the computation of a variable x at processor 

p during beat 1:, as a function of the variables computed during the previous beat at the 
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neighbouring processors. (As mentioned in Sec. 3.2, the function dependencies in F can 

involve conditional branches.) 

With these fonnalizations in place, any algorithm executed by a systolic array can be characterized as 

follows. 

Theorem, A systolic array executes a Regula Iterative Algorithm which has a uniform affine schedule. 

Conversely, every Regular Iterative Algorithm with a uniform affine schedule can be implemented on 

a systolic array. 

Proof To show that a systolic array executes an RlA, we define the index space to be 

I={ k=[: 1, peP, t =systolic beat} (3.45) 

Next, let the variable x computed by the processor at location p at beat 1: be denoted as x(k). Then, 

by the definition ofsystolic array, ifx(k) is computed usingy(l), then 

k-I=[~l (3.46) 

which is independent of k and the extent of the index space. 

To prove the converse statement, let {y, A} constitute the parameters of a uniform affine schedule for 

the RlA. Then, ife is the connection matrix of the RDG of the RIA and J) is its index displacement 

matrix, one must have 

yTC+ATD~[1 I ... 1] (3.47) 

Therefore, it must be possible to determine A such that the greatest common divisor of its elements 

is 1. This implies that there exists a vector u such that 

A TU= 1 (3.48) 

Next we redefine each indexed variable x to be 
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x(k)=x(k- y u) 
r (3.49) 

Then the displacement matrix in the new variable domain can be written as 

D=D-uyTC (3.50) 

Choose u to be the iteration vector and define the processor space according to 

P={p:p=Pk} (3.51) 

where Pis orthogonal to the iteration vector. To complete the systolic array implementation, we 

define 

1:=1(x(k»=/(x(k-y U))=AT(k-y u)+y =ATk 
r r r (3.52) 

so that x(k) is computed by the processor at location Pk during the tth beat of the systolic clock .• 

3.7 Summary 

Given a regular iterative algorithm, we can systematically generate a variety of systolic array designs 

according to the procedures we have described. These systolic designs can be compared in order to 

obtain one that is best under the appropriate objective functions or performance measures. As an 

example to show the power of the RIA design methodology, we presented 19 different systolic designs 

for the very fundamental and important matrix-matrix multiplication algorithm. The performance of 

all these designs have been given in details in order to select the best design for a specific application. 

The design methodology using RlA representations has the following benefits: 

• It can be fully automated as the procedure of design is quantitively described. 

• From an algorithm it produces multiple choices of designs. Then we can obtain the 

perfonnance measures such as the computation time, block pipeling rate, pipeling rate for each 

of these design. Thus we can choose the best one under specific requirements. 

• It allows all regular iterative algorithm.with a uniform affine schedule to be mapped into a 

systolic implementation. 

• It can handle a large class of algorithms that arise in a broad range of engineering problems. 
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Table 3.3 Summary of different systolic arrays for matrix multiplication 

A T a p 

T, Td 

I 
N t .... N

2 min (N" N,}-I I N, NI +N,+N)-2 

2 
NI"N) min{N1• N)}-1 I N, 

3 
N2"'N) min{N"N,} -I I 

N, 

4 
N,CN,+N,-I) max{Nz,N)} -t N3 -2 2 2 'max{N,.N,}-1 

5 
N1+2N-:,+N)-3 N,-I I max{N,.N,} 

6 
N,(N,+N,-I) NI-tN-:,+N)-2 max{NI' N, } -tN)-2 2 2· max{N,.N,}-1 

7 
2N1+N-:.+N)-3 N,-I I max{N,.N,} 

8 
N,CN,+N,-I) NI+N';!+N)-2 max{N,. N,}-I 2 2 xmax{N1.N1}-1 

9 
2Nl+N-:.+N)-J N,;!-l I max{N,.N,} 

10 2N-2 (I) 3 3N-2 (I) 
N,N, + N.JI, + N.JI, N

1
+N-:.+N)-2 

11 
-N1-N1-N)+ 1 

0 I N (I) 

12 0 I N (I) 

13 0 I N (I) 

14 2N.JI, + inl{SNI2} -2 (I) 4 4N-3 (I) 

(N,-2)(N,+N,-I) 

15 0 2 2N-I (I) 

16 
wNi 

max{p. q} +p (l) 2 2N-I (I) 

17 
N1+2N-:.+N)-3 2q+p I N (I) 

18 
N1+N-:,+N)-2 .. -I (3) 3 3N-2 (I) 

w t W
2 

19 .. -I (3) I N (I) 

Note: (I) N, =N,=N,=N; (2) p and q are lower and upper handwldth of /J; (3)"1 =",=" 
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Table 3.4 Performance of different systolic arrays for matrix multiplication 

Ver. A T, 1'., a ~ s S· .. E E. liD AlP 

I N' 3N N I N N'14 N' 114 I 4N N' 

2 N' 3N N I N N'14 N' 114 I 4N N' 

3 N' 3N N I N N'14 N' 114 I 4N N' 

4 2N2 3N IN 2 2N N'15 N'12 1110 114 8N 8N' 

5 2N2 4N N I N N'15 N' 1110 112 8N 2N4 

6 2N2 3N 2.V 2 2N N'15 N'12 1110 114 8N 8N' 

7 2N2 4N N I N N'15 N: 1110 112 8N 2N4 

8 2N2 3N N 2 2N N'14 NZ!2 1/8 114 8N 8N' 

9 2N' 4N N I N N'15 N' 1110 112 8N 2N' 

10 3N' 3N 2N 3 3N N'15 NZl3 1115 1/9 I]N 27N4 

11 3N' 3N 0 I N N'13 NZ /19 1/3 12N 3N' 

12 3N' 3N 0 I N N'13 N' 119 113 12N 3N' 

l3 3N' 3N 0 I N N'13 N' 119 113 12N 3N' 

14 4N' 3N 5M2 4 4N 2N'1I I N'14 1/22 1/16 18N 64N' 

15 4N' 3N 0 2 2N N'13 N'12 1112 1/8 18N 16N' 

16 wN 3N '" 2 2N ",N13 wN!:! 113 /I] 4N 4wN' 

17 wN 4N 3w/2 I N wNI4 wN 114 I 4N wNJ 

18 U,1 3N '" 3 3N w 1/3 w'i3 113 113 Sw 9w'N' 

19 w' 3N '" I N w I t3 u'] 113 I 8w w 2N1 

Note: (I) N,=N,=N,=N: (2) "',=w,=w: (3)N»/; (4)N»w: 

(5) T =N) for versions 1-15~ T =wN 2 for\'crsions 16-17; T =w'N for versions 18-19. • • • 
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Figure 3.24 Systolic array for matrix multiplication: Version 18, UT =[ I I I] 
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Chapter 4 

SYSTOLIC ARRAY SYNTHESIS USING SFG 

REPRESENTATIONS 

4.1 Introduction 

T HE systolic 

methodology using 

design 

a signal 

flow graph (SFG) was introduced by 

S. Y. Kung [KungSY84]. Given an 

algorithm, the method starts from the 

dependence graph (DG) of the 

algorithm. Then the DG is mapped 

to an SFG. Using the obtained SFG 

representing the algorithm, this 

method proceeds by choosing basic 

operational modules that correspond 

to the functional description of PEs 

Algorithm 

representalion 
------

, 
/ " 

Algorithm 
Model 

"'--........ __ _ ,/,/ Sd~clion of, __ ~.,... 
-!..." ,/ basIc operall1,JD / SFG 

Algorithm " /' - - 'V~_ ~it.: Localization/, ;:,t- SFG with operation 

DO ~cati~I1. ___ . "~/I modules 

~ \.. '. __ .... ~FG with operation -.., >,/ land delay modules , 

" 

, , , 

, 

, , 
/ Modulc-to-cc:U and 

J edge-Io-interconnection 

/ mapping 

Systolic array 

Architecture 

specification 

of the architecture. Localization Figure 4.1 Y chart of SFG methodology 

rules are then applied to derive a 

regular and temporally localized SFG. The localization procedure consists of selecting cut-sets of the 

SFG and reallocating scaled delays to edges "leaving" and "entering" the cut-set in such a way that at 

least one unit of time is allowed for communicating a signal between two nodes. Delays are combined 

with operational modules to obtain a full description of the operation of a basic systolic module. The 

resulting SFG maps straightforwardly into the systolic array by mapping basic modules into PEs and 

edges into interconnections. Timing and data movement can be derived from the basic modules due 

to the localized spatial and temporal characteristics of the SFG. Figure 4. I shows the Y chart for the 

SFG design methodology. 
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In this chapter, we will introduce this design methodology along with an example for matrix 

triangularization which find many applications in a variety of scientific and engineering problems. The 

rest of this chapter is organised as follows. Sec. 4.2 introduces the systematic procedure of mapping 

DGs to SFGs. Sec 4.3 presents the methodology of mapping SFGs to systolic arrays. Sec. 4.4 

summarizes the design procedure of the SFG methodology. Sec. 4.5 designs systolic arrays for matrix 

triangularization using the SFG methodology. Sec. 4.6 discusses some aspects of optimal design for 

systolic arrays. Finally, Sec. 4.7 summarizes the chapter. 

4.2 Mapping DGs onto SFGs 

4.2.1 DG Design 

As discussed in Chap. 3, in order to achieve the maximal parallelism in a (single assignment) algorithm, 

we must carefully study the data dependencies in the computations. The dependence graph (DG) of 

an algorithm can capture the information regarding the parallelism in the algorithm. We again give the 

definition of a dependence graph (DG) as follows. 

Dependence Graph: A dependence graph (DG) is a directed graph, where a node with index k 

represents computations of variables associated with index k in a single assigllment/orm, and an arc 

from node i to j denote a data dependency from a variable with index i to a variable with indexj. 

A DG can be considered as the graphical representation of a single assignment algorithm. For 

example, we consider matrix-vector multiplication algorithm given in a single assignment form as 

follows: 

c=Ab A ERN
'
N h cERN

" , , 
c(i, j)=c(i, j-l)+a(i, j)xb(j) for all i and j, with c(i, 0)=0 

(4.1) 

The dependence graph of the above algorithm is shown in Figure 4.2a. The operations inside each 

node are ignored for simplicity. It is very straightforward to extend the DG concept to include the 

operations inside each node. The DG shown.in Figure 4.2 is called a complete DC, which specifies 

all the dependencies between all variables in the index space. An algorithm is computable if and only 

if its complete DG contains no loops or cycles. 
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Figure 4.2 DG for matrix-vector multiplication (a) with global communication and (b) with only local 

communication 

Localized Dependence Graph. In Figure 4.2a, the value b(j) of each element of vector b should be 

"broadcast" to all the index points having the samej-index. This kind of data is termed broadcast 

data. In general, this means that global communication is involved in array processor design. In many 

cases, such broadcasting can be avoided and replaced by local communication. An algorithm is 

localized if all variables are directly dependent upon the variables of neighbouring nodes only. As an 

example, a localized DG is shown in Figure 4.2b, where b(j) is "propagated" step by step, without 

being modified, to all the nodes with the same j-index. This kind of data, which is propagated without 

being modified, is called trallsmittenl data. Otherwise, it is called lIolltrallsmittellt dala. The 

corresponding localized single assignment algorithm for the matrix-vector multiplication is shown next: 

b(i, j)=b(i-I, j) 

c(i, j)=c(i, j-I )+a(i, j)xb(i, j) 
for all and j, with c(i, 0)=0 (4.2) 

Shift-Invariance of DG. A DG is shift-illvariallt if the dependence arcs corresponding to all nodes 

in the index space remain unchanged with respect to their positions. Formally, this means that if a 

variable at k, depends on a variable at k,-t1, then a variable at k, will dependent on a variable at k,-t1 

in the same manner. Note that the node functions can be different and the border I/O nodes are 

exempted from such a condition (c.f. Sec. 3.2 for definition ofRlA). 
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4.2.2 Signal Flow Graph (SFG) 

The SFG ofTers a powerful abstraction and graphical representation for problems in scientific and 

signal processing computations. Below we present a formal definition of SFG. 

Signal Flow Graph (SFG). A signal flow graph (SFG) is a directed graph defined by a triple 

SFGtl {V, E, D(e)} (4.3) 

where nodes in V model computations and edges in E model one-way (directed) communications. 

Each edge, e, has an edge-delay, represented by D(e). 

In general, a node is often denoted by a circle representing an arithmetic or logic function performed 

with zero delay. An edge, on the other hand, denotes either a dependence relation or a delay. When 

an edge is labelled with a capital letter D (or 2D, ... ), it represents a time delay operator with delay 

time D (or 2D, ... ). Examples of the SFGs will be given in the next subsection. 

A complete SFG description should include both functional and structural description parts. The 

functional description defines the behaviour within a node, whereas the structural description specifies 

the interconnection (edges and delays) between the nodes. 

As compared with the DG, the SFG has the following properties: 

• The SFG can be viewed as a simplified graph which has less nodes than the corresponding DG. 

That means the SFG is a more concise representation of an algorithm than the DG. 

• The SFG is more specific and is closer to hardware level design. Therefore, the SFG also 

dictates the type of arrays that will be obtained. 

• While there are no loops in any DG, the SFG can have loops, as long as there is at least one 

delay D on each loop. 

4.2.3 Mapping DG 10 SFG 

There are two basic considerations for mapping from a DG to an SFG: 

• To which processors should operations be assigned? 

• In what ordering should the operations be assigned to a processor? 
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Therefore, two steps are involved in mapping a DG to an SFG array. The first step is the processor 

assignmelll. Once the processor assignment is fixed, the second step is the schedllling. Similar to the 

RIA design method, we usually use a linear projeclion for processor assignment, in which nodes of 

the DG in a certain straight line are projected to a PE in the SFG array, and a linear scheduling for 

schedule assignment, in which nodes on a parallel hyperplane in the DG are scheduled to be processed 

at the same time step. 

Processor Assignment. As a simple example, a projection method may be applied, in which nodes 

ofthe DG along a straight line are assigned to a common PE. Mathematically, a linear projection is 

often represented by a projeclion veclor d. The results of this projection are represented by an SFG 

(see Figure 4.3a). As an example, the 2-D index space of matrix-vector multiplication as shown in 

Figure 4.2 may be decomposed into a direct sum of a I-D processor ~pace and I-D de/ay ~pace (cf. 

iteration space in the RIA method). The delay space is related to the scheduling as explained below. 

Hypcrplanc 

(.) (b) 

Normal 
Vector • s 

Figure 4.3 The SFG of matrix-vector multiplication: (a) a linear projection with projection vector (I; 

(b) a linear schedule s and its hyperplanes 

Scheduling. The projection should be accompanied by a scheduling scheme, which specifies the 

sequence of the operations in all the PEs. A linear schedule is based on a set of parallel and uniformly 

. spaced hyperplanes in the DG. These hyperplanes are called eqllilempora/ hyperp/anes, all the nodes 

on the same hyperplane must be processed at the same time. Mathematically, the schedule can be 

represented by a schedule vector s, pointing to the normal direction of the hyperplane. For any index 

point k in the DG, its time step is sTk. A set of linear schedule hyperplanes and the schedule vector 

are illustrated in Figure 4.3b. 
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Given a DG and a project direction d, we note that not all hyperplanes qualifY to be a valid schedule 

for the DG. Some of them violate the precedence relation of computation specified by the dependence 

arcs. The allowable directions of the hyperplanes actually define the class of permissible linear 

schedules. In order for the given hyperplanes to represent a permissible linear schedule, it is necessary 

and sufficient that thenormal vector s satisfies the following two conditions: 

(\) sTe~O, 
(2) sTd>O. 

for any dependence arc e 
(4.4) 

In other words, the schedule is permissible if and only if (I) all the dependency arcs flow in the same 

direction across the hyperplanes; and (2) the hyperplane are not parallel with projection vector ,/. 

Given a DG and a projection vector d, the most likely used schedules for the SFG projection are the 

following: 

• Default schedule. The corresponding hyperplanes are orthogonal to the projection direction 

,/; or the normal direction ofhyperplanes s is parallel to the projection direction d. 

• Recursion schedule. The schedule vector s is parallel to one of the axes in the index space of 

the DG. Usually, the one corresponding to the recursion numbering is used. 

• Systolic schedule. The systolic schedule means that there is at least one delay on each edge 

of the resulting SFG (this schedule has been treated in Chap. 3 in an algebraic form). 

In this chapter, only the first two schedules are discussed. We will use a retiming technique to 

systolize the obtained SFG. 

Algebraic Approach for SFG Projection. In addition to the graph-based projection shown in Figure 

4.3, we describe a formal algebraic approach below. Given a DG of dimension N, a projection vector 

d, and a permissible linear schedule s, an SFG may be derived based on the following mappings. 

• Node mapping. This mapping assigns the node activity in the DG to PEs. The index space 

of dimension N is mapping to the processor space of dimension N-l. The mapping of a 

computation at index k in the DG onto a node I' in the SFG is found by 

(4.5) 

where the processor basis P, denoted by an Nx (N-l) matrix, is orthogonal to d, i.e., 
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(4.6) 

• Arc mappillg. This mapping maps the arcs of the DG to the edges of the SFG. The set of 

edges e into each node of the SFG and the number of delays D(e) on every edge are derived 

from the set of dependence edge b at each point in the DG by 

(4.7) 

• I/O mappillg. The SFG node position I' and time f(k) of an input of the DG computation at 

index k is derived by 

(4.8) 

A similar mapping applies to output nodes. 

4.3 Mapping SFGs to Systolic Arrays 

In the last chapter, we described the algebraic mapping method from the DGs to systolic arrays. There 

are several reasons that one might want to derive an SFG array and then convert it into asystolic 

array: (I) the SFG offers a concise expression for parallel algorithms, (2) the SFG defines the structure 

of the array with minimum constraints on timing, and (3) formal transformations from an SFG to a 

systolic array can be developed. 

Obviously, in the mapping form DGs to SFGs, not all SFG schedules s complying with Eq. (4.4) satisfY 

the conditions of the systolic schedule, which requires that 

sTe>O and sTd>O (4.9) 

An SFG array is in fact very close to a systolic array. The major gap between an SFG array and a 

systolic array is that most SFGs are not temporally localized because an SFG can have zero-delay 

edges which means that data from one node may be immediately available for other nodes and 

broadcast data may be involved. This argument can be described in other words 

.IY.I'folic array = SFG array + pipelille refimillg 
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Here, retiming is the procedure to transform an SFG to an equivalent and temporal localized form. 

In this section we present a cut-set retiming procedure [KungSY84] [McEvoy91] to systolize SFGs. 

4.3.1 Cut-Set Retiming Procedure 

The objective of the cut-set retiming procedure is to convert an SFG into a temporally localized form 

so that all the edges between modular sections have at least one delay element. 

Definition. A cllt-set in an SFG is a minimal set of edges which partition the SFG into two parts. 

A more formal definition of the cut-set can be found in [McEvoy91]. By removing a cut-set from its 

corresponding SFG, the SFG can be divided into two disconnected parts. By the minimal set, it means 

that no strict subset of the cut-set can form another cut-set. The cut-set retiming procedure is based 

on two simple rules: 

Rule 1: Time Scaling. All delays D may be scaled by a single positive integer a, i.e., D=u.D l The 

integer a is also known as the pipe lining period of the SFG. Correspondingly, the input and output 

rates also have to be scaled by a factor of a (with respect to the new time unit D'). 

Rule 2: Delay-Transfer. Given any cut-set of 

the SFG, which partitions the graph into two 

components, we can group the edges of the cut

set into inbollnd edges and olltbollnd edges, as 

shown in Figure 4.4. Delay-transfer rule allows 

advancing kD' on all the outbound edges and 

delaying kD' on the inbound edges, or vice versa. 

It is clear that, for an SFG, the general system Figure 4.4 Illustration of delay-transfer rule 

behaviour is not affected, because the effects of 

delays and advances cancel each other in the overall timing. Note that the input-input and input-output 

timing relations also remain exactly the same only if they are located on the same side of the cut-set. 

Otherwise, they should be adjusted by a delay of kD' or an advance of kif In other words, if there 

is more than one cut-set involved and if the input and the output are separated by more than one cut

set, then such adjustment factors should be accumulated. 
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These two basic rules are referred to as the cllt-set relimillg rules. Below we will prove that any 

computable SFG (one without zero-delay loops or cycles) can be systolized by the cut set procedure. 

Retiming Theorem. All computable SFGs can be made temporally local by applying the two cut-set 

rules. Consequently, a spatially local and regular SFG is always systolizable. 

Proof We claim that the two retiming rules can be used to localize any targeted zero-delay edge, i.e., 

to convert it into a nonzero-delay edge. This is done by choosing a good cut-set and applying the rules 

to it. A good cut-set, including the target edge, should not include any had edges, i.e., those zero

delay edges in the opposite direction of the target edge. This means that the good cut-set will include 

only (I) the target edge, (2) nonzero-delay edges going in either direction, and (3) zero-delay edges 

going in the same direction. Then according to Rule 2, the nonzero delays of the opposite-direction 

edges can give one or more spare delays to the target edge in order to localize it. If there are no spare 

delays to give away, all delays in the SFG are simply scaled according to Rule I to create enough 

delays for the transfer needed. 

Therefore, the only thing need to prove is that 

such a good cut-set always exist for a 

computable SFG. For this, we refer to Figure 

4.5, where only the zero-delay successor edges 

and the zero-delay predecessor edges connected 

to the target edge have been kept, and all the 

other edges have been removed from the graph. 

Between the two sets of the edges, there exist no 

bad edges which have zero-delay in the opposite 

direction of the target edge. In other words, if 

there is any zero-delay edge (as shown by the , 

dash line in Figure 4.5) between the two sets of 

A Good Cut q- .. 
\'-'0 

Successor P / Predecessor 

Edges J et Edges 
() -... ~) 
.~ ~. 

O"'---~-).c_ Tar~C( 
r )- Edge .. ~ 

iJ 'Jr---O 
0' .Cl \0' " -- ) "'\-:> -_.' Opening 

Figure 4.5 Proof of cut-set procedure 

edges other than the target edge, they must not be in the opposite direction of the target edge. 

Otherwise, some set of zero delay edges would form a zero-delay cycle, and thus the SFG would not 

be computable. Therefore, there always exists a good cut-set in a computable SFG. It is clear that 

repeatedly applying the two retiming rules will eventually lead to a temporally localized SFG. • 
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4.3.2 Syslolizalion Procedure 

A regular SFG array can be easily systolized to become a systolic array by the following systolization 

procedure which is based essentially on the cut-set retiming rules: 

1. Selection of Basic Operation Modnles. The choice may not be unique. Generally, the finer the 

granularity of the basic modules, the faster a systolic array is. 

2. Applying Retiming Rules. If the given SFG is regular, i.e., modular and spatially local, then 

regular cut-sets can be selected and the above retiming rules can be applied to derive a regular and 

temporally localized SFG. In order to preserve the modular structure of the SFG, the cut-set retiming 

should be applied uniformly across the network. 

3. Combination of Delay and Operation Modules. To convert the obtained temporally-localized 

SFG into a systolic array, it is only necessary to successfully introduce a delay into each of the 

operation modules. The delay 

can then be combined with the 
, 

module operation to form a basic 

L-- __ 

Y (a) Y (b) 

. systolic element. All the extra 

delays are modeled as pure 

delays without operations. Since 

self-loops are implemented as 

registers in the PE, they are also 
Figure 4.6 lllustration of combing delays into module operations. 

(a) Module operation with delays in the circle; (b) The 
combined into the PE. Figure 

4.6 shows this procedure. 
corresponding systolic array processing elements 

4.4 A Step-by-Step Mapping Procedure 

Step 1: DC Design. For a given problem, one first identifies a suitable algorithm. Then a suitable 

algorithm expression, e.g., single assignment form, should be developed. Based on the appropriate 

algorithm expression, a DG is designed. Note that although many methods have been proposed to 

construct a DG from sequential code, a formal and automatic methodology remains a major open 
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research problem. Since the structure of a DG greatly affects the final array design, further 

modification on the DG are often desirable in order to achieve better design [KungSY88b]. In order 

to implement the algorithm in a systolic array, a regular (or shift-invariant) and localized DG is desired. 

Step 2: SFG Design. Based on different mappings of the DG onto array structure, a number of SFGs 

can be derived form the DG. The permissible linear schedules should be used when mapping the DGs 

to SFGs. A defallll schedule will be usually selected. Algebraic approach for SFG projection can be 

used to describe the mapping procedure formally. 

Step 3: Systolic Array Design. The SFG obtained in Step 2 can be systolized by applying the cut-set 

retiming rules. Firstly, a 

basic operation module is 

selected. Then the two 

cut-set rules can be used 

to derive a regular and 

temporally localized 

SFG. By combining 

delay and operation 

modules, it IS 

straightforward to 

convert the retimed SFG 

into a systolic array. 

The above design 

procedure is illustrated in 

Figure 4.7. In the next 

section, we will exemplifY 

this mapping procedure 

by designing systolic 

arrays for matrix 

triangularization 

Linear System Solver Ax=b 

¥~~ 
Sequential Algorithm L U Decomposition Givens' Method • • • 

/ / 
/ / 

Slep 1 / / 
/ 

DG Design / / 
/ / 

/ / 

/ / • • • 
/ 

/ 

Step 2 

SFG Design 

• 

Step 3 

• • • 
Systolic Array Design 

:J-l::::l-[J-CI-O 

Figure 4.7 Illustration of the step-by-step mapping procedure for systolic 

array design 

problems: LU decomposition and QR decomposition .. 
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4.5 Systolic Array for Matrix Triangularization 

Matrix triangularization is one of the fundamental matrix operations. It has found its application in 

solving linear equations, solving least square problems, calculating eigenvalues, and so on. There are 

many methods to triangularize a matrix. Gaussian elimination, LU decomposition and QR 

decomposition are the most commonly used methods. In this section, we will design systolic arrays 

for LV decomposition and QR decomposition algorithm. 

4.5.1 Mapping Algorithms to DCs 

4.5.1.1 LU Decomposition 

A factorization ofa non-singular square matrix A as A=LU, where L is lower triangular with diagonal 

entries being 1 's and U is upper triangular, is called an LU decompositioll of A. If det(A(l :k,l :k))~O for 

k=1 N, then there exists a unique LU decomposition of A [Golub89]. The LU decomposition of A 

can be expressed as follows 

1 ull 
u

12 "IN 
i" 1 un ... u2N 

'. 
iNl im ... 1 UNN 

A recursive algorithm for finding the LV decomposition of matrix A can be given by 

for k=lN 
for i=k+ 1 N 

Q jk =aj/a lrk 

for j=k+l N 
for i=k+1N 

A single assignment formation of the proceeding recursive algorithm has the following form 
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(4.10) 

(4.11) 
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for k= 1:N, for i=k:N, for j= 1:N 

. . {a{ii,k-l) if i=k 
u('J,k)= u{i-l i,k) otherwise 

l(i . k)={a{ii,k-l )/u(ii,k) if j=k . 
J, l('i-l,k) otherwIse 

a{ii,k)=a{ii,k-l)-I{ii,k)*II{ii,k) if j,k 
with a(ii,O)=a;j 

Thus we can obtain the DG for the 

LU decomposition algorithm, which 

is shown in Figure 4.8. In each 

horizontal plane, the points that serve 

as the source of the row and column 
k 

(-(-

(-I 

I 
, ~ ., ~A 

values are represented as dark dots. 

(The algorithm in Eq. (4.12) is 

slightly different from the algorithm 

given by S.Y. Kung in [KungSY88a] 

in computing a(i, j, k) only when 

j,k. The benefit due to this 

modification will be shown later.) 

tf-
tf- ~ 

l;e • ,,:)/ 
":)J' 

f ..:f Itf-
/ 

Figure 4,8 DG for LU decomposition 
4.5.1.2 QR Decomposition 

Chap. 4 

(4.12) 

~ 

•• f 
A 

.,,/ fA 
A 

j 

•• :. 

jlf 

..:...f 

AnMxN matrix A with M:?N can be written as A=QR where Q is an MxM matrix with orthonormal 

columns (i.e. QTQ=l) and R is an MxN upper triangular matrix. This decomposition is called QR 

decomposition. The QR decomposition can be obtained by a sequence of Givens rotations (GRs). 

The GR is a numerically stable orthogonal operator that performs a plane rotation of the matrix A. 

The purpose of these rotations is to annihilate the subdiagonal elements of the matrix A and reduce 

it to upper triangular form. In the Givens algorithm, the subdiagonal elements of the first column are 

nullified first, then the elements of the second column, and so forth until an upper triangular form is 

eventually reached. Below we briefly discuss how the QR decomposition can be obtained by using 

GRs. The upper triangular matrix R is obtained as follows: 

QTA=R 

QT =QNQN'I: .. Q, (4.13) 

Q p = Q(P,p)Q(P'I,p) .. ·Q(M'I,p) 
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where QCiJ) is the Givens rotation operator used to annihilate the matrix element located at the (i+ I )st 

row and jth column and has the following form 

1 

1 

... 

c s ith row 

-s c (i+l)st row (4.14) 

1 

1 
ith (i+ I)st 

column column 

where c=cos6, s=sin6, and 6=tan-'[a,.,/ a,). (Notice that ifM=N. then the annihilation operations 

are not necessary for the last column of the matrix.) The operation to compute the matrix product 

A '=Q(i,}r4 is named Givens rotation (GR) and the operation of creating case and sine is named 

Givens generation (GG). The matrix product A '= Q(. .4 differs from A only in ith and (i+ I )st rows I,Jr-

and this can be expressed by 

a", =a" ,cos6 +a,." ,sin 6 } 
for all k= I, ... ,N 

Q;+l, k = -a j , ksin e +a j + 1, ,ecos6 

The full procedure of the QR decomposition is illustrated below using a 4x3 example: 

x x x x x x x x x x x x x x x x x x x x 

x x x x 
Q., 

x x x x 
Q3I 

x x x x 
Q2' 

x x x x 
Q II 

0 x x x 

A= x x x x x x x x x x x x 0 x x x 0 x x x 
~ ~ ~ ~ 

x x x x x x x x 0 x x x 0 x x x 0 x x x 

x x x x 0 x x x 0 x x x 0 x x x 0 x x x 

x x x x x x x x x x x x x x x x x x x x x x 

Q., 
0 x x x 0 x x x 0 x x xQ 0 x x x 0 x x x 0 x 

Q3,2 Q22 4,3 Q3,3 Q.,. 
0 x x x 0 x x x 0 0 x x 0 0 x x 0 0 x x 0 0 

~ ~ ~ ~ ~ ==> 
0 x x x 0 0 x x 0 0 x x 0 0 x x 0 0 0 x 0 0 

The 0 0 x x 0 0 x x 0 0 x x 0 0 0 x 0 0 0 x 0 0 
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4.16) 
x X 

x X 

x x 

0 x 

0 0 
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The QR decomposition described above can be written in a sequential algorithm as follows 

for k= 1:N 
for i=(M-l):k 

Qi,t 
c=r===== 

Q j + 1,t 
s=r======= , , 

(Oi+l,k +a;,k) 

for j=k:N 

t1 =aj,/+aj + 1./ 

12=-a. s+a c 
IJ i+lJ 

a'J=li 

a'J=12 

, , 
(a+,. +a .• ) 

J ." I .... 

Chap. 4 

(4.17) 

where 1 I and 12 are temporary variables to store the new values of a . . and a. , '. The matrix A is then 
IJ 1+ J 

updated to yield the R matrix as illustrated in Eq. (4.16). 

The sequential algorithm in Eq. (4.17) can be converted to single assignment formulation; however, 

extra care has to be taken. Some new variables are introduced in order to convert the sequential 

algorithm into a single assignment format. We denote the "old" value of two elements in a rotation 

as ax(i,j, k) and ay(i.j. k) and the "new" values of the two elements as IIX(i.}, k) and lIy(i,j. k). The 

single assignment form of the QR decomposition is: 

for k=l:N 
for i=(M-I):k 

for j=k:N 
ox(ij,k)=ox(ij,k-I) 

{ 

ny(ij,k-I) 
oy(ij,k) = 

nx(i + 1 j,k) 

1 
ox(i j,k) / JC-ox-'-(-; J-',k-)-+-oy-'-(-; J-',k-') 

c(ij,k) = 

c(ij-I,k) 

{ 

oy(i j,k)/ J ox '(i j,k)+oy '(i-I j,k) 
s(ij,k) = 

s(ij-I,k) 
nx(i j ,k) =c(i j,k) < ox(i j,k) +s(i j,k) < oy(i j ,k) 
ny(i j,k) = -s(ij,k)<ox(ij,k)+c(ij,k) <oy(ij,k) 

with nx(ij,O)=a", ny(M-Ij,O)=aMJ' r'i=nx(ij,;) 

if i=M-I 

if ;.M-I 

if j=k 

if j.k 

if j=k 

if j.k 

( 4.18) 

From Eq. (4.18). we can easily obtain the DG for the QR decomposition algorithm by comparing the 

index differences between each assignment statement.. The obtained DG for QR decomposition 

algorithm given in Eq. (4.18) is depicted in Figure 4.9 where an example of 5x4 matrix is used. The 

dark nodes in the DG represent the GGs while the rest nodes represent the GRs. 
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There exist different annihilation 

orders for the QR decomposition. 

Now we consider another commonly 

used annihilation scheme for QR 

decomposition. Instead of applying 

Givens' rotation to the neighbouring 

rows, we can also adopt an 

annihilation order similar to that of 

k 

J<f 

{ 

Chap. 4 

~ 

;t't ~ 

M~' l~A <~~A 
~ ~ 

j LU decomposition discussed before. 

Firstly, the first column entries of the 

input matrix A below the main 

diagonal are annihilated by applying 

GRs between the first row and the 

~« ~ ~<f- ...,-(<f ;-r' 
,(- ,(- X-~~/ ./ 

I ;~ ~- ...,:j-.:"-
/e ~; ~). 

Figure 4.9 DG for QR decomposition 
rest rows. Then the kth column of 

the updated matrix below main diagonal is annihilated by applying GRs between kth row and the rest 

rows. Finally the original matrix can be triangularized. The algorithm for the QR decomposition using 

new annihilation scheme can be expressed as 

for k=IN 
for i=(k+ I)M 

,---, , 
c=a,'/ (a •.• +a;,,), 

for j=kN 
(1 =atJc+a;/ 

12=-a s+a.c 
ItJ I,) 

a./=11 

a;/=12 

, , 
s=a./ (a •• +a.) 

I, ,', 

Now we propose a new single assignment format QR decomposition algorithm as follows 

for k= 1 N, for i=kM. for j=kN 
m(i/,k)=a(i/,k-I) 

. . { m(i -I /,k)/Vm '(i -I /,k) +a '(i/,k-I) 
c(IJ,k)= 

c(i/-I,k) 

S(i/,k)={ a(i/,k-1)/Vm '(i-I/,k)+a '(i/,k-I) 

s(i/-I,k) 

m (i/,k)=c(i /,k)m(i -I /,k)+s(i /,k)a(i/,k-I) 

a(i/,k) = -s(i /,k)m(i -I /,k)+c(i /,k)a(i /,k-I) 
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if j=k 

if j.k 

if i=k 

( 4.19) 

(4.20) 
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Based on Eg. (4.20), we can obtain 

another DG for the QR 

decomposition which is illustrated in 

Figure 4.10. Notice that the dark 

nodes represent the GGs and the rest 

represent the GRs. 

4.5.2 Mapping DGs to SPGs 

Based upon the DGs obtained in Sec. 

4.5.1, we will develop some SFGs 

for the matrix triangularization 

problem in this subsection. 

4.5.2.1 LV Decomposition 

. 0 

t fi p 
~f 

}? ,:0 t"J 
(" I~A fA 

A 

Iff. 
/ 

P J-l P If' 
/J!ff. 

~ ~f .,~ 

~tf) ~f ~t 
~t ,../ )f ~~ ,_J ~) 

Figure 4.10 A new DG for QR decomposition 

Chap. 4 

Version I. Referring to Figure 4.8, we choose the projection vector d=[1 I I)' and choose the 

processor basis P which is orthogonal to d. The schedule is chosen to be the default one, i.e., s=t1. 

The mappings are 

d T =[1 1 1], pT = [I 0 -1] 
o 1 -1 

(4.21) 

By using the mapping method discussed in Sec. 4.2, we can obtain the SFGs for the LU decomposition 

algorithm. The node mapping, the arc mapping and the 110 mapping for the given project "ector and 

the processor basis can be given as follows. 

Node mapping: [: : ::l~ tl 

Arc mapping: 

o 

1 

o -1 0 

o 0 

o 
-1 0 0 1 
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1 

1 0 -1 

o -1 

(4.22) 

(4.23) 
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[: 

1 1 i+}+ 1 

110 mapping: Input: 0 -1 } = i-I 

1 -1 1 }-1 
(4.24) 

1 1 1 i k i+2k j+2k 

Output: 1 0 -1 k } i-k 0 

0 1 -1 k k 0 j-k 

The SFG array derived from this projection is shown in Figure 4.11. The SFG is a hexagonal array 

with the pipelining period 0:=3. The PEs in the first column perform division and the first row PEs 

only pass data, and the rest PEs perform multiply-and-add operation. Output matrices, Land U can 

be obtained from the first column PEs and first row PEs respectively. 

a a a a 
" " " " 

a a a a 
" " " " 

a a a a 
" " " " 

a a a a 
" " " " 

a" 
a" 

a" a" a" 
a" 

a" 
a" a" a" 

a" 

04! a'l ad a •• 

Figure 4.11 Ver. I SFG for LU decomposition Figure 4.12 Ver. 2 SFG for LU decomposition 

Version 2. Now we choose another projection direction as d=[ I 0 Or and a corresponding 

orthogonal processor basis P. The default schedule is again selected. The mappings can be described 

as follows: 

d T=[1 00], pT = [0 1 0] 
001 (4.25) 

Similarly, we can derive the corresponding SFG as shown in Figure 4.12. Version 2 SFG is a 
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triangular array whose diagonal PEs perform divisions and the rest PEs perform multiply-and-add 

operations. 

4.5.2.2 QR Decomposition 

Version 1. We select a projection vector d=[O I I)' for the DG for QR decomposition in Figure 4.9. 

The mappings are then given by 

d T = [0 1 1], (4.26) 

The SFG array derived from this projection is shown in Figure 4.13. The PEs in the first column (dark 

ones) perform GGs and the rest PEs perform GRs. Output matrix R can be obtained from the top of 

the SFG array. Notice that the bottom row PEs will receive two rows of input data as indicated by 

the QR decomposition algorithm given in Eg. (4.18). 

r" r 12 

r 22 r 23 

r" r,. 

r 44 

r13 

r 24 

r 14 

,..-~ .. - a42- a4,_aU 

se an- a53-a54 

a a a a 
11 I' D I. 

a a a a 
1I II " " a a a a 'I " JJ " a a a a 
'1 ., 

" .. 

Figure 4.13 Ver. I SFG for QR decomposition Figure 4.14 Ver. 2 SFG for QR decomposition 

Version 2. Now we choose another projection direction as d=[1 00)' for the DG in Figure 4.9 and 

a corresponding orthogonal processor basis P. The default schedule is again selected. The mappings 

can be described as follows: 

d T=[1 00], pT = [: 0 ~ 1 (4.27) 
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This obtained Version 2 SFG is a triangular array whose diagonal PEs perform GGs and the rest PEs 

perform GRs as shown in Figure 4.14. 

Version 3. Now we apply the projection vector 

(/=[\ 0 0]' to the DGs in Figure 4.10. The 

mappings are same as those in Eq. (4.27). The 

obtained SFG is shown in Figure 4.15. 

There are other possible projection directions; 

however. they will result that the PEs in the 

corresponding SFGs need perform different 

functions at different time. All the SFGs shown 

above do not need reprogramming (no change of 

processor functions) and this will simplity the 

processor array implementation. 

4.5.3 Mapping SFGs Syslo/ic Array.l· 

4.5.3.1 LV Decomposition 

We can systolize the two SFGs for the LU 

decomposition corresponding to the projections 

in the directions of d=[I 1 I]T and d=[1 0 0)', 

as shown in Figures 4.11 and 4.12. by applying 

the cut-set retiming procedure. 

Note that the SFG in Figure 4.11 is already 

systolized as each edge has at least one delay. 

Therefore, the corresponding systolic array can be 

derived by simply combing the delay and 

operation module. Figure 4.16 shows Version I 

systolic array for the LU decomposition. 

a a a a 
'1 " " .. 

a a a a 
)1 " " " a a a a 
" " " " a a a a 
11 ., 1J 1. 

Figure 4.15 VeL 3 SFG for QR decomposition 

a" 
a,. 

a" 
a" 

Figure 4.16 Systolic array for LU 

decomposition (Version I) 
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Version I systolic array for LU decomposition in Figure 4.16 is equivalent to the hexagonal systolic 

array proposed in [KungHT78], [Leiserson81] and [KungHT82a]. The detailed operation of this 

systolic array can be found in [Quinton91] where the snapshots of the systolic array are given and 

analysed. 

Version 2 SFG for the LU decomposition in Figure 4.12 is required to apply retiming procedure in 

order to be systolized. We can apply the retiming rule 2 to the cut-sets as shown in Figure 4.17a to 

obtain the corresponding systolic array as shown in Figure 4.17b. 

The localized SFG in Figure 

4.17a has one delay assigned 

to each edge and thus 

represents a temporally 

localized network. 

According to the retiming 

rule 2, the inputs from 

different column of A have to 

be adjusted by a certain 

number of delays before 

arnvmg at the array. By 

counting the cut sets involved 

in Figure 4.17a, it is clear 

that the first column of A 

a 
" 

a" 

a" 

a 
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a 
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a" 
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a 
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a 
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a" 

a 
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a" 
a 
" 
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" 

a 
" au 

a 
" 

a 
" 

a 
n 

a 
" 

a 
" 

a a 
" " 

a a 
" " 

a a 
" u 

a 
" 

needs no extra delay, the Figure 4.17 Systolic Array for LU decomposition (Version 2): (a) 

second column needs one cut-sets; (b) systolic array 

delay, the third two (because 

of the two cut-sets separating the third column input and the adjacent top-row processor) and so forth. 

Therefore, the input matrix A will be skewed as shown in Figure 4.17b. 

The systolic array in Figure 4.17b was first proposed by Gentleman and Kung in [Gentleman81] and 

it has found numerous applications. This· systolic array uses the triangular array of processors 

connected orthogonally. The Occam (a parallel programming language) implementation of this systolic 

array is appended in this chapter [Wan90a]. A detailed performance analysis of the array can be found 

in [Quiton91] and [Wan90a]. The neighbouring pivot scheme to ensure a stable solution of LU 
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decomposition was introduced in [Gentleman81] and the Occam implementation adopt this new 

scheme although we will not give the details here. 

Now we can compare the two versions of systolic arrays for the LU decomposition algorithm. Both 

arrays has fixed function PEs. The triangular array in Figure 4.17 is different from the one in 

[KungSY88a] which has function-changing (from division to multiply-and-add operation) PEs due 

to a slight different DGs is used as mentioned earlier in Sec. 4.5.1.1. Version I systolic array has two 

advantages: (I) it is easily adaptable to the band matrix LU decomposition problem; and (2) both the 

lower triangular matrix L and the upper triangular matrix U are available at the boundary PEs. On the 

other hand, Version 2 systolic array offers very attractive advantages: (I) There is no need for diagonal 

connection, thus simplifying the required hardware; (2) less PEs (approximately 50% of Version I) 

are used while completing the same problem with equal computation time and thus it is twice as 

efficient as the version I; and (3) Version 2 systolic array enjoys a pipelining period of I, compared 

with a value of 3 for Version 1. 

4.5.3.2 QR Decomposition 

From Version I SFG for QR decomposition in Figure 4.13, we can obtain a corresponding systolic 

array. The cut-sets for systolizing the SFG is shown in Figure 4.18. It is noticed that the input matrix 

A is required to be skewed. This systolic array can be further modified to have M rows of PEs instead 

of (M-I) rows by introducing a new row to pass the last row of the input matrix. 

r" rJl r 11 r/3 r
14 

r 12 r JJ r" 
rH r 34 rJ) r" 
rH r" 

Figure 4.18 Systolic Array for QR decomposition (Version I): (a) cut-sets; (b) systolic array 
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Versions 2 and 3 SFGs for QR decomposition in Figures 4.14 and 4.15 respectively lead to another 

two systolic arrays for QR decomposition. The procedure to systolize the SFGs is very similar to the 

procedure for Version 2 systolic array for LU decomposition. The obtained systolic arrays are shown 

in Figures 4.19 and Figure 4.20 while the sytolization procedure is omitted. 

a a 
I' " 

a a a a 
13 1< 5J " 

a a a as] a a 
11 11 " " " 

a a a a a a a a IJ 11 " " 51 " " 1< 

a a a a a a a a 
11 n " s, 'I J1 11 J< 

a a a a a a 
JI 

" H Jl }} IJ 

a a a a 
" 52 11 11 

Figure 4.19 Systolic array for QR Figure 4.20 Systolic array for QR 

decomposition (Version 2) decomposition (Version 3) 

The systolic array in Figure 4.20 was first proposed by Gentleman and Kung in [Gentleman81]. The 

systolic array uses the triangular array of processors connected orthogonally. The Occam 

implementation of this systolic array is also appended in this chapter [Wan90a]. Observe that circle 

PEs in Figures 4.18-4.20 are more complex than square PEs. The circle PEs perform Givens 

generation operations which compute square roots as will as reciprocals, whereas the square PEs 

perform only additions and multiplications. Since all PEs in the systolic array must operate at the same 

throughput rate in order to acquire the maximum efficiency, the circular PEs could form a bottleneck 

for the overall performance. The square-root-free Givens transformation, originally introduced by 
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Gentleman in [Gentleman73], reduces considerably the work required and removes the need for the 

calculation of any square root in the QR decomposition algorithm described above. The triangular 

version of square-root-free systolic array for QR decomposition has a similar structure to the version 

3 systolic array in Figure 4.20 except that the former has a main diagonal connection. The details on 

designing the square-root-free systolic array can be referred to [McWhirter86], [McWhirterS9] and 

[Wan90a]. The Occam program for this systolic array is also appended in this chapter. 

Now we briefly compare the three versions of systolic arrays for QR decomposition. Version I 

systolic array in Figure 4.IS has a rectangular geometry. One advantage of this array is that the 

resultant triangular matrix can be conveniently obtained at the boundary PEs of the systolic array. This 

array, however, may be very inefficient when M is much greater than N. The versions 2 and 3 systolic 

array for QR decomposition enjoy high efficiency as less PEs are used (approximately 50% of Version 

I when M=N and more saving when M>N). Versions 2 and 3 arrays have a pipelining period of I, 

compared with a value of2 for the version I. Versions 2 and 3 arrays have similar performance except 

that the input data to the array is in different orders. Version 3 systolic array may be preferable for 

many practical applications which make the input data available from the first row of the matrix to the 

last row of the matrix. 

4.6 Discussions on the SFG Design Methodology 

4.6.1 Optimization of the Systolic Array Design 

There are many factors in determining the optimization criteria for the design of systolic arrays. The 

final choice of optimality criteria will be application dependent. In Sec. 3.5, we have discussed the 

perfonmance measures ofa systolic array. Among those performance measures are the computation 

time, pipelining rate, block pipelining period, array size, and VD channels. Depending upon different 

applications, different optimization criteria may be chosen. For example, the computation time is 

perhaps a more important criteria than others when a single problem instance with finite input data is 

required to solve. On the other hand, the pipelining rate may play a more critical role when a single 

problem with indefinite input data is concerned (such problems often occur in many DSP applications). 

In the case that many problem instances are to be processed by the same systolic array, then we should 

focus on the block pipelining rate. 
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In order to obtain an optimal systolic array design under certain criteria, cares should be taken in the 

three design stages: (a) DG design stage; (b) SFG design stage; and (c) systolization stage. 

4.6.1.1 Optimization in DG Design Stage 

The DG design plays a very important role in the systolic array design. When designing a DG for a 

given problem, the following techniques might be potentially useful. 

Localizing the Broadcast Data. As a non-localized DG is likely to result in an array with global 

interconnection, it is desired and preferable to obtain a localised DG although such global arcs can be 

avoided by using a proper projection direction in the mapping schemes. The broadcast data which 

requires global communication can be replaced by the transmittent data which is propagate via local 

arcs. Figure 4.2 gives an example oflocalization of the broadcast data. 

Schedule 

s=[l -If 

Projection Direct~ 
d=[J 1/ 

(a) 

Figure 4.21 Two DGs for band-matrix and vector multiplication with reversed vertical arcs and their 

corresponding SFGs 

Reversible Arcs for Associative Operations. Note that if the operation used in the recursion is 

associative, then the direction of the arcs may be reversible. This can be illustrated by a simple 

example for band-matrix and vector multiplication. A DG for the band-matrix and vector 
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multiplication is shown in Figure 4.21 a. A diagonal projection direction can be adopted to derive an 

array of size w (where w is the bandwidth of the matrix). This projection will result in an SFG array 

of size w which is, in most applications, smaller than the array size N. The schedule selected is also 

given in the same figure. Note that the DG in Figure 4.21 a can be modified since the operation for the 

recursion along the vertical direction is addition (which is associative). The vertical arcs in Figure 

4.21 a can be reversed to form a new DG as shown in Figure 4.21 b. The benefit due to this 

modification is that the new DG can be mapped into a systolic array with a pipelining rate of I by 

choosing an appropriate schedule vector. 

4.6.1.2 Optimization in SFG Design Stage 

Project Direction. The array size and 110 structures of the resulting SFG ofa given DG depend on 

the projector vector. Therefore, we can select a suitable project direction in order to minimize the 

hardware requirement. For example, the systolic arrays for QR decomposition in Figures 4.19 and 

4.20 are obtained by selecting a project direction to minimize the number of PEs required. Another 

example is given in Figure 4.21. 

Effect on a and p by the Projection Direction. In many instances, the projection vector chosen 

have significant effects on the optimal pipelining rate a and the optimal block pipelining rate P 
obtainable. 

4.6.1.3 Optimization in Systolization Stage 

Minimal Pipelining Period Design. The pipelining period (a) is often a good optimality criterion 

for the case that the input data is either very long or indefinite, as frequently incurred in signal 

processing applications. Given a systolic schedule ., and a projection direction d of a DG, with both 

sand din coprime form, the pipelining period a can be calculated as 

(4.28) 

Therefore, an integer programming for minimizing a can be formulated as follows 

min sTd 

subject to sTd> 0 and ST e > 0 for any edge 
(4.29) 
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In Figure 4.21 b, for instance, we choose an optimal schedule vector to obtain a systolic array with 

pipelining rate of I. 

M ultirate Systolic Design. In a systolic array, the processing or communication times of different 

operations may vary a great deal. As a result, the global clock period has to be the maximum of these 

operation times, plus some safety margin. This is clearly undesirable for achieving maximum array 

throughput. One solution is to allow different operations in the array take different time periods by 

use of a finer clocking period. This type of systolic array is called a mllllirale systolic array. A 

multirate systolic array is a generalized systolic array, allowing different operations to consume 

different time units. 

4.6.2 Non-Linear Assignment 

By linear projection, we assign multiple nodes along a straight line in a DG into a single PE in its 

corresponding SFG. In contrast, non-linear assignment means that multiple nodes not necessarily 

along a straight line are assigned to a PE. The SFG representation can make the non-linear assignment 

easier (than the RIA representation discussed in Chap. 3, for example). 

By using a non-linear assignment, a 

more flexible design can be devised 

and a broad range of algorithms can 

be covered. One such example is an 

algorithm represented by cascaded 

DG, in which the algorithm is 

comprised of a group of DGs 

connected in cascade. A simple 

example is shown in Figure 4.22, 

where three DGs for matrix-vector 

multiplication are cascaded to 

compute e=AIJCd. For this cascaded 

DG, all the DGs involved are same. 

In this case, the nonlinear mapping 

, " " , 

Figure.4.22 Non-linear assignment of cascaded DG for 

matrix-vector multiplication 
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allows handling of three DGs together in one piece rather than separately. This will ease the data 

reformatting and increase the pipelining rate. 

4.7 Summary 

The systolic array synthesis methodology using SFG representations can be divided into three stages. 

Firstly, a dependence graph (DG) is designed for a given problem in order to obtain a concise 

representation of the data structure of the algorithms. The DG provides a useful expression of the 

algorithm and permits certain structured modifications on the graph, whereas the mathematical 

formulation might be very abstract to be modified. In the second stage, the obtained DG (with a 

certain degree of regularity) is mapped into an SFG array by a simple projection method. In the last 

stage, a cut-set retiming procedure is applied to the SFG to derive a systolic array. 

The systematic transformation from DG to systolic arrays greatly simplifies the understanding of 

systolic design and it also provides a means to verifY the design. The graph representations used in 

all the 3 stages of the design make the design methodology very instructive to show the systolic 

principle, and they also provide clues to improve the systolic design in the three different stages. 

As to optimal systolic design, it depends on the performance criteria. Obviously, the selection of a 

particular DG for the algorithm and the types of projection and scheduling can greatly affect the 

performance of the resulting systolic array. 

By applying the design methodology, we also design different systolic arrays for the matrix 

triangularization problem, namely LU decomposition and QR decomposition. The matrix 

triangularization plays a very important role in many applications and we will introduce some of their 

applications in the later chapters. 

The SFG design methodology has been proved to be a powerful tool for the systolic array synthesis. 

Many systolic array have been derived by using this method. Some examples are lattice filter, matrix 

multiplication, banded-matrix multiplication, LU decomposition, QR decomposition, convolution, 

transitive closure, dynamic programming, artificial neural network, and so on. 
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4.8 Occam Programming Lists 

4.8.1 Systolic Algorithm/or LU Decomposition 

Systolic algoritJun for LV decomposition 

byC.R. Wan 

File Name: "A:LU" 

- protocols 

PROTOCOL horizontal IS REAI.32; BOOL: 
PROTOCOL vertical IS REAL32; BOOL: 
-- user call 

#USE snglmath 
#USE mathhdr 
(;IUSE userio 
#USE mathvals 

-- declarations 

VALlNTNIS4: 
V AL INT NN IS N*N: 
V AI.. INT whole.elements IS ((N+ 1)*N)l2: 
V AL INT square.elements IS whole.elements-N: 
V AI.. INT circle. elements IS N: 
V AI.. INT iteration.times IS K: 

[iteration.times] [N] REAL32 X: 
[iteration.times] [N] BOOLflag: 

[whole.elements] CHAN OF vertical pipe. vertical: 
[whole.elements] CHAN OF horizontal pipe.horizontal: 
[whole.elements] CHAN OF REAL32 test: 
[whole.elements] REAL32 temp: 

[N] REAL32 input, output: 
[NI CHAN OF vertical interface. vertical: 
[N] CHAN OF REAL32 interface.horizontal: 

[NJ[NJ lNT cell.row.col: 
[whole.elements] INT TOw.cell: 
[whole.elements] INT col.cell: 

PROC square. element ( CHAN OF horizontal west, east, 
CHAN OF vertical north. south, 

CHAN OF REAL32 test.out) 

REAL32 x, x.in. x.out, m.in, m.out : 
BOOL v.in, v.out, flag: 
SEQ 

PAR 
west ? m.in~ v.in 
north? x.in; flag 

IF 
nag 
x:~.O (REAL32) 

TRUE 
SKIP 

IF 
v.in 
SEQ 

x.out := x+(m.in·x.in) 
x :"" x.in 

TRUE 
x.out :'" x.in+{m.in·x) 

PAR 
east! m.in; v.in 
south! x.out; flag 
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test.out! x 

PROC circle.element (CHAN OF horizontal east, 
CHAN OF vertical north, 
CHAN OF REAl.32 test.out ) 

REAl.32 X, x.in, m.out: 
BOOL v.out, flag: 

SEQ 
north? x.in ; flag 
IF 
nag 
x:~O.O (REAL32) 

TRUE 
SKIP 

IF 
ABS (x.in) >~ ABS (x) 
SEQ 

v.out := TRUE 
IF 

x.in <> 0.0 (REAI.32) 
m.out := -(xlx.in) 

TRUE 
m.out := 0.0 (REAl.32) 

x:= x.in 
TRUE 

SEQ 
V.out:= FALSE 
m.out :"" -(x.inlx) 

east ! mout; v.out 
test.out ! x 

PROC initial 0 

SEQj~OFORN 

SEQ i=O FOR iteration.times 
X[iW[:~.O (REAL32) 

PROC input.interface ( []REAL32 input, 
[]BOOL nag.inpu~ 

[]CHAN OF vertical pipe. vertical) 
PAR i~O FOR N 

pipe.vertical[iJ ! input[i]; flag.inpllt[i] 

. PROC outpllt.interface ( CHAN OF horizontal right.most, 
REAlJ2 variable) 

BOOLm: 
SEQ 

right.most ? variable; m 

PROC display.data([[[]REAL32 X. V AL INT NI.N2. 
V AL []BYTE title) 

-display the data matrix X[i.j] on screen 
-N I, N2 give the scope of displaying 

SEQ 
newline(screen) 
write.full.string( screen,title) . 
newline(screen) 
SEQi~FORNI 

SEQ 
SEQj~O FOR N2 
write.reaI32(screen. XliJUJ. 6. 2 ) 

newline(screen) 

PROC readdataQ 
SEQ 
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X[O][O]'~1.0 
X[O][11,~2.0 

X[O][2],~3.0 

X[O][3]'~-2.0 

X[l ][O],~2.0 
X[1][1]'~4.0 
X[l][2]'~1.0 

X[1][3],~.O 

X[2][O],~3.0 

X[2][1],~3.0 

X[2][2]'~2.0 
X[2][3],~5.0 

X[3][O]'~-1.0 

X[3][1]'~.O 
X[3][2],~2.0 

X[3][3]'~1.0 

(REAL32) 
(REAL32) 
(REAL32) 
(REAL32) 

(REAL32) 
(REAL32) 
(REAL32) 
(REAL32) 

(REAL32) 
(REAL32) 
(REAL32) 
(REAL32) 

(REAL32) 
(REAL32) 
(REAL32) 
(REAL32) 

SEQ i=O FOR iteration.times 
SEQj~O FOR N 
flag[illi] ,~F ALSE 

SEQj~ FORN 
flag[Olli]'~TRUE 

PRoe row.col.cell ( [JINT row, col, V AL INT N) 
-calculate the row and col number of each cell 

VAL N211S (N'2)+1, 
SEQ i=O FOR whole.elements 

V AL lNT ddl IS lNT ROUND( SQRT( 
REAL32 ROUND« N21'N21j-(S'i)) », 

SEQ 
row[i):= (N21-delt)l2 
col [i 1:=( i+row( i]}( «N21·row[ i J)*row[i])/2) 

PRoe cell.row.and.col ( [J[]INT cell.mw.col, V AL INT N) 
-calculate the cell number of(row,col)th cell 

SEQ row=O FOR N 
SEQ col=O FOR N 
celLrow .coll row I [col] :=« «N+ 1 )+(N-row »*row)/2) 

+(col-row) 

- main process starting hear 
INT any: 
SEQ 
cell.row.and.col ( cell.row.col, N) 
V AL string IS "cell No. of(ij)": 
SEQ 
write.full.string( screen, string) 
newline(screen) 
SEQi~FORN 

SEQ 
SEQj~O FORi 

write.full.ruing(""",,"-" ") 
SEQj~i FOR (N-i) 

write.int(screen, cell.row.col[i)U],9) 
newline(screen) 

row.col.cell (row.cell, col.cell, N) 
SEQ 

write.full.string (screen, "row and col number orith cell") 
newline(screen) 
SEQ i=O FOR whole.elements 

SEQ 
write.int(screen, row.cell[i],9) 
write.int(screen. col.cell[i],9) 
newline(screen) 

initial 0 

read.data 0 
V AL string IS "Input data X(ij)": 
dispJay.data( X. N. N, string) 
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PAR 

SEQ iteration=O FOR iteration. times 

(]REAL32 input IS X[iteration]: 
OBOOL flag.input IS flag[iteration]: 
[]CHAN OF vertical interface. vertical IS [pipe. vertical 

FROM o FORNl 
SEQ 
newline(screen) 
write.full.string(screen,"lteration time is " ) 
write.int(screen,iteration, 8) 
newline(screen) 
write.full.string(screen. "Input from interface:") 
newline(screen) 
write.int(screen, iteration, 4) 
SEQii~FORN 

write.real32(screen, input[ii], 6, 2) 
newline(screen) 
PAR 

input. interface ( input, flag..input, interface. vertical) 

PAR i=O FOR whole.elements 

IF 
V AL INT row IS row.cell[i]: 
V AL INT col IS col.cell[i]: 
row--col 

CHAN OF vertical up IS pipe.vertical[ i): 
CHAN OF horizontal right IS pipe.horizontal[ i ]: 
test.chan IS test[iJ: 
circle.element( right, up, test.chan ) 

TRUE 

V AL INT row IS row.cell[i]: 
V AL INT col IS co1.cell[i): 
V AL INT up.number IS cell.row.col[row] [col] : 
V AL INT right.number IS up.number: 
V AL INT down. number IS 

cell.row.col[row+ I][col] : 
V AL INT leflnumber IS up.number-l: 
CHAN OF vertical up IS pipe.vertical[up.numberJ: 
CHAN OF vertical down IS 

pipe. vertical[ down.number): 
CHAN OF horizontal right IS 

pipe.horizontal [right.number) : 
CHAN OF horizontal left IS 

pipe.horizontal[left.number): 
tesLchan IS test[i): 
square.element( left, right, up, down, test.chan ) 

PARi=OFORN 
V AL INT most.number IS cell.row.col[i][N-l) : 
CHAN OF horizontal right.most IS 

pipe.horizontal[most.number): 
output.interface (right.most, output[i) ) 

PAR i=O FOR whole.e1ements 
test.chan IS test[i]: 
test.number IS temp[i}: 
tes!.chan ? test.number 

SEQ 
write.full.string(screen,"The middle result is:") 
newline(screen) 
SEQ i=O FOR whole.elements 
write.reaI32(screen, temp(i], 6, 2) 

newline(screen) 
SEQ 

V AL string IS "lbe result is:": 
write.full.string( screen,string) 
newline(screen) 
SEQi~FORN 
write.reaI32(screen, output[i], 6,2 ) 

newline( screen) 
keyboard? any 
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4.8.2 Systolic Algorithm for QR decomposition 

Systolic algoritlun for QR decomposition 

byC.R Wan 

File Name: "A:QR" 
Standard Givens Rotation Method 

- protocols 

PROTOCOL horizontal IS REAL32; REAL32: 
PROTOCOL vertical IS REAl..32; BOOL: 
-- user.caU 

#USE sngImath 
#USE mathhdr 
#USE usena 
#USE mathvals 

-- declarations 

VALINTNIS4: 
V AL INT NN IS N*N: 
V AL INT whole.elements IS «N+ I )*N)J2: 
V AL INT square.elements IS whole.elements-N: 
V AL INT circle.elements IS N: 
V AL INT iteration.times IS N: 

[iteration.times] [NI REAL32 X: 
[iteration.times] {N] BOOL flag: 

[whole.elements} CHAN OF vertical pipe. vertical: 
[whole.elements1 CHAN OF horizontal pipe.horizontal: 
[whole.elements] CHAN OF REAL32 test: 
[whole.elements] REAl32 temp: 

[NI REAL32 input, output.c, output.s: 
[NI CHAN OF vertical interface. vertical: 
[NI CHAN OF REAL32 interface.horizontal: 

[N][N] INT cell.row.col: 
[whole.e1ements] INTrow.cell: 
(whole.elements] INT col.cell: 

PROC square.element (CHAN OF horizontal west, east, 
CHAN OF vertical north, south, 
CHAN OF REAL32 test.out) 

REAL32 x, x.in. x.out, c.in. s.in : 
BOOL v.in. v.out, flag: 
SEQ 

PAR 
west ? c.in~ s.in 
north ? x. in~ flag 

IF 
flag 
x:~O.O (REAl..32) 

TRUE 
SKIP 

x.out:= (c.in * x.in) - (s.in * x 
x := (c.in· x ) + (s.in * x.in) 
PAR 

east ! c.in~ s.in 
south ! x.out~ flag 
test.out! x 

PROC circle.element ( CHAN OF horizontal east, 
CHAN OF vertical north, 
CHAN OF REAL32 testout ) 

REAL32 X, x.in. c.out, s.out, r: 
BOOLflag: 

SEQ 
north? x.in ; flag 
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IF 
flag 
x:~.O (REAl..32) 

TRUE 
SKIP 

IF 
x.in ~ 0.0 (REAL32) 
SEQ 
c.out::D 1.0 (REAL32) 
s.out:=O.O (REAL32) 

TRUE 
SEQ 

r := SQRT( (x*x)+(x.in*x.in» 
c.out:=x/r 
s.out := x.in / r 
x :-r 

east ! c.out; s.out 
test.out ! x 

PROC initial 0 
SEQj~FORN 

SEQ i=O FOR iteration.times 
X[iJm:~O.O (REAl..32) 

PROC input.intmace ( []REAL32 inpu~ []BOOL flag.inpu~ 
[]CHAN OF vertical pipe. vertical) 

PARi~FORN 
pipe.vertical[i] ! input[i]; flag.input[i] 

PROC output.interface (CHAN OF horizontal right.most, 
REAL32 variable!, variable2) 

BOOLm: 
SEQ 

right.most ? variable 1; variable2 

PROC display.data([][]REAl..32 X, V AL INT NI,N2, 
V AL []BYTE title) 

-display the data matrix X(i.j] on screen 
-NI, N2 give the scope of displaying 

SEQ 
newline(screen) 
write.full.string( screen,title ) 
newline(screen) 
SEQi~FORNI 

SEQ 
SEQj~O FOR N2 
write.,ea132(screen, X[iWJ, 6, 2 ) 

newline(screen) 

PROC read. data() 
SEQ 

X[O][OJ:~I.O 

X[OJ[1 J:~2.0 
X[0][2J:=3.0 
X[0][3J:~·2.0 

X[1][OJ:~2.0 
X[I][IJ:~4.0 

X[1J[2J:~I.O 

X[1][3J:~.0 

X[2][OJ:~3.0 

X[2][IJ:~3.0 

X[2][2J:~2.0 

X[2][31:~l.0 

XI3][01:~1.0 
X(3][1 J:~O.O 
XI3][21:~2.0 
X[3][31:~1.0 

(REAl..32) 
(REAl..32) 
(REAl..32) 
(REAl..32) 

(REAl..32) 
(REAl..32) 
(REAl..32) 
(REAl..32) 

(REAl..32) 
(REAl..32) 
(REAl..32) 
(REAl..32) 

(REAl..32) 
(REAl..32) 
(REAl..32) 
(REAl..32) 
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SEQ i=Q FOR iteration.times 
SEQj~O FORN 
flag]iWJ:~FALSE 

SEQj~O FORN 
flag]OWJ:=TRUE 

PROC TOw.col.ceU ( [JINT row, col, V AL INT N) 
-calculate the row and col number of each cell 

VAL N211S (N'2)+I: 
SEQ i=O FOR whole.elements 

V AL INT dolt IS INT ROUND( SQRT( 
REAL32 ROUND( N2I'N21}(8'i)) )): 

SEQ 
row(il:= (N21-deltY2 
col]i]:~(i+mw]i]}«(N21-mw]i])'mw]i])/2) 

PROC cell.row.and.col ( [][]INT cell.row.col, V AL INT N) 
-calculate the cell number of(row,col)th cell 

SEQ roW=O FOR N 
SEQ col~O FOR N 

cell.row.col] row]] col] :=( « (N+ 1 f+(N -row) )'rowY2) 
+(col·row) 

- main process starting hear 

INT any: 
SEQ 

cell.row.and,col ( cell.row.col, N) 
V AL string IS "cell No. of (ij)": 
SEQ 

write.full.string( screen., string) 
newline(screen) 
SEQi~OFORN 

SEQ 
SEQj=O FOR i 

write.full.string(screen," It) 

SEQj=i FOR (N-i) 
write.int(screen. ceIl.row.coI[i]U],9) 

newline(screen) 
row.col.cell (row.cell, col.cell, N) 
SEQ 

write.full.string (screen, "row and col number ofith cell") 
newline(screen) 
SEQ i=O FOR whole.elements 

SEQ 
write.int(screen., row.cell[i1,9) 
write.int(screen. col.cell[i],9) 
newline(screen) 

initial 0 

read.data 0 
V AL string IS "Input data X(ij)": 
display.data( X, N, N, string) 
PAR 

SEQ iteration=O FOR iteration.times 

()REAL32 input IS Xliteration]: 
[)BOOL flag.input IS flag[iteration): 
[]CHAN OF vertical interface. vertical IS 

[pipe. vertical FROM 0 FOR N]: 
SEQ 

newlinc(screen) 
write.full.string(screen."Iteration time is" ) 
write.int(screen,iteration, 8) 

newlinc(screen) 
write.full.string(screen. "Input from interface:") 
newlinc(screen) 
write.int(screen, iteration. 4) 
SEQ ii=O FOR N 

write.reaI32(screen, input[ii], 6, 2) 
newline(screen) 
PAR 

input.interface (input, flag.input, interface. vertical ) 

PAR i=O FOR whole.elements 

IF 
V AL INT row IS row.cell[i]: 
V AL INT col IS col.cell[i]: 
row=col 

CHAN OF vertical up IS pipe.vertical[ i ] : 
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CHAN OF horizontal right IS pipe.horizontal[ i]: 
test.chan IS test]i]: 
circle.element( right, up, test.chan ) 

TRUE 

V AL INT row IS row.cell[i]: 
V AL INT col IS col.cell[i): 
V AL INT up.number IS cell.row.col[row][ool] : 
V AL INT right.number IS up.number: 
V AL INT dOIMl.number IS 

celi.row.oollrow+ I ][001] : 
V AL INT left. number IS up.number-l: 
CHAN OF vertical up IS pipe.verticaJ[up.number1: 
CHAN OF vertical down IS 

pipe.vertical[dolMl.number): 
CHAN OF horizontal right IS 

pipe.horizontal[right.number]: 
CHAN OF horizontal left IS 

pipe.horizontal[left.number]: 
test.chan IS test[i): 
square.element( left, right. up, down, test.chan) 

PARi=OFORN 
VAL INT most.number IS cell.row.ool[iJ[N-l) : 
CHAN OF horizontal right.most IS 

pipe.horizontal[ most.number]: 
output.interface (right.most, output.c[i), 

output.s[i] ) 
PAR i=O FOR whole.elements 
test.chan IS test[i): 
test.number IS temp[i): 
test.chan ? test. number 

SEQ 
write.full.string(screen,"The middle result is:") 
newline(screen) 
SEQ i=O FOR whole.elements 

mite.reaI32(screen, temp(i], 6, 2) 
newline(screen) 

SEQ 
V AL string IS ''The result is:": 
write.full.string(screen,string) 
newline(screen) 
SEQi=OFORN 

write.reaI32(screen, output.c[i), 6,2 ) 
newline( screen) 
SEQi=O FORN 

write.real32(screen, output.s[i), 6,2 ) 
newline(screen) 

keyboard? any 

4.8,3 Systolic Algorithm/or Square-Root-Free QR decomposition 

4.8 

Systolic algorithm for QR decomposition 
Using Square-root-free Method 

Occam Programming Lists 

byC.R. Wan 

File Name: "A:QRl" 
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- protocols 

PROTOCOL horizontal IS REAL32; REAL32; REAL32; REAL32: 
PROTOCOL vertical IS REAL32; BOOL: 
PROTOCOL diagonal IS REAL32: 

- call user 
#USE snglmath 
#USE mathhch
#USE userio 
#USE mathvals 
- declarations 

VAL INTN IS 40 
VALINTNN IS N·N: 
V AL INT whole.elements IS «(N+ I )·N)J2: 
V AI... INT square.elements IS whole.elements-N: 
V AI... INT circle.elements IS N: 
V AL INT iteration.times IS N: 

[iteration.times] [N] REAL32 X: 
[iteration. times] REAL32 diagonal.input: 
[iteration. times] [N] BOOL flag: 

[whole.elements] CHAN OF vertical pipe. vertical: 
[whole.elements] CHAN OF horizontal pipe.horizontal: 
[circle.elements+ I] CHAN OF diagonal pipe.diagonal: 
[whole.elements] CHAN OF REAL32 test: 
[whole.elements] REAL32 temp: 

[N] REAL32 input, outpute. outputs: 
[N] CHAN OF vertical interface. vertical: 
[N) CHAN OF REAL32 interface.horizontal: 
[N][N] INT cell.cow.colo 
[whole.elements] INT row.cell: 
[whole.elements] INT col.cell: 

REAL32 nothingl, nothing2: 

PROC square.element ( CHAN OF horizontal west, east, 
CHAN OF vertical north. south, 
CHAN OF REAL32 test.out) 

REAL32 x.in, x.out, z, c, s, r, dl: 
BOOLflag: 

SEQ 
PAR 
west? c; s; dl; z 
north? x.in; flag 

IF 
flag 

ro"O.O (REAL32) 
TRUE 

SKIP 
X.out:= x.in· (z * r) 
r := (s*x.in)+ (c*r) 

PAR 
east!c;s;dl;z 
south! x.out; flag 
testout ! r 

PROC circle.element (CHAN OF horizontal east, 
. CHAN OF vertical north, 

CHAN OF diagonal northwest, southeast., 
CHAN OF REAL32 test.out) 

REAl32 dl, d, delt.in, x.in, c, s, Z, delt.out: 
BOOLflag: 

SEQ 
PAR 

north? x.in; flag 
northwest? delt.in 

IF 
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flag 
do"O.O (REAL32) 

TRUE 
SKIP 

d}:= d + (delLin * (x.in * x.in» 
IF 
( x.in" 0.0 (REAL32) ) OR ( delt.in" 0.0 (REAL32) ) 

SEQ 
CO" 1.0 (REAL32) 
SO" 0.0 (REAL32) 

TRUE 
SEQ 
c:= dldl 
s:= delt.in*(x.inldl) 

d o"dl 
delt.out := c*delt.in 
z := x.in 
PAR 
east!c;s;dl;z 
southeast! delt.out 
test.out ! d 

PROC initial 0 
SEQj"O FORN 

SEQ i=O FOR iteration.times 
X[iW]oc().O (REAL32) 

PROC input.interface ( []REAL32 input, []BOOL flag.input, 
[]CHAN OF vertical pipe. vertical) 

PARi=OFORN 
pipe.vertical[i] ! input[i]; flag.input[i] 

PROC output.interface (CHAN OF horizontal right.most, 
REAL32 variable I, variable2, variable3, variable4) 

right.most? variablel; variable2; variable3; variable4 

PROC display.data([]]]REAL32 X, VAL INT NI,N2, 
V AL IIBYTE title) 

-display the data matrix X[i.jJ on screen 
-N I, N2 give the scope of displaying 

SEQ 
newline(screen) 
write.full.string( screen,title ) 
newline(screen) 
SEQ i"O FOR NI 
SEQ 

SEQjc() FOR N2 
write.rea132(screen, X[i][j], 6, 2 ) 

newline(screen) 

PROC read.data() 
SEQ 

X]01l0]o"1.0 (REAL32) 
X]0][1]o"2.0 (REAL32) 
X]0][2]o"3.0 (REAL32) 
X[01l3]o-2.0 (REAL32) 

X]I1I0]o"2.0 (REAL32) 
X]IIII]O"4.0 (REAL32) 
X]11I2]O"1.0 (REAL32) 
X[I][3]o"0.0 (REAL32) 

X[2110]o"3.0 (REAL32) 
X[2111]O"3.0 (REAL32) 
X]2112]o"2.0 (REAL32) 
X]2113]O"5.0 (REAL32) 

X]3110]:"-1.0 (REAL32) 
X]3111]oC().0 (REAL32) 
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XI3](2):=2.0 
X(3][3):=1.0 

(REAL32) 
(REAL32) 

SEQ i=Q FOR iteration.times 
SEQj=OFORN 
flagliW):=FALSE 

SEQj=OFORN 
flagIOW):=TRUE 

diagonal.input[O)::1.0 (REAl32) 
SEQ i=O FOR iteration.times 

diagonal.input[i] := 1.0 (REAL32) 

PROC row.col.cell ( [JJNT row, col, V AL lNT N) 
-calculate the row and col number of each cell 

VALN2[ [S(N'2)+[: 
SEQ i=Q FOR whole. elements 

V AL [NT de[t IS INT ROUND( SQRT( 
REAL32 ROUND« N2[ 'N2I)-(8'i» »: 

SEQ 
rowli):= (N2[-deltY2 
col li): =(i +rowl i)-( «N2 [ -rowl i ))'rowli) Y2) 

PROC cell.row.and.col ( [][]JNT cell.row.col, V AL INT N) 
--calculate the cell number of (row,col)th cell 

SEQ row=O FOR N 
SEQ co[=O FOR N 
cell.row .col[ row] [col]:={ « (N+ 1 )+(N -row »·row)f2) 

+(col-row) 

- main process starting hear 
INTany: 
SEQ 
cell.row.and.col ( cell.row.col, N) 
V AL string IS "cell No. of(ij)": 
SEQ 
write.full.string( screen, string) 
newline(screen} 
SEQi=O FORN 

SEQ 
SEQj=O FOR i 

write.full.string(screen," It) 
SEQj=i FOR (N-i) 
write.int(screen. cell.row.col[i]U),9) 

newline(screen) 
row.col.cell ( row.cell, col.cell, N) 
SEQ 
write.full.string (screen. "row and col number of ith cell") 
newline(screen) 
SEQ i=O FOR whole.elements 

SEQ 
write.int(screen. row.cel1[i],9) 
write.int(screen., col.cell[i],9) 
ncwline(screen) 

initial 0 

read. data 0 
V AL mring [S "Input data X(ij)": 
disp[ay.data( X, N, N, mring) 

PAR 
SEQ iterntion=O FOR iteration.times 

[]REAL32 input IS X[iteration]: 
DBOOL fiag.input IS fiagfiteration]: 
[]CHAN OF vertical interface.vertical IS [pipe.vertical 

FROM 0 FOR N): 
SEQ 

4.8 

newline(screen) 
write.full.string(screen.,"Iteration time is " ) 
write.int(screen,iteration, 8) 
newline(screen) 
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write.full.string(screen., "Input from interface:") 
newline(screen) 
write.int(screen, iteration, 4) 
SEQ ii=O FOR N 
write.reaI32(screen, input[ii], 6, 2) 

newline(screen) 
PAR 

input.interface (input, fiag.input, interface. vertical ) 
oorner.nw IS pipe.diagonal[O] : 
input.nw IS diagonal.input[iteration]: 

corner.nw ! input.nw 

PAR i=O FOR whole.elements 

V AL INT row IS row.cell[i]: 
V AL INT col IS col.ceUli): 

[F 
row=col 

CHAN OF vertical up IS pipe.vertical[ i ] : 
CHAN OF horizontal right IS pipe.horizontal[ i ]: 
test.chan IS test[i]: 
northwest IS pipe.diagonal[row]: 
southeast IS pipe.diagonal[row+ I]: 
circle.element( right, up. northwest, 

southeast, test.chan ) 
TRUE 

V AI.. INT row IS row.cell[i]: 
V AL INT col IS col.cell(i): 
V AL INT up.number IS cell.row.col[row][ool] : 
V AL INT right.number IS up.number: 
V AL INT down.number IS 

cell.row.col[row+ 1 Hcol] : 
V AL INT left.number IS up.number-l: 
CHAN OF vertical up IS pipe.vertical[up.number]: 
CHAN OF vertical down IS 

pipe.vertical[ down. number] : 
CHAN OF horizontal right IS 

pipe.horizontal[right.number]: 
CHAN OF horizontal left IS 

pipe.horizontal[left.number): 
test.chan IS test[i]: 
square.element( left, right, up, down, test.chan ) 

PARi-OFORN 
VAL INT most.number IS cell.row.col[i][N-l]: 
CHAN OF horizontal right.most IS 

pipe.horizontal[most.numberJ: 
output.interface ( right.most, output.c[i], output.s[iJ, 

nothingl, nothing2 ) 
PAR i=O FOR whole.elements 
test.chan IS test[i]: 
test. number IS temp[i]: 
test.chan 7 test. number 

CHAN OF diagonal se.out IS 
pipe.diagonal[circle.elements] : 

se.out ? nothing! 
SEQ 

write.full.string(screen. "1be middle result is:") 
newline(screen) 
SEQ i=O FOR whole.elements 
write.reaI32(screen, temp[iJ, 6, 2) 

newline(screen) 
SEQ 

V AI.. string IS ''The result is:": 
",Tite.full.string( screen,string) 
newline(screen) 
SEQi=OFORN 
",Tite.reaI32(screen, output.c[i]. 6,2 ) 

ncwline(screen) 
SEQi=OFORN 

write.reaI32(screen, output.s[i), 6,2 ) 
newline(screen) 

keyboard 7 any 
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4.8.4 A Brie/Introduction to Transputers and Occam 

4.8.4.1 Transputers 

The transputer is a single-chip microprocessor 

developed by Inmos Ltd. It is the first 

microcomputer designed specially for use in 

parallel processing systems. Among its 

distinguishing features are: (a) special hardware 

for context switching between parallel processes 

on a single transputer processor; (b) point -to

point communication links for connecting two 

processors together, (c )special direct memory 

access hardware to move data quickly into and 

out of the links, and (d) an on-chip memory array 

[INMOS88a]. All of these features contribute to 

the efficient implementation of parallel 

processing tasks. 

Floating Point Unit 

Link 
Services 

Link 
Interface 

Link 
Interface 

Link 
Interface 

Link 
Interface 
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Figure 4.23 is a diagram of a generic transputer 

microprocessor. Several different types of 

transputer microprocessors actually exist range 

External Memory Interface 

from T2xx, T4xx, T8xx to T9xxx, all of which Figure 4.23 Block diagram ofa transputer 

share the special features listed above. The 

actual size of the memory array, the number oflinks and the structure of the processing units and 

external memory interface differ among the various transputers available. 

4.8.4.2 Occam 

The transputer was developed with the specific intention of providing an efficient platform for the 

execution of the occam programming language. A brief review of the occam programming language 

is provided below. More details can be found from the occam 2 Reference Manual [INMOS88b 1 
[Cok91 ]. 
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The basic program structure in occam is the process. A process is an instruction or group of 

instructions in a program. These instructions initiate a variety of operations, the most primitive of 

which are assignment and communication. As a simple example of a process, we consider the 

assignment of two integer variables, a and b: 

INT a,b: 
a:=b 

The first statement instantiates, or defines, the variable. Within this first statement, the word INT 

defines data type, and the list of variables to be defined follows. An array of variables is defined 

similarly with an array size prefix of the form [size], where size indicates the number of elements in 

the array. The scope of a variable is limited to the process following its definition. The assignment 

ofb to a, done in the second line, is a simple process. Larger processes can be constructed from groups 

of smaller processes. Theses similar processes must then indented as a group by two spaces. 

In describing the temporal relationship between multiple processes, occam is among the most elegant 

of languages. Any process may execute before, after, at the same time as, or in place of another process. 

There are three occam statements which define the relationship between multiple processes: SEQ 

(sequential), PAR (parallel), and ALT (alternate). These three statements, together with the CHAN 

statement, replicated structures, and control structures are presented below. 

SEQ. The SEQ (sequential) construct causes all ofthe following processes indented by two spaces to 

executed in the order listed. For example: 

INT a,b: 
SEQ 

a:=3 
b:=a 

assigns 3 to a, and then a to b. Together, the four lines of the program can be considered a single 

process. The SEQ construct is the implicit programming structure found in traditional, single-

processor computers. 

PAR. The PAR (parallel) statement defines a set of processes which execute in parellel, at the same 

time. Each individual process included must be indented by two spaces in just the same way as the 

SEQ process. For example, consider three integer variables, a, b, and c. Using a PAR construct, we 

can multiply all of these variables by 2 at the same time: 

INT a,b,c: 
PAR 

a:=a*2 
b:=b*2 
c:=c*2 
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The occam programming model does not support shared memory. The following example is not legalm 

and will not compile, since b is assigned simultaneously in both processes. 

INT a,b: 
PAR 

b:=a 
b:=2 

The final value ofb cannot be determined, since in a parallel construct it is impossible to predict which 

process will execute first. 

If several processes must use different portions of an array at the same time, the array must be broken 

down into disjoint subsets of elements using abbreviations. Each of the processes can then uniquely 

access an abbreviated portion of the original array. For example: 

[2 ] INT array: 
INT vall IS array [pointerO] : 
INT va12 IS array [pointerl] : 
PAR 

vall:=3 
va12:=4 

The valuses pointerO and pointerl must be defined and assigned earlier in the program. If they 

are equal, the program will return a run-time error. 

Although all of the processes in a PAR construct should, by definition, execute at the same time, on 

a single-processor computer the parallel processes will in fact have to time-share the CPU. 

An additional structure, the PRI PAR (priority parallel) construct, provides a means of executing one 

process in preference to another. Only when the priority process is unable to proceed further (while 

waiting on an input or output, for example) can the other processes execute. A PRI PAR structure is 

written in the same way as a PAR, but with the first process listed in the PRI PAR structure having the 

higher priority. 

The PRI PAR structure is especially useful for programs which need to execute a communication shell 

at the same time as a normal program task. Typically, the communication should be expedited at the 

expense of the task, since delaying the communication may mean starving another processor of work. 

PRI PAR structures are also very useful for real-time systems which must react to external interrupts. 

Processes executing at the same time may communicate with each other an can run on physically 

separate processors. The PLACED PAR structure con configure parallel processes to run on physically 

distinct processors. 
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CHAN. Although two parallel processes cannot both assign values to the same variables, they can 

cummunicate variables through a CHAN (channel) structure. An input from a channel is performed 

with a statement of the channel name followed by a question mark and the variable to be assigned. An 

output on a channel is performed with a channel name followed by an exclamation point and the 

variable to be communicated. For example, one process can pass an integer value to another through 

the integer channel talk: 

CHAN OF INT talk: 
INT a,b: 
PAR 

talk!a 
talk?b 

A channel type can be any of the other variable types (for example, BYTE or REAL32), array of such 

types, or a combination of these. A channel with no defined type is defined as CHAN OF ANY. 

Channels can also be defined in arrays just as variables are. 

The channel communication itself must take place simutaneously in both the input and output 

processes. This means that the two processes communicating must, at some level, be executing in 

parallel with each other. If one process wishes to output on a channel and there is no corresponding 

process doing an input on the same channel, the process attempting to output cannot proceed. 

The TIMER channel is a special channel defined in occam. The TIMER definition allows an input 

from an associated channel to return the current system time. This channel is useful for real-time 

systems and performance measurements. 

TIMER time: 
INT a: 
SEQ 

time?a 

ALT. The ALT (alternative) construct provides a mechanism for selecting among a group of input 

processes. In an AL T construct, the first process albe to input will proceed and none of the other 

processes will execute. For example, given two channels, talkl and talk2, we can write 

CHAN OF INT talkl, talk2: 
INT a,b: 
ALT 

talkl!a 
b:=a*34 

talk2?a 
b:=a+l 

In this case, iftalkl inputs a, then a*34 will be assigned to b. Iftalk2 inputs a, then a+l is 

assigned to b. 
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A processor implements an ALT structure by sequentially testing each of the channel inputs. If several 

inputs can proceed simultaneously it is not possible to predict which process will be chosen. Just as 

the PRI PAR provides a means to preferentially execute one of a group of parallel processes, so a PRI 

AL T will preferentially select one of several simultaneous inputs. 

Replicated Structures. The SEQ, PAR, and AL T structures can all be replicated, that is, a single 

statement can define multiple processes. A replicated SEQ structure is written as follows: 

SEQ i=start FOR count 

The statement creates a sequential loop indexed by the integer i which is initialized to s tart and 

repeats count times. The parameters start and count are also integer values. Because the 

structure is a SEQ, each iteration will proceed sequentially in numerical order. The integer variable 

i is within scope only inside the process and does not have to be defined outside the process. A 

replicated PAR structure has the following form: 

PAR i=start FOR start 

This statement creats count number of processed which proceed in parallel. Each process is indexed 

by the integer i, whose value ranges from s tart to start +coun t -1. A replicated AL T structures 

requires an array of channels of size start+count, and is written as: 

[start+count]CHAN OF INT in: 
INT a: 
ALT i=start FOR start 

in [i]?a 
a:=a+i 

This code creats a set of processes, each of which attempts to do an input with its respective element 

of the array of channels in. The first process to do an input on its channel will proceed and add the 

index value to the input value. 

Control Structure. The occam language also includes control structures which permit branching in 

a program. These structures include WHILE, IF and CASE statements, as well as subroutine and 

function calls. To support the IF and WHILE structures, logical variables are used which can be either 

TRUE or FALSE. A WHILE statement will repeat a process as long as its associated logical variable 

is TRUE. For example: 

INT a: 
SEQ 

a:=O 
WHILE (a<4) 

a:=a+l 
will iterate in the WHILE loop until a=4. An IF structure will select the first process in its list whose 

guard is TRUE. For example: 
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INT a: 
SEQ 

a:=O 
IF 

a=4 
a:=8 

a=O 
a:=2 

Chap. 4 

will select the second alternative and set a equal to two. Note that at least one of the logical processes 

must be TRUE or the IF statement will never complete. IF structures can alse be replicated: 

[start+coundjINT a: 
IF i=start FOR count 

a[ij=O 
a[ij :=3 

The CASE statement, another control structure, is similar to an IF structure in that one process from 

a group is seleted and the others areignored. The CASE statement does note use logical variables, but 

executes the process whose guard is equal to the argument of the CASE itself. For example: 

INT a: 
SEQ 

a:=3 
CASE a 

7 
a:=a+4 

3 
a:=a/4 

ELSE 
a:=O 

The ELSE process at the end will execute only if no previous processes were executed. 

Procedure subroutines are created with the PROC (process) definition. A simple process with two 

arguments, double, is illustrated here. Notice that the type of each argument must be stated. 

PROC double(INT argl, arg2) 
SEQ 

argl:=arg2*2 

A colon indicates the end of a process definition. The procedure is called with a statement of the 

procedure name: 

INT a,b: 
SEQ 

a:=4 
double(a,b) 

Functions are defined in a slightly different way. A function is defined with a data type, and must 

explicitly return a value: 

INT FUNCTION double(INT arg) 
VALOF 

RESULT (arg*2) 
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As with a process, a function is called by using the name of the function with the appropriate 

arguments: 

INT a,b: 
SEQ 

a:=4 
b: =double (a) 

In order to assist programmers in the organization and construction of large programs, the occam 

language supports the use oflibraries. These libraries can be defined as separate routines accessible 

to any other program which refereneces the library. A library can be accessed by including the 

statement: 

#USE "library_file_name" 

within the scope of any references to routines or variables defined within the library. 
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SYSTOLIC ARRAY FOR LINEAR AND 

INVERSE MATRIX SYSTEM 

5.1 Introduction 

T HE problems of solving linear systems and matrix inverses are central in scientific 

computations. In addition to the scientific computations, they have found wide applications in 

areas such as digital signal processing, control systems, image processing and finite element analyses. 

Among the various methods for the linear system solution and matrix inversion, the method ofLU 

decomposition with backward and forward substitutions, motivated by Gaussian elimination, is proved 

to be an efficient method for solving linear systems as well as matrix inverse. 

When the number of equations is larger than the number of unknowns in a linear system, we need find 

the least squares solution of the system; and the corresponding matrix inverse becomes pseudo

inverse. For the least squares and matrix pseudo-inverse problem, orthogonization procedures such 

as QR decomposition are more appropriate .. 

The solution oflinear systems (or least squares problems) and matrix inverse (or pseudo-inverse) 

requires a computational load of O(n3) operations (or O(mff) for least squares problems' and pseudo

inverse problems). As the demands for fast computing increase, e.g. in real time signal processing and 

real time control, the parallel processing for the linear system and matrix inverse becomes highly 

necessary. 

Systolic array architecture is very efficient for parallel matrix computing since the architecture is easy 

to implement by advanced VLSI techniques owing to its characteristics oflocal connections, data flow 

structures, regular modules of processing elements. Many systolic architectures have been developed 

for matrix computations such as matrix multiplication, matrix triangularization, SVD, etc. 
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In this chapter, we use the LU decomposition and QR decomposition methods, introduced by W.M. 

Gentleman and H.T. Kung [GentlemanSI], to solve the linear systems (and least squares problems) 

and matrix inversion (and pseudo-inverse) [Evans93b]. In the next section, a brief treatment for 

solving linear systems and matrix inverse is given. Sec. 5.3 describes the systolic array for linear 

systems using LU decomposition in detail. Sec 5.4 extends the result in Sec. 5.3 by applying QR 

decomposition in the elimination to compute the pseudo-inverse of a rectangular matrix and solving 

least squares problems. Sec. 5.5 discusses the possible applications of the proposed systolic arrays. 

Sec. 5.6 analyses the performance of the systolic architecture while Sec. 5.7 presents a more efficient 

solution for linear system and matrix inverse. Sec.5.S summarizes the chapter. The simulation of the ~ 

systolic architecture in a single transputer by the parallel language Occam 2 is appended in Sec. 5.9. 

5.2 Solution of Linear Systems and Matrix Inverse 

Consider the problem of finding X such that 

AX=B (5.1) 

where A is an /lXI/ matrix, X an I/ Xp matrix and B an I/ Xp matrix. The matrix A is assumed to be 

nonsingular throughout the chapter. Eq. (5.1) represents a multiple right-hand-side (rhs) linear system 

problem. To solve the system, the matrix A is factorised into the product of Land U, that is 

A=LU (5.2) 

where L is lower triangular and U is upper triangular if the first (/I-I) principal submatrices of A are 

nonsingular. Then the problem becomes two triangular systems 

LY=B (5.3) 

ux=y (5.4) 

The first triangular system in Eq. (5.3) can be solved by the forward substitution method while the 

second one in Eq. (5.4) can be solved by the back substitution. 
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The above discussion is based on the presumption of the existence of the LU decomposition of the 

given matrix A. However, the LU decomposition described above does not always exist or maybe 

causes numerical instability in some cases. The pivoting approach is then introduced in order to 

guarantee the existence of the LU decomposition and to improve the numerical stability. The 

modification of the above decomposition is given as 

PA=LU (5.5) 

where P is the permutation matrix with the dimension of /IX/I and PA is a row permuted version of 

the original matrix A. The triangular systems then become 

LY=PB (5.6) 

ux=¥ (5.7) 

There are several methods for pivot selecting. For example, the column pivoting and the complete 

pivoting are commonly used to ensure a stable solution. The following algorithm describes the LU 

decomposition with column pivoting [Golub89]: 

for k= 1:/1-1 

end 

pivot finding: determine Il so that IA(I',k)=IIA(k:n,k)1I., k<l'<n 

exchange rows: A (k,k:n)-A (I',k:n); piv(k) = I' 

if A(k,k).O 

for j=k+ I :/1 

construct multiplier: m =A (j,k)/A (k,k) 

row operation: A(j,k:n)=A(j,k:n)-A(k,k:n)*m 

end 

end 

However, the global communications are involved in the above algorithm in selecting the pivots by 

comparing the entries of certain columns of the matrix A. The algorithmis hard to be localized in order 

to form a systolic algorithm. A modification of the method of selecting pivots is necessary so that the 

global communications are avoided. Gentleman and Kung first proposed the neighbour pivoting 

strategy to make it possible to implement the triangular factorisation in a systolic array [Gentleman81]. 
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The solution of the upper triangular system in Eq. (5.7) is easily obtained by the back substitution 

method. The algorithm for the back substitution can be expressed as follows: 

Y(II,! p)=Y(II,1 p)/U(II,II) 

fori=II:(-I):! 

• 
Y(i,l :p)=(Y(i,1 :p)- L U(ij)YU, 1 :p))/U(i,i) 

j-i.l 

end 

The forward substitution is a similar algorithm as the back substitution and we do not list it here. 

Assuming that B is an IIXII unit matrix I in Eq. (5.1), the problem of finding X then becomes the matrix 

inverse problem, i.e., 

X=A- 1 (5,8) 

Therefore, we can use the same systolic array to solve the problems of both the linear system and the 

matrix inverse. 

5.3 Systolic Array for Linear and Inverse Matrix Systems 

In this section, we first introduce the systolic array for LU decomposition. Then the systolic arrays 

for back substitution and matrix multiplication are also discussed. Finally, we combine these systolic 

arrays together to form a new Systolic Array for the Linear and Inverse Matrix Systems (SALIMS). 

5.3.1 LU Decomposition 

In Chap. 4, we have designed systolic arrays for LU decomposition. We redraw the triangular systolic 

array for LU decomposition originally introduced by Gentleman and Kung [Gentleman8!] in Figure 

5.la. The systolic array enjoys a pipelining period of I and thus it is preferred for many applications. 

There are two types of processing elements (PEs) or cells which we name as circle element/cell and 

square element/cell respectively. The details of the PEs are given in Figure 5. I b where the neighbour 

pivoting scheme is adopted to ensure a stable solution while local communication property of systolic 
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array is maintained. During each time step, each circle element executes one division and a 

comparison while each square element performs one inner product step (ips). 
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if Ix.inl>x 

x.in v=TRUE 

I m=-u/x.in, x=x.in 
~m,v) 

X ~ else 

v=FALSE, m=-x.in/~ 

end 

x.In if v 

x.out=x+m *x.in 

x=x.in 

else 

x.out=x.in+m *x 
x.out 

end 

(b) 

Figure 5.1 Systolic array for LU decomposition: (a) The array; (b) PE definitions 

The upper triangular matrix U is stored in the triangular array after the matrix A passes through the 

array. However, the lower triangular matrix L as well as the permutation matrix P cannot be derived 

from the array directly. 

In our case of solving linear systems and matrix inverse, we attach a rectangular array at the right hand 

side of the triangular array as shown in Figure 5.2. The square elements have the same function as 

those in the triangular array. Instead of storing information about Land P, the matrix L -lpB, i.e. the 
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matrix Y in Eq. (5.6), is 

stored m the PEs of the 

rectangular array. This is the 

same operation as the 

forward substitution of Eq. 

(5.6). It IS easy to 

understand when we note 

that the systolic array 

performs the operation of 

premultiplying the input 

matrices of both A and JJ by 

L -Ip. 

5.3.2 Back Substitution 

After the triangularization of 

the matrix A and the forward 

substitution 

a 
" 

a 
JI 

a 
!I 

a 
" 

a 
" 

a a 
" JJ 

a a 
" " 

a a 
" " 

a 
" 

Chap. 5 

b 
" 

b b 
" " 

b b b 
" " u 

b b b b 
" " " " 

a b b b 
" " " " 

a b b 
" " " 

a b 
U " 

a u 

respectively in Eqs. (5.5) and Figure 5.2 Systolic array for LU decomposition and forward 

(5.6), there remams the substitution 

problem of solving the 

triangular system in Eq. (5.7). In Sec. 5.2 we describe an algorithm in sequential form for the back 

substitution. Based on the algorithm, we can design systolic array to solve the upper triangular system. 

There exist different kinds of systolic array for solving a upper triangular matrix system. For example, 

we could use the linear array of Kung and Leiserson [KungHTSOc]. Although the linear array is 

efficient to solve a given triangular system, there are difficulties to connect the output of the systolic 

array in Figure 5.2 to the input of the linear array for solving a triangular system. 

We propose here an on-the-fly solution of the triangular system by using the same systolic array shown 

in Figure 5.2. Assume that the entries of the upper triangular matrix U is stored in the triangular 

systolic array shown in Figure 5.3a with the PE definitions shown in Figure S.3b. The matrix C of 

size qXI/ enters into the systolic array from the top of the array. The output matrix at the right hand 
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side of the array is (CU-I)T. If C is set to an /lX/I unit matrix I, the output is the inverse of the U 

transpose. 

If we multiply the Y by 

(CU- I
)" we can obtain the 

solution of Eq. (5.7) when C C 
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systolic array for the matrix 

multiplication, which we have 

intensively studied in Chap. 

3, is illustrated in Figure 5.4. 
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can be obtained at the lower Figure 5.3 Systolic array for computing (CU·I)T 

side of the array. 

5.3.3 Systolic urrayfhr linear 

system 

Having discussed the systolic arrays 

for the LU decomposition, the 

forward substitution, the backward 

substitution and the matrix 

multiplication, we can combine these 

arrays to compose a more complex 

systolic array to solve the linear 

system as well as matrix inverse. 

The computation of the systolic array 
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Figure 5.4 Systolic array for matrix multiplication 
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can be divided into two 

phases. In the first phase, the 

LU decomposition and the 

forward substitution are 

executed in a triangular array 

and a rectangular array 

respectively. Then the back 

substitution, including the 

triangular matrix inverse and 

the matrix-matrix 

multiplication, IS also 

executed In a triangular 

systolic array and a 

rectangular systolic array 

respectively during the 

second phase. Thus we can 

implement the two phase 

processing In the same 

systolic array. Figure 5.5 

presents the systolic array 

with the input data and 

output data. Figure 5.6 

defines the PE functions for 

the SALIMS. The definitions 

is actually a combination of 

the definitions in Figures 

5.1 b, 5.3b and 5.4b. 
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With the four matrices A Figure 5.5 Systolic array for linear and inverse matrix system 

(I/XI/) . B (I/Xp). C (q X 11). D 

(qxp) as the input arranged in a form as given in Figure 5.5, the systolic array can compute the 

following output 

X=CA-IB+D (5.9) 
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If the matrix C is a unit matrix and J) is a zero matrix, the array gives the solution oflinear system as 

in Eq. (5.1). This systolic array can solve many other problems which we will discuss in a later 

section. 

It is noticed that there is a slight difference between the definitions of the PEs in triangular array and 

the PEs in rectangular array during the back substitution phase. The PEs in rectangular array can be 

modified so that the square PEs in the whole array have same function by changing addition operation 

into subtraction. This modification cause the output matrix of the systolic array to change from 

D +CA -IB to D-CA -lB. Therefore the systolic array has only two type of PEs after this modification. 

In the PE definitions, we also add one control signal p into the vertical data channels to signifY the 

computation phases. 

The array stores the results of the upper triangular matrix U in the triangular sub-array and the matrix 

Y, i.e. L -lpB, in the rectangular array. The array outputs the matrix (CU-1)T on the right hand side 

and matrix X at the bottom of the array. 

5.4 Least Squares Problems 

The systolic array discussed in the last section can be immediately extended to least squares problems 

by applying the QR decomposition instead of the LU decomposition. 
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Let A be a rectangular matrix of size mXlI, with m~n (in practice, we often have m»n), b a column 

vector with m components, and x an unknown column vector with /I components. The linear system 

Ax=b has more equations than unknowns. This is an overdetermined system and thus there is, in 

general, no exact solution for such a system. The LU decomposition method used in the systolic array 

discussed above can not handle this kind of linear system. 

Now we seek to mmlmlse the Euclidean norm of the vector IlAx-hll. Assume that the QR 

decomposition of the matrix A can be given by A=QR (more details can be found in Chap. 4). We 

apply the triangularization process to both the matrix A and the vector h to obtain 

(5.10) 

where RI is an upper triangular matrix of size I/XI/ (the first 11 rows of R). Since Q is orthogonal, we 

have 

(5.11) 

Thus to minimize IIAx-hll, we need to minimize the first term in the right hand side of the above 

equation as the second term is a constant value. Consequently, the solution of the least squares 

problem is the solution to the system of 11 equations 

(5.12) 

and the residual error is IIQ2bll [Golub89]. The above discussion can be also expanded to a multiple 

right hand side least squares problem AX=/J with the solution as given by 

(5.13) 

If B is a unitary matrix, X becomes the pseudo-inverse of the matrix A 

(5.14) 

When A is a full-rank square array, the above solution to least squares problem and matrix pseudo

inverse become respectively the usual solution linear system and matrix inverse as discussed earlier. 
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In this sense, the least squares system can be considered as a generalized linear system while the 

pseudo-inverse can be considered as a generalized matrix inverse. 

Now we explain how the systolic array in Figure 5.5 can be modified to find the least squares solution 

and the matrix pseudo-inverse. We modify the PE definitions in Figure 5.6 by changing the LU 

decomposition operation into QR decomposition while keeping the rest operations unchanged. The 

input matrix A, IJ, C and J) are arranged in the exact same format as shown in Figure 5.5 except that 

A can be a rectangular matrix now. 

During the first phase, i.e., QR decomposition phase, the systolic array performs the Givens rotations 

on the matrices A and B. The triangular array performs the operation of Q TA and results in an upper 

triangular matrix RI which is stored in the individual PEs in the triangular array. In the mean time, 

the rectangular array perfonns the operation of Q TB and stores the result of Q IB in the individual PEs 

in the rectangular array while Q,B is propagated out of the array at bottom. 

The second phase is the back substitution. The triangular matrix receives the input C and sends the 

output (eR-I), to the rectangular array. The rectangular array performs matrix multiplication and 

addition operation and generates the following result: 

(5.15) 

Thus the systolic array can be used to solve the linear squares problem and find the matrix pseudo

inverse by setting the input matrix appropriately. 

5.5 Possible Applications 

Although the systolic array is designed for linear system solution (or least squares problem), it can 

solve a variety of linear algebra problems. From Eqs. (5.9) and (5.15), we can easily find more 

applications by setting the four matrices A, B, C, and J) in different ways. 

We will concern with only the systolic array using LU decomposition here, but the results can be 

applied to the systolic array using QR decomposition. The systolic array can solve different kinds of 

linear systems including the right side system and the left side system. It can compute the matrix 
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inverse with B=C=/ and /)=0. The matrix-matrix-multiplication and the matrix-multiplication-and

addition can be solved by the same array. The array also gives the result of the LU decomposition by 

storing U in the triangular array. Table 5.1 lists out the possible applications of the array and the 

settings are also given for the different problems. 

Table 5.1 The possible applications of the proposed systolic array 

right side linear 

left side linear 

linear 

linear <v<'rpm 

matrix-matrix 

matrix multiplication 

and addition 

LU decomposition 

matrix inverse 

Faddeev's 

AX=B C=/. /)=0 

XA=C B=/. /)=0 

C=/ 

B=/ 

CB A=/. /)=0 

CJJ+D A=/ 

A=LU 

AX=/ or XA=/ JJ=1 D=O 

X=CZ+D 

X=CB 

X=C1H/) 

U stored in the 

X=D+C;f'B 

The above list includes only the multiple right hand side systems and matrix-matrix operations. Their 

special case contains single right hand side systems and matrix-vector operations which we do not 

provide with Table 5. I. 

The use of QR decomposition can augment the above list by including a variety of least square 

problems and pseudo matrix inverse. The above list may be further extended by applying the basic 

operations in the list to practical problems or by combining with another systolic array to solve other 

problems. 
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5.6 Performance Analysis 

In this section, a brief treatment is given on the performance analysis of the proposed systolic array 

architecture in Figure 5.5. 

The number of processing elements in the systolic array is n(n + 1 )/2 +np. The circle processing 

element executes a division with a comparator in the LU stage during each time step while the square 

processing element performs one inner product step operation. Roughly both types of PEs have the 

same computational complexity. We use the term "flop" to refer to a inner product step or a division 

operation with comparison. 

The systolic array has a pipelining rate of I, which makes it very attractive. The block pipelining 

period of the systolic array is (lI+q). 

The systolic array staMS its computation when the first element of A enters into the PE at the top left 

corner. It takes (11+1'-1) time steps before the last element of the first row s>f IJ reaches the systolic 

array at the top right corner due to the skew format of the input data. Afterwards, it takes another 

(lI+q-l) times step for the last element of the last rows of J) to reach the top right PE. The 

computation result at the top right PE will propagate vertically (and be modified) until it passes 

through the systolic array after 11 time steps. Therefore, the systolic array requires a 311+p+q-2 

computation time to complete the operation in Eq. (5.9). 

Below, we will discuss the speedup and efficiency of the systolic array for different problems. 

5.6.1 The Right Side Linear ~ystem Solution 

The LU decomposition requires n '/3 flops while both the backward substitution and the forward 

substitution stages require n 2pl2 flops. Therefore it requires n '13 +n 2p flops to solve the linear 

system in Eq. (5.1) using the LU decomposition method. 

To solve the linear system, we need to set C to be a unit matrix of the same size as A, i.e., (FII. Thus 

the computation time for the right side hand linear system is 411+1'-2. The speedup of the array is 

therefore given by 
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The efficiency is 

n 3 

_+n 2p 
3 .---=---

4n+p-2 

s 
e = -----"--

n(n+ I) 
----'--.:..+ np 

2 

If P is much smaller than 11 and 11 is large enough, we have 

1 2 s=-n, 
12 

1 
e=-=16.7% 

6 

If P is equal to 11, the speedup and efficiency become 

s=~n 2 e=.!..= 17.8% 
1 s' 45 

Chap. 5 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

For k linear systems solved in a pipeline way, it requires ken 3/3 +n 2p) flops finishing the multiple tasks 

in 2kll+(211+p-2) steps. Thus, the speed up becomes 

.' 2 k(-+n p) 
---'::..'---s-
2kn+(2n+p-2)' 

lim s=~(~+p) 
2 3 

Similarly, we can obtain the efficiencies of the array as 

5.6.2 Faddeev's Algorithm 

e=1I3=33.3%, for p«n 
e=4/9=44.4%, for p=n 

(5.20) 

(5.21 ) 

Faddeev's algorithm computes the matrix X in Eq. (5.9). It requires n 3/3 +n 2p flops to compute A -'B 

by the method of LU decomposition and the backward and forward substitutions. The remaining 

matrix multiplication and addition requires n 2p flops. In total, it therefore needs n 3/3 + 2n 2p flops 

to calculate the matrix X. Now the speedup becomes 

.' 2 -+2n p 
3 s-""::""-- (5.22) 
4n+p-2 

For a single computing task, the efficiency is 
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e=1/6=16.7% for p<<n 
e=14/45=30.1% for p=n 

Similarly, we can obtain the efficiency for multiple tasks as 

5.6.3 Matrix Inverse 

e= 1/3 =33.3% for p<<n 
e=7/9=77.8% for p=n 

Chap. 5 

(5.23) 

(5.24) 

For matrix inverse, the array has the same speedup and the same efficiency as those for the linear 

system with p=/1 as discussed above if we do not consider the special property of the setting B=/. 

Below, we will consider the speedup and efficiency of the systolic array when specially applied for 

matrix inversion problem. 

The LV decomposition still requires n 3/3 flops. We can find that the forward substitution stages 

require n 3/6 flops by taking into account the special property of the matrix B=/. The back 

substitution takes n 3/3 flops because the right hand side after the forward substitution is a triangular 

matrix. Totally it requires 5n 3/6 flops to find the matrix inverse. In this case, the speedup and 

efficiency of the systolic array for finding the matrix inverse will be reduced. The speedup of the array 

is given by 

(5.25) 

The efficiency is 

s 1 e- ~-

_"o..( "_+...cl.:-) 2 9 +" (5.26) 

2 

Similarly, we can obtain the efficiency for multiple tasks as 

s=5" 2/12, e=5/18=27.8% (5.27) 
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5.7 A More Efficient Systolic Array for Linear System 

We consider the systolic array in Figure 5.5 to solve the following problem 

(5.28) 

According to Table 5.1, it is required to set /)=0 and B=J. We assume that no pivoting is needed to 

find the solution in Eq. (5.28), i.e., P=J. During the first phase of processing, the systolic array 

receives the matrices A and B(=/), and then performs the LU decomposition and the forward 

substitution to result in an upper triangular matrix U(= L -IpA) and a lower triangular matrix 

L -I(=L -lpB). In the second phase, the matrix X in Eq. (5.28) can be computed. 

Note that in this special case, we 

have a resultant lower triangular 

matrix and an upper triangular matrix 

after the first phase of computation. 

This suggests that a triangular array 

can be used in order to reduce the 

number of PE required instead of the 

rectangular array in Figure 5.5. As 

the matrices B(=/) and /)(=0) are 

constant matrix, we can eliminate the 

input channels for them and modify 

the PE functions accordingly. The 

modified systolic array with less PEs 

is shown in Figure 5.7 where the PE 

definitions are also included. 

This systolic array for computing 

CA -I was first proposed by Comon 

and Robert [Comon87]. This design 
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was also obtained by the multimesh Figure 5.7 A more efficient systolic array for linear system 

graph method (MMG) In 

[Moreno92]. 
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This array can also be used to solve a right side linear system which can be obtained by transpose of 

a left side linear system. 

This systolic array is more efficient than the systolic array in Figure 5.5 when it is used to solve linear 

systems and find matrix inverses. It has 11(11+ I) PEs comparing 11(311+ I )/2 for the previous systolic 

array :-vith p=lI. This means a 50% saving of hardware while keeping the same throughput. The 

previous systolic array has an advantage that it can solve more problems using the same array. 

This systolic array has a constraint that it can not be used to solve a linear system or a matrix inverse 

when pivoting is necessary due to the array structure. There are, however, some important matrix 

systems which do not need pivoting. Examples are strictly column-sum dominant matrix (in which 

the element on the main diagonal is larger than the sum of the magnitudes of the remaining elements 

of that column), diagonal dominant matrix, and positive definite matrix [Nielen91]. 

5.8 Summary 

In this chapter, a Systolic Array architecture for Linear and Inverse Matrix Systems (SALIMS) is 

designed by combining LU decomposition, backward and forward substitutions and matrix 

multiplication in a lip + 11(11 + 1)/2 PE array. The array can be used to solve a variety oflinear systems 

and other problems such as matrix multiplication etc. The architecture is simulated in a single 

transputer by Occam 2 and the program and some numerical examples are presented in the 

appendices. 

We also expand the systolic array by applying the QR decomposition instead of LU decomposition. 

The QR decomposition has a more stable numerical property. The introducing of the QR 

decomposition also allows the systolic array to perform least squares solution and pseudo-inverse 

computation. 

We also present a more compact and efficient systolic array for linear systems and matrix inverse when 

pivoting is not necessary. 
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The proposed systolic arrays can solve a lot of problems including the linear system and the matrix 

inversion. We have analysed the performance of the systolic array in Figure 5.5. The array has 

different efficiencies for different problems. In some cases such as matrix inverse, it is not very 

efficient. However in cases such as Faddeev's algorithm it is very efficient. Like most of other systolic 

arrays, this systolic array is much more efficient when processing multiple systems in a pipeline way. 

The feature that the array can solve the many problems is very interesting. The complex computing 

problems composed of different kinds of matrix operations may be easily solved by this array. 

5.9 Oeeam Program List 

5.9.1 Occam Program for the Systolic Architecture 

Systolic Array for Linear and Inverse matrix 
Systems (SALIMS) via LV Decomposition Technique 

hyC.R WAN 

- user call 

#USE snglmath 
#USE useno 

-- declarations 

PROTOCOL MV [S REAL32; 800L: 

VAL[NTn[S3: -- nxn is the dimension of the input matrix 
VAL[NTp[S3: - n), .. p is the dimension of the matrix B 

VAL INTn2 IS 0·2: 
V AL INT np IS o+p: 

V AL INT triangular.element IS (0·(0+1»/2: 
V AL INT square.element IS n*p: 
V AL INT total.element IS triangular.element+square.element: 

[nlln) REAL32 A: 
[02) [np) REAL32 X: 
[nllp) REAL32 Aoulput: 

- the input matrix 
- the extension of matrix A 

- the inven;e of A 

V AL INf numchan ver IS total.element+p: - number of the ver channels 
V AL INT num.chan.har IS totaLelement: - number of the hor channels 

[nurn.chan.verJ CHAN OF REAL32 pipe. vertical: 
- Channels above and on the 

[nwnchan.hor] CHAN OF MV pipe.horizontal: - right of each element 

[numchan.ver) INT row: 
[num.chan.ver] INT col: 
[n+lJ[np) [NT num: 

INT any: 

- data preparation 

- row number of ith element 
- col number of ith element 
- order number for ith row 
- and jth column element 

PROC data([][)REAL32 A. [][)REAL32 Xl 
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[n)IP) REAL32 8: .. I A 8 I 
[n][n] REAL32 C: - X=I I extended input matrix 
[n)IP) REAL32 D: .. leD I 

SEQ 

- assign values for matrix A 

A[O][O):= 1.0 (REAL32) 
A/OJ[l):= 0.0 (REAL32) 
A[0][2):= 3.0 (REAL32) 
A[l][0):~2.0 (REAL32) 
A[lJ[l):= 4.0 (REAL32) 
A[l][2):= 1.0 (REAL32) 
A[2][0):= 3.0 (REAL32) 
A[2J[l):= 2.0 (REAL32) 
A/2][2):= 6.0 (REAL32) 

- assign values for matrix B (mcp unit matrix) 

SEQ i=O FORn 
SEQj=O FORp 
[F 

i=j 
8[iW):=1.0 (REAL32) 

TRUE 
8[iW):=O.0 (REAL32) 

- assign values for matrix C (nxn unit matrix) 

SEQi=OFORn 
SEQj=O FOR n 

[F 

i=j 
C[iW):=1.0 (REAL32) 

TRUE 
C[iW):=O.O (REAL32) 

- assign values for matrix D (nxp zero matrix) 

SEQi=OFORn 
SEQj=O FOR P 

D[iW):=O.O (REAL32) 

- assign values for matrix X ( (n+n)x{n+p) matrix) 
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SEQi=O FORD 
SEQj;() FOR n 
X[iIUJ:=A[iIUJ 

SEQi=O FORD 
SEQj=O FORn 
X[n+iIUJ:=C[iIUJ 

SEQi=O FORD 
SEQj=O FORp 
X[iJ[n+jJ:=B[iJ [j] 

SEQi=OFORn 
SEQj=O FORp 
X[n+iJ[n+jJ:=D[iIUJ 

- display X on screen 

write.full.string(screen, 'The Extended Input Matrix: ") 
newline(screen) 
newline(screen) 
SEQ i;() FOR n2 

SEQ 
SEQj=O FOR np 

write.real32(screen., X[i][j], 6, 2) 
ncwline(screen) 

newline(screen) 

- defme the function of circle elements of triangular array 

PROC circle.eiement(CHAN OF MV east. CHAN OF REAL32 north) 
REA1..32 x, x.in, m.out, z: 
BOOLv.out: 
SEQ 

- 1. initialisation 

x:= 0.0 (REAL32) 

- 2. LV decomposition 

SEQi=O FORD 
SEQ 
north? x.in 
IF 
ABS (x.in) >= ABS (x) 

SEQ 
v.out := TRUE 
IF 
x.in <> 0.0 (REAL32) 
m.out := -(xlx.in) 

TRUE 
m.out:=O.O (REAL32) 

x:=x.in 
TRUE 

SEQ 
V.out;= FALSE 
m.out := -{x.infx) 

east ! m.out~ v.out 

- 3. Back substitution ( inverse ofU) 

SEQi=O FORD 
SEQ 
north? x.in 
z:=x.in/x 
east ! z; TRUE 

- define the function of square elements oftrianguJar array 

PROC square.e1ement.T(CHAN OF MV west, east, CHAN OF REAl32 
north, south) 

REA1..32 x, x.in, x.out, m.in, z: 
BOOLv.in: 
SEQ 
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- 1. initialisation 

x:= 0.0 (REAL32) 

- 2. LV decomposition 

SEQi=OFORn 
SEQ 

PAR 
north? x.in 
west? m.in; v.in 

IF 
v.in 

SEQ 
x.out := x+(min*x.in) 
x :=x.in 

TRUE 
x.out := x.in + (min*x) 

PAR 
south! x.out 
east ! m.in; v.in 

- 3. Back substitution (matrix multiplication) 

SEQ i=O FORn 
SEQ 

PAR 
north? x.in 
west ? z; v.in 

x.out:=x.in-{z*x) 
PAR 
south! x.out 
east ! z; TRUE 

- define the function of square elements of rectangular array 

PROC square.element.R(CHAN OF MV west, east, CHAN OF REAl32 
north, south) 
REAl32 x, x.in, x.out, z, m.in: 
BOOLv.in: 
SEQ 

- I. initialisation 

x := 0.0 (REAL32) 

- 2. LU decomposition (Forward substitution) 

SEQ i;() FOR n 
SEQ 
PAR 
north? x.in 
west? m.in; v.in 

IF 
v.in 

SEQ 
x.out := x+(min*x.in) 
x := x.in 

TRUE 
x.out := x.in+{m.in*x) 

PAR 
south ! x.out 
east ! min; v.in 

- 3. Matrix Multiplication 

SEQi=OFORn 
SEQ 

PAR 
north? x.in 
west ? z; v.in 

x.out:=x.in+(z*x) 
PAR 
south! x.out 
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east ! z; TRUE 

- assign the number to j·th row and j-th colulIUl PE 

PRoe row.col.to.num([)[J INT num) 
SEQ;91 FOR (n+l) 
SEQj~; FOR (np-;) 
num[ q [j] : ~« «2 'np )-( ;-1 ) )'; Y2 )+0-0 

- assign the number to i-tb row and j-th COIUOUl PE 

PRoe num.to.row.cotmINT TOW, []INT col) 
INTk: 
SEQ;91 FOR (n+l) 
SEQj~; FOR (np-;) 
SEQ 
k:~um[;JU] 
row[k]:=i 
col[k]:~j 

- wait until typing any key 

PROC 1)pe.any.kcy() 
INT any: 
SEQ 
\\'TIte.full.string(screen, "Type any key to continue . .. ") 
keyboard? any 
newline(screen) 

- main progranune for the matrix inversion 

SEQ 

- I. preparation 

-- 1.1 display the input data matrix 

data(AX) 
type.any.keyO 

-- 1.2 assign order numbers to elements 

row.col.to.num(nurn) 
num.to.row.col(row, col) 
SEQ 
v.rite.full.string(screen. "The order number of (ij)th element") 
newline(screen) 
SEQ ;~O FOR (n+l ) 
SEQ 
SEQj~O FOR; 

write.full.string(screen.." n) 
SEQj~; FOR (np-;) 
write.int(screen, num[ilUl, 6) 

newline(screen} 
newline{screen) 
type.any.key() 

write.full.string(screen, "The row and column numbers for ith PE") 
newline(screen) 
SEQ i=O FOR numchan.ver 
SEQ 
write.int(screen, i, 6) 
write.int(screen, TOw[i}, 6) 
writdnt(screen, col(;], 6) 
newline( screen) 

type.any.kcy() 

- 2. systolic array processing 
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PAR 

- 2.1 data input 

PARj91 FORnp 
SEQ ;~O FOR n2 
p;pc.vcr1;ca1Ul ! X[;W] 

- 2.2 systolic array 

PAR i=O FOR total.element 
V AL INT irow IS TOw(i]: 
V AL INT icol IS ool(i]: 
IF 
irow=icol 

- 2.2.1 Circle Elements 

circle.element(pipe.horizontal[i}, pipe.vertical[i]) 
(iool<n) AND ( irow<>icol) 

- 2.2.2 Square Elements of Triangular Array 

V AL INT ileft IS (i-I): 
VAL INT idown IS num[irow+I][icol]: 
square.element.T(pipe.horizontal[i1eft], pipe.horizontal[i}, 

pipe. vertical[i}, pipe. vertical[idown]) 
TRUE 

- 2.2.3 Square Elements of Rectangular Array 

VAL INT ;lefllS (;.1): 
V AL INT idown IS num[irow+ IJ[icol]: 
square.element.R(pipe.horizontal[ileft}, pipe.horizontal[i}, 

pipe.vertical[i], pipe.vertical[idown]) 

-- 2.3 data sink for right 

PARi=OFORn 
SEQ j~O FOR n2 

VAL INT inum IS num[i}[n2-1}: 
REAL32 nothingl: 
BOOL notIUng2: 
CHAN OF MV m.v IS pipe.horizonta1[inumJ: 
m.v? nothingl; nothing2 

- 2.4 Receive the Result 

PARi=O FORp 
V AL INT inum IS num[n][n+i}: 
REAL32 nothingl: 
BOOL notIUng2: 
CHAN OF REAL32 output IS pipe.vertical[inumJ: 
SEQ 
SEQj91 FORn 
output? nothingi 

SEQj=O FORn 
output? AoutputU][i] 

- 3. Display the Result 

newline(screen) 
write.full.string(screen, ''llle inverse of the matrix A is:") 
newline(screen) 
SEQ;~O FORn 
SEQ 
SEQj9lFORp 
writc.rcaI32(screen, Aoutput[;lUl, 8, 3) 

newline(screen) 
type.any.kcyO 
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5.9.2 Numerical Examples 

(a). Matrix Inverse 

1 0 3 

A 241 

326 

0.846 0.231 0.462 

X 0.577 0.115 0.269 

0.615 0.077 0.154 

(b). Linear system 

1 0 3 3 

2 4 1 1 

012 

123 

100 

COl 0 

001 

1 000 

o 1 0 0 
A BeD 

000 

000 

3262 234 0010 000 

X 

123 5 345 

2.667 4.833 7.000 

2.111 3.972 5.833 

1.500 2.750 4.000 

0.611 1.472 2.333 

Sec. 5.9 Occam Program List 

o 0 0 1 000 
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Chapter 6 

SYSTOLIC ARRAY FOR SCHUR 

COMPLEMENT COMPUTATION 

6.1 Introduction 

I N this chapter, we propose a systolic array to compute the Schur complement which often 

occurs in the domain decomposition method and other problems in Linear Algebra such as the 

numerical solution of elliptic partial differential equations [Golub89) and sparse linear systems 

[Ortega88]. 

The domain decomposition method can generally result in a block structured matrix system of a large 

SIze. To solve the system using the Gaussian elimination method, the computation of Schur 

component is required. 

As the Schur complement computation involves matrix inversions and matrix-matrix multiplications, 

it always forms the bottleneck for the solution of the problems. Parallel computation of the Schur 

complement is therefore necessary in applications where problem sizes are so large that the sequential 

computing time is prohibitive or where real time environments are involved. A systolic array 

architecture can provide a good solution for parallel processing especially in matrix computing. 

We will use the systolic array for linear and inverse matrix system (SALIMS) discussed in the last 

chapter as the core of new systolic array to compute the Schur complement iteratively [Evans93b). 

In the next section, we begin from the discussion of the domain decomposition method in linear 

algebra and then introduce the Schur complement. Sec. 6.3 describes the systolic array algorithm for 

the Schur complement computation while Sec. 6.4 presents two possible implementation methods. 

Sec. 6.5 provides a systolic array architecture for the solution of the arrowhead matrix system. Sec. 

6.6 analyses the performance of the systolic array including the efliciency and speedup. Finally a 

summary is given in Sec. 6.7. 
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6.2 Schur Component and Domain Decomposition 

We consider algebraic methods 

that rely only on the structure of 

the matrix system without 

exploiting too much knowledge 

about the problem. Assume that 

the domain Q can be divided 

into p subdomains 

{O,li=I,2, ... ,p} which are not 

overlapping as shown in Figure 

6.1. The remaining area outside 

the p subdomains is denoted as Figure 6.1 Domain decomposition 

r. Because r separates the p 

subdomains, it is sometimes called the separator. It is obvious that 

rn( Uo,) =" 
,-I 

o=ru( uo,) 
,-I 

Chap. 6 

(6.1) 

(6.2) 

Firstly, we represent the unknowns in the subdomains {O,li=I,2, ... ,p} as {x,li=I,2, ... ,p}. Then we 

represent the unknowns in the separator as x,. The ·matrix representing the coupling of the unknowns x, 

within the subdomain 0, is named as A, for i= I, 2, ... , P respectively. There is no coupling between 

the unknowns of two different subdomains since they do not overlap. We denote the coupling 

between the unknowns of the subdomains 0, and 0 j as 

{

A. 
C (0,,0)= ' 

P J 0 

if i=j 
(6.3) (i,j=I,2, ... ,p) 

Similarly; the coupling between the unknowns of the subdomain 0, and the separator r can be given 

as follows 
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Cp(1',O)=B; (i=I,2, ... ,p) (6.4) 

while the coupling between the unknowns of the separator r and the subdomain 0; IS given as 

(6.5) 

The coupling of the unknowns within the separator is 

C /1', 1')=A. (6.6) 

Thus, we obtain a linear system of the following form 

AI BI XI b l 

A2 B2 x 2 b2 

(6.7) 

A B X b 
p p p P 

Cl C2 
... C A X b 

p • • • 

The coefficient matrix in the above equation is sometimes called the arrowhead or bordered block 

diagonal matrix according to its geometrical pattern. The system in Eq. (6.7) is a commonly used 

system in linear algebra. It can occur frequently in applications involving differential equations and 

banded systems. 

To solve the system in a direct way, we need to eliminate {r;li= 1 ,2, ... ,p} to get an equation solely on 

the separator. Thus, the Gaussian elimination process is executed on the system, so that the system 

finally becomes 

AI B, XI b l 

A2 B2 x 2 b2 

'. (6.8) 

A B X b p p p p 

A X 6 • • • 

where 
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p 

A =A -"CA-IB 
• 6 L- I I I 

(6.9) 
j-I 

(6.10) 

The matrix A in Eg. (6.9) is the so called Schllr comp/emelll. The computation of the Schur , 
complement consists of matrix inversions, matrix-matrix multiplications and additions. 

Once we solve the following system for x, 

A x =6 " , (6.11) 

the remaining unknowns in the subdomains can be obtained by solving a series of smaller systems 

A x .=b.-B x 
I I I I S 

(i= 1,2, ... p) (6.12) 

From the above discussion, we observe that there are two steps to solve the system in Eg. (6.7). The 

first step is to obtain the Schur complement A, as well as 6, in Egs. (6.9) and (6.10) respectively. 

The second step is to solve a series of small linear systems in Egs.(6, 11) and (6.12). 

In addition to the direct Gaussian elimination method, the problem can be also solved by an iterative 

method, for examples, the successive over relaxation (SOR) method and the conjugate gradient (CG) 

method. In order to make the CG method converge faster, an appropriate preconditioner is beneficial 

and this results in preconditioned conjugate gradient (PCG) method. The construction of the 

preconditioner still encounters the Schur complement computation, or an approximate Schur 

complement computation. More details on the construction of a preconditioner are referred to 

[Golub89]. This shows that the computation of Schur complement is very important in solving the 

system in Eg. (6 7) either by the direct Gaussian elimination method or by a preconditioned iterative 

method. 

In most cases, the matrices A l' A
2

, •.• , A p have the same dimension. In the following discussion, we 

assume that A l' A 2' ... , A pare 11 by 11 nonsingular matrices. The matrix A, is assumed as an s by s 
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matrix. Thus the matrices Bl' B
2

, ••• , Bp are 11 by s matrices while the matrices Cl' C2, ... , C pare s by 

11 matrices. 

In the following section, we propose a systolic algorithm to compute the Schur complement by 

recursively using the systolic array for linear and inverse matrix system developed in Chap. 5. 

6.3 Systolic Array for Schur Complement Computation 

In this section, the Systolic Array for Schur Complement computation (SASCO) is designed. First we 

briefly review the systolic array for linear and inverse matrix system (SALlMS) developed in the last 

chapter. Then we use the SALlMS to accomplish the computation in Eq. (6.9) recursively. Finally 

we explain how b, in Eq. (6.10) is 

calculated. 

6.3.1 Systolic Array/or Linear and 

Inverse Matrix System (SALlMS) 

In the last chapter, we have developed the 

systolic array for linear and inverse matrix 

system [Wan93b 1 which is capable of 

performing 

computation: 

the following 

X=D-CA-1B 

matrix 

( 6.13) 

The SALIMS in Figure 5.5 is redrawn in 

Figure 6.2 with simplified input data 

format. 

The SALIMS receives four input matrices, 

namely A, B, C and D, from top side of the 

D 

B 

X=D-CA' B 

x 

Figure 6.2 Systolic array for linear and inverse matrix 

system 
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array. It performs the matrix computation in Eq. (6.13). The output matrix can be obtained at the 

bottom of the systolic array. 

6.3.2 Systolic Array for Schur Complement Computation 

We rewrite Eq. (6.9) in a recursive form as 

X =A o , 

for ;= 1,2, ... J1 

After p iterations, the matrix X becomes the Schur complement in Eq. (6.9), i.e., 
p 

By comparing Eq. (6.14) with Eq. 

(6.13), we find that Schur 

complement computation can be 

decomposed into p basic matrix 

operations in Eq. (6.13). Therefore 

it is possible to use the systolic array 

in Figure 6.2 to compute the Schur 

complement in a recursive way as 

shown in Eq. (6.14). 

If the input data of the systolic array 

for the Schur complement 

computation (SASCO) is arranged in 

the way as in Figure 6.3 (where the 

skewed data format is ignored for 

simplicity) and the PEs recursively 

perform the operations as required by 

the SALIMS (see Figure 5.6), we can 

A =X , p 

c 
p 

A 
p 

Figure 6.3 Input data for SASCO 

obtain the Schur complement after p iterations at the bottom of the array. 
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X 
p-} 

B 
p 

(6.14) 

(6.15) 
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Now the problem is how can we arrange the input data in the required way? For the triangular array, 

the input data come from entries of matrices AI' A" ... , A p and Cl' Cl' ... , C p and it is convenient to 

arrange them in the required form. However, the input data for the rectangular array need the 

feedback of the output data from the bottom of the array and a special data interface is therefore 

required to arrange the data in the desired form. 

Figure 6.4 shows the proposed 

interface. For the triangular array, the 

data interface receives the arranged 

data which is then sent to the array 

without any extra complexity. For the 

rectangular array, the data interface 

received the data both from the input 

data of the given matrices and from the 

output of the rectangular array. The 

interface then selects the desired input 

according to the processing phase or 

stage so that the data entering into the 

rectangular arrays takes the form as 

shown in Figure 6.3. The detailed 

definition of PEs will be given in a 

later section. 

The adoption of data interface in 

Figure 6.4 allows the output data from 

the bottom of the rectangular array to 

c 
p 

A 
p 

Figure 6-4 Input data for SASCO 

[X
p

_
l 
J 

B ... 

~p \feedback 

: from 

: / bottom 

[Xl! 

B} 
A , 

feedback to the input at the top of the rectangular array. Thus, a correct input data sequence to the 

processing array can be formed. 

6.3.3 Computation of the Right Hand Side 

When we examine Eqs. (6.9) and (6.10), we find that A and b have very similar expressions. We ., , 
can simply attach one column of PEs at the right side of the systolic array to compute the right hand 
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side b . The PEs attached perform the exact same function as those in the rectangular array. The , 
input data to the attached PEs have a same format to the input data to the rectangular array in Figure 

6.4. The systolic architecture which is able to compute both A and b with attached PEs is shown • • 
in Figure 6.5. 

Triangular array Rectangular array 

Figure 6.5 Attached PEs for computation of the right hand side 

The systolic array in Figure 6.5 can compute the Schur complement A. in Eq. (6.9) as well as the right 

hand side b in Eq. (6.10) in the same time. If the right hand side is of multiple columns, we can , 
attach multiple columns of PEs at the right side of the systolic array. 

6.4 Solution of the Arrowhead Matrix System 

In Sec. 6.3, we have designed the systolic array to perform the Schur complement computation. 

There is still the task left for solving the linear systems in Eqs. (6.11) and (6.12). Recalling that the 

systolic array in Figure 6.2 can be used to solve linear system, we can implement the computations in 

Sec. 6.4 Solution of the Arrowhead Matrix System 170 



Systolic Array for Schur Complement Computation Chap. 6 

Eqs. (6.11) and (6.12). We first assume that the matrices A I' A , •...• A p and A, have same dimension. 

i.e .. n=s. We add more PEs at the bottom of the array to complete the tasks given in Eqs. (6.11) and 

(6.12). The resulting processing array is shown in Figure 6.6. 

After the Schur complement 

computation. the systolic array 

solves the linear system in Eq. 

(6.11). The Schur complement 

A and a unit matrix I are input , 
to the triangular array and b, is 

sent to the attached PEs at right. 

The solution ofEq. (6.11). -x,. 
is sent to the attached PE at 

bottom (represented by shaded 

squares) and it is stored in the 

individual PEs for later 

processing. 

Subsequently. the linear systems 

in Eq. (6.12) can be solved. 

This can be conceptually showed 

as follows. The systolic array 

receives A I' Bland b I through 

the data interface at top. Then 

the array computes -A; I B I and 

-A;lbl which are sent to the 

I o o 

FigUloe 606 Systolic array for the solution of the arrowhead matrix 

system 

attached PE array at bottom. The attached PE array at bottom perform the computation of matrix 

multiplication-and-addition. Thus it generates an output matrix of -XI = - A;I b I + A ;IB IX,. This 

procedures is repeated until all the systems in Eq. (6.12) are solved. 

In the case of a single right hand side system to be solved. the shaded square PEs can be combined 

with the interface PEs. The interface PEs for this alternation are required to be communicated 
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horizontally and -x, should be sent to the most left intedace PE for the rectangular array in the middle 

part. 

If s>n, the proposed array can still solve the system in Eq. (6.11). However, partitioning of a larger 

system (of order s) is needed in order to be solved in a smaller array (of order 11). The introduction 

. of partitioning mechanism also necessitates more sophisticated data interface. 

6.5 Two Possible Implementation Methods 

In this section, we present two possible methods to implement the systolic algorithm discussed above. 

In the first method, each PE is programmed such that it knows the every function to be performed 

during each clock tick before the input data arrives. We call this method an internal control method. 

In the second method, we programme each PE with only the basic operations, eg, inner product step 

(ips), division, while the outside world (host processor) provides control signals to tell the PE which 

function is active during the given clock tick. This method is termed an external control method. 

6.5.1 Internal Control Method 

We define the PEs for SASCO in the middle of Figure 6.7. The PE definition can be nlrther extended 

to include the nmction for solving the linear systems in Eqs (6.11) and (612). The definition specifies 

what the PEs will do in every clock tick (or time step). The PEs know exactly how many steps will 

be run and what kind of operation will be performed in every time step. All the iteration loops are 

inside the PEs and each PE then has a more complex program structure. This requires each PE has 

a degree of programmability. In addition, some global parameters, for example, 11, sand p, should be 

sent to each PE before the PE begins to perform its operation. 

The square PEs and the circle PEs perform useful operations required by the Schur complement 

computation while the rectangular PEs (both unshaded and shaded) are performing data selecting and 

transferring tasks. The shaded square PEs employed in solving the arrowhead matrix system in Figure 

6.6 can be defined in a similar way although it is not given in Figure 6.7. 
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x.in 
x.in x.in 

t y i 

l (m,vV~'v) ~ .• ~ Q->f:n,V) i 
y Y 

x.oul x.out x.out 'z.in 
---

PE definition for the internal control method 

forj~J:p for j~J:p forj~J:p input Bl and As: 
initialisation: initialisation: for ;=1:(n+s) for ;=1 :(n+s) 
x~O x=O m .... x.in/x x.out=x.in 
L U decomposition: L U decomposition: end x=o 
for ;=1:n [ori=}:n end for j~2:p 

iflx.inl> Ixl ifv fori=}:n 
v~TRUE x.out=x+ In ·x,in x.ollt=x.in 
m =·x/:c. in; x=:c.in x=x.in sink ::. in 

else else 

I 
end 

v~FALSE x.oul=x.in-Hn *x Feedhack: 
m=·x.inb end fori-I:s 
end end ,":.Qu[=Z.in 

end Back.wbsl itllt ion end 
Backsl4bslitulion fori=}:s end 
for ;=1:$ x.oul=x.in-m *x 

m-x.in/x end 
end end 

end 

PE definition for the external control method 

ifmode~O ifmode=O x.oJlt=x.in ifmode=O 
initialisation: in ifialisatjon: {nput 81 and A.~· 
x=o .t~O X.out=x.in 

elseifmode=l e/scl/mode=J elselfmode=l 
LV decomposition: I.V decompo.".ilion: Switch 10 Hi: 
iflx.inl>lxl if v :c.out=.t.in 
v~TRUE X.oul=x+m·x.in sink z.in 
m=-x/x.in; x=x.in x=x.in dseifmode=2 

else else Switch to feedback 
v~FALSE X.oul=x.in+m ·x x.ouI==.in 
m=-x,inJx end end 

end e1seifmode=2 
elseifmode=2 Back.wbs/iilltion 

Backsubstitution x.ollt=x.in-m *:c 
m=x.in/x end 

end 

Figure 6.7 PE definition for the internal and external control methods 

6.5.2 External Control Method 

Another method for the implementation of the proposed systolic array is to define the PEs in the 

bottom of Figure 6.7. We only define the basic function of the PEs. Which functions PEs select 
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during the given time step is dependent upon the external control signals. How many loops the PEs 

will perform is determined by the external control signals as well. The PEs obtain such information 

only from the external control signals. This may provide flexibility to change the size of problems to 

be solved. However, it transfers the complexity to the host processor which provide the control 

signals for all PEs in the systolic array. 

The external control signals can enter the systolic array accompanying with the input data. Ifwe have 

a serial communication channel, we can add two extra bits to the front of each input data to indicate 

the three processing modes given in Figure 6.7. If we have, on the other hand, a parallel 

communication channel, we can add two separate control lines to signal the three processing modes. 

When the systolic array in Figure 6.6 is considered, more processing modes are required. This can be 

implemented with 3-bit control signals which are able to specity up to 8 processing modes. 

6.5.3 The Comparison ol/he Two Mel/7odv 

The internal control method needs no external control signals and this will simplify the data format 

while the external control method needs external control signal which are provided by the host. The 

first method needs global parameters to be sent to the PEs in the array before the computation tasks 

are executed. The second method eliminates the global parameters in the PEs and this allows the 

extension of the array to a bigger problem to be easier. 

The first method is suitable for the soft-systolic and semi-hard systolic [Evans91] implementation such 

as programmable processor array (e.g., Transputer network. WARP machine) while the second one 

is more suitable for hard-systolic implementation such as chip level implementation. 

6.6 Performance Analysis 

In this section, we analyse the performance of the proposed systolic array for the Schur complement 

computation as shown in Figure 6.4. The proposed array employs n(n + 1 )/2 +sn processing elements 

to compute the Schur complement. In addition to these PEs, there are I/+S interface PEs. As the 

interface PEs are very simple, we do not count them into the total number of PEs. The circle PEs and 
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square PEs approximately have the same computational complexity during each clock tick. The 

computational complexity is more or less that of an inner product step (ips). We use the tennflop to 

refer to an inner product step or the operation with similar complexity such as division plus 

comparison in the circle PEs. 

Now we consider the computational load of the Schur complement computation in Eq. (6.9). In each 

iteration, it requires to perform a task as given in Eq. (6.13) which is composed of an LV 

decomposition for an /lX/I matrix, a forward substitution L ;'P,B;, a backward substitution including 

C .U~' and the matrix-matrix multilJlication (CU~')(L ~'p B). These operations requires n 3/3 flops, 
I I " I I I 

n 2s12 flops, n 2s12 flops and ns 2 flops respectively. Then it needs I) iterations to obtain the Schur 

complement. Therefore it requires a total computational load as follows 

(6.16) 

It requires (/I+.\") clock ticks for each iteration. By considering the skewed input data format. the 

number of total computation time becomes 

T=p(n +s) +(n +s- 1) +(n -1)= (p + 1 )(n +s) +n - 2 ( 6.17) 

The speedup of the systolic array is the ratio between the time required for execution of the parallel 

algorithm and the time required by one processor. Eq. (6.16) gives the time required by one processor 

and Eq. (6.17) gives the time required by the systolic array. Thus. the speed up is as follows 

The efficiency of the systolic array then can be given as 

S E = -----'---
.!.n(n+I)+ns 
2 

We consider the case where p» 1 and /I~S. The speedup and the efliciency then become 

(.!.n 3 +n 2s+ns 2)p ~n3p 
,L 3 3 7 2 

S=-= z--pn=-n 
T (p+I)(n+s)+n-2 2 6 
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( 6.18) 

(6.19) 

(6.20) 
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7 2 
S .n 7 

E= z--=-=77.8% 
.!.n(n + I ) +ns ~11 2 9 , , 

(6.21) 

This shows that the proposed systolic array is very etlicient to compute the Schur complement in Eq. 

(6.9). The speedup of the systolic array is significant when 11 is large. Similar performance result can 

be obtained for the systolic array with attach PEs to compute the right hand side. 

Similarly, we can analyse the perfonnance of the systolic an'ay for the solution of the arrowhead matrix 

system as shown in Figure 6.6. 

6.7 Summary 

The computation of the Schur complement in the domain decomposition method often forms a 

bottleneck to the problem of solving the large sparse linear system which occur in the Finite Element 

Method (FEM). We have in this chapter designed systolic arrays for Schur complement computation 

and the arrowhead matrix ,system. 

The proposed systolic for the Schur complement computation employs 11(11+ I )/2+lIs PEs and 

accomplishes the Schur computation in (p+ I )(II+s)+1I-2 clock ticks. The systolic array enjoys a 

pipelining rate of I and achieves a high efficiency to compute the Schur complement. In the case 

where II~S, the speedup is about 7n'I6 and the efliciency is about 77.8%. With an appropriate value 

of 11, we can obtain a significant speed up. This can greatly reduce the time required for solving the 

linear system. 

We have also designed systolic array to solve the arrowhead matrix system which arises in the domain 

decomposition method. 

The designed systolic arrays for the Schur complement computation and the arrowhead matrix system 

solution may be helpful in solving large linear system arising from the finite element discretization of 

elliptic partial differential equations in the domain decomposition method. 
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Chapter 7 

SYSTOLIC ARRAY FOR QR 

DECOMPOSITION OF BLOCK 

STRUCTURED SPARSE SYSTEMS 

7.1 Introduction 

I N this chapter, we present a systolic array architecture for the QR decomposition of block 

structured sparse systems (BS') [Wan94a) which find applications in areas such as 

photogrammetry [Golub79), Doppler radar positioning [Manneback85) and geodetic survey problems 

[Golub80) 

Some of the block structured sparse systems arising in the above-mentioned areas may be extremely 

large in size. For example, the problem of least squares adjustment of coordinates of the geodetic 

stations comprising the North American Datum consists of about six million equations in 400,000 

unknowns. In such problems, the acceleration of the solution of the system, particularly the QR 

decomposition, is very important. Systolic array is one of the suitable candidata,;to perform the 

acceleration of problem solving by using multiprocessing. 

In this chapter, we present a systolic array architecture to compute the QR decomposition of the block 

structured sparse systems. The QR decomposition of the block structured sparse system is broken into 

a certain number ofQR decomposition of smaller size. Then the proposed systolic architecture, based 

on the Gentleman and Kung's systolic array for matrix triangularization [Gentleman8I), computes the 

smaller size QR decompositions recursively to derive the QR decomposition of the block structured 

sparse system. 

The rest of this chapter is organised as follows. In the next section, we will have a brief introduction 

to the block structured sparse systems (which has a dual block angular form) and some of their 

applications. Sec. 7.3 develops the QR decomposition algorithm of the block structured sparse matrix. 
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In Sec. 7.4, we design a systolic array to compute the QR decomposition. Sec. 7.5 deals with the 

simulation of the systolic algorithm by the parallel programming language OCCAM 2 in a single 

transputer system. Finally, Sec. 7.6 contains a summary of the chapter. 

7.2 Block Structured Sparse System 

We discuss a general procedure, 

called substructuring or dissection to 

obtain a block structured sparse 

system (BS3
). As an example, we 

consider a geodetic position network 

consisting of geodetic stations 

connected through observations. 

Each station corresponds to a set of 

unknown coordinates. In geodetic 

B 

problems, the idea of breaking down Figure 7.1 Dissection of a geodetic problem 

a problem into geographically defined 

subproblems connected in a well-defined way has been applied for a long time [Bjorck90]. The idea 

is to choose a set of stations IJ, which separates the other stations into two regional blocks Al and A, 

so that stations in A I are not connected by observations to stations in A,. We then order the station 

variables so that those in A I appear first, those in A, second, and those in B last. Finally, we order 

the equations so that those including A I come first and those including A, come last. The blocking 

of the region is depicted in Figure 7.1 and the corresponding structure of the observation matrix can 

be expressed as 

(7.1) 

More generally, the structure of the observation matrix has the form as follows: 

Al BI 

A= 
A, B, 

(7.2) 
'. 

AM BM 
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where AE!)lM •.•• , A.E!)lm ... , ,and B.E!)lm,·u., for i~/, 2, ... , M. We call this matrix a dual block 
• • 

angular form matrix. 

We also partition the unknown vector x and right-hand side h confonnally with Eq. (7.2), then we 

have 

Then the corresponding linear system can be expressed as 

A x=h 

(7.3) 

(7.4) 

(7.5) 

Some examples where the block stntcture in Eq. (7.2) arises naturally are in photogrammetry 

[Golub79], Doppler radar positioning [Manneback85] and geodetic survey problem [Golub80]. On 

the other hand, a general sparse matrix can be permuted into this form [WeiI71]. More application 

areas of such systems include the molecular stntcture problem, gravity field of the earth, cluster 

analysis and pattern matching. 

In many cases, we often need to find the linear least squares solution of the following problem: 

min IIAx-hll, 
x 

(7.6) 

In order to find the solution of the system in Eq. (7.6), we can use an orthogonalization method. The 

QR decomposition method is one of the most widely used methods with good numerical performance. 

We assume that mE,n E and I'ank(A)=n E Then there is an orthogonal matrix QE!)lm.'m. such that 

(7.7) 

where R is upper triangular with nonnegative diagonal elements. The decomposition in the above 

equation is called the QR decomposition of A. 

We let 
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QTb=( ::) (7.8) 

and notice that Q is orthogonal, the least squares problem in Eq. (7.6) can then be rewritten as 

(7.9) 

Obviously the residual norm is minimised by solving the upper triangular system 

(7.10) 

and its minimum equals the norm of c,. 

Therefore, the QR decomposition is the key stage of the orthogonalization method for least squares 

problems. If the size of the problem is large, the QR decomposition requires a large amount of 

computations and takes a long time. An example given in [Bj6rck90] shows that the problem ofleast 

squares adjustment of coordinates of the geodetic stations comprising the North American Datum 

consists of about six million equations in 400,000 unknowns. In such problems, the acceleration of 

the solution of the system, particularly the QR decomposition, is very important. 

7.3 QR Decomposition of the BS3 

We assume that the submatrices A" A 2' "', AM all have the same size and the submatrices B" B" "', BM 

all have the same size (but different from the size of sub matrices AI'A" ... ,A
M

), that is, 

A,Em~", B,Em~'p for ;=/.2. "', M. We also presume that m~n and rank(A ,)=n for ;=1,2, .... M. 

Now we describe the QR decomposition algorithm in the following steps: 

Step J. Reduce the diagonal block A, to upper triangular form by a sequence of orthogonal 

transformations, and apply these also to the blocks B, and the right-hand side blocks b" for ;= 1, 2, 

.... M, yielding 

Sec. 7.3 QR Decomposition of the BS' 180 



Systolic Array for QR Decomposition of Block Structured Sparse Systems Chap. 7 

(
R. S) T ' , 

Q,(A.B)= 
, , 0 T. , 

(7.11) 

Step 2. Reorder the equations in the reduced system by ordering first the rows corresponding to R" 

for i=1,2, "', M, and lastly the rows corresponding to T,. for i=/.2 . .... M. Form the reduced matrix 

T and the right-hand side 1/ 

T, d, 

T= 
T, 

d= 
d, 

(7.12) 

TM d M 

where T.em(m-.)'p for ;=1.2 ..... M and TeatM(rn-.)·p . , 

Step 3. Compute the QR decomposition of T and transform the vector d 

(7.13) 

(Step 4). For the least squares problem, the residual norm of the system is given by IldM+'~" The 

solution can be obtained by solving the following triangular system: 

RM+IXM+I =CM + 1 

R,x,=c,-S,xM +, (i=1.2 ... ·)1) 
(7.14) 

In the above algorithm, it is required to compute the QR decompositions of the M submatrices 

A l' A" "', AM' and the ol1hogonal transformations on the M sub matrices B l' B" "', BM' and the QR 

decomposition of the M(I1I-II)-by-p matrix T. Of course, the same transformations are also required 

for the right-hand side. 

In the next section, a systolic array architecture is designed to perform all the computations mentioned 

above. 
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7.4 Systolic Array Design 

From the discussion in the last section, we know that in order to obtain the QR decomposition of the 

sparse matrix, we require to perform the computations in Eq. (7.11) iteratively and then perform the 

computation in Eq. (7.13). 

In this section, we give a brief introduction to the widely used triangular systolic array introduced by 

Gentleman and Kung [Gentleman81]. Then, we design a new systolic array based on the Gentleman 

and Kung's array. 

7.4.1 Gentleman and Kung's ~yst()/ic Array.fhr QI? decomposition 

The systolic array introduced by Gentleman 

and Kung has a triangular geometry. The 

input data enter the array from the top of the 

array. After all the data has passed through 

the array, the entries of the upper triangular 

array are stored in the individual processing 

elements (PEs) of the array as shown in 

Figure 7.2. The PE definitions are shown in 

Figure 7.3. A small difference to the 

Gentleman and Kung's PE definition has been 

introduced by the circle PEs in order to 

ensure the numerical stability of the QR 

decomposition. We add a statement to 

examine if the input x. ill and the stored 

variable,. are zeros, or more exactly if their 

absolute values are less than a small number, 

eps. Ifso, we assign I and 0 to the variables 

c and s respectively. The circle PEs then 

perform 2 multiplications and 2 divisions and 

a32 
a31 an 

a
JJ 

a 
JJ 

all 

I I .. '( I~Y-

(:~~)--~2 
.'1_ 

(r \--.. 
22 ) . . 

--' 

a33 
a 

23 

a13 

~ 
r13 ;-----~ 

,~ 

r 23 -~ 

1 
()-~ 

one square root operation required by the Figure 7.2 Systolic array for QR decomposition 
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Givens Generation. The square PEs receive data from north and west, and then perform 4 

multiplications required by the Givens Rotation. 

x.in 

I 
,/~ (c.s) 
~~ 

iflx.inl<eps and Irl<eps 

c=J;s=O 

else 

t=sqrt(r 1+x.in 1
) 

c=rlt; s=x.inlt 

r=t 

end 

Figure 7.3 PE definition for QR decomposition 

x.in 

I 
(c.s) ~:Vc.S) 
-y~ 

y 

x.out 

x.Ollt=c·x.in-s·r 

r=c·r+s·x.in 

This systolic array has been used in many applications in signal processing such as adaptive filtering 

and adaptive beamforming. More details on this systolic array design are given in Chap. 4. 

7.4.2 Systolic Array ji)r the Compuiuiions in Eq. (7. / J) 

In Eq. (7.11), we compute not only the QR decomposition on the matrix A I but also the same 

orthogonal transfonnation on the matrix B I' This can be done by attaching a rectangular array at the 

right side of the systolic array in Figure 7.2. If the right-hand side is required to process, we can 

simply add another column of PEs. Figure 7.4 shows the extended systolic array for performing the 

computations in Eq. (7.11). The PE definition is same as that in Figure 7.3. The systolic array in 

Figure 7.4 can perform the following computation: 

Q~ (A B b)=(RI S, Cl) 
I I I 0 T

j 
d

i 

(n) 

(m-n) 
(7.15) 

The input data is now expanded to the entries of A I' B I and b I' They enter the systolic array from 

the top. The result matrices R., S. and c. are stored in the PE array. The matrices T. and tl are 
I I I I j 

piped out of the bottom of the systolic array. Notice that some zeros accompany with the matrices T. , 
and tl .. The number of the rows of zeros is equal to 11. , 
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A B b 

b' 
5 

b b' 
54 , 

b b b' 
5J " J 

b b b b' 
5) 'J J4 ) 

b b' 
), I 

b b b 
51 4) JJ 

b 
I, 

a b b b 
5J 41 J) )J 

a a b b b 
51 4J JI 11 IJ 

a a a b b 
51 41 JJ 11 11 

a a a b 
41 J] ]J 11 

a a a 
JI ]] IJ 

a a 
]1 12 

a 
11 

d 
] 

t d 
14 I 

t t 0 
]J /4 

t t o 0 
21 /J 

t t 0 o 0 
21 11 

t 0 0 o 
11 

0 0 0 

0 0 

0 T d 

Figure 7.4 Extended systolic array for orthogonalization operation 
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We can use this systolic array in an iterative way so that we can obtain all the matrices of R.,R2,··,RM' 

SI'S2"',S M' CI'C2,",CM , TI'T2,··,T M and dl'd2,··,d M' 'The submatrices A • .:A 2,··,A M' BI'B2,··,B M and 

bl'b
2
,··,b M as input enter the systolic array from the top seguentially and the output data flow out at 

the bottom. 

7.4.3 Systolic Array jor the Computation in Eq. (7./3) 

Notice that the computation in Eg. (7.13) is a QR decomposition of the matrix T as well as the 

transformation on the vector t1. Thus we can use the systolic array with the same structure as shown 

in Figure 7.2 with an attached column of PEs for right-hand side processing to perform the 

computational tasks. 

From the observation on the output of the systolic array in Figure 7.4, we know that the submatrices 

TI'T2,··,T M do not come out in the same way as in Eg. (7.12). Instead some zeros are inserted 

between the adjacentsubmatrices. I n matrix form, we obtain the output as 

o 0 

d. 

0 

J= d
2 (7,16) 

o 0 

dM 

The rearrangement of the matrix t can fonn the matrix Tin order to complete the computation in Eg. 

(7.13). However, the rearrangement will break up the data pipeline structure in the systolic array. 

From the fact that a row of zeros entering into the systolic arrays in both Figure 7.2 and Figure 7.4 

will not change any desired results, we can allow those zeros in Eq. (7.16) to enter the array while we 

can still obtain the same result. In the next subsection, we will discuss the overall architecture of the 

systolic array for the QR decomposition of BS" by employing the systolic arrays in Figure 7.2 and 

Figure 7.4. 
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7.4.4 The Overall Structure of the Sy.l'to/ic Array Architecture/or BS' 

7.4.4.1 The systolic array architecture 

The overall systolic array 

architecture is shown in Figure 

7.5 where m=S, 1/=3. p=4. and 

M=3. 

The submatrices A I'A 2' .. ·,.4 M' 

B!,B2'''',B M and bl'h2, .. ,b M enter 

into the systolic array from the 

top side. The parts 1-3 PEs in 

the systolic array perform the 

computations III Eq. (7.15) 

recursively for all the 

submatrices. This has been 

detailed in Figure 7.4. The 

resulting submatrices 

RI'R2,··,R M' SI'S2'''''S M and 

A, B, h , 

h] 

h
J 

Chap. 7 

cl'c
2
,"',c

M 
are stored in the PEs Figure 7.5 The overall architecture of the systolic array for SS' 

in part I, part 2 and part 3 

respectively. 

The two matrices t and J as the results of the upper part of the systolic array are passed to the lower 

part of the systolic array. The parts 4-5 PEs perform the computation in Eq. (7.13) and the resulting 

matrices R
M

.! and CM.! are stored in the PEs in part 4 and part 5 respectively. 

From the above discussion, wc know that each PE in parts 1-3 is required to store M results. This 

indicates that each PE in parts 1-3 should accommodate suflicient memories to store the M results. 

The PEs in part 4-5 only store one result each and they are therefore simpler. Extra time is required 

for emptying the final results from the systolic array. 
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7.4.4.2 The PE definition 

The definition of the PEs is very straightforward because the upper part of the systolic array performs 

a number ofQR decompositions recursively while the lower part perform a single QR decomposition. 

The PEs in parts I to 3 can be defined in the following way: 

Circle PEs in parts 1-3: 

fori=lloM 

r(i)=O 

forj=llol11 

if Ix.illl<ep.1 alld Ir(i)l<eps 

c=l, s=O 

I=sqrl (x. ill"+r(i) 1) 

c=r(i)/I, s=x. ill/I, r(i) =1 

elld 

elld 

elld 

Square PEs in parts 1-3: 

for i = 1 10 M 

r(i)=O 

fin·j = 1 10 111 

x.oIII=c . x.ill - s· r(i) 

r(i) = c· r(i) + s· x.ill 

elld 

elld 

The PEs in parts 4 and 5 can be defined in the following way: 

Circle PEs in parts 4-5 

for i=1 10 Mill 

1'=0 

if Ix. illl<eps alld Irl<eps 

c=l, s=o 

else 

I=sqrl (X.ill 2+r1) 

c=r/I, s=x. ill/I, r=1 

elld 

elld 
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Square PEs in parts 4-5: 

.If)r i= 1 10 M 

r=O 

x.O/II=c . x.ill - s· r 

r = c . r + s . x. ill 

elJd 
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7.S Simulation of the Systolic Algorithm 

We implement the systolic algorithm for QR decomposition of the block structured sparse system on 

a single transputer system using the parallel programming language OCCAM 2. 

7.5.1 Simulation Method 

The OCCAM 2 programming language was designed for the transputer, a microprocessor which can 

perform as a building block of an interconnected network. Many ditferent network topologies may 

be created with a system oftransputers by connecting the four communication links of each transputer 

in different ways. The parallel algorithms developed in a single transputer by the OCCAM 2 language 

can be directly configured or mapped to transputer networks. Thus the programming for the parallel 

architectures in transputers usually begins with the parallel architecture simulation in a single 

transputer system. After the parallel algorithms have been tested in a single transputer system, the 

algorithms may be distributed to a transputer network for parallel operation. 

We simulate the Systolic algorithm by OCCAM 2 in a single transputer system. We outline the main 

structure of the simulation algorithm as following: 

PAR 

send data to systolic array 

PAR i=O FOR number.of.PEs 

IF 

The PE is in diagonal 

IF 

TRUE 

IF 

The PE is in upper part of the array 

circle.PE.up -- circle PEs in part 1-3 

TRUE 

circle.PE.low -- circle PEs in part 4-5 

The PE is in upper part of the array 

square.PE.up -- circle PEs in part 1-3 
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TRUE 

square. PE. low -- circle PEs in part 4-5 

data sink for right -- consume the unwanted data 

data sink for bottom 

get result 

7.5.2 Simulat ion Result 

Below is a numerical example to test the systolic algorithm, where M~3. 11I~5, 1I~3, p~4. The input 

data can be written in a compact form as 

The above matrix has the values of 

1.0 2.0 1.0 

0.0 1.0 0.0 

0.0 0.0 1.0 

1.0 1.0 2.0 

-1.0 1.0 2.0 

-2.0 1.0 0.0 

1.0 0.0 0.0 

0.0 1.0 1.0 

1.0 2.0 0.0 

2.0 1.0 -3.0 

-1. 0 1.0 2.0 

-1. 0 0.0 1.0 

1.0 -1.0 0.0 

-2.0 1.0 0.0 

1.0 2.0 1.0 

AI BI hi 

A, B, h, 

A, B, b, 

1.0 -1. 0 

-1. 0 1.0 

-1.0 -1. 0 

1.0 1.0 

2.0 0.0 

2.0 1.0 

-1. 0 -2.0 

-3.0 -2.0 

2.0 1.0 

1.0 2.0 

2.0 1.0 

1.0 4.0 

-1.0 -1. 0 

1.0 1.0 

1.0 0.0 

(7.17) 

-1. 0 1.0 4.0 

1.0 -1.0 1.0 

1.0 1.0 1.0 

-1.0 -1.0 4.0 

1.0 1.0 6.0 

1.0 1.0 4.0 

-1.0 -1.0 -4.0 

-1.0 1.0 -3.0 

2.0 1.0 9.0 

1.0 2.0 6.0 

-3.0 4.0 6.0 

-2.0 1.0 4.0 

-1.0 -1.0 -4.0 

2.0 1.0 4 . 0 

0.0 1.0 6.0 

The result triangular matrix with the right hand-side can be written in a compact form as follows: 
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RI SI Cl 

R, S, c, 
(7.18) 

R3 S3 c3 

0 S. c. 

The above matrix takes the following values 

1.732 1.155 0.577 0.0 0.0 -1.732 -0.577 1.155 

0.0 2.38 2.24 1. 68 0.0 0.42 0.7 7.421 

0.0 0.0 2.156 1.037 0.00 0.027 0.355 3.575 

3.162 0.632 -1.897 -0.316 0.316 0.316 0.632 2.846 

0.0 2.569 -0.311 1.635 1. 09 1.868 2.18 9.031 

0.0 0.0 2.511 -2.426 -2.812 -1.123 -1. 243 -5.094 

2.828 -0.707 -0.707 -1.768 -2.828 0.00 -2.475 -5.657 

0.0 2.55 1.373 1.863 0.392 0.00 2.451 8.629 

0.0 0.0 1.901 1.153 1.821 -4.207 2.569 3.236 

0.0 0.0 0.0 3.81 1. 487 0.64 -0.48 5.457 

0.0 0.0 0.0 0.0 3.758 0.642 -1.596 2.805 

0.0 0.0 0.0 0.0 0.0 2.109 0.08 2.189 

0.0 0.0 0.0 0.0 0.0 0.0 1.959 1.959 

It's easy to verify the correctness of the result because we choose a problem where x=(\, I, ... , I)' 

and the residual is O. Thus the sum of the first 7 entries of the each row is equal to the value of the 

last entries in the same row. 

7.6 Summary 

In this chapter, we have proposed a systolic architecture .to compute the QR decomposition of the 

block structured sparse system (BS) which tinds a wide application in a variety of areas such as 

photogrammetry, Doppler radar positioning and geodetic survey problems. Because the size of the 
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problem in practical cases is usually very large, its parallel computation is very important. The 

proposed systolic array architecture can accelerate the problem solving whilst maintaining a high 

parallel efficiency. The square-root-free fa si Givens transformation [Gentleman73] can further 

improve the efficiency of the systolic architecture by avoiding the possible bottleneck due to the square 

root operation in the circle PEs. Transputer networks, in which each PE accommodates a number of 

bytes of memory, may be well suitable for implementing such systems. The systolic algorithm can be 

also mapped into a general purpose parallel computer efliciently. The systolic array is very efficient 

because it enjoys a pipelining rate of one. 
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Chapter 8 

SYSTOLIC ARRAY FOR MATRIX 

INVERSION BY NEWTON ITERATION 

8.1 Introduction 

M A TRIX operations are very prevalent in many applications such as signal processing and 

scientific computing applications. Matrix inversion is one of the most commonly used matrix 

operations and it plays an important role in linear algebra. The computational load for finding the 

inversion of a matrix with a large dimension is enormous. To speed up the computation, parallel 

processing is a logical choice. Among many parallel architectures, systolic array architecture features 

the important properties ofmodularity, regularity, local interconnection, a high degree of pipe lining 

and a high efticiency. These properties make systolic array architecture suitable for VLSUVHSIC 

(Very Large Scale Integration/Very High Speed Integrated Circuit) implementation. Systolic arrays 

have been proved to be an efticient solution for many matrix operations. 

Matrix inversion can be computed either by the direct method or by the iterative method. The direct 

method computes the inversion by elimination method (eg. Gauss elimination) or matrix decomposition 

(eg. LU decomposition). The iterative method finds the approximate matrix inversion iteratively. 

Various systolic arrays have been designed to implement the matrix inversion using both methods. 

Based on the Faddeev algorithm, a trapezoidal systolic array, which consists of a triangular array and 

a square array, can be used to compute the matrix inversion [Megson92) [Wan93b). Another systolic 

design based on a triangularization algorithm has an 011hogonal architecture which is a cascade of two 

triangular array [Robert85) [Comon87) (rer. Chap. 5) Systolic architecture can be also used to 

compute the matrix inversion iteretively (e.g. Evans and Margaritis designed an iterative systolic array 

using matrix power method [Evans91 c)). 

In this chapter, a novel systolic array architecture for matrix inversion by the Newton's iterative 

method is designed. The systolic array is obtained by integrating two systolic matrix multiplication 
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arrays and a systolic transposition array into a new square array to perform the matrix inversion 

iteratively. First, a systolic array for the lixed number of iteration is derived. Then a systolic array 

able to test convergence is presented. The proposed systolic array architecture is suitable for the 

applications where the size of the matrix to be inverted is large and the iterative method is favoured. 

Considerable speedup can be achieved while high etliciency is maintained. 

The rest of this chapter is organized as follows. Sec. 8.2 describes the Newton method and gives the 

sequential algorithm. Sec. 8.3 introduces several systolic arrays which are used as building blocks of 

the systolic array for matrix inversion by the Newton iteration. Sec. 8.4 designs the overall systolic 

architecture where the number of the iterations is assumed to be fixed. Sec. 8.S contains a modified 

systolic array which is able to test the convergence of the algorithm and to estimate the initial 

approximation. Finally, Sec. 8.6 concludes the chapter. 

8.2 Newton Method for Matrix Inversion 

Pan and Reif [Pan8S] have proposed 11 quadratically convergent method by Newton iteration for the 

calculation of the inverse of a non-singular square matrix. The algorithm is numerically stable within 

a relative precision. Further it provides an et1icient method for computing the initial approximation 

of the matrix inverse for the iterative process to commence. 

8.2.1 The Algorilhmjorllerative Matrix Inversion 

For a well conditioned NxN real matrix A, the Newton iterative matrix inversion algorithm can be 

outlined as follows. 

Step 1. Initial Approximation 

Let Xo be the initial approximation to A· I defined by 

where m is given by 

I T 
Xo=-A. 

III 
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The matrix p-norm are defined by 

m =IA TA 11 , 

The matrix I-norm and oo-nonn are specially given by 

N 

IIAII,=max L IO;jl 
1'l"!.N i-I 

N 

IIAII.=max L IOul 
IddJ i-I 

For this choice of initial approximation. it is proven that 

where Ro is the initial residual matrix 

Step 2. Newton Iteration 

I 
IIRoll,=I---<1 

- NK2 

R =J-AX o 0 

Chap. 8 

(8.2) 

for any vector x (8.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

Let X. denote an NxN matrix to be the A1h approximation to A -'. Then the computation of the 

matrix inversion has the form of Newton's iteration: 

(8.8) 

where I is an NxN unit matrix. Eg. (8.8) shows the principle of the Newton's method for matrix 

inversion [Pan8S) [Leighton92). 

In order to examine why this rule works. it is useful to examine the residual matrix 
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R =I-AX • • (S.9) 

which measures how far X. is from A -I. A simple calculation reveals that 

(S.lO) 

This means that 

(S.11 ) 

Thus, R. converges quadratically to zero provided that the initial approximation is chosen according 

to Eq. (S.I). 

To sum up, the Newton iterative method for matrix inverse computation can be given in algorithmic 

form as follows: 

Algorithm I: Matrix inversion by Newton iteration 

1 T Compute an initial approximation by: Ko=-A 
m 

k~O; Ro=I-AXo; 

while IIR.II>E (where E is a given small positive number for convergence test) 

k~k+ I; 

R.=I-AX.; 

X •• 1 =K .(1 +R.) 

8.2.2 Initial Approximationsfhr Special Ma/rice,\' 

Eq. (S.I) provides a choice for initial approximation for the inversion of any arbitrary non-singular 

matrix. For the special matrices, it can be modified in order to provide better initial approximation and 

therefore reduce the iteration steps. Below we consider several special cases where alternative initial 

approximation exists. 

Case 1. For symmetric positive definite matrix A, which occurs frequently in many practical 

computations [HagemanSI] [Varga62] [Golub89], the initial approximation can be chosen as 
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The initial residual matrix has a norm of 

I 
~Ro~,<l---'---

- N 1l2cond(A) 

Chap. S 

(8.12) 

(8.13) 

Case 2. As it is shown in [Atkinson7S] and [Dahlquist74]. the inversion of an arbitrary non-singular 

matrix A can be replaced by the inversion of AT A • which is always symmetric positive definite. 

Therefore. a general choice alternative to Eq. (S. I) can be given by 

(8.14) 

with 

? 
IIRoll,< 1- -

I +cond(A) 
(8.15) 

Case 3. For a diagonally dominant matrix. which is again a frequent situation [Varga62] [Young71] 

[GolubS9]. the choice can be 

with 

where c is a suitable positive constant. 

1 
iRII<l--0' Ne 

(8.16) 

(8.17) 

It is noticed that all the initial approximations discussed above require the matrix I-norm computation 

or either matrix A itself or A 'A except for Case 3 which has a simpler initial approximation. 
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8.3 Systolic Array Building Blocks for the Newton Method 

In this section, we consider the building blocks for systolic implementation of the Newton iterative 

method for matrix inverse. We apply some modifications to Algorithm I. For simplicity, we assume 

that the algorithm converges to the required precision after a given number, say s, of iterations. This 

assumption eliminates the converging test in Algorithm I. We also assume that the initial 

approximation is given. With these modifications, Algorithm I becomes the form as follows: 

Algorithm 2: Matrix inversion by Newton iteration (Simplified version) 

Given Xo as an initial approximation to A -, ; 

for k=O:s-1 

R.=/-AX. 

X •• ,=X.+X.R. 

We will design a systolic array architecture to implement this algorithm while Sec. 8.5 will deal with 

the systolic array which is able to perform the convergence test and the initial approximation. From 

observation on Algorithm 2, we find that each iteration in the algorithm includes two matrix 

multiplication-and-accumulation operations. In this section, two systolic arrays for matrix 

multiplication-and-accumulation are introduced. A matrix transposition array is also treated as it is 

necessary in arranging data into the required format for executing Algorithm 2 systolically. 

8.3.1 Systolic ArraysfiJl' Matrix Multiplication 

In Chap. 3, we have a detailed treatment of the systolic array designs for matrix multiplication. Firstly, 

the matrix multiplication is represented by a regular iterative algorithm (RI A). Then we select the 

processor space and iteration space. A feasible schedule can be selected. The RIA is then mapped into 

a systolic architecture based on the iteration space and the schedule selected. 

Below, we briefly introduce two systolic arrays for matrix multiplication which will use in the systolic 

array for the iterative matrix inversion algorithm. 
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The first systolic array for matrix 

multiplication is shown in Figure 8.1. In this 

design, the matrix A flows through the 

systolic array from the left to the right while 

the matrix B flows through the array from 

the top to the bottom. The initial matrix C 

is pre-stored in the registers of the individual 

processing elements (PEs) and then updated 

during the systolic computation. The PE 

function is also shown in the same figure. In 

every time cycle, each PE in the array 

receives one input from the let! and another 
a" 

c=c+axb 

a~J a~1 a~1 

Chap. 8 

b" 

b" b" 

bJJ b" b" 

b]J b" 

from the top, then perfonns multiplication on Figlll'e 8,1 Systolic array I for matrix multiplication 

the two input operands and accumulation on 

the product and the previous partial result. The array can compute C=C+AB while C is stationary, 

and A and JJ are non-stationary [Megson92]. 

Another systolic design is illustrated in 

Figure 8.2. In this design, B is stationary 

while A and C are non-stationary. The 

matrix JJ is pre-Ioaded in the PEs of the 

systolic array. The matrix A in transposition 

flows through the systolic array from t he left 

to the right. The initial matrix C enters the 

array from the top, then flows through the 

array downwards, and finally the resultant 

matrix comes out of the systolic array at the 

bottom: Each PE in the array receives two 

inputs from the left and the top, then 

IC 

a ;bl a ~.+-. 

'c 

c=c+axb 

c" 

c" c" 

c" 

c" 

performs the operation of multiplication and Figure 8,2 Systolic array 11 for matrix multiplication 

accumulation, and finally the result is sent to 

its downward neighbour. 
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8.3.2 Systolic Arrayfin· Matrix Thll1sj7IJsilion 

Figure 8.3 depicts a triangular systolic array 

(the solid line part) for matrix transposition. 

The dot line part completes the array into a 

square array. There are two kinds of PEs in 

the transposition array. The PE functions are 

also shown in the same figure. The circle 

PEs change the data transmitting from 

vertical direction to horizontal direction in 

order to transpose the input matrix. The 

square PEs perform only simple data 

transmitting tasks without changing data 

flow directions. The input matrix enters the 

a" 

a" a" 

a" an a" 

an a" 

a" 

--<>-0-
__ : 0'_-(')--['--, __ 

TT I
J 

,.1 _, ,.1... .L 
, . { , . .-, ,--
··I·r , , 

--, 

T , 
a 
" 

Chap. 8 

la la 
b_{y_ ()-" 

I 
'a 

a" an an 

a a a 
" .. n 

a a 
" " 

array from the top of the array while the 

transposed matrix flows out of the array at 
Figure 8.3 Systolic array for matrix transposition 

the right-hand side. The dotted PEs are unused for matrix transpose. 

Below we will employ these systolic alTays as building blocks to construct a new systolic array for the 

Newton method for matrix inversion. We will show how to integrate these systolic alTays into a new 

systolic array to perform the tasks required by the Newton method. 

8.4 Systolic Array for Iterative Matrix Inverse 

8.4.1 Overall Architecture 

The simplified version of the matrix inversion by the Newton iteration is given in Algorithm 2. The 

first operation in Algorithm 2 take the form of 

R,=/-AX, (8.18) 
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To perform this operation, we can adopt 

the systolic array I for matrix multiplication 

as shown in Figure 8.1. At the start of the 

computation, the unit matrix, I, IS 

preloaded In the systolic array, and the 

matrix -A and the matrix X. enter the 

systolic array from the left and the top 

respectively. After the completion of the Slart 

Systolic Array 1 

Completion 

computation, the result matrix is store in Figure 8.4 Utilization of systolic array I 

the PEs of the systolic array. The input and 

output relationship is shown in Figure 8.4. 

The second matrix multiplication in Algorithm 2 has the form of 

Xl-I =X.(/ +R .)=X. +X.R. 

We can employ the systolic array 11 for 

matrix multiplication in Figure 8.2 to 

perform this task. The input and the output 

of the systolic array are shown in Figure 

8.5. At the start of the processing, R. 

stays in the systolic array while X~ enters 

the array from the left and X. from the top. 

After the completion of the computation, Slart 

Systolic If ",ay 11 

Completion 

the resultant matrix Xl-I flows out of the Figure 8.5 Utilization of systolic array II 

array at the bottom. 

Chap. 8 

(8.19) 

Figures· 8.4 and 8.5 show how the two systolic arrays for matrix multiplication execute the tasks 

required by the Newton's method for matrix inversion. It is noticed that, in Figure 8.5, the 

transposition of a matrix is required. 

Having discussed all the building blocks required by the Newton's method, we now consider the 

overall architecture to implement Algorithm 2. 
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From Figures 8.4 and 8.5, we observe that 

the resultant matrix R. of the systolic array I 

resides in the array while this matrix is 

required to be preloaded in the systolic array 

It This inspires us to use a single systolic 

array to perform the two different tasks which 

are shown in Figures 8A and 8.5. 

Figure 8.6 shows the systolic design for the 

Newton's iterative method for matrix 

lIlVerSlon. There are 3 types of processing 

Chap. 8 

elements (PEs) in the proposed systolic array. Figure 8,6 Overall architecture for Newton's method 

The shadowed square processing elements 

perform data interface tasks by sending the input data to the systolic array and feeding the output data 

back to the array. They act just like programmable multiplexers which switch the output data channels 

to appropriate input data channel. The rest of the processing elements perform usenll computation 

required in Algorithm 2. 

At the beginning of the computation, the input matrices -A and Xo enter into the systolic array through 

the data interface (shadowed square processing elements) from the left and the top of the array 

respectively. The systolic array computation can be classified as two phases for each iteration. 

During the first phase of the computation, the array computes Ro;]-AXo where the unit matrix] is 

assumed to be initially stored in the PEs of the systolic array. In this phase, the array performs the 

tasks as shown in Figure 8.4 together with the matrix transposition. The resultant matrix Ro is stored 

in the individual PEs. The matrix -A flows horizontally and feeds back to the array after passing 

through the array. The matrix X~ can be obtained by transposing the input matrix Xo. The matrix X~ 

moves in the horizontal direction while the matrix Xo moves in the vertical direction. Both of X~ and 

Xo are then feed back to the systolic array after passing through the array. During the second phase, 

the array performs the computation as shown in Figure 8.5. The matrix Ro stays in the array while 

the matrices X~ and Xo flows through the array in horizontal direction and in vertical direction 

respectively. The result matrix for the first iteration, X I' flows out of the array in vertical direction 

and then it is fed back to the array for the next iteration. 
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The processing of the two phases described above will repeat until the required number of iterations 

is completed. The final result can be collected at the top shadowed square processing elements or at 

the bottom of the systolic array. The systolic array has a similar architecture with a torus network. 

8.4.2 Definitions of the Processing Elements 

Based on the above discussion, we 

can define the functions of the x.m 

X.out 

if 1 sI_phase then 

ifinilial then r=1 

r=r+a.inxx.in 

x.m 

a.m a.ou t 
• 

r . 
t.in t.ou t 

x.out 

if I SI_phase then 

if in ilial tben r=O 

r=r+a.inyx.in 

different types of the processing 

elements. The shadowed processing 

elements behave like multiplexers 

which select the external input data 

during the first phase of the first 

iteration and the feedback data later 

on. We can also add another channel 

to each of the shadowed PEs in order a.out=a.io; t.out=x.in; x.out=x.in a.out=a.in; t.out=t.in; x.out=x.in 

to send the result to the host system. 

Because these shadowed PEs are 

very simple, we will not give further 

details. 

else if 2nd_phase then else if 2nd_phase then 

x.out=x.in+t.in "r 

a.Dut=D.io; I.out=x.in 

end 

Figure 8.7 Definitions of PEs 

x.out=x.in+t.in "( 

a.ouI=a.in; t.out=tin 

end 

The other PEs (unshadowed) in Figure 8.6 perform the useful computation required by the Newton's 

method. There is a slight difference between a diagonal PE, which is illustrated by a circle inside a 

square, and an ofT-diagonal PE, which is illustrated by a square. Figure 8.7 shows the definitions of 

processing elements. In Figure 8.7, the terms" I styhase" and "2nd yhase" indicate the control signal 

which specifies what operations PEs are required to perform at the given time instances. The term 

"initial" is another control signal which indicate the commencement of a new iteration. The "initial' 

signal may not be necessarily generated because it becomes tnle only when control signal changes from 

the second phase to the first phase. Therefore, it is possible to use a one-bit control signal to 

implement the phase control of the systolic array. 
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8.4.3 An Example 

To validate the proposed systolic design, it may be straightforward by showing the snapshots of the 

systolic array for a small size problem. We consider the inversion of the following matrix 

and its inversion is as follows 

3 2 

A=-I 23 

- 2 1 

0.1 0.1 -0.4 

A -'= 0.5 -0.5 1.0. 

-0.3 0.7 -0.8 

The initial approximation of the inversion is given by 

0.0977 0.1016 -0.4037 

Xo= 0.5065 -0.4906 1.0184. 

-0.3040 0.6830 -0.8051 

(8,20) 

(8.21 ) 

(8.22) 

Figures 8.8-8.18 show the systolic computing process of one Newton iteration on the matrices 

given above. The result after one iteration is: 

0.1000 0.1000 -0.3999 

X,=Xo(21-AXo)= 0.4998 -0.4995 .9992 . (8.23) 

-0.2999 0.6994 -0.7994 

Figure 8.8 shows the initial snapshot of the systolic architecture with the input data from the left and 

the top. After one step of computation, as shown in Figure 8.9, all the PEs in the array update their 

values and transfer the data to the appropriate channels according to the PE definitions shown in 

Figure 8.7. Notice that we list only the useful computation of the top left PE while ignoring the update 

of those PEs which wait for the useful data coming. The next update of Figure 8. 10 is based on the 

input data as given in Figure 8.9. This process repeats until the required computation completes. We 

also use an anti-diagonal line to distinguish the computations of the two phases. We describe only 

one iteration in Figures 8.8-8.18. However, it is straightforward to perform more iterations by the 

array and the data flow is continuous between adjacent iterations. 
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8.5 Modifications to the Basic Systolic Architecture 

8.5. J Residual Matrix Evaluation 

The proposed systolic array can compute the 

matrix inversion iteratively. The above 

discussion is based on Algorithm 2 which 

assumes that the number of iteration is given. 

In practice, we need to know when the 

iteration should stop as described In 

Algorithm I. This can be done by modifYing 

the systolic architecture in Figure 8.6. We 

can add another vertical data channel for 

each PE and a row of extra PEs (rhombic 

PEs) at the bottom as shown in Figure 8.19 

in order to accumulate the residual matrix e 
.: ")--.' 

(another alternative is to modifY the v' '. 

shadowed PEs at top side of array to Figure 8. I 9 Systolic array with convergence test 

compute the residual). The new PE 

definitions are described in Figure 8.20. 

Notice that the square PEs 

and the diagonal PEs in 

Figure 8.20 differ from their 

corresponding PEs in Figure 

8.7 only' in the second phase. 

The square PEs and the 

diagonal PEs together with 

the rhombic PEs for the 

systolic array with 

convergence test accumulate 

the norm of the residual 

matrix during the second 

xinl I'in 

•. in r'-·\C.OU1 --. . , 
;:;;;-'l--'I~ 1.0:' 

x.ouJ • LOul 

if I sl_pbase tben 

if initial then r=1 

r=r+a.inxx.in 

xin I I'in 

~fi ~ .. ". --. , 
tin I.oul 

x.out.. .. Lout 

if IsI_pbase tben 

if iniliallhen T=l 

r=r+a-inxx.in 

I ,.in 

a.in /." a.out 
-V-

if 1 sf_phase then 

no operation 

else if2ndJbase the 

a.out-a.in; I.out"x.in; x.out"'x.in a.out-a.in; t.oul=l.in; x.out""x.in a.out=a.in+r.in 

end 
x.out=x.in+l.inxr; r.out=r.in+r' x.our=x.in+l.inxr; r.out=r.in+rl 

a,Dut-a.iD; t.out=x.in; a.OUI""8.in; I.OUI""x.in; 

end end 

Figure 8.20 PE definitions for systolic array with convergence test 
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phase. The output of the right most rhombic PE in Figure 8.19 gives the square of the Frobenius 

norm of the residual matrix defined by, 

N N 

e=IIR.II!= L L I'i~ (8.24) 
i-I i-I 

This quantity can be used to generate a signal to control the systolic array to complete the computation 

when the solution with the required precision is obtained. 

Of course, the estimation of the nonn of the residual matrix increases the complexity of the processing 

elements as shown in Figures 8.19 and 8.20. During the second phase, the square PEs and the 

diagonal PEs are required to perfonn another multiplication. However, the estimation of the norm of 

the residual matrix may reduce the iteration number comparing the fixed iteration number scheme. 

A simpler and therefore better way is to estimate the I-norm of the residual matrix, as given in Eq. 

(8.4). Instead of calculating the sum of the squares of the column vectors of the residual matrix, which 

involves multiplications, we calculate the sum of the absolute values in a column wise way. The 1-

nonn computation involves only the additions and comparisons. This provides another alternative to 

perform the convergence test in less complexity. 

It is possible to further simplifY the convergence test if we choose a convergence criterion which 

compares the successive iterations based on calculations of I-norm or oo-norm. Since the result of the 

iteration result X. is available at the shadowed PEs at the top of the array in Figure 8.19, the 

shadowed PEs can be used to calculate the I-norm of X.. This eliminates the need of the extra 

vertical channels and the unshadowed PEs have same complexity as in the basic systolic architecture. 

Similarly, the left side shadowed PEs can be used to compute the oo-nonn and to test the convergence 

of the algorithm. 

8.5.2 Initial Approximation Compu/a/ion 

We first consider the initial approximation given by Eq. (8.1). The approximation involves operations 

of a matrix multiplication and a matrix I-norm computation followed by a matrix and scalar 

multiplication. The computation of the initial approximation is illustrated in Figure 8.21. 
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The systolic array first computes the product of matrix -A 

and the unit matrix I and store the result -A in the systolic 

array (as shown in Figure 8.4). Then ,the matrix -A circulates 

back to the left side of the array and the 0 matrix arrives at 

the top of the array. The systolic array is then ready to 

compute A TA (as shown in Figure 8.5). The product ATA 

is piped out ofthe array at the bottom. This product can be 

sent back to the top shadowed PEs in Figure 8.19. The top 

shadowed PE can be modified to calculate the matrix I-norm 

with connecting these PEs horizontally. Then another 0 

matrix is fed into the systolic array before the matrix I-norm 

is available. Then the matrix A T passes through the top 

shadowed PEs and forms the initial approximation given by 

Eq. (8.1). the systolic array can perform Newton iteration as 

discussed before. 

Chap. 8 

-Ac; 

Figure 8.21 Initial approximation 

The initial approximation of the matrix inverse requires 3N cycles. This is generally a small overhead 

for the systolic array. The incorporation of the initial approximation will slightly complcate the control 

of the systolic array. 

The initial approximation given by Eq. (8.14) is similar to the one given by Eq. (8. I). We need only 

substitute the matrix I instead orthe matrix A T in the venical input. This may result a simpler systolic 

array because there is no input is required for the top side of array. The shadowed PEs can generate 

all the input data, I and 0, by themselves. The initial approximation given by Eq. (8.12) for a 

symmetric positive definite matrix can also be easily implemented by the existing systolic array. 

8.6 Summary 

A novel systolic array architecture has been developed for the matrix inversion by the Newton's 

iteration method. The Newton's method has a very attractive feature that some simpler initial 

approximations can always guarantee a convergence comparing with other iteration method. The 

systolic architecture is obtained by integrating two different matrix-matrix multiplication arrays and 
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a matrix transposition array into a new square array. A systolic array able to test the convergence of 

the algorithm is also proposed. The initial approximations can also be incorporated into the systolic 

array. This systolic implementation of the iterative matrix inversion is highly parallel and the data flow 

is regular. The partition of the systolic array for large size problems is very straightforward. The 

speedup of the systolic array is significant when the problem size is large. The proposed systolic 

architecture is suitable for the applications where the size of the matrix to be inverted is large and the 

iterative method is favoured. 
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Chapter 9 

A SYSTOLIC ARCHITECTURE FOR 

CAPON'S DOA ESTIMATION METHOD 

9.1 Introduction 

T HE array signal processing field deals with the processing of information-bearing signals 

collected by an array of sensors operating in an environment of interest. The aim of array 

processing is to estimate the object parameters. In sonar or radar array processing, the directions-of

arrival (DOA) of targets are the most important parameters for detecting and locating the targets. 

Many approaches for DOA estimation have been developed. In recent years, the so-called high 

resolution algorithms have received more and more attention. These algorithms otTer better 

performance in resolving two closely spaced emitters (source of radiations) than the conventional 

beamforming (CBF), or Fourier method. 

The performance improvement of the high resolution algorithms over the CBF is usually achieved at 

the cost of more intensive computational loads for the algorithms. The huge computational loads limit 

the applications of the high resolution algorithms in a real time environment. 

The parallel processing techniques employing multiple processors can speed up the algorithms so that 

real time processing becomes possible. The systolic array parallel architectures with simple processing. 

elements (PEs) communicating locally are suitable for VLSI/VHSIC implementation. 

Capon's DOA estimation method [Capon69], also known as the minimum variance distortionless 

response (MVDR) method,. can provide a better resolution of spatial spectrum than the conventional 

beamforming method. Although other methods, such as the multiple signal classification (MUSIC) 

method, can give a better perfonnance than Capon's method, they require more operations (eg. eigen 

system or SVD evaluation is involved in the MUSIC method) than Capon's method. 
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In this chapter [Wan93a], we present a systolic array architecture for Capon's DOA estimation method. 

Capon's method for DOA estimation is described in Sec. 9.2. In Sec. 9.3. we develop the algorithm 

for Capon's method based on the QR decomposition technique, and then investigate the computation 

tasks and the basic operations required by this algorithm. In Sec. 9.4 . we propose asystolic 

architecture to implement Capon's method. Sec. 9.5 deals with the simulation of the architecture via 

occam 2 with simulation results while Sec. 9.6 contains a summary. 

9.2 Capon's Method for DOA Estimation 

9.2.1 The array and signals 

Consider a uniformly spaced linear 

array consisting of N identical u,(t) 

sensors and receiving signals from u,(t) \ 
M narrowband signals \~, ~ u,(t), u,(t), ... , uMCt) that arrive at 

directions 
~ , 

the array from 
reference 

- .. • • • 61' 62' ... , eM as shown in Figure point 

9.1. The extension of the 
x, (t) x,(t) x,(t) x, (t) 

discussion here to a sensor array of Figure 9.1. The sensor array and signals 

arbitrary geometry ,s 
l~' • 

straightforward. The received signal at it~sensor can be written as 

~ \'XJI):AIICt)+n_C/). 

where 

A EcN'M=[sca,) sea,) ... seaM)] is the array manifold; 

N is the total number of sensors; 

M is the number of incident signals from distinct directions; 

sca) is a steering vector defined by , 
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I e u.(t) 
--~J 

/ 
~ 

• 
x.(t) 

(9.1 ) 
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d is the interelement spacing of the linear array; 

A is the wavelength; 

Chap. 9 

a, is the ith angle of incidence of a planewave measured with respect to the normal to the array 

for i= 1. 2 ..... M; 

U(t)ECM
.! is the vector ofillTIplitudes of the M incident signals at time I; 

n(t)ECN
'! is a Gaussian noise vector with zero mean value; 

X(t)ECN
'! is the vector of observations for the array output at time I. 

The specific parameters of interest are the directions-of-arrival. {a, I i=l, 2 •... , M}, and the value 

of M itself. The basic idea of the method is to estimate a wavenumber spectrum (spatial spectrum) 

based on the received data. The peaks of this spectnllTI correspond to the DOA of the incident signals. 

9.2.2 Capon's Method 

The essence ofCapon's method, or MVDR algorithm, is to construct a spatial filter that processes the 

vector of observations to minimise the variance of the resulting output subject to the condition that 

there is a distonionless response at some spatial angle El. 

Assume that the spatial filter processes the input data vector x by a filter with the coefficient vector 

IV in the following way 

y=w HX (9,2) 

wherey is the resulting output of the spatial filter. The variance of the output can be expressed as 

(9.3) 

where 

(9.4) 

is the correlation matrix. 

The constraint can be expressed as 
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where sce) is the steering vector for the given direction e. 

Therefore, the problem becomes 

mm wHC w 
xx .' 

subject to w J/ s(6)= 1 

To find the optimum weighting vector. we construct the following function 

Using Lagrange's method. we let 

aF 
-=w H s(6)-1=O 
a~ 

By solving Eqs. (9.8) and (9.9). we obtain the optimum weighting vector as 

Then Capon's spatial spectrum of the sensor output is detined by 

1 
P(6)=min{e}=----

s H (6)C~s(6) 

Chap. 9 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

Adaptive beamfonning shares the same principle as discussed above. However, the output of the 

adaptive beamfonner is a waveform as given in Eq. (92). which is often subsequently subjected to 

some form of spectral analysis in a sonarlradar application [8aggeroer78]. Some systolic array 

architectures for adaptive beamfonner have been proposed in [McWhirter83] [Ward84]' In this 

chapter. we concern the computation as shown in Eq. (9.11). which provides the intensity of the 

environment signal as a nmction of direction [Wan93a]. 
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In practice, we usually cannot obtain an ensemble averaged correlation matrix C xx. Rather, we have 

to use a time averaged estimate C xx that is obtained /Tom a finite number of snapshots of measurement 

vectors collected at different instances of time. The time averaged estimate of the correlation matrix 

can be expressed as 

(9.12) 

where L is the number of the observed snapshots and x(k) (for k= 1.2 ..... L) is the kth snapshot of 

sensor output X(I) at discrete time k. 

Thus Capon's method can be summed up as following: 

Collect the data x(k) (for k= 1.2 .. ... 1.) from the sensors; 

Estimate the correlatiom matrix according to Eg. (9.12); 

Compute the inverse of the correlation matrix C -1 ; 

"" 
Compute the spectmm according to Eg. (9.1 I) for different scanning directions; 

Find the peaks of the spectmm corresponding to the DOA of the incident signals. 

9.3 Computational Tasks of Capon's Method 

In this section, we discuss Capon's method based on the QR decomposition technigue. The 

computational tasks for Capon's spectral estimation are also analysed. 

9.3. J Capon/s Method Based on QR Decomposilion Technique 

In Sec. 9.2. Capon's method is developed. We notice that the algorithm requires to compute the 

correlation matrix and its inverse. The estimation of the correlation matrix and the computation of its 

inverse are generally time consuming if the number of the sensors is large (and this is typically tme for 

practical cases). Accordingly. special precautions have to be taken in the computation of the spectmm. 

The spectral analysis method based on singular value decomposition (SVD) on the data matrix is 

examined in [Haykin92]. In the following discussion. we present a method based on QR 

decomposition of the data matrix to compute Capon's spatial spectrum. 
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We let X denote the data matrix obtained from L snapshots and obtain 

x T(I) r,(1) r,(1) xN(I) 

x T(2) rp) r,(2) ... rN(2) 
X= = 

Then the correlation matrix can be expressed as 

C =2.X TX ' 
= L 

Chap. 9 

(9.13) 

(9.14) 

Assuming that L;,N, we can decompose the data matrix X as the product of an LxL orthonormal 

matrix Q and an L xN matrix R as follows 

(9.15) 

where 

or QTQ'=! (9.16) 

and R is an NxN upper triangular matrix. 

Then we can rewrite Eq. (9.14) as follows 

(9.17) 

We substitute Eq. (9.17) into Eq. (9.1 I) and then obtain 

(9.18) 

Then we can outline the steps for Capon's method based on QR decomposition: 

Collect the data from the sensors and form the data matrix X; 

Perform the QR decomposition on X and obtain the upper triangular matrix R; 
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Compute R-Ts(6) which is actually a version of forward substitution; 

Compute the Euclidean norm of R-Ts(6) and obtain the spectrum; 

Find the spectral peaks corresponding to the DO As of the incident signals. 

Chap. 9 

Thus, the computation tasks for Capon's method are composed of the following basic operations: 

QR decomposition; 

Forward substitution; 

Vector norm computation. 

These basic operations involved in Capon's method are discussed in the following sub-sections with 

details of their computational complexities. 

9.3.2 QR Decomposition 

Gentleman and Kung [Gentleman81] first designed the widely used triangular systolic array for matrix 

triangularization. In their design, the Givens QR decomposition method was used. The Givens QR 

method for the case of complex data can be described in the algorithmic form as 

forj=I:N 
XU,jH)=XU,jN)XU,j)/IXU,j)1 
for i=j+ I:L 

[c, s]=givens(XU,j), X(i,j)) 
XU,j:N) ,X(i'/N)=row.rot(XU'/N),X(i,/N), c, s) 

end 
end 

function:[c, s]=givens(a, h) 
(where 0 is real) 
iflal=O and Ihl=O 

c=l, .FO 
else 

l=sqn(o'+lhl') 
c=o/I 
REAL(s)= REAL( h)/ 1 
IMAG(s)=IMAG(h)/1 

end 
end givens 

fuuction: Y, Z=row.rot(Y, Z, c' s) 
(where c is real) 
q=cols(Y) 
forj=1 :q 

tI =Y( I,j), t2=Z( I ,j) 
Y( I, j)=coll-so /2 
Y(2,j)=@0/1+(:0/2 

end 
end row. rot 
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We notice that the function givens involves 6 multiplications/divisions and I square root operation 

while the function row. rot involves 12 multiplications/divisions. We use the term I flop to represent 

one inner product step (ips). Then we can estimate the flops required for the above algorithm 

N L N 

F
QR

= L L (7+ L 12)~6[LN2-N3/31 
j-I j-f+l k-j 

where the square root operation is counted as I flop. 

9.3.3 Forward Subslitut ion to Compute R-Ts(B) 

The forward substitution to compute y=R-Ts(B) can be described in the algorithmic form as 

y=s 
for j=1 :N-I 

y(j)=y(j)/R(j.j) 
y(j+ IN)=y(j+ IN)-y(j)/?(j,j+ IN) 

end 
y(N)=y(N)/R(N, N) 

(9.19) 

Considering the complex operation in the algorithm, we obtain the required computational load for 

the forward substitution as 

(9.20) 

9.3.4 Compute the Norm of a Vector 

Another basic operation involved in Capon's method is the computation of the vector norm (actually 

we compute the square of the vector norm). This can be described as 

v( 1:N): the input vector 
norm: the square of the Euclidean norm 
norm=O 
for i=1 : N 

norm=nonn+v'(j) \I(j) 
end 

This requires a computational load as 
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9.3.5 The Total Computational LOW/fin' Capon's Method 

We assume that the sampling frequency for the array signal processing system is/ Hz. the number 

of the spectra to be computed in a second is n, and the number of the directions scanned in the interest 

range for each spectrum is n d. 

In each second. there are/data snapshots which are divided into n, segments. This means that. in a 

second, the system (sonar or radar) requires to compute n J spectra and that each spectnlm is from a 

segment of data snapshots with length of L=/Ind Thus the total computational tasks for Capon's 

method in a second can be expressed as 

F=11 ,1FQR I
L
.1. +n/FS +n /m,l 

". 
/ N 3 

=11 ,[6( -;;N2_ "3l+211.N 2+2n.Nl 
, 
n N 3 

=6(fN2_-'-l+2njl N(N+ll 
3 ' 

(9.22) 

For the case of a sonar system. a sample frequency may be assumed to be 10,800 Hz. The number 

of the sensors may have the value of60. n
J 

can be assumed as 180 for the case where the sonar scans 

from _900 to 90" with I" step. n can be chosen as around 20. With these assumptions. we obtain , 
the computational load in a second for Capon's method as: F~251.0 Mtlops/s. With more examples, 

Table 9.1 lists the computational loads for Capon's method. 

Table 9.1 Computational load for Capon's method 

((Hz) 1800 3600 5400 10800 18000 

N 50 50 80 60 100 

1/ 5 20 15 20 25 

1/ 360 180 180 180 360 

F (flops/se(;) 34.9M 67.4M 227. OM 251.0M 1211.8M 

Table 9.1 shows that the computational load for Capon's method is intensive. The system requires a 

throughput up to over 1000 mega flops per second. For a radar system. where the sampling frequency 
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is much higher than the sampling frequency in a sonar system, i.e where data rate is much higher, the 

computational load for the Capon's method may increase tremendously. Therefore, the parallel 

processing of Capon's DOA estimation method is necessary in a real time system. In next section, we 

discuss the systolic architecture for the Capon's method. 

9.4 Systo\ic Array for Capon's Method 

In this section, we design a systolic array for Capon's method. First, we give a brief introduction to 

the systolic arrays for the basic operations discussed in the last section. Then we combine these 

systolic arrays and construct a new systolic array to perform the Capon's DOA estimation. 

9.4.1 Systolic Array.fiJr QR Decomposition 

The systolic array architecture for QR decomposition was first introduced by Gentleman and Kung 

[Gentleman8l]. The triangular systolic array depicted in Figure 9.2 has been applied to a wide range 

of problems in signal processing such as adaptive tiltering and adaptive beamfonning. More details 

on the design of this systolic array (for real matrix) has been treated in Chap. 4. 

XJl 

Figure 9.2 Systolic array for QR decomposition 
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else 
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c~r/t 

s.r~real(x.in)/t 

s. i~imag(x. in)/t 
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end 
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fori~/:L 
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Figlll'e 9.3 PE detinitions for QR decomposition 
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The PE definitions for the QR decomposition with complex input data are given in Figure 9.3. 

9.4.2 Systolic Arrayfor Forward Suhstitution 

The systolic array for the forward substitution 

has the same geometry as the systolic array for 

QR decomposition. Figure 9.4 describes the 

systolic array architecture. The input vector 

enters into the array from the top of the array 

and the output vector comes out of the array at 

the right hand side. The entries of the upper 

triangular matrix are assumed to be stored in the 

PEs. 

If a sequence of vectors enter into the systolic 

array as a pipeline, the output vectors come out 

of the array as a pipeline. 

The PE definitions for the forward substitution 

x 
I 
l., xlr 

(r \-~ 
'---- ) 

Sj 

are also described in Figure 9.4. 
Figure 9.4 Systolic array for forward substitution 

9.4.3 Systolic Array/i)r Vector Norrn Computation 

The vector nonn computation can be achieved by 

the linear systolic array as shown in Figure 9.5. 

It is obvious that the output of the systolic array 

in Figure 9.5 is the sum of the squares of 

individual input value: When many vectors 

enter the array from the left side, the linear 

systolic array can compute their norms in a 

pipeline way. 

y} 

y, 

0 
I 
I , 

- .. : 
J 

,I. 

-"', 

i 
J. 

IlyW 

x.in 
I 
I 

Y I 
I 

x.out=x. in+ lyl2 

Figlll'e 9.5 Systolic array for norm computation 
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9.4.4 Syslolic Array.fiJl· Cap()I1~\' Me/hod 

Having discussed the systolic arrays for the basic matrix computations involved in the Capon's method 

for DOA estimation, we can combine these systolic array to constmct a new systolic array to 

implement Capon's method. 

We allow the triangular systolic array to receive the 

sampling data as well as the steering vectors from the 

north. Then the triangular systolic array can perform 

both the QR decomposition and the forward 

substitution for spectral scanning. Figure 9.6 shows 

the systolic array architecture for the Capon's DOA 

estimation method. 

The systolic array implies that both the sampling data 

and the output spectral data have the same data rate. 

For instance, if the sampling frequency is 5000H=, 

the obtained output spectra also have in a second 

5000 points which may be divided into a number of 

segments, each of them covering the interest 

scanning directions. 

The circle PEs and the square PEs in the array 

compute both the QR decomposition and the 

forward substitution while the rhombic PEs compute 

the vector nonns. The forward substitution requires 

o 
X S 0 

H J3 

x s X s 0 
32 Jl 15 23 

X S x S X S 
11 3/ 11 22 13 13 

X S X S 
21 11 12 12 

X S 
1/ JJ 

X 

I 
~ 
" < " '. , / ~/ 

I , , 
l/x p 

the result of the QR decomposition, i.e. the upper 

triangular matrix R. The problem now is how the 

forward substitution uses the resulting data of the 

Figure 9.6 Systolic array for Capon's DOA 

estimation 

QR decomposition? We can define the PEs in this way: 

for i=l:L 
the task for QR decomposition 

end 
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do 
for i=l:L 

the task for QR decomposition 
the task for forward substitution on the former R 

end 
update the upper triagular matrix R 

loop 

Chap. 9 

In this method, the spectra we compute are based on the already arrived segments of L snapshots. 

That is, we perfonn the first QR decomposition on the first segment of snapshots and then we compute 

the second QR decomposition while computing the first spectrum based on the first upper triangular 

matrix R. We then repeat the same procedure of perfonning QR decomposition on the current data 

segment and computing the spectrum based on the last upper triangular matrix 

Noticing that the upper triangular array R is updated when a new snapshot of sampling data passes 

through the systolic array, we can then define the PEs in another way as follows: 

do 
for i=l:L 

the task for QR decomposition 
the task for forward sUbstitution over the updated R 

end 
loop 

The latter method means that we compute the following spectrum 

(9.23) 

where 

(9.24) 

and the I represents the discrete time. Instead of using the estimate covariance matrix on the already 

coming L snapshots, we use the updated correlation matrix to compute the spatial spectrum. 

We give the detailed PE definition for the latter method in Figure 9.7 while it is convenient to define 

the PEs for the former method. 
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(r!~:S.i) 
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Figure 9.7 PE definitions of the systolic array for Capon's method 
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9.5 Occam Simulation 

In this section, we discuss the simulation of the systolic architecture proposed in the last section. We 

use the parallel programming language occam 2 in a single transputer system to simulate the parallel 

architecture for Capon's method. 

9.5.1 Simulation Method 

The Occam 2 programming language was designed for the transputer, a microprocessor as a building 

block of a interconnected networK. Many different network topologies may be created with a system 

oftransputers by connecting the four pair communication links of each transputer in different ways. 

The parallel algorithms developed in a single transputer by the occam 2 language can be directly 

configured or mapped to transputer networks. Thus the programming for the parallel architectures 

in transputers usually begins with the parallel architecture simulation in a single transputer system. 

After the parallel algorithms have been tested in a single transputer system, the algorithms may be 

distributed to a transputer networks for speedup. 

We simulate the Capon's DOA estimation method by occam 2 in a single transputer system. We 

outline the simulation algorithm in a pseudo-code form as following. 

PAR 

signal generating (narrowband signals with Gaussian noises) 

PAR 

PAR i=O FOR pe.c.and.s (the number of PE in triangular array) 

irow, icel:= the position of the ith processing element 

IF 

irow=icol (the PE is in the diagonal of the array) 

perform the function of the circle elemel1t 

TRUE 

perform the function of the square element 

PAR i=O FOR N 

perform the function of rhombic element 

obtain result 

Based on the above structure, we have simulated the parallel architecture of the Capon's method for 

DOA estimation. The simulation result is given. below. 
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9.5.2 Simulation Resul! 

Figure 9.8 presents the Capon's spectra 

from the above simulation algorithm. The 

number of sensors is 8. Two uncorrelated 

signal sources with the additive white 

Gaussian noise arrive at the array from the 

directions of -2" and 8". The signal-to

noise ratio, SNR, is 10 dB for each signal. 

We use 1810 daia snapshots to compute 10 

spatial spectra scanning from -90" to 90" 

with 10 step. The 10 spectra are plotted in 

the same plot in an area graph format. In an 

area graph, a different pattern fills the area 

between each plotted range that 

corresponds to the amplitude of the spectral 
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Figure 9.8. Simulation result 

Chap. 9 

30 60 90 

function. This kind of graph can emphasise broad trends and continuity in data over time. We choose 

the format in order to emphasize the spectral peaks. In an actual sonar system, the bearing-time 

record, which uses colours or grey levels to represent the signal level versus time and bearing, is often 

used to increase the probability of detection and to track moving targets. This kind of bearing-time 

display will provide a better performance lor detecting a potential target in a noisy background while 

it demands more spectra to be computed in the given time. This shows that the performance 

improvement causes.a large computational load and that, on the other hand, the large computational 

load usually brings the performance improvement. 

9.6 Summary 

In this chapter, we propose a systolic architecture for Capon's DOA estimation method. The algorithm 

is highly efficient and the speed up is signiticant. Several points are mentioned below for the 

improvement of the systolic algorithm. 
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Firstly, the square-root-tree QR decomposition algolithm is preferred to reduce the possible bottleneck 

occurring in the circle elements due to the square root operation. It also slightly reduces the 

computational load of the square element [Gentleman73]. This algorithm may bring higher efficiency 

for the architecture. 

Secondly, there are several choices when deciding how to use the sampling data in QR decomposition. 

Two methods have been proposed in Sec. 9.4.4. Another method is applying appropriate weights to 

the sampling data. For instance, we can apply a forgetting factor to the sampling data so that the 

earlier data affect the system less than the later data. 

Thirdly, the data rate for the spectra to be computed can be different from the sampling data rate 

although we assumed they are same in Sec. 9.4. For example, we can change the PE definitions so 

that, after updating the matrix R twice with two snapshots, the spectral data is computed once. This 

means that the steering vectors enter the array at a lower speed than the sampling data. In this way, 

we can select an appropriate data rate for spectral output. 

Finally, the architecture is very suitable for VLSI implementation as only a few kinds of PEs are used 

in the array and all the communications are local. It can also be implemented in microprocessor level, 

for example, using a transputer network. The partition of the systolic algorithm may require to use 

every transputer efficiently. 

In a real time array processing system, the system implementation is expensIve due to the 

computationally intensive high resolution methods. The systolic architecture while implemented by 

VLSIIVHSIC certainly provides a possible solution for the problem. 
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A LINEAR SYSTOLIC ARRAY 

FOR CONJUGATE GRADIENT METHOD 

10.1 Introduction 

T HE solution of an /lXI/ symmetric positive definite (SPD) system Ax=h arises in many 

applications such as digital signal processing (DSP) algorithms and optimization theory. When 

used in DSP the matrix A is often known as an auto-correlation matrix and h is a cross correlation 

vector. The system can be solved by directed methods based on matrix decompositions such as 

Cholesky decomposition. The system can be also solved by iterative methods. Among different 

iterative methods, the conjugate gradient (CG) method is very attractive as it can guarantee a 

convergence within /I iterations if precise computation can be carried out through the iterative process. 

The preconditioned conjugate gradient method (PCG) can further increase the convergence rate by 

constructing an appropriate preconditioner. The solution ofx by the conjugate gradient (CG) method 

can be also used as a minimization technique [Gi1l81) [Modi88) [Golub89]. 

The CG and PCG algorithms are complex algorithms involving matrix-vector multiplication, vector 

dot product and other scalar operations. The data tlow of such algorithms are complicated. In this 

chapter, we apply the SFG design method [KungSY89) to deriving a regular DG for the CG method. 

Based on the obtained DG, a novel efficient linear systolic array for the CG method is proposed. 

Furthermore, we incorporate a simple preconditioner into the CG method to form a linear systolic 

array for the PCG method. 

The outline of this chapter is as follows. The CG algorithm for solving a SPD system of equation is 

reviewed in Sec. 10.2. Then we design a regularized dependence graph (DG) for the CG algorithm 

in Sec. 10.3. Based on the obtained DG, we design a linear systolic array for CG method in Sec. 10.4. 

Preconditioned conjugate gradient (PCG) method is discussed in Sec. 10.5 where a simple diagonal 

preconditioner strategy is implmented using systolic array. Finally Sec. 10.6 concludes this chapter. 
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10.2 Conjugate Gradient Method 

We consider to solve the system oflinear equations as follows 

Ax=b (10.1 ) 

where A is an 11 x 11 positive definite and symmetric matrix, and x and hare 11 x I vectors. A matrix A 

is positive definite if x T Ax>O for all nonzero /I x J vector x. 

The starting point in the derivation of the conjugated gradient (CG) method is to minimize the 

objective function cj>(x) , defined by 

I 
cj>(x)=-xTAx-xTb 

2 
(10.2) 

The minimum of <P is -b TA -1b/2 , achieved by setting x=A ·Ib. Thus, minimizing <P and solving Eq. 

(I) are equivalent problems. 

One of the simplest strategies for minimizing <P is the method of steepesl desce/ll [Golub89]. At a 

current point x c the function <P decreases most rapidly in the direction of the negative gradient 

-V'cj>(x )=b-Ax . We call 
c c 

r =b-Ax c c (10.3) 

the residual of x. If the residual is nonzero, then there exists a positive ex such that 
c 

cj>(x~ +(Ir )<cj>(x 0>. In the method of steepest descent, we set (I =r~r /r~r c thereby minimizing 

cj>(x c +(I'). This leads to the steepest descent algorithm: 

Algorithm I: The steepest descent method 
k=O; xo=O; ,,,=h; 
while, .,0 

k=k+1 
T T 

It le ='k-I' 1c_l'k_lAr le-I 

Xk=xt_1+u,ll-_1 
, =b-Ax • • 

end 
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When the level curves of <I> are very elongated hyperellipsoids, the minimization corresponds to finding 

the lowest point on a relatively flat, steep-sided valley. In this situation, the steepest descent method 

will traverse back and forth across the valley rather than dOWII the valley. To avoid this pitfall of 

steepest descent, we consider successive minimization of <I> along a set of directions {PI' P2' ... } that 

do not necessarily correspond to the residuals {'" '2' ... }. It is easy to show that to minimize 

4>(xt-t+ap.) with respect to a, we merely set 

(10.4) 

It can be shown that p. must not be orthogonal to '._1 in order to ensure a reduction in the value of 

<1>. This leads to the following minimization strategy: 

Algorithm 2: A general search strategy 
k=O; xo=O; ro=h; 
while ,.,0 

k=k+1 
Choose a direction p. such that p ~'._I'O 

T T a. =P.,._/p.AP. 
x k =X.I:_l + a. /(P k 
, =b-Ax • • 

end 

The problem is how to choose these search vectors so as to guarantee global convergence and at the 

same time to avoid the pitfalls of steepest descent. The conjugate gradient method chooses linearly 

independent vectors Pi with the property that each x. in Algorithm 2 solves 

mm 4>(x) 
xElpa"{p •.... J',t} 

(10.5) 

This would guarantee not only global convergence but finite tennination as well because we must have 

Ax, =b . Let p. = [p" ... ,p.l ER"· be the matrix of search directions. If xErange(P.) then 

x=P._,v+ap. for some YERH and a ER. If x has this form then it is easy to show that 

The presence of the "cross term" ay Tp;_IAP. complicates the minimization. Without it the 

minimization of <I> over range(P.) would decouple into a minimization over range(P
H

), whose 

solution xt-t is assumed known, and a similar minimization involving the scalar a. One way to effect 

this decoupling is to insist that p. is A-conjugate to pp ... ,p"1 meaning that 
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Applying this search direction to Algorithm 2, we obtain 

k=O; xo=O; ro=h; 
while r.*O 

k=k+1 
Choose p.Espan{Apl"",APk _I }" such that p~rH*O 

T T a. =p.r._/p.AP. 
Xk=Xk_1+UkP" 

r =b-Ax • • end 

Chap. 10 

(10.7) 

Since our aim is to bring about the swift reduction in the size of residuals, it is natural to choose p. 

to be the closest vector to rH that is A-conjugate to PI'".,pH' This defines the method of conjugate 

gradients: 

k=O; xo=O; r,,=h; 
whiler.*O 

k=k+1 
ifk=1 

else 

end 
T T a. =p.r._/p.AP. 

Xk=Xk_1+U"P k 
r =b-Ax • • • 

end 

An efficient algorithm to implement the conjugate gradient method was originally introduced by 

Hestenes and Stiefel [Hestenes52] [Golub89]. The algorithm has the following form: 

Algortihm 3: Conjugate gradient (CG) method 
k=O; xo=O; r,,=h; 
while r .*0 

end 

k=k+1 
ifk=1 

else 

end 

T T 
Il. =r._1r._/r._2r ,-2 

p. =r'_1 + ll.p._1 

T T a. =r._1r._/p.AP. 
Xk=X"_l+UkP" 

rk=rk_l-a~Pk 
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The termination criteria in Algorithm 3 is unrealistic. Rounding errors leads to a loss of orthogonality 

among the residuals and finite termination is not mathematically guaranteed. Moreover, when the 

conjugate gradient method is applied, 11 is usally so large that (J(II) iterations represents an 

unacceptable amount of work. As a consequence of these observations, it is customary to regard the 

method as a genuinely iterative technique with tennination based upon an iteration maximum k
mn 

and 

the residual norm. This leads to the following practical version of Algorithm 3. 

AIgortihm 4: Conjugate gradient (CG) method (practical implementation) 

k=O; x=O· r=h; Po=!'~~; 
while :;'>e IIbl12 and k<kmu 

end 

k=k+1 
ifk=1 

else 

end 
w=Ap 

p=, 

~.=P.-/P'-2 
p=,+~ .p 

a. = p ._/p T W 

x=x+{t"P 

,=,-a~w 

p.=~'112 

This algorithm requires one matrix-vector multiplication (n 2 multiplicative additive operations or 

flops) and another 511 flops per iteration. 

10.3 DC Design for CC Method 

10.3.1 Algorithm Modi/ica! ion 

In order to design a DG (Dependence Graph) for the CG method, Algorithm 4 needs some 

modifications. First, the "if-else" for the searching direction p computation can be eliminated by 

setting Po=O. Secondly the computation of P, can be performed in a different order. This will result 

in the following algorithm: 

AIgortihm 5: Conjugate gradient (CG) method 

xo=O; 'o=b; Po=O; Po=O; 
for k=1, 2, ... 

CD p. =';-1'._1 
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@ Il.=p/p._, 
@ p.='._,+Il.p._, 
® w. =A p. 
CID 

T 
o.=P.w. 

® a.=p/o. 
CD X t =Xk_1+ ct I:PI: 

® 'I:='k_l-ctkw ,. 
end 

. Then the single assignment code for Algorithm 5 can be obtained as follows: 

Algorithm 6. Single assignment code for Algorithm 5 
for k=l, 2, . 

for i=l:n 
CD rho(i, k)=rho(i-I, k)+r(i, k-I )*r(i, k-I) 

end 
@ beta(k)=rho(n, k)/rho(n, k-I) 

fori=l:n 
@ p(i, k)=r(i, k-I )+beta(k)*p(i, k-I) 

end 
for i= I:n 

for j=ln 
® w(i, j, k)=w(i, j-I, k)+a(i, j)*p(j, k) 

end 
CID delta(i, k)=delta(i-I, k)+p(i, k)*w(i, n, k) 

end 
® alpha(k)=rho(n, k)/delta(n, k) 

for i=l:n 
CD xCi, k)=x(i, k-I )+alpha(k)*p(i, k) 
® rei, k)=r(i, k-I )-alpha(k)*w(i, n, k) 

end 
end 
with rho(O,k)=O, rho(n,O)=p,,=O, w(i, 0, k)=O, delta(O, k)=O for all i and k. 

Chap. 10 

Notice that, in Algorithm 5, the vector dot prodects and scalar operations in lines @, CID and ® are 

separated by the matrix/vector operation in the remaining lines. This may cause a problem for the 

parallel implementation of the algorithm due to a longer critical path. We will analyze the critical path 

of the algorithm in next subsection and we now consider another variant of Algorithm 5. The modified 

algorithm has the following form: 

Algortihlll 7: Conjugate gradient (CG) method 
T 

xo=O; 'o=h; Po='o'o; po=h: 
for k=1, 2, ... 
CD w.=AP._, 
@ 6.=p~,w. 
@ €.=w.w. 
® a.=p._,16. 
CID 1l.=a.*€/6.-i 
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® p'=Pk-l*~' 
® x"=xt _I +C1.,,Pz: 

® '.='._,-a.w. 
® p.=r.+~.p._, 
end 

The fonnula for ~. in the above algorithm can be obtained from Algorithm 5 by using two rules used 

in the dirivation of the CG method. The first rule is that p. is A-conjugate to Pl' ... ,p.-, ' i.e., 

P:",AP.=O. The second rule is that the kth residual is othogonal to the kth searching matrix, i.e., 

p~'. =0. The single assignment code for Algorithm 7 then can be given as follows. 

Algorithm 8. Single assignment code for Algorithm 7 
for k=l, 2, ... 

for i=l:n 
forj=l:n 

<D w(i, j, k)=w(i, j-I, k)+a(i. j)*p(j. k-I) 
end 

@ delta(i, k)=delta(i-I. k)+p(i. k-I )*w(i, n, k) 
® epsilon(i.k)=epsilon(i-I, k)+w(i. n. k)*w(i. n. k) 

end 
® alpha(k)=rho(k-I )/delta(n. k) 

<ID beta(k)=alpha(k)*epsilon(n,k )/delta( n,k )-1 
® rho(k)=rho(k-I )*beta(k) 

for i= I:n 
CV xli. k)=x(i, k-I )+alpha(k)*p(i, k-I) 
® rei, k)=r(i, k-I )-alpha(k)*w(i, n, k) 
® p(i. k)=r(i, k)+beta(k)*p(i, k-I) 

end 
end 
with delta(i. 0)=0, epsilon(i. 0)=0, w(i, 0, k)=O for all i and k. 

10.3.2 Dependece Graph Design 

10.3.2.1 DGs for the Two CG 

Algorithms 

We consider the single assigment 

codes for the CG method in 

Algorithms 6 and 8 discussed earlier. 

Their dependece graphs for a single 

iteration (in k direction) can be easily 

obtained by connecting different 

Figure 10.1 DG for Algorithm 6 
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loops together. Figure 10.1 shows the DG for Algorithm 6. 

In Figure 10.1, the different operations corresponding to those in Algorithm 6 are grouped and 

numbered accordingly. The DG for operation ill receives the input '._1 and accumulates the result 

p •. The computation of ~. is a simple scalar operation denoted by the node numbered as @ in the 

DG. Operation @ requires the input '.-1' which is propagated from the nodes for operation ill , and 

the input ~. ' which is obtained trom node @ and propagated downwards. The result of the operation 

@ is delivered to the top nodes for operation @ while it is also propageted horizontally as required by 

operations CID and CV. The DG for operation @ is actually the one for matrix-vector multiplication. 

The elements of matrix A are sent to the individual notes although they are not drawn for the sake of 

simplicity. The result w. is available at the right side of the DG for operation @. The computation 

of (). is performed by the nodes in the group CID where both p. and W k are provided as inputs and are 

propagated to the right for operations CV and ®. The computation of a k is very straightforward as 

indicated by node @. Operations CV and ®, which update x and r, are dependent on the value a •. 

Finally, x. and,. are available at the nodes in groups CV and ® respectively. 

Based on Algorithm 8, we can obtain its DG as shown below in Figure 10.2. The nodes in group ill 

perform the matrix-vector multiplication while the nodes in groups @, @, CV, ® and ® perform the 

vector operations. Nodes @, CID and @ perform the scalar operations. 

Observing the two DGs in 

Figures 10.1 and 10.2, we 

find that both DGs have a 

certain degree of regularity 

while some irregular 

connections exist indeed. 

Some modification IS 

therefore required in order to 

obtain a DG more suitable 

for systolic mapping. Before 

we proceed further, we 

compare the critical paths, or 
Figure 10_2 DG for Algorithm 8 

the lengths of the longest paths, of two DGs. The DG for Algorithm 6 in Figure 10.1 has a critical 
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path of 411+4 while the DG for Algorithm 8 in Figure 10.2 has a critical path of 311+3. One of the 

longest paths for each DG is represented by thick arrows in Figures 10.2 and 10.3. Obviously, the DG 

for Algorithm 8 has a shorter critical path and it provides a potential for a better systolic design. In 

the following discussion. we will focus on the DG for Algorithm 8 in Figure 10.2. 

10.3.2.2 Modification to the DG for CG Algol·ithm 8 

We now consider the DG in Figure 10.2 which has a shorter critical path than the DG in Figure 10.1. 

First, we observe that p._. enters into the DG array from top side and p. is available at the right side. 

This makes it difficult to cascade DGs between adjacent iterations along k directions. We therefore 

rotate the group <D DG. This rotation also causes W k being rotated. In order to inject w. into the 

rest of the DG array. we plug in a new group of notes denoted by @l and this gives the new DG in 

Figure 10.3. The diagonal nodes in the group @l transfer the vertical data to horizontal data thereby 

making w. available in a desired way. 

k 

Figure 10.3 Modified DG for Algorithm 8 

The modified DG in Figure 10.3 is nearly regular along the horizontal direction. There exists irregular 

connection between the top side of the array and the bottom side of the array. This irregularity can 

be alleviated by choosing an approprite projection direction when mapping to an SFG array. 
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Now we consider the irregularity of nodes @), ® and @. More nodes with a function of only 

transmitting data can be attached in order to make the DG regularized. It is also observed that node 

® involves one multiplication and one division while all the other nodes involve only one multiplication 

or division. Thus node ® may introduce some performance degradation when mapping to asystolic 

array. We divide node ® into two operations or two nodes as given below: 

®' mu(k)=alpha(k)*epsilon(k) 

®" beta(k)=mu(k)ldelta(n,k)-I 

A more regularized DG with the above modifications is shown in Figure 104. 

Figure 10.4 A more regularized DG for Algorithm 8 

The DG in Figure 10.4 is still not fully regularized as the dependencies from bottom nodes to top 

nodes are irregular. Examing the top-left node in group @, we find that the node has two indirect 

dependencies on the top-left node in group CD. These two indirect dependencies form two paths of 

different lengths in the DG. The horizontal path has a length of (11-1) while the vertical path together 

with the bottom-top connection has a length of 11. This suggests to us to plug in one column delay 

nodes between groups CD and @. Similarly, (11-1 )-column delay nodes can be added between groups 

@ and ®. Finally we obtain a regularized DG as shown in Figure 10.5. This DG is ready for mapping 

if we choose a horizontal projection direction. All the non-local cOlllmunication can be eliminated with 

this projection. In the following section, we will first Illap the DG into an SFG and then systolize the 

obtained SFG so as to design a systolic architecture for the CG method. 
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I · I 

I r · 

• I 

Figure 10.5 Regularized DG for Algorithm 8 

10.4 Systolic Array Design for CC Method 

10.4.1 Mapping the DG onto SFG 

In order to exploit the regularity of the DG in Figure 10.5, a natural projection direction is the 

horizontal direction. By choosing such a projection direction, a regular SFG array can be obtained. 

Using the i:i coordinate system shown in Figure 10 5, the projection direction can be given as 

dT=[1 0] (10.8) 

We then choose a default schedule which can be represented by the schedule vector given as 

sT=dT=[l 0] (10.9) 

The processor basis P corresponding to the above projection vector is as follows 

pT = [0 I] (10.10) 

The node mapping can be given by 

pT~l=[O I] ~l=.i (10.11) 
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Eq. (10.11) means that the (i,j)th node in the DG is mapped into thejth mode in the SFG, that is, 

each row of nodes in the DG is mapped into a single node in the SFG array. There are three types of 

arcs in the DG: horizontal arcs, vertical arcs and the bottom-to-top arcs, which can be represented by 

three vectors respectively as follows 

T T T 
e.=(l 0], ev=[O I] and eb,=[1I+1 -11] (10.12) 

The arc mapping maps the above arcs of the DG to the edges of the SFG together with the number 

of delays on every edge. This mapping can be described as follows 

(11+1) = [I 

-n 0 

o (n+I)] 
-11 

(10.13) 

The second row of the right hand side of Eq. (10.13) represents the edges of the SFG corresponding 

to the three arcs in the DG. The first row of the the right hand side of Eq. (10.13) provides the 

number of delays for the three types of the edges in the SFG. The SFG array from the mapping given 

above is shown in Figure 10.6. 

The SFG array consits of (11+ I ) nodes 

with the head and the tail nodes 

connecting together to fonn a ring of 

nodes. The top 11 nodes perform the 

matrix and vector computations while 

the bottom node performs the scalar 

operations in Algorithm 8. The SFG 

array receives the input matrix A from 

the left followed by a certain number 

of delays. Zeros are also injected to 

the SFG array at the top node. The 

vectors IV, x, rand l' are stored in the 

---------

---------

---------

---- .. ----

Figure 10.6 
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Selection of cut -set to systolize the SFG 

SFG array. The number of delays for each edge in the SFG array is also indicated in Figure 10.6. It 

is noticed that the SFG array is not systolized since the vertical edges have zero delays. Below we will 

systolize the SFG array in Figure 10.6 to derive a systolic array for the CG method. 
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10.4.2 Systo/izution of the SFG 

Now we apply the cut-set retiming procedure to the the obtained SFG array in Figure 10.6. The 

objective ofthe cut-set retiming procedure is to convert the SFG into a temporally localized form so 

that all the edges between nodes have at least one delay element. 

The cut-sets we choose are also 

depicted in Figure 10.6. By applying 

the cut-set retiming procedure 

(detailed in Chap. 4), we can obtain a 

temporally localized SFG. For each 

cut-set we add one delay to the 

inbound edges (downwards edges and 

rightwards edges) while substracting 

one delay to the outbound edge (the 

upwards edge). Therefore all the 

downwards edge will possess one 

delay. By counting the number of cut

--------- a 41 all 3
21 

... _-_ ...... - a42 a )2 3
22 a 12 

.-------- a 4) a)) a 23 aIJ 

--------- a 44 a 14 3 24 a 14 

Figure 10.7 Temporally localized SFG array 

sets cutting the upwards edgs, 11 delays should be subtracted from the original delay. Thereby, the 

upwards edges will leave only one delay after retiming. The input data of mat rix A is also skewed after 

retiming. The obtained temporally localized SFG is shown in Figure 10.7. 

10.4. 3 ~ystolic Array.l· Design 

To convert the temporally and spatially localized SFG as shown in Figure 10.7 into a systolic form, 

it is only necessary to sucessfully introduce a delay into each of the operataion mudules. It is 

straightforward for us to obtain the systolic array from the SFG array. Figure 10.8 shows the systolic 

array for the CG method. 

It is noticed that we show only one iteration of the CG method. However, the systolic array in Figure 

10.8 is fully pipelinable. Thus more iterations of the CG method can be pipelined to pass through the 

systolic array again and again until a designed maximum number of iterations has been executed or the 

algorithm converges to the desired precision. 

Sec. lOA Systolic Array Design for CG Method 239 



A Linear Systolic Array for Conjugate Gradient Method Chap. 10 

Now we consider the detailed 

definition of PEs in the systolic array. 

By observing the DG in Figure 10.5, 

we notice that during each iteration of 

the CG method, each PE of the 

systolic array should execute all the 

tasks of those nodes along the 

corresponding horizontal line in the 

DG. Since all the nodes in a sngle 

horizontal line in the DG are assigned 

to a single PE in the systolic array, the 

PE is required to perform all the tasks 

--_ .. ----- a 41 
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--------- a 44 a 34 a 24 a 14 
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Figlll'e 10.8 Systolic array for the CG method 

represented by those nodes. It is clear from the DG in Figure 10.5 that each PE in the systolic array 

needs to perform different fimctions in the same iteration of the CG method. In Figure 10.5, we have 

divided the different functions into II phases. Suppose that we have a control signal propagating in 

the systolic array. Then PEs in the systolic array will perform appropriate functions according to 

processing phase indicated by the control signal. Figure 10.9 shows the systolic array with an extra 

vertical control channel as well as the necessalY control sequence. 

Another point requlflng more 

elaboration is the operations involved 

in transposing vector", in phase 3 as 

shown in Figure 10.5. Because the 

diagonal nodes in group ® have 

different fimctions from the other 

nodes in the same group of nodes. we 

should have a mechenism to specify 

whether the PE should change the data 

direction or not. Notice that the first 

diagonal node in group @ changes the 

conlrol sequence 
11 10 9 8 7 6 5 4 3 3 3 3 2 1 

--------- a 41 a JI a 21 

1111 

all-u 

.-------- a 42 332 3 22 a 12 -{j 
.-------- a 43 a _'3 a 2,\ alJ -{j 

-{j -. 
Figure 10.9 Systolic array for the CG method 

vertical input data into horizontal output at the 1st time step of phase 3. and the second diagonal node 

in group ® change the input data into horizontal output two time steps later, and so forth. We 
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synchronise these operations by introducing a counter to each PE. The counter in the first PE (top) 

is initialised with a value of I, the counter in the second PE is initialised with a value of two and so 

forth. 

The detailed PE definitions taking into account the aforementioned two points are given in Table 10.1. 

The number of systolic steps for each phase is also presented in Table 10. I. 

Table 10,1 PE definitions ofsystolic array for CG method 

Ph"·1 le;" 

Phase ~~ 
Ph'..! I 9,", • • 

Steps 

BOII,=8in+ainxp NOP // 

2 c=cO NOP 

3 c=c-I: if c=O then w=8;" NOP // 

4 8ou,=Bin+PxW 0=8;,,: a=p/O: 8",,,=a 

5 8out=8jn+wxw 

6 NOP 

7 NOP p=pxp 

8 NOP NOP //-3 

9 NOP 

10 NOP 

1\ NOP 

It takes, in total, 3//+5 systolic steps for the systolic array to perform each iteration of the CG method. 

Therefore the proposed linear systolic array has a linear pipeline rate because each iteration has a 

complexity of 0(//') It is also obvious that the systolic array can immediately start the next iteration 

after completing the previous iteration. Assuming that the total number of iteration required for CG 
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method is K, the total time required for the CG method is K(311+5) plus a small amount of overhead 

due to the skewed format. 

10.5 Preconditioned Conjugate Gradient (PCG) Method 

10.5.1 peG Algorifhm 

It is known that the method of conjugate gradients works well on matrices that are either well 

conditioned or have just a few distinct eigenvalues. If these conditions are not satisfied, the CG 

method may converge very slowly. The preconditioned conjugate gradient method is designed to 

accelerate the CG method by solving a revised equivalent system with a smaller condition number. 

The idea behind PCG method is to apply the "regular" CG method to the transformed system 

(10,14) 

rather than the original system in Eq. (10.1). Here A =C'A c' , x=Cx, h=C'b, and C is symmetric 

positive definite. If we define the prer.;olldiliolleJ" M by M=C' (also positive definite), the PCG 

algorithm corresponding to the CG algorithm in Algorithm 7 can be written as follows. 

AIgortihm 9: Preconditioned conjugate gradient (PCG) method 
O· b· TM -,· M-'b· xo= "0= , Po=1'o '0' Po= , 

for k=I, 2, . . 

ill ",.=AP._, 
@ o.=p:_,,,,. 
(3' T,\,4'-' 
"" E.="' .... "'. 
@ u.=p._,10. 
® 13,=U.*E/O.-l 
® P'=Pk-I*P' 
CD x.=x._,+u.p. 
® r k ='k_l-l1. kw/;; 

® M -' z. = '. 
® p.=z.+i3.p. 
end 

An appropriate preconditioner for the above algorithm should have the following properties 

[Evans93c] [Evans92][Golub89]: 

(a) M is symmetric positive definite: 
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(b) M is easy to construct; 

(c) M allows a fast computation of E.=w~M-lw. as well as z.=M-lr.; and 

(d) "good" distribution of the eigenvalues of M-lA. 

The simplest preconditioner is the diagonal matrix 

M=diag CA) 

Although the above diagonal 

preconditioner is extremely simple, it 

can sometimes bring about a 

significant improvement on 

convergence rate for cel1ain 

problems. For example, we consider 

a linear system where A is a Pascal 

matrix. The Pascal matrix A IS 
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made up from Pascal's triangle and it 

is a positive definite and symmetric 

matrix. The Pascal matrix has the 
Figure 10. I 0 Convergence rates of CG and PCG methods 

following form: 

(10.16) 

We apply both the CG and PCG methods to the 20th order Pascal system. Figure 10.10 shows the 

2-norm of the difference between the approximate solution and exact solution versus the number of 

iterations. As the system is ill-conditioned, the CG method does not converge to a desired precision 

within 20 (the order of the system) iterations. Figure 10.10 also c1earely indicates that the PCG 

method may converge much faster than the CG method even though a very simple preconditioner is 

applied. 
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10.5.2 Systolic Array/or peG Method 

In this section, we consider the systolic implementation for the simplest preconditioning strategy using 

a diagonal preconditioner while other appropriate preconditioning strategy can be also implemented. 

r--~ I tor peG 'or PfG 

It G)f f f f r~I-I-1 (-I ~f f CP t "~I~I ~IY ~I 
i~m:~m:~,:,~im,;'. ~~r ·J%I·I,· ~c~",.,~ ~I'-~Ilj,;l ~r-~'ir-~i ~I:- I'Y, ~ I.' 

y::·::!:v.!i<:i,iEv.!::;:y; ! Jl' ~i' ... • ',' . J1, '"i", , r y ; •• "'. If, , ", 

- :~::: .:;fr:.: "'" .~. : -~(. ,', ~ .,' J~ - Lif I '- " E '~'IL-~'i'-~r, • .: ',' ." 
- -4-~-4-4T~ ~1 . .;J~-:1;~-~~4®~ $~~;r.1. ~; ~/ ~ 
~ ....... "'-~><: _/ ___ <._j p'- l ' "'--!-' __ ~',_5k _..-/ ~ ____ / 
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Figure 10.11 Regularized DG for PCG method with a diagonal preconditioner 

With the introduction of the diagonal preconditioner, Algorithm 9 will be slightly more complex than 

the original CG method in AlgOJithm 7. Similarly we can obtain a regularized DG for the PCG method 

with a diagonal preconditioner as shown in Figure 10. I I. Accordingly the DG can be mapped into a 

spatially and temporally localized SFG, which is the same as the one shown in Figure 10.7. Then we 

can obtain a systolic array for the PCG method with a diagonal preconditioner. The array has a same 

structure as shown in Figure 10.9 except that the control sequence is slightly changed. The new PE 

definition for the PCG method with a diagonal preconditioner can be given as follows in Table 10.2. 

The diagonal elements of the inverse of the preconditioner is stored in the individual PEs. Care has 

been taken so that at every time step each PE performs operations having more or less a complexity 

of inner product step (ips). 

Other types of preconditioners are also possible to be implemented with similar design method. 

Algorithm 9 may be modified so that computations in each iteration involve the application of one 

preconditioner[Golub89]. A general guideline for choosing a preconditioner is to allow the solution 

of Mz=r in 0(1/) steps or less (O( I) steps for the simple diagonal preconditioner) by using n linearly 

connected processor elements. In this way, the obtained systolic array can complete each iteration in 

0(1/) steps and thus the systolic array has a linear speedup. 
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Table 10.2 PE definitions of systolic array for PCG method with diagonal preconditioner 

phase I 19" 

Phase 1·_··-
et cO 

~l '.m 
Pt w,1, r 

Steps 

pha •• j j 9, .. 

NOP 11 

2 c=cO NOP 

3 c=c-I· if c=O then w=8. , III Nor 11 

4 0=8;,,; a=p/o; 

5 z=wxw 80U1 =cx 

6 

7 Nor 

8 Nor 

9 Nor NOP 11-3 

10 NOP 

I I NOP 

12 z=rxm Nor 

13 6out=8in: P=Z+Binxp NOP 

10.6 Summary 

In this chapter, we have proposed a linear systolic array for CG method. The original CG algorithm 

is analysed and modified. By comparing the critical length of two versions ofCG algorithms, we find 

one of them is more suitable for parallel implementation as it has a shot1er critical length. The DG of 

the CG algorithm is then designed based on the single assignment algorithm. Since the algorithm is 

complex and its dataflow is very irregular, we have transformed the DG into a more regular one 

suitable for systolic array mapping. The systolic array design method based on signal flow graph 
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(SFG) representation has been adopted to map the DG into an SFG and then a systolic array. The 

obtained systolic array employs (n+ 1) processing elements. It can complete each CG iteration in 3n+5 

time steps. Adjacent iterations can be fully pipelined. The array can complete a CG algorithm in 

K(3n+5) time steps. The array has a constant efficiency of about 33% regardless the size of the 

problem. In addition, we have also designed a systolic array for the preconditioned conjugate gradient 

method by choosing a simple diagonal preconditioner. It is noticed that further work on the simulation 

of the algorithm is required in order to further verify the proposed systolic algorithm. 
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Chapter 11 

SUMMARY AND FURTHER RESEARCH 

11.1 Systolic Array Processing 

s INCE the development of the first all-purpose, all electronic digital computer, the digital 

computer has evolved at extremely rapid pace. The computer performance has been improved 

tremendously in the last 50 years. However, engineers, scientists and researchers are still making 

continuous efforts to further improve the perf6r1nance and reduce the cost of computer systems. 

There are basically two ways to improve the computer performance in terms of computational speed. 

One way is to use faster devices (VLSI chips). Although faster and faster VLSI components have 

contributed a great deal on the improvement of computation speed, the breakthroughs in increasing 

switching speed and circuit densities of VLSI devices will be difficult and costly in future. The other 

way is to use parallel processing architectures which employ multiple processors to perform a 

computation task. When multiple processors are working together, an appropriate architecture is very 

important to achieve the maximum pelformance in a cost-effective manner. Systolic arrays are ideally 

qualified for computationally intensive applications with inherent massive parallelism because they 

capitalize on regular, modular, rhythmic, synchronous, concurrent processes that require intensive, 

repetitive computation. 

The systolic array architecture in parallel processing came as a product of a certain environment, the 

means and the background knowledge for its realisation. The needs can be outlined as the ever

increasing tendency for faster computations, especially in areas like real-time signal processing and 

large-scale scientific computation. The means were provided by the remarkable advances in VLSI 

technology and computer aided design (CAD). Finally the background includes the applications of 

parallel processing and the design of parallel computers of various architectures including pipelined 

vector processors, SIMD architectures, array processors, MIMD architectures and so on. 
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11.2 Summary of the Thesis 

This thesis can be divided into three parts. The first part is an introductolY part containing Chap. I 

and Chap. 2. The second part concerns with the systolic design methodology. The third part deals 

with the several systolic array design for different applications. 

11.2.1 Overview ojCol11puter Architecture and Sys/o/ic Array Processing 

Computer technology has undergone a rapid evolution in the last fifty years. The performance of 

computer in tenns of computational capability has been improved a velY great deal. This owes much 

to the following two factors: (a) VLSI technology. and (b) computer architecture. With the advent 

ofYLSI, the size and cost of processing logic, memOlY and communication hardware was dramatically 

reduced. The VLSI technology enables us to integrate into a single chip millions of parts or devices. 

High density and low cost VLSI chips allow us to construct high performance computers and also 

make multiprocessing practical. When many processing elements are put together to achieve higher 

perfonnance, architecture, which defines how different processing elements cooperate and how data 

communicate, plays a very important role in the parallel computer system design. Many computer 

architectures have been developed such as co processors, pipelined vector processors, SIMD 

architectures, array processors, MIMD architectures and so on. 

Systolic arrays combine features from many other parallel architectures in a massively parallel 

architecture. A systolic array can act as a coprocessor, can contain multiple processors, and can act 

as a pipeline (maybe /I-dimensional) processor. It is the advance of the VLSl technology and the 

parallel processing which has brought about the introduction of the systolic array. To design a 

complicated computer system with multiprocessors using VLSI technology, the design cost and the 

data communication between different processing elements are major concerns. Systolic arrays 

featuring regularity, modularity, and local communication alleviate these design constraints. By 

regularity and modularity, systolic array architectures are based on a small number of basic component 

cells and it is an advantage over an architecture that is based on a large number of complex cells. The 

regular local communication considerably eases the arrangement of component in a VLSI chip design. 

Thus systolic architectures are best amenable to VLSI implementation to achieve massive parallelism 

with minimum communication overhead. 
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Ever since H.T. Kung [KungHT78) proposed the systolic architecture, its elegant solution to 

demanding problems and its potential perfonnance have attracted great attention. Systolic arrays have 

found applications in matrix arithmetic, signal processing, image processing, solution of differential 

equations, data stntcture, graph algorithms, computer aided design (CAD), and so forth. 

Many systolic algorithms have been designed for a great diversity of areas. Few problems resist attack 

from systolic arrays. A lot of efforts have been made to implement the systolic array in a VLSI chip, 

in a programmable processor array, or in a reconfigurable systolic array. While systolic arrays were 

originally used for fixed or special purpose architecture, the systolic array concept has been extended 

to general-purpose SIMD and MIMD architectures. , 

11.2.2 Systolic Array Design Methodologies 

One of the important design problems in systolic array processing is the development of systematic 

methodology for transforming an algorithm represented in some high-level constructs into asystolic 

architecture specified by the timing of data movement and the interconnection of processing elements 

such that the design requirements can be satisfied. 

Among a number of systolic design methodologies, we have studied two types of systematic design 

methodologies. The first method starts from the RIA (regular iterative algorithm) representations of 

a given algorithm, extracts the data dependency from the RIA algorithm, and then map the algorithm 

into a systolic array by using algebraic approach. This method is applied to the matrix-matrix 

multiplication problem. We have obtained 19 different systolic designs for the matrix multiplication 

problem. A detailed performance analysis for all the 19 designs is presented. Based on the 

performance measures, we can choose the right design for given requirements. 

The other design method we have studied uses thc SFG (signal flow graph) of a given algorithm to 

design systolic arrays through graphic mapping and retiming. An algorithm is first represented by a 

DG (dependence graph). Then the DG is mapped into an SFG by a graph projection. Cut-set retiming 

procedure is then applied to the obtained SFG to derive a regular and temporally localized SFG, from 

which a systolic array design is immediately available. A number of systolic arrays for matrix 

triangularisation, induding both LU decomposition and QR decomposition, have been designed using 

this method. 
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11.2.3 Sys/olic Array.l· Design and Applica/i()ns 

A number ofsystolic alTays have been designed in this thesis. Firstly, we designed a systolic array for 

linear and inverse matrix system. The systolic array combines LU (or QR) decomposition, backward 

and fOlward substitution, and matrix multiplication into a trapezoidal array. The array can be used to 

solve a variety of linear systems and other problems such as matrix multiplication. When QR 

decomposition is used, the systolic array can solve linear least squares problems or perform pseudo

inverse computation. Then a systolic array is designed to compute the Schur complement which often 

occurs in the domain decomposition method and other problems in linear algebra such as the numerical 

solution of elliptic partial differential equations and sparse linear system. A systolic array architecture 

has been designed and simulated for QR decomposition of block structured sparse systems which find 

applications in areas such as photogrammetry, Doppler radar positioning, geodetic problems, cluster 

analysis and pattern matching. A novel systolic array is derived for computing matrix inversion by 

Newton Iteration which has an attractive feature that some simper initial approximations can always 

guarantee a convergence. A systolic array architecture for Capon's DOA estimation in sonar/radar 

sensor array processing is derived based on the QR decomposition technique. Finally a novel linear 

systolic array architecture is proposed for conjugate gradient (CG) algorithm. 

11.3 Further Research 

CAD Tools for Systolic A"ray Design. One of the major applications for systolic arrays is the design 

of the applicalio/l-.lpeci[ic illlegraled circllils (ASICs), particularly for signal and image processing. 

It is important to find methods that allow us rapidly to explore difrerent possible solutions to a single 

problem, and to compare them according to ditrerent performance measurements. Chap. 3 and Chap. 

4 introduce two popular methods for systematic systolic array synthesising. It is desirable to have 

Computer-Aided Design (CAD) tools to automatize the design procedures. Some software tools have 

been developed, for example, VACS (a VLSI Array Compiler System) [KungSY88c] [KungSY89], 

ADVIS [Moldovan87]. Systolic synthesis tools are still at early stages of development and a fully 

integrated system is still some way ofr [Megson92]. Continued development of CAD tools is a 

worthwhile and necessary task. Sophisticated CAD tools will be beneficial to a low design cost for 

systolic arrays, and hence will make it more feasible to use ASICs in those demanding applications. 
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Systolic Algorithms Design. Although CAD tools will continue to improve in sophistication, they 

are very difficult to solve all the systolic algorithms design problems. Firstly, many complex 

applications require complicated designs that may be not feasible to automatize by a CAD tools. 

Secondly, CAD tools only aid the design process and they cannot innovate or produce novel designs 

automatically. Therefore, systolic algorithms design is still an active research area. 

Mapping Systolic Algorithms to General Pur'pose Parallel Architectllres. As design and 

fabrication cost of systolic chips is still relatively high, many systolic algorithms are not feasible to 

implement in a special-purpose hardware. It becomes attractive to map and implement systolic 

algorithms efficiently in existing general purpose parallel architectures. Similar to vectorization in 

pipeline computers, systolization of algorithms may result an efficient implementation in the existing 

systems. 

Programmable and Reconfigllmble Systolic Army. The more specialized the hardware, the higher 

the performance; but cost per application also rise and flexibility decrease. Therefore general purpose 

systolic array architectures are very attractive in certain applications. Programmable and/or 

reconfigurable systolic arrays have received much attention recently. 

Systolic array architecture is an fOlmidable approach to exploiting massive parallelism with a minimum 

communication overhead. Featuring modularity. regularity and local comlllunication, systolic arrays 

are amenable to VLSI implementation. VLSI technology advances. parallel processing and demanding 

scientific and engineering applications have made the systolic array architecture a leading approach for 

handling computationally intensive applications. Systolic arrays hold great promise to be a pervasive 

form of massive parallel processing. 
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