
University library 

• ~ Lo,!gh~orough 
.,UmVerSlty 

Author/Filing Title ....... lJl .. . >! .. , .............................. .. 
........................................................................................ 

-r Class Mark ................................ ·· .. · .. ······· ...... · ...... ······ .. .. 

Please note that fines are charged on ALL 
overdue items. 

040369440X 

III~I IIIIII~ I~ II~ 111111 III 111111111111 

• 

! 

I 





Enhancements & Optimizations to 

H.264/AVC Video Coding 

by 

Xiongwen Li 

A doctoral thesis snbmitted in 

partial fulfillment of the 

requirements for the degree 

of 

Doctor of Philosophy 

Department of Computer Science 

Loughborough University 

October 2007 

© by Xiongwen Li 2007 

Snpervisors: Dr. E. A. Edirisinghe, Dr. H. E. Bez 

Director of Research: Prof. Sameer Singh 



Date 

elMS 

lI!' ~";1"to~i~ ~'C'>~""1'~"~""~'" 
30· .. ,·;.". :..~,J,""".~_"l '''<'''' .. ~)~ 

Un:\"~,r!;:~ty 

pa'klrq;~r,'I!t t~~,;r~l)" 



Abstract 

The H.264/ A VC video coding standard offers enhanced performance compared to 

previous coding standards in terms of both rate-distortion (R-D) performance and 

functionality. In particular, its superior rate-distortion performance has resulted in a 

significant interest in its practical application in many different domains ranging 

from multimedia to security and surveillance. As a result in the recent past many 

successful research attempts have been made in further improving its efficiency and 

extending its application domains. This thesis provides two novel contributions: an 

object-based extension that is capable of extending H.264/AVC's effective use in 

video surveillance applications and a multi-objective optimization framework that 

can be used to enhance H.264/AVC's use in any general application area. 

The first part of the thesis presents the design of a novel Shape Adaptive Integer 

Transform (SA-IT) and associated quantization procedures, to enable the coding of 

arbitrarily shaped video objects within H.264/AVC. The novel transform specifically 

enables maintaining the l6-bit integer arithmetic requirements of the standard. The 

thesis also presents the introduction of a novel binary shape coding strategy to 

H.264/AVC that is proved to be more efficient as compared to the shape coding 

scheme adopted by MPEG-4 visual. In addition, the slice group structure of the 

H.264/ A VC is further extended and effectively used with flexible macroblock 

ordering (FMO) to provide support for obj ect-based coding. The thesis shows that the 

proposed object-based CODEC provides the ability to selectively code images (video 

frames), enabling the ability to reconstruct important, pre-defined, foreground objects 

at high quality levels, leading to applications in the security & surveillance industry. 

Experimental results are provided to prove that the above functional enhancements 

come at no additional cost to the R-D performance. 

The second part of the thesis provides a novel framework for the performance 

optimization of a standard H.264/AVC CODEC. The effect of different coding 

II 



parameters on the video quality, bit rate, computational complexity and memory 

utilization are initially investigated in detail, leading to the identification of 

significant coding parameters. This knowledge is subsequently used in developing a 

multi-objective optimization framework for a H.264/AVC CODEC. In particular the 

use of the proposed framework in the joint minimization of the distortion and 

computational complexity, in a memory and bandwidth constrained environment is 

presented. The framework produces a set of optimal or near optimal coding 

parameters (which can be used for optimizing the trade-off between complexity, 

memory, rate and distortion) that can be directly used in achieving the optimum 

performance setting of a H.264/AVC CODEC. This is the first attempt in the 

literature that has investigated the joint complexity-memory-rate-distortion (C-M-R­

D) optimization in video coding. 

The work presented in this thesis contributes in extending the use of H.2641 AVe to 

new application domains such as eeTV surveillance. Further the proposed multi­

objective optimization framework and the associated methodologies can be used 

generally for the performance optimization of any video coding standard. 

III 

XiongwenLi 

October 2007 



Acknowledgements 

I would like to take this opportunity to express my sincere thanks to all who helped 

me to successfully complete this work. 

First, I would like to express my heartfelt gratitude to my supervisors, Dr Eran 

Edirisinghe and Dr Helmut Bez for their direction, advice and support. Especially to 

Dr Eran Edirisinghe, who provided high quality guidance, fullest support and helped 

review my thesis. 

I would also like to express my thanks to the departmental technical staff member, 

Mr. Samra. My thanks are also due to my Digital Imaging colleagues, Dammike, Ken, 

Njad, Moi, Rupesh and Iffat. My special thanks also go to Hector and Usman, new 

members of the research group who helped in proof reading. 

I would like to take this unique chance to thank my family members. I am profoundly 

thankful to my wife, for her love, faith and understanding during my study. I wish to 

thank my parents, who have always given me immeasurable and unconditional 

support. I also wish to thank my son, who is one year old and brought joy to my life 

during my final year of study. 

Finally, special thanks also go to Dr Christos Grecos for his help and advice in the 

later part of my research. 

IV 



Contents 

Abstract ........................................................... ~ ........................................................... II 

Acknowledgements .................................................................................................. IV 

Contents ...................................................................................................................... V 

List of Figures ........................................................................................................... IX 

List of Tables ............................................................................................................ XII 

Abbreviations ........................................................................................................ XIV 

Chapter 1 

1.1 

1.2 

1.3 

1.4 

Chapter 2 

2.1 

2.2 

Introduction ............................................................................................... 1 

Problem Statement ................................................................................... 1 

Aim and Objectives .................................................................................. 2 

Thesis Contributions ........................ ; ....................................................... 4 

Organisation of the Thesis ...................................................................... .4 

Introduction to H.264/AVC and Object-based Video Coding ........... 6 

Introduction .............................................................................................. 6 

Fundamental Concepts of Video Coding ................................................. 8 

2.2.1 Terminology and Abbreviations ....................................................... 8 

2.2.2 Colour Space and Sampling Formats .............................................. l0 

2.2.3 Video Format (Resolutions) ............................................................ 11 

2.2.4 Bitrate .............................................................................................. 12 

2.2.5 Mean Squared Error (MSE) ............................................................ 12 

2.2.6 Peak Signal to Noise Ratio (PSNR) ................................................ 13 

2.3 Introduction to H.264 ............................................................................. 13 

2.3.1 Structure ofH.264 ........................................................................... 14 

2.3.2 H.264 CODEC ................................................................................. 14 

2.3.3 Profiles and Levels .......................................................................... 16 

2.3.4 H.264 Enhancements ." ................................................................... 18 

2.3.5 Intra Prediction .......................... ~ ..................................................... 19 

2.3.6 Inter Prediction ................................................................................ 21 

2.3.7 Transform and Quantization ........................................................... 23 

v 



,------------------------------------------------------------------

2.3.7.1 Forward Transfonn ........................................................... 23 

2.3.7.2 Inverse Transfonn ............................................................. 24 

2.3.7.3 Quantization ...................................................................... 25 

2.3.7.4 De-quantization ................................................................. 26 

2.3.8 Deblocking Filter ............................................................................ 27 

2.3.9 Entropy Coding ............................................................................... 27 

2.4 Video Object-based Coding ................................................................... 27 

2.5 Arbitrary Shaped Video Object Coding in MPEG-4 ............................. 27 . 

2.5.1 . Video Object Planes ........................................................................ 28 

2.5.2 Binary Shape Coding ...................................................................... 28 

2.5.2.1 BAB Coding ..................................................................... .29 

2.5.2.2 Context-based Aritlnnetic Encoding (CAE) .................... .30 

2.5.2.3 Mode Coding .................................................................... 31 

2.5.2.4 Motion Vector Coding ...................................................... 32 

2.5.3 Shape-Adaptive DCT ...................................................................... 33 

2.6 Potential Applications of Object-based Coding ..................................... 35 

2.7 Summary and Conclusions .................................................................... 35 

Chapter 3 Literature Review ................................................................................ 36 

3.1 Introduction ............................................................................................ 36 

3.2 Arbitrarily Shaped Video Object Coding Techniques ........................... 36 

3.2.1 Extrapolation Methods .................................................................... 37 

3.2.1.1 Zero Padding ...................................................................... 37 

3.2.1.2 

3.2.1.3 

3.2.1.4 

3.2.1.5 . 

Repetitive Padding ............................................................ 37 

Low-Pass Extrapolation .................................................... 38 

Extension Interpolation ..................................................... 39 

Smart Padding ................................................................... 39 

3.2.2 Shape-Adaptive Transfonns ........................................................... 40 

3.2.3 Summary ......................................................................................... 40 

3.3 Optimization methods for Video Coding ............................................... 42 

3.3.1 Algorithm-based Optimization ...................................................... .42 

3.3.2 Parameter-based Optimization ....................................................... .44 

3.3.3 Summary ......................................................................................... 44 

Vl 



---------- - -

3.4 Conclusions ........................................................................................... .46 

Chapter 4 Shape Adaptive Integer Transform and Quantization ..................... 48 

4.1 Introduction ...... '" ............................................................................•..... .48 

4.2 An Overview .......................................................................................... 49 

4.3 Transform Design .................................................................................. 51 

4.3.1 Forward 1-D vertical Transform ..................................................... 51 

4.3.2 Forward 1-D horizontal Transform ................................................ .55 

4.3.3 Inverse Transform .......................................................................... .58 

4.4 Quantization Design ............................................................................... 59 

4.5 Example of 2-D SA-IT's Process .......................................................... 65 

4.6 1-D SA-IT and Quantization .................................................................. 72 

4.7 Preliminary Experiments & Results ....................................................... 77 

4.8 Conclusions ............................................................................................ 80 

Chapter 5 Object-Based H.264 CODEC .............................................................. 81 

5.1 Introduction ............................................................................................ 81 

5.2 Overview of Object-Based H.264 CODEC ........................................... 81 

5.3 Binary Shape Coding Method ................................................................ 87 

5.3.1 Encoder Implementation ................................................................. 87 

5.3.2 Decoder Implementation ................................................................. 92 

5.4 Macroblock Layer Texture CODEC ...................................................... 94 

5.5 Experimental Results .............. : .............................................................. 99 

5.6 Conclusions .......................................................................................... 105 

Chapter 6 H.264 CODEC Analysis ..................................................................... 107 

6.1 Introduction .......................................................................................... 107 

6.2 Coding Parameters ............................................................................... 1 08 

6.3 Video Test Sequences .......................................................................... 1 09 

6.4 Encoder Estimation ............................................................. : ................ 111 

6.4.1 Computational Complexity ........................................................... 111 

6.4.2 Memory Utilization ....................................................................... 118 

6.4.3 Rate and Distortion Analysis ........................................................ 120 

6.5 Decoder Estimation .............................................................................. 126 

6.5.1 Computational Complexity ........................................................... 126 

VII 

~ 
I 

I 

I 

I 



6.5.2 Memory Utilization ....................................................................... 13 I 

6.6 Conclusions ........................................................................... ; .............. 132 

Chapter 7 Multi-Objective Performance Optimization of a H.264 CODEC .133 

7.1 Introduction .......................................................................................... 133 

7.2 Introduction to Multi-objective Optimization ...................................... 135 

7.2.1 Definition of a Multi-objective Optimization Problem ................. 135 

7.2.2 Pareto-Optimal Solutions: ............................................................. 135 

7.2.3 NSGA-II Software ........................................................................ 137 

7.2.3.1 Input Parameters ............................................................. 13 7 

7.2.3.2 

7.2.3.3 

Main Procedure ............................................................... 138 

Output ofNSGA-II ......................................................... 139 

7.3 Problem Formulation ........................................................................... 139 

7.4 Obtaining Objective Functions ............................................................ 140 

7.4.1 Objective Functions of Encoder .................................................... 141 

7.4.1.1 

7.4.1.2 

7.4.1.3 

7.4.1.4 

Computational Complexity ............................................. 141 

Memory Utilization ......................................................... 144 

Rate & Distortion ............................................................ 145 

Formulation ofC-M-R-D of Encoder ............................. 147 

7.4.2 Objective Functions of Decoder ................................................... 147 

7.4.2.1 Computational Complexity ............................................. 148 

7.4.2.2 Memory Utilization ......................................................... 149 

7.4.2.3 Formulation ofC-M-R-D of Decoder ............................. 150 

7.5 Experimental Results ........................................................................... 150 

7.6 Conclusions .......................................................................................... 159 

Chapter 8 Conclusions and Future Work .......................................................... 160 

8.1 Summary .............................................................................................. 160 

8.2 Future Work ......................................................................................... 16 3 

References ................................................................................................................ 166 

Appendix A: Objective Functions of Video Sequences for Encoder .................. 172 

Appendix B: Objective Functions of Video Sequences for Decoder .................. 182 

Appendix C: List of Publications ........................................................................... 184 

VIII 



List of Figures 

Figure 2-1 Sampling patterns (a) 4:4:4; (b) 4:2:2 and (c) 4:2:0 ................................. .10 

Figure 2-2 Layer structure ofH.264 video encoder .................................................... 14 

Figure 2-3 Block diagram of a H.264 CODEC ........................................................... 15 

Figure 2-4 Neighbouring samples oflNTRA-4x4 mode ................... , ........................ 20 

Figure 2-5 lNTRA-4x4 prediction modes: .................................................................. 20 

Figure 2-6 Segmentations of the macroblock for motion compensation .................... 22 

Figure 2-7 The Foreman object. (a) Texture object. (b) Binary alpha object. ............ 29 

Figure 2-8 Block diagram ofMPEG-4 binary shape encoder .................................... 29 

Figure 2-9 The templates. (a) Intra template; (b) and (c) Inter template .................... 31 

Figure 2-10 The adjacent BAB's ofthe current BAB in I-VOP ................................. 31 

Figure 2-11 The current BAB and related candidate motion vectors ......................... 32 

Figure 2-12 Example offorward SA-DeT processing ............................................... 34 

Figure 3-1 (a) Initial border block; (b) zero padding; (c) repetitive padding; (d) LPE 

padding ............................................................................................................... .38 

Figure 4-1 Flow diagram of 2-D SA-IT and its associated quantization .................... 50 

Figure 4-2 Example of forward SA-IT in a 4x4 block with arbitrary shape ................ 51 

Figure 4-3 Results of vertical transformed coefficients (a) and scaling factors (b) ... .56 

Figure 4-4 (a) Initial block; (b) After shifting to upper border ................................... 65 

Figure 4-5 (a) Resulting coefficients of the vertical transform and (b) corresponding 

scaling factors ..................................................................................................... 66 

Figure 4-6 Intermediate outcomes of Z and scaling factors ........................................ 67 

Figure 4-7 (a) Forward quantized coefficients; (b) Inverse quantized coefficients .... 68 

Figure 4-8 Reconstruction results (a) horizontal; (b) vertical; (c) final results .......... 71 

Figure 4-9 Flow diagram of I-D vertical SA-IT and quantization ............................. 72 

Figure 4-10 (a) Coefficients of vertical transform and (b) resulting scaling factors .. 75 

Figure 4-11 (a) Forward quantized coefficients; (b) Inverse quantized coefficients .. 75 

Figure 4-12 (a) Results of inverse vertical SA-IT; (b) final results ............................ 76 

Figure 4-13 Original images: (a) Foreman; (b) Mother & Daughter. And associated 

alpha maps: (c) Foreman; (d) Mother & Daughter ............................................. 78 

IX 



Figure 4-14 Comparison of SA-ITs and SA-DCT for Mother & Daughter ............... 79 

Figure 4-15 Comparison of SA-ITs and SA-DCT forForeman ................................. 79 

Figure 4-16 Resulting image of SA-IT for Foreman and Mother&Daughter objects 79 

Figure 5-1 Block diagram of the proposed object-based H.264 encoder. ................... 82 

Figure 5-2 Foreman object is grouped into a slice group (grey), a small square 

indicates a macroblock of 16 x 16 pixels ............................................................ 85 

Figure 5-3 Structure of an alpha NAL unit. ................................................................ 86 

Figure 5-4 A list of candidate motion vectors are used for prediction. (a) MV for 

shape; (b) an example ofMV for texture ............................................................ 89 

Figure 5-5 BAB map ofthe Figure 5-2, each small square comprises 16 x 16 pixels90 

Figure 5-6 Shape coding results of News with resolutions CIF and QCIF ................ 91 

Figure 5-7 Shape coding results of Coastguard with resolutions CIF and QCIF ....... 91 

Figure 5-8 Basic processes flow of the proposed decoder. ......................................... 93 

Figure 5-9 Padding modes for boundary blocks (8 x 8). (a) - (d) are horizontal 

padding and (e) - (g) are vertical padding after horizontal padding ................... 95 

Figure 5-10 Example of neighbouring blocks of the current block X, opaque pixel 

given by grey ....................................................................................................... 96 

Figure 5-11 Padding ofa reference frame ............................. : .................................... 96 

Figure 5-12 A macroblock with different partition size ............................................. 97 

Figure 5-13 A 4 x 4 block of an object (grey) ............................................................ 98 

Figure 5-14 Bitrate comparison of I-D SA-IT and 2-D SA-IT .................................. 99 

Figure 5-15 (a) The ship object; (b) The foreman object; (c) The news man and girl 

object. ................................................................................................................ 100 

Figure 5-16 Rate-distortion diagram for object boundary of sequences Foreman (a) 

and News (b) ..................................................................................................... 101 

Figure 5-17 Coastguard (a) Only QPFG=28; (b) QPFG=28 and QPBo=35; (c) QPFG=28 

and QPBo =30; (d) QPpo=QPBo=28 coded with standard coding ..................... 104 

Figure 5-18 News (a) Only QPFG=28; (b) QPpo=28 and QPBo=35; (c) QPpo=28 and 

QPBo=30; (d) QPFG= QPBo=28 coded with standard coding ............................ 105 

Figure 6-1 Example frames of test video sequences ................................................. 110 

Figure 6-2 Processing time varies with different reference frames .......................... 114 

Figure 6-3 Processing time spent with various search size and ME algorithms ....... 115 

x 



Figure 6-4 Processing time spent with various RD modes ...................................... .116 

Figure 7-1 A theoretical framework of optimization mechanism ............................. 134 

Figu~e 7-2 Feasible region and Pareto-optimal front in two-objective optimization 

problem ............................................................................................................. 136 

Figure 7-3 NSGA-II procedure ................................................................................. 138 

Figure 7-4 Pairwise plots of solutions for rate vs. distortion, complexity and memory 

respectively ....................................................................................................... 152 

Figure 7-5 Pairwise plots of solutions: (a) complexity vs. distortion, (b) memory vs. 

distortion, and (c) memory vs. complexity ...................................................... .153 

Figure 7-6 Rate-distortion curves for Coastguard, Mother&Daughter and Mobile .155 

Figure 7-7 Resulting rate-distortion curves (rate < 1024 kbps) for four sequences .156 

Figure 7-8 Resulting rate-distortion curves (56 < rate < 128) for four sequences ... .156 

Figure 7-9 Rate-distortion curves of encoder and decoder for Foreman ................. .158 

XI 



List of Tables 

Table 2-1 Common intennediate fonnats used in digital video ................................. 11 

Table 2-2 Specification ofH.264 Profiles .................................................................. 17 

Table 2-3 BAB coding modes represented by the BAB type .................................... .30 

Table 3-1 Comparison of methods of coding arbitrarily shaped object... .................. .41 

Table 3-2 Comparison of existing optimization methods on video coding ............... .45 

Table 4-1 Scaling factors of constituting elements of E'M(i}' ..•..•.•.........•.••• : •••.•....•••••• 57 

Table 4-2 Quantization factor MF for 0 s; QP S; 5 ........................................................ 63 

Table 4-3 Rescaling factor (RP) for 0 s; QP S; 5 ........................................................... 63 

Table 4-4 Compensations of scaling factors ............................................................... 64 

Table 5-1 BAB coding modes as represented by the bab_type .................................. 88 

Table 5-2 Coding results for sequence of Coastguard .............................................. 1 03 

Table 5-3 Coding results for sequence of News ....................................................... 104 

Table 6-1 Profiling results of Garden video sequence .............................................. 112 

Table 6-2 Coding parameters and coding conditions ................................................ 113 

Table 6-3 Processor utilization at various video resolutions .................................... 113 

Table 6-4 CPU time (in seconds) spent on ME algorithms ...................................... 115 

Table 6-5 Processing time (second) varies with different partition sizes ................. 117 

Table 6-6 Memory requirement fonnulas for various buffer levels ......................... 119 

Table 6-7 Memory requirements in Mbytes ............................................................. 120 

Table 6-8 Candidates for parameter selection ........................................................... 121 

Table 6-9 Rate and distortion varies with resolution ................................................ 121 

Table 6-10 Rate and distortion varies with reference pictures .................................. 122 

Table 6-11 Rate and distortion varies with ME algorithms ...................................... 123 

Table 6-12 R-D varies with search range, slice group and RD mode respectively .. 124 

Table 6-13 R-D varies with intra period, QP and threshold mode respectively ....... 125 

Table 6-14 Rate and distortion varies with prediction modes .................................. 125 

Table 6-15 Profiling results of four sequences decoded by the decoder .................. 128 

Table 6-16 Candidates used for parameter selection in complexity at decoder ........ 128 

XII 



Table 6-17 Processor utilization (in seconds) at various video resolutions, reference 

frames and intra period ..................................................................................... 130 

Table 6-18 Processing time (second) varies with different prediction modes .......... 130 

Table 6-19 Memory requirement fonnulas for decoder (JM) at various buffer levels 

........................................................................................................................... 131 

Table 6-20 Significant coding parameters on H.264 CODEC (JM 10) .................... 132 

Table 7-1 Input parameters ofNSGA-II ................................................................... 137 

Table 7-2 Coding parameter settings for estimating complexity .............................. 141 

Table 7-3 The average computational complexity (seconds) per frame for each 

sequence ............................................................................................................ 142 

Table 7-4 Terms and coefficients of the fitness function of Mother & Daughter .... 143 

Table 7-5 Fitness results of computational complexity ............................................ 144 

Table 7-6 Coding parameter settings and the fitness results ofmemory ................. .145 

Table 7-7 Coding parameter settings for estimating rate and distortion ................... 146 

Table 7-8 Fitness results of rate and distortion ....•................................................... .146 

Table 7-9 Coding parameter settings for estimating computational complexity ...... 148 

Table 7-10 Fitness results of decoder's computational complexity ......................... .149 

Table 7-11 Fitness result of decoder's memory utilization ...................................... 149 

Table 7-12 Optimization results of decoder for Foreman sequence ......................... 157 

Table 7-13 Optimization results of encoder for Foreman sequence ......................... 158 

Table 7-14 Optimal coding parameter set for Foreman ........................................... .158 

XIII 



ADSL-2 

AHBS 

AVC 

ASO 

BAB 

BG 

B-VOP 

CABAC 

CAE 

CAVLC 

CBP 

C-D 

CIP 

C-M-R-D 

CPU 

C-R-D 

DCT 

DVD 

DWT 

EA 

EPZS 

FG 

FME 

FMO 

FPGA 

FS 

GA 

H.264 

Abbreviations 

Asymmetric Digital Subscribe Line Transceivers 2 

Adaptive Hexagon-based Search 

Advanced Video Coding 

Arbitrary Slice Ordering 

Binary Alpha Block 

Background 

Bidirectionally predicted Inter-coded VOP 

Context-based Adaptive Binary Arithmetic Coding 

Context-based Arithmetic Encoding 

Context-based Adaptive Variable-Length Coding 

Coded Block Pattern 

Complexity-Distortion 

Common Intermediate Format, a video format 

Complexity-Memory-Rate-Distortion 

Central Processing Unit 

Complexity-Rate-Distortion 

Discrete Cosine Transform 

Digital Versatile Disc 

Discrete Wavelet Transform 

Evolutionary Algorithm 

Enhanced Predictive Zonal Search, a motion estimation 

algorithm ofH.264 

Foreground 

Fast Motion Estimation 

Flexible Macroblock Ordering 

Field Programmable Gate Array 

Full Search, a motion estimation algorithm ofH.264 

Genetic Algorithm 

A Video Coding Standard 

XN 



HVS 

ISO/IEC 

IT 

ITU-T 

I-VOP 

LPE 

MC 

ME 

MF 

MOEA 

MOGA 

MOO 

MOOP 

MPEG 

MPEG-4 

MSE 

MVD 

MVDS 

MVPS 

MVS 

NAL 

NALU 

NSGA 

P-D 

PPS 

P-R-D 

PSNR 

P-VOP 

QCIF 

QP 

Human Visual System 

International Standards Organization, International 

Electrotechnical Commission 

Integer Transform 

International Telecommunications Union, 

Telecommunication Standardization Sector 

Intra-coded rectangular VOP, progressive video format 

Low-Pass Extrapolation 

Motion Compensation 

Motion Estimation 

Multiplication Factor 

Multi-Objective Evolutionary Algorithm 

Multi-Objective Genetic Algorithm 

Multi-Objective Optimization 

Multi-Objective Optimization Problem 

Motion Picture Experts Group, a Committee ofISO/IEC 

A Multimedia Coding Standard 

Mean Squared Error 

Motion Vector Difference 

Motion Vector Difference for Shape 

Motion Vector Predictor for Shape 

Motion Vector for Shape 

Network Abstraction Layer 

Network Abstraction Layer Unit 

Non-Dominated Sorting Genetic Algorithm 

Power-Distortion 

Picture Parameter Set 

Power -Rate-Distortion 

Peak Signal to Noise Ratio, an objective quality measure 

Inter-coded rectangular VOP, progressive video format 

Quarter Common Intermediate Format 

Quantization Parameter 

xv 



R-D 

RF 

RGB 

RMSE 

RBSP 

ROI 

SA-DCT 

SA-DWT 

SA-IT 

SIF 

SPS 

SQCIF 

SVC 

UMHS 

SUMHS 

VCEG 

VCL 

VLC 

VO 

VOP 

Rate-Distortion 

Rescaling Factor 

RedlGreenIBlue colour space 

Root Mean Square Error 

Raw Byte Stream Payload 

Region ofInterest 

Shape Adaptive Discrete Cosine Transform 

Shape Adaptive Discrete Wavelet Transform 

Shape Adaptive Integer Transform 

Source Input Format, a video format 

Sequence Parameter Set 

Sub Quarter CIF 

Scalable Video Coding 

Unsymmetrical Multi-Hexagon Search, a motion estimation 

algorithm ofH.264 

Simplified Unsymmetrical Multi-Hexagon Search, a motion 

estimation algorithm ofH.264 

Video Coding Experts Group 

Video Coding Layer 

Variable Length Coding 

Video Obj ect 

Video Object Plane 

XVI 



Chapter 1 Introduction 

1.1 Problem Statement 

The new video coding standard, H.264/AVC (1, 11] (hereafter referred to as H.264), 

offers enhanced perfonnance compared to other previous video coding standards (e.g. 

MPEG-2, MPEG-4 Visual, H.263 etc.) in tenns of both compression efficiency 

(approximately a 50% bit rate saving is achievable for equivalent perceptual quality 

[14]) and flexibility (provides for a much wider range of applications). However, one 

noteworthy functionality absence in H.264 specifically in comparison to MPEG-4 

Visual (Part-2) [5] (hereafter referred to as MPEG-4) is the capability of coding 

arbitrarily shaped video objects. Such a capability can enable H.264 to enhance 

coding efficiency and flexibility by providing the means for coding selected 

arbitrarily shaped object(s)/region(s) at a higher quality level as compared to the 

visuaUy non-important background. This is a highly desirable functionality for 

applications in highly bandwidth constrained mobile telephony and in CCTV 

surveillance systems where video quality is of utmost importance for post incidence 

analysis. In mobile telephony, the limited size of screen solicits the acceptability of 

encoding the background of a video frame at a lower quality as compared to the 

foreground, for e.g. representing speaker in a conversational application scenario, 

under bandwidth constraints. In CCTV applications, provided a pre-processing stage 

can separate important objects/regions (for the purpose of post incidence analysis), 

these areas can be coded at a much better quality level as compared to the 

background. Though region/object based coding has been well investigated under 

lPEG-2000, M1PEG-2000 and MPEG-4, no attempt has been made to include object­

based coding to H.264. The inclusion Of object-based coding concept within H.264 

requires resolving many research challenges, partiCUlarly due to the need to maintain 

compliance with its complicated coding architecture, efficiency and integer 

arithmetic requirements. 

1 



Due to the high demand of applications requiring real-time video coding, mainly 

supported by capture, processing, transmission and display devices/mediums that are 

running under constraints, recently a significant amount of research momentum has 

been gathered in the area of optimizing video coding standards. With the recent 

standardization of H.264, the video optimization research has mainly been focused 

on this standard. In literature, the existing contributions to the optimization of H.264 

have focused on reducing computational complexity, rate and distortion, either 

individually or pair wise. A single attempt has also been made at the joint complexity, 

rate and distortion optimization of H.263 [47]. These optimizations have focused on 

algorithmic enhancements or improvements, such as fast algorithms for motion 
, 

estimation (ME), fast algorithms for coding mode selection and block skipping. A 

careful analysis has revealed that none of these optimizations has attempted to 

optimize a joint complexity, memory, rate and distortion (C-M-R-D) based on an 

optimal selection of H.264' s numerous coding parameters. Further the existing 

optimizations have either been limited solely to the encoder or to the decoder. In 

other words no attempt has been made in optimizing an entire H.264 CODEC. 

It is known that the performance of H.264 depends on a large set of coding 

parameters, including the choice of different fast motion estimation algorithms and 

rate-distortion optimization modes etc. A correct set (i.e. a combination) of coding 

parameters can enable a H.264 CODEC to achieve optimum performance. Therefore, 

the right selection of parameters is an open research question. However the choice of 

parameters will depend on the source video, coding objectives and system constraints. 

Therefore it is desirable to develop an optimization framework that yields the 

appropriate coding parameters to that can jointly optimize the trade-off between 

complexity, memory utilization, rate and distortion. 

1.2 Aim and Objectives 

The aim of the research presented in this thesis is to enhance the functionality and 

optimize the performance of a H.264 video CODEC. 

2 



To this effect two key objectives are to be met; (i) enhance functional flexibility of 

H.264 by introducing the ability of coding arbitrarily shaped object(s), and (ii) 

optimize the trade-off between computational complexity, memory utilization, rate 

and distortion by choosing the right coding parameters. 

In order to fulfil the first objective, a novel DCT -based shape adaptive integer 

transform that is capable of efficiently coding the boundary blocks of an arbitrarily 

shaped object has to be defined. The said transform should be able to maintain 

integer arithmetic requirements of a standard H.264 CODEC during the transform­

quantization stages. In addition to developing the above shape adaptive integer 

transform algorithm, a novel shape coding algorithm needs to be developed for 

coding shape information of video objects. In addition, the slice group structure of 

the H.264 needs to be modified and extended so that an object-based H.264 CODEC 

architecture can be achieved, which should provide the ability to selectively code 

images (video frames), enabling the ability to reconstruct important, pre-defined, 

foreground objects at high quality levels. 

In order to achieve the second objective of this thesis, an H.264 CODEC's detailed 

performance needs to be first investigated. The effect of using different coding 

parameters, on computational complexity, memory utilization, rate and distortion 

should be analyzed. The coding parameters that have the most significant impact on 

the above objectives can then be used to obtain the fitness functions for each 

objective. These can then be utilized within a multi-objective optimization 

framework that can jointly optimize complexity-memory-rate-distortion. 

The above research and development objectives are implemented based on the H.264 

reference software model, JM 10 (referred to as H.264 CODEC within the context of 

this thesis) [51]. 

3 



1.3 Thesis Contributions 

The research and development work carried out in fulfilling the above research aims 

and objectives have resulted in a number of original contributions. They are: 

• Proposing a shape adaptive integer transform (SA-IT) for coding the 

texture of arbitrarily shaped objects in H.264 video coding. 

• Proposing a new shape coding algorithm based on the MPEG-4 shape 

coding methodology for coding shape information of video objects. 

• Design, development and implementation of an object-based coding 

extension to the H.264 standard. 

• A detailed investigation of the effects of different coding parameters on a 

H.264 CODEC's computational complexity, memory requirement, rate and 

distortion. 

• The development of a multi-objective optimization framework for a H.264 

video CODEC that is capable of jointly optimizing computational 

complexity, memory utilization, rate and distortion. 

1.4 Organisation of the Thesis 

For clarity of presentation, the thesis is organized as follows: 

Chapter 2 provides fundamental background knowledge on video coding, an 

overview of the H.264 video coding standard and of arbitrarily shaped video object 

coding in MPEG-4 video coding standard. 

4 



Chapter 3 reviews different arbitrarily shaped object coding techniques. The 

advantages and disadvantages of each approach are critically compared and discussed. 

The chapter further provides an insight into video CODEC optimization methods 

proposed in previous literature and highlight their limitations. 

Chapter 4 proposes a novel mathematical transform, the shape adaptive integer 

transform (SA-IT) that can be used to code the texture of arbitrarily shaped video 

objects. 

Chapter 5 designs, develops and implements an object-based coding framework 

within a standard H.264 CODEC. The chapter further compares the performance of 

the object-based H.264 CODEC extension with that ofa standard H.264 CODEC. 

Chapter 6 investigates the effect of different coding parameters of a standard H.264 

CODEC's computational complexity, memory requirements, rate and distortion. 

Further it concludes which coding parameters have the most significant effect on the 

four selected objectives. 

Chapter 7 presents a multi-objective optimization framework for a H.264 CODEC 

that is capable of joint optimization of computational complexity, memory utilization, 

rate and distortion, collectively considering both the encoder and the decoder. 

Finally, Chapter 8 concludes the thesis with a summary of contributions and future 

directions of research. 

5 



------------------------------------------ -

Chapter 2 Introduction to H.264/AVC and 

Object-based Video Coding 

2.1 Introduction 

With the widespread adoption of technologies such as digital television, Internet 

streaming video and DVD-Video, video coding (video compression) has become an 

essential component of broadcast and entertainment media [11). Further the presence 

of a vast amount of CCTV cameras capturing real-time footage of public places has 

recently increased the use of video coding algorithms in video surveillance data 

storage and transmission. It is well known that raw or uncompressed digital videos 

require expensive resources for storage, transmission and processing of video data. 

For example, using a typical video resolution of 352 x 288 pixels with 3 bytes of 

colour data per pixel, playing at 30 frames per second, one second of the video 

requires 8.9 Megabytes of storage. At this rate, a 5.34 Gigabytes hard disk can only 

store 10 minutes of the video. Furthermore, if this video is to be transmitted in real 

time through the internet, it requires a channel bandwidth of 73 Mbps, which is 6 

times the bandwidth (12 Mbps) of Asymmetric Digital Subscribe Line Transceivers 2 

(ADSL2), the current broadband internet service. Moreover, the processing power 

needed to handle such massive amounts of data would make video processing 

hardware very expensive. For these reasons, compression technology is an essential 

requirement in digital video. 

A large amount of statistical and subjective redundancy exists in digital video 

sequences. Video compression techniques are designed to reduce the size of data 

required for storage and transmission by removing both statistical and SUbjective 

redundancy. The compressibility of a video not only depends on the amount of 

redundancy in the source video sequence, but also on the compression technique used 

for coding [2]. Video compression techniques are primarily classified into lossless 

6 



coding and lossy coding. Lossless coding techniques usually exploit the statistical 

redundancy in image and video data so that the identical data can be reconstructed 

perfectly at the decoder. However, these techniques can only obtain a modest amount 

of compression. On the other hand, lossy coding methods operate by removing 

sUbjective redundancy in spatial, temporal and/or frequency domains to achieve a 

significant decrease in the file size (i.e. high compression ratio) at the expense of 

video quality. 

Over the last two decades, video coding has been a very active field of research and 

development, and many coding techniques have been proposed and developed by 

companies, researchers and international standardisation authorities. ISO Motion 

Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) are 

two formal organizations that have developed fully fledged video coding standards. 

These standards have been designed specifically for a variety of video applications. 

The ISO/IEC MPEG developed the MPEG series: MPEG-l [3J, MPEG-2 [4J, 

MPEG-4 [5J, MPEG-7 [6J and MPEG-21 [7J. They have addressed the problems of 

video storage, streaming and broadcasting through internet and mobile networks. The 

ITU-T video coding standards are named as the H.26x series (H.26l [8J, H.262 [9J, 

H.263 [IOJ and H.264 [1]), are have been specifically designed for applications such 

as video conferencing and video telephony [2J. 

For clarity of presentation this chapter is divided into several sections. Section 2.2 

introduces the reader to the fundamentals of video coding. Section 2.3 presents an 

overview of the H.264 video coding standard, ·with particular emphasis to areas of 

research focus of this thesis. Section 2.4 introduces object-based coding in general, 

which is followed by Section 2.5 that presents object-based video coding as used in 

MPEG-4. Section 2.6 presents potential applications of object-based video coding. 

Finally, Section 2.7 concludes the chapter. 

7 



------------------------------------------------------------------------ . 

2.2 Fundamental Concepts of Video Coding 

2.2.1 Terminology and Abbreviations 

The basic terminology and abbreviations used generally in video coding can be listed 

as follows (2): 

• Pixel: A colour element at one position in a displayed image. 

• Luminance (or Luma): A sample or array representing a video brightness 

signal, often symbolized as Y. 

• Chrominance (or Chroma): A sample or array representing a blue or red 

video colour difference signal, often symbolized as Cb and C" or U and V. 

• Sample: A luma or chroma component at one position in a video frame. 

• Frame: A set of samples representing a single time instant of a progressive 

video signal. A video frame consists of one array of luma samples and two 

arrays of chroma samples. 

• Frame rate (frame frequency): The number of frames or images that are 

projected or displayed per second. Frame rate is often expressed in frames 

per second (fps), or simply in hertz (Hz). 

• Resolution: The dimensions of a video frame or an image, in pixels. 

• Macroblock (MB): A 16 x 16 array of luma pixels (Y) and associated 

chroma pixels (U and V). In this thesis, the chroma components of a 

macroblock are assumed to each consist of 8 x 8 pixels (unless otherwise 

stated). 

• Block: An M x N array of samples. 

8 



• Picture: In this thesis, a picture is defined as a coded video frame. 

• Slice: A region of a coded picture, which is composed of a number of 

macroblocks. 

• Sequence: A set of successive pictures representing a period of time of a 

video signal. 

• Motion vector (MV): The offset between a macroblock or block and a 

matching area in a reference frame. 

• Motion estimation: The process of finding optimal or near-optimal 

matching for a macroblock or block from one or more reference frame(s). 

• Motion compensation: Computing the difference between a macroblock 

or block and a matching area in one or more reference frame(s). 

• Discrete· Cosine Transform (DCT): A transform converting a set of 

samples from spatial domain to frequency domain. 

• Quantization: The process of mapping a signal with a range of values X 

to a signal with a reduced range of values Y. 

• Entropy coding: The process of converting a senes of symbols (e.g. 

transform coeffici ents, motion vectors, etc) into a compressed form. 

• Encoder: Converts a series of video frames into a compressed form 

(coded video) prior to transmission andlor storage. 

• Decoder: Decompresses coded video before display and/or storage. 

• CODEC: An abbreviation of video encoder and decoder. 

9 



~ - ----- - -- - ---------- , ~- -- -- ---- - - -- -- - -- -- , ~ --- - -- -- ------ - --- - - , , , ' , 

o o 

o o o 
, ' , . -- - - - - --- - - - ----- -- - -, . - -- - - - - - - - - - - - - - - -- - -, 

(a) 

o Ysample 

(b) (c) 

• Cb sample • Crsample 

Figure 2-1 Sampling patterns (a) 4:4:4; (b) 4:2:2 and (c) 4:2:0 

2.2.2 Colour Space and Sampling Formats 

The method chosen to represent bri ghtness (luminance) and colour of images and 

videos is described as a co lour space. RGB and YCbCr are two commonly used 

colour spaces in image and video representation. In the RGB colour space, a colour 

image sample is represented with three colour components Red, Green and Blue. The 

components are eq uall y important and thus are usuall y stored at the same resolution 

[11]. For example, a RGB colour image with resolution of 176 x 144, will require I 

byte (8 bits) per pixe l, per colour. Thus the colour image requires a total of 74.25 

Kbytes fo r storage. On the other hand, in the YCbCr colour space, a colour image 

may be represented more efficientl y by reducing the resolution in colour (chroma) 

components, without having an obvious effect on visual quality due to the fac t that 

the Hwnan Visual System (HVS) is less sensitive to colour than luminance [11]. 1n 

the case of the above example, the storage requirement when using the YCbCr colour 

representation is less than 74.25 Kbytes. The actual size of the storage requirement 

depends upon the chroma sampling format (discussed in the next paragraph) used. 

For this reason, the YCbCr colour space is a popular way of effi ciently representing 

colour images and videos. 

10 



Table 2-1 Common intermediate fomlats used in digital video 

As mentioned above, chroma components may be represented wi th a lower reso lution 

than the luma component without sign i fi cantl y reducing the overa ll visual qua lity. 

Hence, there are three sampling fOImats usuall y used in YCbC, co lour space, 4:4:4, 

4 :2:2 and 4 :2 :0. In the 4 :4 :4 sampling (see Figure 2- 1 (a», the three components (Y, 

Cb and c,) have the same resolution, which is si milar to RGB co lour space. In the 

4:2 :2 sampling (sometimes referred to as YUY2), the chroma components have the 

same vert ica l reso lution as the luma but half the hori zontal reso lution as illustrated in 

Figure 2-1 (b). The number 4 :2:2 means that fo r every fo ur luma samples in the 

hori zontal direction there are two Cb and two Cr samples. In the 4 :2:0 sampling 

(sometimes referred to as YV I2), U and V components have half reso lution ofY in 

both horizo nta l and vertical directions as illustrated in Figure 2- 1 (c). [n other words, 

a 4:2 :0 YCbCr video requires exactl y half as many samples as 4:4:4 or RGB video. In 

the above example, the image requires only 37. 13 Kbytes space. Hence, 4:2 :0 

sampling is widely used for consumer applications such as video conferencing, 

digi tal television, DVD storage and this thes is as well . 

2.2.3 Video Format (Resolutions) 

The most widely used, standard video reso lutions are tabulated in Table 2- 1. The 

Common Intennediate Fomlat (CIF), 352 x 288 pixels, is commonly used to 

11 



standardi ze the horizontal and vertical reso lutions of YCbC, colour video sequences. 

It was originall y proposed as a part of the H .26 1 [8] v ideo cod ing standard . The CIF 

is the basis for converti ng into many other standard resolutions as depicted in Table 

2-1. Different resolutions are used in different applications catering for the needs of 

different screen sizes such as in mobile phones, video conferencing applications etc. 

The experiments conducted in thi s thesis use video seq uences belonging to a number 

of different reso lutions defined in the tab le. 

2.2.4 Bitrate 

In video process1l1g, bitrate (sometimes written bit rate or simpl y as rate) is the 

number of bits that are conveyed or processed per unit of time [13]. Bit rate is 

quantified using the "bit per second" (bi tls or bps) unit, often in conjunction with a 

metric prefix such as kilo- (kbitls or kbps) and is synonymous to data rate and digi tal 

bandwidth [13]. In this thesis, all bit rates of coded videos are calculated in temlS of 

the eq uati on below: 

R 
SxFR 

N 

(2. 1 ) 

where R indicates the bit rate, S is the size of a coded video in bits . FR and N are the 

frame rate (fps) of the coded video and the length of the video (i.e., the number of 

frames in the video) respective ly. 

2.2.5 Mean Squared Error (MSE) 

Mean Squared Error (MSE) is one of the popular obj ective video quality 

measurement methods. It calcul ates the average of sq uared difference between the 

original video sequence (Vo) and reconstruction video sequence CV,) as shown by 

Equation (2.2). It is noted that N is the total number of pixels in a single frame. 

t2 



N 

(2 .2) 

2.2.6 Peak Signal to Noise Ratio (PSNR) 

Peak Signal to oise Ratio (PSNR) is ano ther popular objecti ve video quality metri c. 

It is measured in a logarithmic sca le and depends on the Mean Squared Error (MSE) 

ofa video frame as shown by Equation (2.3) . In thi s thesis, the averaged PSNR of the 

luminance and chrominance components is used to measure video quality (8 bits per 

pi xel). 

PSNR = I Olog,o( 255' / MSE) 

(2.3) 

2.3 Introduction to H.264 

H.264 [I , 14J, known as MPEG-4 Part 10 or Advanced Video Coding (AVC), was 

developed by the Joint Video Team (JVT) (consisting of IUT-T VCEG and ISO 

MPEG) in 2003. The main focus of the standardisation of H.264 was to enhance 

coding e ffi ciency as compared to prev ious video coding standards and to provide 

fl ex ibility for effective use over a broad vari ety of network types and application 

domains. The basic video coding design in H.264 is based on conventional block­

based motion-compensated hybrid video coding concepts, but with some important 

differences relati ve to prior standards such as enhanced prediction capability, small 

block-size exact-match integer transform, and enhanced entropy coding methods and 

so on. The enhanced algori thms utilized within H.264 enable it to provide 

approximately a 50% ex tra bit rate savings (at an equi valent perceptual quality) when 

compared to the performance of prior standards [14]. 

13 



r---- -- -- -- -- --- -- --- --- -- -- ---- - - ---- -- ---------- -- -- - - --- --- --- --- -- -- ~ , ' 
Yideo Coding Layer I 

Control Data 1 
Netwo.·k Abstraction Layer I 

----- - - ------- -- --- ----------- - ---- -~--------------
, 
--------

Transport Layer I 
Figure 2-2 Layer structure of H.264 video encoder 

2.3.1 Structure of H.264 

H.264 
video 

encoder 

, 

------ - ---_. 

To address the need of flexi bility and customizability , the H .264 design is separated 

into a video coding layer (YCL), which achieves a generic video compression similar 

in spirit to other standards such as MPEG-2 [4] , and a network abstraction layer 

(NAL), which fonnats the YCL data together with some contro l data and provides 

header infomlation for effective transmission by the transport layers or storage media 

(see Figure 2-2) [14]. 

2.3.2 H.264 CODEC 

Figure 2-3 (a) and (b) show block diagrams of a H.264 encoder and decoder 

respecti vely. The H.264 CODEC structure has some similarities to those of the prior 

standards but some important changes have been made to improve coding 

perfonnance. Enhancements will be explained in Section 2.3.4. The data flow within 

the CODEC is briefly discussed below. 

14 



NA L 

+ 

p 

Intra Prediction 

Reconstruction 
& Store 

Entropy 
Decoding 

Iiot---I Deblocking 
Filter 

(a) H.264 encoder 

Entropy 
Encoding NA L 

Reconstruction 
& Store 

1i4-----------1 Deblocking Il--_ Output 
Fi lter video 

(b) H.264 decoder 

Figure 2-3 Block diagram of a H.264 CODEC 

15 



The H.264 encoder comprises of two parts: encoding and reconstruction. At the 

encoding part, each picture of a video is initially partitioned into one or more slices . 

Each slice consists ofa number of 16 x 16 macroblocks of the luma component and 8 

x 8 blocks of each of the two chroma components. Each luma or chroma macroblock 

is either spatially or temporally predicted (The macroblock or block may be 

subdi vided into sub-blocks for improved effici ency of prediction). The resulting 

prediction block (marked 'P' in F igure 2-3) is subsequentl y subtracted 5-om the 

current block to produce a residual (difference) block (marked 'R' in Figure 2-3). 

The residual block is trans[on1led using in teger transfoml (7), and the transform 

coefficients are quanti zed (Q) to generate 'C', a set of quantised transform 

coefficients which are finally encoded by entro py coding. The resulting entropy­

encoded data, together with addi tional infolmation required to decode each block 

within the macrob lock (predict ion modes, quantizer parameter used, motion vector 

information, etc .) fo rm the compressed bitstream which is passed to the NAL for 

transmission or storage. At the reconstruction part, the coefficients "e', LUldergo 

inverse quanti sation (Q-' ) and inverse transfOlm (T') to produce a res idual block (R '). 

The residual block is added to the prediction block (P) to create a reconstructed block 

which is fi ltered to reduce the effects of blocking artefacts [11] . This reconstructed 

block is saved as a part of a reconstTucted ti'ame which is used as a reference frame in 

the prediction of macroblocks of subsequent frames . 

The decoder receives the NAL data and initiall y uses entropy-decoding to obtain the 

quantized coefficient, "e'. This data then follows a path similar to that described in 

the reconstruction part of the encoder, to finally obtain the reconstructed frame. 

2.3.3 Prot1les and Levels 

1n H.264, Profiles and Levels specify the confonnance points. These confolmance 

points are des igned to facilitate inter-operability between various applications of the 

H.264 standard. A profile defi nes a set of coding tools or algorithms that Call be used 

in producing a compliant bitstream, whereas a level places limi ts on parameters of the 

bitstream such as frame size, memory requirements and coded bit rate. 

16 



------ -

H.264 defines seven Profiles (Baseline, Main, Extended, High , High 10, High 4:2 :2, 

and High 4:4 :4) . Each profile spec ifi es a subset o f algo ritlunic features and limits as 

shown in Table 2-2. The associated potenti al appli cation domains of each profile are 

well described in [1 3]. For example, Baseline profile is primarily used for lower-cost 

app lications with limited computing resources like videoconferencing and mobile 

app lications. The details of cod ing tools used in Baseline profile are described in 

detail , frolll Section 2.3.5 to Section 2.3. 9 since all the contributions o f thi s thesis are 

based on thi s profile. For infonnati on on other pro fi les, the readers are referred to 

[ IS) . 

Table 2-2 Specification ofH.264 Profiles 

Basel. Ex !. Main High 
1-1 igh Hi gh High 

10 4:2:2 4:4:4 
I and P Slices Ves Ves Ves Ves Ves Ves Ves 
B Slices No Ves Ves Ves Ves Ves Ves 
SI and SP Slices No Ves No No No No No 
Multiple Reference Frames Ves Ves Ves Ves Ves Ves Ves 
In-Loop DeblockingFiller Ves Ves Ves Ves Ves Ves Ves 
CA VLC Entropy CodinjL Ves Ves Ves Ves Ves Ves Ves 
CABAC Entropy Codina No No Yes Ves Ves Ves Ves 
Flexible Macroblock Ordering (FMO) Ves Ves No No No No No 
Arbitrary S lice Ordering lASOl Ves Ves No No No No No 
Redundant Slices (RS) Ves Yes No No No No No 
Data Partitioning No Ves No No No No No 
Interlaced Coding No Ves Ves Yes Ves Ves Ves 
4:2:0 Chroma Format Ves Ves Ves Ves Ves Ves Ves 
Monochrome Video Fom,at (4:0:0) No No No Ves Ves Ves Ves 
4:2:2 Chroma Fonnat No No No No No Ves Yes 
4:4:4 Chroma Fom,at No No No No No No Ves 
8 Bit Sample Depth Ves Ves Yes Ves Ves Ves Ves 
9 and 10 Bit Sample Deptl, No No No No Ves Ves Ves 
11 to 14 Bit Sample Depth No No No No No No Ves 
8x8 vs. 4x4 TransfoITn Adaptivity No No No Ves Yes Yes Ves 
l Quantization Scaling Matrices No No No Ves Ves Ves Ves 
Separate Cb and Cl' QP control No No No Ves Ves Ves Ves 
Sejl!lrate Color Plane Coding No No No No No No Ves 
Predictive Lossless Coding No No No No No No Ves 

17 



2.3.4 H.264 Enhancements 

H.264 contains a number of new features that allow it to compress video much more 

effecti vely than previous standards. Some highlighted features relevant to Baseline 

pro fil e are listed as fo llows (for more information, see [14]). 

Enhancements to prediction methods: 

• Variable block-size motion compensation with small block sizes: 

Supports fl ex ible motion compensation block sizes (minimum size 4 x 4). 

• Quarter-sample-accurate motion compensation: Introduces quarter­

sample-accurate motion vector predi ction from MPEG-4 Visual (part 2) 

(5), but with red uced the complexi ty of the interpo lat ion processi ng. 

• Multiple I'efel'ence picture motion compensation: Allows using 

mUltiple reference frames (up to 16) for motion compensation to enhance 

coding efficiency. 

• Directional spatial prediction for intra coding: Adds spati al predic tion 

to intra coding to improve the quality of the prediction signal. 

• In-loop deblocking filtering: The deblocking filter (see Section 2.3.8) is 

placed within the motion-compensated prediction loop so that the 

resulting improvement in quality of the reference frame can be used in 

inter-picture prediction to improve the ability to predict other frames. 

Improvements to coding efficiency : 

• Small block-size integel' transform: The lIse of 4 x 4 integer transfonn 

(i n comparison with 8 x 8 DCT in noating poin t ari thmetic in other 

standards) reduces "ri ngi ng" (artefacts) distortion ( faint patterns along 

the edges of objects, caused by the ' break thro ugh' ofDCT basis pattellls 

in a decoded image). The integer transform (see Section 2.3.7) a lso 

18 



reduces the computational complexity from 32-bit process ing to 16-bit 

arithmetic and avoids inverse transfonn mismatch problem as well. 

• Context-adaptive entropy coding: Both entropy coding methods used, 

i.e., CAVLC (context-adapti ve vari able-length coding) and CABAC 

(context-adapti ve binary arithmetic coding) use context-based adapti vity 

to improve perfom1ance relati ve to pervious standards. 

En hancements to error resilience and flexibility of transmission: 

• Parameter set structure: The parameter set des ign provides for robust 

and effi cient conveyance of header infonnation. 

• NAL unit syntax structure: The NA L uni t syntax structu re prov ides 

more robustness and fl exibility than that provided in prior standards. 

• Flexible macroblock ordering (FMO): A novel ability to part ition the 

picture into flexible regions called slice groups, each of which consists of 

a number of macroblocks and can be decoded independently. The abili ty 

significantly enhances the robustness to data losses in transmission. 

• Arbitrary slice ordering (ASO): Enab les sending and receiving the 

sli ces of the picture in any order relati ve to each other (since each s lice 

can be decoded independently). This capability can improve end-to-end 

delay (e.g., out-of-order de li very) in real-time applications. 

2.3.5 Intra Prediction 

In intra prediction mode, each prediction block P (see Figure 2-3 (a)) is generated 

from spatiall y neighbouring samples of already coded blocks in the same slice. H.264 

provides two classes of intra coding types, i.e. lNTRA-4x4 and INTRA- 16x 16 for the 

19 



Q A B C 0 EIFIGIHI 
I a b c d 

J e f g h 

K i j k I 

L 111 n 0 p 

Figure 2-4 Neighbouring samples ofTNTRA-4x4 mode 

0- Vertical 
Q A161 Cl DIEl FIG/ H 

~ - .: .• ,. - r -", 

~ _ .! .. L _ ~ ._: 

~ - .:. -~ .: .. : 
~ __ ! __ ~_~_i 

Q 

J 

K 

l 
-- ',- - .. -.-
-------_._-

I - Horizonlal 
Q A / 6/ C / D / E / FI G11 1 

f-'- ---:---~--:-- -: 
f--"- ---: ---~--:- -" 
~ -- .: ---~ -- : -- .: l • . . . 
t....:::.... __ J. _.'- __ , _ ... 

Q 
I 

J 

K 

l 

Figure 2-5 INTRA-4x4 prediction modes 

luma components. Figure 2-4 [11] illustrates neighbouring samples of TNTRA-4x4 

mode. For TNTRA-4x4 mode, a lolal of nine possible prediction modes (see Figure 

2-5 [11 ]) are used for prediction. For the INTRA- 16x 16 mode, which is the typical 

prediction mode used in smooth image areas, fo ur types of prediction modes are 

supported. For deta iled infomlation on the INTRA- 16x 16 prediction modes, the 

20 



readers are referred to [1 6]. Each 8 x 8 chroma block of a macroblock is predicted 

fo llowing a prediction technique similar to that of an lNTRA-1 6x 16 luma 

macroblock. It is noted that in order to maintain the independent nature of the 

individual slices and slice groups, intra prediction (and all other forms of prediction, 

such as inter prediction) across slice boundaries is restri cted. 

2.3.6 Inter Prediction 

In te r prediction is also known as motion compensation, and is usually used to reduce 

the temporal redundancy in moving pictures. H.264 adopts block-based motion 

estimation and compensation fo r removing the redundancy between frames. Within 

thi s approach, each M x N block in the current frame is compared with blocks of 

similar size within a predefined search region of the reference pictu res, in order to 

obtain the "best" match (the technique 0 f searching the "best" match is known as 

motion estimation (ME) which is di scussed in later thi s section). Thi s "best" match 

block is then subtracted from the current block to produce a res idual block R that is 

encoded and transmitted along with the correspond ing motion vector difference 

(MVD) describing the residual between the CUlTent motion vector and a predicted 

motion vector. 

In addition to the intra macroblock coding types, H.264 also supports van ous 

prediction modes for P-sli ces (P frames). Each luma macroblock in a P-slice may be 

partitioned into one of eight block shapes (as illustrated in Figure 2-6) used for 

motion-compensated prediction. 112 and 1/4 sub-samples are used in H.264 fo r the 

accuracy o f motion compensation. Since these prediction va lues at 112 and 1/4 

sample positions do not ex ist in the reference (Tame, they are obtai ned using 

interpolation from nearby integer pixel location samples. Each chroma block in a 

macroblock is segmented in a manner similar to that o f the luma component. The 

prediction values at fractional positions fo r the chroma component are generated by 

bilinear interpo lation. 

21 



16x16 

Macroblock D 
types 

16x8 8xl6 

Earn 
8x8 

~ 
L0 

8x8 8x4 4x8 4x4 

''''w{] Ea to tffij 
Figure 2-6 Segmentations of the macroblock fo r motion compensation 

It is noted that motion vector of a block partition can be predicted frol11 1110ti on 

vectors o f nearby previously coded partitions due to the high cOITelati on between 

neighbouring partitions. The predicted 1110tiol1 vector, MYp, depends on the motion 

compensation partition size and on the availabi lity of nearby vectors (11 ). 

M E techn iq ue is used for seeking the "best" match block fro m the reference frame 

within a certain search range. The current H.264 reference software JM [5 1) provides 

a Full Search (FS) ME algorithm and several valuable Fast Motion Estimation (FME) 

algo rithms [68-71). The FME algorithl11s inc lude Unsymmetrica l-cross Multi­

Hexagon Search (UMHS) [68-69], Simplified UnsYl11l11etrical-cross Multi-Hexagon 

Search (SUMHS) [70] and Enhanced Predicti ve Zonal Search (EPZS) [71] . These 

FME algorithms were designed for reducing the ME time (by onl y searching 

specified positions within a certain search range and by adopting earl y tenn inati on 

schemes) while maintaining a lmost the same PS NR that FS could achieve (see [62] 

or Section 6.4.1 and Section 6 .4.3). 

22 



--- - - - -- -- - --

2.3.7 Transform and Quantization 

After intra or inter prediction, the residual block R is transformed and quantized. 

H.264 uses a 4 x 4 integer transform [17] for the residual block i.nstead of the 8 x 8 

DeT transform used in other standards. For IN TRA- 16x 16 mode, an ex tTa 4 x 4 

transfo rm is applied to the 4 x 4 DC coeffi cients of the luma components. For 

chroma blocks, an additional 2 x 2 transform is perfom1ed fo r the fo ur De 

coefficients. 

The integer transfo1l11 is based on a standard 4 x 4 DeT but includes additional 

features. The inverse transform mismatch problem caused by using floating point 

transfom1s is avoided since the transfonn is computed in integer ari thmetic. 

Furthermore, the 4 x 4 integer transform is performed in 16-bit arithmetic by the use 

of simple add itions and shi fts (i.e., without the need of multipl ications), thus 

minimizi ng computational complexi ty. In addi ti on, a sca ling multiplicati on (part of 

the transfo1l11) is combined into the quantizer so that the tota l number of 

multi pli cations can be reduced. Finall y, by using quanti zation tab les, the need for 

divisions at quantizer is avoided. 

2.3.7.1 Forward Transform 

A 4 x 4 forward DeT is given as fo llows [ I I): 

[

a Cl 

Y=AXA T = b c 
Cl -Cl 

c -b 

b 
C ~a -bCb] 
-c -Cl 

-b Cl -c 

(2.4) 

where a= I/2, b=.{tficos(:r/8). c=..}J/2 cos(3tr/8), A and AT are the transfonn 

matri x and its transpose respecti vely. X is a matrix of samples and Y is the resulting 

coefficients. 

The A and AT can be fac torised (1 8) to the fo llowing equivalent representation : 

23 



1 1 d'lH:; 
ab 

, 

"'] 
a-

d - 1 b' ab b' 
-d - 1 1 a- ab a' ab 
- 1 1 - d ab b' ab b' 

(2.5) 

where 181 indicates element-by-element multipli cation rather than matrix 

multiplication. Er is a matrix of sca ling fac tors, which can be integrated into the 

quantization process as discussing later. CXCT is a "core" 2- D transform. The va lue 

of cl (=0.4142 13 .. . ) is approximated by 112 so that the matrix multiplication can be 

computed with fi xed-point arithmetic (1 8). Thus, b is also modified accordingly in 

order to maintain Ol1hogonality of A, i.e., ATA =/ . Therefore, finall y, 

a = 1/ 2, b = ~2/5 , c=~VlO and cl = 1/2. 

After modificati ons of b, c and d, the 2nd and 4 th rows of C and the 2nd and 4th 

T co lumns of C can be further fac torised, thus Equation (2 .5) becomes: 

Y =( CXCT
) 181 Er 

=[[1 :\ 
1 

~:H X Hi 
2 1 ~21H":;2 

ab/2 
, 

"bl
2

] 
a-

- I 1 -1 b'/4 ab/2 b'/4 
- 1 - I - 1 2 a' ab/ 2 a' ab/ 2 

1 -2 2 - 2 1 - I ab/ 2 b'/4 ab/ 2 b'/4 

(2.6) 

The "core" transform CXCT in Equation (2.6), therefore, can be implemented by 

additions and shifts. Since the maximum sum of abso lute values in any row ofC is 6, 

the maxi mum dynamic range gain increase for a 2-D transform is /og2(62
) = 5. 17. 

That is, the output of CXCT after the 2-D transfoml will need 6 more bits than the 

input X (pred iction residuals) which have a 9-b it range for 8-bit pixel data with a 1-

bit signed synlbol. Thus, the "core" transfonn can be computed wi th 16-bit arithm etic. 

2.3.7.2 inverse Transform 

For the inverse transfoml , the equation is given by: 

24 



- - - - --- - -

X'=C" (Y ®Ei )C 

~[i 
I I 

1/

2

][[ 1 ["' 
ab 0 ' 

"blf 
I I 

I ] 1/2 - I - I Y ® ab b' ab 

i~ J 2 

1/2 -1/2 - I 
-1/2 -I I a' ab a' -I - I 

- :/2 - I I -1/2 ab b' ab - 1 I 

(2.7) 

where Y is the transformed coeffi cients from Equation (2.6) and E; is a matrix of 

scaling facto rs, which is combined in quantization stage. X' is the output of the 

inverse transfonm. The factors ± 1/2 are implemented as right shi fts which introduce 

small en·ors, but can be compensated by a larger dynamic range for the data at the 

input of the inverse transfOIm [1 8]. 

2.3.7.3 Quantization 

A genera l representation of quantization is given by [11 J: 

Zij = roul/d (Yij / QSlep ) 

(2 .8) 

where Yij is a transfonmed coeffi cient from Equation (2.6), Zij is a quanti zed, 

approx imated (to the nearest integer) coeffi cient. QSlep indicates a quanti zer step 

which is indexed by a quanti zation parameter (QP). H.264 provides a large range of 

Qstep fro m 0 to 51 , which enables fl exibili ty in bit rate and quality control. It is 

noted that Qstep doubles in size fo r every increment of 6 in QP. 

Each integer coeffi cient of W = CXCT and the corresponding scaling factor in Er are 

input to the quanti zer, so Equation (2 .8) becomes [IIJ: 

Z .. = round W . . --( 
PF ) 

" " Qstep 

(2.9) 

25 



where PF is a2
, ab/2 and b2/4 depending on the position (i, j). The factor (PFlQstep) 

is then changed into the fo llowing fonn [11): 

PF/Qstep = MF/2qbiu 
, qbits= 15 + jloor(QP I6) . 

MF is a mUltipl ication factor. Thus, Equation (2.9) can be implemented as follows: 

\Zij \ = (lWij \' MF + /)>> qbits 

sign ( Zij ) = sign(Wij ) 
(2. 10) 

where/ is a dead-zone contTOI parameter, which is set to 2qbi ts/3 for intra and 2qbits/6 

fo r inter frames. The symbol » indicates a right shi ft . 

2.3 .7.4 De-quantization 

The basic de-quanti zation fo nn ula is : 

(2. 11 ) 

The scaling fac tors of E; are mUltipl ied by a constant scali ng facto r 64 (avoiding 

rounding errors), and then are integrated into the above equation: 

w: = Z .. V .. 2 j100,(QPI6) 
!I !I !.I 

(2. 12) 

where Wij is a de-quantized coefficient and V = QSlep·PF-64. The facto r produces the 

output increase by a factor of two fo r every increment of six in QP. H.264 defines 

MF and Vas quantization and de-quantization tables respectively. Only the first six 

values (0 ~ QP 5: 5 ) are defin ed. The fi nal output of the inverse transfonTI are divided 

by 64 to remove the scaling factor (implemented by a right shi ft) introduced in 

Equation (2 .1 2) . 

26 



------------------------------------------------------------------------------~-- - -

2.3.8 Deblocking Filter 

The ' blocking' artifacts, i.e., visible block edges in a decoded picture, are common 

problems that appear in block-based video coding. H.Z64 adopts an adaptive 

deblocking filter within the motion-compensated prediction loop to improve video 

qua lity. Moreover, thi s improvemen t in quality positively contributes towards inter 

prediction as it reduces the residual errors. 

2.3.9 Entropy Coding 

Two methods of entropy coding: CA VLC and CABAC are supported in H.Z64. 

CA VLC is simpler compared with CABAC which is more efficient in coding. 

Readers interested in further details of these techniq ues are referred to the H.Z64 

standardization documents [I]. 

2.4 Video Object-based Coding 

In addi ti on to the conventional frame-based video coding approaches, object-based 

coding (known as region-based coding, first proposed by Musmann et af. [19]) has 

been considered in second generation coding techniques/standards such as MPEG-4 

Visual. Object-based coding separates a video frame into component objects, which 

are subsequently coded as arbitrary shaped objects. It is noted that after segmenting a 

frame into objects, the shape, texture and motion information are coded and 

transm itted independently. 

2.5 Arbitrary Shaped Video Object Coding in MPEG-4 

The concept of a video object (VO) was introduced in early versions of video coding 

standards such as MPEG-Z [4] and H.Z63 [10]. However, in these standards the 

definition of video objects was restricted to rectangular shaped areas within a spatial 

frame that was time invariant with respect to size and position. The latter version, 

MPEG-4 (i.e., Part Z: Visual) [5] was the first video coding standard that treats a 

video sequence as a collection of one or more two-dimensional (2-D) video objects 

27 



and describes a video object to be of arbitrary shape. Furthennore, the shape, size, 

and posi tion of the video object may vary ITom one frame to the nex t [20] . 

2.5.1 Video Object Planes 

A video object (VO) is an area of a video scene that may be an arbitrari ly shaped 

region such as a person, bail or tree and may vary with time. A snapshot of a video 

object taken at a given sample time is regarded as a video object plane (VOP). A 

VOP is essentiall y a rectangular area that completely contains the video obj ect but 

wi th the minimum number of macroblocks contained within it as shown in Figure 2-7 

(a) . Each VOP defllles the video object's texture (luminance and chrominance 

samples) and shape information. To achieve the coding of arbitraril y shaped objects, 

MPEG-4 uses two extra tools, i.e. MPEG-4 encodes the shape infomlation fi rst using 

a binary shape encoder (Section 2.5 .2) and subseq uently uses two different discrete 

cos ine transfol1n (DCT)-based algorithms: DCT and shape-adaptive DCT (Section 

2.5.3) for the interior tex ture coding and boundary tex ture coding respec tively. 

2.5.2 Binary Shape Coding 

In MPEG-4, the contour infonnati on of an arbitrari ly shaped object is described by a 

Illap of the same dimension as the luminance signal. There are two types of maps 

supported by MPEG-4 in terms of level of tTansparency: binary alpha map and grey­

scale alpha map. The binary alpha Ill ap defines a ll pixels either as opaque ( I, inside a 

video object) or as transparent (0, outside a video object) . This map is subsequentl y 

coded using binary shape coding. Alternatively, the grey-scale alpha map employs 8 

bits to represent the transparency level (between 0, transparent, and 255, opaque) of 

each pixel. The compression of the map is achieved using grey-level alpha coding 

which is not discussed in thi s thesis (For further detai ls see the original MPEG-4 [5]). 

In a binary alpha map, the binary object is enclosed in a tightest bounded VOP that is 

made up of a number of 16 x 16 blocks as shown in Figure 2-7 (b). Each such binary 

alpha block is referred to as a BAB that is encoded by the binary shape encoder (or 

BAB encoder) . Figure 2-8 ill ustrates a simplified block diagram of the BAB encoder. 

28 



All BABs are classed into three categories: transparent, boundary and opaque . These 

categories are marked with" I", "2" and "3" in Figure 2-7 (b). 

2.5.2.1 BAB Coding 

A BAB is first input to the BAB encoder and may be encoded using one of severa l 

ways li sted in Table 2-3. It is the task of the mode decision block to se lect an 

efficient encoding method for the BAB. Mode "2" and "3" are the simplest and most 

efficient methods to compress a BAB as it is a transparent or opaque BAB. Mode "0" 

(a) (b) 

Figure 2-7 The Foreman object. (a) Texture object. (b) Binary alpha object. 

Alpha Map Mode 
Decision 

ME / MC 

Frame 
Memory 

Binary Shape Encoder 

Intra / Inter 
CAE 

Reconstructed 
i+-----! BAB 

VLC 

Compressed 
BAB 

Figure 2-8 Block diagram of MPEG-4 binary shape encoder 

29 



------- - - -- - -----------

or " I" is a "no update" mode which means the BAB is reconstructed by motion 

compensation alone. All other BABs (boundaries) are coded by intra- or inter­

context-based arithmetic encoding (CAE). Finally, the coded BAB, coding mode and 

motion vector (for inter coded blocks) are either stored or transmitted to the decoder. 

2.5.2.2 Context-based Arithmetic Encoding (CAE) 

For a given BAB, CAE encoding is perfo rmed pixel by pixel. Each pixel is coded 

using a template that consists of a number of previously coded pixels. The intra 

template is fonned by ten surrounding pixels (see Figure 2-9 (a), X is the current 

pixe l to be coded) of the current BAB. The inter template is fonned by 9 pixels as 

illustrated in Figure 2-9 (b) and (c), cO-c3 are obtained 6'om the current BAB and 

spatia lly related to the pi xel X, and c4-c7 coming from the motion compensated B AB 

with c6 fu ll y aligned with X [20]. From the template, a context number is computed 

[2 1] and is subsequently used to access a probability (the probability that the pixel is 

zero) table provided with the MPEG-4 specification [22]. The accessed probability 

and the pixel va lue (0 or 1) are then used to dri ve an ari thmeti c encoder [23]. 

Table 2-3 BAB coding modes represented by the BAB type 

BAB 
TYlle Used in Description type 

No update, P-, B-
The decoded block is obtained through motion 

0 
no 

compensation without correction. No motion 
MVD VO Ps 

vector difference is ,g-iven, i,e. it is set 10 zero. 

No update, with P-,B-
The decoded block is obtained through motion 

I 
MVD VOPs 

compensation without correction. A motion 
vector difference is given. 

2 Transparent 
1-, P-, B-

The decoded block is completely transparent. 
VOPs 

3 Opaque 
1-, P-, B-

The decoded block is completely opaque. VOPs 

4 Intra CAE 
1-, P-, B- The decoded block is obtained through intra CAE 
VOPs decoding. 

Inter CAE, no po, B-
The decoded block is obtained through inter CAE 

5 
MVD VOPs 

decoding. No motion vector difference is given, 
i.e. it is set to zero. 

6 
Inter CAE, with P-, B- The decoded block is obtained through inter CAE 
MVD VOPs decoding, A motion vector di [fcrence is given. 

30 



c9 cS c7 

c6 cS c4 c3 c2 1 

cl cO X 

(a) 

Current BAB 

c3 c2 cl I 
cO X 

Cb) 

Motion compensated BAB 

cS 

c7 c6 cS 

c4 

(c) 

Figure 2-9 The templates. (a) Intra template; (b) and (c) Inter template 

2.5.2.3 Mode Coding 

Once the cod ing mode (i .e., BAB type) for the current BAB has been decided, the 

coding mode is further coded by using YLC tables provided by MP EG-4 [22]. For 1-

VOP, the VLC table for the coding mode o rthe current BAB is selected by an index 

computed by: 

27xA mode + 9xBmOlle + 3xCmode + D mode 

where Amod., B mode, C mode and D mod• relate to the coding modes of those BAB 's 

adj acent to the current BAB as illustrated in Figure 2- 10. For P-, and B-VOP's, the 

chosen VLC table relies on the coding mode of the BAB that has the same location as 

the current BAB in the reference YOP [20]. 

A B C 

Current 
0 

BAB 

Figure 2-10 The adjacent BAB ' s of the current BAB in I-VOP 

31 



MVS(2) MVS(3) 

MV(2) MV(3) 

MV(1) 

Current BAR 

MVS(J) 

Figure 2-1 1 The cun'ent BAB and related candidate motion vectors. 

2.5.2.4 Motion Vector Coding 

Motion vector fo r shape (MVS) information is used especiall y for inter coded BAB 's 

in P- and B-VOP 's, which is computed from: 

MVS_x =MVPS J+MVDS_x 
M VS _ y=MVPSj+MVDS _ y 

where MVPS is the motion vector predictor for shape and MVDS is the motion vector 

di fference for shape. The MVDS is finally coded by a motion vector di f ference VLC 

table and is transmitted to the decoder. 

The motion vector predictor, M VPS is selected from a list of candidate motion 

vectors (see F igure 2-11 ) that includes three shape motion vectors MVS(i) and three 

texture motion vectors MV(i) from the three nearby BAB 's and tex ture blocks of the 

current BAB. The MVPS is set to the first valid motion vector encountered when 

following the candidate motion vectors in a predefined order {MVS(I), MVS(2), 

MVS(3), MV(I), MV(2), MV(3)}. 

32 



---------- - - ------ - ----- - ---------- - - --- - -

2.5.3 Shape-Adaptive DCT 

The Shape-Adaptive OCT (SA-OCT) was first proposed by Sikora [24] in 1995 . 

Subsequently Kaup [25] solved the inherent problem of non-nonnalized (but 

orthogonal) basis functions. SA-DCT is used for dealing with an arb itrary region of a 

block effi ciently, which is based on pre-defined sets of one-dimensional OCT basis 

functions. The SA-OCT is app licable to 8 x 8 blocks within a boundary BAB. Figure 

2-1 2 gives an example of the application of the forward SA-DCT algorithm on an 8 x 

8 image block that full y encloses an arbi t"raril y shaped object (shaded grey). Firstly, 

the length NO) (J ~ NO) ~ 8) of every column j (1 ~ j ~ 8) of the opaque pixels are 

calculated. The opaque pixels (grey) of each column in the initi al block (Figure 2- 12 

(a» are then shifted up to the upper border of the block (Figure 2-1 2 (b». For a 

co luml1 of opaque pixels of length NO), the assoc iated OCT transfoml matri x ANO) i.s 

given by [24) : 

(2k + I). p· rr 
AN(j) (p,k)=co· cos 2N(J) , p,k=O, I, ... ,N(J)- 1 

(2.13) 

Here Co = .JIIi if P = 0, and Co = J otherwise. 

lj, the vertical (1-0 column) OCT-coeffi cients ofcolumn j resulting from the opaque 

pixels,)0, can thus be obtained by using the following fommla: 

(2. 14) 

After applyi ng a J-D column DCT, the OC coefficients (denoted by • mark in Figure 

2- 12 (c» for each column are located along the upper edge of the 8x8 block. Next, 

the rows are horizontally shifted to the left border of the 8x8 block (Figure 2- 12 (d» 

and a horizontal I-D DCT is perfomled for each row of intennediate coefficients Yj 

33 



----- - - - ------------------- ----------

j x · y. 

• • • • • 

(a) Initial block Cb) Vertical shift (c) 1-0 co lumn SA-OCT 

• • • • • • 

yi mmm zimmffi 
Cd) HO/i zonlal shift (e) 2-D SA-DCT 

Figure 2-\ 2 Example of forward SA-OCT processing 

by using Equation (2. 14). Flnall y, the resulting 2-D SA-DCT coeffi cients Z; of the 

block are illustrated in Figure 2-1 2 (e) . Note that the final DC coeffi cient (denoted by 

_) fo r the whole boundary block is located in the upper left border of the block. The 

remaining coefficients are concentrated around the DC coeffi cient depending on the 

acllla l shape of the arbitrarily shaped object. 

The inverse SA-DCT can be obtained with the lIse of the fo llowing equation: 

(2. 15) 

111 both horizontal and vertica l directions. Here Zi denotes forward transformed 

coefficients, X; denotes the inverse-transfonned data and i refers to the length of the 

data set. 

34 



------- - - - - - ------- - ---

2.6 Potential Applications of Object-based Coding 

MPEG-4 's object-based coding can be used for a wide range of interactive and 

content-related applications, such as high bandwidth constrained mobile telephony 

and surveillance systems where video quality is of utmost importance for post 

incident ana lysis . In mobile telephony, the limited size of screen implies the 

acceptabi li ty of encoding the background of a video frame at a lower quality as 

compared to the fo reground, for e.g. representing speaker in a conversational 

application scenario, under bandwidth constraints . In surveillance app li cations, 

provided a pre-processing stage can separate important objects/regions (fo r the 

purpose of post incidence analysis), these areas can be coded at a much better quality 

level as compared to the background. 

2.7 Summary and Conclusions 

(n this chapter, the fundamental concepts fo r video coding were initiall y introduced. 

The baseline profile of the latest video coding standard, H.264 was then discussed in 

detail , giving particular emphasis to the presence of enhanced features and novel 

coding too ls, when compared to those present in traditiona l video coding standards. 

The app li cations that can benefit from including object-based coding functionality in 

H.264 were introduced. The video object-based coding concepts used in MPEG-4 

were presented as an insight to the basics of the proposed H.264 video object-based 

coding strategy presented in Chapter 4 and Chapter 5. It is concluded that inclusion 

of object-based coding in H.264 requires specific design of the object-based coding 

concepts, tailored to the requirements of the standard . 

35 



---- - - - ------ --- ----

Chapter 3 Literature Review 

3.1 Introduction 

In Chapter 2, the popular video coding standard , H.264 was introduced. Further the 

bas ic concepts of object-based video coding were presented in relation to MPEG-4. 

As mentioned in Chapter I, the motivation of thi s thes is is to introduce the 

functionality of coding arbitrarily shaped video objects within the H.264 standard 

(Chapter 4 and Chapter 5) and to present a framework for optimizing a typical H.264 

CODEC's perfo tmance based on multiple objecti ves (Chapter 6 and Chapter 7) . 

Therefo re, thi s chapter criti call y rev iews the ex isting state-of-the-art in coding the 

tex ture of arbitraril y shaped video objects. Further the chapter prov ides a 

comprehensive review of the state-of-the-art in optimization approaches used within 

video coding techniques/standards. 

For clarity of presentation the chapter is organized as follows. Further to the brief 

introd uct ion to the chapter presented in thi s sect ion, Section 3.2 reviews the coding 

methods used within the MPEG-4 standard fo r arbitrarily shaped video objects. 

Section 3.3 di scusses a number of perfonnance optimization methods that have been 

proposed fo r the benefit of video COD ECs. Section 3.4 finall y concludes with a 

summary and a conclusion. 

3.2 Arbitrarily Shaped Video Object Coding Techniques 

Texture coding within the fu ndamental coding units, i.e. blocks, that lie along the 

boundary of an arbitraril y shaped object prov ides the fundamental challenge in 

arbitrarily shaped object coding. In the last two decades, a number of arbitraril y 

shaped video object coding techniques have been proposed in literature. These 

approaches can be basica ll y classified into two categories, extrapolation methods and 

36 



- --- - - -- - - - ----------- --------------

shape-adaptive transforms. Several prominent techniques are reviewed III the 

following sections. 

3.2.1 Extrapolation Methods 

The extrapo lation methods provide means for extrapolating the object (opaque) 

pixels to completely fill a block 's non-object area (i.e., where the pixels are 

transparent) to provide a so-ca lled padded block that can be coded llsing a 

conventional block-based OCT. A sample border block is illustrated in Figure 3- 1 

(a), opaque and transparent pixels are marked as grey and white respecti vely. 

3.2.1.1 Zero Padding 

Zero padding is the simplest padding method used in which the transparent pixel 

va lues are assigned values of zeros as illustrated in Figure 3- 1 (b) . After padding, the 

block can use a normal 2-D DCT transform to conver1 its pixel domain representation 

into a frequency domain representation . This approach is recommended in MPEG-4 

to be used for inter frame coding of arbitraril y shaped objects . It is obvious that the 

zero padding method has very low complexi ty and gives reasonable rate-distortion 

results if prediction error (residua l signal) is small. However in the presence of large 

pred iction errors, this approach usua ll y resul ts in discontinu ities at the boundary 

between opaque and padded pixels. Applying the DeT to these di scontinuities leads 

to a considerable number of nonzero hi gh-frequency coefficients that negati vely 

impact the coding effici ency. 

3.2.1.2 Repetitive Padding 

Repetiti ve padding is used in MPEG-4 [22] for motion compensation, in which 

transparent pixels in each border block are padded horizontall y and verti ca ll y from 

opaque pixels as illustrated in Figure 3- 1 (c). First o f all , transparent samples of each 

row are extrapolated hori zontally fro m the nearest opaque sample of the same row, 

both towards left and/or right directions. If the transparent samples in a parti cular row 

are enclosed on both sides by opaque pixels, the average va lue of the two nearest 

37 



0 0 0 0 

10 \3 0 0 10 13 

8 25 14 0 8 25 14 

15 11 24 0 15 11 24 

(a) (b) 

10 10 10 13 15 15 13 13 

10 10 10 13 15 12 10 13 

8 8 25 14 12 8 25 14 

15 15 11 24 13 15 11 24 

(c) (d) 

Figure 3- 1 (a) lnitial border block; (b) zero padding; (c) repetiti ve padding; (d) 

LPE padd ing. 

opaque samples on both sides is extrapolated to the transparent samples . 

Subsequentl y the remaining unfilled transparent pixels, such as the first row ofpixels 

of the block ill ustrated in Figure 3-1 (c) are padded, using a padding process similar 

to hori zontal repeti tive padding but in the vertical direction. This approach is very 

simple and its use in the cod ing of boundary blocks of arbitraril y shaped video 

objects can decrease the di scontinuity related problems highli ghted above (see 

Section 3.2. 1.1). However, thi s relati ve advantage could significantl y diminish as the 

pred iction error becomes small. 

3.2.1.3 Low-Pass Extrapolation 

Low-pass extrapolation (LP E) was proposed by [26] and has been selected for 

inclusion within the MPEG-4 reference software [27]. The tecimique can be 

summarized as fo llows. At the start, the transparent samples of a border are replaced 

by the mean value of the opaque pixels on the block. Then each padded sample is 

38 



repeatedly filled by the mean value of the surrounding four samples. If one or more 

of the four samples are outside the block, the corresponding samples are not 

considered for the averaging operation. Figure 3-1 (d) shows the result of applying 

low-pass extrapolation to a 4 x 4 border block. The low-pass extrapolation method 

has been proven to provide an improved performance particularly in the intra-frame 

coding mode, as compared with zero padding and repetitive padding. However, its 

benefit in inter-frame coding, is marginal. Hence its app li cation within the MPEG-4 

video coding standard is limited to intra-frame coding. Moreover, the computational 

complexity of LPE is slightly higher than that of zero and repetitive padding methods. 

3.2.1.4 Extension Interpolation 

Extension interpolation (El) was ori gina ll y proposed by [28) and uses an 

interpolation approach. The idea is as follows. An M-point 1-D DCT is first executed 

for each co lumn or row (of length M) in a boundary block to get M transform 

coeffi c ients. Subsequentl y, N - M zeros are filled in the rear of the DCT coefficient 

vector (N is the length of block size). Finally, an N-point inverse DCT is performed 

on the new transfoll11ed coefficient vector. In fact, these three steps can be 

implemented together by a mUltiplication matrix of dinlension N x M in the pixel 

domain as derived in (28). The El presents a good rate-di stortion performance which 

is very close to that ofthe smart padding (discussed in Section 3.2.1.5) and SA-DCr. 

Nevertheless, the El provides the highest complexity among these approaches. In 

addition to thi s, El involves both spatial- and fTequency-domain operations for signal 

extrapo lation, which is not very desirable ft'om a computational point of view. 

3.2.1.5 Smart Padding 

A further padding method, named slIIart padding, was intToduced by (29). For a 

given N x N boundary block, the padding (the padded values are dependant on DCT 

transfoll11 matrix and opaque pixels, detai Is on the padding approach in [29)) along 

the verti cal (or horizontal) direction is first perfoll11ed. A 1-D DCT is subsequently 

app lied to each co lumn of pixels. The second directional padding, i.e. in the 

hori zontal direction is carried out nex t. Finally, 1-D DCT is perfoll11ed on rows. The 

39 



smart padding method is comparable with El and SA-DCT in rate-di stortion 

performance. Tt is marginall y better in terms of computational complex ity as 

compared to SA-DCT approach that will be di scussed in the next section. The smart­

padding technique has two drawbacks, i.e. it can only be implemented in coding intra 

frames, and uses a joint spatia l- and frequency-domain that increases its 

computational cost. 

3.2.2 Shape-Adaptive Transforms 

Two shape adaptive transfol111 approaches [24, 30] have been proposed in the recent 

past for coding the texture o f arbitraril y shaped video objects. They are the shape­

adapti ve DCT [24] (SA-DCT) di scussed in detail in thi s thesis and the shape adaptive 

discrete wavelet tTansform (SA-DWT) [30] which is not di scussed in thi s thes is due 

to its non-suitability for use in the block-based coding approach adopted by H.264. 

SA-DCT has been introduced in detail in Secti on 2. 5. 3. A previous attempt [3 1] of 

experimental compari son o f SA-DCT versus ex trapolation methods for the coding of 

arbi traril y shaped obj ect has proved that the shape-adapti ve method outperforms 

extrapo lation method in tenns o f rate-distort ion characteristics, especially for hi gh­

quality video coding. However, SA-DCT is more complex compared to simple 

extTapo lati on methods such as zero padding, repeti tive padd ing and LPE, and its 

complex ity is similar to that o f the smart approach. 

3.2.3 Summary 

The state-o f-the-alt techniques for coding tex ture of arbitrarily shaped video obj ect 

have been introduced in Section 3.2. 1 and 3.2.2. As a result of thi s review, it can be 

concluded that each algo rithm has its inherent advantages and di sadvantages. Table 

3- 1 prov ides a summary of compari sons o f these algorithms in tenns of their rate­

distortion perf0 l111anCe and computat ional complex ity. The rate-distortion 

perfonnance is di vided into fi ve levels: Low, Low-Mid., Mid., Mid. -High and High, 

whereas the computational complex ity is di vided into three leve ls: Low, Mid. and 

High. The results illustrate that the three ex trapolation approaches, i.e., zero padding, 

repetiti ve padding and LPE, provide lower complex ity than the others. Moreover, 

40 



rate-distortion perfonnance is the same level as other approaches in inter- frame 

coding mode at low bit rates. On the o ther hand, they offer a rather poor rate­

d istortion perfo nnance at high-quality video coding and low-quality video coding at 

intra-frame mode. El yields good rate-distortion results at low bitrates but with high 

cost of complexity. Smart method seems to be very good, however, only the intra­

fram e mode is implemented so far. Among these algoritluns in the tab le, SA-DCT 

offers the best resu lts in temlS of computational complexity versus rate-di stortion 

performance. 

As a result of the above analysis, it was concluded that SA-DCT is the most suitable 

approach for texture coding of arb itrari ly shaped video objects. Unfortunate ly, further 

investigations revealed that the possible use of SA-DCT within the extended H.264 

CODEC was criticall y limited due to the need of maintaining integer arithmetic 

operations. In addition to thi s reason, in the OIiginal des ign of SA-DCT, the non­

integer scaling factors (see Section 4.3) were not integrated within the quanti zation 

process. Hence in Chapter 4, a novel shape-adaptive integer transform (SA- IT) is 

proposed, which confonns to a standard H.264 CODEC's integer mathematics 

requirements. 

Table 3- I Comparison of methods of coding arbitratily shaped object 

Rate-distortion 

Method Low Bitrate High Bitrate Complexity 

Intra-mode Inter-mode Intra-mode Inter-mode 

Zero Low High Low Mid. -High Low 

Repetitive Low - Mid. High Low Low - Mid. Low 

LPE Mid. -High High Mid. - High Mid. - High Low 

El High High Mid. - High Mid. - High High 

Smart High - High - Mid. 

SA-DCT High High High High Mid . 

41 



-----

3.3 Optimization methods for Video Coding 

In the last decade, optimization of video compressIOn algorithms has received 

significant research interest. Many optimization methods have been proposed in the 

literature, which can be broadl y classi fi ed into two categori es, algorithm-based 

opt imizations and parameter-based optimizations. The algorithm-based optimization 

methods foc us on the direct performance optimization of a given algo rithm . 

Alternati vely, parameter-based opt imization methods optimize given objecti ves 

through the optimal selection of coding parameters. 

3.3.1 Algorithm-based Optimization 

A signi fi cant amount of research has been carri ed out on the optimi zat ion of video 

coding algo ritlullS and associated sub-functions [32-47]. They can be broadl y 

classified into single-, two- and three-obj ecti ve optimization probl ems. 

Sil/.gle-objective Optimization: 

In [45], Kannangara et al. proposed a complex ity reduction algorithm for a H.264 

encoder. The algorithm was developed based on the R-D optimization modes of a 

H.264 encoder. It reduces computational complexity through a process that identifies 

whether the coding of a macroblock should be skipped prior to dealing wi th the 

macroblock data. Ji el al. [32) proposed a memory optimization technique fo r a 

H.264 video decoder, which effectively uses the preloading mechanism for sub­

macroblocks (which can be loaded earl y on frame reconstruction), and algorithmic 

improvements in the motion compensation module and the variable length decoding 

module, to reduce memory accesses. 

Two-objective Op till1ization: 

The most popular optimization procedure adopted in video coding is rate-d istort ion 

(R-D) optimization, which can be classified as a two-objective opti mization problem. 

Lt evaluates the cost of using every possible coding mode and the corresponding 

mo tion vectors (for inter-coded frame), in obtaining the best tradeoff between the 

42 



distortion and the bit-rate, i.e. the number of bits consumed. A significant portion of 

op timization research in video coding has concentrated on R-D optimization 

procedures [33-40) . In 2001, an encoding framework for MPEG-2 and H.263 was 

developed by l smaei l et al. in (48), which optimizes mUltiple coding modules (ME, 

DCT, quanti zation and mode selection) to yield desirable joint complexity-distortion 

(C-D) optimization. A joint optimization of power consumption (for mobile devices) 

and video quality was carried out by Pu et al. (46) . This power-distortion (P-D) 

model was designed for a H.264 encoder. For a given distortion constraint, the 

procedure minimizes the overall power consumption of the encoder. 

Three-objective Optimization: 

Further a number of methods have been proposed in literature to ex tend the 

traditional R-D optimization methodology by including another dimension, which is 

either computationa l complexity or power conSllmption. [n 2003, Zhang et al. (42) 

proposed a fast motion estimation algorithm, based on an adaptive hexagon-based 

search (AHBS) pattern to ach ieve a joint optim izati on in complexity-rate-disto11ion 

(C-R-D) for H.264 video coding. [n addition, Jesper el al. [43J in 2004 proposed C­

R-D optimization method by using a modified EPZS (enhanced predictive zonal 

search) motion estimation algorithm in H.264. The modified EPZS includes three 

early-stop criteria, which detennines if motion estimation should be stopped or not, 

after 16 x 16 and 8 x 8 block level sub-divisions. Moreover, Yu et al. (44) proposed a 

simi lar algorithm in wh.ich an altemative procedure was used to detennine whether 

motion search into smaller block sizes shou ld be continued or not. The similarity of 

the above three optimization methods is the skipping of unnecessary search modes 

(which thus result in a decrease in computational complex ity) after obtaining the best 

motion vector through the C-R-D cost function . A further three-objective 

optimizat ion framework , that considers joint power-rate-di stortion (P-R-D), was 

developed by Ch en et al. (47) . The fTamework was designed for H.263 video 

encoding on mobile devices to optimize the rate-distortion under the constraints of 

the power consumption. 

43 



3.3.2 Parameter-based Optimization 

Kwon et al. [41] proposed a parameter-based method for the joint optimizati on of 

computational complexity and distortion (C-D) in H.263 video coding. Initia ll y, three 

control (coding) parameters, i.e., search window size, full- or sub-pi xel ME and one 

of four di fferent DCT coefficient pruning options (i .e. 2 x 2, 4 x 4, 6 x 6 and full 8 x 

8 DCT), are selected for a comprehensive C-D analys is of the encoder. The 

complex ity data is subsequently obtained by calculating the operations req uired for 

the ME and DCT modules, wi th different combinations of the three parameter va lues. 

The d istortion is estimated by averaging the PSNR over fi ve test sequences. Fina ll y, 

based on the computational complex ity and distortion (averaged PSNR) data 

gathered, a Lagrangian method is used to find out the Lagrangian multiplier (using 

the cO ITesponding combinati on of control parameters) that yields the optimal C-D, 

under a given computational complex ity constraint. 

3.3.3 Summary 

A comprehens ive literature review on optimization of video coding has been 

presented in Section 3.3. 1 and Secti on 3.3.2. Tab le 3-2 provides a compari son of 

these methods giv ing particular emphasis to the summarization of 

objectives/parameters considered. It should be noted that for simplicity of 

presentation, the optimization obj ective re lated to power consumption [46, 47] has 

been represented by the computational complex ity objecti ve for all algorithms that 

cons ider power consumption. This is deemed to be reasonab le since the power 

consumption can be shown to be directly proportional to computational complex ity 

[49] . It is noted that most optimization research works have focused on algorithmic 

enhancements/improvements as compared to onl y one study that has focused on 

parameter-based optimization. In addition, the table reflects that most stud ies have 

focused on R-D optimization, whereas o nl y a comparatively smaller number of 

stud ies have focused on joint C-D and/or C-R-D optimization. 

44 



Table 3-2 Compari son of ex isting optimization methods on video coding 

Published 
Authors Method C M R D year 

1996 Wiegand et al. Algorithm-based V V 
1997 Yan!!: et al. Al!!:o rithm-based V ..J 

1998 Sullivan et al. Al!!:orithm-based V ..J 

200 1 lsmaei I et al. Al!!:ori thm-based ..J V 
200 1 He et al. Algorithm-based v v 
200 1 Wiegand et al. Algorithm-based V V 
2002 Stockhammer et al. Algorithm-based V V 
2003 Zhang et al. Algorithm-based ..J v ..J 

2003 Takagi et al. Algorithm-based ..J ..J 

2003 Kwon et al. Parameter-based ..J v 
2004 Jesper et al. Algorithm-based ..J ..J ..J 

2005 Ma et al. Algori thm-based ..J ..J 

2005 Kannangara et al. Algorithm-based V 
2005 Chen et al. Algorithm-based " " v 
2006 Ji et al. Algorithm-based v 
2006 Yu et al. Algorithm-based V " V 
2006 Pu et al. Algorit lU11-based v v 

. . 
Note: C - computatIOnal compl ex ity, M - Memory utilI zatIOn, R - bit rate, 

and D - distortion. 

A number of optimization studies [32, 39, 40, 42-46J have also focused attention 

particularly on H.264. Though these methods have been well developed and have 

provided val uab le insights into fu rthering the state-of-the-art, they have mainly 

focused on proposing algorithmic improvements/enhancements to enable optimum 

performance of the encoder or decoder of a H.264 CODEC. Given a H.264 CODEC, 

either complying with the standard or modified/enhanced version (i.e. in particular 

the encoder), a large number of coding options are available through the selection of 

various combilJat ions of a large number of coding parameters. Therefore an obvious 

problem that needs solving is, "given a video sequence, what combination of coding 

parameters should be used so as to achieve the optimllm perfonnance of the 

CODEC". The perfonnance could be largely compromised due to the selection of ill­

suited parameter values. Thus, the choice of the ri ght parameter set is of utmost 

45 



importance. The parameter-based optimization of a H.264 video CODEC can provide 

a solution for thi s problem. Although a parameter based optimization approach for 

H.263 video has been proposed in the li terature, the method onl y focuses on the joint 

optimization of complexity and di stortion. Other important aspects such as bi t-rate 

and memory usage have not been considered in thi s optimization model. 

In order to bridge the above gap in the state-of-the-art in video COD EC optimization 

research, thi s thes is proposes a parameter-based, multi-objective optim ization 

fTamework for H.264 video coding (see Chapter 6 and Chapter 7). In particular the 

thesis focuses on the development of a framework where a joint complex ity-memory­

rate-distortion (C-M-R-D) optimizat ion of H.264 video encoding/decoding can be 

achieved. An important aspect of the proposed framework is that it jointly considers 

the opti mization of mUltiple objectives in both the encoder and decoder. Further an 

Evolutionary AlgoritlU11 (EA) that is better suited for address ing mul ti-objective 

optimization problems is selected as the optimization algo rithm rather than the 

frequently used Lagrange multi pli er. 

3.4 Conclusions 

The aim of thi s chapter was to review d i fferent background technologies adopted 

withi n the context of the main research foc us of this thesis. It first provided a review 

of research in texture cod ing of arbi traril y shaped video objects, which foc used on a 

detailed di scussion of ex isting approaches to video obj ect coding and their 

underl ying principles/methods. Particul ar emphasis was given to the analysis of their 

performance, advantages and di sadvantages. It was shown that SA-DCT used in 

MPEG-4 is the most effi cient approach that can be used for dealing with the tex ture 

coding of arbitraril y shaped objects, when considering computational complexity and 

rate-distortion perfo rmance. However it was pointed out that due to the need of 

maintain ing integer arithmetic within the integer transform (IT) and quanti zation 

stages in H.264, the direct adaptation of SA-DCT principles is not possible in 

introducing object scalability to H.264. Therefore, a novel SA-IT (see Chapter 4) 

based on the principles of SA-DCT will be designed and implemented within a 

46 



H.264 CODEC (see Chapter 5) to achieve the goals of the research presented in the 

first part of this thesis. 

The chapter proceeded to provide an overview of optimization approaches proposed 

for video coding during the past decade. It categorized the state-of-the-art 

optimization techniques into two groups, namely algorithm-based and parameter­

based. [t was revea led that despite its prac tical impOJiance in video coding; only one 

such attempt has been made in the past at parameter-based optimization. The said 

attempt was limited to the joint C-D optimization of a H .263 encoder. It was shown 

that the multi-objective optimization of an entire H.264 CODEC (i.e. both the 

encoder and decoder) that includes the consideration of further important coding 

objectives, such as rate and memory utilization, is of utmost importance for state-of­

the-aJ1 in video coding research. Chapter 6 and Chapter 7 provide details of th is 

research contribution 

47 



Chapter 4 Shape Adaptive Integer 

Transform and Quantization 

4.1 Introduction 

The approaches used in MPEG-4 for video object-based coding have been discussed 

in Chapter 2 , in particular the shape adaptive discrete cosine transfoml (SA-OCT) 

[24] based approach for coding the texture of arbitrarily shaped video obj ects. In thi s 

chapter a novel Shape Adaptive lnteger Transform (SA-IT) is deri ved with particu lar 

attention given to maintaining integer di vis ions during the subsequent quantizat ion 

step. In Chapter 5, we use the theory presented in this chapter to provide arbitrary 

shaped obj ect coding in the H.264 standard. 

The SA-IT considerabl y differs from the SA-OCT and thereFore calls for novel 

design and implementation considerations based on combining those merits of both 

SA-OCT and IT [17] algorithms. As a mathematical transfoml used in MPEG-4, the 

SA-OCT has its advantages: adaptability at object edges, low complex ity and block­

based OCT. However, all such previous work adopted a floating point arithmetic 

design and implementation for SA-OCT, which is not suitable to be used in 

conjunction with the integer ari thmetic-based IT used in H.264 texture coding. 

Although the use of IT allows increased decodi ng speed and reduced complex ity of 

the decoders, it has tbe limitation that if arbitrari ly shaped objects are to be coded, 

pixels outside the obj ect will have to be considered in fi lling the boundary blocks of 

the object before being transformed as a block. This would result in a waste of 

computing power and processi ng time. The above limitation has been the key 

motivation behind the development of the SA-IT theory presented in thi s chapter. 

The organization of tlus chapter is as follows. Section 4.2 provides an overview of 

the proposed algorithm . Section 4.3 provides the theoretical deri vation of the 

48 



proposed SA-IT. A method for incorporating the transfomled scaling factors within 

the quanti zation process is described in Section 4.4. An example of the process of 

SA-IT is given in Section 4.5. The l-D SA-IT used as a solution to solve the sub­

coeffi cients problem caused by the proposed SA-IT (which is essentially a 2-D 

transfol1n, i.e., 2-D SA-IT) is presented in Section 4.6. Some preliminary simulation 

results of lI sing I-D and 2-D SA-lTs in video coding and an analysis are presented in 

Section 4.7. Finally a chapter conclusion is provided in Section 4.8 wi th an insight 

into Chapter 5. 

4.2 An Overview 

The basic idea of the proposed SA-IT is to transfol1n a 4 x 4 boundary block of an 

arbi traril y shaped image object by cascad ing column and row OCT transfolllls. The 

transform is separated into two parts : (i) an integer part (i. e., core part) which is 

implemented with 16-bit integer al'ithmet ic using onl y add itions/shi fts (No te: thi s 

avo ids the trad itional transfo rm 's mismatch problem between the decoded data in the 

encoder and the decoder, which arises from the fact that the inverse transfoml in 

tradi tional DCT is not full y speci fi ed in integer arithmetic [1 7)]; (ii) scaling factors 

(floating point numbers) which are produced by factorizing the di rect and inverse 

trans formation matrices (see E'M(;) and E'7~'I(i) of Equation (4. 13) and (4. 14) 

respecti vely). To confo rm to the transform and quantization used in H.264 standard, 

the scaling factors, i. e., the post- and pre-scaling factors, are incorporated into the 

quanti zer, reducing the total number of scaling multiplications. The post- and pre­

scaling factors are normalizied into two separate quanti zation and reconstruction 

tables by different quanti zation parameters (QPs). The quanti zation and 

reconstruction tables are des igned to avo id div isions and/or floating point arithmeti c 

at the encoder and the decoder, and to ensure that data can be processed in 16-bit 

ari thmeti c. 

A block diagram representing the process of 2-D SA-lT and its associated 

quanti zation stages is illustrated in Figure 4-1. Note that the 2-D SA-IT is essenti a ll y 

carri ed out as two cascaded 1-0 SA-ITs. The input residual boundary block X, first 

49 



Boundary block 
(4 x 4) X 

Reconstructed 
block X" 

r--------- -- --------------- -- ---------- ~ 

, Forward 2-D SA-IT 
, , 

1-0 vertical 1-0 horizontal ----;. - H- Quantization , SA-IT SA-IT , , 
,----- - -- - -- - -- -- --------- - --- - ---------

f-------- - -- -- -- - ------ - -- - --- - --------, , , , , , 
1-0 veltical J-O horizontal 

, 

~ .- ~ Oe-quantization 
, inverse SA-IT inverse SA-IT , , , , 

Inverse 2-D SA-IT , 
-------- - --- - -- ---------- -- --- - --------

Figure 4- 1 F low diagram of 2-D SA-IT and its associated quantization 

goes through forward 1-0 vertica l and hOl-i zontal SA-ITs before quanti zation. At the 

decoder end the inverse processes (i.e. of quantization and transforms) are executed 

in the reverse order. Finally, outputs the reconstructed block X". 

For c larity of explanation, an example of the forward SA-IT algorithm on a 4 x 4 

image block that fully enc loses an arbitraril y shaped object is illustrated in Figure 4-2 . 

Figure 4-2(a) shows the di vision of the pixels within the said block into two groups, 

namely; foreground (shaded grey) and background (white) pixels. The foreground 

pixels are encoded wi th SA-IT by first applying a veltical one-dimensional transfonn, 

followed by a hori zontal one-d imensional transfonn on the resulting verticall y 

transformed foreground object. This is done as follows: firstly, the length NO) 

(1,; N(j) ,; 4) of every column) (1 $ ) ,; 4) of the foreground pixels J0 are calculated . 

Then, each column is shifted lip and finally aligned with the upper border of the 

block as shown in Figure 4-2(b). After applying SA-IT in vertical direction, the DC 

coefficients (denoted by • in Figure 4-2(c)) for each co lumn are found along the 

upper edge of the block. Next, the rows are shifted to align at the left border of the 

block (see Figure 4-2(d)) and a hori zontal one-dimensional SA-IT tranSf0ll11 is 

perfoll11ed on each row of coefficients Yi. Finall y, the resulting transfoll11ed 

coefficients Zi wi thin the 4 x 4 boundary block are shown in Figure 4-2(e). Note that 

the final DC coefficient (denoted by . ) for the whole boundary block is located in the 

50 



-------- --- - ------

j 

• • • 

(a) Original4x4 block (b) Vertical ordering ofpixels. (c) SA-IT vertIcally 

• • • • 
Y, >'--+--+--+--1 Z, >'--+--+--+--1 

(d) Horizontal ordering ofpixels. (e) SA-IT coefficients 

Figure 4-2 Example of forward SA-IT in a 4x4 block with arbitrary shape 

upper left border of the block. The remaining coefficients are concentr·ated around 

the DC coefficient depending on the actua l shape of lhe arbitrari ly shaped object. The 

detai led design of the SA-IT is presented in the following sections. 

4.3 Transform Design 

4.3.1 Forward I-D vertical Transform 

For a given 4 x 4 block such as the one illustrated in Figure 4-2, for a column of 

foreground pixels,.J'0 (marked with grey), of length N(j) ( ! ~ NU) ~ 4), the associated 

DCT transform matrix A N(j) is given by Equation (2 .13) which is re-used as fo llows: 

p,k = O-> N(j) - ! 

(4.1) 

where Co =.JITi. if p = 0, and Co = I othelwise, and p, k denote the pi" row and J!" 

column DCT basis element respectively. Therefore the vertical SA-IT coefficients of 

co lumn}, Jj can be obtained by the following formu la (sim ilar to Equation (2. 14» : 

5 1 



I ::; j ::; 4, I :; N(j) ::; 4 

(4.2) 

Equation (4.2) may be written as fo llows: 

(4.3) 

where B N(j) is a NO) x NO) scale transfonn matrix. According to Equation (4.3), the 

scaled transfoml matrices for different NO)'s can be obtained as follows: 

When: 

N(j) = I , 

N(j) = 2, 

NO) = 3, 

BJ = ~AJ == 

ff3 ff3 ff3 
ffi 0 -~1/2 . 

~1/6 -~2/3 )1/6 

NO) = 4, 

1/2 1/2 1/2 1/2 

.Jlfi cos 2: .Jlfi 311 ffi 311 -~1/2 cos 11 

B,= ~A4 = 
1/2 cos- - 1/2cos-

8 8 8 8 
1/2 - 1/2 -1/2 1/2 

ffi 311 1/2 cos-
8 

- fficos 2: 
8 

ffi cos 11 

8 
ffi 311 - 1/2 cos-

8 

52 



In order to implement integer arithmetic, BNO) can be factorized in the following fonn : 

BNU) = CNU) ® ENU)' I.e., 

B1 = [IJ ®[IJ 

B, = [ ~ I ]®[a - I a ~ ] 
I I b b b 

BJ = I 0 - I ® a a a 
I - 2 I c c c 

I I I I 
, 

a' 
, , 

a- a- a-
2 I - I -2 ® d d d d 

B. = I - 1 - I I a' a' 
, , 

a- a-
I -2 2 - I d d d d 

(4.4) 

where CNO) is an integer transform matri x consisting of constant integers (Note that 

CNO) is designed to retain the smallest possible integers. As discussed subsequently in 

Section 4.3 .2, it minimizes the possible increase of the dynamic range of the 

transfonned coefficients, thus resulting in an improved compression perfonnance), 

and E NO) is a matrix of scaling factors that comprises fractional elements such as Cl, b, 

c and d. a =,fifi, b = J113, c = J1l6, d =.JIiI6, The symbol ® indicates that 

each element of matrix on the left is multiplied by the sca ling fac tor in the 

corresponding position in the matrix on the right (i .e., the symbol ® denotes 

Hadamard scalar product rather than matrix multiplication [11 D. The scaled 

transform matrices 8/, B2 and BJ in Equation (4.4) can be easi ly factori zed as 

described above. However, the factori zation of B, in a simi lar manner IS more 

complex. In order to factorize B" we first represent it as fo llows: 

e e e e 

B, = 
/ g -g -/ 
e -e -e e 

g -/ / -g 

(4.5) 

53 



- - - ----- --- . 

here 

I 
e= -

2 

Thereafter, Equation (4.5) can be factori zed as follows: 

e e e e 

11 -h - I I I I I B = ® , 
- I - I e e e e 

h -I -h I I I I 

(4.6) 

where 

h =g/!",0.4 14 . 

To simplify the imp lementatio n of the trans form, h is approximated by 0.5 following 

a strategy s imilar to that used in IT [11, 17). In order to ensure that the matri x 

remains orthogonal,falso needs to be modified to.J2/5 . Thus, Equation (4.6) can be 

represented as : 

I I e e e e 

1/2 -1/2 - I I I I I B = ® , 
I -I - I I e e e e 

1/2 - I -1(2 I I I I 
(4 .7) 

S ince the matrix Oll the left of Equation (4.7) can be further factori zed so that the 

matrix contains integers onl y, Equation (4.7) can be written as follows : 

I e e e e 

2 - I -2 1/2 1/2 1/2 1/2 
B = ® 4 -I -I I e e e e 

-2 2 - I 1/2 1/2 1/2 1/2 
(4.8) 

54 



Finally, since e = a1 and set d = P2, the above equation may be re-written in a fonn 

similar to that o f Eq uation (4.4), as fo llows: 

I I I 1 
, 

a' 
, , 

a- a - a-

B - 2 I - 1 - 2 
® 

d d d d 
1 - I - 1 1 a' a' 

, , 4- a- a-
I - 2 2 - I cl d d d 

Thus, after factori zing these scaled transform matri ces BNO), Equation (4 .3) may be 

modified as follows: 

l ~ j ~ 4, 1 ~ N(j) ~ 4 

(4.9) 

where CNW and ENW are the same definitions as above Equation (4.4). T he symbol ® 

within the context of thi s thesis represents Hadamard scalar product as described 

above. Note that the resu lt of the SA-IT wi ll not be identical to the 4 x 4 SA-DCT 

because of the change to factor d. 

4.3.2 Forward I-D horizontal Transform 

As a resu lt of performing the vertica l SA-IT along co lumns as depicted above, the 

resulting coefficients are left aligned as shown in Figure 4-2(d) . Subsequent ly 

fo llowi ng a strategy similar to that used in obtaining Equation (4.9), the form ula for 

one-dimensional horizontal SA-IT along rows could be obtained : 

I ~ i ~ 4, 1 ~ M (i) ~ 4 

(4.10) 

where M(i) refers to the length of row i (i .e. the number of the transfomled 

coefficients of row i). CMIO and EMli) are defined si milar to CNW and ENO) respectively. 

Yi is the ith row's coefficients that were obtained by Equation (4.9) . Z; is the ith row's 

55 



x/ X, Xj X, 1 a b a2 

2 X5 X6 X7 a a d 

3 X. X, c a2 

4 X/O d 

(a) (b) 

Figure 4-3 Results of verti cal transformed coefficients (a) and sca ling factors (b) 

coefficients after horizontal transfomlation. There ex ists a problem that ari ses fro m 

the fact that Yj in Equation (4 .10) not onl y contains integers, but also fractions 

(sca ling facto rs shown in Equation (4.4». Thus, Equati on (4 .10) is required to be 

factori zed further. However, since different lengths, N(j) result in different scaling 

factors in Yj , it is impossible to decompose the Yj into the fom1 of an integer and a 

fraction . FO I' instance, the following Figure 4-3 shows the results of coefficients and 

scaling factors after vertical transfonnation . According to Equation (4.10), when i = 3, 

the cOlTesponding horizontal transfom1 can be written as follows: 

(4 . 11 ) 

From the above equation, it is obvious that it can not be split into an integer and a 

fraction due to the di fferent sca ling factors c and a2 In order to solve the above 

problem, it is desirable to decompose Equation (4.9) (i.e. the vertica l transfonll) into 

the following fOlTl1: 

56 



(4 .12) 

where C NO)(k) is the kth column of C NOJ. E NO)(k) represents the scaling factors in the kth 

column of scaling matrix E NOJ . 0 (k) represents the kth intemal pixel (i.e. grey pixel) 

of 0 as in Figure 4-2. Accordingly, the corresponding equation for horizontal 

transfoml may be modified to : 

(4. 13) 

CM(i) (k)Yi(k) is the core two-dimensional transfOlm. E'M(ij(k) is the !I" column of the 

matrix of sca ling factors in Equation (4.4) mUltiplied by the !I" scaling factor of row i 

resulting ft'om Equation (4. 12). Therefore, Equati on (4.1 1) can be m-written as 

follows : 

, 
ZJ = L: ( C 2(,) . Y2(,» ) ® E;(,) = C2(1) . };(I) ® £ ;(1) + C '(2) . Y,(2) ® £ ;(2) 

k- I 

Table 4-1 Scaling factors of constituting elements of E'M(i). 

1 a b c d a2 

) 1 a b c d a' 

a a a' ab=c ac ad aJ 

b b ab b' bc bd aLb=ac 

c e ae be c- cd aLe 

d d ad bd cd dL aLd 

a2 a" a' a' b aLe aid a· 

57 



From the above equation, we may notice that the scaling factors in E'M(i) are different 

from ENOJ which cons ists of one or more of six scaling factors (i.e, I , a, b, c, c/, and 

d), whi le £'M(i) is made up of eighteen scal ing factors as depicted in Table 4-1 

highl ighted in grey fo r c larity. 

As we mentioned at the beginning of this chapter, the new transfonn can be 

computed in 16-bit arithmetic that confonns to H.264 standard. In the integer 

transform matrices Cl to C4 in Equation (4.4) , the maximum sum of absol ute values 

in any row of these matrices is in C4 and equals 6. If the maximum pixel va lue of a 4 

x 4 image block equals to A, then the maximum value of direct tTansfonned 

coefficient is 6A, i.e., the transfonn has a dynamic range gain of 6. Thus, the 

maximum dynamic range gain increase for a 2-D transfoml is log2(62) = 5.17, i.e. , 

storage of transfonned coefficient needs on ly six more bits than initial 8-bit pixel 

data or 9-bit residual data. So the transfonn is implemented within a 16-bit arithmetic. 

It is des irabl e to note that the integer transfoml matrices Cl and C4 are orthogonal but 

do not have the same nonn. However, that can be easil y compensated fo r in the 

quanti zation process, as we di scuss in Section 4.4. 

4.3.3 Inverse Transform 

In relation to Equations (4. 13) and (4 .12) respectively, the inverse transfonns in 

horizontal and vertical directions respectively and their factori zations can be 

summarized by the following equations: 

1 :<:; M (i) :<:; 4, 1:<:; i :<:; 4 

(4. 14) 

I :<:; N(j) :<:; 4, 1:<:; ) :<:; 4 

(4.15) 

58 



here, Zi(k) and Yj(k) are respectively the i!" forward hori zontal transfonn coefficient of 

row i of the SA-IT transfonned block and the i!" inverse hori zontal transfo rm vector 
T T T of co lumn j. C M(ij(k) , C NO)(k) and E' M(i)(k) represent the transposes of CM(O(k) , C NOJ(k) 

and E'M(i)(k) respectively. Finally, the reconstructed pixels X: are replaced in the 

initial pos itions of the block as in Figure 4-2(a) . 

However, combined rounding errors arise from the inverse transform and 

reconstruction. In order to minimize the errors, we need to reduce the dynam ic range 

gain in the 2-D inverse transfoml. The problem is in the odd-symmetric basis 

functions of C4, whose peak value is two. We scaled the odd-synll11 etri c basis 

functions by 112; that is, using Equation (4.7) as the inverse transfonn matrix. Thus, 

the max imum sum of abso lute values of C4 in Equation (4.7) now equals 4, which 

reduces the dynamic range gain for the 2-D inverse transfom] from 62 to 42. Since 

log2(42
) = 4, the increase in dynamic range is reduced from 6 bits to 4 bits. The 

factors ± 1!2 in the inverse transfoml matrix (Equation (4.7» can be implemented by 

I-bi t ri ght shifts [1 7]. Although small errors wo uld be caused by the ri ght shifts, [1 7] 

has shown that the en'Ors can be compensated by the 2-b it gain in the dynamic range 

of the input to the inverse transfonn . 

4.4 Quantization Design 

Due to the need of confonnability with H.264 standard, the quanti zation design 

procedure adopted in our proposal is simi lar to the H.264 standard 's quantization 

des ign [17] procedure. Thus, tbe proposed quantization design must fu lfi l the 

fo llowing requirements. 

• The post- and pre-scaling factors, i. e., E'M(i) and E ,TM(i) ' need to be 

integrated into forward and inverse quantizers ind ividua lly; 

• The need for divisions should be avo ided; 

• Implementation should be done using l6-bit arithmetic. 

59 



[n Equation (4.13), the output of the forward transform consists of two parts, (i) 

integer part, WM(i)(k) = CM(i)(k)Yi (k) ; (ii) a non-integer part (i.e. it consists of the post­

scaling factors) E'M(i)(k) . To achieve the first requirement, the E'M(I)(k) is incorporated 

into the forward quantization process. Thus, the integers, transfomled coefficients, 

WM(i)(k) are quanti zed and scaled by a single operation as follows: 

( 4.16) 

where Q Slep is a quanti zer step size indexed by QP in the range of 0 to 5 1, inc lusive. 

Q Slep and QP have been introduced in Section 2.3.7.3. The rounding operation here 

approximates towards smaller integers. Qi represents the quanti zed coeffic ients of 

row i. 

A disadvantage of the above quantization fonn ula is that it requires integer divisions. 

To avoid divisions, following the approach used within H.264 reference model 

software [S I], we apply the factor (E'M(i)(k)IQ step) in Equation (4.16), as a 

multiplication by a quantizat ion factor MF and a right shift, thus avoiding actua l 

division operations. i.e., Equation (4. 16) can be re-written as follows: 

where 

_ _ (~ MF"I (/)(') ) 
Q, - I aUlld k, WAl(/)(,) 181 2 "bl" 

MFM(;X') 
2 qbit~ 

E ''''(IX') 
QSlep , 

qbils = 1 S + floor(QP / 6) . 

In integer arithmetic, Equation (4.17) can be implemented as follows: 

60 

(4. 17) 



(4.18) 

where the symbol (» qbi/s) indicates the qbils-bit ri ght shift that is equivalent to a 

divis ion by 2"b;". FMr;; is a co lumn vector of size M(i) x I , in which all elements are 

one. The so-ca lled dead-zone control parameter I is set to 2,,&;1'/3 for intra blocks or 

2"b;"/6 for inter blocks by the encoder in our implementation . R M(O(k) is the sub­

quanti zation coefficient(s) of each WMO)(k), and Q; represents the quanti zed 

coefficients of row i. 

The pre-scaling facto r E'T~'I(;; (k) for the inverse lransfom1 in Equation (4. 14) is 

incorporated into inverse quanli zation (reconstruct ion), together with a constant 

sca ling factor of 64 to avo id rounding errors [11] , thus the corresponding 

reconstruct ion fom1Ula that we proposed is: 

(4.19) 

W;' are de-quanti zed coeffi cients of row i. The reconstruction factor 

E'l~I(lj(kr Qstep'64 is replaced by reconstruction factor, RFM(O(k) . Thus, the 

reconstruction fom1ula may be re-wri tten as fo llows: 

" V) 
w,' = L (RM (')(k)i8I RFM(i)(k) ) « floor (QP / 6) 

k : 1 

RF;If(iXk) = round (E;~(iXkpstep . 64) 

(4.20) 

61 



where the symbol « denotes a binary left shift. Note that finally the va lues at the 

output of the inverse transform are di vided by 64 to remove the scaling introduced in 

Equation (4.19). This is achieved using a ri ght shift operation. 

In the proposed SA-IT quantization process design, the quantization and 

reconstructi on factors, MF and RF are obtained via lookup table as illustrated in 

Table 4-2 and Table 4-3 respectively (the definiti on of the va lues of MF and RF are 

discussed later). Note that only the first six values of MF and RF are used by the 

proposed SA-IT due to the fac t that for every increase of "six" in QP, the 

denominator 2"b;ts in Equati on (4.18) doubles, but the factors MF remain unchanged. 

We use a total of 18 scaling factors that depend on the actual arbitrari ly shaped object 

within the block. Since the sca ling factors in E'MW are unpredictable, a question of 

obtaining the factors in our implementation (discussed in Chapter 5) ari ses. To avoid 

using floating point va lues o f the sca ling facto rs to look up the quanti zation table, it 

is desirable to create integer indices to the array of scaling factors as illustrated in 

Table 4-2 and Table 4-3 . We first use a number between 0 to 17 to i lldex each row of 

Table 4-2 and Table 4-3 factor to pick up the associated QP va lues. Further we use I, 

2, 3, 6 and 7 as a code to represent the five basic factors, 1, a, b, c, d respectively, 

resulting in all 18 scaling factors being representab le by unique codes. The maximum 

va lued unique code is 49, which is for (l, and the corresponding relati onsh ip of illdex 

(i.e. 16) and code is indicated in Table 4-2 and Table 4-3. 

As we mentioned in Section 4.3, Cl and C, are orthogonal but do not have the same 

n01111 . In the quantization process it is necessary to compensate for the different ro w 

n0l111S (3 , 2 and 6 in Cl ; 4, 10, 4 and l Oin C.) . The scaling factors needed for 

compensation are depicted in Table 4-4. Note that since the odd-rows of C4 are 

scaled by 112 in the inverse transform (i.e., to reduce the dynamic range ga in (see 

Section 4.3.3)) , the compensated values for all the scaling factors that involves d, i.e. , 

d, ad, bd, cd, c/ d and cl, are halved. 

62 

I 



Table 4-2 Quantization factor MF for 0 ,; QP '; 5 

Factor Index Code 
QP for MF 

0 I 2 3 4 5 
a 0 2 37449 33825 28340 26214 23301 20S60 
b I 3 30393 27962 23302 21845 18893 16644 
c 2 6 21845 1941 8 16644 15197 13443 12052 
d 3 7 16777 14980 127 10 11984 10485 911 8 
a- 4 4 26214 23831 20 165 18724 16384 14563 
ac 5 12 14564 13443 11650 10922 9709 8322 
ad 6 14 11 65 1 10486 911 8 8389 7232 6553 
a' 7 8 18725 16384 14563 13 107 11 398 10485 
bc 8 18 12945 1165 I 9709 8962 7767 6853 
bd 9 21 9321 8738 7358 6990 6079 5377 
cd 10 42 699 1 6355 5377 4993 4112 3679 
;(c I 1 24 10923 9709 7944 7943 672 1 5825 
a-d 12 28 8066 7490 6553 5825 5242 4559 
I 13 I 52429 47662 40329 37449 32768 29 127 
b- 14 9 17924 15534 13706 12264 11 096 9709 
c- IS 36 8322 8322 6473 6472 5296 4854 
d' 16 49 5243 4660 4194 38 13 3226 2995 
a 17 16 13107 11 915 10082 9362 8192 7281 

Table 4-3 Rescalillg factor (RF) for 0,; QP '; 5 

Factor Index Code 
OP forMF 

0 1 2 3 4 5 
a 0 2 28 31 37 40 45 51 
b \ 3 23 25 30 32 37 42 
c 2 6 16 18 21 23 26 29 
d 3 7 25 28 33 35 40 46 
ar 4 4 20 22 26 28 32 36 
ac 5 12 12 13 15 16 18 21 
ad 6 14 18 20 23 25 29 32 
a' 7 8 14 16 18 20 23 25 
be 8 18 9 10 12 13 15 17 
bd 9 21 15 16 19 20 23 26 
cd 10 42 10 I1 13 14 17 19 
a-c II 24 8 9 11 11 13 15 
a-d 12 28 13 14 16 18 20 23 
\ 13 I 40 44 52 56 64 72 
b- 14 9 13 15 17 19 21 24 
c' 15 36 7 7 9 9 11 12 
d- 16 49 8 9 10 1I 13 14 
:' a 17 16 10 11 13 14 16 18 

63 



Table 4-4 Compensations of scaling factors 

Scaling Factor Compensated Value (CV) 

a 2 
b 3 
c 6 
d 5 

a- 4 
ac 12 
ad 10 
a' 8 
be 18 
bd 15 
cd 30 

a' c 24 
a'd 20 

1 1 
b- 9 
c' 36 
d' 50 
a' 16 

Since in the standard [16] only the decoder is spec ified, the RF may be computed 

from the reconstruction Equation (4.20), which is depicted in Table 4-3. To rollow a 

strategy si milar to that in [17] , the MF and RF were designed to maximize dynamic 

range and to satisfy a similar expression to that in [16], namely: 

(4.21 ) 

where CVM(i)(kj represent the corresponding compensation values. Thus, according to 

the above equation, MF can be calcul ated easily and shown in Table 4-2. 

With the transform design di scussed in Section 4.3 and the quanti zation design above, 

we see that all operations can be computed in 16-bit arithmetic, for input data with 9-

bit dynamic range. It is because the inputs (8-bit pixel data (0-255)) to the transfonn 

64 



- - -- - - -- - - -------------

2 3 4 

10 10 4 10 

2 4 12 15 12 

3 10 4 4 

4 15 7 7 

(a) (b) 

Figu re 4-4 (a) Initial block; (b) After shifting to upper border 

are prediction residuals/errors that are in a -255 to 255 (9-bit) dynamic range. 

However, there is one exception in the quanti zation Equation (4. 18), i.e., the product 

I WM(i)(k)1 ® MFM(i)(k) has a 32-bit dynam ic range, but the final quantized va lue is 

guaranteed to fa ll within a 16-bit range. 

4.5 Example of 2-D SA-IT's Process 

This section illustrates an example of applying the proposed 2-D SA-IT on a selected 

arbitrarily shaped block. Figure 4-4 (a) shows an initi al 4 x 4 block with arbi trarily 

shaped pixels highlighted wi th grey and Figure 4-4 (b) illustrates these pixels being 

shi fled to upper border in preparation for a forward vertical transform. T he detail ed 

operation steps are shown in the following statements. 

Step 1: The fOlward l-D vet1ical transform is executed by Equation (4.12) and the 

corresponding results for each co lumn are as follows. 

y, = 0, 

65 



j = 2 3 4 

i = 1 10 19 33 1 a aZ 

2 -Il 14 a d 

3 1 a1 

4 -13 d 

(a) (b) 

Figure 4-5 (a) Resulting coefficients of the vertical transform and (b) 

corresponding scaling factors 

At1:er the vertical transform, the resulting >j and ENO) are shown in Figure 4-5. 

Step 2: The forward I-D horizontal transfonn IS then performed by applying 

Equation (4.13) as follows: 

66 



The intennediate outcomes o f Z and scaling factors are illustrated in Figure 4-6. Note 

that each coeffi cient position (highlighted with grey) consists of the sum of those 

sub-coefficients, e.g., JO®b+ 19®ba+ 33®ba l 

Step 3: These scali ng factors illustrated in Figure 4-6 wi ll subsequently be integrated 

into the forward quantization process using Eq uation (4.18). The resulting forward 

quantized coeffi cients are illustrated in Figure 4-7 (a) . Note that we have assumed 

that QP equal s to 4 andJis set to 2qbi"/3 (i.e., used for intra block) in this example. 

When i = I , MCI) = 3. The corresponding MF gai ned fTom Table 4-2 is as follows. 

J= 

i= 1 

2 

3 

4 

18893 

MF,(,) = 2330 I , 

13443 

2 

13443 

MF,(2) = 16384, 

9709 

3 

1 O®b+ 19®ba+ 33®ba1 lO0a+00a l -33®aJ 

-11 ®a2+14®ad 

9709 

MF,(3) = 11 398 . 

672 1 

4 

1 0®c-38®ca+ 33®ca1 

-11 ®a2-14®ad 

1®a1 

-130d 

Figure 4-6 Intennediate outcomes of Z and scaling factors 

67 



~--------------------------------------------------------------------~--- ---

The coefficients of the first row can be gained fro m: 

Q, = t (IWJ(k)10MF3(1) + FJ)>> qbils 
k=l 

(lOx 18918 + 10923) >> 15 +(19 x 13443+ 10923) >> 15+(33x9709+ 10923)>> 15 

= (lO x 23301 + 10923) >> 15 +(Ox I6384 + 10923)>> 1 5 ~(33 x I1 398 + 10923)>> 15 

(lOx 13443+ 10923) >> 1 5 ~(38x9709 + 10923) >> 15+(33 x 6688 + 10923) >> 15 

6+8 + 10 24 
= 7 ~ 11 = ~4 , 

4 ~ 1 l+7 0 

6 [ 8 10 11,11) = 7 + 0 + ~ 11 
4 ~ 11 7 

Note that each quanti zed coefficient of the first row comprises the sum of three sub­

coefficients. For example, the coefficient of the position ( 1, 2) is 24 which is the sum 

of sub-coefficients 6, 8 and 10. 

When i = 2, M(2) = 2. 

16384 7232 

MF,(I) = 
16384 

The coeffi cients orthe second row can be obtained fro m: 

j= 2 3 4 

i = 1 24 -4 0 6 10 62 -3 

2 -2 8 -73 -247 

3 0 0 

4 -4 -1 60 

(a) (b) 

Figure 4-7 (a) Forward quanti zed coefficients; (b) Inverse quantized coeffic ients 

68 



, 
Q, = t(IW2(l)10 MF'(k) + FJ)>> qbilS 

b ",1 

- (11 x 16384 + 1 0923)>> 15 + (14 x 7232 + 10923)>> 15 
= 

- (11 x 16384 + !O923)>> 15 - (14 x 7232 + 10923)>> 15 

= - 5 + 3]= - 2 , 
- 5 - 3 - 8 

Note that each quanti zed coefficient of the second row comprises the SlU11 of two sub­

coeffi ci ents. 

When i = 3, M(3) = I and MF/(/) = 16384. 

The coefficient of the third row can be gained from: 

QJ = t(IWI(k)IISI MF;(k) + F;I)>> qbits = [(I x 16384 + 10923)>> 15] = 0, RI(,) = 0 
k~ ! 

When i = 4, M(4) = 1 and MF1(I) = 10485 . 

The coeffi cient of the fourth row can be calculated from: 

I 

Q, = l:(I W;(k) IISI MF;(k) +F;I)>> qbits =[- (13 XI0485 + 10923) >> 15] = - 4, RI(,) =-4 
k=l 

Note that the quantized coeffici ents for the third and fourth rows contain on ly one 

sub-coeffic ient respectively. 

69 



Step 4: The cOlTesponding de-quantization (Eq uation (4.20)) is can-ied out as follows. 

The associated RFs are as follows: 

i = 1 

37 26 18 
)! -

3(1) - 45 V](2) = 32 V;(]) = 23 

26 18 13 

i = 2 

V'(1) = [~~ ] 29] V -
2(2) - 29 

i = 3, V,(I) = 32 

i = 4, V,(1) = 40 

Rescaling coefficients are obtained from the followi ng calcu lations and results are 

illustrated in Figure 4-7 (b): 

6 37 8 26 10 18 222 + 208 + 180 610 

w,' = 7 ® 45 + 0 0 32 + - It ° 23 = 315 - 253 = 62 

4 26 - 11 18 7 13 104 - 198 + 91 - 3 

. [-5] [32 3 [29] - 160 + 87 [-73 ] w, = _5 ° 32 + _3 ° 29= - 160 - 87 = - 247' 

w;= o, 

W; = [-4)0[40) = - 160 

70 



------ - - - ~- ---------------

Step 5: The hori zontal inverse transform is carri ed by Equation (4. 14) and the 

correspondin g results are illustrated in Figure 4-8 (a). 

Step 6: The reconstruction of transform is performed by Equation (4 .1 5) for vertical 

inverse transfOlm. The corresponding results are illustrated in Figure 4-8 (b). 

Step 7: As mentioned in Section 4.4, the reconstruction values need to perform a 6-bit 

right sh ift operati on and the final output is in Figure 4-8 (c). 

It was noted that in the illustrated example above, a given coefficient (e.g. , the first 

row of the block) may be made out of a max imum of three sub-coeffi cients (Note 

that in general, in a 4 x 4 block, a coefficient may be made out of a maxim um of four 

sub-coefficients). It has been observed that th is is due to (a) the use of different 

ver1 ical (or horizontal) transfonTI si zes and (b) the fact that post-scal ing is absorbed 

in the quantizer operation. Therefore, for guaranteed decoding, all sub-coefficients 

will have to be transmitted to the decoder which directly resu lts in a cod ing loss. 

Therefore, though 2-D SA-lT provides a theoretical solution to arbitraril y shaped 

object coding, a practical implementation may not be sufficiently efficient. In the 

fo llowing section we discuss a so lution to this, i.e., the use of I-D SA-IT. 

669 616 545 669 296 639 9 

-320 174 936 792 4 12 

0 298 10 4 

-160 451 14 7 

(a) (b) (c) 

Figure 4-8 Reconstruction res ul ts (a) horizontal ; (b) vertical; (c) final results 

7 1 



4.6 I-D SA-IT and Quantization 

As shown in Section 4.5 , for guaranteed decoding of an arbitrari ly shaped block, sub­

coefficients that result from 2-D SA-IT are required to be transmitted to the decoder. 

This increases cost of transmission (see experimental results in Section 5.4). A 

so lution to thi s problem is to use I-D vertical SA- fT . This approach not on ly resolves 

the sub-coefficients problem but also reduces the overall computational cost of SA­

IT (onl y perfonning I-D transfonll ). A block diagram of the I-D vertica l SA-IT and 

its associated quantization stages is illustrated in Figure 4-9. The detail definit ions 

and design considerations of the I-D SA-IT are di scussed below. 

For the forward I-D vertical SA-IT, the equation is the same as Equation (4.9), which 

is re-written as follo ws: 

I ~ j ~ 4, I ~ NU) ~ 4 

Note that all tem1S in the above equation are defined as previously. 

Boundary block 
X (4 x 4) 

Reconstructed 
block X· 

r·------- ----------
, Forward SA-IT 
, , 

I-D vertical --+- H-+ , SA-IT , , , 
'- - - - - - -------------' 

r------------------~ , , , , 
Inverse I-D , 

~ vertical SA -IT ~ , , , , , , 

lnverse SA-TT : I. _ _ __ _ __ _ _______ __ _ , 

Quantization 

De-quantization 

Figure 4-9 Flow diagram of I-D veltical SA-TT and quanti zation 

72 

(4.22) 



As a result of perfomling the verti cal SA-IT, the resulting output (e.g. , Figure 4-5) 

contains (i) an integer part, ff'J' = C/I(j;X;; (i i) a non-integer part E/I(j) which is 

integrated in the quanti zer operation. The cOlTesponding forward quanti zation 

fotTl1u la is as follows: 

(4.23) 

where Wij and Eij are the I-D veliical transfonned coeffi cient of the position (i,) and 

the sca ling factor of the coeffici ent respecti vely. Qij is the resulting quanti zed 

coeffi cient of the position (i,) . Q Slep is defined as before. Note that the posi ti on (i,) 

must be one of valid posi tions such as the ones highli ghted in grey in Figure 4-5 . 

Following the approach for quantization process design used in Section 4.4, the final 

quanti zation equation can be obtained as follows: 

IQ,I = ~w,J MF, +1)>> qbits 

sign (Qij ) = sign(Wij ) 

(4.24) 

where MFij is the con'esponding quanti zation factor of the pos ition (i, i ), which 

depends on the actual shape of the block. The qbils,f and the symbol » are defined 

as before. 

According to Equation (4.24) and the method for obtaining the de-quantization 

presented in Section 4.4 (i.e., for 2-D SA-IT), the rescaling equation for the I-D SA­

IT can be obtained as follows: 

w; = (Qij . RF'.l )« floor (QP / 6) 

(4 .25) 

73 



- - - _._-- - - - - - - - --------

. . 
here RFij is the corresponding rescaling factor of the position (i, i), and Wij IS the 

corresponding de-quantized coefficient. 

Finally, the equation for the inverse 1-0 vertical SA-IT is simi lar to Equation (4.15), 

and can be presented as fo llows: 

1 ~ j ~ 4, I ~ N(j)~4 

(4.26) 

here, W~ and X'j are the results of de-quantization of column) and the reconstructed 

results of columnj respectively. Note that the reconstructed reslllts are divided by 64 

as mentioned in Section 4.4. 

Since the scaling factors E N(j) used in Equation (4.22) contain six scali ng factors (i.e, 

1, 0 , b, c, al
, and cl) which is a pmt of scaling factors used for 2-D SA-IT (see Table 

4-1), the quantization factor MF, rescaling factor RF and the compensation value CV 

for 1-0 SA-[T can use the same tables (Table 4-2, Table 4-3 and Table 4-4) as the 2-

D SA-IT defined in Section 4.4. 

For clarity, we use the same example described in Section 4.5 to illustrate the use of 

I-D SA-IT and the associated quantization process that will be implemented in the 

proposed CODEC that will be discussed in Chapter 5. 

Step I: The forward I-D vertical transform is perfom1ed by Equation (4.22). The 

reslllting coefficients and scaling factors are illustrated in Figure 4-10 (same as 

Figure 4-5). 

Step 2: The forward quantization is carried out by Equation (4 .24). The resulting 

fOlward quantized coefficients are illustrated in Figw'e 4-11 (a). For examp le, the 

calculation of the coefficient of the position (I, 4) can be carried out as follows: 

74 



-- - - --~~~~~-~~~~~~-

j= I 2 3 4 

i = 1 10 19 33 1 a 2 a 

2 -11 14 a d 

3 2 a 

4 -13 d 

(a) (b) 

Figure 4-1 0 (a) Coefficients of vertical transform and (b) resulting sca ling factors 

~, = 16384, Q14 = (jw,,!. ME;, +/)>> qbits = (33 x 16384+ 10923)>> 15 = 16 

Step 3: The corresponding de-quantization is executed by Equation (4.25). The 

results are illustrated in Figure 4-11 (b). The rescaling result oflhe position ( I, 4) can 

be calculated as follows: 

Rf;, = 32, w,; = (Q1, • Rf;,)« floor(QPl6) = (16 x 32)« 0 = 512 

J= I 2 3 4 

i = I 1 0 13 [6 640 585 512 

2 -8 4 -360 160 

3 0 0 

4 -4 -160 

(a) (b) 

Figure 4- 11 (a) Forward quantized coefficients; (b) inverse quantized coefficients 

75 



- 2 3 4 

640 225 592 10 4 9 

2 945 752 15 12 

3 272 4 

4 432 7 

(a) Cb) 

Figure 4-12 (a) Results of inverse verti cal SA-IT; (b) final results 

Step 4: The inverse vertical SA-IT is performed by Equation (4.26). The 

cOITesponding resu lts are illustrated in Figure 4-12 (a). The results o f the inverse 

transfol·m of column} = 3, for example, can be obtai ned as fo llows: 

N(3)= 2, 
. ( . . ) [I I ] [ 585 ] [585 - 360] [225] X , = C, ·W, = I - I x - 360 = 585 + 360 = 945 

Step 5: The resulting inverse transfonned coefficients presented in Figure 4·12 (a) 

finally undergoes a 6-bit ri ght shift operation to obtain the final results, presen ted in 

Figure 4-12 Cb). The result of the position ( I, 4), for instance, is obtained as follows: 

X:; = (X:, + 32)>> 6 = (592 + 32)>> 6 = 9 

Note that the constant 32 is used to minimize the error caused by the ri ght-shift . 

It is worthwhile to note that comparisons were made between the possible lIse of 1-0 

vertica l and horizontal SA-ITs. The R-D perfonnance resu lts did not differ 

significantl y. Thus, we adopted the vertical SA-IT inlhe proposed COOEC di scussed 

in Chapter 5. 

76 



4.7 Preliminary Experiments & Results 

Before full y incorporating the proposed SA-IT within an H.264 encoder, pre liminary 

experiments were carri ed out to investigate its effectiveness in coding arbitraril y 

shaped objects and to compare its performance against SA-OCT. These experiments 

compare the average PSNR quality of the reconstructed boundary blocks (i. e . blocks 

which li e along the boundary of the object) of the video objects when using SA-DCT 

and the proposed I-D and 2-D SA-lIs. 

The video sequences "Foreman" and "Mother & Daughter" illustrated in Figure 4-1 3 

(a) and Figure 4-1 3 (b) respecti vely were used fo r the experiments, assuming that the 

shapes of the fo reground objects (i.e. of the Foreman, and Mother & Daughter) were 

known as alpha maps (described in Section 2.5). These are illustrated in Figure 4- 13 

(c) and Figure 4- 13 (d). The same quantizer step size was used for all three 

transforms, i.e., SA-DCT, 1-0 SA-LT and 2-D SA-IT. 

Firs t, each frame is segmented into two groups, namely, foreground (i.e., the objects) 

and background , using the associated alpha map information. Subsequently the rrame 

is d ivided into 4 x 4 or 8 x 8 (for SA-DCT) blocks which will comprise of boundary 

(part of pixe ls that belong to the object), fo reground (all pixels inside of the object) 

and background (all pixels outside of the object) b locks. Finall y, the proposed SA­

ITs and SA-DCT are applied to all boundary blocks separately. Note that the normal 

IT and DCT can be applied to all fo regro und object blocks while coding backgro und 

obj ect blocks are ignored as they do not belong to the foreground obj ect. However 

for an effective comparison of the e ffi ciency o f SA-DCT vs. SA-ITs, experiments 

presented in thi s section were designed to compare the average PSNR values of only 

the boundary blocks. 

Figure 4-14 and Figure 4-15 plot the vari ation of PSNR against QP for the "Mother 

& Daughter" and " Foreman" video objects respectively. It is clear from both fi gures 

that the curves of SA-ITs (either 1-0 SA-IT or 2-D SA-IT) are very close to the SA­

OCT. It mealls that the results of the new tranSf0n11S are comparable with that of the 

77 



----------------------------------------------------------------------------------

(a) (b) 

(c) (d) 

Figure 4-13 Original images: (a) Foreman; (b) Mother & Daughter. And 

associated alpha maps: Cc) Foreman; (d) Mother & Daughter 

SA-DCT traditionally used in coding arbitrari ly shaped objects in the MPEG-4 

standard. Figure 4-16 illustrates a resulting reconstructed frame of "Foreman" and 

"Mother & Daughter" video objects, when the proposed 1-0 SA-IT was used in their 

coding. The results do not show any quality degradation, specificall y any noticeable 

artefact in the object boundary areas. 

78 



60 

~ 50 

~ 40 
<Il 
a. 30 
~ 
.g 20 
c 
6 10 co 

o 

I-

--+-- I-D SA-IT 

----- 2-D SA- IT 
~SA-DCT 

5 10 15 

MotherDaughter 

,.,., 
---------------

---------------

20 25 30 35 40 

Q uamization Parameter (QP) 

Figure 4-14 Comparison of SA-ITs and SA-DCT for Mother & Daughter. 

Foreman 

60 ,-------

t: t~~"~~~~~~~~~~~~~~~:-:::;~;~~~~~-:J 
i:' ---+- I-D SA-IT 
~ 20 
c ----- 2-D SA-IT 
~ 10 __ SA-DCT 

o 
5 10 15 20 25 30 35 40 

QlIantizatio n Parameter (QP) 

Figure 4-1 5 Comparison of SA-ITs and SA-DCT for Foreman 

Figure 4- 16 Resulting image of SA- IT for Foreman and Mother&Daughter objects 

79 



- -- - - - - - --------- _ ._----------------

4.8 Conclusions 

In this chapter, we have presented the theory of the proposed 2-D SA- IT and 

associated quantization procedures. We have shown that the new transform inherits 

the benefits from both IT used within H.264 and SA-DCT used within MPEG-4, 

which include: (i) allowing computation of the forward or inverse transform using 

simple additions and shifts, but no multiplications; (ii) minimizing computational 

complexity by lIsing 16-bit arithmetic operations; (iii) avoiding divisions at 

quantization by the introduction of quanti zation table look-up strategy. (iv) 

supporting the coding of arbitrary shaped video object. 

Moreover, we have presented the 1-0 SA-IT to solve the sub-coefficients problem 

caused by the use of2-0 SA-IT. We have shown that the use of 1-0 SA-IT not only 

delivers the abi lity to code arbitrarily shaped objects but also reduces the 

computational complexi ty as compared to the use of2-0 SA-IT for the same purpose. 

We have also designed some preliminary experiments to compare the perfomlance of 

the new transforms (1-0 and 2-D SA-ITs) with that of the SA-OCT used in MPEG-4. 

The experimental results have proved that the proposed transforms have perfonnance 

levels equivalent to that of SA-DCT. 

In the following chapter we use the 1-0 SA-TT theory developed within this chapter 

to introduce arbitrarily shaped object coding in the H.264 video coding standard. 

80 



- -~----------------

Chapter 5 Object-Based H.264 CODEC 

5.1 Introduction 

The supporting teclmiques used in coding binary shape and transforms in support of 

the coding of the texture of arbitrarily shaped video objects have been investigated in 

Chapter 2 and Chapter 3. The aim of the novel transform, SA-IT, proposed in 

Chapter 4, is to meet the coding needs of the texture of boundary blocks of these 

video objects, under 16-bit integer arithmetic constraints. 

This chapter presents the design, implementation and perfonnance ana lysis of an 

object-based codi ng ex tens ion to the Baseline pro fil e of H.264 standard. The basic 

idea is to adopt an object-based coding strategy similar to that ofMPEG-4 Visual [5] 

discussed in Section 2.5, tailor·ed to the specific operational and functional needs of 

H.264. Temporarily varyi ng binary alpha maps (see Section 2.5.2) are used to 

temporaril y vary the constitution of H. 264 sli ce groups (see Section 2.3.4). These 

slice groups are in turn used to define video objects. 

This chapter has been organized as follows. Section 5.2 gives an overview of the 

proposed idea of including object-based coding in H.264. Section 5.3 describes the 

detailed design of a novel binary shape coding strategy within both the H.264 

encoder and the decoder. The tex ture coding of arbitrary shaped objects at 

macrob lock layer level is introduced in Section 5.4. Simulation results for the 

proposed CODEC, and analysis and conclusions are presented in Section 5.5 and 

Section 5.6 respectively. 

5.2 Overview of Object-Based H.264 CODEC 

This section provides a functional overview of the proposed object-based H.264 

video CODEC. A block diagram of its encoder is illustrated in Figure 5-1 . The 

coding architecture of this encoder is detailed subsequently. 

8t 



- -- -- --------------------------------------------------------------------

--------------------------------------- - ------, 
: Binary Shape Encoder , , , , 
' Alpha Map , Mode 

Decision 

ME / MC 

Frame 
Memory 

Intra I Inter 
CAE 

c.---1 Reconstructed 
SAS 

----r- - ----, , 

, 

Alpha 

NAL ' 

, 
------------------- - -- + ----~--- + --- ~ ---- --- ---~ 

I I I I 

~id;----~--~~--~--~-----:------~ - - -- ----,-- -- --------
t , 

'" , , I , , + D" 

~ ~ 
, , ITI Q,.rl ,. I , , SA-IT QSA.'T 

Reorder , , I ~ 
, , . , , 

I ... 
, , , 

I 
f--t< 

, 
\ ME / MC -+. I 

~ , Entropy 
I , 

~ 
encoder , , 

I , , - -- - - - -----. 
Intra . ' • 

, 

'---+ 
, , 

Prediction - / 
, , 
, , , 

... - T NAL 

T 
+ 

0'" IT" I Q,.r' 
SA-lT" ~ Q .\ ~ + SA- IT 

'--- Frame Deblocking 
Memory Filter 

H.264 Texture Encoder 
_____________________________ ...J 

Figure 5- 1 Block diagram of the proposed object-based H.264 encoder. 

82 



Object-based coding of video requires an initial stage of identifying suitable video 

objects or Regions-of-Interest (ROls) wi thin the video scenes. A number of existing 

computer vision based algorithms can be utili zed to this effect [52] [53]. It is noted 

that our present research only focuses on tlle coding of these objects once they have 

been identified. Therefore the discussions are limited to this aspect. 

It is noted that the shapes of arbitraril y shaped video objects are represented by so­

called binary alpha maps and typically coded by a binary shape coder as illustrated 

by the top part of Figure 5-1 (red rectangle). The associated texture is coded by a 

texture coder as illustrated by the blue rectangle in Figure 5-1. 

The introduction of an object-based coding architecture within the standardized 

frame based coding arch itecture of a H.264 CODEC, primarily requires the inclusion 

of the fo ll owing: 

I. Binary Shape Coding - exclusively used for cod ing binary alpha maps 

representing shape info rmation of video objects. 

2. Shape Adaptive Integer Transform (SA-IT) - a mathematical 

transfoml presented in Chapter 4, which is ab le to handle the border 

texture of an arbitrarily shaped video object. 

3. Modification to the Coding Architecture - required for handling the 

temporal variations of sli ce groups driven by the binary alpha maps and 

inclusion of the extra alpha non-VeL NAL overhead to notify the 

presence of shape infomlation of a coded object. 

The block-based CAE (see Section 2.5.2.2) [20, 2 I, 54) of the MPEG-4 standard was 

selected as the basis for binary shape compression within the context of the proposed 

research. However, the binary shape compression technique used within MPEG-4 

standard was exclusively designed to be used within the said standard, our detailed 

investigations revealed that it is not entirely suitable if used wi thout suitable 

modi fications with in Ollr research context. Therefore the original MPEG-4 shape 

codi ng approach was suitably modified and further improved in order to meet the 

83 



- - - ----- - - - - - --------------

more challenging requirements of the proposed object-based H. Z64 CODEC (see 

Section 5.3). 

The mathemati cal transfonns relevant to the research context of thi s thes is, SA-DCT 

[Z4] and IT [1 7] were reviewed in Chapter 2 and Chapter 3. It was noted that SA­

DCT can handle the border tex ture of an arbitrarily shaped video object. SA-DCT 

was chosen to provide the basis for the mathemati cal tranSfO l1l1 used within the 

proposed research contex t due to its block based nature/approach. However, SA-DCT 

based tex ture coding in MPEG-4, employs a floating point implementation. The 

transfonn used in H.264, IT, is essentially a 4 x 4 DCT transfonn implemented in 

integer arithmetic. Thus, the modification of a standard H.Z64 CODEC to an object­

based CODEC requires the novel des ign of a SA-DCT that should be implemented in 

integer arithmetic. To achieve thi s, we have proposed SA-IT in Chapter 4. This 

transform will be used in the inclusion o f object based coding functi onality of the 

proposed object-based H.264 CODEC. 

Further to the above, a number of other modifications and extensions have to be 

included in the proposed CODEC. It was mentioned that in H.Z64, a sli ce group can 

be used to independently (from the backgrounds and other s lice groups) define and 

code a region of a video frame. Each slice group is made of a number of macroblocks 

and may represent an irregular (see Figure 5-Z) or a rectangular region. However, in 

H.264, the macroblocks associated with a particular slice group are predefined by a 

user; the shape, size, and position of the s li ce group in relation to the frame does not 

vary between frames, i.e., temporally. In contrast, in the proposed scheme, the sli ce 

group(s) of each fi'ame is defined by the temporally varying binary alpha maps. Thus, 

the sli ce group(s) becomes shape, size and position variant with respect to time. 

Furthermore, the boundary accuracy of an object defined by a slice group of H.Z64 is 

not accurate enough (minimal 4 x 4 block) for completed arbitrarily shaped object 

coding. However, in the proposed method, we modified the slice group definitioll (by 

binary alpha maps) to allow full y arbitraril y shaped object (accuracy in pixel by pixel) 

coding. 

84 



- - - ------------

Figure 5-2 Foreman object is grouped into a slice group (grey), a small square 

indicates a macroblock of 16 x 16 pixels. 

In addition to the above modification, due to the need of introducing binary shape 

coding within the proposed design, the texture coding of individual macroblocks is 

dependent on their corresponding shape infomlation. Therefore the macroblock level 

texture codi ng process of MPEG-4, has to be considerabl y modified to be used 

within the present research context. The main modifications adopted within the 

proposed cod ing process are covered in Section 5.4 

The shape information has to be effectively organized for efficient transmission and 

storage. in MPEG-4, the shape is coded and transmitted as a byte stream that is a part 

of the main bit stream which includes the video content, rather than as an 

independent stream. in contrast, non-VeL NAL units are to be utili zed in H.264 for 

transmitting additional data, rather than being mixed with VeL information. It was 

mentioned in Section 2.3.1 that the NAL is designed for "network fri endliness" and 

to enable simple and effective customization of the use of the VeL for a broad 

variety of systems. Therefore, in the proposed design, a new non-Ve L NAL unit, 

named the Alpha NAL unit as illustrated in Figure 5-3 is defin ed to include and 

transmit the overhead shape infomlatioll. In the first place, all coded binary a lpha 

blocks in the video picture are encased into a stream with a shape header to form the 

binary shape data. The resulting binary shape data is then prefi xed with a single byte 

long header data that indicates the type of Raw Byte Stream Payload (RBSP) data 

structure it contains. The RBSP is thereafter organized into a non-VeL Alpha NAL 

unit in byte-streanl fonnat together wi th a start code pre fi x that is a unique identifier 

85 



Alpha NAL Unit 

Start 
Raw Byte Stream Payload (RBSP) of Alpha 

Code One Byte Coded Binary Shape Data 

Prefix Header 
Shape Header I Coded BAB's 

Figure 5-3 Structure of an alpha NAL unit. 

of the start of a new NAL unit. The Alpha NAL unit is afterwards encapsulated to the 

NAL unit stream prior to the primary coded picture that consists of a set of veL 

NAL units containing the mai n data of the video picture. Eventually, the NAL unit 

stream is stored or transmitted to the decoder. For more detailed information on NAL 

units, see [1 6] . 

All fundamental units of the proposed object-based coding scheme have been 

outlined above. The schematic framework illustrated in Figure 5-1 consists of a 

binary shape encoder and a H.264 texture encoder. It was mentioned that a moving 

arbitrarily shaped video object is entirely defined by its shape, motion and texture 

infotmation. The object coding begins with the definition of its shape, i.e., the binary 

alpha map, which further guides its texture cod ing so that only the data within the 

object is encoded. The map is processed in units of 16 x 16 pixel blocks. The 

encoded shape information is sent to the decoder, and serves as a reference for 

motion estimation of the subsequent map and in the texture decoding. Subsequent to 

the shape encoder, the texture encoder commences its operation. Its basic work flow 

is the same as that of a standard H.264 encoder but its processes are guided by shape 

information as illustrated by the dashed arrowheads of Figure 5-1. Further a number 

of supplementary procedures have been added into the encoder such as padding 

techniques for transparent pixels in the reference block Of pictw·e. Section 5.4 

provides detailed explanations of these procedures. 

86 



------------ -

5.3 Binary Shape Coding Method 

This section describes the design and implementation of the binary shape encoding 

and decoding mechanisms for coding object shape information in the proposed 

CODEC. A block diagram of the binary shape encoder is illustrated in Figure 5- 1, 

Though similar in nature to shape coding used in MPEG-4 which has been 

introduced in Section 2,5,2, several modifications aimed at its adoptability and 

increased efficiency have been proposed within the context of our research when 

used within H.264, 

5.3.1 Encoder Implementation 

The first task in shape coding is the introduction of a user-defined parameter named 

as ArbilrwyShapedObjecl, which is used as a switch to indicate the presence (or 

absence) of object based coding, This parameter is encoded and included within the 

sequence parameter set or the H.264 bitstream to fOlll1 a part of the coded bitstream , 

In MPEG-4, a video object within a binary alpha map is enclosed in a tightest fitting 

rectangular bounding box as depicted in Figure 2-7 (b) that consists of a number of 

Binary Alpha Blocks (BABs) , These BABs are categorized into three classes: 

transparent, opaque and boundary, However as illustrated in Figure 5-2, the video 

object within the binary alpha map in H,264 is defined in a slice group whose shape 

need not be constrained to being rectangular, which is contrary to the object coding 

principles adopted with in MPEG-4 (enclosed in a rectangular bounding box), 

Therefore in our design, only two categories of BABs are considered, the ones which 

are opaque and ones that lie on the boundary, as marked with '2' and '3' in Figure 

5-2, We show later that the non ex istence of the transparent BABs in the proposed 

design, can significantly increase the shape coding effici ency, 

Subsequently the binary shape encoder processes the BABs within tJ1e slice group on 

a macroblock-by-macroblock basis, in a raster scan order. During encoding, a BAB 

may be treated in one of six ways (as against seven ways in MPEG-4), as listed in 

87 



, 

Table 5-1. [t is the responsibility of the mode-decision block (shown in Figure 5-1) to 

choose an effici ent encoding method for each BAB. In I-frames, only two of the 

above six modes are used (see Table 5-1). Opaque BABs of I-frames, are encoded 

using short variable-length codes (VLC). A boundary BAB of an intra-frame is coded 

using intra-CAE. In P-frames, shape is coded adopting a teclmique similar to that 

used by MPEG-4 in shape coding in Section 2.5.2 . All six modes may be used for 

inter-coded BAB as li sted in Table 5-1 . However the partitioning of the candidate 

motion vectors from the corresponding texture block used in prediction is selected to 

be that used by H.264, rather than the one traditionally used by MPEG-4. This 

difference is clearly illustrated in Figure 5-4 when comparing with Figure 2-11. Note 

that transparent BABs in the proposed design need not be coded. The reason for that 

is explained in the next paragraph. 

Table 5- 1 BAB coding modes as represented by the bab_o'pe 

bub _ type value Type Used in 

0 No update, without MVD P-Frames 

I No update, with MVD P-Frames 

2 Opaque 1-, P-Frames 

3 Intra CAE 1-, P-Frames 

4 Inter CAE, without MVD P-Frames 

5 Inter CAE, with MVD P-Frames 

After all BABs of the sli ce group (i.e. opaque and boundary BABs) are encoded, a 

prefixed shape header needs to be appended to these coded BABs before 

encapsulating within the Alpha NAL unit as illustrated in Figure 5-3 . It is worthwhile 

to note that the header of a VideoObjectPlane (VOP) in MPEG-4 (consists of four 

fields, 56 bits in total , see [20]) defines the position and size of the bounding box for 

motion compensation purposes. However, the header of a YOP in the proposed 

scheme has a di stinct definition. To faci litate motion estimation, the proposed shape 

encoder estimates motion vectors for shape based directly on an absolute coordinate 

system, i.e., by regarding the dimensions of the entire frame as a bounding box. This 

88 



B C 

MVS(2) MVS(3) 

A ClIrrent 

MVS(J) BAB 

(a) 
.. . .. . . -., .. - ... . .. 

C 
-. -., _. -. (8x 16) 

B (8x8) MV(6) 
MV(5) 

A (16x8) 
MV(4) Current 

MB 

. -- - .- - --- -----_ ... 

(b) 

Figure 5-4 A list of candidate motion vectors are used for prediction. (a) MV for 

shape; (b) an example of MV for texture 

is due to the fact that the accurate shape of the irregular slice group in the proposed 

design is not possible to be described by few fi elds as processed in MPEG-4. 

Therefore in the proposed design instead of defining the position and the size of a 

rectangular box bounding the object, a second binary map, called a BAB map as 

illustrated in Figure 5-5 is created, encoded and transmitted . The BAB map is made 

of all BABs of the binary alpha map and each pixel with magnitude ' I ' represents 

either an opaque or boundary BAB and a pixel with magnitude '0 ' represents a 

transparent BAB. The BAB map is then coded by a block-based intra CAB algorithm 

in a horizontal or vertical raster scan order. Finally, the reSUlting bit string is inserted 

as the header to the coded BABs to fom1 the coded binary shape data as shown in 

Figure 5-3. Note that the BAB map is surrounded by a 2-pixel wide border prior to 

the intra CAB coding, and the pixel va lues of the border are assumed to be zero 

(transparent). 

89 



- - ---- - - - - - - -------

0 0 0 0 0 0 , 0 0 0 0 

0 0 0 0 , I I I 0 0 0 

0 0 0 0 , , , , , 0 0 

0 0 0 , , I 1 1 1 1 0 

0 0 0 1 , I I 1 , 0 0 

0 0 0 , , I , , 0 0 0 

0 0 0 0 I I , , 0 0 0 

0 0 0 0 , 1 1 1 0 0 0 

0 , , , , I , I 0 0 0 

Figure 5-5 BAB map of the Figure 5-2, each small square comprises 16 x 16 pixels 

The number of bits required fo r coding a BAB map depends on the ex tent of local 

correlation of the video object in the BAB map and the size of frame resolution. 

Figure 5-6 and Figure 5-7 show the average bits per frame spent on the header and 

coded binary shape data (shape header and coded BABs) of the proposed shape 

encoder and MPEG-4 shape encoder individually for the video sequences of "News" 

and "Coastguard" having di ffe rent resolutions, i.e., CIF and QCIF respecti vely. ft 

shows clearly from these figures that, although the header size in CIF resolution 

coded by the proposed method is slightly higher than that of 'he MPEG-4 method, 

the proposed method successfull y reduces the total number of bits required for 

coding binary shape data by around 25%, 22%, 38% and 26% respecti vely for video 

sequences, "News-CIF", "News-QICF", "Coastguard-CIF" and "Coastguard-QCIF". 

The reason fo r thi s improved perf0 I111 anCe is that no transparent BABs are required to 

be coded in the proposed method. 

Eventually, a fter all shape infomlation including coded BABs and the shape header 

are encoded, they are encapsulated as an Alpha NAL unjt (see Figure 5-3) into the 

bitstream, which is subsequently stored or transmitted to the decoder. 

90 



900 
800 
700 .. 600 

S 
500 '" ..: - 400 ~ 

,!:: 
cc 300 

200 
100 

0 

News 

f--------==.-------j 0 Proposed I-leader 

C IF 

1------J El MPEG-4 '-'eader 
1-------, 0 Proposed Shape 

----1 0 MPEG-4 S 

QCIF 

Figure 5-6 Shape coding results of News wilh reso lutions CIF and QCIF 

900 
800 
700 

" 600 
S 

500 '" ..: -400 :l 

= 300 

200 
100 

0 

C IF 

Coastguard 

,------1 0 Proposed '-'eader 
----j El MPEG-4 Header 

,------1 0 Proposed Shape 

o MPEG-4 

QCIF 

Figure 5-7 Shape coding results of Coastguard with resolutions CIF and QCIF 

9 1 



5.3.2 Decoder Implementation 

Having discussed the binary shape encoder in detai l, attention is now tumed to the 

specific details of the shape decoding process of the proposed CODEC. Figure 5-8 

illustTates the basic flow diagram of the decoder. 

At the decoder of the proposed CODEC, subsequent to the decoding of the seq uence 

parameter set (SPS) and the picture parameter set (PPS) NAL units, the Alpha NA L 

unit that consists of the coded video object shape information, is decoded. 

As depicted in Figure 5-3, the first part in the coded binary shape data is the shape 

header which is decoded by using a CAE decoding algorithm. The result of decoding 

the header produces the BAB map which will indicate the absolute positions of the 

BABs yet to be decoded. Subsequently individual BABs are decoded from top-to­

bottom and left-to-right in raster scan order. It has to be noted that the decod ing 

procedure and algorithm for a given BAB used by the proposed scheme is simi lar, 

but yet not identical to that used in MPEG-4. It is explained briefly below with 

particular emphasis glVen to describing the differences when compared with that 

used by MPEG-4. 

The first field of a BAB that is decoded is the "bab _type" that te ll s the decoder what 

coding mode has been decided by the encoder to be the 1110st efficient for predicting a 

given BAB. As explained before in Table 5-1 , we have considered the use of six 

coding modes within our encoder design. In Section 5.3 .1 , it was described that, fo r 

intra-coded BABs, only two modes (opaque and intra CAB) are considered whilst all 

six modes may be used for inter-coded BAB. The decoder employs VLC tab les (22) 

to look up and decode the BAB type. Once the BAB type is decoded for a given 

intra-coded boundary BAB, its shape is decoded, by context-based arithmetic 

decoding. Inter-coded BABs are reconstructed using the received and decoded 

prediction errors and/or motion vectors and/or context-based arithmetic decoding 

(Intra CAB or Inter CAB). The candidate tex ture motion vectors that are used for 

predicting motion vector [or shape information depend on partition sizes (see H.264 

92 



block partitions in Section 2.3.6) are avai lable in the reference macroblock as shown 

in Figure 5-4. This is different to that adopted by MPEG-4 standard, which only uses 

8 x 8 partitions. It is noted that for opaque BABs shape is known after decodi ng its 

BAB type. Transparent BABs need not be decoded in the proposed decoder. 

After reconstructing the BAB shape entirely, it is ready for being lIsed ill texture 

decoding, i.e. for recovering the shapes of the coded tex ture blocks, and is discussed 

in the following section. 

Bitstreal1l 

Sequence parameter set 

_--~---"7' 

Picture parameter set 

--~--==-.. 
AlphaNALU 

---~----,;::;;;~ 

Shape header (BAB map) 

---~--==... 
BAB type 

BAB decoding Next BAB 

---~---.." 
Corresponding MS decoding 

End of bit stream 

Figure 5-8 Bas ic processes flow of the proposed decoder 

93 



-- --- - - -- -- -------------------------------------------------------------

5.4 Macroblock Layer Texture CODEC 

The methods adopted in macro-block level texture coding in H.264 are reasonably 

well known [1 4, 16]. However, the macroblock level tex ture coding we adopt in the 

proposed object-based H.264 CODEC has s igni ficant di fferences to the above 

standard technique, which relies to a great ex tent on the reconstructed shape 

infon11ation. Th.i s section highlights the main di fference of the above algorithms. 

Where simi lariti es can be mapped to the techniques adopted in either H.264 or 

MPEG-4 standards, appropriate references have been given without prov idi ng 

detailed explanations. 

Fundamentally there are fOLlr di ffe rences between the macroblock level tex tu re 

codi ng techn iques adopted by the proposed techn ique and the techn iqu e adopted by 

H.264. 

Firstl y, in the proposed approach, in order to obtain a max imized coding effi ciency, 

transparent macroblocks are not coded, which is similar to the approach used by 

MPEG-4. In the case where a macroblock contains one or more transparent part iti ons, 

all transparent partitions are not coded. Thus, the Coded Block Pattem (CBP­

indicates which of the 4 x 4 or 8 x 8 blocks ofa macrob lock have non-zero transfonn 

coeffic ients) of the macroblock in the proposed approach is not only dependent on 

the transfonn coeffi cient levels but also on the number of transparent partitions 

within the macroblock. It is further noted here that for I- frame and P-frame 

macroblocks, the partitioning techniques are same as H.264. 

Secondl y, it was mentioned that in predicting the macroblock tex ture, there is 

signi ficant use made of info rmation associated with previously decoded blocks or 

macrob locks of the current frame or reference frames. In the case where reference 

blocks or macroblocks are transparent, then no information can be used for predictive 

purposes. Therefore we adopt an extended version of the technique used by MPEG-4, 

i.e., repetitive block padding [5] introduced in Section 3.2.1.2, to aid in the predicti ve 

coding of such blocks. Figure 5-9 shows the padding modes fo r boundary blocks. We 

94 



• •• 
(a) (b) (c) (d) 

• • • (e) ( f) (g) 

Figure 5-9 Padding modes fo r boundary blocks (8 x 8). (a) - (d) are horizontal 

padding and (e) - (g) are verti ca l paddi ng after hori zontal padding. 

have introduced one additional padding mode as depicted in Figure 5-9 (b) to the 

ori ginal list of padding modes used in MPEG-4 in order to sati sfy an arbitraril y 

shaped object' s pixe ls in a block. Ln th is mode, transparent pixels are fill ed with the 

value of the closest opaque pixel. It is note that in H.264, macroblock predicti ons are 

performed for both intra and inter coded frames, the block padding is introd uced to 

intra and inter frame prediction. For intra prediction, the padding technique is applied 

to the current block's or macroblock's neighbouring blocks or macroblocks on the 

boundary. For example, Figure 5-1 0 shows a 4 x 4 luma block X that is required to 

be predicted. The samples (Iabeled A-M) are located in the nearby blocks B I, B2, B3 

and B4, some samples are opaque pixel marked with grey such as C, G, H, K aJld L, 

and some are transparent marked with white. These transparent samples would be 

fill ed by using the above padding method before executing the prediction except the 

sample M which locates at a transparen t block B2 that is not used for prediction. For 

inter prediction, the above padding approach is employed on boundary macroblocks 

at first followed by the extended padding (5] for transparent macroblocks. Figure 

5-11 illustrates a reference [rame after padding. 

9S 



I 
J2 ..L ,l 4- -

M A B l c D E F G H 

I 

J Current -
K block X 
L 

Figure 5-10 Example of neighbouring blocks of the current block X, opaque pixel 

given by grey. 

Figure 5- 11 Padding of a reference frame. 

Thirdly, motion vector prediction is considered a part of texture coding. In H.264, the 

motion vector for a given partition is predicted from the neighbouring motion vectors 

of previously coded partitions as shown in Figw'e 5-4 (b). The presence of 

transparent partitions introduces the challenge of calculating the motion vector when 

a nearby partition is transparent. As a solution, we use vector paddillg (5J used in 

MPEG-4 to generate the vectors for the transparent partitions within a non­

transparent macroblock in P-frame. It works in a manner similar to repetitive padding, 

96 



A 4x4 

C 

4x4 4x4 

B 

8x8 

8x4 

Figure 5-12 A macroblock with different partition size 

i.e., the horizontal padding followed by the vert ical padding. Since a macroblock in 

H.264 may have more than one partition, the padding follows the priority rule in 

horizontal , vertical and diagonal directions, and starts from the smallest transparent 

partition within the macroblock and ends with the larger partition. [n Figure 5-12, the 

transparent partitions A, B and C are marked with white whereas non-transparent 

partitions are marked in grey. Partition A is first padded by the ri ght parti tion (4 x 4) 

of A; PaJ1ition B is tben padded by the bottom partition (8 x 4) of B; Finally 

partition C is fill ed with the value of A. The vectors after padding are used in the P­

frame vector decoding and binary shape decoding as the texture candidate motion 

vectors mentioned in Section 5.3.2. If the reference partition is outside the picture or 

sli ce group or is part of a transparent macroblock, it is set to be unavailable. 

Finally, as discussed in Chapter 4, SA-IT is used to encode texture of all intra or inter 

predicted 4 x 4 boundary blocks. However a complication arises from the fact that 

each transfomled coefficient of two-dimensional SA-IT introduces so-called 

transfonned sub-coefficients discussed at the end of Section 4.4. In addition, these 

sub-coefficients need to be transmitted after quantization for decod ing purposes. The 

amount of the sub-coefficients depends on the actual shape within a block. F igure 

5-1 3, for example, shows a part of an object (grey) within a 4 x 4 block. There are 35 

transformed sub-coefficients in tota l generated by 2-D SA-IT in comparison with 

97 



- - - - - --- - - - - - - - ------_._-_._--

onl y II tTansfonned coeffic ients produced by SA-DCT. Ln thi s case, the tTansfomled 

sub-coeffic ients could cause the texture bit rate to ri se (depending actual shape) and 

an increased memory requi rement such that the texture encoder becomes overl y 

stressed. Thus, to solve thi s problem, we pro pose the use of I-D vertical SA-IT 

(di scussed in Section 4.6) and only suffer a very small penalty in the tex ture bit rate 

compared to 2-D SA-IT without sub-coeffi cients. Figure 5- 14 shows the bitrate spent 

on I-D SA-IT and 2-D SA-IT (with sub-coeffi cients and without sub-coefficients) on 

video sequences "Foreman", "News" and "Coastguard" respectively. Note that the 2-

o SA-IT without sub-coeffi cients has been used onl y for comparison purpose and 

could not actuall y be decoded. It is obvious from the figure that I-D SA-IT produces 

very close bitrates to 2-D SA-IT without sub-coeffi cients but a much lower bitrate 

than 2-D SA-IT with sub-coeffic ients. Note that, no transfomlations are required for 

the coding of transparent blocks, and opaque blocks using IT. 

The s tatements above have highlighted the differences of coding texture in the 

presence of transparent blocks or macroblocks, when dealing with arbitraril y shaped 

objects. Further to the above changes required at the encoder side, similar changes 

are req uired at the decoder side, to handle the decoding of the objects. It is noted that 

decoder onl y contains inverse quantization and inverse SA-IT stages. 

Figure 5-1 3 A 4 x 4 block of an object (grey) 

98 



Sequences of Foreman, News and Coastguard 

250 
I:.il ID SA-IT 

200 9 2D SA-IT no sub-coeffICients 
'0;' 

'" .':: 150 .Q .. 
~ 

" 100 ~ 

'" ... 
~ 

i:iS 50 

0 

Foreman Coastguard 

Figure 5-14 Bitrate comparison of I-D SA-IT and 2-D SA-IT 

5.5 Experimental Results 

This section provides results of the experiments designed to evaluate the detailed 

performance of the proposed CODEC. We have used (-[.264 reference model 

software JM 10 (S I] , as a benchmark for comparison as well as to provide the initial 

implementation and operational platform for the proposed extensions. Rate-distortion 

graphs have been used for performance comparison, in which the rate has been 

calculated as the average number of bits required to encode a single frame, and the 

distortion has been measured using the combined-chatmel peak signal-to-noise ratio 

(PSNR) (20], which can be expressed as follows: 

PSNR = 10Iog(1.5* M * N *(255)' /(SE,. + SEu + SE,, )) 

(5.1) 

where SEy, SEu and SEv are the squared errors for the three calor components (YUV) 

respectively. Three video sequences (298 frames each); the "Foreman", "News" and 

99 



--- - - - --------- - -

"Coastguard" were used for experimentation. Their selection was based on the 

presence different statistical variations of pixel values, due to the differences of 

number of objects in the scenes and their motion characteristics. Both the foreground 

and background of the "Foreman" sequence moves minimally while the foreground 

varies with time slightly in the "News" sequence. "Coastguard" possesses significant 

movements in the foreground and in the background areas. Further the camera used 

in capturing thi s video, shows panning motion. All test sequences are in 4:2:0 formal 

and were coded at 25 fps. Figure 5-15 illustrates the objects of the test sequences to 

be coded. We assume that significant object shapes of foreground have been 

extracted into binary alpha maps for coding purposes, either manually, semi­

automatically or automatically [52] [53]. In our experiments, binary masks 

previously used in the MPEG-4 standardization acti vities that are currently available 

in the public domain, were used. 

Figure 5-15 (a) The ship object; (b) The foreman object; Cc) The news man and girl 

object. 

100 



---------------- - -

Foreman_CIF 

., 55 

~ 50 
" ~ -g 45 

= : 40 --SA- IT 
I 

" 35 -- IT Z 

'" "- 30 
1000 7000 13000 19000 25000 3 1000 

Bits_Bound~'ry MS 

(a) 

News_QCIF 

., 55 

;;: 50 c 
~ -g 45 
= : 40 --SA-IT 

I 

" 35 -- IT 
Z 

'" "- )0 

0 1000 2000 3000 4000 5000 6000 
Bits_ Boundary MB 

Cb) 

Figure 5-16 Rate-distortion diagram for object boundary of sequences Foreman 

(a) and News (b) 

Two different experiments were designed to evaluate the performance of the 

proposed object-based H,264 CODEC and to compare it with the standard, H,264 

CODEC, henceforth named as the non object-based coding algorithm, The results 

can be analyzed as follows, 

The first experiment was designed to compare the rate di stortion performances of the 

object-based and non object-based techniques when only considering the coding of 

the boundary macroblocks. Figure 5-16 illustrates the performance comparison of the 

proposed and standard H.264 techniques for the sequences of "News-QCIF" and 

101 



"Foreman-CIF" coded with five different QPs equaling 10, 20, 25, 30 and 35 

respectively. Note that the R-D analysis is limited onl y to the boundary macroblocks 

of the object-based algorithm, and the corresponding macroblocks of the non object­

based algorithm. In calculating the total bits spent by the boundary macroblocks of 

the object-based technique, the overhead that wi ll be required for the shape coding of 

the blocks have been considered. Furthermore both sequences are coded without 

periodic intra refreshes, with the frames sp li t into two slice groups, namely, 

foreground and background slice gro ups. The results illustrate that the proposed 

cod ing algorithm requires a lower amount of bits for coding the boundary 

macroblocks at any PSNR level, despite the need to code overhead shape information. 

The coding efficiency of the improved shape coding algorithm we have used and the 

effi ciency of the SA-IT algorithm proposed are the main reasons for the above result. 

A fu rther compari son of the results in Figure 5-16 (a) and (b) illustrate that the 

proposed algorithm perfo rms at almost the same quality, i.e., PSNR, as the 

benchmark algorithm. 

The second experiment was designed to evaluate the efficiency of the intended 

fu nctionality of the proposed CODEC. As mentioned in Chapter I, the mai n 

advantage/functionality of the proposed object-based coding scheme is the selective 

coding abi lity of the foreground (FG) and background (BG) areas. The algorithm 

provides means for coding the foreground at a better quality level as compared to the 

background. Table 5-2 compares the bitrate required for the QCIF "Coastguard" 

sequence when all but the first frame (which is coded as an I-frame), are coded as P­

frames. When ca lculating the bit budget for the object-based cod ing algorithm, it is 

noted here that the overhead required fo r shape coding has been included. The coding 

of the benchmark algo rithm has been performed using the quantization parameter 

QP=28 for all frames. When the proposed algorithm is used the backgro und 

quanti zation parameter has been set at 51, 40, 35 and 30 whereas the foreground 

('ship ') QP has been held fixed at 28. The first experiment refers to a scenario where 

the background is not coded. Although the average PSNRAVG in the object-based 

coding is lower than non object-based coding because of the significantly higher 

quantization parameter used in coding the background, the quality of the foreground 

102 



area compares well with that of the non object-based coding case, with a significantl y 

lower bitrate requirement. Table 5-2 shows that when QP=30 is used for quanti zing 

the background infonuation, the visual qu ality loss is not significant (see Figure 5-1 7 

(c», though the bitrate requi rement has been reduced to 87% of the standard coding 

approach. It is further observed that no perceivab le quali ty loss has been introd uced 

in the contextually important foreground object when an acceptable loss of quality 

has been introduced to the background region while using QP=35 (see Figure 5- 17 

(b». This choice of quantization parameters have resul ted in a major saving of 50% 

of the bit budget. A weak result is observed in the case of the" ews" sequence 

(QCIF) as shown in Tab le 5-3 and Figure 5- 18. This is due to the almost static 

background and relative complexity of the shape. 

Table 5-2 Coding results fo r sequence of Coastguard 

Object-based Coding 

Q FG QIlG PSNRrc(dB) PSNRuG (dB) PSNR,wG (dB) Bitrate (Kbps) 

28 - 38.85 - 38.65 55.53 

28 51 38.75 32.95 35.85 59.66 

28 40 38.74 34.64 36.59 67.83 

28 35 38.82 36.73 37.78 80.09 

28 30 38.84 39.35 39.00 14 1.1 6 

Non object-based Coding 

QFG QOG PSNRFG (dB) PSNRoG (dB) PSNRAV (dB) Bitrate (Kbps) 

28 28 38.93 41.03 39.98 16 1.67 

103 



(c) (d) 

Figure 5-1 7 Coastguard (a) Only QPFG=28; (b) QPFG=28 and QPoG=35; (c) 

QPFG=28 and QPBG =30; (d) QPFG=QPoG=28 coded with standard coding. 

Table 5-3 Coding results for sequence of News 

Object-based Coding 

QFG QOG PSNRFG (dB) PSNRuG (dB) PSNR,wG (dB) Bitrate (Kbps) 

28 - 39.02 - 39.02 22.90 

28 51 39.05 29.05 34.05 27.06 

28 40 39.04 32.77 35 .90 34.52 

28 35 39.04 35 .22 37.13 42.48 

28 30 39.03 38 .01 38.52 57.01 

Non object-based Coding 

QFG QBG PSNRFG (dB) PSNRoG (dB) PSNRAv (dB) Bitrate (Kbps) 

28 28 39.03 38.8 1 38.92 59.58 

104 



Figure 5- lS News (a) Only QPFG=2S; Cb) QPFG=28 and QPuG=35; Cc) QPFG=28 and 

QPBG=30; (d) QPFG= QPoG=28 coded with standard coding. 

5.6 Conclusions 

In this chapter, an object-based extension to H.264 video coding standard has been 

proposed. [n order to facilitate object-based coding within H.264, the s lice group 

structure has been modified, extended and used along with a novel des ign of a SA-IT 

that is capable of coding arbitrarily shaped boundary blocks. A novel shape coding 

algorithm based on the MPEG-4 shape coding methodology has been proposed 

which has been proven to be more efficient compared to that used within the MPEG-

4 standard. We have shown that the object-based coding ftmctionality provides the 

ability to selectively code images (video frames), enabling the ability to reconstruct 

important, pre-defined, foreground objects at high quality levels. Such fl ex ibility is 

105 



- - - - - - - - -----------------------

of importance in applications such as security and surveillance, medical imaging, 

sports footage coverage etc. We have provided experimental results (both subjective 

and objective) and a detailed analysis to demonstrate the coding fl ex ibilities and 

efficiency of the proposed algorithm as comparing with H.264. 

We have further conceptually compared the functionality of the proposed object­

based CODEC with that of Region of lnterest (Ro!) scalability of the upcoming 

H.264 Scalable Video Coding (SVC) extension [55 , 56]. It has been revealed that 

H.264 SVC regions cannot specify arbitraril y shaped regions, but only regions made 

out of rectangular blocks. 

Due to the successful design and implementation of the proposed object based H.264 

CODEC, it is currently being considered as one of the proposals that can support the 

coding infrastructure of the DTI funded CRJMEVIS proj ect that commences on I SI 

September 2007. This project is to further investi gate the extension of the novel ideas 

to H.264 SVC standard. 

106 



- - -- ----- ------- -

Chapter 6 H.264 CODEC Analysis 

6.1 Introduction 

This chapter ai ms to detel1lline the coding parameters of a H.264 CODEC that have a 

signifi cant influence on its bit-rate, distortion, memory utilization and computational 

complex ity. The thesis later aims to use these parameters in a multi-objective 

perfol1ll ance optimization of a H.264 CODEC (see Chapter 7) . 

H.264 [14, 16) (introduced in Section 2.3) provides high codi ng effi ciency through 

added features and fu nctionali ty. However, such Features and functionality also entail 

add iti onal resource consumption, i.e., computational complex ity and memory usage. 

Specifica ll y the cost effectiveness of a H. 264 CODEC is affected di rectly by the 

computational complexity of the coding algo rithms (such as motion estimation and 

compensation, trans foml and entropy coding) and thei r memory requ irements. The 

effi ciency of a coding algorithm is further dependent on vari ous parameters used in 

defining tJle operational status of the COD EC at a given time. A number of 

investigations to thi s effect have already been carried out in literature [57-59]. 

However, these studies are only based on addressing either a single or two objecti ves 

at the encoder (either the computational complex ity [58) or rate-d istortion [59]) or 

the decoder end (memory utilization and computationa l complex ity [57)) . In thi s 

chapter, an analysis based on the H.264 baseline profil e CODEC (JM 10) is carri ed 

out in order to find out the coding parameters which significan tl y affect the 

computational complexity, memory spending, rate and distortion performances. 

Based on thi s analysis, a multi -objective optimization framework for me H.264 

CODEC is proposed in Chapter 7. 

The rest o f thi s chapter is organized as fo llows. A brief overview of the coding 

parameters used in our experiments is given in Section 6.2. The video test sequences 

used in ollr experiments are introduced and evaluated in Section 6 .3. A 

107 



- --- ----- - ----- -------------

comprehensive analysis of the encoder is presented in Section 6.4, while Section 6.S 

provides an analysis of the decoder. Finally Section G.G concludes thi s chapter. 

6.2 Coding Parameters 

For clarit y, the coding parameters of tbe H.264 CODEC (lM 10) used in thi s analysis 

are summarised below: 

• Resolution: Lm age width and height in luminance samples. 

• NumberReferenceFrames: Sets max imum number of references stored 

in buffer for motion estimation and compensation . 

• VseFME: Enable Fast motion estimation algorithms (0: disable, 1-3 

enable). 

• Search Range: Sets allowable search range for motion estimation. 

• RDOptimization: Enable rate di stortion optimized mode dec ision. 

• Slicegroup: Number of sli ce group to be used. 

• IntraPeroid: Period of I-frames, i.e. frame will be coded using intra 

s li ces every IntraPeriod frames. 

• Q P: Sets quan ti zation parameter value. 

• InterSearch4x4: Enable 4 x 4 inter prediction & motion compensation. 

• [nterSearch4x8: Enable 4 x 8 inter prediction & motion compensation . 

• r nterSearch8x4: Enable 8 x 4 inter prediction & motion compensation. 

• InterSearch8x8: Enable 8 x 8 inter prediction & motion compensation. 

• InterSearch8x16: Enable 8 x l G inter prediction & motion compensation. 

• InterSearch16x8: Enable lG x 8 inter prediction & motion compensation. 

• InterSearch16x16: Enable 16 x 16 inter prediction & motion 

compensation. 

• Intra4x4ParDisable: Disable intra 4 x 4 vertical & hori zontal prediction 

modes. 

• IlItra4x4DiagDisable: Disable intm 4 x 4 diagonal down-Left and 

diagonal down-right prediction modes. 

• Intra4x4DirDisable: Disable intra 4 x 4 vertical ri ght, vertical left, 

hori zontal down, and horizontal up prediction modes. 

108 



- ------- - - ---------------

• Intra16x16ParDisable: Disable intra 16 x 16 vertical & hori zontal 

prediction modes. 

• Intral6x16PlaneDisable: Disable intra 16 x 16 plane prediction mode. 

• DisabJeThreshoJding: Disable threshold of quantized coefficients that is 

used fo r di scardi ng expensive coefficients. If aft er quanti zation there are 

onl y few small llonzero coeffi cients in a macroblock and the cost of 

coding these coefficients exceeds a fi xed tlu'eshold , these coefficients are 

fo rced to zero [60]. 

The reasons fo r choosing the above parameters used in thi s analysis are given in the 

later sections (Section 6.4 and Section 6.5) of analys is. 

6.3 Video Test Sequences 

Since the computational complex ity, bit rate and video quality performance greatl y 

depend on the content of the source video, in thi s analys is 8 test sequences were 

chosen with dist inct content and motion characteri sti cs so that the results could 

refl ect genera lity. The picture fomlats of the selected video clips include QCIF, CIF 

and SIF as introduced in Table 2- 1. Each sequence is in 4:2:0 sampling fo rmat (see 

Secti on 2.2.2) and has 11 2 frames. 

"Claire" and "Paris" are conversational video sequences with simple motion of the 

foreground and fi xed background. Moderate movements in the fo reground and s light 

movements in the background characterize the video sequences, "Foreman" and 

"Mobile". The sequences "Garden" and "Coastguard" show fas t motion on both 

foreground and background regions. The most compl icated motion characteristi cs are 

represented in "Football" and "Tennis" sequences. The above e ight test sequences 

represent a wide range of videos with different properties and behaviours; from low 

to high detailed scenes, from moderate to high movement, from fi xed to changing 

background. Therefore it is possible to systematicall y assess the perfo m1ance of the 

proposed video CODEC through these test sequences. Figure 6-1 shows the 30th 

frame of each video sequence. 

109 



- - --~-----------------------------------------------------

(a) Claire (QCIF) (b) Paris (CIF) 

(c) Foreman (QCIF & CIF) (d) Mobi le (QC IF & CIF) 

(e) Garden (SIF) (t) Coastguard (QCIF & CIF) 

(g) Football (SIF) (h) Tennis (SIF) 

Figure 6- 1 Example frames of test video sequences 

110 



------------ - -~---------

6.4 Encoder Estimation 

6.4.1 Computational Complexity 

The analysis of the encoder computational complexity is achieved by estimating the 

number of central processing unit (CPU) cycles required by it to perform key 

encoding functions. A CPU cycle (also referred as a clock tick) [61J is the smallest 

time unit recognized by a processor. The profiling results were generated with Intet' s 

VTune Perfomlance Analyzer, which enables the collection of run-time data 

indicating the number of cycles consumed by each function of the H.264 CODEC. 

This provides accurate infollllation about processor utilization. The profiling tests 

were perfolllled on a PC with a processor Intel P4-2800MHz to examine the 

computational complexity of the key functions of the encoder. The actual time spent 

on each function was measured in seconds using the following eq uation, 

T _ C/rmC!iOtl 
fillrCljOIl - H 

prowsor 

(6. 1) 

where Cfimclio" indicates the amount of cycles consumed by the function while the 

processor's fTequency is given by Hpmcesso,. For example, 2800 MHz means 2800 

million cycles per second. The total time spent on the function is presented by Tfi mclio" . 

The "Garden" video sequence was coded at 30 fps with QP = 28 and various motion 

estimation algorithms [62J . The percentage of processing time spent on the main 

functions and the total time consumed in encoding the video sequence are 

summarized in Table 6-1. In tenns of H.264 encoding stages in Figure 2-3 (a), the 

maill functions are grouped into the relevant encoding stages for eva luation of 

processor utilization in the table. The OCT, quanti zation, inverse DCT and inverse 

quantization processes are grouped together referred to as "Transform & 

Quantization". Other functions that do not belong to any encoding related step shown 

in Figure 2-3 (a) are grouped together as "Remaining functions". 

I11 



From the results of Table 6-1 it is demonstrated that motion estimation and 

compensation consume more than half of the encoding time of the "Garden" video. 

Similar results were also obtained when analyzing the remaining test video sequences. 

The experimental results further demonstrate that motion estimation and 

compensation, reconstmction & store, intra prediction and transfoml & quantization 

are the most computationall y expensive stages of the encoder. Moreover, the table 

reveals that fast motion estimation algorithms (see Section 2.3 .6) UMHS, SUMHS 

and EPZS are much faster than FS . This is due to the fact that the fast motion 

est imation methods oIlly search specified positions (instead of all search positions 

used in FS) and adopt early temlination schemes (62]. Since the aim of this chapter is 

to seek coding parameters that significantly affect the total encoding time, we focus 

on identifying those coding parameters (li sted in Table 6-2) that directl y affect the 

above significant coding stages. From Table 6-2, we are only interested on those 

having over 10% influences on the processor utili zation used for the CODEC 

opt imization in Chapter 7. 

Table 6- 1 Profiling resu lts of Garden video sequence 

Coding stages 
Processor Utilization on various ME algorithms 

FS UMHS SUMHS EPZS 

Intra 
2.55% 5.01% 4.82% 4.75% 

Prediction 
Transform & 

1.98% 3.43% 4.08% 3.24% 
Quantization 

ME/MC 79.05% 58.63% 53.45% 58.41 % 

Reconstrnction 
3.87% 7.34% 9.12% 7.37% 

& Store 
Deblocking 

0.55% 1.11 % 1.19% 1.04% 
Filter 

Entropy 0.69% 1.60% 1.37% 1.22% 

Remaining 
11.31 % 22.88% 25.97% 23 .97% 

functions 
Total coding 

210.527 104.941 88.246 110.034 
time (Seconds) 

11 2 



Table 6-2 Coding parameters and coding conditions 

Coding parameter Range of value Default 

Resolution QClF, SlF, ClF QClF 
NumberReferenceFrames 1 - 5 I 
UseFME 0-3 o (off) 
SearchRan~e 16 - 32 16 
RDOptimization 0 - 2 o (off) 
lnterSearch4x4 0- I I (on) 
InterSearch4x8 0- I 1 (on) 
InterSearch8x4 0- 1 1 (on) 
lnterSearch8x8 0 - I 1 (on) 
InterSearch8x 16 0- 1 1 (on) 
InterSearch 16x8 0- 1 1 (on) 
InterSearch 16x 16 0- 1 1 on) 
lntra4x4ParDisable 0- I 0 off) 
Intra4x4DiagDisab1e 0- I o (off) 
Intra4x4Di rDisable 0- I o (off) 
Intra 16x 16ParDisable 0- I o (off) 
Int ra 16x 16PlaneDisable 0- I o off) 

Table 6-3 Processor uti lization at various video resolutions 

Processor utilization (seconds) 
QClF CIF 

Foreman 60.532 242.599 
Mobile 60.271 239.612 
Coastguard 60.626 24 1.415 

In the fo llowing experiments, each video sequence was coded at a fi xed frame rate of 

30 fps, with QP = 28 while the coding parameters were varied within their full range 

(see Table 6-2). The resulting processor utilization is compared with the benclUllark 

resu lts, i.e., resu lts obtained by coding each video sequence with the default coding 

parameters va lue (see Tab le 6-2). 

A video sequence may be coded at different resolutions, e.g., QClF and ClF. The 

experimental results in Table 6-3, illustrates that a video sequence coded at higher 

11 3 



- - - - - - - - - - - - - - - - - - --_.- _ ._----- - - - - - - - - - - ------

1000 
~ 

'" ~ 800 
" e 
"" 600 .. 
c 

'in 400 
'" " u 
0 200 ... 

I>.. 
0 

Processor utilization at various reference frames 

~-

2 

-+- Paris --- Mobile 
Footbal1 --Tennis 

---*- Coastguard -+- Garden 

3 4 

Reference frame 

5 

Figure 6-2 Processing time varies with different reference frames 

resolution (e.g. , CIF) requires much more time (around 4 times) to encode compared 

with the video sequence coded at lower resolution (e.g. , QCIF). It is note that QCIF 

is a quarter of CIF resolution. 

The variation tll processing time when the number of reference frames 

(NlImberReferenceFrames) is varied from I to 5, is shown in Figure 6-2. It can be 

observed that the extra processing time required for the addition of each additional 

reference frame is approximately 80% of the process ing time required when one 

reference frame is used. This is due to the fact that the addition of each reference 

frame approximately doubles the number of comparisons required to complete 

motion estimation. This observation is true for all tested video sequences. 

As mentioned earlier in this section, motion estimation and compensation is the most 

computationally complex process in the encoder. The motion estimation algorithms 

(see Section 2.3 .6) are defined by setting the parameter UseFME (see Table 6-2) to 0, 

1, 2 and 3 respectively in the H.264 encoder' s profile file with '0' referring to the use 

of FS, i.e. disabling fast motion estimation. The results tabulated in Table 6-4 shows 

that FS on average requires 40% extra CPU time as compared to other fast search 

algorithms. On the other hand, SUMHS needs the least CPU time compared to FS, 

114 



- - - - ----

UMHS and EPZS, while the CPU utilization performance of UMHS and EPZS 

algorithms are approximately similar. 

Table 6-4 CPU time (in seconds) spent on ME algorithms 

Video Motion estimation algorithms 

sequences FS UMHS SUMHS EPZS 

Claire 58.913 21.676 16.225 24.630 

Foreman 60.703 27.872 23.038 29.371 

Paris 233.487 98.660 82.32 1 111.260 

Mobile 201.669 97.389 87.078 101.464 

Football 214.694 117.402 99.894 119.987 

Tennis 212.647 101.708 84.770 110.356 

Coastguard 203.257 99.785 90.945 104.802 

Garden 210.527 104.941 88.246 110.034 

Processor utilization at various search size 

180 
~ 

~ 150 
" e 120 :;: 

•• 90 = .;;; 

'" 60 " <j 
0 30 ... 

, 
.'\. --Claire-16 

"- --- Foreman-I 6 

'\. 
---.- Claire-32 

--- Foreman-32 
~'\. 

p.., 
0 

FS UMHS SUMHS EPZS 

ME a lgorithms 

Figure 6-3 Processing time spent with various search size and ME algoritluns 

liS 



Processor utilization at various RD optimization modes 

600 
~ 

~ 500 .. 
S 400 .--"" 300 .s 

~ '" -+-Mobile '" 200 '" (J 
-11-- Paris 0 .. 100 
-.- Coas tguard ~ 

0 
0 2 

RD mode 

Figure 6-4 Processing time spent with various RD modes 

For an inter prediction macroblock, the size of the search range (SearchRange) used 

by motion estimation algorithms has considerable impact 011 the processing time, as 

illustrated by Figure 6-3 . It is specifically noted that the processing time for the FS 

algorithm is significantly high compared to the rest. Additionally, it is noted that for 

the FS algorithm, using a 32 x 32 pixels window size requires approximately three 

times more processing time when compared to a 16 x 16 window size. However, 

when utilizing the fast search algorithms, the processing times remain approximately 

similar. This is due to the fact that the FS loops over all search positions, whose 

number quadruples when the window size is doubled, both width and height-wise. 

For the fast motion estimation algorithms, the effect on processing power IS 

significantly less since these algorithms only search specified positions. 

The rate-distortion (R-D) optimization in H.264 is used to obtain the optimal coding 

mode, i.e. , minimal rate and maximal quality, for a macroblock, block or partition. 

However, the use of R-D optimization in video coding comes with a penalty, i.e. an 

increase in processing cost. Figure 6-4 illustrates that a video sequence coded without 

R-D optimization (RDOplimizalion) mode marked as "0" requires much less (over 

116 



50% less) processor utili zation as compared to video coded with RD modes marked 

as" I" and "2" respectively. It is noted that RD mode ' 0' signifi es the non use of RD 

optimization and the other two modes refers to two different approaches to RD 

optimization [5 1]. The additional processor utilization observed in Figure 6-4 is due 

to the need of having to compute RD cost for each of the prediction modes when 

using modes ' I ' and '2'. However, mode '0 ' onl y requires the ca lculation of the cost 

fo r the best prediction mode. 

In the H.264 encoder, a macroblock is coded either as a 16 x 16 pixel area or it is 

further sub-partitioned. There ex ist several parameters (see Table 6-2) within the 

encoder's profil e fil e used for managing the sub-partition modes, which may have an 

influence on the computati onal complexi ty. The results tabulated in Table 6-5 show 

that the individual partition modes have a very s light effect on processing time, i.e. 

less than 10% computational cost reduction when switching off a single mode. 

Table 6-5 Processing time (second) varies wi th different parti tion sizes 

Partition mode Video seq uence 

Inter fra me Paris Foreman Football Mobi le Garden 

All modes are on 233 .487 60.703 214.694 201.669 2 10.527 

4 x 4 mode off 220.259 57. 101 202.41 6 190.980 200.087 

4 x 8 mode off 224.225 58. 134 205 .89 1 194.440 206. 11 4 

8 x 4 mode off 224.642 58.2 16 205.73 1 194.208 202.913 

8 x 8 mode off 226. 544 58.750 207.366 196.034 205.864 

8 x 16 mode off 227.890 58.889 208.275 196.767 206.737 

16 x 8 mode 0 rr 228.083 59.018 208.374 196.980 206.634 

16 x 16 mode 0 rr 228 .019 58.904 207.982 196.596 206.478 

Intra frame Paris Foreman Football Mobile Garden 

All modes are on 233 .487 60.703 214.694 20 1.669 2 10.527 

4 x 4 para llel off 233.209 60.330 213.870 200.639 2 10.003 

4 x 4 45° diagonal off 233 .096 60.396 213.959 200.803 2 10.489 

4 x 4 other diagonal off 232.440 60.2 16 213.38 1 200.95 1 210.426 

16 x 16 parall el off 232.352 60.330 214.248 200.203 2 10.543 

16 x 16 plane off 233.088 60.533 2 14.759 200.762 210.788 

117 



--- ------------------------------------------------------------------------

From the above analysis of computational complexity of the H.264 encoder, a 

number of parameters that have a significant impact on computational complex ity 

(those that result in more than 10% influences) have been identifi ed and follow fo r 

the latter use within the multi-objective optimization framework proposed in Chapter 

7; they are, Resolution, NumberReferenceFrames, RDOptill1izatioll , UseFME and 

Search Rallge. 

6.4.2 Memory Utilization 

Memory utilization of the H.264 encoder may be classified into two groups namely; 

(i) temporary memory, which is the memory allocated to local vari ables within the 

life span of a function call, i.e. , allocates and frees memory within a function or block; 

(ii) global memory, which is the memory allocated to global vari ab les that are used 

during the entire encoding process. The global memory required by the encoder can 

be further partitioned into two categori es, namely; (a) dynamic memory, memory 

allocated to vari able encoding parameters such as the number of reference frames, 

picture resolution and so on; (b) constant memory, memory allocated for fi xed data 

such as quantization tables, intra-prediction probability tables, vari able- length 

encoding tables and some other small constant tables. In thi s section we onl y focus 

on dynamic memory allocation since it has the potential to be optimized through the 

use of more appropriate encoding parameters. 

The approach we used for identi fying encoding parameters that signifi cantly impact 

dynamic memory allocation (those that results in over 10% share) was the use of 

"mal/oc" and "cal/oc" functions within the 'C' program codes. Table 6-6 presents a 

summary of the formulas used to calculate the memory required at di fferent bu ffer 

levels ("Other" refers to the memory that does not belong to any buffer level). It is 

evident that there are only 5 coding parameters that inlluence dynamic memory 

alloca tion. The first parameter is Resolution of a video sequence represented by w, 

the width of the picture and h, the height of the picture. Further parameters are, the 

number of reference frames (11, NUlI1berReferellceFrames), the number of slice group 

(sg, SliceGroup), the size of search range (s, SearchRallge), and the use of motion 

118 



est imation algorithms (fine, UseFME). As expected, frame reso lution has a 

signifi cant impact on storage req uirements. Table 6-7 shows how memory 

requirements vary with the above coding parameters. The first row marked in grey in 

the table is used as a benchmark for comparison. A number of observations can be 

made using the results tabulated. A video with CIF reso lution requires a lmost 4 ti mes 

more memory than a video with QCIf' resolution . The use of two reference fram es 

against one, with a fi xed wi ndow size of 16-pixels and QCIf' resolution, requires 

25% more memory. Further the use of a 32-pixels search window against a 16-pixels 

search window, with fixed reso lution and number of reference frames , requires 35% 

extra memory. Wh en the sli ce group number is incremented to 3, 13% more memory 

is needed. However it is observed that when benefiting from fast motion estimation 

(fill e), 12% less memory wi ll be required, when keeping all other parameters at 

default va lue. 

Table 6-6 Memory requirement fonnulas fo r various buffer levels 

Buffer level Formula (in By test 

Frame ((( 153+89 *,,) * w' It»> 3)+ (48 + 32 OIl )*( w+ 8)* (It + 8) 

Slice sg *( 63 +3 137*( w* h» 7)) 

MB (255* w* h)>> 7 

Prediction 
jille ~ 0?(9 '(w* h)>> 4) + 2600*11 + (1024*" + 8) *(2' s+ I)' 

: (9*( IV' h)>> 4) + 2560 *11 + 8'(2 * s + I)' 

Entropy 96+3*((w*h)>>3) 

jille ~ l : 49 + (2*5+ 1)' +9* ((II' * h) >> 1) +576*11 

FMEmode 2: 49+9*((w*I»»I) 

3: 12 +(w*h)>>I+(2*s+I)'+ (168*1I +42)*w 

RD mode 406 + 343 *((w* h)>> 1) 

Other 2048 + 73 *(( w' h)>> 8) 

Note : fOl11ll1lae above are taken from the memory a llocations In the JM software. 11: number of 

reference frames, IV: width of frame, h: height of frame, sg: slice group, s: search range, jille: fast 

motion estimation. 

119 



Tab le 6-7 Memory requirements in Mbytes 

Resolution 
Ref. Search 

FME 
Slice Memory 

frames Ranl!e group requirement 
QCfF 1 16 0 1 8.76 
CIF 1 16 0 1 31.39 

OCIF 2 16 0 1 10.95 
QCIF 1 32 0 I 11.84 
QC!F 1 16 1 1 7.8 

ocrI' 1 16 0 J 9.94 

6.4.3 Rate and Distortion Analysis 

For a given video sequence, rate (i.e., bit rate, measured in Kbits/s) and distortion 

(i.e., quality, PSNR measured in dB) are sensitive (0 coding parameters. Modifying 

coding parameters such as using optional coding modes or choos ing different R-D 

optimization algorithms will affect the output of the encoder, resulti ng in different 

levels of bit rate and visual quality. The coding parameters (based on base li ne profile) 

affecting tile rate and distortion are tabulated in Table 6-8. Experiments were 

perfomled in order to find out those parameters that can significantly influence the 

bit rate (2'. 10%) and quality (2'.0 .2 dB). It is noted that in the experiments perfomled, 

all video sequences were 30 fps . The benchmark experiment is denoted by a grey 

highlight in each tab le (6 tab les). 

It is clear that a high resolution "ideo sequence (e.g., CIF) requires much more bits 

for storage or bandwidth for transmission, than a lower resolution video (e.g., QCIF). 

The test sequences in Table 6-9 were coded at QCrF and CIF resolutions with 

identica l encoding conditions. As expected, the rates of CIF sequences are much 

higher than QCIF sequences. It is also clear from the tab le that more than 0.2 dB 

PSNR is gained when CIF reso lution is used. 

120 



Table 6-8 Candidates for parameter selection 

Coding parameter Range of value Default 

Reso lution _QClF, SlF, e lF QcrF 
NumberReferenceFrames I - 5 I 
UseFME 0-3 o (off) 
SearchRange 16 - 32 16 
RDOptimization 0-2 o (off) 
Slicegroup 1 - 5 I 
lntraPeriod 0 - 15 0 
QP 10 - 41 28 
DisableThresholding 0 - 1 o (off) 
InterSearch4x4 0 - 1 I (on) 
IllterSearch4x8 0 - 1 I (on) 
InterSearch8x4 0 - 1 I (on) 
I.nterSearch8x8 0 - 1 I (on) 
InterSearch8x 16 0 - 1 1 (on) 
lnterSearch 16x8 0 - 1 I_(o n) 
lnterSearch 16x 16 0 - 1 1 (on) 
lntra4x4ParDisable 0 - 1 o (oft) 
Intra4x4DiagDisable 0 - 1 o (off) 
Intra4x4DirDisable 0 - 1 o (off) 
Intra 16x 16ParDisable 0 - 1 o (off) 
Intra 16x 16PlaneDisable 0 - 1 o (off) 

Table 6-9 Rate and distortion varies wi th resolution 

Video sequences 
Resolution Foreman Coast~uard Mobile 

Rate PSNR Rate PSNR Rate PSNR 
QCIF 129.20 38.49 258.68 40.36 516.84 34.32 
CIF 414.60 38.80 1387.88 40.62 2 115.61 35.25 

121 



- - - - - - - - ------- - -------- -

The aim of multiple reference pictures supported in H.264 is to improve quali ty or 

reduce bit rate by the better prediction gained from the enhanced reference picture 

selection. However, the computational complexity (in Section 6.4.1) and memory (in 

Section 6.4.2) expense is signi fi cantly high. The bit rate and PSNR variat ions when 

the number of reference frames is varied from I to 5 are tabu lated in Table 6- 10. It is 

noted that for all test videos, the bi t rate requi red marginall y reduces (with quali ty 

approx imately held constant) when a higher nu mber of reference frames are used. 

Further experiments were perfonmed to analyze the effect o f using different motion 

est imation algorithms on reconstructed video quality and bit rate. The resul ts in Table 

6- 11 show that only 1-2% vari ation in bit rate and onl y 0.01 - 0.06 dB variation in 

quality were observed. This is expected as the motion estimation algorithms included 

in the H.264 reference so ftware are the most effi c ient techniques that give reasonable 

results close to FS [62]. The actual enhancement possib le via the use of one of the 

three fast sea rch algorithms is that the considerab le reduction of time taken for ME 

(see Section 6.4 .1 ). 

Table 6-1 0 Rate and distortion varies wi th reference pictures 

Reference 
Video sequences (QCIF) 

frame 
Claire Coast (!uard Foreman 

Rate PSN R Rate PSNR Rate PSN R 
I 35.40 40.59 258.68 40.36 129.20 38.49 
2 34.65 40.59 250.48 40.39 11 9.86 38.50 
3 34.56 40.58 250.15 40.39 11 9.64 38.54 
4 34.84 40.58 248.74 40.38 11 9.38 38.55 
5 34.67 40.57 248.62 40.41 11 8.87 38.55 

Reference 
Video sequences (SfF 

Football Garden Tennis frame 
Rate PSNR Rate PSNR Rate PSN R 

1 1977.85 35.72 2445.59 34.34 795.09 37.24 
2 1927.27 35 .73 2399.32 34.34 762.37 37.22 
3 1915.80 35 .75 2384.89 34.35 749.54 37.23 
4 1911.49 35.75 2365.22 34.35 739.06 37.23 
5 1910.75 35.76 2329.23 34.36 732.69 37.23 

t22 



- - ----- - ------

Table 6-11 Rate and distortion varies with ME algorithms 

ME 
Video seauences (QCIF) 

Claire Coast"uard Foreman algorithm 
Rate PSNR Rate PSNR Rate PSNR 

FS 35.40 40.59 258.68 40.36 129.20 38.49 
UMHS 35.37 40.50 257.66 40.34 126.04 38.44 
SUMRS 35.32 40.51 258.23 40.31 126.58 38.44 
EPZS 35.01 40.53 259.12 40.32 127.17 38 .48 

ME 
Video sequences (SIF) 

Football Garden Tennis algorithm 
Rate PSNR Rate PSNR Rate PSNR 

FS 1977.85 35.72 2445.59 34.34 795 .09 37.24 
UMHS 1958.06 35.71 2440.80 34.33 796.64 37.24 
SUMHS 1955.20 35 .70 2444.92 34.33 798.69 37 .22 
EPZS 1954.33 35.73 2443.1 8 34.34 795 .12 37.24 

Table 6-12 indicates the variations in bit mte and video quality when the video is 

coded with different search window sizes, number of sli ce groups and rate-di stortion 

optimization modes. It is clear from the results that the vari ations in rate and quality 

are minimal when extending the search window size from 16 to 32 pixels. This can 

be due to the fact that a 16 pixel search window is of sufficient size to capture the 

motion in all test videos. Moreover, the results show that the use of a larger search 

window can not always guarantee a better prediction as seen in the sequence "Claire". 

1t is noted that the advantage of being able to find a better match when the search 

window size is enlarged is offset by the need of transmitting potentially larger motion 

vectors, that can affect the R-D performance negatively. It is further seen that the bit 

rate increases (less than 5%) with the increase of the number of slice groups since the 

encoder requires a small amount of bits to encode the header of each slice group. 

However, image quali ty does not improve when more sli ce groups are used. The use 

of rate-distortion optimization modes produces 5%-8% decrease in rate but with 

slight penalty (0.06dB-0.17dB) in image degradation. 

123 



-------------------- --- - - ---------------------------

Table 6-13 tabulates the R-D perfonnance data for test sequences "Claire", 

"Coastguard" and "Foreman", when four different intra refresh rates, i. e., 1:0 (not 

any periodic intra refreshes except the first frame), 1: I 0 (one in every ten frames is 

encoded in intra mode), 1:5 and I : I (every frame is encoded as I-frame) were used. 

As the intra refresh rate increases, it can be seen that the bit rate increases (over 10%) 

and distortion decreases (over 0.2 dB) when compared to the results of the 

benchmark experiment. QP is the encoding parameter that has the most significant 

effect on the RD performance of a video CODEC. The results in Table 6-13 clearly 

support the above statement. In "Mobile" sequence, for example, the rate is 

decreased approx imately 100% and the PSNR quality is decreased approx imately by 

3.73dB when the QP is increased from 28 to 32. When the threshold of coefficients 

(DisableThresholding, see Section 6.2) is disabled (set to " I "), the bit rates of videos; 

"Paris", "Garden" and "Foreman" increase by 13%, 5.6% and 28% respectively and 

the PSNR improves by 0.48dB, 0.5dB and 0.57dB respect ively. 

Table 6-12 R-D varies with search range, slice group and RD mode respectively 

Search 
Video sequences 

Claire (QCIF) Coastguard (CIF) Foreman (QCIF) 
range 

Rate PSNR Rate PSNR Rate PSNR 
16 35.40 40.59 1387.88 40.62 129.20 38.49 
32 35.41 40.58 1386.97 40.60 128.89 38.5 1 
48 35.43 40.57 1387.1 1 40.59 128.79 38.50 

Slice 
Video sequences (SIF) 

Mobile Garden Paris 
group 

Rate PSNR Rate PSNR Rate PSNR 
I 2115 .61 35.72 2445.59 34.34 608.55 37.73 
2 2159.54 35.73 2468.70 34.33 626.68 37.73 
3 2 161.55 35.72 2472.80 34.34 628.06 37.73 
4 2 164.72 35.72 2477.50 34.34 632.93 37.73 
5 2166.91 35 .72 2479 .77 34.34 635 .69 37.73 

Video s~uences (QCIF) 
RD mode Claire Coastguard Foreman 

Rate PSNR Rate PSNR Rate PSNR 
o (off) 35.40 40.59 258.68 40.36 129.20 38.49 
I (on) 32.67 40.44 246.33 40.29 1 19.24 38.40 
2 (on) 32.68 40.42 246.24 40.30 119.80 38.40 

124 



Table 6-13 R-D varies with intra period , QP and threshold mode respecti vely 

Intra 
Video sequences 

period Claire ~CrF~ Coastguard _(Cr Fl Foreman (QCIFt 
Rate PSNR Rate PSNR Rate PSNR 

0 35.40 40.59 1387.88 40.62 129.20 38.49 
I 390.80 41.26 3547.60 41.33 77 1.95 39.32 
5 101.95 41.09 1767.57 40.99 242.26 38.97 
10 67.86 41.02 1578.65 40.9 1 183.95 38.80 

Video sequences (SIF 
QP Mobile Garden Paris 

Rate PSNR Rate PSNR Rate PSNR 
23 3988.35 38 .98 4246.58 38.39 1113.03 41.09 
28 2111.61 35.25 2445.59 34.34 608.55 37.73 
32 1049.94 32.89 1402.39 3 1.8 1 343.94 35.56 

Disable 
Video sequences 

threshold 
Paris CIF) Garden (SIF) Foreman (QCIF) 

Rate PSN R Rate PSNR Rate PSNR 
o (of!) 608.55 37.73 2445 .59 34.34 129.20 38.49 
I (on) 688.06 38.21 2583.76 34.84 165 .68 39.06 

Table 6- 14 Rate and di stortion varies with prediction modes 

Prediction mode 
Video sequence 

Paris Mobile Garden 
In ter frame Rate PSNR Rate PSNR Rate PSNR 

All modes are on 608.55 37.73 2 115.61 35.25 2445.59 34.34 
4 x 4 mode off 603.86 37.75 2094.90 35.25 2423.39 34.33 
4 x 8 mode off 617.75 37.72 2 131.2 1 35.24 2460.1 7 34.33 
8 x 4 mode off 6 14.36 37.70 2 122.8 1 35 .24 2477. 54 34.33 
8 x 8 mode off 62 1.87 37.72 2 147.09 35.25 2474.0 1 34.34 
8 x 16 mode off 6 11.36 37.73 2123. 13 35.25 2447.25 34.34 
16 x 8 mode off 610.87 37 .73 2124.42 35 .25 2449. 12 34.34 
16 x 16 mode off 683.39 37.79 2164. 50 35 .27 2470.93 34.34 

Prediction mode 
Video seq uence 

Paris Mobile Garden 
Intra frame Rate PSNR Rate PSNR Rate PSNR 

All modes are on 608.55 37.73 2115.6 1 35.25 2445.59 34.34 
4 x 4 parallel off 613.2 1 37 .73 21 17.67 35.25 2445.47 34.33 
4 x 4 45° diagonal off 609.54 37.74 211 8.31 35.26 2445 .21 34.34 
4 x 4 other diagonal off 609.66 37.75 211 6.05 35.25 2446.35 34.34 
16 x 16]J3.rallel off 608.07 37.75 211 4.85 35.25 2444.12 34.34 
16 x 16 plane off 609.44 37 .74 2116.17 35.26 2442.25 34.34 

125 



- --- - - - --------------

The intra or inter prediction modes do not appear to have a sign ificant impact on the 

R-D perfonnance. It is clear from Table 6-14 that, for inter prediction, the variation 

in rate is around 1-2%, except "Paris" with 16 x 16 mode off which has 12.3% 

increase in rate as compared to the benchmark. The latter observation is due to the 

fact that most macroblocks within the background (unchanged) of the video "Paris", 

is coded using the 16 x 16 mode (so when the 16 x 16 mode is off, the smaller size 

prediction modes have to use, which result in an increase in motion vectors). 

Furthenl1ore, the bit rate remains almost the same as the benchmark for any of the 

intra predictions. The quali ty of image is almost constant whatever prediction mode 

(i ntra or inter prediction) is used. 

Based on the above analysis, the most appropri ate coding parameters for 

consideration towards R-D perfonl1ance of a video CODEC are; Resolution, 

InlraPeriod, QP and DisableThresholdillg. 

6.5 Decoder Estimation 

In the previous section, the encoding parameters that have a significant impact on 

rate, distortion, CPU utilization and memory, were identified through careful design 

and implementation of a number of experiments. In this section we perform a simi lar 

ana lysis to detenl1ine the sign ificant decoder parameters. It is noted th at we assume 

an ideal network where the network does not introduce any data loss or delay. Based 

on thi s observation, we assume that the quality and bit rate of the video received by 

the decoder are the same as that at the encoder output. In other words, we deduce that 

the coding parameters affecting the bit rate and reconstructed video quality on both 

encoder and decoder are identical. Therefore in thi s section the decoder related study 

is focused only on computational complexi ty and memory utilization. 

6.5.1 Computational Complexity 

The analysis method used for estimating the computational complexity of the 

decoder is the same as that used for the encoder. The computational complexity is 

first eva luated by calculating the number of CPU cycles (i .e., the actual time) spent 

126 



on the main functions (see Equation (6. 1 ». The major emphasis of the second stage is 

on exploring the effect of coding parameters on these functions. The profiling tests 

for the decoder (JM 10) were perfol1ned on the PC (rntel P4-2800MHz). 

The "Claire", "Coastguard", "Foreman" and "Garden" video sequences were coded 

at 30 fjJ S with QP = 28. The percentage of processing time spent on the main 

functions and the total times consumed in decoding each video sequence are 

summari zed in Table 6-15 . In tenns of H.264 decoding stages in Figure 2-3 (b), the 

main functions are grouped into the re levant decoding stages for evaluation of 

processor utili zation in the table. The inverse quanti zation and inverse DCT 

processes are grouped together and are indicated as "Inverse Quanti zation & 

Transfol1ll". Other functions that do not belong to any identified decoding stage 

shown in Figure 2-3 (b) are grouped together as "Remaining functions". 

The di stribution of computational complex ity amongst the decoder's major functions 

is clearl y shown in the Table 6-15 . It is observed that the "Deblocking filt er" is tJle 

most complex component of the decoder (Note that the "Deblocking filt er" can not 

be di sabled within the JM 10. However, the "Deblocking filter" may be switched o ff 

in other H.264 CODECs and thi s may be a useful decoder parameter to investi gate in 

further work), accounting for 37.46% (averaged over 4 sequences) o[ the decoding 

time. "Motion compensation" follows requi ring around 28.3 1 % of the decoding time. 

Further "Entropy decoding" accounts for 14.23% and "Inverse quanti zation & 

transform" accounts for 12.06% of Ule decoding time. The results are very similar to 

that obtained in [57]. The next task is to explore the source code of the decoder to 

identi fy the coding parameters that can have above 5% effect on the computational 

complex ity. The list of significant parameters selected as a result o f the above 

experiments is tabulated in Table 6-1 6. 

For detailed computational complexi ty analysis three video sequences "Foreman", 

"Mobile" and "Coastguard" at two different reso lutions QC[f and ClF were used. As 

prev iously stated the videos were fi xed at 30 fps and QP = 28. The default sett ings 

for each coding parameter tabulated ill Table 6- 16 were used as the benchmark result 

127 



----- --- - - --------------

Table 6- 15 Profil ing results of four sequences decoded by the decoder 

Codin g stage 
Video sequence 

Claire Coast2uard Foreman Garden 
Entropy decodin2 15. 17% 14.36% 14.25% 13. 15% 
Inverse Q&T 12.87% 11 .83% 11 .36% 12. 16% 
MC 25. 15% 26.28% 26.35% 27.65% 
Intra prediction 3.0 1% 2.56% 2.37% 1.91% 
Deblocking filter 36. 13% 37 .43% 37.94% 38.33% 
Reconstruction & store 3.71 % 3.37% 3.68% 3.57% 
Remaining functions 3.96% 4.1 7% 4.05% 3.23% 
Total coding time (Seconds) 7. 509 8.638 8.256 17.968 

Table 6- 16 Candidates lIsed for parameter selection in complex ity at decoder 

Coding parameter Range of value Default 

Resolution QGF, SIF, CIF _QCIF 
NumberReferenceFrames 1- 5 I 
IntraPeriod 0 - 15 0 
InterSearch4x4 0- I I on) 
InterSearch4x8 0 - I 1 on) 
InterSearch8x4 0- I I (on) 
InterSearch8x8 0 - I I (on) 
lnterSearch8x 16 0 - I I (on) 
LnterSearch 16x8 0 - 1 1 (on) 
lnterSearch 16x 16 0- 1 1 (on) 
Disablelntra4x4modes I - 0 o of[1 
Disablelntra 16x 16modes 1 - 0 o (off) 

128 



for each ex periment highlighted in grey in each resu lt tab le. 

The results in Table 6-17 show that a higher reso lution (e.g. CIF) video sequence 

requires approximate double the time to decode as compared to that of a video 

sequence decoded at lower resolution (e.g., QCIF). It is also clear from the table that 

the processor time utili zed is almost similar when up to 5 reference frames are used. 

It is noted that at the decoder, the number of reference frames is only used to inform 

the decoder how many decoded frames should be stored in the buffer for motion 

compensation. The time taken to fetch a block fro m one of the reference pictures is 

similar, which exp lains the reason for the above observation. In addition to resolution 

and the number of reference frames, thi s table also describes the variation in 

processor utilization at differen t intra refresh rates. The processor consumption 

increases graduall y with increasing intra frame refresh rate. [t is because intra 

decoding has more calculations than inter decoding. Over 5% ga in in decoding time 

is observed when using I : I refresh rate. 

The results tabulated in Table 6-18 clearl y show that the processing time only 

negligibly varies regard less of which prediction mode is off. The biggest vari ation in 

the processing time is found in the "Pans" sequence (approximate 2.3%) when 16 x 

16 inter prediction mode was off. The reason is that the fi xed background in "Paris" 

was observed to be mostl y coded using the 16 x 16 prediction mode. Tt is noted that 

when the 16 x 16 prediction mode is used, only one motion vector is required in 

coding a block, as against the need of more than one motion vector when other 

modes are used. 

129 



Table 6-1 7 Processor utilization (in seconds) at various video resolutions, reference 

frames and intra period 

Resolution 
Video sequence 

Foreman Mobile Coastguard 
QCIF 8.256 9.241 8.638 
CIF 16.482 20.840 19.263 

Reference frame Claire (QCIF) Garden (SIF) Football (SIF) 
1 7.509 17.968 17.7 17 
2 7.52 1 17.950 17.675 
3 7.464 17.958 17.602 
4 7.466 17.900 17. 560 
5 7.483 17.856 17.604 

Intra ~eriod Tennis (SI F) Paris (CIF) Coastguard (CIF) 
0 14.69 1 15 .255 19.263 
I 15.844 17.930 22.345 
5 14.850 15.648 19.835 
15 14.724 15.399 19.589 

Table 6- 18 Processing time (second) varies with different prediction modes 

Prediction mode Video seq uence 
Inter frame Paris Foreman Football Mobile Garden 
All modes are on 15.255 16.482 17.7 17 20.840 17.968 
4 x 4 mode off 15 .233 16.483 17.710 20.890 18.084 
4 x 8 mode off 15.289 16.533 17.762 20.873 18.045 
8 x 4 mode off 15 .277 16.533 17.780 20.908 18. 101 
8 x 8 mode off 15.338 16.470 17.748 20.852 18.054 
8 x 16 mode off 15.248 16.554 17.869 20.841 18.064 
16 x 8 mode off 15.291 16.478 17.723 20.875 18.086 
16 x 16 mode off 15.602 16.753 17.886 20.829 18.092 
Intra frame Paris Foreman Football Mobile Garden 
All modes are on 15 .255 16.482 17.7 17 20.840 17.968 
4 x 4 modes off 15 .26 1 16.574 17.869 20.894 18.043 
16 x 16 modes off 15 .269 16.524 17.741 20.834 17.923 

130 



I 
I 
r 

I 
I 
I 

- - - - - - - - ------

6.5.2 Memory Utilization 

The approach used for analyzing the storage (memory) requirement for the H.264 

decoder is the same as the one utilized for the encoder. Table 6-1 9 presents the 

summary of the memory requirements of the decoder based on various buffer levels. 

In the tab le, W, h, nand sg have the same definitions as before (see Sect ion 6.4.2). It 

is clear fro m the table that there are onl y three codi ng parameters (Resolution, 

NUlllberReferellces and Slicegroup) do minati ng the storage requirements of the 

decoder. It is observed that screen resolution is the most significant parameter 

affecting the memory requirement. For example, a high-resolution video (e.g., ClF) 

requires approximate 4 times memory than a lower resolution video (e.g., QClF). 

Tab le 6-19 represents the memory requirement form ulae of the decoder at di fferen t 

buffer levels. It is noted that the constant memory used for variab le-length decoding 

tab les, intra-prediction probability tab les, quanti zati on tables and a few other sm all 

constant tab les, are not included in thi s table. Although error concealment has not 

been a focus of this thesis, extra memory is required including the calculation since it 

is allocated automaticall y when the decoder starts. 

Table 6- 19 Memory requirement formulas for decoder (JM) at various buffer levels 

Buffer level Formula (in Bytes) 
QCIF CIF 

sg = n = I sg = n = 1 
Frame 3*(II + J)'*w*h 152064 608256 

S li ce 
sg > l ? 12*(1I + 1) + 5*(1V*")>>8) 

424 1612 
: 12*(1I + 1)+(1V*") >> 6) +4 

MB 400 + 1589*(( 1V* ") >>8) 15771 1 629644 

Intra prediction modes (1V*") >>2 6336 25344 

Motion vectors (IV* ") >> 1 12672 50688 

Entropy (CA VLC) 3*( 1V* ") >>3) 9504 38016 

Error concealment 68 + t88*(II'*") » 8) 18680 745 16 
Total 357391 1428076 

Note: 11: number of reference frames, 11' : WIdth of frame, h: heIght of frame, sg: sli ce group 

131 



6.6 Conclusions 

Tills chapter has presented a detailed analys is of the H.264 baseline pro fil e CODEC 

(JM 10) based on computati onal complex ity, memory utili zation, bit rate and 

di st0l1ion. The experimental analysis has lead to the identifi cation o f coding 

parameters (both encoder and decoder parameters, see Table 6-20) that can 

significantly influence the CODEC's complex ity , memory, bit rate and di storti on 

per fo rmance. These selected parameters will be used for the CODEC's performance 

optimization in the next chapter. 

Nole: The cell marked with " indicates that a parti cular parameter significantly 

affects the relevant constraint. Blank entri es indicate non-signi fi cant or no effect. For 

example, the variat ion in QP does not increase or reduce the computational 

complex ity or memory requirement. It is further observed that a sli ght variation in 

visual quali ty and compress ion rati o can be gained by adopting diffe rent moti on 

estimat ion algo rithms (UseFM£). 

Table 6-20 Signi fi cant coding parameters on H.264 CODEC (JM 10) 

Encoder 
Parameter Symbol Complexity Memory Bitrate Quality 
NumberReferences XI " " SearchRange X2 " " UseFME X3 " " RDOptimization X4 " SliceGrollp Xs " QP X6 " " IntraPeri od X7 " " DisableThreshold Xs " " Resolution X9 " " " " Decoder 
Parameter Symbol Complexity Memory Bitrate Quality 
N umberReferences XI " 1J1traPeri od X2 " " " SliceGroup X3 -J 
QP X4 " " DisableThreshold Xs " " Resolution X6 " " -J " 

132 



Chapter 7 Multi-Objective Performance 

Optimization of a H.264 CODEC 

7.1 Introduction 

An investigation on coding parameters that significantly affect the H.264 CODEC's 

(JM 10) bit rate, reconstructed video quality, memory and CPU utilization was 

carried out in Chapter 6. A summary of the results is listed in Table 6-20. This 

chapter presents a joint complexity-memory-rate-distortion (C-M-R-D) multi­

objective optimization framework for the H.264 CODEC based on the results of 

Chapter 6. 

The proposed framework considers a video streaming system, which uses a multi­

objective 5ptimization scheme to produce a set of optimal configurations of coding 

parani.eters according to the CODEC's computing resources constraints to maximize 

the video presentation quality. The theoretical model of the proposed framework is 

summarized by the block diagram of Figure 7-1. The client (receiver/decoder) 

initiates the process by sending a request of video content alongside a decoder 

capability description that includes bandwidth, memory and CPU utilization 

constraints. The server (sender/encoder) then selects a set of the best coding 

parameters for the CODEC from a group of optimal or near optimal tradeoff 

parameter sets which is produced by the proposed scheme under the joint 

consideration of client and server resource constraints. Note that since the encoder 

needs to code the requested video under client's resource limitation, the optimal 

parameter set of the decoder should be generated at first. Subsequently, the 

corresponding optimal parameter set for the encoder is selected which is used in 

encoding. Finally, the coded video is delivered to the receiver. For simplicity, the 

proposed framework assumes a lossless, wired network environment, thus not 

requiring the modeling of network parameters within an end-to-end encoder-channel-

133 



Sender 2. Send a suitable coded video Receiver 

H.264 Encoder 
1. Receiver capability description 

H.264 Decoder 

Figure 7-1 A theoretical framework of optimization mechanism 

decoder optimization framework. It is noted that a common lossy channel requires 

the consideration and modeling of network parameters such as transmission delay 

and packet loss etc., which is considered beyond the scope of the work presented in 

this thesis. In Chapter 8, we consider this as a possible future extension. It is noted 

that the proposed framework provides theoretical guidelines for system design and 

performance optimization of a H.264 video CODEC that can be easily applied to any 

other image or video CODEC. 

The proposed framework is accomplished by following two main steps. Firstly, the 

objective function for each objective/constraint requires to be developed. Secondly, 

these objective functions are used within a multi-objective optimization strategy that 

adopts a genetic algorithm (GA) to produce optimal solutions. Two reasons have 

contributed in choosing a GA based approach as against a Lagrange Multiplier based 

approach for multi-objective optimization. The first reason is that a GA has the 

ability to find multiple optimal solutions in one single simulation run. This is in 

contrast to the Lagrange Multiplier that converts a multi-objective optimization 

problem to a single-objective optimization problem by emphasizing one optimal 

solution at a time (63]. The second reason is the presence of a well established, 

popular public software tool, Non-dominated Sorting Genetic Algorithm (NSGA-II) 

(63] that can effectively be utilized in the proposed work (see Section 7.2.3). 

For clarity of presentation, this chapter is organized as follows. The fundamental 

concepts of multi-objective optimization and NSGA-II software are introduced in 

Section 7.2. Section 7.3 formulates the joint C-M-R-D optimization problem for the 

framework. The approach of obtaining objective functions of the optimization 

problem for encoder and decoder is presented in Section 7.4. The simulated results 

are presented in Section 7.5. Finally, Section 7.6 concludes this chapter. 

134 



7.2 Introduction to Multi-objective Optimization 

7.2.1 Definition of a Multi-objective Optimization Problem 

As the name suggest, a multi-objective optimization problem (MOOP) has a number 

of objective functions which are to be minimized or maximized. Moreover, the 

problem usually has a number of constraints which any feasible solution must satisfy. 

The general form of the MOOP maybe stated as follows [64]: 

MinimizelMaximize fm (X), 
subject to gj ( X) ~ 0, 

h,(X)=O, 
xiI) :;; x :;; x(u), , , , 

m=1,2, ... ,M; 

j = 1,2, ... ,J; 

k = 1,2, ... ,K; 

i=I,2, ... ,n. 

(7.1) 

There are M objective functions f(X) = (ji(X), fi(X), .. " fM(X)T considered in 

Equation (7.1). A solution X is a vector of n decision variables: X = (Xl, X2, "., xn)T. 

The terms g/X) and hk(X) are called inequality and equality constraint functions 

respectively. The last set of constraints are called variable bounds, the value of each 

decision variable Xj is restricted within a range of lower x/L) and an upper Xj~ bound. 

These bounds form a decision variable space, or simply the decision space. Each 

feasible solution is subj ected to J inequality and K equality constraints. If any 

solution X does not meet all of (J+K) constraints and all of the variable bounds, the 

solution is called an infeasible solution. On the other hand, if a solution X satisfies all 

constraints and variable bounds, it is known as afeasible solution. It is noted that the 

entire decision variable space need not be feasible. The set of all feasible solutions is 

called the feasible region. 

7.2.2 Pareto-Optimal Solutions 

It is important to note that not all feasible solutions in the feasible region are optimal. 

In other words, the feasible region not only contains optimal solutions, but also 

135 



f, 

- - --... Pareto-optimal fronl 

" " ,/ F 

--- -- A -. 
• B " 

\ .c/ 
• \ 

.O.E \ 

feasible region 

\ 
\ L---------------------____ ~ __ ~f, 

Figure 7-2 Feasible region and Pareto-optimal front in two-objective optimization 

problem 

solutions that are not optimal. Figure 7-2 [67J illustrates the feasib le region and a 

number of feasib le so lutions of a two-objective optimization problem with two 

confl icting objectives f, and f2. Assume that the target of this optimization problem is 

to maximize both objectives. It is obvious that solution A is better than anyone of B, 

C, D and E in terms of both objectives. Therefore, B, C, D and E are feasib le 

solutions but not optimal. On the other hand, so lution F has a smaLler f" but has a 

larger f2 than A. When both objectives are equally important, none of these two 

solutions can be said to be better than the other with respect to both objectives. When 

this relationship ex ists between two solutions, they are called non-dominated 

solutions. There exist many such so lutions (highlighted with red) in the feasib le 

region. For clarity, these solutions are joined with a dashed curve in the figme . All 

solutions lying on this curve are called Pareto-optimal solutions or Pareto-optimal 

set. The curve formed by joining these so lutions is known as a Pareta-optimal front 

(curve). In fact, the task in multi-objective optimization (MOO) is to find a set of 

Pare/a-optimal solutions in the feasib le region [64J. 

136 



7.2.3 NSGA-II Software 

Non-dominated sorting genetic algorithm 11 (NSGA) was proposed in [63], which is 

at present one o f the popular evo lutionary algorithms (EAs) used in multi-objecti ve 

optimization research. Since NSGA II works with a population o f so lutions, it can be 

ex tended to maintain a multiple set of so lutions. With an emphasis for moving 

toward the Pareto-optimal region, the NSGA-U can find mUltiple Pareto-optimal 

solutions in one single simulation run [63]. A well tested, public domain software 

so lution fo r NSGA-Il ex ists [65] that can be used directly withi n the research contex t 

presented in thi s thesis. An introducti on to thi s tool is presented in the fo llowing sub­

sections. 

7.2.3.1 ]nput Parameters 

The input parameters that need to be defined prior to running NSGA-Il, are li sted in 

Table 7- 1. Note that the digits in the bracket denote the value or va lue range of the 

corresponding parameter. In addi tion to the input parameters, a MOOP and its 

objecti ve (fi tness) functi ons also need to be defined. The defin iti on o f MOOP and 

objecti ve functions used for the optimization fra mework in thi s thes is are discussed 

in Section 7.3 and Secti on 7.4 respecti vely. 

Table 7- 1 J:nput parameters of NSGA-ll 

Input 
Description 

parameter 
popsize Population size 
ngen Number of generations 
nobj Number of objectives 
neon Number of constraints 
nrea l Number of real vari ables 
min rea lvar[i] Minimum va lue of itn real variable 
max real var[ i] Max imum value of it' real vari able 
~ross rea l Probability o f crossover of rea l variable (0 .6-1.0) 
pm ut real Probability o f mutation o f real vari able (I/nreal) 
eta c Distribution index for simulated binary crossover (5-20) 
eta m Distribution index for real vari able polynomial mutati on (5-50) 

137 



7.2.3.2 Main Procedure 

Initially a random parent population Po is created. The population is then sorted into 

di fferent non-domination levels, where level I is used to refer to the best level. Each 

so lution is assigned a fitness that equals to its non-domination level. Subsequen tl y a 

binary tournament selection with a crowded tournament operator, recombination, and 

mutation operators are used to create an offspring popUlation Qo of size N (the 

populat ion size). After the initial generation, the procedure (as in [63]) is outlined as 

follows (the IIIth generation is given as an example): 

Step 1: Parent and offspring popUla tion is combined to [om1 a new popula tion 

Step 2: The combined popUlation R", (of size 2N) is sOl1ed into different levels 

of non-dominated sets F I , F2 ... . 

Step 3: New popUlation Pm+1 is fonned from the non-dominated sets in the 

order of FI, F2 ... until the s ize equals to N. If onl y a portion of the last 

non-dominated sel, Fk, is selected to fill the new popU lation, the bes t 

so lutions in Fk are chosen by the crowded-comparison. The procedure 

is also shown in Figure 7-3. 

Step 4: The new population Pm+1 IS used for selection, crossover, and 

mutation to create a new offspring population Q m+l . 

Non-dominated sorting 

0 
c::::J 

----

--- ----------- - -~ 

~--::>EL 
-- -

1'\--
Pm+1 

n u ~ Rejected 

11 1L 

Figure 7-3 NSGA-ll procedure 

138 



I 

t 
I 
I 
I 
I 
I 

I 

7.2.3.3 Output of NSGA-II 

The steps I to 4 are continued until the required number of generation is reached. 

Finally, NSGA-Il outputs a file that contains the best solutions obtained at the end of 

the simulation run. 

7.3 Problem Formulation 

Consider in Figure 7-1 that the encoder received the c lient's video demand and 

capabi lity infomlation such as avai lable memory, CPU constraints/capabilities and 

availab le bandwidth. Based on such knowledge, the goal is to find a set of optimal or 

near optimal solutions that minimize computational complexity, memory utilization 

and bandwidth utilization while max imizing video quality. Each solution contains a 

set of optimal cod ing parameters (listed in Table 6-20) that are used for coding the 

demanded video sequence. Therefore, tbe goal can be considered as a fo ur-objecti ve 

constrained optimization problem tbat all objectives are to be minimized and 

presented by F complexi,y , F m,mo,)', F ,me and F t/istortiO" respectivel y. The budgets of 

memory and bandwidth can be regarded as constraints (note that CP U can be a 

constraint as well) and presented by G memory and G rate separately in thi s thesis . The 

selec ted cod ing parameters are described as decision variables by a vector variable X 

= (XI , X2, ... , x,, ). According to such given knowledge, the MOOP regarding C-M-R­

D optimizat ion model can be f0n11ulated in its general form as follows: 

subject to Gm" (X) S R, 

Gmemory (X) ~ M, 
. l < < u 

Xi -Xi -Xi' i :;::: 1,2, .. . , 11 . 

(7.2) 

where R and M represent the constrained rate and memory respectively. Decis ion 

variables 11 = 9 for the encoder and 11 = 6 for the decoder in the proposal. Each 

decision variable Xi is restricted within a range [x/-, XiV] inclusive. The subsequent 

139 



task js to obtain the four objective functions F comple"( ily, F mem01)1, F r(l{e and F (/isLOrtiol1' and 

two constraint functions Gmemor)' and Grale . This is di scussed in the fo llowing section. 

Note that Glllem",y(X) = Fm,mory(X) and Grate(X) = F"",e(X)' 

7.4 Obtaining Objective Functions 

The constraint optimization problem was formulated in Equation (7.2) of the 

prev ious section. In thi s section, the task is to analyze the mathematical relationship 

between the decision variables Xi and each objecti ve. The above relationships named 

as objective functions, can be obtained through the informed use of Matl ab's (66) 

polynomial regression too l. 

The proced ure of ob ta ining objective functions can be described as fo llows: (i) fo r 

each objecti ve a large num ber of experimen ts are carri ed out both at the encoder and 

decoder based on all poss ible combinations of settings of the aforementioned coding 

parameters; ( ii) the values obtained for the objecti ve and the corresponding parameter 

settings are used to foml a data set for polynomial regression; (iii) the polynomial 

tenn s are defined to include all possible combinations of the decision variables (i.e. 

the coding parameters); (iv) finally the polynomial regression function of Matlab is 

used to fit the data set o f (ii) and to determine the coeffi cients o f each signifi cant 

polynomial term of the objecti ve function. Since computational complexi ty, rate and 

di stortion (however not memory) obtained even under identica l parameter sett ings 

are dependent on the source video, there are two options for estimating the objecti ve 

functions. The first option is the use of average va lue of the objecti ve ca lculated 

experimentally frOIll di fferent videos (for example the bi t-rate) to be used in 

po lynomiall·egress ion. The advantage of thi s approach is that the resul ting objecti ve 

function wi ll be able to reasonably well model the relationshi p between the objecti ve 

and the coding parameters for any given video. However, the results will be sub­

optimal. The second option is that for each video sequence to have its own objecti ve 

function, which can yield optimal results. However, these results will not provide 

optimal results for other videos. Since the framework is to be considered fo r use 

140 



wi thin a video streaming system, the second option was chosen. The detai ls of this 

optimization strategy are given in the following sub-sections. 

7.4.1 Objective Functions of Encoder 

7.4.1.1 Computational Complexity 

As mentioned in Section 6.4.1, the computational complexity of the encoder was 

measured using the Intel VTune PerfoITnance Analyser tool. The experiments for 

obtaining computational complexity data were perfomled on a Pentium-4 2.8GHz 

computer with the coding parameter setting described in Table 7-2. The number of 

reference frames (X I) vari es from I to 5 in increments of two. The search window 

size (Xl ) can take either of the two va lues 16 or 32. The control variable (x) can take 

values from 0 to 3 corresponding to various motion estimation modes. The control 

variable (x,) for rate-distortion optimization (RDO) mode can take values from 0 to 2. 

The resolution of video sequence (X9) vari es from I to 2 corresponding to QCTF and 

ClF respectively. Therefore there are a total of 144 combinations of the fi ve control 

vari ables stated above. Four video sequences ( 11 2 frames for each) "Foreman" , 

"Mother & Daughter", "Mobile" and "Coastguard" were used for analyzing the 

computational complex ity. Therefore, total of 4 x 144 = 576 experiments were run . A 

subset of the experimental results is shown in Tab le 7-3. The computational 

complexity (meaSllred in seconds) per frame obtained by averaging the tota l number 

of frames was used for evaluating the objective function . 

Table 7-2 Coding parameter settings for estimating complex ity 

Sequence Data set XI Xl X3 X. X9 

Foreman 144 I - 5 (+2) 16 - 32 0-3 0-2 I - 2 

Coastguard 144 1 - 5 (+2) 16 - 32 0 -3 0 - 2 1 - 2 

Mo. &Da. 144 I - 5 (+2) 16 - 32 0 - 3 0-2 I - 2 

Mobile 144 1 - 5 (+2) 16 - 32 0- '3 0-2 1 - 2 

141 



Table 7-3 The average computational complexity (seconds) per frame for each 

sequence. 

XI X2 X3 X4 X9 Foreman Coastguard Mo.&Da. Mobile 

1 16 0 0 1 0.540464286 0.54 130357 1 0.5356 1607 1 0.538133929 

3 16 0 0 1 1.4291 42857 1.439008929 1.419946429 1.406589286 

5 16 0 0 1 2.309946429 2.3308 125 2.291232143 2.25932 1429 

5 16 1 0 1 0.8502 14 1.053848 0.752402 0.953196 

5 16 2 0 1 0.685786 0 .803732 0.551902 0.766857 

5 16 3 0 1 0.92682 1 0.993732 0.840964 0.918804 

It is noted that all possible combinations of control variables in different degrees 

were initi all y considered in an attempt to exhaustively detemline the terms of each 

fitness function. Since nonnall y higher-order terms produce a better fitness (i .e., 

higher R-square [66] which is one minus the rati o of the error sum of squares to the 

total sum of squares, a value closer to I indicates a better fit.) to a data set, a 

po lynomial of degree six with a total of 420 terms was used fo r obtaining the fil'ness 

function for computational complexity. However finally, only the significant terms 

are retained. The polynomial regression results of the four test video sequences are 

shown in Table 7-5. It was observed that the R-square and RMSE (root mean square 

error) values are maintained at desirable levels. The significant terms and relevant 

coeFfi cients of the fihless function for "Mother & Daughter" video sequence are 

given in Table 7-4. A complete set of terms and coeffic ients obtained for a ll four test 

video sequences are listed in Appendix A. [n the table, each row indicates a 

monomial of the polynomial consist ing of a coefficient multiplied by one or more 

control variab les. The integer number describes the power of the relevant control 

variable. For example, the I SI row is a constant term because of -

0.2041 51 79564 I 2x/x/x/x/x/ and the 10th row is 1.3794327907866x/x/x/x/x/ 

Thus, the general fonn of the objective function for computational complexi ty can be 

written as fo llows: 

t42 



a,b,c,d,e=0, .. . ,5; n =3 1,26, 19,20. 

(7 .3) 

where Xc = (X I, Xl, Xj, X4 , X9) T, a, b, c, d and e are the corresponding powers of the 

relevant va ri ab les. The number 17 indicates the number of sufficientl y significant 

polynomial terms of the objective functions for sequences "Foreman", Coastguard", 

"Mother & Daughter" and "Mobile". 

Table 7-4 Tenns and coefficients oflhe fitness fu ncti on of Mother & Daughter 

Coefficien Is XI XI X3 X4 X9 

-0.204 15179564 12 0 0 0 0 0 

0.3 165646733353 0 0 1 0 0 

-0.338593980 1707 0 0 1 0 1 

0.27503 19893053 0 0 0 1 1 

-2.3004076262064 1 1 1 0 0 

-2.5655364292056 1 0 0 0 2 

3.7864693852438 1 1 0 0 2 

2.9953569554126 1 0 1 0 2 

-1.0795540124119 1 0 2 0 2 

1.3794327907866 1 1 2 0 2 

0.3057298569872 1 1 3 0 0 

-0.0293689868774 1 1 0 0 3 

-0.4582364962363 1 1 3 0 1 

-1.7154566609996 1 1 1 0 3 

0. 1250301095724 1 0 3 0 2 

0.0338324704338 0 0 0 4 0 

0.0038274781955 0 0 2 0 4 

0.03 1608989573 1 0 0 0 2 4 

-0.0124814415485 0 0 0 5 1 

143 



Table 7-5 Fitness results of computational complex ity 

Sequence R-square RMSE 
Foreman 0.9999 0.055 

Coastguard 0.9999 0.11 ° 
Mother & Daughter 0.9995 0.020 

Mobile 0.9999 0.047 

7.4.1.2 Memory Utilization 

The memory requirement fo r the encoder was analyzed in Section 6.4.2. It was 

revealed that the encoder memory req uirement onl y depends on the coding 

parameters but not on the video content. Therefore, the objecti ve functi on for 

memory util ization should theoreti ca ll y be applicab le to any video sequence. The 

parameter settings for memory utilization related experiments are shown in Table 7-6. 

The number of slice groups (X5) vari es fro m 1 to 7. The vari ati ons o f va lues o f the 

other parameters are the same as that of computational complex ity. The same 420 

temlS used in obtain ing the objective function for computati onal complex ity was 

used for obtaining the objecti ve function for memory utili zation. A highest degree of 

six was used. The statisti cal results of R-square and RMSE refl ecting the goodness o f 

fit are tabulated in Table 7-6 and are promising. The final objecti ve function of 

memory usage contains 35 terms which is li sted in Appendi x A and the equation can 

be described in general temlS as follows: 

a,b, c,d,e = 0, ... ,5; 11 = 35. 

(7 .4) 

where)(,,, = (X I, Xb X3 , X5, X9) T, Cl, b, c, d and e are defi ned similar to that in Equation 

(7.3). 

144 



Table 7-6 Coding parameter settings and the fitness results of memory 

Data set XI X2 X3 Xs X9 R-square RMSE 

336 1-5(+2) 16 - 32 0 -3 1 - 7 1 - 2 0.99999 0.003 

7.4.1.3 Rate & Distortion 

Since rate and distortion have the same contro l parameters, they can use identical 

data sets as li sted in Table 7-7. The quantization parameter (X6) vari es from 17 to 49 

with assumed increments of four for experimental purposes. The control variable (X7), 

IlItraPeriod, can takes values: 0 (means that the first frame is coded as an I- frame and 

subsequent frames are coded as P-frames), I (all frames coded as I-frames), 4, 7, 10, 

13 and 16. The control variables (X8) and (X9) represents DisableThreshold (see 

Section 6.2) and resolu tion of video respectively, and can take on ly one of two 

possible va lues. The same test video sequences and an identical specification PC as 

used in the experiments presented in Section 7.4. 1.1 were used. A tota l of 252 

experiments for each sequence were performed. The averaged distortion (measured 

in terms of PSNR, dB units) and rate (measured in kbits) per frame were employed as 

the input data set. A total of 329 polynomial terms (the highest-order terms are in 

degree seven) were used in the definition of the ini tial fitness functions fo r rate and 

distol1ion respectively. The results of goodness of fit are presented in Table 7-8. The 

fitness (see R-square and RMSE in the table) for the average rate reveals that a 

polynomial does not fit the average rate well. Therefore, in order to improve the 

goodness of fit, the average rate was log-transformed (base 10) prior to fitting to the 

data set. From the results tabu lated in Table 7-8, it is clear that, the log-transfomled 

data can be fitted better than the non-log-transformed data using a polynomial 

function . Accordingly the terms and the corresponding coefficients of the polynomial 

obtained for fitting the data are listed in Appendix A. The generali zed objective 

functions for rate and distortion are shown in Equation (7.5) and Equation (7.6) 

respectively. 

145 



a,b,c,d = 0, ... ,7; n. = 27,42,27, 34. 

(7 .5) 

, 
FdiSfOrlioll _£ (Xli ) =: LCjX~X~X;X:, Cl,b,c, c/ =: 0, ... ,5; n = 23, 16, 18, 19. 

;=1 

(7 .6) 

7' where x,. = Xd = (X6, X 7, X B, X 9) , Q, b, c and cl vary from 0 to 7 for rale and 0 to 5 for 

di stortion. It is noted that "1/" in Equation (7.5) and (7.6) define the same meaning as 

that of Equation (7.3). 

Table 7-7 Coding parameter settings for estimating rate and di stortion 

Sequence Data Set X6 X7 Xs X9 

Foreman 252 17 - 49 (+4) 0 - 16(+3) 0- I I - 2 

Coastguard 252 17 - 49 (+4) 0 - 16(+3) 0- I I - 2 

Mo &Du. 252 17 - 49 (+4) 0 - 16(+3) 0- 1 I - 2 

Mobile 252 17 - 49 (+4) 0 - 13 (+3) 0- I I - 2 

Table 7-8 Fitness results of rate and di stortion 

Averaged PSNR Averaged Rate Log10(Averaged Rate) 
Sequence 

R-Square RMSE R-Square RMSE R-Square RMSE 

Foreman 0.9998 0.09 0.9978 1.24 0.9997 0.0 11 

Coastguard 0.9997 0. 11 0.9987 0.93 0.9998 0.0 11 

Mo&Du. 0.9997 0. 10 0.9991 0.74 0.9996 0.017 

Mobi le 0.9997 0.13 0.9962 1.64 0.9998 0.008 

146 



7.4.1.4 Formulation of C-M-R-D of Encoder 

After obtaining obj ecti ve fu nctions of computational complex ity, memory utili zation, 

rate and di stortion, the equation used fo r optim izing the encoder on C-M-R-D is 

given by: 

" 
Mill F rOmple.fiIY _£ ( X (' ):::: LCiX;X~X~x:x; , ([,b ,c,d,e =O, ... ,5~ 1'1=31,26, 19,20; 

i= l 

" 
Min F:,remOry'_ E(Xm)= LCiX;X~X~x:x; , a,b, c,ci,e=O, ... ,5; 11 =35; 

1",1 

"" <lbrd L... C, f 6 X' ' 8 f9 

MIII F,." ,;(X,) = 10 '" , a,b,c,d=0, .. . ,7; 11 =27, 42,27,34; 

" 
Mill F;/iSIOrliOIl _ £ (Xd) = L CjX;X;X;X: ' Cl ,b,c,d = 0, ... ,5; 11 = 23, 16, 18, 19; 

j:1 

subjecl 10 G,meJ ( X,) = F,."J (X, ) $ R; 

L <x < u 
Xi - i -Xi ' i = 1,2, ... ,9. 

where Xc, X"I> X,., Xd, R and M are defined as befo re. 

7.4.2 Objective Functions of Decoder 

(7.7) 

There are a total of six coding parameters (marked X, to X6 and li sted in Table 6-20) 

that sign i.fi cant affect the decoder's computational complexity, memory utili zation, 

received bit rate and di stortion. As mentioned in Section 7.1 , the proposed multi­

obj ective optim ization framework assumes a loss less network, which means that the 

decoder can receive all the data transmitted by the encoder at the specific rate. Under 

such a situation, the reconstructed video quality at the decoder depends entirely on 

the coding parameters used by the encoder. T hus, the objective functions for video 

quality (di stortion) and rate at the decoder can use the functions derived at the 

encoder for the said obj ectives. Thus only the deduction of the objecti ve functions for 

147 



computati ona l complex ity and memory utili zati on at the decoder are presented in the 

following sub-secti ons. 

7.4.2.1 Computational Complexity 

From the analys is o f the computational complex ity at the decoder presented in 

Secti on 6.5. 1, it was seen that there are only two signifi cant coding parameters that 

have a significant impact (i.e. over 5%) on the processor's execution time. T hey are, 

Ill lraPerioc/ (Xl ) and Resolution (X6). The approach used for obtaining the objecti ve 

functi on fo r compu tational complex ity at the decoder is the same as that used at the 

encoder. The same PC and test video sequences were used. Table 7-9 presents the 

parameter settings that were used in the experiments . The values o f variable X2 vary 

from 0 to 16 with two di fferent frame sizes (i.e. the parameter, X6) I and 2. Therefore 

a total of 34 ex periments were performed for each sequence. A polynomial of degree 

nine was employed to obta in the fitness functi on. The fitness statistics are tabul ated 

in Table 7-1 0. 1n tenns of polynomial terms and coeffi cients prov ided in Appendi x B, 

the fitness functi on can be written as fo llows: 

" 
F CQIIIPIt!ri/y_ D ( X r ) == L Cjx;x!, a,b = 0, ... ,5; 11 = 4,5,7,5 . 

;",,1 

(7.8) 

whereX,1 = (x], x6l, a, b and 11 are defined as before but are di fferent in value. 

Table 7-9 Coding parameter settings for estimating computational complexity 

Sequence Data set Xz XG 

Foreman 34 0 - 16 I - 2 

Coastguard 34 0 - 16 I - 2 

Mother & Daughter 34 0 - 16 I - 2 

Mobile 34 0 - \6 \ - 2 

148 



Table 7- 10 Fitness results of decoder 's computational complex ity 

Sequence R-square RMSE 

Foreman 0.9984 0.0015 

Coastguard 0.9999 0.0005 

Mother & Daughter 0.9998 0 .0004 

Mobi le 0.9999 0.0005 

7.4.2.2 Memory Utilization 

At the decoder (JM 10), three cod ing parameters, the number of reference frames C~ / ), 

the number of sli ce groups (X3) and frame so lution (X6) , dominate the memory 

required for decoding a video sequence (see Table 6-1 9) . The value range for each 

variable is as follows. Up to 5 reference frames may be used for motion 

compensation. The maximum num ber of s lice gro ups is 7 and video reso lution can 

take values of either 1 or ·2. A polynomial of degree six with the 70 data sets was 

used in the polynomial regression for decoder memory utili zation. The results are 

shown in Table 7- 11 . The objecti ve function can therefore be written as follows, 

with the polynomial temlS and coefficients given in Appendix B: 

" 
F (X ) - '" et" xbxc 

mcmOI)'_ D 1/1 - ~ j~ I 3~ 6 ' G,b,c=0, ... ,6; n =6. 
; .. 1 

(7.9) 

where X'" = (x /, X3, X6)T, G, b, c and 11 are defined as before but are di fferent in value. 

Table 7-11 Fitness result of decoder 's memory uti li zation 

Data set R-square RMSE 

70 0.99999 0.0001 

149 



- - - ----

7.4.2.3 Formulation of C-M-R-D of Decoder 

After obtaining the obj ective functions fo r computational complex ity and memory 

utili zation, the optimization problem of the decoder becomes: 

" 
Min ~olltple.t;tJ' _ D ( Xc ) ~ I cjx; x;, a,b=0, .. . ,5; 11 = 4,5,7, 5; 

1",1 

" 
Mifl F,lIenI Ory'_ D (X", ) = I cj_< xgx~ , a,b,c = 0, ... ,6; n = 6; 

a,b,c,d = 0, .. . ,7; 11 =27, 42,27,34; 

" , r F (X )" " b.r d 
/ vi l'" {/1$IOrl;OIl _ D d = L..,.. CjX2 X4 ~\5 X6' a,b,c, d = 0, ... , 5; JI = 23, 16, 18, I 9; 

;= \ 

L < X < .u Xi _ j - Xi' i = I, 2, ... ,6. 

(7. 10) 

where Xr = x" ~ (Xl, X4, X5 , X6/ ' other temlS have defini tions similar to as before. 

7.5 Experimental Results 

The objecti ve functions for computational complex ity, memory, rate and distortion at 

both the encoder and decoder have been deri ved in the above sections. Therefore the 

framework is now read y to be used to solve the C-M-R-D optimization problems at 

both ends o f the CODEC. 111 this section, a number of simulations are performed to 

demonstrate the effectiveness of the optimization framework. The parameters used 

for SGA-TI are first described. A reasonable set of parameter settings was chosen 

from those proposed by the authors of NSGA-II [63] and therefore it is noted that we 

have not made any effol1 in finding the best parameter setting. In all simuIations, the 

population size was chosen as 100, crossover probability was 0.9, and mutation 

probability (calculated from 1/11, where /I is the number o f decision vari ables) was 

0. 11 for the encoder and 0.1 7 fo r the decoder. The di stribution index for both 

150 



crossover and mutati on were set to 20. All four video sequences were used for the 

simulations and the four obj ecti ves, computati onal complex ity, memory utilizati on, 

rate (based on 25 frames per second) and di st0l1ion were measured in milli seconds 

per frame, megabytes, kbps and dB respecti vely. 

The first simulation was run for various generations. There are three goa ls in thi s 

simulati on: (i) veri fyi ng if NSGA-fI can help in fi ndi ng a set of so lutions which are 

close to the Pareto-opti mal set, (i i) can a set of diverse so lutions be fo und wi thin the 

Pareto-optimal set, and (iii) obtaining Pareto-opt imal solutions for each video 

sequence. In thi s simulati on, the C-M-R-D optimizati on was considered as an 

unconstrained optimization problem so that the feasible region (see Secti on 7.2) 

cO ldd be as la rge as possible. 20, 50, 100 and 300 generations were used in the 

simulation. Wi th fou r objec ti ves, it is diffic ult to discuss the effec t of the results on a 

4-D graph. Therefore, a ll six pairwise plots of so lut ions obtained at the end of 

generati ons fo r "Foreman" at the encoder side are illustrated in Figure 7-4 and Fig ure 

7-5 . 

In achieving the first goal of the simulation, it is observed fro m the graphs that the 

solu tions converge towards the Pareto-optimal set, as the number of generations 

increased . However, the convergence hard ly improve after 100 generat ions, whi ch 

means the so lutions obtained after 100 generations are the (local) Pareto-op timal 

so lutions that are very close to the true Pareto-optimal set. 

In achiev ing the second aim of the experiments stated above, it is noted that the 

spread of the Pareto-optimal so lutions obtained at the end of both 100 and 300 

generati ons (marked wi th blue rhombus and red circle in the figures indi vidually) is 

a lso des irab le. This is clearl y proved in rate-di stortion curve of Figure 7-4 (a). Note 

that, in Figure 7-4 (b)-(c) and Figure 7-5 (a)-(c), a Pareto-opli mal so lution can be 

fo und, which can obtain the max imum or minimum va lue on both objectives, without 

tradeoff. This is due to the fact that such pa irwise objectives do not conflict with each 

other. 

JSJ 



Rate vs. Distortion 

2500 

~ 2000 a Gen = 20 + Gen = 50 1-----~EJ~-n-_1 
.c 
.:0: 1500 
~ 

+ Gen = lOO 0 Gen =300 .. - 1000 '" ... -Q5 500 

0 

20 25 30 35 40 45 

1'5NR(dB) 
(a) 

RilIe vs. Comple.<ity 

2500 1 -;========:::;----- --1 
~ 2000 
Cl. 

a Gen = 20 + Gen = 50 
1------1 

+ Gen = loo O Gen = 

~ J 50o i· ~==========~======----EJ---I~ ~ .. -E 1000 -Q5 500 

o 
200 400 600 800 1000 1200 1400 1600 1800 2000 

Complexity 
(b) 

Rate vs. Memory 

2500 1 ----------;============::::;-] 
,., 2000 1----------1 !! Gcn = 20 + Gcn = 50 

~ 1 ____ ~·~ ____ ~=·==G~CI~1 =~10~0~O=G==cn~==3~0~0~ 
61500 U .. 
~ 1000 1---- .... ---."r:----------------1 ... -Q5 500 1----lI~~~~~~~~~~----_I 

0"---
5 10 

Memory 
15 20 

(c) 

Figure 7-4 Pairwise plots of solutions fo r rate vs. distortion, complexi ty and 

memory respectively 

152 



Complexity vs. Distortion 

2500 ir======:====='---,,-----, ~Gcn ~ 20 + Gcn ~ 50 !.l 

C 2000 
o 

• Gc" ~ 100 0 GC" ~ lOO r--:!.l:::-' -""-----r -..-

.~ 1500 1---=-----:;;:------f1--~---_l 
c.. 
e 1000 1---5': I--"'-jl---;~ 

" U 

20 25 lO 35 

PSNR(dB) 

(a) 

Memory vs. Distortion 

40 

18 ~========~--_.~,. ------, 

c IS 1'--__ _ 

o 
E 12 

" ~ 

6 L-____ ~ ____ ~ ____ ~ ____ ~ ____ ~ 

18 

IS 

c-
o 
E3 12 

'" ~ 
9 

6 

20 25 30 35 
PSNR(dB) 

(b) 

Memory vs. Co mplexity 

,.~*" ~ ~ i +,,: ;.;' !.l ~' .. ,.et ,. 
,.. .. ,I.: 

~ •. ~ 4" 
i$.l m- +:l ri. +It-!- fl .. 1+ .. ~ Gen = 20 

." :lilt ~ • Gen = 100 

40 45 

" 
+ 

+ Gen = 50 
o Gen = 300 

45 

200 400 600 800 1000 1200 1400 1600 1800 2000 

Complexity 

Cc) 

Figure 7-5 Pairwise plots of so lutions: (a) complexity vs. distortion, (b) 

memory vs. distortion, and (c) memory vs. complexity 

153 



--------- - --------------------- -- ---- --------------------------

In achieving the third aim of the experiments, it was observed that similar results 

were obtained when other test video sequences were tested. Figure 7-6 (a)-(c) depict 

the rate-distortion curves obtained at the end of 300 generations fo r "Coastguard", 

"Mother & Daughter" and "Mobile" respectively. Since a population of size 100 was 

used, it is not expected that the set of solutions obtained at the final generation are the 

global Pareto-optimal so lutions, but rather a local Pareto-optimal set sufficientl y 

c lose to the global Pareto-optimal solution. 

In order to evaluate the perfo rmance in the case of constrained Pareto-optimal set, a 

second simulation was perfomled where all parameters of NSGA-Jl tool were 

selected to be the same as before and 300 generations were run . Two different 

constraints: i) rate less than 1024 kbps, ii) rate between S6 kbps and 128 kbps, were 

used for th is experiment. The resu lting rate-distortion curves for the fo ur sequences 

are given in Figure 7-7 (a)-(d). It is clear from these figures that the constrained 

Pareto-optimal set is a subset of the unconstrained Pareto-optimal set as compared 

with the resu lts obtained in the first simulation. Similar results (see Figure 7-8 (a)-(b) 

for "Coastguard " and "Mobile" respectively) were obtained for 56 kbps < rate < 128 

kbps but it was observed that the region of the Pareto-optimal set becomes smaller. 

At the decoder, similar simu lations were pre formed for the same test sequences. It 

was observed that the behaviour of the resulting curves was s imilar to that of the 

encoder. 

A third simulation was performed in ordel" to demonstrate the overa ll procedure one 

has to adopt in order to make use of the proposed multi-objecti ve optimization 

franlework. Assume a scenario where the decoder has the following limi tations: 

1. The bandwidth in the bound of[ 128 kbps, 2S6 kbps] inclusive; 

2. Memory is limited on S Mbytes. 

154 



Rate vs. Distortion (Coastguard) 

2500 
~ 2000 
Cl. 

H O Gen =300 I ~ 

I 
.Q 
C 1500 

~ '" 1000 ... 
~ 

Q1i 500 
o 

20 

3500 
~ 2800 
.Q 6 2100 
~ 
~ 1400 ... 
~ Q1i 700 

o 

H 

20 

0 

~j 
~~fF 

25 30 35 
PSNR(dB) 

(a) 

40 

Rate vs. Distortion (Mother&Daughter) 

o Gcn =300 I 

25 30 35 
PSN R(d B) 

(b) 

40 

Rate vs. Disto rtion (Mobil e) 

0 

0 

45 

45 

50 

4000 1 -;=====:::::;------ - -----1 
~ 3000 J 0 Gcn =300 C 

~ 0 

i 2000ll-==:::::::::~;~~~~~~~:~~~~flj-- 1000 
Q1i 

o 
15 25 

PSNR(dB) 

(c) 

35 45 

Figure 7-6 Rate-di stortion curves for Coastguard, Mother&Daughter and Mobi le 

155 



Foreman 

"~ 2 r--------------------------, 
x 

• rate < 1024 kbps I------------i 
o unconsn'aint 

gs 0.5 

o L ___ -!IJ!I =----'------' 

20 

'"0 3 
x 
2.5 

"" c. 2 '" 6 
0 t.S 
E 
;;; 

0.5 

0 
15 

25 30 35 

I)SNR(dB) 

(a) 

Mobi le 

40 45 

• rate < 1024 kbps 1-______ ----'''' 

o unconstrai nt 

25 

PSN R(tlB) 

(c) 

35 45 

"0 2 
x 

~ 

c. 1.5 

'" 6 
~ • ~ 
;;; 0.5 

0 

_ 2.8 
i£. 
~ 2.1 

" ;; 1.4 ~ 

;;; 
0.7 

o 

20 

20 

COlls tguard 

• rate < 1024 kbps 0 
o unconstraint I-------~;-J 

25 30 35 

rSNH.(dB) 

(b) 

40 45 

Mothcr&Daughtcr 

• rate < 1024 kbps 

o unconstraint 

30 

PSNR(d8) 

(d) 

40 

0 

0 

-.;-
50 

Figure 7-7 Resulting rate-distortion curves (rate < 1024 kbps) for four sequences 

Mob ile Coastguard 
... ~ 3 '0 2 

x 
. 56 < rale < 128 x 

2.5 • 56 < rate < J 28 o 
"" o unconstraint 

-;;- 1. 5 c. 2 c. 
'" '" 6 6 
~ 1.5 

~ • • ~ 
~ 

o unconstraint 

;;; ;;; 0.5 
0.5 

0 0 

15 25 35 45 20 25 30 35 40 45 

PSN R(dB) I'SNR(dB) 

(a) Cb) 

Figure 7-8 Resulting rate-distortion curves (56 < rate < 128) for two sequences 

156 



- - - ------- - - - - ---

The decoder sends a request for the "Foreman" sequence alongside a decoder 

capability description, to the server (the encoder) . Subsequently the proposed 

framework then optimizes the coding parameters for the decoder, based on its 

capabiLity data. A part of the optimization results are given in Table 7-12 . The first 

four columns depict the objectives results while the remaining columns represent the 

corresponding optimal coding parameters (decision variables) set for the decoder. 

The range of the cod ing par'3meters will be used as a new bound of the decision 

variables at the encoder. Then the framework opt imizes the encoder in tenns of the 

constraints containing the new bound of the decision vari ables and the limitation of 

bandwidth. Note that the limitations of computational complexity and memory 

utilization at the decoder are not used as constraints at the encoder' s optimization 

since these two objectives at the encoder and the decoder are independent. A part of 

the optimization results for the encoder are shown in Table 7-1 3. The R-O curves for 

the encoder and decoder are almost the same as illustrated in Figure 7-9. Finally, the 

optimal coding parameter set is selected by following two steps. i) Choose the 

maximum value of PSNR in Table 7-12 (decoder parameters), i.e., the first row 

highlighted in grey. ii) Select the row from Table 7- 13, which has the highest PSNR, 

and the values of the corresponding parameters must equal or close to the decoder 

parameters. In this case, the second row (highlighted in grey) of Table 7-13 was 

selected. Therefore, the optimal coding parameter set for coding "Foreman" sequence 

under the above constrained memory and bandwidth requirement is li sted Table 7- 14. 

Table 7-12 Optimization results of decoder for Foreman sequence 

Rate PSNR Complexity Mem. 
Ref. Intra Slice 

QP 
Disable Frame 

frames I period eroup Threshold size 
254.27 38.68 73 .72 0.35 I 12 I 24 I I 
218.36 37.98 73.55 0.35 I 13 I 25 I I 
205.22 37.86 72.47 0.35 I 16 I 25 I I 
238.54 38.56 72.47 0.35 I 16 I 24 I I 
22 1.08 37.92 72.95 0.35 I 15 I 26 2 I 
13 1.54 35.84 72.47 0.35 I 16 I 28 I I 
193.96 37.28 73.3 0.35 I 14 I 27 2 I 
2 16.33 37.92 72.95 0.35 I ]5 I 25 I I 
188.97 37.28 73.3 0.35 I 14 I 26 ] ] 

]7 1.26 36.65 73 .84 0.35 I I 1 1 27 ] I 

157 



- --- -- -----

Table 7-13 Optimization results of encoder for Foreman sequence 

Rate PSNR C Mem. Ref. SR FME RDO se QP IP DT Resa. 
225.76 37.99 256.22 7.74 I I 4 I I 25 1 I I I 
254.27 38.68 215.52 7.8 1 1 3 I I 24 12 1 I 

162.06 36.57 215.52 7.8 I I 3 1 I 27 15 I 1 

162.06 36.57 2 15.52 7.8 I I 3 I I 27 IS I 1 
205.22 37.86 2 15.52 7.8 1 I 3 I 1 25 16 I I 
238.54 38.56 2 15.52 7.8 I I 3 I I 24 16 I I 
225.76 37.99 256.22 7.74 1 I 4 I I 25 I I I I 
238.54 38.56 2 15.52 7.8 I I 3 I 1 24 16 I I 
130.67 35.35 256.22 7.74 I I 4 1 1 29 1 I 1 1 
162.06 36.57 215.52 7.8 I I 3 1 I 27 IS 1 1 

Note: C: complexity, Mem: memory, Ref: reference frames, SR: search range, FME: fast 

motion estimation, RDO: rate-di stortion optimization, SG: slice group, IP: intra period, DT: 

disable threshold, Reso: resolution. 

Ref. 

Table 7-14 Optimal coding parameter set for Foreman 

SR FME RDO se 
3 

Foreman 

280 

H 0 Encoder I 
• Decoder 

I • 
co 160 

120 

3S 36 

"'-
~. 

,. 

37 

PSNR(d8) 

QP JP DI 
24 12 

I' , 
38 39 

Reso. 

Figure 7-9 Rate-distortion curves of encoder and decoder for Foreman 

158 



7.6 Conclusions 

111 this chapter, a joint C-M-R-D optimization framework for a H .264 video CODEC 

(JM 10) has been proposed based on a detail ed comprehensive performance analysis 

(see Chap ter 6) of the H.264 CODEC. The framework adopts an evolutionary 

algorithm, NSGA-[I, as the multi-objective optimization algorithm, and is designed 

for so lving the joint C-M-R-D optimization problem at both the encoder and decoder 

based on the decoder' s capabilitiesllimitations such as available memory and 

bandwidth . It produces a set of optima l coding parameters that can be used for 

encoding and decoding video sequences. These optimal coding parameters can 

minimize the computational complexity, memory utilization and rate at CODEC 

whi le achieving the maximum visual quality. According to the simulation results, the 

framework can yield Pareto-optimal or near Pareto-optimal solutions. In other words, 

it can produce an optimal coding parameter set for a video sequence. Although the 

framework has not considered network factors such as transmission delay and packet 

loss, it provides practical guidelines for tlle design and performance optimization of 

video communication systems under computing resources constraints. 

159 



Chapter 8 Conclusions and Future Work 

8.1 Summary 

This chapter summarizes the ori ginal contributions made by the thes is to the research 

area of video coding. It also highlights possible future directions of research related 

to the work presented. 

This thes is has presented the design, implementation and perfo rmance analysis of a 

novel object-based extension to a standard H.264 video CODEC. It has also proposed 

a multi-objective optimization framework that can be used in the parameter-based 

perfo rmance optimization of a standard compl iant H.264 CODEC. The practi cal 

relevance of these extensions/improvements has also been di scussed. 

In Chapter 4, a novel Shape Adaptive Integer Transform (SA-IT) and associated 

quanti zation procedures were proposed wi th the ai m of being used in the inclusion of 

obj ect-based coding in H.264. It was shown that the SA-IT ca ll s for novel design and 

implementation considerations as compared to the design and implementation 

considerations ofSA-DCT used within MPEG-4 and IT used within H.264. The main 

features of the SA-IT algorithm is that (l ) it provides the ability of coding arbitrary 

shaped video obj ects, (2) the forward and inverse transfomls can be implemented by 

only using simple additions and shifts without the need for mUlt iplications, (3) it 

minimizes computational complexi ty by using J6-bit arithmetic operations and (4) 

the introduction of a quant ization table look-up strategy that can avoid divisions at 

quanti zation. However, 2-D SA-IT causes the issue of having to code transfonned 

sub-coefficients individually, a matter di scussed in detail in Section 5.4. In the 

proposed research thi s issue has been so lved by only applying J-D (i.e. verti cal) SA­

IT, which onl y gives ri se to a marginal penalty in the bit rate. 

160 



Chapter 5 presented the design, implementation and performance analysis of an 

object-based coding extension to the Baseline profil e o f H.264 standard, based on the 

SA-IT proposed in Chapter 4. It was shown that the slice group structure of the 

standard H.264 CODEC needs to be modi fied and ex tended for the effective 

implementation of the proposed object-based cod ing framework. Flll1hermore a novel 

shape coding algorithm based on the MPEG-4 shape coding methodology was also 

proposed fo r the purpose of obj ect shape coding. Experimental results were prov ided 

to prove that the proposed shape coding a lgorithm is more effi cient compared to that 

used within the MPEG-4 standard . 

The inclusion of object-based coding in H .264 enables its enhanced ori ginal features 

such as the superi or rate di stortion performance to be effecti vely utili zed within new 

appl ication domai ns such as security and surveillance systems and hi ghl y bandwidth 

constrained communications applications that will benefit at least from the 

transmission of given ROls at higher quality. The additional functionality above was 

provided at no ex tra cost to the CODEC's rate-d istort ion perfonnance. Experi mental 

results were prov ided to justi fy thi s claim (see Chapter 4 and Chapter 5). The 

proposed CODEC has further being conceptually compared with the upcoming 

H.264 Scalable Video Coding (SVC) ex tension. It has been revealed that H.264 SVC 

can not handle the independent cod ing of arbitraril y shaped regions, but onl y regions 

made out of rectangular blocks. However, the proposed CODEC can only work on 

the assumption that the binary alpha maps of a video sequence are known. 

A detailed perfonnance analysis of the H.264 baseline profile CODEC (JM 10) was 

presented in Chapter 6. The aim of the analysis was to identi fy those coding 

parameters which have a signifi cant effect on computational complexity, memory 

utili zation, rate and distortion. The above analys is was perfo rmed on both the 

encoder and the decoder. A total of 9 parameters (see Table 6-20) have been 

identifi ed as the main contributors to computational complex ity, memory uti lization, 

rate and di stortion at the encoder, while 5 parameters were identifi ed as the main 

contTibutors at the decoder. These analys is results (i.e. signifi cant coding parameters) 

were subsequently used in the joint multi-obj ecti ve optimization of a H.264 CODEC. 

161 



- ------------

In Chapter 7, a multi-objective optimization framework for the H.264 base line profil e 

CODEC (JM 10) was proposed. The framework was used to achieve a joint 

optimization of computational complexity, memory usage, rate and di stortion based 

on the perfo mlance analys is results of Chapter 6. A genetic algorithm was used in the 

process. The most important advantage of the proposed optimization framework is 

that it produces an optimal or near optimal coding parameter set for encoding and 

decod ing video seq uences. It was fo und that the optimum parameter selection was 

generall y dependent on the source video content. However further analysis revealed 

that two videos with s imilar characteri sti cs/content has similar optimal coding 

parameter sets. 

In practice the proposed multi-obj ecti ve optimization strategy can be used to support 

a number of different appl ication scenarios. If a video is to be made available for 

streaming, knowledge about tile decoder constra in ts (e.g. memory, bandwidth and 

CP U constraints) can be relayed to the encoder via a feedback path . The encoder 

knowing its own limitations in computational power and memory can therefore use a 

pre-ca lculated look up table from which an optimal coding parameter set can be 

obtained. This parameter set can be subsequently be used in optimum coding. Further 

di fferent application domains may have di fferent constraints. For example if a mobile 

handset is to be used as the video decoder, the decoder computational power and 

memory capacity will be constTained In such an application the rate-di stortion can be 

min im ized under constraints of computational power and memory utili zation . In 

another example such as digital TV broadcast, the constraints will be the rate and 

di stortion as the bandwidth will be allocated a specific value which cannot be 

exceeded and the di storti on will be specified by subj ective quality requirements 

goveming digital television transmission. In thi s application decoder computational 

cost and memory utilization will not be a constra int, but will have to be minimized. 

The proposed fTamework can therefore be used in the multi-objective optimization of 

an y of the above application scenari os. It is noted that the application example used 

in Chapter 7 to demonstrate the framework 's use in multi obj ective optimization onl y 

specificall y considers a scenario where the rate and memory is constrained and 

162 



distortion and computational cost require to be minimized. This fl ex ibility of the 

proposed framework enables its widespread use in different app lication domains. 

It is noted that the proposed optimization framework did not consider invo lving 

network factors such as transmiss ion delay and packet loss etc, which are important 

in practica l applications. Therefore the appli cation of the proposed framework in an 

end- to-end opt imization of a video encoding, transmission and decoding system is 

limited. Rather the proposed framework provides a set of theoretical guidelines for 

the multi-objective perfonnance optimization methodology of a video CODEC, 

under resource constraints. 

8.2 Future Work 

The research presented in thesis has resulted in a number of origina l contribut"ions 

towards the functionality extension and performance optimization of a standard 

H.264 CODEC. A number of possibiliti es ex ist for the future ex tension and 

enhancement of the proposed ideas. They can be li sted as fo llows: 

I . The object-based coding of video requires the identifi cation of objects of 

interest. The experiments used in thi s thes is have either user manual object 

identification or have used given object shape temp lates that have been 

provided with the test video sequences. It should be possible to integrate 

an automatic object extraction algorithm into the CODEC as a pre­

processing stage that detects video objects (i.e. binary alpha maps) 

automatically prior to encoding. It is noted that depending on the 

application the accuracy required in the object shape identification can 

vary. 

2. The extension of the object-based coding ideas to the upcoming H.264 

Scalable Video Coding (SVC) standard is seen as a poss ible further 

directi on of research. The addition of object-based scalability to H.264 

SVC can furthe r improve its practical relevance. This work is to be carried 

163 



out in the near future under a DTI, UK funded project that is looking at the 

selective compression of CCTV video in surveillance applications. 

3. The reduction of computational cost of object-based coding is a further 

direction of investigation. The additional computational cost of object 

identification at individual frame levels, shape coding, tex ture coding or 

arbitrarily shaped video objects etc., leads to computationally additional 

cost that will make real time software only implementation of the 

algorithms close to impossible. Therefore hardware implementation 

options using FPGA should be considered as an altemative. This work has 

a direct practical relevance in industry. This work is to be calTied out with 

industrial collaboration in the near future. 

4. The optimization framework can consider two fUl1her aspects of 

improvement. First of all, it should be possible to group video sequences of 

similar stati stical nature (motion, tex ture etc.), enabling them to share the 

same objective function, without significant data fitness mismatches. This 

will largely simplify the practical use of the sys tem as optimal coding 

parameter set data can be shared by similar videos, rather than having to be 

individualised. 

5. The overall perfonnance of a video CODEC is not only dependent on the 

encoder and decoder constra.ints/ limitations. The transmission channel 

properties other than the bandwidth can severely impact the overall 

perfonnance. Thus the proposed optimization framework should be further 

extended to include channel constraints such as delay and packet loss 50 

that it can ideally be used in rea l network environment. 

The thesis has provided two significant contributions to video coding, in particular lo 

the functionality enhancement and performance optimization of the latest video 

coding standard H.264/ AVe. Experimental results and detailed analysis have been 

provided to support the novel concepts/ideas. The original contributions of this thesis 

t64 



In the area of object-based video coding have been published at a number of 

conferences (see Appendix C). Further two research articles on the proposed multi­

objective optimization framework, have been submitted for publication. 

165 



References 

[ I) LTU-T and MPEG, "Advanced video coding for generic audiovisual 
services," Tech. Rep. LTU-T Recommendation H.264 and ISOllEe 14496-10, 
May 2003 . 

[2] Z. Yafan, "Complex ity Management fo r Video Encoders," March . 2004. 

[3] ISO/lEC, "Information technology- Coding of moving pictures and 
assoc iated audio for digital storage media at up to about 1.5 Mbi tls-part 2: 
Video," Tech. Rep. ISO/[EC [ I [ 72-2 (MPEG-I Video), 1993. 

[4) ITU-T, "Generic coding of moving pictures and associated audio: Part 2 
video," Tech. Rep. LTU-T Recommendation H.262 ISOllEe 13818-2 MPEG-
2 video, 1994. 

[5) ISO/lEC, "Coding of audio-v isual objects- part 2: Visual ," Tech. Rep. 
ISO/IEC 14496-2 (MPEG-4 Part 2: Visual), 200 1. 

[6) N. Day and J. M. Martinez, "Introduction to MPEG-7," ISO/lEC 
JTCIISC29/WGfl , vo l. 375 1,2000. 

[7) ISOllEC, "MPEG-2I overview," Tech. Rep. ISO/lEe 
JTC I /SC29IWG I 1 IN523 I , Oct. 2002. 

(8) ITU-T, "Video CODEC for audiovisual services at px64 kbits," Tech. Rep. 
ITU-T Recommendation H.26 1, March 1993 . 

(9) ITU-T, "LTU-T H.262 (MP EG-2 video) infolll1ation technology- Generic 
cod ing of moving pictures and associated audio infomlation: Video," 
ISO/IEC, Tech. Rep. 13818-2, 1995. 

[10) LTU-T, "Video coding for low bit rate communication," Tech. Rep. LTU-T 
Recommendation H.263, 1998. 

[1 1) T. E. G . Richardson, H. 264 and MPEG-4 Video Compression: Video Coding 
for Next-Generation Multimedia. John Wiley & Sons, 2003. 

(1 2) l. Wikimedia Foundation, 
''http://en.wikipedia.orglwikilSource_ lnput_Format,'' vol. Accessed in 2007, 
December. 2006. 

[13) K. Language, "Wik ipedia, the free encyclopedia," Retrieved June, vol. 19, pp. 
2006. 

(14) T. Wiegand, G. Suliivan, G. 8jntegaard and A. Luthra, "Overview of the H. 
264/AVC video coding standard," Circuits and Systemsfor Video Technology, 
IEEE Transactions 0 11, vol. 13, pp. 560-576, 2003. 

166 



[15) I. T. U. T. S. Sector, "lTU-T Recommendation H.264. Advanced video coding 
for generi c audiovisual services," fTU-T Rec.H, pp. 14496- 14410,2005. 

[16) T. Wiegand and G. Suliivan, "Draft ITU-T Recommendation and Final Draft 
International Standard of loint Video Specification (ITU-T Rec. H. 2641 
rso/lEe 14496-10 Aye)," JVT-G050rl , Geneva, Switzerland, may, 2003. 

[ 17) H. Malvar, A. Haliapllro, M. Karczewicz and L. Kerofsky, "Low-complexity 
trans folm and quanti zat ion in H. 2641 AVe," Circuits and Systems Jar Video 
Technology, IEEE Transactions 011, vo l. 13, pp. 598-603,2003 . 

[18) A. Hallapuro and M. Karczewicz, "Low Complexity Transfornl and 
Quantization- Part 1: Basic lmplementation," J VT Documell t JVT-B038, 
February, 200 I. 

[19) H. Musmann, M. Hoetter and l . Ostel111ann, "Object-oriented analys is­
synthesis coding of moving images." Signal Process Image COI1l IllIlIl, vo l. I , 
pp. 11 7- 138,1989. 

[20) N. Brady, "MPEG-4 standardized methods fo r the compression of arb itraril y 
shaped video objects," Circuits and SystemsJOI' Video Technology, [EEE 
Tran sactions 011, vol. 9, pp. 1170-1189,1999. 

[21) N. Brady and F. Bossen, "Shape compression of moving objects using 
context-based arithmeti c encoding," Signal Process Image COllllllun, vol. 15, 
pp . 601-617,2000. 

[22) [SO/IEC, "information technology- Coding of audio-visual objects part 2: 
Visual," Tech. Rep. 14492-2 (MPEG-2 Video), July 2000. 

[23) l. H. Witten, R. M. Neal and J. G. Cleary, "Arithmetic coding for data 
compression," Commul1 ACM, vo l. 30, pp. 520-540, 1987. 

[24) T. Sikora, "Low complex ity shape-adapti ve DCT for coding of arbitrarily 
shaped image segments," Signal Process Image COl/ll/lun., vol. 7, pp. 6, 1995. 

[25) A. Kaup and S. Panis, "On the PerfOnllanCe of the Shape Adaptive DeT in 
Object-Based Coding of Motion Compensated Difference Images," Proc.oJ 
1997 Picture Codin.g Symposium, pp. 653-657, 1997. 

[26] A. Kaup, "Object-based texture coding of moving video in MPEG-4," 
Circuits alld Systems for Video Technology, [EEE Transactiolls Oil, vol. 9, pp. 
5-15, 1999. 

[27) T. Ebrahimi , "MPEG-4 video verification model version 11.0," [SO/IEC 
JTC I/SC29/WGll, MPEG98, vo l. N2 172, 1998. 

167 



[28] J. W. Vi, S. J. Cho, W. J. Kim, S. D. Kim and S. J. Lee, "A new coding 
algoritlun for arbitrarily shaped image segments," Signal Process Image 
COII/II/UII, vo l. 12, pp. 231 -242, 1998. 

[29] G. Z. Shen and B. M. L. Liou, "Arbitrarily shaped transform coding based on 
a new padding technique," Circuits alld Systems for Video Technology, IEEE 
Transactions on, vol. 11 , pp. 67-79, 2001 . 

[30] S. Li and W. Li , "Shape-adaptive discrete wavelet transforms for arbitrarily 
shaped visual obj ect coding," Circuits and Systems for Video Techllology, 
IEEE Transactions all, vo l. 10, pp. 725-743, 2000. 

[31 ] I. Donescu, O. Avaro and C. Roux, "A comparison of efficient methods for 
the coding of arbitrari ly shaped image segments," Proc. Picture Coding Symp, 
pp. 181- 186, 1996. 

[32] J. ShinHaeng, P. JungWook and K. ShinDlIg, "Optimization of Memory 
Management for H.2641 A VC Decoder," vol. I, pp. 65-68, 2006. 

[33] T. Wiegand, M. Lightstone, D. Mukherjee, T. Campbell and S. Mitra, "Rate­
di stortion optimized mode selection for very low bit ratevideo coding and the 
emerg ing H. 263 standard," Circuits and Systems for Video Technology, 
!EEE Transactions Oil , vo l. 6, pp. 182- 190, 1996. 

[34] K. H. Yang, A. Jacquin and N. S. Jayant, "A nonnali zed rate-distortion model 
for H. 263-coOlpatible codecs and its application to quanti zer selection," 
Proc.Illt. Con/ Image Processing, vol. 2, pp. 41--44, 1997. 

[35] G. J. SlIlIivan and T. Wiegand, "Rate-distortion optimization for video 
compression," IEEE Sigil a/ Process. Mag., vol. 15, pp. 74-90, 1998. 

[36] Z. He and S. Mitra, "A unifi ed rate-distortion analysis framework for 
transfOlm coding," Circuils and SystenlS for Video Technology, IEEE 
Transactions on, vo l. 11 , pp. 1221-1236,2001. 

[37] T. Wi egalld and B. Girod, "Lagrange multiplier se lection in hybrid video 
coder control ," Image Processing, 200J.Proceedings.200J Internation.al 
Conferellce on, vol. 3,200 1. 

[38] T. Stockhammer, D. Kontopodis and T. Wiegand, "Rate-Distortion • 
Optimization for JVT/H. 26L Video Coding in Packet Loss Environment," 
12th International Packet Video Workshop (P V 2002), may, 2002. 

[39] K. Takagi, Y. Takishima and Y. Nakaj ima, "A study on rate distortion 
optimization scheme for JVT coder," Proceedings of SPfE, vol. 5150, pp. 
914-923,2003. 

168 



(40J S. Ma, W. Gao and Y. Lu, "Rate-distortion analysis for H. 264/AVC video 
coding and its application to rate contro l," IEEE Transactions 011 Circuits 
and Syslellls for Video Technology, vol. IS, pp. 1533-1 544,2005. 

(41 J D. Kwon, P. Agathoklis and P. Driessen, "Performance and computational 
complexity optimization in a configurable video coding system," Wireless 
Communications and Networking, 2003. WCNC 2003.2003 IEEE, vo l. 3, 2003 . 

(42J J. Zhang, Y. He, S. Yang and Y. Zhong, "Perfomlance and complex ity joint 
optimization for H. 264 video coding," Circuits and Systems, 2003. [SCAS'03. 
Proceedillgs of the 2003 International Symposium on, vo l. 2,2003. 

(43] J. Stottrup-Andersen, S. Forchhammer and S. Aghito, "Rate-distortion­
complexity optimization of fast motion estimation in H. 2641MPEG-4 AVC," 
Image Processing, 2004.JCIP'04.2004 International Conference on, vol. I , 
2004. 

(44] Y. Hu, Q. Li , S. Ma and C. C. J. Kuo, "JOINT RATE-D/STORTlON­
COMPLEXITY OPTIMIZATION FOR H. 264 MOTION SEARCH," 
Inlemotion Conference 0 11 Multimedia & Expo. (ICME 2006), TOI'OIlIO, 2006. 

[45] C. Kannangara, 1. Richardson, M. Bystrom, J. Solera, Y. Zhao, A. 
MacLennan and R. Cooney, "Complexity reduction ofH. 264 using Lagrange 
optimization methods," 2005. 

(46] W. Pu, Y. Lu and F. Wu, "Joint Power-Distortion Optimization on Devices 
with MPEG-4 AVCIH. 264 Codec," Communications, 2006.JCC'06.JEEE 
International Conference on, vol. I , 2006. 

[47] Z. Chen and 1. Ahmad, "Power-rate-distortion analysis for wireless video 
communication under energy constraints," Circuits and Syslemsfor Video 
Technology, IEEE Transactions on, vol. IS, pp. 645-658,2005. 

(48] 1. Ismaeil , A. Docef, F. Kossentini and R. Ward, "A computation-distortion 
optimized framework for efficient DCT-based video coding," Multimedia, 
IEEE Transactions on, vo l. 3, pp. 298-310,200 1. 

[49] J. R. Lorch and A. J. Smith, "Improving dynamic voltage scaling algorithms 
with PACE," Proceedings of the 2001 ACM SIGMETRlCS International 
Conference on Measurement and Modelillg of Computer Systems, pp. 50-61 , 
200 1. 

[50] X. Li, E. Edirisinghe and H. Bez. Shape adaptive integer transform for coding 
arb itraril y shaped objects in H. 264/AVC. Presented at VClP 2006. 

[5 1] Karsten Suhring. 2006, H.264 reference software: JM 10. 

[52J C. Toklu, A. M. Tekalp and A. T. Erdem, "Semi-Automatic Video Object 
Segmentation in the Presence of Occlusion," IEEE TRANSA CTIONS ON 

169 



CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 10, pp. 625, 
2000. 

[53) T. Meier and K. Ngan, "Automatic segmentation of moving objects for video 
object planegeneration," Circuits and Systems for Video Techllology, IEEE 
Trallsactions Oil, vo l. 8, pp. 525-538, 1998. 

[54) G. Langdon Jr and J. Rissanen, "Compression of black-white images with 
arithmetic coding," IEEE Trans. COII/mun., 198 1. 

[55) H. Schwarz, D. Marpe and T. Wiegand, "Scalable Extension ofH. 264/AVC," 
MI0569, Munich, March, 2004. 

[56) H. Schwarz, D. Marpe and T. Wiegand, "Overview of the Scalable H. 
264fMPEG4-A VC Extension," IEEE II/I'/. COllfImage Processillg, Atlanta, 
GA, Oct, 2006. 

[57) M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, "H. 264/AVC baseline 
profile decoder complexity ana lys is," Circuits and Systems for Video 
Techllology, IEEE Trallsactiolls on, vo l. 13, pp. 704-7 16, 2003. 

[58) K. Hari and F. Borko, "Complex ity Estimation of the H.264 Coded Video 
Bitstreams," Th e CompUler JO I.I.l'I1al, vol. 48, pp. 504-513,2005 . 

[59) Z. Jun, Y. Xiaoquan, L. Nam and S. Weij ia, "Bit rate distribution ana lysis for 
motion estimation in H.264," ICCE 2006, pp. 483-484, 7- 11 Jan. 2006. 

(60) H. CHENG, M. ISNARDI and A. KOPANSKY, "Macro-block based mixed 
reso lution video compression system," MACRO-BLOCK BASED MIXED 
RESOLUTION VIDEO COMPRESSION SYSTEM, 2006. 

(61) 1. Wik imedia Foundation, ''http://en.wikipedia.org!wiki/Instruction_cycle,'' 
vol. Accessed in 2007, 22 June. 2007. 

(62) X. Xiaozhong and H. Yun , "Comments on motion estimat ion algorithms in 
current JM software," 2 1 October, Tech. Rep. JVT-Q089, 2005 . 

(63) K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, "A Fast Elitist Non­
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: 
NSGA-U," Proceedillgs of the Parallel Problem SolvillgfrOIll Nature VI 
Conference, pp. 849-858, 2000. 

(64) K. Deb and D. Kalyanmoy, Multi-Objective Optimizatioll using Evolutiollmy 
Algorithms. John Wiley & Sons, 2001, 

(65) Kanpur Genetic Algorithms Laboratory. 
(Http://www.ii tk .ac.in/kangal/codes.shtml. Accessed in 2007(2 Septembel~ 

(66) I. The MathWorks. (2007, Http ://www.mathworks.com.Accessed in 2007(22 
August) 

170 



[67] Zitzler, E., "Evolutionary algorithms for multiobjective optimization: 
Methods and applications", Master's thesis, Swiss federal Institute of 
technology (ETH), Zurich , Switzerland (1999). 

[68] Zhjbo Chen, Peng Zhou, Yun He, "Fast Integer Pel and Fractional Pel Motion 
estimation in for JVT", JVT-FOI7rl .doc, December, 2002. 

[69] Zhibo Chen, Peng Zhou, Yun He, "Fast Motion Estimation for JVT", JVT­
GOI6, March, 2003. 

[70] Jianfeng Xu, Ping Yang, Yun He,"Modifi cation of Fast Motion Estimation" , 
JVT-J027, December, 2003. 

[71] Xiaoquan Vi, Jun Zhang, Nam Ling, and Weijia Shang, "Improved and 
simplifi ed fast motion estimation for JM", JVT-P021 , July, 2005. 

171 



Appendix A: Objective Functions of Video 

Sequences for Encoder 

1. Objective Functions of Computational Complexity 

TenTI s and coefficients of Foreman 

Coefficients Xl X2 X3 X4 X9 

2. 1639500000000 0 0 0 0 0 
-I. 7264615762201 0 0 0 0 1 

2.2984 189258933 1 1 0 0 0 
-1.0048 139336747 0 0 0 1 1 
-2.4477332625048 1 1 1 0 0 

0.4609369423541 0 0 0 2 0 
-2.6999 195302205 1 0 0 0 2 

-0.2545023644350 0 1 0 0 2 

-0.1219815153486 0 0 1 0 2 

0.0869053436663 1 1 2 0 0 
2.94203209 11703 1 0 1 0 2 

0.068 11 95798671 0 1 1 0 2 
-1.0564765050 174 1 0 2 0 2 
-0.02004367388 11 2 1 2 0 1 

0.05 11 330321821 2 1 1 0 2 
1.3708908736189 1 1 2 0 2 

-0.0 176222885209 2 2 0 0 2 
0.1 6244568980 17 0 0 1 0 3 
0.3846404082604 0 0 0 1 3 
0.280 1060896166 1 1 3 0 0 
1.7876106709402 1 1 0 0 3 

-0.4434475235357 1 1 3 0 1 

-1.78356 19625525 1 1 1 0 3 
0.00 14769510 11 2 2 0 3 0 0 

-0.0256489256699 0 0 2 0 3 
0.0003964872774 3 2 1 0 0 
0.0024595393335 2 1 3 0 0 

-0.01903 15488655 2 1 0 0 3 
-0.00 183841 18293 2 0 3 0 1 

0.12558016 13352 1 0 3 0 2 

-0.007977703377 1 0 0 0 5 1 

172 



TenTIs and coefficients of Coastguard 

Coefficien ts X, X2 X3 X4 x9 

-0. 1353090000000 0 0 0 0 0 

0.62237 176332 15 0 0 I 0 0 

-0.7639253069740 0 0 I 0 I 

0.210372 1141288 0 0 0 I I 

-2 .28573976994 10 I I 1 0 0 

-0.0 18875300 11 30 2 0 0 0 0 

0.0338375348325 0 0 2 0 0 

-2.4962044576467 I 0 0 0 2 

3.821 9 157760919 I I 0 0 2 

2.9604016016292 I 0 I 0 2 

0. 1638829083457 I I 2 0 I 

-1.05572750 18342 I 0 2 0 2 

1.1088677292850 I I 2 0 2 

0.00 1895782 1931 3 0 1 0 0 

0.2430339 193185 I I 3 0 0 

-0.2 170583257694 I 1 0 0 3 

-0.382443403 1035 I I 3 0 I 

-1.4 752429075846 I I I 0 3 

-0.0000439117923 3 0 0 I 2 

0. 1209490596 199 I 0 3 0 2 

0.0500235607222 0 0 0 4 0 

-0.0000544259430 4 0 2 0 0 

-0.00 10097 186680 0 0 4 0 2 

0.0 135237743140 0 0 2 0 4 

0.0466825571 904 0 0 0 2 4 

-0.0 174957239 122 0 0 0 5 I 

173 



Temls and coefficients of Mother & Daughter 

Coefficients XI Xz X3 X. X9 

-0.204 1517956412 0 0 0 0 0 
0.3165646733353 0 0 I 0 0 

-0.3385939801707 0 0 1 0 1 
0.27503 19893053 0 0 0 1 1 

-2.3004076262064 1 1 1 0 0 
-2.5655364292056 1 0 0 0 2 
3.7864693852438 1 1 0 0 2 
2.9953569554 126 1 0 I 0 2 

-1.0795540 124 119 1 0 2 0 2 
1.3794327907866 1 I 2 0 2 
0.3057298569872 1 I 3 0 0 

-0.0293689868774 1 I 0 0 3 
-0.4582364962363 1 I 3 0 1 
-1.7154566609996 1 I I 0 3 
0.125030 I 095724 I 0 3 0 2 
0.0338324704338 0 0 0 4 0 
0.0038274781955 0 0 2 0 4 
0.03 16089895731 0 0 0 2 4 

-0 .01248144 15485 0 0 0 5 I 

Terms and coefficients of Mobi le 

Coefl1cients XI Xz X3 X4 X9 

-0.42941625 1785 1 0 0 0 0 0 
0.7549975429279 0 0 I 0 0 

-0.67 18366608609 0 0 I 0 I 
0.3288496 10111 5 0 0 0 I I 

-2.184732500057 1 I I I 0 0 
-0.0222887445793 0 0 2 0 0 
-2.46774 1728 1324 I 0 0 0 2 
3.675633 1710827 I I 0 0 2 
2.8447847458364 I 0 I 0 2 

-1 .0003533778 134 I 0 2 0 2 
1.2833452606370 I I 2 0 2 
0.2873744854059 I I 3 0 0 

-0.077438349 1485 I I 0 0 3 
-0.4280857055542 I I 3 0 I 
-1.59568033 18535 I I I 0 3 
0. 11 33548386039 I 0 3 0 2 
0.0578099580610 0 0 0 4 0 
0.0082448774314 0 0 2 0 4 
0.0535867026846 0 0 0 2 4 

-0.02060 17085 128 0 0 0 5 I 

174 



2. Objective Function of Memory Utilization 

Tenus and coefficients of objective function of memory 

Coefficien ts XI Xz X3 Xs X9 

-I 1.2803946546805 0 0 0 0 0 

0.024 1483793543 0 0 I 0 0 

17.01670036993 19 0 0 0 0 I 

2.6706783005441 I 0 0 0 I 

-0.0161330025392 0 I 0 0 I 

-0.2828079894569 I I I 0 0 

0.0270330548904 0 I I 0 I 

0.0079895803368 0 2 0 0 0 

0. 1003377607644 0 0 2 0 0 

0.0002 126063886 0 2 1 0 0 

-0.1 6 1147039 1607 0 0 2 0 I 

0.2665103085206 0 0 I 0 2 

0.59247228243 11 0 0 0 I 2 

-4.3299779585142 I 2 I 0 0 

0.09932020657 11 I I 2 0 0 

-0.0 11 8537056 107 0 I 2 0 I 

0.0 18487542072 1 I 0 I 0 2 

-0.0001332936693 0 I 0 I 2 

-0.0000 124933203 0 2 I I I 

1.4984380370870 I 2 2 0 0 

3.7491009439705 I 3 0 0 0 

-0.007372156004 1 I 0 3 0 0 

-0.0 111 76846 1643 I I 3 0 0 

0.0048 165979422 I 0 3 0 I 

0.001553 154583 1 0 1 3 0 I 

0.000010929324 1 0 3 0 I 2 

-0. l664527590542 I 2 3 0 0 

-0.004200057 1827 I 0 2 0 3 

-1.1929322197609 1 4 0 0 0 

-0.0000 181213598 0 4 0 0 I 

0.0007662652350 I 0 4 0 0 

0. 12585082243 10 1 5 0 0 0 

0.0000004765936 0 0 5 I 0 

0.0000570994767 0 0 5 0 I 

0.0162 173407242 1 0 0 0 5 

175 



3. Objective Functions of Rate 

TenTIs and coefficients of Foreman 

Coefficients x, x, x, x, 

2.2435 1430 16075 0 0 0 0 

-0.00833889 14222 1 1 0 0 

-0.00120 13400334 2 0 0 0 

0.00 1266490 1953 0 1 1 2 

-0.00000 11607879 2 2 0 1 

0.0000 14 1554382 3 0 0 0 

0.000249669 1641 1 3 0 0 

0.000698907 1614 0 1 0 3 

0.0000407452993 1 1 3 0 

-0.00084989701 16 1 0 2 3 

0.0000000212768 3 2 0 2 

0.0003966735593 1 0 3 3 

0.0000000356334 4 1 0 0 

-0.0000356208983 1 4 0 0 

-0.0000044050569 0 4 1 1 

-0.0000000029999 4 2 0 0 

-0.0000000008078 4 2 0 1 

0.000000000 1379 4 3 0 0 

0.000000003421 6 4 0 0 3 

0.0000020245849 1 5 0 0 

-0.0000000000242 5 1 1 0 

0.0000002 176532 0 5 1 1 

-0.000064654 1968 1 0 1 5 

-0.0000000002487 2 5 0 0 

-0.000000041 7589 1 6 0 0 

-0 .0000000000004 7 0 0 0 

0.00439 19437782 0 0 0 7 

176 



Tenns and coeffi cients of Coastguard 

Coefficien ts X6 X7 Xs x 9 

2.033396 1674744 0 0 0 0 

-0.084 1058555285 0 1 0 0 

0. 1070654275799 0 1 0 1 

-0.0008 107864627 2 0 0 0 

0. 1524712016774 0 0 0 2 

-0.000341 2278436 2 1 0 0 

0.00078563393 13 1 2 0 0 

-0.0396675698067 0 2 0 1 

-0.00002 18303527 1 1 1 2 

0.00005355834 19 2 2 0 0 

-0.0002014530839 1 2 2 0 

0.0000146247602 2 2 2 0 

0.00001 1 1713244 3 0 0 1 

0.0012428518098 0 3 1 0 

-0.0000679048609 1 3 1 0 

-0.0000050648441 2 3 0 0 

0.0079743 127476 0 3 0 2 

-0.0000008093696 3 2 1 0 

0.00000000555 18 3 2 0 1 

0.0000000 17524 1 3 3 1 0 

-0.0000000644805 4 0 1 0 

-0.0007468784879 0 4 0 1 

0.0000000007324 4 1 1 1 

-0.000000 1538453 4 0 0 2 

0.0000003573058 2 4 0 0 

-0.0000 186586542 0 4 2 0 

0.0000000029953 4 2 1 0 

-0.0000000528699 2 4 1 0 

0.000001278 1595 1 4 2 0 

0.0000007652952 2 1 4 0 

0.0000000083870 4 0 3 0 
-0.00000000037 12 3 4 0 0 

-0.00 10865634277 0 3 0 4 

0.00000022866 18 0 5 0 0 

0.0000000025776 5 1 0 0 

0.0000352455425 0 5 0 1 

-0.0000000000867 5 1 0 1 

0.0000073802999 1 1 0 5 
0.0000000016059 5 0 0 2 

-0.0000000068 107 2 5 0 0 

-0.0000000000262 6 1 0 0 

-0.0000006360545 0 6 0 1 

177 



TemlS and coefficients of Mother & Daughter 

Cocf/icicnts x. X7 X8 x. 

2.54769 18816222 0 0 0 0 

-0.04 10481765732 1 0 0 0 

-0.0493028266920 0 2 0 0 

-0.0032472726700 1 2 0 0 

0.0000398149865 2 1 1 0 

-0.0000 144011 157 1 2 1 1 

0.00000 12759856 2 1 2 1 

0.0180260395138 0 3 0 0 

0.0008014902210 1 3 0 0 

0.0000000122287 2 3 I 1 

-0.0000000973232 3 1 3 0 

0.0002422268 119 0 1 3 3 

-0.0027153649640 0 4 0 0 

0.0000000135165 4 1 0 0 

-0.0000869 156354 1 4 0 0 

-0.0000252714966 1 1 4 1 

-0.0000000017686 4 2 0 0 

0.0000000000665 4 3 0 0 

0.0002083877407 0 5 0 0 

0.0000044493679 1 5 0 0 

-0.0000000002865 2 5 0 0 

-0.0000000000542 6 0 0 0 

-0.0000080760452 0 6 0 0 

-0.0000000868578 1 6 0 0 

0.0000000000009 7 0 0 0 

0.0000001256033 0 7 0 0 

0.0024 18445 1756 0 0 0 7 

178 



Tenns and coefficients of Mobile 

Coefficients X6 X7 Xs X9 

1.6921719044047 0 0 0 0 

0.0 1407 19987585 1 0 0 0 

0.5 153865375857 0 0 0 1 

-0.0294840209947 1 1 0 0 

0.029260002559 1 1 1 1 0 

-0.000746 11 24035 2 0 0 0 

-0.0016400324217 0 2 0 1 

-0.0007389478888 2 1 2 0 

0.00026 14447708 1 3 0 0 

-0.0209470940089 0 1 3 0 

0.002202 1870172 0 1 0 3 

0.0000009242727 3 1 0 1 

-0.000000 1 660109 3 2 0 0 

0.0000005074097 2 3 0 0 

0.0000167029577 0 3 0 2 

-0.0000000489926 3 2 1 0 

0.000053 196 1312 3 1 2 0 

0.0000000046372 3 3 1 0 

-0.0000 11 43 12949 3 1 3 0 

-0.00003850663 10 1 4 0 0 

-0.00000 13261416 4 1 1 0 

-0.000000039 1800 4 1 0 1 

-0.0000000029 138 4 0 1 1 

-0.0000000 1382 19 2 4 1 0 

0.0000000136669 5 1 0 0 

0.000002 1733192 1 5 0 0 

0.0000000083547 5 1 1 0 

0.0000000004200 5 1 0 1 

0.00000002 18650 1 5 1 0 

-0.000000000 1 379 6 1 0 0 

0.0000000000044 6 0 0 1 

-0.0000000456600 1 6 0 0 

-0.0000000 11 34 12 0 6 1 0 

0.00000000 12937 0 7 0 0 

179 



4. Objective Functions of Distortion 

Terms and coefficients of Foreman 

Coefficients X6 X7 Xs X9 
65.1588589406607 0 0 0 0 
- 1.4922287197 157 I 0 0 0 
-0.3750 129 163973 0 I 0 0 
-0.3928929231829 0 0 I 0 
-0.57962439839 19 0 0 0 I 
0.0230362242037 I 0 I 0 
0.0060342028260 I I I 0 
0.0349453392479 2 0 0 I 
0.03 12966257288 0 2 I 0 

-0.0 100564976455 2 0 0 2 
-0.0127834701557 0 2 2 0 
-0.0002629879769 3 0 0 0 
-0.0000009414790 3 I 2 0 
-0.0000018978762 I 4 0 0 
-0.000000277 1823 4 0 2 0 
0.0000033407981 0 4 2 0 
0.000000007890 1 4 1 2 0 
0.000000 1703057 4 0 0 3 

-0.0000086880378 3 0 0 4 
0.000000014 1076 5 0 I 0 

-0.0000000000738 5 1 0 1 
-0.0000000000070 5 2 0 0 
0.00000000 14449 2 5 0 0 

Tenns and coefficients of Coastguard 

Coefficients X6 X7 Xs X9 

61.360023041222 1 0 0 0 0 
-1 .0070409839406 I 0 0 0 
-0.4386427303395 0 I 0 0 
-0.1345095348741 0 0 I 0 
0. 1448303500236 0 0 0 I 
0.004824963 1790 I I I 0 
0.0000590 185186 2 0 0 1 
0.0365005 136265 0 2 1 0 

-0.014274199831 8 0 2 2 0 
0.000 1086 189398 3 0 0 0 

-0.0000003792590 3 1 2 0 
-0.0000016570306 1 4 0 0 
0.000000097 1618 4 0 2 0 
0.0000025932247 0 4 2 0 

-0.0000000062894 5 0 1 0 
0.0000000009285 2 5 0 0 

180 



Tenns and coefficients of Mother & Daughter 

Coefficients x. X7 x, " 66.745037 1247196 0 0 0 0 
-0.8710008865799 1 0 0 0 
-0.1061563830 113 0 1 0 0 
-6.9544788960645 0 0 0 1 
0.036 1409838943 0 0 2 0 
0.0000572 121417 1 2 0 1 
0.0028856776789 0 2 2 0 
0.000 1305502472 3 0 0 1 

-0.0000000201228 3 1 2 1 
-0.0000000 19 1904 2 3 0 2 
-0.000000984 1051 4 0 0 0 
-0.0010576406229 2 0 0 4 
-0.00000001 73704 2 4 1 0 
0.0000003845855 1 4 2 0 
0.0000000000607 4 3 0 0 

-0.0000466999534 0 3 4 0 
0.0215628377216 1 0 0 5 

-0.0000000003126 5 0 1 1 

Tenns and coefficients of Mobile 

Coerticients x. x, Xs X9 

55.0465698869160 0 0 0 0 
-0.5743043025305 0 1 0 0 
0.0049766743997 1 1 0 0 
0.003326 1834174 1 1 1 0 

-0.0509530017537 2 0 0 0 
0.0257377965568 0 2 0 0 

-0.0494029683787 1 0 1 2 
0.0026799892264 2 0 1 2 
0.00 11 046 138834 3 0 0 0 
0.0868 179 165 181 0 0 0 3 
0. 101 057 17 18 182 0 0 1 3 

-0.00005 13452 131 3 0 1 2 
-0.0000009030638 2 3 1 0 
0.0000000336459 3 1 1 2 

-0.0000074632336 4 0 0 0 
0.0000003023367 4 0 1 2 
0.0000000480302 2 4 1 0 

-0.000000056 1712 1 5 0 0 
-0.0000004451743 0 5 I 0 

181 



Appendix B: Objective Functions of Video 

Sequences for Decoder 

1. Objective Functions of Computational Complexity 

TemlS and coeffi cients of video sequences 

Forema n Coastguard 

Coeffic ients Xz '. Coeflicien ts Xl x. 

0.069127752684 1, 0 0 -0.0099 169593695 0 0 

0.004856 1465279, 0 4 0.0847809204899 0 1 

-0.0000000026428, 5 4 0.0003 196623694 1 3 

0.0000000 19 1421 4 5 -0.0000 183393317 2 3 

0.00000000 10837 5 3 

Mother & Daughter Mob ile 

Coeflicien ts x, x. Coefficients x, X6 

0.0 1058 1932647 1 0 0 0.072223278 1428 0 0 

0.0677 158006827 0 1 0.000987339380 1 1 2 

-0.0049860046833 1 1 -0.0000900 136367 2 2 

0.00 11 226064433 2 1 0.0000027543944 3 2 

-0.000 11 9 1243457 3 I 0.00609499 14377 0 4 

0.0000059530 172 4 1 

-0.000000 1129254 5 I 

182 



2. Objective Functions of Memory Utilization 

Terms and coeffi cients of memory utili zation 

Coeffic ients XI X, x, 
-0.5239030496 124 0 0 0 

0.8034257057 108 0 0 1 

0.07236582 11 318 1 0 2 

-0.000000213 1269 5 0 1 

0.0000 179625956 1 0 5 

0.0000000766780 6 0 0 

183 



------------------------------------

Appendix C: List of Publications 

The publications related to the work presented in thi s thes is are listed below. 

Accepted conference papers: 

I . X. Li, E. Edirisinghe and H. Bez. "Extensions to H.264 Baseline Profile Encoder 

Towards Video Object Coding", VIE 2007. 

2. X. Li , E.A Edirisinghe and H.E. Bez, "Selecti ve Compression of Video with 

H.264/AVC", Proceedings or the 6th lASTED on Visualization, lmaging, and 

Image processing, pp 579-584, 2006. 

3. X. Li, E. Edirisinghe and H.Bez, 2006, "Shape adaptive integer transrorm for 

coding arbitrari ly shaped objects in H.2M /AVC", VCIP 2006, Vol. 6077, C 1-

CIO. 

Submitted papers: 

I . X. Li, E. Edirisinghe and H. Bez, "Method for Coding Arbitrarily Shaped Video 

Objects in H.264/AVC", submitted to IEEE Transactions on Multimedia, on 19 

April , 2007. 

2. X. Li , E. Edirisinghe and C. Grecos, "Multi-objective Opt imization of a 

H.264/AVC Video CODEC", submitted to the 2008 International Congress on 

Image and Signal Processing (CISP2008), on 26 Oct. 2007. 

Paper under preparation: 

I. X. Li, E. Edirisinghe and C. Grecos, HA Multi-objective Optimization 

framework for Video CODECs", will be submitted to IEEE Transactions on 

Communications. 

[84 



- - - -----






