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Abstract

The H.264/AVC video coding standard offers enhanced performance compared to
previous coding standards in terms of both rate-distortion (R-D) performance and
functionality, In particular, its superior rate-distortion performance has resulted in a
significant interest in its practical application in many different domains ranging
from multimedia to security and surveillance. As a result in the recent past many
successful research attempts have been made in further improving its efficiency and
extending its application domains. This thesis provides two novel contributions: an
object-based extension that is capable of extending H.264/AVC’S effective use in
video surveillance applications and a multi-objective optimization framework that

can be used to enhance H.264/AVC’s use in any general application area.

The first part of the thesis presents the design of a novel Shape Adaptive Integer
Transform (SA-IT) and associated quantization procedures, to enable the coding of
arbitrarily shaped video objects within H.264/AVC. The novel transform specifically
enables maintaining the 16-bit integer arithmetic requirements of the standard. The
thesis also presents the introduction of a novel binary shape coding strategy to
H.264/AVC that is proved to be more efficient as compared to the shape coding
scheme adopted by MPEG-4 visual. In addition, the slice group structure of the .
H.264/AVC is further extended and effectively used with flexible macroblock
ordering (FMO) to provide support for object-based coding. The thesis shows that the
proposed object-based CODEC provides the ability to selectively code images (video
frames), enabling the ability to reconstruct important, pre-defined, foreground objects
at high quality levels, leading to applications in the security & surveillance industry.
Experimental results are provided to prove that the above' functional enhancements

come at no additional cost to the R-D performance.

The second part of the thesis provides a novel framework for the performance
optimization of a standard H.264/AVC CODEC. The effect of different coding
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parameters on the video quality, bit rate, computational complexity and memory
utilization are initially investigated in detail, leading to the identification of
significant coding parameters. This knowledge is subsequently used in developing a
multi-objective optimization framework for a H.264/AVC CODEC. In particular the
use of the proposed framework in the joint minimization of the distortion and
computational complexity, in a memory and bandwidth conétrained environment is
presented. The framework produces a set of optimal or near optimal coding
parameters (which can be used for optimizing the trade-off between complexity,
memory, rate and distortion) that can be directly used in achieving the optimum
performance setting of a H.264/AVC CODEC. This is the first attempt in the
literature that has investigated the joint complexity-memory-rate-distortion (C-M-R-

D) optimization in video coding,.

The work presented in this thesis contributes in extending the use of H.264/AVC to
new application domains such as CCTV surveillance. Further the proposed multi-
objective optimization framework and the associated methodologies can be used

generally for the performance optimization of any video coding standard.

Xiongwen Li
October 2007
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Chapter 1 Introduction

1.1, Problem Statement

The new video coding standard, H.264/AVC (1, 11] (hereafier referred to as [1.264),

offers enhanced performance compared to other previous video coding standards {e.g.

MPEG-2, MPEG-4 Visual, H.263 etc.) in terms of both compression efficiency
(approximately a 50% bit rate saving is achievable for equivalent perceptual guality
{141} and flexibility {provides for a much wider range of applications). However, one
noteworthy functionality absence in H.264 specifically in comparison to MPEG-4
Visual (Part-2) [5] (hereafter referred to as MPEG-4) is the capability of coding
arbitrarily shaped video objects. Such a capability can enable H.264 to enhance
coding efficiency and flexibility by providing the means for coding selected
arbitrarily shaped object(s)/region(s) at a higher quality level as compared to the
visually non-important background. This is a highly desirable functionality for
applications in highly bandwidth constrained mobile telephony and in CCTV
surveillance systems where video quality is of utmost importance for post incidence
analysis. In mobile telephony, the limited size of screen solicits the acceptability of
encoding the background of a video frame at a lower quality as compared to the
foreground, for e.g. representing speaker in a conversational application scenario,
under bandwidth constraints. In CCTV applications, provided a pre-processing stage
can scparate important objects/regioﬁs (for the purpose of post incidence analysis),
these areas can be coded at a much better quality level as compared to the
background. Though region/object based coding has been well investigated under
-JPEG-ZOOO, MJPEG—ZOIOO and MPEG-4, no attempt has been made to inciude object-
based coding to H.264. The inclusion of object-based coding concept within H.264
requires resolving many research challenges, particularly due to the need to maintain
compliance with its complicated coding architecture, efficiency and integer

arithmetic requirements.



Due to the high demand of applications requiring real-time video coding, mainly
supported by capture, processing, transmission and display devices/mediums that are
running under constraints, recently a significant amount of research momentum has
been gathered in the area of optimizing video coding standards. With the recent
standardization of H.264, the video optimization research has mainly been focused
on this standard. In literature, the existing contributions to the optimization of H.264
have focused on reducing computational complexity, rate and distortion, either
individually or pair wise. A single attempt has also been made at the joint complexity,
rate and distortion optimization of H.263 [47]. These optimizations have focused on
aigorithmic enhancements or improvements, such as fast algorithms for motion
estimation {ME), fa;st algorithms for coding mode selection and block skipping. A
careful analysis has revealed that none of these optimizations has attempted to
optimize a joint complexity, memory, rate and distortion (C-M-R-D) based on an
optimal selection of H.264’s numerous coding parameters. Further the existing
optimizations have either been limited solely to the encoder or to the decoder. In

other words no attempt has been made in optimizing an entire H.264 CODEC.

It is known that the performs:mce of H.264 depends on a large set of coding
_parameters, including the choice of different fast motion estimation algorithms and
rate-distortion optimization modes etc. A correct set (i.e. a combination) of coding
parameters can enable a H.264 CODEC to achieve optimum performance. Therefore,
the right selection of parameters is an open research question. Howéver the choice of
parameters will depend on the source video, coding objectives and system constraints.
Therefore it is desirable to develop an optimization framework that yields the
appropriate coding parameters to that can jointly optimize the trade-off between

complexity, memory utilization, rate and distortion.

1.2 Aim and Obj ectives

The aim of the research presented in this thesis is to enhance the functionality and

optimize the performance of a H.264 video CODEC.




To this effect two key objectives are to be met; (i) enhance functional flexibility of
H.264 by introducing the ability of coding arbitrarily shaped object(s), and (ii)
optimize the trade-off between computational complexity, memory utilization, rate

and distortion by choosing the right coding parameters.

In order to fulfil the first objective, a novel DCT-based shape adaptive integer
transform that is capable of efficiently coding the boundary blocks of an arbitrarily
shaped object has to be defined. The said transform should be able to maintairi
integer arithmetic requirements of a standard H.264 CODEC during the transform-
quantization stages. In addition to developing the above shape adaptive integer
transform algorithm, a novel shape coding algorithm needs to be developed for
coding shape information of video objects. In addition, the slice group structure of
the H.264 needs to be modified and extended so that an object-based H.264 CODEC
architecture can be achieved, which should provide the ability to selectively code
images (video frames), enabling the ability fo reconstruct important, pre-defined,

foreground objects at high quality levels.

In order to achieve the second objective of this thesis, an H.264 CODEC’s detailed
performance needs to be first investigated. The effect of using different coding
parameters, on computational complexity, memory utilization, rate and distortion
should be analyzed. The coding parameters that have the most significant impact on
the above objectives can then be used to obtain the fitness functions fof cach
objective. These can then be utilized within a multi-objective optimization

framework that can jointly optimize complexity-memory-rate-distortion.

The above research and development objectives are implemented based on the H.264
reference software model, JM 10 (referred to as H.264 CODEC within the context of
this thesis) [51].




1.3 Thesis Contributions

The research and development work carried out in fulfilling the above research aims

and objectives have resulted in a number of original contributions. They are:

® Proposing a shape adaptive integer transform (SA-IT) for coding the

texture of arbitrarily shaped objects in H.264 video coding,

® Proposing a new shape coding algorithm based on the MPEG-4 shape

coding methodology for coding shape information of video objects.

® Design, development and implementation of an object-based coding

extension to the H.264 standard.

® A detailed investigation of the effects of different coding parameters on a
H.264 CODEC’s computational complexity, memory requirement, rate and
distortion,

® The development of a multi-objective optimization framework for a H.264

video CODEC that is capable of jointly optimizing computational

complexity, memory utilization, rate and distortion.

1.4 Organisation of the Thesis
For clarity of presentation, the thesis is organized as follows:

Chapter 2 provides. fundamental background knowledge on video coding, an

overview of the H.264 video coding standard and of arbitrarily shaped video object

coding in MPEG-4 video coding standard.




Chapter 3 reviews different arbitrarily sﬁaped object coding techniques. The
advantages and disadvantages of each approach are critically compared and discussed.
The chapter further provides an insight into video CODEC optimization methods

proposed in previous literature and highlight their limitations.

Chapter 4 proposes a novel mathematical transform, the shape adaptive integer
transform (SA-IT) that can be used to code the texture of arbitrarily shaped video

objects.

Chapter 5 designs, develops and implements an objéct—based coding framework
within a standard H.264 CODEC. The chapter further compares the performance of
the object-based H.264 CODEC extension with that of a standard H.264 CODEC.

Chapter 6 investigates the effect of different coding parameters of a standard H,264
CODEC’s computational complexity, memory requirements, rate and distortion,
Further it concludes which coding parameters have the most significant effect on the

four selected objectives,
Chapter 7 presents a multi-objective optimization framework for a H.264 CODEC
that is capable of joint optimization of computational complexity, memory utilization,

rate and distortion, collectively considering both the encoder and the decoder.

Finally, Chapter 8 concludes the thesis with a summary of contributions and future

directions of research.




Chapter 2 Introduction to H.264/AVC and
Object-based Video Coding

2.1 Introduction

With the widespread adoption of technologies such és digitat televi-sion, Internet
streaming video and DVD-Video, video coding (video compression) has become an
essential component of broadcast and entertainment media [11]. Further the presence
of a vast amount of CCTV cameras capturing real-time footage of public places has
recently increased the use of video coding algorithms in video surveillance data
storage and transmission. It is well known that raw or uncompressed digital videos
require expensive resources for storage, transmission and processing of video data.
For example, using a typical video resolution of 352 x 288 pixels with 3 bytes of
colour data per pixel, playing at 30 frames per second, one second of the video
requires 8.9 Megabytes of storage. At this rate, a 5.34 Gigabytes hard disk can only
store 10 minutes of the video. Furthermore, if this video is to be transmitted in real
time through the internet, it requires a channel bandwidth of 73 Mbps, which is 6
times the bandwidth (12 Mbps) of Asymmetric Digital Subscribe Line Transceivers 2
(ADSL2), the current broadband internet service. Moreover, the processing power
needed to handle such massive amounts of data would make video processing
hardware very expensive. For these reasons, compression technology is an essential

requirement in digital video.

A large amount of statistical and subjective redundancy exists in digital video
sequences. Video compression techniques are designed to reduce the size of data
required for storage and transmission by removing both statistical and subjective
redundancy. The compressibility of a video not only depends on the amount of
redundancy in the source video sequence, but also on the compression technique used

for coding [2]. Video compression techniques are primarily classified into lossless



coding and lossy coding. Lossless coding techniques usually exploit the statistical
redundancy in image and video data so that the identical data can be reconstructed
perfectly at the decoder. However, these techniques can only obtain a modest amount
of compression. On the other hand, lossy coding methods operate by removing
subjective redundancy in spatial, temporal and/or frequency domains to achieve a
significant decrease in the file size (i.e. high compression ratio) at the expense of

video quality.

Over the last two decades, video coding has been a very active field of research and
development, and many coding techniques have been proposed and developed by
companies, researchers and international standardisation authorities. ISO Motion
Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) are
two formal organizations that have developed fully fledged video coding standards. |
These standards have been designed specifically for a variety of video applications. |
The ISO/IEC MPEG developed the MPEG series: MPEG-1 [3], MPEG-2 [4], |
MPEG-4 [5], MPEG-7 [6] and MPEG-21 (7]. They have addréssed the problems of
video storage, streaming and broadcasting fhrough internet and mobile networks. The :
ITU-T video coding standards are named as the H.26x series (H.261 [8], H.262 [9], |
H.263 [10] and H.264 [1]), are have been specifically designed for applications such :
|
|
|
|
|
|

as video conferencing and video telephony [2].

For clarity of presentation this chapter is divided into several sections. Section 2.2
introduces the reader to the fundamentals of video coding. Section 2.3 presents an
overview of the H.264 video coding standard, with particular emphasis to areas of
research focus of this thesis. Section 2.4 introduces object-based coding in general,
which is followed by Section 2.5 that presents object-based video coding as used in

MPEG-4. Section 2.6 presents potential applications of object-based video coding.

Finélly, Section 2.7 concludes the chapter,




2.2 Fundaméntal Concepts of Video Coding

2.2.1 Terminology and Abbreviations

The basic terminology and abbreviations used generally in video coding can be listed
as follows [2]:

@ Pixel: A colour element at one position in a displayed image.

® Luminance (or Luma): A sample or array representing a video brightness

signal, often symbolized as Y.

® Chrominance (or Chroma): A sample or array representing a blue or red

video colour difference signal, often symbolized as Cy, and C,, or U and V.,
® Sample: A luma or chroma component at one position in a video frame.

®  Frame: A set of samples representing a single time instant of a progressive
video signal. A video frame consists of one array of luma samples and two

arrays of chroma samples.

® Frame rate (frame frequency): The number of frames or images that are
projected or displayed per second. Frame rate is often expressed in frames

per second (fps), or simply in hertz (Hz).
® Resolution: The dimensions of a video frame or an image, in pixels.

® Macroblock (MB): A 16 x 16 array of luma pixels (Y) and associated
chroma pixels (U and V). In this thesis, the chroma components of a
macroblock are assumed to each consist of 8 x 8 pixels (unless otherwise

stated).

® Block: An M x N array of samples.




Picture: In this thesis, a picture is defined as a coded video frame.

Slice: A region of a coded picture, which is composed of a number of

macroblocks.

Sequence: A set of successive pictures representing a period of time of a

video signal.

Motion vector (MV): The offset between a macroblock or block and a

matching area in a reference frame.

Motion estimation: The process of finding optimal or near-optimal

matching for a macroblock or block from one or more reference frame(s).

Motion compensation: Computing the difference between a macroblock

or block and a matching area in one or more reference frame(s).

‘Discrete- Cosine Transform (DCT): A transform converting a set of

samples from spatial domain to frequency domain.

Quantization: The process of mapping a signal with a range of values X

to a signal with a reduced range of values Y.

Entropy coding: The process of convertiﬁg a series of symbols (e.g.

transform coefficients, motion vectors, etc) into a compressed form.

Encoder: Converts a series of video frames into a compressed form

(coded video) prior to transmission and/or storage.
Decoder: Decompresses coded video before display and/or storage.

CODEC: An abbreviation of video encoder and decoder.



______________________

O Y sample . Cy sample . C, sample

Figure 2-1 Sampling patterns (a) 4:4:4; (b) 4:2:2 and (c) 4:2:0

2.2.2 Colour Space and Sampling Formats

The method chosen to represent brightness (luminance) and colour of images and
videos 1s described as a colour space. RGB and YC,C, are two commonly used
colour spaces in image and video representation. In the RGB colour space, a colour
image sample is represented with three colour components Red, Green and Blue. The
components are equally important and thus are usually stored at the same resolution
[11]. For example, a RGB colour image with resolution of 176 x 144, will require |
byte (8 bits) per pixel, per colour. Thus the colour image requires a total of 74.25
Kbytes for storage. On the other hand, in the YC,C, colour space, a colour image
may be represented more efficiently by reducing the resolution in colour (chroma)
components, without having an obvious effect on visual quality due to the fact that
the Human Visual System (HVS) is less sensitive to colour than luminance [11]. In
the case of the above example, the storage requirement when using the YC,C; colour
representation is less than 74.25 Kbytes. The actual size of the storage requirement
depends upon the chroma sampling format (discussed in the next paragraph) used.

For this reason, the YC,C, colour space is a popular way of efficiently representing

colour images and videos.




Table 2-1 Common intermediate formats used in digital video

Video Resolution Bits Per Frame
Format
(Hori. x Vert.) (4:2:0, 8 bits per sample)

SQCIF 128 x 96 147456
QCIF 176 x 144 304128
CIF 352 x 288 1216512
4CIF 704 x 576 4866048
SIF 352 x 240 1013760

As mentioned above, chroma components may be represented with a lower resolution
than the luma component without significantly reducing the overall visual quality.
Hence, there are three sampling formats usually used in YC,C; colour space, 4:4:4,
4:2:2 and 4:2:0. In the 4:4:4 sampling (see Figure 2-1 (a)), the three components (Y,
Cp and C,) have the same resolution, which is similar to RGB colour space. In the
4:2:2 sampling (sometimes referred to as YUY2), the chroma components have the
same vertical resolution as the luma but half the horizontal resolution as illustrated in
Figure 2-1 (b). The number 4:2:2 means that for every four luma samples in the
horizontal direction there are two C, and two C, samples. In the 4:2:0 sampling
(sometimes referred to as YV12), U and V components have half resolution of Y in
both horizontal and vertical directions as illustrated in Figure 2-1 (c). In other words,
a 4:2:0 YC,C, video requires exactly half as many samples as 4:4:4 or RGB video. In
the above example, the image requires only 37.13 Kbytes space. Hence, 4:2:0
sampling is widely used for consumer applications such as video conferencing,

digital television, DVD storage and this thesis as well.

2.2.3 Video Format (Resolutions)

The most widely used, standard video resolutions are tabulated in Table 2-1. The

Common Intermediate Format (CIF), 352 x 288 pixels, is commonly used to
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standardize the horizontal and vertical resolutions of YC,C; colour video sequences.
It was originally proposed as a part of the H.261 [8] video coding standard. The CIF
is the basis for converting into many other standard resolutions as depicted in Table
2-1. Different resolutions are used in different applications catering for the needs of
different screen sizes such as in mobile phones, video conferencing applications etc.
The experiments conducted in this thesis use video sequences belonging to a number

of different resolutions defined in the table.

2.2.4 Bitrate

In video processing, bitrate (sometimes written bit rate or simply as rate) is the
number of bits that are conveyed or processed per unit of time [13]. Bit rate is
quantified using the “bit per second” (bit/s or bps) unit, often in conjunction with a
metric prefix such as kilo- (kbit/s or kbps) and is synonymous to data rate and digital
bandwidth [13]. In this thesis, all bit rates of coded videos are calculated in terms of

the equation below:

_SxFR
N

R

(2.1)

where R indicates the bit rate, S is the size of a coded video in bits. FR and N are the
frame rate (fps) of the coded video and the length of the video (i.e., the number of

frames in the video) respectively.

2.2.5 Mean Squared Error (MSE)

Mean Squared Error (MSE) is one of the popular objective video quality
measurement methods. It calculates the average of squared difference between the
original video sequence (¥,) and reconstruction video sequence (¥,) as shown by

Equation (2.2). It is noted that N is the total number of pixels in a single frame.
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2.2.6 Peak Signal to Noise Ratio (PSNR)

Peak Signal to Noise Ratio (PSNR) is another popular objective video quality metric.
It is measured in a logarithmic scale and depends on the Mean Squared Error (MSE)
of a video frame as shown by Equation (2.3). In this thesis, the averaged PSNR of the
luminance and chrominance components is used to measure video quality (8 bits per

pixel).

PSNR =10log,(255°/ MSE)

(2.3)

2.3 Introduction to H.264

H.264 [1, 14], known as MPEG-4 Part 10 or Advanced Video Coding (AVC), was
developed by the Joint Video Team (JVT) (consisting of IUT-T VCEG and ISO
MPEG) in 2003. The main focus of the standardisation of H.264 was to enhance
coding efficiency as compared to previous video coding standards and to provide
flexibility for effective use over a broad variety of network types and application
domains. The basic video coding design in H.264 is based on conventional block-
based motion-compensated hybrid video coding concepts, but with some important
differences relative to prior standards such as enhanced prediction capability, small
block-size exact-match integer transform, and enhanced entropy coding methods and
so on. The enhanced algorithms utilized within H.264 enable it to provide
approximately a 50% extra bit rate savings (at an equivalent perceptual quality) when

compared to the performance of prior standards [14].

13



i «—|  Video Coding Layer i
: H264 |
: Control Data . video E

encoder

«—» Network Abstraction Layer

Transport Layer

Figure 2-2 Layer structure of H.264 video encoder

2.3.1 Structure of H.264

To address the need of flexibility and customizability, the H.264 design is separated
into a video coding layer (VCL), which achieves a generic video compression similar
in spirit to other standards such as MPEG-2 [4], and a network abstraction layer
(NAL), which formats the VCL data together with some control data and provides
header information for effective transmission by the transport layers or storage media

(see Figure 2-2) [14].

2.3.2 H.264 CODEC

Figure 2-3 (a) and (b) show block diagrams of a H.264 encoder and decoder
respectively. The H.264 CODEC structure has some similarities to those of the prior

standards but some important changes have been made to improve coding

performance. Enhancements will be explained in Section 2.3.4. The data flow within

the CODEC is briefly discussed below.
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Figure 2-3 Block diagram of a H.264 CODEC
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The H.264 encoder comprises of two parts: encoding and reconstruction. At the
encoding part, each picture of a video is initially partitioned into one or more slices.
Each slice consists of a number of 16 x 16 macroblocks of the luma component and 8
x 8 blocks of each of the two chroma components. Each luma or chroma macroblock
is either spatially or temporally predicted (The macroblock or block may be
subdivided into sub-blocks for improved efficiency of prediction). The resulting
prediction block (marked ‘P’ in Figure 2-3) is subsequently subtracted from the
current block to produce a residual (difference) block (marked ‘R’ in Figure 2-3).
The residual block is transformed using integer transform (7), and the transform
coefficients are quantized (Q) to generate ‘C’, a set of quantised transform
coefficients which are finally encoded by entropy coding. The resulting entropy-
encoded data, together with additional information required to decode each block
within the macroblock (prediction modes, quantizer parameter used, motion vector
information, etc.) form the compressed bitstream which is passed to the NAL for

transmission or storage. At the reconstruction part, the coefficients “C”, undergo

inverse quantisation (Q'} ) and inverse transform (T” ) to produce a residual block (R ).

The residual block is added to the prediction block (P) to create a reconstructed block
which is filtered to reduce the effects of blocking artefacts [11]. This reconstructed
block is saved as a part of a reconstructed frame which is used as a reference frame in

the prediction of macroblocks of subsequent frames.

The decoder receives the NAL data and initially uses entropy-decoding to obtain the
quantized coefficient, “C”. This data then follows a path similar to that described in

the reconstruction part of the encoder, to finally obtain the reconstructed frame.

2.3.3 Profiles and Levels

In H.264, Profiles and Levels specify the conformance points. These conformance
points are designed to facilitate inter-operability between various applications of the
H.264 standard. A profile defines a set of coding tools or algorithms that can be used
in producing a compliant bitstream, whereas a level places limits on parameters of the

bitstream such as frame size, memory requirements and coded bit rate.
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H.264 defines seven Profiles (Baseline, Main, Extended, High, High 10, High 4:2:2,
and High 4:4:4). Each profile specifies a subset of algorithmic features and limits as
shown in Table 2-2. The associated potential application domains of each profile are
well described in [13]. For example, Baseline profile is primarily used for lower-cost
applications with limited computing resources like videoconferencing and mobile
applications. The details of coding tools used in Baseline profile are described in
detail, from Section 2.3.5 to Section 2.3.9 since all the contributions of this thesis are
based on this profile. For information on other profiles, the readers are referred to

[15].

Table 2-2 Specification of H.264 Profiles

; ; High | High | High
Basel. | Ext. | Main | High 10 | 422 | 444
[ and P Slices Yes | Yes |=¥es |=¥es | Yes | ¥es | Yes
B Slices No Yees | ¥es=| Yes [ = Yes SEYES | [EXEs
SI and SP Slices No Yes No No No | No No
Multiple Reference Frames Yes | -Yes | ¥es | “Yed | Nes |- ¥es i -"Ves
In-Loop Deblocking Filter Yes | Yes | ¥Yes | Yes | Yes | Yes | ¥Yes
CAVLC Entropy Coding Yies—|| FYes: | Yes|I¥es™|Yes N [EYest [l es
CABAC Entropy Coding No No Yes | Yes || Yes || Mes |- Yes
Flexible Macroblock Ordering (FMO) | Yes | Yes No No No | No No
Arbitrary Slice Ordering (ASO) Yes. |LYes No No No No | No
Redundant Slices (RS) Yes | Yes | No No | No | No | No
Data Partitioning No Yes No No No [ No | No
Interlaced Coding No Yes, | Yes | Yes | ¥Yes | Yes | Yes
4:2:0 Chroma Format Nesily Mest || EYies I Yes || Mies Nl ¥es Nl Yes
Monochrome Video Format (4:0:0) No No No Yes | Yes | Yes | Yes
4:2:2 Chroma Format No No No No | No | Yes | Yes
4:4:4 Chroma Format No No No No No | No | Yes
8 Bit Sample Depth Yes—| Yes: |=Yes | -Yes-'| Yes-|. Yes:|-Yes
9 and 10 Bit Sample Depth No No No No [EXesiliNYesl|NYes
11 to 14 Bit Sample Depth No No No No | No | No | Yes
8x8 vs. 4x4 Transform Adaptivity No No No (EifesT Y esiiiYess|BnYes
Quantization Scaling Matrices No No No |@¥esHl|i¥eshl| S ¥ sy es
Separate Cb and Cr QP control No No No Yes | Yes | Yes | Yes
Separate Color Plane Coding No No No No | No | No |i¥es
Predictive Lossless Coding No No No No | No | No |i¥es
17



2.3.4 H.264 Enhancements

H.264 contains a number of new features that allow it to compress video much more

effectively than previous standards. Some highlighted features relevant to Baseline

profile are listed as follows (for more information, see [14]).

Enhancements to prediction methods:

Variable block-size motion compensation with small block sizes:

Supports flexible motion compensation block sizes (minimum size 4 x 4).

Quarter-sample-accurate motion compensation: Introduces quarter-
sample-accurate motion vector prediction from MPEG-4 Visual (part 2)

[5], but with reduced the complexity of the interpolation processing.

Multiple reference picture motion compensation: Allows using
multiple reference frames (up to 16) for motion compensation to enhance

coding efficiency.

Directional spatial prediction for intra coding: Adds spatial prediction

to intra coding to improve the quality of the prediction signal.

In-loop deblocking filtering: The deblocking filter (see Section 2.3.8) is
placed within the motion-compensated prediction loop so that the
resulting improvement in quality of the reference frame can be used in

inter-picture prediction to improve the ability to predict other frames.

Improvements to coding efficiency:

Small block-size integer transform: The use of 4 x 4 integer transform
(in comparison with 8 x 8 DCT in floating point arithmetic in other
standards) reduces “ringing” (artefacts) distortion (faint patterns along
the edges of objects, caused by the ‘break through’ of DCT basis patterns

in a decoded image). The integer transform (see Section 2.3.7) also
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reduces the computational complexity from 32-bit processing to 16-bit

arithmetic and avoids inverse transform mismatch problem as well.

® Context-adaptive entropy coding: Both entropy coding methods used,
i.e., CAVLC (context-adaptive variable-length coding) and CABAC
(context-adaptive binary arithmetic coding) use context-based adaptivity

to improve performance relative to pervious standards.

Enhancements to error resilience and flexibility of transmission:
® Parameter set structure: The parameter set design provides for robust

and efficient conveyance of header information.

® NAL unit syntax structure: The NAL unit syntax structure provides

more robustness and flexibility than that provided in prior standards.

® Flexible macroblock ordering (FMO): A novel ability to partition the
picture into flexible regions called slice groups, each of which consists of
a number of macroblocks and can be decoded independently. The ability

significantly enhances the robustness to data losses in transmission.

® Arbitrary slice ordering (ASO): Enables sending and receiving the
slices of the picture in any order relative to each other (since each slice
can be decoded independently). This capability can improve end-to-end

delay (e.g., out-of-order delivery) in real-time applications.

2.3.5 Intra Prediction

In intra prediction mode, each prediction block P (see Figure 2-3 (a)) is generated
from spatially neighbouring samples of already coded blocks in the same slice. H.264

provides two classes of intra coding types, i.e. INTRA-4x4 and INTRA-16x16 for the
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Figure 2-5 INTRA-4x4 prediction modes

luma components. Figure 2-4 [11] illustrates neighbouring samples of INTRA-4x4

mode. For INTRA-4x4 mode, a total of nine possible prediction modes (see Figure

2-5 [11]) are used for prediction. For the INTRA-16x16 mode, which is the typical

prediction mode used in smooth image areas, four types of prediction modes are

supported. For detailed information on the INTRA-16x16 prediction modes, the
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readers are referred to [16]. Each 8 x 8 chroma block of a macroblock is predicted
following a prediction technique similar to that of an INTRA-16x16 Iuma
macroblock. It is noted that in order to maintain the independent nature of the
individual slices and slice groups, intra prediction (and all other forms of prediction,

such as inter prediction) across slice boundaries is restricted.

2.3.6 Inter Prediction

Inter prediction is also known as motion compensation, and is usually used to reduce
the temporal redundancy in moving pictures. H.264 adopts block-based motion
estimation and compensation for removing the redundancy between frames. Within
this approach, each M x N block in the current frame is compared with blocks of
similar size within a predefined search region of the reference pictures, in order to
obtain the “best” match (the technique of searching the “best” match is known as
motion estimation (ME) which is discussed in later this section). This “best” match
block is then subtracted from the current block to produce a residual block R that is
encoded and transmitted along with the corresponding motion vector difference
(MVD) describing the residual between the current motion vector and a predicted

motion vector.

In addition to the intra macroblock coding types, H.264 also supports various
prediction modes for P-slices (P frames). Each luma macroblock in a P-slice may be
partitioned into one of eight block shapes (as illustrated in Figure 2-6) used for
motion-compensated prediction. 1/2 and 1/4 sub-samples are used in H.264 for the
accuracy of motion compensation. Since these prediction values at 1/2 and 1/4
sample positions do not exist in the reference frame, they are obtained using
interpolation from nearby integer pixel location samples. Each chroma block in a
macroblock is segmented in a manner similar to that of the luma component. The
prediction values at fractional positions for the chroma component are generated by

bilinear interpolation.
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Figure 2-6 Segmentations of the macroblock for motion compensation

It is noted that motion vector of a block partition can be predicted from motion
vectors of nearby previously coded partitions due to the high correlation between
neighbouring partitions. The predicted motion vector, MVp, depends on the motion

compensation partition size and on the availability of nearby vectors [11].

ME technique is used for seeking the “best” match block from the reference frame
within a certain search range. The current H.264 reference software JM [51] provides
a Full Search (FS) ME algorithm and several valuable Fast Motion Estimation (FME)
algorithms [68-71]. The FME algorithms include Unsymmetrical-cross Multi-
Hexagon Search (UMHS) [68-69], Simplified Unsymmetrical-cross Multi-Hexagon
Search (SUMHS) [70] and Enhanced Predictive Zonal Search (EPZS) [71]. These
FME algorithms were designed for reducing the ME time (by only searching

specified positions within a certain search range and by adopting early termination

schemes) while maintaining almost the same PSNR that FS could achieve (see [62]
or Section 6.4.1 and Section 6.4.3).




2.3.7 Transform and Quantization

After intra or inter prediction, the residual block R is transformed and quantized.
H.264 uses a 4 x 4 integer transform [17] for the residual block instead of the 8 x 8
DCT transform used in other standards. For INTRA-16x16 mode, an extra 4 x 4
transform is applied to the 4 x 4 DC coefficients of the luma components. For
chroma blocks, an additional 2 x 2 transform is performed for the four DC

coefficients.

The integer transform is based on a standard 4 x 4 DCT but includes additional
features. The inverse transform mismatch problem caused by using floating point
transforms is avoided since the transform is computed in integer arithmetic.
Furthermore, the 4 x 4 integer transform is performed in 16-bit arithmetic by the use
of simple additions and shifts (i.e., without the need of multiplications), thus
minimizing computational complexity. In addition, a scaling multiplication (part of
the transform) is combined into the quantizer so that the total number of
multiplications can be reduced. Finally, by using quantization tables, the need for

divisions at quantizer is avoided.
2.3.7.1 Forward Transform

A 4 x 4 forward DCT is given as follows [11]:

d 4 @@ 4 a b a ¢
Y:AM}": b [ & b '_b X a (64 = "b
a ~a —-a a a —-¢ —a b
c ~b b -—c a b a -c

(2.4)

where a=1/2, bzﬁ/—Zcos(x/S), C=\/1/-ZCOS(3II/8), A and A" are the transform

matrix and its transpose respectively, X is a matrix of samples and Y is the resulting

coefficients.

The A and A" can be factorised [18] to the following equivalent representation:
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where ® indicates element-by-element multiplication rather than matrix
multiplication. £y is a matrix of scaling factors, which can be integrated into the
quantization process as discussing later. CXC" is a “core” 2-D transform. The value
of d (=0.414213...) 1s approximated by 1/2 so that the matrix multiplication can be
computed with fixed-point arithmetic [18]. Thus, b is also modified accordingly in

order to maintain orthogonality of A, ie., A’A=I. Therefore, finally,

a=1/2, b=\2/5, c=\[1/10 and d=1/2.

After modifications of &, ¢ and d, the 2™ and 4™ rows of C and the 2™ and 4"

columns of C” can be further factorised, thus Equation (2.5) becomes:

I 1 %1 1 I & 1 1 a  abl2 a* ab)2
|21 -l =2 {x |1 1 -1 2||g|ab/2 B[4 abj2 b[4
] =1 -1 1 ] =] <] 2 a*  abl2 & ab/2
-2 2 -l L =2 1 1)) |ab/2 b*[4 abl2 b*[4

(2.6)

The “core” transform CXC’ in Equation (2.6), therefore, can be implemented by
additions and shifts. Since the maximum sum of absolute values in any row of C is 6,
the maximum dynamic range gain increase for a 2-D transform is logy(6°) = 5.17.
That is, the output of CXC” after the 2-D transform will need 6 more bits than the

input X (prediction residuals) which have a 9-bit range for 8-bit pixel data with a 1-

bit signed symbol. Thus, the “core” transform can be computed with 16-bit arithmetic.

2.3.7.2 Inverse Transform

For the inverse transform, the equation is given by:
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(2.7)

where Y is the transformed coefficients from Equation (2.6) and £; is a matrix of
scaling factors, which is combined in quantization stage. X' is the output of the
inverse transform. The factors +1/2 are implemented as right shifts which introduce

small errors, but can be compensated by a larger dynamic range for the data at the

input of the inverse transform [18].
2.3.7.3 Quantization

A general representation of quantization is given by [11]:

Z,; =round ( Y,/ Qstep)

(2.8)

where Y; is a transformed coefficient from Equation (2.6), Z; is a quantized,
approximated (to the nearest integer) coefficient. Ostep indicates a quantizer step
which is indexed by a quantization parameter (QP). H.264 provides a large range of
Ostep from 0 to 51, which enables flexibility in bit rate and quality control. It is

noted that Ostep doubles in size for every increment of 6 in QP.

Each integer coefficient of W = CXC” and the corresponding scaling factor in Erare

input to the quantizer, so Equation (2.8) becomes [11]:

Z = round [ W:.,. . £ ]
Ostep

(2.9)
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where PF is a’, ab/2 and b’/4 depending on the position (i, j). The factor (PF/Qstep)

is then changed into the following form [11]:
PF|Qstep = MF[2"" | gbits =15+ floor (QP/6).
MF is a multiplication factor. Thus, Equation (2.9) can be implemented as follows:

IZ&.\ = (qul -MF +f) > gbits

(2.10)
sign(Z,.,.) = sign (WU )

where f'is a dead-zone control parameter, which is set to 2%/3 for intra and 29°"/6

for inter frames. The symbol > indicates a right shift.
2.3.7.4 De-quantization

The basic de-quantization formula is: |
Y, =Z,0Ostep (2.11)

The scaling factors of E; are multiplied by a constant scaling factor 64 (avoiding

rounding errors), and then are integrated into the above equation:

- floor(QP/16)
Wy‘ = Za'V.r'j 2

(2.12)

where Wj; is a de-quantized coefficient and V' = QOstep-PF-64. The factor produces the
output increase by a factor of two for every increment of six in QP. H.264 defines
MF and V as quantization and de-quantization tables respectively. Only the first six
values (0 < QP £5) are defined. The final output of the inverse transform are divided
by 64 to remove the scaling factor (implemented by a right shift) introduced in
Equation (2.12).
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2.3.8 Deblocking Filter

The ‘blocking’ artifacts, i.e., visible block edges in a decoded picture, are common
problems that appear in block-based video coding. H.264 adopts an adaptive
deblocking filter within the motion-compensated prediction loop to improve video
quality. Moreover, this improvement in quality positively contributes towards inter

prediction as it reduces the residual errors.

2.3.9 Entropy Coding

Two methods of entropy coding: CAVLC and CABAC are supported in H.264.
CAVLC is simpler compared with CABAC which is more efficient in coding.
Readers interested in further details of these techniques are referred to the H.264

standardization documents [ 1].

2.4 Video Object-based Coding

In addition to the conventional frame-based video coding approaches, object-based
coding (known as region-based coding, first proposed by Musmann et al. [19]) has
been considered in second generation coding techniques/standards such as MPEG-4
Visual. Object-based coding separates a video frame into component objects, which
are subsequently coded as arbitrary shaped objects. It is noted that after segmenting a
frame into objects, the shape, texture and motion information are coded and

transmitted independently.

2.5 Arbitrary Shaped Video Object Coding in MPEG-4

The concept of a video object (VO) was introduced in early versions of video coding
standards such as MPEG-2 [4] and H.263 [10]. However, in these standards the
definition of video objects was restricted to rectangular shaped areas within a spatial
frame that was time invariant with respect to size and position. The latter version,
MPEG-4 (i.e., Part 2: Visual) [5] was the first video coding standard that treats a

video sequence as a collection of one or more two-dimensional (2-D) video objects




and describes a video object to be of arbitrary shape. Furthermore, the shape, size,

and position of the video object may vary from one frame to the next [20].

2.5.1 Video Object Planes

A video object (VO) is an area of a video scene that may be an arbitrarily shaped
region such as a person, ball or tree and may vary with time. A snapshot of a video
object taken at a given sample time is regarded as a video object plane (VOP). A
VOP is essentially a rectangular area that completely contains the video object but
with the minimum number of macroblocks contained within it as shown in Figure 2-7
(a). Each VOP defines the video object’s texture (luminance and chrominance
samples) and shape information. To achieve the coding of arbitrarily shaped objects,
MPEG-4 uses two extra tools, i.e. MPEG-4 encodes the shape information first using
a binary shape encoder (Section 2.5.2) and subsequently uses two different discrete
cosine transform (DCT)-based algorithms: DCT and shape-adaptive DCT (Section

2.5.3) for the interior texture coding and boundary texture coding respectively.

2.5.2 Binary Shape Coding

In MPEG-4, the contour information of an arbitrarily shaped object is described by a
map of the same dimension as the luminance signal. There are two types of maps
supported by MPEG-4 in terms of level of transparency: binary alpha map and grey-
scale alpha map. The binary alpha map defines all pixels either as opaque (1, inside a
video object) or as transparent (0, outside a video object). This map is subsequently
coded using binary shape coding. Alternatively, the grey-scale alpha map employs 8
bits to represent the transparency level (between 0, transparent, and 255, opaque) of
each pixel. The compression of the map is achieved using grey-level alpha coding

which is not discussed in this thesis (For further details see the original MPEG-4 [5]).

In a binary alpha map, the binary object is enclosed in a tightest bounded VOP that is
made up of a number of 16 x 16 blocks as shown in Figure 2-7 (b). Each such binary
alpha block is referred to as a BAB that is encoded by the binary shape encoder (or
BAB encoder). Figure 2-8 illustrates a simplified block diagram of the BAB encoder.
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All BABs are classed into three categories: transparent, boundary and opaque. These

categories are marked with 17, “2” and “3” in Figure 2-7 (b).
2.5.2.1 BAB Coding

A BAB is first input to the BAB encoder and may be encoded using one of several
ways listed in Table 2-3. It is the task of the mode decision block to select an
efficient encoding method for the BAB. Mode “2” and “3” are the simplest and most

efficient methods to compress a BAB as it is a transparent or opaque BAB. Mode “0”

Figure 2-7 The Foreman object. (a) Texture object. (b) Binary alpha object.
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Figure 2-8 Block diagram of MPEG-4 binary shape encoder




or “I” is a “no update” mode which means the BAB is reconstructed by motion
compensation alone. All other BABs (boundaries) are coded by intra- or inter-
context-based arithmetic encoding (CAE). Finally, the coded BAB, coding mode and

motion vector (for inter coded blocks) are either stored or transmitted to the decoder.
2.5.2.2 Context-based Arithmetic Encoding (CAE)

For a given BAB, CAE encoding is performed pixel by pixel. Each pixel is coded
using a template that consists of a number of previously coded pixels. The intra
template is formed by ten surrounding pixels (see Figure 2-9 (a), X is the current
pixel to be coded) of the current BAB. The inter template is formed by 9 pixels as
illustrated in Figure 2-9 (b) and (c), c0-c3 are obtained from the current BAB and
spatially related to the pixel X, and ¢4-¢7 coming from the motion compensated BAB
with ¢6 fully aligned with X [20]. From the template, a context number is computed
[21] and is subsequently used to access a probability (the probability that the pixel is
zero) table provided with the MPEG-4 specification [22]. The accessed probability

and the pixel value (0 or 1) are then used to drive an arithmetic encoder [23].

Table 2-3 BAB coding modes represented by the BAB type

BAB

tyoe Type Used in Description
; The decoded block is obtained through motion
No update, no | P-B- ; . ! :
0 compensation without correction. No motion

MVD VOPs : P il
vector difference is given, i.e. it is set to zero.

The decoded block is obtained through motion
compensation without correction. A motion

No update, with | P-B-

MY VOPs vector difference is given.
2 | Transparent {;’OI;;’ B-| The decoded block is completely transparent.
3 Opaque t’Oil)’-s, 8- The decoded block is completely opaque.
4 Intra CAE I-, P-, B- | The decoded block is obtained through intra CAE

VOPs decoding.
T The decoded block is obtained through inter CAE

5 MVD VOPs Flecc.)d'ing. No motion vector difference is given,
Le. it 1s set to zero.
6 Inter CAE, with | P-, B- | The decoded block is obtained through inter CAE
MVD VOPs decoding. A motion vector difference is given.

30



Motion compensated BAB

c9 | c8|c7 Current BAB c8
€6 | eS| cd )| c3 | c2 A | c7 | ¢6 | c5
cl {c0 | X ch | X c4
(a) (b) (c)

Figure 2-9 The templates. (a) Intra template; (b) and (c) Inter template

2.5.2.3 Mode Coding

Once the coding mode (i.e., BAB type) for the current BAB has been decided, the
coding mode is further coded by using VLC tables provided by MPEG-4 [22]. For I-
VOP, the VLC table for the coding mode of the current BAB is selected by an index
computed by:

2 7XAmofIv + QXBmmIt' + 3xcmud(’ i Dmon’e

where Apodes Bmodes Cmode and Dyoge relate to the coding modes of those BAB’s
adjacent to the current BAB as illustrated in Figure 2-10. For P-, and B-VOP’s, the
chosen VLC table relies on the coding mode of the BAB that has the same location as
the current BAB in the reference VOP [20].

A B C
Current
D
BAB

Figure 2-10 The adjacent BAB’s of the current BAB in [-VOP
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MV(2) MV(3)
MV(1)
Current BAB
MVS(1)

Figure 2-11 The current BAB and related candidate motion vectors.

2.5.2.4 Motion Vector Coding

Motion vector for shape (MVS) information is used especially for inter coded BAB’s

in P- and B-VOP’s, which is computed from:

MVS _x=MVPS _x+MVDS_x
MVS_y=MVPS_y+MVDS_y

where MVPS is the motion vector predictor for shape and MVDS is the motion vector
difference for shape. The MVDS is finally coded by a motion vector difference VLC

table and is transmitted to the decoder.

The motion vector predictor, MVPS is selected from a list of candidate motion
vectors (see Figure 2-11) that includes three shape motion vectors MVS(i) and three
texture motion vectors MF(i) from the three nearby BAB’s and texture blocks of the
current BAB. The MVPS is set to the first valid motion vector encountered when
following the candidate motion vectors in a predefined order {MVS(l), MVS(2),
MVS(3), MV(1), MV(2), MV(3)}.
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2.5.3 Shape-Adaptive DCT

The Shape-Adaptive DCT (SA-DCT) was first proposed by Sikora [24] in 1995.
Subsequently Kaup [25] solved the inherent problem of non-normalized (but
orthogonal) basis functions. SA-DCT is used for dealing with an arbitrary region of a
block efficiently, which is based on pre-defined sets of one-dimensional DCT basis
functions. The SA-DCT is applicable to 8 x 8 blocks within a boundary BAB. Figure
2-12 gives an example of the application of the forward SA-DCT algorithm on an 8 x
8 image block that fully encloses an arbitrarily shaped object (shaded grey). Firstly,
the length N(j) (I <N(j)<8) of every column j (/< j <8) of the opaque pixels are
calculated. The opaque pixels (grey) of each column in the initial block (Figure 2-12
(a)) are then shifted up to the upper border of the block (Figure 2-12 (b)). For a
column of opaque pixels of length N(j), the associated DCT transform matrix Ay is

given by [24]:

Ay (prk)=c¢,-cos , pk=01.,N(j)-1

(Zk-i—l)-p-?r
2N ()

(2.13)
Here ¢p = Vi/2 if p =0, and ¢y = 1 otherwise.

Y;, the vertical (1-D column) DCT-coefficients of column j resulting from the opaque

pixels, X, can thus be obtained by using the following formula:

e e

=i e 1SIS8 1SNG)<s

(2.14)

After applying a 1-D column DCT, the DC coefficients (denoted by m mark in Figure
2-12 (c)) for each column are located along the upper edge of the 8x8 block. Next,
the rows are horizontally shifted to the left border of the 8x8 block (Figure 2-12 (d))

and a horizontal 1-D DCT is performed for each row of intermediate coefficients Y;




| (a) Initial block (b) Vertical shift (c) 1-D column SA-DCT
|
| wn[ulu]n .
Y; Zi
(d) Horizontal shift (e) 2-D SA-DCT

Figure 2-12 Example of forward SA-DCT processing

by using Equation (2.14). Finally, the resulting 2-D SA-DCT coefficients Z; of the
block are illustrated in Figure 2-12 (e). Note that the final DC coefficient (denoted by
m) for the whole boundary block is located in the upper left border of the block. The
remaining coefficients are concentrated around the DC coefficient depending on the

actual shape of the arbitrarily shaped object.

The inverse SA-DCT can be obtained with the use of the following equation:

2

COANG)

- AL(:‘) ’ Zi

(2.15)

in both horizontal and vertical directions. Here Z, denotes forward transformed

coefficients, X, denotes the inverse-transformed data and i refers to the length of the

data set.




2.6 Potential Applications of Object-based Coding

MPEG-4’s object-based coding can be used for a wide range of interactive and
content-related applications, such as high bandwidth constrained mobile telephony
and surveillance systems where video quality is of utmost importance for post
incident analysis. In mobile telephony, the limited size of screen implies the
acceptability of encoding the background of a video frame at a lower quality as
compared to the foreground, for e.g. representing speaker in a conversational
application scenario, under bandwidth constraints. In surveillance applications,
provided a pre-processing stage can separate important objects/regions (for the
purpose of post incidence analysis), these areas can be coded at a much better quality

level as compared to the background.

2.7 Summary and Conclusions

In this chapter, the fundamental concepts for video coding were initially introduced.
The baseline profile of the latest video coding standard, H.264 was then discussed in
detail, giving particular emphasis to the presence of enhanced features and novel
coding tools, when compared to those present in traditional video coding standards.
The applications that can benefit from including object-based coding functionality in
H.264 were introduced. The video object-based coding concepts used in MPEG-4
were presented as an insight to the basics of the proposed H.264 video object-based
coding strategy presented in Chapter 4 and Chapter 5. It is concluded that inclusion

of object-based coding in H.264 requires specific design of the object-based coding

concepts, tailored to the requirements of the standard.




Chapter 3 Literature Review

3.1 Introduction

In Chapter 2, the popular video coding standard, H.264 was introduced. Further the
basic concepts of object-based video coding were presented in relation to MPEG-4.
As mentioned in Chapter 1, the motivation of this thesis is to introduce the
functionality of coding arbitrarily shaped video objects within the H.264 standard
(Chapter 4 and Chapter 5) and to present a framework for optimizing a typical H.264
CODEC’s performance based on multiple objectives (Chapter 6 and Chapter 7).
Therefore, this chapter critically reviews the existing state-of-the-art in coding the
texture of arbitrarily shaped video objects. Further the chapter provides a
comprehensive review of the state-of-the-art in optimization approaches used within

video coding techniques/standards.

For clarity of presentation the chapter is organized as follows. Further to the brief
introduction to the chapter presented in this section, Section 3.2 reviews the coding
methods used within the MPEG-4 standard for arbitrarily shaped video objects.
Section 3.3 discusses a number of performance optimization methods that have been
proposed for the benefit of video CODECs. Section 3.4 finally concludes with a

summary and a conclusion.

3.2 Arbitrarily Shaped Video Object Coding Techniques

Texture coding within the fundamental coding units, i.e. blocks, that lie along the
boundary of an arbitrarily shaped object provides the fundamental challenge in
arbitrarily shaped object coding. In the last two decades, a number of arbitrarily
shaped video object coding techniques have been proposed in literature. These

approaches can be basically classified into two categories, extrapolation methods and




shape-adaptive transforms. Several prominent techniques are reviewed in the

following sections.

3.2.1 Extrapolation Methods

The extrapolation methods provide means for extrapolating the object (opaque)
pixels to completely fill a block’s non-object area (i.e., where the pixels are
transparent) to provide a so-called padded block that can be coded using a
conventional block-based DCT. A sample border block is illustrated in Figure 3-1

(a), opaque and transparent pixels are marked as grey and white respectively.

3.2.1.1 Zero Padding

Zero padding is the simplest padding method used in which the transparent pixel
values are assigned values of zeros as illustrated in Figure 3-1 (b). After padding, the
block can use a normal 2-D DCT transform to convert its pixel domain representation
into a frequency domain representation. This approach is recommended in MPEG-4
to be used for inter frame coding of arbitrarily shaped objects. It is obvious that the
zero padding method has very low complexity and gives reasonable rate-distortion
results if prediction error (residual signal) is small. However in the presence of large
prediction errors, this approach usually results in discontinuities at the boundary
between opaque and padded pixels. Applying the DCT to these discontinuities leads
to a considerable number of nonzero high-frequency coefficients that negatively

impact the coding efficiency.
3.2.1.2 Repetitive Padding

Repetitive padding is used in MPEG-4 [22] for motion compensation, in which
transparent pixels in each border block are padded horizontally and vertically from
opaque pixels as illustrated in Figure 3-1 (c). First of all, transparent samples of each
row are extrapolated horizontally from the nearest opaque sample of the same row,
both towards left and/or right directions. If the transparent samples in a particular row

are enclosed on both sides by opaque pixels, the average value of the two nearest
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Figure 3-1 (a) Initial border block; (b) zero padding; (c) repetitive padding; (d)
LPE padding.

opaque samples on both sides is extrapolated to the transparent samples.
Subsequently the remaining unfilled transparent pixels, such as the first row of pixels
of the block illustrated in Figure 3-1 (c) are padded, using a padding process similar
to horizontal repetitive padding but in the vertical direction. This approach is very
simple and its use in the coding of boundary blocks of arbitrarily shaped video
objects can decrease the discontinuity related problems highlighted above (see
Section 3.2.1.1). However, this relative advantage could significantly diminish as the

prediction error becomes small.
3.2.1.3 Low-Pass Extrapolation

Low-pass extrapolation (LPE) was proposed by [26] and has been selected for
inclusion within the MPEG-4 reference software [27]. The technique can be
summarized as follows. At the start, the transparent samples of a border are replaced

by the mean value of the opaque pixels on the block. Then each padded sample is




repeatedly filled by the mean value of the surrounding four samples. If one or more
of the four samples are outside the block, the corresponding samples are not
considered for the averaging operation. Figure 3-1 (d) shows the result of applying
low-pass extrapolation to a 4 x 4 border block. The low-pass extrapolation method
has been proven to provide an improved performance particularly in the intra-frame
coding mode, as compared with zero padding and repetitive padding. However, its
benefit in inter-frame coding, is marginal. Hence its application within the MPEG-4
video coding standard is limited to intra-frame coding. Moreover, the computational

complexity of LPE is slightly higher than that of zero and repetitive padding methods.
3.2.1.4 Extension Interpolation

Extension interpolation (EI) was originally proposed by [28] and uses an
interpolation approach. The idea is as follows. An M-point 1-D DCT is first executed
for each column or row (of length M) in a boundary block to get M transform
coefficients. Subsequently, N — M zeros are filled in the rear of the DCT coefficient
vector (N is the length of block size). Finally, an N-point inverse DCT is performed
on the new transformed coefficient vector. In fact, these three steps can be
implemented together by a multiplication matrix of dimension N x M in the pixel
domain as derived in [28). The EI presents a good rate-distortion performance which
is very close to that of the smart padding (discussed in Section 3.2.1.5) and SA-DCT.
Nevertheless, the EI provides the highest complexity among these approaches. In
addition to this, EI involves both spatial- and frequency-domain operations for signal

extrapolation, which is not very desirable from a computational point of view.
3.2.1.5 Smart Padding

A further padding method, named smart padding, was introduced by [29]. For a
given N x N boundary block, the padding (the padded values are dependant on DCT
transform matrix and opaque pixels, details on the padding approach in [29]) along
the vertical (or horizontal) direction is first performed. A 1-D DCT is subsequently
applied to each column of pixels. The second directional padding, i.e. in the

horizontal direction is carried out next. Finally, 1-D DCT is performed on rows. The




smart padding method is comparable with EI and SA-DCT in rate-distortion
performance. It is marginally better in terms of computational complexity as
compared to SA-DCT approach that will be discussed in the next section. The smart-
padding technique has two drawbacks, i.e. it can only be implemented in coding intra
frames, and uses a joint spatial- and frequency-domain that increases Iits

computational cost.

3.2.2 Shape-Adaptive Transforms

Two shape adaptive transform approaches [24, 30] have been proposed in the recent
past for coding the texture of arbitrarily shaped video objects. They are the shape-
adaptive DCT [24] (SA-DCT) discussed in detail in this thesis and the shape adaptive
discrete wavelet transform (SA-DWT) [30] which is not discussed in this thesis due
to its non-suitability for use in the block-based coding approach adopted by H.264.
SA-DCT has been introduced in detail in Section 2.5.3. A previous attempt [31] of
experimental comparison of SA-DCT versus extrapolation methods for the coding of
arbitrarily shaped object has proved that the shape-adaptive method outperforms
extrapolation method in terms of rate-distortion characteristics, especially for high-
quality video coding. However, SA-DCT is more complex compared to simple
extrapolation methods such as zero padding, repetitive padding and LPE, and its

complexity is similar to that of the smart approach.

3.2.3 Summary

The state-of-the-art techniques for coding texture of arbitrarily shaped video object
have been introduced in Section 3.2.1 and 3.2.2. As a result of this review, it can be
concluded that each algorithm has its inherent advantages and disadvantages. Table
3-1 provides a summary of comparisons of these algorithms in terms of their rate-
distortion performance and computational complexity. The rate-distortion
performance is divided into five levels: Low, Low-Mid., Mid., Mid.-High and High,
whereas the computational complexity is divided into three levels: Low, Mid. and
High. The results illustrate that the three extrapolation approaches, i.e., zero padding,

repetitive padding and LPE, provide lower complexity than the others. Moreover,




rate-distortion performance is the same level as other approaches in inter-frame
coding mode at low bit rates. On the other hand, they offer a rather poor rate-
distortion performance at high-quality video coding and low-quality video coding at
intra-frame mode. EI yields good rate-distortion results at low bitrates but with high
cost of complexity. Smart method seems to be very good, however, only the intra-
frame mode is implemented so far. Among these algorithms in the table, SA-DCT
offers the best results in terms of computational complexity versus rate-distortion

performance.

As a result of the above analysis, it was concluded that SA-DCT is the most suitable
approach for texture coding of arbitrarily shaped video objects. Unfortunately, further
investigations revealed that the possible use of SA-DCT within the extended H.264
CODEC was critically limited due to the need of maintaining integer arithmetic
operations. In addition to this reason, in the original design of SA-DCT, the non-
integer scaling factors (see Section 4.3) were not integrated within the quantization
process. Hence in Chapter 4, a novel shape-adaptive integer transform (SA-IT) is
proposed, which conforms to a standard H.264 CODEC’s integer mathematics

requirements.

Table 3-1 Comparison of methods of coding arbitrarily shaped object

Rate-distortion

Method Low Bitrate High Bitrate Complexity
Intra-mode | Inter-mode | Intra-mode | Inter-mode
Zero Low High Low Mid. - High Low
Repetitive | Low - Mid. High Low Low - Mid. Low
LPE Mid. - High High Mid. - High | Mid. - High Low
El High High Mid. - High | Mid. - High High
Smart High - High - Mid.
SA-DCT High High High High Mid.




3.3 Optimization methods for Video Coding

In the last decade, optimization of video compression algorithms has received
significant research interest. Many optimization methods have been proposed in the
literature, which can be broadly classified into two categories, algorithm-based
optimizations and parameter-based optimizations. The algorithm-based optimization
methods focus on the direct performance optimization of a given algorithm.
Alternatively, parameter-based optimization methods optimize given objectives

through the optimal selection of coding parameters.

3.3.1 Algorithm-based Optimization

A significant amount of research has been carried out on the optimization of video
coding algorithms and associated sub-functions [32-47]. They can be broadly

classified into single-, two- and three-objective optimization problems.

Single-objective Optimization:

In [45], Kannangara e al. proposed a complexity reduction algorithm for a H.264
encoder. The algorithm was developed based on the R-D optimization modes of a
H.264 encoder. It reduces computational complexity through a process that identifies
whether the coding of a macroblock should be skipped prior to dealing with the
macroblock data. Ji et al. [32] proposed a memory optimization technique for a
H.264 video decoder, which effectively uses the preloading mechanism for sub-
macroblocks (which can be loaded early on frame reconstruction), and algorithmic
improvements in the motion compensation module and the variable length decoding

module, to reduce memory accesses.

Two-objective Optimization:

The most popular optimization procedure adopted in video coding is rate-distortion
(R-D) optimization, which can be classified as a two-objective optimization problem.
It evaluates the cost of using every possible coding mode and the corresponding

motion vectors (for inter-coded frame), in obtaining the best tradeoff between the




distortion and the bit-rate, i.e. the number of bits consumed. A significant portion of
optimization research in video coding has concentrated on R-D optimization
procedures [33-40]. In 2001, an encoding framework for MPEG-2 and H.263 was
developed by Ismaeil er al. in [48], which optimizes multiple coding modules (ME,
DCT, quantization and mode selection) to yield desirable joint complexity-distortion
(C-D) optimization. A joint optimization of power consumption (for mobile devices)
and video quality was carried out by Pu et al. [46]. This power-distortion (P-D)
model was designed for a H.264 encoder. For a given distortion constraint, the

procedure minimizes the overall power consumption of the encoder.

Three-objective Optimization:

Further a number of methods have been proposed in literature to extend the
traditional R-D optimization methodology by including another dimension, which is
either computational complexity or power consumption. In 2003, Zhang et al. [42]
proposed a fast motion estimation algorithm, based on an adaptive hexagon-based
search (AHBS) pattern to achieve a joint optimization in complexity-rate-distortion
(C-R-D) for H.264 video coding. In addition, Jesper et al. [43] in 2004 proposed C-
R-D optimization method by using a modified EPZS (enhanced predictive zonal
search) motion estimation algorithm in H.264. The modified EPZS includes three
carly-stop criteria, which determines if motion estimation should be stopped or not,
after 16 x 16 and 8 x 8 block level sub-divisions. Moreover, Yu et al. [44] proposed a
similar algorithm in which an alternative procedure was used to determine whether
motion search into smaller block sizes should be continued or not. The similarity of
the above three optimization methods is the skipping of unnecessary search modes
(which thus result in a decrease in computational complexity) after obtaining the best
motion vector through the C-R-D cost function. A further three-objective
optimization framework, that considers joint power-rate-distortion (P-R-D), was
developed by Chen er al. [47). The framework was designed for H.263 video

encoding on mobile devices to optimize the rate-distortion under the constraints of

the power consumption.




3.3.2 Parameter-based Optimization

Kwon er al. [41] proposed a parameter-based method for the joint optimization of
computational complexity and distortion (C-D) in H.263 video coding. Initially, three
control (coding) parameters, i.e., search window size, full- or sub-pixel ME and one
of four different DCT coefficient pruning options (i.e. 2x 2,4 x 4, 6 x 6 and full 8 x
8 DCT), are selected for a comprehensive C-D analysis of the encoder. The
complexity data is subsequently obtained by calculating the operations required for
the ME and DCT modules, with different combinations of the three parameter values.
The distortion is estimated by averaging the PSNR over five test sequences. Finally,
based on the computational complexity and distortion (averaged PSNR) data
gathered, a Lagrangian method is used to find out the Lagrangian multiplier (using
the corresponding combination of control parameters) that yields the optimal C-D,

under a given computational complexity constraint.

3.3.3 Summary

A comprehensive literature review on optimization of video coding has been
presented in Section 3.3.1 and Section 3.3.2. Table 3-2 provides a comparison of
these methods giving particular emphasis to the summarization of
objectives/parameters considered. It should be noted that for simplicity of
presentation, the optimization objective related to power consumption [46, 47] has
been represented by the computational complexity objective for all algorithms that
consider power consumption. This is deemed to be reasonable since the power
consumption can be shown to be directly proportional to computational complexity
[49]. It is noted that most optimization research works have focused on algorithmic
enhancements/improvements as compared to only one study that has focused on
parameter-based optimization. In addition, the table reflects that most studies have

focused on R-D optimization, whereas only a comparatively smaller number of

studies have focused on joint C-D and/or C-R-D optimization.




Table 3-2 Comparison of existing optimization methods on video coding

Published |\ \ thors Method c | M| R|D
year

1996 Wiegand et al. Algorithm-based y v
1997 Yang et al. Algorithm-based v v
1998 Sullivan ef al. Algorithm-based v v
2001 Ismaeil et al. Algorithm-based v v
2001 He et al. Algorithm-based V v
2001 Wiegand et al. Algorithm-based V v
2002 Stockhammer et al. | Algorithm-based v v
2003 Zhang et al. Algorithm-based | v v
2003 Takagi et al. Algorithm-based v v
2003 Kwon et al. Parameter-based v v
2004 Jesper et al. Algorithm-based v vV v
2005 Ma et al. Algorithm-based v v
2005 Kannangara ef a/. | Algorithm-based N

2005 Chen e al. Algorithm-based N v \1
2006 Jietal Algorithm-based v

2006 Yu et al. Algorithm-based v N v
2006 Pu et al. Algorithm-based | v

Note: C — computational complexity, M — Memory utilization, R — bit rate,

and D — distortion.

A number of optimization studies [32, 39, 40, 42-46] have also focused attention
particularly on H.264. Though these methods have been well developed and have
provided valuable insights into furthering the state-of-the-art, they have mainly
focused on proposing algorithmic improvements/enhancements to enable optimum
performance of the encoder or decoder of a H.264 CODEC. Given a H.264 CODEC,
either complying with the standard or modified/enhanced version (i.e. in particular
the encoder), a large number of coding options are available through the selection of
various combinations of a large number of coding parameters. Therefore an obvious
problem that needs solving is, “given a video sequence, what combination of coding
parameters should be used so as to achieve the optimum performance of the
CODEC”. The performance could be largely compromised due to the selection of ill-

suited parameter values. Thus, the choice of the right parameter set is of utmost




importance. The parameter-based optimization of a H.264 video CODEC can provide
a solution for this problem. Although a parameter based optimization approach for
H.263 video has been proposed in the literature, the method only focuses on the joint
optimization of complexity and distortion. Other important aspects such as bit-rate

and memory usage have not been considered in this optimization model.

In order to bridge the above gap in the state-of-the-art in video CODEC optimization
research, this thesis proposes a parameter-based, multi-objective optimization
framework for H.264 video coding (see Chapter 6 and Chapter 7). In particular the
thesis focuses on the development of a framework where a joint complexity-memory-
rate-distortion (C-M-R-D) optimization of H.264 video encoding/decoding can be
achieved. An important aspect of the proposed framework is that it jointly considers
the optimization of multiple objectives in both the encoder and decoder. Further an
Evolutionary Algorithm (EA) that is better suited for addressing multi-objective
optimization problems is selected as the optimization algorithm rather than the

frequently used Lagrange multiplier.

3.4 Conclusions

The aim of this chapter was to review different background technologies adopted
within the context of the main research focus of this thesis. It first provided a review
of research in texture coding of arbitrarily shaped video objects, which focused on a
detailed discussion of existing approaches to video object coding and their
underlying principles/methods. Particular emphasis was given to the analysis of their
performance, advantages and disadvantages. It was shown that SA-DCT used in
MPEG-4 is the most efficient approach that can be used for dealing with the texture
coding of arbitrarily shaped objects, when considering computational complexity and
rate-distortion performance. However it was pointed out that due to the need of
maintaining integer arithmetic within the integer transform (IT) and quantization
stages in H.264, the direct adaptation of SA-DCT principles is not possible in
introducing object scalability to H.264. Therefore, a novel SA-IT (see Chapter 4)
based on the principles of SA-DCT will be designed and implemented within a




H.264 CODEC (see Chapter 5) to achieve the goals of the research presented in the
first part of this thesis.

The chapter proceeded to provide an overview of optimization approaches proposed
for video coding during the past decade. It categorized the state-of-the-art
optimization techniques into two groups, namely algorithm-based and parameter-
based. It was revealed that despite its practical importance in video coding; only one
such attempt has been made in the past at parameter-based optimization. The said
attempt was limited to the joint C-D optimization of a H.263 encoder. It was shown
that the multi-objective optimization of an entire H.264 CODEC (i.e. both the
encoder and decoder) that includes the consideration of further important coding
objectives, such as rate and memory utilization, is of utmost importance for state-of-

the-art in video coding research. Chapter 6 and Chapter 7 provide details of this

research contribution




Chapter 4 Shape Adaptive Integer

Transform and Quantization

4.1 Introduction

The approaches used in MPEG-4 for video object-based coding have been discussed
in Chapter 2 , in particular the shape adaptive discrete cosine transform (SA-DCT)
[24] based approach for coding the texture of arbitrarily shaped video objects. In this
chapter a novel Shape Adaptive Integer Transform (SA-IT) is derived with particular
attention given to maintaining integer divisions during the subsequent quantization
step. In Chapter 5, we use the theory presented in this chapter to provide arbitrary

shaped object coding in the H.264 standard.

The SA-IT considerably differs from the SA-DCT and therefore calls for novel
design and implementation considerations based on combining those merits of both
SA-DCT and IT [17] algorithms. As a mathematical transform used in MPEG-4, the
SA-DCT has its advantages: adaptability at object edges, low complexity and block-
based DCT. However, all such previous work adopted a floating point arithmetic
design and implementation for SA-DCT, which is not suitable to be used in
conjunction with the integer arithmetic-based IT used in H.264 texture coding.
Although the use of IT allows increased decoding speed and reduced complexity of
the decoders, it has the limitation that if arbitrarily shaped objects are to be coded,
pixels outside the object will have to be considered in filling the boundary blocks of
the object before being transformed as a block. This would result in a waste of
computing power and processing time. The above limitation has been the key

motivation behind the development of the SA-IT theory presented in this chapter.

The organization of this chapter is as follows. Section 4.2 provides an overview of

the proposed algorithm. Section 4.3 provides the theoretical derivation of the
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proposed SA-IT. A method for incorporating the transformed scaling factors within
the quantization process is described in Section 4.4. An example of the process of
SA-IT is given in Section 4.5. The 1-D SA-IT used as a solution to solve the sub-
coefficients problem caused by the proposed SA-IT (which is essentially a 2-D
transform, i.e., 2-D SA-IT) is presented in Section 4.6. Some preliminary simulation
results of using 1-D and 2-D SA-ITs in video coding and an analysis are presented in
Section 4.7. Finally a chapter conclusion is provided in Section 4.8 with an insight

into Chapter 5.

4.2 An Overview

The basic idea of the proposed SA-IT is to transform a 4 x 4 boundary block of an
arbitrarily shaped image object by cascading column and row DCT transforms. The
transform is separated into two parts: (i) an integer part (i.e., core part) which is
implemented with 16-bit integer arithmetic using only additions/shifts [Note: this
avoids the traditional transform’s mismatch problem between the decoded data in the
encoder and the decoder, which arises from the fact that the inverse transform in
traditional DCT is not fully specified in integer arithmetic [17]]; (ii) scaling factors
(floating point numbers) which are produced by factorizing the direct and inverse
transformation matrices (see E'yy; and E""M(,, of Equation (4.13) and (4.14)
respectively). To conform to the transform and quantization used in H.264 standard,
the scaling factors, i.e., the post- and pre-scaling factors, are incorporated into the
quantizer, reducing the total number of scaling multiplications. The post- and pre-
scaling factors are normalizied into two separate quantization and reconstruction
tables by different quantization parameters (QPs). The quantization and
reconstruction tables are designed to avoid divisions and/or floating point arithmetic
at the encoder and the decoder, and to ensure that data can be processed in 16-bit

arithmetic.

A block diagram representing the process of 2-D SA-IT and its associated
quantization stages is illustrated in Figure 4-1. Note that the 2-D SA-IT is essentially

carried out as two cascaded 1-D SA-ITs. The input residual boundary block X, first




Forward 2-D SA-IT
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Inverse 2-D SA-IT

Figure 4-1 Flow diagram of 2-D SA-IT and its associated quantization

goes through forward 1-D vertical and horizontal SA-ITs before quantization. At the
decoder end the inverse processes (i.e. of quantization and transforms) are executed

in the reverse order. Finally, outputs the reconstructed block X".

For clarity of explanation, an example of the forward SA-IT algorithm on a 4 x 4
image block that fully encloses an arbitrarily shaped object is illustrated in Figure 4-2.
Figure 4-2(a) shows the division of the pixels within the said block into two groups,
namely; foreground (shaded grey) and background (white) pixels. The foreground
pixels are encoded with SA-IT by first applying a vertical one-dimensional transform,
followed by a horizontal one-dimensional transform on the resulting vertically
transformed foreground object. This is done as follows: firstly, the length N(j)
(1< N(j)<4) of every column j (1< j <4) of the foreground pixels X; are calculated.
Then, each column is shifted up and finally aligned with the upper border of the
block as shown in Figure 4-2(b). After applying SA-IT in vertical direction, the DC
coefficients (denoted by m in Figure 4-2(c)) for each column are found along the
upper edge of the block. Next, the rows are shifted to align at the left border of the
block (see Figure 4-2(d)) and a horizontal one-dimensional SA-IT transform is
performed on each row of coefficients Y, Finally, the resulting transformed
coefficients Z; within the 4 x 4 boundary block are shown in Figure 4-2(e). Note that
the final DC coefficient (denoted by m) for the whole boundary block is located in the
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(a) Original 4x4 block (b) Vertical ordering of pixels. (c) SA-IT vertically
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(d) Horizontal ordering of pixels. (e) SA-IT coefficients

Figure 4-2 Example of forward SA-IT in a 4x4 block with arbitrary shape

upper left border of the block. The remaining coefficients are concentrated around
the DC coefficient depending on the actual shape of the arbitrarily shaped object. The

detailed design of the SA-IT is presented in the following sections.

4.3 Transform Design

4.3.1 Forward 1-D vertical Transform

For a given 4 x 4 block such as the one illustrated in Figure 4-2, for a column of
foreground pixels, X; (marked with grey), of length M) (1< N(j) <4), the associated

DCT transform matrix 4y is given by Equation (2.13) which is re-used as follows:

(2k+1)pr

Jh=0—=N(j)—1
ING) )2 (/)

AN”.,(p,k) =, €OS

4.1)

where ¢, = JI/2if p = 0, and ¢, =1 otherwise, and p, k denote the p” row and &”

column DCT basis element respectively. Therefore the vertical SA-IT coefficients of

column j, ¥; can be obtained by the following formula (similar to Equation (2.14)):




Yj = Z/N(j)A,wan*

1<j<4, 1SN(j)<4

(42)

Equation (4.2) may be written as follows:

Y, =By X

I<j<4, 1<N())<4

By =+ Q/N(-/A)A.wn

(4.3)

where By is a N(j) x N(j) scale transform matrix. According to Equation (4.3), the

scaled transform matrices for different N(j)’s can be obtained as follows:
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In order to implement integer arithmetic, By can be factorized in the following form:

By = Cuy ® Eyyps ie.,
P
o1 a a
BZ—I —1®a a
11 1] bbb
B,=|l 0 -1®|la a a
1 _'2 1 C c C
L I 3 1 e & &
121 -1 =2|,|d d d d
B=ll -1 -1 ®az a a a
1 -2 2 -1} |d d d d

(4.4)

where Cly is an integer transform matrix consisting of constant integers (Note that
Chg) 1s designed to retain the smallest possible integers. As discussed subsequently in
Section 4.3.2, it minimizes the possible increase of the dynamic range of the
transformed coefficients, thus resulting in an improved compression performance),

and Eyg is a matrix of scaling factors that comprises fractional elements such as a, b,

cand d. a=\1]2, b=J13, ¢=\1/6, d=\[I/10. The symbol ® indicates that

each element of matrix on the left is multiplied by the scaling factor in the
corresponding position in the matrix on the right (i.e., the symbol ® denotes
Hadamard scalar product rather than matrix multiplication [11]). The scaled
transform matrices B;, B, and B; in Equation (4.4) can be easily factorized as
described above. However, the factorization of B, in a similar manner is more

complex. In order to factorize By, we first represent it as follows:

e e e e
p=|/ & &/
B = e
C I

(4.5)
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here

e—l f= lcos(zJ —\/1003[3—”]
2 T S T TV

~ 0 - ®
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~ R N o

(4.6)

where

h=g/f=0414.

To simplify the implementation of the transform, /4 is approximated by 0.5 following
a strategy similar to that used in IT [11, 17]. In order to ensure that the matrix

remains orthogonal, falso needs to be modified to,/2/5 . Thus, Equation (4.6) can be

represented as:

| | | | e
1 12 -1/2 -1
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(4.7)
Since the matrix on the left of Equation (4.7) can be further factorized so that the

matrix contains integers only, Equation (4.7) can be written as follows:

| A | 1 1 e e e e
g |2 1 71 2l S2 g2 12 S
1 -1 -1 1 e e e e
1-—=2 2 -1} \ff2 fj2 ff2 ff2

(4.8)




Finally, since e = ¢’ and set d = f/2, the above equation may be re-written in a form

similar to that of Equation (4.4), as follows:

S

Thus, after factorizing these scaled transform matrices By, Equation (4.3) may be

modified as follows:

1= (CNU) ®ENU))X;' = (CNU)XJ)®ENU) 1£j<4, 1<N(j)<4

(4.9)

where Cyg and Eyg) are the same definitions as above Equation (4.4). The symbol ®
within the context of this thesis represents Hadamard scalar product as described
above. Note that the result of the SA-IT will not be identical to the 4 x 4 SA-DCT

because of the change to factor d.

4.3.2 Forward 1-D horizontal Transform

As a result of performing the vertical SA-IT along columns as depicted above, the
resulting coefficients are left aligned as shown in Figure 4-2(d). Subsequently
following a strategy similar to that used in obtaining Equation (4.9), the formula for

one-dimensional horizontal SA-IT along rows could be obtained:

Z=1Co ¥ )@ By 1<i<4, 1<SM@)<4

(4.10)
where M(i) refers to the length of row i (i.e. the number of the transformed

coefficients of row 7). Cyyy) and )y are defined similar to Cyyy and Eyy respectively.

Y; is the ith row’s coefficients that were obtained by Equation (4.9). Z; is the ith row’s
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Figure 4-3 Results of vertical transformed coefficients (a) and scaling factors (b)

coefficients after horizontal transformation. There exists a problem that arises from
the fact that ¥; in Equation (4.10) not only contains integers, but also fractions
(scaling factors shown in Equation (4.4)). Thus, Equation (4.10) is required to be
factorized further. However, since different lengths, N(j) result in different scaling
factors in Y, it is impossible to decompose the Y; into the form of an integer and a
fraction. For instance, the following Figure 4-3 shows the results of coefficients and
scaling factors after vertical transformation. According to Equation (4.10), when i = 3,

the corresponding horizontal transform can be written as follows:

() e el

| eXg+a’X, o?
cX,-a'X,| |a

(4.11)

From the above equation, it is obvious that it can not be split into an integer and a
fraction due to the different scaling factors ¢ and &°. In order to solve the above

problem, it is desirable to decompose Equation (4.9) (i.e. the vertical transform) into

the following form:




N(J)

s

k=1

G)e) *))®Ewmvf> 1<j<4, 1<N(j)<4

(4.12)

where Cygn is the kth column of Cyg). Enga) represents the scaling factors in the kth
column of scaling matrix Eyg . Xju represents the ith internal pixel (i.e. grey pixel)
of X; as in Figure 4-2. Accordingly, the corresponding equation for horizontal

transform may be modified to:

M(i)

Z ( M(i)(k .gk)) E:(;‘)(k)

k=1

1<i<4, 1<M(i)<4
(4.13)
CuywyYir 1s the core two-dimensional transform. E'yyp is the K" column of the

matrix of scaling factors in Equation (4.4) multiplied by the K scaling factor of row i

resulting from Equation (4.12). Therefore, Equation (4.11) can be re-written as

follows:
Zy= ;( (k) m)) Eyy =Cyy Yogyy ® By + Coy o) B £y
1 1 a
+ X, |®
Table 4-1 Scaling factors of constituting elements of £'y;).

1 a b C d a’
1 1 a b c d a
a a a’ ab=c ac ad a
b b ab b* be bd a’b=ac
(v c ac be ¢’ cd a’c
d d ad bd cd d* a’d
a’ a’ a a’b a’c a’d a’
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From the above equation, we may notice that the scaling factors in £ 'y are different
from Eyg; which consists of one or more of six scaling factors (i.e, 1, @, b, ¢, az, and
d), while E’yy is made up of eighteen scaling factors as depicted in Table 4-1

highlighted in grey for clarity.

As we mentioned at the beginning of this chapter, the new transform can be
computed in 16-bit arithmetic that conforms to H.264 standard. In the integer
transform matrices C; to Cy in Equation (4.4), the maximum sum of absolute values
in any row of these matrices is in C; and equals 6. If the maximum pixel value of a 4
x 4 image block equals to A, then the maximum value of direct transformed
coefficient is 6A, i.e., the transform has a dynamic range gain of 6. Thus, the
maximum dynamic range gain increase for a 2-D transform is ]ogg(62) =3.17, 1.e.,
storage of transformed coefficient needs only six more bits than initial 8-bit pixel

data or 9-bit residual data. So the transform is implemented within a 16-bit arithmetic.

It is desirable to note that the integer transform matrices C; and C, are orthogonal but
do not have the same norm. However, that can be easily compensated for in the

quantization process, as we discuss in Section 4.4.

4.3.3 Inverse Transform

In relation to Equations (4.13) and (4.12) respectively, the inverse transforms in
horizontal and vertical directions respectively and their factorizations can be

summarized by the following equations:

M (i)

I = ZCL(!)(I:J (Z.'(:.) @ E.;:[il(k)) 1<SM@(@)<4,1<i<4

(4.14)

NUYK) i(R)

N(J)
Xf=§C’ Y IS N()<4, 1<j<4

(4.15)
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here, Zis) and Y;y are respectively the & forward horizontal transform coefficient of
row i of the SA-IT transformed block and the k" inverse horizontal transform vector
of column j. C'yy, C'vgay and E yy represent the transposes of Cuims Covij
and E'yye) respectively. Finally, the reconstructed pixels X':,- are replaced in the

initial positions of the block as in Figure 4-2(a).

However, combined rounding errors arise from the inverse transform and
reconstruction. In order to minimize the errors, we need to reduce the dynamic range
gain in the 2-D inverse transform. The problem is in the odd-symmetric basis
functions of Cy, whose peak value is two. We scaled the odd-symmetric basis
functions by 1/2; that is, using Equation (4.7) as the inverse transform matrix. Thus,
the maximum sum of absolute values of C, in Equation (4.7) now equals 4, which
reduces the dynamic range gain for the 2-D inverse transform from 6° to 4°. Since
logy(4*) = 4, the increase in dynamic range is reduced from 6 bits to 4 bits. The
factors £1/2 in the inverse transform matrix (Equation (4.7)) can be implemented by
1-bit right shifts [17]. Although small errors would be caused by the right shifts, [17]
has shown that the errors can be compensated by the 2-bit gain in the dynamic range

of the input to the inverse transform.

4.4 Quantization Design

Due to the need of conformability with H.264 standard, the quantization design
procedure adopted in our proposal is similar to the H.264 standard’s quantization
design [17] procedure. Thus, the proposed quantization design must fulfil the

following requirements.

® The post- and pre-scaling factors, i.e., E'yy and E’Y'Mm, need to be
integrated into forward and inverse quantizers individually;
The need for divisions should be avoided;

Implementation should be done usingl6-bit arithmetic.




In Equation (4.13), the output of the forward transform consists of two parts, (i)
integer part, Waim = CuamYig; (1) a non-integer part (i.e. it consists of the post-
scaling factors) E'ya. To achieve the first requirement, the £’y is incorporated
into the forward quantization process. Thus, the integers, transformed coefficients,

Wya are quantized and scaled by a single operation as follows:

M)
O =round|) W, .. . @E', . [Ostep

k=]

(4.16)

where Oy, is a quantizer step size indexed by QP in the range of 0 to 51, inclusive.
Osiep and QP have been introduced in Section 2.3.7.3. The rounding operation here
approximates towards smaller integers. ; represents the quantized coefficients of

row I,

A disadvantage of the above quantization formula is that it requires integer divisions,
To avoid divisions, following the approach used within H.264 reference model
software [51], we apply the factor (E'vpm/Osep) in Equation (4.16), as a
multiplication by a quantization factor MF and a right shift, thus avoiding actual

division operations. i.e., Equation (4.16) can be re-written as follows:

M) MF, .
Q = round ZW (0K ®——————-—2r::t)m
(4.17)
where
ME ... B
YO — M08 gbits =15+ floor(QP/6).

2qhm Qstep

In integer arithmetic, Equation (4.17) can be implemented as follows:




Mi)

M(i)
|Q| = ;(’ (i@ (.)(A) Fuu)f) > qbits=; RM(;‘)(R)
h M) -

sign (Q, ):Sign[ZWMw“]

k=1

(4.18)

where the symbol (>>¢bits) indicates the gbits-bit right shift that is equivalent to a

qbits

division by 2 Fui 1s a column vector of size M(i) x 1, in which all elements are
one. The so-called dead-zone control parameter £ is set to 27°/3 for intra blocks or
27"/6 for inter blocks by the encoder in our implementation. Ry is the sub-
quantization coefficient(s) of each Wyu, and (; represents the quantized

coefficients of row i.

The pre-scaling factor E”yq for the inverse transform in Equation (4.14) is
incorporated into inverse quantization (reconstruction), together with a constant
scaling factor of 64 to avoid rounding errors [11], thus the corresponding

reconstruction formula that we proposed is:

0 ®§:)(E -Qstep-64)

M1

@oEf

M{i)(k)

R

=]

- Ostep - 64.

M (i)(k

=

(4.19)

w," are de-quantized coefficients of row i. The reconstruction factor
E™"\ioayOstep64 is replaced by reconstruction factor, RFyuys. Thus, the

reconstruction formula may be re-written as follows:

M(i)

z:l( " )<< floor(QP/6)

RF,, . = round ( Qstep 64)

(4.20)
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where the symbol << denotes a binary left shift. Note that finally the values at the
output of the inverse transform are divided by 64 to remove the scaling introduced in

Equation (4.19). This is achieved using a right shift operation.

In the proposed SA-IT quantization process design, the quantization and
reconstruction factors, MF and RF are obtained via lookup table as illustrated in
Table 4-2 and Table 4-3 respectively (the definition of the values of MF and RF are
discussed later). Note that only the first six values of MF and RF are used by the
proposed SA-IT due to the fact that for every increase of “six” in QP, the
denominator 27" in Equation (4.18) doubles, but the factors MF remain unchanged.
We use a total of [8 scaling factors that depend on the actual arbitrarily shaped object
within the block. Since the scaling factors in £’y are unpredictable, a question of
obtaining the factors in our implementation (discussed in Chapter 5) arises. To avoid
using floating point values of the scaling factors to look up the quantization table, it
is desirable to create integer indices to the array of scaling factors as illustrated in
Table 4-2 and Table 4-3. We first use a number between 0 to 17 to index each row of
Table 4-2 and Table 4-3 factor to pick up the associated QP values. Further we use 1,
2, 3, 6 and 7 as a code to represent the five basic factors, 1, a, b, ¢, d respectively,
resulting in all 18 scaling factors being representable by unique codes. The maximum
valued unique code is 49, which is for &, and the corresponding relationship of index

(i.e. 16) and code is indicated in Table 4-2 and Table 4-3.

As we mentioned in Section 4.3, C; and Cy are orthogonal but do not have the same
norm. In the quantization process it is necessary to compensate for the different row
norms (3, 2 and 6 in Cs; 4, 10, 4 and 10 in C,). The scaling factors needed for
compensation are depicted in Table 4-4. Note that since the odd-rows of C; are
scaled by 1/2 in the inverse transform (i.e., to reduce the dynamic range gain (see
Section 4.3.3)), the compensated values for all the scaling factors that involves d, i.¢.,
d, ad, bd, cd, a*d and &, are halved.
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Table 4-2 Quantization factor MF for 0<gP <5

Factor | Index | Code QP for MF
0 1 2 3 4 =
a 0 2 37449 | 33825 | 28340 | 26214 | 23301 | 20560
b 1 3 30393 | 27962 | 23302 | 21845 | 18893 | 16644
c 2 6 21845 | 19418 | 16644 | 15197 | 13443 | 12052
d 3 7 16777 | 14980 | 12710 | 11984 | 10485 9118
a 4 4 26214 | 23831 | 20165 | 18724 | 16384 | 14563
| ac 5 12 14564 | 13443 | 11650 | 10922 9709 8322
; ad 6 14 11651 10486 9118 8389 7232 6553
a 7 8 18725 | 16384 | 14563 | 13107 | 11398 | 10485
be 8 18 12945 | 11651 9709 8962 7767 6853
bd 9 21 9321 8738 7358 6990 6079 5377
cd 10 42 6991 6355 5377 4993 4112 3679
a’c 11 24 |, 10923 9709 7944 7943 6721 5825
a’d 12 28 8066 7490 6553 5825 5242 4559
1 13 1 52429 | 47662 | 40329 | 37449 | 32768 | 29127
b’ 14 9 17924 | 15534 | 13706 | 12264 | 11096 9709
¢ 15 36 8322 8322 6473 6472 5296 4854
a4 16 49 5243 4660 4194 3813 3226 2995
a’ 17 16 13107 | 11915 | 10082 9362 8192 7281
Table 4-3 Rescaling factor (RF) for 0<gP<5
QP for MF
Factor | Index | Code 0 1 3 3 y 5
a 0 2 28 31 37 40 45 51
b 1 3 23 25 30 32 37 42
¢ 2 6 16 18 21 23 26 29
d 3 7 25 28 33 35 40 46
ge 4 4 20 22 26 28 32 36
ac 5 12 12 13 15 16 18 21
ad 6 14 18 20 23 25 29 32
a’ 7 8 14 16 18 20 23 25
be 3 18 9 10 12 13 15 17
bd 9 21 15 16 19 20 23 26
cd 10 42 10 1 13 14 17 19
ac 11 24 8 9 11 11 13 15
a'd 12 28 13 14 16 18 20 23
1 13 I 40 44 52 56 64 72
b° 14 9 13 15 17 19 21 24
e 15 36 7 7 9 9 11 12
d 16 49 8 9 10 11 13 14
a 17 16 10 11 13 14 16 18




Table 4-4 Compensations of scaling factors

Scaling Factor Compensated Value (CV)

a 2

b 3

G 6

d 5

a 4
ac 12
B ad 10
o 8
be 18
bd 15
cd 30
a'c 24
a'd 20

1 1

b’ 9
¢ 36
d’ 50
a' 16

Since in the standard [16] only the decoder is specified, the RF may be computed
from the reconstruction Equation (4.20), which is depicted in Table 4-3. To follow a
strategy similar to that in [17], the MF and RF were designed to maximize dynamic

range and to satisfy a similar expression to that in [16], namely:

2
Mfﬂ-{u)(k)REVUM)CVWHM) =2

I

(4.21)

where CVyn represent the corresponding compensation values. Thus, according to

the above equation, MF can be calculated easily and shown in Table 4-2.

With the transform design discussed in Section 4.3 and the quantization design above,
we see that all operations can be computed in 16-bit arithmetic, for input data with 9-

bit dynamic range. It is because the inputs (8-bit pixel data (0-255)) to the transform
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Figure 4-4 (a) Initial block; (b) After shifting to upper border

are prediction residuals/errors that are in a -255 to 255 (9-bit) dynamic range.
However, there is one exception in the quantization Equation (4.18), i.e., the product
(W] @ MFyyn) has a 32-bit dynamic range, but the final quantized value is

guaranteed to fall within a 16-bit range.

4.5 Example of 2-D SA-IT’s Process

This section illustrates an example of applying the proposed 2-D SA-IT on a selected
arbitrarily shaped block. Figure 4-4 (a) shows an initial 4 x 4 block with arbitrarily
shaped pixels highlighted with grey and Figure 4-4 (b) illustrates these pixels being
shifted to upper border in preparation for a forward vertical transform. The detailed

operation steps are shown in the following statements.

Step 1: The forward 1-D vertical transform is executed by Equation (4.12) and the

corresponding results for each column are as follows.

Y,=(C,®E,) X,= Z(qm . Xm_))® Eyy= (C Xy ® B =10,

1
k=1

(1)
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Figure 4-5 (a) Resulting coefficients of the vertical transform and (b)

corresponding scaling factors
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= 1.[10]®az+ —-1'[12]®a-’+ FI'MQ%EJF 1 .[7}@;“_,_] ®| %)
I d —2 d : d - d ~13| |d

After the vertical transform, the resulting Y; and Ey are shown in Figure 4-5,

Step 2: The forward 1-D horizontal transform is then performed by applying
Equation (4.13) as follows:

Z,=i(C§m Y )®E‘(k!~ (Csm )®Ema+(c }’"2))@5;(2]+(CM3,-Y"3))®E;{3,

1 bl (1 ba| (|1 ba’| 10@b+19®ba+33@ba’
11-10]|®@|a|+|| 0 |-N9]|®|a®|+||-1|-B3]|®|d’ |=[l0®a+0®a’-330a® |,
! el |2 ca 1 ca’| 10®c—38®ca+33®ca’




zzzg(c Y,m)@:E,m (Cy* iy )® By +(Copy Y )@ Eiy
| _ ad| _|—11Qa" +14®ad
. H “] “ 1] M]@) ad _[—*11®a2—14®ad’
1
ZB:Z(C]{A Y ) (k) (C Y ) 1(1)_‘I®a-’

,._

If

% '(C Yy )® By =(Cyy Xy | ® By =—13®@4.

()
=

The intermediate outcomes of Z and scaling factors are illustrated in Figure 4-6. Note
that each coefficient position (highlighted with grey) consists of the sum of those

sub-coefficients, e.g., ]0®b+19@ba+33®@ba’.

Step 3: These scaling factors illustrated in Figure 4-6 will subsequently be integrated
into the forward quantization process using Equation (4.18). The resulting forward
quantized coefficients are illustrated in Figure 4-7 (a). Note that we have assumed

that QP equals to 4 and fis set to 2“/3 (i.¢., used for intra block) in this example.

When i = 1, M(1) = 3. The corresponding MF gained from Table 4-2 is as follows.

18893 13443 9709
MF,, = (23301, MFy, = (16384, MF,, =(11398).
13443 9709 6721
j= 2 3 4
= 1086+19®ba+33®ba’ | 100a+0Qa*-33Qa’° | 10®c-38®ca+33@cd’
2 -11®a’+14®ad -11®a’-14®ad
3 ]®(12
4 -13®d

Figure 4-6 Intermediate outcomes of Z and scaling factors
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The coefficients of the first row can be gained from:

3

Q :;(

(10x18918+10923) 315 +(19x13443410923) 3> 15+(33 x9709 +10923) 15
=|(10x233014-10923) 15 +(0x16384+10923) 15— (33 x11398-+10923) 15
(10x13443+10923) 15 —(38x9709+10923) 3 15+(33x 6688 +-10923) > 15

24

W

@MFy, +E.f | gbits

648410 6| [8][10
=| 7-11 |=|-4|, Ry =|7+] 0 |+~II
4-1147) |, 4l |-11) | 7

Note that each quantized coefficient of the first row comprises the sum of three sub-
coefficients. For example, the coefficient of the position (1. 2) is 24 which is the sum

of sub-coefficients 6, 8 and 10.

When i =2, M(2) =2.

16384 1232

MRy = | M, =

16384 7232

iid 24| 4]0 610] 62 | -3
5 7 loe 73 | 247
3 T 0 0
4 L -4 160
(a) (b)

Figure 4-7 (a) Forward quantized coefficients; (b) Inverse quantized coefficients
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B=3)

k=1

Wy| @ MFyy, 'f'va) > gbits

—(11x16384 +10923) > 15+ (14x 7232 +10923) > 15
~(11x16384+10923) > 15— (14x 7232 +10923) > 15

=33l ==l 8 T4
2 —8}’ Rt :l*5J+L3]

Note that each quantized coefficient of the second row comprises the sum of two sub-

coefficients,
When i =3, M(3) =1 and MF,, = 16384.

The coefficient of the third row can be gained from:

Qs=Z‘:(|%kjl®MF.(k)+P1f)>>qbz‘rs:[(1x16384+10923)>>15}:0, B ol
k=1

1(k)

When i = 4, M(4) = 1 and MF,,;, = 10485.

The coefficient of the fourth row can be calculated from:

g,= i([%)lcg My + F,f | gbits = [~ (13x10485 +10923) 15| = —4, Ry, =4
=1

Note that the quantized coefficients for the third and fourth rows contain only one

sub-coefficient respectively.




Step 4: The corresponding de-quantization (Equation (4.20)) is carried out as follows.

The associated RF’s are as follows:

37 26 18
Va(m) =145 VR(E} =132 V?'l‘i) =23
26 18 13
i=2
32 29
21 :{32] Vz(z) = [29J
=3, VHI) =32
=4, V., =40

Rescaling coefficients are obtained from the following calculations and results are

llustrated in Figure 4-7 (b):

[6 37 8 26 10 18 1222+4208+180] |610
T|@451+| 0 |®@132)+|-11{®[23{={315—253 =62
4] [26] [—~11] |I8 7 13| [104—-198+091 w3

pﬂ‘:

b

v ekl Lol i s o

=5 32| |-=3] |29] |-160-—87| |-247



Step 5: The horizontal inverse transform is carried by Equation (4.14) and the

corresponding results are illustrated in Figure 4-8 (a).

Step 6: The reconstruction of transform is performed by Equation (4.15) for vertical

inverse transform. The corresponding results are illustrated in Figure 4-8 (b).

Step 7: As mentioned in Section 4.4, the reconstruction values need to perform a 6-bit

right shift operation and the final output is in Figure 4-8 (c).

It was noted that in the illustrated example above, a given coefficient (e.g., the first
row of the block) may be made out of a maximum of three sub-coefficients (Note
that in general, in a 4 x 4 block, a coefficient may be made out of a maximum of four
sub-coefficients). It has been observed that this is due to (a) the use of different
vertical (or horizontal) transform sizes and (b) the fact that post-scaling is absorbed
in the quantizer operation. Therefore, for guaranteed decoding, all sub-coefficients
will have to be transmitted to the decoder which directly results in a coding loss.
Therefore, though 2-D SA-IT provides a theoretical solution to arbitrarily shaped
object coding, a practical implementation may not be sufficiently efficient. In the

following section we discuss a solution to this, i.e., the use of 1-D SA-IT.

669 | 616 | 545 669 | 296 | 639 9
-320| 174 936 | 792 4 |12
0 298 10 4
-160 451 T
(a) (b) (c)

Figure 4-8 Reconstruction results (a) horizontal; (b) vertical; (c) final results
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4.6 1-D SA-IT and Quantization

As shown in Section 4.5, for guaranteed decoding of an arbitrarily shaped block, sub-
coefficients that result from 2-D SA-IT are required to be transmitted to the decoder.
This increases cost of transmission (see experimental results in Section 5.4). A
solution to this problem is to use 1-D vertical SA-IT. This approach not only resolves
the sub-coefficients problem but also reduces the overall computational cost of SA-
IT (only performing 1-D transform). A block diagram of the 1-D vertical SA-IT and
its associated quantization stages is illustrated in Figure 4-9. The detail definitions

and design considerations of the 1-D SA-IT are discussed below.

For the forward 1-D vertical SA-IT, the equation is the same as Equation (4.9), which

1s re-written as follows:

Y..' - (C-’\"(.H ® EN(‘)‘))X! = (C-‘\"U)Xf)'x ENU) 1< -/ <4, 15 N(f) 4

(4.22)

Note that all terms in the above equation are defined as previously.

Boundary block 1-D vertical o| Quantization
X(4x4) SA-IT
i L 4
Reconstructed Inverse 1-D

De-quantization

block X~ T | vertical SA-IT [©

Figure 4-9 Flow diagram of 1-D vertical SA-IT and quantization




As a result of performing the vertical SA-IT, the resulting output (e.g., Figure 4-5)
contains (i) an integer part, W; = CyyX;; (i) a non-integer part Ey; which is
integrated in the quantizer operation. The corresponding forward quantization

formula is as follows:

Q, = round (W” RE,/ Qstep)

(4.23)

where Wj; and £j; are the 1-D vertical transformed coefficient of the position (i, /) and
the scaling factor of the coefficient respectively. O; is the resulting quantized
coefficient of the position (i, ). Qe 1s defined as before. Note that the position (7, /)
must be one of valid positions such as the ones highlighted in grey in Figure 4-5.
Following the approach for quantization process design used in Section 4.4, the final

quantization equation can be obtained as follows:

= (3,47 b
sign(Q” ): sign(lﬂ)
(4.24)

where MFj is the corresponding quantization factor of the position (i, j), which
depends on the actual shape of the block. The gbits, f and the symbol = are defined

as before.

According to Equation (4.24) and the method for obtaining the de-quantization
presented in Section 4.4 (i.e., for 2-D SA-IT), the rescaling equation for the 1-D SA-

[T can be obtained as follows:

W, =(0Q,RF,) < floor(QP/6)

(4.25)




here RFj; is the corresponding rescaling factor of the position (7, /), and W,-J-* is the

corresponding de-quantized coefficient.

Finally, the equation for the inverse 1-D vertical SA-IT is similar to Equation (4.15),

and can be presented as follows:

-X.u

j

Lol [<j<4, 1SN())<4
(Cuon?7)

NGYT T

(4.26)

here, W', and X*j- are the results of de-quantization of column j and the reconstructed
results of column j respectively. Note that the reconstructed results are divided by 64

as mentioned in Section 4.4.

Since the scaling factors £y used in Equation (4.22) contain six scaling factors (i.e,
I, a,b,c, a,and d) which is a part of scaling factors used for 2-D SA-IT (see Table
4-1), the quantization factor M, rescaling factor RF and the compensation value CV
for 1-D SA-IT can use the same tables (Table 4-2, Table 4-3 and Table 4-4) as the 2-
D SA-IT defined in Section 4.4.

For clarity, we use the same example described in Section 4.5 to illustrate the use of
1-D SA-IT and the associated quantization process that will be implemented in the

proposed CODEC that will be discussed in Chapter 5.

Step 1: The forward 1-D vertical transform is performed by Equation (4.22). The
resulting coefficients and scaling factors are illustrated in Figure 4-10 (same as

Figure 4-5).

Step 2: The forward quantization is carried out by Equation (4.24). The resulting
forward quantized coefficients are illustrated in Figure 4-11 (a). For example, the

calculation of the coefficient of the position (1, 4) can be carried out as follows:
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Figure 4-10 (a) Coefficients of vertical transform and (b) resulting scaling factors

MF,,=16384, O, =(|,|- MF, +f)> qbits=(33x16384+10923)>15=16

Step 3: The corresponding de-quantization is executed by Equation (4.25). The
results are illustrated in Figure 4-11 (b). The rescaling result of the position (1, 4) can

be calculated as follows:

RE, =32, W, = (0, RE,) < floor(QP/6)=(16x32)< 0= 512

i= 1 10 | 13 | 16 640 | 585 | 512
2 <R 16 -360( 160
3 0 0
4 -4 -160
(a) (b)

Figure 4-11 (a) Forward quantized coefficients; (b) Inverse quantized coefficients
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Figure 4-12 (a) Results of inverse vertical SA-IT; (b) final results

Step 4: The inverse vertical SA-IT is performed by Equation (4.26). The
corresponding results are illustrated in Figure 4-12 (a). The results of the inverse

transform of column j = 3, for example, can be obtained as follows:

N(3): P

X;Z CZ-W;)=[1 ! %

I —1/71—360|  {585+360|  |945

585 ]H[SSS_%OI—[ZZS

Step 3: The resulting inverse transformed coefficients presented in Figure 4-12 (a)
finally undergoes a 6-bit right shift operation to obtain the final results, presented in

Figure 4-12 (b). The result of the position (1, 4), for instance, is obtained as follows:
Xy, = (X, +32)>6=(592+32)>6=9

Note that the constant 32 is used to minimize the error caused by the right-shift.

It is worthwhile to note that comparisons were made between the possible use of 1-D
vertical and horizontal SA-ITs. The R-D performance results did not differ

significantly. Thus, we adopted the vertical SA-IT in the proposed CODEC discussed

in Chapter 5.




4.7 Preliminary Experiments & Results

Before fully incorporating the proposed SA-IT within an H.264 encoder, preliminary
experiments were carried out to investigate its effectiveness in coding arbitrarily
shaped objects and to compare its performance against SA-DCT. These experiments
compare the average PSNR quality of the reconstructed boundary blocks (i.e. blocks
which lie along the boundary of the object) of the video objects when using SA-DCT
and the proposed 1-D and 2-D SA-ITs.

The video sequences “Foreman” and “Mother & Daughter” illustrated in Figure 4-13
(a) and Figure 4-13 (b) respectively were used for the experiments, assuming that the
shapes of the foreground objects (i.e. of the Foreman, and Mother & Daughter) were
known as alpha maps (described in Section 2.5). These are illustrated in Figure 4-13
(¢) and Figure 4-13 (d). The same quantizer step size was used for all three
transforms, i.e., SA-DCT, 1-D SA-IT and 2-D SA-IT.

First, each frame is segmented into two groups, namely, foreground (i.e., the objects)
and background, using the associated alpha map information. Subsequently the frame
is divided into 4 x 4 or 8 x 8 (for SA-DCT) blocks which will comprise of boundary
(part of pixels that belong to the object), foreground (all pixels inside of the object)
and background (all pixels outside of the object) blocks. Finally, the proposed SA-
ITs and SA-DCT are applied to all boundary blocks separately. Note that the normal
IT and DCT can be applied to all foreground object blocks while coding background
object blocks are ignored as they do not belong to the foreground object. However
for an effective comparison of the efficiency of SA-DCT vs. SA-ITs, experiments
presented in this section were designed to compare the average PSNR values of only

the boundary blocks.

Figure 4-14 and Figure 4-15 plot the variation of PSNR against QP for the “Mother
& Daughter” and “Foreman” video objects respectively. It is clear from both figures
that the curves of SA-ITs (either 1-D SA-IT or 2-D SA-IT) are very close to the SA-

DCT. It means that the results of the new transforms are comparable with that of the




(c) (d)

Figure 4-13 Original images: (a) Foreman; (b) Mother & Daughter. And
associated alpha maps: (¢) Foreman; (d) Mother & Daughter

SA-DCT traditionally used in coding arbitrarily shaped objects in the MPEG-4
standard. Figure 4-16 illustrates a resulting reconstructed frame of “Foreman™ and
“Mother & Daughter” video objects, when the proposed 1-D SA-IT was used in their
coding. The results do not show any quality degradation, specifically any noticeable

artefact in the object boundary areas.
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4.8 Conclusions

In this chapter, we have presented the theory of the proposed 2-D SA-IT and
associated quantization procedures. We have shown that the new transform inherits
the benefits from both IT used within H.264 and SA-DCT used within MPEG-4,
which include: (i) allowing computation of the forward or inverse transform using
simple additions and shifts, but no multiplications; (ii) minimizing computational
complexity by using 16-bit arithmetic operations; (iii) avoiding divisions at
quantization by the introduction of quantization table look-up strategy. (iv)

supporting the coding of arbitrary shaped video object.

Moreover, we have presented the 1-D SA-IT to solve the sub-coefficients problem
caused by the use of 2-D SA-IT. We have shown that the use of 1-D SA-IT not only
delivers the ability to code arbitrarily shaped objects but also reduces the

computational complexity as compared to the use of 2-D SA-IT for the same purpose.

We have also designed some preliminary experiments to compare the performance of
the new transforms (1-D and 2-D SA-ITs) with that of the SA-DCT used in MPEG-4.
The experimental results have proved that the proposed transforms have performance

levels equivalent to that of SA-DCT.

In the following chapter we use the 1-D SA-IT theory developed within this chapter

to introduce arbitrarily shaped object coding in the H.264 video coding standard.




Chapter S Object-Based H.264 CODEC

5.1 Introduction

The supporting techniques used in coding binary shape and transforms in support of
the coding of the texture of arbitrarily shaped video objects have been investigated in
Chapter 2 and Chapter 3. The aim of the novel transform, SA-IT, proposed in
Chapter 4, is to meet the coding needs of the texture of boundary blocks of these

video objects, under 16-bit integer arithmetic constraints.

This chapter presents the design, implementation and performance analysis of an
object-based coding extension to the Baseline profile of H.264 standard. The basic
idea is to adopt an object-based coding strategy similar to that of MPEG-4 Visual [5]
discussed in Section 2.5, tailored to the specific operational and functional needs of
H.264. Temporarily varying binary alpha maps (see Section 2.5.2) are used to
temporarily vary the constitution of H.264 slice groups (see Section 2.3.4). These

slice groups are in turn used to define video objects.

This chapter has been organized as follows. Section 5.2 gives an overview of the
proposed idea of including object-based coding in H.264. Section 5.3 describes the
detailed design of a novel binary shape coding strategy within both the H.264
encoder and the decoder. The texture coding of arbitrary shaped objects at
macroblock layer level is introduced in Section 5.4. Simulation results for the
proposed CODEC, and analysis and conclusions are presented in Section 5.5 and

Section 5.6 respectively.

5.2 Overview of Object-Based H.264 CODEC

This section provides a functional overview of the proposed object-based H.264
video CODEC., A block diagram of its encoder is illustrated in Figure 5-1. The

coding architecture of this encoder is detailed subsequently.
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Figure 5-1 Block diagram of the proposed object-based H.264 encoder.




Object-based coding of video requires an initial stage of identifying suitable video
objects or Regions-of-Interest (ROIs) within the video scenes. A number of existing
computer vision based algorithms can be utilized to this effect [52] [53]. It is noted
that our present research only focuses on the coding of these objects once they have

been identified. Therefore the discussions are limited to this aspect.

It is noted that the shapes of arbitrarily shaped video objects are represented by so-
called binary alpha maps and typically coded by a binary shape coder as illustrated
by the top part of Figure 5-1 (red rectangle). The associated texture is coded by a

texture coder as illustrated by the blue rectangle in Figure 5-1.

The introduction of an object-based coding architecture within the standardized
frame based coding architecture of a H.264 CODEC, primarily requires the inclusion

of the following:

1. Binary Shape Coding — exclusively used for coding binary alpha maps
representing shape information of video objects.

2. Shape Adaptive Integer Transform (SA-IT) - a mathematical
transform presented in Chapter 4, which is able to handle the border
texture of an arbitrarily shaped video object.

3. Modification to the Coding Architecture — required for handling the
temporal variations of slice groups driven by the binary alpha maps and
inclusion of the extra alpha non-VCL NAL overhead to notify the

presence of shape information of a coded object.

The block-based CAE (see Section 2.5.2.2) [20, 21, 54] of the MPEG-4 standard was
selected as the basis for binary shape compression within the context of the proposed
research. However, the binary shape compression technique used within MPEG-4
standard was exclusively designed to be used within the said standard, our detailed
investigations revealed that it is not entirely suitable if used without suitable
modifications within our research context. Therefore the original MPEG-4 shape

coding approach was suitably modified and further improved in order to meet the




more challenging requirements of the proposed object-based H.264 CODEC (see
Section 5.3).

The mathematical transforms relevant to the research context of this thesis, SA-DCT
[24] and IT [17] were reviewed in Chapter 2 and Chapter 3. It was noted that SA-
DCT can handle the border texture of an arbitrarily shaped video object. SA-DCT
was chosen to provide the basis for the mathematical transform used within the
proposed research context due to its block based nature/approach. However, SA-DCT
based texture coding in MPEG-4, employs a floating point implementation. The
transform used in H.264, IT, is essentially a 4 x 4 DCT transform implemented in
integer arithmetic. Thus, the modification of a standard H.264 CODEC to an object-
based CODEC requires the novel design of a SA-DCT that should be implemented in
integer arithmetic. To achieve this, we have proposed SA-IT in Chapter 4. This
transform will be used in the inclusion of object based coding functionality of the
proposed object-based H.264 CODEC.

Further to the above, a number of other modifications and extensions have to be
included in the proposed CODEC. It was mentioned that in H.264, a slice group can
be used to independently (from the backgrounds and other slice groups) define and
code a region of a video frame. Each slice group is made of a number of macroblocks
and may represent an irregular (see Figure 5-2) or a rectangular region. However, in
H.264, the macroblocks associated with a particular slice group are predefined by a
user; the shape, size, and position of the slice group in relation to the frame does not
vary between frames, i.e., temporally. In contrast, in the proposed scheme, the slice
group(s) of each frame is defined by the temporally varying binary alpha maps. Thus,
the slice group(s) becomes shape, size and position variant with respect to time.
Furthermore, the boundary accuracy of an object defined by a slice group of H.264 is
not accurate enough (minimal 4 x 4 block) for completed arbitrarily shaped object
coding. However, in the proposed method, we modified the slice group definition (by

binary alpha maps) to allow fully arbitrarily shaped object (accuracy in pixel by pixel)

coding.
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Figure 5-2 Foreman object is grouped into a slice group (grey), a small square

indicates a macroblock of 16 x 16 pixels.

In addition to the above modification, due to the need of introducing binary shape
coding within the proposed design, the texture coding of individual macroblocks is
dependent on their corresponding shape information. Therefore the macroblock level
texture coding process of MPEG-4, has to be considerably modified to be used
within the present research context. The main modifications adopted within the

proposed coding process are covered in Section 5.4

The shape information has to be effectively organized for efficient transmission and
storage. In MPEG-4, the shape is coded and transmitted as a byte stream that is a part
of the main bit stream which includes the video content, rather than as an
independent stream. In contrast, non-VCL NAL units are to be utilized in H.264 for
transmitting additional data, rather than being mixed with VCL information. It was
mentioned in Section 2.3.1 that the NAL is designed for “network friendliness” and
to enable simple and effective customization of the use of the VCL for a broad
variety of systems. Therefore, in the proposed design, a new non-VCL NAL unit,
named the Alpha NAL unit as illustrated in Figure 5-3 is defined to include and
transmit the overhead shape information. In the first place, all coded binary alpha
blocks in the video picture are encased into a stream with a shape header to form the
binary shape data. The resulting binary shape data is then prefixed with a single byte
long header data that indicates the type of Raw Byte Stream Payload (RBSP) data
structure it contains. The RBSP is thereafter organized into a non-VCL Alpha NAL

unit in byte-stream format together with a start code prefix that is a unique identifier
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Figure 5-3 Structure of an alpha NAL unit.

of the start of a new NAL unit. The Alpha NAL unit is afterwards encapsulated to the
NAL unit stream prior to the primary coded picture that consists of a set of VCL
NAL units containing the main data of the video picture. Eventually, the NAL unit
stream 1s stored or transmitted to the decoder. For more detailed information on NAL

units, see [16].

All fundamental units of the proposed object-based coding scheme have been
outlined above. The schematic framework illustrated in Figure 5-1 consists of a
binary shape encoder and a H.264 texture encoder. It was mentioned that a moving
arbitrarily shaped video object is entirely defined by its shape, motion and texture
information. The object coding begins with the definition of its shape, i.e., the binary
alpha map, which further guides its texture coding so that only the data within the
object is encoded. The map is processed in units of 16 x 16 pixel blocks. The
encoded shape information is sent to the decoder, and serves as a reference for
motion estimation of the subsequent map and in the texture decoding. Subsequent to
the shape encoder, the texture encoder commences its operation. Its basic work flow
is the same as that of a standard H.264 encoder but its processes are guided by shape
information as illustrated by the dashed arrowheads of Figure 5-1. Further a number
of supplementary procedures have been added into the encoder such as padding

techniques for transparent pixels in the reference block or picture. Section 5.4

provides detailed explanations of these procedures.




5.3 Binary Shape Coding Method

This section describes the design and implementation of the binary shape encoding
and decoding mechanisms for coding object shape information in the proposed
CODEC. A block diagram of the binary shape encoder is illustrated in Figure 5-1.
Though similar in nature to shape coding used in MPEG-4 which has been
introduced in Section 2.5.2, several modifications aimed at its adoptability and
increased efficiency have been proposed within the context of our research when

used within H.264.

5.3.1 Encoder Implementation

The first task in shape coding is the introduction of a user-defined parameter named
as ArbitraryShapedObject, which is used as a switch to indicate the presence (or
absence) of object based coding. This parameter is encoded and included within the

sequence parameter set of the H.264 bitstream to form a part of the coded bitstream.

In MPEG-4, a video object within a binary alpha map is enclosed in a tightest fitting
rectangular bounding box as depicted in Figure 2-7 (b) that consists of a number of
Binary Alpha Blocks (BABs). These BABs are categorized into three classes:
transparent, opaque and boundary. However as illustrated in Figure 5-2, the video
object within the binary alpha map in H.264 is defined in a slice group whose shape
need not be constrained to being rectangular, which is contrary to the object coding
principles adopted within MPEG-4 (enclosed in a rectangular bounding box).
Therefore in our design, only two categories of BABs are considered, the ones which
are opaque and ones that lie on the boundary, as marked with ‘2 and ‘3’ in Figure
5-2. We show later that the non existence of the transparent BABs in the proposed

design, can significantly increase the shape coding efficiency.
Subsequently the binary shape encoder processes the BABs within the slice group on

a macroblock-by-macroblock basis, in a raster scan order. During encoding, a BAB

may be treated in one of six ways (as against seven ways in MPEG-4), as listed in
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Table 5-1. It is the responsibility of the mode-decision block (shown in Figure 5-1) to
choose an efficient encoding method for each BAB. In I-frames, only two of the
above six modes are used (see Table 5-1). Opaque BABs of I-frames, are encoded
using short variable-length codes (VLC). A boundary BAB of an intra-frame is coded
using intra-CAE. In P-frames, shape is coded adopting a technique similar to that
used by MPEG-4 in shape coding in Section 2.5.2. All six modes may be used for
inter-coded BAB as listed in Table 5-1. However the partitioning of the candidate
motion vectors from the corresponding texture block used in prediction is selected to
be that used by H.264, rather than the one traditionally used by MPEG-4. This
difference is clearly illustrated in Figure 5-4 when comparing with Figure 2-11. Note
that transparent BABs in the proposed design need not be coded. The reason for that

is explained in the next paragraph.

Table 5-1 BAB coding modes as represented by the bab_type

bab_type value Type Used in
0 No update, without MVD P-Frames
1 No update, with MVD P-Frames
2 Opaque I-, P-Frames
<) Intra CAE [-, P-Frames
4 Inter CAE, without MVD P-Frames
5 Inter CAE, with MVD P-Frames

After all BABs of the slice group (i.e. opaque and boundary BABs) are encoded, a
prefixed shape header needs to be appended to these coded BABs before
encapsulating within the Alpha NAL unit as illustrated in Figure 5-3. It is worthwhile
to note that the header of a VideoObjectPlane (VOP) in MPEG-4 (consists of four
fields, 56 bits in total, see [20]) defines the position and size of the bounding box for
motion compensation purposes. However, the header of a VOP in the proposed
scheme has a distinct definition. To facilitate motion estimation, the proposed shape
encoder estimates motion vectors for shape based directly on an absolute coordinate

system, i.e., by regarding the dimensions of the entire frame as a bounding box. This
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Figure 5-4 A list of candidate motion vectors are used for prediction. (a) MV for

shape; (b) an example of MV for texture

is due to the fact that the accurate shape of the irregular slice group in the proposed
design is not possible to be described by few fields as processed in MPEG-4.
Therefore in the proposed design instead of defining the position and the size of a
rectangular box bounding the object, a second binary map, called a BAB map as
illustrated in Figure 5-5 is created, encoded and transmitted. The BAB map is made
of all BABs of the binary alpha map and each pixel with magnitude ‘1’ represents
either an opaque or boundary BAB and a pixel with magnitude ‘0’ represents a
transparent BAB. The BAB map is then coded by a block-based intra CAE algorithm
in a horizontal or vertical raster scan order. Finally, the resulting bit string is inserted
as the header to the coded BABs to form the coded binary shape data as shown in
Figure 5-3. Note that the BAB map is surrounded by a 2-pixel wide border prior to

the intra CAE coding, and the pixel values of the border are assumed to be zero

(transparent).
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Figure 5-5 BAB map of the Figure 5-2, each small square comprises 16 x 16 pixels

The number of bits required for coding a BAB map depends on the extent of local
correlation of the video object in the BAB map and the size of frame resolution.
Figure 5-6 and Figure 5-7 show the average bits per frame spent on the header and
coded binary shape data (shape header and coded BABs) of the proposed shape
encoder and MPEG-4 shape encoder individually for the video sequences of “News”
and “Coastguard” having different resolutions, i.e., CIF and QCIF respectively. It
shows clearly from these figures that, although the header size in CIF resolution
coded by the proposed method is slightly higher than that of the MPEG-4 method,
the proposed method successfully reduces the total number of bits required for
coding binary shape data by around 25%, 22%, 38% and 26% respectively for video
sequences, “News-CIF”, “News-QICF”, “Coastguard-CIF"” and “Coastguard-QCIF".
The reason for this improved performance is that no transparent BABs are required to

be coded in the proposed method.

Eventually, after all shape information including coded BABs and the shape header
are encoded, they are encapsulated as an Alpha NAL unit (see Figure 5-3) into the

bitstream, which is subsequently stored or transmitted to the decoder.
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5.3.2 Decoder Implementation

Having discussed the binary shape encoder in detail, attention is now turned to the
specific details of the shape decoding process of the proposed CODEC. Figure 5-8

illustrates the basic flow diagram of the decoder.

At the decoder of the proposed CODEC, subsequent to the decoding of the sequence
parameter set (SPS) and the picture parameter set (PPS) NAL units, the Alpha NAL

unit that consists of the coded video object shape information, is decoded.

As depicted in Figure 5-3, the first part in the coded binary shape data is the shape
header which is decoded by using a CAE decoding algorithm. The result of decoding
the header produces the BAB map which will indicate the absolute positions of the
BABs yet to be decoded. Subsequently individual BABs are decoded from top-to-
bottom and left-to-right in raster scan order. It has to be noted that the decoding
procedure and algorithm for a given BAB used by the proposed scheme is similar,
but yet not identical to that used in MPEG-4. It is explained briefly below with
particular emphasis given to describing the differences when compared with that

used by MPEG-4.

The first field of a BAB that is decoded is the “bab type” that tells the decoder what
coding mode has been decided by the encoder to be the most efficient for predicting a
given BAB. As explained before in Table 5-1, we have considered the use of six
coding modes within our encoder design. In Section 5.3.1, it was described that, for
intra-coded BABs, only two modes (opaque and intra CAE) are considered whilst all
six modes may be used for inter-coded BAB. The decoder employs VLC tables [22)]
to look up and decode the BAB type. Once the BAB type is decoded for a given
intra-coded boundary BAB, its shape is decoded, by context-based arithmetic
decoding. Inter-coded BABs are reconstructed using the received and decoded
prediction errors and/or motion vectors and/or context-based arithmetic decoding

(Intra CAE or Inter CAE). The candidate texture motion vectors that are used for

predicting motion vector for shape information depend on partition sizes (see H.264




block partitions in Section 2.3.6) are available in the reference macroblock as shown
in Figure 5-4. This is different to that adopted by MPEG-4 standard, which only uses
8 x 8 partitions. It is noted that for opaque BABs shape is known after decoding its

BAB type. Transparent BABs need not be decoded in the proposed decoder.

After reconstructing the BAB shape entirely, it is ready for being used in texture
decoding, i.e. for recovering the shapes of the coded texture blocks, and is discussed

in the following section.

Next BAB

End of bitstream

Figure 5-8 Basic processes flow of the proposed decoder




5.4 Macroblock Layer Texture CODEC

The methods adopted in macro-block level texture coding in H.264 are reasonably
well known [14, 16]. However, the macroblock level texture coding we adopt in the
proposed object-based H.264 CODEC has significant differences to the above
standard technique, which relies to a great extent on the reconstructed shape
information. This section highlights the main difference of the above algorithms.
Where similarities can be mapped to the techniques adopted in either H.264 or
MPEG-4 standards, appropriate references have been given without providing

detailed explanations.

Fundamentally there are four differences between the macroblock level texture
coding techniques adopted by the proposed technique and the technique adopted by
H.264.

Firstly, in the proposed approach, in order to obtain a maximized coding efficiency,
transparent macroblocks are not coded, which is similar to the approach used by
MPEG-4. In the case where a macroblock contains one or more transparent partitions,
all transparent partitions are not coded. Thus, the Coded Block Pattern (CBP-
indicates which of the 4 x 4 or 8 x 8 blocks of a macroblock have non-zero transform
coefficients) of the macroblock in the proposed approach is not only dependent on
the transform coefficient levels but also on the number of transparent partitions
within the macroblock. It is further noted here that for I-frame and P-frame

macroblocks, the partitioning techniques are same as H.264.

Secondly, it was mentioned that in predicting the macroblock texture, there is
significant use made of information associated with previously decoded blocks or
macroblocks of the current frame or reference frames. In the case where reference
blocks or macroblocks are transparent, then no information can be used for predictive
purposes. Therefore we adopt an extended version of the technique used by MPEG-4,
i.e., repetitive block padding [5] introduced in Section 3.2.1.2, to aid in the predictive

coding of such blocks. Figure 5-9 shows the padding modes for boundary blocks. We
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Figure 5-9 Padding modes for boundary blocks (8 x 8). (a) — (d) are horizontal
padding and (e) — (g) are vertical padding after horizontal padding.

have introduced one additional padding mode as depicted in Figure 5-9 (b) to the
original list of padding modes used in MPEG-4 in order to satisfy an arbitrarily
shaped object’s pixels in a block. In this mode, transparent pixels are filled with the
value of the closest opaque pixel. It is note that in H.264, macroblock predictions are
performed for both intra and inter coded frames, the block padding is introduced to
intra and inter frame prediction. For intra prediction, the padding technique is applied
to the current block’s or macroblock’s neighbouring blocks or macroblocks on the
boundary. For example, Figure 5-10 shows a 4 x 4 luma block X that is required to
be predicted. The samples (labeled A-M) are located in the nearby blocks B1, B2, B3
and B4, some samples are opaque pixel marked with grey such as C, G, H, K and L,
and some are transparent marked with white. These transparent samples would be
filled by using the above padding method before executing the prediction except the
sample M which locates at a transparent block B2 that is not used for prediction. For
inter prediction, the above padding approach is employed on boundary macroblocks

at first followed by the extended padding [5] for transparent macroblocks. Figure

5-11 illustrates a reference frame after padding.
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Figure 5-10 Example of neighbouring blocks of the current block X, opaque pixel
given by grey.

Figure 5-11 Padding of a reference frame.

Thirdly, motion vector prediction is considered a part of texture coding. In H.264, the
motion vector for a given partition is predicted from the neighbouring motion vectors
of previously coded partitions as shown in Figure 5-4 (b). The presence of
transparent partitions introduces the challenge of calculating the motion vector when
a nearby partition is transparent. As a solution, we use vector padding [5] used in
MPEG-4 to generate the vectors for the transparent partitions within a non-

transparent macroblock in P-frame. It works in a manner similar to repetitive padding,
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Figure 5-12 A macroblock with different partition size

i.e., the horizontal padding followed by the vertical padding. Since a macroblock in
H.264 may have more than one partition, the padding follows the priority rule in
horizontal, vertical and diagonal directions, and starts from the smallest transparent
partition within the macroblock and ends with the larger partition. In Figure 5-12, the
transparent partitions A, B and C are marked with white whereas non-transparent
partitions are marked in grey. Partition A is first padded by the right partition (4 x 4)
of A; Partitton B is then padded by the bottom partition (8 x 4) of B; Finally
partition C is filled with the value of A. The vectors after padding are used in the P-
frame vector decoding and binary shape decoding as the texture candidate motion
vectors mentioned in Section 5.3.2. If the reference partition is outside the picture or

slice group or is part of a transparent macroblock, it is set to be unavailable.

Finally, as discussed in Chapter 4, SA-IT is used to encode texture of all intra or inter
predicted 4 x 4 boundary blocks. However a complication arises from the fact that
each transformed coefficient of two-dimensional SA-IT introduces so-called
transformed sub-coefficients discussed at the end of Section 4.4. In addition, these
sub-coefficients need to be transmitted after quantization for decoding purposes. The
amount of the sub-coefficients depends on the actual shape within a block. Figure

5-13, for example, shows a part of an object (grey) within a 4 x 4 block. There are 35

transformed sub-coefficients in total generated by 2-D SA-IT in comparison with




only 11 transformed coefficients produced by SA-DCT. In this case, the transformed
sub-coefficients could cause the texture bit rate to rise (depending actual shape) and
an increased memory requirement such that the texture encoder becomes overly
stressed. Thus, to solve this problem, we propose the use of 1-D vertical SA-IT
(discussed in Section 4.6) and only suffer a very small penalty in the texture bit rate
compared to 2-D SA-IT without sub-coefficients. Figure 5-14 shows the bitrate spent
on 1-D SA-IT and 2-D SA-IT (with sub-coefficients and without sub-coefficients) on
video sequences “Foreman”, “News” and “Coastguard” respectively. Note that the 2-
D SA-IT without sub-coefficients has been used only for comparison purpose and
could not actually be decoded. It is obvious from the figure that 1-D SA-IT produces
very close bitrates to 2-D SA-IT without sub-coefficients but a much lower bitrate
than 2-D SA-IT with sub-coefficients. Note that, no transformations are required for

the coding of transparent blocks, and opaque blocks using IT.

The statements above have highlighted the differences of coding texture in the
presence of transparent blocks or macroblocks, when dealing with arbitrarily shaped
objects. Further to the above changes required at the encoder side, similar changes
are required at the decoder side, to handle the decoding of the objects. It is noted that

decoder only contains inverse quantization and inverse SA-IT stages.

Figure 5-13 A 4 x 4 block of an object (grey)

98




Sequences of Foreman, News and Coastguard

B 2D SA-IT no sub-coefficients
M 2D SA-IT with sub-coefficients

Bitrate (kbits/s)

Foreman News Coastguard

Figure 5-14 Bitrate comparison of 1-D SA-IT and 2-D SA-IT

5.5 Experimental Results

This section provides results of the experiments designed to evaluate the detailed
performance of the proposed CODEC. We have used H.264 reference model
software JM 10 [51], as a benchmark for comparison as well as to provide the initial
implementation and operational platform for the proposed extensions. Rate-distortion
graphs have been used for performance comparison, in which the rate has been
calculated as the average number of bits required to encode a single frame, and the
distortion has been measured using the combined-channel peak signal-to-noise ratio

(PSNR) [20], which can be expressed as follows:

PSNR=10log(1.5* M*N*(255) /(SE, + SE, + SE,))

(5.1)

where SEy, SEy and SEy are the squared errors for the three color components (YUV)

respectively. Three video sequences (298 frames each); the “Foreman”, “News” and

J



“Coastguard” were used for experimentation. Their selection was based on the
presence different statistical variations of pixel values, due to the differences of
number of objects in the scenes and their motion characteristics. Both the foreground
and background of the “Foreman” sequence moves minimally while the foreground
varies with time slightly in the “News™ sequence. “Coastguard™ possesses significant
movements in the foreground and in the background areas. Further the camera used
in capturing this video, shows panning motion. All test sequences are in 4:2:0 format
and were coded at 25 fps. Figure 5-15 illustrates the objects of the test sequences to
be coded. We assume that significant object shapes of foreground have been
extracted into binary alpha maps for coding purposes, either manually, semi-
automatically or automatically [52] [53]. In our experiments, binary masks
previously used in the MPEG-4 standardization activities that are currently available

in the public domain, were used.

MPEGA4
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Figure 5-15 (a) The ship object; (b) The foreman object; (c) The news man and girl
object.
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Figure 5-16 Rate-distortion diagram for object boundary of sequences Foreman

(a) and News (b)

Two different experiments were designed to evaluate the performance of the
proposed object-based H.264 CODEC and to compare it with the standard, H.264
CODEC, henceforth named as the non object-based coding algorithm. The results

can be analyzed as follows.

The first experiment was designed to compare the rate distortion performances of the
object-based and non object-based techniques when only considering the coding of
the boundary macroblocks. Figure 5-16 illustrates the performance comparison of the

proposed and standard H.264 techniques for the sequences of “News-QCIF” and



“Foreman-CIF” coded with five different QPs equaling 10, 20, 25, 30 and 35
respectively. Note that the R-D analysis is limited only to the boundary macroblocks
of the object-based algorithm, and the corresponding macroblocks of the non object-
based algorithm. In calculating the total bits spent by the boundary macroblocks of
the object-based technique, the overhead that will be required for the shape coding of
the blocks have been considered. Furthermore both sequences are coded without
periodic intra refreshes, with the frames split into two slice groups, namely,
foreground and background slice groups. The results illustrate that the proposed
coding algorithm requires a lower amount of bits for coding the boundary
macroblocks at any PSNR level, despite the need to code overhead shape information.
The coding efficiency of the improved shape coding algorithm we have used and the
efficiency of the SA-IT algorithm proposed are the main reasons for the above result.
A further comparison of the results in Figure 5-16 (a) and (b) illustrate that the
proposed algorithm performs at almost the same quality, i.e., PSNR, as the

benchmark algorithm.

The second experiment was designed to evaluate the efficiency of the intended
functionality of the proposed CODEC. As mentioned in Chapter 1, the main
advantage/functionality of the proposed object-based coding scheme is the selective
coding ability of the foreground (FG) and background (BG) areas. The algorithm
provides means for coding the foreground at a better quality level as compared to the
background. Table 5-2 compares the bitrate required for the QCIF *“Coastguard”
sequence when all but the first frame (which is coded as an I-frame), are coded as P-
frames. When calculating the bit budget for the object-based coding algorithm, it is
noted here that the overhead required for shape coding has been included. The coding
of the benchmark algorithm has been performed using the quantization parameter
QP=28 for all frames. When the proposed algorithm is used the background
quantization parameter has been set at 51, 40, 35 and 30 whereas the foreground
(“ship’) QP has been held fixed at 28. The first experiment refers to a scenario where
the background is not coded. Although the average PSNRayg in the object-based
coding is lower than non object-based coding because of the significantly higher

quantization parameter used in coding the background, the quality of the foreground



area compares well with that of the non object-based coding case, with a significantly
lower bitrate requirement. Table 5-2 shows that when QP=30 is used for quantizing
the background information, the visual quality loss is not significant (see Figure 5-17
(c)), though the bitrate requirement has been reduced to 87% of the standard coding
approach. It is further observed that no perceivable quality loss has been introduced
in the contextually important foreground object when an acceptable loss of quality
has been introduced to the background region while using QP=35 (see Figure 5-17
(b)). This choice of quantization parameters have resulted in a major saving of 50%
of the bit budget. A weak result is observed in the case of the “News” sequence
(QCIF) as shown in Table 5-3 and Figure 5-18. This is due to the almost static

background and relative complexity of the shape.

Table 5-2 Coding results for sequence of Coastguard

Object-based Coding
Qp(‘; Q];(; PSNRF(; (dB) PSNRBC (dB) PSNR,\VG (dB) Bitrate (Kbps)
28 - 38.85 - 38.65 55.53
28 51 38.75 32.95 35.85 59.66
28 40 38.74 34.64 36.59 67.83
28 35 38.82 36.73 37.78 80.09
28 30 38.84 39.35 39.00 141.16
Non object-based Coding
Qrc | QG | PSNRgg (dB) | PSNRgg (dB) | PSNR,y (dB) | Bitrate (Kbps)
28 28 38.93 41.03 39.98 161.67
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Figure 5-17 Coastguard (a) Only QPpg=28; (b) QPpg=28 and QPpg=35; (c)
QPr;=28 and QPgg =30; (d) QPrc=QPpc=28 coded with standard coding.

Table 5-3 Coding results for sequence of News

Object-based Coding

Qi | Qsg | PSNRyg (dB) | PSNRgg (dB) | PSNR,vc (dB) | Bitrate (Kbps)

28 - 39.02 - 39.02 22.90
28 51 39.05 29.05 34.05 27.06
28 | 40 39.04 32.77 35.90 34.52
28 35 39.04 35.22 37.13 42.48
28 | 30 39.03 38.01 38.52 57.01

Non object-based Coding

Qrc | Qg | PSNRyg (dB) | PSNRgg (dB) | PSNRuy (dB) | Bitrate (Kbps)
28 | 28 39.03 38.81 38.92 59.58
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Figure 5-18 News (a) Only QPr=28; (b) QPrg=28 and QPp=35; (c) QPyc=28 and
QPpa=30: (d) QPrg= QPps=28 coded with standard coding.

5.6 Conclusions

In this chapter, an object-based extension to H.264 video coding standard has been
proposed. In order to facilitate object-based coding within H.264, the slice group
structure has been modified, extended and used along with a novel design of a SA-IT
that is capable of coding arbitrarily shaped boundary blocks. A novel shape coding
algorithm based on the MPEG-4 shape coding methodology has been proposed
which has been proven to be more efficient compared to that used within the MPEG-
4 standard. We have shown that the object-based coding functionality provides the
ability to selectively code images (video frames), enabling the ability to reconstruct

important, pre-defined, foreground objects at high quality levels. Such flexibility is
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of importance in applications such as security and surveillance, medical imaging,
sports footage coverage etc. We have provided experimental results (both subjective
and objective) and a detailed analysis to demonstrate the coding flexibilities and

efficiency of the proposed algorithm as comparing with H.264.

We have further conceptually compared the functionality of the proposed object-
based CODEC with that of Region of Interest (Rol) scalability of the upcoming
H.264 Scalable Video Coding (SVC) extension [55, 56]. It has been revealed that
H.264 SVC regions cannot specify arbitrarily shaped regions, but only regions made

out of rectangular blocks.

Due to the successful design and implementation of the proposed object based H.264
CODEC, it is currently being considered as one of the proposals that can support the
coding infrastructure of the DTI funded CRIMEVIS project that commences on 1"
September 2007. This project is to further investigate the extension of the novel ideas

to H.264 SV standard.
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Chapter 6 H.264 CODEC Analysis

6.1 Introduction

This chapter aims to determine the coding parameters of a H.264 CODEC that have a
significant influence on its bit-rate, distortion, memory utilization and computational
complexity. The thesis later aims to use these parameters in a multi-objective

performance optimization of a H.264 CODEC (see Chapter 7).

H.264 [14, 16] (introduced in Section 2.3) provides high coding efficiency through
added features and functionality. However, such features and functionality also entail
additional resource consumption, i.e., computational complexity and memory usage.
Specifically the cost effectiveness of a H.264 CODEC is affected directly by the
computational complexity of the coding algorithms (such as motion estimation and
compensation, transform and entropy coding) and their memory requirements. The
efficiency of a coding algorithm is further dependent on various parameters used in
defining the operational status of the CODEC at a given time. A number of
imvestigations to this effect have already been carried out in literature [57-59].
However, these studies are only based on addressing either a single or two objectives
at the encoder (either the computational complexity [58] or rate-distortion [59]) or
the decoder end (memory utilization and computational complexity [57]). In this
chapter, an analysis based on the H.264 baseline profile CODEC (JM 10) is carried
out in order to find out the coding parameters which significantly affect the
computational complexity, memory spending, rate and distortion performances.
Based on this analysis, a multi-objective optimization framework for the H.264
CODEC is proposed in Chapter 7.

The rest of this chapter is organized as follows. A brief overview of the ceding

parameters used in our experiments is given in Section 6.2. The video test sequences

used in our experiments are introduced and evaluated in Section 6.3. A
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comprehensive analysis of the encoder is presented in Section 6.4, while Section 6.5

provides an analysis of the decoder. Finally Section 6.6 concludes this chapter.

6.2 Coding Parameters

For clarity, the coding parameters of the H.264 CODEC (JM 10) used in this analysis

are summarised below:

Resolution: Image width and height in luminance samples.
NumberReferenceFrames: Sets maximum number of references stored
in buffer for motion estimation and compensation.

UseFME: Enable Fast motion estimation algorithms (0: disable, 1-3
enable).

SearchRange: Sets allowable search range for motion estimation.
RDOptimization: Enable rate distortion optimized mode decision.
Slicegroup: Number of slice group to be used.

IntraPeroid: Period of I-frames, i.e. frame will be coded using intra
slices every IntraPeriod frames.

QP: Sets quantization parameter value.

InterSearchdx4: Enable 4 x 4 inter prediction & motion compensation.
InterSearch4x8: Enable 4 x 8 inter prediction & motion compensation.
InterSearch8x4: Enable 8 x 4 inter prediction & motion compensation.
InterSearch8x8: Enable 8 x 8 inter prediction & motion compensation.
InterSearch8x16: Enable 8 x 16 inter prediction & motion compensation.
InterSearch16x8: Enable 16 x 8 inter prediction & motion compensation.
InterSearch16x16: Enable 16 x 16 inter prediction & motion
compensation.

Intrad4x4ParDisable: Disable intra 4 x 4 vertical & horizontal prediction
modes.

Intra4x4DiagDisable: Disable intra 4 x 4 diagonal down-Left and
diagonal down-right prediction modes.

Intradx4DirDisable: Disable intra 4 x 4 vertical right, vertical left,

horizontal down, and horizontal up prediction modes.

108




® Intral6xl6ParDisable: Disable intra 16 x 16 vertical & horizontal
prediction modes.

® Intral6xi6PlaneDisable: Disable intra 16 x 16 plane prediction mode.

@ DisableThresholding: Disable threshold of quantized coefficients that is
used for discarding expensive coefficients. If after quantization there are
only few small nonzero coefficients in a macroblock and the cost of
coding these coefficients exceeds a fixed threshold, these coefficients are

forced to zero [60].

The reasons for choosing the above parameters used in this analysis are given in the

later sections (Section 6.4 and Section 6.5) of analysis.

6.3 Video Test Sequences

Since the computational complexity, bit rate and video quality performance greatly
depend on the content of the source video, in this analysis 8 test sequences were
chosen with distinct content and motion characteristics so that the results could
reflect generality. The picture formats of the selected video clips include QCIF, CIF
and SIF as introduced in Table 2-1. Each sequence is in 4:2:0 sampling format (see

Section 2.2.2) and has 112 frames.

“Claire” and “Paris” are conversational video sequences with simple motion of the
foreground and fixed background. Moderate movements in the foreground and slight
movements in the background characterize the video sequences, “Foreman” and
“Mobile”. The sequences “Garden” and “Coastguard” show fast motion on both
foreground and background regions. The most complicated motion characteristics are
represented in “Football” and “Tennis” sequences. The above eight test sequences
represent a wide range of videos with different properties and behaviours; from low
to high detailed scenes, from moderate to high movement, from fixed to changing
background. Therefore it is possible to systematically assess the performance of the
proposed video CODEC through these test sequences. Figure 6-1 shows the 30"

frame of each video sequence.
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Figure 6-1 Example frames of test video sequences




6.4 Encoder Estimation

6.4.1 Computational Complexity

The analysis of the encoder computational complexity is achieved by estimating the
number of central processing unit (CPU) cycles required by it to perform key
encoding functions. A CPU cycle (also referred as a clock tick) [61] is the smallest
time unit recognized by a processor. The profiling results were generated with Intel’s
VTune Performance Analyzer, which enables the collection of run-time data
indicating the number of cycles consumed by each function of the H.264 CODEC.
This provides accurate information about processor utilization. The profiling tests
were performed on a PC with a processor Intel P4-2800MHz to examine the
computational complexity of the key functions of the encoder. The actual time spent

on each function was measured in seconds using the following equation,

Junction
function —
processor

(6.1)

where Cpncuon indicates the amount of cycles consumed by the function while the

processor’s frequency is given by Hpocessor- For example, 2800 MHz means 2800

million cycles per second. The total time spent on the function is presented by Tucrion-

The “Garden” video sequence was coded at 30 fps with QP = 28 and various motion
estimation algorithms [62]. The percentage of processing time spent on the main
functions and the total time consumed in encoding the video sequence are
summarized in Table 6-1. In terms of H.264 encoding stages in Figure 2-3 (a), the
main functions are grouped into the relevant encoding stages for evaluation of
processor utilization in the table. The DCT, quantization, inverse DCT and inverse
quantization processes are grouped together referred to as “Transform &
Quantization™. Other functions that do not belong to any encoding related step shown

in Figure 2-3 (a) are grouped together as “Remaining functions”.
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From the results of Table 6-1 it is demonstrated that motion estimation and
compensation consume more than half of the encoding time of the “Garden” video.
Similar results were also obtained when analyzing the remaining test video sequences.
The experimental results further demonstrate that motion estimation and
compensation, reconstruction & store, intra prediction and transform & quantization
are the most computationally expensive stages of the encoder. Moreover, the table
reveals that fast motion estimation algorithms (see Section 2.3.6) UMHS, SUMHS
and EPZS are much faster than FS. This is due to the fact that the fast motion
estimation methods only search specified positions (instead of all search positions
used in FS) and adopt early termination schemes [62]. Since the aim of this chapter is
to seek coding parameters that significantly affect the total encoding time, we focus
on identifying those coding parameters (listed in Table 6-2) that directly affect the
above significant coding stages. From Table 6-2, we are only interested on those
having over 10% influences on the processor utilization used for the CODEC

optimization in Chapter 7.

Table 6-1 Profiling results of Garden video sequence

Processor Utilization on various ME algorithms

Coding stages

FS UMHS | SUMHS EPZS
g 2.55% | 5.01% 4.82% 4.75%
Prediction
Transform & | ge0, | 3439 4.08% 3.24%
Quantization
ME/MC 79.05% | 58.63% 53.45% 58.41%
Reconstruction | 3 o7, | 7340 9.12% 7.37%
& Store
Deblocking 0.55% 1.11% 1.19% 1.04%
Filter
Entropy 0.69% 1.60% 1.37% 1.22%
Sl 1131% | 22.88% | 2597% | 23.97%
functions
Total coding| 51555 | 104,941 88.246 110.034
time (Seconds)

112



Table 6-2 Coding parameters and coding conditions

Coding parameter Range of value Default
Resolution QCIF, SIF, CIF QCIF
NumberReferenceFrames 1-5 |
UseFME 0-3 0 (off)
SearchRange 16 - 32 16
, RDOptimization 0-2 0 (off)
| InterSearch4x4 0-1 1 (on)
| InterSearch4x8 0-1 1 (on)
} InterSearch8x4 0-1 1 (on)
InterSearch8x8 0-1 1 (on)
InterSearch8x16 0-1 1 (on)
InterSearch16x8 0-1 1 (on)
InterSearch16x16 0-1 1 (on)
Intrad4x4ParDisable 0-1 0 (off)
Intra4x4DiagDisable 0-1 0 (off)
Intradx4DirDisable 0-1 0 (off)
Intral6x16ParDisable 0-1 0 (off)
Intral 6x16PlaneDisable 0-1 0 (off)

Table 6-3 Processor utilization at various video resolutions

Processor utilization (seconds)
QCIF CIF
Foreman 60.532 242.599
Mobile 60.271 239.612
Coastguard 60.626 241.415

In the following experiments, each video sequence was coded at a fixed frame rate of
30 fps, with QP = 28 while the coding parameters were varied within their full range
(see Table 6-2). The resulting processor utilization is compared with the benchmark
results, i.e., results obtained by coding each video sequence with the default coding

parameters value (see Table 6-2).

A video sequence may be coded at different resolutions, e.g., QCIF and CIF. The

experimental results in Table 6-3, illustrates that a video sequence coded at higher
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Figure 6-2 Processing time varies with different reference frames

resolution (e.g., CIF) requires much more time (around 4 times) to encode compared
with the video sequence coded at lower resolution (e.g., QCIF). It is note that QCIF

is a quarter of CIF resolution.

The wvariation in processing time when the number of reference frames
(NumberReferenceFrames) 1s varied from 1 to 5, is shown in Figure 6-2. It can be
observed that the extra processing time required for the addition of each additional
reference frame is approximately 80% of the processing time required when one
reference frame is used. This is due to the fact that the addition of each reference
frame approximately doubles the number of comparisons required to complete

motion estimation. This observation is true for all tested video sequences.

As mentioned earlier in this section, motion estimation and compensation is the most
computationally complex process in the encoder. The motion estimation algorithms
(see Section 2.3.6) are defined by setting the parameter UseFME (see Table 6-2) to 0,
1, 2 and 3 respectively in the H.264 encoder’s profile file with ‘0’ referring to the use
of FS, i.e. disabling fast motion estimation. The results tabulated in Table 6-4 shows
that FS on average requires 40% extra CPU time as compared to other fast search

algorithms. On the other hand, SUMHS needs the least CPU time compared to FS,




UMHS and EPZS, while the CPU utilization performance of UMHS and EPZS

algorithms are approximately similar.

Table 6-4 CPU time (in seconds) spent on ME algorithms

Video Motion estimation algorithms
s e FS UMHS SUMHS EPZS
| E—
Claire 58.913 21.676 16.225 24.630
=R

Foreman 60.703 27.872 23.038 29.371
Paris 233.487 98.660 82.321 111.260
Mobile 201.669 97.389 [ 87.078 101.464
Football 214.694 117.402 99.894 119.987
Tennis 212.647 101.708 84.770 110.356
Coastguard 203.257 99.785 90.945 104.802
Garden 210.527 104.941 88.246 110.034

Processor utilization at various search size
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Processor utilization at various RD optimization modes
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Figure 6-4 Processing time spent with various RD modes

For an inter prediction macroblock, the size of the search range (SearchRange) used
by motion estimation algorithms has considerable impact on the processing time, as
illustrated by Figure 6-3. It is specifically noted that the processing time for the FS
algorithm is significantly high compared to the rest. Additionally, it is noted that for
the FS algorithm, using a 32 x 32 pixels window size requires approximately three
times more processing time when compared to a 16 x 16 window size. However,
when utilizing the fast search algorithms, the processing times remain approximately
similar. This is due to the fact that the IS loops over all search positions, whose
number quadruples when the window size is doubled, both width and height-wise.
For the fast motion estimation algorithms, the effect on processing power is

significantly less since these algorithms only search specified positions.

The rate-distortion (R-D) optimization in H.264 is used to obtain the optimal coding
mode, i.e., minimal rate and maximal quality, for a macroblock, block or partition.
However, the use of R-D optimization in video coding comes with a penalty, i.e. an
increase in processing cost. Figure 6-4 illustrates that a video sequence coded without

R-D optimization (RDOptimization) mode marked as “0” requires much less (over
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50% less) processor utilization as compared to video coded with RD modes marked
as“1” and “2” respectively. It is noted that RD mode ‘0’ signifies the non use of RD
optimization and the other two modes refers to two different approaches to RD
optimization [51]. The additional processor utilization observed in Figure 6-4 is due
to the need of having to compute RD cost for each of the prediction modes when
using modes ‘1’ and ‘2°. However, mode ‘0" only requires the calculation of the cost

for the best prediction mode.

In the H.264 encoder, a macroblock is coded either as a 16 x 16 pixel area or it is
further sub-partitioned. There exist several parameters (see Table 6-2) within the
encoder’s profile file used for managing the sub-partition modes, which may have an
influence on the computational complexity. The results tabulated in Table 6-5 show
that the individual partition modes have a very slight effect on processing time, i.e.

less than 10% computational cost reduction when switching off a single mode.

Table 6-5 Processing time (second) varies with different partition sizes

Partition mode Video sequence

Inter frame Paris Foreman | Football | Mobile | Garden
All modes are on 233.487 | 60.703 214.694 | 201.669 | 210.527
4 x 4 mode off 220.259 | 57.101 202.416 | 190.980 | 200.087
4 x 8 mode off 224225 | 58.134 205.891 | 194.440 | 206.114
8 x 4 mode off 224,642 | 58.216 205.731 | 194.208 | 202.913
8 x 8 mode off 226.544 | 58.750 207.366 | 196.034 | 205.864
8 x 16 mode off 227.890 | 58.889 208.275 | 196.767 | 206.737
16 x 8 mode off 228.083 | 59.018 208.374 | 196.980 | 206.634
16 x 16 mode off 228.019 | 58.904 207.982 | 196.596 | 206.478
Intra frame Paris Foreman | Football | Mobile | Garden
All modes are on 233.487 | 60.703 214.694 | 201.669 | 210.527
4 x 4 parallel off 233.209 | 60.330 213.870 | 200.639 | 210.003
4 x 4 45° diagonal off | 233.096 | 60.396 213.959 | 200.803 |210.489
4 x 4 other diagonal off | 232.440 | 60.216 213.381 ] 200.951 |210.426
16 x 16 paralle] off 232.352 | 60.330 214.248 | 200.203 | 210.543
16 x 16 plane off 233.088 | 60.533 214.759 | 200.762 | 210.788
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From the above analysis of computational complexity of the H.264 encoder, a
number of parameters that have a significant impact on computational complexity
(those that result in more than 10% influences) have been identified and follow for
the latter use within the multi-objective optimization framework proposed in Chapter
7; they are, Resolution, NumberReferenceFrames, RDOptimization, UseFME and

SearchRange.

6.4.2 Memory Utilization

Memory utilization of the H.264 encoder may be classified into two groups namely;
(i) temporary memory, which is the memory allocated to local variables within the
life span of a function call, i.e., allocates and frees memory within a function or block;
(ii) global memory, which is the memory allocated to global variables that are used
during the entire encoding process. The global memory required by the encoder can
be further partitioned into two categories, namely; (a) dynamic memory, memory
allocated to variable encoding parameters such as the number of reference frames,
picture resolution and so on; (b) constant memory, memory allocated for fixed data
such as quantization tables, intra-prediction probability tables, variable-length
encoding tables and some other small constant tables. In this section we only focus
on dynamic memory allocation since it has the potential to be optimized through the

use of more appropriate encoding parameters.

The approach we used for identifying encoding parameters that significantly impact
dynamic memory allocation (those that results in over 10% share) was the use of
“malloc” and “calloc” functions within the ‘C’ program codes. Table 6-6 presents a
summary of the formulas used to calculate the memory required at different buffer
levels (“Other” refers to the memory that does ﬁot belong to any buffer level). It is
evident that there are only 5 coding parameters that influence dynamic memory
allocation. The first parameter is Resolution of a video sequence represented by w,
the width of the picture and 4, the height of the picture. Further parameters are, the
number of reference frames (n, NumberReferenceFrames), the number of slice group

(sg, SliceGroup), the size of search range (s, SearchRange), and the use of motion




estimation algorithms (fime, UseFME). As expected, frame resolution has a
significant impact on storage requirements. Table 6-7 shows how memory
requirements vary with the above coding parameters. The first row marked in grey in
the table is used as a benchmark for comparison. A number of observations can be
made using the results tabulated. A video with CIF resolution requires almost 4 times
more memory than a video with QCIF resolution. The use of two reference frames
against one, with a fixed window size of 16-pixels and QCIF resolution, requires
25% more memory. Further the use of a 32-pixels search window against a 16-pixels
search window, with fixed resolution and number of reference frames, requires 35%
extra memory. When the slice group number is incremented to 3, 13% more memory
is needed. However 1t is observed that when benefiting from fast motion estimation
(fme), 12% less memory will be required, when keeping all other parameters at

default value.

Table 6-6 Memory requirement formulas for various buffer levels

Buffer level Formula (in Bytes)
Frame (((153+89%n)* w/r) > 3)+(48+32%n)*(w+8)* (h+8)
Slice sg*(63+3137*(w*h > 7))
MB (255*w*h)> 7
o fme=02(9%(w*h)>4)+2600%n + (1024 *n+8)*(2%s5+1)’
Prediction "
(9*(w*h)>4)+2560%n+8*(2*s+1)°

Entropy 96+3*((w*h)>3)

fme=1: 49+(2*s+1)° +9*((w*h)=>1)+576%n
FME mode 2: 49+9*((w*h)>1)

3: 12+ (w*h) > 14(2*s+1)" +(168*n+42)* w

RD mode 406+ 343*((w*h)>1)
Other 2048+ 73*((w*h)>8)

Note: formulae above are taken from the memory allocations in the JM software. n: number of
reference frames, w: width of frame, /i height of frame, sg: slice group, s: search range, fine: fast

motion estimation.
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Table 6-7 Memory requirements in Mbytes

Resolution S Buarch FME Slice Memory
frames Range group | requirement
.0 - 16 0 I 8.76
CIF ‘ 16 0 1 31.39
QCIF 2 16 0 1 10.95
Qe L 32 0 1 11.84
QCIF 1 16 1 1 78
QCIF 1 16 0 3 9.04

6.4.3 Rate and Distortion Analysis

For a given video sequence, rate (i.e., bit rate, measured in Kbits/s) and distortion
(i.e., quality, PSNR measured in dB) are sensitive to coding parameters. Modifying
coding parameters such as using optional coding modes or choosing different R-D
optimization algorithms will affect the output of the encoder, resulting in different
levels of bit rate and visual quality. The coding parameters (based on baseline profile)
affecting the rate and distortion are tabulated in Table 6-8. Experiments were
performed in order to find out those parameters that can significantly influence the
bit rate (=10%) and quality (=0.2 dB). It is noted that in the experiments performed,
all video sequences were 30 fps. The benchmark experiment is denoted by a grey

highlight in each table (6 tables).

It is clear that a high resolution video sequence (e.g., CIF) requires much more bits
for storage or bandwidth for transmission, than a lower resolution video (e.g., QCIF).
The test sequences in Table 6-9 were coded at QCIF and CIF resolutions with
identical encoding conditions. As expected, the rates of CIF sequences are much

higher than QCIF sequences. It is also clear from the table that more than 0.2 dB

PSNR is gained when CIF resolution is used.




Table 6-8 Candidates for parameter selection

Coding parameter Range of value Default
Resolution QCIF, SIF, CIF QCIF
NumberReferenceFrames 1-5 |
UseFME 0-3 0 (off)
SearchRange 16 - 32 16
RDOptimization 0-2 0 (off)
Slicegroup 1-5 ]
IntraPeriod 0-15 0
QP 10 - 41 28
DisableThresholding 0-1 0 (off)
InterSearch4x4 0-1 1 (on)
InterSearch4x8 0-1 1 (on)
InterSearch8x4 0-1 1 (on)
InterSearch8x8 0-1 1 (on)
InterSearch8x16 0—1 1 (on)
InterSearch16x8 0-1 1 (on)
InterSearch16x16 0-1 1 (on)
Intradx4ParDisable 0-1 0 (off)
Intra4x4DiagDisable 0-1 0 (off)
Intra4x4DirDisable 0-1 0 (off)
Intral 6x 16ParDisable 0-1 0 (off)
Intral 6x16PlaneDisable 0-1 0 (off)

Table 6-9 Rate and distortion varies with resolution

Video sequences

Resolution Foreman Coastguard Mobile
Rate PSNR Rate PSNR Rate PSNR

QCIF 129.20 38.49 258.68 40.36 516.84 3432

CIF 414.60 38.80 | 1387.88 | 40.62 | 2115.61 35.25




The aim of multiple reference pictures supported in H.264 is to improve quality or
reduce bit rate by the better prediction gained from the enhanced reference picture
selection. However, the computational complexity (in Section 6.4.1) and memory (in
Section 6.4.2) expense is significantly high. The bit rate and PSNR variations when
the number of reference frames is varied from 1 to § are tabulated in Table 6-10. It is
noted that for all test videos, the bit rate required marginally reduces (with quality

approximately held constant) when a higher number of reference frames are used.

Further experiments were performed to analyze the effect of using different motion
estimation algorithms on reconstructed video quality and bit rate. The results in Table
6-11 show that only 1-2% variation in bit rate and only 0.01 — 0.06 dB variation in
quality were observed. This is expected as the motion estimation algorithms included
in the H.264 reference software are the most efficient techniques that give reasonable
results close to FS [62]. The actual enhancement possible via the use of one of the
three fast search algorithms is that the considerable reduction of time taken for ME

(see Section 6.4.1).

Table 6-10 Rate and distortion varies with reference pictures

Video sequences (QCIF)
Reff_z'::;ce Claire Coastguard Foreman
Rate PSNR Rate PSNR Rate PSNR
| 35.40 40.59 258.68 40.36 129.20 38.49
2 34.65 40.59 | 250.48 40.39 119.86 38.50
3 34.56 40.58 250.15 40.39 119.64 38.54
4 34.84 40.58 248.74 40.38 119.38 38.55
5 34.67 40.57 248.62 40.41 118.87 38.55
Video sequences (SI
R‘:.ii':lzce Football Garden Tennis
Rate PSNR Rate PSNR Rate PSNR
1 1977.85 | 35.72 | 2445.59 | 34.34 795.09 37.24
2 1927.27 | 35.73 | 2399.32 | 34.34 762.37 37.22
3 1915.80 | 35.75 | 2384.89 | 34.35 749.54 37123
4 191149 | 35.75 | 2365.22 | 34.35 739.06 37.23
5 1910.75 | 35.76 | 2329.23 | 34.36 732.69 3723
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Table 6-11 Rate and distortion varies with ME algorithms

Video sequences (QCIF)
ME :
algorithm Claire Coastguard Foreman
Rate PSNR Rate PSNR Rate PSNR
ES 35.40 40.59 258.68 40.36 129.20 38.49
UMHS 35.37 40.50 257.66 40.34 126.04 38.44
SUMHS 35.32 40.51 258.23 40.31 126.58 38.44
EPZS 35.01 40.53 259.12 40.32 | 127.17 38.48
ME Video sequences (SIF
alsorithm Football Garden Tennis
Rate PSNR Rate PSNR Rate PSNR
FS 1977.85°| =35:72 | 2445.59°| 3434 795.09 37.24
UMHS 1958.06 | 35.71 | 2440.80 [ 34.33 796.64 37.24
SUMHS 195520 | 35.70 | 244492 | 34.33 798.69 37.22
EPZS 195433 | 3573 | 2443.18 | 34.34 795.12 37.24

Table 6-12 indicates the variations in bit rate and video quality when the video is
coded with different search window sizes, number of slice groups and rate-distortion
optimization modes. It is clear from the results that the variations in rate and quality
are minimal when extending the search window size from 16 to 32 pixels. This can
be due to the fact that a 16 pixel search window is of sufficient size to capture the

motion in all test videos. Moreover, the results show that the use of a larger search

window can not always guarantee a better prediction as seen in the sequence “Claire”.

It is noted that the advantage of being able to find a better match when the search
window size is enlarged is offset by the need of transmitting potentially larger motion
vectors, that can affect the R-D performance negatively. It is further seen that the bit
rate increases (less than 5%) with the increase of the number of slice groups since the
encoder requires a small amount of bits to encode the header of each slice group.
However, image quality does not improve when more slice groups are used. The use

of rate-distortion optimization modes produces 5%-8% decrease in rate but with

slight penalty (0.06dB-0.17dB) in image degradation.




Table 6-13 tabulates the R-D performance data for test sequences “Claire”,
“Coastguard” and “Foreman”, when four different intra refresh rates, i.e., 1:0 (not
any periodic intra refreshes except the first frame), 1:10 (one in every ten frames is
encoded in intra mode), 1:5 and 1:1 (every frame is encoded as I-frame) were used.
As the intra refresh rate increases, it can be seen that the bit rate increases (over 10%)
and distortion decreases (over 0.2 dB) when compared to the results of the
benchmark experiment. QP is the encoding parameter that has the most significant
effect on the RD performance of a video CODEC. The results in Table 6-13 clearly
support the above statement. In “Mobile” sequence, for example, the rate is
decreased approximately 100% and the PSNR quality is decreased approximately by
3.73dB when the QP is increased from 28 to 32. When the threshold of coefficients

G(}S,

(DisableThresholding, see Section 6.2) is disabled (set to “1”), the bit rates of videos;
“Paris”, “Garden” and “Foreman™ increase by 13%, 5.6% and 28% respectively and

the PSNR improves by 0.48dB, 0.5dB and 0.57dB respectively.

Table 6-12 R-D varies with search range, slice group and RD mode respectively

— : Video sequences
range Claire (QCIF) Coastguard (CIF) | Foreman (QCIF)
Rate PSNR Rate PSNR Rate PSNR
16 35.40 40.59 | 1387.88 | 40.62 129.20 38.49
32 35.41 40.58 | 1386.97 | 40.60 128.89 38.51
48 35.43 40.57 | 1387.11 | 40.59 128.79 38.50
Slice Video sequences (SIF
group Mobile Garden Paris
Rate PSNR Rate PSNR Rate PSNR
1 2115.61 | 35.72 | 2445.59 | 34.34 | 608.55 37.73
2 2159.54 | 35.73 | 2468.70 | 34.33 626.68 | 37.73
3 2161.55 | 35.72 | 2472.80 | 34.34 628.06 37.73
4 2164.72 | 35.72 | 2477.50 | 34.34 | 632.93 3043
5 2166.91 | 35.72 | 2479.77 | 34.34 635.69 3713
Video sequences (QCIF)
RD mode Claire Coastguard Foreman
Rate PSNR Rate PSNR Rate PSNR
0 (off) 35.40 40.59 258.68 | 40.36 129.20 38.49
1 (on) 32.67 40.44 | 246.33 40.29 119.24 38.40
2 (on) 32.68 40.42 246.24 40.30 119.80 38.40

124



Table 6-13 R-D varies with intra period, QP and threshold mode respectively

ik Video sequences
perfod Claire (QCIF) | Coastguard (CIF) | Foreman (QCIF)
Rate PSNR Rate PSNR Rate PSNR
0 35.40 40.59 | 1387.88 | 40.62 129.20 | 3849
1 390.80 | 41.26 | 3547.60 | 41.33 77195 1 3932
5 101.95 41.09 | 1767.57 | 40.99 | 242.26 | 38.97
10 67.86 41.02 | 1578.65 | 40.91 183.95 | 38.80
Video sequences (SIF)
QP Mobile Garden Paris
Rate PSNR Rate PSNR Rate PSNR
23 3988.35 | 38.98 | 4246.58 | 3839 | 1113.03 | 41.09
28 2111.61 | 35.25 | 244559 | 3434 | 608.55 3773
32 1049.94 | 32.89 | 1402.39 | 31.81 34394 | 35.56
5 Video sequences
Disable :
hreshild Paris (CIF) Garden (SIF) Foreman (QCIF
Rate PSNR Rate PSNR Rate PSNR
0 (off) 608.55 37.73 | 2445.59 | 34.34 129.20 | 38.49
1 (on) 688.06 | 38.21 | 2583.76 | 34.84 165.68 | 39.06
Table 6-14 Rate and distortion varies with prediction modes
o Video sequence
ERedishon e Paris Mobile Garden
Inter frame Rate | PSNR | Rate | PSNR | Rate | PSNR
All modes are on 608.55 | 37.73 |2115.61] 35.25 |2445.59| 34.34
4 x 4 mode off 603.86 | 37.75 [2094.90| 35.25 |2423.39| 34.33
4 x 8 mode off 617.75 | 37.72 |2131.21| 35.24 |2460.17| 34.33
8 x 4 mode off 614.36 | 37.70 |2122.81| 35.24 [2477.54| 34.33
8 x 8 mode off 621.87 | 37.72 |2147.09| 35.25 [2474.01| 34.34
8 x 16 mode off 611.36 | 37.73 |2123.13| 35.25 |2447.25| 34.34
16 x 8 mode off 610.87 | 37.73 |2124.42| 35.25 |2449.12| 34.34
16 x 16 mode off 683.39 | 37.79 [2164.50| 35.27 [2470.93| 34.34
e Video sequence
Exstiouan mde Paris Mobile Garden
Intra frame Rate | PSNR | Rate | PSNR | Rate | PSNR
All modes are on 608.55 | 37.73 [2115.61 | 35.25 [2445.59| 34.34
4 x 4 parallel off 613.21 | 37.73 |2117.67| 35.25 |2445.47| 34.33
4 x 4 45° diagonal off | 609.54 | 37.74 |2118.31| 35.26 |2445.21| 34.34
4 x 4 other diagonal off | 609.66 | 37.75 [2116.05| 35.25 |2446.35| 34.34
16 x 16 parallel off 608.07 | 37.75 [2114.85| 35.25 |2444.12| 34.34
16 x 16 plane off 609.44 | 37.74 |2116.17] 35.26 |2442.25]| 34.34
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The intra or inter prediction modes do not appear to have a significant impact on the
R-D performance. It is clear from Table 6-14 that, for inter prediction, the variation
in rate is around 1-2%, except “Paris” with 16 x 16 mode off which has 12.3%
increase in rate as compared to the benchmark. The latter observation is due to the
fact that most macroblocks within the background (unchanged) of the video “Paris”,
is coded using the 16 x 16 mode (so when the 16 x 16 mode is off, the smaller size
prediction modes have to use, which result in an increase in motion vectors).
Furthermore, the bit rate remains almost the same as the benchmark for any of the
intra predictions. The quality of image is almost constant whatever prediction mode

(intra or inter prediction) is used.

Based on the above analysis, the most appropriate coding parameters for
consideration towards R-D performance of a video CODEC are; Resolution,

IntraPeriod, QP and DisableThresholding.

6.5 Decoder Estimation

In the previous section, the encoding parameters that have a significant impact on
rate, distortion, CPU utilization and memory, were identified through careful design
and implementation of a number of experiments. In this section we perform a similar
analysis to determine the significant decoder parameters. It is noted that we assume
an ideal network where the network does not introduce any data loss or delay. Based
on this observation, we assume that the quality and bit rate of the video received by
the decoder are the same as that at the encoder output. In other words, we deduce that
the coding parameters affecting the bit rate and reconstructed video quality on both
encoder and decoder are identical. Therefore in this section the decoder related study

is focused only on computational complexity and memory utilization.

6.5.1 Computational Complexity

The analysis method used for estimating the computational complexity of the
decoder is the same as that used for the encoder. The computational complexity is

first evaluated by calculating the number of CPU cycles (i.e., the actual time) spent




on the main functions (see Equation (6.1)). The major emphasis of the second stage is
on exploring the effect of coding parameters on these functions. The profiling tests
for the decoder (JM 10) were performed on the PC (Intel P4-2800MHz).

The “Claire”, “Coastguard”, “Foreman” and “Garden” video sequences were coded
at 30 fps with QP = 28. The percentage of processing time spent on the main
functions and the total times consumed in decoding each video sequence are
summarized in Table 6-15. In terms of H.264 decoding stages in Figure 2-3 (b), the
main functions are grouped into the relevant decoding stages for evaluation of
processor utilization in the table. The inverse quantization and inverse DCT
processes are grouped together and are indicated as “Inverse Quantization &
Transform”. Other functions that do not belong to any identified decoding stage

shown in Figure 2-3 (b) are grouped together as “Remaining functions™.

The distribution of computational complexity amongst the decoder’s major functions
is clearly shown in the Table 6-15. It is observed that the “Deblocking filter” is the
most complex component of the decoder (Note that the “Deblocking filter” can not
be disabled within the JM 10. However, the “Deblocking filter” may be switched off
in other H.264 CODECsS and this may be a useful decoder parameter to investigate in
further work), accounting for 37.46% (averaged over 4 sequences) of the decoding
time. “Motion compensation” follows requiring around 28.31% of the decoding time.
Further “Entropy decoding” accounts for 14.23% and “Inverse quantization &
transform” accounts for 12.06% of the decoding time. The results are very similar to
that obtained in [57]. The next task is to explore the source code of the decoder to
identify the coding parameters that can have above 5% effect on the computational
complexity. The list of significant parameters selected as a result of the above

experiments is tabulated in Table 6-16.

For detailed computational complexity analysis three video sequences “Foreman”,
“*Mobile” and “Coastguard” at two different resolutions QCIF and CIF were used. As
previously stated the videos were fixed at 30 fps and QP = 28. The default settings

for each coding parameter tabulated in Table 6-16 were used as the benchmark result




Table 6-15 Profiling results of four sequences decoded by the decoder

Video sequence

Ui sihge Claire | Coastguard | Foreman | Garden
Entropy decoding 15.17% 14.36% 14.25% 13.15%
Inverse Q&T 12.87% 11.83% 11.36% 12.16%
MC 25.15% 26.28% 26.35% 27.65%
Intra prediction 3.01% 2.56% 2.37% 1.91%
Deblocking filter 36.13% 37.43% 37.94% 38.33%
Reconstruction & store 3.71% 3.37% 3.68% 3.57%
Remaining functions 3.96% 4.17% 4.05% 3.23%
Total coding time (Seconds) 7.509 8.638 8.256 17.968

Table 6-16 Candidates used for parameter selection in complexity at decoder

Coding parameter | Range of value Default
Resolution QCIF, SIF, CIF QCIF
NumberReferenceFrames 1-5 1
IntraPeriod 0-15 0
InterSearch4x4 0-1 1 (on)
InterSearch4x8 0-1 1 (on)
InterSearch8x4 0-1 1 (on)
InterSearch8x8 0-1 1 (on)
InterSearch8x16 0-1 1 (on)
InterSearch16x8 0-1 1 (on)
InterSearch16x16 0-1 1 (on)
Disablelntra4x4modes 1-0 0 (off)
Disablelntral 6x 16modes 1-0 0 (off)
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for each experiment highlighted in grey in each result table.

The results in Table 6-17 show that a higher resolution (e.g. CIF) video sequence
requires approximate double the time to decode as compared to that of a video
sequence decoded at lower resolution (e.g., QCIF). It is also clear from the table that
the processor time utilized is almost similar when up to 5 reference frames are used.
It is noted that at the decoder, the number of reference frames is only used to inform
the decoder how many decoded frames should be stored in the buffer for motion
compensation. The time taken to fetch a block from one of the reference pictures is
similar, which explains the reason for the above observation. In addition to resolution
and the number of reference frames, this table also describes the variation in
processor utilization at different intra refresh rates. The processor consumption
increases gradually with increasing intra frame refresh rate. It is because intra
decoding has more calculations than inter decoding. Over 5% gain in decoding time

is observed when using 1:1 refresh rate.

The results tabulated in Table 6-18 clearly show that the processing time only
negligibly varies regardless of which prediction mode is off. The biggest variation in
the processing time is found in the “Paris” sequence (approximate 2.3%) when 16 x
16 inter prediction mode was off. The reason is that the fixed background in “Paris”
was observed to be mostly coded using the 16 x 16 prediction mode. It is noted that
when the 16 x 16 prediction mode is used, only one motion vector is required in
coding a block, as against the need of more than one motion vector when other

modes are used.

129



Table 6-17 Processor utilization (in seconds) at various video resolutions, reference

frames and intra period

Resolution

Video sequence

Foreman Mobile Coastguard
QCIF 8.256 9.24] 8.638
CIF 16.482 20.840 19.263
Reference frame | Claire (QCIF) Garden (SIF) Football (SIF)
1 7.509 17.968 17.717
2 7.52] 17.950 17.675
3 7.464 17.958 17.602
4 7.466 17.900 17.560
5 | 7.483 17.856 17.604
Intra period Tennis (SIF) Paris (CIF) | Coastguard (CIF)
0 14.691 15.255 19.263
] 15.844 17.930 22.345
5 | 14.850 15.648 19.835
15 14.724 15.399 19.589

Table 6-18 Processing time (second) varies with different prediction modes

Prediction mode

Video sequence

Inter frame Paris Foreman | Football | Mobile | Garden
All modes are on 15.255 16.482 17717 20.840 17.968
4 x 4 mode off 15.233 16.483 17.710 20.890 18.084
4 x 8 mode off 15.289 16.533 17.762 20.873 18.045
8 x 4 mode off 15.277 16.533 17.780 20.908 18.101
8 x 8 mode off 15.338 16.470 17.748 20.852 18.054
8 x 16 mode off 15.248 16.554 17.869 20.841 18.064
16 x 8 mode off 15.291 16.478 17.723 20.875 18.086
16 x 16 mode off 15.602 16.753 17.886 20.829 18.092
Intra frame Paris Foreman | Football | Mobile | Garden
All modes are on 15.253 16.482 17.717 20.840 17.968
4 x 4 modes off 15.261 16.574 17.869 20.894 18.043
16 x 16 modes off 15.269 16.524 17.741 20.834 17.923
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6.5.2 Memory Utilization

The approach used for analyzing the storage (memory) requirement for the H.264
decoder is the same as the one utilized for the encoder. Table 6-19 presents the
summary of the memory requirements of the decoder based on various buffer levels.
In the table, w, h, n and sg have the same definitions as before (see Section 6.4.2). It
is clear from the table that there are only three coding parameters (Resolution,
NumberReferences and Slicegroup) dominating the storage requirements of the
decoder. It is observed that screen resolution is the most significant parameter
affecting the memory requirement. For example, a high-resolution video (e.g., CIF)

requires approximate 4 times memory than a lower resolution video (e.g., QCIF).

Table 6-19 represents the memory requirement formulae of the decoder at different
buffer levels. It is noted that the constant memory used for variable-length decoding
tables, intra-prediction probability tables, quantization tables and a few other small
constant tables, are not included in this table. Although error concealment has not
been a focus of this thesis, extra memory is required including the calculation since it

is allocated automatically when the decoder starts.

Table 6-19 Memory requirement formulas for decoder (JM) at various buffer levels

Buffer level Formula (in Bytes) ng=(§1[£ 1sg __(_::]FZ 1

Frame 3t(n+1)*wrh 152064 608256
sg >172 12%(n+1)+5*((w*h)>8

DA ; 12*in+];+((u('5'h):s>)6)+l < e
MB 400 + 1589*((w*h)>>8) 157711 629644
Intra prediction modes | (w*h)>>2 6336 25344
Motion vectors (w*h)>1 12672 50688
Entropy (CAVLC) 3*((w*h)>>3) 9504 38016
Error concealment 68 + 188*((w*h) >> 8) 18680 74516
Total 357391 1428076

Note: n: number of reference frames, w: width of frame, A: height of frame, sg: slice group
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6.6 Conclusions

This chapter has presented a detailed analysis of the H.264 baseline profile CODEC
(JM 10) based on computational complexity, memory utilization, bit rate and
distortion. The experimental analysis has lead to the identification of coding
parameters (both encoder and decoder parameters, see Table 6-20) that can
significantly influence the CODEC’s complexity, memory, bit rate and distortion
performance. These selected parameters will be used for the CODEC’s performance

optimization in the next chapter.

Note: The cell marked with V indicates that a particular parameter significantly
affects the relevant constraint. Blank entries indicate non-significant or no effect. For
example, the variation in QP does not increase or reduce the computational
complexity or memory requirement. It is further observed that a slight variation in
visual quality and compression ratio can be gained by adopting different motion

estimation algorithms (UseFME).

Table 6-20 Significant coding parameters on H.264 CODEC (JM 10)

Encoder
Parameter Symbol | Complexity | Memory | Bitrate | Quality
NumberReferences X y V
SearchRange X3 vV v
UseFME X3 v v
RDOptimization X4 v
SliceGroup Xs Vv
QP X6 \( ‘J
IntraPeriod X7 v \
DisableThreshold Xg vV Y
Resolution X9 V v \ v
Decoder
Parameter Symbol | Complexity | Memory | Bitrate | Quality
NumberReferences X v
IntraPeriod X2 l v V
SliceGroup X3 v
QP X4 V’ \f
DisableThreshold Xs v v
Resolution X6 v v v v
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Chapter 7 Multi-Objective Performance
Optimization of a H.264 CODEC

7.1 Introduction

An investigation on coding parameters that significantly affect the H.264 CODEC’s
(JM 10} bit rate, reconstructed video quality, memory and CPU utilization was
carried out in Chapter 6. A summary of the results is listed in Table 6-20. This
chapter presents a joint complexity-memory-rate-distortion (C-M-R-D) multi-
objective optimization framework for the H.264 CODEC based on the results of
Chapter 6.

The proposed framework considers a video streaming system, which uses a multi-
objective'.’('iiatimization scheme to produce a set of optimal configurations of coding
pararﬁéters according to the CODEC’s computing resources constraints to maximize
the video presentation quality, The theoretical model of the proposed framework is
summarized by the block diagram of Figure 7-1. The client (receiver/decoder)
initiates the process by sending a request of video content alongside a decoder
capability description that includes bandwidth, memory and CPU utilization
constraints. The server (sendef/encoder) then selects a set of the best coding
parameters for the CODEC from a group of optimal or near optimal tradeoff
parameter sets which is produced by the proposed scheme under the joint
consideration of client and server resource constraints. Note that since the encoder
needs to code the requested video under client’s resource limitation, the optimal
parameter set of the decoder should be generated at first. Subsequently, the
corresponding optimal parameter set for the encoder is selected which is used in
encoding. Finally, the coded video is delivered to the receiver. For simplicity, the
proposed framework assumes a lossless, wired network environment, thus not

requiring the modeling of network parameters within an end-to-end encoder-channel-
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Sender 2. Send a suitable coded video ) Receiver

H.264 Encoder H.264 Decoder

S

1. Receiver capability description

Figure 7-1 A theoretical framework of optimization mechanism

decoder optimization framework. It is noted that a common lossy channel requires
the consideration and modeling of network parameters such as transmission delay
and packét loss etc., which is considered beyond the scope of the work presented in
this thesis. In Chapter 8, we consider this as a possible future extension, It is noted
that the proposed framework provides theoretical guidelines for system design and
performance optimization of a H.264 video CODEC that can be easily applied to any
other image or video CODEC. |

The proposed framework is accomplished by following two main steps. Firstly, the
objective function for each objective/constraint requires to be developed. Secondly,
these objective functions are used within a multi-objective optimization strategy that
adopts a genetic algorithm (GA) to produce optimal solutions. Two reasons have
contributed in choosing a GA based approach as against a Lagrange Multiplier based
approach for multi-objective optimization. The first reason is that a GA has the
ability to find multiple optimal solutions in one single simulation run. This is in
contrast to the Lagrange Multiplier that converts a muliti-objective optimization
problem to a single-objective optimization problem by emphasizing one optimal
solution at a time [63]. The second reason is the pfesence of a well established,
popular public software tool, Non-dominated Sorting Genetic Algorithm (NSGA-II)
[63] that can effectively be utilized in the proposed work (see Section 7.2.3).

For clarity of presentation, this chapter is organized as follows. The fundamental
concepts of multi-objective optimization and NSGA-II sofiware are introduced in
Section 7.2, Section 7.3 formulates the joint C-M-R-D optimization problem for the
framework. The approach of obtaining objective functions of the optimization
problem for encoder and decoder is presented in Section 7.4. The simulated results

are presented in Section 7.5. Finally, Section 7.6 concludes this chapter.
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7.2 Introduction to Multi-obj ective Optimization

7.2.1 Definition of 2 Multi-objective Optimization Problem

As the name suggest, a multi-objective optimization problem (MOOP) has a number
of objective functions which are to be minimized or maximized. Moreover, the
problem usually has a number of constraints which any feasible solution must satisfy.

The general form of the MOOP may be stated as follows [64]:

Minimize/Maximize f,(X), m=1,2,...M;
subjectto g,{X)20, F=12,.,J;

B (X)=0, k=12,...K;

x.(L}Sx. Sx(U) i=12,..,n.

(7.1)

There are M objective functions fX) = ((X), f(X), ... fu(X))" considered in
Equation (7.1). A solution X is a vector of  decision variables: X = (x1, xa, ..., Xn) -
The terms gi(X) and hy(X) are called inequality and equality constraint functions
respectively. The last set of constraints are called variable bounds, the value of each
decision variable x; is restricted within a range of lower x) and an upper x” bound.
These bounds form a decision variable ‘space, or simply the decision space. Each
feasible solution is subjected to J inequality and K equality constraints. If any
solution X does not meet all of (J+K) constraints and all of the variable bounds, the
solution is called an infeasible sblution. On the other hand, if a solution X satisfies all
constraints and \}ariable bounds, it is known as a feasible solution. 1t is noted that the
entire decision variable space need not be feasible. The set of all feasible solutions is

called the feasible region.

7.2.2 Pareto-Optimal Solutions

It is important to note that not all feasible solutions in the feasible region are optimal.

In other words, the feasible region not only contains optimal solutions, but also
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Figure 7-2 Feasible region and Pareto-optimal front in two-objective optimization

problem

solutions that are not optimal. Figure 7-2 [67] illustrates the feasible region and a
number of feasible solutions of a two-objective optimization problem with two
conflicting objectives f; and f;. Assume that the target of this optimization problem is
to maximize both objectives. It is obvious that solution A is better than any one of B,
C, D and E in terms of both objectives. Therefore, B, C, D and E are feasible
solutions but not optimal. On the other hand, solution F has a smaller f;, but has a
larger f; than A. When both objectives are equally important, none of these two
solutions can be said to be better than the other with respect to both objectives. When
this relationship exists between two solutions, they are called non-dominated
solutions. There exist many such solutions (highlighted with red) in the feasible
region. For clarity, these solutions are joined with a dashed curve in the figure. All
solutions lying on this curve are called Pareto-optimal solutions or Pareto-optimal
set. The curve formed by joining these solutions is known as a Pareto-optimal front
(curve). In fact, the task in multi-objective optimization (MOQO) is to find a set of

Pareto-optimal solutions in the feasible region [64].
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7.2.3 NSGA-II Software

Non-dominated sorting genetic algorithm II (NSGA) was proposed in [63], which is
at present one of the popular evolutionary algorithms (EAs) used in multi-objective
optimization research. Since NSGA II works with a population of solutions, it can be
extended to maintain a multiple set of solutions. With an emphasis for moving
toward the Pareto-optimal region, the NSGA-II can find multiple Pareto-optimal
solutions in one single simulation run [63]. A well tested, public domain software
solution for NSGA-II exists [65] that can be used directly within the research context
presented in this thesis. An introduction to this tool is presented in the following sub-

sections.
7.2.3.1 Input Parameters

The input parameters that need to be defined prior to running NSGA-II, are listed in
Table 7-1. Note that the digits in the bracket denote the value or value range of the
corresponding parameter. In addition to the input parameters, a MOOP and its
objective (fitness) functions also need to be defined. The definition of MOOP and
objective functions used for the optimization framework in this thesis are discussed

in Section 7.3 and Section 7.4 respectively.

Table 7-1 Input parameters of NSGA-II

Mnpt Description
parameter
popsize Population size
ngen Number of generations
nobj Number of objectives
ncon Number of constraints
nreal Number of real variables

min_realvar]i)

Minimum value of i real variable

max_realvar(i]

Maximum value of i" real variable

pcross_real

Probability of crossover of real variable (0.6-1.0)

pmut_real Probability of mutation of real variable (1/nreal)
eta ¢ Distribution index for simulated binary crossover (5-20)
eta m Distribution index for real variable polynomial mutation (5-50)
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7.2.3.2 Main Procedure

Initially a random parent population Py is created. The population is then sorted into
different non-domination levels, where level ] is used to refer to the best level. Each
solution is assigned a fitness that equals to its non-domination level. Subsequently a
binary tournament selection with a crowded tournament operator, recombination, and
mutation operators are used to create an offspring population Qp of size N (the
population size). After the initial generation, the procedure (as in [63]) is outlined as

follows (the mth generation is given as an example):

Step 1: Parent and offspring population is combined to form a new population
R = Py W O

Step 2: The combined population R,, (of size 2N) is sorted into different levels
of non-dominated sets /', F> ...

Step 3: New population P, is formed from the non-dominated sets in the
order of F;, F; ... until the size equals to N. If only a portion of the last
non-dominated set, £}, is selected to fill the new population, the best
solutions in F} are chosen by the crowded-comparison. The procedure
is also shown in Figure 7-3.

Step 4. The new population P,.; is used for selection, crossover, and

mutation to create a new offspring population Q,,+ ;.

Non-dominated sorting

I

LJ—

Rm




7.2.3.3 Output of NSGA-II

The steps 1 to 4 are continued until the required number of generation is reached.
Finally, NSGA-II outputs a file that contains the best solutions obtained at the end of

the simulation run.

7.3 Problem Formulation

Consider in Figure 7-1 that the encoder received the client’s video demand and
capability information such as available memory, CPU constraints/capabilities and
available bandwidth. Based on such knowledge, the goal is to find a set of optimal or
near optimal solutions that minimize computational complexity, memory utilization
and bandwidth utilization while maximizing video quality. Each solution contains a
set of optimal coding parameters (listed in Table 6-20) that are used for coding the
demanded video sequence. Therefore, the goal can be considered as a four-objective
constrained optimization problem that all objectives are to be minimized and
presented by Feomplexityy Fmemorys Frae aNA Faisorion Tespectively. The budgets of
memory and bandwidth can be regarded as constraints (note that CPU can be a
constraint as well) and presented by Gemory and G,q. separately in this thesis. The
selected coding parameters are described as decision variables by a vector variable X
= (xy, X2, ..., Xy). According to such given knowledge, the MOOP regarding C-M-R-

D optimization model can be formulated in its general form as follows:

T
IT]]I]F(X) ( complexity (X) mermory (X) rate (X) drsmrlmu(X))

subject to G,,, (X)
)

<R
mcmor\ ( S

.\i <x ij g f=1a . 7

(7.2)
where R and M represent the constrained rate and memory respectively. Decision

variables n = 9 for the encoder and # = 6 for the decoder in the proposal. Each

decision variable x; is restricted within a range [x/", x;"] inclusive. The subsequent
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task is to obtain the four objective functions Feompiexitys Fmemorys Frare and Fiistortions and
two constraint functions Gpemory and Giae. This is discussed in the following section.

Note that Gmemar;v(-X) =J memary(/‘? and Gra!e()g =F, mw(}()-

7.4 Obtaining Objective Functions

The constraint optimization problem was formulated in Equation (7.2) of the
previous section. In this section, the task is to analyze the mathematical relationship
between the decision variables x; and each objective. The above relationships named
as objective functions, can be obtained through the informed use of Matlab’s [66]

polynomial regression tool.

The procedure of obtaining objective functions can be described as follows: (i) for
each objective a large number of experiments are carried out both at the encoder and
decoder based on all possible combinations of settings of the aforementioned coding
parameters; (i1) the values obtained for the objective and the corresponding parameter
settings are used to form a data set for polynomial regression; (iii) the polynomial
terms are defined to include all possible combinations of the decision variables (i.e.
the coding parameters); (iv) finally the polynomial regression function of Matlab is
used to fit the data set of (i) and to determine the coefficients of each significant
polynomial term of the objective function. Since computational complexity, rate and
distortion (however not memory) obtained even under identical parameter settings
are dependent on the source video, there are two options for estimating the objective
functions. The first option is the use of average value of the objective calculated
experimentally from different videos (for example the bit-rate) to be used in
polynomial regression. The advantage of this approach is that the resulting objective
function will be able to reasonably well model the relationship between the objective
and the coding parameters for any given video. However, the results will be sub-
optimal. The second option is that for each video sequence to have its own objective
function, which can yield optimal results. However, these results will not provide

optimal results for other videos. Since the framework is to be considered for use
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within a video streaming system, the second option was chosen. The details of this

optimization strategy are given in the following sub-sections.

7.4.1 Objective Functions of Encoder

7.4.1.1 Computational Complexity

As mentioned in Section 6.4.1, the computational complexity of the encoder was
measured using the Intel VTune Performance Analyser tool. The experiments for
obtaining computational complexity data were performed on a Pentium-4 2.8GHz
computer with the coding parameter setting described in Table 7-2. The number of
reference frames (x,) varies from [ to 5 in increments of two. The search window
size (x;) can take either of the two values 16 or 32. The control variable (x;) can take

values from 0 to 3 corresponding to various motion estimation modes. The control

variable (x,) for rate-distortion optimization (RDO) mode can take values from 0 to 2.

The resolution of video sequence (xy) varies from [ to 2 corresponding to QCIF and
CIF respectively. Therefore there are a total of 144 combinations of the five control
variables stated above. Four video sequences (112 frames for each) “Foreman”,
“Mother & Daughter”, “Mobile” and “Coastguard” were used for analyzing the
computational complexity. Therefore, total of 4 x 144 = 576 experiments were run. A
subset of the experimental results is shown in Table 7-3. The computational
complexity (measured in seconds) per frame obtained by averaging the total number

of frames was used for evaluating the objective function.

Table 7-2 Coding parameter settings for estimating complexity

Sequence | Data set X1 X2 X3 Xy X9
Foreman 144 1-5(+2)|16~-32|0-3]0-2]1-2
Coastguard 144 1-5(+2)116-32|10-3 (0-2{1-2
Mo. & Da. 144 1-5(+2){16~-32{0-310-2]1-2
Mobile 144 1-5(+2)|16-32|0-3|0-2(1-2
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Table 7-3 The average computational complexity (seconds) per frame for each

sequence.
X; | X2 | X3 | X4 | Xo | Foreman | Coastguard | Mo. & Da.| Mobile
I s 0| O 1 [0.540464286 ( 0.541303571 { 0.535616071 | 0.538133929
3 16 0 0 1 ]1.429142857 | 1.439008929 | 1.419946429 | 1.406589286
5 16 0 0 1 |2.309946429 2.3308125 | 2.291232143 | 2.259321429
5 16 1 0 1 0.850214 1.053848 0.752402 0.953196
BECRIENE: 1 0.685786 0.803732 0.551902 0.766857
5161 30 1 0.926821 0.993732 0.840964 0.918804

It is noted that all possible combinations of control variables in different degrees
were initially considered in an attempt to exhaustively determine the terms of each
fitness function. Since normally higher-order terms produce a better fitness (i.c.,
higher R-square [66] which is one minus the ratio of the error sum of squares to the
total sum of squares, a value closer to 1 indicates a better fit.) to a data set, a
polynomial of degree six with a total of 420 terms was used for obtaining the fitness
function for computational complexity. However finally, only the significant terms
are retained. The polynomial regression results of the four test video sequences are
shown in Table 7-5. It was observed that the R-square and RMSE (root mean square
error) values are maintained at desirable levels. The significant terms and relevant
coefficients of the fitness function for “Mother & Daughter” video sequence are
given in Table 7-4. A complete set of terms and coefficients obtained for all four test
video sequences are listed in Appendix A. In the table, each row indicates a
monomial of the polynomial consisting of a coefficient multiplied by one or more
control variables. The integer number describes the power of the relevant control
the 1% term because of -
0.2041517956412x;"x,%x3"x"xs” and the 10" row is 1.3794327907866x, x,'x3"x,"xs’.

Thus, the general form of the objective function for computational complexity can be

variable. For example, row is a constant

written as follows:
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Fomnsty s\ )= 3 GRS A, a,b,c,d,e=0,...,5, n=31,26,19,20.
i=]
(7.3)
where X, = (x;, X2, X3, X4, xg)T, a, b, ¢, d and e are the corresponding powers of the
relevant variables. The number » indicates the number of sufficiently significant

polynomial terms of the objective functions for sequences “Foreman”, Coastguard”,

“Mother & Daughter” and “Mobile™.

Table 7-4 Terms and coefficients of the fitness function of Mother & Daughter

Coefficients X1 X X3 X4 Xo
-0.2041517956412 0 0 0 0 0
0.3165646733353 0 0 1 0 0
-0.3385939801707 0 0 1 0 1
0.2750319893053 0 0 0 1 1
-2.3004076262064 1 1 1 0 0
-2.5655364292056 1 0 0 0 2
3.7864693852438 I 1 0 0 2
2.9953569554126 1 0 1 0 2
-1.0795540124119 1 0 2 0 2

1.3794327907866 1 1 2 0 2
0.3057298569872 1 1 2 0 0
-0.0293689868774 1 1 0 0 3
-0.4582364962363 1 1 3 0 1
-1.7154566609996 1 1 1 0 3
0.1250301095724 1 0 3 0 2
0.0338324704338 0 0 0 4 0
0.0038274781955 0 0 2 0 -4
0.0316089895731 0 0 0 2 -
-0.0124814415485 0 0 0 5 1
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Table 7-5 Fitness results of computational complexity

Sequence R-square RMSE
Foreman 0.9999 0.055
Coastguard 0.9999 0.110
Mother & Daughter 0.9995 0.020
Mobile 0.9999 0.047

7.4.1.2 Memory Utilization

The memory requirement for the encoder was analyzed in Section 6.4.2. It was
revealed that the encoder memory requirement only depends on the coding
parameters but not on the video content. Therefore, the objective function for
memory utilization should theoretically be applicable to any video sequence. The
parameter settings for memory utilization related experiments are shown in Table 7-6.
The number of slice groups (xs) varies from 1 to 7. The variations of values of the
other parameters are the same as that of computational complexity. The same 420
terms used in obtaining the objective function for computational complexity was
used for obtaining the objective function for memory utilization. A highest degree of
six was used. The statistical results of R-square and RMSE reflecting the goodness of
fit are tabulated in Table 7-6 and are promising. The final objective function of
memory usage contains 35 terms which is listed in Appendix A and the equation can

be described in general terms as follows:

n
a b e _d_e . . oy
F;wm_,_‘.(Xm)=ZC,..r1x2,x3x5.xg, a,be.d.e=0,....5 n=35,
i=1

(7.4)

where X, = (x;, X2, X3, Xs, xg)T, a, b, ¢, d and e are defined similar to that in Equation

(7.3).
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Table 7-6 Coding parameter settings and the fitness results of memory

Data set X1 X X3 Xs X9 | R-square | RMSE
336 1-5(+2)[16-32( 0-3 [1-7|1-2| 0.99999 0.003

7.4.1.3 Rate & Distortion

Since rate and distortion have the same control parameters, they can use identical
data sets as [isted in Table 7-7. The quantization parameter (x4) varies from 17 to 49
with assumed increments of four for experimental purposes. The control variable (x7),
IntraPeriod, can takes values: 0 (means that the first frame is coded as an I-frame and
subsequent frames are coded as P-frames), 1 (all frames coded as I-frames), 4, 7, 10,
13 and 16. The control variables (xg) and (xy) represents DisableThreshold (see
Section 6.2) and resolution of video respectively, and can take only one of two
possible values. The same test video sequences and an identical specification PC as
used in the experiments presented in Section 7.4.1.1 were used. A total of 252
experiments for each sequence were performed. The averaged distortion (measured
in terms of PSNR, dB units) and rate (measured in kbits) per frame were employed as
the input data set. A total of 329 polynomial terms (the highest-order terms are in
degree seven) were used in the definition of the initial fitness functions for rate and
distortion respectively. The results of goodness of fit are presented in Table 7-8. The
fitness (see R-square and RMSE in the table) for the average rate reveals that a
polynomial does not fit the average rate well. Therefore, in order to improve the
goodness of fit, the average rate was log-transformed (base 10) prior to fitting to the
data set. From the results tabulated in Table 7-8, it is clear that, the log-transformed
data can be fitted better than the non-log-transformed data using a polynomial
function. Accordingly the terms and the corresponding coefficients of the polynomial
obtained for fitting the data are listed in Appendix A. The generalized objective
functions for rate and distortion are shown in Equation (7.5) and Equation (7.6)

respectively.
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i=1
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a.be.d=0,...,7;

a,b,e,d =0,....5;

n=27,42,27,34.

(7.3)

n=23,16,18,19.

(7.6)

where X, = X; = (x¢, x7, X3, x9)", a, b, c and d vary from 0 to 7 for rate and 0 to 5 for

distortion. It is noted that “»™ in Equation (7.5) and (7.6) define the same meaning as

that of Equation (7.3).

Table 7-7 Coding parameter settings for estimating rate and distortion

Sequence Data Set X X7 Xg X9

Foreman 252 17-49(+4) [0-16(+3)| 0-1 1-2

Coastguard 252 17-49 (+4) | 0-16 (+3) 01 ]2

Mo & Du. 252 17-49 (+4) | 0- 16 (+3) 0-1 1-2

Mobile 252 17-49 (+4) | 0—13 (+3) 01 1-2

Table 7-8 Fitness results of rate and distortion
Averaged PSNR Averaged Rate |LoglO(Averaged Rate)
Sequence
R-Square| RMSE |R-Square| RMSE | R-Square | RMSE

Foreman 0.9998 0.09 0.9978 1.24 0.9997 0.011
Coastguard | (.9997 0.11 0.9987 0.93 0.9998 0.011
Mo & Du. | 0.9997 0.10 0.9991 0.74 0.9996 0.017
Mobile 0.9997 0.13 0.9962 1.64 0.9998 0.008
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7.4.1.4 Formulation of C-M-R-D of Encoder

After obtaining objective functions of computational complexity, memory utilization,

rate and distortion, the equation used for optimizing the encoder on C-M-R-D is

given by:
n P '
g a b oec d._ e - § = 4
M”r F;‘mrrpfe.l‘il_l‘_E(Xr): ZCJ’X;I“Z'\}'\-# '\;a avbscs {[18"‘0:"')5: n= 31; 26’191 20;
i=l
n I
o b e s . i .
Min By (X )= D 00 02555, abicid,e=0,..5 n=35;
i=1
Z exiihxtad
Min F,,, ;(X,)=10" ; abe,d =0,..,7; n=27,42,27,34;

Min Fy,ion £ ()= Zc',.x[f.ri’x;.\'f ; a,b,e,d =0,....5; n=23,16,18,19;
i=l

subject to G, p(X,)=Fp (X,)<R;

Gllh.’m()fj' ¥ (Xm ) = [?mumwj\' _E (Xm )

L u e,
EELSE . =129

IA

M;

(7.7)

where X, X, X, Xy, R and M are defined as before.

7.4.2 Objective Functions of Decoder

There are a total of six coding parameters (marked x; to x4 and listed in Table 6-20)
that significant affect the decoder’s computational complexity, memory utilization,
received bit rate and distortion. As mentioned in Section 7.1, the proposed multi-
objective optimization framework assumes a lossless network, which means that the
decoder can receive all the data transmitted by the encoder at the specific rate. Under
such a situation, the reconstructed video quality at the decoder depends entirely on
the coding parameters used by the encoder. Thus, the objective functions for video
quality (distortion) and rate at the decoder can use the functions derived at the

encoder for the said objectives. Thus only the deduction of the objective functions for
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computational complexity and memory utilization at the decoder are presented in the

following sub-sections.
7.4.2.1 Computational Complexity

From the analysis of the computational complexity at the decoder presented in
Section 6.5.1, it was seen that there are only two significant coding parameters that
have a significant impact (i.e. over 5%) on the processor’s execution time. They are,
IntraPeriod (x;) and Resolution (xs). The approach used for obtaining the objective
function for computational complexity at the decoder is the same as that used at the
encoder. The same PC and test video sequences were used. Table 7-9 presents the
parameter settings that were used in the experiments. The values of variable x, vary
from 0 to 16 with two different frame sizes (i.e. the parameter, x4) 1 and 2. Therefore
a total of 34 experiments were performed for each sequence. A polynomial of degree
nine was employed to obtain the fitness function. The fitness statistics are tabulated
in Table 7-10. In terms of polynomial terms and coefficients provided in Appendix B,

the fitness function can be written as follows:

B o) = Y oontn,  ab=ll.5% »=4575

=1

(7.8)

where X; = (x2, .rd)T, a, b and n are defined as before but are different in value.

Table 7-9 Coding parameter settings for estimating computational complexity

Sequence Data set X2 X6
Foreman 34 0-16 1-2
Coastguard 34 0-16 L2
Mother & Daughter 34 0-16 1-2
Mobile 34 0-16 1-2
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Table 7-10 Fitness results of decoder’s computational complexity

Sequence R-square RMSE
Foreman 0.9984 0.0015
Coastguard 0.9999 0.0005
Mother & Daughter 0.9998 0.0004
Mobile 0.9999 0.0005

7.4.2.2 Memory Utilization

At the decoder (JM 10), three coding parameters, the number of reference frames (x;),
the number of slice groups (x;) and frame solution (x4), dominate the memory
required for decoding a video sequence (see Table 6-19). The value range for each
variable is as follows. Up to 5 reference frames may be used for motion
compensation. The maximum number of slice groups is 7 and video resolution can
take values of either 1 or 2. A polynomial of degree six with the 70 data sets was
used in the polynomial regression for decoder memory utilization. The results are
shown in Table 7-11. The objective function can therefore be written as follows,

with the polynomial terms and coefficients given in Appendix B:

n
- 0o O w : sy
F:m,mm,_D(Xm)——ZCJ-AI xxs, a,be=0,.,6; n=6.
=1

(7.9)
where X, = (x;, x3, xg)r, a, b, ¢ and n are defined as before but are different in value.
Table 7-11 Fitness result of decoder’s memory utilization

Data set | R-square RMSE
70 0.99999 0.0001
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7.4.2.3 Formulation of C-M-R-D of Decoder

After obtaining the objective functions for computational complexity and memory

utilization, the optimization problem of the decoder becomes:

n
¢ n La b . ; e .
Min B,y p (X,)= Zcfxz,xa : a,b=0,..,5 n=4,575;
i=1
n
. = a b _c¢ i A o
Min B, 5K, J= Y e, a,B,e=0;..,6 n=6;
=]

E ¢ \'z‘till xd

Min F,, ,(X,)=10" " a,b,c,d =0,...,7, n=27,42,27,34;
Min Fypion p(X,)=D exsx0x5x8,  a,be,d=0,..,5; n=2316,18,19;
) i=1

subject 10 Gy p(X,)=Fp p(X,)SR;
Grenors_0(Xn) = Franory_o (X) <M
% Sxia, i=1,2,..6.
(7.10)

where X, = Xy = (x2, x4, X5, xb)l, other terms have definitions similar to as before.

7.5 Experimental Results

The objective functions for computational complexity, memory, rate and distortion at
both the encoder and decoder have been derived in the above sections. Therefore the
framework is now ready to be used to solve the C-M-R-D optimization problems at
both ends of the CODEC. In this section, a number of simulations are performed to
demonstrate the effectiveness of the optimization framework. The parameters used
for NSGA-II are first described. A reasonable set of parameter settings was chosen
from those proposed by the authors of NSGA-II [63] and therefore it is noted that we
have not made any effort in finding the best parameter setting. In all simulations, the
population size was chosen as 100, crossover probability was 0.9, and mutation
probability (calculated from 1/n, where n is the number of decision variables) was

0.11 for the encoder and 0.17 for the decoder. The distribution index for both
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crossover and mutation were set to 20. All four video sequences were used for the
simulations and the four objectives, computational complexity, memory utilization,
rate (based on 25 frames per second) and distortion were measured in milliseconds

per frame, megabytes, kbps and dB respectively.

The first simulation was run for various generations. There are three goals in this
simulation: (1) verifying if NSGA-II can help in finding a set of solutions which are
close to the Pareto-optimal set, (ii) can a set of diverse solutions be found within the
Pareto-optimal set, and (iii) obtaining Pareto-optimal solutions for each video
sequence. In this simulation, the C-M-R-D optimization was considered as an
unconstrained optimization problem so that the feasible region (see Section 7.2)
could be as large as possible. 20, 50, 100 and 300 generations were used in the
simulation. With four objectives, it is difficult to discuss the effect of the results on a
4-D graph. Therefore, all six pairwise plots of solutions obtained at the end of
generations for “Foreman™ at the encoder side are illustrated in Figure 7-4 and Figure

7-5.

In achieving the first goal of the simulation, it is observed from the graphs that the
solutions converge towards the Pareto-optimal set, as the number of generations
increased. However, the convergence hardly improve after 100 generations, which
means the solutions obtained after 100 generations are the (local) Pareto-optimal

solutions that are very close to the true Pareto-optimal set.

In achieving the second aim of the experiments stated above, it is noted that the
spread of the Pareto-optimal solutions obtained at the end of both 100 and 300
generations (marked with blue rhombus and red circle in the figures individually) is
also desirable. This is clearly proved in rate-distortion curve of Figure 7-4 (a). Note
that, in Figure 7-4 (b)-(c) and Figure 7-5 (a)-(c), a Pareto-optimal solution can be
found, which can obtain the maximum or minimum value on both objectives, without
tradeoff. This is due to the fact that such pairwise objectives do not conflict with each

other.
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Figure 7-5 Pairwise plots of solutions: (a) complexity vs. distortion, (b)
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In achieving the third aim of the experiments, it was observed that similar results
were obtained when other test video sequences were tested. Figure 7-6 (a)-(c) depict
the rate-distortion curves obtained at the end of 300 generations for “Coastguard”,
“Mother & Daughter” and “Mobile” respectively. Since a population of size 100 was
used, it is not expected that the set of solutions obtained at the final generation are the
global Pareto-optimal solutions, but rather a local Pareto-optimal set sufficiently

close to the global Pareto-optimal solution.

In order to evaluate the performance in the case of constrained Pareto-optimal set, a
second simulation was performed where all parameters of NSGA-II tool were
selected to be the same as before and 300 generations were run. Two different
constraints: i) rate less than 1024 kbps, ii) rate between 56 kbps and 128 kbps, were
used for this experiment. The resulting rate-distortion curves for the four sequences
are given in Figure 7-7 (a)-(d). It is clear from these figures that the constrained
Pareto-optimal set is a subset of the unconstrained Pareto-optimal set as compared
with the results obtained in the first simulation. Similar results (see Figure 7-8 (a)-(b)
for “Coastguard” and “Mobile” respectively) were obtained for 56 kbps < rate < 128

kbps but it was observed that the region of the Pareto-optimal set becomes smaller.

At the decoder, similar simulations were preformed for the same test sequences. It
was observed that the behaviour of the resulting curves was similar to that of the

encoder.
A third simulation was performed in order to demonstrate the overall procedure one
has to adopt in order to make use of the proposed multi-objective optimization

framework. Assume a scenario where the decoder has the following limitations:

1. The bandwidth in the bound of [128 kbps, 256 kbps] inclusive;
2. Memory is limited on 5 Mbytes.
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The decoder sends a request for the “Foreman” sequence alongside a decoder
capability description, to the server (the encoder). Subsequently the proposed
framework then optimizes the coding parameters for the decoder, based on its
capability data. A part of the optimization results are given in Table 7-12. The first
four columns depict the objectives results while the remaining columns represent the
corresponding optimal coding parameters (decision variables) set for the decoder.
The range of the coding parameters will be used as a new bound of the decision
variables at the encoder. Then the framework optimizes the encoder in terms of the
constraints containing the new bound of the decision variables and the limitation of
bandwidth. Note that the limitations of computational complexity and memory
utilization at the decoder are not used as constraints at the encoder’s optimization
since these two objectives at the encoder and the decoder are independent. A part of
the optimization results for the encoder are shown in Table 7-13. The R-D curves for
the encoder and decoder are almost the same as illustrated in Figure 7-9. Finally, the
optimal coding parameter set is selected by following two steps. i) Choose the
maximum value of PSNR in Table 7-12 (decoder parameters), i.e., the first row
highlighted in grey. i1) Select the row from Table 7-13, which has the highest PSNR,
and the values of the corresponding parameters must equal or close to the decoder
parameters. In this case, the second row (highlighted in grey) of Table 7-13 was
selected. Therefore, the optimal coding parameter set for coding “Foreman” sequence

under the above constrained memory and bandwidth requirement is listed Table 7-14.

Table 7-12 Optimization results of decoder for Foreman sequence

: Ref. | Intra | Slice Disable | Frame
Hatg, | FSNR | Complexity| Mo, frames | period | group oF Threshold| size
254.27 | 38.68 73.72 0.35 1 12 I 24 1 1
218.36 | 37.98 73.55 0.35 1 13 1 25 1 1
205.22 | 37.86 72.47 0.35 1 16 1 25 1 1
238.54 | 38.56 72.47 0.35 1 16 [ 24 | 1
221.08 | 37.92 72.95 0.35 | 15 1 26 2 1
131.54 | 35.84 72.47 0.35 1 16 1 28 1 1
193.96 | 37.28 73.3 0.35 1 14 | 2, 2 I
216.33 | 37.92 72.95 0.35 1 15 1 25 1 1
188.97 | 37.28 73.3 0.35 1 14 1 26 1 1
171.26 | 36.65 73.84 0.35 1 11 1 2 1 [
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Table 7-13 Optimization results of encoder for Foreman sequence

Rate [PSNR| C [Mem.| Ret. [ SR [FME[RDO][ SG | QP | 1P | DT |Reso.
225.76/37.99 [256.22| 7.74 | 1 I 4 1 1 | 28 | 11 1 |
254.27138.68 [215.52| 7.8 | 1 1 3 1 e i 1
162.06]36.57 215.52] 7.8 | | 1 3 1 L [2r ] 15 | 1 1
162.06]36.57 [215.52] 7.8 | 1 1 3 1 1 | 2F | 15 | 1 1
205.22(37.86 [215.52| 7.8 | 1 o 1 L (25 | Ig | 1
238.5438.56 215.52| 7.8 | 1 | 3 1 1 | 24 [ 16 | 1 1
225.76(37.99 256.22| 7.74 | 1 1 4 1 1L {3 I n ] 1
238.54[38.56 |215.52] 7.8 | 1 [ % | 1 1 | 24 [ 16 | 1 [
130.67|35.35 |256.22] 7.74 | 1 1 | 4 1 1 [ 20 [ 1 I 1
162.06]36.57 [215.52| 7.8 | 1 I 3 1 1 |27 1151 1 1

Note: C: complexity, Mem: memory, Ref: reference frames, SR: search range, FME: fast

motion estimation, RDO: rate-distortion optimization, SG: slice group, IP: intra period, DT:

disable threshold, Reso: resolution.

Table 7-14 Optimal coding parameter set for Foreman
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Figure 7-9 Rate-distortion curves of encoder and decoder for Foreman
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7.6 Conclusions

In this chapter, a joint C-M-R-D optimization framework for a H.264 video CODEC
(JM 10) has been proposed based on a detailed comprehensive performance analysis
(see Chapter 6) of the H.264 CODEC. The framework adopts an evolutionary
algorithm, NSGA-II, as the multi-objective optimization algorithm, and is designed
for solving the joint C-M-R-D optimization problem at both the encoder and decoder
based on the decoder’s capabilities/limitations such as available memory and
bandwidth. It produces a set of optimal coding parameters that can be used for
encoding and decoding video sequences. These optimal coding parameters can
minimize the computational complexity, memory utilization and rate at CODEC
while achieving the maximum visual quality. According to the simulation results, the
framework can yield Pareto-optimal or near Pareto-optimal solutions. In other words,
it can produce an optimal coding parameter set for a video sequence. Although the
framework has not considered network factors such as transmission delay and packet
loss, it provides practical guidelines for the design and performance optimization of

video communication systems under computing resources constraints,
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Chapter 8 Conclusions and Future Work

8.1 Summary

This chapter summarizes the original contributions made by the thesis to the research
area of video coding. It also highlights possible future directions of research related

to the work presented.

This thesis has presented the design, implementation and performance analysis of a
novel object-based extension to a standard H.264 video CODEC. It has also proposed
a multi-objective optimization framework that can be used in the parameter-based
performance optimization of a standard compliant H.264 CODEC. The practical

relevance of these extensions/improvements has also been discussed.

In Chapter 4, a novel Shape Adaptive Integer Transform (SA-IT) and associated
quantization procedures were proposed with the aim of being used in the inclusion of
object-based coding in H.264. It was shown that the SA-IT calls for novel design and
implementation considerations as compared to the design and implementation
considerations of SA-DCT used within MPEG-4 and IT used within H.264. The main
features of the SA-IT algorithm is that (1) it provides the ability of coding arbitrary
shaped video objects, (2) the forward and inverse transforms can be implemented by
only using simple additions and shifts without the need for multiplications, (3) it
minimizes computational complexity by using 16-bit arithmetic operations and (4)
the introduction of a quantization table look-up strategy that can avoid divisions at
quantization. However, 2-D SA-IT causes the issue of having to code transformed
sub-coefficients individually, a matter discussed in detail in Section 5.4. In the
proposed research this issue has been solved by only applying 1-D (i.e. vertical) SA-

IT, which only gives rise to a marginal penalty in the bit rate.
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Chapter 5 presented the design, implementation and performance analysis of an
object-based coding extension to the Baseline profile of H.264 standard, based on the
SA-IT proposed in Chapter 4. It was shown that the slice group structure of the
standard H.264 CODEC needs to be modified and extended for the effective
implementation of the proposed object-based coding framework. Furthermore a novel
shape coding algorithm based on the MPEG-4 shape coding methodology was also
proposed for the purpose of object shape coding. Experimental results were provided
to prove that the proposed shape coding algorithm is more efficient compared to that

used within the MPEG-4 standard.

The inclusion of object-based coding in H.264 enables its enhanced original features
such as the superior rate distortion performance to be effectively utilized within new
application domains such as security and surveillance systems and highly bandwidth
constrained communications applications that will benefit at least from the
transmission of given ROIs at higher quality. The additional functionality above was
provided at no extra cost to the CODEC’s rate-distortion performance. Experimental
results were provided to justify this claim (see Chapter 4 and Chapter 5). The
proposed CODEC has further being conceptually compared with the upcoming
H.264 Scalable Video Coding (SVC) extension. It has been revealed that H.264 SVC
can not handle the independent coding of arbitrarily shaped regions, but only regions
made out of rectangular blocks. However, the proposed CODEC can only work on

the assumption that the binary alpha maps of a video sequence are known.

A detailed performance analysis of the H.264 baseline profile CODEC (JM 10) was
presented in Chapter 6. The aim of the analysis was to identify those coding
parameters which have a significant effect on computational complexity, memory
utilization, rate and distortion. The above analysis was performed on both the
encoder and the decoder. A total of 9 parameters (see Table 6-20) have been
identified as the main contributors to computational complexity, memory utilization,
rate and distortion at the encoder, while 5 parameters were identified as the main
contributors at the decoder. These analysis results (i.e. significant coding parameters)

were subsequently used in the joint multi-objective optimization of a H.264 CODEC.
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In Chapter 7, a multi-objective optimization framework for the H.264 baseline profile
CODEC (JM 10) was proposed. The framework was used to achieve a joint
optimization of computational complexity, memory usage, rate and distortion based
on the performance analysis results of Chapter 6. A genetic algorithm was used in the
process. The most important advantage of the proposed optimization framework is
that it produces an optimal or near optimal coding parameter set for encoding and
decoding video sequences. It was found that the optimum parameter selection was
generally dependent on the source video content. However further analysis revealed
that two videos with similar characteristics/content has similar optimal coding

parameter sets.

In practice the proposed multi-objective optimization strategy can be used to support
a number of different application scenarios. If a video is to be made available for
streaming, knowledge about the decoder constraints (e.g. memory, bandwidth and
CPU constraints) can be relayed to the encoder via a feedback path. The encoder
knowing its own limitations in computational power and memory can therefore use a
pre-calculated look up table from which an optimal coding parameter set can be
obtained. This parameter set can be subsequently be used in optimum coding. Further
different application domains may have different constraints. For example if a mobile
handset is to be used as the video decoder, the decoder computational power and
memory capacity will be constrained In such an application the rate-distortion can be
minimized under constraints of computational power and memory utilization. In
another example such as digital TV broadcast, the constraints will be the rate and
distortion as the bandwidth will be allocated a specific value which cannot be
exceeded and the distortion will be specified by subjective quality requirements
governing digital television transmission. In this application decoder computational
cost and memory utilization will not be a constraint, but will have to be minimized.
The proposed framework can therefore be used in the multi-objective optimization of
any of the above application scenarios. It is noted that the application example used
in Chapter 7 to demonstrate the framework’s use in multi objective optimization only

specifically considers a scenario where the rate and memory is constrained and
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distortion and computational cost require to be minimized. This flexibility of the

proposed framework enables its widespread use in different application domains.

It is noted that the proposed optimization framework did not consider involving
network factors such as transmission delay and packet loss etc, which are important
in practical applications. Therefore the application of the proposed framework in an
end-to-end optimization of a video encoding, transmission and decoding system is
limited. Rather the proposed framework provides a set of theoretical guidelines for
the multi-objective performance optimization methodology of a video CODEC,

under resource constraints.

8.2 Future Work

The research presented in thesis has resulted in a number of original contributions
towards the functionality extension and performance optimization of a standard
H.264 CODEC. A number of possibilities exist for the future extension and

enhancement of the proposed ideas. They can be listed as follows:

1. The object-based coding of video requires the identification of objects of
interest. The experiments used in this thesis have either user manual object
identification or have used given object shape templates that have been
provided with the test video sequences. It should be possible to integrate
an automatic object extraction algorithm into the CODEC as a pre-
processing stage that detects video objects (i.e. binary alpha maps)
automatically prior to encoding. It is noted that depending on the
application the accuracy required in the object shape identification can

vary.

2. The extension of the object-based coding ideas to the upcoming H.264
Scalable Video Coding (SVC) standard is seen as a possible further
direction of research. The addition of object-based scalability to H.264

SVC can further improve its practical relevance. This work is to be carried
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out in the near future under a DTI, UK funded project that is looking at the

selective compression of CCTV video in suryeillance applications.

The reduction of computational cost of object-based coding is a further
direction of investigation. The additional computational cost of object
identification at individual frame levels, shape coding, texture coding or
arbitrarily shaped video objects etc., leads to computationally additional
cost that will make real time software only implementation of the
algorithms close to impossible. Therefore hardware implementation
options using FPGA should be considered as an alternative. This work has
a direct practical relevance in industry. This work is to be carried out with

industrial collaboration in the near future.

The optimization framework can consider two further aspects of
improvement. First of all, it should be possible to group video sequences of
similar statistical nature (motion, texture etc.), enabling them to share the
same objective function, without significant data fitness mismatches. This
will largely simplify the practical use of the system as optimal coding
parameter set data can be shared by similar videos, rather than having to be

individualised.

The overall performance of a video CODEC is not only dependent on the
encoder and decoder constraints/limitations. The transmission channel
properties other than the bandwidth can severely impact the overall
performance. Thus the proposed optimization framework should be further
extended to include channel constraints such as delay and packet loss so

that it can ideally be used in real network environment.

The thesis has provided two significant contributions to video coding, in particular to
the functionality enhancement and performance optimization of the latest video
coding standard H.264/AVC. Experimental results and detailed analysis have been

provided to support the novel concepts/ideas. The original contributions of this thesis
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in the area of object-based video coding have been published at a number of
conferences (see Appendix C). Further two research articles on the proposed multi-

objective optimization framework, have been submitted for publication.
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Appendix A: Objective Functions of Video

Sequences for Encoder

1. Objective Functions of Computational Complexity

Terms and coefficients of Foreman

Coefficients X; X, X3 X4 X9
2.1639500000000 0 0 0 0 0
-1.7264615762201 0 0 0 0 1
2.2984189258933 1 1 0 0 0
-1.0048139336747 0 0 0 1 1
-2.4477332625048 1 1 1 0 0
0.4609369423541 0 0 0 2 0
-2.6999195302205 1 0 0 0 2
-0.2545023644350 0 1 0 0 2
-0.1219815153486 0 0 | 0 2
0.0869053436663 1 1 2 0 0
2.9420320911703 1 0 1 0 2
0.0681195798671 0 1 1 0 2
-1.0564765050174 1 0 2 0 2
-0.0200436738811 2 1 2 0 1
0.0511330321821 2 1 1 0 2
1.3708908736189 1 1 2 0 2
-0.0176222885209 2 2 0 0 2
0.1624456898017 0 0 | 0 3
0.3846404082604 0 0 0 1 3
0.2801060896166 1 1 3 0 0
1.7876106709402 1 1 0 0 3
-0.4434475235357 | 1 3 0 1
-1.7835619625525 1 1 1 0 3
0.0014769510112 2 0 3 0 0
-0.0256489256699 0 0 2 0 3
0.0003964872774 3 % ] 0 0
0.0024595393335 2 1 3 0 0
-0.0190315488655 2 1 0 0 3
-0.0018384118293 2 0 3 0 1
0.1255801613352 1 0 3 0 2
-0.0079777033771 0 0 0 5 1

172



Terms and coefficients of Coastguard

Coefficients

X1

X2

X3

X4

X9
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Terms and coefficients of Mother & Daughter

Coefficients

29

b
o

Ed
w

&

b
v

-0.2041517956412

0.3165646733353

-0.3385939801707

0.2750319893053
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-2.5655364292056

3.7864693852438

2.9953569554126

-1.0795540124119

1.3794327907866

0.3057298569872

-0.0293689868774

-0.4582364962363

-1.7154566609996

0.1250301095724

0.0338324704338

0.0038274781955

0.0316089895731

-0.0124814415485

olo(lolo|l~|lmlm|lm]l—m =<l lmloclolo o

oo == (oIm o= oec oo

clolmwm|lo|lw|—=|lw|lolw | w i—|lolaol—=|o|l—~|—|o

W IN Ol |C|IC|O(C|C|IC|IC|IC|IC|o|o|I=|ICc T |C

—lEa R OIN|W = |W|IOIRIRINIIN ||~ |—|C|lc

Terms and coefficients of Mobile
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2. Objective Function of Memory Utilization

Terms and coefficients of objective function of memory

Coefficients

Lo
1
)

-11.2803946546805

0.0241483793543

17.0167003699319

2.6706783005441

-0.0161330025392
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3. Objective Functions of Rate

Terms and coefficients of Foreman

Coefficients
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Terms and coefficients of Coastguard

Coefficients

2.0333961674744

-0.0841058555285

0.1070654275799

-0.0008107864627

0.1524712016774

-0.0003412278436

0.0007856339313

-0.0396675698067

-0.0000218303527

0.0000535583419

-0.0002014530839

0.0000146247602

0.0000111713244

0.0012428518098

-0.0000679048609

-0.0000050648441

0.0079743127476

-0.0000008093696

0.0000000055518

0.0000000175241

-0.0000000644805

-0.0007468784879

0.0000000007324

-0.0000001538453

0.0000003573058

-0.0000186586542

0.0000000029953

-0.0000000528699

0.0000012781595

0.0000007652952

0.0000000083870

-0.0000000003712

-0.0010865634277

0.0000002286618

0.0000000025776

0.0000352455425

-0.0000000000867

0.0000073802999

0.0000000016059

-0.0000000068107

-0.0000000000262

-0.0000006360545

OG\NU’\-—'U’\OU\OOM-PNHNLON&#O-DUJMMON—-OMM-—M—-O-—‘MOMOOor

a=|wne=|=|lnl=m|lun v islo|=(alans|slo—|slovw i|vw v iviwio|m|w|p = n|—|c|lo|=|—|c |

OOOOOOOOOOOMJ‘-‘-N-—'—'NOO'—‘O-—-'—'O'—'OO'—"—'ONNO'—‘OODOOOOO;!

—'OONU’I-—'-—-OOAOOOOOOOON'—'-—'OO'—'ONDOO—'OOON'—‘OONOP—'OO,ge

177




Terms and coefficients of Mother & Daughter

Coefficients

X

X7

Xg

Xog

2.5476918816222

0

-0.0410481765732

1

-0.0493028266920

-0.0032472726700

0
0
2
2

0
0
0
0

0.0000398149865

S| o O o ©

-0.0000144011157

il

[

0.0000012759856

0.0180260395138

(== B S

0.0008014902210

o O

ol ©

0.0000000122287

—

-0.0000000973232

0.0002422268119

-0.0027153649640

0.0000000135165

B O ©| W =~

-0.0000869156354

IS

o o O W ©

-0.0000252714966

—

—

—

-0.0000000017686

0.0000000000665

0.0002083877407

o = B

0.0000044493679

-0.0000000002865

-0.0000000000542

-0.0000080760452

S| N

-0.0000000868578

—

0.0000000000009

0.0000001256033

0.0024184451756

o ol 2

Ol 9] S| o & ©] v ]| k]| W] W

ol o | o o o e o o o o & o o o Wl w

) O o) o o o o o o o @

178




Terms and coefficients of Mobile

Coefficients
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Terms and coefficients of Foreman

4. Objective Functions of Distortion

Coefficients
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Terms and coefficients of Mother & Daughter

Coefficients
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Appendix B: Objective Functions of Video

Sequences for Decoder

1. Objective Functions of Computational Complexity

Terms and coefficients of video sequences

Foreman Coastguard
Coefficients Xz Xs Coefficients X3 X
0.0691277526841, 0 0 -0.0099169593695 0 0
0.0048561465279, 0 4 0.0847809204899 0 1
-0.0000000026428, 5 4 0.0003196623694 1 3
0.0000000191421 4 5 -0.0000183393317 2 3
0.0000000010837 5 3
Mother & Daughter Mobile
Coefficients X3 X6 Coefficients X3 X¢
0.0105819326471 0 0 0.0722232781428 0 0
0.0677158006827 0 1 0.0009873393801 1 2
-0.0049860046833 1 1 -0.0000900136367 2 2
0.0011226064433 2 1 0.0000027543944 3 2
-0.0001191243457 3 1 0.0060949914377 0 4
0.0000059530172 4 1
-0.0000001129254 5 1




2. Objective Functions of Memory Utilization

Terms and coefficients of memory utilization

Coefficients X, X3 X¢
-0.5239030496124 0 0 0
0.8034257057108 0 0 1
0.0723658211318 1 0 2
-0.0000002131269 5 0 1
0.0000179625956 1 0 5
0.0000000766780 6 0 0
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