
University Library

._ L0l!ghhprough
1IIII'Umverslty

AuthorlFiling Title f.l. .':-:.fB.:.€R:'S '~'I ~:··ij .,
...

T Class Mark .. .

Please note that fines are charged on ALL
overdue items.

0403668417

11

PERFORMANCE ANALYSIS OF
MIXTURES OF FIXED AND MOBILE

TRANSACTIONS OVER WIRELESS
COMPUTING ENVIRONMENTS

By

AHMAD H ALQEREM

A thesis submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy in Computer Science

Loughborough University

© AHMADHAL-QEREM2008

I

•.... ~

,
.-.

~
Loughborough
University

,_'A- Pill<i'i(lt0n J ,;.0r~ry
"~'.>"~'

Date l.3h/~
Class T
Ace Ot-D'3bb 'blfIT No.

Acknowledgment

I am truly fortunate to have received the love and support of so many friends and

colleagues throughout my graduate career and it would be impossible to properly

acknowledge them all. The Computer Science Department at Loughborough

University is an exciting, rewarding place to study. Many thanks to the faculty,

graduate students and staff who make it so.

It has been a great privilege for me to work with Dr Waiter Hussak, an

exceptional researcher and teacher, who introduced me to concurrency control

theory as well as database systems and mobile computing; He has been

extraordinarily patient and supportive, having been always available for

discussion and responding speedily to research reports. I would like to take this

opportunity to thank him for his continued encouragement and guidance

throughout the course of my research. My sincere thanks go to Dr Helmet Bez for

his constructive comments and suggestions.

I am grateful to my parents and family, especially to my father hussien who built

in me the resolve to fight it out, and to my mother fattom who was always there

when I needed her. Their relentless encouragement was perhaps the single most

influential factor in my education since childhood. And thanks to my brothers

(wajeah, nazeah, abu hanean, belal and tareq) and sisters (rokaya, asma and

kawlah) for everything they had to offer.

Finally, I am grateful for the invaluable love, understanding and support shown by

my wife Manal and my son Hadi during my graduate life.

II

Abstract
As technological advances are made in software and hardware, the feasibility of

accessing information "any time, anywhere" is becoming a reality. In a mobile

computing environment, a potentially large number of mobile and fixed users may

simultaneously access shared data; therefore, there is a need to provide a means to

allow concurrent managernent of transactions. Specific characteristics of mobile

environments make traditional transaction management techniques no longer

appropriate. This is due to a fact that the ACID properties of transactions are not

simply followed, in particular the atomicity property. Thus, transaction

, management models adopting weaker forms of atomicity are needed.

In the first part of this thesis, a performance evaluation of three common

execution strategies for mobile transactions, the mobile host strategy (MHS), the

fixed host strategy (FHS), and the combined host strategy (CHS), is conducted. A

MHS strategy determines that the execution of mobile transactions always 'take

place at the mobile host, a FHS strategy determines that the execution of mobile

transactions always take place at the fixed host, and a CHS strategy provides the

flexibility to execute mobile transactions at both hosts. The significant

contribution of the evaluation is that the effects of the presence of fixed host

transactions are identified and included in the evaluation, To do so an execution

framework for mobile transactions is proposed. The main underlying feature of

the framework is the relaxation of the basic atomicity property for transactions.

This is achieved by defining a mobile transaction as a set of subtransactions where

each subtransaction consists, in turn, of basic and complementary subtransactions.

The execution place of basic and complementary subtransactions is based on the

execution strategy in operation. As wired and wireless environments are

integrated, the choice of execution strategy is critical for the performance of the

system. Our results show that neither a MHS nor a FHS are optimal in all

situations and the wasted wireless resources can be substantial. A combined

strategy CHS at least matches the best performance of the FHS and MHS and

shows better performance than both in many cases.

III

In the second part of this thesis we extend the two fundamental approaches of

locking-based and optimistic con currency control for standard concurrent

transaction environments, to the case of environments containing mixtures of

standard (fixed host) and mobile transactions. Recent other studies have suggested

that the optimistic concurrency control (OCC) protocols outperform the locking­

based protocols in mobile database systems (MDBS). However, the OCC

protocols suffer from the problem of multiple transaction restarts. The restarting

problem is more intensified in mixed transactions environments where both fixed

and mobile transactions coexist in the system. We propose effective concurrency

control approaches for such environments to address this problem. Two

approaches namely Lock-Mix and OCC-Mix are given - the former is a lock based

approach which utilizes features of both the OCC and two-phase locking

protocols, whereas the latter is an optimistic-based approach which combines

optimistic and timestamp protocols. The main objectives ofthese approaches is to

overcome the limitations of the wireless environment by avoiding restarts and

blocking of mobile transactions by other fixed or mobile transactions while stilI

providing the opportunity for the fixed transactions to finish their execution.

The characteristics of the Lock-Mix and OCC-Mix approaches are examined in

detail. A simulator is built and experiments are conducted. The results show that

the performance of these approaches is consistently better than using a traditional

concurrency protocols over a wide range of system settings. In particular, these

approaches provide a more significant performance gain in mixed transaction

environments.

IV

Table of contents

ACKNOWLEDGMENT ... 11

ABSTRACT .. 111

TABLE OF CONTENTS ... v
LIST OF FIGURES .. IX

LIST OF TABLES .. XII

LIST OF ACRONYMS ... XIII

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 ATOMICITY RELAXATION ... 1

1.1.1 Mobile transaction processing ... 2
1.1.2 Limitations of the existing works: .. 4
1.1.3 Transaction decomposition 5

1.2 CONCURRENCY CONTROL ... 7
1.2.1 Con currency control background .. 8

1.2.1.1 Conflict detection .. 8
1.2.1.2 Conflict resolution ... 9

1.3 THESIS CONTRIBUTIONS ... 11

1.4 THESIS ORGANIZATION ... 12

CHAPTER 2 ... 14

TRANSACTIONS PROCESSING BACKGROUND 14

2.1 DATABASE AND TRANSACTION CONCEPT ... 14
2.1.1 Database transactions 15
2.1.2 The ACID properties .. 16
2.1.3 Concurrency control of transactions ... 17
2.1.4 Recovery concepts 25

2.2 TRANSACTION PROCESSING SYSTEMS ... 28
2.2.1 Essential components of a transaction processing system 28
2.2.2 Distributed transaction processing systems ... 30

2.3 MOBILE DATABASE ARCHITECTURE ... 33

2.4 MOBILE COMPUTING VERSES DISTRIBUTED COMPUTING 39

2.5 TRADITIONAL TRANSACTION MODELS .. 41
2.5.1 Flat transaction model ... 41
2.5.2 Nested transaction model ... 42
2.5.3 Multilevel transaction model... ... 43
2.5.4 Sagas transaction model.. .. 44
2.5.5 Split and Join transaction model ... 46
2.5.6 Flexible transaction model: ... 46

2.6 MOBILE TRANSACTION MODELS ... 48

v

2.6.1 Reporting and Co-transaction model 48
2.6.2 Pro-motion transaction model ... 49
2.6.3 Base-Tentative transaction model 51
2.6.4 Clustering transaction model 53
2.6.5 Pre-write transaction model 54
2.6.6 Pre-serialization transaction model ... 55
2.6.7 Kangaroo transaction model .. 57
2.6.8 Moflex transaction model 59

PROMOTION ... 62
2.7 MOBILE DATA MANAGEMENT ... 63

2. 7.1 Cache consistency .. 63
2. 7.2 Data replication ... 65
2. 7.3 Query processing 67

CHAPTER 3 ... 70

EVALUATION OF TRANSACTION EXECUTION STRATEGIES
... 70

3.1 MOBILE TRANSACTION CONTEXT ... 70
3.1.1 Architectural context 70
3.1.2 Execution models ... 71

3.1.2.1. Complete execution on the wired network 72
3.1.2.2 Complete execution on a MH ... 72
3.1.2.3 Distributed execution between a MH and the wired network 72
3.1.2.4 Distributed execution among several MHs 73
3.1.2.5 Distributed execution among MHs and FHs 73

3.1.3 Modes %perations 74
3.2 MOBILE VERSUS FIXED TRANSACTIONS .. 75
3.3 MOBILE DATABASE ARCHITECTURE .. 75
3.4 EXECUTION STRATEGIES: ... 77

3.4.1 Fixed Host Execution Strategy (FHS) .. 77
3.4.2 Mobile Host Execution Strategy (MHS): ... 77
3.4.3 Combined Execution Strategy (CHS): ... 78

3.5 EXECUTION FRAMEWORK .. 81
3.6 PERFORMANCE EVALUATION ... 85

3.6.1 Simulation Model .. 86
3.6.2 System Parameters 88
3. 6. 3 Experiment Results and Discussion ... 90

CHAPTER 4 ... 101

CONCURRENCY PROBLEM FOR MIXTURES OF
TRANSACTIONS ... 101

4.1 INTRODUCTION ... 101
4.1.1 Without readjusting serialization order .. 101
4.1.2 Dynamically readjusting serialization order 102

4.2 MIXED SYSTEM MODEL .. 103
4.3 2PL-LOCKING CASE STUDY ... 105

VI

4.3.1 Blocking Delay ... 105
4.3.2 Bandwidth variability : ... 105
4.3.3 Effect of bandwidth variability ... 106

CHAPTER 5 ... 111

CONCURRENCY CONTROL APPROACHES 111

5.1 LOCK-MIX APPROACH .. 112
5.1.1 Problems with a locking approach 112
5.1.2 Problems with an aee approach .. 115
5.1.3 Qualitative comparisons 116
5.1.4 Approach details 117

5.2 OCC-MIXAPPROACH ... 124
5.2.1 Time interval versusjixed timestamp ... 124
5.2.2 Forward versus backward validation .. 125

5.2.2.1 Forward Validation ... 126
5.2.2.2 Backward Validation ... 127

5.2.3 Approach details .. 127
5.2.3.1 Adjustment of times tamp interval ... 128
5.2.3.2 Final timestamp selection .. 140

CHAPTER 6 ... 143

PERFORMANCE EVALUATION .. 143

6.1 SIMULATION MODEL ... 143
6.2 PARAMETER SETTING ... 145
6.3 PERFORMANCE METRICS ... 146
6.4 EXPERIMENTS AND RESULTS .. 147

6.4.1 Experiment 1: Impact of mobility ... 147
6.4.1.1 Power consumption ratio ... 147
6.4.1.2 Disconnection .. 150
6.4.1.3 Throughput .. 152
6.4.1.4 Restart ratio ... 154

6.4.2 Experiments 2: Impact of transaction length 158
6.4.2.1 Restart ratio ... 158
6.4.2.2 Disconnection .. 160

6.4.3 Experiments 3: Impact of data contention ... 162
6.4.3.1 Restart ratio : ... 162
6.4.3.2 Adjustment rate ... 164

6.4.4 Experiments 4: Impact of workload 165
6.4.4.1 Power consumption ratio ... 165
6.4.4.4 Rollback frequency ... 168

5.4.5 Experiments 5: Impact of p -value and '7 -value 172
6.4.6 Experiments 6: Impact of (J' -value .. 175

CHAPTER 7 ... 178

CONCLUSIONS AND FUTURE WORKS ... 178

VII

BIBLIOGRAPHY ' .. 182

APPENDIX: PUBLICATIONS ... 190

VIII

List of Figures

FIGURE2. 1: TRANSACTIONAL PROGRAMMING MODEL .•...•..................................... 15

FIGURE2. 2:' CONCURRENCY PROBLEMS ... 18

FIGURE2. 3: SERIAL SCHEDULES .•........•......•...•.............................•..................•...•. 19

FIGURE2. 4: CONFLICT SERIALIZABLE AND NON-CONFLICT SERIALIZABLE

SCHEDULES•...... '"•................... 20

FIGURE2. 5: SERIALIZATION GRAPH•...•...•........•.......•........•...........•..........• 21

FIGURE2. 6: VIEW SERIALIZABLE SCHEDULE•............................•...•....... 22

FIGURE2. 7: THE VALIDATION PROCEDURE OF A TRANSACTION 24

FIGURE2. 8: UNDO LOGGING AGAINST REDO LOGGING•................. 26

FIGURE2. 9: RECOVERABILITY VERSUS SERIALIZABILITY•......... 27

FIGURE2. 10: A CASCADING ABORT SCENARIO•............................. 28

FIGURE2. 11: DATAFLOW OF TRANSACTION-ORIENTED DATABASE SYSTEMS 29

FIGURE2. 12: TRANSACTION PROCESSING SYSTEM COMPONENTS•................ 29

FIGURE2. 13: DISTRIBUTED TRANSACTION PROCESSING SYSTEMS 31

FIGURE2. 14: LOCAL AND GLOBAL TRANSACTIONS •......•......•................................. 32

FIGURE2. 15: MOBILE DATA BASE ARCHITECTURE ..•...................................•...•....... 33

FIGURE2. 16: FLAT TRANSACTION MODEL.•... 42

FIGURE2. 17: NESTED TRANSACTION MODEL•......................... 43

FIGURE2. 18: COMPENSATING AND CONTINGENCY TRANSACTIONS .•....•.......•....•...• 44

FIGURE2. 19: A SUCCESSFUL SAGAS•..........................•........................•...• 45

FIGURE2. 20: AN UNSUCCESSFUL SAGAS•...............•........................•...• 45

, FIGURE2. 21: SPLIT AND JOIN TRANSACTION MODEL•..... 46

FIGURE2. 22: REpORTING AND CO-TRANSACTION .. 49

FIGURE2. 23: COMPACTS AS OBJECTS ..•.......................... 50

FIGURE2. 24: PRO-MOTION TRANSACTION ARCHITECTURE 51

FIGURE2. 25: TwO-TIER TRANSACTION MODEL. :•....... 52

FIGURE2. 26: WEAK-STRICT TRANSACTION MODEL ... 54

FIGURE2. 27: PRE-WRITE TRANSACTION MODEL .. 55

FIGURE2. 28: PRE-SERIALIZABLE TRANSACTION MODEL•.....•........................... ~. 56

FIGURE2. 29: KANGAROO TRANSACTION MODEL ..•..................•........................•.... 58

FIGURE2. 30: MOFLEX TRANSACTION MODEL ...•...•...• 60

FIGURE3. 1: ARCHITECTURE OF MOBILE DATABASE SYSTEMS•........... 76

FIGURE3. 2: DECISION FLOW OF CHS•.............•.........................•...•... 80

FIGURE3. 3: EXECUTION FRAMEWORK FOR THE THREE STRATEGIES•...•....... 83

FIGURE3.4: MOBILE TRANSACTION PROCESSING ALGORITHM 85

FIGURE3. 5: THE SIMULATION MODEL OVERVIEW .. 87

FIGURE3. 6: RESPONSE TIME FOR MOBILE TRANSACTION (8W<=100)•. 90

FIGURE3. 7: RESPONSE TIME FOR FIXED TRANSACTION (8W<=100)•. 91

FIGURE3. 8: RESPONSE TIME FOR MOBILE TRANSACTION (8W<=500) .•................. 91

FIGURE3. 9: RESPONSE TIME FOR FIXED TRANSACTION (8W<"'500)•.... 92

IX

FIGURE3. 10: RESPONSE TIME FOR MOBILE TRANSACTION (BW<=500) 94

FIGURE3. 11: RESPONSE TIME FOR FIXED TRANSACTION (BW<=500) 94

FIGURE3. 12: POWER CONSUMPTION (BW<= 100) ... 95

FIGURE3. 13: POWER CONSUMPTION (BW<= 500) ... 95

FIGURE3. 14: POWER CONSUMPTION (BW<= 1000) ... 96

FIGURE3. IS: THROUGHPUT FOR MOBILE TRANSACTIONS (BW<= 500) 96

FIGURE3. 16: THROUGHPUT FOR FIXED TRANSACTIONS (BW<= 500) 97

FIGURE3. 17: THROUGHPUT FOR MOBILE TRANSACTION (BW<= 100) 98

FIGURE3. 18: THROUGHPUT FOR FIXED TRANSACTIONS (BW<= 100) 98

FIGURE3. 19: THROUGHPUT FOR MOBILE TRANSACTIONS (BW<= 1000) 99

FIGURE3. 20: THROUGHPUT FOR FIXED TRANSACTIONS (BW<= 1000) 99

FIGURE4. I: MIXED SYSTEM MODEL ... 104

FIGURE4. 2: MIXED TRANSACTIONS INTERLEAVING OPERATIONS 106

FIGURE4. 3 : DELAY DUE TO BANDWIDTH VARIABILITy ; 109

FIGURE5. 1: 2PL INTERLEAVING EXAMPLE .. 114

FIGURE5. 2: aee INTERLEAVING EXAMPLE .. 116

FIGURE5. 3: LOCK REQUEST FOR MOBILE AND FIXED TRANSACTIONS 119

FIGURE5. 4: EXECUTE FIXED LOCK REQUEST.. .. 120

FIGURE5. 5: EXECUTE MOBILE LOCK REQUEST ... 121

FIGURE5. 6: EXECUTE UNLOCK REQUEST ... 121

FIGURE5. 7: LOCK-MIX INTERLEAVING EXAMPLE ... 123

FIGURE5. 8: FORWARD VALIDATION .. 126

FIGURE5. 9: BACKWARD VALIDATION .. 127

FIGURES. 10: ADJUSTMENTOFTI (TA) AT THE READ PHASE 129
FIGURE5. 11 : ITERATE READSET/WRITESET OF VALIDATING TRANSACTION 13 0

FIGURE5. 12: FORWARD ADJUSTMENT ... 132

FIGURE5. 13: PROCESSING FOR EXAMPLE 5.5 ... 133

FIGURE5. 14: PROCESSING FOR EXAMPLE 4.6 ... 136

FIGURE5. IS : BACKWARD ADJUSTMENT .. 13 7

FIGURE5. 16: PROCESSING FOR EXAMPLE 5.7 ... 138

FIGURE5. 17: SELECT COMMIT TIMESTAMP ... 141

FIGURE5. 18: UPDATE DATA, ITEMTIMESTAMPS .. 141

FIGURE6. I: WIRELESS PART OF MIXED TRANSACTION ENVIRONMENT 144

FIGURE6. 2: POWER CONSUMPTION RATIO (MT = 20%) 149

FIGURE6. 3: POWER CONSUMPTION RATIO (MT = 50%) 149

FIGURE6. 4: POWER CONSUMPTION RATIO (MT = 80%) 150

FIGURE6. 5: MOBILE TRANSACTION ABORTS DUE TO DISCONNECTION (MT = 20%)

... 151

FIGURE6. 6: MOBILE TRANSACTION ABORTS DUE TO DISCONNECTION (MT = 50%)

... 151

FIGURE6. 7: MOBILE TRANSACTION ABORTS DUE TO DISCONNECTION (MT = 80%)

... 152

FIGURE6. 8: THROUGHPUT OF MOBILE TRANSACTIONS (MT = 20 %) 153

FIGURE6. 9: THROUGHPUT OF MOBILE TRANSACTIONS (MT = 50 %) 153

FIGURE6. 10: THROUGHPUT OF MOBILE TRANSACTIONS (MT= 80 %) 154

x

FIGURE6. 11: RESTART RATIO FOR MOBILE TRANSACTIONS (MT = 20 %) 155

FIGURE6. 12: RESTART RATIO FOR FIXED TRANSACTIONS (MT= 20 %) 155

FIGURE6. 13: RESTART RATIO FOR MOBILE TRANSACTIONS (MT = 50 %) 156

FIGURE6. 14: RESTART RATIO FOR FIXED TRANSACTIONS (MT = 50 %) 156

FIGURE6. 15: RESTART RATIO FOR MOBILE TRANSACTIONS (MT= 80 %) 157

FIGURE6. 16: RESTART RATIO FOR FIXED TRANSACTIONS (MT = 80 %) 157

FIGURE6. 17: RESTART RATIO FOR MOBILE TRANSACTIONS (MT = 20 %), TL 159

FIGURE6. 18: RESTART RATIO FOR MOBILE TRANSACTIONS (MT = 50 %), TL 159

FIGURE6. 19: RESTART RATIO FOR MOBILE TRANSACTIONS (MT= 80 %), TL. 160

FIGURE6. 20: MOBILE TRANSACTION ABORTS DUE TO DISCONNECTION (MT = 20%)

... 161

FIGURE6. 21: MOBILE TRANSACTION ABORTS DUE TO DISCONNECTION (MT = 50%)

... 161

FIGURE6. 22: MOBILE TRANSACTION ABORTS DUE TO DISCONNECTION (MT = 80%)

... ; ... 162

FIGURE6. 23: RESTART RATIO FOR MOBILE TRANSACTIONS (MT= 20 %) 163

FIGURE6. 24: RESTART RATIO FOR MOBILE TRANSACTIONS (MT = 50 %) 164

FIGURE6. 25: RESTART RATIO FOR MOBILE TRANSACTIONS (MT= 80 %) 164

FIGURE6. 26: ADIUSTMENT RATE .. 165

FIGURE6. 27: POWER CONSUMPTION RATIO (MT= 20%) 167

FIGURE6. 28: POWER CONSUMPTION RATIO (MT= 50%)•............................ 167

FIGURE6. 29: POWER CONSUMPTION RATIO (MT = 20%) 168

FIGURE6. 30: MOBILE TRANSACTION ROLLBACK FREQUENCY (FT = 20%) 170

FIGURE6. 31: FIXED TRANSACTION ROLLBACK FREQUENCY (FT = 20%) 170

FIGURE6. 32: MOBILE TRANSACTIONS ROLLBACK FREQUENCY (FT = 50%) 171

FIGURE6. 33: FIXED TRANSACTIONS ROLLBACK FREQUENCY (FT = 50%) 171

FIGURE6. 34: MOBILE TRANSACTIONS ROLLBACK FREQUENCY (FT = 80%) 172

FIGURE6. 35: FIXED TRANSACTIONS ROLLBACK FREQUENCY (FT = 80%) 172

FIGURE6. 36: PCR AT DIFFERENT Ii - VALUES ... 173

FIGURE6. 37: PCR AT DIFFERENT 1] - VALUES ... 174

FIGURE6. 38: FIXED TRANSACTION RESTART RATIO AT DIFFERENT 1] AND Ii -VALUES

... 174

FIGURE6.39:PCRATDIFFERENT1] ANDfl-VALUES .. 175

FIGURE6. 40: FIXED ROLLBACK FREQUENCY AT DIFFERENT er -VALUE 176

FIGURE6. 41: MOBILE ROLLBACK FREQUENCY AT DIFFERENTer-VALUE 176

XI

List of Tables

TABLE2. 1: LOCK COMPATIBILITY MATRIX ...•.•....•....... 24

TABLE2. 2: CHARACTERISTICS OF MOBILE ENVIRONMENT•............. 38

TABLE2. 3: DISTRIBUTED ENVIRONMENTS VERSUS MOBILE ENVIRONMENTS 39

TABLE2. 4: COMPARISON OF TRADITIONAL TRANSACTIONAL MODELS•...... 47

T ABLE2. S: HAND-OVER CONTROL RULES OF SUBTRANSACTIONS .•.........••............. 61

TABLE2. 6: COMPARISON OF MOBILE TRANSACTIONS MODELS•.............. 62

T ABLE3. 1 : COMMUNICATION PARAMETERS •...........•.•...•......•......•..........•.•.......•.... 89

TABLE3. 2: FIXED HOST PARAMETER•... 89

TABLE3. 3: MOBILE HOST PARAMETERS•......•..•....................... 90

TABLES. 1: OPERATIONS INTERLEAVING FOR EXAMPLE 4.1 113

TABLES. 2: COMPATIBILITY MATRIX FOR LOCK-MIX••........... 120

T ABLE6. 1: SUMMARY OF WORKLOAD USED FOR BASELINE EXPERIMENTS 146

XII

- - _.- ---------------------------------,

LIST OF ACRONYMS

ACID
FT
MT
MDB
MH
FH
GDB
GT
MST
IT.
KM
KT
LLT
LTM
MH
MSS
BSC
MSC
MTM
MU
TM
OCC
2PL
DAA
PCR
FHS
MHS
CHS
Treq
Drcq
CC
SGs
TSO
MGL
DM
SGT
DFV
TSH
TL

Atomicity, Consistency, Isolation, And Durability.
Fixed Transaction
Mobile Transaction
Mobile Database System
Mobile Host
Fixed Host
Global Database
Global Transaction
Mobile Sub Transaction
Jocy Transaction
Kangaroo Model
Kangaroo Transaction
Long-Lived Transactions
Local Transaction Manger
Mobile Host
Mobile Support Station
Base Station Controller
Mobile Switching Centre
Mobile Transaction Manager
Mobile Unit
Transaction Manager
Optimistic Concurrency Control
Two Phase Locking
Data Access Agent
Power Consumption Ratio
Fixed Host Execution Strategy
Mobile Host Execution Strategy
Combined Host Execution Strategy
Transaction Request
Data Request
Concurrency Control
Serialization Graphs
Time Stamp Ordering
Multi-Granularity Locking
Data Manager
Serialization Graph Testing
Dynamic Finite Versioning
Time Stamp History.
Transaction Length

XIII

XIV

CHAPTER 1

Introduction

1.1 Atomicity relaxation
Transaction processing in mobile databases imposes further limits on both

functionality and performance over those of traditional transaction management.

Transaction management requirements in mobile database systems are different

from those in conventional database systems. Many new mobile applications

require advanced transaction processing, where traditional transaction properties,

especially the atomicity and isolation properties, are challenged. The flat

transaction structure is often abandoned in favour of some form of nested

transaction model, atomicity is replaced by "semantic atomicity", and

serializability (which is the correctness criterion guaranteeing isolation) is

replaced by some non-serializable correctness criterion. There are a variety of

concurrency control techniques guaranteeing different flavours of non­

serializability. These techniques often use semantic information about transactions

and/or objects to guarantee correctness for concurrent transactions while at the

same time allowing more concurrency.

One particular problem in mobile applications is the need to support long-lasting

transactions. The duration of a long-lasting transaction may cause serious

performance problems if it is allowed to lock resources until it commits. This may

either force other transactions to wait for resources for an unacceptable long time,

or it may increase the likelihood of transaction abort. Aborting a long-lasting

transaction may have a negative effect on both response time and throughput. If

the long transaction has a flat structure, a failure will cause the whole transaction

to be undone and possibly re-executed. This is a very expensive recovery strategy,

especially if the failure occurred after executing most of the transaction.

1

-- ---

1.1.1 Mobile transaction processing
To support mobile transactions, the transaction processing models should

accommodate the limitations of mobile computing, such as unreliable

communication, limited battery life, low bandwidth communication, and reduced

storage capacity. Mobile computations should minimize aborts due to

disconnection. Operations on shared data must ensure correctness of transactions

executed on both stationary and mobile hosts. The blocking of a transaction's

executions on either the stationary or mobile hosts must be minimized to reduce

communication cost and to increase concurrency. Proper support for mobile

transactions must provide for local autonomy to allow transactions to be

processed and committed on the mobile host despite temporary disconnection.

Semantic based transaction processing models [58, 59] have been extended for

mobile computing in [60] to increase concurrency by exploiting commutative

operations. These techniques require caching a large portion of the database or

maintaining multiple copies of many data items. In [60], fragmentability of data

objects have been used to facilitate semantic-based transaction processing in

mobile databases. Each fragmented data object has to be cached independently

and manipulated synchronously. That is, on request, a fragment of data object is

dispatched to the MH. On completion of the transaction, the mobile hosts return

the fragments to the BS. Fragments are then integrated in the object in any order

and such objects are termed as re-orderable objects. This scheme works only in

the situations where the data objects can be fragmented like sets, stacks and

queues.

In [61], the concept oftransaction proxies is introduced to support recovery. For

each transaction submitted to a MH, a dual transaction called proxy is submitted

to the base station. The proxy transaction includes the updates of the original

transaction. Proxy transactions take periodic backups of the computation

performed at mobile hosts. Similar to the above, in [62], the notion of twin

transaction was introduced which essentially replicates the process of executing

transactions. In the twin transaction model, each write's request will be mirrored

and two equivalent transactions will be created. In this way, if a mobile host is

disconnected, the transaction execution can still proceed.

2

D}TIamic object clustering has been proposed in mobile computing in [63, 64].

It assumes a fully distributed system, and the transaction model is designed to

maintain the consistency of the database. The model uses weak read, weak-write,

strict-read and strict-write. The decomposition of operations is done based on the

consistency requirement. Strict-read and strict-write have the same semantics as

normal read and write operations invoked by transactions satisfying ACID

properties. A weak-read returns the value of a locally cached object written by a

strict-write or a weak-write. A weak-write operation only updates a locally cached

object, which might become permanent on cluster merging if the weak-write does

not conflict with any strict-read or strict-write operation. The weak transactions

use local and global commits. The local commit is the same as pre~commit of [30]

and global commit is the same as final commit of [30]. However, a weak

transaction after local commit can abort and is compensated. In [30], a pre­

committed transaction does not abort; hence requires no undo or compensation. A

weak transaction's updates are visible to other weak transactions whereas pre­

writes are visible to all transactions.

An 'open' nested transaction model has been proposed in [25] for modelling

mobile transactions as a set of subtransactions. They introduce reporting and co­

transactions. A reporting transaction can share its partial results, can execute

concurrently and can commit independently. Co-transactions are like co-routines

and are not executed concurrently. The model allows transactions to be executed

on disconnection. It also supports unilateral commitment of subtransactions,

compensating and non-compensatable transactions. The author claims that the

model minimizes wired as well as wireless communication cost. However, not all

the operations are compensated [25], and compensation is costly in mobile

computing.

A kangaroo transaction (KT) model was given in [31]. It incorporates the

property that transactions in a mobile computing hop from a base station to

another as the mobile unity moves. The mobility of the transaction model is

captured by the use of split transactions [26]. A split transaction divides ongoing

transactions into serializable subtransactions. An earlier created subtransaction is

committed and the second subtransaction continues its execution. The mobile

3

transaction is split when a hop occurs. The model captures the data behaviour of

the mobile transaction using global and local transactions. The model also relies

on compensating transactions in case a transaction aborts.

1.1.2 Limitations of the existing works:
Actually, there is a big gap between academic research and commercial products

on mobile transactions. In academic research, the mobile support stations play

very important roles in the processing of mobile transactions. While in

commercial products, mobile hosts and database servers communicate directly,

i.e., the role of the mobile support stations does not exist. Moreover, commercial

products mainly focus on disconnected transaction processing, while the mobility

of mobile hosts is not taken into consideration. The following are the main

limitations of the existing work regarding the academic research in the mobile

transaction field.

• The lack of some fundamental support for mobile transactions is an issue. There

are different views what a mobile transaction is. Many models consider mobile

transactions as transactions that are submitted to or initiated from the mobile hosts

other models require that mobile hosts must take part in the execution of mobile

transactions [MBOl]. These different attitudes cause incompatibility and

incoherence between mobile transaction processing systems.

• The common architecture of mobile transaction enviromnents relies heavily on

the mobile support stations that are stationary and wired connected with the

database servers. A difficulty is to extend the capacity of mobile transaction

processing systems. The bottleneck problem can occur when there are many

mobile hosts within a mobile cell and the distribution of the transaction processes

among mobile hosts must be carried out through the mobile support stations.

• The lack of specific detail for how the is the execution is take place at both host

(MH, FH) which is consider as an assumption by some of mobile transaction

models found in the literature.

4

• Most of the previous work in transactions model did not consider the effect of

fixed transactions on mobile and vies versa .

• Sharing partial results among mobile transactions is not fully dealt with. The

existing approaches like delegation operations that support sharing of data among

transactions may not be adequate because it requires a tight cooperation between

delegator and delegatee transactions. Furthermore, the issue of distributed

transaction execution among mobile hosts has not been addressed.

1.1.3 Transaction decomposition
Decomposing the transaction into a number of subtransactions is one way of

dealing with these problems. Each subtransaction is typically executed and

committed/aborted independently of the top level transaction. This makes it

possible to abort some part of a transaction without aborting the whole long­

lasting transaction. An aborted subtransaction can be re-executed or an alternative

subtransaction can be executed instead of the one that failed. Such a transaction

execution gives a semantic form of atomicity, instead of the conventional strict

form of atomicity. Decomposing transactions may also positively affect the

concurrency of transactions. Since subtransactions commit independently of the

top level transaction, locks held by the sub transaction may be released at

subtransaction commit time. If the unlocked resources are made publicly available

at subtransaction commit time, this will increase concurrency in the system.

However, early release of locks will also affect recovery, in that conventional

rollback is no longer sufficient. Compensation is needed if the results of a

subtransaction are made publicly available before commit of the top level

transaction. Decomposition of transactions is one approach, used in several

transaction processing techniques, to adapt transaction processing to the mobile

computing environment.

Wide area and wireless computing suggest that there will be more competition

for shared data since it provides users with the ability to access information and

services through wireless connections that can be retained even while the user is

moving. Further, mobile users will have to share their data with others. Those

users may have access to the shared data by reliable wired communication (i.e.

5

fixed host transactions) or unreliable wireless communication (Le. mobile host

transactions). The task of ensuring consistency of shared data becomes more

difficult in mobile computing because of limitations of wireless communication

and restrictions imposed due to mobility and portability [24].

Access to the future information systems through mobile computers will be

performed with the help of·mobile transactions. Research in mobile database

systems (MDBS) has received a lot of interest in the past decade [47, 48, 49, 50,

51,52,53]. Transactions in a mobile database system are usually associated with

relaxations of ACID properties because of their long-lived nature and limitations

inherited from the wireless environment. Any abortion of a mobile transaction

may result in a high cost associated with scarce wireless resources, whilst fixed

transactions might only cause a little degraded level of system performance. In the

past two decades, researchers have proposed various transaction models either to

tackle the isolation and atomicity properties of mobile transaction or guarantee the

consistency of mobile transaction. Most of the previous studies in mobile database

systems assume that the system consists of only one single type of transaction (i.e.

mobile transaction), without paying any attention to the effect of interaction

between both types of transactions sharing the same databases simultaneously. In

these studies, different assumptions are made on the system and transaction

models, e.g., the execution strategy and structure of the transactions, so that

different scheduling techniques can be engineered to satisfy the different

requirements of mobile transactions. However, little work has been done in the

development of an integrated approach that can handle mobile database systems

satisfactorily containing a mixed population of fixed and mobile transactions

simultaneously.

As the fixed and mobile transactions continue to interact, it's become apparent

that the dichotomy must be resolved not only at the atomicity relaxation level, but

at the lower, isolation levels as well. As an initial step in this direction is the first·

phase of this study which aim to propose a unified framework which has been

used later as a basis for evaluating a different execution strategies and then go

more in depth into isolation level in the second phase of this study.

6

1.2 Concurrency control
Many variations of concurrency control (CC) schemes have been introduced to

improve concurrency and system performance [68], [69], [70], [71], [72] and [73]

in conventional database environments. Recently, there have been several studies

dealing with CC in mobile databases addressing the transaction scheduling aspect

[74], [75],[76], [77], [78] and [79] These CC schemes are mainly extended or

adapted from existing CC schemes, such as two phase locking, optimistic CC

schemes, and multi version schemes, to mobile environments. Some of the CC

schemes are more naturally adaptable to mobile requirements, while others are

less so. For example, it's not practical for a mobile transaction to hold the lock on

a certain data item and then disconnect, as this will cause performance

degradation for both mobile. and other fixed host transactions running

concurrently on the system and sharing the same database access [80].

Several techniques have been developed from conventional CC schemes to

cope with wireless requirements, especially for transaction processing in

broadcasting environments, such as Multi-Version Broadcast [74], Serialization

Graph [77] and [81], Broadcast Concurrency Control with Time Stamp Interval

(BCC-TI) [79] and Certification Report [76]. The analysis and drawbacks ofthese

methods can be found in [82]. Some of these methods only support client read­

only transactions [76], and some of them could have substantial processing

overhead [77]. Protocol inefficiency is also introduced in some of these solutions

because of the support of strict global serializability as the correctness criterion. It

becomes necessary to design a new broadcast concurrency control protocol to

overcome these drawbacks. Most importantly, in order to improve transaction

processing efficiency, we need to overcome the problems caused by global

serializability which is very difficult to achieve in distributed broadcast

environments.

In other types of mobile computing environments such as distributed and

multi-database systems, most existing work concentrates on proposing a mobile

transaction model and an execution framework for the model over these

environments and uses the same traditional con currency techniques at the

database server.

7

No work has been done in the field of processing of mixtures of transactions.

One of the main objectives of this thesis is to address this problem. We will

propose a suitable concurrency approaches that take into account the wireless

constraints of the mobile computing environment and, at the same time, cater for

fixed host transactions which use tolerable resources. In addition to the wireless

requirements, other major differences exist between conventional and mobile

database systems. For example, while transaction response time and throughput

are usually the perfonnance metrics to measure conventional database systems,

additional performance measures will be introduced to distinguish between the

performance of different concurrency protocols in mobile database systems with

mixture of transactions.

1.2.1 Concurrency control background
Concurrency control schemes have the responsibility to ensure that although

transactions are executed concurrently with interleaving operations, the committed

or certified transactions can be ordered or given a certification time stamp

ordering so that the net effect on the database is equivalent to the execution of

these transactions in a serial order. Note that, after a transaction is committed, its

effect on the database becomes pennanent. The CC design space can be classified,

into optimistic and pessimistic approaches, along several dimensions: conflict

detection, conflict resolution, serialization rule and order, and run policy. Such a

classification provides us with a nice framework from which various techniques

for achieving serializability and improving performance can be better illustrated.

1.2.1.1 Conflict detection
There are two ways to detect a conflict: either before the data item access or after

the data item access. The former is referred to as the pessimistic approach. The

latter is referred to as the optimistic approach, where checking for serializability is

done later at the certification time. Several mechanisms can be used to facilitate

the detection process, such as locks, time stamps and serialization graphs (SGs)

[83]. For each of these mechanisms, there is one type of pessimistic CC scheme

using it exclusively for conflict detection. For example, two-phase locking (2PL)

schemes use locks, time stamp ordering (TSO) schemes use time stamps, and

8

serialization graph testing (SOT) schemes use serialization graphs. For optimistic

concurrency control (OCC) [73J, however, anyone of the three mechanisms can

be used to detect conflicts at the certification time. For a lock based scheme, a

lock must first be obtained before an access is made to a data item. However,

different access modes and compatibility matrices can be used to allow for more

concurrency. For example, read (shared) and write (exclusive) modes are often

introduced to distinguish between read and write accesses in a 2PL scheme. A

read lock is only compatible with other read locks; a write lock is incompatible

with any other lock. When locks are used by an OCC scheme, an additional type

oflock mode, referred to as a weak lock, can be introduced as well [84J, [72]. A

weak lock, which is in contrast to the normal (strong) lock, is only used to

indicate that a data item is being accessed. It is compatible with other weak locks

and the strong locks of shared mode, but is incompatible with the strong locks of

exclusive mode. In addition, an extension can also be made in 2PL to allow each

transaction to use a different data item size that is most appropriate for its

execution. This is referred to as multi-granularity locking (MOL) [85J. For a TSO

scheme, each transaction is assigned a time stamp before execution. For each data

item access, the transaction's time stamp is checked against the time stamp of the

last transaction that has accessed the same data item to determine whether the

predefined time stamp order can be maintained. For an SOT scheme, the CC

manager maintains an SO that represents the execution ordering of all the

transactions in the history, and checks for cycles. In general, information about a

transaction cannot be deleted at commit time. It can be deleted only after the

committed transaction will not, at any time in the future, be involved in a cycle of

the SO.

1.2.1.2 Conflict resolution
Once a conflict is detected, a conflict resolution mechanism needs to be put in

place. A conflict resolution mechanism needs to decide which candidate

transaction(s) (the lock requester or lock holders) to penalize, and choose an

appropriate action and a suitable timing for the action. There are two possible

actions that are most frequently used: blocking (or wait) and abort (or restart).

(Two other alternatives are multiversioning, and dynamically readjusting the

9

serialization order, which will be discussed later.) If a conflict is detected before

the data item access, either blocking or abort can be used to resolve the conflict.

However, if a conflict is detected after the data item access, only abort is

appropriate. An alternative to blocking for conflict resolution is delaying commit.

That is to say, instead of waiting for a lock, the transaction is waiting for the

commit order. This can be implemented in a multiversion scheme and other

locking schemes like the ordered-sharing schemes in [86]. As to a suitable timing

for an action, it is immediate for blocking, but it can be either immediate or

delayed, e.g., delayed until the certification time, for abort.

We consider different performance goals in processing fixed and mobile

transactions at the same time. The performance goal in processing mobile

transactions is to minimize the amount of wasted wireless resources, while the

performance goal in processing fixed transactions is to maximize the system

throughput (or to minimize the mean response time, for example).

As astute readers may notice, conventional concurrency control protocols used

in scheduling mixture of mobile and fixed transactions often ignore the

performance requirements of fixed transactions. For example, most of the

traditional concurrency control protocols resolve. access conflicts based on the

idea of both transactions type experience the same type of resources. When they

are applied to a mixture environments, it is likely to waste more wireless

recourses due to blocking and restarting overhead of mobile transactions, due to

data conflicts. This may cause the poor response times of fixed host transactions

too. How to explore the balance and trade-off between the performances of the

two types of transactions is one of the main objectives in the second phase of this

study.

10

1.3 Thesis contributions

The following is a summary of the major contributions of this dissertation:

• We propose an execution framework for mobile transaction processing and

anal yze the impact on mobility of mobile transaction processing under

different execution strategies.

• We develop a model representing mixed transactions systems which

captures both fixed and mobile characteristics of transactions. The model

provides a basis forthe performance study of general concurrency control

approaches in such mixed environments.

• We study the effect of bandwidth variability on transaction processing in

mixed transactions systems. Mainly, we present the effect of using a 2-

phase locking protocol mathematically and analyse it by estimating the

delay caused by the mobile transaction on other fixed and mobile

transactions.

• We propose two adaptable concurrency control approaches suitable for

mixtures of transactions. One is based on locking, cal1ed the 'Lock-Mix'

approach; the other is based on optimistic concurrency control paradigms

and is called the 'OCC-Mix' approach.

• We conduct extensive evaluations, through simulation experiments, of the

concurrency control approaches. The results demonstrate that using these

approaches reduces wastage of scarce and expensive resources of mobile

computing environments. In particular, we shoW' that these approaches

provide significant performance gains over an optimistic concurrency

control protocol for environments with mixtures of mobile and fixed

transactions under a wide range of operating conditions.

The publications arising from the work of the thesis are given in the appendix.

II

1.4 Thesis organization

The remainder of this thesis is organized as follows. In Chapter 2, we first revisit

the basic concepts of database transactions, and discuss how these concepts are

achieved in practical systems. Next, we briefly go through the architecture of

transaction processing systems in centralized and distributed environments. We

survey several selected transaction models and transaction processing systems that

have been purposely developed to support transaction processing in mobile

environments. We recap some traditional transaction models whose features could

be used in mobile environments. Traditional transaction models are reviewed

along with a discussion of their importance to mobile environments. Mobile

transaction models and mobile transaction processing systems, that have been

developed recently, are surveyed in Chapter 2. We also review the data

management issues in mobile computing environments. In Chapter 3, we exploit a

particular relaxation of ACID properties, commonly used in mobile transaction

models when building execution frameworks. We evaluate the impact of mobility

and disconnection, on processing of mobile transactions under different execution

strategies, through simulation, and discuss the results. In Chapter 4 the basic

concurrency problem for environments with mixtures of fixed host and mobile

transaction systems is defined. We consider the effect of bandwidth variability on

scheduling a mixture of mobile and fixed host transactions, and use this to

motivate our proposed concurrency control approaches in Chapter 5. The

proposed concurrency control approaches, those of 'Lock-Mix' and 'OCC-Mix',

presented in Chapter 5. In Chapter 6, we investigate the performance of these

approaches in mixed transaction environments for different percentages of mobile

transactions. The performance of these protocols are evaluated and compared

against an OCC protocol under different workload and operating conditions. We

show that wastage of wireless resources is reduced substantially by applying these

approaches. Finally, Chapter 7 summarizes the salient results of our research, and

gives a concluding discussion.

12

13

- ----~~~~~~~~~~~~~------------------------------------~--

1CHAPTER2

TRANSACTIONS PROCESSING BACKGROUND

In this chapter, we first revisit the basic concepts of database transactions in

section 2.1, and discuss how these concepts are achieved in practical systems.

Next, in section 2.2, we briefly go through the architecture of transaction

processing systems in centralized and distributed environments. Then, in section

2.3, mobile database systems are described. The difference between the mobile

and distributed computing is explained in section 2.4. We survey several selected

transaction models and transaction processing systems that have been purposely

developed to support transaction processing in mobile environments. We will also

recap some traditional transaction models whose features could be used in mobile

environments. Traditional transaction models are reviewed in section 2.5. We

discuss why they are important, and how these models can be used in mobile

environments. Mobile transaction models and mobile transaction processing

systems that have been developed recently are surveyed and commented on in

section 2.6. Finally, we review the data management issues in mobile computing

environments in section 2.7.

2.1 Database and transaction concept

A database is a collection of data items that is gathered over a period of time, and

safely stored for further examination or analysis [1]. A database is usually

accompanied by a data structure and a set of constraint rules that specify what

information a data item represents. For example, in an employee database, the

employee age is an integer number and must be greater than eighteen and less

than sixty five. A database state is a collection of all the stored data values of all

the data items in the database at a specific time [2]. A consistent state of a

database is a database state in which all the data values fulfil all the constraint

I This is a background chapter "book work" see reference [71]

14

rules of the database .. A set of operations is usually provided to support users in

retrieving or modifying data items in the database. These provided operations can

be simple, for example read and write operations, or more complex operations, for

example deletion or modification operations. To assist users to perform much

more complex operations rather than reading from and writing to the database, a

piece of specialized software called a database management system (DBMS) is

accommodated in the database. In general, a DBMS not only provides an easy-to­

use and friendly interface to users for accessing and manipulating the database,

but also manages all the database operations. In addition, the DBMS also protects

the database from unauthorized users.

2.1.1 Database transactions

Users can interact with the database by one or many database operations. The

database operations can be gathered together to form a unit of execution program

that is called a transaction [3]. In other words, a transaction is a logical execution

unit of database operations. A transaction transforms the database from one

consistent state to another consistent state. Figure 2.1 presents a programming

model of a transaction.

r .. ·""···············,,···,', •···· .. ·· ···· " , ,'" •• ," " " ... ,,,,,, ·················1

j Begin transaction (initial consistent state) j

:

1.: One or-more database ope~ations -

If (reach new _consistent _state) Then

Commit_transaction (new _consistent_state)

Else

Abort_transaction (initial_ consistent_state)
: i
f " , .. , ... , ••••••.••••• "." ,1

Figure2. 1: Transactional programming model

A transaction program starts from an initial consistent state of the database by

invoking a Begin _transaction method call. After that, one or a set of database

operations of the transaction program are executed. When these database

operations are completed, i.e., a new consistent database state is established as

designed, the transaction program saves this new consistent state into the database

by calling the Commit _transaction method. The Commit _transaction call ensures

15

that all the database operations of the transaction program are successfully

executed and the results of the transaction are safely saved in the database. If there

is any error during the execution of the transaction program, the initial consistent

state of the database is re-established by the Abort _transaction call. The

Abort_transaction call indicates that the execution of the transaction program has

failed and this execution does not have any effect on the initial consistent state of

the database. The transaction is said to be committed if it has successfully

executed the Commit_transaction call, otherwise it is aborted. A transaction is

called a read-only transaction if all of its database operations do not alter any

database state.

2.1.2 The ACID properties

In a database system, there may be a large number of transactions that are

executed concurrently, i.e., the shared data items in the database are read and

possible written by many transactions at the same time. Each transaction must

ensure that it always preserves the consistency of the database system. In order to

retain and to protect the consistency of the database system, transactions will have

the following ACID (Atomicity, Consistency, Isolation, and Durability) properties

[3]:

• Atomicity. Either all database operations of a transaction program are

successfully and completely executed, or none of the database operations of this

transaction program are executed.

• Consistency. A transaction must always preserve and protect the consistency of

the database, i.e., it transforms the database from one consistent state to another.

In other words, the result of a transaction that has committed fulfils the constraints

of the database system.

• Isolation. An on-going transaction must not interfere with other concurrent

transactions, or be able to view intermediate results of other concurrent

transactions. In other words, a transaction is executed as if it is the only existing

execution program on the database system at any given time.

16

• Durability. The result of a transaction that has successfuIJy committed is

permanent in the database. The consistent state of the database is always survived

despite any type of failures.

The ACID properties of a transaction ensure that: (1) a transaction always keep

the database in a consistent state, (2) a transaction does not disturb other

transactions during their concurrent execution processes, and (3) the consistent

state of the database system that is established by a committed transaction

withstands software or hardware failures. In order to achieve the ACID properties,

normalJy, two different sets of protocols named concurrency control protocols

and recovery protocols are needed [2].

2.1.3 Con currency control oftransactions

In this section, we discuss the problems that can occur in a database system in

which there are many transactions being executed concurrently. In other words,

we answer the question of why there is a need of concurrency control in the

database system. We also review different techniques that ensure the correctness

of transaction execution. To illustrate and to simplify the analyses without losing

generality, we assume that each transaction possesses the folJowing

characteristics:

• Transaction 1) starts by a Begin_transaction caIJ that is denoted by Bi.

• A database operation 0pi(X) on a data item X is either a read operation Ri(X) or a

write operation Wi(X). In general, more complex operations on a database system

can be modelJed via read and write operations.

• Transaction Ti ends by either a Commit_transaction caIJ denoted by G, or an

Abort transaction caIJ denoted by Ai. - ,

Some typical problems which are caused by the concurrent execution of

transactions are: lost update, dirty read, and unrepeatable read [3]. These problems

are presented in Figure 2.2

17

T, r, T, T,

I R,P\) I I R,(X) I
I W,(x) I I R,Ix) I

~ I W,(X) I
R,(X) R,IX) W,(X)

I W,Ix) I W,M
C, I C, I C,

I R,II') I I R,IY) I R,Iv)

I W,M I I W,M I
I ~, I I C, I

W,(:I)

c,
Lost update Dirty read Unrepeatable read

Figure2. 2: Concurrency problems

First, the lost update occurs when two transactions TJ and Tz try to write the same

data item X. In the figure, transaction T20verwrites the value of data item X that

was, prior to that, written by transaction TI. The dirty read occurs when

transaction Tz reads the value of data item X that is written by transaction TI before

the transaction TJ commits. If transaction TI aborts, transaction T2 has been

operating on an invalid data value. Finally, the unrepeatable read happens if a

transaction executes the same read operation at different times, and obtains

different data values. In Figure 2.2, the read operations of transaction T2 return

two different values of X: before and after the write operation of transaction TI.

The concurrency problems can be solved if the DBMS can schedule these

database operations of transactions in an execution order in which no transaction

interferes with other, i.e., fulfils the isolation property of transactions. The

execution order that sequentially contains all the database operations of all

concurrent transactions is called the schedule or history of transactions [4]. The

order of database operations of one transaction must be retained in the schedule of

all transactions. A schedule is a serial schedule if, for any pair of transactions, all

the database operations of one transaction follow all the database operations of

another transaction. In other words, the isolation property of transactions is

ensured in a serial schedule. Figure 2.3 (we omit the commitment and the abortion

operations of transactions in the schedule) presents the possible serial schedules of

transactions T 1 and T2.

18

Tl Tz

Schedule SI ,--_R_l{X...;..)_"'-,11{,-X),-R_l(_Y,-) W_1{Y";')--l11 Rz{X) Rz(X) W2{X)

Tz T1

Schedule S, Rz{X) R2(X} Wi,X} I LI _R_l..:...{X..:...n_N...:.1{X...:.,_R--,'{Y--,l_W_'{Y:....:.-l -'

Figure2. 3: Serial schedules

The main disadvantage of the serial schedule is that transactions must be executed

serially, i.e., the concurrent execution of transactions does not exist in a serial

schedule. This may decrease the performance of the database system. To deal with

this drawback, the concept of serializable schedule [4J is normally used. A

schedule is serializable if it is equivalent to a serial schedule. The remaining

question is how to determine if a schedule is a serializable schedule. In other

words, we need to clarify the "equivalent" term. Two examples of the equivalent

serializability are: conflict serializability and view serializability [1 J. Conflict

serializability is based on the concepts of conflicting operations. The idea behind

conflicting operations is that: for two sequentially executed operations OpI then

OP2 that belong to two transactions TJ and TJ, respectively, if their order is

interchanged, i.e., Opz then OPI, the results of at least one of the involved

transactions will possibly be changed. In other words, two database operations

that belong to two different transactions are conflicting if they access the same

data item in the database and at least one of them is a write operation [1 J. Two

consecutive operations, which are not in conflict, can be swapped or interchanged

in a schedule without any effect on the transaction behaviour. Two schedules are

said to be conflict equivalent if one can be turned into another by swapping the

pairs of non-conflict operations [1]. A schedule is conflict serializable if it is

conflict equivalent to a serial schedule. Figure 2.4 illustrates some conflict

serializable (CS) schedules. Both the schedules CSI and CS2 (in Figure 2.4) are

conflict serializable with the serial schedule SI (in Figure 2.3), while the schedule

non-CSJ is not conflict serializable. Moreover, the schedule CSI can be turned into

the schedule CSz by sequentially swapping pairs of non-conflict operations

(W2(X), RI(Y), (W2(X), WI(Y), and (R2(X), RI(Y).

19

Schedule eSt
'" ---- .. -~~ .. _-------_ .. --_ --

Schedule CS:!

Schedule non·CS3

..... --~.. Read·Write conflict operation ... --•. --.. ~ Wr~e·Write conflict operation

Figure2. 4: Conflict serializable and non-conflict serializable schedules

A schedule S can be validated if it is conflict serializable by analyzing a

serialization graph [4 J. A serialization graph (SO) is a directed graph that is

constructed in two steps as follows:

1. Each node labelled T; in the SO represents a corresponding transaction T; in the

scheduleS.

2. For any pair of operations, Op; and OPj, that conflict in the schedule S, where

Op; precedes 0Pj, add an edge from T; to 1} in the SO.

The schedule S is conflict serializable if the constructed SO has no cycles [4]. In

Figure 2.5, the serialization graphs of schedules CS!, CS2 and non-CSJ (in the

Figure 2.4) are constructed. For schedules CS! and CSl, the corresponding SO do

not contain any cycle, i.e., the schedules are conflict serializable. On the other

hand, the SO of the schedule non-CS3 does contain a cycle THT2-+T!, i.e., it is not

conflict serializable.

20

SG for non-CS)

Figure2. 5: Serialization graph

View serializablity is a weaker condition that guarantees that a schedule is

serializable. Two schedules SI and S2 are said to be view equivalent if the

following conditions hold: (I) any read operation in either schedule returns the

same data value, and (2) if a write operation Wi(A) is the last operation on data

itemXin SI, Wi(A) must also be the last operation onXin S2 [ll. Thus, the view

equivalent conditions ensure that (I) all the transactions read the same data values,

and (2) the final database states are identical. If a schedule is view equivalent to a

serial schedule, it is said to be view serializable. Figure 2.6 illustrates a view

serializable schedule. The serial schedule SI presents the sequential order schedule

of transactions TJ, Tl, and T3. The schedule VS2 is not a conflict serializable

schedule because of conflicting operation pairs ((WI(X). R2(A)) and ((W2(y).

WI(Y)). However, the schedule VS2 is a view seriaJizable schedule because: (I) all

the read operations RI(y). R2(X) and R3(X) return the same data values of data

items Y and X as in the serial schedule SI; and (2) all the write operations WI(X)

and W3(Y) are the last write operations on the data items X and Y as in the serial

schedule Si. The main disadvantage of view serializability is that, verifying view

serializable schedule problem has been shown to be a NP-complete problem, i.e.,

it is not likely that a polynomial time algorithm for this problem will be found [5].

21

Schedule S,

Schedule VS!

44('---"" Read·Wite ccnftict operation «--------~ WrHe·Wite ccnflict operation

Figure2. 6: View serializable schedule

To assure that a schedule S is serial equivalent, the database system must keep

track of conflicting operations in the schedule S, construct the SO of the schedule

S, and check for a cycle in the constructed SO. This process repeats every time

when a new database operation arrives to the database system, and requires a lot

of computing resources and processing time. Due to the overhead of checking

serialization graphs, one normally requires that a completion of the execution

schedule of all committed transactions is available before the verifying algorithm

can be carried out. This is not true in real-world transaction processing systems

where transactions are dynamically and continuously submitted to the transaction

processing system. Concurrency control protocols, in fact, do not check for

serializability, but are used to ensure that a sequence of executable database

operations submitted from on-going transactions can form a serializable schedule.

'There are two main approaches for concurrency control protocols [1]: pessimistic

and optimistic. For the pessimistic approach, a database operation is checked if it

could cause a non-seriaIizable schedule before it is executed. The database

operation is rejected, i.e., the transaction is aborted, if it may potentially lead a

schedule into a non-serializable schedule. For the optimistic approach, the

submitted database operation is immediately executed as if there is no conflict

between this database operation and database operations of other transactions.

When a transaction begins to commit, a certification process, in which the

transaction will be validated against other transactions, is carried out. If none of

22

the database operations of this transaction breaks the serializability, the

transaction is allowed to commit, otherwise the transaction is aborted. Locking

and timestamp ordering protocols are two common concurrency control protocols

that are mostly used in the pessimistic approach. Concurrency control by the

locking protocol requires that a transaction must request an appropriate lock on a

data item before its database operation can be accepted for executing. In other

words, a lock plays a role as an execution license for the database operation. One

usually applies two types of lock: shared (read) and exclusive (write) [3]. A

shared lock can be granted to many transactions at the same time, while an

exclusive lock can only be assigned to one transaction at a time (see Table 2.1 for

the lock compatibility matrix which shows what kind of lock combination are

allowed or not). SeriaIizabiIity among transactions can be guaranteed by a 2 -phase

locking (2PL) protocol [4]. The 2PL protocol requires that a transaction must.

obtain all its locks (in growing phase) before it can release any lock (in shrinking

phase). Strict 2PL is a locking protocol that only allows a transaction to release

exclusive locks after it has committed or aborted. Concurrency control by using

timestamp ordering guarantees serializability among transactions based on the

following time quantities: (1) the starting time or timestamp of each transaction

TS, and (2) the read and write timestamp values for each data item X, denoted by

Read_TS(X) and Write_TS(X) respectively. These read or write timestamp values

correspond to the timestamp value of the latest transaction that successfully reads

or writes the data item X A timestamp can be a computer system clock or any

logical counter maintained by the database system. When a transaction submits a

database operation on a data item X, the timestamp TS of the transaction will be

checked against the current read Read_TS(X) and write Write_TS(X) timestamp

values of the data item. The outcome of this timestamp checking procedure is

either the database system accepts the submitted database operation and the new

timestamp value is updated for X; or the transaction is aborted.

23

Shared Exclusive

Shared Yes No
~·········'o:···'··'·';'·"'·'·';'·····'··'·'·"'·'·'· ... + :.; j .. .

Exclusive No No
L•... L•........................... .J ..•.•............... ,., ... ,., .• , .•.. " •. ,., •.

The optimistic approach for concurrency control was first proposed in [6]. There

are several methods to carry out the certification process of a transaction, for

example serialization graph testing (SOT) [4] or validation [7]. The SOT method

dynamically builds a serialization graph SO between transactions when a

conflicting operation is carried out. When a transaction T; requests to commit, the

SOT method checks if the transaction Ti belongs to a cycle of the SO. If it does,

the transaction T; is aborted; otherwise the transaction T; passes the certification

procedure and will be allowed to commit. The validation method is based on the

concepts of conflicting operations to ensure that the scheduling of a transaction T;

is serializable in relation to all other overlapping transactions Tj, which have not

committed when the transaction Ti begins [8]. Figure 2.7 illustrates a validation

process of transaction T3 (time proceeds from left to right). When transaction T3

requests to commit, the validation process will check to ensure that the database

operations of transaction T3 do not conflict with the database operations of

transactions TI, T2 and T4.

Tt

T, Validate

Validate

Validate

--~.-Time

Figure2. 7: The validation procedure of a transaction

Every con currency control protocol has disadvantages. Transactions in a database

system that uses locking protocols can suffer from deadlocks or long blocking

periods [1]. Timestamp ordering protocols can decrease the performance of the

24

transaction processing system if there is a high conflict among transactions [9],

i.e., many transactions must abort or roll back. In the guard-after approach, work

that has been done and system resources might be wasted if transactions are

aborted. Concurrency control in a database system can apply either one or a

combination of these concurrency control protocols.

2.1.4 Recovery concepts

The objective of recovery protocols is to enforce the atomicity and durability

properties of transactions [2]. The atomicity property requires that either all or

none of the database operations of a transaction is canied out. The durability

property requires that the results of committed· transactions, i.e., consistent

database states, survive any kind of failure. In this section, we first study different

types of failures that could happen in a database system. Later, we review

different recovery techniques that allow the database system to recover from

failures. Normally, databases are stored on non-volatile media systems like

magnetic or optical disks, and are further backed-up by one or more safe storage

systems [5]. During the execution of transactions, data items are loaded and

temporarily stored in computer memory that is volatile storage. There are two

main types offailures ofa database system: catastrophic and noncatastrophic [I].

A catastrophic failure happens when there is a breakdown in data storage systems,

for example a hard disk crashes. A catastrophic failure can be recovered ifthere is

a sufficient database system backup. Non-catastrophic failures do not affect the

non-volatile database storage system, i.e., only data in the volatile storage such as

memory is lost. The non-catastrophic failures include transaction and computer

system malfunctions. Failures of transactions might be caused by logical faults of

data or transaction programs or by the database system. Computer system

malfunctions could be caused by errors in the operating systems or applications. A

recovery support system will keep track of and record the progress of the

execution of transactions by periodically writing important information like data

modifications, commitments or abortions of transactions to a logbook, which is

stored in the non-volatile storage system. These log records will be used to re­

establish a consistent database state if any failure occurs. There are two main

25

recovery techniques - those of undo and redo [4]. These two approaches support

database systems to reconstruct consistent database states when there is any

failure in the database system. However, they are different in their logging

strategies. The undo logging strategy records in the non-volatile logs, the former

consistent database state before the database state was changed by a transaction.

The redo logging writes to the non-volatile logs, the new consistent database state

that the database system will have after the updated transaction commits. Figure

2.8 compares these two logging strategies. The undo technique supports database

systems to reconstruct the previous consistent database states when a transaction

fails. The database system behaves as if no database operation of the aborted

transaction has been executed. In other words, the undo technique is used to clean

up the presence of data values of uncommitted transactions in the database

system. For the undo approach, the new database state must be written to the

database system after the undo logs have been written to non-volatile storage [3].

The redo technique ensures that the database system reproduces the database

states that are the results of successfully committed transactions. The redo

approach, therefore, will ignore any uncompleted transaction. Before the new data

values are written to the database system, all the redo log records must be written

to non-volatile storage [3]. A recovery support system can combine (which is also

the normal case) both undo and redo approaches so that it can decrease the work

lost by failures.

Initial states

X= 10
Y=20

Read(X)

X=X+ 10
Wr~e (X)

Read(Y)

Y= Y -10

Write (Y)

Ct

Undo Log

START Tt

<T" X, 10>

<Tb Y, 20>

COMMIT Tt

Redo Log

START Tt

<Tt, X, 20>

<TI, Y, 10>

cOMMITTl

Figure2. 8: Undo logging against redo logging

26

In Figure 2.8, for the undo approach, if transaction Tl aborts after it has modified

the value of data item Y, the recovery system can re-establish the initial database

states by two logging records <Tl,X,IO> and <Tl,Y,20>. For the redo approach, if

a failure occurs after transaction Tl has committed, the database system will re­

produce the committed values of transaction Tl based on two logging records

<Tl,X,20> and <Tl,Y,IO>. If a new failure happens when the database system is

being recovered from previous failures, the recovery procedure has to be able to

restart as many times as needed. This feature is called idem potent [3], i.e., the

results of the re-executed recovery procedure are independent of the number of

times that they are repeatedly executed. When a transaction is aborted, its effect

on the database system will be rolled back. If a transaction commits, its results are

permanent by the durability property. In other words, a committed transaction

does not rollback. A schedule S is said to be recoverable if no transaction Tin S

commits until all transactions T' that have updated data items that T reads have

committed or aborted [4]. A serial schedule is, therefore, always recoverable. Note

that a serializable schedule does not forbid a transaction T; to read from a data

item X that is modified by an uncommitted transaction n (see Figure 2.2, dirty

read problem). Recovery techniques make no attempt to support the serializability

of transactions [1 J. Figure 2.9 illustrates the recoverable against serializable

schedules. Schedule S3 is a recoverable schedule because the transaction T2 that

reads a new value of data item X modified by transaction Tl commits after

transaction Tl has committed. Schedule S4 is a serializable but non-recoverable

schedule because transaction T2 commits before TJ commits.

Recoverable S, [§J 1 W,IX) 11 R,(X) 11 R,(X) 11 W,(X) 1 ~ 1 W,(Y) 1 ~ [§J

Serializable, ~~~~~~~r;::!~
non·recoverable$. ~~~~~~~~~

Figure2. 9: Recoverability versus serializability

In a recoverable schedule S, if a transaction T; reads data values that are written

by an uncommitted transaction n, then if transaction n aborts, T; must also abort.

27

The aborting of transaction Tt could subsequently cause other transaction Tk to

abort if the transaction Tk has been reading data values that are modified by the

transaction Ti. This aborting can recur to many other transactions. This

phenomenon is called cascading abort and is illustrated in Figure 2.10.

Unfortunately, a recoverable schedule does not prevent the cascading abort

problem. Therefore, a stronger condition that only allows a transaction to read

data values, which are modified by committed transactions, is needed. An avoid

cascading abort schedule only allows a transaction to read data values that are

written by a conunitted transaction. Furthermore, a strict schedule only allows a

transaction to read or write data items that are modified by committed transactions

(4).

~ Read-Write dependency

------.. Cascading Aborts

Figure2. 10: A cascading abort scenario

2.2 Transaction processing systems

In this section, we will first discuss the basic and essential components of a

transaction processing system that manages the execution of transactions on a

transaction-oriented database system. Later, we review the architecture of

distributed transaction processing systems.

2.2.1 Essential components of a transaction processing system

A transaction processing system plays a role as a mediator that accepts transaction

requests from users, dispatches these requests to the database system, coordinates

the execution of the involved transactions, and forwards transaction results to the

original acquirers. Figure 2.11 illustrates an interaction model for a transaction­

oriented database system. The common programming model for a transaction­

oriented database system is the client-server model [3, 10]. Users or clients

interact with the database system by submitting their transaction processes that

consist of one or many database operations to the transaction processing system.

28

- --

The transaction processing system will coordinate and manage the execution of

these transaction processes by subsequently sending these database operations to

the database system. The database system will carry out the actual execution of

the submitted database operations. Finally, the transaction results that reflect the

consistent states of the database system are returned to the clients.

Transaction requests

i1~===x
Users! "",,"----__

Applications Transaction
results

Database operations
r---___ ____ ----.. ---

Transaction
Processing
System

Resufts

DBMS

Figure2. I I: Dataflow oftransaction-oriented database systems

To protect the integrity constraint of the database system, the transaction

processing system must ensure that the ACID properties of transactions are

fulfilled. In order to achieve this, a set of essential components that includes a

transaction manager, a scheduling manager and a log manager are deployed [3].

Additional components such as a communication manager or other resource

managers can also be employed by the transaction processing system. However, in

this section, we will focus our discussion on the three essential components.

Figure 2.12 presents the roles of the transaction processing system components.

Begin
Commit
Abort

Transaction
Manager

Undo
Redo

Schedulin
Manager

Log
Manager

Locking!
T1mestamps
rules

Log records

Figure2. 12: Transaction processing system components

29

The role of each transaction processing component is described as follows:

Transaction manager. The role of the transaction manager is to orchestrate the

execution of transactions [3]. Via the help of the scheduling and log managers

(explained below), the transaction manager takes care of all important operations

of transactions such as begin, read, write,commit, and abort (or rollback). If the

execution of a transaction is distributed to many different resource managers, the

transaction manager will act as the coordinator of the involved participants.

Scheduling manager. The scheduling manger manages the order of execution of

the database operations. Usually, the scheduling manager makes use of

concurrency control protocols, for example locking or timestamp protocols, in

order to control the execution of transactions. Thus, the scheduling manager

supports the isolation and consistency properties of transactions. Based on the

applied concurrency control protocol, the scheduling manager will determine an

execution order in which the submitted database operations will be carried out.

For example, if a locking protocol is used, the scheduling manager will decide

whether a lock request will be granted to the acquired transaction or, if a

timestamp protocol is applied, the scheduling manager will assess if a submitted

operation will be allowed to be carried out.

Log manager. The role of the log manager is to support the database system to

recover from failures. The log manager keeps track of the changes of the database

states by recording the history of transaction execution. Depending on the

deployed recovery strategies, for example undo andlor redo, the log manger will

record necessary information in a non-volatile logbook. The log manager ensures

the atomicity and the durability properties of transactions.

The cooperation among the transaction manager, the scheduling manger and the

log manager will assure that the ACID properties of transactions in a transaction­

oriented database system will be fulfilled.

2.2.2 Distributed transaction processing systems

In the previous section, we have discussed the essential components of a

transaction processing system where data is stored in one database system. In this

section, we will consider a distributed database system where data is distributed

30

among different computers [11]. A distributed transaction processing system is a

collection of sites or nodes that are connected by communication networks (see

Figure 2.13).

GBM~
Node 1

Node 3

Transaction
Manager

VVired network VVired network .---
Transaction -Manager

\l\lired
network -

--.......
Transaction
Manager

Node 2

Figure2. 13: Distributed transaction processing systems

~BM~

The communication networks are usually reliable and high speed wired networks,

like LANs or W ANs. At each node in a distributed system, there is a local

database management system and a local transaction processing system (TPS) that

operates semi-independently and semi-autonomously. An execution of a

transaction in a distributed database system may have to spread to be processed at

many sites. The transaction managers at different sites in a distributed transaction

system cooperate for managing the transaction execution processes. Transactions

in a distributed system can be categorized into two classes: local transactions and

global transactions. Consequently, there are two types of transaction manager in a

distributed transaction processing system: a local transaction manager and a

global transaction manager [12]. Local transactions are submitted directly to local

transaction managers (Figure 2.14). Local transactions only access data at one

database system at one site, and are managed by the local transaction manager. On

the other hand, global transactions are submitted via the global transaction

manager. A global transaction can be decomposed into a set of subtransactions;

each of which will be submitted and executed as a local transaction at a local

database system [13, 12]. Therefore, the execution of a global transaction can

involve accessing data at many sites, and be under the control of many local

31

transaction managers. A successful global transaction must meet both the integrity

constraints of local databases and the global constraints of the distributed database

system.

Global Transaction

Global Transaction Manager

Sub
transaction

Local Transaction
Manager

Local
Transaction

Sub
transaction

Local Transaction
Manager

Local
Transaction

Figure2. 14: Local and global transactions

Some of the potential advantages of distributed transaction processing systems

are: (1) higher throughput for transaction processing, and (2) higher availability

than the centralized transaction processing system [3]: However, distributed

transaction processing systems also introduce many challenging issues, for

example disconnections in communication between computing sites or

concurrency control across computing sites. These problems could cause data

inconsistency among database systems, and aborts of on-going transactions.

Consequently, more complicated concurrency control protocols or transaction

commitment protocols are needed [4], for example distributed 2-phase locking

and 2-phase commit protocols. Moreover, the heterogeneous characteristic of the

distributed system must also be taken into consideration [3, 8] - for example

different database systems or operating systems.

32

2.3 Mobile database architecture
In a mobile computing environment (see Figure2.l5), the network consists of

fixed hosts (FRs), mobile units (MUs) and base stations (BSs) or mobile support

stations (MSS). MUs are connected to the wired network components only

through BS via wireless channels. MUs are battery powered portable computers,

which move around freely in a restricted area, which we refer to as the

"geographical region" (G). For example in Figure2.l5, G is the total area covered

by all BSs. This cell size restriction is mainly due to the limited bandwidth of

wireless communication channels. To support the mobility of MUs and to exploit

frequency reuse, the entire G is divided into smaller areas called cells. A particular

BS manages each cell. Each BS will store information such as user profile, login

files, and access rights together with user's private files. At any given instant, an

MU communicates only with the BS responsible for its cell.

#--~ .. --
,'fMH\~\ : '(::J MH }----- SS
, ' , , , ,

', - _
Wireless radio cen

, ,
/

/

"'Q,-<'
/ ~ \

(@E'YH) , ' , ' , ' _
Wireless radio cell
9 Kbps - 2 Mbps

, ,

Wireless LAN ceU
11 Mbps

[£.iiJ Fixed Host

~ Base Station

@ Mobile Host

El DSMS

_ - - ~ Wireless Communication

- Wired Communication

Figure2. 15: mobile data base architecture

The mobile discipline requires that an MU must have unrestricted movement

within G (inter-cell movement) and must be able to access desired data from any

cell. An MU changes its location and network connections while computations are

being processed. While in motion, a mobile host retains its network connections

through the support of BSs with wireless connections. The BSs and FRs (fixed

hosts) perform the transaction and data management functions with the help of

33

database server (DBS) components to incorporate database processing capability

without affecting any aspect of the generic mobile network. DBSs can either be

installed at BSs or can be a part of FHs or can be independent to BS or FH. BSs

will provide commonly used application software so that a mobile user can

download the software from the closest FH and run it on the palmtop or execute it

remotely on the FH. Thus, the most commonly used software will be fully

replicated. A mobile host may play a different role in a distributed system. A MU

may have some server capability to perform computations locally using local

concurrency control and recovery algorithms. Some MUs may have a very slow

CPU and very little memory and thus, act as an I/O device only. Thus, they

depend on some FHs. Within this mobile computing environment, shared data are

stored and controlled by a number of DBSs. When an MU leaves a cell serviced

by a BS, a hand-off protocol is used to transfer responsibility for the mobile

transaction and data support to the BS of the new cell. This hand-off involves

establishing a new communication link. It may also involve migration of in­

progress transactions and database states from one BS to another. The entire

process of handoff is transparent to a MU and is responsible for maintaining end­

to-end data movement connectivity. Three essential properties pose difficulties in

the design of applications for mobile computing environments: wireless

communication, mobility, and portability [14]:

Wireless Communication: mobile computers rely heavily on wireless network

access for communication. Lower bandwidths, higher error rates, and more

frequent spurious disconnections often characterize wireless communication.

These factors can in turn lead to an increase in communication latency arising

from retransmission, retransmission time-out delays, error control protocol

processing, and short disconnections. Mobility can also cause wireless

connections to be lost or degraded. A mobile user may travel beyond the coverage

area or may enter an area of high interference. Thus, wireless communication

leads to challenges in the areas of:

1- Disconnection: Wireless networks are inherently more prone to

disconnection. Since computer applications that rely heavily on the network

may cease to function during network failures; proper management of

34

disconnection is of vital importance in mobile computing. Autonomy is a

desirable property that allows the mobile client to deal with disconnection.

The more autonomous a mobile computer is, the better it can tolerate

network disconnection. Autonomy allows the mobile unit to run applications

locally. Thus, in environments with frequent disconnections, it might be

better for a mobile device to operate as a stand-alone device. In order to

manage disconnection, a number of techniques such as caching,

asynchronous operation and other software techniques may be applied.

Maintaining cache consistency is difficult however, since disconnection and

mobility severely inhibit cache consistency. Cache consistency techniques

employed in traditional architectures designed for fixed hosts may not be

suitable for the mobile computing environment. Asynchronous operations

can be used to mask round-trip latency and short disconnections. Software

techniques such as prefetching and delayed write-back can also be used to

minimize communication, thus allowing an application to proceed during

disconnection by decoupling the communication time from the computation

time ofa program [IS]. Delayed write back takes advantage of the fact that

data to be written may undergo further modification. Operation queuing can

also help; operations that cannot be carried out while disconnected can be

queued and done when reconnection occurs.

2-Limited Bandwidth: Wireless networks deliver lower bandwidth than

wired networks. Cutting-edge products for portable wireless communication

achiev~ only 1 megabit per second for infrared communication, 2 Mbps for

radio communication, and 9-14 kbps for cellular telephony. On the other

hand, Ethemet provides 10Mbps, fast Ethemet and PDDI, 100 Mbps, and

ATM (Asynchronous Transfer Mode) 155 Mbps (37). Available bandwidth

is often divided among users sharing a cell. Thus, bandwidth utilization is of

vital importance. Software techniques such as compression, filtering, and

buffering before data transmission, can be used to cope with low bandwidth.

Other software techniques such as perfecting and delayed-write back that are

used to cope with disconnection can also help to cope with low bandwidth.

A large dynamically changing number of mobile clients are a characteristic

35

of a mobile computing environments. Thus, bandwidth contention is a

problem. Caching can help to reduce bandwidth contention, which also

helps to support a disconnected operation.

3- High Bandwidth Variability: bandwidth may vary many orders of

magnitude depending on whether a mobile client is plugged in or

communicates via wireless means. Bandwidth variability is treated by

traditional existing systems as exceptions or failures [15]. However, this is

the normal mode of operation for mobile computing. Applications must

therefore have the ability to adapt to the available bandwidth and should be

designed to run on full bandwidth or minimum bandwidth.

Mobility: The ability to change location while retaining network connection is the

key motivation for mobile computing. As mobile computers move, they encounter

heterogeneous networks with different features. A mobile computer may need to

switch interfaces and protocols; for example a mobile computer may need to

switch from a cellular mode of operation to a satellite mode as the computer

moves from urban to rural areas or from infrared mode to radio mode as it moves

from outdoors to indoors. Traditional computers do not move, therefore, certain

data that are considered to be static for stationary computing becomes dynamic for

mobile computing. For example, a stationary computer can be configured to print

from a certain printer attached to a particular print server, but a mobile computer

needs a mechanism to determine which print server to use. A mobile computer's

network address changes dynamically. Its current location affects configuration

parameters as well as answers to user queries. If mobile computers must serve as

guides, location-sensitive information may need to be accessed. Thus, mobile

computers need to be aware of their surroundings and have the ability to find

location dependent information automatically and intelligently while maintaining

system privacy. Mobility can also lead to increased network latency and increased

risk of disconnection. Cells may be serviced by different network providers and

may employ different protocols. The physical distance may not reflect the true

network distance and therefore a small movement may result in a much longer

path if a cell or network boundary is ,crossed. Transferring service connection to

the nearest server is desirable but this may not be possible if load balancing is a

36

key priority. Security considerations exist because a wireless connection is easily

compromised. Appropriate security measures must be taken to prevent

unauthorized disclosure of information. Encryption is necessary to ensure secure

wireless communication. Data stored on disks and removable memory cards

should also be encrypted. The amount of data stored locally should be minimal.

Backup copies must be propagated to stationary servers as soon as possible as is

done in replicated systems.

Portability: Designers of desktops take a liberal approach to space, power,

cabling, and heat dissipation in stationary computers that are nofto be carried

about. However, designers of mobile computers face far more stringent

constraints. Mobile computers are meant to be small, light, durable, operational
s

under wide environmental conditions, and require minimal power usage for long

battery life. Concessions have to be made in each of the areas to enhance

functionality. Some of the design pressures that result from portability constraints

include:

a) Low Power: Batteries are the largest single source of weight in portable

computers. Reducing battery weight is important, however too small a

battery can undermine the value of portability leading to: i) frequent

recharging, ii) the need to carry spare batteries, or iii) make less use of the

mobile computers. Minimizing power consumption can improve

portability by reducing battery weight and lengthening the life of the

battery charge. Chips can be designed to operate at lower voltages.

Individual components can be powered down when they become idle.

Applications should be designed to require less communication and

computation. Preference should be given to listening rather than

transmitting since reception consumes a fraction of the power it takes to

transmit.

b) Limited User Interface: Display and keyboard sizes are usually limited

in mobile computers as a consequence of size constraints. The amount of

information that may be displayed at a time is limited as a result. Present

windowing techniques may prove inadequate for mobile devices. The size

constraint has also resulted in designers abandoning buttons in favour of

37

analogy input devices for communicating user commands. For instance,

pens are now the standard input device for PDAs because of their ease of

use while mobile, their versatility, and their ability to supplant the

keyboard.

c) Limited Storage capacity: Physical size and power requirements

effectively limit storage space on portable computers. Disk drives, which

are an asset in stationary computers, are a liability in mobile computers

because they consume more power than memory chips. This restricts the

amount of data that can be stored on mobile devices. Solutions include

compressing files systems, accessing remote storage over the network,

shared code libraries, and compressing virtual memory. Table 2.2

summarizes these issues and. their effect on traditional issues of concern in

database environments.

Table2. 2: Characteristics of Mobile 1011'-'-

MobUe Environment Resulting Issues

Characteristics

I - wireless Connection Disconnection

Communication f'h"nn"l

High cost

Network

Low Data Rate

2- Mobility Motion Management

Location-Dependent Data

Heterogeneous Networks

Interfacing

Data-Rate \al. It'

3-Portability Limited Resources

Limited Energy Sources

User Interface

38

2.4 Mobile computing verses distributed computing
A mobile computing system is a dynamic type of distributed system where links

between nodes in the network change dynamically. Thus, we cannot rely on a

fixed network structure. A single site cannot play the role of co-ordinator as in a

centralized system. The mobile host and FHs also differ in computational power

and memory. The distributed algorithms for mobile environments should be

structured such that the main bulk of the communication and computation costs

are borne by the static portion of the network. In [10], there is the idea of

associating with each mobile host a proxy on the static network, thus decoupling

mobility from the design of the algorithm. Many of the solutions for distributed

computing problems may not work in the mobile computing area. Table 2.3

summarises some differences between these environments.

Table2. 3: Distributed environments versus mobile environments
"'--"""''''''''''''''''''''''''''''''''"'"''"'"''-''"0" •• " __ "_ ••••••• ___ .,,_,, •• ___ • __ •••••••• ,., .. " •••• " "." , •••••••••• , , ••••••• "., ••• , .. "."'" "'_ " "_"'_."." •••• __ "" •••• ,,.

Distributed Mobile envirouments
. __ _-_ __ ... __ ... _ __ ._ _- .-.. ,.---...!,~.-.---.--...... ----.. ---~--.-.. -.-.-.-.--.. --.--............ , "." .. " " ... __ ... " .. "._-_ ' .. ' .. '.'.".'.'.' .. ""'""."'"-",,,," .. __ ._-,,,, .. ,,,,--"",,,,".""."."".".

Computing
hosts

Stationary sites. Powerful Mobile

computing capacity. Limited

and non-mobile hosts.

computing capacity of

Reliable computing hosts mobile hosts. Less reliable

computing hosts .
.. """ ... "" ... ""." "."" " ""." .. " .. ". " ".""."."."" .. "."""" .. ".".""."",,." """.""."" .. " .. "".""." .. ".""'""."""" " .. " " "."""."." .. ""."".""." ... "".""."."._ """."._-" .. _"" _.""."" .. ".""."".".".".".""."" ... ".".""-_.""._,,.,,_." .. " ... ".

Network Wired and
connectivity t k ne wor s.

networks

high-speed Wireless, unstable and low speed

Reliable networks Unreliable, error-prone,

frequent and long disconnection

periods.

In a mobile environment, a DBMS also needs to be able to recover from site,

network and transaction failure, as in the case of distributed systems. However,

the frequency of most of these failures increases and mobility complicates the

recovery. Site failures at a MU may be frequent due to limited battery power.

Also, a MU may be in doze mode (shutdown), which cannot be treated as failure.

Furthermore, mobility may force more logging in order to recover from failure.

Caching at a MU is an interesting idea to optimize the use of wireless connections

by increasing availability. Its application in the WWW environment is very useful

39

where size of data in enonnous. However, maintaining cache consistency is an

important objective and different consistency requirements can be used depending

on the applications. Caches need to be updated frequently and thus, need new

update protocols. Replication in mobile environment certainly increases

availability but may need certain weaker consistency criteria [16]. Also,

replication schemes for distributed systems may not be directly applicable here

and there is a need for dynamic replication schemes [17]. Another important area

is query processing. In mobile environments, queries may need to be distributed at

least in two places. Part of query may be executed at a MU and another part may

be at a FH with the help of the DBS. Another interesting issue is location­

dependent query processing in mobile environments where queries return results

according to the location [18, 19]. The same query may return different results at

different locations. Here, replication of data has a different meaning to that in

traditional distributed databases where all copies of data objects keep the same

consistent values. In location-dependent data management, the same object in

different locations may have different values but still these values are considered

as consistent. For example, a tax object has different values in different states in

the United States. The most important remaining issue is transaction processing in

such environments. Transaction failures may increase due to the possibility of a

problem during hand-off when the MU moves between cells. An MU failure

creates a partitioning of the network, which in turn complicates updating and

routing algorithms. Another major difference lies in the transaction model. Unlike

a distributed transaction, a mobile transaction is not identified by a cell or a

remote site. It is identified by the collection of cells it passes through. A

distributed transaction is executed concurrently on multiple processors and data

sets. The execution of the distributed transaction is co-ordinated fully by the

system including concurrency control, replication and atomic commit. A mobile

transaction, on the other hand, is executed sequentially through multiple base

stations, and on possibly multiple data sets, depending on the movement of the

MU. The execution of the mobile transaction is thus not fully co-ordinated by the

system. The movement of the MU controls the execution.

40

2.5 Traditional transaction models
As the transaction environment evolves from the centralized environment to

distributed and mobile environments, the properties and the structure of

transactions change. However, several basic transaction models are indispensable.

In other words, they are still useful and applicable in the new mobile

environments. In this section, we will review the following transaction models:

• Flat transaction model [20]

• Nested transaction model [2 I]

• Multilevel transaction model [22, 2]

• Sagas transaction model [23]

• Split and Join transaction model [24]

• Flexible transaction model [3]

For each transaction model, we briefly describe the transaction model, the

properties and discuss how the features of the transaction model could be used in

mobile environments.

2.5.1 Flat transaction model
Description. The flat transaction model [20, 3] presents the simplest transaction

structure that fully meets the ACID properties. Figure2.l6 illustrates the structure

of a flat transaction. The building block of a flat transaction, between Begin and

Commit / Abort operations, contains all the database operations that are tightly

coupled together as one atomic database operation. A flat transaction begins at

one consistent database state, and either ends in another consistent state, i.e., the

transaction commits, or remains in the same consistent state, i.e., the transaction

aborts.

41

Begin

c"lpemtion I

Opemtion 2

Opemtion n

Commit

Begin

Opemtion I

Operation 2

Failure

Abort

Figure2. 16: Flat transaction model

Transaction properties. The flat transaction model fully meets the standard ACID

properties. A flat transaction is fully isolated during its execution, and any failure

causes the whole transaction to abort. The results of a committed flat transaction

are durable and permanent.

Usefulness for mobile environments. Due to the strict ACID properties, the flat

transaction model is not suitable in mobile environments. However, the flat

transaction model plays an important role for building more advanced transaction

models. For example, a complicated transaction model can consist of a set of

smaller flat transactions. The flat transaction model can be easily supported at the

application programming level.

2.5.2 Nested transaction model

Description. The nested transaction model [21] defines the concepts and the

mechanisms for breaking up the large building block of a flat transaction into a set

of smaller transactions, called subtransactions. Thus, the nested transaction model

has a hierarchical tree structure that includes a top-level transaction and a set of

subtransactions (either parent or children transactions). Subtransactions at the leaf

level of the transaction tree are flat transactions.

42

Top level or root tranSilction

Sub-transactions

Figure2. 17: Nested transaction model

Transaction properties. The nested transaction model has the following

characteristics. First, children transactions are flat transactions. Second, the

children transactions start after their parent has started, and can autonomously

commit or abort. However, the results of the committed children transactions do

not take effect until their parent transactions commits. In other words, the nested

transaction only commits when the top level transaction commits. And third,

when a child transaction commits, its results become visible to its parent

transaction. If a parent or the top-level transaction aborts, all the subtransactions

must abort, regardless of their states.

Usefulness for mobile environments. The concept of the nested transaction model

can be applied in mobile environments, especially for decomposing a large

transaction into subtransactions which can be carried out concurrently.

2.5.3 Multilevel transaction model

Description. The multilevel transaction model [22, 2] is looser than the nested

transaction model in terms of the relationship between parent and children

transactions. Subtransactions in the multileve1 transaction can commit or abort

independently of their parents. This is supported by the concepts of compensating

transactions. We wiJI briefly discuss the concept of compensating transactions,

and are opposite to contingency transactions (see Figure2.18). Compensating

transactions [3] are designed to undo the effect of the original transactions that

have aborted. They are triggered and started when the original transactions fail.

Otherwise, the compensating transactions are not initiated. Once a compensating

transaction has started, it must commit. In other words, the compensating

43

transactions cannot abort. If a compensating transaction fails, it will be restarted.

Contingency transactions [2] are designed to replace the task of the original

transactions that have failed. Contingency transactions are also triggered by the

failures of the original transactions. Note that it is not always possible to specify

the compensating or contingency transactions for an original transaction.

Transaction Ti

UNDO

---I.... Transaction !low control

Abort REDO

• • • • , , , ,
'f

Contingency
Transaction Td

Compensating
Transaction T,p

Figure2. 18: Compensating and contingency transactions

Transaction properties. The isolation property is relaxed in the multilevel

transaction model. The committed results of subtransactions are visible to other

transactions. The atomicity property is ensured by means. of compensating

transactions.

Usefulness for mobile environments. The multilevel transaction model is

applicable in mobile environments. It not only relaxes the isolation property of

transactions but also provides a flexible recovery mechanism by means of the

compensating and contingency transactions.

2.5.4 Sagas transaction model
Description. The Sagas transaction model [23] also makes use of the concept of

compensating transactions to support transactions whose execution time is long. A

Sagas transaction consists of a consecutive chain of flat transactions Si that can

commit independently. For each flat transaction Si, there is a compensating

transaction CPi that will undo the effect of transaction Si if transaction Si aborts. A

compensating transaction CPi in the Sagas chain is triggered by the associated.

transaction Si or the compensating transaction CPi+ J. If the Sagas transaction

44

commits, no compensating transaction CPi is initiated (see Figure2.19), otherwise

the chain of compensating transactions is triggered (see Figure 2.20).

T, 1; T, T.

Commit

CP. CP, cp, CP.

Figure2. 19: A successful Sagas

T, Tl Tl T.

III }ll>1 III \»1 '\111 • "I I\bort

le 0 f<t I! I,. • .. ei I)
CP, CP~ CP3 CP.

Figure2. 20: An unsuccessful Sagas

Transaction properties. The unit of control of a Sagas transaction is the whole

transaction chain. Sagas relaxes the isolation property by allowing component

transactions Si to commit. The atomicity property of Sagas is achieved by the

commitment of the last transaction componentSn in the chain or by the backward

execution of the compensating transaction chain.

Usefulness for mobile environments. The Sagas transaction model is useful in

mobile environments because of its ability to support transactions that are long­

lived. The isolation property is also compromised. Therefore, the concept can be

used to support sharing of data during the execution of mobile transactions.

Moreover, it is possible to modify the Sagas model so that we can minimize the

losing of useful work when a component transaction Si aborts, for example by

deploying contingency transactions instead of compensating transactions. The

main drawback of Sagas is the dependence on the previous component

transactions in the chain.

45

2.5.5 Split and Join transaction model
Description. The Split and Join transaction model [24] was proposed to support

the open ended activities that are associated with transactions. The Split and Join

transaction model focuses on activities that have uncertain duration, uncertain

developments, and are interactive with other concurrent activities. The main idea

is to divide an on-going transaction into two or more serializable transactions, and

to merge the results of several transactions together as one atomic unit. In other

words, the Split and Join transaction model supports reorganizing the structure of

transactions (as illustrated in Figure 2.21).

Transaction properties. The Split and Join transaction model divides the accessed

data set of a transaction into different subsets that will be used by newly created

and serializable transactions. The goal is to commit part of the original transaction

and to make committed results or resources available to other transactions.

Join

:: ~CI ==== T,

Figure2. 21: Split and Join transaction model

Usefulness for mobile environments. The Split and Join transaction model

benefits transactions in mobile environments in terms of dynamic re-structuring of

transactions.

2.5.6 Flexible transaction model:

The flex transaction model [4], used In the InterBase project at Purdue

University, relaxes the atomicity and isolation properties of subtransactions to

provide users with increased flexibility in specifying transactions. This model was

proposed for multi database transaction management to provide an extended

transaction model. The main features of this model are:

- It allows the user to give a set of acceptable states, i.e., it allows specification of

a set of functionally equivalent subtransactions. This allows failure tolerance since

46

it takes advantage of the fact that a given function can be executed in more than

one way.

- Users can define the execution order of transactions In terms of internal

dependencies and external dependencies of transactions.

- It allows the concept of mixed transactions. This allows compensatable and non

compensatable transactions to coexist.

- It allows the user to control the isolation granularity of a transaction through use

of compensating transactions .

. Transaction properties. The isolation is relaxed in the flexible transaction model

by supporting alternative executions for transaction. The atomicity property is

ensured by means of compensating transactions.

Usefulness for mobile environments. The flexible transaction model is applicable

in mobile environments. It not only relaxes the isolation property of transactions

but also provides a flexible recovery mechanism by means of the compensating

transactions and alternative executions. This extended model is particularly useful

where local autonomy is of concern.

Table2. 4: Comparison of traditional transactional models

"--"."---'.'.'--"".'."'.''''.'--'.'''"'''''''.'.","." _. "" " ... ""-"""."-'"--"."""."'.,,".-... ,,._"".",, " •.•........ "., •.... ,".",._, ... "•. ,."".""".",.,, •... ,.",.""."."'''"-"."' ,., .. ""." •..•.•.• " .•.•.•. "." ... _-" "'''''''''''"'"'"''''''''''.', __ ._ ... ""
Transactional
Support

Compensating Sub- Transactions
Transactions

Pre-Commit ACID
Relax. (*)

---".,,----_._-_._"--"-_._. __ .•...•....•.•. -............. . .•.•. -....... __•... __•. _-_ __ .•. __ .•.•. __ . '.-... __ " .•.. __ __ . __ .•..•. _-- ._--_•. " .. "" ... ,," •.........
Flat X X x X

...................... _ _ .•.............. -•.•........ _. ···--···1·"··"1 ...•....•..•.....••..• -.••.•.••....•.•.•••.•.•..•.•.• -···1·······················_···•.•.•.....•.•.•..... --...•.•....••.....•...•........
Nested X -..j X (I) X

Multilevel
·~···············t··-..j···,-·······-··········-··-···································1 5(_·OY-···· x···_······

Sagas ·l········· -..j ···~Cij-··· ·····ACy-····_··

............................ -......... _......... ······ __ ···_················· __ ···············1····-,·······_·················_·····_··········_····_··1···· ... , -........... -............ ···1········_·············_·················
~ X -..j -..j ~

... 1··,-························_····_·······1··"7"··_······ ... ·1···,·· + _ ,
Flexible -..j -..j -..j ACI

... .J

(*) In this column we show the letter of the ACID acronym that is relaxed or eliminated from the
corresponding model. For instance. if A appears, it means that the Atomicity property is relaxed.
(I) Only the top level and the siblings can access the changes made by a lower level comrriit operation.
(2) If compensating transactions are used, it is possible to pre-commit in order to publish the changes made to

the outside world.

47

2.6 Mobile transaction models
We have reviewed several traditional transaction models whose features are still

useful in mobile environments. The traditional transaction models, however, do

not have the ability to deal with other challenging requirements of mobile

transactions, such as supporting the mobility of transactions and coping with

disconnections. Consequently, there are many advanced transaction models that

have been developed to particularly support mobile transactions. In this section,

we will review several selected mobile transaction models that have the ability to

efficiently support mobile transactions. The follows mobile transaction models

will be surveyed:

• Report and Co-transaction model [25]

• Pro-motion transaction model [26]

• Two-tier transaction model [27]

• Weak-Strict transactions model [28]

• Pre-write transaction model [29, 30]

• Pre-serialization transaction model [13]

• Kangaroo transaction model [31]

• Mofiex transaction model [32]

For each model, we describe the transaction model and its properties, and then we

address how the model: (I) handles the mobility of transactions, (2) deals with

disconnections, and (3) supports distributed transaction execution among mobile

and non-mobile hosts.

2.6.1 Reporting and Co-transaction model

Description. The Reporting and Co-transactions transaction model [25] is based

on a two-level nested transaction model (see Figure 2.22). A reporting transaction

TR shares its partial results with a top-level transaction S by delegating its

operations. The delegation process can happen at any time during the execution of

transaction TR. A co-transaction is a reporting transaction but it carmot continue

48

executing during the delegation process. Thus, the co-transaction behaves as a co­

routine, and resumes execution when the delegation process is completed.

Transaction properties. The top-level transaction is the unit of control, and

atomic subtransactions are compensatable transactions. A Reporting transaction

that is compensatable does not have to delegate all of the committed results to the

top-level transaction when it commits. Subtransactions that are non­

compensatable delegate all of their operations to the top-level transaction when it

commits.

Mobility. The locations of mobile hosts are determined via the identification of

mobile support stations. However, the model does not mention explicitly what

happens when mobile hosts move from one mobile cell to another.

Transaction S

Report
Transaction Ta

Transaction S

Dciogation

Figure2. 22: Reporting and Co-transaction

I.
\ Resume
;, execution

L=

Disconnection. Delegation operations require a tight connectivity between the

delegator (i.e., Report and Co-transaction) transactions and the delegatee

transaction (i.e., the top level transaction). Therefore, disconnection is not

supported in this model.

Distributed execution. The model supports distributed transaction processing

among mobile hosts and fixed hosts where the network connectivity among these

hosts is assumed to be available when it is needed.

2.6.2 Pro-motion transaction model
Description. The Pro-motion transaction model [26] is a nested transaction model.

The Pro-motion model focuses on supporting disconnected transaction processing

based on the client-server architecture. Mobile transactions are considered as long

nested transactions where the top-level transaction is executed at fixed hosts, and

subtransactions are executed at mobile hosts. The execution of subtransactions at

mobile hosts is supported by the concept of compact objects (see Figure 2.23).

49

,r
Metltods Common

....,
Type-Specific

to All Compacts Methods

Obl igation. Data Consistency
Rules

State

'-
lnform,atioo

./

Figure2. 23: Compacts as objects

Compact objects are constructed by a compact manager at database servers.

Necessary information is encapsulated within a compact object. The compact

objects are co-managed by the compact managers (residing at the database

servers), the mobility managers (at the mobile support stations), and the compact

agents (at the mobile hosts). The compact object plays a role as a contractor that

supports data replication and consistency between mobile hosts and database

servers. When a mobile host is disconnected, the compact agent takes

responsibility for managing all local database operations of mobile transactions at

the mobile host. When the mobile host reconnects to database servers, the

compact objects are verified against global consistency rules before the locally

committed mobile transactions are allowed to commit. Figure 2.24 shows the

architecture of the Pro-motion transaction model. Transaction processing consists

of four phases: hoarding, disconnected, connected, and resynchronization. Shared

data is downloaded to the mobile host in the hoarding phase. When the mobile

host is disconnected from the fixed host, transactions are disconnectedly executed

at the mobile host. If the mobile host connects to the fixed database, the

transactions are carried out with the support of the compact manager. When the

mobile host reconnects to a fixed host, the results of local transactions are

synchronised with the database.

Transaction properties. The Pro-motion transaction model supports ten different

levels of isolation. Transactions are allowed to locally commit at mobile hosts; the

committed results of these transactions are made available to other local

. transactions. However, the local committed results must be validated when the

mobile hosts reconnect to the database servers. Therefore, the durability property

50

of transaction is only ensured when the transaction results are finally reconciled at

the fixed database.

Mobile Hosts

Mobile Support
Station

Fixed D.ttabase
Server

I
Sub~transaction ~ I
(n,"eel.'plit)

Di!l.Connection Connection

I Long·lived transaction I
(nesteJ.q-.lil)

Figure2. 24: Pro-motion transaction architecture

Mobility. Though the mobility manager supports communications between the

mobile host and the database servers, how the Pro-motion transaction model

supports transaction mobility is not explicitly discussed.

Disconnection. The Pro-motion transaction model supports disconnected

transaction processing via the support of compact objects. When the mobile host

is disconnected from the fixed database, the subtransactions are split and executed

at the mobile host (these split subtransactions are not joined when the mobile host

reconnects to the fixed database). Disconnected transaction processing is a

dominant transaction processing mode in Pro-motion even when the mobile hosts

are able to connect to the database server. Therefore, the Pro-motion transaction

model requires high-capacity mobile resources at the mobile hosts.

Distributed execution. Transactions are mostly executed at mobile hosts and the

results are reconciled at the database servers. Therefore, distributed transaction

processing is not strongly supported by the model.

2.6.3 Base-Tentative transaction model
Description. The Base-Tentative transaction model [27] is based on a data

replication scheme. For each data object, there is a master copy and several

replicated copies. There are two types of transaction: Base and Tentative. Base

51

transactions operate on the master copy; while tentative transactions access the

replicated copy version. A mobile host can cache either the master or the copy

versions of data objects. While the mobile host is disconnected, tentative

transactions update replicated versions. When the mobile host reconnects to the

database servers, tentative transactions are converted to base transactions that are

re-executed on the master copy. If a base transaction does not fulfil an acceptable

correctness criterion (which is specified by the application), the associated

tentative transaction is aborted. The two-tier transaction model is shown in Figure

2.25.

Transaction properties. Tentative transactions locally commit at the mobile host

on replicated copies, and the committed results are made visible to other tentative

transactions at that mobile host. The final commitments of those tentative

transactions are performed at the database servers.

Mobile Hosts

Fixed Database
Server

Tentative
transaction

BlISe
transaction

Figure2. 25: Two-tier transaction model

Mobility. The Two-tier transaction model does not support the mobility of

transactions.

Disconnection. While the mobile hosts are disconnected from the database

servers, tentative transactions are locally carried out based on replicated versions

of data objects.

Distributed execution. Two distinct transaction execution modes are supported:

connected and disconnected. Transactions are tentatively carried out at

52

disconnected mobile hosts, and re-executed as base transactions at the database

servers.

2.6.4 Clustering transaction model
Description. The Weak-Strict (also called Weak-Strict model [28] consists of two

types of transaction: weak (or loose) and strict. These transactions are carried out

within the clusters that are the collection of connected hosts which are connected

via high-speed and reliable networks. In each cluster, data that is semantically

related is locally replicated. There are two types of a replicated copy: local

consistency (weak) and global conSistency (strict). The weak copy is used when

mobile hosts are disconnected or connected via a slow and unreliable network.

Weak and Strict transactions access weak and strict data copies, respectively.

Figure 2.26 presents the architecture ofthis transaction model. When mobile hosts

reconnect to database servers, a synchronization process reconciles the changes of

the local data version with the global data version.

Transaction properties. Weak transactions are allowed to commit within its

cluster, and results are made available to other local weak transactions. When

mobile hosts are reconnected, the results of weak transactions are reconciled with

the results of strict transactions. If the results of a weak transaction do not conflict

with the updates of strict transactions, weak transactions are globally committed;

otherwise they are aborted.

Mobility. The concept of transaction migration is proposed to support the mobility

of transactions, and to reduce the communication cost. When the mobile host

moves and connects to a new mobile support station, parts of the transaction that

are executed at the old mobile support stations are moved to the new one.

However, no further details about the design or implementation are given.

Disconnection. The Weak-Strict transaction model supports transaction

processing in disconnected and weakly connected modes via weak transactions.

53

Cluster

Mobile lIosts

Mobile Support 0
Station. Transm;t.ion kl====~
_________________________ ITI.jgl:~!i~!L __________ .

Fixed Database
Server

o
Cluster

Weak (orloose)
transaction

Merging

Global J..f--. Strict
transaction

Figure2, 26: Weak-Strict transaction model

Distributed execution. Transaction execution processes can be distributed

between the mobile host and the database servers within a cluster that the mobile

host participates in, However, the distributed transaction processing among

mobile hosts in a cluster is not discussed,

2.6.5 Pre-write transaction model
Description. The Pre-write transaction model [29, 30] was proposed to increase

data availability in mobile environments. Mobile transactions are transactions that

are initiated at the mobile host. The Pre-write transaction model aims to increase

data availability at mobile hosts. This is achieved by allowing a transaction on a

mobile host to submit pre-write operations that write the updated data values, and

then issue a pre-commit state to the mobile support station. After that, the rest of

the mobile transaction can be carried out and finally committed at fixed hosts. The

small variation, which is specified by the applications, between the pre-committed

result and the final committed result is acceptable, Pre-committed data values are

accessible to other transactions via pre-read operations, Two different types of

lock, the pre-read and pre-write locks, are introduced to support the new

operations, Mobile transactions are not allowed to abort after they have submitted

pre-commit operations to the mobile support station, This mobile transaction

model can be used to support mobile hosts which have little or no capacity for

transacti on processing,

54

._- .. _----------------------------------

Transaction properties. After a mobile transaction submits a pre-commit request,

the pre-write values of the mobile transaction are made available to transactions.

The pre-committed mobile transaction is not aborted in any case. The final

commits of mobile transactions will be carried out by fixed hosts. The final

commits and the pre-committed data values may not be identical.

Mobility. The roles of the mobile support station are to accept and to process pre­

write and pre-commit operations submitted from the mobile host. When moving

into a new mobile cell, a mobile transaction connects to the mobile support station

in order to submit its pre-write and pre-commit operations.

Mobile Hosts

1\1obile Support
Station .

Fixe<! Dabba.e
Server

I Tran~action J. Consistent I
-I cache

---~--~--~ ._- -------~ --'--~ --- ---- --- ---~
.. Pre-commit ops

I
Transaction I J're.commit

Commit data ------,---- --------------_.-._----------

DB

Figure2. 27: Pie-write transaction model

Disconnection. Disconnected transaction processing is supported in the Pre-write

transaction model. The mobile transaction is executed at the mobile host until the

pre-commit state is reached.

Distributed execution. The major part of the mobile transaction is migrated to the

fixed hosts via the mobile support station to be executed there. The mobile host

partly takes part in the execution process until the pre-commit states of the mobile

transaction are achieved. After this, the mobile host plays no role in the execution

of the mobile transaction.

2.6.6 Pre-serialization transaction model
Description. The Pre-serialization transaction model [13] is built on top of local

database systems. Mobile transactions (also called global transactions) are

submitted from mobile hosts through the global transaction coordinators that

55

reside at the mobile support stations. The mobile transactions are entirely

processed at local database systems (see Figure 2.28). At each node (or site), there

is a site manager that administrates all the transactions executed at that node.

When a global transaction is prepared to commit, a global transaction coordinator

will carry out an algorithm, called the Partial Global Serialization Graph

algorithm, which detects any non-serializable schedule among the mobile

transactions. If there is a cycle in the graph, i.e., the schedule is non-serializable,

the mobile transaction is aborted.

Transaction properties. Each subtransaction of a global transaction is managed

by the local transaction manager. The global serializable graph of transactions is

constructed by collecting sub-graphs from the local sites. The atomicity property

of the global transaction is relaxed through concepts of vital and non-vital

subtransactions. If a vital subtransaction aborts, its parent transaction must abort.

However, the parent transaction does not abort if a non-vital subtransaction aborts.

When a subtransaction commits at the local database system, the results are made

visible to other transactions at this local database system.

Mobility. The global transaction coordinators that reside at the mobile support

stations support the mobility of mobile transactions. This is done by transferring

the global data structure from one global transaction coordinator to another as the

mobile host moves from one mobile cell to another.

Global transaction
Mobile Ho!>ts submission

---[------------------------------,
Mobile Support /-- -Gi~~it~~~ti~----------------··\

Station • d' ' ! coor mat~r i
I... :

---------------------J.------------------t-?~~~~-~.':~~~~~-~~~l ~~:':~rtransaction
! Site m anagerlayer !

FixedDatabase i ,. y. !
~erver I. S1te transacuon ;

\ manager ,/
~~~- --------~---""'~ 

Service inkrface 
~~r2,1 
~ 

Figure2. 28: Pre-serializable transaction model 

56 



- -----------------------------------------------------------------------------, 

Disconnection. Mobile transactions are submitted from a mobile host, and 

subtransactions are executed at local database servers. When the mobile host is 

disconnected, the global transaction is marked as disconnected if the 

disconnection is known and plarmed. The execution of the global transaction is 

still carried out at the local database servers. On the other hand, if the 

disconnection is unplanned, the global transaction is suspended. The global 

transaction is resumed when the mobile host reconnects to the mobile support 

station. 

Distributed execution. Mobile transactions are submitted from mobile hosts, and 

the entire transactions are distributed among local database servers through the 

support of mobile support stations. The mobile hosts do not take part in the 

execution process. 

2.6.7 Kangaroo transaction model 
Description. The Kangaroo transaction model [31] is designed to capture the 

movement behaviour and the data behaviour of transactions when a mobile host 

moves from one mobile cell to another. This transaction model is built based on 

the concepts of global and split transactions in a heterogeneous and multi-database 

environment. The global transaction is split when the mobile host moves from one 

mobile cell to another, and the split transactions are not joined back to the global 

transaction. The Kangaroo transaction model assumes that the mobile transactions 

may start and end at different locations. The characteristics of the Kangaroo 

transaction model are (see Figure 2.29 for the architecture of the Kangaroo 

transaction model): 

• Mobile transactions that include a set of subtransactions called global and local 

transactions are initiated by mobile hosts. These mobile transactions are entirely 

executed at the local database servers that reside on the fixed and wired connected 

networks . 

• The execution of a Kangaroo subtransaction in each mobile cell is supported by 

a Joey transaction that operates in the scope of the mobile support station. The 

57 



- - - ----------------------------------------------------------------------

Joey transaction has the role of a proxy transaction that supports the execution of 

the subtransactions of the Kangaroo transaction in the mobile cell. 

• The movement of the mobile host from one mobile cell to another is captured by 

the splitting of the on-going Joey transaction at the old mobile support station and 

the creating of a new Joey transaction at the new mobile support station. The 

execution of the Joey transaction is supported by the Data Access Agents (DAA) 

that act as the mobile transaction managers at the mobile support stations. 

IvIobil e HOISts 

IvIobile Support 
Station 

Fixed Database 
Server 

Kangaroo 
IranslIction 

ubmit 

DAA Joey transaction 
hop 

Clobnl 
tran$3ction 

Local 
transaction 

Figure2. 29: Kangaroo transaction model 

Jocy Iramaction 

Transaction properties. The Kangaroo transaction is the basic unit of 

computation in mobile environments. The serializability of mobile transactions is 

not guaranteed, and there is no dependency among Joey transactions, i.e., each 

Joey transaction can commit independently. Two transaction processing modes, 

which are compensating and split modes, are supported by the model. In the 

compensating mode, when a failure occurs, the entire Kangaroo transaction is 

undone by executing compensating transactions for all those Joey transactions. In 

the split mode, the local DB MS takes responsibility for aborting or committing 

subtransactions. 

Mobility. The Kangaroo transaction model keeps track of the movement of mobile 

hosts via the support of the DAA that operates at the mobile support station. In 

other words, the mobility of mobile hosts is captured on the condition that the 

. mobile hosts always may communicate with the mobile support stations. While 

58 



mobile hosts move from one mobile cell to another, the hand-off processes are 

carried out by the DAAs. 

Disconnection. Disconnected transaction processing is not considered in the 

Kangaroo transaction model. The processing of Kangaroo transactions is entirely 

moved to the fixed database servers for execution. 

Distribution. The mobile transactions are initiated at the mobile hosts, and 

executed entirely at fixed hosts. Transaction results are forwarded back to the 

mobile hosts. The Kangaroo transaction model has shown that the structure of 

mobile transactions at the specification and execution phases (with the dynamic 

support of Joey transactions) can be different because of the mobility behaviour, 

i.e., fast or slow movements, of the mobile host. 

2.6.8 Moflex transaction model 
Description. The Moflex transaction model [32] is an extension of the Flex 

transaction model [33] to support mobile transactions. The Moflex model is built 

on top of multi-database systems and based on the concepts of split-join 

transactions. The main characteristics of a Moflex transaction are: 

• A Moflex transaction consists of compensatable or non-compensatable 

subtransactions initiated by the mobile host. These subtransactions are submitted 

to the mobile transaction manager (MTM) that resides at the mobile support 

station. The MTM will send these subtransactions to the local execution monitor 

(LEM) at local database systems for execution. Figure 2.30 presents the 

architecture of the Moflex transaction model. 

• Each Moflex transaction T is accompanied by a set of success and failure 

transaction dependency rules, hand-over control rules (see Table 2.5), and 

acceptable goal states. External factors include the execution time, cost and 

execution location of transactions. Furthermore, joining rules are provided to 

support the join of the split subtransactions (subtransactions are split when the 

mobile host moves from one mobile cell to another). 

Transaction properties. The mobile transaction managers make use of the two­

phase commit protocol to coordinate the commitment of the Moflex transaction. 

The Moflex transaction commits when its subtransactions that are managed by a 

59 



MTM have reached one of the acceptable goal states, otherwise it is aborted. A 

'compensatable subtransaction is locally committed, and the results are made 

visible to other transactions. For noncompensatable subtransactions, the last 

mobile transaction manager, which corresponds to the end location of the mobile 

host, plays the role of the committing coordinator. 

Mobile Hosts 
Mofl= 
~ransa~tion 

------ ------ ----- ------ ------ ----------- --- -- ------ ------ _.--- ------ ---
submit 

Mobile Support 
Station 

------ ----------- ----------------------- --- - .----- ------ _.--- -----. ---

Fixed D.tabase 
Server 

---'---.; Local 

Local 
DB 

transaction 

Figure2. 30: Moflex transaction model 

Mobility. The mobility of transactions is handled by splitting the subtransaction 

which is executed on the local database at the current mobile cell, as the mobile 

host moves from one mobile support station to another (with the support of the 

mobile transaction manager). Hand-over control rules must be specified for each 

subtransaction (see Table 2.5). If a subtransaction is compensatable and location 

independent, it will be split into two transactions; one will continue and commit at 

the current local database, the second will be resumed at the new location. If the 

subtransaction is location dependent, at the new location, the subtransaction must 

be restarted. If a subtransaction is noncompensatable, the subtransaction is either 

restarted as a new one in the mobile cell if it is location dependent, or continued if 

it does not depend on the location of the mobile host. 

60 



Table2. 5: Hand-over control rules of subtransactions c ....................................................... _ .......... ~ ... ,,:c .. : .. ~.c:.: .... c .. : .. ', ........................... .................................................................... ............. - ................................................................... . 
Compensable Non compensable 

, ..................................................... : ........ ·_···················· .. ······ .. ·······1·· .. ········ ...... ··· ................................................................ _ ........................ - ._ ........................................................................ _ ................ -. 
Location independent splitJesume continue 

..•.•. "" •... "., ..•.•.• " .•. _-_ .................... ,,, •..... -"-.-.-.. -.-.-.-.-., .. " ... -.,.-.-.,,.-.~.-.---""-.. '.---." .. "." .. _---_ ..•. _-" ............. "'.-.. ~-.-.----."--.---.".-... -.,,.-.-.-.'.-." .. '.--.-.-.. ,.,., .. " •.•. "",,, ...• ,,.--.•.•. , .. ,,,-...•.• , .•. ,,,. 
restart, splitJestart restart restart Location dependent 

Disconnection. The Moflex transaction model does not support disconnected 

transaction processing. The Moflex transaction model requires network 

connectivity between the mobile host and the mobile support stations during the 

execution process. 

Distributed execution. The execution of a Moflex transaction is transferred to 

local database systems at fixed hosts to be carried out there. The Moflex 

transaction model provides a framework to specify the execution of transactions in 

mobile environments. The main drawback of the Moflex transaction model is that 

the specification of mobile transactions must be fully specified in advance. 

Therefore, the Moflex transaction model may not have the capacity to deal with 

unexpected or unplanned situations. 

61 



i-----~--.-----Table~_c_~: COIPI'51riSOr O~IP;bl'[le tJ:~~tcti~l!~. m~!~--I~l---~~-\' 

\ 
I 

",,g Cl> I Cl> :; <: 'S ,0 § 
I ~o ~ 1 E!.;....91o I ~l· (IQ 
. '" ':1 1 C1>. c... n --l'- . ~ '" , 

, I ~ r:;T. ::J. I t/.l ~ ~. 10' 1 ~ I :3 \' I I 0' ~ 1 ~ I 8'. s· ~ 1;:1 i 0 
I ,::l(5 ~ g.r . \ , 
I I 0 i ::T.. I ! 1 ' 

1 : i g i I I \ ! J 
'I-PhYSiCal Aspect 1:-MObi~tY su~ort ~~:Tl Yes-~- I Yes--l N~- \ Y~SI Ye~~.~Yes -+I-yeS~~:111 
, ! Disconnection i No \1 No' I Yes I Yes \ Yes 11 No No I 

! I Support I 1 . I 
III I Replication support1-NO--"I-NO -t-Yes-~,:-Y~I'Yes \-No--tNo------j 
. I J" I I ,,' I 

~Transa~tion I Place of Executioo-b30th---- \ FH-IMH \ MH1 MH~MSS-1 MSS----\ 
11 ExecutiOn I!! /FH I I I ! I , 1.----------:--------+------... --.-1-------_ .. 1--------.+-~--·t---\·--·----+-------' 
1 I Compensatmg I Yes ,No I Yes ! No I Yes i Yes I Yes I 
I ! transaction I ! I I ! I I I 
1 L ___________ ._. __ . ___ 4 _________ L _____ -L_. ___ ._L~J---_L-_____ t __ . ____ . ___ .\ 
i I Execution conditions I No \ No i No \ No i No ! Yes I No I 
i I I I I ' 'I ! 

IAdaPtahilitY--r=~" 00,,",,,' I No-roTo r No ro r~ [No---! 
I ' _____ I ____ ; ____ ~-.--____1-.-L---L---t------.J 
I
, I Acceptable final I No I No I No I' No I No I Yes i No i \ lit \ I ! i 
I i states I I i I i i I 
1 __ ~ __ ._~ _______ .J _l ______ -k ___ ---L ____ f ___ L __ L_J __________ 1 

i ACID 0to1!licitL _____ ----1_~~~ ___ iJlo.----D'l_S'-___l...Y~1 Yes I Yes j"'y_~~ _____ ' 
i Properties I Consistency i Yes I No i No \ Yes i Yes! No i No , ,· __ · ___ · __ · _______ ~-_--_-,---·----_r_:_-~·--·-·-T----·----.-.. ------.-.--.------.-.-. 

L _________ 1~~~~~r!TIy--~=~=.:_T-f-~e~ --J~~~--L~~--1-~::-r ~ ~~-~~s---l~%-::=::-
j Basic extended transaction ,;:I i 'Tl I : I : b 0 i 'Tl I ::: 0 'I i~ 1 ~ 111~>Oll (D'·I~'<3 

,~ ~ I' I >-+ ('l) ..-+ 

'I' '\ 2,.1 'I • : I.: B..~1 ~18.gl' . ~ 1 _, 

I !! l!j i G! 1 I I I I ~ I I ' '-, ________ ~ ____ . ____ J ____ L ___ L ____ L __ ~. _______ L_. _____ L _______ I 

62 



2.7 Mobile data management 
In this section, we will discuss some of the important data management issues 

with respect to mobile computing. Data management in mobile computing can be 

described as global and local data management. Global data management deals 

with network level issues such as location, addressing, replication, broadcasting, 

etc. Local data management refers to the end user level that includes energy 

efficient data access, management of disconnection and query processing. 

2.7.1 Cache consistency 
Caching of frequently accessed data plays an important role in mobile computing 

because of its ability to alleviate the performance and availability limitations 

during weak-connections and disconnections. Caching is useful during frequent 

relocation and connection to different DBSs. In wireless computing, caching of 

frequently accessed data items is an important technique that will reduce 

contention on the small bandwidth wireless network. This will improve query 

response time, and support disconnected or weakly connected operations. If a 

mobile user has cached a portion of the shared data, he may request different 

levels of cache consistency. In a strongly connected mode, the user may want the 

current values of the database items belonging to his cache. During weak 

connections, the user may require weak consistency when the cached copy is a 

quasi-copy of the database items. Each type of connection may have a different 

degree of cache consistency associated with it. That is, weak connection 

corresponds to a "weaker" level of consistency. Cache consistency is severely 

hampered by both the disconnection and mobility of clients since a server may be 

unaware of the current locations and connection status of clients. The server can 

solve this problem by periodically broadcasting the actual data, invalidation report 

(reports the data items which have been changed), or even control information 

such as lock tables or logs. This approach is attractive in mobile environments 

since the server need not know the location and connection status of its clients and 

clients need not establish an up link connection to a server to invalidate their 

caches. There are two advantages of broadcasting. First, a mobile host saves 

63 



energy since they need not transmit data requests and second, broadcast data can 

be received by many mobile hosts at once with no extra cost. Depending upon 

what is broadcast, ap2ropriate schemes can be developed for maintaining 

consistency of data of distributed systems with mobile clients. Given the rate of 

updates, the trade-off is between the periodicity of broadcast and divergence of 

the cached copies that can be tolerated. The more the inconsistency tolerated the 

less often the updates need to be broadcast. Given a query, the mobile host may 

optimize energy costs by determining whether it can process the query using 

cached data or transmit a request for data. Another choice could be to wait for the 

relevant broadcast. Cache coherence preservation under weak-connections is 

expensive. Large communication delay increases the cost of validation of cached 

objects. Unexpected failures increase the frequency of validation since it must be 

performed each time communication is restored. An approach that only validates 

on demand could reduce validation frequency but this approach would worsen 

consistency since it increases the possibility of some old objects being accessed 

while disconnected. In Coda [28}, during the disconnected operation, a client 

continues to have read and write access to data in its cache. The Coda file system 

allows cached objects in the mobile host to be updated without any co-ordination. 

When connectivity is restored, the system propagates the modifications and 

detects update conflicts. The central idea is that of caching of data and key 

mechanisms, which include three states: hoarding, emulation and reintegration, 

for supporting disconnected operations. The client cache manager while in the 

hoarding state relies on server replication, but is always on the alert for possible 

disconnection and ensures that critical objects are cached at the time of 

disconnection. Upon disconnection, it enters the emulation state and relies solely 

on the contents of the cache. Coda's original technique for cache coherence while 

connected was based on callbacks [29}. In this technique, a server remembers that 

a client has cached an object, and promises to notify it when the object is updated 

by another client. This promise is called caUback, and the invalidation message is 

a callback break. When a callback break is received, the client discards the cached 

copy and refetches it on demand. When a client is disconnected, it can no longer 

rely on calJbacks. Upon reconnection, it must revalidate all cached objects before 

64 



they are checked for updates at the server. Cache invalidation strategies will be 

affected by the disconnection and mobility of clients. The server may not have 

information about the live MUs in its cells. In [36] there is a taxonomy of 

different cache invalidation schemes and a study of the iinpact of client's 

disconnection times on their performance. The issue of relaxing consistency of 

caches is addressed. Quasi-copies whose values can deviate in a controlled 

manner are used. There is a categorization of MU s, based on the amount of time 

spent in sleep mode, into sleepers and workaholics. Different caching schemes 

turn out to be effective for different populations. Broadcast with timestamps are 

proved to be more advantageous for frequent queries with a low rate of updates 

provided that the units are not workaholics. In [37] a technique is proposed to 

decide whether some items in the cache can still be used by the MU even after it is 

connected to the server. The database is partitioned into different groups and items 

in the same group are cached together to decrease the traffic. Thus, the MU has to 

invalidate only the group rather than individual items. 

2.7.2 Data replication 
The ability to replicate the data objects is essential in mobile computing to 

increase availability and performance. Shared data items have different 

synchronization constraints depending on their semantics and particular use. 

These constraints should be enforced on an individual basis. Replicated systems 

need to provide support for disconnected mode, data divergence, application 

defined reconciliation procedures, optimistic concurrency control, etc. Replication 

is a way by which the system ensures transparency for mobile users. A user who 

has relocated and has been using certain files and services at the previous location 

wants to have his environment recreated at the new location. Mobility of users and 

services and its impact on data replication and migration will be one of the main 

technical problems to be resolved. In [38], caching of data in mobile hosts and the 

cost of maintaining consistency among replicated data copies is discussed. It 

allows caching of data to take place anywhere along the path between 

mobile/fixed servers and clients. It determines via simulations which caching 

policy best suits given mobility and read/write patterns. A general model for 

maintaining consistency of replicated data in distributed applications is considered 

65 



in [39]. It defines a casualty constraint, a partial ordering between application 

operations, such that data sharing is achieved by defining groups requiring it, and 

it broadcasts data to the group. Each node processes the data according to the 

constraints. In [40], it has been argued that traditional replica control methods are 

not suitable for mobile databases and the authors have presented a virtual primary 

copy method. In this method, the replica control method decides on a transaction­

by-transaction basis whether to execute that transaction on a mobile host's 

primary copy or virtual primary copy. This method requires a transaction to be 

restarted when the mobile host disconnects. Also, when a mobile host reconnects, 

it either has to wait for the completion of all transactions executed on a virtual 

copy before synchronizing itself with the rest of the system or all running 

transactions will have to be restarted. The work [41] presents an analysis of 

various static and dynamic data allocation methods with the objective of 

optimizing the communication cost between a mobile computer and the stationary 

computer that stores on-line database. They consider one-copy and two copies 

allocation schemes. In the static scheme, the allocation scheme remains 

unchanged, whereas in the dynamic scheme, the allocation method changes based 

on the number of reads and writes. If in the last k requests there are more reads at 

MU than writes at the stationary computer, it uses two copy schemes. Otherwise it 

uses one-copy schemes. A new two-tier replication algorithm is proposed in [42] 

to alleviate the unstable behaviour observed in the update anywhere-anytime­

anyway transactional replication scheme when the workload scales up. Lazy 

master replication that is employed in the algorithm assigns an owner to each 

object. The owner stores the object's correct value. Updates are first done by the 

owner and then propagated to other replicas. The two tier scheme uses two kinds 

of nodes: mobile nodes (may be disconnected) and base nodes (always 

connected). The mobile nodes accumulate tentative transactions that run against 

the tentative database stored at the node. Each object is owned by either the 

mobile node or the base node. When the mobile node reconnects to the base 

station, it sends replica updates to the owner mobile node, the tentative 

transactions and their input parameters to the base node. They are to be re­

executed as base transactions on the master version of data objects maintained at 

66 



I' 

- ---------------------------------------------------------------------------

the base node in the order in which they are committed on the mobile node. If the 

base transaction fails its acceptance criterion, the base transaction is aborted and a 

message is returned to the user of the mobile node. While the transaction executed 

on the obj ects owned by the mobile nodes are confirmed, those executed on the 

tentative objects have to be checked with nodes that hold the master version. A 

dynamic replication scheme which employs user profiles for recording users' 

mobility pattern, access behaviour and read/write patterns, and actively 

reconfigures the replicas to adjust to the changes in the user locations and systems 

is proposed in [39]. There .the concept of open objects is devised to represent a 

user's current and near future data requirements. This leads to a more precise and 

responsive cost model to reflect changes in access patterns. 

2.7.3 Query processing 
Query processing in mobile computing environment involves two types of 

queries. The first type of query may involve only the content of databases. 

Another type may involve queries which may include location-dependent data and 

furthermore data that depend on the direction of movement. Thus, queries may 

introduce new parameters regarding query optimization. Location data may 

change during query evaluation. Queries may be answered in an approximate way 

due to fast changing location data. The question is how to keep track of the value 

of a query involving broadcast data in constantly changing environments? 

Another issue is querying the broadcasted data. What is the best execution plan 

for a query that involves data broadcast on different channels? What should be the 

organization of the broadcast data so that the energy spent on the client's side is 

minimized? Which information should be broadcasted and which should be 

provided on demand? How to keep track of continuous query in a constantly 

changing environment [43] is also an issue. Should queries be answered 

approximately [44] as in the case of querying update intensive data such as the 

location data? Since the location information may be incomplete, new models of 

query answering that include data acquisition at run time are needed [45]. The 

work [46] presents a query processing facility suitable for mobile database 

applications. The query model, called query by icons (QBI) considers the inherent 

limitations of mobile environments. It allows the construction of a database query 

67 



with no special knowledge of how the database is structured and where it is 

located. The tools assist in the formation of the query during disconnections. A 

query is formulated in an incremental manner without accessing actual data in the 

remote database to materialize intennediate steps. Data are accessed and 

transmitted back to the mobile computer only when a complete query is 

materialized. In [45], a query-processing model for mobile computing using 

summary databases (database stored in some predefined condensed form) is 

presented. The concept hierarchies are used to generate summary databases from 

the main database in various ways. This would enhance availability and provide a 

more optimal use of data during periods of disconnection and enable efficient 

utilization oflow bandwidth and restricted memory size. 

68 



69 



CHAPTER 3 

EVALUATION OF TRANSACTION EXECUTION 
STRATEGIES 

This chapter is. organized as follows. Section 3.1 discusses the general 

architectural context, execution model and modes of operation of mobile 

transactions. In section 3.2 we discuss the differences in transaction processing 

approaches for mobile transactions. Section 3.3 describes our chosen architecture 

for mobile databases giving assumptions over this architecture which are used for 

our evaluation purposes. Section 3.4 presents three strategies for execution of 

mobile transactions to be evaluated in the remainder ofthe chapter. A framework 

for mobile transaction execution used in the evaluation process is described in 

section 3.5. Section 3.6 describe the simulation model, system parameters and 

discuss the results. 

3.1 Mobile transaction context 

3.1.1 Architectural context 
In classic client-server architectures, functions of each actor are statically defined. 

In the absence of failures it is assumed that neither the client and server locations 

nor the connection between them change. In mobile environments, however, the 

distinction between clients and servers can be temporarily blurred resulting in an 

extended client server model [10]. Architectural choices impact application design 

and data management. In particular, transaction execution on a mobile host (MH) 

is only possible if the MH provides some minimal capabilities. Data stored on 

MHs (memory/disk) generally come from database servers. Therefore, MH work 

70 



must remain consistent with the database server. Mobile clients may vary from 

thin to full clients, depending on their characteristics as follows: 

1- Thin client architecture Here, clients require running operations on servers. 

This architecture is especially suitable for dumb tenninals or small PDA 

applications. Thin client resources are limited (e.g. small screen size, small cache 

memory, limited bandwidth). For this architecture, the server is in charge of all 

computations while clients only display text and graphics, play audio and 

compressed video, capture pen input, etc. 

2- Full client architecture In mobile environments, clients can be forced to work in 

disconnected mode or with weak connections (due to low bandwidth, high 

latency, or high costs). Full clients emulate server functions to enable application 

execution without being strongly connected to remote servers. Full clients are 

usually portable computers with enough resources to execute applications. 

3- Flexible client-server architecture This generalizes both thin and full client 

approaches. The roles of clients and servers as well as the application 

functionalities can be dynamically relocated. The distinction between clients and 

servers may be temporarily blurred for perfonnance and availability purposes. 

4- Client-agent-server architecture This three-tier model introduces an agent or 

proxy located on the fixed network. Agents are used in a variety of roles acting as 

a surrogate of one or several mobile hosts or being attached to a specific service or 

application (e.g. database server access). Several proposals concerning mobile 

transactions management adopt this architecture. 

3.1.2 Execution models 

Mobile transactions involve MHs and fixed hosts (FHs). Servers generally run on 

FHs (wired network) and MHs can be simple clients with some server 

capabilities. According to client capabilities five execution models have been 

defined [54]. The first three models involve one MHwhereas the fourth and fifth 

ones involve several MHs. 

71 



3.1.2.1 Complete execution on the wired network 

Here, the mobile transaction (MT) is initiated by a MH but executed entirely on 

FHs. This is the classical query shipping approach where the data server executes 

update/query requests and sends results to the client. Examples, in a mobile 

context, where this execution scenario is appropriate are location dependent 

queries, e.g. hotels located within a radius of5 miles, and updates, e.g. booking a 

room in one of those hotels; see [31] and [32]. In this context it is also suitable to 

execute transactions on a large data set. 

3.1.2.2. Complete execution on a MH 

In this case the MT is initiated and executed on the MH. This model requires the 

MH to have all relevant data and enough "server" capabilities to execute its local 

transaction. The autonomy of the MH allows it to keep working even though 

connections with the server are not available. Reconciliation procedures are 

necessary to integrate MHs work in the database server located on FHs. In most 

cases, some final work has to be done on the database server even if the MT is 

executed on the MH. For instance, consider a salesperson having on hislher MH 

all the required data related to the products he/she sells (available stock, price, 

etc.). The work done autonomously (sales) on the MH is integrated afterwards at 

the main server. 

3.1.2.3 Distributed execution between a MH and the wired network 
This model is very flexible as it allows distributing transaction execution between 

the MH and the database server( s) on the wired network. This distribution may be 

motivated by resource availability (e.g. data, power on the MH) or for 

optimization reasons. Server capabilities are required on the MH as well as 

minimum communications with the server during transaction execution. The sales 

example above may also require a distributed execution scenario. As far as the 

salesperson has the product information on hislher MH, he/she could sell products 

without connection to the database server warehouse store. Nevertheless, the 

payment procedure may require a connection to the bank server to check the 

client's credit. The sale is done by a distributed transaction having one 

subtransaction executed on the MH and another one executed on the bank server. 

72 



3.1.2.4 Distributed execution among several MHs 

This case is very ambitious and difficult but interesting. The objective is to 

provide a "peer to peer" approach. MHs act as servers for other MHs so that the 

execution of a MT is distributed among several MHs. The idea is that depending 

upon MH location; it could be interesting to ask a "neighbour" MH to act as a data 

server or as a service provider. Here "neighbour" means closer in terms of 

communication than the database server. As an example, consider two salespeople 

working in the same geographical area that need to share some data in a 

cooperative way without referring to the main database server. To support this 

execution model, particular features are required to allow MHs to be aware of 

each other. Base stations (BSs) could play an important role by maintaining 

specific database catalogues allowing MHs to know the data available in the area. 

These catalogues should be updated and forwarded across BSs according to MHs 

movements. In ad-hoc networks [55], MHs interact by establishing a point-to­

point connection by passing BSs. Since no BS is involved, each MH has to 

maintain its own database catalog and to allow its neighbours to access it. 

Distributed transaction execution among several MHs is particularly oriented 

towards dynamic network configurations. 

3.1.2.5 Distributed execution among MHs and FHs 

This is the fully distributed scenario where MT execution is distributed among 

several mobile and fixed hosts. This approach is an extension of the previous 

scenario and is oriented towards cooperative work as well as to multidatabases 

including MHs participating in the global execution. Electronic commerce is a 

promising application where small devices will engage in commercial transactions 

among themselves (execution model 2.2.2.4), with BSs or with remote hosts 

reached through a combination of wireless and wired infrastructure (this execution 

model) [56]. For instance, participant MHs could be in an open air trade fair 

where suppliers, manufacturers, retailers and customers would meet to see the 

latest products available. Customers may want to buy some of the products after 

seeing them and consulting an online catalog available at the fair. Upon the 

receipt of an order, the merchants could contact one another to order parts and 

locate supplies. With the appropriate devices and transactional support, all these 

73 



I 

operations could be performed on site and be uploaded later onto the company's 

servers. 

The five execution models introduced in this section cover all the possibilities 

involving mobile or fixed hosts. Nevertheless, current proposals in the literature 

concern only the first three models. Participation of several mobile hosts in the 

same distributed transaction has not been developed yet. 

3.1.3 Modes of operations 
In mobile computing, there are several possible modes of operations [54] as 

compared to a traditional distributed system where a host may operate in one of 

two modes - either connected to the network or totally disconnected. The 

operation mode in mobile computing may be one of the following: 

• Fully connected (normal connection); 

• Totally disconnected (e.g., not a failure of the MH); 

• Partially connected or weak connection (a terminal is connected to the rest ofthe 

network via low bandwidth). 

In addition, for conserving energy, a mobile computer may also enter an energy 

conservation mode, called doze state. A doze state of the MH does not imply the 

failure of the disconnected machine. In this mode, the clock speed is reduced and 

no user computation is performed. Most of these disconnected modes are 

predictable in mobile computing. Protocols, as given below, can be designed to 

prepare the system for transitions between various modes. A mobile host should 

be able to operate autonomously even during total disconnection. 

• A disconnection protocol is executed before the mobile host is physically 

detached from the network. The protocol should ensure that enough information is 

locally available (cached) to the mobile host for its autonomous operation during 

disconnection. It should inform the interested parties for the forthcoming 

disconnection. 

• A partially disconnection protocol prepares the mobile host for operation in a 

mode where all communication with the fixed network is restricted. Selective 

caching of data at the host site will minimize future network use. 

• Recovery protocols re-establish the connection with the fixed network and 

resume normal operation. 

74 



• Hand-off protocols refer to the crossmg of boundaries of a cell. State 

infonnation pertaining to the mobile host should be transferred to the base station 

of the new cell. 

3.2 Mobile versus fixed transactions 
A transaction in mobile envirornnents is different to transactions in centralized or 

distributed databases in the following ways: 

1. The mobile transactions might have to split their computations into sets of 

operations, some of which execute on a mobile host while others on a 

stationary host. A mobile transaction shares its state and partial results 

with other transactions due to disconnection and mobility. 

2. Mobile transactions require computations and communications to be 

supported by stationary hosts. 

3. When the mobile user moves during the execution of a transaction, it 

continues its execution in the new cell. The partially executed transaction 

may be continued at the fixed local host according to the instruction given 

by the mobile user. Different mechanisms are required if the user wants to 

continue its transaction at a new destination. 

4. As the mobile hosts move from one cell to another, the states of 

transactions, states of accessed data objects, and the location infonnation 

also move. 

5. The mobile transactions are long-lived transactions due to the mobility of 

both the data and users, and due to the frequent disconnections. 

6. The mobile transactions should support and handle concurrency, recovery, 

disconnection and mutual consistency of the replicated data objects. 

3.3 Mobile Database Architecture 
As discussed in Chapter 2, there are different models for mobile computing 

systems. Among them, we choose the model most likely to be a computing 

envirornnent for mobile database systems. In this system, some computers are 

fixed and some are mobile. This architecture is widely accepted in existing 

research for mobile database applications [SOJ, where a global database is 

distributed among the fixed network nodes. An example of such architecture is 

( 
75 



shown Figure 3.1. In this system architecture, all the network nodes in the 

wired part are fixed units. Mobile units retain communication through the 

wireless links. Some fixed units, called base stations or mobile support stations, 

have special functionality with a wireless interface to communicate with mobile 

units. Each mobile station provides networking services for all the mobile units 

within a given geographic area called a cell. In other words, each cell has a base 

station and mobile units within that cell access data on remote nodes through the 

local base station. 

.. --- .... 

(@ ~H \ - - - - - BS iL----"I 
, ' , , . ' , , .... _-_ .... 

Wireless radio cell 

Wireless radio cell 
9 Kbps - 2 Mbps 

Wireless LAN cell 
11 Mbps 

~ Fixed Host 

~ Base Station 

@ Mobile Host 

U DBMS 

- - - - Wireless Communication 

- Wired CommunIcation 

Figure3. 1: Architecture of mobile database systems 

A global database (ODB) is defined as a finite set of data items. A ODB is 

partitioned among fixed hosts as well as mobile hosts (ODB = MDB U FDB). The 

data items on fixed hosts make up the fixed database (FDB) of the ODB (i.e. FDB 

= U FDB i) and the data items on mobile hosts make up the mobile database 

(MDB) of the ODB (i.e. MDB = U MDBi). Moreover, the data items on a single 

mobile host are called a mobile part of the MDB. Accordingly, a data item in the 

FDB is referred to as a fixed data item and a data item in the MDB is referred to 

as a mobile data item. A data item in the MDB is owned by a mobile host and a 

data item in the FDB is owned by a fixed host. We further assume that each 

mobile host has local storage and computing capability, and is able to estimate 

and exchange its status regarding the information of the environment current state. 

76 



The fixed data items are replicated by caching on a mobile host, whereas the 

mobile data items have a full replication on a fixed host. Moreover, a mobile 

transaction does not access the data on other mobile units (MDBi n MDBj = { } 

for all i, j such that i '" j). That is, it can access only local mobile data items and 

fixed data items. 

3.4 Execution Strategies: 

3.4.1 Fixed Host Execution Strategy (FHS) 
In this strategy, the execution of mobile transactions, with a copy of required data 

on the mobile host, is transferred to the fixed host. The fixed host coordinates the 

execution of the transaction on behalf of the mobile host and returns the final 

results back to the mobile unit. As such, a mobile transaction can be processed 

just like a traditional distributed transaction in a client server model. The only 

difference is that the propagation of updates and the return of results to a mobile 

host may be delayed as a consequence of wireless communication. This execution 

strategy is relatively simple. Its main advantages are:(I) maintaining strict data 

consistency because an entire transaction is managed and executed on a fixed host 

- traditional transaction schemes can be applied, (2) reducing battery consumption 

because the operations are shifted to the fixed network, and so computation tasks 

on a mobile host are avoided and (3) the level of concurrency at the fixed host is 

increased due to avoidance of long delays resulting form poor communication. 

However, a shortcoming of the fixed host execution strategy is that no 

autonomous operations are allowed during the disconnection of a mobile unit 

because required data on the fixed host is not available. This policy is suitable 

when the entire database is allocated on the fixed machines. In other words, a 

mobile host only plays the role of a client, or a remote device (i.e. thin client 

architecture). This strategy has been taken as an underlying assumption, of the 

processing model, by many researchers. 

3.4.2 Mobile Host Execution Strategy (MHS): 
To allow continuous computation when a disconnection occurs, the data stored at 

the fixed hosts can be duplicated on a mobile unit rather than moved to a fixed 

host. Instead of making a full replication on a local disk, using cached copies is a 

77 



common technique to support autonomous operations, increase the availability 

[64], and minimize network access. Since data involved in a mobile transaction is 

always locally available, this policy allows transaction processing independent of 

fixed data services. Hence, the autonomous operations can be carried out at the 

mobile unit. In addition, this policy uses less battery power compared to the FHS 

strategy, regarding data transmission, because the network connection between a 

mobile unit and a fixed host is asymmetric. A fixed host typically has a stro~ger 

transmitter and unlimited power. Therefore, transporting data from a fixed host to 

a mobile unit is likely to be more efficient than transporting data in the opposite 

direction. There are two methods of transporting data. Firstly, in planned mode. In 

this mode required data is transferred from fixed hosts to a mobile unit before a 

disconnection occurs. This mode requires that a disconnection protocol knows 

which data will be used in the near future. Secondly, non-planned mode. In this 

mode, data is downloaded based on current transaction requirements and network 

conditions. For instance, if a transaction uses data items X and Y, and at this time 

point the bandwidth is high, then the data will be transferred to the mobile unit. 

Considering two types of disconnection, the first mode is more suitable for 

predictable disconnection, while the second mode is suitable for unpredictable 

disconnection. 

3.4.3 Combined Execution Strategy (CHS): 
For mobile transactions having a number of subtransactions which pass through 

different resources availability during their execution life time, neither MHS nor 

FHS on its own can give better performance in terms of system throughput and 

battery consumption in all situations. Since the conditions of the mobile 

environment are dynamically reflected in the transaction processing, an adaptive 

approach to control the execution of a transaction is desirable - one that takes 

fixed host and mobile host execution strategies as two basic options for each 

subtransaction. A decision is made, based on available mobility information, to 

select an execution strategy for each subtransaction of a mobile transaction in an 

optimal way corresponding to the current state of the mobile computing 

environment. 

78 



The run-time decision-making based on the current environment state, is the key 

. oftheCHS strategy approach [35]. With the CHS strategy, a mobile host always 

submits transaction reque~ts to the mobile transaction manager (MTM) if the 

network condition is satisfactory; otherwise it will be processed 10ca1\y at the MH. 

In this strategy, each mobile subtransaction consists of a set of database operations 

(Top), a set of data items on which the operations are performed, Le. its base set 

(Tb,), the cache status (Tc,) of the data items in the base set and the current 

environment state information (Te,)of the mobile host. Thus, each mobile 

subtransaction SMT is identified by the 4-tuple SMT= (Top, Tb" Tc" Te,). 

The cache status of data items determines the amount of stale data in the cash. The 

current environment state is determined by several factors. The state factors, of 

particular interest for CHS, are the available bandwidth, disconnection threshold 

and battery life of a mobile host. In general, let MSTi be a mobile subtransaction 

request submitted by a mobile host at a particular time point. Let the tuple < Bb 

Dj, Ej > be the current status vector at this time, where Bi, Di and Ei are the 

bandwidth, disconnection threshold, and battery life of the mobile host, 

respectively. The basic idea of selecting the execution of each mobile 

subtransaction as a 'Dreq' or 'Treq' (see below) transaction will be as follows. If 

the computing condition is normal (strong connectivity), it should be treated in the 

same marmer as in a conventional environment. That is, submit the transaction to 

a fixed host to be executed, i.e. as a Treq transaction. If the computing 

environment suffers from low bandwidth that is below a specified level, then the 

transaction will be processed locally at the mobile host, i.e. as a Dreq transaction. 

With the information provided by each subtransaction at a certain time, the 

decision criteria will be made as fol1ows. First, if the battery life is below a 

specified level, then the transaction should be executed on a fixed host. Second, if 

the network bandwidth is weak, i.e. below a specified level, it is treated like a 

disconnection and so the mobile transaction request will not go to the MTM and 

instead is scheduled as a Dreq transaction. These two simple cases can be 

expressed in the following rules: 

(\) IF Ei < Ethre,hold THEN schedule as a Treq transaction 

(2) IF Bi < Bthreshold THEN schedule as a Dreq transaction 

79 



Other criteria to detennine where to execute a mobile subtransaction can depend 

on the amount of required data transmission. When the network bandwidth is 

above a specified level, the decision will be made based on the time of 

downloadingluploading, Tdown/Tup, which is the function of the size of 

downloadingluploading data and the current bandwidth. Upon the receipt of a 

transaction request the MTM can determine the amount of data to 

download/upload from the cache status information. This amount gives the size of 

stale data cached on the mobile host. If cached data for a current transaction is 

valid no data will be transported. Therefore, if the size of downloading data from 

the fixed part to the mobile host is smaller than the size of up loading data from the 

mobile host to the fixed part the transaction is scheduled as a Dreq transaction; 

otherwise it is scheduled as a Treq transaction. This is expressed as the following 

rule: 

(3) IF Tdown, < Tup, THEN schedule as Dreq transaction ELSE schedule as Treq 

transaction. 

MSTi 

! 
E; < Et!.r....,1I >-y"'--+l Treq-Transaction 

Y Dreq-Transaction 

y Dreq-Transaction 

Treq-Transaction 

Figure3. 2: Decision flow ofCHS 

80 



In summary, the above description can be expressed as a decision flow shown in 

Figure 3.2. In the figure, Ethreshold, and Bthreshold are two thresholds and indicate 

satisfactory battery and bandwidth levels, respectively. They can be specified at 

the time when a mobile host registers, and can be modified during mobile 

transaction execution. 

With the combined strategy, a mobile subtransaction can be scheduIed as a data 

request or a transaction request. In this approach we can gain two main 

advantages: (1) a mobile transaction can be tentatively committed based on locally 

cached data and other transactions can be submitted during disconnection so that 

autonomous operations can be supported. (2) A mobile transaction can be either 

executed on a mobile host or a fixed host based on a run-time decision. 

3.5 Execution Framework 
There have been many different models proposed for Mobile Transactions 

(MT) [54]. In these models mobile transactions are supposed to be decomposed 

into a set of subtransactions which make it possible for the atomicity requirement 

to be relaxed. The common base between these models is their extension of 

advanced transaction models. Since our work here concentrates on evaluating 

execution strategies under different network connectivity conditions, rather than 

evaluating a specific mobile transaction model, we make a general assumption 

that a mobile transaction MT is defined as a set of mobile subtransactions MST. 

The update made by a subtransaction at the execution place should be reflected on 

the opposite part of the network (i.e. if the execution takes place at the mobile 

host, the update made should be reflected on the fixed host and vice versa). So, 

each mobile subtransaction MST is decomposed into two subtransactions: 

namely, a basic subtransaction Tb and a complementary subtransaction Tc. 

Corresponding to this, there are two commit points: local commit and global 

commit, respectively. A local commit records the status of all basic subtransaction 

processing when it is done, as it may not be possible for the complementary sub­

transactions to be issued due to network disconnection at that time. A global 

commit implies that all complementary subtransactions have been executed and 

modified data items have been propagated to their master copies. Global commit 

can happen only when the network is connected. Successful commitment of a . 

81 



mobile transaction occurs if and only if all of its basic and complementary sub 

transactions have committed successfully. So, the processing of each mobile 

subtransaction consists of two phases, a basic subtransaction executes in the first 

phase of processing a mobile subtransaction. Major transaction operations are 

performed in this phase. A complementary subtransaction derived from a basic 

subtransaction occurs in the second phase of mobile subtransaction processing 

and its execution takes place when the data items on both the fixed part and 

mobile part are connected. A complementary subtransaction largely performs 

updates on the data items that are modified by its basic subtransaction and the 

place where a basic subtransaction executes is always opposite to where its 

complementary subtransaction executes. In general, each subtransaction of a 

mobile transaction is scheduled as a data request or a transaction request. The. 

basic subtransaction of a Dreq transaction is processed on a mobile transaction 

host with cached data from the fixed part. The corresponding complementary 

subtransaction is processed on a fixed host. Conversely, the basic sub transaction 

of a Treq transaction is processed on a fixed host with the replication of the data 

items from the mobile host. The matching complementary subtransaction is 

processed on the mobile host. In this way, the effect of data modification can be 

propagated to its master copy. When a mobile subtransaction is issued from a 

mobile host, its basic subtransaction is processed with cached data if network 

connectivity between the mobile transaction host and its local base station is 

unsatisfactory (i.e., poor bandwidth or disconnected). If the required data is not 

available, the subtransaction is aborted. Otherwise, after completion a 

complementary subtransaction is issued and put into a queue. When the mobile 

transaction host restores its connection, the queued complementary 

subtransactions are first submitted through a base station to a fixed host. If a 

complementary subtransaction fails, the mobile subtransaction is aborted. 

Otherwise it waits for global commitment. If network connectivity is high a 

mobile transaction is started. The location where its basic subtransaction IS 

processed depends on the execution strategy see Figure 3.3 (a)-(c). 

82 



- - -------------------------------------------, 

Execution at MH 

MT 

Execution at FH 

(a) MHS strategy 

Execution at FH 

Execution at MH 

(c) FHS strategy 

Execution at MH 

MT 

Execution at FH 

(b) CHS strategy 

Figure3. 3: Execution framework for the three strategies 

83 



If the decision is made to use a Dreq transaction, the fixed data items required by 

the transaction are downloaded from the fixed host (the size of downloaded data is 

determined by the amount of valid data in the cache of the mobile transaction 

host). After this, the process of mobile transaction processing is similar to the one 

above when network connectivity is poor. On the other hand, if the decision is 

made to use a Treq transaction, the mobile data items required by the transaction 

are uploaded from the mobile part owned by the mobile transaction host, to a 

fixed host where the basic subtransaction is processed. Similarly, at this time, if 

network connectivity between the mobile transaction host and its local base 

station is below some threshold, the complementary subtransaction wiJI be queued 

and executed later when network connectivity is improved. If network 

connectivity remains strong, the complementary subtransaction that performs 

updates of mobile data items on the mobile transaction host can be issued as soon 

as the basic subtransaction is completed. The execution of mobile transactions is 

given in pseudo-code in Figure 3.4. 

84 



------------------------------------------------------------------------------------

Mobile transaction Processing 

Begin 

For each mobile subtransaction MST, 

mobile host analyzes the subtransaction MST to build Tbasic and Tcomplemnetary 

based on its read and write requests and availability of requested data (we assume 

that MH has some server capability). 

If the subtransaction is scheduled as a Dreq transaction Then 

Begin 

For all data item reads and writes by T basic, 

MH sends a request to MTM for all the required read values and request for 

lock. After MTM acquires the necessary locks, it returns the values to the MH. 

The basic transaction is executed on the MH and Tcomplementary is executed on the 

fixed host. 

End 

Else lithe subtransaction is scheduled as a Treq transactionll 

Begin 

For all data item reads and writes by Tbasic> 

MH sends a request to MTM for all operations along with their data items. 

After MTM acquires the necessary locks, the basic transaction is executed on 

the FH and TComplementary is executed on the mobile host. 

End 

If all mobile subtransactions successfully finish their execution then 

Mobile transaction is committed 

End 

Figure3.4: Mobile transaction processing algorithm 

3.6 Performance Evaluation 
The performance of different execution strategies are evaluated by the means of 

simulation. The goal of this simulation is studying the performance of three 

executions strategies for mobile transaction in presence of fixed transactions 

under different wireless network connectivity. We describe the simulation model, 

system parameter and discuss the result. 

85 



3.6.1 Simulation Model 
The general structure is shown in Figure 3.5. The model consists of three servers 

labeled MH, MTM, and FH. The server MTM stands for the mobile transaction 

manager related services. Normally, a mobile transaction request gets this service 

first. Each mobile transaction issues a set of requests and each request represents 

one of its subtransaction which could be a data request or a transaction request 

transaction based on the execution strategy being applied. The server MH 

represents the services provided by a mobile transaction host and the server 

FH the services provided by a fixed host where transaction coordination takes 

place. If the subtamsaction of a mobile transaction is scheduled as a Dreq­

transaction, when its basic subtransaction has finished its execution, the 

complementary subtransaction is put into queue MQl. If the network is 

connected, a Dreq complementary sub transaction is submitted to a fixed host for 

processing and enters a queue FQ!; otherwise it has to wait in MQ! for network 

re-connection. If a Dreq complementary subtransaction is successfully finish its 

execution. The mobile subtransaction is completed; otherwise, the subtransaction 

fails. This process will be repeated for all sub transactions, when all 

subtransactions are successfully completed, the entire mobile transaction is 

committed. For a subtransaction that schedule as Treq,. this process is identical; 

but with different notations of Figure 3.5; that is if the network is connected, a 

Treq complementary subtransaction is submitted to a mobile host for processing; 

otherwise it has to wait in MQ2 for network re-connection. The CHS strategy can 

be viewed as a combination of the two basic strategies MHS and FHS. For the 

MHS approach, each subtransaction in a mobile transaction goes through four 

processing steps: data downloading, basic subtransaction processing, 

complementary subtransaction submission, and complementary subtransaction 

processing. Thus, there are four simple services. Similarly, the FHS approach has 

four simple services as well. The difference between the FHS model and MHS 

model is that the data required by a mobile transaction is uploaded from the 

mobile host to a fixed host. Besides, the first three simple services, i.e. data 

uploading, basic sub transaction processing and complementary sub transaction 

submission, are implemented on a fixed host. Whereas complementary 

86 



subtransaction processing is perfonned by the mobile host that issues the 

transaction. According to the CHS strategy, when a mobile host is disconnected a 

transaction is treated as a Dreq transaction and has no data transmission. If the 

network is connected, the data will be uploaded or downloaded based on current 

scheduling decision. Generally, the simulation is conducted for the three strategies 

separately. 

MTM 
LTM 
DM 
MH 
FH 

Wireless link. 
Wired link. 
Mobile transaction manager. 
Local transaction manager. 
Data manager. 
Mobile host 
Fixed host. 

~
MH ----

MTM 

§ 
a. 

MQI ~ 

'" 
It "~1~1_1 1----- If 

MQI i:l 
~. 

~
H ----- g o· 

i:l 

MQI 

FH 

................................................................................................................................................. _ ........... _.~ ............................................................................. ..1 
Figure3. 5: The simulation model overview 

If the policy is FHS, transaction requests are always scheduled as Treq 

transactions. If the network is disconnected when a request arrives, this 

request must give up because its first phase cannot be carried out. After the 

completion of the first phase, if the network is not connected at this time, the 

complementary subtransaction cannot be submitted and must wait in the queue. 

Unlike the FHS approach, the MHS strategy usually does not discard a transaction 

request. Instead, the first phase of transaction processing is perfonned by using 

cached data even if the network is disconnected. However, if the network is 

disconnected after this phase, the request must be queued for later processing. For 

the CHS strategy, when the network is disconnected, its work likes an MHS 

approach; otherwise, it functions as a mixture of the FHS and MHS. Moreover, a 

complementary subtransaction mayor may not be blocked. The network 

87 



connectivity directly impacts the performance of transaction processing. To reflect 

this, the time spent on the completion of a Dreq-transaction can be distinguished 

into four cases based on the network connectivity during transaction execution. 

(1) A CC-type transaction is just like a normal transaction where the network is in 

a fully connected condition. The other three types of transactions indicate that 

at least one of two communication steps is broken (denoted by the D). (2) 

CD-type transaction indicates that the network is connected at the time of the data 

transmission and disconnected at the time of complementary subtransaction 

submission. (3) DC-type transaction indicates that the network is disconnected at 

the time of the data transmission and connected at the time of complementary 

subtransaction submission. (4) DD-type transaction indicates that the network is 

disconnected at the time of the data transmission and the time of complementary 

sub transaction submission. The performance of these four types of transaction can 

be different. The functions to determine the execution and communication time is 

related to the current state of the environment. In general the service type in the 

system can be classified into two type communication oriented and processing 

oriented. For a communication oriented service. The service time consists of a 

constant communication overhead and the data transport time, which is 

determined by the size of data and the bandwidth at the time of data transfer. For a 

processing oriented service, the service time is basically determined by the 

number of accessed data items, the average number of operations on these items 

and the amount of time spent in the fixed host which is based on different factors 

specified in section 3.6.2. 

3.6.2 System Parameters 
The underlying mobile database system is composed of a number of databases 

distributed among fixed and mobile hosts. Transaction-generators are responsible 

for creation of transactions to be executed in the system. Parameters controlling 

the generation of transactions include the workload (the number of concurrent 

transactions arrive per unit of time to the system); the number of subtransactions 

in each mobile transaction; the number of database operations in a subtransaction; 

the probability of a write operation. The global workload consists of randomly 

generated local and mobile transactions spanning over a random number of sites. 

88 



- ----~~~~~~~~~~~~~------------------------

At each local site, there are a number of local transactions. The local system does 

not differentiate between the two types (local transaction and mobile 

subtransaction). Transactions enter the execution phase are subsequently 

scheduled by acquiring the necessary lock on their data items. If the lock is 

granted, the operations proceeds through the CPU and I/O queue, and for a mobile 

subtransaction an abort or commit signal is communicated back to the MTM and 

the subtransaction tenninates. The local system may abort a local transaction or a 

mobile subtransaction at any time. If a mobile subtransaction is aborted locally, 

it's communicated to the MTM and the mobile subtransaction will be restarted. 

The communication between the mobile host and the MTM can occur in both 

direction using either an uplink channel for uploading data or downlink channel 

for downloading. The communication overhead for uplink and downlink channels 

is IS and 5 respectively. When the disconnection occurs, the mobile unit is 

disconnected for 10-20 second. In order to effectively evaluate the different 

execution strategies, several parameter are varied for different simulation runs. 

Most of these parameters are given in Tables 3.1-3.3 along with their default 

values. 

Table3. 2: Fixed Host Parameter 
Fixed Host Parameter Default Values 

., ........ " ......... "." ........ "" .. " ...•. " ... " .. _" .... " .. """"" ... , .. "'"." .. " ...... ,,, ... , .. ,,"",.,'----,.,"", .. ,_ .. """" ..•. "."."" ....... ""_ ........... " ... ,-"",, .... , .. ",, .... , .. -.•. "-.-.-.".-~-.-.-.-.-. "-............ ,, ................... "'" ....... ,,, ....... _.-.. ".,,_ ........ ,,. 

89 



Table3. 3: Mobile Host Parameters 
Mobile Host Parameters Default Values 
M()~i!~tr!l!!~!lg!igl1:_p_~~£~_I1:!!lg~~ ___ "_"__ ___ "________ ____ ___ "__"____________~2r~" ____ " _________ _ 
Number of mobile sub transactions 1-5 
_~l:!.I1:1!>~E_gK_()p_~EIl:!i.()E:~ __ i.I1:_~Il:£~____ ___ t~_!lI1:_~!I_~_t_i()_11: ___ "_"_________________}_:.!?"________ __ _ 

--'~E()E!lE_i_!i.!x_()f_~_Ij!~_()P~E~!i_()I1: __ " ___ " ____ "______"_" ____________ " __ "" ___ "_______Q_,_~ __ =_Q_,~___ _____ " _____ _ 
_ !'E()~~E_i.!i.!X_().f£!I~!!_!!i.t _____________ """ ___ "_"_________ _" ____ " ___ ""__"_"_"" __ "___ ____ ""__"Q,?_:.\,Q __ ""______ ___ _ 
Execution cost at the mobile host 2-5 -_ .....•.• _ ........ ,-_ ...... _ .. ,_._-""." .. _--""""',, .. ," ... """-"-'-"""-'''"-"-"''---'"-"''''''"''"-'''"-"-''"''"""-''''---"-""""'"-"" .. ' .. '"---"""."""-".'-'''"---'.'--"---'''.-""._"-_._,.,"---,-,,-,-"- .""-"--"_.""""-'"",, ..• ,-"-,--"""--_ ..•....... __ ._ .......... _---

_M()~}!!!i:_y!llp~()L~()~_il~_~()_s_t_l1:p~~_~_~gKyi.~i_t()~_M!M_ _____5_:::?Q____" ____ "__ 

3.6.3 Experiment Results and Discussion 
The experiments are designed to study the impact of mobility ratio under different 

disconnection conditions on the performance measures to compare and contrast 

the different execution strategies. Figures 3.6 to 3.11 show the impact of changing 

network conditions on the response time for both mobile and fixed transaction 

under different execution strategies. In each experiment, 1000 transactions are 

generated and 60% of these transactions are mobile. The mobility timer is varies 

from 5 to 50 seconds. 

500 
~ 450 

~ 400 

i j 
350 
300 
250 

i= 200 

iF 
150 
100 
50 

0 
5 

Disconnection Threshold =100 

10 15 20 25 30 35 40 45 

Mobility Timer 

50 

arvu;s 

_FHS 

CHS 

Figure3. 6: Response time for mobile transaction (BW<=1 00) 

90 



_ .. - ------------------------------------

~ 
i j 
j> 

.l! 

~ 
~ i ~ i F 

200 
180 
160 
140 
120 
100 

80 
60 
40 
20 

0 
5 

Disconnection Threshold"'1 00 

10 15 20 25 30 35 40 45 50 

Mobility Timer 

_MHS 

_FHS 

CHS 

Figure3. 7: Response time for fixed transaction (BW<=IOO) 

700 

600 

500 

400 

300 

200 

100 

0 
5 

Disconnection Threshold "'500 

10 15 20 25 30 35 40 45 

Mobility Timer 

50 

[3MHS 

_. FHS 

CHS 

Figure3. 8: Response time for mobile transaction (BW<=500) 

91 



Disconnection Threshold=500 

5 10 15 20 25 30 35 40 45 50 

Mobility Timer 

_MHS 
___ FHS 

CHS 

Figure3. 9: Response time for fixed transaction (BW<=500) 

Figure 3.6 shows the results when a mobile host has low disconnection 

(disconnection threshold is B W<= lOO). It can be seen that among the three 

approaches, the FHS outperform the other strategies, whereas the MHS is the 

worst. This is because a mobile subtransaction that schedules as a data request 

transaction needs more data transmission than if schedule as a transaction request. 

Moreover, a data request transaction takes a longer time for global commitment. 

This can be reflected in the response time for the fixed transaction as we can see 

in Figure 3.7. The CHS strategy is closer to FHS than to MHS which means that 

most of mobile subtransactions are scheduled as transaction requests. Even though 

the network is highly connected, the performance of the CHS may not outperform 

the FHS strategy. This is because the network connectivity is not the only factor 

which affecting the decision made by the CHS strategy to determine where the 

mobile subtransaction execution is take place, the size of data to be transmitted 

and the cash status also affecting the decision made by the CHS. So, if the cache 

status indicates that cached data for a transaction is available, the transaction may 

schedule as a data request transaction, even though the network is fully connected . 

. Therefore, unlike the FHS strategy, the sub transactions of the mobile transaction 

may scheduled in a mixed matter based on the current state of the environment at 

that time. Figure 3.8 and 3.9 shows the results when a mobile host has medium 

disconnection (disconnection threshold is BW<=500) for both mobile and fixed 

transaction, respectively. It can be seen that the response time for all strategies are 

92 



negatively affected by increasing the disconnection threshold. However, because 

of increasing disconnection probability, the performance of the FHS strategy 

becomes less than the other two strategies and CHS has the best performance. The 

reason is that when the network disconnection probability increases, the number 

of mobile subtamsaction which schedule as data requests increase. On the other 

hand, the mobile sub transaction at connection time was scheduled as a transaction 

request, so this environment gives the CHS strategy more chance to exploit the 

information at the current environment state which makes it better than FHS at the 

disconnection time and also better than MHS at connection time. In Figure 3.9 the 

difference between the FHS and other strategies is more obvious than Figure 3.7. 

Since the disconnection probability is increases, The FHS strategy has more 

chance to block the basic transaction which comprises the first phase of any 

mobile subtransaction execution. This will decrease the blocking over head on the 

fixed transaction at the fixed host. On the other hand, in MHS and CHS strategies, 

a cached data can be used to execute the basic transaction. So, there is no need to 

block a mobile subtransaction ifthe cash status of the required data items is valid. 

As a consequence, the response time of mobile transactions decreases 

substantially when compared to the FHS approach. The advantages get by the 

mobile transaction under MHS and CHS in term of decreasing the response time 

will be negatively affect the fixed transaction as it have to wait for the basic 

transactions of the mobile subtransaction until finish its execution at the mobile 

host which is take a longer time than if the execution is take place at the fixed 

host. This can be seen in the Figure 3. JO and 3.11 which show the response time 

for both fixed and mobile transaction when there is a high disconnection, 

respectively. 

93 



1000 
.SI 900 

~ 800 
700 

i j 600 
500 

l' 
400 
300 
200 
100 

0 

Disconnection Threshold =1000 

5 10 15 20 25 30 35 40 45 50 

Mobility Timer 

_MHS 

_FHS 

CHS 

Figure3. 10: Response time for mobile transaction (8W<=500) 

Disconnection Threshold=1 000 

300 =~-~~~~"7'~"7'"7'~~C--~'" 

250~~~~~~~~~~~~ 
200 +-~~~~~~~~~~~~~~~~ 

150~~~ 100~ 
50+;~~~~~~~~~~~~~ 

5 10 15 20 25 30 35 40 45 50 

Mobility Timer 

_MHS 

_FHS 

CHS 

Figure3. 11: Response time for fixed transaction (8W<=500) 

The battery of mobile hosts considered to be one of a scarce resource in the 

mobile computing environment [65], [66], [67], an experiment is conducted to 

show the difference between three strategies in term of power consumption. 

Figures 3.12 to 3.14 show the simulation results for different mobility value with 

different disconnection thresholds. Since the whole mobile transaction take place 

at the fixed host under FHS strategy, only the communication overhead can affect 

the power consumption ofthe mobile host. This justifies the significant difference 

94 



between FHS and other strategies. On the other hand, the MHS has the worst 

effect on power consumption because all mobile transaction processing take place 

at the mobile host. The difference between the power consumption for the eHS 

and MHS strategies decrease as disconnection increases since there is more 

chance for mobile subtransaction to schedule as a data request transaction. Figure 

3.12 shows that when the network is strongly connected. 

Disconnection Threshold=1 00 

100 F~"," 

5 10 15 20 25 30 35 40 45 50 

Mobility Timer 

Figure3. 12: Power consumption (BW<= 100) 

Disconnection Threshold=500 

400 ~~~--~--~--~-c~~~~~=---~~ 
350 +F~~~~~~~~~~~~--~~~ __ 1 

300~~~~~~~~~~~~~~~~ 
250 ~~~ "'--t-'--t":-,,-,,*--t=,,,--t-:, ::---:-..-+---t-::1 

~ 200 ff~~~~~~ 
150 ~ 
100 F~~~~~~k 

50 +F __ ~c-:~~~c-:~~ 
O~~~~~~~~~~~~~~~~~ 

5 10 15 20 25 30 35 40 45 50 

Mobility Timer 

Figure3. 13: Power consumption (BW<= 500) 

95 

_MHS 

_FHS 

CHS 

_MHS 

_FHS 

CHS 



Disconnection Threshold=1 000 

450 ~--~~~--~ __ ~ 

400 tt=,"--c.:,--c.:,--='":--c.:,---E 
350 F~·Y·"<"'-iS--=-..,fiL. '-i~''-'. 

300EIiII§ 

250 

200 

150 
100 

50 
o ~~~~~-¥~~~~~~-r--~~T-~ 

5 10 15 20 25 30 35 40 45 50 

Mobility Timer 

Figure3. 14: Power consumption (BW<= 1000) 

_MHS 

_FHS 

CHS 

The MHS strategy takes more processing time on a mobile host than the CHS 

strategy. This is because, with the CHS, the number of mobile sub transactions 

which are scheduled as transaction requests increase so that the time spent on the 

mobile host is reduced. As the network disconnection increase the CHS strategy 

still has a better performance in reducing power consumption at the mobile host 

than MHS. However, as the network disconnection probability increase further, 

The Power consumption under CHS strategy approach the power consumption of 

the MHS strategy as we can see in Figure 3.14. 

400 

~ ~ 
350 

300 

250 

11 200 

150 

~ ~ 100 

r:. 50 

0 

Disconnection Threshold=500 

50 100 150 200 250 300 350 400 450 500 

Workload 

t3 .. MHS 
__ FHS 

CHS 

Figure3. 15: Throughput for mobile transactions (BW<= 500) 

96 



i ~ 
,1 
F 

400 

350 

300 

250 

200 

150 

100 

50 

0 

Disconnection Threshold=500 

50 100 150 200 250 300 350 400 450 500 

Workload 

-+-MHS 
__ FHS 

CHS 

Figure3. 16: Throughput for fixed transactions (BW<= 500) 

Figures 3.15 to 3.20 show the experimental results for system throughputs in 

terms of the number of completed transactions during a time interval. The first 

experiment show the result under different workload assumptions where the 

mobility and the disconnected threshold are set to 20 and 500 respectively. The 

purpose of this experiment is to show how the CHS gives better performance than 

other strategies as workload increases at the average network connection for 

mobile transactions and maintain a comparable throughput with FHS for fixed 

transactions. As we can see in Figure 3.15 the CHS strategy consistently 

demonstrates better performance than MHS and FHS strategies for a mobile 

transaction where Figure 3.16 show how the CHS strategy are close to the FHS 

strategy in term of fixed transaction throughput. 

97 



Disconnection Threshold=100 

500 
450 

~ 400 
350 

P 
300 -+-MHS 

250 --ll-FHS 
200 CHS 
150 
100 

50 
0 

50 100 150 200 250 300 350 400 450 500 

Workload 

Figure3. 17: Throughput for mobile transaction (BW<= lOO) 

Disconnection Threshold=100 

350 

~ 
300 

250 

jl 200 t3 -ll-FHS 
150 

~ ~ CHS 
100 

50 

0 
50 100 150 200 250 300 350 400 450 500 

Workload 

Figure3. 18: Throughput for fixed transactions (BW<= lOO) 

Figure 3.17 and 3.18 illustrates that with low disconnection; the FHS approach 

has the highest throughput for both types of transactions where there is an 

improvement in fixed transaction throughput over the case of medium 

disconnection. While the MHS the lowest and the CHS approach is in between the 

two. This result is consistent with the result shown in Figure 3.6 and 3.7 as an 

approach with a lower throughput can have a longer response time. However, 

Figure 3.19 shows a degradation of all strategies with high disconnection 

probability for mobile transactions. The CHS can produce better throughput over 

98 



the other two approaches because the basic transaction under the FHS strategy is 

unable to get through during network disconnection. At the same time, despite 

that the MHS can carry on transaction processing with cached data it is ignoring 

the time interval during the connection period of the network. For the throughput 

of the fixed transaction, FHS strategy still have the superior over the other two 

strategies and the CHS become closer to the MHS strategy than to FHS as we can 

see in the Figure 3.20. 

Disconnection Threshold=1000 

300 

t 250 

~ .~ 200 

E3 j ~ 150 --FHS 

100 CHS 
~~ 

50 
~ 

0 
50 100 150 200 250 300 350 400 450 500 

Workload 

Figure3. 19: Throughput for mobile transactions (BW<= 1000) 

600 

j 500 
0;:: 

,s ~ 400 
~ .-

il 300 

200 
~ .. 

100 
~ 

0 

Disconnection Threshold=1000 

50 100 150 200 250 300 350 400 450 500 

Workload 

E3MHS 

--FHS 

CHS 

Figure3. 20: Throughput for fixed transactions (BW<= 1000) 

99 



100 



CHAPTER 4 

CONCURRENCY PROBLEM FOR MIXTURES 
OF TRANSACTIONS 

4.1 Introduction 
Each CC scheme enforces a specific serialization order. For example, the 

serialization order may be based on the start execution time, the completion time 

(i.e., the certification time), or a dynamically derived order, such as the data item 

access time. Based on this order, each CC scheme uses certain rules to decide 

whether or not a certain sequence of execution interleaving among transactions 

will satisfy the serialization order or requirement. However, serialization order 

can also be dynamically readjusted to resolve conflicts and reduce the number of 

transactions needed to be aborted or put into a wait state. We first consider several 

schemes without readjusting the serialization order, and then examine in Section 

different schemes that enlarge the eligible subset of serializable transactions by 

readjusting the serialization order. 

4.1.1 Without readjusting serialization order 

A TSO scheme assigns a time stamp to each transaction before it is executed. 

This time stamp usually is the start time ofthe transaction. If, during the course of 

execution, a transaction cannot be certified based on that time stamp ordering, it 

will be aborted. 

The pure OCC scheme only checks to see whether a transaction can be certified 

at the end of its execution. Thus, the certification based on a weak lock 

101 



implementation effectively tries to certify transactions based on the completion 

order. Even though the broadcast oce scheme tries to immediately abort 

transactions that are conflicting with the newly certified transaction, the 

serialization order is still based on completion times. However, the certification 

can also be based on time stamps, and the serialization order would be based on 

the time stamp order. As transactions may not complete in an order according to 

their start times, a serialization order based on start times may lead to more aborts 

than that based on completion times. 

A 2PL scheme tries to preserve a serialization order based on the data item 

access order. (An SGT scheme is another example.) Here we assume no ordering 

among the compatible lock requests. If transaction X accesses a data item after 

transaction Y with an incompatible lock request, its serialization order must come 

after transaction Y. Even when the lock modes are compatible, ifthere are already 

intervening incompatible lock requests by other transactions, the serialization 

order of transaction X must also come after transaction Y. However, if all the 

locks held are released at the commit time, the serialization order of a 2PL scheme 

will also be the same as that of the completion times ofthe transactions .. 

4.1.2 Dynamically readjusting serialization order 

Dynamic time stamp allocation [87], and time stamp interval allocation [88] 

schemes have been proposed to have the certification time stamps dynamically 

derived and re-ordered either at data item access time or at the certification time. 

These schemes are designed to address the read-write conflict issue for 

transactions with a mixed read and write behaviour. The serialization order based 

on the completion times is more restricted than necessary, and a dynamically 

derived serialization order may avoid this type of abort. The time stamp interval 

approach can be based either on TSO [7, 71], or on the oee certification 

approach. However, as pointed out in [69], the time stamp intervals derived by the 

TSO-based approach are limited since the serialization order is determined as 

soon as the conflicts occur. There are different ways to explore the concept of 

time stamp interval based on the certification- oriented approach. The basic idea is 

that each version or value of a data item is only valid for a certain period of time, 

i.e., between two consecutive updates. The transaction which has read a particular 

102 



version of a data item can only be certified with a time stamp in the valid interval 

of the data. If multiple data items are read, an intersection of their valid intervals, 

which may be null, has to be taken. Additionally, the data items updated by a 

transaction cannot be read by a certified transaction with a later time stamp. In 

[88], the timestamp or interval of timestamps was dynamically derived by 

maintaining a limited time stamp history of accessing transactions for each data 

item currently being accessed. At the transaction certification time, for each 

accessed data item the time stamp of the accessed version is compared with the 

time stamp history of the data item to determine its valid interval. This provides 

the information to re-order transactions at the certification time and to derive a 

back-shifted time stamp for certification in order to eliminate most Ul)llecessary 

aborts due to read-write conflicts. This is referred to as certification based on 

Time Stamp History (TSH). 

4.2 Mixed system model 
The purpose of this subsection is to define a mixed system model depicted in 

Figure 4.1. We assume that the database system consists of two major 

components: the transaction manager (TM) and the data manager (DM). The TM 

maintains a transaction table to record the execution status of both mobile and 

fixed host transactions in the system. The TM includes two components: 

scheduler and data manager. The scheduler is responsible for concurrency control. 

When the scheduler receives an operation, it determines whether the operation 

should be processed, blocked, or rejected. If an operation is rejected, the 

corresponding transaction will be restarted. The scheduler maintains an access­

status table to detect any possible data conflicts. For example, if 2PL is adopted 

for concurrency control, the scheduler may maintain a lock table to record the 

locking status of any data items accessed by all executing transactions (and the 

collection of the blocked transactions due to lock conflicts). The same table can 

also be used for the optimistic methods. All data access requests issued by an 

operation are handled by the DM, which retrieves the required data item. 

Transactions involved in this system consist of a sequence of read and writes 

operations, and end with a commit or an abort operation. Transactions are 

considered to be atomic processes. That is, they translate a database from a 

103 



consistent state into another consistent state. There are two types of transactions in 

this environment: fixed or wired transactions (FT) and mobile transactions (MT). 

A fixed transaction is submitted directly to a database on the same host while 

the mobile transaction is submitted by a mobile device. Like in [52], a MT is a 

mobile transaction which is issued by a mobile host. The participation of a MH 

introduces dimensions inherent to mobility such as: movement, disconnections 

and variations on the quality of communication. As we will see in the following, 

the supporting TMs have to adapt their functionalities to deal with these 

dimensions. In the scope of this work we focus on systems with a client-server 

architectures where clients are MHs or FHs interacting with databases by invoking 

transactions. 
r·:::-:::·:··W;;;i~;;jj;;k.································........................ ......................................................... _ ....... . 
-- Wired link. 
TM Transactionrnanager. 
DM Data manager. 
MH Mobile ho,t 
FH Fixed ho't. 

Ej DB 
,--MH_..J~------ § 

MH ~------ .~ 

~MH~~------I 

MH ~------

o 
" ~ 
~ 

" 
~ 

Scheduler 

DM 

C ___ J 
I 

........................................................................................................ _ ........................................ "== ... = ...... = ....... = ...... = ...... = ....... = ...... = ..... ===== .... = ....... ",1 •.. ) 

Figure4. I: Mixed system model 

In the next subsection we motivate our work in a mixed transaction environment, 

studying the blocking effect of the two-phase locking protocol which is the basic 

con currency control technique used by most commercial database management 

systems. This study will estimate the delay of two-phase locking in the presence 

of bandwidth variability [89]. 

104 



4.3 2PL-Locking Case Study 

4.3.1 Blocking Delay 
Bandwidth variability and handoff of wireless communications may cause mobile 

transaction operations to be delayed. A shared data item that is locked by a mobile 

transaction could hinder operations of other fixed or mobile host transactions from 

being executed. The delay of mobile transaction operations caused by the 

bandwidth variability can greatly affect the performance of any adopted 

concurrency control protocol. In locking-based concurrency control protocols, 

contention and blocking increase as the number of conflicting active transactions 

increase. For example, with the two-phase locking protocol, if a mobile 

transaction operation holds a lock on a data item, it remains locked until all 

mobile transaction operations are delivered. This delivery will suffer from 

transmission delay caused by bandwidth variability. As a result, the contention 

and conflicts increase and the performance of fixed host transactions will degrade 

dramatically. Although many excellent concurrency control protocols have been 

proposed for mobile database systems, most of these protocols ignore the effect of 

mobile transaction scheduling on the performance of fixed host and mobile 

transaction execution on each other. The unpredictable propagation delay of 

mobile transaction delivery imposes a serious overhead on the execution 

performance of both mobile and fixed host transactions. The mobility of clients in 

a mobile computing system also greatly affects the distribution of workload in the 

communication network. Disconnection between clients and stations is common. 

The poor quality of service provided by a mobile network seriously increases the 

overheads in resolving the data conflicts and affects the performance of existing 

concurrency control protocols which do not consider the characteristics of the 

mobile computing environment. 

4.3.2 Bandwidth variability 
Bandwidth variability occurs as the MH changes location. The ability to change 

location while retaining network connection is the key motivation for mobile 

computing. As mobile computers move, signal strength v to the device varies, 

which can cause a loss of data or variations in bandwidth. This increases the time 

between mobile transaction's operations arriving at the fixed host. As a 

105 



consequence, the number of blocked fixed host transactions will he increased. 

Bandwidth variability occurs for two main reasons: 

1. Different traffic loads: because the bandwidth is divided among the mobile 

users sharing a cell. 

2. Handoff: Due to a change in the physical location, an MH can switch its 

supporting MSS when moving to a different cell. This leads to the need for a 

hand-off procedure to enable the new MSS involved to support and maintain the 

connection with the MH. 

4.3.3 Effect of bandwidth variability 
Consider the Figure 4.2 which represents a shared data item that may be accessed 

by fixed or mobile transactions. For each data item Dj there is a queue which 

contains an operations come from both types of transactions. Assume that a 

transaction becomes an active transaction if its first operation is being scheduled 

and sent to the specified queue based on the required data item. In the presence of 

bandwidth variability, there is a high probability that the time between arrivals of 

mobile transaction operations will be of a variable length. This will result in an 

increase in the number of active transactions in the system which, in turn, 

increases the contention and wait time for both mobile and fixed host transactions. 

The wait time of a new active transaction at a data item will be the sum of the wait 

times that transactions ahead in the queue will experience in obtaining the locks 

on data items they have yet to acquire, plus the total residence time at the VO and 

CPU that will accumulate in processing these data items, together with a portion 

of the processing time for the current data item. 

I"Q~"":::""[Ql:":::::IQI':::::":I:Q~~~:::"[Q:;;::"I:Q;::::] 

[Q~:""""::rQ::"::":I:QI~:""":"]Q~:::""::]"Qr":::""::]"Q?":::::] 

[~:l""":":::""[i:l:::":]QI:":::""::""J:Q~:""::":::""IQ~~l:":":::"":r:Q)"::":"] 

Figure4. 2: Mixed transactions interleaving operations 

106 



------ ---------------------------------

In Figure 4.2, transaction Tb has to wait for the mobile transaction Ta on data item 

D" and the mobile transaction operation Oma2 on a data item DD sees pother 

mobile or fixed operations ahead of it. So, Tb remains blocked until all operations 

ahead of it release their locks (in Figure 4.2, we assume, for simplicity, that Tb has 

two operations only). In the case of low bandwidth variability, there are q 

operations instead of p that Om a2 see ahead of it, where q < p. So the blocking for 

mobile transactions is less in the case of a low bandwidth variability environment. 

In general, the blocking amount of transaction T. is a function of the queue length 

ahead of its last operation. 

In [68] the delay due to blocking is estimated analytically by using a queuing 

network model in its equilibrium state as follows. All VO is grouped as a single 

server. There is one lock server for each lockable entity in the database and its 

service time for a transaction is the total time the entity must stay locked by the 

transaction. This includes the transaction's residence time at the CPU and I/O for 

the current lock together with the delays and service times for the remaining other 

locks it has yet to acquire. Each arriving transaction will eventually circulate 

between the aggregate of lock servers, the VO and the CPU, a number of times 

equal to the total number of locks it requires. Thus, in equilibrium, an external 

arrival rate of A gives rises to transaction arrival rate of A' = k A at the lock 

servers, where k is the mean number of data items that transactions request. Also, 

since each of the N data items is equally likely to be requested, the arrival rate at 

any particular lock server will be k A IN. The indistinguishability of data items 

implies that the behaviour of any lock server will yield the same delay. The wait 

time of a new arrival at a lock server will be the sum of the wait times that 

transactions ahead in the queue will experience in obtaining the locks on data 

items they have yet to acquire, plus the total residence time at the i/o and CPU that 

will accumulate in processing these data items together with a portion of the 

processing time for the current data item. 

For the first operation of the mobile transaction the cost will be (j*(T + D ))+T 

where j is the number of locks to be acquired after the current one, T is the 

average processing time for any transaction operation at the database server. The 

107 



second T represents the processing time required for the data item currently being 

queued for. The) *(T+ D) accounts for the fact that the data item to be locked on 

the current queue will have to remain locked until the transaction acquires the 

remaining) locks (requiring) delays} and serving those) operations (requiring) 

multiples of 7). In the case of granting a lock to the mobile transaction's operation, 

it has to remain locked until the mobile transaction acquires its remaining locks. 

Let J be the average number of locks transactions require after the current one and 

q(i) the probability that the latest transaction operation sees i operations ahead of 

it. Then, the delay experienced by either fixed or mobile transactions, where the 

last delivered operation sees n operations ahead of it, becomes the average queue 

length multiplied by the time needed for each operation in the queue to get the 

lock on the data item as follows, where Q is the average queue length: 

D = q (0) *0 +q (l)*(J*(T+D) +1'} 

+q (2) *2*(J*(T+D) +1'} 

+q (3)*3*(J*(T+D) +T) + ... +q (n)*n*(J*(T+D) +T) 

= (q (O)*O+q (l)*l+q (3)*3+ ... +q (n)*n)*(J*(T+D) +T) 

= [~q(i} * i] *(J*(T+D) +1'} 

D =Q*(J*(T+D) +T)) Equ 1 

In the presence of bandwidth variability, there is a high probability for the time 

between arrivals of mobile transaction operations to be of variable length. This 

results in an increasing number of active transactions in the system. So, the 

average queue length in the presence of bandwidth variability will become Q+ 

Qinc. Based on the assumption of uniform data access, each arriving mobile or 

fixed host transaction has to visit different queues based on the data items being 

accessed by each such transaction, and the increment in queue length Qinc results 

from the increment in the number of active transactions arriving at the system 

during the delivery of the next transaction operation. Assume that Aa is the arrival 

rate for the newly active transactions from both types of transactions and k is the 

mean number of data items that transactions request (equal for both type of 

transactions). Also, since each of the N data items is equally likely to be 

108 



requested, the increment in arrival rate at any particular data item's queue will 

be k * Aa . In the case of delay due to the bandwidth variability, Qinc replaces Q in 
N 

Equ I. So, Dbv =Qinc*(J*(T+ Dbv) +T». For a Poisson arrival rate and exponential 

service time as in [89] the delay due to the bandwidth variability become 

D = Aa*k*(J*(T+Db,)+T)IN *(J*(T+D )+T)) E 2 
bv I-Aa *k*(J*(T+Db,)+T)IN bv qu 

Equ. 2 is simply a quadratic equation for Dbv with two roots. The increment in the 

delay due to the bandwidth variability will be the smaller of the two roots which is 

- (T(J + 1)(1 + 2J) - NI Aak - ~«T(J + 1)(1 + 2J) - NI ,V)' - 4 * (J' + J) * T' (J + I)' 
2*(J' +J) 

Delay 

0.1 ,., .. 0.08 a; 
'C 
c 0.06 

! __ Delay! -c 0.04 ., 
E 
i!! 0.02 
" c 

0 
0.1 0.2 0.3 0.4 0.5 

Difference in arrivals 

Figure4. 3: Delay due to bandwidth variability 

As we can see in Figure 4.3, when the difference between arrivals increases, the 

delay for both mobile and fixed active transactions will increase which will affect 

the performance of the both kinds of transactions and consume more wireless 

resources in the case of the mobile transaction. From Figure 4.3, we can draw the 

following conclusion: the 2PL protocol is no longer appropriate for a mixture of 

mobile and fixed host transactions and this should lead us to think about adapting 

two phase locking or switching to other concurrency control paradigms which 

may be more suitable in such environments. 

109 



110 



CHAPTERS 

CONCURRENCY CONTROL APPROACHES 

In this chapter, we propose the two concurrency control approaches for 

transaction mixtures which were motivated in the previous chapter in subsection 

4.3. Two approaches 'Lock-Mix' and 'aCC-Mix' are introduced. The former is a 

lock-based approach which combines the acc and 2PL protocols. The latter is an 

optimistic approach which combines the optimistic and the timestamping 

protocols. The main objective of our approaches is to overcome the limitations of 

wireless environments by avoiding restarts and blockings of mobile transactions, 

caused by fixed or other mobile transactions, while still providing an opportunity 

for fixed transactions to finish their execution. The remainder of this chapter is 

organized in the following fashion. In Section 5.1, we describe our Lock-Mix 

approach and show how it deals with mixtures of concurrent mobile and fixed 

transactions. This will be done as follows. Sections 5.l.! and 5.1.2 highlight the 

problems of locking and optimistic approaches, respectively, in mixed transaction 

environments. Qualitative comparisons between these approaches in mixed 

environments are presented in Section 5.1.3. Section 5.1.4 describes our Lock­

Mix approach in detail. After that, our aCC-Mix approach is given in Section 5.2. 

Section 5.2.1.1 discusses the difference between the time interval and fixed 

timestamp method. Section 5.2.1.2 explains two basic methods used in optimistic 

concurrency control in the validation phase. A combination of the optimistic and 

timestamp interval concurrency control approaches forms our aCC-Mix approach 

for fixed and mobile transaction mixtures. The details are presented in section 

5.2.3. 

III 



5.1 Lock-Mix approach 
The Lock-Mix approach over transaction mixtures aims to overcome the problems 

of the 2-PL and OCC protocols if each was to be the sole concurrency control 

protocol. These problems derive from the nature of conflict resolution being used 

by these protocols. 

5.1.1 Problems with a locking approach 
The two-phase locking (2PL) mechanism introduced in [85] is now accepted as 

the standard solution to the concurrency control problem in traditional DBMSs. It 

depends on there being well-formed transactions, which do not lock, again, data 

items that have been locked earlier in the transaction, and whose execution is 

divided into a growing phase, in which locks are only acquired, and a shrinking 

phase, in which locks are only released. During the shrinking phase, a transaction 

is prohibited from acquiring locks. If, during the growing phase, a transaction 

attempts to acquire a lock that has already been acquired by another transaction, it 

is forced to wait until the lock is released. In mixed transaction environments, 

locking has been found to constrain con currency and to add an unnecessary 

overhead. The following are the disadvantages of the 2PL protocol. 

• Lock maintenance represents an urmecessary overhead for read-only 

transactions, which do not affect the integrity of the database. 

• Releasing of locks is not permitted until the end of the transaction 

execution. Although not required, it is always done in practice to avoid 

cascaded aborts. It decreases concurrency. 

• Most of the time it is urmecessary to use the locking that 2PL uses, to 

guarantee consistency, since most transactions do not overlap. Locking 

may be necessary only in worst cases. 

• The performance of2PL may severely degrade our mixed system, because 

the significant increase in the total number of concurrent transactions 

results in a high lock contention level and hence a high lock conflict 

probability. Communication delay that leads to longer duration of held 

locks makes the lock conflict probability even higher. 

112 



------------------------------------------------------

To best explain these problems in the mixed transaction systems, consider the 

following example. 

Example 5.1: Consider the interleaving of operations showed in Table 5.1 below. 

Assume that transactions T\, T3 and T4 are mobile transactions and the rest of the 

transactions are fixed. 

" __ ,_"' ____ , __ """I~~!,~;;_c_t,Qp~,<l!i~~~_ interleavingf().r~!l~p.1~,~}""'" '.""' __ _ 
Time 

,6 ,s ,4 ,3 ,2 , I Data 
Item 

"","""'""",'"" '""_""""'""""""","","""" ___ ""'""'""""_ """"""""'-""'"" """'-""""""" ,~L"""""_,,,"" ,PL","",,"" 
.................. "" ............... ""._,_ ......................... "" ....... "" ....... "" ............ "" ......................... "". ~_ ,~~""' __ "",.!h, .... ," .... , 

,.', .... ,',',.,....".,',.""""".""."",,., ... ,., ...... "" ... ,.""' """"..-."".",""""""""'"""'""-"""-"., ... ~, ... """'.,_'""' .. ,.P,L"" ... ,"" 
.,.,."""...., ... ,.""""_."."".", ... ,~1 ... ,.,.".,.'""""'~l."" ...... " ... , .. ""~L, ... _.""."""~:1"" .. '""'._"",,PL.,."",.,.,. 

"""""""""_""""""'"""_""_~~"""""'""_~§"""""""'~~,"""""".Pl,""_ 
.""'"""""'"""",,'"""-"" """""'_'"" __ "_" ,.~l,_"""""p§,,, 
"","""",",""'-""" """""'"""","""",""",,,"""","" """"","""",,,,"",,"""",""_,"" .. ,~L, ..... ,_,. D7_,,"", 
".,."","",.,.,,""'"""""_""'."",.,.,.," ... ,.,""""."_._"""""",._"".., ..... ,.,.,.""",._"".,_""". __ ..,.,....\Y1,."" .. ,'_ .. "",.P,! .... ,...,."" 
""",""""_""""""",,"",,,"","", """"',"'_"" __ , """.\Y1,""_,""'p?", 

"""""",_"","","","""""""","""""","",""",!3:L,,"","",,pIQ","" 
"" ,.,'""'""' '.....;:;"'""",'"", .. ...""""""""",,,~l,.,,"""".. ...J:),l)_""" 

,~l t W.,; .. , ..... I, .. 2"............. + .. , 1\.:.:9".,_"" .......... """',t,.~$"""'~JQ,"'" .,.\Y7""""",,""",,.PIL, 
......... , ................... ,1 ......... ,', ........... , ....... "" ... , ........ "" ...................... , ....... ,.1 """"","""""".\Y1"","",J:)n,, 

In 2PL protocols (see Figure 5.1), transaction scheduling order is determined 

purely by the order in which transactions acquire locks. Once transaction Ts locks 

the data item D6, transaction Ts is not able to unlock the data item D6 until all Ts 

operations get their own lock on their data items. Transaction T6 is waiting for Ts 

and transaction T2 is waiting for T6 on the same data item Ds, Jfwe assume that 

Rs(Dd is the last operation of transaction Ts, then Rs(Ds) and WS(D6) can not 

free these data items until Rs(D I2) get its lock to obey the 2PL rules. Also, 

transactions T \, T 3, and T 4 will be delayed until T 2 frees data item D4, which may 

occur after transactions T 6, T 12, T 9, T 8, T 10, and T 7 have finished. This will result 

in a cascading delay caused by the early blocking of the 2PL protocol. 

113 



- - - -------------------------------------------------

time r 1 

""'"';fl"'"""]""""i;"""""""';r-;'"""'"""'"-"""'i';"""'" """'f';---"-"""'i';""'" 
'Rea;CLo~k(D;S;"Re~(U::ock'(D;);"Re";':(CLock(D;j";""'Rea(CLock"(D;);"""'Wrii~~L;;ck(D;;j;"" 'Wrii;;j:::ockiD~j; 

Write_Lock (D,); Write_Lock (Ds); Write_Lock (D6); Write_Lock (D,); 

Read_Lock(D1o); Write_Lock DII ); Write_Lock (DB); 

time r: 2 

TJ T2 T la 

Read_Lock (D4); Write_Lock (Ds); Read Lock (DI2); 

time r: l 

T2 T3 Tg 

Read_Lock (Ds); Read_Lock (D4); Write_Lock (D12); 

time r 4 

time r s time r 6 

Ts 

Write_Lock (D12); 

L .... "., ... "., .. ",.,., .. ,.,-, ... ,.-._"",,':.,., ... ,., ..... ,." .... "., .... "l., .. , .. " ... ,., ....... ,.,.,., ... ". __ "" .. ,.".,.,.,.,.,", .. ,.,.,."." .... ,.,., .. , ... ,. 

FigureS. : 2PL Interleaving Example 

114 



5.1.2 Problems with an OCC approach 
The goal of Optimistic Concurrency Control (OCC) proposed in [7] is to avoid 

these problems of2PL. OCC requires each transaction to consist of three phases: a 

read phase, a validation phase, and a write phase. During the read phase, all writes 

take place on local copies of the records to be written. Then, if it can be 

established during the validation phase that the changes the transaction made will 

not violate serializability with respect to all committed transactions, the local 

copies are made global. Only then, in the write phase, do these copies become 

accessible to other transactions. There are two properties of OCC that distinguish 

it from other approaches. First, synchronization is accomplished entirely by 

restarts, never blocking. Second, the decision to restart or not is made after the 

transaction has finished executing. To best explain how an OCC protocol can 

poorly effect the transaction processing in our environment; consider the 

following example. 

Example 5.2: Consider the same transactions as in Example 4.1 with the 

interleaving as shown below in Figure 5.2. In optimistic concurrency control, 

transactions are allowed to execute unhindered until they reach their commit 

point, at which time they are validated. Thus, the execution of a transaction 

consists of three phases: read, validation, and write phase. The key component 

among these is the validation phase where a transaction's destiny is decided. In 

OCC, the scheduling order is determined by the arriving order of transactions at 

the validation phase. If we assume that transaction T2 reaches its validation phase 

first, all active transactions which conflict with T2 should be restarted. 

115 



W,(DJ R,(Ds!,V, 
T2~ ____________________________ ~ ______ b-____ ~ __ __ 

............................................................................................................................. =-c- .............................. . .................................... . 
R,(D.zi W 3(Da) W 3(D1l) R3(D,) 

T3 
.. ,,,,,,, ... ,,,",,, ... ,.,,,r-. -... -.. "",-.... ,.-" ... -... __ -, __ .-,,,.,.-.. -",.".-"",_-... ,,,_-,,, .. -.. ",,,,-, __ .-,"",,-.... -., .... -.. "."-.. ,,"-."""-... ,,-".".,-.... _.-,, ..... -."."-..... "-.".".-... ,"-,_".-,.,",,-,,",.+ ... -,",,,"-, .... -.,",-",".,-.,",,,-., ..... -.T-... ,,-,,,, .. -... -, .. __ -.. _,-.. +} .... -.. ,",-, .. __ -.. -.. _"-..... _-.. 

R,(Ds! W4(D,) W,(D13) W, (D,) 
T4~ __________________________ -+ ______ +-____ ~ __ __ 

R,(DS! W,(D,) R, (D ,,) 
T5~ __________________________ -+ ______ +-____ ~ __ __ 

W6 (Ds! 
T6~ ____________________________ ~ ______ b-____ ~ __ __ 

W,(DI.zi 
T7~ __________________________ -+ ______ +-____ ~ __ __ 

...................................................................... . ......................................................... ~.-c- ................................................. .. 
W, (D,,) 

T8~ __________________________ -+ ______ +-____ ~ __ __ 
&, (D,,) 

T91-------------------------------f-------+-----b------1 
RlO(DI.zi 

TIO ~:::::::;;==========:t::===t===t=== ···--+W;;·(jj~;j···· .. ·· .. ········ .. ···················· ............ .. 

TI2~----------------------~-----f-------+----·_r-----
................... .1..................................... .......................................... _ ... __ ............................................................................................................ . 

FigureS. 2: oee Interleaving Example 

5.1.3 Qualitative comparisons 
From the traditional viewpoint, various concurrency control algorithms basically 

differ in two aspects: the time when they detect conflicts and the way that they 

resolve conflicts. The locking and optimistic approaches in their basic form 

represent the two extremes in terms of these two aspects. Locking detects conflicts 

as soon as they occur and resolves them using blocking. An optimistic scheme 

detects conflicts only at transaction commit time and resolves them using restarts. 

In mixed transaction environments, the way these approaches are used in 

resolving data conflict for such transaction mixtures makes for further differences 

between concurrency control mechanisms. The impact of these further differences 

on performance is the major theme in the performance study of con currency 

control in mixture transaction systems here. With respect to the impact of conflict 

resolution methods, the effect of blocking and restart should be considered in the 

116 



context of the available amount of system resources. Generally, a blocking-b~sed 

conflict resolution policy conserves resources, whilst a restart-based policy wastes 

more resources. Previous performance studies on conventional database systems 

have shown that locking algorithms, that resolve data conflicts by blocking 

transactions, outperform restart-oriented algorithms, in environments where 

physical resources are limited. Also, it has been shown that, if resource 

utilizations are low enough so that a large amount of wasted resources can be 

tolerated, and there are a large number of transactions available to execute, then a 

restart-oriented algorithm that allows a higher degree of concurrent execution is a 

better choice. 

In this study, we investigate the effect of blocking and restart in the context of 

mixed transaction environments. The timing of conflict detection and resolution 

also has a major impact on performance. With an optimistic algorithm using 

backward validation, delayed conflict resolution results in the wastage of more 

resources than the locking protocol, since a transaction can end up being restarted 

after having completed most of its execution. With forward validation, however, 

this problem is eliminated, since any transaction that reaches the validation phase 

is guaranteed to commit, and transactions involved in any nonserializable 

execution restart early in their read phase. Also the delayed conflict resolution of 

an optimistic approach helps better decisions to be made in conflict resolution, 

since more information about conflicting transactions is available at this later 

stage. On the other hand, the immediate conflict resolution policy of locking 

schemes may lead to useless restarts and blocking in mixed systems due to their 

lack of information on conflicting transactions at the time of conflict resolution. 

5.1.4 Approach details 
As mentioned in Section 5.1.3, a conventional 2PL scheme tends to suffer from a 

cascade of blocking. On the other hand, an OCC scheme may suffer from wasting 

of resources due to transaction aborts and restarts. In OCC, transactions become 

more vulnerable (i.e., more likely to be involved in conflicts and be marked for 

abort) as they make more progress toward completion, since more data items are 

accessed. As a result, longer transactions would incur higher abort probabilities in 

OCC. In a mixture database environment the abortion of mobile transactions by a 

117 



fixed host transaction will waste a valuable wireless resource to save a reliable 

wired resource. Furthermore, the cost of aborting a nearly completed mobile 

transaction by another mobile transaction is certainly higher than that of aborting 

a newly-started mobile transaction. 

Lock-Mix approach based on [65] addresses this issue by combining the 

advantages of both oee and 2PL. The transaction execution of both types, mobile 

and fixed, is divided into a non-blocking phase and a blocking phase. At the start 

of the execution, a fixed or mobile transaction is in the non-blocking phase where 

it simply obtains a fixed lock synchronously for each data item access. In this 

phase neither fixed nor mobile transaction will block other fixed or mobile 

transactions. After a mobile or fixed transaction has accessed a predefined number 

of data items, it tries to enter the blocking phase to prevent other transactions from 

aborting it at a late stage of its execution. It will try to convert all the fixed locks, 

on the already accessed data items, into mobile locks· as in the certification 

process of a conventional oee. If successful, the transaction will switch to the 

blocking phase. 

We have two parameters, jJ and '7, associated with fixed and mobile 

transactions respectively, which are used as metrics for determining the switching 

point from non-blocking to blocking phase. They represent predefined values 

which dictate after how many operations with their own fixed locks on their data 

items, can a switch to a blocking phase occur. Fixed host transactions, can finish 

in the first stage of their executions. For a mobile transaction, after it decides to 

enter the blocking phase, it then obtains a mobile lock on each subsequent data 

item access and waits for locks obtained by other mobile transactions which have 

already converted to the blocking phase, if held under an incompatible mode. This 

prevents mobile transactions from aborting at a late stage of their life, and also 

reduces the average holding time of a mobile lock, thus reducing the blocking 

effect caused by fixed host transactions under the pure 2PL protocol. 

J 18 



Lock-Request (Tb Op.ID, Mode, Dk) 

Begin 

If (Tj.type = mobile and Op.ID ~ '7 ) or (Tj.type = fixed and Op.ID ~ p) Then 

I I check the number of operation already granted locks on their data items to 

switch into blocking phase. 

Execute mobile lock request (Tb Mode, Dk) II switch into blocking phase. 

I Else 

l Execute fixed lock request (Tj, Mode, Dk) II stay in non-blocking phase. 
j 
j End 
l." ....... , ...................................................... "" .......................... , ...... " ..................................... , ................................................................................................... ,, .. , ............................ ; 

figureS. 3: Lock request for mobile and fixed transactions 

So, each data item can be locked in different lock modes such as shared and 

exclusive modes. Shared locks on the same data item are compatible, whilst an 

exclusive lock is incompatible with a shared lock or another exclusive lock on the 

same data item. Similarly, in the proposed scheme, the CC manager maintains a 

lock table where each data item can be locked in either shared or exclusive mode. 

Furthermore, two lock types, mobile and fixed, are used in different ways based 

on the type of requesting transaction and the order of operations inside the 

transaction as we can see in Figure 5.3. The lock type compatibility matrix is 

given in Table 5.2, and the pseudo-code for the concurrency control algorithm is 

given in Figures 5.3, 5.4, 5.5 and 5.6. As shown in Table 5.2, the mobile lock 

request is superior to the incompatible fixed lock requests denoted by "S", in the 

sense that if the requested data item is currently held by fixed locks, the 

incompatible fixed locks are released to grant the mobile lock request and the 

fixed lock holders are marked for abort. Fixed lock requests are always 

compatible with other fixed locks. A fixed lock request in shared mode and a 

mobile lock held in shared mode are regarded as compatible. Otherwise, a fixed 

lock request is not compatible with a mobile lock, and the requester has to be put 

into a wait state. 

119 



Write Y Y N N 

............................................... . ..................................................... ······ .... ······· .. ·· .. ··· .. ·········1·· .. 0··0··;:;······ .... · .. ·••·•···•·•·• .... ·1····0··,··· .. ············ .. · .. ···············i····~··,·······························1 
Mobile Read Y N,S Y N 

Write N,S N,S N N 

r·· .. ·· .. ··· .... ····· .... ····· .. "····· .. ·· .... ,, .... ··,,··· .... ·· ...... , ...... " .................................................................... " .... , ................... "', .......... , .... ,,., ............ , .............. ,,, .......... ,, .. ,, ........................... ,,') 

Execute fixed lock request (Tj, Mode, Dk) 

Begin 

If no holder on requested data item Then 

Return success Ilgrant the lock request 

Else If all holders with compatible locks Then 

Return success Ilgrant lock request 

Else wait for the lock 

End 

i 1 
1 ......... " ...... " ............ " ................. " ..... , .....••••.....•••...•.•••...•••••.•..••••••.•••••••••••.••••••••.•..••••..•••••••••••••••.•••• , ................... " ............................ " .•••• , •... " ... ,.",., ................................................ .! 

FigureS. 4: Execute fixed lock request 

120 



r-.............................................................................................................................................................................................................. · .... ·· .. ·· .. ······· ...... ······ .. · .... ········· ...... ···· .. · .... ·1 

! Execute mobile lock request (Tj, Mode, Dk) 1 
i . i 

! Begin I , , I If no holder on requested data item Then I 

! 

Return success I I grant the lock request 

Else If all holders with compatible locks Then 

Return success II grant the lock request 

Else If all holders with lock mode that can be superseded Then 

Mark the current lock holders for abort and 

Return success I I grant the lock request 

Else wait for the lock 

I End . 
i ......... " ................... " .. " .......... " .. , .................................... " .................. " ................ " .. " ................ " ..... , .......... .,,, ......................................... ,", ............... ,", ......................... " ........... , .. J 

FigureS. 5: Execute mobile lock request 

r:::;:;·~·~~i~~k·;~~~~~~··(T;:··M~d~:·D~)·············........................................ .............. ··············1 

If the unlock request is on a mobile lock type Then 

If lock wait queue is not empty Then 

If mobile lock waiting Then 

Grant the next mobile lock request and subsequent 

compatible mobile and fixed lock requests 

Else if no mobile lock waiting Then 

Grant all pending compatible fixed lock requests 

Else II no fixed lock waiting 

Grant all pending fixed lock requests 

, ..... ~~.~ .................................................................................................................................................................................... 1 
Figure5. 6: Execute unlock request 

121 



As we see from the figures above that describe the Lock-Mix protocol, the 

execution of a fixed transaction is scheduled as in the conventional 2PL protocol 

until the commit time. So, the possibility that a fixed transaction aborts or blocks a 

mobile transaction is highly reduced. Furthermore, a mobile transaction may be 

blocked by a fixed host transaction if the number of the fixed transaction executed 

operations exceeds 11 . A mobile transaction, which aborts as a result of converting 

a fixed transaction from a non-blocking to a blocking stage, will be in its early 

stages. To explain why this approach is better than the 2PL and OCC approaches 

for transaction mixtures, considers the following example. 

Example 5.3: Consider the same transactions as in Example 5.1 with the same 

operation interleaving. Figure 5.7 below shows the lock request for each 

transaction under the Lock-Mix approach. In the Lock-Mix protocol, the fixed 

lock is used to simulate the OCC protocol and the mobile lock is used to simulate 

blocking resulting from conflicts of mobile and other mobile or fixed transactions. 

Recall, that the two parameters 1) and 11, associated with fixed and mobile 

transactions respectively, are used as a metrics for determining the switching point 

from a non-blocking to a blocking phase. Assume that 1) = 4, 11 = 6 the Lock-Mix 

protocol can be illustrated as follows: 

122 



-- - ----------------- -

time r 1 

TI TJ T5 T4 T7 T2 

F'ji:Jock-(D;y;------Pji:JoCk"(D;);----- --- F _ iCiock-(D~);---F'=Rjock(D;j;-----Ovj~ck--(D;;j;-F'.::w)o-cF(D~j;---

F _ W _lock (D,); F _ W Jock (DB); F _ W Jock (D6); F _ W Jock (D,); 

F _RJock (DlO); F _ W Jock (Du); F_ W_lock (D,,); 

All transactions (fixed and mobile) are granted their fixed lock request because 

Op.ID < 4 for mobile transactions and Op.ID<6 for fixed transactions. 

time r 2 

.. "'"_."" .. ,.,_"." .... ".,."._,.".".,."".,,., .. ,,_ ...... " .... , ..... ,_._ .•. ". __ ."."._,."._.,."._ .... "._., .... _..... ·"_""·· ___ ··,·"·"" .. H."···""._·· .. ". __ ··"_······,, .• _·,,." ... _ .. " .• _ •. ", ... "," •. _... .." .•.•. "" ..•. _"._ •. "." .... ""." .••••. _ .. "" ...... ~ ..... '" .• " .... _."_ .• _.,,_ •..... 

T2 TIO 

..• " .•.... " .. -."."._." .•... _"." .•. _" .. "._ .•. "".,,.,,"._ .. _." •.. ".-...•.•... _"_ .. " .•....•.• _." .•.. _-•.... _ ... _-_._--,_ .. " ... " .••. _"_ .. _"-_ .. " .•.. "._ •.. "." ..... " ... _." .•. " .... " .•...•..•.. "" .•.... " ... ,_."._ .. ,, .. _-.""._."._ .. _"."."." .. _"-'.".'.' .. ".-
T I: grant the lock on D4 

T 2: marked for abort 

time T 1 

T2 TJ Ts 
-F'.::Rjock(D;);------- --- --- -ii(R)ock(D~); --- ---- - -- ----- F'::W Jock (D,;); 

T J: grant the lock on D4 

time r 4 

T 4: wait for T 1 and T 2 on D4 

time r 5 time r 6 
."._ ..•. _-_ •.•... _ •... -._ ... "" .•.•. "._ .. "." ...•. "_ ..•. " .•..... _ .... "" .. "._-"_._-,.,," .. _.". _."."_ .. " .. " .. _ ...... _._ ..... "."" .•. _." ... _ .... ,,,, ..... ' .. "._._."."-" .. _."."'.'-" ... -."_.'_."._ .. 

T 12 Ts 
------F'.::Wjock-(D;;j;-------------------F'.::R:jock-(D;S;-----------

.. "" ..•. " .......... _._"." ...•. "_ ... ,, ......... " .....• _ ..... "" ...•. "._ .. " ... "... .._ .... _." .. , .. " .•.. "." •... "." ..•. ,,-,,_. __ .•. ,,_ •.•. "."._._" ... _ .. " .•... __ ..... _._ ..... "_.,.,, .. 
Figure5. 7: Lock-Mix Interleaving Example 

123 



Both fixed and mobile transactions start their execution by requesting a fixed read 

and write lock. After the mobile transaction executes its fourth operation, it will 

switch to the blocking phase and can't be restarted by the fixed transaction or 

other mobile transactions. The same is true for the fixed transaction after 

executing its sixth operation. In Figure 5.7 above, transactions T!, T3 and T4 are 

willing to lock the data item 04, which is already locked by transaction T 2. Since 

RI (04) is the 4th operation ofT!, it will acquire a IIlobile lock on 04. Because the 

mobile lock requested by TI supersedes the fixed lock granted to transaction T2 on 

D4, T2 will be marked for abort and TI granted a mobile lock on D4. So, TI is 

switched into a blocking stage and can not be marked for abort by other fixed or 

mobile transactions. When transaction T3 tries to get the lock on D4 it succeeds 

because it's compatible with RI (D4). Transaction T4 tries to get a mobile lock on 

D4 in an exclusive mode. So, it has to wait for unlock (D4) by transaction TI and 

T3. Since the remaining number of operations for the transactions to switch to 

their blocking stage is less than transaction length, (this depends on thel) , f.J 

values) we expect a reasonable reduction in the average blocking time for all 

mobile transactions. Thus, transactions TI and T3 don't have to wait for 

transaction T2 which would have to wait for T5, T6, T7, T9, Ts, TI2 and TIO in order 

to unlock the data item D4 according to the 2PL protocol. On the other hand, other 

transactions still have the opportunity to finish their execution without being 

restarted by other fixed or mobile transactions that enter their validation phase 

according to the pure OCC protocol. 

5.2 OCC-Mix approach 
Flexibility of a timestamp interval over a fixed timestamp method along with the 

validation process of the OCC protocol, make the OCC-Mix approach a promising 

candidate for scheduling mobile and fixed transaction mixtures where the main 

part of such mixtures suffers from wireless constraints. 

5.2.1 Time interval versus fixed timestamp 
In a fixed timestamp method, timestamps are chosen for transactions when they 

begin. Whenever a transaction makes a request that would create a conflict 

between itself and another transaction, the timestamps of the two transactions are 

124 



compared. If the order of the timestamps is the same as the serialization order 

required by the conflict, the request is allowed; otherwise the requesting 

transaction is aborted and restarted with a new timestamp. Thus, the transaction 

serialization order is essentially fixed in advance, which has the potential to cause 

many unnecessary aborts. Using the Time Intervals method [87] each transaction 

has two timestamps. These timestamps can be thought of as the upper and lower 

bounds of an interval of timestamp time in which the transaction must appear in 

the serialization order. Time intervals are partially ordered, with the relations 

'<'applying only to intervals that are disjoint (note that non-disjoint intervals can 

always be truncated in such a way as to impose either ordering on them). Every 

transaction's initial interval spans the entire allowable timestamp range, 

representing the fact that there is no restriction on its place in the serialization 

order until it encounters conflicts with other transactions. When a conflict is 

encountered, the time intervals of the transactions involved are compared. If the 

intervals are disjoint, then their relative ordering has already been established; in 

this situation the algorithm is exactly the same as for the tied timestamp case. On 

the other hand, if the intervals overlap, then they can certainly be truncated so as 

to effect the desired ordering, after which the request can be granted. In the 

limiting case, an interval may be shrunk down to a single point, which is then no 

different in its interpretation than a fixed timestamp. 

5.2.2 Forward versus backward validation 
In optimistic con currency control, transactions are allowed to execute unhindered 

until they reach their commit point, at which time they are validated. Thus, the 

execution of a transaction consists of three phases: a read phase, a validation 

phase, and a write phase. During the read phase, all writes take place on local 

copies of the records to be written. Then, if it can be established during the 

validation phase that the changes the transaction made will not violate 

serializability with respect to all committed transactions, the local copies are made 

global. Only then, in the write phase, do these copies become accessible to other 

transactions. There are two properties of oce that distinguish it from other 

approaches. First, synchronization is accomplished entirely by restarts, never 

blocking. Second, the decision to restart or not is made after the transaction has 

125 



finished executing. The key component among these is the validation phase Where 

a transaction's destiny is decided. Validation comes in several flavours, but every 

validation scheme is based on the following principle to ensure serializability: "If 

a transaction Ti is serialized before transaction Tj, the write of Ti should not affect 

the read phase of T/,. Generally most validation processes can be carried out 

basically in either of the following two ways [4]. 

5.2.2.1 Forward Validation 

In this scheme, validation of a transaction is done against currently running 

transactions. This process is based on the assumption that the validating 

transaction is ahead of every concurrently running transaction still in read phase in 

the serialization order. Thus the detection of data conflicts is carried out by 

comparing the write set of the validating transaction and the read set of active 

transactions. That is, if an active transaction, Ti has read an object that has been 

concurrently written by the validating transaction, the value of the object used by 

Ti is not consistent. Such data conflicts can be resolved by restarting either the 

validating transaction or the conflicting transactions in the read phase. Optimistic 

algorithms based on this validation process are studied in [4, 71]. 

Let Ta (a = I, 2, ... , n, a * v) be the conflicting transactions in their read phase. 

Then the forward validation can be described by the procedure in Figure 5.8. 

; ............................................... , ...... , ......... "'" ......................................... ,"' .......... " ...................................................... , ........ , .................................. " .................... " ............ ~ 
'j Validate (Tv); 

Begin 
valid:= true; 

For each Tc (c = 1,2, ... , n) 
Begin 

IfWS (Tc) nRS (Tv) * [] Tben 
valid := false; 
If not valid Then exit loop; 

End 
If valid Then 
Commit WS (Tv) to database 

Else 
restart (Tv); 

End 
I .......... j ................................ . ...................... ·· .. ····· ...... · .... ·FIgw:e5:··i!':··FoiWa;(j"vaji'd·aii~n·· ... · ........................................................ .. 

126 



-- ---- ----------------------------------------------------------------------------

5.2.2.Z-Backward-\"alidation 

In this scheme, the validation process is carried out against (recently) 

committed transactions. Data conflicts are detected by comparing the read set of 

the validating transaction and the write set of committed transactions, since it is 

obvious that committed transactions precede' the validating transaction in 

serialization order. Such data conflicts should be resolved to ensure serializability. 

The only way to do this is to restart the validating transaction. The classical 

optimistic algorithm in [4] is based on this validation process. Let Tv be the 

validating transaction and Te (c = 1, 2, .... , n, c * v) be the transactions recently 

committed with respect to Tv, Le., those transactions that commit between the 

time when Tv starts executing and the time at which Tv enters the validation phase. 

Let RS (T) and WS (T) denote the read set and write set of transaction T, 

respectively. Then the backward validation operation can be described by the 

procedure in Figure 5.9. 

r~I~~~---------------1 
For each Ta (a = 1, 2, ... , n) I 

Begin 
If RS (Ta) n WS (Tv) * [] Then 
valid := false; 

End 
If valid Then 

commit WS (Tv) to database 
Else 

conflict resolution (Tv); ! 
J End \ 
I ..................................................................................................................................................................................................................................................................... .1 

FigureS. 9: Backward validation 

5.2.3 Approach details 
Our OCC-Mix is an optimistic protocol based on the dynamic adjustment of 

serialization order. As in [69], OCe-Mix uses the notion of timestamp intervals 

to record and represent serialization orders induced by concurrency dynamics. 

Timestamps are associated with both transactions and data items. Each data item 

has a read and a write times tamp, where the read and the write timestamps are the 

127 



timestamps of last committed transactions that have read or written to the data 

item, respectively. For each transaction, OCC-Mix associates with each active 

transaction a timestamp interval expressed as a [lower bound (lb), upper bound 

(ub)] pair. The timestamp interval denotes the validity interval of a transaction. 

The timestamp intervals are also used to denote serialization order between 

transactions. For example, if Ti (with timestamp interval [lbj,ubd) is serialized 

before Tj (with timestamp interval [lbj ,ubj]), denoted Ti ~ Tj, then the following 

relation must hold: Ubi. < lbj . 

5.2.3.1 Adjustment oftimestamp interval 
Each transaction at the start of execution is assigned a timestamp interval of [0, 

<Xl], i.e., the entire timestamp space. As the transaction proceeds through its 

lifetime in the system, its timestamp interval is adjusted to reflect serialization 

dependencies as they are induced. Serialization dependencies may need to be 

modified either when a transaction is accessing data items in its read phase, or 

when it belongs to the conflict set of a different validating transaction. 

5.2.3.1.1 Adjustment at the read phase 
In this phase, the timestamp interval is adjusted with regard to the read and 

write timestamps of the data item read or updated. In the process of adjusting, 

the timestamp interval may 'shut out', i.e., become empty. In such a case, the 

transaction cannot be successfully serialized and needs to be restarted. Note that 

this is one of the major differences between conventional protocols and protocols 

based on dynamic adjustment of serialization order. In conventional OCC 

algorithms, restarts can only occur at validation times. In our case, however, 

transactions can restart at other times if a timestamp interval shut out is detected. 

The exact mechanics for these adjustments are shown in the procedures given in 

Figure 5.1 O. Note that, in the remainder sections, we use the notation TI(Tj ) to 

denote the timestamp interval of transaction Tj and RTS (Dj) and WTS(Dj ) to 

denote the read and write timestamps respectively of data item Dj. As a 

transaction successfully validates, a final timestamp is assigned to it. 

128 



- - - - ----------------------------------

1~~~::u~D::;~----------l 
Begin 

End 

Read (Di); 
TI (Ta) = TI (Ta) n [WTS (Di), 00] 
IfTI (Ta) = [] Then Restart (Ta); 

End 
For each Dj in WS (Ta) 

Begin 
Pre-write (Di); 
TI (Ta) = TI (Ta) n [WTS (Di),oo] n [RTS (Dj), 00 ] 
IfTI (Ta) = [] Then Restart (Ta); 

End 

i .................... , ..... , .. ", ........ ,,,.,, ............ ,, ....... ,,, ............................ " ...... " ....... , ..................... , .......................... , ......... , ............................ , .... " ..... , ...... ,,', ......................... , ........... : 

FigureS. 10: Adjustment ofTI (Ta) at the read phase 

5.2.3.1.2 Adjustment at the validation phase 
In the case of being in the conflict set of a different validating transaction, the 

timestamp interval of the active transaction is modified to dynamically adjust the 

serialization order. The adjustment of the serialization order for both mobile and 

fixed transactions implemented with timestamp intervals creates a partial order 

between transactions based on conflicts and transaction type. Suppose we have a 

validating transaction Tv and an active transaction Ta. Let TS (Tv) be the final 

timestamp of the validating transaction Tv and TI (Ta) the timestamp interval of 

the active transaction Ta. Let TI (Tv) be the timestamp interval of the validating 

transaction and type (Tj) be the transaction type where type (Ti) E {mobile, fixed}. 

We assume here that there is no blind write. So, there are two possible types of 

conflicts which are resolved using adjustment of serialization order between Tv 

and Ta: 

(1) read-write conflict which occur when the RS (Tv) n WS (Ta) *' rp which can 

be resolved by forward adjustment. 

(2) write-read conflict which occur when the RS (Ta) n WS (Tv) '" rp and 

resolved by backward adjustment.. 

129 



- -- - -----------~------~------------------------------------------------------

, ........................................ "' ................................................................................................................................................................................. • ...... ·· .. · .. ···· .... ··· .... •·• .. ··•· .. •· .. ·· .. 1 

i Iterate conflicting transaction (Ta, T ,) i 
! ' 
j Begin I 

I
, ForallDjE(RS(T,)VWS(T,)) I 

B~n . 
j For each Ta E conflicting set ofthe validating transaction 
! Begin 

End 

If Dj E (RS (T,) n ws (Ta)) Then 
Forward adjustment (Ta, Tv); 

If Dj E (RS(Ta) nWS(T,))Then 
Backward adjustment (Ta, T v); 

End 

I 
1 End ! 
I ................................................ " ...... , ................................................... " .............. " ....... , ....... ", ........ , .................. , ........ , ....... , ........ , ....... " .............................................. " ............. j 

FigureS. 11: Iterate ReadsetlWriteset of Validating Transaction 

The adjustment of timestamp intervals (TI) in Figure 5.11 iterates through the 

read set (RS) and write set (WS) ofthe validating transaction (T v). First we check 

that the validating transaction has read from committed transactions. This is done 

by checking data item's read timestamp (RTS) and write timestamp (WST). These 

values are fetched when the read/write operation to the current data item is made. 

Then, the algorithm iterates the set of active conflicting transactions. When 

access has been made to the same objects both in the validating transaction 

and in the active transaction, the temporal time interval of the active transaction is 

adjusted. Non- serializable execution is detected when the timestamp interval of 

an active transaction becomes empty. If the timestamp interval is empty the 

transaction is restarted. 

5.4.1.2.1 Forward adjustment 
A read-write conflict between T, and Ta can be resolved by adjusting the 

timestamp interval of the active transaction forward (i.e. T, -? Ta). Suppose that 

the validating transaction is a mobile transaction and the active transaction is a 

fixed transaction. In this case, there is no need for the timestamp interval of the 

mobile transaction to be reduced because the fixed transaction has a fair 

opportunity to continue execution without affecting the validating mobile 

transaction. If the validating transaction is a fixed host transaction which has a 

130 



conflict with a mobile transaction, the mobile transaction should obtain the 

advantage. This is achieved by reducing the timestamp interval of the validating 

fixed host transaction and selecting a new final timestamp earlier in the timestamp 

interval; see Section 5.4.2. Normally, the current time or the maximum value from 

the timestamp interval is selected, but now a different value is selected based on a 

predefined cr -value. As the cr -value increases, the opportunity for the active 

mobile transaction to commit increases at the expense of the fixed host 

transaction. When the cr -value = 2 this means that the validating fixed host 

transaction reduces its interval by a half, to the advantage of active mobile 

transactions. 

Example S.4: Let TI (TJ) = [20, 60), TS (TJ) = 60 and TI (T2) = [10, 80). Let 

. TJ.type = fixed and T2.type=mobile. Assume we have a read-write conflict 

between transactions TJ and T2 and cr=2. We first make more room for the 

mobile transaction T2 and then move the mobile transaction forward. 

TS (TJ) = 20+l
60

; 20 J =40 

TI (T2) = [10, 80] n [40,00] = [40, 80] 

The resulting selected value should be within the times tamp interval. This offers a 

greater chance for the mobile transaction to commit in its timestamp interval. If 

this resulting point cannot be selected, the validating transaction is restarted. This 

is wasted execution, but it is required to ensure the execution of the mobile 

transaction. This forward adjustment can be described by the procedure in Figure 

5.12. 

131 



["'F'~fe~~~Adj~~t;'~~~"(T~:T~)"""""""""""'""""",',"", .. ,"',...." .. ,'"',',', .. " .. ,,, .......... , ...... ," """\ 

If Tv,type = = Fixed Then 
If Ta.type = = Mobile Then 

TS(Tv )' = min(TI(Tv» +l TS(Tv) -:in(TI(Tv ) J 
If TS(Tv)'> max «TI (Ta» Then 

Restart (Tv); 
Else 

TI (Ta) = TI (Ta) n [TS(TJ' ,00] 
Else Ta,type = =Fixed 

TI (Ta) =TI (Ta) n [TS(Tv),oo] 
If TI (Ta) = [] Then Restart (Ta) 

Else Tv.type = =Mobile 
TI (Ta) = TI (Ta) n [TS (Tv), 00] i 

End If TI (Ta) = [] Then Restart (Ta); I 
...... ,', .. " ...... " ...... , ................................................................................................... ,,, ....... " ..................... " ...... " ... " ....... " .......................................................................... ,, •• J 

FigureS. 12: Forward adjustment 

Example 5.5: Forward adjustment 
Let Ri (x) and Wi (x) denote a read and write operation, respectively, on the data 

item x by transaction i, and let Vi and Ci denote the validation and commit of 

transaction i, respectively. Consider three transactions T), T2, and T3: 

TI: RI (DI) WI (D3) RI (D2) VI 

T2: W2 (D2) W2 (D4) V2, 

T3: ," W3 (DI) V3 

Now, suppose they execute as follows: 

H =,,, RI (DI) W3 (DI) V3 W2 (D2) Wl (D3) W2 (D4) RI (D2) VI V2· 

132 



- - - - -----~~~~~~~~~~~~~~~~~~~~-----~~~-

RTS 40 
•••••• •• ••• "" •• ·_·,.,,_.· __ •• _ •• H·H. _ .............................. " ....... _". 

WTS 20 
.......................................... H ................................................................................................. . 

RTS 50 
.......... H .................................... __ ................................. ___ ....... ___ 

WTS 30 
... _ •.••.• __ •.••••• w ........... _ •.• _ .. _ ............ __ ......... H .......... H •• _ .. _ •••• _ .. • .. ···H ........ •••• ..... ·.·.··._ .. _···· ... 

DJ RTS 30 '-:................................... .... 
WTS 65 ............................... --. + .. :::':=:---....... +~ c··· .......... ·· ..j 
RTS 40 
WTS 75 .......................... __ ...... L .... :.: ..... : .. ::: ................ L.: .. ~ ...................... _.J 

Operation 

RI (01) TI (TI) =[0, 00] n [20,00] [20,00] 

W,(D I ) TI (T3) =[0, 00] n [20, 00] n [40,00] [40,00] 

v, TS(T 3)= validation time=81 [40,81] 

C;··..····f .. T:::OI .. ·(·::T= .. I· ): .... =·· .. :[·2=·0:: .. ,· .. · .. 00 .... ·']· .... n""""'["0:",'8:'0=': l' .. ·-· .... ----.. ·· .... · .......... · .... 1 (zo;"ii"oj""'''''' 
After backward adjustment of TI (T I) 

W2 (02) TI (T2) =[0, 00) n [30,00 In [50,00] [50,00] 
... H ............................. ___ ........ _.H .......... H ......... _ ............ _ .... _H ......... H ......... _ ........ _ ...................... _ .............................. _ ....... __ ............................................. ................ H •••••••••• H .......... HH· .. • ••• H···H_" ••••• 

WI(D,) TI (TI) =[20,80] n [30, 00] n [65,00] [65,80] 

W;(O~)- .. ·-TnT;);;;[56:· .. ;:;y .. ·j'i"·[46:;:;lii(i5; .. ;:;T·t7s;;;;r ...... · .. 
R;(O;j- -TlcT;y.;;;[6S;soY" .. F\T:i6; .. ;:;Yrl'[s6; .. ;:;r .. [6S;S .. oy........... 
VI TS(TI)= validation time=1 00 

......................... _~. ___ •••• __ ......... ___ ................ __ .............................................. __ ."' ...... __ ..... _ .............. _._ ........ _ ...... _ ..... " ...... • __ ............. H ...... •••• ~ ......... ~ .......... "" ••• _ •• __ ...... __ "' ...... . 

Figure5 .. 13: processing for example 5.5 

Figure 5.13 shows how the timestamp intervals for transactions are adjusted with 

respect to the RST and WST of the data items accessed by these transactions. Let 

us illustrate the forward adjustment by taking the following scenarios: 

(I) T\ fixed and T2 mobile (active: mobile, validating: fixed, read/write conflict). 

(2) T\ fixed and T2 fixed (active: fixed, validating: fixed, read/write conflict). 

(3) T\ mobile and T2 mobile (active: mobile, validating: mobile, read/write 

conflict). 

(4) T\ mobile and T2 fixed (active: fixed, validating: mobile, read/write conflict). 

133 



Let the validation time of transaction T,=lOO. Because 100 iO TI (T,), we select 

max (TI (T,» to be the final commit timestamp. So TS (T,) = 80. At the validation 

time of transaction T" we find that RS (T,) nws (T2) = {02}. So, transaction T2 

is in the conflict active set of T, with a read-write conflict, which results in a 

forward adjustment of transaction T 2. In scenario (1), since the validation 

transaction is fixed and the active is mobile, we first ensure that the validation of 

the fixed transaction T, will not result in restarting the mobile transaction T 2 by 

checking that TS(TJ), < Max (TI (T2»' 

TS(T
J
)' = min(TI(T

J
» + l TS(TJ ) - :in(TI(TJ) J 

. l80-65J Assume er = 2, then TS(TJ), = mm([80, 00» + 2 =67 

Because the condition is satisfied (i.e. 67< 00), we first make more room for the 

mobile transaction T 2 and then move the transaction forward. So, the time interval 

of T2 becomes TI (T2) = [75,00] n [67,00] = [67,00] and transaction T, is 

successfully validated against the mobile transaction T2 and commits with a final 

timestamp TS (T,) =67. For the other scenarios (2), (3) and (4), the forward 

adjustment ofTl (T2) will be as follows: TI (T2) = [75,00] n [80,00] = [80,00]. 

And transaction T, is successfully validated and commits with a final timestamp 

TS (T,) =80. 

Example 5.6: Forward adjustment: 

Consider three transactions T" T2, and T3: which are different from transactions in 

Example 4.5. 

T,: R, (0,) w, (02) R, (03) v, 

T2: R2 (02) W2 (04) V2. 

T3: ... W3 (0,) V3 

Now, suppose that these transactions execute as follows: 

H2 = ... R, (0,) W3 (0,) V3 R2 (02) w, (D2) W2 (D4) R, (03) V2V,. 

Figure 5.14 shows how the timestamp intervals for transactions have been 

adjusted with respect to the RST and WST of the data items accessed by these 

transactions. 

134 



Consider the same scenarios as in Example 5.5. Forward adjustment will work as 

follows: 

In scenario (I), since the validation transaction is fixed and the active is mobile, we 

first ensure that the validation of the fixed transaction T 2 will not result in restarting 

the mobile transaction T,. 

T8(T
2

), = min(TI(T
2

)) + l T8(T2 ) - :in(TI(T2 ) J 

. l100-65J Assume a= 2, then T8(T2 ), = mm([65,100)) + 2 =82. 

8ince T8(TJ' > Max (TI (T,)), that is 82>max ([65, 80]), the validating fixed 

transaction T2 will be restarted and give the mobile transaction T, the opportunity 

to continue its execution and commit. For the others scenarios (2), (3) and (4), 

forward adjustment ofTI (T,) will be as follows: TI (T,) = [65, 80] n [100,00] = 

[J, since 

TI (T,) is empty, Transaction T, will be restarted and T2 will commit with a final 

timestamp T8 (T2) =100. 

135 



.................................... , ....................................................... , ............................... , 
D RTS 40 

1 WTS 20 
.............. _ ....................................... _ ...................... : .. -

RTS 50 
D2 ...... - .. WTs·····3o 

..•.•... _"'".",._"""'""_ .• · ___ ···'· __ H_'"""","" .• ___ .•. " , .•.•. _" ..... _""'"." •••. 

D3 ....... gI§ ........... ~_Q .. 
WTS 65 
RTS 40 D. . .................................. - ...................................... . 
WTS 65 

IOperatiou .. · .............. ··-·· .. · .. ·· ........ -.. -·---.. ·· .............. ·· .. ··· .. ·......··· .. ···TI(TS ........ · 
........................... """"".""""." .... ,,.,", ... " , .•.•...•.•.... " ... "." .. ".""."" ........ " .•............ " .•. ----"' .. -." .. ----.--.--.-.. ""."""'-.-~" .. --.-., ... , .. ,.-"""""""'''"'"'", .. ".. ._-"".,"",,""'.,",.,", ..•... __ ........... _."_. 
R,(D,) TI (T1) =[0,00] n [20,00] [20,00] 

TS(T3)= validation time=81 [40,81] 

After backward adjustment of TI (T I) 

TI (T2) =[0, 00] n [30,00]n [50,00] [50,00] 
"""""".,",", ••••••••••••• ,"", •• ,.,,"""",""".", ••••••• ," ••••••••••••• " •••• """"'."" .. _.,.,,"_ •••••••••• __ ,,.".". __ """." ..... e· __ ·······"··"·""'"" .. "."............. .""","",",""."" ............. ,.""",,",,,",,,", •• , 

TI (T1) =[20,80] n[30, 00] n [50,00] [50,80] 

W,(D,) TI(T2)=[50,00] n [40,00]n [65,00] [65,00] 

R:;··(D;r"" TI (TI) =[65,80] n [30, oo]n [50,00 ]·"(6{SOj""" 
v, TS(T 1)= validation time= 1 00 

l."" ..................... """".'.' __ """," "_, .. , , __ ."... . .. __ .'._' ___ ""'_"'''' __ ''' __ . __ ._.'. __ .'.'' __ '''''""''''''"'''' .•. ___ ._, .. ,_,,,,""", .. ,, •. ,,, __ ,,,,,,,,.,,_, __ ",.,_", .. , .. ,"_." •.•.. " __ .'_'_''''""'''"'. ._ .•.....•.•. ,_"","", .. , 

Figure5. 14: processing for example 5.6 

5.4.1.2.2 Backward adjustment 

A write-read conflict between Tv and Ta can be resolved by adjusting the 

timestamp interval of the active transaction backward, (i.e. Ta 7 Tv). If the 

validating is a mobile transaction and the active conflicting is a fixed transaction, 

backward adjustment is appropriate in the sense that it gives the fixed transaction 

its opportunity to continue its execution without affecting the validating mobile 

transaction. If the validating transaction is fixed and the active conflicting 

transaction is mobile, then backward adjustment is done if the active transaction is 

not aborted in backward adjustment. Otherwise, the validating transaction is 

restarted. This is wasted execution, but it is required to ensure the execution of the 

136 



- -~ -- -- -----------------------

mobile transaction. In backward adjustment, we cannot move the validating 

transaction to the future to obtain more space for the mobile transaction. We can 

only check if the timestamp interval of the mobile transaction would become 

empty. In forward ordering we can move the final timestamp backward if there is 

space in the timestamp interval of the validating transaction. Again we check if 

the timestamp interval of the mobile transaction would shut out. We have chosen 

to abort the validating transaction when the timestamp interval of the mobile 

transaction shuts out. Thus, this protocol favours the mobile transaction that uses 

scarce and expensive resources. Backward adjustment can be described by the 

procedure in Figure 5.\5. 
1··········· .... ,··········· .. ,·· .. ··········· .. ·········· .... " ............................................... ,'" ..................................... , ............................. ,'" ................ " ............. ", ............... " .............. ····· .... 1 

I Backward Adjustment (To, Tv) 1 
, B . I 
~ ~n : 

If (Tv.type = = Fixed) Then . 
If (Ta. type = = Mobile) Then 

If (TS (Tv) - I < Min (TI (Ta» Then 
Restart (Tv); 

Else 
TI (Ta) = TI (Ta) n [0, TS (Tv)-I] 

Else Ta.type = = Fixed 
TI (Ta) = TI (Ta) n [0, TS (Tv)-l] 
IfTI (Ta) = [] Then Restart (Ta) 

Else Tv.type = =Mobile 
TI (Ta) = TI (Ta) n [0, TS (Tv)-IJ 

I End If TI (Ta) = [] Then Restart (Ta) I 

L .............................. , .. , ............ " .............................. " ............. " ............... "" .... , .............................. " .............. " ..................... , ............................... " •. , .......... " ...................... 1 

FigureS. 15: Backward Adjustment 

Example 5.7: backward adjustment: 
Consider three transactions TI, T2, and T3: 

TI:RI (DI) WI (D3) WI (D2) VI 

T2:R2 (D2) W2 (D4) ... V2 

T3: ... W3 (DI) V3 

Now, suppose they execute as follows: 

H = ... RI (DI) W3 (DI) V3 R2 (D2) WI (D3) W2 (D4) WI (D2) VI ... V2. 

Figure 5.16 shows how the timestamp intervals for transactions have been 

adjusted with respect to the RST and WST of the data items accessed by these 

transactions. 

137 



We will consider two cases (a) and (b) based on the WTS (D4) for the following 

scenarios: 

(I) T! fixed and T2 mobile (active: mobile, validating: fixed, write/read conflict) 

(2) T2 fixed and TI mobile (active: fixed, validating: mobile, write/read conflict) 

1 ....................... C::;:':l~.~ .. (':IL" ,."". 
D 1.!3,:r."~ ... " ...... ,, f.~Q 

WTS 20 
··D;"·"····"··· J~I§.:::·.:·.: f:~:Q: 

Case (b 

D 1.!3,!~ .. "..40 
WTS 20 ."." .. _" .•.. "" .. , .•.•.•. __ .•.•.•. _-_ ....... _ .•. __ . " ... , .. " .. """",,,,"_ .. ,, .. 

D2 .. !3,!~.......~.Q .. 
WTS 30 WTS 30 .. _-------_. __ .. _-_.,. ".", .•. _. __ ........ __ .... __ .....•... ,._ .... _---_. •....•..........•. , ..... __ .•.......•.•. , .............. __ .. """.",, ......... """",,"" 

D3.!3,!~."."".. .}Q D3.!3,T§"....}.Q .. 
WTS 65 WTS 65 

D4 RTS 40 D4 RTS 40 
WTS 65 WTS 75 

Operation TI(Tj) 

······R;(D;)"·· TI (TI) =[0, 00] n [20,00] [20,00] 

:::::~~(~;i::I~i::~~:):~[:~:::::~:::::~:~::~::::~::~":t~:~,:?:::~.~~:::~::::::::::: 
V3 TS(T3)= validation time=7l [40,81] 

........ ... TI (TI) =[40, 00] n [0,70]T4Ci;"7·6j"······" 

C3 After backward adjustment of TI (TI) 
I···················· .. ······· .. · ··1·=·:· .. ·:=,,·:· .. ·····:··:· .... ········:······,,····:·::· .. :."" ........ : .. " ...................... ··1 .. ······ .. ···· .... ······ .. ·· .. ···· .. ,,···· .. ·· 

R2 (D2) TI (T2) =[0, 00] n [30,00] [30,00] 
'."'." .. " ....... , .•... __ ." .. _--_ .•. __ . __ ._._. -_.".""'" .. __ .,."." .. " ..... " .................... _--_ .•.• ----_. __ .. __ ... "._ .. _._-"'""."---"."""" .•.... __ ...• -."._-•....•.•.•.•. __ ... .._-_ .•. __ .•.•. __ .•.• " .... _-_._" .... "'"._"-

W
2
(D3) TI (TI) =[40,70] m30, 00] n [65,00] [65,70] 

~.."" ... "." ....... " ..... ·1········" .. ···· .. ··,,·"·'·"·'·'·"·'·'···'·'"·''··''·'''· .. =, .. ················ .. ··········=·········"····" .. ,,,,··1 ............................ . 
TI (T2) =[30, 00] n [40,00]n [65,00] [65,00] 

W
2
(D4) TI(T2)=[30,00] n [40,00]n [75,00] [75,00] 

1··
W
·······I·""("D·····2···)···· "·+·=T==I· "(·':T:!··')····=·····=[· 6·"5=,'·7='0==]· ···"n'"··· !'[:·3·:··O'··,·" '··00"·'·':]·'·["";;:1"'·'[·5':· 0"··,·'00·'·'·'=]'··'+"[65·;76]""··"····· 

VI TS(T 1)= validation time=90 

Figure5. 16: processing for example 5.7 

Case (a): WTS (D4) = 65: 

In scenario (1), the timestamp interval of transaction T 2 after executing W 2 (D4) 

will be set to [65,00]. For transaction TI, because the validation time does not 

138 



belong to TI (T!) we chose max (TI (T!}) as a final commit timestamp (which is 

70). At the validation time ofT!, transaction T2 is in the active conflict set ofT! 

with write-read conflict WS (T!) n RS (T2) = {D2}. So, TI(T2} will be backward 

adjusted as follows: we first make sure that the validation of the fixed transaction 

still gives an opportunity for the mobile transaction to be validated (Le.(T!)-

1 <min(TI(T2}}; then do the adjustment TI (T2) =[65, 00] n [0,69]= [65,69]. So, 

T! is successfully validated and T2 still has the opportunity to be validated in the 

time interval TI (T2) = [65,.69]. 

In scenario (2), the validating transaction T! is mobile. So, we do the backward 

adjustment for the fixed transaction T 2 directly as follow: TI (T 2) = [65,00] n [0, 

69] = [65, 69]. Then, we check if the interval is shut out. If so the fixed 

transaction will be restarted. 

Case Cb): WTS (D4) = 75: 

In scenario (I), the timestamp interval of transaction T2 after executing W2 (D4) 

will be [75,00]' For transaction TJ, because the validation time=90 does not 

belong to the TI (T l ) we choose max (TI (T!}) as the final commit timestamp 

(which is 70). At the validation time of T!, transaction T2 is in the active conflict 

set of the transaction T! with write-read conflict WS(T l } n RS(T2}={D2}. So, 

TI(T2) will be backward adjusted as follows: we first make sure that the validation 

of the fixed transaction still gives an opportunity for the mobile transaction to be 

validated (Le. TS(T!)-l<min(TI(T2)}; then do the adjustment; since 70-1<75 and 

the validating transaction T! will result in restarting the mobile transaction T2, we 

chose to restart T!. As a result, T2 still has an opportunity to complete its 

execution and it may successfully validate. 

In scenario (2), since the validating transaction T! is mobile, T! is validated first. 

Then, we do the backward adjustment for the fixed transaction T2 as follows. TI 

(T2) = [75,00] n [0, 69] = []. Since the timestamp interval of T2 is shut out, the 

fixed transaction will be restarted. In general, if the validating and the active 

conflict transactions are not backward adjusted before, the active conflicting 

transaction will be never restarted by the validating transaction in such a case. 

This is true for all possible scenarios for both mobile and fixed transactions. 

139 



5.2.3.2 Final timestamp selection 
In the aCC-Mix protocol, we should select the final (commit) timestamp TS (Tv) 

in such a way that room is left for backward adjustment. In our validation 

algorithm Figure 5.17, we set TS (Tv) as the validation time if it belongs to the 

time interval of Tv or the maximum value from the time interval otherwise. To 

justify our choice consider the following example: 

Example 5.8: Let RTS(x) and WTS(x) be initialized to 100, and let transactions 

T" T2 and history H, where TI.type= T2.type = mobile, be as follows: 

TI: RI(x) WI (x) VI Cl. 

T2: R2(x) V2 C2 

H = RI(x) R2(x) WI (x) VI. 

Consider the two cases (a) and (b): 

Case a: TS (Tv) = max (TI (Tv}) 
As before, transactions T I and T 2 are forward adjusted to [100,00). Transaction T I 

starts the validation at time 1000, and the final (commit) timestamp is selected to 

be TS (TI) = validation_time =1000. Because we have one write-read conflict 

between the validating transaction TI and the active transaction T2, the timestamp 

interval of the active transaction must be adjusted: TI(T2)=[100, 00) n [0,999J 

=[100,999]. Thus, the timestamp interval is not empty, and we have avoided 

unnecessary restart. Both transactions commit successfully. History H is acyclic, 

that is, serializable. Therefore the selection TS (Tv) = max (TI (Tv» avoids the 

unnecessary restart problem. 

Case b: TS (Tv) = min (TI (Tv)} 
Transaction TI executes RI(x) which causes the timestamp interval of the 

transaction to be forward adjusted to [100,00); Then, T2 executes a read operation 

on the same object, which causes the timestamp interval of the transaction to be 

forward adjusted similarly, e.g. to [100,00). TI then executes WI(x) which causes 

the timestamp interval of the transaction to be forward adjusted to [100,00). TI 

starts the validation, and the final (commit) timestamp is selected to be TS (TI) 

=min ([100,00» =100. Because we have one write-read conflict between the 

validating transaction TI and the active transaction T2, the timestamp interval of 

140 



the active transaction must be adjusted. Thus TI(T2)=[IOO, oo)n [0,99] =[]. The 

timestamp interval is shut out, and must be restarted. However this restart is 

unnecessary, because history H is acyclic and so serializable. Taking the 

minimum as the commit timestamp (TS (Tl» was not a good choice here. 

................................. ........ "'..............................................................................············ ........ ···· .. ······1 
Select final time stamp (Tv) ! 

Begin 
If (validation_time) E TI (Tv) Then 

TS (Tv) = validation time; 

I_~'~:·:m::~:)~ ___________ _ 
FigureS. 17: Select commit timestamp 

We have also used a deferred dynamic adjustment of serialization order. In the 

deferred dynamic adjustment of serialization order all adjustments of timestamp 

intervals are done to temporal variables (i.e. the timestamp intervals of all 

conflicting active transactions are adjusted after the validating transaction is 

guaranteed to commit). If a validating transaction is aborted no adjustments are 

done. Adjustment of the conflicting transaction would be unnecessary since no 

conflict is present in the history. after abortion of the validating transaction. 

Unnecessary adjustments may later cause more restarts. 

Finally, in Figure 5.18 current read timestamps and write timestamps of 

accessed data items are updated and changes to the database are committed. 

-u~:;:~~7:~~:~::~~;ws~-------1 
Begin 

If(Dj E RS(Tv»Then 
RTS (Dj) = max (RTS (Di», TS (Tv»; 
If(Dj E WS (Tv» Then 
WTS (Dj) = max (WTS (Dj», TS (Tv»; 

End 
End Commits (Tv) to database; I 

: .................................. ,""" .... " ...... "',, ...................................................................................................... " ............... , ............. , ............ , ......................................................... J 

FigureS. 18: Update Data Item Timestamps 

141 



-------

A backward and forward with deferred adjustment algorithm previously 

described, creates an order between conflicting transaction timestamp intervals. A 

final (commit) timestamp is selected from the remaining timestamp interval of the 

validating transaction. Therefore, the final timestamps of the transactions create a 

partial order between transactions. 

142 



CHAPTER 6 

PERFORMANCE EVALUATION 

We have constructed and conducted a series of simulation experiments to evaluate 

and compare the performance of our concurrency control approaches on mixed 

transactions environments. In the following sections, we discuss the simulation 

model, the workload being used, performance metrics, and finally present our 

research findings in these experiments. 

6.1 Simulation model 
A simulator has been written to imitate our architecture indicated by Figure 4.2. 

The simulator models both fixed and mobile parts. Stationary units are classified 

as either fixed hosts or base stations. Fixed hosts are database servers connected to 

the existing wired network. Such a server is accessible by two types of users -

users who use the wired reliable network and the users who are not capable of 

connecting directly to these information servers. A base station is equipped with a 

wireless interface and works as a coordinator and communication interface 

between the mobile units and the stationary unit. Based on this, there are two 

types of transactions, mobile transactions submitted by the mobile clients, and 

fixed transactions submitted by wired client. Both are processed at the database 

server. Mobile and fixed host transactions consist of both read and write 

operations. Each data object has an equal chance of being accessed by any 

transaction's operation. To simulate this, two generators are implemented. The 

fixed host generator is responsible for the generation of the fixed host' 

transactions. The second generator is for mobile transactions with specific 

attributes that imitate both the mobile device and the wireless environment 

discussed before. 

143 



During execution time, a transaction may need user interaction to input data. 

Many studies have pointed out that the cost of communication setup is very 

expensive [91]. To avoid re-establishing communication each time the transaction 

needs the user's interaction, we assume that the communication is kept during the 

execution of the mobile transaction. Transactions generated, both fixed and 

mobile, are lined up in the CPU queue according to the first-in, first-out 

scheduling discipline. When the CPU is available, the transaction at the front of 

the CPU queue is submitted for processing; To read a data object, transactions 

need to line up in the disk queue for data access. Transactions will repeat these 

steps until all operations are processed. In this system, different data structures 

have been used for different approaches. For example, a data object table and a 

transaction table are maintained. The data obj ect table keeps a read times tamp and 

a write timestamp for each data object in the database and the transaction table 

maintains the read set, the write set and the timestamp interval of each transaction. 

J)l.[SC 

•• 

Figure6. I: Wireless part of mixed transaction environment 

When the mobile unit is within the cell of a base station, the base'station will 

provide a communication channel available in this cell. Due to movement of a 

mobile user, when a mobile user enters a new cell, the new base station should 

provide an idle channel to the mobile unit to sustain its communication. This 

process is called a 'handoff'. If there is no idle channel in the new cell to provide 

for the user, disconnection will occur. The disconnection of an active mobile 

transaction wastes system resources, since the transaction should be rolled back 

and restarted later. 

In general, the wireless part consists of a number of cells, each of them 

controlled by a mobile support station (MSS) and a group of MS Ss is governed by 

144 



one base station controller (BSC). A group of BSCs is governed by one mobile 

switching centre (MSC) which has a connection to the fixed host server as in 

Figure 6.1. The mobility of each mobile host is modelled by estimating the 

number of visited base stations during transaction execution. The. visited base 

station for each mobile host is randomly selected when the handoff occur. This 

will affect the number of users in each cell during the simulation, and this affects 

the available bandwidth experienced by the mobile host as a consequence. These 

factors (i.e. number of users in a cell and the handoff process) are simulated 

through changing the time between arrivals of mobile transaction operations. The 

power consumption is measured by monitoring the three basic energy-metric 

factors: (i) transmission power required to send a message (i.e. operation), (ii) 

reception power required receiving or listening toa message, and (iii) idle power 

required to stay in at the active state (awake) during transaction execution. 

Therefore, the power consumed by any mobile host during each execution is given 

by the summations of three terms as follows: 

Power consumption (MHj) = L NOpS * f3 + L NDR * a + L (0 * Idel_ time 

where NOpS is the number of operations sent by Ti, NDR is the number of data 

received by Ti, and fJ and a are fixed costs associated with each operation and 

data item at the time of sending of the operation and receiving the data item, 

respectively; w is the idle power required to stay in at the active state (awake) 

during transaction execution. 

6.2 Parameter setting 
Table 6.1 gives the parameters that control system resources. The parameters, 

CPUTime and DiskTime capture the CPU and disk processing times per data item. 

Table 6.1 also summarizes the key parameters that characterize system workload 

and transactions. The numbers of data objects accessed by a transaction are 

determined randomly from the database. 

145 



....... ... I~.l?1.~.~:!:~l!!!1IIl~Lof~9E~I'?~~.l!~~~X'?~.g.Il:~.t)!!!l~~'!:P~Ei!!1~!l.t~..., .. 
System parameters 

'-"" •.•.•. '.' •.•. ' .... "" •.... " •....•.....• " ...• " .... ",."." .... , ....... " •...• " •.. ,.,." ........... " .. , .. , .. ".".''''' .. '''''.' ....... " .•...• " .. " .... "" ............ " .............. , .•... '''.''''' ............. , ...... , .•. , •.... -:-
Reported value per test session means of 1 0 times replication of each 

-_ ..•.• " ...•.•... __ ._._--_._._ ...•. _-._."_.-. __ ._ .. "., .••. -.. "."., ...• _._---_ ...... " ....• " ...... " .. -._ .. ,,_ ... ,,- .. " .....•. ""._-_.-._ .. ,,--..•.•...•.•. ,,-_ ... ---_._ .•.• '" ... _" ......... " ...• "." ..• "'" .....• " ....... " ..•. ". __ .•.••.. -""" .. ".,._-"_.'. 

Database size 500 data items 
........ "--_.-... __ .".-."_ ...•. " ..... __ . __ . __ .... ,, •...•. "" .... ""., .. _-_ ... -... " ....•. "" ...• ,,." ... _--.•. _" .... , ..• """".'.' .. '~"'--'-'''''-'~'-'-'''"'--.''"'--'''"'-'"''''"'--.".".--."-_ .•..•. -... "" ...•.. _ .•. ,-"," .. _-.".-...•. , ..... " •.... ",," .•.• '"""' .... 

CPUTime 2 time units loperation 
DiskTime 5 time units/data item 

1'~~.~~:~i~~~!s~~p!~~~'::" .. ::"":::____::J.~':'.:':~.~~!:~~;:~~~~ou~.':.:':"::'''.::.::'::.'''''':':~:':""'.'. 
"~:~.~~?~.~~~.i~.~!~?~.:?~.!."..............,, .. j..... .... .... ~.?"~~~.:"~~.~~~:?p:~~!~.?~" ..... " ...... ,, .... ,, .... . 
Receive communication cost 5 time units! control message 

" •• " ................ " ...... _"" ...... " ..... " ....... " ...... __ ."." ....... _ •• • .. • .. " •• • .. • .. " ..... ··""· .... ···,,, .. • ........ e· ........... • ........... """ __ ..... " ••• " .... " ......... " ..... "._ ..... _"_ ••• _,, ...... " ............... "._ •• "" .. ".,,, ....... ,, ..... ,, .. _." .... _ ...... _ ... __ ........ " ••• """ ... "._. 

Transaction parameters 
•• "." •• """ .......... " ....... " ..... " ... " •• ""."" .. ,,." .............. "."_"_."._"" •• " .... " .................. " ..... " __ ,,.,,." ..... " •••••• "" .... "" ... e ... ""." .. " ••• " ... "." .... _" ..... " ..... ,,." ........... ,, ....... " _ _ .... "." ........ ~" .... ".N~ .. _._" ......... "." •• """."._ ...... ,," ... " .... .. 

Multiprogramming level 10-100 concurrent transactions of both 
Mobile transaction Percentages 20%, 50%, 80% 

"",,,,,,,,,,,,,,,,,,,,,,-,,,,,,,,,, .............. , ...... _--,, .. ,.,,.-.""' .. ''''-_ .. _ .. _.,._-' .. __ ... _ ..... -........ """"'-"'''-'''''''-''''''''''." .. ''''''_'''''''' __ ''''_.''''''''''.""'.'."""'''.''''-'-''''''.'-''.'-''''''''.'''''-_.' ..... _ .. ',., ....... -...... "''''-'' 

Fixed host transaction length 3 - 15 
TBA of fixed transaction operations 2 - 5 uniformly distributed 
'p'~obab;iityof"dEico;:;;:;~ctio;:;"'"'' 0.1 ,0.2, 0.3 

............... " .•..•.•....• " •.. " •...•. " .. "" •...•. " ..•. " .... " .•. "" •... "" •... " •.... , ...... ", ....• _--''' .•. '''' ... '''' •.•. ''''''.''' ...•. " ..•. '''' ....• " •.. '''' .•. ''' .•. "" ..... "" .... "" .. " ....... " .....•.•... " ... " .... " •... 
Mobility values 1,2,3,4, and 5 BS/transaction 

.... " ........... " ....... " ....................... "" .. e ... """ .... " ••• e"" •• "·· ........ " .......... "." ... " ..... , ........ " ... ·._., .. "·,, ...... ,,."".e'''''' ... " ... _ .................................. " .............. "."." ...... " .... · ... " ......... " ....... "" ......... ", •.. " .......... _ ....... "".e ....... "." ......... " .. " •. "" ..... ".". 

Power of the mobile host 200 - 600 ms 
h':1obiie'tra;:;sactio;:;i;;;:;gih'"''''''''''''''''3=TS""operatio;:;s'''"""",.,,,,,..,.." 
•• e ... "."· ... • ....... ·"· .. "·""" •••• ··"" .... ·,, ..... ·,,_· ... ·,," .... • .. ·"" •• " .... " ..... "._ •• _" ......... " ••• "."" •• " ............ _ ..... " •• "." ...... "."" ..... "._ ••••• " .. _ ••• ___ "." ... _".""_ .... " ... ",, ....... ,,_ .... "" ..... " ... " •• " •• "" •• " .... "."._"."."."." •• " ••• "., .. ".".". 

Fixed transaction WriteProb 0,5 

M"hi1p transaction WriteProb 0.5 

6.3 Performance metrics 
In our mixed environment, different performance measures are used to 

demonstrate the effectiveness of the protocols. For example, the restart ratio 

which measures the amount of restarts experienced by a mobile and fixed 

transaction before it can commit. The power consumption ratio (PCR) for 

mobile transactions indicates the amount of resource spent resulting from the 

blocking and restarting overheads of transactions. Reducing these overheads not 

only saves resources, but also helps to soothe resource and data contention. 

Mobile transaction rollback frequency and the fixed transaction rollback 

frequency help to analyze the source of transaction restarts. The frequencies can 

reflect the proportion of data conflict between mobile and fixed transactions and 

that among mobile transactions as the utilization of mobile transactions varies. 

The last performance measure specifically for the GCC-Mix approach is the 

146 



average adjustment made per transaction. This metric can help to understand the 

effectiveness of the OCC-Mix approach at different mobile transaction 

percentages. The formulas of the main performance measures are listed below. 

Power consumption ratio (PCR) = P initial P final 

N restart 
Restart ratio = --==-­

N committed 

Fixed transaction rollback frequency = 

P initial 

N fIXed ,restart 

N committed 

N mobile ,restart 
Mobile transaction rollback frequency = 

N committed 

Na 
Average adjustment = -----"-----

N commited + N restart 

Where 

N restart: number of restarted transaction of both types. 

Ncommitted: number of committed transactions of both types. 

Nmobile, restart: number of committed mobile transactions which caused other mobile 

transactions to be restarted. 

Nflxed, restart: number of committed mobile transactions which caused other fixed 

transactions to be restarted. 

Na: total number of adjustments made. 

6.4 Experiments and results 

6.4.1 Experiment 1: Impact of mobility 

6.4.1.1 Power consumption ratio 
Figure 6.2 gives the power consumption rate as a function of the mean mobility 

value when 20% of transactions present in the system are mobile transactions. 

Since the number of base stations crossed by a mobile transaction increases as 

147 



mobility increases, the delay between mobile transaction operations increases and 

the average number of active transactions increase. The Lock-Mix approach is 

affected by the blocking overhead of mobile transactions caused by other fixed or 

mobile transactions which are switch into their blocking stage even if this mobile 

transaction has to wait for a few lock requests. The acc protocol has the worst 

performance for all mobile transaction percentages. This is due to the large 

number of restarted mobile transactions by the fixed host transaction. Despite that, 

the performance of the acc protocol becomes close to the Lock-Mix approach as 

the percentage of mobile transactions increases. This is not due to an improvement 

of the acc protocol, but, rather, a degrading of the performance of the Lock-Mix 

approach. For the aCC-Mix approach, it works well by eliminating blocking 

overhead. The PCR reduction problem under this approach still exists because of 

restarting of mobile transactions. The improvement made by aCC-Mix over 

Lock-Mix in reducing the PCR is degraded when the percentage of mobile 

transactions increases as a consequence of increasing conflict between the mobile 

transactions themselves. So, the best improvement for the aCC-Mix can be 

gained when the fixed and mobile percentages are equal in Figure 6.3. In Figure 

6.4, the Lock-Mix approach become closer to the aCC-Mix approach when the 

majority of transactions present in the system are mobile. As part of the overall 

improvement, the PCR is increased for all approaches with increasing the 

percentage of mobile transactions. 

148 



0.14 

0.12 

0.1 

0.08 

~ 0.06 

0.04 

0.02 

0 

0.1 

0.09 
0.08 
0.07 

~ 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 

0 

MT=20% 

_Occ.Mix 

_Lock-Mix 

-·",,~oce 

1 2 3 4 5 

Mobility(Vlsited BSITrans) 

Figure6. 2: Power consumption ratio (MT = 20%) 

MT=5O% 

1 2 3 4 

M obility(Vis ite d BSITrans) 

5 

_occ.Mix 
___ Lock-Mix 

-.",,- oce 

Figure6. 3: Power consumption ratio (MT = 50%) 

149 



0.25 

0.2 

~ 
0.15 

0.1 

0.05 

0 

MT=80% 

1 2 3 4 

Mobility(Visited BSfTrans) 

5 

_OCCMix 

_Lock_Mix 

~)<C-O= 

Figure6. 4: Power consumption ratio (MT = 80%) 

6.4.1.2 Disconnection 
Figures 6.5, 6.6, and 6.7 shows the disconnection of mobile hosts for all protocols, 

when the mobile transaction percentages are 20%, 50% and 80% respectively, as a 

function of client mobility. To examine the impact of mobility for a mobile user, 

we vary the amount of mobility, which represents the expected residence time 

that user stay in a cell or the (average)expected number of cells that mobile users 

may cross per time unit. In a fast mobility environment, a transaction is less likely 

to complete in one cell, so the frequency of handoffs may increase. This also 

increases the disconnection of mobile transactions. For all protocols, 

disconnection increases as mobility increases. But, different disconnection ratios 

can be observed for different protocols. 

In the Lock-Mix approach, when the percentage of mobile transactions increases 

as in Figures 6.6 and 6.7, the effect of blocking increases. This is due to an 

increasing number of active transactions, both mobile and fixed, which enter their 

blocking phase. This will lengthen the time for mobile transactions to finish their 

execution and, as a result of that, they will suffer from disconnection more than 

other approaches. For the OCC-Mix approach, the performance decreases as the 

percentages of mobile transactions increases. This is due to increasing probability 

for mobile transactions to be in the conflict set of a validating mobile transaction. 

So, for a mobile transaction, there is an increase in the probability of being 

150 



disconnected as it may experience a cell with no available channels to offer. For 

the ace protocol, the difference in its perfonnance doesn't change significantly 

an increase of mobile transaction percentages. So, the differences between these 

protocols are not significant in Figure 6.7, when the percentage of mobile 

transaction is 80%. 

0.016 

0.014 

I 
0.012 

0.01 

0.008 

'0.006 

0.004 

0.002 

0 

MT=20% 

1 2 3 4 5 

Mobilty(Visited BSlTrans) 

• OCC-Mx 

• Lock-Mix 

--7<:--- oce 

Figure6. 5: Mobile transaction aborts due to disconnection (MT = 20%) 

0.1 

0.09 
0.08 

6 0.07 

J 
0.06 
0.05 
0.04 
0.03 

0.02 
0.01 

0 

MT=50'% 

1 2 3 4 5 

Mobilty(Visited BSlTrans) 

_OCC-Mix 

-Lock-Mix 
____ OCC 

Figure6. 6: Mobile transaction aborts due to disconnection (MT = 50%) 

151 



0.25 

0.2 

1 
0.15 

0.1 

0.05 

0 

MT=80% 

1 2 3 4 5 

Mobilty(Visited BSlTrans) 

_OCC-Mx 

_Lock-Mx 

--><0--- OCC 

Figure6. 7: Mobile transaction aborts due to disconnection (MT = 80%) 

6.4.1.3 Throughput 
Figure 6.8 give the throughput of mobile transactions. When the percentage of 

mobile transactions is 20%, there is no significant degradation in throughput. The 

reason for this is that when the mobility of users increases, the probability of 

disconnection increases, so that the degree of data contention will decrease. As a 

consequence, the degradation of transaction throughput is not significant. Figure 

6.9 shows that OCC-Mix has the best throughput when there are an equal number 

of both mobile and fixed transactions. The Lock-Mix approach has a better 

transaction throughput than the other two protoeols when the majority of 

transactions present in the system are mobile; see Figure 6.10. In Figure 6.1 0 

when the mobile transactions dominate, the Lock-Mix approach still outperforms 

other protocols. This means that it is better to block the mobile transaction when it 

has few remaining operations, like in the Lock-Mix approach, instead of restarting 

the mobile transaction from scratch. 

152 



MT=20% 

J o.:~~~ 0.6~~ 
0.4~ 

_OCG-Mx 

_Lock-Mx 

-->(-OCC 

J 

1 2 3 4 5 

Mobility(Visited BSlTrans) 

Figure6. 8: Throughput of mobile transactions (MT = 20 %) 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
1 

MT=50% 

2 3 4 

Mobility(Vislted BSlTrans) 

5 

_oce-Mix 
___ Lock-Mix 

--¥-o= 

Figure6. 9: Throughput of mobile transactions (MT = 50 %) 

153 



0.5 
0.45 

0.4 

j 
0.35 

0.3 

0.25 
0.2 

0.15 

0.1 
0.05 

0 
1 

MT=80% 

2 3 4 

Mobilily(Visiled BSlTrans) 

5 

_oce-Mix 

_Lock-Mix 

~-~'>"- ace 

Figure6. 10: Throughput of mobile transactions (MT = 80 %) 

6.4.1.4 Restart ratio 
Figure 6.11 and 6.12 gives the restart ratio when 20% of transactions present in 

the system are mobile, for mobile and fixed transactions, respectively. As the 

mobility increases, the restart ratio increases slightly. In the OCC-Mix approach, 

most of the data conflicts are among mobile and fixed transactions. The restart 

ratios under the OCC-Mix and Lock-Mix approaches are similar when mobility is 

low. As mobility increases, the difference between OCC-Mix and Lock-Mix 

becomes notable. Figure 6.12 shows the opposite behaviour of these approaches 

for fixed transactions. From these figures we can see the Lock-Mix improvement 

of decreasing mobile transaction restarts while sustaining a comparable result with 

other protocols in term of fixed transaction restart. Figure 6.13 and 6.14 gives the 

restart ratio when the utilization of mobile transactions is 50 percent. Note that 

the restart ratio become notable at low mobility value. This is due to the presence 

of mobile transactions. The restart ratio of both mobile and fixed transactions 

increases as mobility increases, until it is reaches a peak for the Lock-Mix 

approach when the mobility is 4. That is, there is an increasing delay betwe.en 

mobile transaction operations as the number of mobile transactions increases. 

When the mobility is greater than 3, the number of simultaneously active 

transactions increases in the system and this increases the blocking effect of the 

Lock-Mix approach. Even so, the Lock-Mix approach performs better than other 

154 



- -- - - - - - ------------------------------

protocols because of its flexible blocking nature of mobile transaction. When the 

mobility is greater than 4, restart ratio decreases under all protocols. This is due to 

an increasing number of disconnected mobile clients, which decreases data 

contention in the system and this leads the Lock-Mix approach to be slightly 

better than aCC-Mix when the mobility is greater than 4. 

MT=20% 

~ 0.8 
III 
~ 0.7 
t: 
III 0.6 ~ 

'" " 0.5 __ OCC-Mix ~ 

c g 
" 

0.4 ___ Lock-Mix 
III 0.3 -...-OCC '" C 
III 0.2 ~ 
~ 

.!! 0.1 :;; 
0 0 :::;; 

2 3 4 5 

Mobilily(VisitedBSlTrans) 

Figure6. 11: Restart ratio for mobile transactions (MT = 20 %) 

MT=20% 

0 0.5 
'" III 0.45 ~ 

1: 0.4 
~ 

'" 0.35 e 0.3 __ OCC-Mix 
c 
~ 0.25 ___ Lock-Mix 
u 0.2 cv -...-.OCC 
'" 0.15 c 
f! 0.1 ~ 

'" 0.05 Q) 

" 0 u:: 
1 2 3 4 5 

Mobility(VisitedBSfTrans) 

Figure6. 12: Restart ratio for fixed transactions (MT = 20 %) 

155 



Figure6. 13: Restart ratio for mobile transactions (MT = 50 %) 

Figure6. 14: Restart ratio for fixed transactions (MT = 50 %) 

156 



Figure6. IS: Restart ratio for mobile transactions (MT = 80 %) 

Figure6. 16: Restart ratio for fixed transactions (MT = 80 %) 

Figure 6.15 gives the restart ratio when the system utilization of mobile 

transactions is 80 percent. In this experiment, due to the domination of mobile 

transactions, the improvement made by the OCC-Mix and Lock-Mix approaches 

is less than in Figure 6.13 where the utilization of mobile and fixed transactions 

are equally likely in the system. This domination of mobile transactions leads to 

the situation where most of the data conflicts are among mobile transaction 

157 



themselves. The restart ratio of the OCC-Mix approach reaches a peak when the 

mobility is around 3. For the OCC and Lock-Mix approaches they reach peaks 

when the mobility is also 3. As mobility increases, the disconnection of mobile 

hosts increases and the restart ratio decreases as a side effect of this situation. This 

can also be deduced Figure 6.14 and Figure 6.16 for the restart rate of fixed host 

transactions, where oce improves in this experiment as the possibility for 

restarted mobile transactions coming from other committed mobile transactions 

increases. In particular, such a reasonable reduction of the mobile restart ratio 

saves much wireless resource from processing unnecessarily restarted mobile 

transactions, so that other mobile transactions have more opportunity to complete 

their execution while moving. 

6.4.2 Experiments 2: Impact of transaction length 

6.4.2.1 Restart ratio 
In Figure 6.17, we vary the transaction length from 3 operations to 15 operations. 

The restart rate of all protocols increases when the length of the mobile 

transactions increases. The length is defined as the number of operations in a 

transaction. In order to access more data objects, a mobile transaction may have to 

span over a larger number of cells. As a result, it is more likely for it to be 

affected by the congestion at the visited base stations. In addition, the prolonged 

execution time also increases the chances of having data conflicts with mobile and 

fixed transactions because more transactions will be executed concurrently with 

the mobile transaction. Because a mobile transaction may suffer from high data 

conflict under OCC and OCC-Mix, or have to wait more if the Lock-Mix 

approach is being applied, their probability of being restarted increases and so 

does their PCR. On the other hand, OCC-Mix out performs other protocols 

especially when transactions are longer than 9 operations. Figures 6.17, 5.18 and 

5.19 show the restart ratio of all protocols when the mobile transaction 

percentages are 20%, 50% and 80% respectively. 

158 



0 

~ 

I 
1 
.ll 

~ 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 
3 

MT=20% 

6 9 12 

Transaction length 

15 

_oce-Mix 
_Lock-Mx 

-,;.-0= 

Figure6. 17: Restart ratio for mobile transactions (MT = 20 %), TL 

MT=50% 

0.9 

~ ~ 0.8 

0.7~~~~ I 
I 
.ll 

~ 

0.6~ 

o 
3 6 9 12 

Transaction length 

15 

_OCG-Mix 

___ Lock-Mx 

---,A-oce 

Figure6. 18: Restart ratio for mobile transactions (MT = 50%), TL 

159 



0.9 

~ 0.8 

I 
0.7 

0.6 

E 0.5 

j 0.4 

0.3 

0.2 
J! 

~ 
0.1 

0 

MT=80% 

3 6 9 12 

Transaction length 

15 

-+,--- aCC-Mx 
____ Lock-Mx 

--;Ik-- ace 

Figure6. 19: Restart ratio for mobile transactions (MT = 80 %), TL 

6.4.2.2 Disconnection 
Figure 6.20 shows mobile transaction aborts due to disconnection of mobile hosts 

for these protocols for different transaction lengths. We can see that the 

disconnection grows when transaction length increases. This is because a 

transaction is less likely to complete in one cell, so the frequency of handoffs 

increases and disconnection increases. This figure resembles the effect of mobility 

on aborts due to disconnection in Figure 6.7. Further to that, the increment of 

transaction length increases the probability of data conflicts between the 

concurrent transactions being executed. So, the abort rate will increase as the 

percentage of mobile transaction increases, as we see in Figure 6.21 and Figure 

6.22, when the mobile transaction percentages are 50% and 80% respectively. 

160 



25 

20 

I 15 

10 

5 

0 
3 

MT=20% 

6 9 12 

Transaction length 

15 

_OCC-Mx 

_Lock-Mx 

--x-oce 

Figure6. 20: Mobile transaction aborts due to disconnection (MT = 20%) 

60 

50 

I 
40 

30 

20 

10 

0 
3 

MT=20% 

6 9 12 

Transaction length 

15 

_OCC-Mx 

_Lock-Mx 
__ oce 

Figure6. 21: Mobile transaction aborts due to disconnection (MT = 50%) 

161 



I 

MT=80% 

80 ~""""C"'~~-,--,--~~.,...",~-=> 

7 0 -J-:."-'--"-'--'---:''---:''---:''---:''---:'~ 

60 +-:"-'--~"-"-'--"-~~~t:h4 Cz:c 

50~~~~~~~~~~~~ 
40 +-:'-----",---:,,---:,~,---:,~q '2'-/-~'-----"~"'--l 

30-J-:.~~~~~~~~_~~~~ 

20 +-:~~~~~~~~~'---:''---:'~'---:''''--l 

10 +-:~~~~~,z~'---:''---:'~'---:''---:''''--l 

o 
3 6 9 12 15 

Transaction length 

_OCC-Mix 

_Lock-Mx 
__ OCC 

Figure6. 22: Mobile transaction aborts due to disconnection (MT = 80%) 

6.4.3 Experiments 3: Impact of data contention 

6.4.3.1 Restart ratio 
Different degrees of data contention may affect the system performance when 

these protocols are applied. In these experiments, we simulate transaction 

executions for different proportions of read and write operations in a mobile 

transaction. Figure 6.23 shows the restart rate for mobile transactions as the write 

probability varies when 20% transactions present in the system are mobile. It can 

be seen that there is no difference between the performances of the protocols at 

both ends of the write probability. When all operations are read, there is no data 

conflict and no adjustment is required. It makes no difference which OCC 

protocol is employed. On the other hand, when all operations are writing, the 

. performance of the OCC-Mix approach is the same as that of the other two 

protocols because it is impossible to adjust the serialization order between the 

conflicting transactions since all data conflicts are not adjustable. The OCC-Mix 

approach resembles the OCC protocol when all operations are either read or write. 

Therefore, the OCC-Mix approach functions more effectively when transactions 

have a mix of both read and write operations. For the Lock-Mix approach, the 

increase of mobile transaction restarts come as a result of restarting those 

transactions at the non-blocking phase of their executions. Figures 6.24 and 6.25 

162 



-- - -- ----------------------------------------------------------

give the restart rate when the mobile transactions percentages are 50% percent and 

80%, respectively. Since there are both read and write operations in mobile 

transactions, when there is write-read conflict between a mobile transaction and a 

fixed transaction, the fixed transaction restart can be avoided by backward 

adjusting the fixed transaction. On the other hand, when all operations in fixed 

transactions are writes, the situation becomes similar to that in Figure 6.23. All 

data conflicts are serious and no adjustment can be made. For the Lock-Mix 

protocol, when all transactions are read only transactions, it has the similar 

performance to other protocols. But, when the restart ratio increases highly under 

these protoeols and when the write probability of transaction operations increases, 

there is a significant difference in the performance compared to other protocols as 

we can see from all the figures. 

0.9 

~ 0.8 

I 0.7 

0.6 

t 
0.5 

0.4 

0.3 

0.2 
.l! 

--'-OCC-Mlx 

--Loc~-MIX ____ =c 

~ 
0.1 

0 
0 0.2 0.4 0.6 0.8 1 

Write probablity 

Figure6. 23: Restart ratio for mobile transactions (MT = 20 %) 

163 



MT"'SO% 

0.9 

~ O.S 

i 
0.7 

0.6 

I 
O.S 

0.4 

0.3 

0.2 
~ 

-+-OCC-Mlx 

-----Lock·Mlx __ =c 

~ 0.1 

0 
0 0.2 0.4 0.6 O.S 1 

Write probablity 

Figure6. 24: Restart ratio for mobile transactions (MT = 50 %) 

MT"'SO% 

1 

~ 0.9 

i 
O.S 
0.7 

0.6 

I 0.5 

0.4 

0.3 

~ 0.2 

-+-OCC-Mlx 

--Lock-MIx __ =c 

~ 0.1 

0 
0 0.2 0.4 0.6 O.S 1 

Write probablity 

Figure6. 25: Restart ratio for mobile transactions (MT = 80 %) 

6.4.3.2 Adjustment rate 
One of the overheads of the OCC-Mix approach is the adjustment of the 

serialization order for those transactions that are in conflict with the validating 

transaction. Figure 6.26 give the adjustment rate for different mobile transaction 

percentages. This ratio, in fact, measures the effectiveness of the OCC-Mix 

164 



approach. When the ratio is zero, it means that no dynamic adjustment is made in 

the case of 100 percent read-only operations. The adjustment ratios increase when 

the conflicting transactions contain a mixture of read and write operations in the 

system. 

eCC-Mix 

3.5 

3 

i 2.5 

2 

V 1.5 

f 1 

0.5 

0 
0 0.2 0.4 0.6 0.8 

Write probability 

Figure6. 26: Adjustment Rate 

6.4.4 Experiments 4: Impact of workload 

6.4.4.1 Power consumption ratio 

1 

--+- MT==80%, 
____ MT==50% 

MT=20% 

Figure 6.27 gives the power consumption ratio PCR as a function of the workload, 

when 20% of transactions present in the system are mobile. As the workload 

increases, the data access time by the mobile transactions increases. When the 

workload is low, the system is not congested and the PCR of the protocols 

represent the actual power needed for mobile transactions to complete execution. 

When the workload is greater than 65, the system begins to saturate and the 

consumption rate increases accordingly. As shown in Figure 6.27, the difference 

between Lock-Mix and acc is not significant. This means that the time needed 

for restarted mobile transactions is close to the time that mobile transactions spend 

in waiting to get locks on their data items. In fact, the improvement made by 

aCC-Mix can not reflect the effectiveness of this protocol over the Lock Mix 

approach because the system saturation in this case is due to resource contention 

165 



instead of data contention. Whereas, the aim of the OCC-Mix approach is to save 

wireless resources by decreasing mobile transaction restarts and using non­

blocking schemes, which are mainly motivated by data contention. 

Figure 6.28 gives the PCR of the protocols when the system utilization of mobile 

transactions is 50 percent. In this experiment, the presence of mobile transactions 

intensifies resource contention. When the workload is low, the PCR of the OCC­

Mix and OCC protocols is low. The system becomes saturated earlier when the 

majority of transactions are mobile this due to saturation of fixed and mobile 

resources by mobile transactions which need more time to complete their 

execution. The number of restarts of mobile transactions before they get a chance 

to commit under the OCC protocol, is more than under the OCC-Mix approach 

due to multiple restarts caused by using the OCC protocol. For the Lock-Mix 

approach, blocking increases the number of active transactions which also 

increase the possibility of restarting mobile transactions due to an increasing 

number of fixed transactions that switch to their blocking phase. So the PCR 

increases as a result of that, as shown in Figure 6.28. Nevertheless, the 

performance of the OCC-Mix approach is still superior to the other protocols 

across the whole range of workload. Figure 6.29 gives the PCR when the mobile 

transactions increase further to 80 percent. In this case, mobile transactions 

dominate. When the workload is low, the OCC-Mix approach can still function 

well. For a higher workload, the improvement made by the OCC-Mix approach 

becomes more notable. As the workload increases, the system begins to 

saturate and the advantages gained . from using the OCC-Mix protocol 

decrease. On the whole, the performance of the OCC-Mix approach in decreasing 

PCR is consistently better than that of the other two protocols across different 

workloads and different amounts of domination of mobile transactions. 

166 



a:: 
!( 

0.45 
0.4 

0.35 
0.3 

0.25 
0.2 

0.15 

0.1 
0.05 

0 

MT=20% 

10 20 30 40 50 60 70 80 90 100 

Workload 

-+-'- OCC-Mix 
__ Lock-Mix 

xOCC 

Figure6. 27: Power consumption ratio (MT = 20%) 

MT=50% 

0.6 ,..--.,..~~--=="""'...",.......,...~""" 

0.5 TIt44';,";~:;=;;,:=!~~ ~~~ 

0.4 tF~;ttc:;;lt-t-t-~t-~t-~~ 
~ 0.3 .J--c~~-~-+~~++++~=~~ 

0.2 -I---~~~~~~~:£±L~~,-l 

-+-'- aCC-Mix 
__ Lock-Mx 

0.1 

o +-~~-.~-r--~--~~~-T~~~~=4 
10 20 30 40 50 60 70 80 90 100 

Workload 

~OCC 

Figure6. 28: Power consumption ratio (MT = 50%) 

167 



MT=80% 

0.8 

0.7 

0.6 

0.5 

~ 0.4 

0.3 

0.2 

0.1 

0 

10 20 30 40 50 60 70 80 90 100 

Workload 

Figure6. 29: Power consumption ratio (MT = 20%) 

6.4.4.4 Rollback frequency 

__ OCC-Mix 

-11- Lock-Mix 

---x~- OCC 

To have a deeper understanding of the data conflict between fixed 

and mobile transactions, two performance measures, called fixed transaction 

rollback frequency and mobile transaction rollback frequency, are collected. The 

frequencies indicate the amount of data conflict between fixed and mobile 

transactions and among mobile transactions, respectively. The latter frequency 

also represents the fraction of committed mobile transactions which have roll­

backed other mobile transactions. 

Figure 6.30 and Figure 6.31 gives the mobile transaction rollback frequency 

when 20% of transactions present in the system are fixed. Most of data conflicts 

are among fixed transactions. As the workload increases, data conflict intensifies 

and it is more likely for a transaction to rollback others in order to be committed. 

When the system begins to saturate, frequency decreases as the number of 

committed transactions decreases. For a transaction being restarted, there must be 

one other transaction to roll it back. Figure 6.32 and Figure 6.33 give the 

frequencies when the utilization of fixed transactions is 50 percent. In Figure 6.32, 

168 



it can be observed that the amount of data conflicts between mobile and fixed 

transactions increases as the number of fixed transactions increases until the 

system begins to saturate. In these two figures, it can also be observed, for the 

OCC-Mix approach, that it is more likely for a mobile transaction to rollback a 

fixed transaction than for a fixed transaction to rollback another fixed transaction, 

though the utilization of mobile transactions is equal to that of fixed transactions. 

Since the OCC-Mix approach makes more room for mobile transactions, any 

fixed transaction that has data conflicts with a mobile transaction and whose 

timestamp interval shuts out, will be roll backed by the mobile transaction when it 

commits. A further increase of the utilization of mobile transactions exacerbates 

the situation. 

Figure 6.33 and Figure 6.34 give the frequencies when the utilization of fixed 

transactions is 80 percent. When the workload is low, under the Lock-Mix 

approach data conflict between mobile and fixed transactions increases. As the 

workload increases, data conflicts among fixed transactions increase. On the 

whole, we can observe that the OCC-Mix approach can effectively help to reduce 

the number of restarts, whether they are due to data conflicts between mobile and 

fixed transactions or among mobile transactions. Moreover, even the OCC-Mix 

approach negatively affects the number of committed fixed transactions, as the 

restart ratio of fixed transaction increases when the percentage of mobile 

transaction present in the system increases. This ratio is acceptable since the 

wasted resources are concentrated in the fixed part of the network which can be 

tolerated especially when the performance gain in the scarce wireless resources is 

high as is shown by the restart ratio of mobile transactions. 

169 



FT==20% 

1200 

! 1000 

~ 
800 -+-aCC-Mix 

600 ___ Lock-Mix 
~ 

~ 
400 --"'~ acc 

200 

0 

10 20 30 40 50 60 70 80 90 100 

Workload 

Figure6. 30: Mobile transacti0ll; rollback frequency (FT = 20%) 

FT:=20% 

1400 

1200 

I 1000 

1 800 
-+-aCC-Mix 
__ Lock-Mix 

~ 600 

~ 
~acc 

400 

200 

0 
10 20 30 40 50 60 70 80 90 100 

Workload 

Figure6. 31: Fixed transaction rollback frequency (FT = 20%) 

170 



FT=50% 

500 
450 

1 400 
350 

~ 300 -+-OCC-Mix 

~ 
250 __ Lock-Mix 

200 -"*-OCC 

~ 150 
100 

50 
0 

10 20 30 40 50 60 70 80 90 100 

Workload 

Figure6. 32: Mobile transactions rollback frequency (FT = 50%) 

FT=50% 

1800 
1600 

! 1400 

~ 1200 -+-OCC-Mix 
.8 1000 

~ 800 
____ Lock-Mix 
__ oce 

'C 600 
~ It 400 

200 
0 

10 20 30 40 50 60 70 80 90 100 

Workload 

Figure6. 33: Fixed transactions rollbackfrequency (FT = 50%) 

171 



! 
~ 

.B 
~ 

I 

g-
~ 
tl 
.§ 
~ 
'0 

" ~ 

90 
80 
70 

60 
50 
40 
30 
20 
10 

0 

FT=80% 

10 20 30 40 50 60 70 80 90 100 

Workload 

__ OCC-Mix 

__ Lock-Mix 

--)<--- OCC 

Figure6. 34: Mobile transactions rollback frequency (FT = 80%) 

900 
800 
700 
600 
500 
400 
300 
200 
100 

0 

FT=80% 

10 20 30 40 50 60 70 80 90 100 

Workload 

__ OCC-Mix 

__ Lock-Mix 

--K-OCe 

Figure6. 35: Fixed transactions rollback frequency (FT = 80%) 

5.4.5 Experiments 5: Impact of fJ -value and 1] -value 
As the fJ -value decreases, switching to the blocking stage, for fixed transactions, 

occurs earlier. This wiIl increase the restart effect caused by the fixed transactions 

172 



on other mobile transactions especially when the fJ -value becomes less than the 

'7 -value. Smaller values for both the fJ -value and '7 -value will increase the 

effect of blocking resulting from the interactions between mobile and other mobile 

or fixed transactions and vice-versa. This can be seen by comparing Figure 6.36 

and 6.37 which show the peR of mobile transactions under different workloads 

for different values of fJ and '7 -values. The peR is used as it can reflect the 

effects of restarting and the blocking overhead for both the fJ -value and the '7 -

value. On the other hand, a reduction in the peR for mobile transactions also has 

an inverse trend in terms of the restart rate and blocking overhead on the fixed 

transactions. As the figures indicate, a choice of fJ -value =0.5* '7 -value leads to 

the best value of peR with a reasonable number of restarted fixed transactions. 

Larger values of '7 -value lead to more restarts of mobile transactions where 

smaller values of '7 -value increase the effect of blocking and increase the peR. 

By balancing the impact of these two effects, this choice of '7 -value leads to a 

reasonable reduction in the peR compared to the restart rate for fixed transactions 

as we can see from Figures 6.38 and 6.39. 

0.35 

0.3 

0.25 

~ 
0.2 

0.15 

0.1 

0.05 

0 

MT=50%, TL=8,Ba=4 

20 40 60 80 100 

Workload (Trans/S) 

_Muta=O 

_Muta=2 

Muta=4 

~-Muta=8 

Figure6. 36: peR at different fJ - values 

173 



~ 

~ 
~ 

~ 
I 

0.4 
0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
20 

MT==500
/ o , TL=8,Muta=4 

40 60 80 100 

Workload (TransfS) 

• Eta::::O 

_Eta=2 

Eta=4 

.~><- Eta=8 

Figure6. 37: peR at different 'I - values 

0.45 

0.4 
0.35 

j 
0.3 

0.25 

0.2 

F 0.15 

0.1 

0.05 

0 
20 40 60 80 100 

Workload TransfS 

_lIIIuta=4.Eta=4 

__ Illluta=4. Eta=8 

Illluta=6.Eta=3 

-i*-lIIIuta=8.Eta=4 

Figure6. 38: Fixed transaction restart ratio at different 'I and,u -values 

174 



0.5 

0.45 

0.4 

0.35 

~ 
0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

MT=50 %
, TL=8 

20 40 60 80 100 

Workload Trans/S 

__ Muta=4.Eta=4 

__ Muta=4.Eta=8 

Muta=6.Eta=3 

-_ Muta=8.Eta=4 

Figure6. 39: peR at different 'I and,u -values 

6.4.6 Experiments 6: Impact of f3 -value 
The 0' -value can affect highly the nature of interactions between fixed and 

mobile transactions. A larger 0' -value means little opportunity for fixed 

transactions to commit in their time intervals. Figure 6.40 shows the fixed 

roIlback frequency for different values of f3 • This measure determines the number 

of fixed transactions aborted because they are in conflict with other mobile 

. transactions. As we can see in Figure 6.40 the number of fixed transactions roll 

backed by other mobile transactions increases as the 0' -value increases. A choice 

of 0' -value =2 leads to the smallest value of fixed rollback frequency. Smaller 0'­

value lead to more restarts in mobile transactions as we can see in the Figure 6.41 

for mobile roIlback frequency. This means that the adjustments of an active 

mobile transaction that is in conflict with a validating fixed transaction whose 

timestamp interval is bigger, will shorten the timestamp intervals of other mobile 

and fixed transactions which may be in conflict in the future. As we shown in 

Figure 6.40 and 6.41, intermediate values of 0' lead to the best reduction of both 

fixed and mobile rollback frequency. 

175 



j 
~ 

l 
! 
~ 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
20 

MT=50%
• WrlteProb=O.5 

40 60 80 100 

Workload (Trans/S) 

• Sigma.=1 
____ Sigma.=2 

Sigrna=3 

-,_. )(-~~- Sigrna=4 

Figure6. 40: Fixed rollback frequency at different (J" -value 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
20 

MT=50%. WriteProb=O.5 

40 60 80 100 

Workload (Trans/S) 

-.- Sigrna=1 
______ Sigrna=2 

Sigma=3 

'-X _. Sigrna=4 

Figure6. 41: Mobile rollback frequency at different (J" -value 

176 



177 



CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

Recent studies on concurrency control in mobile database systems have 

reported that optimistic approaches outperform locking protocols in reducing the 

resource consumption in wireless environments. However, most work based on 

the optimistic approaches experiences the problem of multiple transaction restarts. 

This problem is detrimental to wireless resources in mobile computing 

environments, because transaction restarts can significantly increase the system 

workload and intensify resource and data contention. In mixed transaction 

environments, the presence of fixed transactions exacerbates the problem where 

the fixed and mobile transactions are equally likely to be restarted. In such 

environments different types of transactions use resources with different 

characteristics whilst sharing the same data access. Mobile transactions use a very 

scarce wireless resource whereas fixed transactions use .the reliable fixed host 

resources. Since the resources used by the mobile transaction are more expensive, 

reducing the number of mobile transaction restarts is very important in mixed 

transaction environments. In order to save resources whilst maintaining 

reasonable performance for fixed transaction execution, mobile transaction abort 

caused by fixed transactions and multiple restart caused by other mobile 

transactions, should be avoided. Therefore, when there are data conflicts between 

mobile and fixed transactions, mobile transactions should be given more room 

than fixed transactions. As a result, mobile transactions would be less likely to be 

aborted in mixed transaction environments. 

In this study, two concurrency control protocols, called OCC-Mix and Lock­

Mix, are proposed to alleviate the problem in mixed transactions environment. 

178 



The idea is to avoid wasting of scarce and expensive resources of mobile 

environments by: (I) avoiding multiple transaction restarts of mobile transactions 

by lengthens its timestamp interval during backward and forward adjustments and 

dynamically adjusting the serialization order of the conflicting transactions with 

respect to the validating transaction and (2) maintaining bigger timestamp 

intervals for mobile transactions giving them a better chance to commit. 

Under the OCC-Mix approach, these are achieved by exploiting the semantics of 

the read and write. operations in transactions, in addition to the transaction type, 

such that serializability can be preserved without restarting the conflicting 

transactions of the validating transaction. Only those transactions with strict 

conflicts with the validating transaction have to be restarted. In cases of non-strict 

conflicts, we only need to adjust the serialization order of those conflicting 

transactions with respect to the validating transaction. As a result, restarts can be 

decreased. In addition to allowing those non-strict conflicting fixed and mobile 

transactions to have an opportunity to complete their executions, resources can be 

saved from being utilized by restarted transactions such that other ongoing 

transactions will not be affected. 

In the Lock-Mix approach, transaction execution can be divided into a non­

blocking phase, where transactions wait for locks but do not block other 

transactions, and a blocking phase as in conventional locking. Data accessed 

during the non-blocking phase can lead to transaction aborts as in the OCC 

scheme. Since transactions in the proposed scheme explicitly wait for locks during 

the non-blocking phase, the abort probability is reduced by avoiding accessing 

data items currently under validation. Furthermore, except for deadlocks, no data 

accesses during the blocking phase can lead to an abort of a transaction. By 

properly choosing the switching values 1] and.u, the protocol can strike a balance 

between the effects of transaction abort and lock wait. We show that this approach 

can lead to better performance at different parameters settings. 

A series of simulation experiments has been carried out to investigate the 

performance of the OCC-Mix approach. and results are reported in chapter 5. It 

has been found that the proposed protocols outperform the traditional optimistic 

concurrency protocols for a wide range of workload parameters. The first order of 

179 



- - - ------------------------------------------------------------------

improvement can be observed in decreasing the number of mobile transaction 

restarts leading to a significant saving of resources. The second order of 

improvement can be observed in the reduction of power consumption rate, crucial 

to mobile computing environments. Comparing the proposed approaches, OCC­

Mix and Lock-Mix, the.OCC-Mix approach shows an improved performance over 

Lock-Mix because there is no blocking effect. Also, the policy of delayed 

resolution of data conflict results in a greater chance of completing transactions in 

OCC-Mix when compared to the Lock-Mix approach. From the experimental 

results, we can conclude that OCC-Mix is of comparable performances with 

Lock-Mix when the degree of data contention is Iow. However, when the degree 

of data contention increases, the performance of Lock-Mix starts degrading, and 

the OCC-Mix outperforms it in such a situation. In addition, the time to complete 

a transaction using Lock-Mix is longer than that for GCC-Mix, implying that the 

expensive wireless resources are held longer by a mobile transaction under the 

Lock-Mix approach. No matter which concurrency protocol is employed, some 

transactions may still be disconnected when handoff occurs. We have also noted 

that the waste in fixed host resources is acceptable in comparison with saved 

wireless resources under both the OCC-Mix and Lock-Mix approaches. Therefore, 

these approaches are promising candidates for mixed transaction environments. 

In the first part of this thesis two types of problems have been examined: 

mobile environment modelling and mobile transaction processing. The research in 

this part represents a substantial effort, though the result is preliminary. The 

performance of proposed transaction scheduling approaches is evaluated by the 

means of simulation. The simulation experiments performed in this research 

investigate the performance of three transaction execution strategies under the 

assumption that network disconnection occurs. The experiments are conducted 

from several perspectives by adjusting model parameters, such as, mobility timer 

and disconnection ratio. The simulation results show that if there is little or no 

network disconnection, the fixed host strategy has the shortest response time and 

the highest system throughput. This is not surprising because the system operates 

at or near the traditional fixed network environment. However, as network 

connectivity deteriorates, the mobile host strategy produces better system 

180 



throughput and response time than does the fixed host. In general, the combined 

host strategy produces better performance in terms of overall response time, 

elapsed processing time of a mobile host and total number of transactions 

completed by the system. Generally, by viewing a mobile host and a fixed host as . 

two relatively independent computing stations; the combined host strategy can 

support autonomous operations with better system performance. 

Our research work can be extended in several directions. First, alternative 

approaches to evaluating the performance of real-time database systems other than 

using simulation can be explored. These approaches include the measurement 

from actual running system and the use of analytical methods which may provide 

a concrete experience with a real system and an improved understanding of the 

functional requirements and operational behaviours of mixture transaction 

systems. Also, it is interesting to develop an analytical method for evaluating the 

performance of concurrency control algorithms for mixtures transactions systems. 

More over, we hope to analytically determine the best values of the 11 and T/ for 

Lock-Mix and the best value of (J for the OCC-Mix approach. 

Another direction for future work is to consider the issue of fixed and mobile 

interactions at various execution strategies for mobile transaction in connection 

with concurrency control. One limitation of our current work is that we have 

considered only the issue of relaxation atomicity to study and compare the 

different execution strategies by using 2-PL protocol. i.e., communication effect 

point view. However, mixture transaction systems have many others resources 

shared by mobile and fixed transactions resulting from scheduling of data access 

operations from both fixed and mobile transactions. 

181 



Bibliography 

[1] H. Garcia-Molina, J. Ullman and J. Widom: Database Systems: The Complete 
Book, Prentice Hall, 2001. 

[2] A. K. Elmagarmid: Database Transaction Models for Advanced Applications, 
Morgan Kaufinann, 1992. 

[3] J. Gray and A. Reuter: Transaction Processing: Concepts and Techniques, Morgan 
Kaufinann Publishers, 1993. 

[4] P. A. Bernstein, V. Hadzilacos and N. Goodman: Concurrency Control and 
Recovery in Database Systems, Addison-Wesley, 1987. 

[5] R. Elmasri and S. B. Navathe: Fundamentals of Database Systems, Addison 
Wesley,2000. 

[6] H. T. Kung and J. T. Robinson: On Optimistic Methods for Concurrency Control, 
ACM Transactions on Database Systems (TODS), 6(2),1981, pp213-226. 

[7J T. Harder: Observations on optimistic con currency control schemes, Information 
Systems, 9(2), 1984, pp 111-120. 

[8] G. H. Coulouris, J. Dollimore and T. Kindberg: Distributed Systems: Concepts and 
Design, Pearson Education, 2001. 

[9J Y. Zhang, Y. Kambayashi, X. Jia, Y. Yang and C. Sun: On Interactions Between 
Coexisting Traditional and Cooperative Transactions, International Journal of 
Cooperative Information Systems (!JCIS), 8(2-3), 1999, pp 87-110. 

[lOJ J. Jing, A. He1al and A. K. Elmagarmid: Client-Server Computing in Mobile 
Environments, ACM Computing Surveys, 31(2),1999, pp 117-157. 

[llJ M. T. Ozsu and P. Valduriez: Principles of Distributed Database Systems, 1999 

[12J K. Ramamritham and P. Chrysanthis: Advances in Concurrency Control and 
Transaction Processing, IEEE Computer Society Press, 1996. 

[I3J R. A. Dirckze and 1. Gruenwald: A pre-serialization transaction management 
technique for mobile multidatabases, Mobile Networks and Applications 
(MONET), 5(4), 2000, pp 311-321. 

[I4J G. H. Forman and J. Zahorjan. The Challenges of Mobile Computing. IEEE 
Computer Volume: 27(4), pp. 38-47, April 1994. 

[I5J R. Alonso and H. F. Korth. Database System Issues in Nomadic Computing. In 
Proceedings of the 1993 ACM SIGMOD International Conference on Management 

182 



of Data, pp. 388 - 392,1993. 

[16] E. Pitoura, B. Bhargava, Maintaining consistency of data in mobile computing 
environments,in: Proceedings of 15th International Conference on Distributed 
Computing Systems, June,1995 (Extended version to appear in IEEE Transactions 
on Knowledge and Data Engineering, 1999). 

[17] Y. Breitbart, H. Garcia-Molina and A. Silberschtz. Overview of Multidatabase 
Transaction Management. VLDB, 1(2): 181-239, 1992. 

[18] S.K. Madria, B. Bhargava, E. Pitoura, V. Kumar, Data organization issues in 
location dependent query processing in mobile computing environment, in: 
Proceedings of 4th East-European Symposium on Advances in Databases and 
Information Systems (in co-operation with ACM-SIGMOD), Prague, Czech 
Republic, 2000. 

[19] O. Wolfson, X. Bo, C. Sam, L. Jiang, Moving objects databases: issues and 
solutions, in:Proceedings of SS DB M, 1998, pp. 111-122. 

[20] J. Gray: The Transaction Concept: Virtues and Limitations, Very Large Data 
Bases, 1981, pp 144-154. 

[21] J. E. B. Moss: Nested transactions: an approach to reliable distributed computing, 
Massachusetts Institute of Technology, 1985. 

[22] G. Weikum: Principles and Realization Strategies of Multilevel Transaction 
Management, ACM Transactions on Database Systems, 16(1), 1991, pp 132-180. 

[23] H. Garcia-Molina and K. Salem: Sagas, ACM SIGMOD International Conference 
on Management of Data, 1987, pp 249-259. 

[24] C. Pu, G. E. Kaiser and N. C. Hutchinson: Split-Transactions for Open-Ended 
Activities., Very Large Data Bases (VLDB), 1988, pp 26-37. 

(25] P. K. Chrysanthis: Transaction Processing in Mobile Computing Environment, 
IEEE Workshop on Advances in Parallel and Distributed Systems, 1993, pp 77-83. 

[26] G. D. Walborn and P. K. Chrysanthis: Transaction Processing in PROMOTION, 
ACM Symposium on Applied Computing (SAC), 1999, pp 389- 398. 

(27] A. Yendluri, Wen.C and Chih.F" Improving Concurrency Control in Mobile 
Databases" Lecture Notes in Computer Science, Volume 2973 , P 642-655 , 
February 12, 2004 . 

[28] E. Pitoura and B. K. Bhargava: Data Consistency in Intermittently Connected 
Distributed Systems, IEEE Transactions on Knowledge and Data Engineering 
(TKDE), 11(6), 1999, pp 896-915. 

183 



[29] s. K Madria and B. K Bhargava: A Transaction Model for Mobile Computing, 
International Database Engineering and Application Symposium (IDEAS), 1998, 
pp 92-102. 

[30] S. K Madria and B. K Bhargava: A Transaction Model to Improve Data 
Availability in Mobile Computing, Distributed and Parallel Databases, 10(2),2001, 
pp 127-160. 

[31] M. H. Dunham, A Helal and S. Balakrishnan: A Mobile Transaction Model That 
Captures Both the Data and Movement Behavior., Mobile Networks and 
Applications (MONET), 2(2),1997, pp 149-162. 

[31] K-1. Ku and Y.-S. Kim: Moflex Transaction Model for Mobile Heterogeneous 
Multidatabase Systems, Research Issues in Data Engineering (RIDE), 2000, pp 39-
46. 

[33] A K Elmagarmid, Y. Leu, W. Litwin and M. Rusinkiewicz: A Multidatabase 
Transaction Model for InterBase, International Conference on Very Large 
Data Bases, 1990, pp 507-518. 

[34] M. Satyanarayanan, Mobile information access, IEEE Personal Communications 3 
(1) (1996). 

[35] Jian Chen, "Mobility Information and Mobile Transaction Processing", 
http://hdl.handle.net/1993/1220 

[30] Filip Perich, Anupam Joshi, Timothy Finin, Yelena Yesha, "On Data Management 
in Pervasive Computing Environments," IEEE Transactions on Knowledge and 
Data Engineering, vol. 16, no. 5, pp. 621-634, May, 2004 

[31] M.H. Dunham and V. Kumar, "Location dependent data and its management in 
mobile databases," in Int. DEXA Workshop on Mobility in Databases and 
Distributed Systems, Vienna, Austria, Aug. 1998. 

[32] Huiping Cao , Shan Wang , Lingwei Li, Location dependent query in a mobile 
environment, Information Sciences-Informatics and Computer Science: An 
International Journal, v.154 n.I-2, p.71-83, August 2003 

[33] Akar, M., & Mitra, U."Motion Constraint Based Handoff Protocol for Mobile 
Internet," IEEE Wireless Communications and Networking Conference (WCNC), 
March 2003] [80[(2003). Soft handoff algorithms for CDMA cellular networks. 
IEEE Transactions on Wireless Communications,2(6), 1259-1274. 

[34] P. S. Yu and D. M. Dias. Analysis of hybrid concurrency control schemes for a 
high data contention environment. IEEE Trans. on Software Engineering, 
18(2):118--129, Feb. 1992. 

[35] R.Bayer, KElhardt, J.heigert, and AReiser. Dyanamic time stamp allocation for 

184 



transaction in database systems. In HJ.Schneider, editor, Distributed Data Bases, 
North-Holland, 1982 

[36] [36] D. Barbara, T. Imielinski, Sleepers and workaholics: caching strategies in 
mobile environments, VLDB Journal (1995). 

[37] K. Wu, P.S. Vu, M. Chen, Energy Efficient caching for wireless mobile computing, 
in: Proceedings of the 12th International Conference on Data Engineering, New 
Orleans, February, 1996. 

[38] B.R. Badrinath, T. Imielinski, Replication and mobility, in: 2nd IEEE Workshop on 
the Management of Replicated Data, November, 1992, pp. 9-12. 

[39] Wu Shiow-yang, Y. Change, An active replication scheme for mobile data 
management, in: IEEE Proceedings of 6th DASFAA, Taiwan, 1999. 

[40] M. Faiz, A. Zaslavsky, Database replica management strategies in multidatabase 
systems with mobile hosts, in: 6th International Hong Kong Computer Society 
Database Workshop, 1995. 

[41] Y. Huang, P. Sistla, O. Wolfson, Data replication for mobile computers, in: 
Proceedings of the ACM SIGMOD International Conference on Management of 
Data, 1994. 

[42] J. Gray, P. Helland, P. O'Neil, D. Shasha, The dangers of replication and a solution, 
in: Proceedings of ACM SIGMOD International Conference on Management of 
Data, 1996, pp.l73-182. 

[44] D.B. Terry, D. Goldberg, D.A. Nichols, B.M. Oki, Continuous queries over 
append-only databases, in: Proceedings of the ACM-SIGMOD International 
Conference on Management of Data, June, 1992. 

[45] S.K. Madria, M. Mohania, J. Roddick, A query processing model for mobile 
computing using concept hierarchies and summary databases, in: Proceedings of 
the 5th International Conference on Foundation for Data Organization (FODO'98), 
Japan, November, 1998 

[46] T. Imielinksi, BR Badrinath, Querying in highly distributed environments, in: 
Proceedings of the 18th VLDB, August, 1992, pp. 41-52. 

[47] Minsoo Lee , Sumi Helal, "HiCoMo: High Commit Mobile Transactions", 
Distributed and Parallel Databases, Kluwer Academic Publishers. Manufactured in 
The Netherlands, vol.1l, 73-92, 2002 

[48] Huang, Y., "Efficient Transaction Processing in Broadcast-based Asymmetric 
Communication Environment," Ph.D. Dissertation Proposal, 2001. 

[49] Q. Lu and M. Satynarayanan, "Improving data consistency in mobile computing 
using isolation-only transactions,"in IEEE HotOS Topics Workshop, Orcas Island, 

185 



USA, May 1995. 

[50] P. Serrano-Alvarado, C. Roncancio and M. E. Adiba: A Survey of Mobile 
Transactions, Distributed and Parallel Databases, 16(2), 2004, pp 193-230. 

[51] B. Lim, A R. Hurson, K. M. Kavi. Concurrent Data Access in a Mobile 
Heterogeneous System. Proceedings of the 32nd Annual Hawaii International Conf. 
on System Sciences. 1999 . 

[52] Angelo Brayner and Jose A Morais F., "Increasing Mobile Transaction 
Concurrency in Dynamically Configurable Environments", Proceedings of the 3rd. 
IEEE Workshop on Mobile Distributed Computing (MDC). 2005. 

[53] M. Shapiro, A I. T. Rowstron, and A-M. Kermarrec, "Application-independent 
Reconciliation for Nomadic Applications," in ACM SIGOPS European Workshop 
2000, 2000, pp.I-6. 

[54] Can Turker and Gabriele Zini, "A Survey of Academic and Commercial 
Approaches to Transaction Support in Mobile Computing Environments", Swiss 
Federal Institute of Technology Zurich Institute of Information Systems, ETH 
Zentrum, Techniqual report #429,NOV 2003. 

[55] Xiaoyan Hong, Mario Gerla , Guangyu Pei , Ching-Chuan Chiang, A group 
mobility model for ad hoc wireless networks, Proceedings of the 2nd ACM 
international workshop on Modeling, analysis and simulation of wireless and 
mobile systems, p.53-60, August 20-20,1999, Seattle, Washington, United States 

[56] Popovici and G. Alonso, "Ad-hoc transactions for mobile services," in VLDB 
Workshop on Technologies for E-Services, Hong-Kong, China, August 2002. 

[57] Sanjay Kumar Madria, Mukesh K. Mohania, Sourav S. Bhowmick, Bharat K. 
Bhargava: Mobile data and transaction management. Inf. Sci. 141 (3-4): 279-309 
(2002) 

[58] N. Barghouti, G. Kaiser, Concurrency control in advanced database applications, 
ACMComputing Surveys 23 (3) (1991) 269-317. 

[59] K. Ramamritham, P.K. Chrysanthis, A taxonomy of correctness criterion in 
database applications, Journal of Very Large Databases 4 (I) (1996). 

[60] G.D. Walborn, P.K. Chrysanthis, Supporting semantics-based transaction 
processing in mobile database applications, in: Proceedings of 14th IEEE 
Symposium on Reliable Distributed Systems, September, 1995, pp. 31-40. 

[61] E. Pitoura, B. Bhargava, Revising transaction concepts for mobile computing, in: 
Proceedings of the 1st IEEE Workshop on Mobile Computing Systems and 
Applications, December, 1994, pp. 164-168. 

186 



[62] A. Rasheed, A. Zaslavsky, Ensuring database availability in dynamically changing 
mobile computing environment, in: Proceedings of the 7th Australian Database 
Conference, Melbourne, Australia, 1996. 

[63] E. Pitoura, B. Bhargava, Building Information Systems for Mobile Environments, 
in: Proceedings of 3rd International Conference on Information and Knowledge 
Management, 1994, pp. 371-378. 

[64] M.R. Ebling, Evaluating and improving the effectiveness of caching for 
availability, Ph.D.Thesis, Department of Computer Science, Carnegie Mellon 
University, 1997. 

[65] Philip S. Yu and Daniel M. Dias, "Performance Analysis of Con currency Control 
Using Locking with Deferred Blocking", IEEE transactions on software 
engineering, vol. 19, no. 10, 1993 

[66] Pitoura, E., "Supporting Read-Only Transactions in Wireless Broadcasting," Proc. 
of the DEXA98 International Workshop on Mobility in Databases and Distributed 
Systems, pp. 428-422, 1998. 

[67] M. A. Viredaz, L. S.Brakmo, and W. R. Hamburgen, "Energy Management on 
Handheld Devices," Queue, vol. 1, no. 7, pp. 44-52, 2003. 

[68] Carl S. Hartzman, "The Delay Due to Dynamic Two-Phase Locking", IEEE 
transactions on software engineering, vol. 15, no. 1, 1989 

[69] S. H. Son, J. Lee, and Y. Lin. Realtime scheduling using dynamic adjustment of 
serialization order for real-time concurrency control. Real-Time Systems, 4(3):243-
-268, Sept. 1992 

[70] Bernstein, Philip A. and Goodman, Nathan. "Concurrency Control in Distributed 
Database Systems". ACM Computing Surveys. Retrieved on September 21, 2005. 

[71] Hien. N. Le. A transaction processing system for supporting mobile collaborative 
works, PhD thesis, Department of Computer and Information Science, Norwegian 
University of Science and Technology 2006 

[72] Kung H. T., and J. T. Robinson, "On Optimistic Methods for Concurrency 
Control," ACM Transactions on Database Systems, 6(2): 213-226, June 
1981. 

[73] J.D. Noe and D.B. Wagner. Measured performance of time interval concurrency 
control techniques. In Proc. of Very Large Data Bases, pages 359--365,1987. 

[74] Pitoura, E. and Chrysanthis, P. K., "Exploiting Versions for Handling Updates in 
Broadcast Disks," Proc.of the 25th VLDB Conference, pp. 114-125, Scotland, 
1999. 

187 



[75) Lee, V. C. S., Lam, Kwok-wa and Son, S. H., "Real-time Transaction Processing 
with Partial Validation at Mobile Clients," Proc. of the Seventh International 
Conference on Real-Time Computing Systems and Applications (RTCSA 2000), 
pp. 473-477, South Korea, December 2000. 

[76) Pitoura, E., "Supporting Read-Only Transactions in Wireless Broadcasting," Proe. 
of the DEXA98 International Workshop on Mobility in Databases and Distributed 
Systems, pp. 428-433, 1998. 

[77) Herman, G., Gopal, G., Lee, K. C. and Weinreb, A., "The Datacycle Architecture 
for Very HighThroughput Database Systems," Proc. of the ACM SIGMOD 
Conference, V.S.A., pp. 97-103, 1987. 

[78) Wu, Simon, Lee, V. C. S. and Lam, Kwok-wa, "Broadcast Transaction Scheduling 
in Mobile Computing Environments," Proc. of the 3rd International Conference on 
Mobile Data Management, pp. 161-162, Singapore, January 2002. 

[79) EE . Ho-Jin Choi, Byeong-Soo Jeong: "A Timestamp-Based Optimistic 
Concurrency Control for Handling Mobile Transactions". ICCSA (2) 2006: 

page796-805. 

[80) 

[81) 

[82) 

[83) 

[84] 

[85) 

Alqerem, A.; Hussak, W."Mixed Mobile and Fixed Transactions Scheduling in 
Mobile Computing environment" the 8th annual conference PGNET 2007 

Angelo Brayner, Jose Maria Monteiro: Temporal Serialization Graph Testing: An 
Approach to Control Concurrency in Broadcast Environments. SBBD 2000: 287-

301 

Victor C. S. Lee, Kwok-Wa Lam, Sang Hyuk Son, Eddie Y. M. Chan: On 
Transaction Processing with Partial Validation and Timestamp Ordering in Mobile 
Broadcast Environments. IEEE Trans. Computers 51(10): 1196-1211 (2002) 

R. E. Gruber, "Optimism vs. Locking: A Study of Concurrency Control for Client­
Server Object-Oriented Databases," MIT Laboratory for Computer Science, 
Cambridge, MA, Tech. Rep. MIT/LCSITR-708, 1997. 

C. Boksenbaum et al. Concurrent certifications by intervals of timestamps in 
distributed database systems. IEEE'Trans. on Software Engineering, SE-13( 4):409-

-419, Apr. 1987. 

J. N. Gray et al. Granularity of locks and degrees of consistency in a shared data 
base. In G. M. Nijssen, editor, Proc. of IFIP TC-2 Working Conference on 
Modelling in Data Base Management Systems, pages 1--29. North-Holland, 1976. 

[86) D. Agrawal, A. El Abbadi, and A. E. Lang. Performance characteristics of 
protocols with ordered shared locks. In Proc. of Int. Conf. on Data Engineering, 

188 



pages 592--601,1991. 

[87] R. Bayer et al. Dynamic timestamp allocation for transactions in database systems. 
In H.-J. Schneider, editor, Proc. of 2nd Int. Symp. On Distributed Data Bases, 
pages 9--21. North- Holland, 1982. 

[88] P. S. Vu, H.-U. Heiss, and D. M. Dias. Modelling and analysis of a time-stamp 
history based certification protocol for concurrency control. IEEE Trans. on 
Knowledge and Data Engineering, 3(4):525--537, Dec. 1991. 

[89] Alqerem, A; Hussak, W."Concurrency control in presence of bandwidth 
variability" IADIS International Wireless Applications and Computing 2007apos; 
07. 2ndVolume 3, Issue, 5-9 June 2007 Page(s): 2926 - 2928 

[90] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge 
University Press, 2005. 

189 



Appendix: Publications 

1. Alqerem, W.Hussak, "Concurrency Control for Mixed Mobile and Fixed 
Host Transaction in Mobile Database System" 2007 IEEE (ICSPC07) 
(accepted) 

2. Alqerem, W.Hussak, "Modeling Data Scheduling for Mobile Transaction in 
Broadcasting Environments" Accepted for publication in IAJIT journal 
2008 (accepted) 

3. Alqerem, W.Hussak, "Evaluation of transaction execution strategies in 
mobile data base systems" accepted for publication in Advance in computer 
science and engineering journa1 ACSE 2008 (accepted) 

4. Alqerem, W.Hussak, "Data Scheduling for Mobile Transaction in 
Broadcasting Environments (wireless computing conference IADIS 2007) 
(accepted) 

5. Alqerem, W.Hussak, "Concurrency control for mobile transactions in 
presence of bandwidth variability 2007(wireless computing conference 
IADIS 2007) (accepted) 

6. Alqerem, W.Hussak, "Concurrency Control for Moflex Transaction Model" 
lOT 2005 (accepted) 

7. Alqerem, W.Hussak, "Concurrency Control for location dependent 
transactions in mobile computing environment" 2006 IEEE (IcrrA 06) 
(accepted) . 

8. Alqerem, W.Hussak, "Mixed Mobile and Fixed Transactions Scheduling in 
Mobile Computing Environment" PGNET 2007 UK. (accepted) 

9. Alqerem, W.Hussak, "Lock-Mix Approach for Concurrent Mixture of Fixed 
and Mobile Transactions" Pervasive and Mobile Computing Journal 2008 
(submitted) 

10. Alqerem, W.Hussak, "OCC-Mix Approach for Concurrent Mixture of Fixed 
and Mobile Transactions" Pervasive and Mobile Computing Journal 2008 
(submitted) 

11. Alqerem, W.Hussak, "Comparative Study of Different Concurrency 
Protocols in Mixed Transaction Environments" 2008 IEEE (aTE) 
(submitted) 

190 








