
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Design and analysis of numerical algorithms for the solution of linear
systems on parallel and distributed architectures

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Rosni Abdullah

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Abdullah, Rosni. 2019. “Design and Analysis of Numerical Algorithms for the Solution of Linear Systems on
Parallel and Distributed Architectures”. figshare. https://hdl.handle.net/2134/33138.

https://lboro.figshare.com/

\

~·

Pllkington Library

Ill Lo~;~ghb,orough
•Umvers1ty

i • IH, ~\,) w.. A-1-1 (L
Author/Filing Title /.

··
Accession/Copy No.

Vol. No. Class Mark

0401471055

1111111111111111111111111111111111111 ~~~

DESIGN AND ANALYSIS OF NUMERICAL ALGORITHMS

FOR THE SOLUTION OF LINEAR SYSTEMS

ON PARALLEL AND DISTRIBUTED ARCHITECTURES

By

Rosni Abdullah

A Doctoral Thesis submitted in partial fulfilment of the award
of Doctor of Philosophy of the Loughborough University

'

February 1997

© by Rosni Abdullah 1997

Acknowledgements

In the Name of Allah
The Most Beneficent, The Most Merciful

"All the praises and thanks be to Allah, the Lord of the 'Alamin, the most Beneficent,

the most Merciful"

(Al Fatiha:l-3)

This thesis would not have been possible without the help and support of many people.

First and foremost, I would like to express my sincere and deepest gratitude to

Professor D.J.Evans for his dedicated and excellent supervision which includes the

invaluable advice, discussion, co-operation, guidance and most of all for being very

understanding of my situation as a student and a mother at the same time. Thank you

too to Dr. M. Harrison from the Department of Mathematics for his invaluable

comments. Thanks is also due to Professor Alty, my Director of Research who has

been very supportive and helpful. I would also like to thank Professor Schroder, Head

of Department and Director of P ARC for his comments.

I am also grateful to the technical and support staff of the Computer Studies

Department, particularly Dr W. Y ousif who has given me a lot of technical advice and

Mrs. J. Poulton who has provided the secretarial support. Also, thank you to fellow

colleagues who have helped me in one way or another.

I also wish to extend my gratitude to Universiti Sains Malaysia for granting me the

scholarship and study leave to pursue my Ph.D.

I would also like to thank my parents, friends and family who have supported and

helped me in one way or another throughout my stay here.

Last but not least, a very special thank you to my husband, Azman, and my three

lovely daughters Nuur Sakinah, Aishah and Yusraa who have given me constant

support, encouragement and most all the continuing love and never ending patience

that has kept me going all these while.

Design and Analysis of Numerical Algorithms for the Solution of Linear Systems

on Parallel and Distributed Arcbitectures

ABSTRACT

The increasing avaliability of parallel computers is having a very significant impact on

all aspects of scientific computation, including algorithm research and software

development in numerical linear algebra. In particular, the solution of linear systems,

which lies at the heart of most calculations in scientific computing is an important

computation found in many engineering and scientific applications.

In this thesis, well-known parallel algorithms for the solution of linear systems are

compared with implicit parallel algorithms or the Quadrant Interlocking (QI) class of

algorithms to solve linear systems. These implicit algorithms are (2x2) block

algorithms expressed in explicit point form notation.

Both the direct and iterative methods for solving linear systems are investigated. For

the direct methods, the Gaussian Elimination (GE) and LU factorisation are compared

with Parallel Implicit Elimination (PIE) and Quadrant Interlocking Factorisation (QIF)

respectively. The comparison is made for both shared memory parallel computers and

distributed memory parallel computers. The investigation of direct methods on shared

memory parallel computers also included partial pivoting for Pm and QIF. The Givens

QR method is compared with the QZ method on a shared memory parallel computer.

The classical iterative methods of Jacobi, Gauss Seidel, Jacobi OverRelaxation (JOR)

and Successive OverRelaxation (SOR) methods were compared to the Quadrant

Interlocking (QI) iterative methods. Both the synchronous and asynchronous iterative

algorithms were investigated on a shared memory parallel computer.

The shared memory parallel computer used to implement the algorithms was the

Sequent Balance. When investigating algorithms on the distributed memory parallel

computer, a cluster of Dec-Alpha workstations was used and the Parallel Virtual

Machine (PVM) software was employed to make the workstations appear as a single

parallel corn puting resource.

From a detailed analysis of the computational complexity of the algorithms it is clearly

seen that the implicit methods have less memory accesses than their explicit forms.

Consequently, results of the implicit direct methods on a shared memory parallel

ii

computer revealed a gain of 20% in execution time over the classical methods while

the results on the distributed memory architecture showed a reduction of almost 50%

in communication time. Even with partial pivoting, both PIE and QIF are more

superior in terms of execution time as compared to GE and LU respectively. Results of

QZ on shared memory parallel computer has shown a gain of about 10% over the

Givens QR method. The QI iterative methods for both the synchronous and

asynchronous iterations have shown a faster rate of convergence on the shared

memory parallel computer.

As the aim of the implicit methods is to express the algorithms in explicit point form,

the saving on BLAS overheads results in more efficient algorithms.

iii

Acknowledgements

Abstract

List of Algorithms

Chapterl

Introduction

CONTENTS

1.1 The Heat Transfer Field Problem

1.2 Least Squares Problem

1.3 Guide to Thesis

Chapter2

Basic Mathematical Concepts and Methods in Linear

Algebra

2.1 Basic Matrix Algebra

2.2 Diagonal Dominance and Irreducibility

2.3 Eigenvalues and eigenvectors

2.4 Vector and matrix norms

2.5 Positive definite and special matrices

2.6 Property A and consistently ordered matrices

2.7 Rate of convergence

2.8 Direct methods for the solution oflinear systems.

2.8.1 Gaussian Elimination

2.8.2 LU factorisation

2.8.3 QR factorisation

2.8.4 Partial Pivoting

2.8.4.1 J;'artial Pivoting for Gaussian

Elimination

2.8.4.2 Partial Pivoting for LU factorisation

2.9 Iterative Methods

2.9.1 The model problem

2.9.2 The Jacobi iterative method

iv

............

............

............

............

............

............

............

............

............

............

............

............
············
............
............
............
............
............
............

............

.............

............

............

............

i

ii

X

1

3

6

8

10

10

15

18

21

22

23

25

29

30

32

34

35

36

37

38

39

40

2.9.3 Successive Displacement or

Gauss-Seidel method 41

2.9.4 Tests for convergence 42

2.9.5 Accelerated convergence for Jacobi and Gauss-

Seidel methods 43

2.10 Computational Complexity 45

2.10.1 Gaussian Elimination 45

2.10.2 L U factorisation 45

2.10.3 QR factorisation 46

2.10.4 Iterative methods 46

Chapter3

A survey of current methods in solving linear equations on

parallel computers 47

3.1 Parallel Architecture 48

3.2 Parallel Algorithms 54

3.2.1 Design of parallel algorithms 55

3.2.2 Analysis of parallel algorithms 57

3.2.3 Programming Methods 60

3.2.3.1 Programming the Sequent Balance 60

3.2.3.2 Programming in PVM 62

3.3 Survey Of Parallel Algorithms For The Solution Of

Linear Systems 63

3.3.1 Parallel Direct Linear System Solvers 64

3.3.1.1 Parallelisation of LU and GE 65

3.3.1.2 Parallelisation of the QR method 71

3.3.1.3 Other related work 73

3.3.2 Parallel iterative linear system solvers 78

V

Chapter4

Parallel Implicit Elimination (PIE) and Quadrant

Interlocking Factorisation (QIF) on Shared Memory

Architecture 81

4.1 Parallel Implicit Elimination method (PIE) 82

4.2 Quadrant Interlocking Factorisation method (QIF) 88

4.3 Partial Pivoting for PIE and QIF 94

4.3.1 Partial Pivoting for PIE 94

4.3.2 Partial Pivoting for QIF 95

4.4 Implementation of PIE and QIF on shared memory

architecture ············ 96

4.4.1 Parallel Elimination algorithm 97

4.4.2 QIF algorithm 99

4.4.3 Bi-directional substitution algorithm lOO

4.4.4 Bi-directional solution algorithm 100

4.5 Computational Complexity and Shared Memory Access 102

4.5.1 Computational Complexity and Shared Memory

Access Count for PIE 102

4.5.2 Computational Complexity and Shared Memory

Access Count for QIF 106

4.5.3 Computational Complexity and Shared Memory

Access Count for GE 109

4.5.4 Computational Complexity and Shared Memory

Access Count for LU 112

4.5.5 A Summary 114

4.6 Numerical Results 115

4.6.1 Execution time of PIE, QIF, GE and LU 116

4.6.2 Speed up of PIE, QIF, GE and LU 117

4.6.3 Efficiency of PIE, QIF, GE and LU 118

4.6.4 Temporal Performance of PIE, QIF, GE and LU 119

4.7 Summary 121

vi

ChapterS

Parallel Implicit Elimination (PIE) and Quadrant

Interlocking Factorisation (QIF) on Distributed Memory

Architecture 123

5.1 Cluster Computing and PVM 124

5.2 Implementation of PIE and QIF in PVM 127

5.3 Theoretical analysis of communication for PIE, GE, QIF

andLU 132

5.3.1 Theoretical analysis of communication forGE

algorithm 132

5.3.2 Theoretical analysis of communication for PIE

algorithm 133

5.3.3 Theoretical analysis of communication for LU

algorithm• 134

5.3.4 Theoretical analysis of communication for QIF

algorithm 135

5.4 Prediction of communication times 137

5.5 Nmnerical results 141

5.6 Smnmary 145

Chapter6

QZ decomposition on a shared memory multiprocessor 147

6.1 QZ decomposition method 148

6.2 Sequential and Parallel Algorithms for QR and QZ 152

6.3 Computational Work and Memory Accesses of the QR

and QZ methods 156

6.3.1 QRmethod 156

6.3.2 QZmethod 157

6.3.3 A Summary 160

6.4 Numerical Results 161

6.5 The Greedy Approach 164

6.6 Summary 165

vii

Chapter?

Quadrant Interlocking (QI) Iterative methods on Shared

Memory Parallel Computer

7.1 Quadrant Interlocking Matrix Splitting Strategy

7.1.1 Simultaneous Quadrant Interlocking iterative

method (J.Q.I.)

7.1.2 Simultaneous Overrelaxation iterative method

(J.O.Q.I.)

7.1.3 Successive Quadrant Interlocking iterative

method (S.Q.I.)

7.1.4 Successive Overrelaxation iterative method

(S.O.Q.I.)

7.2 The Model Problem

7.3 Sequential and Parallel Algorithms for the Classical and

QI iterative methods

7.4 Computational Complexity and Shared Memory Access

Analysis for the Classical and QI iterative methods

7.4.1 Jacobi and Gauss-Seidel iterative methods

7.4.2 JQI and SQI methods

7.4.3 Summary

7.5 Numerical Results

7.6 A Simplified Model Study

7.7 Summary

ChapterS·

Summary and Future Work

References

Appendix

Parallel Implicit Elimination program listing (Balance)

Quadrant Interlocking Factorisation program listing(Balance)

viii

............. 166

............ 167

............ 170

............ 170

............ 171

............ 171

............ 172

............ 173

............ 180

............ 180

............ 180

............ 181

............ 182

............ 192

............ 194

............ 195

............ 198

............ 208

............ 208

............ 212

QZ Decomposition program listing (Balance) 217

Parallel Implicit Elimination master program listing (PVM) 224

Parallel Implicit Elimination slave program listing (PVM) 227

Quadrant Interlocking Factorisation master program listing

(PVM) 233

Quadrant Interlocking Factorisation slave program listing

(PVM)• 235

ix

LIST OF ALGORITHMS

Algorithm 2.9.2.1 Jacobi Algorithm 41

Algorithm 2.9.3.1 Gauss-Seidel Algorithm 41

Algorithm 3.3.1.1.1 Sequential forward elimination algorithm 66

Algorithm 3.3.1.1.2 Sequential row oriented algorithm for back

substitution 68

Algorithm 3.3.1.1.3 Sequential column oriented algorithm for

back substitution 68

Algorithm 3.3.1.1.4 Sequential algorithm for factorisation stage in

LU 71

Algorithm 3.3.1.1.5 Sequential algorithm for forward substitution 71

Algorithm 3.3.1.2 Sequential QR Decomposition 72

Algorithm 4.4.1.1 Sequential algorithm for implicit elimination 98

Algorithm 4.4.1.2 Parallel algorithm for implicit elimination 98

Algorithm 4.4.2.1 Sequential algorithm for WZ factorisation 99

Algorithm 4.4.2.2 Parallel algorithm for WZ factorisation 99

Algorithm 4.4.3.1 Sequential algorithm for bi-directional

substitution 100

Algorithm 4.4.3.2 Parallel algorithm for bi-directional

substitution 100

Algorithm 4.4.4.1 Sequential algorithm for bi-directional

solution 101

Algorithm 4.4.4.2 Parallel algorithm for bi-directional solution 101

Algorithm 4.5.1.1 Sequential algorithm for parallel elimination 103

Algorithm 4.5.1.2 Sequential algorithm for bi-directional

solution 103

Algorithm 4.5.2.1 Sequential algorithm for WZ factorisation 106

Algorithm 4.5.2.2 Sequential algorithm for bi-directional

substitution 107

Algorithm 4.5.3.1 Forward elimination algorithm of GE 109

Algorithm 4.5.3.2 Backsubstitution algorithm of GE 109

X

Algorithm 4.5.4.1 Factorisation stage in LU 112

Algorithm 4.5.4.2 Forward substitution 112

Algorithm 5.2.1 Partitioning of data to slave programs 128

Algorithm 5.2.2 WZ factorisation algorithm 129

Algorithm 5.2.3 Bi-directional substitution algorithm 129

Algorithm 5.2.4 Bi-directional Solution algorithm 130

Algorithm 5.2.5 Parallel Implicit Elimination algorithm 130

Algorithm 5.2.6 LU factorisation algorithm 131

Algorithm 5.2.7 Forward Substitution Algorithm 131

Algorithm 5.2.8 Back Substitution Algorithm 131

Algorithm 5.2.9 Forward Elimination Algorithm 131

Algorithm 6.2.1 Sequential QR Decomposition 152

Algorithm 6.2.2 Sequential QZ Decomposition 153

Algorithm 6.2.3 Parallel QR Decomposition 154

Algorithm 6.2.4 Parallel QZ Decomposition 155

Algorithm 7.3.1 Sequential Jacobi Algorithm 174

Algorithm 7.3.2 Sequential Gauss-Seidel Algorithm 175

Algorithm 7.3.3 Sequential JOR Algorithm 175

Algorithm 7 .3.4 Sequential SOR Algorithm 175

Algorithm 7.3.5 Sequential JQI Algorithm 175

Algorithm 7.3.6 Sequential SQI Algorithm 176

Algorithm 7.3.7 Sequential JOQI Algorithm 176

Algorithm 7.3.8 Sequential SOQI Algorithm 177

Algorithm 7.3.9 Parallel J acobi and JOR Algorithms 177

Algorithm 7.3.10 Parallel JQI and JOQI Algorithms 177

Algorithm 7 .3.11 Parallel Gauss-Seidel/SOR Algorithms

(Red-Black Ordering) 178

Algorithm 7.3.12 Parallel SQI/SOQI Algorithms (Red Black

Ordering) 178

Algorithm 7 .3.13 Asynchronous Iterative Algorithm 179

xi

Chapter 1

Introduction

An . important field in computer science has emerged from the need for high

performance computing machines consisting of a large number of processors,

interconnected by high speed networks, having fast access to a large memory, and able

to work together on large-scale computationally intensive applications. There seems to

be a general agreement among researchers in many fields of science and engineering

that parallel computing is the most practical means to satisfy the ever-increasing need

for higher computing power.

Rapid developments in very large scale integration (VLSI) and communication

technologies have created a situation whereby the hardware designers are able to build

machines with thousands of powerful computing nodes at a relatively low cost. These

machines are naturally more complex than the machines with a single processor.

Whatever achievements may be made in new technologies for building faster

processors and memory modules, it is necessary to have a good understanding of how

to group these processors so that they are able to work together on large problems.

The inevitability of this direction is shown by the existence of many important

applications exhibiting great potential for being split into parts and being solved in

parallel.

The increasing availability of advanced-architecture computers is having a very

significant impact on all aspects of scientific computation, including algorithm research

and software development in numerical linear algebra.

Linear algebra, in particular, the solution of linear systems of equations, lies at the

nucleus of most calculations in scientific computing. The solution of a system of linear

equations is an important computation found in many engineering and scientific

applications.

These applications include electromagnetic scattering, computational fluid dynamics,

airline wing design, radar cross-section studies, supercomputer benchmarking, flow

around ships and other offshore constructions, diffusion of solid bodies in a liquid,

noise reduction and diffusion of light through small particles.

I

Excellent numerical methods for solving these problems on uniprocessor machines

have long been developed and many reliable and high quality codes are available for

different cases of linear systems. However, for the past 15 years or so, there has been a

great deal of activity in the area of algorithms and software for solving linear algebra

problems on parallel computers. Earlier work in developing parallel algorithms for

linear algebra problems involved hypothetical parallel computers with n2 or more

processors, where n is the dimension of the matrix. As parallel computers became

more widely available, these algorithms were then tested on real parallel computers

with a limited number of processors usually less than n. Later development involved

redesigning and reorganising the parallel algorithms to obtain an improvement in

performance [Dongarra 84]. These parallel algorithms have also been developed to

form parallel software libraries. More recent development in the design of linear

algebra algorithms for advanced architecture computers is that the frequency with

which data is moved between different levels of the memory hierarchy must be

minimised in order to attain high performance [Dongarra 95b]. The main algorithmic

approach for exploiting both vectorisation and parallelism is the use of block­

partitioned algorithms, particularly in conjunction with highly tuned kernels for

performing matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS)

[Dongarra 95b].

Earlier algorithms have been developed bearing in mind a sequential execution. When

these algorithms are parallelised, they may not offer the best performance. This thesis

focuses on numerical algorithms which have been designed to suit the parallel nature of

computation. The performance of these parallel algorithms will then be compared

against that of the classical methods which have been parallelised and implemented on

the same platform. Analysis of sequential algorithms are based on computational count

and memory requirements of the algorithm. However, new dimensions are involved in

analysing parallel algorithms. These include speedup, efficiency, temporal performance

and data movement between processors.

In particular, attention will be given to numerical algorithms for the solution of linear

systems, covering both the direct and iterative methods of solving linear systems.

2

Section 1.1 covers the heat transfer problem as an application that will yield a sparse

linear system. The least squares problem which results in a dense linear system will be

discussed in section 1.2. Section 1.3 provides an outline of the thesis.

1.1 The Heat Transfer Field Problem

A well known problem that generates a sparse linear system of equations to be solved

is the heat transfer field problem. Field problems do not give rise to finite sets of

equations by a direct interpretation of the physical properties. Instead, the system is

approximated to discrete form by choosing points or nodes at which to assign the basic

variables. The errors involved in making the approximation will be small if more nodes

are chosen. Therefore, the user will have to decide on the number of nodes which is

likely to give sufficient accuracy.

Consider the heat transfer problem of Figure 1.1.1 in which the material surface AB is

maintained at high temperature T H while the surface CDEF is maintained at a low

temperature TL, and the surfaces BC and FA are insulated. Estimates may be required

for the steady state temperature distributions within the material and also the rate of

heat transfer, assuming that the geometry and boundary conditions are constant in the

third direction.

F E Temperature T L

/
temperature contours

Temperature Tu

Figure 1.1.1 A heat transfer problem showing possible heat flow lines

There will be heat flow lines such as the lines P, Q, and R in Figure 1.1.1 and also

temperature contours which must be everywhere mutually orthogonal. If T is the

temperature and q the heat flow per unit area, then the heat flow will be proportional

to the conductivity of the material, k, and to the local temperature gradient. If s is

measured along a line of heat flow then

3

--~------------

or q=-k­
&

(1.1.1)

Alternatively, the heat flow per unit area can be separated into components q. and qy in

the directions x and y respectively. For these components, it can be shown that

or or
q. =-k-g; and qY = -ksy (1.1.2)

Consider the element with volume dx x dy x 1 shown in Figure 1.1.2. In the

equilibrium state the net outflow of heat must be zero, hence

(
oq. oq, f -+- dy=O ox oy

Substituting for q, and qy from equations (1.1.2) gives

8 2T 8 2T
&2 + bY2 =0

(1.1.3)

(1.1.4)

provided that the conductivity of the material is constant. This equation must be

satisfied throughout the region ABCDEF, and, together with the boundary conditions,

gives a complete mathematical statement of the problem. The boundary conditions for

the problem of discussion are:

on AB:

onCDEF:

or
on BC and FA: q, = & =0

X

:. dlL ... ~

(1.1.5)

(1.1.6)

(1.1. 7)

Figure 1.1.2 Heat flow across the boundaries of an element dx x dy x 1

Equation (1.1.4) is known as Laplace's equation. Other problems which give rise to

equations of Laplace form are analysis of sheer stress in shaft objects due to pure

torsion and potential flow analysis in fluid mechanics.

4

Few analytical solutions exist for Lap lace's equation, therefore, it is necessary to apply

numerical techniques such as the fmite difference or the fmite element method to

obtain an approximate solution.

In the fmite difference method a regular mesh is designated to cover the whole area of

the field, and the fie!<\ equation is approximated by a series of difference equations

involving the magnitudes of the required variable at the mesh points.

TL TL

TH TH TH TH TH

Figure 1.1.3 A finite difference mesh

Figure 1.1.3 shows a square mesh suitable for an analysis of the heat transfer problem

in which the temperatures of the points 1 to 10, designated by T" Tz, .•. , Tto. are

unknowns whose values are to be computed. For a square mesh the fmite difference

equation corresponding to Lap lace's equation is

Ta+TH • 4T! +TK +TL =0 (1.1.8)

where the points G, H, K and L adjoin point J as shown in Figure 1.1.4.

Figure 1.1.4 Finite difference linkage for Laplace's equation

Equation (1.1.8) which states that the temperatures at any point is equal to the average

of the temperatures at the four neighbouring points, is likely to be less accurate when a

5

I

. I

I

I

I

large mesh rather than a small one is chosen. Taking J to be each of the points 1 to 10

in turn yields 10 equations, for example, when

J=4: T2+T3-4T4+Ts+T1 =0

and

J= 5: T4- 4Ts + Ts = -2TL

The insulated boundaries BC and FA may be considered to act as mirrors, so that, for

instance, with J=l, the point immediately to the left of point 1 can be assumed to have

a temperature of Tt. giving

-3T,+T2+T3=-TL

The full set of equations may be written in matrix form as

13 -1 -1 l r :z; 1

r
TL

1-1 4 -1 lr. 2TL

1-1 3 -1 -1 lr. I 0

-1 -1 4 -1 -1 r. 0

-1 4 -1 T, 2TL
= (1.1.9)

I
-1 3 -1 T,; TH

l
-1 -1 4 -1 T; TH

-1 -1 4 -1 Ts TH

-1 4 ~~J T, TL +Ta

-1 7;o TL +Ta

with the coefficient matrix being a sparse one. Sparse linear systems are normally

solved by iterative methods.

1.2 Least Squares Problem

The least squares problem for overdetermined equations will result in a dense linear

system. In most problems, the object is to obtain the best fit to a set of equations using

insufficient variables to obtain an exact fit. A set of n linear equations involving m

variables x;, where n > m, may be described as overdetermined. Taking the k-th

equation as typical, then

(1.2.1)

It is not normally possible to satisfy these equations simultaneously, and therefore for

any particular proposed solution one or more of the equations are likely to be in error.

Let ek be the error in the k-th equation such that

6

(1.2.2)

The most acceptable solution or best fit will not necessarily satisfy any of the equations

exactly but will minimise an appropriate function of all the errors ek. If the reliability of

each equation is proportional to a weighting factor Wk, then a least squares fit fmds the

solution which minimises

(1.2.3)

Since this quantity can be altered by adjusting any of the variables, then the equations

of the form

(1.2.4)

must be satisfied for all the variables x;. Substituting for ek from equation (1.2.2) and

differentiating with respect to x; gives

(i w.a10a•1)x1 +(i w.a10a•2)x2 + ··· + (i w.a10a~an)xm = i w.a10b, (1.2.5)
k=l k=l k=l k:::l

Since there are n equations of this form, a solution can be obtained.

Alternatively, these equations may be derived in matrix form by rewriting equations

(1.2.2) as

Ax=b +e (1.2.6)

where A is an nxm matrix and b and e are column vectors of order n.

Proceeding in the same way and if incremental changes in the variables are represented

by the column vector [dx] then the corresponding incremental changes in the errors

[de] satisfy

A [dx] =[de] (1.2.7)

However, from the required minimum condition for the sum of the weighted squares, it

follows from (1.2.4) that

m

2,w1e1de1 =0
k=l

which can be expressed in matrix form as

[defWe=O

(1.2.8)

(1.2.9)

where W is a diagonal matrix of the weighting factors. Substituting for e and [de] using

equations (1.2.6) and (1.2.7) gives

7

--- --

[dxl ATW(Ax-b) =0

Since this equation is valid for any vector [dx], it follows that

ATWAx=ATWb

(1.2.10)

(1.2.11)

It can be verified that this equation is equivalent to (1.2.5). Furthermore, the

coefficient matrix AT WA is symmetric and positive definite when W > 0. Thus, for

positive weights there is only one minimum and one unique solution.

1.3 Guide to Thesis

The aim of this thesis is to investigate the Quadrant Interlocking (QI) class of

algorithms (both direct and iterative methods) for the solution of linear systems. The

investigation includes analysing the computational complexity of the algorithms,

analysing the data movement involved and the implementation of the parallel

algorithms. A similar investigation is done on the classical algorithms used in the .

solution of linear systems and a comparison is then made between the QI class of

algorithms and the classical algorithms.

Basic mathematical concepts needed to understand the methods for solving linear

systems are discussed in chapter 2. In chapter 3, a survey of current methods in solving

linear equations on parallel computers is presented. Some basic insight to parallel

architectures, parallel algorithms and parallel programming methods are also given

here.

Chapter 4 covers the QI direct methods, namely Parallel Implicit Elimination (PIE) and

Quadrant Interlocking Factorisation (QIF) methods and their implementation on a

shared memory machine, the Sequent Balance. The performance of these methods are

then compared to that of the classical and most commonly used direct methods,

Gaussian Elimination (GE) and the LU factorisation respectively. A discussion on the

computational complexity and shared data accesses for the algorithms is also given.

In chapter 5, the PIE and QIF methods are investigated on the distributed memory

architecture using the Parallel Virtual Machine (PVM) software on a cluster of

workstations. In particular, the communication complexity of the algorithms are

analysed and a comparison is made with the classical methods GE and LU.

An orthogonal version of the QI method, known as the QZ method is examined in

chapter 6. The performance of this algorithm will be compared to that of the Givens

8

QR method. The computational complexity and shared data accesses for both

algorithms are also discussed.

In chapter 7 of the thesis, the iterative version of the QI method is discussed. This

includes the Simultaneous Quadrant Iterative (JQI) method which is compared with

the Jacobi (J) method, the Jacobi Over-relaxation Quadrant Iterative (JOQI) method

which is compared to the Jacobi Over-relaxation (JOR) method, the Successive

Quadrant Iterative method which is compared to the Gauss-Seidel method and the

Successive Over-relaxation Quadrant Iterative (SOQI) method which is compared to

the Successive Over-relaxation (SOR) method. Both the synchronous and

asynchronous versions of the iterative methods are discussed and the results presented.

Lastly, a discussion and suggestions for future work pertaining to this research will be

given in chapter 8.

9

Chapter2

Basic Mathematical ConceptS and Methods in Linear Algebra

In this chapter the important topics in matrix computation are presented. Here the

concepts are narrowed down to that of relevance to the study of the solution of linear

systems. Sections 2.1 through 2. 7 cover the basic concepts of matrix computation. The

solution x to the system of simultaneous linear equations with the (mm) matrix A and

(nxl) vector b, can be denoted in the matrix form Ax=b. The methods for solving such

systems, either direct or iterative, depend on some matrix properties of A such as

irreducibility, diagonal dominance and positive defmiteness of the coefficient matrix of

the system. These and some other properties along with some basic fundamentals of

matrix theory will be discussed in these sections.

As mentioned above, practical methods for the solution of linear systems fall mainly

into two classes; direct and iterative. The direct methods fmd the solution in a fmite

number of steps and are guaranteed to succeed. The iterative methods start with an

arbitrary first approximation to x and then improve this estimate in a convergent

sequence of steps. Section 2.8 will cover the direct methods and section 2.9 covers the

iterative methods. The computational complexity of the methods is covered in section

2.10.

2.1 Basic Matrix Algebra

Matrices are important to numerical analysis because they provide a concise method

for specifying and manipulating large numbers of linear equations. The collection of

equations and their unknowns is called a linear system if each one can be expressed in

the form,

a1X1 + a2X2 + ... + 3mXm :: b,

with x;, a;, b e 9t, i=l(l)m. The x;, i=l (l)m are the unknowns, a; are the coefficients

and b the constant or right hand side (RHS) term.

Hence, ann equation system is as illustrated in (2.1.1).

aux1 + a12x2 + ... + a1mXm = b~o
a21X1 + a22X2 + ... + a2mXm = b2,

(2.1.1)

10

A matrix is defmed as a two dimensional array with each element denoted as a;J where

i specifies the row and j specifies the column of the array in which the element appears.

For example, a matrix A with n rows and m columns is said to be of size (nxm). The

matrix A can be denoted as

r
al.l a1,z

A= [a.] = az.t az,z

•.J l"' ...
a~.l a •. z

(2.1.2)

When n=l, the matrix is a row matrix or a row vector and when m=l, it is a column

matrix or a column vector. Vectors are normally denoted by a small underlined letter .!!

or a bold letter a. In this thesis, all vectors are denoted in bold. An element a;

represents the ith element of vector a. The term vector without qualification will refer

to a column vector. Therefore, a vector b, for example, whose elements are bt. bz, ... ,

h. and is of order n is denoted by

bt

(2.1.3)

b.

A matrix A is said to be a square matrix of order n if n = m. In this thesis, the term

matrices imply square matrices, unless stated otherwise. The italic capital letters will be

used to denote matrices.

A linear system of equations can be represented by

Ax=b (2.1.4)

with A an nxm coefficient matrix, and x, b vectors. The system is homogeneous if the

components of b, b; = 0, i=l(l)n and always has a trivial solution with x; = 0, i=l(l)m.

Any solution with some X; *0 is termed a nontrivial solution. A non-homogeneous

system has a particular solution if u e 9t" satisfies (2.1.4) when substituted for x, and

the set of all vectors satisfying (2.1.4) gives the general solution. This thesis is

restricted to linear systems with mainly square coefficient matrices, and which often

arise from physical problems. Fortunately, in general, such systems if solvable produce

only a single or unique solution obviating the need to deal with general solution sets.

11

The set of elements ai.i, i = 1, 2, ... , n of a matrix A is a principal (main) diagonal of

A. The transpose of a matrix A=[a;j] is denoted as AT and is obtained by interchanging
. T

the rows and columns of A, i.e., the element a,j of A becomes ai.• of A . Thus the

transpose of A in (2.1.2) is:

j a,,, az,l a •. ,

A= [a;.!] =l ~::z az.z a •. z
(2.1.5)

a,..,. az.m a • ..,.
The determinant of a square matrix can be denoted either as det(A) or lA I. An inverse

of a given square matrix, denoted by A ·I, if it exists, is also a square matrix such that

AA"1 = A"1A =I

where I is the identity (unit) matrix having the same order as A and is defmed as

follows:

ai,i = 1, for all i = 1, 2, ... , n

aij = 0, for all i, j = 1, 2, ... , nand i;tj.

If the inverse of A exists, then A is non-singular, otherwise it is singular. On the other

hand, A is non-singular if det(A) ;tO and singular if det(A) = 0.

If x and y are real numbers, then the conjugate of the complex number a = x + iy is

a =x-iy. If the elements of a matrix A are complex numbers, the conjugate of A is the

matrix A whose elements are conjugates of the corresponding elements of A, i.e., if

A=[aij] then A= [a;. J].

The Herrnitian transpose or conjugate transpose of A denoted by AH, is the transpose

of A and also the conjugate of AT, i.e.,

A8 =(Ar =A' =-[ai.J]

The sum of the diagonal elements of a matrix A is called the trace of A, denoted by

trace(A), i.e.,

n

trace(A) = L,m.;
i=l

A permutation matrix P = [p;j] is a matrix which has the entries of ones and zeroes

with exactly only one non-zero entry in each row and each column. For example,

12

1 0 0 0

0 0 0 1
P= 0 0 1 0

0 1 0 0

is a permutation matrix of order 4. For any permutation matrix P, we have

ppT =PTP=l

Hence pT = P"1
•

(2.1.6)

For any two vectors a and b, both of the same order say n, the inner product of a and

b is defmed as

H n-
(a, b)= a b = La1b1

i=l

Further, for any matrix A,

(a, Ab)= (AHa,b).

Given a matrix A = [a;J], the integers i and j are associated with rows and columns with

respect to A if a;J *0 or ai.i *0.

The matrix A = [a;J] of order n is

a) Symmetric, if A =AT.

b) Orthogonal,ifAT =A·1
•

c) Hermitian, if AH =A.

d) Null, usually denoted by 0 if a;J = 0, fori, j = 1, 2, ... , n.

e) Diagonal, if a;J = 0 fori* j, i.e., I i- j I > 0, where li- j I represents the modulus

of any number (i- j) and a;J *0 for i=j.

X 0

X

A= x denotes a possible non-zero element

X

0 X

Figure 2.1.1 Diagonal matrix

f) Banded, if a;J = 0, for I i-j I > r, where 2r+ 1 is the bandwidth of A.

g) Tridiagonal, if r = 1 (r as in f above). See figure 2.1.2 for example.

13

. I

X X l
X X X 0

A= where x denotes a possible non-zero element

l 0 X
X XJ
X X

Figure 2.1.2 Tridiagonal matrix

h) Quindiagonal, if r = 2, see figure 2.1.3.

X X X

X X X X 0

X X X X X

A= where x denotes a possible non-zero element

X X X X X

0 X X X X

X X X

Figure 2.1.3 Quindiagonal matrix

i) Lower triangular, (strictly lower triangular), if a;J = 0, fori< j, (i !> j).

0 where a;J = 0 for i<j.

Figure 2.1.4 A lower triangular matrix

j) Upper triangular, (strictly upper triangular), if a1J = 0, fori> j, (i;:: j).

where a1J = 0 for i>j.

Figure 2.1.5 An upper triangular matrix

k) Sparse, if a relatively large number of the elements a1J are zero.

I) Dense, if a relatively large number of the elements a1J are non-zero.

m) Block Diagonal, if each D;, i = 1, 2, ... , n, (see figure 2.1.6) is a square

matrix, but not necessarily of the same order.

14

Dz 0

A= ·•
0 Dn-1

Dn

Figure 2.1.6 Block Diagonal matrix

n) Block Tridiagonal, if each D;, i = I, 2, . . . , n, is a square matrix, but not

necessarily of the same order, while theE's and F's are rectangular matrices, as

shown in figure 2.1.7.

D1 F1

Ez Dz Fz 0

E' v, F'
A=

0 En-1 Dn-1 Fn-1

En Dn

Figure 2.1. 7 Block Tridiagonal matrix

2.2 Diagonal Dominance and Irreducibility

Definition 2.2.1

A matrix of order n is diagonally dominant if

n

ia•.•l ~ I,im.Mor alll ~ i ~ n
J=l
j"l:i

and for at least one i

n

lm.•l > I,im.JI.
}=1
J•l

If (2.2.2) holds for all i, then A has strong diagonal dominance.

The irreducibility of a matrix A as defmed by [Young 71] is as follows:

Definition 2.2.2

(2.2.1)

(2.2.2)

A matrix of order n is said to be irreducible if n=l or if n > I and given any two non­

empty disjoint subsets S and T of W, the set of the first n positive integers, such that

S+T = W, there exists ie S and jeT such that a;,J,.O. [Varga 62] stated that a

matrix of order 1 is irreducible if its single element is non-zero, otherwise reducible.

15

Theorem 2.2.1

A is irreducible if and only if there does not exist a permutation matrix P such that

Y 1AP has the form

Y
1
AP = [~ ~] (2.2.3)

where F and H are square matrices and 0 is the null matrix.

Theorem 2.2.2

A matrix of order n is irreducible if and only if n = I or, given any two distinct integers

i andj with i,j = 1, 2, ... , n then a;, i * 0 or there exists i,, h •... , in such that

(2.2.4)

The concept of irreducibility can be shown graphically. Given a matrix A, a directed

graph is constructed as follows: Label n distinct points (or nodes) in the planes as 1, 2,

... , n. For any non-zero element a;j of the matrix, connect the point i to the point j by

means of a path directed from i to j. For non-zero diagonal elements a;,;, the path goes

from i to itself forming a loop.

Definition 2.2.3

A directed graph is strongly connected if for any ordered pair of nodes Pi and Pi• there

exists a directed path

iJ>.,, p-;;}.,, p;;'J>.,,' ' .• p;:_ ,pk, . J

connecting Pi to Pi. Such a path has length r.

Theorem 2.2.3

A square matrix is irreducible if and only if its directed graph G(A) is strongly

connected.

Definition 2.2.4

An irreducible matrix which is also diagonally dominant with strict inequalities holding

for at least one i in defmition 2.2.2 is said to be irreducibly diagonally dominant. If

defmition 2.2.2 holds for all i, then A has strong diagonal dominance.

As an example, consider the matrix P given below.

0 1 0 1

1 0 1 0
P= (2.2.5)

0 1 0 1

1 0 0 1

16

The directed graph of Pin (2.2.5) is given as in figure 2.2.1.

1

LP0 4·L-3·
Figure 2.2.1

The matrix

A=[~ 1 1]
0 1

0 1

in which its directed graph is given in figure 2.2.2 is not irreducible.

Figure 2.2.2

The directed graph in figure 2.2.2 is not connected since there is no path from point 3

to point 1. Also, point 1 or point 2 cannot be reached starting from point 2 or point 3

respectively.

Some fundamental theorems follow.

Theorem 2.2.4

If A is an irreducible matrix with diagonal dominance, then det(A) # 0 and none of the

diagonal elements of A are zero.

Corollary 2.2.1

From theorem 2.2.4, if A is strongly diagonally dominant, then det(A) * 0.

There is now a sufficient condition for an Herrnitian matrix to be positive definite.

Theorem 2.2.5

If A is an Herrnitian matrix with non-negative diagonal elements and with diagonal

dominance, then A is non-negative definite. If A is also irreducible or non-singular, then

A is positive defmite. Positive defmite matrices will be discussed in more detail in

section 2.5.

17

2.3 Eigenvalues and eigenvectors

Suppose that A is a matrix of order n and x "# 0 is a vector of the same order. An

eigenvalue of A is a real or a complex number A. such that

Ax = A.x (2.3.1)

It is also called a characteristic or latent root of A. An eigenvector of A is a vector x

such that x "# 0 and (2.3.1) holds for some A.. This vector is sometimes called the

characteristic or latent vector of A. The equation (2.3.1) can be written as

(A- A.I)x=O (2.3.2)

The non-trivial solution x "# 0 to equation (2.3.2) exists if and only if the matrix of the

system is singular, thus leading to the theorem 2.3.1.

Theorem 2.3.1

The number A. is an eigenvalue of A if and only if

det(A - A.l) = 0 (2.3.3)

(2.3.3) is a polynomial equation, referred to as the characteristic equation of A of the

form

(-1)"det(A- A.I) = ')."- trace(A) t..•·l + ... + (-l)det(A) = 0 (2.3.4)

Since the sum and product of the roots of (2.3.4) are trace(A) and det(A) respectively,

theorem 2.3.2 can be derived.

Theorem 2.3.2

If A is a matrix of order n with eigenvalues A.,, A.,, ... , A.,, where v ~ n, then

'
det(A) =IT iu,

/::J

' trace(A) = I,/.; .
l=:l

(2.3.5)

The left hand side of (2.3.3) is called the characteristic polynomial of A, which can also

be written as,

(2.3.6)

where aio i=O, l, ... , n-1 are constants.

It is clear that since the coefficient of A." is not zero, the equation (2.3.6) always has n

roots either real or complex which are the eigenvalues of the matrix A, namely as A.,,

A.,, •.• , A.. (not necessarily having the same values), each of them possessing a unique

corresponding eigenvector.

18

In physical problems, all the eigenvalues of (2.3.2) are rarely found. In particular, it is

often necessary to determine the largest eigenvalue in modulus, where it is often

termed as the dominant eigenvalue or spectral radius. One of the methods for obtaining

the dominant eigenvalue with its corresponding eigenvector is called the Power

Method.

Definition 2.3.2

Given a matrix A of order n with eigenvalues A;, 1 < i < n, then

p(A) = max I A; I

is the spectral radius of A.

Definition 2.3.3

(2.3.7)

The P-condition number of the matrix A is defmed as P=b/a, where

a, be 9t satisfy a::; J.,::; b, i=l(l)n and are the largest and smallest eigenvalues

respectively.

The spectral radius is extremely useful (particularly in iterative solution of linear

systems) because it allows the structure and properties of a coefficient matrix via the

eigenvalues to influence the performance of the solution technique.

Definition 2.3.4

Two matrices A and B of order n are similar if there exists a non-singular matrix P

such that

B=Y1AP (2.3.8)

Matrix B is said to be obtained from matrix A by a similarity transformation and if B is

symmetric then P will be orthogonal, i.e., Y 1 = PT, and hence

B=PTAP (2.3.9)

The advantage of such a transformation is that the eigenvalues of A and B are the

same. This can be shown as follows:

Let), and x be the eigenvalue and the eigenvector of the matrix of A respectively.

Hence,

Ax =A.x

then premultiply by Y 1 to have

Y1Ax = A. Y1x.

(2.3.10)

(2.3.11)

19

Thus if u = P'1x, then

x=Pu.

Substituting (2.3.12) into (2.3.1 1),

P'1APu=A.u

or Bu =A.u.

Thus, A. is the eigenvalue of B and u is the corresponding eigenvector.

Theorem 2.3.1 (Gerschgorin's theorem)

(2.3.12)

(2.3.13)

(2.3.14)

If A = [a1j] is a matrix of order n, then all the eigenvalues of A lie in the union of the

discs,

Proof:

" 11.- a•. •I S I,la•.i\.
i=l
j#

1Si::;n. (2.3.15)

Let A. and x be the eigenvalue and the eigenvector of matrix A respectively. x can be

normalised so that m;uc: lx,l = 1.. Hence, the following is obtained from (2.3.1).
'

A.x =Ax (2.3.16)

" J..x, = I,m.JXJ, 1::;i::;n (2.3.17)
1=1

" Le.,(l.- a;,;)x• = I,m.JXJ, 1SiSn. (2.3.18)
l=l
#i

Now, lxkl = 1, then

" " lA.- m. •I ::; L lm.JIIxi\ ::; I,lm. 1l = D•. (2.3.19)
i=l j:=:l
j~k j~t

Thus the eigenvalue A. lies within the disc Dk. say, and since A. is arbitrary, then it

follows that all the eigenvalues of A must lie in the union of discs, i.e.,

" lA. -m. 'I ::; L !m. 1l ,

Corollary 2.3.1

j=l
#i

1 ::; i ::; n.

If A = [a;j] is a matrix of order nand we have

20

(2.3.20)

•
Vt = max L,iw.jl, (2.2.21)

lS'iSn i=l

•
v2 = max L,im.A, (2.2.22)

tsjsn i=l

then p(A) :o; min(Vt, V2). (2.2.23)

The condition (2.2.23) is a direct consequence of the fact that A and AT have the same

eigenvalues.

2.4 Vector and matrix norms

This section discusses the size or magnitude of a vector or matrix. This measure is

called a norm and is enclosed within 11.

Definition 2.4.1

The norm of a vector n, denoted by 11 u 11, is a non-negative number satisfying the

following three axioms:

1) 11 u 11 = 0, for u = 0 and 11 u 11 > 0 if u ;tO.

2) 11 o:u 11 = I a. I . 11 u 11 for any complex scalar a.,

3) 11 u + v 11 :o; 11 u 11 + 11 v 11 for any vectors u and v.

(2.4.1)

(2.4.2)

(2.4.3)

The axiom (2.4.3) is called the triangle inequality. From (2.4.3), the axiom (2.4.4) can

be derived.

11 U - V 11 <: 11 U 11 • 11 V 11 (2.4.4)

The most commonly used norms are the L" L, and L.. norms of u and they are
'

defined as follows:

Definition 2.4.2

If u = [uhu2, ••• , un] T is a vector of order n then

Lt = 11 u 11, =!I u, I
i=l

L2 = 11 u 11, = [~ lwl' 1, (Euclidean norm)

L.. = 11 u IL =maxI u• 1. (maximum or uniform norm)
I

(2.45)

(2.4.6)

(2.4.7)

For these three special cases, the general case for Lp for p > 1 can be defined as:

(2.4.8)

21

The matrix nonn can be defmed in a similar manner.

Definition 2.4.3

A norm of a matrix A of order n, denoted as 11 A 11 is a scalar satisfying the following

axioms:

1) 11 A 11 > 0 and 11 A 11 = 0 if and only if A = [0]

2) 11 aA 11 = I a I . 11 A !I for any scalar a.

3) 11 A + B 11 ::;; 11 A 11 + 11 B 11 for any matrices A and B.

4) 11 AB 11 ::;; 11 A 11 • 11 B 11 for any matrices A and B.

In the same way, L" Lz and L,. are given by

•
L1 = 11 A 11 = maxLia,, A (maximum absolute column sum)

1 J i=l
1

Lz = 11 A 11
2
=(maximum of An A)' (spectral nonn)
•

L.. = max L,iad, (maximum absolute row sum)
i j=l

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)

A nonn compatible with the Lz vector norm is the Euclidean nonn or Schur norm and

is defmed as follows:

(2.4.16)

Definition 2.4.4

A matrix nonn 11 A 11 is said to be compatible with a vector nonn 11 u 11 if

IIAu 11::;; IIA 11.11 u 11, for all u i'O. (2.4.17)

Definition 2.4.5

A matrix norm is said to be subordinate to the corresponding vector norm if it can be

constructed in the following form:

IIAull
11 A 11 = ~,!"~!;ill

or equivalent to

11 A 11 = max 11 Aull, 11 u 11 = 1.

2.5 Positive definite and special matrices

(2.4.18)

(2.4.19)

There are many definitions for the property of positive definiteness of a matrix A.

Definition 2.5.1

22

If a matrix A of order n is Hermitian, and the quadratic form

(x,Ax) >0 (2.5.1)

for x ;~oO, then A is positive definite.

The matrix A is non-negative defmite if (x,Ax) 2:0. The other definition of positive

definiteness of a matrix A is stated by the following theorem.

Theorem 2.5.1

The necessary and sufficient condition for a Hermitian or a real symmetric matrix A to

be positive definite is that, the eigenvalues of A are all positive.

Theorem 2.5.2

An irreducible, diagonally dominant matrix which is also symmetric and positive real

diagonal elements is positive defmite. The proof of these theorems may be found in

[Young 71].

Following are definitions of some special matrices.

Theorem 2.5.3

If A "' [a;J] is a real matrix of order n, then it is said to be

1) an L-matrix if

a;,;> 0, i = 1, 2, ... , n and

a;J S 0, i, j "' 1, 2, ... , n.

2) a Stieltjes matrix if A is positive definite and if (2.5.3) holds.

3) an M-matrix if A is non-singular, if (2.5.3) holds and if A"1 > 0.

(2.5.2)

(2.5.3)

It should be noticed that by stating A > 0, it means that all elements of the matrix A are

real and non-negative. A simple matrix A of order 3 which satisfies these three

definitions of special matrices is

[
4 -1 0]

A= -1 4 -1

0 -1 4

2.6 Property ;I and consistently ordered matrices

The property# of a matrix A of order n can be defined as follows:

Definition 2.6.1

23

A matrix A = [a1J] of order n is said to have property .4 if there exists two disjoint

subsets S and T ofW = { 1, 2, ... , n} such that if i;o: j and if either a;J ~ 0 and ai.i ~0.

then i e Sand j e Tor else i e T and j e S.

The property ri can also be defined as follows:

Definition 2.6.2

A matrix A of order n has property ri if there exists a permutation matrix P such that

PAPT has the form

[
D,

PAPT= E (2.6.1)

where D 1 and D2 are square diagonal matrices.

A consistently ordered matrix is defmed as follows:

Definition 2.6.3

A matrix A of order n is consistently ordered if for some t there exists disjoint subsets

St. S2, ••• , S, of W = { 1, 2, ... , n} such that

and are such that if i and j are associated, then j e Sk+l if j > i and j e s._, if j < 1 where

s. is the subset containing i.

The following theorem can be used as an alternative definition of a consistently

ordered matrix.

Theorem 2.6.1

If A is aT-matrix, then A is consistently ordered.

The proof of this theorem can be referred to in [Young 71].

The ordering vector for the matrix A is defined in the following defmition.

Definition 2.6.4

A column vector v of order n with integer elements is an ordering vector for the matrix

A of order n if for any pair of associated integers i and j with i '# j, I v; - vi I = 1.

A compatible ordering vector for the matrix A is defined as follows:

Definition 2.6.5

24

An ordering vector v =: [v., v2, ••• , vJT for the matrix A of order n is a compatible

ordering vector of A if

1) v;- vi = 1 if i and j are associated and i > j.

2) v;- vi= -1 if i andj are associated and i <j.

Theorem 2.6.2

There exists an ordering vector for a matrix A if and only if A has property 1'1.

Once again, the proof for the theorem can be referred to in [Young 71].

2.7 Rate of convergence

A linear stationary iterative method is defined as

u(k+t) = Bu<k> + c (2.7.1).

where B is known as the iteration matrix.

In practice, even if the method (2. 7.1) converges, it may converge very slowly.

Therefore, it is important to evaluate the effectiveness of an iterative method. In order

to do this, both the computation required for each iteration and the number of

iterations required for convergence at a given accuracy must be considered.

A sequence of matrices A<1>, A<2>, A<3>, ••• all of the same order is said to converge to a

limit A if

lim A<•> =A. (2.7.2)

Theorem 2. 7.1

The sequence of matrices A (I>, A<2>, A(3), ..• converges to A if and only if for every

matrix norm 11 . 11,,

(2.7.3)

Theorem 2.7.2 [Varga 62]

If A is a matrix of order n, then A is convergent if and only if

p(A)< I. (2.7.4)

Theorem 2.7.3

The matrix I- B is non singular and the series I + B + B2 + ... converges if and only if

p(B) < 1. Moreover, if p(B) < l, then

(I -Br1 =I +B+B2+··= }:B;. (2.7.5)
i=O

The proof of these theorems can be found in [Young 71].

25

The basic convergence criterion of the method (2.7.1) is as follows:

The method (2. 7.1) converges if

lim u<•l = u., for all i
' ' ,...,_

and for all starting vectors u<0l.

Theorem 2.7.4

The iterative method (2.7.1) is convergent if and only if

p(B) < 1.

Therefore, from equation (2.4.14), we have the following corollary.

Corollary 2. 7.1

A sufficient condition for the convergence of (2.7.1) is merely that

11 B 11 < 1.

(2.7.6)

(2.7.7)

(2.7.8)

It follows from this that a sufficient condition for convergence is that 11 B 11 < 1. It is

not a necessary condition because 11 G 11 can exceed one even when p(G) < 1.

The necessary condition for an iterative process to converge is for the spectral radius

of B to be less than 1, i.e. p(B) < 1. The spectral radius is the largest value of IA-11 for a

given matrix B. The system with a smaller spectral radius converges faster. The test for

convergence can be done without actually calculating the eigenvalues. By

Gerschgorins's theorem, p(B) ~ maxCIIBII,.IIBIIJ. Thus if the maximum sum of the

moduli of the elements of the rows or columns of B is less than 1, then the iterative

process will converge. However, the estimate of the upper bound of p is used only as a

guide to establish convergence and is not accurate enough to establish and compare

rates of convergence.

As stated earlier, the rate of convergence of the method (2.7.1) may be determined by

calculating the number of iterations at a predetermined accuracy. In practice, the usual

approach is to iterate until the norm ofthe error vector e(k) is reduced to less than some

given tolerance, say e, of the norm of the initial vector e<0
l. If the error vector after k

iterations is defined as

(2.7.9)

where u is the exact vector solution, then applying the method (2.7.1) would result in

(2.7.10)

and therefore

26

eO<>= Bef!<-l)

= BzeQ<-2) =Eke<">.

From (2.7.11),

11 eO<> 11 = 11 BO<V"> 11

:'> 11 BO<> 11 11 e<"> 11

If e<"> ;t 0 then,

11e<•>11
--< IIB'II. lle<0>11-

It is required that

11 eO<> 11 :'> e 11 e<"> 11

(2.7.11)

(2.7.12)

(2.7.13)

(2.7.14)

where 11 • 11 denotes 11 • lh as defmed in section 2.4. By theorem (2.7.4) it is known that

IIBk 11 converges to zero as k approaches infmity if and only if p(B) < 1. Hence

equation (2.7.14) can be satisfied by choosing k sufficiently large such that

11 Bk 11 :s; e. (2.7.15)

Ifk is large enough so that 11 Bk 11 < 1, then it follows that (2.7.15) may be written as

k:?. loge • (2.7.16)
(-tlogiiB 11)

From this inequality, the lower bound for the number of iterations for the iterative

method (2.7.1) can be determined.

Definition 2.7.1

For any convergent iterative method of the form (2.7.1), the quantity

R,(B) = -tlog 11 B' 11 (2.7.17)

is called the average rate of convergence after k iterations.

If Rk(B1) < Rk(B2) for matrices B1 and B2 then for k iterations, B2 is iteratively faster

than Bt.

Definition 2.7.2

The asymptotic average rate of convergence is defined by

R(B)=lim R'(B)=-logp(B) (2.7.18)
k-+-

This is true since,

p(B) = lim (11 B' 11 i" (2.7.19)

as proved by [Young 71].

27

It is usual for iterative methods to converge slowly for substantially large problems

corresponding to the values of p(B) being only slightly less than one, and a rate of

convergence nearly zero.

Now, upon replacing 11 Bk 11 by [p(B)]k in equation (2.7.16), it can be seen that e""

[p(B)]\ and the number of iterations k can be estimated as

k = -log 8 -log 8

-log p(B) R(B)
(2.7.20)

However, the value ofk from (2.7.20) could be very much lower when compared with

the number required, in which 11 Bk 11 will behave like k[p(B)]k·I, rather than [p(B)]k,

as mentioned by [Young 71]. In this case the smallest value ofk such that

k[p(B)]k-I s e (2.7.21)

estimates the number of iterations required more accurately.

There are many ways to perform the convergence tests in order to determine the

number of iterations for a given tolerance value. It is obvious that a different stopping

criteria will yield a different number of iterations. However, a better test will yield a

better accuracy. In this thesis, the average test will be used, i.e.,

JJu~>+ll - ul'lJJ
"--,,..---....,-.!!. < 8

111 + ul'>l!
for all i, (2.7.22)

where e = 10'5•

For small values of ui(k>, this test approximates the absolute test 11 ui(k+l) - Ui(kl 11, and for

large values of Ui(kl, it approximates the relative test, i.e., (11 Ui(k+ll - ui(k) 11/11 ui(kl 11), for

alii.

28

2.8 Direct methods for the solution of linear systems.

The previous sections have introduced a mathematical basis for linear systems of the

form

Ax=b (2.8.1)

Sections 2.8 and 2.9 will in turn discuss the methods of constructing the solution to the

system and assume for convenience that A is non-singular (A'1 exists) so that the

solution is unique. The methods discussed are intended for use on computers and so

the solution of the system is generally only approximate due to rounding errors

introduced by the finite word (length) calculations. However, the growth of errors is

bounded in practice and results are acceptable especially if double precision arithmetic

is used.

The choice of solution method depends on a number of factors including the structure

and size of the matrix A, the number of arithmetic operations required to construct the

solution, the amount of storage required for A and b in (2.8.1) , and the control of

rounding error growth (stability).

In this section direct methods to solve linear systems of equations are considered.

These methods are applicable to dense matrices and have the advantage of producing a

solution after a fixed number of operations proportional to the matrix order.

Furthermore, in most cases the accuracy of the solution is usually stable and adequate

for our purposes. The methods discussed are the Gaussian Elimination (GE) in section

2.8.1, LU factorisation in section 2.8.2 and QR factorisation in section 2.8.3. The

coefficient matrices in these methods are assumed to be dense and of type real.

Equation (2.8.1) is an example of an implicit system where the solution vector cannot

be derived without modification to the system. A brute force approach is to solve

(2.8.1) by converting it to an equivalent explicit form, using the fact that A is non­

singular. This yields

(2.8.2)

and x is constructed explicitly by performing matrix-vector multiplication. This

implicit-explicit conversion is fme if A'1 is already known, or easily constructed.

However, this is not generally the case.

Direct methods are aimed at a compromise which manipulates A and b to produce a

semi-explicit form,

29

A'x = b', (2.8.3)

where x can be derived from an ordered substitution process, and A' is a matrix with

an easily solvable structure, and b' is a modified right hand side.

2.8.1 Gaussian Elimination

This method is used to solve a system of linear equations by transforming it into an

upper triangular system (i.e. one in which all of the coefficients below the leading

diagonal are zero) using elementary row operations. The solution of the upper

triangular matrix is then obtained using a back substitution process.

Consider a general system Ax=b of n equations and n unknowns. In matrix form, it can

be written as (2.8.1.1).

au a, a,. XI b,

a" a, a,. x, b,
- (2.8.1.1)

a., a., aM x. b.

The system in (2.8.1.1) is transformed using forward elimination to

Ux=b', (2.8.1.2)

where U is an upper triangular matrix and b' is the modified right hand side vector.

This matrix is then easily solved by back substitution.

The forward elimination process

To obtain the upper triangular matrix from the system in (2.8.1.1), all the elements

below the diagonal will be zeroed out or eliminated. The first row is used to eliminate

elements in the first column below the diagonal The first row is then known as the

pivotal row and the element au is called the pivotal element. The values ~ are
an

multiples of row 1 (also known as the multipliers) that are to be subtracted from row

k, for k=2, 3, ... , n times the first equation from the second. The result after the first

stage of elimination is (2.8.1.3).

30

au a, a •• x. b,
0 (I) d') X2 b~l) azz 2•

0 (I) (I) (2.8.1.3)
a. a.

0 d')
•2 a<:: x. b;'>

Equations 2 to n of (2.8.1.3) constitute a linear system of n-1 equations with n-1

unknowns x,, x,, ... , x. to solve. Thus the elimination process described earlier can

be applied recursively to this subsystem. To obtain the upper triangular matrix in

(2.8.1.2), the elimination process is repeated (n-1) times on matrix A.

The back substitution process

After transforming the system in (2.8.1.1) to the form Ux=b', where

U=

Ut.t

0

0

0

0

Ut. I

0 U1.1

0

0

0

0 0 u •.•

(2.8.1.4)

and the ith element ofb' is b';. To obtain the solution vectorx, we begin with the final

equation in the system (2.8.1.4) which is

UnnXn = b'n,

which gives

b';{, Xn= n u ..

We then work backwards to substitute x. into the (n-1)th equation and solve for

X. -t. In general, the i-th equation in (2.8.1.4) is

Uii.Xi + Ui.; + lXi + l+ •.. +Uin.Xn = b' i

After determining x., x. - '• ... , X• + '·the unknown X. is given by

(2.8.1.5)

The algorithm forGE is given in chapter 3.

GE is best suited for a system of linear equations with one right-hand side. When there

are more than one right-hand side, it is better to separate the modification of the

31

coefficient matrix from the right-hand side. The advantage is that if we have a new

right-hand side whose value is not known at the start of the elimination process, only

the. right-hand side needs to be modified. This is achieved by matrix factorisation

methods.

2.8.2 LU factorisation

Factorisation is an alternative to triangularisation which avoids modification of the

right hand side of (2.8.1) and so is more convenient for multiple right hand sides. A

well-known matrix factorisation is the LU method where the coefficient matrix A is

decomposed into a pair of factors Land U, such that:

A=LU (2.8.2.1)

where L is a unit lower triangular matrix and U is an upper triangular matrix as shown

in (2.8.2.2).

au at, i

Qi,l ar.i

lln,l an. 1

0 0

0

1

ln,j

Ul, j Ul,n

0 Uj, J UJ,n

0 0
0 0 0 Un,n

From (2.8.2.1), the linear system Ax=b can be written as,

LUx=b

(2.8.2.2)

(2.8.2.3)

To obtain the solution of equation Ax=b by using this method, an auxiliary column

vector y must be introduced such that,

Ux=y,

and then the triangular system,

Ly=b,

(2.8.2.4)

(2.8.2.5)

must be solved by a forward substitution process before the triangular system in

(2.8.2.4) is solved for x by back substitution as previously described forGE in section

2.8.1.

The forward elimination process of GE in section 2.8.1 can be used to construct the

triangular factorisation of the matrix A. The matrix L will be constructed from an

identity matrix placed at the left as in (2.8.2.6).

A=IA (2.8.2.6)

32

For each row operation used to construct the upper triangular matrix, the multipliers

(discussed in section 2.8.1) of each row are placed in the corresponding location in the

identity matrix.

After obtaining the factorisation, the solution can be obtained in two steps:

a. Solve Ly=b for y using forward substitution.

b. Solve Ux=y for x using backward substitution.

In the forward substitution process, the matrix form is as shown in (2.8.2. 7).

1

~1r y1
: Y2

ol :
d ;.

rb1l
1 b2

lJ
(2.8.2.7)

The value of y1 is easily obtained and is equal to b1. The known value of y1 is then

substituted into the second equation

by,+ Y2 = b2

and now the value of Y2 is known. This substitution continues and in the ith stage, the

equation to be solved is

lnYI + li2Y2 + ... + liiYi = bi

After obtaining the values ofy1. yz, ... , Yi·l•

1-1
Yi = bi - ~),yl

1=1

The back substitution process has been described in section 2.8.1.

The algorithm for the LU factorisation is given in chapter 3.

A number of methods for producing L and U factors which satisfy (2.8.2.1) are known.

They can be classified according to whether the diagonal element lii or Uii are set to 1

or equal (h = Uii). The methods are:

(a) Doolittle's method which is lii = 1, i=l(l)n formulated as

Uij = a;J- I.{ikUkJ, j "?:. i
k=l (2.8.2.8)

1 [i-1]
{J1 =-.. a11- L{jkUkj j > j, j = l(l)n

Uu k=l

33

(b) Crout's method is Uu = 1, i=l(l)n given as

1 [i-1]
Uij = -:: Oi) - L [ikUkj j "?. i

/fl .t=l

i-1

lii = OJi- 'L,b•u"' j > i, i = l(l)n
""1

(c) Choleski's method Ou=u;; effectively)
1

lii= au-L[~ (

i-1)'

k=l ik

(

i-1)
Oji - L lik[jk

I
k=1

iJ = [ii
,i > j, j= l(l)n

(2.8.2.9)

(2.8.2.10)

Note that if any 1;; or u;; is zero, the methods break down. The formulae (2.8.2.8) and

(2.8.2.9) are general methods for non-singular matrices, while (2.8.2.10) is applicable

only for symmetric positive defmite matrices and A=LLT. A root-free form of Choleski

with A=WLT (D is a diagonal matrix) is also possible. Due to the fact that only the

entries of L are computed in (2.8.2.10) savings in memory and computation time can

be made over GE and LU. However, the method requires a relatively complex square

root calculation.

2.8.3 QR factorisation

The aim of the QR factorisation is also to transform the system Ax= b into one that is

easy to solve. In this method, the coefficient matrix A is decomposed into an

orthogonal matrix Q and an upper triangular matrix R. Since Q is orthogonal QT Q=ln.

Hence if we premultiply the equation

Ax=b

by Qr and replace A by QR, we will obtain:

QT(QR)x=QTb

Rx= Qrb.

34

(2.8.3.1)

There are at least three ways in which the orthogonal matrix Q can be computed:

(a) Product of Householder reflection matrices.

(b) Product of Givens rotation matrices.

(c) Generation of a set of orthogonal vectors from the columns of A using modified

Gram-Schimdt orthogonalisation.

In this thesis, the second method is considered, i.e. obtaining the orthogonal matrix Q

by taking the product of Givens rotation matrices. Here, each rotation eliminates a

single element. The complete decomposition process can be described as:

QT A= QTQT ... QTQT A= R
r r-1 2 1

(2.8.3.2)

where Q[,Q; , ... ,Q; are (n x n) Givens transformations and R is the resulting

triangular matrix. Substituting for A from equation (2.8.3.2) in equation (2.8.3.1) and

considering the orthogonality property of QT Q=l, results in:

Rx=QTb

which can be solved by the normal back substitution process.

The rotation matrix is:

[
cosll sinll]

P=
-sinll cosll

where the angles of rotation are determined by the formulae:

sin 8 = r.~=a;;;'·~i =:===;=

(a~.j + a~-1.j)
cosll = -r.~a='=-'=·i='"'"

(a:.j + a~-,.j)

(2.8.3.3)

(2.8.3.4)

(2.8.3.5)

The algorithm for QR factorisation using the Givens method is given in chapter 3.

2.8.4 Partial Pivoting

Pivoting is a widely used technique for improving the numerical stability of matrix

elimination and matrix factorisation methods. The GE and LU methods described in

sections 2.8.1 and 2.8.2 are appropriate when the diagonal elements are dominant. This

is often the case but in general, attention must be given to numerical instability

resulting when the diagonal elements are not dominant.

There are two basic well known pivoting schemes; partial pivoting and complete

pivoting. In partial pivoting an element of largest modulus in the column of each

35

reduced matrix is chosen as the pivot. Elements of rows which have previously been

pivoted are not considered. At the klh stage of partial pivoting, the rows of the matrix

are interchanged such that the largest element in the kth column is used as the pivot.

That is, after the pivoting,

laid< I= max la;kl, for i=k, k+ 1, ... , n.

In the complete pivot scheme, the pivot at each stage of the reduction is chosen as the

element of largest magnitude in the submatrix of rows which have not been pivoted up

to now, regardless of the position of the element in the matrix. This may require both

row and column interchanges. At the kth step of complete pivoting, both the rows and

columns of the matrix are interchanged so that the largest number in the remaining

matrix is used as pivot. That is, after pivoting,

lakkl = max la;), fori=k, k+ 1, ... , nand j=k, k+l, ... , n.

The advantage of partial pivoting is that the pivotal row is always multiplied by a

number whose magnitude is less than unity before its subtraction from other rows in

the elimination process. Any rounding errors present in the pivotal row are thereby

decreased in absolute magnitude, the propagated effect of these errors being decreased

correspondingly.

The propagation of rounding errors for full pivoting is less, theoretically, but the main

disadvantage is more time being consumed to search for the largest pivot

In this section, we describe partial pivoting strategies for GE in section 2.8.4.1 and LU

in section 2.8.4.2. The QR method is already stable because each row is being

multiplied by the rotation matrix consisting of cosine and sine functions whose values

are always less than one and hence does not need pivoting.

2.8.4.1 Partial Pivoting for Gaussian Elimination

It is not always advisable to carry out the forward elimination in section 2.8.1 even

when the matrix of coefficients is non-singular. The reason is that division by a" is not

always possible if it is very small as it leads to unacceptable rounding errors. Partial

pivoting is performed to overcome this problem and to maintain numerical stability

against growth of rounding error.

Consider the klh elimination stage in section 2.8.1, we search below the kth column of

A(k·l) (the pivotal column) for the element of largest modulus. Suppose that it is a;:-11

36

for some r ;:: k. Then we interchange equations r and k and the elimination process

proceeds using the new kth row (the pivotal row) to perform the eliminations.

2.8.4.2 Partial Pivoting for LU factorisation

Partial pivoting for LU consists of n major steps in the rth step of which we determine

the rth column of L, the rth row of U and r'. The configuration at the beginning of the

rth step for the case n=5, r=3 is given by:

lit! lit2 lit3
{21 Uzz u,,
l,, 1,2 a"
{41 1,2 a"
{51 {52 as,

The rth major step is as follows:

(a) For t=r,r+ 1 , ... ,n:

lit• lits i cl i Sl

u,. Uzs \ Cz f Sz

a" £L,5 l b, ls3
a .. a,s l b, l s,

Os• Oss ! bs f Ss

Calculate a~ -lnlit, -1'"u2, - ••• -1,,,_1u,_1~, storing the result ass, at the end of row t.

(b) Suppose js,.j is the maximum of js,j (t=r, ... ,n). Then store r' and interchange the

whole rows of rand r' including the l",a",b,,s,. The new s, is now u" and overwrite

this on aa.

(c) For t=r+ l, ... ,n:

Compute s, I u" to give I .. and overwrite on a., .

(d) For t=r+ l, ... ,n:

Compute an -l,1uu -l,2u2, - ... -z,,_1u,_11 to give u,. . Overwrite u,. on a,..

(e) Compute b, -1,1c1 -l,2c2- ••• -l,.r_1c,_1 to give c,. Overwrite c, on b,.

37

2.9 Iterative Methods

It is well known that iterative methods, utilising the great speeds of modem-day

computers, are extensively used in large scale computations for solving linear

equations that arise from finite difference approximations to ordinary differential

equations and partial differential equations. Iterative methods are infinite methods and

produce only approximation to the solution. They are easy to defme and hence are very

widely used. These methods consist of repeated application of a simple algorithm. One

begins with an initial approximation and then successively modifies the approximation

according to some rules. To be useful, the iteration must converge and it is not

considered to be effective unless the convergence is rapid.

Iterative methods have two advantages over direct methods. First, although these

methods do not yield a solution in a fmite number of steps, one can terminate after a

fmite number of iterations when it has produced a sufficiently good approximate to the

solution. Secondly, most iterative schemes require simple arithmetic operations only on

the non-zero entries of the coefficient matrix, hence being suitable for sparse matrices

for which elimination methods would be relatively very laborious and need a lot of

storage. Iterative methods are used mainly in those problems for which convergence is

known to be rapid so that the solution is obtained with much less work than that of a

direct method.

Iterative methods are built around a partition (or splitting) of matrix A. This section

presents the conventional diagonal splitting of A into A=D-L-U where D is the main

diagonal of A, -L and -U are strictly lower and upper triangular elements of A

respectively. The simplest method, Jacobi, is covered in section 2.9.2 and the Gauss­

Seidel method is covered in section 2.9.3. Accelerated versions of Jacobi, the Jacobi

Overrelaxation method (JOR), and the accelerated version of Gauss-Seidel, the

Successive Overrelaxation method (SOR), are covered in section 2.9.5. The model

problem on which these methods have been applied is discussed in section 2.9.1.

Given the matrix system

Ax=b (2.9.1)

consider then the splitting

A=D-L-U (2.9.2)

38

where D is the diagonal matrix of A, -L and -U are strictly lower and upper triangular

elements of A respectively.

From (2.9.1) the iterative formula of the form

x(k+l) = Bx(k> + c (2.9.3)

can be deduced. By choosing an initial value Xo, we can use (2.9.3) to generate Xt. x,, .

. . etc. Provided the process is convergent, successive values of Xk will give a closer

approximation to the actual solution x.

2.9.1 The model problem

The model problem used to test the iterative methods in this research study is taken

from a set of coupled ordinary differential equations (O.D.E.). The problem is

described briefly in this section.

Given the problem,

d'y
- dx' +py+qz=f1(x), (2.9.1.1)

d'z
- dx' +qz+py=f,(x), (2.9.1.2)

with specified boundary values at the end points of the interval (0, 1).

Discretisation of the equations (2.9.1.1) and (2.9.1.2) by central difference operators

on an equally spaced grid points of x;, i= 1,2, ... ,n, where x; = Xo + ih.

Yo }specified
Zo

Xo 1 2

will result in the following set of finite difference equations,

(-y,_, + 2Y• - y,.,) - I" () • - 12 h' + py, + qz, - Jt x, , 1- , , ... ,n,

(-z,_1 + 2z, - z,.,) 1
.:.._""'--h-::-2 '---"""-+ qz, + py, = j, (x1), and h = -n-+-

1

with the values yo, Yn+t. Zo, and Zn+t specified as above and p = q = 1/h2
•

39

y n+l }specified
Zn+1

n n+1

(2.9.1.3)

(2.9.1.4)

By setting up equations (2.9.1.3) and (2.9.1.4) in matrix fonn, and numbering they;,

(i=I,2 ... , n) values in increasing order and Zi values in reverse order, the following

matrix equation is obtained.

r3
-I o: -I r y 1

I I ' I
3 I -1

I ~2 1 -1 I
I

-I I
I

0 -I 3 I • I • .1-.. I • -------------T-------------
••• I 3 -I 0 z. I

:-I Zn-1 I

l-I

I 3

~I Jl ~1 j I
I
I 0 -I
I

The matrix A of (2.9.1.5) can be expressed as

A=3[1-B]

I h2[,(x,)+Yo

h2 !, (x2)

h2 [, (x.)+ Y •• ,
= ------------

h2 [2 (x.) + z •• ,
h2 !2 (x._,)

l h2/2C~,)+Z0

where B is a nxn real symmetric matrix given explicitly by

0 1 1

I 0 I 1
.l I 3 . . 0 I

1 I 0

2.9.2 The J acobi iterative method

(2.9.1.5)

(2.9.1.6)

(2.9.1.7)

The simplest of the iterative methods is that attributed to Jacobi, also known as the

Simultaneous Displacement method. It is not widely used in practice but it's theoretical

interest may provide a convenient starting point to establish convergence analysis.

In matrix fonn and using the splitting in (2.9.2) the following iterative equation is

obtained.

x(k+l)=D·'(L+U)x(k> + D"1b

In the fonn of the equation (2.9.3)

B = D"1(L+U), c = D"1b.

(2.9.2.1)

(2.9.2.2)

For the model problem in section 2.9.I, the algorithm for the Jacobi iterative method is

shown in Algorithm 2.9.2.1.

40

Algorithm 2.9.2.1 Jacobi Algorithm

Step I: Set xi"' = 0, for i=I ton.

Step 2: for i=I ton

X <•+~> _ (b; + xt! + x~(+ x~~).1) I ; - 13
Step 3: Repeat step 2 until convergence is achieved.

2.9.3 Successive Displacement or Gauss-Seidel method

A simple modification of the Jacobi method leads to the Gauss-Seidel method also

known as the Successive Displacement method. Instead of waiting to use the updated

values at the end of an iteration, the updated values are used as soon as they are

available.

In matrix form and using the splitting in (2.9.2) the following iterative equation is

obtained.

xr:<+tl=(D-L)"1 Ux(kl + (D-L)"1b

In terms of equation (2.9.3),

B = (D-L)"1U, c = (D-L)"1b

(2.9.2.3)

(2.9.2.4)

For the model problem in section 2.9.1 the algorithm for the Gauss-Seide1 iterative

method is as shown in Algorithm 2.9.3.1.

Algorithm 2.9.3.1 Gauss-Seidel Algorithm

Step I: Set xi'! = 0, for i=I ton.

Step 2: for i=I to n

if i < n/2 then

X
(k+tl _ (b; + xi~;t> +xi:! + x~~l.1) I ; - /3

else

(k+tl _ (b; + X;~;t> +X;~(+ x~~71/> I
X; - /3

Step 3: Repeat step 2 until convergence is achieved

41

2.9.4 Tests for convergence

In order for an iterative process to converge, from section 2. 7, the spectral radius of

the iterative matrix must be less than one. Evaluating the spectral radius can be a long

process. However, in certain cases, a decision on convergence can be made without

actually evaluating the eigenvalues but by performing the following tests.

a) If any of the diagonal elements of A are zero, the Jacobi and Gauss-Seidel methods

cannot be used as D and (D+L) will be singular.

b) By Gerschgorin's theorem of (2.2.23), we have

p(B) S: min(~Bjj1 .~BJU
Thus, if the maximum sum of the moduli of elements of the rows or columns of B

is less than one, then the iterative process will converge.

In the model problem of section 2.9.1

P Jocobi (B) S: 1

c) In the case of the Jacobi method, rule (b) requires that A be diagonally dominant.

In the model problem of section 2.9.1, A is diagonally dominant by Definition

2.2.1.

d) If each equation (2.9.2.3) is divided by it's diagonal element, the Gauss-Seide1

iterative matrix becomes (J-L)"1 U and in this form the Stein-Rosenberg thoerem

may be applied.

Theorem 2.9.4.1 (Stein-Rosenberg)

If B = -(L+U) is a non-negative matrix, then either

(a) P locobi = P Gow,-S~d<l = 0,

(b) P locobi = P Gow,-S<id<l = 1,

(C) 0 < p Go=-S<id<l < p locobi < 1 Of

(d) l < P Jocobi < Paow,-s,;d,!•

It follows immediately from this theorem that if the Jacobi iterative matrix is non­

negative then the Jacobi and Gauss-Seidel methods both converge or diverge

together and in the case of convergence the Gauss-Seide1 method will always be at

least as fast as the Jacobi and in most cases even faster.

(e) If A is real, symmetric and positive definite, then the Gauss-Seidel iterative matrix

(2.9.2.3) has spectral radius less than one. The proof can be found in [Cohen 73].

42

2.9.5 Accelerated convergence for Jacobi and Gauss-Seidel methods

The rate of convergence of the Jacobi and the Gauss-Seidel methods may be

accelerated by the intelligent use of a weighting or acceleration function co. A measure

of the rate of convergence of a particular method can be obtained by taking the norm

of difference of two successive iterative values, that is

lx(k+ll -x(kll < £

where e is a small specified quantity.

Consider the case of the Jacobi method. By (2.9.2.1)

Dx(k+l) - Dx(kl = (L + U)x(kl + b - Dx(kl

= b - (D - L - U)x(k>

= b- AxO<>

(2.9.5.1)

(2.9.5.2)

The change in x between two successive steps of the calculation is dependent upon the

residual vector of the previous step. Therefore, by taking a different proportion of this

quantity we might accelerate convergence. This leads to

D(x(k+l) - x(kl) = co(b - AxO<>)

where CO is some selected weighted factor.

From (2.9.5.3) the iterative relationship

x(k+ll = (/- ron·'A)xO<> + coD"1b

defines the Jacobi Overrelaxation method (JOR).

(2.9.5.3)

(2.9.5.4)

The rate of convergence is governed by the spectral radius of the iterative matrix

which is

(2.9.5.5)

In the Jacobi method, the convergence was governed by (/ - D"1A). In order to get an

accelerated convergence, it is reasonable to choose co such that the largest eigenvalue

A,_ of(/- roD"1A) is smaller than A, of(/- D"1A) [Cohen 73].

43

A similar treatment can be given to the Gauss-Seidel case where

D(xr:<+t> - xr<>) = Lxr:<+tl + Uxr:<> + b - Dxr<>

= b - (D - L - U) xr<> + Lxr<•t> - Lxr:<>

= b -Axe<> + L(xC<+IJ - xr<>) (2.9.5.6)

To obtain the accelerated version of Gauss-Seidel also known as the Successive

Overrelaxation method (SOR), multiply the right hand side of (2.9.5.6) by the

weighting function ro to give

D(xr:<+t)- xr<>) = ro(b -Axe<>) + roL(xC<+IJ- xr<>)

Dxr:<+t) - wLxr:<••> = ro(b - Axr<>) - roLxr:<> + Dxr<>

= rob - roAxr<l - roLxr:<l + Dxr:<>

xr<+tl = (D-roL)"1rob - (D-roLr1roAxM + (D-roL)"1 (D-roL)xr:<>

= (D-roL)"1rob- (D-roLr'roAxr:<> + Jxr<l

= (D-roL)"1rob + [/- (D-roL)"1roA]xr:<> (2.9.5.7)

For the model problem in section 2.9.1 the algorithms for JOR and SOR are similar to

that of Jacobi and Gauss-Seidel respectively, except that ro is inserted in the iteration

formulas as appropriate.

44

2.10 Computational Complexity

The operation count procedure for a method is a form of computational complexity

analysis. One estimates the work of a certain computation, in this case the solution of

Ax=b, in terms of basic machine arithmetic operations like multiply and addition. In

this section, the computational complexity for the different methods to solve linear

systems will be examined. The computational complexity for GE is covered in section

2.10.1, LU factorisation in section 2.10.2, QR factorisation in 2.10.3, and the iterative

methods in section 2.10.4. A more detailed discussion will be presented in later

chapters.

2.10.1 Gaussian Elimination

A detailed discussion on the measure of work (in terms of the number of multiply and

addition operations involved) for GE can be found in [Fox 64], and is summarised as

follows:

Elimination:

Backsubstitution:

Total:

2.1 0.2 LU factorisation

n' n' 5n -+---
3 2 6

1
-n(n-1)
2

n3
2 n -+n --

3 3

A detailed discussion on the measure of work (in terms of multiply and addition

operations) for LU can be found in [Fox 64], and is summarised as follows:

Elimination:

Backsubstitution:

Total:

n' n
3 3

![n(n-l)]+![n(n -1)]
2 2

n3
2 n -+n --

3 3

45

2.10.3 QR factorisation

QR factorisation is more expensive than Gaussian elimination or LU factorisation.

However, this extra cost may be compensated by the fact that QR does not involve

pivoting. This may be an advantage for structured matrices and parallel computation.

In order to evaluate the trigonometric values in (2.8.3.6), a total of 2 multiply + 1 add

+ 2 div + 1 sqrt is required. This is a total of

(2m+la+2div+lsqrt) for n(n-1)/2 points. (2.10.3.1)

The calculation of new entries for the reduced matrix and RHS is

n

I, (2m + la)(2j + l)(j -1)
1=1 (2.10.3.2)

= 2n 3 operations = O(n3
)

The back substitution process is of complexity O(n2
).

The dominating operation is the updating procedure in (2.10.3.2), hence the QR

factorisation is said to be of order O(n\

2.10.4 Iterative methods

In terms of computational work, the iterative methods seem to be an attractive scheme.

Both the Jacobi and the Gauss-Seidel methods only require 2n mults + 3n-2 adds per

iteration. Slightly more work is required for the overrelaxation methods JOR and SOR

due to the computation involving the weighting factors, ro. However, this does not

change the order of complexity of the methods which is at most O(n2
).

46

Chapter3
A survey of current methods in solving linear equations on parallel computers

Parallel processing, the simultaneous execution of multiple processors to solve a single

computational problem co-operatively, is a fast growing technology that permeates

many areas of computer science and engineering. A parallel computer is a set of

processors that are able to work co-operatively to solve a computational problem.

There are many application areas where the available power of a sequential computer

is insufficient to obtain the desired results. These problems can be classified into two

categories. First, problems characterised by inordinate size and complexity, such as

detailed weather or cosmological modelling that often require hours or days of

conventional processing. Second is real-time problems that require computations to be

performed within a strictly defmed time period and are typically driven by external

events.

Uniprocessor performance growth has been, and continues to be impressive. However,

there are signs of diminishing returns from smaller and faster devices, as they begin to

struggle with injecting power into, and heat out of, smaller and smaller volumes. Costs

of the development process are also growing faster than performance so that each new

generation of processors costs more to build than the previous ones, and offer smaller

performance improvements. Eventually, the speed of light is an upper limit on single

device performance, although we are some way off from that particular limitation. On

the other hand, there is no inherent limit to the expansion, and therefore, computational

power, of parallel architectures. Therefore, parallelism is the only long-term growth

path for powerful computation.

Parallel computers offer the potential to concentrate computational resources, whether

it be processors, memory or input/output bandwidth, on important computational

problems. Parallelism brings unprecedented speed and cost-effectiveness but also raises

a new set of complex and challenging problems to solve, most of which are software

related. Parallel processing comprises algorithms, computer architecture, progranuning

and performance analysis.

There has been a lot of work done on the development of parallel algorithms for Linear

Algebra problems, including systems of linear equations, linear least squares problems

and algebraic eigenvalue problems. This literature survey was conducted with the view

47

that the thesis is focused on parallel algorithms for the solution of linear systems on

both shared-memory and distributed-memory architectures. In this chapter, a survey of

current methods in solving systems of linear equations on parallel computers are

covered. Section 3.1 presents an overview of parallel computers focusing on the

architectures used for the experiments in this thesis, which were the shared-memory

model and message-passing environments for workstation clusters. Section 3.2 covers

the design and analysis of parallel algorithms as well as parallel programming methods

employed on the parallel architectures used in this thesis. Section 3.3 is the survey on

parallel methods for the solution of linear systems. The methods in focus are both the

direct and iterative methods with the direct solvers covering Gaussian Elimination

(GE), LU factorisation and QR factorisation while the iterative solvers include Jacobi,

Gauss-Seidel, Jacobi OverRelaxation (JOR) and Successive OverRelaxation (SOR).

3.1 Parallel Architecture

One contributing factor to the widespread use and success of the traditional, sequential

computer is that most of the time the user need not be concerned with hardware

details. However, at this point in the development of parallel processing, some

knowledge of the major hardware categories and their strengths and weaknesses is

required.

A parallel architecture provides an explicit, high level framework for expressing and

executing parallel programming solutions by providing multiple processors, whether

simple or complex, that cooperate to solve problems through concurrent execution

[Duncan 92].

There are two main classes of parallel machines: the Single Instruction Multiple Data

(SIMD) machines in which the same task, usually of small granularity, is executed

simultaneously on different data and the Multiple Instruction Multiple Data (MIMD)

class in which different tasks can be executed on different processors. The distinctive

aspect of SIMD execution consists of the control unit broadcasting a single instruction

to all processors, which execute the instruction in lockstep fashion on local data. The

MIMD architectures consist of multiple processors that can execute independent

instruction streams. Thus, MIMD computers support parallel solutions that require

processors to operate in a largely autonomous manner.

48

Parallel Computers

/~
SIMD MIMD

/~
Shared Memory Distributed Memory

Figure 3.1.1 The two main classes of parallel computers

MIMD processors come into two distinct classes: shared-memory machines and

distributed-memory/message-passing machines (Figure 3.1.1). In shared-memory

machines, processors have access to a large global random access memory of which

they have the same view. The software processes, executing on different processors,

co-ordinate their activities by reading and modifying data values in the shared-memory.

The co-ordination is achieved via different mechanisms that synchronise attempts to

access the shared data. Processors are provided with a small fast local memory, in the

form of data registers or cache. Access to the global memory is either via a high speed

bus or a switching network. Figure 3.1.2 shows a simplified diagram of a shared

memory parallel computer.

INTERCONNECTION NETWORK

Figure 3 .1.2 A typical shared memory architecture

49

Message-passing models comprise of a number of identical processors, each provided

with a small private random access memory and interconnected in a regular topology.

Processors in distributed-memory systems have no direct access to the memory of

other processors. Figure 3.1.3 shows the diagram of a typical message passing

architecture. In order to utilise multiple processors on one task, it is necessary to

exchange information between processors by sending packets of data (messages)

between them using an available communication network. Software libraries to

facilitate such exchange of data are called message-passing environments. The

emergence of message-passing environments has made distributed computing available

to application programmers. Shared memory computers are relatively easy to program

but difficult to scale up to large numbers of processors. On the other hand, distributed

memory computers hold an advantage over shared memory machines when it comes to

massive parallelism. However, there are at least two problems associated with using

distributed memory machines which are low machine efficiency due to inter processor

communication and they are difficult to program.

INTERCONNECTION NETWORK

IX I~ ······················· I~
Figure 3.1.3 A typical message passing architecture

Another very important trend in high performance parallel architectures is the

appearance of the distributed computing systems that are based on clusters of

workstations interconnected via fast local area networks (LAN) which are presently

implemented with the high bandwidth fibre optic technology. Communication in such

systems is based on message-passing. These systems may utilise already available

computing resources, frequently workstations of different brands and/or models

50

running distributed network computing software tools such as Parallel Virtual Machine

(PVM), Message Passing Interface (MPI), Linda etc. For some applications, the cost

effectiveness and flexibility of network distributed computing make it a very attractive

alternative to the traditional parallel computing platform. Distributed computing is a

process whereby a set of computers connected by a network are used collectively to

solve a single large problem. As more and more organisations have high speed local

area networks interconnecting many general purpose workstations, the combined

computational resources may exceed the power of a single high performance

computer. The most important factor in distributed computing is cost. Large Massively

Parallel Processors (MPP) typically cost more than ten million dollars. In contrast,

users see very little cost in running their problems on a local set of existing computers.

A number of enviromnents exist that make distributed computing available to the

application programmer. Enviromnents like PVM [Sunderam 94b], Message Passing

Interface (MPI) [Walker 94], Linda [Carriero 94] and others [McBryan 94] have

recently appeared allowing users to consider their computer networks as a virtual

parallel machine. Such software contributes to the popularity of parallelism. Indeed,

they allow us to do parallel computation without any access to 'real' parallel machines.

The algorithms in this thesis were implemented on two classes of machines. First is the

Sequent Balance 8000, a multiprocessor comprising of twelve identical processors

which share a single common memory. All the processors, memory modules, and

input/output controllers plug into a single high speed bus. The processors employ

dynamic load balancing whereby processors automatically schedule themselves to

ensure that they are kept busy as long as there are executable processes available. Each

processor has 8 Kbytes of cache RAM. Sequent computers run the Dynix operating

system, a version of Unix 4.2bsd that also supports most utilities, libraries, and system

calls provided by Unix System V. The Sequent supports C and Fortran and both

languages include extensions that allow programs to specify explicit parallelism. The

schematic diagram of the Sequent Balance 8000 is shown in Figure 3.1.4.

The second class of machine was a cluster of Dec-Alpha workstations. This pool of

processors was used as a virtual parallel machine cooperating on a task. This virtual

parallel machine is made possible by the availability of message-passing enviromnents

such as PVM, MPI, Linda etc. In this research PVM is used to support the

51

parallelisation of programs using a loosely coupled network of workstations. Hence a

description of PVM is given in more detail. Figure 3.1.5 shows a typical workstation

cluster.

Processors' Boards Memory

Cluster 2

DATA BUS

Peripheral

Interface

Figure 3.1.4 Sequent Balance 8000 Architecture

Brid e/Router

.• . .. ··· :
•••• ·• i .·· :

.• 0

.... ············· I
I MP; I I

Cluster 3

Figure 3.1.5 PVM Architectural Overview

Disks

Terminals

PVM (Parallel Virtual Machine) is a portable message-passing programming system,

designed to link separate host machines to form a 'virtual machine' which is a single,

52

manageable computing resource. The virtual machine can be comprised of hosts of

varying types, (making it a heterogeneous environment) in physically remote locations

or it can be composed of hosts of similar type making it a homogeneous environment.

PVM applications can be composed of any number of separate processes written in a

mixture of C, C++ and Fortran. The system is portable to a variety of architectures,

including workstations, multiprocessors, supercomputers and personal computers.

PVM is an on going research project started in 1989 at Oak Ridge National

Laboratory (ORNL) and now involving people from ORNL, the University of

Tennessee and Carnegie Mellon University. In the interests of advancing science, the

software is available freely over the Internet. The latest version of the PVM software

and documentation is always available through netlib which is a software distribution

service set up on the Internet containing a wide range of computer software. Software

can be obtained from netlib via anonymous file transfer protocol (ftp), world wide web

f.YVWW), xnetlib or email. The ftp address is netlib2.cs.utk.edu and the files are in

directory pvm3. Using a world wide web tool like Xmosaic or Netscape, PVM files

can be accessed by using the address http://www.netlib.org/pvm3/index.html. Xnetlib

is an X-Window interface that allows a user to browse or query netlib for available

software and to automatically transfer the selected software to the user's computer. To

get Xnetlib, send email to netlib@ornl.gov with the message send xnetlib.shar from

xnetlib or anonymous ftp from cs.utk.edu pub/xnetlib. The PVM software can also be

requested by email by sending email to netlib@ornl.gov with the message: send index

from pvm3. [Geist 94a]

The PVM package is small (about 1 Mbytes of C source code) and easy to install. It

needs to be installed only once on each machine to be accessible to all users. The

installation does not require special privileges on any of the machines and thus can be

done by any user.

The PVM user interface requires that all message data be explicitly typed. PVM

performs machine-independent data conversions when required, thus allowing

machines with different integer and floating point representation to pass data.

Applications can be parallelised by using message-passing constructs common to most

distributed-memory computers. By sending and receiving messages, multiple tasks of

an application can cooperate to solve a problem in parallel. PVM supplies the functions

53

to automatically start up tasks on the virtual machine and allows the task to

communicate and synchronise with each other. In particular, PVM handles all message

conversion that may be required if two computers use different data representations.

The PVM system is composed of two parts. The first part is a daemon which resides

on all the computers that make up the virtual computer. Second is a library of PVM

interface routines which contains user-callable routines for passing messages, spawning

processes, co-ordinating tasks, and modifying the virtual machine. Application

programs must be linked with this library to use PVM.

The programming methods for PVM will be discussed in later sections.

3.2 Parallel Algorithms

The growth of parallel computers has led to most common algorithms being re­

evaluated according to new viability and performance criteria. There are two

approaches to deal with this; either one can look at how existing methods are best

parallelised, or design new methods that are specially adapted to parallel machines. In

this thesis, we take the latter approach of investigating the performance of methods

which have been devised for parallel computation.

In order to utilise the enormous computing potential offered by the growth of parallel

processing technology, it is necessary to devise parallel algorithms that can keep a

large number of processors working in parallel towards the completion of one overall

computation. The usefulness of a parallel computer largely depends on the invention of

suitable parallel algorithms that operate efficiently on such a computer, and on the

design of parallel languages in which these new algorithms can be expressed.

A parallel algorithm can be viewed as a collection of independent task modules that

can be executed in parallel and that communicate with each other during the execution

of the algoritlun.[Kung 80] There are three orthogonal dimensions of the space of

parallel algorithms, namely concurrency control, module granularity and

communication geometry. The concurrency control enforces desired interactions

among task modules so that the overall execution of the parallel algorithm will be

correct. Module granularity of a parallel algorithm refers to the maximal amount of

computation a typical task module can do before having to communicate with other

modules. This reflects whether or not the algorithm tends to be communication

54

intensive. A parallel algorithm with a small module granularity will require frequent

intermodule communication. Communication geometry is the geometric layout of the

task modules of the parallel algorithm connected together to represent intermodule

communication.

There are two classes of parallel algorithms which correspond to the two main classes

of parallel computer architecture; the SIMD and MIMD classes discussed in Section

3.1. The two classes of parallel algorithms are the synchronous algorithms and the

asynchronous algorithms.

Synchronous algorithms are algorithms with processes that contain interaction points

by which the process can communicate with other processes. These interaction points

divide a process into stages. At the end of each stage, a process may communicate

with other processes before starting the next stage. Therefore, there is a need for

synchronisation at these points and this degrades the performance of the algorithm.

An asynchronous algorithm is a parallel algorithm where communication between

processes are achieved through global variables or shared data. To ensure correctness,

the operations on shared data are programmed as critical sections. A critical section is

a piece of code that accesses shared data The main characteristic of an asynchronous

algorithm is that the processes never wait for inputs at any time but continue or

terminate according to whatever information is currently contained in the shared data.

However, processes may be blocked from entering critical sections since access to

critical sections follows the First In First Out (FIFO) rules.

3.2.1 Design of parallel algorithms

Parallel algorithm design is not an easy task. There is a need to manage explicitly the

execution of multiple processors and co-ordinate interprocessor interaction. The

parallel algorithm design process can be structured as four distinct stages: partitioning,

communication, agglomeration and mapping [Foster 95]. In this methodology,

machine-independent issues such as concurrency are considered early and machine­

specific aspects of design are delayed until late in the design process.

In the partitioning phase, the computation that is to be performed and the data

operated on by this computation are decomposed into small tasks. Practical issues such

as number of processors in the target computer are ignored and attention is focused in

55

recognising opportunities for parallel computation. The communication stage

determines the communication required to co-ordinate task execution as well as defme

the appropriate communication structures and algorithms. In the agglomeration stage,

the task and communication structures defined in the first and second stages of a

design are evaluated with respect to performance requirements and implementation

costs. If necessary, tasks are combined into larger tasks to improve performance or to

reduce development costs. Lastly, in the mapping stage, each task is assigned to a

processor in a manner that attempts to satisfy the computing goals of maximising

processor utilisation and minimising communication costs. Decomposition of data

among nodes or processors requires synchronisation. If such a synchronisation is to be

done frequently, the overhead can be quite significant. The cost of synchronisation is

quite expensive, hence, a goal of the parallel algorithm designer should be to make the

grain size as big as possible and avoid excessive use of the system bus (in a shared

memory multiprocessor) or large number of exchanged messages (in message passing

systems) for communication. Mapping can be specified statically or determined at run

time by load balancing algorithms. This design process is a highly parallel process with

many concerns being considered simultaneously.

Some parallelising techniques that can be used in the design of a parallel algorithm

include data parallelism, data partitioning, relaxed algorithm, synchronous iteration,

replicated workers and pipe lined computation.

In data parallelism, a large number of different data items are subjected to similar

processing all in parallel. This technique is useful in numerical algorithms that deal with

large arrays and vectors.

Data partitioning technique is a technique where the data space is naturally partitioned

into adjacent regions, each of which is operated on in parallel by a different processor.

There may be occasional exchange of data values across the region boundaries. This

technique is suitable for iterative numerical algorithms. Data partitioning is suitable for

implementation on message-passing computers because computing is only on local

data. Therefore, interprocessor communication is infrequent

In a relaxed algorithm, each parallel process computes in a self sufficient manner with

no synchronisation or communication between processes. This suits both shared­

memory and message-passing architectures. On the other hand, in synchronous

56

iteration, each processor performs the same iterative computation on a different

portion of data. However here the processors must be synchronised at the end of each

iteration to ensure that no processor starts the next iteration before all the processors

have fmished the previous iteration. This technique suits very well the standard

numerical algorithms used in science and engineering. Synchronous iteration is suitable

for implementation on shared-memory architectures.

Replicated workers is a technique which maintains a central pool of similar

computational tasks. There is a large number of worker processes that retrieve tasks

from the poo~ carry out the required computation, and possibly add new tasks to the

pool. The overall computation terminates when the pool is empty. This technique is

useful for combinatorial problems, for example tree or graph search where it is not

known in advance how large the central pool is.

Lastly, in pipelined computation, processes are arranged in some regular structure

such as ring or two-dimensional mesh. The data then flows through the entire process

structure, with each process performing a certain phase of the overall computation.

This is suitable for message-passing computers because of the orderly pattern of data

flows and the lack of need for globally accessible data.

3.2.2 Analysis of parallel algorithms

The study of algorithms will not be complete without looking at the analysis of

algorithms. The same applies for the study of parallel algorithms. The performance of a

sequential algorithm is measured by time and memory space. However, performance of

parallel computation requires not only an operation complexity analysis of algorithms,

but also a careful look at the architecture of the parallel computer and specific parallel

programming issues such as synchronisation and load balancing. Ortega and Voigt in

[Ortega 85] showed that computational complexity, the basis for algorithm selection

for decades is still relevant for vector computers because each computation costs some

units of time but it is much less relevant for parallel computers for two reasons. First,

parallel computers can support extra computation at no extra cost if the computation

can be organised properly. Secondly, parallel computers are subject to new overhead

costs required by communication and synchronisation that are not reflected by

computational complexity.

57

The time taken by a parallel algorithm can be defmed as the elapsed time of the process

in the program which finishes last, where the elapsed time of the process is the sum of

a) basic processing time which is the sum of the time taken by each stage b) blocked

time, which is the total time that the process is blocked at the end of a stage because it

is waiting for inputs in a synchronised algorithm or for entering a critical section in an

asynchronous algorithm and c) execution time of synchronisation overhead; ie.

synchronisation housekeeping operations and implementing critical sections [Kung 80].

In some cases, the time complexity of the algorithm is governed by the time required

by the overhead operations rather than the actual computations themselves. Therefore,

on parallel computers, the goal of minimum execution time is not necessarily

synonymous with performing the minimum number of arithmetic operations as in serial

computers.

As mentioned above, the performance of a parallel algorithm cannot be evaluated in

isolation from the parallel architecture. The combination of a parallel algorithm and the

parallel architecture upon which it is implemented is known as a parallel system. There

are various metrics that can be used to evaluate the performance of parallel systems.

Some of the metrics are run time, speedup, efficiency and cost.

The run time of a serial program (denoted Ts) is the time elapsed between the

beginning and the end of its execution on a single processor. The run time of a parallel

program (denoted Tr) is the time that elapses from the moment that a parallel

computation starts to the moment that the last processor fmishes execution. Most

scientists in the field agree that the most relevant measure of run time is actual wall

clock elapsed time, that is the time that would be measured on an external clock that

records the time of the day.

Speedup (S) is the measure of relative benefit of parallelising a given application over a

sequential implementation. It is defined as the ratio of the time taken to solve a

problem on a single processor to the time required to solve the same problem on a

parallel computer with p identical processors. Mathematically,

S = Tt (3.2.2.1)
T.

where T1 is the time for the fastest serial algorithm on a single processor.

58

Theoretically, speedup can never exceed the number of processors p. However, in

practice, a speedup greater than p (superlinear speedup) is sometimes obtained due to

either a non-optimal sequential algorithm or to hardware characteristics that put the

sequential algorithm at a disadvantage. An example of this is the data for a problem

might be too large to fit the main memory of a single processor and hence the

secondary storage is used. This will degrade the performance of the sequential

algorithm. Speedup can be used to study, in isolation, the scaling of one algorithm or

benchmark on one computer. However, it must not be used to compare different

algorithms on the same computer or the same algorithms on different computers

because T1 may change.

To compare the performance of different algorithms for the solution of the same

problem, the temporal performance metric can be used. Temporal performance is

defmed as the inverse of the execution time where the unit is solutions per second or

timesteps per second [Hackney 96]. Mathematically,

1
P=T (3.2.2.2)

The algorithm with the highest performance executes in the least time and therefore is

the better algorithm. Notice that the number of floating point operations does not

appear in this definition because the aim of algorithm design is not to perform the most

arithmetic per second but rather it is to solve the problem in the least time, regardless

of the amount of arithmetic involved.

Efficiency (E) is a measure of the fraction of time for which a processor is usefully

employed. It is defmed as the ratio of speedup to the number of processors.

Mathematically,

E=§_
p

(3.2.2.3)

Ideally, speedup is equal to p and hence efficiency is 1. However, in practice, speedup

is less than p and efficiency is between zero and one, depending on the degree of

effectiveness with which the processors are utilised.

The cost of solving a problem on a parallel system is the product of run time and the

number of processors used. The cost of solving a problem on a single processor is the

execution time of the fastest known sequential algorithm. A parallel system is said to

59

- --~

be cost-optimal if the cost of solving a problem on a parallel computer is proportional

to the execution time of the fastest known sequential algorithm on a single processor.

Another important aspect of parallel computation is data access, for even if there are

enough processors to exploit the available parallelism, they can only do so if they can

access the necessary operands, which are typically results of operations by other

processors [Gentleman 78]. Either the processing shares a common memory, in which

case there is a need to account for memory cycles or they have their own private

memories in which case there is a need to account for data movement between the

private memories.

3.2.3 Programming Methods

Although the programming methods discussed in this section pertain to the specific

architecture used in this research, nevertheless, the discussion is applicable to other

shared memory and message-passing architectures too.

3.2.3.1 Programming the Sequent Balance

The hardware configuration and the operating system (Dynix) of the Sequent Balance

were descnbed in Section 3.1. As for programming methods, the Sequent supports

two basic kinds of parallel programming, that is multiprogramming and multitasking.

Multiprogramming is an operating system feature that allows a computer to execute

multiple unrelated programs concurrently. Multitasking is a programming technique

that allows a single application to consists of multiple processes executing

concurrently. The two basic multitasking methods are data partitioning and function

partitioning. Most applications naturally lend themselves to either data partitioning or

function partitioning methods.

Data partitioning involves creating multiple, identical processes and assigning a

portion of the data to each process. This method is also called homogeneous

multitasking as it involves identical tasks executed in parallel. Data partitioning is

appropriate for applications that perform the same operations repeatedly on large

collections of data. In programming terms, it is suitable for applications that require

loops to perform calculations on arrays or matrices. Data partitioning is implemented

60

by executing the loop iterations in parallel. Applications such as matrix multiplication,

ray tracing or signal processing adapt well to data partitioning.

Function partitioning involves creating multiple, identical processes and having them

simultaneously perform different operations on a shared data set. It is also called

heterogeneous multitasking as it involves different tasks executed in parallel. Function

partitioning is suitable for applications which must perform many different operations

on the same data. In programming terms, it is suitable for applications that include

many unique functions. Applications such as flight simulation, program compilation

and traditional process control adapt well to function partitioning.

There are applications which involve both data and function partitioning. However,

most applications adapt most easily to data partitioning. The advantages of data

partitioning over function partitioning are ease of load balancing, minimal

programming effort and programs which adapt automatically to the number of

processors in a system.

In Dynix, a new process is created by using a system call called fork. The new (or

child) process is a duplicate copy of the old (or parent) process with the same data,

register contents and program counter.

Multitasking programs include both shared and private data. Shared data is accessible

by both parent and child processes. Private data is accessible only by one process.

Tasks in multitasking programs can be scheduled among processes using three types of

algorithms: pre-scheduling, static scheduling or dynamic scheduling. In pre-scheduling,

the task division is determined by the progranuuer before the program is completed. In

static scheduling, tasks are scheduled by the processes at runtime but they are divided

in some predetermined way while in dynamic scheduling, each process schedules its

own tasks at runtime by checking a task queue.

Dynamic scheduling provides dynamic load balancing. All processes are kept working

as long as there is still work to be done. Since the workload is evenly divided among

the processes, the work can be completed sooner. On the other hand, static scheduling

provides static load balancing. Since the division of tasks is statically determined,

several processors may be idle while one processor completes its job. However,

dynamic scheduling involves more overhead than static scheduling because each time a

61

process schedules another task for itself, it must check the task queue to make sure

there is work to do and it must remove that task from the queue.

Process synchronisation on the Sequent is achieved via a lock that ensures only one

process at a time can access a shared data structure.

3.2.3.2 Programming in PVM

In order to develop applications for the PVM system, the traditional paradigm for

programming distributed memory multiprocessors such as the nCUBE or the Intel

family of multiprocessors can be followed. SignifiCant differences exist in terms of task

management, initialisation phases prior to actual computation, granularity choices and

heterogeneity.

PVM supports three parallel programming models. The first and most common model

for PVM applications is termed as the "crowd" computation where a collection of

closely related processes, typically executing the same code, perform computations on

different portions of the workload. These processes periodically exchange intermediate

results. This paradigm can be further subdivided into two categories: the master-slave

(or host-node) and the node-only model. In the master-slave model, there is a separate

"control" program termed the master which is responsible for process spawning,

initialisation, collection and display of results, and perhaps timing of functions. The

slave programs perform the actual computation and they are either allocated their

workloads by the master (statically or dynamically) or perform the allocation

themselves. The node only model is where multiple instances of a single program

execute, with one process taking over the non-computational responsibilities in

addition to contributing to the computation itself.

The second paradigm is the "tree" computation. Here, processes are spawned (usually

dynamically as the computation progresses) in a tree-like manner establishing a tree­

like, parent-child relationship. Although this paradigm is less commonly used, it is

suitable for applications where the total workload is not known "a priori'', for example

in branch-and-bound algorithms, alpha-beta search, and recursive divide and conquer

algorithms.

62

The third paradigm is termed "hybrid" as it is the combination of the tree model and

the crowd model. At any point during application execution, the process relationship

structure may resemble an arbitrary and changing graph.

In terms of workload allocation, PVM supports both data partitioning and function

partitioning. Data partitioning may be done statically, where each process knows in

advance its share of workload or dynamically, where a control process allocates

portions of the workload to processes as soon as they are free. The main difference

between these two approaches is scheduling, the former being static scheduling where

workloads for each process are fiXed and the latter is dynamic scheduling where the

workloads of processes varies as the computation progresses. In the general PVM

environment, static scheduling is not necessarily an advantage. This is because PVM

environments based on networked clusters are prone to external influences such as

varying CPU speed, different memory and other system attributes.

In order to fully utilise the PVM system, two important parallelisation decisions must

be made. First, is with respect to structure which concerns choosing the appropriate

paradigm while the second is with regard to efficiency. Decisions with regard to

efficiency when parallelising for distributed memory environments must attempt to

minimise the amount of data communication and maximise computation.

3.3 Survey Of Parallel Algorithms For The Solution Of Linear Systems

The fundamental importance of Linear Algebra problems in science and engineering

has placed algorithms for matrix computations in the forefront of research on parallel

algorithms. Linear algebra problems, including systems of linear equations, linear least

squares problems, and algebraic eigenvalue problems, are fundamental to the

computational solution of differential equations, optimisation problems, and the

analysis of various discrete structures. Matrix algorithms have been in the vanguard of

algorithm development on multiprocessors not only because they are building blocks

on which many other scientific computations are based but also because they serve as

realistic prototypes that present many of the fundamental challenges of parallel

computation in a pure form. Thus, the development of parallel algorithms for matrix

computation has received strong emphasis from researchers in parallel computing.

63

There is a suprisingly long tradition of research on parallel algorithms for solving

computational problems in linear algebra, especially the solution of various types of

linear equations. Much of the early research concentrated simply on attaining the

maximum possible concurrency in solving a given type of problem and often employed

highly simplified and unrealistic models of parallel computation, for example unlimited

numbers of processors, no communication costs, no memory contention, no

synchronisation overhead etc. This was understandable in view of the lack of widely

available multiprocessors then to be able to conduct numerical experiments. The

advent of VLSI in recent years has made possible the commercial development of

multiprocessors having a substantial number of processors, and this in turn has given

new impetus to the development and testing of parallel algorithms in realistic

multiprocessor environments.

Practical methods for the solution of linear systems of the form

Ax=b (3.3.1)

where A is the coefficient matrix of order (men), b is the known column vector of right

hand side values and x is the unknown column vector, fall mainly into two classes:

direct and iterative. This section presents a survey of the parallelisation of both classes

of methods.

3.3.1 Parallel Direct Linear System Solvers

This section gives a survey of research on parallel implementation of various direct

methods to solve dense linear systems. In particular are covered Gaussian Elimination

(GE), LU factorisation and QR decomposition.

The application of linear algebra to the solution of many numerical problems has led to

an attempt to categorise the most common components in linear algebra computations

which is the BLAS (Basic Linear Algebra Subprograms). Linear algebra computations

can then be performed by making calls to these BLAS building blocks. BLAS is

defmed as relatively low level linear algebra operations which are intended as basic

building blocks from which higher level linear algebra routines can then be constructed

[Freeman 92].

There are three level of BLAS which are categorised according to their floating point

operation counts. Level! BLAS are vector-vector operations and were first conceived

64

in the 1970s for traditional serial machines. They require only O(n) floating point

operations which is too small a granularity for vector and parallel computers.

Therefore, a larger grain (O(n2
) floating point operations) Level 2 BLAS were

proposed.

Level 2 BLAS involve matrix-vector operations and are better suited for

implementation on computers with a vector pipeline unit because of their greater

granularity. Since Level 2 BLAS involve O(n2
) floating point operations on O(n2

) data

items, they then have a compute/communication ratio of 0(1) which makes efficient

implementation on parallel computers, especially message-passing computers, difficult.

This led to the introduction of Level 3 BLAS (involving matrix-matrix operation)

which have a greater granularity and more importantly a compute/communication ratio

ofO(n).

The ScaLAPACK software library, which was released in December of 1994, extend

the LAP ACK library to run scalably on distributed memory concurrent computers.

LAP ACK provides routines for solving systems of simultaneous linear equations, least

squares solutions of linear systems of equations, eigenvalue problems and singular

value problems. Like LAP ACK, the ScaLAP ACK routines are based on block partition

algorithms in order to minimise the frequency of data movement between different

levels of the memory hierarchy. The fundamental building blocks of the ScaLAP ACK

library are distributed memory versions of the level 2 and level 3 BLAS, and a set of

Basic Linear Algebra Communication Subprograms (BLACS) for communication tasks

that arise frequently in parallel linear algebra computations.

3.3.1.1 Parallelisation of LU and GE

Many algorithms for the solution of linear systems such as the GE and LU

decomposition have been designed for parallel systems, both shared memory and

distributed memory. The differences between the different parallel implementations are

in the way the coefficient matrix A is distributed amongst the processors and the way

pivoting is carried out to ensure numerical stability.

The GE and LU methods have been described in Chapter 2. In this section, their

parallel implementations are described. The main concern in the parallel

65

implementation is to distribute the computational workload equally across the

processors.

The parallel algorithm can be constructed in terms of Levels 1 and 2 BLAS or by

writing the parallel code from scratch. A good discussion of the construction of the

algorithms in terms of the BLAS routines can be found in [Freeman 92].

The ftrst stage of GE is the forward elimination whose sequential algorithm is given in

Algorithm 3.3.1.1.1. A study of the algorithm's data dependencies revealed that the k

loop must be done in sequential order. However, the middle and innermost loop can be

done in paralleL This means that once a pivot row k is determined, the modification of

all unmarked rows may occur simultaneously. Within each row, once the multiplier

a[i][k]/a[k][k] has been computed, modifications to elements k+ 1 to n of each row can

proceed simultaneously.

Algorithm 3.3.1.1.1 Sequential forward elimination algorithm

fork=l ton-1 do
for i=k+ 1 ton do

end fori
end fork

a[i1 [k1=a[i](k]/a[k 1 [k1
for j=k+l ton

a[i1 [j]=a[i1 [j] -a[i1 [k 1*a[k 1 [j]
end forj

On a shared memory machine, independent loop iterations indexed by i can be assigned

to the multiple processors either by partitioning it into a contiguous group of rows

(known as block partitioning) or by interleaving the rows (called wrapped, interleaved

storage). If n=kp, and in the block row partitioning, the first k rows of A are assigned

to processor 1, the second k rows to processor 2 and so on. For the wrapped

interleaved partitioning, rows 1, p+l, 2p+l, ... are stored in processor 1; rows 2, p+2,

2p+2, ... in processor 2 and so on. Figure 3.3.1.1.1 illustrates an example of block data

partitioning for a 20x20 matrix while Figure 3.3.1.1.2 shows an example of wrapped

interleaved partitioning for a 20x20 matrix.

66

I Rows 1 to 5 I I Rows 6 to 10 I I Rows 11 to 151 I Rows 16 to 20 I
Processor 1 Processor 2 Processor 3 Processor 4

Figure 3.3.1.1.1 A 20X20 matrix distributed amongst 4 processors as a contiguous

block

Rows Rows Rows Rows

1,5,9,13,17 2,6,10,14,18 3,7,11,15,19 4,8,12,16,20

Processor 1 Processor 2 Processor 3 Processor4

Figure 3.3.1.1.2 A 20X20 matrix distributed amongst 4 processors in an interleaved

way

On a message-passing architecture where each processor has its own private memory,

the main issue to consider is the distribution of rows of coefficient matrix A to the

memories. Again, the rows can be distributed as a contiguous block or in an

interleaved fashion. In order to determine the pivot row, the processors must interact

with each other. Once the pivot row has been determined, the processor that owns the

pivot row must broadcast its elements to the other processors so that they can update

the unmarked rows that they have in their memories.

If an algorithm partitions the matrix A by row, it is known as a row oriented algorithm.

An alternative distribution of data is assigning to each processor an interleaved group

of columns (known as column oriented algorithm) and the vector b. This way, the

processors need not interact to determine the pivot row. Instead, each processor must

broadcast elements of the column and the identity of the pivot row to the other

processors.

Another important strategy in designing algorithms for message-passing architecture is

to maximise grain size and minimise communication among the processors. If the

messages are small, it makes sense to combine messages to be sent to a certain

processor in order to reduce message passing overhead. For example, in the row

oriented version of parallel GE, the processor controlling the pivot row must send the

elements of the pivot row to other processors. It makes more sense to broadcast the

entire row rather than sending one element at a time.

67

Likewise, in the column oriented parallel GE, the processor controlling a column must

broadcast the entire column and the identity of the pivot row together to the other

processors.

It is obvious that the difference between the row oriented parallel GE and the column

oriented parallel GE lies in the communication/computation ratio. In the row-oriented

version, processors work together to determine the pivot row. For a given system of

size n and p processors, each processor examines at least n/p values but once a

processor has determined the local maximum within its subset of data, it must

communicate with the other processors to determine the global maximum. In iteration i

of the column oriented algorithm, each processor must perform (n-i) comparisons but

no communication is required. Both algorithms require a broadcast step after the pivot

row has been found.

The second stage of GE is solving a triangular system known as back substitution. One

possible algorithm is the row oriented algorithm shown in Algorithm 3.3.1.1.2.

Algorithm 3.3.1.1.2 Sequential row oriented algorithm for back substitution

x[n]=b[n]/a[n][n]
for i=n-1 downto 1

end fori

x[i]=b[i]
for j=i+ 1 to n do

x[i]=x[i]-a[i][j]*xUJ
end for j
x[i]=x[i]/a[i][i]

The outer loop i controls computation of the solution vector. For any r, r<p, Xp must

be available before x, can be computed. Therefore, this loop cannot be executed in

parallel. The inner loop j can be parallelised but it has synchronisation restrictions.

Another alternative is the column oriented back substitution shown in Algorithm

3.3.1.1.3.

Algorithm 3.3.1.1.3 Sequential column oriented algorithm for back substitution

for k=n downto 1
x[k]=b[k]/a[k][k]

for i=1 to k-1
x[i]=x[i]-x[k]*a[i][k]

end fori
end fork

68

Once again the outer loop k which controls the computation of the solution vector has

to be performed sequentially but the inner loop i which performs the substitution can

be done in parallel by assigning the different iterations of the loop i to the available

processors.

A X = b

X X X X X X X

X X X X X X

X X X X

X X X X

X X X

X X X X

?

X X X

X X

Figure 3.3.1.1.3 Row oriented back substitution

Figure 3.3.1.1.3 shows the diagrammatic view of the row oriented back substitution

while Figure 3.3.1.1.4 depicts the column oriented back substitution. Whichever

parallelisation strategy is employed for the backsubstitution phase does not have a

great impact on the timing of the entire GE method as it is only of order O(n
2

) as

compared to the forward elimination process which is of order O(n\

A X = b

X X X X X X

X X X X X

X X X

X X X

X X

X X X

G X X ?

X X X X

X X X

Figure 3.3.1.1.4 Column oriented back substitution

69

Implementation of the back substitution algorithm on a shared memory system involves

assigning independent loop iterations to the different processors. On a distributed

memory implementation, the decisive factor is again, the distribution of the matrix A to

the processors. If the matrix A had been distributed by columns, then the column

oriented back substitution would be suitable. Otherwise, if it had been distributed by

rows, then the row oriented algorithm would be suitable. For both methods, once a

solution is obtained, the processor which owned the row for which the solution was

obtained will have to broadcast the result to the other processors. This will enable the

other processors to use this new value in the substitution process of the rows that it

has in its own memory.

In GE, the forward elimination process is applied to the coefficient matrix and the right

hand side vector simultaneously. If we have several right hand sides, then each stage of

the forward elimination must be applied to each right hand side. A better way is to

separate the modification of the coefficient matrix from that of the right hand side. This

is achieved by ftrst applying the forward elimination to the coefficient matrix. Then,

after this stage is completed, the forward elimination can then be applied to the right

hand side. This method is known as the LU factorisation.

As mentioned in Chapter 2, LU factorisation is a method which decomposes the

coefficient matrix into two factors L and U where L is the lower triangular matrix and

U is the upper triangular matrix. The solution phase consists of the forward

substitution on the L matrix followed by a back substitution on the U matrix.

The sequential algorithm for the factorisation stage of LU is shown in Algorithm

3.3.1.1.4 while the sequential algorithm for the forward substitution stage of the

solution process is shown in Algorithm 3.3.1.1.5. The algorithms assume that the right

hand side vector b is augmented to the coefficient matrix A and the loop indices begin

from 0 to match the code which was written in C.

The factorisation stage can be parallelised by partitioning the inner loop i to the

available processes. The outer loop k, however, has to be processed in sequential

order. The forward substitution can be parallelised in a similar way as the back

substitution.

70

Algorithm 3.3.1.1.4 Sequential algorithm for factorisation stage in LU

fork= 0 to n-2
for i=k+l to n-1

m=a[i,k]/a[k,k]
a[i,k] =m
for jr=k+ 1 to n-1

a[i,jr] = a[i,jr] -m • a[k,jr]
endforjr

end fori
end fork

Algorithm 3.3.1.1.5 Sequential algorithm for forward substitution

fornv= 1 ton-1
for j = 0 to nv -1

a[nv,n] = a[nv,n] - a[nv,j] * a[j,n]
end for j

endfornv

The incorporation of partial pivoting to maintain numerical stability introduces

additional considerations into the data partitioning issues. If A is partitioned by column

wrapping, then the search for the pivot element takes place in a single processor. Once

the pivot row is determined, it must be transmitted to the other processors. In row

wrapped partitioning, the search for the maximal element in the current column must

take place across all the processors. Once again, when the pivot row is determined, it

must be broadcast to the other processors.

3.3.1.2 Parallelisation of the QR method

The difficulties with implementing interchange strategies on parallel architectures

suggest that orthogonal reductions to triangular form may have advantages.

It was observed by [Gentleman 75] that the orthogonal reduction to triangular form by

Givens rotation or Householder transformation has a certain natural parallelism. In

general, the Givens process works by taking linear combhtations of rows of the matrix,

chosen to make the new elements below the diagonal zero. There are several possible

orderings of the transformations and choices of row pairs which will also produce an

upper triangular matrix. Any two rows may be chosen to produce a required zero as

long as the previous elements of the two rows have already been made zero_ The QR

method has been described in detail in Chapter 2. The sequential algorithm for Givens

QR rotation is shown in Algorithm 3.3.1.2. Again, the loop index begins from 0 to

71

- I

match the code which has been written in C and the right hand side vector b is

augmented to the coefficient matrix A.

The basic principle underlying the parallelisation of Givens QR decomposition is that

independent rotations, that is rotations applied to different rows, are allocated to

different processors. It is assumed that each processor can read two rows from

memory and apply a plane rotation to these so as to introduce a zero element and

return the modified rows to memory. Several parallel algorithms have been proposed

along this line where the main aim is to perform the decomposition in the least number

of steps.

Algorithm 3.3.1.2 Sequential QR Decomposition

fork = 0 to n-2
fori= k+l to n-1
{ annihilate A(i,k) }

d = sqn(A(i,i)*A(i,i) + A(i-l,i)*A(i-l,i))
cos_t = A(i,i)/d
sin_t = A(i-l,i)/d
A(i,i) = d
forj = lton

sl = cos_t * A(i,j) + sin_t * A(i-l,j)
s2 = cos_t * A(i-l,j)- sin_t * A(i,j)
A(i,j)= si
A(i-l,j) = s2

end for j
end fori

end fork

* * * * * * * * * *
9 * * * * * * * * *
8 10 * * * * * * * *
7 9 11 * * * * * * *
6 8 10 12 * * * * * *
5 7 9 ll 13 * * * * *
4 6 8 10 12 14 * * * *
3 5 7 9 11 13 15 * * *
2 4 6 8 10 12 14 16 * *
1 3 5 7 9 11 13 15 17 *

Figure 3.3.1.2.1 Annihilation pattern for parallel Givens rotation

The parallelisation of Givens rotation employed in this thesis is based on [Freeman 92]

where the main aim is to perform several Givens rotations concurrently. For example,

the first step uses a rotation in the (n-1,n) plane to annihilate the (n,l) element. The

72

second step uses a rotation in the (n-2,n-l) plane to annihilate the (n-1,1) element. On

the third step, two rotations can be performed simultaneously, i.e. rotations in the (n-

3,n-2) and (n-l,n) planes to zero out the (n-2,1) and (n,2) elements. The order in

which the elements of a matrix are zeroed out is called the annihilation pattern. Figure

3.3.1.2.1 shows the annihilation pattern for the parallel Givens rotation employed in

this thesis. For simplicity, the annihilation pattern is given for a lOxlO matrix. The

integers indicate the steps at which the given elements are annihilated.

Mter performing the QR factorisation of a matrix, the solution of the system of

equations can be obtained through the back substitution process.

3.3.1.3 Other related work

Quite a number of earlier researchers have investigated the parallelisation of GE, LU

and QR and their implementation on parallel computers. Following is a brief account of

some of the earlier work.

Sameh and Kuck in (Sameh 77) conducted a survey of direct parallel algorithms for

solving systems of linear equations. The survey included triangular, dense and

tridiagonal systems. Of relevance to this thesis is the solution of dense systems, where

two parallel methods were surveyed. Emphasis of the survey was on the speedup of

the parallel algorithm over the corresponding sequential algorithm. The first algorithm

surveyed was the LU factorisation via Gaussian elimination without pivoting. It was

assumed that (n-1)2 processors were available, hence the factorisation required 3(n-1)

steps. When pivoting was incorporated, Gaussian elimination then requires O(n Jog n)

steps. The second algorithm was parallel Givens reduction which required O(n) steps

with O(n2
) processors.

Lord et aL [Lord 83] re-examined the GE algorithm, assuming n/2 processors, on the

HEP computer with 8 processors. They showed that the algorithm then required n2 -1

steps.

Darmohray and Brooks III [Darmohray 87] investigated the performance of parallel

Gauss and parallel Gauss-Jordan elimination algorithms on the Cerberus

multiprocessor simulator, a simulator for a scalable shared-memory multiprocessor

with fully pipelined functional units. The parallel implementation of their algorithms

made extensive use of barrier synchronisation. The two barrier implementations used

73

were the butterfly barrier which is a software technique, and a hardware barrier. Their

work was an attempt to compare two parallel algorithms that solved the same problem.

A better speedup in one algorithm does not imply better performance. Absolute

running times of the algorithms must also be compared. They have shown that an

algorithm which requires more operations but synchronises less frequently and is more

load-balanced can run faster than an algorithm with fewer operations for certain

choices of problem size and numbers of processors.

The era of the hypercube saw the trend of parallel linear system solvers moving

towards a message-passing implementation. Although the work in this thesis involves

message-passing on workstation clusters, work pertaining to tbe hypercube is relevant

as it has message-passing in common between them. The only feature of the hypercube

algorithm that are specifically dependent on the structure of the hypercube are the

details of the broadcast algorithm and the use of a globally connected host. Thus, the

same general algorithm, should work on any message-passing, distributed memory

multiprocessor that support broadcasting and has a globally connected host.

[Geist 85] developed a message-passing algorithm to form the LU factors of general

non-singular matrices on a hypercube multiprocessor. Partial pivoting was performed

to ensure numerical stability. He proposed a new algorithm that best masked the work

of pivoting by letting the host processor which remained idle during factorisation to

determine the next pivot row while the nodes continue with the factorisation. Thus, the

work of pivoting is masked. The only degradation caused by pivoting is due to load

imbalance rather than any additional work or communication. The load imbalance

produced by random pivoting caused 5% -14% increase in execution time. The

mapping of rows of matrix onto the processors seemed to give the highest efficiencies

and the best overall load balance.

Subsequently, Geist and Heath [Geist 87] discovered that the performance of the same

algorithm on an Intel Hypercube can be quite different from the simulator results. In

particular, because the host had limited buffer space, and the host-to-node

communication is sequential and substantially slower than the node-to-node

communication, it is no longer practical to involve the host in the process of pivot

selection. In the solution proposed by Geist and Heath [Geist 87], a node processor is

74

designated as the manager with extra responsibility of determining the pivot and

informing all other nodes of the pivot row number.

A potential weakness of the implementations of [Geist 85] and [Geist 87], is that they

did not deal with the possible load unbalancing of the computation that could be

caused by an unfortunate sequence of pivot choices. Although Geist and Heath

reported in [Geist 87] that their experience suggested that this imbalance is quite low,

about 5-15% in execution time of the factorisation phase, there are examples where it

is much higher [Chu 87]

Chu and George in [Chu 87] modified Geist and Heath's [Geist 87] general approach

to incorporate dynamic load balancing. They proposed that the pivot row is exchanged

with a row in a designated processor so that all the processors have the same number

of equations still to be factored. The scheme had shown to be effective in maintaining a

balanced load distribution throughout the factoring process with very modest

communication cost and the overall execution time was not very much affected for the

chosen test problems ..

Another work on parallel algorithms for the solution of linear systems using a variant

of Gaussian Elimination with partial pivoting on the hypercube was done by

[Chamberlain 87]. He proposed an algorithm where the matrix was stored by rows and

the maximal element in a row was taken as a pivot. This is known as column pivoting.

Columns were then interchanged to put the maximal element on the diagonal. No

communication was required to determine the pivot element, hence the number of

messages was reduced. The determination of the pivot was done sequentially by one

processor. The only communication was the distribution of the pivot rows. Elimination

and distribution of the pivot rows were overlapped, hence reducing the time a

processor spends waiting for pivot rows. Numerical results obtained by Chamberlain

showed that the method provided substantial gains over the normal row pivoting.

Dekker et al [Dekker 94] provided a survey of research on the parallelisation of GB

with pivoting on supercomputers and distributed memory systems. They have also

indicated the main BLAS operations used by GB algorithms. The implementation on

the distributed memory system (which was a Meiko computing surface with 64

processors) used a threshold pivoting strategy which yielded a good compromise

between numerical stability and the reduction of data traffic between local memories,

75

needed for row interchanges. Threshold pivoting means that instead of an element of

largest size, a suitable element which is at least a given fraction of the largest element

is selected as pivot.

Computing the orthogonal decomposition of an mxn matrix is a classical problem in

scientific computing. Two well known methods are available for solving such a

problem, that is the Householder reduction and the Givens rotation. The parallelisation

of Givens method gives rise to very interesting algorithmic problems.

An implementation of the parallel Givens method proposed in [Wright 91] divided the

computation into a number of stages. In the first stage, roughly half of the first column

is made zero by rotations which are all independent by taking the row j with row n-j+ 1

for j=1, ... [n/2]. In the second stage, a similar scheme is applied to reduce the remaining

non-zeros in the fust column and start on the second column. The independent

modifications in each stage can be assigned to parallel tasks in either a predetermined

way or dynamically. The end of each stage requires synchronisation as the next stage

cannot start until the previous one is complete.

Lord et al. [Lord 83] discussed Givens transformations for full systems, motivated by

multiprocessor systems and the Delnecor HEP in particular. As opposed to the

annihilation pattern of Sameh and Kuck (Figure 3.3.1.3.1), which assumed the use of

O(n2
) processors, they assumed that p<=O(n/2) and gave 2 possible annihilation

patterns (Figure 3.3.1.3.2).

7

6 8

5 7 9

4 6 8 10

3 5 7 9 11

2 4 6 8 10 12

1 3 5 7 9 11 13

Figure 3.3.1.3.1 Annihilation pattern of Sameh and Kuck

For both figures 3.3.1.3.1 and 3.3.1.3.2, an integer r in position (i,k) means that the

element a(i,k) has been annihilated in the rth step.

76

PI 1 1
2 2 3

p2 3 5 3 4 5
4 5 6 7 4 5 6

P3N8 5 6 7
6 7 8

P. 7l_L
8

PI p2 p3 PI p2

Figure 3.3.1.3.2 Annihilation pattern of Lord et a1

Modi and Clarke [Modi 84] have introduced the greedy algorithm that performs

simultaneously, at each step, all disjoint rotations. Elements in one column are heing

annihilated from bottom to top and those in each row from left to right. Figure

3.3.1.3.3 illustrates the annihilation pattern for an 8x8 matrix for the greedy algorithm.

X

3 X

2 5 X

2 4 7 X

1 3 6 8 X

I 3 5 7 9 X

1 2 4 6 8 10 X

1 2 3 5 7 9 ll X

Figure 3.3.1.3.3 Annihilation pattern for the greedy algorithm for an 8x8 matrix

Cosnard et. al in [Cosnard 86] have proved that for any value m and n for an mxn

matrix with m ??.nand for p =lm/2J, the greedy algorithm is optimal.

In [Modi 88], another class of algorithm called the Fibonacci scheme and its

performance is discussed. However, it was observed that the Fibonacci scheme seemed

to he less efficient than the greedy algorithm.

77

-- -- ---

3.3.2 Parallel iterative linear system solvers

The methods discussed in the previous section were direct methods where the exact

solution is computed in a determinable number of arithmetic operations. These

methods are suitable for dense systems. However, they may be impractical for large

sparse systems for the following two reasons:

a. The methods require O(n3
) operations and for large values of n, the computational

cost may be high.

b. It is a waste of storage to store zero coefficients and also a waste of computing time

to perform arithmetic operations on zero elements.

In this section, the parallelisation of iterative methods is discussed.

A lot of research has been done in the parallelisation of sequential iterative methods for

solving the sets of linear equations generated from the discretisation of elliptic partial

differential equations. The work on parallel iterative methods in this thesis is geared

towards multiprocessor machines. This section gives a survey of research on parallel

iterative solvers. In particular are covered the Jacobi, Gauss-Seidel, Jacobi

Overrelaxation (JOR) and Successive Overrelaxation (SOR) iterative methods.

Indeed the Jacobi method has been recognised as an ideal algorithm for parallelisation

as the calculation of each component Xi(k+l), i=l,2, ... ,n can be done independently. On a

shared-memory computer, the loop which calculates the updated components is

distributed amongst the processors, either in a contiguous block or in a wrapped,

interleaved manner. On a distributed memory machine, the rows of the coefficient

matrix A are distributed to the processors and computation in the separate processors

can proceed concurrently. At the end of each iteration, each processor broadcasts the

components of x(k+t) that it has computed to the other processors.

The parallel Jacobi scheme, however, suffers from the same drawback as the sequential

Jacobi, which is very slow convergence rates. Whereas the Jacobi iteration is often

cited as a "perfect" parallel algorithm, the Gauss-Seidel and SOR iterations are

considered to be the opposite. The usual serial code for Gauss-Seidel would have new

values at each point to replace the old as soon as they are updated. It is this recursive

process that is not amenable to parallelism. Several different parallel modifications

have been performed on the classical Gauss-Seidel and SOR One set of methods

involve the multicolouring of grid elements and the update of those elements of like

78

colour. The simplest of these methods is the Red-Black method, in which two colours

are assigned to the grid elements in a checkerboard marmer. Then, all grid elements of

one colour can be updated in a Jacobi-like sweep in odd-numbered passes, while those

of the second colour are updated in even numbered passes. Work has been done on

this by [Evans 84]. Implementation of the Jacobi or SOR iterations on multiple

processors require a suitable distribution of the work amongst the processors so as to

minimise the processor idleness. In order to carry out these iterations in their

mathematical form, we also need to ensure that the processors are synchronised before

the beginning of each iteration, or in the case of the multicolour SOR method, before

the beginning of each Jacobi sweep. This synchronisation can be carried out in a

number of ways but, in essence, it requires that each processor wait after completion of

its part of the computation until all processors have completed their work and the next

iteration can begin. This adds two forms of overhead to the computation: one is the

work required to verify that every processor is ready for the next iteration, and the

other is the idle time that some processors may experience while waiting for all

processors to complete their tasks.

Another parallel variation of SOR has been developed by Pate! and Jordan [Pate! 84]

where each processor is assigned the task of updating one row of grid points. Since

SOR re-uses updated values as soon as they are available, each processor must ,wait

for the previous processor's iterative updates before it can begin updating in its row.

Synchronisation between the processors was controlled by full/empty flags assigned to

each memory location. These flags were built into the Heterogeneous Element

Processor (HEP) on which their algorithm was developed.

Bonomo and Dyksen [Bonomo 89] proposed pipeline iterative techniques as an

effective means to parallelise basic serial iterative methods for the solution of linear

systems.

An alternative that has special appeal in the case of the Jacobi or SOR iterations is to

let the processors run asynchronously. This idea goes at least to the chaotic relaxation

methods of Chazan and Miranker [Chazan 69] and has been studied in some detail by

[Baudet 78], following work of [Kung 76]. No attempt is made to synchronise each

iterative sweep. This method avoids two problems which are inherent in any algorithm

that attempts to synchronise sweeps: first is the extra computational work that must be

79

performed by each processor after each sweep to verify when it can begin the next

sweep, and second is the extra time incurred by a processor in waiting for all other

processors to finish a sweep. However, the asynchrony makes the analysis of the

algorithms and proofs of its convergence rate difficult

Parallel versions of the Jacobi and Successive Overrelaxation methods to solve systems

of linear equations on a network of transputers were implemented by Cunha and

Hopkins [Cunha 91]. The JOR method was parallelised by distributing the data in a

row wise fashion among the processors. The parallelisation of SOR was less obvious

due to data-dependency issues. The SOR method was rewritten to obtain a suitable

iteration to parallelise. An adaptive version of the parallel SOR was also developed. All

the methods were tested on two model problems, one dense and the other sparse. The

JOR method showed a high degree of efficiency for dense systems. The SOR methods

were far more effective on sparse systems.

80

Chapter4

Parallel Implicit Elimination (PIE) and Quadrant Interlocking Factorisation

(QIF) on Shared Memory Architecture

The solution of systems of linear equations of the form

Ax=b (4.1)

where A is an nxn non-singular matrix, x is the unknown vector and b is the right hand

side vector, is probably one of the activities in scientific computing that uses the most

computer time. This is due to the fact that the solution of systems of linear equations

occur in most real life applications.

The well-known Gaussian elimination (GE) method and the LU factorisation are, to

date, perhaps the most commonly used algorithms to solve linear systems on sequential

computers. Since the a.dvent of parallel computers, the GE and LU methods has been

parallelised to run on parallel computers. This technique of exploiting parallelism is

known as "vectorising existing software". Both GE and LU are essentially algorithms

in which elimination and factorisation are done serially. Evans introduced PIE [Evans

93b] and QIF [Evans 79] which are more suitable for parallel computation and are

aimed at a parallel machine from the outset. Most of the earlier studies on QIF have

been done on hypothetical parallel computers [Evans 79] and [Shanechi 80]. Later

Evans and Bekakos [Evans 88] introduced a parallel version of this method on a

wavefront computer. The first attempt of comparing these algorithms with their

classical methods equivalence, namely GE and LU respectively was made by Yalamov

[Yalamov 95]. In his work, he compared QIF to LU and has obtained a 20% gain in

execution time. However, there was no evidence as to what contributed to the gain in

execution time.

The work in this chapter involves analysing the performance of PIE and QIF on a

shared memory parallel computer and comparing their performance with GE and LU.

An attempt is also made to justify the results obtained in the investigation.

Sections 4.1 and 4.2 presents the PIE and QIF methods respectively. Partial pivoting

strategies for both PIE and QIF are covered in section 4.3. In section 4.4, both the

sequential and parallel algorithms for PIE and QIF are outlined. The computational

complexity and shared memory access analysis of PIE and QIF are given in section 4.5

81

while the results of PIE and QIF implemented on the Sequent Balance, a shared

memory parallel computer, are given in section 4.6. A summary of the chapter is given

in section 4.7

4.1 Parallel Implicit Elimination method (Plli)

PIE is a scheme that simultaneously eliminates two elements at a time, instead of just

one as in GE. The basis of PIE is to transform the coefficient matrix A to that of

butterfly form as illustrated by (4.1.1) when n is odd, and (4.1.2) when n is even. This

transformation is known as parallel elimination.

an a., a,,~~_, a,.
0

(I) (I) 0 a, a2,n-!

0 0
i!::!l

0 0 2 (4.1.1) · .a,. •• ll+l • •

TT

0
(I) . . (I) 0 Qn-1,2 an-l,n-1

a., a., an.n-l aM

r a~t at2 Ql,n -1 at,n
(1) (1)

a22 az.n-t

0 0 0 0
(n-1) (n-1)

0 0 an~ an ~+1 0 0
2'2 2•2 (4.1.2) (n-1) (n-1)

0 0 an 2 n an 2 n 0 0

0 0
~~·2 ~1,~1

0 0

0
(1) (1) 0

an-1,2 On-t,n-1

ant an2 an,n- 1 ann

The solution stage, known as bi-directional solution, begins at the central value x"" if
'

n is odd and the two values x. and x.,_if n is even. It involves backward and forward
' '

substitution processes concurrently solving (2x2) systems to evaluate the values X;

where i=l, 2, ... , n.

82

Parallel Elimination Procedure

Consider the following shorthand notation for the coefficient matrix A.

r T l I all alj a,. I
A=l!Q!

A;; ~J , iJ=2(l)n-l (4.1.3)
T a., a.J a,.

Consider the transformation matrix W, consisting of the vector elements ro11 and ro;.,

i=2, 3, ... , n-1 i.e.

0

~-] fn-2

0

Elimination is achieved by taking the product

and, choosing the values of vectors O>n and ro,. such that,

for i=2, 3, ... , n-1, to give,

aumil +a.1w"' =~;"
aln (J) il +ann (JJ in = f!;n'

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.7)

Hence, the determination of O>n and O>m requires the solution of (2x2) sets of equations

which can be solved by any one of the following three methods:

a)Cramer' s Rule

This well-known formula is not usually recommended for the computer solution of

large linear systems because of the excessive computational requirements it requires.

However, for the solution of the (2x2) systems which occur abundantly in the PIE

scheme, it is quite adequate provided the system is not too ill-conditioned.

To solve the system in (4.1.6) the following quantities are evaluated:

83

(4.1.8)

b)Elimination

Apply a column pivoting strategy to the (2x2) system to improve stability. Then,

proceed as follows:

1. Compute the multiplier

2. Compute the quantities

(ann- aa.,) and Cltn- <Xl!n), (4.1.9)

3. Determine

4. Evaluate

c)Symmetric Elimination

By applying the column pivoting strategy to the (2x2) system the algorithm can be

described as follows:

1. Compute the multipliers,

2. Compute

(ann- aa.1), (au - ya,.), (lli.- <Xl!n) and (lj;, - 'Yl!in).

3. Evaluate

ro;. = Cll;.- <XJ!i,) I (ann- aa.,), ron = (lj;, - Yl!in) I (an - ya,.).

(4.1.10)

In the first step of the elimination, the elements a21 and a2• will be eliminated by solving

for roil and ro., where i=2. Once ro21 and ro2• are obtained, the values a22, a23, ... , a2.n·l

will be updated. After this initial step, the matrix (4.1.11) is obtained.

84

au a, al,n-1 a,.
0 (I) (I) 0 a:n a2.n-1

a" a, a3,n -I a,.
(4.1.11)

a.- 1,\ a,.-1..1 an-l.,n-1 an-'·"
a., a., G,.,n-1 aM

Repeating the elimination steps for i=3,4, .. n-1 will result in the reduced matrix

(4.1.12).

I I au 1 Ql2 • • • al. 11- I I Qln
-

0
-r-<,;------(1,--~-

0
-·

I an a2.n-t I
: I : : I :
• I • • • • • I •

I (I) (I) I
0 I a.-t,2 • • • a.-t.•-t I 0
--~-----------~--

(4.1.12)

ani~ an2 ••• an,n-1 ~ann

Equations 2, ... , n-1 are then treated as a new subsystem and the parallel elimination

process is repeated on the submatrix outlined in (4.1.12). The fmal transformation

yields WA = I1 W_;A = Z.

To obtain the eliminated matrix as in (4.1.1) for n odd and (4.1.2) for n even, the

elimination process is repeated (n-1)12 times.

Bi-directional Solution Procedure

For the solution process of PIE, cases of odd and even-sized matrices are considered

separately. When n is odd, the bi-directional solution process begins with the matrix as

in (4.1.1) and the solution begins from the centre with

Solving for x•+' in (4.1.13) will result in
2

Xn+l =
2

(4.1.13)

(4.1.14)

This value of x•+' is substituted up into equation (n-1)/2 and substituted down into
2

equation (n+3)/2. Next the following two equations will be solved:

85

(4.1.15)

to yield the values for x-' and X"".
2 2

This procedure continues outwards from the centre forwards and backwards i.e. bi­

directionally until the final equations to be solved are

•-1

QnlXI + QnnXn = bn-L Qniti
i=2

(4.1.16)

When n is even, the bi-directional solution process begins with (4.1.2) and the initial

stage (4.1.10) is omitted. The remaining steps are similar to the case when n is even.

Finally, a comparison of the PIE and GE schemes for n=6 can be made diagramatically

as shown in figures 4.1.1, 4.1.2, 4.1.3, 4.1.4 and 4.1.5. The shaded part in the diagram

indicates the sub-matrix that needs to be updated for both the GE and PIE methods.

Step 1:

GEscheme PIE scheme

86

Step 2:

GE scheme

Figure 4.1.2- Column 2 ofGE being eliminated and columns 2 and 5
is completed now.

PIE scheme

By the second step, the PIE method is already completed while the GE method has

three more steps to go. The resulting reduced matrix for PIE depicted in Figure 4.1.3

can now be solved for by a bi-directional solution process.

Step 3:

GE scheme PIE scheme

Step 4:

GEscheme

Figure 4.1.4 - Column 4 of GE being eliminated.

87

Step 5:

GEscheme

After 5 steps in the elimination process of GE for a 6x6 matrix, the shaded area in

Figure 4.1.6 represents the elements of the triangular matrix and the solution can then

be obtained by a back substitution process.

GEscheme

4.2 Quadrant Interlocking Factorisation method (QIF)

QIF is a method that decomposes the coefficient matrix A into two interlocking

quadrant factors of butterfly form denoted by Wand Z or as,

A=WZ (4.2.1)

wh=W=[~• W., ~}=43, . ,n-1,

88

T
zli

T
ali

Z= ['" z._, "·] and ["" A= an A._, "·] a,.
T T z., Zni z •• a., ani

which represents the partitioned forms

W=

and

Z=

liO 000 0 iO
-----r----------------------~------

W2,t 1 0 0 0 0 W2,n

W3,2 1 0 W3,n-l

Wn-2,2 0 1 Wn-Z,n-1

Wn-1,1 0 0 0 0 1 Wn-l,n

-----~----------------------~------o:o 000 0 il

I I
Zl,l 1 Z1,2 ••• ••· ••• ZI,n-l 1 Zl,n

---~----------------------~----
0 Z2.2 Z2,n-l : 0

I
0 0 0 I 0 I

0 0 0 : 0
I

0 0 0 : 0
I

0 1 Zn-1,2 Zn-l,n-l: 0
---~----------------------~----1 I
Zn.l 1 Zn,2 Zn. n -1 1 Zn,n

with a similar partitioning for A.
I I

at,t t at,z • • • at.n-t 1 al.n -~ ~
I I

Ozt 1 azz az,,H 1 az,
' I ' I ,.

I I
I I
I I

a,_l.l 1 a,_t.z · · · a,_l.n-1 1 a,_t_, ----.--------------,-----
a,,l ! a,,z an,n-l ! a,,n

A=

Equating terms in the factorisation in (4.2.1) results in

rall T ::]+ :.f" au

l an
A._, w._,

-1 lz., T a,m 0 a., a,j

Then the following relations are obvious.

au = zu
T T

.ali=Zli

atn = Ztn

and

ani= Zni

T T
.ani=Zru

Then, there are also the following relations

89

T
zli

z._,
T

Z,i

a ••

z,. l
z..J

(4.2.2)

(4.2.3)

(4.2.4)

(4. 2.5)

(4.2.6)

(4.2.7)

which represents a series of (2x2) linear systems.

As discussed in PIE, the solution to the (2x2) system can be obtained by using one of

three methods, namely Cramers rule, simple elimination or symmetric elimination.

Finally, in the determination of the reduced matrix A' n-2•

Thus,

ID1ZT!i + Wn-2Zn-2 + W;,ZT,i = An-2

Wn.zZ...z = An-2- ID1ZT!i- ID~

=A'n·2

The system is now recursively repeated for n-2, n-4, ... , 2 for n even and n-2, n-4, ..

. , 1, for n odd.

Solution process:

By using (4.2.1) the linear system in (4.1) can be written in the form,

WZx=b, (4.2.8)

and the solution vector x can be obtained by solving the two alternative systems,

Wy=b,

known as bi-directional substitution,

and

Zx=y.

known as bi-directional solution.

Bi-directional substitution:

To solve (4.2.9) we have,

1 0 0 0 0

WZ,l 1 0 0 0

W3,2 1 0

Wn-2,2 0 1

Wn -1,1 0 0 0 0

0 0 0 0 0

(4.2.9)

(4.2.10)

0 0 Y1 b1
0 W2,n yz bz

W3,n-l

= (4.2.11)

Wn-2,n-1

1 Wn-l,n yn -1 bn -1

0 1 yn bn

90

from which the values of y can be obtained by the process of bi-directional

substitution, i.e.,

Yt = bt;
Y. =b.
Y2 = b2- w2tYJ- W2nYn;
Yn-t = b•-t- w.-t.tYt- w.-t .• Y. (4.2.12)

Y -b -w y -w y -···-w y -w y
1

-
1 11 1

in n ;,i-1 i-1 i,n+l-i n+l-i

Yn+t-1 = b,+t-i- w,+l-i,tYt- w,+t-i,nYn - ···- wn+t-I,n-iYn-i- wn+t-i,2Y2

If n is odd, the final equation to solve is

(4.2.13)

and if n is even, the last two equations to be solved are

Y"!+t =b~t-w!!+ttYt-w!!.+lnYn -···-w4-tt!!Y!!. -w~t.!!:!:l.Ym
l l l • 2 ' l 'l l l • l 2

(4.2.14)

The substitution process begins from the top and bottom moving inwards bi­

directionally and each time substituting for two values simultaneously.

Finally the solution x can be obtained from the process of bi-directional solution,

similar to that of PIE, as described in section 4.1.

A diagrammatic comparison of LU and QIF can also be made. Figures 4.2.1 through

4.2.5 illustrate the steps taken to perform LU factorisation on a simple (6x6)

coefficient matrix. Figures 4.2.6 and 4.2.7 illustrate the steps taken to perform QIF on

a simple (6x6) coefficient matrix.

L matrix Umatrix

Figure 4.2.1 - First step of LU factorisation

91

L matrix Umatrix

L matrix Umatrix

L matrix Umatrix

Figure 4.2.4 -Fourth step of LU factorisation

92

L matrix Umatrix

Figure 4.2.5 • Fifth step of LU factorisation

W matrix Zmatrix

W matrix Zmatrix

Figure 4.2.7. Second step ofWZ factorisation

In comparison to LU factorisation which takes 5 steps to factorise, QIF only takes 2

steps.

93

4.3 Partial Pivoting for PIE and QIF

The PIE and QIF methods described in section 4.1 and 4.2 respectively are appropriate

when the diagonal elements are dominant. However, the methods will break down

when the diagonal elements are not dominant. Therefore, attention must be given to

the numerical instability resulting when the matrix is not diagonally dominant. In order

to ensure that these schemes are numerically stable, there is a need to limit the growth

of elements in the reduced coefficient matrix. In this section, partial pivoting for PIE

and QIF will be discussed.

4.3.1 Partial Pivoting for PIE

The pivots for PIE are no longer single elements, instead, at the kth stage of

elimination, the following multipliers will be obtained.
(k-1) (k-1) (k-1) (k-1)

aik an-k+l,n-k+l - ai,n-k+lan-k+l,k

A
(k-1) (k-1l _ a<•-1la<•-1l

ak,n-k+lai,k k,i i,n-k+l

i = k+l, ... , n-k

where
A <•-1> <>-1l <•-1> <>-1l = akk an-k+l,n-k+l - ak,n-k+lan-k+l,k

The safest strategy is to choose the largest A but this involves an exhaustive search

over

r! r 2
- r

2!(r-2)!- 2
wheren >r> 1

possible pivots at each step. This will subsequently cause an increase in the total

computational complexity. Following is a description of the partial pivoting strategy

for PIE.

At the kth step of the elimination process,

(a) Find a row io, such that

and exchange the rows io and k or denote it by a flag.

(b) Find a row number it. such that
(k-1) (k-1)

(k-I) _ ak,11-k+1 (.1:-1) = a<k-1) _ at,n-t+l a<k-1)
a~.n-k+I a<k-I) a4,k max. i,n-k+I (.t-I) ik

kk k+}!>IS:II-.1:+1 QJdr.

94

and exchange the rows it and n-k+ I, again denoting this by a flag.

The subsequent steps are as descn"bed in (4.1.6) where the relevant entries in columns

k and n-k+ 1 are eliminated concurrently.

The above partial pivoting strategy ensures that

lw.,l~2 k=l, ... ,n i=k+l, ... ,n-k

and

k= l, ... ,n i=k+1, . .. ,n-k

This has been proven by Barulli and Evans in [Barulli 96].

4.3.2 Partial Pivoting for QIF

When the computation of the W and Z matrix factors is performed as described in

section 4.2, the elements of W and Z may become too large causing rounding errors

and the process can break down. The factorisation process can be reorganised to

include partial pivoting. The steps are described below.

(a) Find the largest element a;,1 in column 1 and interchange row i with row I.

Evaluate multipliers m" = a" i > 1.
a"

(b) Calculate the updated elements a~ = a., - m;1 a,. for all i> 1 in the nth column only.

(c) Find the row with tbe largest updated element a~ calculated in step (b) and

interchange with row n.

(d) Repeat steps (e) through G) for values ofk from 1 to n/2.

(e) Evaluate the W matrix elements for columns k and n-k+1 by solving the (2x2)

linear system.

(t) Now calculate the prospective Z matrix elements for row k. Let S; be the partial

row/column products for the ktb. column. Then evaluate for i=k to n-k+ 1:

These are the possible choices of the ktb. pivotal row. Suppose Sk' is the maximum of

S;, for i=k,k+ l, .. ,n-k+ 1. Interchange row k' with row k.

95

(g) Now calculate the prospective Z matrix elements for row n-k+l. Let Ti be the

partial row/column products for the n-k+lth column.

Then evaluate for i=k+l to n-k+l:

T; = ai,n-k+I - WilZn-k+l-.•• -W;,k-tZk-l,n-k+l - WinZn,n-k+l-•.• -wi,~~-(k-t)+IZn-(k-t)+t,n-k+l

These are the possible choices of the n-k+ 1 pivotal row. Suppose Tk" is the maximum

ofTi fori=k+l, ... , n-k+ 1. Interchange row k" with row n-k+l.

(h) Let Sk' be Zkk and Tk" be Zn-x+t.n-k+l·

(i) Now update row k from column k+ 1 to n-k+ l.

Evaluate for j=k+ 1 to n-k:

(j) Finally update the right-hand side vector b. Evaluate

b~ = b, -w,,b,-· -w,,.._1b,_,- .. w.,b. - .. -w,,..,.,b •.•• 1

b~-k+l :::: bn-k+t- Wn-k1-t,1q_-" ·-Wn-k+I.r-Lbk-1-

wn-k+l,nbn-. -wn:_k+l.n-(k-l)+lbn-(k-1}+1

4.4 Implementation of PIE and QIF on shared memory architecture

This section describes the sequential and parallel algorithms for PIE and QIF. In

understanding the algorithms, it is vital that the underlying assumptions made about the

data structure employed as well as the terminologies used to describe the algorithms be

explicitly stated. The parallelisation of the algorithms considered in this section are in

the context of a shared-memory parallel computer. Parallelisation of all these

algorithms were achieved by suitably partitioning the rows amongst the processors in a

cyclic fashion.

Assumptions:

• Coefficient array A is two-dimensional and begins from index 0 to n-1 for both

rows and column.

• Right hand side vector b is augmented to the coefficient array A and becomes

column n of matrix A.

• W and Z matrices are overwritten in the original matrix A. The solution x is

overwritten in the augmented right-hand side vector b. This way memory used is

saved and the calculation process can be accelerated by means of an in place

implementation of the algorithm. Equations (4.2.6) will not have to be evaluated.

96

• Algorithms assume that n is even.

• Loops begin from 0 to match the code written in C.

The algorithm is not described in any particular programming language, and hence, not

directly transferable to a running program without some slight modifications.

Statements within { } are comments to describe certain parts of the algorithm.

When describing the parallel algorithm, the loop enclosed between par and end par

indicates that the loop iterations can be done in parallel. The actual syntax of assigning

the loop iterations to the available processors is compiler dependent

As described in section 4.1, PIE consists of two phases, i.e. :

(i) parallel elimination phase

(ii) bi-directional solution phase

As described in section 4.2, QIF consists of three phases, i.e:

(i) factorisation of Wand Z

(ii) bi-directional substitution

(ill) bi-directional solution

The parallel elimination algorithm is presented in section 4.4.1, the factorisation of W

and Z is described in section 4.4.2, and the bi-directional substitution is described in

section 4.4.3. Since the bi-directional solution phase is common to both PIE and QIF,

it is described only once in section 4.4.4.

4.4.1 Parallel Elimination algorithm

The sequential algorithm for performing the implicit elimination process of PIE is

shown in Algorithm 4.4.1.1. The outer loop indexed by k in Algorithm 4.4.1.1

represents the kth level of elimination and this loop must be obeyed sequentially as the

outer matrix has to be reduced before the inner matrix commences its reduction. The

inner loop i performs the elimination of Wt and w •. 1.t of row i. This can be done in

parallel; ie., each processor can eliminate the Wt and Wn.t-k elements of different rows

as well as update the remaining elements of the rows independently. Hence, the

iterations of this loop are independent of each other and can be performed

independently by more than one processor. These loop iterations can be assigned to the

processors in two ways. They can be assigned as a block of contiguous loop iterations

or the loop iterations can be alternately assigned to the different processors in a cyclic

97

manner. In the work of this thesis, the loop iterations were assigned to the processors

in a cyclic manner so that all the processors have an equal load. The parallel algorithm

for the implicit elimination is shown in Algorithm 4.4.1.2.

Algorithm 4.4.1.1: Sequential algorithm for implicit elimination

cpl=O, cp2=n-1
for k=O to (n/2)-1 do {number of levels to perform elimination}

fori=k+l to n-k-2 do {number of eliminations in each level}
mo= -A[cpl,cp2]/A[cpl,cpl]
{ solve the 2x2 system}
x2=(A[i,cp2]-m* A[i,cpl])/(A[cp2,cp2]-m* A[cpl,cp2])
xl=(A[i,cp2]-A[cp2,cp2]*x2)/A[cp2,cpl]
forjl=cpl+l tocp2-l do

{update the rest of the row)
A[ijl]=A[i,jl]-(x1* A[cp 1,j l]+x2* A[cp2,j 1])

end for jl
{update rhs}
A[i,n]=A[i,n]-(xl* A[cpl,n]+x2* A[cp2,n])

end forj
cpl=cpl+l
cp2=cp2-1

end fork

Algorithm 4.4.1.2: Parallel algorithm for implicit elimination

cp kO, cp2=n-1
for k=O to (n/2)-1 do {number of levels to perform elimination}

par
for i=k+l ton-k-2 do {number of eliminations in each level}

m= -A[cpl,cp2]/A[cp1,cpl]
{ solve the 2x2 system}
x2o=(A[i,cp2]-m • A[i,cp 1])/(A[cp2,cp2]-m* A[cp I ,cp2])
xl=(A[i,cp2]-A[cp2,cp2]*x2)/A[cp2,cpl]
for j1=cpl+1 to cp2-1 do

{update the rest of the row }
A[ijl]=A[i.jl]-(xl* A[cpl,j l]+x2* A[cp2,jl])

end for jl
{update rbs}
A[i,n]=A[i,n]-(xl * A[cpl,n]+x2* A[cp2,n])

end forj
end par
cpl=cpl+l
cp2=cp2-1

end fork

98

4.4.2 QIF algorithm

The sequential algorithm for the factorisation stage of QIF is given in Algorithm

4.4.2.1 while the parallel algorithm is given in Algorithm 4.4.2.2. The outer loop

indexed by k in Algorithm 4.4.2.1 represents the kth level of factorisation and this loop

must be obeyed sequentially as the outer matrix has to be factorised before the inner

matrix commences its factorisation. The inner loop indexed by i performs the formation

of wk and Wn-1-k of row i. The calculation of wk and Wn-1-k elements of the different

rows and the formation of the z values in these rows can be done independently.

Hence, the iterations of this loop are split amongst the processors available in a cyclic

manner.

Algorithm 4.4.2.1: Sequential algorithm for WZ factorisation

cpl=O, cp2=n·l
for k=O to (n/2)-1 do

foti=k+ 1 to n-k-2 do
m= -A[cpl,cp2]/A[cpl,cpl]

{solve the following 2x2 system, to get w's}
x2=(A[i,cp2]-m * A[i,cp 1])/(A[cp2,cp2]-m *A[cp l,cp2])
xl=(A[i,cp2]-A[cp2,cp2]*x2)/A[cp2,cpl]
A[i,k]=xl
A[i,n-l-k]=x2
for jl=k+l to n-2-k do
{update to form z's}

A[i,j l]=A[i,jl]-(xl* A[cpl,j l]+x2* A[cp2,jl])
end fori

cpl=cpl+l
cp2=cp2-l

end fork

Algorithm 4.4.2.2: Parallel algorithm for WZ factorisation

cp 1=0, cp2=n-l
for k=O to (n/2)-1 do

par
for i=k+ 1 to n-k-2 do

m= -A[cp2,cpl]/A[cpl,cpl]
{solve the following 2x2 system, to get w's}

x2=(A[i,cp2]-m * A[i,cp 1])/(A[cp2,cp2]-m* A[cp l,cp2])
xl=(A[i,cp2]-A[cp2,cp2]*x2)/A[cp2,cpl]
A[i,k]=xl
A[i,n-l-k]=x2
for jl=k+l to n-2-k do
{update to form z's}

A[ij l]=A[i,j 1]-(x 1* A[cp lj l]+x2* A[cp2j 1])
end fori

end par
cpl=cpl+l
cp2=cp2-l

end fork

99

4.4.3 Bi-directional substitution algorithm

The sequential algorithm for performing the bi-directional substitution for QIF is given

in Algorithm 4.4.3.1 while the parallel algorithm is shown in Algorithm 4.4.3.2.

The outer loop indexed by k obtains the values Yk and Yn-1-k of equation (4.2.5). This

must be done sequentially. The inner loop indexed by i substitutes the values of Yk and

Yn-1-k into its occurrences in the ith row. This substitution can be done independently

and can be parallelised. Once again, the loop iterations are split amongst the processors

available in a cyclic manner.

Algorithm 4.4.3.1: Sequential algorithm for bi-directional substitution

for k=O to (n/2)-1
for i=k+ 1 to n-k-2

A[i,k]=A[k,n]* A[i,k]
A[i,n-1-k]=A[n-1-k,n]* A[i,n-1-k)
A[i,n]=A[i,n)-(A[i,k]+A[i,n-1-k])

end fori
end fork

Algorithm 4.4.3.2: Parallel algorithm for bi-directional substitution

for k=O to (n/2)-1
par
for i=k+ l to n-k-2

end fori
end par

end fork

A[i,k)=A[k,n]* A[i,k)
A[i,n-1-k]=A[n-l-k,n)* A[i,n-1-k]
A[i,n]=A[i,n]-(A[i,k]+A[i,n-1-k])

4.4.4 Bi-directional solution algorithm

The sequential algorithm for the bi-directional solution procedure is shown in

Algorithm 4.4.4.1 while the parallel version is given in Algorithm 4.4.4.2. The outer

loop indexed by kin Algorithm 4.4.4.1 solves for Xk and Xn.1-k of equation (4.2.10).

This must be done sequentially. The inner loop j substitutes for known values of x in

rows k and n-1-k of the submatrix (kxk). This substitution can be partitioned and

performed independently by different processors.

lOO

Algorithm 4.4.4.1: Sequential algorithm for bi-directional solution

Let ml=n/2-1
Letm2=n/2
for k=O to n/2-1

p1=A[m2,m1]/A[m1,m1]
p2=A[m2,m2]-p1 *A[ml][m2]
x2=(A[m2,n]-pl*A[m1,n])/p2
x1=(A[m1,n]-A[m1,m2]*x2)/A[m1,m1]
for j=O to m1-1

A[j,n]=A[j,n]-(x1 * A[j,m1]+x2* A[j,m2])
A[n-1-j,n]=A[n-1-j,n]-(x 1* A[n-1-j,m l]+x2* A[n-l-j,m2])

end forj
m1=m1-1
m2=m2+1

end fork

Algorithm 4.4.4.2: Parallel algorithm for bi-directional solution

Let m 1=n/2-1
Letm2=n/2
for k=O to n/2-1

p1=A[m2,m1]/A[ml,m1]
p2=A[m2,m2]-p1 * A[m1][m2]
x2=(A[m2,n]-p1* A[m1,n])/p2
x1=(A[m1,n]-A[ml,m2]*x2)/A[ml,ml]

par
for j=O to m1-1

A[j,n]=A[j,n]-(xl * A[j,ml]+x2* A[j,m2])
A[n-1-j,n]=A[n-1-j,n)-(xl * A[n-1-j,m1]+x2* A[n-1-j,m2))

end for j
end par
m1=m1-1
m2=m2+1

end fork

In this section the implementation of PIE and QIF on a shared-memory architecture

has been discussed. The algorithms presented did not include partial pivoting. The

incorporation of partial pivoting is a straight forward one as the procedures for partial

pivoting has been given in algorithmic form for PIE in section 4.3.1 and QIF in section

4.3.2.

These algorithms have also been implemented on a distributed architecture and this is

covered in chapter 5 as the issues of implementation differ on the shared memory and

distributed architectures.

101

4.5 Computational Complexity and Shared Memory Access

In this section a discussion on the computational complexity or operational count of

PIE and QIF is given. Another factor that seemed to have an influence on the

performance of parallel algorithms is the number of times the shared memory is being

accessed either by a read from shared memory or writing to shared memory. This will

be referred to as the shared memory access count in this thesis. The computational

complexity and shared memory access count of PIE and QIF will be covered in

sections 4.5.1 and 4.5.2 respectively. Since the aim of this thesis is to compare the

performance of PIE and QIF with GE and LU respectively, then it is necessary that a

discussion of the computational complexity and shared memory access count of GE

and LU be done too. These are covered in sections 4.5.3 and 4.5.4 for GE and LU

respectively. A summary of the computational complexity and shared memory access

count for all the methods is given in section 4.5.5.

The operational count includes the computational steps of add and multiply operations.

Throughout this section, the add operator will be denoted by a and the multiply

operator will be denoted by m.

4.5.1 Computational Complexity and Shared Memory Access Count for PIE

The computational complexity and shared memory access count developed in this

section are based on the sequential algorithm for PIE developed in section 4.3.1. The

algorithms are reproduced here where Algorithm 4.5.1.1 is the parallel elimination

procedure and Algorithm 4.5.1.2 is the bi-directional solution in PIE.

The amount of work involved in the calculation of the multipliers for the solution of

(2x2) linear systems is quite obvious, i.e.,

Wt =(n/2)m (4.5.1.1)

In the solution of the (2x2) systems, 3 mults, 2 divs and 3 adds are required.

(Assuming a division operation and a multiply operation is the same and is termed as a

multiply) This yields a total of

102

n-2

w2 = I,k(5m+3a)

=(~2J-;)sm+3a)

=(~ n2 -%n}+(! n2
- ~ n}

Algorithm 4.5.1.1: Sequential algorithm for parallel elimination

cp1=0, cp2=n·1
for k=O to (n/2)-1 do {number oflevels to perform elimination)

for i=k+l to n-k-2 do {number of eliminations in each level)
m= -A[cpl,cp2]/A[cpl,cpl]
{ solve tbe 2x2 system)
x2=(A[i,cp2]·m * A[~cp 1])/(A[cp2,cp2)·m • A[cp1,cp2])
x1=(A[i,cp2]-A(cp2,cp2]*x2)/A[cp2,cp1]
forjl=cpl+l tocp2-1 do

(update tbe rest of tbe row)
A[ij l]=A[i,j1]-(xl * A[cp1j1]+x2* A[cp2,j1])

end forjl
{update rhs)
A[i,n]=A[i,n]-(x1* A[cpl,n]+x2* A[cp2,n])

end forj
cp1=cpl+l
cp2=cp2-1

end fork

(4.5.1.2)

Algorithm 4.5.1.2: Sequential algorithm for bi-directional solution

Letm1=nl2-1
Letm2=n/2
for k=O to n/2-1

pl=A[m2,m1]/A(m1,m1]
p2=A[m2,m2]-p1* A[m1][m2]
x2=(A[m2,n]-p 1* A[m1 ,n])lp2
x1=(A[ml,n]-A(m1,m2]*x2)/A(m1,m1]
forj=Otom1-1

A[j,n]=A[j,n]-(x1* A[j,m1]+x2* A[j,m2])
A[n-1-j,n]=A[n-l-j,n]-(x1*A[n-1-j,m1]+x2* A[n-l-j,m2])

end forj
ml=ml-1
m2=m2+1

end fork

In the updating stage, 2 mults and 2 adds are performed on every element of the

reduced array of order (kxk), giving a total of

103

n-2

W3 = L) 2 (2m+2a)

=(·~;
2

>-1n 2 +!!.)2m+2a)
6 2 3 (4.5.1.3)

=(~ -3n
2

+%n }+(n; -3n2 + ~n}
and similarly, the updating of the right-hand side vector also requires 2 mults and 2

adds resulting in a total of

n-2

W4 = I,k(2m+2a)
k=2(2)

Thus the total computational complexity in the elimination stage is

Wctim= Wt + Wz+ W, + W4

= (~ _! nz -~n }+(n; _ >z _1; n }·

(4.5.1.4)

(4.5.1.5)

In the bi-directional solution process, the 2x2 linear system requires 6 mults and 3

adds, giving a total of

n
W, =2(6m+3a)

=(3n)m+(%n}

(4.5.1.6)

while the substitution stage requires 4 mults and 4 adds resulting in a total of

n-2

W6 = I,k(4m+4a)
k=2(2)

(n
2 n) = 4-

2
4m+4a) (4.5.1.7)

=(n2 -2n)m+(n2 -2n)a.

104

Hence, the total computational count for the bi-directional solution stage is

Wbi-sotn = Ws + W6

= (n2 +n)m+(n2 -~}--
Thus, the total computational count for the PIE method is

(4.5.1.8)

(4.5.1.9)

The detailed outline of the shared memory access count for PIE is as follows:

The evaluation of multipliers for the solution of a (2x2) system requires 2 accesses to

shared memory.

Mt =(; }=n (4.5.1.10)

The solution of the (2x2) linear systems require 7 shared memory accesses.

n-2

M2 = L(k)7
k=2(2)

(4.5.Ul)

Four accesses to shared memory are needed to update the (kxk) submatrix,

n-2

M 3 = L(k')4
•=2(2)

(4.5.U2)

(
2 4 'I

= 3n3 -6n2 +3n)

and another 4 shared memory accesses are required to update the right hand side

vector.

n-2

M.= L(k)4
•=2(2)

=(n2
- 2n)

Hence, total shared memory accesses in the elimination stage is

Meum= Mt + M2 + M3 + M4

2 3 13 2 19 =-n --n --n.
3 4 6

105

(4.5.1.13)

(4.5.1.14)

In the bi-directional solution process, the solution of the (2x2) linear system requires 9

accesses to shared memory, resulting in a total of

Ms = (912)n. (4.5.1.15)

The substitution stage of the bi-directional solution process requires 8 accesses to

shared memory giving

•-2

M6 = I,(k)8
k:::2(2) (4.5.1.16)

=(2n2 -4n)

Therefore, the total shared memory accesses in the bi-directional solution process is

M., .• ol• =M,+ M•

=(2n
2
+ ~n) (4.5.1.17)

and the total shared memory accesses for the PIE method is then

Mrm = M,nm + Mbi-soln

2 3 5 2 8 = -n --n --n.
3 4 3

(4.5.1.18)

4.5.2 Computational Complexity and Shared Memory Access Count for QIF

The work in this section refers to Algorithm 4.5.2.1 for the factorisation of A into W

and Z, Algorithm 4.5.2.2 for the bi-directional substitution process and Algorithm

4.5.1.2 for the bi-directional solution procedure.

Algorithm 4.5.2.1: Sequential algorithm for WZ factorisation

cpl=O, cp2=n-l
for k=O to (n/2)-1 do

for i=k+ 1 to n-k-2 do
m= -A[cp1,cp2]/A[cp1,cp1)

{solve the following 2x2 system, to get w's}
x2=(A[i,cp2]-m * A[i,cp 1])/(A[cp2,cp2)-m* A[cp 1,cp2])
x1=(A[i,cp2]-A[cp2,cp2]*x2)/A[cp2,cpl]
A[i,k]=xl
A[i,n-1-k]=x2
for jl=k+ 1 to n-2-k do
(update to form z's}

end fori
cpl~cpl+l

cp2=cp2-l
end fork

A[ijl]=A[i,jl]-(xl * A[cpljl]+x2* A[cp2,jl])

106

Algorithm 4.5.2.2: Sequential algorithm for bi-directional substitution

fork=O to (n/2)-1
for i=k+1 to n-k-2

end fori
end fork

A[i,k]=A[k,n]* A[i,k]
A[i,n-1-k]=A[n-1-k,n]* A[i,n-1-k]
A[i,n]=A[i,n]-(A[i,k]+A[i,n-1-k])

The detailed outline of the computational work involved in QIF is given as follows:

It can be seen that the elements of the first and last rows of the Z matrix are those of A

and involve no arithmetic operations.

The 2 x (n-2) elements of the first and last columns of W are obtained from the

solution of (2x2) equations which involve a total of Wt + Wz where Wt and Wz are

given below:

W1 = (n/2)m (4.5.2.1)

n-2

w2 = Lk(5m+3a)

=(~
2

)-~)5m+3a)

=(!n2
- ~n}+(!n2 - ~n}

(4.5.2.2)

The total amount of work involved in evaluating the reduced system is

(4.5.2.3)

Therefore, the total amount of work involved in the factorisation process is

Wwzracto• = Wt + Wz + W3

=(n: ->z-~n}+(~ -~n2 -~n} (4.5.2.4)

In the bi-directional substitution stage, the value of Yt and Yn is given in the right hand

side vector and hence needs no arithmetic. The solution of the subsequent values of the

vector y requires 2 mults and 2 adds yielding a total of

107

W4 = I,k(2m+2a)
k=2(2)

(
n

2 n) = 4-2 2m+2a) (4.5.2.5)

Hence, the total amount of computational work for QIF is

W QIF = Wwzr,.tor + W 4 + W bi-ooln

=(~ +: -~n}n+(~ -%n2 -~n} (4.5.2.6)

which, as expected, is the same as the computational work for PIE.

The details of the shared memory access count for the QIF is as follows:

The evaluation of the multiplier to solve the (2x2) linear equation requires 2 accesses

to shared memory and this gives a total of

(4.5.2.7)

In solving the (2x2) linear equation, 9 shared memory accesses are required, giving a

total of

•-2

M 2 = l,(k)9
~=2(2)

=(: n2 -~n)
(4.5.2.8)

The evaluation of the reduced system requires 4 accesses to shared memory to give a

total of

n-2

M 3 = l,(k')4
k=2(2)

=(~n3 -6n2 +~n)
(4.5.2.9)

Thus, in the factorisation stage, the total amount of accesses to shared memory is

Mwzroctor = M1 + Mz + M3

2 3 2 4 = -n -6n +-n
3 3

(4.5.2.10)

108

The bi-directional substitution involves 6 shared memory accesses and this results in a

total of

n-2

M 4 = L(k)6
k=2(2)

=Gn2 -3n)
(4.5.2.11)

So, the total number of accesses to shared memory involved in the QIF method is

therefore

2 ' 1 2 17
= -n --n --n.

3 4 3
(4.5.2.12)

This is slightly more to that of PIE due to the accesses required to retrieve and store

the elements of the solution vector during the bidirectional substitution process,

4.5.3 Computational Complexity and Shared Memory Access Count for GE

The algorithms on which the computational count and shared memory access count for

GE is based on are Algorithm 4.5.3.1 for the forward elimination process and

Algorithm 4.5.3.2 for the back substitution stage.

Algorithm 4.5.3.1 Forward elimination algorithm of GE
for k=O to n-2

for i=k+1 to n-1
m=a[i,k]/a[k,k]
for jr=k+ 1 ton

end fori

aur.jr]=a[i,jr]-m *a[k,jr]
end for jr

end fork

Algorithm 4.5.3.2 Backsubstitution algorithm of GE
for nv=n-1 downto 0

a[nv,n]=a[nv ,n]/a[nv ,nv]
fork= nv+1 ton

a[nv ,n+ 1]=a[nv,n+ 1]-a[nv,k]*a[k,n+ 1]
end fork

endfornv

The detailed computational count for GE is as follows:

109

The computation of the multipliers in the forward elimination stage requires 1 mult,

resulting in a total of

•-1

W1 = 2:,(k)m
k:l (4.5.3.1)

The updating of the submatrix involves 1 mult and 1 add, giving a total computational

count of

n-1

W2 = 2:,k2 (m+a)
k=l

(4.5.3.2)

and the updating of the right hand side vector also requires 1 mult and 1 add.

n-1

W3 = 2:,k(m+a)
(4.5.3.3)

Hence, the total amount of computational work involved in the forward elimination is

Wgel<m = W1 + Wz + W3

(4.5.3.4)

The backsubstitution process requires a total of w. + Ws mults and adds, where W4

and W 5 are given below:

W4 = n(m) (4.5.3.5)
n-1

W, = 2,k(m+a)
k=l (4.5.3.6)

=Gn2 -~n Jm+a)

W"'=W•+Ws

(4.5.3.7)

110

Therefore, the total amount of computational work involved in GE is

WaE = Wgelim + Wbs

The detailed shared memory access count forGE is as follows:

(4.5.3.8)

The evaluation of the multipliers involve 2 accesses to shared memory and this gives a

total of

n-1 (1 1) M1 = ~)(2) = 2 -n2 --n
·~ 2 2 (4.5.3.9)

=(n2 -n)

The updating of the submatrix requires 3 accesses to shared memory resulting in a total

of

n-
1 (1 1 1) M2 = 'L,k'(3) = 3 -n3 --n2 +-n

·~ 3 2 6 (4.5.3.10)
3 3 2 1 =n --n +-n

2 2

and similarly, the updating of the right hand side vector also requires 3 accesses to

shared memory giving a total of

n-1

M,= 'L,k(3)
••1 (4.5.3.ll)

Hence, the total shared memory ::ccess count for the forward elimination stage is

MgeHm = Mt + Mz + M,
3 2 2 =n +n - n (4.5.3.12)

The back substitution stage requires a total of ~ + Ms accesses to shared memory

where ~ and Ms is as given below:

~=n(3)

n-1

Ml = I,k(4)
k:::l

= 2n2 -2n

M1>s=M4+Ms

= 2n2 +n

(4.5.3.13)

(4.5.3.14)

(4.5.3.15)

111

Thus, the total count of shared memory accesses involved in GE is

MGE = Mgetinl + Mbs

=n3 +3n2 -n (4.5.3.16)

4.5.4 Computational Complexity and Shared Memory Access Count for LU

The algorithms on which the computational count and shared memory access count are

based on are Algorithm 4.5 .4.1 for the factorisation process, Algorithm 4.5.4.2 for the

forward substitution process and Algorithm 4.5.3.2 for the backsubstitution process.

Algorithm 4.5.4.1 Factorisation stage in LU

fork= 0 ton-2
for i=k+ 1 to n·1

m:a[i,k]/a[k,k]
a[i,k] =m
for jr=k+ 1 to n-1

a[i,jr) = a[i,jr) - m * a[kjr)
end for jr

end fori
end fork

Algorithm 4.5.4.2 Forward substitution

fornv= 1 ton-1
for j = 0 to nv ·1

a[nv,n) = a[nv,n]· a[nv,j] * a[j,n]
end forj

end fornv

The formation of the L matrix elements involve a total of

.. ,
while the formation of the U matrix elements involve a total of

n-l

w2 = ~)2(m+a)
*=1

= [~(n -l)n(2n -1)]<m+ a)

= -n --n +-n m+a [
1 3 1 z 1]<)
3 2 6

112

(4.5.4.1)

(4.5.4.2)

Therefore, the amount of computational work involved in the factorisation phase is

Wwroctor = W, + W2

(4.5.4.3)

The forward substitution stage requires 1 mult and 1 add giving a total of

·-· W3 = .L,k(m+a)
k=l (4.5.4.4)

Therefore, the total computational work required to perform LU factorisation is

Ww = Wwroctor + W, +Wt..

(4.5.4.5)

which, as expected, is the same as the computational work of GE.

The detailed shared-memory access count for LU factorisation is as follows:

The total amount of shared memory accesses required in forming the elements of the L

matrix is

·-· M,= 2,k(3)
,f-=:-J

3 2 3
=-n --n

2 2

while the formation of the U matrix needs a total of

n-1

M2 = 2,k'(3)
k=l

3 3 2 1 =n --n +-n
2 2

(4.5.4.6)

(4.5.4.7)

accesses to shared memory. Therefore, the total count of shared memory accesses

required to perform the factorisation phase is

Mwractor = M1 + M2

(4.5.4.8)

The forward substitution requires a total of

113

n-2

M,= L_k(4)
(4.5.4.9)

= 2n 2 -2n

accesses to shared memory. Hence, the total amount of shared memory accesses

involved in LU factorisation is

Mw = Mwrocto• + M, + M,.

= n3 + 4n2 -2n. (4.5.4.10)

This is slightly more than GE due to the accesses to memory required during the

forward substitution stage.

4.5.5 A Summary

A summary of the operation count and shared memory access count of all the four

methods, GE, LU, PIE and QIF are given in the following Table 4.5.5.1.

Method Computational Complexity Shared Memory Access Count

PIE (n' +!C_.±n}+(!C_1n' _2n} 2 3 5 2 8 -n --n --n
3 4 3 3 4 3 3 4 3

c· ,t) C,t,s) n3 + 3n2 -n
GE 3n +n -3n m+ 3n +2n -6n a

(n' +!C_.±n }+(n' _1n2 _2n} 2 3 1 2 17
QIF

-n --n --n
3 4 3 3 4 3 3 4 3

c· ,1) c,l,S) n3 + 4n2 -2n
LU 3n +n -Jn m+ 3n +2n -6n a

Table 4.5.5.1 : A Summary of the computational compleXIty and shared memory

access count of PIE, GE, QIF and LU

From Table 4.5.5.1, it can be seen that there is a difference in the shared memory

access count of PIE and QIF as compared to GE and LU. This difference will have a

significant influence on the performance of the algorithms as shown in section 4.6

where the numerical results of the implementation of the algorithms are presented.

114

4.6 Numerical Results

In this section the performance results obtained from the implementation of PIE and

QIF are presented. These results are also compared to their equivalent counterparts,

that is, PIE is compared to GE and QIF is compared with LU factorisation.

The numerical tests were performed on the Sequent Balance system which has 10

processors. All the processors are plugged into a single bus and share a common

memory. Each processor has 8 Kb of cache memory.

The algorithms were implemented in single precision using the C language. The parallel

constructs were supported by the Sequent C library. The programs employed a static

scheduling of tasks, i.e. distributing the computation load amongst the processors

before execution of the program commences.

In order to avoid the overhead of switching from one process to another, only a single

process was assigned to each processor and the tests were completed while no other

users' tasks were using the Balance. All the programs were written with the same

accuracy to obtain a meaningful comparison.

For methods without pivoting, the matrix A is,

A= (a;j) for i=l,2, ... ,n; j=l,2, ... ,n,

a;.;=n ; a;j=l.O

for n=600,800 and 1000.

For methods involving partial pivoting, the matrix A is,

A=(a;j), for i=l,2, ... ,n; j=l,2, ... ,n,

where a;j is a random number uniformly distributed between 0 and 1 and n=600,800

and 1000.

The execution times of the algorithms are shown in section 4.6.1. The speedup figures

of the algorithms are given in section 4.6.2 and the efficiency figures are in section

4.6.3.

As the aim of this work is to compare different algorithms to solve the same problem,

the temporal performance metric is used to aid the comparison. Temporal performance

is defmed as the inverse of the execution time where the unit is solutions per second or

timesteps per second [Hockney 96]. The algorithm with the highest performance

executes in the least time and therefore is the better algorithm. The temporal

performance results of the algorithms are shown in section 4.6.4.

115

4.6.1 Execution time of PIE, QIF, GE and LU

The execution time of the algorithms were measured in seconds and input/output was

not included in the timing. Table 4.6.1.1 shows the execution times of PIE and GE

without partial pivoting while Table 4.6.1.2 shows the execution times of QIF and LU

without partial pivoting.

It can be seen from the tables that the gains in execution time of PIE over GE ranges

from 21% up to 25%. The gains of QIF over LU ranges from 19% up to 24%.

n Method Number of processors
1 2 4 6 8 10

600 GE 6042.31 3075.69 1554.68 1083.34 789.95 634.43
Pill 4723.65 2349.42 1170.46 785.62 590.76 476.54

Gain(%) 21.82 23.61 24.71 27.48 25.22 24.89
800 GE 14343.94 7236.38 3615.13 2433.25 1840.41 1481.6

Pill 11103.08 5587.16 2786.84 1858.75 1399.07 1126.6
Gain(%) 22.59 22.79 22.91 23.61 23.98 23.96

1000 GE 27985.72 13994.19 7094.67 4751.07 3573.04 2877.23
Pill 21610.31 10891.04 5439.09 3622.95 2708.0 2216.1

Gain(%) 22.78 22.17 23.33 23.74 24.18 22.98 .. Table 4.6.1.1- Ttmmgs of PIE and GB for the non·ptvoung case

n Method Number of]Jrocessors
1 2 4 6 8 10

600 LU 5991.74 3023.66 1534.35 1031.03 779.76 627.30
QIF 4697.27 2367.95 1203.03 800.55 606.45 488.44

Gain(%) 21.60 21.69 21.59 22.35 22.22 22.14
800 LU 14165.8 7160.04 3610.41 2416.75 1876.83 1465.49

QIF 11037.56 5553.72 2815.15 1892.31 1425.41 1146.78
Gain(%) 22.08 22.43 22.03 21.7 24.05 21.75

1000 LU 27828.56 13872.24 6964.23 4710.75 3542.68 2857.4
QIF 21611.26 10901.26 5631.56 3677.82 2764.56 2221.7

Gain(%) 22.34 21.42 19.14 21.93 21.96 22.25 .. Table 4.6.1.2- Tunmgs for QIF and LU for the non-ptvotmg case

The execution times of the pivoting cases are shown in Table 4.6.1.3 for PIE and GE

and Table 4.6.1.4 for QIF and LU. The gains of PIE over GE ranges from 18% up to

22%. The gains of QIF over LU were less encouraging, ranging from 13% up to 18%.

116

n Method Number of_l)rocessors
1 2 4 6 8 10

600 GE 6192.65 3050.30 1553.36 1045.99 794.88 641.83
PIE 4907.95 2474.03 1227.94 816.02 616.07 499.72 .

Gain(%) 20.75 18.89 20.95 21.99 22.5 22.14
800 GE 14435.24 7219.87 3643.9 2443.15 1836.82 1488.04

PIE 11442.58 5744.95 2874.23 1915.88 1444.18 1158.25
Gain(%) 20.73 20.43 21.12 21.58 21.38 22.16

1000 GE 27958.15 14073.87 7057.90 4799.10 3567.92 2874.78
PIE 22169.05 11082.29 5567.83 3698.81 2794.91 2243.72

Gain(%) 20.71 21.26 21.11 22.93 21.67 21.95
Table 4.6.1.3- T1mmgs for PIE and GE for the case of partial p1voung

n Method Number of processors

1 2 4 6 8 10
600 LU 6809.24 3465.62 1760.04 1212.01 934.75 773.38

QIF 5858.32 2906.02 1472.86 996.98 760.0 62D.42
Gain(%) 13.97 16.15 16.32 17.74 18.69 19.78

800 LU 16191.19 8120.19 4119.85 2791.57 2114.54 1720.77
QIF 13783.3 6835.15 3451.94 2335.13 1766.19 1427.23

Gain(%) 14.87 15.83 16.21 16.35 16.47 17.06
1000 LU 31744.92 15931.08 8086.32 5419.52 4106.13 3323.11

QIF 26960.81 13393.84 6754.35 4555.96 3443.06 2769.18
Gain(%) 15.67 15.93 16.47 15.93 16.15 16.67

Table 4.6.1.4- Tnmngs for QIF and LU for the case of partial p1voung

4.6.2 Speedup of PIE, QIF, GE and LU

The speedup of the algorithms were measured by using the formula T1ffp where T1 is

the execution time of the algorithm executed using 1 processor. Table 4.6.2.1 shows

the speedup of PIE and GE without partial pivoting while Table 4.6.2.2 shows the

speedup of QIF and LU without partial pivoting. It can be seen from the speedup

figures that all the methods have a linear speedup, although in some cases superlinear

speedups were obtained.

n Method Number of processors
2 4 6 8 10

600 1.96 3.89 5.58 7.65 9.52
800 GE 1.98 3.97 5.89 7.93 9.68
1000 1.99 3.94 5.89 7.83 9.73
600 2.01 4.04 6.01 7.99 9.91
800 PIE 1.99 3.98 5.97 7.94 9.86
1000 1.98 3.97 5.96 7.98 9.75

Table 4.6.2.1- Speedup of PIE and GE for the non-p1voung case

117

n Method Number of processors
2 4 6 8 10

600 1.98 3.91 5.81 7.68 9.55
800 LU 1.98 3.92 5.86 7.55 9.67
1000 2.0 3.99 5.91 7.86 9.74
600 1.98 3.9 5.87 7.75 9.62
800 QIF 1.99 3.92 5.83 7.74 9.62
1000 1.98 3.84 5.88 7.82 9.72

Table 4.6.2.2- Speedup of QIF and LU for the non-pivoting case

n Method Number of processors
2 4 6 8 10

600 2.03 3.99 5.92 7.79 9.65
800 GE 1.99 3.96 5.91 7.86 9.7
1000 1.99 3.96 5.83 7.84 9.73
600 1.98 3.99 6.01 7.97 9.82
800 PIE 1.99 3.98 5.97 7.92 9.88
1000 2.0 3.98 5.99 7.93 9.88

Table 4.6.2.3 - Speedup of PIE and GE for the case of partial piVOting

n Method Number of processors
2 4 6 8 10

600 1.96 3.87 5.62 7.28 8.8
800 LU 1.99 3.93 5.8 7.66 9.41
1000 1.99 3.93 5.86 7.73 9.55
600 2.01 3.98 5.88 7.7 9.44
800 QIF 2.01 3.99 5.9 7.8 9.66
1000 2.01 3.99 5.92 7.83 9.64

Table 4.6.2.4 - Speedup of QIF and LU for the case of part1al piVOting

4.6.3 Efficiency of PIE, QIF, GE and LU

The efficiency figures of PIE and GE without partial pivoting are shown in Table

4.6.3.1 while that of QIF and LU without partial pivoting are shown in Table 4.6.3.2.

Table 4.6.3.3 shows the efficiency figures for PIE and GE with partial pivoting and

Table 4.6.3.4 shows the efficiency figures for QIF and LU with partial pivoting.

n Method Number of processors
2 4 6 8 10

600 0.98 0.9725 0.93 0.9563 0.952
800 GE 0.99 0.9925 0.982 0.9913 0.968
1000 0.995 0.985 0.982 0.9788 0.973
600 1.005 1.01 1.001 0.9988 0.991
800 PIE 0.995 0.995 0.995 0.9925 0.986
1000 0.99 0.9925 0.993 0.9975 0.975

Table 4.6.3.1 -Efficiency of PIE and GE for the non-pivoting case

118

n Method Number of processors
2 4 6 8 10

600 0.99 0.9775 0.9683 0.96 0.955
800 LU 0.99 0.98 0.9766 0.944 0.967
1000 1.0 0.9975 0.985 0.9825 0.974
600 0.99 0.975 0.978 0.968 0.962
800 QIF 0.995 0.98 0.972 0.9675 0.962
1000 0.99 0.96 0.98 0.9775 0.973

Table 4.6.3.2 - Effic1ency of QIF and LU for the non-pivoting case

n Method Number of processors
2 4 6 8 10

600 1.01 0.9975 0.987 0.974 0.965
800 GE 0.995 0.99 0.985 0.983 0.97
1000 0.995 0.99 0.972 0.98 0.973
600 0.99 0.9975 1.0 0.996 0.982
800 PIE 0.995 0.995 0.995 0.99 0.988
1000 1.0 0.995 0.998 0.991 0.988

Table 4.6.3.3 - Effic1ency of PIE and GE for the case of partial p1voung

n Method Number of processors
2 4 6 8 10

600 0.98 0.968 0.937 0.91 0.88
800 LU 0.995 0.983 0.967 0.958 0.941
1000 0.995 0.983 0.977 0.966 0.955
600 1.005 0.995 0.98 0.963 0.944
800 QIF 1.005 0.998 0.983 0.975 0.966
1000 1.005 0.998 0.987 0.979 0.964

Table 4.6.3.4 -Effic1ency of QIF and LU for the case of partial p1voting

It can be seen that the effectiveness with which the processors are utilised for all the

methods is roughly 90%.

4.6.4 Temporal Performance of PIE, QIF, GE and LU

The temporal performance of the algorithms are shown graphically for the case of

n=600. Figure 4.6.4.1 shows the temporal performance of PIE vs. GB without partial

pivoting and Figure 4.6.4.2 shows the temporal performance of QIF vs. LU without

partial pivoting. For cases with partial pivoting, the temporal performance of PIE vs.

GB is shown in Figure 4.6.4.3 while that of QIF vs. LU is shown in Figure 4.6.4.4.

119

~ 0.0025

"' c 0.002
,g
!l 0.0015

ll 0,001
"0

Temporal performance of GE and PIE for non-pivoting
case

-+-GE(600x600)

-1!11- PIE(600x600)

~ o.ooosi.::::::::::::lf=-;::::.:::::::Af---
~ 0·~------+-------~----~~-----+-------<

2 4 6 8 10

Number of processors

Figure 4.6.4.1 - Temporal performance of GE and PIE without pivoting

0.0025
c
0 ., 0.002
" ¥
>C ..

!E
0.0015

o= 0.001 ..
!!!
~ 0.0005
E

0

Temporal performance of LU and QIF for non-pivoting
case

-+-- LU(600x600)

-illf-OIF(600x600)

1 2 4 6 8 10

Number of processors

Figure 4.6.4.2 - Temporal performance of LU and QIF without pivoting

.. 0.0025
E
~ 0.002
0

"' !l 0.0015

ll 0 0.001 ..

Temporal performance of GE and PIE for pivoting case

-+--GE(600x600)

-illf-PIE(600x600)

~ 0.0005 h,.:::::::::lf=-;::::.;...-­
.5 I

o~----~---------~-----+-----
1 2 4 6 8 10

Number of processors

Figure 4.6.4.3 -Temporal performance of GE and PIE with pivoting

120

" 0.0018
~ 0.0016
c 0.0014

~ 0.0012
!! 0.001
= 0.0008
~ 0.0006

Temporal performance of LU and CIF for pivoting case

--+-- LU(600x600)

-MI-OIF(600X600)

f 0.0004 ',.=:=::::l....­
~ 0.0002~ - ol----------------<

1 2 4 6 8 10

Number or processors

Figure 4.6.4.4- Temporal performance ofLU and QIF with pivoting

4.7 Summary

In this chapter, the Parallel Implicit Elimination (PIE) method and the Quadrant

Interlocking Factorisation (QIF) method have been discussed from the formulation of

the method, the sequential and parallel algorithms for a shared memory parallel

computer and their numerical results obtained from the implementation on the Sequent

Balance, a shared memory parallel computer.

As the main aim of this research is to compare the performance of PIE and QIF with

that of GE and LU respectively, the Sequent Balance, although an old machine, is

sufficient for this purpose. Since all the algorithms are tested on the same machine,

they should yield consistent results.

In general, it can be seen from the performance results of the algorithms implemented

on the Sequent Balance that the parallel algorithms PIE and QIF are superior than their

counterparts GE and LU respectively.

For the non-pivoting cases, the timing of PIE is between 21%-23% better than GE,

while the timing of QIF is 20%-22% better than LU. For the pivoting cases, PIE is

between 20%-22% better than GE while QIF is between 13%-17% faster than LU.

Again, even with pivoting, the timings of PIE and QIF maintain the superiority as was

in the non-pivoting case. However, the gains obtained from QIF over LU in the

pivoting cases are less encouraging.

Although the computational complexity for all the algorithms were of order O(n3
), and

hence the timings too were expected to be roughly the same, there seemed to be a

significant difference of roughly 20% between the timings of GE and PIE and LU and

121

QIF. These gains could have been contributed by the fact that in PIE and QIF, there

were less accesses to shared memory as there were in the case of GE and LU as was

shown in Table 4.5.5.1, i.e. PIE and QIF only required 2/3n3 accesses to shared

memory while GE and LU required n3 accesses to shared memory.

In terms of the temporal performance metric of the algorithms, PIE and QIF have also

demonstrated to be superior than GE and LU respectively for both the pivoting and

non-pivoting cases. It is apparent then that PIE and QIF performs more computational

work in a unit of time as compared to GE and LU.

PIE and QIF are in fact 2x2 block forms expressed in explicit point form/notation and

should be compared with BLAS. Since BLAS was not available at the start of this

work, the experimental comparison was not considered then. However, the BLAS

overheads would need to be considered and even the pivoting by blocks is not

satisfactorily resolved in the literature. These disadvantages might outweigh the

advantage of easier programming that BLAS has to offer. Moreover, it is the purpose

of PIE and QIF to express a block algorithm in explicit point form, thus saving the

BLAS overheads and consequently obtaining a more efficient algorithm.

122

ChapterS

Parallel Implicit Elimination (PIE) and Quadrant Interlocking Factorisation

(QIF) on Distributed Memory Architecture

The design and implementation of PIE and QIF on a shared memory architecture has

been discussed in Chapter 4. One important objective that parallel computing has yet

to achieve is the portability of parallel programs. At the moment, even programs

written for a particular shared memory machine cannot be run on another shared

memory machine without some modifications. Porting a parallel program from a

shared memory machine to a distributed memory machine needs a major rethinking.

The algorithm design is slightly different to that of a shared-memory programming

model The major difference lies in the sharing of data where it is achieved via

message-passing while shared data is placed in the shared memory area of the shared

memory parallel computer.

There has been some work done on the development of QIF on distributed memory

parallel computers. Asenjo et. a! [Asenjo 93] has developed the parallel QIF

factorisation on mesh multiprocessors. They have achieved half the messages of the

equivalent parallel LU algorithm, but no numerical results of this comparison was

given. Their aim was to compare the implementation of QIF on multiprocessors with

mesh topology and hypercube topology.

Garcia et. al [Garcia 90] investigated the parallelisation of the QIF algorithm on a

SIMD hypercube computer and compared the algorithm with the parallel algorithm

based on the LU factorisation. The results they obtained showed that the execution

time is reduced by a factor of two, approximately. [Saeed 92] has also implemented the

QIF on a hypercube multiprocessor.

Pivoting is a widely used technique for improving the numerical stability of matrix

factorisation. While pivoting is almost a trivial operation on sequential machines, it can

require a fairly complicated algorithm in the concurrent implementation [Fox 88]. In

particular, this is true in a distributed memory computer where the matrix

decomposition has a relevant impact on the performance of the pivot search. In almost

all the decompositions partial pivoting does not perform well due to inherent load

unbalancing which is due to an unfortunate sequence of pivot choices and/or from the

123

inactivity of the processors during the pivoting stage. Angelaccio et a! [Angelaccio 94]

have introduced a new pivoting strategy (row/column pivoting) that assigns extra work

to idle processors thus reducing load unbalancing and assuring a better stability.

This chapter discusses the design and implementation of PIE and QIF on distributed

memory architectures. Section 5.1 discusses cluster computing and one of the many

software simulation systems employed in cluster computing today i.e. Parallel Virtual

Machine (PVM). In section 5.2 the design of PIE and QIF for a distributed-memory

architecture is presented. Two very important factors affecting performance in

message-passing concurrent systems are communication patterns and computation-to­

communication ratios. In section 5.3 a theoretical analysis of the communication

involved in PIE, QIF, GE and LU are shown followed by the predicted communication

times for the algorithms in section 5.4. The numerical results which include the

measured communication time to be compared against the predicted communication

time is given in section 5.5. Lastly, the discussion and summary of the chapter follows

in section 5.6.

The aim of the work in this chapter is to show that parallel implicit solvers, PIE and

QIF, are better suited for message-passing systems as compared to the classical linear

solvers, GE and LU respectively, in terms of amount of communication involved. This

is achieved by firstly performing a theoretical analysis of communication within each

algorithm. Next, the measured communication times are taken by using the wall clock

times of the computer. Lastly, the trend of the measured communication time should

conform to the trend of the theoretical prediction.

5.1 Cluster Computing and PVM

Computer clusters may be defmed as systems of networked computers, each with its

own memory and may be composed of collections of heterogeneous or homogeneous

computers of various sizes and types.

Concurrent processing is the use of several working entities (either identical or

heterogeneous) working together toward a common goal [Fox 88]. Concurrency is

achieved by domain decomposition where data is divided into parts and one part is

assigned to each computer.

124

Cluster computing or concurrent computing on a collection of loosely coupled

computer systems, is a rapidly evolving technology with tremendous potential for high

performance applications. Such systems allow a collection of networked machines to

be used as a unified, general purpose, concurrent computing resource. They are

effective platforms for highly compute-intensive applications and can complement or

augment the processing capabilities of traditional parallel machines. Most

contemporary computing enviromnents are networked based. A common configuration

is a network of stand-alone general purpose workstations, different kinds of

multiprocessors and a few special purpose machines such as a graphics processor or

vector computers.

Cluster computing is expected to gain widespread attention in the future because it is a

cost-effective way to use the collective power of systems which would otherwise be

used in a single-processor mode. Furthermore, they are widely available and provide

straight forward access interfaces as well as development monitoring tools.

Many applications show significant parallel speedups on clusters, though overall

performance is still well below that of the more traditional vector supercomputer. One

distinct advantage of clusters is the availability of considerable memory. Furthermore,

clusters can be used as a platform to develop applications for massively parallel

processors having a distributed memory architecture. Message-passing libraries, such

as the PVM package, that enable passing of data between processors, are available on

MPP' s as well as on clusters.

There are several systems available that support cluster-based concurrent computing.

Among these are the PVM system, MPI, Network Linda, and the Express

enviromnent. In this work, PVM has been used as it was more widely used at the start

of this research.

The PVM system emulates a general-purpose concurrent computing framework on a

networked collection of independent computer systems. A system level process which

executes on each machine in the user-configurable network of processing elements and

through co-operative distributed algorithms, allows this collection of machines to be

used as a coherent concurrent computing resource. Applications access this virtual

machine via library routines embedded in imperative procedural languages, such as C

or Fortran. PVM provides primitives for concurrent process management, and for

125

communication and synchronisation of processes in a heterogeneous distributed

computing environment.

Processes of parallel application distributed over a collection of processors must

communicate problem parameters and results. In distributed memory multiprocessors

or workstations on a network, the information is typically communicated with explicit

message-passing subroutine calls. To send data to another process, a subroutine

usually requires a destination address, message and message length. The receiving

process usually provides a buffer, a maximum length and the sender's address. The

PVM communication model provides asynchronous blocking send, asynchronous

blocking receive and non-blocking receive functions. A blocking send returns as soon

as the send buffer is free for reuse regardless of the state of the receiver. A non­

blocking receive immediately returns with either a data or a flag that the data has not

arrived. A blocking receive returns only when the data is in the receive buffer. In

addition to these point-to-point communication functions, the model also supports

multicast to a set of tasks and broadcast to a user-defined group of tasks. The PVM

model guarantees that message order is preserved between any pair of communicating

entities.

PVM supports two kinds of message-passing, one using datagram (connectionless)

protocols, where data is routed via system daemons while the other is based on stream

(connection-oriented) transport which is direct communication between the processes.

PVM and similar systems normally operate in general purpose networked

environments, where neither the CPU' s of the individual machines nor the

interconnection network is dedicated. As a result, raw performance or speedup of a

given application is hard to measure [Schmidt 95]. Even in a dedicated networked

environment, with no external use, the above is true since operating system activity,

window and fllesystem overheads and administrative network traffic can contribute to

deviated measurements.

PVM is not merely a software framework for network-based concurrent computing; it

is an integrated methodology for concurrent, distributed and parallel processing, and

more importantly, it is an interface defmition for portable application development

[Sunderam 94a]. From the portability point of view, PVM applications may be

126

migrated not just from one machine (parallel or serial) to another but across different

collections of machines.

5.2 Implementation of PIE and QIF in PVM

Both PIE and QIF have also been designed and implemented on a message-passing

model using PVM on workstation clusters. In this section the design of the PIE and

QIF algorithms for message-passing architectures is discussed. The master-slave

paradigm has been chosen as the programming model.

In order to attain a good load balancing, data is partitioned by rows in a wrap

around/cyclic fashion. In order for a slave program to perform elimination or

factorisation with minimal communication, it is advisable that rows i and row n-1 +i

reside in the same slave program. For this reason, the data is partitioned such that for

every value of i from 0 to n/2-1, row i and the corresponding symmetric row n-1 +i is

distributed to each slave in a cyclic manner. In other words, each slave will store rows

which are symmetric with respect to the central axis of the matrix. The partitioning of

data for a 6x6 matrix to 2 slaves is illustrated in Figure 5.2.1. Rows of the same shade

are symmetric rows that are assigned to the same slave program.

rowO ->assigned to slave 0

row 1 ->assigned to slave 1

row2 ->assigned to slave 0

row3 -> assigned to slave 0

row4 -> assigned to slave 1

row 5 -> assigned to slave 0

Figure 5.2.1 Partitioning of 6x6 matrix to 2 slaves

In this implementation the matrix is generated within each slave, so only the index of

the rows of the matrix A that each slave is responsible for is sent by the master process

to each slave process. Each slave has 2 two-dimensional arrays used to store the upper

half of the matrix and the corresponding symmetric row (i.e. the lower half of the

matrix). The right-hand side vector is augmented to each of these two arrays.

For notation purposes, the array storing rows from the top half of the coefficient

matrix A is called tp and the array storing the rows from the bottom half of the

coefficient matrix A is called bt. The one dimensional array storing the middle row for

127

an odd-sized coefficient matrix A is called md. These arrays tp, bt, and md which

originally store rows from the coefficient matrix A will be used to keep the Z matrix for

PIE and the Wand Z factors for QIF. The solution vector x is overwritten on the right­

hand side vector b. The indices of the rows of the coefficient matrix A, when sent to

the slaves, are kept in single dimensional arrays.

The algorithm for the master program of PIE and QIF to partition the matrix and send

them to the appropriate slaves is shown in Algorithm 5.2.1.

The algorithm to factorise the coefficient matrix A into W and Z, performed by each

slave program of QIF, is shown in Algorithm 5.2.2. (Let depth of matrix = n/2 if n is

odd and n/2-1 if n is even.)

The solution stage of QIF consists of the bi-directional substitution process and the

algorithm is given in Algorithm 5.2.3. This is then followed by the bi-directional

solution process and the algorithm is shown in Algorithm 5.2.4. The algorithm for the

elimination stage of PIE is given in Algorithm 5.2.5.

Since the performance of GE and LU will be compared to that of PIE and QIF

respectively, the algorithms for GE and LU for message-passing systems are also

given. The LU factorisation algorithm is given in Algorithm 5.2.6. The solution stage

of LU factorisation consists of the forward substitution algorithm given in Algorithm

5.2.7 followed by the back substitution algorithm given in Algorithm 5.2.8. The

forward elimination algorithm of GE is given in Algorithm 5.2.9.

Algorithm 5.2.1 PartitioninQ of data to slave orograms
nextslave=O
for i=O to n/2-1 (upper half of matrix)

send row index i to nextslave
if nextslave =number of slaves

nextslave=O
else nextslave=nextslave+ 1

ifn is odd
send middle row index to nextslave

128

Algorithm 5_2.2 WZ factorisation algorithm
for k=O to depth of matrix

if k is an index in this slave
Broadcast row k and n-1-k to other slaves
Update index of matrix in this slave

else Receive row k and n-1-k
for j = 0 to number of rows in a slave

let jindex=index of row j
if jindex > k (Top half of matrix)

CalCUlate Wjindex,k and Wjilldex,n-1-k. Store in tp.i,k and tpj,n-1-k
calculate Zjindex,k+l• ziindex.k+2•···•Ziindex.n-2-k· store in tpi,k+htp.i,k+2•···•tpi,n-2-k

end if
for j = 0 to number of rows in a slave

letjindex=index of row j
ifjindex < n-1-k (bottom half of matrix)

Calculate Wjindex,k and Wjindex,n-1-k, Store in bti,k and bti.n-1-k

calculate Zjindu,k+ll Zjindex,k+2•····Z_iindex,n-2-k . store in b~.k+t•bY,k+2•- .. ,btj,n-2-k
end if

end for j
ifn is odd

if (index of middle row > k)
calculate Wjindex.k and wiindex.n-1-k· store in mdi,k and mdi.n-1-k
calculate z.iindex,k+l7 Zjindex,k+l•· .. ,Zjindex,n-2-. store in tP.i.k+htP.i,k+l•····tP.i.n-2-k

end if
end if

end fork

Algorithm 5.2.3 Bi-directional substitution algorithm

for k = 0 to depth of matrix
if k is an index on this slave

send b,. and bn-l·k to other slaves
update index of matrix on this slave

else
receive b,. and bn·l-t

for j= 0 to number of rows in slave
let jindex = index ofrow j

if jindex > k (top half of matrix)
bjindex==bjindex-Wjindex,k 'f%-Wjindex,n-1-k hn-1-k

tP.i.n=bjindex
end forj

for j= 0 to number of rows in slave
let jindex = index of row j
if jindex < n-1-k (lower half of matrix)

bjindex=bjindex-Wjindex,k~-Wjindex,n-t-khn-1-k
by,n:bjindex

end for j
ifn is odd

if index of middle row >k
bjindex=bjindex~ Wjindex,k ~~Wjindex,n-1-k bn-t-k

mdj,n==bjindex

end if
end fork

129

Algorithm 5.2.4 Bi-directional Solution algorithm
if n is odd, slave having the middle row
calculate x.n and send to other slaves
update tp;~=!Jli.n·IP; . ..n*xn/2 (upper matrix)

b~~=bt; .. -b~ . .n*x,12 (lower matrix)
fork"' n/2-1 down to 0

if k is an index on this slave
solve for Xt and Xn-1-k

send x, and x,_,_, to other slaves
update index of matrix on this slave

else
receive xk and Xn-1-k

for j=O to number of rows in slave
let jindex = index of row j
ifjindex < k

tPi.n =tP.i.n-tP.i.k *xt-tPi.n-1-t *xn-1-t
bt.i.n =bti.n·b~.k *xk-b~.n-1-k *xn-1-k

end for j
end fork

Algorithm 5.2.5 Parallel Implicit Elimination algorithm
for k=O to depth of matrix

if k is an index in this slave
Broadcast row k and n-1-k to others
Update index of matrix in this slave
else

Receive row k and n-1-k
for j = 0 to number of rows in a slave

let jindex=index of row j
if jindex > k (Upper half of matrix)

(use array tp bere)
eliminate wiindex.,k and w.iindex.n-1-t

update 8.Jindex,k+l• ailndex,k+2•···•aiindex,n-2-k

end if
end forj
for j = 0 to number of rows in a slave

let jindex=index of row j
if jindex < n-1-k (lower balf of matrix)

(use array bt bere)
eliminate Wjindex.,k and Wjindex,n-1-k

update Bjindtx.t+h aiinde-x,k+2, ... ,aiilltrex,JJ-2-k

end if
end forj
ifn is odd letjindex=index of middle row

if jindex > k (use array md here)
eliminate Wjindex.,k and Wjindex,n-1-k

update 3:iiml~k+h ~jinde:t_k+2•···>8jindex.n-2-k
end ifnodd

end fork

130

Algorithm 5.2.6 LU factorisation algorithm

fork=Oton-1 do
if k is an index in this slave
(pivot row is in this slave process)

else

Broadcast pivot row to other slaves
Update index of matrix on this slave

Receive pivot row
for i = 0 to number of rows in the slave process

Provided k is less than the highest index held on this slave,
perform factorisation process

end fork

Algorithm 5.2.7 Forward Substitution Algorithm

fork= 0 to n-1
if k is an index on this slave

else

Calculate value of y[k]
Broadcast value to other slaves
Update index of matrix on this slave

Receive solution y[k]
for i = 0 to number of rows in slave process

end fork

Provided that k is less than the highest index
held on this slave, then perform substitution.

Algorithm 5.2.8 Back Substitution Algorithm

fork=n-1 toO
if k is an index on this slave

else

Calculate value of x[k]
Broadcast value to other slaves
Update index of matrix on this slave

Receive solution x[k]
fori= 0 to number of rows in slave process

Provided that k is greater than the highest index
held on this slave, then perform substitution.

end fork

Algorithm 5.2.9 Forward Elimination Algorithm

fork= 0 to n-1 do

slave,

if k is an index in this slave
(pivot row is in this slave process)

else

Broadcast pivot row to other slaves
Update index of matrix on this slave

Receive pivot row
fori = 0 to number of rows in the slave process

Provided k is less than the highest index held on this

perform elimination process
end fork

131

5.3 Theoretical analysis of communication for PIE, GE, QIF and LU

Before proceeding with the analysis, some comments and assumptions need to be

stated. The comments and assumptions will apply to all the algorithms discussed in

this chapter.

• All algorithms employ the master and slave programming model.

• The matrix used in all the algorithms is:

au = 1 fori ;e j

and a,, = n fori = j.

• The coefficient matrix is generated in the slave program. Therefore, when the

master program partitions the matrix to the slave programs, only the index of the

row is sent instead of the entire row.

• For simplicity, all the slave programs have been spawned on a single workstation

and the master program on the other.

• The theoretical analysis of the communication has been done in two ways. First is

by disregarding the length of message sent or received and second is by taking into

account the length of messages.

• The number of slaves is denoted by p.

• An integer value is assumed to occupy one byte of storage while a floating point

value is assumed to occupy two bytes of storage.

• Row subscripts and pivot rows are integer values while the results are floating

point values.

• Throughout the analysis, the value n/p is assumed to be an integer.

5.3.1 Theoretical analysis of communication forGE algorithm

The master program of GE distributes subscripts of rows of the coefficient matrix to

the slaves n times and likewise receives results from all the slaves n times. Hence the

message passing involved in the GE master is 2n.

The slave program receives subscripts from the master program nip times. During the

elimination stage, each slave communicates the pivot rows to other slaves nip times

and receives pivot rows from other slaves (n-nlp) times. In the solution stage, each

slave sends its solution x to other slaves nfp times and receives solutions from other

132

slaves (n-nlp) times. Lastly, each slave must send its results to the master program nip

times. Therefore, the total message passing within the slave program is

4(nlp) + 2(n-nlp).

The total message passing involved in the GE algorithm is

2n + 4(nlp) + 2n- 2(nlp)

= 4n + 2(nlp).

(5.3.1.1)

(5.3.1.2)

When the message length is considered, the GE master program involves n one-byte

messages and n two-byte messages.

The slave program requires

nip

nip+ (n- nip)

nip+ (n- nip)

nip

one-byte messages for receiving row numbers from the

master program

(n+ 1)/2-byte messages during the elimination stage

two-byte messages during the solution stage

two-byte messages in sending the results back to the master

program

In summary, the GE algorithm requires

n +nip

2n +nip

n

one-byte messages,

two byte messages and

(n+1)/2-byte messages.

5.3.2 Theoretical analysis of communication for PIE algorithm

(5.3.1.3)

During the elimination stage of PIE, two elements are eliminated simultaneously

instead of one as in GE. If elements aii and a•·i+tj are eliminated, then rows i and n-i+ 1

must be available in the slave for the elimination to take place. Thus, in partitioning the

coefficient matrix to the slave programs, the PIE master program sends the subscripts

of two symmetric rows at a time.

The PIE master program then sends out messages n/2 times to the slave programs and

receives results n/2 times from the slaves. Therefore, the message-passing involved in

the PIE master is n times.

Each PIE slave receives data from the master program n/2p times. During the

elimination process, each slave sends pivot rows to other slaves n/2p times and

receives pivot rows from other slaves (n/2 - n/2p) times. During the solution stage,

133

each slave sends solution to other slaves n/2p times and receives solutions from other

slaves (n/2-nl2p) times. Results are then sent to the master by each slave n/2p times.

In total, the amount of message-passing involved in PIE is

n + 4(n/2p) + 2(n/2-nl2p)

= n + 2(nip) + n- nip

= 2n +nip (5.3.2.1)

When message length is considered for PIE, the master program which sends two row

subscripts at a time and receives two results at a time, will then require

n/2 two-byte messages and

n/2 four-byte messages.

The slave program for PIE requires

n/2p two-byte messages for receiving row numbers from the

master program

(n+ I)-byte messages during the elimination stage

four-byte messages during the solution stage

n/2p + (ni2- nl2p)

n/2p + (n/2- n/2p)

n/2p four-byte messages when the results are sent back to the

master program

In total, the PIE algorithm requires

n/2 + n/2 p two-byte messages

n + n/2p four-byte messages and (5.3.2.2)

n/2 (n+ I)-byte messages.

5.3.3 Theoretical analysis of communication for LU algorithm

The master program of LU distributes subscripts of rows of the coefficient matrix to

the slaves n times and receives results from the slaves n times. Hence, the message­

passing involved in the LU master program is 2n.

The slave pro gram receives data from the master nip times. During the factorisation

stage, each slave sends pivot rows to the other slaves nip times and receives pivot

rows from other slaves (n-nip) times. In the forward substitution stage, each slave

sends solutions to other slaves nip times and receives solutions from other slaves

(n-nip) times. During the back substitution process, each slave once again sends

134

solutions to other slaves n/p times and receives solutions from other slaves (n-n/p)

times. Lastly, each slave must send results back to the master program n/p times.

In total, the message-passing within the slave program is

5n/p + 3(n-n/p)

= 3n + 2n/p. (5.3.3.1)

The total message-passing within the LU algorithm is

5n + 2n/p. (5.3.3.2)

When the message length is taken into consideration, the LU master program requires

none-byte messages and n two-byte messages. The slave program requires

n/p

n/p + (n- n/p)

n/p + (n- n/p)

n/p + (n- n/p)

n/p

one-byte messages

(n/2)-byte messages

two-byte messages

two-byte messages

two-byte messages

In total, the LU algorithm requires

n + n/p one-byte messages,

for receiving row numbers from the master

program

during the factorisation stage

during the forward substitution stage

during the back substitution stage

in sending the results back to the master

program

3n + n/p two-byte messages and (5.3.3.3)

n (n/2)-byte messages.

5.3.4 Theoretical analysis of communication for QIF algorithm

Just as in PIE, the QIF master program also sends subscripts of two symmetric rows to

the slave programs. The QIF master program sends out messages n/2 times and

receives results n/2 times giving a total of n messages.

Each QIF slave program receives data n/2p times from the master program. During the

factorisation stage, each slave program sends pivot rows to other slaves n/2p times and

receives pivot rows from other slaves (n/2 - n/2p) times. In the bi-directional

substitution stage, each slave program sends solutions to other slave programs n/2p

times and receives solution from other slaves (n/2 - n/2p) times. Likewise in the bi­

directional solution process where each slave program sends solutions to other slave

135

program n/2p times and receives solutions from other slave program (n/2- n/2p) times.

Finally, each slave program returns results to the master program n/2p times.

In total, the amount of message-passing involved in QIF is

n + 5(nl2p) + J(n/2- n/2p)

= 512n +nip. (5.3.4.1)

In terms of message length, the QIF master program requires

n/2 two-byte messages and

n/2 four-byte messages.

The QIF slave program requires

n/2p two-byte messages for receiving row numbers from the

master program

n/2p + (n/2 - n/2p)

n/2p + (n/2- n/2p)

n/2p + (n/2- n/2p)

n/2p

n-byte messages during the factorisation stage

four-byte messages during the bi-directional substitution

stage

four-byte messages during the bi-directional solution stage

four-byte messages in sending the results back to the master

program

In total, the QIF algorithm requires

n/2 + n/2p two-byte messages

Jn/2 + n/2p four-byte messages and (5.3.4.2)

n/2 n-byte messages.

136

5.4 Prediction of communication times

The objective in parallel processing is to obtain faster execution by using multiple

processing elements that work co-operatively on a single problem. The level of

efficiency in speeding up computation is dependent on several factors ranging from

inherent non-parallelism in the algorithm to the overheads of communication and

synchronisation among the multiple processors. In cluster-based environments, there

are also external influences as both the networks and the processors may be in use by

other applications. Therefore, analysing communication must take into account

extraneous traffic and the variable nature of network characteristics in terms of delay

and throughput.

In this work, the experimental work done to investigate the amount of communication

in the algorithms have been performed on a lightly loaded LAN where the computing

elements are similar workstations which are not dedicated and do not execute external

computer intensive applications. A "lightly loaded network" mentioned above refers to

one which operates at 15-20% of capacity and on which the traffic is lightly loaded.

Under these assumptions, an attempt is made to parametrise the communication

overheads involved in the classical as well as the implicit algorithms. The conventional

approach in analysing communications for most message passing, distributed memory

multiprocessors [Schmidt 95] is adopted. This approach defmes communication time

as a simple linear function of the number of bytes transmitted, with a constant additive

factor representing "start-up" overheads.

Hence,

Tcooun =a+ BN
where a is the start-up time, B is the cost per byte and N is the number of bytes

transmitted.

In order to estimate the coefficients a and B. a number of experiments were conducted

under varying network and host load conditions, for different message sizes. The

results of these experiments are shown in Table 5.4.1.

137

Size (bytes) Transmission time (secs)

64 0.022448

1024 0.038064

2048 0.044496

4096 0.037664

Table 5.4.1: Measured ume (m seconds) for PVM communication

From the experimental results, the coefficients were determined by curve fitting. The

equations to be solved are:

a + 64P = 0.022448

a+ 1024P = 0.038064

a+ 2048P = 0.044496

a+ 4096P = 0.037664

which is an overdetermined linear system.

ln matrix form,

Ax=b

r
ll 64 l

10241

lll 2048J
4096

[;] =

ro.022448l

10.0380641

l0.044496J
0.037664

(5.4.1)

Applying the least squares method and multiplying both sides by AT (5.4.2) yields the

2x2 linear system shown in (5.4.3).

ATAx=ATb

[
4 7232 lr a l r 0.1426721

7232 22024192Jlp J=l2s5.81376J

(5.4.2)

(5.4.3)

Solving the linear system in (5.4.3) results in the following values for a and p.

a= 0.0076584

(5.4.4)

p = 0.00001549 (5.4.5)

Once the values of a and p have been determined, they can be used to predict the

communication times required by each algorithm using the formula for communication

time for each algorithm obtained earlier.

138

The number of times each algorithm sends or receives messages is summarised in

Table 5.4.2.

Algorithm Number of messages

GE 4n + 2n/p

PIE 2n +nip

LU 5n + 2n/p

QIF 5/2n +nip

Table 5.4.2 Frequency of messages for each algorithm

Each time a message is sent, there is an initial start-up time of a incurred, regardless of

the message length. Hence, Table 5.4.2 also reflects the amount of start-up time

incurred in each algorithm. The predicted start-up time can be calculated by

multiplying the number of messages by the value ex. For example, for n=lOO and

p=1,2 and 4, the predicted start-up time for the algorithms are shown in Table 5.4.3.

n p Al2orithm Predicted start-on time
100 1 GE 11.4567

PIE 5.72835
2 GE 9.54725

PIE 4.773625
4 GE 8.592525

PIE 4.2962625
100 1 LU 5.36088

QIF 2.68044
2 LU 4.59504

QIF 2.29752
4 LU 4.21212

QIF 2.10606

Table 5.4.3 Predicted start-up times for algonthms when n=lOO

The total predicted communication time required by each algorithm can be calculated

by considering the length of messages transmitted. A sample of the total predicted

times for the case of n=IOO, p=l, 2 and 4 for all the algorithms are shown in Table

5.4.4.

139

- - - - ---

n p Algorithm Fonnula Predicted communication time
200cr+ p +

100 1 GE 300a+ 2p + 4.5966416

100cr+ 101p

PIE
100cr+ 2P +

2.3007231
150cr+ 4P +
50a +202P

150cr+ p +
2 GE 250cr+ 2P + 3.8308016

100cr+ 101p

PIE
75cr+ 2p +

1.9178032
125cr +4P +
50cr+2026

125cr+ p +
4 GE 225cr+ 2P + 3.4478816

lOOcr + 101p

PIE
63cr+2P+

1.7340016
113cr +4P +
50cr+2026

200cr+ p +
100 1 LU 400a+ 2P+ 5.3624816

100cr+ 101P

QIF
100cr+ 2p +

2.6836431 300a+ 4P +
50cr+202P

150cr+ p +
2 LU 350a+ 2P + 4.5966416

100cr+ 101p

QIF
75cr + 2p +

2.3007232
175cr+ 4P +
50a+ 2026

125cr + p +
4 LU 325cr + 26 + 4.2137216

IOOa + 1016

QIF
63a + 2p +

2.11686
113cr+ 46 +
50a+ 2026

Table 5.4.4 Total pred1cted times for n=lOO, p=l, 2 an 4.

140

5.5 Numerical results

The PVM programs for both PIE and QIF have been written in C using the master and

slave programming model. They have been tested on a cluster of two Dec-Alphas

connected via Internet.

The time taken for an application is dependent on the computation time,

communication time and load imbalance. Load imbalance on workstation clusters can

also be due to the effect of external CPU, memory or network loads. For example, in a

cluster of identical workstations, equal amounts of work may well require different

execution times, due to externally generated computation, swapping and network

activity.

In order to measure the communication time of the algorithms, the time spent in

various components of the algorithms had to be measured. All measurements are

elapsed (or wall-clock) times. The total time was measured by the master process that

waited for all the slave processes to fmish execution. The master process was also

responsible for gathering local timing results from all the slave processes; the

computation, communication and idle times reported are the arithmetic means of

corresponding individually measured timings.

Computation time is the time a process spends doing useful work which can be

contributed to the fmal result. The communication time is the time spent in packing a

message as well as transmission to the intended receiver. Idle time is the time during

which a process was blocked awaiting message arrival or the elapsed time between the

beginning and the end of a receive operation. The idle time is also a means of

quantifying the degree ofload imbalance in the algorithm. Total time is the sum of idle

time, computation time and communication time

Table 5.5.1 shows the measured timings of GB vs PIE using 1 slave, Table 5.5.2 shows

the measured timings of GB vs PIE using 2 slaves and Table 5.5.3 shows the measured

timings of GB vs PIE for 4 slaves. Table 5.5.4 shows the measured timings of LU vs

QIF using 1 slave, Table 5.5.5 shows the measured timings of LU vs QIF using 2

slaves and Table 5.5.6 shows the measured timings of LU vs QIF for 4 slaves.

141

n Algorithm Idle time Computation time Communication time Total Time

100 GE 1.429440 O.lll264 0.306464 1.847168

PIE 0.464576 0.083936 0.154784 0.703296

Gains(%) 24.56 49.49

200 GE 2.251808 0.767712 0.551440 3.57096

PIE 1.635952 0.525664 0.345504 2.50712

Gains(%) 31.53 37.35

300 GE 1.12688 2.670512 0.764784 4.562176

PIE 1.896944 1.874096 0.474912 4.245952

Gains(%) 29.82 37.9

400 GE 0.966816 7.047824 1.044896 9.059536

PIE 1.315824 4.690608 0.693936 6.700368

Gains(%) 33.45 33.59

600 GE 0.837984 25.515983 1.618785 27.972752

PIE 0.815536 16.313297 1.013663 18.142496

Gains(%) 36.07 ' 37.38

-Table :J.5.1 Measured T1mes for PIE and GE (l slave)

n Algorithm Idle time Computation time Communication time Total Time

100 GE 1.097112 0.333791 0.962425 2.393328

PIE 0.791048 0.207 0.449936 1.447984

Gains(%) 37.99 53.51

200 GE 1.0732 0.573596 2.665544 4.31234

PIE 5.449536 0.547137 1.178607 7.17528

Gains(%) 4.6 55.78

300 GE 1.202032 0.9598075 5.4096085 7.571448

PIE 0.615856 0.620331 3.236592 4.472779

Gains(%) 35.25 40.17

400 GE 0.690572 2.80937 8.9944545 12.494396

PIE 1.252096 2.1456 5.236504 8.6342

Gains(%) 23.63 41.78

600 GE 0.77308 12.898912 20.068391 33.740383

PIE 1.408944 8.9895765 12.038727 22.437247

Gains(%) 30.31 40.01

Table 5.5.2 Measured umes for PIE and GE (2 slaves)

142

-- --·--~

n Algorithm Idle time Computation time Communication time Total Time

lOO GE 1.1950045 0.5629072 1.0700287 2.8279404

PIE 0.321104 0.3325983 0.480525 1.1342273

Gains(%) 40.91 55.09

200 GE 0.77226 1.577304 2.172596 4.52216

PIE 0.32442 0.9426712 1.1950447 2.4621359

Gains(%) 63.46 44.99

300 GE 1.113948 3.114594 4.70265 8.931!92

PIE 2.009472 1.7486805 2.7808875 6.53904

Gains(%) 43.86 40.87

400 GE 1.561444 2.9547705 10.660929 15.177143

PIE 1.29362 1.8911765 6.3325675 9.517364

Gains(%) 35.99 40.6

600 GE 1.41196 7.1106007 28.30615 36.82871

PIE 0.542412 6.495452 16.594428 23.632292

Gains(%) 8.65 41.38

Table 5.5.3 Measured hmes for PIE and GE (4 slaves)

n Algorithm Idle time Computation time Communication time Total Time

100 LU 1.176656 0.110288 0.301184 1.588128

QIF 0.699392 0.0732 0.193248 0.965840

Gains(%) 33.63 35.84

200 LU 1.434896 0.787232 0.576816 2.798944

QIF 1.019520 0.490928 0.382592 1.893040

Gains(%) 37.64 33.67

300 LU 1.792112 2.917038 0.923874 5.633024

QIF 0.790160 !.788209 0.569983 3.148352

Gains(%) 38.7 38.31

400 LU 1.192272 7.678898 1.134686 10.005856

QIF 0.904352 4.422208 0.788608 6.115168

Gains(%) 42.41 30.5

600 LU 3.632048 26.299633 2.004879 31.936560

QIF 1.029280 15.482720 1.295728 17.807728

Gains(%) 41.13 35.37

Table 5.5.4 Measured times for QIF and LU (1 slave)

143

n Algorithm Idle time Computation time Communication time Total Time

lOO LU 1.354288 0.4645765 1.3280235 3.146888

QIF 1.079544 0.22692 0.615944 1.922408

Gains(%) 51.16 53.62

200 LU 1.415088 1.150503 3.092521 5.658112

QIF 0.751032 0.4840965 1.7546235 2.989752

Gains(%) 57.92 43.26

300 LV 1.645136 0.94916 6.8981835 9.540216

QIF 1.722816 0.3843675 4.1667185 6.16592

Gains(%) 59.5 39.6

400 LU 1.159576 3.484848 10.68604 15.330464

QIF 1.519032 1.506921 6.501575 9.527528

Gains(%) 56.76 39.16

600 LU 0.991792 14.481692 22.314236 37.78772

QIF 0.896056 8.374032 13.571312 22.8414

Gains(%) 33.99 39.18

Table 5.5.5 Measured times for QIF and LU (2 slaves)

11 Algorithm Idle time Computation time Communication time Total Time

100 LU 0.310124 0.8169995 1.4387125 2.565836

QIF 0.444168 0.440908 0.6771882 1.562264

Gains(%) 46.03 52.93

200 LU 2.110288 2.1526562 3.2575077 7.520452

QIF 4.343452 1.1838207 1.7723592 7.299632

Gains(%) 45.01 45.59

300 LU 2.816756 2.6812612 7.5124747 13.010492

QIF 1.628056 2.4405967 3.0901915 7.158844

Gains(%) 8.98 58.87

400 LU 1.486868 3.511868 13.761412 18.760148

QIF 1.1525 2.1177387 7.6549647 10.732732

Gains(%) 39.7 44.37

600 LU 2.04514 8.4495777 32.933012 43.42773

QIF 0.640288 6.4147236 18.903752 25.958762

Gains(%) 24.08 42.6

Table 5.5.6 Measured umes for QIF and LU (4 slaves)

144

5.6 Summary

The objective of this work was to investigate the performance of QIF and PIE

algorithms as compared to LU and GE algorithms on a distributed memory parallel

computer which employs message passing as a means of co-ordination amongst the

processors.

The theoretical analysis of communication within the algorithms revealed that the

communication involved in PIE and QIF is halved to that of GE and LU. Although

the total amount of data moved for both algorithms are the same, the start-up cost

associated with the movement of data in the implicit algorithms are greatly reduced

because 50% less messages are needed to move the data as compared to the classical

algorithms. This relationship can be seen in the measured communication times of the

algorithms with the reduction of communication time for PIE and QIF being in the

range of 30% - 50%. The theoretical difference of 50% could not be obtained in the

numerical results due to several factors such as network load, delay and throughput.

The total time taken for an application is dependent on the computation time,

communication time (including synchronisation) and load imbalance. Load imbalance is

usually a measure of the equitable distribution of workload among the processing

elements. However, in networked systems, where processors are typically not

dedicated to the application under consideration, there is another side to load

imbalance, that is the effect of external CPU, memory or network loads. For example,

in a cluster of identical workstations, equal amounts of work may require different

execution times, owing to externally generated computation, swapping and network

activity. These influences vary dynamically and it is difficult to incorporate them

accurately in the theoretical analysis.

For the case of one slave program, relationship in communication between PIE/QIF

and GE/LU is not really halved because it is essentially a sequential program and the

communication is just between the master program and the slave program in sending

data and receiving results. However, for two and four slave programs the relationship

begins to show and the inherent parallelism within PIE and QIF is fully exploited.

In a message-passing parallel computer, the speed of communication between different

nodes of the network is of critical importance. Programs with a lot of data

communication between nodes may fmd the overall performance limited more by the

145

performance of the communication network than by the computational performance of

the nodes themselves. All the algorithms discussed in this chapter possess a

communication pattern which is regular and symmetric (and at approximately equally

spaced intervals). While regularity and symmetry may be a desirable property for

parallel algorithms on true multiprocessors, the above experience indicates that they

can be detrimental in cluster computing where communication costs factors occur so

heavily in performance degradation.

There are two factors that must be considered in order to access communication. First

is the start-up time which determines the short-message performance and the

asymptotic bandwidth which determines the long-message performance. Since

communication start-up times are comparatively high, best network utilisation is

achieved when messages are large and less frequent. Compared to GE and LU, PIE

and QIF send a larger volume of messages and the frequency of communication is

halved.

The principal impediment to performance on workstation clusters was interprocessor

communication overhead, as verified by our analytic performance model, suggesting

enhanced scalability for PIE and QIF with the use of faster communication (both

hardware and software). Further tests on larger clusters are necessary to confrrm these

tentative conclusions.

146

Chapter6

QZ decomposition on a shared memory multiprocessor

In the solution of dense linear systems of equation

Ax=b, (6.1)

it is usual for the matrix A to be converted to upper triangular (easily solvable) form by

a series of elementary stabilised eliminations.

Recently, orthogonal transformations operating on the rows of the matrix have become

popular for stability considerations. If Givens rotation matrices are used each rotation

eliminates a single element. The complete decomposition process can be described as

QT A = QTQT .•. QTQT A = R
r r-1 2 l

(6.2)

where Q[, QJ , ... ,Q; are (nxn) Givens transformations and R is the resulting upper

triangular matrix.

Substituting for A from (6.2) in equation (6.1) and taking into account the

orthogonality condition QT Q =I gives

Rx=QTb (6.3)

which can be solved by the usual back substitution process. The Givens QR method

has been discussed in chapter 2 and its parallelisation has been given in chapter 3.

In this chapter the performance of the Givens transformation will be compared to the

implicit version of orthogonal transformation, known as QZ factorisation. In this

factorisation Q is an orthogonal matrix and Z is similar to the Z matrix in the QIF

method discussed in chapter 4.

QZ was first proposed by Evans and Yalamov [Evans 94a]. In their work, it was

shown that for larger matrices the computational time for QZ decomposition is about

8% less than the time for Givens QR decomposition. Their comparison involved only

the sequential implementation of QR and QZ. The numerical stability of QZ was also

analysed and it was proved that the error growth is a linear function of the size of the

matrix and does not depend on the growth of intermediate results.

The work in this chapter involves investigating the performance of parallel QZ on a

shared memory parallel computer and comparing the performance with Givens parallel

QR decomposition. The results obtained will also be justified by a theoretical analysis

of the computational work and shared memory access count. The QR decomposition

147

method is presented in section 2.8.3 of chapter 2. Section 6.1 presents the QZ

decomposition method. The sequential and parallel algorithms for QZ decomposition

are given in section 6.2. In section 6.3, the computational complexity analysis and

shared memory access count is discussed. The results obtained are presented in section

6.4. A greedy strategy for QZ decomposition is proposed in section 6.5 and the

summary of the chapter in given in section 6.6.

6.1 QZ decomposition method

Given the linear system (6.1) where A is an nxn non-singular matrix, xis the unknown

vector and b is the right hand side vector and consider a concurrent transformation

matrix T such that when the matrix product TA is formed the entries in the first and

final columns of A, i.e. a21 , • • • , a •. J.J and a2...-1. . . ., a •. 1,..1 are eliminated

simultaneously.

Consider a matrix T to be a product form of plane rotations which can be viewed as

two successive Givens rotations applied simultaneously, i.e.,

[

1 0

T = T23 7;3 = 0 sincj>

0 -cosi/J

[

sin8

= cos (} cos 1/J

cos8sini/J

eo~ 1/Jl [si~ 8 ~ - c~s 8]
sini/J cos8 0 sin8

si~ 1/J si:~::~ 1/Jl

-cos 1/J sin e sin cp

applied to rows (1,3) and rows (2,3) of A for n=3.

Next, A and b are transformed as,

[

s8 0 -ce l[a11 a12 a131
TA3 = c8ci/J si/J s8ci/JJ a21 a22 a23J

cesrp -crp sesrp a31 a32 a33

[

ause -a3lce a,2s8 -a32ce
= auc8ci/J +a21 scp +a31s8ccp a12 c8ccp +a22 si/J +a32 s8ci/J

auc8si/J - a21ci/J + a31s8si/J a12c8si/J - a22 ci/J + a32 s8si/J

148

(6.1.1)

(6.1.2)

a13 s8 - a33c8 l
a13c8ccj> + a23scp + a33 s8ccj>

a13c8si/J- a23 ccp + a33s8srp
(6.1.3)

(6.1.4)

where c8 denotes cos 8 and s8c<j> denotes sinBcos<j>, etc.

The values of e and 4> are now chosen to annihilate the elements a21 and a23• This is

achieved when

• ~3
sme = ~ 2 2 '

~1 +~,
(6.1.5)

sin lP

where

(6.1.6)

The forward elimination process of QZ uses matrices of the form (6.1.2) for the

concurrent elimination of the entries in the kth and (n-k+ 1)th columns of matrix A of

order n where n is even.

The following is a description of the concmTent orthogonal decomposition process.

Fork= 1 to n/2-1 perform the following steps:

For i=k+1, ... , n-k form the matrices,

1

1

sine ki 0 -cos011

1

1

sin lP., sin011 cos~P11
1

1

cos e ki sin tP ki -cosiP11 sine ki sin tP ki

1

l k i n-k+l

(6.1.7)

149

1 k

i

n-k+1

1

and update A and b as follows,

A =Tk;A,

where for k=1, 2, ... , m, and i = k+ 1, ... , n-k, where m= n/2 -1

(6.1.8)

(6.1.9)

After this procedure is completed, a system Zu=d is obtained, where the fmal matrix Z

of the form,

au a1, a,,l-1 a~.

0
(I) (I) 0 a, a2.n-1

0 0
(n-1)

0 0 Z=
2 . , for n =odd (6.1.10) • • an+l n+l •

T'T

0 (I) (I) 0 an-1,2 an-l,n-1

a.1 a., an,n-1 a ..
and

fau 012 al,n -1 01.•1
0

(I) (I)

022 a2.n-I

0 0 0 0
(n-1) (n-1)

0 0 an~ an~+l D D I. for n = even. Z= 2'2 2•2 (6.1.11) (n-1) (n-1)

0 0 an 2 n an 2 n 0 0

D 0
~~·2 z:-1,~1

0 0

l~l
(I) (I)

~.J an-1,2 an-l,n-1

On2 an,n -1

The solution of the reduced system,

Zu=d,

where Z is given by equations (6.1.10) and (6.1.11) requires the bi-directional solution

process which has been described in section 4.1 of chapter 4.

Parallel OZ decomposition

As in the parallel QR algorithm where several rotations can be performed concurrently,

several QZ rotations can also be done concurrently. The order in which the elements of

a matrix is eliminated is called the annihilation pattern. The sequence in which the

!50

rotations are done for QZ is denoted by Figures 6.1.1 and 6.1.2 for even and odd sized

matrices respectively. The integers in the annihilation pattern denote the steps at which

the given elements are annihilated. The annihilation pattern for parallel QR has been

shown in chapter 3. The annihilation by Sameh and Kuck [Sameh 77] has been chosen

for the parallel QR implementation in this work.

XX XX

I XX XX I
3 5 XX XX 5 3
5 7 9 XX XX 9 7 5
7 9 11 13 XX XX 13 11 9 7
8 ID 12 14 XX XX 14 12 ID 8
6 8 ID XX XX ID 8 6
4 6 XX XX 6 4
2 XX XX 2

XX XX

Figure 6.1.1 Anmh1latton pattern for parallel QZ when n=10

XX XX

I XX XX I
3 5 XX XX 5 3
5 7 9 XX XX 9 7 5
7 9 11 13 XX XX 13 11 9 7
9 11 13 15 16 XX 16 15 13 11 9
8 10 12 14 XX XX 14 12 ID 8
6 8 ID XX XX ID 8 6
4 6 XX XX 6 4
2 XX XX 2
XX XX

Figure 6.1.2 Anmhtlatton pattern for parallel QZ when n=ll

The QR decomposition using the standard Givens annihilation pattern of Sameh and

Kuck on a (10x10) matrix will take 17 steps (Figure 6.1.3) as compared to the QZ

decomposition method which takes 14 steps as shown in Figure 6.1.1.

9
8 10
7 9 11
6 8 10 12
5 7 9 11 13
4 6 8 10 12 14
3 5 7 9 11 13 15
2 4 6 8 10 12 14 16
1 3 5 7 9 11 13 15 17 ..

Ftgure 6.1.3 G1vens anmhilatton pattern for n=10

151

6.2 Sequential and Parallel Algorithms for QR and QZ

Both QR and QZ algorithms were developed for a shared-memory parallel computer

and implemented on the Sequent Balance. The sequential algorithms are shown in

Algorithm 6.2.1 for QR decomposition and Algorithm 6.2.2 for the QZ decomposition.

When parallelising both the QR and QZ methods, the dynamic scheduling strategy was

more feasible because the number of annibilations that can be performed concurrently

varies at each step. For both the QR and QZ methods, the annibilations to be

performed are generated and kept in a task queue and the annibilation is performed as

the processors are available. Although more overheads are generated in keeping the

jobs in the task queue, load balancing of the processors is ensured. Algorithm 6.2.3

shows the parallel QR decomposition while Algorithm 6.2.4 shows the parallel QZ

algorithm.

The segments of the algorithm that is done in parallel is enclosed between the par and

end par statements. The columns and rows of the matrix A are numbered from 0 to n-

1. The right hand side vector b is augmented to the matrix A and becomes the nth

column of the matrix. All algorithms assume that n is even. The algorithms are

described in an algorithmic language and hence they cannot be directly converted to

running programs without some slight modifications. Statements enclosed within { }

are comments. The implementation of the parallel programs is dependent upon the

compiler of the shared memory parallel computer in use.

Algorithm 6.2.1 Sequential QR Decomposition

fork= 0 to n-2
fori=k+1 ton-1
{ annihilate A(i,k) }

end fori
end fork

d = sqrt(A(i,i)*A(i,i) + A(i-1,i)*A(i-1,i))
cos_t = A(i,i)/d
sin_t = A(i-1,i)/d
A(i,i) = d
for j = i+1 ton

A(i,j) = cos_t * A(ij) + sin_t * A(i-1,j)
A(i-1j) = cos_t * A(i-1,j)- sin_t * A(i,j)

end for j

152

Algorithm 6.2.2 Sequential QZ Decomposition

fork= 0 to n/2-1
nk = n-1-k
fori=k+l tonk-1
{ annihilate A(i,k) and A(i,n·l-k))

end fori
end fork

dl = A(nk,nk) * A(i,k) - A(nk,k) * A(i,nk)
d2 = A(k,nk) * A(nk,k) - A(k,k) * A(nk,nk)
d3 = A(k,k) * A(i,nk) - A(k,nk) * A(i,k)
sin_t = d31 sqrt(dl*d1 + d3*d3)
cos_t = dll sqrt(d1*dl + d3*d3)
sin_f = d21 sqrt(dl *d1 + d2*d2 + d3*d3)
cos_f = sqrt(dl*dl + d3*d3) 11 sqrt(d1*dl + d2*d2 + d3*d3)
for j = k+l to nk-1

A(k,j) = A(k,j) • sin_t- A(nkJ) * cos_t
A(ij) = (A(kj) * cos_t + A(nk,j) * sin_!) * cos_f + A(ij) * sin_f
A(nk,j) = sinJ * (A(k,j)*cos_t + A(nkj) * sin_t)- A(ij) • cos_f

end for j
I* update RHS *I
A(k,n) = A(k,n) • sin_t- A(nk,n) • cos_t
A(i,n) = (A(k,n) • cos_t + A(nk,n) * sin_t) * cos_f + A(i,n) • sin_f
A(nk,n) = (A(k,n) * cos_t + A(nk,n) * sin_t)* sin_f- A(~n) * cos_f
I* update top and bottom pivot rows *I
A(k,k) = A(nk,k) I cos_f
A(k,nk) = A(nk,nk) I cosJ
A(nk,k) = A(i,k) • cos_t- A(k,k) • sin_t
A(nk,nk) = A(i,nk) • cos_t- A(k,nk) • sin_t

When parallelising the GE, PIE, LU and QIF algorithms, static scheduling was

employed because it was known in advance the number of loop iterations to be

performed to complete the method. These loop iterations were partitioned and

assigned to be executed by the available processors.

In the QR and QZ methods, the number of rotations that can be done in parallel varies

at each step, hence dynamic scheduling seemed more appropriate. This was achieved

by generating a list of tasks that can be performed in parallel and keeping them in a

task queue. The tasks are then assigned to the available processors.

For the parallelisation of the QR method, the generation of tasks was done in two parts

(refer to Figure 6.2.1 for a lOxlO example). This is due to the programming restriction

on the Sequent Balance. The first par loop of Algorithm 6.2.3 was to generate the

annihilation tasks of the shaded elements ofthe lower triangular matrix in Figure 6.2.1.

The rest of the annihilation tasks in the lower triangular matrix of Figure 6.2.1 is

generated by the second par loop in Algorithm 6.2.3.

!53

Figure 6.2.1 QR annihilation pattern for a IOxlO matrix

Algorithm 6.2.3 Parallel QR Decomposition

jstart = 0
fork= n-1 down to 0

i= k
j = jstart
par
while i <= n-1

annihilate A(i,j)
i"j+1
j,i+2

end while
end par

end fork
jstart = jstart + 1
fork=2ton-1

i=k
j = istart
par
while i <= n-1

annihilate A(i,j)
j =i + 1
i=i+2

end while
end par
jstart = jstart + 1

end fork

In parallelising the QZ algorithm, the fu·st k loops of Algorithm 6.2.4 generates the

unshaded annihilation tasks list in Figure 6.2.2. The first par loop generates the upper

half while the second par loop generates bottom half. Similarly, the second k loop of

Algorithm 6.2.4 generates the annihilation tasks list for the striped elements in Figure

6.2.2. Once again, the first par loop generates the upper half of the tasks while the

second par loop generates the bottom half. It is anticipated then that with four par

loops for dynamic scheduling, there will be more overheads generated to maintain the

task list as compared to the parallel QR algorithm. As in the parallel QR, these four

loops are required due to the programming restriction on the Sequent Balance.

154

Figure 6.2.2 QZ annihilation pattern for a lOxlO matrix

Algorithm 6.2.4 Parallel QZ Decomposition

num_in_par = 1 { number of rotations to be done in parallel }
if n is even, m=n/2-1 else m=n/2
fork=1ton/2-1

if k is odd, add 1 to num_in_par
i_up = k, j_up = 1
par
while j_up < num_in_par

annihilate A(i_upj_up-1) and A(i_up,n-1-(j_up-1))
i_up = i_up -l,j_up = j_up + 1

end while
end par
i_down = n-k-1, , j_down = 1
par
while j_down < num_in_par

annihilate A(i_down,j_down-1) and A(i_down,n-1-(j_down-1))
i_down = i_down + 1,j_down = j_down + 1

end while
end par

end fork
ifn is odd, num_in_par = (m-1)/2+1 else num_in_par = (m-1)/2
fork= 1 tom-1

nk = m+1, i_up = m,j_up = k
par
while j_up < k + num_in_par

annihilate A(i_up,j_up) and A(i_up,n-1-j_up)
i_up= i_up -1,j_up =j_up + 1

end while
end par
i_down = nk, j_down = k
par
while j_down < num_in_par

annihilate A(i_down,j_down) and A(i_down,n-1-j_down)
i_down = i_down + 1, j_down = j_down + 1

end while
end par
if m-1 is even and k is even

num_in_par = num_in_par -1
ifm-1 is odd and k is odd

num_in_par = num_in_par -1
end fork

155

6.3 Computational Work and Memory Accesses of the QR and QZ methods

In this analysis, only the decomposition phase is considered as it is the most

computationally expensive stage in both QR and QZ methods. Furthermore, the back

substitution process of QR and the bi-directional solution process of QZ have been

covered in depth in chapter 4. The computational work and shared memory access

count of QR is covered in section 6.3.1 and QZ in section 6.3.2. A summary of the

analysis is given in section 6.3.3. To simplify the analysis in this chapter, all operations

are assumed to execute in the same amount of time and shall be termed as ops.

6.3.1 QR method

The analysis in this section refers to Algorithm 6.2.1. In order to evaluate the values of

sin 9 and cos 9 requires 2 mults, 2 div, 1 add and 1 sqrt. Assuming all operations take

the same amount of time to execute, this is a total of

•-I

Lj (6 ops)
i=l

=Gn2 -~n)r6ops] (6.3.1.1)

= 3n2
- 3n ops

To calculate the new entries for the reduced matrix and the RHS is

I.c2m+ 1a)(2j + 1)(j -1)
j=l

•-I

= L(3ops)(2/- j -1)
1=1 (6.3.1.2)

3 9 2 5 =2n -2n +2n-3 ops

Therefore, the total amount of computational work required by the QR algorithm is

(6.3.1.3)

156

The amount of shared memory accesses required during the calculation of sin a and

cos a is
•-I 0 3 2 3

3I,J=-n --n
j=l 2 2

(6.3.1.4)

and the shared memory accesses for the calculation of the reduced matrix and the RHS

is

~ {2 3 5) 4.l.,(2j+l)(j-l)= -n' --n2 +-n-1
j=l 3 2 6

(6.3.1.5)
8 3 2 10 =-n -6n +-n-4
3 3

Hence, the total sum of shared memory accesses required by the QR factorisation

algorithm is

8,9211 -n --n +-n-4
3 2 6

(6.3.1.6)

157

6.3.2 QZ method

In a similar manner the amount of computational work required for the QZ algorithm

(Algorithm 6.2.2) can be calculated.

To evaluate ~~. ~2 and ~3 involves 3(2 mults + la).

Similarly, we have sine= (2 mults + la+ ldiv + lsqrt),

cos e = 1 div,

sin <1> = (1 rnult + la+ 1 div + 1 sqrt),

and cos <jl = 1 div.

Assuming all operations take the same time to execute, the above evaluation then

requires 20 ops. In total, the complete evaluation process requires

n

'L,(lOopsXj-2)
1•2(2)

l-1 (6.3.2.1)

jn2 n)
=2'\. 4+ 2 -1 ops.

To calculate the new entries for the reduced matrix requires

•
L(8m+4a)(j- 2)(j- 2)

1•2(2)

n

= 'L,(l2ops)(/ -4j+4)
1•2(2)

=12f2/-12*4f2j+48 (6.3.2.2)
i=l j=l

= 12 *{~* ~ <%+ l)(n+ 1))-4s*{%<~ + 1) }48

=n3 -21n2 -46n+48 ops.

158

The updating of the RHS requires

n

L(6m+3a)(j-2)
}=2(2)

n

= L(9ops)(j- 2) (6.3.2.3)
}=2(2)

The updating of the top and bottom pivot row corners requires

n n

L(4m+2a)(j-2)+ L(8m+4a)(j-2)
}=2(2) }=2(2)

n

= 'I,(l8ops)(j- 2) (6.3.2.4)
}=2{2)

Thus the total amount of computational work required by QZ decomposition is

5
n3 --zn2 -9n-26 ops. (6.3.2.5)

For the shared memory accesses, the evaluation of l!.t. l!.2 and .1., , sin e, cos e, sin <1>

and cos <1> requires

n

'I,6U-2)
}=2(2)

(6.3.2.6)

The updating of new entries for the reduced matrix requires

n

L,9u- 2)(j- 2)
}=2(2)

n

= I.9</ -4j+4) (6.3.2.7)
}=2(2)

3, 632 69
=-n --n --n+36

4 4 2

accesses to shared memory.

159

Also, the updating of the RHS requires

•
I,6(j-2)

j=2(2)

(6.3.2.8)

shared memory accesses.

The updating of the top and bottom pivot row corners requires

•
I,6u-2)

j=2(2)

(6.3.2.9)

shared memory accesses.

Finally, the total amount of shared memory accesses required by QZ decomposition is

3 3 27 2 33
4

n -4n -2n (6.3.2.10)

6.3.3 A Summary

A summary of the computational work and the shared memory access count for QR

and QZ methods is given in Table 6.3.3.1.

Method Computational Complexity Shared Memory Access Count

QR 3 3 2 I 3 839,11
2n --n --n- -n --n +-n-4

2 2 3 2 6

QZ 3 5 2 3 3 27 2 33
n --n -9n-26 -n --n --n

2 4 4 2

Table 6.3.3.1 A summary of the computatiOnal complexity and shared memory access

count of QR and QZ methods.

Thus from Table 6.3.3.1 it is clear that the QR and QZ factorisations take roughly the

same amount of computational work but the shared memory access count for QR is

roughly twice more than that for the QZ factorisation.

160

6.4 Numerical Results

The parallel programs for both QR and QZ methods have been implemented using

dynamic scheduling on the Sequent Balance. This was considered to be the best

strategy to implement them as the number of elements to be eliminated in parallel

varies each time. Ahhough dynamic scheduling will ensure a balanced load across the

available processors, there are still some overheads incurred in maintaining the task

queue.

The numerical tests were performed on the Sequent Balance system which has 10

processors. All the processors are plugged into a single bus and share a common

memory. Each processor has 8 Kb of cache memory. The algorithms were

implemented in single precision using the C language. The parallel constructs were

supported by the Sequent C library.

In order to avoid the overhead of switching from one process to another, only a single

process was assigned to each processor and the tests were completed while no other

users' tasks were using the Balance. All the pro grams were written with the same

accuracy to obtain a meaningful comparison.

The exact solution of all the systems is chosen to be x=(l, .. ,l)T. Matrix A is of the

following kind in all the tests,

A= {aii I a;i = abs(i-j)/10.0, i ;tj, a,,= 0.001},

where n = 600, 800 and 1000.

Table 6.4.1 shows the timing (in seconds) of the parallel QR and parallel QZ

decomposition programs. The speedup and efficiency of both the decomposition

methods are shown in Tables 6.4.2 and 6.4.3 respectively.

Figure 6.4.1 shows the timing of QR and QZ decomposition methods in graphical form

while Figure 6.4.2 shows the temporal performance of both methods.

161

n Method Number of vrocessors
1 2 4 6 8 10

600 QR 13532.9 6774.66 3411.89 2289.54 1729.17 1389.78
QZ 12200.49 6070.89 3073.66 2072.86 1572.16 1280.96

Gain(%) 9.85 10.39 9.91 9.46 9.08 7.83
800 QR 32119.79 16027.8 8060.43 5388.72 4071.03 3268.78

QZ 28670.8 14386.06 7260.72 4874.45 3684.87 2973.42
Gain(%) 10.74 10.24 9.92 9.54 9.49 9.04

1000 QR 62887.9 31249.58 15760.28 10519.21 7915.58 6676.59
QZ 55943.02 28020.09 14101.17 9469.6 7266.2 5757.75

Gain(%) 11.04 10.33 10.53 9.98 8.2 13.76 .. Table 6.4.1- T1mmgs of parallel QR and parallel QZ decomposition

n Method Number of processors
2 4 6 8 10

600 1.99 3.96 5.91 7.82 9.73
800 QR 2.00 3.98 5.96 7.89 9.83
1000 2.01 3.99 5.97 7.94 9.41
600 2.00 3.97 5.89 7.76 9.52
800 QZ 1.99 3.94 5.88 7.78 9.64
1000 1.99 3.97 5.91 7.7 9.72 .. Table 6.4.2- Speedup of parallel QR and parallel QZ decomposition

n Method Number of processors
2 4 6 8 10

600 0.995 0.99 0.985 0.9775 0.973
800 QR 1.0 0.995 0.993 0.986 0.983
1000 1.005 0.9975 0.995 0.993 0.941
600 1.0 0.993 0.982 0.97 0.952
800 QZ 0.995 0.985 0.98 0.973 0.964
1000 0.995 0.993 0.985 0.963 0.972 .. Table 6.4.3- Efficiency of parallel QR and parallel QZ decomposition

It can be seen from the results that there is a gain of roughly 10% in execution time

yielded by the QZ decomposition method. Both the QR and QZ methods have a linear

speedup and the efficiency of both methods lie between 95-100%. The temporal

performance graph also shows the QZ decomposition method to be superior to QR in

permitting more parallelism to be achieved.

162

Timings of QR and QZ decomposition methods for n=lOOO

35000

30000

., 25000
§ 20000 .,
.5 15000 e
E=< 10000

5000

0

2 4 6 8 10

Number of processors

Figure 6.4.1 Timings of QR and QZ decomposition methods for n=lOOO

0.00018

0.00016 -g
0.00014 8

~ 0.00012 ..
" 0.0001
"'" !! 0.00008
0 0.00006
~
~ 0.00004

0.00002

0

2

Temporal Performance of QR and QZ decomposition
methods for n=1000

g z

4 6 8

Number of processors

10

Figure 6.4.2 The temporal performance of the QR and QZ methods for n=lOOO

163

6.5 The Greedy Approach

The parallelisation of the QZ method discussed in the earlier section was based on the

standard Givens annihilation pattern. Another annihilation strategy for QR proposed by

Modi and Clarke [Modi 84] was that based on the greedy strategy. In this section, the

greedy strategy for the QZ algorithm is proposed.

Consider a 10x10 matrix example. The greedy QR annihilation pattern is shown in

Figure 6.5.1 and the greedy QZ annihilation pattern is shown in Figure 6.5.2.

XX
4 XX

3 6 XX

2 5 8 XX

2 4 7 10 XX

1 4 6 9 11 XX

1 3 5 8 10 12 XX

1 3 5 7 9 11 13 XX

1 2 4 6 8 10 12 14 XX

1 2 3 5 7 9 11 13 15 XX

Figure 6.5.1 The greedy QR annihilation pattern for a 10x10 matrix

In the greedy QR strategy, the maximum possible number of rotations is performed in

each step, with the elements in one column being annihilated from bottom to top and

those in each row from left to right. Execution is fast to start with, as 5 rotations are

performed instep 1,4insteps 2, 3, 4and5, 3 insteps6, 7, 8, 9, lOand 11. But it ends

slowly with two rotations in steps 12 and 13 and only I in the last two steps.

Similarly in the QZ greedy strategy, the maximum possible rotations is performed in

each step too, with the elements being annihilated from left to right and right to left

simultaneously. In steps 1 and 2, 4 rotations are performed simultaneously with each

rotation zeroing 2 elements at a time. Three rotations are performed in steps 3 and 4, 2

in steps 5 and 6 and 1 in the last two steps.

XX XX

1 XX XX 1
2 1 XX XX J 2
3 2 1 XX XX 1 2 3

4 3 2 1 XX XX 1 2 3 4

5 4 3 2 XX XX 2 3 4 5
6 5 4 XX XX 4 5 6
7 6 XX XX 6 7

8 XX XX 8
XX XX

Figure 6.5.2 The greedy QZ anmhtlatiOn pattern for a 10x10 matrix

164

To summarise, the standard Givens annihilation pattern would take 17 steps to

factorise the matrix while the standard QZ takes 14 steps for the given lOxlO example.

Similarly, the greedy QR method takes 15 steps while the greedy QZ method takes 8

steps, a reduction of almost 50%. In general, the greedy QZ method takes n-2 steps to

transform a matrix of size nxn.

The results in section 6.4 show a gain of 10% in execution time for the standard

annihilation pattern employed in the parallelisation of QR and QZ. It is anticipated that

using the greedy strategy in parallelising QR and QZ would result in larger gains.

6.6 Summary

In this chapter, the Givens QZ orthogonal method has been described. The design of

the sequential and parallel algorithm was also presented together with that of QR

method. An analysis of the computational work and shared memory access was also

performed for both QR and QZ factorisation.

In terms of computational work, QR and QZ both share the same computational

complexity of 2n3
• However, there is a difference in the shared memory access count

where QZ factorisation has a shared memory access of order (3/2)n3 while QR

factorisation has a shared memory access of order (8/3)n3
•

Both algorithms were implemented on the Sequent Balance, a shared memory parallel

computer, and it was shown that QZ factorisation is faster than QR factorisation by

10% on average.

Although there is a larger difference of shared memory accesses between QR and QZ

as compared to the PIE and QIF methods, the amount of computational work for QZ

is greater requiring more overheads than QR and which erodes the possible gains.

Furthermore, there were also more overheads incurred in maintaining the task queue in

the implementation of parallel QZ as it had twice more parallel loops than the QR

factorisation.

165

Chapter7

Quadrant Interlocking (QI) Iterative methods

on Shared Memory Parallel Computer

Iterative methods are procedures to solve systems of linear equations of the form Ax=b

by generating a sequence of approximations to the solution vector x. These methods

start with an arbitrary first approximation to x and then improve this estimate in a

convergent sequence of steps. Iterative algorithms are frequently used to solve the

large sparse linear systems generated when working with partial differential equations

using discrete methods.

The Jacobi and the Gauss-Seidel iterations are two well known iterative methods that

solve linear systems of equations. Parallel versions of Jacobi and Gauss-Seidel methods

have been developed and widely implemented on parallel computers. In this chapter, a

new class of iterative methods are investigated and their performance on a shared

memory parallel computer is compared to the classical iterative methods of Jacobi and

Gauss-Seidel methods. Accelerated methods for these new parallel iterative schemes

are also investigated and compared with accelerated Jacobi and Gauss-Seidel methods.

Iterative methods are built around a partition (or splitting) of matrix A. The

conventional diagonal splitting of A into A=D-L-U where D is the main diagonal of A,

-Land -U are strictly lower and upper triangular elements of A respectively is the basis

of the Jacobi and Gauss-Seidel methods. The Quadrant Interlocking (QI) iterative

schemes split A into A=X-W-Z. The QI iterative methods were first developed by

Evans and Sojoodi-Haghighi [Evans 82]. They proved many convergence theorems for

these methods. What was not clear then was the rate of convergence of the new

methods because they were not implemented on a parallel computer and how they

compared to the classical iterative methods.

The new splitting scheme for the QI iterative method is described in section 7 .1. The

model problem used in this investigation is presented in section 7 .2. The sequential and

parallel implementation of the new schemes are discussed in section 7 .3. Section 7.4

contains the discussion on computational complexity and shared memory accesses for

the classical and QI iterative methods. The results of the numerical experiments are

given in section 7.5 and a summary of the chapter is given in section 7.6.

166

7.1 Quadrant Interlocking Matrix Splitting Strategy

Consider the linear system of equations

Ax=b (7.1.1)

where A is a non-singular matrix of order n, with elements a;j; i,j=l(l)n and x and b

are two n-dimensional vectors with x (unknown) and b (known) given by

X= [Xt.Xz, ... ,Xn)T,

b = [b~obz, ... ,b.]T.

The matrix A is partitioned into the form

A=X-W-Z

where the structure of the matrices X, -Wand -Z are defined as follows:

(7.1.2)

(7.1.3)

If X;, w., and z., i=l,2, ... ,n are the column vectors of the matrices X, -Wand -Z we

shall have,

X = [Xt.Xz, ..• ,Xn],

-W= [W~oWz, ... ,Wn],

and -Z = [Z1,Zz, ... ,Z.,].

The column vectors X; have the following general form,

r T
lO, ... Oa,,O, ... Oa .. O, ... oj ,
~ • n-r+l,l

i-1

J n+l]
i=l(l,_-2-'

x~= r T

lo, ... oa . . o, ... Oa .. o, ... oj ,
~ n-r+l,l 1,1

n-i

[n+3] i= -
2
- (l)n.

(7.1.4)

(7.1.5)

(7.1.6)

(7.1.7)

where the symbol [a] denotes the largest integer less than or equal to a. The column

vectors W; and Z; have the following general forms:

Forn odd,

167

and

r T
lO, ... Oa. . , ... ,a .. O, ... OJ ,
~ t+l,l n-1,1

i

[
r n+ I wi = o,. .. ,o] ,i = -2-

r T
l O, ..• o a , ... ,a O,. .. oj ,

i...-v-J n-i+2,i i-1,i

n-i+I

r T
lO, ... Oa.. , ... ,a. O, ... OJ ,

\-y-J I,J+l J,n-1

j

T z, = [o, ... o] , . n+I
1=-

2

r 1
l 0, ... 0 a. . , ... a.. O, ... Oj ,

'--..,--' •.n-•+2 1,1-1

n-i+I

n-I
i = I(I)-2-,

[
n+3l

i= -
2
-p)n.

n-I
i=I(I)-

2
-,

[
n+3l

i= -
2
-JI)n.

For neven,

I T
lO, ... Oa. . , ... ,a .. O, ... OJ ,

-....,._.J z+l,1 n-1,1

i

i = I(l) ~ -1,

[
r n n

w~ "' o,. .. ,o] , j = 2, 2 + I,

I T n

l 0, •.. 0 a . . , ... ,a. . O, ... OJ , i =
2

+ 2(1)n.
~ n-1+2,1 r-1,1

n-i+I

and

r 1
lO, ... Oa , ... ,a O, ... OJ , i = I(I)~2 -1,

"'-.!-' i,i+l i,n-1

i

(7.1.8)

(7.1.9)

(7.1.10)

[
r n n Z'= o, ... o1 ,i =2.2+I (7.1.1I)

'l o, ... Oa .. , ... a .. O, ... o
1J, i=-n2+2(l)n.

~ •.n-•+2 1,1-1

n-i+I

168

The four basic Quadrant Interlocking (QI) iterative methods for the system (7.1.1) can

now be defmed. The elements of the solution vector x can be derived in [n+ 1/2]

distinct steps where in each step the following (2x2) linear systems are being solved.

a .. x.+a. 'IX ·t""C. l r +1]
'·' ' •.n-•+ •-•• ' i = 1(1 _n_ (7.1.12)

a n-i+lJ X i +a n-i+l.n-i+l X n-i+l = C n-i+l l 2

where

(7.113)

therefore, if

{
a··

A = d 1,1
tJ.·- e

' an-i+l,i
a; n-i+l J , ;t 0

an-i+1,n-i+1
(7.1.14)

we obtain the unknowns Xi and xn _ i + 1• i = 1,2,-··,[n + 112] from the formulae

(c;Xan-i + l,n-i+ 1-cn -i+ 1xai,n-i + 1)

dj
Xj (7.1.15)

(7.1.16)

The (2x2) linear systems (7.1.12) can be solved by using the symmetric elimination and

Gauss elimination methods which were shown in chapter 2. In addition, Cramers Rule

can be used if it is diagonally dominant.

Note that if n is odd, (7.1.12) is a single equation.

It can be easily established that the system (7 .1.1) has been replaced by the

equivalent system

where

and

x=Bx+c

B = x-1(W +Z)

c= x-1b

[
n+l] Clearly, if the /1, ;t 0, i = 1,2,-··, -

2
- , then x-t exists.

169

(7.1.17)

(7.1.18)

(7.1.19)

7.1.1 Simultaneous Quadrant Interlocking iterative method (J.Q.I.)

In this method we choose arbitrary starting values

x~0> ,i = I,2,.··,n and compute x~l) from (7.1.15) and (7.1.16) in pairs, using x~0> in the

right- hand side vector (7.1.13).

Then x\2> is determined from xl') in the usual manner.

In general, given x~•>, xl•+~> can be determined by

(k+l) (k+l) ~- (k) } r
aiixi + ai.n-i+l Xn-i+l -- C; n + tl

j-I(ll--J
an-i+t;X;(k+l) +an-i+l,n-i+tx!~7:~ = c!~~+l - 2

where
n

C(k)-- L a· ·x(k)+b·
I - I,J) I

j=I n
chkli+l =- .Lian-i+I,jX)k)+bn-i+!

j=

jtd & n-i+I

Note that for n odd, the linear system in (7.1.l.I) is a single equation.

In matrix form, this can be expressed as

x(k+t) = Bx(k) + c

7.1.2 Simultaneous Overrelaxation iterative method (J.O.Q.I.)

In this method, a real parameter ro is chosen and (7 .1.1.1) is replaced by

(7.1.1.1)

(7.1.1.2)

(7.1.1.3)

a. 1 x1
(k + I)+a. x<~+,. +I) I= roc1(k)+ (1- ro)(a,· 1• x<k) +a. . x<k].+ I)

'· r,n-1+1 h ' t l,n-1+1 n l

a •-'•'·' xfk + I)+a n-i+t.n-i+t xhk-i ~I= rochkJ; + 1 + (I-ro{a •-'•'' xfk) +a,.,.,,,_,., xhkl; +I)

(7.1.2.I)

where cfk> and chk); +I are defined in (7.1.1.2).

In matrix form, the J.O.Q.I. method is defined as,

x(k+l) = B x(k> + roe
m

where Bm =roB+ (I-ro)/

When ro=I the JOQI method is equivalent to the J.Q.I. method.

170

(7.1.2.2)

(7 .1.2.3)

7.1.3 Successive Quadrant Interlocking iterative method (S.Q.I.)

In this method at each step the most recent values of xlk+ll is used when available.

Instead of (7 .1.1.2) we now have

C(kl =-~a· · x<.k+ll- ~ a· · x<~+ll- ~; a· · x<.kl + b· l I ~ 1,) J 4.J I,J J £.I I,J } I
j=l j=n-i+2 j=i+l

(k) - - ~ (k+l)- .e. (k+l) - ~i (k)
Cn-i+l- ~an-i+l,iXi £.J an-i+t,jXj £....~ an-i+t,jXj + bn-i+l

J=J j=n-j+2 j=i+l

In matrix form, the S.Q.I. method can be defined as,

xO<+ll = (X-W)·'zx<kl + (X-W).1b

or

where L = (X-W)"1Z

and c = (X-W)"1b.

7.1.4 Successive Overrelaxation iterative method (S.O.Q.I.)

(7.1.3.1)

(7.1.3.2)

(7.1.3.3)

In this method a real parameter ro is introduced and the equation (7 .1.3.2) is replaced

by

x(k+l) = (X-roW)-1[roZ+(l-ro)X]x(k+ll+ (X-roW)-1b

or

where L~ = (X-roW)"1(roZ+(l-ro)X)

and cm= (X-roW).1b

Again when ro=l the SOQI method is equivalent to the S.Q.I. method.

171

(7.1.4.1)

(7.1.4.2)

7.2 The Model Problem

The model problem used to investigate the QI iterative methods is taken from a set of

coupled ordinary differential equation (O.D.E.). The problem is described briefly in this

section.

Given the problem,

d2y
- dx2 +py+qz=ft(x), (7.2.1)

d 2z
- dx2 +qz+ PY = /2 (x), (7.2.2)

with specified boundary values at the end points of the interval (0,1).

Discretisation of the equations (7.2.1) and (7.2.2) by central difference operators on a

equally spaced grid of points ofxh i=l,2, ... ,n,

Yo }specified
Zo

y n+l }specified
Zn+l

Xo Xn Xn+l

will result in the following set of finite difference equations,

(7.2.3)

(7.2.4)

with the values yo, Yn+l• Zo. and Zn+l specified as above and p = q = l/h2
•

By setting up equations (7.2.3) and (7.2.4) in matrix form, and numbering the y;,

i=l,2, ... ,n, values in increasing order and the z; values in reverse order, the following

matrix equation is obtained.

172

h
2
ft(xt)+h

2
Yo

h2
ft (x2)

h
2
ft(x.)+h

2
Yn+l

= 'h2!;(;;)+-;;rz~:·
h2 /2 (x._t)

l h 2/2 (xt;) + h 2 Zo J

(7.2.5)

The matrix A of (7 .2.5) can be expressed as

A= 3 (l- B)

where B is a nxn real symmetric matrix given explicitly by

0 1 1

1 0 1 1
.1. 1 3

0 1

1 1 0

(7.2.6)

(7.2.7)

7.3 Sequential and Parallel Algorithms for the Classical and QI iterative

methods

The Jacobi, JOR, JQI and JOQI methods are well suited for implementation on parallel

and distributed computers because the computation of each element of the vector x

may proceed simultaneously. The new estimate of the vector x is computed from the

old estimate of x and the value of A and b. On the other hand, the Gauss-Seidel, SOR,

SQI and SOQI methods have a sequential nature and therefore require some special

techniques such as reordering of equations (Red-Black or multi-colour) to improve the

level of parallelism.

However, the performance of iterative methods as well as other parallel algorithms, is

in general, degraded by synchronisation. Synchronisation ensures that the parallel

implementation follows the exact execution flow of a sequential algorithm.

There are two classes of implementation for parallel algorithms, the synchronous

algorithm and the asynchronous algorithm. For synchronous algorithms, the processors

exchange all the necessary information regarding the results of the current iteration

before a new iteration is initiated. Hence, the overall performance of a synchronous

algorithm depends on the speed of the slowest processor. Asynchronous algorithms,

on the other hand, carry out the computations totally independent of the execution of

other processors. None of the processor has to wait for the slowest processor to

complete its execution cycle. Research in this area was pioneered more than twenty

years ago by Chazan and Miranker [Chazan 69] who studied the chaotic relaxation

method. For several years, interest in this subject was rather limited. Dramatic progress

in computer technology and the growing use of multiprocessor systems have

173

contributed to the renaissance of the asynchronous algorithms as demonstrated by their

use in a variety of computational problems including parallel integration of differential

equations [Mitra 87], discrete data problems [Uresin 90] and optimisation and network

flow problems [Bertsekas 89].

In this thesis, both the synchronous and asynchronous iterative algorithms are

investigated and the algorithms are presented in this section. The algorithms are

organised as follows: First, a description of the sequential algorithms for the classical

and QI iterative methods are given followed by the synchronous parallel versions of the

classical and the QI iterative methods and lastly, the outline of the asynchronous

algorithm employed for both the classical and the QI iterative methods.

In all the algorithms, only the iteration part of each iterative method is described. The

initial step of setting a starting value for the x vector and the convergence test are

omitted. A tolerance value of 0.0001 has been used in the convergence tests of all the

algorithms. Vector xold is a vector that keeps the previous approximations for x while

xnew retains the current approximation.

Sequential algorithms for classical and Ql iterative methods

For the model problem described in section 7.2, the sequential algorithm for the Jacobi

iterative method and the Gauss-Seidel methods are given in Algorithm 7.3.1 and

Algorithm 7.3.2 respectively. The Jacobi Overrelaxation (JOR) method and the

Successive Overrelaxation (SOR) method are shown in Algorithms 7.3.3 and 7.3.4

respectively.

The sequential JQI and SQI algorithms are given in Algorithms 7.3.5 and 7.3.6

respectively. The JOQI and SOQI algorithms are given in Algorithms 7.3.7 and 7.3.8

respectively.

Algorithm 7 .3.1 Sequential J acobi Algorithm

for r=O to n-1
ifr: 0

xnew(r)=((xold(r+ l)+xold(n-l))+ 1.0)/3.0
else if r=n-1

xnew(r)=((xo1d(n-2)+xold(0)+ 1.0)/3.0
else

xnew(r)=(xold(r+ 1)+ xold(r-1)+xold(n-1-r))/3 .0
end for

174

Algorithm 7.3.2 Sequential Gauss-Seidel Algorithm

forr=O ton
ifr= 0

xold(r)=((xold(r+ 1)+ xold(n-1))+ 1.0)/3.0
else if r=n-1

xold(r)=((xold(n-2)+xold(0)+ 1.0)/3.0
else

xold(r)=(xold(r+ 1)+xold(r-1)+xold(n-1-r))/3.0
end for

Algorithm 7.3.3 Sequential JOR Algorithm

for r=O to n-1
ifr"' 0

xnew(r)=xold(r)+w /3.0(1.0-xold(r)*3.0-xold(r+ 1)-xold(n-1))
else if r=n-1

xnew(r)= xold(r)+w/3.0(1.0-xold(r)*3.0-xold(r-1)-xold(O))
else

xnew(r)= xold(r)-w /3.0(xold(r)*3.0-xold(r+ 1)-xold(r-1)-xold(n-1-r))
end for

forr=O ton
ifr= 0

Algorithm 7.3.4 Sequential SOR Algorithm

xold(r)= (w+w*(xold(r+ 1)+ xold(n-1)))/3.0-w*xold(r)+xold(r)
else ifr=n-1

xold(r)= (w+w*(xold(r-1)+xold(0)))/3.0-w*xold(r)+xold(r)
else

xold(r)= (w*(xold(r+ 1)+xold(n-1)+xold(n-1-r)))/3.0-w*xold(r)+xold(r)
end for

Algorithm 7 .3.5 Sequential JQI Algorithm
for r=Oton/2-1

ifr = 0

end for r

rhs1 = 1.0 + xold(r+1)
rhs2 = 1.0 + xold(n-r-2)
det = 1.0/3.0
xnew(r) = (rhs1+det*rhs2)/(3.0-det)
xnew(n-1-r) = (rhs2+det*rhs1)/(3.0-det)

else if r = n/2-1

else

end if

rhs1 = xold(r-1)
rhs2 = xold(n-r)
det = 2.0/3.0
xnew(r) = (rhs1+det*rhs2)/(3.0-det*2.0)
xnew(n-1-r) = (rhs2+det*rhs1)/(3.0-det*2.0)

rhs1 = xold(r+1)+xold(r-1)
rhs2 = xold(n-r)+xold(n-r-2)
det = 1.0/3.0
xnew(r) = (rhsl+det*rhs2)/(3.0-det)
xnew(n-1-r) = (rhs2+det*rhs1)/(3.0-det)

175

Algorithm 7.3.6 Seauential SOI Algorithm
for r=Oton/2-1

ifr= 0
rhs1 = 1.0 + xo1d(r+1)
rhs2 = 1.0 + xold(n-r-2)
del= 1.0/3.0
xold(r) = (rhs1+del*rhs2)/(3.0-del)
xold(n-1-r) = (rhs2+del*rhs1)/(3.0-del)

else if r = n/2-1

else

end if

rhs1 = xold(r-1)
rhs2 = xold(n-r)
del= 2.0/3.0
xold(r) = (rhs1+del*rhs2)/(3.0-del*2.0)
xold(n-1-r) = (rhs2+del*rhs1)/(3.0-del*2.0)

rhsl = xold(r+l)+xold(r-1)
rhs2 = xold(n-r)+xold(n-r-2)
det = 1.0/3.0
xold(r) = (rhs1+del*rhs2)/(3.0-del)
xold(n-1-r) = (rhs2+del*rhsl)/(3.0-del)

end for r

Algorithm 7.3.7 Seouential JOOI Algorithm
for r-Oton/2-1

ifr= 0
rhs1 = w+w*xold(r+ 1)+(1.0-w)*(3.0*xold(r)-xold(n-1-r))
rhs2 = w+w*xold(n-r-2)+(1.0-w)*(3.0*xold(n-1-r)-xold(r))
del= 1.0/3.0
xnew(r) = (rhs1 +del*rhs2)/(3.0-det)
xnew(n-1-r) = (rhs2+del*rhsl)/(3.0-det)

else if r = n/2-1

else

end if
endforr

rhs1 = w*xold(r-1)+(1.0-w)*(3.0*xold(r)-2.0*xold(n-1-r))
rhs2 = w*xold(n-r)+(1.0-w)*(3.0*xold(n-1-r)-2.0*xold(r))
del= 2.0/3.0
xnew(r) = (rhs1+del*rhs2)/(3.0-de1*2.0)
xnew(n-1-r) = (rhs2+det*rhsl)/(3.0-del*2.0)

rbsl = w*xold(r+ l)+w*xold(r-1)+(1.0-w)*(3.0*xold(r)-xold(n-1-r))
rhs2 = w*xold(n-r)+w*xold(n-r-2)+(1.0-w)*(3.0*xold(n-1-r)-xold(r))
del= 1.0/3.0
xnew(r) = (rhs1 +del*rhs2)/(3.0-del)
xnew(n-1-r) = (rhs2+del*rhsl)/(3.0-det)

176

Algorithm 7.3.8 Sequential SOQI Al!:(orithm
for r=Oton/2-1

ifr= 0
rhs1 = w+w*xold(r+ 1)+(1.0-w)*(3.0*xold(r)-xold(n-1-r))
rhs2 = w+w*xold(n-r-2)+(1.0-w)*(3.0*xold(n-1-r)-xold(r))
det = 1.0/3.0
xold(r) = (rhs 1 +det*rhs2)/(3.0-det)
xold(n-1-r) = (rhs2+det*rhsl)/(3.0-det)

else if r = n/2-1

else

end if
end for r

rhs1 = w*xold(r-1)+(1.0-w)*(3.0*xold(r)-2.0*xold(n-1-r))
rhs2 = w*xold(n-r)+(l.O-w)*(3.0*xold(n-1-r)-2.0*xold(r))
det = 2.0/3.0
xold(r) = (rhs1 +det*rhs2)/(3.0-det*2.0)
xold(n-1-r) = (rhs2+det*rhs1)/(3.0-det*2.0)

rhsl = w*xold(r+ l)+w*xold(r-1)+(1.0-w)*(3.0*xold(r)-xold(n-l·r))
rhs2 = w*xold(n-r)+w*xold(n-r-2)+(1.0-w)*(3.0*xold(n·1·r)-xold(r))
det = 1.0/3.0
xold(r) = (rhs l +det*rhs2)/(3.0-det)
xold(n-1-r) = (rhs2+det*rhs1)/(3.0-det)

Synchronous Parallel Algorithms for classical and Ql iterative methods

In the synchronous parallel Jacobi, JQI, JOR and JOQI methods, parallelism is

achieved by statically allocating the Jacobi iterations for the different grid points to the

available processors. The outline of the synchronous parallel algorithms for Jacobi and

JOR is shown in Algorithm 7.3.9 and the outline of the synchronous parallel algorithms

for the JQI and JOQI is shown in Algorithm 7 .3.1 0.

Algorithm 7.3.9 Parallel Jacobi and JOR A!!:(orithms
do
par
for r=Oton-1

perform Jacobi or JOR iteration
end forr
end par
synchronise all processors
until convergence is reached

Al!:(orithm 7.3.10 Parallel JQI and JOQI Algorithms
do
par
for r=Oton/2-1

perform JQI or JOQI iteration
end for r
end par
synchronise all processors
untilconverRenceisreached

177

Parallelising the Gauss-Seidel, SOR, SQI and SOQI methods are not as straight

forward because these methods are not directly parallelisable. In order to parallelise

these methods, the points need to be reordered such that the iterations are performed

on the even points first, synchronise and then iterate on the odd points. This strategy is

known as the red-black ordering. The outline of the synchronous parallel algorithm for

Gauss-Seidel and SOR methods is shown in Algorithm 7 .3.11 and the outline of the

synchronous parallel algorithm for the SQI and SOQI methods is shown in Algorithm

7.3.12.

Algorithm 7 .3.11 Parallel Gauss-Seidel/SOR Algorithms (Red-Black Ordering)
do
par
for all even indices between 0 to n-1

partition points to available processor
perform Gauss Seidel or SOR iteration
synchronise processors

for all odd indices between 0 to n-1
partition points to available processor
perform Gauss Seidel or SOR iteration
synchronise processors

end par
until convergence is reached

Algorithm 7.3.12 Parallel SOI/SOQI Algorithms (Red Black Ordering)
do
par
for all even indices between 0 to n/2

partition points to available processor
perform SQI or SOQI iteration
synchronise processors

for all odd indices between 0 to n/2
partition points to available processor
perform SQI or SOQI iteration
synchronise processors

end par
until converoence is reached

178

Asynchronous Algorithms for classical and QI iterative methods

In the asynchronous algorithms, data is partitioned amongst the processors and each

processor iterates on the data points within its local memory until local convergence is

achieved without synchronising with other processors. The algorithm terminates when

all processors have converged to the actual solution, i.e. upon global convergence. The

outline of the asynchronous algorithms for all the iterative methods is shown in

Algorithm 7.3.13.

do
do

Algorithm 7.3.13 Asynchronous Iterative Algorithm

Iocal_flag = 1
each processor perform Jacobi/GS/JOR/SOR/JQI/SQI/JOQI/SOQI iterations
if no convergence within a processor,

local_flag = 0
while local_flag still 0
Set global convergence flag for the particular processor that has converged.

while global convergence not achieved.

179

7.4 Computational Complexity and Shared Memory Access Analysis for the

Classical and QI iterative methods

The computational complexity and shared memory access counts for the iterative

methods discussed in this chapter have been analysed for a single iteration. The

analysis is based on the sequential iterative programs. In the results section 7 .5, a

simple model is derived to relate the numerical results to the analysis completed in this

section.

7 .4.1 J acobi and Gauss-Seidel iterative methods

In approximating the first and last values of the vector x, a total of 2m+4a operations

are required. The approximation of the remaining n-2 values require (n-2)(lm+2a)

operations. Hence a total of

n(m + 2a) operations (7.4.1.1)

are required for a single iteration of the Jacobi and Gauss-Seidel methods.

The number of shared memory accesses required in approximating the first and last

values of vector xis 6 and the remaining n-2 values require (n-2)4. Hence a total of

4n-2 shared memory accesses (7 .4.1.2)

is required for a single iteration of the Jacobi and Gauss-Seidel algorithms.

A similar analysis can be performed on the JOR and SOR algorithms.

7.4.2 JQI and SQI methods

The number of operations required to approximate the first and last values of vector x

for both JQI and SQI methods is !Om + lOa. The approximation of the remaining

values require (n/2-2)(5m+6a) operations. Hence, a total of

512n m + (3n-2)a operations (7.4.1.3)

are required for a single iteration of the JQI and SQI methods.

The number of shared memory accesses required to approximate the first and last

values of the vector x is 8. The remaining values of vector x require 6(n/2-2) shared

memory accesses. In total, a single iteration of the JQI and SQI methods require

3n -4 accesses to shared memory. (7.4.1.4)

A similar analysis can be performed on the JOQI and SOQI algorithms.

180

7.4.3 Summary

Table 7 .4.3.1 provides a summary of the operational counts and the shared memory

access counts for the classical and QI iterative methods discussed in this chapter. The

figures shown in the summary reflect the computational work and shared memory

access for a single iteration for each of the methods. The total work for the methods

would then be the number of iterations times the computational work for a single

iteration. Likewise the analysis for the shared memory access counts of the iterative

methods is also based on a single iteration.

Methods Computational Count Shared Memory Access

Count

Jacobi & Gauss-Seidel n(m +2a) 4n- 2

JQiandSQI 5!2n m + (3n-2)a 3n- 4

JOR 2n(m+2a) 6n-2

SOR (5n-2)m + 4na 6n-2

JOQI 13/2nm +5na Sn-4

SOQI 13/2nm+5na Sn-4

Table 7.4.3.1 A summary of the operational count and the shared memory access

count for classical and QI iterative methods

The JQI and SQI methods have 25% less accesses to shared memory compared to the

Jacobi and Gauss-Seidel methods while the JOQI and SOQI methods have 16% less

accesses to shared memory when compared to the JOR and SOR methods. On the

other hand, JQI and SQI have about 60% more computational work than Jacobi and

Gauss-Seidel while JOQI and SOQI have about 23% more computational work than

JOR and SOR for each iteration.

181

7.5 Numerical Results

Numerical experiments were carried out in the dedicated mode on the Sequent

Balance. All timing results are given in CPU seconds. The asynchronous iterative

methods and their synchronous counterparts were tested on p=l, 2, 4, 6, 8, 10

processors. The model problem as stated earlier with 100, 200, and 400 equations

were used. The convergence criteria is 0.0001.

The algorithms were implemented in single precision using the C language. The parallel

constructs were supported by the Sequent C library. All the programs, except the

synchronous parallel Gauss-Seidel, SQI, SOR and SOQI methods, employed a static

scheduling of tasks, i.e. distributing the computation load amongst the processors

before execution of the program commences. The synchronous parallel Gauss-Seidel,

SQI, SOR and SOQI methods were parallelised using the red-black ordering strategy

where the dynamic scheduling of tasks was employed.

In order to avoid the overhead of switching from one process to another, only a single

process was assigned to each processor and the tests were completed while no other

users' tasks were using the Balance. All the programs were written with the same

accuracy to obtain a meaningful comparison.

n Methods Iteration p-1 p=2 p-4 p-6 p-8 p=10

100 Jacobi 28614 468.37 252.46 144.19 110.72 96.52 93.54

JQI 18699 414.07 218.25 124.87 93.8 79.69 77.14

Gain(%) 11.5934 13.5507 13.399 15.2818 17.4368 17.5326

200 Jacobi 113332 3679.17 1890.24 1048.18 755.85 623.7 56D.48

JQI 74803 3274.56 1698.31 903.78 647.81 528.46 455.11

Gain(%) 10.9973 10.1537 13.7763 14.2938 15.27 18.8

400 Jacobi 451079 29045.68 14843.44 7824.25 5517.72 4481.35 3702.8

JQI 299221 26172.77 13241.47 6927.87 4808.62 3750.8 3121.61

Gain(%) 9.891 10.7924 11.4564 12.8513 16.302 15.696

Table 7.5.1: Ttmmgs of the synchronous parallel Jacobt and JQI

Table 7.5.1 shows timings for the parallel synchronous Jacobi and JQI methods. As

can be seen from the results, the gains in timings of the parallel synchronous JQI

method over the Jacobi method varies between 10% to 18%. Table 7.5.2 shows the

182

timings of the asynchronous Jacobi and JQI methods while Table 7.5.3 shows the

speedups obtained for the synchronous and asynchronous Jacobi and JQI methods. The

gains in timings for the asynchronous JQI over the asynchronous Jacobi was greater,

i.e. around about 20%.

n Methods p-1 p-2 p:4 p-6 p:8 p:10

100 Jacobi 413.35 209.27 105.95 72.o7 55.42 59.94

JQI 324.0 162.46 82.52 56.73 43.32 35.49

Gain(%) 21.6161 22.3682 22.1142 21.2849 21.8333 40.7908

200 Jacobi 3257.36 1645.58 826.67 555.44 421.01 349.17

JQI 2613.7 1290.21 649.79 438.35 331.91 268.71

Gain(%) 19.7602 21.5954 21.3967 21.0806 21.1634 23.0432

400 Jacobi 26351.42 13263.54 6557.32 4369.83 3292.32 2646.4

JQI 20776.98 10313.67 5143.32 3447.65 2599.29 2089.07

Gain(%) 21.1542 22.2404 21.5637 21.1033 21.0499 21.06

Table 7.5.2: T1mmgs of the asynchronous parallel Jacob1 and JQI

n p Synchronous Asynchronous
Jacobi JQI Jacobi JQI

100 2 1.86 1.9 1.98 1.99
4 3.25 3.32 3.9 3.93
6 4.23 4.41 5.74 5.71
8 4.85 5.2 7.46 7.48
10 5.01 5.37 6.9 9.13

200 2 1.95 1.93 1.98 2.02
4 3.51 3.62 3.94 4.02
6 4.87 5.05 5.86 6.1
8 5.9 6.2 7.74 7.87
10 6.56 7.2 9.33 9.73

400 2 1.96 1.98 1.99 2.01
4 3.71 3.78 4.01 4.04
6 5.26 5.44 6.03 6.02
8 6.48 6.98 8.0 7.99
10 7.84 8.38 9.96 9.95

Table 7.5.3 Speedup of synchronous and asynchronous Jacob1 and JQI

The timing of an asynchronous program is the maximum execution time of the

processors participating in the execution. Likewise, the number of iterations of an

asynchronous program is the maximum number of iterations amongst the participating

processors. The defmition of speedup used in this chapter is S=t1/tp where tp is the

183

execution time of the slowest processor and tt is the time to execute the parallel

program on a single processor. It can be seen that the asynchronous Jacobi and JQI

programs gave better speedup as compared to the synchronous counterparts.

" .,
c
0

I!
" .5 ..
E
i=

.,
c

~
" ! .. c
0 .,
~

Timing of sync and asy11c J and JQI for n=200

2000

1800

1600
-+-syncJ

1400 -a-AsyncJ
1200 ---....-sync JQI

1000 -¥-AsyncJQJ

800

600

400

200

0

2 4 6 8 10

Number of processors

Figure 7 .5.1 -Execution time in seconds for Jacobi and JQI

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

2

Temporal Peiformance of sync and async J and JQ/for N=200

-+-syncJ

-a-AsyncJ
___......_Sync JQJ

-¥- Async JQJ

4 6

Number of processors

8

Figure 7 .5.2- Temporal performance of Jacobi and JQI

10

Figure 7 .5.1 shows a graphical representation of the execution times of the

synchronous and asynchronous Jacobi and JQI methods for n=200. The temporal

184

performance of the synchronous and asynchronous Jacobi and JQI methods for n=200

is shown in the graph of figure 7.5.2. Temporal performance is defmed as the inverse

of the execution time where the units are solution per second or timesteps per second

[Hockney 96]. It can be seen that the algorithm with the highest performance executes

in the least time and therefore is the better algorithm. From figure 7.5.2 it can be seen

that the asynchronous versions of both Jacobi and JQI has a better temporal

performance than their synchronous counterparts. Again, the JQI method

outperformed the Jacobi method in terms of timesteps per second for both the

synchronous and asynchronous versions.

n Methods Iterations p=1 p=2 p=4 p=6 p=8 p=10

100 Gauss-Seidel 14308 312.21 166.32 95.38 73.04 67.93 69.04

SQI 9350 237.75 126.29 72.36 56.11 48.12 46.93

Gain(%) 23.8493 24.0681 24.135 23.1791 29.1624 32.0249

200 Gauss-Seide1 56667 2440.96 1274.67 691.01 507.43 440.1 451.15

SQ1 37402 1871.55 971.91 524.47 375.5 312.78 361.75

Gain(%) 23.273 23.752 24.101 25.9996 28.9298 19.816

400 Gauss-Seidel 225540 19467.68 10057.83 5266.87 3733.33 3125.6 2997.83

SQI 149611 14888.78 7634.5 3972.83 2780.66 2185.95 1857.26

Gain(%) 23.5205 24.0939 24.5694 25.5779 30.063 38.0465

Table 7 .5.4: Tumngs of the synchronous parallel Gauss-Serdel and SQI (Red-Black

ordering)

Methods p=1 p=2 p=4 p=6 p=8 p=10

n=100 Gauss-Seidel 143.5 73.66 37.75 25.64 19.77 16.32

SQI 129.93 64.95 33.1 22.85 17.77 14.63

Gain(%) 9.46 11.82 12.32 10.88 10.12 10.36

n=200 Gauss-Seidel 1132.61 578.2 290.42 195.34 148.82 120.44

SQI 1042.66 515.22 260.02 175.89 133.12 108.27

Gain (%) 7.94 10.89 10.47 9.96 10.55 10.10

n=400 Gauss-Seidel 9068.81 4638.51 2287.83 1534.68 1158.57 932.86

SQI 8406.84 4116.33 2058.89 1381.49 1041.72 838.22

Gain(%) 7.29 11.26 10.0 9.98 10.09 10.15

Table 7.5.5: T1mmgs of the asynchronous parallel Gauss-Se1del and SQI methods

185

Table 7.5.4 shows the timings for the parallel synchronous Gauss-Seidel and SQI

methods, both employing the red-black strategy to achieve parallelism. The gain of the

parallel synchronous SQI method over the Gauss-Seidel method ranges between 20-

30%. Table 7.5.5 shows the timings of the asynchronous Gauss-Seidel and

asynchronous SQI methods. The gain of the asynchronous SQI over Gauss-Seidel is

between 7-10%. This is probably due to the natural ordering employed in the

asynchronous versions as opposed to the red-black ordering in the synchronous

versions. Table 7.5.6 shows the speedup of the synchronous and asynchronous Gauss­

Seidel and SQI methods. The speedup of the asynchronous programs seemed better

than the synchronous versions. Table 7.5.7 shows the number of iterations for the

asynchronous Jacobi, JQI, Gauss-Seidel and SQI methods.

n p Synchronous Asynchronous
Gauss-Seidel g) I Gauss-Seidel SOl

100 2 1.88 1.88 1.95 2.0
4 3.27 3.29 3.8 3.93
6 4.27 4.24 5.59 5.69
8 4.6 4.94 7.26 7.31
10 4.52 5.07 8.79 8.88

200 2 1.91 1.93 1.96 2.02
4 3.53 3.57 3.89 4.01
6 4.81 4.98 5.79 5.93
8 5.55 5.98 7.61 7.83
10 5.41 5.17 9.4 9.63

400 2 1.94 1.95 1.96 2.04
4 3.7 3.75 3.96 4.08
6 5.21 5.35 5.91 6.08
8 6.23 6.81 7.83 8.07
10 6.49 8.02 9.72 10.02

Table 7 .5.6 Speed up of the synchronous and asynchronous Gauss-Setdel and SQI

methods

Figure 7.5.3 shows the graphical view of the execution time of the synchronous and

asynchronous Gauss-Seidel and SQI programs. In Figure 7.5.4 the graph of the

temporal performance of the synchronous and asynchronous Gauss-Seidel and SQI

programs are shown. It can be seen that both the asynchronous programs have a better

temporal performance than the synchronous counterparts but in both cases the SQI

method showed to be better.

186

1400

1200

.. 1000 ..,
c

!l 600 ..
.5 600
" E
I=

400

200

0

2

Timing of sync and async Gauss Seidel and SQ/for n=200

4

--+-syncGS
-111-AsyncGS
_._Sync SOl

~AsyncSQI

6

Number of processors

8 10

Figure 7.5.3- Execution time in seconds for Gauss-Seidel and SQI methods

..,
c
0

:r:
" ll
Q.

" c
0 ..,
-l!
~

O.o1

0.009

0.006

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

2

Temporal Peifonnance of sync and async Guass-Seidel and SQ/for n=200

--+-syncGS
-1!1-AsyncGS
_._Sync SOl
~AsyncSOI

4 6 6

Number of processors

10

Figure 7 .5.4 - Temporal performance of Gauss-Seidel and SQI methods

Table 7.5.8 shows the timings of the synchronous JOR and JOQI methods while the

timings of their asynchronous counterparts is shown in Table 7.5.9. The speedup of

both the synchronous and asynchronous JOR and JOQI methods are shown in Table

7 .5.10. The number of iterations for the asynchronous JOR and JOQI methods are

shown in Table 7 .5.11.

187

The gain in execution time of the synchronous JOQI is between 20-25% while the

gain in the asynchronous JOQI is between 33-34%. Again, the speedup of the

asynchronous programs were much better than the synchronous versions.

The timings of the synchronous SOR and SOQI methods are shown in Table 7.5.12

while their speedup figures are shown in Table 7.5.13.

n p Number of iterations for asynchronous methods
Jacobi JQI Gauss-Seidel SQI

100 1 28614 18700 14310 9326
2 28939 18790 14612 9397
4 28839 19500 14612 9786
6 29833 19681 15115 9936
8 30033 19656 15328 10097
10 36836 18930 14911 9756

200 1 113332 74804 56668 37353
2 114271 75273 57792 37627
4 113752 75337 57642 37700
6 114950 78070 58347 38931
8 113777 78049 57638 39359

10 115637 75421 57877 38112
400 1 451079 299222 225542 149512

2 453926 301009 228822 150566
4 454870 301140 228588 150892
6 457480 304587 228966 152648
8 453986 301351 228831 150725
10 453734 301556 229211 150713

Table 7.5.7 Number oftterauons for the asynchronous Jacobt, JQI, Gauss-Setdel and

SQI methods.

n Methods Iterations p=1 p=2 p=4 p=6 p=8 p=10

100 JOR 28614 815.44 420.61 229.12 167.42 135.18 119.4

JOQI 18699 606.98 318.12 175.46 129.5 106.51 93.84

Gain(%) 25.5641 24.3669 23.42 22.6496 21.2088 25.56

200 JOR 113332 6513.23 3291.68 1710.57 1206.12 946.39 864.16

JOQI 74803 4815.7 2467.75 1309.32 921.36 748.91 671.94

Gain(%) 26.0628 25.0307 23.4571 23.6096 20.8667 22.2436

400 JOR 451079 51492.32 26118.05 13449.19 9180.03 7041.79 5765.34

JOQI 299221 38583.89 19686.06 10069.14 6957.85 5329.19 4375.28

Gain(%) 25.0692 24.6226 25.1319 24.2067 24.3205 24.1106

Table 7.5.8: Timmgs of the synchronous parallel JOR and JOQI methods (w=l.O)

188

n Methods p-1 p-2 p=f p-6 p-8 p=10

100 JOR 795.13 403.57 202.45 137.09 104.18 83.82

JOQI 521.63 263.01 131.62 90.1 68.24 55.18

Gain(%) 34.3969 34.8291 34.9864 34.2768 34.4979 34.1685

200 JOR 6321.06 3193.25 1590.87 1067.92 805.8 648.3

JOQI 4861.11 2091.84 1048.12 702.79 529.7 426.46

Gain(%) 33.6841 34.4918 34.1166 34.1908 34.2641 34.2187

400 JOR 50598.29 25455.11 12648.76 8432.29 6356.57 5104.95

JOQI 33648.62 16644.91 8329.14 5558.11 4184.12 3361.14

Gain(%) 33.49 34.6107 34.1505 34.0854 34.1765 34.1592

Table 7.5.9: T1mmgs of the asynchronous parallel JOR and JOQI methods (w=l.O)

n p Synchronous Asynchronous
JOR JOQI JOR JOQI

100 2 1.94 1.91 1.97 1.98
4 3.56 3.46 3.93 3.96
6 4.87 4.69 5.8 5.79
8 6.03 5.7 7.63 7.64
10 6.83 6.47 9.49 9.45

200 2 1.98 1.95 1.98 2.0
4 3.81 3.68 3.97 3.99
6 5.4 5.23 5.92 5.96
8 6.88 6.43 7.84 7.91
10 7.54 7.17 9.75 9.83

400 2 1.97 1.96 1.99 2.02
4 3.83 3.83 4.0 4.03
6 5.61 5.55 6.0 6.05
8 7.31 7.24 7.96 8.04
10 8.93 8.82 9.91 10.01

Table 7.5.10 Speedup of the synchronous and asynchronous JOR and JOQI methods

n=100 p=1 p=2 p=4 p=6 p=8 p=10

JOR 28615 28948 28756 29611 30012 28731

JOQI 18699 18710 19430 19548 19560 18867

n=200 p=l p=2 p=4 p=6 p=8 p=10

JOR 113334 114451 113834 115487 113848 114099

JOQI 74803 74885 75163 78254 78078 75216

n=fOO p=1 p=2 p=f p=6 p=8 p=10

JOR 451087 454800 453129 455454 453121 453393

JOQI 299221 300744 301199 303795 300202 300963

Table 7.5.11 Number of IteratiOns for the asynchronous JOR and JOQI methods.

189

n Methods w Iteration p=1 p=2 p=4 p=6 p=8 p=10

100 SOR 1.95 242 7.83 4.08 2.29 1.7 1.45 1.31

SOQ1 1.94 176 5.34 2.84 1.77 1.52 1.45 1.49

Gain(%) 31.8 30.39 22.7 10.59 . .
200 SOR 1.98 486 31.35 16.11 8.66 6.13 4.94 4.35

SOQI 1.97 327 19.56 10.08 5.55 4.16 3.56 3.2

Gain(%) 37.61 37.43 35.91 32.14 27.94 26.44

400 SOR 1.99 969 124.85 63.7 33.14 22.94 17.98 15.71

SOQ1 1.99 913 109.82 55.34 28.11 19.85 14.1 11.55

Gain(%) 12.04 13.12 15.18 13.47 21.58 26.48

Table 7.5.12: T1mmgs of the synchronous parallel SOR and SOQI (Red-Black)

n=100 p=2 p=4 p=6 p=8 p=lO

SOR 1.92 3.42 4.61 5.4 5.98

SOQI 1.88 3.01 3.51 3.68 3.58

n=200 p=2 p=4 p=6 p=8 p=!O

SOR 1.95 3.62 5.11 6.35 7.21

SOQ1 1.94 3.52 4.7 5.49 6.11

n=400 p=2 p=4 p=6 p=8 p=IO

SOR 1.96 3.78 5.44 6.94 7.95

SOQI 1.98 3.91 5.53 7.79 9.5

Table 7 .5.13 Speedup of the synchronous SOR and SOQI methods

Finally, the results of the asynchronous SOR and SOQI methods are shown in Tables

7.5.14 and 7.5.15 respectively. The optimum values of ro in the asynchronous SOR and

SOQI appears to be a function of the number of processors, as would be expected

since each processor has only n/p equations to solve, which decreases as more

processors are utilised. In the case of the asynchronous SOR, this results in an increase

in the number of iterations required to reach convergence and seriously degrades the

performance of the parallel implementation. The same kind of results was obtained in

the asynchronous SOR implementation of [Nieplocha 92a] and [Nieplocha 92b].

However, in the case of the asynchronous SOQI implementation, the phenomenon of

decreasing ro is not so obvious.

190

n=100 p=2 p=4 p=6 p=8 p=10

(1) 1.87 1.84 1.81 1.88 1.78

iterations 1088 1464 1895 1598 1799

time 12.51 8.54 5.98 3.81 3.61

n=200 p=2 p=4 p=6 p=8 p=10

(1) 1.89 1.84 1.89 1.79 1.78

iterations 3721 4140 3548 7559 8209

time 83.93 47.02 22.52 37.13 32.6

n=400 p=2 p=4 p=6 p=8 p=10

(1) 1.95 1.9 1.89 1.85 1.82

iterations 6328 10951 14309 19688 21584

time 286.42 210.18 181.9 189.81 167.66

Table 7.5.14: Results of the asynchronous parallel SOR method

n=IOO p=Z p=4 p=6 p-8 p=IO

(1) 1.95 1.95 1.95 1.91 1.75

iterations 155 188 323 583 2494

time 2.04 1.15 1.31 1.81 7.07

n=200 p=2 p=4 p=6 p=8 p=10

(1) 1.97 1.97 1.97 1.97 1.91

iterations 300 382 469 618 1868

time 7.53 4.96 4.1 3.75 9.49

n=400 p=2 p=4 p=6 p=8 p=10

(1) 1.99 1.99 1.99 1.98 1.97

iterations 835 833 903 1399 2280

time 41.92 21.23 15.06 17.4 22.79

Table 7.5.15: Results of the asynchronous parallel SOQI method

In general, it can be seen that in terms of the number of iterations and execution times,

the QI iterative methods have shown to be more superior than the classical iterative

methods. The asynchronous versions of both classes of iterative methods have shown

to be more superior than the synchronous ones. The lack of synchronisation has

obviously led to better execution times.

191

7.6 A Simplified Model Study

In section 7 .4, the computational work and shared memory access analyses for a single

iteration of the iterative methods have been shown. The actual timings of the iterative

methods as well as the number of iterations for convergence to the exact solution have

been shown in section 7.5. In this section, a simple model is derived to show that

although the computational work for a single iteration of the QI iterative methods

exceeds that of the classical methods, the gain from shared memory access

incorporating the total number of iterations will reveal reduced computational work.

However, this simplified model does not take into account the synchronisation points

and hence is comparable to the asynchronous iterative methods.

Let W c and W QI be the computational work for a single iteration of the classical and QI

iterative methods respectively. In the computational work, an add and a multiplication

operation (flop) is assumed to take the same amount of time to execute and shall be

termed a flop. Let SMAc and SM~1 be the shared memory access count for a single

iteration of the classical and QI iterative methods respectively. Let le and IQI be the

number of iterations it takes to converge by the classical and QI iterative methods

respectively.

Then, the total amount of time taken to execute the classical and QI iterative methods

can be defined as

Tc = IcWc + IcSMAc (7.6.1)

for the classical iterative methods and

T QI = lQ!W QI + IQ!SMAQI

for the QI iterative methods.

(7.6.2)

For example, for the asynchronous Jacobi and JQI methods when n=lOO and p=1, we

have

w!e<Obi = n(m+2a) = 3n flops

SMA1..,bi = 4n-2

Ij..,obi = 28614

T1..,bi = IIaoobiWiaoobi + h=biSMAiocobi

= 28614*3(100) + 28614*(400-2)

= 19972174

WJQI = 512nm + (3n-2)a = 11/2n-2 flops

SMA1Q1= 3n-4

I1QI = 18699

TJQI = IJQIWJQJ + lJQISMAIQI

192

= 18699*548 + 18699*296

= 15781956

Therefore since T1Q1 < Tjocob; we can verify that the JQI method takes less time than the

Jacobi method to converge.

Similarly, for the case of asynchronous JOR and JOQI methods when n=100 and p=1,

WmR = 2n(m+2a) = 6n flops W1<X).I = 13/2nm + 5n a= 23/2n flops

SMAmR = 6n-2

ImR = 28615

TJocohl = ImR WJoR + ImRSMAmR

= 28615*600 + 28615*598

=34280770

Hence, TmQI < TmR

SMAmQI= 5n-4

ImQI = 18699

TmQI = ImQIWJ<X).I + ImQISMAmQI

= 18699*1150 + 18699*496

=30778554

Finally, for the same case of asynchronous JOR and JOQI methods when n=100 but

this time p=2, therefore each processor has 50 equations to solve.

WmR = 2n(m+2a) = 6n flops WJOQI = 13/2nm + 5n a= 23/2n flops

SMAmR = 6n-2

ImR = 28948

TmR = ImR WmR + ImRSMAmR

= 28948*300 + 28948*298

= 17310904

Hence, TmQI < TmR

SMAmQI= 5n-4

ImQI = 18710

TmQI = ImQIWJ<X).I + ImQISMAmQI

= 18710*575 + 18710*246

= 15360910

Therefore the theoretical model results shown above agree qualitatively with the

experimental results shown in section 7.5.

193

7.7 Summary

In this chapter, the QI iterative methods have been presented. The computational

complexity and the shared memory access counts have been analysed for both the

classical and QI iterative methods for a single iteration. Clearly, there was more work

incurred in the QI iterative algorithms. However, using a simplified model study, it has

been shown that the fewer iterations of the QI iterative methods has led to better

timings for the QI iterative methods.

In general, in terms of the number of iterations and execution times, the QI iterative

methods have shown to be better than the classical iterative methods. The

asynchronous versions of both classes of iterative methods have shown to be more

superior than the synchronous ones. The lack of synchronisation has obviously led to

better execution times. The gains were much more for the JQI and JOQI classes of

methods, probably due to the fact that these methods parallelise better than the SQI

and SOQI classes.

The results of the numerical experiments obtained in this chapter confirms the

superiority of the QI iterative methods over the classical iterative methods for the

model problem discussed in section 7.2. The asynchronous methods have also shown

very promising results. It was the purpose of this chapter to apply the parallel

strategies used in the direct methods of chapters 4, 5 and 6 to iterative methods and to

derive experimental results as a basis for developing theoretical justification later.

194

Chapter 8

Summary and Future Work

The objectives of the work presented in this thesis was to investigate the performance

of a class of numerical algorithms for the solution of linear systems. This class of

numerical algorithms is based on the splitting strategy i.e. the Quadrant Interlocking

(QI) structure of a matrix and encompasses both direct and iterative methods of

solution. The QI methods are (2x2) block algorithms expressed in explicit point form.

It is not the intention of this work to study the architecture of a particular parallel

machine or software language. The parallel machine and software language were tools

in helping to investigate the performance of the algorithms.

The introductory chapter described applications in which linear systems of equation

occur. In Chapter 2, some basic mathematical concepts relevant to the work in this

thesis were discussed. Chapter 3 includes a brief overview of parallel processing and a

survey of parallel algorithms for the solution of linear systems.

In Chapter 4, the QI direct methods were investigated on the Sequent Balance, a

shared memory parallel computer. The Parallel Implicit Elimination method (PIE) was

compared with the classical Gaussian Elimination method (GE) while the Quadrant

Interlocking Factorisation method (QIF) was compared with the classical LU

factorisation method. Numerical results revealed a 20% gain in execution time by the

PIE and QIF methods for both the pivoting and non-pivoting cases. The analysis of the

computational count of the methods showed that the amount of computational work

for the methods were the same. Hence the gain emanated from another dimension of

the execution, which is accesses to shared memory. With the direct methods, the

updating of the matrix is the most expensive part of the algorithm. Hence reference to

shared memory at this stage of the algorithm would also be a crucial factor. Analysis of

the shared memory accesses showed that both PIE and QIF have 33% less accesses

than GE and LU respectively.

In Chapter 5, the QI direct methods were implemented on a distributed memory

architecture. The aim of this chapter was to investigate the communication complexity

of the direct methods on a distributed memory architecture. The communication

195

complexity of the QI algorithms were analysed and shown to be 50% less than that of

the classical methods which was supported by the numerical results obtained.

The orthogonal decomposition method QZ was investigated on the Sequent Balance.

The results are presented in Chapter 6 and show QZ to be 10% faster than QR, less

than that of PIE and QIF over GE and LU respectively. This is probably due to the

extra overheads incurred in the complex computation involved in QZ and in

maintaining the task queue during dynamic scheduling.

The QI iterative methods JQI, SQI, JOQI and SOQI were investigated on a shared

memory parallel computer and compared with the classical iterative methods i.e.

Jacobi, Gauss-Seidel, JOR and SOR. Both methods were implemented as synchronous

and asynchronous algorithms. A simplified model study was derived to show that
'

although the computational work for the QI methods exceeded that of the classical

methods, the gain from the smaller number of iterations and shared memory accesses

revealed a reduction in computation time.

There are other promising areas of further study involving the QI method. The Gauss­

Jordan method is another linear solver which requires more computation but is used

because of its conceptual simplicity. The Gauss-Jordan method transforms the

coefficient matrix A into a diagonal matrix. An implicit version of the Gauss-Jordan

method also exists. In this method the W coefficients are computed as in PIE, two at a

time solving n-2 (2x2) systems at each of the n/2 steps. The solution phase consists of

solving the resulting hi-diagonal system by means of solving n/2 (2x2) systems. Barulli

and Evans in [Barulli 96] have shown that the implicit Gauss-Jordan yielded 20% gains

over the classical Gauss-Jordan method.

There are also the Choleski form and the square root free form of the QI method that

needs further investigation. Again, these methods can be compared with the equivalent

classical methods.

Apart from solving linear systems which is the focus of this thesis the QI methods can

also be used to solve other related problems such as the inverse problem of AX=l,

problems with many right-hand sides AX=B and evaluating the determinant of A.

The QI iterative methods can also be applied to the preconditioned conjugate gradient

method. Due to time shortage, a detailed theoretical investigation has been omitted in

196

the study of the QI iterative methods while the experimental results obtained require

additional theoretical analysis.

The bi-directional solver of QIF can also be implemented in either Crout or Doolittle

form. The QZ orthogonal decomposition method can also be implemented as a

column orthogonal decomposition method. Further, there is also the Householder form

of QZ that can be investigated.

The asynchronous QI iterative methods could also be implemented on a distributed

memory architecture. In addition, it would also be interesting to investigate the

performance of the orthogonal QZ on a distributed memory architecture. An

implementation of the QI methods on a SIMD architecture would also be an interesting

investigation for the future.

Finally, implementing the QI methods as a set of routines available as part of a

numerical library would be a worthwhile task.

The QI methods investigated in this thesis has shown very promising results. It has

shown that parallel algorithms should exploit not only the inherent parallelism of the

problem but also attempt to reformulate the problem to introduce more parallelism.

197

[Abdullah 95]

[Ak189]

[Almasi 94]

[Angelaccio 94]

[Asenjo 93]

[Barnett 90]

[Barulli 96]

[Baudet 78]

[Beguelin 94]

[Benaini 94]

[Bertsekas 89]

[Bonomo 89]

References

Abdullah, R. and Evans, D.J., Parallel Algorithms for the
Solution of Linear Systems in PVM in Proceedings of Parallel
and Distributed Processing, Techniques and Applications 95
(PDPTA 95), H.Arabnia (ed.), Athens, Georgia, Nov 4-5, 1995,
pp101-110.

Aid, S.G., The Design and Analysis of Parallel Algorithms,
Prentice Hall, 1989.

Almasi and Gottlieb, Highly Parallel Computing Second
Edition, Benjamin Cummings, 1994.

Angelaccio, M., Colajanni, M., The Row/Column Pivoting
Strategy on Multicomputers, Parallel Computing 20 (1994) pp.
197-213.

Asenjo, R., Ujaldon, M. and Zapata, E.L., Parallel WZ
Factorisation on Mesh Multiprocessors, Microprocessing and
Microprogramming 38 (1993) pp 319-326.

Bamett, S., Matrices Methods and Applications, Oxford Press,
1990.

Barulli, M. and Evans, D.J., Implicit Gauss-Jordan Scheme for
the Solution of Linear Systems, Internal Report 1013,
Department of Computer Studies, Loughborough University,
Apri11996.

Baudet, G.M., Asynchronous Iterative Methods for
Multiprocessors, Journal of the ACM, Vol25, No2, April 1978,
pp. 226-244.

Beguelin, A., Dongarra, J., Geist, A., Manchek, R. & Sunderam,
V., Recent Enhancements to PVM, June 17, 1994.
http://www.netlib.org/utk/papers/pvm-ijsalijsa.html

Benaini, A. and Laiymani, D., Generalized WZ Factorization on
A Reconfigurab/e Machine, Parallel Algorithms and
Applications, Vol3, pp. 261-269, 1994.

Bertsekas, D.P. and Tsitsik:lis, J.N., Parallel and Distributed
Computations, Prentice Hall, 1989

Bonomo, J.P. and Dyksen; W.R., Pipelined Iterative Methods
for Shared Memmy Machines, Parallel Computing 11(1989)
pp.187-199.

198
__j

[Brawer 89] Brawer, S., Introduction to Parallel Programming, Academic
Press, 1989.

[Carriero 90] Carriero, N. and Ge1emter, D., How To Write Parallel Programs
A First Course, The MIT Press, 1990.

[Carriero 94] Carriero, N.J., Gelemter, D., Mattson, T.G., Sherman, A.R, The
Linda Alternative to Message-Passing Systems, Parallel
Computing 20 (1994) pp 633-655.

[Casanova 95] Casanova, H., Dongarra, J. and Jiang, W., The Performance of
PVM on MPP Systems, Univ. of Tennessee T.R. CS-95-301,
August 1995. http://www.netlib.org/utk/papers/pvmmpp.ps

[Casvant 96] Casvant, T.L., Tvrdik, P. and Plasil, F., Parallel Computing
Theory and Practice, IEEE Computer Society Press, 1996.

[Chamberlain 87] Chamberlain, R.M., An Alternative View of LU Factorization
with Partial Pivoting on a Hypercube Multiprocessor,
Hypercube Multiprocessor 1987, M.T.Heath (Ed) SIAM, 1987.

[Chazan 69] Chazan, D. and Miranker, W., Chaotic Relaxation, Lin. Alg.
Appl, Vol 2, pp. 199-222, 1969.

[Chikohora 91] Chikohora, S., Parallel Algorithms for The Solution of Elliptic
and Parabolic Problems on Transputer Networks, Thesis,
Loughborough University of Technology, 1991.

[Chorafas 90] Chorafas, D.N. and Steinmann, H., Supercomputers, McGraw­
Hill, 1990.

[Chu 87] Chu, E. and George, A., Gaussian Elimination with Partial
Pivoting and Load Balancing on a Multiprocessor, Parallel
Computing 5, 1987, pp. 65-74.

[Coffin 92] Coffm, M.H., Parallel Programming A New Approach, Prentice
Hall, 1992.

[Cohen 73] Cohen, A.M., Numerical Analysis, McGraw-Hill, 1973.

[Cook 83] Cook, S.A., An Overview of Computational Complexity, Comm.
of the ACM, June 1983, Vol26, Number 6, pp. 400-408.

[Cosnard 86] Cosnard, M. and Robert, Y., Complexity of Parallel QR
Decomposition, J. ACM 33 (Oct) pp. 712-723, 1986.

199

[Cosnard 94)

[Cosnard 95]

[Cunha 91]

[D' Ambra 95}

[Darmohray 87)

[Dekker94]

[Dongarra 84]

[Dongarra 91]

[Dongarra 95a]

[Dongarra 95b)

[Douglas 93]

[Duncan 92]

Cosnard, M. and Daoudi, E.M., Optimal Algorithms for Parallel
Givens Factorization on a Coarse-Grained PRAM, J. ACM, Vol
41, No 2, March 1994, pp. 399-421.

Cosnard, M. and Trystrarn, D., Parallel Algorithms and
Architectures, International Thomson Computer Press, 1995.

Cunha, R.D. and Hopkins, T., Parallel Overrelaxation
Algorithms for Systems of Linear Equations, Transputing '91,
P.Welch et al. (Eds), IOS Press, 1991, pp. 159-169.

D' Ambra, P. and Giunta, G., Concurrent Banded Cholesky
Factorisation on Workstation Networks using PVM, Parallel
Computing 21 (1995) pp 487-494.

Darmohray, G.A. and Brooks III, E.D., Gaussian Techniques on
Shared Memory Multiprocessor Computers from Proceedings of
the Third SIAM conference on Parallel Processing for Scientific
Computing, Rodrigue,G.(ed.), California, Dec.1-4, 1987, pp.20-
26.

Dekker, T.J., Hoffinan, W., and Potma, K., Parallel Algorithms
for Solving Linear Systems, Journal of Computational and
Applied Mathematics 50 (1994), pp. 221-232.

Dongarra, J.J., Gustavson, F.G. and Karp, A., Implementing
Linear Algebra Algorithms for Dense Matrices on a Vector
Pipeline Machine, SIAM Review, Vol26, 1984, pp 91-112.

Dongarra, J.J., Duff, I.S., Sorenson, D.C. and Van der Vorst,
H.A., Solving Linear Systems on Vector and Shared Memory
Computers, SIAM Press, 1991.

Dongarra, J.J., Dunigan, T., Message-Passing Performance of
Various Computers, University of Tennessee, 1995.
http://www.netlib.org/utk/papers/commperf.ps

Dongarra, J. and Walker, D., Libraries for Linear Algebra in
High Performance Computing in High Performance Computing,
Sabot, G.W. (ed) Addison Wesley 1995.

Douglas, C.C., Mattson, T.G. and Schultz, MH, Parallel
Programming Systems for Workstation Clusters, Yale University
Dept. of CS Research Report Y ALEU/DCS/TR-975, August 93.

Duncan, R., Parallel Computer Architectures, Advances in
Computers, Vol 34, M.C.Yovits (ed.), Academic Press, 1992,
pp. 113-157.

200

[East 95]

[Evans 79]

[Evans 82]

[Evans 84]

[Evans 88]

[Evans 93a]

[Evans 93b]

[Evans 94a]

[Evans 94b]

[Evans 94c]

[Evans 95a]

[Evans 95b]

[Foster 95]

East, 1., Parallel Processing with Communicating Process
Architecture, UCL Press Limited, 1995.

Evans, D.J. and Hatzopoulos, A Parallel Linear System Solver,
Intern. J. Computer Math, 1979, Section B, Vol 7, pp 227-238.

Evans, D.J. and Sojoodi Haghighi, R., Parallel Iterative
Methods for Solving Linear Equations, lnten. J. Computer
Math, 1982, Volll, pp. 247-284.

Evans, D.J., Parallel S.O.R. Iterative Methods, Parallel
Computing 1 (1984), pp. 3-18.

Evans, D.J. and Bekakos, M.P., The Solution of The QIF
Algorithm on a Wavefront Array Processor, J.Parallel
Computing, Vol7, 1988, pp. 111-130.

Evans, D.J. and Saeed, M.A., Parallel Direct Methods For
Solving Linear Systems, Tech. Report, Computer Studies 843,
Loughborough University of Technology, October 1993.

Evans, D.J., Implicit Matrix Elimination (!ME) Schemes,
International J. of Computer Math, Vol48, 1993, pp. 229-237.

Evans, D.J. and Yalamov, P., The QZ Orthogonal
Decomposition Method, Parallel Algorithms and Applications,
Vol2, pp. 263-276, 1994.

Evans, D.J. and Abdullah, R., The Parallel Implicit Elimination
(PIE) Method for The Solution of Linear Systems, Parallel
Algorithms and Applications, Vol4, pp. 153-162, 1994.

Evans, D.J. and Abdullah, R., LU and WZ Matrix Factorisation
Methods with Partial Pivoting on Parallel Computers, Report
941, Department of CS, Loughborough University, Nov 1994.

Evans, D.J. and Abdullah, R., Design and Analysis of Matrix
Elimination and Matrix Factorisation Methods for the Solution
of Linear Systems, Report 976, Department of CS,
Loughborough University, May 1995.

Evans, D.J. and Abdullah, R., A Comparison of the QR and QZ
Matrix Factorisation Methods on Parallel Computers, Parallel
Algorithms and Applications, Vol7, pp. 43-52, 1995.

Foster, I, Designing and Building Parallel Programs (online),
Addison Wesley, 1995. http://www.mc.anl.gov/dbpp/

201

[Fountain 94]

[Fox 64]

[Fox 88]

[Fox 94]

[Freeman 92]

[Gallivan 90]

[Garcia 90]

[Geist 85]

[Geist 87]

[Geist 94a]

[Geist 94b]

[Gentleman 75]

[Gentleman 78]

[Hageman 81]

Fountain, T.J., Parallel Computing Principles and Practice,
Cambridge University Press, 1994.

Fox, L., An Introduction to Numerical Linear Algebra,
C1arendon Press, 1964.

Fox, G.C., Johnson, M., Lyzenga, G. and Otto, S.W., Solving
Problems on Concurrent Processors, Vol. 1, Prentice Hall, 1988.

Fox, G.C., Parallel Computing Works! Morgan Kaufman,1994.

Freeman, T.L. and Phillips, C., Parallel Numerical Algorithms,
Prentice-Hall Int. (UK) Ltd., 1992.

Gallivan, K.A., Plemmons, R.J. and Sameh, A.H., Parallel
Algorithms for Dense Linear Algebra Computations, SIAM
Reveiw, Vol32, March 1990, pp 54-135.

Garcia, I., Merelo, J.J., Bruguera, J. D., and Zapata, E.L.,
Parallel Quadrant Interlocking Factorisation on Hypercube
Computers, Parallel Comptuing 15 (1990) pp. 87-100.

Geist, G.A., Efficient Parallel LU Factorization With Pivoting
on a Hypercube Multiprocessor, T. R. ORNL-6211, Oct 1985.

Geist, G.A. and Heath, M.T., Matrix Factorization on a
Hypercube Multiprocessor, Hypercube Multiprocessor 1987,
M.T.Heath (Ed) SIAM, 1987.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.
and Sunderam, V., PVM: Parallel Virtual Machine, A Users
Guide and Tutorial for Networked Parallel Computing, MIT
Press, 1994.

Geist, G.A., Cluster Computing: The Wave of the Future?
Parallel Scientific Computing, 1st Int Workshop 1994, pp. 236-
246.

Gentleman, W.M., Error Analysis of QR decomposition by
Givens transformation, Linear Algebra and it's Applications 10,
1975, pp. 189-197.

Gentleman, W.M., Some Complexity Results for Matrix
Computations on Parallel Processors, J.ACM Vol 25, No 1,
January 1978, pp. 112-115.

Hageman, L.A. and Young, D.M., Applied Iterative Methodr,
Academic Press, 1981.

202

__j

[Heller78]

[Hey 94]

[Hockney 88]

[Hockney 94]

[Hackney 96]

[Hultquist 88]

[Ibarra 94]

[Jamieson 87]

[Johnston 66]

[Kronsjo 85]

[Kumar94]

[Kung 76)

[Kung 80)

Helier, D., A Survey of Parallel Algorithms in Numerical Linear
Algebra, SIAM Review, Vol20, #4, Oct 78, pp 740-777.

Hey, T and Ferrante, J., (eds), Portability and Performance for
Parallel Processing, Wiley, 1994.

Hackney, R.W. and Jesshope, C.R., Parallel Computers 2
Architecture, Programming and Algorithms, Adam Hilger,
1988.

Hackney, R.W., The Communication Challenge for MPP: Intel
Paragon and Meiko CS-2, Parallel Computing 20 (1994)
pp.389-398.

Hackney, R.W., The Science of Computer Benchmarking,
SIAM, 1996.

Hultquist, P.F., Numerical Methods for Engineers and
Computer Science, Benjamin Cummings, 1988.

Ibarra, O.H. and Kim, M.H., Fast Parallel Algorithms for
Solving Triangular Systems of Linear Equations on the
Hypercube, J. of Parallel and Distributed Computing 20, pp 303-
316 (1994).

Jamieson, L.H., Gannon, D. and Douglass R.J., (eds), The
Characteristics of Parallel Algorithms, The MITPress, 1987.

Johnston, J.B., Price, G.B. and Van Vleck, F.S., Linear
Equations and Matrices, Addisson Wesley, 1966.

Kronsjo, L., Computational Complexity of Sequential and
Parallel Algorithms, John Wiley, 1985.

Kumar, V., Grama, A, Gupta, A and Karypis, G., Introduction
to Parallel Computing Design and Analysis of Algorithms,
Benjamin Cummings, 1994.

Kung, H.T., Synchronized and Asynchronous Parallel
Algorithms for Multiprocessors in Algorithms and Complexity:
New Directions and Recent Results, J.F. Traub, ed. pp.153-200,
Academic Press, New York, 1976.

Kung, H.T., The Structure of Parallel Algorithms, in M.Yovits,
ed, Advances in Computers, Vol 19, Academic Press, New
York, pp. 65-111

203

[Lester 93]

[Levin 90]

[Lewis 92]

[Lewis 93]

[Lilja 91]

[Lord 83]

[Margulis 64]

[Mathews 87]

[McBryan 94]

[Miranker 71]

[Mitra 87]

[Modi 84]]

[Modi 88]

[Moldovan 93]

[Morse 94]

Lester, B.P., The Art of Parallel Programming, Prentice Hall,
1993.

Levin, M.D., Parallel Algorithms for SIMD and M/MD
Computers, Thesis, Loughborough University of Technology,
1990.

Lewis, T.G. and El-Rewini, H., Introduction to Parallel
Computing, Prentice Hall, 1992.

Lewis, T.G., Foundations of Parallel Programming A Machine­
Independent Approach, IEEE Comp. Soc. Press., 1993.

Lilja, D.J., Architectural Alternatives for Exploiting Parallelism,
IEEE Computer Society Press, 1991.

Lord, R.E., Kowalik, J.S. and Kumar, S.P., Solving Linear
Algebraic Equations on an M/MD Computer, Journal of the
ACM, Vol30, No 1, January 1983, pp. 103-117.

Margulis, B.E., Systems of Linear Equations, Pergamon Press,
1964.

Mathews, J.H., Numerical Methods for Computer Science,
Engineering and Mathematics, Prentice Hall, 1987.

McBryan, O.A., An Overview of Message Pasing Environments,
Parallel Computing 20 (1994) pp 417-444.

Miranker, W.L., A Survey of Parallelism in Numerical Analysis,
SIAM Review, Voll3, No 4, Oct 71, pp. 54.

Mitra, D., Asynchronous Relaxations for the Numerical Solution
of Differential Equation by Parallel Processors, SIAM J. Sci.
Stat. Comp. 8, No. I, 1987.

Modi, J.J. and Clarke, M.R.S., An Alternative Givens Ordering,
Numer. Math. 43, pp. 83-90, 1984.

Modi, J.J., Parallel Algorithms and Matrix Computation,
Oxford University Press, 1988.

Moldovan, DJ., Parallel Processing from Applications to
Systems, Morgan Kaufmann Publishers, 1993.

Morse, H.S., Practical Parallel Computing, Academic Press,
1994.

204

[Nieplocha 92a]

[Nieplocha 92b]

[Ortega 85]

[Ortega 88]

[Osterhaug 89]

[Patel84]

[Quinn 87]

[Quinn 94]

[Rice 83]

[Sabot 95]

[Saeed 92]

[Sameh 77]

[Sameh 78]

Nieplocha, J., Solving Large Systems of Linear Equations Using
Asynchronous Iterations on Parallel and Distributed
Computers, Dissertation, Univ of Alabama, Tuscaloosa, 1992.

Nieplocha, J., Mai, T. and Caroll, C.C., Asynchronous
Algorithms for Solving Large Systems of Linear Equations on
Parallel Computers in Parallel Computing: From Theory to
Sound Practice, W.Joosen and E.Milgrom, Eds., pp. 76-79, lOS
Press, 1992.

Ortega, J.M and Voigt, R.G., Solution of Partial Differential
Equations on Vector and Parallel Computers, SIAM Review,
Vol27, No 2, June 1985, pp. 149

Ortega, J.M., Introduction to Parallel and Vector Solution of
Linear Systems, Plenum Press, New York, 1988.

Osterhaug, A., Guide to Parallel Programming on Sequent
Computer Systems, Second Edition, Prentice Hall, 1989.

Pate!, N.R. and Jordan, H.F., A Paralleliz.ed Point Rowwise
Successive Over-relaxation Method on a Multiprocessor,
Parallel Computing 1 (1984) pp. 207-222.

Quinn, M.J., Designing Efficient Algorithms for Parallel
Computers, McGraw-Hill, 1987.

Quinn, M.J., Parallel Computing Theory and Practice,
McGraw-Hill, 1994.

Rice, J.R., Matrix Computations and Mathematical Software,
McGraw-Hill, 1983.

Sabot, G.W., (ed), High Peiformance Computing, Addison
Wesley, 1995.

Saeed, M.A., A Study of Numerical Algorithms for Hypercube
Multiprocessor Systems, PhD. Thesis, Loughborough University
of Technology, 1992.

Sameh, A.H. and Kuck, D.J. Parallel Direct Linear System
Solvers, Parallel Computers - Parallel Mathematics, M.Feilmeier
(ed.), International Association for Mathematics and Computers
in Simulation, 1977, pp. 25-29.

Sameh, A. and Kuck, D.J., On Stable Linear System Solvers,
J.Assoc. Comput. Mach., No 25, pp 81-89, 1978.

205

[Schendel 84]

[Schmidt 95]

[Shanechi 80]

[Shanechi 82]

[Smith 78]

[Smith 93]

[Sunderam 94a]

[Sunderam 94b]

[Tanenbaum 90]

[Traub 73]

[Uresin 89]

[Uresin 90]

[Varga 62]

Schendel, U., Introduction to Numerical Methods for Parallel
Computers, Ellis Horwood Limited, 1984.

Schmidt, B.K., Sunderam, V.S., Empirical Analysis Overheads
in Cluster Environments, Dept. of Math and CS, Emory
University, Atlanta,1995.
ftp://ftp.mathcs.em.ub/vss/empanal.ps.Z

Shanechi, J., The Determination of Sparse Eigensystems and
Parallel Linear System Solver, Ph.d. Thesis, Loughborough
University of Technology, 1980.

Shanechi, J. and Evans, D.J., Further Analysis of the Quadrant
Interlocking Factorisation (QIF) Method, Intern. J. Computer
Math, 1982, Vol 11, pp. 49-72.

Smith, G.D., Numerical Solution of Partial Differential
Equations: Finite difference methods Second Edition, Oxford
Applied Mathematics and Computing Science Series, 1978.

Smith, J.R., The Design and Analysis of Parallel Algorithms,
Oxford University Press, 1993.

Sunderam, V., Methodologies and Systems for Heterogeneous
Concurrent Computing, Parallel Computing: Trends and
Applications, Joubert, G.R., Trystram, D., Peters, F.J. and
Evans, D.J. (eds), Elsevier Science, 1994.

Sunderam, V.S., Geist, G.A., Dongarra, J and Manchek, R., The
PVM concurrent computing system· Evolution, experiences and
trends, Parallel Computing 20 (1994) pp 531-545.

Tanenbaum, A.S., Structured Computer Organization Third
Edition, Prentice-Hall, 1990.

Traub, J.F.[ed], Complexity of Sequential and Parallel
Numerical Algorithms, Academic Press, 1973.

Uresin, A. and Dubois, M., Sufficient Conditions for
Convergence of Asynchronous Iterations, Parallel Computing,
VollO, pp. 83-92, 1989.

Uresin, A. and Dubois, M., Parallel Asynchronous Algorithms
for Discrete Data, J.ACM, Vol37, No 3, pp. 588-606, 1990.

Varga, R.S., Matrix Iterative Analysis, Prentice Hall, N.J., 1962.

206

[Walker 94]

[Watkins 91]

[Wright 91]

[Yalamov 95]

[Young 71]

[Zomaya96]

Walker, D.W., The Design of a Standard Message Passing
Inteiface for Distributed Memory Concurrent Computers,
Parallel Computing 20 (1994) pp 657-673.

Watkins, D.S., Fundamentals of Matrix Computations, John
Wiley, 1991.

Wright, K., Parallel Algorithms for QR Decomposition on a
Shared Memory Multiprocessor, Parallel Computing 17 (1991)
pp. 779-790.

Yalamov, P. and Evans, D.J., The WZ Matrix Factorisation
Method, Parallel Computing 21, 1995, pp 1111 • 1120.

Young, D.M., Iterative Solution of Large Linear Systems,
Academic Press, 1971.

Zomaya, A.Y.H., [ed], Parallel and Distributed Computing
Handbook, McGraw-Hill, 1996.

207

APPENDIX

I* Rosni Abdullah
PARC, Computer Studies.
Parallel Implicit Elimination (Without Pivot)
This program generates input. matrix where elements are:

a[i][j]=l and a[i][i]=n
Filename: new_np_pie.c *I

#include <stdio.h>
#include <parallel/parallel.h>
#include <parallel/microtask.h>
#include <math.h>

I* Global memory shared data *I
shared float **a:
shared int const_posn, cp_loop, m 1, m2;
shared int col_posnl, col_posn2, const_col, num_row;
FILE *fp_in, *fp_out;

main()
{

FILE *fopen();
int timel,time2,time3;

float ** setup_matrix();
char *shmalloc();
int i, j, k, l,np,num,size_a;
extern CLOCK();
void setup(), init_a(), gauss(), set_solve(),print_results(), pie();

if ((fp_in=fopen("data_size","r"))==NULL)
printf("Can't open file sizeln");

fscanf(fp_in,"o/od",&size_a);
while (size_a != 0) {

a=setup_matrix(size_a,size_a+ I);
if (size_ a % 2 == 0)

num = size_a/2-1;
else

num = size_a/2;
for (np=l; np<=IO; np++) {

m_set_procs(np);
init_a(a,size_a);
m_fork(pie,a,size_a,num);
print_result s(a,s ize _ a,n p);
m_kill_procs();

} I* for the np-th processor *I
fscanf(fp_in," %d" ,&size_a);

} I* while matrix size still exists *I
m_kill__procs();
I* main *I

I* procedure to initialise U1e coefJicient array a*/
void init_a(a,size)
float **a;
int size;

int i,j;
float sum;

208

for (i=O; i <= size-!; i++) {
sum= 0.0;
for (i=O; j<= size-!; j++) {

if (i==j) a[i]li]=size;
else a[i][j]=l;
sum+= a[i][i];

}
a[i][size]=sum;

I* function to setup matrix of variable size *I
float**
setup_matrix(nrows,ncols)
int nrows, ncols;
{

int i,j;
float **new_matrix;

I* allocate pointer arrays; set new_matrix to address of newly allocated shared matrix *I
new_matrix =(float**) shmalloc(nrows*(sizeof(float *)));

I* allocate data arrays : set rust element of new _matrix to address of first element of newly allocated
array */
new _matrix[O] = (float*) shmalloc(nrows * ncols * (sizeof(float)));

I* initialise pointer arrays : set each element of new_matrix to address of corresponding element of
data array *I
for (i=l; i < nrows;i++)

new_matrix[i] = new_matrix[O] + (ncols*i);
return(new _matrix);
}

#include <sysltypes.h>
#include <sysltimeb.h>
intCLOCK()
{

}

struct timeb tp;
ftime(&tp);
return (tp.time*lOO + tp.millitm/10);

void pie(a,size_a,num)
float **a;
int size_a,num;
{

intk, np, numl .. nl, i,j,jj;
float pi, p2, xlval, x2val;

np=m_get_numprocs();
m_single();
col_posn 1 = 0;
col_posn2 = size_a-1;
const_col=O;
num_row=(size_a-2);
time! =CLOCK();
for (k=l; k<=num; k++) {

209

const_posn = const_col;
cp _loop=const_posn+ I;
m_multi();
for (i=m_get_myid()+cp_loop; i<=const_posn+num_row; i+=np) {

p l=a[col_posn I] [col_posn2]/a[col_posn 1] [col_posn1];
x2val=(pl *a[i][col_posn1]-a[i][col_posn2])/ _._ /
(p 1 *a[col_posn2] [col_posn 1]-a[col_posn2] [col_pos~

p2=a[col_posn2] [col_posn 1]/a[col_posn2] [col_posn2];
xl val=(p2*a[i][col_posn2]-a[i][col_posn1])/
(p2*a[col_posn 1] [col_posn2]-a[col_posn 1] [col_posn1]);

for (i=col_posn1+ I; j <= col_posn2-l; j++)
a[i]li] = a[i] [il-(x1 val*a[col_posn1][j]+x2val*a[col_posn2] [j]);

a[i] [size_a]=a[i] [size_a]-(x 1 val *a[col_posn 1] [size_a]

} /*for *I
m_sync();
m_single();
col_posnl++;
col_posn2--;
num_row -= 2;
const~col++;

} /*fork *I
time2=CLOCK();

+x2val *a[col_posn2] [size_a]);

/* Bidirectional Substitution */
n1 = size_a;
ml =num;
m2=num+l;
if (size_a%2 != 0) {

}

a[m1] [n 1]=a[m 1] [n 1]/a[m 1] [ml];
m_multi();

}

for O=m_get_myid();j<=ml-l;j+=np) {
a[j] [m 1]=a[m 1] [size_a] *a[j] [m 1];
a[j] [size_a]=a[il [size_a]-a[il [m 1];
a[size_a-1-j] [m 1]=a[m I] [size_a] *a[size_a-1-j] [m 1];
a[size_a-1-j] [size_a] =a[size_a-1-j] [size_a]-a[size_a-1-j] [m 1];

m_sync();
m_single();
m1=num-1;
m2=num+1;
p1 = a[m2][m1]/a[m1][m1];
p2 = a[m2][m2]- p1*a[m1][m2];
a[m2][n1] = (a[m2][n1]-p1*a[m1][n1])/p2;

a[m1][nl] = (a(ml][n i]-a[ml](m2]*a(m2](nl])/a[m1][m1];

else {

}

pi= a[m2J[ml]/a[ml][m1];
p2 = a[m2J[m2]- p1 *a[m1][m2];
a[m2][n1] = (a[m2][nl]-pl*a[m1][n1])/p2;
a[ml][nl] = (a[ml][n 1]-a[m l][m2]*a[m2][nl])/a[m J][ml];

if (size_a%2 != 0) num1=size_a/2-1;
else num1=num;

for(k=1; k<=num1; k++) [
m_multi();
for (i=m_get_myid();j<=m1-1;j+=np) {

a[j][m1]=a[m 1][size_a]*a[j] [m 1];
a[il [m2]=a[m2] [size_a] *a[il [m2];

210

}

)

I

a[j][size_a]=a[j][size_a]-(a[j][mi]+a[j][m2]);
a[size_a-1-j] [m i]=a[m I] [size_a] *a[size_a-1-j] [m I];
a[size_a-1-j] [m2]=a[m2] [size_a]*a[size_a-1-j] [m2];
a[size_a-1-j] [size_a]=a[size_a-1-j] [size_a]-(a[size_a-1-j] [ml]+a[size_a-1-j] [m2]);

m_sync();
m_single();
ml--;
m2++;
pi= a[m2][ml]/a[ml][ml];
p2 = a[m2][m2]-pl *a[ml][m2];
a[m2] [nl]=(a[m2][nl]-p I *a[m l][n l])/p2;
a[ml][n l]=(a[m I] [nl]-a[m l][m2]*a[m2] [nl])/a[m l][ml];

time3=CLOCK();
m_multi();

void print_results(a,size_a,np)
float **a;
int size_a,np;
{

}

int itmp;
float temp_sum;

if ((fp_om=fopen("new _oumppie", "a"))==NULL)
printf("Can't open tile outnppieln");

fprintf(fp_out,"lnPIE (pivot) for %d by %d matrix using %d processors;
\n",size_a,size_a,np);

temp_sum=O.O;
for (itrnp =0; itrnp < size_a; itmp++) {

temp_sum += a[itrnp][size_a];
/*fprintf(fp_out, "In x%d = %f', itrnp, a[itrnp][size_a]);*/

l
fprintf(fp_out,"ln Elimination time:%f\n",(tloat)(time2-timel)/100.0);

fprintf(fp_out,"Bidirectional substitution time: %fin",
(float)(time3-time2)/100.0);

fprintf(fp_out,"Total time taken: %1\n",
(float)((time3-time2)+(time2-time I))/1 00.0);

fprintf(fp_out,"Temp_sum = %f\n",temp_sum);
fclose(fp_out);

211

I* Rosni Abdullah
PARC, Computer Studies.
Parallel WZ Factorization
Filenarne: new_parwz.c *I

#include <stdio.h>
#include <parallellparallel.h>
#include <parallellmicrotask.h>

I* Global memory shared data *I
shared float **a;
private float ge[2][3] ;
shared int const_pcsn, cp_loop, col_posnl, col_posn2, const_col, num_row, m!, m2;
FILE *fp_in, *fp_out;

main()
{

FILE *fopen();
float x 1 val, x2val;
int time!, time2, time3, time4, time5, time6;

float** setup_matrix();
char *shmalloc();
int i, j, k~ size_a, num, np;
extern CLOCK();
void decomp(), setup_ w(), wz_factor(), init_a(), gauss(), print_mat(), print_results();

if ((fp_in=fopen("data_size", "r"))==NULL)
printf("Can't open file size\n");

fscanf(fp _in," %d", &size_a);
while (size_a != 0) {
a=setup_matrix(size_a,size_a+ 1);
for (np=l; np<=lO; np++) [

}

init_a(a,size_a);
m_set_procs(np);
if (size_a % 2 == 0)

num = size_a/2-1;
else

num = size_a/2;
m_fork(wz_factor,a,size_a,num);
print_results(a,size_a,np);
m_kill_procs();

fscanf(fp_in," %d" ,& size_a);
}

} I* main *I

I* procedure to initialise tl1e Cllefficicnt array a* I
void init_a(a,size)
float **a;
int size;
{

int i,j;
float sum;

for (i=O; i<=size-1; i++) {
sum=O.O;
for (j=O; j<=size-1; j++) [

212

}
}

}

if (i==.i) a[i][j] =size;
else a[i][j]=l.O;
sum+=a[i][j];

a[i][size]=sum;

I* function to setup matrix of variable size *I
float**
setup_matrix(nrows,ncols)
int nrows, ncols;
{

int i,j;
float **new _matrix;

I* allocate pointer arrays; set new_matrix to address of newly allocated shared matrix *I
new_matrix = (lloat **) shmalloc(nrows*(sizeof(lloat *)));

I* allocate data arrays : set tirst element of new _matrix to address of
first element of newly allocated array *I

new_matrix[O] = (lloat *) shmalloc(nrows * ncols * (sizeof(lloat)));

I* initialise pointer arrays : set each element of new _matrix to address of
corresponding element of data array *I

}

for (i= I; i < nrows;i++) {
new_matrix[i] = new_matrix[O] + (ncols*i);}

retum(new_matrix);

void gauss(ge)
!loat ge[][3];
{

!loat factor;
int j;

factor= ge[l][O]Ige[O][O];
for G=O; .i<=2; j++) {
ge[O] [j] = ge[O] [j] * factor;
ge[l][j] = ge[l][j]- ge[O][j];

}
x2val = ge[l][2]1 ge[l][l];
xlval = (ge[0][2]- (ge[O][l] * x2val)) I ge[O][O];

#include <sysltypes.h>
#include <sysltimeb.h>
int CLOCK() {

struct timeb tp;
ftime(&tp);
return (tp.time*lOO + tp.millitm/10);

}

void
setup_ w(ge,a,row _a,start~col,end_col)
lloat ge[][3], **a;
introw_a, start_col, end_col;
{

ge[O][O] = a[start_col][start_col];

213

ge[0][1] = a[end_col][start_col];
ge[0][2] = a[row_a][start_col];
ge[1][0] = a[start_col][end_col];
ge[1][1] = a[end_col][end_col];
ge[1][2] = a[row_a][end_col];

void wz_factor(a,size_a,num)
float **a;
int size_a, num;
{

int nl, i, j, k, numl, np;
float p1, p2;

I* factorisation process *I
np=m_get_numprocs();
m_single();
col_posn I = 0;
col_posn2 = size_a-1;
const_col=O;
num_row=(size_a-2);
timei=CLOCK();
for (k=l; k<=num; k++) {

const_posn = const_col;
m_multi();
cp_loop=const_posn+ 1;
for (i=m_get_myid()+cp_loop; i<=const_posn+num_row; i+=np) {

setup_ w(ge,a,i,col_posn 1 ,col_posn2);
gauss(ge);
a[i][col_posn l]=xl val;
a[i][col_posn2]=x2val;
for (i=col_posnl+l; j <= col_posn2-1; j++) {

a[i][j] = a[i] [j]-(x1 val*a[col_posn I] [j]+x2val*a[col_posn2][j]);

}
m_sync();
m_single();
col_posn 1 ++;
col_posn2--;
num_row -= 2;
const_col++;

m_single();
time2=CLOCK();

I* Inward substitution *I
col_posn I = 0;
col_posn2 = size_a -I;
const_col = 0;
num_row = size_a - 2;
time3=CLOCK();
for (k=l; k<=num; k++) {

const_posn = const_col;
m_multi();
cp_Ioop=const_posn+ I;
for (i=m_get_myid()+cp_Ioop;i<=const_posn+num_row; i+=np) {

a[i] [col_posn 1]=a[col_posn 1] [size_a]*a[i] [col_posn I];
a[i] [col_posn2]=a[col_posn2] [size_a] *a[i] [col_posn2];

214

a[i] [size_a] =a[i] [size _a]-(a[i] [col_posn I]+ a[i] [col_posn2]);
}
m_sync();
m_single();
col_posn1++;
c,ol_posn2--;
const_col++;
num_row-=2;

l
tirne4=CLOCK();

/*Bidirectional Substitution*/
tirne5=CLOCK();
nl = size_a;
ml =num;
m2 = num+ I;
if (size_a%2 != 0) {

l
else {

}

a[m 1] [n 1]=a[m 1] [n 1]/a[m I] [m 1];
m_multi();
for G=m_get_myid(); j<=m1-1; j+=np) {
a[j] [m 1]=a[m 1] [size_a]*a[j] [m 1];
a[j] [size_a]=a[i] [size_a]-a[j] [m I];
a[size_a-1-j] [m 1]=a[m!] [size_a]*a[size_a-1-j] [m 1];
a[size_a-1-j] [size_a]=a[size_a-1-j] [size_a]-a[size_a-1-j] [m 1];
}
m_sync();
m_single();
m2=num+l;
pi = a[m2][m1]/a[m1][m1];
p2 = a[m2][m2] - p1 *a[m1][m2];
a[m2][n1] = (a[m2][n1]-p1 *a[m1][n1])/p2;
a[m1][n1] = (a[m1][n1]-a[m1][m2]*a[m2] [n 1])/a[m1] [m1];

p1 = a[m2][m1]/a[m1][m1];
p2 = a[m2] [m2] - p1 *a[m1][m2];
a[m2][n1] = (a[m2][n1]-p1 *a[m1][n1])/p2;
a[m 1] [n1] = (a[m1] [n 1]-a[m 1] [m2] *a[m2] [n1])/a[m1][m1];

if (size_a%2 != 0) num1=size_al2-1;
else num1=nmn;
for (k=1; k<=num1; k++) {

m_multi();
for (i=m_get_myid(); j<=m 1-1; j+=np) {

a[j] [m 1]=a[m 1] [size_a] *a[j] [m 1];
a[j] [m2]=a[m2] [size_a] *a[j] [m2];
a[j] [size_a]=a[j] [size_a]-(a[j] [m 1]+a[j] [m2]);
a[size_a-1-j] [m 1]=a[m 1] [size_a] *a[size_a-1-j] [m 1];
a[size_a-1-j] [m2]=a[m2] [size_a] *a[size_a-1-j] [m2];
a[size_a-1-j] [size_a]=a[size_a-1-j] [size_a]-

}
m_sync();
m_single();
ml--;
m2++;

(a[size_a-1-j] [m 1]+a[size_a-1-j] [m2]);

p1 = a[m2][m1]/a[m1][m1];
p2 = a[m2][m2]-p1*a[m1][m2];

215

)

a[m2] [nl]~(a[m2] [nl]-pl *a[ml][n l])/p2;
a[m 1] [n 1]~(a[m l][n 1]-a[m 1] [m2]*a[m2][n I])/a[m I] [m 1];

}
time6~CLOCK();

m_multi();

void print_results(a,size_a,np)
float **a;
int size_a, np;
{

}

int itmp;
float tot;

if ((fp_out~fopen("new _outnpwz", "a"))~~NULL)
printf("Can't open file outnpwz\n");
fprintf (fp_out, "\nParallel WZ pivot for %d by %d matrix using %d

processors: \n",size_a,size_a,np);
tot~O.O;
for (itmp ~o; itmp < size_a; itmp++) {
tot+~a[itmp] [size_a];

/*fprintf(fp_out,"\n x%d ~ %f', itmp, a[iunp](size_a]);*/
}
fprintf(fp_out,"\n The factorisation time :%1\n ", (float)(time2-timel)/100.0);
fprintf(fp_out,"Bidirectional time is: %f \n", (float)(time6-time5)/100.0);
fprintf(fp_out,"Total time: %f\n",

(float)((time2-timel)+(time4-time3)+(time6-time5))1100.0);
fprintf(fp_out,"Total xi's ~ %f\n",tot);
fclose(fp_out);

216

I* Rosni Abdullah
PARC, Computer Studies.
Parallel QZ Decomposition
Filename: parqz.c */

#include <stdio.h>
#include <math.h>
#include <parallel/parallel.h>
#include <parallel/microtask.h>
#def'me BITE I

main()
{

shared float **a;
shared int num_in_par,mem_cnt;
int time!, time2,time3;
FILE *fp_in, *fp_out;

int i, j, k, n,np, CLOCK();
float tt,b;
float **setup_matrix();
char *shmalloc();
double sqrt(),pow();
void decompl(),decomp2(),decomp3(),dec_up(),dec_down(),dec_down_last();
void bi_sub(), sub_odd(), sub_up(), print_mat(), print_results(),qz(), init_a(), elim();

if ((fp_in=fopen("data_size", "r"))==NULL)

l

printf("Can't open file sizeln");
b=O.OOI;
fscanf(fp_in, "%d" ,&n);
while (n != 0) {

a=setup_matrix(n,n+ 1);
for (np=l; np<=IO; np++) [

m_set_procs(np);
init_a(a,b,n);
qz(n,a);
print_results(a,n,np);
m_kill_procs();

}I* for np-th processor *I
fscanf(fp_in, "%d" ,&n);

}I* while size exists *I

void qz(n,a)
int n;
float **a;
{

int i,j,k,m, nk;
int i_down,j_down, i_up, j_up, num;
float pl,p2;
int j_up_prime, j_down_prime;

m=n/2-1;
num_in_par= 1;
time !=CLOCK();
for (k=l; k<=m; k++) [

if (k%2 != 0) num_in_par++;

217

}

m_fork(decompl,n,a,k,num_in_par,m);
m_fork(decomp2,n,a,k,num_in_par,m);

if (n%2 != 0) {

}

if ((m+ 1) %2 !=0) num_in_par++;
m_fork(decomp3,n,a,k,num_in_par,m);

/*printf("Begin second phase of elimination In");*/
if (n%2 == 0) {

}

if ((m-1)% 2 != 0) num_in_par=(m-1)/2 +1;
else num_in_par=(m-1)/2;
for (k=l; k<m;k++) {

m_fork(dec_up,n,a,k,num_in_par,m);
m_fork(dec_down,n,a,k,num_in_par,m);
if (((m-1)%2 == 0) && (k%2 == 0))

num_in_par~-;

if (((m-1) %2 != 0) && (k%2 != 0))
num_in_par--;

else {
m++; I* to get center value for odd sized matrices */
if ((m-1)% 2 != 0) {

}
else {

}

num_in_par=(m-1)/2+ 1;
for (k=l; k<m; k++) {

if (k%2 != 0) {
m_fork(dec_up,n,a,k,num_in_par,m);
num_in_par--;
m_fork(dec_down,n,a,k,num_in_par,m);

}
else {

m_fork(dec_up,n,a,k,num_in_par,m);
m_fork(dec_down,n,a,k,num_in_par,m);

num_in_par=(m-1)/2+ 1;
for(k=l; k<m; k++) {

if (k%2 != 0) {

}
else {

num_in_par--;
m_fork(dec_up,n,a,k,num_in_par,m);
m_fork(dec_down,n,a,k,num_in_par,m);

m_fork(dcc_up,n,a,k,num_in_par,m);
m_fork(dec_down_last,n,a,k,num_in_par,m);

}
time2=CLOCK();

I* Bidirectional Substitution */
bi_sub(a,n,m);
time3=CLOCK();
return;

218

void elim(a,n,e_row,top_piv,bottom_piv,left_col,right_col)
float **a;
int n, e_row,top_piv,bottom_piv,left_col,right_col;
{

l

int i,j;
float delta!, delta2, delta3, sqdld3, sqdld2d3, dld3;
float sin_t,cos_t, sin_f, cos_f, tmp, tmp_up,tmp_down, tmp_piv, tmpl, tmp2;

tmp=a[bottom_piv 1 [left_col1; unp_down=a[bottom_piv 1 [right_col1;
tmpl=a[e_row1[left_col1; unp_piv=a[e_row1[right_col1;
tmp2=a[top_piv 1 [left_col1; tmp_up=a[top_piv 1 [right_col1;
deltal=tmp_down*tmpl-tmp*tmp_piv;
delta2=tmp_up*tmp-tmp2*tmp_down;
delta3=tmp2*tmp_piv-tmp_up*tmpl;
dld3=(deltal *deltal)+(delta3*delta3);
sqdld3=sqrt((double) dld3);
sqdld2d3=sqrt((double)(delta2*delta2)+dld3);

sin_t=delta31sqd 1 d3;
cos_t=deltal/sqdld3;
sin_f=delta21sqdld2d3;
cos_f=sqd ld31sqd 1 d2d3;

I* UPDATE *I
I* update eliminated row *I
for (i=left_col+l; i<right_col; i++) {

tmp2=a[top_piv 1 [i1 *cos_t+a[bottom_piv 1 [i1 *sin_t;
tmp=a[e_row][i1;
a[e_row] [i]=cos_f*tmp2+(a[e_row] [i] *sin_!);
tmpl=a[bottom_piv1[i1;
a[bottom_piv 1 [i1=sin_f*tmp2-tmp*cos_f;
a[top_piv 1 [i1=(a[top_piv 1 [i1 *sin_tH unp I *cos_t);

}

I* update corners of top and bottom pivot row *I
tmp=a[top_piv 1 [left_col1;
tmp l=a[top_piv 1 [right_col1;
l*tmp_down=a[bottom_piv] [left_col1;
tmp2=a[bottom_piv 1 [right_col1; *I
a[top_piv 1 [left_col1=(tmp*sin_t)-(a[bottom_piv 1 [left_col1 *cos_t);
a[top_piv][right_col]=(tmp 1 *sin_t)-(a[bottom_piv][right_col]*cos_t);

a[bottom_piv] [left_col1=sin_f*(tmp*cos_t +a[bottom_piv 1 [left_ col] *sin_t)­
a[e_row1[left_col1*cos_f;

a[bottom_piv] [right_col]=sin_f*(tmp 1 *cos_t +a[bottom_piv] [right_ col]*
sin_t)-a[e_row] [right_col]*cos_f;

I* update the right hand sides *I
tmp_up=a[top_piv][n];
tmp_down=a[bottom_piv 1 [n]; ·
tmp_piv=a[e_row][n];
tmp=tmp_up*cos_t+tmp_down*sin_t;
a[top_piv][n]= (Unp_up*sin_t)-(tmp_down*cos_t);
a[e_row] [n]=(cos_f*tmp)+(tmp_piv*sin_f);
a[bottom_piv][n 1=(~in_f*unp)-(tmp_piv*cos_f);

219

#include <sysltypes.h>
#include <sysltimeb.h>
intCLOCK() {

struct timeb tp;
ftime(&tp);
return (tp.time*JOO + tp.millitmiJO);

}

I* procedure to initialise the coefficient array a *I
void init_a(a,b,size)
float **a,b;
int size;
{

int i,j;
float sum;

for (i=O; i<"size-1; i++) {
sum= 0.0;
for (j=O; i<=size-1; i++) {

if (i==j) a[i][j] = b;
else a[i][j] = fabs((double)((i-j)IJO.O));
sum+= a[i][j];

}
a[i][size],sum;

}

I* function to setup matrix of variable size *I
float**
setup_matrix(nrows,ncols)
int nrows, ncols;
{

int i,j;
float **new _matrix;

I* anocate pointer arrays; set new _matrix to address of newly allocated shared matrix *I
new _matrix " (float **) shmalloc(nrows*(sizeof(float *)));

I* allocate data arrays : set first element of new _matrix to address of first
element of newly allocated array *I

new_matrix[O] =(float*) shmalloc(nrows * ncols * (sizeof(tloat)));

/* initialise pointer arrays : set each element of new _matrix to address of
corresponding element of data array */

for (i=l; i < nrows;i++)
new_matrix[i] = new_matrix[O] + (ncols*i);

return(new _matrix);
}

void decompl(n,a,k,num_in_par,m)
tloat **a;
int n, k,num_in_par,m;
{

int i,j;
while (((j=BITE*(m_next()-1)+ l)<num_in_par) && ((i=k-j+ I)<= n-1))

elim(a,n,i,j-l,((n-1)-(j-l)),j-l,((n-1)-(j-1)));
}

220

void decomp2(n,a,k,num_in_par,m)
float **a;
int n, k,num_in_par ,m;
{

int i,j;
while (((j=BITE*(m_next()-1)+1)<num_in_par) && ((i=(n-k-1)+(j-1)) <= n-1))

elim(a,n,i,j-1,((n-1)-(j-1)),j-1,((n-1)-(j-1)));
}

void decomp3(n,a,k,num_in_par,m)
float **a;
int n, k,num_in_par,m;
{

int i,j;
while (((j=BITE*(m_next()-1)+ll<num_in_par) && ((i=(m+1)-(j-1)) <= n-1))

elim(a,n,i,j-l,((n-l)-(i-l)),j-1,((n-1)-(j-1)));
}

void dec_up(n,a,k,num_in_par,m)
float **a;
int n, k,num_in_par,m;
{

int i,j~
while (((j=BITE*(m_next()-1)+k)<k+num_in_par) && ((i=(k-j)+m) <= n-1))

elim(a,n,i,j,((n-1)-j),j ,((n-1)-j));
}

void dec_down(n,a,k,num_in_par,m)
float **a;
int n, k,num_in_par,m;
{

int i,j;
while (((j=BITE*(m_next()-1)+k)<k+num_in_par) && ((i=(m+1)+(j-k)) <= n-1))

elim(a,n,i,j ,((n-1)-j),j ,((n-1)-j));

void dec_down_last(n,a,k,num_in_par,m)
float **a;
int n, k,num_in_par,m;
{

int i,j;
while (((j=BITE*(m_next{)-1)+k)<k+num_in_par-1) && ((i=(m+1)+(j-k)) <= n-1))

elim(a,n,i,j ,((n-1)-j),j,((n-1)-j));
}

void bi_sub(a,n,m)
float **a;
intn,m;

int nl, k, ml, m2, num;
float p1,p2;

/*Bidirectional Substitution */
nl =n;
ml=m;
m2=m+1;
if (n%2 != 0) {

a[ml)[n l)=a[m l)[n 1]/a[m I) [rnl];

221

}

}

m_fork(sub_odd,a,n,ml);
ml=m-1;
m2=m+l;
pl = a[m2][ml]/a[ml](ml];

p2 = a[m2][m2] -pi *a[ml][m2];
a[m2][nl] = (a[m2][nl]-pl *a[ml][nl])/p2;
a[ml][nl) = (a[ml][nl]-a[m l][m2]*a[m2][nl])/a[ml][ml];

else {

}

pi= a[m2][ml)/a[ml)[ml];
p2 = a[m2)[m2]- pl*a[ml][m2];
a[m2)[nl] = (a[m2][nl]-pl *a[ml)[nl])/p2;

a[ml][n 1] = (a[m 1)[n 1]-a[ml][m2]*a[m2][n 1])/a[ml][ml];

if (n%2 != 0) num=n/2-1;
else num=m;
for (k=l; k<=num; k++) {

m_fork(sub_up,a,n,ml,m2);
ml--;

}

m2++;
pl = a[m2][ml]/a[ml][ml];
p2 = a[m2][m2]-p1*a[m1)[m2);
a[m2][nl]=(a[m2)[nl]-pl *a[m l][nl))/p2;
a[m 1] [n 1]=(a[m I] [n 1]-a[m 1] [m2]*a[m2] [n 1])/a[m 1] [m 1];

void sub_odd(a,n,middle)
float **a;
int n, middle;
{

intj,np;

np=m_get_numprocs();
for G=m_get_myid(); j<=middle-1; i+=np) {

a[j)[middle]=a[mitldle][n)*a[j)[middle];
a[j] [n]=a[j] [n]-a[j] [middle);

}

a[n-1-j] [middle]=a[middle] [n]*a[n-1-j] [middle];
a[n-1-j)[n]=a[n-1 cm n)-a[n-1-j] [middle];

void sub_up(a,n,midl,mid2)
float **a;
int n,midl,mid2;
{

}

intj, np;

np=m_get_numprocs();
for (i=m_get_myid(); j<=midl-1; j+=np) {

a[j] [mid l]=a[mid I] [n] *a[j] [mid I];
a[j][mid2]=a[mid2][n]*a[j][mid2];

}

a[j] [n]=a[i] [n]-(a[j] [mid l]+a[j] [mid2]);
a[n-1-j] [mid l]=a[midi] [n]*a[n-1-j] [midi];
a[n-1 cil [mid2]=a[mid2] [n]*a[n-1-j] [mid2];
a[n-1-j] [n]=a[n-1-j][n]-(a[n-1-j][midl]+a[n-1-j][mid2]);

222

void print_results(a,n,np)
float **a;
int n, np;
{

int i;
float tot;

if ((fp_out=fopen("outqz","a"))==NULL)
printf("Can't open file outqz\n");

fprintf(fp_out,"\nParallel QZ for %d by %d matrix using %d processors\n",n,n,np);
tot=O.O;
for (i=O; i <= n-1; i++){

/* fprintf (fp_out, "%5d %16.6!\n", i, a[i][n]);*/
tot+=a[i)[n];

}
fprintf(fp_out,"Time ~'!ken for decomposition was: %1\n", (float)(time2-timel)/IOO.O);
fprintf(fp_out,"Bidirectional Substitution time: %1\n", (float)(time2-timel)/100.0);
fprintf(fp_out, "Time taken for QZ was: %!\n",(floal)(time3-tirnel)/100.0);
fprintf(fp_out,"Total xi's = %f\n",tot);
fclose(fp_oul);

223

I* PVM program pie_master.c *I

#include <pvm3.h>
#define SLAVENAME "pie_slave"
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

main()
{

int mytid,cnt;
int tids[32];

I* my task id *I
I* slave task ids *I

int n, nproc, i, j, msgtype, bufid;
float **a, *xk, *xnk, middle, sum;
int nextslave, numrows, pvminfo, *awhere, *bwhere, midindex, num;
double time!, time2, secs(), idle!, idle2;

I* enroll in pvm *I
mytid = pvm_mytid();

cnt=O;
I* start up slave tasks *I
puts("How many slave programs (1-32)?");
scanf("%d", &nproc);
l*nproc=2;*1
pvm_spawn(SLA VENAME,(char**)O,O, "" ,nproc,tids);
for (i=O; i< nproc; i++)

printf("\n The tids[%d] = %d \n",i,tids[i]);

I* Begin user progrmn *I
puts("size of matrix is : \n ");
scanf("%d" ,&n);

xk=((float *) malloc((nl2)*sizeof(float)));
xnk=((float *) malloc((nl2)*sizeof(float)));
awhere=((int *) malloc((n/2)*sizeof(int)));
bwhere=((int *) malloc((n/2)*sizeof(int)));

timel=secs();
I* partition and distribute data to slaves *I
puts("sending data to slaves\n");
pvm_initsend(PvmDataRaw);
pvm_pkint(&nproc,l,l);
pvm_pkint(tids,nproc,l);
pvm_pkint(&n,l,l);
pvm_mcast(tids,nproc,O);
cnt++;
puts("Data sent to slaves ... \n");

I* The next n messages send, two rows at a time, tbe row index, tbe corresponding row of a
and tbe corresponding elements of b to U1e slave processes. The rows are distributed
cyclically amongst. the slave processes. The k-th and n-1-ktb rows are sent to the slaves. *I

num=nl2-l;
l*puts("Sending index of rows of matrix a to slaves \n"); *I
nextslave=O;
msgtype=l;
for (i=O; i<=num; i++) {

224

}

pvm_inilsend(PvmDataRaw);
pvm_pkint(&i,l, 1);
/*printf("Sending rows %d and %d to slave o/od\n",i,n-1-i,nextslave);*l
pvminfo=pvm_scnd(tids[nextslave],msgtype);
cnt++;
if (pvminfo < 0)

printf("\n Error in send");
if (nextslave == nproc-1)

nextslave = 0;
else

nextslave++;

I* send the middle row of t11e odd sized matrix *I
if ((n%2) !=0) {

}

i=n/2;
pvm_initsend(PvmDataRaw);
pvm_pkint(&i, 1, l);
pvminfo=pvm_send(tids[nextslave],msgtype);
cnt++;

I* Recieve results from slaves *I
msgtype= 5;
puts("Waiting for results from slaves\n");
for (i=O; i<nproc; i++) {

idlel=secs();
bufid=pvm_recv(-1 ,msgtype);
idle2=secs();
cnt++;
if (bufid <0) (

printf("Error on pvm_recv! Bailing out...\n");
pvm_exit();
exit(-!);

pvm_ upkint(&numrows, l, l);
pvm_upkint(awhere,numrows, l);
pvm_upkint(bwllere,numrows,l);
pvm_upkint(&midindex, l, l);
pvm_upklloat(xk,nutnrows,l);
sum=O.O;
for (i=O;_i<numrows;j++) {
I* prinlf("x[%d]= %f\n",awllere[j],xk[j]);*l

sum+=xk[j];

pvm_upkfloat(xnk,numrows, 1);
for (j=O;j<numrows;j++) {

/* printf("x[%d]= %f\n",bwllere[j],xnk[j]);*l
sum+=xnk[j];

pvm_upklloat(&middle,l,l);
l*printf("x[%d]= %fIn" ,midindex,middle);*l
sum+=middle;

time2=secs();
puts("Finislled getting results from slaves In");
printf("Number of sends/receive is %dln",cnt);
printf("Time for pie_mastcr=%f\n",time2-timel);

225

printf("Time (minus idle time) for pie_master=%1:\n" ,(time2-timel)-(idle2-idlel));
printf("Sum of xi's = %fln",sum);
puts("Exiting ... ln");
free(awhere);
free(bwhere);
free(xk);
free(xnk);
pvm_exit();
exit();

#include <sys!time.h>
double secs()
{

}

struct timeval ru;
gettimeofday(&ru, (struct timezone *)0);
return(ru.tv_sec + ((double)ru.tv _usec)/1000000);

226

L_ __ --

I* Rosni Abdullah *I
I* PIE slave program, began on 1/2/95 *I

#include <stdio.h>
#include <pvm3 .h>
#include <stdlib.h>
#include <time.h>

main()
{

int mytid; /*my task id *I
int tids[32], others[31], mygid, info, index!, pvminfo, num, midindex;
int n, me, i, j, jl, k, nproc, master, msgtype;
float **arow, /*keeps rows 0 to n/2-1 of matrix*/
*middle,
**brow;
int

/*keeps row n/2 to n-2 of matrix*/
*aindex, /*keeps index 0 to n/2-1 of matrix*/
bindex; / keeps index n/2 to n-1 of matrix */

int numrows, nextra, nextslave, nextindex, ipointer, cnt;
float *xk, /*in factorisation:keeps row kin solution process: keeps solution*/

xnk, / in factorisation:keeps row nk in solution process: keeps solution*/
sum, pi, p2, xl, x2;

double time!, time2,secs(),idlel,idle2,idle3,idle4,idle5,idle6,idle7;
double idle8,idle9,idle I O,idle I! ,idle 12,idle 13,idle 14,trnp l,tmp2,

comp_t, compl, comp2, pack_t, idle, pack!, pack2,pack3,
pack4,pack5,pack6,pack7 ,pack8, pack_elim, pack_soln;

idlel=idle2=idle3=idle4=idle5=idle6=idle7=0.0;
idle8=idle9=idlel O=idlell =idlel2=idlel 3=idle 14=0.0;
packl=pack2=pack3=pack4=pack5=pack6=pack7=pack8=0.0;

I* enroll in PVM */
mytid = pvm_mytid();
master= pvm_parent();
printf("I am %d \n", mytid);
mygid = pvm.Joingroup("workers");
if (mygid < 0) {

}

printf("Error injoingroup\n");
pvm_exit();
return;

cnt=O;
timel=secs();
I* receive data from master*/
msgtype= 0;
idlel=secs();
pvm_recv(master,msgtype);
idle2=secs();
cnt++;
pvm_upkint(&nproc, I, I);
pvm_upkint(tids,nproc, I);
pvm_upkint(&n, 1,1);

/*determine which slave I am *I
j =0;
for (i=O; i<nproc; i++) I

if (mytid==tids[i])
me;i;

227

else
others[j++]=tids[i];

}
printf("PlE with %d slaves for n= %d\n ",nproc,n);
arow=(float **) malloc((n/nproc)*sizeof(float *));
arow[O] =(float*) malloc((n/nproc) * (n+l) * (sizeof(float)));
for (i=l; i < (n/nproc);i++)
arow[i] = arow[O] + ((n+ l)*i);

brow=(float **) malloc((n/nproc)*sizeof(l1oat *));
brow[O] =(float*) malloc((n/nproc) * (n+l) * (sizeof(l1oat)));
for (i=l; i < (n/nproc);i++)

brow(i] = brow[O] + ((n+ l)*i);
middle=((float*) malloc((n+ l)*sizeof(l1oat)));
xk=((float *) malloc((n+2)*sizeof(l1oat)));
xnk=((float *) malloc((n+2)*sizeof(l1oat)));
aindex=((int *) malloc((n/nproc+2)*sizeof(int)));
bindex=((int *) malloc((n/nproc+2)*sizeof(int)));
num = n/2-1;
numrows = 0;

I* unpacks the row index and t11e corresponding row of a*/
for (i=O; k(num+l)/nproc; i++) [

idle3=secs();
pvm_recv(ma~ter,l);

idle4=secs();
cnt++;
pvm_upkint(&index 1,1,1);
aindex[numrows]=index!;
bindex[nurnrows] =n-1-index I;
numrows++~

}
if (((num+ I) % nproc) != 0) {

}

for (j=O; j<((num+ I) % nproc); j++) {
if (mytid == tids[j]) {

}

idle5=secs();
pvm_recv(master,l);
idle6=secs();
COt++;
pvm_upkint(&index 1,1,1);
aindex[numrows)=index I;
bindex [numrows) =n-1-index I;
numrows++;

if ((n%2) !=0) {

}

if (mytid == tids[((num+ l)%nproc)]) {
idle7=secs();
pvm_recv(master,l);
idlc8=secs();

else midindex=O;

cnt++;
pvm_upkint(&indexl,!,l);

midindex=indexl;

228

I* generates input for submatrix that each slave has to handle *I
for (i=O; i<numrows; i++) {

}

sum=O.O;
for G=O; j<n; j++) {

if (aindex[i]!=j) arow[iJO]=l.O;
else arow[i] [j]=(float)n;
sum+=arow[i][j];

}
arow[i][n]=sum;

for (i=O; i<numrows; i++) {
sum=O.O;
for G=O; j<n; j++) {

if (bindex[i]!=j) brow[i][j]=l.O;
else brow[i] [i]=(float)n;
sum+=brow[i](j];

}
brow[i][n]=smn;

}
if ((n%2) !=0) {

sum=O.O;
for G=O; j<n; j++) {

if (midindex != j) middle(j]=l.O;
else middle[j]=(float)n;
sum+=middle(j];

middle[n]=sum;

I* factorisation process *I
I* nextindex points to the next row on this slave process. After a row is being used, nextindex
is incremented to point to the next row on this slave process*/
pack_elim=O.O;
comp 1 =secs();
ipointer = 0;
nextindex = aindex[ipointer];
for (k=O; k<=num; k++){

if (k==nextindex) {

}
else {

xk[O]=aindex[ipointer];
for (i=l; i<=tH1; i++)

xk[i]=arow[ipointer] [i-1];
xnk[O]=bindex[ipointer];
for (i= I; i<=n+ 1; i++)

xnk[i]=brow[ipointer][i-1];
packl=secs();
pvm_initsend(PvmDataRaw);
pvm_pktloat(xk,n+2,1);
pvm_pktloat(xnk,n+ 2, I);
pvm_mcast(others,nproc-1, 1 00);
pack2=secs();
cnt++;
if (ipointer < numrows){

ipointer++;
nex tindex =aindex [ipointer] ;

idle9=secs();
pvm_recv(-1, 100);

229

}

}

idleiO=secs();
cnt++;
pack3=secs();
pvm_upkfloat(xk,n+ 2, I);
pack4=secs();
pvm_upkfloat(xnk,n+ 2,1);

for G=O; j<numrows; j++) {
if (aindex[j] > k) {

}

pi= (xk[n-k]/xk[k+1]);
x2 = (arow[j][n-1-k]- pl * arow[j][k])/(xnk[n-k]- p1 * xnk[k+1]);
x1 =(arow[j][k]-xnk[k+ 1]*x2)/xk[k+ 1];
arow[j][n-1-k]=x2;
arow[j][k]=xl;
for Gl=k+ 1; jl<=n-2-k; j1++)

arow[j] [j 1]=x1 *-(xk[j1 + l])+x2*-(xnk[j 1+ l])+arow[j] [j1];
arow[j] [n]=xl *-(xk[n+ 1])+x2*-(xnk[n+ 1])+arow[j] [n];

for (j=O; j<numrows; j++) {
if (bindex[j] < n-1-k) {

p1 = (xk[n-k]/xk[k+ I]);
x2 = (brow[j][n-1-k]- pi * brow[j][k])

/(xnk[n-k]- pi * xnk[k+ 1]);
xl =(brow[j][k]-xnk[k+ l]*x2)/xk[k+ 1];
brow[j][n-1-k] = x2;
brow[j][k] = x1;

for Gl=k+ I; jl<=n-2-k; j1++)
brow[j] [j l]=xl *-(xk[j 1 + 1])+x2*-(xnk[j 1 +I])+brow[j] [j 1];

brow[j] [n]=xl *-(xk[n+ l])+x2*-(xnk[n+ 1])+brow[j] [n];

if ((n%2) != 0) {
if (midindex >k) {

p l=(xk[n-k]/xk[k+ 1]);
x2=(middle[n-1-k]-p1 *middle[k])/ (xnk[n-k]- p1 * xnk[k+1]);
x l=(middle[k]-xnk[k+ l]*x2)/xk[k+ 1];
middle[n-1-k] = x2;
middle[k] = x1;
for G l=k+1; jl<=n-2-k; j1++)

middle[jl]=x 1*-(xk[j 1+ 1])+x2*-(xnk[j 1 + 1])+middle[j 1];
middle[n]=xl *-(xk[n+ 1])+x2*-(xnk[n+ l])+middle[n];

}
pack_elim+=(pack2-packl)+(pack4-pack3);

/*Bidirectional Substitution */
pvm_barrier("workers" ,nproc);
if (n % 2 !=0) {

if (midindex !=0) {
middle[n]=middle[n]/middle[n/2];
x1=middle[n];
pvm_initsend(PvmDataRaw);
pvm_pkfloat(&x 1,1, 1);
pvm_mcast(others,nproc-1, 160);
cnt++;

230

}

else {

}

idlell=secs();
pvm_recv(-1,160);
idle 12=secs();
cnt++;
pvm_upkfloat(&x 1,1,1);

for (j=O; j<numrows; j++) {
if (aindex[i] < n/2) {

}

arow[i] [n]=arowOJ [n]-arowOJ [n/2]*x I;
brow[j) [n]=brow[j) [n]-brow[j) (n/2)*x I;

/*even matrices */
pack_soln=O.O;
ipointer==numrows-1;
nextindex=aindex[ipointer];
for (k=n/2-1; k>=O; k--) [

}

if (k == nextindex) {
pl=brow[ipointer][k]/arow[ipointer][k];

x2=(brow[ipointer][n)-pl*arow[ipointer][n))/

}
else {

(brow[ipointer)[n-1-k]-p l*arow[ipointer) [n-1-k));
x l=(arow[ipointer) [n)-arow[ipointer) [n-1-k)*x2)/ [ipointer) [k:];
arow[ipointer)[n]=xl;
brow[ipointer][n]=x2;
pack5=secs();
pvm_initsend(PvmDataRaw);
pvm_pkfloat(&x 1,1,1);
pvm_pkfloat(&x2,1,1);
pvm_mcast(others,nproc-1,200);
pack6=secs();
cnt++;
if (ipointer> 0) {

}

ipoint.er--;
nextindex=aindex[ipointer);

idle13=secs();
pvm_recv(-1,200);
idle14=secs();
cnt++;
pack7=secs();
pvm_upkfloat(&xl,l,l);
pvm_upklloat(&x2,1,1);
pack8=secs();

for (i=O; j<numrows; .i++) {
if (aindex[j)<k) {

J

arow [i] [n]=arowUJ [n]-arow Jj) [k]*x 1-arowUJ [n-1-k]*x2;
brow[i] [n)=brow[i] [n]-brow[il [k]*x 1-browij) [n-l-k]*x2;

J
pack_soln+=(pack6-pack5)+(pack8-pack7);

comp2=secs();
pack_t=pack_elim+pack_soln;

231

}

comp_t=comp2-comp 1-pack_t;
/*printf("After bi_sub\n");*/
for (i=O; i<numrows; i++) {

xk[i]=arow[i][n];
xnk[i]=brow[i][n];

/* send results to master *I
msgtype=5;
pvm_initsend(PvmDataRaw);
pvm_pkint(&numrows, I, I);
pvm_pkint(aindex,numrows, I);
pvm_pkint(bindex,numrows, I);
pvm_pkint(&midindex, 1, I);
pvm_pkfloat(xk,numrows,l);
pvm_pkfloat(xnk,numrows,l);
pvm_pkfloat(&middle[n], I, I);
pvminfo=pvm_send(master,msgtype);
if (pvminfo <0)

printf("error in send \n");
cnt++;
printf("Number of sends/receive is %d\n",cnt);
time2=secsO;
printf("Time taken by pie_slave=%l\n",time2-timel);
tmp I= (idle2-idle I)+(idle4-idle3)+ (idlc6-id! e5)+ (idle8-idle 7);
tmp2=(idlel O-idle9)+(idle 12-idle 11)+(idle 14-idle 13);
printf("Finished \n");
printf("Time(minus idle time) taken by pie_slave=%l\n",(time2-timel)-tmpl-tmp2);
printf("Idle time of pie_slave= %f\n",tmpl+tmp2);
printf("Computation time of pie_slave= %f \n" ,comp_t);
printf("Communication time of pie_slave= %f \n",time2-timel-tmpl-tmp2-comp_t);
free(arow);
free(brow);
free(aindex);
free(bindex);
free(xk);
free(xnk);
free(midule);
pvm_barrier("workers" ,nproc);
pvm_lvgroup("workers");
pvm_exit();

#include <sys/time.h>
double secsO
{

struct timeval ru;
gettimeofday(&ru, (struct timezone *)0);
retum(ru.tv_sec + ((double)ru.tv _usec)/1000000);

232

I* PVM QIF master program: wz_master.c *I

#include <pvm3.h>
#define SLA VENAME "wz_slave"
#include <stdio.h>
#include <stdlib.h>

main()
{

intmytid, cnt, tids[32], n, nproc, i,j, msgtype, bufid;
float **a, *xk, *xnk, middle, sum;
int nextslave, numrows, pvminfo, *awhere, *bwhere, midindex, num;
double time!, time2, secs(), idle!, idle2;

I* enroll in pvm *I
mytid = pvm_mytid();

I* start up slave tasks *I
puts("How many slave prognuns (1-32)?");
scanf("%d", &nproc);
pvm_spawn(SLAVENAME,(char**)O,O,"",nproc,tids);
for (i=O; i< nproc; i++)

printf("ln The tids[%d] = %d ln",i,tids[i]);

I* Begin user program *I
puts("size of matrix is :In");
scanf("%d",&n);
xk=((float *) malloc((nl2)*sizeof(float)));
xnk=((float *) malloc((nl2)*sizeof(float)));
awhere=((int *) malloc((nl2)*sizeof(int)));
bwhere=((int *) malloc((nl2)*sizeof(int)));
cnt=O;
timel=secsO;
I* partition and distribute data to slaves *I
puts("sending data to slavesln");
pvm_initsend(PvmDataRaw);
pvm_pkint(&nproc,l,l);
pvm_pkint(tids,nproc,l);
pvm_pkint(&n, 1,1);
pvm_mcast(tids,nproc,O);
cnt++;
puts("Data sent to slaves ... ln");

I* The next n messages send, two rows at a time, the row index, the corresponding row of a
and the corresponding elements of b to the slave processes. The rows are distributed
cyclically amongst tl1e slave processes. The k-th and n-1-kth rows are sent to the slaves.*/
num=n/2-1;
puts("Sending index of rows of matrix a to slaves In");
nextslave=O;
msgtype=l;
for (i=O; i<=num; i++) {

pvm_initsend(PvmDataRaw);
pvm_pkint(&i,l,l);
pvminfo=pvm_send(tids[nextslave],msgtype);
cnt++;
if (pvminfo < 0)

printf("ln Error in send");
if (nextslave == nproc-1)

233

}

nextslave = 0;
else

nextslave++;
}
I* send the middle row of the odd sized matrix */
if ((n%2) !=0) {

}

i=n/2;
pvm_initsend(PvmDataRaw);
pvm_pkint(&i, I, I);

pvminfo=pvm_send(tids [nextslave] ,msgtype);

I* Recieve results from slaves*/
msgtype = 5;
puts("Waiting for results from slaves\n");
for (i=O; knproc; i++) {

}

idlel=secs();
bufid=pvm_recv(-1 ,msgtype);
idle2=secs();
cnt++;
if (bufid <0) {

printf("Error on pvm_recv! Bailing ouL.\n ");
pvm_exit();
exit(-!);

pvm_upkint(&numrows,l,l);
pvm_upkint(awhere,numrows, I);
pvm_upkint(bwhere,numrows,l);
pvm_upkint(&midindex,l,l);
pvm_upkftoat(xk,numrows,l);
sum=O.O;
for G=O;j<numrows;j++)

sum+=xk[j];
pvm_upkfloat(xnk,numrows,l);
for G=O;j<numrows;j++)

sum+=xnk[j];
pvm_upkfioat(&middle,l,l);

time2=secs();
puts("Finished getting results from slaves \n");
printf("Number of sends/receive is %d\n",cnt);
printf("Time for wz_master=%1\n",time2-timel);
printf("Time (minus idle time) for wz_master=%1\n",(time2-timel)-(idle2-idlel));

printf("Total xi's = %f\n", sum);
puts("Exiting ... \n");
pvm_exit();
exit();

#include <sys/time.h>
double secs()
{

}

struct timeval ru;
gettimeofday(&ru, (struct timezone *)0);
retum(ru.tv_sec + ((double)ru.tv _usec)/1000000);

234

/* Rosni Abdullah */
I* WZ slave program, began on 24/12/94 */

#include <stdio.h>
#include <pvm3 .h>
#include <stdlib.h>
#include <lime.h>

main()
{

int mytid, cnt, tids[32], others[31], mygid, info;
int n, me, i, j, jl, k, nproc, master, msgtype, index!, pvminfo, num, midindex;
float **arow, /*keeps rows 0 to n/2-1 of matrix*/

*middle,
**brow; /*keeps row n/2 to n-2 of matrix*/

int *aindex, /*keeps index 0 to n/2-1 of matrix *I
bindex; / keeps index n/2 to n-1 of matrix *I

int numrows, nextra, nextslave, nextindex, ipointer;
float *xk, /*in factorisation:keeps row kin solution process: keeps solution*/

xnk, I in factorisation:keeps row nk in solution process: keeps solution*/
sum, pl, p2, xl, x2;

double secs(), time!, time2, pack_t, pack_elim, pack_soln, pack!, pack2,
pack3,pack4,pack5,pack6,pack7,pack8,pack9,packl0,packll,
pack\2, idle, idle!, idle2, idle3, idle4, idleS, idle6, idle7,
idleS, idle9, idlelO, idlell, idlel2, idlel3, idle\4, idlel5,
idlel6, comp_t, compl, comp2, unpl, unp2, pack_solnl;

idlel=idle2=idle3=idle4=idle5=idlc6=idle7=pack11=pack12:0.0;
idle8=idle9=idlel O=idlell=idlel2=idle 13=idle 14=idle15=idle 16=0.0;
packl=pack2=pack3=pack4=pack5=pack6=pack7=pack8=pack9=pack10=0.0;

I* enroll in PVM */
mytid = pvm_mytid();
master= pvm_parent();
printf("l run %dIn", mytid);
mygid = pvmjoingroup("workers");
if (mygid < 0) {

printf("Error in joingroupln ");
pvm_exit();
return;

cnt=O;
timel=secs();
I* receive data from master *I
msgtype = 0;
idle1=secs();
pvm_recv(master,msgtype);
idleZ=secs();
cnt++;
pvm_upkint(&nproc,1,1);
pvm_upkint(tids,nproc, 1);
pvm_upkint(&n, 1, 1);

/*determine which slave I run */
j = 0;
for (i=O; i<nproc; i++) {

if (mytid==tids[i])
me=i;

235

else
others[i++)=tids[i];

printf("QIF with %d slaves for n= %din ",nproc,n);
arow=(float **) malloc((n/nproc)*sizeof(float *));
arow[O] =(float*) malloc((n/nproc) * (n+1) * (sizeof(float)));
for (i=1; i < (n/nproc);i++)

arow[i] = arow[O] + ((n+ 1)*i);
brow=(lloat **) mal1oc((n/nproc)*sizeof(float *));
brow[O] =(float*) malloc((n/nproc) * (n+ 1) * (sizeof(float)));
for (i= 1; i < (n/nproc);i++)
brow[i) = brow[O] + ((n+1)*i);

middle=((float *) malloc((n+ 1)*sizeof(lloat)));
xk=((float *) malloc((n+2)*sizeof(lloat)));
xnk=((lloat *) malloc((n+2)*sizeof(lloat)));
aindex=((int *) malloc((n/nproc+2)*sizeof(int)));
bindex=((int *) malloc((n/nproc+2)*sizeof(int)));
num = n/2-1;
numrows = 0;

/* unpacks the row index and the corresponding row of a *I
for (i=O; i<(num+ 1)/nproc; i++) {

idle3=secs();
pvm_recv(master,l);
idle4=secs();
cnt++;
pvm_upkint(&index 1,1, 1);
aindex[numrows]=index 1;
bindex[numrows]=n-1-index 1;
numrows++;

if (((num+ 1) % nproc) != 0) {

}

for (i=O;j<((num+1)% nproc);j++) {
if (mytid == tids[j)) {

idle5=secs();
pvm_recv(master,l);
idle6=secs();
cnt++;
pvm_upkint(&index 1,1, 1);
aindex [numrows) =index 1;
bindex [numrows]=n-1-index 1;
numrows++;

if ((n%2) !=0) {
if(mytid == tids[((num+1)%nproc))) {

idle7=secs();
pvm_recv(master, 1);
idle8=secs();

else midindex=O;

cnt++;
pvm_upkint(&index 1,1, 1);
midindex=index 1;

236

I* generates input for submatrix that each slave has to handle *I
for (i=O; i<numrows; i++) {

sum=O.O;
for G=O; j<n; j++) {

if (aindex[i] !=j) arow[i][il= 1.0;
else arow[i] [j]=(float)n;
sum+=arow[i][j];

arow[i][n]=sum;

for (i=O; i<numrows; i++) {
sum=O.O;

}

for G=O;j<n;j++) {

}

if (bindex[i]!=j) brow[i][j]=l.O;
else brow[i][il=(float)n;
sum+=brow[i][j];

brow[i][n]=sum;

if ((n%2) !=0) {
sum=O.O;
for G=O; j<n; j++) {

if (midindex != j) middle[i]=l.O;
else middle[j]=(float)n;
sum+=middle[il;

middle(n]=sum;

I* factorisation process *I
I* nextindex points to t11e next row on this slave process. After a row is being used, nextindex
is incremented to point to the next row on t11is slave process *I
pack_elim=O.O;
comp1=secs();
ipointer = 0;
nextindex = aindex[ipointer];
for (k=O; k<=num; k++)(

if (k==nextindex) {
xk[O]=aindex[ipointer];
for (i=1; i<=n+1; i++)

}
else {

xk[i]=arow [ipointer] [i-1];
xnk[O]=bindex[ipointer];
for (i=l; i<=n+1; i++)

xnk[i]=brow[ipointer] [i-1];
packl=secs();
pvm_initsend(PvmDataDefault);
pvm_pk!loat(xk,n+2, I);
pvm_pktloat(xnk,n+ 2, I);
pvm_mcast(others,nproc-1, I 00);
pack2=secs();
cnt++;
if (ipointer < numrows){

ipointer++;
nextindex=aindex[ipointer];

idle9=secs();
pvm_recv(-1,100);

237

}

idlel<r-secs();
cnt++;
pack3~secs();

pvm_upkfloat(xk,n+2,1);
pack4~secs();

pvm_upkfloat(xnk,n+2,1);

for (i=O; j<numrows; j++) {

}

if (aindex[i] > k) {
pi~ (xk[n-k]/xk[k+l]);
x2 = (arow[j][n-1-k]- pi* arow[j][k])/(xnk[n-k]- pl * xnk[k+l]);
xi =(arow[i] [k]-xnk[k+ l]*x2)/xk[k+ I];
arow(j][n-l-k]=x2;
arow[j][k]=xl;
for (il=k+l; jl<~n-2-k; jl++)

arow[j] [j l]=arow[i] [jl]-arow[j][k]*xk[i I+ 1]­
arow(j][n-1-k]* xnk[il+l];

for (j=O; j<numrows; j++) {

}

if (bindex[j] < n-1-k) {
pi = (xk[n-k]/xk[k+ I]);
x2 ~ (brow[j][n-1-k]-pl * brow[j][k])/(xnk[n-k]- pi* xnk[k+l]);
xI =(brow[j][k]-xnk[k+ l]*x2)/xk[k+ I];
brow[j][n-1-k] = x2;
brow[i][k] ~xi;
for (i l=k+ I; jl<=n-2-k; jl++)

brow[i] [i l]=brow[j] [j 1]-brow[i] [k] *xk[i I+ 1]-brow[j] [n-1-k] *
xnk[jl+l];

if ((n%2) !~ 0) {
if (midindex >k) {

pl=(xk[n-k]/xk[k+ I]);
x2=(middle[n-l-k]-pl *middle[k])/ (xnk[n-k]- pi * xnk(k+l]);
x I~(middle[k]-xnk[k+ l]*x2)/xk[k+ I];
middle[n-1-k] = x2;
middle[k] ~xi;
for (il=k+ I; jl<=n-2-k; jl++)

middle[j I]~middle[j 1]-middle[k] *xk[j I+ 1]­
middle[n-1-k]*xnk[j 1 +I];

l
pack_elim+=(pack2-packl)+(pack4-pack3);

}
pack_soln~O.O;

I* Inward Substitution */
ipointer :::: 0;
nextindex ~ aindex[ipointer];
for(k~O; k<=num; k++) {

if (k =~ nextindex) {
x l=arow[ipointer] [n];
x2 ~ arow(ipointer](n];
pack5~secs();

pvm_initsend(PvmDataDefault);
pvm_pktloat(&xl,l,l);
pvm_pkfloat(&x2,1,1);
pvm_mcast(others,nproc-1,150);

238

}
else {

}

pack6=secs();
cnt++;
if (ipointer < numrows) {

ipointer++;
nextindex=aindex[ipointer];

idlell=secs();
pvm_recv(-1,150);
idlel2=secs();
cnt++;
pack7=secs();
pvm_upkfloat(&xl,l,l);
pvm_upkfloat(&x2,1,1);
pack8=secs();

for (i=O; j<numrows; j++) {
if (aindex[j]>k)

arow[j] [n]=arow[j] [n]-arow[j] [k]*x l­
arow[j][n-l-k]*x2;

for (i=O; j<numrows; j++) {
if (aindex[j]>k)

brow[j] [n]=brow [j] [n]-brow[j] [k]*x 1-brow[j] [n-1-k]*x2;
}
if ((n%2)!=0) {

if (midindex > k)
middle[n] =middle[n]-middle[k]*x !-middle[n-1-k]*x2;

}
pack_soln+=(pack6-pack5)+(pack8-pack7);

/*Bidirectional Substitution *I
pack_solnl=O.O;
if (n % 2 !=0) {

if (midindex!=O) {
middle[n]=middle[n]/middle[n/2];
xl=middle[n];
pvm_initsend(PvmDataDefault);
pvm_pkfloat(&xl,l,l);
pvm_mcast(others,nproc-1,160);

)
else {

pvm_recv(-1,160);
pvm_upktloat(&xl,l,l);

for (i=O; j<numrows; j++) {
if (aindex[j] < n/2) {

arow(j] [n)=arow[j][n]-arow(j] [n/2) *x 1;
brow[j] [n]=brow[j] [n]-brow[j] [n/2]*x 1;

}
}

/*even matrices */
ipointer=numrows-1;
nextindex=aindex[ipointer];
for (k=n/2-1; k>=O; k --) {

if (k == nextindex) {

239

}

}
else {

pI =brow[ipointer) [k)/arow[ipointer) [k);
x2=(brow[ipointer)[n)-pl*arow[ipointer][n])/

(brow[ipointer] [n -1-k]-pI *arow[ipointer) [n-1-k]);
xI =(arow[ipoilller) [n)-arow [ipointer) [n-1-k)*x2)/arow [ipointer) [k];
arow[ipointer] [n]=xl;
brow[ipointer][n]=x2;
pack9=secs();
pvm_initsend(PvmDataRaw);
pvm_pkfloat(&xl,l,l);
pvm_pkfloat(&x2,1,1);
pvm_mcast(others,nproc-1,200);
pack!O=secs();
cnt++;
if (ipointer > 0) {

ipointer--;
nextindex=aindex[ipointer);

idlel3=secs();
pvm_recv(-1,200);
idle14=secs();
cnt++;
pack11=secs();
pvm_upkfloat(&x 1,1,1);
pvm_upkfloat(&x2,1,1);
pack12=secs();

for (i=O; j<nmurows; j++) {
if (aindex[j]<k) {

}
}

arow[j] [n]=arow[j] [n]-arow[j] [k]*x 1-arow[j] [n-1-k]*x2;
brow[j) [n)=brow[j) [n)-brow[j] [k)*x 1-brow[j] [n-1-k)*x2;

pack_soln1 +=(pack 1 O-pack9)+(pack 12-packl1);

for (i=O; i<numrows; i++) {
xk[i]=arow[i) [n];
xnk[i]=brow[i)[n);

}
comp2=secs();
pack_t=pack_elim+pack_soln+pack_soln 1;
comp_t=comp2-comp 1-pack_t;
/* send results to master */
msgtype=5;
pvm_initsend(PvmDataDefault);
pvm_pkint(&numrows,1,1);
pvm_pkint(aindex,numrows,J);
pvm_pkint(bindex,numrows,l);
pvm_pkint(&midindex,I,J);
pvm_pkfloat(xk,nmurows,l);
pvm_pkfloat(xnk,numrows,l);
pvm_pkfloat(&middle[n],1,1);
pvminfo=pvm_send(master,msgtype);

cnt++;
printf("Number of sends/receive is %d\n",cnt);
time2=secs();

240

}

printf("Time taken by wz_slavc=%!\n",time2-timel);
unp I=(idle2-id! e I)+(id! e4-id! e3)+(idle6-idle5)+ (idle8-idle 7);
tmp2=(idle I O-idle9)+(idle 12-idle 11)+(idle 14-idle 13);
printf("Finished \n"); ·
printf("Time(minus idle time) taken by wz_slave=%!\n",(time2-timel)-tmpl-tmp2);
printf("ldle time of wz_slave= %f\n",unpl+tmp2);
printf("Computation time of wz_slave= %f \n",comp_t);
printf("Communication time of wz_slave= %fIn" ,time2-timel­
tmpl-tmp2-comp_t);

if (pvminfo <0)
printf("error in send In");

pvm_barrier("workers" ,up roe);
pvm_lvgroup("workers");
pvm_exit();

#include <sys/time.b>
double secsO
{

}

struct timeval ru;
gettimeofday(&ru, (struct timezone *)0);
retum(ru.tv_sec + ((double)ru.tv _usec)/1000000);

241

