i1 M Loughborough
 University

This item was submitted to Loughborough's Research Repository by the author.
ltems in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Analysis and design of parallel algorithms
PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Richard Charles Dunbar

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE
CC BY-NC-ND 4.0

REPOSITORY RECORD

Dunbar, Richard C.. 2019. “Analysis and Design of Parallel Algorithms”. figshare.
https://hdl.handle.net/2134/34584.

https://lboro.figshare.com/

| _ LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR
DOQGA&! R

‘ COPY NO. \H-%R‘-r@./o;

VoL NO. CLASS MARK .
C ARSHIVES)

| Cofy

FOR HEFERENCE QNLY

ANALYSIS AND DESIGN OF PARALLEL ALGORITHMS

by

Richard Charles Dunbar, B.Sc.

?

A Doctoral Thesis
Submitted in partial fulfilment of the requirements
for the award of Doctor of Philosophy
of the Loughborough University of Technology

July, 1978.

Supervisor: Professor D.J. Evans, Ph.D.,D.Sc.

Department of Computer Studies

© by Richard Charles Dunbar, 1978.

Loughborous™

_of Techno:

‘ —-._.........._.D‘g. Mw-« s_q\.»u.,

co

RV S

.
¥

Class

N 4 E 346 /o

DECLARATION

I declare that the following thesis is a record
6f research work carried out by me, and thét the thesis
is of my own composition. I also certify that neither
this thesis nor the original work contained therein has

been submitted to this or any other institution for a degree.

R.C. DUNBAR.

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Professor Evans
without who's patience, guidance, encouragement, useful ideas and
~general shove in the right direction when needed, this thesis

would never have been completed.

I am also indebted to Doctors Blakemore, Barlow and, in
particular, Rick for their comments and assistance, and Miss

Briers, who typed this thesis so professionally.

Finally, I wish to thank my family. My wife, who had to
live with me and my parents who have always encouraged me. I
dedicate this thesis to them and also my grandmother who saw it

started and son who saw it finished. Thank you.

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

CONTENTS

CURRENT PARALLEL COMPUTER ARCHITECTURES

Introduction .. .v vv co oo oo os
SIMD Computers

MIMD Computers e s
Pipeline Computers

The Interdata Dual Processor

Pt et b ped
e e s v s
BN

BASIC TECHNIQUES FOR PROGRAMMING A PARALLEL COMPUTER

2.1 Introduction .. .
2.2 The Design of Algorlthms for SIMD and
Pipeline Computers .
2.3 Creating Multiple Instructlon Streams on
an MIMD Computer .
2.4 The Design of Algorithms for MIMD Computers

THE PARALLEL SOLUTION OF BANDED SYSTEMS OF LINEAR
EQUATIONS BY TRIANGULAR FACTORISATION

3.1 Introduction .. .o

3.2 Standard Factorlsatlon Algorlthms .. .

3.3 The Parallel Triangular Factorisation of the
Matrix A

3.4 Parallel Triangular Factorlsatlon w1th
Partial Pivoting

3.5 The Solution of the System (3 1 1) by the

Parallel Triangular Factorization Method

The Inherent Parallelism of the Method

The Symmetric Parallel Factorisation Method

The Generalisation of the Methods for Matrices

of Semi-bandwidth m . .o

3.9 The Solution of the Generallsed System by the
Parallel Triangular Factorisation Method

3.10 The Generalised Symmetric Parallel Factorisation
Method

3.11 Inherent Parallellsm ..

3.12 Error Analysis of the Generallsed Parallel
Factorisation Method ce ee ee e

3.13 Examples .. v ve hh ve he e en e ee e e

w
(eI R

THE SOLUTION OF TRIANGULAR SYSTEMS OF EQUATIONS

4.1
4.2
4.3
4.4
4.5
4.6

Introduction e ee ee es e
The Sequential Substltutlon Process e - .
Methods that Require at Most (n-1)/2 Processors
The Wavefront Methods .. .
Methods Employing More Than (n 1) Processors
Results and Conclusions

Page

Qoo+~

13
17

22
29

44
45

50
53

56
57
61

63
68

70
73

75
87

91
92
95
101
111
118

CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

REFERENCES

APPENDIX A

APPENDIX B

TH

v n
o e & s e

viux
P

s = es]

NN

PARALLEL QUICKSORT ALGORITHM

Introouctlon e e s ae es we es e

Sequential Sorting Algorlthms '

Sorting on a Parallel Computer ..

The Parallel Quicksort Method .

The Analysis of the Run Time of the Parallel
Quicksort Algorithm .

Simulation of the Parallel Qu1cksort Method

Results and Conclusions

SUCCESSIVE OVER-RELAXATION - A PARALLEL APPROACH

6
6.
6

(92 I~ N

N

Introduction
The Derivation of the F1n1te-D1fference Equatlon ..

The Solution of a Large Sparse System of Linear
Equations ..

The Estimation of the Optlmum Value of w for SOR ..

The Solution of the Dirichlet Problem by SOR
on a Parallel Computer .o o ee ee e

Block and Line Iterative Schemes

Conclusions

THE CORRECTION OF THE ELEMENTS OF THE INVERSE MATRIX BY
IMPLICIT ITERATIVE PROCESSES

7.1 Introduction ..

7.2 Hotelling's Method ..

7.3 The Derivation of Imp11c1t Matrlx Processes

7.4 Convergence Properties of the First Order
Implicit Process e e ee .

7.5 Convergence Properties of the Second Order
Implicit Process

7.6 Implementation of Imp11c1t Iteratlve Methods
and Results

CONCLUSIONS

Page

126
127
130
132
137

157
162

168
170

173
176

180

184
200

204
205
205

208
211

213
219
224
235

243

CHAPTER 1

CURRENT PARALLEL COMPUTER ARCHITECTURES

1.1 INTRODUCTION

Since their introduction, the computation speed of electronic
computers has been greatly increased mainly by the development of
faster electronic components, The first computers used relatively
slow compoﬁents such as vacuum tubes and their central memories were
magnetic drums. As electronic technology advanced, these components
have been replaced by transistors and magnetic cores which in their
turn have been replaced by integrated components.

The present state of electronic technology is such that factors
affecting computation speed have almost been minimised; switching for
instance is almost instantaneous. Electronic components'are so good,
in fact, that the time taken for a logic signal to travel between two
points is now a significant factor of instruction times.

Clearly, with the actual physical éize'of components being very
small and the high circuit density, there is little scope for improving
computation speech significantly by such means as even denser circuitry
or still faster electronic components. Thus, development of faster
computers will require a new approach that depends on the imaginative
use of existing knowledge.

One such approach is to increase computation speed through

parallelism. Obviously, a parallel computer with p identical processors
is potentially p times as fast as a single comﬁuter, although this
limit can rarely be achieved.

Parallelism has been developed in various forms and this has led
to two general classes of pa}allel computers. These basic classifications
made by Flynn [1966] are Single Instruction stream Multiple Data stream
(SIMD) and Multiple Instruction streém Multiple Data stream (MIMD)

-

computers. We shall discuss both of these types of parallel computer,

outlining their differences and the advantages of each model. Another |

type of computer, the pipeline computer, which is also sometimes

classed as a parallel computer, will also be briefly described.

1.2 SIMD Computers

The SIMD parallel computer or Array processor is made up of an
array of processors, each executing the same string of instructions on
different data. A p processor SIMD computer is represented diagramatically
in Figure 1.1.

Each of the processors in an SIMD computer differ from a standard
computer in that'they are unable to generate their own instructions.
Instead, the instructions are provided by a control unit which is
usually a computer itself. Associated with each processor is a private
memory which provides it with its own data stream and consequently
each processor executes the same instruction on its own data simultaneously.
This leads to the definition of processors being synchronous when all

instructions executed by the processors in parallel are identical.

DATA STREAM 1

——MPROCESSOR 1r'

DATA STREAM 2

PROCESSOR 2

CONTROL {INSTRUCTION
UNIT STREAM

DATA STREAM p

L———%PROCESSOR p

x

SIMD COMPUTER

Figure 1.1

An example of an SIMD computer is the Illiac IV (Barnes et al [1968]
and éouknight et al [1972]), built by Burroughs Corporation and now
located at the NASA Ames Research Centre, California. It comprises of
64 synchronous processors, each processor being almost a standard
processor (by definition each processor lacks the ability to generate
its own instructions). Obviously, expense severely limits the number
of processors of this kind that may be combined to form an SIMD computer.
However, SIMD computers under development employ large numbers of bit
serial processors, e.g., the ICL Distributed Array Processor or DAP
(Reddaway [1973]) which typically consists of 4096 microprocessors.

» Unfortunately, a bit serial processor is considerably slower than a
standard computer (Parkinson, 1976) and the actual speed-up achieved
by an SIMD computer using such processors is therefore that much less.

It is necessary for the processors in an SIMD computer to be able
to communicate with one another. Unfortunately a complete inter-
connection network, where every processor is connected to every other
processor, is expensive and unrealistic and so a reduced network of
interconnections is necessary.

One such network is indicated in Figure 1.2 where the 64 processors
form an 8%8 array, each processor being connected to its 4 immediate
neighbours. This type of network is employed by both the Illiac IV
and the DAP. From Figure 1.2 it is clear that this network is very
"suitable for the solution of partial differential equations in two
dimensions which, typically,involves the application of an iterative

formula of the form,

5T K T Mot Sage N T Py 2D

0 1 s 2 fe—i 3 s 4 s 5k 6 k 7
; 1 i 1] 1
| I] f i : i

8 [9 "l 10 11

Y T]

[})

[}]

] |

16 o 17 F---

h 1
!
3 1
24 |--- ---- 47

<=

H 1
>

hd

56 157 [58 59 60 [61 [62 [< 63

8x8 ARRAY PROCESSOR

Figure 1.2

An alternative network is the cyclic interconnection network,
illustrated in Figure 1.3, where the processors form a ring and again
are connected to their immediate neighbours. This design is clearly
suitable for algorithms containing assignment statements of the form,

Xg =X 1 F X 2xi . (1.2.2)

Other interconnection networks do exist that are suitable

e 4

for different types of algorithms. Unfortunately these networks
are comparatively inflexible and when the requirements of a
particular algorithm do not match the interconnection pattern of
the computer, the communication delays incurred can seriously
affect the execution time of the algorithm.

Another important feature that affects the class of problems
for which the SIMD computer is suitable is its difficulty in dealing

with conditional statements. A conditional statement can create

more than one stream of instructions and since by definition there

can be only onc stream of instructions, it is impossible to execute

more than one of the branches of the conditional statement simultaneously.
Each processor does however usually possess a local on/off switch or

mask and so it is possible to prevent any of the processors from
executing any of the instructions when necessary. Thus by setting the
masks appropriately a conditional statement can be dealt with by

executing each instruction stream that is created sequentially.

CYCLICALLY CONNECTED PROCESSORS

Figure 1.3

Clearly, the basic characteristics of the SIMD computer mean that
the type of problem that may be solved efficiently on such a computer
must have a high degree of parallelism so that as many of the available
processors as possible can be used simultaneously. Also, a suitable
interconnection network must be available to avoid excessive
communication delays. Thus the SIMD computer is not a general purpose

computer. However, there are a sufficient number of important problems,

mostly of a numerical nature (e.g. the solution of equations arising
from the weather forecasting problem), suitable for SIMD computers to

justify the development of special-purpose computers of this type.

1.3 MIMD COMPUTERS

The MIMD computer or multiprocessor is basically a minicomputer
network. Each processor generates its own instruction stream which it
executes on its own data stream. Such a computer with p processors 1is
illustrated in Figure 1.4.

Each processor -has its own control unit and so is able to generate
its own instruction stream. Hence it is possible to execute different
instructions simultaneously, which is our definition of asynchronous
processors. Clearly, the independence of each processor means that

they need not be identical, but they must be compatible with each other.

CONTROL INSTRUCT ION DATA STREAM 1
N
UNIT 1 STREAM 1 PROCESSOR 1 #
CONTROL IN?EE}E;I(Z)N o PROCESSOR 2}y PATA STREAM 2
UNIT 2
: T
‘ !
: .
I i
t |
$ '
] 1
INSTRUCTION
CONTROL o PROCESSOR ple—DATA STREAM p
UNIT P STREAM P

MIMD COMPUTER

Figure 1.4

Each processor also has its own data stream which is obtained
from two sources. A large ¢ primary memory, usually referred to
as the common memory, is accessible by each processor. Although the

assumption is often made that each processor can obtain any piece of

information from the common memory in unit time, in reality, there
are complex problems involving such things as memory contention and
processor interconnections. These complex problems can be reduced.
by the provision of a private memory associated with each processor
in which important data is stored.

Examples of MIMD computers include the C.mmp multi-minicomputer
(Wulf and Bell, 1972), under development at Carnegie-Mellon University,
which is constructed of up to 16 asynchronous processors. Of particular
interest is the Interdata Dual Processor Computer (Barlow et a1; 1977)
being developed at the Departhent of Computer Studies of Loughborough
Univeristy which is considered in more detail in Section 1.5.

Obviously, the number of processors involved in existing MIMD
computers is very small and the size of future computers will be
restricted by expense. This number of processors is further restricted
by the present unavoidable problems already mentioned, such as memory
contention or store clashing, which grow exponentially with p, the
increasing numtor of processors.

For MIMD computers with a very small number of processors it would
be possible to implement a‘complete processor interconnection network.
Otherwise a reduced network must be used such as those already mentioned
for SIMD computers. Another interesting reduced network is the Star
confiéuration, illustrated in Figure 1.5, where one processor is
connected to each of the p-1 other processors.

The MIMD computer is clearly more flexible than the SIMD computer
and so can be used to solve a greater variety of problems. The main
difficulty that arises is the partitioning of the problem to yield an
efficient method of solution rather than actually being able to solve
the problem. Thus, the MIMD computer may be considered a general

purpose computer.

p-1 2

STAR INTERCONNECTION NETWORK

Figure 1.5

1.4 PIPELINE COMPUTERS

Pipeline or Vector computers achieve an increase in computation
speed by a novel approach to parallelism. This type of computer,
although essentially sequential, achieves a form of parallelism by
dividing arithmetic operations into subtasks and executing these
subtasks on queues of pairs of operands simultaneously. Although
pipeline computers are somewhat different to SIMD and MIMD computers,
they are of interest because the form of algorithm that achieves a
good speed up on a pipeline computer is closely linked with those

best suited to SIMD computers.

Floating-point arithmetic operations may be considered as a

sequence of subtasks such as operand fetching, exponent adjustment,
coefficient alignment etc. A pipeline computer separates these sub-
tasks and by means of an instruction lookahead mechanism sets up a
queue of operand pairs on which to execute the operation. Then, in
assembly line fashion, the queue of operand pairs provides a continuous
stream of data for the sequence of subtasks. Each subtask acts on a
pair of operands and then passes them to the next subtask while
accepting the next pair of operands.

Examples of pipeline computers include the Control Data Corporation
(CDC) STAR-100 (Hintz and Tate, 1972) and the Texas Instruments Advanced
Scientific Computer (Watson, 1972).

In order to investigate how best to use pipeline computers we must
examine the timings of the pipeline operations. The subtasks of an
operation are designed so that each subtask is completed in a fixed
amount of time T or a cycle. We further define the total time to
complete an operation as o. Then the time required to perform n pipe-
line operations will be (n-1)1+o, since the delay before the first
result is produced will be o after which further results are produced
at the end of each cycle. Obviously, the time required to execute one
instruction on a standard éomputer, say t, will be less than o the time
required by a pipeline computer. Thus to achieve a speedup when
performing n operations we require

(n-1)T + o < nt

> n > Egzg (1.4.1)

Clearly, to take full advantage of pipeline computers,
algorithms must be designed so that this condition is often
satisfied i.e., long sequences of identical operations are required

as with the SIMD computer.

10

1.5 THE INTERDATA DUAL PROCESSOR

The type of parallel computer that this thesis is particularly
concerned with is the MIMD computer and so in the final section of
this chapter we shall examine in more detail.the Interdata Dual
Processor which, at present, is being developed at the Department of
Computer Studies of Loughborough University.

The theoretical model of a dual processor is illustrated in
Figure 1.6. The model consists of two processors A and B and associated
with each processor is a private memory. In addition to this there is
a common memory accessible by both processors but obviously not
simultaneously. This model is essentially symmetric, in particular,
with regard to accessing the common memory by either of the processors.

The actual configuration of the Interdata Dual Pracessor is
illustrated in Figure 1.7. Although this is the present form of the
computer, it was originally an Interdata model 55 dual communications
processor (Interdata Inc.; 1971). In the original form, processor B
was an Interdata model 50 processor, the remainder of the system being

the same as its present form.

COMMON

MEMORY
PRIVATE PRIVATE
MEMORY A MEMORY B
PROCESSOR A PROCESSOR B

THEORETICAL MODEL OF DUAL PROCESSOR

Figure 1.6

11

The two processors A and B are identical Interdata model 70
processors. The model 70 is a 16 bit processor using 16 registers
and working on an IBM 360-like instruction set. Instructions can
be 16 or 32 bits long and take 1 or 2 u seconds to load from memory.
Floating point numbers are held as 32 bit fullwords while integers
are held as 16 bit halfwords.

Processor A has 32K bytes of memory, called its private memory,
which cannot be accessed by processor B. Processor B, however, has
64K bytes of memory, the first 32K bytes being the private memory of
processor B which cannot be accessed by processor A. The second 32K
bytes of processor B's memory is the common memory and can be accessed
by both processors. The memory cycle time is 1 u seconds. Processor A
has direct access to the common memory via the memory bus interface.
When accessing the common memory, processor A uses the actual physical
address in the common memory and so the address translation function of
the memory bank controller is not required. Hence, the only delay
experienced by processor A when accessing common memory is ~ 1 u second
at the DMA (Direct Memory Access) port. Processor B, of course,

experiences no such delay.

* COMMON
MEMORY
(32Kb)
——— PRIVATE
Ry A MEMORY B
(22kb) (32Kb)
f r 3
MEMORY BANK MEMORY Bus | DMA
CONTROLLER INTERFACE | PORT
* ' : N
PROCESSOR A PROCESSOR B
INTERDATA MODEL 70 INTERDATA MODEL 70

INTERDATA DUAL PROCESSOR CONFIGURATION

Figure 1.7

12

Memory contention or clashing occurs when both processors attempt
to access common memory at the same time. A consequence of the
asymmetry of the system is that if processor B is accessing its private

or common memory, then processor A is locked out of the common memory

common memory then B is locked out of both its private and common
memory until the memory cycle of A is completed.
It appears that both processors are subject to a maximum delay

of 1 u second due to memory contention. However, due to the memory

until the memory cycle of B is completed. However if A is accessing
bus interface logic, processor A reserves the common memory 0.5 u seconds
before it requires it and so processor B is in fact subject to a
maximum delay of 1.5 p seconds due to memory contention. This also
causes an overlap of the two delays that processor A is subject to and
so the maximum additional delay that it can suffer due to memory
contention is only 0.5 u seconds.

The combined effect of both delays appears to be the same for
both processors (1.5 u seconds) but processor A in fact suffers more
because it has a minimum delay of 1 u second while processor B has a
minimum delay of O p seconds.

This completes the survey of current parallel computer
architectures, and in the next chapter some basic techniques for

developing algorithms suitable for parallel computers are introduced.
The computer afchitectures discussed sofar have been based on the concept of
leentrol flow' or Bhe. stored pregram combuter (Borke ,Goldstme.and Von Neomana,in
Corpurer Struckeres , Belland Newell)\971) which tmposeS certan sequen\'.'m\
restrichons which Moy be. undesicoble in ?ou'a\\e.\ mm‘:u\’efs. An alternative appioach 1s
% bose the design onthe. concept o Hoto Pow i which the ordec of execchon of
ons 18 A slawility of Q) 's and Mitunasg, 1974 and \975).
inshrochons is dictated by the avterlatility of dara \Dearus an)

The shructute of a darafiow computer is essentially the same as tRaf ofan
MIMB cormputer n kot tis Comprised of inter connected asynehfoneus Piocessais eazh haN ;1\3
actess 4o e own pealememony ovda\atge shafed memory (QUM‘M:.BP\ \979).

CHAPTER 2

BASIC TECHNIQUES FOR PROGRAMMING A PARALLEL COMPUTER

13

2.1 INTRODUCTION

The existing form of standard computer algorithms, in particular,
the classical methods of numerical analysis, are often unable to fully
exploit the potential of the parallel computers described in Chapter 1.
This clearly meant that a fresh look had to be taken at existing
algorithms which has led to the reformulation of these algorithms or the
development of new ones to give efficient pafallel algorithms.

The development of parallel algorithms depends on the simple but
extremely important observation that independent computations may be
executed simultaneously. What is meant by independent computations?
Computations may be described formally as independent if each result
variable appears in only one computation, or in simple terms, if the
results obtained from one computation are unaffected by the results
obtained from another, then the two computations are independent.

As an example of independent computations, consider the addition

of two n-vectors, i.e.,

c=a+b , (2.1.1)
where _ — - _
a = a1l > b = b1 and ¢ = y .
) b, 2
a b c
_nj | nj | N

Obviously, the evaluation of the components of the result vector ¢
are of the form,
c; =3t bi for i=1,2,...,n , (2.1.2)
and so the calculations are independent. A computer with n
processors will clearly be able to calculate the result in one
step. This example is also said to exhibit inherent parallelism;

that is to say that it contains independent computations already,

without the need of having to be reorganised.

-

14

A parailel algorithm may be created by the recognition of the
inherent parallelism of a standard sequential algorithm, i.e., an
algorithm designed for a single processor or sequential computer.

When algorithms exhibit little or no inherent parallelism it is
onviously necessary to reconstruct them so as to increase this property.
This is often the case with good sequential algorithms since they have
"been designed specifically for sequential computers and what parallelism
they do possess is usually obscured. For precisely this reason, good
sequential algorithms do not always lead to good parallel ones.

When designing an algorithm for a parallel computer it is obviously
necessary to take into consideration the basic characteristics of the
computer. Now in Chapter 1, three different classes of parallel computers
were described and so it is important to know if an algorithm designed
for one type of parallel computer is a good algorithm for another type.

If we considered SIMD and MIMD computers first, we see that SIMD
computers are usually larger than the MIMD type, i.e., SIMD computers
possess up to O(nm), m=2,3,4, processors while existing MIMD computers
have up to O(n) processors only, where n is the order of the problem.

So to fully exploit the potential of an SIMD conputer requires an
algorithm with a higher degree of parallelism (a larger number of
independent computations) than is necessary to exploit the potential

of an MIMD computer. This does not mean that an algorithm designed

for an MIMD computer cannot be run on an SIMD computer but that if it
contains a maximum of n independent computations then only n of the
processors of the SIMD computer may be used concurrently, the rest
being superfluous. Conversely, an MIMD computer would have insufficient
processors to execute O(nm) independent computations simultaneously but
instead may execute them in groups of p computations if it has p

processors.

15

In addition to this, the processors of an SIMD computer are
synchronous and so are unable to take advantage of independent
computations that are not identical but the processors of an MIMD
computer are asynchronous and can take advantage of such computations.
So clearly, non-identical computations must be executed sequentially
on an SIMD computer which further reduces the number of its processors
that may be used concurrently.

We further observe that, since the processors of an MIMD computer
are asynchronous, they need not necessarily be involved on the same
problem. Clearly then, if the addition of an extra processor has little
or no effect on the run time of an algorithm it would be better to use
that processor on a different problem. Thus, in the design of an
algorithm for an MIMD computer we are interested in the efficient use
of processors as well as the speed at which the problem can be solved.

The processors of an SIMD computer however do not possess this
ability and when not required must therefore lie idle. So however
small an improvement is achieved by the addition of aﬁ extra processor
to execute an algorithm on an SIMD computer, if that extra processor
is available it is better to use it. In the design of algorithms for
SIMD computers we are therefore interested only in the speed in which
a problem can be solved.

Clearly, the characteristics of the two classes of computers and
the basic aims of interest when designing aigorithms for them are such
that a good MIMD algorithm is generally not a good SIMD algorithm and
vice versa.

If we now consider pipeline computers, we see that a speed up is
achieved by producing a string of identical operations that may be
queued up and treated in assembly line fashion. It is not difficult

to see that the string of operations must also be independent. Also,

16

the longer the string the greater the speed up achieved. Obviously
then the requirements of a good pipeline algorithm are essentially the
same as a good SIMD algorithm and so a good SIMD algorithm is usually
a good pipeline algorithm,

Similar conclusions have also been reached by Stone [1973b], who
goes as far as classifying pipeline computers as SIMD computers but
modifies this statement by saying that results achieved by the study
of array processors can generally but not always be applied to pipeline
computers.

Once a parallel algorithm has been derived, it will of course be
necessary to be able to assess its effectiveness. How much faster is
the algorithm than the sequential algorithm or in fact other parallel
algorithms? How efficient is it? Can it be improved on? These
questions can be answered by use of the quantities Tp’ Sp and Ep
defined as follows:

if Tp is the computation time for an algorithm run on a

computer with p processors, in particular, T, is the

1

sequential computation time (usually of the best sequential
algorithm rather than the parallel algorithm that is being
assessed), then the speed-up Sp’ achieved by p processors is,

S = Tl/Tp , (2.1.3)

p
and the efficiency Ep is,

E, = S,/p . | (2.1.4)

Tt can be. verified That Frese definthions ace eonsistent with e uniprcessot case when pel.
The majority of literature concerning parallel computers, in

pafticular past surveys of parallel algorithms, including those of
Miranker [1971], Poole and Voigt [1974] and Heller [1976], have

heen strongly orientated towards SIMD computers. This is because

the problems associated with MIMD computers tend to be more difficult

17

to solve at present than those associated with SIMD computers.
Accordingly, section 2.2 briefly describes this previous work and
introduces some of the basic techniques involved in designing algorithms
for SIMD computers. Sections 2.3 and 2.4 describe in more detail,
similar aspects concerned with MIMD computers with a small number of
processors.

It will be seen that there is a considerable difference between
the design of algorithms for SIMD computers and MIMD computers. Since
this thesis is concerned mainly with MIMD computers, in particular the

Interdata Dual Processor, the remaining chapters investigate specific

problems and develop parallel algorithms suitable for MIMD computers

with a small number of processors.

2.2 THE DESIGN OF ALGORITHMS FOR SIMD AND PIPELINE COMPUTERS

In this section we consider the design of algorithms for both SIMD
and pipeline computers since the approach is essentially the same.
The previous surveys of algorithms for SIMD computers have already been
mentioned and,in addition to these,similar work with respect to pipeline
computers can be found in reports by Lambiotte [1975] and Lambiotte and
Voigt [1975].

It has been shown that algorithms for SIMD‘computers require a
high degree of parallelism, i.e., a large number of identical independent
computations that can be executed simultaneously, and their aim is to
reduce the number of steps to a minimum. Obviously, the addition of
two n-vectors, described in equation (2.1.1) is ideal for an SIMD
computer since it consists of n identical independent operations and
may be computed in one step using n processors. If this is generalised

to the addition of two (nxm) matrices, where an (nxm) matrix A is defined as,

a ,
nl n2 nm |

then clearly the addition may be performed in one step using n.m
processors.
Consider now the matrix product,
C=A.B , (2.2.2)
where A is an (nxp) matrix, B is a (pxm) matrix and the (nxm)

result matrix C is defined as

cij = kglaik bkj , for

i=1,2,...,n, (2.2.3)
j=1,2,...,m
The product consists of n.m identical independent computations and
so each element of matrix C may be calculated simultaneously using
Nn.m processors.

Obviously, vector and matrix operations are well suited to
SIMD computers. Another powerful method for generating parallel
algorithms is recursive doubling, so called because it divides the
original computation into two independent smaller computétions of
equal complexity, which in turn are reduced to even smaller
computations recursively. As an example, consider the sum of n
numbers, _E a,, then clearly,

i=1

m n
S, = a, = ('Z ai) + () ai) where m=[n/Z2] (2.2.4)

1 i=1 i=m+]1

ne~13

i
and repeated splitting leads to an algorithm that evaluates Sn in
[log,n| steps using [n/2] processors, where [X| is defined as the
‘smallest integer greater than x.

This last example leads us to an optimum class of algorithms

19

(Heller, 1976) for evaluating expressions of the form,

An =4, 0a, 0 8,.0.... 0 a (2.2.5)
where o is any associative operator. Applying recursive doubling
to this expression produces an algorithm that is illustrated by
the evaluation tree of Figure 2.1. At level 1 the operator o
acts on adjacent pairs of operands, at level 2 it acts on adjacent
pairs of results from level 1 and so on until the result Al is
produced. At each level the operations are independent and identical
and so may be executed simultaneously. The first level has the
greatest number of operations being [n/2], which means [n/2]
processors will be sufficient to evaluate the operations at each
level simultaneously. The number of levels is riagzﬁ] and so by
using [n/2] processors the result An may be evaluated in riogZHTI
steps. Heller named this algorithm the associative fan-in algorithm
but it is more familiarly known as the log-sum and log-product when
the operators are + and X respectively.

level
3 o

N
/ \ / N/

az 84

EVALUATION TREE

Figure 2.1

A special case of the associative fan-in algorithm is the inner
n
or scalar product which has the form Z X;y; or the sum of the
i=1
products X.¥s (i=1,2,...,n), and is illustrated in Figure 2.2.

Obviously the n products may be performed simultaneously using n

20

processors followed by a log sum. Thus the result is produced in
riogéﬁ1+1 steps using n processors. The matrix product defined in
(2.2.3) consists of n.m independent inner products and so clearly the

matrix C may be evaluated in riog2§]+1 steps using n.m.p processors.

<5
/\ /\
AVANAYAY

............... X121 Yn-1 %

INNER PRODUCT

Figure 2.2

These are the basic computations that are used in the design of
the majority of SIMD algorithms. Obviously, these forms of computations
are also suited to pipeline computers and the algorithms based on them
arc therefore also suitabiec for pipeline computers.

The design of the parallel algorithm thus involves the restructuring
of the sequential algorithm into a form that is usually a combination of
these basic computations, e.g. the algorithm of Chen and Kuck [1975]
for the solution of a triangular system of equations defined in Chapter 4
is basically a sequence of matrix sums and products.

In the development of a parallel algorithm it is often assumed that
the computer has unlimited parallelism i.e. the computer has as many
processors as are required. This often leads to én algorithm that
requires an unrealistically large number of processors. A practical

algorithm is then obtained by constructing a second algorithm that

reduces the processor requirement to a realistic number without

21

significantly slowing the algorithm.

There are two basic principles by which the second algorithm is
constructed, namely thes algorithm decomposition and the problem
decomposition principles (llyafil and Kung, 1974). In the algorithm
decomposition principle it is assumed that a; operations are performed
during step i of the original algorithm. If there is a maximum of p
processors available, then [ai/ﬁ] steps are required to perform step i
in the second algorithm. In the problem decomposition principle, the
original problem of order n is partitioned into smaller problems of
order p and the parallel algorithm is then applied to each of the
smaller problems,

Numerous algorithms have been developed for SIMD computers using
these basic techniques, most of which are included in the surveys by
Miranker, Poole and Voigt and Heller. A typical problem that has been
investigated is the solution of a linear system of equations (Pease [1967],
Csanky [1975] and Sameh and Kuck [1975]). Specific forms of linear
systems have also been investigated such as triangular systems (see
Chapter 4), tridiagonal systems (Stone [1973a,1975a] and Heller,
Stevenson and Traub [1974]) and block tridiagonal and banded systems
(Heller [1974c] and Hyafil and Kung [1975]). Systems of equationé
arising from differential equations have been considered by Gilmore [1971],
Liu [1974], Hayes [1974], and Sameh, Chen and Kuck [1974]. Other
parallel algorithms that have been developed include parallel forms of
Fast-Fourier transforms (Pease [1968], and Stone [1971]) and eigenvalue
determination methods (Sameh [1971] and Sameh and Kuck [1971]). Various
related problems have also been investigated in particular by Kogge,
Stone, Kuck and Heller. |

The algorithms are implemented on both SIMD and pipeline computers

using vector instead of scalar operations. In the case of SIMD computers

22

special variables are defined that are dispersed throughout the

private memories rathey than special operators. When a special variable

is used it refers to Qariables in the same position in each of the private
memories rather than a single variable. Pipeline computers however define
special vector operators that act on vector operands rather than single
variables. For more specific information on programming and implementation
on the Illiac IV we refer to Lawrie et al [1975] or Stevenson [1975]

and for the CDC STAR-100 to Owens [1973].

2.3 CREATING MULTIPLE INSTRUCTION STREAMS ON AN MIMD COMPUTER

In order to create multiple instruction streams on an MIMD computer
(i.e., implement parallel segments of an MIMD program), it is necessary
to include additional statements in high level languages such as ALGOL
and FORTRAN. This is because the processors of an MIMD computer function
independently, and so must be able to let each other know when segments
may be initialised and when they have been completed.

Obviously, it is necessary to be able to create and terminate
parallel segments but it is also important to ensure that parallel
computations are carried out correctly. As an example, suppose we wish
to form the sum of the elements of the vector V[I] (I=1,2,...,N). To
do this in parallel, each processor performs the statement,

SUM«SUM+V [T]
It is possible that the following sequence of operations may occur:

1. processor 1 fetches the value SUM from memory,

2. processor 2 fetches the value SUM fromlmemory,

3. processor 1 adds V[II] to its private value of SUM and

restores the new value of SUM in memory,
4, processor 2 adds V[Iz] to its private value of SUM and

restores the new value of SUM in memory.

23

Clearly, the incorrect result is produced since the effect of
adding V[Il] by processor 1 is lost. So it is necessary to safeguard
against such an occurrence.

Various forms of statements have been investigated including the
commands 'F@RK','JPIN','TERMINATE', '@BTAIN' and 'RELEASE' (in ALGOL 60
format) suggested by Anderson [1965] which are typical. The five
statements have the following basic form:

'"FORK' L1,LZ;

LABEL:'JPIN' L1,L2,...... LN;

LABEL: 'TERMINATE' L1,LZ,..... LN;
"@BTAIN' V1,V2,....VN;

and 'RELEASE' V1,V2,....... VN;

where LI represents a label and VI represents a variable. We shall

consider each statement in turn, giving a description of their purposes.

The fork statement - initialises two instruction streams, one starting

at the statement labelled L1 and the other at the statement labelled L2.
In Algol there are certain restrictions on the use of labels which also

apply to this statement and so L1 and L2 must be local labels.

The join statement - terminates the parallel paths (instruction streams)

in which it occurs. Each parallel path ends with a 'G@ T@' statement
to a labelled join statement. The label list included in the 'J@IN'
statement contains the labels of the first statements of each of the
paths that it terminates. The statement immediately following the
join statement is not executed until all the paths contained in the

label list have been terminated.

The terminate statement - is used to explicitly discontinue program

paths. The fork statement dynamically activates program paths and the
terminate statement is used to avoid creating a backlog of meaningless

incomplete activations.

24

The obtain statement - provides exclusive use of the variables contained

in the variable list. It is used to 'lock out' other parallel program

paths from the use of those variables so as to avoid mutual interference.

The release statement - is the logical counterpart of the obtain

statement. It allows access to variables (contained in variable list)
that have been previously locked out by an cbtain statement. Since it
only releases those variables in the variable list, it may be applied

selectively.

The actual implementation of these commands will be dependent on
the characteristics of the parallel computer but they do have a general
form. The execution of a fork statement creates two parallel program
paths, one of whichv(usually the first one) is carried out by the
processor that executes the fork statement. The other path is assigned
to an available processor but in the event of no processor being
available it is placed in a queue until one does become available.

The join and terminate statements control counters initialised
to the number of labels in their label lists. Each time the statement
is executed the corresponding counter is decreased by one and compared
to zero. Whéﬁ the counter is not zero, the path is terminated, the
processor that executed the path is released and if there are paths
waiting to be executed, it is assigned to the path at the head of the
queue. If the counter is zero, the path is terminated and the processor
proceeds to the next program segment starting at the statement immediately
after the join statement.

The obtain and release statements are more difficult to implement
and depend on the hardware capabilities of the computer. It is
interesting however to consider what happens when a processor requests

a piece of data that has been restricted to the exclusive use of another

25

processor by an obtain statement. The path being executed by the
processor can be suspended awaiting access and the processor reassigned
to other work or the processor can be held in a state of idleness,
continually trying to access the data until it is released by a release
statement.

These commands are typical of those used by MIMD computers and now
as a specific example we shall consider the commands used by the Interdata
Dual Processor.

The programming language available on the Interdata Dual Processor
is Fortran and the set of additional commands necessary to create
parallel program segments include $F@RK,$JBIN,$DPPAR and $PAREND, plus
two subroutines GETRES and PUTRES (Barlow et al , 1977). The four ‘
commands are macros that are expanded by the Fortran Macro Processor
to Fortran codelacceptable to the compiler.

Let us first consider the two commands $FORK and $JBIN, which
always occur in pairs as follows:

$FARK L1,L2,....LN;L

L1 .
. Program segment 1
GP TP L

L2 .
. }Program segment 2
GO TP L :

LN . }Program segment N
GO TP L

L $JQIN

The $F@RK statement creates an arbitrary number of parallel paths each
starting at the statements whose labels appear in the label list of the

$FPRK statement and ending with ago to L, the label of the corresponding

$JPIN statement. The labels in the label list are separated by commas,

the last one being followed by a semi-colon and the label of the
corresponding $JBIN statement.

The two commands $DPPAR (or $DPPARALLEL) and $PAREND (or $PARALLELEND)
are essentially a parallel form of D@ loop and are used as follows:

$DBPAR 1 I=N1,N2,N3
. Program segment
1 $PAREND

where the cpntrol variable I (as in the D@ statement) set initially

to N1, is incremented by N3 until greater than N2. The $D@PAR command:
creates one program path for each value of the control variable,.but
instead of each path being executed sequentially they are executed
concurrently.

The $DPPAR and $PAREND are used to replace the D@ loop when the
computations involved in each execution of the loop are independent
(which means they may be executed in parallel). Obviously, to use the
$FPRK and $JPIN statements to perform each loop in parallel would mean
that the instructions included in the loop would have to be repeated
for each value of the control variable. This is of course unnecessary
with $DPPAR which is essentially an extension of the $F@RK instruction
and so should be used.

Both pairs of commands are implemented in the same way. An entry,
containing necessary information, is placed in a queue for each program
path created by the $FPRK or $DPPAR instruction. The processor that
executed the $FPRK or $DPPAR instruction then takes the first path
from the queue and executes it, followed by the other available
processors. The instructions $JPIN and $PAREND are counters which
are set initially to the number of parallel program paths and
decremerted each time a program path is completed. On completion of a
path, the processor that executed it is reassigned to the next path in

the queue. One peculiarity of the Interdata Dual Processor is that the

statements following the $J@IN or $PAREND statement must be executed
by the processor that executed the $FPRK or $D@PPAR statement.

The subroutines GETRES and PUTRES are similar to the @BTAIN and
RELEASE commands in that they also prevent mutual interference between
processors. Instead of giving exclusive use of certain variables to
one processor, they give it exclusive use of a segment of program that
contaiﬁs these variables. The subroutines are implemented by creating
an abstract resource ring that consists of abstract resources available
to all processors. A resource may be possessed by only one processor
at a time, other processors requiring it having to wait until it is
given to them by the processor that possesses it.

A segment of program that we wish to give exclusively to one
processor is made into resource I by placing it between two subroutines
thus:

CALL GETRES(I)

: } Program segment
CALL PUTRES (1)
The segment only becomes available to other processors when the PUTRES
subroutine call has been made.

The flowchart in Figure 2.3 illustrates the form that a program
for an MIMD computer might take.

The general rules for the order in which the program segments are
executed are quite simple. A segment of program that appears before a
$FORK or $DPPAR statement must be executed before that $F@RK or $D@PAR
is executed. The program paths created by a $FPRK or $DPPAR statement
can be executed simultaneously but if there are insufficient processors
to execute all of the paths, the order in which they are executed is
not important. The program segment following a $JPIN or $PAREND

statement can only be executed when all the paths entering that $J@IN

27

or $PAREND statement have been completed.
Finally we see from Figure 2.3 that nesting of $J#INs and $D@PARs

is permitted.

(o)
|

$FORK

$FORK $DAPAR

$JPIN

l $PAREND

$JQIN

<: FINISH j)

FLOWCHART STRUCTURE OF AN MIMD PROGRAM
Figure 2.3

29

2.4 THE DESIGN OF ALGORITHMS FOR MIMD COMPUTERS

In this section we shall investigate the inherent parallelism of
existing algorithms, in particular, for MIMD computers with two
processors but with a view to extending the ideas to computers with
more processors. At first we shall consider some simple expressions
and then progress to some specific algorithms.

Let us first consider expressions of the form of equation (2.2.5),

An =2 0a,0.... a
which is evaluated using the associative fan-in algorithm on an SIMD
computer. Observation of the evaluation tree corresponding to this
algorithm (Figure 2.1) reveals that although operations at the same
level in the tree are independent, those at different levels are not.
Since the processors of an MIMD computer are asynchronous it would
be preferabie therefore to remove as much of the dependency as possible.
This may be achieved by partitioning the problem once thus,

A = (aloazo...am)o(am+loa a) (2.4.1)

n

n .
i-when n is even

(n+1)/2 when n is odd,

which yields the evaluation tree shown in Figure 2.4.

where m =

EVALUATION TREE

Figure 2.4

30
Clearly the evaluation of each branch is independent and so may be
done concurrently using 2 processors. Using the fork and join
statements this may be programmed easily as follows:
'"FPRK' L1,L2;
L1:A1«A[1];
-~ 'FPR' I<«2 'STEP' 1 'UNTIL' M 'D@' Al<«AloA[I];
'GAT@' L3;
L2:A2<A[M+1];
'F@R' 1+M+2 'STEP' 1 'UNTIL' N 'D@' A2<«A20A[l};
'GPTP' L3;
L3:'JPIN' L1,L2;
AN<AloA2;
Obviously, for this expression we have,
T1 = (n-1) operations
% operations, for n even
and T2 =
(n+1)/2 operations, for n odd,
remembering that when n is odd one branch of the evaluation tree has
one more operation than the other. Thus, the speed-up and efficiency
are
2(n-1)/n =2-2/n, for n even
S =
2 l2m-1)/(m+1) = 2-4/(n+1), for n odd,
1-1/n , for n even
and E2 =
1-2/ (n+1), for n odd,
which are almost optimum results.
If this strategy is now applied to the inner or scalar product
we have : m n
S.P. = E Xy, *+ Z X;Y5 s (2.4.2)

i=1 U1 i=mel
where m is as defined for equation (2.4.1).
The corresponding evaluation tree and program will have the

same form as those for the expression (2.4.1)., Again, it is obvious

that for the scalar product,

31

=
"

n(M+A)-A

n(M+A)/2, for n even

~3
1]

and
(n+1)(M+A)/2, for n odd,

where M and A are the times required to perform a multiplication and
an addition respectively. This leads to the results,
2-2A/(M+A)n , for n even

2—2/(n+1)-2A/(M+A)(n+1), for n odd

1-A/(M+A)n , for n even
and E, =
1-1/(n+1)-A/ (M+A) (n+1), for n odd.

Once again these results are very close to the optimum values.
Another expression that may be evaluated in a similar fashion
is the polynomial of the form:
P = ao +ax+ c.... anx . (2.4.3)
The sequential computation time of a polynomial is uniquely
assuming no preprocessing of coefficients
minimised/by applying Horner's Rule (Borodin, 1971), which
expresses the polynomial in the form:
P = (...((anx+an_l)x+an_2)x...al)x+ao . (2.4.4)
The partitioning of Horner's rule suggested by Dorn [1962]
expresses the polynomial in the required form thus,
2 2 2
Py = (...((azx +a2_2)x ...+a2)x +a0
2 2 2 (2.4.5)
P, = (...((akx +ak_2)x....+a3)x +a1
and P = Py *+ PyX
where 2=n and k=(n-1) for n even and %=(n-1) and k=n for n odd.
The speed-up and efficiency achieved by this method of evaluation
are also impressive.
Clearly a similar strategy may be applied to these expressions

for evaluating them on a p-processor computer. We simply partition

the expression into p smaller expressions of equal size. As an

32

example, consider the evaluation of expression (2.2.5) using 3

processors, for which we partition the expression thus,

An = (aloazo...ag)o(a£+lo...ak)o(ak+lo...an) (2.4.6)

where 2=[n/3] and k=[§n/§]. The evaluation tree is given in
Figure 2.5 and the program will be of the same form as that for a

2 processor computer but with 3 paths created by the fork statement.

\
//\ /\a N
Ve o]
/

a_ a

n
N\
\\
// 2 'k N \
(o] \0 (o]
////// ///// \\\i+3 /// \\\\
a 2 342 Hpe1 ;2 e

EVALUATION TREE

Figure 2.5

Assuming of course that n is exactly divisible by 3, we then have,

T3 = n/3+1 operations ,
S5 = 3-12/(n+3) ,
and E; = 1-4/(n+3)

which again is impressive but not quite as good as the speed-up and
efficiency achieved when using 2 processors. It is not difficult
to see that for a p processor computer we have,

T =n/p -1+ riogzﬁ] operations

P
assuming n is divisible by p, and

33

(p+p° ([Tog,p]-1))

S = p -
P (n+p([Tog,p]-1))
(1+p([log,p]-1))
and E = 1- .
P (n+p([log,p]-1))

As expected, the efficiency of the algorithm decreases as p, the number
of processors, is increased.
Now let us consider the simple matrix operations, addition,
subtraction and multiplication. First, we have the addition of two
(nxm) matrices such as,
C=A+B , (2.4.7)

which is defined as

c.. = a.. + b.. for i=
ij ij ij j=

When considering SIMD computers we established that the evaluation
of C is made up of n.m independent operations and so the problem is
simply to divide these operations equally between the two processors.

It is obvious that there are numerous ways of dividing the
operations into two equal parts. If either or both of n and m are
even, we may simply evaluate the odd numbered columns (or rows) of C
using one processor and the even numbered ones using the other processor.
The following program evaluates C by assigning alternate columns to the

two processors,

'"FORK' L1,L2;

L1:'FPR' J«1 'STEP' 2 'UNTIL' M 'D@'
'FPR' 1«1 'STEP' 1 'UNTIL' N 'D@' C[I,J]<A[I,J]+B[I,J];
1GATP' L3;

L2:'FPR' J«2 'STEP' 2 'UNTIL' M 'D@'
'FPR' I<1 'STEP' 1 'UNTIL' N 'D@' C[I,J]«A[I,J]+B[I,J];
'GPTP' L3;

L3:'JPIN' L1,L2;
It is not difficult to see that if either or both of n and m

are even then,

34

82 = 2 and EZ =1 .
These results appear to be perfect but unfortunately an overhead is

incurred by the use of the fork and join statements and so in fact

evaluation of the n.m elements of the result matrix, each of which are
independent, exactly the same strategies may be applied, achieving

identical speed-ups and efficiencies. Note however, from the matrix

|
82<2 and E2<1. ‘
Since matrix subtraction and multiplication also consist of the
product defined in equation (2.2.3), that each element of the result
matrix is a scalar product. So an alternative method of evaluating
thé matrix product is to calculate the elements of the result matrix one
at a time using the scalar product algorithm for two processors already
defined. It is a trivial problem for these algorithms to be extended
so as to be suitable for a p processor computer.
At this point we shall consider an important difference between
the SIMD and MIMD types of parallel computer. It is obvious that the
processors of an SIMD computer are synchronized as well as synchronous
i.e., as well as each processor executing the same instructions, the
instructions are executed at exactly the same time. Not so obvious is
the fact that even if the instruction streams of an MIMD computer are
identical, the processors méy not execute each instruction at exactly
the same time. It is reasonable to assume that the processors of an
MIMD computer are identical. The delays that they are subject to due
to memory contention are not however the same and so even if the
processors are initially synchronized, they will not usually be so |
for long. ‘
Arising from this we see that although the previously described

algorithms divide the total work into equal quantities, we can not be

35

sure that each processor finishes its work at the same time. To overcome
this problem on a 2 processor computer, Kung [1976] suggests the use Qf
a deque (double ended queue). If all the operations in any one of the
algorithms already presented in this section (except the polynomial
evaluation) are placed in a queue, then we may permit each processor to
take operations from opposite ends of the queue. Although the processors
may not meet exactly at the middle of the queue, clearly, the important
point is that both processors will be kept occupied. Obviously, it would
not be easy to use a deque for more than 2 processors.
In the remainder of this section we shall investigate algorithms

for the solution of a system of linear equations of the form

Ax = d (2.4.8)
where A is an (nxn) matrix and x, the solution vector, and d are
(nx1) vectors. There are two classes of direct methods for the
solution of such systems of equations, namely elimination methods
and factorisation methods. The elimination method most commonly
used is the Gauss Elimination Algorithm (Wilkinson, 1965) which
transforms matrix A into an upper triangular matrix and, by a backward
substitution process,‘computes the solution vector x. If the original
system (2.4.8) is denoted as

AWy = g (2.4.9)
then A is triangularised by the production of the sequence of

systems,
A(r)x = gFr) for r=2,3,...,n (2.4.10)

(n) B th

where A is the required upper triangular matrix. At the r

step of the algorithm, A(r) has the form,

36

a1 B gescereseneaananns a,
422 :
\\ :
A(r) - N -
- H RN a
T . TN
B i a
B nr nn|
and A(r+1) is derived from A(r) by subtracting a multiple m . of
the rth row from the ith row for i=r+l,....,n. The same operations

are performed on the right hand side vector éﬁr) to produce d(r+l).
The multipliers ms . chosen so as to eliminate a; . (i=r+1,...,n), are

defined as

for i=r+l,...,n. (2.4.11)

He))

= 2D, (r)
ir “Trr

e

ir

Obviously, the first r rows of and will be unaltered and

since the zeros in the first (r-1) columns are only replaced by a

linear combination of zeros, they too will be unaltered. The

(r+1) and d(r+1)

remaining elements of A are defined by the following

equations:
aF?+1) = ag?) - m, a(?+1) for j=r,r+l,...n
ij ij ir rj
for i=r+1,...n
and d§r+1) = dgr) - m, d(r+1)
i i irr
(2.4.12)
The backward substitution process for the evaluation of x is then
defined as, n
x; = (d; _jzi+1aijxj)/aii , for i=n,n-1,...1. (2.4.13)

If we consider one step of the triangularisation process, we
see that it requires the evaluation of (n-r) multipliers and (n-r) (n-r+l)

elements of A(r+1) and d(r+1).

Clearly the multipliers may be

evaluated simultaneously and so may the elements of A(r+1) and d(r+1).
Thus the process can be implemented on an MIMD computer with p processors
by dividing each set of calculations into p equal groups. This may

typically be done on a two processor computer as shown in the following

37

flowchart which represents the rth step of the algorithm.
sk

Let w=1/a
Y

and s=r+(n-1)/2
|

L l

mir=air/arr FORK mir=air/arr
for i=r+l,...s for i=s+1,...n
JPIN
F@RK
Evaluate a.. and d, Evaluate a.. and d.
ij i ij i
for j=r+l,...n for j=r+l,...n
and i=r+1,...s and i=s+l,...n

JBIN
1)

Clearly the speed-up for the triangularisation process achieved by

using two processors in this way is,

2[6D+2n(n+1)S+n(2n+5)M]

82 > > < 2 , (2.4.14)
[12D+(2n"+2n+3)S+(2n"+5n+6)M]
where D,S and M are the times required to perform a division, a
subtraction and a multiplication respectively, and the efficiency
is, 82
E2 = 5 < 1 . (2.4.15)

The backward substitution process is essentially sequential,
but methods for the parallel solution of triangular sets of equations
are described in Chapter 4. An alternative approach is to take
advantage of the fact that each element of X is a scalar product.
Applying the methods already developed for scalar products, we
obtain the following results for the execution of the backward
substitution process on a 2 processor computer,
. 2[2D+(n-1)S+(n-1)M]<2

2 [4D+(n+2)S+(n+2)M)]

Sy
and E2 = 77—< 1

S

(2.4.16)

38

Another elimination method is the Gauss Jordan Elimination

Algorithm which reduces the matrix A to a diagonal matrix of the form,

i -
S
A(n) = \\\\
\\
0 N -
~. (n
L “nn_

The diagonalisation procedure is the same as the triangularisation
procedure of Gauss Elimination except that during the rth step, the

(n-1) multipliers m. . defined as

= agr)/a(r) for i=1,2,...n
ir ' “rr .
i#r

(r)

ir

()

- t
are chosen so to eliminate the r h column of A except A
The speed-up and efficiency for Gauss-Jordan Elimination are thus,

_ 2[2D+(n-1) (n+1)S+ (n-1) (n+3)M]

S * T+ (oD DS+ 1) me)M] < 2
(2.4.17)
SZ
and E2 = 5 < 1
The solution vector x is then defined by the equations
x; = di/aii - i=1,2,...,n , (2.4.18)

which may obviously be divided equally between two processors.
Arising from these two algorithms is a method for the evaluation
of the determinant of a matrix. If A is reduced to either of the
forms produced by the elimination algorithms, then the determinant
of A is defined as n
det A= [[a,. |, (2.4.19)
. ii
i=1
which is of the same form as equation (2.4.1) and so can be evaluated
in the same way.

The second class of methods for the solution of (2.4.8) is

39

factorisation methods which are typified by the LU factorisation

algorithm. This algorithm factorises A into two matrices L and U such

that,
A=LU (2.4.20)
where,
1 Upp Yoo - Y
b1 1 U2 Y2n
AY
]
Y31 %32 1 A :
L =] i ~. and U= N i
[} | ~ AN |
' i NN s |
! | \\ \\ !
e AN |
R 21 :
. . nn .

Then by introducing an auxiliary vector y such that y=Ux, the
solution vector x may be evaluated by performing forward and backward
substitution processes respectively on the two triangular systems of
equations,

Ly = d and Ux =y

The elements of the matrices L and U may be found by forming

the product LU and equating it to A to give the following formulae,

i-1 \
uij = aij - Z likukj for j=1i,i+l,...n
k=1
+for i=1,2,...n.(2.4.21)
i-1
and Rji = (aji - kzlﬁjkuki)/uii for j=i+1,...n

J

Clearly the evaluation of the elements in the ith row of U
and ith column of L, apart from u, ., are independent and so may be

done simultaneously. The order in which the elements can be evaluated

on a two processor computer is illustrated in the following flowchart:

40

Evaluate u..

11
| Loop for
F@RK l i=1(1)n
Evaluate Evaluate
2i41,i%%42,i7 ML Yoie1v%,i427 %0
JOIN
¥

If the factorisation is performed in this manner, then the speed-up
and efficiency achieved are,

_ [3D+(2n-1)S+(2n-1)M] _

S = 2
2 [3D+ (n+1)S+ (n+1)M] (2.4.22)
S
and E = —z-< 1
2 2
The two substitution phases are defined as,
i-1
y. =d, -) 2.y, for i=1,2,...n
7 2 ik (2.4.23)
3 n . .
and x; = 0y Y uikxk)/uii for i=n,n-1,...1

k=i+1

which may be treated in the same way as the' substitution process of
Gauss Elimination, except that the solution of Ly = d does not
require any divisions.

A problem associated with solution of linear systems of equations
is matrix inversion, which involves the solution of the matrix equation

AX =1 , (2.4.24)

where the unknown matrix X is the inverse of A and I (the identity
matrix) is a unit diagonal matrix. Clearly, if A is an (n*n) matrix,
then the problem involves the solution of n systems of equations of
the form of (2.4.8), each system having the same left hand side but
different right hand sides. Thus to compute the inverse of A requires
one application of, for example, an elimination procedure followed by

n independent substitution processes. The substitution processes may

41

be divided equally between the p processors, each substitution process

being executed sequentially. Obviously if n is exactly divisible by

p, the speed-up and efficiency of the substitution process when

executed on a p processor computer will be,

E
p P

When matrix A is sparse i.e., many of the elements of A are zero,

and 1.

=P
the algorithms already described become inefficient due to redundant
operations (e.g. the elimination of elements that are already zeros),
Special algorithms therefore exist for the solution of the system of
equations (2.4.8) when matrix A has specific forms. Consider as an

example the Periodic Algorithm (Evans and Atkinson, 1970) which may

be used when A has the form,

b 4 4
a2 b2 cz\ 0
A= AN N (2.4.25)
RN N
N\ N \c
O \\ \\ n-1
c “athb
_ﬁ n n _

The periodic algorithm, which is essentially Gauss Elimination, may
be described as follows:

a) the elimination procedure

Wy = l/b1
B} B} i (2.4.26)
gy = ¢Wy» My =apg, = diwy
G, =c, D =b ,adF =d
then for i=2(1)n-1,
\
w. = 1/(bi a gl_l) ’
T L U S s W R L
G; = -8;1651» Dy =03 3763 ghy g @nd Fy =Fy 4Gy 4% 4
J(2.4.27)

and finally,

42
g, = hn = Gn = Fn =0
Dn = Dn-l-(G -1+an)(gn—1+h 1) and fn = Fn—l-(G -1+an)fn—1
(2.4.28)
b) the backward substitution process,
*n T fn/Dn
and for i=n-1(-1)1, (2.4.29)
X = fimeXathxg

The evaluation of the six quantities gi,hi,fi,Gi,Di and Fi are
independent for each value of i and so may be computed simultaneously.
Clearly a maximum of 6 processors may be used. One method of executing
the factorisation procedure using 2 processors is given in the following

flowchart,

4
Evaluate wi

, L A Loop for

l FﬂRK ‘L i=1 (l)n
Evaluate Evaluate
g.,h. and £, G.,D. and F,

i’ i i’Ti i
JPIN

and the speed-up and efficiency achieved are,

_ (n-1)D+(9n-13)M+ (4n-3)A

Sy = -D)DF 2 Gn-A)Mr 2n-D)A 2
) (2.4.30)
| 5
and E2.— 7< 1

The substitution process exhibits little inherent parallelism

except for the calculation of the products g.x. , and h.x . The
iti+ i"n

1
parallel overhead incurred by forming these products simultaneously
however would greatly reduce the speed-up that might be achieved and

so the process should be executed sequentially,

43

This concludes the survey of numerical algorithms for inherent
parallelism. The speed-ups that may be achieved by the exploitation
of this parallelism appear to be very impressive. It must be realised
however that the overheads incurred by the fork and join statements
have not been taken into account. Although the effect of 1 fork and
join is insignificant, the triangularisation procedure of Gaussian
Elimination, for instance, has (n-1) steps, each requiring 2 sets of
fork and join statements. The parallel overheads therefore will have
a considerable effect on the speed-up achieved by these algorithms.
In the algorithms that appear in the following chapters an attempt is
made to minimise the parallel overheads by using as few fork and join

statements as possible.

On a dofa flow computer , the. machine code cutput by the compiler
ia a data fow ‘QnﬁUAjQ imwhich all results from instruckions are iked to
al] suecessor imstrochons Hhot recv(nfe, Prat result. Thus jan instroction 15
'read\i for exacuhon' when all the daro tat it (‘ec}u"re,s wsavailakle and
pacallelism is achueved by more fhon one tnskuckion being ready toc
execvhon This approach 4o pacallelism redoces the ‘mier -depencancy of
protessors because only vnstruchions with e required dafa are execvted.

Cleacly, parallelism is intoduced into data flow programs by e
COMP'I\er and S0 ems\'\ns =oftwacle can be fe-comp'\\'ecl wto data flow form.,
However, r\e,w‘-l\"\v\S Prug softwoce n oJ\kﬁk \evel data flow \avﬁooﬂe can
enhance e parallelism <Qumbaosk, \977), The parallel algorifams
developeel in s hesis are potrendt a\l\1 app\fca‘o\e Lor use on dare Liow

?am\ld processors .

CHAPTER 3

THE PARALLEL SOLUTION OF BANDED SYSTEMS OF

LINEAR EQUATIONS BY TRIANGULAR FACTORISATION

44

3.1 INTRODUCTION

A frequently occurcing problem in the numerical solution of partial
and ordinary differential equations is that of solving the banded system
of equations

Ax =d , (3.1.1)

where A is an (nxn) matrix of semi-bandwidth m, i.e. see (3.2.14).

The importance of this problem in engineering applications emphasises
the need to be able to solve it efficiently on a parallel computer.

Standard methods for the solution of linear systems such as
Gaussian Elimination and Triangular Factorisation are presented in
Chapter 2 and the derivation of parallel algorithms by the algorithm
decomposition principle [Hyafil and Kung, 1974] are also outlined.
Although the theoretical results for these methods are encoufaging,
their implementation on a parallel computer would not be so successful,
since the time overhead incurred by the large number of 'forks' and
'joins' that are necessary in the program would degrade the performance
of the algorithms. It is clear that a new strategy is required in order
that we may solve the system (3.1.1) in parallel.

The folding algorithm of Evans and Hatzopoulos [1976] is based on
the technique of performing Gaussian elimination in the top left and
bottom right hand corners of A concurrently. In the following analysis
a similar strategy is applied to Triangular Factorisation. Instead of
upper and lower triangular matrices, the factorisation produces two
matrices that are upper triangular in one half and lower triangular
in the other half and vice versa.

Initially we consider the case where the matrix A is tridiagonal
and present algorithms for unsymmetric and symmetric matrices. These
algorithms are then expanded to solve the more general banded system

(3.1.1). In these generalised algorithms, the matrices produced by

45
the factorisation process are seen to have an area of overlap at their

centres that correspond to the interference that occurs in the folding

algorithm.

3.2 STANDARD FACTORISATION ALGORITHMS

In this section standard factorisation methods are outlined so
that they may be compared with the new parallel factorisation methods.
First we consider the case of the tridiagonal system of equations.

Let the matrix A be an (nxn) matrix of the form:

31 &
b, 3, ¢z 0
b3 as\ c4\
NN (3.2.1)
0 n-1 an—1 cn
b
n n “n

with x and d as (nx1) vectors of the form:

o e -

S d;
X d2

X = : , d = : (3.2.2)
X d

The triangular factorisation algorithm for system (3.2.1)

involves determining triangular factors L and U such that,

A = L.U , (3.2.3)
where,
1 Y1 Y2
2y 1 Uy Y23 ,
= = \\ \\ ol
L = - {\ | and U NN (3.2.4)
\\ o \\ N
‘\\ A ‘\\un-l,n

_ n,\n—l L n,n

46
This can be shown to be achieved by the following formulae:
= A
u, =3 bi . .
L. . =
Ll g0
+ for i=2(1)n ¢ (3.2.5)
u =a.-L. . u
ii i 7i,i-1 "i-1,1
q1-1,i % / J
The system
Ly = d s (3.2.6)

is solved by a forward substitution process as follows,

y, =d ’
11 } (3.2.7)
yi = di-li,i-l'yi—l , for i=2(1)n
and the system,
Ux =y , (3.2.8)
is solved by a backward substitution process defined by,
x =1
nou. (3.2.9)

X)/ui. , for i=n-1(-1)1 .

TR R P LS AT
Adopting the standard technique of overwriting L and U on A
to save computer storage, it is clear that the factorisation
process (3.2.5) requires 2(n-1) multiplications and (n-1) additions
and the forward and backward substitution processes (3.2.7) and
(3.2.9) require (n-1) multiplications and (n-1) additions and (2n-1)
multiplications and (n-1) additions respectively. Thus, the complete
algorithm requires (5n-4) multiplications and 3(n-1) additions
giving a total of (8n-7) arithmetic operations.
Obviously for the factorisation (3.2.3) to exist we require
that the matrix A is positive definite, i.e., all of its eigenvalues

are positive. Should this not be true then it is necessary to

introduce partial pivoting as proposed in Wilkinson [1965].

47

The factorisation of (3.2.3), incorporating partial pivoting is
now defined as follows.
At the ith step of the evaluation of L and U form the quantities:

R, = a -(2

t = 3¢i %

t,i-2%-2,¢) (3.2.10)

+
t,i-1%-1,t
for t=i,i+l .

When |Ri+1|>|Ri| (where |z]|=z, if 230 otherwise -z), the rows

i and i+l are interchanged including the values of Rt and dt’

Then, we have

Pie1,i = Rier/W 4 .

| ! (3.2.11)
Uil T3 ae17 8, -1, 00

and

Yiie2 T P ie2 S
The two substitution stages arenow defined thus,

d ,

<
-y
1

1

and

n

i i

d,-

i-1
z %. .Y, ,» for i=2(1)n ,
k=1 i,k’k

(3.2.12)

tel
t]
<
~
o

*n-1 7 (yn—l_gn-l,nxn)/un—l,n—l »

-
1}

i T O XY 5a2%e2)) /Yy g For imn-2(-1)14]
(3.2.13)

Excluding comparisons and interchanges the algorithm requires
(n2+17n-28)/2 multiplications and (n2+13n—26)/2 additions giving
a total of (n2+15n-27) arithmetic operations.

If we now consider the general banded system (3.1.1) where

A has the form:

2 D —: |

411 %12

(3.2.14)

48

then the factorisation of equation (3.2.3) where L is lower triangular
and U upper triangular is as follows:
at the ith step in the evaluation of L and U, form the quantities:

i-1
¢ t,i” j:azt’juj’i, for t=i(1)i+(m-1) . (3.2.15)

Select the maximum IRtI (let it be t'), and when t'#i,

interchange rows t' and i of A. Then,

u.. = R, s)
11 1
zi+k,i = Ri+k/ui,i’ for k=1(1)m-1.
and
i-1
UG ik = 3 ,ivk 'Z LI k=1(1)2(m-1) ¢ (3.2.16)

J=a

1 for ig<2m-k-1
where o =

i-2(m-1)+k for i>2m-k-1. J

The forward substitution process for the solution. of Ly=d
is as defined in (3.2.12) and the backward substitution process

for the solution of Ux =y is now

*n ° yn/un,n
B
x; = (yi-(k=§+lui,kxk))/ui,i, i=n-1(1)1
o (3.2.17)
n, for isn-2m+2
where B =

i+2(m-1), for i<n-2m+2. J
The execution of this algorithm requires (3n2+3n(8m2-8m+1)-
(m-l)(34m2-29m+6))/6 multiplications and (3n2+3n(8m2-10m+1)—2(m—l)
(17m2-16m+3))/6 additions, giving a total of (n2+n(m—1)(8m-1)-(m-1)
(68m2-61m+12)/6) arithmetic operations.
When the matrix A is symmetric and positive definite, it is
possible to use the Choleski factorisation method where matrix A

is factorised such that,
A=l (3.2.18)
An ad\law(’oae_ of this method is thot itig only necessar -o evaluate

and store matriv L.

49

For the case when A is tridiagonal as in (3.2.1) we have that
bi = C for i=2(1)n (3.2.19)
and
11
2’21 j1'22
232 %33 0
L = AN . , (3.2.20)
0
L 2n,n—l zn,g_
where the zi j's are defined as follows:
= 7y
Py i-1 7 Pi/%01,50 (3.2.21)
> for i=2(1)n
and L., . = vYa,-L. .
i,1i i 7i,i-1
Then, the two substitution stages are defined to be,
ly=4d ,
y; = 4/% (3.2.22)
y; = (di—gi,i—lyi-l)/zi,i for i=2(1)n J
and
Ty = y]
= 2
X, = Yn'tnn L (3.2.23)
X, = (yi-£i+l,ixi+1)/21,i for 1=n-1(1)1.J

The total number of arithmetic operations required by this
algorithm is (10n-7), made up of n square roots, 2(3n-2)
multiplications and 3(n-1) additions.

Finally we apply Choleski factorisation to (3.1.1) where A

has the form'(3.2J4) and a; j=aj i The factorisation can be

2 b4

defined ncw as follows:

50
“)
L., =V(a,.- } % .)
ii ii o, i,i-j
j=1
for i=1(1)n
a
and bivk,i T CHO lei+k,i-j21,i-j)/gii’ for k=1(1)m-1
i-1, for i<(m-k)
where o =
m-k-1 for i>(m-k)
J
(3.2.24)
and the two substitution stages become,
L}_’.=£l. 3
Y1 =4/
a
y; = (4- kzlgi,i-kyi-k)/lii for i=2(1)n, $ (3.2.25)
i-1 for i<m
where o =
m-1 for mi)
- and . .
LT§.= Y
*n T yn/lnn
8
x, = (y, - kzlzi’i+kxi+k)/zii , for i=n-1(-1)1 } (3.2.26)
n-i for n-i+l<m
where B =
m-1 for n-i+12m J

The total number of arithmetic operations required by this
algorithm is n(m2+4m—2)-m(m-1)(4m+13)/6, made up of n square roots,
n(m2+5m-2)/2—m(m-1)(m+4)/3 multiplications and n(m-1) (m+4)/2-

m{(m-1) (2m+5)/6 additions.

3.3 THE PARALLEL TRIANGULAR FACTORISATION OF THE MATRIX A

Let us now consider the tridiagonal system of linear equations

(3.1.1) where A has the form (3.2.1). By applying the technique of

folding, we may factorise A into two matrices P and Q such that
A=P.Q ,

where P has the form:-

1
Py, 1 0
P 1
3,2 o
\\\ \\\
ps,s—l 1\ ps,s+1
0 AR
\\ \\\
'l pn—l,n
S 1 et
and Q the form:
.
9,1 4,2
92,2 92,3 0
qs—l,s-l\qs-l,s
qs,s
0 qs+1,s qs+1,s+1
\\\\ \\
qn,n-l qn,n
where
251-, for n is odd
= n
5 for n is even .

Since by definition we have,

A =P.Q s
then on substitution into (3.1.1) we have the following system to

solve,
P.Qx = d

In order to solve the given tridiagonal system (3.1.1) we

introduce an auxiliary vectory y such that

1]

&=y

51

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

52

Therefore, the problem reduces to that of solving the two systems

Py = d and‘ x=y. (3.3.6)
To evaluate the elements P; 3 and qf S of the matrices P and Q
5 3

we form the product P.Q which is given by,

1 112 o
(P21%1 (P%12%9) o3 0

\\ \\\ \\\

\\ | \\ \\\
P-Q = ST Ty Tl
\\ e \\
~ ~ ~
O. ' qn-l,n-z.(qn—l;ﬁ—1+pn-1,nqn,n—1) pn-l,nqn,n
q\,n-l qn,n _

where the submatrix y is defined as

Y =[(Ps,s-lqs-l,s-1>(ps,s—lqs—l,5+qs;s+ps‘,s+1qs+1,s).(ps,5+1qs+l,s+1)]'

{3.3.8)
On equating the matrices A and P.G, we derive the following
relationships:
q, = aI and qﬂ’n = an)
92 * C2 qn,r\-l = bn
Pady = bZ pn-l,nq'n,n ® % - G59
P21912%922" 22 U1 ae1*Paat,ndn,n-1 7 3an)
trirrenetar e s eveserittareeenaean

Using these equations we can obtain the follawing formulae to

establish the unknown quantities p, j and q_ respectively:

P41
p = , for i=1(1)s-1 D,

,for i=n(-1)s+1
i,i i,i

b. ,for i=n(-1)s+1

= C, s for i=1(1)s-1 a4 ;.1 i

, for i=2(1)s-1 l q.

, . = 8a.-pP. = . . . = a.-p. . . .
q1,~1 i p1,1-1q1—1,1 i,i i p1,1+1q1+1,1’

for i=n-1(—1)s+1)
(3.3.10)

and finally,

qS,S B aS,- (pS,S-qu—l,s+ps,s+1q5+1,s) * (3.3.11)

1

Wigh the matrices P and Q known, the given tridiagonal system
(3.1.1) is reduced to solving Py=d for y using an inward substitution
process i.e., a forwar& substitution from the top left hand corner of
P and a backward‘substitution from the bdftom right hand corner of P
intersecting at its centre point, followed by solving Qx=y for x
using an outward substitution process i.e., a backward substitution from the
centre point to the fop left hané corner of Q and a forward substitution

from the centre point to the bottom right hand corner of the matrix Q.

3.4 PARALLEL TRIANGULAR FACTORISATION WITH PARTIAL PIVOTING

As in the standard fagtorisation methods, for the factorisation
of (3.3.1) to exist, matrix A must be positive definite. If this
condition is not satisfied, we have to introduce the equivalent strategy
of partial pivoting as proposed by Wilkinson [1965]. The new factorisation
procedﬁre is then defined as follows:-
at the ith step in the evaluation of P and Q where i=1(1)s-1

form the quantities,

Ry = 3y =P 5 193.1,i"Pe,i-2% 2,0 for tohatd (.4.1)

54

If [Ri+1|>|Ri|, the rows i and i+l are interchanged including

Rt and dt;
We then have
%, = Ry W
- Ri+1
pi+'1,i G
S (3.4.2)
9 541 © 34,i+17P4,i-1%-1,141
and 9 542 T B4 Lie2 : J

Similarly at the ith step in the evaluation of P and Q, when

j=n(-1)s+2 form the quantities,

Ry = 2y 37y 5 1194541,1"Pe, 342%402,1) FOF 512271 (3.4.3)
Again if |Ri_1l>|Ri| then the rows i and i-1 are interchanged
¥
including Rt and dt'
Then, W
G, - Ry
_Ria
1')i-l,i G ;
? y (3.4.4)
45,51~ %3,1-17Pi,i+1%41,i-1
and UG,i-2 7 *,i-2 . J
Finally, at the centre, we have
Roe1 = as+1,s+1'(ps+1,s+zqs+2,s+1+ps+1,§+3qs+3,s+1+»W
ps+1,s—lqs—1,s+1)
‘ r (3.4.5)
Rs B as,s+1_(ps,s+2qs+2,s+1+ps,s+3qs+3,s+1+
‘ps,s-lqs-l,s+1))
If |RS|>|RS+1|then interchange the rows s and s+l and we
then have: 3
qs+1,s+1 BT ’
. R R
p _ s s
- L
S,S+1 qS+1,S+1 *(3.4.6)
qs+1,s - as+1,s—(ps+1,s-2qs-2,s+ps+1,s-lqsrl,s+ps+1,s+2qs+2,s)
) .

and U%,s ~ as,s'(ps,s—lqs-l,s+ps,s-2qs—‘2,s+ps,s+1qs+1,s+ps,s+2qs+2,s

55

Note that in the top half of the system, any row can be inter-
changed upwards only once yet any row can be interchanged downwards
as far as row s+1. Similarly in the lower half of the system a row

may be interchanged downwards only once but upwards as far as Tow s.

Matrices P and Q will now have the form:

1 - 7
Par sl 0
: \\\ \\\\
t ~ -~
) S~ S
- i ~ ~ _ .
p= : fps,s—l1 s,s+1 Ps,n (3.4.7)
- ~ L)
Pep1,177 777" Psal,s-1 “~_ Sa_
, - ,
0 1 pn-l,n
L 1
and _ :
91 %2 Y43]
A2 923 Y2a_
S o S ~
\\\ \\\ \\\ 0
qs—l\,s-l qs-l,s qs-1,5+1
Q= 5, (3.4.8)
qs+1,s qs+1,s+1
0 qs+2,s‘\\\‘\\
N 9 ,n-2 9h,n-1 qn;q_ '

A comment on these new matrices P and Q is that, with regard
to P, there are only (n-1) elements apart from the diagonal elements
such that 1 j#O. However, because the pivoting process includes

R .

the interchanging of the p; j's, the non-zero p, j's will be

’

dispersed over the area indicated in (3.4.7). With regard to Q,

there is a maximum of 3(n-1) elements such that q, S#O_and it is
s

possible that of the non-zero elements indicated in (3.4.8) a

proportion of the off-diagonal elements may be zeros.

!

56

3.5 THE SOLUTION OF THE SYSTEM (3.1.1) BY THE PARALLEL TRIANGULAR

FACTORISATION METHOD

‘; The method is characterised by the inward and outward substitution
processes which we describe as follows:-
'é), The inward sﬁbstitution is given by the matrix system,
Py = d
In particular Qe have two processes; a forward substitution process

starting from the top left hand corner, i.e.,

Y, = d1 - (3.5.1)
and ‘ i-1
| di - klei,kyk | with pivoting
Yy = - for i=2(1)s-1 (3.5.2)
d

;T pi,i-lyi-l ' Qlthout pivoting,

with a-backward substitution process from the bottom right hand

corner, i.e.,

Yy = dn ' (3.5.3)
1 n L
di— Z' Py Wi for i=n-1(-1)s+2 with pivoting
C T k=i+l T : S (3.5.4)
yi“’
di-pi,i+lyi+1 , for i=n-1(-1)s+1 ‘- without pivoting
and : W
Y = ds'(ps,s—lys-1+ps,s+1ys+1)’ without pivoting
_ sil E :
Yeur = 4,7 CL P Yt P, V)
s+1 §+1 k=1 s+1,k’k K=g4+2 s+1,k’k r(3.5.5)
sil E ‘ with pivoting
Y. =d_-() P Vit P. 1Y) .
S S ko1 s,k’k K=o+l s,k’k)

b) The outward substitution is given by the matrix system:

x =y,
or .in point form, ys A :
X = (3.5.6)
s qs,s

_ with
s+1 = Usaa qs+1,sxs)/qs+1,s+1 pivoting
only

X (3.5.7)

57

I

v

and the backward substitution from the centre to the top left hand

corner is given by:

(Yi-qi,i+lxi+1)/qi,i , without pivoting
X, = _ : ,for i=s-1(-1)1,
5= 541%541 9, 142514200/ 1+ With pivoting

!

‘ ‘ . (3.5.8)
] . . .
while the forward.substitution from the centre to the bottom right
hand corner is given by:
, . without
| Oiy,5a1%00/94 5 0 for d=stlln pivoting
i S - with
(i (a5 50%5-1%9 32532290794 50 FoT 1=52QUN 054400
(3.5.9)

3.6 THE INHERENT PARALLELISM OF THE METHOD

The Parallel Triangular Factorisatidn Method, like the standard
factorisation methods of section (3.2), comprises of three stages,
i.e., the factorisatibn of A, the solution of Py=d by an inward
substitution process and the solution of Qx=y by an outward
substitution proceés. Examining each étage in turn we have:

1) The factorisation of A. :

Clearly, the factorisation procesées of (3.3.10) and (3.4.1)
to (3.4.4) can be divided into two phases that are independent of
each other, and so they m;y be executed concurréntly. When these
phases have been cbmpleted, the evalﬁation of the central elements
[(3.3.11) and (3.4.5)-(3.4.6)] may be done.

The following diagram shows the order of evaluation when

pivoting is not included:

FIGURE 3.1

It is clear that up to 4 processors may be used concurrently.

2) Solution of Py=d.

Since the derivation of y is in fact a forward substitution
process and a backward substitution process which are independent
of each other, they may be executed in parallel.

Also, since the order of evaluation of the p's is the same as
the order in which they are reqUired~fof solving Piéé; the two
processes may be done in parallel if fhe solution of Py=d is set

one step or evaluation out of phase.

58

59
¢) Solution of Q_j

As before since the derivation of X 1nvolves two independent
substitution processes, then they may be executed in parallel.
The flowchart ‘for the parallel factorisation-method without pivoting

when 1mp1emented on a two processor system is given in Figure 3.2.

<: START:)

: FORK , = ’
EVALUATE Q[I1,1], EVALUATE Q[I,I],
P[I,I+1] FOR P[I-1,I] FOR
I1=1(1)s-1 ' I=N(-1)s+1 .
T : Factorisation of A
JOIN -
¥
EVALUATE Q[s,s]
| ¥ .
FORK : -
EVALUATE Y[I] EVALUATE Y[I] ‘ o
FOR I=1(1)s-1 - | FOR I=N(-1)s+1 | Inward substitution
*\, e v process for solution of
JOIN , by =d
Y | |
EVALUATE :Y[s], _
X[51 . R
FORK . _Outward substitution
. ’ bfocess for solution of
EVALUATE X[I] EVALUATE X[I] T x =y
FOR I=s-1(-1)1 FOR I=s+1(1)N
TS P A
I JOIN C

(:» END :) ‘ FIGURE. 3.2

The phases of the algorithm that permlt parallel processing are

preceded by a 'FPRK' and followed by a 'JPIN' in F1gure 3.2, and

clearly, one processor is assigned to each branch of the phase.

60

From Figure 3.2 it is'clear that tﬁe execution time for the whole
algorithm is the sum of the execution times for the sequential and
parallel phases. The seqﬁential phéses of the algorithm, which may
be executed by either processor, can bé f;eated as a sequential
algorithm. For‘parallel phases however, each path is treated as a
sequential path, and then the execution time for the phase becomes equal

to that of the longest path.

Thus, by calculating the execution times in terms ofnghH&aHm\umiodd&bh
operations, we have the following results:.

for parallel triangular factorisation without pivoting,

(Brn+)/2.M + (3nyD)/2.A , ®odd
T, = '
2 (Sal243)M+ (Bniz42). A , N even
giving 4 - .
2-(1oM8A) (5r+)M 3k A) when n is odd
s -
2

2= (oM A)A(ShrD) Mt (Bni A when n is even.
Clearly, as n increases, SZﬁQ, and

for parallel triangular factorisation with pivoting, and M= A
n2/4+11n+15/4, when n is odd

n2/4+21n/2—3 R when n is even.,

Thesé results suggest a speed up of approximately 4 since the
sequential algorithm requires (n2+15n-27) arithmetic operations. This
is due to the n2 factor which arises from the forward and corresponding
inward substitution phases of-the algorithms.

It has already been noted that matrix P is sparse, as is matrix L,
and so fhe operations in these subsfitution stages are largely
fedundant. This may be overcome by inéorporating the substitution
stage into the factorisation stages. Tﬁe immediate transference of the

p's, and (in the séquential algorithm) the %'s, to the right hand side

removes this large number of redundant operations.

61

So we now have for the sequential algorithm:

T1 = (18n-29) arithmetic operations,

and for the parallel algorithm, in terms of arithmetic operations:

9n+10 , when n is odd
T2 = -
9n+1 s when n is even, *:
giving = .
(18n-29)/(9n+10) = 2-49/(9n+10) when n is odd
S, = -
2 (18n-29)/(9n+1) = 2-31/(9n+1) when n is even,

Once again it is clear that as n increases the speed-up approaches

the limit 2.

3.7 THE SYMMETRIC PARALLEL FACTORISATION METHOD

When matrix A (3.2.1) is symmetric (i.e. ci=bi’ i=2(1)n), we

can perform the factorisation so that
Q=rp" . | (3.7.1)
Consequently P will be identical With (3.3.2) except that the

leading diagonal will be P (i=1(1)n) instead of unity values.

Then Q will be identical to (3.3.3) with qi,j=pj i

a) Evaluation of the elements of P.

The product P.Q (or PPT) is now

P11 P11P21

(p2,+p2,) |
P21P11 P21*P22) P22P32 | 0

Pz,P22 Tee L el (3.7.2)

Tl (‘2~\ o2 \‘5\
el Pho1,n-1 pn-l;h‘*pn—l,npn,n

0 - 2

N PhnPn-1,n " Pnn

and again on equating with the elements of A we have the formulae

for P as follows:.

P11 - /EI ? pn,n = /E; ’
A+l ey i=1(1)s-1, e S (-1)s+1
Pis1,i T p, . ¢ SLs-1,0 oy g 7 g TOT RS
i,i i,i
p: . = Ja.-p? . ., for i=2(1)s-1, p. . = Ja.-p? . ., for i=n-1(-1)s+1,
i,i i Yi,i-1 i,1 iti,i+l
‘ ‘ B -2 2
and : PS’S - '/a;_ (pS,S-lfpS,S*‘l)

The parallel evaluation of the p's may now be computed in the

order illustrated in Figure 3.3.

FIGURE 3.3

Partial pivoting may not, of course, be included in this method

as the interchange of rows would upset the symmetry of the system.

b) The solution of Py=d.

! The vector y is obtained as the solution of the system Py=d in

the following manner,

62

).
(3.7.3)

63

d -
. oy - 4 1
1 py n o Phon
Yi = Wampy 55 0Py s 0 Vs [Py Y Py g L (3.7.4)
for i=2(1)s-1, , for i=n-1(-1)s+1,
and = (@-(by o 1Y 1*Pg 1Y)/,
s,s-17s-1 ,5+17 s+1 ' J

c) The solution of Qx=y.
"~ To obtain the final solution x we'proceed as given by (3.5.6)

to (3.5.9) without pivoting except that instead we use q; =P,

)J J)i.‘
When A is symmetric this method has the advantage of only having

to evaluate and store matrix P in the computer memory.
If we consider the number of arithmetic operations required by

the method where SR denstes squafe fots and M, A mu(h','a\&ah'on andaddition hmes fzs?ed\'sle\x',

we have. (r\+DI2 SR-\- (Bned My (Brrd)l2.- AL n odd
Ty
(n/z+|) SR+(6n+4) M+ Bnia)/2-A N even
giving
{2 -0 sr<+(a Mt R/ () 12 SR+ (3w MiBne /2. A) a odd
5,¢ .
2: (2 SRH?. M- A0+) SR+ B My (Bntd)/2iAY 'n even.

It is obvious that for large n, S, is again approximately 2.

2

3.8 THE GENERALISATION OF THE METHODS FOR MATRICES OF SEMI-BANDWIDTH m

The two algorithms dre now generalised to solve the same problem
(3.1.1) but with matrix A having the form (3.2.14).

The main difficulty with the generalisation of these algorithms
is that, when factorising matrix A, we are no longer left with two
matrices that are purely upper triangulér in one half and lower
triangular in the‘other half, but two matrices which overlap at their
centres corresponding to the intefference area'thch occurs in the

folding algorithm,

64

The Parallel Triangular Factorisation of A

Once again, matrix A is factorised into two matrices P and Q where

P has the form:

.
RN

z _
Py o
: S ‘\ 0
AN AN
NN .
[N AN N
: \\ \\ \\
pm,l AN N \\
N N AN
AN N N N
| N N N N
] N N AN \\
t \\ N \\ 1
' N N —-——————
| s v Psgl Psystrm T Ps semen oo o o P,n
X ~ AN 5 ’ !
| N N 1 N)
N I N \
) N) N N N }
I P N N N |
1 s+m-2,s-1 N N \ |
! : N N \ !
1 \ AY]
[! A > h !
: ' N N N i
| ' \\ \ AN [}
Posopz 1-""—""~""~ A N !
s+2m-3,1 Psiom-3,s-1 N N
. . . N '
N N \ \
N hY
sl Phomtl,n
\ N !
~
N o
0 N
~ MM
1
Pn-1,n
. 1 ety
and Q has the form: - o (3.8.1)
91 2----%,n-----%,2n1
~ RS S o N
\\\ \\ \\ \\ 0
~. S e ~ .
~ ~ N ~
~N ~
\\ .\\ \‘ \\ :
>~ ST i
qs-l,s-l qs-l,s+m-2"‘qs—1,s+2m—3 |
\
q%,s\ s :
' N . ‘ (3.8.2)
1 ~) |
1 ~ :
q ~ .-
srm—l,s N
' N S e
[} \\ ~
| ~ ~
- ~
q. ~ >
s+2m-2,s ~ o S o
, &2 . .
0 ™ . .
\\ '- -~ \\
qn,n—2m+2'"qn:n:m11°”qn,n

65

1 : .
5n-m+2, for n is even

where s =4, . (3.8.3)
E{n+5)—m for n is odd.

If, during the factorisation of matrix A, partial pivoting is
not applied or if no rows of A are interchanged, the elements of P
and Q will all be zero except for the shaded areas of (3.8.1) and
(3.8.2).' | |
As before, we havé
A=P.Q ,
(N.B. when partial pivoting is appliéd, A will have its rows permuted)
which on substitution into (3.1.1) gives, ‘
P.Q.x=d
Again, thebauxiliary vector y is introduced such that
x =y ,
thus reducing the problem to the solving of two systems of linear

equations

Py=d and =y

The matrix product P.Q is now defined as follows:-
for 1gi<s,

i-1 o \
9,14k ¥ gza_pi,zqz,iﬂ(, for Ogk<2(m-1)

(P.Qy 5.k

i-1

(P.Q).., - =Pi.y +Qs s +) Pi.y o4, s» fOr O<k<s+2m-i-3
i+k,i i+k,iti,1i =1 itk,278,17 L (3.8.4)

1 , for ig2m-k-1

i¥2(m-1)+k, for i>2m-k-1

66

for nzias+2(m-1j

|

Q

+
&~

(P.Q)i’i_k = L P; 9% ik for 0g<k<2(m-1)
=i+l

n
(p-Q)i_k,i = pi"k,iqi’i +2=§+1pi_k’zq2.’i for 0<k<i_s

+ (3.8.5)
n , for (n-i+1)52m-k-1

i+2(m-1)-k, for (n-i+1)>2m-k-1,

for s+2(m-1)>i2s

- s-1 \

B
i,i-k 1 Py ikt L P; 2%,i-k

*.Q. .
Lk p=i+l g=i-2 (m-1)

1}
e

for Ogkgi-s

8 . r(3.8.6)

P.Qj x5 = Pik,i%,i " Do Pyt
f=1+1

s-1

T e,
g=i-2(m-1)-k TKoF &1

for O<kgi-s J

where B is as defined in (3.8;5).

The two matrices (P.Q) and A are equated so as to establish
the unknown quantities pi;j and qr,s' Th¢ full algorithm including
partial pivoting is presented here.

So we have,

for i=1(1)s-1

we form the quantities, o 3
i-1 ’
Za pt,qu,i , fo; t=i(1)i+(m-1)

A 1 3.8.7)

a:

1 , for ig2m-1
i-2(m-1), for i>2m-1

Then select the maximum]Rtl (let it be IRt,|)-and provided t'#i,

we interchange rows t' and i including the values of-Rt and dt'

67

Then,
ql,i = Ri ?)
. i+k _. v
pi+k,i = % ; , for k—l(l)m—l
’ ¥ (3.8.8)
and Q50T 3 ek zza‘pi’“q“’i*k , for g=1(1)2(m-1)
. | J
where o is defined in (3.8.4):
for i=n(-1)s+2(m-1)
we form the quantities, i &
B o N \
R, = a ;- Z Py gdp,i’ for t=i(-1)i-(m-1)
2'—'1"'1 B . G
' + (3.8.9)
n , for.(n-i+1)g2m-1
B = '
i+2(m-1), for (n-i+1)s2m-1 . J

Select the maximum IRtl (let it be |Rt'|) and again interchange
rows t' and i including Rt and dt provided tr#i.

Then, we form .

G,i = Ry)
Ri-k
P pi= 3 , for k=1(1)m-1
: a1 (3.8.10)
. B
and UG sk T A,k T L Py gd,imp0 For ke1(1)2(m-1)
g=i+l S /
where B8 is defined in (3.8.5)
[
for i=s+2m-3(-1)s
we form the quantities,
R, =a, .- (p. 4, : * P. .9, :)> (3.8.11)
t t,1 o=i+1 t,'2,1 g=i-2(m-1) t,2'2,1

’ ;for t=i(-1)s
where B is defined in (3.8.9). -

Again we select the maximum |Rtl, interchange the rows

68
accordingly and form,
4G5 "Ry g 1
Ri-k ,
P ki = -, for k=1(1)i-s
444 '
and finally,
% s-1
T (P. ,9d, :_1 * P: %, 1)
i,i-k i,i-k g=i+1 i, e te,i-k g=i-2(m-1)-k i,88i-k
~ for k=1(1)i-s J
i
(3.8.12)

where B is definéd in (3.8.5).

‘In ofder to take full advantage of fhe accuracy of this method,
,double-brecision accumulation of inmer products such as Ypq should
be uséd. If possible, the Rt values should onl}vbe rounded to
singlg precision when the maximum IRtllhas been selected.

with matrices P and Q known, once'again Py=d is solved for
y using an inward substitution process and ngz'fof Xx using an
outward substitution process.

Note that now, in the top half of the system, a row may be
interchanged upwards, only once, a maximum of (m-1) rows yet a row
may be interchanged downwards as far as row (s+2m-3). Whilst.in the

lower half, a row may be interchanged downwards a maximum of (m-1)

rows and upwards as far as row s.

3.9 THE SOLUTION OF THE GENERALISED SYSTEM BY THE PARALLEL TRIANGULAR

FACTORISATION METHOD

The inward and outward substitution processeé ére now defined as
follows:-
a) the inward'substitUtion for the solution of
Py=4d, ,,
where the forward substitution from the top left’hénd corner is

given by,

17 %

for i=2(1)s-1 e)
i 1 S 3 . (3'

v =4 - zzlpi,zyzx.’

and the backward substitution from the bottom right hand corner is

1]

Yn T dn
for i=n-1(-1)s+2(m-1) _ (3.
; , S 1 o
y; = ds - L Py
i 1 g=i+l i,272
for i=s+2m-3(-1)s
y; = d.-(P Y, * L Py Y, (3.
T P e S = R

b) The outward substitution process for the solution of

x=y ,

n

' s = Vs/%,s ST G-

followed by the forward substitution procéss'from the centre given

by,
for i=s+1(1)s+2m-3
' -1 _ st
xp = g - Lag %)/a 5 0 3.
2=s
for i=s+2(m-1)(1)n
iil , _
x, = (y. - q. X)5 (3.
1 1 g=i-2(m-1) 1,22 1,1

and the backward substitution from the centre,
for i=s-1(-1)1,
i+§(m<1) A
x. = (y. - q. Xx,0/9, 5 (3.
i i 0=i+1 1,2‘2 i,1
During the inward substitution process, steps (3.9.1) and
(3.9.2) are performed in parallel, and on completion are followed
by step (3.9.3). Then the outward substitution process commences
with steps (3.9.4) and (3.9.5) which must be completed before steps

(3.9.6) and (3.9.7) are performed in péréllel. Once again, in order

to take full advantage of the accuracy of the method, double precision

69

9.1)

9.2)

9.3)

9.4)

9.5)

9.6)

9.7)

70

accumulation of inner products must be used.

As with the tridiagonal algorithm, the number of arithmetic operations
is dominated by the n2 term which is due to the inward substitution stage,
so we shall combine the substitution stage with the factorisation stage.

This gives, in terms of arithmetic operations, for the sequential algorithm:

T, = m(8n-7)n- (n-1) (68m>-55m+12) /6,

and for the parallel algorithm:

3 2
m(8m-7)n/2+ (40m™-102m"+83m-18) /6, for n is odd
2
m(8m-7)n/2+ (m-1) (20m~-43m+9) /3, for n is even,

giving,
2—(148m3-327m2+233m—48)/6.T2, for n is odd

2-(m-1)(148m2-227m+48)/6.T2, for n is even.
If speed-up is considered, it is clear that it is desirable for

n to be large with respect to m, (i.e., n>>m).

3.10 THE GENERALISED SYMMETRIC PARALLEL FACTORISATION METHOD

The pargllel triangular factorisation method has been successfully
g;neralised, and now we proceed to generaiis§ the symmetric parallel
factorisation method. The factorisation of A is performed such that
Q=PT.

Matrix P will be identical in form td the shaded area of (3.8.1)
with the exception that the leading diagonal will consist of entries

P (1=1(1)n) instead of unity valueé and

n-2+3 for (n-m) is odd
s = : ' (3.10.1)
n-$+2 for (n-m) is even.

Then Q=PT (i.e. q.

i .=pj i) and the matrix product P.PT is

defined as:

71

for 1gi<s

T _ T _ B 1
PPy ik = PP ik ,s = pi+k,ipi,i+z§1pi+k,i-zpi,i-2’

- for Og<ksm-1
where the summation limit is defined to be, B r (3.10.2)
{ i-1, for i<(m-k)

o =

m-k-1, for iz (m-k),

for nzizs+m-1

T T)
PPy 5 p0 = PPy g s = iy iPs 5% L Py 5unPi,in

=1
for Og<kg(m-1)

where e L (3.10.3)
{ n-i, for (n-i+1)<(m-k)
8

m-k-1, for (n-i+1)=(m-k)},

for s+m-1>is

Il &~

T _ T -
PPy sk ™ PPy g i Rkifi,i

SLEEI lpi-k,i+zpi,i+z
n-1 ‘for Csk<i-s
+ S TN _ (3.10.4)
g=i-s+1 ;-k,14£1,1 L

and B is defined in (3.10.3).
On equating the matrix PPT with the matrix A, we have the
following formulae for determining the elements éf P and PT.

These are:

for i=1(1)s-1
. [0]

: 2 \
p, . =V(a, . -1p;.)
i,i i,i 571, g
ol
Pici = (i _zzlpi+k,i-2pi,i-£)/pi,i’ - (3.10.5)
for k=1(1)m-1
where o is defined in (3.10.2); }
for i=n(-1)s+m-1 8
pi,' - /(a i z 1 1+2
g*” (3.10.6)
Pik,i " Bk, 2 Pik,i+ePi,i+0)/Pi)i

where B is defined in (3.10.3) and, for k=1(1)m-1

for i=s+m-2(-1)s

B 2 m-1 2
Pi,i = Y35 - (lepi,i+2+2=igs+lpi,i-z))
8 m-1
Pik,i~ (ai—k,i'(lzlpi-k,i+2pi,i+£+2_. Pi_k,i-2Pi,i-200/P5 4
= =i-s+1 ,

for k=1(1)i-s,
where B is defined in (3.10.3).

The solution of Py=d for y is now given algorithmically as:

yo= L |
1 pp
for i=2(1)s-1
a
i = Wy - L Py s gYi)Py
2=1 }_
i-1 for i<m
o=]
m-1 for m2i ,
and J
d
y = n N
n Phon
for i=(n-1) (-1)s+m-1
B8
vy = (4 - Z Pi,i+aYi+0)/Pi i
=1 \
n-i for n-i+l<m
B = '
m-1 for n-i+13m J
whilst for the interference area,
for i=s+m-2(-1)s
% mil
y. = (d. =C) Ps s.oYs.ot P: s oY: o)/P:
' 1 1 9=1 i,1+273+2 g=i-s+l 1,1-271-2 1,1
where B is defined in (3.10.9).
Finally, the solution of Qx=y for x is now,
' ys
X, =
ps,s
for i=s+1(1)s+m-2
i+l
X7 (yl - zzspl,ixl)/pi,i
for i=s+m-1(1)n
i-1
xp = Oy - L Py %)/

72

)
(3.10.7)

(3.10.8)

(3.10.9)

(3.10.10)

(3.10.11)

(3.10.12)

73
and for i=s-1(-1)1
i+m-1
x; = O - L Py sX)/py 5 (3.10.13)
=i+l ‘ ‘

The steps in the forward and backward substitution phases will
be completed in the same order as described previously for the
parallel factorisation (PQ) method.

Finally, we have that the number of arithmetic operations is:

(m2+4m-2)n/2+(m-1)(m2+7m-6)/6, for (n-m) is odd

2 (m2+4m-2)n/2+m(m2+9m-1)/6, for (n-m) is even
giving
2-(m-1)(2m2+9m—4)/2.T2 s for (n-m) is odd
S, = B
2 2-m(2m2+9m-5)/2.T2 , - for (n-m) is even

3,11 INHERENT PARALLELISM

The parallelism in the generalised facforisation method is
basically the same as that for the method for tridiagonal systems.
If we consider figures (3.1) and (3.3), then the corresponding
diagrams for the generalised methods will be essentially the same.
The diagram for the Generalised Parallel Triangular Factorisation

method is:

q12"_"q1,2m—1 pn-m+1,n""pn—1,n qn,n-2m+2 """ qn,n-

ps,s-l"‘ps+m-2,s-—1 pt-m+1,t"'pt-1,t

qs-l,s"'qs—l,s+2m-3>

'
1
!
3

FIGURE 3.4

where t=s+2m-2.

174

75

It is obvious that a maximum of 6(m-1) processors may be used
concurrently but the most suitable number of processors would be 2,
because a larger number may greatly increase inefficiency. This is due
to the need for synchronization within each of the two parallel branches
which can only be achieved by a large number of forks and joins. In
addition to. this, the larger number of processors cannot be fully utilised
in the critical regions of the algorithm,

Clearly the main disadvantage with these methods is the interaction
area at the centre of the matrix ((aij) i=s(1)s+2m-3, j=s(1)s+2m-3 in the
case of the parallel factorisation method). As m increases, this area
gradually fills the whole of matrix A and the method is reduced to the
standard LU type factorisation. It is this area that reduces the
effectiveness of the algorithms and by examining the speed-ups we may
conclude that it is desirable for n to be large with respect to m, i.e.

A is a narrow banded matrix.

3.12 ERROR ANALYSIS OF THE GENERALISED PARALLEL FACTORISATION METHOD

The following error analysis of the parallel factorisation method
is an extension to the work pioneéred by Wilkinson [1965]. Prior to
the introduction of the complex analysis, we first consider some basic
results.
For t-digit binary floating point computation and assuming that
our computer has a double precision accumulator, then we can state the
following definitions:
a number x is said to be rounded to t digits x(t) if
lel = [xxPg 2270, | (3.12.1)
and for simple arithmetic operations we have
£2.(x*y) = (x*y)(1+e) , lels2™®, (3.12.2)
where f2() indicates single precision (t-digits) and the operation

* js +,~-,x or +. Also we have,

76
£1,059) = Goy) (ve) , [ef € 32720 (3.12.3)
where fzz() indicates double precision (2t-digits) and the operation
* is as before
We are particularly interested in the error accumulation of
double precision evaluation of inner products.
If we let
s, = fzz(x1y1+x2y2+....+xnyn) , (3.12.4)
where xl,xz,...,xn and yl,yz,....,yn are single precision numbers,
the sum is accumulated in double precision in the accumulator and
then rounded to a singlé precision number.
Let us denote,"
s = £ (XY ¥ X Y *e.4X Y)
r 27171 7272 'Y (3.12.5)
and t. = £2,(x y.)
Then, by developing the inner product recursively we can write,
S1°% (3.12.6)
and S, = fzz(sr_1+tr), r=2,3,....,0.
Now, at each step of the recursion we have,
_ 3 -2t
3 ,- 2t (3.12.7)
sp = (st) @), In | s 52
and hence finally
S, = x1y1(1+el)+x2y2(l+ez)+...+xnyn(1+en) (3.12.8)
where -
I+e; = (I+p,) (1+n,) (1+ng). ... (1+n)
and . (3.12.9)
Ive = (1+p) (1+n) (1+n ,)...(1+n),

r=2,3,...n.

Using the result of (3.12.3) we have

77
1-3 272" ¢ e € (3 270"
(3.12.10)
and . (1_§_2-2t)n-r+2 < 1+e s_(1+_3__2—2t)n—r+2)
2 T 2
Rounding to t-digits we finally have
s, © (x1y1(1+el)+....xnyn(l+en))(1+e) , (3.12.11)
where the €; are-defined in (3.12.10) and we have for (l+e),
1-27 % ¢ 1ee s 1427F (3.12.12)
In order to simplify the bounds (3.1210), it is reasonable to
assume that since r is normally much smaller than 22t ,
2% <o . (3.12.13)
Then we have the result
3 - ’ -
(145 2 T 1+§r(1.06)2 2t (3.12.14)
and introducing tl such that,
-2t -2ty
(1.06)2 = 2 ,
i.e., 2t1 = 2t—1og2(1.06) , (3.12.15)
we can write the bounds for (3.12.11) as,
le] <27,
-2t
3 1
le, | < 3n.2 (3.12.16)
-2t
3 1
and Ierl < 3(n-r+2)2

The remaining result that is required for the analysis that follows,
concerns the division, before rounding, of an inner product

accumulated in double precision, and is

XY, (1+e)+...x y (l+e)
_ 171 1 n’'n n
fzz((x1y1+x2y2+...xnyn)/z) = 27 (1+e) (3.12.17)

where ¢ and €; are as defined in (3.12.16).
We commence the analysis of the method by considering the
sensitivity of the solution X to perturbations in d and A. If

(x+h) is the computed solution when A and d have been perturbed then

78

(A+F) (x+h) = (d+k) . (3.12.18)
If we subtract (3.1.1) we have
(A+F)h = k-Fx | (3.12.19)
> A(+AT'P)h = k-Fx

+ h= (I+A'1F)‘1A'1(k,Fx)

-1..-1 -1
> Il s [Tasa) AT] x-Fx|] (3.1220)
where ||A|| denotes the norm of matrix A and can be defined by one

of the following expressions,

HAH]_ = m;"x glai,jl ’
A = A
L= mex Tla
||A||2 = (maximum eigenvalue of AHA)%
- 2.4
and A1l = G 2lag 515,

where AH is the complex conjugate transpose A.
Assumiﬁg that

||A'1F|| <1, (3.12.21)

then (I+A-1F) is non-singular and thus

—L— <] < —L (3.12.22)
1+] |A"F]| 1-|[A77F]]
and so
1 -1
| ¢« ———— [d Ikl [+[TeI]. [=[] - (3.12.23)
1-|[A7°Fl |
The relative error is of more interest and so
_1, |
LB gy i L L .12.20
| [x] | Hall Al 1-{{a™]] F]
If only the perturbations in d are considered, F=0 and
I - |
B gty 2R (3.12.25)

1] 1al]

79

Alternatively, by only considering perturbations in A, k=0 and

IIn!l -1 [HEl] 1
sHALL [T - =
|1x!1 Al 1-[1a77] e
or
b g pary ppatyy. HEL - — (3.12.26)
I Il i e

In (3.12.25) we have a bound for ||h||/|{x]]| in terms of

[1x|]/]1d]] and in (3.12.26) in terms of [|F{|/||A||. For both
bounds we see that the decisive quantity is]IAII.I!A_lll which is
known as the condition number.

Now let us consider the decomposition of the matrix A into the
product P.Q.

Excluding rounding errors we know that the augmented matrix
(Aid) with its rows permuted is equal to the augmented matrix P(ng).
We require a bound for

{P(Qéy) - (A%d)} ' (3.12.27)

where (Aid) represents the permuted matrix.

In.general, it can be expected that the maximum |qi,j| rarely
exceeds the maximum lai’ilby any appreciable factor and, in fact,
when A is ill-conditioned the lai,jl will usually be greater than
‘qi,j E

If we scale A we will have some control over the size of
elements where necessary; so scale A such that all |ai’j|<£.
Then, by examining the quantities Rt and qi,t as they are accumulated,
if an inner product exceeds ! in absolute value, we divide either Rt
OT q; & and the complete row t or i of A and d by two. It is expected

however that the necessity for such a division is rare.

Thus, assuming no divisions are necessary we have

=1

80
for lgi<s
: R
- _itk 1 -t
Pivi,i a4 3 i+k,i ’|€i+k,i|52'2 (3.12.28)
where pi+k,i’ S5k and qi,i refer to computed values. From (3.8.7)
we may rewrite (3.12.28) as
i-1
ai+k,i = lzapi_'_k,lo.qg”i + Pi+k’i.qi,i + q]._’]._.ei‘fk,i . (3.12.29)
Also we have for qi,i+k and ys
i-1
4 1 -t
U,iek 7 MiLaek T Zpi,zqz,i+k T ik’ |€i,i+k|55-2
L=a
i-1 1 -t (3.12.30)
and Yi = di - Z pi’zyQI + ei ’ IEiIS‘Q‘.Z

Similarly we have the following results:-

for n2i2s+2(m-1)

)
E

4Kk,i 2=.+1pi-k,2ql,i *Pix,i%,i T %,i%i-k,1)
1 -t
| le; k1152
8
9,i-k T %,i-k 'l=§+1pi,£qz,i-k Y%,k
1 -t
Iel,i-k|5§“2
n
1 -t
y. =d. -) p. vy, +e., |els5.2
i 1 .51 1,27 8% i i'~2
and finally,
for s+2(m-1)>ixs
g Sil
a; 43 = (Py o9 3% L Py 293
i-k,i =i+l i-k,2%8,1 P k,2te,d
1 -t
* Pig,i%,1 * %,i%k,10 Cik,1]9
B s-1
G ,i-k ~ ai,i—k_gF§+1pi,2q2,i-k+ zzapi,zqz,i-k)*ei,i-k
1 .-t
. 1 le; -1 s3°2
1 .-t
y. = d.-(Y Ps Y.t LD Yo *ess el
i i g=i+1 1,278 =1 1,278 i i's2

L (3.12.31)

+ (3.12.32)

81

It may be shown that, by taking terms in P,Q and y to one side,

P(Qly) = (A+F,d+k) f3.12.33)
where 1 -t :)
-5.2 s s>igj and s<izj
£, .| s r (3.12.34)
1,30 %1qi 1275, s>j<i and s<j>i
1 -t
and ikilsiuZ .
However, all |fi jls%nZ- , since we have assumed that [q JI 1.
3 ,

Obviously, for many of the elements Ifi J.|, this bound is pessimistic

s

as some Iqi i| are considerably smaller than unity.
b

Finally, we must consider the two substitution stages defined

by
Py = d and Qx =y

The analysis of the solution of both sets of equations is
similar and first we consider the solution of Qx = y.

Now for i=s(1)s+2m-3

if we assume that xs,xs+1,...,x. have already been computed, then

i-1

e, [-q;

o]
n

i,57s q1,s+1xs+1'"_qi,i—lxi-l+yi]/qi,1

(1+e_ ,)...-q.

[-a; o¥s(1*eg)-ay s+1 i,i-1%4-1

i,s ,5+1%s+1 (1+e; 4)

(1+¢)
i,1
-2t -2t
1 -
where Iek|<g{i-k+2)2 L [eilsguZ , le]s2 t and by dividing

+y; (1re)]x (3.12.35)

the denominator and numerator by (1+ei), we have

x; = [-aq; x _(I+n)-q,

i 1, ,5+1 s+1(1 ns+1)

1 i- 1 i- 1(1+ni-1)

+y;l/a; 3 (1+n) (3.12.36)

where certainly,

-2ty t
Inyls 2(1 k+3)2 and |n|<2” " (1.00001)

82

By a rearrangement of (3.12.36), we may write,

q.

i,s%s (1) *q; (Tang) eee¥ay 5 %5 (10 o)

X
,5+17s+1

+qi,ixi(1+n) =y - (3.12.37)

Similarly, we have

for i=s+2(m-1)(1)n

oAy X (I ray o Xy (leng) H ey g g%y (g)

+qi’ixi(l+n) = Y5 (3.12.38)

3. -2ty -t
where 2=i-2(n-1) and |n, |5(i-k+3)2 , |n]<2”"(1.00001)

and for i=s-1(-1)1

1(1+ni+1)+qi,i+2xi+2(1+ni+2)+'"+qi’2x£(1+ﬂ2)

S o
q1,1+1 i+

+qi,ixi(1+n) = ¥; (3.12.39)

where 2=i+2(m-1) and |n |s3(2-ked), [n|<2”"(z.00001).
It is now obvious that X; s the computed solution, will satisfy

exactly the equation,

Q+oQx=y , (3.12.40)
where 8Q is bounded by |
lay, |
. o
|6Q]<2” " (1.00001) . +
L lag,a !, (3.12.41)
0 (2m+1)|q12| 4|q1,2m_1|]
0 Thal R
0 (2m+1)Iqs-i,sl"'4|qs-£:s+2m-3|
-2t 0
3 1 0
72 4|?s+1,s|\‘ T~ o
(2m+1)|qs+2m-2,s| i RN N -
i (2m+l)lqn,n-2m+2l"'4lqn,n-1| 0]

.
For the 1,2 and « norms we have
-2t
I1sql |2 t(1.00001)g + 3.2 l(2n°+3n-5)g
where g is max Iqi,jl' Now should ggl then
-2t
1sq] |2 t(1.00001) + 3.2 l(2nP+3m-5) . (3.12.42)
If m2.2-t<<1, the second term is negligible.
Now considering the residual vector
(y - x) = 6x , | (3.12.43)
then Iy - oxllsllsal |- [1xll - (3.12.44)
Now if Xy the exact solution, when rounded to t figures
gives E} then we may have
X = X, v C . (3.12.45)
It is obvious that |
lell, <27 1x, 11, ; (3.12.46)
and hence, _
¥y - & = y-Qx +c) = -Qc ,
thus
y-axl1 = 1leel | sllal | el l s@n-1275 Ix]| _. (3.12.47)
Since it would be easy to devise an example that achievés this
bound, then following Wilkinson [1965) we can say that we may expect
the residuals corresponding to the computed solution of the triangular
set of equatiéns to be smaller than those corresponding to the
correctly rounded solution.
The analysis for the solution of Py=d is very similar, but the
diagonal elements of P are unity and so there will be no divisions
involved in this stage.

We have that the computed vector y will satisfy

(P+sP)y = d R (3.12.48)

where § P is bounded by

|

|sp|s27 " (1.00001) X

pr—

0
4lp,,| 0O
5lpgy | 4lpgl O

:
S

[} ~ ~
ot (s+2) [pg 4 |--4lp >, 170 m+2)p

N
.
[\S)

]

[}

i

[}

. i

1
(S+2)|pr,ll"’4lpr,s—l|

L

where r=s+2m-3.

s,s+1
~

. !
\\ '
. i
\\ \\\ .
~0 (n‘2m+5)lpr,r+1| (s+3)lpr’n|
0 \(n—s-2m+5)|Pr+1,r+2l 4|pr+1,nl
\\\ \\\\ :
~ -~ t
\\ \\ |

(3.12.49)

R IR) I

~
~

~ \\4I l l
g pn-1,n
T <0

¥8

85

The elements of P are bounded by unity and so

-t 3 -2t, 2
||sp||<2”"(1.00001) + 7.2 (n+3) (3.12.50)

for the 1,2 and » norms. Again, if n22-t<<1, the second term is
negligible.
As with the solution of Qx=y we have,
I1a - pyllsllsp{]]1y]l (3.12.51)
and for the exact solution, Ye

— -t
[1d - pyll, 2 " [ly] (3.12.52)

giving that we can expect the residuals corresponding to the computed
solution to be smaller than those of the correctly rounded solution.
If we return to the original problem to ascertain the errors in

the_solution of
Ax =d ,

we observe that A is factorised into the matrices P and Q such that
P.Q = A+F , (3.12.53)
where F is the same matrix as in (3.12.33).
The solution x is obtained by solving the two sets of equations

Py=d and Qx=y and the computed solutions x and y satisfy exactly the

equations,
(P+6P)y = d and (Q+sQ)x = y

where the bounds for 6P and 8Q are given in (3.12.49) and (3.12.41).

Hence x satisfies

(P+sP) (Q+8Q)x = d , (3.12.54)
that is, (A+G)x = d , (3.12.55)
where G = F+§P.Q + P.§Q + &P.8Q . (3.12.56)

Now assuming partial pivoting has been used and floating point
computation with double precision accumulation of inner products,
and also that Iai j[sl and the Iui jl have remained less than unity

3 2

then,

86

-2t

t ,(2m-1)2"F(1.00001)+n.2~ S (1.00001)+0(m%2 1)

ll6] s (2m-1)52"

_t : (3.12.57)
If n2”~ is appreciably less than unity then we have that

|IGHms(l.lnH’».lm)Z-t (approximately) .
Since m<n it is clear that the majority of the upper bound
arises from the solution of the two sets of equations.
In terms of residuals, from (3.12.55) we have

r = d-Ax = Gx

__tl

and thus Hzll _sll6ll, Hxll <t ane3.m2” | x| - (3.12.58)

This residual bound is in terms of the size of the computed solution
and not its accuracy.

Wilkinson [1965] also demonstrates how to improve, iteratively,
the computed solution by using iterative refinement which is defined

as.
0) _) _
x7 =0 rr=d (3.12.59)

pge® = 200 | (00D L () L 00 Gl gy (e

X +c
where PQ=A+F and the Eﬁk) are a sequence of approximations to the

true solution x. If performed without rounding errors this process

yields
D 20 ey T p-ax ™)

s aer) Iax-x) (3.12.60)

which, on subtracting x fromboth sides and rearranging, becomes

«* Doy = -l -0

[I—(A+F)'1A]k(5(1)-§) (3.12.61)
£ ||t -+ 7|« (3.12.62)
then this is a sufficient condition for the convergence of the
exact iterative process. This is satisfied if

IR E (3.12.63)

however, since

1 -
|1Fl] s5(2m-1)2 t , (3.12.64)
then the iterative process converges for
A <2t emy L (3.12.65)
3.13 EXAMPLES
Consider the following (10x10) linear systems where the right

hand side vector d has been suitably chosen to make the solution

vector possess unit elements.

a) if

T 2 -1.5 i 0.5

0.5 3 -1.5 1

0.5 4 -1.5 2

0.5 5 -1.5 3

A= _0.5 6 ~-1.5 and d=| ,

_0.5 7 -1.5 5

0.5 8 -1.5 6

0.5 9 -1.5 7

0.5 10 -1.5 8
= 0.5 11 | 110.5)

then by the matrix factorisation process of section (3.3) without

pivoting, we have the following results,

|
-0.25 1
-0.19048 1 0
-0.13462 1 |
-0.10421 1 -0.21723
P = 1 -0.18949
1 -0.16808 -
0 1 -0.15103
1 -0.13636
and - 1]
2 -1.5]
2.625 -1.5
3.71429 -1.5
4.79808 -1.5 0
5.73507
Q= -0.5 6.90525
-0.5 7.91596
0 -0.5 8.92449
-0.5 9.93182
L -0.5 11}
&

b) Similarly the square root factorisation method outlined in section (3.7) yields the component matrices

P and PT, for the symmetric system Ax=d, and is given as follows:

T 1.41421
-0.70711

-1
3 -1
-1 4
-1

1.58114
-0.63246

-1
5
-1

-1
6 -1
-1 7
-1

1.89737
-0.52705

-1 d=
8 -1
-1 9 -1
-1 10 -1
-1 11
2.17307
-0.46018 2.37515 -0.38143
2.62168

—

(O 0 N U AN ey

-0. 35606
2.80846 -0.33522
2,98313 -0.31768
3.14781 -0.30151

3.31662]

68

¢) The third example illustrates the factorisation method of (3.3)

incorporating the pivoting strategy. If

then the factors are:

and

1
0

.66667 -0.55556

0
0

3
2

b

a4
1

3

(o 0N~ |

1

0
0

AN

Lo V2 B O
93]

1
0
0.83077

4
7.22222

T 7]
8
9
and d = 13
12
3
4‘-‘ b
1 -.51667 0.6
0 1 0
1
2
1.11111
-0.81026
3.07692
4

-0.25 0.75
0 0

0 0

1 0

1

90

N.B. The examples in s sechon have been evalvared on the

16119045 computer at Loughborugh Uniersity and the resulis

roonded ‘o 8 decimal -Cigures.

CHAPTER U

THE SOLUTION OF TRIANGULAR SYSTEMS OF EQUATIONS

91

4.1 INTRODUCTION

In Chapter 3, the solution of a banded system of equations (3.1.1)
was investigated. Another commonly occurring problem in numerical
mathematics is the solution of the system of equations,

My =b s (4.1.1)

where M is an (nxn) triangular matrix of the form (4.2.1) and b and
y are (nx1) column vectors.

The sequential algorithm approach to the prdblem is a forward
substitution process when M is lower triangular and a backward
substitution process when M is upper triangular. As an example, the
forward substitution proceés for the solution of the system of

equations (4.1.1) is defined as,

Yi © (bi - Z m, i, J i,i° for i=1(1)n . ' (4.1.2)

This algorithm is essentially sequential in that Y is dependent
on the value of ¥1:¥3 ON the values of Y, and Yp¥, on Y3sYp and Y1
etc., and this restricts the number of processors that can be used
and speed-up that can be obtained by implementing it as a parallel
algorithm. However, it is possible to substitute the value of Y1
into equations 2,3,4,...n simultaneously and then the valuevof Y
into equations 3,4,5,...n simultaneously etc., and so it is not
difficult to see that the simple idea of assigning one processor to
each equation in system (4.1.1) yields the maximum speed-up for this
strategy. Unfortunately, this simple algorithm is inefficient
because the processors become idle as the algorithm progresses.

In the following study, various strategies for employing more
than one processor to execute the substitution process efficiently

are investigated. Other algorithms, such as that of Chen and Kuck [1975],

92

which is extremely fast but inefficient, are also considered and
‘compared with the new strategies presented here by means of an index
called the performance factor (4.2.6), which is a quantity that
attempts to find a balance between speed-up and efficiency.

The essential difference between the two types of algorithm is
that Chen and Kuck attehpt to solve the problem in as short a time as
possible, regardless of the number of processors that are required,
which is frequently unrealistically large. The algorithms presented
here, however, attempt to use a smaller number of processors efficiently.
If is shown, in fact, that one of these methods, the Parallel Wave

Front Method, has, in the majority of cases, the best performance.

4.2 THE SEQUENTIAL SUBSTITUTION PROCESS

Matrix M is an (nxn) lower triangular matrix of the form:

™1
m m
21 "22
A 0
! L | (4.2.1)
N
| | N
o
m'. Mmoo --— oo Im
L_nl n2 nn |

M could also be upper triangular in form, in which case the analysis
would be similar.

In order to simplify the system and permit direct comparison
with the algorithm of Chen and Kuck [1975], we shall perform the

following transformation of the general system (4.1.1) to the form

y=d+Ay (4.2.2)

where

93

n o Ol
[\ 8]
—- =
» O
, 0
(am)

——mmemm— =

3
:
! AN (4.2.3)
|
}
|
!
|
!

r
=
[y

o]

=
[3]
=
=

1
[y

|

d, =

i i’ i,i

and a, ., = -m, ./m, i for j=1,2,...i-1, (4.2.4)

|
=y
~
=

for i=1,2,...n

i=2,3,...n .
This new system may be solved by a forward substitution process
described as follows:
for i=1(1)n

i-1
y; =d; + La .y

i i j=1 i,ji’]
Before we consider any parallel strategies we shall make the
following assumptions and definitions. First of all we shall assume
being tdentical
that each processor/@orks at the same speed and secondly, that each
arithmetic operation requires the same amount of time called a unit
step. Finally we define an algorithm step as one multiplication
followed by an addition which is equal to two unit steps.
In Chapter 2 the quantities Ti’Si and Ei were defined. We
now introduce an additional quantity called the performance factor
which is consistent withoue Proi\ous dedinitiong and is defined as
PFi = EiXSi . (4.2.6)
By combining efficiency with speed-up we have an index that

enables us to assess the optimum number of processors that may be

used for the solution of the problem.

It is cbvious that a uniprocessor will solve the system (4.2.2)
sequentially in n(n-1) unit steps by the forward substitution process
(4.2.5). So we can say that ‘

T1 = n(n-1) unit steps . (4.2.7)

With a computer that has p processors, we can perform p
operations concurrently and therefore have a minimum time requirement

for the solution of (4.2.2) of

n(n-1)

min(Tp) = unit steps . (4.2.8)

It is not easy to achieve this limit as we would have to
organise the processors so that they were not left lying idle at
any point during the processing period.

Using the forward substitution method it is clearlthat to
complete the evaluation of Y, we require Yn-1° Similarly we require
Y o2 to complete the evaluation of Yn-1 and so on, so that any
algorithm based on this method requires a minimum of 2(n-1) unit
steps. From (4.2.8) it is obvious that a minimum of %n processors
are necessary to solve the problem in this time. |

Suppose that there are (n-1) processors available; then we may
assign one processor to each equation of the system (4.2.2).
Obviously an increase in p, the number of processors, guch that
p>(n-1) is not beneficial as (n-1) is the maximum number of processors
that may be used and the extra processors would only be redundant.
Assuming that the Y; already contain the di’ then by a%signing one

processor to each equation we have,
Clock count in unit steps

Processor Time ~0 2 4 eeeeeens (2n-1)
1> v =y aah

37 Yzt A3Vt Az i (4.2.9)

DAL N SEE- W SR SRR PP a

95

Only processor (n-1) will be occupied for the complete 2(n-1)
unit steps, the other processors becoming idle as they complete the
evaluation of the equations to which they are assigned.

This can be demonstrated more clearly in the following diagram:

(n-1)
+
Number of
processors
in use
Work done
| / /
0 Time -» 2(n-1)
FIGURE 4.1

The complete area of the square represents the total capacity for
work of the parallel computer. The shaded area is the used capacity,
where processors are in use and the unshaded area the wasted capacity
where processors are lying idle. Thus the system is being used
inefficiently as half of its potential capacity for work is wasted.

Now let us investigate some new strategies that will improve
the efficiency of the computer. These strategies fall into three

categories depending on the number of processors available.

4.3 METHODS THAT REQUIRE AT MOST (n-1)/2 PROCESSORS

The following methods are characterised by the way in which they

partition the matrix A and are essentially a forward substitution process

with a particular order in which the yis are substituted into the system.

96

They also tend to be less efficient when (n-1) is not exactly divisible
by p.
Method 1

Let the matrix A be partitioned as follows:

[T

11

21

<0 | €T [T >
>
P

A = where s =[Q£ﬂj1
P

L sl [s2

<p> | <p> {<p>

Partitioning of Matrix A

FIGURE 4.2

The matrix is partitioned into (pxp) blocks where p is a
factor of (n-1), (row 1 having been ignored since it is zero).

If we commence with'the top left hand block All’ we simply
solve for each block one at a time using p processors on each block.
We may proceed either by columns thus

'FPR' J=1 'STEP' 1 'UNTIL' (N-1)/P 'D@’
'FPR' I=J 'STEP' 1 'UNTIL' (N-1)/P 'D@' SPLVE(A[I,J])

or by rows thus

'FPR' I=1 'STEP' 1 'UNTIL' (N-1)/P 'D@’
'FPR' J=1 'STEP' 1 'UNTIL' I 'D@' S@LVE(A[I,J])

\
|
where the subprogram SPLVE may be defined as follows. |
|

97.

When Ai,i is a diagonal block we can treat it as a triangular

system and, as there are p processors available, we may assign one

to each row of the block and use the forward substitution technique.
0ff-diagonal blocks Ai,j (i>j) are square sub-matrices where the

associated yis are known so that all that is required is the substitution

of these values into the equations. Again, with p processors available,

we may assign one to each row of the block.

The shaded areas in Figure 4.2 represent the places at which
processors lie idle and it can be seen that they all appear along the
diagonal.

It is clear that each block can be solved in 2p unit steps and

since there are -;— (n;)l) l:(nI;l) + 1:| blocks then,

_1 (n-1) [(n-u]
Tp 2" p D + 1 2p

2
[?E?Q— + (n-li] unit steps, (4.3.1)

giving
_ np
Sp = D) . (4.3.2)

Also, n
Ep = m ’ (4.3.3)

and n2
P = —F— . (4.3.4)
(n+p-1)
In the event that p is not a factor of (n-1), the final row
of blocks will have less than p rows and so create a small additional
inefficiency. It is better for this final row of blocks to be as
full as possible.

This difficulty may be overcome by slightly altering our

approach. If A is partitioned into columns of width p thus:-

98

[«p> | «p+ <—q:

A= \\\\ where q<p

Partitioning of Matrix A

FIGURE 4.3

Then, commencing with the left most column, the p processors are
assigned to rows 2 to (p+l). Row 2 is completed first so that
processor 1 may be re-assigned to row (p+2). Processor 2 is the next
one that becomes available and is re-assigned to row (p+3) and so on
until row n is reached. As the processors are available, they await
the completion of the column and then move to the next column. The
areas of inefficiency now appear at the bottom of each column but the
additional_inefficiency now only occurs in the final column whére there
are less than p rows. The Tp,Sp,Ep and PFP will be as defined in
(4.3.1) to (4.3.4). A similar result may be obtained by applying the
same process without partitioning A. The area of inefficiency will

then appear when substituting values into the final rows of A.

Method 2

This method has a more complicated strategy and is only suitable
for odd values of p. Once again A is partitioned into columns of
width p and commencing with the left most column, the processors are

assigned to the first p rows. We then proceed, as in the second

99

strategy of method 1, by reassigning processors as theyvbecome

available until row (n-p) is reached.

Tow 2
by Pypm oo ®1p
b '
21 22 ,
: : where
]
[} ¥
/ B = i : bi,J=a2,’k
! |
! X .
! ' L=n-p+i
r0w+(n-p) bll"'_'““"“'-——-—b‘ k=cp+j
P TOws B p PP
¥
(a) A Column of Width p of (b) Submatrix B
Matrix A
FIGURE 4.4

We have reached the point shown in Figure 4.4(a) where the shaded
area represents the substitutions that have already been made. As
processors now become available they pass down the columns of submatrix
B substituting in values of y, starting with the first column. As the
pth processor is released the processors will have come into line and
they may then sweep across the remainder of B, thus completing the
column without any of the processors becoming idle.

Considering submatrix B, for one algorithm step we have one
processor assigned to the submatrix, for the next algorithm step we
have two processors and so on until there are (p-1) processors assigned
to the submatrix B. In that period a total of tB where
ty = ?ili « Elg:ll. (4.3.5)

i=1
substitutions will have been made into the submatrix B. Now, since
there are p elements per column of B, we must have substituted the

y's into (p-1)/2 columns. Thus, if p is odd then an integral number

of columns of B will have been completed. Hence as the pth processor

completes the substituting of values into row (n-p), there will be

100

(p+1)/2 complete columns remaining in submatrix B. The p processors
are then assigned, one to a row, and sweep across the remainder of B
substituting in values of y.

The columns are clearly completed without ény processors lying
idle except of course the final column which is solved as a triangular

system with sufficient processors to assign one to each row. Again in

Figure 4.5 we can observe that the inefficiency indicated by the shaded

area, is clearly minimal when p is small.

N
" A

QQQL““'Area of inefficiency

The Partitioning of A

FIGURE 4.5

It is obvious that the final column requires 2p unit steps to be
solved and since there will be no redundancy during the processing of

the other columns we can say that

T, = [n(n-1)-p(p+1)}/p + 2p

=[E£§:1l.+ p - 1] unit steps, (4.3.6)
giving : » |
. _p.n.(n-1) ,
SP [n(n-1)+p(p-1)] (4.3.7)
- n(n-1)
EP [n(n-1)+p(p-1)} (4.3.8)
2 2
and PF = p.n_(n-1) . (4.3.9)

P [n(n-1)+p(p-1)1°

It is clear that these are merely a few of the strategies that
because of the minmal area of ineffi tienoy
may be used for this particular range of p, but/not many will be an

101

|
improvement on method 2. When considering efficiency these methods
are best suited for small values of p. When p is small there is

little difference between the performances of methods 1 and 2 so,

as method 1 is simpler, it would be recommended.

4.4 THE WAVEFRONT METHODS

In this section, two methods are introduced that require p processors
where p lies in the range (n-1)/2<p<(n-1). The methods are the Parallel

Wavefront and Delayed Wavefront Methods.

Method 3 - The Parallel Wavefront Method

This method is comprised of three distinct phases. During the
first phase, as in the previous methods, the p processors are assigned
to rows 2 to p+l. After Y1 has been substituted into row 2, processor
one becomes available and is reassigned to row p+2 and so on, until we

reach the position shown in Figure 4.6. The jth processor (j=n-p~1) has

row 2
Processor -
1
_N
Processor
2
[~
Proceisor row
L N N 7777
TOW N

column j

The Parallel Wavefront Method (end of phase 1)

FIGURE 4.6

102

been reassigned to row n and processors (j+1) to p have reached
column j. This position represents the completion of phase 1 and the
start of phase 2. Now when processor (j+1) becomes available it is
reassigned to row n at column (j+1) and next, processor (j+2) is re-
assigned to row n-1 at column (j+2) and so on. These new inner.
products are .stored in an auxiliary vector. As this phase progresses
we have the situation as seen in Figure 4.7. The 'wavefront' BB is
approaching 'wavefront' CC and eventually wavefront BB reaches CC as

seen in Figure 4.8.

7/
LB// -

Phase 2 of the Parallel Wavefront Method
FIGURE 4.7

A'
Parallel Wavefront Method (end of phase 2)
FIGURE 4.8

103

At this point the yi (i=p+2 to n) will have been accumulated in
two parts and these are now added together.

Now, the third and final phase of the method is commenced. The
remainder of the system is a triangular submatrix A' of less than p
rows and may be solved as a triangular system with sufficient processors
to assign one to each row,

Clearly we have

Tp = 2(n-1) + 1
= (2n-1) unit steps , (4.4.1)
s, = '(‘gijg , | (4.4.2)
_ n(n-1)
Ep = m" (4.4.3)
2 2
and PF - D_%_ (4.4.4)
(2n-1)"p

Since the time Tp is independent of p and from (4.4.3), it is
clear that the smaller p is, the more efficient the algorithm becomes,
and so, to optimise its performance, the minimum number of processors
required by the algorithm must be found,whith inturn maxmigesthe eCF.L\énu/.
Let us assume that on completing phase 2 of the algorithm, X
more values have to be substituted into the (p+2)th equation and so

consider the following diagram:-

L
N
N
’I
}/
P (2p—N% . where N = n-1
-1) .
B N
N\
// N
A IR U7 S DeaN

I N

(N-T) ,A\\\A 2 Ty

Matrix A

FIGURE 4.9

104

Area (:) = (N-p)2 represents the work done by (n-p) processors during

the second phase of the algorithm and the duration of the phase T;A)

is given by: 2

W _ N-p)” _
T, D) N-p) . (4.4.5)

Combined Areas represent the work done by the remaining (2p-N)

processors during the same period, the duration of which is,
B -
Tg-) = [(N-p) (N-p+1)+(2p-N-1) (2p-N)-X(X-1)}/2(2p-N) , (4.4.6)

where X is as in Figure 4.9.

Since these times are equal we have,

TI()A) - TISB) , (4.4.7)
from which we have,
2(N-p) (2p-N) = (N-p) (N-p+1)+(2p-N-1) (2p-N)-X(X-1)
which reduces to
[X- (2N-3p+1)] [X+(2N-3p)] = O (4.4.8)
i.e., X = (3p-2N) or (2N-3p+1) (4.4.9)
It has been assumed that X0 but consider the case when X<O.
This implies that Y1 to yp+1 are evaluated before the completion of
phase two of the algorithm. At the (p+1)th step of the algorithm
yp+1 is substituted into rows 2(n-p) to n of A but not into the
equation for yp+2 until step (p+2). However, at step (p+2), yp+2

should be available for substitution into rows 2(n-p)-1 to n and so

X£o, i.e.,
Xz0 . (4.4.10)

Combining this result with equation (4.4.9) we have either:

(3p-2N) 2 0

= p3ZN (4.4.11)

or (2N-3p+1) 2 O

> px %(2N+1) : (4.4.12)

105

Obviously the condition (4.4.12) is meaningless and so the
condition (4.4.11) is the required one. This gives the following

minimum value of p

min (p)

(n-1) . (4.4.13)

This condition may be verified by the following sequences of

diagrams. We shall consider a (10%10) system of the form (4.2.2)

and indicate the progress of the processors over the array A. The
processors are qumbered 1,2,...p, their position indicating the
elements of A currently being used in the substitution process, and
the *'s indicate those elements already used. The ys whose evaluation
is currently being completed is arrowed.

" row

21 « * *

3 2 * 2 < * %

4 3 * 3 * % 3 <

5 4 * 4 * % 4

6 5 * 5 * * 5

7 6 * 6 * * 6

8 1 * 1

9 2

0w () ©)

2' +* * *

3 * * * % * %

4 * * % * % % * % %

5 * % % 4 - % % % % * % % %

6 % * * 5 * % % * 5 <+ * % % % %

7 * % % 6 * % % % 6 * % % * * 6 -

8 * % 1 * % % 1 % % * 1

9 * 2 * * 2 * % % 2 5

10 3 * 3 4 * % 3 * 4
) (e) (£)

2 * * * .

3 * % * % * %

4 * k % * * % * * %

5 % * % % * % % X * % % *

6 % % % % * *x % % % % * % % % %

7 * % % % % % * % % % % * * % % % % %

8 * Kk % Xk % 1 4 <~ * % % % % * * % % % % % *

9 * %k * % 2 * 5 % % % K Kk % % 5 PN * % % % * * % %

10 % * % 3 * % 6 * % % % * * % 6 * % % % * % * % 6 -+
(2) (h) (1)

FIGURE 4.10

106

row

2 * * *

3 * % % * *

4 * % 7 “ L * % %

5 * x4 Yok ok 4 o« * ok % &

6 * % 5 * % x g *4\-‘**5 <

7 * % g * % % g * ok k% @

8 * % 7 %k x 7 * %X Kk k7

9 *] * %] * % %] 4

10 2 * 2 3 * %) % 3
(a) (b) (c)

2 L3 * *

3 * * * % * %

4 * % % * % % * % %

5 * * * % * Kk Kk * * * k *

6 * k k * § o * % x % * ok % % *

7 * ok ox] * ok % %] * ok ok ok %] -

8 * *x 2 * ok Kk * * % % 9

9 * 3 * % 3 * % %

10 4 x 4 5 * % 4 5 *S;

(d) (e) €3]
FIGURE 4.11

In Figure 4.10 the sequence of diagrams (a) to (i) represent the
solution of the system of equations with the minimum number of processors
which is 6. Diagram (d) represents the stage shown in Figure 4.6 and
diagram (g) indicates the same stage as in Figure 4.8. It is at this
point that the two 'wavefronts' meetiand the two parts of the vector
elements Y (i=p+2(1)n) are added together. In the accompanying diagrams
4.10 (h) and (i), the processors sweep across the remaining rows and
columns,

Diagrams (a), (b) and (c) of Figure 4.11 illustrate the case when
p>%(n—1), in this example, p=7 and diagrams (d), (e) and (f) illustrate _
the case when p<§{n-1), here p=5. In the latter example we proceed to
diagram 4.11(d) which is the same stage as in diagram (d) of Figure 4.10
and then to diagram 4.11(e). The next stage is seen in diagram (f) of
Figure 4.11; we observe that, as expected, an attempt is made to re-
assign processor 1 to column 7 of row 9 but it is still occupied with

row 7. Arising from this it is clear that Y4 is still being calculated

107

while an attempt is being made to substitute Yo into rows 9 and 10,
thus an incorrect value of s will be used.

In a simulation of this method when pg%{n—l) the correct results
were produced but when p<§{n—l) the values of Y3 for i=p+2(i)n were
found to be incorrect. This agrees with the assumptions previously

stated.

Method 4 - The Delayed Wavefront Method

The delayed wavefront method is the parallel wavefront method
adapted for the case when p<§{n-l). If we reconstruct the parallel
wavefront problem, then during the second phase of operations we reach

the point indicated in Figure 4.12.

p+l

D //

FIGURE 4.12
At this stage the components Y; for i=1(1)p+1 have been evaluated,
and in the next algorithm step yp+1 is substituted in the equations
along wavefront YY while yp is substituted into the equation for yp+2.
With the parallel wavefront method, yp+2 is substituted into the
equations along YY during the following algorithmic step. At the same
1 is being substituted into the equation for yp+

into the equation for yp+3 etc. So yp+2 is not available until the

following algorithmic step and thus the substitutions along YY must be

time however, yp+ 9.

P

108

delayed for one algorithmic step until yp+2 has been calculated.

Likewise, with the substitution of yp+3 along wavefront YY, the
delaying process has to be repeated. The delaying procedure has to

be continued until the stage represented in Figure 4.13 is reached.

p*l /

p+2 ///
B!

FIGURE 4.13

The equivalent position of the parallel wavefront method is shown
in Figure ?.8. At this stage the yi (i=1(1)n-m) will have been
evaluated, where:

(p-1)/2 for p is odd
m = (4.4.14)
(p-2)/2 for p is even

The remaining Y3 components (i=n-m+1 to n) will have been
accumulatea in two parts which are now added together. The algorithm
is then completed, as in the parallel wavefront method, by treating
the remainder of the system of equations (B') as a triangular system
with sufficient processors to assign one to each row.

On the completion of the first phase of the algorithm (Figure 4.6)

(n-p) algorithmic steps will have been performed. As the second phase

begins, the wavefronts will be (n-p-1) algofithmic steps apart. After

109

a further (ZP—n) algorithmic steps are performed the stage represented
in Figure 4.12 is reached and the wavefronts will now be (2n-3p-1)
algorithmic steps apart. Obviously to reach the stage represented in
Figure 4.13 requires a further (2n;3p-1) algorithmic steps. During
this delayed phase, wavefront YY advances (2n-3p-1)/2 algorithmic steps

when p is odd and (2n-3p)/2 steps when p is even. One unit step is

required to 'add the wavéfronts' together and the remainder of the
algorithm requires (p-1)/2 algorithmic steps when p is odd and (p-2)/2
steps when n is even.
Thus, the time required by the algorithm in unit steps is:
2[(n-p)+(2p-n)+(2n-3p-1)]+1+(p-1) for p is odd

T = (4.4.15)
p 2[(n-p)+(2p-n)+(2n-3p-1)]+1+(p-2) for p is even

Tp = 4n-3p-2 unit steps (4.4.16)

{2 for p is odd
L =

3 for p is even.

Clearly if pz%{n-l) then the algorithm becomes the parallel

wavefront method, but what happens when p<££%ll ?

1%

FIGURE 4.14

110

During the first phase, the stage shown in Figure 4.14 is reached.

It will be another algorithmic step before the next processor is

released but one is required immediately and so the algorithm breaks

down because of insufficient processors being available.

In Figure 4.15, the diagrams (a) to (d) illustrate the delayed

wavefront algorithm successfully solving a 10x10 system with p=5.

Diagram (a) is identical to Figure 4.11(e) but instead of the situation

of Figure 4.11(f) arising, the delaying technique is applied during the

next step as in diagram (b) of Figure 4.15. This occurs again in

diagram (d).

the algorithm

Tow
2 *
3 * Kk
4 * % %
5 * % % %k
6 % % %
7 * % % %
8 ***2
9 * % 3
10 * 4
(a)
2 *
3 * K
4 * % %
5 * % % %
6 * % * %
7 * % % *
8 * % % X
9 * Kk * X
10 * % % %
(d)
Diagrams

p<(n-1)/2, in

At this point the two wavefornts are 'added together' and

passes on to its final stage successfully.

* *
* % * *
* K * * * *
* Kk Kk k * k * %
* * k Kk Kk K * k k Kk K
1 * Kk k x k] « K k %k *x %
* % % % D * * * x %)
* x *x 3 * k x x 3 1
5 * % 4 * * kx4 * 5
(b) (c) .
% * (
* % * *
* * * * % ok
* k k% * k Kk *
* * x x] * k x x]
* % * % 9 * % * 2
* %) & * 3 * % 3
* 3 % 4 * 4
4 * * @
(e) (£)

FIGURE 4.15

(e) and (f) of Figure 4.15 represent the case when

this instance p=4. The stage shown in Figure 4.14 is

illustrated in diagram (e), and it can clearly be seen in diagram (f)

111

that at the next step an attempt is made to reassign processor 1 to row

10 when it is already assigned to row 6.

4.5 METHODS EMPLOYING MORE THAN (n-1) PROCESSORS

It has already been stated that the maximum number of processors
that may be efficiently employed in executing the forward substitution
process is (n-1) and that the algorithm requires a minimum of 2(n-1)
unit steps. Thus, to solve the problem (4.2.2) in fewer steps and
employ more than (n-1) processors efficiently would require restructuring
of the algorithm completely. This has been achieved by Chen and Kuck [1975],
Heller [1974b], Borodin and Munro [1975] and Orcutt [1974]. The particular
algorithm that will now be considered is that of Chen and Kuck sinqe its
performance is as good as, if not better than, the other algorithms

mentioned.

Method 5

As with most algorithms of this kind, the algorithm of Chen and Kuck
Trequires O(ns) processors but reduces the unit steps to O(loggn). This
is achieved at the expense of increasing the total amount of work done
in the execution of the algorithm but at the same time increasing the
'amount of parallelism’.

The algorithm of Chen and Kuck can be described as follows:

1. Let B be a lower triangular matrix of order (n*n) in which the jth

column contains a, j-1 for j<isn, where a; =di'

s ,0
i.e ™ -
. . d
1
d
2
d
B= 3 a§1 437) (4.5.1)
] ~
1 | S
! 1 I
d' ' _ __ __ :
N an,l an,n—l_

112

2. Let C be an alias for B, i.e. B and C represent the same memory

locations

=)
i
(@]

(4.5.2)

3. Repeat this step for i=1,2,...,log2n:
a) Set k=21;

b) Partition B and C as shown in Figure 4.16;

¢) Compute Sj=Sj+Tj*Qj, for igjsn/k;

simultaneously.

4. The first column of B contains the solutions xi for 1<ign.

The number of unit steps is found as follows:
At each iteration during step 3, there is one multiplication followed
by the summation of (k/2+1) operands which may be done in at most
logz(k/2+l) unit steps which is less than or equal to logzk unit

steps. Since step 3 is‘repeated logzn times, we have

logzn logzn

T <) j+) 1= %-loggn + %-1og2n (4.5.3)
Py j=1
which gives,
2
Sp - 2.n§n—1) — = O(n 5) (4.5.4)
(10g2n+310g2n) logzn
and g = —2.n(-1) . | (4.5.5)

P P(log§n+310g2n)

To calculate the number of processors that are required we
refer to Figure 4.16. The maximum number of processors will be
needed at the multiplication step of stage 3c, so we simply count
the number of multiplications for Tj*Qj, 1<jsn/k. Thus from Figure

4.16 we have:

k/2
[
J:

k/2 «
le + 7-(k+2k+...(n_2k))]

j o+ KOy X /k-1)
1 j

pk2h)

for lsislogzn
%%{Skz—(5n+8)k + (2n%+10n+4)] . (4.5.6)

113

3k '(n—Zk)(n_EEJ (n-k) (n-EJ n
2 2

\

WA

//,///

AN ///,

7T 7NTT7TATT 77V 7 72V CAL LAV L LY
~lee ~ mm_7_ ~ .k_7. i~ ~
e Lae] k_n/_ ~ ~—~ =
el o o~ N

(a) Matrix B

FIGURE 4.16

114

N
——Felo
e (L =ty

n-31 $1
_ 1 \l\

k
=1
n-3] \
i
\
n

g ¢
K 3k 2 5k “(n-2 3k, (n-k) . k
k 5k 3k (n k)(n'TZJ(n)(H-EJ

N} =

(b) Matrix C

FIGURE 4.16

115

When n is large p(k) takes its maximum value during the iteration

when k=n/4. This gives the number of processors as,

15 3

p(n/a) = [Fn” + 16n + 8n]/128 . (4.5.7)

Now using these formulae we can produce table 4.1 which shows

the performance of the algorithm for different values of n. It is

clear that the time Tp and speed-up Sp are very impressive but these
results are at the expense of the efficiency which is very disappointing.

This also results in very poor performance factors.

n T T S E PF
1 P P p p Fp
32 992 610 20 49.6 0.08 4.03
64 4032 4356 27 149.33 0.034 5.12
128 16256 32776 35 464.46 0.014 6.58
256 65280 253968 44 1483.64 0.0058 8.67
512 261632 1998880 54 4845.04 0.0024 11.74
TABLE 4.1

The high number of processors that are required certainly makes
the algorithm unfeasible on an MIMD type parallel computer and also
for existing SIMD type machines. It is doubtful that even future SIMD
machines would have sufficient processing elements to cope with the
larger systems of equations.

Chen and Kuck [1975] continued by making two suggestions to reduce
the number of processors that are required, namely cutting and folding
First

(not to be confused with the folding technique of Chapter 3).

let us consider cutting.

Cutting
The (nxn) matrix B is partitioned or 'cut' into (n/%) columns of
width £ and each column is processed one at a time. The left most

column is comprised of an (2x%) triangular system (at its top) which

may be solved by method 5, and an [(n-2)x2] rectangular system R (at

116

the bottom). The remaining columns are of the same form but with fewer
rows in the rectangular system.

The triangular system T may be solved iﬁ tT unit steps as defined
in (4.5.3) and will require Py Processors as defined in (4.5.7).

The rectangular systems may be solved by a straightforward
substitution of the solution of the corresponding triangular system T
into the rows of R and computing the inner products. The rectangular
systems will require pp Processors and as the system of the first (or
left most) column is the largest we have

P = (n-2)xL . : (4.5.8)

Each system will be solved in the same number of steps ta where
ty = [log,(1+1)] + 1 (4.5.9)

Obviéusly the number of processors required by this method

will be,
p = max[pp,ppl (4.5.10)

Also there are (n/%) triangular systems and (n/#-1) rectangular
systems to be solved so,

.o n ,
Tp = (2)'tT + (2 l)tR unit steps . (4.5.11)

Folding

The second suggestion, folding, is based on the following
simple idea. Assume we have a tree of height t which contains
(Zt-l) operation nodes and whose evaluation requires Zt--1 processors.

Obviously the efficiency of such a tree evaluation is,

efficiency = = %- . (4.5.12)

Now by halving the number of processors, we only require one

extra processing step and so,

- . 4
252 (te1) (t+1)

efficiency = (4.5.13)

117

When t is large this process approximately doubles the efficiency
but has a negligible effect on the speed-up. This process is called a
fold.

When i folds are made on a tree of height t, the new tree height
t-l/zi'

Applying this technique to method 5, we have from (4.5.6) that

is (t+21+1-i-2) and the processor requirement is reduced to 2

for i folds,

. k/zi+1
p=2"] js@)« LEG LK) g (o200
i=1 2
k2t 2
= (143 -1;—) 2t JZ=1 i+ ;li—[g(n-k) . %—(k+2k...+(n-2k))] . (4.5.14)

Applying this formula to the step of the algorithm that requires
the largest number of processors, we derive a new value for p. Then at
every other step in the algorithm for which there are insufficient
processors we also apply the folding technique.

It is important to remember that a tree of height t may only be
folded (t-1) times and of course a tree of height 1 cannot be folded
at all.

It is of course possible to apply a combination of cutting and
folding to the algorithm by first applying the cutting technique and
then folding as many times as required.

There is one final principle that may be applied to method 5 to
improve its performance and that is the problem decomposition principle
as suggested by Hyafil and Kung [1974].

The principle is similar to cutting, in that it partitions the

matrix A; not into columns however but (kxk) blocks, thus:-

118

+ —
e fa] | |
I R +
T —
| I
J]E A21+A22L 0;_
R —L - My |
Lol |
] |) I ‘\
A = Lo AN (4.5.15)
| J | S J
SR S R o S
App | 7 It F A
L | ;T
dos | <k ! | where n=mxk.

Each diagonal block Ai ; (i=1(1)m) may be treated as a

triangular system and so can be solved by method 5 for which the

1,1
defined in (4.5.6).

time t, . is defined in (4.5.3) and processor requirement P is
3

The off-diagonal blocks Ai 3 (i=2(1)m, j=1(1)i-1) are solved

by a straightforward substitution process in a minimum time of

t. .
1,]

using 1 j° k2 processors . (4.5.17)

Thus, we have that the number of processors required will be

1+ riogz(k+lf] unit steps, (4.5.16)

p=max (pi,i’pi,j) and the time Tp is

_ 1 .
Tp = m ti,i + -z-m(m—l)ti’j unit steps. (4.5.18)

4.6 RESULTS AND CONCLUSIONS

First of all we shall consider the performance of methods
1,2,3 and 4. The graph 4.1 represents both the speed-up and efficiency
of the methods plotted against different values of p for n=128.
Graphs (:)and (:) represent the-speed-up and efficiency respectively
of method 1. Both graphs are smooth because the method is able to cope

with the occasions when (n-1) is not exactly divisible by p.

wn
> o]
A e = 2
- 3))
op=d [
o (3] =]
1 o o0
o Uy 0 o T} ~N
(=8 Y o~ [—~
wn 13} — ol o]
mv ©AHV a=] o))
0 O [[0] =~
« Aoua101339 H 15 =] o
n L0 = 4 "
o ~ wy o~ =z (=] o =
— o o (@] =5 29
A A ry P p
[o
L © L
I3y —
~4
= 4
- -t
— .I.J o
- o L O
o 7] —
— = wn
[e] ~
n ©
n — L n N
[}] ;- -t e et e - e = = - en s oo en (7] .
3] < o <
O (o] F O (3]
0 =~ jand 0 © jant
— a, o — 4 a o
o < — Bg
™
o) o G W
(@]
0 .
O M o.
=4
| O
<
(o]
— 1
o]
(9]
n v
=
S g
—
5 =] 3] t ©
m n o (=)] [o o
n 7 n <t 32 Q —

<« J0319® 9OUBWIOIISJ

120

Graphs and @, also representing speed-up and efficiency
respectively, may be divided into three sections. Section I from
p=1(1)63 represents method 2, section II from p=64(1)84 represents
method 4, the delayed wavefront method, and section III from p=85(1)126
represents method 3, the parallel wavefront method.

The uneveness of graphs and @ in section I is due to the
inability of method 2 to cope with the case when (n-1) is not exactly
divisible by p entirely satisfactorily but it is still an improvement
on method 1. |

In section II the curves representing the delayed wavefront method
again are smooth as would be expected. Finally in section III the graph
(E) becomes a horizontal line since the maximum speed-up for p<(n-1)
has been achieved. However graph (@) continues to decrease as p
increases since the speed-up is constant while the number of processors
increase.

These vesults are combined in graph 4.2 where the perfbrmance‘
factor is plotted against the number of processors. The graphs are
divided into sections as in graph 4.1, with (:) representing method 1
and . representing methods 2,3 and 4.

Once again we note the uneveness of the section of graph
representing method 2 and that for small values of p, the performance
factor of method 1 is very close to that of method 2. The graph peaks
at p=85 which is the minimum value of p for which the parallel wavefront
method may be used. Thus for values of p<(n-1) the parallel wavefront
method with-p=L§(n-11J is the optimum algorithm.

Now let us compare this result with the performance of method 5.
The line drawn at PF =6.58 on graph 4.2 represents the performance
factor of method 5 which for this order of problem requires 32,776

processors. When the method is modified by cutting and folding etc.,

121

its performance is improved. There is a second line at PF =40.32
which represents the best performance factor of the modified method 5
which in this case requires 256 processors. Clearly, the performance
of the parallel wavefront method is still superior to the modified
method 5. In fact, the delayed wavefront method also has a better
performance than method 5.

A better comparison between method 5 and methods 1,2,3 and 4 can
be made by considering table 4.2, In table 4.2, the first column
contains the results of method 2 when p=F%(n-1f] which from graph 4.2,
can be seen is the optimum method for p<%{n—l). The second column
contains the best results of the delayed wavefront method and the
third column the results for the parallel wavefront method with its
optimum value of p.

The right-most entry in each row represents the results of method
5 and the remaining entries were made as follows. Results were
generated for all the modifications that can be made to method 5.
Then, by using-the processor count upper limit shown at the head of
each column, the results were tabulated for the examples with the best
performance factor. Finally, for each row, the example with the best
performance factor is indicated.

From the table it can be seen that for problems of order ng256,
the parallel wavefront method has the best performance factor. When
n=512 however, one en;ry appears on the right hand side of the table
which has a better performance factor than the parallel waQefront
method. Although it is an isolated case for ng512, it can be expected
that as the order of the problem increases, similar examples will
re-occur,

All the methods presented here satisfy the more stringent

requirement of SIMD parallel computers in that only one type of operation

is performed at each step.

122

In Chapter 1, SIMD and MIMD machines were discussed. It was said
that existing SIMD computers still have a relatively small number of
processing elements i.e., the Illiac IV has 64, but computers under
construction have 10,000 processing elements or more. It was emphasised
that because of the nature of the computer, speed-up is the essential
factor when selecting algorithms. Thus the fastest algorithm should
always be selected provided the computer has sufficient processors.

So, from table 4.2, when p>n, method 5 and its modifications are seen
to be the best algorithms, although it musf be emphasised that the
basic method 5 is generally unfeasible because of the large number of
processors that are required.

With MIMD machines we are also interested in the efficient use of
processors and so the performance factor is more important. Obviously
we select the method with the best performance factor which, for
problems of order n<512, is invariably the parallel wavefront method.
When n=512 however, we see that the modified method 5 has the best
performance factor. It has already been said that this is unlikely to
be an isolated case and, for problems of order n>512, the modified
method 5 is again expected to have the best performance factor. It is
also expected that these cases will require a minimum of 2228 processors
as is required when n=512,

Now MIMD computers tend to have a smaller number of processors
than SIMD computers and even the most optimisitic plans for future
MIMD computers do not cater for such large processor requirements. So,
for MIMD computers, the parallel wavefront method has the best performance
factor despite the performance of the modified method 5 for larger
triangular linear systems since it requires too many processors.

Another desirable feature of the parallel and delayed wavefront

methods are that they automatically adapt to any size of problem. This

123

means that it does not require the order of the problem to be a power
of 2 or 10 or for (n-1) to be exactly divisible by p. Method 5 requires
n to be a power of 2 but it is not clear what happens when this is not
true.

One final observation is that method 1 has a performance factor
that is almost as good as method 2 when p is small compared to n. Then
in these cases method 1 would be preferred because of its simplicity.

An ercor am\u;sig hos net been included m s chapter bor W is P\omned

as future work .

BLOCK DELAYED
n STRATEGY | WAVEFRONT WAVEFRONT 4 8 16 32 64 128 256 512 1024 2048
9.76 11.56 11.8 1.6 7.59 7.83 8.72 7.33 5.69 5.85 4.03
32 12.1 15.26 15.75 2.53 11.02 [11.53 {23.62 26.11 38.15 43,13| 49.6
0.81 0.76 0.75 0.63 0.69 | 0.68 | 0.37 0.28 0.15 0.14] 0.08
15 20 21 4 16 17 64 93 256 318 610
19.98 23.11 24.00 1.69 3.24 |13.5 18.56 16.4 16 15,731 11.57 8.73
64 24 .89 30.78 31.75 2.6 7.2 20.78 }34.46 45.82 64 70.74 1 84 100.8
0.8 0.75 0.76 0.65 0.45 | 0.65 | 0.54 0.36 0.25 0.22] 0.14 0.09
31 41 42 4 16 32 64 128 256 318 610 1164
40.46 47.63 47.81 1.73 3.59 31.51 35.55 40,32 37.94| 32.76 26.82
128 50.48 63.25 63.75 2.63 7.58 44 .91 67.45 }101.6 109.84 1141.36 | 176.7
0.8 0.75 0.75 0.66 0.47 0.7 0.53 0.4 0.35 0.23 0.15
63 84 85 4 16 64 128 256 318 610 1164
81.41 95.07 96 1.75 3.79 8.69 61.13 82.57 81.281 79.73 76.33
256 101.68 126.76 127.75 2,65 7.79 23.58 88.46 1145.39 |204 220.54 | 298.08
0.8 0.75 0.75 0.66 0.49 0.37 0.69 0.57 0.4 0.36 0.26
127 169 170 4 16 64 128 256 {512 610 1164
, 163.97 191.63 191.81 1.76 5.89 9.42 134.49 1166.161171.68 | 182.28
512 204.88 255.25 255.75 2.66 7.89 24.55 185.55 {291.671419.28 | 460.62
0.8 0.75 0.75 0.66 0.49 0.38 0.72 0.57| 0.41 0.4
255 340 341 4 16 64 256 512 1024 1164
continued
TABLE 4.2

Al

4096 8192 16384 32768 65536 131072 262144 524288 |1048576 |2097152
8.11 5.12 PF
134.4 | 149.33 Each entry s P
0.06 0.03 represents EP
2228 4356 pp
24.91 | 15.78 13.51 11.03 6.58
235.59 | 262.19 338.67 | 427.79 464.46
0.11 0.06 0.04 0.03 0.01
2228 4356 8488 16584 32776
76.62 | 52.12 47.68 35.57 20.83 15.1 8.67
413.16 | 476.5 615.85 | 768 826.33 | 1388.94 | 1483.64
0.19 0.11 0.073 0.046 0.025 0.011 0.006
2228 4356 8488 16584 32776 |127760 253968
209.44] 163.52 148.85 | 121.91 73.12 49.54 31.68 30.23 21.01 11.74
683.11 | 843.97 1122.88 | 1421.91 | 1548.12 | 2515.69 | 2843.83 | 3904.96 | 4590.04 | 4845.04
0.31] o0.19 0.13 0.09 0.05 0.02 0.011 0.008 0.005 0.002
2228 h3s6 8488 16584 32776 127760 255264 504352 1002528 |19988%0

TABLE 4.2 (Continued)

szl

CHAPTER 5

THE PARALLEL QUICKSORT ALGORITHM

126

5.1 INTRODUCTION

. In the previous chapters we have considered important numerical
problems and how they may be solved using a parallel computer. To
demonstrate the versatility of the MIMD type computer we shall now
investigate the eomputer problem of sorting.

The object of a sorting algorithm is to rearrange the set Sn where,

Sn = {al,az,....,an} , (5.1.1)
into some relative order. The elements a;, (i=1,2,...n) could be
a set of numbers that we wish to arrange in ascending or descending
order or a list of names that we require in alphabetical order,
However, for the purpose of this investigation we shall assume that
the 2 (i=1,2,...n) are positive integers that we wish to arrange
in ascending order.

The problem of sorting on a sequential computer has been
investigated by Knuth [1973] who describes only a few of the many
algorithms that exist. Unfortunately there is no known 'best'
sorting algorithm and we may only conclude that one algorithm is
better than others for a particular situation. We shall outline some
of these algorithms and then investigate the possibility of restructuring
them to produce an efficient parallel sorting algorithm,

A general purpose sorting algorithm is produced which is suitable
for execution on a parallel computer. The algorithm which is based on
Quicksort (see section 5.2) does not require a fixed number of processors
but may theoretically use as many processors as are available, The
analysis of the algorithm reveals that“there is a maximum number of
processors that can be used for a particular size of set Sn and by use
of the Performance Factor defined in Chapter 4 we can also demonstrate

that there is an optimum number of processors that may be used.

127

5.2 SEQUENTIAL SORTING ALGORITHMS

We shall now outline some of the more common sequential sorting

algorithms that are currently in usewhich have beendhosen for fhe.

mherert parallelism that they pessess apact Ffeom Winear imsecton.

Linear Insertion

Linear Insertion is the simplest yet one of the most important of
sorting techniques and may be described as follows:- assume that the
first (i-1) elements of Sn have been sorted, then element a; may be
inserted into its correct place among these elements by comparing it
successively with elements A; 1085 _greces until an element is found
that is less than or equal to ai, say aj. The elements aj+1,...ai_1
are shifted 'up' one place and a, is inserted into the (j+1)th position.

It is not difficult to see that the average number of comparisons
required to insert element a; is 1/2, so that in order to sort n elements

we require on average

n
%— Zli = EL%ill X %ﬂz comparisons . (5.2.1)

i
It is obvious that this is also the number of elements we would have
to move.

Since the amount of work on average in linear insertion is
proprotional to n2, then it is clear that it is unsuitable for large
values of n. However, because it is extremely easy to implement on
a computer, it is considered one of the best sorting algorithms for

small values of n.

Shell Sort

The Shell Sort or Diminishing Increment Sort (Shell [1959]) is én
attempt to improve linear insertion by moving elements more than one
position at a time. This is achieved by dividing the set Sn into subsets

which are then sorted individually by linear insertion. This process is

128

then repeated for progressively larger subsets, the final subset
being Sn' The subsets are chosen at each stage as follows:-

<d,<n

we select a number dj (j=1,2,...%), where 1=d2<d2_1... 1

and create dj subsets thus,

a,, a, a

i’ %+d. %2477
J J
-i
where ni = l.—d—:'

As the size of the subsets increases, their degree of order also

. for i=1,...d,
i+n.d. j
13

increases and so it is possible to apply linear insertion to the
larger subsets without sacrificing efficiency. The selection of the
dj is an important factor in the efficiency of the method but there
is no conclusive evidence that any particular choice is best. The
method is yet to be completely analysed but Knuth [1973] claims that

/

the amount of work involved is proprotional to O(n3 2) for a good

choice of dj'

Bubble Sort
Bubble Sort is an example of sorting by exchanging as opposed

to sorting by insertion. During the basic process, a

1 is compared
with a, and, if they are out of order, they are exchanged with each
other. This is repeated with a, and a3, a3 and a4, etc. and finally

with a1 and a . The whole process is repeated until no more
exchanges are necessary.

The name Bubble Sort is derived from the fact that elements tend
to 'bubble up' to their correct position. -Unfortunately, although the
fundamental idea is simple, the method compares very badly with other

sorting techniques due to the relatively complex program that it

involves{ Knuth ,1973) .,

129
Quicksort
Quicksort (Hoare, 1962) or partition-exchange sort is considered
the best general purpose method for sorting on a computer. The basic
process of quicksort place? some element of Sn’ say a;, into its correct
position in such a way that all the elements to the left of a, are less |
than ay and those to its right are greater than - Thus, the original

problem has been reduced to two smaller problems, namely, sorting the

left subset (containing all elements less than s i.e., al,az,...,ak_l)

and the right subset (containing all elements greater than a i.e.,
ak+1,...,an). The same process may be applied to each subset and
repetition of this technique eventually produces subsets containing
only one or no elements, at which point the set Sn is sorted.

The process by which a, is placed in its correct position, called
the partitioning process, involves the use of two pointers, i and j.
Initially setting i=1 and j=n, j is repeatedly reduced by 1 until an aj,
is found such that aj<ai. The two elements a; and aj are exchanged and
i is then repeatedly increased by 1 until an a; is found such that ai>aj.
The elements a; and aj are exchanged and we once again decrease j and so
on until i=j (=k). The new element 3 called the partitioning element,
is in fact the original ars and it has been moved to its correct position
such that ai<ak (i=1(1)k-1) and ai>ak (i=k+1(1)n).

The overheads involved in the partitioning process make it best
suited for large values of n and so, in practice, the process is only
applied to subsets above a certain size. Linear Insertion is used to
sort the smaller subsets, i.e., the subsets that are of a size such
that it is more efficient to sort by Linear Insertion than Quicksort.

These are just a few of the many sorting methods that exist. There

are other methods that reduce the number of comparisons and exchanges

130

to a minimum, but they are so complex that they are impractical to use.
The simplicity of Linear Insertion makes it difficult to find a better
method for small sets Sn’ When n is large, however, Quicksort is

generally regarded as the best method.

5.3 SORTING ON A PARALLEL COMPUTER

There is already one parallel sorting method, called Batcher's
method (Batcher, 1968) that has been developed. This method is similar
to Shell's method but the comparisons are arranged so that they do not
overlap and so may be done simultaneously. To achieve a significant
speed-up, the method requires O(n/2) prncessors which means that it is
not really suitable for MIMD type computers when n is large.

The obvious way to sort Sn using p processors is to divide Sn into
p subsets and sort each subset concurrently using all p processors. The
difficulty arises in how best to divide the set Sn up into subsets.

If the subsets are produced by a straightforward division of Sn’
then once the subsets have been sorted they must be merged. Any
advantage gained during the sorting phase would be lost in the merge
phase since it would be difficult to involve p processors in the
merging of p subsets,

The inefficient merge phase can be eliminated if the chosen subsets
are mutually sorted, i.e., if there are p subsets SubSi (i=1(1)p) such

that,
SubS1 + SubS2 + ... SubSp = Sn (5.3.1)

then they are mutually sorted if
(all elements of SubSl)<(a11 elements of Susz)< cas

...... <(all elements of SubSp) . (5.3.2)

Unfortunately it is not easy to produce such subsets. Some

sort of selection procedure would be necessary, which apart from

131

being expensive, would not necessarily produce subsets of equal size
since the distribution of Sn is not always known. It is important to
have subsets of approximately the same size because if one is
considerably larger than the rest, it would dominate the running time
of the algorithm. So an initial selection procedure can cause as much

harm as the merge phase already mentioned.

It has already been stated that sequential algorithms often
conceal their potential parallelism and so we shall examine the
sequential sorting algorithms of section 5.2 for inherent parallelism.
First consider Linear Insertion which is essentially sequential in
nature. It is of course possible to insert more than one element at
the éame time but this idea can create many additional problems. If,
for instance, we attempt to insert two elements into the same position
in Sn then one of these elements may be lost while the other is
duplicated. To safeguard against such a sitﬁation involves a more
complicated program and hence makes the method less efficient.

If we consider Shell Sort we see that the sequence di (i=1(1))
produces groups of subsets. Since the subsets in each group are
independent (i.e., each element of Sn is a member of one énd only one
subset), then they may be sorted concurrently. It is important that

the subsets produced by d, are all sorted before the subsets produced

1
by d2 are sorted and these, in turn, are sorted before those produced

by d3’ and so on. Obviously, a suitable choice of di ensures sufficient
subsets to occupy all of the p processors. However, in the later stages
of the algorithm as di decreases (in particular when d2=1), the numbei
of active processors decreases. Unfortunately the subsets are becoming

larger and so are taking longer to be sorted, thus the processors that

become idle, will remain idle for a long period.

——ra - — T T LT D AT LR

132

The next algorithm that we considered was Bubble Sort. As with
Linear Insertion the Bubble Sort is essentially sequential since, in

the list a; (i=1,2,...,n), we compare a, and a, before it is compared

2
with Az, etc. If we alternately consider the sets of pairs (al,az),
(as,a4),...,(an_1,an) and (az,as),(a4,a5),...,(an_z,an_l), then we

have formed two sets of independent pairs of elements. This form of
the algorithm is similar to Batchers Parallel Sort which is unsuitable
for MIMD type computers.

Finally we have the Quicksort algorithm whose partitioning process
produces mutually independent subsets which is a very desirable feature.
Initially only one processor may be used but, after the first partition
has been made, independent subsets are rapdily created. This is the
reverse of the case of Shell Sort wheré it is at the end of the algorithm
that the proceséors become idle. Quicksort has the advantage that, at
any stage in the execution of the algorithm, all those subsets that have
not been partitioned are independent. This means that, unlike Shell
Sort, there is no necessity to sort any subset or group of subsets
before others. Thus, on these issues, it was decided to base the parallel

sorting method on Quicksort.

5.4 THE PARALLEL QUICKSORT METHOD

The concept of Quicksort is represented diagrammatically in the
partition-tree in Figure 5.1. In this figure the first three
partitioning stages are shown, where, in the partitioning of the
original set Sn’ the partitioning element is placed in position kl’
the partitioning element of the left subset is placed in position k

2
and that of the right subset in position k3.

e i s e ik ¥ .y

133

/\ /\

(al" _1 (ak2+1""’ak1_1) (a"k +1"' a‘k 1) (k +1’ "’a‘n)

Partition Tree

FIGURE 5.1

Obviously, the worst running time is achieved when the partitioning
procedure produces an empty subset, since it reduces the order of the
original problem By only one. In the parallel implementation of Quicksort,
there is the added disadvantage that the inherent parallelism of the
method is removed, i.e., instead of producing two independent subsets,
only one is created. So it is desirable that the choice of partitioning
eclement is as close to the median of the subset being partitioned as
possible.

Although the worst running time of the algorithm can never be
completely avoided, the possibility of it occurring can be reduced
and this is the object of the many variations of the Quicksort algorithm
that exist. This objective is achieved by a more careful selection of
the partitioning element.

Quicksort and its variations have been thoroughly analysed by
Sedgewick [1975] and he concludes that one of the best variations of
Quicksort is the median-of-three Quicksort method. The method,
originally suggested by Hoare [1962] and later investigated by

Singleton [1969], derives its name from the way in which the partitioning

134

element is selected, being the median of a sample of three elements
from the whole subset.

The three elements ffom which the partitioning element is chosen,
are usually the first, middle and last elements of the subset. After
they have been mutually sorted the median of the three, the new
partitioning element, is exchanged with the second element of the
subset. The first and last elements may now be ignored in the
partitioning process since we know that they are already in their
correct positions in relation to the partitioning element.

A more efficient partitioning process is also adqpted, which
iﬁserts the partitioning element into its final position at the end
of the process rather than being continually moved as previously
described. In this process, the pointer i is set to the third element
of the subset and pointer j to the next to last element of the subset.
Pointer i is increased until an element is found that is greater than
the partitioning element and then pointer j is decreased wuntil an
element is found that is less than the partitioning element. Obviously,
if the subset is to be correctly partitioned, these two elements must
be exchanged. The process iscontinued until the pointers cross, at
which point j=i-1. Clearly aj is the right-most element of the left
subset and since the partitioning element is in this subset it is
interchanged with element aj. Thus the partitioning process is
completed without unnecessary movement of the partitioning element.

If the situation arises that there are no elements in the subset
greater than the partitioning element, then it is possible that the
process by which the pointer i is incremented will not be terminated.
This may be overcome by creating a dummy element a1 that is larger
than all the other elements. In order to avoid a similar problem

with pointer j, another dummy element a, is created that is less than

0

135

all the other elements.
Let us define two integers & and u such that (%,u) represents a
subset containing elements L I ETERFL N Then the partitioning

processes may be described algorithmically as follows:-

Step 1 Sort elements a%,a(£+u)/2,au into mutual order.

Step 2 Interchange 3.1 and a(2+u)/2. Set i=2+1,j=u and v=ga..

Step 3 Let i=i+1. Repeat while a;<v.

Step 4 Let j=j-1. Repeat while aj>v.
Step 5 If i<j then interchange ay and aj and return to step 3,
otherwise proceed to step 6.

Step 6 Interchange 3.1 and aj.

This procedure produces the two subsets (£,j-1) and (j+1,u).

Clearly, from Figure 5.1, the subset (1,n) is partitioned to
produce two subsets (l,kl—l) and (k1+1,n) which, in their turn, are
partitioned to produce four more subsets. If we have p processors,
then we may continue to partition until there are p subsets. These p
subsets may then be sorted concurrently using any standard sequential
sorting algorithm.

To ensure efficiency, the p subsets must be sorted in approximately
the same amount of time which means they must be approximately the
same size and have the same degree of disorder. Unfortunately, the
partitioning procedure does not guarantee this and so the strategy
is not entirely satisfactory.

An alternative strategy is to repeat the partitioning procedure
until p subsets are produced, at which point all p processors will be
in use, If the process is now continued the number of subsets to be
partitioned will be greater than the number of processors, and so the
'extra' subsets are put in a queue until processors become available to

partition them.

T acrrT— T T L A R ae

As with sequential Quicksort, when subsets are small it is more
efficient to use Linear Insertion to sort them. The process is
terminated when there are no subsets remaining to be scrted by Linear
Insertion or partitioning.

Although applying this strategy will not mean that all the
processors complete their work simultaneously, it is expected that,
since the last subsets to be sorted will be small, the period during
which they do complete‘their work will be a minimal one.

The procedure that executes Parallel Quicksort will have the
following basic form:-

'"PRPCEDURE' QUICKSPRT(L,U);
'IF' U-L 'GT' M 'THEN';
'BEGIN'

PARTITIPN(L,U);

'FORK' L1,L2;

L1:QUICKSORT(L,K-1);
'GPT@' L3;

L2 :QUICKS@RT (K+1,U);
'GPTP' L3;

L3:'JPIN' L1,L2;

'END!
'ELSE' 'IF' U-L 'GT' 1 'THEN' LINEARINSERT(L,U);

where M is the size of the largest subset that is sorted using Linear
Insertion, K is the final position of the partitioning element,
PARTITION is the partitioning process and LINEARINSERT is a procedure
for performing linear insertion.

Iﬁ standard Quicksort, the smaller of the two subsets produced
'By the partitioning process is usually sorted first éo as to minimise
the maximum recursive depth of the algorithm. In Parallel Quicksort
this technique minimises the maximum length of the queue of unsorted
subsets. It will be seen later that it is preferable to sort the

larger of the two subsets first so that the queue is kept as full as

136

137

possible. This is to help to avoid periods during which the number of
subsets currently being partitioned is less than the number of processors,
i.e., to avoid periods when processors become idle.

The Figure 5.2, represents the allocation of processors correspofiding
to the partition tree of Figure 5.1. 1In Figure 5.2, it is assumed that
the right subset (k1+1,n) is the smaller subset produced by partitioning
Sn' Hence, it is reasonable to expect the partitioning of this subset
to be completed before that of the left subset and so processor 2 will
request another processor before processor 1 does. Thus processor 3 is
assigned to one of the subsets produced by processor 2 and later, when

processor 1 requests another processor, it is assigned processor 4, etc..

where pi=processor i.

Allocation of Processors

FIGURE 5.2

5.5 THE ANALYSIS OF THE RUN TIME OF THE PARALLEL QUICKSORT ALGORITHM

In the following analysis of the Parallel Quicksort Method an
attempt is made to estimate its run time on a parallel computer with
P processors.

The Parallel Quicksort Method consists of three phases that are

jllustrated in Figure 5.3. Phase 1 or the initial phase is the period

138

at the beginning of the algorithm when the number of processors in use
increases from 1 to p. At first, the increase is gradual, because the
subsets being partitioned are large, but later it becomes rapid as the

subsets become smaller.

Number of
processors
+——Phase 1 —> |+ Phase 2 —————>¢Phase H
P -
{ - ‘Ll
1
1
I
14 -
[]]
J— [}
t
1)
1 el
“ t1 >+ t2 ‘+*—-t3—*+ Time
FIGURE 5.3

The second phase or phase 2, is the period during which all p
processors are in use and the final phase (phase 3) is the period at
the end of the algorithm when the processors become idle. (Although
possible, it is not expected that all of the processors will become
idle simultaneously).

If the overall run time of the algorithm is Tp and the duration
of the ith phase is ti (for i=1,2,3), then,

1 2 3

It is not easy to estimate Tp accurately because of the nature

Tp =t +t,+t . (5.5.1)

of the algorithm. The most difficult time to estimate is t3’ the
time between the first processor becoming idle and the pth one
becoming idle. Since this phase is relatively short compared to

the other two phases it may be ignored.

— e e T a e Y. w -

139

If the sequential run time of the algorithm and that of phase 1
can be estimated then the run time for phase 2 can be approximated by

the following formula:
t, = ——/— s (5.5.2)
where t is the sequential run time of Parallel Quicksort and %1 is

1

also yields a simple formula for t but first we must estimate t.

the sequential run time of phase 1. The way in which t, is estimated

The run time of standard Quicksort has been successfully analysed

by Sedgewick [1975] by estimating the number of times each statement
in the Quicksort program is executed. If a similar technique is
applied to the Parallel Quicksort program, it is found that the
frequency with which each statement is executed depends on the

following quantities:

A - the number of partition stages,

B - the number of exchanges during partitioning,

C - the number of comparisons during partitioning,

D - the number of insertions during linear insertion,

E - the number of elements moved during insertion,
and F - the number of linear insertion stages.

These quantities, except F, are identical to those on which the
run time of sequential Quicksort depends.

For the purpose of this analysis we assume that the set Sn contains
n distinct elements, with each of the n! permutations of the elements
being equally likely. Since the decisions made during the execution
of the algorithm are dependent on the elements relative order and not
their actual value we further assume that the elements are the numbers
1,2,3,...,n). It is cléar also that the subsets produced by partitioning
are of a similar form. Also, all of the mathematical results used in this

analysis are derived in Appendix A.

140

To evaluate each of the quantities A,B,C,D,E and F we adopt the
same strategy, so let Y represent one of these quantities. Defining
Yn as the average value of Y, then Yn is obviously equal to the average
value of the contribution of the first partitioning stage plus the
average value of that quantity required to sort the two subsets. Thus

Yn is defined by the relationship,

n

Yn =Yn? Z

{Probability that s is partition element}(Ys_1+Y),
s=1

n-s
(5.5.2a)

where s is the partitioning element, Ys is the left subset, Yn-

-1

the right subset and Ya the average contribution of the first partition

S

stage to-Yn.

Since s is the median of a sample of three elements, the
probability that s is the partitioning element is the proportion of
the total number of samples of 3 elements for which s is the median.
Clearly, the number of samples for which s is the median is (s-1)(n-s)

and the total number of samples of 3 elements is (2), where

k
1 .
T]T;(n-k+3) , for k>0
n =
Q) =) (5.5.3)
0 , for k<0
Thus we have,
{Probability that s is partition element} = {5-1) (n-s) . (5.5.4)

n
@)
Substituting this result into equation (5.5.23) we have the

recurrence relation:

n
(s-1) (n-s)
(Ys—l

L (n) +Yn_s), for n>m, (5.5.5)
3

where m is the size of the subset above which Quicksort is used;

those subsets less than or equal to m in size being sorted by

Linear Insertion.

141

If we consider the sums involving Ys-l and Yn-s separately, it
is obvious that they are the same and so equation (5.5.5) may be

simplified to,

n
Y =y + 2 X Lf—lgiﬂ—él-Y , for n>m, (5.5.6)
n n s=1 () 1
3

With a view to solving this equation using generating functions,

multiply it through by (g)zn and sum over all n to give,

I Y=] Qyz +2] Z(s D-s)Y, 7",

nz0 nz0 nx0 s=1
for n>m.

In the second term of the right hand side we can replace s by
s+1, n by n+l and interchange the order of summation so that,

) &)Y z Y ()Y 2+ 22 1) (n-s)s Y 2"

n20 nz0 s20 ns

n

Y ()Y 2"+ 21 Y sY 2°) () nz ™y, for m>m. (5.5.7)
n=0 s20 nz0

-2
To consider the quantity z(1-z) , expand it by using Taylor's

Theorem to give

z(1-z)"2 = z(1+Zz+322+.;.)
=) nz"
3
n=0

and substituting this result into equation (5.5.7) gives,

I Y 2" = Z (Py 2 + 22(| sY 2°) —F— , for n>m. (5.5.8)
nz0 s30 (1-2)
If we define Y(z) = 2 Y z" as the generating function for {Y 1},
n>O

then by differentiating Y(z), with respect to z, j times we have,

Y(j)(z) =} n(n-1)...(n-j+1)Y e s
nxj !

=) MY z

n

n

Y(j)(z).z

or :
): n30 j

Substituting this result into equation (5.5.8) gives,

g e —— R ™ - - et s s g i et T I Uy O B tniehd

142

n zSY(I)(z)

(3) 3
X__,%Eli. =) (g)y 2+ 2 " for n>m,
ny0 ° " (1-2)

and multiplying through by (1-2)3/23 we obtain, |

DRSO

3 .
6 (132)) (g)ynzn + ZY(l)(Z)(l-Z), for n>m. |

A nx0
(5.5.9)
The following manipulations may be simplified by changing
the variable z to x=(1-z) and defining f(x)=Y(1-x), then,
3.(3) 3
x £ 3) . _X 3 Z (;)yn(l-x)n-ZXf(l)(x), for n>m,
(1-x)” nx0
3.(3) 3 n n
or 2xf(1)(x) X f6 x) . _x) (S)Yn(l-x) , for n>m. (5.5.10)
n30
(1-x)
Introducing the operator 6, defined as
0f(x) = xf V()
then we have,
0(6-1)£(x) = o(xf M x)-£(x)) = x£F (x)
and 6(6-1) (6-2)F(x) = p(8-1) (xf' P 0 -2£x)) = x°£3) (x).
Substituting these results into equation (5.5.10) gives,
3
20f(x) - 9&9;11%2;31 f(x) = =X 3) (g‘vn(l—x)n, for n>m,
(1-x)” nz0 °
which leads to
6x3 n n
(-8) (-8-2) (5-8) f(x) = 3) (3)y,(1-x)", for n>m (5.5.11)
(1-x)7 nx0
or in the original variable z,
(l-z)3 n n :
(-8) (-6-2) (5-8)Y(2) = 6-—=3—) (z)y,z » for n>m . (5.5.12)
z< nx0 .

Now, by definition we have,

£(x) = Y(1-x) = } Y (1-x)"
n
nx0
so considering the innermost factor (5-8) of equation (5.5.11)

(5-0)£(x)

t]

) Yn(l-x)n -0) Yn(l—x)n
n20 nx0

n n-1
5 3 Yn(l—x) +x) Yn(l—x) R
nx0 nx0

or again in the original variable z,
-1

(5-0)Y(z) = § J Ynzn + (1-2) ¥ Ynnzn

n>0 nx0

il

. n
ngo((n+l)\n+1 - (-5)Y)z .

This means that by defining T(z) as

T(z) = (5-0)Y(z) = | T 2" ,
0
we must have

Tn = (n+1)Yn+1 - (n—S)Yn .
If this process is repeated for the remaining factors (-6) and

(-6-2) of equation (5.5.11), then by defining U(z) as
U(z) = (-2-6)T(z) = J U 2",
n
n0
we must have

Un = (n+1)Tn+1 - (n+2)Tn

Finally, defining V(z)=(-8)U(z)= } vnzn we have,

nx0
Vn = (n+1)Un+1 - nUn
Hence, by definition, we have
3
1-
V() = (-0)(-0-2) (5-0)¥(z) = 6 LTy y on
z nx0
3 n n
=6) AT(y (302
nz3
_ .3 n
and so Vn = 6A (yn(3))

Thus we need to solve the following three recurrences:

(n+1)Un+1 = nUn + Vn
(n+1)Tn+1 = (n+2)Tn + Un , for n>m ,
and (n+1)Yn+1 = (n—S)Yn + Tn

We are now ready to consider each of the quantities A,B,C,D,E
and F in turn. 1If An is the average number of partitioning stages,

then obviously an=1 and An=0 for ngm and so from equation (5.5.6)

we have,

143

(5.5.13)

(5.5.14)

(5.5.15)

(5.5.16)

(5.5.17)

144

n

n
(3

0 for ngm.

s=1 s-1

(5.5.18)
From equation (5.5.16) we have,

v, = 6%y = 6

n
and so substituting this value into the first recurrence of (5.5.17)

gives,
(n+1)Un+1 =1 Un + 6 .

By telescoping this equation we have,

n Un = (n-l)Un_1 + 6

(m+2)Um+2 = (m+1)Um+1 + 6

which leads to,

n
(n+1)U__, . =(m+1)U + Y 6
n+l m+1 k=m+1
= (m+1)Um+1 + 6(n-m) . (5.5.19)
If we know U_ ., then we have an expression for U and hence
m+1 n+1

Un' Using equation (5.5.18) it is not difficult to evaluate Am+1’
Am+2 and Am+3 and, by substituting these values into equations
(5.5.17), we may obtain Um+1' In particular we have,

Tm+1 = (m+2)Am+2 - (m-4)Am+1

T = (m+3)Am+3 - (m—3)Am+2 (5.5.20)
and Um+1 = (m+2)Tm+2 - (m+3)Tm+1

So, from equation (5.5.18) we have,
N 12

(m+2) (m+3) °’
and substituting these values into equations (5.5.20) gives,

N 12
(m+2)

A =1, Am+2 =1 and Am+3 =1

T = 6, T =6 and U =6 .
m+

1

Thus, from equation (5.5.19) we have the result,

m+2

(n+1)Un+1 = 6(m+l1) + 6(n-m) = 6(n+1)

which leads to

ey m e e

145

Uu =6 .
n
Substituting this value into the second recurrence of (5.5.17)
yields the equation,

(n+1)Tn+1 = (n+2)Tn + 6 .

[f we multiply this equation through by Tﬁ:i%fﬁ:?jvwe have,

Tn+1 _ Tn 6

M) - D) | nel) (n*2)

and treating this equation in the same way as the first recurrence we

obtain,

T T n
ndl o m+l 6 1
(n+2) (m+2) keme 1 (k+1) (k+2)
which leads to
_ 12(n+1)
Tn B (m+2) ~ 6 .
Finally, from the third recurrence of (5.5.17) we have,

- (e 12(n+1)

(n+1)An+1 = (n S)An + NCTON 6 .

Assuming that n36, we may multiply this equation by é%ﬂ(n-l)(n—Z)(n-S)(n-4)
to give,

n+l _ N 12 n+1 n

(6)An+1 - (6)A]’l + (m+2) (6) - (5)
which again leads to the result,

n n
n+1 _ el 12 k+1 k
Co M1 = Ce Mnay * Ty 2 G0 - 1)
Using the results obtained in Appendix A, in particular, equation

(15), we may simplify this equation to obtain the result,
m+1

™eh)
n
)

Now we shall consider Cn’ the average number of comparisons

_ 12(n+1)

i Tevy

1 +-% (5.5.21)

made during partitioning. Obviously, during the first partitioning .
stage a comparison is made each time pointer i is increased by 1 and
each time pointer j is decreased by 1. Since we start with i=2 and

j=n and stop when j=i-l=s, then i is increased (s-1) times and j is

146

decreased (n-s) times and so Cn’ the average number of comparisons made
during the first partitioning stage, is (n-1).

It is obvious that Cn=0 when n<m and so

n ' N
(n-1) + 2 (s=1) (n-5) C_ for n>m
cC. = s=1 (2) 5= (5.5.22)

0 for ngm .

. . _ _ _ 12m
From this equation ye have Cm+1—m, Cm+2—m+1 and Cm+3—(m+2)+fa:§TTﬁ:3T
which, when substituted into equations (5.5.17), give Tm+1=7m+2,

12m _
Tm+3_7m+9+fﬁ:§T and Um+1—12(m+1). We also have

v = 6A3((§)(n-1)) = 12(2n+1)

Using these values we solve the recurrences of (5.5.17) to obtain

the results,

Un = 12n ,
_ (7m-10) (n+1) _
T =) + 12 + 12(n+1) (W -H)
and finally (m+l)
’ _ 12 _ (n+1) (37m-94) |, 4 .. 6
Cn = 7(n+1)(Hn+1 Hm+2) + 2+ 25 (m+2) + 49(3m 1) =
¢h)
(5.5.23)

where Hn’ the nth harmonic number, is defined as

_ 1 1
Hn =1 + 3 + 3 + i

Sl

I1f we now consider Bn’ the average number of exchanges during
partitioning, then, as with Cn’ Bn=0 for im. Now during the first
partitioning stage, if s is the partitioning element, the number of
exchanges will be the number of elements among 33’34""as that are
greater than s. Averaging over allpermutations of {1,2,...n} we
find that the average number of exchanges when s is the partitioning -

element is, n-s-1

s-2
t)(s—Z-t) _ (n-s-1)(s-2)
- (n-3) ’

s-2 (
t
n-3

t=0 (5_2)

and averaging this over all partitioning elements s, we find that,

|
|
147

b o= 7 (s-D(m-s) (n-s-1)(s-2) 1
=S N (n-3) 3
=(“;;‘) i (5.5.24)
Thus we have,
n
n-4) ¥ (n-s)(s-1) g for n>m
5 <=1 (n) ' s-1?
Bn = 3 (5.5.25)
0 , for ngm,
but this relationship is a linear combination of An and Cn and so,
B = 1(C_-3A)
n 5*'n .n
™1
_ 12 _ 37 12(n+1) 2 . 6)
=g DM -H D)+ 1+ ge(nd]) - ey + 525 (6m-23) ™
6
(5.5.26)
Next we have Fn which is the average number of linear insertion
stages. A linear insertion stage occurs when a subset of at most m
elements is created, and this happens during the first partitioning
stage when s has the value 3,4,...(m+1) or (n-m),(n-m+l),...(n-2).
Thus we have,
£ = mil (s-1) (n-s) . nEZ (s-1) (n-s)
nossz M s=n-m (%)
3 3
L, - m-s)
s=3 (3)
m+1 m+1
(2) (3) 6 :
=6 -4 - , (5.5.27) |
@ @ ‘
2 3 2
which gives, (m+1) (m+1) R
(62 . 37 ._Q_._[_ZZMLSZ F;" R for n>m
) G @)) -
Fn = 2 3 2% . s=t 3 (5.5.28)
0 , for ngm .,

Considering the components of Fn one at a time we have :

1 E (5'1)(n's) F! for n>m

n *2 n s-1"

0 , for ngm ,

148

which proceeding as before yields the result

(m+1
o o _8(n+1) .6 6)
n 7m(m+1) (m+2) 7m(m+1) (n) ?
6
and
n
L ¥ (=D @=8) pv | for nom
n n s-1
F" = (3) s=1 (3)
n .
0 , for ngm,
which leads to the result,
m+1
B o= 18(n+l1) . 24 (6) .
n 7(m-1)m(m+1) (m+2) 7(m-1)m(m+1) °

n
@

Now Fn is simply a linear of combination of Fﬁ and F; and so,

_ m+1 ' m+l, _,,
Fo= 6N - 1R - 4"
(™1
12 4 . (@+l) | 2 18 6
=5 0 - sy * 71 T e’ o
6

The remaining two quantities Dn and En are the contribution
made by linear insertion. First of all we must consider small subsets
that are sorted by linear insertion.

With each permutation 31585500058, of {1,2,3....n} we associate
an inversion table 11,12,13,...1n such that Ii is the number of
elements to the left of a, that are greater than a;. I, is always O

1

and we must have

The average number of insertions, Dn’ is the number of elements with
at least one element to its left greater than itself which is also
the number of non-zero entries in the inversion table. The probability

that Ii#O is 1-%-for all i and thus

D

1
n (1-1) + (1—§J+ 12

= n-Hn . (5.5.29)

The second quantity En, the number of moves made during linear

insertion is equal to the sum of the entries in the inversion table

149

since each element has to be moved past every element to its left
which is greater than itself. Therefore we have

En = Il+12+....In ,

this total being the number of inversions of the permutation, an
inversion being a pair (ai,aj) where i<j and ai>aj. The minimum value
of En is O and the maximum is clearly (g) when Ii=i—1 for i=1(1)n.

We notice that if a permutation al,az,as,...,an has k inversions,
then an’an-l’ ,a1 will have (g)-k inversions. So if the probability

that a permutation of {1,2,..... n} has exactly k inversions is e x and

So the average number of inversions E is
n

m
1]
~
=
[¢]
1

n
nk - g((Z)_k)enk'

i

n
LWy

and so we have

= < n -
2E l2(1\ + ()-Ke
n
= Q) E nk -
Since Z e ., =1, we must have
X nk
_ M
2En - (2) >
= E_ = "—(}’—1—) . (5.5.30)

Returning to the original problem, Dn is the average number
of non-zero entries in the inversion table after partitioning and
En is the average number of inversions in the permutation after
partitioning. Now the partitioning process places s into its final
position and so Is becomes zero. Furthermore, if an inversion table

entry in either subset is non-zero it must be because there is a larger

150
element to its left in that subset. Thus the number of non-zero
entries in the inversion table for the whole set is the sum of the
non-zero entries in the inversion tables of the subsets. Similarly
the sum of the inversion table entries for the whole.set is the sum of.

the sums of inversion table entries for the subsets. Thus we have the

two relationships:

z‘f (n-s) (s-1) p

o1 for n>m
p =1 7 (3) © (5.5.31)
n-H for ngm
n
n
c 2y p=s)(s-) g for nom
n s-1
s=1 (3)
and E = (5.5.32)
n
n(n-1) £ .
—— or ngm .
4
We may now proceed in exactly the same way as we did for the
other quantities to obtain the results,
™h
3 4(n+1) 15 6
Dn = (n+1) - 7(m+2)(3H +1) + 7(3 - 2Hm+1}—7T~— (5.5.33)
)
™h
_ (6m-17) 6(n+l) (Sm +15m-2) " 6
and En = ""'EE—_(n+1) Tmr2) 130 (n) (5.5.34)
6

For large values of n we may ignore the terms with a denominator

of (2) and so we have the six formulae:-

B, = 3eel) (-) + 1+ 245D - %é_} ’
c = l%{n+1)(un+l-ﬂm+2) + 2+ (n+1) §§%§£§§l)
b, = () - R e

and F o= 1—72‘ (1 - m(iu)) g:g

151

Since the frequency with which each statement in the Parallel
Quicksort program is executed is dependent on these quantities, then
by estimating the time that each statement takes to be executed we

obtain a formula for t of the form,

t=ah +bB +cC_ +dD_ +eE + fF_+ gn . (5.5.35)
n n n n n n

The values of the coefficients a,b,c,d,e,f and g will vary from
computer to computer but, by applying the statement times described
in Appendix A to program (7) (Appendix B), we obtain the following
result,

t

184A + 30B_ + 16C_ + 38D _+ 32E_ + 53F_ + 28n
n n n n n n

264 16432 . 2140 264 456
= —7-(m+H ;- 150 +(“+1){ 245t TmeE) T 7 me2 T T(me2) ml
+ 192m - 2544 units
35 7m(m+1) (m+2) ’

(5.5.36)
where 1 unit is approximately a machine instruction time.
We now wish to estimate the times t1 and ?1, the parallel and
sequential run times of phase 1. Clearly the average size of the

left subset produced by the first partitioning stage is,
n
Z (s-1) (s—l%(n-s)

s=1

&)
_ (n-1) 3
B 2

Similarly the average size of the right subset is Lﬂéll .

The partitioning of these two subsets produces four subsets of average

size
CL= VY.

During the initial phase, this process is repeated until at
least p subsets have been produced. If the concurrent partitioning
of the two subsets of size (n-1)/2 and similarly the four subsets

produced by these partitioning steps is called a parallel partitioning

stage, then to produce p subsets we require j parallel partitioning

stages where,

j = riogzﬁ] , (i.e. 273p)

Obviously, if qQ is the average size of the subsets at the ith

parallel partitioning stage, then

q, = n

q.

i (qi_l-l)/Z for i=2,3,...,j,
from which we obtain the formula,

q; = m-22"Le1y/2t "t for i=1,2,...,5. (5.5.37)

From the previous analysis we know that the contribution of
the first partitioning stage is dependent on the quantities,
a_ = 1, bn = (n-4)/5 and c = (n-1),

so for a subset of size q; we have

a =1
R5
b = .-4)/5 5.5.38
q = @Y ()
and c = -1
Qs (q;-1)

If the time required by each partitioning step is a; s then,
treating ay in the same way as we treated T, we have
a; = 212a. + 30b_ + 1l6c s (5.5.39)
4 i i
and substituting in the values from equations (5.5.38) we obtain,

a; = 172 + 22qi for i=1(1)j. (5.5.40)
Clearly the average value of tl is, |
J
R A
and so, using equations (5.5.37) and (5.5.40), we have
t, = 150§ + 44(n+1) (1-279Y . (5.5.41)

Since, during the ith parallel partitioning stage, there are

2 -1 subsets being partitioned concurrently, it is clear that,

153

i-1

o+
—
]
Il O~
[
Q
=
-

which reduces to,

?1 150(27-1) + 22(n+1)j . (5.5.42)

Thus, since t3 is small enough to be ignored, we obtain,

from equations (5.5.1) and (5.5.2), the formula,

Tt s i, (5.5.43)

where the quantities t, ty and %1 may be obtained from equations

(5.5.36), (5.5.41) and (5.5.42) respectivelf.

We now wish to find the optimum value of m, the best choice
of subset size for which it is more efficient to sort by linear
insertion. Obviously this is achieved by minimising Tp with respect

to m; in particular we must minimise the function

my = 16432 2140 _ 264, 456 , 192 2544
g\ = 545 T T(m+2) 7 me¢2 T T(mr2) m+l 350 T Tm(m*l) (m+2)
with respect to m. (5.5.44)

507

40 |

30 |

g(m)

20 |

12,13
101

+ v ¥ m

10 15 20 25

0 e ———

FIGURE 5.4

In Figure 5.4, values of g(m) are plotted against m. From the
graph we can see that the optimum value of m is 8 but clearly the
choice of m is not critical and so any choice of m between 5 and 12
is viable.

To complete the analysis of the Parallel Quicksort algorithm we
shall investigate the effect that p, the number of processors, has on
the performance of the algorithm. To achieve this we must refer to the
quantities Speed-up and Efficiency defined in Chapter 2 and the

Performance Factor defined by (4.2.6).

44

(in 10,000 units)

T
B

0 5 10 15 20 25
No.of processors (p)
FIGURE 5.5

\j

No. of processoré (p)

FIGURE 5.6

1.0

0.8

0.6

0.2

155

156

A

3

24

PF
P

1.

0 . v —
0 5 10 15 20 25

No. of processors (p)

FIGURE 5.7

The series of Figures (5.5)-(5.7) plot the quantities time (Tp),
Speed-up (Sp) and Efficiency (Ep), and Performance Factor (PFP)
against p respectively for n=500. The graphs are essentially the same
for m=5,6,...15 which demonstrates that the choice of m is not critical.

Closer examination of these graphs reveals that little improvement
is achieved by increasing p above 15. We can also see that for p>15 the
Speed-up settles at approximately 5 while the Efficiency steadily
decreases. Considering the Performance Factor in Figure 5.7, we see
that the optimum value of p is 5. However, it is also clear that when
p is 4,5 or 6 the performance of Parallel Quicksort is very good.

Thus we conclude this analysis by observing that for n=500 the
best choice of m lies between 5 and 12while the optimum number of

processors is 5. As n increases we would expect the optimum value of

p to increase very slowly. However the best choice of m remains
constant for all values of n.

It must be stressed that a more accurate assessment of the best
values of p and m for a particular computer may be obtained by using
the actual values of a,b,c,d,e,f and g in equation (5.5.35) for that
particular computer. It is also useful to remember that the time
overhead incurred by memory contention (excluded from this analysis}
has a less damaging effect for smaller values of p and so it is better

to underestimate the optimum value of p.

5.6 SIMULATION OF THE PARALLEL QUICKSORT METHOD

In the absence of a suitable parallel computer to test the Parallel
Quicksort Method, the method was simulated and the results compared with
those of section 5.5.

For the purposes of this event-orientated simulation we define the
following variables:-

an array R[a,b], containing the information which is obtained

during the sorting process,

"

where a the subset number

and b

an integer in the range 1 to 5.

R[a,1] and R[a,2] are pointers to the left and right subsets
respectively, produced by the partitioning of subset a.

R[a,3] and R[a,4] indicate the lower and upper limits respectively
of subset a.

R[a,5] is an estimate of the time required to partition or perform

linear insertion on subset a.

The time R[a,5] may be obtained for subset a by adding the time

it takes to execute a statement to a running total each time that

157

158

statement is used. When a subset is created, it is given a number and
its limits may be recorded in the array R in the appropriate positions.
At the same time, a pointer to that subset may be placed in R[a,l] or
R[a,2] accordingly, where subset a is the subset from which the new
subset has been created.

The simulated model of the parallel computer is represented by the

following variables:-

p = the number of processors,

T

1

a clock,
uf{i] (i=1,2,...,p)

A[i] (i=1,2,...,p)

i

stack of processors in use,

1]

stack of processors available,
S[a,b] = processor b,
where S[1,b] = the length of time before which
processor b becomes available,
and S[2,b] = the number of the subset currently
being processed by processor b,
Q{j] = a queue of subsets that are waiting to be processed,

LU = number of processors in use,

LA = number of processors available,

and LQ

number of subsets in queue.

When a subset of size O or 1 is created, the corresponding pointer
is set to zero, and when a subset is $m in size (i.e., when it is sorted
by linear insertion), both pointers are set to zero.

As soon as all of the information concerned with the application
of the algorithm has been recorded in array R, we proceed in the
following manner. Initially the quéue Q is empty and all p processors
are availabie. The partitioning of the complete set is assigned to

processor 1 by removing processor 1 from the processors available stack,

159

placing it on the processors in use stack and then setting S[1,1]=R[1,5]
and S[2,1]=1.

Since an event occurs when a processor 'in use' becomes 'available'
the simulation proceeds by searching the processors in use to find the
next processor to become available i.e., the processor in use with the
smallest value S[1,b]. The clock is then advanced by this amount of
time and all the S[1,b]'s of the processors in use decreased by the same
amount. Then, for each processor in use with S[1,b]=0, the appropriate
event is performed and the procedure is repeated. The simulation is
terminated when all processors are available and the queue Q is empty.

There are five different situations that may occur which lead to

different events which are described as follows:-

Event 1

A small subset has been sorted by linear insertion, SO no new
subsets have been created and the queue Q of unprocessed subsets is
empty. The processor that has sorted that subset is therefore removed
from the stack of processors in use to the stack of processors available.
Event 2

Again a small subset has been sorted by linear insertion but now
the queue Q is nof empty. The subset at the head of the queue is
immediately assigned to the processor that has just become available.
Event 3

A subset has been partitioned to create only one new subset (i.e.,
the other new subset is of size O or 1). The new subset is immediately
assigned to the processor that has become available.
Event 4

A subset has been partitioned creating two new subsets and the

processors available stack is not empty. One of the subsets is assigned

160

to the processor that has become available and the other to the processor
at the top of the processors available stack. That processor is removed
from the processors available stack to the processors in use stack.
Event 5

A subset has been partitioned to create two new subséts and no
pfocessors are available. One of the subsets is assigned to the processor

that has become available and the other is placed in the queue Q.

The current state of the simulated parallel computer may be

represented by the following diagram.

Processors Processor stacks Queue of
subsets
b time S[1,b] subset S{2,b] In use available
1 tl s1
2 £ 52 «LU
. . <LQ
. LA
t]
P P p

Since all of the processors are in use, the processors available
stack is empty. If this representation of a parallel computer is used,
we can illustrate each of the five events. In each of the examples,

processor j has become available.

Event 1
Processoré Processor stacks Queue
b S[1,b] S[2,b] In use available
1 t1 s1
2 t [
) 2 2 , el
. : . «LU
j £5=0 3
. . . j |«LA <LQ
| o
: : :) i 7
t S +
P p P

The stack of available processors may initially be empty.

Event 2
Processors Processor stacks

b S[1,b] S[2,b] In use available
1 t1 s1
2 t S

K K “LU=p
* ta : sJ=a

t.= .

T 7

t S <LA=0
P p p

Since the queue is not empty, all processors must be in use,

Event 3
Processors
b S[1,b] S{2,b]
1 t1 Sq
2 ©2 °2

Remains unchanged

161

Queue

Only one new subset is created, call it subset «, and, since it

is assigned to processor j, the processor stacks and queue are unchanged.

Event 4
Processors Processor stacks
b S[1,b] S[2,b] In use available
Y 51
2 t2 52
: + 1 a |«LU
t s.=f8 +Ja‘U’
j toap P P
:] t, s =y
tU.:g/ /’i/(! o3)*‘
. . ' 1 «LA
P t S ——

Queue

«1Q=0

162

Two new subsets are created numbered B and y. Since some processors

are available the queue must be empty.

Event 5
Processors Processor stacks Queue
b S[1,b] S[2,b] In use available
1 t1 S
2 t2 S,
. : « LU=p B |<LQ
t * s.=s <L
o] o
t.= s
j ; %
: t s <LA=0
P p p

Two new subsets o and B have been created, o being assigned to
processor j and B being placed in the queue. Since the queue is not

empty, all of the processors must be in use.

5.7 RESULTS AND CONCLUSIONS

In order to test the Parallel Quicksort method using the simulation
described in section 5.6, sets of pseudo-random numbers were obtained
using the NAG library random number generator routines (NAG, 1976).

The routines involved include GOS5AAA, GOSABA and GOSBAA.

The routine GOSAAA returns pseudo-random numbers from a uniform

distribution on the range (0,1) by generating two multiplicative

congruential sequences

xl,r+1 = (blxl,r) mod m 5.7 i)
and x2,r+1 = (bzxz,r) mod m ,
where (z) mod m is the remainder left when z is divided by m. A
sequence of pseudo-random numbers X.01? is- then formed using,
X1 = (xl,r+1 + x2,r+1) mod m , - (5.7.2)

163

which are then scaled to produce the required sequence. The values of

the constants are machine orientated, being related to the word size of

46 15 9 '
the ICL 1900, and are m=2 —, b1—3 , b2—5 , and x1,0~x2,0

In order to obtain pseudo-random numbers from a uniform distribution

=1234567.

on the range (a,b), the sequence x generated by routine GOSAAA was

T+l
scaled by routine GO5ABA using the transformation,

= (b-a)x_ ., +a . (5.7.3)

yr+1 +1

Finally, to generate different sets of pseudo-random numbers,
routine GOS5BAA was used to initialise the routine GOSAAA by setting

the parameter x to a value derived from a parameter x of routine

2,0
GOSBAA.

The sets of random numbers used to test the Parallel Quicksort
method were integers lying in the range (0,100,000) and were obtained
by setting parameters a and b of routine GOS5ABA to O and 100,000
respectively, each number Y el being rounded down to the greatest
integer less than Y1

In standard Quicksort, the maximum recursive depth pf the algorithm
is minimised by sorting the smaller of the two subsets produced by
partitioning first. To see if this is a desirable feature for Parallel
Quicksort, the initial tests were performed, also sorting the smaller
subset first.

Initially the sorting of 10 different sets of 500 random numbers
By Parallel Quicksort on a p processor computer was simulated. The
number of processors p was varied from 2 up to 16 and m, the size of
the largest subset for which linear insertion is used, was given the
values 5,10 and 15. The results, including the average run-time,

Speed-up, Efficiency and Performance Factor of the method when m=10

are recorded in Table 5.1 in the columns headed by the letter A.

164

; Average Tp Speed-up Efficiency Pe;iz:zince

A B A B A B A B
2 171635 | 71367 | 1.842 | 1.849 | 0.921 | 0.925 | 1.697 | 1.710
3 153487 | 53098 | 2.467 | 2.485 | 0.822 | 0.828 | 2.029 | 2.059
4 145743 | 44867 | 2.885 | 2.941 | 0.721 | 0.735 | 2.081 | 2.163
5 |42066 | 40920 | 3.137 | 3.225 | 0.627 | 0.645 | 1.968 | 2.080
6 {39851 | 39038 | 3.312 | 3.381 | 0.552 | 0.563 [1.828 | 1.905 1
7 138662 | 38202 | 3.413 | 3.454 | 0.488 | 0.494 | 1.664 | 1.705
8 |38041 | 37671 | 3.469 | 3.503 | 0.434 | 0.438 | 1.504 | 1.534
9 |37736 | 37453 | 3.497 | 3.524 { 0.389 | 0.392 | 1.359 | 1.380
10 |37518 | 37306 | 3.517 | 3.537 | 0.352 | 0.354 | 1.237 | 1.251 |
11 37422 | 37194 | 3.526 | 3.548 | 0.321 | 0.323 | 1.131 | 1.144
12 [37274 | 37125 | 3.540 | 3.555 | 0.295 | 0.296 | 1.045 [1.053
13 [37243 | 37088 | 3.543 | 3.558 | 0.273 | 0.274 | 0.966 | 0.974
14 |37216 | 37088 | 3.546 | 3.558 | 0.253 0.254 | 0.898 | 0.904
15 |37157 | 37088 | 3.552 | 3.558 | 0.237 | 0.237 { 0.841 | 0.844
16 |37151 | 37088 | 3.552 | 3.558 | 0.222 | 0.222 | 0.789 | 0.791

Results of the simulation of Parallel Quicksort on a p processor
computer with m=10

TABLE 5.1

These tests were then repeated, using the same sets of random
numbers but sorting the larger of the two subsets produced by
partitioning first. The results of these tests when m=10 are also
recorded in Table 5.1 under the columns headed by the letter B.

Similar results were also obtained for m=5 and 15.

From Table 5.1 we observe that the method is faster when the
larger subset produced by partitioning is sorted first and a closer
examination of the simulations reveals that this is because the
period- during the second phase of the method, when not all p processors

are in use, has been reduced.

It can also be seen, especially from the second series of tests,
that when p>12 the Speed-up remains constant. Again, from a closer
examination of the simulations, we see that this is because all p
processors are never in use concurrently at any point during the
execution of the algorithm.

Finally we observe from the performance factor fhat the optimum
value of p lies in the range 3 to 6.

So the first series of tests has revealed that it is better to
sort the larger subset produced by partitioning first and that the
optimum value of b lies in the range 3 to 6. In the next series of
tests we attempt to optimise the values of p and m.

Accordingly, in the next series of tests, the average run time of
the method is found from a sample of 20 different sets of 500 random
numbers. The simulation of Parallel Quicksort is carried out with m
varying from 5 to 15 and p varying from 3 to 6. The results from
these tests for m=5,6,7.....10 are recorded in Table 5.2.

It is clear that for all values of m the optimum number of
processors is 4 but 5 is also a very good choice. However since the
effects of store clashing is less for smaller values of p, it is
better to underestimate the value of p.

From the results we see that the optimum value of m is 6, but
again the choice of m is not critical and any choice of m in the
rénge 5 to 10 is equally as good.

Also included in Table 5.2 are the theoretical run times of the
algorithm so that they may be compared with the results obtained from
the simulation. Obviously there is reasonable agreement.between the

two sets of results.

165

166

. . Performance
p |Average Tp Theoretical Tp Speed-up | Efficiency Factor
=5
3 52100 54728 2.496 0.832 2.076
4 43892 45254 2.962 0.741 2.194
5 39704 40151 3.275 0.655 2.145
6 37627 36749 3.456 0.576 1.990
m=6
3 51894 54335 2.493 0.831 2.071
4 43741 44960 2.957 0.739 2.186
5 39618 39916 3.265 0.653 2.132
6 37579 36553 3.442 0.574 1.975
=7
3 51901 54143 2.491 0.830 2.068
4 43798 44816 2.952 0.738 2.178
5 39702 39800 3.256 0.651 2.121
6 37579 36457 3.440 0.573 1.972
=8
3 52085 54106 2.493 0.831 2.071
4 43951 44788 2.954 0.739 2.182
5 39808 39778 3.262 0.652 2.128
6 37684 36438 3.445 0.574 1.978
=9
3 52328 54190 2.493 0.831 2.071
4 44104 44850 2.957 0.739 2.186
5 39928 39828 3.267 0.653 2.134
6 37841 36480 3.447 0.574 1.980
m=10
3 52725 54368 2.492 0.831 2.070
4 44351 44985 2.963 0.741 2.194
5 40138 39935 3.274 0.655 2.143
6 37990 36569 3.459 0.576 1,994

Results of the simulation of Parallel Quicksort for different
values of m

TABLE 5.2

If we now compare the optimum values of p and m obtained by

simulation and by the analysis in section 5.5, we see that the actual

167
optimum values are not exactly in agreement.

From the simulation results the optimum value of p is 4 but
from the analysis it is 5. However, since it is better to under-
estimate p we conclude that the optimum number of processors is 4
(when n=500) ..

Regarding the optimum value of m, we see that although the optimum
values from the simulation results and the analysis are not the same,
the ranges for m are. Since the actual value of m is not critical it |
can therefore be concluded that m should lie in the range 5 to 10.

Finally, we repeat the observation that the best value of m will
be constant for all values of n but it can be expected that as n
increases, the optimum value of p will increase very slowly. This
fact can be confirmed by the observation that, when n is doubled, the
optimum value of p is only increased by 1. From these cesolts it seems
that a funckienal relationship between p and n of the form
p= a.\%n +b can be established.

Time. cothnes than spoce onok’s}s has been thcluded in thig
chapter as it is mYended Jo assess Hre, porentiol twe improvement
of the dgocithm which is the basis of paralled computing ,whereas

Space. saving is net of ?(\}v\orx., sM?orYance.

CHAPTER b

SUCCESSIVE OVER-RELAXATION - A PARALLEL APPROACH

168

6.1 INTRODUCTION

Many problems occurring in science that involve the rates of
change with respect to two or more variables produce one or a set of
partial differential equations when formulated mathematically. A case
that occurs more frequently than any other is the two dimensional
second order equation
2%, 3%,

)
) X3y ay?

a + d %% + e 22-+ f¢ + g =0, (6.1.1)

3y

where a,b,c,d,e,f and g may be functions of the independent variables
x and y and of the dependent variable ¢, This equation is said to

be elliptic when (b2—4ac)<0, parabolic when (b2-4ac)=0 or hyperbolic
when (b2—4ac)>0.

In this chapter we shall investigate the solution of elliptic
partial differential equations which, in general, are associated with
steady state situations such as the steady flow of heat or electricity
in homogeneous conductors. In particular, we shall consider the

solution of Laplace's equation, defined as,

2 .
9—%+3—%=0 , (6.1.2)
9X ay

over a closed region with the Dirichlet boundary conditions,

¢(1,y) = 0O

1 ' .

$(x,0) = $(0,y)

. (6.1.3)
and $(x,1)

- At present, only a limited number of elliptic partial differential
equations have been solved analytically and even for those, the
analytical solution is often extremely laborious to evaluate. Elliptic‘
equations are therefore usually solved by numerical approximation
methods such as finite-difference methods.

In finite—difference.methods, a system of rectangular meshes is

formed over the region of integration of the elliptic equation by two

sets of equally spaced lines, one set parallel to the x axis and the

other parallel to the y axis. This is illustrated for Laplace's
equation with Dirichlet boundary conditions in Figure 6.1 where each
set of parallel lines are at a distance h apart. At each mesh point,
i.e., the points of intersection of the parallel lines, the partial
differential equation is approximated by replacing it by a finite-
difference equation. The finite-difference equation defines each mesh
point in terms of the neighbouring mesh points and, when applied to

all of the mesh points, produces a large system of algebraic equations.

-
1
o

$=0—__| :

0

S
]
o

FIGURE 6.1

There are two distinct methods for the solution of systems of
‘linear equations of this type: direct methods and iterative methods.
Direct methods such as Gauss Elimination and Triangular Factorisation
(see Chapter 2) yield, by a relatively complicated procedure, the
exact solution to the system of equations in a finite number of steps
if no rounding errors are present. Iterative methods, however,
involve the repeated application of a simple_formula that eventually

yields the exact answer as the limit to a sequence.

170

The system of equations that is produced by the finite-difference
method is generally large and sparse and so it is preferable to use an
jterative method for its solution since they are able to take advantage
of the large number of zeros in the coefficient matrix. Iterative
methods are characterised by the arbitrary selection of an initial

)

approximation ¢ to the exact solution ¢, and the subsequent

calculation of a sequence of approximations ¢(1),¢(2),... converging
to ¢.

When applying certain iterative methods, e.g. successive over-
relaxation (see section 6.3), the order in which the mesh points are

updated is important and so in this chapter we shall consider various

mesh point orderings that permit the parallel execution of the algorithm.

6.2 THE DERIVATION OF THE FINITE-DIFFERENCE EQUATION

Let us consider the small segment of mesh illustrated in Figure 6.2
which has a constant mesh size h. The values of ¢ at the neighbouring
mesh points (x,y+h) and (x,y-h) may be expanded in terms of ¢(x,y) and

its derivatives by the use of Taylor s Theorem thus,

3.3 4 .4
) h h™ 3
d(xy+h) = $(x,y) + h gECxY) * 37 "’(x,y) + 2 280,y + 3 2y
ay 3y Cdy
Fiienns (6.2.1)
and
2,2 3.3 4 4
9 h™ 3 h™ 3 h™ 3
$(x,y-h) = 06,y) - h 2,y + 2 80y) - 3 2 2,y) + B ey
dy 21 2 3! 3 41 4
y ay y
teoranan (6.2.2)
The addition of these two equations gives,
2 2% 4 |
¢(X,Y+h) + d)(X,)’-h) = 2¢(X’Y) + h _Z(X’Y) + O(h) ’ (6-2'3)
oy
which by discarding terms in h4 and higher and rearranging leads to
_g(x’y) ¢ (x,y+h)- 2¢(x,y)+¢(x,y -h) (6.2.4)

av h

171
¢ (x,y+h)
¢ (x-h,y) $(x,y) #(x+h,y)
N .
h ¢ (x,y-h)
FIGURE 6.2
Similarly, by the expansion of ¢ at mesh points (x+h,y) and
(x-h,y), we have,
.12_?()(h) = ¢(X+h,y)—2¢(x,y)+¢(x-h,y) (6.2.5)
5 (X, 5 . R
ax h
Substitution of the expressions (6.2.4) and (6.2.5) into
Laplace's equation (6.1.2) yields the five point difference scheme,
$(x+h,y)+ §(x-h,y) +(x,y+h)+d(x,y-h)-44(x,y) _
h2
or
be1,5* %io1,y t gt Y, %, 70 (6.2.6)

where ¢ 3 = ¢(ih,jh), and is represented conveniently by the 'molecule’

of Figure 6.3. e

Five-point Difference Scheme Molecule

FIGURE 6.3

172

Now consider the following numbering of the internal mesh points

of a (6%6) mesh with Dirichlet boundary conditions (6.1.3):-

/!

=0 —_, 3 7 11 15 (6.2.7)
-$=0
2 6 10 14
1 S 9 13
\
$=0

Then, by applying equation (6.2.6) to each of the internal mesh

points, we produce the following system of linear equations,

1
1
1
}
1
}

—~ 3 - (6.2.8)

-1 L1 4 -1 -1
-1 -1 4 -1 -1
-1 -1 4 -1
|1 4 -1
-1 -1 4 -1
-1 -1 4 -1

- -1 -1 4] -¢16—

QOO OQOHOOO~ROOO

1
sl

Thus a system of linear equations has been created by replacing
the partial differential equation by a finite-difference equation at

each of the internal mesh points.

6.3 THE SOLUTION OF A LARGE SPARSE SYSTEM OF LINEAR EQUATIONS

In this section we shall define some basic iterative formulae

(Smith, 1965) that may be used to solve the system of equations (6.2.8).

(a) The Point Jacobi Method

Since, at each internal mesh point we have,

1 »J - (¢1+1 yj * ¢i_1,j + ¢i,j+1 + ¢i,j-1)/4 ’ (633.1)
then a simple iterative formula would be,
(n+1) _ (n) (n) (n) (n)
¢ ,J (¢1+1 J ¢i-1’j ¢1 J+1 1)/4 ’ (6.3.2)
(n) th . L
where ¢i] represents the n~ iterate or approximation to ¢ at

point (ih,jh). This is called the Point Jacobi method. Clearly the
(n+1)th iterates are expressed exclusively in terms of nth iterates
and so the order in which they are evaluated with respect to the mesh
points does not effect their values.or the rate of convergence to the
solution. Hence this method is called the Simultaneous Displacement
Mgthod. Unfortunately, the rate of convergence of this method is

slow and hence it is rarely used.

(b) The Gauss-Seidel Method

The Point Jacobi formula (6.3.2)} may be improved by using the
iatest values of ¢i,j as soon as they are available. If we assume
that the (n+1)th iterative values have been calculated along columns
1,2,...,(j-1) and as far as point (i-1,j) along column j, and that
the (n+1)th value at point (i,j) is the next to be calculated, then

the Gauss-Seidel formula gives

(n+1) (n)
i,j (541)3

(n+1)

(n) (n+1)
i-1, +)/4 (6.3.3)

¢ 1,J+1 1 sj-1

+ ¢,
With this method, we have the added advantage of only needing
to store the latest value of each ¢i T This method is a Successive

b

Displacement Method.

174

(c) The Successive Over-Relaxation Method (S.0.R.)

If ¢£n; is added and subtracted to the right hand side of equation

(6.3.3) we have,

(1) _), @), D)) (D))
b, T 0,5t Oy Tyt e T 0pn T M

- ¢§?; . (6.3.4)

i,j
Obviously, T, 3 is the change in value of ¢i 3 for one Gauss-
b b

Seidel iteration. The rate of convergence of the Gauss-Seidel
method can be 'accelerated' by making a larger change to ¢i 3 thus,
s

(n+1) _
i,j

é ¢£?g +owr, . , (6.3.5)

1,)

where w is positive constant called the acceleration factor which in
practice lies between 1 and 2, This equation is called the Successive

Over-Relaxation formula and may be rewrittenin the form,

(n) (n)

(n+1) .
j i+1, i,j+1

i,j

(n)

N (n+1)
1,)]

(n+1)
i-1, *dy

= (1-w)¢ i,5-1

¢ + w(+ ¢)/4,

(6.3.6)
from which it is clear that it is a linear combination of the Gauss-

¢

Seidel iterate (6.3.3) and the nth iterate. (Note that when w=1,
the S.0.R. methodAbecomes the Gauss-Seidel method). In this method
it is also only necessary to store the latest values of ¢i,' and it
is a Successive Displacement Method.
In order to find the conditions necessary for convergence of
these methods, consider their matrix form. Assume that we wish to
solve the system of equations
Ap = b, (6.3.7)
where A is an (mxm) matrix and ¢ and b are (mxl) vectors. Then
(6.3.7) can be expressed in the form,
(I-L-U)¢ = b , (6.3.8)

where I is the (nxn) unit matrix and -L and -U are strictly lower

175

and upper triangular matrices respectively of the form,

0 0 855 33=----- 31,m
ay © 0 23 E
a3 3320 . !
= | and -U = N !
! ' AN ~ !
L 0
Lfm,l"' - 3n,m-1 0 N 0 R

Hence, the matrix form of the Point Jacobi method is
n+l
¢()

- @™ + b, (6.3.9)

of the Gauss-Seidel method it is,

i-(n+1) - Li(n+1) . Ui(n)
which on rearrangement gives,
o™ =ty ™ v a7l (6.3.10)
and of the $.0.R. method it is,
fD Ly g))y)y
which leads to,
™D - (1) - -1 1™+ (1-01) b (6.3.11)

Now if the error at any stage is the difference between the
true and approximate solutions, i.e.,
S(n) =4 - 9;(“) , (6.3.12)

then by subtracting (6.3.9) from (6.3.8), we have the error vector

by the Point Jacobi method as,

M - ye™ = ey e M V= ™) 6.3.13)
and similarly, for the Gauss-Seidel method we have,
™D o o)ty e) (6.3.14)
In the case of S.0.R., the true solution satisfies
(I-wlh)¢ = (wU-(w-1)I)}¢ + wb
and so the error vector for S.0.R. is
™D 1) - (-1 e @ (6.3.15)

176

Thus, for each of these methods, the relationship between
successive error vectors is

(n+1)
= He(n)

e , (6.3.16)
where H, the iteration matrix is defined as,
(L+1), for the Point Jacobi method

H (I-L)’IU, for the Gauss-Seidel method

[(I-6l) L (wU-(u-1)1)], for the S.0.R. method.
Assuming that the m eigenvalues As (s=1,2,...,m) of H are all

different, then the corresponding m eigenvectors LA form a linearly

independent set of vectors, where by the definition of an eigenvalue,

Hv, = A v, . (6.3.17)

So gﬁo) may be expressed.as a linear combination of the eigenvectors

of H thus,
() m ,
e = Jev, (6.3.18)
s=1
therefore, n n
e(l) = He(o) = JcHv =)Y cA v ,
= - L 7s —s 4 7s"s—s
(n) s=1 s=1
and hence, for e we have,
m
(n) _ n
e = Jeav. . (6.3.19)
s=1
Clearly, for convergence of the iterative formula, we require
gﬁn) to tend to zero, which means that the eigenvalue As of H with

largest absolute value, called the -spectral radius of H, must be

less than unity.

6.4 THE ESTIMATION OF THE OPTIMUM VALUE OF w FOR S.0.R.

The rate at which the S.0.R. method converges is dependent on
the value of the acceleration factor w and so to maximise the
convergence rate, the best value of w, say W must be estimated.

The basis for the theoretical estimation of Wy rests on work done by

177

Young [1954], who developed the theory of matrices possessing the
following property, which he termed 'property A'.

For the system of equations (6.3.7), matrix A is said to possess
property A if there exists two disjoint subsets S and T of W (the first
n integers) such that S+T=W and if ai’j#O, then either i=j or ieS and
jeT or ieT and jeS.

In addition to property A, it is necessary that the order in thch
the (n+1)th iterative values are evaluated satisfies a certain condition
called consistent ordering, which is defined thus.

If matrix A has property A then it is always possible to reorder
the equations and unknowns so that the new coefficient matrix has either

the tridiagonal form,

Dl 1
By Dy Fa
\\\.\‘\\\ \\\ s (6.4.1)
Ee-2Deo1Fp
- Eg-1 Dy -
or the partitioned form,
D1 F '
, (6.4.2)
E D2

where the D's are square diagonal submatrices, not necessarily of
the same order, and the E's and F's are rectangular submatrices.
Assuming that the equations have been ordered so as to give a matrix
of the form (6.4.1) or (6.4.2), then a different ordering of the
equations is said to be consistent with form (6.4.1) or (6.4.2)
when the (n+1)th iterative values for the two orderings are identical
‘fqr n=0,1,2,..., initial inputs being the same of course.

The importance of these two properties is that, if matrix A is

consistently ordered and has property A, then the eigenvalues, A, of

178

the S.0.R. iteration matrix and p of the Point Jacobi matrix

(see (6.3.16)) are related by the equation,

-2 = i, if |ul<l . (6.4.3)
i.e ta— T
e. | £/ (6.4.4)

Now, from equation (6.3.19) we see that the convergence rate
is dependent on X and so to optimise the rate of convergence, A, the

eigenvalue of maximum modulus of the S.0.R. iteration matrix, must be

minimised. This is achieved by making the square root in equation
(6.4.4) equal to zero for U, the eigenvalue of maximum modulus of the
Point Jacobi iteration matrix, i.e.,

w2 = Ae-1) , (6.4.5)

which yields the result,
2

Wy = -—7;;;;% (6.4.6) 4
1+v1-u
If this equation is used to eliminate ﬁz from equation (6.4.3), we
obtain the result, ,
A= ow-l (6.4.7)
The eigenvalue of maximum modulus value of H is called‘the
spectral radius of H. Now, since the Gauss-Seidel method is the
same as S.0.R. with w=1l, substitution of this value for w into
(6.4.3) gives the result,
b@ = o>, (6.4.8)
where p(G) and p(J) are the spectral radii of the Gauss-Seidel and
Point Jacobi iteration matrices respectively. Thus, w, may be
expressed in terms of p(G) thus, ,
wy = — . (6.4.9)
1+/1-0(G)

Using equation (6.3.19) it is not difficult to show that the

successive errors at any mesh point, after a large number of iterations,

179

are related by the equation,

le@ D o ple™| , (6.4.10)

where p is the spectral radius of H. Therefore the common
logarithm (base 10) of p is an indication of the number of decimal
digits by which the error is eventually decreased by each iteration.
For theoretical purposes the asymptotic rate of convergence, R, is

defined as,
R = -loge(p) . (6.4.11)

It is not difficult to see that R for the Gauss-Seidel method is

twice that of the Point Jacobi method. Furthermore, by considering
loge(mb-l), it can be shown that R for the S.0.R. method is
approximately 2/e times that of the Gauss-Seidel method, where
u2=1-52, e being small for large n.

Another useful result that we may obtain is an estimation of
the number of iterations, n, necessary to make éhle, where € is the"
required accuracy. From equation (6.4.10) it is not difficult to

show that

_ loge

% Togle-1) *

(6.4.12)

The estimation of wy and the other quantities defined here

clearly depend on whether p(J) or p(G) can be estimated. Several

methods have been suggested by Carré [1961] and Varga [1962], one

of which is the Power Method that may be described as follows.
Assuming the matrix of the finite difference equations is

consistently ordered and has property A, calculate the sequence of

(1 ,9_(2) (1)

approximations ¢ yoeol to the solution of the system of

equations A¢=b by the Gauss-Seidel method and then we have
a1

0(G) = Lim ———e—
eSSl

i

where gﬁi) is defined as i(i)=gﬁi)—gﬁi—l) and

(6.4.13)

180

. n . :
aD] = [§ M fDy (6.4.14)
j=1 3) |

Thus, using the power method we can approximate p(G), which,
in turn, can be substituted into equation (6.4.9) to give an estimate

of Wy s the optimum acceleration factor.

6.5 THE SOLUTION OF THE DIRICHLET PROBLEM BY S.0.R. ON A PARALLEL COMPUTER

It is obviously a trivial problem to perform the Point Jacobi method
on a parallel computer, since each jiteration comprises of m2 independent
evaluations defined by (6.3.2). The use of Successive Displacement methods
on a parallel computer is not so simple since the order in which the
(n+1)th iterates are evaluated,'particuiarly with S.0.R., is important.
We have seen, in the previous section, that, with the S.0.R. method, it
is desirable for matrix A, defined in (6.3.7), to possess property A and
be consistently ordered, and so, when S.0.R. is performed on a parallel
computer, it is useful but not vital to preserve these properties.

If the order in which the (n+1)th iterates are evaluated is called
an ordering, then an ordering that produces a coefficient matrix A which
is consistently ordered is a consistent ordering. The ordering of the
mesh points in (6.2.7) is a consistent ordering. This ordering, however,
is of little use for a parallel computer because it is essentially

sequential. A much more useful ordering is the red-black ordering

defined as,

10| @ 14 (6.5.1)

@ 1 G 15

181

Clearly, the red-black ordering consists of two passes over the meshes.
During the first pass we evaluate the (n+1)th iterates at alternate
mesh points (circled in (6.5.1)) beginning at (:), and in the second
pass the remaining points (uncircled in (6.5.1)) are dealt with. 1f
the finite difference equation (6.2.6) is applied in this order, then

using S.0.R. we have for the first pass,

(n+1) _ (n) (n) (n) (n) (n)
S RO LR R O P N I T TORL L Pk OJLS
(6.5.2)
and during the second pass,
(n+1) (n) (n+1) | (n+1) - (n+1) (n+1)
i,j = (- w)¢ (¢1+1 »J ¢1 -1,j ¢i,j+1 ¢ 1)/4
(6.5.3)

Thus the first pass consists of independent evaluations which may be

carried out simultaneously and similarly so does the second pass.

It is unimportant how the evaluations in each pass are shared between

the processors provided it is done evenly and that the first pass is

completed before the second pass is commenced (this is to ensure that

during the second pass, the (n+1)th iterates are available when required).
An alternative application of the red-black ordering for a two

processor computer can be produced by applying the technique of folding

described in chapter 3, which we shall call the folding point ordering.

In this ordering the two passes of the red-black ordering are executed

simultaneously, in the following manner,

182

Processor 1 evaluates the (n+1)th iterates at the uncircled mesh
points while processor 2 evaluates the (n+1)th iterates at the circled
mesh points in the order 1 and () , 2 and (:) etc. The (n+1)th iterates
are defined by equation (6.5.2) before the processors cross, and by
(6.5.3) after they have crossed, for both processors.

For both the red-black and folding point orderings the number of
parallel operations per iteration is

2 2
SE%t] multiplications + SIf%J additions , (6.5.5)
where m2 is the number of internal mesh points.

In order to compare the two mesh point orderings, they are both
used to solve the Dirichlet problem for different mesh sizes. In each
case, p(G) is estimated using the power method and, by substituting
this value into equation (6.4.9), Wy is obtained. An experimental
optimum value of w is also found by solving the problem using different
values of w. The value of w is initially set to 1 and incremented by
Aw until the number of iterations required to satisfy the conditions of
convergence begins to increase. Then, in the vicinity of the value of
w that requires the least number of iterations, a smaller value of Aw
is used. The process is repeated until the region, in which the least
number of jterations are required for convergence, is found to the
required degree of accuracy. The experimental best value of w, say
Wy s is the average value of w for which the least number of iterations
is required.

The condition for convergence of the S.0.R. method is,

(n+1)
i,j

l6 ¢f“g| <e , for all i,j , | (6.5.6)

where e=SXIO-5, and also for the power method, the difference
between successive estimates of p(G) is chosen to be less than the

same value of €, Four different mesh sizes are used which produce

183

(10x10), (20x20), (40x40) and (60x60) networks. The results obtained

from these experiments are recorded in Table (6.1), where n, is the

minimum number of iterations required for convergence, np is the number
of iterations estimated from equation (6.4.12), and R and wy are as
previously defined. Obviously there is, as might be expected, little

difference between the results achieved by the two orderings.

Method Mesh size nA nE me wb
10 15 | 14 | 1.495] 1.490

Red-black 20 20 | 30 |1.717|1.717

point SOR 40 57 | 58 | 1.846| 1.842
60 82 | 76 | 1.890| 1,877
10 15 | 14 | 1.503] 1.490

Folding 20 32 | 30 | 1.732] 1.718

point SOR 40 58 | 58 | 1.848(1.842
60 83 | 76 |1.894]1.877
TABLE 6.1

One fact that is not so obvious, however, is that the folding
point ordering is not consistent. This is the result of the
simultaneous evaluation of adjacent mesh values, since the (n+1)th
iterates at the two points are evaluated using the nth iterative
values of each other, whereas when evaluated sequentially, the second
point to be evaluated would use the (n+1)th iterative value of the
first point. Hence the sequential ordering is not preserved.
Clearly, in this case, the fact that the ordering is inconsistent,
has no serious effect on the performance of the algorithm. One
question that cannot be answered however until the algorithm is
actually implemented, is, 'will the 2 processors cross at different
points during each iteration?' and if so 'will it have a more serious

effect on the algorithm's performance?'

184

The necessity of consistent ordering is an important question and
from some of the following orderings it will be seen that the lack of
consistency can be a serious problem. The main disadvantage is that
the fheory of section 6.4 does not hold, which can make it impossible

to estimate Wy accurately,

6.6 BLOCK AND LINE ITERATIVE SCHEMES

The number of iterations required for the convergence of the
iterative procéss may be reduced by evaluating iterates at groups of
mesh points by a direct method. This technique leads to bloék and line
jterative methods to which the results obtained in section 6.4 also apply.

Consider for instance, the following group of mesh points,

d
e 2 ¢ (6.6.1)
£ 1 b

a

If equation (6.2.6) is applied to points 1.and 2 we obtain the formulae,

4y = b, * b+ by * b } 6.6.2)
and 49y = 6) * 0o * 8y * b,

3

which may be rearranged to give,
¢1=mwa+%4¢g+¢c+%+¢gns}
(400, + bg * 85) * &, *+ & + 0)/15

(6.6.3)

and ¢2

or in terms of i and j,

R S

185

= (409,

01,3 1,5t je1” b5 5-1) *P541,541%0502,5%4041,5-715

and ¢i+1,3 = (¢1+1 ,j+l 542)] TS| 33 BRI 1,j o5 ,j+1 i,j- 1)/15
1 (6.6.4)

Clearly, these two equations are independent of each other and
so may be evaluated simultaneously. Thus, by partitioning the system
of meshes into (2x1) blocks we can evaluate the iterates at the points
within each block simultaneously using two processors, The order in
which the blocks are considered is important and so, remembering that
the processors of an MIMD computer are not synchronous, we shall use
the red-black ordering as in (6.5.1), except that each point represents
a (2x1) block. Any consistent ordering of the blocks may, of course,
be used but with the ordering defined in (6.2.7) for instance, we cannot
be sure that all of the latest iterative values will be available when
required. |

So, using a red-black ordering of the blocks, the (n+1)th iterates

of the SOR iterative scheme will be defined by,

(n+1) _ (n) w (n) M) ., (n)
5,50 T 04,5 T TSR, t Tial,y - 1505
(6.6.5)
(n+1) _ () () () (n)
and %e1,5 = %e1,5 * TE(TEa, 5t TELy T 19050)
LM (n) (n) (n)
where i (¢1 1, ¢1 L5+l ¢ i,j- 1)
LM) (n) (n)
and Tiel,j ~ (¢1+1 ,i+l ¢1+2,J ¢1+1,] 1) ’
during the first pass and,
(n+1) _ (n) w (n+1) (n 1) (n)
%50 T 0L T Ly T Taey T 1L 6.6.6)
(n+1) _ (n) (n+1) | _(n+1) _ (n)
and %01,5 = %el,5 T TECTIALG T Ta,y T M%5a5)

during the second pass.
In order to use more than two processors, we can either solve for

more than one block at a time, or, alternatively, partition the system

of meshes into larger blocks; so consider the following (2¢2) block

of mesh points,

i+2,j i+2,j+1

i+1,j-1 {i+l,j i+l,j+1 | i+1,j+2

6.6.7)
i,j-1 i,j i,j+1 i, j+2
11,5 [i-1,3+1
Applying the same technique as was applied to the (2x1) block, we
obtain the formulae,
655 = QU051 5u1%s,542%%502,5%0001,5-0047 i1 5794 500
0541, 542% 542,540/ %
= ri,j/24 ,
05,501 = (B850 3%0501 542"502,50174,5-10%7 (051 541495 542)
*$i42,5%0541,5-10/24
\
= ri,j+1/24 s
bie1, 501 = 0041 50195 542 0542,54 001,507 11, 502 0142, 541)
01,574,507
= Ti.p,541/% o

and ¢;; 5% (20050 54507 542" %2, 311 95,5-0%7 CGiaz, 5% 501,50

+ ¢, R TR)/24
i-1,j+1 i,j+2
/24 J)

(6.6.8)

" TislLj

Again, using a red-black ordering of the blocks, the (n+1)th iterates

during the first pass are defined by,

187

oD = oM+ 2™ - 2™y, 1
¢£n;i)1 = 4’(!,13+1 * 5 £n3+1 (',’Ll) ’
¢f'313+1) 4’?3,3“ _u_)_(ri(ﬂ,jﬂ - 24¢i(ﬂ,j+l) ’
and SRR (RIS
and during the éecond pass by, > (6.6.9)
o1 = oM+ pamD 246
“’EI,I;H = ¢-(’f§+1 * %(ri(’:;fl) - (I,Igu) ’
¢§f§f§+1 = ¢£21 sj+l f%(r£211§+1 ¢ffi J+1) ’
e

Obviously, with this scheme, we may use 4 processors simultaneously.
If there are m2 internal mesh points, m must be even. The latter point
also applies to the (2x1) block scheme.

Considering now the number of parallel operations per iteration,

we have for the (2x1) block scheme,

(2m2 multiplications + %mz additions) , (6.6.10)
when using 2 processors and for the (2x2) block scheme,
(%m2 multiplications + %m? additions) |, (6.6.11)

when using 4 processors.

The next size of block to be considered is the (3x3) block,

9 8 7
10 c f k 6 (6.6.12)
11 b e h 5
12 a d g 4

1 2 3

Applying the same technique as before, we obtain the formulae,

¢

a

%

and ¢k

(67(¢1+¢12)+22(¢2+¢11)+7(¢3+¢4+¢9+¢10)+6(¢5+¢8)
+3(¢6+¢7))/224 ,
(37¢11+11(¢1+¢9+¢10+¢12)+7(¢2+¢3)+5¢5
+3(¢3+¢4+¢6+¢7)/112 s
(67(¢9+¢10)+22(¢8+¢11)+7(¢1+¢6+¢7+¢12)+6(¢2+¢5)
+3(65%9,))/224
(37¢2+11(¢1+¢3+¢4+¢12)+7(¢5+¢11)+5¢8
+3(¢6+¢7+¢9+¢10))/112 ’
(2(¢2+¢5+¢8+¢11)+¢1+¢3+¢4+¢6+¢7+¢9+¢10+¢12)/16
(37¢8+11(¢6+¢7+¢9+¢10)+7(¢5+¢11)+5¢2
+3(¢1+¢3+¢4+¢12))/112 s
(67(¢3+¢4)+22(¢2+¢5)+7(¢1+¢6+¢7+¢12)+6(¢8+¢11)
+3(¢9+¢10))/224 >
(37¢5+11(¢3+¢4+¢6+¢7)+7(¢2+¢8)+5¢11

+3(6 40 gr0, 4+0,,))/112,

(67 (4 +6,)+22(b5+0g)+7 (608, +0g+01 () +6 (844 1)

+3(6,+6,,))/224

from which it is not difficult to produce the corresponding S.0.R.

formulae.

points within a block simultaneously, we can use 9 processors.

188

+ (6.6.13)

Thus, by evaluating the iterative values at all of the mesh

Again,

it is preferable to employ a red-black ordering of the blocks, and for

this scheme, m must be devisable by 3.

An unfortunate property of this block size is that the equations

(6.6.13) are not all of the same form and so the rates at which each of

the processors traverse the system of meshes will not be the same.

However, by considering the processor that has the most work to do, the

number of parallel operations will be,

189

(—gm2 multiplications + %;-additions) per iteration, (6.6.14)
If we compare the number of parallel operations per iteration of

the three block S.0.R. schemes considered so far, it can be seen that,

as might be expected, this quantity decreases as the block size (and

therefore the number of processors) is increased. However, going from

the (2¥1) block to the (2%2) block, for instance, does not halve the

number of operations and so it is important to compare the respective
rates of convergence. For this purpose the experiments performed using
the point iterative schemes were repeated using the block schemes, the
results of which are contained in Table 6.2. The headings of Table 6.2
are the same as those of Table 6.1. The differences in the mesh sizes
for the (3x3) block scheme are to allow for the fact tha£ m:(the square

root of the total number of internal mesh points) must be divisible by 3.

Method Mesh size n, n; Wy wy
10 13 13 1.449 | 1.439
(2x1) Block 20 26 26 1.681 | 1.681
SOR 40 50 52 1.822 [1.824
60 73 70 1.874 | 1.867
10 11 10 1.371 [1.365
(2x2) Block 20 22 22 1.617 | 1.625
SOR 40 42 43 1,784 [1.793
60 61 61 1.846 | 1.850
11 10 10 1.345 | 1.333
(3x3) Block 20 18 18 1.561 { 1.563
SOR 41 36 37 1.749 [1.760
62 52 54 1.826 { 1.83D

TABLE 6.2

As expected, by increasing the block size, the number of iterations
required for convergence of the iterative schemes is decreased. The

results contained in Table 6.2 can be combined with the number of operations

190

per iteration required by each method given in (6.6.10), (6.6.11) and

(6.6.14), to give the total number of parallel operations required by

each of the block S.0.R. methods, and are recorded in Table 6.3.

Mesh size 10 20 40 60
Method P M A M A M A M A
(2x1) Block | 2 26m° %l—mz s2n% | 9lm® | 100m® | 175m% | 146m° _5_;_1_m2

SOR
(2x2) Block | 4 | 2m? |22 | 33,2 | 33,2 |105,2 | 1892 | 305 2 | 549 2
don 3 2 2 2 2 2 2 2
*
(3x3) Block™ | 9 | 8% |13%2) 16n? | 26m® | 32m® | 52m° | “EOn? | 6762
SOR ? 9 9 9

where P=no. of processors, M=multiplications and A=additions
*mesh sizes are 11,20,41 and 62 as in Table 6.2

TABLE 6.3

Clearly, by increasing the block size from (2x1) to (2x2), we see that
the number of parallel operations is approximately halved and so would be
justified if sufficient processors are available. The effect of increasing
the block size to (3x3) is not quite so successful but still impressive.
However, it must be remembered that the equations generated by the (3%x3)
block are not identical in form and also the parallel overheads will be
considerably more for 9 processors than for 2 or 4 processors.

An interesting strategy that should further improve the power of
these block SOR methods would be to overlap the blocks. Consider, for
instance, the (2x2) block method defined in the equations (6.6.9). In
order to achieve a block ordering similar to (6.2.7),‘the i and j indices
are incremented by 2 from 1 to (m-1); the i index being incremented first.

If the i index is incremented by 1 instead of 2, the blocks in each column

will overlap such that the elements (i,j) and (i,j+1) of each block will be

191

the elements (i+1,j) and (i+1,j+1) of the previous block (see (6.6.7)).
Obviously, during an iteration, each element will be evaluated
twice using the latest iterates at neighbouring mesh points which are

illustrated as follows:

(n) (n)
T N I
m+2) J+l) [(eD)| ()
} : (6.6.15)
: |
2! Jme2) [oe2))
(n+2) [(n+2)

whefe bracketed values represent the iterative level at each mesh point.
This method is called the (2%2) Overlapping Block SOR method and by
applying a similar technique to the (2%1) Block SOR method we obtain the
(2%¥1) Overlapping Block Method. Table 6.4 contains the results obtained
by performing the same experiments, as applied to the other S.0.R. methods,

using the two Overlapping Block S.0.R. methods.

Method Mesh size nA nE we wb
10 23 11 1.358 [1.397
(2X1) Overlapping 20 62 24 1.204 |1.653
Block SOR 40 137 47 1.147 [1.808
60 200 67 1.159 |1.858
10 18 9 1.321 |1.309
(2x2) Overlapping 20 45 19 1.298 |1.583
Block SOR 40 . 99 38 1.239 (1.767
60 149 55 1.255 {1.833

TABLE 6.4

192

These two overlapping block metﬁods lack consistent ordering, and
the effect that this has, can plainly be seen ianable 6.4. Apart from
the number of iterations being excessively large, the value of Wy obtained .
from (6.4.9) is grossly inaccurate. Although subsequent attempts to overlap
blocks were more successful, the strategy was abandoned because of the
inability to estimate w satisfactorily.

The final schemes that we shall investigate are Line S.0.R. Methods
which involve the solution of one or more complete lines of mesh points by a
.direct methéd.

Consider the jth column of mesh points (j=1,2,...,m). If equation

(6.2.6) is applied to each mesh point in the column, then the following

tridiagonal system of equations is created:-

- R L TR L
4 -l %1, 1,
-1 4 -1 : -
. 0 2,5 2,3
14, ! :
RSN E = : (6.6.16)
\\\\\\ \\\ 1 :
0 IR : I
R ' 1
_]' 4_. _¢m,j_ ‘dm,jJ

where, the right hand side, di 3 (i=1,2,...,m), which consists of

b

values at neighbouring mesh points not lying on the column, is defined

as,
M) _ (1) , (n+1) . (n)
4,5 7 %1,5-1 F %0, "t 0,5
M) _ (+1) . (n) .
di,j = ¢i,j—1 + ¢i,j+1 s for 1—2,3,...,(m—1) (6f6'17)
() _ (n+1) , (n) (n)
S N SE R SE RS

Clearly, these formulae represent the Gauss-Seidel Iteration scheme
and one iteration involves the solution of m such systems of equatidns.
In order to .perform this method on a parallel computer, there are

two possible approaches. One approach involves the use of the Folding

193

Triangular Factorisation Method described in Chapter 3, i.e., each
system of equations would be solved using this method thus permitting
the use of two processors. Alternatively, Gaussian Elimination
[Wilkinson, 1965] can be used to solve each system of equations, each
processor of the parallel computer executing the algorithm on one or
more of the m systems.

Since the properties of the Folding Triangular Factorisation Method
are detailed in Chapter 3, we shall only consider the latter method. If

the Gaussian Elimination Method is applied to the system of equations

(6.6.16), the following set of equations are derived:
-1 (n)
817 12 hy = 9158)
S
1 (4_gi—1) »
for i=2(1)m ,
- (qM
h. = (d +h1 1)g

' 1] . b (6.6.18)
then, ¢(" L h
and ¢£?;1) (?3 gi¢£2113 for i=m-1(-1)1

Now considering the S.0.R. method, the (n+1)th iterates of the

jth column are redefined by the equations,
¢(“;’1) (“3 o ¢>(“3) for i=1()m , (6.6.19)

where ¢? j (i=1,2,...,m) represents the Gauss-Seidel solution to the
’

system of equations (6.6.16) which is defined in (6.6.18) as ¢(?Jl).
It is important to remember that the 8; (i=1,2,...,m) need only be
calculated once since they remain constant for each system of equations
"and each iteration.
As with the point S.0.R. schemes and for the same reasons, it ié

necessary to consider the columns of mesh points in a red-black order.

1f the columns are numbered 1 to m from left to right, then each

194

iteration consists of two passes, the first of which includes columns

1,3,5...(m-1) and the second, columns 2,4,...m, assuming that m is even.
. . n) . .

Furthermore, the right hand side vector gﬁ), is redefined for the

first pass as,

(n) _ () m) . . (n)

4,5 T %1511 %,5 * %1,jna
M) _ . (n) (n) .

di,j = ¢i,j—1 + ¢i,j+1 , for i=2,3,...(m-1) (6.6.20)
m) _ . () (n) (n)

T AR T U NS UL B AN T

and for the second pass, the right hand side vector will betg(n+l) as

defined in (6.6.20) instead of gﬁn) as defined in (6.6.17). Again, as
with the point S.0.R. scheme, the first pass should be completed before
the second is started but within each pass, the order in which the
columns are considered or shared between the processors is not important.
Of course, as with the point SOR schemes, it is also possible to apply
the technique of folding to give a Folding Line S.0.R. method where,
using two processors, one processor evaluates columns 1,3,5...(m-1)

while the other evaluates columns m,m-2,...,2. Once more the right

hand side is redefined as gﬁn),before the processors cross and gﬁn+1)
after they have crossed where éﬁn) is as in (6.6.20).

For both methods, assuming m is even and two processors are used,

the number of parallel operations per iteration will be,

2
%(Sm-l) multiplications + am_ additions , (6.6.21)

2
with an additional m multiplications +(m-1) additions before the
first iteration to evaluate the 8; (i=1,2,...,m).

Now consider two adjacent columns of mesh points which are

numbered in the following way,

2i-1 2m
2m-31 2m-2
i !
1 '
| '
]]
) 1

5 6

3 4

1 2

As with the single line method, equation (6.2.6) may be applied to

each mesh point in the two columns to give the system of equations,

— - = (n+1) — —1(n)
4 -1 -1] 4 d,
-1 4 0o -1 ¢2 d2
-1 0 4 -1 -1 : ;
')
-1 -1 4 0 -1 ! :
—1 O\ \\ \‘\ \\\ : :
SN NN ; S
. \\\ \\\\\\\\\ \‘\ : :
\\ ~ ~ ‘\ _1 ¢]
S \\ \\ \\ : !
. \\ \\\ -1 : :
N \ N ' t
_ -1-1 4] 9omd »ﬂZm-
where the solution vector Qﬁn+1) is defined as:
(n+1) _
¢(n+1)= {¢(k+1)/2’j , for k=1,3,...,(2m-1)
-k L mey) _ '
K/2,3+1 , for k=2,4,...,2m
and the right hand side vector, éﬂn)’ is defined as,
() _ (m+1) . (n))
dp " = 91,5-1 % %,5 ¢
m) _ () (n)
dy” = 80541 * 01,542
+1
¢E£+1;/2 ., » for k=3,5,...,(2n-3)
d(n) _ 5]
k-) r
¢k/2 §4+2 , for k=4,6,...,(2m-2)
(n) _ (1) o (n)
Domer = n,i-1 F el
(n) _ ,(n) (n)
and dom - ¢m+1,j+1 * ¢m,j+2)

195

(6.6.22)

(6.6.23)

(6.6.25)

196
These formulae again represent the Gauss-Seidel Iteration scheme and
one iteration involves the solution of m/2 such systems of equations.

The coefficient matrix is quindiagonal and so (6.6.23) may be
solved using the Folding Triangular Factorisation Method or by Gauss ‘

Elimination. As with the single line S.0.R. method, the latter algorithm

is considered which leads to the following formulae,

g = 1/4, S S| By = 48y
g, = 1/(4+a)), a, = -g,8, » h, = (d,+h))g,
and for k=3(1)2m, S
3 5 , when k is odd
bk =
(ak_z—l) , when k is even
gk = 1/(4—gk-2—bkak—1)’
(bkgk_l—l)gk , when k is odd }(6.6.26)
a =
bkgk-lgk , when k is even
and hk = (dk+hk_2-bkhk_1)gk
then (n+1) _
¢2m - h2m ’
- (n+1) _ _ ()
om-1 R on-1"22n-1%2m
(n+1) _ o gl (4D _
and by hk a, +1+gk¢k+2’ for k—2m—2?2m-3,...1”

As with the single line S.0.R. method, the application of the relaxation
technique leads to the (n+1)th iterates of the jth and (j+1)th columns

being redefined to give the S,0.R. formulae as

|
¢(n+1) = ¢(n) + w(¢* _¢(n) i

1,3 1] 28-1 71,07 lgor 4=1,2,...m, (6.6.27)
(n+1) _ . (n) « _ (M)
and 5 5e1 T P4,5e1 T 000357 5 5e)

where ¢* represents the Gauss-Seidel solution iﬁn+1) defined in (6.6.26).
Again it is only necessary to calculate 813y and bk (k=1,2,...2m)

once. Obviously, with this 2 line S.0.R. method, m must be even and for

197

the same reasons as before, a red-black ordering will be used on the
pairs of columns. This means that the right hand side vector gﬁn) is
now defined as
(n) (A
- 4 (n)
dp = 01517 %,5 ¢
(n) (
- n) (n)
dy = ¢O,j+1 * ¢1,j+2 ’
(n)
. , Tfor k=3,5,...(2m-3 _
a™ Ple1)/2,501 ’ e o (6.6.28)
K .6.
¢k/2,j+2 , for k=4,6,...(2m-2)
(m _ ,() (n)
Dome1 = %m,5-1 " Pmel,
(ny _ () (n)
and dom = Omel,je1 T ®myye2 J
. . (n+1) . .
during the first pass and as d during the second pass. Now, if
m is divisible by 4, the number of parallel operations per iteration
using 2 processors will be,
%{IOm-S) multiplications + %{6m-1) additions, (6.6.29)

with an additional (8m-5) multiplications + (6ém-3) additions before
the first iteration to evaluate 8 and bk (k=1,2,...2m). |

Thus, we have defined 3 line SOR methods which we shall call the
Line SOR, Folding Line SOR, and Two Line SOR Methods respectively. In
order to compare the rates of convergence of these methods, the previously
described experiments were applied to the methods the results of which
are contained in Table 6.5.

It is clear from this table thét there is a discrepancy between the
estimated and actual values of n and w for the Folding Line SOR Method.
This is because, as with the Folding Point SOR Method, the sequential
consistent ordering is not preserved. In this case, although not
disastrous, the effect is noticeable. Not only is the rate of convergence

less but the estimation of w is inaccurate, and so the method will no

198
longer be considered but it serves to demonstrate the effect that the
absence of consistent ordering can have.

Method Mesh size n, ne 0, wy
10 12 10 1.381 1 1.367
20 22 22 1.630] 1.625
Line SOR 40 42 | 43 | 1.792|1.793
60 61 61 1.855} 1.849
10 15 12 1.559 {1.408
Folding 20 30 23 1.731 1 1.640
Line SOR
40 57 44 1.84311.797
60 81 62 1.888 | 1.850
10 9 8 1.27311.244
Two 20 17 15 1.521 | 1.516
Line SOR 40 31 31 1.729 | 1.724
60 45 46 1.804 | 1.804
TABLE 6.5

The results obtained using the other two methods are more impressive
and to make a direct comparison between them, the results contained in
Table 6.5 must be combined with the numbers of parallel operations per
iteration found in equations (6.6.21) and (6.6.29). This will give the
total number of parallel operations required by each of the methods and
these appeaf in Table 6.6.

Clearly, from Table 6.6, it can be seen that the single line SOR
method, although requiring more additions, requires fewer multiplications
than the two line SOR method. Since a multiplication operation takes
longer than an addition operation, the line SOR method is faster
operationally than the 2 line SOR method.

This line SOR technique can be extended to include more than two
lines of mesh points. However, the resulting systems of equations will

have a wider bandwidth and will be more sparse. Thus, the object of

Mesh size 10 20 40 60
Method M A M A M A M A
Line SOR | 18m°-5m som®+m-1 | 33m%-10m | S5m%em-1 | 63m2-20m 105m%+m-1 }%mz-%gm 305,201
Two Line 45 2 13 23 85 2 53 25 155 2 123 219 225 _2 193 2 33
SOR 7?m -7rm- 27m +§m-3 7?m —jrm-s 5im -Em-S —E—m -—Z—m-S 93m -Tfm—S > _— -5 {135m -ifm—S

. where M=multiplications and A=additions

TABLE 6.6

661

200

using an iterative method to solve the original system of difference
equations will have been defeated in that, once again, the method of
solution will not take advantage of the large number of zeros that occur
in the systems of equations.

In this section point, block and line SOR methods have been
considered with some interesting results and so, to complete the analysis,
a comparison will be made between these different types of method in the

final section.

6.7 CONCLUSIONS

In this chapter, a variety of SOR methods have been investigated with
some impressive results. It has become clear, however, that the way in
which the system of mesh points is partitioned is not as important as the
order in which values at the mesh points or blocks of mesh points are
evaluated. Furthermore, the best ordering is the red-black ordering,
since it produces the conditions necessary for a parallel algorithm,

The final choice of which method to use will depend on the character-
istics of the parallel computer on which it is to be implemented such as
the number of processors that are available. It is still useful to make
some sort of comparison between the methods included here.

Let us consider the Red-Black Point, (2x1) Block, (2%2) Block, Line
and Two Line SOR methods. Although the (2x2) Block Method requires 4
processors it is not difficult to implement it on a computer with 2
processors and so a comparison shall be made between the performances of
the methods on a parallel computer with two processors. The most
meaningful comparison that can be made concerns the total number of
arithmetic operations required by each of the methods which is the
product of the number of iterations and the number of operations per

iteration. This technique has already been applied in the previous

section to some of the methods and, by applying it to the other methods,

Table 6.7 can be produced.

Mesh size 10 20 40 60
Method M A M | A M A M A
‘éf,f;ﬁlég'; 224m® | 374m? | 434m? |724n? |85im® |1424m% |123m% |205m°
(1) B1ock | aen® |asin® |s2n” lotn® |100m” |175n° |146m” |2554m’
(Zxé())RBIOCk 274m? |{49im? |55m° |99m® |105m® |189m° |1524m?|274)m°
Line SOR* 18m*> |30m°> [33n° |55m® |63m> |105m° |91im> |152bm?

1 *
Two tane 224m? [27m% {42im? |51m% | 774m® |93 m® |1124m®|67im°

where M=multiplications and A=additions
*results on these lines include terms in m2 only.

TABLE 6.7

The results contained in Table 6.7 reveal that the Block SOR methods
are not as good as the other methods. The best method is the Line SOR
Method with the Two Line and Red-Black Point SOR Methods also achieving
very good results. These results are not conclusive however since no
allowance has been made for such factors as the unsolved problem of
memory contention (see Chapter 2).

A final comment on the importance of consistent ordering arises from
the effect that the choice of w has on the number of iterations required
for convérgence of the method. The number of iterations against w for a
20x20 system of meshes has been plotted in Graph 6.1 for the 5 methods
considered in this section. Clearly, a bad choice of w can greatly
increase the number of iterations and so it is important to be able to

estimate R reasonably accurately.

201

202 |

140

130 Red-Black Point SOR

120]

{2x1) Block SOR

110 J
{(2x2) Block SOR and Line SOR

100]

90 4

80 .

70

60 J

. of Iterations

50 |

No

40

30 1

20 J

Two Line SOR
10 |

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

w

GRAPH 6.1

203

To conclude this chapter, let us reiterate the main points in
developing a parallel SOR algorithm. Firstly, it is desirable but not
vital to preserve the properties of the sequential 6rdering, i.e.,
property A and consistent ordering, and secondly, the ordering of the
mesh points or blocks of mesh points is more important than the way
in which the system of mesh points is partitioned. Finally the most

useful ordering, although not the only one suitable, is red-black ordering.

NB. The results cluded in this chapref in particular w tables b.1,b.2
bt and .5, were evalvared on e TcoL 1904S compoter at

Lo\ﬁlr\boroos\f\ Unive(s.\hl and vounded +o theee deamal -C‘vsu(es .

CHAPTER 7

THE CORRECTION OF THE ELEMENTS OF THE INVERSE MATRIX

BY IMPLICIT ITERATIVE PROCESSES

7.1 INTRODUCTION

The inversion of a matrix involves the solution of the matrix

equation,
AY=1 |, (7.1.1)

for Y, the inverse of the (mxm) matrix A.
The computed solution Y of (7.1.1) may be improved or
corrected by the application of the iterative procedure defined by

the equations, n)

R 1 -y,

p™ | (), (n)

s (7.1.2)

and ym D @y

which can be reduced to the familiar explicit iterative process,

(D _y My ay@ (7.1.3)
(1

where the initial approximation Y is the computed solution Y of

equation (7.1.1). Hotelling [1943] showed that this process has

|
|
|
|
|
|
|
quadratic convergence.
In this chapter, two implicit methods are derived and are
shown to have faster rates of convergence than (7.1.3). The first
involves a similar amount of work and has the same rate of convergence
as (7.1.3), but, by applying it in a different manner to that of
(7.1.3), A-1 can be evaluated to the same degree of accuracy in a
shorter time.
The second method is shown to have quartic convergence but
despite the impressive results that it achieves, the excessive work
that is involved per iteration makes it uncompetitive with other

methods.

205

7.2 HOTELLING'S METHOD

The iterative process attributed to Hotelling is given in (7.1.3).
It is essential that the right hand side of this equation is not

expressed in the form ZY(n)—Y(n)AY(n)

so as to avoid the cancellation
of errors and thus make the method ineffective. It is also important
that the residual or correction matrix,
¢ o= a-yMy | (7.2.1)
is computed using the accumulation of inner products with each
component of En being rounded once on completion.
The iterative process is usually terminated when the following

condition is satisfied

max.abs.[(an.Y(n))i j]<2.eps.(max.abs.[(Y(n))i j]) R (7.2.2)

where max.abs.[(Z)i j] is the greatest absolute value of the elements

3
of matrix Z, and eps. is the smallest number for which l+eps>1 on
the given computer.

If we now consider the correction matrix (I-Y(Z)A), then using

(7.1.3) we have:

vy o1 o @M L oy Wy,

I - 2Y(1)A + (Y(I)A)2

- a-yWpay? - éf : (7.2.3)

Hence we can say that, if all the roots of 61 are less than unity

in modulus, then the method converges quadratically.

7.3 THE DERIVATION OF IMPLICIT MATRIX PROCESSES

It is possible to derive implicit iterative methods by

proceeding in the following manner. To avoid confusion, let X(l)
be an approximation to the inverse of A. Then we can write,

(1, _
X*7A =L +D -U (7.3.1)

206

where L1 and U1 are strictly lower and upper triangular matrices
respectively whose non-zero elements are small and D1 is a diagonal

matrix whose non-zero elements are usually close to unity.

If we pre-multiply (7.3.1) by D1 we have,
p7ix My - ot s 1 -7y (7.3.2)
1 171 171 2 T
and letting,
> N |
L. =D "L
Nl }1 1 (7.3.3)
and U1 = D1 U1 s
we may rewrite (7.3.2) as,
-1 (1) o ~
D1 XA = -L1 + 1 - U1 , (7.3.4)
which in turn may be rewritten in the alternative form,
_1 (1) _ ~ ~ ~ A,
D1 XA = (I-Ll)(I—Ul) - L1U1
= (I-Fl)Gl) (7.3.5)
where _ v 1~ -1
- F, = LU, (I-U;) “(I-L,)
i 1 (7.3.6)
and G1 = (I-Ll)(I-Ul)
Equation (7.3.5) may be rearranged to have the form,
-1 -1 . -1_.-1_(1)
A" = G1 (I-Fl) D1 X , (7.3.7)
which leads to the implicit matrix equation,
6,x? = -k oM (7.3.8)
where X(z) is a closer approximation to A_1 than X(l).
Now the elements of the matrix F1 are certainly small from our
initial assumptions and if all the roots of F1 lie within the unit
circle, we can expand (I_Fl)-l in the form of an infinite series in
Fl. Thus
Glx(z) 5 (I+F1+...)DIIX(1) . (7.3.9)

If we now neglect all of the terms in Fl we obtain the simple

matrix equation,

Glx(z)

(- a-vpx® - i x) (7.3.10)

207

Using (7.3.3) we may rewrite this as,

-1 -1 (2) _ -1,(1)
(I-D L) (I-D] U)X = DI°x ,

which leads to,

o~ len 2y _,Q)
(Dl-Ll)D1 (D1 Ul)X =X . (7.3.11)
Introducing the auxiliary matrix Y such that,
- p-L (2) '
Y = D1 (Dl—Ul)X s (7.3.12)
equation (7.3.11) may be expressed in the form,
- x(1
(Dy-L)Y = X (7.3.13)
(2) _
and (Dl-Ul)X = DlY

The matrices Dl’Ll and U1 may be easily obtained from (7.3.1)
and thus so may (Dl-Ll) and (DI-UI). Hence, equations (7.3.13) may
be solved by carrying out simple consecutive implicit forward and

backward substitution processes acting on each column of X(Z) using

1)

the corresponding column of X as the right hand side vector.
Thus we have a first order implicit iterative method for
improving the inverse of the matrix A.
A second order implicit process may be obtained by returning
to equation (7.3.9) and this time retaining the initial term in
the expansion of (I—Fl)—l. Thus,
GIX(Z) - (I+F1)D11X(1) , (7.3.14)
but from equation (7.3.5) we have,
F, = i—Dle(l)AGII ,

from which on substituting into (7.3.14) we obtain,

2y _ -1,(1) -1, (1) 4 o-174-1, (1)
G, X" = D "X+ [1-D"X"AG T 1D] X

-1

1

o7t X e prxMagT o x My (7.3.15)

Now from (7.3.6) we have,

-1 ~ ~ .-1
Gl - [(I'Ll)(l'ul)]

~ -1~ -1
(I-Ul) (I-Ll) H

and using (7.3.3),

208

-1 _ -1 -1
G~ = (D,-U) 7D, (D,-L) D (7.3.16)

1 1
Substituting this result into (7.3.15) and rearranging we have
N) BN ¢ (1) -1 -1, (1)
(Dl-Ll)D1 (D1 Ul)X = X + [I-X A(DI-UI) Dl(Dl-Ll) 1x
NG H ¢)

= 1 s (7.3.17)
where
- (1) -1 -1
Hy = [I-X27A(D;-U) 7D, (0;-L) 7]
As with the first order process (7.3.11), the second order
process may be expressed in the form
(D -L)Y = x(1) HIX(I)
(2) (7.3.18)
and (Dl—Ul)X = DlY ,

where Y = DII(DI-UI)X(Z) ,

which may be solved by carrying out consecutive forward and backward
substitution processes acting on each column of X(Z) and the
corresponding column of X(l).

Again thg matrices Dl,Ll,Ul,(Dl-Ll) and (Dl-Ul) are easily
obtainable and since the latter two are triangular in form, their
inversion presents no special computational difficulties. Once the
matrix product X(I)A has been evaluated, matrix H1 is produced by
first evaluating (Dl-Ul)—1 and Dl(Dl—Ll)-l, then their product
©;-0)) "', 0,-L)7" and final1y [I-X(I)A(Dl-Ul)'lDl(Dl-Ll)-l]. The

greater potential of this second order process is seen in section 7.5.

7.4 CONVERGENCE PROPERTIES OF THE FIRST ORDER IMPLICIT PROCESS

Let us now consider the error of X(l)A which is quite simply

(1)

the amount by which X“"“A differs from the truesolution I. Thus we

have,

1), _ ' -
I-X*7A = L1 + U1 + (I—Dl) = Cl . (7.4.1)

When equation (7.3.10) is post-multiplied by A, we obtain

the result, GIXCZ)A - DIIX(I)A

209

X(z) = G, D X(l)

or 1 Dy . (7.4.2)
Combining this result with equation (7.3.5), we obtain,
X(Z)A = G’I(I-F)6y
-1
= I- G1 FlGl . (7.4.3)
Hence, the error of X(Z)A is given by,
(2)
I -X""7A= G1 FlG1 s (7.4.4)
where from equations (7.3.6) we have defined
Fi61 = L%
-1 ~ =1~ -1
and G1 = (I-Ul) (I-Ll)
Since the elements of il and ﬁi are small, and if the roots
of L1 and U1 lie within the unit circle, then equation (7.4.4) may
be expanded in the form,
1 - x®a = (I-ﬁl)'l(l-f)y~ A
= (I+U+..)(1+L1 .)L Uy
~ ~ ~~2’V
= () 1U1 + U1L1U1+... (7.4.5)
-1 : -
= D1 LlDl U1+ cee . (7.4.6)

At this stage it is necessary to discuss the order of magnitude

of the elements of the matrices Ll’Ul and Dl’ which we would normally

find in practice.

If, for example the first approximation to the inverse has been

1,U1 and

I-D,) will in general be of the same order of magnitude. Then, we
1

determined by a simple direct method, the elements of L

may write, _ '
L1 = U1 = Dl-I = 0(e) . (7.4.7)

Also, since matrix D, is a close approximation to I then its

1
elements and likewise the elements of Dil will have values close to
unity and so may be replaced by I.

Hence, by applying norms to equation (7.4.6) to the first

order of approximation we have,

210

N(I-xPa) = N(LUD | (7.4.8)
where N(C) = [ZZCi,j]% , (7.4.9)
and is defined as the square root of the sum of the products of
its elements by their complex conjugates.

Since, from (7.4.1) we have,

2 2
Cl = (L1+U1+I—D1) s
then N(cf) > N(L,U,) , (7.4.10)

for omitted terms can only be positive or zero in the trivial case.
Hence,from (7.2.3) we can say that,
NCI-x Py < Ny Ppy (7.4.11)

Thus, the proposed implicit method has quadratic convergence
and competes with Hotelling's method. However, it is obvious that
the formula given by equations (7.3.13) converges faster through
having smaller neglected terms. The amount of work in each
iteration remains the same as that for the Hotelling's formula,
i.e. O(2m3) multiplications per iteration where m is the order
of the matrix.

We shall now derive an upper bound for the error in X(i) in
terms of N(X(l)) and N(Cl), the norms of the matrices X(l) and C1

respectively.

Let Ri denote the residual matrix. Then by definition we have,

R, =1 - xPa, foriz1,2,3,... , (7.4.12)
where GiX(1+1) - DiX(l) , (7.4.13)
together with,
x{p - -L.+D,-U, and G. = D’I(D -L)D'l(D -U.) (7.4.14)
iM% i 71 YiThPy WY "

Now, by taking norms in equation (7.4.12), we have
vep) = Na-xMay < wee)
and from equation (7.4.11),

N(Ry) = N(I-xPay < N(cf),

211

finally giving, . .
1
NR,,,) = N(I-xEay N((cf)l) . (7.4.15)

Hence, it follows immediately that .
N ox Gy N(CflA'l) ,
which on substitution for A-1 as given by equation (7.4.1) yields
the final required result '
N~ x Dy N(cfl(l-cl)'lxcl))
< N(cfl(1+cl+cf+...)x(l)) : (7.4.16)

If N(Cl)sk<l, the roots of C1 are less than unity in absolute

value and we obtain the result,

. i
“Lx G Dy v W (7.4.17)

N{A
where N(Cl) =k <1.
This gives an upper bound for the difference between each

(i+1) and the corresponding element of A—l.

element of X
A simpler limit can be derived when we use the relation
N(X(l)) < mx ,

where x is the greatest absolute value of any element of X(l) and

we substitute this relation into equation (7.4.17).

7.5 CONVERGENCE PROPERTIES OF THE SECOND ORDER IMPLICIT PROCESS

We shall now apply a similar analysis to the second order
implicit process as has been applied to the first order process
in section (7.4). First of all we shall consider the error of
X(Z)A which, as before, is the amount by which X(Z)A differs from I.
So, from equation (7.3.14) we have,
Glx(z) = (I+F1)D11X(1) i

which on post-multiplying by A and rearranging gives,

x(2a = GII(I+FI)DIIX(I)A . (7.5.1)

212

Now, using the result of equation (7.3.5), we have

(2), -1, 2
X*A = 6] (I-F))6,
-1.2

= 1-6, FiG, . (7.5.2)
Thus, the error in X(Z)A is given by,
(2), _ .-1.2
I -X""7A = G1 FlGl . (7.5.3)
Since, from the definitions of F, and G, in (7.3.6), we have,
F16) = 1Y |
-1, S I |
and G1 F1 = (I-Ll)

~ _1 -~ _l—v -~ ~
(1-0) 7" (1-L) 7L, U, (1-0))
)

(I+U1+...)(I+L1+.. L1U

1(I+U1+...)(I+L1+...),

then,
(2) o~ 2 . v o~
I - XA = (L1U1) + higher powers of LIUI

= (DI1L1DI1U1)2 + higher powers of DilLlDilul‘
‘ (7.5.4)
If we again examine the elements of the matrices Ll’Ul and Dl’
then (7.5.4) may be reduced to the form,
I - X(Z)A = (L1U1)2 + higher powers of LlU1 . (7.5.5)
In the light of earlier observations concerning the error in
the first order implicit process, we can write immediately that
N(I-xPa) < NED . (7.5.6)

Thus. the proposed method has quartic convergence and so
represents an extremely powerful process. Unfortunately, offset
against this advantage, we note that the computational requirements
for the implicit formula is 0(%§m3) multiplications for each iteration.

As with the first order implicit method, we shall now derive an
upper bound for the error in X(i) in terms of N(Xcl)) and N(Cl).

Once again we have the residual matrix Ri defined in (7.4.12)

as

R, =T - xEIp , for i=1,2,3,... ,

where now, c.x* D _p x@) [1-0-tx Wagi1p x @)
1 1 1 1 1

213

and taking norms we have,
NRp) = na-xPay = nee))
From equation (7.5.6) we now have
NRy = N(I-xPay < NECD) (7.5.7)

and hence,

NR.) = N(I-xE*Dpy < N(EHY . (7.5.8)

i+1)
Again it follows that
i
N(Ci Al
i
N(C] (I-Cl)X(l))

A

nea- Ly G+,

A

N (eepsce . ox @y (7.5.9)
and N(C1)$k<1, the roots of C1 are less than unity in absolute value
and we obtain the result,) _
N lx Dy . N(X(l))k41/(1—k) (7.5.10)
where N(C1)=k<1.
Thus, as in (7.4.17), we have produced an upper bound for the

(i+1)

error in X and again this may be simplified by the use of the

relation
N(X(l)) < mx,

where x is the greatest absolute value of any element of X(l).

7.6 IMPLEMENTATION OF IMPLICIT ITERATIVE METHODS AND RESULTS

In the following experiments we shall consider the inversion
of symmetric positive definite matrices. The normal implementation
of Hotelling's method involves the calculation of an initial
approximation to A-1 by a direct method, i.e., Choleski factorisation
(Martin, Peters and Wilkinson [1965], [1966]).

Choleski factorisation may be defined as follows:

A=LLt (7.6.1)

where L is a lower triangular matrix whose elements are determined

by the following formuiae,

214

for i=1(1)n
j-1
2,5 Gy C kzlzi,kzj,k)/gj,j
- for j=1,...,i-1. (7.6.2)
i-
and b Gy - Lo k)%
s s k=1 1’
Si;ce triangular matrices are easily invertable, then we may
take advantage of this fact by observing that,
At aah s ahtet e ahTt (7.6.3)
If we denote L-1 {(also a lower triangular matrix) by P, then
the elements of P are defined thus,
for i=1(1)n
pl,i = 1/2 ,1i
j-1 (7.6.4)
Py i -(kgizj,kpk,l)/ i3
for j=i+l,...,n
Finally, we have 1 T
A =P.P ,
and since A—1 is symmetric it is only necessary to calculate the
lower triangle of elements defined as follows:
Wl =0T, =) b (7.6.5)
Js1 J,1 . “k,j k,1

k=j
for j=i,...,n

and i=1,...,n.
Now using this method to provide an initial approximation to
A-l, the three methods i.e., Hotelling's method and the first and
second order implicit iterative methods, were used to find the

inverses of the following examples,“’a‘(en ‘Ffbm Gregor\/ ond \(ame\/ DﬁbS]

ExamEIe 1
1.0 -0.02 -0.12 -0.14
A = -0.02 1.0 -0.04 -0.06
-0.12 -0.04 1.0 -0.08

-0.14 -0.06 -0.08 1.0

215

Example 2 The quindiagonal matrix,

5 -4 1 0 0

-4 6 -4 1 0

A = 1 -4 6 -4 1
0 1 -4 6 -4

0o o0 1 -4 5

Example 3 The Wilson matrix,

ﬁo 7 8 71
7 5 6 5
A= 8 6 10 9
| 7 5 9 10
Examgle 4
(10 1 4 0]
A = 1 10 5 -1
4 5 10 7
e -1 7 9|
Example 5
420 210 140 105]
A 210 140 105 84
140 105 84 70
105 84 70 60

The performance of each method is recorded in Table 7.1 where for
each example we give the number of iterations required for convergence
of the formula and the run time. The condition for convergence is
given in equation (7.2.2).

In the first example, each method converges in one iteration.
Clearly .the initial approximation to A-1 is correct to within the
accuracy of the computer and the first application of each iterative
formula merely confirms this.

In examples 2,3,4 and 5, each method converges in two iterations.
In these cases, the initial approximation to A-1 is very good and the
first iteration produces the correct result to within machine accuracy
which the second iteration confirms.

Obviously, the initial approximation to A"1 provided by the
Choleski inversion method is too accurate to demonstrate the improved

convergence rates of the implicit iterative methods, so the examples

216

were repeated using the identity matrix as the initialvapproximaticn
to A_l. The results from the second set of experiments are contained
in Table 7.2.

The results for example 1 clearly demonstrate the different
convergence rates. In complete agreement with sections 7.4 and 7.5,
the first order implicit method has a slightly better convergence rate
than Hotelling's methéd while the second order implicit method requires
only half the number of iterations that Hotelling's method requires.

Hotelling's method does not converge for examples 2,3,4 and 5,
but the implicit methods do. The second order method requires
approximately the same number of iterations as the first order method.
This is due to the effect of rounding errors in the second order method,
which is as might be expected because of the extra arithmetic involved.

It is clear, from Tables 7.1 and 7.2, that Hotelling's method does
not always converge when using I as an initial approximation to A_l and
that the more accurate approximation produced by the Choleski Inversion
Method must be used. Using this approximation with the first order
implicit method, it can be seen that it is competitive with Hotelling's

method both in terms of the number of iterations and the run time,

being at least as fast as Hotelling's method. However, since the first

1

’

order method is reliable when using I as an initial approximation to A~
then unlike Hotelling's method it is not necessary to use the more
accurate approximation. So, comparing the run times for the First
Order Method using I with those of Hotelling's Method using Choleski
Inversion, we see that the former method is significantly faster.

The second order implicit method, although achieving some
impressive results in terms of the number of iterations, is relatively

slow because of the excessive work involved per iteration.

EXAMPLE HOTELLING'S 1ST ORDER 2ND ORDER
METHOD IMPLICIT METHOD IMPLICIT METHOD
1 No. of iterations 1 1 1
Run time 24 23 27
2 No. of iterations 2 2 2
Run time 25 24 29
3 No. of iterations 2 2 2
Run time 24 24 27
4 No. of iterations 2 2 2
Run time 24 23 28
No. of iterations 2 2 2
> Run time 25 23 27
N.B., The run time is given in mill units
TABLE 7.1
EXAMPLE HOTELLING'S 1ST ORDER 2ND ORDER
METHOD IMPLICIT METHOD IMPLICIT METHOD
1 No. of iterations 6 5 3
Run time 21 22 26
) No. of iterations Does 6 6
. not
Run time converge 24 32
No. of iterations Does 6 5
3 Run time not 22 28
converge
No., of iterations Does 6 6
4 Run time not 23 29
converge
No. of iterations Does 6 5
5 . not
Run time converge 23 29

N.B, The run time is given in mill units

TABLE 7.2

Finally, the program for the first order implicit method calculates

the full inverse A while the program for Hotelling's only produces the
lower triangle of A—l. Hence the first order method's program can be
used to evaluate the inverse of an unsymmetric matrix while the program
for Hotelling's method would have to be adapted to produce the full

inverse of the matrix.

CHAPTER 8

CONCLUSIONS

219

In the opening chapters of this thesis, various types of parallel
computer were discussed. It was stated that since the problems
associated with SIMD computers were less formidable than those
associated with MIMD computers, the present state of the development
of SIMD computers is more advanced. However, it is also obvious that
it is important not to neglect the development of MIMD computers since
there is only a relatively small class of problems for which the
solution on an SIMD computer is eminently suitable. The point is that
it is important not to develop one type of computer while neglecting
others, particularly if, for that type of computer, it is difficult or
impossible to design good algorithms.

In the same way it is important not to develop one type of algorithm,
while neglecting others, if there is not a suitable computer on which to
use that type of algorithm. At the same time a type of algorithm should
not be dismissed completely if it does not perform as well as another
type of algerithm on existing computers.

Clearly then, it is important that the development of computers
and algorithms goes hand in hand, i.e., the computer designer must be
aware of the types of algorithms available while the algorithm designer
must be aware of the capabilities and performance of the proposed
computers,

The algorithms presented in this thesis outline a variety of
different strategies for developing parallel algorithms. A general
classification of the different types of parallel algorithm has been
made by Kung [1976] and are as follows:

(a) synchronized parallel algorithms,

(b) asynchronous parallel algorithms,

(c) synchronized iterative\algorithms,

(d) asynchronous iterative algorithms,

220

(e) seni-synchronized iterative algorithms,

and (f) adaptive asynchronous algorithms.

To define these classes of algorithms, it is assumed that'an algorithm
consists of segments some or all of which can be executed in parallel.
A parallel algorithm is said to be synchronised if one of the
segments of the algorithm cannot be executed until one ar more of the

other segments have been completed. As an example, consider the

evaluation of the simple expression,

T = AXB + CxDxE , (8.1)
which has three segments, S5, and S defined as
1 is X = AxB
S, is Y = CxDxE (8.2)
and Sz is T = X+Y
Clearly 1 and s, can be executed concurrently, but Ss cannot be
started until S1 and S, have been completed and so this is a simple

synchronized parallel algorithm.

When there is no such dependency between segments, the parallel
algorithm is said to be asynchronous. In general, with an asynchronous
algorithm there will be global variables, accessible to all processors,
which control which segment is executed next by a processor. The
manipulation of global variables would be programmed as a critical
section to protect the variables from being operated on by more than
one processor simultaneously. A simple example of this type of

algorithm is the addition of two vectors (2.1.1). If one segment is

1}

c. a, + b, , for i=1,2,...n/2 ,
i i i (8.3)

and another is cj aj + bj , for j=n/2,n/2+1,...n,
then obviously there is no dependency between the two segments.
In a synchronized iterative algorithm, each iteration has more

than one segment and synchronization occurs at the end of each

221
. . . th . . . th
iteration, i.e., the (n+1) iteration cannot commence until the n

iteration is completed. As an example, consider the Newton iteration

formula -1
= - 1
X, X, f (xi) f(xi) , (8.4)

i+l
which evaluates the zeros of function f. During each iteration f£(x)
and f'(x) can be evaluated followed by X541 which is where the
synchronization is needed.

An asynchronous iterative algorithm does not require synchronization
at all. This may be illustrated by using the same example as used for
the synchronized iterative algorithm but with one processor evaluating
f(x) and x, and another evaluating f'(x). If each processor uses the
latest values of x, f(x) and f'(x), then they can run independently.
This is then an asynchronous iterative algorithm,

Semi-synchronized iterative algorithms are a combination of
synchronized and asynchronous iterative algorithms. If one processor
is curfently on its ith iteration and another on its jth iteration
then, assuming that i>j, a restriction is imposed such that i-j<b,
where b is a positive integer. This implies that the first processor
does not get more than b iterations ahead of the second. This
technique can easily be applied to the asynchronous Newton iteration
algorithm,

Finally, there are adaptive asynchronous algorithms in which
the number of segments performed by each processor are not pre-
determined but depend on the relative spéeds of the processors.
Consider the example of vector addition (8.3) used to illustrate the
asynchronous parallel algorithm. Although the work has been shared
equally between the processors, if the processors do not work at the
same speed, the difference in the time that each processor requires

can be considerable. Let the two segments be redefined as

222

|l

C.

(=2 +b o i=1,2,...,m

(8.5)

and cj aj + bj J=n,n—1,..f,m+1 B AOU;‘t

where m is determined at run time i.e., each pr0cessor'continUes
operating until the indices i and j are such that'i=j~ =m. - This is
an adaptive asynchronous algorithm. ObV1ously, the t1me between each
processor finishing can be at most equal to the time - requlred to
evaluate one element of ¢ and so the algorlthm is expected to be

relatively efficient.

R
If we classify the main algorithms presented in thlS the51s

| u51ng these deflnltlons, the algorlthms presented in Chapters 3 and 4
T D v
for the solutlon of banded and trlangular systems of equatlons are

synchronlsed parallel algorlthms The Parallel Qulcksort Algorlthm

(Chapter 5) is an adaptlve asynchronous algorlthm and the S O R.
strategles presented in Chapter 6 are synchronlzed 1terat1ve algorlthms

The 1mp1ementatlon of the algorlthms, contalned 1n thlS the51s,

G fU Bl
on a parallel computer has been limited by both time and opportunlty

The only avallable worklng computer is the Loughborough Un1ver51ty

v..-« e

Department of Computer Studies Interdata Dual Processor which has

restricted experlments to the use of two processors only However,

ERES
some of the algorlthms have been 1mp1emented successfully [Barlow, 1977(a)

and (b), and Barlow and Evans 1977] and the Speed Ups atta1ned by them

are presented in Table 8 1.

T4yt) RO TR

_Algorithm | Order of Problem | Speed Up |Efficiency
Parallel Triangular m=2-. . | = o
Fdctorisation Method n=64 1.6 0.8 "

_(Chapter 3)

Parallel Quicksort . B y o

Method (Chapter 5) n=1024 ek 156 0 ¢ Q.8
Parallel Line S.O.R.- m=18 b t1.81 -] - 0.906 e
Method (Chapter 6) . m=30 o ¢ 1.87 0.935'.

TABLE 8.1.

! 223

These results are clearly very encouraging at this stage in the
development of both parallel algorithms and the Interdata Duﬁl Processor.
The efficiency of the Parallel Triangular Factorisation and Parallel
Quicksort Methods are not quite as good as the Parallel S.0.R. Method.
This is due to synchronizapion in the former case, and in the latter
case to the initial partitioning step being sequential. Theiresults
also give some idea of the parallel overheads which, although not
large, are significant.

Conclusive evidence is not presented here of any type of algorithm
being significantly better than others. Any such evidence would only be
conclusive of course for the Interdata Dual Processor. However the
results do reveal that for MIMD computers, it is best to keeﬂ sequential
segments of a parallel algorithm to a minimum and avoid excessive
synchronization. Thus, these two points coupled with the teéhniques
applied in this thesis should enable the development of good parallel

algorithms for the solution of many problems.

REFERENCES

AvO AN. , HOPCROFT T.E.and ULLMAN 1.5.197a], “The Design and

. . ' .
Analysis of (ompotes A!gonﬂxms', Addison-Wesley.
ANDERSON J.P., [1965], "Program Structures for Parallel Processing",

224

Comm. ACM, Volume 8, pp.786-788.

BARLOW R.H., [1977a], "Performance of a Dual-Minicomputer Parallel Computer
System',
Internal Report No. 43, Dept. of Computer Studies, Loughborough

University.

BARLOW R.H., [1977b], "Parallel Algorithms for Sorting, Quadrature and
Eigenvalue Determination',
Internal Report No. 44, Dept. of Computer Studies, Loughborough

University.

BARLOW R.H. and EVANS D.J., [1977], "An Analysis of the Performance of a
Dual-Minicomputer Parallel Computer System',
Internal Report No. 59, Dept. of Computer Studies, Loughborough

University.

BARLOW et al [1977], Barlow R.H., Evans D.J., Newman I.A., Slade A.J. and
Woodward M.C., "Historical Survey of the Implementation of Parallel
* Programming on the Interdata Dual Proeeésor Computer',
Internal Report No. 40, Dept. of Computer Studies, Loughborough

University.

BARNES et nl1 [1968], Barnes G.H., Brown R.M., Kato M., Kuck D.J.,

Slotnick D.L. and Stoker R.A., "The Illiac IV Computer',

I.E.E.E. Trans. on Comp., Volume C-17, pp.746-757.

225

BATCHER K.E., [1968], "Sorting Networks and their Applications',

Proc. AFIPS Spring Joint Comp. Conf., Volume 32, pp.307-314.

BORODIN A., [1971], "Horner's Rule is Uniquely Optimal”,
Theory of Machines and Computations, Kohavi Z. and Paz A. eds.,

Academic Press, N.Y., pp.45-58.

BORODIN A. and MUNRO I., [1975], "The Computational Complexity of Algebraic
and Numeric Problems”,

American Elsevier, N.Y.

BOUKNIGHT et al, [1972], Bouknight W.J., Denenberg S.A., McIntyre J.M.,
Randall J.M., Sameh A.H. and Slotnick D.L., "The Illiac IV System',

Proc. I.E.E.E., Volume 60, pp.369-388.

CARRE B.A., [1961], "The Determination of the Optimum Acceleration Factor
for Successive Over-relaxation”,

Comp. J. 4, pp.73-78.

CHEN S.C. and KUCK D.J., [1975], "Time and Parallel Bounds for Linear
Recurrence Systems',

I.E.E.E. Trans. on Comp., Volume C-24, pp.701-717.

CSANKY L., [1975], "Fast Parallel Matrix Inversion Algorithms",
Contributed paper, 16th Ann. Symp. on Foundations of Computer Science

~ (SWAT), Berkeley.

226

DORN W.S., [1962], '"Generalizations of Horner's Rule for Polynomial

Evaluaticn",

IBM J. of Res. and Devel., Volume 6, pp.239-245.

EVANS D.J. and Atkinson L.V., [1970], "An Algorithm for the Solution of
General Three Term Linear Systems',

Comp. J., Volume 13, pp.323-326.

EVANS D.J. and Hatzopoulos M., [1976], "The Solution of Certain Banded
Systems of Linear Equations using the Folding Algorithm",

Comp. J., Volume 19, pp.184-187.

FLYNN, M.J., [1966], "Very High Speed Computing Systems',

Proc. of the I.E.E.E., Volume 54, pp.1901-1909.

GILMORE P.A., [1971], "Parallel Relaxation',

Goodyear Aerospace Corp., Akron, Ohio.

GREGORY R.T. and KARNEY b.i. [1969] " A Collection of Matrices for Testing
Compotationa) Algorifims ", Wiley lntecscience.

HAYES L., [1974], "Comparative Analysis of Iterative Techniques for solving

Laplace's Equation on the unit square on a Parallel Processor",

M.Sc. Thesis, Dept. of Math., Univ. of Texas, Austin.
Heller D., [1974a], "A Determinent Theorem with Applications to Parallel
Algorithms",

SIAM J. Num. Anal., Volume 11, pp.559-568.

Heller D., [1974b], "On the Efficient Computation of Recurrence Relations”,

Report, I.C.A.S.E., NASA Langley Research Centre, Hampton, Virginia.

227

HELLER D., [1974c], "Some Aspects of the Cyclie Reduction Algorithm for
Block Tridiagonal Linear Systems",
I.C.A.S.E., Hampton Va.; Dept. of Comp. Sc., Carnegie-Mellon

University.

HELLER D., [1976], "A Survey of Parallel Algorithms in Numerical Linear
Algebra,

Dept. of Comp. Sc., Carnegie-Mellon University.

HELLER D., STEVENSON D.K. and TRAUB J.F., [1974], "Accelerated Iterative

Methods for the Solution of Tridiagonal Linear Systems on Parallel

Computers",

Dept. of Comp. Sc., Carnegie-Mellon University.

HINTZ R.G. and TATE.D.P., [1972], "Control Data STAR-100 Processor Design"

COMPCON-72 Digest of Papers, I.E.E.E. Comp.Soc., pp.1-4.

HOARE C.A.R., [1962], "Quicksort",

Comp. J., Volume 5, pp.10-15,

HOTELLING H., [1943], "Some New Methods in Matriz Calculations™,

Ann. Math. Stat., 14, pp.1-34,

HYAFIL L. and KUNG H.T., [1974], "Parallel Algorithms for Solving
Triangular Linear Systems with Small Parallelism",

Dept. of Comp. Sc., Carnegie-Mellon University.

228

HYAFIL L. and KUNG H.T., [1975], "Bounds on the Speed-ups of Parallel
Evaluation of Recurrences',

Second USA-Japan Comp. Conf. Proc. pp.178-182.

INTERDATA INC., [1971], Model 55: Dual Memory Bank Controller;

Information Specification, Interdata Inc., New Jersey 07757, U.S.A.

KNUTH D.E., [1973], "Sorting and Searching",

The Art of Computer Programming, Volume 3, Addison-Wesley.

KOGGE P.M., [1972a], "Parallel Algorithms for the Efficient Solution of

Recurrence Problems',

Digital Systems Lab., Stanford University.

KOGGE P.M., [1972b], "The Numerical Stability of Parallel Algorithms for
Solving Recurrence Problems",

Digital Systems Lab.,Stanford University.

KOGGE P.M., [1972c], "Minimal Parallelism in the Solution of Recurrence
Problems',

Digital Systems Lab., Stanford University.

KOGGE P.M., [1974], "Parallel Solution of Recurrence Problems",

IBM J. of Res. and Devel., Volume 18, pp.138-148.

KOGGE P.M. and STONE H.S., [1973], "A Parallel Algarithm for the
Efficient Solution of a General Class of Recurrence Equations',

I.E.E.E. Trans. on Comp., Volume C-22, pp.786-793.

229

KUCK D.J., [1968], "Iilliac IV Software and Application Programming",

I.E.E.E, Trans. on Comp., Volume C-17, pp.758-770.

KUCK D.J., [1973], "Multi-operation Machine Computational Complexity",
Complexity of Sequential and Parallel Numerical Algorithms,

Traub J.F. ed., Academic Press, N.Y., pp.17-47.

KUCK D.J. and MARUYAMA K., [1975], "TZme Bounds on the Parallel Evaluation
of Aritkmetic Expressions”,

SIAM J. Comput., Volume 4, pp.147-162.

KUNG H.T., [1S76], "Synchronised and Asynchronous Parallel Algorithms for
Multiprcecessors”,

Dept. of Comp. Sc., Carnegie-Mellon University.

LAMBIOTTE J.J., [1975], "The Solution of Linear Systems of Equations on a
Vector Computer",

Dissertation, University of Virginia.

LAMBIOTTE J.J. and VOIGT R.G., [1975], "The Solution of Tridiagonal Linear
Systems on the CDC STAR-100 Computer™,

A.C.M. Trans. on Math. Software, Volume 1, pp.308-329.

LAWRIE et al, [1975], Lawrie D.M., Layman T., Baer D. and Randal J.M.,
"Glypnis, a Programming Language for Illiae Ive,

Comm. A.C.M., Volume 18, pp.157-164.

230

LIU, J.W.H., [1974], "The Solution of Mesh Equations on a Parallel Computer",

Dept. of Comp. Sc., University of Waterloo.

MARTIN R.S., PETERS G. and WILKINSON J.H., [1965], "Symmetric Decomposition
of a Positive Definite Matrix",
Numer., Math. 7, pp.362-383, also Handbook for Automatic Computation,

Volume 2, pp.9-30, Springer-Verlag (1971).

MARTIN R.S., PETERS G. and WILKINSON J.H., [1966], "Tterative Refinement
of the Solution of a Positive Definite System of Equations',
Numer. Math. 8, pp.203-216, also Handbook for Automatic Computation,

Volume 2, pp.31-44, Springer-Verlag (1971).

MARUYAMA K., [1973], "The Parallel Evaluation of Matrix Expressions",

IBM T.J. Watson Research Centre, Yorktown Heights, N.Y,

MIRANKER W.L., [1971], "A Survey of Parallelism in Numerical Analysis',

SIAM Review, Volume 13, pp.524-547.
MURAOKA Y. and KUCK D.J., [1973], "On the Time Required for a Sequence
of Matrix Products',

Comm. ACM, Volume 16, pp.22-26,.

NAG, [1976], NAG Library Manual, Mark 5, Volume 3 (Algol)

NAG Limited, Oxford.

231

ORCUTT S.E., [1974], "Parallel Solution Methods for Triangular Linear
Systems of Equations”,

Report 77, Digital Systems Lab., Stanford University.

OWENS J.L., [1973], "The Influence of Machine Organisation on Algorithms",
Complexity of Sequential and Parallel Numerical Algorithms, Traub J.F. ed.,

‘Academic Press, N.Y., pp.111-130.

PARKINSON D., {1976], "The ICL Distrtbuted Array Processor — DAP",
Computational Methods in Classical and Quantum Physics, Hooper M.B. ed.,

Advance Publications Limited, pp.415-422.

PEASE M.C., [1967], "Matrix Inversion using Parallel Processing',

J. ACM, Volume 14, pp.757-764.

PEASE M.C., [1968], "An Adaption of the Fast Fourier Transform for Parallel
Processing",

J. ACM, Volume 15, pp.252-264.

POOLE W.G. and VOIGT R.G., [1974], "Numerical Algorithms for Parallel and
Vector Computers: An annotated bibliography",

Computing Reviews; Volume 15, pp.379-388.

REDDAWAY S.F., [1973], "DAP - A Distributed Array Processor",

1st Annual Symposium on Computer Architecture, Florida.

SAMEH A.H., [1971],"0On Jacobt and Jacobi-like Algorithms for Parallel
Computers"

Math. Comp. Volume 25, pp.579-590.

232

SAMEH A.H., CHEN S.C. and KUCK D.J., [1974], "Parallel Direct Poisson and
Btharmonte Solvers',

Dept. of Comp. Sc., University of Illinois, Urbana.

SAMEH A.H. and KUCK D.J., [1971], "Parallel Computation of Eigenvalues of
Real Matrices',

IFIP Congress 1971, North Holland, Amsterdam, Volume 2, pp.1266-1272,

SAMEH A.H. and KUCK D.J., [1975], "Linear System Solvers for Parallel
Computers”,

Dept. of Comp. Sc., University of Illinois, Urbana.

SEDGEWICK R., [1975], "Quicksort',

Ph.D. Thesis, Dept. of Comp. Sc., Stanford University,

SHELL D.L., [1959], "A High-Speed Sorting Procedure",

Comm. of the ACM, Volume 2, pp.30-32.

SINGLETON R.C., [1969], "An Efficient Algorithm for Sorting with Minimal
Storage",

Comm. ACM, Volume 12, pp.185-187.

SMITH G.D., [1965], "Numerical Solution of Partial Differential Equations',

Oxford University Press.

STEVENSON D.K., [1975], "Programming the Illiac",

Dept. of Comp. Sc., Carnegie-Mellon University.

233

STONE H.S., [1971], "Parallel Processing with the Perfect Shuffle™,

I.E.E.E. Trans. on Comp. Volume C-20, pp.153-161.

STONE H.S., [1973a), "An Efficient Parallel Algorithm for the Solution of
a Tridiagonal Linear System of Equations",

J. of the ACM, Volume 20, pp.27-38.

STONE H.S., [1S73b], "Problems of Parallel Computation™,
Complexity of Sequential and Parallel Numerical Algorithms,
Traub J.F. ed., Academic Press, N.Y., pp. 1-16.

STONE H.S., [1975a], "Parallel Tridiagonal Equation Solvers",

ACM Trans. on Math. Software,Volume 1, pp.289-307.

STONE H.S., [1975b]), "Parallel Computers',
Introduction to Computer Architecture, Stone H.S. ed., Science

Research Associates, Palo Alto, California, pp.318-374.

VARGA R.S., [1962], "Matrix Iterative Analysis',

London Prentice-Hall International.

WATSON W.J., [1972], "The T.I. ASC, a highly modular and flexible super-
computer architecture’,
AFIPS Fall 1972, AFIPS Press, Montvale, N.J., Volume 41, Part 1,

pp.221-229.

WICHMANN B.A., [1973], "Algol 60 Compilation and Assessment",

Academic Press, London and New York, pp.65-124.

. . "
WILKINSON T.H. [1963], ” Poundiny Errors in A{grebra:c Frocesses ,

HMSO .

234

WILKINSON J.H., [1965], "The Algebraic Eigenvalue Problem",

Oxford University Press,

WULF W.A. and BELL C.G., [1972], "C.mmp, a multi-mini-processor"”,
AFIPS Fall 1972, AFIPS Press, Montvale, N.J., Volume 41, Part 2,

pp.765-777.

YOUNG D.M., [1954], "Iterative Methods for Solving Partial Differential
Equations of Elliptic Type",

T-»ns. Amer. Math. Soc., 76, pp.92-111.

BuRKE AMW. , GOLDSTINE HM., and VoM NQuMANN ROy Pre,/:mmah/ Discvssions
of ﬁ\e nglca/ Ae.sgh of an Elech'omc Comlbufe/‘ , Gompoter Structures:
teeadmg anc| ExamPIes , Bell and Newell (eds?) , PP 92-119 ,

Denmis :fs and MisbNAs b.P, [1974] “A Compuler Architecture Jor /\:"9!\1\/
faralle] Siynal processmg Proc. of the ACM Notional Conference

New York, pp woz-409.

DENNIS T, B.and MisuNAS BP.[1918] "4 Pre/n'm'nary Architectore Fora
Rasie Data Fiow Pocesser ", Proc. of the Second annval Symposivm
on Compoter Mchitedrure | TEEE | ppizt-i3z..

RoMRALUCGH T.E. L1975]. "A Paralle/ Asynchol\ovs Computer Archivectvre
for Data Fow Fograms " | MIT Brgject MAC, TR-1506; Mass.) USA,

Rumeaven T.€. [1911] "A Data ELow Mulh'Pfoces.'.or'",J'EEE Trans. on
Cbmp.) Volome C-2G , pp.138-146 ,

APPENDIX A

235

An essential part of the analysis of the run time of Parallel
Quicksort is the estimation of the frequencies with which each state-

ment is executed. Thus, to complete the analysis, it is necessary to

know the time required to execute each statement. This information is
also required so that the method can be simulated accurately,

The statement times will of course vary from computer to computér
but since the algorithm is not designed for a particular computer, we
shall use computer independent timings.

To derive computer independent statement times, we define a matrix

T such that ti j is the time for statement i (i=1,2,...n) when executed

1

on computer j (j=1,2,...,m). Obviously there will not be a constant
ratio between statement times on different computers but it is a

reasonable assumption to make that,
ti,j =5, X Mj (i=1,2,...n, j=1,2,...m) (1)
where S5 is a time factor dependent on the statement only
and Mj is a time factor depending on the computer only.
If we introduce a factor Ri j into equation (1) where Ri

3 ’

is close to unity, then we have

ti,j =5, X Mj X Ri,j’ (i=1,2,...n, j=1,2,...m). (2)

Now, in order to calculate the H and Mj we may use the method of
least squares to minimise errors by first assuming that S; and M,

are exact and that the errors in Ri ; are the amount by which they

s

differ from unity. Then, taking logs, equation (2) becomes,
n ti,j = {n s; + n Mj + 4n Ri,j’ (i=1,2,...n, j=1,2,...m) (3)
where nX = log (X), -

and since 2nl1=0, we must now minimise 2n Ri .. So let E, the sum of
]

the squared errors, be,

3 = Jlans, + an M, - int, 3. (4 |
J ij 1 J

2

E= J] J0an R,
ij 1

’

To minimise E with respect to si and Mj’ equation (4) must be

differentiated with respect to these variables giving,

Jn s, +2n M, -int.) =mins, + M -gnt,, =0
: i j i, i & i
J J

and » (5)
J(en's. + gn M, - n t,) =] s, +ngnM, - gn t,. =0
- j i,j7 7 &N j j

where 2n o and Qnt*j are row and column sums respectively of the

matrix (&n ti J.). By taking M1=1, these equations may be solved

b

explicitly to give,

2n M. (4n t,. - an t,)/n for j=1,2,...m
J J 1 (6)

and In's. = n ti*/m + 2n t*l/n -t /mn for i=1,2,...n

where &n t . is the sum of all the elements of (&n ti,j)'

Finally, by taking exponentials, values of the s and Mj can be
calculated easily, in particular, the s -

Computer independent statement times have been obtained in this
manner for Algol 60 by Wichmann [1973], and those of relevance to the

analysis of Program 7 are as follows, where the units are approximately

one machine instruction time:-

for operators, +, - = 1 unit,

and '/' (integer division) = 6 units.

Access to simple and array variables = 1 unit,
and use of constants = 1 unit.

Array variable access is allowed for by weighting the opening
bracket thus, [= 3 units,
and commas separating subscripts as , = 3 units.

The assignment symbol « is ignored.

For boolean operators we have ° 'GT','LT' = 2 units,
and for conditional statements 'IF! = 0 units,
'"THEN' = 2 units,

and 'ELSE! = 1 unit.

237

Loop statements are weighted according to the for list elements which.
are,

(1) <a> 'WHILE' where for each time around the loop allow
(expression <a> + expression + 8) units and the same amount for
the final test,

(ii) <a> 'STEP' 'UNTIL' <c> where for the initial assignment
and test allpw (expression <a> + expression <c> + 3) units and for each
time round the loop (expression + expression <c> + 12) units.

For the branch statement 'GOTO' = 2 units,
and for entry and exit to a block allow 10 units.
"BEGIN' and 'END' of compound statements and ; are ignored.

Procedure calls are allowed for as follows:

procedure identifier 25 units,
parameter bracket (| 12 units,
, Separating parameters 8 units,
integers by value 1 unit,
and array identifiers by name 1 unit.

Fork and Join statements are difficult to assess since they have
rarely been implemented. However, their use in program 7 is more than
allowed for by the procedure calls.

In the remainder of this appendix we shall derive proofs for
ideptities used in the analysis of the run time of the Parallel Quicksort

Method. First we shall list the notations used:

n
jzl aj Ta;pta,to... a (7)
I;E[naj T ap XAy XA, (8)
T 1 _th
Hn = Z 7 (n”" harmonic number) , (9)
j=1
nt = T j (n factorial) |, (10)
Igjsn

Af(n) = f(n+1) - f(n) (forward difference operator)
Now let us consider the sum of the first n harmonic numbers.

Clearly we have,
‘ n n k

1
YH o=] =
k=1 ¥ k=1 421)

and by interchanging the order of summation we obtain,

1}
~
=
+
[—y
S
13

(n+1)Hn -n

which leads to,

o~

He= (el)(H L -1) . (12)

k=1

Next we must consider binomial coefficients (:) defined as

n n!
G&) = Tmrr mk0

or in its less restrictive form,
k

%1‘ TT (n-k+j) for integer k30 ,
@ = 7
k

0 for integer k<O.
In particular, we observe that,

M=1, M=nad M=")= itive int
(O = s 1) ° k) Gk or positive integers.
A not so obvious relationship is

G = okl (13)

which may be proved as follows,

-n 1 k .
() = 57 IT (ki)

.

Jj=1

P
Il o~
[
jony
o
1
.
i
[y
=~
It o~
-,
. u.|p—a

239

k
- L= Tk
j=1

_ k (n+k-1)!
= D a T
k k-1
= D" M
The addition formula,
n n n+l
@ * Gap) = Ghp) (14)
is easily proved as follows:
n+i n 1 kel kel
(ko) = Gup) = k+1)T (JT-("-k+J) -]T—(n-k—1+3))
ji=1 i=1
1 k k
= GonT (D) TT (-k+3) - (n-k) TT (n-k+j))
Gy (D) J : J
j=1 j=1
1 k
= w7 JT (n-k+j)
j=1
n
- (k) ’
which may be rearranged to give formula (14).
The relationship,
n
k, _ n+l .
kZo(m) = (m+1) integers n,mx0 (15)
may be proved by induction.
Obviousliy, letting n=1, we have
1
k 0 1
LG = () + ()
k=0
n+l, _ 2
and (ne1? = Cpe)
If we generate these quantities for different values of m we
n+l
find that they are equal. Considering J (;) we find that,
k=0
n+1 Kk noo. n+l
PG = 1 @+
k=0 k=0
n+l n+l
= () * ()
= (4

m+1

240

Thus, equation (15) is true for n=1 and if it is true for n, it
is true for n+l, so by induction it is true for all n.
Another important formula is

T ok n+1 1
kzl(m)Hk = (m+1)(Hn+1 - EIIJ (16)

which may be proved as follows:

k k
Zl(k) ;Lo

n

k
I (H, =
k=1 ™ K ™ y=1

k=
and by interchanging the order of summation we have,
n n j
1 k
I+ 1)
j=17 k=j

1l

LT E

-1
1 K
j=17 k=0 ™ j=1J Eo)

k

n n .
I 30 - 110,

521 Jj m+l j=IJ m+1
n .
_ N+l 1 j-1
N (m+1)Hn T m+l .Z (m)
j=1
n+1 1 . n

= Gty - m+1(m+1)
which finally leads to the result

n+1l 1

m+1)(Hn+1 - m+1)

n
kzl(ﬁ)nk =
To obtain the remaining results necessary for the run time
analysis we must consider generating functions. A genérating function
A(z) defined as
A(z) = § akzk , (17)
k20

is the generating function for the sequence <a,>, e.g., the generating

function for binomial coefficients is

n, k
Az) = (v2)" =] (D2 . (18)
k>0
If result (13) is substituted into equation (18) we have,
k -n+k-1. k
(1+2)" =] Dz
k=0
or 1 n+k, k
zZ

—i - 1™
(1-z)™! kzo k

3

241

S Pale
k>n
which leads to,
n
4 _ k, k
aml Ty W o
In particular, we have
(1}2) = Z zk and Z 5 = Z kzk .
k>0 (1-2) k20

Now by considering the quantity (1+z)r(1+z)s we have

r s _
(1+z)"(1+2)" = k§0(§)zk I O
- m>0

n

F &) ¥ 5"
k30 K sk MK

m
D I L
mz0 k=0 k? "m-k

but

(1+Z)r(1+z)s T+S

(1+z)

T+S, M
= I ()2
m20 m
If these infinite series are equal, the coefficients of z

must be equal and therefore,

m
kzo(ﬁ)(mfk) =5 (20)

We already know that (§)=(rfk)=(-1)r-k(-¥:;) when r is an integer,

and so another important identity may be obtained by substituting

these values into equation (20), which gives,

r-k -k-1 s-m+k .-m+k-1 r+S-m_ -m-1

]{:('1) (I‘—k) ('1) (s—m+k) = (—1) () .

T+S-m
If we now replace k by k-n-1, where n is an integer, and cancel

(-1) factors we have,

n-k -m-n-2+k |, _ _ -m-1
g (Gene1-1) (somen-14k) = Crosom) ’

and changing variables to m=-m-n-2, r=-r-1 and s=-s-1 leads to

G - G

T+s+1

Finally, if OSn—r-ksn-k and Ogm-s+kgm+k, then we have

242

g (n-k)(m+k) - (m+n+1

) (21)
k=0 T S Tr+s+1

for integers n2s30, m,r30 .
Now returning to generating functions, if we let A(z) be the

generating function for <a > and B(z) be the generating function

for <bz> then,

A(z)B(z) =) a.zl.) bkzk
j>0 7 xs0
k
= Z a, Z b, .z
j30 7 kyj kI
k

n
t~—1
~1
)
N
-
-

k
and thus A(z)B(z) is the generating function for < Z ajbk_j>. It is
j=0

not difficult to see that if B(z)=1§E and ao=0 then LlézlA(z) is the

generating function for <Aak>, i.e.,

—A(z) = Z Aakzk when A(z) = z akzk . (22)
k20 k21 '

This final equation completes the proofs of the identities that

are required in Chapter 5 for the analysis of the run time of the

Parallel Quicksort Algorithm,

APPENDIX B

In this Appendix, programs 2,4,8 and 9 use the procedure
FO1ARA(L,S,U,A1,A2,A[K],B[K],K,A3,A4)
which is a NAG library routine (NAG, 1976) that accumulates the inner

product,
)
A3 = Al + A, .B
K=L KoK
to double precision and rounds the result to single precision.

s

243

244

PROGRAM 1

'PRPCEDURE' F@LTRIDI1(N,A,B,C,D);

'COMMENT' Procedure solves the set of linear equations Ax=d, where A is
an (NxN) tridiagonal matrix, using the parallel factorisation method
without partial pivoting (see Chapter 3). The main diagonal of
matrix A is stored in vector A, the lower sub-diagonal in vector B
and the upper sub-diagonal in vector C. On input, vector D contains
the right hand side of the system of equations, during computation
the intermediate solution and on exit it contains the solution x.
Matrices P and Q are overwritten on A,B and C. ;

'ARRAY' A,B,C,D;'INTEGER' N;

'"BEGIN'

'INTEGER' S,I,J;

S«(N+1)'/'2;

'"COMMENT' The factorisation process. ;
'"FPRK' L1,L2;

L1: B[2]<B[2]/A[1];
'"FPR' I<2 'STEP' 1 'UNTIL' S-1 'D@'
'"BEGIN!
A[I]J<A[I]-B[I]*C[I];
B[I+1]«B[I+1]/A[I]
'END?';
'GOT@' L3;

L2: C[NkC[N]/A[N];
: 'FPR' J¢N-1 'STEP' 1 'UNTIL' S+1 'Dg@"
'BEGIN'
A[J1<A[T]-C[I+1]*B[J+1];
CLIJ«C[I]/A[J]
'END';
'GAT@' L3;

L3: 'JPIN' L1,L2;
A[S]<A[S]-(B[S]*C[S]+C[S+1]*B[S+1]);
'CAMMENT' The inward substitution process. ;
'"FPRK' L4,L5;

L4: 'F@R' T+2 'STEP' 1 'UNTIL' S-1 'D@' D[I]<«D[I]-B[I]*D[I-1];
'GAT@' L6;

L5: 'FPR' JN-1 'STEP' -1 'UNTIL' S+1 'D@' D[J]«D[J]-C[J+1]*D[J+1];
'GATP* L6;

L6: 'JPIN' L4,L5;
D[S]+D[S]-(B[S]*D[S-1]+C[S+1]*D[S+1]);
'"COMMENT' The outward substitution process. ;
D[S]«D[S]/A[S]; '
'FPRK' L7,L8;

L7: 'F@R' I«S-1 'STEP' -1 'UNTIL' 1 'D@' D[I]+(D[I];C[I+1]*D[I+1])/A[I];
'GAT@' L9;

L8: 'FPR' JeS+1 'STEP' 1 'UNTIL' N 'D@' D[J]<(D[J]-B[J]*D[J-1])/A[I];
'GATP' L9; :

L9: 'JPIN' L7,L8
'END';

245
PROGRAM 2

'"PRACEDURE' F@LTRID2(N,A,D);

'"COMMENT' Procedure solves the set of linear equations Ax=d, where A is
an (NxN) tridiagonal matrix, using the parallel factorisation method
with partial pivoting (Chapter 3). On input, vector D holds the
right hand side of the system of equations, during computation the
intermediate solution and, on exit, the final solution x. Matrices
P and Q are overwritten on A. ;

'ARRAY' A,D; 'INTEGER'N;

'"BEGIN'

'INTEGER' S,I,J,K1,K2,L1,L2,U1,U2;
'REAL' W1,W2,E,A2,A4;

'ARRAY' R[1:N];

Se(N+1)'/'2; :

'"COMMENT' The factorisation process.
'FPRK' L1,L2;

.
E]

L1: 'F@PR' I«1 'STEP' 1 'UNTIL S-1 'D@'
'BEGIN'

Ul '"TF' I 'GT' 3 'THEN' I-2 'ELSE' 1;

'"FOR' K1<0,1 'D@°'

'BEGIN'
FO1ARA(U1,1,I-17A[I+K1,I],A2,A[TI+K1,L1],A[L1,I],L],W1,A4);
R[I+K1]+-W1

'END';

'"IF' ABS(R[I+1])'GT*' ABS(R[I])'THEN!

'BEGIN'
'"F@R' K1«1 'STEP' 1 'UNTIL' I+2 'D@’
'BEGIN’

W1«A[I,K1];A[T,K1]«A[I+1,K1];A[I+1,K1]«W1

'END';
W1<D[I];D[I]«D[I+1];D[I+1]<«W1;
WIR[T]SR[IJ«R[I+1];R[I+1]«W1

'END';

A[I,I]+R[I];

'F@R' K1«1,2 'D@’

'BEGIN'
FOlARA(Ul,l,I-l,-A[I,I+K1],A2,A[I,L1],A[Ll,I+K1],Ll,W1,A4);
A[I,I+K1]<«-W1

'END';

A[I+1,1]«R[I+1]/A[1,1]
'END';
'GAT@' L3;

L2: 'FPR' J«N 'STEP' -1 'UNTIL' S+2 'D@'
'BEGIN'
U2«<'IF' N-J+1 'GT' 3 "THEN' J+2 'ELSE' N;
'FPR K2<0,1 'DP"
'BEGIN'
FO1ARA(J+1,1,U2,-A[J-K2,J],A2,A[J-K2,L2] ,A[L2,J],L2,W2,A4);
R[J-K2]<«-W2

'END';
'"IF' ABS(R[J-1])'GT' ABS(R[J]) 'THEN'
'BEGIN
'FPR' K2¢N 'STEP' -1 'UNTIL' J-2 'D@'
"BEGIN'

W2A[J,K2] ;A[J,K2]<A[J-1,K2] ;A[J-1,K2]<W2
"END';

246

W2¢D[J];D[J]«D[J-1];D[J-1]«W2;
W2«R[J];R[J]«R[J-1];R[J-1]<W2

'END';

A[J,J]+R[J];

'FOR' K«1,2 'D@'

'BEGIN'
FOLARA(J+1,1,U2,-A[J,J-K2],A2,A[J,L2] ,A[L2,J-K2] ,L2,W2,Ad) ;
A[J,J-K2]«-W2

'END';

A[J-1,J]«R[J-1]/A[J,J]

'END';
'GATR' L3;

L3: 'JPIN' L1,L2;

'FPR' K2<0,1 'D@'

'BEGIN'
FOIARA(S+2,1,5+3,-A[S-K2+1,5+1],A2,A[S-K2+1,L2] ,A[L2,5+1] ,L2,E,A4) ;
FO1ARA(S-1,1,5-1,E,A2,A[S-K2+1,L2] ,A[L2,5+1],L2,W2,Ad) ;
R[S-K2+1]<-W2

'END';
"IF' ABS(R[S])'GT' ABS(R[S+1]) 'THEN'
"BEGIN'
'FPR' K2«1 'STEP' 1 'UNTIL' N 'Dg'
'BEGIN'
W1<A[S+1,K2] ;A[S+1,K2]«A[S,K2];A[S,K2]<W2
'END';

w2+D[S+1];D[S+1]+D[S];D[S]+W2;
W2¢R[S+1];R[S+1]«R[S];R[S]<«W2
'END';
A[S+1,5+1]«R[S+1];
FOIARA(S+2,1,5+3,-A[S+1,S],A2,A[S+1,L2] ,A[L2,5],L2,E,A4) ;
FOIARA(S-2,1,58-1,E,A2,A[S+1,L2] ,A[L2,S],L2,W2,A4) ;
A[S+1,S]«-W2;
A[S,S+1]+R[S]/A[S+1,5+1];
FO1ARA(1,1,2,-A[S,S]A2,A[S,S-L2] ,A[S-L2,5],L2,E,A4) ;
FO1ARA(1,1,2,E,A2,A[S,S+L2],A[S+L2,S],L2,W2,Ad) ;
A[S,S]«-W2;
'"COMMENT' The inward substitution process. ;
'F@RK' L4,LS;

L4: 'F@PR' I+2 'STEP' 1 'UNTIL' S-1 D@
'BEGIN'!
FO1ARA(1,1,1-1,-D[I],A2,A[I,L1],D[L1],L1,W1,A4);
D[I]+- W1
'END';
'GPT@* L6;

L5: 'F@R' J«N-1 'STEP' -1 ' UNTIL' S+2 D@

'BEGIN'
FO1ARA(J+1,1,N,-D[J],A2,A[J,L2],D[L2],L2,W2,Ad);
D[J]+-W2

'END' ;

'GAT@' L6;

L6: 'JPIN' L4,L5;

'FPR' J«S+1,S 'DP’

'BEGIN'
FO1ARA(J+1,1,N,-D[J],A2,A[J,L2],D[L2],L2,E,A4) ;
FOIARA(1,1,S-1,E,A2,A[J,L2],D[L2],L2,W2,Ad) ;
D[J]<-W2;

'END';

'COMMENT' The outward substitution process. ;
D[S]«D[S]/A[S,S];
D[S+1]«(D[S]-A[S+1,S]*D[S])/A[S+1,S+1];
'FGRK' L7,LS;

L7: 'FPR' J«S+2 'STEP' 1 'UNTIL' N 'D@'

'BEGIN'
FOIARA(J-2,1,J-1,-D[J],A2,A[J,K2],D[K2],K2,W2,Ad) ;
D[J]<-W2/A[J,J]

"END';

'GATP' LI9;

L8: 'FPR' I<+S-1 'STEP' -1 'UNTIL' 1 'D@°
'"BEGIN'
FOIARA(I+1,1,1+2,-D[I],A2,A[I,L1],D[L1],L1,W1,Ad);
D[I]«-W1/A[I,I]
'"END';
'GATY' L9;

L9: 'JPIN' L7,LS
'END';

247

248

PROGRAM 3

'"PR@PCEDURE' FPLTRID3(N,A,D,M);

'CAMMENT! Procedure solves the set of linear equations Ax=d, where A is
an (N*N) banded matrix of semi-bandwidth M, using the parallel
factorisation method without partial pivoting (Chapter 3). Matrix A
is stored in an (NX(2M-1)) array A, the main diagonal being held in
column M, the lower sub-diagonals in columns 1 to M-1 and the upper
sub-diagonals in columns M+l to 2M-1. On input, vector D contains
the right hand side of the system of equations, during computation
the intermediate solution and on exit the final solution x. Matrices
P and Q are overwritten on A. ;

"ARRAY' A,B; 'INTEGER' M,N;

'BEGIN'

'INTEGER' S,1,J,K1,K2,L1,L2,U1,U2;
S+ (N-M+3)'/'2; -

'"COMMENT' The factorisation process.
'FPRK' L1,L2;

.
2

L1: 'FPR' I«1 'STEP' 1 'UNTIL' S-1 'D@!'

"BEGIN'
'FPR' K1«<O 'STEP' 1 'UNTIL' M-1 'D@'
'BEGIN'
Ul<'IF' M-K1 'GT' I 'THEN' I-1 'ELSE' M-K1-1;
'"FQR' L¥I'STEP' 1 'UNTIL' Ul 'D@' A[I+K1,M+K1]«A[I+K1,M+K1]
-A[I,M-L1]*A[I+K1 ,M+K1+L1]
'END';
'FPR' K1«1 'STEP' 1 'UNTIL' M-1 'D@’
"BEGIN'
Ul<'IF' M-K1 'GT' I 'THEN' I-1 'ELSE' M-K1-1;
'FGR' L1«1 'STEP' 1 'UNTIL' Ul 'D@' A[I+K1,M-K1]<A[I+KI1,M-K1]
-A[I+K1,M-K1-L1]*A[I,M+L1];
A[I+K1,M-K1]<+A[I+K1,M-K1]/A[I ,M]
'END'
'END';
'GATY' L3;
L2: 'FPR' J<N 'STEP' 4 'UNTIL' S+M-1 'D@'
"BEGIN'
'FPR' K2«0 'STEP' 1 'UNTIL' M-1 'D@'
'BEGIN' »
U2«'TF' M-K2 'GT' N-J+1 'THEN' N-J 'ELSE' M-K2-1;
"FOR' L2«1 'STEP' 1 'UNTIL' U2 'DO' A[J,M-K2]«A[J,M-K2]
-A[J+L2 ,M+L2] *A[J+L2,M-K2-L2]
'END';
'"FPR' K2«1 'STEP' 1 'UNTIL' M-1 'D@'
"BEGIN'
U2«'M-K2 'GT' N-J+1 'THEN' N-J 'ELSE' M-K2-1;
"FPR' L2«1 'STEP' 1 'UNTIL' U2 'DP' A[J,M+K2]«A[J,M+K2]
-A[J+L2 ,M+K2+L,2] *A[J+L2,M-L2] ;
A[J,M+K2]«A[J,M+K2]/A[JT,M]
"END' '
'END';
'GAT@' L3;

L3: 'JPIN' L1,L2;
'"FPR' J«S+M-2 'STEP' -1 'UNTIL' S 'D@'
'BEGIN'

L4:

L5:

L6:

L7:

L8:

249
'FPR' K20 'STEP'1 'UNTIL' J-S 'D@!'
'BEGIN!
'FPR' L2«1 'STEP' 1 'UNTIL' M-K2-1 'D@' A[J,M-K2]<A[J,M-K2]
~A[J+L2,M+L2]*A[J+L2,M-K2+L2];
'FPR' L2¢M-1 'STEP' -1 'UNTIL' J-S+1 'D@! A[J ,M-K2]«A[J ,M~-K2]
-A[J,M-L2]*A[J-K2,M-K2+L2]
'END';
'FPR' K2«1 'STEP' 1 'UNTIL' J-S 'D@!
'BEGIN'
'"FPR' L2«1 'STEP' 1 'UNTIL' M-K2-1 'D@' A[J,M+K2]«A[J ,M+K2]
~A[J+L2,M+K2+L2]*A[J+L2,M-K2];
'FOR' L2+M-1 'STEP' -1 'UNTIL' J-S+1 'D@' A[J,M+K2]«A[J,M+K2]
-ATJ-K2,M+K2-L2]*A[J,M+L2]; '

A[J M+K2]*A [T M+K2] /AT, M]
'END'!
'END';
'"COMMENT' The inward substitution process. ;
'FPRK' L4,L5;

'FPR' I+2 'STEP' 1 'UNTIL' S-1 'D@'
'BEGIN'
UL“'IF' M 'GT' I 'THEN' I-1 'ELSE' M-1;
'FPR' L1%1 'STEP' 1 'UNTIL' UL 'D@' D[I]<D[I]-A[I,M-L1]*D[I-L1]
'END' ;
'GATP' L6;

'FPAR' J*N-1 'STEP' -1 'UNTIL' S+M-1 'D@'
'BEGIN'
U2€'IF' M 'GT' N-J+1 'THEN' N-J 'ELSE' M-1;
'FOR' L2¢1 'STEP' 1 'UNTIL' U2 'DO' D[J]*D[J]-A[J+L2,M+L2]*D[J+L2]
'END';
'G@TA' L6;

'JPIN' L4,L5;

'F@R' J«S+M-2 'STEP' -1 ‘'UNTIL' S 'Dg'

'BEGIN'
'FPR' L2«1 'STEP' 1 'UNTIL' M-1 'D@' D[J]<«D[J]-A[J+L2,M+L2]*D[J+L2];
'FPR' L2«M-1 'STEP' -1 'UNTIL' J-S+1 'D@' D[J]«D[J]-A[J,M-L2]*D[J-L2]

'END';

'"COMMENT' The outward substitution process. ;

D[S]«D[S]/A[S,M];

'"FPR' J«S+1 'STEP' 1 'UNTIL' S+M-2 'D@'

'BEGIN'
'FPR K2+1 'STEP' 1 'UNTIL' J-S 'D@' D[J]<D[J]-A[J,M-K2}*D[J-K2];
D{JI*D[J]/A[JI,M]

'END';

'F@RK' L7,L8;

'FPR' J<S+M-1 'STEP' 1 'UNTIL' N 'D@'

'BEGIN'
'FPR' K2¢1 'STEP' 1 'UNTIL' M-1 'DO' D[J]<D[J]-A[J,M-K2]*D[J-K2];
D[J]+D[J]/A[JI,M]

'END';

'GAT@' L9;

'FPR' I+S-1 'STEP' -1 'UNTIL' 1 ‘D@’

'BEGIN'
'FOR' Kl<1 'STEP' 1 'UNTIL' M-1 'D@' D[I]«D[I]-A[I+K1,M+K1]*D[I+K1];
D[I]«D[I}/A[I,M]

'END!';

'GPT@ L9;

L9: 'JPIN' L7,L8
'END' ;

PROGRAM 4

'PRACEDURE' EOLTRID4 (N,A,D,M);

'COMMENT' Procedure solves the set of linear equations Ax=d, where A
is an (NxN) banded matrix of semi-bandwidth M, using the parallel
factorisation method with partial pivoting (Chapter 3). On input,
matrix [holds the right hand side of the system of equations,
during computation the intermediate solution and on exit the final
solution x. The matrices P and Q are overwritten on A.

'ARRAY'A,D; 'INTEGER' M,N;

'"BEGIN'

'INTEGER'S,I,J,K1,K2,L1,L2,Ul,U2,MAX] ,MAX2;

'REAL' W1,W2,E,A2,Ad;

"ARRAY' R[1:N];

S«(N+5)'/1'2-M;

'COMMENT' The factorisation process.
'FPRK' L1,L2;

.
3

L1: 'FPR' I«1 'STEP' 1 'UNTIL' S-1 'D@'
'BEGIN'

UI<'IF' I 'GT' 2*M-1 'THEN' I-2*(M-1)'ELSE' 1;

'FPR' K1<O 'STEP' 1 'UNTIL' M-1 'D@'

'BEGIN
FOIARA(U1,1,I-1,0,A2,A[I+K1,L1],A[L1,I],L1,R[I+K1],A4);
R[I+K1]«A[I+K1,T]-R[I+K1]

'END';

MAX1<I ;

'FPR' Kl«1 'STEP' 1 'UNTIL' M-1 'D@'

'IF' ABS(R[I+K1])'GT'ABS(R{MAX1])'THEN' MAXI<I+K1;

'IF' MAX1 'NE' I 'THEN'

'BEGIN'
'FPR' K1<1 'STEP' 1 'UNTIL' I+2%(M-1)'D@'
'BEGIN' .
WI<A[I,K1];A[I,K1]<A[MAX1,K1];A[MAX1,K1]<W1
"END' ;

W1<D{I];D[I]«D[MAX1];D[MAX1]«W1;
W1<R[I];R[I]«R[MAX1];R[MAX1]<W1

'END';

A[I,I]<R[I];

'FPR' K1<«1 'STEP' 1 'UNTIL' 2*(M-1) ‘D@’

'BEGIN'!
FO1ARA(U1,1,1-1,0,A2,A[I,L1],A[L1,I+KLl],L,W,A4);
A[I,I+K1]<A[I,I+K1]-W

'END';

'F@R' Kl«L 'STEP' 1 'UNTIL' M-1 'D@' A[I+K1,I]<R[I+K1]/A[I,I]

'END';
'GATP' L3;

L2: 'F@PR" J«N 'STEP' -1 'UNTIL' S+2*(M-1)'D@'
'BEGIN'

U2«'IF' N-J+1 'GT' 2*M-1 'THEN' J+2*(M-1)'ELSE'N;

'FPR' K2<0 'STEP' 1 'UNTIL' M-1 'D@!

'BEGIN'
FO1ARA(J+1,1,U2,0,A2,A[J-K2,L2],A[L2,J2],L2,R[J-K2],Ad);
R[J-K2]«A[J-K2,J]-R[J-K2]

'END';

MAX2<«J;

'FPAR' K2<«1 'STEP!' 1 'UNTIL' M-1 'D@*

250

251

"IF' ABS(R[J-K2]) 'GT'ABS (R[MAX2]) "THEN 'MAX2«J-K2;
'TF' MAX2Z 'NE' J 'THEN'
'BEGIN'
'"FPAR' K2«N 'STEP' -1 'UNTIL' J-2*(M-1)'D@"'
'BEGIN'
W2<A[J,K2] ;A[J,K2]«A[MAX2,K2] ;A[MAX2,K2]«W2
'END';
W2¢D[J];D[J]«D[MAX2] ;D [MAX2]«W2;
W2«R[J];R[J]+R[MAX2] ;R[MAX2]«W2;
'END';
A[J,J]«R[J];
'FPR' K2<«1 'STEP' 1 'UNTIL® 2*(M-1) 'Dp!?
'BEGIN'
FO1ARA(J+1,1,U2,0,A2,A[J,L2] ,A[L2,J-K2],L2,W2,Ad);
A[J,J-K2]«A[J,J-K2]-W2
'END';
'FPR' K2¢1 'STEP' 1 'UNTIL' M-1 'D@' A[J-K2,J]<R[J-K2]/A[J,J]
'END?';
'GPT@! L3;

L3: 'J@AIN' L1,L2;
'"FAR' J«S+2*M-3 'STEP' -1 'UNTIL' S+1 'D@'
'BEGIN'
U2«'IF' N-J+1 'GT' 2*M-1 'THEN' J+2*(M-1)'ELSE' N;
'F@R' K2<0 'STEP' 1 'UNTIL' J-S 'D@'
'BEGIN!
FO1ARA(J+1,1,U2,0,A2,A[J-K2,L2],A[L2,J],L2,E,Ad);
FO1ARA(J-2*M+2,1,5-1,E,A2,A[J-K2,L2] ,A[L2,J],L2,R [J-K2] ,A4);
R[J-K2]<A[J-K2,J]-R[J-K2]
'END';
MAX2+J;
'"FPR' K2«1 'STEP' 1 'UNTIL' J-S 'D@!
'"IF' ABS(R[J-K2]) 'GT'ABS(R[MAX2]) 'THEN' MAX2«J-K2;
'IF' MAX2 'NE' J 'THEN'
'"BEGIN'
'F@R' K2«1 'STEP' 1 'UNTIL' N 'D@'
'"BEGIN'
W2«A[J,K2] ;A[J,K2]«A[MAX2,K2] ;A[MAX2,K2]<«W2
'END'
W2«D[J];D[J]«D[MAX2] ; D[MAX2]<W2;
W2«R[J];R[J]+R[MAX2] ;R[MAX2]«W2
'END!;
A[J,J]«R[J];
'"FPR' K2«1 'STEP' 1 'UNTIL' J-S 'D@°'
'BEGIN'
FO1ARA(J+1,1,U2,0,A2,A[J,L2],A[L2,J-K2],L2,E,Ad);
FO1ARA (J-K2-2*M+2,1,S-1,E,A2,A[J,L2] ,A[L2,J-K2],L2,W2,A4) ;
A[J,J-K2]<A[J,T-K2]-W2
'END';
'FPR' K2¢1 'STEP' 1 'UNTIL' J-S 'D@' A[J-K2,J]<R[J-K2]/A[J,J]
'END!;
FO1ARA(1,1,2*M-2,0,A2,A[S,S-L2] ,A[S-L2,S],L2,E,A4);
FOlARA(1,1,2*M-2,E,A2,A[S,S+L2]} ,A[S+L2,S],L2,W2,Ad);
A[S,S]<A[S,S]-W;
'COMMENT' Inward substitution process. ;
'FPRK' L4,L5;

L4:

L5:

L6:

L7:

L8:

L9:

'FPR' I«2 'STEP' 1 'UNTIL' S-1 'D@'

*BEGIN'
FO1ARA(1,1,I-1,0,A2,A[I,L1]},D[L1],L1,W1,A4);
D[I1]«D[I]-W1

'END';

'GITP' L6;

'FPR' J<N-1 'STEP' -1 'UNTIL' S+2*(M-1)'D@"

'BEGIN'
FO1ARA(J+1,1,N,0,A2,A[J,L2],D[L2],L2,W2,Ad);
D[J]«D[J]-W2

'END';

'GOT@' Lé;

'"JAIN' L4,LS5;

'F@R' J«S+2*M-3 'STEP' -1 'UNTIL' S 'D@'

'BEGIN!
FO1ARA(J+1,1,N,0,A2,A[J,L2],D[L2],L2,E,A4);
FOI1ARA(1,1,S-1,E,A2,A[J,L2],D[L2],L2,W2,A4);
D[J]<D[J]-W2

'END';

'COMMENT' The outward substitution process. ;

D[S]«D[S]/A[S,S];

'"FPR' J<«S+1 'STEP' 1 'UNTIL' S+2*M-3 'D@'

'BEGIN’
FO1ARA(S,1,J-1,0,A2,A[J,K2],D[K2],K2,W2,A4) ;
D[J]«(D[J]-W2)/A[J,J]

'END';

'FPRK' L7,L8;

'"FPR' J<«S+2*M-2 'STEP' 1 'UNTIL' N 'D@'
'BEGIN'

FO1ARA (J-2* (M-1),1,J-1,0,A2,A[J,K2] ,D[K2],K2,W2,A4) ;

D[J]«=(D[J]-W2)/A[J,J]
'END';
'GAT@' L9,

'"FPR'I<+S-1 'STEP' -1 'UNTIL' 1 'D@‘
'BEGIN'

FO1ARA(I+1,1,I+2*(M-1),0,A2,A[I,L1],D[L1],L1,W1,A4);

D[I]+(D[I]-W1)/A[L,I]
'END';
'GPTP' L9;

'JPIN' L7,L8

'END';

252

253
PROGRAM 5

'"PRPCEDURE' F@CHI1 (N,A,B,D);

'COMMENT' Procedure solves the set of linear equations Ax=d, where A is
a symmetric tridiagonal (NxN) matrix, using the symmetric parallel
factorisation method (Chapter 3). The main diagonal of matrix A is
stored in vector A and the sub-diagonals in vector 3. On input,
vector D contains the right hand side of the system of equations,
during computation the intermediate solution and on exit it contains
the solution x. Matrix P is overwritten on A and B;

'"ARRAY' A,B,D;'INTEGER'N;

'BEGIN'

'INTEGER' S,I,J;

S«(N+1)'/'2;

'"COMMENT' The factorisation process. ;
'FPRK' L1,L2;

L1: A[1]+SQRT(A[1]);B[2]«B[2]/A[1];
'FPR' 1«2 'STEP' 1 'UNTIL' S-1 'D@°’
'BEGIN'
A[I]<SQRT(A[I]-B[I]*B[I]);
B[I+1]«B[I+1]/A[1]

'END';

'GOT@' L3;

L2: A[N]<+SQRT(A[N]);B[N]<+B[N]/A[N];
'FPR' J«N-1 'STEP' -1 'UNTIL' S+1 'D@'
'BEGIN' _
A[J]<SQRT(A[J]-B[J+1]*B[J+1]);
B[J]«B[J]/A[J]
'END';
'GAT@' L3;

L3: 'JPIN' L1,L2;
A[S]«SQRT(A[S]-(B[S]*B[S]+B[S+1]*B[S+1]));
'"COMMENT' The inward substitution process.
'FORK' L4,L5;

’

L4: D[1]«D[1]/A[1];
'"FPR! 1«2 'STEP' 1 'UNTIL' S-1' 'D@' D[I]«(D[I]-B[I]*D[I-1])/A[I];
1GRTP" L6; ;

L5: D[N]<D[N]/A[N];
'FPR' J«N-1 'STEP' -1 'UNTIL' S+1 'D@' D[J]«(D[J]-B[J+1]*D[J+1])/A[I];
1GPTP' L6;

L6: 'JPIN' L4,LS;
D[S]«(D[S]-(B[S]*D[S-1]+B[S+1]*D[S+1]))/A[S];
'"CAMMENT' The outward substitution process.
D[S])+D[S]/A[S];

'F@RK' L7,L8;

’

L7: 'FPR' I«S-1 'STEP' -1 'UNTIL' 1 'D@' D[I]«(D[I]-B[I+1]*D[I+1])/A[I];
"GOTA' L9;

L8: 'FPR' J«S+1 'STEP' 1 'UNTIL' N 'D@' D[J]«(D[J]-B[J]1*D[J-11)/A[JT];
'GPTA' L9;

L9: 'JPIN' L7,L8
'END';

254

PROGRAM 6

'"PRACEDURE' FQCH2(N,A,D,M);

'"COMMENT' Procedure solves the set of linear equations Ax=d, where A is
an (NxN) symmetric banded matrix of semi-bandwidth M, using the
symmetric parallel factorisation method (Chapter 3). Matrix A is
stored in an (NxM) array A, the main diagonal being held in column
M and the sub-diagonals in columns 1 to M-1l. On input, vector D
contains the right hand side of the system of equations, during
computation the intermediate solution and on exit the final solution
X. Matrix P is overwritten on A. ;

"ARRAY' A,D;'INTEGER' N,M;

'BEGIN'

'INTEGER' S,1,J,K1,K2,L1,L2,Ul1,U2;
S<(N-M+3)'/'2;

'COMMENT' The factorisation process,
'"FORK' L1,L2;

L1: 'FPR' I<1 'STEP' 1 'UNTIL' S-1 'D@'
'BEGIN'
Ul<'IF' M 'GT' I 'THEN' I-1 'ELSE' M-1;
'EOR' L1«1 'STEP' 1 'UNTIL' Ul 'DP' A[I,M]<A[I,M]-A[I,M-L1]*A[I,M-L1];
A[I,M]<SQRT(A[I,M]);
'FPR' Kl<1 'STEP' 1 'UNTIL' M-1 'D@'
"BEGIN'
Ul<'IF' M-K1 'GT' I THEN' I-1 'ELSE' M-K1-1;
'FOR' Ll«1 'STEP' 1 'UNTIL' Ul 'DP' A[I+K1,M-K1J<A[I+KL,M-K1]
-A[I,M-L1]*A[I+K1,M-K1-L1];
A[T+K1,M-K1]<A[I+K1,M-K1]/A[I,M]
'END'
'END' ;
'GAT@' L3;

L2: '"FPR' J<N 'STEP' -1 'UNTIL' S+M-1 'D@'
'BEGIN'
U2«'IF' M 'GT' N-J+1 'THEN' N-J 'ELSE' M-1;
'ER' L2«1 'STEP' 1 'UNTIL' U2 'D@' A[J,M]<A[J,M]-A[J+L2,M-L2]
*A[J+L2,M-1L2];
A[J,M]+SQRT(A[J,M]);
'"FPR' K2«1 'STEP' 1 'UNTIL' M-1 'D@’
'BEGIN' '
U2«'IF' M-K2 'GT' N-J+1 'THEN' N-J 'ELSE' M-K2-1;
"FPR' L2«1 'STEP' 1 'UNTIL' U2 'D@' A[J,M-K2]«A[J,M-K2]
-A[J+L2 ,M-L2]*A[J+L2 ,M-K2-L2];
A[J ,M-K2]«A[J ,M-K2]/A[J ,M]
'END!
'END';
'GAT@' L3;

L3: 'JPIN' L1,L2;
'FPR' J<S+M-2 'STEP' -1 'UNTIL' S 'D@'
'BEGIN'
'FPR' L2<1 'STEP' 1 'UNTIL' M-1 'DB' A[J,M]<A[J,M]-A[J+L2,M-L2]
*A[J+L2,M-L2] ;
'FPR' L2«J-S+1 'STEP' 1 'UNTIL' M-1 'D@' A[J,M]<A[J,M]-A[J,M-L2]
*A[J,M-L2];
A[J,M]«SQRT(A[J,M]) ;
'FPR' K2<1 'STEP' 1 'UNTIL' J-S 'D@'
'BEGIN'

L4:

L5

L6:

L7:

L8:

L9:

255

"FR' L2«1 'STEP' 1 'UNTIL' M-K2-1 'D@' A[J,M-K2]<A[J,M-K2]
-A[J+L2,M-L2] *A[J+L2,M-K2-L2];
'FOR' L2+J-S+1 'STEP' 1 'UNTIL' M-1 'DO' A[J,M-K2]<A[J,M-K2]
-A[J ,M-L2]*A[J-K2,M+K2-L2];
A[J,M-K2]+«A[J,M-K2]/A [T ,M]
'END!'
'END';
'"CAMMENT' The inward substitition process. ;
'"FORK' L4,L5;

'FPR' I<1 'STEP' 1 'UNTIL' S-1 'D@"

'BEGIN'
UL«<'IF' M 'GT' T 'THEN' I-1 'ELSE' M-1;
'"FR' L1<1 'STEP' 1 'UNTIL' Ul 'D@' D[I]<«D[I]-A[I,M-L1]*D[I-L1];
D[I]«D[I]/A[I,M]

'"END';

"GITP' L6

'FPR' J<«N 'STEP' -1 'UNTIL' S+M-1 'D@'

'BEGIN'
U2«'IF' M 'GT' N-J+1 'THEN' N-J 'ELSE' M-1;
'"FgR' L2<1 'STEP' 1 'UNTIL' U2 'D@' D[J]«D[J]-A[J+L2,M-L2]*D[J+L2];
D[J]«D[J]/ALI,M]

YEND';

'GPTR L6;

'JPIN' L4,L5;

'FPR' J<+S+M-2 'STEP' -1 'UNTIL' S 'D@'

'BEGIN'! ,
'"FAR' L2«1 'STEP' 1 'UNTIL' M-1 'D@' D[J]<«D[J]-A[J+L2,M-L2]*D[J+L2];
'"FPR' L2«J-M+1 'STEP' 1 'UNTIL' M-1 'D@' D[J]<D[J]-A[J,M-L2]*D[J-L2];
D[J]<D[J]/A[I,M]

'END';

'"CAMMENT' The outward substitution process. ;

D[S]<«D[S]/A[S,M];

'FPR' J<S+1 'STEP' 1 'UNTIL' S+M-2 'D@'

'BEGIN'
'FPR' L2<1 'STEP' 1 'UNTIL' J-S 'D@' D[J]«D[J]-A[J,M-L2]*D[J-L2];
D[J]«D[J}/A[JT,M]

'END';

'FPRK' L7,L8;

'FPR' J<+S+M-1 'STEP' 1 'UNTIL' N 'D@’

'BEGIN'
FPR' L2+1 'STEP' 1 'UNTIL' M-1 'D@' D{J]«D[J]-A[J,M-L2]*D[J-L2];
D[J]«D[J1/A[JT,M]

'END';

"GRTP' L9;

'FPR' I+«S-1,'STEP' -1 'UNTIL' 1 'D@’

'BEGIN'
'FPR' L1<1 'STEP' 1 'UNTIL' M-1 'D@' D[I]<D[I]-A[I+L2,M-L2]*A[I+L2];
D[I]«D[I]/A[I,M]

'END';

"GETP' L9;

'JPIN' L7,L8

'END';

256

PROGRAM 7

(— '"PRECEDURE' PQUICKS@RT(A,L,U);

'"C@MMENT' Procedure sorts N numbers into ascending order using
the parallel quicksort method (see Chapter 5). Subsets with
more than M elements are sorted using the partitioning
procedure and those with less than M,or M elements are sorted

AN+FN using the linear insertion process. ;
'ARRAY' A;'INTEGER' L,U;'VALUE' L,U;
'BEGIN'

'INTEGER' 1,J;'REAL'V,W;
'"COMMENT' Test the size of the subset.
'IF' U-L 'GT' M 'THEN'
'BEGIN!
'"COMMENT' Select the partition element. ;

Ay I (L+U) '/ 12
My

.
2

'IF' A[L] 'GT' A[U] 'THEN'
'BEGIN'
VA[L];A[LI+<A[U] ;A[U]«V
'END?';
A 'IF' A[I] 'GT' A[U] 'THEN'
'BEGIN'
A, V«A[T];A[I]«A[U];A[UJ«V
'END?';
Ay ~ 'IF' A[L] 'GT' A[I] 'THEN'
'BEGIN'
A3 VEA[L]A[LI«A[I];A[I]«V
'END';
VA[I];A[I]«A[L+1];A[L+1]+«V;
'COMMENT' Set up pointers and partition on V, the
AN partition element. ;
I«L+1; J«U;
ct Ll: I«I+1;
| 'IF' A[I] 'LT' V 'THEN' 'G@T@' L1;
[L2: J«J-1;
Cy-C' 'IF' A[J] 'GT' V 'THEN' 'G@T@' L2;
- 'COMMENT' If pointers have crossed, insert partition
element, otherwise interchange A[I] and A[J]. ;
AN+BN 'IF' I 'LT' J 'THEN!
'BEGIN!
B [: WeA[I];A[I]«A[T];A[T]<W;
N 'GATP L1
'END';
Ay A[L+1]<A[J];A[J]+V;
'"COMMENT' Test for largest subset. ;
A 'IF' J-L 'GT' U-J 'THEN'
'BEGIN'
'"COMMENT' Test smaller subset to see if it has at
least 2 elements. ;
A' 'IF' U 'GT' J+1 'THEN'
'BEGIN'!
'"FPRK' L3,L4;

A, L3: PQUICKS@RT(A,L,J-1);
'GATP' L5;

A L4: PQUICKS@RT(A,J+1,U);
'GAT@' L5;

257

L5: '"JPIN' L3,L4;
'END'

A 'ELSE' PQUICKS@RT (A,L,J-1)
6 'END' .
'ELSE!
'"BEGIN!
'"COMMENT' Test smaller subset to see if it has at
least 2 elements. ;
AN-A' 'TF' J-1 'GT' L 'THEN'
'BEGIN'!
'F@RK' L6,L7;
A, L6: PQUICKS@RT(A,J+1,U);
'GATA' L8;
Ag L7: PQUICKS@RT (A,L,J-1);
'GATY' L8;
L8: 'JPAIN' L6,L7;
'END'
A 'ELSE' PQUICKS@RT (A,J+1,U)
9 'END'
YEND!
'ELSE!
'BEGIN'
'"C@MMENT' Linear Insertion Process. ;
FN 'F@R' I<L+1 'STEP' 1 'UNTIL' U D@
'"IF' A[I] 'LT' A[I-1] 'THEN'
N-(Fy+hy) 'BEGIN'
DN V<A[1];J<«I;
Ey*Dy '"FPR J«J-1 '"WHILE' A[J] 'GT' V 'DP' A[J+1]<«A[J];
D A[J+1]+«V —
N TEND' Ex
'END!

'END' ;

258

PROGRAM 8

'PRECEDURE' MATINVI1(N,A,X,L,EPS);

'COMMENT ' Procedure evaluates the inverse of a real symmetric matrix A
using the first order implicit iterative process (Chapter 7) with
an initial approximation of I. On input, matrix X holds the initial
approximation I and on exit, the inverse of A. The iterative
process is terminated when the difference between successive
approximations is less than 2*EPS* (the element of X with largest
modulus). ;

'INTEGER' N,L;'REAL' EPS;'ARRAY'A,X;

'BEGIN'

'REAL' C,D,XMAX,ZMAX,E;
'INTEGER' 1,J,K;

'"ARRAY' B[1:N,1:N],Y[1:N];
L+@;

'C@MMENT' Formation of X.A;
L1: 'F@R' I«l 'STEP' 1 'UNTIL' N 'D@'

'FPR' J<1 'STEP' 1 'UNTIL' N 'D@’
FO1ARA(1,1,N,0,0,X[I,K],A[K,J],K,B[I,J],D);

XMAX<+ZMAX<0;
'FPR' J«1 'STEP' 1 'UNTIL' N 'D@'
'BEGIN'

'COMMENT' Solution for Y, ;

'FPR' I«1 'STEP' 1 'UNTIL' N 'D@'

'BEGIN'
FO1ARA(1,1,I-1,-X[1,J],0,B[I,K],Y[K],K,C,D);
Y[I]«-C/B[I,I]

'END' §

'C@MMENT' Solution for X. ;

'EPR' I«N 'STEP' -1 'UNTIL' 1 'D@'
"BEGIN'
FO1ARA(I+1,1,N,0,0,B[I,K],Y[K],K,C,D);
Y[I]«Y[I]-C/B[I,I];
C<ABS(Y[I]);
'TF' C 'GT' XMAX 'THEN' XMAX<C;
C<«ABS(Y[I]-X[I,J]);
'IE' C 'GT' ZMAX 'THEN' ZMAX<C;
X[I,J]<Y[I]
'END'
'END';
L<L+1;
D«ZMAX/XMAX;
'IF' D 'GT' 2*EPS 'THEN' 'G@PT@' L1
'END' ;

259

PROGRAM 9

'PRECEDURE' MATINV2(N,A,X,L,EPS);

'C@MMENT' Procedure evaluates the inverse of a real symmetric matrix A
using the second order implicit iterative process (Chapter 7), with
an initial approximation of I. On input, matrix X holds the initial
approximation I and on exit, the inverse of A. The iterative
process is terminated when the difference between successive
approximations is less than 2*EPS* (the element of X with largest
modulus) . 5

'INTEGER' N,L; 'REAL' EPS;'ARRAY' A,X;

'BEGIN!

'REAL' C,D,XMAX,ZMAX,E;
'INTEGER' I,J,K;

"ARRAY' B,F[1:N,1:N},Y[1:N];
L<0;

1COMMENT' Formation of X.A;
L1: 'F@R' I<«l 'STEP' 1 'UNTIL' N D@

'FPR' J<1 'STEP' 1 'UNTIL' N 'D@"
FOlARA(1,1,N,0,0,X[I,K],A[K,J],K,B[1,J],D);

'COMMENT' Formation of INV(D-U). ;

'FOR!' I<«1 'STEP' 1 'UNTIL' N 'D@
'BEGIN!

F[I,I1}+B[I,I];

'F@R' J«I+1 'STEP' 1 'UNTIL' N 'D@'

'BEGIN'
FO1ARA(I,1,J-1,0,0,F[I,K],B[K,J],K,C,D);
F[I,J]+-C/B[J,J]

'END'

'END?;

'"COMMENT' Formation of D.INV(D-L). ;

'FOR' J<1 'STEP' 1 'UNTIL' N-1 'D@°
'FPR' I<«J+1 'STEP' 1 'UNTIL' N ‘'D@!'
'BEGIN'
Y[J]<F[J,J];
FO1ARA(J,1,1-1,0,0,B[I,K],Y[K],K,C,D);
Y[I]«-C/B[I,I];
F[I,J]«-C
'END';

'CMMENT' Formation of INV(D-U).[D.INV(D-L)].

'F@R' I«l 'STEP' 1 'UNTIL' N 'D@'

'FPR' J«1 'STEP' 1 'UNTIL' N 'D@'

FOIARA('IF' I»J 'THEN' I 'ELSE' J+1,1,N,'IF' I>J 'THEN' O
'ELSE' F[I,J],0,F[1,K],F[K,J],K,F[I,J],D};

"CAMMENT' Formation of I-[X.A].[INV(D-U).D.INV(D-L)]. ;

'F@R' J+«1 'STEP' 1 'UNTIL' N 'D@'
'BEGIN!

'FR! I<1 'STEP' 1 'UNTIL' N 'D@'
FO1ARA(1,1,N,'IF' I=J 'THEN' -1 ‘'ELSE' 0,0,B[I,K],F[K,J],
K,Y[I],D);
'E@R' I<1 'STEP' 1 'UNTIL' N 'D@' F[I,J]<«-Y[I]
TEND';

'"CAMMENT' Formation of X+[I-X.A.INV(D-U).D.INV(D-L)}.X. ;

'FPR' I«1 'STEP' 1 'UNTIL' N 'D@'

'BEGIN'
'FR' J<1 'STEP' 1 'UNTIL' N 'D@'
FO1ARA(1,1,N,X[1,J1,0,F[I,K},X[K,J],K,Y[J],D);
'F@R' J«1 'STEP' 1 'UNTIL' N 'D@' F[I,J]<Y[J]

'END' ;

XMAX<ZMAX<0;

'F@R' J«1 'STEP' 1 'UNTIL' N 'Dg@’

'BEGIN'

260
\
\
\

'COMMENT' Solution for Y. ;

'FPR' 1«1 'STEP' 1 'UNTIL' N 'Dg@’

'BEGIN'
FO1ARA(1,1,1-1,-F[I,J],0,B[I,J],Y{K],K,C,D);
Y[I]«-C/B[I,1]

'END';

'CAMMENT! Solution for X. ;

'F@PR' I«N 'STEP' -1 'UNTIL' 1 'D@’
'"BEGIN'
FO1ARA(I+1,1,N,0,0,B[I,K],Y[K],K,C,D);
Y[I]<«Y[I]-C/B[I,I];
C«ABS(Y[I]);
VIF' C 'GT' XMAX 'THEN' XMAX<C;
C«ABS(Y[1]-X[I,d]);
*TF' C 'GT' ZMAX 'THEN' ZMAX<C;
X[1,J]<Y[T1]
'END’
'END';
L<«L+1;
D«ZMAX/XMAX;
'TF* D 'GT' 2*EPS 'THEN' 'G@T@' L1
'END';

