

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

--~j.I":

~.·1

"

, 0'
;"

" ,

, .0
. I LOUGHBOROUGH

JUNIVERSITY OF TECHNOLOGY
'.' LIBRARY

AUTHOR/FILING TITLE ,
! : '(J.. 'AR,"'r-NO... M (t !

-- - - - ---- - -- - - - :.It __ ---7-- --- ------ -- --- ----- - - ,

--- -- - ----- -------------- --- -- -- --- ---- - - - -_._---~ ,
'ACCESSION/COPY NO, °

VOL, NO,

21i J>i 2000

18 Ut.:c 2000

__ ~_~ _b.._t!:P!?'}_~_7. _____ _______ _
CLASS MARK

i

f ". c

, .

.'

AN EXPERT WRITING MODEL FOR STORY COMPOSITION

by

MICHAEL ROBERT GARDNER. B.Sc

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy of the

Loughborough University of Technology

November 1991

© by Michael Robert Gardner 1991

lOtlgttborougn UnrwfSl1)

aI T echnOIOQy LltJfary

Oafe o~·cn ..
crQ~'

.~cc; D.% 001;)3(;:7-No

I would like to acknowledge the assistance given by my research

director Professor Ernest Edmonds and my supervisor Dr John Connolly

throughout the course of the research and in the preparation of this

thesis.

Also thanks must go to my wife Maura and to my parents who kept me

on the straight and narrow.

(II)

An Expert Writing Model for Story Composition

by M. Gardner

ABSTRACT

First the thesis reviews the development of Intelligent Computer
Assisted Instruction (lCAn systems by outlining the different ways that

computers have been used in education followed by a description of the

functionality of ICAI systems in terms of the Hartley-Sleeman model of

classification. This is followed by a discussion of the skills required

within writing and their pedagogical context. The different strategies

that have been applied to computer supported composition are then
discussed with examples of systems where appropriate.

The rationale for a new composition support system is then argued and

the criteria for its development described in terms of the functionality of

ICAI systems, and the constraints imposed by the requirement for

natural language processing. This is followed by the description of an

experimental system called MULTISTORY which can assist the writer

throughout the writing process in making plot level decisions.

A critique is then made of the MULTISTORY system and the

requirement for an Expert Writing Model is identified. An architecture
for the Expert Writing Model is then proposed and the components are

described in terms of top-down and bottom-up knowledge sources. An
example is then used to illustrate the application of the Expert Writing

Model to a sample story. Finally the Expert Writing Model is placed

within the framework of the Writer's Assistant and further

investigations are proposed.

(Ill)

CONTENTS

CHAPTER!.
INTELLIGENT COMPUTER ASSISTED INSTRUCTION 1

1.1. Computers and education .. 2

1.2. ICAI systems , .. 6

1.3. Components of an ICA! system .. 8

1.3.1. User interface ... 8

1.3.2. Representing domain knowledge 13

1.3.3. The embedded student model .. 19

1.3.3.1. Overlays .. 2:}

1.3.3.2. Bug collections ... 21

1.3.3.3. Bug construction .. 23

1.3.3.4. Student modelling - where next? 25

1.3.4. Tutoring strategies .. a>
1.3.4.1. Coaching ... a>
1.3.4.2. Consultants ... Z7

1.3.4.3. Socratic and mixed-initiative tutoring 28
1.3.4.4. Curriculums ... 2}

CHAPTER 2.

COMPOSITION SUPPORT SySTEM ... 31

2.1. Pedagogical context ... 32

2.2. Word-processors as composition tools .. 35

2.3. New composition environments and research 39

2.3.1. Language models .. 39

2.3.2. Organising thoughts40

2.3.3. Stimulating invention .. 42

2.3.4. Text analysis and support systems 45

2.3.5. Hypertext, collaborative writing and interactive

fiction ... 50

2.4. Where next? ... 53

(IV)

CHAPTER 3.
RATIONALE FORA COMPOSITION SUPPORT SYSTEM 55

3.1. Aims and objectives ... 56

3.2. Computer supported creative composition 58

3.3. ICAI criteria .. 61

3.3.1. User interface ... 61

3.3.2. Embedded student model.. .. 63

3.3.3. Domain knowledge .. &

3.3.4. Tutoring strategy ... ffi

3.4. Natural language processing for text analysis OO

CHAPTER 4.
MULTISTORY: DEVEWPMENT OF AN ICAI SYSTEM FOR

STORY COMPOSITION .. 70

4.1. Introduction ... 71

4.2. MULTISTORY _ system design ... 72

4.3. User interface ... 74

4.4. Support system ... 77
4.4.1. Simple rule-based support system 77

4.4.2. Text analysis support system .. 83

4.5. Integration of the user interface and support systems 86

4.6. Current state of development of MUL TISTORY f!7

CHAPTER 5. A CRITIQUE OF MULTISTORY m
5.1. Research overview ... 00

5.2. Research issues .. oo
5.3. New research ... 95

CHAPTER 6. The 'EXPERT WRITING MODEL' OO

6.1. The Components of the Expert Writing Model.. 100

6.1.1. Top-down Story Grammar .. 100

6.1.2. Bottom-up AI plannerlsimulator 104

6.2. The EWM Architecture .. 100

6.3. An Example ... 114

6.4. Summary ... W

(V)

CHAPTER 7. THE FRAMEWORK FOR AN EXPERT WRITING
MODEL .. 121

REFERENCES .. 125

APPEND1Xl.
Predicate calculus Prolog listings and sample output 139

APPEND1X2.

MULTISTORY user interface listings ... 182
2.1. MULTISTORY system overview: Rule based support system 1B2
2.2. Main Pascal source code STORYM.PAS .. 183

2.3. Batch file to startup MULTISTORY: GO.BAT 234
2.4. Redirection file consulted on startup: REDIRECT 234
2.5. Main Prolog control program: RUNSUGS.PRO 234
2.6. Temporary story parameter file: CSTORYF.PRO 235
2.7. Suggestions file for 'Revenge'/Situation 1 type stories:

REVONE.PRO .. ~ 236
2.8. Assembler program: DIR1.ASM ... 238
2.9. Assembler external functions GETCHAR and TESTCHR:

GETCHAR.ASM ... 239

2.10. Story situations used by MULTISTORY .. 241

2.11. Characters used by MULTISTORY .. 244
2.12. Character attributes file used by MULTISTORY 247

APPEND1X3.
Sample MULTISTORY screens .. 249

APPEND1X4.

Research Machines Nimbus technical specification 256

(VI)

Chapter 1. INTELLIGENT COMPUTER ASSISTED
INSTRUCTION

Interest in Britain in the field of Intelligent Computer Assisted
Instruction (lCAD is reflected by it being identified by the Alvey
programme for action on Intelligent Knowledge Based Systems
(IKBS) (SERClDoI, 1983) and the subsequent establishment of an
Alvey IKBS Special Interest Group for ICAI (Ford & Yazdani, 1988).
This surge of interest was paralleled with the rise of Artificial
Intelligence as an exciting and promising vision of the future.
However much of the early work raised new questions to be
answered rather than solving existing ones; this led to a general
disillusionment with A.I and IeAI, especially within the
commercial sector. However the field continues to offer new insights
into the fundamental problem of knowledge communication and we
are beginning to see a fresh impetus within the subject.

What is an IeAI system and how has this field developed over the
past 15 to 20 years? This chapter will try to answer these points by
giving a brief history of computers in education, describe the
emergence of IeAI systems and the components which identify such
systems, outline some key systems and put forward some relevant
points of view about this emerging technology. The framework for
IeAl systems described in this chapter will be used later on in the
thesis as a basis for an evaluation of a writing support system and
also to provide a context for the Expert Writing Model.

The term IeAI rather than ITS (Intelligent Tutoring Systems) will.
be used throughout this thesis, as it encompasses a wider domain
than is implied by the 'Tutoring' component of ITS.

1.

1.1. Computers and education

Anderson, Boyle and Reiser (1985) estimated there to be over 10,000
pieces of educational software available. However, almost all of these
were classified as 'Computer Assisted Instruction' (CAI) as opposed
to 'Intelligent Computer Assisted Instruction' (ICAD. What
therefore are the broad categories of educational software? O'Shea
and Self (1983) have attempted to classify the different types of
educational software and have identified 11 approaches used in CAI
each of which reflect the way people have regarded the educational
use of computers. The following are a capitulation of these
categories:

Linear Programs: these programs attempt to reinforce ideas put
forward by the teacher. A simple question/answer dialogue prompts
the pupil to answer a question and regardless of the answer given
continues on to the next question. The main drawback of this type of
system is that each student receives the same material and in the
same order regardless of their aptitude. The feedback given by the
system is only relevant if an answer is correct; the machine cannot
recognise a nearly correct answer.

Branching Programs: this is a similar technique to Linear
Programs with the added feature of branching to different sets of
questions based on the answer given. Authoring languages with IF
and GOTO facilities allow teachers to construct their own branching
programs, but the main problem is that as more questions are added
there is a build up of a large numbers of rules, making the programs
unwieldy and difficult to manage.

Generative Computer-Assisted Learning: mainly used for
arithmetic problems, generative systems are able to generate
questions of suitable difficulty corresponding to the ability of the
student. (see Wexler 1970). By using program variables the
generative system can provide as many problems as the student
needs but due to the nature of providing such a precise specification
it is usually restricted to subjects which can be very well defined.

2.

Mathematical Models of Learning: the aim of this technique is to
develop mathematical theories on which to model the cognitive
process of learning. This model can then be used to direct a teaching
pattern interactively on the computer. Very little is known about the
learning process so the validity of such models alone is doubtful.
However, cognitive modelling in unison with other techniques has
been put to good use by several ICAI systems, which will be
discussed further later on in this chapter.

TICCIT: in 1971 the National Science Foundation of America set up
an experiment to test the effectiveness of computer-aided learning
which became the TICCIT (Time-shared Interactive Computer
Controlled Information Television) project. The system included
lessons on pure calculus mathematics and English composition
using the same underlying method. First describing general
principles, then examples to illustrate these principles and finally
exercises for the student to complete. Each TICCIT system served up
to 128 terminals and it represents one of the first wide spread
implementations of computer aided learning. The system met with a
mixed response and was not widely adopted.

PLATO: The PLATO (Programmed Logic for Automatic Teaching
Operation) system was similar to TICCIT but was implemented on a
larger scale (up to 1200 terminals), used better technology (plasma
displays were used which allowed extensive use of graphics) and the
emphasis was on end users developing their own course software
rather than being the sole responsibility of specialists.(see Levy,
1983).

The main drawback of PLATO was that the laborious programming
necessary to implement course-ware discouraged many teachers
from developing their own course-ware and therefore led to a lack of
appropriate software. Also response times were variable and many
students only used the system for communicating messages to
friends. However, when taking into account the nature of the
technology used by PLATO then it can be viewed as a pioneering
system for its day.

3.

Simulations: here the computer is used to simulate a process and the
student is encouraged to learn by observing the process. This
technique particularly requires the careful use of computer
graphics which can enhance the simulation. In more advanced
systems the student can affect the outcome of the simulation by
altering the values of certain parameters. The role of this type of
education is limited to applications which can be easily simulated.

Games: here the aim is to combine the fun aspects of computer
games with a learning/educational component. For example, the
game 'How the West was won' was developed by Anderson in 1977 for
the PLATO system. This involved combining numbers in order to
move a player around the board. (A COACH for giving advice was
later added to the system, which was renamed WEST). Complex
adventure games such as 'Granny's Garden' (Granny's
Garden,1984) have had much praise for combining an element of
learning within an enjoyable game environment.

Problem-Solving: the concept underlying this approach is that the
student will learn from trying to solve problems. The computer can
simply be used as a tool to enrich this process. The LOGO
programming environment (Papert, 1980) was developed with this
aim. Here the student is able to move a 'turtle' around either
graphically on a computer screen or using a physical robot attached
to the computer. Papert has stressed that children 'learn by doing'
and that LOGO gives children the power to experiment with
mathematics. Other tools such as Micro-Prolog (Ennals,1984) have
also been used as part of a learning environment. In Micro-Prolog
the student can experiment with logic and in the process learn to
solve quite complex problems.

Emancipatory Modes: computer software can be used to relieve the
student of tedious tasks (eg. spelling correction) and provide
additional support for such tasks as word-processing, calculating
and storage of information. If these tools are properly used then they
can free the student to concentrate on the real tasks at hand.

4.

Dialogue systems: these systems attempt to mimic the relationship
between student and tutor. In a computer based tutoring
environment the student should be able to influence the aspects of a
course which are to be emphasised by the computer system. The
tutoring component may also monitor the progress of the student
and modify the teaching to suit the perceived student needs. For
Dialogue systems to be truly effective there must be a rich two-way
communication between tutor and student. Unfortunately computers
can usually support only a highly restricted subset of natural
language communication and therefore the power of dialogue
systems is highly restricted by the interface bottle-neck.

From this cursory description of so-called 'conventional' educational
software the next two sections describe the paradigm of Intelligent
Computer Assisted Instruction (lCAI) systems, with a detailed
description of their components.

5.

1.2. leA! systems

ICAI systems can be said to have developed from the fields of
Generative CAI and Dialogue Systems (which were described in the
previous section) and the application of Artificial Intelligence
techniques.

One of the original goals for ICAI was to:

'extend the domain of applicability, the power
and the accuracy of adaptive systems. '

(Sleeman and Brown,1982)

Research focused on the design of systems that could:

'offer instruction in a manner that is sensitive
to the students strengths, weaknesses and
preferred style of learning. The role of AI in
computer-based instructional applications is
seen as making possible a new kind of learning
environment.' (Barr and Clancey,1982)

ICAI can be said to be the application of Artificial Intelligence
techniques to the design of such tutoring systems. However it shares
many of the same goals of Dialogue and Generative CAI systems.

The following diagram (figure 1) attempts to illustrate the range of
computer based learning systems. ICAI falls into the middle of this
range in that it attempts to combine both directed learning and open
ended problem solving techniques (VanLehn and Soloway, 1985).

6.

Figure 1. The range of computer based learning systems .

..
DIRECTED LEARNING

ego Linearlbranching programs
question/answer CAI
system in control
student cannot explore

ICAI

OPEN-ENDED

PROBLEM SOLVING

eg.WGO
student in control

inefficient use of time

controlled by student and system
allows exploration

gives hints,demonstrations and explanations
answers questions and suggests challenges

7.

1.3. Components of an leAl system

What are the components of an leAI system? Surprisingly there has
been quite a lot of agreement within the research community over
the distinction between the different components, the main
disagreements seem to be over their relative importance. In most
cases an ICAI system can usefully be classified in terms of the
Hartley-Sleeman model (Yazdani, 1986) as this model is general
enough to fit most kinds of leAI systems. This model consists of a
'User Interface', an 'Expert Model', a 'Student Model', and a
'Tutoring Strategy'. Some researchers include an additional distinct
component called the 'Psychologist' (Brecht & Jones, 1988) which is
responsible for maintaining the student model by determining when
a skill has been mastered, what errors arise in skills, what skills are
being learned, and what is to be taught next. However in this chapter
these functions are addressed within the other components and the
'Psychologist' component can be viewed as the glue which binds the
separate leAI components together.

1.3.1. User interface

Generally it can be said that the easier it is to use a system the easier
it will be for the user to accomplish the task at hand. This also
follows for leAI systems. The problem solving process should be
separated as much as possible from the process of operating the
system. As Brown(1977) said:

'As computers become more powerful, the student
machine interface will quickly become a bottle
neck in effective learning.'

Various techniques can be used to accomplish this aim such as
simple menu operated systems and graphical output through to
complex natural language dialogue systems.

8.

For example, the development of the WUMPUS computer game into
the WUSOR-I (Gold stein 1982) and WUSOR-II (Goldstein and Carr
1977) ICAI systems illustrates this concept. The WUMPUS game
involves the player initially being placed somewhere in a randomly
connected warren of caves and information is given to the player
about adjoining caves. The players goal is to find the Wumpus
monster and slay it. To be a skilled Wumpus hunter one must be able
to apply a combination of logical skills, probability, decision theory
and geometry.

WUSOR-I implemented this game with an additional computer
coach using a simple teletype style interface. For example (Barr and
Clancey,1982):

Hello, Timmy. There are 15 caves, 2 bats, 2 pits,
and 1 Wumpus. You are now at cave 15 with neighbours
4,14 and O. Brrr! There is a draft. You are near a
pit. What a stench! The Wumpus is near. What now?

**4

You are now at cave 4 with neighbours 15, 14 and 2.
Brrr! Squeak! A bat is near. What now?

**14

etc.

The main problem with this technique was that students used scrap
paper to map out the caves and to draw tables ie. the problem solving
process was not separated from the process of using the system.
Although, it could be said that this approach forced the student to
maintain a mental model of the WUMPUS world.

WUSOR-II solved this problem by using a graphical interface which
drew a map of the caves thus allowing the student to concentrate on
mastering the logic and probability.

9.

Although in a different educational domain, this concept was also
utilised by the Anderson-Boyle Geometry tutor (Anderson, Boyle and
Yost,1985). Here a graphical interface was used to off-load the
mechanics of applying geometry theories. This type of interface
explicates theorem proving and so concentrated the student on the
real problem to be solved.

WUMPUS and WUSOR also allowed the pupil to enter directions in
the form of normal English sentences. Natural language
communication between pupil and computer has been implemented
in several other ICAI systems; the most notable being SCHOLAR
(Carbonnell 1970), SOPHIE (Brown and Burton 1975) and WHY
(Stevens and Collins 1977).

SCHOLAR was primarily developed to tutor students on South
American Geography although the system could be used for other
domains (eg. NLS-SCHOLAR was developed to tutor people on the
use of complex text-editing programs (Grignetti, Hausmann and
Gould, 1975». SHOLAR allowed students to enter their queries in a
so-called 'comfortable' subset of English.

A mixed-initiative dialogue system was used where both the system
and the student could initiate conversation by asking questions. The
following is an excerpt from a session with the South American
Geography tutor (Barr and Clancey 1982). The students questions

and answers are preceded by ** and annotations are shown in
italics:

What is the language of Argentina?

**Probably Spanish

Very good.
Approximately what is the area of Argentina?

Student changes topic ...

**Tell me something about Peru

10.

Peru is a country.
It is located in South America.
The capital of Peru is Lima.
Now answer the question you didn't answer before .

... finally answers the question.

**The area of Argentina is 1,100,000 square miles

Approximately true, but a more exact value is
1,200,000.
The eastern bordering country of Peru is ---.

etc.

The natural-language processing technique used by SCHOLAR was
based on case grammars (Fillmore,1968) with the knowledge
representation implemented as semantic nets (Quillian 1968,
Raphael 1968).

Theoretically a Natural Language interface promises great wealth.
However much caution is needed before embarking on such a
venture. At a simplistic level the user may find typing in natural
language time consuming and there are many other associated
problems such as typing errors, bad spelling, and difficulty in
expression. However, the major drawback of such systems is the
effort needed to build even a system capable of understanding a
restricted subset of English. For example, SOPHIE handles 90% of
all student queries but cost 2 man-years over 4 years to build. On the
other hand, SOPHIE with a menu interface cost less than one man
month and had excellent performance; but only certain kinds of
queries were allowed. The claimed performance figures of such
Natural Language systems needs to be carefully scrutinised. In most
cases the systems do not support natural language at all, but rather
a very restricted subset which bears more resemblance to a
structured query language than English text. Also it is not simply

11.

the case that one can build one natural language engine and apply it
to any ICAI system. Each ICAI domain will have its own set of
semantic and pragmatic criteria which will have to be built in to the
natural language engine before it can be properly used.

The WHY system (Stevens A.L, and Collins A, 1977) used a socratic
tutoring method (described later) in the domain of meteorology. Here
a natural language interface was essential because menus could not
list all possible student answers and would anyway reveal the correct
answer. A semantic grammar (Burton, 1976) was used to build the
language comprehension module, yet the system when finished
could only deal with a limited set of natural inputs and failed to
understand many sentences typed by the student.

Where a natural language interface is used, often the interface
component is implicitly embedded within the overall knowledge
representation. Bumbaca (1988) describes a system where the
natural language interface uses a conceptual dependency pars er
(Schank & Rieger, 1974), and the expert and student model's both use
conceptual dependency as their root knowledge representation
language. The proposed inherent advantages are a firm knowledge
representation language framework, and a better intermix of
knowledge experts (the system is implemented using a blackboard
structure). In this case there might well be a trade-off between
developing the natural language engine and the other components of
the ICAI systems. However, the previous provisos still apply.

Alternatively, Wilson (1986) advocates the use of a detached interface
module similar to the SYNICS type 'interface processor' developed by
Edmonds (1982). Some of the advantages of such a system are that
the user interface can provide separate interfaces for specific
hardware. and there is increased flexibility in handling several user
ability/experience profiles. In effect with this approach it may be
possible to off-load part of the user model to the interface pre
processor.

In conclusion the user interface should off-load extraneous factors
allowing the student to concentrate on the problem at hand.

12.

However, this may involve changing the nature of the task itself. The

approach taken (such as the use of a menu driven or a natural

language system) will depend on the nature of the task and the

facilities available. A Natural Language interface may be essential

and/or impossible to implement effectively. Menus can be effective

but can also be too restrictive. Alderson and DeWolf, 1985 provide
user interface guide-lines for Computer Aided Learning (CAL)

applications, many of which can be applied to lCA! systems.

Current PC and Unix based wind owing environments such as

Microsoft Windows (TM Microsoft), and Open Software Foundation

Motif allow the user (to a limited extent) to alter the screen to their

own preferences, and they provide strict user interface guide-lines
for application developers.

The degree to which the user interface is embedded within the rest of

the system is also important, and can be viewed as a trade-off

between the degree of integration with the other knowledge

structures, and the ease by which the user interface can be modified

separately. Above all else, the system should be easy to learn and to

use.

1.3.2. Representing domain knowledge

Many of the issues involved in representing and applying the

expertise or domain knowledge in an lCAl are covered by what has

been termed 'expert systems' (see Colbourn, 1984, for an overview of

expert systems in education). The following definition of expert

systems is provided by Hayes-Roth F, Waterman T, Lenat D B, 1983:

'An expert system embodies knowledge of a particular
application area combined with inference mechanisms
which enable the program to employ this knowledge in
problem·solving situations. '

Typically an expert system will include an inference engine that will

load and run various knowledge-bases which encapsulate different

areas of expertise. Many of the 'first generation' expert systems were

13.

stand-alone systems. However, the main feature of the new range of
advanced so-called 'second-generation' expert systems such as
Nexpert Object (TM Neuron Data) is the ability to embed the expert
system within other conventional programming languages and
systems. This feature has always been a major requirement for
ICAI systems where the domain knowledge is one component of the
overall system.

Typically, the knowledge-base will include both the 'content' to be
taught and the mechanisms of how to use that knowledge to solve
related problems. This is a classic A.I problem and involves the
necessity to make explicit the deep structure knowledge of the
problem domain (a very hard problem). For example, to code the
knowledge of an 'expert' computer programmer, a good source of
information would be found in computer textbooks particularly
information on the syntax and semantics of the programming
language to be modelled. However, often the difference between an
'expert' programmer and a novice is the extra knowledge that the
expert has gained through experience. This would enable the
'expert' to make informed guesses and to use inbuilt programming
'plans' when solving a problem. Unfortunately, this knowledge is
often not available in textbooks and can only be obtained through a
process of knowledge engineering. Also, this deeper knowledge can
often be difficult to represent and manage in a computer system
(Rich, 1983, provides a good overview of A.I representation
techniques).

The development of the MYCIN (Shortliffe, 1976) expert system into
the tutoring system GUIDON (Clancey, 1979) illustrates many of
these problems.

MYCIN was a consultation system for diagnosing infectious
diseases. The body of knowledge base was represented as a collection
of conditional sentences or 'production rules'. The MYCIN
knowledge base contained about 450 such rules each of which
consisted of a set of preconditions which, if true justified the
conclusion made in the 'action' part of the rule. For example
(Clancey, 1979):

14.

'IF (1) the gram stain of the organism is gram negative, and (2) the
morphology of the organism is rod, and (3) the aerobicity of the
organism is anaerobic, THEN there is suggestive evidence (0.6) that
the genus of the organism is Bacteroides.'

These rules were built up over a period of 4 years through a series of
consultations with physicians.

The GUIDON system was designed to explore two basic questions:
First, how would the problem-solving rules, which performed so well
in the MYCIN consultation system, measure up to the needs of a
tutorial interaction with a student? Second, what knowledge about

teaching would need to be added to MYCIN to make it into an
effective tutorial program?

Here is an example session with GUIDON (Van Lehn and Soloway
1985):

Ini tial factors:
l.Patient age: 59
2.Hospitalized

3.Severely burned
4.X-ray of head: normal

5.White blood count from cerebrospinal fluid = 2500

Guidon: What is the type of the infection?

Student:Bacterial

Guidon: What facts about this case tell you that the type of infection is
bacterial? (please enter one factor per line)

Student:Burned
Student:Lumbar puncture
Student:WBC in CSF

15.

Before a session with the student begins. GUIDON asked MYCIN to
'solve' the case to be presented to the student. This information was
then used to guide the tutoring session.

Clancey evaluated GUIDON in informal tests with medical students.
The main results were that the students found the rules difficult to
understand. remember and incorporate into a coherent problem
solving process. GUIDON could not tell students the strategy it had
pursued or tell students why a rule was correct from a strategic
point of view.

MYCIN's knowledge base was meant only to solve problems (ie.
diagnose infections) which meant there was a quick jump from
problem to solution. In GUIDON the aim was to teach students the
reasoning process that produced MYCIN's compiled knowledge.
Because important structural and strategic knowledge was implicit
in the rules this knowledge was not available for teaching purposes.
To make this implicit 'design knowledge' explicit. a new system.
NEOMYCIN (Clancey and Letsinger. 1981) was developed that
separated out the diagnostic strategies from the domain knowledge
and used a more hierarchical organisation of data and hypotheses.
(See Clancey. 1987. for an overview of the GUIDON program).

MYCIN used production rules to represent the domain knowledge.
Other methods include 'semantic nets' (Quillian. 1968). 'conceptual
dependency' (Schank and Rieger. 1974). 'frames' (Minsky. 1975) and
'scripts' (Schank and Abelson.1977) which are documented
elsewhere. and are outside of the scope of this chapter.

The MYCIN/GUIDON system illustrated that it was not possible to
simply take an existing expert system and make it into an ICAI
system. The underlying reasoning and strategic knowledge must be
explicitly represented.

Other ICAI systems have employed different solutions to this
problem. For example. the WEST system (Burton and Brown 1982)
was a coaching system for the computer board game 'How the West
was won'. The object of this game was to be first to traverse the board

16.

by throwing a dice. Along the way an advantage could be gained by
landing on a town or on a shortcut and a player could be 'bumped'
back by an opponent. The skill of the game was in combining the dice
scores to either 'bump' an opponent or to get to a town or shortcut.
This involved the player having an ability in basic arithmetic and
being able to decide on an appropriate strategy. The knowledge
structure used in WEST to diagnose how well a pupil was playing the
game was based on 'feature vectors'. Here the skills needed to play
the game were broken down into separate alternative strategies such
as bumping an opponent, reaching a town, getting the largest
number from the available dice thrown, and so on. By analysing the
pupils moves it was then possible to decide on which strategies were
not being used. This method worked well in the WEST system but
tended to be too course grained in other domains where the students'
misconceptions could be due to different factors. For example, in
diagnosing a students ability at arithmetic as illustrated by the
following problem (Van Lehn and Soloway 1985):

756
- 129

627 CORRECT

72f3

159-

64 7 INCORRECT

Using feature vectors an analyser could diagnose that the probability
of using 'borrow' correctly in the above example is 0.5. The real
problem could be that the student does not know how to borrow in a
column already borrowed from. The actual student misconception is
not being recognised at all.

The BUGGY system (Brown and Burton 1978) attempted to provide a
more fine grained description of skills necessary for subtraction in
the form of procedural nets (Sacerdoti 1977). A skill lattice is
constructed for subtraction in which there are correct methods for
achieving the goal of subtraction and incorrect or 'buggy' methods.
This level of detail led to the identification of 58 sub-skills necessary
for subtraction with 110 primitive bugs and 20 common compound
bugs. This network is then compared with the students answer to

17.

diagnose which bugs if any, are present and to explain the reason for
the student's answer. The system was tested with over a thousand
students and was used extensively in classroom situations. BUGGY
was very successful in diagnosing correctly the reasons for students
mistakes but only worked in the very small domain of subtraction. It
was never meant as a cognitive model but a simple framework for
relevant pieces of information.

Repair theory CVanLehn, 1983) is an attempt to build a cognitive
model for the process of subtraction.

a) 756

-129

627 CORRECT

c) 726

150 -

617 INCORRECT

726 (b)

159-

647 INCORRECT

In the previous example the student's problem is that he does not
know how to borrow from a column already borrowed from. The
student overcomes this impasse' by a repair which in (a) means
taking the difference between the two numbers, while in (b) means
writing down the top number in the ID's column. A procedural
network would diagnose two bugs where the student really only has
one conceptual bug but uses two different repairs. What is needed is
a conceptual model alongside the procedural network to recognise
bugs caused by the same conceptual error.

Repair theory has also been applied to the problem of machine
learning. The SIERRA system (VanLehn, 1987) is a study of the
acquisition of mathematical skills. SIERRA's input is an ordered
sequence of lessons, where a lesson is an unordered set of examples,
and each lesson builds on the procedure learnt in the previous
lesson.

18.

This section has given an brief overview of some of the issues
involved in representing the domain knowledge in an leA! system,

including specific examples where appropriate. Many of the
problems are shared with the expert systems field. In summary, it
should be possible to embed the domain knowledge within other
software modules, and the knowledge must represent the underlying

reasoning mechanisms in order that they can be applyed to specific
student problems in which various examples have been given. ICAI

systems should benefit from the advances in expert systems
technology and particularly the integration of different reasoning
paradigms such as machine learning and neural nets. The domain
knowledge component can be viewed as the 'analysis' phase within

and ICAI session. This will be expanded later when we discuss the
domain knowledge in an Expert Writing Model.

1.3.3.The embedded student model

Self (1985), generalises existing ICAI systems into two groups; small
scale 'paradigmatic' programs and large-scale 'expert system' based
programs. The former include such systems as BUGGY (Brown and
Burton 1978), WEST (Burton and Brown 1982) and WUMPUS

(Goldstein 1982). In the words of Self (1985) they 'concentrate on
small domains and attempt to establish paradigms for the
implementation of larger scale, realistic systems'. Self argues that

these systems have never been developed into complete tutorial
systems and implies that this is because of inappropriate design
strategies. The 'expert system' class includes SOPHIE (Brown, 1977)

and GUIDON (Clancey 1979). Self argues that the 'existence of an
expert system to solve problems ... does not necessarily mean that the
domain is an appropriate one for Intelligent Computer Assisted
Learning'.

Self has argued that too much emphasis is placed upon representing
domain knowledge where the model of the student's knowledge is a

subset of the internal idealised knowledge base and learners are
viewed only as errorful experts. Instead Self argues, 'the central

19.

component of ICAI systems should be the student model' and he
describes this as a 'Learner centred' approach (Self, 1985).

This is a clear indictment of past approaches at student modelling
and it gives an indication on the controversy of this subject. It will be
seen that the student model is a major component of an leAI
system. This section will describe some of the techniques used for
student modelling with example systems. This is followed by a
summary of the main arguments concerning the validity of the
student model.

1.3.3.1.0verlays

An Overlay student model is regarded as a subset of a larger expert
model or knowledge base (the domain model). It requires that the
method of tutoring should discover which rules are missing from the
student's model, but which are present in the expert model.

To illustrate this method the following example based on a
production-rule representation is given (Van Lehn and Soloway
1985):

For each rule in the knowledge base there are two counters; a 'used
counter' and a 'missed-opportunity-counter'.

Given the student's move, analyse it into a line of reasoning whose
steps are applications of rules (using the domain knowledge).

For each rule used by the student increment its used-counter in the
overlay.

For each better move (from the expert model) analyse it into a line of
reasoning and increment the rule's missed-opportunity-counter in
the overlay.

It can then be said that a student knows a rule if the used-counter is
greater than the missed-opportunity-counter and does not know a

20.

rule if the used-counter is zero and the missed-opportunity-counter
is greater than zero.

A problem with this technique is the apportionment of blame to a
rule when a particular line of reasoning requires more than one
rule. Which rule(s) is/are to blame. WEST (Burton and Brown, 1982)
overcame this problem by only tutoring the student on a particular
rule when the missed-opportunity-counter was significantly larger
than the used-counter. But this can be problematic.

Another problem occurs if the student's strategy is different to the
expert's. How can we identify which strategy the student is using?
WEST overcame this problem by mapping the student's moves with
several different sets of strategies. The current strategy would be the
strategy with the lowest missed-opportunity-counter.

Also, how can this method decide which rules are being used if the
student's move can be generated by more than one line of reasoning
(ie. an apportionment of credit problem). GUIDON (Clancey, 1979),
which tutored students on diagnosing infections overcame this
problem by asking the student to explain which line of reasoning was
being used whenever it was not obvious.

The overlay technique provides a very coarse-grained method for
creating a student model. The main problem with it is that a student
can only ever be compared to a rigid expert model. The strength of
the student model will depend entirely on the completeness of the
expert model. It is very difficult to make the expert model sufficiently
flexible enough so that it can recognise more than one strategy for a
given problem. However, the overlay technique does provide an
inexpensive method for constructing student models.

1.3.3.2.Bug collections

With a Bug Collection model the set of expert rules used in overlays
are augmented by a set of production rules called mal-rules which

represent possible bugs or errors made by a student. The student
model is then a combination of correct rules which represent skills

21.

used properly and mal-rules which represent sub-skills not learnt
yet. This provides a more accurate student model with the ability to
pin-point specific student problems.

This type of student model has been represented as a production rule
system (as in LMS, Sleeman and Smith, 1981) and as procedural nets
(BUGGY, Brown and Burton, 1978). But regardless of the
representation the main problem is in determining which bugs the
student has. One solution is to generate all possible student models
and a predicted test solution for each of these models. The most
accurate student model will be the one whose solution most closely
resembles the student's answer. The permutations of student models
becomes very large and unmanageable as more bugs are
represented. Often there will be more than one bug in the student's
behaviour which means combinations of buggy models have to be
computed to form a diagnostic model. BUGGY (Brown and Burton
1978) represents the expert and student bugs as procedural nets in
the form of LISP functions. This makes it much faster than
production systems, but it still requires a large amount of compute
time and is amenable only to domains where bugs can be explicated
in a more or less complete way.

The LMS Leeds Modelling System (Sleeman and Smith, 1981) is an
attempt to cut down on the number of buggy models generated in the
student model. The key assumption is that parts of the student's skill
that function correctly in simple situations will not 'break down' in
more complicated ones. The set of expert rules are partitioned into
'skill' levels each of which is sufficient to solve a certain class of
problems. The mal-rules are then grouped with their appropriate
group of expert rules. The student is given a problem from the lowest
skill level and a student model is computed by generate and test.
Moving up the hierarchy at each level a separate student model is
computed which is used to augment the previous level. LMS was
initially developed to create student models for arithmetic problems.
This work was taken a stage further with the PIXIE system (Moore
& Sleeman, 1988). PIXIE is a shell for creating leA! systems that
attempt to diagnose and re mediate student errors in a particular
domain, and it has been used for tutoring algebra. PIXIE has three

22.

phases: (1) off-line phase - generate malrule models (2) Online phase
- tutoring using these models (3) Analysis phase - diagnosis of
performance and modification of malrule models.

Although this technique provides a more fine grained method for
modelling students problems, particularly for identifying skills not
learnt yet, it does suffer from becoming very large very quickly. This
does restrict it to small domains (such as a subset of arithmetic) and
also to domains which can easily be modelled in terms of skills
learnt and not learnt (such as arithmetic). In domains that involve a
combination of sub-skills the bug-collection technique becomes more
difficult to apply. It is often necessary to specifically pin-point the
target group of students who will use the ICAI system. The
DEBUGGY system (Burton, 1982) found that 49% of 3rd year students
were buggy as compared with 13% of 5th year students. With the
marked changes in school pupils abilities over a relatively short
period of time an ICAI system may only be relevant to a small subset
of the student population.

1.3.3.3. Bug construction

The technique used in bug construction is to construct buggy student
models without a bug database. The difference between a bug
collection system like DEBUGGY (Burton, 1982) and a bug
construction system like ACM (Langley and Ohlsson, 1984) is that
DEBUGGY makes considerable use of a 'bug library' containing
errors that student's are likely to make, while ACM constructs
explanations of errorful behaviour from the same components used
to model correct behaviour. ACM (like DE BUGGY) was able to
diagnose student's subtraction errors, but ACM used a cognitive
modelling technique to model the processes required in subtraction
(see Anderson,Boyle and Reiser 1985 for a description of the ACT
theory of cognition). In order to model subtraction behaviour ACM
defined the problem space for subtraction as a set of production rules
that would combine to produce the correct subtraction strategy (see
example rule for 'find-difference' below).

23.

find-difference
If you are processing column-l,

and number-l is in column-l and row-l,
and number-2 is in column-l and row-2,

[and row-l is above row-2],
[and number-l is greater than number-2],

then find the difference between number-l and number-2,
and write this difference as the result for column-l.

These rules would be combined to form a search tree to find the
correct answer to a problem. A student's incorrect answer would
also be represented as a search tree and would be compared with the
correct answer search tree to find out which rule(s) were being
incorrectly used.

The ACT theory has been applied in a Lisp and Geometry tutor
(Anderson et aI, 1985) and more recently by Walsh (1988) as an ICAI
predicate logic teaching tool. The Lisp tutor is commercially
available from Advanced Computer Tutoring Inc (ACT) in
Pittsburgh.

The advantage of bug construction is that no bug collecting is
required because it is done automatically from the cognitive model.
The main problem is one of defining the problem space and the
combinatorial problems of computing a complete cognitive model
from it. For example ACM which runs on a VAX 750 takes some 2
CPU hours to generate a complete cognitive model for a set of 20
subtraction problems.

The bug-construction method appears to offer some advantages over
the previous methods, namely a single model without complicated
bug collections. However, it is limited to amenable domains which
can be modelled to the level of detail required by bug-construction.
Basically, this is a technique which combines the expert and bug
collection methods. The expert model is made sufficiently detailed so
that sub-skills can be explicitly represented. ACT term this a
cognitive model which is somewhat grandiose. It is combined with

24.

sophisticated generate-and-test tree searching and pattern-matching
to identify student problems. This technique could provide a good
framework for student/expert models but it is very computationally
intensive and is limited to amenable domains.

The notion of generating a student model and matching it against an
expert model will be continued later in the discussion of the Expert
Writing Model.

1.3.3.4. Student modelling - where next?

The above approaches to student modelling to a lesser or greater
extent treat the student model as a subset of the expert model. Self
(1985) outlines several objections to this approach:

'the existence of an expert system to solve problems in a
certain domain does not necessarily mean that that domain is
an appropriate one for Intelligent Computer Assisted
Learning ... the emphasis of these systems is on expertise and
only as an afterthought on what learners actually do and know
... the production rule framework is unsuitable for ICAI'

Self argues that the central component of an leAI system should be
the student model rather than the expert model as in previous
systems. The most promising insights for the design of leAI
systems being research on machine learning rather than expert
system technology. Self fore-sees a tutoring system which learns a
subject at the same pace as the student, supporting the student
through collaboration. VanLehn's work on repair theory and its
application to machine learning may provide us with a greater
insight into this aspect of leAI systems.

Self (1988) continues to point out some of the weaknesses of current
user/student modelling techniques and applications.

'Modelling users of ICAI systems in terms of what they know
is both epistemologically unsound and educationally

25.

undesirable .. , instead we have proposed that the user model
be interpreted as describing what a user 'believes"

Self proposes that a link be forged between work being done on so
called 'belief structures' and how they can be defined and
represented computationally (in a student model).

This section has given an overview of student modelling and has
described some of the techniques used. The student model can
generally be viewed as a subset of the expert model, the difference
between approaches reflect the ways in which the student model is
generated.

Machine learning and neural net techniques are now coming to
fruition with several commercially available products on the market
(eg. ID3, KATE) and they are also being integrated with traditional
expert systems technology. This flexibility of these new techniques
could point the way to the future and the possibility of self-learning
tutoring systems.

l.3.4_Tutoring strategies

A domain expert is not necessarily a teaching expert. As with
human teachers, a teacher who is an expert in their subject may not
be good at communicating that subject to an audience. The
important issues that an ICAI system must address are when to
interrupt the student, what to say, and what to do next. This section
discusses a range of tutoring strategies including coaching,
consultants, and socratic/mixed-initiative tutoring. This is followed
by a discussion of future issues.

1.3.4.l.Coaching

The coaching approach to tutoring can be applied where the student
is set a task and the ICAI system must be active in the background

monitoring the students actions. The ICAI system must decide
when to interrupt and give advice, and choose what to say. For

26.

example, the WEST system (Burton and Brown, 1982) is a good
example of a coaching lCAl system. It allows a student to traverse a
board, the aim being to reach the end before their opponents by
combining dice scores in the most effective way. Different strategies
can be employed such as 'bumping' opponents or by moving as
quickly as possible. The coach can give advice to the student if
beneficial arithmetic strategies are not being used. This is done by
using 'issue recognizers' which will look at 'missed-opportunity'
and 'used' counters in the student model (see previous section).

The overall philosophy of WEST and any coaching system is that if
the system is going to break in and give advice then the information
should be relevant and memorable. More specifically in WEST if the
system does break in then the better move suggested should be
'significantly' better and also the system should only break in if it is
completely sure that there is a fault in the student's strategy. This
means that early on in the game the system cannot tell if there are
any bugs so it has to wait until it has more information. WEST is
fairly conservative in giving advice in that it waits until the 'missed
opportunity-counter' is significantly bigger than the 'used-counter'
before deciding that a bug is present.

As WEST has shown, just because a system does not intervene often,
it does not mean that it is a trivial system. (See Goldstein and Carr,
1977, for a good overview of computer coaching). However, it does
mean that in this type of environment advice can not be given until
the system has built up enough information on which to base a
suggestion.

1.3.4.2. Consultants

The consultant approach to tutoring involves a tutoring component
sitting between the student and the domain whereas in the coaching
approach the student and domain interact freely and the tutor
decides when to intervene.

Consultant tutoring has been used most effectively in the domain of
teaching computer programming, as in MENO-II (Soloway et al

27.

1981), PROUST (Johnson and Solo way, 1984) and the LISP tutor
(Reiser,Anderson and Farrell, 1985).

The LISP tutor was designed to tutor students taking introductory
LISP programming and was actively being used as part of a
university teaching program (Carnegie-Mellon University, USA).
The system would present programming problems and would
interrupt the student when there was a deviation from the ideal
model for the correct answer. There is immediate corrective feedback
when a mistake occurs with the benefit that each problem is dealt
with as it occurs. The main danger of this type of system is that
students may be trying different ideas out or they may be taking a
different path to a correct solution than that dictated by the ICA!
system.

There is a fixed lesson sequence where each lesson introduces new
concepts and builds on previously learned ones. The consultant
approach allows for a far more complex tutoring strategy.
Depending on the answers given by the student, the tutor may modify
the lesson plan to better suit the students needs.

1.3.4.3. Socratic and mixed-initiative tutoring

The socratic style of tutoring with mixed-initiative dialogues, was
used in two of the early ICA! systems SCHOLAR (Carbonnell 1970)
and WHY (Stevens and CoIlins 1977, which extended the Socratic
aspects of SCHOLAR).

Mixed-initiative dialogue allows for two way communication between
the computer tutor and the student (see the section on the computer
human interface for an example dialogue with SCHOLAR). Both the
student and the tutor can ask and answer questions. An important
aspect in the implementation of this kind of dialogue is the Socratic
style of tutoring, where the tutor first attempts to diagnose the
student's misconceptions and then presents material that will force
the student to see their own errors. An example Socratic heuristic
used in the WHY system to control student/system interaction is as
follows (taken from Barr and Clancey 1982):

28.

IF the student gives as an explanation of causal
dependence one or more factors that are not
necessary

THEN select a counter example with the wrong value of
the factor and ask the student why his causal
dependence does not hold in that case.

Building systems which encompass mixed-initiative dialogue and a
socratic tutoring strategy requires a robust natural language
understanding component. Few existing systems can support the
level of language comprehension necessary to understand all of the
student's responses. A robust goal structure is needed for good
Socratic dialogues. It may be very difficult to diagnose a students
misconceptions unless it is possible to characterise the goals and
plans being applied by the student. The goals and rules in WHY only
provide an initial characterisation. Unless the socratic tutoring is
carefully controlled there is a danger that the student will miss the
point altogether.

1.3.4.4. Curriculums

Teachers use a curriculum to teach a subject. with good reason. An
ICAI system has to have an explicit curriculum with easier tasks at
the beginning to increase student confidence and motivation. Some
skills are too complex to present all at once. The problem is in
deciding on how a subject should be decomposed into a curriculum.

Step theory (Van Lehn 1983) is an attempt to formalise information
transfer. The following felicity conditions have been discovered:

l.Students expect a lesson to introduce at most one
new 'chunk' of procedure (called sub-procedures).

2.Students expect the lesson to augment their
procedure rather than making parts of it obsolete.

3.Student's induce their new sub-procedure from
examples and exercises.

4.Student's expect the lesson to 'show all the work'

29.

----------------- - ------

of the target sub-procedure. ie. all intermediate
work is explicitly stated even though once the
sub-procedure is learnt this can be left out.

These conditions may seem like common sense to an experienced
teacher, yet they are crucial to the success of an leAI system.
Lessons should be structured into coherent chunks and the students
progress through a curriculum carefully monitored.

An alternative approach has been taken by O'Shea's self-improving
quadratic tutor (1982). Here the teaching strategy is expressed as a
series of production rules. The proposed cycle of operations for the
system is to select an educational objective, make an experimental
change to the teaching strategy by altering the production rules,
statistically evaluate the resulting performance and update both the
production rules and set of assertions. A system has been developed
to teach techniques for solving quadratic equations. This is still a
relatively undeveloped area and may not be easily applied to a larger
subject domain.

This section has described several different tutoring strategies, each
of which have their own advantages and disadvantages. The choice
of which is the most applicable is largely dependent on the type of
leAI system that is being developed. Ford (1987) argues that not
enough attention has been given to investigating different teaching
strategies and strategies should be based on teaching models. Step
Theory is one step along this road, but more research is needed in
this area.

30.

Chapter 2. COMPOSITION SUPPORT SYSTEMS

What are composition support systems and how can they be used
within an educational environment?

This chapter contains a brief discussion of the skills involved within
writing, and their pedagogical context. The use of a word-processor
for composition is proposed as being a useful teaching tool, provided
that it is used as part of a coherent educational strategy. Other
applications which have been used to support writing are presented,
including 'non-educational' text processing systems. Finally some
observations are made about composition support systems and their
continued use as educational tools.

31.

2.1. Pedagogical context

Written language has always played a dominant role in the school
system. Typically, the acquisition of literacy is considered to be one of
the most important tasks of the school, for it forms the foundation for
all subsequent learning and writing is an essential component of
overall literacy development.

Writing has several functions, among them the acquisition of
knowledge (writing to learn), the development of logical thinking,
and the communication of thought and ideas. In many school
systems these objectives are restricted. However conventional
methods of teaching writing, which have emphasised grammar
drills, formal presentations by the teacher, and detailed editing of
student products, are giving way to approaches that emphasize
significant interactions between reading, writing, speaking and
listening; a focus on meaningful communications with real
audiences; and ample opportunities for feedback and revision.

What makes a good writer? Bruce (1986):

"In simplest terms, good writers (in a given domain) 'know
more' -- more words, more ways of expressing ideas, more
forms of text organisation; they are also more skilled at
applying the knowledge they have; and, they have better
strategies for putting everything together, even going beyond
what they know"

Bereiter and Scardamalia (1982) have investigated childrens' writing
development and have identified several important transitions. One
such transition occurs between the ages of 9 to 11 when the child
becomes aware of their own thoughts and language and begins to
take command of their writing.

Good writing depends on a rich environment that teaches knowledge
of the world, and skills to represent and manipulate that world
symbolically. Development of expertise in writing is enhanced
through social interactions at home and at school.

32.

Sharples (1985) attempts to derive a model of the writing process. He
identifies the following factors.

text structure a piece of text has embedded layers of
structure. The writer will choose between possible sentence
constructions. Sharples calls an un-instantiated text structure
a plan ego the choice between describing an action with either
a passive or active sentence; and any instantiation of a plan a
draft. ego the final choice for the sentence.

constraints The act of writing is best described as the
act of juggling a number of simultaneous constraints. This is
in contrast to seeing it as a series of steps that add up to a
finished product (Flower and Hayes, 1979).

Text Production there are three fundamental procedures of
writing. (a) 'generate and select' -- produce one or more
alternative text forms to express a concept, compare the text
forms by their ability to satisfy the current constraints, and
select one or more suitable forms. (b) 'verify' -- match text
already created against the current constraints. (c) 'transform
and select' -- identify mismatches between constraints and
text.

The teaching of writing should first help a child to become aware of
the language that they use and of the process of writing itself. The
child can then be helped to build a repertoire of techniques to extend
their writing abilities. Ideally a substantial part of the school day
should be devoted to writing. Progress depends upon opportunities to
write and frequent practise. Individualised instruction is needed, in
order to pay attention to the specific needs and competencies of
individual students.

Unfortunately, teaching load and teaching time have not kept pace.
Growing pupil numbers and decreasing resources for education only
worsen the situation. Bruce (1986) states that, on average, little more

33.

than one hour per week is devoted to writing instruction. There are
also other factors. Pre-writing activities are rarely encouraged; in
general, writing is unprepared and triggered by short assignments
or essay titles only. Exercises in grammar, punctuation and spelling

in isolation still predominate. Generally only the teacher, and not
peers, give feedback on writing. The feedback that is given is seldom
used to revise text and first drafts become final versions.

It is within this context that we consider the use of writing support
tools and the notion of an Expert Writing Model.

34.

2.2. Word-processors as composition tools

Word-processing software was one of the first applications to make
use of personal micro-computers and today it is probably the single
most used (important) software tool. Before the advent of personal
computers, word-processing was limited to crude text editing
programs, designed primarily for editing software programs, and
only available on large mainframes. The first micro-based word
processors, such as MicroPro WordStar which ran on CPM (TM

Digital Research) based machines, were solely text based and used
strange combinations of control key strokes to alter and rearrange
the layout of the finished document. The operating systems were not
capable of displaying different character fonts on the screen so
control codes had to be used to denote a change in text style (eg.
italic). The advent of graphical based operating systems, such as the
Apple Macintosh, led to the demise of character based word
processors and the birth of WYSIWYG (What You See Is What You
Get) technology. Word-processors such as MacWrite (TM Claris
Corporation) could display a multitude of different fonts, styles and
text sizes. Also graphics could be integrated into written documents
and laser printers could be used to produce documents of a very high
quality. Sophisticated desktop publishing facilities can also now be
obtained from personal computers (eg. Aldus PageMaker).

The original WordStar has gone through many changes. For
example, version 5 offers an easy to use pull-down menu interface
(conforming to IBM's System Application Architecture), WYSIWYG,
page preview facility, document outline facility, user-defined menus,
spell checker and many other powerful features.

Researchers have found that children and adults of different
backgrounds can master the communications skills needed for
interacting with a text editor. Learning to use the basic co=ands of
a text editor takes from a few hours to a few days, but then it becomes
a routine skill (Card, Moran & Newell, 1980).

Some work has been done to examine the benefits gained from using
word-processors within English education. Candy (1985) has carried

35.

out several exploratory studies into the use of computers within
schools. The use of a word-processor as a tool for composition was
studied and some interesting observations were made:

Pupils were enthusiastic about using a word-processor for
composition.

Direct composition on the word-processor was the most
common approach.

More emphasis was placed on neatness as opposed to accuracy

of the written text.

Tendency to place more emphasis on correct spelling rather
than on composition and 'marshalling of ideas'.

Teacher and student expectations were raised about the
standard which could be achieved.

More attention to the development of ideas and the ordering of
sentences and paragraphs during the actual composition
process.

This was accompanied by an increase in discussion between
the students and the teacher. The early discussions were
mainly concerned with the use of the editing facilities; later
this turned to accuracy of spelling and punctuation, and in the
case of students who persisted with writing activities, gave way
to discussion about ideas and organisation of material.

Daiute (1983 & 1985) outlines some of the difficulties inherent in
writing and the benefits to be gained from using a computer (word
processor) for composition.

The physical act of writing (non-computer) is slow and
sometimes painful.

36.

- ---~-~--------

It is difficult to make changes to hand-written text. This can
discourage writers from making improvements to the text.
Young people are particularly reluctant to add or to change
words because the result looks messy.

The computer can temporarily relieve some burdens on short
term memory.

The computer seems like an audience, thus stimulating the
writer to take a reader's point of view.

It is fairly clear that a word-processor can be an excellent tool for
composition and may indeed help to improve a child's writing skills.
But, as Candy (1985) points out, the use of computers (word
processors) without an appropriate strategy can be unproductive and
even be detrimental to the development of writing skills. Candy states
that there is a requirement for structured activities which are
integrated with the other aspects of the classroom such as talking,
reading and collaborative work in general.

"Where students were left to their own devices, there was a
tendency to copy up for neatness without using the full
potential of the word processor. This short term emphasis on
presentation of material is counter-productive to establishing a
constructive approach to writing and a genuine sense of
achievement in the age group concerned ... the use of word
processors can place an increased demand on teacher
attention rather than the reduced role which is sometimes
imagined." Candy (1985)

Cummings (1988) is very enthusiastic about the educational benefits
of using computers (word-processors) to teach English composition.
A picture is painted of classrooms being transformed into
'composing workshops' where 'students spend class time writing,
talking freely about their writing, pacing themselves, and copiously
revising their papers as they consult the instructor and their peers'.
She talks about the redefinition of teacher-student roles,
relationships and expectations, with the teacher guiding and

37.

directing the student to make new writing discoveries. These
observations all point to the fact that rather than reducing the
workload of the teacher, the use of word-processors require the
teacher to acquire new skills, to have greater managerial control,
and to spend more time guiding and revising the students work.

38.

2.3. New composition environments and research

Progress continues to be made in the development of specific
applications to assist written composition and language exploration.
As discussed above, there are several important factors in writing
such as, getting ideas, organising thoughts, composing, editing and
revising, and obtaining feedback about one's writing.

The software aids for writing tend to specialise in a particular
domain rather than attempt to support every single aspect of writing.
In this chapter these domains have been grouped into programs
which aim to develop the child's underlying language model, tools
for organising thoughts, environments for stimulating 'invention',
and text analysis and support systems.

2.3.1. Language models

Models can be valuable as learning aids. A good way to understand
the laws, constraints and possibilities of a complex rule·governed
system is to build models of the system, subject to the same rules, and
then perform experiments on them. This has been shown to good
effect in mathematics using the Logo (Papert, 1980) programming
environment. Sharples (1985) suggests that a child needs to create
and manipulate language structures at all textual levels, from the
'word' to the 'section'. Computer-based modelling aids have been
created to allow such exploration.

NAN and S-ENDING are two programs devised by Johns (1983). The
NAN program places the correct form of indefinite article before a
noun phrase typed in by the user. S-ENDING carries out a similar

process for plurals. The purpose of this exercise is to allow the
children to infer the rules of word and phrase formation.

ILIAD (Bates and Wilson 1982) was devised to manipulate language
at the sentence level, and is aimed at deaf children who have
difficulties in mastering such language forms as negation, question
formation and sentences containing complex verb-phrases. ILIAD is

39.

based on a powerful sentence generator based on a transformational
grammar. The child is prompted to make a sentence about a
proposed object. The grammar then checks the validity of the child's
answer and prompts for any necessary corrections.

STORYMAKER (Watson 1986) is a branching program that allows a
child to build computer adventure games. The emphasis is placed on
the student developing a plot and structure on which to base an

adventure. The content of the adventures/stories is not the main
stimulus to learning; the child learns by understanding and
manipulating the model (in this case story structures) represented in
the program and by discussing their experiences with a teacher or

peers.

PHRASEBOOKS and BOXES (Sharples 1985) are two additions to the

LOGO environment that allow children to classify words, create their
own dictionaries and phrasebooks, devise a quiz, write a program
that will converse in natural language or build their own 'adventure
games'. The aim being, to provide a large user-friendly modelling kit
for language.

2.3.2. Organising thoughts

Organising one's thoughts is an important activity of writing. Expert

writers often build up an outline framework of the essay to be written
before actually starting to write. The next section discusses work
done in prompting children to build on ideas before and during

writing. There are however, several commercially available
programs which are suitable for storing, controlling and organising

thoughts.

FRAMEWORK (Ashton-Tate) is an integrated package (database,
spreadsheet, graphics and word-processor) which includes a facility

for constructing outlines. The word-processor creates empty,
numbered outline structures which the user can fill in before

commencing writing. These outlines can then be used as headings
and titles within the main text. An item in the outline can also be any

40.

framework structure, such as a spreadsheet or a graph. Related
programs, such as THINKTANK (Living VideoTex Inc) are now
available which are marketed as 'idea processors'. These programs
support such processes as 'brainstorming', outlining and grouping
of different data sources. Simple outlining facilities are now common
in most high-specification word-processing packages.

The SPIRIT system (van der Geest, 1986) specifies the components of
a package to support creative writing for secondary education. The
main focus of this system is a planning tool which helps the pupil to
choose an appropriate subject for the text, generating ideas about the
subject, and making an organisational plan for the text structures.

The Writer's Wordbench (Newman, 1989), which was developed by
the College of Education in New York is a specialist software product
which enables the writer to prepare different parts of a document and
then integrate them into a single format, which can then be edited.
This package is commercially available. It includes an 'Outliner'
which enables the writer to put headings and sub-headings in any
required order, a 'Notetaker' which allows the creation of electronic
notecards which can be linked to Outliner headings, a 'Reference'
tool for recording sources, a 'Format' tool for enhancing text and
formatting, and a 'Writer' which is the word-processing application.
However, there is a danger that the use of tools such as the Writer's
Wordbench will require a more disciplined and organised approach
to creative writing, which initially may add an additional overhead to
the task of writing itself.

Hypertext is a technology which allows a user to create units of
information and link them to other units. Related notes can be joined
by creating buttons and/or icons which establish the lin,k and the
relationship between items. The NOTECARDS system (Xerox Parc,
Halasz et aI, 1987) includes a multi-window display that allows a
writer to create individual notes that can be linked to other notes.
This technique was used in the STORYSPACE (Bolter & Joyce, 1987)
program, a hypertext system for constructing interactive stories. The
program allowed the user to build episodes of a story with links to
other possible episodes. The person 'reading' the story could then

41.

interactively traverse the story, making decisions as he went which
would determine the next episode to be read.

Hypertext is a powerful technique for controlling and browsing large
amounts of data. The advent ofHyperCard (Apple Computer, 1987) on
the Apple Macintosh, which is a powerful hypertext system and
programming language, has lead to far more hypertext applications
becoming available.

The term 'Hyper-Media' is currently in vogue. This refers to the
integration of Hypertext and different multi-media input and output
devices and computer systems. The aim is to access and integrate
different data objects such as video, speech, graphics, text, within a
single application. The end product of which is the creation of an
electronic 'book' environment combining multi-media and hypertext
capabilities. The impact of this type of environment on written
composition and the teaching of writing is still unclear, but it should
prove to be an interesting and fruitful research area. See
Yankelovich & Meyrowitz (1985) for a discussion of the type of
facilities available in an electronic book environment.

2.3.3. Stimulating invention

Computer-based writing aids can offer assistance to a writer, or
provide a different medium for composition. Word-processors are a
form of writing aid which have already been discussed. However
packages have been produces which attempt to extend the functions
of word-processors, be it giving advice on spelling, punctuation or
style, or complete tutoring systems.

The word-processor can be used to stimulate invention. Marcus
(1988) describes the use of a word-processor to store written
assignments on a disk. A student can then load the assignment as a
text file, read it from the screen, and follow directions contained in
the file that direct the student in a guided manner to add text to the
file. The design of the interface, ie use of margins, placement of text,
colour, 'ideas' per screen page, etc; and the design of the 'innerface',

42.

the qualities of the activity itself are highlighted as areas which need

further research.

The WRITER'S ASSISTANT (Levin et ai, 1983) was based on a Pascal

text editor with additional commands that allowed a child to check

the spelling, experiment with word combinations and to merge

sentences into a paragraph. The system was used to create
classroom newspapers. Dynamic support within the writing

environment was provided in several ways. Some sections of the

newspaper provided considerable structure, requiring only that the

children fill in the blanks. Other sections provided only partial

support. A story was started but left for students to finish, or a

question was posed and students inserted their own replies.

Much work has been done on generating ideas for student's writing.

Burns and Culp (1980) describe a system which encouraged a student

to 'brainstorm' a particular subject. The student would choose a

subject and the computer would prompt the student to write about

that subject. The feedback given by the system was based on word

length clues, answer length clues, clarification strings and a brief

list of direct commands.

A similar technique was used for idea generation in the SEEN

program (Schwartz, 1982), which would lead students through

prewriting exercises specifically tailored to literary topics. The

general format follows (Rodrigues R J & D W 1984):

(1) pick an X

(2) create a hypothesis X=Y

(3) argue that X= Y for different kinds of evidence
(4) consider conflicting evidence

For example in developing a thesis about characterisation, the

computer begins (student's responses are in italics):

Name a fictional character X in a literary work.

Satan in Paradise Lost

43.

Describe the character X by completing the following: X is

Satan is tricky

Provide evidence to show that X is Y: What does Satan do that shows
Satan is tricky?

He enters the body of a serpent to disguise himself

Text analysis techniques were used in the CAC and CAC2 programs
(Woodruff et al 1981) to offer children advice on composing persuasive
text. The CAC program initially acts as a simple word-processor.
However, if the child presses a 'help' key or the terminal is inactive
for more than 20 seconds then the program prompts with a help
menu. If 'help' is chosen then the program can offer advice on such
things as 'following an argument plan' or 'producing the next
sentence'. The guidance offered by CAC is based on the text most
recently typed by the child. For example, if the child asks for advice
on producing the next sentence then the program searches the last
complete sentence for a keyword such as 'believe', 'reason' or
'example'. On finding the word 'reason', for example, the computer
would print 'Let's say more about your reasons so the reader will
understand'. Different tutoring strategies were tried with the CAC2
program. For example, instead of waiting for the child to ask for
help, the program would interrupt after each sentence, presenting a
question such as 'Do you have an opinion on this topic' or 'Have you
mentioned any facts to support your reason'. Each question is
determined by the child's response to previous questions and they are
intended to emulate those an expert writer might ask himself while
composing. However, the CAC programs were limited in that they
were based on simple key-word analysis of the written text and the
use of stored canned phrases.

44.

2.3.4. Text analysis and support systems

The simple word-based analysis of text applied by CAC was an
attempt to provide a computer system that could apply simple text
underst~nding in a tutoring environment. However, the analysis of
written text by computer has for a long time been a major goal of the
computer industry, the aim eventually being to automate the writing
process completely. The production and handling of vast amounts of
paper-based documentation particularly by the business sector has
for a long time been a costly exercise. The advent of business
computers and office automation systems has increased the flow of
written text and dispelled the promise of the so-called paper-less

office.

It is worth examining some past approaches to text analysis and
support systems. These range from simple style formulas based on
word/sentence ratios, to complex grammar checkers and text
summarization systems.

The simplest method used to advise the writer on the readability of
his text is to analyse the word and sentence length, and compare the
results against a pre-determined readability scale. Several different
scales of readability have been devised (eg. Gunning Fog index,
Flesch-Kincaid readability formulae) to measure such concepts as
the reading/writing age that the text is suitable for, the degree to
which the meaning of the text is being obscured (so-called FOG
index), and the degree to which the sentence length varies.

As computer systems are ideally suited to applying number based
formulas to large amounts of input data (ie. text), several of these
techniques have been implemented as 'style' analysers (eg.
Readability Plus for the IBM PC) and as add-ons for word-processing
packages. The general usefulness of this type of support seems to be
very low. A readability index does not help one to highlight problem
areas in one's writing style, or suggest remedies or improvements.
Also it is not possible to apply the same index to all types of written
work (eg. a technical report will have a completely different style and
content to a newspaper article).

45.

The Bell Laboratories in the USA carried the concept of readability
indices a stage further with the development of the Unix Writer's
Workbench (Frase, 1983 & MacDonald, 1983). The main aim of this
system was to improve the quality of the large amounts of technical
documents produces by Bell.

It was recognised that the review and evaluation of technical
documents was costly and time-consuming. The Writer's Workbench
system provides a simple set of commands that deliver many of the
assessments needed in documentation work. These include editorial
comments on punctuation, word use, spelling, and text abstractness,
and include an analysis of the grammatical parts of speech and
calculations of overall text readability.

On the completion of a piece of text, a writer could submit it for
examination to the Writer's Workbench system. The Writer's
Workbench consists of the following separate programs each of
which examine different aspects of the text:

SPELLWWB: conventional spell checker. Allows the user to
interactively correct mis-spelled words and remember words
in a personal dictionary.

PUNCT: searches for simple punctuation errors and
recommends changes. For example, move commas and
periods to the left of double quotes, capitalise the first letter of
sentences and balance quotation marks.

DOUBLE: identifies consecutive occurrences of the same word.

DICTION: searches a text file for phrases that writing experts
have classified as wordy or frequently misused. It also high
lights those phrases which may have a sexual bias. As
technical documents tend to legitimately include such 'wordy'
phrases such as 'terminate' (instead of 'stop' or 'end') there is

also the facility for the creation of personal dictionaries of
allowable 'wordy' phrases.

46.

SPLITINF: uses a 'part-of-speech' analysis program to find
infinitives that are split by adverbs.

STYLE: uses a readability index to identify information on the
average length of words and sentences, the distribution of
sentence lengths, the grammatical types of sentences, the
percentage of nouns, and the number of sentences that begin
with expletives.

PROSE: provides an interpretation of the results obtained from
STYLE. The best technical documents written in Bell Labs
were used to statistically produce a guide-line for good
technical style (based on the indices of the STYLE program).
The input text is then compared against these guide-lines and
if there is a statistical difference then the program explains
why this may make the text hard to comprehend. For example,
it was found that the passive verb form was harder to
comprehend than the active form; if a document had more
than the standard 28.6 % of passive verbs then a tutorial
message on the use of passive verbs was given.

FINDBE: finds all occurrences of the form 'to be', as this often
indicates a passive sentence.

ABST: a list of 314 words rated as abstract are matched against
the input text. If the percentage of abstract words is over 2.3 %

(derived from the 'good' documents used to develop the PROSE
standard) then the program suggests that more concrete
examples be introduced.

ORG: is a tool for viewing the organisational structure of the
text, by displaying only the headings and paragraph
boundaries.

The Writer's Workbench is limited by the text features that the
programs can recognise and the validity of these text features as
indicators of reading difficulty. The programs do not use linguistic or

47.

semantic parsing techniques and as such cannot understand the
'subject' and 'object' of sentences, or the underlying meaning.
Without a parser for English, or some other way of interpreting the
meaning of text, the programs cannot give feedback on the quality of
the content and organisation.

The Epistle text-critiquing system developed by IBM (Heidom et al,
1982, & Jenson & Heidom, 1982) addressed the issue of grammar and
style checking of texts written in English, and was based on syntactic
analysis using an augmented phrase structure grammar (Heidom,
1975).

Epistle uses a technique called 'fitted-parse' to detect grammatical
errors. This consists of the following three steps:

1. Parse the sentence by applying grammatical rules to it.
These rules are similar to Backus-Naur Form BNF, and
attempt to build a syntactic representation of the sentence.

2. If the sentence was not parsed in the first step, then try
again, but this time relax some of the conditions and apply
some additional rules.

3. If the sentence is parsed in the second step, then make note
of what condition had to be relaxed and where in the sentence
the problem occurred, and pass this information to the error
handler for display to the user.

The Epistle critiques do not cover all possible grammatical errors in
English, instead it diagnoses the following five classes of errors:

1) Subject-verb disagreement ego 'have' instead of 'has'
2) Wrong pronoun case ego 'him' instead of 'he'

3) Noun-modifier disagreement ego incorrect use of plural
form
4) Nonstandard verb forms ego 'wrote' instead of 'written'
5) Nonparallel structures ego 'crediting' instead of 'credit'

48.

Epistle also included checks for the following types of style errors:

1) Word-level critiques ego identify 'business-ese' and words
with bad connotations such as 'hate'
2) Phrase-level critiques eg jargonistic phrases
3) Sentence-level critiques ego sentence too long, too many
negatives
4) Paragraph-level critiques ego too many passive sentences

The diagnosis of style errors is done by a set of encoding rules which
are applied to the parse tree. These style critiques are similar to those
provided by the Writer's Workbench, but because the Writer's
Workbench does not use a parser it cannot identify grammatical
errors such as where the subject-verb distance is too great.

The Epistle system provides a syntactic analysis of business letters.
However it cannot handle the more 'difficult' kinds of errors
associated with the semantic information contained in the sentences.
For example, assessing the continuity across sentences and
paragraphs, or understanding the purpose of the document and
suggesting appropriate text for it.

Semantic analysis of text has been a major area of work within the
Artificial Intelligence community. The main emphasis being the
analysis of text for summarization rather than for writing support
systems. Such work includes MARGIE (Schank et aI, 1973), FRUMP
(DeJong, 1979), IPP (Lebowitz, 1983), and BORIS (Lehnert et al, 1983).

The MARGIE system was the first major implementation of the
semantic representational schema 'Conceptual Dependency'
(Schank, 1981). It parsed natural language into conceptual
dependency and then made inferences about characters and actions
within the text.

The FRUMP system skimmed news stories to gain a semantic
representation of it. The parser was made up of a 'predictor' which
selected a likely script for the text, and a 'substantiator' which

49.

attempted to confirm the chosen script by filling in its slots. The IPP

system also attempted to parse news-wire articles. It used a set of

semantic primitives to describe the events associated with news about

terrorist incidents. The parsing process combined top-down

predictions with bottom-up heuristics.

The BORIS system was tailored to recognise emotions within text. It
used this information to understand the goals of the story

protagonists and to answer questions about the text. One area that

BORIS was used was to understand the motives of characters
involved in a situation about marital divorce. The system was pre

loaded with expected plans, goals and motives for characters in this

situation.

All of the above work on the semantic analysis of text had the

common property of using a large knowledge base in order to

understand a small well defined semantic world. This need for a

large semantic model makes it very difficult to construct a general

purpose parser for all domains.

The developers of the ALEXIS system (Jansen et aI, 1986) considered

that text understanding systems were too 'unintelligent' to take over

the feedback tasks of the teacher. Instead they produced a system

which could help the teacher to comment on the products of his

students. The system translated simple codes introduced by the

teacher into feedback texts which would inform the student about

what was wrong with their texts and/or what should be done to
improve their next paper. ALEXIS contains a total of 1100

commentary texts and it has received favourable results when used

in a university teaching environment. This type of system may be the
current practical limit for implementing text understanding systems

in the real world.

2.3.5. Hypertext, collaborative writing, and interactive fiction

The technology called 'Hypertext' (and HyperMedia) is currently

very much in vogue and recently it has been applied to creative

50.

writing, and in particular the areas of collaborative writing, and
interactive fiction. Hypertext systems typically allow a user to create

units of information and link them to other units. Related notes can
be joined by creating buttons and/or icons which establish the link

and the relationship between items. This ability to represent
information and associative relationships, with an intuitive user
interface, provides an ideal environment for representing the
relationships between units of texts as part of a creative writing
system.

The WE system (Smith et aI, 1988) is a hypertext writing environment
which helps writers transform loose associative networks of ideas
into a hierarchical structure and then write a document in accord
with that structure. It is a tool for organising and manipulating
ideas into a coherent document. The developers intend to link WE
with an object-oriented database which can serve as a repository for

relevant structural information. The WE system can be viewed as a
merge between writing and database (hypertext, object-oriented)
technologies.

Usually more than one author is involved in creating larger
documents. This makes the task of creative writing far harder, as an

extra level of management and communication is needed to organise
the individual authors. The MUCH project (Rada 1988; Rada & Keith
1988) is an investigation into providing computer systems to support

multiple l!sers .c.reating bypertext. Part of the project has looked at
secondary school pupils working together to produce a group

document. Here the children have produced an 'alternative' travel

guide about places they had individually visited. They soon had to
standardise the format and agree on headings and subheadings.

This particular exercise used a single word-processor, yet the MUCH
project hopes to address the issues involved in supporting multiple

users interacting across a local area network, and will examine the

type of problems raised by such work. They hope to use hypertext to

create a semantic net to represent the relationships between the
multiple users and the individual units of text produced.

51.

Hypertext has also been used as a medium for a kind of flexible,
interactive fiction. Storyspace (Bolter & Joyce, 1987) is a hypertext

system which implements a scheme of episodes, and decision points
or links. It has two modes: one for the author and one for the reader.
The author creates his fiction as a series of textual episodes, using a
structural editor. The reader sees the contents of each episode and
may then reply by typing a string or pressing a button in order to
branch to the next episode. This type of (adventure) authoring system
can provide an exciting environment for creative writing, especially

if used as part of a cohesive teaching strategy.

Hypertext is really an enabling technology for handling chunks of

information and for navigating through it. Much of the work
described above is relatively new and has not been specifically applied
to education. However, collaborative writing is quite common as part
of English education and systems which can support it, will be of
benefit.

52.

2.4. Where next?

Several different approaches to composition support systems have
been described.

Daiute (1983 and 1985) outlines the advantages to be gained from
using the word-processor as composition tool. However it is clear that
the computer must be properly integrated within the curriculum.
Work by Candy (1986) has shown that the use of a computer without
an appropriate strategy can be unproductive and may even be
'detrimental to the development of writing skills'. Petersen et al
(1984) offers seven criteria to consider when examining software
designed for use in composition courses, and gives examples of the
types of questions a teacher should be able to answer before using
such software; most of which are concerned with how the software is
going to be integrated with the existing curriculum.

The stimulus to discussion which occurs during the use of word
processors can place an increased demand on teacher attention
rather than the reduced role which is sometimes imagined (Candy,
1986). There is a need for systems which can support the whole
writing process, from the marshalling of initial ideas and thoughts,
through to composition and interactive support, to revision and
analysis of the text.

Hertz (1983) puts forward several objections to the type of syntactic
analysis of text performed by the Writer's Workbench and Epistle
systems, and denies any benefits from using them to analyse student
texts. It is true that the syntactic analysis of these systems would be
too rigid and inflexible to actually mark the text, in place of the
teacher. However their use in a support role during composition has
yet to be explored. Also these systems have yet to utilise a semantic
understanding component.

Sharples and O'MaUey (1986) argue that the current word-processing
environments (ie. text-editorlspell-checker/outliner) suffer from two
limitations; that is, 'they do not appear to be derived from an explicit
(cognitive) model of the writing process', and 'as a result, they are

53.

limited in their ability to represent and satisfy the constraints
involved in writing'. Sharples and O'Malley put forward a
framework for a writer's assistant which (i) allows the writer to
specify explicit constraints, (ii) allow the writer to switch easily
between any of the writing strategies, and, (iii) provide multiple

views of the material at different levels of focus and from different
perspectives. This framework is currently being used to produce a
prototype of a writer's assistant (Sharples, Goodlet & Pemberton,
1988) that will offer the writer different views of the emerging

document. The design of the system has been tested (Pemberton,
1988) using a HyperCard (TM Apple Computer) mock-up and will be

implemented in Poplog (Sussex University). The eventual system
could provide a good test environment for future cognitive theories.

We will return to the notion of a framework for a writers assistant
later in the thesis when we consider the context of an Expert Writing
Model.

54.

Chapter 3. RATIONALE FORA COMPOSmON
SUPPORT SYSI'EM

There is a growing understanding today in the educational world

that it is the process of writing, as distinct from the end product,

which must be the focus of pedagogical attention. However, very little

has been done to provide appropriate computer based support for pre

writing and writing activities as part of an educational curriculum.

55.

3.1. Aims and objectives

Work by Edmonds and Candy (1982) and Candy (1983 & 1985)
undertook close monitoring of pupils between the ages of 14 and 16
years in their use of a software package. A choice of activities,
including a personalized spelling bank, reading extension through
Cloze procedure and a simple word-processor for writing were
provided. They observed that the use of the word-processor promoted
changes in the pupil's attitude to the act of writing itself in a number
of different ways. For example, otherwise reluctant writers wrote
more than usual, attention to detail was more evident in that the ease
with which correction could be made was applied readily (the
preference with hand written work was to leave it untouched even
where errors were identified), and there was a clear preference for
discussion with the teacher or fellow pupils during the actual
composition process itself. These are recorded impressions by the
teacher/researcher who was comparing notes with her normal
experience of teaching writing in the classroom.

It was the observation that more demands were placed upon the
teacher for advice and support during writing with a word-processor
that gave rise to the notion that a computer system which could have
knowledge of the writer might prove a useful learning tool. It is not
the intention to provide the kind of tutorial support for
grammatical/syntactical errors such as offered by the Epistle system
described in Miller et al (1981) but to work at the development of early
ideas for story and character creation, albeit at a very basic level.

Current educational, and writing systems do not support the writer
in selecting the building blocks for a piece of text. Word-processors
provide outline processors which the writer can use to plan a
document, but the writer must still decide on what the outline
headings should be. Text analysers can check a document for
readability, style, and grammar but cannot tell the writer if a
document is complete, or if sections are missing. Commercial
systems have concentrated on the syntax and grammar of text as an
adjunct to word-processor packages. Various research projects have
produced representative computer systems that can semantically

56.

analyse text for a given domain. But these systems have been too
restricted or artificial to be transferred to real world applications.

With the premise that computer support for pre-writing and writing
skills will benefit English education, a fundamental task of this
research is build an experimental creative writing support system
that can assist the writer throughout the writing process. This will
provide the foundation for an analysis of the Expert Writing Model for
story composition.

In order to achieve this objective an existing package called
STORYMAKER (Candy and Schoenfeld, 1983) was used as a basis for
a creative writing support system. The STORYMAKER package is a
non-computer based system devised by teachers in a local school to
provide children of a wide range of ability with springboards for
writing. The STORYMAKER notes provide a format for children to
select information about possible story types, situations, and
characters, which can then be used as a basis for various teaching
exercises including story writing.

The support system that was created for this experiment was called
MULTISTORY which is documented more fully in the next chapter.
Briefly, MULTISTORY uses the STORYMAKER package as a basis
for pre-selecting the criteria for a story. This is then used by a
compositional support system during the writing process. The
following sections describe the rationale behind the MULTISTORY
system in terms of the composition support, the ICAI criteria and the
necessary natural language processing work needed to implement
the system.

57.

3.2.. Computer supported creative composition.

Computer supported creative writing is a controversial subject. We
have visions of computers teaching a class of students without the
need for human teachers. This is mainly the province of science
fiction. Alternatively we could see computer systems rigidly marking
written text purely based on inadequate style indexes and stock
stereo-typical phrases. This vision may be nearer to today's reality,
and as such provokes the question 'why should computers be used to
examine creative writing and clearly it must be impossible'.

By forcing the pupil to make decisions about the components of a
story before writing it should be possible to use this information to
assist in providing relevant suggestions on request. The premise
being that if we roughly know what sort of story the pupil is writing,
and we know the situation and the main character then we will also
know what sort of suggestions we should be providing. Students in
this way can be restricted to a pre-defined set of possible story
parameter combinations. However, there is a danger that a small
number of combinations can very quickly amalgamate to produce a
large number of possible story permutations. For example, with 8
story types and 8 situations per type, and several character
combinations per story type and situation, we will quickly produce a
very large number of possible stories. It would not be feasible to
produce an expert model for each possible story combination.
However, for the purposes of this experiment it would be sufficient to
support only one story type, situation and character combination to
prove the concept.

It is noted that the support system is designed to determine at what
stage the child is at in writing the story and provide a suggestion on
the next stage/section of the story. There is a danger with this type of
system that it could lead to pupils who are using the same story
parameters to produce very similar stereo-typical stories leaving
them little scope for exhibiting their own imagination. Undoubtedly
the type of support offered by the MULTISTORY system would be too
simplistic and constraining for pupils of average to good ability. The
suggestions would tend to be viewed as offering information which

58.

was pretty obvious anyway. The value of the MULTISTORY
suggestions would best be found in supporting those pupils who were
of low ability and imagination, and as such could benefit from
successive prodding and ideas when writing the story. Some of the
conclusions of the work by Candy (1985) into evaluating the
usefulness of word-processors in English education, were that there
was a need for structured activities which are integrated with other
aspects of the classroom, and the use of a word-processor can place
an increased demand on teacher attention. It is felt that a computer
system like MULTISTORY (used to support the less able pupils)
would be of benefit.

Would a pupil using MULTISTORY write a good story and what is a
good story?

Is it one with a beginning, middle, and end; is it one which builds up
the expectations of the reader and then makes an unexpected twist at
the end; is it one which follows a well used formula (such as a Mills
and Boon novel); does it start at the end and recount a story in
hindsight; is it recounted from several different characters
perspectives, does it use elegant vocabulary or stylistic flourishes? As
we can see this is a very difficult question to answer. But it is usually
fairly obvious what a badly written story is. There is often no overall
writing strategy, or a simple what-next strategy is used which is a
simple sequential account of events based on conversational
heuristics. Bad stories usually have no plan which leads to a tangled
story structure containing irrelevant information, or missing vital
links.

Sharples (1985) suggests that inexpert adult writers difficulties begin
with devising a story plan. They may be aware that one is needed but
cannot produce one to suit the task. One method of imposing form on
inexpert writers is to set 'milestones', which are incidents which
must be included. Pupils of average ability and above would probably
not benefit from MULTISTORY. However, the lower ability pupils
could benefit from MULTISTORY in that it would provide them with
an initial rough plan for a story, and could prompt them with ideas
during the writing of the story. The use of MULTISTORY would not

59.

lead to any masterpieces, and would tend to produce fairly similar
single concept stories, using a simple story plan, but it is proposed

that it would provide a springboard for the lower ability writers to
improve their creative composition. It is the notion of how we
represent the Expert Writing Model that is fundamental to this
research.

60.

3.3. leAl criteria

Some of the claims put forward for leAI systems were:

othat they should allow exploration by the student
obe controlled by both the student and the underlying system
o give hints, demonstrations and explanations
°answer questions and suggest challenges

The rationale for MULTISTORY against the criteria for ICA!
systems is discussed in the following sections.

3.3.1. User interface.

The MULTISTORY user interface would need to be closely bound up
with several external constraints, such as the age group of the users
of the system, the type of task the system was trying to fulfil, the need
to include additional support facilities (such as text editing), and the
nature of the support provided.

MULTISTORY is aimed at low ability, early secondary school pupils.
The user interface must be easy to learn and to use. It also has to be
interesting/exciting and should brighten up a subject, which might
otherwise be a dull and routine activity. A colour graphical user
interface was deliberately chosen for this purpose, based on
recognised guide-lines for the use of colour user interfaces (see
Alderson & DeWolf, 1985).

A menu based interface can be used for the selection of story criteria
during the story outline phase because the task is very structured
and relatively easy to follow.

A simple word-processing mode will be needed for the actual writing
of stories. Features such as 'cut', 'copy' and 'paste' for editing text,
and the use of a mouse for selecting text and moving the cursor. The
text-editor will provide a free-format natural language interface to
the story support system ie. after selecting the help option, the entire

61.

story text from the text editor could be examined as part of the
analysis process.

The natural language processing component would be the weakest
part of the system, and would be just sufficient to demonstrate the
suitability/feasibility of this approach for story composition.
Commercial natural language systems such as NATURAL (Adabas
Inc) and NLMENU (TM Intellicorp) are constrained to understanding
simple database queries using a pre-defined format (eg. 'Find the
employees who joined this company before 111187'). Their dictionaries
are limited to relatively small commercial domains so that queries
should easily be translated into a correct database query. Artificial
intelligence research into semantic natural language processing has
similarly constrained itself to small domains (eg. the 'divorce'
domain with the BORIS system by Lehnert et al, 1983; and military
aircraft information for the PLANES database query system by Waltz,
1978). Even with this constraint the natural language systems have
required very large knowledge bases to contain the semantic and
pragmatic knowledge representations of the problem domain. The
'real-world' knowledge required to understand some of the simplest
human actions is of a vast scale. The problem of finding suitable
generic structures for knowledge representation, and methods of
applying these structures, is still one of the major problems of
artificial intelligence research.

The MULTISTORY system would need to translate and understand
free-format, unconstrained children's writing. This task could be
assisted by forcing the pupil to first decide on a story type, situation,
and character before starting, which would allow the natural
language parser to be restricted to only containing knowledge about
the possible stories that could be written for the chosen story
parameters. Even so, to develop a pars er which could fully
'understand' just one story situation would be beyond the realms of
this research.

The text parser within MULTISTORY is required to obtain a
machine understandable representation of the story text. The pars er
could have several limitations such as only recognising simple

62.

transitive and intransitive statements with a single main noun

phrase and verb-phrase, and it could have a limited dictionary of

about 240 words. This would be acceptable for the purposes of this

research

3.3.2. Embedded student model

The embedded student model is the representation of the state of the

student's expertise at a particular moment. This information is

essential if a support system is to provide any form of personalized

help that is relevant to the student's current level of expertise.

An approach that is often taken, is to create an expert model of a task

and then construct a student model from a subset of the expert model

(see chapter 1). MULTISTORY would use a similar approach to build

part of its student model.

An initial 'Selection' phase of MULTISTORY would build an initial
coarse model by forcing the student to choose a story type, situation,

character, and selected character attributes from restricted lists.

Each story that a student writes will have its own associated set of

decisions that are made in this way. These decisions form a pact

between the pupil and the system ie. the pupil elects to write a story

based on the chosen criteria, and the system would attempt to provide

support based on these decisions.

The MULTISTORY system would also need to use the full text of the

pupil's story to augment the student model. This becomes apparent,

when considering the nature of the problem, that is, the system

would be trying to provide suggestions about the possible plot

alternatives that could be available for a particular story (piece of

text). Unless the system could fully analyse and 'understand' the

concepts being expressed in the text, then it could not provide

adequate relevant suggestions, or at least provide some extra useful

input to the composition process.

63.

The story text, would be parsed into an appropriate representation,

which would then form a major part of the current student model.

This model could then be compared against the relevant 'expert'

model for the chosen story type/situation/character/etc.

3.3.3. Domain knowledge

The domain knowledge component of the system would need to

represent the expertise required to write a story. In this context, the

expertise should be of the form 'Ok. I can see what you have written,

why don't you try this'. MULTISTORY will ideally need to

recognise what has been written, relate that to its own internal model

of what should be a good story for the chosen criteria. and make a

suggestion to the writer based upon the difference between the input

text and this expert/story model. its so-called domain knowledge.

The input to the expert model will be the student model. that is the

parsed story text, and the chosen story criteria.

A first stage MULTISTORY system would be constructed where the

expert model would only examine the story criteria (ie. the decisions

taken by the student prior to writing). and no analysis would be made

on the story text. This model would consist of a rule-base of story

suggestions and their associated firing conditions. These rules would

test the story criteria. and the resulting suggestions would be ordered

from those most likely to suit the beginning of the particular story.

through the various plot developments. through to the end of story

suggestions.

The second stage MULTISTORY support system would need to create

a student model by parsing the story text into an appropriate form.

The expert model would consist of several components. A semantic

analysis phase is required to relate the syntactic structure obtained

from the parser to recognised events and actions within the story.

Once this semantic representation has been obtained it should be

possible to compare the events/actions against expected

events/actions within the expert model. The omission of such could

64.

indicate a possible suggestion point. The presence of additional
structures could indicate an important event, which could be used to
stimulate dialogue between the student and the support system. It is
the contents and architecture of this Expert Writing Model which is
the basis of this research.

3.3.4. Tutoring strategy

For the purposes of this experiment the MULTISTORY support
system would be a passive system which would not be interrogated
until asked by the student writing the story. The support system
would act as a consultant, servicing requests from the user to the
expert model (reactive). The passive 'consultant' type mode would be
acceptable given the aims of this research. However, further work
may be needed to investigate more sophisticated multi-mode pro
active dialogue strategies.

It should also be possible for a student to write a complete story
without once asking for a suggestion from the support system. Also,
the system would not attempt to mark any written work. This would
be left entirely up to the teacher.

65.

3.4. Natural language processing for text analysis

The natural language processing component would be a major part

of the MULTISTORY system as it would be used to extract the
student model in the form of a parsed representation of the story.
This could then be used by the expert model to devise an appropriate
suggestion. However, for this experiment the natural language

component was purely a necessary task which was needed to be
completed in order to prove the overall thesis.

Natural language processing is a hard problem. We use language as
a short-hand notation for transferring knowledge. The coding of
language by the writer and the subsequent decoding of the text by the

reader involves the application of many different knowledge sources,
yet we manage to communicate quite successfully. The main
problems occur because language is ambiguous and ill-defined. For
example the sentence "[saw the man on the hill with the telescope"
could mean anyone of the following situations (figure 2):

66.

Figure 2.

ETC ...

This problem becomes more difficult when we start combining
sentences into paragraphs. chapters. stories and other combinations.

Early work on natural language processing (1953 onwards)
concentrated on the machine translation of text between different
languages. This work was based on pure syntactic analysis involving
dictionary look-up and substitution and grammatical re-ordering.
After a lot of work there were still no cost effective systems. The main
problem was that these systems made no attempt to capture the
meaning of the text. For example. the translation of the following
sentence from English into Russian and back again (using only
syntactic translation):

Before:
After:

"The spirit is willing but the flesh is weak"
"The vodka is strong but the meat is rotten"

67.

Much more knowledge needs to be applied. Broadly speaking the
following basic linguistic distinctions can be made.

Syntax: determining the grammatical structure of sentences usually
in the form of linguistic knowledge. For example, a sentence is made
up of a noun-phrase followed by a verb-phrase; a noun-phrase can
consist of a determiner followed by a noun; and so on. Augmented
Transition Networks (ATNs) can be constructed to represent the
different possible routes through a defined grammar.

Morphology: word inflection. Linguistic knowledge. For example,
'being', 'was', 'am',' is' and 'were' could all be forms of the 'be' verb.

Semantics: establishing the 'meaning' of text. The correspondence
between inner-mental models and the 'world'. Typically a province of
'artificial intelligence', many different methods of knowledge
representation have been used to map text onto knowledge
structures. ego 'semantic nets' (Quillian 1968), predicate calculus
logic, conceptual dependency (Schank, 1972), 'case grammars'
(Fillmore, 1968), 'preference semantics' (Wilks, 1975).

Pragmatics: this is concerned with 'everything else', such as
'common sense', 'speech acts', 'beliefs', metaphor, irony, and so on.
Higher level knowledge structures are used to represent stereotype
text structures and intentions. For example, 'scripts' (Schank and
Abelson, 1977) were combinations of conceptual dependency
structures describing stereotype actions and events; PAM (Wilensky,
1981) was a system that tried to explain the reasons for the actions of
story protagonists. This work included representations for the plans
a character might construct to satisfy underlying goals, the 'themes'
of the text, 'explanations' for actions, and 'predictions' of future
actions. The BORIS (Dyer, 1981) system attempted to model the role
of 'affect' in narrative. This was concerned with representing the
moods and feelings of story protagonists ego affection, disgust, hope,
relief, etc.

The relative importance of each of these units to text understanding
has been the subject of much work and is outside of the province of

68.

this thesis. Some linguists have tended to opt for pure
grammatical/linguistic analysis, while some A.I researchers have
only considered the semantic representation. However, each domain
has its own contribution to make to text understanding. Rather than
create separate distinct components, future systems will need to
combine these separate knowledge sources into a single coherent
structure.

Where does this place MULTISTORY in terms of implementing a
natural language component? A solution was provided in the form of
a predicate calculus parser (Hinde, 1986) which could provide
grammatical text analysis using a declarative clause grammar
based on a context-free grammar. This program would parse the text
non-deterministically by using a tree searching algorithm. While
traversing the parse tree a predicate-calculus representation of the
sentence is built up. If a particular grammar rule is unsuccessful,
then the system back-tracks to the previous node of the tree, un
building any resultant knowledge structures and a new route is
taken. This process is repeated until all of the input text is
successfully parsed. The parse will fail if all possible routes are
traversed unsuccessfully.

This program is described more fully in the next chapter. Although,
not representing the state of the art in terms of natural language
processing it would provide a viable solution for implementing a text
processing component as part of the larger leAI system and a
platform for investigating the Expert Writing Model
(MULTISTORY).

69.

Chapter 4. MULTISTORY: DEVEWPMENT OF AN ICA!
SYSTEM FOR STORY COMPOSITION

It is proposed that computer support for pre-writing and writing
skills will benefit English education. Using appropriate technologies
an experimental creative writing support system will be developed
that can assist the writer throughout the writing process and which
will provide assistance in making plot level decisions. This will
provide the foundations for an investigation into an Expert Writing
Model for story composition.

70.

4.1. Introduction

The previous chapters have described Intelligent Computer Assisted
Instruction (ICAD and the background to composition support

systems. This was followed by a discussion of the rationale for a
composition support system MULTISTORY.This chapter describes
MULTISTORY; a system to support story composition for secondary
school children aged between 11 and 15 oflow to middle ability. This

includes a description of the two main components of the system: the
user interface and the support system.

71.

4.2. MULTISTORY - system design

An initial exploration of composition support systems was carried
out by Gardner (1984). This work was based on a 'Storymaker'
package (Candy and Schoenfeld, 1983) which is a non-computer
based system devised by teachers in a local school to provide children
of a wide range of abilities with springboards for writing. This
method was adapted into a computer system which could provide
limited tutorial support (STORYWRITER) which was well received
during discussions with teachers.

Briefly, the STORYWRITER system was implemented on an ATARI
800 micro-computer and was based on the 'Storymaker' package. It
allowed the user/student to select the criteria for a story and then
write a story based on these decisions. However an extra element was
added, which was the notion of providing computer based support
during the writing process. The premise was that if the computer
knew the basic facts about the story, then it would be possible to use
this information to help the user write a story. This was
implemented by linking the ATARI to a GEC4090 mini-computer.
Then by creating a Prolog database on the GEC4090 of the decisions
made by the user during the initial phase, it was possible to examine
the data using Prolog rules and provide suggestions during the
writing phase.

STORYWRITER suffered from several drawbacks, such as: it needed
a more powerful system (poor performance); it had a poor user
interface; there was an unwieldy set-up phase; it was not fully
developed/tested; and it had an insufficient knowledge/rule base with
no means of establishing the proper context for a suggestion.

One of the aims of the MULTISTORY system was to overcome many
of the limitations of STORYWRITER by developing a complete
integrated system to support the activities before and during writing.
The interface would need to be easy to learn and use, and the
suggestions should be useful and relevant. The major problem with
STORYWRITER was that the suggestions could not be based on what
the child had actually written. The system could only base its

72.

suggestions on the criteria known before writing started. It did not
contain an Expert Writing Model.

The hardware/software base of the STORYWRITER project was
clearly inadequate. What was needed was a powerful stand-alone

micro-computer. A Research Machines Nimbus was chosen to fill
this role. (See Appendix 4 for technical specification). The Nimbus

had the following advantages (at the time):

oPowerful 16-bit processor.
oSophisticated colour graphics chip and software libraries
oMouse (and touch-screen) support.
oThe 'Next generation' educational computer.

oStable software/technology base.

The MULTISTORY system design was conveniently split between the
software modules for the user interface and the modules required to
provide support in the form of meaningful suggestions during the
writing phase. The Prospero ProPascaFM package was chosen as the
development language for the user-interface and file handling and
this was augmented with assembler code where necessary. Robust
software libraries were available for this language which would

minimise the effort needed for the necessary graphical and
peripheral control. The compositional support system and text

analyser was implemented in Prolog. This is an ideal language in

which to develop rule based systems, and it is particularly suited for

the implementation of text parsers. The following sections describe
these components followed by an overview of how they were
integrated into a coherent system. The MULTISTORY system design

was originally completed as part of a proposal to the government
funded MEP project and is more fully described elsewhere (see
Gardner, Edmonds and Candy, 1985).

73.

4.3. User Interface.

One of the aims of this work was to develop a coherent, easy to use
(and learn) user interface for story composition. This was
particularly necessary, as the system was aimed at young children.
A graphical colour interface loosely based on the WIMP (Windows,
Icons, Mouse, Pull-down menus) technology was developed. (See
Appendix 2 for the main User Interface and control program listings
and for a graphical overview of the system design, and Appendix 3
for sample MULTISTORY screens).

A set of icons are displayed across the top of the screen. These
represent the currently available options. The user can escape from
whatever they are doing at any time by selecting one of these icons.
Below this is the work area (analogous to the 'desktop' metaphor
used by commercial WIMP systems) which is used to view text, make
selections and edit a story. Each user will be given their own floppy
disk on which to create stories. The MULTISTORY system does all
the file handling on each disk and creates a usemame on the disk by
which to identify each user. The user is completely shielded from the
underlying operating system.

The user has to insert their computer disk before being allowed to
proceed.

First the user has to select information which will be used as a basis
for .writing the story (select the 'Create' icon). In this way a
knowledge base of information about the actual story being written is
created on the users disk and the system will not allow the user to
write a story unless this information is found. A list of the current
story files on the floppy disk is displayed and the user has to enter a
new story name. Once this has been done the criteria on which to
base a story must be chosen. To do this the user must first choose a
story type by clicking on a story type from the list displayed. Currently
this can be one of 'Revenge', Love', 'FantasylHorror', 'Animals',
'Growing up' and 'Conflict'.

74.

The user then selects a story situation (see Appendix 2.10 for a list of
the story situations used by MULTISTORY). We currently store eight
situations per story type, but there is no limit on this number other
than imposed by practical constraints. The system displays the text
for the chosen situation and story type. The user can either decide to
use it, or they can ask for a different situation until a choice is finally
made.

Next, a main character is chosen (see Appendix 2.11 for a list of the
characters used by MULTISTORY). Each story situation contains a
list of characters which can be used with it. We have a database of
about 30 character descriptions some of which are applicable to a
certain situation, others can be applied to several story types and
situations. The system displays the text describing one of the
available characters. The user can either accept it or ask for a
different character for the situation. This is repeated until a choice is
made.

The user then determines the main character's profile (see Appendix
2.12 for a list of the main character attributes used by
MULTISTORY). A list of different character attributes are displayed
on the screen. Alongside each attribute are the numbers from 1 to 5
and a '*'. The user can click on a number to select an appropriate
description, or they can click on the '*' to randomly select a
description for the attribute. The description that is given is
appropriate to the number chosen. ego a '1' for 'health' would make
the character 'weak and sickly' while a '5' is 'extremely fit'. This
process is repeated until the user has chosen as many attribute
descriptions as they want for the particular story being created.

The story 'create' mode is now ended and a new story information file
is created on the user's floppy-disk. At this point the user has decided
on the foundations for a story and is ready to start writing a story
based on it.

To write a story the user must select the 'Word Process' option. The

system will then display the available created story files which are
found on the user's floppy-disk. The user must select one of these

75.

files as a basis for a story. When a file is selected by clicking on it, the

currently written story (blank if starting a new story) is loaded and

displayed. Scroll bars are placed along one side of the work area and

the user can now write the story. There are limited word-processing

features, such as scrolling, insert/overwrite, cut/paste and save and

exit. A new icon is also displayed in the top icon area. This can be

used to activate the support system when an appropriate suggestion
for the story being written is needed. The support system should give

the user a suggestion on the development of the plot or possible

alternative approaches to the story. This suggestion, supplied by the

support system, is displayed in a window across the screen. It is up

to the user whether they decide to take notice of the suggestion or

ignore the advice given.

76.

4.4. Support system.

The aim of the support system is to provide relevant and useful
suggestions to a user writing a story. The role of the system being

similar to the scenario of a teacher overseeing a class of pupils
writing stories. The teacher will have set a topic for the class to base
their ideas on, and writing will have started. During the session,
some of the pupils (probably the less able) are likely to ask for

assistance. The teacher will need to know the basic facts about the
story and how much has been written before help can be given. Using
this information the teacher will offer a suggestion to the user on a
possible plot sequence for the story being written.

MULTISTORY forces the user to make all the decisions about the

story type, situation and main character before writing starts. The
main issues for the support system were:

-Could a rule-based support system be constructed to use this
information to provide useful suggestions ?

-Could a text and plot analyser be constructed, to scan the text so far
written, form a representation of the story, and use this to advise
the support system on an appropriate suggestion to give ? This would
require the development of an Expert Writing Model for story
composition.

The methods used by MULTISTORY to address these issues are
described in the following sections. (See Appendix 2.7 for a listing of

the rule-based support system and Appendix 1 for listings of the text
analyser support system).

4.4.1. Simple rule based support system.

The first step was to construct a rule based support system that could

use the information chosen by the writer (the story information file)
to construct an appropriate suggestion.

77.

The following is an example information file that a person using the
system might create (see Appendix 2 for full program listings). The
data is represented as Prolog predicates:

story _type(revenge).
story _situation(sit_3).
storY3h aracter(char_14).
char_att_1(2).
char_a tt_ 4(1).
char_att_5(2).
char_att_7(3).
char_att_10(5).
char_att_12(2).

This file describes a story of type 'revenge' with situation number 3:

"A child, often beaten by a rather unloving dad, leaves home as
soon as he can. Sometime later he returns to his home town
intending to pay his father back for his years of suffering. But
he finds the father more to be pitied than blamed"

The character is number 14; which is:

"DYLAN. Male 11. An orphan brought up by a series of foster
parents, some good and kind, others mean and nasty: none of
them permanent. Like many in his position he wants to know
who his real parents are and is prepared to spend effort
locating them."

The character has been set with the following attribute settings:

Attractiveness--"Average features, and dull"
Friendliness--"Unsociable and hostile"
Health--"Always has coughs and colds"
Intelligence--"Average ability, common sense"
Self-confidence--"Opinionated, bigoted, cocksure"
Truthfulness--"Unreliable, no principles"

78.

The program RUNSUGS is the main controlling program.

retractall(X):-retract(X),fail.
retractall(X):-retract«X:-Y)),fail.
retractall(j
check_consult:-clause(storytypeC),_).
check_consult:-consult('f:cstoryf.pro'),

storytype(St),storysit(Sit),cons_sug(St,Sit,File),

conscl(File),setup.
cons_s ug(1 ,Si t,File): -concat(File, [' c:' ,rev ,Si t,'. pro ']).
cons_sug(2 ,Si t,File):-concat(File,[' c:' ,lov ,Si t,'. pro']).

run:-exec(storym),check_consult,

do_sugs.
do_sugs:

trysug,do_sugs.
trysug :- sug(X,Y),retractall«sug(X,_))),

send_to-pas(Y).

trysug:- send_to_pas(['No more suggestions.']).
send_to_pas(Mes):-open('f:helpfile. tmp', w),

name56(N),writeft'f:helpfile.tmp',N),
n1£t'f:helpfile.tmp'),
records_out(Mes),

close('f:helpfile. tmp'),
exec('storym').

records_out([]).
records_out([H I T]):-writeft'f:helpfile.tmp',H),

n1ft'f:helpfile. tmp '),
records_out(T).

This program:

·runs the Pascal MULTISTORY program (the user-interface).

·when a suggestion is required, MULTISTORY is exited and control.

is returned to RUNSUGS.
·on return, the program checks whether this is the first time a

suggestion has been asked for. If so, then it consults the relevant

story information file. It then Checks what story situation is being

79.

used and consults the appropriate suggestion file Ceg. REVONE.PRO
contains the story suggestions for a 'revenge' story using situation
number 1. There will be 8 different suggestions files for the different
situations for the chosen story type). The set-up predicates for this file
are then initiated.
·see if a suggestion rule fires. If so save the text in a temporary file.
·return to the MULTISTORY user interface.

Briefly, this program controls the main session. It will start up the
MULTISTORY user-interface and handle the switching between the
user-interface and the Prolog support system.

The suggestions files contain set-up predicates which test for the
story character chosen. In it suggestion rules contain the text of the
suggestions to give and conditions which are required before they can
be fired. For example the following file REVONE.PRO contains
suggestions for story type 'revenge' using situation number 1:

setup:-storychar(5),assertaCname56C'Jake')).
setup:-assertaCname56C'Dylan')).
sug(1,['The story should be retrospective.',

'i.e. The character is looking back',
'on a past childhood.']).

sugC2,['Decide whether Jake has a mother',
'and a father, or just a father.']):-name56('Jake').

sug(3,['Describe life at home.',

'Was the character badly treated T]):-att1(X),X>2.
sug(3,['Describe life at home.',

'Was the character badly treated T,
'There is a low health rating.',
'This could be due to a poor upbringing.']):-att1(X),X<3.

sugC4,['Describe in what ways Dylans',
'step parents are mean to him.']):-name56('Dylan').

sugC5,['Jake is very disruptive at home.',
'His father beats him to try and control him.',
'Jake has a high self-confidence rating.']):-name56('Jake'),

attlOCX),X>3.
sugC5,['Jake tends to be disruptive at home.']):-name56('Jake').

80.

sug(6,['Decide whether the father is always working',
'earning a living and running the house; or',
'has your character had to do all the house',
'chores from an early age (more likely if,
'determination is high).']).

sug(7,['Decide whether Jake s father is a rocker.',
'This will affect the sort oflife that',
'he led. e~. "parties", motorbike rallies.']):-name56('Jake').

sug(8,['Describe the events leading up to leaving',

'home. Was it well planned or on the spur',
'of the moment.']).

sug(9,['Dylan could run away to find out who his "
'real parents are. His step parents will not',
'tell him. ']):-name56('Dylan').

sug(10,[,Describe the parents reaction to "
'your character leaving.']).

sug(ll,['Describe your characters life in the',
'big wide world.']).

sug(12,[Your character meets and makes many friends.',
'High friendliness and attractiveness rating.']):-att5(X),X>2,

att2(y),Y>2.

sug(13,[Your character finds it easy to get a job.',
'High intelligence and skilfulness rating.'J):-att7(X),X>2,

attll(Y),Y>2.

sug(14,[Your character struggles against set-backs.',
'High determination rating.']):-att4(X),X>3.

sug(15,['Describe events leading up to your characters',

'return home. Has he/she made good !']).
sug(16,['Dylan could either find out the truth about',

'his parents or return home in desperation.']):

name56CDylan').
sug(17 ,['J ake roars into town on his motorbike,',

'intent on paying his father back']):-name56('Jake').

sug(18,['Why is your characters father to be pitied 1',

'Possibilities: father himself was beaten when a lad,',

the father has repented his ways,',
the father has many problems.',

Your characters high kindness increases the',

81.

'possibility of forgiveness. ']):-att9(X),X>2.

sug(18,[,Why is your characters father to be pitied ?',
'Possibilities: father himself was beaten when a lad,',

the father has repented his ways,',

the father has many problems. ']).
sug(19,['Think of an ending. What does your character',

'resolve to do ? Does Dylan find out who his "
'real parents are 1']):-name56('Dylan').

sug(19,['Think of an ending. What does your character',
'resolve to do 1']).

An example rule in this knowledge base is:

Rule 12 states IF the attractiveness and friendliness ratings are
above 2 THEN use the text of the rule as a suggestion ('Your
character meets and makes many friends').

The suggestions in the file are tested in the order that is most
applicable to the story. That is, the rules that are tested first have
suggestions which are more applicable to the beginning of a story,
and the later rules apply to further on in the story, and so on. After a

rule has fired, it is removed from the rule-base for the duration of
that particular story writing session.

In conclusion, the support system, checks to see what story type and
situation is being used. It then loads the appropriate rule base for

that type and situation. These rules supply suggestions based on
conditions which apply to the story situations and character

parameters. As there are 6 story types and 8 situations per type then

the complete system will require 48 separate suggestions files/rule

bases. Each suggestion file contains roughly 25 rules, so the complete
system will have approximately 1200 rules which can give possible
story suggestions.

82.

4.4.2. Text analysis support system.

The aim of this work was to produce a text analyser which could feed

a description of the story (so far written) into the story suggestions

chooser and make an appropriate suggestion based on an analysis of

the plot structure (the Expert Writing Model).

The main decisions to take were: what method should be used to

parse the text, and what knowledge structures should be used to

represent the parsed text? A solution was provided in the form of a

parser which was based on software provided by Hinde (1986), using

the logic programming language Prolog (Clocksin and Mellish,

1982). See appendix 1 for the listings of the complete system. The

natural language processing component of MULTISTORY was a

necessary task that was required in order that the overall objectives

could be met, and it is not a major component of this research.

However, the software did require considerable modification in order

that it could be used effectively within the MULTISTORY

environment.

Prolog offers an ideal language for parser construction due to its

ability to use a built in grammar rule notation as a shorthand for

representing natural language context-free grammars. This

notation is then translated into ordinary Prolog code by the system, or

a special form of Prolog 'consult' can be used.

The declarative clause grammar representation was used to

implement a context-free grammar (see Appendix 1, file

ENGLISH.PRO for the Prolog grammar rules).

This grammar parses the text non-deterministically by using

Prolog's built-in tree searching algorithm. While traversing the

parse tree a predicate-calculus representation of the sentence is built

up. If a particular grammar rule is unsuccessful, then Prolog back

tracks to the previous node of the tree, un-building any resultant

knowledge structures and a new route is taken. This process is

repeated until all of the input text is successfully parsed. The parse

will fail if all possible routes are traversed unsuccessfully.

83.

The file PR01.GO is the first file to be consulted by Prolog. This
contains the list of files that need to be consulted to run the grammar.

The file OPS.PRO defines the predicate calculus operators used by the
file ENGLISH.PRO. These operators need to be declared prior to
consulting the grammar file.

PRETHING.PRO is used by the grammar to test a list for whether
some of its components are members of a given grammatical class.

CHECKSIM.PRO checks whether the two arguments are subsets of
each other. This file also contains the definition for the 'member'
predicate (checks whether an atom is a member of a list).

APPEND.PRO will append two lists together. This is an integral part
of the parser as it is used to decompose lists into its separate
components and feed them into the parser.

TIDY. PRO is used to assert the items in a list into the temporary
floating vocabulary.

DCGS.PRO is used to read in Prolog grammar rules and convert to
standard rule format (for use by Prolog systems which do not support
grammar rule notation).

GENSYM.PRO creates a new atom starting with a root provided and
finishing with a unique number. Used to create new, unique atoms.

ENG_AD_M.PRO is used to analyse adverbs formed by words ending
in 'y', 'ly' and 'ily'.

ENG_ V _M.PRO forms the verb according to its type ie. tense,
Person, plural/singular, Gender and Regularity.

OURVAR.PRO is used to mark the subject and object nouns,
especially when used with transitive verbs.

84.

ASSERTBT.PRO contains a set of tests which are used by the
grammar when asserting temporary structures into the database.

WORDS.PRO contains all the items of the English vocabulary known
to the system classified according to their syntactic use.

PARSER.PRO consults a file containing several sentences and
processes them using the following grammar. The output from the
pars er is asserted into the database.

ENGLISH5.PRO contains the grammar rules used to analyse a
sentence.

Briefly, the predicate calculus representation used by the parser
enabled us to represent the form of arguments in such a way that it is
possible to check in a formal way, whether or not they are valid (see
Mendelson, 1964). We can express propositions about the world such
as a Predicate calculus representation of natural language text, and
then make tests on the validity of the logic represented.

The listing TEMPSTRY.PRO in appendix 1 contains a sample story
based on the situation and character described in the section above.
Each sentence is packaged into a Prolog list ready for analysis by the
parser. The listing OUTPUTl.PRO in appendix 1 contains the
resulting predicate calculus representation of each sentence after
processing by the parser. As can be seen the output of the parser is a
simple grammatical representation of each input sentence based
around the main verb-phrase with additional character and
temporal information. There is no semantic analysis of the sentences
ie. no decomposition of the actions described, and no analysis
between sentences. However, it does provide a minimal
representation of the story text which could be used by an Expert
Writing Model to give compositional support.

85.

4.5. Integration of the user interface and support systems

The user interface (written in Pascal) and support systems (written
in Prolog) described above were implemented separately on a
Research Machines Nimbus micro-computer. This section describes
how they were integrated into the MULTISTORY system.

The MS-DOS (MicroSoft Disk Operating System) environment on the
Research Machines Nimbus micro-computer is a single-user/single
task operating system without inter-process communication (eg.
Remote Procedure Call) or piping facilities (such as found on UNIX
machines). To allow the user-interface and support systems to
communicate a solution was devised through the use of temporary
files and program spawning (see appendix 2 for program listings
and top-level design chart).

A separate RAM disk was set up on the Nimbus, which could be used
as a fast data area for creating temporary files. The Prolog support
system was loaded first. This automatically executed the Pascal
program which ran the MULTISTORY user-interface. The user
would now stay within the Pascal program during the 'create' and
'word-process' stages. It is only when there was a request for a
suggestion that a return would be made to the Prolog support
system. Temporary files containing word-processing pointers, story
settings and the current story being written, are first created before
returning to Prolog. The Prolog support system then consults the
temporary files, chooses a suggestion, and then creates a new
temporary file containing it. Control is then passed back to the Pascal
MULTISTORY environment, the temporary files are read in and the
suggestion is displayed on the screen. This process is completely
transparent to the user. The screen continues to display the
MULTISTORY environment and the user is unaware of the program
switching that is occurring underneath.

86.

4.6. Current state of development ofMULTISTORY

This chapter has described the development of a system to analyse
and support children's story composition. A user interface was
developed in Pascal with an underlying rule-base implemented in
Prolog.

The aim of the system is to provide an aid to the stimulation of
formulative ideas at a first stage, as well as immediate and
appropriate responses during the act of composition itself in the form
of advice or suggestions to the child writing. The support system
attempts to provide a level of response which is directly related to the
activity itself as distinct from stylized and rigid stock responses. A
need to provide this facility for individual writers has been identified.

At the technical level there are some limitations with the current
system design. The use of two separate programming languages
does pose some problems for system integration, and a solution has
been described above. Surprisingly, using this approach there was
not a long delay when switching from the user-interface to the
support system. But for practical implementation a more robust
method would be required. In addition the use of temporary files for
program communication does severely restrict the level of
communication between systems. Ideally the user-interface and
support systems should be implemented in a common programming
environment and this is discussed in the next chapter.

To re-visit the relationship between the MULTISTORY system and
the leAI architecture described in chapter 1. In the MULTISTORY
system a student model was constructed by parsing the text of the
story being written. An initial simple expert-model was constructed
based around a simple rule-based description of events in one story.
The need for a more comprehensive expert model has been raised
particularly in relation to mapping the student model to a
representation of predicted story events and this is discussed in the
next chapter.

87.

The prototype MULTISTORY system currently consists of the
following components:

-an advanced colour WIMP based environment for story
composition. The system supports the creation of new story outlines,
and a text editor for story composition.

-Embedded within the text editor is an expert system which attempts
to provide suggestions for the story currently being written. The
development of the expert system followed two stages. Stage 1 was a
simple rule based system which examined the current story outline
to decide on a suggestion; and stage 2 was a predicate calculus
pars er which translated an input story into a grammatical
representation. Currently, the output of the parser is not fed into the
suggestions chooser.

The development of the MULTISTORY system has provided the
framework for assessing the benefits of computer supported creative
writing and the basis on which to develop an Expert Writing Model
for compositional support.

88.

Chapter 5. A CRITIQUE OF MULTISTORY

The previous chapters have described the development of a system
called MULTISTORY to support story composition based on an
evaluation of Intelligent Computer Assisted Instruction (lCAn
criteria and an analysis of composition support systems. This
chapter provides an overview of this research with a discussion of the
main issues addressed by MULTISTORY, and some of the new
questions it raises and future research ideas.

89.

5.1. Research Overview

Story understanding research in the past has examined various
different aspects of text understanding, including sentence level
syntax and grammar (Booth, 1983), syntax of stories themselves
(Beaugrande & Colby, 1979), semantic components (Schank, 1972),
plots (Schank and Abelson, 1977), themes (Dyer, 1981), and
character's emotions (Dyer, 1983).

Work has also been done on enabling computers to write stories based
on predefined templates using a mixture of canned sequences and
functions which can represent varying sequences. Different

approaches have been used, including story grammars (Rumelhart,
1980), rules of expressiveness (Dreizin et al, 1978), and the more well
known work by Meehan (1981) on the TALE-SPIN program which

devised stories based on an initial problem through to the solution by
assigning goals to characters in the story and constructing plans by

which to solve them.

However, very little has been done in applying story analysis
techniques to the problem of supporting the writer in creating stories,
and in particular the task of making decisions about the different plot

alternatives of a story, whilst it is being written. There is no clear
understanding of the usefulness of attempting to provide interactive
support for the writer making these decisions.

Previous writing support systems such as the Unix Writer's

Workbench (Frase, 1983) and the IBM Epistle system (Heidorn et al,
1982) concentrated on syntactic analysis and support. O'Malley and

Sharples (1986) have defined several tools to be included as part of a

'Writers Assistant', based on a cognitive model of the tasks involved
in writing. Commercial products aimed at supporting writers such

as the Wordbench (Addison-Wesley, 1989) for the IBM PC are now
appearing. This package includes a suite of tools including an out

liner, spelling checker, thesaurus, a note-taker, a reference tool, a
viewer for examining outlines and citations while working on a

document, and a brainstorming tool. MULTISTORY is aiming to
support the writer in an area which as yet is unexplored:

90.

With the premise that computer support for pre-writing and writing
skills will benefit English education the aim of this research is to use
appropriate technologies to build an experimental creative writing
support system that can assist the writer throughout the writing
process. This will provide the foundation for an analysis of the Expert
Writing Model for story composition.

The following steps were necessary in order to complete the research:

-to build a story writing support system by applying natural
language processing techniques and a rule-based assistant.
-to determine what the components of such a system are.
-to test the usefulness and feasibility of such a system.
-to make recommendations on the requirements and direction of
future composition support systems and the Expert Writing Model.

So how have these aims been met?

A story writing support system called MULTISTORY was
constructed. The user-interface and story selection phase was
implemented in Pascal and Assembler, and a natural language
parser and rule-based support system was built using Prolog. The
system components were based on the criteria laid out in chapter 1
for so-called 'Intelligent Tutoring Systems', that is: user interface,
expert model, student model, and a tutoring strategy.

A 'user-friendly' colour WIMP (Windows Icon Mouse Pointer) user
interface was used to make the system as attractive and as easy to
use as possible. This interface was developed using the conventional
programming languages Pascal and Assembler, and required a
great deal of programming effort (see appendix 2).

A student model was constructed by forcing the user to make
decisions about the story type, situation, and main character before
writing a story. In addition to this a predicate-calculus type parser

was constructed to parse the story text, and the resulting parse would
form a detailed student model. The accuracy of the student model

91.

produced by the parser, is dependent on the power of the parser itself,
ie. the size of it's lexicon, the sophistication of the grammar used, it's
ability to recognise ambiguity, identify pronoun references, and
recognise the underlying meaning of the text.

As has been stated, Natural Language Processing is a hard problem.

The parser used in MULTISTORY was limited in many ways. It
could only recognise simple noun-phrase/verb-phrase combinations,
there was limited morphological processing, and the predicate

calculus representation had little semantic value. However the aim
of this research was not to build a bullet-proof natural language
parser. The parser had only to be good enough to test whether it could
be used as part of a story writing support system.

A simple expert model was constructed by devising a rule-base of
suggestions which would match the story criteria against the

conditions of a series of rules. When a rule fired, then an appropriate
suggestion would be given. A more sophisticated expert model is
required to properly utilise the the student model obtained from the
natural language pars er (discussed in the next chapter).

92.

5.2. Research Issues

This work has proved that it is possible to construct a creative story
writing support system based on what is becoming generally known
as the Hartley-Sleeman four-component model (Ford & Yazdani,
1988) architecture for Intelligent Tutoring Systems.

The natural language processing component has proved to be the
weakest link of the system. However, it was a necessary component

in order to fulfil the overall research objectives. There has generally
been a significant decline in research work into the application of
A.I. theories for natural language text understanding. The interest
in this area shown in the late 70's and early 80's mainly in the United
States, has provided some interesting theories and small scale
systems, but failed to furnish any really usable or practicable

methodologies for semantic analysis of text. Fortunately, we are now
starting to see general purpose Natural Language Processing (NLP)

toolkits such as SRI's Core Language Engine (CLE), a system
(Moore, 1987) for translating natural language (English) sentences
into formal representations of their literal meanings. This system
includes a lexical lookup, syntactic parsing, semantic interpretation,
and quantifier scoping to resolve ambiguities. The CLE is built
around the Prolog programming language and it should allow for
the construction of far more robust and usable natural language

systems.

The development of the MULTISTORY system has highlighted the

need for advanced software tools such as user interface libraries,
knowledge engineering toolkits, and rapid prototyping environments.
For example, systems such as KEE (TM Intellicorp) can provide a rich

rapid-prototyping development environment. Formally these systems

were restricted to expensive A.1. workstations, which were
impractical for typical schools and colleges. However, with the

continued decrease in the price/performance ratio illustrated with
the availability of 32-bit and high-performance reduced instruction
set (RISC) computers (eg. the Sun SparcStation) they may well point

the way to the type of educational computer system we will see in the
future.

93.

The four component Hartley-Sleeman model for Intelligent
Computer Assisted Instruction does appear to be valid but the
distinction between some of the components can become blurred. In

software engineering terms it is quite feasible and often more
practicable to combine some of the components together rather than
design a system from scratch as four distinct modules. For example
in the MULTISTORY system part of the student model is formed
from the parsed story text, whilst the expert model comprises the
semantic analysis of the parse. The long held belief in the ICAl
community that the student model is usually the most important in

an intelligent tutoring system does seem to hold true, although in
this context it is viewed as being the input to the expert model.
MULTlSTORY stands or falls on the quality of the parser which
forms the student model. But as the parsing process itself will involve
a large amount of 'expert' knowledge then the student and expert
models can be viewed as being very much inter-related.

Early lCAI systems (eg. WEST, GUIDON) formed the student model
as a distinct subset of a bigger expert model. MULTlSTORY does not
make this formal assumption. The expert model in MULTISTORY
will need to clearly define what it is that identifies a 'good' writer,
whereas the student model will at best only intersect with the expert
model, in that it will contain some facets which the expert model will
recognise, and a large amount that could be good, bad or indifferent.
The expert model should try to describe the cognitive processes and
decisions which need to be made in good writing, whereas the
student model will be a snapshot of one particular collection of ideas
at anyone time. The need for a proper cognitive model of writing is
one that has already been identified by O'Malley & Sharples (1986).

94.

5.3. New research

What is an expert model of writing? This is a difficult question. A.I.
researchers have attempted to apply semantic analysis to story
understanding. For example the BORIS program (Lehnert, 1983 and
Dyer, 1983) was an attempt to identify the plans and goals of
characters in a narrative by modelling their emotions and resulting
motives. This program was relatively successful for the very small
domain to which it was applied (divorce narratives). If we take this
approach a step further, then we could apply it as a form of expert
model which identifies a character's plans & goals, and made
suggestions for the next piece of narrative based on the underlying
motives of the character. This sounds promising, but could lead to

stereotypicallhoring stories, consisting of a logical sequence of events
one after the other. However this is an essential step which needs to

be addressed before any real story·writing support can be provided.

The question now should be:

'assuming that all the natural language problems are solved,
including proper semantic analysis of characters plans, goals,
themes, motives, emotions, etc (an unattainable goal at present) then
what problems are still present for a story writing support system?'.

The main problem must be in determining how to define an expert
writing model which can properly use the rich student model derived
from this mythical future text parser/analyser. This expert model
would have to encompass knowledge about all aspects of story
writing, including: writing styles (eg. spy thriller, romantic, pulp
fiction, intellectual, who-done-it, moralistic stories, etc), and the
degree to which the writer wants the text to conform to a particular
defined writing style; each character's development within the text;
first/second/third person narratives; the level of unpredictability of
the plot; the use of techniques such as humour, flash-backs, simile',
etc; and so on. This subject is discussed in the next chapter.

Then assuming we can encapsulate a suitable expert writing model,
the next problem is how we apply this knowledge in a tutoring

95.

environment ie. the coaching strategy. The MULTISTORY system
only gave a suggestion when the student asked for it. This method
was used because it was the easiest, the computer configuration
would not support the multi-tasking necessary for a more
sophisticated coaching strategy, and the system could not be
absolutely sure that the suggestions it gave would be timely and
appropriate. However, if a future writing support system had a far
richer student model, expert model and computer system then it
would be feasible to implement more sophisticated tutoring strategies
and it would be far more likely that the suggestions would be relevant
and useful.

What different tutoring strategies can we envisage? The ideal
situation could be that the support system continuously monitored
the student's input and gave suggestions in a separate output
window whenever the expert model identified a possible decision
point, fault, or opportunity. The student could choose whether to use
the suggestion or not. However, this could lead to the situation where
students only followed the computer's suggestions and did not apply
any of their own thoughts and ideas. To overcome this the tutor
program would have to monitor how many of its suggestions were
being used, and vary the support it gave to encourage the student to
contribute more to the story. If the tutor realised that the student was
precisely following its suggestions, then the tutor could start to
phrase the suggestions in a more socratic style, asking the pupil
questions rather than only providing easy solutions. The level of
intelligence displayed by the tutor would largely be dependent on the
sophistication of the underlying expert writing model.

Selfs (1988) argument that leAI systems should learn at the same
time as the student may point the way to future composition support
systems. The ability of a future system to improve over time through
the use of self-Iearning/rule-induction algorithms (such as
Quinlan's ID3 1979) could provide a better means of representing the
student model. The system could learn the style of each individual
student by monitoring their work over several different story writing
exercises. In this way it could induce common mistakes and tailor
the advice to more fully support the students needs.

96.

These are some of the problems that need to be addressed if the
natural language bottleneck is overcome. The main research area
being to develop a more advanced expert writing model and tutoring
strategy, assuming that a suitable natural language component can
provide a more detailed student model. Clearly the
hardware/software platform used for the current MULTISTORY
system is inadequate for the implementation of a future more
advanced story writing support system. The following minimum
requirements would be necessary:

-Multi-tasking operating system (probably Unix)
- Large screen (about 19")
-Multi-window environment
-Advanced software tools (eg. KEE, HyperCard, NextStep)
-Fast micro-processor (eg. RISe technology)

In addition to developing the Expert and Tutoring models there are
several other research areas that are then feasible. The following are
some ideas for future research:

A mechanism for teachers to modify and author their own
expert writing models to suit a particular teaching session or
example.

Additional practical evaluation of this type of computer aided
writing support system is needed in a classroom environment.

How could this type of support system be integrated into a
complete 'writing' environment, such as the writer's assistant
being developed by O'Malley and Sharples et al (1986) which
includes 'brainstorming', 'outlining', and other writing tools?
A proper cognitive model of 'writing' is needed as the basis of
the research (discussed in chapters 6 & 7).

How can the domains of Hypertext (McAleese, 1989) and
Interactive Fiction (Howell, 1989) be applied to a story writing
support system. The common concept behind both Hypertext

97.

and Interactive Fiction is that the reader can make choices on
possible routes through a narrative text, and can choose
whether to expand a particular piece of information or change
direction altogether. The authoring of Hypertext and
Interactive Fiction is still relatively unknown, and the notion of
providing 'intelligent' support may prove to be an interesting
area.

Collaborative writing of text opens up a whole new set of
problems, and is especially relevant in the classroom situation.
Research is needed into how we can provide systems which
support this type of work. See Rada et al (1989).

An investigation into the use of expert system shells in
education. What sort of explanation facilities are needed? How
can they be used as part of a coherent teaching strategy. See
Valley (1989).

There are probably many other areas of work which could be
mentioned, but the above list provides a good starting point.
MULTISTORY can be seen to have carried out the necessary first
phase of this research. It has highlighted the main problem areas,
given us a clearer idea on how such a system might be implemented,
and has suggested further areas of research. The next chapter
discusses the notion of the 'expert writing model', which has proved
to be the main stumbling block for 'intelligent' story writing support
systems.

98.

Chapter 6. THE 'EXPERT WRITING MODEL'

The previous chapter critiqued the MULTISTORY system and
provided an overview of the research with a discussion of the main
issues addressed, and some of the new questions raised.

The main question that has resulted from this work is: How can we
define an Expert Writing Model for MULTISTORY which can use the
student model derived from the text parser/analyser and provide
appropriate support to the writer?

This chapter defines the components of and the architecture for an
Expert Writing Model for story composition.

The scope of the Expert Writing Model in this context is concerned
with the domain knowledge and heuristics necessary to provide
appropriate plot or event/episode based suggestions (ie. advice on the
'well·formedness' of the story) in the MULTISTORY environment
previously described. We are not concerned with modelling the
expertise for other writing activities or functions (such as correct
grammar, writing style, etc) which is adequately covered elsewhere.
Neither is this section concerned with the mechanics of the
underlying parser, it is assumed that the natural language
processing problems can be solved, including the analysis of a
character's plans, goals, motives, emotions, etc (an unattainable
vision at present).

99.

6.1. The Components of the Expert Writing Model

As described in chapter 3 the domain knowledge component of
MULTISTORY should represent the expertise required to write a
story. In this context, the expertise should be of the form 'OK, I can
see what you have written, why don't you try this'. The Expert
Writing Model (EWM) will ideally need to recognise what has been
written, relate that to its own internal model of what should be
contained in a good story for the chosen criteria, and make a
suggestion to the writer based upon the difference between the input
text and the expert/story model, its so-called domain knowledge. The
input to the expert model will be the student model (the parsed story
text), and the previously chosen story criteria.

This corresponds to the bug-construction method of student
modelling described in chapter 1 where the expert model generates a
search tree for the student model derived from its own internal
domain knowledge.

For the provision of plot level support it is proposed that the following
components should be included in the EWM. It is assumed that a
sufficiently powerful text parser can supply the EWM with an
appropriate representation of the story (discussed in chapter 3):

oTop-down Story Grammar
o Bottom-up AI planner/simulator

The functionality of the individual components will now be described,
followed by a description of the architecture of the EWM.

6.1.1. Top-down Story Grammar

Just as simple sentences can be said to have an internal structure, so
too can stories be said to have an internal structure. Rumelhart
(1975) was one of the first proponents of a story grammar which could
account for many of the salient facts about the structure of simple
stories.

100.

The general structure of this grammar consists of the following re
write rules (a * indicates one or more units. and a I indicates
mutually exclusive units):

Rule 1: Story -> Setting + Episode
Rule 2: Setting -> (State)*

Rule 3: Episode -> Event + Reaction
Rule 4: Event -> (Episode I Change-of-state I Action I Event + Event)
Rule 5: Reaction -> Internal Response + Overt Response
Rule 6: Internal Response -> (Emotion I Desire)
Rule 7: Overt Response -> {Action I (Attempt)*)
Rule 8: Attempt -> Plan + Application
Rule 9: Application -> (Preaction)* + Action + Consequence
Rule 10: Preaction -> Subgoal + (Attempt)*
Rule 11: Consequence -> {Reaction I Event}

For each syntactic rule there is an associated semantic
in terpreta tion:

Rule 1: ALLOW (Setting. Episode)
Rule 2: AND (State. state)
Rule 3: INITIATE (Event. Reaction)
Rule 4: CAUSE(Event1• Event2) or ALLOW(Event1• Event2)
Rule 5: MOTNATE(lnternal-response. Overt Response)
Rule 6: semantically constrained
Rule 7: THEN(Attempt1• Attempt2 •.....)
Rule 8: MOTN ATE(Plan. Application)
Rule 9: ALLOW(AND(Preaction. Preaction •...).

{CAUSE I INITIATE I ALLOW} (Action. Consequence»
Rule 10: MOTNATE [Subgoal. THEN (Attempt •.....)]
Rule 11: semantically constrained

Where the semantic relationships have the following definitions:

AND

ALLOW
conjunction of a number of arguments

relationship between an event which made possible. but
which did not directly cause a second event

101.

INITIATE relationship between an external event and the reaction
to it

MOTIVATE relationship between an internal response and the

CAUSE

THEN

actions resulting from that internal response
relationship between two events in which the first is the
physical cause of the second
relationship between temporal events

These semantic relationships attempt to provide a set of simple
descriptors for the global structure of the story. This is a similar
approach to the Conceptual Dependency (CD) theory developed by
Schank (1972) and Schank & Abelson (1977), but CD provides a more
bottom·up approach to text analysis, whereas Rumelhart's grammar
describes the top-down global structure.

The following example illustrates the application of the above
grammar to a simple story (the example assumes that the text can be
successfully parsed):

Units of the example story:
(1) Margie was holding tightly to the string of her beautiful new
balloon.
(2) Suddenly, a gust of wind caught it
(3) and carried it into a tree.
(4) It hit a branch
(5) and burst.
(6) [sadness] --> inferred from the text
(7) Margie cried and cried.

102.

The syntactic structure derived from the story (based on the story
grammar). Notice that action 5 is disregarded in the syntactic
structure.

~
sett,g ~

(1) A ~

of state Response Res~nse
)\

ent Change Internal Oven

I I I
Event Event (4) (6) (I)

I I
(2) (3)

The semantic structure derived from the story (based on the story
grammar).

(~
~ Re~n

Xt (5) (~)
En£ \)

(A)
It can be seen that from this grammar it is possible to build a
syntactic representation for a story and also a semantic (loose)
representation for the relationships between events in the story based
on a constrained set of semantic relations or primitives. A deeper
level semantic analysis is required for some of the more complex
relationships (eg. rules 6 & 11).

This simple grammar was found (Rumelhart, 1975) to be adequate
for the analysis of most folk tales and simple fables. In addition,
Rumelhart developed a set of summarisation rules which could be
applied to the semantic structures built by the grammar to produce
adequate summaries of simple stories. However, the grammar does

103.

have difficulty handling more complex multi-protagonist stories, and
they are best suited to stories about a single major character striving
to reach a single overall goal.

Other general story grammars have been proposed by Thomdyke
(1977), Mandler & Johnson (1977), and Stein & Glenn (1979) which
take a similar approach to Rumelhart's grammar.

Story grammars are not intended to define the set of stories, nor are
they intended to be the sole component of a story comprehender.
Rather, their purpose is to serve as one of the many sources of
knowledge necessary in story comprehension and, in doing so, to
produce a story representation out of story-element representations
(ie. the parsed text). They are therefore an important component of
the EWM and an example of their possible application will be given
later in the chapter.

6.1.2. Bottom-up AI planner/simulator

The previous section described a schema for recognising the top-level
global structure from story texts. This approach is different to that
taken by Black & Wilensky (1979) (and the typical 'A.I" view) who
advocate that to determine the 'well-formedness' of a story
presupposes an understanding of the story itself. Since the purpose of
the grammatical structure of a story is to aid in understanding the
story, there is no reason to determine the structure because we must
have understood the story before we can discover the structure in the
first place (a 'chicken and egg' situation). This is an important point,
in that the story grammar approach pre-supposes a powerful enough
parser (both syntactic & semantic) to build an appropriate
representation of the story. This parser would be based on a
representation of the typical knowledge people use to understand
stories. The A.I view is that if you have already understood the story
what benefit is there from then applying a set of top-level story
grammar rules. However, in actuality the story grammar approach,
far from being an alternative to 'investigating the knowledge people
use to understand stories', can be used to encode the intended aspects

104.

of that knowledge. ie. it can be viewed as an additional knowledge
source (see Frisch & Perlis, 1981, and De Beaugrande & Colby, 1979).
This is particularly appropriate when applied to the domain of
MULTISTORY (discussed later).

The A.I bottom-up approach to story understanding has focused on
the generation of stories by computer, but as will be shown most of
these ideas directly map onto the MULTISTORY paradigm. The
majority of the A.I work was based on the simple theory that 'a story
is about a problem and how it gets solved'. TALE-SPIN (Meehan,
1981) was one of the main systems that was developed to generate
stories based on this theory.

TALE-SPIN writes stories by simulating a world, assigning goals to
some characters and saying what happens when these goals interact
with events in the simulated world. The user must first supply much
of the information about the initial state of the world, such as the
choice of characters and the relationships between one character and
another. From then onwards the story generation is a report of the
problem solver. Accordingly, the stories TALE-SPIN produces are
essentially accounts of what happens during the course of solving
one or more problems (see figure 3 - sample output from TALE
SPIN).

Figure 3. Sample output from TALE-SPIN.

ONCE UPON A TIME GEORGE ANT LIVED NEAR A PATCH OF
GROUND. THERE WAS A NEST IN AN ASH TREE. WILMA BIRD
LIVED IN THE NEST. THERE WAS SOME WATER IN A RIVER.
WILMA KNEW THAT THE WATER WAS IN THE RIVER. GEORGE
KNEW THAT THE WATER WAS IN THE RIVER. ONE DAY
WILMA WAS VERY THIRSTY. WILMA WANTED TO GET NEAR
SOME WATER. WILMA FLEW FROM HER NEST ACROSS THE
MEADOW THROUGH A VALLEY TO THE RIVER. WILMA
DRANK THE WATER. WILMA WASN'T THIRSTY ANYMORE.

GEORGE WAS VERY THIRSTY. GEORGE WANTED TO GET
NEAR SOME WATER. GEORGE WALKED FROM HIS PATCH OF

105.

GROUND ACROSS THE MEADOW THROUGH THE VALLEY TO A
RIVER. GEORGE FELL INTO THE WATER. GEORGE WANTED TO
GET NEAR THE VALLEY. GEORGE COULDN'T GET NEAR THE
VALLEY. GEORGE WANTED TO GET NEAR THE MEADOW.
GEORGE COULDN'T GET NEAR THE MEADOW. WILMA
WANTED TO GET NEAR GEORGE. WILMA GRABBED GEORGE
WITH HER CLAW. WILMA TOOK GEORGE FROM THE RIVER
THROUGH THE VALLEY TO THE MEADOW. GEORGE WAS
DEVOTED TO WILMA. GEORGE OWED EVERYTHING TO
WILMA. WILMA LET GO OF GEORGE. GEORGE FELL TO THE
MEADOW. THE END.

The approach taken by TALE-SPIN to generate a story follows:
• Identify a CHARACTER out of a pre-defined set.
• Give that character a PROBLEM out of a pre-defined
set.
• Create a MICRO-WORLD out of a pre-defined set .
• Input the above to a problem-solving simulator.

• Either STOP or GOTO the start again.

The problem-solving simulator employed by TALE-SPIN was based
on the planning program PAM developed by Wilensky (1981) which
itself was based on Schank's Conceptual Dependency (CD) semantic
representation for natural language. However, TALE-SPIN could
only handle situations where there was only one character solving
one problem at a time (as is illustrated in the above example). It is
difficult to see how TALE-SPIN could deal with more complicated
situations without having to change the theory that the stories are
just about problem solving of characters. To do this would require the
program to have plans of its own and it would also need to plan the
story in advance based on a set of pre-defined criteria. What are these
criteria?

Beaugrande and Colby (1979) have formulated a basic set of STORY
TELLING RULES which introduce recursion, failure (in addition to
success) of the goal and multi-character situations to the scenario
above. These rules follow:

106.

(1) Identify at least one character.
(2) Create a PROBLEM STATE for that CHARACTER.
(3) Identify a GOAL STATE for that CHARACTER.
(4) Initiate a PATHWAY from the PROBLEM STATE leading
towards the GOAL STATE.
(5) Block or postpone attainment of the GOAL STATE.
(6) Mark one STATE TRANSITION as a TURNING POINT.
(7) Create a TERMINAL STATE which is clearly marked as
MATCHING or NOT MATCHING the GOAL STATE.

This basic rule set was also augmented to account for such character
roles as protagonist and antagonist, each having a state-action track.
These type of STORY-TELLING RULES allow for some means of
setting a stories initial criteria and controlling the planner/simulator
that will produce the story. Beaugrande and Colby also considered
issues concerned with the structure and 'interestingness' of a story,
based on identifying 'non-obvious' conditions which can change an
action or event into a goal state. However, a limitation with both of
these approaches is that they ignore the intentions of the writer.
Other work has continued to expand on the simulation/planning
approach developed above, notably Dehn (1981) with the AUTHOR
system which attempted to account for the authors intentionality,
and Yazdani (1983 & 1986) with the ROALD system which allowed for
more than one 'active' agent in the world of stories. These
approaches seem promising as they provide a means for extending
the capabilities of the 'bottom-up' approach.

Similar to the top· down Story Grammar technique the bottom-up AI
planner/simulator approach for story generation is very much
dependent on the power of the underlying text parser, but in this case
the parser is being used to generate rather than interpret text, and it
is more tightly bound with the whole process (ie. the planner can be a
significant part of the parsing process itself).

The story generator is an important part of the EWM as it will
provide a process for identifying the plans and goals of characters

within the story world and also a means of generating possible
stories from the initial parameters supplied by MULTISTORY. If

107.

needed, the MULTISTORY pre-writing tasks could be expanded to

provide additional character and world information required by the

story generator. Again, the story generator can be viewed as one of

the many sources of knowledge necessary in story comprehension

and in producing a story from the initial story-elements they are an

important component of the proposed EWM.

108.

6.2. The EWM Architecture

We can formalise the model of story writing proposed by Meehan
(1981) and Beaugrande and Colby (1979) in the following way:

A story is an account of goal directed behaviour of a set of
characters - their interactions with each other and with the
objects of the world.

The Story grammar (schema) approach is largely reticent about how

a schema-based, top-down understander actually gets the structure
out of the surface text. The STORY-TELLING RULES developed by
Beaugrande and Colby (1979) suggest a solution to this dilemma,
especially the noticing of value assignments (Process 4), motivational

statements (Process 5), markers of boundaries of events, actions, and
states (Process 6), and indicators of time, place, and resources
(Process 7). The planning/simulation method of story generation
developed by Meehan (1981) provides a means for identifying the
different states within the STORY-TELLING RULES (ie. the
PROBLEM STATES, GOAL STATES, STATE TRANSITIONS, etc)
and the problem-solving PATHWAYS between PROBLEM and GOAL

STATES. Also it provides a means of generating a story given an
initial set of condition statements (ie. the micro-world). Given these

different knowledge sources the following architecture is proposed
for the EWM (figure 4):

109.

Figure 4. EWM architecture

Suggestions

SIDRY SCHEMA

SIMULATED STORY STORY TELLING RULES

SIDRY
PLANNER/SIMULATOR

Parsed S Representation

EXPERT WRITING
MODFL

Input Text story)

Initial Criteria
(MULTI STORY)

The aim of the ADVISER is to determine the well·formedness (or
conversely the incompleteness) of the story and to supply an
appropriate suggestion to the writer. The strategy employed by the
ADVISER is dependent on the Tutoring Strategy employed by
MULTISTORY and is discussed elsewhere. However, the ADVISER
will need to arbitrate between the knowledge sources contained in the
Expert Writing Model (EWM) to choose the most appropriate
suggestion.

The initial story criteria will be supplied by MULTISTORY and will
be used to set-up the micro-world of the PLANNER/SIMULATOR
based on the decisions made by the writer prior to the
commencement of writing.

110.

The Input Text will be the current state of the story when the writer
asks for advice.

The Parsed Story Representation will be the output from the natural
language parser and it will be in an appropriate syntactic and
semantic representation for the EWM.

The EWM itself will have the following agents:

STORY PLANNER/SIMULATOR - the planner will determine the
actors (main character's) goals, will establish the sub-goals that will
lead to the main goal, and will match the actor's actions with the
associated plans. This will form a snap-shot of the current story and
will be the input into the STORY TELLING RULES. The simulator
will also take the established micro-world and generate a story using
the processes described above. This will produce. the SIMULATED
STORY.

SIMULATED STORY - will provide a knowledge source for giving
advice to the writer which will represent a possible version of the
story given the initial criteria. The SIMULATED STORY agent will
match the simulated story against the snap-shot produced by the
planner and will determine the current (episodic) state of the story
compared to the simulation. This will then enable the agent to select
the next event within the simulation as a suggestion for the writer.
The content of the simulated story will range from being very close to
the actual story being written to completely different. However, it
should provide a valuable additional source of ideas for the writer
(discussed later).

STORY TELLING RULES - will provide a knowledge source for
determining whether the plans and goals identified by the planner
meet the guide-lines imposed by the STORY TELLING RULES. These
rules will define a general structure for well-formed and
'interesting' narratives which will enable the placement of a

character's actions within an episodic framework. The rule sequence
will be recursive, so that it may recognise either a minimal story or

111.

only an episode in a longer story. The suggestion given by this agent
will depend on the rule that fires within the rule set (there are 7 core
rules in Beaugrande and Colby's STORY TELLING RULES) and the
instantiation of the characters PROBLEM and GOAL STATES from
the planning agent. It may be appropriate to have different sets of
STORY TELLING RULES for the different possible story types, so for
example, a particular rule set could specialise in REVENGE type
stories and another set in ADVENTURE stories (see next section).

STORY SCHEMA - the STORY TELLING RULES will provide advice
based on identified episodes within the story text. As discussed above
the STORY TELLING rules can also be used to recognise the
components of the STORY SCHEMA such as value assignments,
motivational statements, markers of boundaries of events, actions,
and states, and indicators of time, place, and resources. This
information will serve as the input to the STORY SCHEMA agent
which will be used to construct partial syntactic and semantic
structures for the story which can be used to give advice on the global
structure of the story. These suggestions will be based on the level of
incompleteness of the story as described by the syntactic and
semantic structures (ie. the non-recognition of a sub-structure
within the schema can be used to generate a suggestion for the
writer).

ADVISER - this agent simply collates the suggestions from the other
agents and passes them onto the MULTISTORY tutoring component.
It may be appropriate to prioritise the suggestions from the other
agents according to some criteria, but this is difficult to specify at
present. Also the functionality of the agent will depend to a large
extent on the tutoring strategy employed by MULTISTORY.

The architecture that has been proposed for the EWM allows for
independent cooperating knowledge sources each working on a
different representation of the text. The advantage of this
organisation are those generally associated with the modularisation
of knowledge, although a full blackboard style system (as used by

Erman & Lesser, 1980) would not be appropriate as there is direct
communication between the individual knowledge sources.

112.

It is possible that other knowledge sources would want to be included
in this architecture, such as an agent to identify affect (emotions) in
narratives such as proposed by Dyer (1983), or an agent to apply
stereotypical scripts which can be used to predict events in story
understanding as proposed by Schank and Abelson (1977). Careful
attention would be needed to ensure that additional knowledge
sources did not require changing the underlying theory of the EWM
that stipulates that a story is an account of goal directed behaviour of
a set of characters and their interactions with each other and with
the objects of the world.

113.

6.3. An Example

So far we have discussed the theoretical framework for an Expert
Writing Model (EWM) to provide appropriate plot or event/episode
based suggestions (ie. advice on the 'well-formedness' of the story) in
the MULTISTORY environment. This EWM consists of a variety of
cooperating knowledge sources consisting mainly of a top-down story
schema and a bottom-up planner/simulator with story telling rules.
An example of how these knowledge structures could be applied to a
fictional story situation will now be given.

This example will use the following components based on the above
EWM architecture (the story criteria and characterisation
information is taken directly from the MULTISTORY database):

Initial Story Criteria:
STORY SITUATION - REVENGE - 'A child often beaten by a rather
unloving dad, leaves home as soon as he can. Sometime later he
returns to his home town intending to pay his father back for his
years of suffering. But he finds the father more to be pitied than
blamed'.

STORY MAIN-CHARACTER - DYLAN - 'Male, aged 17. An orphan
brought up by mean foster parents. Like many in his position he
wants to know who his real parents are and is prepared to spend
effort locating them'.

STORY CHARACTER ATTRIBUTES - see chapter 4 for a description
of how the character attributes are selected.

Example input text (ie. the current state of the story):
'Dylan was very badly treated as a child. His step-father beat him
frequently. Dylan also had to cook all the meals and clean the house.
He promised himself that one day he would pay his father back for
his torment and he began to formulate a plan. When Dylan was 15
years old he decided to run away from home. One night he sneaked
past his drunken father and ran from the house as fast as his two
legs would carry him. For 5 years he stayed away'.

114.

Parsed representation:
We assume that the parser can produce a representation suitable for
the the following EWM agents.

STORY PLANNERlSIMULATOR:
The simulator will generate a story given the above criteria (micro
world) and any other necessary information. This will produce the
SIMULATED STORY. As this will be generated in real-time an

example cannot be given, but it will be based on the single-character
goal-driven story theory stipulated above. Using the parser output the
planner will determine the actors (main character's) goals, will
establish the sub-goals that will lead to the main goal, and will match
the actor's actions with the associated plans. This will form a snap
shot of the current story and will be the input into the STORY
TELLING RULES.

SIMULATED STORY:
This will provide a knowledge source for giving advice to the writer
which will represent a possible version of the story given the initial
criteria. Again, as this will be generated in real-time an example
cannot be given, however the use of the simulation will be very
similar to the rule-base described in chapter 4 for the simple rule
based support system component of MULTI STORY. The

SIMULATED STORY agent will match the simulated story against

the snap-shot produced by the planner and will determine the

current (episodic) state of the story compared to the simulation. This

will then enable the agent to select the next event within the
simulation as a suggestion for the writer. Using the following
example of the first few rules from the simple rule-base (chapter 4):

sug(1,['The story should be retrospective.',

'i.e. The character is looking back',

'on a past childhood.']).

sug(2,['Decide whether Jake has a mother',
'and a father, or just a father.']):-name56('Jake').

sug(3,['Describe life at home.',

'Was the character badly treated ?']):-att1(X),X>2.

115.

sug(3,['Describe life at home.',
'Was the character badly treated 1',

'There is a low health rating.',
'This could be due to a poor upbringing.']):-att1(X),x<3.

sug(4,['Describe in what ways Dylans',

'step parents are mean to him.']):-name56('Dylan').
sug(5,['Jake is very disruptive at home.',

'His father beats him to try and control him.',
'Jake has a high self-confidence rating.']):-name56('Jake'),

attlOOC){>3.
sug(5,['Jake tends to be disruptive at home.']):-name56('Jake').
sug(6,['Decide whether the father is always working',

'earning a living and running the house; or',
'has your character had to do all the house',
'chores from an early age (more likely if,
'determination is high).']) .

.... etc

The agent will be given the current state or episode from the
planning agent which it can then use to select the correct suggestion
rule from the above rule-base (for example, suggestion 5 may be
selected). There may indeed be scope for the simulator to contain a
series of different simulations based on different initial criteria and

also other hard-coded scripted templates from which it could select

the most appropriate suggestion.

STORY-TELLING RULES:
The suggestion given by this agent will depend on the rule that fires

within the rule set and the instantiation of the characters PROBLEM
and GOAL STATES from the planning agent. Given the above story
criteria and the expected output from the planning agent we could

expect the STORY-TELLING RULES to generate the following
episodic information:

116.

EPISODE 1:

MAIN CHARACTERS: DYLAN, STEP-FATIIER

PROBLEM: BAD TREATMENT
GOAL: FORMULATE-PLAN

(1) STATE (DYLAN, CHILD)
(2) STATE (DYLAN, BADLY-TREATED)
(3) STATE (BEATEN-BY STEP-FATIIER, DYLAN)
(4) STATE (DYLAN, DOES-ALL-HOUSEWORK)
(5) ACTION (PROMISE, DYLAN, REVENGE) ~
(6) STATE (DYLAN, FORMULATE-PLAN) ~

EPISODE 2:

MAIN CHARACTERS: DYLAN, STEP-FA TIIER

PROBLEM: CARRY -OUT PLAN
GOAL: COMPLETE PLAN

(7) ACTION (DYLAN, GETTING OLDER) ~_===Ena=b::;le~1 r-,
(8) STATE(DYLAN, 15 YEARS OLD) Enable
(9) ACTION (DECIDE, DYLAN, RUN-AWA y) ..;:~t=====::::;;:En:;ab~le:::;'1
(10) STATE (GET-DRUNK, STEPFATHER) ,
(11) ACTION (RUN-AWAY, DYLAN, HOME) -:! ... !====E;;gna:;bl;:;e:::!,1
(12) STATE (DYLAN, LEFrHOME) _-----'-PU.:::11>O=se::....l1

The first operation which should be performed is to divide the story

into EPISODES by noticing when the set of story-telling rules had run
one cycle, ego from a problem state to a turning point followed by
some terminal state. The above text has 2 episodes: an initial scene
setting episode, and a problem to goal sequence with a leaving-home

problem. There are clear MOTIVATIONAL STATEMENTS (as

would be expected in a revenge story) with the bad treatment of Dylan
motivating his desire for revenge. The agent will now be aware that 2

episodes have occurred in the story so far and that there is an

unresolved goal state which is to carry out the plan of revenge (in the
second episode). The agent will now be in a position to provide a

suggestion based on the above extrapolated episodic structure, or
indeed based on the lack of a proper causal link between identified
states and actions within the structure.

STORY SCHEMA:
The noticing of value assignments, motivational statements,
markers of boundaries of events, actions, and states, and indicators

117.

of time, place, and resources by the STORY TELLING RULES will
provide a structure for the STORY SCHEMA. Given the example
story texts and the episodic units derived above, the following
syntactic and semantic structures can be built from the schema rules
(the leaf-node numbers refer to the events identified by the STORY
TELLING-RULES):

Syntactic structure of the story:

STORY

/"'-SErTr EPlf~
(1) EVFNf REA~

Lf~ wriRNAL ~
I I RESPONSE RESPONSE
(~) () (4) I I

(!) AniMPr
~

PlAN APPU

(t PREA C:::::::AI;;~O:N-:CO;::;;;:N~S~~·~'
S L (11) REA~N EVENT

(~O) ~VERT
RES7NSE RESrNSE

(1) (12)

Semantic structure of the story:

AND

(~TE
./

CAUSE MCJTIVATE

/1\.
(2) (3) (4) (r-x

(6) AllDW

~~A~
, , (0) ,. "" ,/., ,17" CAUSE

118.

The semantic structure appears to add little extra information to the
syntactic tree, this is probably due to the fact that it is a simple re
write from the syntactic representation. From its global perspective of
the story, the schema picks out the fact that there is very little
'setting' to the story (just one statement), also that there is a planning
cycle in the story with associated pre-events and consequences. The
schema was unable to fill the slot for the character's 'internal
response' to the fact that he ran away from home. This could provide
a valuable clue to selecting an appropriate suggestion for the writer.
Both trees have a non-terminal node indicating that the story is
unfinished (ie. a planning sequence is not terminated), and this will
be where the remaining story structures will be built.

119.

6.4. Summary

This chapter has provided an overview of an Expert Writing Model
(EWM) based on a Top-down Story Grammar, a Bottom-up AI
planner/simulator, and an Adviser. The structure of each of these

components has been described followed by an example of how they
could be applyed to a story in the context of the MULTISTORY
system. The EWM does admittedly have some drawbacks, most

noticeably the fact that it uses a fairly simple model for the type of
stories it will recognise, ie: non-complex, single character/goal
stories. However, it does provide a reasonably flexible architecture for
adding additional knowledge sources (agents) to the EWM.

Chapter 7 will discuss the framework in which the the EWM can be
placed in relation to other writing support environments.

120.

Chapter 7. THEFRAMEWORKFORANEXPERT
WRITING MODEL

The scope of the Expert Writing Model (EWM) defined in the previous
chapter is concerned with the domain knowledge and heuristics
necessary to provide appropriate plot or event/episode based
suggestions (ie. advice on the 'well-formedness' of the story) in a
story compositional environment. It is not concerned with modelling
the expertise for other writing activities or functions (such as correct
grammar, writing style, etc) which is adequately covered elsewhere.
Neither is it concerned with the mechanics of the underlying parser.
It is also assumed that the natural language processing problems
can be solved, including the analysis of characters plans, goals,
motives, emotions, etc.

As discussed in previous chapters, the possible scope of an Expert
Writing Model is very large and this thesis has concentrated on a
distinct subset of the whole. Other work, particularly by Sharples et
al (1988 & 1990) on the Writer's Assistant project addresses many of
the cognitive issues involved when people are creating complex
documents. In this project a software tool known as the Writer's
Assistant was developed which is based on a cognitive framework for
writing. This chapter will discuss the relationship between the
Writer's Assistant and the Expert Writing Model and will show that
the Expert Writing Model can fit cleanly into the architecture of the
Writer's Assistant.

The Writer's Assistant aims to assist the writer throughout the
writing process, from the generation and capture of ideas to the
production of a connected piece of prose, combining the facilities of a
text editor, an 'outliner', an 'ideas processor', and a 'structure
editor'. The system will offer the writer three separate, but mutually
consistent views of the emerging text, in the form of an ideas net, a
string of words and a layout. The writer can move between them all
at will and, by altering one view, know that the others will remain in
step. Chapter 2 discussed the range of composition support systems,
including the Writer's Assistant.

121.

The purpose of the Writer's Assistant is: first, to show the writer the
structure of a text and its underlying ideas; second, to allow the
writer to create and manipulate both ideas and text, moving amongst
different writing strategies; and third, to allow the writer to specify
constraints on text. As the text is created the system should attempt
to satisfy the constraints and, where it is unable to do so, should
present the constraint conflict to the writer.

A simple example of a constraint might be a rule within a sentence
object to notify the user of repeated adjacent words. For example
(O'Malley & Sharples, 1986):

?word1 "word1 -> tell_user

The '?word1' matches a single word in the sentence and '''word1'
specifies the same adjacent word. When the pattern occurs the
'tell_user' procedure is fired.

Constraint satisfaction is carried out whenever an operation is
performed on a view. Some constraints, such as those involving
formatting, can be satisfied by the system without involving the
writer. Others, such as resource violations (eg. a word cannot be
found in the dictionary), or attribute violations (eg. a section contains
too many words) do pose the additional problem of deciding whether
to interrupt the writer or to automatically resolve the problem. This
falls into the domain of the tutoring strategy as discussed in chapter
1 (Intelligent Computer Assisted Instruction).

The constraint handling employed by the Writer's Assistant
deliberately concentrates on the surface features of the different
textual views. However, O'Malley & Sharples do identify the need to
be able to take the linear stream of text and itemise it to represent the
underlying meaning (ie. to get below the surface features) but they do
not say how this can be done. I propose that the Expert Writing Model
described in the previous chapter can provide a means for
representing and managing the complex constraints involved with
the plot and episodic structure within the Writer's Assistant, and it

122.

can also provide a means of representing the underlying structure of
the text from a story telling point of view.

This means that the type of support offered by the Expert Writing
Model for story composition could be integrated with the Writer's
Assistant through the use of constraint satisfaction. Also the deep
level knowledge structures that are extracted by the Expert Writing
Model could be used to identify 'chunks' within the text (eg. episodes,
'ideas') and could also assist the Writer's Assistant in switching
between the different views of the text.

The mechanisms employed by the Writer's Assistant to switch
between the linear view and the network view are based on applying
heuristics to the surface structures within the text (eg. footnotes). It
is feasible that the Expert Writing Model would be able to provide a
more accurate networked view based on the underlying episodic
structure of the text. The episodic framework of a story could then be
displayed to the writer as an additional support feature. The
suggestions provided by the Expert Writing Model would be handled
through the constraint satisfaction component of the Writer's
Assistant employing a suitable tutoring/interruption strategy.

In summary, the Expert Writing Model appears to be fully
compatible with the architecture of the Writer's Assistant. The
deeper level knowledge structures of the Expert Writing Model could
be made available to the Writer's assistant through the use of
constraint satisfaction, and it could also provide a more powerful
mechanism for moving between the different views of the text. In
return, the Writer's Assistant would provide the story writer with a
powerful environment for all stages throughout the writing process,
from the generation and capture of ideas through to the production of
a finished story.

In conclusion, this thesis has proposed that inadequate attention has
been paid to supporting the writing process, particularly in providing
plot-level support for story composition. A case has been made for

developing such systems and an experimental writing support
system has been described (MULTISTORY). From this work an

123.

initial definition for an Expert Writing Model (EWM) is given, where
the EWM is the domain knowledge that describes 'story structure' in
terms of episodes in a story and the character's plans and goals. Plot
level support can then be given in terms of this domain knowledge.
Finally the EWM is put in context of a Writer's Assistant (Sharples
et aI, 1988 and 1990) which is derived from a cognitive model of the
writing process.

The main achievement of this research is a definition of the domain
knowledge and heuristics necessary to provide appropriate plot or
event/episode based advice for a writing support environment. This is
based on a rigourous investigation of the fields or"°Intelligent
Computer Assisted Instruction (ICAD, Composition Support
Systems, and the opportunities afforded by various A.I. techniques. A
major part of this work has been the development of an experimental

system which formed the basis for the definition of the Expert
Writing Model itself.

124.

REFERENCES

1. Alderson G & DeWolfM (1985), 'Guide to Effective Screen design'.

Computers in the Curriculum.

2.Anderson,J. R, Boyle,C. F & Reiser,B. J (1985), 'Intelligent
Tutoring Systems'. Science vol 228, No.4698.

3. Anderson,J. R, Boyle,C. F & Yost,G (1985), 'The geometry tutor',

Proc IJCAI, 1985.

4. Barr,A & Clancey,W. J (1982) 'Application-oriented AI research:
Education', in 'The Handbook of Artificial Intelligence', Vol II by

Barr,A & Feigenbaum,E.A (eds). Pitman.

5. Bates,M and Wilson K (1982) 'ILIAD: Interactive Language
Instruction Assistance for the Deaf', (BBN Report No.4 771),
Cambridge Ma: Bolt Beranek and Newman Inc.

6. Beaugrande R & Colby B(1979) 'Narrative models of action and

interaction', Cognitive Science 3.

7. Bereiter, C & Scardamalia M (1982) 'From Conversation to
Composition: the Role of Instruction in a Development Process' in
'Advances in Instructional Psychology', vol 2, Glaser R (Ed),

Lawrence Erlbaum Associates.

8. Black J B & Wilensky (1979) 'An Evaluation of Story Grammars',

Cognitive Science, vol 3.

9. Bolter, J D & Joyce M (1987) 'Hypertext and Creative Writing',
Hypertext '87.

10. Booth A W (1983) 'The resolution of ambiguities and the correction
of errors in the automatic transcription of palantype', PhD Thesis,

Leicester Polytechnic.

125.

11. Brecht B & Jones M (1988), 'Student Models: the genetic graph

approach', IJMMS, Vol 28, No 5.

12. Brown,J. S & Burton,R (1975) 'Multiple representations of
knowledge for tutorial reasoning' in 'Representation and
Understanding' by Bobrow,D & Collins,A, (eds).

13. Brown,J. S (1977) 'Uses of artificial intelligence and advanced

computer technology in education' in 'Computer & Communication:
Implications for Education', Academic Press.

14. Brown,J. S & Burton,R. R (1978) 'Diagnostic models for
procedural bugs in basic mathematical skills'. Cognitive Science, 2.

15. Brown,J. S & Burton,R. R (1982) 'An investigation of computer
coaching for informal learning activities' in 'Intelligent Tutoring

Systems' by Sleeman and Brown (eds). Academic Press.

16. Bruce, B (1986). 'Information Technologies and Written

Expression', Report for the Centre for Educational Research and
Innovation.

17. Bumbaca F (1988), 'Intelligent computer assisted instruction: a
theoretical framework', IJMMS, Vol 29, No 3.

18. Burns, H L & Culp G H (1980) 'Stimulating Invention in English

Composition through Computer Assisted Instruction', Educational

Technology August 1980.

19. Burton,R (1976) 'Semantic grammar'. PhD Thesis. University of
California, Irvine.

20. Burton,R. R (1982) 'Diagnosing bugs in a simple procedural skill'

in 'Intelligent Tutoring Systems' by Sleeman,D & Brown,J. S (eds),

Academic Press.

21. Candy,L. (1983) 'A project which investigates using a computer

in English language teaching'. CAL News vo!. 23.

126.

22. Candy,L and Schoenfeld,D. (1983) The source of'storymaster'.
Wreake Valley College, Syston, Leicester.

23. Candy,L. (1985) 'The computer and the individual child: an
investigation by case study'. HCIRU internal report no.6.

24. Candy, L (1985) 'Innovation with Microcomputers: A Strategy for

School Based Action in English', MPhil thesis, Leicester Polytechnic
(CNAA), 1985.

25. Carbonnell,J (1970) 'AI in CAI: An artificial-intelligence
approach to computer assisted instruction' in IEEE Trans. on Man

Machine Systems, vol MMS 11, No.4.

26. Card, S, Moran T, & Newell A (1980), 'Computer Text-Editing: an

Information-processing Analysis of a Routine Cognitive Skill',
Cognitive Psychology 12, January 1980 32-74.

27. Clancey,W. J (1974) 'Tutoring rules for guiding a case method
dialogue'. IJMMS 11.

28. Clancey,W. J & Letsinger,R (1981) 'NEOMYCIN: reconfiguring a
rule based expert system for application to teaching'. 7th IJCAI 1981.

29. Clancey,W. J (1987) 'Knowledge Based Tutoring: the Guidon
program', the MIT press.

30. Clocksin,W.F and Mellish,C.S. (1981) 'Programming in Prolog'.
Springer-Verlag.

31. Colbourn,M. J (1984) 'Expert systems in education'. Canadian

Info.Proc.Soc. 'Images of fear, images of hope: expert systems in
education'. Calgary.

32. Cummings, B (1988), 'Using computers to teach English

composition: what are the results ?', Proc. 5th Int. Conf on
Technology & Education, Edinburgh.

127.

33. Daiute, C A (1983) 'The Computer as Stylus and Audience',

College Composition and Communication Vol 34, No 2, May 1983.

34. Daiute, C A (1985) 'Writing and Computers', Addison

Wesley,1985.

35. Dehn N (1981) 'Story generation after TALE-SPIN', International

Joint Conference on Artificial Intelligence, 8.

36. DeJong, G (1979) 'Prediction and Substitution: A New Approach to

Natural Language Processing', Cognitive Science, 3.

37. Dreizin F et al (1978) 'Towards a computerised generation of

sacred legends " technical report no.l, Focus Project.

38. Dyer,M.G. (1981) 'The role of TAUs in narratives' in Proc. 3rd.
Annual Conf. of Cognitive Science Society.

39. Dyer M (1983) 'The role of affect in narratives', Cognitive Science,

1983.

40. Edmonds,E.A and Candy,L. (1982) 'A study in the use of a

computer as an aid to English teaching'. Int.J.Man-Machine

Studies, 16.

41. Edmonds, E. A (1982) 'The man-computer interface: a note on

concepts and design', IJMMS, 16.

42. Ennals, R (1983) 'Beginning Micro-Prolog'. Ellis-Horwood.

43. Erman L D & Lesser V R (1980) 'The HEARSAY-II speech

understanding system: A tutorial', in Lea W (Ed) 'Trends in speech

recognition', Prentice-Hall.

44. Fillmore, C (1968), 'The Case for Case', in Universals in

Linguistic Theory, E Bach and R T Harms (Eds), Holt, New York.

128.

45. Flower, L S & Hayes J R (1979) 'A Process Model of Composition',
ERIC Report ED 218 661.

46. Ford, L (1984), 'Intelligent Computer Aided Instruction' in

'Artificial Intelligence, Human Effects' by Yadzani,M &
Narayanan,N (eds), Ellis Horwood.

47. Ford, L (1987) 'Teaching strategies and tactics in intelligent
computer aided instruction', Artificial Intelligence Review,l.

48. Ford, L & Yazdani M (1988) 'Tutoring systems: the state-of-the-art
in Great Britain', Expert Systems, November 1988, Vo15, No 4.

49. Frase, L T (1983) 'The Unix Writer's Workbench Software:
Philosophy', The Bell System Technical Journal, Vol 62, No 6.

50. Frisch A M & Perlis D (1981) 'A Re-Evaluation of Story
Grammars', Cognitive Science, 5.

51. Gardner,M.R. (1984) 'The use of Prolog in Computer Aided

Learning'. BSc(Hons) final year project report, Leicester Polytechnic.

52. Gardner M R, Edmonds E A & Candy L (1985), 'A system to
stimulate and advise childrens' writing', MEP project proposal,
HCIRU, Leicester Polytechnic.

53. Goldstein,I.P & Carr,B (1977) 'The computer as coach: an athletic

paradigm for intellectual education' in Proc.An.Conf.Assoc. for
Comp.Mach. , Seattle.

54. Goldstein,1. P (1982) 'The genetic graph: a representation for the

evolution of procedural knowledge' in 'Intelligent Tutoring Systems'

by Sleeman,D and Brown,J. S (eds), Academic Press.

55. Granny's Garden. 4MAT Educational Software (1984).

129.

56. Grignetti,M. C, Hausmann,G & Gould,L (1975) 'An intelligent
on-line assistant and tutor - NLS-SCHOLAR'. Proc.Nat.Comp.Conf.
San Diego.

57. Halasz, F G, Moran T P & Trigg R H (1987) 'Notecards in a
nutshell', Proc.ACM Conf. on Human Factors in Computer Systems,
Toronto, April 1987.

58. Hayes-Roth,F, Waterman,D. A & Lenat,D. B (1983) (eds) 'Building
expert systems'. Addison-Wesley.

59. Heidorn, G E (1975) 'Augmented phrase structure grammars', in
Theoretical Issues in Natural Language Processing, Nash Webber B
& Schank R C (eds), Assoc Comp Linguistics.

60. Heidorn, G E, Jenson K, Miller L A, Byrd R J & Chodorow M S
(1982) 'The EPISTLE text-critiquing system', IBM System Journal,
Vol21, No 3.

61. Hertz, R M (1983), 'Problems of Computer-Assisted Instruction in
Composition', The Computing Teacher, September 1983.

62. Hinde, C (1986) 'Predicate Calculus Prolog Parser',
Loughborough University of Technology.

63. Howell G (1989) 'IF: journal of interactive fiction', Herriot-Watt
University.

64. Jansen, C J, Looijmans P J, Pilot A A, Schrauwen D P &

Steehouder M F (1986), 'ALEXIS: Computer-assisted feedback on
written assignments', Proc. of EURIT 86, First European Conference
on Education and Information Technology.

65. Jensen, K & Heidorn G E (1982) 'The Fitted Parse: 100% Parsing
Capability in a Syntactic Grammar of English', IBM Research
Report RC9729, Yorktown Heights Research Centre.

130.

66. Johns, T (1983) 'Generating Alternatives', in Exploring English
with Micro-computers, Chandler D (Ed), Council for Educational
Technology, London.

67. Johnson,W. L & Soloway,E (1984) 'Intention-based diagnosis of
programming errors'. Proc.Am.Assoc.A.1.

68. Langley,P & Ohlsson,S (1984) 'Automated Cognitive Modelling'.
Proc. AAAI 84.

69. Lebowitz, M (1983) 'Memory Based Parsing', Artificial
Intelligence, 21.

70. Lehnert, W G (1983) 'BORIS - An Experiment in In-Depth

Understanding of Narratives', Artificial Intelligence, 20.

71. Levin, J A, Boruta M J & Vasconcellos (1983) 'Microcomputer
based Environments for Writing' in Classroom Computers and
Cognitive Science by Wilkinson A C (ed), Academic Press.

72. Levy,A. H (1983), 'Experiences with PLATO in medical education'
in 'Meeting the challenge: Infomatics and Medical Education' by
Page's,J. C, Levy,A. H, Gre'my,F & Anderson,J (eds). EIsevier

Science.

73. MacDonald, N H (1983) 'The Unix Writer's Workbench Software:

Rationale and Design', The Bell System Technical Journal, Vol 62,

No 6.

74. McAleese R (1989) 'Hypertext: theory into practice', Intellect Ltd.

75. Mandler J M & Johnson N S (1977) 'Remembrance of things

parsed: Story structure and recall', Cognitive Psychology.

76. Marcus, S (1988), 'Designing word processor based writing

activities', Proc. 5th Int. Conf. on Technology & Education,
Edinburgh.

13l.

77. Meehan J (1976) 'The metanovel: writing stories by computer',

PhD thesis, Yale University.

78. Meehan J R (1981) 'TALE-SPIN', in 'Inside Computer
Understanding', by R C Schank & C K Riesbeck (Eds), Erlbaum.

79. Mendelson E (1964) 'Introduction to Mathematical Logic', Van

Nostrand Reinhold.

80. Miller,L et al. (1981) 'Text-critiquing with the Epistle system: an
authors aid to better syntax' in AFIPS Conf. Proc., Vol 50, Arlington,
Va,649-655.

81. Minsky,M (1975) 'A framework for representing knowledge' in
'The psychology of computer vision' by Winston,P (ed). McGraw-Hill.

82. Moore, J. L & Sleeman D (1988) 'Enhancing PIXIE's tutoring

capabilities', IJMMS, Vol 28, No 6.

83. Moore R (1987) 'The SRI Core Language Engine Project:
Overview', in Natural Language Processing, Unification and

Grammar Formalisms, Proc of Alvey/SERC sponsored workshop,
University of Stirling, 1987.

84. Newman, R (1989) 'Writer's Wordbench', Personal Computer
World, April 1989.

85. O'MaUey C & Sharples M (1986) 'Tools for management and
support of multiple constraints in a writer's assistant', HCI 86.

86. O'Shea,T (1982) 'A self-improving quadratic tutor' in 'Intelligent

Tutoring Systems' by Sleeman and Brown (eds), Academic Press.

87. O'Shea,T & Self,J (1983), 'Learning and teaching with
computers'. Harvester.

88. Papert, S (1980) 'Mindstorms: Children, computers and powerful
ideas', Harvester Press.

132.

89. Pemberton, I (1988) 'Using HyperCard to test the design of the

Writer's Assistant', Cognitive Science Research Paper, School of
Cognitive and Computing Sciences, University of Sussex, September

1988.

90. Peters en, B, Selfe C, & Wahlstrom B (1984) 'Computer-Assisted
Instruction and the Writing Process: Questions for Research and
Evaluation', College Composition and Communication, Vol 35, No 1.

91. Quillian,R (1968) 'Semantic Memory' in 'Semantic information

processing' by Minsky,M (ed), MIT Press.

92. Quinlan J R (1979) 'Discovering rules by induction from large
collections of examples', in D Michie (ed) 'Expert systems in the
micro-electronic age', Edinburgh University Press.

93. Rada, R & Keith B (1988) 'Collaborative writing of text and
hypertext', Project MUCH, Report CS-MUCH-3-88, Department of
Computer Science, University of Liverpool.

94. Rada, R (1988) 'Writing and reading hypertext: an overview',

Project MUCH, Report CS-MUCH-2-88, Department of Computer

Science, University of Liverpool.

95. Rada, R (1988) 'Guidelines for multiple users creating hypertext:
SQL and HyperCard experiments', Project MUCH, Report CS

MUCH-1-88, Department of Computer Science, University of

Liverpool.

96. Rada R et al (1989) 'MUCH project: multiple users creating

hyperdocuments', Liverpool University_

97. Raphael,B (1968) 'A computer program for semantic information
retrieval' in 'Semantic information processing' by Minsky,M (ed),

MIT Press.

98. Readability Plus. Scandinavian PC Systems.

133.

99. Reiser, B. J,Anderson J. Rand Farrell (1985) 'Dynamic student
modelling in an intelligent tutor for Lisp programming', IJCAI '85.

100. Rich,E (1983) 'Part II - Knowledge representation in artificial
intelligence' in 'Artificial Intelligence'. McGraw-Hill.

101. Rodrigues, R J & Rodrigues D W (1984) 'Computer-based

Invention: Its Place and Potential' College Composition and
Communication, Vo135, No 1, Feb 1984.

102. Rumelhart,D.E. (1975) 'Notes on a schema for stories' in
Representation and Understanding, Studies in Cognitive Science, D
G Bobrow and A Collins (Eds), Academic Press.

103. Sacerdoti, (1977) 'A structure for plans and behaviour' in 'The
Artificial Intelligence Series. Elsevier North-Holland.

104. Schank,R. (1972) 'Conceptual Dependency: A theory of Natural

Language Understanding'. Cognitive Psychology, 3, 552-631.

105. Schank, R C, Goldman N, Rieger C J, & Riesbeck C (1973)
'MARGIE: Memory Analysis, Response Generation and Inference in

English', Proc. 3rd Int.Joint. Conf. on Artificial Intelligence.

106. Schank,R. C & Rieger,C. J (1974) 'Inference and computer

understanding of Natural Language'. Artificial Intelligence 5.

107. Schank,R. C & Abelson,R. P (1977) 'Scripts, plans, goals and
understanding'. Erlbaum.

108. Schank, R C & Riesbeck C K (1981) 'Inside Computer
Understanding', Lawrence Erlbaum Associates.

109. Schwartz, H (1982) 'A computer program for invention and

feedback', Conf.on College Composition and Communication, San
Fransisco, March 1982.

134.

110. Self,J (1985) 'A perspective on Intelligent Computer Assisted
Learning'. Journal of Computer Assisted Learning.

111. Self, J (1988) 'Knowledge, belief and user modelling', in

Artificial Intelligence Ill: methodology, systems, applications. T
O'shea & V Sgurev (Eds), North-Holland.

112. SERClDoI, (1983), 'Intelligent systems: a brief overview', for

SERC study of Architectures ofIKBS Workshop 3,16-17 March 1983.

113. Sharples, M (1985). 'Cognition, Computers and Creative
Writing', Ellis Horwood.

114. Sharples, M & O'Malley C (1986) 'Tools for management and
support of multiple constraints in a writer's assistant', HCI 'S6.

115. Sharples, M, Goodlet J & Pemberton L (1988) 'Developing a
writer's assistant', draft of paper for Proc. 1st Conf. on Computers
and Writing, Sheffield.

116. Sharples M, Pemberton L & Goodlet J (1990) 'Writer's Assistant

Project - Research Aims', University of Sussex, School of Cognitive
and Computing Sciences, internal report.

117. Shortliffe,E.H (1976) 'Computer based medical consultations:

MYCIN', Elsevier.

118. Sleeman,D & Smith,M. J (1981) 'Modelling student's problem
solving', Artificial Intelligence, 16.

119. Sleeman,D & Brown, J.S (1982), 'Intelligent Tutoring Systems'.

Academic Press.

120. Smith, J B, Weiss S F & Ferguson G J (1988), 'A hypertext

writing environment and its cognitive basis', Hypertext '87, March

1988.

135.

121. Soloway,E.M, Woolf,B, Rubin,E & Barth,P (1981) 'MENO-II: an

intelligent tutoring system for novice programmers'. 7th IJCAI 81.

122. Stein N L & Glenn C G (1979) 'An analysis of story
comprehension in elementary school children', in 'New directions in
discourse processing', R Freedle (Ed), Norwood.

123. Stevens,A.L & Collins (1977) 'The goal structure of a socratic
tutor'. Proc. 1977 An.Conf.Assoc for Comp.Mach, Seattle.

124. Thorndyke P W (1977) 'Cognitive structures in comprehension
and memory of narrative discourse', Cognitive Psychology.

125. Valley, K (1989) 'Realising the potential of expert system shells in
education', DAI Research Paper No. 432, Dept of AI, Univ of
Edinburgh, 1989.

126. Van der Geest, T (1986) 'Teaching writing skills with computers:
the development of a writing aid for secondary education', Proc. of
EURIT 86, First European Conference on Education and Information
Technology.

127. VanLehn,K (1983) 'Human procedural skill acquisition: theory,

model and psychological validation'. Proc.Am.Assoc.A.I, Los Altos,
Ca.

128. VanLehn, K & Soloway E (1985) 'AI and education'. Conference

Tutorial No.10, IJCAI 85.

129. VanLehn, K (1987) 'Learning one sub-procedure per lesson',

Artificial Intelligence, 31.

130. Walsh, T (1988) 'PLATO: Predicate Logic Advisory TOol', Proc.
5th Int. Conf. on Technology and Education, Volume 1.

131. Waltz, D L (1978) 'An English Language Question Answering
System for a Large Relational Database', Communications of ACM
21.

136.

132. Watson, D (1986) 'Generating Language Learning with CAL',

Comput. Educ., Vo110, No 1, ppI81-187.

133. Wexler,J.D (1970), 'Information networks in generative
computer-assisted instruction'. IEEE Transactions on Man-Machine
Systems, vol MMS 11, no.4.

134. Wilensky, R (1981), 'PAM', in Inside Computer Understanding,
R C Schank and C K Riesbeck (Eds), Erlbaum.

135. Wilks, Y (1975) 'Preference Semantics', in Formal Semantics of
Natural Language, E L Keenan (Ed), Cambridge University Press.

136. Wilson, N (1986) 'Designing user interfaces for educational
software', in Proc. EURIT86 'Developments in educational software
and course-ware', Moonen J & Plomp T (Eds), Pergamon Press.

137. Woodruff, E, Bereiter C & Scardamalia M (1981) 'On the road to

Computer Assisted Composition', Journal of Educational Technology
Systems, 10, 2.

138. Wordbench (1989) Addison-Wesley software.

139. Yankelovich, N & Meyrowitz N (1985) 'Reading and Writing the
Electronic Book' Computer, Vol 18 PtlO.

140. Yazdani M (1983) 'Generating events in a fictional world of

stories', Research Report R-113, Department of Computer Science,
University of Edinburgh.

141. Yazdani (1986) 'A Process-based Model of Text Generation', 3rd
International Language Generation Workshop, Nijmegan, The
Netherlands, August.

142. Yazdani, M (1986) 'Intelligent tutoring systems survey', in
Artificial Intelligence Review,I.

137.

143. Yazdani M (1988) 'Tutoring systems: the state-of-the-art in Great
Britain', Expert Systems, November 1988, Vol 5, No 4.

138.

APPENDIXl.

Predicate Calculus Prolog Listings and Sample Output.

OPS.PRO
/* OPS
/* ---

*/
*/

/* This file defines the type of all */

/* operators used during the translation. */

/* --* /

?-op{255,xfx,:).

?-op{225,xfx,<=>).

?-op{225,xfx,=>).

?-op{200,xfY,&).

/* ?-op{200,xfy,u). */

/* ?-op{200,fx,$). */

/* ?-op{30,fx,-). */

/* ?-op{15,xfx,") */

OPSl.PRO
/* This file defines the type of all */

/* operators used during the translation. */

/*--*/

?-op{255,xfx,':').

?-op{225,xfx,' <=>').

?-op{225,xfx,'=>').

?-op{200,xfy,'@').

/* ?-op{200,xfy,'u'). */

/* ?-op{200,fx,'$'). */
/* ?-op{30,fx,'-'). */
/* ?-op{15,xfx,'''') */

139.

PRETHING.PRO
/* PRE_THING

/*

*/
*/

pre_thing(Fname,[[Xll Args2ll:
var(X),
floating_ vocab(X),

Fun= .. [Fname I [XI Args2ll,

Fun.

pre_thing(Fname,[[X I Tll Args2ll:
not(var(X»,

Fun= .. [Fname I [X I Args2ll,

Fun.

pre_thing(Fname,[[X I Tll Args2ll:
not(var(X»,

pre_thing(Fname,[T I Args2D.

CHECKSIM.PRO
/* CHECKSIM

/* */
*/

/* checks whether the two arguments are */

/* subsets of each other. */

/*--*/

checksim(P ,P):

!.

checksim(P,Q):
(atomic(P),

symbol(Q»,

!.

checksim([Pl,Q):

member(P,Q),

!.

140.

checksim(P ,[Q)):
member(Q,P),

!.

checksim(P,Q):-

P= .. [PfI Pargs],

Q= .. [PfI Qargs],

checksimargs(Pargs,Qargs).

checksimargs([],[]):

!.

checksimargs([Parg I Pargs],[Qarg I Qargs]):

checksim(Parg,Qarg),

checksimargs(Pargs,Qargs).

member(X,[]):-

!,

fail.

member(X,[X I Y]):

!.

member(X,[Y I Z]):

member(X,Z).

CHECKSM1.PRO

1* CHECKSIM

/*

*1
*1

1* checks whether the two arguments are *1
1* subsets of each other. *1

1*---------------·--------------------------------*1

checksim(P,P):

!.

141.

checksim(P ,Q):
(atomic(P),

symbol(Q)),

!.

checksim([P] ,Q):

member(P,Q),

!.

checksim(P ,[Q]):

member(Q,P),

!.

checksim(P ,Q):-

P= .. [PfI Pargs],

Q= .. [Pfl Qargs],

checksimargs(Pargs,Qargs).

checksimargs([],[]):

!.

checksimargs([Parg I Pargs],[Qarg I Qargs]):
checksim(Parg,Qarg),

checksimargs(Pargs,Qargs).

APPEND.PRO
append([],L,L).

append([X I L1],L2,[X I L3]):-append(L1,L2,L3).

BEGINSV.PRO
beginsv(X):

name(X,Listl),

vowel(V),

name(V,Vint),

append(Vint,Z,List1) .
. vowel(a).

142.

vowel(e).

vowel(i).

vowel(o).

vowel(u).

aIUe,j).

alOe,I).

al(H,H).

TIDY.PRO
/* TIDY

/* ----

tidy([]) :-

!.
tidy([X I YJ):-

*/

*/

assert(floating_ vocab(X»,

tidyCY).

DCGS.PRO
/* Reading in Prolog grammmar rules

Main predicates provided:

g X - (operator) Carries out a 'consult' of a file

re..gX

that may contain grammar rules, converting any

grammar rules into normal clauses

- As above, but with a 'reconsult' instead of

a 'consult'

It is assumed that grammar rules use the infix operator --> to

separate the LHS from the RHS. It is also assumed that calls to

predicates that are not true 'non-terminals' are enclosed within

curly brackets L .. l. Conjunctions and disjunctions within curly

brackets must be signalled by an extra level of brackets,

ego {(a,b)}. Also, spaces must separate curly brackets from

143.

symbol characters such as ':.
These last two details differ from the standard syntax of
grammar rules used in Dec10 Prolog.

*/

/* Consult a file, converting grammar rules as necessary */

?- op(150,fx,g).

?- op(150,fx,re~).

?- op(251,fx,O.
?- op(250,xf,}).
?- op(255,xfx,--».

gX :
'$gread'(+,X).

re~ X :
retractall('$done'U),
'$gread'(-,X),

retractall('$done'U).

'$gread'(S,X) :-
seeing(F), see(X),

repeat, read(T),

'$gproc'(S,T), !, seen,

write('Read from '), write(X),
nI, see(F).

'$gproc'C,end_oCfile) :- !.
'$gproc'(S,A-->B) :- !, '$expand'(A,B,A1,B1), !, '$gass'(S,(A1:-Bl)),

fail.
'$gproc'c,?-Z) :- !, call(Z), !, fail.
'$gproc'(S,L) :- '$gass'(S,L), fail.

'$gass'(+,L) :- !, assertz(L).

'$gass'(-,(A:-B)) :- !, '$hddo'(A), assertz(A:-B).

144.

'$gass'(-,A) :- '$hddo'(A), assertz(A).

'$hddo'(A) :- '$done'(A), !.
'$hddo'(A) :- functor(A,F,N),

functor(D,F,N),

asserta('$done'(D»,
retractall(D).

1* Expand a grammar rule *1

'$expand'(PO,QO,P,Q) :-
'$dcglhs'(PO,SO,S,P), '$dcgrhs'(QO,SO,S,Ql),
'$flatconj'(Q1,Q).

'$dcglhs'«NT,Ts),SO,S,P) :- !,
nonvar(NT),
'$islist'(Ts),

'$tag'(NT,SO,S1,P),
'$append'(Ts,SO,S1).

'$dcglhs'(NT,SO,S,P) :

nonvar(NT),
'$tag'(NT,SO,S,P).

'$dcgrhs'«X1,X2),SO,S,P) :- !,
'$dcgrhs'(X1,SO,S1,P1),
'$dcgrhs'(X2,S1,S,P2),

'$and'(P1,P2,P).

'$dcgrhs'«X1;X2),SO,S,(P1;P2» :- !,
'$dcgor'(X1,SO,S,P1),
'$dcgor'(X2,SO,S,P2).

'$dcgrhs'({P),S,S,P) :- !.
'$dcgrhs'(!,S,S,!) :- !.
'$dcgrhs'(Ts,SO,S,true) :-

'$islist'(Ts), !,

'$append'(Ts,S,SO).

'$dcgrhs'(X,SO,S,P) :- '$tag'(X,SO,S,P).

'$dcgor'(X,SO,S,P) :
'$dcgrhs'(X,SOa,S,Pa),

145.

(var(SOa), SOa \== S,!, SO=SOa, P=Pa;

P=(SO=SOa,Pa)).

'$tag'(X,SO,S,P) :-

X= .. [FIA],
'$append'(A,[SO,S],AX),

P= .. [FIAX].

1* Auxiliary predicates *1

'$and'(true,P ,P) :- !.
'$and'(P,true,P) :- !.
'$and'(P,Q,(P,Q)).

'$flatconj'(A,A) :- var(A), !.
'$flatconj'((A,B),C) :- !, '$fcl'(A,C,R), '$flatconj'(B,R).

'$flatconj'(A,A).

'$fcl'(A,(A,R),R) :- var(A), !.
'$fcl'((A,B),C,R) :- !, '$fcl'(A,C,Rl), '$fcl'(B,Rl,R).
'$fc1'(A,(A,R),R).

'$islist'([]) :- !.
'$islist'([_I-.J).

'$append'([A I B],C,[A I DJ) :- '$append'(B,C,D).

'$append'([],X,X).

GENSYM.PRO

I*Create a new atom starting with a root provided and

finishing with a unique number *1
gensym(Root,Atom):

get_num(Root,N urn),

name(Root,N ame 1),

integer _name(N um,N ame2),
append(Name1,Name2,Name),

146.

name(Atom,Name),!.

get_num(Root,Num):-
I*this root encountered before *1
retract(current_num(Root,N urn I»,!,

Num is Num1+1,
asserta(curren t_n um(Root,N urn».

1* first time for this root *1
get_num(Root,l):-asserta(current_num(Root,l».

1* Convert from an integer to a list of characters *1

integer_name(lnt,List):-integer_name(lnt,n,List).

integer_name(I,Sofar,[C I SofarD:-
1<10, !, C is 1+48.

integer _name(l,Sofar ,List):-

Tophalf is 1//10,

Bothalf is 1 mod 10,
C is Bothalf+48,
integer_name(Tophalf,[C I Sofar l,List).

*1
1 1

1*
1*
1*

2 types of English adverbs i.e. ending with
'ly' and 'ily' are analysed or synthesized.

1*--*1

eng_adverb_make(Person,PL,Gender,W,Z) .

name(W,Adjective),
do_append(Adj,"y" ,Adjective),

do_append(Adj, "iIy" ,Adverbform),

name(Z,Adverbform).
eng_adverb_make(Person,PL,Gender,W,Z) :

name(W,Adjective),
do_append(Adjective,"ly" ,Adverbform),

147.

*1
*1

name(Z,Adverbform).

ENG_ V _M.PRO

/* ENG_ VERB_MAKE */

/* ------------- */

/* Forms the English verb according to its type */

/* i.e. tense, Person, PL, Gender, Regularity. */

/* Eng_verbjorm (contained in WORDS) finds a match */

/* for the irregular verb. */

/*---*/
eng_ verb _make([Tense] ,first, singular ,irregular, W ,Z):

eng_verbjorm([Tense],W,Z,Ss,Ts,FpI,Spl,Tpl).

eng_ verb_make([Tense] ,second,singular,irregular, W ,Z):

eng_ verbjorm([Tense], W ,Fs,Z, Ts,FpI,Spl,Tpl).

eng_ verb_make([Tense], third,singular,irregular ,W ,Z):

eng_ verbjorm([Tense], W,Fs,Ss,Z,Fpl,Spl,Tpl).

eng_ verb_make([Tense] ,first,pl ural,irregular, W ,Z):-

eng_ verbjorm([Tense], W ,Fs,Ss, Ts,Z,Spl, Tpl).

eng_ verb_make([Tense] ,second,pl ural,irregular, W ,Z):

eng_verbjorm([Tense],W,Fs,Ss,Ts,Fpl,Z,Tpl).

eng_verb_make([Tense],third,plural,irregular,W,Z):

eng_verb_form([Tense],W,Fs,Ss,Ts,FpI,Spl,Z).

eng_ verb _make([presen t], third,singular ,Regulari ty, W ,Z):

name(W,Infinitive),

find_IastCV erbstem, "e" ,Infinitive),

do_appendCV erbstem," es" ,Verbform),

name(Z,Verbform).

eng_ verb_make([presen t] ,Person,PL,Regularity, W, W):

name(W,Infinitive),

find_Iast(Verbstem, "e" ,Infinitive).

enL verb_make([presen t], third, singular ,Regularity, W ,Z):

name(W,Verbstem),

do_append(Verbstem," s" ,Verbform),

name(Z,Verbform).

148.

eng_ verb_make([present] ,Person,PL,Regularity, W, W).

eng_ verb_make([infini ti vel ,Person,PL,Regularity, W, W).

eng_verb_make([past_part],Person,PL,regular,W,Z):

name(W,Infinitive),

find_IastCVerbstem,"e",Infinitive),
do_appendCV erbstem,"ed" ,Verbform),

name(Z,Verbform).

eng_ verb_make([past_part],Person,PL,regular ,W ,Z):

name(W ,Verbstem),
do_append(Verbstem,"ed" ,Verbform),

name(Z,Verbform).

eng_ verb_make([simple_past] ,Person,PL,regular ,W ,Z):

name(W ,Infini tive),
find_IastCV erbstem, "e" ,Infinitive),
do_appendCV erbstem," ed" ,Verbform),

name(Z,Verbform).

eng_ verb_make([simple_past] ,Person,PL,regular, W ,Z):

name(W,Verbstem),
do_append(Verbstem,"ed" ,Verbform),

name(Z,Verbform).

enLverb_make([used_to],Person,PL,Regularity,W,W).

eng_ verb_make([pres_part] ,Person,PL,Regulari ty, W ,Z):

name(W,Infinitive),
find_IastCV erbstem," e" ,lnfini tive),
do_a ppend(Verbstem, "ing" ,Verbform),

name(Z,Verbform).

eng_ verb _make([pres_part] ,Person,PL,Regularity, W ,Z):

name(W ,Verbstem),

do_append(Verbstem, "ing" ,Verbform),
name(Z,Verbform).

eng_ verb_make([future] ,Person,PL,Regulari ty, W, W):-

149.

name(W,Infinitive),

find_IastCVerbstem,"e",Infinitive).

eng_ verb_make([fu turel ,Person,PL,Regulari ty, W, W).

eng_ verb_make([imperfectl ,Person,PL,Regulari ty ,W ,Z):

name(W,Infinitive),

find_IastCV erbstem," e" ,Infinitive),

do_append(Verbstem,"ing" ,Verbform),

name(Z,Verbform).

eng_ verb_make([imperfectl ,Person,PL,Regularity, W ,Z):

nameCW,Verbstem),
do_append(Verbstem, "ing" ,Verbform),

name(Z,Verbform).

eng_ verb _make([condi tional] ,Person,PL,Regulari ty, W ,W).

find_Iast(A,B,C):-fl_append(A,B,C),!.

fl_append([l,L,L).
fl_a ppendC,_, []): -! ,fail.

fl_append([X I L11,L2,[X I L3]):-fl_append(L1,L2,L3).

do_append(A,B,C):-append(A,B,C),!.

OURVARPRO
/* This program helps to mark our nouns, */

/* especially in the case oftransitive *1
/* verbs where the subject and object */

1* nouns are marked to prevent synthesizing */

1* of the incorrect nouns. *1
1*--*1

ourvar(X):
var(X),
I . ,

gensym('V AR' ,X).

ourvar(X):-

atom(X),

name('VAR',Var),

150.

name(X,XX),

append(V ar ,Rest,XX).

~.PRO

/* ASSERTBT */
/* */

assertbtz(symbol([X]»:

var(X),
I . ,
fail.

assertbtz(X):

nonvar(X),

assertz(X).

assertbtz(X):

nonvar(X),
retract(X).

assertbta(X):-

nonvar(X),

asserta(X).

assertbta(X):
nonvar(X),

retract(X).

assertbt(X):-

nonvar(X),

assert(X).

assertbt(X):

nonvar(X),

retract(X).

WORD8.PRO

/* WORDS - MONOLINGUAL ENGLISH DICTIONARY */

/* -------------------------------------- */
/* All items of English vocabulary known

to the system are held in this file.

151.

*/

They are classified according to their

syntactic function.

/*---*/

eng_adverb(tomorrow, tomorrow).

eng_adverb(today, today).

eng_adverb(yesterday,yesterday).

eng_adverb(stronger,stronger).

eng_number(one,one,singular).

eng_number(two,two,plural).

eng_number(three,three,plural).

eng_number(four,four,plural).

eng_number(five,five,plural).
eng_number(six,six,plural).

eng_number(seven,seven,plural).
eng_numberCeight,eight,plural).

eng_number(nine,nine,plural).

eng_number(ten,ten,plural).

eng_number(eleven,eleven,plural).

eng_number(twelve, twelve ,pI ural).

eng_noun(stepjather ,stepjather).

eng_noun(friend,friend).

eng_noun(desire,desire).

eng_noun(day,day).

eng_noun(night,night).

eng_noun(revenge,revenge).

eng_noun(star,star).

eng_noun(cruel ty ,cruel ty).

eng_noun(meal,meal).

eng_noun(station,station).

eng_noun(street,street).

eng_noun(childhood,childhood).

eng_noun(man,man).

eng_noun(newspaper,newspaper).

152.

eng_noun(office,office).

eng_noun(horse,horse).
eng_noun(woman, woman).

eng_noun(beer,beer).

eng_noun(garden,garden).

eng_noun(neighbour ,neighbour).

eng_noun(person,person).

eng_noun(boy,boy).

eng_noun(girl,girl).
eng_noun(cake, cake).

eng_noun(jelly jelly).

eng_noun(news,news).

eng_noun(hospital,hospital).

eng_noun(zoo,zoo).

eng_noun(job,job).

eng_noun(time, time).

eng_noun(house,house).

eng_noun(noun,noun).

eng_noun(verb,verb).

eng_noun(adjective,adjective).

eng_noun(lodgings,lodgings).

eng_noun(what,what).
eng_noun(which,which).

eng_noun(building,building).

eng_noun(umbrella, umbrella).

eng_noun(ill,ill).

eng_noun(door ,door).

eng_noun(man,man).

eng_noun(home_town,home_town).

eng_noun(year ,year).
eng_noun(apple,apple).

eng_noun(table,table).

eng_proper _noun(dylan,dylan).

eng_proper_noun(ian,ian).

eng_proper_noun(john,john).

eng_proper _noun(ann,ann).

eng_proper_noun(mary,mary).

eng_proper_noun(chris,chris).

153.

eng_proper _noun(who, w ho).

eng_proper_noun(england,england).
eng_proper _noun(X,X):-

name(X,[A I Bl),

A>64,

A<91.

eng_pronoun(him,him, third,singular ,masc).

eng_pronoun(he,he,third,singular,masc).

eng_pronoun(she,she,third,singular,fem).
eng_pronoun(i,i,first,singular,Gender).

eng_pronoun(you ,you ,second, singular, Gender).

eng_pronoun(no _one ,no_one, third,pl ural ,Gender).

eng_pronoun(we,we,first,plural,Gender).

eng_pronoun(you,you,second, pI ural, Gender).

eng_pronoun(they, they, third,pl ural ,Gender).

eng_impers_pronoun(it,it,third,singular,Gender).

eng_impers_pronoun(there,there,third,PL,Gender).

eng_in terrog_pronoun(who, who, third,PL,Gender).

eng_plural(beer,beer).

enLplural(boY,boys).
eng_pl ural(man,men).

eng_plural(woman,women).

eng_plural(person,people).

eng_pl ural(what, what).

eng_plural(revenge,revenge).

eng_plural(lodgings,lodgings).

eng_po ssessi ve(my ,my).

eng_possessive(your,your).

eng_possessive(his,his).

eng_possessive(her,her).

eng_possessive(our,our).

eng_possessive(their , their).

eng_adjective(happy,happy).

eng_adjective(red,red).

eng_adj ective(big, big).

154.

eng_adjective(unpleasant,unpleasant).

eng_adjective(several,several).
eng_adjective(beautiful,beautiful).

eng_adjective(small,small).

eng_adjectiveOittle,little).

eng_adjective(green,green).

eng_adjective(sad,sad).

eng_adjective(possible,possible).

eng_adjective(necessary ,necessary).

eng_adj ecti ve(many ,many).

eng_adjective(important,important).

enLadjective(astonishing,astonishing).

enLadjective(cold,cold).
enLadjective(old,old).

eng_adjective(cruel,cruel).

eng_adjective(very,very).

eng_conjunction(if,if).

eng_conjunction(and,and).

enLconjunction(but,but).

eng_ conjunction(before ,before).
eng_ verb(do,do, transi ti ve,irregular ,have,be,do).
eng_ verbOike,like ,transitive, regular ,have,be,do).

eng_ verb(drink,drink, transi tive,irregular ,have,be,do).

eng_ verbOove,love, transi ti ve,regular ,have,be,do).

eng_ verb(eat, eat, transi tive,irregular ,have,be,do).

eng_ verb(sell, sell, transi ti ve,irregular ,have ,be,do).

eng_ verb(meet,meet, transi ti ve,irregular ,have,be,do).

eng_ verb(open,open, transi ti ve ,regular ,have,be,do).

eng_ verb(finish,finish, transi ti ve,regular ,have ,be,do).

eng_ verbOive,live ,intransi ti ve ,regular ,have, be,do).

eng_verb(arrive,arrive,intransitive,regular,have,be,do).

eng_ verb(listen,listen,intransi tive,regular ,have, be,do).

eng_ verb(dance ,dance,intransi ti ve,regular ,have,be,do).

eng_ verb(have ,have, transi ti ve,irregular ,have, be,do).
eng_ verb(be,be ,intransi tive,irregular ,have,be,do).

eng_ verb(be ,be, transi ti ve ,irregular ,have,be,do).

eng_ verb(bea t, beat, transi tive,regular ,have,be,do).

155.

eng_ verb(want, want, transitive,regular ,have,be,do).
eng_ verb(regret,regret, transi tive,regular ,have,be,do).
eng_ verb(wai t, wai t, transi ti ve,regular ,have, be,do).
eng_ verb(pi ty ,pi ty, transi tive,irregular ,have,be,do).

eng_ verb(see ,see, transi ti ve,irregular ,have,be,do).
eng_ verb(tell, tell, transi tive,irregular ,have,be,do).

eng_ verb(forgi ve,forgive, transi tive,irregular ,have ,be ,do).
eng_ verb(decide,decide, transitive, regular ,have,be,do).

eng_ verb(grow ,grow ,intransitive,irregular ,have,be,do).

eng_ verb(clean,clean, transi ti ve ,regular ,have,be,do).

eng_ verb(cook,cook, transi tive,regular ,have,be,do).

eng_ verb(escape,escape, transi ti ve,regular ,have,be,do).

eng_ verb(sleep ,sleep, transi ti ve ,irregular ,have, be,do).

eng_verb(run,run,transitive,irregular,have,be,do).

eng_ verb(walk, walk, transi tive,regular ,have, be,do).
eng_ verb(make,make, transi tive,irregular ,have,be,do).
eng_ verb(leave,leave, transi ti ve,irregular ,have,be,do).

eng_ verb(get,get, transi ti ve,irregular ,have,be,do).
eng_ verb(find,find, transi tive,irregular ,have,be,do).
eng_ verb(return ,return, transi ti ve ,regular ,have,be,do).
eng_ verb(pay ,pay, transi ti ve,regular ,have, be,do).

eng_ verb(die ,die ,in transi tive,regular ,have, be,do).

eng_ verb(rush, rush, transi tive,regular ,have, be,do).

eng_ verb_form([simple_pas t] ,forgi ve ,forgave ,forgave,forgave,forgav

e,forgave,
forgave).

eng_ verbjorm([simple_past] ,pity ,pitied,pitied,pitied,pitied,pitied,pi t
ied).

eng_ verb_form([simple_past] ,see,saw ,saw ,saw ,saw ,saw ,saw).
eng_ verbjorm([simple_past], tell, told, told, told, told, told, told).

eng_ verb_form([simple_past] ,grow ,grew ,grew ,grew ,grew ,grew ,gre

w).

eng_ verb _form([simple_past] ,make,made,made ,made ,made,made,

made).

eng_ verbjorm([simple_past],find,found,found,found,found,found,f

ound).

eng_ verbjorm([sim pIe_past] ,get,got,got,got,got,got,got).

156.

eng_ verb _form([sim pIe_pas t] ,run, ran, ran, ran,ran,ran,ran).

eng_ verbjorm([simple_past] ,sleep,slept,slept,slept,slept,slept,slept)

eng_ verbjorm([simple_past] ,leave,left,left,left,left,left,left).

eng_ verb_form([presen t] ,do,do,do,does,do,do,do).

eng3erb_form([simple_past],do,did,did,did,did,did,did).

enL verbjorm([future] ,be,will, will, will, will, will).

eng3erb_form([simple_past],have,had,had,had,had,had,had).

eng_ verb _form([sim pIe_past] ,be, was, were, was, were, were, were).

eng3erbjorm([simple_past],drink,drank,drank,drank,drank,dran

k,drank).
eng_ verb_form([simple_past] ,eat,ate,ate ,ate,ate,ate,ate).

eng_ verbjorm([simple_past], sell,sold,sold,sold,sold,sold, sold).
eng_ verb _form([simple_past] ,meet,met,met,met,met,met,met).

eng_verb_form([past_part],meet,met,met,met,met,met,met).

eng_verb_form([past_part],drink,drunk,drunk,drunk,drunk,drunk

,drunk).

eng_ verb_form([past_part] ,eat,eaten,eaten,eaten,eaten,ea ten,eaten).

eng_ verbjorm([past_part] ,sell,sold ,sold,sold, sold,sold, sold).

eng_ verbjorm([pas t_part] ,have,had,had,had,had,had,had).

eng_ verb_form([past_part], be, been,been,been,been, been, been).

eng_ verb_form([imperfect_be] ,be, was, were, was, were, were,were).

eng_ verb_form([present],be,am,are,is,are,are,are).

eng_ verb_form([presen t] ,have,have,have,has,have ,have,have).
eng_ verb_form([present] ,eat,eat,eat,eats,eat,eat,eat).

eng_ verb _form([present] ,X,X,X,X,X,X,X).

eng_ verb_form([future] ,X,X,X,X,X,X,X).

eng_ verb jorm([condi tional] ,X,X,X,X,X,X,X).

eng_tense(infinitive,[infinitive]).
eng_tense(pres_part,[pres_part]).

eng_tense(past_part,[past_part]).

eng_tense(perfect,[perfect]).

eng_tense(present,[present]).

eng_tense(future,[future]).

eng_tense(imperfect_be,[imperfect_be]).

eng_tense(imperfect,[imperfect]).

eng_tense(simple_past,[simple_past]).

157.

eng_tense(conditional,[conditional]).

enLtense(used_to,[used_to]).

eng_preposi tion(under , under).

eng_preposition(at,at).

enLpreposition(after,after).

eng_preposition(along,along).

eng_preposition(among,among).

eng_preposition(before,before).

eng_preposition(behind,behind).

eng_preposition(between,between).

enLpreposition(by,by).
eng_preposition(during,during).

eng_preposition(except,except).

eng_preposi tion(for ,for).

eng_preposition(from,from).

eng_preposition(in,in).

eng_preposition(into,into).

eng_preposi tion(near ,near).
eng_preposi tion(nearly ,nearly).

eng_preposi tion(of,oO.

eng_preposition(off,offi.

eng_preposition(on,on).

eng_preposition(onto,onto).

eng_preposition(since,since).

eng_preposi ti one through, through).

eng_preposition(to, to).

eng_preposition(towards,towards).

eng_preposition(via,via).

eng_preposition(while, while).

eng_preposition(with,with).

eng_preposi tion(wi thin, wi thin).

eng_preposition(without,without).

eng_determiner(all,all,plural,universal).

eng_ determiner(the, the, singular, universal).

eng_de terminer(the, the ,pI ural, universal).

158.

eng_determinerC every ,every ,singular, uni versal).

eng_determinerCsome,some,plural,existential).

eng_determinerCsome,some,singular,existential).

eng_determinerCa,a,singular,existential).

eng_ determinerCan,an,singular ,existential).

eng_determinerCone,one,singular,existential).

eng_determinerC the, the, singular, universal).

ENGLISH5.PRO

/* --------------------- */

/* This file contains the set of Prolog grammar rules which are

used to

analyse an English sentence when English is the source

language,

*/

or synthesise an English sentence when English is the target

language. When English is the SL, the resultant P.C. is

represented by the variable P which is passed to SUBSTITUTE

for conversion to the TL PC.

/*---------_._---*/

1* SENTENCE */

/* */

eng_statementCP)-->

noun_phraseCPerson,PL,Gender,X,P1,P),

verb_phraseCPerson,PL,Gender,X,P1).

eng_statementCno).

eng_questionCP)-->

noun_phraseCPerson,PL,Gender,X,P1,P),

verb_phraseCPerson,PL,Gender,X,P1).

eng_questionCP)-->

159.

i_auxiliary(Person,PL,Gender ,X,P).

eng_question(P)-->
t_auxiliary(Person,PL,Gender ,x,Y,P).

eng_conjunct(f1:W ,P ,L»-->
enlLstatement(P),
rest_oCstatement(W,L).

rest_oCstatement(W,L)-->
gconjunction(W),
enlLstatement(L).

1* CONJUNCTION *1

1* ----------- *1
gconjunction(ftW»-->

[Z],

((pre_thing(eng_conjunction,[W,Z» ,
assertbtz(symbol(W))) } .

1* NOUN_PHRASE *1
1* *1

noun_phrase(Person,PL,Gender,X,Pl,exists(X,U,P»-->
(checksim(Pl,P) } ,

«gproper_noun(Person,PL,Gender,X,U»;
(gpronoun(Person,PL,Gender,X,U»;
(ginterrog_pronoun(Person,PL,Gender,X, U) ».

noun_phrase(Person,PL,Gender,X,Pl,P)-->
gdeterminer(Person,PL,Gender,X,P2,Pl,P),

rest_np(Person,PL,Gender,X,P2).

noun_phrase(Person,PL,Gender,X,Pl,exists(X,U,P»-->
(checksim(Pl,P) } ,

(gimpers-pronoun(Person,PL,Gender,X,U».

160.

noun_phrase(Person,PL,Gender ,X,Pl,P)-->
«(gnumber(Person,PL,Gender,x,P2,Pl,P»;
(gpossessive(Personl,PLl,Genderl,x,P2,Pl,P»;
(gadjective(Person,PL,Gender,P2,P»),
(gnoun(Person,PL,Gender ,X,P2»).

noun_phrase(Person,PL,Gender,X,Pl,P)-->
gpossessive(Personl,PLl,Genderl,x,P2,Pl,P),
adLphrase(Person,PL,Gender ,X,P2).

noun_phrase(Person,PL,Gender ,X,Pl,P)-->
(checksim(Pl,P)) ,

gnoun(Person,PL,Gender,X,P).

noun_phrase(Person,PL,Gender ,X,Pl,P)-->
prep_phrase(Person,PL,Gender,Pl,P).

rest_np(Person,PL,Gender,X,P2)-->gnoun(Person,PL,Gender,X,P2).
rest_np(Person,PL,Gender,X,P2)--
>adLphrase(Person,PL, Gender ,X,P2).
rest_np(Person,PL,Gender,X,P2)-->gnoun(Person,PL,Gender,X,P3),

re131ause(Person,PL,Gender ,X,P3,P2).

/* VERB_PHRASE */

/* ----------- * /

verb_phrase(Person,PL,Gender,X,P&L)-->

intrans_ verb(Person,PL,Gender ,X,P),
rest_ vp(Person,PL,Gender ,X,L).

verb_phrase(Person,PL,Gender,X,P)-->
intrans_ verb(Person,PL,Gender ,X,P).

verb_phrase(Person,PL, Gender ,X,P)-->
pre_trans_ verb(Person,PL,Gender ,X,Y,Pl),

noun_phrase(Personl,PLl,Genderl,Y,Pl,P).

verb_phrase(Person,PL,Gender,X,P)-->

pre_ trans_ verb(Person ,PL, Gender ,X,P 1 ,P),

161.

noun_phrase(Person I,PL I,Gender I, Y ,P2,Pl),

prep _phrase(Person I,PL I,Gender I,X,P2).

rest_ vp(Person,PL, Gender ,X,L)-->gadverb(Person,PL, Gender ,X,L).
rest_ vp(Person,PL,Gender,X,L)--

> prep_phrase(Person,PL,Gender ,X,L).
rest_vp(Person,PL,Gender,X,L)-->g_adj(Person,PL,Gender,X,L).

rest_ vp(Person,PL,Gender,X,L).

1* ADVERB *1
1* ------ *1

gadverb(Person,PL,Gender,Xl,(ftW,X)&sing(X»)-->
(checksim(X,xU) ,

[Z],

((pre_thing(eng_adverb,[W,ZD,
assertbtz(symbol(W») } .

gadverb(Person,PL,Gender,Xl,(ftW,X)&pl(X»)-->
(checksim(X,XU) ,

[Z],

((pre_thing(eng_adverb,[W,Z]),
assertbtz(symbol(W))) } .

gadverb(Person,PL,Gender,Xl,(fCW,X)&sing(X»)-->
(checksim(X,XU) ,
[Z],

((pre_thing(eng_adjective,[W,V]),

eng_adverb_make(Person,PL,Gender,V,Z),
assertbtz(symbol(V») } .

1* NUMBER *1

1* ------ *1
gnumber(Person,plural,Gender,X,Pl,P2,

(exists(X,det(W),(Plt&P2t»»-->
((ourvar(X),

checksim(Pl,Plt),

checksim(P2,P2t» } ,
[Z],

((pre_thing(eng_number,[W,Z,pluralD,

162.

assertbtz(symbol(W)) } .

gnumber(Person,singular ,Gender ,K,Pl,P2,

(exists(X,det(W),(Plt&P2t»)}-->

((ourvar(X),
checksim(Pl ,PIt),

checksim(P2,P2t» } ,
[Z],

{ (pre_thing(eng_number ,[W ,Z,singular]),
assertbtz(symbol(W)) } .

1* PREP_PHRASE *1
1* ----.------ *1

prep_phrase(Person,PL,Gender ,X,P)-->
[Z],

•

((pre_thing(eng_preposition,[W,Z]),

assertbtz(symbol(W))) } ,
noun_phrase(Personl,PLl,Genderl,Y,ftW,X,Y),P).

1* REL_CLAUSE *1

1* ---------- *1
rel_clause(Person,PL,Gender,X,Pl,Plt&P2)-->

[that],
((checksim(Pl,Plt),

assertbtz(symbol(that))) } ,
verb_phrase(Person,PL,Gender,X,P2).

rel_clause(Person,PL,Gender,X,Pl,Plt&P2)-->
[who],

((checksim(Pl,Plt),

assertbtz(symbol(who») } ,

verb_phrase(Person,PL,Gender,X,P2).

rel_clause(Person,PL,Gender,X,Pl,Plt&P2)-->
[which],

((checksim(Pl,Plt),

assertbtz(symbol(which») } ,

163.

verbJ)hrase(Person,PL,Gender,X,P2).

/* GDETERMINER */

/* ----------- * /
/* gdeterminer(Person,plural,Gender ,x,Pl,P2,

(all(X,(Plt=>P2t»»-->

*/

((ourvar(X),

checksim(Pl,Plt),
checksim(P2,P2t» } ,

O.

gdeterminerCPerson,plural,Gender ,X,Pl ,P2,
(all(X,det(W),(Plt=>P2t»»-->

((ourvar(X),

checksim(Pl,Plt),

checksim(P2,P2t» } ,
[Z],

((pre_thing(eng_determiner,[W,Z,plural,universal]),

assertbtz(symbol(W») } .

gdeterminer(Person,singular,Gender,X,Pl,P2,

(exists(X,det(W),(Plt&P2t»»-->

((ourvar(X),

checksim(Pl,Plt),

checksim(P2,P2t» } ,
[Z],

((pre_thing(eng_determiner,[W ,Z,singular ,existential]),

assertbtz(symbol(W») } .

gdeterminer(Person,singular ,Gender ,X,Pl,P2,(all(X,det(W),

(Plt=>P2t))))-->

((ourvarCX),

checksim(Pl,Plt),

checksim(P2,P2t» } ,

[Z],

((pre_thing(eng_determiner,[W,Z,singular,universal]),

assertbtz(symbol(W») } .

164.

gdeterminer(Person,plural,Gender ,x,P1,P2,

(exists(X,detCW),(P1t&P2t»»-->
((ourvar(X),

checksim(P1,Plt),

checksim(P2,P2t» } ,
[Z],

((pre_thing(eng_determiner,[W,Z,plural,existential]),

assertbtz(symbol(W)) } .

1* GNOUN *1
1* *1

gnoun(third,singular ,Gender ,X,(fCW ,X)&singCX»)-->

[Z],

((pre_thingCeng_noun,[W,Z]),

assertbtz(symbol(W)) } .

gnoun(third,plural,Gender,X,(f(W,X)&pl(X»)-->

[Z],

((eng_plural(Y,Z),
pre_thing(eng_noun,[W,Y]),

assertbtz(symbol(W))) } .

gnoun(third,plural,Gender,X,(f(W,X)&pl(X»)-->

[Z],

{ (not(var(Z»,

name(Z,Pluralname),
fl_append(Singularname 1,"ies" ,Pluralname),

append(Singulamame1,"y",Singularname2),
name(Singulamame,Singulamame2),

pre_thing(eng_noun,[W,Singularname]),

assertbtz(symbol(W») } .

gnoun(third,plural,Gender,X,(f(W,X)&pl(X»)-->

[Z],

{ (not(var(Z»,

name(Z,Pluralname),

fl_append(Singularname 1, "s" ,Pluralname),

name(Singularname,Singulamamel),

165.

pre_thing(eng_noun,[W ,Singulamame]),
assertbtz(symbol(W)))) .

gnoun(third,plural,Gender ,x,CftW ,x)&pl(X)))-->
[Z],

((pre_thing(eng_noun,[W,Singulamamell,

name(Singularname,Singulamame1),

append(Singulamame I, "s" ,Pluralname),
name(Z,Pluralname),

assertbtz(symbol(W)))) .

gnoun(third,pl ural, Gender ,X,(f\W ,X)&pl(X)))-->

[Z],

((pre_thing(eng_noun,[W,Singulamamell,

name(Singularname,Singulamame2),

fl_append(Singulamame1,"y",Singulamame2),
append(Singulamame1,"ies" ,Pluralname),

name(Z,Pluralname))) .

1* ADJECTIVAL PHRASE *1

1* ----------------- *1
adLphrase(Person,PL,Gender,X,(P2&Pl))-->

g_adj(Person,PL,Gender,X,P1),
gnoun(Person,PL,Gender,X,P2).

1* GADJECTIVE *1
1* ---------- *1

g_adj(third, singular ,Gender ,X,(fCW ,X)&sing(X)))-->

[Z],

((pre_thing(eng_adjective,[W,Zll,

assertbtz(symbol(W)))) .

g_adj(third,plural,Gender,X,(fCW,X)&pl(X)))-->

[Z],

((pre_thing(eng_adjective,[W,Z]),

assertbtz(symbol(W)))) .

166.

gadjective(Person,singular,Gender .x,(f(W ,X)&sing(X»)-->

[Z],

I (pre_thing(eng_adjective,[W,ZD,
assertbtz(symbol(W») } .

gadjective(Person,plural,Gender,X,(f(W,X)&sing(X»)-->
[Z],

I (pre_thing(eng_adjective,[W,Z]),

assertbtz(symbol(W») } .

1* GPOSSESSIVE *1
1* *1

gpossessive(Person,PL,Gender,X,P1,P2,

(f(X,det(W),(P1t&P2t»»-->
I (ourvar(X),

checksim(P1,Plt),

checksim(P2,P2t» } ,

[Z],

I (pre_thing(eng-possessive,[W,ZD,
assertbtz(symbol(W»)} .

1* GPROPER_NOUN *1

1* *1
gproper_noun(third,singular,Gender,W,proper_noun(W»-->

[X],

I (pre_thing(eng-proper_noun,[W,X]),

assertbtz(symbol(W») } .

gproper_noun(third,plural,Gender,W,proper_noun(W»-->

[X],

I (eng_plural(P,X),

pre_thing(eng_proper_noun,[W,P]),
not(pre_thing(eng_noun,[Y,P]))) } .

1* GPRONOUN *1
1* *1

gpronoun(Person,PI uraH ty ,Gender, W,pronoun(W))-->

[Z],

167.

((pre_thing(eng_pronoun,[W,Z,Person,Plurality,Gender]),
assertbtz(symbol(W))) .

1* G_IMPERSONAL_PRONOUN *1

1* -------------------- *1
gimpers_pronoun(Person,PL,Gender,W,impers(W»-->

[Z],

(

(pre_thing(eng_impers_pronoun,[W,Z,Person,PL,Gender]),
assertbtz(symbol(W))) .

1* INTERROGATIVE PRONOUN *1

1* --------------------- *1
ginterrog_pronoun(third,singular,Gender,W,interrog(W»-->

[Z],

{

(pre_thing(eng_interrog_pronoun,[W,Z,Person,PL,Gender]),
assertbtz(symbol(W))) .

1* TRANS_INTERROGATIVES PRESENT TENSE *1
1* *1

t_auxiliary(Person,PL,Gender,X1,Y1,
(P,Q,(f(Do,V,X,Y)&tense«[present],Do),

([infinitive] ,V»»)-->
(checksim(X,Xl)),
(checksim(Y,Yl)),

[Z],

{ (pre_thing(eng_tense,[T ,[present]]),

pre_thing(eng:"verb,[Do,W,Transitivity,irregular,H,B,D]))),
((eng_verb_make([present],Person,PL,irregular,W,Z),

assertbtz(symbol([Do])))) ,

noun_phrase(Person,PL,Gender,X1,P1,P),

[M],

((pre_thing(eng_tense,[U,[infinitive]]),

pre_thing(eng_ verb,[V,N ,transiti ve,Regularity ,H,B,DJ),

eng3erb_make([infinitive],Person,PL,Regularity,N,M),

assertbtz(symbol(V»)) ,
nounJ)hrase(Personl,PLl,Genderl,Y1,P2,Q).

168.

1* INTRANS_INTERROGATIVES PRESENT TENSE *1

/* ------------------------------------ *1
i_auxiliary(Person,PL,Gender,Xl,

(f(Do,V,X)&tense«[present],Do),([infinitive],V»»-->
(checksim{X,xl)) ,

[Z],

((pre_thing(eng_tense,[T,[present]]),
pre_thing(eng3erb,[Do,W,Transitivity,irregular,H,B,D]))) ,

((eng_ verb_make([present],Person,PL,irregular ,W,Z),
assertbtz(symbol([Do])))) ,

noun_phrase(Person,PL,Gender,xl,Pl,P),
[M],

((pre_thing(eng_tense,[U,[infinitive]]),
pre_thing(eng_verb,[V,N,intransitive,Regularity,H,B,D]),

eng_verb_make([infinitive],Person,PL,Regularity,N,M),
assertbtz(symbol(V))) .

1* CHECK TRANS_ VERB *1
1* *1

pre_trans_ verb(Person,PL,Gender ,Xl, Yl,
(f(V,X,Y)&tense(Tl,V»)-->

(checksim(X,Xl)),

(checksim(Y,Yl)) ,

trans_ verb(Person,PL,Gender ,Xl,Yl,(f(V ,X,Y)&tense(Tl,V»).

1* TRANS_VERB,SIMPLE_PAST TENSE *1

1* ----------------------------- *1
trans_ verb(Person ,PL,Gender ,Xl, Yl,(f(V ,X, Y)&tense(T 1,V»)-->

(checksim(Tl,[simple_pastD) ,
[Z],

((pre_thing(eng_tense,[T,[simple-past]]),

pre_ thing(eng3erb,[V, W ,transitive,Regularity ,Have,Be,Do]),
eng_verb_make([simple_past],Person,PL,Regularity,W,Z),

assertbtz(symbol(V)))) .

169.

/* INTRANS3ERB SIMPLE PAST TENSE */

/* ------------------------------ */
intrans_ verb(Person,PL,Gender ,xl,mv ,x)&tense(Tl,V)))-->

(checksim(X,Xl) },

(checksim(Tl,[simple-past])) ,

[Z],

{ (pre_thing(eng_tense,[T,[simple-pastlD,

pre_thing(eng_verb,[V,W,intransitive,Regularity,Have,Be,Do]),

eng_ verb_make([simple_past],Person,PL,Regularity, W,Z),

assertbtz(symbol(V»)) .

/* TRANS3ERB, "USED_TO" */

/* --------------------- */
trans_ verb(Person,PL,Gender ,Xl,Yl,

(fCV ,X, Y)&tense([used_to],V)))-->

[used],

[to],

[Z],

{ (pre_thing(eng_tense,[T,[used_tolD,

pre_thing(eng_ verb,[V ,W, transitive, Regularity ,Have,Be,Do]),

eng_ verb_make([used_to],Person,PL,Regularity ,W ,Z),

assertbtz(symbolCV)))) .

/* INTRANS3ERB, "USED_TO" */

/* ----------------------- */
intrans_ verb(Person,PL,Gender ,Xl,

(f(V,X)&tense([used_to],V»)-->

(checksim(X,Xl)) ,

[used],

[to],

[Z],
{ (pre_thing(eng_tense,[T,[used_tolD,

pre_thing(eng_verb,[V,W,intransitive,Regularity,Have,Be,Do]),

eng_ verb_make([used_to],Person,PL,Regularity, W ,Z),

assertbtz(symbol(V))) } .

170.

/* TRANS_ VERB PRESENT TENSE */

/* ------------------------ */

trans_verb(Person,PL,Gender,Xl,Yl,mV,X,Y)&tense(Tl,V»)-->

{ checksim(Tl,[presentD } ,

'[Z],

{ (pre_thing(eng_tense,[T,[presentlD,

pre_thing(eng_ verb,[V ,W, transitive ,Regularity ,Have,Be,Do]),

eng_ verb_make([present] ,Person,PL,Regularity ,W ,Z),

assertbtz(symbol(V)) } .

/* INTRANS_ VERB PRESENT TENSE */

/* -------------------------- */
intrans_ verb(Person,PL,Gender ,Xl,(f(V ,X)&tense([Tl],V) »-->

(checksim(X,Xl) },

{ checksim([Tl],[presentD } ,

[Z],

{ (pre_thing(eng_tense,[T,[presentlD,

pre_thing(eng_verb,[V,W,intransitive,Regularity,Have,Be,Do]),

eng_ verb_make([present],Person,PL,Regulari ty ,W ,Z),

assertbtz(symbol(V))) } .

/* TRANS_ VERB,PERFECT TENSE */

/* */
/* trans_ verb(Person,PL,Gender ,X, Y,

mV,X,Y)&tense([perfect],V»)-->

trans_verb(Person,PL,Gender,X,Y,mHave,V,X,Y)

&tense«[present] ,Have),([past-part] ,V»». */

trans_ verb(Person,PL,Gender,X,Y,

(f(Have, V ,X, Y)&tense(([present] ,Have),([past_part] ,V»))-->

[Cl,
[Z],

{

(pre_thing(eng_ verb, [V, W, transi tive,Regulari ty ,Have,Be,DoD,

eng_verb_make([present],Person,PL,irregular,Have,C),

eng_ verb_make([past_part],Person,PL,Regularity,W,Z),

171.

assertbtz(symbol([Have))),
assertbtz(symbol(V)) } .

/* INTRANS_ VERB PERFECT TENSE */

1* *1
1* intrans_ verb(Person,PL,Gender,x,

(f(V ,X)&tense([perfect] ,V»)-->
intrans_ verb(Person,PL,Gender ,x,(f(Have,V,x)

&tense«[present],Have),([past-part],V»». */

intrans_ verb(Person,PL,Gender,X,
(f(Have,V,X)&tense«[present],Have),([past_part],V»»-->

[C],

[Z],

{

(pre_ thing(eng_ verb,[V, W ,in transi tive,Regulari ty ,Have,Be,Do)),

eng_verb_make([present],Person,PL,irregular,Have,C),
eng_verb_make([past-part],Person,PL,Regularity,W,Z),

assertbtz(symbol([Have]»,
assertbtz(symbol(V))) } .

1* TRANS_ VERB,FUTURE TENSE */

1* *1

trans_verb(Person,PL,Gender,X1,Y1,
(f(V,X,Y)&tense([future],V»)-->

[will],

[Z],

((pre_thing(eng_tense,[T,[future]]),
pre_thing(eng_verb,[V,W,transitive,Regularity,Have,Be,Do]),

eng_ verb_make([future] ,Person,P ,Regularity ,W ,Z),

assertbtz(symbol(V)) } .

trans3erb(Person,PL,Gender,X1,Y1,

(f(V,X,Y)&tense([future],V»)-->

[would],

[Z],

172.

((pre_thing(en/Ltense,[T,[future]]),

pre_thing(eng_verb,[V,W,transitive,Regularity,Have,Be,DoD,

eng_ verb_make([future],Person,P ,Regularity,W ,Z),

assertbtz(symbol(V))) .

/*

/*

INTRANS_ VERB,FUTURE TENSE

*/

intrans_ verb(Person,PL,Gender,X1,

(fCV,X)&tense([future],V»)-->

(checksimCX,x 1)) ,

[will],

[Z],

((pre_thing(en/Ltense,[T,[future]]),

*/

pre_thing(eng_ verb,[V, W ,intransitive,Regularity,Have,Be,Do]),

eng_verb_make([future],Person,PL,Regularity,W,Z),

assertbtz(symbol(V»)) .

intrans_ verb(Person,PL, Gender ,Xl,

(fCV,X)&tense([future],V»)-->

(checksim(X,X 1)) ,

[would],

[Z],

((pre_thing(eng_tense,[T,[future]]),

pre_ thing(eng_ verb,[V, W ,intransitive,Regularity,Have,Be,Do D,

eng_ verb_make([future],Person,PL,Regularity ,W ,Z),

assertbtz(symbolCV»)) .

/* TRANS_ VERB,IMPERFECT TENSE */

/* */

/* trans_verb(Person,PL,Gender,X,Y,

(fCV ,X, Y)&tense([imperfect] ,V»)-->

trans_verb(Person,PL,Gender,X,Y,(fCBe,V,X,Y)

&tense(([imperfect_be],Be),([pres_part],V»». */

trans_ verb(Person,PL,Gender,X,Y,

(fCBe, V ,X, Y)& tense(([imperfect_be] ,Be), ([pres_part] ,V»))-->

[Cl,

173.

[Z],

(

(pre_thing(enLverb,[V,W,transitive,Regularity,Have,Be,Do)),
eng_ verb_make([imperfect_be] ,Person,PL,irregular ,Be,C),
eng_ verb_make([pres-part],Person,PL,Regularity ,W ,Z),

assertbtz(symbol([Be))),

assertbtz(symbol(V»») .

1* INTRANS_ VERB IMPREFECT TENSE *1

1* ---------------------------- *1
1* intrans_ verb(Person,PL,Gender ,X,(flV ,X)&tense(Tl,V)))-->

(checksim(T1,[imperfect])) ,

intrans_ verb(Person,PL,Gender ,X,(fCBe,V ,X)
&tense(([imperfect_be],Be),([pres_part],V»». *1

1* INTRANS_ VERB IMPERFECT TENSE *1

1* ---------------------------- *1
intrans_ verb(Person,PL,Gender,X,

(fCBe,V,X)&tense(([imperfect_be],Be),([pres_part),V»»-->

[Cl,
[Z],

(

(pre_thing(eng_ verb ,[v, W ,intransi tive,Regulari ty ,Have,Be ,Do)),

eng_ verb_make([imperfect_be] ,Person,PL,irregular ,Be,C),
eng_ verb_make([pres_part],Person,PL,Regulari ty, W ,Z),

assertbtz(symbol([Be))),

assertbtz(symbol(V»») .

1* INTRANS_ VERB IMPERFECT OF VERB TO BE */

1* ------------------------------------ *1
intrans_ verb(Person,PL,Gender ,X,

(fCV ,X)&tense([imperfect_be] ,V»)-->

[Z],
((pre_thing(eng_tense,[T,[imperfect_be))),

pre_thing(eng_ verb,[V, W,intransitive,irregular,Have,Be,Do),

enLverb_make([imperfect_be],Person,PL,irregular,W,Z),
assertbtz(symbol(V»)) .

174.

/* TRANS_ VERB,CONDITIONAL TENSE */

/* ---------------------------- */

trans_ verb(Person,PL,Gender,X1,Y1,
(f(V ,X, Y)&tense([condi tional], V)))-->

[would],
[Z],

((pre_thing(en/Ltense,[T,[conditional]]),
pre_thing(eng_verb,[V,W,transitive,Regularity,Have,Be,Do]),
eng_ verb_make([condi tional] ,Person,PL,Regularity, W ,Z),

assertbtz(symbol(V)))) .

/* INTRANS_ VERB CONDITIONAL */

/* */

intrans_ verb(Person,PL,Gender,X1,
(f(V ,X)&tense([condi tional] ,V)))-->

(checksim(X,Xl)) ,
[would],
[Z],

{ (pre_thing(eng_tense,[T ,[conditional]]),

pre_thing(eng_verb,[V,W,intransitive,Regularity,Have,Be,DoD,
eng_verb_make([conditional],Person,PL,Regularity,W,Z),

assertbtz(symbol(V)))) .

PARSERPRO
/* This file consults the story file, parses the story using ENGLISH5

and asserts the PC into the database. On completion the story file

is retracted. */

/*---*/
go:-consult('a:tempstry.pro'),

parse,
retractall(sent).

parse:-sent(S),do_sentence(S).

parse.

175.

do_sen tence(S): -eng_sta tement(P ,S, T),
rest_stat(P ,S,T),! ,fail.

rest_sta t(P ,S ,[]): -assertz(pc_sent(P)).
rest_stat(P ,S,[H I TJ):-eng_conjunction(H,H),

assertz(pc_sent(P)),

enlLstatement(P1,T,O),
assertz(pc_sent(f(H,P1))).

TEMPSTRY.PRO

Example of a simple story with each sentence packaged up into a
Prolog predicate.

sent([dylan,had,an,unpleasant,childhood]).
sent([his,stepjather,beat,him]).

sent([he,cleaned,the,house,and,he,cooked,the,meals]).
sen t([dylan, wanted,some,revengeJ).

sent([his, step ja ther, would,regret,his,cruel ty J).
sent([dylan, wai ted, two,years ,before,he,escaped,from,his,cruel,step_
father]).
sent([he,left,the,house,on,a,cold,night,and,he,ran,to,the,station]).

sent([dylan,walked,the,streets,during,the,day,and,he,slept,every,nig
ht,under,
the,stars]).

sent([he,got,a,job,after,some,time,and,he,found,some,lodgings]).

sent([dylan,made,many,friends]).
sent([dylan,wanted,the,revenge,towards,his,step_father]).

sent([his,desire ,grew ,stronger]).
sent([dylan,returned,to,his,home_town,within,a,year]).

sent([his,stepJather,would,pay,for,his,cruelty]).
sent([there, was,no_one,in, the,house]).

sent([a,neighbour,told,the,news,to,dylan]).
sent([his,stepJather,was,in,the,hospital]).

sent([dylan,rushed,to,the,hospital]).
sent([he,would,have,his,revenge]).

sent([dylan,saw,his,stepjather,but,he,pitied,the,old,man]).

176.

sent([his,stepjather,was,very,ill)).

sent([dylan,forgave,his,stepjather,before,he,died,in,the,hospital]).

OUTPUTl.PRO
Using the above story as input, the following is the output from the
pars er.

pc_sen t(exists([dylan] ,proper _noun([dylan)),exists('V AR2' ,det([an]),
((fC[childhoo
d],'VAR2')&singCVAR2'»&fC[unpleasant],'VAR2')&sing('V AR2'»&f
([have] ,[dylan], 'V

AR2')&tense([simple_past],[have])))) .

pc_sent(fC'V AR9' ,det([his]),(fC[stepjather], 'V AR9')&sing('VAR9'»&

exists([him] ,p
ronoun([him)),fC[beat], 'V AR9' ,[him])&tense([present],[beat])))) .

pc_sent(exists([he],pronoun([he]),allCV AR12' ,det([the]),f([house],'V
AR12')&sing(

'V AR 12')=> fC[clean], [he], 'V AR 12')&tense([simple_past],[clean])))) .

pc_sen t(fCand ,exi sts([he] ,pronoun([he)),allCV AR13' ,det([the]),fC[mea
1],'VAR13')&

plCV AR13')=>fC[cook] ,[he],'V AR13')&tense([simple_past),[cook]))))) .

pc_sen t(exists([dylan] ,proper _noun([dylan]),exists('V AR 15' ,det([so
me]),(f([reveng

el, 'V AR15')&singC'VAR15'»&f([want],[dylan],'V AR15')&tense([simp

le_past],[want]))

».

pc_sent(fC'V AR22' ,det([his]),(f([stepjather],'V AR22')&singCV AR22'

»&fC'V AR29',d
et([his]),(f([crueIty], 'V AR29')&singCV AR29'))&f([regret], 'VAR22', 'V
AR29')&tense(

177.

[future],[regret))))) .

pc_sen t(exists([dylan] ,proper _noun([dylan]),exists(V AR34' ,det([two
]),(f([year],'

VAR34')&pl(V AR34'»&f([wait],[dylan],V AR34')&tense([simple_pas

t],[wait))))) .

pc_sent(f(before,exists([he],pronoun([he]),f(V AR54' ,det([his]),«f([ste

pJather]
,'V AR54 ')&sing('V AR54 '»&f([cruel],'V AR54 ')&sing('V AR54'»&f([fro

m],f([escape],[h

eL125)&tense([simple_past] ,[escape]), V AR54'»)))) .

pc_sent(exists([he],pronoun([he]),f([leave],[he],all('V AR77' ,det([the])
,f([house]

,'VAR77')&sing('V AR77')=>exists('VAR79' ,det([a]),«f([night], V AR7

9')&sing('VAR79

'»&f([cold],'V AR79')&sing('VAR79'»&f([on],[he],'V AR79'»)))&tense([

simple_past],

[leave]))) .

pc_sent(f(and,exis ts([he] ,pronoun([he]),all('V AR92' ,det([theD,f([stati

on],'VAR92

')&sing('V AR92')=> f([to] ,f([run] ,[he] ,_116)&tense([simple_past] ,[run
]),'V AR92')))

».

pc_sen t(exists([dylan] ,proper _noun([dylan]),f([walk] ,[dylanl,all('V A

R1l3',det([th

e]),f([street],'VAR1l3')&pl('VAR1l3')=>all('V ARl16' ,det([the]),f([day]

,'VAR1l6')&

sing('V ARl16')=>f([during] ,[dylan], V AR116'))))&tense([simple_past

] ,[walk)))) .

pc_sen t(f(and ,exists([he] ,pronoun([he]),f([sleep] ,[he] ,all('V AR139' ,de

t([every]),

f([night],'V AR139')&sing('V AR139')=>all('VAR140' ,det([theJ),f([star]

,'VAR140')&pl

178.

('V AR 140')=>fUunder l,[hel, 'V AR140'»»&tense([simple_pastl,[sleep])
))).

pc_sen t(exists([hel,pronoun([he]),f([getl,[hel,exists('V AR162' ,det([a])

,(£t[jobl,
'V AR162')&sing('VAR162'))&exists('VAR164' ,det([some]),(f([timel, 'V
AR164')&sing('V
AR164'»&f([afterl,[hel,'V ARl64'»»&tense([simple_pastl,[get])) .

pc_sent(f(and,exists([hel,pronoun([hel),exists('V AR166',det([somel),(
f([lodgingsl

;VAR166')&sing('V AR166'»&f([findl,[hel, 'V AR166')&tense([simple_
pastl,[find]))))

) .

pc_sent(exists([dylanl,proper _noun([dylanl),f([many l, 'V AR175')&si
ng('V AR1 7 5')','(

f([friendl,'V AR175')&pl(,VAR175'»&f([makel,[dylanl,'V AR175')&ten

se([simple_pastl
,[make]))) .

pc_sen t(exists([dylanl,proper _noun([dylan]),f([wantl,[dy lanl,all('V A
R206',det([th

e]),f([revengel,'V AR206')&pl('V AR206')=>f('V AR213' ,det([his]),(f([ste

pjatherl,'V

AR213')&sing('V AR213'»&f([towardsl,[dylanl,'V AR213'»»&tense([si

mple_pastl,[wan

t]))) .

pc_sen t(f('V AR220' ,det([his]) ,(f([desirel,'V AR220')&sing('V AR220'»

&(f([grow l, 'V A

R220 ')&tense([simple_pastl,[grow]))&f([stronger l, 'V AR220')&sing('V
AR220'))) .

pc_sent(exists([dylanl,proper_noun([dylanl),f([returnl,[dylanl,f('V A

R30T ,det([hi

s]),(f([home_townl,'VAR307')&sing('VAR30T»&f([tol,exists('V AR30
9' ,det([a]),(f([

179.

year],'V AR309')&sing('VAR309'»&f([within],[dylan],'VAR309'»,'VA

R30T)))&tense([

simple_past],[return]))) .

pc_sent(f('V AR316' ,det([his]),(f([step_father],'VAR316')&sing(V AR

316'»&f(V AR33
3' ,det([his]),(f([cruelty], V AR333')&sing('V AR333'»&f([for],f([pay], V

AR316',_1l

9)&tense([future]'[pay]),'V AR333')))) .

pc_sent(exists([there],impers([there]),f([be],[there],exists([no_one],p

ronoun([no
_one]),all('VAR360' ,det([the]),f([house],'VAR360')&sing('V AR360')=

>f([in],[there]

,'VAR360'»»&tense([simple_past],[be]))) .

pc_sent(exists('VAR362' ,det([a]),(f([neighbour],'V AR362')&sing('VA

R362'»&f([tell

],'V AR362' ,all('VAR385' ,det([the]),f([news],'V AR385')&sing('V AR38

5')=>exists([dyl
an] ,proper _noun([dylan]),f([to], V AR362' ,[dylan])))&tense([simple_

past],[tell]))

) .

pc_sent(f('VAR392' ,det([his]),(f([stepjather],'VAR392')&sing('V AR

392'»&(f([be],

V AR3 92')&tense([simple.J)ast] ,[be]))&all(V AR395' ,det([the]),f([hosp

ital],'VAR395

')&sing('VAR395')=>f([in],'VAR392' ,'VAR395'»))) .

pc_sent(exists([dylan] ,proper _noun([dylan]),all(,V AR408' ,det([the]),f

([hospital],

V AR408 ')&sing('V AR408')=>f([to] ,f([rush] ,[dylan],_114)&tense([sim

ple_past],[rush

]),'VAR408'»))) .

pc_sen t(exists([he] ,pronoun([he]),f(V AR415' ,det([his]),(f([revenge],'

VAR415')&si

180.

ng('V AR415'»&f([have],[he],'V AR415')&tense([future],[have]»))) .

pc_sen t(exists([dylan] ,proper _noun([dylan]),f(V AR422' ,det([his]),(f([

stepjather
],V AR422')&sing('V AR422'»&f([see],[dylan], V AR422')&tense([simp

le_past],[see]))

» .

pc_sent(f(bu t,exists([he] ,pronoun([he]),all(V AR425' ,det([the]),(f([ma

n],'VAR425'

)&sing('VAR425'»&f([old], V AR425')&sing(V AR425')=>f([pity],[he],'

VAR425')&tense

([simple_past],[pity]))))) .

pc_sent(f('V AR432' ,det([his]),(f([stepjather],'VAR432')&sing('V AR

432'»&(£11 very
], V AR440')&sing('VAR440')' ,'(f([ill],'VAR440')&sing('V AR440'»&f([

be],'VAR432','

V AR440')&tense([simple_past],[be])))) .

pc_sen t(exi sts([dylan] ,proper _noun([dylan]),f(V AR44 7' ,det([his]),(f([

stepjather

],'VAR44 7')&sing('VAR44 7'»&f([forgive],[dylan],'VAR44 7')&tense([si

mple_past],[fo

rgive])))) .

pc_sent(f(before,exists([he],pronoun([he]),(f([die],[he])&tense([simple

_past],[di

e]»&all('VAR450',det([the]),f([hospital],V AR450')&sing('V AR450')=>
f([in],[he],'

V AR450'))))) .

181.

APPENDIX 2.

MULTISTORY User Interface Listings

2.1. MULTISTORY System Overview: Rule Based Support System:

H

OOEAT

Y:MI.E[QIQg .. B!;OIBECT

Int!i!rgr!i~l!i!r

ELPFILE.TMP .. I RUNSUGS.PRO I

~

EXECI

EXEC I
Situations
Characters

co---------~. CSTORYF.PRO
STORYM.PAS

I
I

DIR1.ASM I~;:I 1
t

STORY.TMP
ASM

STODIR.SYS

GO. BAT - DOS batch file which loads VML Prolog and consults file REDIRECT
REDIRECT - forces Prolog to consult and run RUNSUGS.PRO

w~N1TMP
RUNSUGS.PRO - main Prolog program. Loops around user interface STORYM.PAS.
Produces suggestions for user.
CSTORYF.PRO - contains story type, situation, and character settings for current story.
Consulted by RUNSUGS.PRO.
REVONE.PRO - suggestions file for revenge type stories using situation one. Consulted by
RUNSUGS.PRO.
HELPFILE.TMP - temporary file holding current suggestion. Read by STORYM.PAS
DIR1.ASM - assembler program returning directory of stories on users floppy disk.
Produces file STODIR.SYS.
TESTCHR & GETCHR - assembler routines to poll and intercept the keyboard buffer
STORY. TMP - temporary file containing current story texl.
WPINFO.TMP - temporary file containing current word-processor settings.

182.

2.2. Main Pascal source code STORYM.PAS

Pro Pascal Compiler - Version iid 2.1

Compilation of: STORYM.PAS

PROGRAM STORYM (INPUT,OUTPUT);
CONST
maxspritesize = 800;
($1 SBGOCNST.PAS)
($1 SBGICNST.PAS)
TYPE
($1 SBGOTYPS.PAS)

STRING 136 = STRING[136];
STRING15 = STRING[15];
STRING8 = STRING[8];
TFILE=RECORD
FNAMEOUT:STRING8;
PBEGINOUT,
XCOUT,
YCOUT,
WPINDEXOUT,
OLDXOUT,

OLDYOUT:INTEGER;
END;
COMMON
($1 SBGOCOMM.PAS)
($1 SBGICOMM.PAS)
VAR OLDX,OLDY,DUMMY1,DUMMY2:INTEGER;

ATTRillUTE: ARRAY [1..13] OF INT;
TEMPFILE:TFILE;
icode,CH:char;
temp,STYPE,RN,RC,DINDX,SITUATION,PBEGIN,
XC,YC,NSPACEX,NSPACEY,TEMPINDEX,TINDEX:int;
CHARIN,TESTCHAR:BYTE;

WPINDEX,WPENDMARKER:INT;
DIRAREA: ARRAY [1..200] OF CHAR;

183.

WORKAREA: ARRAY [1..400] OF CHAR;
WORKAREA2: ARRAY [1..100] OF CHAR;
INCHAR: ARRAY[1..lO] OF CHAR;
WPAREA: ARRAY[1..25000] OF CHAR;
TEMPWP: ARRAy[1 .. 1120] OF CHAR;
SPRITESA YE: ARRA y[1..80] OF INTEGER;

INPNO:REAL;

LEFTB,RIGHTB,ENDCREATE,FINISHED,HELPSET:BOOLEAN;
F:FILE OF CHAR;

CHARACTER,NEWCHARSTRING:STRING;
FILENAME:STRING8;
DRIVEFILENAME:STRING 15;

{$I SBDPRCS.PAS}
{$I SBGOPRCS.PAS}
{$I SBGIPRCS.PAS}

{---I
PROCEDURE EXITPROG(RETCODE:INTEGER); EXTERNAL;

{---I
FUNCTION GETCHAR:BYTE; EXTERNAL;

{---I
FUNCTION TESTCHR:BYTE; EXTERNAL;

{---I
FUNCTION RAND:REAL; EXTERNAL;

{---I
PROCEDURE EXECPROG(COMMAND:STRING136;V AR;
RETURNCODE:INTEGER); EXTERNAL;

{---I
{new sprite handling routines}

PROCEDURE SAVEAREA1(V AR X,Y:INTEGER);
VAR XT,I,YT:INTEGER;

BEGIN;

XT:=X-4; YT:=Y-8;
FOR 1:=1 TO 80 DO BEGIN;

IF XT=X+4 THEN BEGIN;

XT:=X-4;

YT:=YT+1;

184.

END;
SPRITESA VE[I]:=ENQPIXEL(XT,YT);

XT:=XT+1;
END;

END; {saveareal}

PROCEDURE PLOTSPRITECHAR(V AR X,Y:INTEGER);

BEGIN;

SETFONT(l);
PLOTTEXT(X-4,Y-8,CHR(94»;
SETFONT(O);

END; {plotspritechar}

PROCEDURE REDISPLA YSA VEAREA(V AR X,Y:INTEGER);
VAR XT,YT,I:INTEGER;

BEGIN;

XT:=X-4; YT:=Y-8;

FOR 1:=1 TO 80 DO BEGIN;

END· ,

IF XT=X+4 THEN BEGIN;

XT:=X-4;

YT:=YT+1;
END;
SETPIXEL(XT,YT,SPRITESAVE[I]);

XT:=XT+1;

END; {redisplaysavearea}

PROCEDURE DRAWSPRITE1(VAR X,Y:INTEGER);

BEGIN;
SAVEAREAl(X,Y);

PLOTSPRITECHAR(X, Y);

END; {drawspritel}

PROCEDURE MOVESPRITEl(VAR X,Y:INTEGER; NX,NY:INT);
BEGIN;

IF «X<>NX)OR(Y<>NY» THEN BEGIN;
RED ISPLA YSA VEAREA(X, Y);

X:=NX;

Y:=NY;
SAVEAREAl(X,Y);
PLOTSPRITECHAR(X,Y);

END;

185.

END; (movesprite1)

PROCEDURE ERASESPRITE1(VAR X,Y:INTEGER);

BEGIN;
REDISPLA YSA VEAREA(X, Y);

END; (erasesprite1)

(---)
PROCEDURE READSCREEN;

V AR newx,newy:INT;

NOTSELECTED:BOOLEAN;

R1:RECT;

BEGIN;

LEFTB:=F ALSE; RIGHTB:=F ALSE; NOTSELECTED:=TRUE;

ICODE:='X';

DRA WSPRITEl(OLDX,OLDY);

WHILE NOTSELECTED DO BEGIN;

TESTCHAR:=TESTCHR;

IF TESTCHAR=255 THEN BEGIN;

CHARIN:=GETCHAR;

NOTSELECTED:=F ALSE;
END

ELSE BEGIN;

ENQLOCATION(DEVMOUSE,NEWX,NEWY);

IF LEFTB OR RIGHTB THEN BEGIN

LEFTB:=FALSE; RIGHTB:=FALSE;

NOTSELECTED:=F ALSE;

IF (NEWY >190) AND (NEWY <235)

THEN BEGIN;

IF NEWX<106 THEN

ELSE

IF NEWX<212 THEN

ELSE

IF NEWX<318 THEN

ELSE

186.

ICODE:='A'

ICODE:='B'

ICODE:='C'

IF NEWX<424 THEN
ICODE:='D'

ELSE

IF NEWX<S30 THEN
ICODE:='E'

ELSE ICODE:='F';

END' ,
END;
MOVESPRITE1(OLDX,OLDY,NEwx,NEWY);

OLDX:=NEWX; OLDY:=NEWY;
MOUSESWITCHES(LEFTB,RIGHTB);

END;
END;

erasesprite1(oldx,oldy);
END;{READSCREEN)

(---)
PROCEDURE CLEAR_SCR;

VAR R1:RECT;
BEGIN;

SETBRUSHCOLOUR(l);
SETRECT(R1,6,S,633,189);

FILLRECTCR1);

END; (clear_scrJ

(---)
PROCEDURE GETNAME;

VAR I,J,XCOORD:INTEGER;
NOTFINISHED:BOOLEAN;

R1:RECT;
F:FILE OF CHAR;

BEGIN;
CLEAR_SCR;

PLOTTEXT(130,lS0,'Make sure your STORY DISK is in

the drive !!');

PLOTTEXT(170,130,'Press any key when ready to
continue. ');

TESTCHAR:=O;
SETRECT(R1,470,236,630,24S);
FILLRECT(R1);

187.

REPEAT TESTCHAR:=TESTCHR UNTIL

TESTCHAR=255;
CHARIN:=GETCHAR;

CLEAR_SCR;

IF NOT(FSTAT('A:USERNAME.SYS'» THEN BEGIN;

PLOTTEXT(130,170,'Please enter your

name (maximum 20 characters).');

PLOTTEXT(230,152,'[]');

XC:=238; YC:=152; 1:=1;
FOR J:=l TO 20 DO INCHAR[J]:=' ';

PLOTTEXT(XC,150,CHR(95»;

NOTFINISHED:=TRUE;

WHILE NOTFINISHED=TRUE DO BEGIN;

TESTCHAR:=O;

REPEAT TESTCHAR:=TESTCHR UNTIL TESTCHAR=255;

CHARIN:=GETCHAR;
INCHAR[I):=CHR(CHARIN);

IF «(CHARIN>31)AND(CHARIN<126» OR

(CHARIN=8) OR (CHARIN=13»

THEN BEGIN;
IF INCHAR[I]=CHR(13) THEN

ELSE

BEGIN

NOTFINISHED:=F ALSE

IF INCHAR[I]=CHR(8) THEN BEGIN

IF I > 1 THEN BEGIN

XC:=XC-8;
SETTEXTCOLOUR(l);

PLOTTEXT(XC,YC,CHR(219);

PLOTTEXT(XC+8,22 ,CHR(219»;

SETTEXTCOLOUR(3);

PLOTTEXT(XC,150,CHR(95»;

1:=1-1;

END;

END

ELSE BEGIN;

IF 1<21 THEN BEGIN

188.

END;

END;

PLO'ITEXT(XC,YC,INCHAR[I));

XC:=XC+8; 1:=1+1;

END;
END· ,

END;

BEGIN;

IF 1<>21 THEN BEGIN;
SETTEXTCOLOUR(l);
PLOTTEXT(XC-

8,142,CHR(219»;
SETTEXTCOLOUR(3);

PLOTTEXT(XC,150,CHR(95»;
END;

ASSIGN(F,'A:USERNAME.SYS');
REWRITE(F);

XC:=470; J:=1;
REPEAT

WRITE(F ,INCHAR[J));
IF «ORD(INCHAR[J))>31)AND

(ORD(INCHAR[J)<126)) THEN

PLOTTEXT(XC,236,INCHAR[J);

XC:=XC+8;
END;

J:=J+l;
UNTIL J=21;
CLOSE(F);

CLEAR_SCR;
END ELSE BEGIN;

ASSIGN(F,'A:USERNAME.SYS');
RESET(F);

XC:=470;
WHILE NOT(EOF(F» DO BEGIN;

READ(F,CH);

IF «ORD(CH»31)AND
(ORD(CH)<126» THEN BEGIN;

189.

END· ,

END;
END;

PLOTTEXT(XC,236,CH);

XC:=XC+8;

CLOSE(F);

END; (getname)

{---I
PROCEDURE GETDIRANDNAME;
VAR RC:INTEGER;

F:FILE OF CHAR;
BEGIN;

GETNAME;
EXECPROG('\MICK\DIR1' ,RC);
ASSIGN(F ,'F:STODIR3.SYS');
RESET(F);

DINDX:=O;
WHILE NOT(EOF(F)) DO BEGIN;

DINDX:=DINDX+1;
READ(F ,DIRAREA[DINDX]);

IF DINDX=400 THEN EXITPROG(O);
END;
CLOSE(F);

END; {getdirandnamel

(--I
PROCEDURE SETUP;
var r:rect;

BEGIN;

GRAPHICSON;
GINPUTON(DevMouse);

IF (GOErr MOD 65536) <> 0 THEN BEGIN

GOErr := GOErr MOD 65536;
WRITELN(,Sub-bios error starting up graphics');
WRITELN('Error code = ',GOErr);

CASE GOErr OF

8062h : WRITELNCGraphics in use');
8064h : WRITELN('Graphics already on');

8063h : WRITELNCGraphics rejected');

190.

OTHERWISE
WRITELN('Unexpected error while trying to start up
graphics');

END;
EXITPROG(1);

END;

IF GIERR<>O THEN
WRITELN('Error starting up input.');

r.xl := 1; r.yl := 1;
r.xr := 638; r.yr := 248; {set up tracking rectangle}
GINPUTTRACK(DEVMOUSE,R);

IF GIERR<>O THEN WRITELN('Error setting up tracking
rectangle ');

SETCOLOURENT(O,lightcyan);
SETCOLOURENT(l,white);
SETCOLOURENT(2,darkgrey);
SETCOLOURENT(3,black);

SETBORDERCOLOURGightblue);
END; {SETUP}

{---I
PROCEDURE SCREEN1;
VAR R1,R2:RECT;

I,XCOORD:INT;
VCHAR:CHAR;

BEGIN;

SETBRUSHCOLOUR(l);
SETBRUSHSTYLE(solid);
SETBRUSHMODE(greplace);

SETPENCOLOUR(2);

SETPENSTYLE(solid);
SETPENMODE(greplace);

MOVETO(O,O); {draw screen outline}
LINETO(O,249);
LINETO(639,249);

LINETO(639,O);
LINETO(O,O);

MOVETO(l,l);
LINETO(1,248);

191.

LINETO(638,248);
LINETO(638,1);

LINETO(l,l);

moveto(5,4);
lineto(5,190);
lineto(634,190);
lineto(634,4);

(draw main window)

lineto(5,4);

setrect(r 1,6,5,633, 189);
fillrect(r1);
moveto(0,235);
lineto(649,235);
SETRECT(R2,2,236,637 ,247);

FILLRECT(R2);

MOVETO(106,190);

LINETO(106,235);

MOVETO(212,190);

LINETO(212,235);

MOVETO(318,190);
LINETO(318,235);

MOVETO(424,190);

LINETO(424,235);

MOVETO(530,190);

LINETO(530,235);

SE'ITEXTCOLOUR(3);
SETCHARUP(O);

Iwrite top bar message) SETCHARHEIGHT(I);
SETCHARWIDTH(1);

SETFONT(PRIMARYFONT);

PLOTTEXT(1,236,' MULTISTORY');

OLDX:=200; OLDY:=100;

END; (setupscreen)

1---)
PROCEDURE PRINTERICON;

VAR R2,R3:RECT;

BEGIN;

SETBRUSHCOLOUR(2);
SETRECT(R2,337 ,203,407 ,215);

192.

FILLRECT(R2);
SETRECT(R3,352,215,392,223);

SETBRUSHCOWUR(1);
FILLRECT(R3);
DEFPENSTYLE(63967);
SETPENSTYLE(6);

SETPENCOLOUR(3);
SETPENCOLOUR2(1);
MOVETO(353,217);
LINETO(391,217);
DEFPENSTYLE(40686);
MOVETO(353,221);
LINETO(391,221);

{draw printer icon}

END; {printericon}

{---J
PROCEDURE EXITANDHELPICONS;
BEGIN;

SETCHARHEIGHT(3);
SETCHARWIDTH(3);

PLOTTEXT(570,196,'X');{draw exit and help icons}
PLOTTEXT(469 ,196,'?');

END; {exitandhelpicons}

{---I
PROCEDURE TOPLEVEL; {draw top level screen}
VAR R2,R3:RECT;

BEGIN;

SCREEN1;
setbrushcolour(0);
setrect(r2,545,191,625,201);
fillrect(r2);

PLOTTEXT(184,236,' TOP LEVEL ');
SETIEXTCOWUR(2);

PLOTTEXT(1,224,' CREATE WORD
PRINTER HELP EXIT');

STORY

PLOTTEXT(1,190,' STORY PROCESS INFORMATION ');
PLOTTEXT(545,190,'MULTISTORY');

EXIT ANDHELPICONS;
PRINTERICON;

193.

1------------------------------------)
SETPENSTYLE(1);

SETPENCOLOUR(2);

ARCELLIPSE(267 ,212,35,10 ,0,0,0);

ARCELLIPSE(267 ,212,35,7 ,0,0,0);

FLOODFILL(267,212);

SETBRUSHCOLOUR(3);

FILLCIRCLE(267,212,6);

SETBRUSHCOLOUR(I);

FILLCIRCLE(267 ,212, 1);

1--------------------------------)

(draw eye icon)

MOVETO(145,201);

LINETO(145,223);

LINET0(175,223);

LINETO(175,201);

LINETO(145,201);

FLOODFILL(152,206);

SETPENSTYLE(6);

SETPENCOLOUR(3);

MOVETO(147,220);

LINETO(173,220);

MOVET0(173,218);

LINETO(147,218);

MOVETO(173,216);

LINETO(147,216);

MOVETO(147,214);

LINETO(173,214);

MOVETO(147,212);

LINET0(173,212);

(draw word process icon)

1-------------------------------------)
SETPENSTYLE(l);

SETPENCOLOUR(2);

MOVETO(33,201);

LINETO(33,223);

LINETO(73,223);

LINETO(73,201);

LINETO(33,201);

SETBRUSHCOLOUR(2);

(draw create story icon)

194_

FLOODFILL(60,210);
SETBRUSHCOLOUR(l);
FILLCIRCLE(53,212,2);
SETTEXTCOLOUR(l);
SETCHARHEIGHT(1);

SETCHARWIDTH(1);
PLO'ITEXT(52,213,CHR(223»;
SETTEXTCOLOUR(3);

END; (toplevel)

(---I
PROCEDURE FINISHOFF;

BEGIN;
SETBORDERCOLOUR(black);

GRAPHICS OFF;
GINPUTOFF(devmouse);
WRITE(CHR(27),'[-G'); (cursor visible)
WRITE(CHR(27),'c'); {reset to initial state}

END; (FINISHOFF)

(---I
PROCEDURE GETSTORYDIRECTORY;

VAR
YC,XC,I,J,XCOORD,LlNEC,COUNT:INT;

NOTFINISHED,REALL YFINISHED:BOOLEAN;

INCHARSTRING:STRING;
R1:RECT;

BEGIN;
SETTEXTCOLOUR(3); setcharup(O); setcharheight(l);

setcharwidth(1); setfont(primaryfont);

PLOTTEXT(35,160,'You already have the following stories :-');

XC:=35; YC:=130; 1:=1; LlNEC:=O;
SETTEXTCOLOUR(2);

WHILE I<=DINDX DO BEGIN;

COUNT:=O;
WHILE

«DIRAREA[I]<>'.')AND(I<=DINDX)AND

(COUNT<8» DO BEGIN;

COUNT:=COUNT+1;
PLOTTEXT(XC,YC,DlRAREA[I]);

195.

THEN

BEGIN

1:=1+1;
XC:=XC+8;
END;

IF «COUNT<>8)AND(l<=DINDX»
"-"' ...

FOR J:=COUNT TO 7 DO
.. ,

XC:=XC+40;.

LINEC:=UNEC+ 1;·

END;

IF LINEC=5 THEN BEGIN;

XC:=35;
YC:=YC-10;

LINEC:=O;

END' ,

PLOTTEXT(XC,YC,' ');

XC:=XC+8;
1:=1+1;

END;
REALLYFINISHED:=FALSE; .
SETTEXTCOLOUR(3);

PLOTTEXT(35,50,'Enter the name of the story you wish to
create.');

PLOTTEXT(80,32,'[]');

XC:=88;YC:=32; 1:=1;
FOR J:=l TO 10 DO INCHAR[J]:=' ';

PLOTTEXT(XC,30,CHR(95»;
WHILE REALL YFINISHED=F ALSE DO BEGIN;

NOTFINISHED:=TRUE;
WHILE NOTFINISHED=TRUE DO BEGIN;

READ SCREEN;

IF TESTCHAR=O THEN BEGIN

IF ICODE='F' THEN BEGIN;

END

ELSE BEGIN;

196.

NOTFINISHED:=F ALSE;

REALL YFINISHED:=TRUE;

END

.1
~

i ,

I

1
;

END;

INCHARSTRING:="; NEWCHARSTRING:=";

IF ICODE='X' THEN BEGIN;

SETRECT(Rl,250,10,630,30);

SETBRUSHCOLOUR(1);
FILLRECT(Rl);

FOR J:=I TO 10 DO INCHAR[J]:=' ';

FOR J:=1 TO (1-1) DO

INCHARSTRING:=

CONCAT(lNCHARSTRING,INCHAR[J]);

FOR J:=1 TO 8 DO

NEWCHARSTRING:=

CONCAT(NEWCHARSTRING,INCHAR[J]);

NEWCHARSTRING:=";

NEWCHARSTRING:=CONCAT('A:',INCHARSTRING,'.STY');

IF

(NOT(CHECKFN(NEWCHARSTRING» OR

(FSTAT(NEWCHARSTRING»)

THEN BEGIN;

SETTEXTCOLOUR(2);

PLOTTEXT(250,1O,'You must
enter a valid new file name.');

SETTEXTCOLOUR(3); END

ELSE BEGIN;

REALL YFINISHED:=TRUE; END;

END;

END;

IF ICODE='X' THEN BEGIN;

XCOORD:=360;

FOR 1:=1 TO 8 DO BEGIN;

PLOTTEXT(XCOORD,236,INCHAR[I]);

XCOORD:=XCOORD+8;
END;

END;

198.

END; Igetstorydirectory)

1---)
PROCEDURE CREATE_TOP _ICONS;

VAR Rl:RECT;

I:INTEGER;

BEGIN;

SETBRUSHCOLOUR(1);

SETRECT(R1,184,236,469,246);
FILLRECT(Rl);

SE'ITEXTCOLOUR(3);

PLO'ITEXT(100,236,' CREATE LEVEL ');

SETBRUSHCOLOUR(O);

SETRECT(R1,2,191,317,234);

FILLRECT(Rl);

SETRECT(R1,545,191,630,200);

FILLRECT(Rl);

SE'ITEXTCOLOUR(2);

PLOTTEXT(564,190,'BACK');

SE'ITEXTCOLOUR(3);

END; Icreate_top_icons)

1---)
PROCEDURE GETTYPE;

BEGIN;

READSCREEN;

IF (OLDY <143) AND (OLDY>129) THEN BEGIN;

IF (OLDX<173) AND (OLDX>59) THEN

STYPE:=l;

IF (OLDX<373) AND (OLDX>259) THEN

STYPE:=2;

IF (OLDX<573) AND (OLDX>459) THEN

~
STYPE:=3;

END
ELSE BEGIN;
IF (OLDY<93) AND (OLDY>79) THEN BEGIN;

199.

IF (OLDX<173) AND (OLDX>59) THEN

STYPE:=4;
IF (OLDX<373) AND (OLDX>259) THEN

STYFE:=5;
IF (OLDX<573) AND (OLDX>459) THEN

STYFE:=6;
END;

END;

END; (gettype)

1---}
PROCEDURE GETYCOORD(VAR ATTRIB,YCOORD:INT);

BEGIN;

CASE ATTRIB OF
1:YCOORD:=160;

2:YCOORD:=150;

3:YCOORD:=140;

4:YCOORD:=130;

5:YCOORD:=120;

6:YCOORD:=110;

7:YCOORD:=100;

8:YCOORD:=90;

9:YCOORD:=80;

10:YCOORD:=70;

11:YCOORD:=60;

12:YCOORD:=50;

13:YCOORD:=40;

END;

END; Igetycoord}

1--}
PROCEDURE GETATTRIBUTES;

VAR

XCOORD,YCOORD,COUNT,SECTOR,TRACK,ATTRIB,SELECT:I

NT;

Rl:RECT;

INCHAR:CHAR;

200.

BEGIN;
RESET(F);

READSCREEN;
IF «OLDX>182) AND (OLDX<32S)

THEN BEGIN;

SELECT:=4

SELECT:=5

ATTRIB:=ll

ATTRIB:=10

ATTRIB:=9

ATTRIB:=8

ATTRIB:=7

ATTRIB:=S

ATTRIB:=5

ATTRIB:=4

ATTRIB:=3

ATTRIB:=2

AND (OLDY>40) AND (OLDY<170»

IF OLDX<20S THEN SELECT:=1

ELSE IF OLDX<230 THEN SELECT:=2

ELSE IF OLDX<254 THEN SELECT:=3

ELSE IF OLDX<278 THEN

ELSE IF OLDX<302 THEN

ELSE SELECT:=S;

IF OLDY<50 THEN ATTRIB:=13

ELSE IF OLDY<SO THEN ATTRIB:=12

ELSE IF OLDY<70 THEN

ELSE IF OLDY<80 THEN

ELSE IF OLDY<90 THEN

ELSE IF OLDY<100 THEN

ELSE IF OLDY <110 THEN

ELSE IF OLDY <120 THEN

ELSE IF OLDY<130 THEN

ELSE IF OLDY<140 THEN

ELSE IF OLDY<150 THEN

ELSE IF OLDY<160 THEN

ELSE ATTRIB:=I;

XCOORD:=340;

201.

BEGIN;

UNTIL

UNTIL

BEGIN;

GETYCOORD(ATTRIB,YCOORD);

SETRECT(Rl,340,YCOORD,630,YCOORD+10);
SETBRUSHCOWUR(l);
FILLRECT(Rl);

IF SELECT=6 THEN BEGIN;
ATTRIBUTE[ATTRIB):=O;
END

ELSE BEGIN;

COUNT:=O;
SECTOR:=(ATTRIB-l)*5;

WHILE COUNT<SECTOR DO

REPEAT READ(F,INCHAR)

INCHAR=CHR(13);
READ(F,INCHAR);

COUNT:=COUNT+1;
END;
TRACK:=SELECT-1; COUNT:=O;
WHILE COUNT<TRACK DO BEGIN;

INCHAR=CHR(13);

REPEAT READ(F,INCHAR)

READ(F ,INCHAR);

COUNT:=COUNT + 1;
END;
READ(F,INCHAR);

WHILE INCHAR<>CHR(13) DO

PLOTTEXT(XCOORD,YCOORD,INCHAR);

XCOORD:=XCOORD+8;
READ(F ,INCHAR);

END;

A TTRIBUTE[ATTRIB]:=SELECT;

END;

202.

END;
END; (getattributesl

(---I
PROCEDURE CREATE2_4;
VAR Y:INT;

Rl:RECT;
BEGIN;

SETTEXTCOLOUR(1);

PLOTTEXT(270,236,CHR(219»;
SETTEXTCOLOUR(3);
PLOTTEXT(270,236,'5');

PLOTTEXT(lO,179,'Choose the attributes of your
character (on a 1 to 5 scale).');

PLOTTEXT(10,160,'1)HEAL TH');
PLOTTEXT(lO,150,'2)ATTRACTIVENESS');
PLOTTEXT(10,140,'3)CALMNESS');
PLOTTEXT(10,130,'4)DETERMINATION');
PLOTTEXT(10,120,'5)FRIENDLINESS');
PLOTTEXT(10,llO, '6)HUMOUR');

PLOTTEXT(10,100,'7)INTELLIGENCE');
PLOTTEXT(10,90,'8)IMAGINATION');
PLOTTEXT(10,80,'9)KINDNESS');

PLOTTEXT(10,70,'10)SELF-CONFIDENCE');
PLOTTEXT(10,60,'11)SKILLFULNESS');
PLOTTEXT(10,50,'12)TRUTHFULNESS');
PLOTTEXT(10,40,'13)STRENGTH');

Y:=160;
WHILE Y>39 DO BEGIN;

END;

PLOTTEXT(190,Y,'1 2 3 4 5 *');

Y:=Y-I0;

PLOTTEXT(10,6,'When you have finished point to the
CONTINUE box');

SETRECT(Rl,452,6,532,36);

SETBRUSHCOLOUR(2);
FILLRECT(Rl);

SETTEXTCOLOUR(l);
PLOTTEXT(460,16,'CONTINUE');

203.

SETIEXTCOLOUR(3);
FOR Y:=l TO 13 DO ATIRmUTE[y]:=O;
ASSIGN(F,'C:ATTFILE.STO');
SETIEXTCOLOUR(2);
REPEAT GETATIRmUTES UNTIL ((lCODE='F') OR

((OLDX>452) AND (OLDX<532)
AND (OLDY>6) AND (OLDY<36»);

SETIEXTCOLOUR(3);
IF ICODE<>'F' THEN BEGIN;

ENDCREATE:=TRUE;
LEFTB:=FALSE;
ICODE:='F';

END;
END; {create2_41

(---I
PROCEDURE GETCHARACTER;
V AR CHARSTRING, TEMPSTRING:STRING;

XCOORD,YCOORD:INT;
INPUTCHAR:CHAR;

R1:RECT;
BEGIN;

BEGIN;

TEMPSTRING:=";
WHILE ((WORKAREA2[TEMPJ<>',') AND

(WORKAREA2[TEMPJ<>'>'» DO

TEMPSTRING:=CONCAT(TEMPSTRING,WORKAREA
2[TEMP]);

STO');

TEMP:=TEMP+1;
END;
CHARACTER:=TEMPSTRING;
CHARSTRING:=CONCATCC:CHAR',TEMPSTRING,'.

ASSIGN(F,CHARSTRING);
RESET(F);

XCOORD:=75; YCOORD:=120;
WHILE NOT EOF(F) DO BEGIN;

READ(F ,INPUTCHAR);

204.

IF INPUTCHAR<>CHR(13) THEN

BEGIN;

PLOTTEXT(XCOORD,YCOORD,INPUTCHAR);

XCOORD:=XCOORD+8;

END

END;

ELSE BEGIN;

XCOORD:=75;

YCOORD:= YCOORD-10;
READ(F ,INPUTCHAR);

END;

IF WORKAREA2[TEMP] = '>' THEN TEMP:=2

ELSE TEMP:=TEMP+1;

READSCREEN;
SETRECT(R1,61,61,589,139);

SETBRUSHCOLOUR(1);

FILLRECT(Rl);
END; (getcharacter)

(---)
PROCEDURE CREATE2_3;

VAR R1:RECT;

BEGIN;
SETTEXTCOLOUR(1);

PLOTTEXT(270,236,CHR(219»;

SETTEXTCOLOUR(3);

PLOTTEXT(270,236,'4');

PLOTTEXT(10,175,'Story type chosen = ');

CASE STYPE OF
1:PLOTTEXT(170,175,'REVENGE');

2:PLOTTEXT(170, 17 5,'GROWING UP');

3:PLOTTEXT(170,175,'F ANTASY/HORROR');

4:PLOTTEXT(170,175,'ANIMALS');

5:PLOTTEXT(170,175,'LOVE');

6:PLOTTEXT(170,175,'CONFLICT');

END;

MOVETO(5,174);

LINETO(634,174);

205.

story :-');
PLOTTEXT(10,150,'Here is a main character for your

SETRECT(Rl,542,1O,622,40);

SETBRUSHCOLOUR(2);
FILLRECT(Rl);
SETRECT(Rl,452,lO,532,40);
FILLRECT(Rl);
SETTEXTCOLOUR(1);
PLOTTEXT(460,20,'CONTINUE');
PLOTTEXT(546,12,'CHARACTER');

PLOTTEXT(558,27,'ANOTHER');
SETTEXTCOLOUR(3);
MOVETO(60,140);
LINETO(590,140);

LINETO(590,60);
LINETO(60,60);
LINETO(60,140);

TEMP:=2;
REPEAT GETCHARACTER UNTIL ((ICODE='F') OR

«OLDX>452) AND (OLDX<532)
AND (OLDY>lO) AND (OLDY<40)));

IF ICODE<>'F' THEN BEGIN;
CLEAR_SCR;
REPEAT CREATE2_4 UNTIL

ICODE='F';
CLEAR_SCR;
IF LEFTB THEN ICODE:='X';

END;

END; {create2_31

{---I
PROCEDURE DISPLAY_SIT;
VAR SIT,SITSTRING:STRING;

XCOORD,YCOORD,I:INT;

INPUTCHAR:CHAR;
Rl:RECT;

ENDFOUND:BOOLEAN;

BEGIN;
ENDFOUND:=FALSE;

206.

SETRECT(Rl,6l,6l,589,l39);
SETBRUSHCOLOUR(1);
FILLRECT(Rl);
IF INPNO>0.5 THEN BEGIN;

ELSE BEGIN;

IF RN=8 THEN BEGIN;
RN:=l;

END
E~SEBEGIN;

RN:=RN+l;
END

END

IF RN=l THEN BEGIN;
RN:=8;

END
ELSE BEGIN;

RN:=RN-1;
END;

END;
STR(RN,SIT);

SITUATION:=RN;
CASE STYPE OF

l:SITSTRING:=CONCAT('C:SIT',SIT,'.','REV');
2:SITSTRING:=CONCAT('C:SIT',SIT,'.','GRO');
3:SITSTRING:=CONCAT('C:SIT',SIT,'.','FHR');
4:SITSTRING:=CONCAT('C:SIT',SIT,'.','ANI');
5:SITSTRING:=CONCAT('C:SIT',SIT,'.','LOV');
6:SITSTRING:=CONCAT('C:SIT',SIT,'.','CON');

END;
ASSIGN(F,SITSTRING);
RESET(F);

XCOORD:=75; YCOORD:=120; 1:=1;
WHILE NOT EOF(F) DO BEGIN;

READ(F ,INPUTCHAR);

IF INPUTCHAR='<' THEN
ENDFOUND:=TRUE;

IF NOT ENDFOUND THEN BEGIN;

207.

IF INPUTCHAR<>CHR(13)
THEN BEGIN;

PLO'ITEXT(XCOORD,YCOORD,INPUTCHAR);

XCOORD:=XCOORD+8;
END

ELSE BEGIN;

XCOORD:=75;

YCOORD:= YCOORD-lO;
READ(F ,INPUTCHAR);

END

END ELSE BEGIN;

WORKAREA2[1):=INPUTCHAR;

1:=1+1;
END;

END;

READSCREEN;

END; Idisplay_sit}

1---I
PROCEDURE GETSTOSIT;

VAR R1:RECT;

BEGIN;
MOVETO(60,140);

LINETO(590,140);

LINETO(590,60);

LlNETO(60,60);

LINETO(60,140);

SETRECT(Rl,542,lO,622,40);

SETBRUSHCOLOUR(2);

FILLRECT(Rl);

SETRECT(Rl,452,lO,532,40);

FILLRECT(Rl);

SETTEXTCOLOUR(l);

PLOTTEXT(460,20,'CONTINUE');

PLO'ITEXT(546,12,'SITUATION');

PLOTTEXT(558,27,'ANOTHER');

SETTEXTCOLOUR(3);

208.

INPNO:=RAND;

IF INPNO<0.125 THEN RN:=1

ELSE IF INPNO<0.25 THEN RN:=2

ELSE IF INPNO<0.375 THEN RN:=3

ELSE IF INPNO<0.5 THEN

RN:=4

ELSE IF INPNO<0.625
THENRN:=5

ELSEIF'
INPNO<0.75 THEN

RN:=6

ELSE IF
INPNO<0.875

THEN
RN:=7

ELSE
RN:=8;

INPNO:=RAND;

REPEAT DISPLAY_SIT UNTIL «ICODE = 'F') OR

((OLDX>452) AND (OLDX<532)

AND (OLDY>10) AND (OLDY<40)));

IF ICODE<>'F' THEN BEGIN;

ICODE='F';

TEMP:=2;

CLEAR_SCR;

REPEAT CREATE2_3 UNTIL

IF LEFTB THEN ICODE:='X';

CLEAR_SCR;

END;
END; {GETSTOSIT}

{---I
PROCEDURE CREATE2_2;

BEGIN;
SETTEXTCOLOUR(1);

PLOTTEXT(270.236.CHR(219));
SETTEXTCOLOUR(3);

PLOTTEXT(270,236,'3');

209.

,);

PLO'ITEXT(10,175,'Story type chosen = ');

CASE STYPE OF

1:PLO'ITEXT(170,175,'REVENGE');

2:PLO'ITEXT(170,175,'GROWING UP');

3:PLO'ITEXT(170,175,'FANTASYIHORROR');
4:PLOTTEXT(170,175,'ANIMALS');

5:PLOTTEXT(170,175,'LOVE');

6:PLO'ITEXT(170,175,'CONFLICT');

END;
MOVETO(5,174);

LINETO(634,174);

PLOTTEXT(10,150,'Here is a situation for your story:-

GETSTOS1T;

END; {CREATE2_2J

(---J
PROCEDURE CREATE2_1;

VAR 1,J,XCOORD,YCOORD:1NTEGER;

BEGIN;
SE'ITEXTCOLOUR(l);

PLOTTEXT(270,236,CHR(219»;

SE'ITEXTCOLOUR(3);

PLO'ITEXT(270,236,'2');

PLO'ITEXT(1O,170,'Select one of the following story types :-');
PLOTTEXT(89,131,'REVENGE');

PLOTTEXT(277,131,'GROWING UP');

PLOTTEXT(461,131,'FANTASYIHORROR');

PLO'ITEXT(89,81,'AN1MALS');

PLOTTEXT(301,81,'LOVE');

PLOTTEXT(485,81,'CONFLICT');

XCOORD:=60; YCOORD:=130;

FOR 1:=1 TO 2 DO BEGIN;

FOR J:=l TO 3 DO BEGIN

MOVETO(XCOORD,YCOORD);

LINETO(XCOORD+ 112,YCOORD);

LINETO(XCOORD+ 112,YCOORD+ 12);

LINETO(XCOORD,YCOORD+ 12);

L1NETO(XCOORD,YCOORD);

210.

XCOORD:=XCOORD+200;

END;

YCOORD:=80; XCOORD:=60;

END;
STYPE:=9;
REPEAT GETTYPE UNTIL (ICODE='F') OR (STYPE<>9);

IF ICODE<>'F' THEN BEGIN;
CLEAR_SCR;

REPEAT CREATE2_2 UNTIL ICODE='F';

IF LEFTB THEN ICODE:=X';

CLEAR_SCR;
END;

END; {create2_1l

{---I
PROCEDURE CREATESTORY;

BEGIN; CLEAR_SCR;

CREATE_TOP _ICONS;
SETTEXTCOLOUR(1);

PLOTTEXT(270,236,CHR(219»;

SETTEXTCOLOUR(3);
PLOTTEXT(270,236,'1');

GETSTORYDIRECTORY;

CLEAR_SCR;

IF ICODE<> 'F' THEN BEGIN;

REPEAT CREATE2_1 UNTIL ICODE='F';

IF LEFTB THEN ICODE:='X';

CLEAR_SCR;

END;
END; {create story}

{---I
PROCEDURE CREATE2_5;

V AR I,xc:int;

Fl:TEXT;

OUT,ST,STl:STRING;

BEGIN;

ENDCREATE:=FALSE; XC:=196;

MOVETO(20, 160);

LINETO(280,160);

211.

LINETO(280,120);
LINETO(20,120);
LINETO(20,160);

PLOTTEXT(30,140,'The new story file .. ');
SETTEXTCOLOUR(2);

FOR 1:=1 TO 8 DO BEGIN;

DINDX:=DINDX+1;
DIRAREA[DINDX]:=INCHAR[I];

PLOTTEXT(XC,140,DlRAREA[DINDX]);

XC:=XC+8;
END;
SETTEXTCOLOUR(3);

PLOTTEXT(30,130,'has been created.');
ASSIGN(F1,NEWCHARSTRING);
REWRITE(F1);

STR(STYPE,ST);
OUT:=CONCAT('storytype(',ST,').');
WRITELN(F1,OUT);
STR(SITUATION,ST);

OUT:=CONCAT('storysit(' ,ST, '). ');
WRITELN(F1,OUT);
OUT:=CONCAT('storychar(',CHARACTER,').');
WRITELN(F1,OUT);

FOR 1:=1 TO 13 DO BEGIN;
STR(ATTRIBUTE[I],ST);
STR(l,STl);

OUT:=CONCAT(' att' ,ST1,'(, ,ST,'). ');
WRITELN(F1,OUT);

END;
CLOSE(F1);

END; Icreate2_5}

1---}
PROCEDURE WP _TOP_ICONS;
VAR R1:RECT;

BEGIN;

CLEAR_SCR;
SETBRUSHCOLOUR(1);

212.

SETRECT(R1,184,236,469,246);
FILLRECT(R1);

SETIEXTCOLOUR(3);
PLOTIEXT(100,236,' WORD PROCESSOR ');
SETBRUSHCOLOUR(O);
SETRECT(R1,2,191,211,234);
FILLRECT(R1);

SETRECT(R1,545,191,630,200);
FILLRECT(R1);
SETIEXTCOLOUR(2);
PLOTTEXT(564, 190, 'BACK');

SETIEXTCOLOUR(3);
END; {wp_top_icons}

{--}
PROCEDURE PLOTCUR;
BEGIN;

SETTEXTCOLOUR(2);

PLOTIEXT(XC-4,YC,CHR(179»;
SETIEXTCOLOUR(3);

END; {plotcur}

{---}
PROCEDURE DELETE CUR;

BEGIN;
SETIEXTCOLOUR(l);

PLOTIEXT(XC-4,YC,CHR(179»;
SETIEXTCOLOUR(3);

END; {delete cur}

{--}
PROCEDURE DELETELlNE(VAR DY:INTEGER);

VAR R1:RECT;

BEGIN;
SETRECT(R1,20,DY,590,DY+10);
FILLRECT(R1);

END; {deleteline}

{---}
PROCEDURE SCROLLSCREEN1;

VAR FINISHED,LINEFINISHED:BOOLEAN;
DY,COUNT,XT:INTEGER;

213.

R1:RECT;
BEGIN;

BEGIN;

FINISHED:=FALSE;
DY:= 170; TINDEX:=PBEGIN;
SETBRUSHCOLOUR(l);

WHILE NOT FINISHED DO BEGIN;
DELETELINE(DY);

XT:=20;
LINEFINISHED:=F ALSE; COUNT:=O;

WHILE NOT LINEFINISHED DO

IF (TINDEX>=WPENDMARKER)
THEN BEGIN;

THEN BEGIN;

LINEFINISHED:=TRUE;
FINISHED:=TRUE;

END ELSE BEGIN;
IF WPAREA[TINDEX]=CHR(13)

LINEFINISHED:=TRUE;
TINDEX:=TINDEX+2;

COUNT:=O;
END ELSE BEGIN;

IF COUNT>=69 THEN BEGIN;
COUNT:=O;

LINEFINISHED:=TRUE;

END

ELSE BEGIN;

PLOTTEXT(XT,DY,WPAREA[TINDEX));

TINDEX:=TINDEX+ 1;

COUNT:=COUNT+l;
XT:=XT+8;

END;
END;
END;

END;

DY:=DY-IO;

214.

IF «DY=10)OR(TINDEX>=WPENDMARKER» THEN

FINISHED:=TRUE;
END;
IF DY>10 THEN BEGIN;

SETRECT(R1,20,20,580,DY+I0);
FILLRECT(R1);

END;

END; (scrollscreenll

{---}
PROCEDURE MOVE SCREEN;

VAR NOOFCHARS:INTEGER;

R1:RECT;

BEGIN;

IF XC=580 THEN NOOFCHARS:=70
ELSE NOOFCHARS:=(XC-20)DIV 8;

IF WPAREA[wpINDEX-(NOOFCHAR8+1))=CHR(10)

THEN BEGIN;

70;

PBEGIN:=WPINDEX-NOOFCHARS;

YC:=170;
END ELSE BEG IN;

PBEGIN:=WPINDEX-NOOFCHARS-

YC:=160;
END;
SETRECT(R1,20,20,580,180);
FILLRECT(R1);

SCROLLSCREEN1;

END; {movescreen}

{---}
PROCEDURE NORMALINPUT;

BEGIN;

DELETECUR;
CH:=CHR(CHARIN);

WPAREA[WPINDEX):=CH;

WPINDEX:=WPINDEX+1;

WPENDMARKER:=WPENDMARKER+1;
IF «(CH=CHR(13))AND(YC=20))OR

«XC>=580)AND(YC=20))) THEN MOVESCREEN;

215.

IF CHARIN=13 THEN BEGIN;
WPAREA[wpINDEX]:=CHR(10);

WPINDEX:=WPINDEX+l;

WPENDMARKER:=WPENDMARKER+1;
XC:=20;
YC:=YC-10;

END ELSE BEGIN;
PLOTTEXT(XC,YC,CH);

IF XC<580 THEN XC:=XC+8
ELSE BEGIN;

XC:=20;
YC:=YC-10;

END;
END;
PLOTCUR;

END; {normalinput}

{--}
PROCEDURE INSERTCHAR;
BEGIN;

BEGIN;

DELETECUR;
CH:=CHR(CHARIN);
IF NOT«(CH=CHR(13»AND (YC=20»OR

«XC>=580)AND(YC=20») THEN

TINDEX:=TINDEX+1;
TEMPWP[TINDEX]:=CH;

IF CHARIN=13 THEN BEGIN;
TINDEX:=TINDEX+ 1;
TEMPWP[TINDEX]:=CHR(10);

XC:=20; YC:=YC-lO;
END ELSE PLOTTEXT(XC,YC,CH);

IF XC<580 THEN XC:=XC+8
ELSE BEGIN;

END;
END;

XC:=20;
YC:=YC-10;

216.

PLOTCUR;
TESTCHAR:=O;
READSCREEN;

END; (lNSERTCHAR)

{---}
PROCEDURE INSERTMODE;

VAR R1:RECT;
STARTWP,ENDWP,I,J,XT,YT:INT;

BEGIN;

BEGIN;

BEGIN;

SETBRUSHCOLOUR(l);

SETRECT(R1,XC,YC,610,YC+10);
FILLRECT(R1);

SETRECT(R1,20,10,610,YC);
FILLRECT(R1);

I:=WPINDEX; XT:=20;
SETTEXTCOLOUR(2);

WHILE «l<=WPENDMARKER)AND
(WP AREA[I]<>CHR(13»AND

«I-WPINDEX)<70» DO BEGIN;
PLOTTEXT(XT,10,WPAREA[I]);

XT:=XT+8;
1:=1+1;

END;
SETTEXTCOLOUR(3);

TINDEX:=O; LEFTB:=FALSE; RIGHTB:=FALSE;

REPEAT INSERTCHAR UNTIL LEFTB OR RIGHTB;
SETRECT(R1,20,10,610,20);

SETBRUSHCOLOUR(1);

FILLRECT(R1);

l:=WPINDEX; XT:=XC; YT:=YC;

WHILE «YT>10)AND(I<=WPENDMARKER»DO

IF WPAREA[l]=CHR(13) THEN

XT:=12; YT:=YT-10; 1:=1+1;

END ELSE
PLOTTEXT(XT ,YT, WPAREA[I]);

IF XT<600 THEN XT:=XT+8

217.

BEGIN;

ELSE BEGIN;

XT:=20; YT:=YT-10;
END;

1:=1+1;
END;
FOR l:=WPENDMARKER DOWNTO WPINDEX DO

WPAREA[I+TINDEX]:=WPAREA[fl;

J:=l;
FOR l:=WPINDEX TO <WPINDEX+TINDEX-l) DO

WPAREA[I]:=TEMPWP[J];

J:=J+l;
END;
WPINDEX:=WPINDEX+TINDEX;
WPENDMARKER:=WPENDMARKER+TINDEX;

END; (INSERTMODE)

1---)
PROCEDURE SCROLLSCREEN;
BEGIN;

SCROLLSCREENl;
IF «WPINDEX>PBEGIN)AND(WPINDEX<TINDEX»

THEN BEGIN;

ELSE BEGIN;

END;

END; Iscrollscreen)

PLOTCUR; END

XC:=20; YC:=170;
WPINDEX:=PBEGIN;
PLOTCUR;

1--)
FUNCTION CHECKEND:BOOLEAN;
VAR COUNT,TINDEX:INTEGER;

FINISHED:BOOLEAN;
BEGIN;

. FINISHED:=FALSE;

COUNT:=O;
TINDEX:=PBEGIN;

218.

BEGIN;

CHECKEND:=FALSE;
WHILE NOT FINISHED DO BEGIN;

IF TINDEX>=WPENDMARKER THEN

FINISHED:=TRUE;
CHECKEND:=TRUE;

END;
IF

«WPAREA[TINDEX]=CHR(13))OR(COUNT>=69)) THEN

END;
END; {checkend}

FINISHED:=TRUE;
COUNT:=COUNT+l;
TINDEX:=TINDEX+1;

{---}
PROCEDURE FINDPREV;
VAR TINDEX,LASTLINE,COUNT:INTEGER;
BEGIN;

TINDEX:=PBEGIN-3;
WHILE

«WPAREA[TINDEX]<>CHR(10))AND(TINDEX>1)) DO

TINDEX:=TINDEX-1;
IF TINDEX<>1 THEN TINDEX:=TINDEX+1;
COUNT:=O; LASTLINE:=TINDEX;
WHILE TINDEX«PBEGIN-2) DO BEGIN;

THEN BEGIN;

END;

IF WPAREA[TINDEX]=CHR(13)

COUNT:=O;
TINDEX:=TINDEX+1;

LASTLINE:=TINDEX+ 1;
END;

IF COUNT=69 THEN BEGIN;
LASTLINE:=TINDEX+ 1;

COUNT:=O;
END;

TINDEX:=TINDEX+1;

COUNT:=COUNT+1;

219.

PBEGIN:=LASTLINE;
END; (findprev)

(---)
PROCEDURE SCROLLDOWNSETUP;
VAR TINDEX,COUNT,LASTLINE:INTEGER;

FINISHED:BOOLEAN;
BEGIN;

TINDEX:=PBEGIN;
WHILE «WPAREA[TINDEX]<>CHR(10)) AND

(TINDEX>1)) DO TINDEX:=TINDEX-1;
IF TINDEX<>l THEN TINDEX:=TINDEX+1;
COUNT:=O;
FINISHED:=FALSE;
LASTLINE:=TINDEX;
WHILE NOT FINISHED DO BEGIN;

IF WPAREA[TINDEX]=CHR(13)
THEN BEGIN;

FINISHED:=TRUE;

FINISHED:=TRUE;

COUNT:=COUNT+1;

COUNT:=O;
TINDEX:=TINDEX+1;
LASTLINE:=TINDEX+ 1;
IF LASTLINE>PBEGIN THEN

END;
IF COUNT>69 THEN BEGIN;

COUNT:=O;
LASTLINE:=TINDEX+ 1;
IF LASTLINE>PBEGIN THEN

END;

TINDEX:=TINDEX+1;

END;
PBEGIN:=LASTLINE;

END; (scrolldownsetup)

(--)
PROCEDURE SCROLL;
BEGIN;
IF «LEFTB)AND(PBEGIN<>l)) THEN BEGIN;

220.

IF WP AREA[pBEGIN-l]<>CHR(10) THEN

PBEGIN:=PBEGIN-70

YC:=YC-IO;

SCROLLSCREEN;

END;

ELSE FINDPREV;

IF (CRIGHTB)AND(NOT CHECKEND» THEN BEGIN;

SCROLLDOWNSETUP;
YC:=YC+IO;
SCROLLSCREEN;

END;
END; {scroll}

{--}
PROCEDURE CURSORMOVE;

VAR

LlNENO,COLNO,TINDEX,LlNE,COUNT,ENDCOL,I:INTEGER;
FINISHED:BOOLEAN;

BEGIN;

OLDX:=OLDX-20;
IF OLDX<8 THEN OLDX:=O

ELSE OLDX:=OLDX DIV 8;
COLNO:=OLDX+l;
OLDX:=20+(OLDX*8);

OLDY:=OLDY-20;

IF OLDY<10 THEN OLDY:=O

ELSE OLDY:=OLDY DIV 10;

LINENO:=16-0LDY;

OLDY:=20+(OLDY*10);
DELETECUR;

TINDEX:=PBEGIN;

LINE:=l;

COUNT:=O;

WHILE LINE<LINENO DO BEGIN;

IF
WPAREA[TINDEX]=CHR(13) THEN BEGIN;

221.

LINE:=LINE+l;

COUNT:=O;
TINDEX:=TINDEX+1;

THEN BEGIN;

ENDCOL:=1+1;

END;

END;

IF COUNT=69 THEN BEGIN;
LINE:=LINE+ 1;
COUNT:=O;

END;

TINDEX:=TINDEX+1;
COUNT:=COUNT+l;

ENDCOL:=O;
FINISHED:=FALSE;
I:=TINDEX;

WHILE NOT FINISHED DO BEGIN;
IF WPAREA[I]=CHR(13)

FINISHED:=TRUE;

FINISHED:=TRUE;

TINDEX)*8);

END; {cursormove}

END· ,
IF I=(TINDEX+COLNO)-l THEN

1:=1+1;
END;

IF ENDCOL=O THEN BEGIN;
WPINDEX:=1-1;

XC:=OLDX;
END ELSE BEGIN;

WPINDEX:=ENDCOL-2;
XC:=12+((ENDCOL-

END;

YC:=OLDY;
PLOTCUR;

{---}
PROCEDUREINPUTSCREEN;

BEGIN;

READSCREEN;

222.

IF TESTCHAR=O THEN BEGIN;

IF «OLDX<=6) AND (OLDX>=2) AND
(OLDY>=20) AND (OLDY<180»

THEN SCROLL;

IF «OLDX>=20) AND (OLDX<580) AND

(OLDY>=20) AND (OLDY < 180»
THEN CURSORMOVE;

END;
END; (inputscreenJ

(--J
PROCEDURE GETHELP;

var F10:TEXT;

F1:FILE OF CHAR;
I:INTEGER;

BEGIN;

T,

WITH TEMPFILE DO BEGIN

FNAMEOUT:=FILENAME;

PBEGINOUT:=PBEGIN;
XCOUT:=XC;
YCOUT:=YC;
WPINDEXOUT:=WPINDEX;

OLDXOUT:=OLDX;

OLDYOUT:=OLDY;
END;
ASSIGN(F10,'F:WPINFO.TMP');

REWRITE(F10);

WITH TEMPFILE DO

WRITE(F10,FNAMEOUT,PBEGINOUT,XCOUT,YCOU

CLOSE(FlO);

1:=1;

WPINDEXOUT,OLDXOUT,
OLDYOUT);

ASSIGN(F1, 'F:STORY. TMP');
REWRITE(F1);

WHILE 1<= WPENDMARKER DO BEGIN;
WRITE(F1,WP AREA[I));

223.

1:=1+1;
END;

CLOSE(Fl);

GRAPHICSOFF;

GINPUTOFF(DEVMOUSE);

EXITPROG(O);
END; {gethelp}

{--}
PROCEDURE WP _ WRITE 2;

BEGIN;
INPUTSCREEN;

IF ICODE='E' THEN GETHELP;

IF TESTCHAR<>O THEN BEGIN;
IF WPINDEX<WPENDMARKER

THEN INSERTMODE

END;
END; {WP _ WRITE2}

ELSE NORMALINPUT;

{---}
PROCEDURE SA VETEXTCV AR OPTION:INTEGER);
VAR R1:RECT;

TINDEX:INTEGER;
F:FILE OF CHAR;

BEGIN;

SETRECT(R1,50,70,200,150);

SETBRUSHCOLOURCO);

FILLRECT(Rl);

SETBRUSHCOLOUR(1);

SETPENCOLOUR(2);
MOVETO(50,70);
LlNETO(50,150);

LINETO(200,150);
LlNETO(200,70);

LlNETO(50,70);

SETBRUSHCOLOUR(2);

SETRECT(R1,60,120,124,140);
FILLRECT(R1);

SETRECT(R1,60,100,124,11O);

224.

FILLRECT(Rl);
SETRECT(R1,60,80,l24,90);

FILLRECT(R1);
SETBRUSHCOLOUR(1);
SETTEXTCOLOUR(1);
PLOTTEXT(60,130; EXIT &');

PLOTTEXT(60,120; SAVE');
PLOTTEXT(60,lOO; EXIT');

PLOTTEXT(60,80; CANCEL');
SETTEXTCOLOUR(3);
PLOTTEXT(140,llO;SELECT');
PLOTTEXT(140,lOO;OPTION');

OPTION:=O;
REPEAT

THEN OPTION:=l

READSCREEN;
IF «OLDX>60)AND(OLDX<124» THEN
IF «OLDY>120)AND(OLDY<140»

ELSE IF
«OLDY>lOO)AND(OLDY<110» THEN OPTION:=2

ELSE IF «OLDY>80)AND(OLDY<90»

THEN OPTION:=3;
UNTIL OPTION<>O;

IF OPTION=l THEN BEGIN;

DRIVEFILENAME:=CONCAT('A:' ,FILENAME);

ASSIGN(F,DRlVEFILENAME);
REWRITE(F);

TINDEX:=l;

REPEAT
WRITE(F,WPAREA[TINDEX));

TINDEX:=TINDEX+ 1;
UNTIL TINDEX>WPENDMARKER;
CLOSE(F);

END ELSE IF OPTION=3 THEN SCROLLSCREEN1;
IF FSTAT('F:WPINFO.TMP') THEN BEGIN;

ASSIGN(F,'F:WPINFO.TMP');
ERASE(F);

225.

END;

END; {savetext}

{--}
PROCEDURE RESETV ARIABLES;
VAR F10:TEXT;

F1:FILE OF CHAR;

I:INTEGER;
CH:CHAR;

BEGIN;
SETTEXTCOLOUR(3);

SETBRUSHCOLOUR(l);
SETBRUSHSTYLE(SOLID);
SETBRUSHMODE(GREPLACE);

SETPENCOLOUR(2);
SETPENSTYLE(SOLID);
SETPENMODE(GREPLACE);

SETCHARUP(O);
SETFONT(PRIMARYFONT);
SETCHARHEIGHT(1);
SETCHARWIDTH(1);

SETCHARHEIGHT(1);

SETCHARWIDTH(l);
SETPENSTYLE(SOLID); \
ASSIGN(F10,'F:WPINFO.TMP');
RESET(F10);

WITH TEMPFILE DO

READ(F10,FNAMEOUT,PBEGINOUT,XCOUT,YCOUT,

WPINDEXOUT,OLDXOUT,OLDYOUT);

CLOSE(F10);
WITH TEMPFILE DO BEGIN

FILENAME:=FNAMEOUT;

PBEGIN:=PBEGINOUT;

XC:=XCOUT;
YC:=YCOUT;
WPINDEX:=WPINDEXOUT;

OLDX:=OLDXOUT;

226.

OLDY:=OLDYOUT;

END;
ASSIGN(F1, 'F:STORY. TMP');
RESET(F1);

1:=1;
WHILE NOT(EOF(Fl)) DO BEGIN;

READ(F1,WPAREA[I));

1:=1+1;
END;
WPENDMARKER:=1-1;
CLOSE(F1);

HELPSET:=FALSE;

END; (resetvariablesl

{--}
PROCEDURE DISPLAY_HELP;

V AR F:FILE OF CHAR;
R1:RECT;

INCHAR:CHAR;
XT:INTEGER;

BEGIN;
ASSIGN(F,'F:HELPFILE.TMP');
RESET(F);
SETBRUSHCOLOUR(O);
SETRECT(R1,50,50,400,150);
FILLRECT(Rl);

MOVETO(50,50);

LlNETO(50,150);

LINETO(400,150);
LlNETO(400,50);

LINETO(50,50);

XT:=60;
WHILE NOT(EOF(F» DO BEGIN;

END;

CLOSE(F);

TESTCHAR:=O;

READ(F ,INCHAR);

PLOTTEXT(XT,100,INCHAR);

XT:=XT+8;

227.

REPEAT TESTCHAR:=TESTCHR UNTIL

TESTCHAR=255;
CHARIN :=GETCHAR;
SETBRUSHCOLOUR(l);
SCROLLSCREEN;

END; (display_help)

(--)
PROCEDURE WP _SCREEN;
VAR F:FILE OF CHAR;

OPTION,COUNT:INTEGER;
BEGIN;
IF NOT HELPSET THEN BEGIN;

DRIVEFILENAME:=CONCATCA:' ,FILE NAME);
IF FSTAT(DRIVEFILENAME) THEN BEGIN;

ASSIGN(F,DRIVEFILENAME);

WPINDEX:=l;

RESET(F);

WPINDEX:=O;
WHILE NOT EOF(F) DO BEGIN;

WPINDEX:=WPINDEX+1;
READ(F, WP AREA[WPINDEX]);

END;
WPENDMARKER:=WPINDEX;

COUNT:=O; XC:=20; YC:=170;
WHILE ((COUNT<17) AND

(WPINDEX<WPENDMARKER»

DO BEGIN;
IF WPAREA[wpINDEX]<> CHR(13)

THEN BEGIN;

PLOTTEXT(XC, YC, WP AREA[WPINDEX));

XC:=XC+8;
END ELSE BEGIN;

END;

228.

XC:=20;
COUNT:=COUNT + 1;

YC:=YC-lO;
WPINDEX:=WPINDEX+l;

END
ELSE BEGIN;

IF XC>580 THEN BEGIN;

COUNT:=COUNT+ 1;
XC:=20;
YC:=YC-10;

END;
WPINDEX:=WPINDEX+1;

END

WPENDMARKER:=1;

END' ,
WPINDEX:=1;
XC:=20; YC:=170;
PBEGIN:=1;

END ELSE BEGIN;
RESETV ARIABLES;
DISPLAY_HELP;

END;
PLOTCUR;
REPEAT

ICODE='F';

SAVETEXT(OPTION)

OPTION:=O;
REPEAT WP _ WRITE2 UNTIL

IF WPENDMARKER>1 THEN

ELSE OPTION:=2;
ICODE:='F';

UNTIL «OPTION=1)OR(OPTION=2));
END; {wp_screen}

{---}
PROCEDURE WORD_PROCESS;
V AR SELECTED,NOPRINT:BOOLEAN;

XC,YC,LINEC,I,J,COL,ROW,ST1,COUNT:INTEGER;
BEGIN;
IF NOT HELPSET THEN BEGIN;

WP _TOP _ICONS;

PLOTTEXT(35, 160,'You have the following stories :-');

XC:=35; YC:=130; 1:=1; LINEC:=O;

229.

SE'ITEXTCOLOUR(2);

WHILE I<=DINDX DO BEGIN;

COUNT:=O;
WHILE

«DIRAREA[I]<>'. ')AND(I<=DINDX)AND

THEN

BEGIN

write.');

BEGIN;

(COUNT<8)) DO BEGIN;

COUNT:=COUNT+1;
PLOTTEXT(XC,YC,DlRAREA[I]);

1:=1+1;

XC:=XC+8;
END;

IF «COUNT<>8)AND(I<=DINDX))

FOR J:=COUNT TO 7 DO

XC:=XC+40;

LINEC:=LINEC+l;

. END;

IF LINEC=5 THEN BEGIN;

XC:=35;

YC:=YC-IO;

LlNEC:=O;
END;

END;

SE'ITEXTCOLOUR(3);

PLOTTEXT(XC,YC; ');

XC:=XC+8;

1:=1+1;

PLOTTEXT(35,50;Select the story that you wish to

SELECTED:=F ALSE;

WHILE « ICODE<>'F') AND (SELECTED=FALSE)) DO

READSCREEN; COL:=O;
IF

«(lCODE='X')AND(OLDY <140)AND(OLDY>80)) THEN

BEGIN;

IF OLDY>130 THEN ROW:=l

230.

THEN BEGIN;

COL:=5

ELSE IF OLDY> 120 THEN ROW: =2

ELSE IF OLDY>UO THEN ROW:=3

ELSE IF OLDY> 100 THEN ROW:=4

ELSE IF OLDY>90 THEN ROW:=5

ELSE ROW:=6;

IF « OLDX>35) AND (OLDX<619»

IF OLDX<99 THEN COL:=l

ELSE IF OLDX>455 TIIEN

ELSE IF
((OLDX>140)AND(OLDX<204» THEN

COL:=2

ELSE IF

((OLDX>245)AND(OLDX<309»

THEN COL:=3

ELSE IF

((OLDX>?50)AND(OLDX<414»

COL:=4;

THEN

END;

IF COL<>O THEN BEGIN;

CASE ROW OF

1:ST1:=0;

2:ST1:=5;

3:ST1:=10;

4:ST1:=15;

5:ST1:=20;

6:ST1:=25;

END;

ST1:=ST1+COL;

IF ST1<=(DINDXl8) THEN BEGIN;

SELECTED:=TRUE;

ST1:=((ST1-1)*8)+1;

END;

END;

231.

END;

END;
CLEAR_SCR;
IF ICODE=X' THEN BEGIN;
XC:=360; FILENAME:=";

NOPRINT:=FALSE;
FOR I:=STl TO (ST1+7) DO BEGIN;
IF DIRAREA[I]='.' THEN

NOPRINT:=TRUE;
IF NOT NOPRINT THEN BEGIN;

PLOTTEXT(XC,236,DIRAREA[I]);
IF DIRAREA[I]<>' , THEN

FILENAME:=CONCAT(FILENAME,DIRAREA[I]);

XC:=XC+8;

END ELSE WP _SCREEN;
END; (word_process)

END;
END;
WP_SCREEN;

END;

(--)
PROCEDURE RUNSTORYM;
VAR RETCODE:INTEGER;
BEGIN;

IF NOT HELPSET THEN
REPEAT READSCREEN UNTIL ICODE<>'X';

IF ICODE = 'A' THEN BEGIN;
GETDIRANDNAME;

REPEAT CREATESTORY UNTIL ICODE='F';
ICODE:='X';
TOPLEVEL;

IF END CREATE THEN CREATE2_5;
END;
IF ICODE = 'B' THEN BEGIN;

- IF NOT HELPSET THEN GETDIRANDNAME;
REPEAT WORD_PROCESS UNTIL

ICODE='F';

232.

TOPLEVEL;

END;

END; {RUNSTORYM}

ICODE:='X';

{---I
PROCEDURE WELCOME;

BEGIN;

SETFONT(SECONDARYFONT);

SETCHARWIDTH(2);

SETCHARHEIGHT(2);

PLOTTEXT(240,160,'Welcome to');

SETCHARWIDTH(7);

SETCHARHEIGHT(6);

PLOTTEXT(40,90,'MULTISTORY);

SE'ITEXTCOLOUR(2);

PLOTTEXT(42,88, 'MUL TISTORY');

SE'ITEXTCOLOUR(3);

SETCHARWIDTH(1);

SETCHARHEIGHT(1);

PLOTTEXT(75,50,'(c) 1986. M.R.Gardner.');

SETFONT(PRIMARYFONT);

END; {welcome}

{--}
BEG IN {main program}

ENDCREATE:=F ALSE;

ICODE:='X';

OLDX:=425; OLDY:=190;

IF FSTATCF:WPINFO.TMP') THEN BEGIN;

ICODE:='B';

HELPSET:=TRUE;

SETUP;

END ELSE BEGIN;

WRITE(CHR(27),'[-F');

WRITE(CHR(27),,[=2h');

HELPSET:=FALSE;

SETUP;

TOPLEVEL;

WELCOME;

233.

END;
WHILE ICODE<>'F' DO RUNSTORYM;

FINISHOFF;
END.

2.3. Batch file to startup MultiStory: GO.BAT

echo off
cls
echo Loading PRO LOG
DELF:*.TMP
PROLOG REDIRECT
echo on

2.4. Redirection file consulted on startup: REDmECT

consultC \mick\runsugs.pro') ..

run.

2.5. Main Prolog control program: RUNSUGS.PRO

retractall(X):-retract(X),fail.

retractall(X): -retract((X:-Y)) ,fail.

retractallC).
check_consult:-clause(storytypeC),_).

check_consult:-consult('f:cstoryf.pro'),
storytype(St),storysit(Sit),cons_sug(St,Sit,File),

conscl(File),setup.
cons_sug(l ,Sit,File):-concat(File,['c:' ,rev ,Sit,' .pro']).
cons_sug(2, Si t,File):-concat(File,[' c:' ,lov ,Si t,'. pro ']).

run:-exec(storym),check_consult,
do_sugs.

do_sugs:
trysug,do_sugs.

trysug :- sug(X,Y),retractall«sug(X,_))),

234.

send_to_pas(Y).

trysug:- send_to_pas(['No more suggestions.']).

send_to_pas(Mes):-open('f:helpfile. tmp', w),

name56(N),writeft'f:helpfile.tmp',N),
nlft'f:helpfile.tmp'),

records_out(Mes),

closeCf:helpfile. tmp'),

exec('storym').

records_out([]).

records_out([H I T]):-writeft'f:helpfile.tmp',H),

nlft'f:helpfile.tmp'),

records_out(T).

2.6. Temporary story parameter file: CSTORYF .PRO

storytype(1).

storysit(one).

storychar(5).

att1CO).

att2(2).

att3(O).

att4(4).

att5(5).

att6(O).

att7(O).

att8(1).

att9(O).

attlOCO).

attllCO).

att12CO).
att13(2).

235.

2.7. Suggestions file for 'Revenge'/situation 1 type stories:

REVONE.PRO

setup:-storychar(5),asserta(name56('Jake')).

setup:-asserta(name56('Dylan')).

sug(1,['The story should be retrospective.',
'i.e. The character is looking back',
'on a past childhood.']).

sug(2,['Decide whether Jake has a mother',

'and a father, or just a father.']):-name56('Jake').

sug(3,['Describe life at home.',
'Was the character badly treated ?']):-att1(X),X>2.

sug(3,['Describe life at home.',

'Was the character badly treated 1',
'There is a low health rating.',
'This could be due to a poor upbringing.']):-att1(X),X<3.

sug(4,['Describe in what ways Dylans',

'step parents are mean to him.']):-name56('Dylan').
sug(5,['Jake is very disruptive at home.',

'His father beats him to try and control him.',

'Jake has a high self-confidence rating.']):-name56('Jake'),

attlO(X),X>3.

sug(5,['Jake tends to be disruptive at home.']):-name56('Jake').
sug(6,['Decide whether the father is always working',

'earning a living and running the house; or',

'has your character had to do all the house',

'chores from an early age (more likely if,

'determination is high.']).

sug(7,['Decide whether Jake s father is a rocker.',
'This will affect the sort oflife that',

. 'he led. e.g. "parties", motorbike rallies.']):-name56('Jake').
sug(S,['Describe the events leading up to leaving',

'home. Was it well planned or on the spur "

'of the moment.']).

sug(9,['Dylan could run away to find out who his "

'real parents are. His step parents will not',
'tell him. ']):-name56('Dylan').

sug(lO,['Describe the parents reaction to "

236.

'your character leaving.']).

sug(ll,['Describe your characters life in the',
'big wide world.']).

sug(12,['Your character meets and makes many friends.',

'High friendliness and attractiveness rating.']):-att5(X»{>2,

att2(y),Y>2.
sug(13,['Your character finds it easy to get a job.',

'High intelligence and skillfulness rating.']):-att7(X),X>2,
attll(y),Y>2.

sug(14,['Your character struggles against set-backs.',

'High determination rating.']):-att4(X),X>3.
sug(15,['Describe events leading up to your characters',

'return home. Has he/she made good 1']).
sug(16,['Dylan could either find out the truth about',

'his parents or return home in desperation.']):
name56('Dylan').

sug(17,['Jake rours into town on his motorbike,',

'intent on paying his father back']):-name56('Jake').
sug(18,['Why is your characters father to be pitied ?',

'Possibilities: father himself was beaten when a lad,',

the father has repented his ways,',

the father has many problems.',

'Your characters high kindness increases the',
'possibility of forgiveness.']):-att9(X),X>2.

sug(18,[,Why is your characters father to be pitied ?',

'Possibilities: father himself was beaten :vhen a lad,',

the father has repented his ways,',

the father has many problems.']).

sug(19,['Think of an ending. What does your character',

'resolve to do? Does Dylan find out who his "

'real parents are ?']):-name56('Dyl!ln').

sug(19,['Think of an ending. What does your charactar',

'resolve to do 1']).

237.

2.8. Assembler program nffil.ASM

Assembler program to examine the users disk directory and create a

directory file 'STODIR3.SYS' in the ram disk (drive F) of the names of

all story text files (files ending with' .sty'). This routine is called from
the main Pascal MULTISTORY program.

stack_seg segment stack

db 256 dupe?)
stack_seg ends

data_seg segment

FILESPEC DB 'A:*.STY',O

BUFFER STRUC
SUBS DB 15H DUP(?)

ATF DB 1 DUP(?)

TSF DB 2 DUP(?)

DSF DB 2 DUP(?)

LWF DB 2 DUP(?)

HWF DB 2 DUP(?)
OUTFILE DB 8H DUP(?)

BUFFER ENDS

createf db 'f:stodir3.sys' ,0

data_seg ends

segment

assume cs:code_seg,ds:data_seg

program proc far

CLC

moy ax,data_seg

MOVDS,AX

MOV DX,OFFSET CREATEF

MOVCX,OOH
MOV AH,3CH

INT21H

MOVBX,AX

moy dX,offset buffer

moyah,lah

int 2lh

moy dx,offset filespec

238.

MOVCX,OlH
MOV AH,4EH

INT21H
JCLl

L2: PUSHDX
PUSHCX
MOVCX,8H

MOV DX,OFFSET OUTFILE
MOV AH,40H
INT21H
MOV AH,4FH
POPCX
POPDX

INT2lH
JNCL2

Ll: MOV AH,3EH
INT21H
MOV AH,4CH

moval,O
int21h

program endp
code_seg ends
end program

2.9. Assembler external functions GETCHAR and TESTCHR:

GETCHAR.ASM.

These external assembler functions are used to poll the keyboard for
determining when a key has been pressed (TESTCHR) and reading a
key from the keyboard buffer(GETCHAR).

NAME CHROUT

DGROUP GROUP @C

PUBLIC GETCHAR
PUBLIC TESTCHR

239.

@C SEGMENT WORD PUBLIC 'DATA'
GETCHAR DD _GETCHAR
TESTCHR DD _TESTCHR
@C ENDS

?CHROUT SEGMENT PUBLIC 'CODE'
ASSUME CS:?CHROUT,DS:DGROUP

GC_STK STRUC
DW ? ;bp save
DW ? ;dssave
DD ? ;cs,ip save

GC_STK ENDS
_GETCHAR PROC FAR

PUSHDS
PUSH BP
PUSHES
MOV AH,7H
INT21H
POPES
POP BP
POPDS
RET

_GETCHAR ENDP
_TESTCHR PROC FAR

PUSHDS
PUSH BP
PUSHES
MOV AH,OBH
INT21H

POPES
POP BP
POPDS
RET

_TESTCHR ENDP
?CHROUT ENDS

END

240.

2.10. Story Situations used by MULTISTORY

The following is a list of the situations used by MULTISTORY. Only
story types 'Love' and 'Revenge' were properly implemented.
Although data existed for story types 'Animals', 'FantasylHorror',
'Growing Up', and 'Conflict'.

The numbers following each situation are used by MULTISTORY to
index and select the characters which are suitable for each
particular situation (see the listing of characters in this appendix).

Situations for stories of type LOVE

SITUATION1: LOVE
A girl falls for a big macho (hard) man, a big rocker with

sparkling studs. Her parents not only disapprove of him, but
of her as she changes her clothes and her life style. She
sticks by him through thick and thin, court appearances and

a short spell in gaol for assault. (It was the other man's
fault.) He does not look as if he is going to change.

<9,6,5>

SITUATION2: LOVE
Girl and boy in love. Girl still at school where she has a

good chance of getting 'A' levels and a place in University.

Boy is unemployed and unqualified. They are moneyless but
happy. Then the boy is offered a good job by Canadian Uncle.

<8,7>

SITUATION3: LOVE

He is fantastic! He has everything. He prefers somebody else.
A chance comes for your girl to leave the area. She would be
much happier if she left, but she wants one last try.

<2,6,8,9>

241.

SITUATION4: LOVE
Sweethearts since childhood, they are engaged to be married.
But a story "is going about one Beloved that makes the other
wonder if marriage would be such a good idea.

<2,5,9>

SITUATIONS: LOVE
(Historical) Daughter of Duke loves young stable lad Gots
of opportunity to meet when she goes out riding). But
naturally keeps it secret. Duke intends to marry her to

rich Nobleman in the new year. A servant discovers the
love affair and threatens to tell the Duke.
<29>

SITUATION6: LOVE
An elf princess is captured by Irma 'Skon Bekaa - cruel
Gnorlanlord. She is imprisoned in the Tower of Rath Kimolyne.
A young elf lord is later imprisoned in the cell next to

hers. They plan escape and fall in love at the same time.
<21,10>

SITUATION7: LOVE
Life in the big city is much more difficult than he/she

could have believed when at school a year ago. So she/he
seems like the answer to those lonely prayers. Unfortunately

Beloved has an alcohol problem.

<7,9>

SITUATIONS: LOVE

She/he visits in winter the seaside town where she/he found
a holiday romance two years ago. The past is not quite dead.

<2,5,6,7,9,23,24,28>

242.

Situations for stories of type REVENGE

SITUATION1: REVENGE
A child, often beaten by a rather unloving dad, leaves home

as soon as he can. Sometime later he returns to his home town

intending to pay his father back for his years of suffering.
But he finds the father more to be pitied than blamed.

<28,5>

SITUATION2: REVENGE
A student bullied during his first years at school, turns
into a large and strong adolescent. What now?
<2,5,7,23>

SITUATION3: REVENGE

Someone at work meets the person who bullied him at school.
The ex-bully is asking for badly needed help. Someone is in
a position of power.
<3,4,28>

SITUATION4: REVENGE
Some students plan revenge on a disliked teacher. They

visit the teachers' home and discover another side of
the teachers' character which changes their view of
things.

<1>

SITUATION5: REVENGE

A fight ends in victory for one: humiliation for the other.
The loser runs away to plan a revenge which will seem to

come from someone else. But complicated plans lead to

complications.

<2,3,5,7,10,23>

243.

SITUATION6: REVENGE
One group wreak (do) a terrible revenge on another. One of

the first group feels sorrow and guilt for what they have

done and tries to make it right. His mates do not understand.

<7,5>

SITUATION7: REVENGE
A bossy supervisor at work. The workers plan and carry out

their revenge. But somehow it is not as satisfying as it

should have been.

<3,4>

SITUATION8: REVENGE
Someone who takes revenge on a hated policeman seems to have

the last laugh - until the policeman is needed in an urgent

crisis.

<5,7,25>

2.11. Characters used by MULTISTORY

CHARl
Mr Johnson, male aged mid 30's. Teacher at the local school.

Dissatisfied with his work, but cannot find a new job. He

looks after his elderly disabled mother.

CHAR2
Peter, male, teenager. Midlands Judo champion. Spends most

of his time between training for Judo and down the local
disco. Hopes to eventually represent Britain in the Olympic

games.

CHAR3
Jane, female, aged 28. Works as an accountant in a large

company. She is very career minded and will do almost

anything to progress further up the ladder.

244.

CHAR4

Mr Arkwright, male, late 50's. Supervisor in a large steel
mill in south Wales. Has spent all his life in the same
factory and is very proud of his position.

CHAR5
Jake, male, aged 22. Rocker, who is never seen without his
black leather motorcycle jacket and Brylcream in his hair.
He is very proud of his large oily motorcycle and every year

goes to the Isle of Man TI races. Elvis Presley is his idol.

CHAR6
Amanda, female, aged 16. Very shy and unassuming and wears
dull looking clothes. Her parents are very old and never
let her go out or bring friends to the house.

CHAR7
Bill, male, aged 18. Left school at 16 and hasn't worked
since. Every week he visits the job centre but as he has
no qualifications is always unlucky. He is not optimistic

about his prospects.

CHARS

Sue, female, aged 15. She is very bright and is regularly

top of the class in maths and physics which are her favourite
subjects. This causes her to be dis-liked by several of her

class-mates who are jealous of her success.

CHAR9
Maureen, female, aged 19. Works as a shop assistant in the
local chemist. She is happy with her lot and is looking
forward to eventually getting married.

CHARlO

Glorfindel, Elf, aged 54,762 earth years. Elflord, last

surviving son of El we' King of the Elves. He has yet to
claim his kingdom and will have to prove his lineage.

He is a master of both sword and magic.

245.

CHAR21
Marianna le feu, Elf, aged 29,131 earth years. She can change
shape, disappear and cause fire. Her weakness is lead, against
which her image will not work and which reduces her to a mere
mortal.

CHAR23
Ken, male, aged 19. A young farmer without much hope of
owning a farm. He cannot decide whether to stay working
for his uncle, to go for an agricultural degree at

college or to give up farming and take up boxing seriously.
He was school boy champion of the South West 3 years ago.

CHAR24

Josh (stage name Melvyn Zapp), male 22. Rock singer. His group
and his life have run into problems. So he has decided to spend

some time away from the rock scene to sort them and himself out.
The group promise to work with him again at Christmas.

CHAR25
Jeremiah, male aged? A tramp, a wanderer who has met many

strange people in his travels and has a treasure chest of
interesting stories. He is thin and wears old suits, has a
great taste for cider and cheese and loves all animals.

CHAR28

Dylan, male, aged 17. An orphan brought up by mean foster

parents. Like many in his position he wants to know who
his real parents are and is prepared to spend effort
locating them.

CHAR29

Lady Margaret, female, aged 18, related to the powerful and
determined Duke of Flint. She is a born romantic, likes

horses and riding. She loves her parents but is beginning

to see their faults. She lives in Flint Keep, a gaunt and
giant castle situated in the wild and remote borders.

246.

2.12. Character Attributes file used by MULTISTORY

There are 5 descriptions per character attribute, which are: health,

attractiveness, calmness, determination, friendliness, Humour,

intelligence, imagination, kindness, self-confidence, skillfulness,
truthfulness, and strength.

Needs special care and decrepit

Always has coughs and colds

Mainly a clean bill of health

Healthy and fit

Never ill,robust,lots of vitality

Miserable looking and disfigured

Average features and dull

Pleasant and smiling

Handsome face

Unusually appealling

Nervous, restless and frets a lot
Anxious, emotional and excitable

Even-tempered and steady

Cool, composed and placid

Happy-go-lucky, unruffied

Weak-willed and easily persuaded

Half-hearted and gives up easily

Firm decision maker

Resolute and persevering

Stubborn, ruthless and single-minded

Unsociable and hostile
Keeps to one or two friends

Likes company and is loyal

Party-minded and seeks people out

Very sociable and gregarious

Humourless, miserable and gloomy

Sober and staid, rarely smiles

Cheerful, content and genial

Merry and laughs a lot

247.

A joker who makes witty remarks

Slow, dull and irrational

A plodder who is unclear in thinking

Average ability with common sense

Sharp and quick to understand

Talented, perceptive and brilliant

Takes other peoples ideas

Some ideas but mainly guesswork

A day-dreamer who is quite creative

Empathetic and has good insight

Inspired, original and creative

Tough, inhumane and cruel

III natured and unaffectionate

Well meaning and helpful at times

Warm hearted and considerate

Benevolent and generous

Insecure,lets others do the talking

Hesitant, wavering and indecisive
Reliable, open-minded

Sure of self, authoritative

Opinionated, bigoted and cocksure

Clumsy and bungling

Untrained and slapdash

Out of practice but capable

Knows most answers to problems

An expert, versatile

Untrustworthy and corrupt

Unreliable with no principles

Fair minded and dependable

Law abiding and trustworthy

Honourable and incorruptible

Delicate, helpless and inactive

Puny, small and weak

Sturdy and able bodied

Muscular and well-built

Powerful, good stamina

248.

APPENDIX 3.

Sample MUL TISTORY screens

249.

MULTISTORY· Welcome screen.

WelCOMe to

HULl ,STD Y

MULTISTORY· STORY DISK screen.

1Wc. SUN ~olll' STOR'I DISK IS In thf driy. 11

Prtss .. ~ k.~ vhfn r •• d~ t. continu •.

250.

MULTISTORY - Enter user name (label is put on floppy disk).

Piu ... tnlPr ~our n (wo",", 29 characlers).

[A H Other

MULTISTORY - Create Story (level!) - Enter new story name.

III &Irt.., .. " I .. '1lllwin, sl.ri.s :-

LOll ESl1l1 ArT A CK

[nlPr thf n or the sto~ ~ou wish to crut •.

251.

MULTISI'ORY -Create Story Qevel2) - Select story type.

I _ItIP I

iliiiLS CiifiiCT

MULTISTORY - Create Story Qevel3) - Select story situation.

252.

MULTISTORY· Create Story (level 4) . Select main character.

is • .aiD c"'iCl.r f.r ~o., slo~ :-

lib, .al., .5t' 22. ~ektr, is .n" Sft •• i I"'ul hi s
.Iack lulMr IIOlorc~el. jiektl ind ~Iertu i. his Nir.
It is .. ~ proud of his IUS' oil~ IICIlorc~elt ind '.'1'lI ~ur
!fts 10 IM 1s1. of IWI TT ue.s. [I.is Prtsl.~ IS his idol.

MULTISTORY· Create Story (level 5) • Select character attributes.

llItaLI'N I 2 3 4 5 • "ainly a e10in bill of Malth
Z)IITMCTI VDtISS I 2 3 4 5 • Hands ... faeo
J)aLIIIISS I 2 3 4 5 • 4)tmIIIUMfJlII I 2 3 4 5 • fir. doelsl •• Oikor

I 2 3 4 5 •
I 2 3 4 5 •
I 2 3 4 5 • Sharp and quick t. undtrstand
I 2 3 4 5 •
I 2 3 4 5 •
I 2 3 4 5 •
I 2 3 4 5 •
I 2 3 4 5 • I 2 3 4 5 •

253.

MULTISTORY - New story file created.

lilt _ st..., filt •• HtIIstorg
.., hH crut ...

MULTISTORY -Word Processor - Select story.

t
rH haw. thP lollowin, storl's ,-

LOOM! AITA CX HEIISrOR'l

Stl.et thP storg that ~o. wish to writ • .

254.

MULTISTORY -Word Processor - enter story text & close editor
window.

255.

APPENDIX 4.

Research Machines Nimbus teclmical specification

256.

I TECHNICAL SPECIFICATION

""ie"-. __________ -'PC.186
oCIssar 80186
lock Rate - ----- ----- B MHz

.. ed 1 MIPS

Monitor (12" Hi-,es Mono
or 14~ Med-res Colour)

High Speed lSI Graphics Processor

640, 250,4 Colour

Slandard

J
J

ternal Bu. 16·bil 320, 250 x16 Colour J
u.ic Ch;-ip----------;B"9'""'1 0 CGA Graphics Wilh IBM Mode

::I' Processor Option 8087 1 x 2561BM Compatible Char Set j

perating System

icrosoft Windows' ./

~ Basic' j
~----------------~ le Basic· I

'" logo· J
M MC-o-;d-e ::-So-;'C"tw-a-re""""'Uc:ti"lity,------;O'""p""tio"ns

ondord Memory 512KorlMb

etwork Station Memory 1Mb

aximum Memoryt 1.5Mb

rophics Memory 64K

!AA Channel

ponsion Slots 3

trial Port J
canet/Aux Serial Port J
lund/Music Out (3 channels) j

ouse Port J
onochrome Video (multiple shades) j

inter Out

lilt.in Loudspeaker

le Parallel Printer/User Port

'ernal Serial Piconel Module

temal Parallel Picone' Module

Ita Communications
.ntroller (DCq

:C T ransler Rate:

Synchronous

~synchronous

j

J

Option

Option

Option

Option

Up 10 60 Kboud

Up 10 3B Kboud

2·key Industry Standard Keyboard

)use (Microsoft Compatible) Option

\ Concept Keyboard Option

\ Sketch Pad Option

1 ,256 4BOZ Compatibl. Char Set J

Networking Option RM Net 3

RM Net/I-Net Server Cables Up 10 3

Stations Per Server Up to 48
-" - -- ----------'---
Disk less Station Options ./
-Ca-b-le-8-a~d~~d7Ih~--------~07.B-M7b7il-s'~Se-c

SDLC CSMAlCD J
NRZI Encod.d /
Processor Indopendent /
Multi-drop Bus J
Opto Isolation J
Ma, Cable L.ngth 1200 metres

Coaxial Cable so ohm

BNC Connecton /

Diskless Network Station Option

3.5" 720K Floppy Drives Single or twin

Internal Hard Disk 20Mb

Average Hard Disk Access Time 23.7 m.

External Hard Disk 200r60Mb

Cartridge Tape Streamer 20Mb

Transfer Rate Upto 5Mb/minute

External Floppy Di.k Drive Option 5.25" 600K

Width 356 mm

D.pth 365 mm

Height 96 mm (case) + feet 4mm

Weight 7 kg mox opprox

Power Requirements n01240V 50Hz

Heat Output <100W

RM rmrve1 the riglltto alter lP8Ci1icotiOlls without prior notice.

• A loctnct to rvn this lOflwor. iJ ptovid.d ItS stonclord with 011 Jrs'-IM.
In mon~ caSH th, saft....a,e ilJeIl is sutJtJli.d willllht nJ'-m.
IT!>. uppe' 5111(01 i11i11.~bis 10' uJeItS silicon disk a, disk coch.

Inlel80186, 80286, 80386, 8087, 8910, MS-DOS,

MicrosoftWindOW1, Microsoft Networks, LAN Mal"lO!ler,

NetWare, Compus 2000, 8T Gold, Tektronix, BBC Bosic,

AIdus PogeMo1er, Word, Excel, MuIIiplan, DotoEose, .

dBase,loM, PegO$U1, MicroGroh,5-Jperbcrse 2,

AutoCAD and IBM are registeredlrademorks of IlIeir

rele¥(lnl operoting componies.

