

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

GI-\A"'~MI S ' , .
------------------------~---------------------

--- --- ----- --------------------- --- ----- - --_._--- -
ACCESSION/COPY NO,

--VOL~NO~------- ~-C~S~S~~~~----------- -------

J
!J LoA..J Cc Pt.

1 -tll 1988 '
- 6 JUl 199

,-1 JUL 1988 - 5 JU 1991

3 0 .!UN 1989
/

3 0 JUN 1989

'001 4522 02 i
1~~\\~\\\~\\\\1\\\\\\\\\\\\\\\\\\\\ID1

NON-NUMERICAL PARALLEL
ALGORITHMS FOR ASYNCHRONOUS

PARALLEL COMPUTER SYSTEMS

by

SALlM GJ1\NEMI, B.Eng, MSc

A Doctoral Thesis

Subnitted :In partial fulfilment of the

requirements for the Award of

Doctor of PhilC>Sqlhy

of tbe

I.oJghb:>roogh University of Techrology

sept. 1987

Supervisor: Professor David Jones Evans, PhD, DSc

Depar\l1lent of Canputer studies

It> Sal:im Ghanemi, 1987

I

I

(

r

DEUJlRATICN

I declare that this thesis is a record of research work carried out

by me, and that the thesis is of my own composition. I also certify

that neither this thesis oor the original work contained therein has

been submitted to this Uni versi ty or any other institution for a

higher degree.

Salim Ghanemi

: . ~~'

i

The author wishes to express his sincere thanks to ProfessorD J

Evans for his guidance, suggestions and advice durirg the past three

years of study and preparation of this thesis.

The author also acknowledges the Algerian Ministry of Higher

Education (MES) for their financial support.

Thanks also to my parents for givirg me the incentive to start and

canplete my research.

Finally, thanks to Mr R P Stallard for his help in maintaining the

parallel systems operational.

ii

The work in this thesis covers mainly the design and analysis of

many important Non-Numerical Parallel Algorithms that run on MIMD

type parallel computer systems (PeS), in particular the NEPruNE and

the SEQUENT BI\LANCE 8000 PeS available at Lough:Jrough University of

Techoology .

Initially, different types of existing pes including data-flow

computers and VLSI techoology are described fran both the hardware

and software points of view. Some basic ideas of efficiently

programming such computers are also presented. Also the main

characteristics of both available systems, the Neptune and the

Balance 8000, are outlined with the principles of synchronisatioo,

the resource demands and the overheads of the parallel control

structures. Such information is frequently measured in the

performance analysis of the algorithms presented in this thesis in

order to exploit the potentiality of the available systems and PeS

in general.

In this study, some computer search problems with or without

broadcasting are investigated. For example, the search of ordered

and unordered files by key compariscn are studied where the number

of processes are greater or equal to the number of available

processors. Binary and jump searching algorithms are also studied.

The design, implementaticn and compariscn of the parallel pattern

and string matching algorithms are also included. Parallel sorting

algorithms are studied and compared with two newly developed

parallel partitioned sorting algorithms which show a higher

performance rating than the parallel Quicksort algorithm.

The problem of pattern matching has been selected for the design of

soft-systolic algorithms. Several versions of the pattern matcher

are implemented using new design ideas which are projected to be

materialised in the near future.

iii

DEDICATED TO

MY Wife and Love Rabia,

for her constant support during

the course of this work

Page No

Declaration

Ackoowledgements

Abstract

i

it

Hi

rnAPI'ER 1: MOTIVATIONS AND EXPLOITATIONS OF VARIOUS

FORMS OF PARALLELISM 1

1.1 Introduction • • • • • 1

1. 2 Main M:lti vations • • • 6

1. 3 Design Classifications 8

1.3.1 F1ynn's high-speed parallel computers

classification
1.3.2 Shore's classification

1. 3.3 other classification approaches

1.4 Pipelined Canputers •••••••••

8

16

19

21

1.4.1 The pipelined principle and perfor-

mance characteristics ••••••• 24

1.4.2 Vector processinJ • • . 33

1.4.3 Inplemented pipelined carp.rters 35

1.5 Data-Flow Machines 45

OJAPI'ER 2: aJRRENT MULTIPLE PROCESSOR SYSTEM ARCHITEC-

TURES 51

2.1 Introduction 51

2.2 The Genealogy of the SIMD Canputers •••• 52

2.2.1 The utilisation and applications of

the SIMD systen • • • • • • • • • • • 53

2.2.2 Associative processors. • • • • • • • 56

2.2.2.1 Associative memory organisa-

tiClIl .•••.••.••• 58

2.2.2.2 The taxonomy of associative

prcx::essors • • • • • • • • • 61

i) Fully-parallel

11) Bit-serial • •

Hi) tIDrd-serial. •

iv) B1ock-oriented

Page No

61

64

67

69

2. 2.3 Arr<r:i processors •••••• 71

2.2.3.1 Interleaved parallel memories 74

2.2.3.2 The interconnecticn ne-oorks 76

2.2.3.3 Implemented a=ay processor

cx::mputers

2.3 MIMD Multiprocessor Conputers

79

86

87

94

0JAPl'ER 3:

2.3.1 MIMD hardware organisaticn

2.3.2 Operating system organisaticn

2.3.3 Implemented MIMD multiprocessor

.
2.3.3.1 The INI'ERDATA DUAL processor

2.3.3.2 The NEPI'UNE parallel computer

2.3.3.3 The SEQUENT BALANCE 8000

systan

PROORAMM:rN3 TOOLS AND PERFORMANCE ANALYSIS OF

PARALLEL AIroRI'ffiMS

3.1 Parallel Detecticn . . .
3.1.1 Implicit parallelism

3.1.2 EXplicit parallelism

3.2 Parallel Programming Supports of the

Loughborough MIMD Systems
3.2.1 The user-interface to the Neptune

97

98

101

107

113

113

116

120

129

system ••••••••••••••• 141

3.2.2 Parallel control scheme in the Neptune

system 147

3.3 Performance Characteristics Measurements of

Parallel Algor! thms •••••••••••• 155

3.4 General Parallel Program Structuring Concepts 166

OIAPI'ER 4:

4.1

4.2

PARALLEL SEllROUOO AI.roRITHMS
Introduction
An MIMD Implementation of the Sequential

Page No

188

188

Search Algorithm ••••••.••••••• 189

4.2.1 Parallel sequential search without

broadca.sti..rg' •

4.2.2 Parallel sequential search with

moadcasti.rg • • • • • • . .

i) Analysis of Versicn 1.0

11) Analysis of Versicn 2.0

4.3 A Parallel Implementation of the Binary

Searcll

4.3.1 Parallel binary search versions 1.0

198

201

202

210

213

and 2.0 218

4.3.2 Parallel binary search versicn 3.0 • 224

4.4 Parallel JlD11P Search Algorithns

4.4.1 Imp1anentaticn and analysis

4.4.2 Experimental results

4. 5 Cc::IlClusiOl1 . • • • • • • • • • • •

OIAPI'ER 5: PARALLEL STRIOO MI\'I'CHIN3 AI.roRITHMS

5.1 Introduction

5.2 History
5.3 Design, Analysis and Implanentatlcn •

228

231

234

243

245

245

247

250

5.3.1 Parallel Brute Force algorittrn 255

5.4

OIAPI'ER 6:

6.1

6.2

5.3.2 Parallel Knuth-Morris-Pratt algorithm

(PI<r-1P) • • • • • • • • • • • • • • • 258

5.3.3 Parallel Karp-Rabin algorittrn (PKR) 260

5.3.4 Parallel Boyer-MJore algorittrn (PBM)

Conclusions

PARALLEL SORTIOO AI.roRITHMS

Introduction

Performance Analysis when M=P

261

265

267

267

271

Page No

6.2.1 Description of the sequential

QUICKSORT algorithm •••••••• 271

6.2.2 Parallel ((JIa<SORT algorifun (PQ) 274

6.2.3 Parallel ((JIa<SORT-MERGE (P(1-I) • • •• 283

6.2.4 Parallel Partitioned Sorting algo-

rithms (PPS) •••••••••••• 287

6.3 Perfonnance Analysis when M > P ••••• .• 293

6.3.1 Parallel ((JIa<SORT algorifun (PAO) •• 294

6.3.2 Parallel QUICKSORT-MERGE algorithm

(P(1-I) ••• • • • • • • • • • • • •• 300

6.3.3 Parallel Partitioned Sorting algo-

ri thms (PPS) • • • • • • •• 306

6.4 O:n::lusions 308

0iAPTER 7: A VLSI SOFT-SYSTOLIC IMPLEMENTATION OF A

STRIN:; MATCllER AND ITS VARIANTS •••••• 310

7.1 Introduction to the VLSI Techoology Paradigm 310

7.2 Fundamental Architecture Concepts in

Designing Special-purpose VLSI Computing

Shuctures

7.2.1 Systolic arrays • •

7.2.2 Wavefront arrays

7.3 VLSI-Qriented Architecture

7.3.1 The WARP arch! tecture

7.3.2 The aI:i.P arch! tecture

7.3.3 The INM:lS transputer and cx:rAM •

7.3.4 Simulation of systolic arrays •

7.4 SystoHc Algorithms, Constraints and

314

317

322

325

325

328

331

334

Classifications 339

7.5 Systol!sation of the Pattern Matching Problem

and its Variants

7.5.1 Hard-systolic designs

7.5.2 Soft-systolic designs

.. 342

344

348

0JAPl'ER 8:

REFERENCES

APPENDICES:

Appendix A:

Appendix B:

Page No

i) Soft-systolic designs with broad-

casting ••••.•••• 349

ii) Soft-systolic designs when

results are fanned-in

7.5.3 Conclusion

OONCLUSIONS AND stmESTIONS FOR FURTHER WORK

.

Selected Parallel Programs . . • • • • •

Summary of the QCCl\M Language • • • . • . . .

354

356

359

368

387

435

Appendix C: Loughborough OCCAM Compiler Version 5.0

Docurrentaticn •••••• 444

Appendix D: Selected Systolic Programs • • . . • • . 453

Chapter 1

MOTIVATIONS AND EXPLOITATIONS
OF VARIOUS FORMS

OF PARALLELISM

Of all the previously witnessed scientific and technological

revolutions that have greatly affected our lives in all its aspects,

the computer or the information revolution, has had the most

tremendous impact on both technology and our society. This fast

developing revolution which has just recently started to migrate

towards a new era, the krx:>wledge revolution, by giving birth to the

Fifth Generation of Super Computers (FGSC) has in fact changed our

lifestyles, our educational programmes and most of all many of our

professional careers. Similarly to the engine, a key element in the

industrial revolution, the computer's innovation was motivated by

the need to develop some device that could take over the repetitive

mental work from the human mind. Thus, if the engine could be

considered as the "muscle" then the microprocessor is, by all means,

the "brain" for this era.

Amongst the huge numbers of computer applications which range from

the simple personal computer games to the weather forecasting

calculation and satellite transmission programs, there are many that

require the use of large amounts of computational time. In an

attempt to meet the challenging problem of providing fast and

economical computation, the large-scale parallel computers were

developed. In fact, until recently computational speed was derived

only from the development of faster electronic devices.

The earliest oomputers built in the late 19508 used relatively slow

devices such as vacuum tubes and their central memories were

magnetic drums. As electronic technology advanced the demand for

faster components was appreciated and therefore these were replaced

by transistors and magnetic cores. In the late 1960s, Integrated

I

Circuits (ICs) were used in computer design and were followed by

Large Scale Integrated (LSI) techniques. the Very Large-Scale

Integrated circuits (VLSI), developed five years ago, are currently

being used in the design of very high speed speCial and general

purpose computer systems. '!he topic of VLSI systems is covered in

Chapter 7 by outlining the main design methodologies. Examples of

the design of a pattern matcher system are also included.

Until five years ago, the current state of elt£Ltudc techrx:>logy was

such that all factors affecting computational speed were almost

minimised and aTr:l further computational speed increase could only be

achieved through botll' increased switphing speed and increased

circuit densi :tY." 'Due to the basic physical laws, the intended

breakthrough seemed unlikely to be achieved mainly because we are

fast approaching the limits of optical resolution. Hence, even if

switching times are almost instantaneous, distances between aTr:l two

points may not be small enough to minimise the propagation delays

and thus improve computatiooal speed. Therefore, the achievement

of even faster computers is 0Uldi tioned by the use of new approaches

that do not depend on breakthroughs in device technology but rather

on imaginative applications of the skills of computer arch! tecture.

Obviously, one approach to increasing speed is through parallelism.

The ideal objective is to create a system containing p processors,

connected in some ccoperating fashion, so that it is p times faster

than a computerwi th a single processor. These parallel computer

systems or multiprocessors as they are commonly known, not only

increasElthe potential processmJ speed, but they also increase the
"

overall throughput, flexib:U1ty, reliability and provide for the

tolerance of processor failures. Unfortunately, the overheads

associated with controlling and coordinating the effort of the p

2

---------------- --

processors often prevents the ideal speed and reliability

improvements from occurring. Many of these overheads will be

clearly described later in the thesis.

Parallelism, the notion of the parallel way of thinking was

=nceived long before the emergence of truly parallel computers. It

is thought that the earliest reference to parallelism is in L F

Manebrea's publicationl , entitled "Sketch of the analytical engine"

invented by C Babbage. There, reporting on the utility of the

conceived machine, he wrote: "Likewise, when a long series of

identical computations is to be performed, the machine can be

brought into play so as to give several results at the same time,

which will greatly abridge the whole amount of the process".

As we are moving towards fifth-generation-type systems, it is IXlW

possible to define the first four generations of computers which

have been characterised in varioos ways rut most commonly in terms

of the techrology of their hardware.

The first generation of computers (e.g. machines such as EDSAc2 and

Colossos3 were ruil t out of therm ionic valves with gate delay times

of approximately 1 ~s (1 microsec). Systems were cumbersome,

1. Followin;)' Babbage's lecture in Turin, describin;)' his "difference
engine" a young Italian engineer wrote a detailed account of the
machine in French (published in October 1842). Ada, Lady
Lovelace translated the paper into ErYJlish.

2. In 1947, M Wilkes et al, from cambridge, began the construction
of the electronic Delay Storage Automatic Computer (EDSAC) and
in May 1949 the system was operational.

3. In 1943, Colossos, the first electronic ccmputer, went into
operation in Britain to decipher the messages produced by
Enigma, a German cede generator.

3

4

unreliable and needed ancillary rooling equipnent to deal with the

heat generated. Various software innovations (e.g. the operating

system in EDSAC) were introduced during this {ilase.

Following the pioneering work (late 1940s) of W Sh::x::kley, J Bardeen

and W Brattain at the Bell Laboratories in the US, the use of the

germaniUlil transistor, around 1960 with propagation delay times of

approximately .3)lS, gave rise to the second generation of

computers, such as the IBM 1401 and NCR 304.

The third generation of computers (e.g. IBM S/360 and ICL 1900)

which were introduced around 1965, were built out of Integrated

circuits (ICs): transistors, resistors, capacitors and diodes were

fabricated in a 10)lm thick surface layer on a silicon wafer. The

components were then connected by a metal layer evaporated onto the

sili=, subsequent etching producing the required interconnections.

These systems featured a propagation delay of 10 ns (naI'X)-secs), and

later, around 1975, of slightly less than 1 ns. By mw, high-level

programming langauges (e.g. COBOL and Fortran) and sophisticated

operating systems (e.g. IBM OS and ICL George 3) were well

established.

The fa.trtll-gerler: computers (e.g. IBM 3081 and fujitsu M380) are

characterised by enhanced levels of circuit integration through VLSI

techniques. Various software and arch! tectural innovations have

been introduced, as well as new scientific terms came into use

during this phase, such as on-line, real-time, multiprogramming,

multiprocessing and asyrx::hrt:xnJs programming ete.

All these various new conceived multiple processor architectures

whose aim is to increase the processing rate of a computer can be

_~.., I i;' ~' "

"-,,.,- "-"--~"

characterised in four different categories: associative, parallel,

pipelined and mul tiprcx::essors.

Hoc:kney and JessOOpe [Hockney 1981] summarised the principal ways of

introducing parallelism at the hardware level of the various

computer architectures as:

1. The application of pipelining - assembly lines - techniques in

order to improve the performance of the arithmetic or control

units. A process is decomposed into a certain number of

elementary subprocesses each of which being capable of executing

on dedicated autonomous tmits;

2. The provision of several independent units, operating in

parallel, to perform some basic fundamental functions such as

logic, addition or multiplications;

3. The provision of an array of processing elements performing

simultaneously the same instruction on a set of different data

where the data is stored in the processing element private

merrories;

4. The provision of several independent processors, working in a

cooperative manner towards the solution of a single task by

comminicating via a shared or common memory, each one of them

being a complete computer, obeying its own stored instructions.

The following sections will: ccwer a wide selection of the principal

significant parallel computer architectures, which differ

sufficiently from each other, the pipeline, SIMD, MIMD, data-flow

and VLSI systems, to illustrate alternative hardware and software

..

5

, .. '

6

approaches. Specifically for the multiprocessor class, the Neptune

and Balance 8000, at Loughborough University of Technology, are

described in more detail, due to the fact that they were used

extensively durin;J the development of this present research.

1.2 MAIN MJI'IVATICNS

Durin;J the last decade, the multiple processor approach has tailored

a set of long sought after motivating goals in order to

satisfactorily meet many of the challenging system design

requirements. In reviewin;J some aspects of the parallel processin;J

systems, one finds that while the hardware is improving at a fast

rate, the software tools to take advantage of the provided benefits

are only slowly forthcoming; a fact that affects the design

motivations mentioned below.

Since the early developed multiple processing systems, the system

characteristics that have motivated the continued development in

this field have rot changed much. The most significant of these are

increased throughput, improved flexibiUty and reUabi.1i.ty. Since

None of these goals is numerically specified (1.e. they are all

qualitative goals), it is not surprising that the design of the

future "supercomputers" will also be motivated by the same

objectives as today's parallel computers. However, the improvements

of some or all of these specifications must ultimately result in an

improved overall system performance, usually mea81Jred en the basis

of cost effectiveness.

The system throughput can be used to mean several different

characteristics such as the potential number of bits processed per

time-unit, the number of memory transfers per time unit or the

maximal number of programs that can be handled at the same time.

However, it is usually used nowadays to describe the low-turnaround

of a program in a multiprocessing environment. The multiple

processor approach is a cost-effective solutioo. to the achievement

of most of these goals. The use of several cooperatin;J processin;J

units can considerably increase the system throughput which could

not be matched by a uniprocessor system with enhanced logic

circuitry.

Literally, flexibility means the ease in changing the system

configuration to suit new conditions and the use of more than one

processor has greatly increased the system potential flexibility

since it offers the ability to expand the memory space, the number

of processing units and even the software facilities in order to

meet the new demands. This flexibility may also be used to justify

the increased reliability of the system.

Broadly speaking, the reliability is related to two different system

aspects required by different applications. The first one is the

system availability which is defined by the requirement that the

system should remain available even in the case of a malfunctionin;J

unit. An example of this is the computer controlled telephone

switching board. The system integrity is the second one and it is

defined by the requirement that the information contained within

should be ''protected'' against any defection = corruption (e.g. in a

banking system).

Conclud:1n;J, since all the system characteristics that have motivated

the development of the parallel processor computers are not

described quantitatively, any new major system concept has been

claimed by its proponents as the ultimate solution to achieving

7

8

these motivating goals. In fact, the same motives were behind the

follow-up to the parallel processing systems, the VLSI

archi tectures.

1.3 DESIGN CLASSIFICATICNS

As a result of the introduction of various forms of parallelism

which has proved to be an effective approach for increasing

computaticnal speed, several competitive computer architectures were

constructed but there was little evidence as to which design was

superior, nor was there sufficient knowledge on which to make a

careful evaluation. Researchers helped the study of high-speed

parallel computers by attempting to classify all the proposed

computer architectures, or at least those which have been already

well established. A brief presentation of the concepts of the

architectural taxcrx:>my given by different researchers, especially by

the two pioneers, Flynn [Flynn, 1966] and Shore [Shore, 1973],

follows below. AlthJugh these classifications are not strict and

complete since several classes could include the same computer (e.g.

ICL DAP fits equally well into several different classified groups)

or a computer could belong to any of them (e.g. pipe lined

computers), they have been widely mentioned and their corresponding

terminology has greatly contributed to the formation of the computer

science termimology.

1.3.1 FLYNN'S HIGH-SPEED PARALLEL a:MPl1I'ERS CLASSIFICATICN

Based on the dependent relation between instructions that are

propogated by the computer and the data being processed, Flynn

explored theoretically some of the organisational possibilities for

large scientific computing machinery before attempting to classify

them into four broad classes. We shall briefly review his

theoretical concepts leading to the actual grouping of the high

speed parallel computers.

For convenience, he defined the instruction stream as a sequence of

instructions to be processed bY the computer arrl the data stream as

a set of operands, includinJ input and partial or temporary results.

Also two additional useful concepts were adopted, bandwidth and

latency. By bandwidth he expressed the time-rate of occurrences,

and latency is used to express the total time between execution of

response of a computing process en a particular data unit.

Particularly for the former notion, computational or execution

bandwidth is the number of instructions processed per second and

storage bandwidth is the retrieval rate of the data and instructien

f:i:om the store (Le. memory words per second).

By us:l.ng the two former definitic:ns, Flynn categorized the almost

theoretically defined computer organisations depending on the

mul tiplici ty of the hardware provided to service the Instructien and

Data streams. 'l11e word "multiplicity", which was intentic:nally used

to avoid the ubiquitous and ambiguous term "parallelism", refers to

the maximum number of simultaneous instructic:ns or data in the same

phase of execution at the most constrained component of the,

organisatien.

Flynn observed that as a oc:nsequence of the above definitic:ns foor

classes emerged naturally, bein;;J characterized from the multiplicity

or not of the Instructien and Data streams:

i) Sin;;Jle Instruction stream - Sin;;Jle Data stream (SISD)

".' :,'

9

.. ~,; . \."

• ' .. " .. i'· .. ~~~.~~;i'

U) Single Instructien stream - Multiple Data stream

Ui) Multiple Instructien stream - Single Data stream

(SlMl)

(MISD)

iv) Multiple Instructien stream - Multiple Data stream (MIM»

10

The SISD computer [e.g. most of the general purpose machines such as

IBM STRETOI, nEC PDP-ll (serial or unpipeUned) and 0lC 6600 series,

IBM 360/90 series (pipelined)], is nothing more than the ordinary

serial computer (the Ven-Neumann type computer). Even trough, the

0lC 6600 and IBM 360/90 series achieve their power by overlapping

various sequential decisien processes which make up the executien of

the instruction (Confluent SISD), there still remains an essential

constraint of this type of organisatien, namely the decoding of one

instruction per unit time. In Figures 1.1 and 1.2 we see a SISD

organisation, and the concurrency and instruction processing

respectively.

The SIMD type structure, proposed by Unger [Unger 1958], Slotnick

[Slotnick 1962] is created by replicating the data stream en which

the single instructic:n stream acts simultarleoosly thus theoretically

increasing the throughput by a factor almost equal to the number of

data streams. Several factors, such as data conflict and data

communication problems tend to degrade the expected performance.

SOLOMON and ILLIAC IV are two examples of such a computer.

The third, MISD type class of parallel computers, the organisatien

of which is outlined in Figure 1.3, is by all means the least

realistic one compared to the others since no examples of any well

established organisatien have yet been pLOfOSEld. In this class, a

forwarding procedure of data flowing through the Executien Units was

forced. Thus, the data stream presented to Executien Unit 2 is the

resultant of Execution Unit 1 operating its instruction on the

I

11

EXECUTION

D··· BANDWIDTH
Stor-
age ,....
Unit

INSTRUCTION STREAM

D··· ~ Instructior DATA STRE\
,

• ,
• , Handling

-"
~ Unit ,

•

[}. Storag
Unit - STORAGE BANDWIDTH

FIQJRE 1.1: FLYNN'S SISO o::MPl1I'ER ORGANISATICN

source data stream. The instructioo performed 00 aTr:l Executioo Unit

can be one of the three following types: fixed, semi-fixed or

variable. It may be flexible such that the interconnecticn of units

must be flexible, semi-fixed such that the functioo of aTr:l unit is

fixed for one pass of the data or variable meaning that the

execution of a stream of instructions can take place at aTr:l point 00

the single data stream. Consequently this &rarYJ9Illent suggests that

only the first processing component faces the source data stream

whereas the remaining units are processing derivations of the data

from previoos components.

12

GENERATION ADDRESS OF INSTRUCTION

FETCH INSTRUCTION

DECODE INSTRUCTION

GENERATE ADDRESS OF OPERAND

FETCH OPERAND

EXECUTE
INSTRUCTION

INST #1 DD· .. DD 00· .. 0 0 .. ·0
g ~
SR. STORAGE REGENERATION

INSTR #2

INST #3

IllS'rRUCTIOtI # 1 STARTS

INSTRUCTIOII 62 STARTS

INSTRUCTION #3 STARTS

FIGURE 1.2. CONCURRENCY AND INSTRUCTION PROCESSING

13

~NSTRUCTION INSTRUCTIO~ ~NSTRUCTION
STORAGE STORAGE • • • STORAGE

1 2 N

INSTRUCTION INSTRUCTIO~ INSTRUCTIO
UNIT UNIT • UNIT

1 2 • • N

DATA
EXECUTION EXECUTION EXECUTION

--r UNIT -r UNIT f---- .. UNIT -STOR.'\GE 1 2 N

~

SOURCE DATA RESULTANT DATA
STRE~l STREAM

FIGURE 1.3: A MISD ORGANISATION

14

By combining parallelism in both the instnlcticn and data streams a

MIMD type of stnlcture is thus obtained. 'Ihis computer possesses N

independent executing units (processors), each of which is a

complete computer on its own (has arithmetic and logic capabilities

and local data storage), with processors connected together to

provide means for cooperaticn dur:ln;J a computaticn phase.

Most serial main frames could be classified as MIMD computers since

they include many data channels, such as Direct Memmy J\ccess (DMA)

which are, in a sense, independent processors. 'Ihus a computer with

one or two data channels is indeed a MIMD parallel computer, but the

MIMD is commonly accepted to refer to large comp.1ters with possibly

several identical processors such as Cmmp [Wulf 1972], CM* [Swan

1977]. Of particular interest, the NEPTUNE and BALANCE 8000

parallel computer systems are examples of this class.

Resum:ln;J, Flynn Classified computer systems into four broad classes

(see Figure 1.4) depending on the multiplicity or not of the

instnlction stream and data stream. Due to the fact that the actual

arch! tectural details of the machines were rot taken into account,

his taxonomy was somehow obscure since one finds that there is no

apparent distinctive differences between classes (MIMD class

exempted). Consequently, pipe lined and array processor computers

are considered similar, alth::Jugh they are two completely different

arch! tectures.

Also, the meaning of the data streams, as used by Flynn, has caused

many ambiguities due to the fact it does not make a distinctive

difference between a single stream of vectorised data and a multiple

scalar stream.

(a) LI ___ c_u __ ~r---------~·;LI ___ p_u __ ~~I·----------~L---MU----~

PUl MUl

PU2 MU2

CU (b)
•

PUN MU3

CUl PUl

CU2 PU2

(c)

CUll PUN

CUl ~I PUl 14 [MUl

CU2 ·1 PU2 I" 1 MU2

(d) •

CUN ~ PUN I· MUN

FIGURE 1.4: FLYNN'S COMPUTER ORGANISATION CLASSES
(a) SISD; (b) SIMD; (c) MISD, and (d) MIMD

where CU, PU and MU refer to Control, Processing
and Memory Units respectively

I

15

16

Consequently, in the following sections, the SIMD and pipe lined

computers are considered to be two distinct classes alcn;J with the

multiprocessor category.

1.3.2 SIDm'S aJlSSIFICATIIl'I'

Classification of parallel computer systems based on their

constituent hardware components was observed by Sb:>re [Sb:>re 1973].

Accordingly, all current existing computer architectures were

categorised into six different classes which are schematically srown

in Figure 1.5.

'!be first machine (I), [e.g. 0lC 7600, a pipelined scalar computer,

CRAY 1, a pipelined vector computer] which is the conventional

serial Von Neumann-type organisation, consists of an Instruction

Memory (IM), a single Q:ntrol Unit (aJ), a Processing Unit (PU), and

a Data Memory (DM), The main source of power increase comes from

the processing unit which may consist of several fuootional units,

pipelined or =t and all bits of a single word are read in order to

be processed simultaneously (Horizootal IV).

A second alternative machine (Il) is obtained from the first cne by

simply changing the way data is read from the Data Memory. Instead

of reading all bits of a single word as (I) does, machine (Il) reads

a bit from every word in the memory i.e. bit serially, but word

processing is parallel. In other words, if the memory area is

considered as a two dimensional array of bits, with each word

occupying an individual row, then machine (I) reads horizontal

slices whereas machine (Il) reads vertical slices.

IM

IM

CU

Vertical
PU

PU

OM

(I)

FIGURE 1.5:

CU

Horizontal

PU

Word
slice

OM

(III)

Horizontal

PU

OM

(V)

cU

OM

PU

I
OM

PU

OM

(II)

IM

t
CU

t
r-- Bit Vertical r-- Slice PU r--
i-- OM

(IV)

CU

-f
PU PU

I I
OM OM

(VI)

cu

I
PU

+

OM

THE CONFIGURATION OF THE SIX MACHINE CLASSES

17

18

A combination of the two above machines yields machine Ill. This

means that machine (Ill) has two processing units, a h:>rizcntal and

a vertical one and is capable of processing data in either of the

two directioos. The ICL DAP could have been a favourable candidate

for this class if only it had separate processing units to offer

this capability. An example of this organisation is the Sanders

Associates CfoIEN 60 series of computers [Higbie 1972].

Machine (IV) consists of a single cxntrol unit and many independent

processing elements, each of which has a processing unit and a data

memory. Communication between these components is restricted to

take place only through the control unit. A good example of this

machine is the PEPE system.

If, however, additional limited communication is allowed to take

place among the processor elements in a nearest-neighbouring

fashion, then machine V is conceived. Thus, communication paths

between the linearly connected processot'S offer f= any processor in

the a=ay the possibility to access data from its immediate

neighbour mem=ies, as well as its own. An example of this machine

type is the ILLIAC IV, which provides a short cut communication

eNery eight processing elements.

The Logic-In-Memory krray (LIMA) is Sh::lre's last class of computer

organisation. The main difference in machine (VI) and the previous

one is that the processing unit and the data memory are no longer

two individual hardware components, but instead they are coostructed

on the same IC board. Examples range from Simple associative

memories to complex associative processors.

19

It is observed that, generally speaking, Shore's classification,

oompared with Flynn's, d:les not offer anyth:Ing new, but only a sub

categorisation of the obscure SIMD class given by Flynn, except for

machine (I) which is an SISD-type oomputer. Again, as with Flynn's

categorisation, pipelined oomputers do not belong to a well

specified class, that represents their hardware characteristics, but

on the oontr8lY they are mixed up with unpipelined scalar oomputers.

1.3.3 0lliER c:IM;SIFIOI.TICN APPROAOlES

This paragraph gives a brief note on some other classification

approaches of less significant importance oompared to the former two

and which are based mainly on the ooncept of parallelism.

One of the taxon:>mies, based on the amount of parallelism involved

in the control unit, data streams and instruction units was

suggested by Hobbs et al [Hobbs 1970] in 1970. They distinguished

parallel computers into multiprocessors, associative pr=essors,

array processors and functional pr=essors.

Another clasSification, due to Murtha and Beadles [Murtha 1964] was

based upon the parallelism properties. An attempt to underline the

main significant differences between the multiprocessors and Highly

Parallel o:ganisations was appreciated. Three main classes for

parallel processor systems were identified and they are general

purpose network computers, special-purpose network oomputers

characterised by global parallelism and finally non-global, semi

independent network oomputers with local parallelism.

Furthermore, all these classes, but the last one, were further

subcategorised into two subclasses each. Whereas the first class,

20

the general-purpose one, was subdivided into the general-purpose

network oomputers subclass with centralized oommc:n oc:ntrol and the

general-purpose network computers subclass, with many identical

prooesors, each of which being capable of, independently from the

others, executing instructions from its own looal storage, the

second class identified the Pattern processors and associative

processors subclasses.

Using a structural chemistry-like notationl , based on a sl"nrthand

indicating the number of instructions, execution and memory units,

and the way they are interconnected and controlled, Hockney and

Jesslx>pe [Hockney 1981] formulated a taxonomy scheme f= both serial

and parallel oomputers. The main subdivisions are shJwn in Figures

1.6 and 1.7 together with a well-k=wn example in each class. Their

taxonomy was more detailed than that of Flynn or Shore and took

implicit account of pipelined structures. Therefore, the Multiple

Instruction class was =t cx:>nsidered for furtiler categorisation as

wi th the pipelined and a=ay processor computers. Nevertheless,

this scheme if coupled with that of Flynn could well be suited for a

general classification of parallel computers.

1. Using a descriptive notation for differentiating between
computers is much analogous to writing chemical formula.
However unlike any chemical atom, a component, such as the
execution unit, may have several different types (integer,
floating-point, pipelined, bit-serial ete).

21

I COMPUTERS J

SINGLE MULTIPLE
INSTRUCTION INSTRUCTION
UNIT UNIT

/~
SINGLE PIPELINED MULTIPLE COM-
UNPIPELINE OR MULTIPLE PUTERS
EXECUTION EXECUTION (Multiprocessox
UNITS UNITS

BALANCE 8000

SERIAL PARALLEL
UNI- UNI-
COMPUTERS COMPUTERS

FIGURE 1.6: STRUCI'URAL CIJlSSIFICATIOO' OF a:MPUTERS

1.4 PIPELINED a:MPUTERS

'!he pipeline or vector rotien, generally included in the parallelism

rotien, has been widely exploited since the 1960s when the need for

faster and more cost-effective computer systems became critical.

s)

UNPIPELINED

MULTIPLE
EXECUTION
UNIT

MULTI-UNIT
SCALAR
COMPUTER

CDC 6600

I

22

PIPELINED

/~
ONLY SCALAR VECTOR
INSTRUCTIONS INSTRUCTIONf

/~ 7~
HORIZONTAL ISSUE-WHEN SPECIAL- GENERAL-
CONTROL READY PURPOSE PURPOSE

PIPES PIPES

PIPELINED PIPELINED SPECIAL- GENERAL-
HORIZONTAL SCALAR PURPOSE PURPOSE
SCALAR COMPUTER PIPELINED PIPELINED
COMPUTER VECTOR VECTOR

COMPUTER COMPUTER

FPS CDC
AP-120B CDC 7600 CRAY-l CYBER 205

FIGURE 1.7: PARALLEL COMPUTERS BASED ON FUNCTIONAL PARALLELISM

23

Pipe1ining, a novel architectural design approach, is one form or

technique of embedding parallelism or concurrency in a computer

system. Although, essentially sequential, this type of computer

helps to match the speeds of varioos subsystems witlx:Jut duplicating

the cost of the entire system involved. It also improves system

availability and reliability by providing several copies of

dedicated subsystems.

In principle, the pipeline is closely related to an industrial

assembly line. As in the assembly line, precedeoce is automatically

observed, but it takes time to fill the pipeline before full

efficiency per cycle is reached and time to drain the pipeline

completely as the last trailing results are collected.

Figure 1.7 depicts the sequential and vector processing taxonomy

derived from pipeline computers together with examples of some well

lm:>wn and commercially available computer systems. A1 though the

pipe1ined computer architectures present somewhat different

organisational characteristics when compared to SIMD and MIMD

computer architectures, they are of significant interest because of

the close connection between algorithms best suited for SIMD and

those which achieve great performance on a pipe1ined computer

system.

Machines such as the Texas Instruments Advanced Scientific Computer

TI ASC [Watson 1972], CRAY-1 [Cray 1975] and the Control Data

Corporation CDC STAR-lOO [Hintz 1972] have distinct pipeline

processing capabilities, either in the form of internally pipe1ined

instruction and arithmetic units or in the form of pipe1ined

special-purpose functional units. Ramamcorthy and Li [Ramamcorthy

24

1977] presented many of the theoretical considerations behind the

pipeline notion and surveyed various pipe1ined computers that

operate in either sequential or vector pipe1ined mode wOOse trade

off was studied. Also a top-oown, 1eve1-by-level characterisation

of pipeline applications in computers and the associated

configuration control were explained in this referenoe.

The earliest use of overlapped modes of operation between the

Central Processing Unit (CPU) and the Input/OUtput unit (I/O),

namely an a.synchrcn:lus input/output operation, can be found in the

UNIVAC I, developed in 1951. This asynchronous Input/Output

processing avoids having the processing unit waiting for the

completion of I/O tasks and this improves the throughput. Within

the processor, there can be an overlap between the Instruction

Preparation or Processing (IP) and the Execution unit (E). The

instruction preparation can be further subdivided into Instruction

Fetch (IF), Instruction Decode (ID) and Operand Fetch (OF).

1.4.1 'HIE PIPELINE PlillCIPLE AND ~ OIAR1\Cl'ERISTICS

Pipelined computers achieve an increase in computational speed by

decomposing every process into several sub-processes which can be

executed by special autcn:>mous and cxn::urrently qJerating hardware

units. Furthermore pipe lining can be introduced at more than one

level in the design of computers. Ramamoorthy distinguished two

pipeline levels, the system level for the pipe lining of the.

processing unit and the subsystem level for the arithmetic

pipelining. Particularly Handler [Handler 1982] introduced a third
,-/ -..

level and ~stingished) them under the names: macro-pipelining for

the program ~truction pipelining for the instruction level

and the arithmetic pipelining for the word level. Others

25

distinguished the instructien pipelining, deperxllnJ en the control

structure in the system, to strict and relax pipelining. The

flowin] of the tasks through a strict pipeline is very rigid (must

be smooth and ordered), whereas it is less restrictive in a relax

pipelining (some turbulences in the data may occur from time to

time) e.g. latter operations can move ahead of earlier ones.

In additien to the hierarchical levels of pipelining, a pipe can be

further distinguihsed by its design configurations and control

strategies into two forms; it can be either a static or dynamic

pipe. Sometimes a pipelined structure is dedicated to a single

function, e.g. a pipelined adder or multiplier. In this case it is

termed un!functional pipe with static ccnfiguraticn. On the other

hand, a pipelined module can serve several different functions.

Such a pipe is called a mm tifunct!ona1 pipe which can be static or

dynamic depending on the number of active configurations

(interconnections). If cnly one ccnfiguratien is active at any one

time, then the pipe is said to be static. Thus any overlapping of

operations has to involve the same configuration. However, in a

dynamic mul tifunctional pipe, more than one configuration can be

active at any one time, thus permitting a synchrcn:Jus overlappin] on

different interconnections.

The simplified model of a general pipe lined computer is shown in

Figure 1.8 where the processor unit is segmented into M modules,

each of which performs its part of the processing and the result

appears at the end of the Mth segment.

The pipelined concurrency, a main characteristic of the simplest

pipelining, is exemplified by the process of executin] instructions.

In Figure 1.9, we considered foor modules: Instruction Fetch (IF),

26

CONTROL .- CONTROL FLOW

'UNIT - DATA FLOW

PIPELINED P ROCESSOR
UNIT

,
SEGMENT' 1

• GENERAL • REGISTERS
•

. SEGMENT M

ALIGNMENT NETWORK

MEMORY ••• MEMORY
1 K

1
[CHANNEL

'-
I/O SECON

DEVICE I DARY
MEMORY

-
FIGURE 1.8: A PIPELINED PROCESSOR SYSTEM

27

Instruction Decode (ID), Operand Fetch (OF) and Execution (E),

obtained when segmenting the process of processing instructions.

Consequently, if the process is decomposed into four subprocesses

and executed on the four-module pipelined system as defined above,

then four successive instructions may execute in parallel and

independently of each other but at different execution stages: the

first instruction is in the execution phase, the second one is in

the operand fetching stage, the third is in the instruction decoding

phase and lastly, the fourth instruction is in the fetching stage.

The overlapping procedure amcn;;r these individual modules is depicted

in Figure 1.10.

However the expected full-potential computaticn speed increase is

not always achieved mainly due to some design and operational

problems. These are buffering, busing structure, branching and

interrupt handling. A brief discussion of these major design

constituents alcn;;r with the pipelining of the arithmetic functions

is included. Their importance and effects which can actually decide

the efficiency and performance of the resulting design are also

outlined.

Buffering, an essential process to ensure a ccnt:inuous smcoth flow

of data through the pipeline segments in the case where variable

speed occurs, is virtually a process of storing the results of a

segment temporarily before sending them to the next segment.

Similar to an industrial assembly line, a segment may occasicoally

be slowed down for one of many reasons which could prevent the

continuous input to the next station. To remedy this problem, a

sufficient storage space or buffer is included between this segment

and its predecessor, the latter can continue its operation on other

results and transfer them to the provided buffer until it is full.

28

1---.... 011 ID •

FIGURE 1.9: THE MODULES OF A PIPELINED PROCESSOR

NO PIPELINE

IF4 ID4 CF4 E41

IF3 ID3 CF3 E3

IF2 ID2 OF2 ~

I IF1 ID1 CF1 E1

IF, ID, OF, E Pipelining

FIGURE 1.10: SPACE-TIME DIAGRAM

IAlign 11 Normalisel

FIGURE 1.11: MODULES OF AN ARITHMETIC PIPELINED PROCESSOR

29

When the slowing down segment resumes rormal service, it clears out

its buffer, perhaps at a faster speed. Q:x1sequent1y buffering may

be needed before and after a segment with variable processing time.

The inclusion of buffering between segments .in a pipe1ined structure

makes the system perform at a relatively constant rate rather than

at the speed of the slowest component. However full-speed is not

always expected to be achieved siooe buffers have to be stabilized

prior to any transfer activity.

In addition to the architectural features of the pipe1ined

processor, the busing structure is equally important .in deciding the

efficiency of an algorithm to be executed on such a system.

pipe1ining, in essence, refers to the concurrent processing of

independent instructioos trough they may be .in different stages of

execution due to overlapping. In real life, often, pipe lined

computers have to deal with dependent or intermixed instructioos.

With dependent tasks, their input and traversa1 thro~gh the pipe

have to be paused before the dependency is tackled. The internal

busing structure S&V9S this purpose by routing the results to the

requesting segments efficiently, thus reducing the adverse effect of

instruction dependency, but still leaving a great burden on the

programmer. However, in the case of .intermixed instructioos, more

concurrent processing can take place since the resulting of

dependency is hidden behind the processing of independent tasks.

Another damaging factor to the pipe1.ine performaooe, even more than

the instruction dependency is branching. The encounter of a

CXJI'lditiona1 branch rot only delays further executions but affects

the performance of the entire pipe since the exact sequence of

instructions to be followed is hard to foretell until the deciding

result becomes available at the output. 'lb alleviate the effects of

30

branching, several techniques have been employed to provide

mechanisms through which processing can resume safely even if an

incorrect branch occurs which may create a discrntinuous supply of

instructions .

A similar degrading effect to the conditiooal branc:h:InJ is caused by

interrupts which dismpt the continuity of the instructicn stream

through the pipeline. Interzupts must be serviced before any acticn

can be applied to the next instruction. In the case that the cost

of a retXNery mechanism for processing to proceed afterwards when an

unpredictable interrupt occurs (while instructim i is the next cne

to enter the pipe), is not exceedingly substantial, sufficient

informaticn is saved for the eventual retXNery. otherwise these two

instructicns, the interrupt instructicn and instructicn i, have to

be executed sequentially which is, in fact, not aimed at by the

pipelining principle. An example of an interrupt rec::Nery system is

present in the STAR-lOO processor in the form of special intenupt

counters capable of oolding important informaticn such as addresses,

delimi ters, field lengths. These are necessary for the eventual

recovery of vector-type instructions after an unpredictable

interrupt has occu=ed. However, in a more general-purpose

pipelined oomputer system the instructicn recovery imposes a costly

and complex problem. Also, different types of interrupt, depending

on what they are associated with, can be distinguished. For

example, in the mM 360/91 two types of interrupts are used, namely,

the precise interrupt, associated with an instruction (like an

illegal instructicn oode) and the imprecise interrupt resultin:;J from

the storage, address and execution functions. The former type of

interzupt occurs at the decoding stage whereas the secaxi cne might

occur during other execution phases. In both cases, the next

instruction to enter the decoding phase (let's say) instruction i,

31

is halted and all instructioos present in the pipe (i.e. interrupted

instructions) are allowed to complete execution before the

processing unit is switched to service the interrupt.

Finally, one of the most beneficial applications of overlapped

processing in order to increase the total throughput has been the

execution of arithmetic functions. Specially, the advantages of

pipelining are greatly enhanced when floating point q:>eratioos are

being considered since they represent quite a lengthy process.

Again, until all modules in the pipe are excessively used, full

speed is not obtained. For example, the TI ASC arithmetic pipelined

processor is made up of height modules, as slx:>WIl in Figure 1.11.

Concluding, in order to determine whether a particular pipelined

computer is efficient or not in terms of throoghput, the following

evaluation of the basic timings are performed. Suppose that in an

idealistic situation, all sub-processes are designed to complete in

time T. In the case of a p-pipelined processor (containing p

modules), then a process of at most p sub-processes requires

p.T time units to complete and a succession of k such processes if

overlapping is considered would be executed in p.T + (k-l)T. The

fiIst result is output after p.T time units, time necessm:y to fill

the pipe, and the k-l remaining results are obtained at the rate of

one result every unit time. If we define t as the time to complete

a process in a sequential computer, then to achieve a faster

execution time of the k coosecutive processes we require

(k-l)r + p.T< kt

k > (p-l) _T_
t-T

1.3.1.1

-------~-----

32

A fundamental conclusion to be drawn from the above inequality

expresses the conditicn which, if satisfied, leads to a theoretical

high throug~t rate, namely the number of processes has to be lcng

relatively to the number of modules in the pipe. In real

applicaticns, the throug~t rate is also determined by its slowest

segment or bottleneck. Techniques such as the subdivision of the

bottleneck element or the multiplicity of this facility to perform

in parallel (see Figures 1.12(a), (b) and (c», are very useful in

reducing the effect of bottlenecks. lbwever, the latter technique

is less appealing than the former since it also introduces more

complex problems, namely the distriwticn and synchrcni.saticn of the

tasks in the parallel particn of the pipeline.

FIGURE 1.12(a): THE BOTTLENECK IS IN MODULE 2

·1 1 ~ I 2 ·1 3 ~ , 3, ,
FIGURE 1.12 (b): .SUBDIVISION

2
OF BOTTLENECK ELEMENT

,..
•

-1 1 ·1 ./ -I H 3 r-, , , , ,
FIGURE 1.12(c): MULTIPLYING OF BOTTLENECK

.1 2 1
1

3,

~ 1 1 I 1 2 I J 3 I
I I I , 31 T

~ 1 2 t
-I I

31

33

Ideally, the throughp.lt of a pipelined computer is maximised when a

continuous exc!tatioo of the pipeline is frequently attained. This

is equivalent to an almost continuous stream of independent

instructions. Vector processing which represents a repetitive

sequence of the same process 00 a set of different data, is a highly

recommended process for pipelining. 'l11e overlapped characteristics

of pipelining are employed when the required transformation of

vector elements are independent of each other.

A vector pipe can be characterised by the existence of one or more

mul tifunctiooal pipes in the execution unit (arithmetic and logic

unit). In the case of a multifunct!ooal pipelined executioo unit, a

static coofiguratioo can be established and retained througOOut the

entire vector processing. Hence, minimal control, decoding and

reconfiguratioo overlleads may be achieved while the memory operands

are supplied to the execution modules in a most efficient way.

Add! tiooal overheads such as the set-up time am the f1ushing-time

are associated with vector processing. The former represents the

time to fetch all the cootrol and data parameters from the storage

so as to structure the pipeline preparing the vector data streams

and the latter overheads which directly measures the sum of the

executioo time of all facilities that the instruct!oos and operand

pair have to go through, is the period of time between the initial

operation (the decoding) of the instructions and the exit of the

result (for vectors, the first result element) through the entire

pipe.

34

According to the above time constraints, the vector instruction

processing time, ~, in the case of an effective vector field

length k, can be expressed analytically as (assum:tn:J the bottleneck

is in the executicn units)

1.3.2.1

where ts is the set-up time, ~f is the flushing time including

decode, address calculation, operand fetch and paired, term!naticn

check and executicn, and te is the speed of the bottleneck segment.

Similarly, the executicn of k operaticns in a sequential pipe, i.e.

the same instructicn has to be executed on a vector of data us:tn:J a

pipeline without vector processing power, can be analogously

analysed. This instruction has to go through the entire pipe k

times and thus the processing time can be expressed as:

1.3.2.2

where tsp is the sequential (pipeline) processin;;J time, tsf is the

sequential pipe flush time, and tb is the speed of the b:>tt1eneck in

the pipe. Compar:tn:J t.;p and tsp yields

1.3.2.3

35

This last equation reveals that vector processing is beneficial when

the length of the processed vector is oansiderably large; in other

words, if the set-up and differential flush times are large oompared

to the difference of the speeds of the bottlenecks of the two pipes,

then a lengthy vector field is required to justify vector

processing •

Vector pipes are designed to be oost-effective, theY are implemented

with sufficient flexibility and power in order to match the speed of

the Array Processors which are often more expensive.

In conclusion vector processing as compared with sequential

pipelined processing, offers many advantages. In terms of time

efficiency the speed is improved for oansiderably lengthy vectors,

and in terms of resource utilisation, vector processing ensures a

more efficient utilisation of all system facilities. The overhead

incurred is principally in the additional software facilities

required to use the pipeline efficiently. There is also a need for

additional control circuitry, especially for multifunctional pipes,

to establish the required configuration and routing of the data

operands between pipe segments. Because of its oost-effectiveness

and speed advantages, vector processing may be generalised and

extended to smaller scale processing systems.

1.4.3 IMPLEMENl'ED PIPELINED a:MEVl'ERS

As a concluding paragraph for this section on Pipelined Computers,

we shall briefly present the architectural characteristics and

performance of some of the commercially implemented pipelined

36

computers: mAY-1, me CYBER 205, AMIlI\HL 47OV/6, TI 1'SC and the FPS

AP-1200.

The CRAY-1, manufactured by Cray Research Inc, at Chippewa,

Wisc::cnsin, USA1, was the first sucoessful Vector Pipe1ined Computer

with a design philosophy following closely the CDC 6600 and 7600.

One of the striking features of this machine is its small size: 4!

ft (feet) in diameter and 6! ft high. Overall it comprises a main

memozy feed:in;J data to or from a set or scalars and vector registers

and twelve independent functiooal. units to perform arithmetic and

logic operations on the contents of these registers. (Figure 1.13

shows the main units and data paths of the mAY-1). The maximum

size of the memozy en CRAY-1 is cne millien (exactly it is 220) 64-

bit words of bipolar memory with 50 ns access and cycle time,

divided into 16 memo:ry banks that may operate Simultaneously giving

a maximal bandwidth of 320 Mword/s (millien wo:rds per seccnd). This

has been increased to 4 Mwords en the CRAY-1S which was aIll'XJI.InCed in

1979. There are four instruction buffers each holding 64 16-bit

instructien words and each is CCl'lIleCted to memozy by a 64-bit wide

data-bus which can achieve a transfer rate of foor instructien words

per clock period (a bandwidth of 320 Mword/s). 'I1lese maxima apply

o:nly when all the instructicns are drawn from separate memory banks.

The data-bus between the registers and main memory, on the other

hand, is cnly 16-bit wide allowing a low data transfer rate of cnly

80 Mword/s. The maximum computing rate on the CRAY-1 is 160

Mflops/s (80 millien multiplicaticns and 80 millien additions per

seca:rl) with a clock period of 12.5 ns.

1. The first delivery was made to the Los Alamos Scientific
Laboratoty, New Mexico in Februaty 1976.

I

FIGURE 1.13: ARCHITECTURAL BLOCK DIAGRAM SHOWING THE
PRINCIPAL UNITS, BUFFERS AND DATA PATHS
OF THE CRAY-1 COMPUTER

o
0

,
~4

• • \ • • •
63 • ,

63 , ... -
Instruction buffers BO -

•
•
• AO

Integer Addition B63
• -Integer Multiplication • •

A7

37

MEMORY I r;)
I--

(16 banks)

Integer Shift SO • •
Shift 10---0 • •

Logical • -
• T63

Population count I S7
'--

Floating-point Additio 1
Floating-~oin~ Multi- Y

VM I
Reciprocal Approximaticr •

-- .r..: • : ~ ! vo I.
Integer Addition - ,~

Shift ~
r-

• V~ • Logical • f--

- •
~3 • • , -

" ,,3 '. '--

38

The registers use 6 ns logic and comprise eight 24-bit address

registers (N) to A7), eight 64-bit floating point scalar registers

(SO to S7), and eight floating point vector registers (VO to V7)

each of which can hold up to 64 64-bit floating point numbers.

Sixty-four buffer registers are also provided between the A

registers and main memory (24-bit registers EO to B63) and between

the S registers and main memory (64-bit registers TO to T63). The

main memory may send data either to the A and S registers at the

maximum rate of one word every two clock periods (40 Mword/s), = to

the B, T and V registers at the maximum rate of one word per clock

period (80 Mword/s). The buffer registers are used f= the purpose

of storing intermediate results which may be transfe=ed to the A

and S registers in one clock period.

The design of the CRAY-l was mainly motivated by the commercial

desire to provide a substitute for existing computers such as the

ox: 7600 and the IBM 360/195 to be sold to maj= scientific research

centres. Unlike the ILLIAC IV which pioneered the development of

several technological innovations, there was no incentive for

experiments with new technologies. In fact the technological

choices in the CRAY-l were therefore conservative and the IXJVel of

the machine appears mainly in the architecture.

The ox: CYBER 2051 manufactured by Control Data Corporaticn in Saint

Paul, Minnesota, USA represents the culminaticn of a long program of

research and development that started with the design and delivery

of the CDC STAR 100 computer in the period 1965-75. When

1. It was announced in 1980 and the first delivery was made to the
UK Meteorological Office, BrackneU, England, in 1981.

39

operational, the (DC STAR 100 sh:>wed many disadvantages which made

it unattractive to potential customers. Ccnsequently, Centrol Data

Corporation decided to develop a new LSI techrDlogy and re-en;;Jineer

the woole system using it, as well as to make a few improvements .in

the architecture. One of the decisions taken at that time was to

retain the use of the extensive developed software by reta.ining the

STAR 100 instruction set and overall organisation. The re

engineering program also included the means of upgrading existing

STAR 100 machines to that of the re-en;;Jineered version. This took

place .in two stages:

Firstly, the CYBER 203, also known as STAR lOOA, was manufactured

and anrx:JI.lI1Ced .in 1979 by re-en;;J.ineering the STAR 100 structure whose

slow main memory was replaced by a 80 ns tripolar memory. The

scalar and srort-vector performance was also boosted by the add! tion

of a new developed LSI scalar unit with a 20 ns clock period.

However, the two vector pipes and the stream unit of the STAR 100

with a 40 ns clock were unchanged. The second stage was the

manufacture of the CYBER 205 (initially krown as the STAR 100e and

subsequently as the STAR 1ooE) which is the CYBER 203 with re

en;;Jineered and improved LSI vector pipes and stream unit, worldng

with a 20 ns clock period. The CYBER 205 machine offers several

architectural options (see Figure 1.14). The number of pipes may be

optionally increased from two to four, the memory to 4 Mwords and

the I/O channels to 16. However, the disadvantage of a unit vector

increment caused by the contiguous vector requirement, i.e.

successive vector elements should be stored in successive memory

locations, remained. The maximum overall performance of the CYBER

205 is 800 Mflops/s .in 32-bit arithmetic on a four pipe machine.

,----- ----- --

FIGURE 1.14: ARCHITECTURAL BLOCK DIAGRAM SHOWING THE
PRINCIPAL UNITS AND DATA PATHS OF THE
CDC CYBER 205 COMPUTER

>. DJ DJ DJ DJ " ~ ~ ~ ~ g
~ ~ ~ ~ ~

Q)
u

G G ~ 0 >.'"

~ "'" 0" '" I>: ElQ) " Q)+J
:.:s::

H

I -1- -- ---- -- -- -,
"

I

" s:: Q) I 11) I
+J +JO 'tl "+J " I ... 11)

'" 0'" t1>Q) I s:: S::+J O+JS:: Q)+J I P H ~ UlP 1>:11)

T I

" I

'" J..J...1..~~ •
'" I
U I Cl) + >< ~ r~ \.,.

---'" I
• - f-.- ----- -- - -.I

+J -I .. I s:: Str!>m Unit Buffer
P t1>

S::+J

~~~~ " ....... I/O 0 " s:: +J +JP Channel u Cl) 

~ 

40 



41 

The AMDAHL 47OV/6, an IBM 360 compatible computer manufactured by 

the AMDAHL Corporation, was the first computer to use LSI in the 

logic circuits of the CPU. The first delivered machine in 1975 had 

a basic cycle time of 32.5 ns which was reduced to 29 ns in the 

subsequent versioo of the AMDAHL 47OV/7. Alth:xJgh the arithmetic 

units in this machine were fX)t pipelined, a high performance of 4.6 

Mflops/s was obtained by pipelining the processin;J of instructions 

which was organised into 12 sub-operations. When flowinJ smcothly, 

an instructioo could be taken every 2 clock periods, therefore up to 

six instructions could be in parallel executions. Also, a high

speed buffer (or cache) bipolar memory of 26 Kbytes with a cycle 

time of 65 ns was used to improve the effective access time of the 

slow main memory of up to 8 Mbytes of MOO store (650 ns access). 

The TI ASC system, manufactured by Texas Instruments, was started 

around 1966 as a computer suitable for the high-speed processinJ of 

seismic data. It is based on four identical general-purpose 

pipelines, each capable of perforrninJ the elementary instructions 00 

vector operands. Instructions can be taken from one or two 

instruction processing units which, when operating in parallel, 

improve the instructions throughput. (Figure 1.15 shows the 

architecture block diagram of the TI lISC computer). With the four 

pipes operating optimally, a design rate of 50 Mflops/s was 

achieved. The semiClCl1ductor memory had eight banks and a cycle time 

of 320 ns. After installinJ about seven systems, the first ooe was 

in 1973, the manufacture of the TI ASC was discontinued because, 

like the STAR 100, it also suffered from a scalar unit that was 

significantly uncompetitive. 

Concluding this paragratxJ., the FPS AP-120B, the first lOW-cost yet 

high-performance computer manufactured by Floating Point Systems 



Memory 

Memory 

MEMORY 

CONTROL 

UNIT 

Memory 5 

Memory 7 

Central Processor with 
~its (IPU) and one to 

one or two Instruction Processing 
four Arithmetic· Units (AU) 

one or two IPUs 

peripheral 
Processor 

} m 00.00." 

"'J 
H 
G'l 
C 
gj 
~ 

~ 

lJl 

8't1:X-
~::<I::<I 

HO 
:X-Z:I: 
(J)OH 
OH8 

'tIt'l 
O:X-O 
011:18 

~c~ CZ 
8Ht" 
t'l8 
::<I(J)\J:l 

t" 
S;g 
0:';: 

00 
:X-H 
8:X-
:X-G'l 

~~ 
8 
:I:(J) 
(J):r: 

0 
0:;: 
"'JH 

Z 
8G'l 
:I: 
t'l8 

:I: 
t'l 

"" IV 



I 

L 

43 

Inc, is called Array Processor (lIP)l, since it performs efficiently 

on arrays of numbers. The first deliveries started in 1976. 

Comparing the overall architecture and the physical layout of the 

lIP-12GB and rnAY-l, one might =lude that the former is to a mini 

or a medium computer, what the CRAY-l is to a large main frame 

computer. The overall architecture (see Figure 1.16) of the 1\P-120B 

is based on multiple special-puIIX)Se memories feeding two floating

point pipelined arithmetic units via multiple data paths. It is 

driven synchronously from a single clock with a period of 167 ns. 

The standard memory has an access/cycle time of 500 ns, whereas the 

optional fast memory has a cycle time of 333 ns. Both types of 

memories are, however, organised as a pair of independent memory 

banks (one for the odd addresses and one for the even addresses). 

Depending on the type of memory, standard or fast, successive 

references to the same bank must be separated by at least 3 or 2 

clock periods respectively whereas they can be made on successive 

clock periods when referring to different banks. The system 

includes a 38-bit floating point arithmetic unit organised into two 

separate pipe lined multiplication and addition units and an 

independent 16-bit integer arithmetic unit fOr counting and address 

calculation. Three memories (program memory, data memory and table 

memory) and 2 scratch pads of registers (X and Y registers) are 

provided with multiple data paths between each memory bank and each 

functional unit. Theoretical processing rates of 5-10 Mflops may be 

achieved. 

1. The fact that the machine is called an array processor does not 
mean that it is composed of an array of processors. 



Control [ 
memory 

Control [ 

Memory 

r-

I-

r-

r-

f-o 

f-o 

~ 

~ 

~ 

PROGRAM 
MEMORY 

MDtORY 
ADDRESS 
R ERS 

TABLE 
MEMORY 

DATA PAD 
X 

DATA PAD 
Y 

DATA 
MEMORY 

38-bit bus 
structures 

I--

I--

~ f-o 

If--'! I-

l-.-

h-o 

r-

44 

Arithmetic 

Floatinq-poirft 
adder 

t> I FA 

-=t3 

~ 
~ IFM l-

v 

Floating-point 
mul tiplier 

FIGURE 1.16: ARCHITECTUR~ BLOCK DIAGRAM SHOWING THE PRINCIPAL 
UNITS AND DATA PATHS OF THE FPS AP-l20B COMPUTER 



) 

45 

A successor prototype to the AP-12OB was anrxxmced in 1980 under the 

name of AP-1641 with first deliveries in 1981. The principle 

improvements introduced which maintained the overall structure, the 

clock rates and machine timings were a 64-bit floating-point 

arithmetic, a 32-bit integer arithmetic, a 24-bit addressing, a 1024 

64-bit word instruction cache memory loading from the main memory, 

replacing the program memory of the AP-120B and a main memory 

expandable to 12 Mbytes. 

Finally, the a=angement of control in the AP-120B computer was 

referred to as horizontal microcode since each 64-bit wide 

instruction controls all the functional units every clock period. 

Thus there is only one instruction with fields oantro11ing each of 

the functions, although certain combinations of functions were 

excluded due to some fields overlapping. 

1.5 DATA-FICW a:M'Ul'ERS 

A common feature for all the high-speed parallel computer 

archi tectures is that, due to the basic linearity of the program, 

the use of implicit sequencing of the instructions is possible. This 

is a Von-Neumann characteristic which means that the order of 

execution of the instructions is determined by the order in which 

they are stored in the memory with branches used to break this 

implicit sequencing at selective points. 

1. This oomputer was preceded by the AP-190L which is an enhanced 
version of AP-12OB, with more memory. 



46 

An alternative form of instruction controlling is the explicit 

sequencing which is basieally the principal ccncept exploited by the 

data-flow machines to provide the maximum possibilities for 

concurrency and speed-up. However, this coocept has a significant 

impact on the architecture of such machines, the program 

representation, and the synchronisation overheads. 

In a data-flow architecture the algorithm is represented by a graph 

where the nodes correspond to the computations and the arcs describe 

the flow of data or operands, from the rode producing the data (as a 

result) to the node using it as an operand [Dennis 1980]. In 

addition to the nodes describing the basic operations, there are 

nodes which are used to control the routing of data. Thus, the 

execution of any instruction is determined by the availability of 

all its operands resulting in a more complex control due to the high 

overheads involved in routing the data. 

With the use of the above graph representation, the data-flow 

ccncept ElI'lCC:PJIters some problems when the algorithm contains loops 

or subroutine calls, in which case the same instruction is executed 

several times. Basically, the implementation of the data-flow 

computers can be grouped into two main classes, the static and 

dynamic structures, depending on how this problem is tackled. In 

the first class, the static one, the loops and subroutines calls are 

tmfolded at compile time so that each instruction is executed only 

once. Q:msequent1y, the implementation of the sequencing control is 

made simple since it directly follows that of the graph. On the 

other hand, in the dynamic case, the operands are labelled· so that a 

single copy of the same instruction can be used several times for 

different instances of the loop (or subroutine). Since, in this 

type of architecture, it is necessary to match all the operands with 



47 

the same label before issuing the single copy of the instruction, 

the implementatioo. of the centrel is significantly more complex in 

comparison with that of the previous class. However, the dynamic 

approach which allows a oompact representaticn of large programs, 

can effectively exploit the concurrency that appears during 

execution (for example, recursive calls or data-dependent loops). 

An example of the static approach is the HIT Data-Flow Machine (see 

Figure 1.17) which consists of the following main components: a 

store that contains the instruction cells or packets having space 

for the operatioo., operands and for pointers to the successors, and 

a set of operating units to perform the operations. These two 

components are connected by two interconnection networks, one to 

send ready-to-execute instruction packets to the operating units and 

another to send results back from the operating units to the 

instructions that use them as operands. The system has to be 

carefully designed so as to prevent any bottleneck from occurring 

and to provide means for the full exploitation of all the 

concurrency • 

In such a system, the maximum throughput is determined by the speed 

and number of the operating units, the memory bandwidth and by the 

interconnection system. As in the other organisations, several 

degradation factors reduce the effective throughput. The most 

significant are the degree of concurrency available in the program, 

the memory access and interconnection network conflicts, and the 

broadcasting of results, all of which except the last one, are 

similar to other systems. Sometimes an instruction has several 

successors, so that the result has to be sent, or broadcasted, to 

all of them and this introduces significant overheads in the case 

when the number of destinatioo. pointers present in an instructioo. 



48 

OPERATING 
UNITS 

g 
I I ~ 

INST. CELL 
:.: 

E-< ~ 
fiI 0 
Z • ~ 

E-< 
Z fiI 
0 Z 
H 

• E-< • Z 
P 0 
I:Q H 
H • E-< 
~ ~ E-< 
Cl) E-< 
H 

I 
H 

0 I I:Q 
INST. CELL ~ 

FIGURE 1.17: THE STATIC DATA-FLOW MACHINE 

~ 

To host 
TOKEN, QUEUE 

I/O SWITCH MATCHING UNIT OVERFLOW UNIT 

From host INSTRUCTION 
STORE 

PROCESSING 
UNITS 

FIGURE 1.18: MANCHESTER DATA-FLOW MACHINE 



49 

cell is limited. 

Examples of the dynamic approach irx::lude the U-Interpreter Machine 

[Arvind 1982] and the Manchester Dataflow Machine [Gurd 1985]. 'lhe 

main compcnents of the latter (see Figure 1.18) are the token queue 

that stores computed results, the token matching unit that combines 

the corresponding tokens into instruction arguments, the instruction 

store that oolds the ready-to-execute instructions, the operating 

units, and the I/O switch for communication with the host. The 

degradation factors are similar to those of the static case except 

the additional overhead in token label matching. Due to the above 

mentioned degradation factors, data flow machines are only 

attractive for cases in which the concurrency exhibited is of 

several hundred instructions. 

An:lther problem in the use of the dataflow approach is the lack of 

any data structure definiticn, in fact ooly scalar operaticns were 

first utilised in the attempt to maximise the amount of ooocurrency 

and this had significant limitations in terms of the modulari ty of 

the programs. The inclusion of data structures in the graph 

representaticn requires that the dataflow concept be extended and 

operations on them be defined [Davis 1982]. From the operational 

point of view, the most straightforward solution is to treat the 

data structure as an atomic operand, ~ the structure to be 

sent as a woole to the operating units even ttnlgh ooly few elements 

are operated on. This can be performed by sending to the 

operating unit a pointer to the data structure instead of its 

value. However, the disadvantage with this is that the woole data 

structure has to be copied when any of its elements is modified 

resulting in a heavy transfer rate between the memory and the 

operating units. To avoid this copying overhead, Dennis [Dennis 



50 

1974] has proposed a tree structure to store arrays and operations 

such as select and append to modify parts of the array. However, 

Dennis' proposal Cbes rot solve the limitatioo that the elements of 

the array have to be modified in a sequential manner, which 

increases the overhead for the select and append operations. To 

reduce this overllead Gand!ot and Ercegovac [Gand!ot 1982] proposed 

the introductioo of macro-actors to perform more complex updating. 

To elim~te the sequential nature of the modifications, lmTind and 

TOOmas [lmTind 1980] introduced I-structures that allow ccncurrent 

writes and reads by adding to each element a tag indicating if the 

element has already been written, and a list of pend!n;J reads to the 

reads queue to arrive before the element has been written. 

One of the most significant advantages of the dataf10w machines, as 

claimed by its propellents, is the exp1oitatioo of the coocurrency at 

a low level of the executioo hierarchy sin:::e it allows the maximum 

utilisation of all the available concurrency. However, some 

researchers argued that the overhead with this unstructured low

level concurrency is too high and have proposed the use of a 

hierarchical approach in which different types of ocncurrency can be 

exploited at different levels. 

Finally, the dataflow organisaticn which is still in an experimental 

stage, has recently received considerable researchers' attention. 

Several prototype systems have been built or simulated and are being 

evaluated. Some examples are the MIT dataflow. machines (The static 

Data-Flow Machine [Dennis 1983] and the Tagged-Tbken Data-Flow 

Machine [Arvin 1983a]). The Manchester Data-Flow Machine [Gurd 

1985], the TI Data-Flow Machine [Cornish 1979], and Single 

Assignment Data-Flow Machine LAU [Comte 1980]. 



Chapter 2 

CURRENT MULTIPLE PROCESSOR 
SYSTEM ARCHITECTURES 



51 

2.1 IN1'RClXCl'ICN 

'!he rapid development of computer techoology has rot only produced 

high perfonnance processing systems but has had a significant impact 

on its terminology. More specifically, the terms parallel computers 

and parallel processing, as used in these first chapters, refer to 

the early computers perfonning arithmetic operations on whole words, 

rather than on a single bit, and continues right up to the more 

recent notions of multiple-processing or concurrency as presently 

implemented in several commercial and experimental high-speed 

parallel computers. 

In this chapter, we shall consider the SIMD and MIMD type of 

oomputers separately and present in a detailed fashion, the hardware 

and software characteristics that must be possessed by the 

respective architecture in order to be classified as such. In 

add! tion, both classes are exemplified by a detailed architectural 

discussion of some of the well krDwn implemented computer systems. 

For the SIMD class, a further sub-categorisation is undertaken to 

produce two subclasses, the Associative and Array processor 

computers, which are thoroughly examined in Sections 2.2.2 and 2.2.3 

respectively. 

AltixJugh, we have referred to many computer classification schemes 

which have yielded several different types of computers, we shall 

not present all the conceivable parallel oomputer architectures, but 

only those which have ccntributed most to the achievement of many of 

the proposed design goals. However, due to the impact of VLSI 

circuits, the first two chapters will be complemented by a 

discussion of some VLSI archi tectures (see Chapte4 ) in order to 



52 

provide a survey of most of the high-speed parallel computers of 

today. 

2.2 'mE GENF.AIroY OF 'mE SlM) aJ.iPl1I'ERS 

The main characteristics of the SIMD (Single Instruct!en Multiple 

Data stream) category of oomputers is a single global centrol unit 

that drives more than one processing element, all of which can 

either execute or ignore the current instruction. Consequently 

these machines are known as synchronous computers since all 

processors would execute the same instructien at the same time but 

en separate data streams. 

Following Flyrm's classificatien of large-scale high-speed a:xnputer 

Thurber and Wald [Thurber 1975] gave some generic relationships 

which were subsequently amended and used in the creatien of the SIMD 

sUb-classificaticns. Accordingly, three sub-classes for the SIMD 

category were established: the A"'SOCi ative Pr. c us, the Parallel 

or Array ITn'OIocOl:lSflCl[u:ss and the Er se-bles. 

Associative processors which will be briefly described in Sectien 

2.2.2, are characterised by the use of the Associative Memories 

instead of the conventicnal location-addressed memories and by the 

search capabilities offered by these memories. Section 2. .3 

describes the architectural features of the Array Processors and the 

interconnection networks which are fundamental to the Array 

Processor Design and equally important to their efficient use. This 

sectien also includes a review of some implemented Array Processor 

Systems. In the Ensemble architectures, the least interesting 

architectures among the three SIMD sub-classes of computers, the 

l 



53 

interconnection level between the processors ca.tl.d be l'01-existent 

or very low. 

Finally, it should be understood that SIMD computers are special

purpose processors which require a front-end host computer to be 

attached to and thus they are only useful for a limited set of 

applications. The utilisation of SIMD computers, in general, and 

their applications are summarised in the following section. 

2.2.1 WE Ul'ILlSATICN AND APPLICATICNS OF WE SlM) SYSTEM 

As with arq special-purpose ocmputer, the potential high performance 

can be achieved only when it is used properly (Le. they are 

utilised for the purpose they were designed for) and SIMD systems 

are no exception. The most important aspects for utilising SIMD 

computers can be classified into the following three classes. 

The first class, characterised by the hardware structure of these 

systems, is more efficient, ocmpared to other mu! tiprocessors, for 

problems with large amounts of parallelism provided that the oast of 

duplicating structures is rot substantially high. Especially, with 

the advent of LSI microprocessors, the scope of SIMD utilisation 

will greatly increase as a result of a considerable drop in 

ocmponent costs. 

The characterisation of the second class depends on the software 

specially designed for these systems and which tends to be Simpler 

due to less executive function requirements than that needed in 

multiprocessors. As a result of the software simplicity, the 

construction of large systems is made even easier. 



54 

Finally, the functional utility of these systems which comes in the 

third class proves to be more efficient than Multiprocessors for 

large problems requiring intense data processing, e.g. weather 

forecasting, and for problems with inherently global parallelism; 

thus providing at the same time reliability, simpler system 

complexity and higher computatiooal throughput. 

On the other hand, the categorisation of the problems on which a 

cost effective implementatioo of the SIMD systems may be possible, 

has concentrated all the scientists' research attention. However 

solving a problem does not always mean just offering a problematic 

solution. It also includes a detailed description, a complete 

analysis of the nature of the problem and, most importantly, the 

actual implementatioo, which must take into account the eo:xx:xnical 

benefits of the problem. This means that attentioo sOOuld be paid to 

the systems aspects too when developing solutioos f= problems. 

Several scientific applications such as those for matrix 

manipulatioos, differential equations and linear programming have 

been proposed f= Associative and Itrray Processors. It is often the 

case that applicatioos, suitable f= CX'le type of oomputer, are not 

always the best f= the other type. 

The utilisatioo of the SIMD computers has made c:oe th:irg clear. The 

elimination of critical bottlenecks, which had appeared in the 

general-purpose oomputer systems and affected their performance, was 

possible. Technological and economical problems had coostrained 

the early Associative Processors to use only small associative 

memory systems (up to 1 Kwords with bandwidth up to lOO-bit wide) 

for numerous but limited size problems such as computer resource 

management, and allocatioo etc. However, due to the development of 



55 

new architectural concepts and the use of LSI tec.hr¥:>logy associative 

memories became larger and more flexible, thus p .. rtting Associative 

Processors to practical use. 

Summarising the rrumerous applications that the SIMD systems are well 

suited for, with a distinction between Associative and Array 

Processors would be the following: air traffic control, radar 

tracking, bulk filtering and signal processing are some of the 

applications to be cost-effectively implemented en Array Processors. 

Similarly, for the Associative Processors, but bearing in mind the 

cost-factor constraint, the applications include resource 

allocation, virtual memory mechanism, interrupt processing 

protection mechanisms and scheduling. 

However, in the case where the cost-factor constraint is not 

important, the above applications list for the Associative 

Processors coold also include sorting, pattern recognitien fields, 

sea surveillance, picture processing, graph processing, differential 

equations, eigenvectors, matrix operations, network flow analysis, 

data file manipulations and searching, compilaticn, theorem proving, 

computer graphics and weather forecasting. While some of the above 

applications are suited for the Array Processor, they are best for 

the Associative processors because of the search capabilities 

offered by the Associative memories. 

Finally, we sh::Juld mentien that Slotnick [Slotnick 1967] and Fuller 

[Fuller 1967] have separately ca=ied out a comparative study of 

Associative and Parallel Processors. They both concluded that 

Parallel Processors, as special purpose computers, appeared to be 

more useful than the Associative Processors. 



56 

2.2.2 ASSOCIATIVE PlO "SSORS 

The fundamental ccncept behind the Associative Processors basically 

depends on the extensive search capabilities offered by the 

associative memories which are most efficient for non-numerical 

applications such as radar signal. tra~ and processing, weather 

prediction computations and many types of information processing 

etc. 

Due to the cost-factor constraint, Associative Processors are 

usually designed as a back-end, or special-purpose processor 

attached to a conventional sequential computer system. 'Ihus problems 

requiring a high amount of processing power and which cannot be 

solved efficiently on the host computer are transferred to the 
, 

Associative processor system. 

Slade and McMah::n [Slade 1957] were the first to develop associative 

memories by using cryotrons. Since then, many other different 

components such as magnetic cores, semiconductors, magnetic films 

and integrated circuits etc, were used in the construction of 

associative memories. The first Associative Processor was designed 

by Behnke and Rosenberger [Behnke 1963] in 1963 using cryotrons, 

against all the then existing constraining factors such as the high 

implementation costs, the half-select IX)ise limiting the word width 

and the interrogation drive problems limiting the size of the 

associative memory (number of words). 

Associative Processors were IX)t practical until the development of 

the PEPE - 'Parallel Element Processing Ensemble' (see [Crane 1972], 

[Wilson 1972], [Oornell 1972], [Evensen 1973], [Dingeldine 1973] and 



57 

[Vick 1973]) where the use of LSI components and newly developed 

architectural concepts had broadened the bo\mds of the associative 

memories. Other Associative Processors such as the STARAN (see 

[Rudolf 1972], [Batcher 1972] and [Davis 1974]) and OMEN -

'Ort:hogcnal Mini-Embedment' (see [Higbie 1972] were also developed 

as a result of the LSI evo1utico. 

Finally, the two main properties characterising this class of 

Associative processor system are emphasised. The use of a dedicated 

associative memory which retrieves stored data items using their 

content or part of it and not their addresses and the provision of 

multiple processing units capable of simultaneously performing the 

same data transformation, either arithmetic or logic, but on 

different data items. From the high processing rate point of view, 

content-addressed memories have contributed to the superiority of 

the Associative Processors when compared to the traditional 

sequential processors. Consequently, problems like weather 

forecasting, and the handling of large database requiring a huge 

amount of processing time and which cannot be run efficiently on 

sequential processors, are tackled faster and easier. 

The architectural block diagram of Figure 2.1 shows the principal 

units of a general Associative Processor. They are an associative 

memory, an arithmetic and logic unit, a control system, instruction 

memory and an Input/OUtput interface. Due to the impact that the 

associative memories have had on the architecture of the Associative 

Processors, a classification of this class of processor, based on 

the associative memory organisation, is possible. First, a brief 

description of the memory organisation is outlined in the following 

section. 



58 

ASSOCIATIVE ARITHMETIC 
MEMORY AND LOGIC 

TlNT'l" 

INPUT/ 
OUTPUT 
INTERFACE CONTROL SYSTE..>1 --- ----- - -- -------

INSTRUCTION MEMORY 

FIGURE 2.1: GENERAL BICO< DIAGRAM OF AN ASSOCIATIVE PRCCESSOR 

2.2.2.1 ASSOCIATIVE MEM:RY aGlNISATICN 

In the literature, associative memories were Imown under several 

names such as catalog memory, content-addressed memory, data

addressed memory, parallel search memory, search memory, search 

BS9'Ciative memmy, dist:r:lbJted logic memmy, assnciative push down 

memmy and multi-access associative memory. Basically, these types 

of memories differ from the ccnventiooal memmy systems by the fact 

that stored data i terns are addressed by their ccntent or part of it, 

.instead of their implicit locatien (address). 

The memory search method which depends en the organisaticn of the 

implemented associative memory consists of two basic operatiOns, 

namely masking and compari9XL The comparison between a preset 

search-key word and all the words in the memory which can be 

performed either bit-parallel or bit-serial is achieved through the 



59 

interrogating bit drives and the available logic circuitI:y. A word

match tag network flags the multiple matched words which can be 

retrieved at the end of the searching procedure using a Single 

instruction. 

The above associative memo:ty search operation is further illustrated 

by considering for example a personnel file of a computer data 

processing centre. 

Imagine that at cne stage of a que:ty transacticn information about 

all employees with a sala:ty in the range £800 - £1000 inclusive per 

month has to be searched. This can be done using a greater than and 

a not greater than search operation, each of which can be performed 

in parallel, on the sala:ty field of the file. Since the search is 

only concerned with the salary field, a mask is used to mark all 

other fields. AlSO, a match-word indication is required to indicate 

the results of the search. A single bit, associated with every word 

in the memO:ty is used for this purpose where a value of 1 indicates 

a match and 0 otherwise. 

More specifically for our example, the search-key word is loaded 

with the salary figure (800) and the indicator value (0) for the 

logical operation greater ~ Every word in the associative 

memo:ty woold have its indicator field set to zero. After the first 

search, all matched words are memorised by having their indicator 

bit field set to one. Similarly, the second search-key word will 

have been loaded by the interrogating sala:ty figure (1000) and the 

:indicator (1) and the logic operation involved is not greater ~ 

After the second search, the final results, as indicated by the 

indicator field in Figure 2.2, shows all the employees satisfying 

the above CXXJditicns. 



First search
key word 

Second search
key word 

Mask 

o o 800 I 0 

I 0 
1

0
1 

0 1100011 I 
I 0 ........... 0 1 0 10 ••••••• 0 11.· .11 1 I 

Name Sex Title Salary I 
IWHITE MARY 0 OPE!lATOR 450 0 

JOE ALBERT 1 CLERK 650 0 

HALL TED 1 CC'NSUL- - 800 0 

RALNER JERRY 1 CLERK 850 0 

ACCOUN-ROGERS HALEN 0 
'1'~"'" 

1000 0 

~TIN TED 1 CLERK 700 0 

SMITH LINDA 0 ENGINEER 1400 0 

ROPLEY BOB -1 MER 
- 750 0 

MARLYE CONSUL-JOE 1 TANT 1000 0 

JONES BILL 1 ENGINEER 1600 0 

PROGRl'.M-FAIR TOM 1 MF.R 1000 0 

60 

,..... 
Initial 
field 

dicator in 

Af 
'"se 

Af 
Se 

1. 
0 

f--
0 

f--
0 

f--
1 

f--
1 

f--
0 -
1 -
~ 
2-
2-

~ 
1 

L--

ter first 
arch 

ter second 
arch 

o 
o 
o 

o 
1 

o 
1 

o 

1 

1 

1 

FIGURE 2.2: AN EXAMPLE OF THE OPERATION OF AN ASSOCIATIVE 
MEMORY 



61 

2.2.2.2 'llIE TAXCNJoIY OF 'llIE ASSOCV\TIVE PRO fSSOOS 

From the architectural point of view, Associative Processors are 

classified as SIMD computers where, in additioo to the associative 

memory addressing property, arithmetic and logic data transformatioo 

operations can be performed over many sets of arguments under a 

single instructioo being prq)agated from the oentral cootrol unit. 

A classification of these types of processors, based on the 

comparison process followed by the associative memory, has 

identified four architectural Associative Processor categories: the 

fully parallel, the bit-serial, the word-serial and the block

oriented associative processors which are briefly described below. 

i) The fully-parallel class of computers, one of the two most 

widely lmown associative processors categories (the second' 

being the bit-serial class) can be further distinguished into 

the word-organised and the distributive logic types. In the 

first sub-category, the comparisoo logic is based 00 each bit

cell of every memory word and the logical decision is 

available at the output of every word. Consequently, the 

'comparisoo prooess can be performed in either a parallel-by

word or parallel-by-bit fashion, or both. From the 

operatiooal point of view, these are the simplest and fastest 

form of fully-parallel associative prooessors as compared to 

other associative structures. On the other hand the high 

hardware complexity involved in the provision of a separate 

logic circuitry for every single bit-cell has coostrained the 

implementation of this type of system to only experimental 

purposes. Figure 2.3 shows a general structure of such 



62 

computers. 'I11e main characteristic of the secx:ni sub-category 

of the fully-parallel computers is the association of the 

comparison logic function with each character-cell or each 

group of character-cells. The first associative processor 

computer of this type, the DLAP - 'Distributed Logic 

INTERROGATION BIT DRIVE 

,1 12 IN WORD MATCH 
TAG NETWORK I 

21 22 2N WORD MATCH 
TAG NETWORK 2 

• 
• • 
• •• • 

• 
~I M2 MN WORD MATCH 

TAG NETWORK ~ 

OUTPUT CIRCUIT ALU 

FIGURE 2.3: General structure of a fully-parallel word-organised 
Associative Processor where each cross point is a bit
cell compariscn 

Associative Processor', was proposed by Lee in 1962 [Lee 1962] 

whose architectural block diagram can be seen in Figure 2.4 

and the best known implemented computer of this type is the 

PEPE, developed by Bell Laboratories for the US Army Advanced 

Ballistic Missile Defence hJercy. Several extensioos to Lee's 

original system have been proposed mainly to increase the 

potential computatiooal throughput by solving many of the then 



'" . .... 

INPUT SIGNAL LEAD 

OUTPUT SIGNAL LEAD 

CONTROL MATCH SIGNAL LEAD 

SYSTEM PROPAGATION LEAD 

INPUT BUS 

STATE BUS 

OUTPUT BUS 

DIRECTION LEADS 

l ALU I 

DISTRIBUTED LOGIC MEMORY 
r-------------------------, 
I ::;: . .. ~ I 

I 
I CHARAC- CHARAC- CHARAC- I 
I TER ER TER 
I r::; CELL 1 r;:::; CELL 2 r;::; CELL n I 

I r" r- - I 

I ~ 1 J I 

I COMPARI· COMPARI- COMPARI' 
I 

I SON SON SON I 

I LOGIC LOGIC LOGIC I 

I I 

I I 
I I 
I I 

I I 

I I 

I 
I 

I 
I 

I 
I 
I 

I -' 
I I 
I I I I 
I I OUTPUT SYMBOL BUFFER 

I L _____________________________ -' 

'" W 



64 

encotmtered problems. For example, a distrib.lted asscx::iative 

memory with two cell-states instead of one for each character

cell was proposed by Lee and Paull [Lee 1963] in order to 

tackle many of the information retrieval problems such as 

cross-retrieval, erasing, gap closing and preference. J\oc)ther 

proposal, due to Gaines and Lee [Lee 1965], suggested a 

redesign of the logic circuitry using two different-purpose 

cell-state elements, called the match flip-flop and the 

control flip-flop, in order to overcome skewed propagation 

timing. Consequently the memory was able to perform two 

simultaneous operations, shifting and marking strings. Crane 

and Githens [Crane 1965] prop:JSed an extensien of Lee's system 

to a two-dimensicnal distrib.lted logic memory, using a large 

number of identical processing elements to increase the 

executien rate of arithmetic and logic operaticns. 

ii) The bit-serial Associative Processors emerged as a 

compromising result when attempting to tackle the eoc:rDIlIical 

and technical problems seen in the previous class of 

Associative Processors. The basic idea behind this class of 

computers was the use of parallel processing en Vertical data 

concepts developed by SI'xloman in 1960 [SI'xloman 1960]. 

Since then, several pwposals based en the above concept have 

been made for Associative Processors. Kaplan [Kaplan 1963] 

proposed a bit-serial associative memory used as a sub-system 

for a general-purpose computer. A memory register is used in 

the data communicatien between the main memory and the bi t

serial associative subsystem. Ewing and Davies (see [Ewing 

1964]) were the first to propose the design logic of such a 

computer. Figure 2.5 shows the associative memory 



,------------------- -----_._._--- -- ------------

65 

organisation and the ALU where each intersection of a word 

line and a bit line represents a bi t-stbrage. The parallel 

processing of a search operation takes place at bit-slices, 

being detected by the bit-column-select logic, through the 

word logic associated with each word line. The logic is 

identical to all words and consists of a sense amplifier, 

storage flip-flops, a write amplifier and a control logic. 

Another proposal for the implementation of a bit-serial 

associative memory using conventional desttuctive-readout 

memory elements was due to Oru [Oru 1965]. As a result of the 

two-dimensional read/write capability offered by this memory, 

called mrizontal or vertical memory operatioos, two types of 

computer organisatioos are possible, namely the conventional 

computer organisaticn for the rorizontal operaticn mode and 

the bit-serial computer organisaticn otherwise. 

Bit-serial associative processors have been implemented using 

2 D core search memory (see [Harding 1968] and [Stone 1968]). 

ST~, one of the best well-known bit-serial associative 

computers, was developed by the Goodyear Aerospace 

OJrporatiCl'!. It coosists.of a central system, an operaticnal 

number of up to 32 associative array modules, each of which is 

256-word x 256-bit two-dimensicnal access memory, 256 Simple 

processing elements and a selector. More significantly is the 

permutation or interconnection network through which the 

appropriate operands transfer between the processing elements 

and the memory modules is obtained for a full maximisaticn of 

the parallel search operatiCI'!. In add! ticn to the high speed 

Input/Output capabilities, the STARAN computer can be 

connected easily to most conventional sequential systems. 

Consequently, this hybrid system can increase coosiderably the 

throughput rate of many time-consuming applicatioos such as 



66 

BIT COLUMN SELECT LOGI CONTROL 
UNIT 

••• 

• •• 
TNTERROGATING BIT DRIVEf 

11 2 IN WORD 
LOGIC 1 

• • • 
21 22 2N WORD 

LOGIC 2 

• • · '! • ••• • • •• 
• • • • 

Ml M2 ~ WORD 
LOGIC M 

OUTPUT CIRCUIT ALU 

FIGURE 2.5: ASSOCIATIVE MEMORY AND ALU ORGANISATION OF 
A BIT-SERIAL TYPE COMPUTER WHERE EACH INTER
SECTION OF A WORD LINE AND A BIT LINE REPRE
SENTS A BIT-STORAGE 



67 

air-traffic control, signal processing and data management 

systems. STARAN is, however, not the only one bit-serial 

associative processor, other examples include the OMEN 

computers, developed by Sanders Associates, the Hybrid 

associative processor, developed by Hughes Aircraft Co (see 

[Love 1973]), the RPA - 'Raytheon Associative Processor, (see 

[Couranz 1974]), the ALAP' - Associative Linear Array 

Processor' - see [Finnila 1977]) and the ECAM - 'Extended 

Content Addressed Memory' - (see [Anderscn 1976]). 

iii) Word-serial associative processors which essentially represent 

a hardware implementatien of a simple search program lc:x:p have 

not been commercially developed due to the fact that they do 

rot promise a high executicnal speed. '!heir main speed gain 

when compared to a programmed search in a standard sequential 

computer is achieved by a reduction in the instruction 

decoding time since the search operation in a bit-serial 

computer requires only cne instruction. 'l1le first experimental 

model of such a computer was represented by Crojut and Sottil 

in 1966 [Crojut 1966]. Their model was based en a word-serial 

associative memory with operational characteristics very 

similar to that of a disc or a drum. The memory used n 

ul trasonic delay lines, where n is the number of bits/word, 

operating at 100 MHz (million Hertz) with a delay time of 10 

sec. The information traffic through the delay lines is 

assumed by the rewrite control logic which has the capability 

to either recirculate the same informaticn = input new data. 

Individual memory words can be interrogated or updated at the 

exit of the delay lines. Also a synchronising clock pulse 

generator, or a stable oscillator (STALO) was used to advance 

the address counter. Figure 2.6 sOOws the hardware structure 



68 

I~~~~TE CONTROL I ALU I 

• • • 

l WRITE AMPLIFIER I r SEARCH KEY I 

r- r-

1 2 '. • • n 

FINAL 
ADDRESS I--REGISTEF 

L READ AMPLIFIER I I COMP, ""f 
• • • 

ADDRESS U I READ REGISTER I- L. STABLE COUNTER LOCAL 
OSCILLATOR 
<STALO) 

I 
CONTROL SYSTEM 

FIGUTE 2.6: GENERAL STRUCTURE OF A WORD-SERIAL ASSOCIATIVE 
PROCESSOR COMPUTER 

I 



69 

of such a comp..1ter. 

iv) Finally, the block-oriented Associative Processors which can 

be seen as a compromise between the low speed word-serial and 

high-cost associative processors, are based en a rather large 

rotating storage with limited associative capabilities. This 

type of computer provides low-cost processing and is 

particularly suitable for applications with a large data 

storage requirement. Several models of this type of comp..1ter 

such as the RAPID - 'Rotating Associative Processor for 

Information Dissemination' - Comp..1ter, presented by Barhami in 

1972 [Barhami 1972] have been developed. The design of the 

RAPID, wOOse general structure is outlined in Figure 2.7 was 

based on Slotnick's and Parker's concept of using logic-per

track devices (Le. disc memories with a head and some logic 

associated with every track) and Lei's distributed logic 

mem=ies f= inf=mation storage and retrieval applications. 

The high rate of data transfer between the head-per-track disc 

and the associative memoxy makes the RAPID comp..1ter suitable 

f= problems requiring large storage. 

Recapitulating, Associative Processors which form a sub-class of the 

general SIMD computers, are mostly characterised by the efficient 

search capabilities offered by their associative memories. A 

classificatien of these processors, based en the associative memory 

organisatien, has identified four distinct categories: the fully

parallel, the bit-serial, the word-serial and the block-oriented 

associative processors; the first two being the most widely known 

type of computer. 



,-----c------------------ .---

70 

HEAD -PER-TRACK 
DISC 

DISTRIBUTED - CHARACTER 
"' 

STRINGS 
f'0GIC 

0 ~EMORY 

L CHARACTER 
........ 

STRINGS 

CONTROL 
UNIT 

FIGURE 2.7: BLOCK-ORIENTED ASSOCIATIVE MEMORY STRUCTURE IN THE 

RAPID 0JMPUl'ER 

The early designed associative processors offered limited 

associative processing at a high implementation cost. With the 

advent of LSI technology and the use of new architectural design 

ccn::epts, these types of compJters became gradually more practical. 

PEPE and STARAN are the most widely known fully-parallel and bit

serial oompJters respectively. 

Already, various associative processors with a storage capacity of 

several hundred million bits have been built. Also many experimental 

models have been proposed for later implementation whenever 

techn:::llogy development allows it. 



71 

2.2.3 ARRAY PRO FSSOOS 

'!he early interest in the Parallel Processor area initially appeared 

in the investigation of machines that were arrays of processors 

connected in a four-nearest-neighbour fashion, such as the Von 

Neumann's Cellular Automate (see [Von Neumann 196!l]) and the Holland 

Machine (see [Holland 1959]). Eventually, as a result of the growing 

interest .in this form of computer, Parallel Processors with a 

central control mechanism that controlled the ent~re array and 

oporating in a SIMD manner began to emerge. 

ThEi description of the main characteristics of the Parallel or Array 

processors shall- draw heavily on the ILLIAC IV (see [Barnes 1968]) 

and the ICL DAP. (see [Reddaway 1973]) systems. This is montly 
. '. ;". 

because of the Prof~ effect that the former oomputer h8s had on 

this class of systems and the ease to access the latter machine from 

Loughborough University throUgh the Janet Netwom. Finally, a brief 

description of the SOLOMON'computer series (which preceded the 

design of the ILLIAC IV is also included. 

All the systems in the ltrray Processor class can be identified by 

their major components, st:ructured in a number of va't'ious and 

different ways: 

1. a number of identical Processor Elements (PE's) 6~ly 

operating on different data streams proliferated f:mm 

2. a number of memory banks, rot necessarily equal to the number of 

the PE's through , -

3. a cormunication netoork with 

4. sane form of local oontrol and finally 

5. sane fonn of global oontrol. 

Two simplified array oomputers are shJwn in Figure 2.8. 



CONTROL 
UNIT 

(a) 

r-

--
i:i 
~ -
01 
Z 
8 
z 
01 

~ 
" H 
..:l 
.0: -
-

72 

-, ----------, 
I • • 

PROCESSOR 1 MEMORY 

I 
BANK 1 

: 
PROCESSOR 2 MEMORY 

BANK 2 
I 

I 
• 
• • • • 
I • 
I 

PROCESSOR P MEMORY 
BANK P 

FIGURE 2.8: A GENERAL SIMD ARCHITECTURE ALLONING EITHER AN 
IDENTICAL NUMBER OF PROCESSORS OR MEMORIES 
(a) OR A DIFFEREN·T NUMBER OF PROCESSORS AND 

MEMORIES TO BE CONNECTED (b) 

,-------,-- ---,-------, 
~ ~ 

CONTROL 
UNIT 

(b) 

~ 

PROCESSOR 1 

PROCESSOR 2 

PROCESSOR 3 -, 

PROCESSOR 4 

• 
• 
• 

PROCESSOR N 

+ 
MEMORY 
BANK 1 

i:i 
~ MEMORY 
01 BANK 2 
Z .. 
Z 

~ • 
" • H 

~ • 

MEMORY 
BANK M 



73 

The control unit which is usually a computer itself with its own 

arithmetic and logic unit, memory and registers, differs from the 

other processors in that it can execute scalar and control 

instructions (including conditional branch instructions). The 

processor elements which lack this ability since they must all be 

kept in synchronisation, do not generate their own instructions, but 

they all receive the same sequence of vector instruction from the 

control unit. A local on-off control unit is used to permit 

processors to either execute or ignore certain broadcasted vector 

instructions. 

An array computer with p processors can produce a speed-up of p with 

respect to a uniprocessor system. However there are several 

degradation factors which reduce the actual speed-up. Specifically, 

these factors are: 

1. Sometimes the execution of a vector -of elements wlx:>se length is 

not a multiple of the rrumber of processors does not use all the 

processing units, thus reducing the actual thrrughput; 

2. Typical algorithms contain scalar instructions that cannot be 

overlapped with vector instructions. This keeps the array of 

processors idle while a scalar instruction is executed; 

3. Several memory conflicts arise when accessing more than one 

vector element from the same memory bank. In order to deal with 

these conflicts, several storage techniques which will be 

shortly reviewed below, for vectors and matrices have been 

prop:::>Sed to reduce this degradation; 

4. Finally, limitations in the interconnection network incur some 

delay in the data transfer which has to be performed 

simultaneously from the memory modules to the co=esponding 

processors • 



74 

Due to these degradation factors, it is very difficult to predict 

the perfonnance of a specific application with::x.lt making a detailed 

analysis of the problem. Besides the ILLIAC IV and ICL DAP 

computers, examples such as the BSP - 'Burroughs Scientific 

Processor' (see [Kuck 1982]), and the MPP - 'Massively Parallel 

Processor' - (see [Batcher 1979]), developed by the Goodyear 

Aerospace Corporation, belong to the array processor type of 

cc:rrputers • 

2.2.3.1 INl'ERLEAVED PARALLEL MF.M)RIES 

Processors utilisation was also improved bY the fact that the time 

spent in accessing the memory was greatly reduced. The standard and 

more significant way to do this is to increase the bandwidth of the 

memory by dividing it into several modules, or Parallel Memories 

that can be accessed simultaneously. More specifically, if in an m

parallel memory system, the successive addresses are assigned across 

the memory banks, module m, it will be called an interleaved 

parallel memory system. other ways of reducing the access time are 

to add a cache memory and to include fast registers in the 

processors. The use of these techniques is related to the 

particular system organisation. 

Several techniques have been proposed to solve the problem of 

conflicts that may arise in the use of these types of memories. 

Since most serious diffiCUlties generally occur in two-dimensional 

problems, a typical application is the matrix computation, a simple 

example of storing a two-dimensional array A(rnxn), where m=n = 4, is 

considered. Figure 2.9(a) shows A stored in a format known as 

straight storage where each one of the 4 memories contains a column 

of the matrix. This is suitable for row or diagonal access but 



75 
MEMORY 
MODULE • 0 I 2 3 

AOO AOI A02 A03 

AIO All Al2 Al3 

A20 A21 A22 A23 

A30 A31 A32 A33 

FIGURE 2.9(a): STRAIGHT STORAGE FORMAT OF A 4x4 MATRIX 
IN A FOUR-MEMORY SYSTEM 

MEMORY 
MODULE .. 

0 2 

AOO AOl A02 A03 

AU AIO All Al2 

A22 A23 
A20 A21 

A31 A32 A33 A30 

FIGURE 2.9(b): SKE~ffiD STORAGE FORMAT OF A 4x4 MATRIX IN 
A FOUR-MEMORY SYSTEM 



76 

presents some conflicting problems when accessing a column since 4 

cycles are required to fetch a single column. However by skewing 

the data across the memory banks as shown in Figure 2.9(b), elements 

of a row or a column can be accessed during coe single memory cycle 

but l'X)t the diagonals. 

Skewed storage is a relatively inexpensive way to enhance the 

processing capability of an array processor system. It requires 

each processor to have a private index register, and it requires 

cyclic interconnection. Additional cost in processing time is 

involved when using skewed storage instead of straight storage. Thus 

if an algorithm requires access to rows only straight storage is 

slightly preferable to skewed storage. On the other hand, if ooth 

rows and columns need to be acoessed as vectors, then skewed storage 

is stra1gly preferable to straight storage. If access to columns is 

the only requirement, then the matrix srould be stored in transposed 

f=m in the straight storage format. 

Other mechanisms of manipulating parallel memories can be seen in 

the TI ASC and the STAR 100 where the use of the physical array 

transposition technique offers the capability of accessing data from 

the rows, columns and diagonals but at a high transposition time 

overhead. 

One of the most cu=ently active research areas in computer 

architecture is the interconnection networks since they represent 

the accumulation of a large number of design decisioos made before 

the implementation of the actual architecture. These systems range 

in organisation from two processors sharing a common memory 



------- ---

77 

(Multiprocessor) to a large number of relatively independent 

=mputers =nnected over geographically long distances (distributed 

computing). Anderson and Jensen presented a naming scheme, or 

taxonomy, which was stroogly biased towards distributed =mputing 

systems [Anderson 1975], explicitly avoidi.rYJ SIMD machines such as 

the ILLIAC IV and PEPE. However we shall introduce this subject, 

while slanting the applications towards processor array 

inter=nnections. 

'!he inter=nnection networks can be generally distinguished into two 

types, the bus and the alignment networks with a basic difference 

between them: while the former allows only a single one-to-one 

communication to take place at any given time, the latter allows 

several one-to-one (parallel data and control transfer) or cne-to

many (allowing one unit to broadcast to many units in parallel) 

=mmunications. It follows that the bus network is less expensive 

but a slower network than the other. 

Furthermore, the alignment networks can be topographically sub

categorised into static and dynamic networks. A static network is 

characterised by the required dimensions for layout. Examples range 

from cne-dimensional structures to hydercube networks. In Figure 

2.10, we can see examples of one, two and three-dimensional 

networks. On the other hand, the dynamic networks are distinguished 

into the Single-stage, multiple-stage and crossbar types of 

networks. The single-stage network consists of a single stage of 

switches. The nearest neighbour network and the perfect shuffle 

networks are examples of this type of network (see Figure 2.11). A 

more generalised =nnection network, where every input is connected 
T. 

to every output channel through a crosspoint is the crossbar switch. 

Figure 2.12 shows two representations of the crossbar switch from 



(a) Linear array network 

(c) Four-neighbour network 

(e) 3-cube 

/ 
/ 

• I 
I 
I 

/O----f------l 

78 

(b) Ring network 

(d) Tree 

FIGURE 2.10: EXAMPLE OF 1, 2 AND 3-DIMENSIONAL INTERCONNECTION 
SYSTEMS 



79 

four inputs to four outputs. Finally" the multi-stage networks which 

can provide a cheaper alternative to the complete connection as 

offered by the crossbar switches are based upon a number of 

intercoonected 2x2 crossbar networks organised into several stages. 

In Figure 2.13 we can see two mUlti-stage networks, the binary 

Bene's and the indirect binaJ:y n-cube networks. 

_··05 
FIGURE 2.11(a): THE NEAREST-NEIGHBOUR NETWORK 

FIGURE 2.11(b): PERFECT-SHUFFLE NETWORK 

2.2.3.3 J:MPI.I'MENl'FD ARRAY PRO ESSOR <DlPl1l'ERS 

In this concluding paragraph about the array processor computers, we 

shall briefly describe the main architectural characteristics of the 

two most significant computers, the Burroughs ILLIAC IV and the la. 

DAP computers. '!his choice was mainly motivated by the fact that the 

fanner has had a great impact en the parallel processiIYJ concept and 

the latter can be accessed from Loughborough University. However, 



80 

1 Z 3 4 INPUTS OUTPUTS 
r-

h -h -,- r- 1 

11 
2 

2 r 

3 r 3 

4r;:: 
4 

FIGURE 2.12: TWO REPRESENTATIONS OF THE CROSSBAR SWITCH 
FROM FOUR INPUTS TO FOUR OUTPUTS 

2x2 

1 

2 

3 

4 

FIGURE 2.13(a): THE BINARY BENES NETWORK USING 2x2 CROSSBAR 
SWITCHES 

2x2 

FIGU~E 2.13(b): THE INDIRECT BINARYn-CUBE NETWORK 



81 

no attempt was made to compare the performance of this system since 

it was outside the scope of this current research. 

The design of the ILLIAC IV computer by Slotnick et al in 1966 was 

strongly based on two previously designed but never built array 

processors, the SOLOMON I and the SOLOMON II computers. These 

machines, each of which contains an array of processing elements 

with four-nearest-neighbour connections, were primarily designed to 

solve many problems involving differential equations, matrix 

manipulations, weather data prcx::essing, and linear algebra. SOLOMON 

I was a bit-serial processor and every PE contained a serial 

accumulator. The serial arithmetic concept, alttx::1Jgh quite flexible, 

was found to be far too slow for the intended applications and 

consequently, the SOLOMON II arithmetic units were switched to 24-

bit floating point units. 

The eventual development of the SOLOMON computers led to the ILLIAC 

IV where the arithmetic units were improved further to a 32-bit word 

length. Also, the array configurations changed from four 8x16 

quadrants to four 8xa PE quadrants. However only 1/4 of the original 

designed ccnfiguration was actually built by Burroughs and delivered 

to NASA Ames Research Centre, California, in 1972. 

The Control Unit (01) of the ILLIAC IV as diagrammed in Figure 2.14 

consists of five major components: ILA - 'Instructicn Look Ahead', 

ADVAST - 'ADVAncaj, STation', FINST - 'FINal STation', MSU - 'Memo:r:y 

Service Unit' and TMU - 'Test and Management Unit'. Control 

instructions are fetched from the PE memories, which form an 

integral part of the physical memo:r:y, and purged into the ILA. 

Scalar instructions are examined and executed by the ADVAST 

subsection whereas vector instructions are decoded by the FINST 



I 

OL (CDC) CONTR 
DESCRIPTION 
CONTROLLER 

ILA 

~ MSU 

CONTROL 
BUS 

PE MEMORIES 

, 
INSTRUC-
TION 
STACK 

ADVAST 

~ 
FINAL 
INSTRUC-
TION QUEU 

~ 

FINST 

DATA AND 
ADDRESS 
BUS 

82 

OPERAND 
STACK 

-
I 

MODE 
STATUS OF 
ALL PEs IN 
A QUADRANT 

CONTROL 
BUS 

FIGURE 2.14: FIVE MAJOR COMPONENTS OF THE ILLIAC IV 
CONTROL UNIT 



83 

before transmitting them to the PE for execution. The CU, also 

contains four general-purpose accumulators, several control 

registers, a 64-bi t scratch pad and quadrant centrel registers. 

The processirvJ unit consists of the ProcessirvJ Element, its memory 

and the MLU - 'Memory Logic Unit'. The ProcessirvJ Element memory is 

built out of 2048 words of 64-bit thin-film memories with an access 

time of 240 ns. The total 128 KWords physical memory is also backed 

by a large disc as a secoodary storage. The maximum processirvJ rate 

achieved was approximately 50 Mflops/s which is almost one quarter 

of the expected performance. 

Several high level languages that could exploit the systems' 

parallelism have been proposed for the ILL lAC IV: the Algol-like 

TRANQUIL (see [Abel 1969]), the Pascal-like ACTUS (see [Pe=ott 

1978]), the GLYPNIR (see [Lawrie 1975]) and the aD FORTRAN (see 

[Stevens 1975]). 

In conclusion, the ILLIAC IV was regarded as a failure, not only 

from the high cost, since it used the very expensive state-of-the

art-plus technologies, but also from several major bottlenecks (see 

[Hockney 1977]) which were identified by the Burroughs contractor. 

Based on the experiences gained from the ILL lAC IV development, 

Bu=oughs built the Burroughs BSP, which although similar to its 

predecessor, is designed to circumvent many of the problems 

encountered in the ILLIAC IV (see [Jensen 1978]). 

Unlike the ILLIAC IV and many other supe=mputers, which relied on 

the state-of-the-art-plus switchirvJ technologies, the pilot model of 

the ICL Distributed Array Processor (DAP) was originally built from 

relatively modest technology and at fairly low levels of 



84 

integration, thus providing a relatively cheap product capable of a 

very wide performance range depending on the application (see 

[Reddaway 1977]). Conceptually, the design of the pilot DAP was 

similar to that of the initial SOLOMON computer and consisted of a 

two-dimensional (32x32) array of one-bit slave processors. 

However, the design of the OAP introduced two new ccntributions to 

the SOLOMON concept: the first one was characterised by the 

hardware feature which effectively slices the a=ay in two 

orthogonal directions. Either direction of the array can be aligned 

to a set of registers of the 'Master Control Unit' - (MCU) using a 

separate orthogonal data highway which threaded the l:OWS and columns 

of the PEs. These highways which served the purpose of collecting 

and broadcasting data to slices of the DAP a=ay, was the most 

significant element in providing the DAP with much of its 

flexibility in manipulating data. 'l1le second ccntrirution relied on 

the manner in which DAP was integrated into a complete system. N:>t 

only did it emulate the memory of an ICL mainframe computer to which 

it was attached, but also it was capable of processing data 

autonomously in a highly parallel manner. 

One of the first three implemented computers of this type was 

delivered and installed at Queen Mary College (UK) in 1980, 

consisting of a (64x64) matrix of PEs arranged in the same geometry 

and each having 4 Kbits of memory. This gives a total of 2 Mbytes 

of memory for the attached top-end ICL 2900 mainframe computer. In 

Figure 2.15 we can see the major subsections of the OAP computer. 

Another feature of the DAP's design which helped to avoid the Von 

Neumann bottlenecks is the inclusion of the PE logic and its 

associated memory on the same circuit board. Furthermore, since the 



TO/FROM 
ICL 290 

W 

0 

J 
N 

64 x 64 
OAP 

PROCESSOR E 
ARRAY 

S 

COLUMN HIGHWAY 

OAP 
ACCESS 
CONTROL 

ROW MCU 
REGISTERS HIGHWAY 8x64 -- BITS 

INSTRUCTIO~ 

MODIFIER ~ 
BUFFER 
60x32 
BITS 

~INSTRUCTION~ 

INSTRUCTIO~ 

COUNTER 

FIGURE 2.15: MAJOR SUBSECTIONS OF THE ICL OAP COMPUTER 

85 

structure of the DAP array is highly regular, the use of VLSI 

technology will und::Jubted1y :in:;rease the number of processors and 

memories that could be mapped on to the same chip leading to even 

larger arrays of PE's, e.g. a (256x256) DAP. 

Every PE has three ooe-bit registers, A,Q,C two multiplexers and a 

one-bit full adder to perform arithmetic cperatioos. The A register 

provides programmable control over the PE's actions, the A is an 

accumulator and the C register is a ca=y store. The adder adds Q,C 

and the input to the PE, giving sum and ca=y outputs, which are 

stored in the Q and C registers respectively. 

Finally, the architectural description of the DAP computer is 

concluded with a n::Jte on a parallel FORTRAN-based language, called 

DAP FORTRAN. This was specially developed to take the full 

p::ltential advantage of the machine's high processing power. 



86 

2.3 MJM) MJLTIl'ROCESSCR <XMPl1I'ERS 

For many years the MIMD mul. tiprocessing structures were 

misunderstood and they were even mistaken for many other paral.lel 

systems, such as the array processors and the multiple-computer 

systems, which are less promising to achieve the high performance 

goals as set by the fast developing computer demands. Even though, 

the definition of a multiprocessor system as "a computer employing 

two or more processing units under integrated control", proposed by 

the ANSI - 'The American National Standards Institute', was 

insufficient since the two most significant coocepts for this type 

of computer, i.e. the sharing and interaction concepts were not 

included. 

The most commonly accepted definition for a true mul. tiprocessor 

system was suggested by Enslow in 1977 [Enslow 1977] who, in 

addition to the above ANSI definition, included the two following 

conditions: 

1. all the processors which have almost equal capabilities must 

share access to a common memory, I/O channels, control units and 

peripheral devices; 

2. the entire complex is control.led by a single operating system 

providing the interaction between processors and their programs 

at the" job, task, instruction and data levels. 

Because of the inherent flexibility of the MIMD computers the range 

of applications of this type of system is generally much wider than 

that of the SIMD computers. Although the implementation of any 

application sui table for paral.lel processing on a MIMD system is 

someh:>w a straightforward process, however a careful synchronisation 



87 

of the allocated tasks to the processors must be undertaken. By 

contrast, in the SIMD computer systems, the synchronisation is 

performed automatically whereas the additional task allocation 

problem of the MIMD systems Cbes not exist since all the processors 

perform the same task. 

Theoretically, a p-multiprocessor (a system with p processors) 

system is capable of achieving a speed-up of p, however several 

degradation factors which are discussed later tend to make the 

actual speed-up smaller. Such factors can be assumed in the 

overheads incurred by the synchronisation mechanism, the task 

allocation and the shared memory conflicts, all of which are 

problem-oriented. 

The following paragraphs will focus mainly on some significant 

hardware and software characteristics of the MIMD multiprocessor 

systems that are required to support concurrency at the lowest 

possible overhe,ads. 

2.3.1 MIID HARI:MARE ORG\NISATI<N 

The major motivatioo of the MIMD computers design is the increase in 

the computational speed-up by the concurrent execution of 

instructions, organised in several sequential streams with 

infrequent dependencies among them, by a large pool of processors 

with approximately similar capabilities. Of intp:)rtance to this type 

of structure is the mechanism to synchronise and communicate between 

processors. Specially, the used mechanisms can be classified into 

two classes, those that use a shared memory, and those that use 

passing messages (see [Baer 1976]. [Enslow 1977] and [Stone 1980]). 

The use of the shared memory which might be a multiported main 



88 

memory, cache memory or a multiported disk, results in a faster 

mechanism but requires all the processors to access the shared 

memory. Consequently, this limits the total number of processors 

that the system can effectively handle. On the other hand, the 

mechanism based en messages has a large overhead so that it is cnly 

useful when synchronisatien and communication are very infrequent 

[Gehrig 1982]. 

'!he general class of MIMD computers was distinguished into two main 

classes, the tightly-coupled and the loosely-coupled systems 

depending on thji amount of interactions between the processing 

elements (see [Hayes 1978]). In the case of tightly-coupled 

processors, as shown in Figure 2.16, (Le. a large number of 

processors sharing a common paral~el memory via a high-speed 

mul tiplexed bus), the processors operate under the strict control of 

the bus assignment scheme which is implemented in hardware at the 

bus/processor interface. On the other hand, in a system with 

loosely-ooupled processors the communication and interaction takes 

place on the baSis of information exchange. Figure 2.17 shows a 

general architecture of a loosely coupled system where each 

processor·· has its own local memory. Chnparing the two above classes 

of multiprocesor systems, the main difference lies in the 

organisaticn of the memory and the bandwidth of the interconnection 

network. 

Several interconnectien netwo:d<s with different characteristics such 

as bandwidth, delay and cost, ranging from the shared commen bus to 

the crossbar switch, have been proposed. However Enslow identified 

three fundamentally different organisaticns, namely the time-shared 

commen bus, the multiport memory and the crossbar switch. 



89 

SHARED MEMORY 

PROCESSOR PROCESSOR PROCESSOR 
1 2 3 

FIGURE 2.16: TIGHTLY-COUPLED MULTIPROCESSOR SYSTEM 

MEMORY MEMORY MEMORY 
1 2 3 

!PROCESSOR PROCESSOR PROCESSOR 
1 2 3 

FIGURE 2.17: LOOSELY-COUPLED MULTIPROCESSOR SYSTEM 



90 

The time-shared oommcn bJs interconnecticn scheme, as illustrated in 

Figure 2.18, represents the simplest form of connecting all the 

functional units using a single bus which incorporates some 

arbitration logic associated with every bus/unit interface to 

resolve the bus request cxntenticn since cnly coe transfer can take 

place at any given time. Thus, the unit wishing to initiate a 

transfer, a processor or an I/O unit, must first determine the 

availability state of the bus, then address the receiving unit as 

well as determin:ing its availability and capability to receive the 

transfer. 

PROCESSOR PROCESSOR PROCESSOR 
1 2 3 

l 1 1 
I 1 I 

MEMORY MEMORY I/O UNIT 
1 2 1 

FIGURE 2.18: THE TIME-SHARED COMMON BUS INTERCONNECTION SYSTEM 

By its nature, such a system is quite reliable and its cost is 

relatively low, rowever several limitaticns are introduced that can 

have serious damaging effects en both the system since a malfuncticn 

of any unit interface causes a system failure, and the total overall 

transfer rate. Several interccrlnecticn systems such as the use of 

two coe-way paths and multiple two-way buses have been provided in 

an attempt to solve this problem of a single transfer. The former 

example which does not increase system complexity or diminish 

reliability has a oomparab1e performance with its predeoessor since 

a single transfer requires the use of both paths. On the other 



91 

hand, with the latter technique multiple simultaneous transfers are 

possible rut at additional system =mp1exity. 

The most extensive and expensive interconnecticn network providing a 

separate path for every processor, memory module and I/O unit is the 

crossbar switch (see Figure 2.19). In the case that the 

mu1 tiprocessor system contains p processors and m memories, the 

crossbar requires pxm switches, each of which is capable of 

switching parallel transfers and arbitrating conflicting requests. 

In this system, the rus-interface logic required by the functional 

units is kept at the lowest level since some of the functions, i.e. 

transfer rerogni tion and conflicts reso1uticn, which are performed 

at every bus-unit interface, are assumed by the switch matrix. 

Consequently, such an interc:onnectioo is very complex (exponential 

growth for large p and m), expensive and physically large. However, 

the important characteristics of this system which is sh::lwn below, 

are the extreme simplicity of the switch-to-functiona1 unit 

interfaces and the ability to support coocurrent transfers for all 

memory modules. 

MEMORY MEMORY MEMORY 
1 2 3 

I/O 1 
PROCESSOR 

1 

I/O 2 
PROCESSOR 

2 

I/03 
PROCESSOR 

3 

FIGURE 2.19: THE CROSSBAR SWITCH SYSTEM 

-
I 



- ------

92 

The concentration of the a:ntrol, swi~ and priority arbitration 

logic, which are distriruted throughout the crossbar switch matrix, 

at the interface to the memory modules leads to the mu1 tiport m~mory 

organisatioo, as sI'Dwn in Figure 2.20, where e<Jery processor has a 

private bus to every passive unit, Le. memory and I/O units. The 

mu1tip1e ports of e<Jery passive unit, cne for each cx::nnection to a 

processor, are assigned fixed priorities through which arising 

a:nflicts are resolved. 

This organisatioo offers a high potentia1 transfer rate within the 

system at a comparable hardware complexity with that of the crossbar 

switch except for the loca1ised logic, rut with a severe constraint 

on the number of processors imposed by the number and type of the 

memory ports. 

P ROCESSOR PROCESSOR PROCESSOF OCESSOR PR 
1 2 3 4 

MEMORY t--
1 -

'--

MEMORY 
2 

MEMORY 
3 

FIGURE 2.20: THE MULTI-PORT MEMORY INTERCONNECTION SYSTEM 

I/O 1 

I/O 2 

I/O 3 



93 

Besides these three presented interconnection netwo:r:i<s, there are 

many others which can be valuable for the multiprocessor 

organisation such as the Omega network [Lawrie 1975] and the Delta 

network [Patel 1981] and the Augmented Data Manipulator [Siegel 

1979]. 

The interference or conflict, produced in the accessing of a shared 

memory, in a multiprocessor system, which is one of the factors that 

degrade the overall performance of the system has been investigated 

extensively, resulting in some exact and approximate models under 

various assumptions [Chang 1977], [Janek 1981], [Janek 1982], 

[Lillevik 1984] and [Basket 1976]. These interferences can be 

generally classified into two types: software and hardware types. 

The first memory conflict is caused by a processor attempting to use 

a data set while it is currently being accessed by another processor 

which has eventually activated a software 'lock' mechanism to 

prevent any other processor from accessing the same data set. Thus, 

alt\xJugh this action forces serial manipulation of some sensitive 

data sets through a software mechanism, called critical region (to 

be described later on) it ensures data integrity in a multiple 

processor environment. 

On the other hand, the second type of memory conflict is caused when 

two or more processors attempt to access the same memory module 

simultaneously, i.e. more than one request is made to the same 

module during a single memory cycle by different processors. 

Therefore, all but one request must wait to be served sequentially 

since only one access can be made per memory cycle. Thus, programs 

with a large number of these conflicts have greater degradation in 

their overall performance. 



94 

A way to reduce the processor interconnection network and the 

interference in the memory is to have a cache memory associated to 

each processor. The main difficulty with this approach is the 

coherence problem that appeared when shared data is present 

simultaneously in several caches. Arnther soluticn to this problem 

is to partition the physical memory into local memories while 

keeping the uniform access at the virtual level. To reduce even 

further the cost of the interonnnection network, it is usefUl to 

divide the processors into clusters and have a slower 

interconnecticn between clusters. This approach is implemented in 

the Cm* [Gehrig 1982]. 

2.3.2 OPERATllG SYSTEM OOGIINISATICN 

Primarily, the two software support tools required for the MIMD 

multiprocessor systems are· similar to those required for sequential 

oomputers - namely the Operating System and the general programming 

system. In such a system, the efficiency of these software systems 

is very Significant, otherwise a poor performan::e coold destroy any 

oost-performance advantages that the system has gained through its 

hardware organisation. Thus, in order to complete the whole 

discussion about the MIMD architectures which previously started 

with some hardware organisaticnal issues, this paragraph includes a 

brief discussion of some basic organisations of the operating 

systems while Olapter 3 deals with the parallel programming issues 

to fully exploit the inherent parallelism in the MIMD structures. 

Conceptually, there is little difference between the system software 

requirements of a multiprocessor and a time-shared system (i.e. 

using the multiprogramming ccncept). From the most oommon functional 



95 

capabilities required in the operating system, such as resource 

allocation and management, table and data set protection, prevention 

of system deadlock, abnormal termination, I/O load balancing, 

processor load balancing, and system reconfiguration, only the last 

three are considered to be unique or substantially different for 

multiprocessor operating systems. More specifically, the presence 

of more than one processing unit in the system introduces a new 

dimension into the design of the operating system which can be 

visualised in the organisation and operation of the operating system 

with respect to the multiple processors. 

In the design of multiprocessor operating systems at least three 

fundamental organisations were utilised, the master-slave, the 

separate executive for each processor, and the symmetric or 

arxnymous treatment of all processors. 

The master-slave type of operating system which can be found in most 

of the earliest multiprocessor systems is, by its nature, the 

easiest to implement, the simplest to operate and may be derived 

from a uniprocesor operating system with multiprogramming facilities 

by including relatively simple extensions. However, this type of 

system is quite inefficient in utilising and controlling the 

system's resources. In addition, the master processor can become a 

bottleneck under a heavy load, consequently, many slave processors 

could remain idle for longer periods since the master would rot be 

fast enough to keep them all busy and this results in a poor 

performance. 

In this organisation the slave is restricted to perform only the 

user's code while the master can execute both the executive and 

user's code. Since only one processor is privileged the executive 



96 

code needs neither to be replicated nor re-entrant, a fact which 

minimises table oonflicts and lcck-out problems for centrel tables. 

In the case when a slave wishes to use a service that is only 

provided by the executive, it must first signal its intention and 

then wait until the master is interrupted and the executive 

dispatched. 

With this type of operating scheme, the entire system is subject to 

catastrophic failures as a result of a malfunction in the master 

processor. On the other hand, this organisation which requires 

simple hardware and software, is most effective for special 

applications with work load well defined or for asymmetrical systems 

with slaves having less capabilities than the master processor. 

If some of the supervisory code is made re-entrant and replicated to 

provide separate copies to each processor which can execute its own 

executive needs then a separate execute organisation is obtained. 

Consequently, each processor or executive has its own set of I/O 

equipment, files and private centrel tables. However, oonflicts are 

not completely eliminated since there are some centrel tables which 

need to be shared by the entire system. Unlike in the previous 

organisatioo, the entire system remains operatiooal in the case of a 

processor failure which can be restarted, although probably with 

some difficulties, by the operator. 

The ultimate sought after multiprocessor operating system and the 

most complex mode of operatioo is perhaps more closely approached by 

the symmetric organisatioo where all the processors as well as other 

system resources are treated equally. In other words, all the 

processors with a floating master ownership are considered as an 

arx:m:ymous peel of resources, each of which is capable of executing a 



97 

supervisory routine as and when required. This type of system can 

achieve a better load balancing over all types of resources while 

resolving the service request conflicts through the use of 

priorities. Since the same service routine might be simultaneously 

executed by several processors, most of the supervisory routines are 

made re-entrant. The unavoidable table access conflicts and table 

lock-out delays due to the presence of mull tip le executives are 

controlled in such a manner as to preserve the system's integrity. 

Compared with the previous schemes, the advantages of this type of 

operating system are the better availability of a reduced capacity, 

true redundancy, the most efficient use of all the resources and 

graceful degradation. All but the last one are self-explanatory. A 

graceful degradation is the ability to reconfigure a viable system 

from the only remaining operational components in the case of a 

malfunction in some of the others. 

Recapitulating, three different organisations of the operating 

systems for multiprocessors were presented and they all, the master 

slave excepted, do not constitute a "pure" example of any 

implemented multiprocessor operating system. In fact, most of the 

commercial and experimental arch! tectures have adopted a "hybrid" 

approach combining all the advantageous features from all of them. 

2.3.3 IMPLEMENl'ED MIMJ KJLII'ROCl'SSCR SYS'l'a-S 

In this paragraph, we shall briefly present the characteristics of 

some of the implemented multiprocessor systems. Certainly there are 

several commercial and experimental multiprocessor archi tectures 

that have been developed by various manufacturers for different 

purposes. Some commercial ones essentially consist of extensions of 

a uniprocessor architecture to improve speed and reliability such as 



98 

the IBM 370/168 MP, the OJC CYBER 170 and the Burroughs B7700 (see 

[Satyamarayanan 1980]. Computers specifically intended for 

multiprocessor operations include Denelcor REP [Smith 1981], 0lC AFP 

[OX:: 1980] and INTEL iPSC [Intel 1984] which is based on the Cosmic 

Cube developed at Cal tech. Examples of experimental systems are the 

C.mmp [Wulf 1972] and the cluster of microprocessors, the Cm* 

[Gehrig 1982], both developed at Cal:negie-Mellon University, USA. 

In the Computer studies Department at Loughborough University (UK) a 

group of researchers have been actively inVOlved in an extensive 

multiprocessing research program leading to the development of two 

experimental systems, the Interdata Dual Processor and the Neptune 

systems. A third system, the Balance 8000 developed and 

commercialised by Sequent Inc, USA, was recently acquired for the 

development of cost-effective parallel software. In the following 

paragraphs, we present the different hardware and software 

characteristics of all these three Loughborough sited parallel 

systems. 

2.3.3.1 '!HE lNI'ERIlATA W1\L PROCESSOR 

The Interdata Dual Pt. ces 9). which was the first MIMD mul tiprooessor 

system developed in this Department can be classified as an 

asymmetric loosely-coupled system with very limited capabilities 

such as the small number of processors, the small size of shared 

memory, 64 Kbytes, the lack of any memory protection and the poor 

quality of the used software. 

Initially, this system appeared as Interdata model 55 dual 

communications processor [Model 1971] which was subsequently 

upgraded by the substitution of the I/O processor (B), an Interdata 



PRIVATE 
MEMORY A 
(32 Kbytes) 

ME~IORY BANK 
CONTROLLER 

PROCESSOR A 
INTERDATA 
MODEL 70 

99 

COMMON 
MEMORY 
(32 Kbytes) 

f--------
PRIVATE 
MEMORY 
(32 Kbytes) 

DMA 

PORT~ 

MEMORY BUS I \ 
INTERFACE 

PROCESSOR B 
INTERDATA 
MODEL 70 

FIGURE 2.21: THE INTERDATA DUAL PROCESSOR CONFIGURATION 



-----~ 

100 

model 50 processor by an improved model, the Interdata model 70 

processor. 

Each processor of this twin system, as illustrated in Figure 2.21, 

is a 16-bit processor, utilising 16 registers and having private 

access to a 32 Kbytes local memory. The local memory of processor B 

was expanded to provide 32 Kbytes of a virtual shared memory, th:lugh 

physically processor B has a memory address space of 64 Kbytes. 

Consequently, the shared memory access overheads (static or dynamic) 

are rDt symmetric between the processors, a fact which justified the 

asymmetric property. When accessing the shared memory, processor A 

is delayed by 1 to 1.25 sec by the memory bus interference to B's 

direct memory access port, while processor B experiences no such 

static delay. The dynamic overheads between these processors are 

also asymmetric since the access of the shared memory by one 

processor would 'lock-out' the other one for a complete memory cycle 

(Le. 1 sec), in the case of processor B, it is locked-out from 

both, the local and shared, memories. Furthermore, the rese:rvation 

of the shared memory by processor A at least 0.5 secs before it is 

actually utilised (due to the memory bus interface logic) makes the 

dynamic overhead more asymmetric and consequently while A is 

dynamically delayed by.5 secs B is delayed by up to 1.5 secs. 

The programs developed to run on this system can run on either 

processor or en both of them by initially loading commen data in the 

shared memory and replicating the executable code in the two local 

memories. This twin system operates on an IBM 360 like instructions 

set as provided by the Interdata manufacturer. Instructions can be 

16 or 32 bits long and take one or two secs to load from memory. 

The hardware implemented floating-point functicnal unit allows fast 

computations of arithmetic operations. 



101 

Cl:x1cluc:ting, the design simplicity of the Interdata Dual Processor 

along with probably small financial support has led to the 

development of a multiprocessor system with severe limitations, 

however valuable experience was gained and directly reflected in the 

design of the subsequent system. 

2.3.3.2 THE NEP'lUNE PARALLEL CXMUl'ER 

'!he Neptune system, yet another system developed in this Department 

in 1981, (see Barlow et al [BarlOw 1981]), is a homogeneous general 

MIMD multiprocessor system comprising four Texas Instrument 990/10 

minicomputers. Since this system was used extensively in the 

conduction of part of the experimental work presented in this 

thesis, we shall examine its hardware and software characteristics 

in more detail. Some other features concerning this system, such as 

the related programming concepts and the system performance 

measurements are presented in Olapter 3. '!he physical organisation 

of the Neptune system is shown in Figure 2.22. 

There are two types, though physically identical, of connection 

buses, called TILINEs used in the Neptune system, four of which are 

utilised as local connecticns to the corresponding processors and 

directly coupled to the fifth shared TILINE in order to provide 

access to the shared resources (memory and disk). Each local bus 

connects the processor to its local memory with a capacity of 128 

Kbytes opticnally expandable to 512 Kbytes, except for processor 0, 

where in addition to the increased local memory (384 Kbytes), two 5 

Mbtes of disc drives, one fixed and the other exchangeable, are also 

linked. A controller with 474 Mbytes Winchester disk drive as well 

as a magnetic tape streamer are connected to processor 2. The 

I 

I 

I 
I 

I 

/ .. 

----------------------------------------------------------------~ 



102 

P 3 M3 
128 Kb 

I I 

-6 

P2 M2 
128 Kb 

I I SM 

~ I 0 104 Kb 
DISK 

TAPE} 474 Mb 
( 

PI Ml 
128 Kb 

I I 

0 
r DISK) 
\ 50 Mb 

Po MO 
384 Kb 

I I 
I 0 ( DISK 

10 Mb 

FIGURE 2.22: THE CURRENT NEPTURE SYSTEM CONFIGURATION 



shared TILINE connects all the four processors' local buses via a 

TILINE coupler to the 104 !<bytes of shared memory and 50 Mbytes 

disc. 

Generally speaking, in a fully symmetric and homogeneous MIMD 

mul tiprocessor system one should allow some fluctuations in the 

performance of the available processors and !bes rot always except 

an exact performance figure for all processors mainly because of the 

changing a"bnospheric conditions which affect slightly the efficiency 

of the cooling system and also because of the unpredictable dynamic 

behaviour of the system. This is unofficially verified by the 

processors' performance measurements as carried out by the staff 

supporting the system. More specifically, the time for each 

processor to access its local memory is approximately.6 secs, 

whereas the shared memory access time is 1.41, 1.12, 1.31 and 1.32 

for processors PO, PI, P2 and P3 respectively. Consequently, the 

following relative processor speeds of 1.000, 1.037, l.(Xl6 and 0.978 

were measured for PO, PI, P2 and P3 respectively, a fact that 

reduces the efficiency and decreases the performance of parallel 

algorithms, especially toose with synchronisaticn [Barlow 1981]. 

Logically, the organisaticn of the Neptune system is such that the 

multiprogramming (the simultaneous co-existence of several programs) 

and the multi-tasking (the cOoperation of several processors for the 

completion of a single task) modes of operation are possible but 

under the supervision of the user. Thus, during normal use, this 

system operates like four individual processing systems, each of 

which support multiprogramming. In this case, the shared memory or 

part of it can be requested by the processors in order to increase 

their own local memory storage. In the second mode of operation, 

once processors are allocated, to usually the first bidder, they are 



104 

locked-out preventing arq other parallel task to execute until the 

completion of the current task. Because of the full symmetry 

obse:r:ved in such a system 00 single processor can potentially limit 

the overall performance and in fact the pool of the processors works 

as a team under all the conditions to maximise the system's 

efficiency. 

Commands used in the development of parallel programs specifically 

ensure that these programmes are split into two parts, one 

containing the program code and the local data and the other one 

=ntaining the shared variables, which must internally reside in two 

separate segments. Now, a processor receiving a request to execute 

a parallel task, as such, this processor would be known as the 

initiator, must first claim sufficient space in the shared memOIy to 

load the segment containing the shared variables once its request 

has been granted. Subsequently, the management area is set to 

=ntain pointers to that shared segment and tasks are activated in 

the remaining requested processors with enough information to load 

the segment containing the local variable into their respective 

private memories before starting the execution of the intended 

parallel program. Except for the initiator, all the processors have 

a link to the shared segment which resides in the oommon memory. 

All the Neptune's processors operate under the control of the 

powerful DXlO uniprocessor operating system which is a general

purpose system with several enhanced and sophisticated features to 

support multi-tasking. This system features several effective 

packages which are subsequently presented, though in a very brief 

manner and the interested reader is referred to the Texas Instrument 

manuals [Texas] for more detailed information about arq facility of 

the Operating System DlUc. 



105 

The DXlO Operating system provides an effective tree-structured 

filing management system which supports multi-indexed files. The 

specification of a file takes the form of a succession of directory 

names encountered when travelling down the tree, starting from the 

root which can be a specific disk pack or volume until reaching the 

actual leaf or filename. In the case where the list is too long and 

becomes cumbersome, the synonym facility can be utilised to replace 

this long string of characters by a shorter one. For example, a 

directory USER.PG.DIR1.DIR2 can be replaced by the synonym DIR, 

which means that all files belonging to this directory can be 

referred to as DIR.filename instead of USER.PG.DIR1.DIR2.filename. 

The system will automatically evaluate the given synonym before arq 

file operation. Additionally, the volume name can be omitted in the 

case when the file resides in the system volume. Such a system must 

be carefully designed to include some coordination allowing shared 

files to ba created, opened, read, written, closed as well as 

deleted by more than CXl6 c:qx::urrent prooess. lbwever, the standard 

DXlO limitation for only CXl6 task with the file open for writing as 

well as the lack of direct updating (i.e. the users of the shared 

file are notified of any change in the file only when the writer 

closes the file) are still restricting the simultaneous accesses to 

a single file. 

From the user's point of view, the 'System Command Interpreter' 

(SeI) provides a friendly user interface to the system by means of 

displayed menus and a =mprehensive prompting system, which assists 

in entering =mmands and their eventual parameters. The SCI which 

can be involved interactively or through a runnable program includes 

a check of all the given values. Besides the SCI, two additional 

features, the foreground and the background facilities are available 



106 

during the execution of a task. The former, which can be owned by 

only one user to execute only one task at any given time, 

automatically suspends the SC! as soon as it is invoked. On the other 

hand, the latter which is a multi-tasking management environment, 

can be invoked while the SC! is still available to process the user 

requests. Calsequently, the state of these background tasks can be 

inspected at any time through the interrogatirIJ SC! commands. 

The frequent hardware and software alteraticos or extensions that 

the Neptune system has to experience is l:x:>und to increase the rate 

of malfunctioning problems. The most common known cause for a 

malfunction, known as a system crash is when one or more processors 

fail, indicated by a fault on the front panel. A manual procedure 

is provided on the front panel of each processor and can be used to 

reload the system after dumping its contents for later crash 

analysis. 

In order to recover from an eventual system catastrophy that could 

destroy aH or part of the important files, the Neptune system 

provides a dumping mechanism, in a short (daily except Sunday) or 

long (monthly) term basis. 

Finally, several modificatioos have, oowever, been underway for the 

DXIO to produce a new version (DXIO Mk 3.5) along with the 

instalment of new hardware equipment (such as memory, hardware 

floatirIJ point, resource management) and the development of some new 

facilities such as a new preprocessor to use on the VAX, a file 

transfer protocol between Vl\X and Neptune and the implementation of 

a PASCAL-PLUS compiler. 



107 

2.3.3.3 '!HE SJ;UJENl' BI\LAK);; 8000 SYSTJ;M 

Recently, a third system, the Balance 8000 which was developed by 

Sequent Computer Systems Inc, using a new processor pool 

architecture was installed in the Computer Studies Department. 'Ihis 

system dynamically shares its load among twelve architecturally 

similar processing units and operates under a single copy of a Unix

based operating system, krx>wn as DYNIX; capable of delivering up to 

5 MIPS. The pool processing organisation requires dynamic balancing 

of the system workload amcog the processors with an effective use of 

all resources in general. Ca1sequently the system automatically and 

continuously assigns tasks to run en any p=ssor that is currently 

idle or busy with a lower priority task, meaning that a process does 

not necessarily run to cxxnpletien en the same prccessor but en the 

contrary it may involve several processors. 'Ihis balancing process 

is carried out transparently; neither the user nor the progra.nmer 

need to be aware that the system supports multi -tasking operaticns. 

From the hardware point of view, the Balance 8000 consists of a pool 

of two to twelve processors, a bandwidth bus, up to 28 Mbytes of 

main memory, a diagnostic processor, up to four high-performance I/O 

channels and up to four IEEE-796 (Multibus) bus couplers. Figure 

2.23 sh:>ws the main functicoal. blocks of the Balance 8000 System. 

Each processor is a subsystem containing three VLSI cxxnponents: a 

32-bit processing unit, a hardware floating-point unit and a paged 

virtual memory management unit. Two such subsystems are on one 

circuit board (see Figure 2.24 which sOOws the major units of a dual 

processor board). Also each processor ccntains a cache memory that 

almost reduces to zero all the processor waiting periods and 

minimises the bus traffic. The two-way set-associative cache 



.., 
H 
Gl 
C 

1:l 
. 
IV 
W 

Cl 

~ .., 
H 

2 
~ 
H 
o 
Z 

16-LINE 
MUX 

USER 
DEVICES 

\ in TAPE 

(396 Mbyte 
DISK 

/I , 

MULTIBUS 
ADAPTOR 
BOARD 

~ 
t" 

"' H 
0> 
C 
rn 

-'" 
'Il 
t"' 
0 

"' - MULTIBUS 
f- INTERFACE 

BOARD 

"' , 
) 

" 

f7\.:1 

~ 

DUAL 
CPU 
BOARD 

tI) 

'" co 
0 MC 
0 

BOARD 0 

~ 
b 

ME IV 

~ BOARD 

§ 
P 

SCSI C 
El 
DP 

~ 

/' Legend: 

MC: Memory 
ME: Memory 
SCSIC: SCSI c 
El: Ethern 
DP: Diagno 

tI) ! in TAPE &it--
H 

0> 
C 
rn 

72 Mbyte H DISK 

controller 
expansion 

ontroller 
et interface 
sties processor 



109 

MEMORY 
MANAGEMENT t- rlCACHE~ r-UNIT 

I WRITE 

SYSTEM LINK "- BUF- f-
AND INTER-

FER 
f- RUPT CONTROl I=- PROCESSOR 1 

LER 

I 

FLOATING BUS 
POINT UNIT r- INTER-

FACE 

MEMORY 
MANAGEMENT 
UNIT WRITE 

r- BUF- f-
I FER 

SYSTEM LINK 

f-
AND INTER- - PROCESSOR 21-LJCACHE L-
RUPT 
CONTROLLER 

I 
FLOATING 
POINT 
UNIT 

.. 
FIGURE 2.24: CONFIGURATION OF A CPU BOARD WITH 3 VLSI COM

PONENTS ATTACHED TO EACH PROCESSOR 



llO 

consists of 8 Kbytes of very high speed memory and stores recently 

accessed instructions and data, so subsequent requests f= the same 

data are satisfied from the cache, rather than from the main memory. 

However, with the use of these cache memories two coherence 

problems arise, mainly the coherence of the data between the main 

memory and the caches on each processor and the coherence of the 

data between the caches themselves. For the former problem, a 

write-through mechanism is utilised in =der to keep the main memory 

up to date with all the eventual chan;Jes made in every processor's 

cache. In addition to the update of the appropriate cache, this 

mechanism would allow the same write cycle to pass to the bus and 

memory. In the latter case, the answer is provided by the bus 

watching logic implemented in every cache. Ccnsequently, all the 

write cycles en the bus are rncni tored and the addresses are compared 

wi th those in the cache, so whenever the contents of the cache are 

altered, the cache invalidates the entry in question. 

Significant processing time is saved by incllldin;J a write-buffer in 

each processor which can proceed immediately after issuing a write 

cycle letting the buffer wait for the memory cycle to complete. 

Finally, to complete the descriptien of the colllp:::lIlents found in the 

process= subsystem we need to refer to the 'System Link Interrupt 

Controller' (SLIC) which is a chip, one for each processor and for 

every other board, attached to the SB8000 bus. This SLIC chip 

manages interprocessor communicatien, synchrcnised access to shared 

data structures, distribution of interrupts among the processors, 

and diagnostics and configuration cx:ntrol. The SLIC bus which is a 

part of the SB8000 system bus provides an interconnection for 

communication among the SLIC chips. 



III 

The SB8000 system bus is a 32-bit wide, pipelined, packet bus 

supporting multiple overlapped memory and I/O transactions and 

capable of achieving a throughput rate of 26 Mbyte/sec. It also 

supports several packet lengths and checks parity to aid in error 

detection. 

This system provides up to 28 Mbytes of principal memory, a 4 Mbytes 

I/O address space that can be shared by all the processors and a 16 

Mbyte virtual memory address space for each process. The Balance 

8000 supports up to four memory oontrollers, each with an optional 

expansion board, reducing memory contention among processors. It 

also supports standard "I/O throughout the system, and permits 

several instances of each interface to increase the I/O bandwidth. 

More specifically this system supports a SCSI interface for disc and 

tape I/O, a Multibus interface for serial communications, large disc 

and tape support, and user-added devices, and finally an Ethernet 

local area network for ccmnunicatien am::n;J systems. 

From the system's software point of view, this system operates under 

the powerful DYNIX which is based en the UNIX uniprocessor operating 

system with several significant enhanced features to support multi

tasking. The DYNIX Kernel or executive has been made shareable so 

that all the processors can execute the same system calls and other 

kernel code simultaneously. The DYNIX system schedules the 

processes to execute on the processors such that the workload is 

well balanced. This means that any user or system defined process 

can run on any processor at any time and may involve several 

processors to complete. The DYNIX determines the minimum and 

maximum amount of physical memory that a given process can oonsume, 

then adjusts the memory allocation for each process between these 



112 

two bounds to maintain each process's paging rate and tune the 

virtual memory performance for the entire system. 

Full advantage is taken of the UNIX filing system and the 

mul tiprogramming features such as pipes and forks that are 

automatically executed in parallel. The Dynix and the parallel 

programming library supply the fundamental parallel programming 

mechanisms such as process creation and termination, interprocess 

communication and synchronisation via the shared memory and UNIX 

signals and mutual exclusion via spinlocks. 



Chapter 3 

PROGRAMMING TOOLS AND PERFORMANCE 
ANALYSIS OF PARALLEL ALGORITHMS 



113 

3.1 PARALLELISM DE:1'ECl'ICN 

It is certainly true that while the computer architecture - in 

particular the advances generated by LSI - is bringing this new 

revolution in comp.tting, the programming tools to fully exploit the 

potential parallelism are only slowly forthcoming. Realising the 

serious consequences that are likely to result from any mismatch 

between the hardware and the software, the comp.tter researchers have 

oriented much of their efforts towards parallel software engineering 

developnent. 

Obviously, any parallel system is considerably more difficult from 

the programming point of view than a conventional uniprocessor 

computer since the designer is faced with additional complex 

decisions to make so as to balance the problem requirements against 

the available resources. Although the process of making these 

decisions in order to develop effective parallel software for a 

particular parallel system is still an ad-hoc procedure, the 

accumulation of all these individually gained experiences could well 

shed some light on how effective various strategies are at 

exploiting parallelism. 

There are at least three emerging parallel software design 

approaches based upcn the concealment (or n:Jt) of the parallelism by 

the hardware structure. In other terms, for some architectures, the 

parallelism is hidden by the hardware itself whilst for others it is 

revealed to the user so that appropriate decisions are made as and 

when needed. 



114 

The first of these approaches, the automatic translation of 

sequential prog.cams or the implicit parallelism, which is outlined 

in Section 3.1.1, relies on sophisticated compiling techniques to 

parti ticn a global task written in a high-level sequential language. 

With the use of this approach, it is h::>ped to take advantage of the 

huge amounts of existing sequential software. For example, a 

sequential program could be used to generate several versions of 

parallel algorithms, each suitable for a particular type of parallel 

CXJ!lIputer (pipelined, array, multiprocessor, ete). Q:nsequently, the 

complexity of writing algorithms is no worse than that of a 

uniprocessor system. In addition, if the compiler has been fully 

debugged, then the program decomposi ticn is correct by construction. 

The disadvantage of such a method is the complexity of the 

compilation task that makes the approach unsuitable for most 

programs that are run only a few times. Also, since this approach 

was proven for rather simple numerical applications, for more 

sophisticated applicaticns, such as rx::n-numerical algorithms, there 

are d::lubts that it will be successful. 

The second approach, which is considered in Section 3.1.2 is 

explicit parallelism. The progLammer manages the concurrency of the 

applicaticn by coding directly in a OCl'lCl.IrL'ent language (e.g. ADA or 

CSP - 'Concu=ent Sequential Processing') or in a high-level 

language with many embedded parallel constructs. Both types of 

languages have special statements for tasks initiatial, term.inatial, 

synchronisation and message passing that allow efficient coding of 

even more sophisticated applicaticns. One of the most significant 

advantages of such an approach is that the actual architecture 

characteristics are taken into account so as to generate efficient 

parallel algorithms. Consequently a better match between the 

hardware and software could be obtained in order to achieve the 



llS 

intended design goals that the system was first built for. For 

example, the algorithms, designed for an Array Processor, must be 

developed to keep every processing element as busy as possible to 

achieve a high-degree of parallelism. Therefore, in such a system, 

we are n::>t primarily interested with the efficient use of the array 

processors but rather by the speed-up factor. en the other hand, in 

a MIMD multiprocessor computer, and due to the asyncIu:cn:lus nature 

of the processors, if a processor has little effect en the run-time 

of the algorithm, it is better from the processors efficiency point 

of view to use it elsewhere on a different task (i.e. task 

rebalancing). Thus, in an MIMD computer, the concern is with the 

efficient use of the processors coupled with the speed at which the 

problem is sOlved. Due to the concu=ency problem, these programs 

are significantly more difficult from the del::ugging point of view. 

Thus, it is a complex task to track down an error in a concu=ent 

program. 

The third approach, advocated by Backus and Denrrls, is based en the 

functional language model (see [Backus 1978] and [Dennis 1966]) and 

is implemented on most data flow computers. Relying on the 

programmer's ability, the former method could rapidly become 

unworkable as it is impossible to keep "juggling" with a large 

number of tasks. The funct:i.c:nal approach, which is the most natural 

form of handling parallelism can achieve the highest degree of 

concurrency since the instructions are scheduled for execution 

directly by the availability of their operands. Ibwever, the high 

cost of implementing this unstructured low-level cc:ncu=ency makes 

this method of less importance, at least for the present moment. 

In the remaining sections of this chapter, we shall be concerned 

with the structure of parallel algorithms, presenting the necessary 



116 

parallel constructs used when implementing such programs, and 

finally by the performance analysis of this class of parallel 

algori thms as adopted in the Computer Studies Department at 

Loughboroogh University. 

3.1.1 IMPLICIT PARALLELISM 

Most of the existing sequential software exhibits naturally some 

form of concurrency which needs only to be identified and then 

exploi ted in the design of parallel algorithms. One of the 

approaches to parallelism that relies en the imp1ici t detectien of 

parallel processable tasks within a sequential algorithm is the 

implicit approach. Several sophisticated compiling techniques were 

developed to automatically translate a sequential program into a 

form suitable for parallel processing on a particular type of 

parallel machine. In add! ticn, such a process must also determine 

the dependency relaticnship amcn;;r the various identified tasks so as 

to effectively schedule them for parallel executicn. 

Several automatic recognition schemes, some of which are 

subsequently presented, have been proposed to accomplish this 

detection. We should emphasise at this point that none of the 

presented schemes can be universally implemented since it is 

dependent en the souroe language. 

In 1S'66, Bernstein developed the deterministic a::n:liticns which were 

sufficient for the parallel execution of sequentially organised 

processes (see [Bernstein 1966]). His proposed detection method, 

presented in terms of sets representing memory locaticns, is based 

en four different ways of utilizing a memory locaticn bY a sequence 

of instructicns or tasks. These four a::n:li ticns are: 



117 

1. The location is only fetched during the execution of a task 

2. The location is only stored during the execution of a task 

3. The first operation within a task involves a fetch, with respect 

to a locatic:n. One of the succeeding operations stores in this 

location 

4. The first operation within a task involves a store with respect 

to a location. One of the succeeding operations fetches this 

location. 

Although these conditions were sufficient to ensure the 

commutativity of two tasks that can execute in parallel, they are 

very poor in deciding these factors when presented with arbitrary 

programs. This work was complemented by that of Fisher who 

presented an algorithmic implementation of the above conditions 

[Fisher 1967]. In this algorithm, the input and output sets of each 

task were used to determine the required ordering and thus the 

inherent parallelism. 

In 1969, Ramamoorthy and Gonzalez presented a Fortran Parallel Task 

Recognizer using a new approach based on the OOmp.1tational modelling 

of the processes using oriented graphs (see [Ramamoorthy 1969] and 

[Gonzalez 1969]). In these graphs, the nodes (vertices) represented 

single tasks and the oriented arcs (edges) represented the allowed 

control sequencing of the tasks. Thus, the processes properties 

could be investigated by simply manipulating the corresponding 

<X111a;Livity matrix of the considered graph. . 

In 1978, Evans and Williams [Evans 1978] introduced a method of 

detecting parallelism in ALGOL-type progra.ns, providing the required 

translation code for many particular language constructs such as 

loops, conditional branches and aSSignment statements. The 



118 

implementation of these constructs was performed by Williams in 

1978, who presented an ALGOL 68-R program describing how a mul ti

pass compiler can detect the potential parallelism. This compiler 

was subsequently extended to include two more stages, the Analyser 

and the Detector programs. The role of the analyser was to 

partition a given program into logically independent tasks, such as 

sub-programs, loops ete, which are then examined by the detector to 

determine whether there is a parallel relatiooship between them. 

One of the most studied detection schemes that has been given much 

consideration is the impliCit detection of the inherent parallelism 

within the computation of arithmetic expressions. Because of the 

sequential nature of most of the uniprocesso:t' systems, the run-time 

of any arithmetic expression computation is always proportional to 

the number of operations. This run-time can be further reduced on a 

parallel system by concurrently processing many parts of the 

expressicn. In fact, the commutativity and the associativity were 

extensively used in order to reduce the height of the computational 

tree representaticn. For example, the expression (a*b*c*d*e*f*g*h) 

can be rearranged in a form suitable for parallel processing 

«(a*b)*(c*d»*«e*f)*(g*h»). As it can be seen in Figure 3.1 

which depicts the tree representation of the above expression for a 

sequential and a parallel processor respectively, the run-time was 

reduced by foor time un! ts. 

There is much literature about algorithms deal1n:J with the detection 

of parallelism at the arithmetic expression level, some of which are 

those proposed by Squire [Squire 1963], Hellerman [Hellerman 1966], 

stone [Stone 1967], Baer and Bover [Baer 1968], Ramamoorthy and 

Goozalez [Ramamoorthy 1969], and Muller and Preparata [Muller 1976]. 



119 

Level 7 /*"-

Level 6 ; 

h 

Level 5 ~ 

9 

Level 4 " r.. f 

Level 3 ;*, 
e 

L evel 2 :' 
'-' d 

~ 
V c 

Level 1 

Level 0 a b 

(i) Serial computer 

FIGURE 3.1: TWO POSSIBLE BINARY TREE REPRESENTATIONS OF THE EXPRESSION 
a*b*c*d*e*f*9*h FOR A SERIAL AND PARALLEL COMPUTER RES
PECTIVELY 

;*' 

r* "*' 
/~ ../~ ~ *"-

a b c d e f 9 h 

(11) Parallel Computer 



120 

By all means, this is not intended to be a complete survey of all 

the proposed methods, but only an attempt to emphasize the major 

interest in this area. However we si'x:>uld complete this presentation 

with the work of Kuck [Kuck 1977] and Wang and Liu [Wang 1980]. 

In some particular cases, the use of the commutativity and 

associativity properties does not always lower the height of the 

computational tree. Kuck studied the effectiveness of the 

application of the distribution at reducilYJ the tree height to its 

minimum value. AlthJugh this technique may involve some overheads, 

it, however, generates a faster parallel algorithm (see Figure 3.2). 

Finally, Wang and Liu introduced the concept of the 'parallel 

Execution StrilYJ' (PES) which, unlike the previous methods, can also 

detect parallelism at the statement and b10ck levels in order to 

maximise the amount of concurrency. They also designed two 

algorithms that translate arithmetic expressions into PES's. 

3.1.2 EXPLICIT PARALLELISM 

In this approach to parallelism, the programmer has to specify 

expUcit1y those tasks that can be performed c:::oocu=ently by means 

of special parallel constructs added to a high-level programming 

language. Al though these programming constructs can be time 

consuming and difficult to implement they can offer significant 

algorithm design flexibility; in other words, many different 

possible structures of the same algorithm can be analysed until a 

satisfactory version is obtained. 

Considerable research has been done on this approach with a 

particular interest on those parallel task issues such as task 



a 

,----(.,)--......, 

a .----~+}----~ 

,----{+}----, 

d e 

b c c d d e 

FIGURE 3.2(a): TREE REPRESENTATION OF THE EXPRESSIONS 
a'(b*c*d + c*d*e + d*e*f) 

r-------{+~-----~ 

r-----~t~----~ 

.--.( *}----, ,--o{'}--.., 

b c d a e d e a d 

FIGURE 3.2 (b): TREE REPRESENrATICN OBTAINED BY 0 DISTRIBUTlllG 0 a. 
WE HEIGIfI' IS '!HUS RElXJCED FlUI 5 TO 4 

121 

e f 



122 

declaration, activation, termination, synchronisation and 

communication of which the latter two are the most significant. 

First, we shall present some of the synchronisation and 

communicatioo mechanisms that have been prOfXlS€d and then introduce 

the different techniques used to express ooncurrency. 

If several concu=ent processes are sharing a critical data item, 

then they must synchronise their operatioo so that at most only one 

of them is in control of that data (mutual exclusion). Although 

this process synchronisatioo can effectively ensure data integrity 

it unavoidably forces sequential handling of the_shared data by the 

created processes. 

In a paper published in 1965, Dijkstra suggested the utilisation of 

semaphores and introduced two new primitives (P and V) that greatly 

simplified process synchronisation and communication [Dijkstra 

1965]. A software implementatioo of these two primitives in terms 

of an indivisible instruction, the test-and.-set instruction, was 

installed in many systems. Altoough the utilisatioo of semaphores 

successfully allowed a harmonious cooperation between several 

processes, it has not reduced the total interference when a large 

number of variables are shared. 

other synchrooisatioo primitives that serve the same functioos as P 

and V have been suggested. F= example Dennis and Van Horn [Dennis 

1966] suggested a very straightforward mutual exclusion lock out 

mechanism. Critical regions, i.e. the set of instructions that 

manipulates the =itical data, are enclosed within a LOCK W - UNLOCK 

W pair, where W is an arbitrary one-bit variable. 



123 

In general, many difficulties may arise when using these low-level 

synchronisation mechanisms since they do not facilitate the 

compiler's role in checking possible error conditions. More 

specifically since a semaphore can be used to solve arbitrary 

synchrc:nising problems, a compiler cannot cc:n:::lude that a pair of P 

and V operations en a given semaph:Jre delimits a critical region, or 

that a missing member of such a pair is an en:or. The compiler will 

also be unaware of the correspondence between the semaph:Jre and the 

common variable it protects. Thus, a compiler cannot give the 

programmer any assistance in establishing that a program is error 

free with absolute certainty. 

At least three high-level synchronisation and communication 

mechanisms have been proposed. For instance, the conditional 

critical regions (see [Hoare 1972] and Hansen [1973]) and the 

monitors (see Hansen 1977) concepts have significantly reduced the 

potential amount of interference by grouping the shared variables 

into resources, with exclusive access to them. In the former 

concept, a process is allowed to test the state of a resource before 

entering a critical regien to determine whether the corresponding 

operation is permissible or not, ~d if it is not, to wait until 

other processes have broJght the resource into a state by which the 

operation is permissible. On the other hand, with the latter 

concept which is a language construct, the compiler is informed 

about the shared data structures as well as the operations (or 

procedures) that processes can perform en them. 'I11us, functionally 

a monitor is a collectien of data and procedures operating on this 

data, shared by several processes en a mutual exclusien basis. The 

operations WAIT and SIGNAL, initially suggested by Campbell and 

Haberman [Campbell 1974] for synchronisation purposes, are very 

useful f= requesting and releasing resources. 

1 



124 

Unlike the previous two concepts which are essentially centralised 

facilities, the third one, the ADA-Rendezvous concept is more 

oriented towards message passing between processors in a d!stribJted 

system envircrunent (see [Hoare 1978]). When two processes decide to 

rendezvous, the first one to arrive at the rendezvous point is 

blocked until the arrival of the second. Many other powerful 

facilities are also provided in the lIDA which is considered ens of 

the most powerful languages. However, since the use of these 

complex: ronstructs could lead to potentially more sharing, a special 

care should be taken when implementing an application program in 

this language. 

The utilisation of the critical section is without any doubt the 

most effective way to reduce interference amoo;;Jst active processes. 

In this concept, which is implemented in the Loughborough 

multiprocessor systems, the section of the program code that 

accesses the critical data is called critical section and it is 

ex:ecuted by ooly ens process at any time. Two operations, $ENTRY and 

$EXIT, ensure that this section is shared between processes on a 

mutual ex:clusioo basis. In the case of arising access ooofl!cts, a 

protocol is provided so as to schedule one of the contending 

processes to enter the critical secticn. This will be complemented 

by a detailed study in the following paragraph when we examine the 

actual implementatioo of some of the parallel constructs in the MIMD 

multiprocessors currentlyoperatiooal at I.oughtJoroJgh University. 

Several mechanisms fer expressing concurrency have been developed in 

the form of add! tional parallel constructs. For instance, roBEGIN 

[Dijkstra 1968] or PROCESS declaratioo [Hansen 1975] were utilised 

to specify th:lse parts of the program that can ex:ecute c:alC1.Il:reI1tly, 



125 

distinguishing between the local variables and the shared ones. 

Another example is the PARALLEL FOR [Gosden 1966] which generates 

for every i teratioo of the l\ImL for statement a separate parallel 

process. 

In 1965, Anderson [Anderson 1965] introduced five parallel 

ooostructs, the REK. JOIN, ~, CBTAIN and RELEASE statements 

which are presented below in an AImL-68 format: 

where 

<Fork statement>::= FORK <Label list>; 

<Joint satatement>::= Label: JOIN <Label list>; 

<Terminate statement>:: = Label: TERMINATE <Label list>; 

<Obtain statement>::= OBTAIN <Variable list>; 

<Release statement>::= RELEASE <Variable list>; 

<Label list>::= Label/Label, <Label list>;: 

<Variable list>::=Variable/variable, <Variable list>. 

The FORK statement is used to generate as many parallel tasks as 

there are labels in the list, in! tiating the centrel of each ooe at 

the address specified by the corresponding label. All the labels 

must be locally defined, i.e. only those labels used within the 

block scope in which this statement is utilised. As an arbitrary 

parallel program (see Figure 3.3 which depicts a typical program 

using these parallel coostructs) can include many fo:rks at different 

levels, the next sequence of tasks may only be initiated when all 

the forked tasks of the previous level have completed their 

executioo. However, few exoeptioos, such as a branch operatioo to 

alert an I/O unit for a momentary utilisation, do not have to be 

completed before more tasks are initiated. In some cases, it is 

sometimes desirable to release some of the processors witlxlut the 



126 

I I 
I I 
I I 

~ 

FIGURE 3.3: THE FORK/JOIN TECHNIQUE 



~27 

in! tiaticn of further tasks. 'Ib achieve this, an IDLE statement has 

been proposed [Gosden 1966]. 

The JOIN statement which is closely associated with the above 

statement is used to terminate the parallel processes that have been 

forked and a single task may subsequently follow. This is 

implemented by including a code that causes test bits to be 

available, thus allowing the fomed paths to be synchrc:nised after 

they are completed. Every generated task must include at the end of 

its oode a branch operaticn to the JOIN statement. 

In the ALQ)L-60, the recursive subroutine call mechanism relies upon 

finding a ocnditicn that allows a normal exit from this subroutine 

at execution time. Since the FORK-JOIN concept is functionally 

identical to a recursive calll , it was necessary to include the 

TERMINATE instruction to explicitly de-activate some of the 

unnecessaIY tasks. 

The JOIN and TERMINATE parallel ccnstructs are currently implemented 

as ccntrol coonters being in! tialised at the compilaticn time by the 

number of labels appearing in the list. When one of these two 

instructicns is executed, the ccntent of the counter is decreased by 

cne and then compared to zero. If this ccntent is greater than zero 

then a task has just completed and the processor is free to go and 

execute another pending task; otherwise, this processor has to 

synchrc:nise until all the remaining (if any) cnes join it. 

The OBTAIN statement is used to provide eXClusive access to the 

listed variables by a single process. Consequently, this mechanism 

1. In fact, tasks are forked sequentially until the exhausticn of 
the label list. 



128 

can avoid mutual interference by locking-out other parallel tasks 

from the use of these variables. The multiple handlinJ of a list of 

variables by several concurrent processes requires that these 

resources are shared or are common to all the processes, a fact 

which explains that all the variables used with the OBTAIN statement 

must be defined in higher level blocks. 

The logical counterpart of the OBTAIN statement is the RELEASE 

statement which is used to selectively de-allocate all those no-· 

longer required shared variables. Thus, any process waiting to 

access shared variables can eventually proceed if its list of 

variables is made available. 

A similar concept to the OBTAIN/RELEASE pair is the LOCK-~ 

concept which was introduced by Dennis and van Ibm [Dennis 1966] in 

1966. cne of the major difficulties of this coocept when operatiCl'lal 

is the deadlock problem which can result from several different 

situaticns. The most classical are these two: (1) the pre-empticn 

of a process with the lock activated by a higher priority 

computational process, and (2) when two processes try to acquire 

eXClusive access to two shared variables but in reverse order to 

each other. Each is preventing the other to proceed since it is 

holdinJ a variable requested by the other. Ccnsequently neither of 

them can execute (deadlock). cne obvious soluticn to the first case 

is to inhibit interrupts between the execution of the LOCK and 

UNLCJO( pair whereas there seems n:> apparent soluticn to the second 

problem apart from detectinJ the deadlock and try once more. 

In conclusion, all the above presented constructs are directly 

implemented as library functions and supplied with enough 

information so as to be able to generate and control parallel 

~~""" .. 



129 

activities. In particular, the FORK statement would be substituted 

at the =mpilatic:n time by a special code that when executed would 

create as many parallel tasks as the number of labels following the 

FORK statement. Each of these tasks is assigned to the available 

processors and usually the first task is assigned to the processor 

that ca=ies out the FORK statement itself. In the case that the 

number of created processes is greater than the number of available 

processors, the excess tasks are kept in a queue until a processor 

be=mes free. 

All the labels used in a parallel program are cross-referenced at 

the =mpilatic:n time by arranging them en a forward reference list 

which is loaded by all the labels cc:ntained in the labels list of an 

instructicn. When a label is encountered, this list is searched and 

if this current label is found, it is removed from the list and a 

special heading informatic:n (may include code length, data ete) is 

generated just oofore the labelled block. 

3.2 PARlILLEL l'ROOWIMMIN3 SUPKlRI' OF 'lHE ~ MIMD SYSTEMS 

Finally, to complete our discussion about the Loughborough 

multiprooessing systems which was previously started by outlining 

their hardware and software characteristics (see Sectien 2.3.3), we 

shall present in the following sections the parallel programming 

concepts as implemented in such systems. The provided facilities 

would allow the parallel program designer to define in a simple 

manner the creation and termination of parallel processes (or 

paths), which data is shared between paths, and a reliable update 

operatic:n of certain shared data structures [Bar1ow 1981]. 



130 

For instance, let us ooosider an arbitrary algorithm ooosisting of 

five smaller segments, SI, PI, P2, P3 and 82 as illustrated in 

Figure 3.3(a). Of these segments, PI, P2 and P3 are assumed to be 

independent and so they can be executed in parallel. The 

parallelisaticn of this algorithm leads to the cne sOOwn in Figure 

3.3(b), where after the execution of segment SI, three parallel 

paths are created and executed; after the completion of these 

paths, the segment S2 is executed. Thus, this simple example 

illustrates many of the important issues to be considered when a 

parallel algorithm is being designed. 

FIGURE 3.3(a): SEQUENTIAL 
ALGORITHM 

FIGURE 3.3(b): PARALLEL ALGORITHM 

Firstly, a number of parallel paths, not necessarily equal to the 

number of cnline processors, slnuld be created; and no matter row 
many processors are assigned to the job, each path should be 

executed by cnly cne processor locking rut all the others. This is 

achieved differently on the Neptune and Balance systems. In the 

former system, each path is executed until completion on the same 



131 

assigned processor while on the latter, the same path may involve 

its executien by several processors due to the dynamic re-balancing 

of the processors. 

Secondly, data is defined in 51 and used in P1, P2 and P3 should be 

made available to all processors, more specifically to those 

executing these paths. Data defined in 51, P1, P2 and P3 should be 

made accessible to the processor executing the segment 52. 

Thirdly all the created parallel paths should be completed before 

the execution of the segment 52. Another more significant issue 

which is rot apparent in our simple example an:} worth menticning at 

this stage is the mutual exclusion. Assuming that all the parallel 

paths require to access a shared variable to update it, it is 

necessary to include a synchronisation mechanism to prevent the 

shared data from being corrupted. 

Thus, as we can see, there are three major factors which have to 

receive special cansideratien in a parallel algorithm, namely they 

are the creation and termination of parallel processes, the 

inteJ:processor communicatien, and the process synchronisation and 

mutual exclusion. 

These required features which are essential in supporting parallel 

programming are provided either as library routines (e.g. in the 

Balance 8000 system) or as enhancements to the programming language 

(en the Neptune system). 

Since all these multiprocessing systems were hurriedly implemented 

several decisicns were made dependinJ en what was available en site. 

For instance, between the two available languages, in the Neptune, 



132 

FORTRAN and PASCAL, the former was selected as a h::lst language for 

the parallel constructs. Another example is the implementation of 

the extensioos to the FORTRAN language as introduced on the Neptune 

system on the newly acquired system so that most programs can be 

easily transfe=ed from the Neptune to the Balance without major 

modificatioos except perl1aps, for the extra restrictioos imposed by 

the compiler. However, the Balance 8000 system provides a library 

of subroutines which can be used as they are or as a basis for 

developing customised routines, tailored to specific needs, to 

support parallelism in all the available languages (Le. FORTRAN, 

PASCAL and C). To be more specific, the library provides routines 

that will initialise a shared memory, of a desired size and virtual 

address, initialise all the synchronisation services, dynamically 

allocate shared memory, provide synchronisation mechanisms 

(blocking, locking and unlocking), determine the number of currently 

configured and online processors and, finally, perform processor 

termination and clean-up. 

As with the Neptune, the introduced pseudo-FORTRAN syntactic 

constructs are converted to FORTRAN calls to parallel library 

routines by a preprocessor program that runs before the normal 

FORTRAN compiler. 'I11e follow!n;;J sectioos describe the routines the 

Balance parallel programming library provides and also the pseudo

FORTRAN oc:nstructs. 

In a common memory multiprocessing system, variables loaded in 

shared memory are accessible to all processes in the same way that 

global variables are accessible to all subroutines. The way the 

shared variables are allocated to the shared memory depends on the 

programming language; in C programs they are allocated dynamically, 

whilst in FORTRAN programs they are allocated statically. The 



133 

pseuoo-Fortran construct to declare shared variables is: 

$SHARED variable list 

This is somehow equivalent to the COMMON statement and has the 

effect of loading the listed variables into the shared memory whilst 

the rest of the data, including the program code, is loaded into the 

local memory. 

The use of labelled COMMON statements is another alternative of 

declaring shared variables. In this case, the label names should 

also be declared in the compiling command to inform the compiler 

which COMMON blocks are shared. In fact, the $SHARED construct 

itself, is expanded to a labelled COMMON statement, with a preset 

label name, after the preprocessor stage. 

Synchronisation (or coordination) between parallel processes is a 

requirement that must also be taken into coosideraticn in aTr:l MIMD 

multiprocessor system, otherwise shared resources cannot be 

prevented from being corrupted whenever more than one process 

accesses the same data structure simultaneously. Several 

synchronisation approaches that enable shared resources to be 

accessed in a ocntrolled manner have been prOfOSed. 'l1:le algorithms 

proposed so far can be broadly classified into two groups, resource

master and bartering (al th:>ugh some WOD< has been couched in terms 

of communicating sequential processes) [Newman 1984] • 

. In the resource-master class of algorithms, as its name implies, the 

resource is always owned by one processor which after using it 

passes this resource to another processor wishing to become the 

owner (or the master). It is the current resource rolder that is in 



134 

a position to allocate the resource; thus the most that can be 

accomplished by the others is to indicate their wish to become the 

resource owner. 

In the case of a resource-sharing system based on bartering, the 

resource is usually 1JlX)wnOO. A processor wishirx] to own the shared 

resource has to perform a bidding algorithm at the same time as &r:l 

(and possibly many) other processors which also desire to use the 

same resource. The bidding algorithm must ensure that only one 

processor owns the resource. 

ComparinJ the performance of these two approaches under different 

workload situations (i.e. the amotmt of processor interference over 

the resource), the authors of the above mentiCXled paper proposed an 

alternative algorithm, the hybrid approach*, that behaves either as 

a bartering or as a resource-master algorithm depending on the 

amotmt of resource utilisation. More specifically, if the resource 

is found to be already owned, then it is assumed that eventually the 

ownership will pass to the processor en the resource-master basis, 

and it can wait passively for this to happen; otherwise it has to 

proceed to the 'active' bartering algorithm. Through a simulation 

study, the hybrid algorithm showed better performance 

characteristics than the resource-master and the bartering 

algorithms taken separately. 

The task synchronisatien and mutual exclusien problems are tackled 

on the Balance 8000 system by the provision of semaphores which 

ensure the coordination of the multiple processes actions. The 

* Currently implerrented en the Nepture system 



135 

simplest of these are the lock (also known as spinlock) and 

=t:fnJ/queuinJ. 

To ensure exclusive access to a shared data structure by a single 

processor, a lock with two possible values (locked and unlocked) is 

utilised. A processor wishing to have eXClusive access to a 

particular shared data structure must wait until the lock 

associated with that data becomes unlocked, indicat:fnJ that 00 other 

processor is accessing the data. The processor then locks the lock, 

accesses the data structure, and unlocks the lock. While a 

processor is waiting for a lock to become unlocked, it spins in a 

tight loop, producing no effective work - hence the name of 

spjn1.ock. It is impossible f= two processors to acquire the same 

lock at the same time since the hardware locks provided on the 

Balance system are atomic locks (Le. the actions performed to 

acquire a lock are performed as a single indivisible actien). 

The =t:fnJ/queuing semaph;)res can be very useful in the case when 

several processors are waiting for the same lock, since it is not 

guaranteed that the first requesting processor wa.Jld be the first to 

acquire the lock. The =t:fnJ/queuing can also be used for managing 

several instances of a given resource. 

Semaph;)res can also be used to handle events (an event is something 

that must be awaited f= before a process can proceed) and to raise 

or lower barriers (a barrier is a synchronisation or rendezvous 

point for two or more processes) depending en the program. 

As mentioned before, a critical region is a section of a parallel 

program code forced by the user to be executed by cne processor at a 

time in order to safeguard the integrity of the shared data 



136 

structures manipulated within this segment. The critical region 

starts with a lock operation and ends with an unlock operation. 

Figure 3.4 shows how the lock mechanism is utilized to prevent 

mul tiple processors from executing the same critical region 

simultanEJoosly. It indicates clearly what hawens in the case when 

three processors try simultaneously to execute a critical region. 

All processors attempt to acquire the associated lock immediately, 

but only one succeeds. For our example we assume that PI is the 

successful one; thus P2 and P3 must wait spinlocking while Pl 

executes the protected program cxxle. When Pl releases the lock, P2 

and P3 again attempt to acquire it, and this time P2 wins, P3 must 

wait again. 

Processors 

Legend 
11 attempt to acquire a lock 
o lock acquired 
X lock released 

••••• executing a eR 
----- spin locking 
-_. otherwise 

P31----f1- - - ... - - - ... U- - - ...... - ... ; 1t-~"'''''''''''''_'''>E~0 -----

p~~--fl- - - - - - - -tlo ...... ················ .. )(jli!, ;-...-------------

P '1--...,10 ................ .. }(~------------.;.....-------

TIME 

FIGJRE 3.4: USE OF A WO< IN PROI'ECl'IN3 A CRITICAL REX3ICN 

The system provides up to eight software resources which can be 

exclusively owned by only c:ne processor at a time. These resources 

are declared using the pseuCb-Fortran coostruct: 



137 

$REX;ICN name list 

where the names in the list are FORTRAN-like names. The scope of the 

above statement is the $END ca:JSt:ruct. Two a::nstructs, namely the 

$ENTER and $EXIT have been implemented to respectively claim and 

release a resource. Consequently a critical region can be set as 

sh:>wn below 

$fNI'ER Resource 1 

code 

$EXIT Resource 1 

Actually these two constructs are converted to a lock and unlock 

operation respectively. The same resource can be used to protect 

different but not nested critical regIons, which may also include 

!3Ubro.Jtine calls. Al tlx:>ugh claims f= resources can be nested, the 

user sh:Juld pay considerable attention to this matter so as to avoid 

the possibility of deadlock si tuaticns aris:in;J. 

In both multiprocessing systems, the Neptune and Balance, the 

FORK/JOIN pair of library routine calls are used f= the purpose of 

creating and terminating multiple parallel processes. In fact, 

these two terms were significantly used in the literature to 

describe the process of switching from a s:in;Jle instruction stream 

to multiple instruction streams (fork) and then back again to a 

s:in;Jle stream (join). However, the Balance library routine call to 

a fork) procedure generates a new (child) process which is a 

duplicate copy of an old (parent) process, with the same data, 

register contents and pIogzam CCltIDter. The child process also has 



138 

access to the same opened files and shared memory space as the 

parent. As we have just seen, physically there is no difference 

between the two types of processes, however for some reason it is 

required to establish the parent-child relationship between the 

processes by returning zero (0) to the new forked process and the 

child's process ID to the parent. From this point the parent and 

child are two separate entities that can be performed separately. 

Since it is relatively expensive to initiate new processes on the 

Balance system (about 60 milliseconds per process) it is quite 

normal that the number of fork/join calls should be kept to its 

lowest required value. 'Iherefore, a parallel awlicaticn typically 

generates as many multiple processes as it is likely to need at the 

beginning of the program and does not terminate any of them until 

the complete execution of the whole program. '1hus a process which 

is not needed during certain code sequences, can either wait in a 

busy lcop or relinquish the processor until it is needed. By 

contrast, the cost of this latter operation is between 1 to 2 

milliseccnds • 

Three pairs of pseudo-FORTRAN constructs to generate/terminate 

parallel paths have been implemented. These are the $FORK/$JOIN, 

$DOPAR/$PAREND and $DOALL/$PAREND parallel constructs which are 

explicitly outlined below. 

The first type of construct is used to generate parallel paths with 

different codes. A typical segment of a program using the 

$FORK/$JOIN construct might be: 

-~ 



labell 
labe12 

labeJ,n 

label: 

139 

labell , labe12, ••••• labeJ,n; label 

where each code i, except for codem, must include, as its last 

instructioo, a GOTO statement branch:in;J to label. 

This construct is analogous to a computed FORTRAN GOTO; it 

generates m parallel paths, each starting at the corresponding 

labelled instruction. The GOTO statement included at the end of 

each code segment, except segment m, is used to force all the paths 

to terminate at the label of the $JOIN statement. 

Alternatively to the above construct, the $DOPART/$PAREND can 

generate and terminate paths with identical code. The general 

syntax format of such a coostruct is depicted below: 

$OOPAR label var = expl, exp2, exp3 

label $PAREm 

where var is an integer variable, and expl, exp2 and exp3 are 

integer expressioos (exp3 may be omitted if it is equal to unity). 



140 

This pair of parallel constructs is similar to the FORTRAN 

OO/OONTINUE statement. It creates (exp2-expl)/exp3 identical paths, 

each with a different value of the loop index, var. Thus the 

indexing of the loop allows different paths to evaluate different 

results. The number of generated paths can be as large as the 

highest positive integer that can be represented on the Balance 

(2,147,483,647). 

In order to generate exactly as many identical paths as there are 

processors, each of which is forced to execute cne and only cne path 

the $DOALL has been provided. The format of how to use this 

construct is: 

label 

oode 

label 

This is very useful to initialise data or obtain timing informaticn 

from all the activated processors. The difference between this 

construct and the two previous ones is that there is a unique path 

associated with every ccnfigured and on-line processor. The $PAREND 

statement, as used in $OOPAR and $DOALL, is used to indicate the 

terminate point for all the created paths. 

Despite the fact thst nesting is allowed, one shJuld notice thst the 

local variables of an ancestor path are not available to the 

children paths. However under the current implementation, all the 

index values of the parents, together with the index value of the 

path, are restored prior to the executicn of a path. 



141 

In addition to these parallel constructs, there are three other 

necessary constructs. One of these, $USEPAR, which must be the 

first executable instruction of a parallel program, is used to 

enforce all, but one, processor to wait until more paths are created 

for them to execute. 

The remaining two are the $END and $STOP which are replaced by the 

preprocessor program into FORTRAN statements END and STOP 

respectively. The $END statement is used to force checking at pre

compile time that the nestirg of parallel syntactical CCt1Structs is 

complete within each individual subroutine code. Whereas the 

FORTRAN STOP ensures the graceful termination of the program. 

3.2.1 '!HE USER-1Nl'ERF7\CE TO '!HE NEP'lUNE SYSTEM 

Unlike the Balance 8000 system which provides a powerful user 

interface through the UNIX Operating System and its parallel 

extension versicn DYNIX, the Neptune parallel canputer has seen few 

developments in order to enhance its user interface, the seI -
'System Command Interpreter', mentioned in the previous chapter (see 

Section 2.3.3.2). Several special commands which can CCt1Siderably 

simplify the process of implementirg parallel applications on the 

system have been introduced. They are broadly grouped into two 

classes; the first class is a set of commands related to the 

creation of executable code (= the so-called load module) from the 

user's source program. The second set of commands is related to 

running the load module. 

After the source program has been finalized and fed to the system 

using various SeI commands, in particular the XE- 'eXecute Editor, 



142 

the next stage can begin, invol vi.n:1 the =mpil!nJ and linking of the 

desired source program so as to provide the load module. 

There are several commands which can be used in the process of 

creation, deletion and installation of load modules. The most 

important one used to create load modules from the user's source 

program is the XPFCL* - 'eXecute Parallel Fortran Compile and Link' 

Command which involves the follow!nJ main stages: 

1. pre-process the user's source program by converting all the 

included parallel constructs into their equivalent FORTRAN 

statements, 

2. ccmpile the resultant FORTRAN program, 

3. link the obtained compiled code with available FORTRAN libraries 

and machine code written routines to oc:ntrol parallelism, and 

4. store the created load module in the user's defined program 

file. 

At the end of each one of the above stages, the system outputs a 

progLess report in the fonn of ERROR/NO ERROR message to the user. 

In the case of an e=or occu=ing during any stage, the cu=ent 

command is terminated and an explanatoLy message is output to the 

file associated to that task stage. The file can then be viewed 

us!nJ the SF - 'Srow a File' Command. 

In Figure 3.5, we can see how a source program file, 

M.PARSYS.SOURCE, is 'XPFCLed' to produce the program load module 

named by SEARCH. The output from the pre-processing, =mpilinJ and 

* This has been currently superseded by two more powerful =mmands, 
the 'XPFCLD and XPFCLX commands. 



143 

/ ,/ 

"" 
PARALLEL FORTRAN PROGRAM COMPILE AND LINK 

SOURCE: M.PARSYS.SOURCE 
FMPLlST: .TMP.FL 
COMLlST: .TMP.CL 
LlNKLlST: .TMP.LL 

NAME: SEARCH 

,I 

FIQJRE 3.5: THE SCREEN DISPLAY OF THE XPFa. a::M-WID 

l:inIdnJ stages are written to the follow:irg files: .TMP.FL, .TMP.CL 

arrl .TMP.LL respectively. 

Besides the XPFCL command, which in fact produces a parallel load 

module (i.e. consisting of 2 segments: a segment for the shared 

data and another one for the code and local data), additional 

commands such as the XPFCLS and XPFCLN commands have also been 

introduced. 'l11ese oommands are similar in that they both produce a 

sequential load module but with different characteristics; the 

module produced by the former commarrl would cause the shared data to 

be loaded in the local memory while in the case of the latter 

commarrl it woold be loaded in the shared memmy. As we shall see in 

the following section (3.3), these modules are very useful in 

determin:irg various overhead tlm:irgs of a parallel program. 



144 

other commands related to the compiling/lirlkirYJ phase are, the DFT -

'Delete Parallel Task', the 1FT - Install Parallel Task', the MPF -

'Map Program File', the WAIT - Wait for background task to 

complete', and the KPT - Kill Parallel Task' commands. For the 

first two commands, the system prompts <NlIMES:> and waits for the 

load module name to be typed in. The DPT, as its name suggests, 

deletes a named load module before a new one is installed whether as 

a result of executing the XPFCL command or by using the IPT command. 

This deletion is necessary since it is n::>t possible to overwri te an 

already existing load module. The user can use up to 256 

differently named load modules. 

To recover from a failure in the installation phase of the 

compiling/lirlkirYJ task, due to the already existent installed name, 

the user can still install the load module from the linked output, 

by issuing the IPT command rather than repeating the woole process 

of compiling/linking. In the case that an installed program name 

has been forgotten, the list of all defined names can be viewed by 

using the MPF command. 

The last two of the above listed commands are used to manage the 

parallel tasks running in the background environment; the WAIT 

command causes the SeI to wait until the background task is 

completed, producing a termination report, while the KPT command 

'kills-off' this background run. 

The next phase that logically follows a successful creation of a 

load module is the task of running the resultant module whether to 

deb.lg it or to measure its run-time etc. Whatever the reasons are, 

the user should, prior to the actual program run, assign all the 



145 

InpJt/Outp.Jt channels, :Included in the FORTRAN program, with a file 

or device name by using the command AS - 'Assign Synonym'. 

Alternatively, if direct Input/Outp.Jt communicatien with the user 

terminal is preferred then the units 5 and 6 (used in a FORTRAN READ 

or WRITE statement respectively) should be assigned to the value 

·'ME'. 'Ilrus a program under the above unit assignments would accept 

all the input from the keyboard and outputs all its results to the . 

screen. 

In order to run a load module the XPFl' - 'eXecute Parallel Fortran 

program' is used. As it can be seen in an example of an XPFl' 

session shown in Figure 3.6, the user shOUld specify the required 

processors, the name of the load module, and whether this executicn 

is to be performed en a foregrrund or background basis envircmtent. 

However a background task should not involve any input/output' 

operaticn to the terminal. The state of a backgroond can always be 

inspected since the SCI still remains operaticnal. 

EXECUTE PARALLEL FORTRAN TASK 
PROCESSORS: 0,1,2,3 

TASK NAME OR ID: SEARCH 
FOREGROUND?: YES 

FIQJRE 3.6: XPFI' CXM1AND 



146 

In the Neptune system, processors are numbered 0 th.rcogh 3 and arq 

combination of them can be used to execute a parallel program, as 

long as the initiating processor (i.e. the one 'logged in' on) is 

included in the list. Errors occurrinJ durinJ program executicn as 

well as terminating conditions from each involved processor are 

reported to the user. A listing of the commonly known run-time 

errors is given in [Texas Instruments, VI]. In the case of a 

correct program execution the system reports the followinJ message: 

S'IOP 0 

N:lRMAL P~ CXMPLETICN 

from each processor. Figure 3.7 shows a typical XPFT report of a 

ncn-runninJ p:rogram which was stopped by a 'break key'. 

/ ,-
..... 

REPORT FROM PROCESSOR 0: 

TASK TERMINATED 
TASK TERMINATED BY BREAK KEY 

WP=OE56 PC=OF5E <PC>=0601 ST =D58F 
WORKSPACE REGISTERS 

O· 7 0001 007A 0004 0004 0001 0000 0000 0000 
8 ·15 0768 0000 0000 OFOO 0000 34DA 0844 318F 

REPORT FROM PROCESSOR 1: 

NO REPORT AVAILABLE 

REPORT FROM PROCESSOR 2: 

STOP 0 
NORMAL PROGRAM COMPLETION 

XPFT: PARALLEL EXECUTION COMPLETED 

'/ 

FIQJRE 3.7: A TYPICAL XPFr REPORT FRCM 3 PROCESSORS 



~47 

Sometimes, the same XPFT is performed several times so that an 

average run-time behaviour can be deduced. Therefore, a more 

advanced execution command, the XPFR - 'Repeated' can be utilised. 

Finally, the SOPR - 'Set up OI/'ernight Parallel Run' which allows 

runs to be made at night rather than requiring exclusive access to 

the woole system during program timing, has also been provided. A 

user may during one log-in session, set up to ten overnight jobs, 

each consisting of a certain number of executions of the same 

program with the same data on various processor combinations. Then, 

the system enters every run in an XOB - 'eXecute OI/'ernight Batch 

queue' which will be served on the first-in-first-out basis with a 

maximum allowed processing time of 120 minutes per job. The user 

has limited access to the XOB queue, which can only be viewed by 

using the XOBQ command. However, job entries which are no longer 

desired can still be removed from the queue using the XOBD - 'XOB 

Delete' command. 

3.2.2 PARALLEL CXNl'ROL SOIEME IN '!lIE NEP'lUNE SYSTEM 

A scheduling procedure that implements the parallel path execution 

scheme for XPFCL was originally developed by Dr H Barlow. The 

scheduler algorithm is based on the utilisation of a shared array of 

up to 75 path descriptor blocks*, mutually protected throogh shared 

resource number 9. Each path descriptor block contains the 

following information: 

starting address of this path 

address of the parent path descriptor block 

* The so-called TCB's - 'Task Cbntrol Blocks' 



148 

- variable index address (for a DOPAR c:c:nstruct) 

- =t value of the index value 

- processor id, scheduled to execute this path (0 if any), and 

count of active children paths. 

The routine INIT, derived from $USEPAR c:c:nstruct, initialises every 

path descriptor block as empty and then sets up a single block 

describing the first sequential segment that starts the program. 

All the processors but one try to get a path to execute by calling 

the scheduler program. In the case when there are no paths to 

execute, the inquiring processor is forced to wait by entering an 

idle loop within the scheduler itself before having an::>ther go. The 

wait cycle time is 10 ms). 

When a processor executes a FORK subroutine, kInwn to the parallel 

programmer by its equivalent parallel constructs (i.e. $DOPAR, 

$DOALL or $FORK), the a=ay is searched for as many empty blocks as 

the number of paths to create. If the search is successful, then 

for each created task, a path descriptor block is entered in the 

array, otherwise the error message is reported and the calling 

processor enters an idle loop before re-scanning the a=ay until 

sufficient anpty blocks are found. 

For the $DOALL construct, a path descriptor block is created for 

each activated processor. As a consequence of the one-to-one 

relatiooship between processors and paths each processor id is set 

on one of the selected blocks. 

On the other hand, the $DOPAR creates a block for each index value 

of the CXJl1Struct variable and sets this value in the created block. 

Conceptually, any processor may choose anyone of the DOPAR path 

-----, 



149 

blocks, oowever, since the array is scanned in some orderly fashion, 

the index values are cOClsen in the same order as for the sequential 

OO-locp. When tak:inJ a OOPAR path to execute the index variable is 

set to the index value held on the block, therefore this variable 

must be in private memory otherwise several processors would try to 

set the same location. 

Logically, $DOPAR should be allowed to be used in any nested 

structure of unlimited levels. However, due to the complexity of 

the introduced problem, namely the parent path index variable may 

not hold the same value as that of the parent of the current path, 

the nesting levels were limited to only four. More specifically, 

consider an example of a progLam, such as the ale shown below, using 

nested $OOPAR construct: 

$OOPAR 100 1=1,3 

$OOPAR 200 J=1,3 

$OOPAR 300 K=1,2 

WRITE (6,10) 1,J,K 

300 $PAREND 

200 $PAREND 

100 $PAREND 

Obviously, this is rot an efficient parallel program since the WRITE 

instructions which may be issued in parallel are, in fact, performed 

sequentially after being queued on the spooling device. When a 

processor get a new path from the K-$OOPAR (after possibly executing 

another one of the same type), the 1 and J values left from the 



150 

previous path executioo might =t be the same as that of the parent 

of the taken paths. This is a result of the fact that a processor 

selects a path from the available $OOPAR created paths irrespective 

of the previous executed one on that processor. The solution to 

this problem is to get all the index variable values of the parents 

by backtracking the array structure and copy them in the local 

memory before the actual path execution. This solution has a 

significant disadvantage sin::e the time to set up the parent index 

values for each executed path is proportional to the depth of the 

nested structure. Fortunately, nested $OOPAR's are so rarely found 

in parallel programs that the overheads of setting up the parent 

values are almost negligible. 

As indicated earlier, parallel processes are terminated by a CALL to 

the JOIN routine, obtained from pre-processing the $PAREND/$JOIN 

constructs. When called, the JOIN routine decreases the count of 

active children by 009, if the COLn'lt is zero, indicating that there 

are IX) outstanding paths to execute, then the parent path descriptor 

block is released by setting it empty and the caller can (if 

allowed) execute any path following the JOIN coostruct. 

Finally, all the operatioos that modify the centents of the shared 

array are made within a critical region, governed by the same 

resource (resource nine). The benefit gained from such an 

organisation is that the TIMOUT routine will return the number of 

accesses and wait cycles involved in the scheduling centrel, as well 

as any other additional used resource in the p:rogram. 

When the XPFCL path execution scheme was used to run parallel 

programs, its deficiencies were slowly identified. The problems 

enCOLn'ltered are the following: 



151 

1. The limit of 75 path descriptor blocks was found too low. Even 

though it has been seen that the most efficient parallel 

programs tend to utilise a much smaller number of paths, it is, 

sometimes, quite useful to be able to measure the actual 

performance degradatioo as more paths are created. Thus, very 

often, the limit is far exceeded: 

2. The structurin;1 of the path descriptor blocks as an array rather 

than a list, increased the parallel path schedulin;1 overhead by 

a term quadratic in the number of created paths. This is so, 

since the empty blcks are unnecessarily scanned when searchin;J 

for a new path to execute. A queue organisatioo of two separate 

lists would significantly reduce this effect; 

3. The critical resource routines $ENTER/$EXIT are based on the 

hardware indivisible test-and-set instruction which locks out 

the shared memory during the execution of the critical region 

code. Ca1sequently the memory would be locked for a longer time 

than any other instruction and this has' resulted in the 

occurrence of several memory time-out faults. A combined 

resource sharing algorithm, developed in the Department of 

Computer Studies, has successfully eliminated these memory 

faults but at the expense of an increased executioo time; 

4. It is rot necessary to utilise a block for each $DOPAR path. If 

a sin;1le block is utilised to describe a set of $DOPAR,parallel 

paths, the block management operaticns would be simplified and 

thus reduce the parallel path schedulin;1 overhead. 

The suggested new facilities to solve the problems introduced by the 

XPFCL were finally implemented to give rise to a new versioo, called 



152 

XPFCLD. Considerable care was taken so as to ensure that n:Jne of the 

incorporated changes would affect the behaviour of existing parallel 

programs, but would obviously decrease the actual timing obtained 

when running parallel programs compiled with the new XPFCLD command. 

In the new scheme implementation program, the path descriptor blocks 

are organised into two separate linked lists of up to 60 blocks, as 

compared to 75 in the XPFCL, a free list ccntain:ing empty blocks and 

an active list to hold blocks describing active parallel paths. 

'Ihus the creation/termination of parallel paths basically involves 2 

elementary operations, the insertion/deletion operations. The 

length of a path descriptor block was extended to 20 bytes, instead 

of 12 bytes for XPFCL, thus allowing additional information to be 

stored. The complete list of all the informaticn cx:ntained in the 

new TCB is the followin]: 

- pointer to the next block in the list (-1 if end of list) 

- pointer to the parent block 

- type of the block (DOPAR, DOALL, JOIN and arpty) 

- starting address of the path 

- index variable value of the parent block (if DOPAR) 

- the id of the processor that sets-up the parallel paths 

- index variable address 

- current index variable value 

- index end value, and 

- index increment value 

where the last four parameters which are specific for a $DOPAR 

construct, can be used as flags in the case of a DOALL ccnstruct. 



153 

When a CALL FORK is executed, a block is taken from the head of the 

empty list (sometimes the current empty, but IDt released, block can 

be re-utilised instead) and initialised accordingly to the actual 

parameters, the processor number, and the current index value of the 

parent path. The processor then enters the normal scheduling 

routine, ~ the list of active blocks for cne with outstanding 

work. This will be either a DOALL with this processor yet to run 

it, a JOIN block to be executed or a OOPAR with outstanding paths. 

In the case of a DOPAR, the next index value is computed (i.e. 

current value + .increment value) and then set into the local memory; 

if this is the last path that has just been completed, the $DOPAR 

block is set as an empty block and the nested $DOPAR index values 

are set in the same way as in the XPFCL case. 

The JOIN operation is even more complex than that of a DOPAR 

construct. When a path terminates, the count of active paths is 

decremented by one; if it is zero, and the block is an empty one 

then all the paths described in this block are completed and the 

block is turned into a JOIN block. This block is similar to a 

$OOI\LL block in the sense that it is executed by cne processor (i.e. 

the cne that executed the original FORK). 

A similar fate befalls a $DOALL, when all the processors have 

completed their paths, the block is released (Le. inserted in the 

empty list) ooly if it is of the type JOIN. It is these JOIN blocks 

that are simply re-utilised when a CALL FORK occurs, as the only 

information required for such a block is the address of the parent 

path and the id of the executing processor. 



154 

These rather complex rules ensure that the number of block 

operations (link and delink operations) are kept to the optimum 

possible value. Indeed, for a program without nested parallel 

constructs, such as the example shown below, only one scheduling 

block is utilised throughout the program, involving only one link 

operaticn. 

$USEPAR 

$DOlILL 100 

100 $PAREND 

$DOPAR 200 IP = IS, lE 

200 $PAREND 

$DOlILL 300 

300 $PAREND 

The utilisation of a single block for each DOPAR, has enabled the 

maximum number of parallel paths to be limited by the word length* 

rather than by the scheduling workspace size. Performance 

measurements showed that although the path block set-up time is 

about the same as for XPFCL, the new version has considerable low 

parallel path overhead. 

* It is 15 bits+1 sign bit, i.e. 215_1 = 32767 possible parallel 
paths per OOPAR block 



155 

Finally, to keep up with the development in the Neptune system, a 

new XPFCLX command has been implemented. It is very similar to the 

XPFCLD one, but with the significant advantage of extending the 

nesting levels of the XPFCL/XPFCLD commands from foor to a hundred 

for $FORK and unlimited nesting for $OOPAR/$IlOM.L. 

3.3 l'ERFORM1\K.:E CllARI\Cl'ElUSTCS MElISUREl-IENl' OF PARALLE[. AIaJRI'HIMS 

The major resources on which the performance of a sequential 

algorithm is measured are the time required to execute the 

corresponding program and the memory space needed for such an 

execution. Each of these measurements can be analytically expressed 

by a customarily defined complexity (or cost) functien~(n), where n 

represents the size of the ccnsidered problem. Accordingly, cne may 

speak of either the time CXAUplexity or the space-alII1plexity functien 

or refer to either of them as simply a complexity function. With 

respect to the hardware characteristics of the computer system, used 

to execute the selected algorithm, the time-complexity function 

directly depends en a third performance measure: the computationa1-

complexity function. Such a function can be used to find out 

estimates of the power required to solve a given problem, being 

measured by the rrumber of arithmetic and logic cperaticns involved. 

A further clarification in general, is that in particular for the 

analysis of the computationa1-complexity of algorithms, it would be 

. convenient to establish two further branches: the algebraic and 

analytic-<XJmplexity measures. The study of the former measure may 

answer several important problems such as: 

1. the number of arithmetic operations used in a particular 

algorithm 



156 

2. the number of arithmetic operations required to solve a specific 

problem, and 

3. the best way to solve a given algorithm in tenns of the number 

of arithmetic operations. 

en the other hand, the latter measure addresses the questien of how 

much computatien has to be performed before obtaining a final result 

with a desired degree of accuracy, and focuses on computational 

processes which in a certain sense never end. 

Seeking an analogy to the above major resources for the parallel 

algorithms' performance analysis, one can immediately notice that 

time still remains the main resource for parallel processing. 

However, unlike the sequential case, the time-complexity of a 

parallel algorithm depends not only on the complexity of the 

computation, but also on the complexity of the overheads, such as 

th:lse created from communicatien, synchrcn!satien and data exchanges 

constraints • 

More specifically, in this paragraph, by viewin;J the performance as 

the interaction of resources demanded by a parallel program and 

provided by a multiprocessor system a performance prediction 

framework is provided for parallel algorithms specifically 

implemented en such a system. The principle behind the 'demand and 

supply' analysis of resources is that parallel processin;J involves 

the sharing of resources whose limited availability forces· 

processes' demands to compete against each other in order to 'own' 

them. As a result of this competition or contention we have the 

three followin;J consequences: 



157 

1. the upper limit to the number of demands that can be satisfied 

degrades the maximum system or program performance, 

2. the schedulinJ mechanism, used to solve aIr:I oonflictinJ demands, 

imposes an overhead en resource utilisatien even in the absence 

of contentien, and 

3. in the case that the number of resource requests far exceeding 

the maximum theoretical limit, some of the competing demands 

will have to wait for the specific resource until it becomes 

available. 

The last two performance degrading factors are refe=ed to 

respectively by the static and dynamic costs of a shared resource 

access. 

Consequently, by analysing these system properties (i.e. resources 

availability and allocation algorithm) under various theoretical 

demand patterns and by characterisinJ program demands, CXl9 can yield 

the performance of a particular algorithm on a particular item of 

hardware. 'Ihis analysis will be exemplified by a brief analysis of 

the shared resources provided by the Neptune parallel processor 

system. 

Let us consider further the two alternative overall performance 

measures for a parallel algorithm. In particular, the study of 

parallel algorithms f= different types of parallel machines might 

reveal that an algorithm requires a particular feature of the given 

computer to run at maximum efficiency. Also such a study may address 

several important questions such as how efficient is an algorithm 

with respect to a particular computer and how much faster it is than 

the sequential version or, in fact, any other parallel algorithm 

that solves the same problem. In order to answer these questions 



158 

objectively, two performance measurements that reflect respectively 

the differing, algorithm and system designer, aspects have been 

defined, these are the speed-up ratio and efficiency of the 

algorithn. 

Let Tp be the time-complexity of a parallel algorithm on a p

processor computer and Tl the time-complexity of the same algorithm 

00. a uniprocessor system. Then the speed-up (Sp) of the algorithm 

on a p-processor parallel computer over a sequential processor is 

defined as: 

T1 
Sp=-":;p 

Tp 

and the efficiency (~) is defined as: 

In order to achieve meaningful comparisoo. between the performance of 

many different algorithms, the best parallel algorithm is compared 

with the best sequential oo.e, even though the two algorithms might 

be quite different, however they sha.lld solve the same problem. 

Stone [stone 1973] introduced some typical speed-up ratios and 

indicated that the best speed-up ratio is linear in p, where p is 

the number of simultanea.Isly active processors. Such a speed-up is 

achievable with some problems that exhibit a natural iterative 

structure; for example systems of linear equaticns and many other 

vector and matrix applicaticns. In some cases, problems have speed

up ratios of P/log P, where log is a logarithm to the base of 2. 

These performance results are less desirable, however such 



159 

algorithms are still well suitable for parallel processing. On the 

other hand, algorithms with speed-up ratio of log P, exhibit very 

little speed increase when the number of processors is doubled. 

Such an algorithm is not suitable for parallel processing and it may 

be better to run it en a serial computer or en a oomputer with less 

parallelism. 

In the following sections, we shall discuss, more analytically, some 

of the inherent limitations on the performance of a p-processor 

computer system due to some types of overheads associated with the 

mul tipr=essor executien rut not with that en a unipr=essor system. 

(' ObViously, it is apparent that a multiprocessing system with p 

identical processors cannot complete a parallel program more than p 

times faster than a single processor. Therefore the speed-up factor 

of a parallel algorithm performed en a particular parallel system is 

limited· by the number and power of the processing elements. It is 

also limited by other factors introduced by the communication, 

synchranisatien and data exc:hanJe ~ all the pr=essors. Also 

the fact that a job is subdivided into p (or possibly more) 

individual subtasks causes an additional overhead explicitly 

associated with a multiprocessor system. 'Ibis task parti ticning may 

give rise to three possible types of overheads: 

1. In the event of less than p subtasks remaining to be executed 

while there are p processors available, then some of these 

processors must be kept idle until the completion of all the 

subtasks. This idle time can be estimated (if the processors' 

speed is known) by analysing the computational-complexity and 

the number of subtasks 



160 

2. When a subtask generates results required as input to another 

subtask a mechanism is necessa:ry to ensure the proper sequenc~ 

of subtasks. This creates an overhead known as organisationa1 

overhead. Thus, in this case, the latter subtask has to wait 

until the formal subtask prodllceS the results 

3. In the case that the shared database is simultaneously 

accessible by a lesser number of processors than the system 

comprises, then an overhead is incurred. Such an overhead is 

associated with cI1eck:in:l'the number of simultaneous accesses not 

to exceed the fixed limit. Coosequently, the processor's time 

is wasted while wai~ to gain access. 

Summaris~, two types of overheads can be di~shed, tIx>se due 

to the design of hardware and software and those due to the 

interference between two or more subtasks running on different 

processors, causing one or more of them to wait. The former one 

includes the overheads from the subdivisien of the task, allocaticn 

of the subtasks to processors, contention control by hardware and 

software. These are all called static overl1eads since, once the 

number of prccessors, the metlxlds of communicatien, synchrcnisaticn 

and task allocaticn, for the algorithm to be processed are decided, 

then the number of subtasks, synchronisation and shared data 

accesses are all properties of the algorithm itself. The second 

source of overheads ccncerns the so-called dynamic overheads which 

depend not only on the algorithm, but also on the detailed timing 

consideratioos which may vary even if the same task is executed on 

the same piece of hardware en coosecutive runs. 

From the measurements point of view, the static overheads can be 

determined. In partlcuar, if subtasks are created and allocated at 

run-time, then the static cost is obtained by multiply~ the total 



161 

number of subtasks by the cost of executing the appropriate 

instructions al a single pr=essor. Similarly, by koowing the cost 

of one access or synchronisation, the relative overhead is 

estimated. Unfortunately, the same reasc:ning canrx>t be applied to 

the dynamic overheads. Instead, a statistical estimate can be made 

depending on the occurrence and duration of events (subtask 

creatial, resource demands, synchrcnisatial). 

Finally, and despite the requirement of an exact pattern for the 

shared resource demands to determine in detail the waiting times, it 

is possible to estimate the bounds on the maximum number of 

pr=essors, that can be utilised efficiently al an algorithm, from 

the average utilisatial figures for each resource and for each task. 

'l1rus, since different hardware and software give rise to different 

static overheads, therefore, by knowing the specific costs 

associated with a particular multiprocessing system, parallel 

algori thms may be accordingly designed so as to minimise these 

costs. 

In the remainder of this paragraph, we shall discuss the actual 

overheads observed al the two multipr=essor systems, the NEPI'UNE 

and BALANCE 8000, available at Loughborough University of 

Technology. The ability of these systems to provide resources 

statically (Le. when requests for resources do not contend with 

each other) were measured by the software supporting the parallel 

systems. These measurements are.reported in the table overleaf 

(Table 3.1). 

From these initial performance measurements, we notice that the 

Balance 8000 is a considerably faster system than the Neptune 

parallel computer. Comparing the average time to execute an 



162 

computer system 
NEPTUNE BALANCE 

Actual measurements -
~y access time 

* Local 0.95 0.73 

* Shared 1.69 0.93 

Overhead timings ! no ~QDt~ntiQD ) 

* Enter & exit a critical region 800.0 11.9 

* create a set of parallel paths 1300.0 290.0 

* set up and terminate a path 900.0 225.6 

* waiting for a critical resource 1080.0 100.0 

* waiting for a path to execute 10800.0 1000.0 

Fortran inte2er instruction timing!! 

* Do loop cycle overhead 12.9 4.0 

* Assignment ( i-j ) 5.7 1.5 

* Additiion ( i-j+k ) 14.9 2.8 

* Substraction ( i-j-k ) 14.9 2.2 

* Multiplication ( i-j*k ) 16.10 10.3 

* Division ( i-j/k ) 20.9 14.8 

* Test ( IF(Leq.j) ) 8.0 3.8 

Fortran real intruction timings 

* Assignment ( i-j ) 13.0 3.3 

* Addi tiion ( i-j+k ) 643.0 11. 7 

* Substraction ( i-j-k ) 658.0 11. 7 

* Multiplication ( i-j*k ) 1111. 0 13.7 

• Division ( i-j/k ) 625.0 11.5 

* Test ( IF( Leq. j) ) 580.0 7.0 

TABLE 3.1: ACTUAL PARALLEL SYSTEM PERFORMANCE MEASUREMENTS 



163 

arithmetic operation between the two systems, it is found that 

integer arithmetic is about 10 times faster and floating point 

arithmetic is approximately lOO times faster. 

In general terms, when measuring a program performance by analysing 

the source code a programmer, in the case of the Balance system, is 

required to know exactly what object code will be produced by the . 

compiler in each separate case. Since the system performs some 

compile time optimizations which cannot be avoided or switched off, 

some performance results may rot appear reasooable. Sea::n:lly, the 

use of cache memory on each processor has a marked effect on tim:lngs 

since it is difficult to predict when the cache memory will be used 

efficiently (a classic example of this situaticn is when a program 

loop demands more space than the cache - it then runs far slower 

than a very slightly sOOrter program). 

For both parallel processor systems, specifically for the 

performance measurement of the three parallel resources aspects 

mentioned earlier, two subroutines are available for obtaining 

timing information. The routines should be embedded within a 

$IlOALL/$PAREND pair of parallel <XXlStructs to force each processor 

to execute them. Thus, to start or restart timing we sOOuld perform: 

CALL TIMEST 

and to obtain the current timing informaticn we use: 

CALL TIIDJ'l' (ITIME) 

where ITIME must be declared as a shared a=ay of size 144 rather 

than cne hundred on the Neptune (to cope with the increased number 



164 

of processors). The timing block information, for each involved 

processor, returned by the TIMCXJr rootine has the fOllowing format: 

1 Clocked time (seconds) 

2 Clocked time (milliseconds) 

3 Elapsed time (seconds) 

4 Elapsed time (milliseconds) 

5 Total number of executed paths by this processor 

6 NlDnber of cycles waiting for a path to execute 

7 NlDnber of accesses to the systan scheduler resource 

8 NlDnber of wait cycles for systan scheduler resource 

9 NlDnber of accesses to user resource (critical section) number 1 

10 NlDnber of wait cycles to user resource rrumber 1 

Repeat points 9 and 10 for user resources 2 to 8 

23 NlDnber of accesses to resource rrumber 9 

. 24 NlDnber of wait cycles to resource rrumber 9. 

Such an important information, if used in conjunction with the 

actual system performance measurements as given in Table 3.1, sh::W.d 

enable the user to obtain valuable estimates about the oost of each 

of the three necessary operations required for parallel processing 

(Le. parallel control, data communication and process 

synchronisation). For example, the static oost of parallel control 

can be estimated as the product of the rrumber of executed paths and 

the cost of scheduling. Similarly, the idle processor time which 

represents the time spent by a processor while waiting for paths to 

be created, can also be estimated as the number of wait cycles by 

the elementary waiting time. 

On the other hand, the creation of parallel paths and their 

allocation to processors is a dynamic process which is achieved only 



165 

through a shared list mutually protected by resource number 9. 

Table 3.1 sOOws the average time this resource is blocked to other 

processors, while the dynamic loss of performance due to this 

resource ccntention can be estimated 

From the data comunication point of view, the shared data static 

cost for each parallel system, arising out of the hardware 

mul tiplexi.ng of more than cne processor into a sinJle memory block, 

is also given. The static overhead to access shared memory, which is 

widely recognised to be a function of the number of contending 

prooessors and the temporal pattern of access, is increased by the 

contention level. However, these degradation costs are 

significantly smaller than th:lse arising from mutual exclusion since 

accesses to the shared memory are such that they are normally more 

regular than anticipated. 

The routines ensuring mutual exclusion to shared data structures, 

COlUlt the number of times each processor accesses each distinct user 

defined resource; ccnsequently, the static cost of mutual exclusion 

is the product of that number with the unit cost of the mutual 

exclusion mechanism given in Table 3.1. Also, these routines can 

estimate the waiting time, due to the contention for each one of 

these resources from each processor. 

In ccnclusion, we must clarify a significant factor ccntributinJ to 

the performance, related to the limited availability of the shared 

resources on a multiprocessor system. In particular, if the 

resource availability equals the total demand rate, then saturation 

has occurred and no more speed-up can be achieved through 

utilization of more processors. In other terms, this means that the 

maximum number of processors, which can be effectively utilised in a 



166 

parallel program, is limited independently by each shared resource 

ac=rd.irg to: 

Maximum processors = l/(demand rate * unit access time) 

Therefore, the mean demand rate to a resource is an important 

measure of the best overall performance achievable, since it can 

also determine, together with the access mechanism prq;>erties of the 

system, any losses in the performance arising from processes sharing 

resources. 

The study of parallel algorithms which is widely covered in the 

literature, has been found to be a fascinating and challenging 

research topic by m~ny computer scientists. In fact, parallel 

algorithms have been studied Since the early 1960's, even though 

there were no parallel computers built at that time. Gradually 

interest in these algorthms has increased by the emergence of large

scale parallel computers such as the DAP, ILLIAC, CRAY and CYBER. 

Since then a large variety of algorithms have been designed based en 

different points of view and for various different parallel computer 

arch! tectures. 

In the design of parallel algorithms, the particular characteristic 

features of the computer en which the algorithm is to be implemented 

sh:lu1d be thoroughly ccnsidered. It is obvious that different types 

of computer architectures, such as those described in the two 

previous chapters, execute different types of parallel algorithms. 

However it is sometimes possible for an algorithm to be implemented 



167 

on more than one type of computer by applying appropriate 

modificatioos to the algori thIn. 

In stone [1973] some of the problem issues as related to parallel 

algorithms are highlighted. 'nlese include the requirement of data 

management in memory for efficient parallel computation, the 

recognition that efficient sequential algorithms are rot necessarily 

efficient on parallel computers, and conversely, that sometimes 

inefficient sequential algorithms could lead to very efficient 

parallel algorithms and lastly the possibility of transforming a 

given sequential algorithm to yield new algorithms suitable for 

parallel processing. 

Kung [Kung 1980] proposed a conceptual taxonomy for parallel 

algorithms based on three orthogonal dimensions of the space of 

parallel algorithms: COIlClllTeIlCY control., module granularity and 

communication geometry. 'l11e requirement for ccncurren::y cxntrol in 

parallel algorithms is to ensure the oonecbJeSS of the OClI"lCI.IIrent 

execution since more than one process may be executing at a given 

time. The module granul.arity measures the maximum amount of 

computation that a typical. process can perform before having to 

oommunicate with other processes. This can also be used to reflect 

whether or not a parallel. algorithm tends to be communication 

intensive. In partlcul.ar, if the modul.e grarrul.arity is very small., 

the processes spend most of their time recei~ and sending data. 

The communication geometry represents the communication network 

oc:onecting the different processes in a more efficient manner. 

In the following sections, we shall present a brief discussion of 

parallelalgori thm design techniques for several parallel. oomputers 

as discussed in Chapters 1 and 2, focussing more en t:rose techniques 



168 

specially formulated for the design of efficient parallel 

algorithms for MIMD and SIMD computers. Many illustrative examples 

are also provided in order to emphasize the main characteristics of 

the used technique. 

For the dataflow systems which have been the subject of a great deal 

of research activity since the late 1960's, programming is organised 

so that the control sequencing of the statements for execution is 

governed by the availability of the operand values. More 

schematically, machine instructions are linked into a network so 

that the result of each executed instruction is automatically fed 

into appropriate inputs for other instructions. Considerable 

parallelism is possible with the dataflow ~ Since 00 side 

effects can occur as a result of instruction execution, many 

statements can be active simultaneously. Furthermore, if the 

underlying architecture can support this principle, all program 

statements wOOse inpJt values have been previOUSly comp.!ted can be 

executed (X)f1ClJXr9I1tly. 

Altlx:lugh dataflow ocncepts are very attractive for proITiding such a 

highly parallel processing model, to date there have been few 

dataflow machines bJil t. 'lhis 00es oot mean that this approach is a 

failure but on the contrary, it shows that more efforts are still 

required in dealing with the main problems that confront the 

dataflow archi tectures. For instance, to fully exploit the 

concurrency it is desirable to deSign new languages that could 

modify a simple program and cx:rlV9rt it almost into a form suitable 

for dataflow processing. It might also be usefUl to develop new 

algorithms that take advantage of cxn::urrent computation. 



169 

As an example, let us consider the execution of the program fragment 

(a = (b+c)*(b-c» on a typical data flow computer. The exact 

sequence of this execution is illustrated in Figure 3.8 where a 

block dot on an arc indicates the presence of a data token for the 

correspcnling rode. Assume that duriIY] some cx:xnputaticn stages, the 

values of the variables b and c, indicated by two black dots in 

. Figure 3.8a, have been generated. Since each data token is required 

by two different oodes, the next step (see Figure 3.8b) corresponds 

to the duplication of each generated token. As a result of the 

availability of the two pairs of inpJt tokens, tofu the addition and 

subtraction oodes are enabled to fire (= execute). The coocurrent 

execution of these two oodes means that each rode ccnsumes its inpJt 

tokens, performs the specified operation and then releases the 

resultant token onto the output arc. Finally, the multiplication 

node is enabled, as indicated in Figure 3.8c, and its subsequent 

execution produoes the result token correspcl'ldin;J to the value of a 

(see Figure 3.8d). 

In a pipeline cx:xnputer, a sequence of identical ~ations is queued 

up and treated in an assembly line fashion. It is obvious to see 

that the striIY] of ~aticns must be independent and the l~ the 

sequence, the greater the efficiency is. For these reasons a good 

pipeline algorithm is, generally speaking, a good SIMD algorithm and 

vice versa. 

One of the most striking arch! tectural features of the pipeline 

hardware has been its successful ability of handling arithmetic 

operations. Papers, such as those presented by Chen [Chen 1975], 

and Ramamcorthy and Li [Ramamcorthy 1977] discussed many pipeline 

algorithms f= floatinJ-point addition, multiplicaticn, division and 

square-root calculaticns. For these algorithms, the various stages 



+ (a) + 

* * 

+ 
(c) + 

* * 

FIGURE 3.8: A DATAFLOW EXECUTION OF THE EXPRESSION 
a = (b+c)*(b-c) 

170 

(b) 

(d) 



171 

of the pipe are linearly connected, although additional feedback 

links may sometimes be present. For instance, the CRAY-1 uses six

stage floating-point adders and seven-stage floating-point 

mul tipliers, and the COC STAR-lOO uses four-stage floating-point 

adders. For a pipeline floating-point adder, the pipe typically 

consists of stages for performing exponent alignment, fraction 

shift, fracticn additicn, and oormalizaticn. A pipeline arithmetic 

un! t can be viewed as a set of linearly ccnnected processors, each 

of which is capable of performing a specific cperaticn. 

One of the ideal situations where the pipeline approach could be 

most efficient is when the same sequence of operations is invoked 

very frequently so that the start-up time to initialise and fill the 

pipe becomes relatively negligible. This is the case when the 

machine is processing lcng vectors. Thus cne of the major concerns 

in using the pipeline oomp..!ters such as the CRAY-1 and the STAR-lOO 

is the average length of the vectors to be processed. For integer 

arithmetic, bits in the input operands and carries generated by 

add! ticn are often pipelined. 

As an example, let us follow the example of a pipel.ine digit adder 

using a linear array which is described in [Chen 1975]. Suppose 

that we are required to add two integer vectors (Ui) and (Vi) and 

that each element is a k-digit integer (Le. Ui = ui1 ui2 ... uik and 

Vi = Vu vi2 ••• vik). In Figure 3.9, where the Uij and Vij fl.ow 

towards the processing units synchrax:usly, we illustrate row the 

pipeline digit adder works for k=4. 

At each cycle, each processor sums the three digits a=iving from 

the three input lines and then outputs the sum and the carry at the 

output l.ines. It is easy to check, from the figure shown below, 



172 

that when the pair (Uij' Vij) reaches a processor, the carry needed 

to produce the correct jth digit in the result of Ui+Vi , will also 

reach the same processor. Calsequently, the pipelined adder is able 

to compute cne element sum of Ui+Vi every cycle in the steady state. 

U;;1 

V~1 

V:i.2 

FIGURE 3.9: A PIPELINE DIGIT ADDER 



173 

As mentiooed earlier, a good pipeline algorithm is also a good SIMD 

algorithm, and vice versa. For the SIMD parallel CXJIIlputers a wide 

selectien of algorithms was designed and studied in the literature 

(see for example the papers [Miranker 1971], [Stcne 1971], [Heller 

1978] and [Wyllie 1979]). 'Ihe latter reference 00\IerS mainly rxn

numerical problems applied to various data structures, such as the 

counting of the number of elements in a linked list and the 

insertion and deletion of element(s) from a given linked list. 

Arxlther widely investigated rxn-numerical problem is sorting. In 

particular, Baudet and Stevenson [Baudet 1978] considered the 

implementation of sorting algorithms on SIMD computers using a 

generalised odd-even transposition. Nassimi and Sahni [Nassimi 

1979] also presented an O(n) algorithm to sort n2 elements en an rum 

mesh-c:cnnected parallel CXJIIlputer and TOOmas and KurYJ [TOOmas 1977] 

developed a sorting algorithm to sort n2 elements on an nxn mesh

connected processor array that requires only O(n) routing and 

CXJIIlpariscn steps. 

Let us consider, once again, the problem of adding two n-vectors 

wh::>se solutien was previously developed for a pipeline digit adder. 

This algorithm is also suitable for an SIMD computer without 

ccnsidering the binary representatien of the elements. Thus, it is 

clear that a computer with n processors takes exactly one step to 

CXJIIlpute the vector sum of (Ui)+(Vi ), where each element is evaluated 

en a processor. The algorithm is extendable to the additien of two 

(rnxn) matrices A and B to produce the matrix C where: 

Cij = aij + bij for i = 1,2, •.. , n 

forj = 1,2, ... , m. 



174 

A computer with mxn sync::hrc:;raJs processors would surely compute this 

sum in one step. 

Several powerful meth:lds for desi~ parallel algorithms for SIMD 

computers were suggested in the literature. For instance, Tang and 

Lee [Tang 1984] designed many algorithms based upcn the divide-and

conquer strategy which is based en partitic:nl.ng a given problem into 

a certain number of subproblems of less complexity than the original 

one and only when all these subproblems are individually solved, 

perhaps in parallel, then their partial solutioos are combined into 

the final solutien of the initial problem. As an example, consider 

the problem of finding the maximum of n numbers. We first parti tien 

our initial set S(n) into (let us say) k subsets, each containing 

fnlkl elements, so that we end up with k subproblems. The solutien 

of each subproblem Si yields the maximum Mi , i =1,2, ••• , k. The 

final step is a merging step, where the maximum M is selected cut of 

the k 'submaximums'. 

l\rx)ther powerful method, based en problem deoomposi tic:n and used to 

generate parallel algorithms for SIMD computers is the so called 

recursive-doubling strategy. Basically, such an approach consists of 

splitting up the original computation into independent smaller 

computaticns of equal complexity which can be processed in parallel 

en separate processors. As an example, ocnsider the problem given 

below: 

1'10 = al oa2 0 ~ 0 ••• 0 80, 

where 0 is an associative operaticn. In Figure 3.10 we illustrate 

row this method wOl:ks en this particular example. At each level the 

operations are identical and independent, therefore they can be 



175 

executed simultaneously. It is obvious that a system with r~l 
2 

syrx::hrc:>ralS processors woold perform this sum in r log2!1' steps. 

I 
I 

A 

, 

, , , , 
--------------------

I 
I 
I 
I 

I 

------
a n-3 

FI~ 3.10: ASSOCIATIVE FlIN-IN MB'IHD 'ID E.Vl\LUATE EXPRESSICN A 

This algorithm is also known as the associative fan-in algorithm 

[Heller 1978] and also under the names log-sum and log-product 

algorithms with the operators + and * respectively. Besides the 

Simplicity of the associative fan-in algorithms, it was shown that 

they are cptimal in the sense that they achieve minimal oomputaticn 

time for any number of processors used. 

For the past two decades, parallel algorithms for the matrix 

manipulatioos en SIMD comp,lters have received ooosiderable research 

interest. Muraoka and Kuck [Muraoka 1973] investigated the 

valuaticn of a oomformable sequence of matrix products AI' Az, ••• , 



176 

An, where the dimensions of Ai are either lxN, NxN or Nxl using 

unlimited parallelism power. Hockney and Jessh::lpe [Hockney 1981] 

suggested three ways of matrix mul tiplicaticn. '!he first method, IPM 

- 'The Inner Product Method', which is an extension of the inner 

product algorithm, requires n2 <rlog~l+l) steps usin;J n prooessors 

since it consists of n2 inner-products. The second method, MPM -

'the Middle Product Method',· computes the inner-product over all the 

elements of a column of C in parallel. Using n processors, this 

method completes in 2n2 steps. The third method, OPM - 'the Outer 

Product Method' which computes the inner-product over all the 

elements of the array result in parallel requires 2n steps using n2 

processors. Furthermore Jessh::lpe and Craigie [Jessh::lpe 1980] showed 

that the product of two matrices can be achieved in r log2n+ 11 steps 

usin;J n3 processors. 

Another parallel algorithm for the evaluatioo of arbitrazy matrix 

expressicns is discussed in the papers by Maruyarna [Maruyarna 1973] 

and Kuck and Ma:ruyama [Kuck 1975] where the parallelism is assumed 

unlimited. 

Up to this point, we have been considering almost exclusively the 

case when there are enough processors for the problem. However, the 

reality is that problems are, in general, larger than the potential 

parallelism of the computer. Therefore, the original algorithm 

should be restructured so that the processing requirements of the 

new algorithm are reduced to a realistic figure. The efficiency of 

the new algorithm should be similar to using a theoretical large 

number of processors. Two basic approaches have been suggested by 

Hyafil and Kung [Hyafil 1974] so that a large problem can be solved 

on a realistic number of processors. The first principle, the 

problem decomposition, is based on partitioning a problem into 



177 

subproblems small enough to be solved on the provided number of 

processors. For example, a matrix multiplicatioo involv:in;;J large 

matrices, can be performed on a computer with a small number of 

processors by computing a sequence of matrix multiplications 

involv:in;;J submatrices. On the other hand, the seccn:i metood which 

is the algorithm decomposition technique, forces simultaneous 

operations involved in one step of the original algorithm to be 

carried out in a number of steps on the limited computer. For 

example, a problem requiring one step on an n-processor SIMD 

computer, can be solved in fn/pl steps where p is the number of 

available processors. 

F= the async:hrcn:lus multiprocessor like the Neptune = the Sequent 

Balance, which is composed of a number of independent processors 

shar:in;;J a global me!llOIY via a· shared commoo b.Js, algorithms may be 

viewed as a collectioo of coc:p:ll:'Bt:in;;J processes that may be executed 

simultaneously in solving a given problem. Due to the unpredictable 

behaviour of the asynchrcn:Jus process=s, serioos issues regard:in;;J 

the correcmess and efficiency of an algorithm are coosidered. The 

COrrectness issue arises because of the unpredictable harxll:in;;J of the 

shared data by the concurrent processes. On the other hand, the 

efficiency issue arises because any synchrcnisatioo introd1!ced f= 

correctness reasons involves additional processing time and also 

reduces concurrency. 

One of the techniques used to design parallel algorithms for MIMD 

computers has been the parti tion:in;;J of a problem into many processes 

that can be executed in parallel. This task might not seem a 

significant one f= a small number of process=s, say two to four, 

mwever f= several processors, say 16 to 32, = more, the problem 

becomes extremely difficult. Furthermore two types of problem 



178 

decomposition were described by Hwang and Briggs [Hwang 1984]; 

these are the static and dynamic decomposi ticn strategies. In the 

case of static decomposition, the set of processes as well as any 

precedence relaticnship am~ them are koown before executicn. In 

this method, the amount of data communication is kept very low, 

provided the number of processes is small. Whilst in dynamic 

decomposition, as its name suggests, the set of processes changes 

during executicn. Al th::lugh in such a metlx::d the data exchange rate 

amcng the processes is extremely high, it can be adapted effectively 

to variaticns in the executicn time of the prooess graph. 

Parallel algorithms for multiprocessor systems were classified into 

synchronised and asynchronous algorithms, aimed mainly at 

distinguishing the algorithm with respect to the system's particular 

characteristic features. In the former class of algorithms, 

processes are forced to wait for the required fn[:uts, while in the 

latter case they are allowed to ocntinue asynchrcn:Jusly. 

One of the classical problems which has received a considerable 

research interest is the root-searching problem. '!he definiticn of 

such a problem is that 'given a ocntinuous (or discrete) functicn f, 

having opposite signs at the endpoints of the t.n'lCertai:nty interval 

(also called the root interval) of length ~, locate a zeI:O within a 

unit interval'. Sequentially, this problem is awroached basically 

by constructing a nested sequence of approximations to the root 

using a new point in the cu=ent root interval and computing the 

function value at this point. The incorporation of this newly 

computed point and its function value to form one of the new 

endpoints has the effect of systematically reducing the interval 

while maintaining the functicn values at the newly defined interval 

endpoints of opposite signs. Probably the best koown algorithm to 



179 

oompute a new point inside the root interval is to take the midpoint 

of the interval; this method is krx:>wn as bisection, or more widely, 

as binary search. 

An obvious extension of the binary search method is a search 

algorithm usin;;J p processors which divide the current root interval 

into p+l subintervals of equal len;Jth and evaluates simultaneously 

the function at each of the p division points. The parallel 

function evaluation is considered as one stage of the root 

computation process. The other stage which involves a single 

processor to oompute a new root interval, is invoked ally when all p 

parallel evaluations are complete. Thus, this is a synchronised 

parallel root-searching algorithm. It is Obvious that every 

iteration reduces the root interval by a factor of p+l, and it has 

been shown that the order of convergence of the iteration method 

equals at least the number p of parallel functicn evaluatioos. 

The major drawback of the synchrcni.sed algorithm is that when the 

times of the p parallel :fuootim evaluatioos differ substantially, 

the algorithm can be very inefficient. An asyrx::hrorx:lu versicn of 

the zero-searching algorithm is obtained by rel1IOITing the requirement 

that the computation process does not proceed until all p 

simultaneous function evaluations are oomplete. In the followin;;J, we 

shall outline an asynchronous algorithm on the line of Kung [Kung 

1975], whose paper is considered a major contribution to the 

development of the cmcept of async:hrca"x:A. oomputations. 

Kung, at first, introduced an asynchronous algorithm (called AZ2 ) 

with two processors, in which the selection of the new point is 

based on the Fibonacci rule; later he generalised the algor! thm for 

three or more processors. 



180 

Suppose that initially the root interval is divided into three 

intervals: 

• • • • 

The function evaluation at x2 and x3 is started simultaneously by 

two processors. Suppose now that, without loss of generality, the 

evaluation at the left point, x3' finishes first. The assumption 

here is that the outoome is n:n-zero; f= otherwise a zero is found 

and we are finished. Next a comparison of the value signs at the 

left endpoint and X;3 is executed and the new root interval derived, 

either as x~ '3 or as !3 ~2 ~, depending en the sign 

of the outoome. 

If the . fir s t -. case occurs, then a new evaluation is carried out at 

the point x4 which is defined by: 

• •• • 
:':0 X4 X3 

If the second· case occurs, the new evaluatien is carried out at the 

point defined by: 

• • • • 

In general, in the process of computation one of the following 

states can occur, which are deroted by State 1(.) and state 2(.) and 

are illustrated in the follow!nJ graIi1S: 

State 1 (R.) 

• • • 
l .. , 



state 2 (R.) eR. 

(~--~--~A~------~l 
e2~ 

(r __ ---JA ... __ ~\ 

• • • • 
l~ ____________ ~y~-----------JI 

,9. 

181 

where e2 + e = 1, Le. e = 0.618 is the reciprocal of the golden 

ratio, 5/13 + 8/13 = 1, 8/21 + 13/21 = 1, 13/34 = 21/34 = 1, etc. 

state 1 (9.) is the state for which the root interval is of length 

9. and the function is evaluated simultaneously at the point '.' 

inside the interval and another point outside the interval (not 

shown on the graph). Similarly, State 2 (9.) is the state for which 

the root interval is of length and the function is evaluated 

simultaneaJsly at two points, both inside the interval. We further 

deduce that State 2 (~) is transmitted after each computation to 

either: 

S49. 
, • , 
• • 

\ 
V" 
S29. 

state 2 (S9.) e
2

9. 
,r------~A~ ____ , ,. 

• 
This transitic:n is denoted by: 

• , 

• 
J 

state 2 (9.) -7 (State 1 (e2 .I.) V State 2 (S9.» 



182 

The c:orrespc:rldin ru.le f= state 1 (t) is 

state 1 (t) ->- (state 1 (e2t) V state 1 (eR-) V state 2 (t» 

These transitioo rules oompletely define the async:hrcn::lus parallel 

algorithm. Suppose that the algorithm starts from State 2 (I). 

Then assuming that the function does not vanish at any of the 

evaluatioo points, the PLogLess of oomputatioo can be represented as 

a transition tree with nodes representing stages. The algorithm 

follOWS one particular path of the tree, depending upon the input 

function and the relative computation speed of the two p:c=essors. 

F= the analysis of the root-finding problem with p p:c=essors, we 

have noted earlier that every iteration reduces the length of the 

root interval by a factor of p+l. Hence, the algorithm requires 

rlO9p+l.t.1 iteratioos to find the root. Letting the time required to 

evaluate the function at a point in the root interval be a random 

variable with mean t, the time-complexity of the synchronised 

algorithm can be sh:>wn to be rlogp+ltl Apt, where Ap is the penalty 

factor for synchroniSing p function evaluations. For p=2, the 

expected time-complexity for the synchrooised algorithm, becomes 

rlog3t1 "2t. In oomparisoo with the binaLy search algorithm (wtose 

time-complexity is rI092 R-l t since it takes at most r 1092 t 1 

iterations) the synchronised parallel algorithm has been proved 

inefficient f= large Ap' which usually occurs with large values of 

p. 

F= the analysiS of the async:hrcn::lus parallel root-finding algorithm 

we use n to refer to the number of functioo evaluatioos oompleted by 

the algorithm. Bearing in mind that these computations are 

performed in parallel, then the expected time oomplexity is nt/2 as 



183 

n ... "'. Consequently, the speed-up ratio between the sequential 

binary search am. this algorithm is 

flog2t 1 t f1og2 tl 
S2 = --...,.~- = 2 --

nt n 
""2 

Therefore, the requirement to find the exact value of n is 

essential. In the worst case, this value is given by the length of 

the largest path in the transiticn tree. Analysis of the transiticn 

tree carried out by HayafU am. I<un;J [HayafU 1975] sOOws that, in 

the worst case, the asynchronous algorithm supersedes the 

synchrcnised versicn with two processors when the penalty factor A2 

> 1.142. 

The asynchrcnous algorithm introduced can be generalised to three or 

more processors. For the case of three processors we can start with 

the following diagram: 
t/4 . t/4 1/4 1/4 

• • • • • 
The three processors are activated to evaluate the function at 

points x2' x3 and x4' which are chosen as indicated in the above 

diagram. As a result of the concurrent functicn evaluaticn, without 

loss of generality, CI'le of the following states will oocur: 

state 1: t1/16 
?-. 

• , 
v J 

Xo t1 
x2 

state 2: 

t/6 t~/3 .:. 

• • • 
x2 x3 x4 x1 

\ ) 
v 
t2 



184 

State 3: 

• • 
Xo x2 x3 
L~ ________ ~~ ______ ~J 

~3 

Where in each case the functicn is evaluated at p::>int '.'. states I 

and 3 are in fact defi.ni.n;J the same pattern. 

t/4 t/4 t/4 1/4 

• • • • • , .. 
~ 

while state 2 yields the pattern 

RJ3 ~ /6 1/6 i/3 

• • • • • 
and an asynchronous algorithm with three processors can be fully 

defined by using the above two patterns. 

In general, rp/21+1 patterns are sufficient for defining an 

async:hrcn::Jus algorithm with p processors. 

Another highly illIp:xrtant group of metixJds, the iterative methods are 

utilised to solve many problems, in particular numeriCal cnes. For 

example, zeros of a function f can be computed by the Newton 

iteraticn: 

also, the solutioos of linear systans by iteratioos of the form: 

.... .... 
where Xi' b are n-vectors and A is an (nxn) matrix. 



185 

When designing synchronised or asynchronous iterative parallel 

algorithms, CXlEl of two (or a combinatioo of both) strategies can be 

followed. The first CXlEl aims at exploitin;J the inherent parallelism 

within the iterative functioo f, and the secxn:'I CXlEl to exploit the 

fluctuations in process speed, mentioned earlier in this chapter, 

utilising more than one processor to compute the same function in 

parallel. 

In synchronised iterative algorithms, iteratioos are generated just 

as in a sequential algorithm, except that the i teratioo functioo is 

decomposed so that each i teratioo step can be executed by more than 

one process, which are then synchronised at the end of each 

iteration. Consequently, these algorithms differ from the 

sequential ones in the execution time required by each iteration. 

However CXlEl must bear in mind that synchrcnised iterative algorithms 

are not suitable for those. iterative functions which cannot be 

decomposed into mutually independent tasks of the same complexity. 

On the other hand, async:hrcxxJus iterative algorithms are free from 

any form of synchronisation constraints. To design asynchronous 

iterative parallel algorithms, it is desirable that CXlEl should first 

identify certain variables, such that each step can be regarded as 

computing the new values of these variables from their old values. 

In general, the selection of these variables is such that the 

updating of each of them constitutes a significant portion of the 

WO:r:K involved in each iteratioo. Next CXlEl should define cxn:::urrent 

proces~ that would update these variables asyrd1rcn:lusly. 

In [Kung 1976] a particular consideration has been given to 

algorithms purely derived from the second of the previous two 



------------ -

186 

strategies, which are called simple asynchronous iterative 

algoritluns. Their main advantage is their general applicability, in 

other terms they are rot restricted to numerical processes cnly, but 

they can be used to speed-up any sequence of tasks with a particular 

attraction when the task decomposition appears to be difficult. 

There are, however, some disadvantages such as the requirement for 

critical sections and the fact that the speed-up is quite limited if 

the fluctuations in computaticn time are rot large. 

Finally, Kung [Kung 1976] introduced the special class of the 

adaptive asynchronous algorithms utilising globa1 dequeues (i.e. 

'double-ended queues' see [Knuth 1969]) to hold the tasks to be 

executed in parallel. According to this class of algorithms the 

tasks performed by a particular process are rot specified a priori, 

but depend upon the relative speeds of the processes. The 

efficiency of such an algorithm is obtained from the fact that 

processes are able to adjust themselves during computaticn so that 

they can all finish in about the same time. Thus, the concept of 

adaptive algoritluns seems to be fundamental to the design of many 

efficient async::hrcn::Al algoritluns. 

To ocnclude this paragraIil, we assume that syoc.hrcnised algoritlun 

sh:Juld be utilised when fluctuations in process speed are small and 

when there are relatively few processes to be synchrc:nised. en the 

cxntrary, async::hrcn::Al algorithms are, in general, more efficient 

than synchrc:nised ones, since processors never waste time in waitinJ 

for inputs. Thus, the algoritluns can take advantage of running fast 

processes and they can be adaptive so that the processes can finish 

at approximately the same time. Furthermore, an asynchronous 

algori tlun can be more reliable than a synchrc:nised ale since even if 

some processes are blocked forever, the algori tlun can still cxntinue 



187 

computing the solutioo of the problem as lC01 as no blcx::ld.nJ occurs 

:In critical sectioos and there remains at least a1e active process. 



Chapter 4 

PARALLEL SEARCHING 
ALGORITHMS 



188 

Many computer applications such as database systems, information 

processing and artificial intelligence have to include a searching 

function in order to deal with some outstanding problems. Since 

search:lng is the most time-coosuming part of many of the programs 

involved, it was necessary to find the best searching method to 

replace existing poor ooes. Coosequently, a substantial increase in 

speed is most likely to be achieved. However, it is sometimes 

possible to organise the data structure in such a way that the 

searching can be entirely eliminated. Unfortunately, there are few 

cases where we do still use the 'poor' searching methods as the only 

available alternative. F= such cases a parallel implementation is 

much appreciated. 

Basically by searching we mean the process of examining the contents 

of memory locations to see whether they match some given template = 
keyword. In general, we shall assume that a set of N records has 

been previously stored on some primary storage devices, and it is 

required to locate the appropriate one. Algorithms for searching 

are presented with a so-called argument 'key' and the problem is to 

locate which record matches that 'key'. After the search algorithm 

is completed, two possibilities arise: 

1. either the search was successful, a record with 'key' as one of 

its fields' value was located, = 
2. the search has failed and the key is oowhere to be found. 

Several searching algorithms have been proposed to run on 

uniprocessor types of computers and a lower bound of log N has been 



,-----------------,-------- --

189 

established (see [Knuth 1973]). These algorithms could be grouped 

into two main classes: toose dealing with unsorted sets of records, 

and those dealing with sorted ones. Examples of the first class of 

algorithms are: the basic sequential search, the self-organising 

sequential search (either move to frcnt or transpose metlx:x'l). 'I11e 

latter two algorithms are based en rearranging the set of records so 

that the most frequently accessed keys are quickly located. en the 

other hand, the secax:i class of algorithms which deals with ordered 

sets of records, include the binary search, the interpolation 

search, the interpolation sequential search and the jump search 

algorithns. 

In this chapter we shall design and analyse parallel algorithms for 

the basic sequential search, the binary search and " -\y\any jump 

search algorithms. For the sequential search, two different 

versions are presented and analysed and for the binary search we 

prqJOSed three different versioos. 

4.2 AN MIM> IMPLI'MENl'ATICN OF '!HE SEOJFNI'lAL SEAR(]{ AIG:RI'lH1 

Given a set of =rdered records RI' ~, ••• , Rn with the respective 

key values KI , K2, ••• , ~, and given an argument 'key', the 

sequential search coosists of successively accessing a reoord, Ri' 

(starting from RI and progressing towards ~, or vice versa) and 

comparing the argument key with Ki . The search will succeed when 

there exists i such that ~ = key. 

Witoout prior koowledge about the stored records, they are usually 

assumed to be uniformly probable (Le. every record is likely to be 

the searched one, in other words all the records have the same 



190 

probability* of being the sought one), and uniformly accessible. 

Consequently, on average, the sequential search algorithm would 

perfonn: 

~ = ~ +2 + N" + N 

= ! (N+1) 
2 

Key ccrnpariSCrlS for a successful search and 

~ = N 

Key comparisons for an unsuccessful search, since we would be 

certain that such a key is n:n existent amrng the N records only if 

every possible record is examined [Knuth 1973]. 

The implementation of the sequential search algorithm on the 

multiprocessor systems available at Loughborough University is 

presented below. 

The original set of N records is partitioned into M subsets of 

nearly equal lengths (i.e. N/M elements). Each active processor of 

the P multiprocessor system would apply the sequential search to 

locate the key in one of the subsets which it is associated to. For 

the analysis of the following parallel algorithms we assume that the 

search finishes after finding the first 0CCUJ:'l:'e0Ce of the key and if 

found it is unique. This means that only one search of the M 

subsets' searches will be successful. Furthermore, we assume a 

strict cooperaticn between the p processors. In the case that the 

key is located by one of them, a signal is broadcast to all the 

* For a set of N records this probability is equal to 1/N. 



191 

remaining processors so that they oould immediately stop searching 

since any further location inspection is obviously redundant. In 

our MIMD implementation such a signal broadcasting is achieved 

through a shared boolean variable. 

In a no-broadcasting algorithm, once the key was located, all the 

processors would still carry on searching even if the unique 

location was already found by one of them. Surely broadcasting 

would eliminate unnecessary work and thus intuitively would increase 

the speed-up and efficiency of the search algorithm. 

In order to measure the actual performance of the proposed parallel 

sequential search algorithms, we implemented them en both parallel 

systems, the Neptune and Balance 8000, and measured their 

experimental timing. In all three sets of experiments were 

performed and in each experiment 100 rand:xn keys which are uniformly 

distributed in the set are individually searched and timed. From 

these ti~ results we then computed the average speed-ups. 

In additien, we also measured the static overheads (i.e. the shared 

data access overhead - 'SDO' and the parallel control overhead -

'PCO' which are obtained by running two sequential load programs 

compiled using the commands XPFCLS and XPFCLN* respectively (see 

Chapter 3). 

If TS and TN measure the execution of the programs produced 

respectively by XPFCLS and XPFCLN, then the measured static 

overheads are computed as indicated below: 

* XPFCLS produces a sequential load program where the shared data 
will be loaded in the shared memory. XPFCLN produces a similar 
sequential program as XPFCLS except that the shared data will be 
ccnsidered as local and loaded in the local memory 



192 

and 

One of the fist decisioos we are faced with is the selecticn of the 

number of subsets M which could vary from P to N so that the 

processing time is optimal. In the following paragraph we shall 

attempt to show that as far as the parallel searching algorithm is 

concerned, it is always best to choose M equal to P. For this 

purpose, we shall first OOrnp.1te the average time-complexity of the 

parallel sequential search algorithm when M=P and sec:JOOdly solve the 

following inequality: 

* where Tp(M ) is the time-complexity of the parallel sequential 

algorithm when M=M* with M* unkoown. 

We also use two additicnal oosts S and Cz which represent the oost 

of a single key comparison and the cost of acquiring a subset (i.e. 

accessing a parallel path). 

When the set is divided into P subsets, each cx:ntaining ~ elements, 

the average time-complexity Tp is computed as the product of the 

average number of key comparisons by Cl plUS PCz. Since each 

processor searches a subset, then on average, each processor would 

perfonn: 

1 
Nip 

Nip 
L i = N+P key co:nparisoos 
1 2P 



193 

Consequently 

T (M=P) = N+P r_ + Pr_ P 2P -.L --,,: 

On the other hand, if we select M>P, we end up with each processor 

processing at most ~ subsets, each containing ~ elements. Now 
P M 

searching a subset of ~ elements requires, on average, ~ key 
M .<1"1 

comparisons. If a processor finds the key on the jth subset it is 

allocated, then it would have performed 

(j -1) ~ + N+M key carpariscns 
M 2M 

The average of the above expressicn =er all the ~ subsets processed 

by a processor is: 

N+P 
2P 

Note that it is exactly the same result as that of the above case 

(M=P). However since M paths are executed, the path scheduling 

ring structure would be accessed M times, therefore the average 

time-complexity is 

Tp (M>P) = N+P Cl + M '2 
2P 

Since M>P, it implies that 

Tp (M>P) > Tp (M=P) 

This concludes our proof that as far as the parallel sequential 

search is concerned, it is best to divide the set into P. 



194 

Tables 4.1, 4.2 and 4.3 report the experimental timing of the 

parallel sequential search algorithm measured when searchinJ for 

keys located at 1, middle of a subset and N. For all these 

experiments, M, the number of subsets was varied from 4, 8, ... , 

512. As can be seen from the tables, the value of Tp increases when 

M increases except for M=16 and when three processors are in use. 

Note that this particular case is a special one and is not to be 

considered as a counter-example. Actually the T3 values did not 

decrease when M increased to 16 but it did increase by a factor 

higher than expected for M=8 due to the fact that the difference in 

the number of paths executed by each processor is greater than the 

other cases. More specifically for the case of 8 paths (M=8), two 

processors did execute two paths each but the third executed four 

paths. By comparison with the case of M=16 and three processors, 

this difference is only equal to ooe path. 

From the experimental results as sh::>wn in Tables 4.1, 4.2 and 4.3 we 

noticed that as M increases, the speed-up (relative to the case of 

M=4) decreases, a fact that was proven previously. Thus our 

experiments confirmed that no major gains in efficiency can be 

achieved if the set is partitiooed into more than P subsets. 

In the following sections we shall design and analyse parallel 

sequential search with and wi th:lut broadcasting when the number of 

subsets is equal to P. For the former case two different versicos 

of the parallel search are considered (referred to as versions 1.0 

and 2.0). All algorithms partition the original set into p subsets, 

but from the point of view of the contents of the subsets, the two 

groups of subsets are quite different. 



M T1 T2 T3 T4 Ts TN SP2 sP3 sP4 500 PCO 

4 4.15 2.77 1.42 1.43 4.14 4.13 1.50 2.92 2.90 0.24 0.24 

8 4.84 2.78 2.80 1.42 4.82 4.81 1.49 1.48 2.92 0.24 0.48 

16 5.18 2.77 1.77 1.42 5.16 5.15 1.50 2.34 2.92 0.24 0.48 

32 5.39 2.79 1.91 1.42 5.36 5.33 1.49 2.17 2.92 0.72 0.72 

64 5.50 2.80 1.88 1.43 5.45 5.42 1.48 2.21 2.90 0.72 1.20 

128 5.61 2.83 1.92 1.45 5.50 5.46 1.47 2.16 2.86 0.96 2.65 

256 5.77 2.89 1.95 1.47 5.55 5.50 1.44 2.13 2.82 1.20 5.30 

512 6.03 3.03 2.03 1053 5.57 5.54 1.37 2.04 2.71 0.72 11.08 

TABLE 4.1: EXPERIMENTAL PERFORMANCE MEASUREMENTS OF THE PARALLEL SEARCH ALGORITHM 
WHEN SEARCHING FOR K(1). 



M T1 T2 T3 T4 TS TN SP2 SP3 SP4 SDO peo 

4 4.34 2.53 1.88 1.29 4.33 4.32 1.72 2.31 3.36 0.23 0.23 

8 4.69 2.56 1.93 1.31 4.68 4.64 1.70 2.25 3.31 0.92 0.23 

16 4.82 2.56 1.72 1.28 4.81 4.77 1.70 2.52 3.39 0.92 0.23 

32 4.90 2.55 1.75 1.30 4.88 4.84 1.70 2.48 3.34 0.92 0.46 

64 5.00 2.57 1.71 1.30 4.95 4.91 1.69 2.54 3.34 0.92 1.15 

128 5.09 2.59 1.75 1.32 4.98 4.95 1.68 2.48 3.29 0.69 2.53 

256 5.21 2.64 1.78 1.35 4.98 4.95 1.64 2.44 3.21 0.69 5.30 

512 5.47 2.75 1.85 1.40 5.02 4.99 1.58 2.35 3.10 0.69 10.37 

TABLE 4.2: EXPERIMENTAL PERFORMANCE MEASUREMENTS OF THE PARALLEL SEARCH ALGORITHM 
WHEN SEARCHING FOR THE KEY LOCATED AT THE MIDDLE POSITION OF THE SET, 



M Tl T2 T3 T4 TS TN sp2 SP3 SP4 SDO peo 

4 4.98 2.55 2.55 1.28 4.93 4.90 1.95 1.95 3.89 0.60 1.00 

8 4.99 2.54 1.91 1.29 4.98 4.93 1.96 2.61 3.86 1.00 0.20 

16 4.98 2.54 1.88 1.30 4.96 4.93 1.96 2.65 3.83 0.60 0.40 

32 5.01 2.56 1.76 1.29 4.98 4.93 1.95 2.83 3.86 1.00 0.60 

64 5.04 2.57 1.75 1.30 4.98 4.94 1.94 2.85 3.83 0.80 1.20 

128 5.10 2.59 1.75 1.30 4.99 4.94 1.92 2.85 3.83 1.00 2.21 

256 5.22 2.64 1.77 1.34 4.99 4.96 1.89 2.81 3.72 0.60 4.62 

512 5.45 2.75 1.85 1.39 5.02 4.97 1.81 2.69 3.58 1.00 8.63 

TABLE 4.3: EXPERIMENTAL PERFORMANCE MEASUREMENTS OF THE PARALLEL SEARCH ALGORITHM 
WHEN SEARCHING FOR K (N). 



198 

In mathematical terms, if processors are numbered by k, k = 1,2, •• ,P 

then processor k would access the following locatioos if 

i) versicn 1. 0 

ii) versicn 2.0 

(k-l) !:! + i 
P 

(i-I) P+k 

In this algorithm the set of records is partiticned into P subsets, 

each of which contains !:! elements. Each processor searches a subset 
p 

until either it finds the key or the subset is fully exhausted. 

Since the key is unique, only one of the P activated processors 

would find it whereas all the others would perform exactly!:! key 
P 

comparisons. Therefore, when P processors are being used, the time-

complexity of the algori thIn is 

On the other hand, if only one processor is used, the time 

complexity Tl is given by 

where j = 1,2, ••• , N 

which is also equal to the following expressico, if we coosider the 

P subsets individually 

where k = 1, 2, ••• , P 
_ N 

i - 1,2, ... , p 

Tl = (k-l) !:! + i 
P 



Since 1 .,; !:!, we have 
p 

( N N T1 .,; k-1) - + -
P P 

The speed-up Sp(k) is then 

= 

= Tl (k) 

T 
p 

kN/p 
.,; 

Nip 

Sp(k) .,; k, k = 1, 2, .•• ,p. 

199 

Averaging the ab:::IIIe expressicn over the P subsets we get the average 

speed-up Sp of the parallel search algorithm without broadcasting 

as: 

and the efficiency ~ as 

.,; p+ 1 
2"" 

s 
~=: 

P+l 
2P 

In Table 4.4 we present the experimental timing results of the 

parallel sequential search algorithm with no broadcasting. These 

results, as it is seen, . are in close agreement with the predicted 

ones. 



t-'l 
i;; Tt T2 T3 T. T~ SP2 SP3 SP. SP~ Tt T2 T3 T. r~ SP2 SP3' SP. SP'5 

------------------------------------------------------ ---------------------------------_ .. _----------------
t< 
t>:! .01 .65 .46 .33 .29 .02 .02 .03 .03 .~3 .54 .41 .29 .23 L02 1.34 1 .. '90 2 .. ::n 

.01 .36 .38 .28 .2' .02 .03 .. c)4 .04 .52 .55 .37 .28 .2' .9~ 1.41 1.86 2.17 

.... .02 .5'5 .38 .28 .2' .0' .05 .07 .08 .5~ .55 .38 .29 .23 1.00 1.4~ 1.90 2.39 

.04 .53 .38 .29 .24 .07 .11 .14 .17 .55 .~. .37 .29 .2' t .02 1.49 1.90 2.29 
.... .07 .56 .• 38 .28 .24 .12 .18 .:::5 .29 .~6 .54 .38 .29 .23 1.04 1.47 1.93 2.43 

.07 .54 .37 .30 .23 • 13 .19 .21 .30 .~9 .5' .37 .29 .23 1.09 1.~9 2.03 2.'57 

.08 .5~ .37 .29 .23 .13 .~2 .28 .35 .39 .54 .50 .28 .23 1.09 1.18 2.11 2.57 

tl:H/l t>:! .08 .5~ .38 .29 .2' .15 .21 .28 .33 .59 .54 .38 .29 .21 1.09 1.~5 2.03 2.81 

f::t>:!X .09 .51 .38 .29 .23 • 18 .24 .3'1 .39 .61 .5' .37 .29 .23 1.13 1.bS 2.10 2.65 

»>'1:1 .09 .55 .38 .30 .23 • 16 .2' .30 .39 .62 .~5 .36 .29 .23 1.13 1.72 2.14 2.70 

»>:.;It>:! .11 .56 .38 .29 .2' .20 .2' .3. .'6 .6' .5' .3~ .29 .2> 1.19 1-93 2.21 2.56 
ZO:.;l .10 ."" .3' .29 .2' • 18 .29 .34 .'2 .63 .5~ .37 .29 .23 1.15 1.70 2.17 2.74 
O::<1H .11 .~3 .38 .29 .2' .20 .29 .38 .'6 .67 .5' .d9 .28 .25 1.24 1.37 2.39 2.68 
t>:! :s: 

»>t>:! .11 .54 .38 .30 .23 .20 .2' .37 .'8 .67 .55 .39 .29 .23 1.22 1.72 2.31 2.91 

o>t<Z .13 .51 .37 .25 .24 .25 .35 .52 .54 .68 .5' .37 .29 .24 1.26 1.134 2.34 2.83 

OClt-'l .14 .56 .38 .29 .23 .25 .37 .'8 .61 .72 .54 .38 .29 .23 1.33 1.89 2.48 3.13 

00f:: .15 .~5 .38 .28 .24 .27 .39 .5' .63 .71 .55 .38 .28 .24 1.29 1.87 2.54 2.96 

0:.;1 .17 .55 .38 .29 .18 .31 .45 .39 .94 .71 .53 .37 .29 .23 1.34 1.92 2.45 3.09 

H .16 .55 .37 .29 .2' .29 .43 .!5!5 .67 .72 .54 .38 .31 .24 1 .. ~3 1.8'9 2.32 3.00 

tIlt-'lt-'l .21 .50 .38 .29 .21 .42 .55 .72 1.00 .73 .54 .'9 .40 .23 1.35 1.49 1.83 3.17 

O<::<1H .23 .56 .31 .30 .23 ." .74 .77 1.00 .74 .04 .37 .30 .24 1 ~37 2.(10 2.47 3.08 
cn~~ .23 .56 .39 .29 .2d .41 .59 .79 .96 .75 .5' .37 .28 .22 1.::."'9 2.(13 2.b8 3.41 
t-'l H 
tJ:j~Z .2' .55 .38 .29 .23 ••• .63 .~6 1.04 .76 .53 .38 .28 .22 1.43 2.00 2.71 3.4:5 

:S:HCl .27 .55 .38 .29 .2' •• 9 .71 .93 1.13 .76 .54 .38 .28 .23 1.41 2.00 2.71 3.30 

t-'l .27 .46 .37 .29 .23 .~9 .73 .93 1.17 .77 .55 .37 .30 .23 1.40 2.013 2.~7 3.35 

::<1:.;1 .31 .55 .38 .25 .2' .56 .82 1.24 1.29 .77 .54 .39 .39 .23 1.43 l.Q7 2.03 3.35 

Ot>:! .31 .~3 .38 .29 .2' .56 .82 1.Q7 ·1.2'9 .79 .54 .49 .38 .23 1.4b 1.">1 2.08 3.43 

e::tIl .33 .56 .3' .28 .23 .59 .97 1.18 1.'3 .79 .54 .38 .30 .23 1.4b 2.1)13 2.63 3.43 
t-'le:: .3' .55 .38 .29 .24 .62 .89 1.17 1.42 .80 .55 .37 .'0 .23 1.4~ 2. t~ 2.00 3.48 

t< 
OJt-'l .37 .62 .37 .29 .23 .60 1.00 1.28 1 .61 .SI .52 .3' •• 0 .2'5 1.56 2 •. -~$ 2.02 3.24 

:.;ItIl .37 .35 .38 .29 .24 .67 .97 1.Z8 1.5' .S2 .54 .38 .29 .23 1.52 2.1~ 2.83 3.57 

0 .39 .~5 .37 .28 .23 .69 1.03 1.16 1.65 .83 .55 .37 .29 .24 1.51 2.24 2.96 3.46 

»>0 .38 .!54 .38 .29 .25 .70 1.0Q 1.31 1.32 .83 .55 .37 .28 .23 1.51 2.24 2.96 3.61 

O"! .39 .55 .37 .29 .23 .71 1.0S 1.34 1.70 .87 .54 .50 .28 .2' 1.61 1. 74 3.11 3.63 
() .40 .60 .37 .29 .2' .67 1.08 1.38 t .67 .87 .5' .39 .29 .23 1.61 2.'.01:3 3.00 3.79 
»>t-'l .42 .55 .38 .28 .23 .76 1 .. 11 1. 50 1 .83 .87 .5' .37 .29 .24 1.61 2.:t;S 3.00 3.63 
tIl::<1 .41 .54 .37 .28 .23 .76 1.11 1.46- 1.78 .90 .54 .39· .29 .24 1.67 2.37 3.10 3.75 
t-'lt>:! 
H .'1 .55 .38 .28 .24 .7S LOB 1.4b 1.71 .93 .54 .37 .37 .23 1.72 2.~1 2.51 4.04 

Z't! .43 .!55 .38 .29 .23 .78 1.13 1.46 1.97 .93 .54 .39 .29 .23 1.12 2.45 3.21 4.04 

Cl»> .4' .57 .37 .29 .23 .77 1.19 1.51 1.91 .93 .54 .38 .40 .23 1.72 2.45 2.33 4.04 

'1:1~ 
.45 .55 .38 .29 .23 .a2 1.19 1.~S 1. '96 .99 .55 .49 .41 .25 1.80 2.02 2.41 3.96 

."" .55 .37 .29 .24 .a2 1.22 1.~5 1.9a .99 .~5 .39 .33 .33 1.80 2 .. !'§4 3.00 3.00 

t>:!t< .47 .55 .37 .29 .23 .85 1.27 1.62 2.04 1.00 .61 .37 .28 .33 1 .. 64 2 .. 70 3 .. !57 3.03 

i;J&; .47 .56 .38 .28 .2' .9' 1.24 1 .. 68 1.96 1.03 .5' .38 .30 .29 1. '91 2 .. 71 3.43 3.55 

Ot< .47 .5O .38 .29 .23 .84 1.24 1 .. 62 2.04 1.03 .54 .39 .28 .2' 1.91 2 .. 71 3 .. 68 4 .. 29 

~tIl 
.'8 .55 .37 .29 .2' .B7 1.30 1 .. "'6 2.00 1.06 .~. .37 .38 .23 1.96 2.R6. 2 .. 79 4.61 

.50 .54 .39 .29 .23 .93 1 .. 28 1.72 2.17 1.0b .54 .39 .33 .2' 1.96 2 .. 72 3.21 4.42 

t>:!t>:! .51 .~5 .37 .28 .24 .93 1.36 1 .. 82 2 .. 13 1.06- .55 .35 .29 .23 1.93 3.03 3.66 4.01 

'" 010 ------------------------------------------------------ ----------------------------------_ .. - .. _ .. _------------- 0 
e:: .50 .55 .38 .29 .23 .91 1.32 1.72 2.17 

0 

Ot>:! .51 .58 .38 .27 .2' .ge 1.34 1.89 2 .. 13 AVERAGE 
ZZ .52 .55 .38 .29 .23 .Q5 1 .. 37 1.79 2.2b 

t-'l 
t-'lH -----------------------------------------_._---------- ----------------------------------_ ...... ---------------
::<1»> .53 .55 .51 .29 .2' .Q6 1.04 1.1S3 2.21 .52 .'5~ .38 .30 .2' .95 1.36 1.73 2.20 

t>:!t< ------------------------------------------------------ -------------------------------- - -_ .. - .. _. -- ------------



201 

4.2.2 PARALLEL smn;Nl'IAL SEARCH WI.'lH BOOADOISTnG 

Cooperation among concurrent processes is one of the major key 

features to achieving efficient parallel algorithms. In particular, 

for our searching problem where the key is supposed to be unique, 

processors must maintain a certain degree of cooperation between 

themselves so that the current state of the search is krx:>wn by every 

processor at every time. Such informaticn when used aPPJ:op:riately, 

leads to an efficient searching algorithm since once the key is 

located by cne processor, all the remaining cnes also stop searching 

and thus avoid unnecessaJ:y key compariscns. 

In the follow~, we shall ccosider two different versicns which we 

call versions 1.0 and 2.0 for the parallel sequential search 

algorithm with broadcasting. Both versicns partiticn the original 

set among the P available processors and then allocate each 

processor to search one subset using the traditional sequential 

search algorithm. However the two versicns differ from each other in 

that the elements acoessed by coe processor in coe versicn are not 

the same elements accessed by the same processor in the other 

version. In other words, if processors are numbered by k, where 

k = 1,2, "', P then processor k would a=ess the following 

locations: 

(k-l) !i + i .p 

in the case of versicn 1. 0 am 

(i-I) P + k, otherwise 



202 

where i, i = 1,2, •.• , ~ represents the iteration number. Tables 

4.5 and 4.6 list explicitly all the locations accessed by each 

processor k for each iteration i respectively for version 1.0 and 

version 2.0. 

From the algorithmic point of view, when the algorithm is executed 

in parallel, P key comparisons are performed during every iteration 

i, however the inspected locations in version 1.0 differ from tlx>se 

inspected in version 2.0. More specifically, the P locations are 

consecutive in version 2.0 whereas they are distant by P in version 

1.0. Figure 4.1 illustrates these points when N=32 and P=2 

i) JInalysis of Version 1.0 

The set of uoordered records is part! ticned into P subsets according 

to the indexing relative to version 1.0. Each subset contains !! 
p 

items (f= simplicity purp:ses, we select N a multiple of P). It is 

a common practice that during the computaticnal analysis, all the 

static and dynamic overheads are deliberately igoored since it is a 

difficult problem to include them. For these reasons we decided to 

igoore these overheads. 

Using a single processo1:' to execute the parallel algorithm version 

1.0, the time-complexity Tl is proportional to the number of keys 

inspected. If j, j = 1,2, .•. , N is the location where the target 

key is to be found then: 

Tl = j where j = 1, 2, ••• , N 



proe 1 

Proe 2 

(a) Version 2.0 

FIGURE 4.1: PARALLEL SEQUENTIAL SEARCH ALGORITHM WITH BROACASTING. 

Proe 1~-_ .--~ "', /'; 

~ __ n"' ___ '1 ~--.... n--r--_-.--_~ 
n. _______ ~c 2~~:::}',<-SA27 

(b) Version 1.0 

N 
o 
w 



Proc. Locations accessed 

N 

1 1 2 ... -
P 

N N N 

2 - + 1 - + 2 ... 2-

P P P 

· · · · · · · · · · 
N N N 

k (k-1)- + 1 (k-1)- + 2 ... k-

P P P 

· · · · · · · · · · 
N N N 

P (p-1)- + 1 (p-1)- + 2 ... p-
p P P 

TABLE 4.5: LOCATION INDEXES ACCESSED BY THE PARALLEL 
SEQUENTIAL SEARCH ALGORITHM VERSION 1.0 
PER EVERY PROCESSOR 

Proc. Locations accessed 

N 

1 1 P+1 · .. (- -l)P + 1 
P 

N 

2 2 P+2 · .. (- -1 )P + 2 
P 

· · · · 
· · · · 
· · · · 

N 

k k P+k · .. (- -l)P + k 
P 

· · · · 
· · · · 
· · · · 

N 

P P P+P · .. (- - l)P + PI 
P 

TABLE 4.6: LOCATION INDEXES ACCESSED BY THE PARALLEL 
SEQUENTIAL SEA ALGORITHM VERSION 2.0 PER EVERY 
PROCESSOR 

IV 
o ... 



205 

Since we assumed the existence (only successful searches are 

ccnsidered*), and uniqueness (ally sin;Jle-key search for multiple

key search analysis is quite similar to the unsuccessful case) of 

the key argument, then cnly ooe processor will locate the key after 

a certain number of key comparisons. Note that the number of 

iterations is also the number of keys compared by each processor 

since P such keys are compared every iteration 

and 

where i = 1, 2, N ••• , :§::: 

and k = 1, 2, ... , P. 

Tl = (k-l) !! + i. 
p 

(4.1) 

From both equations defined in (4.1) we comp.rte too speed-up Sp(i,k) 

for every key foond durinJ iteration i by processor k as 

~(i,k) 
T 

= J = 1 + !! (k-l) ! 
Tp P i 

(4.2) 

The average of the above expressicn over all the values i=1,2, •• , N 
P 

yields the average speed-up over all keys foond by processor k. We 

dernte such an average speed-up by ~(k) where 

NIp 
~(k) = N;P i~1 ~ (i,k) 

* The analysis of the case when the search is unsuccessful is a 
straightforward operation. 



206 

Substituting Sp(i,k) by its value as defined in (4.2) and computing 

the correspondin;j' summation, we obtain the following 

NIP 
Sp(k) = 1 + (k-1) L .; 

i=1 l. 

An upper b:lund f= l: 11i is derived as follows: 

then 

Nip 
Z .!.<1+ 

i=1 :j. 

Nip 

Nip 
f dx 
1 x 

L '!'<1+ln!:!-ln1 
i=1 i P 

<l+ln!:! 
P 

where In is log base e. 

Reporting (4.4) in (4.3) we get 

Sp(k) < 1 + (1 + ln~)(k-1) 

(4.3) 

(4.4) 

(4.5) 

Finally the average speed-up of this algorithm is obtained if we 

average Sp(k) aver: all the values f= k 

P 
S =.!. L S (k) 
P P k=1 P 

Substituting Sp(k) by its equivalent value defined in (4.5) we get 

an upper b:lund for the parallel sequential search algorithm average 

speed-up as 

Sp < P:1 * (1 + In!:!) + 1 
L. P 



207 

In Figure 4.2, we plotted the theoretical speed-up of version 1.0 

versus the number of prcx:essors which is superl!near* for P < ~ and e 
linear otherwise. Such a super linear speed-up is logically 

achievable since broadcasting 'kills' off unnecessary searches. For 

instance, OCXlSider the problem of searching a set of N records, N = 

8192 for a key which is located at 4097. Sequentially, the time 

complexity of the algorithm is prop::>rtiooaJ. to 

Now using two processors, this key would be found by one of the 

processors after one single key comparison. According to our 

broadcasting assumptioo, the secxnd processor wcm.d also make one 

key comparisoo. 

Therefore, the time canplexity T2 is: 

O:lnsequently, the speed-up for this particular example is 

T1 
S =-=~=4097 
PT' 

2 

which is greater than 2. 

In Table 4.7 we present the experimental timing results of the 

parallel sequential search algori thIn versioo 1.0. As predicted, the 

average speed-up is superlinear but rot as high as those theoretical 

* When the speed-up exceeds the number of processors used (see 
[Quinn 1987] for a discussion and examples of algorithms that 
achieve a superlinear speed.up. 



a. 
::I 
I 

"0 
Q) 
Q) 

a. 
Vl 

208 

FIGURE 4.2: THEORETICAL SPEED-UP OF THE PARALLEL 
SEQUENTIAL SEARCH ALGORITHM VERSION 1.0 

9000 

I 

8000 Legend 
, , , 

~ Se VI.O / 
~-- , , 

7000 Cellll!!g _ 
, 

p Ln!~ ____ / , , , 
6000 / , , , 
5000 / , , , 

- - -- -l- - - --
4000 , , , 

l, 
I 

3000 

1 , , , 
2000 / , 

I , 
1000 / 

I , , 

0 
0 2000 4000 6000 8000 10000 

Number of processors 



1-3 T1 T2 T3 T4 T5 SP2 SP3 SP4 SP5 TI T2 T3 T4 T5 SP2 SP~~ SP4 SP5 

;I> ----------------------------------------------------- -------------------------------------~.----.----------

III .01 .03 .04 .04 .05 .33 .2!5 .25 .20 .70 .02 .25 .01 .16 35.no ::l.~O 70.00 4.38 

t"' .02 .03 .05 .04 .05 .67 .40 .~O .40 .71 .02 .26 .03 .17 35.50 2."1:5 23.67 4.19 

t>:! .03 .05 .05 .05 .05 .60 .60 .60 .60 .72 .04 .27 .03 .18 18.00 2.~7 24.00 4.00 

.05 • 07 .06 .07 .07 .71 .83 .71 .71 .73 .04 .27 .05 .1 • 18.25 2.70 14.60 3.94 
",. .0. .11 .11 .10 .12 .a2 .a2 .91) .75 .74 .04 .30 .06 .20 19.50 2.47 12.33 3.70 

.0. .11 .12 .11 .11 .92 .75 .82 .a2 .77 .0. .32 .10 .22 8.56 2.41 7.70 3.'50 
-1 .10 • 13 .12 .13 .12 .77 .83 .77 .83 .78 .08 .32 .0 • .20 9.75 2.44 8.67 3.'90 ., 

.11 .12 .13 .12 .13 .'92 .13'5 .92 .8S .78 .0. .32 .10 .23 8.67 2.44 7.80 3.39 

• 11 .14 .13 • 14 .13 .7 • .B5 .N .85 .80 .11 .31 .13 .25 7.27 2.~8 6.15 3.20 

001-3 .12 .14 .14 .14 .13 ••• ••• .8:6 .92 .83 .14 .37 .14 .26 '5.93 2.24 5.93 3.19 

t>:!:t:: .14 .15 .16 .15 .16 •• 3 .a. .93 .88 .83 .14 .38 • 14 .2 • 5.93 2.18 5.93 2.8b 

lOt>:! .14 .17 .16 .16 .17 .82 .89 .88 .82 .84 .15 .40 .16 .30 5.60 2.10 5.25 2.80 

co: .14 .16 .16 .16 .16 .88 .89 .ge .88 .e. .1. .43 .20 .07 4.68 2.07 4.45 12.71 
t>:!t>:! .15 .17 .17 .17 • 17 .a8 .88 .96 .88 .8 • .21 .45 .20 .06 4.24 1.98 4.45 14.83 
ZX 
1-3'0 .17 .19 .1. .19 .1. ••• • •• .. 89 ',89 .e. .22 .46 .22 .09 4.05 1.93 4.05 9.89 

Ht>:! .17 .20 .20 .20 .20 .85 .a5 .8S .85 •• 1 • 22 .3 • • 24 .0 • 4.14 2.33 3.7'9 10.11 

~~ .21 .23 .23 .23 .23 .91 •• 1 .91 •• 1 .95 .25 .02 .25 .11 3.80 47.~O 3.80 9.64 

.22 .23 .23 .23 .23 •• 6 ~960 .9 • •• 6 •• 5 .26 .03 .27 .12 3.65 31.b7 3.52 7.92 

~ .22 .24 .24 .25 .24 •• 2 .92 .13'8 •• 2 •• 6 .26 .04 .27 .12 3.69 24.00 3.56 8.00 
oot>:! .28 .30 .30 . 2. .30 •• 3 •• 3 .97 •• 3 •• 7 .2. .04 .27 .14 3.34 24.25 3.5 • 6 •• 3 
t>:!Z 
;1>1-3 .2. .32 .32 .32 .04 .91 •• 1 •• 1 7.25 •• 8 .28 .07 .26 .16 3.50 14.00 3.77 6.13 

~~ 
.30 .32 .32 .32 .04 •• 4 .94 .94 7.~O 1.00 .31 .07 .31 .18 3.23 14.29 3.23 ~.5b 

.32 .34 .33 .33 .05 •• 4 •• 7 .97 6.40 1.01 • 31 .0 • .33 .14 3.26 11.22 3.06 7.21 

::r: .36 .37 .39 .34 .09 •• 7 .95 t .o~ 4.00 1.02 .32 .09 .33 .19 3.19 11.33 3.09 5.37 

1-3 • 36 .3 • .39 .04 .10 .92 •• 5 9.IlO 3.60 1.02 .33 .10 .34 .1. 3.09 10.20 3.00 5.37 

~!i1 .41 .43 .44 .0. .15 •• 5 .93 4.56 2.73 1.03 .33 .11 .34 .20 3.12 9.:~6 3.03 5.15 

.42 .44 .44 .0. .16 .95 •• 5 4.67 2.63 1.02 .34 .11 .33 .21 3.00 9.27 3.09 4.86 

G'lH .44 .46 .46 .14 .17 •• b •• b 3.14 2. '59 1.05 .36 .12 .37 .22 2.92 9.75 2.84 4.77 

OZ .45 .4b • 4b .10 .17 ••• • •• 4.~1) 2.65 1.07 .3. .15 .03 .24 2.82 7. t3 35.67 4.46 
:OG'l 
H .4. .so .04 .16 .20 .98 12.25 3.06 2.45 t.07· .37 .15 .03 .24 2.89 7. t3 35.67 4.4b 

1-3:0 .4. .50 .04 .15 .22 .98 12.25 3.27 2.23 1.12 .40 .18 .05 .28 2.80 6.22 22.40 4.00 

:t::t>:! .50 .!52 .04 .16 .2' •• 6 12.50 3.13 2.09 1.10 .41 .1. .05 .28 2.69 5. ·'9 22.(10 3.93 

~oo .50 .!52 .07 .18 .25 •• 6 7.14 2.71'3 2.00 1.10 .42 .1. .06 .29 2.62 5.79 18.33 3.79 

C .51 .~3 .06 .18 .26 ••• 8.~0 2.F.l3 1.96 1.14 .45 .23 .0. .03 2.53 11.'16 12.67 38.00 

<:t"' .54 • 56 .0 • .20 .2. ..6 6.75 2.70 1.93- 1.15 .57 .24 .11 .05 2.(')2 4. ·'9 10.4'5 23.00 

t>:!1-3 .55 .57 .08 .21 .28 •• 6 6.8S 2.62 1.9b 1.16 .39 .24 .11 .04 2.91 4.133 10.55 29.00 

:000 .54 • 57 .0 • .22 .2. •• 5 6.1)0 2.4'5 1.8b 1.18 .4. .25 .\3 .07 2.41 4.72 9.08 16.8b 

00 .54 .57 .11 .22 .30 •• 5 4.91 2.45 1.80 1.23 .53 .30 .17 .11 2.32 It. 10 1.24 11. 18 
HO 
0":1 • 57 .5 • .12 .2' .2. ..7 4.75 2.36 1.97 1.23 .53 .26 .18 .11 2.32 4.73- 6.93 11.18 

Z • 5. .5 • .14 .25 .03 .98 4.14 2.32 19.33 1.24 .54 .30 .20 .12 2.30 4.1l 6.20 10.33-

1-3 .60 .61 .14 .25 .07 •• 8 4.29 2.40 8.57 1.33 .62 .40 .27 .1. 2.15 3.33 4.93 7.00 

~::r: .5. .61 .\3 .25 .05 •• 7 4.54 2.36 11.90 1.32 .63 .50 .2. .22 2.10 2.64 4.55 6.00 
, t>:! .60 .62 .14 .20 .06 •• 7 4.29 3.00 10.00 1.34 .64 .41 .30 .21 2.0. 3.27 4.47 6.38 
0 .62 .63- .17 .28 .07 .98 3 •• 5 2.21 8.860 1.35 .66 .36 .32 .25 2.05 3.75 4.22 5.40 

'0 
;I> .62 .63 .16 .2. .oa ..a 3.e8 2.14 7.75 1.34 .71 .45 .32 .26 1.89 2.'18 4.19 ~.15 

~ 
.64 .~6 .21 .30 .08 •• 7 3.05 2.13 9.00 1.40 .70 .44 .31 .2. 2.00 3.18 4.52 4.83 

.66 .68 .20 • 31 .10 •• 7 3.30 2.11 60.60 1.40 .70 ••• .35 .2. 2.00 2.~6 4.00 4 .. 93 

• 67 .6 • .22 .33 .13 •• 7 3 .. 05 2.03 5.15 1.41 .71 .61 .37 .2. 1.99 2.:U 3.81 4.860 

t"' ----------------------------------------------------- -----.~ ----------------------------_ .. ---------------- N 

t>:! .70 .67 .22 .35 .13 1.04 3.19 2.00 5.39 
0 

t"' • 67 .b • .22 .3' .13 .97 3.05 1.97 5.15 AVERAGE 
'!) 

.69 .71 .la .35 .14 •• 7 3~93 1.97 4.93 

----------------------------------------------------- ----------------------------------- - ----- .. ----------
.70 .71 .24 .31 .16 •• 9 2.92 2.26 4.39 .6. .37 .22 .20 .17 3.28 4.\'6 5.83 5.52 

-------_._-------------- - ----------- - --- - - ---- -------- ---- - _ .. --------------------------- . - ..... _- _ .. _._--------



210 

values since the overheads were not included in the mathematical 

model. 

The measured static overheads (see Table 4.8) as obtained from the 

Neptune system are very negligible. Now due to the fluctuatioo in 

the timings, we have obtained 'negative' (i.e. less than zero) 

overhead figures. To obtain accurate overhead measurements we need 

to measure T1, TS and TN in exactly the same experimental 

environment. However, due to the small timing nature of our 

algorithms (round about a few seconds), these fluctuations are 

unavoidable and consequently, an overhead with a minus sign should 

not be interpreted as a gain but as a loss which could not be 

measured a=ately. 

il) Analysis of Vers.icn 2.0 

As with the previous metood, it is obvious to see that every reoord 

is acoessed by ooly ooe processor at a time. If k is the number of a 

processor, k = 1,2, ••. , P, then each processor will access for 

every iteration i, i = 1,2, ••• , !:!, the fOllowing location 

where i = 1, 2, 

and k = 1, 2, 

N ••• , p 

.•. , P. 

p 

(i-I) P + k (4.6) 

Thus, using a single processor, the time-oomplexity is also equal to 

the number of key comparisons which in this case is equal to the 

expression defined in (4.6.). The time-complexity of the algorithm 

when P processors are being used is still equal to the number of 

iterations performed and defined previously in (4.1). Coosequently, 

the speed-up for every key found by processor k is 



IJtIY 1'1 1'5 TN SDO PCO IJtIY 1'1 1'5 TN BDO PCO 
-

1::!'!i .~'='O .900 .'00 0.00 0.00 043(1:2 '!<:.:!OO :20.900 '2'1). :2')0 ••• .JJ 
2::!04 1.600 1.500 1.500 0.00 6.25 "!4o')'S !O.900 10.':;"') '2'1.700 .6:' .0:;' 
300 :!.100 :!.100 :!.100 0.00 0.00 "!":ilo'S '!1.1;l1)0 31.401) 31.600 .6! .63 
••• !.200 3.100 3.100 0.00 3013 4'!i91) '!1.9':'0 31.6(1) '2'~.MO .i!.! ." '.3 3.JO!) 3.200 3.200 0.00 3.03 '17')1 '!:!."S,)O 3:!.10!) 3:2."!00 .9.! .31 .. , 4.400 4.400 '\.400 0.00 0.00 "!'le !~.~I)O 3:2.30" 3:2.::;(1) ... ." .. , 4.600 4.'S00 4.600 2.17 0.00 "!e:!~ !·"!.'!Ol) 33.(\00 !3.;?OO .,0 .30 
no 04.900 4.eoo 04.800 0.00 2.04 048048 '!:!'.41)1) !:!' • .,.,O 13.3')1') • 9') .3 • 
7., '!i. 100 5.000 '!i.OOO 0.00 1.96 ":8eo 33.~OO 33.201) 33."00 •• 0 .30 
962 6.300 6.300 6.400 1.~9 -1.~9 ~965 ! •• ,,')I') 33.700 33.800 • :2'1' .5 • 

UOO 7.300 7.200 7.200 0.00 1.3' "!969 H.IOI) 33.71)0 33.'1'00 .:;~ .S'I' 
1380 9.100 9.000 9.000 0.00 1.10 '5037 34.'!01) 3".100 3'\.300 .5. .::;8 
14046 9.600 9.400 9.500 1.04 1.04 '3050 !04.~')0 3'1.21)0 :301.'100 .5. .2. 
1622 10.600 10.400 10.600 0.00 0.00 '!i08S "304.800 '3'1.300 3"''S00 • S7 ••• 1878 12.300 12.100 12.300 1.63 0.00 '!i377 '36.400 36.100 '36.300 • 'SS .27 
2003 13.200 13.000 13.000 0.00 1.:;2 5'32 17.300 36.900 3'.100 .S4 .S'I 
2013 13.200 13.100 13.200 • 7. 0.00 '5636 '2'7.900 3'.400 37.700 .7 • .53 
2027 13.300 13.100 13.300 1.50 0.00 '57J'5 19.400 '38.000 38.:!00 .S:! .52 
2030 13.400 13.200 13.200 0.00 1,49 '!i8:S0 39.100 3S.700 39.000 .n .26 
2061 13.,00 13.';00 13.500 .,. 0.00 '5918 J9.~OO J'.100 39."00 .7' ::!5 
2085 13.700 13.'!iOO 13.400 .13 .13 6210 . 41.100 "o.eoo '11.000 ••• .2' 
2126 14.000 13.eoo 13.900 .71 .71 6246 41.300 '10.900 ~1.200 .73 .24 
2263 14.800 101.700 14.700 0.00 ••• 62'0 041.~OO '11.100 "11.300 ••• • •• 
23204 15.300 15.000 15.2,,00 1.31 ••• 630S "1.600 011.200 '11.600 ••• 0.00 
2387 1'.600 '15.500 1,.500' 0.00 ... 6530 "2.900 012.:;00 "2.800 .70 .23 
2397 15.600 15.,0() 15.600 ••• 0.00 6623 43.'!i00 "3.000 '13.300 ••• • •• 2'595 17.000 16.800 16.900 ••• .59 6748 044.100 '\).7')0 '1".100 .91 0.00 
2604 17.000 16.900 17.000 ••• 0.00 6:t55 44.3~1) "3.800 '11t.000 .045 • •• 
2636 17.300 17.000 17.200 1.16 ••• 6768 404.:!OO 013.800 <!4.200 •• 0 0.00 
::!721 17.800 17.600 17.'00 ••• ••• 6986 04'!i.500 01'S.101) 0115.300 ••• • •• :!H8 18.000 17.800 17.'00 ••• ••• 70'S1 04'S.900 '15.400 ":'!i.800 •• 7 .2::! 
282' 18.500 18.300 18'''00 ••• .,4\ 7091 46.100 4\:5.600 "16.000 •• 7 .22 
3196 20.900 20.700 20.100 ••• • •• 7111 46.200 '1'.800 '16.100 .6::; .22 
3207 21.000 20.800 20.900 ••• ••• 7139 46.0400 '1'.900 '16.300 • •• .22 
32'3 21.400 21.200 21.200 0.00 .93 7178 46.600 4\6.200 '16.'100 . ., . ., 
3292 21.500 21.300 21.",00 .4? .4? 7409 047.'1'00 '1'.500 "J7.eoo •• 3 .:a 
3321 21.700 21.500 21.600 ••• ••• 7'304 48.600 '18.200 "'8.500 •• 2 .21 
33:!9 21.700 21.500 21.700 . ., 0.00 7607 049.000 "S.600 '!S.900 .61 .20 
3394 22.200 21.9(1) 22.000 . ., •• 0 '799 '!i0.l00 4\9.600 50.000 •• 0 .20 
3"204 22.0400 22.2(1) 22.300 ... .os 7813 50.200 '19.700 :;0.100 •• 0 .20 
'34040 22.500 2::!.201) 22 • .,00 ••• ••• 7e22 50.300 .".eoo 50.200 •• 0 .20 
!51"S :!3.(l00 22.aOj) 22.800 0.00 •• 7 7903 '!i0.700 50.200 ~0.600 .7. .20 
3~'04 23.:!00 2:!.910 23.100 ••• .43 7905 51).700 50.300 ~·1).700 .7. 0.00 
367" 24.QI)" :!3.81)1) :n.900 . ., ."2 810e :;3.700 ~·3.21)1) 'S3.6(1) .,. .1. 
38'!'·8 :!'!i.21)1) :!"!.91)1) 2'5.100 .7. .'0 8146 'S3. 01)0 '!i3.3(1) :;3.800 .. , .1. 
3899 :!'S.'!il;lt:' 2'!i.2?0 2~.300 .3. .7. 9190 ':';.°"0 5'1.600 '!i"l.800 .3t .1. 
391)'3 2'5.600 25.2')1) ::!'!i.400 .7. .7. 919::!: '!i~.1)00 5"!.50o) '!i"!.'0o) .n .1. 
30:!3 ':!'!i.tO~ :!~.'1CO ~'j.'S00 .3. . .. 
,!~56 ~~.9I)O :!~.~I)I) 1'S.700 .77 .77 
~117 ':!'?:!OO :!'?(lI)" :20 .11)0 .:!'1 .3'1 ,., ',1 E F: A. 0 E 
~t:!04 ':!9.3";-0 ~l?<;,.,o ':!0.100 ••• .oe 
"191 :20 .600 ~9.3')1) ;!9.::iI)O ••• ." $['0 f-('o 

4::!:::!:? :!9.8I:'0 :!9.'!i01) ::!9.600 ... •• 7 
• ,0 .~4 ..... -- . ..,,,.- - . ... - .- -



Sp = (i-l,)P+k = P + (k-P)/i 
l. 

212 

Prcx::eedirg in a similar manner as versicn 1.0, we first average over 

all possible values for i, obta:!nin;J the average speed-up, Sp(k) of 

the parallel algori thIn, over all the keys found by processor k 

Nip 
Sp(k) = _1_ L (P + (k-P)/i) 

Nip i=1 

which sinplifies to the follCMing 

NiP 
~(k) = P + (k-P) L ~ 

N/P i=1 l. 

or if the sum term is bounded by 1 + In ~ 

!L(k) < P + (k+P) (1 + In !!) 
-P NIP P 

'!he overall average speed of algorithm 2.0 is obtained by averaging 

Sp(k) over all possible values of k. 

P 
S <.! L P + k-P (1 + In!!) 
p P k=1 NIP P 

(4.7) 

which simplifies to the following expression after computing the 

correspondi.nJ sum: 

= 

P 
!L < P - p2 (1 + In !!) + .! (1 + In!!) L k 
. '" N P' N P k=1 

P 
L k = P(P+l) 

k=1 2. 



213 

Substi tutiIYJ the above sum in expressicn (4.7) we obtain 

Sp < P - ~ (1 + In~) + P(P+1) (1 + In ~) 
N P 2N P 

which is also 

(4.8) 

and 

Note that as N --, Sp and E'-p tend to P and 1 respectively. 

In Table 4.9 we present the experimental average speed-ups of the 

parallel sequential search algorithm version 2.0, where each line 

co=esponds to the performance of the considered algorithm when 

searching for a random key. A total of 100 such keys is searched 

and the experimental performance measurements of the algorithm are 

then computed. 

The static overheads which are negligible are presented in Table 

4.10. 

4.3 A PARALLEL 1MPLI'l-lENl'ATICN OF 'mE BINARY SEl\ROI 

In the following section, we shall consider a multiprocessor 

implementation of a well known search algorithm, Le. the binary 

search method, when searching an ordered set of records for the 

existence of a particular key. Based on the 'divide-and-conquer' 

strategy, the binary search algorithm proves to be very efficient 

when compared with the sequential algorithm. Using such a metood, 



8 TI T2 T3 T4 T~ SP2 SP3 SP4 S"' TI T2 T3 T4 T~ SP2 SP;., SPA SP~ 

~ ----------------------------------------------------- ----------------------------------_. --- --------------
to .01 .03 .03 .02 .03 .33 .33 .~I) .33 .71 .42 .29 .22 .19 1.83 2.M 3.~0 4.0~ 

t"' 
t'l .02 .04 .03 .03 .03 .~O .67 .67 .67 .78 .42 .30 .22 .18 1.8b 2.60 3.~~ 4.33 

.03 .03 .03 .04 .03 1.00 1.00 .7!5 1.00 .79 .41 .29 .22 .19 1.<13 2.72 3.59 4.10 

.... .05 .04 .04 .04 .04 1.25 1.25 1.25 1.25 .80 .43 .26 .23 .19 1.86 3.08 3.48 4.21 

.10 .08 .06 .06 .05 1 .2~ 1.67 1.~7 2.00 .83 .43 .35 .23 .19 1.93 2.37 3.61 4.37 

\0 .10 .07 .05 .05 .04 1.43 2.00 2.00 2.50 .84 .45 .31 .23 .21 1.87 2.71 3.605 4.00 

.11 .07 .07 .05 .05 1.57 1.57 2.20 2.20 .85 .46 .31 .28 .19 1.85 2.74 3.04 4 .. 47 

.11 .07 .06 .06 .06 1.57 1.83 1.83 1.83 .84 .45 .32 .24 .20 1.87 2.b3 3.50 4.20 

oot'l .13 .08 .07 .O~ .OS 1.63 1.86 2.60 2.60 .88 .48 .31 .28 .20 1.83 2.84 3.14 4.40 

t'lX .12 .08 .07 .06 .05 1.50 1. 71 2.00 2.40 .90 .47 .33 .27 .21 1 .91 2.73 3.33 4.29 

o It! .15 .10 .08 .06 .0:5 1.30 1.99 2.~0 3.00 .90 .48 .34 .25 .22 1.88 2.65 3.60 4.09 

Ct'l .16 .10 .08 .07 .06 1.60 2.00 2.29 2.67 .94 .4. .33 .26 .22 1.92 2.85 3 .. 62 4.27 

t'l:>:l .16 .10 .08 .07 .0' 1.60 2.00 2.29 3.20 .96 .52 .30 .26 .23 1.85 3.1:0 3.69 4.17 

ZH .15 .10 .07 .07 .06 1.50 2.14 2.14 2.50 .97 .4. .34 .28 .22 1.98 2.flS 3.46- 4.41 

8:;': • 1. .11 .0 • .08 .07 1.73 2.11 2.3~ 2.11 •• 7 .53 .36 .28 .23 1.83 2.1.-'9 3.46 4.22 

Ht'l .1. .12 .08 .07 .06 1 .!58 2.39 2.71 3.17 1.00 .~3 .35 .27 .23 1.89 :2:.~~ :3:.70 4.35 

~Z 
t"'8 .23 .13 .11 .0. .07 1. 77 2.09 2.~6 3.29 1.03 .56 .3. .16 .16 1.84 2.64 6.44 6.44 

~ 
.24 .15 .10 .08 .09 1.60 2.40 3 .. 00 3.00 1.01 .54 .39 .30 .23 1.87 2.!5'9 3 .. 37 4.39 

oot"' .24 • 1' .11 .10 .oa 1.71 2.18 2 .. 40 3.00 1 .. 04 .55 .4 • .2. .24 1.89 2.12 3.~9 4.33 

t'l • 30 • 1 • .12 .10 .10 1.67 2.50 3.00 3.00 1.01 .75 .50 .2 • .26 1.43 2.14 3.69 4.12 

~8 .32 .18 .13 • 11 .0. 1.78 2.46 2.91 3 .. ~b 1.06 .58 .38 .2. .25 1 .133 2. '19 3 .. 66 4.24 

:>:lH .33 .20 .14 .10 .0. 1 .6~ 2.36 3.30 3.67 1.09 .56 .'0 .31 .46 1.95 2.73 3.~2 2.37 

0:;': .34 .19 .14 .12 .10 1.79 2.43 2.83 3.40 1.07 .43 .3. .31 .27 2.49 2.14 3.4~ 3.96 

:1:H .3. .21 .15 .13 .12 1.86 2.60 3.1')0 3.25 1.11 .58 .40 .30 .2b 1.'91 2.78 3.10 4.21 

Z .40 .23 .16 • 13 .10 1.74 2.50 3.013 4.00 1.11 .5. .40 .30 .24 1.88 2.7a 3.70 4.63 

~G'l .47 .25 .17 • 15 .12 l.aa 2.76 3.13 3 •• 2 1.13 .5 • .40 .18 .17 1.92 2.83 b.28 6.b~ 

G'l:>:l • 45 .25 .1 • .15 .12 1 .. 80 2.37 3'.00 3.75 1.12 .~3 .3. .27 .3b 1.18 2.97 4.15 3.11 

Ot'l .'8 .26 .18 .15 .13 1.85 2.61 3.20 3.69 1.16 .5. .41 .32 .26 1 .. '97 2.83 3.b3 4.4b 

:>:lOO .48 .27 .1. .14 .12 1.78 2.53 3~'41 4.00 1.160 .61 .47 .32 .26 1.'90 2.47 3.63 4.460 

HC .53 .28 .20 .15 .15 1.8. 2.65 3.53 3.53 1.17 .61 .41 .32 .28 1 •• 2 2.8~ 3.66 4.18 

8t"' .53 .2. .21 .lb .15 1.83 2.52 3.31 3.53 1.22 .~4 .43 .33 .28 1.91 2.94 3.70 4.36 

:1:8 .52 .2. .21 .16 .15 1.79 2.48 3.25 3.47 1.20 .50 .43 .34 .27 2.40 2.79 3.~3 4.44 
:;':00 .55 .31 .21 .1. .13 1.77 2.62 2.8'9 4.23 1 • 19 .70 •• 3 .33 .27 1.10 2.77 3.601 4.41 

<:0 .56 • 30 .11 .16 .14 1.81 ~ .. O'9 3.OS0 4.00 1.2~ .71 .50 .3. .2 • 1 .. 76 2.~0 3.21 4.31 

t'l'"'J .5. .33 .22 .17 .15 1.7'9 2.68 3.47 3.'93 1.27 .83 .46 .37 .35 1.!S3 2.76 3.43 3.63 

~8 
.bO .32 .20 .17 .IS 1.138 3.00 .1.~" 4.00 1.2~ .68 .46 .36 .39 1.84 2.72 3.47 3.21 

.58 .32 .21 .17 .IS 1.e1 2.16 .1.41 3.81 1.2'9 .69 .47 .37 .29 1.87 2.74 3.49 4.45 

H:1: .60 .33 .22 .17 ." 1.82 2.13 3.!'S3 4.00 1.32 .68 .46 .36 .34 1 • '94 2.87 3.67 3.138 

Ot'l .61 .33 .23 .18 .16 1.85 2 .. 65 3.39 3.81 1.34 .71 .32 .37 .30 1.8'9 4.19 3.62 4.47 

Z .~4 .34 • 23 .1. .16 1.88 2.78 3.:";7 4.00 1.33 .55 .4. .37 .2 • 2.42 2.71 3.59 4.!S9 

It! .62 .35 .25 .1. .12 1.77 2.48 3.26 S .. 17 1.44 .76 .55 .38 .34 1.8'9 2.62 3.79 4.24 

'.> ~ 
~) ~ 

.b' • 35 .2' .1 • .14 1.83 2.67 3.37 4.S7 1.43 .75 .54 .26 .37 1.91 2.6~ 5.50 3.86 

.66 .3b .24 .19 .Ib 1.83 2.75 3.47 4.13 1.4b .80 .51 .47 .16 1.83 2.9b 3.11 9.13 

t"' .67 .35 .25 .1. .16 1.91 2.68 3.53 4.19 1.45 .bO .52 .41 .38 2.42 2.79 3.!S4 3.82 

t"' .68 .3b .24 .20 .17 1.89 2.83 3.40 4.00 1.~0 .78 .28 .41 .33 1.92 S.30 3.66 4.!S5 

t'l .b. .38 .21 .20 .18 1.82 3.29 3.45 3.83 1.52 .7. .55 .41 .34 1 •• 2 2 .. 76 3.71 4.47 

t"' .71 .38 .27 .21 .17 1.87 2.63 3.38 4.18 1.52 .8~ .55 .45 .38 1.7. 2.76 3.38 4.00 

.74 .3. .25 .23 .17 1.90 2.96 3.22 4.35 1.53 .80 .54 .42 .45 1 .91 2.83 3.64 3.40 N .... 
----------------------------------------------------- ---------------------------------------------------- .... 

.7' .40 .27 .21 .17 1.8~ 2.74 3.~2 4.35 

• 77 .3 • .27 .21 .18 1. .97 2.85 3.61 4.28 AVERAGE 

.7' .39 .28 .21 .18 1 • .c;.O 2.b4 3.52 4.11 

----------------------------------------------------- -----------------------------------' ...... --------------
.78 .41 .28 .22 .18 1.90 2.79 3.55 4.33 .75 .40 .29 .22 .1. t. 79 2.58 3 .. 2~ 3.82 

----------------------------------------------------- ---------------------------------_ ....•. _._--_._---------



~------------------------------------

..... 
o .. 

I1IEY 

!~-:; 

::!:4 
'!.,~ 

4~,? 

A~! 

~t.! 
';!Jl 
,?"!., 
:' ~ 1 
o~:! 

~~0'" 
n~0 
144!> 
1b:;t~ 
187C 
21)1)3 
2011 
:!~~.., 

':11)'!1) 
20·!1 
~I')e~ 

2126 
226'3 
:!l,4 
'2~fn 
:?397 
~S9!i 
:6()4 

:!636 
:!7:!1 
'2749 
:!9:!:7 
'31°6 
''2~7 
'3::!73 
:!'2a :! 
'!:r~! 
,!!~o 

:r'!"'" 
34:24 
-:! 4 " .... 
'!"::!'! 
!':S" 
'!~..,.., 

!'!2':~ 
:!!lC)f' 
-:!QI:7 
": - -,-: 
-:! ~"5 ~ 
• " 

>~ 
• .. 

Tl 

,oI)l) 

t • ?f)f) 
:! • 11)1) 
!.:!I)I) 
1."31)1) 
4.~{'\O 

4.600 
'.900 
~.11)f) 

~.41)1) 

"',!I)I) 
0.100 
0.61)0 

11).71)0 
12.41)') 
1'?:!1)1) 
13.300 
13.400 
1'!.4~O 
t'3.600 
n.?OO 
14.000 
14.901) 
l!o.301) 
1S.S00 
15.900 
17.000 
17.100 
17.300 
le.~oo 
le.MO 
19.600 
'21,000 
21.1(1) 
:H • '500 
21.600 
~l.el)r; 

'21.9(1) 
:!':!.'!I)I) 
:?:!. ~oo 
'2'2. ~.,o 
~'! .1(1) 
:::!!.:!~t:> 
~ \ ,:!I)'" 
:2:-: • -:!,~. ~ 
:''':. . ! ,~,-: 
~':.~')o') 
:.'!":' . "1.,1) 

:!:':. .)~ 

~~ . ':'0: 
~.,:" ~.) 

:-:: ~"! 

TS TN SDO 

• $J"'I) .9"" 11.11 
1.':"1) 1.:-:-0 ·).00 
:!.!"" :?!"" 0.00 
! .1'')0') !.::!I)" ! .1'3 
'2: .11)0 3.::!1)1) -3.1)3 
~ . ::")., "!.~"" -:!.2::! 4.':..," ~.600 ::! .17 
4.~.,1) ".91)/) :!.O-\ 
'5./)1)" S.t'OI) 0.00 
6.!1)0 6.~04) 1. :56 
~ ,!-:O 7.300 0.00 
9.1"" 9.101) 0.00 
9. '1')1) 9.~OI) 1.0" 

10.61)') 10.601) 0.00 
12.300 1:!.~00 .81 
13.01)1) 13 .10/) .76 
1'3.21)1) 13.:!00 1).00 
1'3. :!/)O 13.300 .7'j 
11: .201) 13.31)0 .7j 
1'!.~"() 13.'!iOO .7., 
13 .600 13.700 .73 
13.9')0 1".000 .71 
1'! .aoo l~.aoo 0.00 
t!i.201) l!i.200 0.00 
l::.S,"," l!i.,QO 1.27 
1:::;.60/) 15.7~0 .63 
16.900 17.000 .59 
16.900 17.100 1.17 
17.:!1')0 17.~OO 0.00 
1" • !, I)') 17.800 1.11 
1'.9')1) 11.900 0.00 
18 •• 1)0 19.'500 .:;4 
:!O.SI)O :!O.90/) .'8 
'20.900 '20.9/)0 0.00 
:H .200 :!l.~OO .47 
'21. ~I)O '21.500 .46 
:!1 .6')1) '21.7(1) .46 
::!!. 600 21.700 .<6 
:!:!.OOO :'2.'200:- .90 
:!:? • ]",0 :2'2.300 0.00 
'22.3')0 '2:!.~OO ••• '2'2.91)1) :21'.1)01) .43 
~!.61)" =3.!"" .43 
:!!.~')" 2'\.1)0: .. 0 .41 
:-::.1':"1) ::.2';)1j .'0 
::-:. ,!.~ . ., :~. ,\,~~ .29 
:!': • :! ')1:0 :: .:0:'0:' .79 
~~ .0:0)':' :': • 7')-:' .7B 
0" -':"~ :~ .~,,-:, .33 
:0:- , ~ : ': :-:'1. :'-:') !~ • .,.:. 

1';) . ! ~', :!'? :':,:. .:!1 
.:~ , ~ ~ :".:;'1)0:- .~, 

IKEY Tl TS TN SDO 

PCO ·c::!: ::~.1 ,1')')0 ::!.:l.l.,;.? :!'? • ~O-';, .23 
,~ ~ ; ':. -: >':' !~.1r)1) '!i) . ,!,)~, .::.6 
I <~ 70. 0")1) '!O.7C''' 20.20':- .'!::! 0.00 .. . '!-1.~:0 !!.!-OC' 11. 7-'" .!l 11.76 -.-
'":~I) :!:?f)~1) !1.7(;·1) !l. el)') .31 O.~~ 
"'"1;1 !:?!-t"" :?::!."'Ol) !::! • ':0(' .:!! .) .0·) 
""!9 12.7"'0 3:!. "C., 7:. :I~I) .::1 3.03 
"'~7.':. !1,"-1)1) '32.11)1) -::"! .:!.')":- · ;::.) 2.2::! 
"~~9 !!. ~.,.., !!.~I)t) "22.::"0 .::.) 0.00 
~ee') "!3 • .,.t)? '32.!00 72. ':1)" .:'? 0.00 

!4.1~" "!:! • ~~ . .-:, '!',':'''I) '0 ~o.!~ · -. 1.96 
"!96~ "! 4. :!-::-I) '!:! .901) !!,9')o:" .29 0.00 ! .... ~I)., ,!~.:!Ol) :!~.,!I)I) -0 ~I)!'" 

· -" 0.00 
,:,~,:r; '3~. H'", !,\.,!I)I) ,!'!.~Oi) .~a 0.00 
o::~.~~ '!4.BOO 21.0;;:01) !'!.~.,O .:!9 1.0. 
':3':"? '!6.!;OO 36.:!O? 36.300 .:!7 .93 ..... .,., 37.400 'Z7.0I)O :!7.:!OO .~3 0.00 
~oI .. _ 

':f:!t 3e.OOO 37.'00 !7.SI)O .26 .76 
:!9.~1)0 '!e.l,)" !:! • :!'I)': ., ':7!~ ._-.7:; 

~e-J,) !9.2(1) ,38.91)1) 29.000 .26 .75 
~~le :!~.:;OO '39.200 '39,~OO .Sl .73 6210 41.200 "0.900 ~1.000 .2" ." !.:!46 41.~OO ~l.:!I)O ~1. 300 .:!4 0.00 
6:!:"O 41.600 ~1.300 ~l.~OO .:!4 0.00 6!08 41.900 "1. ~oo ~l.'!iOO .2~ .67 
~530 ..,3.100 .,~.aoo ~Z.900 .23 .65 
b623 43.600 Jl3.200 Ill."O/) .~6 .63 
6'4~ 44 • ..,1)0 JI~.OOO ""~.100 .23 .63 
67~':i 44.400 ~1.000 "'~.lQO .23 0.00 
67~B 44.400 "".000 ~".:!OO .45 0.00 
!>99~ 4~. 700 ~~.JOO ~:; • .,O~ .Z:! .!is 
:"051 46.100 ~5.700 ~S.800 .~~ 1.11 
7091 46.200 4'5.900 "6.100 .43 .'!i6 
7111 46.400 ..,6.100 "6.100 0.00 • ~4 .. 

46.':iOI) 1\!..100 "!!..300 .'3 ~13° .'B 7178 .,6.1300 "6.41)0 "£I.~I)O .:!1 .95 
"409 48.100 "7.700 ~7.900 .4:! . ., 
~'!i'!4 48.£'00 ~a. 400 ~8.500 .'20 .46 ,,!,O? 49.300 '8.eoo ~9.01)0 .41 .46 
"7'~~ :;0.31)0 ~O.OOI) SO.100 .'20 .46 !'1?1'! ~0.41)0 '!iO.OOO SO .100 .:!') .4'!i 
,~:!:! 51).400 :;0.000 '51).200 .'0 .B9 :",o{'J ~!'.9I)O :::O.SOIl) ':iQ.tOI) .20 .aB 7°,=,,,:, Sl.t-OO O::Q.~OO ~.,. t,"O .'20 .<3 g11)! ::2.91);:'- ':j3.':iOO ';J.tOO .19 .~6 el .. ~'.100 53.700 ~::!.""I) 0.00 • a3 9190 ::'.3~0 5'.900 ':is.CCO .36 .~o 
~19~ ~'.300 :;".aoo ::~.OC'{I .3. .7B 

• l9' 
<:",':'0 

~ .77 " E R ~ ~ E 
.3~ 
.3~ SDO 
.31 

.~1 
.. 

PCO 

•• 7 
o .r:,.r) 

.3.2-
• :51 
.0':;' 
.:1 
•• 1 
•• 0 
•• 0 
,!:i9 
.::!? 
.BB 
.:!9 
.29 
.~7 
.:i~ 
.~3 
.S3 
.~:! 
.Jl 
.:!:I 
.49 
.4B 
.48 
.9~ 

.4. 

.46 

.6B 

.68 

.J\S 

.66 

.65 

.22 

.05 

.'3 

.64 

.-1:2 

.61 

.61 

.I!O 
•• 0 
.40 
.::;9 
.78 
.:;6 
.7~ 
.~4 

.'!i~ 

F'CO 

.6t._ 

N .... 
en 



216 

the total search time can be considerably reduced to log (N)+l, 

where N is the size of the set. 

Basically, the binary search divides the set into two subsets and 

compares the key with the element at the middle posi tico of the set. 

From the result of this comparison, it is possible to determine 

which of the two subsets the key being sought belongs to, then 

ooncentrates co1y co that half. Q:rlsequently, the interval. size is 

at least halved at each iteration, so the total search time 

complexity is prop::n:l1COal to log (N)+l, where N is the size of the 

original set of records. 

'llle sequerx::e of key compariscos made by the binary search algorithm 

is predetermined. More specifically, it is based on the value of 

the key being sought and the value of N. Thus, if a structure is to 

be used to represent all these dec1sicos, coe woold ch::lose a binary 

tree st:ructure.. . For example, to search a tel~ directory, for a 

name starting with S the following binary tree describes the 

oompar1sco structure of a possible search. 

FIGURE 4.3: A BINARY TREE REPRESENI'ATIClII OF THE Cl)MPARISCN DECISIONS 



217 

For the parallel implementation of the binary search algoritlun we 

suggested and analysed three different versions of parallel 

algori thms based on the partition of the original set of records 

among the P available processors. The first version allocates to 

each processor k, k = 1,2, ••• , P the records stored at the 

following locations: 

(k-1) !':! + i 
p 

where i = 1,2, ••. , !':!. The disadvantage of such a version lies in 
p 

the fact that all the processors will soon become idle (and that 

after a single key comparison) while only one is searching the 

subset which is likely to contain the target key because all, except 

one, found that the key is outside their subset and there is no 

reason to carry on seaching. The second versicn which allocates to 

each processor k, k = 1, 2, ••• , P the following locations: 

(i-1) P + k 

where i = 1, 2, ••• , ; removes the above anomaly and consequently 

keeps all the processors busy until the key is found by cne of them. 

However, cnly cne processor is performing useful work (search) since 

we krx:lw that the other searches are failures. In the l.ast version, 

we approached the problem differently from the two previous cnes. 

In the two first versions, once the set is partitioned, each 

processor will perform the binary search algori tlun until the key is 

either found or not. However with version 3.0, each processor 

performs a single iteration of the binary search. If the key is 

found, then the algoritlun terminates successfully, otherwise one of 

the active processors defines the bound l.ocation .indexes of the new 

subset that is likely to contain the desired key. In the case that 



218 

the key is rot yet found, this new subset is then partitioned into p 

smaller subsets and the process continues until the key is found. 

Consequently, this version has the advantage that the size of the 

set to be searched in the next iteratien decreases much faster than 

in the other two versions. In versions 1.0 and 2.0, the subset is 

halved into two porticns in every iteratien whereas it is divided by 

2P in the third versico. 

The analysis of each version, as well as experimental results 

obtained when implemen~ the algorithms en the Neptune system, is 

discussed in the follCM!ng sub-secticns: 

4.3.1 PARALLEL B:rNARY SEAROI VERSICNS 1.0 AND 2.0 

We assume, for simplicity in the analysis, that N, the size of the 

set, and P are powers of 2. A model f= the parallel binary search 

en an MIMD multiprooess= with negligible overheads is as follows. 

Using a single prooess=, it takes at least log N+1 key compariscns 

in the w=st case to determine whether = rot a given key exists. 

With P processors in use, where each of which applies the binary 

algorithm to search a subset of ~ elements, we require, in the worst 

case, log ~ + I key comparisons. Thus, the speed-up in the worst 
p 

case is 

T 
S =_1~logN+1 
P T ~ N 

P logp+1 

log p 



.... 
IV 

IKEY Tl T2 T3 TS BP2 SP3 8" 
H)7 ~/).61<) 1 0 .31)1) 11.~1)1) l!.OOI) 1.1)67 1.177 1.1'1'1 
122 :?I) .101) le.7/)I) 1 B.600 17.4/)1) 1.075 1.081 1.155 
]7, 17.1"0 15.81)0 19.'300 15.300 1 • .,S2 .886 1.118 ·.3 zo.'!.')/) 10 .21)0 18.801) 11,91)1) 1.068 1.090 1.145 
~34 21).000 11:!.601) 17.100 17.21)1) 1.1)75 1.170 1.163 
610 19.900 1B.b"" 19.']01) 17.300 1.070 1.031 1.150 
615 20.700 19.301) 19.600 18.000 1.073 S .056 1.150 
75<1 20.100 18.700 18.900 11."00 1.075 1.063 1.1:5:5 
783 20.600 19.301) 18.700 180100 1.067 1.102 1.138 
7.' ZO.0400 18.900 11.900 17.800 1.079 1.1040 1.1"6 

1097 21).600 1'.201) 1~.:;00 18.000 1.013 1.329 1.1'104 
1108 18.300 17.11)1) 17.500 16.100 1.070 1.0046 1.137 
1170 20.000 18.6"0 18.700 17.200 1.0ni 1.070 1.163 
1310 19.800 18.500 19.200 17.200 1.070 1.031 1.151 
1412 18.300 17.000 15.600 15.900 1.076 1.173 1.151 
H19 20.600 19.200 17.000 17.900 1.073 1.212 1.151 
H66 20.000 18.600 18.600 17.200 1.075 1.075 1.163 
1490 19.800 18.600 18.700 17.300 1.065 1.059 1.1045 
1512 16.900 15.600 18.900 1".700 1.083 .894 1.150 
1523 20.600 19.200 19.100 17.900 1.073 1.079 1.151 
1611 20.500 19.100 11.200 17.800 1.073 1.192 1.152 
1633 20.300 18.91)0 18.100 17.600 1.014 1.086 1.153 
1655 2".600 19.100 18.700 18.000 1.019 1.102 1.1"" 
1193 20.000 18.700 17.000 11.200 1.010 1.176 1.163 
1829 20.600 19.300 18.500 17.800 1.067 1 •• U 1.151 
19:;8 20.000 18.601) 19.~00 11.200 1.015 1.031 1.163 
ueo 18.0400 1101"0 16.900 16.000 1.076 1.089 1.150 

------------------_.---.. _-----------------------------------------------2079 20.200 19.9t)0 16 • .lj00 28."00 1.069 1.232 .711 
2119 ~o.soo 19.200 17.100 28.600 1.068 1.199 .111 
2201 20.400 19.21)0 1,.100 28.600 1.062 '.299 .113 
223-4 19.900 18.700 18.600 "1.7.900 1.06" •• 070 .713 
2363 20.500 19.200 19.300 28.800 1.069 1.062 .112 
2454 19.800 19.500 17.100 28.100 1.070 1.158 .705 
:!~36 16.700 15.500 19.800 25.000 1.077 .918 .668 
2563 20.700 19.500 18.800 29.300 1.062 1.101 .706 
263:! 16.700 15.700 18.700 2~.300 1.064 .893 .660 
2933 20.600 19.200 27.600 29.200 1.073 .1046 .705 
2998 19.900 18.700 29.100 '7.900 1.0604 .614 .713 
3021 20.600 19.200 2'1.800 28.100 1.013 .691 .718 
3089 20.500 19'''00 27.100 29.800 1.057 .756 .712 
'3092 18.300 17.100 22.900 25.800 1.070 .799 .709 
3096 16.800 15.800 29.600 1.,.900 1.063 .568 .615 
3141 20.600 19.31)1) 29.800 28.600 1.061 .691 .720 
3148 18.300 11.21)1) 30.000 25.800 1.1)604 .610 .709 
31:11 20.300 19.11(1 29.700 '8.600 1.063 .6e.- .710 
32:;0 19.900 19.91)0 29.100 28.200 1.0~9 .610 .706 
'329~ 19.800 18.100 29.800 27.900 1.0~9 .6611 .710 
3324 18.500 17.100 29."00 25.600 1.082 .62. .723 
3364 19.200 17.11)1) 29.900 2'!o.500 1.064 .60. .114 
3385 21).400 19.21)1) 29.200 28.500 1.062 .... .716 
341)0 16.800 15.51)1) 29.900 2'5.21)0 1.084 .562 .661 
3838 2').000 19.1)1)1) 2,).100 ::>8.81)0 1.0~3 .. ." .6904 

IKEY Tl T2 T3 TS SP2 SP3 SPC 

04121 ~t .21)1) 31).100 ~6.001) 2',0401) .704 .815 .721 
4194 20.61)1) 31) ,'!.,o 31.1}1)1) 29. 7 1)0 .680 .66~ .?te 
"!20'5 21.31)1) 31).~(\1) ·31.~OI) 2 0 .600 ,"..,3 .6"S ,"21) 
"1223 Z".!oOI) '3".201) 20 .11)0 28.900 .67 0 ,7,)" ,7')0 
42'33 21.'!"1) 3/).']1)1) 20.600 :!CJ.2I)O .703 .721) ,"20 
4280 17.501) 25.71)0 26.101) :15.300 .681 .670 .60 2 
J!,,09 21.101) ']0.600 30.300 20,401) .6<;'1) .606 ,718 
04:5:58 20.601) 30.300 2~.800 28.61)1) .681) .70 1) .72') 
~579 21.100 29.901) 26.300 2Q.91)0 .71)6 .802 ."06 
~605 21.301) 30.100 30.30<'.) ~9.~00 .71)8 .71)3 .722 
047041 21.200 31.~01) 29.200 29. 0 1)0 .673 .726 .709 
"'176 17.201) 2'3.700 30.700 2'5.1"0 .669 .'560 .68:; 
04800 12.S00 22.600 28.700 21).600 .553 .436 .607 
4802 20.700 30.:;00 29.900 28.800 .679 .6'2 .719 
~8045 21.100 30.100 30 • .,00 29.200 .701 .69" .723 
"892 20.500 30.100 30.600 28.500 .681 .670 .719 
"1903 21.100 30.800 30.000 29.500 .685 .703 .71S 
4947 21.200 30.300 30.100 29.400 .700 .70" .721 
5162 20.500 30.500 28.200 28.400 .672 .n7 .nz 
5183 20.500 30.800 28.400 ::>9.000 .666 .722 .707 
5206 20.600 30.000 7.9.000 28.600 .687 .710 .720 
5289 21.100 30.200 30.100 29.400 .699 .101 .718 
5386 '20.600 30.100 29.500 28.600 .671 .6" .120 
539" 20.:500 30.000 30.100 28.500 .683 ... ~ .719 
5485 21.100 31.200 30.600 29."100 .676 ••• .118 
5525 21.200 30.900 28.600 29.800 .686 .7'" .711 
5553 21.000 30.500 30.700 19.'-00 .689 .6(14 .114 
5726 20."00 29.300 29.100 28.600 .696 .101: .113 
''121 21.400 31.200 26.200 29.100 .686 .811. .13S 

-------------------------------------.----------------------------------. 6292 18.900 28.300 29.100 26.000 .668 .649 .121 
6311 21.200 30.700 29.900 29.100 .691 .109 .n9 
6439 21.100 31.300 30.100 29.900 .67-4 .101 .130 
67404 11.300 25.S01) 30.800 "1.5.600 .678 .:;62 .676 
61ge 20.400 30.000 25.700 28.400 .680 .79" .118 
6888 17.300 25.700 30.000 25.S00 .673 .5n .678 
1034 20.600 30.600 30.500 18.300 .613 .67$ .n8 
7161 21.300 30.900 25.800 29.100 .689 .826 .132 
72"0 11.300 25.600 30.500 2~.800 .676 .567 .671 
13"1 21.300 31.100 29.900 29.200 .685 .712 .129 
1345 20.900 30.500 28.200 '8.500 .685 .1"11 .733 
7375 20.900 31.200 29.100 28.700 .670 .704 .12e 
7388 18.900 28.400 29.900 26.000 .662 .629 .?23 
1512 11.300 2'5.600 30.800 '5.500 .676 .!O62 .678 
180" 18.900 28.100 30.900 25.100 .673 .612 .13' 
7855 20.800 30.600 30.000 28.700 .680 .6f3 .725 
1985 21.100 30.200 29.500 29.200 .699 .115 .723 
8028 19.000 29.500 28.900 25.800 .667 .657 .136 
8155 21.0400 30.701) 2'5.900 29.31)0 .697 .826 .130 

'WERAOE 

19.869 23.119 25.071 25.050 .983 .e31 .829 



IltEY Tl Ta TN SDO PCO 

107 ~".60" 18.301) 1S.1I00 ••• 10.68 
122 :!O.OI)O 17.800 17.80') 1).00 11.00 .. 376 17 .100 1-1..700 I'! .800 .58 13.4:; 
<63 20.:500 18.200 18.]1)0 ••• 10.73 
53' 19.91)0 17.600 17.700 .0:;0 11.1)6 
610 19.901) 17.600 17.600 0.00 11.56 
6" 20.700 18.400 18.500 ••• 10.63 ". :00.100 17,900 17.800 -.so 11.44 
7.3 20.600 18.300 18,<\00 ••• 10.68 
79' 20.3/)0 113.000 18.000 0.00 11.33 

1097 :!o.:;oo 18.200 18.-100 ••• IO.:!" 
1108 18 • .400 16.100 16.100 0.00 12.,0 
1170 21).000 17.600 17.700 .50 11.~0 
1310 19.900 17.600 17.700 .~O 11.06 
14t2 18.1100 U.tOO 16.100 0.00 12.~0 

1"19 21).500 18.200 18.300 ••• 10.?3 
1.466 19.900 17.600 17.700 .50 11.06 
1.490 19.900 17.500 17.600 .50 11.56 
1512 16.800 101.500 1<1.600 .60 13.10 
1523 21).600 18.400 18."100 0.00 10.68 
1611 20.500 18.300 18."100 ... 10.2" 
1633 20.200 17.900 18.100 ••• 1'0.110 
165~ 21).600) 19.300 18.200 ~ • .4q 11.65 
1793 2~.100 17.800 17.800 0.00 11.4.4 
1929 20).501> 18.21)0 18.300 ... 10.7'! 
1958 :!t).I)I)~ 17."00 17.701) C.OO 11.S0 
19(10 HI • .4I)O 16.101) le. I/)o) 0.0)0 12.:;0 
:!O79 :!I).:!OO 17.800 te.OI)O ••• 10.89 
2119 :!/).'!il)/) 19.200 18.200 0.00 11.22 
2201 ~O • .4"1) 1 a, lOO HL200 ... 10.78 
:!2'!" 19.£101) 17.601) 17.600 0,00 11.11 
236J :O~, 41)1) 18.200 18.20" 0."0 10).78 
~':4 t9,R"0 17 ,':j"1) 17.'501) 0,00 11.62 
:!'j36 H."''''' 1 ~ .1l01) 1", ~11) 1).00 13.17 
2'!'~~ 21)."'J0 HI. 3')0 la,~.,o ,.7 10.63 
26'!2 1~."':''' 1~.";1)0) P.~')? -.6') 13. " 
~9J:! :'~ ,';':'" le.:!('1) tEl,'!"1) t:- ')1') 10.7'3 
2Qq9 1°.~~" 1'7."'''1 P.~')O 1,1,')1) it.!! 
'31):!\ ::!I).,:.I)I) ~ g. :!"I) le. '!')o ':'.1)1) 10.n 
3t;'E!? :'1). -;:1)1 1~.2"1) 1~: . :.'/)/) ~ .CC' 1~.71 ,.,Q:O 1 !l,,!'~1) t!. ,.,,) 16.M1 ., ('.\ 12.'57 
31)Q!, !!- • "':''1 1 ~ . ":.,,, 1-'.,:/1)1) ,.,.f)1) 1'! .l-
31011 :,,,,::.':-1} lB. ~'}? !~.=·iO ",')~ 1 t .12 
31.48 18.JOO I~.~I)O 16.100 1.09 12.02 
31'S1 20.21)1) 19.01)1) 19.000 1).00 10.89 
3250 :!O.I)OO 17.700 "7.700 0.00 11.~O 
3Z82 lo9 .900) "".SOO 17.600 .,. 11.~6 

33211 18.300 16.000 16.11,)0 .55 12.02 
336.4 18.300 1'5.901) 16,1)I)? .~'S 12.:;7 
2395 20.300 18.000 t9.1?0 ••• 10.84 
3.00 16.800 III •• 00 1".:'00 .60 13.69 

IXEY Tl TS 
.- -

3838 :;!O.100 17.eeo 
.,121 21.100 19.900 
419" 20.700 19.300 
~20:; 2i.:!OO 18.900 
~223 20.:;00 18.200 
'!233 21.300 1".000 
,,280 17.400 15.100 
H09 21.100 18.900 
11:;:;8 :;!O.600 18.300 
"579 :!1.200 IB.800 
"60' 21.300 19.100 
.,7111 21.200 18.800 
.,776 17.200 H.900 
.4800 12.600 10.300 
11802 20.600 18.300 
1l8.45 21.100 18.800 
"1882 20 • .400 18.100 
.4'03 21.100 18.800 
.490 21.100 18.900 
5162 20.'00 19.200 
5193 20.500 19.300 
5206 20.'00 18.200 
5289 21.100 18.900 
5386 20.600 18.]00 
5394 20.500 18.200 
5"85 21.200 18.800 
5525 21.200 18.900 
5553 21.000 18.600 
5726 20.300 18.100 
'923 21.200 19.000 
6292 18.900 16.600 
6371 21.200 18.900 
6439 21.000 18.600 
6744 17.300 15.1)00 
6198 20.500 18.100 
6899 17.100 1"1.900 
703.4 20.500 19.JOO 
?161 21.200 19.000 
72110 11.300 1~.000 
73111 21.200 19.900 
73.45 20.800 18.500 
7375 20.900 19.600 
73a8 '18.900 It.~OO 
7~12 17.200 1'5.000 
790.4 18.900 16.500 
7855 20.81)1) 18.".j00 
799:5 21.1)00 18.81)0 
8028 19.000 16.71)1) 
8t~~ 21 • .401) 19.01)0 

~--~ -,. --

TN SDO 

17.801) 0.00 
19.900 0.00 
18. ~I)O ••• 
1'1'.000 .<7 
19.:!OO 0.00 
19.000 0.00 
15, tOO 0.00 
18.900 0.00 
18.300 0.00 
18.900 .<7 
19.100 0.00 
19.000 ••• H.900 0.00 
10.300 0.00 
18."00 ••• 18.900 .47 
18.200 ••• 
18.900 .47 
te.900 0.00 
18.300 ••• 
19.300 0.00 
18.300 ••• 18.800 0.00 
19.300 0.00 
18.200 0.00 
19.000 ••• n.ooo .47 
ta.800 . ., 
18.200 ••• 19.000 0.00 
16.700 .OJ 
19.000 .47 
18.700 ••• 15.000 0.00 
18.200 ... 
1~'.()00 .~9 
19.300 0.00 
19.100 . ., 
15.000 0.00 
19.000 .47 
18.700 ... 
18.71)0 .<. 
\!I.MO .S3 
1'5.1)00 0.00 
16.600 .~3 
llJ.'jOO 0.1)t) 
113. 0 "1) . '. 16."01) I).O/) 
t 9.11)1) ," 

.zQ 

PCO 

ll."~ 
10.43 
11.11 
10.38 
11.:!:! 
10.90 
13.2Z 
10'''3 
11.17 
10.8:; 
10.33 
10.38 
13.37 
18.25 
10.68 
10,"3 
10.78 
10.43 
10.43 
10.73 
10.73 
10.73 
10.90 
11.17 
11.22 
10.38 
10.38 
10."8 
10.3" 
10.38 
11.6" 
10.38 
10.95 
13.29 
11.22 
12.28 
10.73 
9.91 

13.29 
10.38 
10.10 
10.11) 
12.17 
12.79 
12.17 
11.(\~ 
11) ,()I) 
12.11 
1~. ,,-=, 

11. ,!,::. 

N 
N 
o 



,-------------------- ------------ ---

221 

Table 4.11 shows the theoretical speed-up Sp and efficiency Ep 

versus P when N = 8192 records. 

P 2 4 8 16 

Sp 1.CY77 1.167 1.273 1.400 

~ 0.538 0.292 0.159 0.087 

TABLE 4.11: EXPECI'ED THEORETICAL SPEED-UP AND EFFICIENCY OF THE 
PARALLEL BINARY SEARrn 

Experiments en the Neptune system have srown that for both versicns 

of the parallel binary search, the average speed Sp' p = 2,3,4 is 

less than unity, see Tables 4.12 and 4.14. 

From both theoretical and experimental points of view, the parallel 

binary search versicns 1.0 and 2.0 achieve poor average performance 

results. Theoretically though (see Table 4.11), there is a slight 

increase in speed as the rrumber of processors is <bJbled. 

The static overheads for both methods are negligible (see Tables 

4.13 and 4.15). 

The reason for such a poor performance for these parallel algoritluns 

lies in the fact that adding more processors 00es rot equally split 

the total task amongst the processors. For instance, if we double 

the number of processors from P to 2P we reduce Tp by cnly a single 

key comparison, since log 1} = log ~ - 1. Version 3.0, which shall 

be analysed in the next paragraph, is likely to improve this poor 

performance since it manages to split the jobs equally amc:n;JSt the 

processors. 



%KEY Tl T2 T4 SP2 SP. 

10' 17.001) 2~.e"l) 27.100 .6S9 .621 
122 16.94)0 26.)1)1) 27.11)0 .6U .62~ 
176 14.~OI) 201,700 270100 .'!i87 .'!iJ~ 
'63 17.100 26.6/)1) 26 • .,00 .61,) .6"9 
50' 17.000 26,"00 '-1.000 .6"" .630 .. 610 U.900 26.21)0 26.501) .64'5 .638 
675 17.21)0 '27.000 26.300 .637 .65" 

'" 17.000 26.601) 26.600 .63' .639 
793 17.11)1) :U •• 7I)O 26.500 .640 .6015 ". 17.100 26.2"1) 26.000 .653 .6S8 

109' 17.100 26.31)1) 27.'200 .6~0 .629 
1108 1":5.800 26.'.1)1) :06.900 .598 .~87 

1170 17.000 26.:;01) 26.800 • I.":! .634 
1'310 17.000 26.1)1)1) 27.100 .6S~ .627 
HI2 15.71)0 :!6.11)1) 27.100 .602 .579 
1419 17.100 :!7.21)? :!7.500 .629 .622 
1466 17.01)0 26.601) :;!7.000 .639 .630 
1490 16.900 27.21)0 ':1.7.300 .621 .619 
1512 1". loOt;) 2":5.000 :!6.700 .':i8" .:;~7 

"23 17.000 26.200 '26.800 .6'" .63/1 
1611 17.100 26.1011 27.000 .655 .633 
1633 17.100 26.100 26.900 .655 .636 
16'5 17.200 25.700 27.000 .66' .637 
1793 17.100 26.500 26.700 .645 .6-'10 
1829 17.000 26.801) 26.800 .63" .63~ 

19':iS 11.000 26.500 27.100 .6<112 .627 
1980 15.600 26.100 26.800 ."8 .582 
2119 17.100 25.800 26.800 .663 .638 
2201 17.200 26.101) 26.700 .6":59 .6~" 
2234 16.900 26."00 26."100 .640 .6"0 
2363 17.100 27.000 27."100 .633 .62" 
24'54 17.000 26.600 26.700 .639 .637 
2":536 14.400 25.300 26.800 .'569 .537 
2563 17.11)0 :!6.8Q/) 26.700 .638 .6"10 
:!632 14."00 :!'!.9OQ 26.800 .'578 .537 
2~33 17.000 26.500 26.-'100 .642 .644 
2998 16.900 26.700 27.000 .633 .626 
3021 17.0(l/) 26.000 26.200 .6'!i4 .64' 
3089 17.11)0 26.7/)'> 26.500 .640 .64'5 
200 2 1'5.701) 26.11)1 26.0:;00 .602 .592 
21)96 14.'50'> 2'S 010/) 26.800 .578 .'''1 
3141 17, lOO 26.71)" :!6.~01) .640 .6J19 
'!148 15.71)0 26.2/)1) 2:".2')1) .'599 .'577 
31'51 I"' .1(1) 2 ..... ~"1) 26.1)01) .64'5 .6~8 

3:!'50 17.01)1) 26.301) 27.11)0 .646 .627 
32e2 B.°I)O 26.11)') 26.6')1) .648 .63~ 

'3:324 1'5.701) 26.'50') 26.(100 .0;;92 .'586 
3364 1'5.1{)1) ::,..~?I) 26."1)~ .'59~ .:;88 
ne5 17.100 26.:"1)1) 2'.4/)0 .640 .624 
'34/)(I 14.~01) 2'5.001) 26.300 .'580 .S'Jl 
383e 16 .... .,., 26. I"/) 26.'501) .6"8 .638 

%KEY Tl 

04121 17.~OO 

1,19" 17.)00 
1,205 17.400 
1!223 17.~OO 
42:n: 17.600 
il2S0 14.eoo 
""09 17.500 
11558 17.3"0 
"'579 17.500 
1.60'5 11.300 
'17~1 17.~00 

"716 14.800 
~800 11.100 
"S1)2 17.21)0 
'18~'5 17.41)0 
~89:! 17.300 
"903 17.'00 
"1947 17.'00 
'5162 17.300 
:ilS3 17.0:;00 
5:!06 17.300 
529' 17.500 
5396 17.300 
5394 17.300 
548' 17.500 
5525 17.'00 
5553 17.500 
5726 17.200 
5923 17.600 
6292 16.000 
6371 17.500 
6439 17.'00 
6744 14.80Q 
6798 17.200 
6888 1".800 
7034 17.200 
7161 17.500 
7240 14.800 
73"1 17.500 
7345 17.500 
7375 17.400 
7388 16.0/)0 
7512 \4.800 
780" 1'5.900 
785'5 17.400 
7985 17."00 
8028 16.000 
eiS' 17.:;00 

U.6<;1':o 

T2 Tt 

26.700 28.100 
26.600 27.801) 
27.000 25.2"0 
26.600 26.800 
'27.600 28."00 
25.300 27.01)0 
27.000 ';!7.7I)O 
26.700 '17.700 
26."100 27.'500 
27.000 '29,101) 
27.201) 27.000 
25.1/)0 27.200 
22.200 27.:!1)0 
26.'00 27.600 
27.000 26 .... 00 
26.900 21.600 
26.100 27.100 
27.200 27.700 
27.~00 "./100 
26.800 26.600 
27.100 27.500 
:!6.'OO 27.100 
26.700 27.200 
26.900 27.200 
27.100 26.100 
26.800 27.800 
26.700 26.900 
27.100 27.200 
27.100 28.000 
27.100 27.300 
27.300 27.600 
26.000 27.000 
25.300 27.700 
26.900 26.800 
2~.100 27.100 
27.200 27.100 
27.200 :18.300 
25.200 27.200 
27.300 26.21)0 
27.000 27.300 
26.700 26.900 
24.-'100 ::!7.700 
25.400 26.900 
26.800 27.100 
27.-'100 26.900 
27.000 27.000 
26.'00 28.100 
26.600 26.900 

AI}E~AI3E 

:!6.41'1 27.02'S 

SP2 

.6S~ 

,6~O .6". 
.654 
.638 
.'585 
.MS 
.648 
.663 
.641 
.6"3 
.590 
.500 
.639 
.64" 
.60 
.670 
.643 
.631 
.653 
.638 
.651 
.648 
.643 
.646 
.653 
.655 
.635 
.649 
.'590 
.641 
.673 
.'585 
.639 
.590 
.632 
.643 
.'S87 
.641 
.648 
.652 
.606 
.'583 
.:;<;13 
.63'5 
.6-44 
.59'5 
.6:;e 

.63::! 

SPC 

.623 

.622 

.690 

.6"!9 

.620 

.'5"18 

.632 

.625 

.636 

.595 

.6'.8 

.5H 

.'108 

.62:5 

.6"7 

.627 

.646 

.632 

.631 

.653 

.62' 

.M6 

.636 

.636 

.670 

.629 

.651 

.632 

.629 
.586 
.63" 
.6"8 
.'34 
.6-'12 
.'5-'16 
.635 
.618 
.5114 
.668 
.6-'11 
.6~7 
.578 
.550 
.587 
.647 
• I."!'! 
.569 
.6'51 

.618 

N 
N 
N 



IKEY '1'1 TS TN SDO peo 

,.7 17.000 1".7l)0 1" .eoo ••• 12.9" U:ZY '1'1 TS TN SDO peo 
1:!2 17.000 1",&00 111.600 0.00 1".12 
37' 1".~00 12,200 12.200 0.00 1~.e6 "233 17.~00 15.200 15.200 0.00 13.1~ 
'.3 17.100 1" .eoo H.900 ••• 12.87 "280 1".800 12.600 12.&00 0.00 1".86 ". 16.900 1".600 1".700 .:i9 13.02 4<\09 17.'500 15.300 1'S.300 0.00 12.'57 .,. 16.900 1" ,700 101.700 0.00 13.02 "556 17.200 1~.000 15.000 0.00 12.79 675 17.100 l".eoo H.eoo 0.00 13'''5 '1'7'1 17."00 15.200 15.200 0.00 12.6" ". 16.'100 1".600 101.700 .59 13.02 <\605 17."00 1~.100 1'5.200 .57 12.6.4 
783 17.100 1".eoo 1".600 0.00 13."" .47"1 17.500 15.100 15.200 .'57 13.1'" ". 17.000 1 ... 600 1.4.eoo 0.00 12.'1'" "77& 1".800 17.500 12.500 0.00 15.5" 1097 17.200 1".900 1".'100 0.00 13.37 .4900 11.100 8.eoo e.'1QO ••• 1'1.92 

1106 1'5.900 13."00 13.500 .63 1'\.5& 04902 17.200 15.000 15.000 0.00 12.7'1 
1110 17.000 1" .700 ' ... 700 0.00 13.53 

~9"5 17.500 15.100 15.200 .57 13.1" 1310 1&.'100 1 ... 700 1"!.800 .59 12."3 '1882 11.300 15.000 15.100 .58 12.72 
10412 15.700 13.500 13,"00 -.6" 1".6'5 "903 17.500 1~.200 15.300 .57 12.51 1041'1 17.100 1".eoO H.900 0.00 13."'5 "'1047 17.'500 15.200 15.200 0.00 13.H 10466 16.900 H.600 101.100 ••• 13.02 5162 17.300 15.000 l'!i.OOO 0.00 13.2'1 10490 1&.900 111.100 1 ... 600 -.5'1 13.61 5183 1,,"00 1'5.100 1'5.21)0 ." 12.6" 1512 1".500 12.300 12.300 0.00 15.17 5206 17.300 15.000 15.000 0.00 13.2'1 1523 17.100 111.700 101.700 0.00 H.O" '5289 17.500 1:;.200 15.200 0.00 13.1<'1 
1611 11.000 1".700 1.4.600 .59 12.9" 5396 17.300 1~.000 15.000 0.00 13.2'1 1633 17.200 1".'100 1".800 -.58 13.95 53'1.4 17.300 1".'100 15.000 .58 13.29 1655 17.200 10\.800 1.,.900 •• 8 13.37 5"65 17.'500 1'5.200 1'5.200 0.00 13.1'" t793 17.100 1".800 111.800 0.00 13."''5 5'525 17.500 1'!i.200 1~.300 . ., 12.57 
1829 17.100 101.700 1".800 .5. 13."'5 5553 17.500 15.200 1'5.200 0.00 13.14 
19'58 16.900 1"1.700 1".700 0.(1) 13.02 5126 17.200 H.900 1"1.900 0.00 13.37 
1990 l!o.700 n.300 13,"00 ••• 101.6'5 j5f23 17.&00 1'.300 1~.300 0.00 13.07 
2079 17.100 1"1,800 1"1.800 0.00 13."'5 6292 16.000 13.700 13.800 .63 13.75 
2119 17.200 1".900 1"1.900 0.00 13.31 6311 17.'00 15.200 15.200 0,00 1J.l~ 
2201 17.100 11\.8')0 11\.800 0.0l) 13,"5 6439 17.400 15.200 15.100 -.57 13.22 
2'23" 16.900 1".601) 1".700 • !o9 13.02 "" .. 1 ... 800 12.500 U.600 ••• 1".86 
2363 17.200 ",.81)0 1" .800 0.00 13.95 6799 17.300 11\.900 1 ... 900 0.00 13.87 
:14:;" lb. 9"1) ,"1.601) 1".700 .Of 13.02 6888 1"'.800 12.~00 12.:;00 0.00 15.'!i" 2';·36 14.~00 12,21)1) 12.21)0 0.00 15.86 7034 17.200 1"'.900 1~.000 .5. 12.79 2563 P.2')1) 1"1.91)1) 15.001) .!o8 12.79 7161 17."00 15.200 15.200 o.QO 12.&" 2632 10\ .t,QO 1"1;.21)1) 12.200 0.00, 16."" n .. o "'.800 12.500 12.:;00 0.00 15.5" :!933 1:'.000 '" .81)1) l~.eI)O 1).00 12.9" 73"1 17."00 15.200 1'5.200 0.00 12.6" 2098 1:'.1)00 1"! . .600 1"1.600 0.00 I" .12 7J"~ 17."00 15.100 15.200 .57 12.6" 3021 17.100 III .SOO 1~ .8(1) 0.(1) 13.4' 7375 17."00 15.100 1'5.200 .57 12.6" 3069 17.101) 1" .801) 1-\.900 .58 12.87 7389 1&.000 13.700 13.700 0.00 1".39 
3(\92 15.6(1) 11.'S00 11.~00 -.63 1:; .19 7512 1".800 12.500 12.500 0.00 15.'" 3006 14.500 I:!. :!Ol) 12.300 .69 15.17 790" 1&.000 13.800 13.700 -.63 1~.39 
3"'1 t 7 .11)1) 1"1.9"" 111.800 l).01) 13. ~';j 7955 17.!l00 1:;.100 15.200 .57 13.10\ 
~1:.1 17.11)0 l".eoo 1"1.900 0.00 13.45 7995 17.0400 15.200 15.100 -.57 11.22 
J::!'50 17.01)1) 11\.71)0 1"1.71)0 0.00 13.53 9028 16.01)0 13.600 13.700 .63 1~.38 
3282 16.900 H.600 1"1.600 0.00 13.61 81:;5 17 •• 00 15.'200 15.200 0.00 12.6~ 
D2" 15.700 13. ~Ol) 13.'!iOI) ••• 101.01 
136" 15.800 13."100 tJ.50l) .63 1~.56 

13a~ 17.100 1".800 1".900 0.00 1J."~ 
3"00 "".500 12.200 12.300 ••• 15.17 IWERAGES OF THE S[lO ANTI PCC'. 
'3838 16.900 14.600 1"!.700 .59 13.02 
"1121 17.600 l!o.21)0 15.21)0 0.00 13.6'1 

AVER.SDO l'lUER.PtO 
"19" 17.300 15.000 1'5. tl)l) .:;8 12.72 
"205 17."00 15.100 15.21)0 .57 12.6'" 

.20 13.63 "ZZ3 17.41)0 15.100 1'5.201) .57 12.6" 

. -_ ...• - ._.-.- '. - ... . . ....... 



224 .' 

4.3.2 PARALLEL BINIIRl/' SEAROl VERSICN 3.0 

We noted that one of the reasons for the poor performance of the 

parallel binary search versions 1.0 and 2.0, is that only one 

processor is kept busy, doing effective work, after the first 

iteration. In particular for veriscn 1.0, all the processors except 

one, soon discover that the target key is outside the subset they 

were allocated to and there is no need to carry on searching. A 

third method was suggested to remedy this inconvenience and 

consequently it is most likely to improve, at least, the theoretical 

performance • 

At the end of every iteration where P key locations are compared 

with the key, all the processors are forced to a synchronisation 

point. When all have joined this point, a single processor is used 

to define the oo.mds of the new subset; Then the process is repeated 

until the key is foond or the set is fully exhausted. 

For the analysis of this parallel version, we proceed as follows. 

Using a single processor, we make at least log N+l key oompariscns, 

in the worst case 

With P processors, the subset size is divided by 2P in every 

iteration. only one of these 2P new subsets is considered in the 

followinJ iteration. So, in the worst case: 

Tp = log2P N+ 1 



Therefore, the speed-up is obtained as: 

or 

Thus 

and 

s = T1 " log N+1 
PT" N 

P log2P + 1 

= log N 
leg 2p 

s "log N+1 * (log P+1) 
p" leg N 

225 

From this simple model, we have s1nwn that the speed-up of versicn 

3.0 is logarithmic in the rrumber of processors. lbwever, with a more 

realistic model which .includes some overheads (in particular, 

synchronisation overheads), it is expected that the experimental 

speed-up is no more than log P+1. Although this is a better 

performance than that of versicns 1.0 and 2.0, nevertheless it 00es 

not seem fruitful to attempt to speed-up a single key search 

algorithm. The sequential binary search is quite fast already having 

logarithmic oomplexity. 

Experiments on the Neptune system (see Tables 4.16 and 4.17) show 

that this version also has, on average, a poor performance. As 

expected, while the static shared data overheads are of the same 

order of magnitude as those of versions 1.0 and 2.0, the static 

parallel oc:ntrol overhead is extremely high (around 40%). 



• 
~ 

'" .. 

IK!:Y 

107 
1'" 

". .. , 
~!4 

••• 67'5 
7:; .. 7., 
?9' 1097 

1109 
tt "0 
1310 
141:! 
1419 
1466 
149') 
l!i12 
1 :'23 
1611 
163l 
16'5S 
17'3 
1132' 
19:;8 
1980:-
2079 
2119 
::!201 
2:!J4 
:363 
2"5<11 
2536 
2'563 
26:r2 
~··n 
:!qQI3 
~0::!1 
"3'.)8' 
"3(19:! 
"3000 
"31"1 
31"'8 
!t'5t 
"3:!~1) 

!:"e:! 
n:'. 
!U.4 
:':'t;'~ 

1'.1)1) 
~I!'!~ 
41 :> ~ 
~I"'. 

Tl 

M.~O" 
~'.\OO 

:;1)."'" 
6J.~OO 
59.300. 
5S.:!I)/) 
61.01)1) 
60.9')0 
62.200 
63.200) 
'59.eoO 
'53.:'0') 
'!i8.400 
tl).eoo 
53.600 
6::!."00 
62.100 
t.0."00 
~1.!0I) 
64.800 
6:!.2,)0 
61).600 
6 .... 1300 
5' .100 
62.100 
62.100 
58.600 
62.2/)0 
61.100 
61.000 
60.'00 
63.600 
60.800 
51.300 
to.OOO 
4~.ql)') 

~4."1)1) 
~J.2')1) 

~4 .7')0 
'5'."1)1) 
~3.'51.)" 
<IIe.900 
6t .10e 
~-;..(l0)1) 

6!.-:;OI) 
6/).01)1) 
! . ."gl)l) 
'59.7"" 
'54."1)" 
f!, "'=''=' 
~I). !I)I) 

H.:"I) 
~ 1 . ,,,(' 
'5°.e,,'" 

T2 

1"~.~1)0 
11)7 .~.I)I) 
''l.81)1) 
'~.60" 
11)~.30/) 

'3.:!0/) 
99.101) 
90.5(1) 
91.200 
0;; •• 1(1) 
.I).~OO 

106.tOO 
88.000 
:;'.300 

1')8.200) 
9l. '00 

107.01)0 
'1.1')" 
~2.!01) 
92 • .,00 
~".eoo 
9'!.9I)O 
~'.IO/) 

.'.100 
109.000 
109.500 
'''.500 

110.'500 
7".901) 
''1.600 

101."!')0 
92.900 
'''.<100 
9'5.000 
91.500 
91.101) 

106.'''0 
10e.~1)1) 

'Io'~OO 
Ql.'70/) 
0:".~01) 

'':i.21)1) 
10)1.00') 

89.00)" 
91.7'.)0:-
l?".eo)~ 
se.et;\1) 
0:!.!O1 
0l).:!"" 
~~" .'::1)" 

'?'? .1"" 
~'!.~"(, 
Cl ~ • "31)'" 
"l,4~o) 

T3 T5 S.2 

131.9(1) 69.'"'' .,'4 
8!.:'1)1) ,=,~.6(1) .,~O 

8:'.6f}1) 9a.21)1) • 53!; 
93.21)1) 68.']1)1) .6"1 
8:!.8"1) 6'.7')/) .!o!o', 
67.41)') 1J6.'00 .624 
8".'500 6· ... 00 .685 
8.11.601) 68.'01) .611 
8",.600 68.31)0 .682 
81.700 67.':01)0 1.069 
'50.'500 a8.00,) .662 
CJ5.8/)0 ~8.600 .502 
84.31)0 69.eoo .66" 
801.700 136.900 1.02:; 
8~ .• 701) . 68.-00 ."'5 
801.300 96.:'/)1) .680 
801.301) 69.600 .'580 
81!.J1)0 68.801) .66'5 
84\.000 ,'.!OO .~:S6 
94.800 87.201) .701 
66.'1)0 CJ?!O:-O:- .69:; 
'''.11)9 e6.51)1) .646 
85.:!(1) '0.'1)0 .667 
8:..800 66.900 .621 
84.200 6'.301) .510 
85.700 69.701) .'567 
85.300 138.100 .620 
67 .... 00 96.600 .563 
8:..700 68.800 .816 
e4.000 69.91)0 .6'" 
8'5.900 e9.300 .567 
82.~00 8".600 .685 
8'1.800 6'.600 .817 
8'1.500 88.201) .:;"'0 
8~.~00 68.800 .6S6 
86.1)00 !!.'I)O .'37 
e"!.'o/) ~7.~1.)') .60!t 
8~.81)1) 91 •• "0 .:;8l 
8~.900 ~7.701) .707 
~3.7')') ~8.11)0 .6:'1 
8'5."'.)1) 69.200 .'579 
e':i.21)1) 6'.0(1) .51" 
96.000 69.40'.) .'566 
e".IOI) ~?81)1) .612 
93.S1)0) 68.30)1) .692 
!'5.21)') ~0.40:0<;l .694 
e'J."('o" ','.I)~I) .68':1 
9~.~"" ~0."0:-1) .636 
1J~.21.)1) fO.4'.)'=' .6-l)t 
~".",I),=, !".~"t:' .:;e9 
9":;.!<;I" ~".H·I) .';:t' 
~! . .,..,., "!.!,: . .o; ."1)" 
~~ . ~.,-:' ~CI. ,,~,: • ~':I) 
~'5.,!I)') fO. ':-., .t:'" 

Sp] SP' IJ{!:Y Tl T2 T3 T5 s.2 S'3 S., 
.740 .e8:' 4"" ~4.0"1) '''.:!I)I) IJ:;.!I)') Ba.OOI) .61' .7"6 .1~7 
.70S: .6a::: 

4':'3 66.(01) 111).61)1) e-;.!oo aa.9/)('o .:;,7 .~"<I ."" .:;86 .:;6' .:!'33 61."1)0 '2.6(1) 94.51)1) 6'.71)0 .t.63 .n1 .sel .163 .'!I) .2eo !il.~/)" 'V3.300 9:5.10" "'1.2')" .5:;2 .61)1 .7~'! .6,6 .81e oHI)9 63.'1)0 110.100 86.11)0 88.:'01) .5eo .1"!~ .72~ 
.86" .67-) "5'58 63.800 109.700 8:;.9/)" 70.100 .:'82 .7.3 .910 
.722 .87~ 4:;7, 6'5.000 '6.11)0 8:;.~OO 8'.100 .616 .161 • ~30 .720 .8P:~ 460'5 67.'1)1) '''!.9<;10 87.000 90.:!(1) .71'S .780 .1'53 
.735 .911 4:'''1 62.71)0 9".:;1)0 8'5.71)1) "0.7('00 .69l .n:! .8S7 .7:':; .'36 4176 '!il.21)0 n.81)0 a'./)I)I) .0.100 .703 .'!i89 .:;68 

1.184 .680 ",0),) 35.!;00 91010'.) 86.31)0 70.900 .3'0 .411 .:'01 
.6.2~ .78(, "802 61.100 90.'00 86.100 71.300 .,,~ .710 .857 
.693 .817 484' 66.:'00 9].700 96.900 70.200 .710 .76' .9~7 
.718 .701) "!892 60.'00 8'.700 86."'00 70.'00 .679 .70:; .8:;. 
.633 .778 4903 65.000 72.700 86.200 88.900 .8'" .75" .731 .740 .721 4947 65.100 10".900 85.800 70.'00 .621 .'5' .918 .737 .8'1'~ '!i162 60.900 '1.000 8:'.800 87.500 .669 .710 .6.6 .7.20 .982 '!it83 65.'00 '2.4\01) 86.300 68.800. .713 .76" .9S8 
.611 .7"~ 5206 62.:500 93.'00 87.o'!OO 70.'00 .6'~ .713 .87' .764 .7"!3 

528' 63.600 87,"00 69.:'00 71.100 .7.:::!8 .915 .8.:; 
.930 .712 5396 60.'1)0 fH.200 B'.o'!OO B8.300 .668 .113 .690 
.121 .701 !i!'" 60.800 '0.500 86.600 69.600 .672 .702 .874 
.761 .914 5 ... a:; 66.400 10'.100 8:!.eoo S'.800 .60. .80~ .739 
.68' .885 '5525 6'5.100 77.300 8".600 71.600 .8"2 .770 .90' 
.738 .896 :'5'53 6".600 '1.700 67.81)0 70.900 .704 .'V53 .'11 .125 .B9l 5726 6".800 61.900 '50.700 70.1)00 1.0017 1.278 .':!6 
.687 .66:; ,92! 65.200 92.300 9'5.'10)0 70.:;00 .706 .763 .,:!:; 
.923 .ne 62'2 56.000 '2.600 86.1')0 70.900 .60:; .650 .790 
.113 .888 6371 6'5.100 '4.600 83.1100 10.300 .688 .181 .9:!6 
.726 .873 6439 64.900 76 •• 00 68.600 70.:'00 .8018 .9<115 .'1. ,109 .6;~ 67 .... 52."00 '''.800 87.800 71.400 .'53 .:;97 .7304 .772 .726 .6798 63.600 10'.100 86.700 52.4\00 .583 .1]'" 1. Zl'" .717 .87"! 6888 53.700 7'.<1100 8:',"00 72.700 .676 .629 .739 
.607 .582 7034 66.200 110.200 8'1.000 72.600 .601 .788 .91::! .702 .8n 7161 68 •• 00 98.701) 8'5.90') 73.000 .698 .802 .. " ... .,., .71e- n40 51.100 93.600 86.300 88,"00 .~"'6 .~92 .~78 
.762 .139 73"'1 66.!;00 90).700 87.200 8'.500 .733 .763 • 7~3 .145 .71' 

73"~ 6".700 '0.800 860100 10.500 .713 .751 .918 
.762 .73e 7375 67.300 91.600) 8:;.500 B9.900 .735 .187 .1~' 
.713 .877 73B9 '59.900 91.000 a'.900 88.600 .6~8 .698 .676 
.626 .773 1'512 '$3.700 Ill."!OO a .... 300 89.000 .~82 .637 .603 
.57~ .70· 1804 61.:;!00 '6 •• 00 86.20)0) e'.600 .635 .710 .683 
.710 .8B~ :r8'5':i 68.700 108.000 67.300 89.700 .636 1.021 .766 
.6~<II .62t '-9'5 6'5.800 91.7/)1) 8".201) 70."!OO .718 .781 .93:; 
.7'58 .9!·: 9029 61.100 '''.600 96.600 89.800 .64\6 .106 .680 
.71'5 .87! 9155 70.200 112:.800 8'.300 90.000 .622 .823 .780 
.71':1 .S~; 

• t~'5 .0': . 
.6-".2 • 'foe ., .. " .:r:::::: 

M'(RM( Tt+UN~ ANti ~f·EE[l~L'" O')ER I\LL THF ,,[rs. 
.:;81 .~" 
.:rf9 .~!,: 

.7~~ .l!:''' 
AV! .Tt ('l'JE.T~ (WE. T3 ".'J(. T~ f:.Sf":! A.~~3 f'. .S~·~ 

.1')1 .,!'ji 

61.).6('~ ~~ ./):!1 9"3.2"" 77.072 .6~:' .7!6 · "qe 
- .. 



IKEY Tl TS 'l'N SJ)() KO U"" 
,.7 60.600 '33.500 33.91)0 ••• .,~.O6 4194 . 
1:!:! 59.300 3:2.200 32.601) .67 11:;.03 ~205 ". 50.300 27.701) 28.000 ••• "".'33 4223 
"3 63.500 36.500 36.901) .n o\l.e, "233 
':;34 58.400 31''''00 '31.600 .,. ":i.e, 4::'0 HO 58.300 '31.300 31.500 .,. "'.97 "409 ,,, 61.100 H.I)OI) 3"1."100 . ., 00II3.70 ""8 '5. 61.000 3".000 311,300 ••• "3.11 "5'. "I!J 62.400 3':5.300 35,600 ••• "2'''5 4'0, 
"~9 63.300 36.200 36.500 •• 7 "2.34 0-41 

1097 ' •• 900 32.71)0 33.100 •• 7 "4.74 .,776 
1108 53.700 28.800 29.100 ••• ",.81 "800 
1170 58."00 31,"00 31.601) ... 045.8' 4802 
1310 60.800 33.700 3".100 ••• 013.'1 "8045 
1"12 53.600 28.800 29.100 ••• "5.11 04882 
1"1' 62.300 3:5.300 35.600 ••• 042.86 "'03 
1"66 62.100 35.000 35.300 ••• "3.16 049017 
10490 60.700 33.600 33.900 ••• ""!.15 '162 
1!P12 51.300 28.71)0 29.01)0 ••• 04'.047 5183 
1523 64.700 37.600 37.'00 ••• "1.042 5206 
1611 62.100 3:5.100 3:5."00 ••• 43.00 5289 
1633 60.600 33.600 33.8(10 .33 4".22 5386 
1655 6".800 31.700 38.100 •• 2 "1.20 53'04 1793 :;',000 31.900 12.201) .01 "5."2 5485 
le~9 62.000 3:;.000 35."!1)0 ••• .,2.90 5525 
1·~9 tt.'I)/) 35./)1)1) 35.201) .32 "3.ll 5553 
1~91) !P8.501) 33.800 H.I01) • 51 41.71 '5726 
2~7. 62.100 15.100 35.300 .32 0113.16 5923 
2U' 61.100 1".000 H.300 ••• 41.86 "'2 221)1 61.000 13.·1)1) 3"!.200 ••• 43.93 6371 
221" 60.·00 33.81)1) 1".21)1) ... "3 •• " 64', 
2H' 41 •• 00 16,"01) ]6.81)0 .n .1.'6 .7." 
24'!!" 60.400 13.60" !J,'I)~ .:i0 "".06 6798 
:?~,!6 ~1.~10 :!e.60':l :!'?"OO .:i' 1!3.~5 6888 
2~~! '5'."01) l:?·I)O 33.211) .'!PO "'!.~7 703" 
Z~'32 4e.1310 ~~.!I)I) :?~ .':-1)1) .41 .5.11) 7161 
2°'!'! ~4.6"1) :!:'.t':'l) 1:'.·00 ••• .1.33 ",,0 
~~Cl9 ~'!.~I)I) :!6.11" :!6.~"" •• 7 112.4\ "3.1 
'3(1~t ~".7"1) :!7.610 !8.000 .62 ~ 1.2' ?3045 
'!O:>fI" '!j'.~11) 12.61)1) 32.'''1) .:00 ~~.eo ?3"~ 
!O:>0:' 53 •• 1)1) 2~.7I)O :!9.'OI) .3':7 ~~.eB 7'!8a 
:O~.~ "e.eOI) 26.2'='1) 26.~~? . ., 115.10 7512 
!!"t 61.(1)0 33.91),) '!~. !')I) ••• '13.71 ':790. 
3t·13 !i •• al)l) '!1).100 31).300 .3. "".71 ?855 

"995 '3151 63.300) 16.301) 16.700 .n ~:!.02 131)28 '3:!51) 61).91)1) 33.701) 3"! .11)0 ,66 "!'3.'1 9155 3282 60.71)1) '!!.7(1) 3~.000 ••• "3.99 
332. '58.'500 13.!1'J0 '3'1.100 .!il "1.71 
13H 5".0;00 :·.900) 30.100 .!i:i "4.77 
!?85 63.201) 16.100 36.'100 . ., 42.41 
,]AOI) .9.800 27.1101) 2'7.600 ••• ".,.:;8 
!93e 6'.91)0 '39.1!"" 39.300 . 7, '10.27 
"!l:!l 61.1"" H.I00 3~."!00 ••• "1.70 

Tl 

59.601) 
63.71)0 
",eol) 
61.200 
51.300 
63.600 
63.600 
'.,800 
67.600 
62.300 
51.001) 
3'$.500 
60.'00 
66.200 
60.700 
604.800 
65.000 
60.'00 
6'$.800 
62.200 
63.500 
60.'00 
60.600 
66.200 
604.900 
6 .... '00 
64.700 
6".900 
'6.000 
64.900 
6 •• 600 
52.300 
63 •• 00 
53.~01) 

66.000 
68.700 
5\.000 
66.'300 
6·.500 
6~.300 
,~.eol) 

53.~{l0 
61.11)0 
6e.~1)O 
6~.710 
61.1);:'1) 
70.101) 

TS 'l'N SJ)() PCO 

'32.600 32.91)1) .~I) "!",eo 
36.901) 37.100 •• 7 41.16 
38.800 39.100 ••• "!1J.:i';' 
3",100 311.600 .8:! "!3.U 
:!t:I.800 29.000 .J~ ooIIJ.47 
36.600 37.000 .n "l1.8:! 
36.600 36.'900 •• 7 111.98 
37,900 38.200 • •• "!1.0:; 
"10.600 '11.000 ,::i9 39.35 
35,300 35,700 ••• '\2.70 
28.600 28.800. .3· .3.~3 
19.100 19.900 ••• "1.9" 
33.'00 30\.200 ••• "!3.8" 
3'.200 '39.t,00 ••• "0.18 
33.800 30\.000 .31 "!3." 
37.700 38.100 .• 2 041.20 
38.000 l8.JOO ••• "1.08 
33.'1)0 J".200 ••• "!3.8"! 
39.800 39.100 ••• ~O.:i8 
35.200 '5.:i00 ••• "!2.93 
36.:;00 36.800 •• 7 42.05 
33.900 34.200 ••• 043.8"! 
33.700 34.000 ••• "3.89 
39.200 3'.600 ••• otO.1B 
3e.000 3e.200 .31 "!1.1" 
37.500 37.800 •• 7 "1.40 
37.700 3B.OOO ••• "!1.27 
'38.000 38.300 ••• ~0.99 
31.200 31.'500 .:;" "!3.75 
38.000 3B.300 ••• ",0.'9 
]'7.700 ".000 .. , 41.11 
2'.1100 30.100 .. ' "!2 •• ::' 
36."!1)0 36.800 .n "1.96 
31.100 '31.300 .'3'7 "1.::'0 
19 .01)0 ;59.300 .4~ ~0.4:i 
~1.?00 "!:2.100 .~8 38.12 
28.601) 28.800 .3' "!3.:O3 
']9.200 3 •• 600 .H "0.:27 
1?600 37.91)0 •• 7 " 1.24 
"!O.ZI)O 110.600 .59 '3'.67 
'!5.(1)0 35."!01) .6':7 "".90 
31.11)1) 31.!00 .3':7 .~ l • ()I) 
36.300 '36.700 • ~':j '!9.93 
11' '0. 111.900 .~e lE.el 
'3&.700 '3'.110 ,61 ~1).49 
'3o!.3(1) 36.61)1) ••• ,,1).1)1) 
~3.10t'l ~3.':iOO .';,'7 !'.'i'':j 

l'l'JEF:"ME OF' THE S[·~ At't· F'CC. 

'WEft.!3[lO t'lV£Ft .... co 

"2.71 

.' 

IV 
IV 
-..J 



228 

4.4 PARALLEL JtM' SFAROI ALCDU'llMS 

In this section, we shall present and analyse several MIMD 

implementatioos of the classical jump searching algorithm. The jump 

searching or 'block searching' algorithm was first suggested by 

Martin in 1977, who identified many situations where the binary 

search algorithm is rx:>t suitable [Martin 1977]. Following the work 

<Xne by Martin, Schneiderman provided an extensive description of 

such a method and many of its variatioos [Schneiderman 1978]. 

Jump searching algorithms, as their name suggests, jump over 

portions of the ordered file until the search is localised to a 

small block of the file. Then smaller jumps may be applied, or a 

sequential search algorithm is performed, until the target key is 

found or its absence demonstrated. For example, in a set of 100 

records sorted in ascending order, the 10th, 20th, 30th ..• records 

may be examined until the target ket is reached = exceeded. In the 

case that target key is bypassed, a sequential search is performed 

on the elements of the block just passed. 

Generally speaking, when the binary search can be used it is 

virtually impossible to find another method that can do better, 

however, there are several instances where the binary search 

algorithm is rot suitable. Therefore, for these cases which include, 

for example, files with compressed records*, blocked records for 

tape oriented searches ••• etc, jump searching is preferred. Some 

other situatioos where the use of jump ~ is also appreciated 

are found in sorted files which are linked to ma.1rltatn a sequential 

ordering. 

* Prcx1ucing records of variable lengths \\hich prevent the use of the 
binary search 



229 

Scheiderman identified, in all, 5 different jump searching 

algorithms depend!n;J en the jump size value and the rrumber of levels 

involved. Three of these variations are reviewed below. 

The simple jump searching method requires jumps of the size of the 

square root of N, where N is the total number of records in the 

file. These jumps are optimum in the sense that the average 

expected cost of the search over N elements is cptimum. In order to 

prove that IN is optimum let us first compute the average cost of 

the search C(N) which is the sum of two average costs: the average 

number of jumps 1: N/n and the average rrumber of key comparisons when 
2 

the sequential search is performed en a block of size (n-I). Thus 

( ) 
_ N n 

CN --+-
2n 2 

where n represents the size of jumps. If we assume that C(N) is a 

ocntinuous functien, then we take the first derivative functien with 

respect to n. This yields: 

C'(N) = - 1: N/n2 + 1: 
2 2 

Setting the above equatien to zero and solving it we get 

n = IN 

Therefore, en average, the sinple jump search algorithm perfODllS 

C(N) = ~ + IN 
UN 2 

= >'N key cxxrq;>arisons. 



230 

If jump searching is applied within a block then we get the two 

level simple jump searching algorithm where the square root jump 

size is reapplied to the (n-l) records in a block. Compared with the 

previous method, the two level simple jump search is faster by a 

factor almost equal to 2. 'nle first am seoc:nd jumps are of size IN 
am Nl / 4 respectively. 'nle average expected cost of such a metlx:xl is 

C(N) = ! N/IN + ! IN / Nl / 4 + ! Nl / 4 
222 

comparisons, which is almost half that of the simple jump search 

metlx:xl. 

If two levels of jump searching are allowed then it is no longer 

optimal to have the first jump as small as & Let nl am ~ be the 

jump size of the first and the second levels respectively. The 

optimum jump size values when used lead to the two-level fixed jump 

searching algorithm which, on average, has the following search 

cost: 

Assuming that the above functicn is CCI1tinuous, we take the partial 

derivative with respect to nl am ~ 

a C(N) 
an1 



231 

By setting the two above equations to zero and solving them, we 

obtain 

and 

Therefore, the average search cost of the two level fixed jump 

search is 

C(N) = ~ Nl / 3 key comparisons 
2 

Consequently, this meth:ld is faster than the two previous met:h:lds. 

4.4.1 IMPLEMENl'ATICN AND ANALYSIS 

Before presentin;;J a suitable meth:ld for implementin;;J the parallel 

jump search algorithms, let us examine cn::e more the classical jump 

search in order to identify the main characteristics of such an 

approach. As it is seen, the jump search can be viewed as a 

sequence of 2 or 3 sub-searching problems. For instance, if a file 

,is considered as a sequence of blocks and a block as a sequence of 

sub-blocks then we have the fOllowing search problems for the jump 

search algorithm: 

1. The target block, that is the block which is most likely to 

contain the sa.tght key, is searched. 

2. For the two level jump search, the target sub-block is searched 

within the block just found during the previous phase. 

3. The target sub-block (or block in the case of a single jump 

search) is searched for the key. 



232 

So far, we have to decide whether to speed-up the 'overall' jump 

search method or each one of the above 3 sub-searching problems. 

the former which mainly consists of splitting the original set 

equally amongst the P processors, each of which is applying the 

sequential jump search algorithm, requires the use of broadcasting 

in order to avoid unnecessary searches ooce the target key has been 

located. l\s a result of this requirement, the executicn time will 

be increased by all the accesses and ocnflicts CNer the shared data 

item used for broadcasting. The latter method which consists of 

parallelising every sub-searching problem uses a similar technique 

as the parallel sequential search version 2.0 except that 

broadcasting is 00 longer required since the search is s\:oppJ;xld as 

soon as the key is either found or its value exceeded. In order to 

keep the overheads as low as possible, we selected to parallelise 

every stage of the jump search method. 

Reo:Jgnising the fact that every single sub-searching problem of the 

parallel jump search algorithm is equivalent to the parallel 

sequential search algorithm versicn 2.0, the complexity analysis is 

then derived from the already established average speed-up (defined 

in 4.8) by simply altering the set size N by its appropriate value. 

For instance, the parallel simple jump search algorithm, which 

involves 2 searches, the first one locates the target block among 

the IN p::>SSible blocks and the seccod finds the target key among the 

(IN-l) possible keys within a block, has the following average 

speed-ups: . 

Sp(l) ~ P[l - P-l (1 + In IN)] 
21N P 

and 

~(2) ';;P[l - P-1 (1 + In (rN-1»] 
2 (rN-l) P 



233 

respectively to phases 1 and 2 of the algorithn. 

Since (IN-I) < IN, we obtain a bound for Sp(l) as: 

~(l) < P[l - P-I (1 + In IN)] 
2 (vN-1) P 

Similarly, n::>ting that In(/N-I) < 1.nIN we get 

S (2) < P[l - P-l (1 + In IN)] 
p 2 (vN-1) P 

Thus, the average speed-up of the parallel simple jump search 

algori thIn is the average of the above expressioos 

S (1) + Sp(2) 
~ = --.:P'---2~-

S .. P[l -
P 

P-l 

2 (/N-1) 
(1 + In IN)] 

P 

A similar analysis is applied for both the parallel two level simple 

jump search and the two level fixed jump search algorithm. In 

particular for the former algorithm we have computed the following 

speed-ups 

and 

~(l) < P[l - P-l (1 + In IN)] 
2>'N P 

1/4 
~(2) < P[l - P-l (1 + Irl!-)] 

2N1/4 P 

P-1 (N1/ 4_1) 
Sp(3) < P[l - ---- (1 + In P )] 

2(N1/ 4_1) 

respectively for phases 1, 2 and 3. The average speed-up of the 

algori tlYn is expected to be 



S (1) + Sp(2) + Sp(3) 
S - ---.:..p-----.:...,-----.:..-p - 3 

234 

For the parallel two level fixed jump search, it is found that 

phases 1, 2 and 3 exhibit the follow1n;J speed-up respectively 

and 

1/3 
Sp(l) < P[l - P-l (1 + 1N ~)] 

2N 1/3 P 

1/3 
Sp(2) < P[l - P-l (1 + In ~)] 

2N1/ 3 P 

1/3 
P-l (1 + In N -1)] 

2(N1/ 3_1) P 

since there are Nl / 3 blocks in the original set and each block 

contains Nl / 3 sub-blocks of Nl / 3 elements each. 

Since (Nl / 3 _l) < Nl / 3 and ln (Nl / 3 _l) < ln Nl / 3 we have Sp(i), i = 

1,2,3 bounded by 

S (i)';; P[l - P-l (1 + In N
1
/

3
)] 

p 2 (N1/ 3_1) P 

which defines the average overall speed-up of the parallel two level 

fixed jump search algorithn. 

4.4.2 EXPER1MENl'1IL RESULTS 

The parallelisatlcn of the sub-searchin;J problems which are part of 

the jump search method requires the use of the $DOALL-$PAREND 

parallel programming constructs for each phase of the algorithm. 

Each processor would jump over blocks of Pnl items, where nl is the 

jump size of the sequential jump method. Thus, at the end of each 

phase, the key is either found or bypassed. By forcing all the 



235 

processors to synchronize before performing the second (or third 

phase) it is possible to use a single processor to determine the 

target block (or sub-block) amongst the P candidates. This means 

that on three occasions, we had to fork and join P processes so as 

to allow a sequential path to execute in between two consecutive 

sessioos. Coosequently such an approach would have a high parallel 

control overhead since the cost of creatien/tenninatien of paths is 

high en the Balance 8000. 'Iherefore, we had to find an alternative 

method that allows the processors to detennine the target block in 

parallel witoout having to synchrcnize. 

Since the search for the target block is between P blocks, involvinJ 

at most P key comparisoos, we allowed fN9rY processor to perform the 

same sequential path. Note that the processors are performing 

redundant work since a single processor could do this. However, 

this avoids the burden of terminating and then creating parallel 

paths. Figure 4.4 illustrates the search for the target block when 

using two processors. If blocks are, for ccnvenience, rrumbered then 

in our example processor 1 works on odd blocks while processor 2 

works on even blocks. Now assume that the key is bypassed by the 

processors. Then there are two possible blocks of size nl where the 

key is likely to be. To determine which cne of these blocks is the 

target block, every processor has to back-up by nl records. 

Therefore, at most, this process has a time complexity of P which is 

far lower than the cost of the creation/termination of parallel 

paths. 

For our experiments of the parallel jump searching methods we 

selected the Balance 8000 system since the Neptune was unavailable 

at that time. We also decided to use integer numbers for the ordered 

set to be searched since the nature of the records is irrelevant to 



236 

Processor 1 

2n l 

\ 
I \ 

" , / .... / ---' 
Processor 2 

FIruRE 4.4 PARALLEL BUXl< SFARClUN:; WHFN P=2 

the search method. An experiment is a series of runs of the 

considered parallel algorithm on 1 ,2 •.• , 5 processors when 

searching for the existence of a given key. In order to get a good 

representative average for the performance of a particular 

algorithm, we had to repeat the same run 100 times but with a 

different key. The 100 key locations are sampled using a uniform 

distributioo between 1 and N. Qlce all the experiments relative to 

a specific metood are complete and their timing measurements stored, 

we compute the average times and speed-ups which are reported in 

Tables 4.18, 4.19 and 4.20. 

As expected, the sequential average performance of the two level 

fixed jump search metood is better than that of the other two, while 

the simple jump is the worst of the three. For the parallel 

implementatioo we predicted higher speed-ups for the simple jump 

search and smaller speed-up for the two-level simple jump (see 

Figure 4.5). Experimentally this pattern is not achieved and we see 

that of the three the two level fixed jump search has the worst 

I 
I 

,-

----



>:I TI T2 T3 T4 TS 6P2 SP3 SP4 SPS TI T2 T3 T4 TS SP2 SP3 SPA aps 

:I" ------------------------------------------------------ -----------------------------------------------------
tl:l ~.14 2.69 1.90 1.49 1 .. 2:5 1.92 2.71 3.4:5 4.11 6.61 3.37 2.32 1.9':5 1 .. S5 1.96- 2.85 3.:57 4.26 

t"' 5.27 2.12 1.92 1 .. :50 1.29 1 .. 9. 2.7' 3.~1 4.09 5.16 2.67 1.87 1.49 1.27 1.93 2.74 3.46 ' 4.0b 

t'J 2.69 1 .4:5 1.07 .88 .74 1.86- 2.51 3.IIb 3.6' 3.54 1.90 1.3S 1.03 .91 1.80 2.62 3.4A 3.89 

5.86 2.99 2.06 1.66 1.3' 1.96 2.94 3.53 4.22 1.09 .06 .53 .47 .45 1.65 2.06- 2.32 2.42 
.... 3.32 1.77 1.23 ••• .85 1.88 2.7Q 3 .. ~S 3.'9. ::J.S3 3.06 2.09 1.6S 1.41 1.91 2.79 3.:13 4.13 

~ 
5.43 2.8:5 1.97 1.:57 1.29 1.91 ,2.76 3.46 4.21 4.43 2.33 1.62 1.27 1.09 1.90 2.73 3.49 4.06 

ex> 4.10 2.12 1.:11 1.20 1.04 1.93 2.72 3.42 3.94 3.:52· 1.86 1.35 1.10 .89 1.89 2.61 3.20 3.96 

.. 5.02 2.6' 1.92 1.41 1.22 1.90 2.76 3.56 4.11 8.15 4.25 2.85 2.30 1.8A 1.92 2.86 3.5' 4.43 

4.0' 2.42 1.7S 1.36 1.17 1.94 2.68 3.4:5 4.01 4.22 2.23 1.58 1.27 1.09 1.8' 2.67 3.32 3.87 

7.05 3.60 2.49 2.03 1.70 1.96 2.83 3.47 4.01 2.02 1.13 .7' .67 .63 1.7' 2.56- 3.01 3.21 

c..,t'J 1.3? .77 .62 .~S .~2 1.81 2.24 2.53 2.07 5.23 2.73 1.'0 I.S0 1.31 1 .. 92 2.75 3.49 3." 
e::x 5.8' 3.03 2.13 1.69 1.4S 1.'4 2.77 3.4' 4.06 4.'2 2.S7 1.83 1.46 1.30 1.91 2.6' 3.37 3.78 
:;:"d 6.07 3.10 2.13 1.73 1.46 1 .. '96 2.8S 3." 4.U. 4.71 2.S0 1.80 1.39 1.22 1.88 2.62 3.3' 3.80 
"dt'J 6.09 3.12 2.17 1.73- 1.46 I.'" 2.81 3.S2 4.17 1..30 3.16 2.27 1.80 I.S0 1.99 2.78 3.~0 4.20 

::0 
tIlH 4.43 2.3~ 1.67 1.30 1.10 1.88 2.65 3.41 4.03 S.b9 2.95 2.08 1.64 1.44 1.93 2.74 3.47 3.95 

t'J:;: 4.90 2.~::S 1.7' 1.39 1.16- 1.94 2.7' 3.53 4.22 4.01 2.54 1.83 1.39 1.1 '!5 1.89 2.63 3.46 4.18 

:l"t'J 3.01 1 .90 1.36 1.08 1.01 1.90 2.65 3.34 3.:57 5.26 2.72 1 •• 0 1.46 1.23 1 •• 3 2.77 3.60 4.28 

::OZ 4.42 2.30 1.64 1 .. :SS 1.18 1.92 2.70 3.27 3.75 S.71 2.94 2.03 1.64 1.33 1.94 2.81 3.48 4.29 

0>:1 2.79 1.~O 1.12 .'3 .80 1.86 2.49 3.00 3.49 5.66 2.89 2.00 1.60 1.36 1.96 2'.83 3.:54 4.16 

::r.~ 3.79 1 .. 98 1.41 1.1 '!5 .95 1.91 2.69 3.30 3.99 :5.49 2.82 1.94 1.:56 1.33 1.9:5 2.83 3.52 4.1l 

6.:59 3.40 2.32 1.81 1.62 1.94 2.84 3.64 4.07 3.39 1.79 1..29 1.04 .91 1.89 2.63 3.26 3.73 

~>:I 7.35 3.69 2.:56 2.00 1.77 2.00 2.87 3.68 4.1S 2.73 1.47 1.07 .88 .7' 1.86 2.SS 3.10 3.46 

G'lH 5.91 3.U 2.16 1.76 1.4b 1.90 2.74 3.36 4.05 3.:55 1.88 1.34 1 .. 10 ••• 1.89 2.65 3.2l 3.78 

0:;: 3.03 1.5' 1 .. 12 •• 2 .80 1.91 2.71 3.29 3.52 4.69 2.49 1.81 1.40 1.260 1.88 2.:59 3.35 3.72 

::OH 4.58 2.42 1.607 1.36 1.16 1.ev 2.74 3.37 3.9S 5.11 2.72 1.87 1.~2 1.30 1.88 2.73 3.360 3.'3 

HZ 4.84 2.~9 1.79 1.38 1.21 1.81 2.70 3.~1 4.00 4.89 2.53 1.80 1.4:5 1.22 1.93 2.72 3.37 4.01 

>:IGl S.4~ 2.81 1.92 1.55 1.33 1.94 2.84 3.~2 4.10 3.7'5 2.06 1.40 1.15 1.02 1.82 2.68 3.26 3.68 

::t: 1 • '9:5 1.09 .81 .0' .62 1.79 2.41 2.83 3.1:5 2.79 1.49 1.09 •• 0 .82 1.81 2.:56 3.10 3.40 

:;:~ 3.44 1.83 1.31 1.07 1.00 1.88 2.63 3.21 3.44 4.24 2.21 1.'57 1.26 1.09 1.92 2.70 3.37 3.89 

2.71 1.41 1.03 .92 .81 1.92 2.63 2.'5 3.3:5 4.08 2.14 1.52 1.22 1.04 1.91 2.69 3.34 3.92 
_tIl 

7.36 6.43 4.44 2.01 2.42 1 • 14 1.66 3.6-6 3.04 3.6'5 1. '92 1.34 1.12 •• 8 1.90 2.72 3.26 3.72 
>:le:: 
Ht"' 3.48 1.9'5 1.33 1.13 •• 0 1.88 2.62 .'3. (\8 3.87 '5.77 2.95 2.11 1.72 1.41 1.960 Z.73 3.35 4.09 

:;:>:1 4.30 2.27 1.57 1.30 1.05 1.89 2.74 3.31 4.10 4.31 2.25 1.56 1.24 1.08 1.92 2.760 3.48 3.99 

t'JtIl 2.8' 1.~5 1.09 .'5 .90 1.86 2.65 3.n4 3.61 6.37 5.31 2.71 1.72 1.46 1.20 2.35 3.70 4.36 

tIl 4.39 2.32 1.61 1.30 1.14 1.8V 2.73 3.38 3.85 4.69 2.47 1.79 1.38 1.22 1.90 2.62 3.40 3.84 

0 6.85 3.44 4. 11 1.90 1.60 1.99 1.67 3.6-1 4.28 6.35 3.36 4.38 1.77 1.'51 1.89 1.4"- 3.'59 4.21 

:I""J 3.47 1.94 1.31 1.07 •• 2 1.89 2.65 3.24 3 .. 77 5.00 3.~6 2.49 1.44 1.260 1.40 2.01 3.47 3.97 

~ >:I 
4.13 2.19 1 .. :560 1.30 1.07 1.89 ~.6:5 :S.18 3.86 5.64 2.'0 2.03 1.64 1.37 1.'94 2.78 3.44 4.12 

::t: 3.54 1.88 1.33 1.05 ••• 1.88 2.660 3.37 3.77 5.67 3.16 3.98 1.'57 1.48 1.79 1.42 3.61 3.83 

H t'J 6.55 4.21 2.41 1.7'9 1. '52 1.56 2.72 3.66 4.~1 5.80 3.01 2.11 1.71 1.43 1.89 2.75 3.39 4.06 

Z 3 .. 16 1.70 1.25 1.00 .8' 1.86 2.53 3.16 3.55 3.'59 1.'0 1.3~ 1.0' .93 1.89 2.660 3.29 3.80 

"d 4.05 2.19 1.49 1.26 1.07 1.85 2.72 3.:21 3.79 6.16 3.18 2.21 1.77 1.47 1.94 2.7V 3.49 4.19 

:;::1" 3.43 1.91 1.28 1.04 .'1 1.90 2.68 3.30 3.77 3.'55 1.'0 1.36 1.04 .92 1.87 2.61 3.41 3 .. 86 

~~ 
3.98 2.07 1.48 1.24 1.01 ·1.92 2.69 3.21 3.94 1.85 1.04 .71 .65 .00 1.78 2.61 2.85 3.08 

3.02 1.66 1 .. 18 •• 7 .80 1.82 2.56 3.11 3.51 4.13 2.18 1.460 1.21 1.0:5 1.8. 2.83 3.41 3.93 

8 .. 11 4.12 3.7S 2.160 1.87 1.97 2.160 l.7S 4.34 3.04 1.90 1.33 1.12 .'5 1.92 Z.14 3.25 3.83 
Ht"' 4.93 3.80 1.S1 1.48 1.l1 1.30 2.72 3.33 3.76 1.08 .65 .~2 .47 .4' 1.606 2.08 2.30 2.45 
tIlt'J 
t'Jt"' 3.2~ 1.73 1.24 1.01 .8' 1.8S 2.62 3.22 3.65 :S.S2 3.00 2.11 1.67 1.42 1.94 2.70 3.4~ 4.10 

0 ------------------------------------------------------- ----------------------------------------_ .. _---------
Otll 7.77 ~.90 2.75 2.04 1.69 1.30 2.83 3.81 4.60 IV 

ZH 1.4'- 3 .. (,6 2.63 2.07 1.73 1. '93 2.83 3 .. 60 4.31 AVERAQE W 

0:;: 4.83 2 .. S3 1.79 1.43 1.16 1. '91 2.10 3.38 4.16 
-..l 

tIl"d ------------------------------------------------------- ----------------------------------- ----_ .. _-----------
-t"' 3.76 1.99 1.44 i. .10 •• 7 t.~0 2.61 3.42 3.88 4.63 2.52 1.80 1.36 1.17 1.876 2.62 3.3~ 3.88 

t'J ------------------------------------------------------- ------------------------------------------------------



1-3 Tt T2 T3 T4 T~ B.2 S.3 BP< SPS Tt T2 T3 T4 TS S.2 SP,J SP4 SPS 
:t> ----------------------------------------------------- -----------------------------------------------------
ttI 2.24 1.31 1.02 .96 .94 1.71 2.20 2.60 2.67 3.3S 1.79 1.31 1.07 1.04 1.99 2.36 3.13 3.22 
t< 4.01 2.21 1.64 1.39 1.19 1.91 2.4S 2.88 3.37 3.22 1.76 1.30 1.11 1.01 1.83 2.49 2.90 3.19 
t>:I 3.8S 2.IQ 1.56 1.31 1.17 1.93 2.47 2.94 3.29 .79 .S8 .S4 .SS .S2 1.34 1.44 1.42 I. SO .. 4.15 2.23 1.62 1.37 1.29 1.96 2.'6 3.01 3.24 .73 ." .SI .49 .SS 1.33 1.43 1.52 1.33 

2.:S~ 1.~e 1.02 .96 .97 1.71 2.31 2.46 2.71 2.88 1.60 1.26 1.03 .97 I.EtO 2.29 2.$0 2.97 
~ 1.94 1.12 .89 .77 .74 1.73 2.18 2.'2 2.62 1.13 .71 .61 .S? .6' 1.59 1.85 1.98 1.74 
\D S.20 2.7::5 2.01 1.60 1.39 1.90 2.59 3.2' 3.74 2.72 1.~:5 1.13 .99 .93 1.7:5 2.41 2.7S 2.92 

.76 .57 .49 .48 .S4 1.33 1 .. !5:5 1.!fiS 1.41 .96 .64 .62 .S6 .5' 1 .. 50 1.~:5 1.71 1.7:5 
1.47 .92 .69 .70 .67 1.60 2.13 2.10 2.19 S.'6 3.9S 2.04 1.73 I.S0 1.41 2.73 3.21 3.71 

~1-3t>:1 
2.96 1.66 1.2S 1.11 .97 1.78 2.37 2.~7 3.0:5 2.94 1.63 1.2:5 1.09 .99 1.74 2.27 2.61 2.87 

1-3=<1>: 2.:5:5 1 .. :51 1.11 .99 .83 1.69 2.30 2.'59 3.07 2.30 1 .. 34 1.04 .94 .82 1.72 2.21 2.4:5 2.80 

HO'" 1.77 1.0b .90 .7' .70 1.67 2.21 2.49 2.33 3.9:5 2.08 1. :51 1.22 1.08 1.90 2.62 3.24 3.66 

:l: t>:I 1.44 .83 .6S .S8 .42 1.73 2.22 2.49 2.32 2.49 1.41 1.07 .94 .8' 1.77 2.33 2.6S 2.93 

t>:It<;t1 2.32 1.36 1.00 .91 .83 1.71 2.32 2.5' 2.90 1.62 .97 .76 .73 .68 1.67 2.13 2.22 2.38 
Ult>:lH 3.68 2.00 1.S4 1.26- 1.IS 1.84 2.39 2.92 3.20 2.14 1.27 1.00 .90 .76 1.69 2.14 2.38 2.82 

:t>~gj :5.01 2.64 1.94 I.S4 1.37 1.90 2.S8 3.2S 3.66 3.88 2.12 I.S3 1.29 1.19 1.83 2.S4 3.01 3.26 
2.99 1.70 1.34 1.13 1.00 1.76 2.23 ·2.6S 2.99 2.:5S 1.!li2 1.12 1.01 .92 1.68 2.28 2.:52 2.77 

~,j t< Z 3.67 2.02 1.48 1.24 1.13 1.82 2.48 2.'96 3.2' 2.6:5 1.48 1.19 .99 .89 1.79 2.23 2.68 2.98 
t>:I 1-3 4.29 2.32 1.73 1.46 1.2:5 1.94 2.41 2.93 3.42 4.23 2.30 1.66 1.43 1.25 1.84 2.~5 2.96 3.38 

H~E=: 1.68 1.04 .74 .78 .73 1.62 2.27 2.1' 2.30 4.88 2.:58 1.86 1 .. S0 1.28 1.89 2.62 3.2:5 3.81 

Z:l: 1.0b .6' .S? .S7 .64 1.63 1.86 1.86 1.66 .60 .SO .4' .4S .S3 1.20 1.33 1.33 1.13 

"'1-3 2.33 1.32 1.03 .89 .92 1.17 2.26 :2.605 2.84 4.63 2.50 1.83 •• 57 1.30 1.95 2.53 2.95 3.S6 

:l:t<H 3.20 1.77 1 .. 44 1.20 1.04 1.8' 2.22 2.b7 3.08 4.00 2.2S 1.S9 1.32 1.24 1.78 2.~2 3.03 3.23 

Ht>:I:l: 3.77 2.11 I.SS 1.33 1.23 1.79 2.43 :2.a3 3.07 2.70 I.S0 1.18 1.0S .90 1.90 2 .. 29 2.S7 3 .. 00 

t< H 4.26 2.31 '.66 1.4, 1.27 1.84 2.57 2.94 3.3S .68 .49 .43 .49 .SI 1.39 1.59 1.39 1.33 
t<c..Z 3.93 2.16 1.69 1.36 1.22 1.82 2.33 2.89 3.22 :5.41 2.80 '.96 1.69 1.39 1.93 2.76 3.20 3.89 
HCGl 3.55 1.9S 1.48 1.20 1.14 1.82 2.40 2.96 3.11 '.41 2.86 2.12 11.69 1.47 1.89 2.:5:5 .46 3.68 
Ul:l: 4.50 2.47 1.88 1.45 1.34 1.82 2.39 3.10 3.36 3.13 1.7S 1.31 1.80 1.01 1.79 2.39 1.74 3.10 
t>:I"';t1 3 .. 49 1.93 1.42 1.24 1 • 1 3 1 .81 2.46 2.~1 3.09 2.82 1.60 1.1S .98 '.00 1.76 2.4S 2.88 2.82 
0 t>:I 
OUlUl 4.S4 2.42 1.81 1 .. :51 1.31 1 • $9 2.51 3.01 3.47 .91 .60 .S6 .S? .S9 1. :52 1.63 1.60 1 .:54 

Zt>:IC 2.91 l.se 1.19 .99 .9S 1.79 2.36 2.94 2.96 3.28 1.94 1.39 1.14 1.04 1.79 2.36 2.89 3 .. 1S 

O:t>t< 2 .. 14 1.24 .99 .80 .81 1.73 2.16 2.608 2.64 3.42 1.93 1.36 '.22 '.13 1.77 2.~a 2.80 3.03 
Ul;t11-3 3.46 1.89 1.41 1.22 1 .. 10 1.93 2.4S 2.84 3.1S 2.48 1.3S 1.14 .92 .82 1.84 7.18 2.70 3.02 
-OUl 2.12 1.22 .9' .78 .77 1.74 2.23 2.72 2.7:5 2.16 1.29 .98 .87 .77 1.67 2.:l0 2.48 2.81 

:r: 4.1:5 2.25 1.S9 1.38 1.26 1.84 2.61 3.01 3.29 1.11 .67 .S8 .60 .S9 1.66 1. '91 1.8:5 1.88 
0 3.39 1.88 lw41 1.19 1.01 1.80 2.40 2.8:5 3.36 1.32 .82 .64 .6S .6' 1.61 4'.('6 2.03 2.16 

E=:ITJ 2.67 1.'2 1.1~ .93 .99 1.76 2.32 2.87 3 .. 00 2.70 1.~::S 1.19 .9S .98 1.76 2.27 2.84 2.76 

G'l1-3 3.3' 1.93 '.43 1.16 1.09 1.81 2.31 2.13:5 3.04 1.67 1.04 .7S .76 .72 1.61 2.23 2.20 2.32 

o:r: 1.3S .78 .72 .6" .60 1.73 1.88 2.11 2.2~ S.SI 4.71 2.03 2.18 1.42 1.17 2.71 2.:53 3.88 

;t1t>:1 3 .. 76 2.Q9 1. :5S 1.32 1.16 1.80 2.43 2.8:5 3.24 1.17 .71 .63 .61 .64 1.6S 1.96 1.92 1.83 

H 4.59 2.4S 1.75 1.46 1.30 1.85 2.62 3.'4 3.S3 4.77 2.63 1.85 1.56 1.37 1.81 2.!".i8 3.06 3 .. 48 

1-3'" ·.94 .~9 .SS .S6 .S, 1. :59 1.71 1.68 1.71 .SS .43 .41 .42 .S3 1.28 1.34 1.31 1.04 
:r::t> 5.22 2. ns 2.09 1.66 1.4S 1.90 2.:50 3w 14 3.60 .S7 .47 .49 .S' .49 1.21 1.16 1.12 1.16 

:l:f!; .91 .59 .S3 .SS .56 1 .. ~4 1.72 1.6:5 1.63 2.7S 1.S4 1.21 1.00 .99 1.79 2.27 2.7:5 2.79 

:5.43 2.9S 2.06 1.660 1.50 1. '9'1 2.64 3.27 3.62 4.S7 2.31 1 .. 69 1.32 1.17 1.98 2 • .,0 3.46 3.91 
t< .87 .:59 .S3 .S6 .S2 1.47 1.64 1 .:5:5 1.67 4.:52 2.S2 1.85 1.4:5 1.27 1.79 2.44 3.12 3.S6 
t< 1.21 .74 .63 .61 .S9 1.64 1.92 1.98 2.0S 2.37 1.36 1.12 .92 .82 1.74 2.12 2.:58 2.89 
t>:I 
t< 3.94 2.IS 1.60 1.34 1.13 1.93 2.46 2.94 3.49 1.95 1.1S .96 .79 .74 1.70 2.(13 2.47 2.6' IV 

----------------------------------------------------- ----------------------------------_ ....• _-------------- W 

2.77 1.:58 1.19 1.04 .94 1.75 2.33 2.66 2.9:1 CO 

4.99 2.69 1.99 1.60 1.39 1.86 2.S2 3.'2 3.S9 AVERAGE 
4.45 2.38 1.7S 1.41 '.29 1.87 2.:54 3.16 3.4:5 

----------------------------------------------------- ------------------------------------... ---------------
3.04 1.70 '.30 1.10 1.02 1.79 2.::4 2.76 2.98 2.93 1.66 1.24 1.17 .97 1.72 2.2S 2.56 2.93 

._----.------------------------_ .. _--------_ .. _------- .. .. ---- .. ------------_ ... --------------_ ..... _--------------



Tl T2 T3 T4 T~ SP2 SP3 S.,4 SP~ Tl T2 T3 T4 T~ SP2 SP~ SP4 SP~ 
>-3 ------------------------------------------------------ -----------------------------------_ .. _--------------» .~~ .46 .42 .43 .72 1.20 1.31 1.28 .76 1.08 .71 .61 .44 .66 1.~2 1.77 2.4:5 1.64 tD 
t-' 1.36 .7e .70 .73 .96 1.74 1 .. 94 1.136 1.42 1.11 .70 .62 .62 .62 1.59 L 19 1.79 1.79 
t>:I 1.2~ .73 .62 .62 1.13 1.11 2.02 2.u2 1.11 1.19 .79 .61 1.68 .e4 t .~H 1 .. 9:5 .71 1.42 

1.~2 .92 .73 .74 .7~ 1 .. 65 2.09 2.0~ 2.03 .e3 .~:5 .~1 .~. .93 1.:51 lob:} 1.~4 .e9 ... 1.01 .6A .~9 .62 .a7 1.'8 1 .. 11 1 .. 603 1.10 1.49 .86 .69 .4A .64 1.73 2. J6 3.39 2.33 .9' ••• .61 .~7 .:5A I.S5 1 .. 62 1.74 1 .. 83 .7' .:5:5 .:51 .'6 .6' 1.44 1. ~:;5 1.41 1.23 
IV t .. 75 1.03 .87 1.Ob 1.02 1.70 2.01 1.6.5 1.72 .77 .:56 .'0 .6A .62 1.37 1.54 1.20 1..24 
0 .a2 .60 .~1 .46 1.07 1.37 1.61 1.78 .77 1.3a .a6 .71 .61 1.03 1.60 1.94 2.26 1.34 

1.17 .72 .6~ .70 .74 1.62 l.ao 1.67 1.'8 1.71 1.78 .70 .46 .8' •• 6 2.44 3.72 1.92 
1.20 .76 .6' .~. .73 1.,e 1. a' 2.113 1.64 .94 .69 .~7 .66 .71 1.36 1.6~ 1.42 1.32 

->-3t>:1 .99 .66 .'b .,. 1.02 1.~0 1.77 1 .. tll .97 1.00 .b:5 .:57 .66 .'2 1.54 1.75 1.52 1.92 
>-3::;: X .61 .48 .4' .71 .60 1.27 1.39 .~6 1.02 1.08 .69 .~7 .76 .'9 1.S7 1.89 1.42 1.83 
HO'd .4' .37 .36 ••• .61 1.19 1.22 1.0c) .72 1.28 .7, .72 .~2 .72 1.62 1. 78 2.46 1.78 
:>: t>:I 1.30 .8' .68 .6~ 1.08 1.55 1 .. 91 2.00 1.20 1.3b .82 .6' .'6 .80 1.6b 2.13 2.43 1.70 
i:':1t-'::o .98 .b' .'7 .'8 .78 1 .~l 1.72 1.69 1.2b 1.26 .78 .b~ .b' 1.00 1.62 1.94 1.83 1.2b Ult>:lH 1.04 .66 .'7 .66 .63 1.~9 1.82 1.,~e 1.6' 1.62 •• 7 .77 .72 .6b 1.67 2.10 2.2:1 2.4~ 

»;;J~ 1.21 .7' .bb .68 .62 1.64 1.83 1.713 1.9~ 1.07 .b8 .60 .'S 1.00 I.S7 1.78 2.38 1.07 

::<It-'Z 1 .. 21 .72 .b2 .bl .73 1.68 1.9~ ·1.98 1.6b 1.27 .7b .b~ .7' .7. 1.67 1.9~ 1.69 1.63 
t>:I >-3 1.~7 .91 .73 ••• 1.20 1.73 2.1~ I.S9 1.31 1.34 .7' .71 .72 .72 1.70 1.&9 1.8b 1.8b 

H~~ 
.7. .s, .SI .48 .7. 1.'2 l.S3 1.63 1.00 1 .. 92 1.12 •• s .'7 .6' 1.71 2.~6 3.37 2.78 
••• .61 .'7 .'7 .71 1.~4 l.6S 1.6S 1.32 .9' .62 .'6 .s, .87 1.:12 1.b8 1 .71 1.08 

ZX 1.3' .83 • 72 .76 .6' 1.63 1.89' 1.78 2.08 1.'3 .8 • .73 .60 .7' 1.63 1.""6 2.38 1.81 
t>:I>-3 1.09 .66 .s, .66 .79 1.6s I.BS l.bS 1.38 1.23 .73 .60 .6' .88 1.68 2.0~ 1. 78 1.40 

:>:OH .79 40~2 .~4 .63 .bO I.S2 1.46 1.2' 1.32 1.21 .7' .6' .7b .68 1.:13 1.&9 I.S9 L78 H :>: 1.21 .7S • 60 .77 .e • 1.61 2.02 l.S7 1.44 .6' ••• .'7 .~8 1.17 1.41 1.47 1.19 .,. t-'yH 
t"CZ .90 .~8 .'2 .~b .b' l.SS 1.73 1.61 1.30 1.34 1.73 .b2 .72 .67 .77 2.16- 1.8b 2.00 
H:>:Gl 1.27 .77 .66 .bO .7~ 1 .6~ 1.92 2.12 1.69 1.09 1.36- .63 .'b 1.44 .7' t. 71 1.93 .7, 
Ul'd 1.01 .63 .60 .~6 .. ~ 1.60 1.68 1.90 1. 19 1.27 .81 .b3 .69 1.24 1.~7 2.('2 1.97 1.02 
t>:I ::0 1.10 .70 .63 .,~ .83 1. ~7 1.75 2.00 1.33 .7' .SO .'7 .6' .60 1.48 1.':'57 1.07 1.23 

n~t<l 1.~7 .9b .8S .79 1.03 1.64 1. as 1 .. " 1.~2 1. I~ .72 .63 .7' .70 1.60 1.&3 I.SS 1.64 
o Ul 1.33 .81 .73 .73 .89 1.64 1.82 1.82 1.4'9 1.14 .73 .62 .~b .6, L~6 J. li4 2.04 l.6S 
ZGlC .1.14 .71 .'9 .S' .81 1.61 1. '93 2.11 1.41 1.40 .81 .66 .62 1.20 1.73 2.12 2.26 1.17 
OOt-' 1.44 .'0 .70 .71 .ao 1.60 2.r)6 2.03 1.80 l.b" 1.00 .7' .61 .S, 1 .6'9 2. J4 2.77 3.2~ Ul::<l1-3 .'9 .66 .,e •• 7 .S7 I.SO 1.7. 2.11 1.74 .71 .'3 ••• 1.00 .bO 1.34 1.4~ .71 1 • 18 -HUl 

1-3 1.2' .7~ .b" .b7 .b3 1.67 1 • '95 1.87 1. '98 .,~ •• 2 .'2 ••• .'b 1.31 1.31 1.2~ .S7 
::r:0 I. !51 .'3 • 7' .6' ••• 1.62 2.04 2.19 1.54 1.49 .8' .7b 1.96 1.06 1.67 t.V6 .76 1.41 

:>:"':1 1.6S .99 .82 .73 .72 1.68 2.01 2.2b 2.2. ..3 .b2 .60 .42 1.0S I.SO 1 .~!5 2.21 .89 
1.2' .80 .67 .76 .76 1.56 LS7 1.6.4 1.64 1.28 .81 .6' .62 .97 1. '8 1.1'16 2.06 1.32 

>-3 1.01 .69 .'8 .e. .'6 1.46 1.74. 1.20 I.OS 1.81 1.12 .83 .'3 .~2 1.62 2.18 4.21 3.48 
::r: ••• .6S .S7 .70 .61 1. '52 1.74 1.41 1.62 1.2' .76 .66 .63 1.06 1.63 1.88 1.97 1.17 
t>:I 1.47 •• 6 .71 .66 .7' 1.71 2.07 2.23 1 ••• 1.~6 .8' .6' .b7 ••• 1..' 2.44 2.33 I.S. 

'tl .51 .4~ .42 .'7 .63 1.13 1.21 .e9 .81 1.00 .61 .'2 .87 .60 1.64 1.92 I. IS 1.67 

:t" 1.3' .. , .66 1.66 .72 1.64 2.11 .8' 1.'3 .87 .Sa .~O .67 1.11 1.~0 1.7' 1.30 .78 

~ 
.47 .37 .40 .'3 .7Q 1.27 1.17 1 .1)9 .b7 1.17 .76 .67 .'8 .88 1.~4 I • 'IS 2.02 1.33 

1.66 1.03 .71 .~7 1.08 1.61 2.34 2.91 1.S4 1.20 .72 .60 1.29 .91 1.67 2.1)0 .'3 1 .. 32 
t-' .71 ,.!!'J •• 7 .'3 .9b 1.34 1.!s1 1. 60S .7' 1.'4 .88 .7' .!5!5 .S' 1.75 ". t113 2.80 2.61 
t-' 1.48 •• 6 .73 .63 .88 1.72 2.03 . 2.3S 1.68 1.00 .b7 .S7 .62 .b9 1.49 1.1S 1.61 1.4S IV 
i:'J 1.30 .77 .b6 .61 .8' 1.69 1. '97 2.13 1.46 1.54 •• 0 .73 .~6 1.08 1.71 2.11 2.75 1.43 W 
t" ----------------------------------------------------- ------------------------------------.~--------------- \<l 

1.1~ .M .bl .b8 .b' 1.67 1.8' 1.69 1.67 
1.95 1.1~ .e~ .bb .6a 1.70 2.29 2.95 2.97 AVERAGE 
1.136 1.12 .87 .~8 .9b 1.66 2.14 .'3.21 1.94 

----------------------------------------------------- ------------------------------------ .. ---------------
.81 .~~ • S3 1.43 .9 • 1.4~ 1 ."3 • ~7 .a • 1.18 .7b .63 .68 .82 1 • '55 1.",4 1.85 1.~1 

----------------------------------------------------- -----------------------------------_ .. ---------------



5 

4.5 

4 

3.5 

a. 
::s 
I 

"0 3 Q) 
Q) 
a. 

<n 

2.5 

2 

1.5 

Legend 
• PSJS 

• f.T.~.~.~~ ..... 
o PTLFJS _ , , , , , , 

, .... , , 

, 

, , , , , , 

240 

, , 

, , , , , 

... 

• 

" • n / -:: .• " / .. " ./ ...... . " / ..... , ~ 

" IT. .... 
" ,I ..... .1 / .... 

,/. ~ ....... 
, " .. 

I" /. •••••••• 

I' n.··· 
/ ,;. ..• , 

" .{-.... 
I" {.-o 

, h·· , .... 
, . ,(.-.. 

I ... 0" 

/ .. 
/1'" , . 

''I". 
~ .. 

.. ~ .. 

I I I 
234 

Number of processors 
5 

FIGURE 4.5: THEORETICAL SPEED-UPS OF THE PARALLEL JUMP 
SEARCH ALGORITHMS 



a. 
:J 
I 

"C 
Q) 
Q) 

a. 
Vl 

5 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

Legend 
• PSJS 

• PTLSJS ----
o PTLFJS -----

, , 
, 
, , 

I , 

, , , , , , 

, , 

241 

, 

,.. , , , , 

, .... 

/// /-
, , , , , , , , 

,L , 

• 

" ---. ", ~ ... 
,'. ..~ " ~ .. " ~ , " ./ " ./' 

I" /" 

,.... /" ....-------.",-, 
, / --L...r LJ ...... 

,". , ......... ' ............ ~ 
,t' / ~" ~~'-, Y"IT D 

/~" 
~' 

1.~-----"-------"-------"--------:!' 
1 2 3 4 5 

Number of processors 

FIGURE 4.6: EXPERIMENTAL SPEED-UPS OF THE PARALLEL JUMP 
SEARCH ALGORITHMS 



242 

parallel performance (see Figure 4.6). However, this is not 

surprising since this method performs on average less operations 

than the other two sequentia11y and when using P processors the 

amount of work performed by each processor is even smaller. 

However, these methods are expected to do better with very large 

sets. In Tables 4.21 and 4.22 we report the maximal number of key 

cornparisoos performed in each stage by each meth:xl. when varying the 

number of processors. A sample of five ranCbrn keys is selected. 

~ Processors 
Ksy 1 2 3 4 5 

1 89, 15, 4 45, 8, 2 30, 5, 2 22, 4, 1 18, 3, 1 

2 181, 13, 6 91, 7, 3 61, 4, 2 45, 3, 2 37, 3, 2 

3 176, 8, 7 88, 4, 4 59, 3, 3 44, 2, 2 36, 2, 2 

4 191, 6, 9 96, 3, 5 64, 2, 3 48, 2, 3 36, 1, 2 

5 103, 3, 8 52, 2, 4 35, 1, 3 26, 1, 2 21, 1, 2 

TABLE 4.21: Number of key comparisons performed by the parallel 
simple jump search rneth:xl. 

~ Processors 
Ksy 1 2 3 4 5 

1 15, 1, 6 8, 1, 3 5, 1, 2 4, 1, 2 3, 1, 2 

2 29, 20, 18 15, 10, 9 10, 7, 6 8, 5, 4 6, 4, 4 

3 28, 27, 4 14, 14, 2 10, 9, 2 10, 9, 2 6, 6, 1 

4 30, 41, 4 15, 21, 2 10, 14, 2 10, 14, 2 6, 9, 1 

5 17, 4, 32 9, 2, 16 6, 2, 11 6, 2, 11 4, 1, 7 

TABLE 4.22: Number of key comparisons performed by the parallel 
fixed jump search meth:xl. 



243 

The tables a1:xJve show that the time-complexity for backing-up the 

blocks which were neglected during the theoretical performance 

analysis has a considerable degrading effect on the performance of 

the two level fixed jump algorithm than on the two level simple jump 

search since the number of key comparisons, when more than 2, 3 

processors are used, is almost equal, or even less than, P. 

4.5 roo:.tJSICN 

In this chapter we have designed and analysed several searching 

algorithms, each of which is suitable for a specific situation. The 

studied algorithms are the sequential search, the binaIy search and 

the jump or 'block' search algorithms. 

Using the powerful partitioning strategy as our basic MIMD 

implementation met:OC>d for these parallel algorithms, we have devised 

several different versions for the sequential and binary search 

algorithms. In version 1.0, the elements accessed by cne processor 

are adj acent whereas they are distant by P elements in the second 

version. The third version, defined for the binaIy search, o:osists 

of part! tion:ing the current sub-set into P in every iteration. 

Initially we established, theoretically and experimentally, that an 

optimum time-complexity for the parallel sequential search is 

obtained when M, the number of paths, is equal to P. We then 

studied the effect of broadcasting the current state of the search 

on the average parallel performance of the search problem. Both 

theoretical and experimental analysis showed that broadcasting which 

is performed through a shared data structure, improves the average 

speed-up of the sequential search algorithm from P+l (when 
2 



244 

broadcasting is not CXXlSidered) to superlinear aOO linear speed-ups 

with versicns 1.0 aOO 2.0 respectively. 

Sequentially, the binary search algorithm has a good performance 

(Le. the time-complexity is logarithmic) which is difficult to beat 

in most cases. However, its parallel implementatien sh:>wed rather 

poor performance characteristics. A fact that supports the general 

rule which states that "good sequential algorithms are not 

necessarily the best parallel algorithms". Experiments on the 

binary search metood sh:>wed that, en average, the speed-ups of the 

three parallel versicns are less than unity. One of the reascns f= 

such behaviour is that versions 1.0 and 2.0 do not split the total 

amoo.mt of work equally between the activated processors. Except f= 

versien 3.0 which involves all the processo"CS in every iteratien of 

the algorithm, the work is equally partitioned. However, due to the 

high parallel centrel overheads (since every iteratien creates aOO 

terminates P paths, each of which performs a single key compariscn) 

arr:l gain achieved by using such a metood socn dies cut. Therefore, 

we came to the conclusion that the binary search, although very 

efficient sequentially, is not suitable for parallel implementaticn. 

On the other haOO, the jump search algorithm which is preferred in 

some situations where the binary search is not suitable, achieved 

acceptable performance., In particular, the simple jump search 

metood sh:>wed an almost linear speed-up. However, due to the fewer 

number of operations to perform in parallel as the jump size gets 

larger, the speed-ups of the two level simple jump search and the 

two level. fixed jump search methods flattened quickly as P 

increased. In order to acheive good performance, these methods 

sOOuld be used with extra l.arge sets = files. 



Chapter 5 

PARALLEL STRING 
MATCHING ALGORITHMS 



245 

5.1 INl'RaXX:TICN 

The string searching problem is at the heart of many information 

retrieval and text editing applications where it is required to 

locate some or all occurrences of a user-specified pattern in a text 

string in a minimal amount of both processing time and memory space. 

The Brute Force search algorithm is perhaps the most obvious way to 

search for a matching pattern in a text string by trying to start 

the search at every position of the text, abandoning the search as 

soon as an incorrect character is found. Although this approach is 

very simple, it can be very inefficient with some types of patterns 

and strings. For example, the search for a~ in a text of the form 

a~ requires (n+l)2 compari9alS [Knuth 1977]. F\JrtheI:more, backing 

up the input text as we go through it, can add annoying 

complications if the frequently involved buffering operations are 

considered. 

Unlike the Brute Force algorithm, the Karp-Rabin and the Knuth

Morris-Pratt algorithms avoid backing up the text. Therefore these 

algori thms inspect every character passed once and only once. By 

comparison, the Brute Force algorithm inspects on average, 1.1 

characters for every referenced character [Boyer 1977]. 

The Karp-Rabin algorithm considers the pattern as a key of m digits 

and d, the alphabet size, as the base. They observed that string 

matching is the same problem as the standard searching problem by 

searching all possible m-character sub-strings in the text whose 

hash function value is equal to the hash function value of the 

pattern. The highly mathematical operations involved make the Karp

Rabin algorithm of less practical use than the Brute Force 



246 

algorithm. The Knuth-Morris-Pratt algorithm uses a basic idea that 

the pattern is shifted right by a ooncise number of places whenever 

a mismatch is detected. A table ccntaining all the shift values is 

precomputed for every pattern. 

A recent algori thin that solves the string searching problem even 

faster than any previous meth:Jd is the Boyer-Moore algorithm which 

unlike its predecessors, compares the pattern with the text string 

from the right end. Whenever a mismatch occurs the pattern is 

shifted right according to a precomputed table. In the case that 

the text character positioned against the last character in the 

pattern does rot appear in the pattern, the pattern is immediately 

shifted right by a distance equal to the pattern length (m). Thus 

when the alphabet size is large, on average, only n/m characters of 

the text are inspected, where n is the text string length [Knuth 

1977]. Boyer and Moore showed that the worst-case running time is 

proportional to n*m. The running time can essentially be 

proportional to n+rm where r is the number of occurrences of the 

pattern in the text [Knuth 1977]. 

Knuth also described a variation of the Boyer-Mcore algorithm that 

is faster than the original algorithm by making a small modification 

in the algorithm that computes the shift table. 

In this Olapter, the parallel implementation of the five considered 

string searching algorithms are presented. The experimo;mtal results 

slx>wed that the Boyer-Mcore and its variation outperform by far the 

remaining methods. In Section 5.2 we review all the string 

searching algorithms and place them into perspective by giving a 

short and brief history. In Section 5.3 we present the parallel 

implementation of these algorithms and their experimental results 



247 

performed on 2 MIMD parallel computer systems available at 

Loughborough University with comparisons of the predicted 

performance. Finally Secticn 5.4 =ncludes the work reported in this 

chapter. 

5.2 HIS'IDRY 

There is a Brute Force algorithm for string searching problems which 

is in wide use. It checks for each possible positicn in the string 

that could possibly match the pattern, whether it does in fact 

match. The meth::Jd which is the first idea that comes to mind keeps 

a pointer (i) in the text string and another (j) in the pattern. As 

long as they point to matching characters both pointers are 

incremented by 1, otherwise j is reset to 1 and i is reset to 

co=espond to moving the pattern right by one place. The search is 

successful if at the end of the algorithm j is greater than m (where 

m is the pattern length), otherwise it is unsuccessful. While this 

algorithm has a worst-case running time proportional to n*m, the 

strings that arise in many applications lead to a running time 

almost always proporticnal to n+m. 

In 1970, SA Cook proved for a particular type of abstract machine 

that an algor! thm exists which solves the string matching problem in 

a worst case running time proportional to n+m. Fbllowing the work of 

Cook used to prove his theorem, D.E. Knuth and V.R. Pratt designed 

an algorithm (not intended to be at all practical) which they were 

able to refine and get virtually a simple and practical algorithm. 

However it turned out that in the meantime J.H. Mo=is had virtually 

discovered the same algorithm as a solution to an annoying problem 

(of not wanting to ever back up the input text) that confronted him 

while implementing a text editor. The basiC idea behind the 



248 

algorithm disCOlTered by Knuth, Mo=is and Pratt is this: while the 

Brute Force algorithm forgets all about the koown characters that 

have matched just before a mismatch is detected, Knuth-Mo=is-Pratt 

observed that there is enough information to create them and 

advantage should be taken somehow of this information instead of 

backing up the text OIler all toose koown characters. The pattern is 

initially put above the text strin;J so that the left-most characters 

of both strin;Js are aligned. The text is scanned from left to right 

without back ups. In the case of a mismatch, the pattern is shifted 

to the right according to a precomputed table. The computation of 

the shift table is short (requiring m steps) but tricky: it is 

basically the same algorithm as the Knuth-Mo=is-Pratt algorithm 

except that it is used to match the pattern against itself. 

The Knuth-Morris-Pratt algorithm is not likely to be significantly 

faster than the Brute Force algorithm in most applications, because 

few applications search highly self-repetitive patterns in highly 

self-repetitive texts. However the method has a major advantage 

from a practical point of view. This makes the method convenient for 

use on a large file being read in from some external device. 

Algorithms that require back ups require some complicated bufferin;J 

operations in this situation. 

The work of Knuth-Morris-Pratt was not published until 1976, and 

meanwhile R.S. Boyer and J.S. Moore (and independently R.W. Gosper) 

diSCOllered an algorithm which is much faster in many applications. 

They prCNed, if backing up is not a problem, a significantly faster 

method is obtained by scanning the pattern from right to left when 

tryin;J to match the pattern against the text strin;J. The algorithm 

keeps 2 pointers: (i) pointin;J to the ==ant character in the text 

string and (j) pointing to the current character in the pattern 



249 

string. Initially j points to the last character (right most 

character, starting from the left) of the pattern and i is set to m. 

If no mismatch occurs, then an occu=ence of the pattern has been 

found. Otherwise, the Boyer-Moore algorithm chooses the largest 

value of two precomputed shifts, delta 1 and delta 2, by which the 

pattern has to be shifted before a new matching attempt is 

undertaken. 

The computatien of the delta 1 and delta 2 shift tables is quite an 

involved process to explain, but it is solely based on the pattern 

and the alphabet character set. The whole idea behind the Boyer

Moore algorithm oould be resumed in the following remarks: 

1. If the current text character positioned against the last 

character of the pattern does fX)t oocur in the pattern, then the 

pattern is shifted to the right by m pesi tioos. A shift of less 

than m places would =t lead to a match; 

2. If the last character of the pattern has an occurrence delta 1 

places from the right end in the pattern, then the pattern is 

immediately moved delta 1 places to the right. A shift of less 

than delta 1 would position 2 mismatching characters. The 

computatien of the delta 1 table requires (m+d) steps where d is 

the alphabet size; 

3. The second shift table is similar to that of the KnUth-Mo=is

Pratt shift table except that the order of matching the pattern 

against itself is from right to left. The computation of the 

delta 2 table is therefore O(m) steps. 

Boyer and Mcore shJwed that for a large alphabet, this algorithm en 

average, inspects only n/m characters. The worst-case running time 

of (n*m) was proved to be (n+rm), where r is the number of 



250 

occurrences of the pattern. Recently Z. Galil [Galil 1979] suggested 

a variation of the Boyer-Mcore algorithm that improved oonsiderably 

the worst-case running time (when the pattern d:les rot exist in the 

string) to O(n). 

This story illustrates the fact that the search for a "better 

algori thm" is still often justified: the advent of parallel 

computer systems surely opens even new oorizons for this problem to 

be exploited. 

5.3 DESICN, J\NI\LYSIS AND IMPLEMENl'ATICN 

In this section, we present a parallel implementation of the string 

searching problem for an MIMD parallel computer system. We assume 

that the reader is familiar with the notion of multiprocessor 

computer systems and parallel language tools. Our experimental 

results were obtained on Neptune which is a 4-prccessor system 

manufactured by Texas Instruments and on Balance 8000 which is a 6-

processor (extendable to 12) system manufactured by Sequent Computer 

Systems Inc. 

The parallel algorithm design methodology used is the powerful 

partitioning (also known under the name of Divide-and-Conquer) 

method where the initial complex problem is partitioned into a 

certain number of smaller and less complex sub-problems. These sub

problems are then scheduled through a list of identical processors 

to be executed in parallel and independent of each other. Of 

course, the degree of independence depends on the amount of 

interaction between the execution of the sub-problems. The problem 

solution is then obtained by merging the partial solutions of the 

individual sub-problems once they are all completed. 



251 

In our string searching problem, the divide-and-conquer method 

suggests the partition of the shared string equally amongst the P 

available processors. The exact number of elements (nelem) in every 

sub-string is defined so the following points are observed: 

1. Each processor has exclusive access to n/p+m-l characters of the 

sub-string it is allocated to. This would ensure that none of 

these characters is inspected by more than one processor. 

Therefore parallel performance is maximized since the P 

processors are inspecting the string at P independent locations. 

However a price has to be paid because of the shared memory 

access overheads. Happily these are forecasted to be of no 

significant importance. 

2. Two consecutive sub-strings are allowed to overlap by m-I 

characters. The left most m-I characters of a sub-string are 

added at the end of the preceding sub-string (except for the 

sub-string starting with the first character of the string). 

Failing to do this makes the parallel search algorithm miss all 

the occurrences that lay between two sub-strings. An overlap of 

m (or more than m) characters leads to two processors finding 

the same occurrence (if any). The immediate implication of this 

is that one of the two implied processors is performing exactly 

the same work as the other one. This redunndacy is undesirable 

in the design of parallel programs. 

The sub-strings defined above are scheduled through a list of P 

active processors to be executed in parallel and independent of each 

other. Each processor searches all occurrences of the given pattern 

in the sub-string it is associated with. Every processor stores all 



252 

the locations of the found occurrences in a local array. Once all 

the processor have terminated searching their sub-strings the 

location arays are sorted and merged into a single array. The 

parallel algorithm shown below is an implementation of any 

sequential string searching algorithm. 

$OOALL (creation of P paths) 

nelem=n/p 

is=me*nelem+l 

ie=(me+l)+nelem+m-l 
. 

Search the sub-string (is, ie) for all occurrences of the 

pattern using a particular sequential string search metOOd 

$PAREND (end of a path) 

Each process (or path) is numbered using a local variable (me) at 

the initiation phase starting from 0 to P-l. After the creatien of 

P paths, the path creator processor (parent) as well as the other 

remaining processors (children) try to acquire a path to execute by 

entering the scheduling process critical regicn. 

The first step of a path is the computation of a lower (is) and 

upper (ie) bounds of the sub-string it is aboo.t to search using its 

identification number (me). Then the search is started from the 

character indexed by (is) until the character indexed by (ie) is 

reached. 

The testing procedure used to compare the performance of the five 

parallel string searching algorithm is based en the average running 

time since it =vers a large number of possible patterns. An English 

text of n characters is chosen for the experiments. The pattern 

length is varied from 6 to 15. For every pattern length considered, 



253 

10 random patterns are searched and their average timing is 

computed. Table 5.1 compares the sequential performance of 4 string 

matching algorithms against the slowest Brute Force meth:xi on the 

Neptune system. Table 5.2 reports the comparative sequential 

resu1 ts of 5 string matching algorithms performed on the Balance 

8000 system. The meth:xis are: 

TABLE 5.1: 

m 

6 

7 

8 

9 

10 

11 

13 

14 

15 

BF: The Brute Fo=e algorithm 

KR: The Karp-Rabin algorithm 

KMP: The Knuth-Mo=is-Pratt algorithm 

BM: The Boyer-Moore algorithm 

IBM: The Improved Boyer-Moore algorithm 

Sequential performance results performed on the Neptune 
System. The string size was 16000 characters. Timing 
unit is in secoods 

Sequential timing of Speed-up 
BF !<MP IfiI IBM !<MP IfiI IIfiI 

1.188 .737 .282 .278 1.614 4.403 4.482 

1.195 .745 .240 .236 1.608 5.117 5.210 

1.196 .748 .220 .215 1.602 5.692 5.811 

1.197 .748 .208 .204 1.602 5.952 6.080 

1.206 .756 .196 .919 1.598 6.313 6.465 

1.195 .749 .170 .168 1.600 7.294 7.386 

1.194 .743 .171 .168 1.610 7.175 7.315 

1.190 .742 .164 .162 1.607 7.610 7.741 

1.187 .741 .157 .154 1.605 7.760 7.927 



254 

TABLE 5.2: Sequential performance results performed on the Balance 
8000 system. The string size was fixed to 500000 
characters. Timing un! t is in secoods 

Sequential timing of Speed-up 
m BF I<R KMP BM IBM I<R KMP BM IBM 

6 43.22 58.95 39.11 4.24 4.20 .73 1.10 10.81 10.91 

7 41.64 58.94 37.69 3.55 3.50 .71 1.10 12.15 12.31 

8 42.76 58.94 38.71 2.96 2.90 .73 1.10 14.89 15.13 

9 42.35 58.94 38.33 2.63 2.59 .72 1.10 16.49 16.78 

10 41.57 58.94 37.66 2.99 2.94 .71 1.10 14.45 14.64 

11 42.01 58.93 37.97 2.26 2.20 .71 1.11 19.18 19.68 

12 42.69 58.94 38.55 2.48 2.40 .72 1.11 18.05 18.58 

13 43.22 58.94 39.18 2.16 2.13 .73 1.10 20.09 20.42 

14 43.27 58.93 39.07 2.07 1.99 .73 1.11 21.86 22.64 

15 41.74 58.93 37.66 2.00 1.94 .71 1.11 21.39 21.94 

From both tables, it can be seen that as the pattern length 

increases the Boyer-Moore average :running time decreases. This point 

could easily be proved if we assume that the alphabet of the input 

string is large enough to apply the Boyer-Moore remark which is: 

for a large alphabet, on average only n/m characters are inspected. 

Let ml and m2 be the length of two patterns, where m2 is greater 

than ml. The search for all occurrences of the pattern of length m2 

is faster than the search for all occurrences of the pattern of 

length ml by at most: 

n 

m1 = m2 times 
n rn1 

m2 



255 

For example if ml and m2 are chosen to be respectively equal to 6 

and 15, an expected speed of the search of the pattern of length 15 

over the search of the pattern of length 6 is predicted to be 2.5. 

The experiments on the Balance and Neptune systems slx>wed a speed of 

respectively 2.12 and 1.79. 

The difference in the above theoretical and experimental figures was 

not unexpected since a few important factors were ignored in the 

above model. Some of the igoored factors are the randomness of the 

text and the string, the number of occurrences of the pattern and 

its function with the pattern length since the way the random 

patterns are generated for every pattern length leads to fewer 

occurrences with longer patterns than with short patterns. 

Nevertheless, the theoretical result forms an upper bound which 

could not possibly be reached if all the above mentioned factors 

were taken into account. By contrast, the BF, KMP and RK algorithms 

are invariant to the pattern length. 

5.3.1 PARALLEL BRlJl'E FORCE JIIG)RI'llM 

Using one processor, the BF algorithm performance is almost always 

proportional to n+rm because of the selection of the English text. 

We assume that the r occurrences of the random pattern are uniformly 

distributed in the text string. Thus, every sub-string of length 

(niP + m-I) is expected to contain riP occurrences of the given 

pattern. The time Tp it takes to run the parallel Brute Force 

algorithm on the P-processor computer system is given by: 

Tp = (~ + m-I) + (E)m 
P P 

which simplifies to: 



256 

The expected speed-up of the parallel Brute Force algorithm when all 

parallel overheads are igoored is given by: 

Sp=Tl= n+nn 

Tp n+nn+ 1 
P m-

which is also equal to: 

Sp=P(l- P(rn-l) ) 
n + (r+P)m - P 

The expected efficiency is: 

Bp = ~ = (1 _ P(rn-l) ) 
P n + (r+P) - P 

Tables 5.3(a) and 5.3(b) give the parallel experimental performance 

of the Brute Force algorithm performed respectively on the Neptlme 

and Balance systems. 

The Brute Force algorithm achieves an almost linear speed-up when 

implemented in parallel. The parallel control and shared data 

overheads are negligible. Even so, the best time of the PBF 

algorithm (that is T4 and T5) could not outperform the sequential 

version of the fastest metrod. 



257 

TABLE 5.3( a): Experimental results of the parallel Brute Force 
string searching algorithm (PBF) performed on the 
Neptune system 

m AVTl AVT2 AVT3 AVT4 ASP2 ASP3 ASP4 

6 1.188 0.617 0.426 0.334 1.926 2.787 3.560 

7 1.196 0.621 0.431 0.341 1.925 2.776 3.511 

8 1.196 0.622 0.430 0.337 1.922 2.782 3.547 

9 1.196 0.623 0.432 0.339 1.921 2.771 3.529 

10 1.207 0.626 0.433 0.431 1.928 2.788 3.542 

11 1.193 0.621 0.430 0.338 1.920 2.776 3.528 

12 1.194 0.623 0.431 0.339 1.917 2.770 3.522 

13 1.193 0.620 0.432 0.339 1.925 2.763 3.521 

14 1.187 0.619 0.428 0.339 1.918 2.775 3.505 

15 1.185 0.619 0.429 0.338 1.917 2.766 3.508 

TABLE 5.3(b): Experimental results of the parallel Brute Force 
algorithm (PBF) on the Balance 8000 system 

m AVT1 AVT2 AVT3 AVT4 AVT5 ASP2 ASP3 ASP4 ASP5 

6 43.22 21.75 14.69 11.28 9.35 1.987 2.943 3.831 4.623 

7 41.64 20.92 14.15 10.83 9.01 1.991 2.942 3.845 4.619 

8 42.76 21.56 14.54 11.16 9.28 1.983 2.940 3.832 4.610 

9 42.35 21.27 14.35 11.01 9.15 1.991 2.951 3.846 4.629 

10 41.57 20.88 14.14 10.80 9.03 1.991 2.939 3.848 4.603 

11 42.01 21.15 14.25 10.91 9.11 1.986 2.947 3.851 4.612 

12 42.69 21.50 14.51 11.13 9.25 1.986 2.942 3.836 4.614 

13 43.22 21.73 14.69 11.25 9.34 1.988 2.941 3.841 4.625 

14 43.27 21.75 14.71 11.25 9.36 1.989 2.941 3.845 4.623 

15 41.74 20.96 14.16 10.85 8.99 1.992 1.947 3.848 4.643 



258 

5.3.2 PARALLEL KN{1IH-M)RRIS-PRA'IT AIroRI'lH-1 (PRMP) 

The sequential Knuth-Morris-Pratt string searching algorithm is 

proportional to the size of the string since it inspects every 

character of the string once and only once. If all the parallel 

overheads are igrx:>red and if the average running time is assumed to 

be proportional to the number of character comparisons, then the 

average running time of the parallel KMP algorithm when performed 00 

a single processor is:-

Tl = n 

and the average running time of the same algorithm on P processors 

is given by: 

which is exactly the number of characters in every sub-string. The 

average speed-up that could be achieved on a P-processor parallel 

ccmputer system is: 

Sp = Tl = n 
. Tp n -+m-l 

P 

P(m-l) 
= P( 1 - 1» 

n + p(m -

and the expected efficiency given by: 

Ep=~=l- P(m-l) 
P n+P(m-l) 



259 

As was expected the parallel Knuth-Mo=is-Pratt algorithm performed 

very efficiently (see Tables 5.4(a) and 5.4(b», since it achieved 

an almost linear speed up at a very high processor efficiency. 

However, even with 4 or 5 processors the parallel KMP algorithm 

oould not outperform the sequential performance of the Boyer-Moore 

algorithm. 

TABLE 5.4( a): Experimental results of the parallel Khuth-Mo=is-
Pratt string search algorithm (PKMP) on the Neptune 
system 

m Avrl AVT2 Avr3 Avr4 ASP2 ASP3 ASP4 

6 0.737 0.392 0.277 0.224 1.882 2.661 3.295 

7 0.743 0.394 0.278 0.225 1.885 2.671 3.301 

8 0.747 0.396 0.281 0.226 1.887 2.657 3.298 

9 0.747 0.396 0.282 0.226 1.886 2.651 3.305 

10 0.753 0.401 0.284 0.227 1.879 2.654 3.320 

11 0.743 0.395 0.281 0.227 1.880 2.645 3.267 

12 0.746 0.396 0.282 0.226 1.882 2.643 3.307 

13 0.744 0.396 0.279 0.225 1.881 2.664 3.305 

14 0.741 0.394 0.278 0.226 1.879 2.667 3.279 

15 0.740 0.394 0.279 0.226 1.880 2.652 3.278 



260 

TABLE 5.4(b): Experimental results of the parallel Knuth-Morris-
Pratt string search algorithm (PKMP) 00. the Balance 
systan 

m AWl Avr2 AVT3 AW4 AW5 ASP2 ASP3 ASP4 ASP5 

6 39.11 19.66 13.23 10.05 8.19 1.989 2.956 3.891 4.777 

7 37.69 18.98 12.74 9.66 7.83 1.986 2.960 3.904 4.814 

8 38.71 19.43 13.09 9.96 8.07 1.992 2.958 3.887 4.799 

9 38.33 19.26 12.95 9.81 7.99 1.990 2.960 3.908 4.799 

10 37.66 18.95 12.68 9.68 7.80 1.987 2.971 3.892 4.828 

11 37.97 19.14 12.82 9.76 7.91 1.985 2.961 3.891 4.798 

12 38.55 19.38 13.05 9.89 8.07 1.989 2.954 3.900 4.780 

13 39.18 19.68 13.22 10.06 8.16 1.991 2.963 3.896 4.803 

14 39.07 19.63 13.17 10.02 8.13 1.990 2.965 3.898 4.804 

15 37.66 18.98 12.74 9.67 7.86 1.984 2.954 3.895 4.791 

5.3.3 PARALLEL KlIRP-RABIN AIG)RI'IHoII (PI<R) 

The parallel performance of the Karp-Rabin algorithm is similar to 

that of the Knuth-Morris-Pratt algorithm since the Karp-Rabin also 

has a sequential performance proporticnal to n. Furthermore, both 

algorithms were implemented in parallel using-the same 

implementation. However, the KR method is expected to be slower 

than the KMP method because of the high mathematical operations 

involved in the computation of the hash function values. 

Experimentally, see Tables 2.1 and 2.2, the KR is found to be even 

slower than the BF. Table 5.5 reports the parallel performance of 

the Karp-Rabin algorithm performance on the Balance system. 



261 

TABLE 5.5: Experimental results of the parallel Karp-Rabin strin;J 
searching algorithm (PKR) en the Balance system 

m AVTl AVT2 Avr3 AVT4 AVT5 ASP2 ASP3 ASP4 ASP5 

6 58.95 29.58 19.73 14.84 11.92 1.99 2.99 3.97 4.95 

7 58.94 29.58 19.73 14.86 11.93 1.99 2.99 3.97 4.94 

8 58.94 29.51 19.71 14.85 11.94 1.99 2.99 3.97 4.94 

9 58.94 29.55 19.73 14.86 11.95 1.99 2.99 3.97 4.93 

10 58.94 29.54 19.73 14.86 11.93 1.99 2.99 3.97 4.94 

11 58.93 29.55 19.73 14.86 11.93 1.99 2.99 3.97 4.94 

12 58.94 29.58 19.73 14.84 11.91 1.99 2.99 3.97 4.95 

13 58.94 29.54 19.73 14.85 11.93 1.99 2.99 3.97 4.94 

14 58.93 29.51 19.73 14.83 11.95 1.99 2.99 3.97 4.93 

15 58.93 29.55 19.73 14.86 11.95 1.99 2.99 3.97 4.93 

5.3.4 PARALLEL 00YER-MXlRE ALOORI'lH'I (pg.iJ) 

The Boyer-Moore string searching algorithm runs faster than all the 

3 previous meth::lds since it inspects en average cnly n/m characters. 

If the parallel running time is assumed to be proporticnal cnly to 

the number of character comparisons and if all the parallel 

overheads are neglected, then the parallel average running time of 

the BM algorithm when searching for all occurrences of a given 

pattern of length m is n/m when a single processor is being used. 

The parallel running time of the same algorithm performed on P 

processors is 

n -+m-l 
P 

Tp =---
m 



The average expected speed-up when P pr=essors are used is: 

which is simplified to: 

Sp = T1 = __ n __ 

Tp !!+m-l 
P 

Sp = P (1 _ P(~l)) 
n + P(m - 1) 

and the expected efficiency given by 

Ep = ~ = 1 ___ P_(~_l)_ 

P n+P(m-l) 

262 

The parallel !3oyer-Mcore algorithm has the same expected performance 

as the parallel Knuth-Morris-Pratt algorithm except that the PBM is 

faster. The parallel performance of the Improved Boyer-Moore 

algorithm is exactly identical to that of the PBM for the same 

reasons as mentioned in the KR case. Tables 5.6(a) and 5.6(b) report 

the experimental results of the PBM algorithm and Tables 5.7(a) and 

5.7(b) report the experimental results of the PIBM. 



263 

TABLE 5.6(a): Experimental results of the Parallel Boyer-Moore 
string searching algorithm (PBM) on the Neptune 
system 

m AWl AVT2 Avr3 AW4 ASP2 ASP3 ASP4 

6 0.281 0.173 0.130 0.113 1.620 2.145 2.481 

7 0.239 0.151 0.117 0.104 1.579 2.025 2.281 

8 0.218 0.140 0.110 0.099 1.551 1.970 2.196 

9 0.207 0.135 0.108 0.095 1.532 1.912 2.159 

10 0.195 0.130 0.103 0.093 1.503 1.880 2.086 

11 0.181 0.123 0.100 0.091 1.474 1.807 2.000 

12 0.170 0.117 0.096 0.089 1.451 1.770 1.915 

13 0.170 0.119 0.095 0.089 1.423 1.782 1.908 

14 0.164 0.115 0.049 0.088 1.414 1.720 1.841 

15 0.155 0.111 0.092 0.086 1.394 1.688 1.805 

TABLE 5.6(b): Experimental results of the Parallel Boyer-Moore 
string searching algorithm (PBM) on the Balance 
system 

m AWl AVT2 Avr3 AW4 AW5 ASP2 ASP3 ASP4 ASP5 

6 4.24 2.18 1.45 1.14 1.00 1.94 2.90 3.68 4.26 

7 3.55 1.82 1.26 0.97 0.81 1.95 2.81 3.66 4.39 

8 2.96 1.51 1.03 0.79 0.69 1.96 2.86 3.73 4.33 

9 2.63 1.37 0.93 0.73 0.62 1.91 2.82 3.63 4.26 

10 2.99 1.53 1.05 0.82 0.70 1.94 2.85 3.65 4.23 

11 2.26 1.17 0.83 0.63 0.56 1.94 2.73 3.59 4.09 

12 2.48 1.28 0.91 0.70 0.61 1.93 2.71 3.58 4.08 

13 2.16 1.13 0.81 0.60 0.53 1.92 2.67 3.60 4.07 

14 2.07 1.08 0.77 0.58 0.51 1.92 2.71 3.59 4.11 

15 2.00 1.04 0.73 0.55 0.49 1.92 2.74 3.62 4.15 



264 

TABLE 5.7(a): Experimental results of the Parallel Improved Boyer-
M=re string searching algorithm (PBM) on the Nepture 
system 

m AVT1 AVT2 AVT3 AVT4 AVT5 ASP2 ASP3 ASP4 ASP5 

6 4.20 2.16 1.46 1.18 0.99 1.94 2.87 3.53 4.26 

7 3.50 1.79 1.23 0.98 0.81 1.95 2.83 3.58 4.29 

8 2.90 1.49 1.02 0.82 0.70 1.94 2.84 3.53 4.13 

9 2.59 1.33 0.95 0.73 0.63 1.95 2.74 3.56 4.15 

10 2.94 1.51 1.04 0.83 0.68 1.95 2.84 3.56 4.30 

11 2.20 1.15 0.79 0.62 0.52 1.91 2.79 3.56 4.28 

12 2.40 1.25 0.86 0.67 0.59 1.92 2.79 3.56 4.12 

13 2.13 1.10 0.75 0.60 0.52 1.93 2.83 3.56 4.12 

14 1.99 1.03 0.72 0.58 0.50 1.92 2.75 3.44 4.01 

15 1.94 1.01 0.70 0.56 0.48 1.92 2.77 3.48 4.06 

TABLE 5.7(b): Experimental results of the Parallel Improved Boyer-
M=re string searching algorithm (PBM) on the Balance 
system 

m AVT1 AVT2 AVT3 AVT4 ASP2 ASP3 ASP4 

6 0.281 0.173 0.130 0.113 1.620 2.145 2.481 

7 0.239 0.151 0.117 0.104 1.579 2.025 2.281 

8 0.218 0.140 0.110 0.099 1.551 1.970 2.196 

9 0.207 0.135 0.108 0.095 1.532 1.912 2.159 

10 0.195 0.130 0.103 0.093 1.503 1.880 2.086 

11 0.181 0.123 0.100 0.091 1.474 1.807 2.000 

12 0.170 0.117 0.096 0.089 1.451 1.770 1.915 

13 0.170 0.119 0.095 0.089 1.423 1.782 1.908 

14 0.164 0.115 0.094 0.088 1.414 1.720 1.841 

15 0.155 0.111 0.092 0.086 1.394 1.688 1.805 



_. ~--~~~~~--~ --------------

265 

5.4 CXN::WSlOOS 

In this chapter, we first investigated 5 sequential string searching 

algorithms. These are the traditional Brute-Force, the Karp-Rabin, 

the Knrth--Morrls-Pratt, the Boyer-Moare and the Improued Boyer-Moare 

algorithms. Empirically, it was discovered that while the BF 

inspects on average 1.1 characters for every character referenced, 

the KMP and KR inspect every character referenced once and only once 

[Boyer 1977]. The fastest methods are the BM and IBM since they 

inspect only a fraction of the string characters (n/m). 

Secondly, we presented a parallel implementation for the string 

searching algorithms using the divide-and-conquer method. As was 

expected all the parallel algorithms showed a very efficient 

performance index on both selected MIMD type parallel computer 

systems (see Tables 5.8 and 5.9 below). The parallel overheads, as 

measured on both systems were negligible. 

TABLE 5.8: Average performance of the parallel string searching 
methods performed on the Neptune system 

Method Avrl AVI2 AVT3 Avr4 ASP2 ASP3 ASP4 

BF 1.194 0.621 0.430 0.348 1.922 2.775 3.527 

KMP 0.744 0.395 0.280 0.226 1.882 2.657 3.296 

BM 0.198 0.131 0.104 0.095 1.494 1.870 2.067 

IBM 0.195 0.129 0.105 0.096 1.494 1.848 2.014 



266 

TABLE 5.9: Average performance of the parallel string searching 
metlxx:ls performed on the Balance 8000 system 

Mefu:xi Avrl Avr2 AVT3 Avr4 Avr5 ASP2 ASP3 ASP4 ASP5 

KR 58.94 29.55 19.73 14.85 11.93 1.99 2.99 3.97 4.94 

BF 42.45 21.35 14.42 11.05 9.19 1.99 2.94 3.84 4.62 

KMP 38.39 19.31 12.97 9.85 8.00 1.99 2.96 3.87 4.78 

BM 2.73 1.41 0.98 0.75 0.65 1.93 2.78 3.63 4.20 

IBM 2.68 1.38 0.95 0.76 0.64 1.93 2.80 3.54 4.17 

A possible extension to the work presented in this chapter, could 

be, for example, the search for two or more patterns simultaneously. 

This could be achieved by matc:hinJ the required patterns in sequence 

and using our already developed parallel algorithms, where after 

finding all the occurrences of the first pattern, we pass to the 

second one. However such an approach would result in a time

complexity proportional to kn, where k is the number of patterns. 

Aho and Corasick [Aho 1975] have discovered an algorithm which is 

capable of achieving a time-=mplexi ty of n plus the alphabet size 

times the sum of the pattern lengths. Their algorithm consists of 

building a finite state pattern matc:hinJ machine from the patterns 

and then using this machine to process the text string in a Single 

pass rather than k. The pattern matching machine is a =mbination of 

three functions, a Gote, failure and an output function. 



,------------ -

Chapter 6 

PARALLEL SORTING 
ALGORITHMS 



267 

6.1 INl'RCIXCI'ICN 

The need for a good sorting algorithm is vitally important for 

sorting is at the core of many computer applications such as 

database manipulation where, very often, a list of transactions or 

queries have to be sorted prior to being dealt with. Sorting is 

basically rearranging a given set of elements Sn' where: 

into some relative order. The elements ai' (1 E;; i E;; n), could be a 

set of numbers that we wish to sort in ascending (or descending) 

order or a list of names that we wish to sort into alphabetical 

order. We have selected a set of positive numbers uniformly 

distributed in (0,1) for our next discussions mainly for the simple 

reason that sorting does not depend on the nature of the element but 

rather on their value. 

Knuth [Knuth 1973] investigated many sorting algorithms and provided 

a good discussion on how the perfonnance of any algorithm is tightly 

related to the experimental environment it is confronted with. 

Unfortunately, there is no known universal 'best' method, and one 

can only find a better method than the others for some particular 

set of conditions. 

With the advent of parallel computer systems and VLSI chips the 

performance of these algorithms could increase considerably if a 

suitable parallel algorithm is designed. To date only a few 

parallel sorting algorithms have been implemented on MIMD computer 

systems. In this Chapter we have analysed the Parallel Quicksort 



268 

A1gorithm (PQ) the Parallel Quicksort-Merge (PQM) and two new 

parallel sorting algorithms: the Parallel Bounded-Partitioned 

Sorting (PBPS) and the Parallel Range-Partitioned Sorting (PRPS) 

algori thms. Both new algorithms have shown better performance 

figures than the Parallel Quicksort algorithm in a chosen set of 

experiments. 

The Quicksort algorithm has a good feature which has been exploited 

in the Parallel Quicksort [Evans, 1983]: at every step, the method 

produces 2 independent subsets which can be processed asynch:ronously 

by 2 processors. From each subset, 2 more independent subsets are 

created and so on. As can be seen, the parallel quicksort algorithm 

takes some time before all the available processors are in use. As 

it is, the Parallel Quicksort algorithm has a performance comparable 

to the Parallel Quicksort-Merge (PQM) algorithm (see Figure 6.1 

comparing the theoretical speed-up of the PO and PQM for values of P 

varying from 2 to 1024. 

The PBPS and PRBS algorithms provide a good solution to the problem 

of a slow start-up of the PO algorithm. It partitions the set to be 

sorted in P independent subsets which can be instantly processed by 

P independent processors. However a price has to be paid. The 

memory usage is much greater than that used by the Parallel 

Quicksort sort. 

Another good feature of the PBPS and PRBS algorithms is that the 

partitioning process is carried out in parallel and has a cost 

almost proportional to (n + 2 !!). 
p 



, 

0-
en 
"C 

Q) 
Q) 

0-
en 

6.5 

6 ;; 
5.5 

/; 
/; 

5 D 
H 

4.5 D 
U 

4 U 

# 
3.5 

3 

2.5 

2 

--= 
~ 

4 

Legend 
• PO olg 

o POM~_ 

269 

1.5 +---r---r-,--,--rrr,,------r-rTTTTT1,.--r--'-T"T"rTTT,----.--r-rrTTTTl 
1 10 100 1000 10000 

Number of Processors 

FIGURE 6.1: THEORETICAL Sp OF THE PQ AND PQM 



270 

4 

3.75 

3.50 .B 
/' 

3.25 
/' 

/' 

/ 
3 / 

/ 
2.75 /. 

a. 
:::l / I 

"C 2.50 / Q) 
Q) '/ a. 

(/) 

2.25 /" 
~ 

2 ~ 

1.75 Legend 

1.50 • 6-~or model 

o 1-po!...!!l,odel 

1.25 

1 
1 2 3 4 5 

Number of Processors 

FIGURE 6.2: THEORETICAL Sp OF THE PO 



271 

The perfonnance analysis of the parallel sorting algorithms looked 

at in this Olapter, is based en the number of key comparisons*. For 

each algorithm 3 quantities are measured: these are the speed-up 

rate, the efficiency and perfonnance factor. 

In Sectien 6.2 the analysis is presented when the number of parallel 

paths (M) is equal to the number of processors (P) and in Section 

6.3, we report on the case when M>P. Section 6.4 concludes this 

Olapter by summing up the major results obtained. 

6.2 ~ ANALYSIS WHEN M=P 

Generally speaking, the set is partitioned into P subsets of nearly 

equal size, according to the strategy of the method. Once the P 

subsets are formed, they are scheduled through the P available 

processors to be sorted. An extra step is required only in the PQM 

before the set is completely sorted. The sorted subsets need to be 

merged together. 

6.2.1 DESOUPl'ICN OF 'IHESEOJENl'IAL aJIa<soRT ALOORI'IDII 

Quicksort [Hoare, 1962] or partition-exchange method which is 

probably more used than arr:! other sorting algorithm is considered to 

be a good general-purpose algorithm. It is quite easy to implement, 

works well in a very large number of situations and consumes less 

storage than the other remaining meth::lds [Loeser, 1974]. Hoare has 

* Other parameters such as those reported in [Evans 1983] are 
neglected because they have no significant effect on the 
performance of the algorithms for large sets. (See Figures 
6.6(a) and 6.6(b) comparing the theoretical speed-up of the PO 
algorithms from 2 models, a 6-parameter and I-parameter model, 
and from the experiments). 



272 

provided an excellent account of row Quicksort works [Hoare, 1962]. 

Given a set of elements, Sn' to be sorted, the metrod first selects 

at random one element, .fJ, called the partitioning element. It then 

rearranges the elements until the set has been partitioned into 3 

parts: (a) a central part, oonsisting of a single el~ment.fJ, (b) a 

lower (or left) subset, whose elements (all' a2l' ... , <1nl)' are 

larger than yo, and (c) an upper (or right) subset, (a12' a22' "', 

<1n2)' whose elements are not smaller than yD. This process of 

placing .fJ in its proper position is known as the partitioning 

process. It is interesting to note that yo is now in its exact 

position and does not need to be included in any subsequent 

partitioning steps. The same process may be applied to each one of 

the 2 subsets choosing for example yl and y2 as the partitioning 

elements for the left and right subsets respectively. A repetition 

of this technique eventually produces subsets containing one element 

or none at which point the set Sn is sorted. This process is 

diagrammatically presented in Figure 6.3. 

FIQJRE 6.3: THE ~IO<SORT AIroRITHM 



273 

Though seemingly complex, the partitioning process can be easily 

implemented through the following general strategy by using 2 

pointers initially set to i=1 and j=r-l, where a 1 and ar are 

respectively the left and right-most elements, and arbitrarily 

choosing ye = ar . The scan index i is repeatedly increased by one 

until an element, ai' larger than ~ is found. Then j is, in turn, 

continuously decreased by one until it is pointing to an element, 

aj' smaller than ~ It is obvious to see that ai and aj are out of 

place in the partitioned set, so they are exchanged. The same 

process of scanning from both ends and eventually exchanging 

elements is continued until i and j cross at which point the 

partitioning process is nearly complete: all that remains is to 

exchange ~ and the left-most element (ai) of the right subset. 

Thus, the implementation above will perform very well for many 

applications and it is a good general-purpose meth:xi. HOWever, if 

it is used several times or used to sort large files, then it is 

worthwhile to implement one of the several Quicksort's variations as 

th:>roughly investigated by Sedgewick [Sedgewick, 1975]. The main 

major improvements which if combined together reduce the runnin.:l' 

time of the naive Quicksort by 25%-30% [Sedgewick, 1984], can be 

summarised into the following points: (1) modifying the Recursive 

Quicksort into a non-recursive Quicksort by simulating explicitly 

the stack operations, (2) sorting smaller subsets (of length m) 

using a linear sorting method instead of involving Quicksort which 

exhibits high overheads with small subsets, and (3) ch:losing Y, the 

partitioning element, equals to the median of three-elements, where 

the three elements are the 1eftmost, middle and rightmost elements. 

Other marginal improvements include extending the median of three to 

the median of five (or more than five), and coding part (or the 

whole) of the algorithm in assembly language. 



1 

274 

6.2.2 PARALLEL WIO<SORT AIroRI'lWI (m) 

The Parallel Qu!cksort met:h:Jd coosists of 3 phases (as illustrated 

in Figure 6.4). 

Phase 1 ends when the number of active processors is exactly p, 

phase 2 corresponds to the situation when all the P processors are 

being used and the third phase ends when the number of idle 

processors equals P. If Tp is the run-time of the Parallel Quicksort 

algorithm and the duration of phase i is t i , (i=1,2,3), then: 

6.1 

number of processors 

- Phase 1 ------, Phase 2 Pha~e 3 

1 
P I ----------

I 
~ r 

I 
I 
I I 

I I 

r-·J :.-

I 
1 Time 

1-
, 

I 
tl 

--"'"'" 
t2 ·t

3 

FIGURE 6.4: TIME DIAGRlIM OF THE PO AIroRITHM 



275 

However, t 3, the time between the first prcx::essor becoming idle and 

the last one is difficult to be accurately estimated. Since this 

phase is relatively short compared to the other phases, it may be 

igrx::>red. The nm-time of phase 2 is estimated by: 

6.2 

~ ~ 

where t is the sequential run-time of the Quicksort algorithm and tl 

is the sequential nm-time of phase 1 of the Quicksort algorithm. 

The run-time of the sequential Quicksort method, ~, has been 

carefully analysed by Sedgewick [Sedgewick, 1975] by estimating the 

number of times each statement in the Quicksort program is executed. 

If we base our analysis on the number of key comparisons and apply 

the same technique we get: 

t = 172 (n+1) (Hn+l - l\n+2) - 2 + (n+l) 37m-94 6.3 
. 49 (m+2) 

(This result is from Evans [Evans, 1983] which corresponds to 

expression An, the average number of key comparisons made during the 

partitiooing stage), where lb is the harmonic function: 

~ 

+.! 
n 

6.4 

Tb estimate t l , the sequential nm-time of phase 1 of the Quicksort 

algorithm, we first observe that, on average, the number of key 

comparisons made during the first partitioning stage is (n-l). 

(Since the partitioning element is not compared against itself). If 

qi is the average length at the subsets at level i as depicted in 

Figure 6.5 then qi+1 is half the quantity (qi-l)' and we have 



Level 0 
1 subset 

Level 1 
2 subsets 

Level 2 
2 2 subsets 

/ 
/ 

/ 

~vel i 0 
2 subsets ~ 

Level j-l 

2j - l subsets 

Level 

21 
subse 

I 

" I , 

~" " ~ ---:!-

I 

Processor 1 
executing a 
partitioning 
process 

Processor i 

276 

executing the 
sequential Quicxsort. 

, , , 

o 
-------------

p 
p 

P p-l 

FIQJRE 6.5: ALLOCATION OF PROCESSORS TO PROCESSES (j=logP) 



277 

CJo = n 

i=1,2, ..• ,j 6.5 

where j is the log of P base 2. Using the recurrence theorem 

expression (6.5) is described by: 

i=O, 1, ... ,j 6.6 

Each subset of the 2i subsets obtained at level i requires on 

average (qi-l) comparisons during the partitioning process. The 

total woIk, performed at level i over all the 2i subsets, and which 

=r.responds to the cost of partitioning at level i is given by: 

i=O,l, ••• ,j 6.7 

substituting (6.6) in (6.7) we get for the cost of partitioning 2i 

subsets at level, i: 

n+l _ 21+1 

Phase 1 ends when all P processors are activated or when 2j , (where 

j = logP) subsets are created, during the sequential execution of 

'" the Quicksort algorithm. So only j-l levels are required and tl is 

given by the sum of all level costs: 

tl = (n+l) j + 2 - 2.2j 6.8 

By substituting j by logP we get the result: 

'" tl = (n+l) logP + 2-2P 6.9 



278 

Now, it remains to estimate the parallel run-time of phase 1. At 

any level i, (i<2j ) there are always idle processors to join in the 

parallel partitioning process. So the 2i subsets are processed 

simul taneously by 2i processors. Once there are 2j subsets, each 

processor takes a subset and performs the sequential Quicksort 

algorithm. So the amount of work performed by the 2i processors is 

(qi-l), «()i;i~) and by summing up all these quantities we obtain: 

6.10 

and it is also equal to the expression below once j has been 

substituted by logP, 

tl = 2(n+l) (1 - !) - 2logP 
P 

Since 1::3 was neglected, Tp is 

6.11 

6.12 

Multiplying and dividing the left and right hand side of the above 

equation by P and Tp respectively we get: 

6.13 

Since we have by definition: 

'" S = i 6.14 
P T 

P 

where Sp is th'; speed-up ratio of the parallel algorithm, then by 

substi tuting Tt by Sp and rearranging the terms we get: 
p 



279 

6.15 

and factorising the right hand side we obtain: 

6.16 

The efficiency EP of the Parallel Quicksort method is then given by: 

6.17 

The Parallel Quicksort algorithm was performed on the Sequent 

Balance 8000™ to sort a raru'bm1y. generated set of length 16K words. 

Subsets of size m or less are sorted using the Insertion sort 

algorithm. In all our experiments we selected m=10. The parallel 
• 

performance of the parallel Quicksort method is given in Table 6.1 

and graphically represented in Figures 6.6(a) and 6.6(b). Table 6.2 

gives the predicted performance of the parallel Quicksort algorithm 

when P is varied from 2 to 16. 

P Tp Sp 

1 6.82 1.00 

2 4.36 1.56 

3 4.42 1.54 

4 4.52 1.51 

5 3.67 1.86 

TABLE 6.1: Experimental performance of the PQ algorithm 

n = 16K, m = 10 

EP 

1.00 

.78 

.51 

.38 

.37 



c.. 
::J 
I 

4 

3.5 

3 

] 2.5 
(I) 

c.. 
(/) 

2 

1.5 

Legend 
• 6-par model 

o l-par model 

• Experiment_ 

/ 
'/ 

/ 
/ 

/ 

280 

- - --

1~-------.--------.--------.--------. 
1 234 

Number of Processors 
5 

FIGURE 6.6(a): THEORETICAL AND EXPERIMENTAL Sp OF PO 



>-
0 
c:: 
Q) 

'0 
:;:: 
W 

1 

0.95 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

\ 

1 

\ 
\ 

\ 

281 

Legend 
• 6-par model 

\ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 

234 

Number of processors 

- - -. 
5 

FIGURE 6.6(b): THEORETICAL AND EXPERIMENTAL Ep OF PO 



282 

The number of processors that achieves high Perfonnance Factor for P 

processors (PFp = Sp*~) is predicted to be six processors. However 

due to the fact that our analysis is overestimated, it is suggested 

a choice for P less than six. Experimentally we obtained the highest 

PF P for 2 processors. 

P Sp ~ PFp 

2 1.855 .927 1.720 

3 2.509 .836 2.098 

4 3.046 .762 2.320 

5 3.448 .690 2.378 

6 3.781 .630 2.382 

7 4.060 .580 2.355 

8 4.299 .537 2.310 

9 4.483 .498 2.233 

10 4.642 .464 2.155 

11 4.780 .435 2.077 

12 4.902 .409 2.003 

13 5.101 .385 1.931 

14 5.107 .365 1.863 

15 5.194 .346 1.798 

16 5.272 .330 1.737 

TABLE 6.2: Theoretical performance of the Parallel Quicksort 
Algorithm (median of the three versions), n=16K and m=lO 



283 

6.2.3PARALLEL (JJI0<SCJRr MERGE (P!J'1) 

The main purpose of the analysis of the Parallel Quicksort-Merge 

algorithm is to provide an easy and koown alternative performance 

analysis to the parallel Ouicksort algorithm. Intuitively, phase 1 

of the PO algorithm and the merging phase of the PQM are of the same 

order (if they are not equal). If we assume that both algorithms 

have the same run-time then as a validation procedure for the 

analysis of the PQ algorithm, the establishment of the analytical 

performance of the PQM could make a good approximation for the po. 

Theoretically, the PQ and PQM, have almost equal parallel 

performance for the set of assumptions made. (See Figure 6.1 and 

Tables 6.1 and 6.3). 

P 

1 

2 

4 

Tpc 

6.78 

4.44 

3.40 

6.80 

4.50 

3.41 

Spc 

1.00 

1.53 

1.99 

Spe 

1.00 

1.51 

1.99 

1.00 

.76 

.50 

TABLE 6.3: Experimental performance of the PC.J-! algorithn 
n=16K, m=10 

1.00 

.76 

.50 

The PQM algorithm o:nsists of two phases: (a) a sorting phase where 

each processor sorts a subset of length (~) using the sequential 

Quicksort, and (b) a merging phase to obtain a sorted set by merging 

the P sorted subsets. If TpS and TpM are the run-time of 

respectively the sorting and merging phased then, Tp ' the overall 

parallel run-time is expressed by: 



284 

6.18 

Since each subset of size (!!) is sorted using a sequential version 
p 

of the Quicksort algorithm, then TpS is the same as (defined in 

6.3), except that n is substituted by (!!). So TpS is 
P 

TpS = 12 (!! + 1) + (H!! + 1 - ~+2) + 2 + (!! + 1) 37m-94 6.19 
7 P p p 49(m+2) 

Once all the P subsets are individually sorted, they are merged 

using a parallel merging metood. The choice of a particular merging 

algorithm is irrelevant because any algorithm used to merge 2 sorted 

files of the same length (n) by comparison of keys does at least 

(2n-1) such comparisons [Baase, 1983]. The two-way merge was 

selected since it is less complicated to'implement than the 

alternative methods. 

At the start of the merging phase, every 2 neighbouring subsets are 

merged to form a new sorted subset of size (2 !!). The number of such 
p 

pr=esses is then (!\ During' the following step only (~) processors 
2 4 

are being used. The same process is repeated until only one 

processor is used to merge 2 sorted subsets, each containing exactly 

(!!) elements and produces the final sorted set Sn. The merging 
2 
process is diagramatically shown in Figure 6.7 when P=8. The 

notation SiMSi+1 is used to name the set obtained by merging Si and 

Si+1· 

In this analysis, we assume n and p to be a power of 2. The 

parallel merge phase can be completed in only logP steps. Merging at 

one step is performed in parallel and control is passed to the next 

step if, and only if, all the merging processes have been completed. 



SI S2 S3 S4 I 

S1MS2 S3MS4 

S1MS2MS 3MS4 

S 
n 

FIGURE 6.7: PARALLEL MERGING PROCESS IP = a) 

Ss l ~ J I 

SsMS6 

SsMS6MS7MS a 

S7 J 

S7MSa 

I Sa 

'" co 
en 



--------------------------------------- .--- ---

286 

At step i, there are .R... subsets of size (!!)2i each. TpW the run-
2i p 

time of the parallel mergirg phase is then: 

THJI = 

j-l 
L ci 

i=O 

where j = logP and ci is the CXJSt of step 1. ci is simply, 

Substitutirg (6.21) in (6.20) and sumning up, we get THJI 

which is also equal to, 

THJI = 2n (1 - .!) - logP 
P 

after substi tutirg j by logP. 

Sp the speed-up ratio of the PC11 algorithm is obtained as, 

and the efficiency, 

S 
~=::J:? 

p 

6.20 

6.21 

6.22 

6.23 

6.24 

6.25 



------- ---------

287 

6.2.4 PARALLEL PARl'ITIOOED SQRl'Im AIroRI'IlM; (PPS) 

The motivation which led to the development of 2 parallel 

partitioned sorted algorithms (the bounded and range partitioned 

sorting algorithms) was row to over=me the disadvantage observed in 

the phase 1 of the PQ method. We first observed empirically that if 

someh:>w the original set is partitioned into P subsets such that all 

elements of subsets Si are not greater than any element of subset 

Si+l (right subset for Si) and not smaller than any elements of 

subset Si-l (left subset for Si). In other words, if a parallel 

partitioning process could be found such that the original set is 

partitioned not only into 2 independent subsets as in the PO but 

into P independent subsets, then phase 1 of - the PQ metood could 

be totally eliminated and hence linearly improve the overall 

perfonnance. Here again the ideal situation is to produce P subsets 

of nearly equal sizes. 

Both PPS metoods are based on first defining an array U(I:P+l) such 

that 

U1 < U2 < ••• < Up+l 

The parallel Bounded-Partitioned sorting method (PBPS) selects 

U1 =S(I), U2=S(~), •.. ,Up =(S«p-l)N) and Up+l = S (n) and then sorts 

the array U in ascending order. The second method, the Parallel 

Range-Partitioned sorting algorithm (PRPS) is used only if the range 

of the set Sn is known and the array U is selected as srown below: 

U ( . 1) b-a i = a + 1.- -, 
P 

i=l, p+l 6.26 



288 

where a and b are the lower and upper bounds of Sn' It is easy to 

show that Ui is already ordered in ascending order by expressing 

Ui+l as a function of Ui 

which is also equal to, 

Ui +l = a+i b-a, i=O,p 
p 

Ui +l = a + (i-I) b-a + b-a, i=O,p 
p p 

replacing a+(i-l) b-a by Ui we get 
p 

'!he above expression shc:Ms that, 

6.27 

6.28 

6.29 

6.30 

since b-a > 0 and hence the sorting of U is avoided in the PRBS 
p 

method. 

Once the bound array U has been defined, all P processors are 

activated. If pr=essors are numbered. from 1 to P, then pr=essor 

~ in the PEPS algorithm picks all elements ai such that: 

ai .. U(2), if ~ = 1 

> U(p), if ~ = P i = l,n 

U(~) < ai .. U(~+l) otherwise 6.31 



289 

The PRPS method makes every procesor number i p ' pick all elements 

from the set Sn which are, 

6.32 

The elements picked by every processor are first stored in a local 

array. They are copied back to the original array only when all the 

sorting processes have been completed. The exact start index for 

every processor is saved in an index table. The partitioning 

process and writing back to the original set has a run-time 

proportional to (n + !2) and the sorting was defined previously in 
p 

6.19. So Tp is 

Tp = n + !2 + 12 (!2 + l)(H !2 + 1 + Hm+2) + 2 + 
P 7 p p 

(!2 + 1) 37-94 
p 49 (m+2) 

6.33 

First we compared the theoretical speed-up of the PO and PPS 

algorithms for P varying from 2 to 16 (see Figure 6.8). As 

predicted, the performance of the PPS algorithms start outperforming 

the Parallel Quicksort algorithms as P increases from 3-4, then it 

shows clearly that for P>4, the PPS greatly outperformed the PO 

algorithm. Figure 6.9 which plots the experimental resul ts given in 

Tables 6.1, 6.4 and 6.5 of the PQ, PBPS and PRP'S algorithms confirm 

the theoretical results of these algorithms. However, PRP,S is 

faster and more efficient than the PBPS method. This is mainly 

because of the fact that PRPS creates subsets of nearly equal size 

than the PBPS algorithm does. Figure 6.10 shows a sample of subset 

sizes created by the 2 different PPS algorithms when p=64 and n, the 

set size, equals to l6K words. 



290 

8.5 

8 ,fiJ 
./' 

7.5 
/' 

/' 
7 /' 

/' 
6.5 / 

/ 
6 / 

/ 
5.5 / 

0.. 
:J 5 / I 

'U / Q) 
Q) 4.5 / 0.. 

(f) 

4 / 
3.5 / 

/ 
3 /; 

2.5 

2 
Legend 

• PO cl9 

1.5 o PRPS~_ 

1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of processors 

FIGURE 6.8: THEORETICAL Sp OF THE PO AND PPS 



291 

3.5 Legend • • PO olg / 

0 PBPS~_ 
/ 

/ 

• PRP~ol9.... / 

3 / 
/ 

/ 
/ 

/ 
/ 

2.5 / 
0- / (f) 

0- / 
:::I 
1 / ? '"0 
Q) / Q) /' 
0- / (f) /' 

2 / 7' 
/ I 

/ I 
/ I 

/ 

1.5 /-__ 1 
/ 

~ 
Y 

1 
1 2 3 4 5 

Number of processors 

FIGURE 6.9: EXPERIMENTAL Sp OF THE PQ, PBPS AND PRPS 



1400 

1300 

1200 

1100 

1000 

900 

292 

Legend 
• PRPS 

o PBPS ---

o 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 

Sample of subsets 

FIGURE 6.10: SUBSET SIZES CREATED BY PBPS AND PRPS 



P Tpc Tpe Spc Spe I1x: 

1 6.78 6.82 1.00 1.00 1.00 

2 4.20 4.41 1.61 1.55 .81 

3 2.89 3.01 2.35 2.27 .78 

4 2.26 2.35 3.00 2.90 .75 

5 1.86 1.98 3.65 3.44 .73 

TABLE 6.4: Experimental perfonnance of the PRPS algorithm 
n = 16K, m = 10 

P Tpc Tpe Spc Spe I1x: 

1 6.78 6.82 1.00 1.00 1.00 

2 4.51 4.73· 1.50 1.44 .75 

3 4.65 4.76 1.46 1.43 .49 

4 3.37 3.42 2.01 1.99 .50 

5 3.00 3.08 2.26 2.21 .45 

TABLE 6.5: Experimental perfonnance of the PEPS algorithm 
n = 16K, m = 10 

6.3 PERFORfoWrn ANALYSIS WHEN M>P 

293 

~ 

1.00 

.77 

.76 

.73 

.69 

~ 

1.00 

.72 

.48 

.50 

.44 

One of the methods used in efficient parallel algorithms development 

is load balancing. That is keeping all the processors busy 

performing some useful work. Load balancing can usually be best 

achieved by splitting the task into P parallel subtasks of nearly 

equal execution time. AI though all the processors may not oomplete 



294 

execution at the same time, it is hoped that the time between the 

first and last. processor becoming idle is negligible. Failing to do 

so, results in a poor performance. Some problems naturally divide 

into P equal subtasks, for example, matrix and vector manipulaticos. 

However, there are some types of problems, for example some graph 

algori thms, which are difficult to balance on a P-MIMD parallel 

computer system. In this case we notice that one processor takes 

the woole junk of work leaving the .others idle most of the time. 

A solution to this problem which sometimes improves the parallel 

performance of some alg=ithIns is to divide the task into a number 

of subtasks (M) larger than P and schedule them for execution 

through the P processors. As number of subtasks increases, their 

execution time decreases and most importantly the processors are 

more balanced. 

In the following 3 sub-sectioos we reanalyse the 4 parallel sorting 

algorithms when M, the number of subtasks, is greater than P. The 

words "subsets" and "subtasks" will be used to mean the same thing 

and M srould not be confused with m, the size of the largest subset 

that is sorted using the linear insertion sort algori thIn. 

6.3.1 PARALLEL (pICKSORT ALOORI'lH-I (PO) 

Through parallel partitioning, as in phase 1 of Figure 6.4, M 

subsets are created, then they are schedu1ed to be executed by the P 

processors. USing a sequential version of the Quicksort, each 

processor sorts (~) subsets each =taining on average (~) elements. 

If Tp is the run-time of the parallel Quicksort algorithm then we 

have: 



which simplifies to 

~-~ 
(!:!) __ 1 
P M 

295 

6.34 

6.35 

where tl is the run-time of the parallel partitiClllinJ process up to 

'" the point where M subsets are obtained, tl is the run-time of the 

same above-mentioned process but performed sequentia1ly and l: is the 

'" sequential Quicksort run-time. t is exactly the same as defined in 

'" 6.3 and tl is the same as defined in 6.9 except that P is 

substituted by M 

'" tl = (n+l) logM + 2-2M 6.36 

M is assumed to be a power of 2 for convenience only. 

tl is now calculated. Up to level j' = logP, there are sufficient 

processors to execute the 2j ' subsets. So the run-time of the 

parallel partitioning process up t level j' is 

6.37 

where c~ is the cost of level i (Le. the cost of partitioning 2i 

subsets in parallel) and is given by, 

where qi was defined previously in equation 6.6. As i increases 

from j' to j = logM, more subsets are created than the available 

number of processors. Therefore the run-time of the parallel 



296 

partition process of 2P subsets until M subsets are created is, 

j-1.1 (2i) 
- C· . P l. 

i=j'+l 
6.38 

Every processor has to partition (2i) subsets and t1 is the sum of 
P 

6.37 and 6.38, which is, 

j-l . 
ci + I. (tp) ci 

j' +1 
6.39 

This is also equal to the following equation after inserting the 

expression of ci' and rearranging the terms of the sum, 

. , 
~ ci = (n+l) (2 - 2-j ') - 2(j'+1) 

i=O 

Repeating the same operation on 6.38 we get, 

6.40 

j-l 
L (2i) ci = (n+1) (j-j '-1) - ~ (2j - 2.2j ') 6.41 

j'+lP p p 

Summing up 6.40 and 6.41 we have, 

. , 
t1 = (n+1) (j-j '-1 + 2-2-j ') - 2 (2 -2.2 J + j '+1) 6.42 

p p 

which is also equal to 

t1 = (n+1) (! log (!i) + 2 - ~) - 2 (!i + logP-1) 6.43 
p p p p 

after substituting j' and j by their respective expressions. 



297 

From equation 6.35 we get, 

6.44 

'" where ~ is not a function of M. Now let us further simplify the 
p 

expression, 

~ 
tl - pI = (n+l) (! log ~ + 2 - ~) - 2(~ + logP-l) 

P P P P 

_ «n+l)logM+2-2M) 
P 

The terms in M are eliminated and we get, 

~ 
tl = -1 = ! [(n+l)(2P-logP-2) + 2P(1-logP)-2] 6.45 

P P 

which we let equal to, 

6.46 

So the speed-up of the parallel Qu!cksort which is rot a function of 

M, is 

s - ~ - ~ = 
p - ~ - Atl ,t: 

P P 
The efficiency is then, 

6.47 

6.48 

The theoretical and experimental results of the Parallel Qu!cksort 

when the number of paths is greater than P are listed respectively 

in Tables 6.6 and 6.7. 



M P Sp ~ 

8 2 1.855 .927 

3 2.551 .850 

4 3.046 .762 

5 3.448 .690 

16 2 1.855 .927 

3 2.594 .865 

4 3.046 .762 

5 3.519 .704 

32 2 1.855 .927 

3 2.638 .879 

4 3.046 .762 

5 3.593 .719 

64 2 1.855 .927 

3 2.684 .895 

4 3.046 .762 

5 3.671 .734 

TABLE 6.6: Theoretical results of the PO when M)P 
n = 16K words and m = 10 

298 

PFp 

1.720 

2.169 

2.320 

2.378 

1.720 

2.243 

2.320 

2.477 

1.720 

2.320 

2.320 

2.583 

1.720 

2.402 

2.320 

2.695 



M P Tp Sp 

8 2 3.94 1.73 
3 3.57 1.90 
4 3.50 1.94 
5 3.54 1.92 

16 2 3.89 1.75 
3 3.00 2.27 
4 2.59 2.63 
5 2.60 2.62 

32 2 3.95 1.72 
3 2.99 2.27 
4 2.65 2.57 
5 2.66 2.56 

64 2 3.86 1.76 
3 2.99 2.27 
4 2.53 2.69 
5 2.39 2.85 

128 2 3.92 1.73 
3 2.97 2.29 
4 2.58 2.64 
5 2.34 2.91 

256 2 3.96 1.72 
3 3.10 2.19 
4 2.65 2.57 
5 2.40 2.83 

TABLE 6.7: Experimental performance of the PQ when M>P 
n = 16Kwords and m = 10 

299 

~ 

.86 

.63 

.49 

.38 

.87 

.76 

.66 

.52 

.86 

.76 

.64 

.51 

.88 

.76 

.67 

.57 

.87 

.76 

.66 

.58 

.86 

.73 

.64 

.57 



,--------------------------------- --- - - ---- ------

300 

The experimental performance increases as M increases. It starts 

decreasing for M = 256 and upwards. This shows that the parallel 

control overheads become significant as M increases from 256. The 

theoretical shows a constant increase in the Parallel Quicksort 

performance as M increases. 

6.3.2 PARALLEL WIO<SORl'-MERGE AIroRI'IllM (PCJVI) 

The original set is divided into M subsets, each containing (!!) 
M 

elements. Each processor sorts (~) subsets and Tps the parallel run-
P 

time for sorting these subsets on a p-MIMD multiprocessor system is 

equal to (~) times (ts ) the sequential run-tfme of the Quicksort 

algorithm to sort a set of length ctf) and it is given by, 

Tps = 1,. [12 (n+p) 
P 7 

(~ - ~2) + 2M + (n+p) 37m-941 
M+l 49 (m+2) 

6.49 

The analysis of the merging process is similar to that used in 

Section 6.2.3. For the purpose of this analysis we assume P and M 

power of 2 and we define the following quantities: 

si: number of subsets at level i if the merging process 

qi: average subset length at level i 

ci: oost of merging 2 neighbouring subsets at level i. 

It is obvious that there is a set at level 0 containing n elements, 

and the final merging (at level 1) of the 2 subsets of size!! each 
2 

is performed after n-l key comparisons. Therefore we have as 

initial conditions, 



301 

So = 1 

!Jo = n 6.50 

We noticed that as the level number increases by one, the number of 

subsets is doubled and the average subset length is halved, 

j = logP 

6.51 

By using the recu=ence theorem we derive the general terms of qi 

and Si 

i = O,j 

6.52 

i = O,j 

The run-time of merging 2 sorted subsets at level i is 

6.53 

and it is also equal to the next expression when qi is replaced by 

its value from equation 6.52 

6.54 

Table 6.8 below summarises the variations of the quantities Si' qi 

and ci when i varies from 0 to j, 



Level 
i 

j 

j '+1 

• 
• 
• 

1 

o 

N:l. of Subsets 
si 

2j '+1 = 2P 

2 

1 

• 
• • 

Size of Subset 
qi 

n 
~ 

n 

• 
• • 

TABLE 6.8 

Run-time of a 
Merge, ci 

2!! - 1 
M 

2!! - 1 
P 

n-l 

• 
• 
• 

N:l merging 

302 

From Table 6.8 we distinguish two stages depending on the number of 

active processors since the number of merging paths varies by two

fold: (a) when P (or less) processors are used. This stage 

corresponds to level i, (1 .;;; i .;;; j'+1), and (b) when the number of 

merging paths exceeds P and this is for levels i (j' + 2.;;; i.;;; j). 

The merging phase (a) has a run-time equal to, 

t = a 

j'+l 
I c· 

i=l ~ 
6.55 



303 

which is also equal to, 

ta = n(2-ij ') - (j '+1) 6.56 

At any level i of stage (b), every processor performs (si/2P) 

merging paths and tb' the run-time of stage (b) is expressed as, 

6.57 

which is also equivalent to, 

tb =!! (j-j'-l) -! (2j - 2.2j ') 
l' p 

The cost of the parallel merging algorithm is then, 

6.58 

which is equal to 

TPM = !! (j-j'-l) + n(2 - !) - (j'+l) -! (2j -2P) 6.59 
p P P 

After substituting j and j' by their values we obtain 

TPM = ! [nlog !::1 + 2n (P-l) + P(l - logP) - M] 6.60 
PP. 

Tp' the run-time of the parallel Quicksort merge is given as the sum 

of 6.49 and 6.60 

T =! [12 (n+p)(~ _~+2+2M+(n+p)37m-94 + nlog!::1 
P P 7 -+1 49 (m+2) P 

m 



304 

+ 2n(P-1) + P(l - logP) - M] 6.61 

which is simplified as, 

T =.!. [n {12 (H -I\n) + log ~ + 37m-94,1 
p P 7 '~+l +2 P 49 (m+2T 

M 

+ P {12 (Rn -I\n ) + P - 12m=192} + M] 
7 ifH +2 49 (m+2) 

6.62 

Tables 6.9 and 6.10 report respectively the theoretical· and 

experimental performance of the Parallel Quicksort merge algorithm. 

M P Tp Sp Fp 

8 2 5.27 1.29 .65 
3 4.53 1.50 .50 
4 3.60 1.89 .47 
5 3.62 1.88 .38 

16 2 5.59 1.22 .61 
3 4.78 1.42 .47 
4 3.72 1.83 .46 
5 3.65 1.86 .37 

32 2 5.92 1.15 .57 
3 4.91 1.38 .46 
4 3.92 1.73 .43 
5 3.77 1.80 .36 

64 2 6.29 1.08 .54 
3 5.07 1.34 .45 
4 4.12 1.65 .41 
5 3.87 1. 76 .35 

TABLE 6.9: Experimental results of the PQM algorithm when n = 16K, 
m = 10 and n paths = M)P 



M 

8 

16 

32 

64 

P 

2 

3 

4 

5 

2 

3 
4 

5 

2 
3 
4 

5 

2 

3 
4 

5 

Sp 

1.786 

2.504 

2.953 

3.489 

1.810 

2.535 

2.985 

3.525 

1.834 

2.566 

3.017 

3.562 

1.858 

2.598 

3.050 

3.598 

~ 

.893 

.835 

.738 

.698 

.905 

.845 

.746 

.705 

.917 

.855 

.754 

.712 

.929 

.866 

.763 

.720 

PFp 

1.595 

2.090 

2.180 

2.435 

1.637 

2.142 

2.227 

2.485 

1.681 

2.195 

2.276 

2.537 

1.726 

2.250 

2.326 

2.589 

305 

TABLE 6.10: Theoretical results of the PQM when M>P. n = 16K words 
and m = 10 

From Table 6.9 we see that the efficiency slightly decreases as M 

increases. This is reflected also in the theoretical results as 

shown in Table 6.10. However, it is better to use the straight 

Parallel Quicsokrt since mergin:; degrades considerably the increased 

performance gained durin:; scrt:in;J. 



306 

6.3.3 PlIRl\LLEL PARTITIOOED SORl'IN:; ALCDRI'lH>1S (PPS) 

We observed in section 6.2.4 that the parallel run-time of the pps 

a1gori thms, Tp ' is the sum of two run-times TpS and TpW- Let us 

first consider the run-time for the parallel partitioning and 

sorting phase TpS' ~ subsets, each containing (!!) elements are 
P M 

sorted by every processor. '!herefore Tps is 

TpS = n ~ + ~ t 6.63 pps 

where ts is the run-time for the sequential Quicksort to sort a 

subset of length (!!). The quantity n !:! reflects the fact that every 
M P 

processor accesses every element of the set Sn exactly!:! times when 
P 

picking-up elements. TpS is then 

Tps = n ~ + ~ (!! + l)(H· 
M !41 

M 

-H+2 ) + 2 !:! + (n + 1) 37m-94 6 64 
-m P M 49 (m+2) • 

If each of the processors writes (!:!) subsets to an auxiliary shared 
P 

array before the final transfer to the =iginal array, then, 

T _M n n_2 n pw--x-+-- -
P M P P 

6.65 

'!he experimental runs of the 2 PPS sh:>w a very po= performance as M 

increases (see Tables 6.11 and 6.12). This is explained by the 

amount of synchronization and data transfer, since they are of order 

(~) • As a suggestion to improve the performance of these pps 
P 

algorithms it is better to use for every path a local array to store 

and sort the M subsets. This only reduces the synchronization 

mechanism by half but not the data transfer. However, the 2 PPS 

performed very well when the task was split into exactly P subsets. 



307 

This improved perfonnance was not achieved by the parallel Qu1cksort 

algorithm even for M as large as 256. 

M P Tpc Tpe Spc Spe ~ Et>e 

8 2 6.52 6.69 1.04 1.02 .52 .51 

4 4.71 4.76 1.44 1.43 .36 .36 

16 2 8.13 8.22 .83 .83 .42 .41 

4 4.95 5.01 1.37 1.36 .34 .34 

32 2 11.21 11.46 .60 .59 .30 .30 

4 6.06 6.17 1.12 1.10 .28 .28 

64 2 18.67 19.00 .36 .36 .18 .18 

4 10.19 10.37 .67 .66 .17 .16 

TABLE 6.11: Experimental results of the PBPS algorithm when n = 
16K, m = 10 and n paths = M>P 



308 

M P Tpc Tpe Spc Spe ~ ~ 

8 2 5.02 5.15 1.35 1.32 .68 .66 

4 2.58 2.72 2.63 2.50 .66 .63 

16 2 6.57 6.73 1.03 1.01 .52 .51 

4 3.38 3.51 2.01 1.94 .50 .48 

32 2 10.17 10.35 .67 .66 .33 .33 

4 5.20 5.27 1.30 1.29 .33 .32 

64 2 17.54 17.90 .39 .38 .19 .19 

4 8.85 9.01 .77 .75 .19 .19 

TABLE 6.12: Experimental results of the PRPS algorithm when n = 
16K, m = 10 and n paths = M>P 

6.4 IDCLUSlOOS 

In this Olapter, we presented two new parallel sorting algorithms, 

the Bolmded-Partitioned and Range-Partitioned Sorting algorithms. 

Unlike the Parallel Quicksort algorithm, the two new methods have 

the potential of partitioning in parallel the original set, Sn' into 

P independent subsets of nearly equal lengths and which can be 

sorted by P asynchronous processors. A fourth algorithm, the 

Parallel Quicksort-Merge was also considired but only as a 

comparable alternative to the parallel Quicksort algorithm. 



309 

The performance analysis which is based on counting the number of 

key comparisons was presented for all four parallel algorithms and 

for two different situations depending on whether or rot the number 

of parallel paths (or subsets) exceeds the number of available 

processors P. The theoretical analysis showed, as antiCipated, that 

the parallel Quicksort and the Parallel Quicksort-Merge have equal 

performance, whereas the Parallel Partitioned Sorting algorithms 

outperformed the parallel Quicksort algorithm for M=P. 

The validation of the thecretical analysis was supported by a series 

of experiments performed on the Sequent Balance 8000™. A set of n 

randomly generated elements (n = 16K words) was selected to be 

sorted by the four different algorithms. Two performance measures, 

Sp' the speed-up ratio and, ~ the efficiency factor were selected 

as a means for comparing the performance of the Parallel Sorting 

algorithms. 

The experimental results which are in close agreement with the 

theroetical results are also included in tabular or graphical form. 



c------------- - - - - - -- - -------- -- - -- -- -- -------

Chapter 7 

A VLSI SOFT -SYSTOLlC IMPLEMENTATION 
OF A STRING PATTERN MATCHER 

AND ITS VARIANTS 

----------------------------------........ 



310 

7. 1 1NI'IlCI:U::I'ICN TO '!HE VISI TEOiIDLOOl/' PARJIDIG1 

Recently we have witnessed a rapid growth of computing technology 

that has followed the invention of transistors in the late 1940's. 

(The first transistor was invented in 1948 at the Bell Telephone 

Laboratories) and integrated circuits in the late 1960's. Through 

developments in transistors, new families of small computers (i.e. 

minicomputers) began to emerge on the market. As a result, thousands 

of transistor elements were assembled on minute chips of silicon. 

The race for smaller and faster computing machines has developed 

ever since. A mainframe computer built using the original 

thermionic valves had weighed more than thirty tons and required a 

room of 60 x 25 feet square to hold it; a computer of superior 

capability COUld, by 1971, be accommodated on a sliver. of silicon. 

The migration of le to Large Scale Integration (LSI) technology 

allowed tens of thousands of electronic components to fit on a 

Single chip. Following the rapid advances in LSI technology, the 

Very Large Scale Integration (VLSI) circuits have been developed 

with which enormously complex digital electronic systems can be 

fabricated on a single chip of silicon, one-tenth the size of a 

postage stamp. In fact, it is foreseen that the number of 

components that a VLSI chip could accommodate would be increased by 

a multiplier factor of ten to one hundred in the next two decades 

[Mead, 1980]. Devices which once required many complex components 

can now be built with just a few VLSI chips, reducing the 

difficulties in reliability, performance and heat dissipation that 

arise from standard SSI and MSI components [Kung, 1979]. 



311 

As computer applications still require faster and more powerful 

computer architectures than tlxlse currently available and as we are 

migrating from the information processing' era towards "kn::Jwledge" 

based systems which characterise the projected fifth generation of 

computers, the research in computer techn:Jlogy has been widened more 

than ever before. H.T. Kung was the first to realise that the 

rapidly developing' chip industry together with automata theo:ry could 

be the key success to constructing fast, highly parallel computer 

structures at low cost. Until the advent of VLS1, the development of 

parallel computers with a large number of processors had been 

limited by the unaffordable high costs of manufacture. Existing 

machines had been improved by tinkering' with the traditional Von

Newmann architecture, for instance cycle stealing, direct memory 

access (DMA), and pipelining of fetch and execute operations. As 

such, parallel machines were confined only to research purposes or 

milita:ry operations. 

The development of new manufacturing' techniques for fabricaticn of 

small, dense and inexpensive semi-conductor chips created a unique 

circumstance in the computer industry. With the use of VLS1 in 

circuits, size and cost of processing elements and memo:ry was 

considerably reduced and it became feasible to combine the 

principles of automation theo:ry with the pipeline concepts. The 

combination was especially attractive since device manufacture cost 

remained constant relative to circuit complexity, with most time and 

money invested in design and testing'. 

In relation with what was said above, approaches to device designs 

have progressed so significantly to the point that hardware design 

now relies heavily on software techniques, i.e. special rules for 

circuit layout and high level design languages (e.g. Geometry 



312 

languages, Stick languages, Register Transfer languages, etc) [Mead 

1981]. In fact, some of these languages offer the powerful chip 

fabrication capability directly from a design they express. 

Illustrative of this trend is the term silicon compiler utilised by 

hardware designers to refer to computer-aided deSign systems 

currently under development. Analogous to a cx:xwentional software 

compiler, the silicon compiler will convert linguistic 

representations of hardware components into machine oode, which can 

be stored and subsequently utilized in computer-assisted 

fabrication. 

The actual implementation of such designs requires a highly 

sophisticated manufacturing technology, found in silicon wafer 

fabrication. Such a technology exhibits the most powerful attribute 

which is its pattern independency. In other words, there is a clear 

distinction between the processing performed during wafer 

fabrication, and the design effort that creates the patterns to be 

implemented. This distinction requires a precise specification to 

the designer of the processing line capabilities. The specification 

usually takes the form of a set of permiSSible geometries that may 

be utilised by the designer with the knowledge that they are within 

the resolution of the process itself and that they do not violate 

the device· physics required for the proper operation of transistors 

and interconnections formed by the process. When reduced to their 

Simplest form, such geometrical restrictions are called design 

rules. These constraints are of the form of minimum allowable 

values for certain widths, separations, extensions and overlaps of 

geometrical objects, patterned in various system levels (see Mead 

and Conway [Mead 1980]). 



------------------------------- ------

313 

Without going into arq further details of the design rules, we must 

mention a characteristic and fundamental fact concerning the 

progressive miniaturisation of the minimum distance, within which 

one can expect what is deposited on the wafer actually to appear in 

the design of integrated circuits. This is that all dimensions in 

designs are specified not in absolute sizes, but in terms of 

multiples of an elementary distance parameter, the so called length

unit (X). This parameter is, approximately, the maximum amotmt of 

'accidental' displacement that we can expect when we deposit a 

feature on the wafer. In the early 1980s, A was usually considered 

to be about 2 jJm (Le. micron). 

Now if we try to sketch a complex automata arrangement one is 

immediately confined to the two dimensional (2D) plane defined by 

sheets of paper. In fact VLSI is achieved in a similar manner by a 

combination of circuit designs with high resolution photo

lithographic (or the newer X-ray ph::>tography) techniques, where it 

is convenient to place wires on rectangular grids, and limit the 

number of parallel layers of semi-conductors material oontaining 

wires and circuit elements. Hence, the problem of collapsing a 

three dimensional (30) graph structure onto a 20 plane or chip, is 

simplified if the graph is as close to 20 as possible*. 

Furthermore, an 'almost' planar graph based circuit is easier to 

design if it is modular - i.e. composed of many replicatable 

components, and consequently reduces overall production time as only 

a single or a few cells must be designed. 

However, VLSI presents some problems, as the size of wires and 

transistors approach the limits of ph::>tolithographic resolution, for 

* A 2D graph is termed planar if it can be drawn on the plan with 
00 axes intersecting at places other than oodes 



314 

it becomes literally impossible to achieve further miniaturisation 

and actual circuit area becomes a key issue. In addition, the chip 

area is also limited in order to maintain high chip yield and the 

number of pins (through which the chip communicates with the outside 

world) is limited by the finite size of the chip perimeter. These 

restrictions form the basis of the VLSI paradigm. 

For a newly developed technology or product to survive in a highly 

competitive industry there must be sufficient demand for it. The 

emergence end subseqUent success of VLSI oriented computing systems 

is not due only to H.T. Kung's foresight but also to the timing. At 

the same time Kung revealed the systolic concept, the idea of using 

VLSI for'signal processing was the major focus of attention in 

governmental, industrial and university research establishments. 

7.2 FUNDAMENl'AL AROiI'l'EOURAL CXN:E'TS m DESIQillC SPEX:IAL PURPOSE 

VISI ~ S'l'RlClURES 

High-performance special-purpose VLSI oriented computer systems are 

typically used to meet specific applications, or to off-load 

computations that are especially taxing to general-purpose 

computers. However since most of these systems are built en an ad 

hoc basis for specific tasks, methodological work in this area is 

rare. In an attempt to assist in correcting this ad hoc approach, 

some general design concepts will be discussed, while in the 

following paragraph the particular concept of systolic and wavefront 

array archi tectures, two general methodologies for mapping high

level computation problems into hardware cellular structures, will 

be introduced. 



315 

The problem of embedding a network of processors and memories into a 

set of VLSI chips is similar to that of embedding graphs, whose 

nodes are computers, or gates, onto grids so as to minimise area. 

Most of the researchers exploring this problem usually make certain 

assumptions; for example, they assume that wires run and devices 

are oriented in only horizontal and vertical directicns, everything 

is embedded on a square grid, all device nodes are at the same 

layer. 

The computational power of a chip is often measured by the number of 

transistors it contains. However, this is quite a misleading 

approach for the organisation of a ~hip's circuitry has a very 

strong effect. In general, regular chip designs make more efficient 

utilisation of silicon area, which is a more natural measurement 

factor for the circuit size than the number of transistors. Such 

designs utilise less area for the wiring amongst transistors, 

leaving more space for the transistors themselves. 

From the memory capacity point of view, the number of bits has been 

quadrupling every few years; in the mid-1970s technology passed 

through the era of lK, 4K and 16K bits memory chips. In 1981 the 

memory size was expanded to 321< bits and a 64K bit is predicted. 

Particularly for the design of special-purpose VLSI oriented 

computer machines, cost effectiveness has always been a major 

concern; their fabricatrion must be low enough to justify their 

specialised, and consequently, limited applicability. Cost can be 

distinguished in lXJIl-recurring design and recurring part costs. l>ur:! 

fall of the latter's cost is equally applied for the merit of both 

special-purpcse and general-purpcse computer systems. Furthermore, 

this cost is even less significant than the design cost, since the 



316 

production of special-purpose computer systems in large quantities 

is quite a rare phen:)merx::n Hence, =nclusively, the design of such 

a system sh:luld be relatively small for it to become more attractive 

=mpared to a general-purpose computer and this can be achieved by 

the utilisation of appLOpriate arch!tectures. More specifically, if 

the decomposition of a structure into a few types of simple sub

structures which are repetitively utilised with simple and regular 

interfaces is feasible, then significant savings are most likely to 

be achieved. 

In add! tion, special-purpose computer systems based on simple and 

regular designs are likely to be modular and consequently adjustable 

to various performance goals - Le. system costs may be made 

analogous to the performance required. This fact reveals that 

achievinJ the arch! tectural challenge for Simple and regular design, 

yields =st-effectlve special-purpose computer systems. 

Since such VLSI computing structures can function as peripheral 

devices, attached to a conventional host computer, receiving data 

and control signals and outputting results, a computation rate, 

which will balance the available I/O bandwidth with the host, is the 

ultimate performance goal of a special-purpose computer system. 

Therefore the likely modular attribute of such a c::cn:::ept is highly 

necessary, since it allows the flexibility of the structure to match 

a variety of I/O bandwidths; and since an accurate a priori 

estimate of available I/O bandwidths in complex systems is often 

possible. 

However this problem becomes especially severe when a very large 

computation is performed on a relatively small special-purpose 

computer system. In this case the computation must be decomposed. 



317 

In fact one of the major challenging research items becomes the 

development of algorithms that could be mapped into and executed 

efficiently by a special-purpose computer system. This implies that 

algorithms sh:luld decompose into modules, that map compactly into 

one VLSI chip (or a module of chips), and modules should be 

interooonected in an efficient manner. These algorithms must support 

high degrees of concurrency and employ a simple, regular data and 

control flow to enable an efficient implementaticn. 

To ccnclude we mention that special-purpose VLSI oriented computing 

structures can be either a single chip, built from a replication of 

simple cells, or a system built from identical chips, or even a 

combination of these two approaches. Figure 7.1 summarises the 

principle stages and tasks interdependencies involved in the design 

of a~chiP (see Foster and Kung's paper, [Foster 1980]). In 

fact in the envircrunent of VLSI systems design, the boondary between 

software and hardware has become increasingly vague. 

7.21 SYSTOLIC ARRAYS 

'I11e concept of systolic architectures, pioneered by H.T; Kung, which 

has been successfully srown to be suitable for VLSI implementation 

is basically a general metlx:xblogy of directly mapping algorithms 

onto an array of processor elements. It is especially amenable to a 

special class of algorithms, taking advantage of their regular, 

localised data flow. 

The word 'systole' was borrowed from physiologists who used it to 

describe the rhythmically recu=ent contraction of the heart and 

arteries which pulse blood through the body. By analogy, the 

function of a cell in a systolic computing system is to ensure that 



318 

FIGURE 7.1: THE DESIGN STAGES OF A SPECIAL-PURPOSE VLSI CHIP 

PROBLEM 

r---------, r--------, 
I FUNCTIONS OF I I DATA FLOW AND I 
I CELL TYPES I' I GEOMETRY I L _______ J L.--- r - __ J 

-....---------~ 
: CELL COMBINATIONS I 

rr AND I 
I PLACEMENTS I 

...J---------~ 
r----'----, r---'----, 
I CELL LOGIC I DATA FLOW 

I 
CIRCUIT I .. : CONTROL CIRCUIt 

L ___ _ ___ J L ___ ___ -J 

~--------, 
I CELL TIMING I 
I SIGNALS I 
L. ________ "~ 

r---L.---, r---' ----, 
I CELL STICKS I J 

COMMUNICATION I 
I j .. STICKS I 

I L. ____ ,- ___ .J 
~----r--- .. 

r---I...---, r - - - - - -"' 
ICELL LAYOUTS I 

~ 
, CELL BOUNDARY , 

I I , LAYOUTS I '----T- _...I 
L. _ __ ,_ 

- -..I 

~ 7 r--, 
I I L __ ..I 

MASK AND CHIP FOR FABRICATION 

ALGORITHM 
DESIGN 
LEVEL 

GATES 
LEVEL 

STICKS 
LEVEL 

LAYOUTS 
LEVEL 

SUBTASK 



319 

data and control are pumped in and out to a regular pulse, while 

performing some short computation [Kurg 1978]. 

A systolic array is a network of processing elements, usually 

arranged in a regular pattern and locally linked by communication 

channels. Operands are pumped through the array to a regular 

pulse. Everything is planned in advance so that all inputs to a 

cell arrive at just the right time before they are consumed. 

Intermediate results are passed on immediately to become the inputs 

for further cells. A steady stream flows at one end of the array 

which is said to consume data and produce results on the 'fly'. For 

instance, by locally connecting a few basic cells, almost Im::>wn as 

Inner Product steps - 'IPS' - each performing the operation 

CoC + A x B - leads to a fundamental network capable of performing 

computation-intensive algorithms, such as digital filtering, matrix 

multiplication, and other related problems (see Table 4.1 for a more 

comprehensive list of potential systolic applications). 

The systolic array systems feature the important properties of 

modularity, regularity, local interconnection, a high degree of 

pipe lining and highly synchronised multiprocessing. Such features 

are particularly more interesting in the implementation of compute

bound algorithms, rather than Input/Output - 'I/O' - bound 

computations. In a compute-bound algorithm, the number of computing 

operations is larger than the total number of I/O elements, 

otherwise the problem is termed I/O-bound. Illustrative of these 

concepts are the following matrix-matrix multiplication and addition 

examples. An ordinary algorithm, for the former, represents a 

compute-bound task, since every entry in the matrix is multiplied by 

all the entries in some row or column of the other matrix - i.e. 

0(n3) multiply-add steps, but only 0(n2) I/O elements. The addition 



'SYSTOLIC' PROCESSOR 

AAFAY STRUcrURE 

J-D linear arrays 

2-b square arrays 

2-D hexagonal arrays 

Trees 

TPiangu '/.ar arrays 

320 

PROBLEM CASES 

FIR-filter, convolution, 'Discrete 

Fourier Transform' - DFT , matrix-vector 

multiplication, recurrence evaluation, 

solution of triangular linear systems, 

carry pipe lining, Cartesian product, odd-

even transposition sort, real-time 

priority queue, pipeline arithmetic units. 

Dynamic programming for optimal parenthe-

sization, image processing. pattern 

matching, numerical relaxation, graph 

algorithms involving adjacency matrices. 

Matrix problems (matrix multiplication, 

LU-decomposition by Gaussian elimination 

without pivoting, QR-factorization). 

transitive closure, relational database 

operations, DFT. 

Searching algorithms (queries on nearest 

neighbour, rank, etc., systolic search 

tree), recurrence evaluation. 

Inversion of triangular matrix, formal 

language recognition. 

TABLE 7.1: THE POTENTIAL UTILIZATION OF 'SYSTOLIC' ARRAY 
CONFIGURATIONS 



321 

of two matrices, on the other hand, is an I/O l:x:Jund task, since the 

total number of adds is not larger than the total number of I/O 

operations - Le. 0(n2 ) add steps and 0(n2) I/O elements. 

It is apparent that any attempt to speed-up an I/Q-bo\md computation 

must rely on an increase in memory bandwidth (the so-called 'Von 

Neumann' bottlenecks). Memory bandwidths can be increased by the 

utilisation of either fast components, which may be quite expensive, 

or interleaved memories, which may create complex memory management 

problems. However, the speed-up of a compute-l:x:Jund computation may 

often be achieved in a relatively simple and inexpensive manner, 

that is by the systolic architectural approach. 

The fundamental principle of a systolic architecture, asystolic 

array in particular, is illustrated in Figure 7.2. By replacing a 

single processing element with an array of PEs, a higher computation 

throughput can be achieved without increasing memory bandwidth. 

This is apparent if we assume that the clock period of each PE is 

100 ns; then the conventional memory-processor organisation (a) has 

at most 5 MOPS performance, while with the same clock rate, the 

systolic array (b) will result in a possible 35 M)PS performance. 

Finally this approach of utilising each input data item a number of 

times, thus achieving a high computation throughput with only a 

modest memory bandwidth, is just one of the advantages of the 

systolic concept. Other equally significant criteria and advantages 

inClude modular expansibility, utilisation of simple, uniform cells, 

extensive concurrency and fast response time. 

However, one problem associated with systolic array systems, is that 

the data and control movements are controlled by global timing-



322 

reference beats. In order to synchronise the cells, extra delays 

are often used to ensure correct timing. More critically, the 

burden of having to synchrcnise the entire netwo:rK will eventually 

become intolerable f= very large = ultra large scale arrays. 

MEMORY 

100 ns 

a) The Conventional Organization 

MEMORY 

1C10 ns 

b) A Systollc Processor Array 

FIGURE 7.2: SYS'lULIC DESIGN PlIDCIPLE 

7.2.2 WAVEFRNl' ARRAYS 

A solution to the above mentioned problems, as suggested by S.Y. 

Kung [Kung 1985], is to take advantage of the data am cx:ntrol flow 

locality, :Inherently possessed by most algorithms. '!his permits a 



323 

data-driven, self-timed approach to array processing. Conceptually, 

such an approach substitutes the requirement of correct 'timing' by 

correct 'sequencing'. '!his concept is used extensively in data flow 

computers arrl wavefrmt arrays. 

Basically the derivation of a wave front process consists of the 

three following steps: 

a) the algorithms are expressed in terms of a sequence of 

recursions; 

b) each of the above recursions is mapped to a corresponding 

computaticn wavefrcnt; arrl 

c) the wavefrmts are successively pipelined thrc:xlgh the processor 

array. 

Based on this approach, S.Y. Kung introduced the Wave front Array 

Processor (WAP) which consists of an NxN processing element with 

regular coonecti.cn structure, a program store arrl memory buffering 

modules as illustrated in Figure 7.3. The processor grid acts as a 

wave propagating medium using handshaking protocols. 

Each processor performs a limited number of computations and is 

controlled by a program loaded in the program store. Data is stored 

in memOJY modules around the b:Jundary arrl extra time must be allowed 

to set up a computation. An algorithm is executed by a series of 

wavefrmts moving across the grid with processors computing whenever 

its data arrl instructions are available. Processors are assumed to 

support pipelining of waves and the spacing of waves (T) is 

determined by the availability of data and the execution of the 

basic operaticn. The speed of the wavefrmt 11 is equivalent to the 

data transfer time. 



PROGRAM 
CODE 
MEMORY 

MEMORY MODULES 

• 

A = UNIT TIME OF DATA TRANSFER 

T = UNIT TIME OF ARITHMETIC OPERATION 

FIGURE 7.3: THE WAVEFRONT ARRAY PROCESSOR 

----- --- ---

324 



325 

Summarising, the wavefrcnt approach oombines the advantages of data 

flow machines with bJth the localities of data flow and control flow 

inherent in a certain class of algorithms. Since the burden of 

synchronising the entire array is avoided, a wave front array is 

archi tecturally 'scalable'. 

7.3 VLSI-auENl'ED ~ 

For large applications it may not be feasible to design a single 

chip implementation of an array, especially when balance between 

flexibility, efficiency, performance and implementation cost is 

essential. An alternative approach is to implement basic cells at 

the 00ard level using a set of 'off-the-shelf' compcnents which are 

widely available as chip packages from vario.JS manufacturers. 

Systolic arrays achieve high performance and efficiency by 

considering only restricted problem classes, at the expense of 

flexibility and implementation cost. For a more ec:on::lmical solution, 

arrays must be constructed with many incorporated features so as to 

handle a large number of systolic algorithms. In this section, we 

shall briefly review the main contenders of VLSI-oriented oomputing 

systems which have received attention to date. 

7.3.1 'lHE WARP ARCHITEClURE 

The WARP architecture, one of the most advanced VLSI-oriented 

systems, was developed at Carnegie Mellon University (CMU) by H.T. 

Kung and his associates for purely systolic algorithms. Initially, 

the design began with a preliminary study of different arch! tectures 

based on general purpose microprocessors which could implement a 

variety of systolic algorithms efficiently. The study resulted in 



326 

the Programmable Systolic Orlp (PSC) discussed in [Fisher 1984] and 

prompted research into cell structures for high performance systolic 

arrays in a particular area (signal processirg). 

The WARP architecture is a ID linear systolic array with data and 

control flowing in ooe directien (with input at ooe end of the array 

and output at the other). From the preceding discussicns we observe 

that the design allows easy implementation, synchronization by a 

simple global clock mechanism, minimum input/output requirements and 

the use of efficient fault tolerance techniques for faults. 

The basic WARP cell is ccnst:ructed from a collection of chips as is 

illustrated in Figure 7.4, its main characteristics being the 

pipe lining of data and control. Weitek 32-bit floating point 

multiplier (MPY) and ALU perform operations and can be used in 

pipeline mode to improve throughput by two level pipelining. The MPY 

and ALU register files use Weitek register file chips and can 

compute approximate functions like inverse square root using lock-up 

facilities. The X,y and addr-files are also register files but this 

time used to implement delays for synchronising data paths, and can 

be used as extra registers for book-keeping operations, while the 

data memory is used to reduce the input/output bandwidth by 

implementing tables of data and storing intermediate results, it can 

also be used to implement multiple cells en the same processor and 

hence 2D arrays. The crossbar and input multiplexors (muxes) 

provide communication between the individual elements and can be 

reconfigured by control signals. The muxes permit two-directional 

data flow and rirg set-ups. A ten-cell prototype has been built at 

(MU and tested on a number of example arrays discussed in H.T. Kung, 

[Kung 1984a]. 



L Mcod. -t 
101 
Mu. H ~ Y-rILE 

c 

~ \-i • 2.1 x-rlL~ 0 
Muo S 

" 
S 

~ ~ 
MPY I MP' f- ~ J ,u::c rILE 

",00"-,,'11£ • I • • .--
r-- ld 

"\u,,~ ALU r I-'-- ~I REG rILE ALU 
I . 

~ 
OATA 

M .. :,.ntY 
I' 

FIGURE 7.4: DATA PATHS FOR THE WARP CELL 



328 

7.3.2 'llIE OIIP AROIITEOURE 

In order to derive a more flexible VLSI -oriented cx:xnputin;J system 

than the special-pw:pose oomputers, where the same hardware would be 

used to solve several different problems, L. snyder suggested the 

design of the Configurab1e, Highly Parallel architecture - '0IiP' 

[Snyder, 1982] based on the configurabi1ity principle. 

Conceptually, the CHiP represents a family of systems, each built 

out of three major oomponents: a set of processing elements (PEs), 

a switch lattice and a cClluoller. 

The lattice, the most important component of a CHiP, is a 2D 

structure of programmable switches oonnected by data paths. PEs are 

placed at regular intervals. Figure 7.5 shows two examples where 

squares represent PEs, circles represent switches and lines 

represent data paths. Note that PEs are rot directly oonnected to 

each other, but rather are oonnected to switches. 

The processing elements are microprocessors each coupled with 

several kilo-bytes of RAM used as local storage. Data can be read 

or written through arw of the eight data paths or ports oonnected to 

the PE. Generally, the data transfer unit is a word, though the 

physical data path may be narrower. The PEs operate synchronously 

and systo1ical1y. 

Each programmable switch contains a small amount (around 16 words) 

of local RAM which is used to store instructions (one instruction 

per every word) called configuration settings. Each configuration 

setting specifies pairs of data paths to be connected. When 

executed, each pair which is also known as a crossover level, 

establishes a direct, static connection across the switch that is 



329 

(a) (b) 

FIGURE 7.5: TWO LATTICE STRUCTURES. 

independent of the others. The data paths are bidirectional and 

fully duplex, i.e. data movements can take place in either directicn 

simultaneously. Now, executing a configuration settings program 

causes the specified connections to be established and to persist 

over time, e.g. over the executicn of an entire algorithm. 

The processing elements can be connected together to form a 

particular structure by directly configuring the lattice. 'l1lat is, 

the programmer sets each switch such that collectively they 

implement the desired processor interocnnecticn gr~ Figure 7.6 

illustrates three examples of how the lattice of Figure 7.5(a) might 

be configured to implement some commonly used interconnection 

schalles. 



(a) Binary tree 

(b) Systolic array 

(c) Four-neighbour network 

o 
o 

_ 0 

330 

o 
o 
o 
o 

o 
000000000 

-

o 
o 
o 

_ 0 

0 ....... 
o 
o 
o 

FIGURE 7.6: EMBEDDING GRAPHS INTO THE LATTICE OF FIGURE 7.5 



------------------ ._.- ---

331 

In addition to the lattice, a contro11er is also provided, and is 

responsible for loading programs and c:x:nfiguration settings into PE 

and switch memories respectively. This task is performed through an 

additiCXJal. data path network, ca11ed 'ske1eton'. 

From the functional p::>int of view, 0liP processing starts with the 

controller broadcasting a command to all switches to invoke a 

particular c:x:nfiguration setting; for example to implement a mesh 

patten1. '!he established c:x:nfiguration remains during the execution 

of a particular phase of an algorithm. When a new phase of 

processing, requiring different c:x:nfiguration settings, is to begin, 

the controller broadcasts a command to all switches so that they 

invoke the new configuration setting; for example, a structure 

implementing a tree. With the 1attice thus restructured, the PEs 

resume processing, having taken only a single logical step in 

rec:x:nfiguring the structure. 

In conclusion, the CHiP computer which is a highly parallel 

computing system, providing a programmable interc:x:rnlection structure 

integrated with the processor elements, is well suited for VLSI 

implementaticn. Its main objective is to provide the flexibility 

needed in order to solve general problems while retaining the 

benefits of regularity and locality. 

7.3.3 IN>m TRlINSPUl'ERS AND ocx::AM 

A third p::>ssibility is the INMOS transputer, a Single chip 

microprocessor containing a memory, processor and communication 

links for connection to other transputers, which provides direct 



332 

hardware support for the parallel language OCCAM*. The structure of 

a transputer is given in Figure 7.7. 

The transputer and OCCAM were designed in conjunction and all 

transputers include special instructions and hardware which provide 

optimal implementations of the OCCAM model of concurrency and 

communication. Different types of transputers can have different 

instruction sets depending on the required balance between cost, 

performance, internal corx::t=ency and hardware, witlx>ut altering the 

users view of OCCAM. Hence the transputer is a Reduoed Instructioo 

Set Computer (RISC). 

The processor contains a scheduler which enables any number of 

processes to run on a single transputer sharing processor time, 

while each link provides two unidirectiooal channels for point to 

point communication synchronised by a handshaking protocol. 

Communicatioo 00 any link can occur CXXlCUl:'l:'eI1tly with communicatioo 

on other links and with program executicn. 

OCCAM itself is based 00. communicating sequential processors (Hoare 

1978] where parallel activities are viewed as black boxes with 

internal states, called processes, and which communicate with each 

other using a ens-way channel. Communicatioo. is achieved by sending 

a message down a channel between two processes; one process sends a 

message and the other reads it from the channel. 

* This language is named after the medieval philosopher who 
pioneered the idea of Occam's razor, a sharp intellectual 
instrument used to cut away all superfluous details in a system. 



-+ RESET 

~M.YZE '-+ 
<MO. -BOOT , .~ 

"'" 
<LX 

YCC 

GNO 

-+ 

-
-

"'" lIEN (5.81 .;-
"'" MD! 
Wr(4) ""-"'" MD! 
OD "-NOr IIEM 
.f ~-

HEM • 

.... coor 
""--t 
"""--I 

r-

f-+- " SYSTEM r+- PROCESSOR 
SERVJCES 02 bit) 

" I-I-+- LINK 
JNTERFACE 

l-
INO 

OUTO 

ON-CHJP ... 
32 +-(2K byt .. , r+- r+- LINK 

INTERFACE 
-+ 

1Nl 

OUT1 

r+- LINK ~ 
INTERFACE I-

IN2 

OUT2 

r+- LINK ~ 
INTERFACE 

f--+ APPLICATION 

1Nl 

OUT] 

RND 

~ SPECIFICATION 
INTERFACB 

I ~ EVENT 

'--

EVENT RBG 

EVENT ACIt 

MEM JtEO 

MEM GRAN 

k MEMORY 32 > 

FIQJRE 7.7: TRANSIUI'ER AROII~ 

As every transputer implements OCCAM, an OCCAM program can be 

executed en a Sing-le transputer or a network of transputers. In the 

former case, parallel processes share the processor time and channel 

communication is simulated by moving data in memory. For a 

transputer network processes are distributed arnoog transputers and 

channels allocated to links. 

333 



334 

The main characteristic of the OCCAM language is its simplicity 

which makes it an appealing prospect for proving the oorrectness of 

processes. It has fewer than thirty keywords, and only a small 

number of constructors. Although each process uses destructive 

assignments, the use of channels for interprocess communication 

makes it entirely consistent with data flow and graph reduction 

computer architectures. OCCAM was designed with computer 

arch! tectures of this nature in mind, and with a view towards fifth 

generation applications. Together with the Inmos traI)SpUters, it 

provides a modular hardware/software compcxleI'lt of the type which is 

essential in the cc:nstruction of highly parallel computer systems. 

However, its lack of a powerful data structure and its closeness to 

the hardware, means that OCCAM is likely to be the low-level 

language of fifth generation systems with applications possibly 

written in a more abstract laDJUage. 

7.3.4 SIMJIATICN OF SYS'lULIC ARRAYS 

. We use the fact that oa::'AM programs can be divorced from transputer 

configurations by usin;J the lanJUage as a simulation tool throughout 

the remainder of this chapter for testing many proposed designs. A 

brief summary of the oa::'AM laDJUage is given in Appendix B, together 

with selected simulated systolic programs. Figure 7.8 indicates the 

general structure of the programs, where branching indicates 

parallel execution. The construction of programs follows ideas. 

developed by M.G. Megson [Megson 1984]. Coosequently oa::'AM programs 

simulate the formal proofs by replacin;J I/O descriptions by actual 

results. AI toough the simulation 00es rot guarantee oorrectness it 

is nevertheless a less time consuming approach which 00es rot result 

in unsolvable equations. Furthermore, a working OCCAM program 



335 

GETDATA 

SETUP 

ALLOCATOR 

DE-ALLOCATOR 

OUTDATA 

FIGURE 7.8: STRUCTURE O~ OCCAM PROGRAM FOR SIMULATING SYSTOLIC 
M."R'AYS 



336 

retains the possibility of actual tr8I'lSpJter implementation and so 

solves two problems in cne attempt. 

The getdata and putdata sections of Figure 7.8 which represent the 

lx>st machine interface, are responsible for receiving and sending 

data and control to and from the program. Each routine contains 

enough memory to store the initial array input data and the final 

output data oorrespond.in;J to the global inpJt and output sequences 

of the model. In principle, the two routines can be run in parallel 

with each other and the array, but generally they are sequential, in 

order to emphasise the parallel operation of the array. The actual 

lx>st can be predefined I/O files or simply the terminal. The former 

method is useful for buffering and throughput testing, while the 

latter helps with debugging and interactive array performance. The 

routines can be augmented with user friendly features directing the 

program use, the collection of data necessary for the array 

construction and formatting of results. 

The setup routine is a key section of the algorithm which oomputes 

array dependent quantities. More specifically, it performs many 

necessary calculations whose values are useful in defining the 

structure of the array. These structural values are more important 

as the array beoomes more complex. 

Sources, sinks and ce11s are OCCAM procedures that define the 

network model. A source is loaded initially with a vector from 

getdata representing its associated bounded data sequence, together 

with additional values from the set up routine. Sinks are analogous 

to sources except they work in reverse by placing real values into 

data vectors which are then passed to putdata for output. The cell 

procedures implement the n-ary sequence operators. Generally there 



--------:---------------~~--- ~--

is one procedure for each type of cell, and the programming task is 

simplified for homogeneous networks. The I/O sequences are 

represented by oo::::AM channels appearing as actual parameters in the 

procedure headings. Where cell definitions are only marginally 

different, extra switches and flags can be added to a procedure 

heading so it can set up the co=ect cell type. This collapses a 

number of definitions onto a single generic one. Extra parameters 

can also be used for preloading array values. 

A cell definition is divided into three sections, initial.ization, 

communication and computation. lnitializaticn is performed only 

once and allows cells to be cleared before use or predetermined 

values to be set up. In particular, initialization defines neutral 

element quanti ties which can be used in communicaticn before real 

data reaches the cell, and is essential to maintain data flow in 

oo::::AM programs. The communication and computation sections of the 

cell are performed many times and are enclosed in a loop for 

iteraticn, and are performed sequentially one after the other. All 

communication is performed in parallel and computaticn is mainly 

sequential. 

The A11ocator routine is called after setup and is supplied with 

parameters about the array dimensions, synchrarl.sation details and 

the total number of cycles in the algorithm if a loop scheme is 

used, and data sequence sizes. The allocator is simply a set of 

parallel loops which specify and start-up the computational graph by 

connecting corresponding procedures using oo::::AM channels as arcs and 

allocating channels accordingly. To achieve setup, the graph is 

mapped onto a grid of points whose points and hence arcs can be 

recovered from a simple address type calculation. The simpler the 

array the easier are the mapping functions, and the result is an 

337 



338 

allocaticn similar to the VLSI grid model. Once started the sources 

and sinks control computation, and the allocator only terminates 

when all the graph cell procedures have terminated. Termination of 

procedures is assumed to be globally synchronised if a for-loop is 

used in cells and asynchronous if while-loops are incorporated. As 

c:x:x::AM is an asynchrcxx:lus communicaticn language, for-loops tend to 

be messy requiring some additional computation after the loop to 

clear all the channels - hence avoiding deadlock. While-loops are 

better suited to the model of ooncurrerx::y and when augmented with 

systolic control sequences can be used to selectively close down 

cells input and output channels. Consequently a=ay cells can be 

switched off = deallocated by a wavefn:nt progressicn = pipelined 

approach from sources to sinks. 

!In additional procedure for debugging purposes can be added which 

runs in parallel with graph networks, and is mainly a screen/file 

mixer routine. The allocator sets up the procedure and network 

cells are augmented with an addi ticna1 channel each, which the debug 

routine uses to analyse cells. Debug channels are allocated f:rom a 

pool of channels and require an ordering of network cells for 

correct indexing. When the indexing functicn is simple, debug can 

be used to output snapshots of a=ay operation so data flow can be 

easily verified. Snapshots are output in a sequential cell-ordering 

and the additional debug channel communication must be placed 

carefully in cell definiticns. 

Finally, the techniques described above have been used successfully 

throughout this chapter to implement designs in OCCAM but can in 

principle be extended to aTr;i parallel lanJUage provided channels and 

cells can be modelled. In fact Brent, Kung and Luk [Brent 1983] 

used an extended version of Pascal, lillA also seems a likely 



339 

candidate as NJA rendezvous is very similar to channel oommunication 

both being based on esp. We adopt OCCAM because it offers more 

direct hardware support for special purpose designs as well as 

common arch! tectures. 

7.4 SYS'IDLIC AIalU'llMS, (IN;TRA1Nl'S 1\ND CLASSIFICATICN 

An algorithm that is designed with the systolic ooncepts in mind, in 

particular the use of simple and regular data and control flow, 

extensive use of pipelining and high level of multiprocessing, is 

termed a systolic algorithm. Techoologically speak:in;J, the design 

of systolic algorithms is in its early days, and as such, is 

applicable to only a small subset of applications. However, it is 

forecasted that further developments in the near future could 

alleviate some (if not all) of the restrictive constraints of the 

VLSI design. 

Recent developments in programming languages along with the chip 

techoology has made it possible to classify systolic algorithms into 

broad classes dependent on their specific properties. For example, a 

systolic algorithm can be considered upon many factors, i.e. ease of 

manufacture, its ability to be represented as a planar graph, or the 

amount of area required on silicon to implement it. Two main classes 

of systolic algorithms were identified [Bekakos 1986]: Hard

systolic algorithms and soft-systolic algorithms. 

The hard-systoHc algorithms represent the traditional algorithms 

designed with the physical chip implementation restrictions in mind 

so that they are easily manufactured as chip systems, examples 

include banded matrix-vector and matrix-matrix multiplication chips 

[Mead 1980]. 



340 

Perhaps one of the most significant constraints imposed on VLSI 

systems is that it is a 2D techrx:>logy (planarity ccnstraint) since 

chips are usually (= more precisely wafered, if fabrication jargon 

is used) on a board. This physical constraint is reflected on the 

hard-systolic design by considering only those graph model 

representatialS which feature the planarity characteristic. However 

near planar representatialS are also allowed since the 2D ccnstraint 

is violated by permitting two boards to be connected at some places. 

In addition, broadcasting has been avoided in such algorithms since 

each cell has to be connected to the broadcast channel, increasing 

the power requirement of the system as a whole or decreasing its 

speed. In a 'pure1y' hard-systolic algorithm, broadcasting to cells 

is totally avoided. However, if only a limited amamt* is allowed 

the alg=ithm is termed 'semi' hard-systolic algorithm. 

The above constraints imposed on the ha...-rd-systolic alg=ithms are 

famd to be very rigid and very closely related to the actual state 

of the VLSI technology and to fabrication problems. Al '\:h:Jugh they 

were arguably shown to be mandatory conditions for a successful 

production of an efficient hard solution, however, they 

unnecessarily limit the inherent potential of the systolic approach 

(see the systolic programming paradigm [Shapiro 1984]). 

A more flexible class of algorithms, the soft-systolic algorithms, 

were defined as a result of the innovations in the concurrent 

programming languages, such as OCCAM and CONaJRRENT PROLOG. In such 

a class, planarity, broadcasting and area are no longer a major 

* Bearing in mind that broadcasting over long distances could 
develop clock skews and that data canoot be synchrooised 



------------------- - -- - - - - - --

341 

concern. Alt:rnugh the soft-systolic algorithms may intuitively not 

be sui table for direct mapping onto a chip, they however can still 

be performed on some suitable parallel computers, such as 

transputers. Therefore, these algorithms must be implemented in 

some appropriate languages. 

Recent developments in the transputer device, in particular, the 

inclusion of a stored OCCAM compiler as a chip, have made the 

transputer chip a favourable candidate system to run some algorithms 

of this second class. 

Evidently it is clear that the set of hard-systolic algorithms form 

a sub-set of the soft-systo1ic class and as such they can also be 

implemented in the same concurrent programming languages, although 

this is rot necessary. Furthermore, it is also evident that some of 

the soft-systolic algorithms will be very close to the hard-systolic 

ones but, under the strict definitions of hard-systolic, wcRll.d not 

be classed as such. Consequently, a third class, hybrid-systolic 

algorithms, was defined to represent this state of transition from 

the soft class to the hard one. Only technological improvements 

which are likely to take place in the near future will achieve this 

hybrid-hard migration. Cu=ent research indicates that algorithms 

which allow local broadcasting (not necessarily between nearest

neighbour cellS), limited non-planarity or large amounts of non

p1anarity (but in a controlled manner) could be considered as 

contenders for this class of algorithm. 

It is foreseen that all the above definitions will become 

increasingly important as the fifth generation of computer systems 

evolves. The relationship between these classes of algorithms, in a 

set theory manner, are given below: 



342 

1. Ha U Ss = S, and 

2. Hs C Hs C Ss 

where Hs'Ss and Hs are set symbols used to represent the hard-, 

soft- and hybrid-systolic algorithms respectively. It would be 

interestingly important to determine whether Hs = Ss because, if 

this is the case, then all soft-systolic algorithms can, in 

principle, be fabricated. In the following section, the systolic 

principles will be demoostrated in various systoUc designs when we 

study a family of soft-systolic pattern matcher algorithms, in 

particular when broadcasting to cells, limited cell storage and fan

in properties are considered. 

7.5 SYS'lULISATICN OF 'HIE PATl'EIW MI\OIINlN3 PRELEM 1\ND ITS VARIANTS 

The importance of the strin;;J mat:ch:!n;J problem is well recognised in 

most computer applications. String pattern matching is a basic 

operation in SNOBOL-like languages and database query languages. 

Many artificial intelligence systems make substantial use of the 

string matchin;;J strategy as a search method. In general, searching 

is a very important topic in artificial intelligence and is 

currently under intensive study. Therefore, the design of an 

efficient pattern matcher chip could be very beneficial in both time 

and space savings for many computer applications. Furthermore, 

string pattern matching is similar to many stressing numerical 

computations such as convolutions and correlations. Though the 

above list is not complete (and was not intended to be so), its 

purpose is cnly to show some string pattern matching applications 

and, more importantly, to stress its importance as a general 

computer topic. 



------------------------------~-~----.--

343 

The first ever "purely" hard-systolic algorithm for the string 

pattern matching problem was developed at C<lrnegie Mellon University 

in 1979 by M.J. Foster and H.T. Kung [Foster 1980] who were the 

first to introduce the concept of systolic arrays. The design of the 

underlyirYJ algorithm demonstrated successfully the great pJtential 

of the then propJsed special-purpose VLSI-oriented chip design 

meth:x'blogy which~ is basically placed on the selection of a "good" 

algorithm. A "good" algorithm, in this context, sh:Juld exhibit the 

following properties. The implementation of the algorithm should 

require a limited number of different types of simple cells, data 

flow and control flow in the network shOUld be simple and regular 

and thirdly the algorithm should use extensive pipelining and 

multiprocessing. Accordingly, it was shown that such a "good" 

algorithm could be mapped onto circuits and layouts design f= chip 

manufacturing in a most straightforward way. 

We have already seen several known fast algorithms f= the pattern 

matching problem that run en a Von-Newmann type computer system and 

developed parallel versions for them to run on any MIMD type 

asynchronous parallel computer system [Ghanemi, 1986a]. These 

algor! thms (whether sequential or parallel) use a preprocessed table 

of information about partial matches of the pattern against itself. 

The purpose of this practice which, although consumes a fraction of 

the total amount of the execution time, is to avoid redundant' 

CX)mparisons, skipping over parts of the string where partial match 

resul ts may be inferred from previous comparisons. Al though the 

Boyer-Moore fast pattern matching method achieves a sub-linear 

performance, the systolic implementation of the brute-force 

algorithm greatly improves the throughput. This implies that time 

spent in I/O, control and data movements, as well as arithmetic 

cperations are thus greatly reduced. Coosequently, the Foster-Kung 

~ , 
I 

I 

I 

I 



344 

pattern matcher chip solves the problem in almost linear time by 

comparin;;J characters in parallel*. 

A brief descripticn of the Foster-I<un;l' pattern matcher algorithm is 

presented in the followin;;J section. 'Itrls would enable us to first 

assess the stren::lths and drawbacks of the design and then to be able 

to compare it with many of the soft-systolic designs which shall be 

presented in later secticns. 

7.5.1 HARD-SYSTOLIC DESI~ 

In this secticn, we shall review the hard-systolic pattern matcher 

chip as developed by M.J. Foster and H.T. Kung [Foster 1980]. We 

shall cnly concern ourselves with the design of the algorithm since 

fabrication techniques enable automatic mapping of the systolic 

algorithms cnto circuits and layout designs far chip manufacturin;;J. 

The systolic algorithm for the pattern matching problem is best 

presented by describin;;J the data and centrol flows and the functicns 

perfonned by its basic cell. 

In the hard-systolic array, design RI' as proposed by Foster and 

Kung, the pattern and text string characters, denoted by PI P2 •.• 

Pk (k being the length of the pattern) and SI S2 ••• Sn 

respectively, move systolica1ly in opposite directicns through the 

array of cells. They alternatively arrive over the bus cne character 

at a time, known as a beat or cycle. Thus, during each pair of 

consecutive beats the array inputs two characters and outputs one 

match result (A bit). 

* Backing up the string in the case of a mismatched character is 
thus avoided 



345 

r ., r ., r ., r ., r ., f-
3 R R S2 R R, S R - L 5.J L 4.J L 3.J L <.J 1 L 1.J . • • I I 

(a) 0--6--6--6--6-

(b) 

R = R and (Pin"Pout) 

Sout Sin 

PQut = Pin 

FIGURE 7.9 SYSTOLIC PATTERN MATCHER ARRAY (a), AND CELL (b), WHERE Ri's 
STAY, AND Si's AND Pi'S MOVE SYSTOLICALLY IN OPPOSITE DIRECTIONS 

Each cell of the systolic array compares two characters and 

accumulates a temporazy result. en each beat, every character moves 

from one cell to its neighbouring one (see Figure 7.9). In order to 

make sure that every pair of characters meet rather than just pass 

each other at a cell level, they are separated by one cell so that 

alternative cells are idle. Figure 7.10 traces the data/computaticn 

of the hard-systolic design when search:1rYJ for all the occ:urren:::es 

of a given pattern string "TABLE" in the string defined below: 

Pattern: TABLE 

string: • •• WITH A TABLE OR STRIN3 

Following the pointer in Figure 7.10, illustrates the history of the 

pattern matcher chip, starting when the first character of the 

pattern "T" is present. 



346 

FIGURE 7.10: DATA/COMPUTATION SNAPSHOT OF THE SYSTOLIC 

DESIGN RI~ 

-'~CJ 0 :. 0 0-,,-
o [J OD 0 
[J 0 0 0 0 
o D 0 D 0 
CJ 0 CJ 0 0 
o [J D D 0 
ODD 0 [J 
o [J 0 CJ 0 
[J 0 D 0 CJ 



To enable a cell to output its accumulator cx::ntents and then reset 

it, the first character of the pattern is associated with a tag bit 

(not shown in Figure 7.9). A systolic output path (indicated by 

broken lines in Figure 7.9) allows match results to be output in the 

natural ordering (RI' R2 .•• , since consecutive Pi's are well 

synchronised - i.e. separated by two cycle times. 

The problem with the above design is its poor performance since only 

one-half of the cells are doing useful work at any time. To fully 

exploit the potential throughput of this design, Foster and Rung 

suggested that two pattern matching problems could be interleaved on 

the same systolic array, however this implies that cells in the 

array must be considerably modified in order to support the 

interleaved processing. 

Alternatively, if the pattern and the text streams move in the same 

direction but at different speeds, all the cells would be used 

efficiently. For example, if the two streams move from left to 

right systolica11y but the Si's move twice as fast as the Pi'S, 

design R2, illustrated in Figure 7.11, is obtained. In this case, 

each Pi stays inside every cell it passes for cne extra cycle, thus 

taking twice as lCOJ to move through the array as any Si. Compared 

to the first design, this design has the advantage that all cells 

work all the time, but it requires an additional register in each 

cell to temporarily store a pattern character. 

Both designs were proved correct by running a simulation program for 

each one of them. The corresponding systo1ic programs 7.1 and 7.2 

are in Appendix D. 



-------------------_.-

348 

P S ~3 PI r ., r ., r .., r .., r -, 
_P4 - P2 

-+ 

f- -1 f- -1 f- -1 f- -1 f- -l 
S3 S2 - - sI R R R R LRS.J - L 1...J L 2...1 L 3...J L4...J 

, I , , 

(a) D---6--6--6--6~ 

(b) 

r -, 
P 

I- -1 
R 

L ...J 

R = R and (Sin = Pin) 

P = Pin 
p • P 
out 

Sout = Sin 

FIGURE 7.11: SYSTOLIC PATTERN MATCHER ARRAY (a) AND CELL (b), WHERE Ri'. 
STAY, AND Si'. and Pi BOTH MOVE IN THE SAME DIRECTION BUT 
AT DIFFERENT SPEEDS 

7.5.2 SOFr-SYS'lOLIC DESICNS 

In this secticn we shall present several soft-systoUc designs for 

the pattern matchinJ problem, which is defined as follows: 

Given a pattern string of characters of lerYfth k {P1P2".~} and 

a text string of length n {Sl S2 .•. Sn}' 

Search all occurrences of the pattern in the ~t text string 

of characters. In other words, the problem cc:a1Sists of find:in;;J 

a character locaticn i such that 



349 

In order to avoid back.i.NJ up the input text stream in the case of a 

mismatched character, k sub-strings are allowed to be compared in 

parallel. Consequently the pattern matching problem becomes 

compute-bound since each Si fetched from the memory is used by the k 

cells. However, if each Si is input from memory every time it is 

required (Le. k times), then when k is large, the memory bandwidth 

becomes a bottleneck which might prevent any high-performance 

solution. As mentioned earlier, a systolic array for the pattern 

matcher problem resolves this bottleneck by making multiple use of 

each Si. Based on this principle, several alternative designs for 

the pattern matching problem are described below. For simplicity we 

assume k = 5. 

i) Soft-systnlic paLLem matcher with llroaOOasting 

Obviously, one way to make multiple use of a single input string 

character, once brought from memory, is to broadcast it. In 

particular, if an Si is broadcast to all cells simultaneously 

through separate data channels, then the same element can be 

consumed by the k processing cells. In the following, we shall 

present two different designs, Bl and B2, based on broadcasting the 

input characters. 

The soft-systolic design Bl, whose array and cell definition are 

illustrated in Figure 7.12, assumes that the text characters are 

broadcast, the pattern characters stay and the results Ri move 

systolically. More explanatory, the pattern characters are 

preloaded to the cells, one at each cell and remain at the cell 

throoglxJut the entire string processing. The partial results Ri mOll9 

systolically from cell to cell in the left-to-right direction. 



-------------------------------~----~--------

350 

At the start of each cycle, each Si is broadcast to all the cells 

and each Ri' initialised to TRUE (i.e. 1) enters the left-most 

boundary cell. During cycle one, the result of a character 

compariscn between PI and SI (Le. PI = SI) is accumulated in RI and 

during cycle two (PI = S2) and (P2 = S2) are accumulated to R2 and 

RI at the first and second cells, from the left, respectively and so 

on. A data flow/computaticn snapshot of the soft-systolic array is 

illustrated in Figure 7.13 where ,*, represent any previous result 

which might be of 00 interest at this stage. As is sh::>wn in Figure 

7.13, a result is output every cycle and an occurrence of the 

pattern is found after 7 cycles. A similar design of this soft

systolic pattern matcher array was previously proposed for chip 

implementation in [Muklq>adhyay, 1979]. 

r .., r -, r -, r -, r .., 
P P P P LP~ L ~ L 2 ...J L ~ L !J 

(a) 

(b) 
Rt' Ri and (P Q S ) ou n - i 

FIGURE 7.12: SOFT-SYSTOLIC PATTERN MATCHER ARRAY (a) AND CELL (b) WHERE S '. 
ARE BROADCAST, Pi'S STAY AND Ri'S MOVE SYSTOLICALLY i 



351 

GJ [J D D D~~"" 1 * RI = (A=T) 

Pattern E 

[IJ [J [IJ IT] [r~' 
result 

is * 
1 * R =R and (A=b) 

I I 
E R =(T-b) 

2 

[J IT] [TI IT] o ~,~, no"" T is * 
1 * R =R and '(T=B) 

I I R
2

=R
t 

and (T=A) 
E R

3
=( =T) Time 

[] IT] [] [J ITJ""' 
result 

A is * 
1 * R=R and (A=L) 

RI=RI and (A=A) 
E 3 3 

G [D IT] [J ITr~'n~' is 0 
1 o RI=RI and (9=E) 

E R3 =R3 and (9=9) 

DJ [] DJ ill [J[:] ~,,., "'"" is 0 
1 o R2=R2 and (L=E) 

E R3 =R3 and (L=L) 

[TI [] [D m ~ ,",,"' "'"" 
1 

1 is 1 and an 
occurrence is 

E found 
R3 =R3 and (E=E) 

FIGURE 7.13: DATA FLOW/COMPUTATION IN THE SOFT-SYSTOLIC 
DESIGN B1 

String: ••• WITH A TABLE OR A TREE •••• 
Pattern: TABLE 



352 

Design B1 is simulated en the Balance 8000 using the c:xx:'AM 1an.:JUage 

and the soft-systolic program is reported in Appendix D, program 

7.3. The program was tested on a specific example which proved 

satisfactory. 

A second alternative design, also based on broadcasting the input 

text characters, is design B2 (see Figure 7.14) where the pattern 

characters move and the results stay. Each result Ri stays at a cell 

to accumulate its k terms while the pattern characters circulate 

aramd the array of cells and the first character P1 is associated 

with a tag bit that signals the accumu1at= to cutput and resets its 

contents. Consequently, a final and correct result value Ri is 

output from a cell every cycle. 

PI r; ., P
2 r

R 
., P

3 r ., P4 r -, Ps r ., 
I 2 R3 R4 RS 

...J L ...J L·...J L ...J L ...J L 

I : ; : I 

I I , 
(al 

R = R and (P • Si I 
- in n 

Pout = Pin 
(bl 

r -, 
Pin __ +I R 1--- Pout 

L ...J 

FIGJRE 7.14: SOET-SYS'IOLIC PAl'l'Em MA'rCIlER M!IWl (a) AND CELL (b), NlERE Si '9 J\I1E 

BRl1\lJClIST, Ri' 9 =':l, AND Pi' 9 MJ\IE SYSI'OLICAILY 



353 

Design Bl is preferred than that of B2 because it has the advantage 

of not requiring separate buses, one from each cell, denoted by 

dashed lines in Figure 7.14, for collecting outputs from individual 

cells. Also, the bus used in B2 to move around patterns is much 

wider than that used for moving results (a logical value may require 

only a single bit). 

The co=ectness of this deSign is proved by simulating its soft

systolic array using the OCCAM language (see Appendix D, program 

7.4). We also reported in Figure 7.15 a snapshot of the data flow/ 

computaticn of the array for a specific example. In this example an 

occurrence of the pattern 'TABLE' is found after 7 cycles. 

St.ring 

c.-a , rn. TJ 3D '0 l] C.ll' • output. U .... 
• ...:I 

Pattern 0 
I-< 
Ul 

CJ rn. D D 
>< [J C.ll' Ul 

• outputs 
f>l 

• :r:: 
I-< 

[IJ D. D 
r.. 

IT] []Co113 0 
: .outputs I-< 

0 
:r:: 
Ul 

'" rn IT] D [J. [J C.ll' ~ outpuU· 
Ul 

• Z 
0 .... 
I-< 

output.- ~ 
T 0 

'" rn [J CJ IT] [J C.ll' 

• :e:N 
01<1 

GJ IT] D 
u 

IT] IIJ Col" 
'-.z 

: outputs 0 <l!l 
1-< .... 
<Ul 
Ot>l 0 

0 

DJ DJ, [J [J D cell' B o\ltputa 0 Lt> .... 
r-

t>l 

[I] IT] [] [}] IT] An ~~"'"" t.: 
of Tfl>le 11 0 

o found _fur 7 l!l 
L cycl •• .... 

r.. 

D D D 0 D"d'O~ 



354 

il) Soft-systolic design when results are fanned-in 

Each cell in the above two soft-systolic designs, performs two 

separate functions - it compares characters of the pattern and 

string and updates and outputs the match results. These two 

functions could be divided between two separate modules so that 

there are two different, but simpler, cells which are called the 

<XlIDp8rator and accumulator cells in the array. 

In designing an accumulator, one could have several different 

al ternati ves. For instance, dependj.n;J on the len;;Jth of the array we 

could have a single a(caIj\LI4 .. ~or : that collects all the k individual 

partial comparison results and outputs a match result, or an array 

of comparators or a tree structure. We shall describe a soft

systolic design Fl and F2 for the first and third alternatives 

respectively in the following paragraphs. The seoood possibility was 

used in the hard-systolic des;.gn of Foster and K~. 

Ss r ., s4 r ., s3 r ., s2 r ., SI r ., 
P P P P P 

L 3 J L 2 J LIJ L SJ L 4J 

~ t l ! l 
(a) I ACCUMULATOR 

~ Ri 

(b) V., S 
Sin P out 

L ..J 

z .. (p - S ) 
out in 

Sout - Sin 

, Zout 

FlGURE 7.16. SOFT-SYSTOLIC PATTERN MATCHER ARRAY (a) AND CELL (b), WHERE 
Pi's STAY, S1's MOVE SYSTOLlCALLY AND Ri's AP~ FORMED THROUGH 

THE FAN-IN OF RESULTS FROM ALL THE CELLS 



355 

By viewing the text string as sliding over the patte= string which 

is supposed to be fixed in space then the patte= mat:ch:in1 problem 

becomes one which compares characters of the given pattern with 

tIXlse of the sub-string overlapping with the pattern. Based en this 

view, a soft-systolic design Fl, as illustrated in Figure 7.16, is 

suggested. The pattern characters are pre10aded to the cells and 

stay there until the complete text processing. For a large number of 

cells, the accumulator can be implemented as a pipe1ined J\ND tree 

(see Figure 7.17). 

The correctness of both designs F1 and F2 which use fan-in 

techniques, were successfully demonstrated thralgh simUlatien en the 

Sequent Balance 8000. Their corresponding soft-systolic simulatien 

FIGURE 7.171 SOFT-SYSTOLIC PATTERN MATCHER ARMY (a), COMPARATOR CELL (b) AND ~ CELL, WHERE '1'. 
STAY, Sl'. HOVE SYSTOLlCALLY AND Ri I. ARE FANNED-IN THROUGH A PIPELINED AND TREE 

(b) 

Ss r, s. 
,-PS .J 

AND 

~ Sin ~ Sout 

tout 

L-_~..j AND 1-__ -' 

Sout· Sin 
'out· (P-Sin) 



356 

programs are reported in Appendix D, programs 7.5 and 7.6 

respectively. 

7.5.3 a:tO.USICNS 

Due to sl'xJrtage of time, ooly a limited number of systolic designs 

have. been presented and then simulated to be proved correct. This 

does not mean that all the possible systolic designs for the pattern 

matching problem· have been thoroughly exhausted. For instance, it 

. is possible to have another set of systolic designs where all the 

three different streams, the pattern and the text string, as well as 

the result stream, move systolically. Also, it could be 

advantageous to include enough memory storage and a limited logic 

cootrol inside each cell so that the whole pattern string could be 

stored in each cell. With such a feature, the end result will be the 

design of a single pattern matcher cell which consists of an 

implementatlcn of some simplified form of the Brute Force pattern 

matching algorithm. Once again, an a=ay of, at least k, cells of 

this type will be necess8J:Y in order to avoid the Wrden of backing 

up the input text string every time a mismatch between two 

characters occurs. Another possible set of systolic designs for the 

pattern matching problem is to combine the broadcasting and fan-in 

techniques which, taken together, will allow the maximum use of each 

inp.It and ootput result. 

From the above set of possible additional designs, one can 

immediately notice that, cnce cne systolic design is obtained a set 

of other systolic designs could be easily derived. The crux of the 

problem here is to fully understand precisely the advantages and 

disadvantages of each design so that an appropriate systolic 

algorithm is selected for a given environment. For example, it is 



HOST 

rIGURE 7.18 : USE or THE FOLDING TECHNIQUE TO SOLVE 
THE DATA SKEW WHEN BROADCASTING. 

357 

useful to )(row that design B1 is preferred to that of B2 because of 

the length of the bus required for moving the pattern around the 

cells. 

With the current VLS! technology the cnly selected design for chip 

irnp1ementatien is the design R2 since it satisfies all the systolic 

coostraints for efficient chip manufacturinJ. Ibwever, progress in 

this field is already underway and indicates that the days of ad-OOc 

designs are numbered. Several transforrnaticnal approaches based en 

more flexible (oot ccntrolled) attitudes, (re-tirninJ, replacement or 

synthesis operations [Megscn 1987]) to defininJ new systolic schemes 

have been formally suggested. other techniques to resolve the 

problem of clock skews include the use of the foldin] technique as 

indicated in Figure 7.18. This is particularly important for the 

designs based on broadcasting/fan-in schemes since it means that 



358 

longer patterns can be solved. F\Jrther the efforts of Leisers:m and 

Saxe have generated new ways of converting soft-systolic designs 

involving broadcasting and unbounded fan-in into pure-systolic 

systems wit:ln.lt broadca.st:inJ [Leiserscn 1981]. 



Chapter 8 

SUMMARY AND CONCLUSIONS 



359 

In this thesis we have studied several important non-numerical 

algorithms for parallel computers and VLSI systolic processor 

arrays. In particular, these algorithms were investigated under the 

framework of either being suitable for execution on asynchronous 

multiprocessor systems (MIMD ccmputers) or, due to the recent rapid 

advance of VLSI circuitry, of being suitable for direct hardware 

iroplerrentation. 

In the first three introductory chapters, a brief and disciplined 

state-of-the-art survey was compiled with up-to-date information on 

the parallel computing environment. This survey was ccmplemented by 

the contents of Chapter 7, where we discussed the VLSI technology 

and its impact on the ccmputing environment. 

More analytically, in Chapter 1, we have discussed the main 

motivations that led to the "parallel way of thinking" and presented 

several different forms of explOiting this novel idea. Although 

several attempts (at least three of them were presented in this 

thesis) have been made to classify these various architectural 

designs, none of them seems to succeed in providing a clear 

distinction between classes since sometimes the intersection of two 

classes is not empty. 

Of the architectures designed for highly parallel processing we 

presented the pipelined and data flow computers. Two noteworthy 

examples of the pipelined vector processors are the CRAY-l from Cray 

Research Inc. and the CYBER 205 from Control Data Corporation. The 

performance of these computers is dramatically increased when more 

than one pipe lined vector operation can be chained together, 

providing an added measure of c::oncu=ency. One of the fastest data 

flow ccmputers ever built is the Manchester dataflow machine. 



360 

In Olapter 2 and due to the ccnsiderable interest of the industrial, 

governmental and university institutions, we discussed the SIMD and 

MIMD architectures. For the SIMD class we have surveyed its two 

major sub-classes: the Associative processors and the Array 

processors. With respect to the MIMD architecture, a particular 

reference was made to the TI Neptune system arxl. the Sequent Balance 

8000 computer, both sited in the Department of Cl:>mputer Studies, at 

Loughborough University of Technology, on which the bulk of the 

experimental wo:rk contained herein was carried rut. 

Since the compilation of our survey an some of the implemented high

speed parallel computers (Le. supercomputers) was made, a few 

interesting new computer archltectures, worth repo:rtinJ here, have 

been developed. We felt that we ought to brinJ our state-of-the-art 

survey an supercomputers by including a short account of some of the 

recent developments in this area. 

As an improved version to CRAY-1, one of the most popular vector 

processors, the CRAY RESEARCH group introduced the CRAY X-MP 

computer in 1983. A year later, the CRAY-1 was taken out of 

productian. OJmpared with its predecessor, the GRAY X-MP features a 

clock cycle time of 9.5 nsec - 'narx:lS9COflds' (instead of 12.5 nsec), 

improved memory bandwidth, an increase in the maximum memmy size 

(up to 16 Mwords) and the possibility of having one, two, or four 

pipelined vector processors. 

Since the pipe lined processors are able to ccoperate on a single 

computation (i.e. multitasking) the X-MP is a tightly-coupled 

multiprocessor. Parallel applicatian running en the GRAY X-MP have 

indicated a speed increase of 1.8 to 1.9 times over an uniprocessor 



361 

X-MP executicn times while speed increases of 3.5 to 3.8 times have 

been obtained with the four-processor X-MP multiprocessor computer. 

The OlAY Research Inc is currently developing a silicen-based OlAY 

X-MP successor that will use internally designed VLSI-chips 

[Thompson 1986]. Other newly built supercomputers include the 

following: the Hitachi 8-810, the first supercomputer Array 

Processor ever b..rllt by Hitachi ltd, [Odaka et al, 1986], FUjitsu's 

superoomputer FlIID'I which is a vector processor system [Miura 1986] 

and the NEe supercomputer 8X system which is capable of 1.3 

gigaflops [Watanabe et al 1986]. 

In the MIMO multiprocessor class of computers we give the example of 

the CYBERPLUS supercomputer architecture which can be configured 

with as many as 64 processors [Allen 1986]. The processors which 

are CXX'lOOCted together in a circular ring network for efficient data 

and centrel flows, are capable of cooperating together towards the 

execution of a single job. In addition, parallelism is also 

introdllced within each processor by allowing the fifteen functicnal 

units which are connected via a crossbar switch, to operate 

concurrently. A single CYBERPLUS processor can provide up to 40 

times the performance of a CYBER 170/835 in 64-bit floating point 

applicaticns and even higher performance in integer applicaticns. 

Finally, the Sequent Balance 8000 system at Ia.1ghboroogh University 

has been upgraded. The number of processors has been increased from 

6 to 10 processors and several additional parallel programming 

features, such as the data-partitioning and the function

partitioning have also been incorporated. To date, these additicnal 

software facilities are under extensive investigaticn to determine 

their potential advantages in exploiting parallelism. 



-----------------, 

362 

In Chapter 3 we reported on the programming tools and algorithms 

that exploit the parallel hardware potential parallelism. In 

particular, ooncurrent programmin;;r languages motivations and general 

concepts for parallel processing were discussed. Various 

methodological design and analysis aspects of parallel algorithms 

that could be mapped onto different architectures were also 

included. 

It has been noted, that in general, parallel programming is more 

complex than uniprocessor programming, and this has led to the 

parallelism being concealed on most existing MIMD computers. 

Therefore the search for various techniques of achi~ high-speed 

performance with affordable reliability and cost is still a major 

topic of interest. 

In fact~ the techniques for programming these MIMD computers for 

efficient parallel operations are much less developed than the 

corresponding techniques for SIMD systems. However this 00es rx:>t 

imply that the class of problems sui table for the former type of 

computers can be easily implemented. 

The problem which arises here is to make sure that each one of the P 

activated processors gets its share of task proceSSing while 

maintaining some sort of cooperaticn between them. In order to make 

the multiprocessor system effective it is vital that the speed 

increase is substantial, hopefully of O(P), in comparison with the 

smallest possible sequential time-oomp1exi ty achievable for the same 

problem when' solving it by one of the relatively 'best' considered 

existing metoods. 



363 

One way of achieving this is to pay considerable attention to the 

pDDblem of minimising the synchronisation operations performed by 

the P involved processors and the amount of data sharing amongst 

them. These two factors are directly dependent upon the overall 

computational scheduling. 

The performance analysis of a parallel algorithm, although it can be 

more complex as the algorithm gets more complicated, has a two-fold 

advantage. First, it can help one to understand better the 

algorithm and sometimes to reveal any necessary further 

improvements, and second it constitutes, in the case of a good 

agreement with the experimental results, a validated theoretical 

projection for the algorithm to be :run on any MIMD multiprocessor 

system with more than P processors. 

An extensive study of the parallel searching problems were carried 

out in Chapter 4. Several parallel versions, based on different 

ways of allocating subsets to processors for the Parallel Sequential 

(PS) and the Parallel Binary (PB) searching algorithms were 

presented. For the performance analysis of these algorithms, as well 

as for the Parallel Jump searching algorithms (PJ), a key comparison 

based analytical model was extensively and successfully used. In 

particular, we were able to sh:>w that PS, version 1.0 was capable of 

achieving super linear speed-ups, while version 2.0 only reached a 

linear speed-up. These were supported by several runs performed on 

the Balance 8000 system. 

Due to the fact that the binary search method, when implemented in 

parallel, failed on two occasions (i.e. versions 1.0 and 2.0), to 

equally partition the bulk of work amongst the P processors, the PB 

was conclusively not accepted to be suitable for processing on an 



364 

MIMD type of computer. PB version 3.0, although succeeding in 

dividing the total amount of work equally between the processors, 

was also discarded since it introduced a large fraction of 

sync:hra1isation ove:rheads. 

The third part of this chapter was the parallel implementation of 

the jump searching method and many of its variants - i.e. the two

level simple and the two-level fixed jump searching algorithms. 

Generally, the parallel implemantation of these algorithms proved to 

be successful. However, due to the small number of operations as 

the jump size increased, the performance of the two level fixed jump 

search algorithm suffered considerably such that it was not 

efficient to run the algorithm with more than four processors. In 

conclusion, the parallel jump searching methods are more efficient 

with larger files. 

A =mplete performance exploitation of both the Neptune and Balance 

MIMD systems were presented in Chatper 5, by implementing several 

parallel string pattern matching algorithms using the powerful 

'divide-and-~er' technique. The experimental results, reported 

in tabular form showed that, in general, many of the parallel 

pattern matching algorithms are well suited for MIMD 

implementations • 

In Chapter 6, two new parallel sorting algorithms: Parallel 

Bounded-Partitioned and Parallel Range-Partitioned Sorting 

Algorithms (abbreviated respectively by PBPS and PRP.S) were 

developed and analysed. Unlike the Parallel Quicksort (PQ) 

algorithm, both new algorithms have the potential of creating P 

independent subsets in parallel with a time-complexity for 

partitioning proportional to n, (n being the set size). However, 



----------------------------------------------------------------------------- ----

365 

they both require larger memory storage than that of the Parallel 

Quicksort method to part! tien the original set of rrumbers. 

The theoretical performance model of the four Parallel Sorting 

algorithms (including the Parallel Quicksort-Merge - 'PQM'), which 

was based en the rrumber of key oompariscns was validated by runn:in::l' 

these algorithms on the Sequent Balance 8000 system. In general, 

the experimental results were in close agreement with the 

theoretical results. 

Cl1apter 7 has concentrated mainly en the introductien of some soft

systolic designs for the pattern matching problem, and their 

subsequent simulation using the OCCAM language. SOme alternative 

designs were also considered which were CXlly possible when some of 

the ccnstraints as imposed by the VLSI technology were relaxed. In 

order to relate this chapter with the previously presented chapters, 

it was decided that Chapter 7 should be, at least conceptually, 

organised into two main parts. 

In the first part which constitutes a complement to the survey on 

parallel oomputer architectures, introduced in Olapters 1 and 2, we 

have presented the VLSI technology as a substantial ccntender to the 

achievement of very high-performance, cost-effective computing 

systems for the future decades. We have also presented its 

fundamental concepts such as regularity, planarity, use of 

pipelining and concurrency, in designing special-purpose and 

general-purpose cc:mputing structures. 

For the special-purpose class of VLSI-oriented systems we have 

established two main contenders which are the systolic a=ays as 

suggested by H.T. Kung and the wavefrcnt arrays resulting from the 



366 

wmk of Y.S. Kung. Alth::>ugh these systems are cost-effective, they 

are oowever specially designed for cne particular problem. In order 

to increase flexibility, the general-purpose computing structures 

such as the WARP, built by H,T. Kung and the CHiP of L. Snyder can 

be used to solve a predefined set of algorithms. 

Following these substantial benefits, a research program was 

initiated in the Department of Computer Studies, at Loughborough 

University to investigate the Instruction Systolic A=ay - 'ISA'. 

This is a novel idea which CXXlSists of broadcasting along with the 

data, the instruction that is performed on it. A primitive 

assembler/compiler for a special language, the Replicated 

Instruction Systolic A=ay Language - 'RISAT.'" was also devised. 

Using such a language it was possible to design simple test examples 

which could be investigated thoroughly to first determine major 

extensions to the language itself and possibly to highlight 

potential problems within the ISA machine. 

As far as the pattern matching problem is oc:n::emed, the Karp-Rabin 

algorithm which is a compute-bcAmd problem is well suited f= VLSI 

implementat1cn. Its hardware algorithm would require as much as k 

multiply-and-add (IPS) cells to compute the hash function of both 

the pattern and the current substring, and a single comparator cell 

at the bamdary of the array to compare these two hash values. The 

systolic design should be straightforward since it is similar to 

that of the pattern matcher chip. 

In conclusion, we should stress our firm vision that the systolic 

computing paradigm will play a major role in future supercomputing, 

especially for those compute-bound problems. Furthermore, most 

existing computing netw=ks will be systematicaly converted into 



367 

systolic or wave front arrays following the already established 

procedures. This fact will certainly boost the development of 

sophisticated hardware and advanced software for the supercomputers 

of the future. 



REFERENCES 



------------------------------------------~---------------------.----- -

368 

ABEL, N.E., BUDNIK, P.P., KUCK, D.J., MURAOKA, Y., NORTHCOTE, R.S. 

and WILHELMSON, R.B. [1969]: 

"TRANQUIL: A Language for an Array processing Computer", AFIPS 

Cbnf. Proc. 34, 1969, pp 57-75. 

AHO, A.V. and CORASICK, M.J. [1975]: 

"Efficient String Matching: an Aid to Bibliographic Search", 

Communications of the ACM, June 1975, Vol. 18, No. 6, pp 333-340. 

ALLEN, G.R. [1986]: 

"Parallel Processing System - CYBERPLUS", Super=mputers, Class VI 

Systems, Hardware and Software, S. Fernback (00), North-Holland, pp 

169-181. 

ANDERSON, G.A. and JENSEN, E.D. [1975]: 

"Computer Interconnection Structures: Taxooomy O1aracteristics and 

EXamples", Computing Suzveys, Vol. 7, No. 4, Dec. 1975, pp 197-213. 

ANDERSON, G.A. and KAIN, R. Y. [1976]: 

"A Content-Addressed Memory Design for Data Base Applications" in 

Proc. 1976 International Conf. on Parallel Processing, IEEE, New 

Yotit, 1976, pp 191-195. 

ANDERSON, J.P. [1965]: 

"Program Structures for Parallel Processing", Communications of the 

ACM, Vol. 8, No. 12, 1965, pp 786-788. 

ARVIND, and GOSTELOW, K.P. [1982]: 

"The u-rnterpreter", IEEE Canputers, Feb. 1982, pp 42-49. 

ARVIND, and THa-1I\S" R.E. [1980]: 

"I: Structures: An Efficient Data Type for FUnctional Languages". 

MIT/LCS/TMN-178, Sept. 1980. 



369 

ARVIND, et al [1983]: 

"A Critique of Multiprocessing Von Neumann Style". 10th ACM 

Architecture Symposium, 1983, pp 426-436. 

BAASE, S. [1983]: 

"Computer Algorithms: Introduction to Design and Analysis", 

Addison-Wes1ey Publishing O:lmpany. 

BACl<US, J. [1978]: 

"Can Programming be Liberated from the von Neumann Style? A 

Functional. Style and its Algebra of Programs", Communication of the 

ACM, Vol. 21, No.8, Aug. 1978, pp 613-641. 

BAER, J.L. [1976]: 

"Mu1 tiprocessing Systems", IEEE Trans. Comput., Vo1. C-25, No. 12, 

Dec. 1976, pp 1271-1277. 

BARHAMI, B. [1972]: 

"A Highly Parallel O:lmputing System for Informaticn Retrieval", in 

Proc. AFIPS Fall Joint Computer Conf., AFIPS Press, Montva1e, NJ, 

1972, pp 681-690. 

l3ARI.CM, R.H., EIlANS, D.J., NEI'Ml'IN, LA. and \\()()[)WARD, M.C. [1981]: 

"A Guide to Using the Neptune Parallel Processing System", Internal 

Report, Computer Studies Dept., Loughborough University, UK, 1981. 

BARNES, G.H. et al [1968]: 

"The I11iac IV Computer", IEEE Trans. Comput., Vol. C-17, No. 8, 

Aug. 1968, pp 746-757. 

BllSKET, F. and SMITH, A.J. [1976]: 

"Interference in Multiprocessor Computer Systems with Interleaved 

Memory", Communications of the ACM, Vol. 19, N::>. 6, June 1976. 



370 

BA'IOIER, K.E. [1974]: 

"STARAN Parallel Processor System Hardware", in Proc. AFIPS 1974 

National Computer Conf., Vol. 43, AFIPS Press, Montva1e, NJ, 1974, 

pp 405-410. 

BA'IOIER, K.E. [1979]: 

"The Massively Parallel Processor (MPP) System", Proc. AIM 

Aerospace Conf, 1979, pp 93-97. 

BAUDET, G.M. and STEVENSON, D. [1978]: 

"Optimal Sorting Algorithms for Parallel Computers", IEEE Trans. on 

Computers, Vol. C-27, No. 1, pp 84-87. 

BEHNKE, E.A. and ROSENBERGER, G.B. [1963]: 

"Cryogenic Associative Processor", IBM Final Report, Sept. 1963. 

BEKAKOS, M.P. and EVANS, D.J. [1986]: 

"The Exposure and Exploitation of Parallelism on Fifth Generation 

Computer Systems", Parallel Computing 85, E1sevier Science 

Publishers fN (North Holland), pp 425-442. 

BERNSTEIN, A.J. [1966]: 

"Analysis of Programs for Parallel Processing", IEEE Trans. on EC, 

Vol. 15, No. 5, Oct. 1966, pp 757-763. 

BOYER, R.S. and MX)RE, J.S. [1977]: 

"A Fast String Searching Algorithm". Communications of the ACM, 

October 1977, Vol. 20 No. 10, P 762. 

BRENT, Klll'U, H.T. and LUK [1983]: 

"Some Linear Time Algorithms for Systolic Arrays". OlU-ROL-83 and 

invited paper 9th World Computer Congress, Paris, 1983. 

Cl\MPBELL, R.H. and HABERMANN, A.N. [1974]: 

"The Specification of Process Synchronisation by Path Expression". 

Lecture Notes in Computer Science, 16, Springer, 1974. 



371 

CH.>W:;, D.Y. et a1 [1977]: 

"On the Effective Bandwidth of Parallel Memories", Vol. C-26, N::l. 5, 

May 1977, pp. 480-490. 

(HEN, S.C. and KUCK, D.J. [1975]: 

"Time and Parallel Bounds for Linear Recurrence Systems", IEEE 

Trans. on Comp., Vol. C-24, pp 701-717. 

CHU, Y.H. [1965]: 

"A Destructive-Readout Associative Memo:ry", IEEE Trans. Computers 

EC-14, Aug. 1965, pp 600-605. 

a:MI'E, D., HIFDI, N. and SYRE, J.C. [1980]: 

"The Data Driven LAU Multiprocessor System: Results and 

Perspective". Proc. IFIP, 1980, pp 175-180. 

CONrROL Data Corporation ox:: [1980]: 

"Advanced Flexible Processor", 1980. 

CORNELL, J .A. [1972]: 

"Parallel Processing of Ballistic Defence Radar Data with PEPE", 

IEEE COMPOON, 1972, pp 69-72. 

CORNISH, M. [1979]: 

"The TI Dataflow Architectures: the Power of Concu=ency for 

Avionics". Proc. 3rd Conf. on Digital Avionics Systems, IEEE, New 

York 1979, pp 19-25. 

CXXJRANZ, G.R., GERHARDT, M.S. and YCUU, C.J. [1974]: 

"Programmable Radar Signal Processing Using the RAP", in Pree. 

Sagamore Computer Conference on Parallel Processing, Springer

Verlag, NY, 1974, pp 37-52. 

CRANE, B.A. and GITHENS, J.A. [1965]: 

"Bulk Processing in Distributed Logic Memo:ry", IEEE Trans. on 

Electroo.ic Computers, Vol. EC-14, April 1965, pp 186-196. 



372 

CRANE, B.A., GILMARTIN, M.J., HUTTEN-HOFF, J.H., RUX, P.T. and 

SHIVELY, R.R. [1972]: 

"PEPE Canputer Architecture", IEEE a::MPO:lN, 1972, pp 57-60. 

rnoJUT, W.A. and SDrrILE, M.R. [1966]: 

"Design Techniques of a Delay-Line Addressed Memo:ry", IEEE Trans. 

Computers, Aug. 1966, pp 523-534. 

DAVIS, E.W. [1974]; 

"STARAN Parallel Processor System Software", in Proc. AFIPS 1974, 

National Computer Conf., Vol. 43, AFIPS Press, Montva1e, NJ, 1974, 

pp 17-22. 

DENNIS, J.B. [1974]: 

"First Version of a Data Flow Procedure Language". Computer Science, 

Vol. 19, Springer-Ver1ag, 1974, pp 362-376. 

DENNIS, J.B. [1980]: 

"Data Flow Superoomputer", IEEE Computer, Nov. 1980, pp 48-56. 

DENNIS, J.B. and VAN HORN, E.C. [1966]: 

"Multiprogrammed ComputatiCrlS". CommunicatiCrlS of the AGM, Vol. 9, 

1966, pp 143-155. 

DENNIS, J.B., LIM, W.Y.P. and AKERMAN, W.B. [1983]: 

"The MIT Data F1cw Engineering M:Jde1", IFIP Proc. 1983, pp 553-563. 

DIJKSTRA, E.M. [1965]: 

"Solution of a Problem in Concurrent Programming Control". 

Communications of the ACM, Vol. 8, No. 9, Sept. 1965, p.569. 

DIJKSTRA, E.M. [1968]: 

"Cooperating Sequential Processes" in Programming Languages, et. by 

F. Genuys, IBM Paris, France, Academic Press, 1968, pp 43-112. 



373 

DIN:>ELDINE, J .R., MARTIN, H.R. and PATI'ERSON, W.M. [1973]: 

"Operation System and Support Software for PEPE", in Proc. 1973 

Sagamore Computer Conf. en Parallel Processin;1, Sprin;1er-Ver1ag, NY, 

pp 170-178. 

ENSLOW, P.H. [1977]: 

"Multiprocessor Organisation - a Survey", Comput. Surveys, Vol. 9, 

No. 1, March 1977, pp 103-129. 

EVANS, D.J. and WILLIAM3, S.A. 

"Analysis and Detecticn of Parallel Processab1e Code". The Computer 

Journal, Vol. 23, No. 1, 1978, pp 66-72. 

EVANS, D.J. and DUNBlIR, R.C. [1982]: 

"Parallel Quicksort Algorithm, Part 1: Run-Time Analysis", Int. J. 

Comp. Math., 12, pp 19-55. 

EVANS, D.J. and DUNBlIR, R.C. [1982]: 

"Parallel Quicksort Algorithm, Part 2: Simulation", Gordon and 

Breach Science Publishers Inc., Int. Jour. Comp. Math., 12, pp 125-

133. 

EVENSEN, A.J. and TROY, J.L. [1973]: 

"Introduction to the Architecture of 288-E1ement PEPE", in Proc. 

1973 Sagamore Computer Conf. on Parallel Processing, Springer

Ver1ag, NY, 1973, pp 162-169. 

EWIN:;, R.G. and DAVIES, P.M. [1964]: 

"An Associative Processor", in Proc •. AFIPS 1963 Fall, Joint Computer 

Conf., Spartan Books Inc, Baltimore, Md, 1964, pp 147-158. 

FINNILA, C.A. [1977]: 

"The Associative Linear Array Processor", IEEE Trans. on Computers, 

Vol. C-26, No. 2, Feb 1977, pp 112-125. 



374 

FISHER, D.A. [1967]: 

"Program AnalysiS for Mul tipr=essing", Burro..!ghs Corp., May 1967. 

FLYNN, M.J. [1966] 

"Very High-Speed Computing Systems", Proc. of the IEEE, Vol. 54, No. 

12, Dec. 1966, pp 1901-1909. 

FOSTER, M.J. and I<I,N;, H.T. [1980]: 

"The Design of Special-Purpose VLSI Orlps". Q:xnputer, Vol. 13, No. 

1, January 1980, pp 26-40. 

FULLER, R.H. [1967]: 

"Associative Parallel Processing", Proc. AFIPS Spring, Joint 

Computer Conf, 1967, pp 471-475. 

GAINS, R.S. and LU, C.Y. [1965]: 

"An Improved Cell Memory", IEEE Trans. Computers, Feb. 1965, pp 72-

75. 

GALIL, Z. [1979]: 

"en Improving the Worst-Case Running Time of the Boyer-Moore string 

Searching Algorithm". Communications of the ACM, September 1979, 

Vol. 22, No. 9, pp 505-508. 

GANDIO, J.L. and EfI.CE'I:rNAC, M.D. [1982]:; 

"A Scheme for Handling Arrays in Data Flow Systems". Proc. 3rd 

Intl. Conf. Distributed Ccmputing Systems, 1983, pp 235-242. 

GEHRIG, E. et al [1982]: 

"The QIl* Testhed", lEE Ccmputer, Oct. 1982, pp 40-53. 

GHANEMI, S. and EVANS, D.J. [1986a]: 

"A study of Parallel string Searching Algorithms". Int. Report, CS, 

No. 310, August 1986. To be published in Int. Jour. of Comp. Maths. 

Vol. 23, 1988. 



375 

GHlINEMI, S. and EVANS, D.J. [1986b]: 

"Parallel Sorting Algoritlnns", CS Int. Rep. No. 330, November 1986, 

currently being refereed by the Parallel ConpJting Journal. 

GONZALEZ, M.J. and ~RTHY, C.V. [1969]: 

"Rerogni tioo and Representatioo of Parallel Processable Streams in 

Computer Programs". Symposium on Parallel Processor Systems, 

Technologies and Applications, ad. L.C. Hobbs, Spartan Books, June 

1969. 

GOSDEN, J.A. [1966]: 

"Explici t Parallel Processing Descriptioo and D:ntrol in Programs 

for Multi and Uni-Processor Computers", Proc. FJCC, Vol. 29, 1966, 

pp 651-660. 

OOl'l'LIEB et al [1983]: 

"The NYU Ultracomputer Designing an MIMD Shared Memory Parallel 

Machine", IEEE Trans. Computer, Vol. C-32, No. 2, Feb. 1983, pp 175-

189. 

GURD, J.R., KIRKHAM, C.C. and WATSON, 1. [1985]: 

"The Manchester Prototype Dataflow Computer", Comm. ACM, No. 1, Jan. 

1985, pp 34-52. 

IWIDLER, w. [1982]: 

"Inn:Natioo Computer Architectures - how to Increase Parallelism but 

not Complexity", in Parallel Processing Systems, Evans, D J (Ed), 

cambridge University Press, 1982, GB, W 1-41. 

HANSEN, P.B. [1973]: 

"Operating System Principles". Prentice-Hall, Englewood Cliffs, 

N.J., 1973. 

HANSEN, P.B. [1975]: 

"The Programming Language Concurrent Pascal" IEEE-TSE 1,2 June 1975, 

W 199-207. 



376 

HANSEN, P.B. [1977]: 

"The Architecture of OXlcurrent Programs", Prentice-Hall Series by 

Automatic OJrnputation, N.J., 1977. 

HARDIm, P.A. and ROLUND, M.W. [1968]: 

"A2- D Core Search Memory", in Proc. AFIPS Fall, Joint Computer 

Conf., Thompson Books Co, Washington DC, 1968, pp 1213-1218. 

HAYAFIL, L. and KUN:;, H.T. [1974]: 

"Parallel Algorithms for Solving Triangular Linear Systems with 

Small Parallelism Parameter", Dept. of Computer Science, Carnegie 

Mellon University. 

HAYAFIL, L. and KUN:;, H.T. [1975]: 

"Bounds on the Speed-up of Parallel Evaluation of Recurrences", 

Proc. Second USA-Japan Ccmputer Conf., pp 178-182. 

HAYES, J.P. [1978]: 

"Computer Architecture and Organisation", McGraw-Hill, Kogakusha 

Ltd, Japan, 1978. 

HELIER, D. [1978]: 

"A Survey of Parallel Algorithms in Numerical Linear Algebra", SIAM 

Review, Vol. 20, No. 4, pp 740-777. 

HELLERMAN, H. [1966]: 

"Parallel Processing of Algebraic Expressions", IEEE Trans. on 

Electronic Computers, Vol. EC-15, Feb. 1968, pp 82-91. 

HIGBIE, L.C. [1972]: 

"The OMEN Computers: Associative Array Processors", IEEE Comp. 

Conf., 1972, Digest, pp 287-290. 

HOARE, C.A.R. [1962]: 

"Quicksort", Ccmputer Journal, p.10. 



377 

~, C.A.R. [1962]: 

"Algorithm 64, Quicksort", Communications of the ACM, Vol. 4, No. 7, 

p.321. 

~, C.A.R. [1972]: 

"Towards a Theory of Parallel Programming" in Operating Systems 

Techniques, C.A.R. Hoare and R. Perrott (eds)., Academic Press, New 

York, 1972. 

~, C.A.R. [1978]: 

"Communicating Sequential Processes", Communicaticns of the ACM, 

Vol. 21, No. 8, Aug., 1978, pp 666-677. 

HOBBS, L.C. and THESIS, O.J. [1970]: 

"Survey of Parallel Processor Approaches and Techniques", in 

Parallel Systems: Technology and Applicaticns, Hobbs et al (Eels), 

Spartan Books, New York, 1970, pp 3-20. 

1-KXl<NEY, R.W. and JESSHOPE, C.R. [1981]: 

"Parallel Computers: Architecture: Programming and Algorithms", 

Adam HUger Ltd, Bristol, ErY;Jland, 1981. 

~, K. and BRIOOS, F.A. [1984]: 

"Computer Architecture and Parallel Processing", McGraw-Hill 

Computer Science Series • 

.;rnsSHOPE, C.R. and CRAIGIE, J. [1980]: 

"Another Matrix Algorithm for the OAP", OAP Newsletter, Vol. 4, pp 

7-14. 

KAPLAN, A. [1963]: 

"A Search Memory Subsystem for a General Purpose Computer", in P:roc. 

AFIPS 1963 Fall Joint Computer Conf., Vol. 24, Spartan Books Inc, 

Baltimore, Md, 1963, pp 193-200. 



378 

KNUTH, D.E. [1969]: 

"The Art of Computing, Vol. 1: Fundamental Algorithms", Addison

Wesley, ReadinJ, Massachusetts. 

KNUTH, D.E. [1973]: 

"The Art of Computer Programming: Vol. 3 Sorting and Searching", 

Addison-Wesley Publishing Company, ReadinJ, Massachusetts. 

KNUTH, D.E., f.ORRIS, J.H. and PRATT, V.R. [1977]: 

"Fast Pattern Matching Algorithm". SIAM J. of Computing, June 1977, 

Vol. 6, No. 2, pp 323-350. 

RUCK, D.J. [1977]: 

"A Survey of Parallel Machine Organisation and Programming", 

Computing Surveys, Vol. 9, No. 1, March 1977, pp 29-59. 

KUCl<, D.J. and MARUYAM/\, K. [1975]: 

"Time Bounds en the Parallel Evaluatien of Arithmetic Expressions", 

SIAM J. Computing, 4, pp 147-162. 

RUCK, D.J., LAWRIE, D.H. and SAMEH, A.M. (eds) [1977a]: 

"High Speed Cl:>mputer and Algorithm Organisation", Academic Press, 

New York, 1977. 

RUCK, D.J. and S'lXl<ES, A.R. [1982]: 

"The Bu=oughs Scientific Processor (BSP)", IEEE Trans. Comput., 

Vol. C-31, No. 5, May 1982, pp 363-376. 

KUNG, H.T. [1976]: 

"Synchronised and Synchronous Parallel Algorithms for 

Multiprocessors", In Algorithms and Cl:>mplex1ty, New Directions and 

Recent Results, edited by Traub, J.F., Academic Press, pp 153-200. 



~--------------------------~-----------------------------------------------

379 

KUNG, H.T. [1979]: 

"Let's Design Algorithms for VLSI Systems", Proc. Conf. Very Large 

Scale Integration: Architecture, Design, Fabrication, California 

Institute of Techoo1ogy, January 1979, pp 65-90. 

KUNG, H.T. [1980]: 

"The Structure of Parallel Algorithms", Advarx:es in Computers, Vol. 

19, pp 65-112, Academic Press, New York. 

KUNG, H.T. [1984]: 

"Systo1ic Algorithms for the CMU WARP Processor", CMUC-CSA-84-158 

(7th Int. Conf. on Pattern Recognition Also). 

KUNG, H., T. and LEISERSON, C.E. [1978]: 

"Systo1ic Arrays (for VLSI)" in Proc. Sparse Matrix Symp. (SIAM), 

1978, pp 256-282. 

KUNG, S.Y. [1985]: 

''VLSI Array Processors", IEEE ASSP Magazine, July 1985, pp 5-22. 

LAWRIE, D.H., LAYMAN, T., BAER, D. and RANDAL, J .M. [1975]: 

"GLIPNIR - a Programming Language for ILLIAC IV", Comm. ACM, Vol. 

18, March 1975, pp 157-164. 

LEE, C.Y. and PAULL, M.C. [1963]: 

"A Oxltent Addressab1e Distrib.lted Logic Memory with Applications to 

Information Retrieval", Proc. IEEE, 51, June 1963, pp 924-932. 

LEE, C.Y. [1962]: 

"Intercommunicating Cells, Basis f= a Distrib.Ited Logic Computer", 

in Proc. AFIPS 1962, Fall Joint Computer Conf., Spartan Books Inc., 

Baltimore, Md, 1962, pp 130-136. 

LEISEmlON, C.E. and SAXE, J.B. [1981]: 

"Optimising Synchronous Systems", Proc. 22nd Arnlal Symp. Foundations 

of Computer Science, IEEE Computer Society, Oct. 1981, pp 23-36. 



380 

LILLEVII<, S.L. and EASTERDAY, J.L. [1984]: 

"Throughput of Multiprocessor with Replicated Shared Memories", 

Natiooal Com~ter Ccnference, 1984, W 51-56. 

LOESER, R. [1974]: 

"Some Performance Tests of Quicksort and Descendants", 

Communications of the ACM, Vol. 17, No. 3, p.143. 

LOVE, H.H. Jr [1973]: 

"An Efficient Associative Processor Using Bulk Storage" in Proc. 

1973 Sagamore Computer Conf. on Parallel Processing, Springer-Verlag 

NY, 1973, pp 103-112. 

MI\RlJY}\Ml\, K. [1973]: 

"The Parallel Evaluation of Matrix Expressions", IBM T.J. Watson 

Research Centre, York Town Heights, N.Y. 

MEAD, C.A. [1981]: 

''VIS! and Techoo1ogica1 :InooIlations", in VLS! 81, Proceed:in;Js of the 

1st International Ccnference on Very Large Scale Integration, Univ. 

of Edinburgh, August 1981, J.P. Gray (ed), Academic Press, London, 

UK, W 3-11. 

MEAD, C.A. and cnMAY, L.A. [1980]: 

"Introduction to VLSI Systems", Addiscn-Wes1ey, Reading, Mass. 1980. 

MEGSON, G.M. [1987]: 

"Novel Algorithms for the Soft-Systolic paradigm", PhD Thesis, 

Com~ter Studies Dept., La.1ghboroogh University of Techoology. 

MEGSON, G.M. and FNANS, D.J. [1986]: 

"Simulation of Soft-Systolic Arrays with Boundary and Special 

Processing Elements". CoI11pJter Studies Departmental Report, August 

1986, No. 309. 



381 

MIRANKER, W.L. [1971]: 

"A Survey of Parallelism in Numerical Analysis", SIAM Review, Vol. 

13, No. 4, 1971, pp 524-547. 

M:DEL 55 [1971]: 

"Dual Memory Controller", Infonnation Specification, Interdata Inc., 

1971, New Jersey 07757, USA. 

MUKHOPADHYAY,'A. [1979]: 

"Hardware Algorithms for Non-numeric Computations", IEEE Trans. 

Computers, Vol. C-28, lb. 26, June 1979, pp 384-394. 

MULLER, D.E. and PREPARATA, F.P. [1976]: 

"RestIucturing of Arithmetic Expressions for Parallel Evaluation", 

Journal of the ACM, Vol. 23, No. 3, July 1976, pp 534-543. 

MJRI'HA, J. and BEllDLES, R. [1964]: 

"Survey of the Highly Parallel Information Processing Systems", 

Prepared by the Westinglxluse Electric Corp., J\erospace Division, CNR 

Report No. 4755, Nov. 1964. 

NEW1I\N, LA., STALLARD, R.P. and w::x:x:MARD, M.C. [1984]: 

"Combined Resoorce-Sharing Algorithm", IEEE Proceedings, Vol. 131, 

Pt. E, No. 2, March 1984, pp 55-60. 

ODAKA, T., NAGl\SHIMA, S. and KAWABE, s. [1986]: 

"Hi tachi Supercomputer S-810 ARRAY PROCESSOR SYSTEM", 

Superoomputers, Class VI Systems, Hardware and Software, S. Fernabck 

(ed), N:>rth-Holland, pp 137-151. 

PATEL, J.H. [1981]: 

"Performance of Processor-Memory Interconnections for Mul ti

processors", IEEE Trans. Comput., Vol. C-31, lb. 10, Oct. 1981, pp 

771-780. 



382 

PATEL, J.H. [1982]: 

"Analysis of Multiprocessors with Private cache Memories". IEEE 

Trans. on Computers, Vol. C-31, No. 4, Apr. 1982, pp 296-304. 

PERROTT, R.H. [1978]: 

"Scientific Computing in the 1980s: Programming Language", Nat. 

Bureau Standards 17th Ann. Tech. Symp. on Tools for Improved 

Computing, 1978, pp 65-69. 

RAMl\MX)RTHY, C.V. and OONZALEZ, M.J. [1969]: 

"A Survey of Techniques for Recognising Parallel Processable streams 

in Computer Programs", Fall Jt. Computer Conference 1969, Work 

Supported by NASA Grant I'm 44-012-144. 

RAMl\MX)RTHY, C.V. and LI, H.F. [1977]: 

"Pipeline Architecture", Computer Survey, Vol. 9, N::>. 1, March 1977, 

pp 61-102. 

RED~Y, S.F. [1973]: 

"OAP - a Distributed Array Processor", Proc. of First Symp. on 

Computer Architecture, 1973, pp 61-65. 

RICHARD, J., SWAN, R.J., BECHTOLSHEIN, A., LAI, K.W. and OUSTERHOUT, 

J.K. [1977]: 

"The Implementation of the Cm* Multi-Multiprocessor", National 

Computer Q:nference, 1977" pp 637-646. 

RUDOLPH, J.A. [1972]: 

"A Production Implementation of an Associative Array Processor: 

STARAN" , in Proc. AFIPS 1972, Fall Joint Computer Conf., Vol. 41, 

pt. 1, AFIPS Press, Montvale, NJ, 1972, pp 229-241. 

SATYANlIRAYANAN, M. [1980]: 

"Commercial Mu1tiprocess~ Systems", IEEE Computer, Vol. 13, N::>. 5, 

May 1980, pp 75-98. 



383 

SEDGEWIO<, R. [1984]: 

"Algorithms", Addison-Wes1ey Publishing Company, Reading, 

Massachusetts. 

SEIGE!., H.J. 

"Interconnection Networks for SIMD Mach:lnes", IEEE Computer, June 

1979, pp. 57-65. 

SHAPIRO, E. [1984]: 

"Systo1ic Programming: a Paradigm of Parallel Processing". 

Department of Applied Mathematics, the Weizmann Institute of 

Science, Reh:Jvot 76100, Israel, Draft, Sept. 1984. 

SH:X:t-1AN, W. [1960]: 

"Parallel Computing with Vertical Data", in Proc. 1960 Eastern Joint 

Computer Coni., NY, 1960, pp 111-115. 

SHORE, J.E. [1973]: 

"5ecald 'lb:>ughts re Parallel ProcessinJ", Comput. Elect. ~., 1973, 

pp 95-109. 

SLADE, A. and M::W.I-rn, H.O. [1957]: 

"A Cryotron Cata10g Memory System", Proc. 1956 Eastern Joint 

Computer Conf., American Inst. of .Electrical Engineers, New York, 

1957, pp 115-120. 

SLOl'NIO<, D.L., BORCH, W.C. and McREYN:)LDS, R.C. [1962]: 

"The SOLOMON Computer", 1962 Fall Joint Computer Conf., American 

AFIPS Pr=. Vol. 22, WashinJtro, Spartan, DC 1962, pp 97-107. 

SLOl'NIO<, D.L., BORCH, W.C. and M:::REYN)LDS, R.C. [1963]: 

"'l1le SOLOMCN Computer - a Preliminary Report", Proc. 1962 Wo:rkslx:p 

re Computer Organisatiro, WashinJtro, Spartan DC, 1963, pp 66-92. 



384 

SWlNIO<:, D.L. [1967]: 

''Uncx:lnventional Systems", Proc. AFIPS Sprin], Joint Computer Conf., 

1967, pp 477-481. 

SMITH, B.J. [1981]: 

Architecture and Applications of the HEP Multiprocessor COmputer 

Systems", Proc. SPIE COnf. Real Time Signal Processing 4, Vol. 298, 

1981. 

scmRE, J.S. [1963]: 

"A Translaticn Algorithm for a Multiprocessor Computer", Proc. 18th 

ACM Natl. COnf. 1963. 

STEVENS, K.G. Jr [1975]: 

"CFD - a FORTRAN-like language for the ILL lAC IV, SIGPLAN Vol. 10, 

No. 3, 1975, pp 72-80. 

STONE, H.S. [1967]: 

"One-Pass COmpilation of Arithmetic Expressions for a Parallel 

Processor", COmm. ACM, Vol. 10, No. 4, April 1967, pp 220-223. 

STONE, H.S. [1968]: 

"Associative Processing for General PUI:p:Jse Computers thrc1Jgh the 

use of Modified Memories" in Proc. AFIPS 1968 Fall, Joint Computer 

Conference, 'l'h:lmpscn Bc::ldm CO, Wash!ngtcn DC, pp 949-955. 

STONE, H.S. [1971]: 

"Parallel processing with the Perfect Shuffle", IEEE Trans. on 

COmputers, Vol. C-10, Feb. 1971, No. 2, pp 153-161. 

STONE, H.S. [1973]: 

"Problems of Parallel Computaticn". In Complexity of Sequential and 

Parallel Algorithms, edited by J.F. Traub, Academic Press, New York, 

1973, pp 1-16. 



385 

STONE, H.S. [1980]: 

"Parallel Computers" in Introduction to Computer Architectures, 

Stone, H S (Ed), SRA, Chicago, USA, 1975, pp 318-374. 

SWAN, R.J., FULLER, S.H. and SIEWIOREK, D.P. 

"Cm* - a Modular Multi-Microprocessor", National Computer 

Ctnference, 1977 pp 637-646. 

TANG, C.Y. and LEE, R.C. [1984]: 

"Optimal Speed-up of Parallel Algorithms Based upon Divide-and

~er strategy", Informatien Science, Vol. 32, pp 173-186. 

TEXAS InstnmEnts, II, IV and VI: 

"Texas Instruments mao Operating System", Reference Manual, Vols. 

II, IV and VI, OJmputer Studies Dept., Lc:lughboralgh University, UK. 

'I'HO'Wl, C.D. and KUm, H.T. [1977]: 

"Sorting en a Mesh-o:xmected Parallel OJmputer", CACM, Vol. 20, No. 

2, 1977, pp 263-271. 

THOMPSON, J.R. [1986]: 

"The CRAY-1, the CRAY X-MP, the CRAY-2 and Beyond: the 

Supercomputers of CRAY Research", Supercomputers, Class VI Systems, 

Hardware and Software, S. Fernback (ad), North-K?l1and, pp 69-81. 

'IHURBER, K.J. and WALD, L.D. [1975]: 

"Associative and Parallel Processors", Computing Surveys, Vol. 7, 

No. 4, Dec. 1975, pp 215-255. 

UNGER, S.H. [1958]: 

"A OJmputer Oriented Toward Spatial Problems", Proc. IRE, Oct. 1958, 

pp 17-44. 

VIa<, C.R. and MERWIN, R.E. [1973]: 

"An Architecture Descriptien of a Parallel Processing Element", in 

Proc. 1973 Internaticnal WorksOOp en Computer Architecture. 



386 

W'AOO, P.S. and LIU, M.T. [1980]: 

"Parallel Processing of High-level Language Programs", in 

Proceedings of the 1980 Intern. Conf. on Parallel Processing, 

Computer Society Press, 1980, W 17-25. 

WATANABE, T., KATAYMIJA, H. and IWAYA, A. [1986]: 

"Introducticn of NEe Supercomputer SX System", Supercomputers, Class 

VI Systems, Hardware and Software, S. F9J:Tlback (ad), North-Holland, 

w 

WIDDOES, L.C. Jr. [1980]: 

"The S-l project: Developing High-Performance Digital Computers", 

IEEE COMPCON Proc. Spring 1980, W 282-291. 

WILSOO, D.E. [1972]: 

"The PEPE Support Software Systan", IEEE a:MPCX::N, 1972, W 61-64. 

WULF, W. and BELL, C.G: 

"Cmmp a Multi-Mini-Processor", AFIPS Fall Joint Computer Conf., 

American AFIPS Proc., Vol. 22, Washingt:c:n, Spartan, DC, 1962, W 97-

107. 1972 FJCC, W 765-777. 



APPENDICES 



Appendix A 

SELECTED PARALLEL PROGRAMS 



1: 
2: 
3: 
4: 
5: 

c 
c 
c 
c 
c 

6: c 
7: 
8 : 
9 : 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

c 
c 

c 

c 
c 

100 
c 

105 
c 
c 
c 
c 

106 

108 

107 
c 

*** Program 4.1 *** 387 

Parallel sequential search algorithm 
version 1.0 of an unordered set of 
real numbers. 

k 
key 
n 
nproc 
nelem 

an unordered array. real values. 
the key value to be searched. 
the problem size. 
Number of paths. 
number of element per sub-group. 

this algorithm assumes the follolwing assumptions. 

1 keys in the array are not repeated. 
2 unsuccessful searches are not considered 

key is the ikey.th element of k. 
3 processors broadcast their seaching result 

through a shared memory variable "found" 
which takes 0 for false and 1 for true. 

dimension k(8192),itime(l44),ind(100),t(100) 
integer fi,found,fausse,vraie,find 

declare the shared data. 

$shared n,m,k,ind,find,found,fausse,vraie,ikey,fi,itime 
$shared nproc,key 
$region cr 

$usepar 
n-8l92 

fausse-O 
vraie- 1 

initialize parallelism. 

call nprocs( 
obtain the number of active processors. 

nproc ) 

iran-ran(-l) 
do 100 i-1,n 
k(i)-n-i 

do 105 i-1,100 

random generation of the array k. 
size fixed to 8192 elements. 

x-ran(l) 
ind(i)-1+(1.0-x)*n 

continue 
100 locations where the target keys are 
supposed to be found in are randomly generated 

sort ind in increasing order of values. 
in-lOO 
if(in.eq.1) go to 107 

max=l 
do 108 i=l,in 

if(ind(max).lt.ind(i» max=i 
continue 
sav-ind(in) 
ind(in)=ind(max) 
ind(max)=sav 
in=in-1 
goto 106 

continue 

do 120 irep-1,100 
ikey-ind(irep) 
key=k(ikey) 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112 : 
113: 
114 : 
115: 

c 
c 
c 

200 
c 
c 

c 
c 

c 

310 

322 

320 
330 
300 

c 
c 
c 

400 

450 
120 

20 

start timing procedure. 

$doa11 200 
call timest 

$parend 

found-fausse 
fi-O 
$dopar 300 ipath=l,nproc 

388 

check if the target key is not found yet by 
other processor than me. 

if(found.eq.vraie) go to 330 
the flag is tested every key comparison. 
nelem=n/nproc 
is=(ipath-1)*nelem+1 
ie-ipath*nelem 
if(ipath.eq.nproc) ie-n 
j=is 
if(j.gt.ie.or.found.eq.vraie) goto 320 

if(key.ne.k(j» go to 322 
found-vraie 
fi-j 
goto 320 
j-j+1 
goto 310 

continue 
continue 

$parend 
find-fi 

stop the timing 

$doa11 400 
call timout(itime) 

$parend 

t(irep)-O 
do 450 i=l,nproc 

is=24*(i-1) 
tim=itime(is+1)+.001*itime(is+2) 
if( t(irep).lt.tim) t(irep)-tim 

continue 
continue 
write(*,20)t 
$stop 
format(10f7.2) 
$end 



1 : 
2 : 
3: 
4: 
5: 
6: 
7: 
8: 
9 : 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: . 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

c 
c 

c 

c 
c 

100 
c 

105 
c 
c 
c 
c 

106 

108 

107 
c 

*** Program 4.2 *** 
389 

Parallel sequential search algorithm 
Version 2.0 of an unordered set of 
real numbers. 

k 
key 
n 
nproc 
nelem 

an unordered array. real values. 
the key value to be searched. 
the problem size. 
number of sub-groups. 
number of element per sub-group. 

This algorithm assumes the follolwing assumptions. 

1 keys in the array are not repeated. 
2 unsuccessful searches are not considered 

key is the ikey.th element of k. 
3 processors broadcast their seaching result 

through a shared memory variable "found" 
which takes 0 for false and 1 for true. 

dimension k(1024*1024),itime(144),ind(100),t(100) 
integer fi,found,fausse,vraie,find 

declare the shared data. 

$shared n,m,k,ind,find,found,fausse,vraie,ikey,fi,itime 
$shared nproc,key 
$region cr 

initialize parallelism. 

$usepar 
n-1024*1024 

fausse-O 
vraie- 1 

call nprocs( 
obtain the number of active processors. 

nproc ) 
random generation of the array k. 
size fixed to 1 Million elements. 

iran=ran(-l) 
do 100 i-1,n 
k(i)-n-i 

do 105 i-1,100 
x-ran(l) 
ind(i)-1+(1.0-x)*n 

continue 
100 locations where the 
supposed to be found in 

, 
target keys are 
are randomly generated 

sort ind in increasing order of values. 
in-lOO· 
if(in.eq.1) go to 107 

max-1 
do 108 i-1,in 

if(ind(max).lt.ind(i)) max-i 
continue 
sav-ind ( in) 
ind(in)-ind(max) 
ind(max)=sav 
in-in-1 
goto 106 

continue 

do 120 irep-1,100 
ikey=ind(irep) 
key=k(ikey) 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 

c 
c 
c 

200 
c 
c 

c 
c 

c 

310 

322 

320 
330 
300 

c 
c 
c 

400 

450 
120 

20 

start timing procedure. 

$doa11 200 
call timest 

$parend 

found=fausse 
fi-O 
$dopar 300 ipath=l,nproc 

390 

check if the target key is not found yet by 
other processor than me. 

if(found.eq.vraie) goto 330 
the flag is tested every key comparison. 
j-ipath 
if(j.gt.n.or.found.eq.vraie) goto 320 

if(key.ne.k(j» go to 322 
found-vraie 
fi=j 
goto 320 
j=j+nproc 
go to 310 

continue 
continue 

$parend 
find-fi 

stop the timing 

$doall 400 
call timout(itime) 

$parend 

t(irep)-O 
do 450 i=1,nproc 

is=24*(i-1) 
tim-itime(is+1)+.001*itime(is+2) 
if( t(irep).lt.tim) t(irep)=tim 

continue 
continue 
write(*,20)t 
$stop 
format(10f7.2) 
$end 



1 : 
2: 

c 
c 

3: c 
4: 
5: 
6: 
7 : 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
.51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 

c 

90 
c 

150 
c 
c 
c 
c 

c 

300 

320 

321 

322 

310 

323 
140 
200 
c 

391 

*** Program 4.3 *** 
Parallel binary search algorithm 
version 1.0. 

k 
key 

the number of paths is always equal 
to the number of activated processors 

non-decreasing ordered array of size n. 
key to be searched in k. 

nb : all these variables are shared. 

dimension 
$shared 
$shared 
$region 
integer 

k(8*1024),itime(144) 
k,n,fi,itime,key,ikey,np 
nproc 
cr 
low,mid,high,fi,find 

$usepar 
n-8*1024 

start parallelism. 

compute the number of activated processors. 
call nprocs( nproc) 

the array elements are randomly generated. 
iran=ran(-l) 
do 90 i-1,n 

k(i)-i 

$doall 150 
call timest 

$parend 

start timing. 

n different target keys are searched in 
every iteration. 

$dopar 200 me-1,nproc 
lnsn 

do 140 irep=me,ln,nproc 
x-ran(l) 
iky=1+(1.0-x)*n 
ky-k(iky) 
lfi-O 

perform the binary search 
low-1 
high=n 
if(high-Iow.eq.O) go to 310 

mid=(low+high)/2 
if(ky-k(mid)) 320,321,322 

if(ky.lt.k(low)) go to 323 
high-mid-1 
go to 300 

high=mid 
low-mid 
goto 300 
if(ky.gt.k(high)) goto 323 

low=mid+1 
goto 300 

continue 
if(ky.eq.k(high)) lfi-high 
continue 
continue 
$parend 

stop timing. 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 

500 
c 

10 

$doall 500 
call timout(itime) 

$parend 

write(*,lO) 
call printt(itime) 
$stop 

print the time • 

format(/,' BS version 1.0 ',I) 
$end 

392 



1: c 
2 : 
3: 
4: 
5: 
6 : 
7 : 
8 : 

c 
c 
c 
c 
c 
c 
c 

9: c 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 

c 

90 
c 

150 
c 
c 
c 
c 

c 

300 

320 

321 

322 

k 
key 

dimension 
$shared 
$shared 
$region 
integer 

$usepar 
n=8*1024 

393 

*** Program 4.4 *** 

Parallel binary search algorithm 
version 2.0 . 
the number of paths is always 
equal to the number of activated 
processors. 

The way the array is divided is as follows 
if p is the number of procesor and if me 
is the processor-name the me has access to 
the locations indexed by p*k+me+1 where k 
is an integer. 

non-decreasing ordered array of size n. 
key to be searched in k. 

nb : all these variables are shared. 

k(8*1024),itime(144) 
k,n,fi,itime,key,ikey 
nproc 
cr 
low,mid,high,fi,find,rak 

start parallelism. 

compute the number of activated processors. 
call nprocs( nproc) 

the array elements are randomly fenerated. 
iran-ran(-l) 
do 90 i-1,n 

k (i )-i+ran(1) 

$doall 150 
call timest 

$parend 

start timing. 

a 1000 different target keys are searched in 
every iteration. 

$dopar 200 me-1,nproc 
do 140 irep~me,1000,nproc 

x=ran( 1) 
ikey=1+(1.0-x)*n 
ky-k(iky) 
fi=O 
np=nproc 
kar-key 

perform the binary search on this path. 
low=me 
high=n+low-np 
if(high-Iow.eq.O.or.fi.ne.O) goto 310 

mid-np*«(low-me)/np+(high-me)/np)/2)+me 
if(kar-k(midll 320,321,322 

high=mid-np 
go to 300 
high=mid 
low-mid 
go to 300 
low-mid+np 
goto 300 



67: 310 continue 394 

68: if(kar.eq.k(high» fiKhigh 
69: 200 $parend 
70: find=fi 
71: 140 continue 
72: c stop timing. 
73: $doall 500 
74: call timout(itime) 
75: 500 $parend 
76: c print the time . 
77: call printt(itime) 
78: $stop 
79: $end 



1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 

c 

90 
c 

150 
c 
c 
c 

c 

c 
250 

*** program 4.5 *** 

Parallel binary search 
version 3.0. 
The number of parallel 
equal to the number of 
processors. 

395 

algorithm 

paths is always 
activated 

The original array is divided into p sub-arrays. 
Each processor takes one sub-array of length nip, 
compares the key with the contents of the middle 
point location of the associated sub-array. If 

the comparison is successful, the algorithm 
terminates , otherwise a decision is made to 
which of the p sub-arrays does contain the 
target key. the process is repeated with the 
new selected and smaller sub-array. Thus the 
array gets smaller after each iteration by a 
factor of 2*nproc. 

we assume the search to be successful and 
therefor the present algorithm does not 
consider the unsuccessful case. 

k 
key 

non-decreasing ordered array of size n. 
key to be searched in k. 

dimension 
$shared 
$region 
integer 

$usepar 
n-8*l024 

nb : all these variables are shared. 

k(8*l024),itime(l44) 
k,n,fi,itime,key,ikey,nproc,slow,shigh,sl,sh 
cr 
slow,shigh,low,mid,high,sl,sh,fi,find 

start parallelism. 

compute the number of activated processors. 
call nprocs( nproc) 

the array elements are randomly fenerated. 
iran-ran(-l) 
do 90 i-1,n 

k(i)-i+ran(l) 

$doall 150 
call timest 

$parend 

start timing. 

a 100 different target keys are searched in 
every iteration. 

do 140 irep-1,100 
x-ran(l) 
ikey=1+(1.0-x)*n 
key~k(ikey) 
fi-O 

slow-1 
shigh=n 

start processing. 

if(shigh-slow.eq.O) goto 260 
$dopar 200 me-1,nproc 

nelem=(shigh+1-slow)/nproc 
low=(me-1)*nelem+slow 
high-low+nelem-1 
if(me.eq.nproc) high-shigh 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 

-81 : 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 

c 

c 

310 
c 
c 

320 
c 
c 

330 
200 

260 
140 
c 

500 
c 

compute the middle point 
mid-(low+high)/2 
if(key.ne.k(mid»goto 310 

396 

slamid 
sh~mid 

the searched key is found at mid 

go to 330 
if(k(low).gt.key.or.key.gt.k(mid» go to 320 

the key is located in the interval 
[k(low) ••• k(mid)[ 

sha mid-1 
slalow 
goto 330 

if(k(mid).gt.key.or.key.gt.k(high»goto 330 
the key is located in the interval 

sl-mid+1 
sh=high 

continue 
$parend 
slow=sl 
shighash 
goto 250 
continue 
continue 

]k(mid) ..• k(high)] 

$doall 500 
stop timing. 

call timout(itime) 
$parend 

print the time • 
call printt(itime) 
$stop 
$end 



1: 
2: 

c 
c 

3: c 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

10 
c 

125 
c 

130 
c 
c 
c 
c 

135 
c 
c 
c 

c 
c 
c 

145 
c 

c 

*** Program 4.6 *** 

Fast sequential jump searching algorithm: 
****************************************** 

simple jump searching algorithm 

397 

the jump size is defined to be square root ot the 
size of the array to be searched. 

k 
key 

non-decreasing ordered array of size n. 
key to be searched in k. 

nb : all these variables are shared. 

dimension 
$shared 
$region 
integer 

k(64*1024),itime(144),ind(100) 
k,n,fi,itime,key,ikey,nproc,jsiz1 
cr 
fi 

start parallelism. 

$usepar 
n=64*1024 
jsiz1=n**(1./2. ) 

SJS algorithm ',I) 
wri te (*,10) 
format(/, , 

compute the number of activated processors. 
nproc=O 
$doall 125 

$enter cr 
me=nproc 
nproc=nproc+1 

$exit cr 
$parend 

the array elements are randomly fenerated. 
id-ran(-l) 
do 130 i=l,n 

k(i)=i 
a N locations where the target keys are 
supposed to be found in are randomly generated 

do 135 i-1,100 
x-ran(l) 
ind(i)=1+(1.0-x)*n 

. continue 
100 locations where the target keys are 
supposed to be found in are randomly generated 

do 140 ireps 1,100,4 
ikey=ind(irep) 
key=k(ikey) 

$doall 145 
call timest 

$parend 

do 155 iii=1,1000 
$doall 150 

ky=key 
1£i=O 

start timing procedure. 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 

86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112 : 
113: 
114 : 
115: 
116 : 
117 : 
118: 
119: 
120: 
121: 
122: 
123: 
124: 

c 
c 

160 

165 

180 

185 

170 
c 
c 

c 
c 

190 

c 

200 

205 

195 
c 
210 

215 

c 
150 
155 
c 

220 
c 

30 
140 

simple jump searching method. 

i=me*jsiz1+1 
jsiz=nproc*jsiz1 
if(k(i).ge.ky.or.i.gt.n)goto 165 

i-i+jsiz 
goto 160 

continue 
if (i.1e.n) go to 170 
ii~l 

if( ii.gt.nproc.or.i.1e.n) goto 185 
i-i-jsiz1 
ii-ii+1 
goto 180 
continue 
i~i+jsiz1 
continue 

398 

Find the block where the key is likely to be in 
For nproc processors there are nproc sub-blocks to choos 

from. The selected sub-block will be also searched in 
parallel. 
ii-1 
if ( ii.gt.nproc ) goto 195 

1asti=i-j siz1 
Ensure that 1asti is defined. 

if(lasti.gt.O) goto 200 
ii-nproc+1 
1asti=me+1 

goto 190 
continue 
i-1asti 
if( k(i).gt.ky) goto 205 

ii=nproc+1 
i-1asti+me 

continue 
ii-ii+1 
goto 190 
continue 

forward sequential search of the just passed block 
if(k(i).ge.ky)goto 215 

i=i+nproc 
go to 210 

continue 
if(i.1e.n.and.k(i).eq.ky)lfi=i 

$parend 
continue 

$doall 220 

target key is found at location i 

stop timing. 

call timout(itime) 
$parend 

print the time . 
tim=itime(1)+itime(2)*.001 
write(*,30)tim 
format(f8.3) 
continue 

$stop 
$end 



1: 
2 : 
3: 
4: 
5: 

c 
c 
c 
c 
c 

6: c 
7: c 
8: c 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

10 

c 

100 
c 

110 
c 
c 
c 

115 

c 

125 

c 
c 
c 
c 

*** Program 4.7 *** 

Fast sequential jump searching algorithm 
*.**************************************** 

two-level simple jump searching algorithm 

399 

two levels of jumps are involved. the first jump 
is defined by n**(1/2) and the second level jump 
size is n**(1/4). n is the array size. 

the sequential part is carried out forwards. 

k 
key 

non-decreasing ordered array of size n. 
key to be searched in k. 

nb : all these variables are shared. 

dimension 
$shared 
$region 
integer 

k(64*1024),itime(144),ind(100) 
k,n,fi,itime,key,ikey,nproc,jsiz1,jsiz2 

. cr 
fi 

$usepar 
write(*,10) 

start parallelism. 

format(/,' TLSJS version 1.0',1) 
n=64*1024 
jsiz1-n**(1./2. ) 
jsiz2-n**(1./4. ) 

compute the number of activated processors. 
nproc-O 
$doall 100 

$enter cr 
me-nproc 
nproc=nproc+1 

$exit cr 
$parend 

the 
iran=ran(-l) 

array elements are randomly fenerated. 

do 110 i-1,n 
k(i)-i 

100 locations where the target 
in are randomly generated. 

do 115 irep=1,100 
x-ran(l) 
ind(irep)=1+(1.0-x)*n 

continue 
do 120 irep=1,25 

ikey=ind(irep) 
key .. k(ikey) 

$doall 125 
call timest 

$parend 

start timing. 

key is to be found 

a N locations where the target keys are 
supposed to be found in are randomly generated 

$doall 130 
do 135 iii=1,1000 

ky-key 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95 : 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113 : 
114 : 
115: 
116 : 
117 : 
118 : 
119 : 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 

c 
c 
c 

140 

145 
c 

155 

160 

150 
c 
c 

165 

c 

175 

180 

170 
c 

185 

190 
c 

205 

210 

200 

c 

215 

c 

225 

400 

two-level simple jump searching method. 

i-me*jsiz1+1 
jsiz=nproc*jsiz1 
if(k(i).ge.ky.or.i.gt.n)goto 145 

i-i+jsiz 
gote 140 

continue 
Adjust the index if it is greater than n. 

if (i.le.n) goto 150 
ii-1 
if( ii.gt.nproc.or.ii.le.n) goto 160 

i-i-jsiz1 
ii-ii+l 
goto 155 

continue 
i-i+jsiz1 

continue 

ii-1 

a possible target key was just passed. 
apply the second level of the method. 

if( ii.gt.nproc) go to 170 
lasti-i-jsiz1 

Ensure that lasti is defined. 
if(lasti.gt.O) goto 175 

ii-nproc + 1 
lasti=me*jsiz2+1 
go to 165 

continue 
i-lasti 
if( k(i).gt.ky) goto 180 

ii=nproc+1 
i-lasti+me*jsiz2 

continue 
ii-ii+1 
goto 165 
continue 

Second block search level 
jsiz=nproc*jsiz2 
if(k(i).ge.ky.or.i.gt.n)goto 190 

i=i+jsiz 
goto 185 

continue 
Adjust once more the index i 

if (i.le.n) goto 200 
ii-1 
if( ii.gt.nproc.or.ii.le.n) goto 210 

i=i-jsiz2. 
ii-ii+l 
goto205 

continue 
i=i+jsiz2 

continue 

H-l 
a possible target key was just passed. 

if( ii.gt.nproc) goto 220 
lasti=i-jsiz2 

Ensure that lasti is defined. 
if(lasti.gt.O) goto 225 

ii=nproc + 1 
lasti=me+l 
goto 215 

continue 



133 : 
134: 
135 : 
136 : 
137: 230 
138 : 
139 : 
140: 220 
141 : c 
142: c 
143: c 
144: 235 
145: 
146: 
147: 240 
148: 
149: c 
150: 135 
151: 130 
152: c 
153: 
154: 
155: 500 
156: c 
157: 
158: 
159: 20 
160: 120 
161: 
162: 

ialasti 
if( k(i).gt.ky) goto 230 

ii=nproc+1 
ialasti+me 

continue 
ii-ii+1 
goto 215 
continue 

401 

forward sequential search of the just passed 
block. 

if(k(i).ge.ky)goto 240 
i-i+nproc 
go to 235 

continue 
if(i.le.n.and.k(i).eq.ky)lfi-i 

target key is found at location i 
continue 
$parend 

$doall 500 
stop timing. 

call timout(itime) 
$parend 

print the time 
tim1-itime(1)+.001*itime(2) 
write(*,20)tim1 
format(2f8.3) 
continue 

$stop 
$end 



1: 
2: 
3: 
4: 
5: 

c 
c 
c 
c 
c 

6: c 
7: 
8: 
9 : 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

10 

c 

100 
c 

110 
c 
c 
c 

115 

c 

125 

c 
c 
c 
c 

*** Program 4.8 *** 

Fast sequential jump searching algorithm 
****************************************** 

two-level fixed jump searching algorithm 

402 

two levels of jumps are involved. the first jump 
is defined by n**(2/3) and the second level jump 
size is n**(1/3). n is the array size. 

the sequential part is carried out forwards. 

k 
key 

non-decreasing ordered array of size n. 
key to be searched in k. 

nb : all these variables are shared. 

dimension 
$shared 
$region 
integer 

k(64*1024),itime(144),ind(100) 
k,n,fi,itime,key,ikey,nproc,jsizl,jsiz2 
cr 
fi 

$usepar 
write(*,10) 

start parallelism. 

format(/,' TLFJS version 1.0',/) 
n-64*1024 
jsiz1=n**(2./3.) 
jsiz2=n**(1./3. ) 

compute the number of activated processors. 
nprocaO 
$doall 100 

$enter cr 
me=nproc 
nproc=nproc+1 

$exit cr 
$parend 

the array elements are randomly fenerated. 
iran-ran(-l) 
do 110 i-1,n 

k(i)ai 
100 locations where the target key is to be found 
in are randomly generated. 

do 115 irep-1,100 
x-ran(l) 
ind(irep)=1+(1.0-x)*n 

continue 
do 120 irep=1,100 

ikey-ind(irep) 
key = k(ikey) 

$doall 125 
call timest 

$parend 

start timing. 

a N locations where the target keys are 
to be found in are randomly generated 

$doall 130 
do 135 iii-1,1000 

ky=key 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: . 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112 : 
113 : 
114 : 
115: 
116: 
117 : 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 

c 
c 
c 

140 

145 
c 

155 

160 

150 
c 
c 

165 

c 

175 

180 

170 
c 

185 

190 
c 

205 

210 

200 

c 

215 

c 

Hi-O 403 

two-level fixed jump searching method. 

i-me*jsiz1 
if(me.eq.O) i-1 

jsiz-nproc*jsiz1 
if(k(i).ge.ky.or.i.gt.n)goto 145 

i=i+jsiz 
goto 140 

continue 
Adjust the index if it is greater than n. 

if (i.1e.n) go to 150 
H-1 
if( ii.gt.nproc.or.ii.1e.n) goto 160 

i-i-jsiz1 
ii-ii+1 
goto 155 

continue 
i a i+jsiz1 

continue 

H-1 

a possible target key was just passed. 
apply the second level of the method. 

if( ii.gt.nproc) go to 170 
1asti=i-j siz1 

Ensure that 1asti is defined. 
if(lasti.gt.O) go to 175 

ii=nproc + 1 
1asti-me*jsiz2 
if(me.eq.O) 1asti=1 
goto 165 

continue 
i-1asti 
if( k(i).gt.ky) goto 180 

ii-nproc+1 
i-1asti+me*jsiz2 

continue 
U-H+1 
goto 165 
continue 

Second block search level 
jsiz-~proc*jsiz2 
if(k(i).ge.ky.or.i.gt.n)goto 190 

i-i+jsiz 
go to 185 

continue 
Adjust once more the index i 

if (i.1e.n) goto 200 
H-1 
if( ii.gt.nproc.or.ii.1e.n) go to 210 

i-i-jsiz2 
H-ii+1 
goto.205 

continue 
i=i+j siz2 

continue 

H-1 
a possible target key was just passed. 

if( ii.gt.nproc) go to 220 
1asti-i-j si z2 

Ensure that 1asti is defined. 
if(lasti.gt.O) go to 225 

ii-nproc + 1· 
1asti=me+1 



133: 
134: 
135 : 
136 : 
137: 
138: 
139 : 
140: 
141: 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152 : 
153: 
154: 
155: 
156 : 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 

225 

230 

220 
c 
c 
c 
235 

240 

c 
135 
130 
c 

500 
c 

20 
120 

goto 215 
continue 
i-1asti 
if( k(i).gt.ky) go to 230 

ii a nproc+1 
i-lasti+me 

continue 
ii-ii+1 
goto 215 
continue 

404 

forward sequential search of the just passed 
block. 

if(k(i).ge.ky)goto 240 
i-i+nproc 
go to 235 

continue 
if(i.le.n.and.k(i).eq.ky)lfi-i 

target key is found at location i 
continue 
$parend 

$doall 500 
stop timing. 

call timout(itime) 
$parend 

print the time • 
tim-itime(1)+.001*itime(2) 
write(*,20)tim 
format(f8.3) 
continue 

$stop 
$end 



1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
405 

c *** prog'ram 5.1 *** 
c 
$CHAREQU 
c 
c 
c 
c 
c 
c 
c 
c 

c 

50 

c 

c 

c 

405 
c 

c 

425 
c 

c 
c 

415 
c 
c 
c 

300 

320 

c 

psim parallel simple string matching alg. 

this is the simple and obvious way to search 
a string of characters for all occurrences 
of a string pat in another string • the search 
is started by matching characters from the left
most character of both strings. 

dimension ind(100),itime(144),t(10) 
character*l string(500000),pat(15),line(125) 
$shared itime,strlen,patlen,nproc,ikey,string 
integer strlen,strmax,patlen,ptl 

$usepar 
input the string of characters 

strlen-1 
strmax=500000 
do 50 iline=l,4000 

read(*,10)line 
do 50 i-1,125 

string(strlen)-line(i) 
strlen=str1en+1 

if(strlen.gt.strmax) strlen=strmax 
find number of processors 

call nprocs(nproc) 
nelem=strlen/nproc 

start random generator 
iran-ran(-l) 
do 400 patlen = 6,15 

i-is 

generate a 100 random positions in string 
do 405 i-1,100 

x-ran( 1) 
ind(i)-1+(1.0-x)*(strlen+1-patlen) 

do 410 irep=1,100,10 
ikey=ind(irep) 

$doall 425 
call timest 

$parend 

start timing. 

start parallel 
$dopar 420 ipath=l,nproc 
nelem=strlen/nproc 

is=(ipath-1)*nelem+1 
ie=ipath*nelem+patlen-l 
if(ipath.eq.nproc)ie=strlen 
ptl=patlen 

processing. 

iky=ikey 
copy pat from string starting from 
position ikey. 

do 415 i=l,ptl 
ik=iky+i-1 
pat(i)=string(ik) 

the simple string matching algorithm. 

if(i.gt.ie+1-ptl) go to 350 
j-1 
k=i 
if(string(k).ne.pat(j)) goto 340 
if(j.ne.ptl)goto 330 

an occurrence of pat is found. 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75 : 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 

330 

340 

350 
420 
c 
c 

435 
c 

410 
400 

10 
20 

i=i+ptl 406 
goto 300 

k-k+1 
j-j+1 
goto 320 
i-i+1 
goto 300 
continue 
$parend 

stop timing. 
$doall 435 

call timout(itime) 
$parend 

compute timing in second. 
it-irep/10+1 
t(it)-itime(3)+.001*itime(4) 
if(it.eq.10)write(*,20)t 

continue 
continue 
$stop 
format(125a1) 
format(10f7.2) 
$end 



1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63 : 
64: 
65: 
66: 

c 
407 

c *** Program 5.2 *** 
c 
$CHAREQU 

parallel Rabin-Karp string matching alg. c 
c 
c 
c 
c 
c 
c 
c 

c 

50 

c 

c 

c 

405 
c 

c 

425 
c 

c 
c 

415 
c 
c 
c 
c 

200 

prk 

This is the Parallel Rabin-Karp string searching 
algorithm. It is based on a hashing function H. 
Pat and a string from the text are hashed, hI and h2 
represent their respective hash values. they are equal 
if and only if hI equal to h2. 

dimension ind(100),itime(144),t(10) 
character*l string(500000),pat(15),line(125) 
$shared itime,str1en,patlen,nproc,ikey,string 
integer strlen,strmax,patlen,ptl 
integer q,d,dm,hl,h2 

$usepar 
input the string of characters 

strlen-1 
strmax-500000 
do 50 iline=1,4000 

read( *,10) line 
do 50 i=1,125 

string(strlen)-line(i) 
strlen=strlen+1 

if(strlen.gt.strmax) strlen-strmax 
find number of processors 

call nprocs(nproc) 
start random generator 

iran-ran(-l) 
do 400 patlen .. 6,15 

generate a 100 random positions in string 
do 405 i-1,100 

x"ran(l) 
ind(i)=1+(1.0-x)*(strlen+1-patlen) 

do 410 irep-1,100,10 
ikey-ind(irep) 

start timing. 
$doall 425 

call timest 
$parend 

start parallel processing. 
$dopar 420 ipath=l,nproc 
nelem=strlen/nproc 

is-(ipath-1)*nelem+1 
ie=ipath*nelem+patlen-1 
if(ipath.eq.nproc)ie-strlen 
iky=ikey 

copy pat from string starting from 
position ikey. 

do 415 i=l,ptl 
ik=iky+i-1 
pat(i)=string(ik) 

the RK string matching algorithm. 
Ini tializations 

q-33554393 
d=128 
m=patlen 
dm-1 
do 200 i-l,m-1 
dm-mod(d*dm,q) 
h1 .. 0 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 

210 

220 

300 

c 

310 

350 
420 
c 
c 

435 
c 

410 
400 

10 
20 

do 210 i~l,m 
hl-mod( hl*d + ichar(pat(i»,q) 
h2-0 
do 220 i-is,is+m-l 
h2-mod( h2*d + ichar(string(i»,q) 

if(i.gt.ie+l-ptl) go to 350 

continue 
$parend 

if( hl.ne.h2) goto 310 
an occurrence of pat is found 
fi - i-m 

h2=mod( h2 + d*q - ichar(string(i»,q) 
h2=mod( h2*d + ichar( string(i+m»,q) 
i-i+l 
goto 300 

stop timing. 
$doall 435 

call timout(itime) 
$parend 

408 

compute timing in second. 
it-irep/l0+l 
t(it)-itime(3)+.001*itime(4) 
if(it.eq.l0)write(*,20)t 

continue 
continue 
$stop 
format(125al) 
format(llf7.2) 
$end 



1: 
2: 
3: 
4: 
5: 
6: 
7 : 
8 : 
9: 
10: 
11: 
12: 
13: 
14: 
15: 

16: 
17: 

18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 

c 409 

c *** Program 5.3 *** 
c 
$CHAREQU 

the parallel version of the knuth, morris and 
pratt ' s string matching algorithm. 

c 
c 

c 
c 
c 
c 
c 
c 
c 

c 

c 

50 

c 

c 
c 

c 

405 
c 

c 
c 

415 
c 

420 
c 
c 
c 
c 
c 

100 
c 
103 

the idea of this method is similar to the 
sim algorithm except that a precomputed table 
is used to jump through part of the string 
that could not be the searched pattern. 
for more details how the next table is computed 
see knuth, morris and pratt's paper. 

character*l string(500000),line(12~),c,pat(16),lpat(16), 
+achar,arau 

dimension itime(144),t(10),next(16),lnext(16),ind(100) 
$shared string,pat,next,itime,ind,strlen,patlen,nproc, 

+ikey ,arau 
integer patlen,strlen,strmax,ptl 
$usepar 

arau is a character not present in the string. 
arau-char(O) 

input the string • 
strmax~500000 
strlen=l 
do 50 ilinea 1,4000 

read( *,10)line 
do 50 i~1,125 

string(strlen)=line(i) 
strlen=strlen+1 

if( strlen .gt. strmax) strlen=strmax 
find number of processors. 

call nprocs( nproc) 

start random generator 
iran=ran(-l) 
do 400 patlen - 6,15 

generate 100 random locations in string 
do 405 i=1,100 

j~l 

k-O 

x-ran(l) 
ind(i)-1+(1.0-x)*(strlen+1-patlen) 

do 410 irep~1,100,10 
ikey-ind(irep) 

copy pat from string starting from 
posi Hon ikey. 

do 415 i-1,patlen 
ik=ikey+i-1 
pat(i)=string(ik) 

start timing. 
$doall 420 

call timest 
$parend 

next setting up algorithm. 

next(l)=O 
if(j.ge.patlen) go to 102 

k=f(k) 
if(k.le.O.or.pat(j).eq.pat(k)) goto 104 

k=next(k) 



65 : 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75 : 
76: 
77 : 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114 : 
115: 
116 : 
117: 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 

104 

102 
c 

c 

305 
c 
c 
c 
c 

c 
300 

310 
c 
315 

c 
320 

325 
c 

350 
c 
c 
c 
425 
c 

430 
c 

410 
400 

goto 103 
j-j+l 
k-k+l 
next(j)-k 
if(pat(j).eq.pat(k))next(j)-next(k) 
goto 100 
continue 

start parallelism. 
$dopar 425 ipath-l,nproc 
nelem-strlen/nproc 

is-(ipath-l)*nelem+l 
ie-ipath *nelem+patlen-l 
if(ipath.eq.nproc)ie=strlen 
ptl-patlen 

410 

copy lpat from pat & lnext from next 
do 305 i-l,ptl 
lnext(l)-next(l) 
lpat(i)-pat(i) 

the knuth, morris and pratt string 
matching algorithm. 

achar-lpat(l) 
lpat(ptl+l)-arau 
lnext(ptl+l)--l 
j-l 
k-is 

get started. j = 1 
if(k.gt.ie.or.string(k).eq.achar)goto 310 

k-k+l 
if(k.gt.ie)goto 350 
goto 300 

continue 

j-j+l 
k=k+l 
if(k.gt.ie)goto 350 

if(string(k).eq.lpat(j))goto 315 
j-lnext(j) 
if(j.eq.l)goto 300 
if(j.ne.O)goto 325 

j-l 
k-k+l 
if(k.gt.ie)goto 350 

. go to 300 
if(j.gt.O) goto 320 

char matched 

loop 

an occurrence of pat is found. 
j=l 
goto 300 
continue 

$parend 

the algorithm terminates when all the input 
is exhausted. 

stop timing. 
$doall 430 

call timout(itime) 
$parend 

compute timing in second. 
it-irep/lO+1 
t(it)=itime(3)+.001*itime(4) 
if(it~eq.lO)write(*,20)t 

continue 
continue 
$stop 



131 : 
132: 
133 : 

10 
20 

format(125a1) 
format(10f7.2) 
$end 

411 



1: 
2 : 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: . 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 

c 
412 

c *** Program 5.4 *** 
c 
$CHAREQU 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

c 

50 

c 

c 

60 
c 

c 

405 

c 

420 

c 

the parallel version of the boyer-moore 
string searching algorithm. 

two tables are precomputed. they are delO and 
de12. the idea behind this method is that the 
search is started by comparing the leftmost 
character of pat and the patlen-th charater of 
string instead of comparing the two rightmost 
charaters of the two strings. for a more detaile 

discussion of the gains see boyer-moore's paper. 

character*l string(500000),lpat(15),line(125) 
dimension ind(100),itime(144),t(10) 
dimension ldelO(0:127),lde12(15),f(15) 
integer strlen,strmax,patlen,f 
integer large,ptl 
$shared string,itime,ind,strlen,patlen 
$shared nproc,nelem,ikey,np 

$region cr 
$usepar 
strmax=500000 

input the string of chracters from my text. 
strlen=l 
do 50 i1ine=1,4000 

read(*,10)line 
do 50 i=1,125 

string(strlen)-line(i) 
strlen-strlen+1 

if(strlen.gt.strmax) strlen-strmax 
find number of processors and name them. 

call nprocs (nproc) 

np-1 
$doa11 60 
$enter cr 

ipath-np 
np=np+1 

$exit cr 
$parend 

iran-ran(-l) 

name the processors from 1 to nproc 

start random generator. 

do 400 patlen-6,15 
generate 100 random locations in string. 

do 405 i-1,100 
x-ran(l) 
ind(i)=1+(1.0-x)*(strlen+1-patlen) 

do 410 irep=1,100,10 
ikey-ind(irep) 

start timing 
$doall 420 

call timest 
$parend 

$doall 425 
nelem=strlen/nproc 
is=(ipath-1)*nelem+1 
ie-ipath*nelem+patlen-1 
if(ipath.eq.nproc) ie-strlen 
ptl=patlen 
iky-ikey 
large=strlen+100 

copy lpat from string starting from ikey. 



66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115: 
116: 
117: 
118 : 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130 : 
131: 

415 
c 

100 

101 

c 

102 

103 

104 

105 

106 

107 
c 
c 
c 

310 
c 

c 
300 

c 

c 

315 

c 
320 
c 

321 

322 

350 
c 
c 
c 
c 
425 
c 

do 415 i=1,pt1 
ik-iky+i-1 
1pat(i)-string(ik) 

do 100 i-0,127 
1delO(i)-ptl 
do 101 i=1,ptl 

ldelO setting-up 

ldelO(ichar(lpat(i)))-ptl-i 
ldelO(ichar(lpat(ptl)))-large 

ldel2 setting up 
do 102 i-1,ptl 
ldel2(i)-2*ptl-i 
j-ptl 
k-ptl+1 
if(j.le.O) goto 106 

f ( j ) =k 
if(k.gt.ptl.or.lpat(j).eq.lpat(k))goto 105 

k-f(k) 
go to 104 

continue 
k-k-1 
j-j-1 
ldel2(k)-minO(ldel2(k),ptl-j) 
go to 103 

continue 
do 107 i-1,k 
ldel2(i)=minO(ldel2(i),ptl+k-i) 

413 

the boyer moore fast string matching algorithm. 

i-ptl-1+is 
if(i.le.ie)goto 300 

input exhausted. 
goto 350 

i-i+ldelO(ichar(string(i))) 
if(i.le.ie) go to 300 

fast loop 

undo loop 
if(i.gt.large)goto 315 

input exhausted. 
goto 350 

i-i-large-1 
j-ptl-1 

slow loop 
if(j.ne.O)goto 321 

an occurrence of pat is found 
i-i+2*ptl 
go to 310 
if(string(i).ne.lpat(j))goto 322 

j-j-1 
i=i-1 
go to 320 

continue 
mem-lde10(ichar(string(i))) 
if(mem.eq.large) mem-O 
i-i+maxO(mem,ldel2(j)) 
goto 310 
continue 

$parend 

$doall 435 

the algorithm terminates when the input 
is exhausted. 

stop timing 

call timout(itime) 



132: 
133 : 
134 : 
135: 
136 : 
137 : 
138: 
139: 
140: 
141: 
142: 

435 
c 

410 
400 

10 
20 

$parend 
compute timing in second. 

it-irep/10+1 
t(it)-itime(3)+.001*itime(4) 
if(it.eq.10)write(*,20)t 
continue 

continue 
$stop 
format(125a1) 
format(10f7.2) 
$end 

414 



1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

415 

c 
c *** Program 5.5 *** 
c 
$CHAREQU 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

50 

c 

c 

60 
c 

c 

405 

c 

420 

c 

the parallel version of the Improved 
Boyer-Moore string searching algorithm. 

two tables are precomputed. they are delO and 
del2. the idea behind this method is that the 
search is started by comparing the leftmost 
character of pat and the patlen-th charater of 
string instead of comparing the two rightmost 
charaters of the two strings. for a more detailed 
discussion of the gains see boyer-moore's paper. 

character*l string(500000),lpat(15),line(125) 
dimension ind(100),itime(144),t(10) 
dimension IdeI0(0:127),ldeI2(15),f(15) 
integer strlen,strmax,patlen,f 
integer large,ptl 
$shared string,itime,ind,strlen,patlen 
$shared nproc,nelem,ikey,np 
$region cr 

$usepar 
strmax=500000 

input the string of chracters from my text. 
strlen-1 
do 50 iline-1,4000 

read( *,10) line 
do 50 i-1,125 

string(strlen)-line(i) 
strlen-strlen+l 

if(strlen.gt.strmax) strlen=strmax 
find number of processors and name them. 

call nprocs (nproc) 

npa1 
$doall 60 
$enter cr 

ipath~np 
np=np+1 

$exit cr 
$parend 

iran-ran(-l) 

name the processors from 1 to nproc 

start random generator. 

do 400 patlen=6,15 
generate 100 random locations in string. 

do 405 i-1,100 
x=ran(l) 
ind(i)-1+(1.0-x)*(strlen+1-patlen) 

do 410 irep=l,IOO,IO 
ikey-ind(irep) 

start timing 
$doa11 420 

call timest 
$parend 

$doall 425 
nelem=strlen/nproc 
is-(ipath-l)*nelem+l 
ie-ipath*nelem+patlen-1 
if(ipath.eq.nproc) ie-strlen 
ptl=patlen 
iky=ikey 
large=strlen+IOO 

copy lpat from string starting from ikey. 
do 415 i-l,ptl 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114 : 
115: 
116 : 
117 : 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 

415 
c 

100 

101 

c 

102 

103 

104 

105 

106 

107 
c 
c 
c 

310 
c 

c 
300 

c 

c 

315 

c 
320 
c 

321 

322 

350 
c 
c 
c 
c 
425 
c 

435 

ik-iky+i-1 
lpat(i)-string(ik) 

ldelO setting-up 
do 100 i-0,127 
ldelO(i)-ptl 
do 101 i-1,ptl 

ldelO(ichar(lpat(i»)-ptl-i 
ldelO(ichar(lpat(ptl»)-large 

lde12 setting up 
do 102 i-1,ptl 
lde12(i)=2*ptl-i 
j-ptl 
k-ptl+1 
if(j.le.O) go to 106 

f(j)-k 
if(k.gt.ptl.or.lpat(j).eq.lpat(k»goto 105 

k-f(k) 
lde12(k)-minO(lde12(k),ptl-j) 
go to 104 

continue 
k-k-1 
j-j-1 
go to 103 

continue 
do 107 i-1,k 
lde12(i)-minO(lde12(i),ptl+k-i) 

416 

The improved Boyer-Moore fast string matching algorithm. 

i-ptl-1+is 
if(i.le.ie)goto 300 

input exhausted. 
goto 350 

i-i+ldelO(ichar(string(i») 
if(i.le.ie) goto 300 

if(i.gt.large)goto 315 
input exhausted. 

fast loop 

undo loop 

goto 350 
i-i-large-1 
j-ptl-1 

if(j.ne.O)goto 321 
slow loop 

an occurrence of pat is found 
i=i+2*ptl 
go to 310 
if(string(i).ne.lpat(j»goto 322 

~-~-1 
1-1-1 
go to 320 

continue 
mem-ldelO(ichar(string(i») 
if(mem.eq.large) mem=O 
i=i+maxO(mem,lde12(j» 
goto 310 
continue 

the algorithm terminates when the input 
is exhausted. 

$parend 

$doall 435 
call timout(itime) 

$parend 

stop timing 



133: 
134 : 
135: 
136: 
137 : 
138 : 
139: 
140: 
141 : 
142: 

c 

410 
400 

10 
20 

compute timing in second. 
it-irep/10+1 
t(it)-itime(3)+.001*itime(4) 
if(it.eq.l0)write(*,20)t 
continue 

continue 
$stop 
format(125a1) 
format(10f7.2) 
$end 

, 

417 



1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 
c 
c 
c 

*** program 6.1 *** 

PARALLEL QUICKSORT ALGORITHM 
BREATH-FIRST METHOD. 

The number of paths could be selected 
to P or greater than P. 

418 

c************************************************************** 
c SUB R 0 UTI N E INS E R T ION S 0 R T 
c************************************************************** 

110 

subroutine INSERT ( s,e)' 
dimension a(16384) 
dimension lr(512,3),itime(144) 
integer s,e 
$shared a,itime,lr,n,m,nproc 
do 100 i-s+1,e 
v-a(i) 
j-i 

if( j.le.s.or.a(j-1).le.v) goto 120 
a(j)=a(j-1) 
jsj-1 
goto 110 

120 a(j)-v 
100 continue 

return 
end 

c************************************************************** 
c SOU B R 0 UTI N E MED I A N 0 F THE T H R E E 
c************************************************************** 

subroutine MEDIAN (s,e) 
dimension a(16384),lr(512,3),itime(144) 
$shared a,itime,lr,n,m,nproc 
integer s,e 

c THE PARTITIONNING ELEMENT IS THE MEDIAN OF THE THREE. 
mid-( s+e )/2 
if( a(s).le.a(mid) ) go to 100 

sav=a(s) 
a(s)=a(mid) 
a(mid)=sav 

100 if( a(mid) .le.a(e) ) goto 110 
sav-a(mid) 
a(mid)=a(e) 
a(e)=sav 

110 if( a(s).le.a(mid) ) goto 120 
sav=a(s) 
a(s)=a(mid) 
a(mid)-sav 

120 sav=a(s+l) 
a(s+l)=a(mid) 
a(mid)-sav 
return 
end 

c************************************************************** 
c SUB R 0 UTI N E PAR TIT ION 
c************************************************************** 

subroutine PARTI (s,e,part) 
dimension a(16384),lr(512,3),itime(144) 
$shared a,itime,lr,n,m,nproc 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77 : 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112 : 
113: 
114: 
115: 
116 : 
117: 
118 : 
119 : 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 

100 
120 

130 

110 

c 

integer s,e,part 
call MEDIAN (s,e) 
1-s+1 
j-e 
v-a(i) 
if( j.le.i ) goto 110 

i-i+1 
if( a( i) .It.v 
j-j-1 
if ( a ( j ) . gt. v 
t=a(i) 
a ( i ) =a ( j ) 
a(j)=t 
goto 100 
t=a(i) 
a(i)=a(j) 
a(j)-a(s+l) 
a(s+l)-t 

go to 120 

goto 130 

419 

part-j 
END OF THE PARTITIONNING PROCESS. 

return 
end 

c**~************************************************** ********* 
c SUB R 0 UTI N E QUI C K S 0 R T 
c************************************************************** 

c 
100 

110 
c 
c 

140 

120 

subroutine QUICK (s,e) 
dimension a(16384) 
dimension 1r(512,3),itime(144),stk(30) 
integer s,e,lr,stk,p 
$shared a,itime,lr,n,m,nproc 
p-3 

REPEAT UNTIL P - 1 ). 
continue 
if ( e+1-s .gt. m ) go to 110 

if ( e+1-s.gt.1 ) call INSERT (s,e) 
p=p-2 
s=stk(p) 
e-stk(p+1) 
goto 120 
call PARTI (s,e,j) 

THE LARGEST OF THE 2 SUB-SET IS PUSHED 
IN THE STACK FOR FURTHER PROCESSING. 

if( j-s.ge.e-j ) go to 140 
stk(p)=j+1 
stk(p+1)=e 
e=j-1 
p=p+2 
goto 120· 
continue 
stk(p)=s 
stk(p+1)-j-1 
s=j+1 
p=p+2 

if( p.ne.1) goto 100 
return 
end 

c************************************************************** 
c SUB R 0 UTI N E U P D ATE 
c************************************************************** 

subroutine UPDAT (lev) 
dimension a(16384),lr(512,3),itime(144),slr(512,3) 
integer slr 



133 : 
134 : 
135 : 
136: 
137 : 
138 : 
139 : 
140: 
141: 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 
196: 
1971 
198: 

100 

$shared a,itime,1r,n,m,nproc 
do 100 i-1,lev 
slr(i,1)-lr(i,1) 
slr(i,2)-lr(i,2) 
slr(i,3)-lr(i,3) 

do 120 i-1,lev 
lr(2*i-1,1)-slr(i,1) 
lr(2*i-1,2)-slr(i,3)-1 
lr(2*i,1)-slr(i,3)+1 

120 lr(2*i,2)=slr(i,2) 
return 
end 

420 

c************************************************************** 
cM A I N PRO G R A M 
e************************************************************.* 

dimension a(16384),lr(512,3),itime(144) 
integer l,r,lr 
$shared a,itime,lr,n,m,nproc 
$usepar 
call nprocs (nproc) 

c INITIATION OF SOME VARIABLES 
read(*,*)n,m,npaths 
1-1 

c THE ARRAY A IS GENERATED RONDOMLY. 
x-ran(-l) 
do 50 i-1,n 

50 a(i)-ran(l) 
c STRAT TIMING OF THE PARALLEL ALGORITHM. 

$doall 60 
call timest 

60 $parend 

level-O 
lr(l,l)-l 
lr(l,2)-n 

c REPEAT UNTIL THE NUMBER OF NODES .IS GREATER THAN NPROC 
100 continue 

lev2-2**level 
$dopar 110 ip-1,lev2 

l=lr(ip,1) 
r=lr(ip,2) 

110 $parend 

call PART! (l,r,j) 
lr(ip,3)-j 

C UPDATE THE LR TABLE. 
call UPDAT (lev2) 
level=level+1 
lev2-2**level 

if (lev2.lt.npaths) go to 100 
$dopar 130 ip=1,lev2 

l=lr(ip,l) 
r-lr(ip,2) 
call QUICK (l,r) 

130 $parend 
c STROP TIMING 

$doall 150 
call timout (itime) 

150 $parend 
call printt (itime) 
write(*,*)npaths 



199: 
200: 
201: 
202: 
203: 

500 

do 500 i~1,n-1 
if( a(i) .gt.a(i+1)) 

continue 
$stop 
$end 

421 
write(*,*)' I11 ERROR Ill' 



1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 422 

*** Program 6.2 *** c 
c 
c 
c 

PARALLEL QUICKSORT-MERGE ALGORITHM 

c The original set is divided into p subsets of niP elements. 
c Every subset is sorted using the SQ. Once all the p paths 
c have completed the p subsets are the merged together. 
c the number of subset could be P or more than p • It is 
c selected through the var npaths. 

e**·*·**·*·**·**************************·******·*************** 
c SUB R 0 UTI N E MER G E 
c************************************************************** 

subroutine MERGE ( sl,e1,s2,e2) 
dimension a(16384),c(16384),itime(144) 
integer sl,e1,s2,e2 
$shared a,c,itime,n,m,nelem,np 

i-s1 
j-s2 
k-s1 

100 if( i.gt.e1.or.j.gt.e2 ) goto 110 
if ( a(i).ge.a(j)) goto 120 

c(k)=a(i) 
i=i+1 
go to 130 

120 c(k)=a(j) 
j-j+1 

130 k=k+1 
go to 100 

110 continue 
if(i.le.e1) go to 140 

142 if( j.gt.e2) go to 144 

144 continue 
go to 150 

c(k)-a(j) 
k-k+1 
j-j+1 
goto 142 

140 if( i.gt.e1) go to 146 
c(k)-a(i) 
k-k+1 
i-i+1 
goto 140 

146 continue 
150 continue 

i-sI 
160 if ( i.ge.k ) goto 170 

170 continue 
return 
end 

a(i)=c(i) 
i-i+1 
go to 160 

c********************************************~******** ********* 
c SUB R 0 UTI N E INS E R T ION S 0 R T 
c************************************************************** 

subroutine INSERT ( s,e) 
dimension a(16384),c(16384),itime(144) 
integer s,e 
$shared a,c,itime,n,m,nelem,np 
do 100 i=s+l,e 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115: 
116 : 
117 : 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 

110 

v-a(i) 
j-i 

if( j.1e.s.or.a(j-1).le.v) go to 120 
a(j)-a(j-1) 
j~j-l 
goto 110 

120 a(j)-v 
100 continue 

return 
end 

423 

c************************************************************** 
c SOU B R 0 UTI N E MED I A N 0 F THE T H R E E 
e************·************************************************* 

subroutine MEDIAN (s,e) 
dimension a(16384),itime(144),c(16384) 
$shared a,c,itime,n,m,ne1em,np 
integer s,e 

c THE PARTITIONNING ELEMENT IS THE MEDIAN OF THE THREE. 
mid-(s+e)/2 
if( a(s).le.a(mid) ) goto 100 

sav-a(s) 
a(s)-a(mid) 
a(mid)-sav 

100 if( a(mid).le.a(e) ) goto 110 
sav-a(mid) 
a(mid)-a(e) 
a(e)-sav 

110 if( a(s).le.a(mid) ) goto 120 
sav-a(s) 
a(s)-a(mid) 
a(mid)-sav 

120 sav-a(s+l) 
a(s+l)-a(mid) 
a(mid)-sav 
return 
end 

e******·************************************************* •• **** 
c SUB R 0 UTI N E PAR TIT ION 
e****************·***************************************.***** 

100 
120 

130 

110 

c 

subroutine PART I (s,e,part) 
dimension a(16384),itime(144),c(16384) 
$shared a,c,itime,n,m,ne1em,np 
integer s,e,part 
call MEDIAN (s,e) 
i=s+l 
j=e 
v-a(i) 
if( j.1e.i ) go to 110 

i=i+1 
if( a(i).lt.v 
j=j-1 
if( a(j).gt.v 
t=a(i) 
a(i)=a(j) 
a(j)=t 
go to 100 
t=a(i) 
a(i)=a(j) 
a(j)=a(s+l) 
a(s+l)=t 
part=j 

goto 120 

goto 130 

END OF THE PARTITIONNING PROCESS. 



133 : 
134: 
135: 
136 : 
137 : 
138 : 
139 : 
140: 
141: 
142: 
143: 
144: 
145: 
146 : 
147: 
148: 
149: 
150: 
151: 
152: 
153 : 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: . 
177: 
178: 
1791 
1801 
1811 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191; 
192: 

193; 
194: 
195: 
196: 
1971 

return 
end 

424 

e******·***********·*·*************************·***********.*** 
c SUB R 0 UTI N E QUI C K S 0 R T 
e*·****·**********·*·**·*********************·***·**·********** 

subroutine QUICK (s,e) 
dimension a(16384),c(16384) 
dimension itime(144),stk(30) 
integer s,e,stk,p 
$shared a,c,itime,n,m,nelem,np 
p-3 

c REPEAT UNTIL ( P = 1 ). 
100 continue 

if ( e+1-s .gt. m ) go to 110 
if ( e+1-s.gt.1 ) call INSERT (s,e) 
p=p-2 
s=stk(p) 
e=stk(p+1) 
go to 120 

110 call PARTI (s,e,j) 
c THE LARGEST OF THE 2 SUB-SET IS PUSHED 
c IN THE STACK FOR FURTHER PROCESSING. 

if( j-s.ge.e-j ) goto 140 
stk(p)aj+1 
stk(p+1)=e 
e=j-1 
pap+2 
goto 120 

140 continue 
stk(p)-s 
stk(p+1)=j-1 
s=j+1 
p-p+2 

120 if( p.ne.1) gato 100 
return 
end 

c************************************************************** 
c MAIN PROGRAM 
c*************************************************************. 

dimension a(16384),itime(144),c(16384) 
$shared a,c,itime,n,m,nelem,np 
$usepar 

c INITIATION OF SOME VARIABLES 
read(*,*)n,m,npaths 
nelem=n/npaths 

C THE ARRAY AIS GENERATED RONDOMLY. 
xa ran(-l) 
do 50 i a 1,n 

50 a(i)=ran(l) 
c STRAT TIMING OF THE PARALLEL ALGORITHM. 

$doall 60 
call timest 

60 $parend 

c DIVIDE THE ORIGINAL ARRAY INTO NPATHS SUB-ARRAYS AND 

C 
C 

FORK NPATHS. EACH PATH PERFORMS THE SEQUENTIAL 
QUICKSORT ALGORITHM. 

$dopar 100 ip-1,npaths 
isa (ip-1)*nelem+1 
ie=is+ne1em-1 



198: 
199: 
200: 100 
201: c 
202: 
203: 
204: 110 
205: 
206: 
207: 
208: 
209: 
210: 
211: 
212: 130 
213: 
214: 
215: 
216: 120 
217: c 
218: 
219: 
220: 150 
221: 
222: 
223: 
224: 
225: 500 
226: 
227: 

$parend 

if( ip.eq.npaths) ie-n 
call QUICK (is,ie) 

PARALLEL MERGING 

np-npaths/2 
if (np.lt.l) goto 120 
$dopar 130 ip=l,np 

isl-2*(ip-l)*nelem+l 
iel-isl+nelem-l 
is2=(2*ip-l)*nelem+l 
ie2~is2+nelem-l 
if (ip.eq.np) ie2-n 
call MERGE (isl,ie1,is2,ie2) 

$parend 
np=np/2 
nelem-nelem*2 
go to 110 
continue 

$doall 150 
STOP TIMING 

call timout (itime) 
$parend 
call printt (itime) 
write(*,*)npaths 
do 500 i=l,n-l 

425 

if (a(i).gt.a(i+l» write(*,*)' I11 ERROR Ill' 
continue 
$stop 
Send 



1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 
c 
c 
c 
c 

426 

*** Program 6.3 *** 

PARALLEL BOUNDED-PARTITIONED SORTING ALGORITHM 

c The original set is partitioned into P sub-sets in parallel 
c p+1 elements,a(l), a(nelem), ••• a(i*nelem) •.. a(n),are selected 
c and sorted. If processors are number from 1 to P and if 
c every processor ip picks all elmts that lay between U(ip-1) 
c and U(ip) then the P subsets are surely independent and 
c can be sorted in parallel. however there is only one drawback 
c which is can affect the overall performance is that at the 
c sorted P subsets are to copied back in the original set only 
c when all the all P processors have completed sorting their 
c sub-sets. 
c Number of Paths must be greater than 1. 

c******************************************************* •• ***** 
c SUB R 0 UTI N E INS E R T ION S 0 R T 
e**·*************·****************************·**************** 

110 

subroutine INSERT ( s,e) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
integer s,e 
do 100 i a s+1,e 
vac(i) 
j-i 

if( j.le.s.or.c(j-1).le.v) goto 120 
c(j)=c(j-1) 
j=j-1 
goto 110 

120 c(j)-v 
100 continue 

return 
end 

e***********************************************·************** 
c SOU B R 0 UTI N E MED I A N 0 F THE T H R E E 
e*******·****************************************************** 

subroutine MEDIAN (s,e) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
integer s,e 

c THE PARTITIONNING ELEMENT IS THE MEDIAN OF THE THREE. 
mid-(s+e)/2 
if( c(s).le.c(mid) ) go to 100 

sav=c(s) 
c(s)=c(mid) 
c(mid)=sav 

100 if( c(mid).le.c(e) ) go to 110 
sav=c(mid) 
c(mid)=c(e) 
c(e)-sav 

110 if( c(s).le.c(mid) ) go to 120 
sav-c(s) 
c(s)ac(mid) 
c(mid)-sav 

120 sav-c(s+l) 
c(s+l)-c(mid) 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110 : 
111: 
112 : 
113 : 
114 : 
115: 
116 : 
117: 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130 : 
131: 
132: 

c(mid)-sav 
return 
end 

427 

c************************************************************** 
c SUB R 0 UTI N E PAR TIT ION 
c************************************************************** 

100 
120 

130 

110 

c 

subroutine PART I (s,e,part) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
integer s,e,part 
call MEDIAN (s,e) 
i-s+1 
jze 
v=c(i) 
if( j.le.i ) goto 110 

return 
end 

i=i+1 
if( c(i).lt.v 
j=j-1 
if( c(j) .gt.v 
t=c(i) 
c(i)=c(j) 
c ( j )-t 
go to 100 
t=c(i) 
c(i)=c(j) 
c(j)=c(s+l) 
c(s+l)-t 
part=j 

go to 120 

goto 130 

END OF THE PARTITIONNING PROCESS. 

c************************************************************** 
c SUB R 0 UTI N E QUI C K S 0 R T 
c****~************************************************ ********* 

subroutine QUICK (s,e) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
dimension stk(30) 
integer s,e,stk,p 
p=3 

c REPEAT UNTIL ( P = 1 ). 
100 continue 

if ( e+1-s .gt. m ) go to 110 
if ( e+1-s.gt.1 ) call INSERT (s,e) 
p=p-2 
s=stk(p) 
e=stk(p+1) 
goto 120 

110 call PARTI (s,e,j) 
c THE LARGEST OF THE 2 SUB-SET IS PUSHED 
c IN THE STACK FOR FURTHER PROCESSING. 

if( j-s.ge.e-j ) goto 140 
stk(p)=j+1 
stk(p+1)-e 
e=j-1 
p=p+2 
go to 120 

140 continue 



133: 
134: 
135: 
136: 
137: 
138: 
139 : 
140: 
141 : 
142: 
143: 
144 : 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
.183 : 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 
196: 
197: 
198: 

120 

stk(p)=s 
stk(p+1)zj-1 
s-j+1 
p~p+2 

if( p.ne.1) go to 100 
return 
end 

428 

e*************·*·**···**··*********··****·····**·*********.*.** 
c M A I N PRO G R A M 
e*·*****·*********·*··******·****·****·****····**···*·*** •• ***. 

dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,ne1em,np,npa,dem,len 
$region cr 
common /CCCC/ c 
integer slen 
$usepar 

c INITIATION OF SOME VARIABLES 
read(*,*)n,m,npaths 

c Name the processors from 1 ••• nproc 
nproc-O 
$doall 100 

$enter cr 
nproc=nproc+1 
ip=nproc 

$exit cr 
100 $parend 

nelem=n/npaths 
c THE ARRAY A IS GENERATED RONDOMLY. 

x-ran(-l) 
do 110 i-l,n 

110 a(i)-ran(l) 
c START TIMING OF THE PARALLEL ALGORITHM. 

$doall 120 
call timest 

120 $parend 

c Define p+1 elements. (l+ip*n/npaths) 
dem(l)-a(l) 
do 130 ii-2,npaths 

ik-(ii-1)*nelem 
dem( ii )=a( ik) 

130 continue 
dem(npaths+1)-a(n) 

c Sort dem array. 
do 140 ii=l,npaths+l 
v=dem( ii) 
ij-ii 

150 if( ij.le.l.or.dem(ij-1).le.v) goto 160 
·dem(ij)=dem(ij-l) 
ij=ij-l 
go to 150 

160 dem(ij)=v 
140 continue 

slen-1 
np=O 
npa=npaths 

170 if( npaths.le.O) go to 180 
$doall 190 

Ul=dem(np+ip) 
U2=dem(np+ip+l) 



199: c 
200: 
201: 
202: c 
203: 
204: 
205: 
206: 
207: 
208: 220 
209: 210 
210: 
211: 200 
212: 
213: c 
214: 
215: 
216: 
217: 
218: 
219: 260 
220: 250 
221: 
222: 240 
223: c 
224: 
225: 
226: 
227: 
228: 
229: 280 
230: 270 
231: 230 
232: 
233: 
234: 
235: c 
236: 
237: 190 
238: 
239: c 
240: 
241: 
242: 290 
243: 
244: 
245: 
246: 
247: 
248: 
249: 310 
250: 300 
251: 
252: 
253: 
254: 
255: 180 
256: c 
257 : 
258: 
259 : 
260: 
261: 
262: 
263: 
264: 330 

$parend 

429 

pick all the elements that lay between U1 and u2 
ik-O 
if(np+ip.ne.1) goto 200 

Case when ip - 1. 
do 210 ii=l,n 

v=a( ii) 
if (.not.(v.1e.U2)) goto 220 

ik=ik+1 
c(ik)-v 

continue 
continue 
goto 230 

continue 
if( np+ip.ne.npa) go to 240 

Case when ip - NPATH 
do 250 ii a 1,n 

v=a( ii) 
if (.not.(U1.lt.v)) go to 260 

ik=ik+1 
. c(ik)-v 

continue 
continue 
go to 230 
continue 

Case when ip 4 1 and nproc. 
do 270 ii a 1,n 
v=a( ii) 
if(.not.(U1.lt.v.and.v.le.U2)) goto 280 

ik-ik+1 
c(ik)-v 

continue 
continue 

continue 
is-1 
ie-ik 
len(ip,l)-ik 

save the number of elements picked in len 
call QUICK (is,ie) 

copy back all the sorted elements (is,ie) 
len(1,2)=slen 
do 290 ii-2,nproc 

len(ii,2)-len(ii-1,1)+len(ii-1,2) 
slen=len(nproc,1)+len(nproc,2) 

$doall 300 
ik=len(ip,2)-1 
ie-len(ip,l) 
do 310 ii=l,ie 

b( ik+ii )=c( ii) 
$parend 

npaths=npaths-nproc 
np=np+nproc 
go to 170 
continue 

copy in parallel b into a 
nelem=n/nproc 
$doall 320 

is=(ip-1)*nelem+1 
ie-is+nelem-1 
if(ip.eq.nproc) ie=n 
do 330 ii-is,ie 

a (ii )=b( ii) 
continue 



265: 320 
266: c 
267: 
268: 
269: 340 
270: 
271: 
272: c 
273: 
274: 
275: 500 
276: 
277: 

$parend 
stop 

$doall 340 
call 

timing for the sorting phase. 

timout (itime) 
$parend 
call printt(itime) 
write(*,*)npaths 

check for correctness 

430 

do 500 i~l,n-l 
if(a(i).gt.a(i+l)) write(*,*)i,i+l,a(i),a(i+l) 

continue 
$stop 
$end 



1: 
2: 
3: 

c 
c 

431 

*** program 6.4 *** 
4: c 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37 : 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46.: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

c 
c 

PARALLEL RANGE PARTITIONED SORTING ALGORITHM 

c If the range la,b] is known then the set is partionned into P 
c sub-sets producing better distribution than the PBPS.pf 
c If processors are number from 1 to P and if 
c every processor ip picks all elements that lay between 
c a+(ip-1)*(b-a)/p and a+ip*(b-a)/p then p independent subsets 
c are obtained. These p subsets can be sorted in parallel by p. 
c However there is only one drawback which is going to affect 
c the overall performance . 
c the p subsets are to copied back to the original array. 

c************************************************************** 
c SUB R 0 UTI N E INS E R T ION S 0 R T 
e************************************************************** 

110 

subroutine INSERT ( s,e) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
integer s,e 
do 100 i-s+1,e 
v-c(i) 

if( j.le.s.or.c(j-1).le.v) go to 120 
c(j)=c(j-1) 
j=j-1 
go to 110 

120 c(j)-v 
100 continue 

return 
end 

c************************************************************** 
c SOU B R 0 UTI N E MED I A N 0 F THE T H R E E 
c************************************************************** 

subroutine MEDIAN (s,e) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
integer s,e 

c THE PARTITIONNING ELEMENT IS THE MEDIAN OF THE THREE. 
mid=(s+e)/2 
if( c(s).le.c(mid) ) goto 100 

sav-c(s) 
c(s)=c(mid) 
c(mid)=sav 

100 if( c(mid) .le.c(e) ) goto 110 
sav-c(mid) 
c(mid)=c(e) 
c(e)=sav 

110 if( c(s).le.c(mid) ) go to 120 
sav=c(s) 
c(s)-c(mid) 
c(mid)-sav 

120 sav=c(s+l) 
.c(s+l)=c(mid) 
c(mid)=sav 
return 



67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93 : 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110 : 
111: 
112 : 
113: 
114 : 
115: 
116: 
117 : 
118: 
119: 
120: 
121: 
122: 
123: 
124 : 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 

end 
432 

c************************************************************** 
c SUB R 0 UTI N E PAR TIT ION 
c******************************************************.**.*.*. 

subroutine PARTI (s,e,part) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
integer s,e,part 
call MEDIAN (s,e) 
i-s+1 
j-e 
vRc(i) 

100 if( j.1e.i ) go to 110 
120 i-i+1 

if( c(i).lt.v goto 120 
130 j-j-1 

if( c(j).gt.v go to 130 
t=c(i) 
c(i)-c(j) 
c(j)=t 
goto 100 

110 t=c(i) 
c(i)-c(j) 
c(j)=c(s+l) 
c(s+l)-t 
part-j 

c END OF THE PARTITIONNING PROCESS. 
return 
end 

c************************************************************** 
c SUB R 0 UTI N E QUI C K S 0 R T 
e******··***·*·***·**************·*···*·****·****··***********. 

subroutine QUICK (s,e) 
dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
common /CCCC/ c 
dimension stk(30) 
integer s,e,stk,p 
p-3 

c REPEAT UNTIL ( P - 1 ). 
100 continue 

if ( e+1-s .gt. m ) goto 110 
if ( e+1-s.gt.1 ) call INSERT (s,e) 
p=p-2 
s=stk(p) 
eRstk(p+1) 
go to 120 

110 call PARTI (s,e,j) 
c THE LARGEST OF THE 2 SUB-SET IS PUSHED 
c IN THE STACK FOR FURTHER PROCESSING. 

if( j-s.ge.e-j ) goto 140 
stk(p)=j+l 
stk(p+1)=e 
e=j-1 
p-p+2 
go to 120 

140 continue 
stk(p)=s 
stk(p+1)=j-1 



133: 
134: 
135: 
136 : 
137: 
138: 
139: 
140 : 
141: 
142 : 
143: 
144: 
145: 
146: 
147: 
148 : 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174 : 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 
196: 
197: 
198: 

120 

s-j+1 
p-p+2 

if( p.ne.1) go to 100 ' 
return 
end 

433 

c************************************************************** 
c M A I N PRO G R A M 
c*************************************r************************ 

dimension a(16384),itime(144),c(16384),dem(65),len(10,2) 
dimension b(16384) 
$shared a,b,itime,n,m,nproc,nelem,np,npa,dem,len 
$region cr 
common /CCCC/ c 
integer slen 
$usepar 

c INITIATION OF SOME VARIABLES 
read(*,*)n,m,npaths 

c Name the processors from 1 •.• nproc 
nproc-O 
$doall 100 

$enter cr 
nproc=nproc+1 
ip=nproc 

$exit cr 
100 $parend 

nelem=n/npaths 
c THE ARRAY A IS GENERATED RONDOMLY. 

x-ran(-l) 
do 110 i-1,n 

110 a(i)-ran(l) 
c START TIMING OF THE PARALLEL ALGORITHM. 

$doall 120 
call timest 

120 $parend 

c The range is supposed to be known and it is [0,1) 
dem(l)-O.OO 
do 130 ii-2,npaths 

dem(ii)-(ii-1)*1.00/npaths 
130 continue 

dem(npaths+1)=1.00 

slen-1 
np=O 
npa=npaths 

170 if( npaths.le.O) goto 180 
$doall 190 

U1-dem(np+ip) 
U2=dem(np+ip+1) 

c pick all the elements that lay between U1 and u2. 

280 
270 

c 

ik-O 

is-1 

do 270 ii-l,n 
v=a( ii) 
if(.not.(U1.lt.v.and.v.le.U2)) goto 280 

ik-ik+l 
c(ik)-v 

continue 
continue 

ie-ik 
len(ip,l)=ik 

save the number of elements picked in len 
call QUICK (is,ie) 



199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211: 
212: 
213: 
214: 
215: 
216: 
217: 
218: 
219: 
220: 
221: 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231: 
232: 
233: 
234: 
235: 
236: 
237: 
238: 
239: 

190 

c 

290 

310 
300 

180 
c 

330 
320 
c 

340 

c 

500 

$parend 

copy back all the sorted elements (is,ie) 
len(1,2)-slen 
do 290 ii-2,nproc 

len(ii,2)-len(ii-1,1)+len(ii-1,2) 
slen-Ien(nproc,1)+len(nproc,2) 

$doall 300 
ik-Ien(ip,2)-1 
ie-Ien(ip,l) 
do 310 ii-1,ie 

b( ik+ii )-c( ii) 
$parend 

npaths-npaths-nproc 
np-np+nproc 
go to 170 
continue 

copy in parallel b into a 
nelem-n/nproc 
$doall 320 

is-(ip-1)*nelem+1 
ie-is+nelem-1 
if(ip.eq.nproc) ie-n 
do 330 ii-is,ie 

a( ii )-b( ii) 
continue 

$parend 
stop timing for the sorting phase. 

$doall 340 
call timout (itime) 

$parend 
call printt(itime) 
write(*,*)npaths 

check for correctness 

434 

do 500 i-1,n-1 
if(a(i).gt.a(i+1)) write(*,*)' I11 ERROR2 Ill' 

continue 
$stop 
$end 



Appendix B 

SUMMARY OF THE OCCAM LANGUAGE 



435 

In c:xx::AM pr=esses are connected to form =t systems, each 

pr=ess can be regarded as a black box with an internal state which 

can communicate with other processes via point to point 

communication channels. The processes themselves are finite. Each 

process starts, performs a number of actions then terminates. An 

action may be a set of parallel processes to be performed at the 

same time. As a process is itself composed of processes which may 

themselves be executed in parallel, a process allows internal 

ooncurrency which varies with time. 

Pl:oc es 

All processes are constructed from three primitive processes, 

assigrunent, input and output. 

Assignment: An assignment is indicated by the symbol :=, for 

example, v:=e sets variable v to the value of the 

expression e and then terminates. 

Input: 

Output: 

An input is indicated by the symbol ?, for example, c?x 

inputs a value from a channel c assigning it to x and 

then terminating. 

An output is indicated. by the symbol ! and c!e outputs 

the expression e to channel c, and then terminates. 

A pair of concurrent processes communicate using a one way channel 

connecting the two processes. One process outputs a message to the 

channel, the other process inputs the message from the channel. A 

particular prooess can be ready to communicate on one or more of its 

channels any time between its start and termination, but a 

oommunication only takes place when both it and the process sharing 



436 

one of its channels is ready. Where a number of =nnected processes 

are ready simultaneously communication can occur in parallel. 

0Xlstructs: 

A number of processes can be combined to fonn a construct which is 

itself a process and can be used as a component for other 

constructs. Each component process is indented by two spaces from 

the left hand margin indicating which construct it is part of. There 

are only four basic construct types: sequential, parallel, 

conditional and al ternati ve. 

SEtl: is the keyword f= a sequential, construct denoted 

sm 
Pl 

P2 

P3 

where the component processes Pl, P2, P3, ••• are executed in strict 

sequence with process Pi finishing before Pi +1 starts and after Pi - l 
terminates. Sequential constructs are similar to· programs written in 

ocnventional programming languages. 

PAR: is the keyword for a prallel construct of the form 

PAR 

Pl 

P2 

P3 

••• 



437 

and in =ntrast to SEQ, here all the component pr=esses P1, P2, P3, 

, •• are executed =ncurrent1y. The PAR =nstruct terminates when all 

the component pr=esses have finished. 

IF: is the key\'X)rd for a conditional =nstruct with the appearance 

IF 

condition 1 

P1 

condition 2 

P2 

'lhls means that P1 is executed if condition 1 is true, otherwise P2 

if condition 2 is true, etc. Notice the strict sequential ordering 

of tests. Only one of the processes Pi is executed and the IF 

=nstruct terminates when the pr=ess finishes. 

ALT: is the keyword for the alternative =nstruct 

ALT 

input 1 

P1 

input 2 

P2 

... 

This construct waits until one of input 1, input 2, input 3, ..• is 

ready. If input 1 is ready first, input 1 is performed and on 

completion P1 is executed. Similarly if input i is ready first 

input i is performed and Pi executed. Only one of the inputs is 



438 

performed and its corresponding process executed before the 

construct terminates. If more than one input becomes ready at the 

same time the one executed is chosen arbitrarily. 

Repeti ticn: 

There is only one explicit construction for repetition denoted by 

WHILE condition 

P 

which repeatedly executes process P until the value of the condition 

is false. Observe that P itself can be a composition of sequential 

and parallel constructs. 

Replicaticn: 

A replicator is used with a constructor to replicate the component 

process a number of times. With SEQ a stsndard for loop 

SEQ i=[O FOR n] 

P 

is created executing process P sequentially n times. When used with 

PAR an array of concurrent processes with the form 

PAR i=[O FOR n] 

Pi 

is created such that n similar processes PO' PI' .•• , Pn - l are 

executed in parallel. Notice that i=O(I)n-1 not n, thus if generally 

i[base FOR count] there are base+count-l values i takes starting 

with i=base. 



439 

Declaraticns: 

A declaration introduces a new identifier for use in the process 

that follows it, and defines the meaning the identifier will have 

within the process. If the new identifier is the same as one 

already in use, all subsequent occurrences of the identifier in the 

process will refer to the meaning of the most recent declaration. 

Declarations are of four basic types VAA, QIAN, DEF and PROC linked 

to a following process by a colon (:) at the last line of the 

declaration. The process follows on the next line at the same level 

of indentation as the keyword declaration. For example: 

VAA x: 

P 

declares variable x to be used in process P, and 

QIAN C: 

P 

defines a channel C to be used in communication for P. A variable 

vector declaration introduces an identifier to be used as a vector 

of variables, viz: 

VAA list [16]: 

P 

for a vector named list of 16 variables indexed as list[O], list[l], 

, .• list [15]. Likewise a channel vector declaration introduces a 

new identifier as a vector of channels for communicating between 

concurrent processes 



440 

CHAN C[n]: 

P 

DEF associates a name with a constant value, or with a table of 

constant values, e.g. 

DEF a=l, b=2: 

associating a with 1 and b with 2, using these identifiers within a 

process yields the associated values. 

The PROC declaration introduces an identifier to name the process 

which follows, indented, on the succeeding lines. The process is 

termed the named process and is itself followed by a process in 

which the named process will be used. The named process can have 

parameters which are declared with the declaration of the named 

process and are called formal parameters. The named process text 

will be substituted for all occurrences of the process name in 

subsequent processes, the var and chan variables substituted in 

place of the formal parameters are called actual parameters. For 

example, 

PROC buffer(CHAN in,out) = 

WHILE TRUE 

VM{ x 

SEY,J 

in?x 

out!x 

CHAN c,cl,c2 

PM{ 

buffer(cl,c) 

buffer(c,c2) 



441 

declares two buffer processes executed concurrently, buffer is the 

named process with formal channel parameters in and out. In the 

following process C,Cl,C2 are actual parameters and en execution the 

WHILE loop will be textual substituted for occurrence of the name 

buffer and C,Cl,C2 substituted for in and out respectively. The size 

of a vector is not specified in the formal parameters of a named 

process and different sized vectors may be used as actual parameters 

on different substitutions. In addition to the standard 

declarations VAR and GRAN, a VALUE parameter may also be used, as 

either an ordinary or vector formal parameter and cannJt be changed 

within a process bY assignment = input. 

Finally an identifier which is used but not declared in a named 

process is termed a free identifier. Nq free identifier in use when 

a named process substitution takes place must be the same as a 

variable already in use. The free variable then takes on the most 

recent incarnation of the variable at the point where the process 

substi tutien takes place. 

PI:ogLao FbImat: 

In OCCAM indentation from the left hand margin indicates program 

structure. Each process starts on a new line, at an indentation 

level indicated bY the following rules. 

Cl:rlst:ructs : 

The construct keyword (and the optional replicator) occupies the 

first line. Each of the component processes start on a new line and 

are indented bY two spaces more than the keyworo. 



442 

O:nli. t:!.cnal.s: 

'!he oondition expression occupies the first line, and the component 

process starts on the next line indented by two more spaces. 

Alt :irplts: 

The expression and its associated input occupy the first line and 

the component process starts on the next line indenting two more 

spaces. 

Dec1arat:i.a1s : 

Each declaration starts on a new line, at the same level of 

indentation as the process it prefixed, the final line of the 

declaration being terminated by a =1011. Blank lines can be inserted 

anywhere and are igoored. 

A construct can be broken to occupy more than one line, with line 

breaks occurring after comma, semicolon and before the second 

operand of an operator (requiring two operands). '!he cxntinued line 

must be more indented than the first line of the cxnstruct. 

O::iiile:d:s: 

Comments are deooted by Iblble hyphen (--) and terminate at the end 

of a line. All characters of a =mment are igoored, A =mment may 

follow an OCCAM construct on the same line or be on a line by 

itself. 

This summary of OCCAM is taken from INMOS [84,85] and implements 

'proto-OCCAM'. A more sophisticated version OCCAM 2 is now 

available providing Real, Integer, and Boolean types. We remark 

that the programming in this thesis was performed on the Sequent 

Balance 2000 machine under UNIX using Loughborough OCCAM as 



443 

implemented by R P Stallard. Appendix C discusses the Loughborough 

version of cx:::cAM and particularly its extensicns of proto-cx::x:::AM to 

allow real variables and rx:n-standard cx:::cAM features. We point out 

that the systolic programs listed in Appendix D where possible have 

avoided these rx:n-standard characteristics. 



Appendix C 

LOUGHBOROUGH OCCAM COMPILER 
VERSION 5.0 DOCUMENTATION 



Help tor running the occam oanpUer 

A so."..,., 'occam' tUe (oa::AIC and INIal are trad8\BJ'ks of the IltIlS crouP of 
cxrnpanles) rooet be of the form I·.OOC·, to ocmpUe it to tonn an 'a.out' 
oaunand fUe use the default options. For example to oanpUe 'lII,)'_firat.occ' :_ 

occam lII,)'_firat.occ 

An executable object ·a.out· i8 produced. As a ahortcut you can anlt the 
• . occ· affix &Dd just say 'occam my first'. the compUer wUI add OIl the 
affix tor you. -

It a program 18 spl1t into several fUes these ean be separately CODpUed and 
llnked together USing the 0CC8nI oanpUer and built In llnksr. 

Elt.ch prevloualy canpUed 0CC8nI program 18 specified ln the oaunand ltne 10 
the form '*.0' e.g_ ;-

...... main.occ oumerlcIlb.o screenllb.o 

'Ibis will ccmpUe the source of 'nain' and ltnk lt 10 wlth the pre ccmplled 
library occam fUes ·n .... rlcllb.occ· ·screeoltb.occ·. '!be -1 option 18 used 
to generate DeW versions of l1brary fUe objecte. 

Various switcb options are provlded. mainly for ccmpUer c!ebualng. Flap 
ean either be put sepaMLtely ('-11 -1') or together and 10 ""y order (,-111' 
·-gl·). '!be following switches ... y be ~fuI :_ • 

-g: 
occam -g fast.occ 

OnpUe the occam pr08nun aa before but run the reIN} ting program 1mnedlately 
(a oanpUe,load and 110 option). If flag opt1ons ...... epecified that apply to 
the run of the program these will be passed on as in • occam -gqc fast'. 

-1 : 
occam -1 """_llb 

Olnplle the program and produce object but do not llnk the object fUes 
together to produce an object program. 'lbi8 opt1on i8 used for bulding up 
ltbraries of routines or to cut down the oanpUation time for ccmpUing one 
long program. 

-0 : 

OlnpUe the program as nonIlllI but place the object program in the fHe 
'saverun' rather thIUI the default ·a.out·. Useful tor saving sever&! 
OCCIJII object fUes at the _ time. 

-x : 
occam -x old_fashioned.occ 

OlnpUe aooording to the strict IIIIIlO8 OCCIUD specUlcat1on. wr extensions 
(see fUe 'OCCIUDVersion') currently include :

Ilult1ple source fHe erose linking. 
DynanUc fea tures • 

...., : 

Variable PAR replicator oouats. 
Floating point arithmetlc. 

a.out -e 

IbJn the object program with CW'80r addresao.ble facillties enabled, the 
standard library procedures ·goto.x.y' and 'clear. screen , require the .... 
facUities. 

-<l: 0CC8nI -<l error yl'One 

OlnpUes the fUe as nonnaI but generates a symbol fUe ........ 11 (in thi8 
case it wuld be 'erroryrone.sYID'), this ls used by the run-time systeo to 
inspect the values ot variable8. 

"11: 
a.out "11 

Run the object program w1 thout produclng any ehLractera to the ecl"eell other 
than those output by the PI'08rat1 (unl...... cnu. c U88d). Thia eoabl .. ClCCaI1l 
programs to dlll!p output that can be proceseed by other occam programs. 

-Fand~: 
oocam -p DUD.ace 

'-P' Includes the floating point library routines to provide & simple ..... 1 
nunber arlthmetic capability. '-M' includes both the floating point and 
natheaatlcaI library routines to provide IIIlthEmatical library routlnes. 

-I : 

'Ibis provldes the features ot the I ...... proto-ocCIUD definition (see 
'occam yersloo') such &8 STOP and TIJ4l!:, it should be used where po6S1ble 
.... it Ts clooer to the occam-2 definltioo. 



FUll list of compiler option flags 

The full (often cryptic) range of switch opt10ns are as follows. Several 
swi tch flags can be given, in any order and e1 ther aepara tely or together. 

'!be mnEmOnic character giving the switch is highlighted by a capital letter. 
'!bey are divided into sections - user defined flags, and system defined 

options, which are selected by prefilling with '~'. 

User Flags 

-t 

-g 

-h 
-i 

-1 

-0 

'lbe next flag(s) are system flags - switch flag mode. 
Run the program with CUrsor addressable options enabled. 
'!be library routines 'clear,screen' and 'goto.x.y' need this flag set. 
If used for the c:cmpiler must also give the -g option. 
Produce object/run object for Execution tracing. 'lbe resulting object 
fUe is then run with the '-e' option. 'Ibis ut1lity is described 
in • tracerinfo' • 
Force full occam semantic cbeck on use ot varlables. 
A variable (not vectors though) can not be set within a PAR 
construct it the declaration is outside the PAR. 'Ibis applies 
equally to procedure calls that change global variables. 
Run the resulting object tile it compilat1on succeeded. 
'!be program Goes 1nmediately it ill ready to. 
Print out this 'lIelp' lnfonm.t1on: 
Force an Interrupt 1nmedia tely before start of execution -
1mnedlately displays the debug help menu. 'Ibis enables break and 
trace pointe to be setup prior to anything being executed. 
OJmpUe but do not link the occam source. Needed wen using 
multiple occam source Library files. 
Check that every channel Match properly on execution, channels can 
have only one input and one output process during execution. 
Produce an Cbject program with name given by the non-switch 
arg\lDent follOWing this swi tell. Enables you to choose an 
object fUe name other than 'a.out'. 
Run the program without outputting scme non occam program produced 
mess:ages - e.g. '<XX:AII Start Run'. Must give -g option as well 
'q' stands for (.\I1et. Useful when producing output to be piped 
or processed by other programs. 

"'fI Suppress the Warning messaGes frau the oaopUer - wen you hav 
seen these warnings once you may find it less irritating to suppre 
them on subsequent canpilations - does not affect error report 
or any other compiler actiOD, 

-x (» not penni t any local urr eXtensions in the source text, 
See 'occinfo' for in!onnation about these - for example recursio 
and EXTERNAL procedure definitions. Useful if moving an 
program for use on another occam canpUer system. 

-p Include the standard Floating point library routines. 
Provides routines to read or write floating point routines 
channels. 

-G Produce a symbol table fUe (with a!till '.sym') for use with the 'm' 
option in the dynamic debugger for symbol value examination. 

-I Penn1t the use of INMOS proto-occam version 2. 'Ibese changes include 
the use ot 'TIME' instead of 'NOW', the 'STOP' pr1m1tve and the use ot 
'Stopping IF' - an alternative without any 'mIlE oondit1ons will STOP. 

-L Use Long winded load, all the 'C' libraries are added at the last 
nmrnent rather than usinG the pre-llnked object, this may be usetul 1f 
a user occam/C library calls a 'C' routine that is not used in the 
occam run time system. See 'l1braryhelp' for I!X)re into. 

-N Include the Mathematical library and floating point routines. 
-0 Produce opt1mized object. May improve run time by 20$. 
-R Use Randanized schedulinG: when running the program - the same 

scheduler choices will not be made on separate executions. 
This gives non-determ1nistic execution and will be slightly elowe 
but may be IlOOful occasionally. 

-S (» not include the Standard I/O routines with the object. Thi 
library is included by default, there is no reason not to wan 
to include it unless you want to devise a totally new one. 

-T 'Ille next argunent is a Timing definition tile built by the 'timebulld' 
utility to be used in oonjuntion with the '-e' option , supplying '-T' 
autotntically selects '-e'. It this option is not selected the executi 
timings are taken fron the source library tile 't:lJnes'. Look at the 
'timerinto' help file for more details. 

-v The oaopiler will normally desist reporting errors and warnings after 
the first f1fty or so. w1 th this option all the errors will be 
reported. May produce Very Verbose output. 

-W Give \Taming messages about declarations that turn out not to hav 
been used at all. This may highliGht misspelt declaratIons o~ 
edstence ot no longer used procedures. I 

tl 
en I 

I 

I 

I 



System Flags 

-~ 

-t 

-v 

-A 

-C 

-D 

-H 
-L 

-x 

-y 

-z 

Switch back to expecting 'user' mode flag options, 
This means you can replace ~v by -$v'.IG. 
Enable Analysis of the usage of channels - this facility is still 
under test. 
Oleck the source occam tor syntax errors, but do Not produce any 
object data frm it. 
Print out the program in the fono just after it ..... Transformsc1. 
Ibt generallt useful as the program has changeel eo _. 
Give Verbose infonnation at each stage when running the canpUer -
will print out a more accurate description of the syStEm CC1IIIIlnda 
it is calling and all the fUes it aocesses. 
Aleo switches on a tull print out of the occam link iDfo_tion. 
Produce the object code ('C' or _ler) in a pel'lllUlent fUe 
eo that it can be inspecteel. 
Produce 'C' rather than assembler out",t fl'Qll the oceam oanpUer 
then OCIIIpUe and link it. There will be -.0 and *.c containing 
the object and canpUer generatecl source createcl in the directory; 
The 'C' and a_ler code produceel will be slmUar and there i. 
little point in producing 'C' III'Iless to .... ste time I (as the 'C' 
canpUation phase takes a long time). It the oanpUer is portecl to 
L non-VAX system then this optiPn will Lutalatically be aelectecl. 
SW! tch on variable name and line nlJDber lUapiog in the Cl _ler 
'object' fUe so that the object can be tieel in with the source. 
Undocumenteel feature under test. 
Produce an occam-'C' interface Library, the no tUes ending '-c..c' and 
'.occ' are linked together, the occam caD refer directly to the 'C' 
routines. 
Run the ccmpller showing the steps 1 t would execute but w1 thout 
actually doing anything - Uke '_n' 1n the UNIX 'aake' camand. Ueetul 
""en options start getting oanplicatecl. A Ib operation facUity. 
Undocumenteel feature under test. 
D> oot apply some Simplifying transfonuations on the program. These 
currently l'EIDOVe constructs wi th 00 processes in then and reclUtldant 
SEXl and PAR headers. These save .. mall amount of space and time 
at run and canpUe time aDd there is little point in turning off 
this option. 
Print out the procedures that have been defineel in the link fUes 
but has not been reterenced - detects eXtra procedures defined 
across fUes but not used. 
Produce the linker assembler out",t in a pemanent fUe rather than 
in.. tenporary tile on' Imp' • Enables the out",t fl'Qll the linker 
to be debugged. 
Get the linker to print out all the defiDitions it is told about. 

Description of the library routines 

Standard Library 

Provide oonroonly used routines to read and write to the keyboard and screen 
charmela. 'lbe routines are written iD. 'C' aod 00CI.rI a.nd use standard Cor 
'curses' I/O routines. There are &Iso gene,..l rout1.nes tor use to JaU58 or 
abort a prog ..... as well as to use the 'C' r&nd<n nlJDber routines. They are 
..nibble by default to all prog ...... unless the -S ccmpUer flag la used to 
""erride their inclusion. 

EX'rnlNAL PROC str.to.screen (VAWE s (» : 
Output the string s (a byte r.rray with byte 0 as the length). 
The Yohole string is gulranteed to be jrinted in ooe sequence, _ 
concurrent calls to atr.to.screen rill DOt 1Dterleave. 
Fquivalent to the program trapellt :-

PROC atr. to.screen (VAWE s ()) ~ 
~ n • (1 tor a [BYrE 011 

screen I s I BYrE n) : 

ElmllNAL PROC nlD. to.screen (VAWE D) 

OJtput a n\IDber to the screen. 'I'he n\lDber caD be slgnecl" and U8e8 the m.1nlmuD 
nlJDber of characters (DO leading apaces). Fquivalsnt to the 'C' language 
'printt (''%d'',n);' statoneot. 

£XTFllNAL PROC otr,to.ehan (CHAN e,VALUE 8 (J) 

Oltput the strlog 8 to a channel 'c'. 1be call tatr.to.chan (screen,"tredU ), 

le identical to 'str.to.sereen (tred)'. Useful tor 6tr1nc output to tl1es. 

EXTERNAL PROC n\lll.to.chaD (0lAN c,VALUE D) : 

OJtput ascU strinc tor the olJllber 'D' to cha.nDel ·c·. Uke 'str.to.chan' but 
for nunbers oot channels. 

£XTFllNAL PROC nUll. to. screen, f (VAWE n ,d) : 

Output a n\lllber to the'screen in a field of width 'd'. It the nunber is too 
bie tor the field the nlJDber is written out in full __ rdl_, tbe routine 
call nU1l.to.ecreeD.t (D.l) Is equiva.lent to nlD.to.ecreen (D). '!be I"OUtiDe uses 
the 'C' language prlntt fomat IDd mere n Is the field widtb. 



EXTElUIU. PIIOC soto ••• y (VALUE •• y) : 

Use the 'cursea' JB.Ckage to 1lDpla»ent.. cursor 'coto' facUlty. No error 
ebecklog Is nade that the move 18 witb1Jl the screen area. 1be x-axis t. &C1'088 
the se ....... and y;xls down. eo-onSloate (0.0) Is In the top left hand corner of 
the sc........ '!be first line Is used by the r... tllDo oyst ... to print ... """,ea. 

FXrFllNAL PRCC clear. sereea : 

Use curses to clear the ecreeft ,it cursor addresaable optl00 DOt used this 
will still try to clear the acreen ustnc the cur&ell ''at'' temcap defined 
string. 

EXTElUW. PRO:: ..... fl'Oll.key_rd (VAK .) 

Read & nlnber trao the keyboard and ass1cn to variable 'Q'. The routine Is 
not very sophisticated. It will read negatlye nuDbera (start '-') and Ignore 
any leading 'space' characters. The n..ooer must be followed by a non-dlglt. 
this character Is read by the routine and not avallabl. on a su~uent 
'Keyboard ? ch' process. There 18 no check that the nllDber 18 too biB tor the 
.uDber range. It will ezpect at lEIlst one digit otherwla. it wU1 give an error 
messaee· 
EX'rnlNAL I'IIlX: ..... traD.chan (OWl c.VAK .) : 

Read a nllDber tl'all a chanDel ·c·. It 'c' 10 the keybot.rd th18 I. equivalent 
to calling • ..... traD.keybot.rd·. 

I!X1'EllNAL I'IIlX: abort. program : 

Force the Pl"OCnm to abort execution.. An explanatory mear:aae 18 printed. 80 
that the cause will be _. 

ElC'J'fltNAL PRCC toree.bl"MJc. : 

Perform the same action &8 U 'C'I'RLo-C' _8 pressed. at the tenu1n&l. 'l'he user 
interface routines can then be nlft under the menu aelecUoa. facUity provided. 

EX'l'ElINAL PRO:: raDdaD (VALUE d.VAK n) : 

Return a __ randan nlJDber In the range 0 to d-1 by using the ·c· 
• randcro (). function In the variable •• 'Ille VALUE of d IllUSt not be ... ro. 
The sequence of raodan .... bers wUI be modified If the '-1\' run option 18 used. 

EXTElUW. PRO:: Inlt.randan (VALUE.) : 

Initialise the seed for the raodan nllDber generator tor subsequent call. to 
the procedure 'randaD'. Uses the 'C' l~ routine 'sl't.Ddca ()'. 

EJmllNAL PRO:: trace. value (VALUE .) : 

Print out the integer value of 'D' on the acreell with the preUx striae 
'Trace value : • - this makes deb4..g1ag .. Uttle euter. 

ElI'mVIAL PRO:: _ •• flle (VALUE path.name [).1lCCeS8 ().OWI lo.chan) : 

Connect the channel 'to.chan t to a UNIX tUe. The procedure Dl8t be prov1ded 
with the pathname of the tUe a. a string, Ilnd the aceese mode ("rot read 
&CCe8S ..... " write &ece8S."a" append. access). Subsequent input or output on 
·Io.char.· wUl fetch/r»t a single character from/to the file. Att8lpte to Inr»t 
past the end of fUe will receive the value -I. 

ElI'mVIAL PRO:: close.fUe (OWl lo.chan) : 

Cease connection of the cha ..... 1 with Its currently open file. 

EJmllNAL PRO:: _n.plpe (VALUE camand.name (J.access ().OWI lo.clw.n) 

Connect the channel '10.cha.D' to a UNIX pipe runnlDC carmand 'c::am».nd.name'. 
The procedure must be provided with the t!lIX camand name and • r' to read frail 
it, or 'w' to write to it). Subsequent Inpqt or output OD '10.chaD.' will 
fetch/put a single character fraG/to the file. Attempts to Inr»t jRSt the end 
of tUe will recelye the value -1. 

ElI'mVIAL PRO:: close. pipe (OWl lo.chan) 

Cease connection of the channel with Its currently active C01I'III..Dd. 

EXTmNAL PIIOC oyatal.cal\ (VALUE camand (). VAK DOd.) : 

EJcecute the UNIX oc::m'Iand contained In the striae 'CXIII1*nd' and return the 
value ln 'code' 'mUE it the CXI'D'I'&nd 8UCCeeded .. ithout error and. 'ALSE 
othenrlse. 

EXTmNAL PRO:: .. t.tlme .. (VALUE Inlt .... lue) : 

Set up the Intsrval timers ITIIIER REAL.ITDmI VIRTUAL to the gl_ atart 
value. 'Ihese are used tor t1m1ng seCtions of CXkIe on the VAX. Uses IseUt1JDerl 
call. Ibte that using 'WAIT' prlmltlye will reset the timer 00 lt can only be 
U80d tor olmple sections of code. It should also be noted that It tlma the 
whole progl'llll and oot a alngle occam process • 

EXTmNAL PRO:: get.real.tlmer (VAK secs.mlcro.secs) : 

Get the current elapsed timer values In seconds and III1croaeco"dd. TIme .. 
COWlt downw.rds and are not especially accurate. Uses ',etltlmer' call. 

EXTmNAL PIIOC cet.cr».tlmet (VAK secs.mlcro.secs) : 

Get the current executed a:u timer values I. secoodo and III1c~s. TIme ... 
count downwards and are DOt especially accurate. 



Ploo.tlnS Point Library 

Routines to perfonn floatlnS point Input/output. "!bey are available by 
glyl", the complier flag '-P' when Ilnkl'" aD oceom p"" ...... 

Floating point value can be &88lgned and traolll1tted yla _Is Just 
like DOmal integer values, see tbe fUe 'oceamversloa' tor detailS as to the 
I_e extensions Introduced to support .-. 

Input/OUtput Routloes 

EXTflVIAL mx: fp.nllD. to.ocreen (VALUE FLOAT f) 

Print out the Uoatioc point nUDber ID 'C' lancuac:e float tonrat '"Se. et" • If 
the nUllber la too _11 or too big the standard 'C' actlon _UI be taken. 

EXTflVIAL mx: fp.DUD.to.ocreeD.f (VALUE FLOAT f,VALUE _,d) : 

Print out the floating point n\lOOOr 10 'C' real fonaat t~.dttl. If the nunber 
la too small or tod big p~lems wl11 arise. 

EXTERNAL mx: (p.nlXD. to.ocreen.s (VALUE FLOAT t) : 

Print out the floating point n\Jllber ID 'C' real format "'k". 1111. wU1 uae 
the most appropriate tonat - exp:ment tom U necee.aary. 

EXTflVIAL mx: fp. n .... to.chan (OWl c, VALUE FLOAT t) : 

Write a nUllber to a _I. If channel I. 'ocreen' this 18 equivalent to 
'fp.DID.to.ocreen'. Ueoful for wrltlos data to fUes. 

EX'l'!ilINAL I'OOC fp.n .... frao.key_rd (VAK FLOAT f) : 

Read 1n a !loatlOC polnt nllnber. '1be n\Jllber la expected to begin with a dlclt 
or '.' (IndlcatlOS 0.), leading spaces are 1&nored. '!be n\l1lber ends OD a 
non-dlglt and this character will not be avaUable to su'*'l.usnt read_ fl'Qll the 
ke~ channel. '!be follow1OS are valid Input nUllbere foll.-cl by the 
Interpreted value for the Input. 

45.M (45.M) 0.0004 (0.0004) .0 (0.0) 1. (1.0) 124 (124.0) 

EXTERNAL mx: fp.nllD.fraa.chan (CIAII c,VAK FLOAT f) 

Rood a floatlOS point nUllber fJ'Ol a _1 'c'. If _1 le ~ thie 
la equivalent to ttp.D\D.trcm.keyboud'. 

lIt._tlcal routines fraD the UNIX '-laI' library. _ .. re Included by 
speclfyl", tbe '-11' flag. '!beY are all In slnele preclalOD .... tbo<J8Il 
double precision 'C' routines are called. 

EXTflVIAL mx: fp.sloe (VALUE FLOAT a, VAK FLOAT res) : 

RetUI'D. the alne of 'a' in 'rea'. An;lea are in rad1ane .. 

EXTflVIAL AlOe fp.coalne (VALUE FLOAT a, VAK FLOAT res) : 

Return the ccelne ot 'a' in 'res' .. Anal_ are 1n ndiana .. 

EXTflVIAL AlOe fp.arc.alne (VALUE FLOAT ... YAK FLOAT rea) : 

Return the arc elne ot 'a' iD ',.'. Analee are iD nd1.an8. 

EXTflVIAL mx: fp.are.coalne (VALUE FLOAT .. , VAK FLOAT res) : 

Return the arc coaloe ot 'a' ln 'ree'. ADc;lee are ln rad1ane. 

EXTflVIAL mx: fp.arc. tao (VALUE FLOAT a, YAK FLOAT reo) : 

Return the arc tancent ot 'a' ill 'ree'. Analee are lD ndJ.ans, 

EXTflVIAL mx: fp.exp (VALUE FLOAT .. , VAK FLOAT res) 

Return. to the power 'a' in 'rea'. 

EXTERNAL mx: fp.log (VALUE FLOAT .. , VAK FLOAT res) 

Hl.tural lop.rltlJ11 ot 'a' iD 'ree'. 

EXTflVIAL mx: fp.aqrt (VALUE P'UJAT a, YAK P'UJAT ree) 

Square root ot 'A' in 'ree', Returns aft occam error if' 'a' 1_ ne«&t1ve. 

.. .. 
'" 



'!be run time systEm 

As you might hope ""'en an occam program is executed it will follow the 
program execution until one of three things happeD. 

1 J '!be program terminates 
2 J CTIUr<: is pressed on the keyboard 
3J An error is detected. 

In the case of (2) and (3) a debug option will be displayed, this allows you 
to abort the program, ignore the interrupt (continue), and to restart the 
program ~in. Other options oontrol the '-e' trace outl"'t, provide a 'systeo' 
debug option (""'ich is only really useful to scmeoae who knows their way 
around the canpUer), aD option to specify which source tUe you want to debug 
and the 'screen an1Jmted debug'. 'Ibis later option should be ot IIXlSt use and is 
described 10 detall ln the next section. 

Errors cane 10 two types 'Fatal Errors' and just 'Errors', it is not p:>sslble 
(or wise) to continue execution after tbe fonuer, but the latter my be ignored 
if the sympt.cn is expec ted. 

'!be run time dlsplay debugger 

'Ibis utility that runs under the run time systeo enables users to look at the 
status of the processes during execution of a program. 

'!be utility requlres the use of a cursor addressLble termlnal. '!be systeo 
provides selective display ot the source tl1e(s) that were canpUed to form 
the program together with a column showing the currently existing processes 
OIl those particular 11nes ot the source tUe. 

When 10itially entered by pressing '~' the program execution will be 
halted, the execution can be restarted ln 'stepped mode' so that the display 
w1l1 be updated every OCC8J1\ scheduler action. 

Breakpoints and trace p:>ints can be added at selected line nunbers. Break 
p:>ints cause the debug dlsplay to be autanatically entered when any ot 
the process executes any of the source lines on which a break p:>lnt is set. 
Tra.ce p:>ints cause temp:>rary entry into the debug display before restnI.ng 
nomal execution after five secoods pause. 

It a file has been canpiled with the '-G' flag then the value ot occam 
variables and the status of channels can be pr1oted. Because an 0CC8lIl program 
can have several processes running with ditferent values to the same 
identifiers (e.g. within PAR n • [0 Fm 7J, 'n' has a difterent value tor eacb 
separate process) a slngle process must be selected as before this facUlty can 
be used. When selected a second window withln the debug display i8 opened and 
the values printed by the progl'8lll are placed wi thln it. 

Straightforward use ot the debug display w111 normlly entaU running a 
program and preSSing C'l.'IUr<: when a dubiOUS section ot code ls about to be 
executed and entering the debug dlsplay ('z' cam>and). 'lbereafter the CO'ImI.nds 
'p' to find the next process, 't' and 'b' might be used to see ""'er .... bouts 
the procese lS executing. '!be program can then be slngle stepped through 
USing the 'r' OCIm't8.ncl to start execution and. 's' oatmand to stop execution. 
Eventually exit ot the debug dlsplayer can be uade wlth the 'x' ocmnand. 

'I'here are two special nrkers that are used, ')' OD a lIne indicates the 
currently selected line and '-' the currently selected process. 

'!be ooamands where practical have been made simUar to those ln UNIX 'vl'. 
(UNIX Is a trad ..... rk ot A.T. r. T.). 

Avallable commands 

Moving about wi thln the rUe 

'I>- Move torward halt a page ot source text. 
'F- Nove to ..... rd a page ot source text. 
1 U- Nove backward halt a page ot source text. 
fll- Move backward a page of <lOurce text, 
:(nunber) - Move to glven line (number) ln tlle. 
k - (or t K) Move down one line. 
j - (or tJ) Move up one I1ne. 
I(string) - Find glven (strlng> in tile trom current posltlon. 
D - Flnd next strlng occurrence tor aatch strlng selected by '/' CQIIlIlnd. 
P - Flnd the next process ln the tlle. 

Trace/Breakp:>lnts 

b - Add breakp:>lnt at currently selected line. 
t - Add tracep:>lnt at currently selected line. 
d - Delete the trace/b ..... k p:>1ot at the selected line. 
c - Delete all the p:>lnts In the current fUe. 
e - Delete all the p:>1ots ln all the tUes. 
P - Prlnt process status ot the currently selected process 
o - lleselect the current debug occam process. 
S - Select the current debug occam process. 
N - Select next process on the same 11ne, it there are _eral processes that 

arc shown as executing on the same line then'S' will mke an arbltrary 
cholce, 'N' can be used to overrlde thls and step through the processes 
until the one that is desired ls selected. 

"" "" '" 



Symbol inspection 

m - Select a symbol to display, if no symbols have been selected before then 
the symbol window is opened and the value of the variable or the status of 
a channel. I 

11 - Repeat the previous 'm' ocmnand. To find the value of the same variab e 
name l13"-in. 

Eltecut10n oontrol 

~ : =r~e~:: ~~Iay it a debug process is selected the debug display will 
be re-entered every time that process is run, otherwise the debug display 
will be run each time any process ls run. 

> - Eltecute in single step mode. Only a single step is execu~. 
s - Stop the debug display troD running temporarUy atter a r or' x' . 

u - =diSPlay step interval (initial step interval i8 I), this pennlts 
the location of processes to be seen after 'n' steps rather than after 
eacb and every time it is executed. Not particularly usetul. 

" - Eltit display debugger, program will proceed normally untU a trace/breek 
point i8 found or 'tc' is pressed. 

X - Eltit to main " menu 80 that program restart,abort,fUe selection 
or system debug can be done. Used when you wish to debug a ditterent 
tUe or to set things going again after setting up bree.kpointe. 

Wiacellaneous 

? - Print out this help information. 
tU- (or tR) Redraw the current displayed info_Uon. 
1 - Butfer keyboard channel input text tor the program. 
o - Print overall data about the processes currently executing _ 

how many are ln each process status, stack use and clock time. 
V - D1aplay the oceam program's current screen output temporarlly 
v - Invoke the 'view' o::mm.nd on the occam source fUe (this is just like 

'vi' but with read only aecess to the fUe - 'Ibis can be used to provide 
IJJ)re ~rful string search facUities when debugging. 

D1splay key 

'!be colunn between the line number and the text ls used to display the number 
and status of processes executing on that line. Because ot the canpllation 
these may be out by a line or two in oome circunstances. IIost "'!Quential code 
will be executed as a single block - 80 a process will oot move through a ~ 
block one step at a time necessarUy. 

'!be special symbol 'P' dOes not represent a process, it indicates that a 
procedure has been called at that point. 'P' therefore represente the 'call 
point' of the procedure. 

The following symbols are used to represent the various process stat11 :_ 

• - An active process - my be chosen tor execution at any time. 
a - Process ..... i ting tor one or more ALT guards to beco:De 'rnUE. 
" - Process wa1ting for a clock time or tor input/output. 
c - Process is wa1ting for one or more chUd PAR processes to tenninate. 

In addition break and trace pointe are indicated in the colunn by giving I. 
'T' tor a trace point and '0' for a break point. 

So a display of :-

316:3· .. : occsm.s ? razor 

indicates that there are three active prOCESses and one process ..... iting input 
on line 316. 

Keyboard and Screen input/output 

Because the debug display routine is tully interactive the &creen and 
keyboard data froD the program can not be handled in the """'" naMer as normal. 
Input tor the keyboard must be input USing the 'i' oaunand - I. whole line can 
be input and will be butfered up tor program input in this way. Screen output 
should be displayed as it is produced (but a copy of it will be sent to the 
screen image that will redlsplayed on edt froD the display debugger) or the 'V' 
oortmand. Strings can have escapes ln them '*D' means newline, '*r' carriage 
return &Dd •••• space. 

... 
'" o 



fi:)n atandl\rd OCCUI ledurca 

This eanpUer to the best of JD)' knowledge (Mr.R.P. Stallarel of the De):a,rtment 
of O::mputer StlXltea, Loughborough University 01 Technology, U.K.) 1IIIplements 
the OOCMI language u defined 1n the oceam Pr'O£ram'ldn1 1II&D~1 publ18hed by 
IltoI)S Bm1ted subject to a few re,trlctlons and eaten, Iona tt..t are described 
In thts tUe. 'lbeee d11'Ierencea are intended to n.ke tranafer ot OCCUI Pl'OIrt.IIII 
trom different implementattons feasible. 

It Is intended to be can~ttble to the 1~ booklet ~ereion and the 
PrenUce llall bJok dertnitlon. cxx:.w,IN«8 and Traneputer are reciatered 
tradenarks of the 1I'l0:l Group of ~ies. 

lMOS proto-occ&tl language revisions 

'Ibe following additional teatures introduced Into INIQi OCCUI products C&Il 
DOW be selected by the oaopUer tlac opUoa "-I'. 

S"1'CP pr1lll1tive. 
TIJIE cl1o.nnel. 
IF on flndins DOne of the conditions 'I1WE S'lth, 

1bese restrictions are either opt1onal teaturea ... deecrlbed lA the publ1l1hed 
langwae def1Dit1oo or cxrnpUer restrictions unlikely to llalt ordinary uee of 
OCOIIII. 

No configuration section nllea. 
The operator '»' uaes VAX shUt right operator. 
tb prioritized PAR. all parallel pr'OCe&JCS have eqUkI priority. 
NlIrber of arg\Jllel1ts to a procedure llnU ted to aM rraa.iaD. 
A.PTm returns a t1llle dltference not .. boolean value. 

E:lten.10M1 

PAR repl1eator count and base can be variables 
A variable nUl1ber of proce ... can be created by replicated PAR. 

Recursive calla to procedures panni tted 
A. procedure caD call 1 taeU. 

Screen cha.Mel can be used by more than one proeese 
'lbe epecial screen chl.nDel can be aece88ed by any nUJt)er or 

different oc.cam processes. 'Ibis faclllt&tee debuq1nc of occam 
PJ"OKntbI and 18 not dUtlcul t to lIlIplaaeot. 

MId Uple eouree tUe eanpUatlon 
Procedures and Variables can be defined in one tUe and referenced 10 

another. 
The detinit10n Is preceded by the new keyword 'LIBRARY' before 'PBX· 
and the defloit1on IJlI8t be at the outer level of progf'IID nesting. 

References to procedures iD other files are detined by preceding 
'PRO:' by 'EXniUfAL' and replaeinc the I.' start ot procedure deflnlt10a 
by .:' to Indic:&te end of definition. 

e.g. 
FUe _in.occ FUe 6Ub.oec 

EXTERNAL PRO: t (value n) 
S~ 

LIORAAY PRCX; f (value n) -
S~ 

f (27) n\R. to. screen (Q.l02) 
str.to.screen ("&lter Deat"): 

on .. two fUes can be catlplled by :-

oecam .. tn.oce sub.occ 
occam aub.occ ... 1 
occu .... in.oce wb.o 

to ccnpUe both together 
to ocmplle eub.occ ee~rat~ly 
to Unk in the pre-cxnpilec1 sub.ace tUe 

.1.11 .,IoU "lilY ,*,. 00011 UJl.l.cnth .. 'IJ to va.rill.bles and channels, In the case of 
vectors of yariables and channels the 8ize need not be epec! fled but the 
type must be :-

Oofl.l"8 file :-

LlBRAJIY OIAN net1lOrk.eama (56) : 
LIBRARY VAK blot IIfiTE 4J.opot (42) : 
LIBRARY VAK fLOI.T hyper,bollc (2).a.tlve (17) 

Referring file :-

.:xn:nNAt. OIAN not_urk ,CU'II'IIe (J : 
IXi'OO<AL YAK blot 1~'/TEI •• pot I) .boU. IfLOI.T) 
OOmNAL VAR fLOI.T hypor .actlve I) : 

Floatinc point arithmetic 

The OCIDPller pena1t8 the use of tlo&tlna polnt n~nI and arUlnetlc 
opera tore. "Ibe CQJIpller usea 32 bit VU flOl.ting POint th:roucbout. 

Ploatlnc point n"""'re are declared by following YAR by the _ keyword n .. t :- ., 

VAK n.oAT K,y,factor 
VAK nUl,ply : 

- Floatlns polDt nllnber declan.t1oa 
- tbmal OCCIII varlablee. 



Floating point ntl'l'lber constants are supported these ... y be iD two fo .... 
witb declnal point or with declnal p:>int and exponeDt :_ 

.. :- 1.45 
y :- 2.3e--23 + 3.4e+l - Note that the exponent must be given a 811D 

The follOWing operators .y be used on floating potnt nullben (both 
operands rwst be fl~t1ng p:>int) 

+ - • I ( ) (- )- - () - (monadlc minus) 

z :- 1.3 + (7 • factor) 
IP 

• ) 67.8 
Y :- -3.4 - Note use of IIIOR&dlc minUIJ. 

Parameters to procedures "'-1st also have type set to YAa P'1.O\T or 
YAWE FJ..Q.\T - the actlal r»-rameter8 must be of the tarDe type. 

mac 8"" (VALUE P1.OAT a (J.b II,VAK IU\\T ..... (J,VALUE n) _ 
PAIl 1 - 10 RJl n) 

re. 11) :- a 11) + b 11) : 
VAR P1.OAT t 1231,. 14SI,. 1321 

1Nl (t,8''',12) 

Floating values -.y be transrdtted alone clannels - but the~ are 
no checks that the sender and receiver both expect floating polot values. 

Input of floating poInt nl.l!lbers can be carried. out by callinc the 
lIbrary routine ·fp.num.f~.keyboard' and output by the routine 
'f".nl.ll'l. to.acreen'. 

Int.erconveralon ot floating point and Intes.... 1. perfonDed by the 
ase1crment operatOr :-

nl.lll :- x - Convert floating 'x' to integer 'DlD' 
'I :- n\ID - OJnvert integer fn~' to flOl.t1na: 'y' 

Attempts to use logIcal and shUt operator. on floating point n\lDbera 
are flagged a. errors. 

... 
'" '" 



Appendix D 

SELECTED SYSTOLlC PROGRAMS 



1: 
2 : 
3: 
4 : 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 

*** PROGRAM 7.1 *** 453 

--<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
--<> <> 
__ <> Pattern Matcher Soft-systolic Algorithm <> 
__ <> Model R1 ( An array of cells is used<> 
__ <> to flow out the results <> 
__ <> output from all the ips <> 
__ <> cells.) <> 
--<> <> 
--<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 

--The string characters, si's, and the pattern characters, 
--pi's, move systolical1y in opposite direction. The results 
--stay in the cells. 

EXTERNAL PROC open.file ( VALUE path.name [I~ access [I, 
CHAN io.chan): ( 

close. file ( CHAN io.chan ) EXTERNAL PROC 
EXTERNAL PROC 
EXTERNAL PROC 
EXTERNAL PROC 
EXTERNAL PROC 

put ( VALUE n, s[) ) : 
get ( VAR v, VALUE s[) ) : 
get.n ( VAR v[), VALUE n, s[ I ) : 
str.to.screen ( VALUE s[) ) : 

Define maximum pattern length. 
DEF mo - 15: 

Declare.pattern and string storage. 
VAR pat [ BYTE mol, string[ BYTE mol : 

Actual parameters. 
VAR pat1en, ipselect : 

Define all the system channels. 
CHAN s.c[mo+1), p.c[mo+1), r.c[mo), f.c[mo+1), ct1.c[2*(mo+1») 

__ ************** IPS cell definition *************************** 

PROC ips(VALUE ip, CHAN s.in,s.out,p.in, p.out, r.out, ctl.in )
VAR p(2), s(2), r, count, dummy, pat2, ctl : 
SEO 

Ini tialisation 
dummy :- '$' 
p[l):- '$' 
r :- FALSE 
count :- (2*patlen)-ip 
pat2 :- 2*patlen 
ctl : - 0 

set-up of the input string in the array. 
IF 

(ip \ 2) <> 0 
s[l) :- string[BYTE (ip+l)/2) 

TRUE 
s[l) := dummy 

WHILE ctl <> (-1) 
SEQ 

Input/output operations. 
PAR 

s.in ? s[O) 
p.in ? p[O) 
etl. in ? ctl 
s. out ! s [ 11 
p.out I p[l) 
IF 

(count \ pat2 ) - 0 
SEQ 

r.out I r 
r :- TRUE 



66: TRUE 454 
67: Output a dummy result for the flowing array 
68: r.out I FALSE 
69: Calculation 
70: PAR 
71: count := count+1 
72: s[l) :- s[O) 
73: p[l) :z p[O) 
74: SEQ 
75: r : - r AND ( s [ 0) - p (0) 
76: if 
77: ip - ipselect 
78: put ( FALSE , " Error from ips number ip " ) : 
79: 
80: --*************** FLOW for the results ************************* 
81: 
82: -- This an array structure to flow the correct sequencing of the 
83: -- comparison results out of the pattern matcher array. 
84: 
85: PROC flow ( Chan r.in, f.in, f.out, ctl.in ) -
86: VAR f(2), r, ctl 
87: SEQ 
88: f (1) : = FALSE 
89: ct! :- 0 
90: WHILE ctl <> (-1) 
91: SEQ 
92: PAR 
93: I/O operations 
94: f.in ? f[O) 
95: r.in ? r 
96: ctl.in ? ct1 
97: f.out I f[l) 
98: Calculation. 
99: f[l) :- r OR f[O) : 
100: 
101: --*************** SOURCE for string definition ***************** 
102: 
103: Alternatively this procedure outputs, every clock pulse, a 
104: string character or a dummy element to the right boundary 
105: cell in the array. A control signal is, however, required 
106: to be broadcasted to all the array components through the ctl 
107: channels instructing them to terminate processing.(Not neces-
108: sary in a hard-soft systolic design. 
109: 
110: PROC source. string ( CHAN s.out, f.out, ctl.out[) ) -
111: VAR ch(2), alter, dummy: 
112: CHAN str.in : 
113: SEQ 
114: open. file ("text","r",str.in) 
115: dummy :- '$' 
116: Pass over patlen / 2 characters 
117: SEQ i - [0 FOR patlen/2) 
118: str.in ? ANY 
119: IF 
120: (patlen \ 2) = 0 
121: --The first character to be sent must be DUMMY element. 
122: alter := FALSE 
123: TRUE 
124: --The first character to be sent must be the current 
125: --string character. 
126: alter :- TRUE 
127: Read the current character in ch. 
128: str.in ? ch[l) 
129: WHILE ch[l) <> (-1) 
130: SEQ 
131: IF 



132: 
133 : 
134 : 
135: 
136: 
137: 
138: 
139: 
140: 
141: 
142: 
143: 
144: 
145: 
146: 
147: 
148 : 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157 : 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 
196: 
197: 

alter 
SEQ 

PAR 
str.in ? ch[O) 
s.out I ch[l) 
f. out I FALSE 

I/O operations. 

PAR i = [0 FOR 2*(patlen+1) ) 
ctl.out[i) I ch[l) 

calculations. 
PAR 

TRUE 
SEQ 

alte r : - FALSE 
ch[l) :- ch[O) 

PAR 
s.out I dummy 
f.out I FALSE 
PAR i - [0 FOR 

ct1.out[ i) 

alter := TRUE 

I/O operations. 

2*(patlen+1) ) 
o 
calculations. 

455 

patlen+2 dummy characters are sent to the 
the array so that all the string is com~ 
pletelly processed. 

SEQ i - [ 0 FOR patlen +2 ) 
PAR 

s.out I dummy 
f.out I FALSE 
PAR j - [0 FOR 2*(patlen+1») 

ct1.out[j) ! 0 
Now the EOF signal is broadcasted to all cells 

PAR 
s.out I dummy 
f.out I FALSE 
PAR j - [0 FOR 2*(patlen+1») 

ctl.out[j) I ch[l) 
close. file (str.in): 

--************* SOURCE for pattern definition ****************** 

-- Alternatively this procedure sends, every clock cycle, a 
-- pattern character or a dummy element to the left boundary 
-- cell of the array. 
PROC source.pattern ( CHAN p.out, ctl.in ) -

VAR ctl, dummy, alter, ind : 
SEQ 

PAR 
ctl := 0 
alter := TRUE 
ind := 0 
dummy :- '$' 

WHILE ctl <> (-1) 
SEQ 

IF 
alter 

the current pattern character is to be sent. 
SEQ 

I/O operations 
PAR 

ctl.in ? ctl 
p.out '! pat[ BYTE ind+l) 

Calculation 
PAR 



198: 
199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211: 
212: 
213: 
214: 
215: 
216: 
217: 
218: 
219: 
220: 
221: 
222: 
223: 
224: 
225: 
226: 
227: 
228: 
229: 
230: 
231: 
232: 
233: 
234 : 
235: 
236: 
237: 
238: 
239: 
240: 
241: 
242: 
243: 
244: 
245: 
246: 
247: 
248: 
249: 
250: 
251: 
252: 
253: 
254: 
255: 
256: 
257: 
258: 
259: 
260: 
261: 
262: 
263: 

TRUE 

ind := (ind +1)/patlen 
alter :- FALSE 

SEQ 
the dummy element is to be sent. 

I/O operations 
PAR 

ctl. in 
p.out 

alter :-

? ctl 
I dummy 
Calculation. 

TRUE : 

456 

--**************** SINK definition ***************************** 

The sink procedure inputs a signal from the left hand flow 
cell. However, string and pattern characters output from the 
left and right boundary ips cells respectively are absorbed 
the sink mainly to avoid using other type of cells than that 
already being used. The result is analysed and and in the 
case of a success an eventual print out is performed. 

PROC sink ( CHAN s.in, p.in, f.in, ctl.in ) -
VAR ch, ctl, f, chpos: 
SEQ 

PAR 
chpos:= - 1 
etl := 0 

WHILE ctl <> (-1) 
SEQ 

PAR 
s.in ? ANY 
p.in ? ANY 
ctl. in ? ctl 
f. in ? f 
chpos:=chpos+1 

IF 
f 

I/O operations. 

Calculations. 

put (chpos," Pattern found at " ) : 

--*************** SYSTEM configuration ************************ 

The system is specified by indicating the corresponding 
channels that link sources, ips's and sink to form 
the solution network . 

PROC system = 
PAR 

source. string 
source;pattern 
PAR i = [0 FOR 

PAR 

( s.c[patlen), f.c[patlen), 
( p.c[O), ctl.c[patlen) ) 
patlen ) 

ctl. e ) 

ips (i,s.c[i+1),s.c[i),p.c[i),p.c[i+1),r.c[i),ctl.c[i) 
flow ( r.c[i), f.c[i+1), f.c[i), ctl.c[ patlen+(i+2»)) 

sink (s.c[O), p.c[patlen), f.c[O), ctl.c[patlen+1) ): 

--***************** pattern'input procedure ******************** 

PROC inp.pattern a 

VAR ch : 



264: 
265: 
266: 
267: 
268: 
269: 
270: 
271: 
272: 
273: 
274: 
275: 
276: 
277: 
278: 
279: 
280: 
281: 
282: 
283: 
284: 
285: 
286: 
287: 
288: 
289: 
290: 
291: 
292: 
293: 
294: 
295: 
296: 
297: 
298: 
299: 

SEQ 
input pattern characters 

str.to.screen ( " Input pattern ") 
patlen:- 0 
keyboard ? ch 
WHILE ch <> '*n' 

SEQ 
pat1en: a patlen+1 
pat[BYTE patlen) := ch 
screen I pat[BYTE patlen) 
keyboard ? ch 

457 

pat[BYTE 0):= patlen 
get ( ipse1ect, " Input a value for the selected ips " ) : 

--****************** string input procedure ********~********** 

This procedure opens the "string" file and reads the first 
(patlen / 2 ) characters and stored them in string which is 
used at the initialisation phase of every ips in the array. 

PROC inp.string = 
CHAN str.in : 
SEQ 

open. file ("text","r",str.in) 
SEQ i - [0 for patlen/2) 

str.in ? string [ BYTE i+1) 
string [ BYTE 0) := patlen / 2 
close.file (str.in) : 

--********************* MAIN program *************************** 

SEQ 
inp.pattern 
inp.string 
system 



1: 
2 : 
3: 
4 : 
5: 
6: 
7 : 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 

458 
*** PROGRAM 7.2 *** 

--<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
--<> <> 
__ <> Pattern Matcher Soft-systolic Algorithm <> 
__ <> Model R2 ( An array of special cells<> 
__ <> is used to flow out the <> 
__ <> results output from all <> 
__ <> the ips cells. ) <> 
--<> <> 
--<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 

--The string characters, si's, and the pattern characters, 
--pi' is move systolically in the same direction but at diffe-
--rent speed; Si's move as twice as fast as pi's. 
--The results stay in the cells. 
EXTERNAL PROC open.file ( VALUE path.name [I, access [], 

CHAN io. chan) : 
EXTERNAL 
EXTERNAL 
EXTERNAL 
EXTERNAL 
EXTERNAL 

PROC 
PROC 
PROC 
PROC 
PROC 

close. file ( CHAN io.chan ) 
put ( VALUE n, s(] ) : 
get ( VAR v, VALUE s(] ) : 
ge t. n ( VAR v ( ], VALUE n, s [] ) : 
s t r . to. sc reen ( VALUE s [] ) : 

Define maximum pattern length. 
DEF mo - 15: 

Declare pattern and string storage. 
VAR pat ( BYTE mol : 

Actual parameters. 
VAR patlen : 

Define all the system channels. 
CHAN s.c[mo+1], p.c[mo+1], r.c[mo], f.c[mo+1], ctl.c[(2*mo)+l) 

__ ************** IPS cell definition *************************** 

PROC ips ( VALUE ip,CHAN s.in,s.out,p.in,p.out,r.out,ctl.in )
VAR s [ 2), P [ 2 ), r, coun t, c tl 
SEQ 

Ini tialisation 
PAR 

count :- patlen-ip 
s[l) :- 0 
p(l) :- 0 
r := FALSE 
ctl : - 0 

WHILE ctl <> (-1) 
SEQ 

PAR 
s.in ? s(O) 
p.in ? p[O) 
s.out I s(l) 
p.out I pll) 
ctl.in ? ctl 
IF 

Input/output operations. 

(count \ patlen ) = 0 
SEQ 

PAR 

TRUE 

r.out ! r 
r :-TRUE 

output a dummy result to be used by the 
flowing array. 

r.out I FALSE 
Calculation operation 



66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87 :' 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110 : 
111: 
112: 
113 : 
114: 
115 : 
116 : 
117 : 
118 : 
119 : 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 

s[l) :- s (0) 
p[l) :- p (0) 
count :- count+1 
r := r AND (s[O) = p[O)) : 

459 

--*************** DELAY definition **************************** 

-- This procedure delays the patern character stream by a 
-- single cycle 
PROC delay ( CHAN p.in, p.out, ctl.in ) -

VAR p(2), ctl 
SEQ 

ctl : - 0 
p[l) :- 0 
WHILE ctl <> (-1) 

SEQ 

PAR 
p.in ? p[O) 
ctl.in ? ctl 
p.out I p[l) 

p[l) :- p[O) : 

I/O operation. 

calculation 

--*************** FLOW for results **************************** 

-- This procedure is a cell helping to flow out results 
-- of the pattern matcher array in a correct sequencing. 

PROC flow ( CHAN r.in, f.in, f.out, ctl.in ) -
VAR f[ 2), r, ctl 
SEQ 

f[l) :'" FALSE 
ctl : = 0 
WHILE ctl <> (-1) 

SEQ 
PAR 

L in ? f (0) 
r.in ? r 
ctl.in ? ctl 
Lout I f[l) 

I/O opeation 

Calculation 
f[l) :-f[O) OR r : 

--*************** SOURCE definition **************************** 

This procedure outputs every clock pulse a string character 
and a true signal ,used in the result, to the left boundary 
cell in the array. A control signal is, however, required 
be broadcasted to all the array components ( ctl channel 
array ) to terminate processing. ( In a hard design this 
is not necessary). 

PROC source ( CHAN s.out, p.out, f.out, ctl.out[) ) -
VAR ch, ind : 
CHAN str. in 
SEQ 

ch := 0 
ind := 0 
open. file 
WHILE ch 

input string characters 

("text","r",str.in) 
<> (-1) 



132: 
133: 
134 : 
135: 
136 : 
137: 
138 : 
139 : 
140: 
141: 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157 : 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 

186: 
187: 
188: 

189: 
190: 
191: 
192: 
193: 
194: 
195: 

SEQ 
I/O operations. 

PAR 
str.in ? ch 
p.out I pat[ BYTE ind+1) 
f.out I FALSE 

calculations. 
PAR 

s.out I ch 
ind :- (ind+l)/patlen 
PAR i a [0 for (2*patlen)+1 

ct1.out[ i) I ch 
close.file (str.in): 

460 

--***************** SINK definition **************************** 

--The sink procedure inputs two data, a string character from 
--the right end delay cell, a result from the right end ips and 
--a control signal from the source. The result is analysed and 
--and in a successful case an eventual print out is performed. 

PROC sink ( CHAN s.in, p.in, f.in, ctl.in) = 
VAR ch, ctl, f, chpos: 
SEQ 

chpos:= -(2*patlen) 
ct! := 0 
WHILE ctl <> (-1) 

SEQ 

PAR 
s.in ? ANY 
p.in ? ANY 
ct!. in ? ctl 
f.in ? f 
chpos:-chpos+1 

IF 
f 

I/O operations. 

Calculations. 

put (chpos," Pattern found at n ) : 

--*************** SYSTEM configuration ************************ 

The system is specified by indicating the corresponding 
channels that link source, ips's ,delay and sink to form 
the solution network • 

PROC system = 
PAR 

source ( s.c[O), p.c[O), f.c[O), ctl.c ) 
PAR i = [0 FOR pat1en ) 

PAR 
ips ( i,s.c[i),s.c[i+1),p.c[2*i),p.c[(2*i)+1),r.c[i), 

ctl.c[(2*i)+l) ) 
delay ( p.c[(2*i)+l), p.c[2*(i+1»), ct1.c[(2*i)+1) ) 
flow (r.c [i),f.c[i),f.c[i+1), ctl.c[(2*patlen)+(i+2»)) 

sink ( s.c[patlen),p.c[2*patlen), f.c[patlen), 
ctl;c[(2*patlen)+1) ): 

--****************** Pattern input procedure ******************* . 

PROC inp.pattern -



196: 
197: 
198: 
199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211: 
212: 
213: 
214: 
215: 

VAR ch : 
SEQ 

input pattern characters 
str.to.screen ( " Input pattern ") 
patlen:- 0 
keyboard ? ch 
WHILE ch <> '*n' 

SEQ 
pat1en:a pat1en+1 
pat[BYTE patlen) :- ch 
screen I pat(BYTE patlen) 
keyboard ? ch 

pat[BYTE 0):= patlen : 

461 

__ ********************* MAIN program *************************** 

SEQ 
inp.pattern 
system 



1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 

462 
*** PROGRAM 7.3 *** 

<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<> 

Pattern Matcher Soft-systolic Algorithm 
Model B1 ( si' s are broadcasted) 

<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<> 

Si's, the input string characters, are broadcasted to all 
ips ( Comparator and accumulator cell ), ri's, the result 
of a single character comparison, move systlically left to 
right through the ips cells and pi' s,the pattern characters 
stay. Pi's are initially preloaded in the cells. 

EXTERNAL PROC open.file ( VALUE path.name [I, access [I, 
CRAM io.chan) : 

EXTERNAL PROC close. file ( CRAM io.chan ) 
EXTERNAL PROC put ( VALUE n, s[) ) : 
EXTERNAL PROC get ( VAR v, VALUE s[) ) : 
EXTERNAL PROC get.n ( VAR vI), VALUE n, s[) ) : 
EXTERNAL PROC str.to.screen ( VALUE s[) ) : 

Define maximum pattern length. 
DEF mo - 15: 

Declare pattern storage. 
VAR pat [ BYTE mol : 

Actual parameters. 
VAR paUen 

Define all the system channels. 
CRAM s.c [mo+l), r.c [mo+1) : 

--************** IPS cell definition ************************** 

PROC ips ( VALUE ip, CRAM sin, rin, rout)
VAR p, r(2), ch: 
SEQ 

Preload a pattern character 
Ini tiali sation 

PAR 
p:- pat[ BYTE (ip+1)) 
rIll :- FALSE 
ch :a 0 

WHILE ch <> (-1) 
SEQ 

PAR 
sin ? ch 
rin ? r[O) 
rout I r[l) 

Input/output operations. 

Calculation 
r (1) : - r (0) AND ( ch - p): 

--*************** SOURCE definition *************************** 

--Broadcasts, character per character, a string of character to 
--all the ips cells and a TRUE signal to the left boundary 
--cell of the array. ( This marks the start of a substring 
--from the input string.). 

PROC source.string ( CHAN s.out[), r.out ) = 
VAR ch : 
CRAM str. in : 



66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112: 
113 : 
114 : 
115: 
116 : 
117: 
118 : 
119 : 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130 : 
131: 

SEQ 
input string characters 

open.file ("text","r",str.in) 
ch :- 0 
WHILE ch <> (-1) 

SEQ 

str.in ? ch 
PAR 

I/O operations. 

PAR j a [ 0 FOR (patlen+1) ) 
s . ou t [j) I ch 

Output the test accumulator. 
r.out I TRUE 

close.file (str.in): 

463 

--**************** SINK definition **************************** 

Gets as input a matching result from the right end cell and 
depending the success of the search, outputs the pattern 
position in the string. 

PROC sink ( CHAN s.in, r.in ) a 

VAR ch, r, chpos: 
SEQ 

chpos:= -patlen 
ch :- 0 
WHILE ch <> (-1) 

SEQ 

PAR 

IF 

s.in ? ch 
r.in ? r 
chpos:-chpos+1 

r 

I/O operations. 

Calculations. 

put (chpos," Pattern found at " ) : 

--************** SYSTEM configuration ************************ 

The system procedure identifies all the connecting channels 
-- That link all the array components in order to form the 
-- required solution network. 

PROC system = 
PAR 

source. string ( s.c, r.c[O) ) 
PAR i - [0 FOR patlen ) 

ips ( i, s.c[i), r.c[i), r.c[i+1) 
sink ( s.c[patlen), r.c[patlen) ): 

--****************** Patern input procedure ******************** 

PROC inp.pattern = 
VAR ch : 
SEQ 

input pattern characters 
str.to.screen ( " Input pattern ") 
patlen:= 0 
keyboard ? ch 
WHILE ch <> '*n' 

SEQ 
patlen:- patlen+1 
pat[BYTE patlen) := ch 



132: 
133 : 
134: 
135: 
136 : 
137 : 
138 : 
139: 
140 : 
141: 

screen I pat[BYTE patlen) 
keyboard ? ch 

pat[BYTE 0):- patlen : 

464 

__ ******************** MAIN program **************************** 

SEQ 
inp.pattern 
system 



1 : 465 
2: ••• PROGRAM 7.4 ••• 
3: 
4: --<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
5: 
6: Pattern Matcher Soft-systolic Algorithm 
7: Model B2 ( Broadcasting si' 5 ) 
8: 
9: --<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
10: 
11: si' 5, the input string characters, are broadcasted to all 
12: ips ( Comparator and accumulator cell ), ri's, the tempora-
13: lly stored result of a partial comparison, are output cycli-
14: cally one at a time and, the pattern characters, pi's move 
15: cyclically from left to rigth. 
16: 
17: EXTERNAL PROC open. file ( VALUE path.name I), access I), 

CHAN io. chan) : 
18: EXTERNAL PROC close.file ( CHAN io.chan ) 
19: EXTERNAL PROC put ( VALUE n, sI) ) : 
20: EXTERNAL PROC get ( VAR v, VALUE sI) ) : 
21: EXTERNAL PROC get.n ( VAR vI), VALUE n, sI) ) : 
22: EXTERNAL PROC str.to.screen ( VALUE sI) ) : 
23: 
24: Define maximum pattern length. 
25: DEF mo - 15: 
26: Declare pattern storage. 
27: VAR pat I BYTE mol : 
28: Actual parameters. 
29: VAR patlen 
30: Define all the system channels. 
31: CHAN s.c Imo+1), r.c Imo+1), p.clmo+1) : 
32: 
33: -_ •••••••••••••• IPS cell definition ••••••••••••••••••••••••••• 
34: 
35: PROC ips ( VALUE ip, CHAN s.in, p.in, p.out, r.out )-
36: VAR p(2), r, ch, count: 
37: SEQ 
38: Global initializations. 
39: PAR 
40: plO) :- 0 
41: r :- FALSE 
42: p(1) :- patl BYTE (patlen-ip») 
43: ch:- 0 
44: count :- patlen - ip 
45: WHILE ch <> (-1) 
46: SEQ 
47: Input/output operations. 
48: PAR 
49: s.in ? ch 
50: p.in ? plO) 
51: p.out I p(1) 

·52: IF 
53: (count \ patlen ) - 0 
54: SEQ 
55: r.out I r 
56: r : = TRUE 
57: Calculation 
58: PAR 
59: count :- count + 1 
60: p(1) := plO) 
61: r :- r AND ( ch - plO): 
62: 
63: 
64: --••••••••••••••• SOURCE definition •••••••••••••••••••••••••••• 
65: 



66: 466 
67: Broadcasts, character per character, a string of character 
68: to all the ips cells and the sink also. 
69: 
70: PROC source.string ( CHAN s.out[) ) -
71: VAR ch : 
72: CHAN str.in 
73: SEQ 
74: input string characters 
75: open. file ("text","r",str.in) 
76: ch :- 0 
77: WHILE ch <> (-1) 
78: SEQ 
79: I/O operations. 
80: str.in ? ch 
81: PAR j - [0 FOR (patlen+1) ) 
82: s.out [j) ! ch 
83: close.file (str.in): 
84: 
85: --***************** SINK definition **************************** 
86: 
87: 
88: Gets from the input channels "TRUE" and "FALSE" signals 
89: outputs to the screen the position of the pattern in the 
90: string every time it gets a "TRUE" signal. 
91: 
92: PROC sink ( CHAN s.in, r.in[) ) = 
93: VAR ch, r, chpos: 
94: SEQ 
95: chpos :- -patlen 
96: ch: - 0 
97: WHILE ch <> (-1) 
98: SEQ 
99: I/O operations. 
100: PAR 
101: s.in ? ch 
102: chpos:=chpos+1 
103: ALT i = [ 0 FOR patlen) 
104: r.in[i) ? r 
105: SKIP 
106: Calculations. 
107: IF 
108: r 
109: SEQ 
110: put (chpos," Pattern found at " ) : 
111: 
112: --*************** SYSTEM configuration ********************* 
113 : 
114: The system is specified by indicating the corresponding 
115: channels linking source, ips' s and the sink in a network. 
116 : 
117: PROC system = 
118: VAR ind : 
119: SEQ 
120: ind :- patlen-1 
121: PAR 
122: source.string ( s.c ) 
123: PAR i = [0 FOR ind) 
124: ips ( i, s.c[i), p.c[i), p.c[i+1), r.c[i) ) 
125: cell linkage to form the loop. 
126: ips ( ind, s.c[ind), p.c[ind), p.c[O), r.c[indl ) 
127: sink ( s.c[patlen)~ r.c): 
128: 
129: 
130 : 
131 : 



467 

132: --****************** Pattern input procedure ******************* 
133: 
134: PROC inp.pattern = 
135: VAR ch 
136: SEQ 
137: input pattern characters 
138: str.to.screen ( H Input pattern HI 
139: patlen:= 0 
140: keyboard? ch 
141: WHILE ch <> '*n' 
142: SEQ 
143: pat1en:= patlen+1 
144: pat[BYTE patlen) := ch 
145: screen I pat[BYTE patlen) 
146: keyboard? ch 
147: pat[BYTE 0):= patlen : 
148: 
149: 
150: --********************* MAIN program *************************** 
151: 
152: SEQ 
153: inp.pattern 
154: system 



1 : 
2: 
3: 

"00 
468 

PROGRAM 7.5 000 

4: --<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
5: --<> <> 
6: --<> Pattern Matcher Soft-systolic Algorithm <> 
7: --<> Model F1 ( Results are fanned-in) <> 
8: --<> Fo~ shorter patterns. <> 
9: --<> <> 
10: --<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
11: 
12: --si's, the input string characters, move in the array in the 
13: --left to right direction, the partial results ,ri's, each of 
14: --which is a single character comparison result, are fanned-in 
15: --and summed up using a stored ADDER program. The 
16: --pattern length is short enough so that the ADDER cell does not 
17: --incur long delays. 
18: 
19: EXTERNAL 

EXTERNAL 
EXTERNAL 
EXTERNAL 
EXTERNAL 
EXTERNAL 

PROC 

PROC 
PROC 
PROC 
PROC 
PROC 

open. file ( VALUE path. name I ) , 
CHAN io.chan) : 

close. file ( CHAN io.chan ) 
put ( VALUE n, sI) ) : 
get ( VAR v, VALUE sI) ) . . 
get.n ( VAR vI), VALUE n, sI) ) 
str.to.screen ( VALUE sI) ) . . 

20: 
21: 
22: 
23: 
24: 
25: 
26: Define maximal pattern length. 
27: DEF mo - 16: 

access 

: 

28: Declare pattern and string storage. 
29: VAR pat I BYTE mol, strl BYTE mol : 
30: Actual parameters. 
31: VAR patlen : 
32: Define all the system channels. 
33: CHAN s.c Imo+1), r.c Imo+1), ctl.clmo+2) : 

I ) , 

34: 
35: --"""""""""""""" IPS cell definition """." •• " •••••••••• ***"**".* 
36: 
37: PROC ips ( VALUE ip, CHAN s.in, s.out, r.out, ctl.in )-
38: VAR p, r, ch(2), ctl : 
39: SEQ 
40: Initialisation 
41: PAR 
42: Preload a pattern character 
43: p:- patl BYTE (patlen-ip») 
44: r :- FALSE 
45: ctl :- 0 
46: -- Initially, the first patlen string characters are 
47: -- preloaded in the array in order to avoid the fill-in 
48: -- time. 
49: ch(1) := strlBYTE (patlen-ip)-l) 
50: WHILE ctl <> (-1) 
51: SEQ 
52: Input/output operations. 
53: PAR 
54: s.in ? chlO) 
55: ctl.in ? ctl 
56: s.out I ch(1) 
57: r.out I r 
58: Calculation operation 
59: PAR 
60: r := chlO) = p 
61: ch (1) : = ch (0) 
62: 
63: 
64: --"**""""""""""*" SOURCE definition """"**""*****"****""**"**"*" 
65: 



66: 
67: 
6B: 
69: 
70: 
71: 
72: 
73: 
74: 
75 : 
76: 
77: 
7B: 
79: 
BO: 
B1: 
B2: 
B3: 
B4: 
B5 : 
B6: 
B7.: 
BB: 
B9: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
9B: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
lOB: 
109: 
110 : 
111: 
112: 
113: 
114 : 
115: 
116: 
117 : 
11B: 
119 : 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
12B: 
129: 
130 : 
131: 

469 

This procedure broadcasts every cycle a character from the 
input string to all the ips cells in the array.Also a contr
ol signal is required to be broadcasted to the array elements 
instructing them when to terminate processing. ( this is not 
neccessay for the hardware implementation of this design.) 

PROC source ( CHAN s.out, ctl.out[] ) -
VAR ch : 
CHAN str. in 
SEQ 

input string characters 
ch := 0 
open. file ("text","r",str.in) 
SEQ i - [ 0 FOR patlen -1] 

str.in ? ANY 
WHILE ch <> (-1) 

SEQ 

str.in ? ch 
I/O operations. 

calculations. 
PAR 

s.out 1 ch 
PAR i = [0 for patlen + 2] 

ctl.out[ i] ! ch 
close.file (str.in): 

__ ***************** ADDER cell definition ********************* 

--Gets as input all the single character comparison results from 
--every ips in the array. These are fanned-in and summed up in 
--this procedure. 

PROC adder (CHAN r.in[], r.out, ctl.in ) -
VAR ctl, r[mo], res 
SEQ 

ct! :- 0 
res := FALSE 
WHILE ctl <> (-1) 

SEQ 

PAR 
ct!. in ? ct! 
PAR i - [0 FOR patlen] 

r.in[i] ? r[i] 
r.out 1 res 

SEQ 
res :- TRUE 

I/O operations 

calcual tion. 

SEQ i = [0 FOR patlen] 
res :- res AND r[i] : 

__ ***************** SINK definition **************************** 

This procedure which gets the result output from the ADDER 
prints the actual location in the string in the case of a 
pattern match. 

PROC sink ( CHAN s.in, r.in, ctl.in) = 
VAR ctl, r, chpos: 
SEQ 

chpos:- -2 
ct! :- 0 
WHILE ctl <> (-1) 

SEQ 



132 : 
133 : 
134 : 
135: 
136 : 
137 : 
138: 
139: 
140 : 
141: 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153 : 
154: 
155: 
156 : 
157 : 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 

179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 
196: 

PAR 

IF 

ctl. in 7 ctl 
r.in7 r 
s.in 7 ANY 
chpos:-chpos+l 

r 

I/O operations. 

Calculations. 

put (chpos," Pattern found at 11 ) : 

470 

__ *************** SYSTEM configuration ********************* 

The system is specified by indicating the corresponding 
channels that link source, ips's ,adder and sink to form 
the solution network . 

PROC system -
PAR 

source ( s.c[O), ctl.c ) 
PAR i m [0 FOR patlen J 

ips ( i, s.c[i), s.c[i+1), r.c[i), ctl.c[i) ) 
adder ( r.c, r.c[patlen), ctl.c[patlen) ) 
sink ( s.c[patlen), r.c[patlen), ctl.c[patlen+1) ): 

__ ****************** Pattern input procedure ******************* 

PROC inp.pattern -
VAR ch : 
SEQ 

input pattern characters 
str.to.screen ( 11 Input pattern ") 
patlen:- 0 
keyboard ? ch 
WHILE ch <> '*n' 

SEQ 
patlen:= patlen+l 
pat[BYTE patlen) :- ch 
screen I pat[BYTE patlen) 
keyboard 7 ch 

pat[BYTE 0):- patlen : 

__ *************** string input procedure ********************** 

This procedure open the string file and read the first patlen 

characters in str which is used at the initialisation phase 
of the ips's. 

PROC inp.string = 
CHAN str.in : 
SEQ 

open.file ("text","r",str.in) 
SEQ i - [0 for patlen-l) 

str.in 7 str [ BYTE i+1) 
str[ BYTE 0 ) :- patlen-l 
close.file (str.in) 

--********************* MAIN program *************************** 

SEQ 
inp.pattern 
inp.string 
system 



1: *** 
471 

PROGRAM 7.6 *** 
2: 
3: 
4: --<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
5: --<> <> 
6: --<> Pattern Matcher Soft-systolic Algorithm <> 
7: --<> Model F2 ( Results are fanned-in) <> 
8: --<> For longer patterns . <> 
9: --<> <> 
10: --<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><>+<><> 
11: 
12: --si's, the input string characters, move in the array in the 
13: --left to right direction, partial results ,ri's, each of which 
14: --is a single character comparison performed in an IPS cell, are 
15: --fanned-in and summed up using a tree structure of FAN-IN 
16: --cells. For convenience, only pattern lenghts of power 2 are 
17: --considered. 
18: 
19: EXTERNAL PROC open.file ( VALUE path.name [], access [], 

CHAN io.chan) : 
20: EXTERNAL PROC close. file ( CHAN io.chan ) 
21: EXTERNAL PROC put ( VALUE n, s[] ) : 
22: EXTERNAL PROC get ( VAR v, VALUE s[] ) : 
23: EXTERNAL PROC get.n ( VAR vI], VALUE n, s[] ) : 
24: EXTERNAL PROC str.to.screen ( VALUE s[] ) : 
25: 
26: Define maximum pattern length. 
27: DEF mo - 16: 
28: Declare pattern and string storage. 
29: VAR pat [ BYTE mol, str[ BYTE mol : 
30: Actual parameters. 
31: VAR patlen, lopat : 
32: Define all the system channels. 
33: CHAN s.c [mo+1], r.c [2*mo], ctl.c[2*mo] : 
34: 35: -_ •••••••••••••• IPS cell definition ••••••••••••••••••••••••••• 
36: 
37: PROC ips ( VALUE ip, CHAN s.in, s.out, r.out, ctl.in )-
38: VAR p, r, ch[2], ctl : 
39: SEQ 
40: Initialisation 
41: PAR 
42: Preload a pattern character 
43: p:- pat[ BYTE (patlen-ip)] 
44: r :- FALSE 
45: ctl :- 0 
46: The first patlen characters in string are set up 
47: in the array. This operation avoids waiting for 
48: the array to be filled up. 
49: IF 
50: ip < (patlen-1) 
51: ch[l] := str[BYTE (patlen-ip)-l] 
52: TRUE 
53: ch[l) :a 0 
54: WHILE ctl <> (-1) 
55: SEQ 
56: Input/output operations. 
57: PAR 
58: s.in ? ch[O] 
59: ctl.in ? ctl 
60: s.out I chIll 
61: r.out I r 
62: Calculation 
63: PAR 
64: r :a ch[O) - p 
65: ch[l] :- ch [0] : 



66: 
67: 
68: 
69: 
70: 
71: 

72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 
97: 
98: 
99: 
100: 
101: 
102: 
103: 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111 : 
112: 
113: 
114 : 
115 : 
116: 
117 : 
118 : 
119 : 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130 : 

472 

--*************** SOURCE definition **************************** 

--This procedure outputs a string character to the left boundary 
--cell in the array. A control signal is, however, required to b 

--broadcasted to the fan-in and the sink ( ctl channel array 
--to terminate processing. ( In a hard design this is not 
--necessary) . 

PROC source.string ( CRAM s.out, ctl.out[1 ) -
VAR ch : 
CRAM str.in 
SEQ 

input string characters 
ch :- 0 
open.file ("text","r",str.in) 
SEQ i - [ 0 FOR patlen -11 

str.in ? ch 
WHILE ch <> (-1) 

SEQ 

str. in ? ch 

PAR 
s.out I ch 

I/O operations. 

calculations. 

PAR i - [0 for 2*patlen 
ct1.out[ ill ch 

close. file (str.in): 

--***************** FAN-IN cell definition ********************* 

--Gets as input two single character comparison results and then 
--summed them up using the AND operation before outputting the 
--corresponding result. 

PROC fan.in (CRAM r.inl, r.in2, r.out, ctl.in ) -
VAR ctl, r, rI, r2 
SEQ 

ctl :- 0 
r :- FALSE 
WHILE ctl <> (-1) 

SEQ 

PAR 
ctl.in ? ctl 
r.inl ? r1 
r.in2 ? r2 

. r.out ! r 

r := r1 AND r2 

I/O operations 

calculation. 

--***************** SINK definition **************************** 

Gets as input a signal from the bottom FAN-IN cell in the 
the tree structure. If the signal is true ( a successful 
search ) then the exact position of the current pattern 
occurrence in the input string is ouput. 

PROC sink ( CRAM r.in, s.in, ctl.in) -
VAR ch, ctl, r, chpos: 
SEQ 



I 
131: 
132: 
133 : 
134: 
135: 
136: 
137 : 
138: 
139: 
140: 
141: 
142 : 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 
158: 

159 : 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 

chpos:a -(lopat+1) 
ct! :- 0 
WHILE ctl <> (-1) 

SEQ 

PAR 
chpos:-chpos+1 
ct!. in ? ctl 
r.in? r 
s.in ? ch 

IF 
r 

I/O operations. 

Calculations. 

put (chpos," Pattern found at " ) : 

473 

--*************** SYSTEM configuration ************************ 

The system is specified by indicating the corresponding 
channels that link source, ips's ,fan-in and sink to form 
the solution network . 

PROC system = 
PAR 

source. string ( s.c[OJ, ctl.c ) 
PAR i - [0 FOR patlen J 

ips ( i, s.c[iJ, s.c[i+1J, r.c[iJ, ctl.c[iJ ) 
PAR j - [0 FOR patlen-1 J 

fan.in (r.c[2*jJ,r.c[(2*j)+1J,r.c[patlen+jJ, 
ctl.c[patlen+jJ ) 

sink ( r.c[2*(patlen-1)J,s.c[patlenJ,ctl.c[(2*patlen)-lJ ): 

--****************** Pattern input procedure ******************* 

PROC inp.pattern = 
VAR ch : 
SEQ 

input pattern characters 
str.to.screen ( " Input pattern It) 
patlen: a 0 
keyboard ? ch 
WHILE ch <> '*n' 

SEQ 
patlen:- patlen+1 
pat[BYTE patlenJ :- ch 
screen I pat[BYTE patlenJ .,' 
keyboard ? ch 

put (patlen," please enter Log2 of this value It) 
get (lopat, " Thank you ") 
pat[BYTE OJ:= patlen : 

--****************** string input procedure ******************* 

--This procedure open the string file and read the first patlen 
--characters in str which is used at the initialisation phase 
--of the ips's. 
PROC inp.string -

CHAN str.in : 
SEQ 

open. file ("text","r",str.in) 
SEQ i = [0 for patlenJ 

str.in ? str [ BYTE i+1J 
str[ BYTE 0 J :- patlen. 
close. file (str.in) : 

'~ 



i 
\ 

196: 
197: 
198: 
199: 
200: 
201: 
202: 

474 

--********************* MAIN program *************************** 

SEQ 
inp.pattern 
inp.string 
system 

l 

I 

,~j 



1 
\ . 

) 

I 




