
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Improving performance of genetic algorithms by using novel fitness functions

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Cooper, Jason. 2019. “Improving Performance of Genetic Algorithms by Using Novel Fitness Functions”.
figshare. https://hdl.handle.net/2134/2271.

https://lboro.figshare.com/


 
 
 

This item was submitted to Loughborough’s Institutional Repository by the 
author and is made available under the following Creative Commons Licence 

conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Improving Performance of Genetic

Algorithms by Using Novel Fitness

Functions

by

Jason Cooper

A Doctoral Thesis

Submitted in partial fulfilment of

the requirements for the award of

Doctor of Philosophy

of

Loughborough University

January 20, 2006

Copyright c©2006, 2004 Jason Cooper



Abstract

This thesis introduces Intelligent Fitness Functions and Partial Fitness Functions both

of which can improve the performance of a genetic algorithm which is limited to a fixed

run time.

An Intelligent Fitness Function is defined as a fitness function with a memory. The

memory is used to store information about individuals so that duplicate individuals do

not need to have their fitness tested. Different types of memory (long and short term)

and different storage strategies (fitness based, time base and frequency based) have been

tested. The results show that an intelligent fitness function, with a time based long term

memory improves the efficiency of a genetic algorithm the most.

A Partial Fitness Function is defined as a fitness function that only partially tests

the fitness of an individual at each generation. Thus only promising individuals get fully

tested. Using a partial fitness function gives the genetic algorithm more evolutionary

steps in the same length of time as a genetic algorithm using a normal fitness function.

The results show that a genetic algorithm using a partial fitness function can achieve

higher fitness levels than a genetic algorithm using a normal fitness function.

Finally a genetic algorithm designed to solve a substitution cipher is compared to

i



ii

one equipped with an intelligent fitness function and another equipped with a partial

fitness function. The genetic algorithm with the intelligent fitness function and the

genetic algorithm with the partial fitness function both show a significant improvement

over the genetic algorithm with a conventional fitness function.

Keywords : Genetic Algorithms, Fitness Functions, Efficiency, Intelligent Fitness Func-

tions, Partial Fitness Functions



Acknowledgements

I would like to thank the following people for helping me create this thesis and for all

the help and support they have provided.

First and foremost I have to thank Dr. Chris Hinde for the excellent supervision of

this work and the many conversations unrelated to this work, but of great enjoyment

nonetheless.

I would also like to thank my wife, Erica Cooper, and my newborn son for helping

me to keep working at my thesis when I didn’t always feel like it.

I must thank my parents who gave me the support when I needed it and without

whom I would not even exist.

Thanks must go to Professor Paul Chung, who did an excellent job as my Director

of Research and made me think two steps ahead. Thanks also to Dr. Roger Stone, while

not my supervisor he was always there to give advice and support.

Thanks to Mick O’Doherty and the rest of the crew at the Maidenhead branch of

Nortel Networks who helped finance my first two years of research.

Thanks to Dr Mark Withall and the rest of the research students in the Computer

iii



iv

Science department, without whom many an interesting problem would have passed me

by.

Thanks to everyone who has proof read my thesis, without whom many a spelling

mistake would still be left in.

Finally a special thanks to Mr Mark Brill for providing an endless supply of DVDs.



Contents

1 Introduction and Literature Survey 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Content Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Natural Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Inheritance and Genetics . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Genetic Algorithm Terminology . . . . . . . . . . . . . . . . . . . 7

1.3.2 Encoding the Solution . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Fitness Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

v



CONTENTS vi

1.4 Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Hybrid Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Secondary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.3 Lamarckian Evolution and Baldwinian Learning . . . . . . . . . . 23

1.4.4 Secondary Method’s Duration . . . . . . . . . . . . . . . . . . . . 24

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Motivation 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 What affects the delay of a packet . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Transmission Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Propagation Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Processing Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Queueing Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Destinations used in the tests . . . . . . . . . . . . . . . . . . . . 31

2.5 Varying Packet Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS vii

2.5.1 Algorithm Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Priority using DiffServ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Algorithm Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Mapping from Traceroute to DiffServ . . . . . . . . . . . . . . . . 36

2.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Different Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 Algorithm Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Optimising packet configuration with a Genetic Algorithm . . . . . . . . 46

2.8.1 What needs optimising? . . . . . . . . . . . . . . . . . . . . . . . 46

2.8.2 Genome Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8.3 Fitness Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8.4 Running Time Span . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9 Overall Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



CONTENTS viii

3 Population Sizes and Level of Elitism 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Efficiency and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Deceptive Trap Functions . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 GA Hard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Elitism Levels Used . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Population Sizes and their Effects on Performance . . . . . . . . . 59

3.4.3 Population Sizes and their Effects on Performance Using a Differ-

ent Model of Elitism . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Population Sizes and their Effects on Efficiency . . . . . . . . . . 61

3.4.5 Elitism Levels and their Effects on Performance . . . . . . . . . . 61

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Population Sizes and their Effects on Performance . . . . . . . . . 62

3.5.2 Population Sizes and their Effects on Performance Using a Differ-

ent Model of Elitism . . . . . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS ix

3.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.4 Population Sizes and their Effects on Efficiency . . . . . . . . . . 77

3.5.5 Elitism Levels and their Effects on Performance . . . . . . . . . . 80

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Intelligent Fitness Functions 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Caching and GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Memory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Memory Search and Replace Times . . . . . . . . . . . . . . . . . 90

4.3.3 Memory Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.4 Long Term Memory Storage Strategies . . . . . . . . . . . . . . . 93

4.4 Experiments on the Effects of Intelligent Fitness Functions . . . . . . . . 94

4.4.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.3 Experiments on a Larger Population details . . . . . . . . . . . . 108

4.4.4 Results of Larger Population Experiments . . . . . . . . . . . . . 109



CONTENTS x

4.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Partial Fitness Functions 114

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Partial Fitness in Genetic Programming . . . . . . . . . . . . . . . . . . 115

5.3 Concept of Partial Fitness Functions in Genetic Algorithms . . . . . . . . 115

5.4 Partial Fitness Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1 Comparing Partial Fitness Levels to the Full Fitness Level . . . . 118

5.5 Partial Fitness Function Experiments . . . . . . . . . . . . . . . . . . . . 123

5.5.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Deceptive Trap Function . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6.2 Deceptive Trap Function . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Partial Fitness Functions Limitations . . . . . . . . . . . . . . . . . . . . 134

5.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Use of IFF and PFF on a Cipher 137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



CONTENTS xi

6.2 GAs Use in Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Monoalphabetic Substitution Ciphers . . . . . . . . . . . . . . . . . . . . 139

6.3.1 GA to Solve a Monoalphabetic Substitution Cipher . . . . . . . . 143

6.4 Intelligent Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 Partial Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Discussion and Conclusion 157

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.1 Intelligent Fitness Functions . . . . . . . . . . . . . . . . . . . . . 157

7.2.2 Partial Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . 160

7.3 Contribution to Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3.1 Achieved Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



CONTENTS xii

A Publications 183

B Full Results for Chapter 3 185

B.1 Population Sizes and their Effects on Performance . . . . . . . . . . . . . 185

B.1.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.1.2 Deceptive Trap Functions . . . . . . . . . . . . . . . . . . . . . . 192

B.1.3 GA Hard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.2 Population Sizes and their Effects on Performance Using a Different

Model of Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.2.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.2.2 Deceptive Trap Functions . . . . . . . . . . . . . . . . . . . . . . 206

B.2.3 GA Hard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B.3 Population Sizes and their Effects on Efficiency . . . . . . . . . . . . . . 210

B.3.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.3.2 Deceptive Trap Functions . . . . . . . . . . . . . . . . . . . . . . 215

B.3.3 GA Hard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.4 Elitism Levels and their Effects on Performance . . . . . . . . . . . . . . 223

B.4.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B.4.2 Deceptive Trap Functions . . . . . . . . . . . . . . . . . . . . . . 224



CONTENTS xiii

B.4.3 GA Hard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C Full Results for Chapter 5 227

C.1 One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

C.2 Deceptive Trap Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

D Plain Text and Cipher Text 246

D.1 Original Plain Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

D.2 Cipher Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250



List of Figures

2.1 Delay of packets to img5.yahoo.com (216.115.108.245), San Jose, between

the 10th October and the 28th October 2001. Packet sizes of 40B, 750B

and 1500B shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 The best results for each of the 8 different classes between 19th January

and 7th February 2002 to weblist.ru (194.135.30.46), Russia . . . . . . . 37

2.3 Delay of packets to dial1.lng.yahoo.com (217.12.6.16), London, showing

priority 7 for all 8 different classes . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Delay of packets to dial2.lng.yahoo.com (217.12.6.17), London, showing

priority 7 for all 8 different classes . . . . . . . . . . . . . . . . . . . . . . 39

2.5 UDP and TCP times to DANDELION-PATCH.MIT.EDU (18.181.0.31),

East Coast USA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 UDP and TCP times to webserver1.absolute-sports.de (195.162.250.2),

Germany. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 UDP and TCP times to ns.square.co.jp (202.33.28.186), Japan. . . . . . . 44

xiv



LIST OF FIGURES xv

2.8 UDP and TCP times to chandra.mirror.ac.uk (212.219.56.146), UK. . . . 45

3.1 A simple 4 bit deceptive trap function . . . . . . . . . . . . . . . . . . . 54

3.2 An example of the type of hill produced by the GA Hard Problem using

the default parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against generations . . . . . . . . . . . . . . . . . 63

3.4 Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 64

3.5 Average Fitness levels, of the best of each of 50 runs, for all three popu-

lation sizes, shown against time . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 68

3.7 Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 71

3.8 Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 73

3.9 Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 75

3.10 Number of locations in search space searched by the ga with each of the

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



LIST OF FIGURES xvi

3.11 Number of locations in search space searched by the ga with each of the

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.12 Number of locations in search space searched by the ga with each of the

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.13 Average Fitness Levels for the Deceptive Trap Function . . . . . . . . . . 81

4.1 An Intelligent Fitness Function with Both a Long Term Memory and a

Short Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Comparison of Highest Fitness Based Storage Strategy . . . . . . . . . . 97

4.3 Comparison of Lowest Fitness Based Storage Strategy . . . . . . . . . . . 98

4.4 Comparison of Time Based Storage Strategy . . . . . . . . . . . . . . . . 99

4.5 Comparison of Frequency Based Storage Strategy . . . . . . . . . . . . . 100

4.6 Summary of long term memory storage strategies (using a long term

memory size of 60) for the Deceptive Trap Functions. . . . . . . . . . . . 101

4.7 Comparison of High Fitness Based Storage Strategy . . . . . . . . . . . . 103

4.8 Comparison of Low Fitness Based Storage Strategy . . . . . . . . . . . . 104

4.9 Comparison of Time Based Storage Strategy . . . . . . . . . . . . . . . . 105

4.10 Comparison of Frequency Based Storage Strategy . . . . . . . . . . . . . 106

4.11 Summary of long term memory storage strategies (using a long term

memory size of 60) for the ga Hard Problem . . . . . . . . . . . . . . . . 107



LIST OF FIGURES xvii

4.12 Savings made on a ga tackling the deceptive trap problem, by using an

intelligent fitness function with a population size of 60 . . . . . . . . . . 109

4.13 Savings made on a ga tackling the ga hard problem, by using an intel-

ligent fitness function with a population size of 60 . . . . . . . . . . . . . 110

5.1 The results of the estimation of the individuals tackling the One Max

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 The results of the estimation of the individuals tackling the Deceptive

Trap Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 The average absolute difference for the estimation of the individuals tack-

ling the One Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 The average absolute difference for the estimation of the individuals tack-

ling the Deceptive Trap Problem . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Results of using a partial fitness function on the One Max Problem, re-

placing 1

10
the population after each partial fitness test . . . . . . . . . . 125

5.6 Results of using a partial fitness function on the One Max Problem, re-

placing 2

10
the population after each partial fitness test . . . . . . . . . . 126

5.7 Results of using a partial fitness function on the One Max Problem, re-

placing 5

10
the population after each partial fitness test . . . . . . . . . . 127

5.8 Results of using a partial fitness function on the One Max Problem, re-

placing 9

10
the population after each partial fitness test . . . . . . . . . . 128



LIST OF FIGURES xviii

5.9 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 1

10
the population after each partial fitness tests . . . . . . . . . 130

5.10 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 4

10
the population after each partial fitness tests . . . . . . . . . 131

5.11 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 5

10
the population after each partial fitness tests . . . . . . . . . 132

5.12 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 9

10
the population after each partial fitness tests . . . . . . . . . 133

6.1 Fitness Tests Performed by the standard ga and the ga using an intelli-

gent fitness function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Average Fitness Levels of both the gas against the number of fitness tests

performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Fitness levels, of the standard ga and the ga using a partial fitness

function, against number of partial generations. . . . . . . . . . . . . . . 151

6.4 Difference between the fitness levels, of the standard ga and the ga using

a partial fitness function, against number of partial generations. . . . . . 152

6.5 Examples of text deciphered using keys from the standard ga and the

ga using a partial fitness function. . . . . . . . . . . . . . . . . . . . . . 154

B.1 Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against generations . . . . . . . . . . . . . . . . . 186



LIST OF FIGURES xix

B.2 Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 187

B.3 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.4 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.5 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.6 Average Fitness levels, of the best of each of 50 runs, for all three popu-

lation sizes, shown against generations . . . . . . . . . . . . . . . . . . . 192

B.7 Average Fitness levels, of the best of each of 50 runs, for all three popu-

lation sizes, shown against time . . . . . . . . . . . . . . . . . . . . . . . 193

B.8 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.9 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.10 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.11 Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against generations . . . . . . . . . . . . . . . . . 198



LIST OF FIGURES xx

B.12 Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 199

B.13 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.14 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.15 Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.16 Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 205

B.17 Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 207

B.18 Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time . . . . . . . . . . . . . . . . . . . . 209

B.19 Number of locations in search space searched by the ga with a population

size of 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.20 Number of locations in search space searched by the ga with a population

size of 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

B.21 Number of locations in search space searched by the ga with a population

size of 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



LIST OF FIGURES xxi

B.22 Number of locations in search space searched by the ga with each of the

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

B.23 Number of locations in search space searched by the ga with a population

size of 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

B.24 Number of locations in search space searched by the ga with a population

size of 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

B.25 Number of locations in search space searched by the ga with a population

size of 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.26 Number of locations in search space searched by the ga with each of the

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

B.27 Number of locations in search space searched by the ga with a population

size of 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.28 Number of locations in search space searched by the ga with a population

size of 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B.29 Number of locations in search space searched by the ga with a population

size of 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.30 Number of locations in search space searched by the ga with each of the

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B.31 Average Fitness Levels for the One Max Problem . . . . . . . . . . . . . 223

B.32 Average Fitness Levels for the Deceptive Trap Function . . . . . . . . . . 224

B.33 Average Fitness Levels for the ga Hard Problem . . . . . . . . . . . . . . 225



LIST OF FIGURES xxii

C.1 Results of using a partial fitness function on the One Max Problem, re-

placing 1

10
the population after each partial fitness test . . . . . . . . . . 228

C.2 Results of using a partial fitness function on the One Max Problem, re-

placing 2

10
the population after each partial fitness test . . . . . . . . . . 229

C.3 Results of using a partial fitness function on the One Max Problem, re-

placing 3

10
the population after each partial fitness test . . . . . . . . . . 230

C.4 Results of using a partial fitness function on the One Max Problem, re-

placing 4

10
the population after each partial fitness test . . . . . . . . . . 231

C.5 Results of using a partial fitness function on the One Max Problem, re-

placing 5

10
the population after each partial fitness test . . . . . . . . . . 232

C.6 Results of using a partial fitness function on the One Max Problem, re-

placing 6

10
the population after each partial fitness test . . . . . . . . . . 233

C.7 Results of using a partial fitness function on the One Max Problem, re-

placing 7

10
the population after each partial fitness test . . . . . . . . . . 234

C.8 Results of using a partial fitness function on the One Max Problem, re-

placing 8

10
the population after each partial fitness test . . . . . . . . . . 235

C.9 Results of using a partial fitness function on the One Max Problem, re-

placing 9

10
the population after each partial fitness test . . . . . . . . . . 236

C.10 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 1

10
the population after each partial fitness tests . . . . . . . . . 237



LIST OF FIGURES xxiii

C.11 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 2

10
the population after each partial fitness tests . . . . . . . . . 238

C.12 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 3

10
the population after each partial fitness tests . . . . . . . . . 239

C.13 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 4

10
the population after each partial fitness tests . . . . . . . . . 240

C.14 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 5

10
the population after each partial fitness tests . . . . . . . . . 241

C.15 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 6

10
the population after each partial fitness tests . . . . . . . . . 242

C.16 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 7

10
the population after each partial fitness tests . . . . . . . . . 243

C.17 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 8

10
the population after each partial fitness tests . . . . . . . . . 244

C.18 Results of using a partial fitness function on the Deceptive Trap Function,

replacing 9

10
the population after each partial fitness tests . . . . . . . . . 245



List of Tables

2.1 Destinations used for the experiments . . . . . . . . . . . . . . . . . . . . 31

3.1 Default Parameters for the ga Hard Problem . . . . . . . . . . . . . . . 57

3.2 Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Average fitness levels, of the best of 50 runs of the three population sizes

tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Average fitness levels, of the best of 50 runs of the three population sizes

tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Average fitness levels, of the best of 50 runs of the three population sizes

tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xxiv



LIST OF TABLES xxv

3.8 Base configurations used . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 An example key for a substitution cipher . . . . . . . . . . . . . . . . . . 140

6.2 Frequency of Characters in the Ciphertext . . . . . . . . . . . . . . . . . 141

6.3 Parents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 After First Stage of Crossover . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 After Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Time of the standard ga runs, in seconds . . . . . . . . . . . . . . . . . . 147

6.7 Time, in seconds, of the runs of the ga using an intelligent fitness function148

6.8 Average, Standard Deviation and Standard Error of the best final fitness

of each of 50 runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.9 T-Test results for fitness levels difference and key correctness difference . 154

B.1 Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.2 Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.3 Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.4 Average fitness levels, of the best of 50 runs of the three population sizes

tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



LIST OF TABLES xxvi

B.5 Average fitness levels, of the best of 50 runs of the three population sizes

tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B.6 Average fitness levels, of the best of 50 runs of the three population sizes

tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



Chapter 1

Introduction and Literature Survey

1.1 Introduction

This Thesis introduces two methods designed to help improve the efficiency and per-

formance of gas. These methods are then investigated to examine the effect that they

have on gas.

1.1.1 Aims and Objectives

The aim of this Thesis is to introduce new methods to improve the performance of gas.

The following are a list of objectives for this Thesis.

• Assess the effect population sizes have on the performance and efficiency of gas

running within a fixed length of time with a slow fitness function.

1



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 2

• Introduce new methods for improving the performance and efficiency of gas with

a slow fitness function.

• Investigate the effects that the introduced methods have on gas running within a

fixed length of time.

• Investigate the improvement provided by the methods to a ga with a slow fitness

function.

1.1.2 Content Summary

The content of this Thesis is as follows

Chapter 1 - An introduction to this Thesis, evolution and gas.

Chapter 2 - A short description of the work that posed the question addressed by this

Thesis. The work consists of the evaluation of the effects different configurations

of packet options have on the time it takes a packet to travel across the Internet.

Chapter 3 - Investigates the effect that population size and the level of elitism has

on the efficiency and performance of gas. Section 3.3 describes the test problems

used. Section 3.5.1 examines the effects that population sizes have on the perfor-

mance of a ga, while section 3.5.4 examines the effects that population sizes have

on the efficiency of a ga. Finally section 3.5.5 examines the effects that the level

of elitism has on a ga.

Chapter 4 - Introduces Intelligent Fitness Functions and investigates the effects they

have on a ga’s efficiency. gas equipped with a selection of intelligent fitness



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 3

functions, each with a different configuration, are compared to each other and a

ga equipped with a standard fitness function.

The performance of a ga equipped with an intelligent fitness function is shown to

be better than that of a ga equipped with a standard fitness function.

Chapter 5 - Introduces Partial Fitness Functions and investigates the effects they have

on a ga’s efficiency. gas equipped with differently configured partial fitness func-

tions are compared to each other as well as a ga equipped with a standard fitness

function.

The levels of fitness achieved by a ga equipped with a partial fitness function are

shown to be better than the fitness achieved by a ga equipped with a standard

fitness function.

Chapter 6 - Documents the results of using a ga with a standard fitness function, a

ga with an intelligent fitness function and a ga with a Partial Fitness Function,

to break a substitution cipher.

Both the ga equipped with an intelligent fitness function and the ga equipped

with a partial fitness function perform better than the ga with a standard fitness

function.

Chapter 7 - A discussion of the work contained in this Thesis and conclusions drawn

from it.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 4

1.2 Evolution

Evolution is the process that allows species to improve their ability to survive in their

environment. Through evolution species can adapt to changes in their environment. As

species evolve they can become more complex and significantly different from the original

species, these are then classed as a new species. Evolution works by incorporating

changes, usually small, that are advantageous to the species and removing attributes

that are not. This process works because individuals with the advantageous attributes

survive longer in their environment to reproduce, whereas the individuals without the

attributes, or with worse attributes, die earlier or are unable to attract mates [28].

An extreme example of this is a bacteria that has infected someone making them

ill. If the person takes drug A, most of the bacteria that are susceptible to drug A

will die. Therefore, mainly bacteria immune to drug A will be left to reproduce and

therefore most of the offspring will be immune. The person then becomes ill again

when the bacteria has reproduced enough and so takes drug A, with little or no effect.

The person then takes drug B, killing most of the bacteria susceptible to drug B leaving

mainly those immune to both drug A and drug B. These then reproduce to give offspring

that are immune to both drug A and drug B. And so on.

Evolution can be split into two processes, natural selection and inheritance. Natural

selection can be viewed as a high level process as it deals with the interaction between a

species and its environment. Whereas, inheritance can be viewed as a low-level process

as it works on a genetic level of each individual. The following sections describe in more

detail these two processes and how they help to make evolution work.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 5

1.2.1 Natural Selection

The process of natural selection deals with the selection of which individuals from a

population reproduce based on their fitness in their current environment. This process

works because if an individual is not very fit it will die early or not have the ability to

attract a mate. This is known as survival of the fittest.

There is a process known as unnatural selection that has been around for centuries.

The major difference between natural and unnatural selection is that in unnatural selec-

tion the parents are chosen by people rather than nature. Unnatural selection is mainly

used to exaggerate attributes in a species, for example, breeding racehorses, improving

the quality of wool from sheep or breeding dogs for different purposes. Both natural

selection and unnatural selection work for the same reasons. They both rely upon the

fact that offspring tend to inherit attributes from their parents.

The concept of natural selection is commonly attributed to Charles Darwin [28],

but it was also discovered independently at the same time by Alfred Russell Wallace

[21]. Both had similar experiences that inspired their theories. Darwin on his voyage

on the HMS Beagle, while Wallace an expedition to the Amazon. Both are believed to

have been inspired by an essay written by Thomas Malthus [95]. In his work, Malthus

argues that a population will always outgrow the available resources of an area, and

hence competition between those occupying the same area will control the population.

In essence, Malthus is saying that those in the population that are better able to acquire,

or control, the available resources will prosper, whereas those who are less able will die

early through lack of those resources. This in an early example of what would later

become known as survival of the fittest. Prior to Darwin and Wallace, some people

believed in the concept of evolution, however they had no process for it to work.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 6

1.2.2 Inheritance and Genetics

Every cell in every living thing contains a blueprint showing how to build the organism.

The blueprint is encoded in DNA. The blueprint in each cell is called the Genome. The

genome consists of chromosomes and the chromosomes are made up of genes. Each

gene defines an attribute of the organism. However, the attributes that are defined are

dependent on the species the DNA is in. When a child organism is produced it will

contain a combination of the genes of its parents.

Inheritance is the process that allows parents to pass on their attributes to their

offspring. This is achieved because the offspring have their parents’ genes. In asexual

reproduction the genes of the offspring are only taken from one parent and so tend to

be identical to their parents, although mutations do occur. In sexual reproduction the

genes of the offspring are a combination of the genes of the parents and so the offspring

inherit some attributes from each parent.

In humans each gene has one value from each parent. If both genes have the same

value then that value is used, if they are different then one of the genes will be dominant

over the other and the dominant value used [30]. Having two values for each gene is

known as diploid 1. The presence of a recessive gene in a diploid format enables a species

to adapt to changes in the environment more quickly.

Richard Dawkins [30, 31, 32, 33] has written many books on this area. The ground-

work for the area of genetics was laid by Gregor Mendel [98] who was a monk in the

mid-19th century. However, his work was not widely known until the beginning of the

20th century, it consisted of experiments where he bred pea plants and documented the

1Having a single value for each gene is known as haploid while have three values for each gene is

known as triploid.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 7

results.

1.3 Genetic Algorithms

gas have mainly been attributed to John Henry Holland but, as noted by David

Fogel[40], other researchers were using methods very similar to gas before Holland.

Fraser [43, 44, 45, 46, 47], Bremermann et al. [11, 12, 13, 14, 15, 16, 17, 18] and Reed

et al. [125] were all working on problem solving methods very similar to Holland’s gas.

In fact the use of evolution to solve problems had been suggested in the 1940s by Alan

Turing[144].

1.3.1 Genetic Algorithm Terminology

The following are terms that will be used in the rest of this Thesis when referring to

gas.

Genome - an encoded set of parameters

Individual - a member of the population consisting of a genome and if known the

fitness level of the genome.

Genetic Operator - a function that takes a number of Genomes and produces a single

Genome

Fitness Function - a function that takes a Genome and produces a fitness level that

represents how well the parameters solve the problem.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 8

1.3.2 Encoding the Solution

For a ga to tackle a problem the parameters for the algorithm need to be encoded in

a form that the ga can manipulate (the genome) to produce new solutions that inherit

traits from the parents used. While there are many methods for encoding the parameters

in a ga there are two methods commonly used.

• Binary Encoding [67]

• Real Encoding [148]

Binary Encoding

The parameters for the solution are broken down into a binary string. When the solution

is to be fitness tested it has to be decoded from the binary string back into the parameters

for the solution. This has the advantages that all the genetic operators are easy to code

and understand. It also means that core of the genetic algorithm can be used again and

again to tackle different problems with only a need to modify the decoder and the fitness

function. Holland [67] suggests that binary encoding should always be used, though it

has been criticised by some [145, 3, 103].

Real Encoding

The ga operates directly on the parameters for the solution algorithm. No decoding

is necessary for the fitness test, it just takes the parameters directly from the genome.

This method has the advantage that no decoder is necessary but each ga has to be

custom built for the problem it is tackling. Many researchers have used Real Encoding



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 9

instead of the Binary Encoding suggested by Holland[67] and achieved good results to

problems[103, 105, 140, 148].

Other Encoding Methods

There are many different methods that have been used for storing the parameters for a

ga. These include the following

Trees - More commonly used in genetic programming [80].

Linear Program Encoding - An encoding method used to enable a standard ga to

evolve programs [147].

1.3.3 Fitness Testing

The fitness test in a ga is the part which decides how well an individual solves a problem.

If the genomes of the individuals are encoded using a binary encoding then the fitness

function will have to decode them to obtain the parameters to be used.

1.3.4 Reproduction

After each generation has been fitness tested the ga has to produce a new generation.

This is achieved through the use of genetic operators. The genetic operators used are

the following.

• Selection



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 10

• Crossover

• Mutation

Selection Operator

This operator is used to select the parent individuals to be used to produce a new

individual. To be effective it has to be biased towards selecting individuals with a

high fitness, while still selecting a diverse collection of parents. There are two common

methods used for selection strategies for the selection operator.

Roulette Wheel When the selection operator uses a roulette wheel selection method

then the chance of an individual being chosen is directly proportional to the percentage of

its fitness compared to the total fitness achieved by the generation. E.g. if an individual

scored a fitness of 20 and the generation total was a fitness level of 100 then the chance

of selecting the individual would be 1

5
.

Tournament When the selection operator uses a tournament selection method a num-

ber of individuals are selected from the population randomly and the one with the best

fitness is then used as the selected individual.

Crossover Operator

Termed the distinguishing feature of gas[29] this genetic operator takes two genomes

and combines them to produce a new genome. Holland has stated that crossover is the

main operator of gas[67]. There are three commonly used methods.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 11

• Single Point

• Multi Point

• Uniform

Single Point Single point crossover picks a break point along the genome and takes

the genes from the first genome up to the break point and then uses the genes from the

second genome to finish off the new genome. e.g.

| = Break point

Parent 1 : 0000000|000

Parent 2 : 1111111|111

-----------------------

Child : 0000000|111

Multi Point Similar to the single point crossover but more than one break point is

used. e.g.

| = Break point

Parent 1 : 00000|00|00

Parent 2 : 11111|11|11

-----------------------

Child : 00000|11|00



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 12

Uniform Each gene to be used in the new genome is picked randomly from the relevant

genes from the parents. e.g.

Parent 1 : 0000000000

Parent 2 : 1111111111

----------------------

Child : 0110011101

Mutation Operator

The last operator used by gas is the mutation operator. This operator takes a genome

and then mutates random parts of it. So for a binary string each bit would have a small

chance of being inverted. The chance of a bit being inverted is called the mutation rate

and is usually set to 1

n
where n is the length of the genome in its encoded form [51].

An example of mutation is as follows

Parent : 0000000000

----------------------

Child : 0100000001

Combination of the Operators

Goldberg [51] states that individually the operators are of no use. It is not until they are

combined that any real benefit is encountered. Simply selecting the better individuals

for the next generation would lead to a population consisting of the best individual

from the first population. Crossover and mutation on their own do not improve the



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 13

individuals, just changes them. But by combining the operators the GA is then capable

of improving on each generation.[52]

Initial Populations

The initial population of a ga can be initialised by different methods.

• Random

• Seeded

• Mixed

Random The initial population is generated using a pseudo random number genera-

tor. This method’s performance has been shown to be affected by the pseudo random

number generator used by the ga [22, 101, 102], but it does keep the initial population

mostly unbiased.

Seeded The initial population is created from a collection of known solutions to the

problem [93]. This method gives the ga a population of good solutions to start with.

However this can lead to a initial population that is biased in many ways, which can

make it harder for the ga to find the better solutions.

Mixed The initial population is created from some seed individuals and the rest of

the population is randomly generated. This has been shown to hinder the ga’s abilities

[114]. Though no explanation for this was provided it is probably due to the randomly

generated individuals being vastly inferior to the seeded individuals.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 14

Elitism

This is a process that enables a ga to carry a selection of a generation forward to the next

generation without any changes. This is used to keep the best individuals encountered

in the population. The degree of elitism dictates how many individuals are carried

forward to the next generation and how many are replaced with new individuals. The

higher the degree the more individuals carried forward and the fewer new individuals

introduced. The individuals selected to be carried forward are always the ones with the

highest fitness level.

Diploid

The majority of research into gas has been aimed towards the haploid representation

shown earlier in this chapter. Research into using diploid representation for ga, both

with and without dominance, has shown that diploid shows an improvement over the

haploid gas when the environment being evolved in is unstable. Haploid gas evolving

in a stable environment have been shown to, at worst, perform to the same level as

diploid ga [152].

Approximation

The computational effort required to test the fitness of a solution can be large. Grefen-

stette et al.[56] has shown for some of these problems better results can be obtained by

the ga by using an approximation to a fitness test rather than a full evaluation. The ad-

vantages of using an approximation is that the time of each fitness test drops and hence

more fitness tests can be performed in the same length of time. The disadvantages of



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 15

using an approximation though is that accuracy is sacrificed for speed. Approximations

have been used with gas to tackle engineering problems like aircraft design[122] and

predicting the feedback of polynomial LFSRs[63]. Jin et al. have produced two surveys

on the area of approximations in gas[71, 72].

There are two basic approaches to approximation in gas.

• Functional Approximation

• Problem Approximation

Functional Approximation involves constructing an alternate and explicit expres-

sion for the fitness function[71, 72]. Using this expression instead of the full fitness

function will decrease the time needed by the ga to assess each individuals fitness.

Problem Approximation replaces the problem being tackled with one that is ap-

proximately the same but easier for the ga to solve[71, 72]. As the new problem is

easier for the ga to solve it can produce a good solution in fewer generations. This will

decrease the length of time needed by the ga even if the new problem’s fitness function

takes the same length of time as the old problem’s fitness function.

Approximation in gas has mostly been applied to the following cases

Where the fitness function would be complex and time consuming. An exam-

ple of complex fitness functions commonly approximated is in the area of structural

design [57, 89, 79, 60, 108, 134, 113, 70]. When dealing with structures that must

have a specific aerodynamic property computational fluid dynamics simulations



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 16

would have to be carried out. These simulations can take over ten hours on a

high-performance computer.

Where there is no explicit model to calculate the fitness. Evolving the design

of art or the composition of music has a fitness function that depends on the

user. Usually the system interacts with the user to get their opinion [142]. An

approximation of the users opinions have been used to help [7, 73].

Where the environment is noisy. Without the use of approximation there are two

common methods used to tackle the problem of noisy fitness functions. The first

is to take multiple samples of the fitness and take the average as the actual fitness

[37]. The alternate method used is to average the individual being tested with

that of the individual located near to it in the search space [9].

However, with the use of a statistical model to estimate the fitness of neighbouring

individuals, the computational cost can be reduced [133, 10].

Where the fitness function is multi-modal. An approximation can sometimes be

created that smooths out the local minima and still has the global optimum in the

same location [90].

There are two main concerns about using approximations in gas. The first is that

the ga should converge at the optimum or a near optimum of the conventional fitness

function. The second concern is that the computational cost should be reduced as much

as possible.

A ga using an approximate model can use one of three methods of evolution control.

Evolution control is where some of the individuals are evaluated using the original fitness

function rather than the approximation. This helps the ga to avoid false minima (where



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 17

the approximation model predicts an optimum solution that does not exist in the original

fitness function) [69]. The three methods of evolution control are the following.

No Evolution Control The approximate model is high-fidelity and as such does not

need any evolution control [7, 124, 73].

Fixed Evolution Control There are two approaches to evolution control, individual

based [57, 20] and generation based [120, 121].

With individual based evolution control some of the individuals in each generation

are tested with the original fitness function. The individuals to be tested with the

original fitness function can either be chosen using a random strategy or best strat-

egy [69]. The best strategy re-evaluates the individual, with the best fitness from

the approximation, using the original fitness function [57]. The random strategy

selects the individuals to be re-evaluated, with the original fitness function, at

random [69].

If the computational cost of the original fitness function is high then the individual

based evolution control can be carried out in a selected number of generations [20].

With generation based evolution control the entire generation is tested, using the

original fitness function, every n generations [120, 121] (Where n is a fixed number

decided upon before the ga is started).

Adaptive Evolution Control As the accuracy of the approximation increases less

evolution control needs to occur. With some approximation models it is possible

to use the information gained from the evolution control to increase the accuracy

of the model. A ga using such an approximation can use an adaptive evolution

control that will adjust the amount of control needed based upon the current

accuracy of the approximation model.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 18

The trust region network [35] has been suggested as the basis for a method to

implement adaptive evolution control [108]. An alternative framework for ap-

proximate model management has been suggested and applied to 2 dimensional

aerodynamic design optimisation [70].

1.4 Hybrids

It is possible to combine gas with a secondary method to create a hybrid ga (also

referred to as a Memetic algorithm [107]). Hybrid gas usually consist of a ga combined

with either a local search (for a general problem solver) or a heuristic (for a more problem

dependant solution) [137].

Hybrid gas can provide a number of advantages over a standard ga.

Speed Quicker convergence to the optimum once the ga has located a promising area

in search space.

Repair Replacing invalid individuals with similar valid individuals. This is very useful

if the crossover operator used does not guarantee to produce a valid individual

[112, 68].

GA functional enhancement The genetic operators used by a genetic algorithm may

be enhanced or replaced with a secondary method. E.g. a neural network may act

as a fitness estimator for the fitness function. [64].



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 19

1.4.1 Hybrid Architecture

Hybrid gas can be classified by the way the ga uses the secondary method. Yen et

al [151] provided a classification for Hybrid gas which was enhanced by Sinha et al

[137]. Their classification divides hybrid gas into the following classes. (Note: the

classes are not mutually exclusive so a hybrid ga may fit into more than one class,

eg. a Postprocessor Pipelined Hybrid usually also fits into the Embedded Initialisation

category.)

Pipelined Hybrids consist of two distinct sequential stages (the ga and the secondary

method) A pipelined hybrid can be one of the following types.

Preprocessor: The ga is used first to locate good locations in search space, these

locations are then used to initialise the secondary method.

Postprocessor: The secondary method is used to provide the initial population

for the ga [39, 119].

Staged: The ga and the secondary method are interleaved in a loop. First one

method will run then the results of that will feed into the other method

whose results feed back into the first. For example a ga may produce a new

generation which then has a local search performed on each individual and

the best one found for each individual searched is put back into the ga’s new

population to be selected for crossover and mutation [96, 39].

Asynchronous Hybrids The ga and the secondary method run in parallel and store

solutions in a shared memory. As each search method deteriorates it is started

again from the best solution in the shared memory [139, 38].



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 20

Hierarchical Hybrids have multiple levels of optimisation. For example Rogers [129]

used a ga / linear regression hierarchical hybrid to evolve function approxima-

tion using splines. The ga evolved the basis function while the coefficients that

produced the least error were discovered through linear regression.

Embedded Hybrids have the secondary method embedded within part of the ga

itself. Embedded Hybrids can be broken down into one of the following sub-

categories

Initialisation is where the secondary method is used to generate the initial pop-

ulation for the ga [119, 39].

Fitness Evaluation is where the secondary method is used to evaluate the fitness

of an individual. Neural Networks have been a popular secondary method to

use for this [64].

Crossover in certain problems may result in invalid individuals being produced

(e.g. The Travelling Salesman Problem). A secondary method may be used

to generate valid individuals or to repair invalid individuals [149, 128].

Mutation may use a secondary method to generate new individuals in the neigh-

bourhood of the existing individual [51].

Special Operators that use the secondary method may be created that the ga

can use as well as or instead of the traditional genetic operators [138].

1.4.2 Secondary Methods

Many secondary methods have been used in hybrid gas. The following list is not

exhaustive but gives a good idea of how varied the area of hybrid gas has become.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 21

Local Search Methods usually operate on an individual solution. The local search

moves from a location in search space to a neighbouring location with a higher

fitness level. The local search continues moving from neighbour to better neighbour

until it reaches a local optimum (i.e. there are no neighbours with a better fitness

level) [137]. Local search methods used include

• Newton’s Method [110]

• Steepest Descent [99]

• Broyden, Fletcher, Goldfard and Shanno’s Method [19]

• Powell’s Method [116]

• Conjugate Gradient Method [75]

Simulated Annealing is based on the concept of annealing molten metal [77]. Simu-

lated Annealing works with a single solution and avoids getting trapped in local

minima by accepting non-improving moves according to the probability set by the

Metropolis criterion [100]. The Metropolis criterion is shown in Equation 1.1 where

δf is the increase in the function value and T is the control parameter (equivalent

to the temperature in the annealing scenario). As the temperature decreases over

time so to does the probability of accepting a non-improving move.

p = exp

(

−
δf

T

)

(1.1)

Artificial Neural Networks are inspired by how the brain works. In an artificial

neural network nodes (called neurons) are connected with synapses (directed con-

nections). Every synapse has an assigned weight and every neuron has a transfer

function (usually either a sigmoid, Heaviside or Gaussian function). The output of



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 22

each neuron is calculated by the values of the input synapses (with their weightings

taken into account) processed by the transfer function.

gas have been combined with artificial neural networks to tackle many problems

[132, 150]. Sinha et al. groups these hybrids into 5 categories [137].

Determination of an artificial neural network topology where the number

of layers, neurons and the synapses between neurons are evolved by the

ga[59, 61].

Training of an artificial neural network where the ga evolves the weights of

the synapses between the neurons. This has been shown to produce better

results than the traditional training method of error back-propagation [106].

Selection and generation of training data where the data set used to train

the artificial neural network is evolved by the ga. The training set used has

a direct effect on the ability of the artificial neural network to tackle the same

problem for different sets of data [127].

Artificial neural networks for fitness evaluation replaces the fitness func-

tion in the ga with an artificial neural network that has been trained to

model the problem being tackled [64].

Input feature selection uses a ga to evolve a smaller feature set for the artificial

neural network and thus reduces the complexity of the resulting artificial

neural network[115, 150].

Tabu Search is a discrete optimisation method that avoids getting trapped in local

minima by not moving to locations searched recently [48, 49]. Each iteration the

tabu search moves to the best solution available in the neighbourhood. Solutions

that are encountered frequently or have only recently been encountered are stored



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 23

in a tabu list and while in this list are not valid locations for the tabu search to

move to. Locations stay in this list for a specified length of time (referred to as

the tabu tenure).

Tabu search has been used in ga hybrids as a local search to improve each offspring

[39]. Glover et al. suggested the use of a tabu search to provide a strategic

oscillation in gas [50]. The idea being that the ga’s population consists of a

combination of feasible and infeasible solutions because depending on the search

space it can be easier to reach the global optimum through the infeasible locations

in the search space.

Case-Based Reasoning is a method used to store previous solutions in a case book.

These stored solutions are uses as a basis when tackling similar problems in the

future. In a hybrid ga with case-based reasoning the ga’s population is seeded

with the individuals stored in the case book for similar problems [94, 119].

1.4.3 Lamarckian Evolution and Baldwinian Learning

Comparisons can be drawn between hybrid gas and biological systems [6]. The ga part

of the hybrid relates to the evolution of a species while the secondary method relates

to the traits learnt by individuals of that species during their lifetime. Hinton et al.

have shown that evolution can be guided indirectly by learnt traits of individuals [65].

The mechanism for this indirect guidance is referred to as the Baldwin [5] effect. For

learnt traits to affect evolution in nature there has to be strong correlation between the

traits learnt and the environment being evolved in. This is not a problem for hybrid

gas where the ga and the secondary method are normally solving the same problem.



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 24

There are two mechanisms that can be used to let the secondary method affect the

evolution of the ga, Lamarckian2 Evolutions and Baldwinian3 Learning [65].

Lamarckian Evolution replaces an individual and its fitness after it has been used

by the secondary method with the best result returned by the secondary method.

Baldwinian Learning replaces only the fitness of an individual after it has been used

by the secondary method with the best fitness returned by the secondary method.

Lamarckian evolution is believed to disrupt the exploration capability of the ga and

in some cases leads to convergence on local minima [146]. Orvish et al. suggest that

Lamarckian evolution is only use once in every 20 trials to avoid these problems [112].

1.4.4 Secondary Method’s Duration

An important question for hybrid gas is how long to allow the secondary method to

run for. Mathias et al. [96] argue that running the secondary method till convergence

can have a detrimental effect on the diversity of the ga’s population and can result in

a large number of costly fitness function evaluations.

For certain classes of problems the fitness of an individual after a small change can

be calculated a lot quicker than calculating it from scratch (e.g. the Row-Based VLSI

Layout Problem [110]). Radcliffe et al. called these decomposable functions and argued

that hybrid gas are suitable for tackling these types of problems [118]. Research into

the optimal duration for the secondary method of a hybrid ga has so far not produced

any clear evidence about the effect on the performance [62, 87].

2Lamarckian refers to Lamarck[86] an early 19th century biologist
3Baldwinian refers to Baldwin[5] a late 19th century biologist



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 25

1.5 Summary

The process of evolution can be broken down into two distinct stages, selection and

inheritance. Selection (be it natural selection or unnatural selection) is the process

where the parents of the next generation are selected. Inheritance enables the next

generation to keep some of the attributes their parents had. These combined with the

chance of mutation enables a species to improve and adapt to its surroundings.

As gas are based on the theory of evolution they too consist of selection and inher-

itance. The selection is provided by the use of a fitness function to decide how good an

individual is and a selection operator to decide which individuals to use as parents for

the next generation. The inheritance part for gas is provided by the encoding method

and the crossover operator which helps keep the attributes intact when passed from

parents to children.

gas have been used to tackle many problems including the following

• Calibrating combustion engines [78].

• Antenna design [91].

• Vehicle Routing [141].

• Evolving Shell sort Sequences [135].

• Congressional Redistricting [42].

• Strip Packing Problems [55].

• Optimisation of wireless systems [66].



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 26

Hybrid gas can improve on the performance achieved by normal gas. These consist

of a ga combined with a secondary method. The types of secondary method and ways

that they can be combined with a ga are numerous. The information gathered by the

secondary method may be directly recoded back into the ga (Lamarckian Evolution) or

may just be used to direct the gas evolution (Baldwinian Learning).

Many gas can take a long time to run [57, 89, 79, 60, 108, 134, 113, 70]. Approxi-

mation models have been used as fitness functions to improve the performance of these

gas. These approximation models sacrifice accuracy for a increase in the speed of the

fitness testing. The rest of this Thesis will look at two new types of fitness functions

capable of improving the performance of a ga without sacrificing the accuracy of the

ga.



Chapter 2

Motivation

2.1 Introduction

This chapter gives an overview of the work that motivated the rest of the research

described in this Thesis. The research in this chapter was undertaken for a project

funded by Nortel Networks. The funding for the project was cancelled when Nortel

Networks closed their site that was responsible for it. At that point the research was

directed towards answering the question posed by this chapter.

Tests were carried out to assess the effect that packet sizes, DiffServ settings and

protocols have on delays when transmitting packets across the Internet. This sort of

information is needed for assessing the Quality of Service that can be provided between

two hosts. Knowing how these settings affect the delay of packets will help to assess the

length and quality of the data to be sent. The Quality of Service is mainly of interest

when sending real time data, such as sound or video images, where delays over 200ms

27



CHAPTER 2. MOTIVATION 28

produce a noticeable effect on interactive services[117].

2.2 What affects the delay of a packet

There are four common types of delays on networks.

• Transmission Delays

• Propagation Delays

• Processing Delays

• Queueing Delays

2.2.1 Transmission Delay

The transmission delay is the time taken for a packet to be put onto the network by

the interface. This is also known as Serialisation Delay. It can be calculated with the

formula shown in Equation 2.1.

TransmissionDelay =
PacketSize

Bandwidth
(2.1)

This delay is affected by the bandwidth of the networks and the number of interme-

diate nodes in the route the packet takes. If there are a lot of low bandwidth networks

in the route then the transmission delay will be high, the more intermediate nodes there

are the higher the transmission delay will be. The transmission delay usually contributes

a negligible delay to the overall delay of a packet [27].



CHAPTER 2. MOTIVATION 29

2.2.2 Propagation Delay

The propagation delay is the time taken for the packet to travel the length of the

network. It can be calculated using the formula shown in Equation 2.2.

PropagationDelay =
Distance

SpeedOfLight
(2.2)

This delay is affected by the distance travelled by the packet. The more direct a route

the lower this delay will be. For networking purposes the Speed Of Light is counted

as 2 ∗ 108 instead of 3 ∗ 108. This is due to the fact the signal is travelling through a

physical medium and not through a vacuum [27].

2.2.3 Processing Delay

The processing delay is the time taken for a network device to examine a packet and

decide what to do with it. This delay depends on the device processing the packet. The

more nodes in a route, the more processing delay that will be included in the overall

delay [27].

2.2.4 Queueing Delay

The queueing delay is the delay caused by the packet sitting in a queue waiting to be

processed by a network device. If the queue is full when the packet arrives, it will get

dropped. This delay is the least consistent of the delays, as it depends on the amount

of traffic on the networks. This is where the majority of variation in delay times come



CHAPTER 2. MOTIVATION 30

from [27].

2.3 Experiments

The following experiments were carried out to assess the amount of control a host has

over the way packets travel to their destination over the Internet.

• Varying Packet Size

• Varying DiffServ Priority

• Varying Protocol (TCP vs UDP)

2.4 Equipment

The experiments were carried out using a Sun Sparc 4 workstation connected to the

Internet through a 10Mb/s switched Ethernet connection. The test scripts were written

in Python (Version 1.5.2) and used Traceroute (Version 6.0 Gold) and TCPtraceroute

(Version 1.2). As delays from these programs are the round trip times, the results were

halved to represent the estimated delay for the journey of the packet to its destination.

All experiments only had one packet on the network at a time so there would be no

interference from the test script itself.

Two versions of the Traceroute program were used, the standard Traceroute program

uses the UDP protocol while TCPtraceroute uses the TCP protocol. Traceroute detects

the path that is used to connect two hosts together across an IP network (in this case



CHAPTER 2. MOTIVATION 31

the Internet). It works by sending multiple packets to the destination host, the first

packet has a Time To Live of 1 and at the first hop in the route the packet times out

and the sending host is informed when and where the packet has timed out. The second

packet has a Time To Live of 2 and at the second hop in the route the packet times

out and the sending host is informed of when and where the packet has timed out. The

Traceroute program can use this information to display the route taken and how long

each step in the trip took. It is important to note that as the measurements have to

be taken by sending packets and waiting for the return packet Traceroute will actually

have an effect on the traffic of the network, though this effect will be small.

2.4.1 Destinations used in the tests

Table 2.1 shows a list of destinations used for the experiments. The IP address and host

name is given along with their physical location and the maximum transmission unit

(MTU) size. The MTU’s were obtained using Traceroute.

Table 2.1: Destinations used for the experiments

Destination Host Name Location MTU

216.115.108.245 img5.yahoo.com San Jose, USA 1492

194.135.30.46 weblist.ru Russia 1492

18.181.0.31 DANDELION-PATCH.MIT.EDU MIT 1492

195.162.250.2 webserver1.absolute-sports.de Germany 1492

202.33.28.186 ns.square.co.jp Japan 1492

212.219.56.146 chandra.mirror.ac.uk UK 1492

217.12.6.16 dial1.lng.yahoo.com London, UK 1492

217.12.6.17 dial2.lng.yahoo.com London, UK 1492



CHAPTER 2. MOTIVATION 32

These destinations were chosen based upon their locations. The first 5 destinations

enable the packet configurations to be assessed over different physical networks and

determine if the settings of the packets gave consistent results when travelling over

different routes. The last 3 destinations enable the packet configurations to be assessed

over routes that share a majority of underlying networks.

2.5 Varying Packet Size

This test was to examine the effect on delays of changing the packet size. Theoretically,

the smaller the packet size the smaller the delay for an individual packet. However there

would be more packets required to transmit the same amount of data. For messages

larger than a single packet, the larger packet sizes usually result in a more efficient data

transmission as fewer packets are being sent. However if the data being transmitted is

real time data then there would be an additional delay for each packet for the time taken

to acquire the data to be sent, hence the smaller the packet the lower the acquisition

delay for each packet.

2.5.1 Algorithm Used

The algorithm used in the test script is shown in Algorithm 1. The packet size includes

the header data.

The algorithm waits for each instance of traceroute to complete before starting the

next which resulted in approximately 15 minutes between each reading for each packet

size.



CHAPTER 2. MOTIVATION 33

Algorithm 1 Algorithm to test the effect on delay by varying packets size

D = img5.yahoo.com (216.115.108.245)

loop

for x = 40 to 1500 do

call traceroute with D and packet size of x

log date, time and delay

end for

end loop

2.5.2 Results

At the start of the graph shown in Figure 2.1 the small and medium size packets have a

drop in their delay time, this is not present to the same degree for the large size packets.

Otherwise the delay for all of the three packet sizes shown is very similar, with the

1500B packets taking longer than the 750B packets. It is interesting to note that the

750B packets do not always take longer than the 40B packets. The 1500B packet will

be fragmented as it is larger than the MTU for the route, this helps explain why it does

not show the same reduction in the delay as the other packet sizes.

This graph demonstrates why it is important to test the settings over a long period

of time. If the decision on the best packet size to be used was made at the start of the

test period where there is a large trough (probably caused by a lower than normal load

on the intervening networks in the route) then the packet size of 40B would be chosen,

which at times performs worse than 750B packets.



CHAPTER 2. MOTIVATION 34

50

55

60

65

70

75

80

85

90

95

100

10/10/01 12/10/01 14/10/01 16/10/01 18/10/01 20/10/01 22/10/01 24/10/01 26/10/01 28/10/01

D
el

ay
 (

m
s)

Time

Packet Sizes
40B

750B
1500B

Figure 2.1: Delay of packets to img5.yahoo.com (216.115.108.245), San Jose, between

the 10th October and the 28th October 2001. Packet sizes of 40B, 750B and 1500B

shown

2.5.3 Summary

The majority of the time there is very little difference between the delay on the packet

sizes, 2ms or 3ms and at the most 10ms (with the exception of the 1500B packet in

Figure 2.1). This indicates that the majority of delay comes from propagation delay,

processing delays and queueing delays as these are the only ones left after eliminating

packet size (Transmission Delay). The only times that major differences occur is where

the delay time for the 1500B packets in Figure 2.1 do not drop when the other packets



CHAPTER 2. MOTIVATION 35

do. This is best explained by the 1500B packet being too big for the networks that it

needs to travel through. As the MTU is 1492B for the route used, the packet would

have to be fragmented to pass through. This would result in a delay for the multiple

packets to be transmitted and recombined. While only one site has been used as the

destination in this experiment the results of the experiment show that changes in the

packet size do not always affect the delay as would be expected.

2.6 Priority using DiffServ

This test was designed to see if there is a difference in the delay on packets depending

on the settings of the DiffServ bits in the packet header.

2.6.1 Algorithm Used

The algorithm used to test the effect that DiffServ has on delays is shown in Algorithm

2.

Algorithm 2 Algorithm to test the effect DiffServ settings have on delays

loop

for D in destinations do

for P = 0 to 255 do

call traceroute with D and priority setting of P

log date, time, priority and delay

end for

end for

end loop



CHAPTER 2. MOTIVATION 36

2.6.2 Mapping from Traceroute to DiffServ

The DiffServ bits are an octet passed to traceroute, the value is between 0 and 255. This

is mapped to the equivalent DiffServ settings using the following method. Bits 0,1,2 are

the class. Bits 3,4,5 are the priority within each class. Bits 6 and 7 are not used in the

DiffServ protocol at the time of writing.

2.6.3 Results

The following graphs all show the propagation delay expected for a packet travelling from

the source host to the destination shown at the bottom of the graph. The transmission

delay is negligible and makes very little difference to the result. The difference between

the propagation delay and the actual delay comes from queueing delays and processing

delays.



CHAPTER 2. MOTIVATION 37

 0

 50

 100

 150

 200

 250

 300

29/01/02 30/01/02 31/01/02 01/02/02 02/02/02 03/02/02 04/02/02 05/02/02 06/02/02 07/02/02 08/02/02

D
el

ay
 (

m
s)

Time

Class 0 Priority 7
Class 1 Priority 4
Class 2 Priority 0
Class 3 Priority 2
Class 4 Priority 2
Class 5 Priority 1
Class 6 Priority 0
Class 7 Priority 2

Propagation Delay

Figure 2.2: The best results for each of the 8 different classes between 19th January and

7th February 2002 to weblist.ru (194.135.30.46), Russia

The graph in Figure 2.2 shows the best of the priorities for each class going to

weblist.ru (194.135.30.46), Russia. At any time there is a class and priority setting

which has a delay below 50ms but some of them only stay below this level for some of

the time and none of them stay below it all the time.



CHAPTER 2. MOTIVATION 38

 0

 50

 100

 150

 200

 250

 300

29/01/02 30/01/02 31/01/02 01/02/02 02/02/02 03/02/02 04/02/02 05/02/02 06/02/02 07/02/02

D
el

ay
 (

m
s)

Time

Class 0 Priority 7
Class 1 Priority 7
Class 2 Priority 7
Class 3 Priority 7
Class 4 Priority 7
Class 5 Priority 7
Class 6 Priority 7
Class 7 Priority 7

Propagation Delay

Figure 2.3: Delay of packets to dial1.lng.yahoo.com (217.12.6.16), London, showing

priority 7 for all 8 different classes

The graph in Figure 2.3 shows that during the stable period only class 2, 3 and 4

stand out from the others, by having peaks which are large when compared to the other

classes, while the rest of the classes only suffer a small delay. The spikes that appears

on the graphs shown in figures 2.3 and 2.4 all appear around the 29th January 2002.

The spikes were most likely caused by a problem on a network in the routes involved

(either heavy use or equipment failure). It does however illustrate the need to assess

the packets configuration over at least two weeks.



CHAPTER 2. MOTIVATION 39

 0

 50

 100

 150

 200

 250

 300

29/01/02 30/01/02 31/01/02 01/02/02 02/02/02 03/02/02 04/02/02 05/02/02 06/02/02 07/02/02

D
el

ay
 (

m
s)

Time

Class 0 Priority 7
Class 1 Priority 7
Class 2 Priority 7
Class 3 Priority 7
Class 4 Priority 7
Class 5 Priority 7
Class 6 Priority 7
Class 7 Priority 7

Propagation Delay

Figure 2.4: Delay of packets to dial2.lng.yahoo.com (217.12.6.17), London, showing

priority 7 for all 8 different classes

Once the delays start to settle down after the first part of the graph, shown in Figure

2.4, there is very little difference between the classes. Class 1 and Class 4 are the only

ones to stand out as they have peaks in the later part of the graph.

2.6.4 Summary

The delays to weblist.ru (194.135.30.46), Russia, seem to be fairly unstable as no class

gives a consistent delay.

The delays to dial1.lng.yahoo.com (217.12.6.16), London, get the better results using

class 0, 4, 5, 6 and 7. Class 7 gets the best result of all, for both consistency and actual



CHAPTER 2. MOTIVATION 40

delay times.

The delays to dial2.lng.yahoo.com (217.12.6.17), London, get the better results using

class 0,1,2,3,6 and 7. Class 6 gets the best result for both consistency and actual delay

times. The results for classes 1,2,3 are different to dial1.lng.yahoo.com (217.12.6.16)

which is surprising as both hosts are on the same network. Class 0 is the only class

which gives a consistently good result. It is interesting to note that Class 0 is the

default setting for the class and so leaving the default settings for packets is probably

better than guessing at a DiffServ setting.

Changing the DiffServ settings on the packets certainly makes a difference to the

delay and in some cases it can make a large difference. More testing on this needs to be

done to understand why the results for the two destinations on the same network gave

very different answers in some cases and to see if good settings for a destination vary

with time, or if good settings vary as the destination varies. It is interesting to note

that there seems to be almost always a setting which gives acceptably low delays to any

given destination.

2.7 Different Protocols

This test was designed to see if there is a difference in delay between sending packets

using different protocols. TCP and UDP were compared to see if they have different

times in their delays.



CHAPTER 2. MOTIVATION 41

2.7.1 Algorithm Used

The algorithm used to test the effect that the use of TCP and UDP has on the delay

on packets is shown in Algorithm 3.

Algorithm 3 Algorithm to test the effect TCP and UDP have on delays

loop

for D in destinations do

call traceroute with D

log date, time, protocol (UDP) and delay

call TCPtraceroute with D

log date, time, protocol (TCP) and delay

end for

end loop



CHAPTER 2. MOTIVATION 42

2.7.2 Results

 40

 45

 50

 55

 60

 65

 70

 75

 80

06/04 13/04 20/04 27/04 04/05

D
el

ay
 (

m
s)

Time

200B udp
800B udp

1400B udp
200B tcp
800B tcp

1400B tcp

Figure 2.5: UDP and TCP times to DANDELION-PATCH.MIT.EDU (18.181.0.31),

East Coast USA.

The graph in Figure 2.5 shows both the protocols have similar delays, neither one stands

out as being better.



CHAPTER 2. MOTIVATION 43

 16

 18

 20

 22

 24

06/04 13/04 20/04 27/04 04/05

D
el

ay
 (

m
s)

Time

200B udp
800B udp

1400B udp
200B tcp
800B tcp

1400B tcp

Figure 2.6: UDP and TCP times to webserver1.absolute-sports.de (195.162.250.2), Ger-

many.

The graph in Figure 2.6 shows that again the sizes are close together, it is interesting

to note that the lines for the TCP protocol have delays slightly below those of their UDP

counterparts.



CHAPTER 2. MOTIVATION 44

 150

 200

 250

 300

 350

06/04 13/04 20/04 27/04 04/05

D
el

ay
 (

m
s)

Time

200B udp
800B udp

1400B udp
200B tcp
800B tcp

1400B tcp

Figure 2.7: UDP and TCP times to ns.square.co.jp (202.33.28.186), Japan.

The graph in Figure 2.7 shows the delays for the different protocols are similar.

Every now and again the TCP delays are slightly better than the delays for the UDP.



CHAPTER 2. MOTIVATION 45

 4

 6

 8

 10

 12

 14

06/04 13/04 20/04 27/04 04/05

D
el

ay
 (

m
s)

Time

200B udp
800B udp

1400B udp
200B tcp
800B tcp

1400B tcp

Figure 2.8: UDP and TCP times to chandra.mirror.ac.uk (212.219.56.146), UK.

The graph in Figure 2.8 shows that again the TCP packets seem to do marginally

better than their UDP counterparts.

2.7.3 Summary

The delays on the TCP and UDP packets are very similar and are usually within 10ms

of each other. This would indicate that using a different protocol does not help to avoid

most of the delays, the only effect on delay would be a difference in the processing as it

might be slightly quicker to process one type of packet than another.



CHAPTER 2. MOTIVATION 46

It is interesting to note that while it is usually slightly better to use TCP there is

no indication whether this affects the time taken to send large amounts of data. Also

the TCP might have been affected by the fact that a UDP packet had just been sent to

the same destination previously. If the difference in the delays had been greater then it

would have been beneficial to rerun the test with the order reversed (TCP then UDP).

As the difference between the protocol was small the suggested benefits did not warrant

running the test with the order reversed.

2.8 Optimising packet configuration with a Genetic

Algorithm

This Section looks at how a standard ga could be applied to the problem of optimising

the configuration of a packet for a specific route.

2.8.1 What needs optimising?

The results from the previous Sections in this Chapter suggest that the DiffServ settings

have the greatest effect on the delay of a packet, so the ga should optimise those settings.

The ga will also need to optimise the packet size settings as well as the DiffServ Settings

if the networks in the route do not support the method described in RFC 1191 [104] for

discovering the MTU.



CHAPTER 2. MOTIVATION 47

2.8.2 Genome Length

Assuming that a binary encoding is used the genome will need 6 bits to encode the

DiffServ parameter and 11 bits to encode the packet length to be used. This results in

a genome with a total length of 17 bits.

2.8.3 Fitness Testing

Due to the Internet being a noisy environment the fitness test for each individual will

need to take place over a period of at least a week. Reducing the length of the fitness test

will increase the risk that the individuals’ fitness levels would not be a true indication

of its ability to solve the problem at other periods. Increasing the period to longer than

a week would be preferable as this will help reduce the effect of the noisy environment

being evolved in. Two weeks is a reasonable length of time to test an individual’s fitness

over and so will be used as the length of the fitness test in the calculations in the next

section.

2.8.4 Running Time Span

With a genome length of 17 bits there are 131072 possible combinations. To brute force

all possible individuals would take over 5041 years to complete. A ga using a population

size of 60 that was run for 400 generations would only take 923 years. The ga takes less

time to run than the brute force option but 923 years is still far too long to be of any

use as a solution to this problem.

A possible optimisation in the fitness testing of individuals is that a number of



CHAPTER 2. MOTIVATION 48

individuals could be checked in the same two week period by cycling through them

(Note that this would reduce the number of times the route would be checked for each

individual and as such would increase the effect that the noisy environment would have

on the individuals fitness level). Assuming that 60 individuals could be tested in the

same two week period the length of time it would take to run the ga for 400 generations

would be over 15 years.

Increasing the number of individuals that can be tested in the same 2 week period

beyond 60 will not reduce the length of time it takes the ga to run for 400 generations

but would increase the size of the population that the ga can use without increasing

the time taken to test a generation.

Using a ga instead of a brute force method reduces the running time span greatly

but it does not reduce the time enough to be an acceptable method to solve this problem.

2.9 Overall Conclusions

Of all the tests carried out the greatest differences were due to the DiffServ settings,

however these were not consistent across all tests.

The packet size plays a small part in the delay, but it seems best to use the largest

packet size as possible as this reduces the number of packets and hence the number of

headers that need sending.

The DiffServ bits give the greatest hope for some control over the delay on packets,

unfortunately there does not seem to be a specific setting which performs well to all

destinations. There may be a setting which performs well to a specific host and this



CHAPTER 2. MOTIVATION 49

might stay constant, though these settings would need to be discovered for each host

the packet is being sent to. More research needs to be carried out into this to deter-

mine exactly what the effect of the DiffServ bits have on a packet’s delay and in what

circumstances.

The TCP and UDP test show that TCP packets are usually marginally faster than

packets being sent using UDP.

To get a long term view of the performance of a specific configuration of a packet,

the configuration would have to be tested for at least two weeks due to the constantly

changing nature of the Internet. After completing these tests and the length of the

fitness test that would be needed if a ga was applied to the problem became apparent the

question was posed “How could genetic algorithms be improved to decrease the length

of time needed to evolve an acceptable solution?”. The rest of this Thesis introduces

and investigates two methods that improve the performance and efficiency of gas which

could be applied to this problem to answer the question posed.



Chapter 3

Population Sizes and Level of

Elitism

3.1 Introduction

This chapter investigates the effect that population size and the level of elitism has on

the efficiency and performance of gas. Section 3.3 describes the test problems used to

analyse the effects that population sizes and the level of elitism have on a ga tackling

problems with different degrees of difficulty. Sections 3.5.1 and 3.5.2 examine the effects

that population sizes have on the performance of a ga. Section 3.5.4 examines the effects

that population sizes have on the efficiency of a ga. Finally section 3.5.5 examines the

effects that the level of elitism has on a ga.

50



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 51

3.2 Efficiency and Performance

The definition of the efficiency of a ga used in this Thesis is shown in Equation 3.1.

This measure of efficiency for a ga is useful when assessing how much time a ga has

used up calculating the fitness of known locations in search space. As the efficiency of

the ga improves the number of locations in search space that have been searched also

improves or the time taken to search those locations reduced.

Efficiency =
Locations In Search Space Searched

T ime
(3.1)

The definition of the performance of a ga used in this Thesis is shown in Equation

3.2. With this performance measure it will be possible to see if a change to a ga increases

or decreases the level of fitness it can achieve in a specific length of time.

Performance =
Fitness

T ime
(3.2)

With respect to fitness functions that take a long time to compute, improving the

performance of a ga is more important than improving the efficiency of the ga. The

overall aim of a ga is to gain as high a level of fitness as possible in the available

time. Improving the gas efficiency by increasing the area of search space that has been

searched does not guarantee an improvement in the performance of the ga. Reducing

the length of time that a ga takes to get to the same level of fitness will improve both

the performance and efficiency of the ga.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 52

3.3 Test Problems

The following are the three basic test problems that have been used to examine the

performance of gas :

• One Max Problem [51, 40]

• Deceptive Trap Functions [51]

• GA Hard Problem

These three problems present three different degrees of difficulty for a ga. The One

Max problem is an easy problem for gas to tackle, while the Deceptive Trap problem is

more difficult for a ga to solve. The ga Hard problem is even harder than the Deceptive

Trap problem for a ga to solve1, due the excessive amounts of local minima. Each ga

setting will be tested on all three problems to examine how the difficulty of a problem

affects the efficiency and performance of the ga.

3.3.1 One Max Problem

The One Max Problem is an easy problem for gas to tackle, due to the smooth hill it

presents. This makes it very useful for examining the effects of changes made to a ga.

The One Max Problem consists of evolving a bit string of a specific length, the more

ones in the bit string the higher the fitness of that bit string. The standard fitness

1The ga Hard Problem is configurable in its level of difficulty, the parameters used throughout the

work in this Thesis are shown in Section 3.3.3



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 53

function for the one max problem is defined as the following, where l is the length of

the bit string and x is the bit string being tested.

f(x) =
l
∑

i=0

xi

The length of the bit string (l) used for the One Max Problem was 1000 bits, this

gives a maximum achievable fitness level of 1000. As the One Max Problem is an easy

problem for gas to tackle a large size of bit string was selected to stop the ga solving

the problem in the early generations.

3.3.2 Deceptive Trap Functions

Deceptive Trap Functions are a difficult problem for gas to tackle[23, 54]. This makes

them a good function to use as a fitness function to examine the performance of a ga,

especially for examining the effects population sizes have on a ga’s performance[23, 54].

An example of a 4 bit trap function is shown in Figure 3.1. It is similar to a One Max

Problem except that the greatest available score is for a bit string consisting of all 0s.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 54

 0

 1

 2

 3

 4

 5

 0  1  2  3  4

F
itn

es
s

Number of Ones in Bit String

Figure 3.1: A simple 4 bit deceptive trap function

To make the problem hard enough to test the ga twenty of these problems were

concatenated together, which gives a genome length of 80 bits. So the bit string is split

up into 20 blocks, with each block 4 bits in length. This total scored by the 20 blocks is

the fitness of the individual being tested. The maximum score for this test is a fitness

of 100.

The big difference between the One Max Problem and the Deceptive Trap Functions

is that the ga tackling the One Max Problem is always pointed in the correct search

direction by the individuals’ fitness levels, while the ga tackling the Deceptive Trap

Functions is not always pointed in the correct search direction by the individuals’ fitness



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 55

levels.

3.3.3 GA Hard Problem

The GA Hard Problem is a function that has been designed at Loughborough University

to be configurable in the level of difficulty it poses to a ga. An individual is mapped

into an array, i, which consists of a number of eight bit integers. The array is then

used to calculate the distance from a point C, coordinates ck, using Equation 3.3. The

result of Equation 3.3 is then used in Equation 3.4 to calculate a fitness value for the

individual. An example of the surface produced by this Equation is shown in Figure

3.2.

dist =

√

√

√

√

dim
∑

k=1

(ik − ck)
2 (3.3)

Fitness = 10 ∗ cos

(

2 ∗ π ∗
dist

rad
∗ amp ∗

(

2−
dist

ahl

)

+ height ∗
(

2−
dist

hhl

)

)

(3.4)

The parameters used in the equation were selected by a process of trial and error.

The trials consisted of plotting the graphs of the hills produced by the parameters being

tested and then testing those that produced a hill with a large number of local minima

on a standard ga. The parameters were selected so that the ga could improve in the

early generations but as the ga approached the maximum it found it harder to improve.

The Number of dimensions (dim) parameter adjusts the size of the genome needed

to tackle the equation. Increasing this value increases the size of the genome needed.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 56

The Radius (rad) parameter adjusts the frequency of the troughs. Increasing this

value decreases the frequency of the troughs.

The Height parameter adjust the base height of the hill. The higher the value the

higher the hill will be based. This parameter is useful for some systems that have

problems with negative fitness values as it allows the base height of the hill to be raised

to avoid them.

The Amplitude (amp) parameter adjusts the base depth of the troughs. Increasing

this value increases the maximum depth of the troughs.

The Height Half Life (hhl) parameter adjusts how quickly the height of the hill

approaches the base of the hill. Decreasing this value increases the rate that the hill’s

height approaches the base.

The Amplitude Half Life (ahl) adjusts the decay of the depth of the troughs on the

hill. Increasing this value reduces the rate decay.

The parameters chosen to be used in the tests are shown in Table 3.1. These param-

eters were selected by a process of trial and error as described earlier in this Section.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 57

Parameter Description Default Value

dim Number of Dimensions 5

Rad Radius 1

height Height 10.0

amp Amplitude 2.5

hhl Height Half Life 5

ahl Amplitude Half Life 200

Table 3.1: Default Parameters for the ga Hard Problem

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250

F
itn

es
s

Distance

Figure 3.2: An example of the type of hill produced by the GA Hard Problem using the

default parameters.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 58

As can be seen in Figure 3.2 the ga Hard Problem, using the default parameters, has

so many local minima that it is very hard for a ga to evolve without getting trapped in

one. The ga Hard Problem was configured to be the hardest of the three test problems.

The highest achievable level of fitness for the ga Hard Problem is 125.

3.4 Experiments

Four sets of experiments were undertaken to assess the following

• Population Sizes and their Effects on Performance

• Population Sizes and their Effects on Performance Using a Different Model of

Elitism

• Population Sizes and their Effects on Efficiency

• Elitism Levels and their Effects on Performance

The effect of elitism levels on the efficiency of a ga has not been included in this set of

experiments as the more individuals carried forward to the next generation reduces the

number of new individuals that can be present in the next generation. Thus increasing

the level of elitism reduces the efficiency of the ga. As this is known an experiment is

not needed to assess it.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 59

3.4.1 Elitism Levels Used

The gas used in the three following sets of experiments are based on De Jong’s Sim-

ple Elitist Genetic Algorithm[34] which carries the best individual forward to the next

generation.

• Population Sizes and their Effects on Performance

• Population Sizes and their Effects on Efficiency

• Elitism Levels and their Effects on Performance

The effect of increasing the number of individuals carried forward has on the ga

using a population size of 6 is investigated in the “Elitism Levels and their Effects on

Performance” experiment (See Sections 3.4.5 and 3.5.5).

The “Population Sizes and their Effects on Performance Using a Different Model of

Elitism” set of experiments investigates the effects population size has on a ga which is

carrying a percentage of the best individuals forward to the next generation.

3.4.2 Population Sizes and their Effects on Performance

A comparison of a ga using three different population sizes (6, 60 and 600) was per-

formed against the three test problems. The number of generations was inversely pro-

portional to the number of individuals in the population, so each run took approximately

the same length of time. The ga was tested on all three of the basic test problems to

see how the difficulty of the problem affected the performance of the ga. On all three

problems the ga used elitism (at a level of 1, i.e. only the best individual was carried



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 60

forwards to the new population). The ga used a mutation rate of 1

n
and single point

crossover.

For all three problems the ga was run 50 times with a population size of 6, then

run another 50 times with a population size of 60 and then run another 50 times with

a population size of 600. Each population size used the same set of 50 seeds for the

pseudo random number generator. The ga with a population size of 6 was run for 4000

generations, the ga with a population size of 60 was run for 400 generations and the

ga with a population size of 600 was run for 40 generations. This resulted in all three

population sizes taking approximately the same length of time to run.

3.4.3 Population Sizes and their Effects on Performance Using

a Different Model of Elitism

The second set of experiments assessed the effect that using a different model of elitism

would have on the performance of a ga.

A ga was configured to carry the best 1

6
of the population forward to the next

generation. A comparison of a ga using three different population sizes (6, 60 and

600) was performed against the three test problems. The number of generations was

inversely proportional to the number of individuals in the population, so each run took

approximately the same length of time. All three of the basic test problems were tackled

by the gas to assess how the difficulty of the problem affected the performance of the

ga. The ga used a mutation rate of 1

n
and single point crossover.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 61

3.4.4 Population Sizes and their Effects on Efficiency

The third set of experiments assessed the effect that population size has on the efficiency

of the ga. A ga was run 50 times using three different population sizes (6, 60 and 600)

against each of the test problems. The number of generations was inversely proportional

to the number of individuals in the population, so each run took approximately the same

length of time. The number of locations in search space searched was recorded as an

indication of how efficient the ga was with each population size. The ga was tested on

all three of the basic test problems to see how the difficulty of the problem affected the

efficiency of the ga. On all three problems the ga used elitism (at a level of 1). The ga

used single point crossover and had a mutation rate of 1

n
(where n is the length of the

genome). The mutation rate of 1

n
has been selected based on the results of Ochoa [111].

For all three problems the ga was run 50 times with each of the three population

sizes (6. 60 and 600). Each population size used the same set of 50 seeds for the

pseudo random number generator. The ga with a population size of 6 was run for 4000

generations, the ga with a population size of 60 was run for 400 generations and the

ga with a population size of 600 was run for 40 generations. This resulted in all three

population sizes taking approximately the same length of time to run.

3.4.5 Elitism Levels and their Effects on Performance

The fourth set of experiments compared the effects that increasing the number of indi-

viduals carried forward had on the ga. For each level of elitism the ga was run against

the three test problems. The levels of elitism used were



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 62

No individuals carried forward,

One individual carried forward (An elitism level of 1),

Two individuals carried forward (An elitism level of 2),

Three individuals carried forward (An elitism level of 3)

On all three problems the ga had a population size of 6, used a mutation rate of 1

n

and single point crossover. The population size was chosen based on the results of the

first three experiments (see Sections 3.4.2 to 3.4.4 and 3.5.1 – 3.5.4).

For all three problems the ga was run 50 times with no elitism, then run 50 times

with an elitism level of one, then run 50 times with an elitism level of 2 and then run 50

times with an elitism level of 3. Each level of elitism and the run with no elitism used

the same set of 50 seeds for the pseudo random number generator.

3.5 Results

The following sections (3.5.1 – 3.5.5) contain a summary of the results of the experiments.

Appendix B contains a full set of results. The average fitness levels shown in the graphs

in the rest of this chapter are the average of the best fitness level achieved for each of

the 50 runs.

3.5.1 Population Sizes and their Effects on Performance

This section shows and discusses the results of the experiments examining the effects of

population sizes on the performance of the ga.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 63

One Max Problem

The following graphs show the results of the runs of the ga, with the varying population

sizes, against the One Max Problem.

 500

 550

 600

 650

 700

 750

 800

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

Generations

Average fitness level (Population size 6)
Average fitness level (Population size 60)

Average fitness level (Population size 600)

 520

 540

 560

 580

 600

 620

 640

 660

 680

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Generations

Figure 3.3: Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against generations

The graph in Figure 3.3 shows the average best fitness of all three population sizes.

They are shown against generations to show the difference in the number of generations

the different population sizes can evolve for in the same length of time. While the higher

population sizes do marginally better to start with, the population size of 6 manages

to improve its fitness to a higher level than the other population sizes with the extra



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 64

generations it can achieve in the time available to it. It is interesting to note that the

population size of 6 performs better than the population size of 60 within the same

number of generations, this is discussed later.

 500

 550

 600

 650

 700

 750

 800

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

time (Relative to generations for a population size of 6)

Average fitness level (Population size 6)
Average fitness level (Population size 60)

Average fitness level (Population size 600)

Figure 3.4: Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

The graph in Figure 3.4 shows the average best fitness of all three population sizes.

They are shown against the time taken to run the ga. This graph shows that the

population size of 6 does better than the higher population sizes when compared on

time taken.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 65

Population Size 6 60 600

40 Generations 557 570 576

400 Generations 676 649 —

4000 Generations 788 — —

Table 3.2: Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested

Table 3.2 shows the average fitness levels of the three different population sizes at

forty, four hundred and four thousand generations. While at 40 Generations the best

results is that of the ga with a population size of 600 followed by that of the ga with

a population size of 60 and the population size 6 performing the worst.

The ga with a population size of 600 has used up all the time available to it by the

40th generation and as such has not been able to improve on its fitness level of 576. The

ga with a population size of 60 has reached a fitness level of 649 but the ga with a

population size of 6 has produced a fitness level of 676. This is interesting as the lower

population size has achieved a higher fitness level than the population size of 60 in the

same number of generations, which will have taken it 1

10
of the time to run. This result

is counter intuitive and will need to be researched more to understand why it occurs.

The ga with a population size of 60 has used up all the time available to it by the

400th generation and as such has not been able to improve on its fitness level. At its

4000th generation the ga with a population size of 6 has reached the highest fitness

achieved.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 66

Deceptive Trap Functions

The following graph show the results of the runs of the ga, with the varying population

sizes, with the Deceptive Trap Function as a fitness function.

 55

 60

 65

 70

 75

 80

 85

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

Time (Relative to generations for population size of 6)

Average fitness level (Population Size 6)
Average fitness level (Population Size 60)

Average fitness level (Population Size 600)

Figure 3.5: Average Fitness levels, of the best of each of 50 runs, for all three population

sizes, shown against time

The graph in Figure 3.5 shows the average fitness of all three population sizes against

the time taken to run the ga. Again the population size of 6 performs better than the

higher population sizes in a set length of time.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 67

Population Size 6 60 600

40 Generations 72 76 79

400 Generations 83 82 —

4000 Generations 84 — —

Table 3.3: Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested

Table 3.3 shows that after all three population sizes had evolved for 40 generations

the population size of 600 had achieved the highest fitness level.

The ga with a population size of 600 has used up all of the time available to it by 40

generations and never reaches 400 generations. So it has not been able to improve upon

its fitness level of 79. Both the gas using a population size of 6 and 60 have overtaken

it at this stage. At the 400 generation stage the ga with a population size of 6 has also

overtaken the ga with a population size of 60. It is important to remember that the ga

with a population size of 6 has taken 1

10
of the time that the ga with a population size

of 60 has taken to get to this stage.

The ga with a population size of 60 has used up all the time available to it by 400

generations and never reaches 4000 generations. So it has not been able to improve upon

its fitness level. The ga with a population size of 6 has been able to improve slightly

again, reaching the fitness level of 84, which is the highest encountered.

The best run for the ga with a population size of 6 reached the maximum possible

fitness level in the 95th generation. The best run for the ga with a population size of

60 reached the maximum possible fitness level in the 45th generation. While this is a



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 68

difference of 50 generations, the best run of the ga with a population size of 6 reached

the maximum fitness level in 3% of the time available to it while the best run of the ga

with a population size of 60 reached the maximum possible fitness level in 12% of the

available time.

GA Hard Problem

The following graph shows the results of the runs of the ga, with the varying population

sizes, against the ga Hard Problem. The default parameters were used for the ga Hard

Problem.

 0

 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

time (Relative to the generations for the population size of 6)

Average fitness level (Population size 6)
Average fitness level (Population size 60)

Average fitness level (Population size 600)

Figure 3.6: Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 69

The graph in Figure 3.6 shows the average fitness of all three population sizes. They

are shown against the time taken to run the ga. This graph shows that the population

size of 6 actually reaches the level that all the population sizes get stuck on first, while

the higher population sizes take longer to get there.

Population Size 6 60 600

40 Generations 56 93 100

400 Generations 104 105 —

4000 Generations 105 — —

Table 3.4: Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested

Table 3.4 shows the fitness levels achieved by the ga with the three different pop-

ulation sizes after 40, 400 and 4000 generations. After 40 generations the gas with a

population size of 60 and 600 have achieved the same level of fitness. The population

size of 6 has achieved an almost equal level of fitness.

The ga with a population size of 600 has used up all the time available to it by the

40th generation so never manages to improve on the fitness level of 100. Both the gas

with a population size 6 and 60 had achieved almost the same level of fitness by their

400th generation.

The ga with a population size of 60 has used up all the time available to it by its

400th generation so never manages to improve its fitness level above 105. The ga with

a population size of 6 failed to achieve a higher level of fitness despite having enough

time to run for 4000 generations.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 70

Summary

On all three of the problems the ga using a population size of 6 performed best, on the

One Max Problem and the Deceptive Trap Functions the ga with a population size of 6

scored a higher fitness value than the other two population sizes within the time limit.

The ga tackling the ga Hard Problem achieved the same level of fitness with all three

population sizes within the time limit but the population size of 6 reached there first.

It is interesting to note that the ga tackling the Deceptive Trap Functions managed

to achieve maximum fitness on at least one of the runs when using a population size of 6

or 60 but failed when using a population size of 600. The earliest the population size of

6 achieved the maximum was on its 95th generation while the earliest the population size

of 60 achieved the maximum fitness level was on its 45th Generation. It is important to

remember that when the ga using a population size of 60 has reached its 45th generation

the ga using a population size of 6 has reached its 450th generation.

The results show that smaller population sizes run for more generations have a better

performance than a ga using a larger population size for fewer generations. This shows

that when the ga is running in a fixed length of time the number of generations is more

important than the population size.

3.5.2 Population Sizes and their Effects on Performance Using

a Different Model of Elitism

This section shows and discusses the results of the experiments (see section 3.4.3) testing

the effects of population sizes on the performance of the ga when a different model of



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 71

elitism is used.

One Max Problem

The results of the experiments on the One Max Problem are shown in Figure 3.7 and

Table 3.5. The graph in Figure 3.7 shows the average best fitness levels for the population

sizes against time. Table 3.5 shows the average best fitness level achieved by each of the

population sizes at 40 and 400 generations.

 500

 550

 600

 650

 700

 750

 800

 0  500  1000  1500  2000

F
itn

es
s

Time (relative to generations for a population size of 6)

Average Best Fitness (Population size 6)
Average Best Fitness (Population size 60)

Average Best Fitness (Population size 600)

Figure 3.7: Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

The graph shown in Figure 3.7 shows that for the One Max Problem a population

size 6 outperforms a population size of 60 and 600. Compared to the results shown in

Figure 3.4 the population sizes of 60 and 600 have performed better, but they are still



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 72

a good distance behind the results for the population size of 6.

Population Size 6 60 600

40 Generations 557 595 590

400 Generations 676 701 –

Table 3.5: Average fitness levels, of the best of 50 runs of the three population sizes

tested

Table 3.5 shows the average best fitness levels achieved by the different population

sizes at 40 and 400 generations. In Table 3.2 at 400 generations the population size of

6 had achieved a higher average best fitness level than that of the population size of

60 at 400 generations. This configuration of ga which carries the best 1

6
forward to

the next population showed a similar anomaly, where the population size of 60 has a

higher average best fitness level than the population size of 600 at 40 generations. This

suggests that the anomaly is related to the elitism levels the gas are using.

Deceptive Trap Functions

The results of the experiments on the Deceptive Trap Functions are shown in Figure 3.8

and Table 3.6. Figure 3.8 shows the average best fitness levels for the population sizes

against time, while Table 3.6 shows the average best fitness level achieved by each of

the population sizes at 40 and 400 generations.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 73

 55

 60

 65

 70

 75

 80

 85

 90

 0  500  1000  1500  2000

F
itn

es
s

Time (relative to generations for a population size of 6)

Average Best Fitness (Population size 6)
Average Best Fitness (Population size 60)

Average Best Fitness (Population size 600)

Figure 3.8: Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

Figure 3.8 shows that for the ga tackling the Deceptive Trap Functions The popu-

lation size of 60 outperforms the population sizes of 6 and 600. The population size of

6 performs better than the population size of 60 in the early stages, but as the time the

ga has been evolving for increases the population size of 60 overtakes it.

Again compared to the results shown in Figure 3.5 the population sizes of 60 and

600 have performed better. Though the population size of 600 still does not perform as

well as the population sizes of 6 and 60.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 74

Population Size 6 60 600

40 Generations 72 81 83

400 Generations 83 85 –

Table 3.6: Average fitness levels, of the best of 50 runs of the three population sizes

tested

Table 3.6 shows the average best fitness levels achieved by the different population

sizes at 40 and 400 generations. Section 3.3 shows an anomaly where the population

size of 6 had achieved a higher average best fitness level than the population size of 60.

This anomaly is not present in the results for this configuration of ga.

GA Hard Problem

The results of the experiments on the ga Hard Problem are shown in the graph in

Figure 3.9 and Table 3.7. The graph in Figure 3.9 shows the average best fitness levels

for the population sizes against time, while Table 3.7 shows the average best fitness level

achieved by each of the population sizes at 40 and 400 generations.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 75

 92

 94

 96

 98

 100

 102

 104

 106

 0  500  1000  1500  2000

F
itn

es
s

Time (relative to generations for a population size of 6)

Average Best Fitness (Population size 6)
Average Best Fitness (Population size 60)

Average Best Fitness (Population size 600)

Figure 3.9: Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

The graph shown in Figure 3.9 shows that for the ga Hard Problem the population

sizes of 6 and 60 are very close. The population size of 6 outperforms the population

size of 60 and 600 in the time available to it.

Compared to the results shown in Figure 3.6 the results are similar with the exception

of the population size of 600 which has performed better, though still not as well as the

population sizes of 6 and 60.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 76

Population Size 6 60 600

40 Generations 102 104 104

400 Generations 104 105 –

Table 3.7: Average fitness levels, of the best of 50 runs of the three population sizes

tested

Table 3.7 shows the average best fitness levels achieved by the different population

sizes at 40 and 400 generations. Interestingly at 40 generation the population sizes of

60 and 600 have achieved the same average best fitness level.

3.5.3 Summary

Even when a different method of elitism is used a smaller population size outperformed

the larger population sizes on two of the three test problems within the given time

period. The only test problem that a population size of 6 did not perform best on was

the Deceptive Trap Functions where the larger population size of 60 outperformed the

other population sizes.

Section 3.5.1 shows that for the Simple Elitist Genetic Algorithm a population size of

6 could outperform a population size of 60 in the same number of generations. The ga

used in the experiments in this section do not show this happening which suggests that

it was caused by the Simple Elitist Genetic Algorithm only carrying the best individual

forward to the next generation.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 77

3.5.4 Population Sizes and their Effects on Efficiency

This section shows and discusses the results of the experiments (see section 3.4.4) testing

the effects of population sizes on the efficiency of the ga.

One Max Problem

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

A
ve

ra
ge

 n
um

be
r 

of
 L

oc
at

io
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Time (Relative to generations for a population size of 6)

Population Size 6
Population Size 60

Population Size 600

Figure 3.10: Number of locations in search space searched by the ga with each of the

population sizes tested

The graph shown in Figure 3.10 shows the average number of locations in search space

searched by the gas using the three population sizes. This shows that the population

size of 6 has the worst efficiency while the population size of 600 has the best. The



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 78

difference between the efficiency of the population size of 60 and the efficiency of the

population size of 600 is smaller than that of the difference between the population sizes

of 6 and 60.

Deceptive Trap Functions

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

A
ve

ra
ge

 N
um

be
r 

of
 L

oc
at

io
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Time (Relative to generations for a population size of 6)

Population Size 6
Population Size 60

Population Size 600

Figure 3.11: Number of locations in search space searched by the ga with each of the

population sizes tested

The graph shown in Figure 3.11 shows the average number of locations in search space

searched by the gas using the three population sizes. A similar result is shown to that

of Figure 3.10 with the difference in efficiency between the ga using a population size



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 79

of 6 and the ga using a population size of 60 being larger than the difference between

the ga using a population size of 60 and the ga using a population size of 600.

GA Hard Problem

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

A
ve

ra
ge

 N
um

be
r 

of
 L

oc
at

io
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Time (Relative to generations for a populatin size of 6)

Population size 6
Population size 60

Population size 600

Figure 3.12: Number of locations in search space searched by the ga with each of the

population sizes tested

The graph shown in Figure 3.12 shows the average number of locations in search space

searched by the gas using the three population sizes. Again the difference between the

efficiency of the ga using a population size of 6 and the ga using a population size of

60 is larger than the difference in efficiency between the ga using a population size of



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 80

60 and the ga using a population size of 600.

Summary

The results show that all three gas were at their least efficient using the population size

of 6. The population size of 600 was the most efficient. This is an expected side effect

of reducing the population size as doing so also reduces the variety of possible parents.

Also reducing the population size increases the number of generations that the ga can

run for in the same length of time. This increase in the number of generations increases

the total number of individuals carried forward by elitism over the whole run.

The One Max Problem has shown that the efficiency of a ga tackling a simple

problem does not suffer as much as a ga tackling a more complex problem. As the

One Max Problem is easy for a ga its individuals were continually evolving into better

individuals which gave a strong direction to the evolution.

As the difficulty of the problems being tackled by the ga increased the efficiency of

the ga dropped. This is probably because the ga has encountered local minima which

are hard for the ga to escape from, this would result in the same small area of the search

space being searched.

3.5.5 Elitism Levels and their Effects on Performance

This section shows and discusses the results of the experiments (see section 3.4.5) the

effects of elitism on the performance of gas.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 81

Deceptive Trap Functions

 50

 55

 60

 65

 70

 75

 80

 85

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

 0  500  1000  1500  2000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

No Elitism
Elitism Level of 1
Elitism Level of 2
Elitism Level of 3

Figure 3.13: Average Fitness Levels for the Deceptive Trap Function

Figure 3.13 shows that for the Deceptive Trap Function, being tackled by the ga with

a population size of 6, the best level of elitism is to carry one individual forward to

the next generation. Carrying two individuals and three individuals forward produces

good results but not as good as just carrying one forward, though the difference in

fitness between the three levels of elitism is marginal. The ga using no elitism failed to

improve.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 82

3.6 Summary

The results show that a small population size needs a level of elitism to perform well.

Without elitism the ga becomes unstable. As the gene pool is so small it is easy for the

next generation to consist entirely of poor individuals. While Section 3.5.2 shows that

using elitism with larger population sizes improves the performance of the ga, larger

sizes of population have already been shown to operate acceptably without elitism [51].

On the simple One Max Problem the higher level of elitism performed best, on the

ga Hard Problem all three levels of elitism tested got the same level of fitness in the

given time, but the higher levels achieved this level marginally quicker than the lower

level. On the Deceptive Trap Functions the lower level of elitism produced marginally

better results. This shows that there is very little difference between a small population

size using a low level of elitism and small population size using a high level of elitism

when the problem is more difficult than the One Max Problem, so a standard elitism

level of one will let the ga search a larger area of the search space.

In all the tests the lowest population size performed better over a fixed period of

time. Even as the difficulty of the problems increased the lowest population size still

performed best. This indicates that it is worth reducing population sizes when there is

a limited length of time, or if it is important to reduce the length of time it takes to run

the ga.

A possible reason for the population size of 6 surpassing the population size of 60 by

400 generations in the One Max Problem and the Deceptive Trap Functions is suggested

by the results in section 3.5.2. As the main difference between the tests in section 3.5.2

and section 3.5.1 is how the ga implements elitism it suggests that the anomaly is caused



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 83

by the way the Simple Elitist Genetic Algorithm handles the elitism.

On the simple One Max Problem, which has a smooth hill to climb, there was no

problems with searching the same locations in search space multiple times. As the prob-

lem difficulty increased and local minima were introduced to the problem, the number

of locations in search space that was searched multiple times increased. The problem of

searching the same locations multiple times was worst in the lowest population size.

This indicates that while lower population sizes perform better when there is a fixed

length of time to run the ga within, they are less efficient than the larger population

sizes. If the efficiency of the ga using a low population size can be increased then they

could fit even more generations into the same period of time.

The experiments testing how the level of elitism affects the performance of the ga

showed that a degree of elitism is needed with a small population size as without it

the ga finds it very difficult to improve. The One Max Problem, which has a smooth

hill for the ga to climb, found that the best level of elitism was to carry the three

best individuals forward to the next generation. The Deceptive Trap Function, which

has a harder hill for the ga to climb, was tackled best by carrying only one individual

forward to the next generation. The ga Hard Problem had very little difference in the

performance of the ga when carrying one, two or three individuals forward to the next

generation.

It is important to remember that the higher the level of elitism used then the lower

the efficiency of the ga as it has more individuals carried forward that it has already

seen. Unless stated otherwise the level of elitism used in the rest of this Thesis is a level

of one, which provides a good compromise between the improvements to the performance

achieved by elitism and the detrimental effect elitism has on the efficiency of the ga.



CHAPTER 3. POPULATION SIZES AND LEVEL OF ELITISM 84

Assessing Intelligent Assessing Partial

Fitness Functions Fitness Functions

Population Size 6 60

Mutation Rate 1

n

1

n

Elitism Level 1 Individual 1 Individual

Table 3.8: Base configurations used

To enable the new methods to be compared to a standard ga it is necessary to use

the same base configuration for the gas. The base configurations used in most of the

experiments in this Thesis are shown in Table 3.82. While these configurations have

been chosen to enable the new methods to be assessed it is important to remember that

these configurations have been chosen based on the performance of standard gas and

as such it may be possible to find better configurations for the new methods.

2The population size for assessing partial fitness functions is larger than that for assessing intelligent

fitness functions because partial fitness functions require a larger population size and it would be unfair

to compare them to a standard ga with a smaller sized population.



Chapter 4

Intelligent Fitness Functions

4.1 Introduction

This chapter introduces the concept of intelligent fitness functions and investigates the

effect that different configurations of intelligent fitness functions have on the performance

of a ga.

The longer each fitness function takes to calculate the more important it becomes

for the ga to only spend time evaluating individuals it has not seen before. Intelligent

Fitness Functions help a ga by reducing the number of individuals that have their fitness

assessed multiple times.

85



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 86

4.2 Caching and GAs

One method to improve the efficiency of a ga is to use a cache. The caching ga

was introduced by Kratica[83]. Kratica’s caching ga checks its cache before passing

an individual to the objective function for decoding. If the individual is found in the

cache the objective values stored in the cache for the individual are passed to the fitness

function. If the individual is not found in the cache then the objective function is used

to generate the values that are passed on to the fitness function. Either way the values

from the objective function for the individual are then placed into the cache. If the

individual is already in the cache then the old entry is removed as this results in the

cache being ordered from least recently used to the most recently used. If it is not

already in the cache then it is added, if the cache is full then the oldest member in the

cache is replaced.

Kratica’s caching ga has had varied results depending on the problems being tackled

[83]. The results range from a speed up of the ga of 0.23% as the worst reported result,

to a speed up of 98.3% for the best reported result (Kratica did not state how a speed

up of 98.3% was achieved by the caching ga in his report [83]). The average speed up

of a ga reported by Kratica [83] was 23.3%.

To use this design of caching ga an existing system would need to be modified to

add the caching process around the objective function, which may help explain why it

is not widely used. The caching ga uses a least recent used replacement strategy for

the cache which is the most commonly used strategy for caching [143] but no evidence

has been provided that it is the best for use with a ga.

The caching ga has been used to tackle the following problems.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 87

• The Simple Plant Location Problem [84, 82]

• The Index Selection Problem [85, 24]

• The Edge-Biconnectivity Augmentation Problem [92]

4.3 Concept

A standard ga fitness function takes a genome, decodes it into a phenotype and then

uses the phenotype to calculate the fitness of the genome. Every genome goes through

the same process. In this Thesis intelligent fitness functions consist of an active control

part and either a long term memory, a short term memory or both. The control is then

able to check whether an identical individual has been encountered before. The control

then decides how to proceed based on the information it has about an individual.

Intelligent Fitness Functions differ to the Caching ga in three areas. Firstly the

Caching ga only caches the result of the objective function while intelligent fitness

functions remember the result of the fitness function While it is a simple function to

calculate the fitness from an individuals objective value, the objective value is not used

anywhere else in the system except to calculate the individuals fitness. A further saving

can then be achieved by remembering the fitness value of an individual instead of the

objective value. Secondly the caching in the Caching ga is a property of the ga itself

while the memory of the intelligent fitness functions is stored within the fitness function.

This enables a ga to benefit from the use of an intelligent fitness function without the

need to modify the ga’s engine. The third area that intelligent fitness functions differ

to the caching ga is that the intelligent fitness functions can use a short term memory

as well as a long term memory. This enables the intelligent fitness function to treat an



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 88

individual that is a duplicate of another individual encountered in the same generation

differently to an individual that is a duplicate of an individual encountered in a previous

generation.

4.3.1 Memory Types

There are two types of memory an intelligent fitness function can contain.

Short Term Memory enables the intelligent fitness function to remember the indi-

viduals it has seen in that generation. The goal of the short term memory is to

increase the diversity of the ga’s population.

Long Term Memory enables the intelligent fitness function to remember individuals

it has seen in previous generations. The goal of the long term memory is to reduce

the number of repeated fitness tests.

Short Term Memory

If a genome is identical to another one in the current population, i.e. the fitness function

finds the individual in its short term memory, then it gives that individual a fitness of

0 to try to increase the variety of the next generation by reducing the chances that

identical individuals will be chosen as parents for a new individual. This is intended to

stop an individual from taking over the population. The diagram in Figure 4.1 shows an

intelligent fitness function which contains a short term memory as well as a long term

memory.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 89

Long Term Memory

If an individual has already been tested in a previous generation and the intelligent

fitness function finds it in its long term memory, then it can simply return the fitness

level the individual scored last time it was evaluated. The diagram in 4.1 shows an

intelligent fitness function which contains a long term memory as well as a short term

memory.

If a ga is run for a large number of generations it may not be efficient to remember

every individual encountered, as the intelligent fitness function will have to search the

long term memory every time it is asked to assess the fitness of an individual. To avoid

the inefficiency that could arise from storing every individual the long term memory

should have a limit to the number of individuals it can store (this limit is discussed later

in this Chapter, see section 4.3.3).

Combined Long Term and Short Term Memory

The short term memory is designed to increase the diversity of the ga’s population,

while the long term memory is designed to avoid re-evaluating identical individuals.

Due to the difference in the designed effect of the long term and short term memories it

is possible to combine them together in the same intelligent fitness function. If they are

combined together the short term memory would normally take priority over searching

the long term memory. A diagram of an intelligent fitness function with both a long

term and a short term memory is shown in Figure 4.1.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 90

Test
Fitness

Individual

Fitness Value

Memory
Long Term

Short Term
Memory

Control

New Generation

Figure 4.1: An Intelligent Fitness Function with Both a Long Term Memory and a Short

Term Memory

4.3.2 Memory Search and Replace Times

An intelligent fitness function will need to spend time searching through its available

memories to check if it has information about the individual it has been asked to assess.

Also each time an intelligent fitness function is called it needs to update its memory

which also takes time. Equation 4.1 shows how to calculate the average time taken to

calculate the fitness of an individual using an intelligent fitness function. If the value of

AF is less than the time taken to calculate the fitness of an individual using a standard

fitness function then it is beneficial to use an intelligent fitness function.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 91

AF =
((

M

2
+ U

)

H

)

+ (((M + F ) . (1 − H)) + M + W + U) (4.1)

AF Average length of time for the intelligent fitness function to calculate and individ-

ual’s fitness

M Length of time taken to search the memory

H Expected chance of locating an individual in the memory

F Length of time taken to calculate the fitness of an individual

W Length of time taken to write an individual and its fitness value into the memory

U Length of time taken to update the status of an individual in the cache

From Equation 4.1 we can see that as long as M

2
is less than F , as the length of

time taken to search the memory increases the savings to be made decrease. Yet as the

chance of an individual being found in the memory increases so too do the savings. Also

as the length of time it takes to calculate an individual’s fitness increases so too does

the available savings from using an intelligent fitness function.

The parameter H in equation will be dependent on the problem being tackled and

the configuration of the ga. For a Simple Elitist Genetic Algorithm with a population

size of 6 a value of 1

3
can be used as an approximation (Taken from the results of the

experiments in the rest of this chapter). To obtain a more accurate value then the

ga being used and the effects the problem being tackled have on it would need to be

investigated.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 92

The length of time taken to update the status of an individual in the cache is not

always needed. If the storage strategy (see Section 4.3.4) is based on the individual’s

fitness then that will not need to be changed each time it is encountered. Storage

strategies that track the number of times an individual has been encountered or the

time it was last encountered will need to update their cache.

For the test problems used in this chapter it takes longer to search the intelligent

fitness functions memories than it does to calculate an individual’s fitness. As the

experiments are exploring the effects that the intelligent fitness functions have on gas

these simple test problems are preferred.

4.3.3 Memory Sizes

The size of memory needed for the short term memory is shown in Equation 4.2. The

memory needs to be this size as it has to be capable of storing every unique individ-

ual seen in that generation, though it doesn’t need to store the last individual in the

generation as it will be cleared for the start of the next generation. In most cases it is

easier to have a short term memory size equal to the size of the population as then there

is no need to distinguish between the last individual in a generation and all the other

individuals. The only time lost this way is the time taken to write the last individual

to the memory as the memory is cleared straight afterwards.

SM = P − 1 (4.2)

SM size of the short term memory needed.

P size of the ga’s population.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 93

The size of memory for the long term is not as easy to decide upon as the size of the

short term memory. Equation 4.1 shows that as the length of time taken to search the

memory increases the savings to be made by the intelligent fitness function decrease.

The experiments in the rest of this chapter will test a range of long term memory sizes

as well as the type of long term storage strategy used.

4.3.4 Long Term Memory Storage Strategies

As the long term memory is limited a strategy is needed to decide which individuals to

replace with the new individuals being stored. There are four obvious criteria to base

the decision on.

Highest Fitness Based is where the long term memory is used to store the individuals

encountered so far with the highest fitness. New individuals with high fitness will

replace the least fit individual in the long term memory. As the fitness of an

individual increases so too does the chance that it will be selected as a parent. This

would suggest that the higher fitness individuals have more chance of appearing

in the next generation.

Lowest Fitness Based is the opposite of the Highest Fitness Based strategy. The

least fit individuals encountered are remembered. This at first appears to be of

little use as a strategy but if a ga gets stuck for a time at a local minimum then

it will encounter a lot of individuals with a lower fitness before it manages to find

a better area to search.

Time Based is a strategy that stores individuals based on how long ago it has been

since they were last encountered. New individuals to be stored in the long term



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 94

memory replace the oldest individuals. As each generation is based on the previ-

ous generation an individual is more likely to be identical to one in the previous

generation than one in the first generation.

Frequency Based The long term memory can be used to store individuals that have

been encountered many times. The new individuals will replace the least seen

individual in the long term memory. If an individual keeps appearing it is likely

to keep doing so.

4.4 Experiments on the Effects of Intelligent Fitness

Functions

Two problems were tackled with an intelligent fitness function system that had the

options of a short term memory, long term memory or both. All 4 storage strategies

were assessed. The first ga had the Deceptive Trap Function (See 3.3.2) as its fitness

test while the second ga had the ga Hard Problem (See 3.3.3) as its fitness test. As

the One Max Problem (See 3.3.1) did not re-evaluate many individuals, the intelligent

fitness functions would not be able to make an improvement.

The ga used a population size of 6, a mutation rate of 1

n
[51], single point crossover

and used elitism that carried one individual forward to the next generation. These

settings have been shown in Chapter 3 to be good for a Simple Elitist Genetic Algorithm.

While this configuration may not be the best for the gas being tested the use of a

consistent configuration enables the results of the gas to be compared and the level of

improvement provided by using intelligent fitness functions can be measured.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 95

4.4.1 Experiment Details

Each ga was run using the same set of 50 seeds for the pseudo random number generator

and the results were then averaged for the graphs of the results. For each seed the ga

was run with the following settings.

• Standard fitness function (No memory)

• Short Term Memory only

• Long Term Memory with sizes from 6 to 60, in multiples of 6 individuals, using

the highest fitness based storage strategy

• Long Term Memory with sizes from 6 to 60, in multiples of 6 individuals, using

the lowest fitness based storage strategy

• Long Term Memory with sizes from 6 to 60, in multiples of 6 individuals, using

the time based storage strategy

• Long Term Memory with sizes from 6 to 60, in multiples of 6 individuals, using

the frequency based storage strategy

• Short Term Memory and Long Term Memory with sizes from 6 to 60, in multiples

of 6 individuals, using the highest fitness based storage strategy

• Short Term Memory and Long Term Memory with sizes from 6 to 60, in multiples

of 6 individuals, using the lowest fitness based storage strategy

• Short Term Memory and Long Term Memory with sizes from 6 to 60, in multiples

of 6 individuals, using the time based storage strategy



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 96

• Short Term Memory and Long Term Memory with sizes from 6 to 60, in multiples

of 6 individuals, using the frequency based storage strategy

4.4.2 Results

In this Section each graph shows how a specific long term memory storage strategy

performed on the problem being tackled. Each graph shows four lines.

Long Term Memory Only shows the savings achieved using only the long term mem-

ory with the storage strategy being examined.

Short Term Memory Only shows the saving achieved by using only the short term

memory

Sum of Short Term Memory Only and Long Term Memory Only shows the ex-

pected result if the use of a short term memory and the long term memory storage

strategy being examined is accumulative.

Short Term Memory and Long Term Memory shows the actual savings achieved

by using the short term memory and long term memory together for the storage

strategy being examined.

Deceptive Trap Functions

The graphs in Figures 4.2 to 4.5 shows the improvement of the efficiency of the ga using

the four different storage strategies for the long term memory.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 97

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60

 0  500  1000  1500  2000  2500  3000  3500  4000

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Time (Relative to generations for a population size of 6)

Long Term Memory Only
Short Term Memory Only

Sum of Short Term Memory Only and Long Term Memory Only
Short Term Memory and Long Term Memory

Figure 4.2: Comparison of Highest Fitness Based Storage Strategy

The graph in Figure 4.2 shows that the use of a highest fitness based storage strategy

does improve the efficiency of the ga. The use of a short term memory with the long

term memory produces results similar to that of the results for the long term memory

added to the results of the short term memory. The graph also shows that as the size of

the long term memory increases so does the impact the long term memory has on the

efficiency of the ga. It is possible that increasing the long term memory beyond 60 will

achieve further improvements although the gains appear to be diminishing.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 98

 0

 50

 100

 150

 200

 250

 300

 350

 0  10  20  30  40  50  60

 0  500  1000  1500  2000  2500  3000  3500  4000

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Time (Relative to generations for a population size of 6)

Long Term Memory Only
Short Term Memroy Only

Sum of Short Term Memory Only and Long Term Memory Only
Short Term Memory and Long Term Memory

Figure 4.3: Comparison of Lowest Fitness Based Storage Strategy

Figure 4.3 shows that the use of a lowest fitness based storage strategy only improves

the efficiency of the ga by a small amount. Again the use of both long term memory

and short term memory gives results similar to that of adding the short term memory

results to the long term memory results. The graph also shows that beyond a limited

point increasing the size of the long term memory does not increase the effect the long

term memory has on the efficiency of the ga.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 99

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  10  20  30  40  50  60

 0  500  1000  1500  2000  2500  3000  3500  4000

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Time (Relative to generations for a population size of 6)

Long Term Memory Only
Short Term Memory Only

Sum of Short Term Memory Only and Long Term Memory Only
Short Term Memory and Long Term Memory

Maximum Saving Achievable

Figure 4.4: Comparison of Time Based Storage Strategy

The graph in Figure 4.4 shows that the time based storage strategy has the greatest

increase in the efficiency of the ga out of the four strategies. The effect of using both

long term with the time based storage strategy and a short term memory is effectively

the same as just using the long term memory. Though after a long term memory size

of 18 the suggested savings of the sum of the long term memory and the short term

memory are impossible for the ga to achieve as they have passed the maximum savings

available. The increase in efficiency increases less as the size of the long term memory

increases. Compared to other approaches these improvements are considerably greater.

This will be discussed later.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 100

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60

 0  500  1000  1500  2000  2500  3000  3500  4000

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Time (Relative to generations for a population size of 6)

Long Term Memory Only
Short Term Memory Only

Sum of Short Term Memory Only and Long Term Memory Only
Short Term Memory and Long Term Memory

Figure 4.5: Comparison of Frequency Based Storage Strategy

Figure 4.5 shows the results of using the frequency based storage strategy. The long

term memory improves the efficiency of the ga. The use of the short term memory

as well as the long term memory does improve the efficiency but only by about half of

that which is predicted by adding the results of the long term memory to the results of

the short term memory. The efficiency of the ga increases as the size of the long term

memory is increased.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 101

High Fitness Low Fitness Time Based Frequency Based

0

1000

2000

3000

3243

Storage Strategies

Sa
vi

ng
s 

(n
um

be
r 

of
 f

it
ne

ss
 t

es
ts

)

Long Term

Short and Long Term

Sum of Short and Long Term

High Fitnes Low Fitness Time Based Frequency B

0

1000

2000

3000

3243

Figure 4.6: Summary of long term memory storage strategies (using a long term memory

size of 60) for the Deceptive Trap Functions.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 102

The graph shown in Figure 4.6 summarises the results of the experiments. The

results of the time based storage strategy stand out as being superior by far to the

other three storage strategies. It also shows that for the high fitness based, low fitness

based and frequency based storage strategies the short term memory helped improve

the efficiency of the ga. The time based storage strategy using a long term and short

term memory produced almost identical results as the time based storage strategy just

using a long term memory.

GA Hard Problem

The graphs in Figures 4.7 to 4.10 shows the improvements in the efficiency of the ga,

tackling the ga hard problem, using the four different storage strategies for the long

term memory.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 103

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  10  20  30  40  50  60

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Long Term Memory Only
Short Term Memory Only

Sum of Added Short Term Memory Only and Long Term Memory Only
Short Term and Long Term Memory

Figure 4.7: Comparison of High Fitness Based Storage Strategy

The graph in Figure 4.7 shows that the High Fitness based storage strategy does

improve the efficiency of the ga. The use of long term memory combined with short

term memory results in very similar savings to those suggested by adding the short term

memory results to the long term memory results. The graph also shows that as the size

of the long term memory is increased so too does the efficiency of the ga. The biggest

improvement occurs at the initial point of applying the intelligent fitness function with

savings of almost 3000 fitness tests.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 104

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  10  20  30  40  50  60

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Long Term Memory Only
Short Term Memory Only

Sum of Short Term Memory Only and Long Term Memory Only
Short Term and Long Term Memory

Figure 4.8: Comparison of Low Fitness Based Storage Strategy

Figure 4.8 shows that on the ga hard problem, long term memory using a low fitness

based storage strategy performed better than the short term memory. The results of

combining the short term memory and the long term memory using a low fitness based

storage strategy is not as high as would be expected if the effects were cumulative.

There is no increase in the effects of the long term memory as the size of the memory is

increased until it reaches 60 where there is a noticeable increase in the efficiency.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 105

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  10  20  30  40  50  60

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Long Term Memory Only
Short Term Memory Only

Sum of Short Term Memory Only and Long Term Memory Only
Short Term and Long Term Memory

Figure 4.9: Comparison of Time Based Storage Strategy

The graph in Figure 4.9 shows that the time based storage strategy produces a large

increase in the efficiency of the ga. As the size of the long term memory increases the

less effect it has on the improvement of the ga. There is very little difference between

the results with a long term memory size of 30 individuals and that of 54 individuals.

Again there is a sudden increase in the savings achieved when a long term memory size

of 60 is used.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 106

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  10  20  30  40  50  60

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Long Term Memory Only
Short Term Memory Only

Sum of Short Term Memory Only and Long Term Memory Only
Short Term and Long Term Memory

Figure 4.10: Comparison of Frequency Based Storage Strategy

Figure 4.10 shows that the frequency based storage strategy’s effectiveness increases

as the size of the long term memory is increased. The addition of the short term memory

halves the savings achieved by the frequency based long term memory. This is discussed

later in at the end of this section.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 107

High Fitness Low Fitness Time Based Frequency Based

0

1000

2000

3000

4000

5000

Sa
vi

ng
s 

(n
um

be
r 

of
 f

it
ne

ss
 t

es
ts

)

Long Term

Short and Long Term

Sum of Short and Long Term

High Fitness Low Fitness Time Based Frequency Based

0

1000

2000

3000

4000

5000

Figure 4.11: Summary of long term memory storage strategies (using a long term mem-

ory size of 60) for the ga Hard Problem



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 108

The graph in Figure 4.11 shows a summary of the results obtained for the ga tackling

the ga Hard Problem. The worst savings were achieved by the ga using the frequency

based long term storage strategy combined with a short term memory. This is under-

standable as the short term memory is trying to lower the number of duplicates carried

forwards to the next population. This interferes with the frequency based storage strat-

egy. The frequency based storage strategy gets a distorted view of the number of times

an individual has already been encountered because it only gets to see the individuals

not dealt with by the short term memory.

With no short term memory the worst performance was from the low fitness based

storage strategy. The frequency based storage strategy performs better than the low

fitness based storage strategy when it doesn’t have the short term memory.

The time based storage strategy again provided the best increase in the efficiency of

the ga, though the high fitness based storage strategy was a lot closer.

All four strategies have achieved savings above 2500 whereas with the ga tackling the

Deceptive Trap Functions only one strategy achieved savings above 1000. The increased

savings by all of the strategies is probably due to the problem being harder and more

of the individuals encountered by the ga have been seen by the ga before.

4.4.3 Experiments on a Larger Population details

The same two problems were tackled by an intelligent fitness function system, using a

population size of 60, to assess the usefulness of using intelligent fitness functions on

larger population sizes. Having established in Section 4.4 that a long term memory with

a time based storage strategy was most efficient this was the strategy used. The long



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 109

term memory sizes of 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300 were tested. Each

memory size was run 50 times and the results averaged for comparison. Each set of runs

used the same 50 seeds for the pseudo random number generator.

4.4.4 Results of Larger Population Experiments

This section shows the results of the experiment on using a population size of 60.

Deceptive Trap Problem

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200  250  300

 0  500  1000  1500  2000  2500  3000  3500  4000

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Time (Relative to generations for a population size of 6)

Long Term Memory
Maximum Savings Achievable

Figure 4.12: Savings made on a ga tackling the deceptive trap problem, by using an

intelligent fitness function with a population size of 60



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 110

The graph in Figure 4.12 shows that, on the deceptive trap problem, the savings made

with a population size of 60 are less than the savings made by the same intelligent fitness

function on a population size of 6. This is due to the larger population size, which as

shown in Chapter 3 encounters fewer duplicates.

GA Hard Problem

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  50  100  150  200  250  300

S
av

in
gs

 (
nu

m
be

r 
of

 fi
tn

es
s 

te
st

s)

Size of Long Term Memory

Long Term Memory Only
Maximum Saving Achievable

Figure 4.13: Savings made on a ga tackling the ga hard problem, by using an intelligent

fitness function with a population size of 60

Figure 4.13 shows, on the ga hard problem, the savings made with a population size of

60 are again fewer than the savings made by the use of an intelligent fitness function on



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 111

a population size of 6.

4.5 Summary and Conclusion

The use of an intelligent fitness function can improve the performance of a ga. Both

the long term and short term memories helped improve the efficiency of the ga. In both

problems the best long term storage strategy was the time based storage strategy, while

the worst for the Deceptive Trap Problem was the lowest fitness based storage strategy

and for the ga Hard Problem the high fitness based storage strategy was worst.

Intelligent fitness functions are not suitable for classes of problems where the results

of an individual can change over time. This is because the individuals fitness will need

to be freshly calculated every time it is seen. Also intelligent fitness functions are not

suitable for problems where it is quicker to calculate the fitness of an individual than it

is to handle the overheads of maintaining and searching the memory of the intelligent

fitness function.

There was a large difference between the four storage strategies used for the long

term memories. The high fitness based storage strategy steadily improved the efficiency

as the size of the long term memory was increased. It benefited greatly from the addition

of short term memory as well.

The use of a lowest fitness based storage strategy gave poor results, on the Deceptive

Trap Functions, compared to the other strategies. Increasing the size of the long term

memory only gave benefits up to a point, after that point the increase in long term

memory size did not have an effect. The inclusion of a short term memory benefited

the lowest fitness based storage strategy.



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 112

The time based storage strategy was the best out of the four. It also performs

well with a small size of long term memory. Once the long term memory reached 30

individuals the benefits from an increase were very small. The addition of a short term

memory had very little effect on the results for the ga tackling the Deceptive Trap

Functions but it did have a noticeable effect on the ga tackling the ga Hard Problem.

It is important to note though that the time based storage strategy achieved almost

maximal savings possible for the ga tackling the Deceptive Trap Functions which helps

explain why the short term memory may not have had as much effect on the ga. It

also achieved 70% of the available savings for the ga tackling the ga Hard Problem.

The benefits provided by the short term memory, when combined with the time based

storage strategy, are problem dependant, providing very little benefit on the Deceptive

Trap Problem while showing more benefits for the ga Hard Problem.

The frequency based storage strategy did not perform as well as the time based

storage strategy or the highest fitness based storage strategy on the Deceptive Trap

Functions but it did outperform the lowest based storage strategy. On the ga Hard

Problem the frequency based storage strategy was again better than the low fitness

based storage strategy. As the size of the long term memory was increased so too did

the improvement in the efficiency of the ga. The short term memory hindered the

frequency based storage strategy tackling the ga Hard Problem.

The use of a long term memory using a time based storage strategy greatly improves

the efficiency of a ga. As the performance of the short term memory is problem depen-

dant each problem will have to be investigated before it is known if short term memory

will be useful. Even with a population size of 60 a ga can benefit from the use of an

intelligent fitness function using a time based storage strategy. The physical saving is

less than it was on a population size of 6 but there was still enough savings made for



CHAPTER 4. INTELLIGENT FITNESS FUNCTIONS 113

an extra 6 or 7 generations to be performed.

As Hybrid gas consist of a ga combined with a secondary method, they can be

improved by using an intelligent fitness function on at least the ga part of the hybrid.

Also depending on the secondary method used this too may be improved by equipping it

with an intelligent fitness function. This would need to be investigated as the secondary

method’s search patterns would generally be different from the ga’s search pattern and

as such it may be more beneficial to use a separate intelligent fitness function for the

secondary method.



Chapter 5

Partial Fitness Functions

5.1 Introduction

This chapter introduces the concept of partial fitness functions and examines the effect

they can have on a ga’s performance. Instead of fully testing every individual in a

population each generation, a partial fitness function tests only a part of each individual’s

fitness. Then a percentage of the population is replaced by new individuals. The new

individual’s parents are selected based on the known fitness of individuals.

In Section 5.5 the effects that different settings have on a partial fitness function are

examined. Both the One Max Problem and the Deceptive Trap Function are used to

examine the partial fitness function. The ga Hard Problem is not used as it is difficult

to create a partial fitness function for it.

114



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 115

5.2 Partial Fitness in Genetic Programming

Genetic programming [80, 81, 88] uses a similar method to gas except that instead of

evolving parameters for an algorithm an actual program is evolved. When the grammar

available to the genetic programming system has the ability to produce programs that

use loops and recursion the genetic programming system is unable to decide if a program

that is having its fitness value tested will finish or if it contains an infinite loop within its

code. Koza’s method for dealing with the possibility of long/infinite running programs

is to specify a maximum length of time that each program can be running for and if a

program fails to complete in this time limit then it is assigned a very low fitness score

[80].

An alternative method that does not time out programs directly has been provided

by Maxwell [97]. If at the end of the specified time a program has failed to finish it is

assigned a partial fitness based on the output of the program up to that point. If the

program makes it through to the next generation of programs then it is given the chance

to continue from where it was stopped. Maxwell claims that his method can require

“less effort” and produce solutions that have “greater efficiency”.

5.3 Concept of Partial Fitness Functions in Genetic

Algorithms

In a standard ga each round (usually referred to as a generation) consists of completely

testing the fitness of each individual in the population. The next generation is then

produced based on the fitness level of the individuals, the greater the fitness the more



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 116

likely the individual will be used as a parent for the next generation.

In a ga using a partial fitness function each round (referred to as a partial generation)

consists of partially testing the fitness of each individual in the population. Then each

individual has its full fitness level estimated by dividing its partial fitness value by the

maximum possible fitness value for the amount of the individual’s fitness checked. The

estimated fitness levels are then used to produce some new individuals to replace those

with the lowest estimated fitness in the population. The higher an individual’s estimated

fitness the more likely it is to be used as a parent for the new individuals. The number

of individuals to be replaced after each round is one of the parameters of the ga.

The next round of a ga using a partial fitness function is the same as the previous

one except any individual that has had part of its fitness assessed by the partial fitness

function has the next part of it assessed and the total fitness of the individual is updated

with the new information. The full fitness levels of the individuals are estimated again,

the new individuals are created and replace the individuals with the lowest estimated

fitness levels.

The motivation behind the design of the partial fitness function is that a standard

ga will spend as much time on a poor individual as on a good individual. A partial

fitness function is designed to give the ga a chance to quickly look at all the individuals

and then decide which ones are worth testing more to get a more accurate fitness value.

This should help reduce the time spent by a ga on individuals which after being tested

are unlikely to be selected for parents, while the more promising individuals still have

their full fitness tested. This technique is similar to the razoring technique [8] used for

pruning search trees in game playing problems.

A ga using a partial fitness function differs to a ga using a functional approximation



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 117

in that the ga using a partial fitness function uses a number of approximation functions

to refine an individuals fitness value. By using a number of approximations to assess an

individuals fitness the ga gets more accurate information than a ga using a functional

approximation but still has the chance to discard poor individuals quickly.

Partial fitness functions are a closer model of evolution than the standard ga model.

With the standard ga individuals only get the chance to reproduce at the end of their

life. In the real world individuals have the chance to reproduce at different stages of

their life. The first chances an individual gets to reproduce are at the early stages of

its life when only some of its attributes are known. As an individual gets older then

more of its attributes will be known, but it still has to compete with the newer younger

individuals to reproduce.

5.4 Partial Fitness Levels

The partial fitness levels are based upon the premise that individuals that start out with

a poor level of fitness tend to finish with a poor level of fitness. In effect the ga using a

partial fitness function is making decisions based on the promise of an individual rather

than the absolute value of its fitness. This enables the ga to spend the time it would

have spent on an unpromising individual on an individual with more promise.

The partial fitness levels are calculated by splitting the fitness assessment into a

number of stages and then for each partial generation one stage in each individual is

assessed. The order of the assessment of the stages is fixed as this will add structure to

the ga and also allow the user to easily know which parts of each individual’s fitness

have been assessed.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 118

5.4.1 Comparing Partial Fitness Levels to the Full Fitness Level

A standard ga was run 50 times for both the One Max Problem and the Deceptive Trap

Functions. Each of the 50 runs used a different seed for the pseudo random number

generator. The ga tackling the One Max Problem had a genome length of 1000 and the

ga tackling the Deceptive Trap Functions had a genome length of 80. Both gas used a

population size of 6 and an elitism level of 1 individual.

Each time the ga fitness tested an individual the different partial fitness levels were

also calculated for that individual. The One Max Problem’s fitness function was split

into 10 stages ranging from 1

10
of the individual tested and increasing by 1

10
for each

stage.

As the ga tackling the Deceptive Trap Functions uses only 80 genes per individual

the fitness test was split into 4 stages, 1

4
, 2

4
, 3

4
and all of the individual tested. It is

possible to split it into similar stages as the One Max Problem but then only 8 genes

of each individual would be tested per partial generation. Using stages of 1

4
for the

Deceptive Trap Functions results in 20 genes of each individual being tested per partial

generation.

Results of the Partial Fitness and Full Fitness Level Experiments

Both the graphs shown in Figures 5.1 and 5.2 show the average partial fitness levels

and the full fitness level for all individuals tested at a specific generation. While the

graphs shown in Figures 5.3 and 5.4 show the average absolute difference between the

full fitness level and the partial fitness level.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

F
itn

es
s

Generations

10% Tested
20% Tested
30% Tested
40% Tested
50% Tested
60% Tested
70% Tested
80% Tested

100% Tested

Figure 5.1: The results of the estimation of the individuals tackling the One Max Prob-

lem

Figure 5.1 shows that on average for the One Max Problem the partial fitness levels

follow the full fitness level very closely. The reason the ga does not appear to have

performed as well as previously is because all individuals for each generation are being

averaged rather than just the best individual from each generation of each run. The

overall average is shown to show on average how close the partial fitness level is to the

full fitness level.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 120

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

F
itn

es
s

Generations

25% Tested
50% Tested
75% Tested

100% Tested

Figure 5.2: The results of the estimation of the individuals tackling the Deceptive Trap

Functions

The graph in Figure 5.2 shows that for the Deceptive Trap Functions there is a

tendency for the partial fitness function to over estimate an individual’s fitness. This

make the ga slightly biased towards the new individuals than the older individuals.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 121

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  100  200  300  400  500  600  700  800  900  1000

A
bs

ol
ut

e 
F

itn
es

s 
D

iff
er

en
ce

Generations

10% tested
20% tested
30% tested
40% tested
50% tested
60% tested
70% tested
80% tested
90% tested

Figure 5.3: The average absolute difference for the estimation of the individuals tackling

the One Max Problem

The graph in Figure 5.3 shows that the more of an individual tested by the partial

fitness function the more accurate it becomes. With a simple problem like the One Max

Problem even testing 1

10
of an individual produces a reasonably accurate result.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 122

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  100  200  300  400  500  600  700  800  900  1000

A
bs

ol
ut

e 
F

itn
es

s 
D

iff
er

en
ce

Generations

25% tested
50% tested
75% tested

Figure 5.4: The average absolute difference for the estimation of the individuals tackling

the Deceptive Trap Problem

The graph in Figure 5.4 shows that on average the lower level of individuals tested

(1

4
) is inaccurate by over 10%. As the amount of the individual tested increases so too

does the accuracy. Provided that the number of individuals to be replaced each partial

generation is set low enough then this inaccuracy should not cause a problem. The ga

equipped with a partial fitness function will increase the accuracy of each individual’s

partial fitness level in each partial generation.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 123

5.5 Partial Fitness Function Experiments

A ga with a partial fitness function was used with a population size of 60. After each

partial test a percentage of individuals with the lowest fitness was replaced with new

individuals produced by crossover and mutation. The number of individuals replaced

was one of the variables being assessed in the test. The mutation rate was 1

n
and single

point crossover was used.

Two parameters were tested to see what effect they had on the results of the ga with

a partial fitness function. The two parameters tested were the amount of an individual

tested before the new individuals are generated, and the number of new individuals

introduced at each generation. The ga was run against the One Max Problem and

the Deceptive Trap Functions. The ga Hard Problem was not used as a test as an

individual’s fitness is calculated from just one equation. This does not give an option

of using a partial fitness function as until the equation is calculated there is no fitness

level and once the equation has been calculated the actual fitness level is known.

Both gas used the same method for estimating the fitness levels of individuals as

shown in Section 5.4.

5.5.1 One Max Problem

The ga tackling the One Max Problem was tested 50 times and averages produced for

each of the following settings. The same 50 seeds were used to set the pseudo random

number generator for each of the settings tested.

• From 1

10
to 9

10
of an individual tested. In increments of 1

10
.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 124

• From 1

10
to 9

10
of the population replaced at each generation. In increments of 1

10
.

5.5.2 Deceptive Trap Function

The ga using the Deceptive Trap Function was tested 50 times, with averages produced,

for each of the following settings. The same 50 seeds were used to set the pseudo random

number generator for each of the settings tested.

• From 1

4
to 3

4
of an individual tested. In increments of 1

4
.

• From 1

10
to 9

10
of the population replaced at each generation. In increments of 1

10
.

5.6 Results

Sections 5.6.1 and 5.6.2 show a summary of the results obtained from the experiments.

For the complete set of results from the experiments see appendix C.

5.6.1 One Max Problem

The following Figures (5.5 – 5.8) show the effects of increasing the percentage of the

population being replaced after each partial generation on the ga tackling the One Max

Problem.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 125

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

         

F
itn

es
s

Time (Relative to generations for a population size of 60)

 

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure 5.5: Results of using a partial fitness function on the One Max Problem, replacing

1

10
the population after each partial fitness test

The graph in Figure 5.5 shows that replacing 1

10
of the population after each partial

generation results in the best partial fitness function being the one that tests 1

10
of an

individual each partial generation. The next best partial fitness function is the one that

tests 2

10
of an individual each generation. This pattern continues with the next best

being a partial fitness function that tests 3

10
of an individual each generation, and then

one that tests 4

10
of an individual each generation. The partial fitness function that tests

9

10
of an individual each generation gives very similar results to a standard ga.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 126

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

         

F
itn

es
s

Time (Relative to generations for a population size of 60)

 

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure 5.6: Results of using a partial fitness function on the One Max Problem, replacing

2

10
the population after each partial fitness test

The graph in Figure 5.6 shows that replacing 2

10
of the population after each partial

generation the fitness levels produced by the partial fitness functions testing 2

10
to 9

10

of an individual each generation, is greater than for the same fitness functions when

replacing 1

10
of the population. The results of the partial fitness function that tests 1

10

of an individual each generation performs very badly.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 127

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

         

F
itn

es
s

Time (Relative to generations for a population size of 60)

 

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure 5.7: Results of using a partial fitness function on the One Max Problem, replacing

5

10
the population after each partial fitness test

The graph in Figure 5.7 shows that replacing 1

2
of the population after each partial

generation results in the fitness levels, produced by the partial fitness functions testing

5

10
to 9

10
of an individual each generation, is lower than for the same fitness functions

when replacing 4

10
of the population. The partial fitness functions that perform 1

10
to 4

10

all performed worse than a standard ga tackling the same problem.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 128

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

         

F
itn

es
s

Time (Relative to generations for a population size of 60)

 

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure 5.8: Results of using a partial fitness function on the One Max Problem, replacing

9

10
the population after each partial fitness test

The graph in Figure 5.8 shows that replacing 9

10
of the population after each partial

generation results in the fitness levels, produced by the partial fitness functions testing

5

10
to 9

10
of an individual each generation, performing slightly worse than for the same

fitness functions when replacing 8

10
of the population. The partial fitness functions that

perform 1

10
to 4

10
all performed worse than a standard ga tackling the same problem.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 129

Summary of the One Max Problem Results

The graphs in Figures 5.5 – 5.8 show that partial fitness functions can improve the

performance of a ga tackling the One Max Problem. The biggest improvement came

from replacing 1

10
of the population after a partial generation that tests 1

10
of each

individual. The graphs also show that partial fitness functions testing less than 1

2
of

each individual only perform well as long as the percentage of the population being

replaced is less than or equal to the percentage of each individual being tested per

partial generation. This is discussed in the summary of this chapter.

5.6.2 Deceptive Trap Function

The following Figures (5.9 – 5.12) show the effects of increasing the percentage of the

population being replaced after each partial generation on a ga tackling the Deceptive

Trap Functions.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 130

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

Figure 5.9: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 1

10
the population after each partial fitness tests

The graph in Figure 5.9 shows that replacing 1

10
of the population after each partial

generation results in the fitness levels, produced by the partial fitness functions testing

1

4
to 3

4
of an individual, being better than the fitness level produced by a standard ga

on the same problem.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 131

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

Figure 5.10: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 4

10
the population after each partial fitness tests

Figure 5.10 shows that the replacement of 4

10
of the population after each partial

generation results in the fitness level produced by the partial fitness function testing 1

4

of an individual has not only dropped slightly but has also started to become unstable.

The partial fitness functions testing 2

4
and 3

4
produce very similar results to the previous

graph.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 132

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

Figure 5.11: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 5

10
the population after each partial fitness tests

The graph in Figure 5.11 shows that replacing 5

10
of the population after each partial

generation results in the fitness level, produced by the partial fitness function testing

1

4
of an individual each partial generation, dropping well below the level achieved by

the standard ga and becoming even more unstable. The fitness levels achieved by the

partial fitness functions testing 2

4
and 3

4
are very similar to the previous graph.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 133

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

Figure 5.12: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 9

10
the population after each partial fitness tests

The graph in Figure 5.12 shows that the replacement of 9

10
of the population after

each partial generation produces unstable fitness levels for all three of the partial fitness

functions tested. (Note that the fitness level for the partial fitness function testing 1

4
of

an individual drops below 40 almost immediately. See Figure C.18 in Appendix C for a

full plot of this graph.)



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 134

Summary of the Deceptive Trap Functions Results

The graphs in Figures 5.9 – 5.12 show similar results to those of the One Max Prob-

lem. As the percentage of individuals being replaced, after each partial generation,

increases the more unstable the partial fitness functions testing a lower percentage of

each individual becomes.

5.7 Partial Fitness Functions Limitations

To be able to use a ga with a partial fitness function on a specific problem the problem

must be capable of being broken up into a number of stages. At the end of each of these

stages the known fitness of the individual needs to give a reasonable indication of the

overall fitness of an individual.

As the length of runtime available to the ga increased the difference between the

partial fitness function and the standard fitness function decreased. This suggests that

the shorter the length of time (relative to the length of time taken to calculate a full

fitness function) available for the ga the greater the difference between the final result

of a normal ga and the final result of a ga equipped with a partial fitness function.

The opposite is also suggested that the longer the length of time available the lower

the difference between the final result produced by a normal ga and the final result

produced by a ga equipped with a partial fitness function.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 135

5.8 Summary and Conclusions

Despite the results of the estimation shown in Section 5.4, which show that the estima-

tion was less than 90% accurate for the Deceptive Trap Functinons and biased towards

newer individuals, a ga equiped with a partial fitness function still performed better

than a standard ga. The information from this estimate enables the ga equipped with

a partial fitness function to easily decide which individuals are promising and which are

best to be replaced.

Both sets of results show that partial fitness functions improve the performance of a

ga. On all the tests carried out the partial fitness functions only improved performance

when the amount of the population being replaced each generation was a lower percent-

age than the amount of the fitness test being carried out. So when using a partial fitness

function it is important to only replace, at most, the same percentage of the population

as the percentage of an individual tested each generation.

The problem with partial fitness functions becoming unstable, when the percentage of

the population being replaced after each partial generation is greater than the percentage

of each individual being tested per partial generation, is caused by the following.

As the number of individuals replaced each partial generation increases then the

number of promising individuals that will have more of their fitness tested decreases.

The lower the number of promising individuals selected the greater the need for the

estimate, of the fitness of those individuals, to be accurate. To improve the accuracy

of the estimate more of the individuals fitness must be tested. This is why as the

percentage of the population being replaced increases so too does the percentage of each

individual being tested, each partial generation, to keep the ga stable.



CHAPTER 5. PARTIAL FITNESS FUNCTIONS 136

Partial fitness functions are shown to be problem-dependent as the lower level of

fitness testing performed best on the simpler One Max Problem but the higher level

of fitness testing performed better on the Deceptive Trap Problem. Also partial fitness

functions may not be a viable option for some fitness tests, like the ga Hard Problem,

where there is no partial stage in the fitness test that can be worked from. Partial

fitness functions have also been shown to be dependent on the available time. The more

limited the time then the lower the level of fitness testing that should be used. On both

problems the lowest tested level of fitness checking performed best over the initial period

when the replacement level is set correctly.



Chapter 6

Use of Intelligent Fitness Functions

and Partial Fitness Functions on a

Monoalphabetic Substitution

Cipher

6.1 Introduction

In this chapter Intelligent Fitness Functions and Partial Fitness Functions are applied

to a ga designed to help break monoalphabetic substitution ciphers. Both the ga using

an Intelligent Fitness Function and the ga using a Partial Fitness Function are tested

against the standard ga with the same configuration (Population Size, Random Seed,

etc.)

137



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 138

The fitness function for a ga tackling a monoalphabetic substitution cipher has to

produce a collection of frequency counts for individual characters, digrams and trigrams

and compare these against an expected frequency count. The fitness function therefore

takes a lot longer to run than those that tackled the simple test problems examined in the

previous chapters. This problem is better suited to assessing intelligent fitness functions

and partial fitness functions than the packet transmission problem that motivated the

work (described in chapter 2) for a number of reasons.

• A known optimal solution to the problem enables us to gauge the effects the new

methods have on gas.

• Results are not dependent on unknown factors and as such are repeatable (e.g.

for a ga tackling the packet transmission problem the network load may have an

effect on the results.)

• As monoalphabetic substitution ciphers have been solved by gas in the past [58]

there should be an improvement in the fitness levels of the ga as it evolves. The

packet transmission problem has not been solved by gas at the time of writing

and as such it is unknown if there would be an improvement in the fitness levels

of the ga.

Nevertheless the improvements demonstrated if transferred to the packet transmis-

sion problem would result in substantial savings.



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 139

6.2 GAs Use in Cryptanalysis

gas have been used to help cryptanalysts in breaking a small number of ciphers. Monoal-

phabetic substitution ciphers are one of the easiest to tackle and as such they have been

targeted as a good place to start [58]. Others have had success applying gas to breaking

more complex ciphers, including rotor based ciphers [4] (like the Enigma machine used

by the Germans in the second world war [25]). Cryptography is a continually advancing

science and gas have not been successfully used to tackle more modern ciphers like DES

[36] and RSA [131].

6.3 Monoalphabetic Substitution Ciphers

Monoalphabetic substitution is one of the oldest forms of enciphering text. It consists

of using a constant one to one mapping of characters to substitute each character of the

original message (known as the plaintext) with the relevant character from the mapping

(known as the key). Once each character in the plaintext has been substituted the

encoding is over and the resulting message (known as the ciphertext) can be sent to its

destination. At the message’s destination the process is reversed to obtain the plaintext.

This type of cipher is very old and has been used by many famous people in history.

[136, 74]

Example The following is an example of using a monoalphabetic substitution cipher.

To encrypt the message, “THIS IS AN EXAMPLE”, using the key shown in table 6.1

the following process is followed. The first character in the plaintext is taken, “T”, and

looked up in the key. The first letter in the ciphertext is then the one shown in the



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 140

key to replace “T”, which in this case is “G”. Then the second letter is taken, “H”

and looked up in the key. The second letter in the ciphertext is then the one shown in

the key to replace “H”, which is “S”. This process is repeated for every letter in the

plaintext, which results in a ciphertext of “GSRH RH ZM VCZNKOV”.

Plaintext A B C D E F G H I J K L M

Ciphertext Z Y X W V U T S R Q P O N

Plaintext N O P Q R S T U V W X Y Z

Ciphertext M L K J I H G F E D C B A

Table 6.1: An example key for a substitution cipher

To decrypt the ciphertext the recipient of the message reverses the process. So the

first letter of the ciphertext is taken, “G” this is looked up in the ciphertext side of the

recipients copy of the key and replaced with the related letter on the plaintext side, “T”.

Then the second letter of the ciphertext is taken, “S”, and replaced with the related

letter on the plaintext side of the key, “H”. Once this has been done for each letter in

the ciphertext the resulting message is shown “THIS IS AN EXAMPLE”.

Frequency Analysis

The traditional method for breaking a monoalphabetic substitution cipher is through

the use of frequency analysis. This method was first documented by the Arab scientist

Abū Yūsūf Ya‘qūb ibn Is-hāq ibn as-Sabbāh ibn ‘omrān Ismāıal-Kind̄ı[2, 1]. Despite Al-

Kind̄ı’s work containing detailed analysis of statistics and Arabic syntax and phonetics

he summarised his cryptanalysis method in two paragraphs.

“One way to solve an encrypted message is, if we know its language, is to find a



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 141

different plaintext of the same language long enough to fill one sheet or so, and then we

count the occurrences of each letter. We call the most frequently occurring letter the

‘first’, the next most occurring letter the ‘second’, the following most occurring letter the

‘third’, and so on, until we account for all the different letters in the plaintext sample.

Then we look at the ciphertext we want to solve and we also classify its symbols. We

find the most occurring symbol and change it to the form of the ‘first’ letter, the next

most common symbol is changed to the form of the ‘second’ letter and the following

most common symbol is changed to the form of the ‘third’ letter, and so on, until we

account for all symbols of the cryptogram we want to solve.”

Example If we apply Al-Kind̄ı’s method to the ciphertext produced in our first ex-

ample then we get the following. The ciphertext was “GSRH RH ZM VCZNKOV” and

the frequency of letters in this ciphertext is shown in table 6.2.

Letter Count Letter Count

H 2 R 2

V 2 Z 2

G 1 S 1

M 1 C 1

N 1 K 1

O 1

Table 6.2: Frequency of Characters in the Ciphertext

The most common letters in English are the letters “E”, “T”, “A”, “O” and “I”. So

in the key used, these letters are more likely to map to “H”, “R”, “V” and “Z”. To help



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 142

decide which letter is the most likely to represent the common letters in the ciphertext,

the layout of the ciphertext can be examined. In the ciphertext the letter “R” is always

followed by the letter “H” and this pair of letters also exist as a single word on their

own as well as the end of the first word. This suggests that “R” maps to “I” and “H”

maps to “S” as the pair “IS” is most common to appear in this pattern.

The message now looks like this “GSis is ZM VCZNKOV”, this suggests that the

letter “G” maps to the letter “T” while the letter “S” maps to the letter “H”. This

leaves the letters “E”, “A” and “O” as probable choices for the last two common letters

in the ciphertext “Z” and “E”. “Z” is chosen to map to the letter “A” as the letter “V”

is likely to map to a consonant and hence the last word should be preceded by the word

“an“, this also gives the mapping of the letter “M” to “N”.

The message now looks like “This is an VCaNKOV”. The letter “E” is chosen as a

mapping to the letter “V”. The cryptanalyst is now left looking for a word seven letters

in length, that starts and ends with the letter “E” and has “A” as the third letter. The

cryptanalyst would not have much difficulty in guessing the last word as “example”. In

fact a search of a spell checker’s dictionary reveals the following 6 possibilities of which

“Example” is the only one which fits with the rest of the known text both syntactically

and semantically.

• Erasure

• Emanate

• Evacuee

• Evasive



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 143

• Examine

• Example

6.3.1 GA to Solve a Monoalphabetic Substitution Cipher

A ga was designed to help in the breaking of a monoalphabetic substitution cipher.

Each individual in the ga consisted of a sequence of letters (A – Z). Each letter could

only appear once in each individual and each individual must contain all twenty-six

letters, the only difference between individuals is the ordering of the twenty-six letters.

The ga uses real encoding rather than binary encoding as this allows the ga to

use crossover and mutation operators that are easier to implement and will always

produce valid individuals. As the intelligent fitness functions and partial fitness functions

operations are independent of the encoding method used for the genome they can be

applied to this ga using real encoding in the same way that they would be applied to a

binary encoded ga.

The crossover operator uses a variation on the single point crossover method. It picks

a random point in the genome as the crossover point. The first part of the genome, up

to the crossover point, is then carried forward to the child genome. A copy of the

second parent is made and as each letter up to the crossover point is copied forwards it

is removed from the copy of the second parent. After all the letters up to the crossover

point have been carried forward then letters left in the copy of the second parent are

appended to the end of the child’s genome.



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 144

Example The following example shows the crossover operator in action. Table 6.3

shows the selected parents, in this example the parents only consist of 5 genes. The

crossover point is picked as between the third and fourth gene. So the first gene of

parent one, “A”, is carried forwards as the first gene of the child. After carrying the

gene forwards to the child the matching gene from the copy of the second parent is

removed, in this case it is also the first gene. Then the second gene of parent one, “B”

is carried forwards to the child. After carrying the gene forward the matching gene in

the copy of parent two is removed, this is the fourth gene. The third gene, “C”, is then

carried forwards from parent one to the child. After carrying the third gene forward the

matching gene from the copy of the second parent is then removed, the second gene this

time.

Table 6.4 shows the state of the first parent, the copy of the second parent and the

child after the crossover point is reached. At this stage the first gene still contained in

the copy of the second parent, “E”, is appended to the child’s genome. Then finally

the last gene contained in the copy of the second parent, “D” is appended to the child’s

genome. This results in the new individual shown in table 6.5.

Parent 1 A B C D E

Parent 2 A C E B D

Table 6.3: Parents

Parent 1 A B C D E

Copy of Parent 2 E D

Child A B C

Table 6.4: After First Stage of Crossover



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 145

Child A B C E D

Table 6.5: After Crossover

The mutation operator swaps two randomly chosen genes over. As the ga is using

real encoding this means that two letters in the key ordering are swapped over. Both

the crossover and mutation method always produce valid individuals provided they are

supplied with valid individuals.

To fitness test each individual the ga uses the individual’s genome as the key to

decipher the message. Once deciphered the resulting plaintext has a frequency table

produced for it. This table is then compared to a frequency table generated from a

collection of documents written by the same author. The frequency table consists of not

only the frequency of single letters but also the frequency of pairs of letters and triplets

of letters.

Each individual also scored extra fitness if the first few characters from their resulting

plaintext matched a crib. A crib is a known part of a message, usually the first part

of a message can be known to an attacker, e.g. if the sender always starts their letters

with the word “Dear” then this would be a good crib.

Limitations

The ga can be applied to any monoalphabetic substitution cipher that uses an English

alphabet, changes to the ga would need to be made for it to break messages whose plain

text is in another language. The genome would need to be changed to take into account

a different alphabet. Also the frequency tables used by the fitness function would need



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 146

to be modified as different languages have different standard frequency counts.

6.4 Intelligent Fitness Functions

The ga described in Section 6.3.1 is compared to a ga equipped with an intelligent

fitness function. Both gas were configured based on the results of research described in

Chapters 3 and 4 using a population size of 6 and an elitism level of 1. The intelligent

fitness function was equipped with a long term memory with a size of 30 individuals.

The storage strategy used by the long term memory was time based.

The periods of time reported in Section 6.4.1 for the tests were produced on a machine

with the following specification.

Processor Athlon xp 1500+ processor

Memory 364mbs.

Operating System Debian Linux.

Language C++

6.4.1 Results

The two gas are compared on three criteria, the length of time taken to run the ga

for 10,000 generations, the number of fitness tests actually run and the fitness levels

achieved by the gas against the number of fitness tests performed. The gas were run

50 times each so an average result could be obtained. Both gas were run using the same

50 seeds for their pseudo random number generator.

On average after 10,000 generations the standard ga and the ga using an intelligent



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 147

fitness function both achieved a key that was 85% correct. The ga using an intelligent

fitness function achieved this level in 66% of the number of fitness tests as the standard

ga. The T-Test results show this difference to be 99.9% significant.

Time

Table 6.6 shows the length of time in seconds each run of the standard ga took. On

average each run took 4 minutes and 45 seconds to perform 10,000 generations. Table

6.7 shows the length of time in seconds that the ga, with the intelligent fitness function,

took to perform 10,000 generations. The average time for the ga, using an intelligent

fitness function, was 3 minutes and 14 seconds.

The ga, using an intelligent fitness function, showed an average saving of 1 minute

and 31 seconds over the standard ga. That is a 31.9% saving over the standard ga.

288.67 285.49 284.66 284.30 283.71

284.42 285.26 286.01 285.75 285.53

285.32 285.10 285.05 285.62 285.94

285.77 285.52 285.61 285.42 285.36

285.26 285.38 285.32 285.30 285.45

285.71 285.68 285.76 285.62 285.63

285.64 285.79 285.69 285.69 285.64

285.63 285.56 285.52 285.59 285.61

285.64 285.57 285.51 285.56 285.68

285.70 285.67 285.91 285.92 285.86

Avg 285.541

Table 6.6: Time of the standard ga runs, in seconds



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 148

192.33 195.35 194.85 195.91 195.55

195.17 194.92 194.80 194.44 194.22

194.03 194.33 194.25 194.21 194.11

193.92 194.24 194.18 194.03 194.02

194.08 194.04 194.22 194.15 194.14

194.20 194.26 194.33 194.24 194.27

194.24 194.40 194.33 194.35 194.43

194.41 194.38 194.41 194.35 194.40

194.43 194.42 194.45 194.39 194.44

194.39 194.47 194.50 194.51 194.53

Avg 194.38

Table 6.7: Time, in seconds, of the runs of the ga using an intelligent fitness function

Fitness Tests Performed

The graph in Figure 6.1 shows the number of fitness tests performed by the two gas

against the number of generations carried out. The ga using an intelligent fitness

function has carried out just over 66% of the number of fitness tests carried out by the

standard ga by the end of the 10,000 generations.



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 149

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  2000  4000  6000  8000  10000

F
itn

es
s 

T
es

ts
 P

er
fo

rm
ed

Generation

Standard Fitness Function
Intelligent Fitness Function

Figure 6.1: Fitness Tests Performed by the standard ga and the ga using an intelligent

fitness function.

Fitness Levels

Figure 6.2 shows the fitness levels of both the gas against the number of fitness tests

performed. The results are only shown up to 40,000 fitness tests as this is approximately

the average number of fitness tests performed by the ga using an intelligent fitness

function. The actual number being 40,649.

The ga using an intelligent fitness function achieved a better fitness level over 40,000

fitness tests than the standard ga.



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 150

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 0  5000  10000  15000  20000  25000  30000  35000  40000

F
itn

es
s

Fitness Tests Performed

Standard Fitness Function
Intelligent Fitness Function

Figure 6.2: Average Fitness Levels of both the gas against the number of fitness tests

performed.

6.5 Partial Fitness Functions

The ga described in Section 6.3.1 is compared to a ga equipped with a partial fitness

function. Both gas have a population size of 60 and are run 50 times for 1000 full

generations. The standard ga used elitism with a level of 1. The ga using a partial

fitness function tests 1

3
of each individual per partial generation and replaces 1

3
of the

population each partial generation. The settings for the ga with a partial fitness function

are based upon the results of Chapter 5. As 1

3
of each individual is tested per partial



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 151

generation there are 3 partial generations to each full generation. Both gas were started

with the same 50 seeds for their pseudo random number generators.

6.5.1 Results

The graph in Figure 6.3 shows the fitness levels achieved by both the standard ga and

the ga using a partial fitness function. The ga using a partial fitness function gets off

to a better start over the first 500 partial generations. Over the next 2500 partial fitness

functions the ga using a partial fitness function keeps the lead in fitness that it gained

initially.

 0

 50000

 100000

 150000

 200000

 250000

 0  500  1000  1500  2000  2500  3000

A
ve

ra
ge

 F
itn

es
s

Generation

Standard Fitness Function
Partial Fitness Function

Figure 6.3: Fitness levels, of the standard ga and the ga using a partial fitness function,

against number of partial generations.



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 152

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000

F
itn

es
s

Generation

Difference in favour of the GA using a partial fitness function

Figure 6.4: Difference between the fitness levels, of the standard ga and the ga using

a partial fitness function, against number of partial generations.

The graph in Figure 6.4 shows the difference between the fitness levels of the two gas.

At the early stages the difference between the two gas increases above 24,000 in favour

of the ga using a partial fitness function. As the number of generations increases the ga

with a standard fitness function reduces the difference. After 3,000 partial generations

(1,000 normal generations) the difference between the two gas is still 15,000 in favour

of the ga using a partial fitness function.

When the two gas are compared with the amount of the key that is correct then

there is very little difference on average (see Table 6.8) and that difference is shown by



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 153

Standard ga Partial Fitness Function ga

Fitness

Mean 210039 225450

Standard Deviation 11137 4070

Standard Error 1575 575

Key Correctness

Mean 17.26 17.46

Standard Deviation 8.46 1.59

Standard Error 1.19 0.22

Table 6.8: Average, Standard Deviation and Standard Error of the best final fitness of

each of 50 runs

the T-test result of 0.7 to not be significant (see Table 6.9). The best of all the runs

shows the ga with a partial fitness function as 8% better than the the best of all the

runs for the ga with a standard fitness function.

It is interesting to note that the average of the runs for both gas produces keys that

are at a very similar level of correctness, yet the ga with a partial fitness function is

scoring significantly higher fitness levels. This shows that the ga with a partial fitness

function is producing a key that has more important letters in correct places. The

important letters being the more common ones as this leaves the more obscure letters

for the cryptanalyst to work out, which is easier for a cryptanalyst (It is easy to spot

that ‘ALMHA’ should be ‘ALPHA’ than ‘MLPHM’). Figure 6.5 shows the first 100

deciphered characters for an average key and the best key for both gas.



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 154

Fitness Key Correctness

T-Test 0.99 0.7

Table 6.9: T-Test results for fitness levels difference and key correctness difference

Standard Fitness Function

Average Fitness Level Decipherment

THEWA VERTU MBLER LOCKT HEWAV ERTUM BLERL OCKWA SZENE LOPEZ

ASALO WCOST LOCKT HATOV VEREZ AREAS OFABL EZEXR EEOVS ECURI

Best Fitness Level Decipherment

THEWA FERTU MBLER LOCKT HEWAF ERTUM BLERL OCKWA NDEVE LOPED

ANALO WCONT LOCKT HATOF FERED AREAN OSABL EDEQR EEOFN ECURI

Partial Fitness Function

Average Fitness Level Decipherment

THEWA FERTU MBLER LOCKT HEWAF ERTUM BLERL OCKWA SXEPE LOGEX

ASALO WCOST LOCKT HATOF FEREX AREAS ONABL EXEQR EEOFS ECURI

Best Fitness Level Decipherment

THEWA FERTU MBLER LOCKT HEWAF ERTUM BLERL OCKWA SDEVE LOPED

ASALO WCOST LOCKT HATOF FERED AREAS OZABL EDEGR EEOFS ECURI

Figure 6.5: Examples of text deciphered using keys from the standard ga and the ga

using a partial fitness function.



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 155

6.6 Summary and Conclusions

The same pattern in the results for the intelligent fitness function, shown in Chapter 4,

has been repeated with a ga tackling a monoalphabetic substitution cipher. The fitness

test was more computationally intensive than those tested in Chapter 4 and as such the

savings on time are more apparent. The intelligent fitness function achieved a saving in

time of 31.9%.

The ga using a partial fitness function has shown again the same ability to perform

better than a standard ga, as shown originally in Chapter 5. The ga using a partial

fitness function achieved on average a level of correctness 1% higher than the standard

ga, which is shown by the T-Test result of 0.7 as not being significant. The best run of

the partial fitness function achieved a level of correctness 8% better than the best run

of the standard ga

Comparing the two gas fitness levels shows that there is a difference of 15,411 in

favour of the partial fitness function which is significant at the 99% level. This means

that while the ga with a partial fitness function is only getting the same percentage

of the key correct as the normal ga, the parts of the key it does get correct are more

important.

While none of the gas managed to get a 100% correct key in any of the runs, even the

worst runs achieved keys that were better than 65% correct, and the best runs achieved

keys that were better than 83% correct with some achieving keys that were above 91%

correct.

The results in this Chapter show that intelligent fitness functions and partial fit-

ness functions can be used to help gas being used for cryptanalysis of monoalphabetic



CHAPTER 6. USE OF IFF AND PFF ON A CIPHER 156

substitution ciphers.

Even though no complete solution was found in the limited time given to the gas,

the partial solutions achieved would be useful for a cryptanalyst. After all it is better

to have to start with 65% of a solution than no solution. By using the partial solutions

along with the frequency counts of the enciphered message the cryptanalyst can easily

discover where the frequency counts differ from the expected and quickly work out which

parts of the key are wrong and which are correct.



Chapter 7

Discussion and Conclusion

7.1 Introduction

This Chapter discusses the use of intelligent fitness functions and partial fitness functions

to improve the efficiency and performance of gas. Also possible future work and the

contribution to knowledge by this Thesis will be discussed.

7.2 Discussion

7.2.1 Intelligent Fitness Functions

Chapters 4 and 6 introduced intelligent fitness functions and showed the degree of savings

they can achieve. Intelligent fitness functions can be applied to the following areas as

well as to standard gas.

157



CHAPTER 7. DISCUSSION AND CONCLUSION 158

GAs Using Approximations for Fitness Functions As intelligent fitness functions

do not change how the fitness of an individual is calculated they can be applied to

gas which have an approximation as a fitness function in the same way they would

be applied to a standard ga. As some approximations can be calculated faster

than an intelligent fitness function can search its memory they may not always be

suitable. Equation 4.1 should be used to calculate if it would be suitable to use

an intelligent fitness function with the approximation.

Hybrid GAs As the ga part of a hybrid ga is usually just a normal ga then it can

be equipped with an intelligent fitness function to improve it. This would the

same as adding an intelligent fitness function to a normal ga. Again Equation

4.1 should be used to decide whether it would be beneficial to use an intelligent

fitness function.

Some of the secondary methods used by hybrid gas use a fitness function to assess

the fitness of neighbouring individuals (e.g. Local Search, Simulated Annealing,

etc.). These fitness functions could be replaced with an intelligent fitness function

which may lead to an improvement in the efficiency and performance of the hybrid

ga. As the secondary method will have a different level of efficiency it would be

necessary to investigate the secondary method separately to decide if an intelligent

fitness function would be beneficial.

If it is beneficial for the secondary method to use an intelligent fitness function

then the next question would be “Should it use the same memory as the ga or

should it use a separate memory?” The intuitive answer would be that the search

patterns of gas and secondary methods are different so stored individuals for one

would not be useful for the other. If this is the case then it would suggest that

separate memories would be better for the ga and the secondary method. This



CHAPTER 7. DISCUSSION AND CONCLUSION 159

would need to be examined for a variety of secondary methods and problem classes.

Other Heuristics As with some of the secondary methods of hybrid gas any heuristic

that uses a fitness function can have an intelligent fitness function applied to it.

Each of these heuristics would have to be investigated to see if it would be worth

while equipping it with an intelligent fitness function. Equation 4.1 can be used

to calculate if an intelligent fitness function would be worth while for a heuristic.

Some heuristics are less likely to benefit from an intelligent fitness function than

others. For example a tabu search is less likely to encounter duplicates as it is

designed to not move back to locations it has recently searched and as such would

probably not benefit much from an intelligent fitness function.

Intelligent fitness functions will not help improve the performance of a ga which falls

into one of the following categories.

Quick Fitness Function. If the ga has a fitness function that can be calculated

quicker than the intelligent fitness function can search and maintain its memory

then the ga’s performance will be lowered. Equation 4.1 can be used to decide if

a ga will be able to benefit from an intelligent fitness function.

High Efficiency. If the ga has a high level of efficiency already then an intelligent

fitness function will be less likely to help improve the performance. Equation

4.1 can again be used to decide if the ga will benefit from an intelligent fitness

function.

Changing values of fitness. If the ga is tackling a problem where an individual will

not always return the same fitness value each time it is tested then an intelligent



CHAPTER 7. DISCUSSION AND CONCLUSION 160

fitness function is not suitable as the value it has stored may not be the current

fitness value for an individual.

7.2.2 Partial Fitness Functions

Partial fitness functions could be applied to the problem of finding the optimum settings

for packet transmission as described in Chapter 2. Each partial generation could last

for 2 days. At the end of each partial generation the average delay for each individual

would be used. As the fitness of each individual is the average delay there is no need

to normalise the fitness value. Following the results in Chapter 5, 1

7
of the population

should be replaced after every partial fitness function to keep the ga stable. If more

partial generations were required then the partial generations could last for 1 day and

1

14
of the population could be replaced.

Hybrid gas can also benefit from the use of partial fitness functions. The ga part of

a hybrid ga could use a partial fitness function provided it meets the same criteria as

a normal ga using a partial fitness function. The secondary method will in most cases

require an individual’s full fitness level as they tend to work on single solutions rather

than a population of solutions. Some heuristics that use a population may be able to

benefit from a partial fitness function though these would need to be investigated.

Maxwell claimed that his method for genetic programming produced programs that

have a “greater efficiency”[97]. In genetic programming a solution that has a greater

efficiency than another is of a higher quality. These claims match the results of the

partial fitness function tested in Chapter 6 where the solutions produced by the partial

fitness functions were the better parts of the key and as such were a higher quality.



CHAPTER 7. DISCUSSION AND CONCLUSION 161

Partial Fitness Functions cannot be applied to every ga as some are not suitable.

Partial fitness functions cannot be used in the following case.

Single Stage Fitness Functions. If the fitness function cannot be broken up into a

number of stages that give a reasonable indication of the overall fitness of an

individual then there is no partial fitness levels available to the ga to work with.

Also the results in Chapters 5 and 6 suggest that the larger the number of generations

that a ga can run for the lower the effect that a partial fitness function has on the

performance of the ga.

7.3 Contribution to Knowledge

This Thesis has addressed the problem of improving the performance and efficiency of

gas. The efficiency has been improved by decreasing the number of duplicate fitness

tests being performed. Improving the efficiency in this way reduces the time the ga

takes to achieve a number of generations and as such also improves the performance

of the ga. The performance has also been improved by increasing the frequency of

evolutionary steps without decreasing the population size.

The improvement in efficiency was achieved through the use of intelligent fitness

functions. Standard fitness functions can be modified to become intelligent fitness func-

tions without having to alter any other part of the ga. This means that current gas can

be modified to take advantage of intelligent fitness functions without needing to alter

the ga system used, only the fitness function. Once a ga is using an intelligent fitness

function it can then use a smaller population size without decreasing the efficiency of



CHAPTER 7. DISCUSSION AND CONCLUSION 162

the ga by much. The decrease in the population size gives an increase in the number

of generations available in a fixed length of time. As shown in Chapter 3 this gives an

increase in the performance of the ga.

The second improvement has been achieved through the use of partial fitness func-

tions. The partial fitness functions need modifications in the way the ga handles the

production of the next generation. This means that an existing ga system would need

to be modified to use a partial fitness function. Once the system has been adapted to

the partial fitness function the ga can then discard unpromising individuals and select

promising individuals without having to fully fitness test each individual.

7.3.1 Achieved Objectives

The objectives of this Thesis and how they were met are as follows

Assess the effect population sizes have on the performance and efficiency

of GAs running within a fixed length of time with a slow fitness function.

Chapter 3 assessed the effects that changing the population size and level of elitism

has on gas. It was discovered that lower population sizes perform better than larger

population sizes when running within a fixed length of time but the lower population

sizes have a lower level of efficiency.

Introduce new methods for improving the performance and efficiency of GAs

with a slow fitness function. Chapters 4 and 5 introduced intelligent fitness func-

tions and partial fitness functions.



CHAPTER 7. DISCUSSION AND CONCLUSION 163

Investigate the effects that the introduced methods have on GAs running

within a fixed length of time. Chapters 4 and 5 investigated the effects that intel-

ligent fitness functions and partial fitness functions have on gas running within a fixed

length of time.

Investigate the improvement provided by the methods to a GA with a slow

fitness function. Chapter 6 investigated the improvements provided by intelligent

fitness functions and partial fitness functions applied to a ga designed for breaking a

monoalphabetic substitution cipher.

7.4 Future Work

Future work relating to intelligent fitness functions should include the following areas.

Hybrid GAs, as discussed earlier in this Chapter could benefit from the use of intel-

ligent fitness functions. The possibility of the secondary method using an intelli-

gent fitness function should be investigated. The advantages and disadvantages of

the ga’s intelligent fitness function and the secondary method’s intelligent fitness

function sharing the same memory should also be investigated.

Other Heuristics That Use a Fitness Function could benefit from the use of an

intelligent fitness function. This is a large area to be researched as each heuristic

would have to be investigated to decide if it would benefit from an intelligent

fitness function.

Future work in the area of partial fitness functions should include the following areas.



CHAPTER 7. DISCUSSION AND CONCLUSION 164

Hybrid GAs can have the ga part improved by a partial fitness function. The fact

that most hybrid gas run the ga for a fixed length of time means that it is more

likely to benefit from using a partial fitness function.

Other Heuristics may be able to use a partial fitness function if they use a population

of solutions. Each heuristic would have to be investigated separately to decide if

it could benefit from a partial fitness function.

Effects on unlimited GA runs will have to be investigated as the results in Chapter

6 indicated that as the number of full generations increase the benefits of a partial

fitness function decrease. It would be interesting to see if there is a point where a

standard ga surpasses the ga with a partial fitness function.

It would also be interesting to explore why sometimes the ga with a population size

of 6 performs better than a population size of 60 in the same number of generations.

7.5 Conclusion

This Thesis has introduced intelligent fitness functions and partial fitness functions,

both can improve the performance of gas.

Intelligent fitness functions improve the performance of a ga by reducing the length

of time the ga takes to complete a number of generations. The reduction is achieved

by removing the need to re-evaluate the fitness of individuals seen before.

Partial fitness functions improve the performance of a ga by increasing the frequency

that gas are capable of taking evolutionary steps.



Bibliography

[1] Al-Kadi I.A. The Origins of Cryptology: The Arab Contributions. Cryptologia, vol

16, no. 2. pp. 97 – 126. 1992.

[2] Al-Kind̄ıA Manuscript on Deciphering Cryptographic Messages.

[3] Antonisse J. A New Interpretation of Schema Notation That Overturns the Bi-

nary Encoding Constraint. Proceedings of the Third International Conference on

Genetic Algorithms, Schaffer J.D. Ed. Morgan Kaufmann Publishers, pp. 86 – 91.

1989.

[4] Bagnall A.J. The Applications of Genetic Algorithms in Cryptanalysis. Master of

Science Thesis. University of East Anglia. 1996.

[5] Baldwin J.M. “A New Factor in Evolution.” American Naturalist 30. pp. 441 –

451. 1896.

[6] Belew R.K. and Mitchell M. (Eds.)Adaptive Individuals in Evolving Populations.

Addison-Weslet. 1996.

[7] Biles J.A. Genjam: A Genetic Algorithm for Generating Jazz Solos. Proceedings

of International Computer Music Conference. pp. 131 – 137. 1994.

165



BIBLIOGRAPHY 166

[8] Birmingham J.A and Keny P. Tree-searching and Tree-pruning Techniques. Ad-

vances in Computer Chess. Clarke L.M. Ed. Edinburgh University Press, pp. 89 –

107. 1977.

[9] Branke J. Creating Robust Solutions by Means of Evolutionary Algorithms. Pro-

ceedings of parallel problem solving from nature. pp. 119 – 128. 1998.

[10] Branke J. Schmidt C. and Schmeck H. Efficient Fitness Estimation in Noisy Envi-

ronments. Proceedings of Genetic and Evolutionary Computation. pp. 243 – 250.

2001.

[11] Bremermann H.J. The Evolution of Intelligence. The Nervous System as a model

of its environment. Technical Report No.1, Contract No.477(17), Department of

Mathematics, University of Washington, Seattle. 1958

[12] Bremermann H.J. Optimisation Through Evolution and Recombination. In, Self-

Organising Systems, M.C. Yovits, G.T. Jacobi and G.D. Goldstiene, Eds. Wash-

ington, DC: Spartan Books, pp. 93 – 106. 1962.

[13] Bremermann H.J. Quantitative aspects of goal-seeking self-organising systems.

Progress in Theoretical Biology, vol 1, New York: Academic Press, pp. 59 – 77.

1967.

[14] Bremermann H.J. Numerical Optimisation Procedures Derived From Biological

Evolution Processes. Cybernetic Problems in Bionics, H.L. Oestereicher and D.R.

Moore, Eds. New York: Gordon and Breach, pp. 543 – 562. 1968.

[15] Bremermann H.J. On the Dynamics and Trajectories of Evolution Processes. Bio-

genesis, Evolution, Homoeostasis. A. Locker, Ed. New York: Springer-Verlag, pp.

29 – 37. 1973.



BIBLIOGRAPHY 167

[16] Bremermann H.J. and Rogson M. An Evolution-Type Search Method for Convex

Sets. ONR Technical Report, Contracts 222(85) and 2656(58), UC Berkeley. 1964.

[17] Bremermann H.J. Rogson M. and Salaff S. Search by Evolution. Biophysics and

Cybernetic Systems, M. Maxfield, A. Callahan and L.J. Fogel, Eds. Washington,

DC: Spartan Books, pp. 157 – 167. 1965.

[18] Bremermann H.J. Rogson M. and Salaff S. Global Properties of Evolution Pro-

cesses. Natural Automata and Useful Simulations, H.H. Pattee, E.A. Adlsack, L.

Fein and A.B. Callaham, Eds. Washington, DC: Spartan Books, pp. 3 – 41. 1965.

[19] Broyden C.G. Journal of the Institute for Mathematics and Applications. Volume

6, pp. 222 – 231. 1970.

[20] Bull L. On Modal-Based Evolutionary Computation. Soft computing, vol 3. pp. 76

– 82. 1999.

[21] Brooks J. L. Just Before the Origin: Alfred Russel Wallace’s Theory of Evolution.

Columbia University Press, 1984.

[22] Cantu-Paz E. On Random Numbers and the Performance of Genetic Algorithms.

Proceedings of the Genetic and Evolutionary Computation Conference, Morgan

Kaufmann, pp. 311 – 318. 2002.

[23] Cantu-Paz E. Goldberg D.E. and Harik G. The Gamblers Ruin Problem, Genetic

Algorithms, and the Sizing of Populations Proceedings of the 1997 IEEE Interna-

tional Conference on Evolutionary Computation. pp. 7 – 12. 1997.

[24] Caprara A., Fischetti M., and Maio D. Exact and approximate algorithms for

the index selection problem in physical database design. IEEE Transactions on

Knowledge and Data Engineering, 7(6). 1995.



BIBLIOGRAPHY 168

[25] Carter F. and Gallehawk J. The Enigma Machine and the Bombe. The Bletchley

Park Trust Reports. Report No. 9. 1998.

[26] Colorni A. Dorigo M. and Maniezzo V. Distributed Optimisation by Ant Colonies

Proceedings of the First European Conference on Artificial Life. Varela F. and

Bourgine P. Eds. Elsevier Publishing, pp. 134 – 142. 1992.

[27] Commer D.E. Computer Networks and Internets: with Internet Applications Up-

per Saddle River, N.J. ; London. ISBN 01312367X. 2001

[28] Darwin C. The Origin Of Species. Oxford University Press, Walton Street, Oxford.

OX2 6DP, UK. Based on: On The Origin Of Species by Means of Natural Selection,

or the Preservation of Favoured Races in the Struggle for Life. Second Edition,

London 1859. First Published 24 Nov 1859.

[29] Davis L. Handbook of Genetic Algorithms. Van Nostrand Reinhold. 1991.

[30] Dawkins R. Climbing Mount Improbable. The Penguin Group, 1996. ISBN 0-670-

85018-7.

[31] Dawkins R. The Blind Watchmaker. Longman Scientific and Technical, 1986.

ISBN 0-582-44694-5.

[32] Dawkins R. The Extended Phenotype. Oxford Press, 1989. ISBN 0-19-286088-7.

[33] Dawkins R. The Selfish Gene. Oxford Press, 1976. ISBN 0-330-36710-2.

[34] De Jong K.A. An Analysis of the Behaviour of a Class of Genetic Adaptive Sys-

tems. Doctoral Dissertation, University of Michigan. Dissertation Abstracts Inter-

national 36(10), 5140b. 1975.



BIBLIOGRAPHY 169

[35] Dennis J. and Torczon V. Managing Approximate Models in Optimisation. Multi-

disciplinary design optimisation: State-of-the-Art. pp. 330 – 347. 1997.

[36] Data Encryption Standard (DES). Federal Information Processing Standards Pub-

lication 46-2. 1993.

[37] Fitzpatrick J.M. Grefenstette J.J. Genetic Algorithms in Noisy Environments.

Machine Learning, vol 3. pp. 101 – 120. 1988.

[38] Fletcher R. Practical Methods of Optimization. Chirchester, UK: John Wiley and

Sons. 1987.

[39] Fleurent C. and Ferland J. Genetic Hybrids for the Quadratic Assignment Problem.

DIMACS Series in Mathematics and Theoretical Computer Science. Volume 16.

pp. 190 – 206. 1994.

[40] Fogel D. (Ed) The Fossil Record. IEEE Press, 1998.

[41] Fogel L.J. Owens A.J. and Walsh M.J. Artificial Intelligence Through Simulated

Evolution John Wiley & Sons, Inc. 1966.

[42] Forman S.L. Congressional Redistricting Using a TSP-based Genetic Algorithm.

Proceedings of the Genetic and Evolutionary Computations Conference. pp. 1262.

2002.

[43] Fraser A.S. Simulation of Genetic Systems by Automatic Digital Computers. I.

Introduction. Australian Journal of Biological Science. Vol 10, pp. 484 – 491. 1957.

[44] Fraser A.S. Simulation of Genetic Systems by Automatic Digital Computers. II.

Effects of Linkage on Rates of Advanced Under-selection. Australian Journal of

Biological Science. Vol 10, pp. 492 – 499. , 1957.



BIBLIOGRAPHY 170

[45] Fraser A.S. Simulation of Genetic Systems by Automatic Digital Computers. IV.

Epistasis. Australian Journal of Biological Science. Vol 13, pp. 329 – 346. 1960.

[46] Fraser A.S. Simulations of Genetic Systems. Journal of Theoretical. Biological

Science. Vol2 pp. 329 – 346. 1962.

[47] Fraser A.S. The Evolution of Purposive Behaviour. In, Purposive Systems, H.von

Forester, J.D. White, L.J. Peterson and J.K.Russell, Eds., Washington, DC: Spar-

tan Books, pp. 15-23. 1968.

[48] Glover F. Tabu Search - Part I. ORSA Journal on Computing, 1(3). pp. 190 –

206. 1989.

[49] Glover F. TABU Search - Part II. ORSA Journal on Computing 2(1). pp. 4 – 32.

1990.

[50] Glover F., Kelly J. and Laguna M. Genetic Algorithms and Tabu Search: Hybrids

for Optimisation. Computers Ops Res. 22. 1995.

[51] Goldberg D.E. Genetic Algorithms in Search, Optimisation, and Machine Learn-

ing. Addison-Wesley, 1989. ISBN 0-201-15767-5.

[52] Goldberg D.E. The Design of Innovation: Lessons from Genetic Algorithms,

Lessons for the Real World. IlliGAL Report No. 98004, 1998.

[53] Goldberg, D.E. Using Time Efficiently: Genetic-Evolutionary algorithms and

the continuation problem. GECCO-99: Proceedings of the Genetic and Evo-

lutionary Computation Conference, Morgan Kaufman. Pages 212–219, (1999).

http://citeseer.nj.nec.com/article/goldberg99using.html



BIBLIOGRAPHY 171

[54] Goldberg, D.E. Deb, K. and Clark, J. H. Genetic Algorithms, Noise, and the sizing

of populations. Complex Systems, 6, Pages 333–362. (1992)

[55] Gomez A. and De La Fuente D. Resolution of Strip-Packing Problems With Ge-

netic Algorithms. Journal of the Operational Research Society, vol 51. pp. 1289 –

1295. 2000.

[56] Grefenstette J.J. and Fitzpatrick J.M. Genetic Search with Approximate Func-

tion Evaluations. 1st International Conference On Genetic Algorithms and Their

Applications, Pittsburgh. pp. 112 – 120. 1985.

[57] Grierson D.E. and Pak W.H. Optimal Sizing Geometrical and Topological Design

Using a Genetic Algorithm. Structural Optimisation , vol 6, no. 3. pp. 151 – 159.

1993.

[58] Grūndlingh W.R. and Van Vuuren J.H.Using Genetic Algorithms to Break a Sim-

ple Cryptographic Cipher. http://dip.sun.ac.za/~vuuren/papers/genetic.ps

[59] Guha A., Harp S.A. and Samad T. Genetic Synthesis of Neural Networks. Tech-

nical Report, Honeywell Corporate Systems Development Division. 1988.

[60] Hajela P. and Lee J. Genetic Algorithms in Multidisciplinary Rotor Blade Design.

Proceedings of 36th Structures, Structural Dynamics and material Conference.

New Orleans. 1998.

[61] Harp S.A., Samad T. and Guha A. Towards the Genetic Synthesis of Neural Net-

works. Proceedings of the 3rd International Conference on Genetic Algorithms pp.

360 – 369 1989.



BIBLIOGRAPHY 172

[62] Hart W.E. and Belew R.K. Optimisation with Genetic Algorithm Hybrids Us-

ing Local Search. Adaptive Individuals in Evolving Populations, Belew R.K. and

Mitchell M. (eds.) pp. 483 – 494. 1996.

[63] Hassan K. and Conner M. Predicting Feedback Polynomial of LFSR Using Genetic

Algorithm. Approximation and Learning in Evolutionary Computation Workshop,

GECCO 2002, Barry A. Ed. pp. 9 – 11. 2002.

[64] Hillermeier C. and Keppler J. An Application of Genetic Algorithms and Neural

Networks to Scheduling Power Generating Systems. Parallel Problem Solving From

Nature. pp. 811 – 818. 1996.

[65] Hinton G.E. and Nowlan S.J. How Learning Can Guide Evolution. Computer

Systems, 1(1) pp. 495 – 502. 1987.

[66] Ho A.C.H. and Kwong S. Optimisation of CDMA Based Wireless Systems. Pro-

ceedings of the Genetic and Evolutionary Computations Conference. pp. 1266.

2002.

[67] Holland J. H. Adaption in Natural and Artificial Systems. A Bradford Book, The

MIT Press. ISBN 0-262-08213-6.

[68] Ibaraki T. Combinations With Other Optimization Methods. Handbook of Evolu-

tionary Computations. Back T., Fogel D.B. and Michalewicz Z. eds. Bristol and

New York: Institute of Physics Publishing and Oxford University Press. pp. D:31

– D:32. 1997.

[69] Jin Y. Olhofer M. and Sendoff B. On Evolutionary Optimisation With Approximate

Fitness Functions. Proceedings of the Genetic and Evolutionary Computation

Conference. pp. 786 – 792. 2000.



BIBLIOGRAPHY 173

[70] Jin Y. Olhofer M. and Sendhoff B. Managing Approximate Models in Evolutionary

Aerodynamical Design Optimisation. Proceedings of IEEE Congress on Evolution-

ary Computation, vol 1. pp. 592 – 599. 2001.

[71] Jin Y. Fitness Approximation in Evolutionary Computation – A Survey Approx-

imation and Learning in Evolutionary Computation Workshop, GECCO 2002,

Barry A. Ed. pp. 3 – 4. 2002.

[72] Jin Y. and Sendhoff B. Fitness Approximation in Evolutionary Computing – A

Survey. Proceedings of the Genetic and Evolutionary Computation Conference,

Morgan Kaufmann, pp. 1105 – 1112. 2002.

[73] Johanson B. and Poli R. GP Music: An Interactive Genetic Programming System

for Music Generation With Automated Fitness Raters. Proceedings of the 3rd

Annual Conference on Genetic Programming. pp. 181 – 186. 1998.

[74] Kahn D. The Codebreakers. Macmillan, ISBN 0-025-60460-0. 1996.

[75] Kaniel S. Estimates for Some Techniques in Linear Algebra. Math Comput. 20

pp. 369 – 378. 1966.

[76] Kennedy, J. and Eberhart R.C. Genetic Programming Using Genotype - Phenotype

Mapping from Linear Genomes into Lenear Phenotypes. Genetic Programming.

1996.

[77] Kirkspatrick S. Gelatt Jr. C. D. and Vecchi M.P. Optimisation by Simulated An-

nealing. Science, 220, 4598, pp. 671 – 680. 1983.

[78] Knodler K. Poland J. and Zell A. Memetic Algorithms for Combinatorial Optimi-

sation Problems in the Calibration of Modern Combustion Engines. Proceedings of



BIBLIOGRAPHY 174

the Genetic and Evolutionary Computation Conference, Morgan Kaufmann, pp.

687. 2002.

[79] Kodiyalam S. Nagendra S. and DeStefano j. Composite Sandwich Structural Op-

timisation with Application to Satellite Components. AIAA Journal, vol 34, no. 3.

pp. 614 – 621. 1996.

[80] Koza J.R. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press. 1992.

[81] Koza J.R. Genetic Programming II : Automatic Discovery of Reusable Programs

MIT Press. 1994.

[82] Krarup J. and Pruzan P.M. The Simple Plant Location Problem: Survey and

Synthesis. European Journal of Operation Resource 12. pp. 36 – 81. 1983.

[83] Kratica J. Improving Performances of the Genetic Algorithm by Caching. Com-

puters and Artificial Intelligence Vol 18, no. 3. pp. 271 – 283. 1999.

[84] Kratica J., Tosic D., Filipovic V. and Ljubic I. Solving the Simple Plant Location

Problem by Genetic Algorithm. RAIRO Operations Research, 35. pp. 127 – 142.

2001.

[85] Kratica J., Ljubic I. and Tosic D. A Genetic Algorithm for the Index Selection

Problem. http://citeseer.ist.psu.edu/568873.html

[86] Lamarck, J. B. Zoological Philosophy. London. 1809.

[87] Land M. Evolutionary Algorithms with Local Search for Combinatorial Optimisa-

tion. Doctoral Dissertation, University of California, San Diego, CA. 1998.



BIBLIOGRAPHY 175

[88] Langdon W.B. and Qureshi A. Genetic Programming - Computers Using “Natu-

ral Selection” to Generate Programs. Research Note : RN/95/76. Department of

Computer Science, University College London. 1995.

[89] Lee J. and Hajela P. Parallel Genetic Algorithms Implementation for Multidis-

ciplinary Rotor Blade Design. Journal of Aircraft, vol 33, no. 5. pp. 962 – 969.

1996.

[90] Liang K.H. Yao X. and Newton C. Evolutionary Search of Approximated n-

dimensional Landscape. International Journal of Knowledge based Intelligent En-

gineering Systems, vol 4, no. 4. pp. 172 – 183. 2000.

[91] Linden D.S. Antenna Design Using Genetic Algorithms. Proceedings of the Ge-

netic and Evolutionary Computation Conference, Morgan Kaufmann, pp. 1133 –

1140. 2002.

[92] Ljubic I., Raidl G.R. and Kratica J. A Hybrid ga for the Edge-Biconnectivity

Augmentation Problem. Parallel Problem Solving from Nature. pp. 641 – 650.

2000.

[93] Louis S.J.. Genetic Learning for Combinational Logic Design Approximation and

Learning in Evolutionary Computation Workshop, GECCO 2002, Barry A. Ed.

pp. 21 – 26. 2002.

[94] Louis S.J., McGraw G. and Wyckoff R.O. Case-based Reasoning Assisted Expla-

nation of Genetic Algorithm Results. Technical Report No. 361. Bloomington,

Indiana University. 1992.

[95] Malthus T. Essay on the Principle of Population, 1798.



BIBLIOGRAPHY 176

[96] Mathias K.E., Whitley D.L., Stork C. and Kusuma. T. Staged Hybrid Genetic

Search for Seismic Data Imaging. Proceedings of the 1994 IEEE International

Conference on Evolutionary Computation. 1994.

[97] Maxwell III S.R. Experiments with a coroutine model for genetic programming.

In Proceedings of the 1994 IEEE World Congress on Computational Intelligence,

IEEE Press. Volume 1, pp. 413 – 417. 1994.

[98] Mendel G. Experiments in plant hybridisation. Oliver and Boyd, 1965.

[99] Menzel D. (ed) Fundamental Formulas of Physics. Volume 2, 2nd edition. 1960.

[100] Metropolis N., Rosenbluth A.W. Teller M.N. and Teller W. Equations of State

Calculations by Fast Computing Machines. Journal of Chemical Physics volume

21. pp. 1087 – 1091. 1953.

[101] Meysenburg M.M. Hoelting D. McElvain D. Foster J.A. How Random Generator

Quality Impacts Genetic Algorithm Performance. Proceedings of the Genetic and

Evolutionary Computation Conference, Morgan Kaufmann, pp. 480 – 483. 2002.

[102] Meysenburg M.M. Hoelting D. McElvain D. Foster J.A. A Genetic Algorithm-

Specific Test of Random Number Generator Quality. Proceedings of the Genetic

and Evolutionary Computation Conference, Morgan Kaufmann, pp. 691. 2002.

[103] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag. 1992.

[104] Mogul J. and Deering S. RFC 1191 - Path MTU Discovery http://www.cse.

ohio-state.edu/cgi-bin/rfc/rfc1191.html



BIBLIOGRAPHY 177

[105] Montana D.J. Automated Parameter Tuning for Interpretation of Synthetic Im-

ages. Handbook of Genetic Algorithms. Davis L. Ed. Van Nostrand Reinhold, pp.

282 – 311. 1991

[106] Montana D. and Davis L. Training Feed Forward Neural Networks Using Genetic

Algorithms. Proceedings of the 11th International Joint Conference on Artificial

Intelligence. pp. 762 – 767. 1989.

[107] Moscato P. On Evolution, Search, Optimization, Genetic Algorithms and Martial

Arts: Towards Memetic Algorithms. Technical Report 790. Caltech Concurrent

Computation Program. 1989.

[108] Nair P.B. and Keane A.J. Combining Approximation Concepts with

Algorithm-based Structural Optimisation Procedures. Proceedings of 39th

AIAA/ASMEASCE/AHS/ASC Structures, Structural Dynamics and Materials

Conference. pp. 1741 – 1751. 1998.

[109] Newton I. Methodus Fluxionum et Serierum Infinitarum. 1664-1671.

[110] Newton M., Sykora O., Withall M. and Imrich V. A Parallel Approach to Row-

Based VLSI Layout Using Stochastic Hill-Climbing. IEA2003AIE. 2003.

[111] Ochoa G. Setting the Mutation Rate: Scope and Limitations of the 1

l
Heuristic

Proceeding of the Genetic and Evolutionary Computation Conference. pp. 495 –

502. 2002.

[112] Orvosh D. and Davis L. Shall We Repair? Genetic Algorithms, Combinatorial

Optimization and Feasibility Constraints Proceedings of the Fifth International

Conference on Genetic Algorithms pp. 650 . 1993.



BIBLIOGRAPHY 178

[113] Pierret S. Turbomachinery Blade Design Using a Navier-Stokes Solver and Artifi-

cial Neural Network. ASME Journal of Turbomachinery, vol 121, no. 3. pp. 326 –

332. 1999.

[114] Piras R.A. A Comparison of Genetic Algorithms and Neural Networks as used

in Optimisation Final Year Project Report, Department of Computer Science,

Loughborough University. 1993.

[115] Porto V.W. Neural-Evolutionary Systems: New Areas for Evolutionary Computa-

tion Research in Neural Systems. Handbook of Evolutionary Computation, Back

T., Fogel D.B. and Michalewicz Z eds. Bristol and New York: Institute of Physics

Publishing and Oxford University Press. pp. D1.3:1 – D1.3:2. 1997.

[116] Powell M.J.D. An Efficient Method for Finding the Minimum of a Function of

Several Variables Without Calculating Derivatives The Computer Journal. 7 pp.

155 – 162. 1964.

[117] IP Quality of Service - FAQ http://www.inf.ufrgs.br/granvile/QoS/

Imprimir/faq.htm

[118] Radcliffe N.J. and Surry P.D. Formal Memetic Algorithms. Evolutionary Comput-

ing: AISB Workshop. pp. 1 – 16. 1994.

[119] Ramsey C.L. and Grefenstette J.J. Case-Based Initialisation of Genetic Algo-

rithms. Proceedings of the 5th International Conference on Genetic Algorithms.

pp. 84 – 91. 1993.

[120] Ratle A. Accelerating the Convergence of Evolutionary Algorithms by Fitness

Landscape Approximation. Parallel Problem Solving from Nature. vol 5. pp. 87

– 96. 1998.



BIBLIOGRAPHY 179

[121] Ratle A. Optimal Sampling Strategies for Learning a Fitness Model. Proceedings

of 1999 Congress on Evolutionary Computation, vol 3. pp. 2078 – 2085. 1999.

[122] Rasheed K. Ni X. and Vattam S. Comparison of Methods for using Reduced Models

to Speed Up Design Optimisation. Approximation and Learning in Evolutionary

Computation Workshop, GECCO 2002, Barry A. Ed. pp. 17 – 20. 2002.

[123] Rechenburg I. Evolutionsstrategie: Optimierung Technischer Systeme nach

Prinzipien der Diologischen Evolution. Fromman Holzboog. 1973.

[124] Redmond J. and Parker G. Actuator Placement Based on Reachable Set Optimi-

sation for Expected Disturbance. Journal Optimisation Theory and Applications,

vol 90, no. 2. pp. 279 – 300. 1996.

[125] Reed J. Toombs R. and Barricelli N.A. Simulation of Biological Evolution and

Machine Learning. Journal of Theoretical Biology, Vol. 17, pp. 319 – 342. 1967.

[126] Reeves C.R. Using Genetic Algorithms with Small Populations. Proceedings of the

Fifth International Conference on Genetic Algorithms, Morgan-Kaufman. Pages

92–99, (1993).

[127] Reeves C.R. and Taylor S.J. Selection of Training Data for Neural Networks by a

Genetic Algorithm. Parallel Problem Solving From Nature. pp. 633 – 642. 1998.

[128] Renders J. and Bersini H. Hybridizing Genetic Algorithms with Hill Climbing

Methods for Global Optimisation: Two Possible Ways. Proceedings of the 1st IEEE

Conference on Evolutionary Computation. pp. 312 – 317. 1994.

[129] Rogers D. GSPLINES: A Hybrid of Friedman’s Multivariate Adaptive Regression

Splines (MARS) Algorithm with Holland’s Genetic Algorithm. Proceedings of the

4th International Conference on Genetic Algorithms. pp. 384 – 391. 1991.



BIBLIOGRAPHY 180

[130] Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and

Organisation in the Brain. Psychological Review, 65 pp. 386 – 407. 1958.

[131] RSA Cryptography Standard. PKCS #1 v2.1 RSA Laboratories. 2002.

[132] Rudnick M. A Bibliography of the intersection of Genetic Search and Artificial

Neural Networks. Technical Report No. CS/E 90-001. Beaverton: Oregon Gradu-

ate Center, Department of Computer Science and Engineering. 1990.

[133] Sano Y. and Kita H. Optimisation of Noisy Fitness Functions by Means of Ge-

netic Algorithms Using History. Parallel Problem Solving from Nature. vol 1917

of Lecture Notes in Computer Science, Springer. 2000.

[134] Shyy W. Tucker P.K. Vaidyanathan R. Response Surface and Neural Networks

Techniques for Rocket Engine Injector Optimisation. Technical Report 99-2455,

AIAA. 1998.

[135] Simpson R. and Yachavaram S. Faster Shellsort Sequences: A Genetic Algorithm

Application. Proceedings of the International Society for Computers and their

Applications (ISCA). 1999.

[136] Singh S. The Code Book. Fourth Estate Limited. ISBN 1-85702-879-1. 1999.

[137] Sinha A. and Goldberg D.E. A Survey of Hybrid Genetic and Evolutionary Al-

gorithms. IlliGAL Report No. 2003004. Illinois Genetic Algorithms Laboratory,

University of Illinois. 2003.

[138] Sirag D.J and Weisser P.T. Towards a Unified Thermodynamic Genetic Operator.

Proceedings of the 2nd International Conference on Genetic Algorithms. pp. 116 –

122. 1987.



BIBLIOGRAPHY 181

[139] Souza P.S.D. and Talukadar S.N. Genetic Algorithms in Asynchronous Teams.

Proceedings of the 4th International Conference on Genetic Algorithms. pp. 392 –

397. 1991.

[140] Syswerda G. Schedule Optimisation Using Genetic Algorithms. Handbook of Ge-

netic Algorithms. Davis L. Ed. Van Nostrand Reinhold, pp. 332 – 349. 1991.

[141] Thangiah S.R. Vehicle Routing with Time Windows Using Genetic Algorithms.

Application and Book of Genetic Algorithms, vol 2, ed. Chambers L. pp. 253 –

277. 1995.

[142] Takagi H. Interactive Evolutionary Computation. Proceedings of the 5th Interna-

tional Conference on Soft Computing and Information / Intelligent Systems. pp.

41 – 50. 1998.

[143] Tanenbaum A. Modern Operating Systems. Prentice-Hall, NJ. 1992.

[144] Turing A.M. Intelligent Machinery. Collected Works of A.M. Turing: Mechanical

Intelligence, Ince D.C. Ed. pp. 107 – 127. 1992.

[145] Vignaux G.A. and Michalewicz Z. A Genetic Algorithm for the Linear Transporta-

tion Problem. IEEE Trans. on Systems, Man and cybernetics, Vol. 21, no 2, pp.

445 – 452. 1991.

[146] Whitley D., Gordon V.S., and Mathias K. Lamarckian evolution, the Baldwin

Effect and Function Optimization. Parallel Problem Solving from Nature - 94. pp.

6 – 15. 1994.

[147] Withall M.S. The Evolution of Complete Software Systems. PhD Thesis. Depart-

ment of Computer Science, Loughborough University. 2003.



BIBLIOGRAPHY 182

[148] Wright A.H. Genetic Algorithms for Real Parameter Optimisation. Foundations

of Genetic Algorithms. Rawlins G.J.E. Ed. Morgan Kaufmann Publishers, pp. 205

–218. 1991.

[149] Yagiura M. and Ibaraki T. Use of Dynamic Programming in Genetic Algorithms

for Permutation Problems. European Journal of Operational Research. 92(2) pp.

387 – 401. 1996.

[150] Yao X. Evolving Artificial Neural Networks. Proceedings of the IEEE 87(9). pp.

1423 – 1447. 1999.

[151] Yen J., Liao J., Randolph D. and Lee B. A Hybrid Approach to Modelling Metabolic

Systems Using Genetic Algorithms and Simplex Method. Proceedings of the 11th

IEE Conference on Artificial Intelligence for Applications pp. 277 – 283. 1995.

[152] Yilmaz A.S. and Wu A.S. A Comparison of Haploidy and Diploidy with-

out Dominance on Integer Representations. http://citeseer.ist.psu.edu/

581298.html.



Appendix A

Publications

• Comparison of evolving against peers and fixed opponents using Core-

wars.

J.L. Cooper and C.J. Hinde. Genetic and Evolutionary Computation Conference

(GECCO) 2002

• Improving the Efficiency of Genetic Algorithms using Intelligent Fitness

Functions.

J.L Cooper and C.J. Hinde. The 16th International Conference on Industrial and

Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE)

2003.

• Packet Transmission Optimisation Using Genetic Algorithms.

M.S. Withall, C.J. Hinde, R.G. Stone and J.L. Cooper. The 16th International

Conference on Industrial and Engineering Applications of Artificial Intelligence

and Expert Systems (IEA/AIE) 2003.

183



APPENDIX A. PUBLICATIONS 184

• Investigation into the effects of varying the parameters of packets trav-

elling across the Internet.

J.L. Cooper, M.S. Withall, C.J. Hinde, R.G. Stone. Internal Report num:1070,

Computer Science Department, Loughborough University.



Appendix B

Full Results for Chapter 3

B.1 Population Sizes and their Effects on Perfor-

mance

This section shows and discusses the results of the experiments examining the effects of

population sizes on the performance of the ga.

B.1.1 One Max Problem

The following graphs show the results of the runs of the ga, with the varying population

sizes, against the One Max Problem.

185



APPENDIX B. FULL RESULTS FOR CHAPTER 3 186

 500

 550

 600

 650

 700

 750

 800

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

Generations

Average fitness level (Population size 6)
Average fitness level (Population size 60)

Average fitness level (Population size 600)

 520

 540

 560

 580

 600

 620

 640

 660

 680

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Generations

Figure B.1: Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against generations

The graph in Figure B.1 shows the average best fitness of all three population sizes.

They are shown against generations to show the difference in the number of generations

the different population sizes can evolve for in the same length of time. While the higher

population sizes do marginally better to start with, the population size of 6 manages

to improve its fitness to a higher level than the other population sizes with the extra

generations it can achieve in the time available to it. It is interesting to note that the

population size of 6 performs better than the population size of 60 within the same

number of generations, this is discussed later.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 187

 500

 550

 600

 650

 700

 750

 800

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

time (Relative to generations for a population size of 6)

Average fitness level (Population size 6)
Average fitness level (Population size 60)

Average fitness level (Population size 600)

Figure B.2: Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

The graph in Figure B.2 shows the average best fitness of all three population sizes.

They are shown against the time taken to run the ga. This graph shows that the

population size of 6 does better than the higher population sizes when compared on

time taken.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 188

 450

 500

 550

 600

 650

 700

 750

 800

 0  500  1000  1500  2000  2500  3000  3500  4000

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average fitness level (Population size 6)
Best fitness level (Population size 6)

Worst fitness level (Population size 6)

Figure B.3: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 6

The graph in Figure B.3 shows the average best fitness level of the ga with a pop-

ulation size of 6, the best fitness level the ga achieved with a population size of 6 and

the worst best fitness level the ga achieved with a population size of 6.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 189

 450

 500

 550

 600

 650

 700

 750

 800

 0  50  100  150  200  250  300  350  400

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average fitness level (Population size 60)
Best fitness level (Population size 60)

Worst fitness level (Population size 60)

Figure B.4: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 60

The graph in Figure B.4 shows the average best fitness level of the ga with a popu-

lation size of 60, the best fitness level the ga achieved with a population size of 60 and

the worst best fitness level of the 50 runs the ga achieved with a population size of 60.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 190

 450

 500

 550

 600

 650

 700

 750

 800

 0  5  10  15  20  25  30  35  40

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average fitness level (Population size 600)
Best fitness level (Population size 600)

Worst fitness level (Populations size 600)

Figure B.5: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 600

The graph in Figure B.5 shows the average fitness level of the ga with a population

size of 600, the best fitness level the ga achieved with a population size of 600 and the

worst best fitness level of the 50 runs the ga achieved with a population size of 600.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 191

Population Size 6 60 600

40 Generations 557 570 576

400 Generations 676 649 —

4000 Generations 788 — —

Table B.1: Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested

Table B.1 shows the average fitness levels of the three different population sizes at

forty, four hundred and four thousand generations. While at 40 Generations the best

results is that of the ga with a population size of 600 followed by that of the ga with

a population size of 60 and the population size 6 performing the worst.

The ga with a population size of 600 has used up all the time available to it by the

40th generation and as such has not been able to improve on its fitness level of 576. The

ga with a population size of 60 has reached a fitness level of 649 but the ga with a

population size of 6 has produced a fitness level of 676. This is interesting as the lower

population size has achieved a higher fitness level than the population size of 60 in the

same number of generations, which will have taken it 1

10
of the time to run. This result

is counter intuitive and will need to be researched more to understand why it occurs.

The ga with a population size of 60 has used up all the time available to it by the

400th generation and as such has not been able to improve on its fitness level. At its

4000th generation the ga with a population size of 6 has reached the highest fitness

achieved by the runs.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 192

B.1.2 Deceptive Trap Functions

The following graphs show the results of the runs of the ga, with the varying population

sizes, with the Deceptive Trap Function as a fitness function.

 55

 60

 65

 70

 75

 80

 85

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

Generation

Average fitness level (Population Size 6)
Average fitness level (Population Size 60)

Average fitness level (Population Size 600)

 55

 60

 65

 70

 75

 80

 85

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Generation

Figure B.6: Average Fitness levels, of the best of each of 50 runs, for all three population

sizes, shown against generations

The graph in Figure B.6 shows the average fitness of all three population sizes. They

are shown against generations to show the difference in the number of generations the

different population sizes can evolve for in the same length of time. Just like the ga

with the one max problem the higher population sizes do better at the start, but the

population size of 6 manages to improve its fitness to a higher level than the other



APPENDIX B. FULL RESULTS FOR CHAPTER 3 193

population sizes with the extra generations it can achieve in the time available to it.

Again the population size of 6 surpassed the performance of the population size of 60

within the same number of generations. This is discussed later.

 55

 60

 65

 70

 75

 80

 85

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

Time (Relative to generations for population size of 6)

Average fitness level (Population Size 6)
Average fitness level (Population Size 60)

Average fitness level (Population Size 600)

Figure B.7: Average Fitness levels, of the best of each of 50 runs, for all three population

sizes, shown against time

The graph in Figure B.7 shows the average fitness of all three population sizes against

the time taken to run the ga. Again the population size of 6 performs better than the

higher population sizes in a set length of time.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 194

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000  2500  3000  3500  4000

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average fitness level (Population Size 6)
Best fitness level (Population Size 6)

Worst fitness level (Population Size 6)

Figure B.8: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 6

The graph in Figure B.8 shows the average fitness level of the ga with a population

size of 6, the best fitness level the ga achieved with a population size of 6 and the worst

best fitness level of the 50 runs the ga achieved with a population size of 6.

The levelling off of the average fitness level and the worst fitness level is due to the

ga getting trapped at a local minimum and failing to escape. The levelling off for the

best fitness level is due to the ga solving the problem and as such has reached the

highest fitness level.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 195

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350  400

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average fitness level (Population Size 60)
Best fitness level (Population Size 60)

Worst fitness level (Population Size 60)

Figure B.9: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 60

The graph in Figure B.9 shows the average fitness level of the ga with a population

size of 60, the best fitness level the ga achieved with a population size of 60 and the

worst best fitness level of the 50 runs the ga achieved with a population size of 60.

Again the levelling off of the average fitness level is due to the ga getting stuck at

local minimum. While the levelling off of the best fitness level is due to it solving the

problem.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 196

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average fitness level (Population Size 600)
Best fitness level (Population Size 600)

Worst fitness level (Population Size 600)

Figure B.10: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 600

The graph in Figure B.10 shows the average fitness level of the ga with a population

size of 600, the best fitness level the ga achieved with a population size of 600 and the

worst best fitness level the ga achieved with a population size of 600. It is interesting

to note that the ga with a population size of 600 fails to achieve the maximum score

with any of its runs despite having a higher initial best fitness level.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 197

Population Size 6 60 600

40 Generations 72 76 79

400 Generations 83 82 —

4000 Generations 84 — —

Table B.2: Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested

Table B.2 shows that after all three population sizes had evolved for 40 generations

the population size of 600 had achieved the highest fitness level.

The ga with a population size of 600 has used up all of the time available to it by 40

generations and never reaches 400 generations. So it has not been able to improve upon

its fitness level of 79. Both the gas using a population size of 6 and 60 have overtaken

it at this stage. At the 400 generation stage the ga with a population size of 6 has also

overtaken the ga with a population size of 60. It is important to remember that the ga

with a population size of 6 has taken 1

10
of the time that the ga with a population size

of 60 has taken to get to this stage.

The ga with a population size of 60 has used up all the time available to it by 400

generations and never reaches 4000 generations. So it has not been able to improve upon

its fitness level. The ga with a population size of 6 has been able to improve slightly

again, reaching the fitness level of 84, which is the highest encountered.

The best run for the ga with a population size of 6 reached the maximum possible

fitness level in the 95th generation. The best run for the ga with a population size of

60 reached the maximum possible fitness level in the 45th generation. While this is a



APPENDIX B. FULL RESULTS FOR CHAPTER 3 198

difference of 50 generations, the best run of the ga with a population size of 6 reached

the maximum fitness level in 3% of the time available to it while the best run of the ga

with a population size of 60 reached the maximum possible fitness level in 12% of the

available time.

B.1.3 GA Hard Problem

The following graphs show the results of the runs of the ga, with the varying population

sizes, against the ga Hard Problem. The default parameters were used for the ga Hard

Problem.

 0

 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

Generations

Average fitness level (Population size 6)
Average fitness level (Population size 60)

Average fitness level (Population size 600)

 60

 70

 80

 90

 100

 110

 120

 130

 0  50  100  150  200

F
itn

es
s

Generations

Figure B.11: Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against generations



APPENDIX B. FULL RESULTS FOR CHAPTER 3 199

The graph in Figure B.11 shows the average fitness of all three population sizes.

They are shown against generations to show the difference in the number of generations

the different population sizes can evolve for in the same length of time. While the higher

population sizes do better to start with the population size of 6 manages to improve its

fitness to the same level as the other population sizes with the extra generations it can

achieve in the time available to it.

 0

 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000

F
itn

es
s

time (Relative to the generations for the population size of 6)

Average fitness level (Population size 6)
Average fitness level (Population size 60)

Average fitness level (Population size 600)

Figure B.12: Average Fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

The graph in Figure B.12 shows the average fitness of all three population sizes.

They are shown against the time taken to run the ga. This graph shows that the

population size of 6 actually reaches the level that all the population sizes get stuck on



APPENDIX B. FULL RESULTS FOR CHAPTER 3 200

first, while the higher population sizes take longer to get there.

 0

 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a populatin size of 6)

Average fitness level (Population size 6)
Best fitness level (Population size 6)

Worst fitness level (Population size 6)

 60

 70

 80

 90

 100

 110

 120

 130

 0  50  100  150  200

 0  50  100  150  200

Figure B.13: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 6

The graph in Figure B.13 shows the average fitness level of the ga with a population

size of 6, the best fitness level the ga achieved with a population size of 6 and the worst

best fitness level the ga achieved with a population size of 6.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 201

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300  350  400

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a populatin size of 6)

Average fitness level (Population size 60)
Best fitness level (Population size 60)

Worst fitness level (Population size 60)

Figure B.14: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 60

The graph in Figure B.14 shows the average fitness level of the ga with a population

size of 60, the best fitness level the ga achieved with a population size of 60 and the

worst best fitness level the ga achieved with a population size of 60.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 202

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30  35  40

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a populatin size of 6)

Average fitness level (Population size 600)
Best fitness level (Population size 600)

Worst fitness level (Populations size 600)

Figure B.15: Fitness levels, of the best of each of 50 runs, for the ga with a population

size of 600

The graph in Figure B.15 shows the average fitness level of the ga with a population

size of 600, the best fitness level the ga achieved with a population size of 600 and the

worst best fitness level the ga achieved with a population size of 600.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 203

Population Size 6 60 600

40 Generations 56 93 100

400 Generations 104 105 —

4000 Generations 105 — —

Table B.3: Average fitness levels, of the best of each of 50 runs, of the three different

population sizes tested

Table B.3 shows the fitness levels achieved by the ga with the three different pop-

ulation sizes after 40, 400 and 4000 generations. After 40 generations the gas with a

population size of 60 and 600 have achieved the same level of fitness. The population

size of 6 has achieved an almost equal level of fitness.

The ga with a population size of 600 has used up all the time available to it by the

40th generation so never manages to improve on the fitness level of 100. Both the gas

with a population size 6 and 60 had achieved the same level of fitness by their 400th

generation.

The ga with a population size of 60 has used up all the time available to it by its

400th generation so never manages to improve its fitness level above 105. The ga with

a population size of 6 failed to achieve a higher level of fitness despite having enough

time to run for 4000 generations.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 204

B.2 Population Sizes and their Effects on Perfor-

mance Using a Different Model of Elitism

This section shows and discusses the results of the experiments (see section 3.4.3) testing

the effects of population sizes on the performance of the ga when a different model of

elitism is used.

B.2.1 One Max Problem

The results of the experiments on the One Max Problem are shown in Figure B.16

and Table B.4. The graph in Figure B.16 shows the average best fitness levels for the

population sizes against time. Table B.4 shows the average best fitness level achieved

by each of the population sizes at 40 and 400 generations.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 205

 500

 550

 600

 650

 700

 750

 800

 0  500  1000  1500  2000

F
itn

es
s

Time (relative to generations for a population size of 6)

Average Best Fitness (Population size 6)
Average Best Fitness (Population size 60)

Average Best Fitness (Population size 600)

Figure B.16: Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

The graph shown in Figure B.16 shows that for the One Max Problem a population

size 6 outperforms a population size of 60 and 600. Compared to the results shown in

Figure B.2 the population sizes of 60 and 600 have performed better, but they are still

a good distance behind the results for the population size of 6.

Population Size 6 60 600

40 Generations 557 595 590

400 Generations 676 701 –

Table B.4: Average fitness levels, of the best of 50 runs of the three population sizes

tested



APPENDIX B. FULL RESULTS FOR CHAPTER 3 206

Table B.4 shows the average best fitness levels achieved by the different population

sizes at 40 and 400 generations. In Table B.1 at 400 generations the population size

of 6 had achieved a higher average best fitness level than that of the population size

of 60 at 400 generations. This configuration of ga which carries the best 1

6
forward to

the next population showed a similar anomaly, where the population size of 60 has a

higher average best fitness level than the population size of 600 at 40 generations. This

suggests that the anomaly is related to the elitism levels the gas are using.

B.2.2 Deceptive Trap Functions

The results of the experiments on the Deceptive Trap Functions are shown in Figure

B.17 and Table B.5. Figure B.17 shows the average best fitness levels for the population

sizes against time, while Table B.5 shows the average best fitness level achieved by each

of the population sizes at 40 and 400 generations.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 207

 55

 60

 65

 70

 75

 80

 85

 90

 0  500  1000  1500  2000

F
itn

es
s

Time (relative to generations for a population size of 6)

Average Best Fitness (Population size 6)
Average Best Fitness (Population size 60)

Average Best Fitness (Population size 600)

Figure B.17: Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

Figure B.17 shows that for the ga tackling the Deceptive Trap Functions The pop-

ulation size of 60 outperforms the population sizes of 6 and 600. The population size of

6 performs better than the population size of 60 in the early stages, but as the time the

ga has been evolving for increases the population size of 60 overtakes it.

Again compared to the results shown in Figure B.7 the population sizes of 60 and

600 have performed better. Though the population size of 600 still does not perform as

well as the population sizes of 6 and 60.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 208

Population Size 6 60 600

40 Generations 72 81 83

400 Generations 83 85 –

Table B.5: Average fitness levels, of the best of 50 runs of the three population sizes

tested

Table B.5 shows the average best fitness levels achieved by the different population

sizes at 40 and 400 generations. Section B.2 shows an anomaly where the population

size of 6 had achieved a higher average best fitness level than the population size of 60.

This anomaly is not present in the results for this configuration of ga.

B.2.3 GA Hard Problem

The results of the experiments on the ga Hard Problem are shown in the graph in Figure

B.18 and Table B.6. The graph in Figure B.18 shows the average best fitness levels for

the population sizes against time, while Table B.6 shows the average best fitness level

achieved by each of the population sizes at 40 and 400 generations.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 209

 92

 94

 96

 98

 100

 102

 104

 106

 0  500  1000  1500  2000

F
itn

es
s

Time (relative to generations for a population size of 6)

Average Best Fitness (Population size 6)
Average Best Fitness (Population size 60)

Average Best Fitness (Population size 600)

Figure B.18: Average fitness levels, of the best of each of 50 runs, for the three different

population sizes, shown against time

The graph shown in Figure B.18 shows that for the ga Hard Problem the population

sizes of 6 and 60 are very close. The population size of 6 outperforms the population

size of 60 and 600 in the time available to it.

Compared to the results shown in Figure B.12 the results are similar with the excep-

tion of the population size of 600 which has performed better, though still not as well

as the population sizes of 6 and 60.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 210

Population Size 6 60 600

40 Generations 102 104 104

400 Generations 104 105 –

Table B.6: Average fitness levels, of the best of 50 runs of the three population sizes

tested

Table B.6 shows the average best fitness levels achieved by the different population

sizes at 40 and 400 generations. Interestingly at 40 generation the population sizes of

60 and 600 have achieved the same average best fitness level.

B.3 Population Sizes and their Effects on Efficiency

This section shows and discusses the results of the experiments (see section 3.4.4) testing

the effects of population sizes on the efficiency of the ga.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 211

B.3.1 One Max Problem

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average number of locations in search space searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.19: Number of locations in search space searched by the ga with a population

size of 6

The graph in Figure B.19 shows the average number of locations in search space that

the ga with a population size of 6 searched. It also shows the best possible result for a

ga without elitism and the best possible result for a ga using an elitism level of one.

The ga with a population size of 6 has managed to achieve very close to the best

efficiency that it could. The best possible result is not available to the ga as it is using

elitism which results in individuals being carried forward and as such the next generation

will always contain some individuals that have been seen before.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 212

 0

 5000

 10000

 15000

 20000

 25000

 0  50  100  150  200  250  300  350  400

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average number of locations in search space searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.20: Number of locations in search space searched by the ga with a population

size of 60

The graph in Figure B.20 shows the average locations in search space that the ga

with a population size of 60 searched. The best possible result for a ga without elitism

and the best possible result for a ga using elitism are also shown.

The ga with a population size of 60 has managed to achieve a result very close to

that of the best possible results for a ga with elitism. Due to the lower number of

generations that the ga with a population size of 60 can run in the available time, the

difference between the best possible results and the best possible result for a ga with

an elitism level of one is less than the difference for the ga with a population size of 6.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 213

 0

 5000

 10000

 15000

 20000

 25000

 0  5  10  15  20  25  30  35  40

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average number of locations in search space searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.21: Number of locations in search space searched by the ga with a population

size of 600

The graph in Figure B.21 shows the average number of locations in search space that

the ga with a population size of 600 has searched. The best possible result for a ga

without elitism and the best possible result for a ga using elitism are also shown.

The ga with a population size of 600 has managed to achieve an almost perfect

result for the efficiency. Again the lower number of generations has helped to improve

the efficiency as the elitism has only carried forward a total of 40 individuals over the

whole run.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 214

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

A
ve

ra
ge

 n
um

be
r 

of
 L

oc
at

io
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Time (Relative to generations for a population size of 6)

Population Size 6
Population Size 60

Population Size 600

Figure B.22: Number of locations in search space searched by the ga with each of the

population sizes tested

The graph shown in Figure B.22 shows the average number of locations in search

space searched by the gas using the three population sizes. This shows that the popula-

tion size of 6 has the worst efficiency while the population size of 600 has the best. The

difference between the efficiency of the population size of 60 and the efficiency of the

population size of 600 is smaller than that of the difference between the the population

size of 6 and 60.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 215

B.3.2 Deceptive Trap Functions

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average Number of Locations in Search Space Searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.23: Number of locations in search space searched by the ga with a population

size of 6

The graph in Figure B.23 shows the average number of locations in search space that the

ga with a population size of 6 has searched. The best possible result for a ga without

elitism and the best possible result for a ga using elitism are also shown.

Compared to the results for the ga tackling the One Max Problem a gap has ap-

peared, between the best possible results for a ga using elitism and the average result

for the ga with a population size of 6. This shows that there is room for improvement

in the efficiency of the ga tackling the Deceptive Trap Functions with a population size



APPENDIX B. FULL RESULTS FOR CHAPTER 3 216

of 6.

 0

 5000

 10000

 15000

 20000

 25000

 0  50  100  150  200  250  300  350  400

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average Number of Locations in Search Space Searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.24: Number of locations in search space searched by the ga with a population

size of 60

The graph in Figure B.24 shows the average number of locations in search space that

the ga with a population size of 60 has searched. The best possible results for a ga

without elitism and a ga using elitism are also shown.

Again when compared to the results of the ga tackling the One Max Problem a gap

has appeared, between the best possible result for a ga using elitism and the average

result for the ga with a population size of 60. While the possible improvement available

to the efficiency of the ga is not as large as that of the ga using a population size of 6,

there is still room for improvement.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 217

 0

 5000

 10000

 15000

 20000

 25000

 0  5  10  15  20  25  30  35  40

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

Average Number of Locations in Search Space Searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.25: Number of locations in search space searched by the ga with a population

size of 600

The graph in Figure B.25 shows the average number of locations in search space that

the ga with a population size of 600 has searched. The best possible results for a ga

without elitism and a ga using elitism are also shown.

The ga using a population size of 600 shows a bit more room for improvement, in

the efficiency of the ga, than the ga tackling the One Max Problem did.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 218

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

A
ve

ra
ge

 N
um

be
r 

of
 L

oc
at

io
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Time (Relative to generations for a population size of 6)

Population Size 6
Population Size 60

Population Size 600

Figure B.26: Number of locations in search space searched by the ga with each of the

population sizes tested

The graph shown in Figure B.26 shows the average number of locations in search

space searched by the gas using the three population sizes. A similar result is shown to

that of Figure B.22 with the difference in efficiency between the ga using a population

size of 6 and the ga using a population size of 60 being larger than the difference between

the ga using a population size of 60 and the ga using a population size of 600.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 219

B.3.3 GA Hard Problem

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a populatin size of 6)

Average number of locations in search space searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.27: Number of locations in search space searched by the ga with a population

size of 6

The graph in Figure B.27 shows the average number of locations in search space that

the ga with a population size of 6 has searched. The best possible results for a ga

without elitism and a ga using elitism are also shown.

Compared to the results from the gas tackling the One Max Problem and the Decep-

tive Trap Functions the efficiency of the ga has decreased by a large amount, as shown

by the gap between the ‘Best Possible result with elitism’ and the ‘Average number of

locations in search space searched’ lines.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 220

 0

 5000

 10000

 15000

 20000

 25000

 0  50  100  150  200  250  300  350  400

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a populatin size of 6)

Average number of locations in search space searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.28: Number of locations in search space searched by the ga with a population

size of 60

The graph in Figure B.28 shows the average number of locations in search space that

the ga with a population size of 60 has searched. The best possible results for a ga

without elitism and a ga using elitism are also shown.

Again the gap between the best possible result for a ga using elitism and the actual

result achieved by the ga tackling the ga Hard Problem has grown compared to the

One Max Problem and the Deceptive Trap Functions. Though the gap is still smaller

for the ga using a population size of 60 than that of the one using a population size of

6.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 221

 0

 5000

 10000

 15000

 20000

 25000

 0  5  10  15  20  25  30  35  40

 0  500  1000  1500  2000  2500  3000  3500  4000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a populatin size of 6)

Average number of locations in search space searched
Best Possible result without elitism

Best Possible result with elitism

Figure B.29: Number of locations in search space searched by the ga with a population

size of 600

The graph in Figure B.29 shows the average number of locations in search space that

the ga with a population size of 600 has searched. The best possible results for a ga

without elitism and a ga using elitism are also shown.

Again the gap between the best result for a ga using elitism and that achieved by the

ga using a population size of 600 has grown when compared to the One Max Problem

and the Deceptive Trap Functions.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 222

 0

 5000

 10000

 15000

 20000

 25000

 0  500  1000  1500  2000  2500  3000  3500  4000

A
ve

ra
ge

 N
um

be
r 

of
 L

oc
at

io
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Time (Relative to generations for a populatin size of 6)

Population size 6
Population size 60

Population size 600

Figure B.30: Number of locations in search space searched by the ga with each of the

population sizes tested

The graph shown in Figure B.30 shows the average number of locations in search

space searched by the gas using the three population sizes. Again the difference between

the efficiency of the ga using a population size of 6 and the ga using a population size

of 60 is larger than the difference in efficiency between the ga using a population size

of 60 and the ga using a population size of 600.



APPENDIX B. FULL RESULTS FOR CHAPTER 3 223

B.4 Elitism Levels and their Effects on Performance

This section shows and discusses the results of the experiments (see section 3.4.5) the

effects of elitism on the performance of gas.

B.4.1 One Max Problem

 500

 550

 600

 650

 700

 750

 800

 850

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

 0  500  1000  1500  2000

Lo
ca

tio
n 

in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

No Elitism
Elitism Level of 1
Elitism Level of 2
Elitism Level of 3

Figure B.31: Average Fitness Levels for the One Max Problem

The graph in Figure B.31 shows that for the One Max Problem the higher level of

elitism is better. With a population size of 6 and no elitism the ga found it very hard

to improve. With only one individual being carried forward the ga found it a lot easier



APPENDIX B. FULL RESULTS FOR CHAPTER 3 224

to make improvements. With two individuals being carried forward the ga found it even

easier to make improvements. The best setting for elitism with the one max problem

was with three individuals being carried forward.

B.4.2 Deceptive Trap Functions

 50

 55

 60

 65

 70

 75

 80

 85

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

 0  500  1000  1500  2000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a population size of 6)

No Elitism
Elitism Level of 1
Elitism Level of 2
Elitism Level of 3

Figure B.32: Average Fitness Levels for the Deceptive Trap Function

Figure B.32 shows that for the Deceptive Trap Function, being tackled by the ga with

a population size of 6, the best level of elitism is to carry one individual forward to the

next generation. Carrying two individuals and three individuals forward produces good

results but not as good as just carrying one forward, though the difference in fitness



APPENDIX B. FULL RESULTS FOR CHAPTER 3 225

between the three levels of elitism is marginal. Again the ga using no elitism found it

hard to improve.

B.4.3 GA Hard Problem

 90

 92

 94

 96

 98

 100

 102

 104

 106

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

 0  500  1000  1500  2000

Lo
ca

tio
ns

 in
 S

ea
rc

h 
S

pa
ce

 S
ea

rc
he

d

Generations

Time (Relative to generations for a populatin size of 6)

No Elitism
Elitism Level of 1
Elitism Level of 2
Elitism Level of 3

Figure B.33: Average Fitness Levels for the ga Hard Problem

The graph shown in Figure B.33 shows that for the ga Hard Problem carrying two

individuals forward to the next generation gives the best result. Carrying one or three

individuals forward gives a similar result to that of carrying two individuals forward.

Carrying one, two or three individuals forward results in an almost identical level of

fitness after 2000 generations. Again when the ga is not using elitism it fails to keep



APPENDIX B. FULL RESULTS FOR CHAPTER 3 226

improvements in the level of fitness.



227



APPENDIX C. FULL RESULTS FOR CHAPTER 5 228

Appendix C

Full Results for Chapter 5

C.1 One Max Problem

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.1: Results of using a partial fitness function on the One Max Problem, replacing

1

10
the population after each partial fitness test



APPENDIX C. FULL RESULTS FOR CHAPTER 5 229

The graph in Figure C.1 shows that when replacing 1

10
of the population after each

generation the best partial fitness function is one that tests 1

10
of an individual each

generation. The next best partial fitness function is one that tests 2

20
of an individual

each generation. This pattern continues with the next best being a partial fitness func-

tion that test tests 3

10
of an individual each generation, and then one that tests 4

10
of an

individual each generation. The partial fitness function that tests 9

10
of an individual

each generation gives very similar results to a standard ga.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.2: Results of using a partial fitness function on the One Max Problem, replacing

2

10
the population after each partial fitness test

The graph in Figure C.2 shows that when replacing 2

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 2

10
to 9

10



APPENDIX C. FULL RESULTS FOR CHAPTER 5 230

of an individual each generation, is greater than for the same fitness functions when

replacing 1

10
of the population. The results of the partial fitness function that tests 1

10

of an individual each generation performs very badly.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.3: Results of using a partial fitness function on the One Max Problem, replacing

3

10
the population after each partial fitness test

The graph in Figure C.3 shows that when replacing 3

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 4

10
to 9

10

of an individual each generation, is greater than for the same fitness functions when

replacing 3

10
of the population. The partial fitness function that tests 3

10
of an individual

each generation does not perform as well as it did in the previous experiments, but it

still performs better than a standard ga. The partial fitness functions that test 1

10
and



APPENDIX C. FULL RESULTS FOR CHAPTER 5 231

2

10
of an individual each generation performed very badly.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.4: Results of using a partial fitness function on the One Max Problem, replacing

4

10
the population after each partial fitness test

The graph in Figure C.4 shows that when replacing 4

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 5

10
to 9

10

of an individual each generation, is greater than for the same fitness functions when

replacing 3

10
of the population. The partial fitness function that tests 4

10
of an individual

each generation does not perform as well as it did in the previous experiments, but still

performs better than a standard ga. The results of the partial fitness function that tests

3

10
of an individual each generation is very similar to a standard ga. The results of the

partial fitness functions that test 1

10
and 2

10
of an individual each generation performs



APPENDIX C. FULL RESULTS FOR CHAPTER 5 232

very badly.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.5: Results of using a partial fitness function on the One Max Problem, replacing

5

10
the population after each partial fitness test

The graph in Figure C.5 shows that when replacing 5

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 5

10
to 9

10
of

an individual each generation, is lower than for the same fitness functions when replacing

4

10
of the population. The partial fitness functions that perform 1

10
to 4

10
all performed

worse than a standard ga tackling the same problem.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 233

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.6: Results of using a partial fitness function on the One Max Problem, replacing

6

10
the population after each partial fitness test

The graph in Figure C.6 shows that when replacing 6

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 5

10
to 9

10
of

an individual each generation, is lower than for the same fitness functions when replacing

5

10
of the population. The partial fitness functions that perform 1

10
to 4

10
all performed

worse than a standard ga tackling the same problem.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 234

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.7: Results of using a partial fitness function on the One Max Problem, replacing

7

10
the population after each partial fitness test

The graph in Figure C.7 shows that when replacing 7

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 5

10
to 8

10

of an individual each generation, performs slightly better than for the same fitness

functions when replacing 6

10
of the population. The partial fitness function that tests

9

10
of an individual each generation performs very similar to the previous graph, where

6

10
of the population were replaced each generation. The partial fitness functions that

perform 1

10
to 4

10
all performed worse than a standard ga tackling the same problem.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 235

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.8: Results of using a partial fitness function on the One Max Problem, replacing

8

10
the population after each partial fitness test

The graph in Figure C.8 shows that when replacing 8

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 5

10
to 9

10
of

an individual each generation, performs slightly better than for the same fitness functions

when replacing 7

10
of the population. The partial fitness functions that perform 1

10
to 4

10

all performed worse than a standard ga tackling the same problem.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 236

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200  250  300  350  400

F
itn

es
s

Time (relative to generations for a population size of 60)

1/10 Of a full test
2/10 Of a full test
3/10 Of a full test
4/10 Of a full test
5/10 Of a full test
6/10 Of a full test
7/10 Of a full test
8/10 Of a full test
9/10 Of a full test

Standard GA (Population size of 60)

Figure C.9: Results of using a partial fitness function on the One Max Problem, replacing

9

10
the population after each partial fitness test

The graph in Figure C.9 shows that when replacing 9

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 5

10
to 9

10
of

an individual each generation, performs slightly worse than for the same fitness functions

when replacing 8

10
of the population. The partial fitness functions that perform 1

10
to 4

10

all performed worse than a standard ga tackling the same problem.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 237

C.2 Deceptive Trap Function

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.10: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 1

10
the population after each partial fitness tests

The graph in Figure C.10 shows that when replacing 1

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 1

4
to 3

4
of

an individual are better than the fitness level produced by a standard ga on the same

problem.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 238

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.11: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 2

10
the population after each partial fitness tests

The graph in Figure C.11 shows that when replacing 2

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 2

4
and 3

4
of

an individual each generation is better than when replacing only 1

10
of the population.

The partial fitness function testing 1

4
of an individual each generation is about the same

in the previous graph.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 239

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.12: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 3

10
the population after each partial fitness tests

The graph in Figure C.12 shows that when replacing 3

10
of the population after each

generation the fitness level produced by the partial fitness functions testing 1

4
and 3

4

performs very similar to the previous graph. The partial fitness function testing 2

4
of an

individual each generation performs slightly worse than in the previous graph.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 240

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.13: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 4

10
the population after each partial fitness tests

The graph in Figure C.13 shows that when replacing 4

10
of the population after

each generation the fitness level produced by the partial fitness function testing 1

4
of

an individual has not only dropped slightly but has also become unstable. The partial

fitness functions testing 2

4
and 3

4
produce very similar results to the previous graph.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 241

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.14: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 5

10
the population after each partial fitness tests

The graph in Figure C.14 shows that when replacing 5

10
of the population after

each generation the fitness level produced by the partial fitness function testing 1

4
of an

individual each generation has dropped well below the level achieved by the standard

ga and has become even more unstable. The fitness levels achieved by the partial fitness

functions testing 2

4
and 3

4
are very similar to the previous graph.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 242

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.15: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 6

10
the population after each partial fitness tests

The graph in Figure C.15 shows that when replacing 6

10
of the population after each

generation the fitness levels produced by the partial fitness function testing 1

4
of an

individual each generation has dropped even lower than in the previous graph. The

fitness functions testing 2

4
and 3

4
perform very similar to the previous graph.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 243

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.16: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 7

10
the population after each partial fitness tests

The graph in Figure C.16 shows that when replacing 7

10
of the population after each

generation the fitness levels produced by the partial fitness function testing 1

4
of an

individual each generation has again dropped even lower than in the previous graph.

The fitness levels produced by the partial fitness function testing 2

4
of an individual

each generation has now dropped below those achieved by the standard ga and has also

become unstable. The fitness levels achieved by the partial fitness function testing 3

4
of

an individual each generation are very similar to the previous graph.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 244

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.17: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 8

10
the population after each partial fitness tests

The graph in Figure C.17 shows that when replacing 8

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 1

4
and 2

4

are slightly worse than in the previous graph. The fitness levels of the partial fitness

function 3

4
is very similar still to the previous graph.



APPENDIX C. FULL RESULTS FOR CHAPTER 5 245

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

F
itn

es
s

Time (Relative to generations for a population size of 60)

1/4 of a full test
2/4 of a full test
3/4 of a full test

Standard GA

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25

F
itn

es
s

Time (Relative to generations for a population size of 60)

Figure C.18: Results of using a partial fitness function on the Deceptive Trap Function,

replacing 9

10
the population after each partial fitness tests

The graph in Figure C.18 shows that when replacing 9

10
of the population after each

generation the fitness levels produced by the partial fitness functions testing 1

4
and 2

4

are slightly worse than in the previous graph. The fitness levels of the partial fitness

function 3

4
has also dropped and has become unstable.



Appendix D

Plain Text and Cipher Text

The following two sections contain the cipher text and originating plain text used in

chapter 6.

D.1 Original Plain Text

THEWA FERTU MBLER LOCKT HEWAF ERTUM BLERL OCKWA SDEVE LOPED

ASALO WCOST LOCKT HATOF FERED AREAS ONABL EDEGR EEOFS ECURI

TYTOT HEOWN ERTHE SELOC KSARE MAKEU POVER ONEFO URTHO FALLT

HELOC KSINT HEWOR LDTHE OUTSI DEOFT HELOC KRESE MBLES THEPI

NTUMB LERLO CKYET TOBED ISCUS SEDBU TUSES AMUCH SIMPL ERMEC

HANIS MWAFE RKEYW AYSUS UALLY HAVES IMPLE SIDEW ARDIN DENTI

ONSTH EKEYI SUSUA LLYSH ORTER THANT HATOF OTHER LOCKS BUTEQ

UALLY BROAD ITMAY BECUT ONONE ORBOT HSIDE SATWO SIDED WAFER

LOCKI SOFTE NCALL EDADO UBLEW AFERT HELOC KCONS ISTSO FFOUR

246



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 247

MAINP ARTST HEPLU GHOUS INGWH ICHCO NTAIN STHEW AFERS ANDSP

RINGS THESH ELLTH ECAML OCKIN GBOLT ANDTH ERETA INERT HEWAF

ERSAR ESOME TIMES REFER REDTO ASDIS CSBEC AUSET HEIRT OPAND

BOTTO MARER OUNDE DTOFI TINTO THECY LINDE RHERE ISADI AGRAM

KEYWA YPLUG DETAI LOFAW AFERT UMBLE RCUTA WAYSI DEVIE WSPRI

NGOFA WAFER LOCKK EYSLO TSPRI NGWIN GSPAC INGSC AMOPE RATES

THEBO LTRET AINER REARP LUGTH ESHEL LBODY OFTHE LOCKE ACHLO

CKHAS ASERI ESOFC HAMBE RSINW HICHT HEWAF ERSRE STTHE SESPA

CINGC LOSES TTOTH EFRON TOFTH ELOCK ISNUM BERED WITHO NEAND

THEIR NUMBE RSINC REASE TOWAR DTHEB ACKOF THELO CKPIC TUREA

NUMBE ROFTH EWAFE RSPLA CEDFA CETOF ACEIN THEPL UGSSP ACING

CHAMB ERSEA CHWAF ERISE QUALI NOVER ALLSI ZEBUT THEKE YSLOT

SAREO FVARY INGHE IGHTA METAL SPRIN GEXER TSPRE SSURE ONTHE

SPRIN GWING OFEAC HWAFE RFORC INGIT SLOWE RPART INTOT HESHE

LLSLO CKING GROOV ESWHI CHLET STHEL OWERP ORTIO NHANG ABOUT

MIDWA YINTO THEKE YWAYL OOKIN GINTO THELO CKYOU SHOUL DBEAB

LETOS EETHI STHES EWAFE RSACT TOHOL DTHEP LUGAN DSHEL LTOGE

THERP REVEN TINGT HELOC KFROM TURNI NGWHE NTHEC ORREC TKEYI

SINSE RTEDI TGOES THROU GHTHE KEYSL OTSON EACHW AFERR AISIN

GTHEW AFERS OUTOF THELO CKING GROOV ETHEK EYMUS THAVE THEAP

PROPR IATED EPTHO FCUTI NEACH POSIT IONTO RAISE THEWA FERTH

ECORR ECTAM OUNTT HEDEP THOFT HEKEY SCUTA NDTHE LENGT HOFTH

EWAFE RSKEY SLOTI SANYO NEOFF IVEDI FFERE NTDEP THSTH ESHOR

TERTH ETOPE DGEOF THEWA FERSK EYSLO TTHEL OWERT HEKEY CUTDE

PTHVA LUEFO RINST ANCET HENUM BERSL OTTHE SLOTT HATIS THELA



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 248

RGEST WOULD REQUI RETHE SHALL OWEST CUTIN THEKE YNORM ALLYL

OCKMA NUFAC TURER SPLAC EANUM BERFO URORF IVEWA FERNE ARTHE

KEYHO LETOB LOCKT HEVIE WOFTH EBACK WAFER SALSO NOTET HATTH

ESAME TYPEO FWAFE RMAYA PPEAR SEVER ALTIM ESINT HESAM ELOCK

ABOVE SOMEB RANDS OFWAF ERTUM BLERL OCKYO UWILL SEEAS MALLH

OLEWH ENTHE LOCKH ASBEE NUNLO CKEDY OUCAN REMOV ETHEE NTIRE

LOCKP LUGBY INSER TINGA PIECE OFSTI FFWIR EINTO THISH OLEAN

DDEPR ESSIN GTHER ETAIN ERTHO UGHNO WHERE NEARA SSECU REAST

HEPIN TUMBL ERLOC KTHEW AFERT UMBLE RISAV ERYPO PULAR LOWCO

STLOC KTHEL OCKIS NORMA LLYFO UNDON CHEAP ERCAB INETS ANDDE

SKSSO MEPAD LOCKS SOMEA UTOMO BILEL OCKSL OCKIN GHAND LESAN

DTRAI LERDO ORSWH EREMO RESEC URITY ISDES IREDT HEDOU BLEWA

FERTY PEISU SEDPR OVIDI NGWAF ERSON THETO PANDB OTTOM OFTHE

KEYWA YPICK INGTH OUGHH ARDER TOPIC KTHEN THEWA RDEDL OCKTH

EWAFE RLOCK ISSTI LLEAS YTOCI RCUMV ENTTH ISISA NEXCE LLENT

LOCKT OPRAC TICEO NBECA USETH ETECH NIQUE SREQU IREDT OPICK

ITARE APPLI CABLE TOTHE PINTU MBLER LOCKA SWELL LIKET HELEV

ERLOC KPICK INGTH EWAFE RTUMB LERLO CKREQ UIRES USEOF ATENS

IONWR ENCHA NDAPI CKAVA RIETY OFTHE DIFFE RENTP ICKSC ANBEU

SEDIN CLUDI NGTHE RAKET HEHOO KTHEH ALFDI AMOND ANDTH EHALF

ROUND PICKS ELECT IONDE PENDS ONTHE SIZEO FTHEL OCKTH EDIST

ANCEB ETWEE NEACH WAFER ANDPE RSONA LPREF ERENC ERAKI NGONE

OFTHE MOSTC OMMON METHO DSOFP ICKIN GTHEW AFERT UMBLE RLOCK

ISBYR AKING TORAK ETHEL OCKIN SERTT HETEN SIONW RENCH ISINS

ERTED JUSTI NSIDE THEKE YWAYS TOPPI NGSHO RTOFT HEFIR STWAF



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 249

ERAND FLUSH WITHT HEBOT TOMOF THEKE YWAYA PPLYM ODERA TETEN

SIONT OTHEW RENCH IFYOU APPLY TOOMU CHTEN SIONT HEWAF ERSWI

LLBIN DANDN OTBEA BLETO MOVEI NTOAL IGNME NTONC EYOUH AVETH

ETENS IONWR ENCHI NPLAC EINSE RTEIT HERTH ERAKE ORHAL FROUN

DPICK INTOT HEKEY WAYDO NTWOR RYABO UTFEE LINGT HETUM BLERS

INSTE ADCON CENTR ATEON APPLY INGUN IFORM PRESS URETO THEMA

SYOUM OVETH ERAKE INAND OUTOF THEKE YWAYI NASCR UBBIN GMOTI

ONTHI SSCRU BBING MOTIO NSHOU LDCAU SETHE WAFER STOLI FTINT

OALIG NMENT ASTHE YARET HROWN UPAND DOWNI NTHEI RSPAC INGST

HISME THODI SUSUA LLYQU ITEEF FECTI VEONM OSTWA FERLO CKSAN

DSHOU LDALW AYSBE TRIED FIRST MANIP ULATI NGIND IVIDU ALWAF

ERSIF THELO CKDOE SNOTR ESPON DTORA KINGY OUCAN TRYUS INGTH

EHALF DIAMO NDPIC KTOEA CHWAF ERINT OALIG NMENT ONEBY ONEWH

ILEMA INTAI NINGL IGHTB UTCON SISTE NTPRE SSURE WITHT HETEN

SIONW RENCH USETH EPICK TOLIF TEACH WAFER INTOA LIGNM ENTAT

THESH EARLI NESTA RTING FROMT HEBAC KMOST TUMBL ERONC EITRE

ACHES THEPR OPERA LIGNM ENTYO USHOU LDFEE LORHE ARASL IGHTC

LICKA NDTHE PLUGW ILLTU RNEVE RSOSL IGHTL YRELI EVING ABITO

FPRES SUREO NTHEW RENCH CONTI NUEON EBYON EWORK INGOU TWARD

UNTIL EACHT UMBLE RHASB EENAL IGNED ANDTH ELOCK OPENS VIBRA

TIONP ICKIN GOFTE NYOUC ANUSE ATECH NIQUE CALLE DVIBR ATION

PICKI NGTOO PENAW AFERT UMBLE RLOCK THISU SESAT OOLKN OWNAS

ASNAP PERPI CKORA LOCKP ICKGU NTHES EARED ESCRI BEDIN THELO

CKPIC KINGT OOLSS ECTIO NOFTH ISART ICLET OUSET HESNA PPERP

ICKMA INTAI NALIG HTTEN SIONW ITHTH EWREN CHAND INSER TTHET



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 250

IPOFT HEPIC KINTO THEKE YWAYJ USTTO UCHIN GTHEB OTTOM OFTHE

TUMBL ERSTH ENUSE THETH UMBWH ICHRE STSAL ONGTH ETOPE DGEOF

THEPI CKTOD EPRES STHET OPLOO PLETT HETHU MBSLI DEOFF THECO

MPRES SEDPA RTOFT HEPIC KPERM ITTIN GITTO SNAPB ACKIT WILLT

HENST RIKEA LIGHT BLOWT OTHET UMBLE RSPOP PINGT HEMUP UNTIL

THEYA REHEL DINPL ACEAT THESH EARLI NEREP EATED SNAPS WHILE

MAINT AININ GTENS IONWI THTHE WRENC HUSUA LLYRE SULTS INALI

GNING ALLTH ETUMB LERSA NDTHU SOPEN INGTH ELOCK THELO CKPIC

KGUNW ORKSA UTOMA TICAL LYWIT HATRI GGERD EVICE THATS NAPSI

TSWIR EPICK UPINT HEKEY WAYPI CKING DOUBL EWAFE RLOCK SDOUB

LEWAF ERLOC KSARE PICKE DTHES AMEWA YASSI NGLEW AFERL OCKSB

UTTHE RETWO SIDES TOTHE STORY NOTON LYMUS TYOUA LIGNA LLTHE

TOPWA FERSB UTTHE BOTTO MONES ASWEL LYOUC ANPUR CHASE SPECI

ALDES IGNED TENSI ONWRE NCHES WITHW ILLLE TYOUT HENUS EABAL

LPICK TOPIC KBOTH SETSO FWAFE RSALT ERNAT IVELY YOUCA NUSEA

STAND ARDTE NSION WRENC HINTH ECENT EROFT HEKEY WAYUS INGAH

ALFDI AMOND PICKO NCEYO UHAVE PICKE DONES ETSIM PLYRE VERSE

THEPI CKAND PICKT HEOTH ERITM AYTAK EAFEW TRIES BEFOR EYOUA

REABL ETOHO LDALL THEWA FERSI NPLAC E

D.2 Cipher Text

GSVDZ UVIGF NYOVI OLXPG SVDZU VIGFN YOVIO LXPDZ HWVEV OLKVW

ZHZOL DXLHG OLXPG SZGLU UVIVW ZIVZH LMZYO VWVTI VVLUH VXFIR

GBGLG SVLDM VIGSV HVOLX PHZIV NZPVF KLEVI LMVUL FIGSL UZOOG



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 251

SVOLX PHRMG SVDLI OWGSV LFGHR WVLUG SVOLX PIVHV NYOVH GSVKR

MGFNY OVIOL XPBVG GLYVW RHXFH HVWYF GFHVH ZNFXS HRNKO VINVX

SZMRH NDZUV IPVBD ZBHFH FZOOB SZEVH RNKOV HRWVD ZIWRM WVMGR

LMHGS VPVBR HFHFZ OOBHS LIGVI GSZMG SZGLU LGSVI OLXPH YFGVJ

FZOOB YILZW RGNZB YVXFG LMLMV LIYLG SHRWV HZGDL HRWVW DZUVI

OLXPR HLUGV MXZOO VWZWL FYOVD ZUVIG SVOLX PXLMH RHGHL UULFI

NZRMK ZIGHG SVKOF TSLFH RMTDS RXSXL MGZRM HGSVD ZUVIH ZMWHK

IRMTH GSVHS VOOGS VXZNO LXPRM TYLOG ZMWGS VIVGZ RMVIG SVDZU

VIHZI VHLNV GRNVH IVUVI IVWGL ZHWRH XHYVX ZFHVG SVRIG LKZMW

YLGGL NZIVI LFMWV WGLUR GRMGL GSVXB ORMWV ISVIV RHZWR ZTIZN

PVBDZ BKOFT WVGZR OLUZD ZUVIG FNYOV IXFGZ DZBHR WVERV DHKIR

MTLUZ DZUVI OLXPP VBHOL GHKIR MTDRM THKZX RMTHX ZNLKV IZGVH

GSVYL OGIVG ZRMVI IVZIK OFTGS VHSVO OYLWB LUGSV OLXPV ZXSOL

XPSZH ZHVIR VHLUX SZNYV IHRMD SRXSG SVDZU VIHIV HGGSV HVHKZ

XRMTX OLHVH GGLGS VUILM GLUGS VOLXP RHMFN YVIVW DRGSL MVZMW

GSVRI MFNYV IHRMX IVZHV GLDZI WGSVY ZXPLU GSVOL XPKRX GFIVZ

MFNYV ILUGS VDZUV IHKOZ XVWUZ XVGLU ZXVRM GSVKO FTHHK ZXRMT

XSZNY VIHVZ XSDZU VIRHV JFZOR MLEVI ZOOHR AVYFG GSVPV BHOLG

HZIVL UEZIB RMTSV RTSGZ NVGZO HKIRM TVCVI GHKIV HHFIV LMGSV

HKIRM TDRMT LUVZX SDZUV IULIX RMTRG HOLDV IKZIG RMGLG SVHSV

OOHOL XPRMT TILLE VHDSR XSOVG HGSVO LDVIK LIGRL MSZMT ZYLFG

NRWDZ BRMGL GSVPV BDZBO LLPRM TRMGL GSVOL XPBLF HSLFO WYVZY

OVGLH VVGSR HGSVH VDZUV IHZXG GLSLO WGSVK OFTZM WHSVO OGLTV

GSVIK IVEVM GRMTG SVOLX PUILN GFIMR MTDSV MGSVX LIIVX GPVBR

HRMHV IGVWR GTLVH GSILF TSGSV PVBHO LGHLM VZXSD ZUVII ZRHRM



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 252

TGSVD ZUVIH LFGLU GSVOL XPRMT TILLE VGSVP VBNFH GSZEV GSVZK

KILKI RZGVW VKGSL UXFGR MVZXS KLHRG RLMGL IZRHV GSVDZ UVIGS

VXLII VXGZN LFMGG SVWVK GSLUG SVPVB HXFGZ MWGSV OVMTG SLUGS

VDZUV IHPVB HOLGR HZMBL MVLUU REVWR UUVIV MGWVK GSHGS VHSLI

GVIGS VGLKV WTVLU GSVDZ UVIHP VBHOL GGSVO LDVIG SVPVB XFGWV

KGSEZ OFVUL IRMHG ZMXVG SVMFN YVIHO LGGSV HOLGG SZGRH GSVOZ

ITVHG DLFOW IVJFR IVGSV HSZOO LDVHG XFGRM GSVPV BMLIN ZOOBO

LXPNZ MFUZX GFIVI HKOZX VZMFN YVIUL FILIU REVDZ UVIMV ZIGSV

PVBSL OVGLY OLXPG SVERV DLUGS VYZXP DZUVI HZOHL MLGVG SZGGS

VHZNV GBKVL UDZUV INZBZ KKVZI HVEVI ZOGRN VHRMG SVHZN VOLXP

ZYLEV HLNVY IZMWH LUDZU VIGFN YOVIO LXPBL FDROO HVVZH NZOOS

LOVDS VMGSV OLXPS ZHYVV MFMOL XPVWB LFXZM IVNLE VGSVV MGRIV

OLXPK OFTYB RMHVI GRMTZ KRVXV LUHGR UUDRI VRMGL GSRHS LOVZM

WWVKI VHHRM TGSVI VGZRM VIGSL FTSML DSVIV MVZIZ HHVXF IVZHG

SVKRM GFNYO VIOLX PGSVD ZUVIG FNYOV IRHZE VIBKL KFOZI OLDXL

HGOLX PGSVO LXPRH MLINZ OOBUL FMWLM XSVZK VIXZY RMVGH ZMWWV

HPHHL NVKZW OLXPH HLNVZ FGLNL YROVO LXPHO LXPRM TSZMW OVHZM

WGIZR OVIWL LIHDS VIVNL IVHVX FIRGB RHWVH RIVWG SVWLF YOVDZ

UVIGB KVRHF HVWKI LERWR MTDZU VIHLM GSVGL KZMWY LGGLN LUGSV

PVBDZ BKRXP RMTGS LFTSS ZIWVI GLKRX PGSVM GSVDZ IWVWO LXPGS

VDZUV IOLXP RHHGR OOVZH BGLXR IXFNE VMGGS RHRHZ MVCXV OOVMG

OLXPG LKIZX GRXVL MYVXZ FHVGS VGVXS MRJFV HIVJF RIVWG LKRXP

RGZIV ZKKOR XZYOV GLGSV KRMGF NYOVI OLXPZ HDVOO ORPVG SVOVE

VIOLX PKRXP RMTGS VDZUV IGFNY OVIOL XPIVJ FRIVH FHVLU ZGVMH

RLMDI VMXSZ MWZKR XPZEZ IRVGB LUGSV WRUUV IVMGK RXPHX ZMYVF



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 253

HVWRM XOFWR MTGSV IZPVG SVSLL PGSVS ZOUWR ZNLMW ZMWGS VSZOU

ILFMW KRXPH VOVXG RLMWV KVMWH LMGSV HRAVL UGSVO LXPGS VWRHG

ZMXVY VGDVV MVZXS DZUVI ZMWKV IHLMZ OKIVU VIVMX VIZPR MTLMV

LUGSV NLHGX LNNLM NVGSL WHLUK RXPRM TGSVD ZUVIG FNYOV IOLXP

RHYBI ZPRMT GLIZP VGSVO LXPRM HVIGG SVGVM HRLMD IVMXS RHRMH

VIGVW QFHGR MHRWV GSVPV BDZBH GLKKR MTHSL IGLUG SVURI HGDZU

VIZMW UOFHS DRGSG SVYLG GLNLU GSVPV BDZBZ KKOBN LWVIZ GVGVM

HRLMG LGSVD IVMXS RUBLF ZKKOB GLLNF XSGVM HRLMG SVDZU VIHDR

OOYRM WZMWM LGYVZ YOVGL NLEVR MGLZO RTMNV MGLMX VBLFS ZEVGS

VGVMH RLMDI VMXSR MKOZX VRMHV IGVRG SVIGS VIZPV LISZO UILFM

WKRXP RMGLG SVPVB DZBWL MGDLI IBZYL FGUVV ORMTG SVGFN YOVIH

RMHGV ZWXLM XVMGI ZGVLM ZKKOB RMTFM RULIN KIVHH FIVGL GSVNZ

HBLFN LEVGS VIZPV RMZMW LFGLU GSVPV BDZBR MZHXI FYYRM TNLGR

LMGSR HHXIF YYRMT NLGRL MHSLF OWXZF HVGSV DZUVI HGLOR UGRMG

LZORT MNVMG ZHGSV BZIVG SILDM FKZMW WLDMR MGSVR IHKZX RMTHG

SRHNV GSLWR HFHFZ OOBJF RGVVU UVXGR EVLMN LHGDZ UVIOL XPHZM

WHSLF OWZOD ZBHYV GIRVW URIHG NZMRK FOZGR MTRMW RERWF ZODZU

VIHRU GSVOL XPWLV HMLGI VHKLM WGLIZ PRMTB LFXZM GIBFH RMTGS

VSZOU WRZNL MWKRX PGLVZ XSDZU VIRMG LZORT MNVMG LMVYB LMVDS

ROVNZ RMGZR MRMTO RTSGY FGXLM HRHGV MGKIV HHFIV DRGSG SVGVM

HRLMD IVMXS FHVGS VKRXP GLORU GVZXS DZUVI RMGLZ ORTMN VMGZG

GSVHS VZIOR MVHGZ IGRMT UILNG SVYZX PNLHG GFNYO VILMX VRGIV

ZXSVH GSVKI LKVIZ ORTMN VMGBL FHSLF OWUVV OLISV ZIZHO RTSGX

ORXPZ MWGSV KOFTD ROOGF IMVEV IHLHO RTSGO BIVOR VERMT ZYRGL

UKIVH HFIVL MGSVD IVMXS XLMGR MFVLM VYBLM VDLIP RMTLF GDZIW



APPENDIX D. PLAIN TEXT AND CIPHER TEXT 254

FMGRO VZXSG FNYOV ISZHY VVMZO RTMVW ZMWGS VOLXP LKVMH ERYIZ

GRLMK RXPRM TLUGV MBLFX ZMFHV ZGVXS MRJFV XZOOV WERYI ZGRLM

KRXPR MTGLL KVMZD ZUVIG FNYOV IOLXP GSRHF HVHZG LLOPM LDMZH

ZHMZK KVIKR XPLIZ OLXPK RXPTF MGSVH VZIVW VHXIR YVWRM GSVOL

XPKRX PRMTG LLOHH VXGRL MLUGS RHZIG RXOVG LFHVG SVHMZ KKVIK

RXPNZ RMGZR MZORT SGGVM HRLMD RGSGS VDIVM XSZMW RMHVI GGSVG

RKLUG SVKRX PRMGL GSVPV BDZBQ FHGGL FXSRM TGSVY LGGLN LUGSV

GFNYO VIHGS VMFHV GSVGS FNYDS RXSIV HGHZO LMTGS VGLKV WTVLU

GSVKR XPGLW VKIVH HGSVG LKOLL KOVGG SVGSF NYHOR WVLUU GSVXL

NKIVH HVWKZ IGLUG SVKRX PKVIN RGGRM TRGGL HMZKY ZXPRG DROOG

SVMHG IRPVZ ORTSG YOLDG LGSVG FNYOV IHKLK KRMTG SVNFK FMGRO

GSVBZ IVSVO WRMKO ZXVZG GSVHS VZIOR MVIVK VZGVW HMZKH DSROV

NZRMG ZRMRM TGVMH RLMDR GSGSV DIVMX SFHFZ OOBIV HFOGH RMZOR

TMRMT ZOOGS VGFNY OVIHZ MWGSF HLKVM RMTGS VOLXP GSVOL XPKRX

PTFMD LIPHZ FGLNZ GRXZO OBDRG SZGIR TTVIW VERXV GSZGH MZKHR

GHDRI VKRXP FKRMG SVPVB DZBKR XPRMT WLFYO VDZUV IOLXP HWLFY

OVDZU VIOLX PHZIV KRXPV WGSVH ZNVDZ BZHHR MTOVD ZUVIO LXPHY

FGGSV IVGDL HRWVH GLGSV HGLIB MLGLM OBNFH GBLFZ ORTMZ OOGSV

GLKDZ UVIHY FGGSV YLGGL NLMVH ZHDVO OBLFX ZMKFI XSZHV HKVXR

ZOWVH RTMVW GVMHR LMDIV MXSVH DRGSD ROOOV GBLFG SVMFH VZYZO

OKRXP GLKRX PYLGS HVGHL UDZUV IHZOG VIMZG REVOB BLFXZ MFHVZ

HGZMW ZIWGV MHRLM DIVMX SRMGS VXVMG VILUG SVPVB DZBFH RMTZS

ZOUWR ZNLMW KRXPL MXVBL FSZEV KRXPV WLMVH VGHRN KOBIV EVIHV

GSVKR XPZMW KRXPG SVLGS VIRGN ZBGZP VZUVD GIRVH YVULI VBLFZ

IVZYO VGLSL OWZOO GSVDZ UVIHR MKOZX V


