B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

BANSC o= DX'J\O&’QlQ:

c Loughborough
_ University ,

- Pllkington Library

Author/Filing Title ..o £ '~J’TT':T(UA«'(UTH}QTr .

..

Accession/Copy No.

Mtot¥2ory

VOI. NO. cecmnsnnraccins | C18SS MAFK woovemerrasgonsivesnssiinencessecsmsncsseneans

i

A formal framework for the specification of interactive systems

Richard Butterworth

. B.Sc. Combined Science (Hons) University of Leicester (1993)
A Doctoral Thesis
Submitted in partial fulfilment of the requirements

- for the award of

Doctor of Philosophy of Loughborough University

P
LR .

@ blechard James Bﬁg’zlérworth, 1997.
¥ o amite g

PRSI TE Le aeh

VIR IR D i

TEe—

‘_‘«]
X T ryven gty
RS Elnive arsity :

E e ooty

'*m&”-‘\.'—"—- s mmi . Aas i
Date 5 l Q‘B) _E
. PR RTRL A TR i 13 T P AT AR

Class .

5 --:i;mwa:e...u\.maa.w

Ne. (MOISY 607

5 VI E i TE ST T EMEMAE

Lty

% 1tov343 o

A formal framework for the speciﬁcatibn of interactive systems
| by :
Richard Butterworth

Submitted to the Department of Computer Studies
on 17th May, 1997, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

We are primarily concerned with interactive systems whose behavmur is highly reliant on end
user activity. A framework for describing and synthesising such systems is developed. This
consists of a functional description of the capabilities of a system together with a means of
expressing its desired ‘usability’. Previous work in this area has concentrated on capturing
‘usability properties’ in discrete mathematical models.

We propose notations for describing systems in a ‘requirements’ style and a SpeC1ﬁcatlon

style, The requirements style is based on a simple temporal logic and the specification style is ~

based on Lamport’s Temporal Logic of Actions (TLA) [74). System functionality is specified as
a collection of ‘reactions’, the temporal composition of which define the behaviour of the system.

By observing and analysing interactions it is possible to determine how ‘well’ a user performs
a given task. We argue that a ‘usable’ system is one that encourages users to perform their tasks
efficiently (i.e. to consistently perform their tasks well) hence a system in which users perform
their tasks well in a consistent manner is likely to be a usable system. :

The use of a given functionality linked with different user interfaces then gives a means
- by which interfaces (and other aspects) can be compared and suggests how they might be
~harnessed to bias system use so as to encourage the desired user behaviour. Normalising across
different users and different tasks moves us away from the discrete nature of reactions and
hence to comfortably descnbe the use of a system we employ probabilistic rather than discrete
mathematics.

We illustrate that framework w1th worked examples and prOpose an agenda for further work. -

Keywords : - Formal specification, interactive systems, usability, human-computer interaction,
reactive systems, system use.

Thesis Supervisor: Dr D. John Cooke
Title: Lecturer '

Contents :

1 Introduction 13
1.1 On unlikely marriages: the curious case of formal methodsand HCI 14
1.1.1 -What are formal methods? . « o v v v v v v e e e e e 14
1.1.2 Whatis‘HCI?.....' e e 15
1.1.3 Justifying aformal approachto HCL, e .. 16
1.1.4 Why some p_révious approaches have been less than successful | 17 ’
1.1.5 Summarising the arguments — good content, bad presentation. . . . L. 18 |
1.2 Our intentions in this work. . . ¢ e RURRT
_1.2;1 Developing and applying a theory of HCI. IR R 19
1.2.2 Characterising the user-interface FE 20
1.2.3 Horses for courses and notations for pfactitioners e e e e 2
1.2.4 Mathematical notations et e e e aae e 2
125 Terminology . . o v v v v v it e it s e e e e e 21
1.3 Thesischapterplan e e e e et e .21
2 The objectives and aims of this work . o 25
2.1 Interactive systems as reactivesystemsttt i et et e 25
2.2 Including usability as part of the system synthesis process e e e e e e 27
2.2.1 Synthesizing reactive syétems e e e e e et e e e e 27
2.2.2 Synthesizing software sub-systems 29
2.3 Notations e e N e e 29
24 Viewing usability ‘from above’ e e a e EREREE 30

2.5 Towards statistical and probabilisticmodels A .

2.6 A comparativeframework e e e b e e e e e
2.7 Summary e
27.1° What we intend 0 do « « v v e e e e E Cee e s
2.7.2 Whaf wedonotintendtodo e v e r e e e
Constructing usable systems ahd the ‘theory of HCI’ debate
3.1 What exactly are ‘theories’? e e
32 Atheoryof HCI? . .\ oo v vt ettt e S
3.2.1 The case for a theory of HCI | che e
3.2.2 The case against a.. theoryof HCT i i i v i
3.2.3 The theory of HCI debate — some thoughts
3.3 HCI theoriesand frameworks I
33.1 Cbgnitive eNGINEEriNg . o v v v v v e e e e e e e e e E
3.3.2 Cognitiveergonomics . . .+« v v v v v i v oL S K
3.3.3 - Multi-party interactioﬂ e e e
3.4 Sﬁmmary e e e e e s e e L e e
A review of previoﬁs work in thé field
4.1 Forma,lspeciﬁcatiori languages . « & . . a e e e e e
4.1.1 Model based specification languages. B
4.1.2 Processalgebras i i ii oo
4,1.3 Net theoreticapproaches. o o L i i ittt e
4.14 Modallogies. PP e e e e e
4.1.5 Discussion — notations for describing interactive Systems? e e e
42 Usermodelso v v it v vnnn, e e e e e e e e
421 Models based on the GOMS approach PP R I .
4.2.2 Models based onformalgramﬁlars .. A S
423 PUM. .. veeen e, AR e
824 TS v e e e
4.3 Formal models of interactive systems e e

35
37

54
55
55

432 PlEmodels i 61
4.3.3 The zigent model e et e e e e e e e e 64
4.3.4 Témplate abstractions . . . e TP e 65
43.5 Interactors. v v v v v v v v v o e e e e e e e e 66
4.3.6 User interface modelling techniques e e 67

4.4 Interaction models and integration i .. 69
44.1 Interaction framework e e 70
4.4.2 Syndetics [I T S 70

4.5 Discussion e e e [72
451 Casestudies e e e 72
4.5.2 Usability of notations?« v vt ittt it e e 73
Introducing a Reactive System Specification Language (RSSL) 75
5.1 Some introductory definitions forsystems 0., 75
51.1 Closed Systems . v . v v v v v v it it et e e e e e e e 75
5.1.2 ‘- Reactive sys‘tems e e 77

5.2 A formal design process for reactive systems e Ve 19
5.2.1. Abstract descripfions andrefinement 0., 79
52.2 Requirements e A 80
5.2.3 Assumptions and specifications e e e e ‘82
5.2.4 Howreactivesystemsfitin. 85

5.3 An informal description of a queuesystem, 86
5.4 Foi'rhalizing the fequirements and requirements engineering . » 87
5.4.1 Formalising the requiremenlts e S - 14
5.4.2 Are the requirements abstract enough? e e e e 89
5.4.3 Redescribing the requirements u'sing bags e 90
54.4 Requirements engineering « o v v v vt u e 91

5.5 Specifyingsystems . :...... J . e 91 -
.5.5.1 An introduction to computa,ti.ons-_. e e e e [92
5.5.2 Does this ‘speciﬁca.tion fulfill the req'uirements?‘ e e 95

4.3.1 Uszibility properties. e il ... 80

5

5.5.3 A quick review of how far we have got C e .‘ 96
-~ 5.6 Developing the system spe<:1ﬁcat10n R 97
5.6.1 Theeffectof processing I 97
5.6.2 Number of processors and timing e e e e e e 99
5.6.3 Including the environment et e e 101

5.6.4 Areactivesystem F 104
5.7 Some im_plefnenta,tion strategies e e e e e e e e e e e e 107
5.7.1 Specification refinement e e e e e e 108

5.7.2 Splitting the kernel from the environment 109
5.7.3 An implemeni:a,tion structure L e e e e e e e e e e 109
5.7.4 Implementation using sequential constructs | ... 110
5.7.5 Implementation using concurrent cbnstructs 111

58 SUMMATY .+ v v v v v v e vt vt e vt ot anan v e e e e e e e 112
5.8.1 A design process statedgenerally e e e e e e e 112
A formal semantics for RSSL : 116
6.1 Formal specificationnotations i L i e, 116
6.2 A model of real timesystem behaviour L L. L L oL, 117
621 State................ e e e e 118
622 Time................ e e 119
6.2.3 Activities............................; 119
6.2.4 Behaviour o v i i i it e e e e e e e e e e e e e 122
6.2.5 Non-zemoactivities | e e e e e e e 123
6.3 State relationshipsand properties 124
6.3.1 Truthvaluedfunctions125
6.3.2 Argumentlists v ittt i e e e e 7. . 125
6.3.3 Evaluatingargumentlists e e e 127
6.3.4 Evaluatingstaterelationships 128
 6.3.5 PIOPEItEs . « o v v v et e e S 129
6.4 A simple temporallogic, e e e e e e e e 130
6.4.1 Formulae ,.................. . e 130

6

6.5

6.6

- 6.7

6.8

6.9

6.4.2 Semanticsforformulae e e e e e e e . 130

6.4.3 The behaviour described byaformula 135
Computations . + . v v v o i i it e e e e e e e e e e e e e s e e 135
6.5.1. The problem with actions e e e e e 136 _
6.5.2 A syntax for computations‘ e e e e e e 138
6.5.3 An abstract syntax for computations e e e e e e e e 141
6.5.4 The semanticsforcomputations oo v v vt o v v, .. 142
The syntax for the RSSL spec_:iﬁca,tion nota,tiox; 146
6.6.1 Specification syntax v i i i i e e e e e e s 147
6.6.2 Abstract syntax for specifications e e 147 -
The semantics for the RSSL specification notation 147
6.7.1 An overview of the approach to be taken D 148

6.7.2 Interleaving functions that take computation éequences to read/write or-

derings . » v v v v e it i e e e e e it e 149
6.7.3 Update functions that take read/write orderings to activities 150
6.7.4 Correctﬁess between corﬁputa.tion sequences and activities 153
6.7.5 Obligatory computations. et e e e e e e e e e e 154
6.7..6 Fairness | A . . . 155
6.7.7 The behaviour described by spe.ciﬁcations 156
Refining specifications ov ... e 157
- 6.8.1 Safety .'........ e e e e e e e e 159
6.8.2 LIvVENess . . v v v v v v oo v it e e an e e 159
6.8.3 Wordsofcautionvvviv ittt . 162
Reactions ot i i it i i e e e e e e e e l.162.
69.1 A specialisa.tion of RSSL based purely on reactions e 164
6.9.2 Semantics for specifications in the reaction style U 165

Describing the use of a system with an Interactive System Specification Lan-

guage (ISSL) ' _ 167
7.1 The behaviour and the use of systems . . « « « « v v v v o .. e ...168
7.2 Usage requirements and interface specifications e e e 169

7

7.2.2 A word processorexample e e e e e e e L. L 170
7.3 Describing usage requirements0 ..o i e e e e .17
7.3.1 Optimal behaviour e e e e e e L 172
7.3.2 Measurement schemes I e e i e e e 174
733 Usagedistributions o i i e e e e 176
7.4 Specifying interactivesystems [.. cL L 17T
7.4.1 Iﬂterface andusereffects i oo L 178
7.5 Relating usage requirements and interface specifications. . . . v v v . v ... 186
7.6 A synthesis process for intera(;tive systems e e e e e e 186
T7 DISCUSSION « v v v v v e e e e e e .. 188
7.7.1 Measurementschemes, 188
'7.7.2 Separation of user and interface effects 189
7.7.3 Other implications of the use of the framework 189
7.8 Conclusion.............’..‘ e e e e e e 191
A formal semantics for ISSL ‘ ' | 193
8.1 A formal definition ofuse e e e e e e e 193 -
8.1.1 Why such a simple modelofuse?, 194
8.2 Usagedistributions i e i e ‘. .. 195
8.3 ISSLspecifications . . v v v v v v v vt it i e e e e e e e e e 197
8.3.1 An abstract syntax for ISSL specifications v.. W 197
8.3.2 Semantics for ISSL specifications @t e e e e 198
8.4 A regular grammar-like notation. P 200
8.5 Probability FUNCHONS . « o v oo v v e et e e e e 202
8.6 DiSCUssion e e .. 203
8.6.1 An uncountably large space of activities 204
8.6.2 Infinitely long activities e e e 205
8.6.3 The relationship befcween rea.ctibn sequences and activities 205
8.6.4 Conclusion 205

7.2.1 What effect a user interface hasonuse e e e e 170

"9 Some examples of our technique in use

. 9.1 Expressing PIEike properties. oo oL

9.1.1 Observability
9.1.2 Reachability

9.1.3 Conclusions about the PIE properties.

. 9.2 Refining the word processing

ex/a,mple...............'.

9.2.1 Refiningthestatespace i i i i i m it i et e

9.2.2 Refining the reaction edit R I A

9.2.3 Summary

ooooooooooooooooooooooooooooooo

9.2.4 A sketch of a specification of a distributed word Processor « . . .

9.3 The ‘trailing sub-goals’ prof;»lem R R I I UL

9.3.1 A statement of the problem e h e e st e s e e

'9.3.2 A system specification

P T T T R T T T T S O T T S S S S T R S

9.3.3 Looking at the problem functionally

9.3.4 Looking at the problem from the interface perspective

9.3.5 Implement'ing an inter

face from the specified usereffect

"9.3.6 Summaryof thisexample,... R I

94 Conclusions

oooooooooooooooooooooooooooooo

10 Summary, conclusions and agenda for future work .

10.1 Comparing the work done to the aims and objectivest e e a ...

10.1.1 Interactive systems as

reactivesystemst e e

10.1.2 Including usability as part of the system synthesis process L

10.1.3 Notations

..............................

10.1.4 Viewing usability ‘fromabove’.o

10.1.5 Towards statistical and probabilistic models e e e e e e e e e -

10.1.6 A comparative framework e e e e e e

10.2 Developing interactivesystems. o it i i it e e e e

10.2.1 Developing functionali

ty e e e e

10.2.2 Developing the (non-functional} usage requirements

10.2.3 Building HCI theory

207
207
208
209
210
211
212
213
218
218
219
219
220
221
221
22T
228
229
231
231
231
231
232
232
233
233
233
233
234 .
236.

10.3 An agenda for further work [P 237
10.3.1 HCI practitioner-friendly notationso v v v v vt ... L..237

10.3.2 Approximationand tolerances 238

10.3.3 True CONCUTITENCY + & + v « o+ « e e e e e e e e e e e e e 239

10.3.4 Obligation B e 240

10.3.5 Proof techniques and methodologies | ce e e e 241

10.3.6 Usermodels o v v v v v vt v i et e e e e e 242

10.3.7 Towards an engineeringapproach 243

104 Conclusions243
A A glossary of terminology 7 o 258
B Mathematical notation . . 7 _ 263
B.1 Logical operatorsandconstants i i ittt e e e 263
B2 Sets . .v.ennn. [P e 263
B.3 Bags (or multisets) e e e e e e e e e e e e 264
B.4 Functions [P SR I 264
B.5 Sequences e 265
B.6 Some miscellaneous fuﬁctions andpredicates v .. - . - 265

10

Acknowledgements -

First and foremost I must acknowledge my supervisor Dr. John Cooke without
whose ideas, patience, forebearance, humour and willingness to answer even the
most ridiculous questions again and again and again, far beyond the call of duty,
this thesis would quite simply not have been written.'

- T would like to acknowledge the time spent on a purely voluntary basis by Dr Ann Blandford,
Prof Harold Thimbleby and Dr Gordon Rugg who commented on and proof read the various
sketchy, half baked drafts that I showed them. Dr Blandford, Dr David Duke and Dr Richard
Young further deserve mention for having the mixture of visionary foresight and blind desperation
for employing me on the strength of a ten minute panic stricken presentation and an application
form recently nominated for a creative writing prize. Jason Good deserves mention for sympathy,
tolerance and. tea offered in the Dark Days of Write Up. Dr Blandford gets another mention
(making a record breaking three in all) for tolerantly allowing me the time off work while I
dithered about getting the write up finished.

‘ The You-Are-All-Wonderful-In-No-Particular-Order list is as follows: Lynne Evans, Tom Ahnk-

Jans-Uh'mn, Linda Hodges, Vanessa Manship, The Hairy Stupids, Dr Jon ‘Can you fix my PC for me’
Knight, Martin Hamilton, Neil Bramhall, Charlie Foulkes, McAndrew McKane, McKaren ‘McParochial’
McKenzie McMills, Karl Perkins, McKaren’s McKettle, Diana Climpson, Jenny Ardley, Louisa Allen,
The 1995/1996 Community Action committee, especially Helen Bradshaw and Phil Tipper, The Lough-
borough Student Union advice centre, Mum and Dad and the rest of the expansionary Butterworth -
family. The situated memory music for three years in Loughborough was Brave by Marillion. ‘Tell me
I’m mad. I have been here for so long.” Last, but by no means tallest, Stuart ‘Three Degrees’ Sutherland
(BSc, PhD, PGCE) gets in my acknowledgments for no better reason than I got in his.

This thesis was typeset using I¥TgX2e using Jon Knight’s lutthesis style. I learnt to use I&TEX
without a graphical previewer. I apologise to all the trees that died as a result.

11

 Dedication

" To Joseph Brown (1903-1996)
~who, I hope, would have been proud.

B

Chapter 1 -) .
‘Introduction

_ Th1s thesis reports a fra.mework that is mtended to help in the synthesis of interactive systems. _
An interactive system is a system the behaviour of which is hea.wly reliant on end user activity.
: The framework is ma,thema,tlca.l in nature and should allow design decisions to be made based
on a.bstra.ct models of systems and then these models developed into actual implementations.

. Typically the design of interactive systems relies hea.w]y on the craft skill of human factors
experts. It has been argued that such an approach to design is unsa.txsfa.ctory [79] on the grounds
that the knowledge of human factors experts does not transfer or generalise. On the the other
hand it has been argued [30] that the design of computerised systems that work well with humans -
is a human endeavour, unsuited to mathematical rigour. Attempts to bring a desigﬁ process N
- for interactive systems (where typically an i.nteractive system is designed and implemented then
tested for usability against a user‘population) into a more theoretical domain may be misguided.
We revie_w such arguments in more detail in chapter 3 and come to the conclusion that there
is ‘a sensible middle ground between these two arguments — developing interactive systems .
using informal and heurisltio fechniques as well as developing these heuristics into more explicit
'forma,lisa.tions'so that they can be reused in a generalised way | |

The prlma,ry motlvatlon of this work is to describe a formal fra.mework for synthesizing

1nteract1ve systems whlch allows for theoretmal information to be fed into the design process.
However there_ is little (1n any) such information readily ava.llable in the relevant literature. We
argue that repea,.ted.use of the framework would play a role in evolving heuristics and craft skill

into explicit theory which can be then used for synthesizing interactive systems.

13

We intend to suggest a design process based on the framework. We hope that the clarity
introduced by capturing an interactive system formally may inform other attempts to capture
design‘ processes. We argue that our work is novel in the way it formally captures what it
means for a systerln to be usable and what makes a good user rinterface. For a design process
based on this framework to be a success it needs to integrate and draw upon previous work,
not sit in isolation or completely supercede previous work., Our framework intends tb take the
good, rigorous practice of a formal approach and atterﬁpt to apply these practices to usability

considerations and the synthesis of user interfaces.

1.1 On unlikely marriages: the curious case of formal methods

and HCI

The framework attempts to integrate human issues — the field of human-computer interaction
— with mathematical modélling techniques — the field of formal methods. We start by outlining

these two fields.

1.1.1 . What are formal methods?

‘Formel methods’ is the commonly (and wrongly!) used term to describe a highly ma.th_éma.tica.l

way of describing and producing computer systems and in particular computer software systems.

The benefit of a formal approach is that it allows for a high degree of certainty tha.t a software

| systeih produced in a formal way is correct. However, formal methods are held to be confusix_lg _

(which, as we shall argue later, should not be tile case) and expensive (which is true in'the short
term). |

Formal approaches have been studied and described véry'thoroughly in academia and there

is now the beginnings of a trickle-down into industry. Formal methods’ impact on industry is

limited to areas that produce safety-critical software; correctness being essential in such areas.

It is not difficult to catalogue a whole host of exami)les where software failure has had expensive

and even life-threatening results (a recent and dramatic incident being the failure of the Ariane

1“Formal methods’ being one part of a formal approach to computer software systems. Henceforth we shall
"endeavour to use the term ‘formal approaches’ when referring to the whole field.

14

mission) and where a formal approach would have most likely prevented such failures.

It is held (‘its generally accepted that user interface conformance resides in the doma.in of
informal reasoning’ [20]) that only certain parts of the software system will benefit from being
produced using a formal approach. This argument is debatable; a-chain only being as strong
as its weakest link. The nature of formal approaches means that there is a steep learning curve
for analysts and designers wishing to use them. We suggest that it is this learning curve that is
preventing a more thorough and wholesale acceptance of formal approaches in industry. ‘

Oné of the areas of system design for which formal approaches are held to have little (or even

' no) relevance is the design of user interfaces and other such ‘human’ areas. We will contest this

view,

1.1.2 What is HCI?

- Human-computer interaction (HCI) is the study of the user side of interactive systems; it is a
wide field, bringiﬂg in ideas from psychology and sociology as well as computer 'studiés. In fact -
there seems to be no limit to how far HCI workers are willing to cast their nets for insight and
insp.ir'a,tion' into their field; see [78] for how even drama and theatre studies has been plundered
for ideas. This diversity in HCI means that it is one of the most wide ranging and challenging
fields in computer science, it also means thaf it is oﬁé of the most ffustra,ting — despite many |
advances and insights provided by HCI work, the field is ragged and loose. There is unfortunately
little effort to bring its ﬁtfdings into a more rigorous and inspectable whole. It is therefore seen
in many quarters as a woolly and imprecise affair and this view hinders its inclusion into other
areas of computer science. This is a very lamentable state of affairs; in many cases the user
interfaces of widely available and heavily used computers systems are confusing and difficult.
The computér revolution in our society coﬁtinues in spite of, not because of the interfaces that
are built intc computer syétems. _ | ,

' ~ So what potential benéﬁts are there in bringing the two fields of HCI and formal methods’
together? In fhe preface to ‘Fﬁrmal methods for interactive systems’ [41] Alan Dix expresses the
opinion that formal approaches and HCI are at first sight an ‘unlikely marriage’. We are not
the first to advocate a formal approach to the analysis and design of interactive systems, indeed

there is now a considerable body of work in the area and a regular conference circuit (a sure

15 .

sign of increasing maturity). So, before continuing our work we must ask ourselves whether the

marriage is working out or it is time to call in the lawyers and settle an amicable divorce.

1.1.3 Justifying a formal approach to' HCI .

We justify a formal approach to HCI on simple and clear grounds. f‘ormal approaches reason
about what systéms do, not how they do it, they abstract away from all the clutter and detail of
systems and concentrate on the germane, critical and interesting features of the system. This is
also 2 user’s view of a system. A user will have little knowledge or interest in the intricacies of
how a computer systems works — they only want to know what a system does and how that fits
in with the task they are wishing to use it for. Formal, abstract approaches support this view
of interactive systems. | . _

‘Furth_ermore, Thimbleby [114] vigorously justifies the marriage of formal approaches and
HCI from both the designer’s and user’s viewpoint. |

Good formal approaches facilitate clear and creative thinking, in particular they:
¢ communicate crisp ideas,
e ‘expose ideas for criticism and improvement,

delineate what is relevant to reasoning,

expose irrelevant, inconsistent or fallacious arguments,

. e permit reasoning by correspondence and

e make general arguments.

Thimbleby asserts that these advantages can not only be used in HCI? but are ‘desperately
needed’. Applying formal approaches to HCI moves the critical point of design to an earlier stage
of the system life-cycle. Thimbleby describes this as HCI's ‘try it and see’ dictum contrasted to

.formal approaches’ ‘think and understand’ maxim. _

Users work to rules and guide-lineé when using a system; a mouse pointer should move
in normal Euclidean space. Formal approaches are adept at defining such rules. Hence the
application of formal approaches will ensure that the user’s view of a system is regular and

consistent (although consistency is becoming a much abused term in HCI research.)

-

16

1.1.4 Why some previous approaches have been less than successful

Having expounded the potential benefits of a formal approach to HCI, we should now look at

the actual experience in the past decade and try to catalogue some of the pit-falls.

The intended audience

In many cases formal approaches to HCI are suggested but their intended uses are not made
sufficiently clear to the intended audience, iml‘leed. the intended audience is often not identified
either. Hence confusion arises -—— a formal approach to HCI should not be about presenting
confusing formalisms to HCI practitioners or obtuse psychological theories to software engineers.
‘We should élways be aware that the average software engineer and HCI practitioner will know
" and care little for each others’ fields of work and, what is more important, they should not need

to.
System or software design?

The distinction between system and software design is rarely made clear. System design concerns
the whole system; bits of hardware, potential user populations etc. whereas software design is a
proper sub-set of system design — a software design does not constitute a whole system design.

Whether usability requirements should be paft of the system or software design is not clear.

Is formality really necessary in an approach?

More subtly, we suspect that several researchers are not clear about exactly why they are applying
formalisms to HCL. It is clear that certain aspects of HCI can be form-a.lised, but doing something
simply because it can be done is no justification. A formalism should not sit in isolation from
the system design prb;ess — it should be a useful part of the process unless we consider a formal
approach to HCI to be ;l wholly a.cademic_'eXercise. Wholly academic exercises are by no means
a bad thing,,bﬁt it should be made clear if 2 formalism has a practical purpose (and, of course,

what that pﬁrpose is) or whether it is purely academic.

17

Notations and languages

Lastly, in our introductory catalogue of confusion, we can see that the plethora of formal nota-
tions available also causes problems. It is well argued that the general, all-purpose formalism
~ languages such as Z and VDM are not especially well suited to form.élising interactive systems.
The enterprising formalist therefore feels justified in taking one of several paths — adding extra
bits of formalism onto existing languages, twisting existing languages to directions they were
not really meant for or simply rﬁaking up a whole new formalism to suit their purposes. In the

ideal world none of these approaches is really satisfactory.

1.1.5 Sumniarising the arguments — good content, bad presentation

In chapter 3 we will present arguments that a formal approach to HCI is fundamentally flawed;
that HCI is simply too unpredictable and involved. for the ‘clinicism’ of a formal approach to be
of any use. We will argue that such arguments are invalid (otherwise this would bea lamentably
short and/or pointless thesis).

- We believe the problem with a formal approach to H(_jI has been its application; there
is nothing ‘wroﬁg’ with many of the formalisms and models proffered in the literature, their
intentions and uses have not been made clear. In general it is the presentation rather than

content that has been at fault.

1.2 Our intentions in this work

Maybe it is as well to point out here that this work stems from formalists venturing into HCI
rather than the other way around. Our work is therefore going to be ‘biased’ to formal ap-
proaches. But we contend we will demonstrate how we can offer signiﬁca.ﬁt bridges across thfé
divide to HCI workers. | ‘
Of course our aim is to try to capture the benefits formal methods can bring to HCI without
slipping into the pitfalls we have catalogued. However, such a task is well beyond a single PhD
* thesis and so we must limit our aims, and crucially we must make those limits explicit.
This section is a very broad look at our intentions — we discuss these ideas in more detail

and depth in chapter 2.

18

" 1.2.1 Developing and applying a theory of HCI

In chapter 3 we will discuss theories of HCI. For our purposes a,‘theory is an encapsulation of ideas
about HCI that can be used by system developers, during.(ra.ther. than after) the development
process, to improve the‘usa,bility of interactive systems. Unfortuna-tely such theory is thin on
the ground and many HCI decisions are made very la;te in the development procesé in an ad hoc

manner. .

Our main motivation is the development of a framework which can guide the synthesis of -
interactive systems i.e. a framework which takes existing HCI theory and feeds its conclusions
into the design process. |

Much of the previous formal work in HCI has described usability issues in a way that is
fairly disjoint from a development process. Our intention is to propose a development process
and place formally stated usability issues within this process; suggesting how the insights gained
are incorporated into the process and feed through into the eventually implemented system.

However the assumption that there exists a body of theory that we can sim;ﬁly ‘plug into’
our framework is unrealistic. Our framework should aim to make the reasoning behind design
decisions fransparent. However in many cases there will not be enough theory available to guide

design decisions in any. reliable manner.

The use of a framework that helps to lay bare the context for a decision should help in

the development of a theory. If a designer finds himself repeatedly making the same decisions -

in the same context with the same result then he would be in 2 strong position to argue that
some HCI ‘micro-theory’ has been exposed. If however the designer finds that the same decision
causes different results in apparently the same context then he would be able to argue that the
description of the context in not expressive enough for that decision.

Our intended development process should allow for the functionality of an interactive system
to be specified and developed towards an implementation. We also intend that non-functional
usabilty aspects be develdped in a process that runs parallel to the development of the func-
tionality. The usability i issues are modelled by considering how a system is expected to be used,
how the designers want the system to be used and what user interface fea.tures move the former.

closer to the latter.

19

1.2.2 Characterising the user-interface

What is a user-interface? More importantly what is the effect of an interface? We propose a
model of user-interfaces that concentrates on the effect they have on the behaviour of a system.
We can then discuss what we want of a user—iﬁterfa,ce, abstracting a.wa,-jr from the mechanics of the
interface. The idea being that the system designer can specify the effect on the system behaviour
that he requires the user-interface to Have and pass this specification to a human factors specialist
who knows (somehow) what actual interface features will fulfill this specification.
Unfortunately we know of little work that would guide the transition from what a user
interface does as captured by our framework to how it is done. Here we see one example of
how our framework should aid in the firming up of HCI theory. At the moment the step from
abstract mathematical models of what an interface does to actual interface features would rely
(at best) on the craft-skill of human factors specialists in interpreting those models. HoWever if
‘a human factors éXpert repeatedly found himself successfully implementing fhe same interface

features to achieve the same result then we can argue that this exposes some HCI theory.

1.2.3 Horses for courses and notations for practitioners

There is a suggestion in the literature and formal HCI community that a utopian state of affairs
would be achieved with the introduction of a ‘universal’ formal notation that is suitable to all
practitioners in the field. We are suspicious of this philosophy; we hold notations lightly in that
a notation is simply a way of expressing a model of a system. It is those models and what we do
‘with them that is crucial, not what notations they are expressed in. Although we develop and
. propose ﬁotations in this work, we do not.cla,im them to be ‘better’ than other notations. Oﬁr |
‘notations are simply tools for talking about models; we can envisage a hypothetical thesis being
written in parallel to this one using a different set of notations and producing the same results.
We therefore intend to describe notations for requirements engineers, system specifiers and
propose how they relate to more traditional software engineers notations such as VDM, We also
look at graphical notations for HCI workers for use in the more user-centred areas of syétem

design.

20

1.2.4 Mathematical notations

Much of the work in this thesis concerns the proposing and description of mathematical entities |
and describing relationships between them. To do this we use set theoretic mathematics and
predic.ate logic. We assume that the reader is familiar with basic set theoretic and logical nota-
tions: A catalogue and formal description of the notation we use is included in the mathematical
appendix (section B). |

We describe relationships between mathematical entities with functions which are typically
described by a signature, a definition section and a description of the function in English as

follows. ..
XY
'.. 1.1
() = F(z) ()
In words; ‘the function f takes values of type X to values of type Y. For all values z of type
- X the result of f(z} is defined to be F(z) (assuming that F is defined elsewhere).’

~ A special case of a function is a ‘predicate’ which takes values from a domain to members of

* the Boolean set {true, false}.

1.2.5 Terminology

A potential cause of much confusion in a ‘cross-over’ area such as a formal approach to HCI is
the loose use of terminology. There have been several subtly different models presented in the
literature described using many variations of terminology. When we introduce a term that may
have an ambiguous inea.ning (or may have been used in previous work to mean something else)
we enclose it in quotes and explain it as unambiguously as possible afterwards. We also include

a glossary of terminology used in the appendix (section A).

1.3 Thesis chapter plan

" 1. Introduction

/

The fields of HCI and formal methods are briefly introduced and the potential benefits and '

pitfalls of a formal approach to HCI are discussed. There is an outline of our intentions for this

-

21

work and a brief plaﬂ for the thesis.

2. The objectives and aims of this work

. This work aims .to be part of a convergence in formal HCI; borrowing good ideas from previous
" work and introdueing our own novel approaches. | -

. We aim to produce a formal framework f01l~ the construction of more usable interactive sys-
tetne; As well as describing what we intend to do, we carefully delineate what we do not intend

to do.

- 3. Conetructing usable systems and the ‘theory of HCI debate’

To make decisions about usability and other related HCI ohenomena early in the systém design
life-cycle means we assume that HCI is backed by a body of abstract theory. HCI obviously
is not and the advisability of creating such a body of theory has been hotly debated. We look
at this debate and conclude that althotlgh there ie little HCT theory, such a bocty of knowledge
would be advantageous to the ﬁ.eld.. We Iook at some proposed frameworks for HCI; a framework
esseotially being the structure of a theory into which we would ‘slot’ HCI knowledge w'hen. and -

_if it is ‘discovered’.

4. A review of previous work in the field

First of all we look at the various formal notations a,nd' techniques that have come to prom.inence

in computer science. We look at severel of the speciﬁcation languages in general use and conclude

that they lack the e)tpressive pbwer we require for our approach. Some of the reasons for this
are discussed‘ | _ | ‘ - |

This is by no means the ﬁrst attempt to brmg formal methodologles to bear in HCI. We look |

‘ at the previous work concentrating on the ‘York a,pproa,ch’ to interactive system de31gn as we

believe this will have the most relevance to our approach. We conclude by dlscussmg some of

'_ the more notable ‘holes’ in the 11tera.ture AN

22

5. Introducing a Reactive System Specification Language (RSSL) |

We describe a typical system design process and describe a language for describing systems
within this design process. We start with a very simple system and add layers of cdmplexity
incrementa,lly, introducing the features of our language one by one. Our technique covers re-
quirements engineering, system specification and design, software system design and software

- engineering. We also look at some suggestions for implementations and program derivation.

6. A formal semantics for RSSL

'Having introduced our specification la,nguage"by stealth’ in the previous chapter we now give
a full semantics for it. We divide the language into two; the tempdfa.] logic for expressing
requirements and a specification language based on the Temporal Logic of Actions (TLA) [74].
We define a model of real-time systein behaviour and give the syntax and semantics for both
languages in terms of this model. We also look at a synta,ctilc sugar for the specification language

. that allows us to specify reactive systems more comfortably.

7. Describing the use of an interactive system with an Interactive System

Specification Language (ISSL)

So far we have described systems using discrete mathematics; either behaviour is legal or it is not.
We argue that this is a rather arid way of describing systems containing highly non-determistic
f_users. We propose some ideas for modelling the system .using prolba,bilistic mathematics so as tor
better capture the user behaviour,

This proposal opens up a whole host of ideas about interactive systems which we look at
and discuss. Most importantly we can characterise a user-interface in terms of what it does to °

an interactive system without worrying about how it does it.

8., A formal semantics for ISSL

The specification language RSSL does not have the tools to comfortably describe probabilistic

‘behaviour. We therefore look at how we can bring probabilistic models into our language so as -

adequately describe interface behaviour.

23

We also go into some more formal depth with some of the ideas discussed in the previous

cha,ptei-.

9. Some examples of our technique in use
We work though several examp]es‘using our technique, hopefully displaying its ability to cope
with examples previously presented in the literature and to bring more expressive power to bear
~on these examples. '

10. Conclusions and an agenda for future work

Finally we summarise our approach to formally synthesizing interactive systems and propose

ways of expanding on our work.

24

Chapter 2 =~ -
‘The 'Q'b' jectives and ,a_.ims of this work ‘

- Of course the a.im of any thesis is to push the 'boundaries of the relevant discipline.. Whilst
we contend that this work is novel in its approach of bnngmg HCI cons1deratlons into a formal
system synthe313 process, that is not to say that we do not intend to borrow develop and integrate
into our approach many of the ideas and techniques that have been previously presented in the
literature " | | '

There follows a list of areas of concern that we 1ntend to cover in deta.ll in this work

2.1 Interactive systems as reactive systems

A reaéfive system is generally held to be a computerised system that reacts continuously to
“externally genera,ﬁed events, We widen this deﬁnifion rather, viewing é reactive s'ys:tem as the
conjunction of the compuferised ‘kernel’ and its ‘environment’ not just the central machinery a
itself. _ o o |

- Several wnters [113, 83] have recently suggested that interactive systems are a sub—cla.ss of
reactive systems. We conform to this view — the kernel is the computensed machinery and the
~ environment the user populatwn. The users employ the computer as a tool in the accomplish-
ment of some tasks. Theré is fherefore an imbalance between the kernel a,nd. environment; the
: useré ‘_cdntrol’ the computer by issuing requests that the computer must respdnd to, but not vice |
versa. ' | | .

Typical in reactive and interactive systems are concurrent streams of behaviour that occur

25

through muItiple_moda,litiee. For example this thesis is being written on an interactive system,
which provides the writer with four different windows; one to edit the source text, one to
compile the text into type-set {:ext, one to view the type-set text and one to deal with various
subsidiary maintenance matters such as editing the bibliographic database or viewing previous
- drafts of the work and rough notes. Each of these windows represents streams of interaction
with the underlying functionality, these streams interleave and are interdependent. The writer
manipulates these windows using a keyboard and mouse only, but there is little (other than
cost) preventing him froni_using other devices in other modalities such as voice recognition.
The computer responds to the commands issued by the writer in both the visual and auditory
modalities. This is just one example of a fairly simple task being performed interactively on a |
computer system. It is not difficult to find examples of systems that use much more involved
interactions than this.

It is easy to become intimidated by this high level of complexity and many workers in the
field have proposed increasingly complex notations to be able to capture this interactivity.
| We assert, however, that we can cut through the clutter with abstraction. The important
point for us is initially not to werry about about the complexity of different interface presentation
issues and modalities but to consider how we would p;efer the system (the ‘system’ being both
the computer and usef) to behave. The complexity should come into the system synthesis process
only when needed.

For example if we were building from scratch a system to help a writer to type-set his
thesis then our first considerations would be the writer’s task itself and what functionality is
needed to achieve that.task. Only'then do we begin to think about how that functionality is
presented to the writer' in such a way fhat it is helpful to him and helps him get his task done
efficiently. Decisions about having four windows are very low level; it is to do with ‘how’ the
system is implemented, not ‘what’ the system is doing.' As formalists we are initially (much_)
more interested in the what rather than the how. | |

We will introduce a notation ‘tha.t a.llows us to describe the requirements of a reactive system
in a very abstract way, then we shall introduce a model of reactive systems where the kernel
offers a collection of ‘reactions’ to the environment. A reaction is a pairing of some environment

functionality with some kernel functionality, such that there is causality from the environment

26

to the kernel. The environment has a non-deterministic choice between these reactions so the

system behaviour is (a.t its simplest) all possible sequences of reactions.

2.2 Including usability as part of the system synthesis process

r

It is well argued that important design decisions should be made early on in the system design
* process. If ;L mistake is made and identified early in the design process then rectifying is much
cheaper than if mistakes are madg later on. We assert that usability issues are crucial to interac-
* tive systems and therefore decisions effecting usability should be made as éarly in the interactive
system design process as possible.

.Currently most HCI work takes place towards the end of the design process. Our approach
suggests how we can push usability issues higher up the process. ' |

Hdwever, before we can start to think about such ma.tfers we need to be clear about the design
process itself. We therefore begin our work by looking at and illustra,fing a design process for
reactive systems and considering what extra apparatus and ideas are needed when we specialise
the process to interactive systems. Of course we are not talking about ‘specialisation’ in its strict
sense. If interactive systems were a strict specialisation of reactive systems then we would need
no more apparatus to describe interactive systenis than we would to describe reactive systems.

The real world is not that simple however.

2.2.1 Synthesizing reactive systems

Recall that we defined a reactive system as being the conjunctlon of a ‘kernel’ of automated
functlona,hty and its environment. We define a system as bemg the conjunction of the two so as
to make explicit the assumptions we are making about the environment.

We deal by preference with ‘closed’ systems which are systems with no external influences;
all their behaviour is determined by their constituent sub-systems.- A common way of discussing
open systems [69] is to describe ‘assumption and guarantee’ pairs, such that an open system
guarantees a property if its environment satisfies the assumption. Working with closed systems |
forces us to preemptively describe all the assumptions about a system and it therefore becomes

clear where assumptions are coming from and what their rationale is. In other words it gives us

27

a context for our description of the automated kernel to sit in.

We have also described the imbalance between the environment and the kernel in that the
kernel is under some degree of obligation to respond to the environment, but there is no com-
plementary ol?ligation on the environment. We can draw another distinction between the two;
namely that typically the environment already exists and it is the kernel that we wish to build.
This is an important point to recognise in our work; we describe and discuss whole closed systems,
but we specify and build only the kernel.

An often repeated theme in our work is the formula. ..

requirements > assumptions A specification

. .;(Where > denotes reﬁnement).‘ The formula expresses that we define requirements for a
system, make assumpﬁons about the behaviour of tﬁe ‘parts ‘of the system which already exist
and we cannot build and from these two we produce a specification of the parts of the system
that need to be built. The idea being that once the pfopbsed parts of the system that we have
specified are put in conjunction with the existing parts of the system we have made assumptions
about, then we will have a ;',ystem that fulfills the requirements.

' A direct result of this formula is that we are interested in specifying and building corhputer

machinery.

This work is about the specification of computer systems that certain user popula-
tions find easier to use, not about training users to find certain computer systems

easier to use.

Lea,ding on from this point, we are notin the business of formal (or otherwise) user modelling.
We consider user modelling to be‘ an endeavour that allows the production of rigorous and
inspectable models of users that would féed into the assumptions side of our equé.tion. We will .
make it clear where the results of a user modelling analysis feed into our formal framework, but

we will pay little attention to actual user modelling,.

28

2.2.2 Synthesizing software sub-systems

In saying that we are looking at building' the kernels of reactive syétems we are still being rather
too general. What we are in fact interested in is developing sets of instructions to drive the -

kernel sub-systems (generally known as ‘software’).

2.3 Notations

In a working group on formal methods in HCI and software engineering [12] it was suggested
that there were two ‘deep problems’ that need to be overcome before formal methods would be

accepted in HCI practice.

e Firstly there needs to be the ability to transform between all the notations that abound
in the development process. Ideas and insights generated in certain areas of the develop-
ment process need to feed through into other areas. This could be achieved by numerous

transformations between notations or a single ‘universal’ notation with many views.

¢ Secondly there needs to be models of humans that allow analysis and the prediction of
behaviour. Such models need not be completely general; they only need to cover human

behaviour that is involved with interaction with computers.

The second deep problem is the area of user modelling, and we have already e\pra,ined that
this in not our area of concern. We question the ‘depth’ of the first deep problem.

To be fully useful a formal notation should have rigorous semantics defined for it. Given
this fact transformations between notations shpuld be fully tractable, indeed the definition of
formal relationships between objects (such as notatidns) is what formal methods is all about.
To suggest that transformations between formal notations is intractable (or even prohibitively
difficult) shows a possible miscomprehension of the fundamentals of formal methods.

The idea of a ‘universal’ notation is beguiling but rather utopian; a notation only becomes
universal when everyone agrees to use it. The formal community is now too diverse (and set

in its ways) for any one notation, no matter how wonderful, to come to dominance!. There

18uch a dominance could be argued to be very detrimental. Consider the development of programming
languages, which shows many similarities to the development of formal notations. Factors other than wonder-

29

would still need to be transformations from this universal language to its constituent views, the
creation of which would be no easier than the creation of transformations between disparate
formal notations. |

So the aim of this work is not to provide (yet) another collection of notations that we contend
is ‘better’ than what has gone before, but to show and discuss what is done with those notations.
We concentrate on the models that these notafions express, showing how we develop these models
from very abstract statements of system requirementé to 'working systems. |

We believe notations we present to be suitable for the task to which we put them; but we .
would make no further claims about them. We do not claim them to be the ‘best’ notations yet
presented in the literature (yet we would hope that they are far from the worst); they are simply
tools to describe the system synthesis process. It is entirely feasible that we might have written

this thesis using an entirely different collection of notations a.nd still shown the same results.

2.4 Viewing usabilify ‘from above’

‘Usability’ is a debatable term to say the least. Informa.lly we would say that it is a lmeasure
of how usable a given system is (or will be once constructed). If one were to place”a. group of
' respeéted and influential HCI workers in a room and ask them to come up with a definition of -
usa.bility it is unlikely that a definition accéptable to all would be achieved. (The putcomeiof
such an exercise would most likely be a vigorous and damning critiqué of the question ‘what is
usability?’ on the grounds that it is too general and has little relevance to the process of a@tually
making usable computer systems.)? Yet human factors workers and interface designers make
decisions about what is and what is not usable alt the time (or at least they make the easier
decision of what is more or less usable).

Much of the York approach (see section 4.3) to interactive systems is about the formal

definition of properties that are held to have relevance to usability. The rationale being that

fulness have decided which programming languages are dominant; currently C++ and COBOL dominate the

programming languages used and one would be pushed to argue the case for wonderfulness of either candidate.

2We back up our hypothetical outcome to a hypothetical seminar by referring to the seminar reported in [58]

_in which researchers were asked ‘what is consistency?” (consistency generally being held to an interface feature -

that greatly aids learnability) — a much smaller scale question than ‘what is usability?’. The researchers were
unable to give a definition other than ‘Its ke pornography — I can’t define it, but I know it when I see it’.

. usability results from the composition of several properties. If a system fulfills all the properties
then the system will be usable. No adherent to the York approach would claim that they have
completed the formalism of all these sub-properties, for that matter there is little clear agreement
abdut what properties should be formalised. The properties that have been formalised tend to
be held as being a bare minimum of usability — a system that upholds the properties does not
necessarily ensure its usability — a system that does not fulfill the properties is guaranteed to
be not usable. We view the York approach as a bottom up approach to usab1hty, usability is
the sum of several sub—propertles _

We look at usability ‘from above’; we desc;ibe the behaviour of a system that is usable, i.c.
the users use the computer efficiently ax-ld'productively, making an acceptable number of errors.
Then we look at what we need to do with a system to make this ‘optimal’ behaviour more likely.

What we intend to provide is a framework in which one can ask ‘in this context, wha.t dbes
it mean to be ‘usable’, what are we trying to achieve l;y making a system ‘usable’ and, once
we have sorted that oﬁt, how do we construct a system that is going to fulfill that notion of
usability?’ We contend that it is the use of such a framework that will push HCI into the reaims
of theories of usa.bility, rather than heuristics and guidélines for interfa,ce design. If Whilsf: using a
framework one were to find oneself repeatedly askmg the same questions in d1fferent contexts and
getting the same answers, then we would feel Justlﬁed in believing we have discovered somethmg -

. more general than the simple accruing of data.

2.5 Towards statistical and probabilistic models

Some of the suspicions of HCI workers towards formal methods stem from the fact that formal
methods work tends to be expressed in discrete mathematics whereas the mathematical langua.ge
for modelling human behaviour is that of probability and statistics. _

A discrete formal model tends to describe behaviour in a Boolean, black and white way and
thlis is rather arid for expressing human behaviour. Let us Teturn to the pertinent example of a
writer composing his PhD thesis with an interactive computei' syétem. A discrete model of this
system will describe all the legal behaviour of the system. Part of that legal behaviour would

be to select a window, move to the root directory and delete all the files on the hard-disk. This

31

is obviously extreme behaviour and does not (presumably) constitute the sort of efﬁcieﬁt, error-
free behaviour we suggested as being representative of usable systems in the previous section.
A discrete model does not describe the extremity of this behaviour.

 Recall from section 2.1 that we model a reactive system as the environment making a non-
‘deterministic choice between reactions. -The introduction of probability into this model allows
us to describe this choice in more detail. The users (providing the‘enviro'nment) will be more
likely to choose some reactions than others. One of the main thrust.s of this work is to include -
statistical and pi'obabilistic apparatus in our approacﬁ; thus providing a fairly solid bridge from
the world of formal methods into that of experimenta.i psychology. .Deleting all the files on
the hard-drive will be modelled in a probabilistic system as being a reaction that is legdl but
~ extremely unlikely. :

However the factor that makes this behaviour so unlikely is that the user knows what he is
doing and would be very loath to do such a thing. If v@*e canndt gﬁa,réntee that the user has a
level of competence then we would want to construct a user interface that makes undesirable
behaviour unlikely.

In introducing probdbilitie_s into the system-descriptions' we can dévelop ideas about what
user interfaces do; they ‘skew’ the probabilistic behaviour of a system, making some behaviour
mofe likely and soﬁe lesé likely. As We saw in our ex.a.m]-Jle the probé.bility of a given behaviour
is dependent on both the user interface and the users themselves. If we are fairly happy that the
user will not accidentally perform a hard-disk delete then it is not essential that we construct an
.interfa.ce' fhat will make it less likely that he will. Here we see the interplay of the ‘requirements
> assumptions A specification’ slogan in the context of user interface. We require that it is
extremely unlikely that a user deleteg. the hard drive, we assume that a given user is unlikely to |
de}ete the hard-drive, so the specification of the user interface does not need to make deleting
the hard-drive unlikely. On the 6ther hand if we require that it is extremely unlikely that a
user deletes the hard drive and we assume that a given user is likely to accidentally delete the
hard-drive then we would specify an interfa,ce- that makes it difficult, and therefore unlikely that

the user deletes the hard-drive.

32

2.6 A comparative framework

Chapter 4 shows that this is by no means the first incursion of formal approaches into HCI. To
~ evaluate the worth of our approach against that of previous work we intend to work through
“several common examples of interactive systems formally described and show if our approach

can cope with these examples. _
A la,rge hole in the field is cﬁrrently the laek of a collection of worked case studies, although
" we understand that there is currently work underway to overcome this [93].
In doing so we not only hope to evaluate our own a,pproaeh but to also allow judgments to
be _mede about the worth of other approaches in the field. In this way we can begin to pick
- out good points, bad points and commonalities in the various epproaches_a.nd hopefully move

- at least a little way towards the sort of scientifically valid theories we will discuss in chapter 3.

27 Summary

- To summarise let us quickly run through what we intend to do and, just as pertinent, what we

do not i_ntend to do.
' 2,7.1 What we intend to do
"o Lay down a formal fremework for synthesizing reactive systems,

' e concentrate on formally spemfymg the automated kernel of the system and developmg

software from these specrﬁca.tlons,
. discuss how this framework is specialised to interactive systems,

e include probabilistic modelling tools in the approach to better capture user centred be-

7

ha,viour,'

e ca.pture wha.t’ a user interface does to the use of a system in proba,bhstlc terms, wrthout y

worrymg a.bout ‘how it does it, a.nd therefore

e propose 2 process for the synthesis of more usab]e interactive systems showmg where

mformation from the various fields of HCI come into the process

33

. 2.7.2 What we do not intend to do

o formally model users,

o deal with ‘whole system design’, : .

. catalogue usability properties, | | _ -

¢ provide techniqu;s that cover the wilder shores of HCI systeﬁs, or

e attach an excessive amount of importance to the notations we emplo&.

I

34

Chapter 3 - |

Constructing usable systems and the

‘theory of HCI’ debate

In this chapter we Jook at HCI, and in particular theoretical approaches to HCI in a very broad
‘manner. Many HCI workers express suspicion with very theoretical approaches to HCI on the
grour}ds that HCI looks at human behaviour and is therefore simply too involved, varied and
. context dependent to be slotted into neat scientific méthodologies. We need to counter these

arguments in order to be convinced that there is role in HCI for formal approaches.

3.1 What exactly are ‘theories’?

The Oxford English Dictionéry [106] defines a theory as being (amongst other thingé) a ‘hypoth-
esis ... propounded and accepted as accounting for the known facts.” If we then try to a.p;ﬁly this
definition to HCI we immediately hit several problems. Not least what we think of as ‘known
facts’ in HCI. Facts are hard to come by in HCI literature and hyi)btheses accounting for them
are even ra,r;ar — most of HCI work is expressed in guide-lines and heuristics which are applied as
systems are designed and built. Ideglly, however, we would like a set of guide-lines and such-like |
which we can apply to models of systems before they are built.

Predictability is then our main motivation for requiring a theory of HCI. Predictability im-
| plies there is some body of knowledge (or a theory) which lies behind HCI. If we can successfully

_argue that such a body exists (or can exist) then there is a genuine, useful role for formal tech-

35

Application

b7 < S
o @y

The real world The a.bstra,c.t World‘

Discovery

Figure 3-1: The applied science cycle

“niques in buiiding interactive systems. If we cannot, however,. then formal approaches will only
be useful as a;cademic exercises. : | |
Figure 3-1 illustrates the applied science cycle proposed by Long [80] and Barnard [9] which
shows how information flows between the real world and the representational world of the ‘scie'nce‘
base’. The science base describes and explains features of the real world. A good science base
will therefore also predict features in the real world. To take an example we can observe the real
world behaviour of a falling weight and then in an abstract way we may make predictions about
how that weight will fall in situations other than those in which we have observed it. Newton
accurately predicted how a weight will fall in a vacuum without ever dropping a weight in a
vacuum himself. Hé was able to make such predictions because he had made good observations
of falling objects and had produced a sound science base from these observations.
By definition ‘science’ is a very wide field and we must bé clear aboi;t just what area of
science we é,re interested in and to what uses we propoée to put science. We can classify science -

into three general categories.

Social science, for example sociology and psychology, are termed (rather detriménta.lly) ‘soft’
science by Newell and Card [87]. They are characterised by the qualitative nature of their

‘results and their lack of formal models.

‘Natural science, such a physics and chemistry, that observe and model natural phenomena..

The use of these models is purely explanatory and passive in the real world.

Design science, such as engineering and much of computer science, builds models from obser-

vations of the real world which are then used to construct objects in the real world, the

36

properties of which have been predicted in the model.

HCI manages to straddle all three categories and this may account for much of the confusion -

and disagreement about the role of theoretical science in HCI.

3.2° A theory of HCI? | -

No-one is going to argue that there exists a sound science base to HCI, (‘the theories that do
exist are vague and weak’ [109]) what however is contested is whether such a base can exist
and whether it would be of any use if it could. Let us look at the two main arguments for and

against and then discuss each of their merits or otherwise.

3.2.1 The case for a theory of HCI

Many writers have suggested frameworks into which HCI knowledge can be slotted. For example
Storrs’ conceptualisation of multi-party interaction [110}, Norman’s cognitive engineering [89] or
Long’s cognitive ergonomics {80]. The utility of these frameworks can be measured by whether
the sum of the knowledge in the framework is greater than the sum of the same knowledge not
_ in the framework. a ' | '

Storrs [109] justifies the need for a theory on the following grounds;

Theories give coherence to data Theories are orgahisations of data and as such they can
| shoﬁr how particular data values relate to others. From these relations we can infer under-
lying causalities. Several theories can co-exist over common domains. It is the rejection,
acceptance, strengthening or combination of these ‘local’ theories that mark the mlatura-
tion of a field. The ultimate sign of maturity in a field is the e;dstence of a singfe unified

theory (as suggested by [86]).

Theories predict results. Engineering disciplines require that data results can be predicted
by theories. As stated above it is this predictive quality of a theory that we are most

- interested in as it makes the theory useful.

Theories explain observations. Exactly what an explanation is is rather a vague notion, but

if one has gained some understanding of some data then in some way that data has been

37

explained. In this way theories are expia,na,tions of data.

Theories develop. A theory is not simply a mass of data, it is a tool to interpret data. As our
‘ understanding of a subject increases then the theories we use to understand the subject
will enhance as well. Even a wholly inadequate theory is of use to the field as it provides

"a reference point for research that aims to knock that theory down.

Furthermore Long [79] states that for HCI to advance as a discipline it must develop engi-
neering and scientific principles to support its practices, otherwise HCI will always be seen as a
‘craft’ rather than a rigorous area of endeavour. Craft practices are by far the most common in
the field of HCI. Dowell and Long [45] offer several criticisms of current human factors (and by

implication therefore HCI) practice. Namely...

e there is little integration of HCI into system development,

¢ the effectiveness of HCI practices are unreliable and therefore suspect,

e HCI practices are inefficient — there is no framework into which acquired HCI knowl-
edge may be accumulated (apart from the intuition and experience of practitioners) so

* experience may be lost and have to be re-acquired, and

e there is little sign of intentional progress to alleviate the above deficiencies.

Hence we }_xave discussed both the benefits of tl_leoretical HCI and the drawbacks of HCI
‘practice without reference to an underlying theory. '

. 3.2.2 The case against a theory of HCI

~

There is little justification in the literature for the ‘craft’ approach to HCI, however the simple
fact that most HCI researchers do consider their field to be a craft must mean that they believe
such an approach to be justified. There may also be feeling that most HCI workers want to
roll their sleeves up and get on with it rather than debz;,ting probably intractable philosophical

niceties. What justification there is is mostly in the form of criticising theoretical approaches

(e.g. [77].)

38

Artifacts

Y-

Possibilities
Figure 3-2: The task-artifact cycle

Carroll [26, 27, 31] however vigorously and persuasively defends the practice of of HCI as
a craft. He rejects the applied science cycle (figure 3-1) on the grounds that HCI has ‘infinite
detail’ — it is too cdmplex for successful abstraction therefore the discovery mapping needs to
be infinite and hence is worthless. Furthermore Carroll argues that what actually happens in
HCI practice is that the applied science cycle works backwards; successful designs are developed
and emulated then academia analyses those designs. ‘
Carroll therefore proposes a replacement for the app]ied science cycle; the task-artifact cycle .
(éee figure 3-2) in which artifacts (or fools) are taken as central to HCI praétice.
" In the diagram we show how a comb may develop through the task/artifact cycle; a comb is
an artifact (or tool) and its use may suggest other poséibilities about how it could be used. Inl |
this case we suggest it may be used for combing hair or it may be wrapped in paper and played
as a musical instrument; the use of the artifact changes the task. We can then analyse these new
tasks and suggest improvements to the artifacts; maybe a harmonica if we concentrate on the
musical side or more sophisticated hair-dressing tools if we stick to the comb’s original purpose.
Wha,f HCI practitioners do with tools is how HCI develops. Using a tool alters how the task
itself is done and this may in turn alter how the tool is used; tools may then alter the task and

new tools may be created to adapt to this new task. Therefore tasks and tools are dynamic

~

39

and the task-artifact cycle shows how they relate. ‘Carroll’s artifacts implicitly embody much
of what is expected of explicit theory, however they may be too complex to rec_luce to explicit.
theory. Furthermore Carroll argues that his task-artifact cycle describes not only the operation
of HCI practice but of most fields in which design takes place. -

In summary C:;\,rroll asserts that what is important about HCI practice is its product —
usable systems, rather than the methodology which brought these systems about. Carroll and
Campbell [29] berate Newell and Card [87] for suggesting that scientific strictures be imposed
on HCI practice. They argue that such strictures are limiting father than enhancing to the field
and accuse Newell and Card (and others of a theoretical bent}) of trying to impose beh'afiourist
principles on HCI whére the emphasis is on describing human behaviour rather than ezplaining.
behaviour. Description was seen as inherently more ‘scientific’ than explanation, therefore at-
tempts to understand what motivates behaviour were ignored in favour of mechanistic cataloging

~ of behaviour. In their defence Newell and C.é,rd [88] responded that this was not what they meant
at all and the debate disintegrates rather into disputing the semantics of what Newell and Card
said or impiied in their original position statement [87). Interestingly from our point of view Car-
roll and Campbell dismiss any attempt at predicting behaviour as part of this neo-behaviourist

approach.

3.2.3 The theory of HCI debate — some thoughts

No-one would deny that a considerable amount of HCI is, by its very nature, going to be
experimenfally based, yet an experimental approach can never guarantee suc.c%s in building
usable systems. Successful HCI should then be a combination of experimental and theoretical
a.pbroaches; at an early stage experimental HCI pushing the bounda,ries and theoretical HCI
organising and rationalising the results demonstrated experimentally. As the science base be-
comes more concrete and reliable it may push the boundaries itself, HCI theory cannot exist in -
isolation to the real world, but experimental HCI can exist without reference to any theory —
the point fs how far can HCI advance without sound theory and how much impact is it likely to
have on such a.réas as software engineering if it is always to be seen as a ‘woolly’ craft. Carroll
and Campbell argue that the ‘imposition’ of scientific ‘strictures’ on HCI will be detrimental

to HCI practice. ‘Imposition’ and ‘strictures’ are rather emotive terms; how different the argu-

40

menlt sounds if we discuss whether HCI. should be complemented by scientific principles. Carroll
and Campbell’s underlying implication is that theoretical approaches are somehow barren of
creativity and imagination. ‘HCI [is a,]'distinct sort of science: not a mechanical application of
dcademic psychology’ [30] but there is no reason why a designer canhot use insight and original
thinking in both an experimental and a theoretic setting. i ‘
| The compiling of theories haLs advantages, not only in some undefined future, but also in the
present. Long and White_ﬁeld'[SI] show how some rather different pieces of human factors work
can be usefully brought together under a single framework such that the whole is greater than
the sum of its parts. When it is unclear (as it often is) where certain pieces of HCI work should
sit in the grand scheme of things the use of such frameworks can give extra, invaluable context
to the work. ' _ | _ .

Much of the debate ranges over the use of purely psychological theory in HCI, but this is to
state less than half of the problem area. HCI needs not only to draw on a much more powerful
and large scale psychological theory [30] than is currently available, but also computational and
other relevant theories (such as sociology). Viewing HCI as a sub-set of psychology is to greatly
over-simplify the problem and shows that HCI still has some way to go to bécoming genuinely

__intgr—ldisgiplinary.r .) o |
Carroll ‘argues that his artifacts implicitly fulfill the role.of eiplicif theory a.nd 11; 1s undeér
- whether explicit theory may at some time replace the implicit understanding of artifacts. Yet
explicit theory is much preferable to implicit theory. Even if not all implicit understandings
can be formulated into explicit theory this is no argument for failing to make as much explicit
as possible, Furthermore Carroll backs his a,rgumentslon the basis that small details may have
large effects. If so, sur_ely such a detail is not, in usability terms, small.

Without wishing to be too controversial one may wonder how motivated the system design
community (both academic and comrhercial) is to produce usable systems. Commercially speak-
ing, how important is usability? (See [115, 19] for a thought provoking discussion on ‘bugs’, their
propagation and users’ acceptance of them.} Computer system design suffers (or benefits, de-
pending on your level of cynicism) from being. able to market sub—sta.nd_é.rd products without
considerable outcry from users. If one was to purchase a less than usable spanner one would

return it to the shop. Yet users faced with less than usable software packages are more likely to

41

attribute the usability problems to their own technical incompetence than to the incompetence
of the designer in building a usable systém. The reasons for this may warrant a field of socio-
psychology in its own right, yet this lack of necessity for guarantees of usabilify may go a long
way to explain the lack of theory. ' E

For example, aeronautics now has a considerable body of predictive and explanatory theory
associated with it and no-one would deny that the task of an aeronautic engineer, that of get-
ting several hund_red tons of metal safely and controllably into the air, whilgt minimising noise
and fuel consumption, maximising cofnfort to the pa.ssexigers and a hundred other considera-
tions is hugely complicated. Although in the early days of aviation planes were built using the
sort of m;thodology advocated by Carroll, they are not now, mostly because in the early days
when flying carried a high risk it was limited to those pioneers who krew and accepted that
risk, whereas nowadays the end-users are everyday people who would not exp'ect there to be
a significant risk in flying. Purely experimental approaches do not guarantee low levels of risk
and building aeroplanes on a purely experifnenta.l basis would (and did) have an unacceptable
cost in crashed aeroplanes and loss of human life. The flaw in Carroll’s argument is that the
end-user populatioﬁ of an area of endeavour characterised by his task-artifact cycle tends to
be small and complicit in its risks. Computer users can no longer be assumed to be pioneers
of the technological frontiers, and inflicting unusable software on them is quite simply unfair.
Experimentation is perfectljr justified, but not if that experimentation is perfdrmed (as it so
often is) on unsuspecting and undeserving end-users. Lastly, the problem compounds itself; as
users are presented with more and more unusable systems the impression that unusable systems
are unavoidable will become more widespread. . |

So we argue for a middle ground; not denigrating experimental approaches to HCI, or ignoring
the contribution theoreﬁical frameworks can make to the field, or (significantly) oversta‘,ting the
impact theoretical approaches may have. A theoretical framework should not be ‘imposed’ on
HCI researchers and few (if any) writers would suggest such an imposition. ‘However, as Carroll
states, HCI research is moving at considerable speed; so fast that it is unlikely that theoretical
approaches can keep up. But this does not render such approaches useless; indeed if masses
of data are being collected and presented in the HCI literature then the need for a rigorous

framework to compare, contrast, validate or otherwise analyse such data becomes more and

42

more necessary.

3.3 HCI theories and frameworks

Several writers have suggested frameworks suitable for formulating principles of HCI knowledge.
‘Once such 2 framework contains HCI knowledge, then we could describe this as an HCI theory.
As we discussed previously there is a long way to go before such a state of affairs is reached, but
the layihg down of such frameworks is a good first step. N

We shall review the work of Norman [89], Long [80] and Storrs [110]. Norman’s is the most
influential, Long’s shows how HCI can be part of an engineering discipline and Storrs’ is (we

believe) the most comprehensive and wide ranging.

3.3.1 Cognitive engineering

Cognitive engineering is the name Norman [89] gives to the endeavour the goals of which are. ..

" 1. to understand the principles underlying human actions that are relevant to designing usable

'computér systems, and

2. to devise systems that are pleasant to use. Note the emphasis here is on pleasure of use,

not ease of use or ease of learning.

Norman offers a theory of actions which enumerates several processes which the user must
go through in order to interact with a computer. These actions lie on his model of the ‘gulfs’
between a user and a computer (see ﬁgure 3-3(a)). ‘There are two gulfs; the gulf of execution,
which relates to how difficult it is for the user to pass intended information to the computer,
and the gulf of evaluation, which relates to how difficult it is for the user to understand what
the computer is trying to tell him. Obviously éxecufidh is concerned with user a,rticqlation and
input to computers and evaluation is concerned with user perception and computer output. The
narrower these gulfs the less effort the user has to expend to interact with-the computer and
therefore the more pleasant the user finds wc;rking with the computer.

Norman also describes what he describes as ‘conceptual models’ which are essentially the

beliefs the user holds about the system. Users construct mental models of computer systems

43

Gulf of Designer’s
evaluation nodel
—f—

Gulf of

execution

|

ystem

N &

image
User - System
(a) The gulfs between auser and a ~ ~ (b) The conceptual models of an in-
computer o teractive system

Figure 3-3: Norman’s models of interactive systems

from their interactions with them and the documentation provided about them. Norrhéun calls
this the ‘user’s model’L. He shows how user’s models are derived from the ‘system image’ ~— the
appearance the system gives to the outside world and the ‘design model’ -~ what the designer
wishes the user to believe about the system. (See figure 3-3(b).) A usable system is one in which
~ the user is presented with the system image in a clear and consistent manner. Furthermore
Norman states that it is easier to present such clear system images for systems with a specific
usage rather than more genéral systems. | |

- Norman’s work is one of the better and most well respected attempts at setting a framework
for HCI, It is, however, biased to the human side of human-computer interaction a.nd gives little
indication of how things work on the computer side. More tellmgly Norman’s framework is
based around what is now an out-dated model of human-computer interaction. One human is
visualised doing one task on one computer. Modern systems allow many users to co-operate in
many simultaneous tasks using a variety of infer—networked computers. Norman’s model simply

cannot cope with this complexity.

User’s model, user model and models of user are all common in the literature and may have quite different
meanings. Care should always be taken when coming across terms containing the words ‘user’ and ‘model’.

44

3.3.2 Cognitive ergonomics

Long [80] attempts to define and (in many respects) formalise a discipline of ‘cognitive er-
gonomics’ which is a sub-discipline of HCI concentrating on the human factors side of things.
Much of Long’s work therefore concentrates on building a framework for such activities as provid-
ing better training material and help facilities for a.!ready existing tomputer systems. However,
Long first lays down a,‘framework for HCI into which cognitive ergonomics fits. It is this more
general framework that we shall look at here.

Long states the ‘HCI pfoblem’ as being the ‘optimisation of interaction betwéen humans and
computers to perform work effectively.’” To deal effectively with the problem Long divides his

framework into ‘conceptualisation’, ‘methods’ and ‘interaction development practice’.

Conceptualisation — the domain of the problem area. Long broadly divides it into work,
the entities that perform work and the effectiveness with which entities perform work.
These divisions are then sub-divided again to define and show (for example) how work is
_distributed through organisations, how costs of system production can be measured, how

performance and quality can be measured, etc.

Methods — descriptions and specifications of how work may be carried out within tasks.
Methods are measured against some performance criteria, and the result of a,task is its

outcome.

Interaction development practice — the processes undertaken in order to solve the HCI
problefn. Long gives this as ‘setting’ (the statement of tasks possible using a system),
followed by specification, implementation and evaluation. In other words, the traditional

system life-cycle, with a task-analysis tacked on the front.

Long characterises three types of support for interaction development practice — craft, en-
gineering and science (see figure 3-4.) |

Craft practitioners acquire and maintain knowledge about interaction development infor-
mally. Being inforhd it cannot be applied generally or validated. Long asserts that this is how |

most HCI practice is currently carried out.

45

Undeveloped
interaction

Developed
interaction

Craft practitioner§ - Engineers Scientists

Figure 3-4: The types of support for interaction development practice

Engineers design and cbnstruct artifacts to fulfill some need. To do this they use priﬁci-
ples related to the artifacts themselves and the methods used to produce them. The aim of
engineering practice is to increase the number and generality of these principles.

~ Scientists develop theories to explain and predict the principles used by engineers. For science -
to be effective the theories it develops must hold true in the real world and they ﬁmst explain

‘the engineering principles.

3.3.3 Multi-party interaction

Storrs {108, 110] describes a theory as being constituted of three parts:

A conceptualisation — what the theory is about. A conceptualisation should be precise, so
that we know exactly what we are talking about and, more importantly, what we are not
talking about, and parsimonious, so we are not offered irrelevant and confusing unnecessary

detail.
Facts -—— what the concepts are observed to do. In other words the raw data of a theory. :

Laws — relationships between facts. If the laws of a theory are successfully predictive, explana-

tory and quantitative we have a good, useful theory.

Although not offering a full theory, Storrs proposes a conceptualisation of a theory of HCI.

He states...

46 !

‘Any interaction takes place through one or more interfaces and involves two or

more participants who each have one or more purposes for the interaction.

The four main concepts here are pa,_rticipa,nts,. interactfons, purposes and interfaces. The
~ above statement describes how they relate. |

A participdnt is either a user: ora computer, although what is actually meant by compﬁter is
not clear cut. Storrs takes a very abstract view that it is a participant t_ha.t has been constructed
by other agents (an agent being anything with the power of agency). Participants may assume
other roles such as ownersh‘ip," representation and social groupings. '

- Interaction is the the exchaﬁge of information between participants where each has the
purpose of using the exchange to alter the state of the other. _Any information ekchange is a
. dialogue and the unit of infordlation is an uttera.nrce.‘ Uttéraﬁces may be individua,lly. addressed
or gen'éra,lly broadcast. According to Storrs, when éonsidering interaction the following must
" be taken into consideration: how synchronous are the interactions; whether the interactio_ns are\
mediated; how much co-operation takes place between participants; and what costs are expended
in the interaction. ' i | ' _ _

An interface is a set of channels through which interaction takes 'pldce. A channel is a systefn
for transforming information from some internal form to some extérna.l form or vice-versa.~ -

‘The purpose'of an intéraction is to a,chieve. state changes. To assist this purpose participants
must make their utterances intelligible — the pa.rticip.a,nts to which ‘they are addressed must -
be a.ble to perceive them. Furthermore the utterances must be comprehens1ble — the recelvmg
participants must be able to ma,ke sense of them and they must be morphogemc — they must
' ‘be effective at changing the state of the recewmg part1c1pant _

Storrs analyses his conceptuahsa.tmn by showing tha.t Norman’s [89] framework could be
tomforta.b]y subsumed by his conceptua.llsa.tlon and that it can give new insights into HCI. Indeed :
. [108] uses the conceptuallsatlon to argue against the move towa.rd sepa.ra,ble user mterfaces He.
also discusses some of the omissions (such as a notion of task, a,lthough Storrs [111] recently

_defined a task in terms of his conceptua,hsa,tmn) from his model

47

3.4 Summary

In this clré,pter we have looked é.t HCIl in dvery broad way. There have been tellirrg arguments
presented in tlre literature both for and against the sort of theoretical approach to HCI that
" we intend our work will be part of. The various arguments preserrted show (if ndthing else) -
that there are still deep suspiciorrs between the various methodological ‘camps’ in HCL. We ha\re
argued not that our theoretical and formal camp is ‘better’ than the experimental camp, but that.
the two should work together much more closely as both can benefit greatly frorn orre another. .

There is rlo.f; a theory of HCI available to us, ‘but there are conceptual framew.orks designed .
to hold HCI knowledge as and when it is dlscovered A framework filled with useful knowledge
‘will be a useful theory. A test for the utility of a framework is that knowledge in a framework :

is greater than the same knowledge outs1de a framework. Long and Whitefield [81] have gone

some way to showmg that this is the case in their cogmtrve ergonomlcs framework and we ha,ve o

~included a brief summary of their work to demonstrate this fact.
‘However Norman’s and Storrs’ work shows more relevance to our approach. Storrs’ work

- supplies much that is lacking in' Norman’s framework, in particular it is not lirrrited to one:

' computer and one human and is not biased either to the human or computer side of things.

- - But Norman’é framework .is more generally accepted in the HCI community: We will draw ideas - - -

from both frameworks.

43

Chapter 4 o o .
‘A review of previous work in the field

In this chapter we look at ‘general purpose’ formal specification techniques that have been used
for describing a broad range of 'systems (section 4.1). The next three sections look at various
- formal models and techniques that have been used to describe interactive systems specifically.
These three sections cover user models (section 4.2), interactive device models (section 43) and |
interaction or integration models (sectioﬁ 4.4). These sections broadly conform to the ‘H’, ‘C’

and ‘I’ of HCI.

4.1 Formal spe.ciﬁcation languages

4.1.1 Model based specification languages

- We shall look at Z [107] and the Vienna Development Method (VDM) [70] as exemplars of model
based specification languages. Both languages are based on the language of discrete mathematics
and express the ‘functiona.lify’ of systems. By functionality we mean that sets of functions are
specified which express relationships between values of the system state. Model based langua,geé
can also express invariants about the system state — conditions that must h}old throughout the

| runtime of the system. | ‘ |

The system state is modelled using set theoretic structures such as seﬁs, relations and se-
quences. Inv-ariants are expressed as ﬁrst—ordef logical predicates on the state. Fu_'nctions‘a,re
described using ‘pre’ and ‘post-conditions’ which are also expressed as first order predicates. If

the pre-condition for a function is true at the time the execution of the function starts then once

49

[Messa;qe]

types
© Message:...

- pOp
Ast : Message*

state Message — stack of

. []
st: Message rem! : Message

end

pop()rem: Message

ext wr st: Message® st # ()

pre st 7 [] st = (rem) " st’

post st = [rem]” st

(a) VDM:SL o (b) Z

Figure 4-1: An operation to pop messages from a stack specified in VDM-SL and 2

~the function is completed the post condition will hold. In VDM-SL (the Speciﬁcation language
~ of VDM) the pre and post conditions are described explicitly, whereas they are more implicit in
a typical Z schema. - .

Figure 4-1 shows the same piece of functionality specified in Z and VDM-SL.

Refinement calculi

There are rules for both VDM functions and Z schemas which define how they can be rigorously
refined to correct implementations. VDM in particular has a tried and tested refinement calculus
associated with it. (It is, after all, a development méthod, rather than simply a specification
language.) o

A refinement calculus is a collection of transformations that can be performed on a specifi-
_cation which should result in a speciﬁcatic:;n that is more concrete and easier to develop into
a correct implementation. These transformations have formal proofs associated with them
which the calculus effectively ‘hides’ from -the software developer. The developer can then

semi-inecha,nica.lly apply these transformations without having to resort to the rather arduous

‘task of a formal proof:

50

Even with such a refinement algebra the reﬁneﬁent process is still only semi-mechanical;
there will still be several ‘eureka steps’ required of the de§e]oper. Given a specification spec a
refinement algebra does not (automatically) suggest a more refined specification ref. Typically
it is up to the developer to suggest the specification ref and use the refinement calculus to show

that the step from spec to ref is a correct refinement step.

Object orientation

~ There have been several extensions and enhancements produced for both Z and VDM. Most no-
table amongst these additions has been the provision of tocls to incorporate the ‘object paradigm’
(e.g. [62]). The object paradigm conceptualises a system as a collection of interacting objects
each with ‘attributes’ (a model of their state) and ‘methods’ (operations that can be performed
on the attributes). Objects are organised into hierarchies of ‘classes’ so that attributes and
methods defined on objects high in the hierarchy are inherited by their sub-classes lower in the
hierarchy. |

The object paré,digm is very popular in programming circles and has undoubtably improved
programming methodology (not least because it encourages developers to think in a more ab-
stract manner). Its benefit to abstract specification is less clear however; abstraction is (or
should be) fundameﬁtal to speciﬁcation. and a methodology that encourages abstraction iﬁ ab-
stract specifications seems rather'ta,utologous. There is no'generé.lly accepted definition of what
the object paradigm s, and hence confusion arises; there is much terminology associated with.
the paradigm which is ‘vague and shifts meaning from one practitioner to another. Furthermore,
althoﬁgh an object class hierarchy can be a very useful tool in system modelling, several ap-
proaches to the object paradigm allow multiple inheritance (the hiera.fchy is fhen a graph rather
than a tree) and we believe the ambiguities introduced by such an approoch far outweigh any

advantages.

We will treat the object paradigm with circumspection; we intend to make no claims that =

any of our work is objecte_d oriented, although it may be retrospectively argued that we have

" used some of the tools of the object paradigm in our work.

51

4,1.2 Process algebras

 Meodel based speciﬁté.tions deal with the functionality of a system, whereas process algebras
" deal more with the ‘behaviour’ of a system. They show how various processes in a system
evolve through time and interact (or interfere) with one another. The most common exemplars |
of process algebras are Communicating Sequential Processes (CSP) [64] and the Calculus for
Concurrent Systems (CCS) [84].

The process algebra approach to specification rose from the confusion that is introduced into
éystems by concurrency {doing more than one thing at a time) and non-determinism (the ability
to make seemingly random choices about what activity to ;;erform next). There is no particular.
reasbn why a concurrent system should be non-deterministic or vice-versa, but concurrency and
: noﬁ-determinism were introduced to the computer ss:ience community at roughly the same time
and s;o, for historical reasons, the two are often dealt with together.

Both CSP and CCS show how Single threads of activity (processes} can be combined us-
ing various operators which model concurrency, interleaving and non-determinism. A system is
" therefore seen as a collection of sub-systems which interact with one another and iheir environ-
" ment: Although CSP and CCS tend t;) be mentioned in the same'br_'eath when listing techniques
~ for describing concurrency they have rather different semantic underpinnings (much more dif-
ferent than Z and VDM-SL, for example). Indeed CCS is really a class of models of concurrent
systems whereas it could be argued that CSP is a single entity in ih'a.tl class. This difference
gives the two approaches fairly distin.ct benefits and drawbacks; CCS is rﬁoré general whereas
CSP is more practical. | o

However neither approach has much equipment for dealing with state descriptions, aﬁd de-
scriptions of life sized systems can be very unwieldy without the addition of other notatiéns to

provide state descriptions.

4.1.3 Net theoretic approaches

Net theory covers a collection of modelling techniques based on ‘Petri Nets’ which were first
conceived of by Petri in the 1950°s and that have been considerably investigated and extended
since (see [95] for an overview). ' '

A simple net is a graph of connected transitions and places. A place may contain several

52

Figure 4-2: A simple Petri net showing a divergent and then convergent stream of activity

tokens. For a transition to occur there needs to be a given amount of tokens in its input places.
- Once there are the transition can ‘fire’ and pass tokens from its input to output places.J The
distribution of tokens throughout the graph determines the state of the system beingr xﬁodelied.
As the state description is distributed through the graph in this way, nets are useful for
modelling distributed systems with concurrent sub-systems. Nets demonstrate well how transi-
tions are dependent (or otherwise) on one another — they easily model systems where para.llel,
independent activities can take place in various sub-systems and what conditions need to be met
when sub-systems need to co-operate.
As an example figure 4-2 shows a simple sysfem whereby control diverges to two parallel,
“arbitrarily complex, independent streams of activity (denoted by the dashed li'nes) and then
converges once both are complete. Transition ¥ cannot fire until both parallel streé,ms are
" complete.

The formal basis of nets have been thoroughly investigated and there are several tools associ-
z;;ted with them that can, for example, prédict whether or not a modelled system is deadlock free,
whether all states are reachable a.ﬁd whether the modelled system is live. Nets are, however, not
Turing equivalent and therefore cannot be a complete specification _tool; there exist systems that
cannot be modelled a.dequé.te!y by nets. Nets are more expressive than finite state machines — a
graphical modelling technique to which nets are often compared. As with all graphical notations
nets have the benefit of not being initially frightening to non-formalists. However anything other
than a very small scale example becomes very unw1eldy As is the case with process a.lgebras it
is not easy to describe complicated state models.

There have been many additions and accretions to simple nets in order to overcome their

53

deficiencies; there is work to object-orient them, to modularise nets in order to allow easier
abstraction, to allow more expressive firing conditions on the transitions, to allow easier de-
scriptions of complicated state models and so on. However many of these techniques tend to
submerge the simplicity and elegance of simple nets. _

Petri nets have been popular for modelling user-interfaces for interactive systems. We cata-

- logue some of those approaches in-section 4.3.8.

4.1.4 Modal logics

Several species of modal logics have been suggested for specifying coniputer systems. The most’
successful are probably temporal logics. Temporal logic was first proposed in éystem specification
by Pnueli [97] and such logics have been taken up by several researchers since.

_ A simple temporal logic combines first order predicates along with temporal combinatbrs o
and ©. Given that P is a predicate the formula O P reads ‘henceforth P is true’ and the formula
& P 1eads ‘P becomes true at some time in the future.’

Temporal logics typically describe systems at a very abstract level in terms of ‘safety’ and
‘liveness’ properties. Safety determines what the system should never do and liveness determines

what the system should eventually do. A system would be specified by...
sys =0-bad A © good

...where bad is some condition we wish never to hold and good is some condition we wish the
system to eventually attain, | | 1

This approach gives a good abstract approach to thinking about systems; we can think of a
system repeatedly attaining the good condition whilst the ‘path’ it goes through to get to this
condition is never ‘bad’. Alpern and Schnieder [6] showed that any system can be described by a
conjunction of safety and liveness conditions. However they also showed that liveness properties
may have some safety implicit in them. Hence it may not be possible _to'deécribe a system
_ simply as a collection of p£0perties which can be easily divided into safety and liveness. In more
~ complicated systems notions of safety and liveness are likely to become inextricably intertwined.

Whereas model based specifications look at finite chunks of functionality, temporal logics

54

can describe infinite ‘behaviours’ of systems.

Maibaum [82) has used deontic logic to model system behaviour. Deontic logic uses operators
that express obligation and permission on actions. Maibaum particularly uses this approach to
make a more thorough distinction between ‘pre—cbnditions’ and ‘pre-contexts’ which are usually
grouped together under the title ‘pre—conglition’. Deontic logic allows the specifier to distinguish
between actions that can be performed once their pre-conditions are satisfied and that must be

performed.

4.1.5 Discussion — notations for describing interactive systems?

The four groups of techriques and notations we have discussed here are all intended to apply to
general purpose systems. It is argued (e.g. [2]) that none of these general purpose approaches
and notations are well suited to the particular problems associated with intera;:tive systems.

We believe the main problem is that interactive systems require both a thorough description
of the system state and of concurrent behaviour. Therefore n’iqdel based specifications and
process algebras are individuallf inadequate for the job of describing interactive systems. Séveral
of fhe approaches we shall discuss below bring a model based specification language and a process
algebra together into a single language. This can make the notations rather unwieldy. Extended
Petri nets can describe state and behaviour, but as we discussed they tend to be rather unwieldjr. -

We believe that recent work on temporal logic specifications has shown that both the state
space and behaviour can be described in a single notation.

There are several other issues pertaining to the use of formal notations in specifying inter-

active systems we shall discuss more thoroughly towards the end of this chapter (section 4.5).

4.2 User models

In this section we look at formal and semi-formal user modelling techniques. The aim of these
techniques is to proﬁde predictions of how a user population will \r;rork with a given device. Hence
an analyst can prévide predictions about how a proposed device will be used and therefore how
usable the device is. Such predictive analysis allows usabilify considerations to be included

early in the system synthesis process. Such models also have the a.drva.nta.ge that they present

95

user considerations in a language more easily understood by system designers. This is only a
secondary (almost accidental) benefit however for most user models.

We do not intend our work to deal in depth with ﬁser modelling so only a brief overview is
given here. We contend that cognitive science is not currently strohg enough to support fully
rigorous formal models of user cognition and intention. We do intend to show how and where
" the results of an user-modelling analysis (formal, semi-formal or not formal at all) feed into our

interactive system synthesis process, so a catalogue of user models will be of use for this purpose.

I3

4.2.1 Models based on the GOMS approach

GOMS [25] (Goals, operations, methods and selection) is a modelling techniqﬁe that assumes
the user has a hierarchy of goals. These goal hierarchies are built out of methods, which are
algorithms for achieving goals, selections, which show how the user decides between methods -
and operations which ére the atomic actions which the user can carfy out. The granularity of
the aha.lysis is set by the operations which, depending on the analysis, can for example range
from ‘Edit document’ to ‘Press Enter’. Times are assigned to the operations at the ‘keystroke
level’ and by analysing the goal hie'ra,rchy a rough prediction of performance can be obtained.
- Other potentially useful properties can be derived from a GOMS analysis — e.g. the depth of
the hierarchy is claimed to be proportional to the demands placed on short-term memory. |
GOMS is based on the ‘model human processor’, a very idealised cognitive model of a user
as an information processor, which has been heavily criticised for the gross simplifications it

makes.

CCT

CCT [72] (Cognitive Complexity Theory) combines a GOMS-like model of a user with a dialogue
- grammar in the form of a transition network. The two can be ‘run’ against each other'to give
a measure of ‘cognitive dissonance’ — the difference between what the user knows and what he

needs to know. The dialogue grammar can be executed to give a rough dialogue prototype.

56 -

UAN

UAN [63] (User Action Notation) is a notation based upon GOMS but allows an analysis of |
up-to-date mouse driven windowed systems (which GOMS would have problems with.) UAN
relates user actions to the interface feedback and the underlying ix-iterface state. There is no
fixed level of abstraction — tasks can be bﬁilt_ {using tempo.ral relations) from sub-tasks in a
hierarchical manner. |

UAN was designed primarily as a communication tool. Task behaviour is described in a way
that can be passed between designers and (hopefully) unambiguously understdod. The notation
is ‘open’ — it can be updated and extended acéofding to the in-situ needs of designers. It has,

however, unclear semantics and large problems can become cumbersome.

4.2.2 Models based on formal grammars

There have been s;evera,l attempts to formalise user-interface ‘consistency’ using formal gram-
" mars. Consistency is held to be ‘doing‘similar things in similar ways’ [101]. |

An oft-quoted [104, 61] example of a highly consistent system is that of the Mac Paint
package. The actions the user must perform to achieve two similar tasks — drawing a rectangle

and drawing an ellipse — are compared.

To draw a rectangle Select the rectangle tool, place the mouse pointer at one corner of the
desired rectangle, press the mouse button, drag the mouse to the opposite corner, release

the mouse button.

To draw an ellipse Select the ellipse tool, place the mouse pointer at one corner of an imagi-
nary rectangle that will bound the desired ellipse, press the mouse button, drag the mouse

to the opposite corner, release the mouse button.

The actions are very similar — hence a consistent interface.

Reisner [100] uses BNF rules to describe dialogue grammars. Theé complexitjr of these gram-
mars is shown to be inveréely broportionél to the ease of use which users report. This is a purely
syntactic analysis, no account is taken of such things as familiarity with the dialogue.

TAG [94] (Task-Action Grammar) is a parameterised grammar which is used to analyse the

syntax of interactions and hence give a measure of consistency and provide a tool for modelling

57

world knowledge.'

Both Reisner’s grammars and TAG are purely concerned with ‘articulation’ — how the user
communicates commands to the computer (the gulf of execution in Norman’s [89] terminology
— see section 3.3.1). DTAG [65] attempts to rectify this and some of TAG’s other notable
deficiencies, but it is held [3] that such embellishments simply make an already cumbersome
notation more so. Jacob’s [66] state transition diagrams are similar to Reisner’s grammars, but

also allow for system output to be included amongst the diagram terminals, .

4.2.3 PUM

PUM [118] (Programmable User Models) models the knowledge that the user needs to bring to

an intefax:tive system in order to attain task goals. A PUM analysis predicts user behaviour
| based on principles Of, rationality [85]. A PUM analyst proposes a model of user knowledge, a
user task; a model of the computer device and a ‘designer’s intended procedure’ which describes
how the designer intends that the user will achieve a task with the device. From these models
a prediction of the user’s behaviour can be made. \

Originally PUM models were directly (and rather inefficiently) encoded as-production rules

in the artificial intelligence architecture Soar [86] and so interactions could be automatically .
‘ simul#ted. I.Ja.ter. work [18] developed an instruction language in Which PUM models were de-
scribed and could be automatically translated into Soar productions. More recently [15] it has
~been shown that a PUM analysis can provide valuable insighfs into usability qﬁestions without
the need to resort to ¢ running’ models on cognitive arch1tectures -

* Currently [14] the PUM approach is being moved onto a more formal ba.s1s so that its insights

can be captured and proved more rigorously.

4.2.4 ICS

1C§ [8, 11} (Interacting Cognitive Subsystems) differs from the user models described so far in
that ICS models are less about predictions of user behaviour and more about approximating
the cognitive processes that underlie the behaviour. ICS has developed over a number of years
by taking empirical evidence, attempting to explain it based on the ICS model and reﬁnihg

the model to better cope with the evidence. It models the transformations that take place on

58

cognitive information and how that information flows from one cognitive processor to the next.

ICS models the human cognitive processing unit as a composition of nine sub-systems, all
similar ‘in structure, but dedicated to individual cognitive processing tasks. .For example there
is a peripheral visual sub-system connected to the eyes which deals with hue, contour efe. and
m'ore. central sub-systems which deal with implicational meanings and mental imagery etc. A
' sub-system receives ﬂoﬁvs of data which are copied to a store, transformed and passed on to
other sub-systems. There are several overall constraints on the ICS model which determine
its behaviour, Certain flows are not possible — for example visual information cannot flow
directly to the semantic sub-system without first being processed by the object sub-system
which processes the spatial information in visual input. All sub-systems continually generate
information flows, but only some of these flows are stable and relevant to a task.

' ICS models how cognitive resources interact and occasionally interfere with one another in
the process of performing a task. ICS therefore gives a more ‘holistic’ view of cognition. ICS gives
a good account of perception, a matter often overlooked by other cognitive models which deal
more with user articulation. Also ICS has been used in conjunction with Interaction Framework
[17] and Syndetics [47] to show how user models can be integrated with device models in formal

frameworks. (See sections 4.4.1 and 4.4.2.)

EPIC .

Executive Process-Interactive Control (EPIC) [71] is an implemented cognitive architecture
based on gene'ra.li cognitivé principles, but-which has been applied to several HCI problems.
EPIC models cognition by production rules and places this cognition within a strict context
of perception and motor sub-systems. Cognition is therefore not considered'éeparately to the
motor systems, but necessarily interrelated. Performance measures can be strongl& influenced
by this interrelation. | ' ‘ |

EPIC also puts a lot of emphasis of its ability to model the user’s cognitive processes acting
concurrently. Users can overlap tasks {in a constrained manner) and EPIC has been used
to predict that alterations to interface can make better use of this constrained contufrency.
| Executive processes (that are normally modelled by their own separate sub-system) are simply

modelled as one among many of the concurrent cognitive processes.

~

59

EPIC is a symbolic processor and therefore its analyses are fairly low level and performance
based. However it has shown that its performance predictions are useful in an engineering
context. ([71] summarises much of the practical work on interface design so far undertaken by

EPIC researchers.) oo

4.3 Formal models of interactive systems

This section looks mostly at the ‘York approach’ to formalising HCI issues. Dix [41] describes
ther York approach as a formalisation of interactive systems ‘from the user’s point of view’.
The York approach is about capturing the whole of an interactive system rather than just the -
user interface. There are several pieces of work that aim to mode.l user interfaces and they are

described towards the end of this section.

4.3.1. Usability properties

The York approach identifies models of interactive systems and ‘usability properties’, the fulfill-
ment (or otherwise) of which is claimed to have relevance to the usability of a device: It can_
then be formally pfoved whether the interactive system model will fulfill these properties.

‘ Typically such properties are claimed to be the minimum required of an interactive system.
Intera,ctiv-e systems that fulfill usability properties are not guaranteed to be usable, but systems
that do not fulfill them are guaranteed to be very unusable.

We would argue that usability properties are a good tool in the construction of a usable
lv.ystems. It is unlikely that even a highly usable device will accurately fulfill all the usability
-properties that have been proposed in the literature. A synthesis process for interactive systems
will do well to measure the system being constructed against the properties to spot potential
~ problems. ‘Pred'icta.bility’ (defined in the next sub-section) is a very strong requirement to make
of a system. However a designer employing a formal approach will be able to show when the
system is going to be unpredictable and, what is important, should explain why. In other words
usability properties should be tools for exposing possible prbblems with a desigﬂ and therefore
making designers give explicit justiﬁcation for designing a system that does not fulfill certain

properties. Usability properties are not really about forcing designeré to uphold (possibly very

60

restrictive) properties in their systems.

However it is not clear that the properties formally described are very relevant to users,
and even if they are, it is not clear that the mathematical definitions given cofrespond to the
psychological deﬁnitions of the properties. This is called the ‘formality gap’ [43]. Here we see
the problems caused bj} the theory vacuum of HCI — ideally we would like a set of properties
the fulfillment of which guarantees-the usability of a system, but there is no such work available
in the literature. Abowd et al. [4] have set a space for structuring such properties, but this space _

shows signs of being determined by what can be formalised rather than what should be.

4.3.2 PIE models

Of the several models produced by researchers at (and associated with) York University the
most abstract and simplest is Dix’s PIE model [44, 41]. The behaviour of a system is expressed
as a function I between ‘programs’ (sequences of input tokens) P and the resultant output from

an effect space F.

I:P— FE

Hence the output of an interactive system after a sequence of inputs p is I{p).

There are several extensions to the PIE model, most notably the red-PIE model (see figure
4-3) whereby the effect spece is divided into a result space R and display space D. There are two
functlons r and d which take the effect to results a.nd displays respectively. Results are in some
‘ the way the targets of an interaction; for example a ha.rd copy of a letter from a word-processor.
Displays are more ephemeral, intermediate effects such as screen displays. This division is a
useful and oft-used formalrtrick which allov;'s a relationship between what you see and Wha,t you
get to be captured. This, then, has obvious relevance to the so-called ‘WYSIWYG’ (What you
see is what you get) cla.ss of interactive systems. |

From even such a humble model Dix shows that he can formalise the followmg properties

which have relevance to the user..

Predictability — can the user deduce from what has happened so far in the interaction, what

the effect of further input wiil be?

61

P g)
e D@

Figure 4-3: The red-PIE model

Vp, ¢, r:PeI(p) = I(g) = I(p™r) = I(¢"r)

In words; ‘if two sequences of input produce the same effect then any identical continuation

of those inputs also produce the same effect.’

Observability — what clues does the external appearance of the system give the user about

what is going on mterna,lly'? Observability is based on the red-PIE model.

Vp,q:Ped(I(p) = d(I(g)) = r(I(p)) = r(I(q))

In words; “if two input sequences generate the same display then they also generate the

same result.’

Reachability — is it possible to get from one state of a system to all others? Can the user get

himself into a dead end?

Vp,q:Pe3r:Pel(p™r) = I(g)

In words; ‘after any sequence of inputs p thereis a further sequence r which gets the system
to the state generated by any sequence g¢.’
The other extensions to the PIE model are catalogued below. Most of them are described in

[41}, the references given below are where they were originally published.

62

Windowed systems [42] — several windows are modelled using a set of PIEs with a single PIE
as a window manager. If each window represents a single task then the interference between
each window should be minimised. Independence is formalised and several methods for

capturing such independences are suggested.

Temporal models [39] — the effect of real time on usability is analysed and a temporal aspect
is added to the PIE model to accommodate it. Keyboard buffering and display strategies
are explored and a mechanism to ensure predictability even in systems with slow response

times is suggested.

Non-determinism [40] — its is argued that non-deferminism (or at least apparent non-determinism)
can be generated at the interface by such things as window interference. Non-deterministic

apparatusis added to the PIE model and several common interface problems are analysed.

The PIE model is ‘unbalanced’ in that it treats input as’events — occurrences that have
minimal duration such as key strokes {vherea,s output is status information which has duration.
Dix and Abowd [37, 5] argue that this is problematic. The mouse position, for example, is not
naturally modelled by events. Trying to model parts of a system in way that is not natural to

them can lead to problems. ..
¢ they are more likely to be(speciﬁed incorrectly,
‘e the specification will be diﬁicult to read, and
e the speciﬁcation may very well be‘ ignored.

Dix and Abowd argue that an unbalanced model will be difficult to modularise and decompose.
Oddly interactors (see below) are held to be ‘compositional but zisymmetric’ — why this is the
case, why interactors are an exception to the rule, is not investigated. A model is proposed that

is symmetric and can model both input and output as events or status.

State-display model

Another modelling technique developed at York which is a little more concrete than the PIE could

be described as the ‘state-display’ model. The internal state of the system is given explicitly

-

63

(internal state is implicit in most formulations of PIE) and there are a sei; of comma,.nds for
'navigating amongst these states, States are further related té a set of perceivable displays.
Such a model was introduced in [60] to describe direct manipulation interfaces. The key idea
- is that the user edits the screen representation (rather than the internal state) and the internal
state changes in response to what is displayed. Using the model it was shown that it is important
to describe what remains constant in the system as well as what changes.

More recently [61] the state-display model has been used as the basic model from which more
involved land less abstract models are derived. Propértieé originally formulated using the PIE
model (observability and predictability) have been reformulated using the state-display modgl.

Yet another similar model; ‘interactive processes’ was proposed in [112]. CSP-like process
algebra constructs were introduced and it is shown that trace historfes of interactive processes
should be constrained not only by internal state to state relationships but also by external trace
constraints. The model shows many of the features of redPIE — states é,re divided into displays
and results to formulate WYSIWYG-like properties. A large collection of other properties were
formulated including most (if not all) of the properties described by PIE and its extensions. In-
teractive processes also had refinement rules defined on them so that more concrete specifications

could be correctly developed from abstract ones.

4.3.3 The agent model

Abowd [2] took interactive processes and developed them into the agent model. The agent model
allows the descriptions of interactive systems developed in the PIE model to be decomposed so
that théy can be related to more concrete, practical notations and techniques. The agent model
represents a bridge between the very abstract models developed at York and architecture models

(such as PAC (Presentation, abstraction and control) [33] and the Seeheim model [96].)

" "Abowd models 2 system 2s a collé&ion of interacting agents which Téspond to and cause
events. Like interactive processes agents’ behaviours are deﬁ.ned by a mixtufe of state transitions
. and trace constraints. Much is made of the practical potential of the agent model; it is intended
to be a tool for building interactive systems, rather than simply reasoning about them as is the
case for much of the other York work. A ‘user-friendly’ language is given for describing agents

by those not of a formal leaning.

64

4.3.4 Template abstractions

Template abstractions [62, 102] allow parts of a system model which are held to have psycholog-
ical relevance to be abstracted from the whole. Hence just the psychologically interesting parts
of a system model can be captured and analysed." -'

The properties defined on tﬁe'template model are effectively a“loosening’ of the very strict
properties defined in PIE-like models. The properties can then be applied to interactive system
models in a more realistic, setting dependent way. However this ‘loosening’ is made in a way
that is irispecfa.ble — the loosening is based on an abstraction that is both formal and is held
(formally, seml-formally or heuristically) to ha.ve psychological relevance. |

For example we can re-express the ‘visibility’ property based on a system model where S is

the set of all states the system can assume and v is a function from states to dlsplays.
Vs, s':Sev(s) =v(s)=>s=4¢

This does not however express which parts of the state are relevant to the user. Two functions

are defined on the state and display - a result template r that takes states to information that

is task relevant, and a display template d that takes displays to pieces of information that the

user can perceive and finds useful. Di:épla,y templates are partial functions -~ the user may find
no useful information on the display. -
A system is held to be ‘output correct’iff...

¥s,d/15 e (o) Zi’ﬁiid") = r(s) = () & d(o(s)) = d(o(s")

I words; ‘two states that contain the same task relevant information are perceived to be the |
same.’

Templates allow for psychological information to be mcluded at a level of formality that is
sensible for the context. One of the problems with simple PIE models is that the properties
it allows to be defined are very strict and it is difficult to justify them in psychological terms.
Templates allow for a ‘loosening’ of the properties to an extent that is reasonable and justifiable

on a psychological basis.

65

B

Events to
and from the
interactor’s -
environment
Exterhal
rendering

Figure 4-4: An interactor

4.3.5 Interactors

Interactors [48] are units of functionality in an interactive system. An interactor has an internal

state which is ‘rendered’ to a some representation which is perceivable by the users. An interactor
| receives and transmits events to and from its environment which cause changes in its internal
state. An interactor is depicted in figure 4-4. |

Interactors are a concept intended to be abstract from any one particular formal notation.
Most interactor work is presented in notations derived from and similar to Z, but there has also
been work to show interactors in Modal Action Logic [103].

An interactor is characterised by a state that is internal to the interactor and a collectron of
rules describing how this state can be legally altered by events generated by other interactors
and how those events can be generated. Furthermore there is a description of how the interna.l
state is rendered to the user, usually by markmg variables in the state as being visible or a,udrble

Duke and Harrison [48) show a ‘tool kit’ for formally building interactive system models based
on interactors. They include such things as opera.tors for describing synchronous communications
between interactors and hiding events that are ‘internal’ to a composite of several interactors.

The interactor model is linked to an interaction model based on partial orders of even-ts [51].
Such.pa,rtial orders are held to be useful in capturing interaction dynamics where users have
to perform certain actions, but in no particular order. Required interactions can be expressed
as such pa.rtia.l\orders and it can be shown whether interactive systems described in terms of
interactors would produce those required interactions. Properties of interactions can be expressed

in terms of both interaction models and interactors.

66

Both interactors and Abowd’s agent model have been developed in the object paradigm tra-
dition — they both consider systems and their user-interfaces to be strongly modular. Dearden
and Harrison [35] argue that these approaches are more about describing interfaces in a rather
concrete manner and have a ‘limited range and therefore limited opportunities for re-use’.

Howevér, interactors have been extensively used to model interag:ti;\re systems in the Amodeus
2 project. Systems modelled include fairly ‘standard’ interactive systems and small scale interface
‘widgets’, but also very novel interfaces such as MATIS {92] (a multi-modal seat booking system
for airlines) and AV [49] (an audio-visual communication medium). Much of the interactors
work is summarised in the Amodeus Executive Summaries [50]. _

A related model, somewhat more operational,. has been developed .a,t CNUCE.using the
LOTOS formalism [54]. This imposes a structure on the internal state of an interactor based on |
a standardised model for computer graphlcs software. An abstract model of what the interactor
represernits is held (the ‘collection’) and this model can be passed to a ‘feedback’ section that
generates the graphical representation of the interactor state. Input from the user is collected in
the ‘measure’ which is then processed by the ‘control’ section into a representation more suitable
for passing to the core functionality. Torres and Clares [116] Have also worked on this model,

concentrating more how the graphical representations can be formally captured.

4.3.6 User interface modelling téchniques

Iﬁtera,ctors are a step away from interactive system desigfx into the more concrete area of user.
interface modellihg. In the rest of this section we survey some other formal techniques for.
descnbmg user interfaces.
Typically these techniques allow for a description of the mterfa.ce and of the dialogue dynam-
ics and then can either rapidly prototype the described interface so that 1t can tested against a
usér population, or it can be linked to a formal proof system to show that given properties hold.
This is not meant to be an exhaustive survey of such't.echniques — it.is merely infended to

give a ‘flavour’ of them.

. 67

Coloured petri nets for the OPADE system

De Carolis and de Rosis [34] used coloured petri nets to model the OPADE system. OPADE
is a system which requires a highly adaptive interface because the user population is very wide
ranging — they are of different professions and even of different na,ti\;e la.nguag-es. These charac-
teristics are captured in a ‘user model’. This ‘user model’ is then-used to ‘colour’ the markers
that pass around a model of the interface dialogue. From these models it is shown to be pos-
sible to capture whether it is possible to perform all needed tasks and a measure of cognitive

complexity is based on the number of different transitions needed.

" The ICO formalism

Palanque and Bastide [91, 90] presented the Interactive Cooperative Objects (ICO) formalism,
which combined Petri nets with the object paradigm to model interactive systems. Their ratio-

nale for this combination is to produce a formalism that... -
e captures both state and event information,

describes both data and control structuré,

is modular,

captures parallelism well, and

is formal.

The device is structured into an architecture consisting of a functional core of non-interactive
objects, a dialogue layer and a presentation layer. The functional core is structured according
to the object paradigm and is linked to the dialogue layer which is captured in a Petri net.

A model expressed in the ICO formalised can then be verified against a collection of properties_
including deadlock a,béence, predictability, reiniﬁalibility (the ability to get the system back to |

~ its initial state from any reachable state) and the availability of commands.

1Note that this is a different type of user model to the user models described in section 4.2 — this is a model
of the user maintained by the device during run-time so that the interface can adapt to the user

63

TADEUS dialogue graphs

Elwert and Schlungbaum [53, 105] use coloured Petri nets to model interaction dialogues. These
Hiaidgue models are generated from task and user models that form a requirements analysis.
The dialogue model can be used to automatically prototype a graphlcal user interface.
TADEUS (Task based Development of User interface software) is a development process that-
is well supported by a collection of software tools that takes requirements definitions through
dialogue graphs to interface protbtypes. The interface prototyper embodies various interface
design guidelines and heuristics. The evaluation of the interface comes (presumé,bly) from testing
the prototype on a user population — there is little evaluation done on the dialogue graphs

themselves (other than the demonstration of freedom from deadlock).

Interface construction and verification

Bumbulis et al. [22] offer a technique for describing graphiéal user interfacesin a langua,ge based
on Dijkstra’s guarded command language [36] which then can in one direction be prototyped into
a working interface based on various user interface toolkits. In a second direction the interface
description can be recast in a more abstract model and then ‘hawe various properties proved

“using such techniques as higher-order logic (HOL). -

Specifying user interfaces in DisCo

DisCo is an executable specification language based on Lampoﬁ:’s TLA [74]. Systa [113] shov»;s
how it can be used to specify user interfaces at a high level of abstraction. Because DisCo is
executable the specifications can be rapidly prototyped and an implemented animation tool is-
provided for this purpose, furthermore there is scope for formal verification of interface prc:>per-

ties.

4.4 Interaction models and integration

Most of the work we have described so far concentrates either on the user or device side of
an interactive system. For example the PIE model describes interactive devices and usability

properties of those devices. However PIE has little linkage to a user model so that it is possible

-

69

to discuss in detail behaviour caused by differing user populations. Likewise many of the user
models link to rather sparse and inexpressive mpdels of devices.

In this section we consider two approaches that aim to bring both user and device models |
into a single framework, so that behaviour that results from the coniposition of user and device

can be modelled and discussed.

4.4.1 Interaction framework

Interaction Framework (IF) [17] allows interactional trajectories and dynamics are formally -
modelled and then provides ‘hooks’ to user and device models. The motivation behind IF is-
that an analyst can propose desirable interactions and then propose user and device models
which when put in conjunction will produce that desirable behaviour.

Several formal properties of interactions are defined. For example interaction framework
allows the modelling of a task and the most ways of achieving that task in terms of ‘interaction
trajectories’. For any task there are ‘canonical trajectories’ which are the most efficient ways
of a,cﬁieving that task. Using these it is possil;?le to define how much ‘detouring’ (.e. inefficient
interaction) there is in a given frajectory. Other matters that it is possible to capture in IF
include ‘user freedom’ i.e. to what extent the user has the initiative in an interaction and to
what extent the device places (possibly unnecessary) constraints on the order that the user isstes
commands to the device.

IF developed frorﬁ a model of interaction that was abstracted from the agents that cause that
interaction [10]. This model could then be hooked to existing user and device models and used to
~expose and validate the impliéit assumptions that the user model makes about the device model

and wvice versa. More récent IF work widened the scope to include systems containing more
than just two agents and there has been some work to show the movement from specification to |

* implementation guided by the framework {16].

4.4.2 Syndetics

Whereas IF defines interactions and links them to differing user and device models, syndetics
[46, 47) is an approach that integrates user and device models by expressing them in a single

notation to create a unified ‘syndetic’ model. Having the whole system expressed in a single

~

70

nota.tioﬁ considerably eases the reasoning that may be done with a model.

So far syndetic work has concentrated on expressing device models in an axiomatic style
based on interactors and expressing a user model in a ‘similaxj'axiomatic style based on ICS.
The notation used is MAL [103]. However syndetics is an approach that is not intended to be
dependent on any particular device model, user model or notation. The axiomatic style allows for
hypotheses to be proposed about the expected behaviour of the system and for these hypothese's.
to be formally proved. ' ‘

The interactor style of specification is modified a little so that the rendering information
(which parts of the internal interactor state are percei{.fab]e by the user) links d.irectly to the .
peripheral sub-systems in ICS. For example a state marked as ‘visible’ in an interactor feeds into
the visual sub-system, and a state marked as ‘audible’ feeds into the auditory sub-system ete.
Once a device model and ICS model are combined it is then possible to éhow formally whether
certain desired behaviours are going to cause undesirable effects to the user, such as unstable
or incoherent data flows, If this is the case then it can be argued that the user is going to have

difficulty performing the desired behaviour. : _

Syndetics is an attempt to bring together onto a single firm footing many of the design
perspectives that are currently used in HCI. Because of the plethora of representations used
thére can be loss of infbrfnation tra.nsla.ting from one to the next if all the représenta.tions are
not equally expressive.

We would é,rgue however that the problem does not lie with the plethora of notations but the
lack of rigorous underlying semantics for thdsé notations. In a simplistic way we might assume
that an interactive system model consists of device, user and behaviour models. Attempting to
express all three in a single syndetic notation may place undesirable constraints on what models
are expressed — a user model and a behaviour model are very different things and a unifying
notation may not allow for the expression of features that are peculiar to each. .

It is interesting to note the difference between syndetics and IF — namely that syndetics
commits to a device and user model from the outset whereas IF starts with an interaction model |
and then hooks into device and user models later. A long term aim of the development of these
integrational approaches should be to propose frameworks where different, large scale, questions

can be asked with those frameworks, such as ‘how do we get this behaviour?’ or ‘what is the

-

71

effect of changing this device model?’ and so on. A good integration framework should allow
the designer to start with any of the three entities, device, user or interaction as a fixed variable

and then change other entities in the framework and assess the effect of this change.

4.5 Discussion ' | | L

We have described several techniques for formally describing interactive éystems and their user
. interfaces. The models‘that are expressed using these techniques can be evaluated in several
ways — by rapid prototyping, or by proof of properties. Several of the techniques are more
analytic thé,n constructive, i.e. they are useful for analysing existing systems to describe why
they are usable or not, but it would be difficult to construct systems with them.

It is worth emphasising that one of the main benefits of these approaches is not the actual
evaluation of the proposed models, but the p:rocéss of proposing the models in an abstract way.
Inconsistencies and errors can be exposed by abstraction. In a similar way a benefit of getting
a software engineer to propose a user model is that it getls the software engineer to think from
the user’s perspective. ' !

There are some notable gaps in the literature which we describe below.

4.5.1 Case studies

Many of the approaches described have not been tested ir an industrial setfing and it is not
at all clear that these formal approaches will scale up to real-life situations. It would be useful
for there to be a collection of worked case studies that approaches could measure themselves
- against. | |

The rahge and complexity of the techniques we have surveyed can be ciuite bewildering. Much
of the work in the literature says the same things, but in different ways. An é,ccepted collection
of case studies would help identify these commonalities as well as what is peculiar to particular
approachés. This would allow a specifier to decide which technique suits their application best.
Actually deinonstrating that the techniques will scale up would also help dispel the suspicions
of many ‘mainstream’ HCI workers who believe that formal approaches only work with toy

examples.

72

4.5.2 Usability of notations?

It is often claimed that graphical notations aid comprehension, especially for those who are not
formal experts.. This is an important consideration for a cross-over discipline such as formal
HCL A problerﬁ With graphical notations is that they raﬁidly get ir'ti:ra,cta,ble with complexity.

We would argue (tHoﬁgh we have no particular evidence for our argument) that the problem
may lie with the presentation of maihematica.l notations. A piece of formalism should be well
laid out so that concepts that are closely allied to one another are grouped together. Furthermore
the formalism should be accompanied by wholly adequate explanatory text. Too often formalism
is presented in the literature with little accompanying expla.na.tion and readers are left to fend |
for themselves. Graphical notations fofce (to a certain extent) the grouping of closely allied
concepts and hence this may lead to their reputation for Being easier to understand, however a
. badly laid out diagram with no explanation would be much more difficult to undérsta.nd than a
well laid out and explained piece of textual notation. | '

There has been some work in invesﬁiga.ting the usability of notations.

e Brun and Beaudouin-Lafon [21] include ‘usability’ é.mongst the twelve criteria by which
they evaluate a taxonomy of formalisms. Unfortunately they do not d_escribe how they
assessed usability and furthermore describe good usability as ‘when the description of
simple things is simple and the deécription of complex thingé is possible’. This statement
possibly confuses usability with how easy it is to modularise and abstract specifications.
Perhaps a better definition would be ‘when the description of simple things is simple and the
breaking of compléx things into simple things is simple’. Most of the notations evaluated
{which range from GOMS, through petri-nets to Z) score rather badly on usability, and
there seems to be no differentiation in usability for graphical and textual notations. In
fact most of the graphical notations come off very badly in Brun and Beaudouin-Lafon’s

evaluation — they are criticised for being inexpressive and having poor modularity.

e Gray and Johnson [57] compare three notations (a terﬁpora.l logic, Petri nets and XUAN
[56]) with an emphasis on how well they express temporal properties. Essentially they
conclude that each notation has its own strengths and weaknesses and that all three have

significant usability problems.

73

e Johnson [67) found that users of formal notations expressed a strong preference for natural
language descriptions but, apparently paradoxically, made less errors with a temporal logic

notation that they expressed a distaste for.

So where does this leave us? Without a clear idea of which notations (if any) are usable,
we argue that the important consideration is the underlying serhantics. We contend that a
well-defined semantics for a notation gives the models expressed in that notation some degree
of portability. Co-operating workers could then express mbdels in whatever notation suits them
~ and pass them to 6ther workers who couid (in theory) re-express ‘rchem in another more suitable
" notation. How easy this translation would be is another matter.
" Because of the ambiguity in claims for notations’ ‘usability” it is' unwise to make claims such

as graphical notations being necessarily usable and clear. -

74

Chapter 5 S S

Introducing a Reactive System

Specification Language (RSSL) |

We view an interactive system as a specialisation of a reactive system. In this chapter we make
clear our definition of a reactive system and propose a proéess for synthesizing such systems.
We then introduce a Reactive System Specification Language (RSSL) for formally describing
‘ reactive systems. We introduce the language using a simple example and then by adding layers
of complexity to it. We conclude with some suggestions about strategies for implementing
systems described by RSSL, and making clear how RSSL specifications fit into a reactive systém

synthesis process.

5.1 ' Some introductory deﬁnitions for systems

We will begin by defining some terminology.

5.1.1 Closed systems

We intend to deal with the description and synthesis of ‘closed’ systems. A closed system is
‘o.ne that is entirely self-contained; it is not effected by any external agents and has no effect
on external agents. If we were describing an intéra.ctive system consisting of a user and a =~
computer then all we can describe is the interactions between the two. If we need to include

other sub-systems (for example if the user were to set the clock on the computer by looking at

75

(a) A closed system (b) Open sub-systems

Figure 5-1: Splitting a closed system to describe its behaviour

his watch) then we must include these sub-systems in the description. Furthermore we assume a
~ closed system to be sparse; it only contains those sub—systéms that have an effect on the overall -
béhaviouf. Therefore we would only include a description of the user’s watch in an interactive
_system if the user was going to use it in a,-wa,y that would effect his interactions with the.
computer.

Note that when we refer to a ‘system’ we refer to the entirety of a system, often in the
literature ‘system’ refers only to the computerised or automated part of a system. This is not
our view of a system, when we refer to the computérised partof a system we call it the ‘machine’
or ‘device’. |

By it’s nature a closed system has no externally perceivable behaviour. We therefore describe
the behaviour of a closed system by splitting it into a collection of sub-systems and describing
the system behaviour as how those sub-systems react to one another. See figure 5-1. When we _ |
split a closed system like thisrea,ch of the constituent sub-systems must be ‘open’ to at leést one
- other sub-system. If two sub-systems are open to one another we mean that they can in some o
way effect or be effected by one another. | |

Typically sub-systems that are open to one another will share some state space between -
them which is directly manipulatable and perceiirable to each of the sub-systems. If we split a

76

Kernel Environment

Figure 5-2: A reactive system

closed system into é collection of open sub-systems then the behaviour of the closed system is
the changes that take place in the intersection of the sub—systéms’ state space.

In figure 5-1 we have split a closed system into three sub-systems. Each circle represents a
sub-system and where two sub-systems overlap represents thé state space sﬁared between them.
The shaded area shows the state space in which the the behaviour of the system takes place.

Note that this description of systems is recursive; each sub-system can be further split into

other 'su-b-systems in the same way as we have described the splitting of a single system.

5.1.2 Reactive systems |

A reactive system is one in which the sub-systems into which it is split can be placed in two
(exclusive) ca,tegoriés; ‘kernel’ sub-systems and ‘environment’ sub-systems. (The kernel sub-.
systems are usually referred to simpiy as ‘the kernel’ and likewise the environment sub-systems
are simply referred to as ‘the environment’.) -

Assume that sub—systgms use their shared state space to pass requests to one another. One
sub-system does something to the state space that the other system can interpref as a request
to perform some action.

The kernel ‘reacts’ to the environment but the environment does ﬁot necessarily react to the
kernel. When the environment makes a request of the kernel then the kernel should respond

- to that request. The kernel can make requests of the environment but a Tesponse cannot be

7

Device User

Figure 5-3: An interactive system

guaranteed. A reactive system is one that is ‘unbalanced’ in this way; there is an -obligation
on the kernel to ‘do what it is told’ but no complementary obligation on the environment. See
. figure 5-2; the solid arrow denotes the obligatory nature of requests passed to the kernel, the

empty arrow denotes the weaker non—obligatory nature of requests passing the other way.

Interactive systems as reactive systems

systems,. such as lift or thermostatic controls. Following [113, 83]' we define interactive systems
| 1o be specialisations of reactive syétems where the environment is the user population and kernel
is the computer device. (See ﬁguré 5-3.}
Typically the user will issue requests to the device by manipulating the keyboard or mouse
(or joystick, trackpad, voice recognition unit, touch screen etc.) which the device must respond -
to (if it can). The device can issue suggestions and prompts to the user via the display (or
whatever) but there is no guarantee that the user will respond to them. There are computer
systems that demand responses from users. (For example, before hard drives were common
Macintosh users were often asked to ins;ert a system disk without, as is usual in the Macintosh |
interface, being offered a ‘Cancel’ option, Even this is not strictly obligating the user however,
he may give up or simply switch the computer off.) However we believe these not to be typical

interactive systems and a designer should come up with a good justification for designing a

78

Typically in the literature reactive systems are small scale and based on embedded hardware

" system that relies on obligations on the user.
Note that our definition of an interactive system is not limited to one user and one piece of
computer machinery; we can characterise the environment as one or a set of users and likewise

the kernel as several computers.

5.2 A formal design process for reactive systems

A formal design process starts by describing the a system in very abstract terms and then adding

layers of detail to that description until it exactly describes an actual working system.

~

' 5.2.1 Abstract descriptions and refinement

An abstract description is one in which many details that are considered to be irrelevant are
délibefately omitted so as not to clutter the ‘essence’ of the system being described. Therefor.e an
abstract description yields a w1de set of possibilities for a system. The process of addmg layers _
of complex1ty (known as the ‘refinement process’) narrows this set of possibilities by being more '
explicit about the system. If a system description yields a set of possibilities then a refinement
of that description yields a sub-set of the original possibilities. | _
" Takea ffiw}ia,l example; 'Wé want a syétem that repeatedly increases the value of the variable
:c.. An abstract descrip.tion‘of this sysfem mé.y say sbmething like ‘for.every time there is some
future time when z has inpreased.’ This description gives a wide set of possible Sjstems; so long
as z gets increased we do not care how it happens. A refinement of..this system is a system that
repeatedly adds one of two to z. This refined system still provides a large set of possibilities '
(as we have not said anything about how soon one or two get added to z) yet it yields a strict
sub-set of the possibilities yielded: by the more abstré,ct des'cripfion which allows any numbér
to be added to m However, we need to be careful; reﬁnément is not jusﬁ a case of throwing
possibilities 'a,tira.y — if this were the case then the empty set of poésibilitiés ﬁvould refine all’
systems Some of those possnb1ht1es may be crucial to the system; refinement is about reducmg

the p0851b111t1es for the system whilst still ensuring it does everythmg requlred of it.

79

5.2.2 Requirements

We propose that the most abstract description of a system is its ‘requirer‘nents’. Requirements
are a certain style of system description that concentrate on describing the problem we need a
system to overcome, rather tha,ﬁ Vworrying about the system itself. - |
A statement of requirements describes the behaviour of the shared state space (the shaded
area in figure 5-1(b)) with no reference to the ‘internal’ behaviour of the sub-systems. Later on
we shall discuss ‘specifications’ which are abstract descriptions of the su'b—systems themselves.
It is crﬁéialLto realise that fundamentally requirements and specifications are the same thing;
they are descfiptions of behaviour, they are however expressed in different styles. Pnueli [98,
Section 1} compares and contrasts these two styles of system 'descriptioh. The notation we use
for expressing requirements is that of a simple temporal logic, being a predicate logié (which
we assume the reader to be familiar with) augmented with several operators that allow us to

describe ‘when’ certain conditions are true relative to ‘now’.

The state space

Recall from the previous section that we proposed that the behaviour of a closed system was
the behaviour of the shared state space of its sub-systems. The first step in describing the
requirements for a system is then to describe this state space which we do By listing the names
and corresponding types of all the variables in this space. A variable is some entity that can
change its value (or have its value changed) and its type! is the set of all values it can legally
| assume. The state space is considered (ultimately) to be discréte; va.ria,blés in the staté space
- assume exactly one value at a time; they cannot be thought of as being ‘in between’ some values.
| Having described the shared state space we now describe the legal ways in which the values
of that state space can change. The style we propose for the description of requirements is that

of ‘safety and liveness’ properties first proposed in (73] and elegantly formalised in (6).

Note that even though our approach is based on Lamport’s TLA [74], we do not share Lamport’s view that'.
types are detnmental to a design process; we believe them to be valuable descnpt.lve tools.

80

Safety

A safety property expresses that something ‘bad’ should never happen to a system. The temporal

operator O reads ‘henceforth’ or ‘always’, hence safety properties typically have the form...
O(-something bad) -
In words; ‘it is always (at all times) the case that something bad does not happen.’

- Liveness

Liveness properties express that eventually something good must happen. The temporal operator

© is read ‘eventually’ and so liveness properties typically have the form. ..
O(something good) -

In words; ‘there is at least one time in the future when something good happens.’
Alpern and Schneider [6] showed that any property can be expressed as a conjunction of

safety and liveness properties.

Some caveats

However, things are not this simple. Alpern and Schneider also showed that safety properties
can have liveness implicit in them and wice versa, therefore some requirements may not be so
simple and clean as a safety and liveness property with no interdependencies between them.
Clarity of the description is the crucial point and it is more important to describe requirements
in a way that is clear and elegant rather than getting too concerned about rigorously slotting
the descriptions into safety and liveness boxes.

Furthermore liveness in a reactive system may become quite involved. Liveness in a reactive
system is dependent on the behaviour of the environment; only the kernel needs to be ‘live’;
once the environment requests some action from the kernel then the kernel must eventually do
‘something good’ and produce a response. Howe}rer the environment need not be live in that it

" may never make a 'request. Consider a drinks dispenser; when the customer (the environment)

81

puts sufficient money in the machine (the kernel) it must respond with a can of drink; it must
be live. However, we cannot dictate liveness on the environment; the user may never put any
money in the machine. Also kernels tend to be always live; a drinks dispenser that produces one
drink then stops is not typical. Therefore liveness for reactive systems will typically have the

following form. ..

O(environment request = <(kernel does something good))

In words; ‘it is always the case that the kernel eventually responds to an environment request.’

This unfortunately blurs the distinction between requirements and specifications. To talk
about the kernel and environment means we have made some decisioﬁs about the structure of
the system a,nd'thefe is-some system biasing in the requirements. It is rather utopian to think
- that we' can cleanly slice requirements away from any idea of the system which fulfills those
requirements and the biasing we have described here is minimal, so we do not consider it to be
‘2 problem.

We have shown several caveats to the simple idea of producing requirements as the prdblem
we need a system to overcome in terms of safety and liveness properties. That said, thinking of
~ a the problem space. in terms of safety and liveness is a good first step in describing 2 system. It
should also be noted that many formalists mistakenly omit liveness, assuming it to be somehow '
implicit in the speciﬁc'a,tic;n. We do not assume that a syétem will do something good just

because it can, we need to explicitly state that it will

5.2.3 Assumptions and specifications

Requirements describe the behaviour of the shared state space (the shaded areain figure 5-1(b)).
" Assumptions and speciﬁéa.tions describe the behaviour of each of the sub-systems such that ﬁvhen .
all the sub-systems are placed in éonjunction with each other the shared state space behaves so
 as to satisfy the requirements. ' ‘ .

Each of the sub-systems will either be already extant; in which case we make ‘assumptioqs’
about it, or it will need to be conétructed, in which case we ‘specify’ it. Again assumptions and

specifications are fundamentally the same thing; they describe the behaviour of sub-systems. We

82

draw a distinction so that we know which part of the systém to concentrate on in synthesizing
a sﬁrstem. |

In slogan terms the relationship between requirements, assumptions and specifications is as
follows...

requirements > assumptions A specification (5.1)

In words; ‘the cdnjunction of the assumptions and specification should be a valid refinement of
the requirements (i> denotes refinement) where ‘refinement’ adds detail to a descriptidn while
still ensuring that the refined system does nothing illegal and does everything it must.’

- Simplistic though it is formula 5.1 is one to ;avhich we shall repeatedly turn in this thesis, We
assume that‘ the requirements and assumptions have been defined and we take the point of view
of a system designer.whose joB it is to specify, design and build the rest of the system such that

formula 5.1 holds.

‘Pnueli style’ specifications

We base our specifications on the ‘Pnueli style’ [97] of speciﬁcatioﬁ. A specification consists of
an initial predicate that describes all the states the system can legally start in and defines a
disjunctive set of actions which describe how the system state can develép. Fairness conditions
are also included to ensure that undesirable effects such as permanent lock-out do not occur.
An action is a relationship between two states and describes a single change in system state.
Recall the very simple example from the beginning of this séction; the refined system repeat-
‘edly adds one or two to the the variable z. Assuming the system starts with z at zero and we
wish there to be a fair mixture of ones or twos added to then we would specify the system as

follows in the Pnueli style...

z'= 0 A 0{(addOne V addTwo) A fair(addOne V addTwo)

z=0is unguarded by a temporal operator and is therefore assumed to hold at time zero.
addOne and addTwo are actions that add one of two to z respectively. In order to express the

relationship between two states actions are expressed using the variable decoration ’ to denote

-

83

the value of‘ a variable in the end state of the action. Undecorated variables denote the value
of the variable in the start state of the action. Hence we could define addOne and addTwe as

follows. ..

addOne=z2'=z+1
addTwo=z' =2 + 2'_

We believe the Pnueli style of specification gives a clear and concxse description of a sys-
‘tem, what is more the specification is expressed in a temporal logic (which is a little more
- complicated than that needed for requirements) and hence the step from requirements to speci-
fications is greatly simplified. Traditionally requirements would be expressed in temporal logics
and specifications in abstract programs or automata (e.g. CSP [64], VDM .[70] or Z [107] ete.)
and expressing relationships between the two would be rather arduous. Expressing both e
quirements and specifications in temporal logics considerably eases the workload in showing

consistency between the two.

Enablihg conditions for actions and deontic logic

The two actions addOne and addTwo defined above are permanently enabled; they can always
occur. However in most situations there will be certain conditions in which we do not wish_
actions to occur. For example we may wish to have an action that adds two to 2 only when z

is even.
addTwoFven = isEven(z) Az’ = z + 2

isEven(z) is the enabling condition for this action.

Maibaum {82] argues that it is not clear in most specifications whether the fulfillment of
the ené,bling condition implies that an action must or may occur. Maibaum therefore uses the
deontic logic of obligation and permission to make the distinction explicit.

Maibaum’s definition of obligation is that if action A is obligated then it is permissible (it
can occur} and no other actions are permissible. This is rather a strong notion of obliga,tidn

and can cause problems for the unwary specifier, not least because having two actions obligated

84

simultaneously is self-contradictory. We will make use of Maibaum'’s ideas although our notion

of obligation will be rather weaker. .

5.2.4 How reactive systems fit in

We have introduced s_evex;a,l concepts here, so let us see how they fit in with our ideas about
reactive 'systems. | A

Typically we will make assumptions about a reactive system’s environment and specify the
kernel. In the case of interactive systems (where users are the enviroﬁment) we cannot bu‘ild the
environxﬁent; we make assumptions about how it will behave and then build computer devicés_
to work with it to fulfill the requirements. It could be argued that we could ‘build’ the users’
behaviour by the us"é‘of user training and support iﬁa.teria.l, but that is beyond ';he scope of |
this work. Our interest in this Vwork is building computer cievices that work well with given
user populations, not modifying the user population so that it worké well with a given computer
. device. a

The kernel offers a collection of actions to the environment and the environment may request
some of thoge actions to occur. The environment makes that request by causing the enabling
condition of the action to be fulfilled. Once the enabling condition of a kernel action is fulfilled
the action should (if possible) occur; the actions performed by the kernel have an ‘obligatory
nature. We describe the actions performed by the environment as being merely optional; even
if they are enabled there is no guarantee that they will happen. A drinks machine will always
be enabled to accept coins, but this is no guarantee that users will actually feed money in. Our
specification therefore consists of an initial predicate, a collection of actions the enviroﬁment
may optionally perform and a collection of a,ctions.tha.t the kernel must perform once enabled. ~
Our notion of obligation subsumes the notion of fairness and therefore explicitly expressing the
 fairness condition is not required. ¢

Having covered the grounding and context for RSSL now let us move on to the actual
notations of RSSL. So as not to swamp the reader in a mass of new notation .we introduce RSSL
*bit by bit’ by starting ?ﬁ' Wiih very simple requirements fo_r a queue, after which we develop the
specification of the queue system. We then proceed to add further layers of complexity to the

example and introduce new notation only when needed. It is worth pointing out that we do not

b

85

~ simply move thro&_xgh the design process in a linear way, we cycle and backtrack in the process,

as happens in real life.

5.3° An informal description of a queue system

For the queue system there are input and output lists. Items should be taken from the inpﬁt
list, processed and passed to the output list. To keep in line with conventional list processing,
items are taken from the head of the input list and added to the end of the output list. However,
once removed from the input list, items do not need to be immediately passed to the output list
so long as they get there eventually. _

Initially we do not worry about the effect of processing individual items and just concern
ourselves with the movement of items. We are looking at a closed space, so ultimately items are
not added or removed — they simply move from one list to another.

There is a desirable end state that we wish to be attained, namely that all the items intially
in the input list finish up in the output list and their ordering is preserved. In other words the
value of the output list is eventually the same as the initial value of the input list. This is the
liveness condition. |
" To complete the picture we also need to consider legai ways that items move from the input
. to output list. Once in the output list an item should stay there and once an item has been
removed from the input list it should not return to the input list. Hence the input list' should
not get larger at any time, nor should the output list get smaller This is the safety cond1t1on

Eﬁ'ectlvely what has been descnbed so faris a queue server rather than a whole queue system
By adding a definition of the environment (sectlon 5.6.3) we describe the whale queue system.

Th1s description fits in with the guldelmes for descrlblng reqmrements discussed in section

15.2.2 — we have described the state space, a liveness condition and a safety condition.

The state space — two lists of items, an input and output list.

A liveness condition — eventually the input list is empty and the output list has the same -

valué that the input list had initially.

A safety condition — items can only be removed from the input list and added to the output

~

86

list. .

As we discussed earlier in more complicated exa.mples‘it may not be so easy to draw such
an easy distinction between the conditions. Furthermore in reactive systems there tends to
be no ‘end’ state — the kernel is in (possibly) non-terminating rea,ction. to the environment.
However, as a starting point for an analysis, it is always useful to think of requirements in terms
of something good eventually happening and nothing bad ever happening,. |

‘Having described the requirements informally we can now begin to look at things more

formally.

5.4 Formalizing the requirements and requirements engineering

In this section we shall first of all formeiise the problem space previously described informally.
We can then analyse this problem space and see if we can come up with a ‘better’ model. We
argue that the problem space we have described is a particular instance of a more general class

of problems and it is preferable to describe this more general class, it being more abstract.

5.4.1 Fo.rmalieing the requirements
The state space

We have a set of items and two lists of items.

tem=... _ (5.2)
in : Item™ | (5.3)
out : Item® - (54)

...where in denotes the input list and ouf denotes the output list.

The liveness condition

The liveness condition describes a relation between the start and end configuration of the state

space. Namely that initially in is equal to some value denoted by « and out is empty. The end

87

configuration is where out has the value z and in is empty.

Formally...

in=z \ . in=_\ _ ‘
live=3ze A A A - ~ (5.5)
out = () out =z
In woi'ds;.‘initially in has the value z and out is empty (recall that in a temporal logic formula,
sub-formulae that are not guarded by a temporal logic operator are understood to hold initially)

and eventually out has the value z and in is empty.’

The safety condition

The safety condition describes the ‘boundary’ of legal configurations of the staﬁe space. In this.
case we only want items to move out of the input list and into the output list.

Assume that suff and pref are functipns that return the set of all suffixes and prefixes to a
given sequence respectively (see B.8 and B.7 in the appendix). We can give the safety condition
bj describing the input iist as always being the suffix of its eatlier values and the output list as
always being the prefix of its later values.

safe = 0O(3a,be |
: in=a AD(in € suff (a)) A : (5.6)
out = b A O(b € pref(out))) :
In words; ‘it is always the casé that @ and b are the current values of in and out and all future

values of in are suffixes of @ and b is always a prefix of future values of out’.

The requirements

The requirements for the queuing system are a conjunction of the saféty and liveness conditions.

regs = live A safe - (6.7)

Even in this simple example it can be shown that the liveness and safety conditions are

interdependent on one another in defining the required behaviour space. Safety merely asserts

~

88 -

that the input list becomes smaller through time and the o'utput' list gets bigger. On its own
the safety condition does not descrrbe what items get added to the output list — this is 1mp11c1t '
in the liveness condition. If the output list must eventually have a value that is the same as the
initial value of the input list and it never gets any smaller then all the items added to the output
list must have originally been in the input kst and rhey must be added to the output list in the
same order as they were removed from the input list. If a rogue item was added to the output
list that was never in the input list then in order to fulfill the liveness condition that item must
be first removed from the output list, hence contravening safety

There is therefore some. idea. of safety implicit in the liveness condition, This however is not
a problem as such. The important point is that overall the statement of requirements is clear
to the reader. It is worth repeating that clarity to the reader is more important tharr rigr;rously

slotting the requirements into safety and liveness boxes.

5.4.2 Are the requirements abstract enough? .

We have described in an abstract way the behaviour of a system that processes items in an
ordered manner. We can now step Iba,c-:k from this description and see if there is some even more
a:bstrax:t system of which this is a spécia,lised instance.

The use of seqﬁences to model the system ensures that ordering is maintained in the system,
but we suggest in certain contexts this ordering may be restrictive. Consider a multi-processor
system; items are taken fror_n the input and processed. If we have more than one proéessor
processing items then there is no guarantee that the first item removed will be the first to be
fully processed; such things depend on the speed of and resources available to each prbcessor.
An item cannot be passed into the output list until it has been processed and all the items taken
from the input list before it have been processed. The throughput speed is then determined
by the speed of the slowest processor and this may be urrdesirable. A more general system is.
one in which items are passed from the in-process list to the output list (possibly) as soon as
they have beén processed. In such cases, however, we cannot gﬁa,ra.ntee that the ord.ering of the

-output list will be the same as the input list. This ordering may be crucial or it may not be,
this is a system design decision, ‘bu_t the model we have described above is not abstract enough

to allow this design decision; it has some {but not much) implementation bias. The answer to

89 .

the question ‘are the requirements abstract enoﬁgh?’ is of course context dependent, but it is
always a good idea to start with requirements that are as abstract as possible.

_ | Therefore we redescribe the requirements using multisets or bags so that we can .ignore the
idea of ordering. A bag is a set that allows 'multiple members, of, more pertinently in this

situation, is a sequence without the ordering.

5.4.3 Redescribing the requirements using bags

The redescnptmn of the system usmg bags is a fairly stralght forward process; the 1deas we
- formalised using sequences still app]y, we are just re—expressmg them in a more abstract manner.

in a.nd out are bags of Jtems rather than sequences.

in:B(Item) : : R (5.8)
out:B(Item) - (5.9

(where B(X) denotes all the sub-bags of the elements in X in a mmﬂar way to how P (X)

denotes all the sub-sets of X. See B.3.) |
- Redescribing the liveness condition is simply a case of sajring that out is initiaﬂy an empty - -
: bag and in is eventually an empty bag. Otherwise the condition is unchanged. |

_ in=zg in= 0 .
Clive=3z e A AO A 4 (5.10)
out =0 out = ' '
(0 denotes an empty ba.g) N)

The sa,fety condition is simpler tha,n its sequence counterpart because ordermg is no longer
important, hence we do not need to worry about prefixes and suffixes. We only need to say that._

in and out get smaller a,nd larger respectively.

.mfe_ D(Ela be - k o
'- in=aA0{in C a) A ' (6.11)
Cout=>bAO(b C out)) . o

The relation C denotes ‘sub-bag or equal’ in a similar way to sub-set or equa,1:

90

The more abstract requirements are the conjunction of the safety and liveness conditions.

regs = live A safe (5.12)

5.4.4 Requiréments engineering

We have shown the design process moving in the opposite direction (from less to more dbstract)
to that normally described in the literature. This shlov.vs another important use for formal
rhethods; not only are they useful in moving toward more concrete desériptions, their abstract
descriptioné allow us to analyse the problem space in a more detached manner. In this case we
are only worrying about how items move through a system and we have ignored all other issues.
In doing so it became clear that moving items in an ordered manner was a special case of moving
items in no particular order and so we reformalised the problem space in this more a;bstra.ct way.
If we were working with a more concrete model then such an insight may have been obscured
by detail. _

In ‘real life’ design situations it will not just be a simple case of moving in a linear fashion
down the design process, but there will be cycling in the process. Expense is incurred when
large cycles é.re needed, small cycles (such as the one we have just described) are fairly painless
and cheap. A formal approach will hopefully reduce the amount and size of the cycling involved

in the design process (but it will not eliminate it).

5.5 Specifying systems

Now we can start to consider a system that is going to fulfill the requirements we have described.
The specification is going to be of the Pnueli style we previously discussed. We need to describe
the legal initial states for the system and pieces of functionality that move items about the
system in a legal mannér. We can make design decisions about the system and then éssure our-
selves that those decisions are consistent with the requirements. This would preferably be done
incrementally by constructive techniques or, less pref'erably,. by using retrospective verification
(but this is more difficult).

91

First of all we make the decision that there is a ‘pool’ of items which are the items that are

currently being processed by the system.

pool:B(Item) (5.13)

Items are read from the input list and ‘passed into the pool, once processed, items are taken
from the pool and written to the output list. |
The initial property of the system describes the pool and output list as being empty.

init=out =B A

200l = 0 (5.14)

Now we make the decision th‘a.t there are two pieces of functionality, one that moves items
from in to pool called take and one called put that moves items from pool to .out.

To guarantee liveness we need to specify that put and take occur whenever they can; once
enabled they should pc;cur, in other words they are obligatory. We denote that functionality is

obligatory by enclosing it in square brackets. Hence the system specification looks like. ..

sys = init A Ofput V take) : (5.15)

This is the system design, but so far we have not discussed the effect of the functionality.
In TLA or similar formalisms the functionality would be described as actions, or relationships
between states. For reasons we shall go intoin depth in the next chapter we do not take actions to
be the unit of functionality in RSSL, but we use é. more operational unit called a ‘computé,tion’.

We digress here to introduce computations, but a fuller treatment is given in the next chapter.

5.5.1 Ah introduction to computations .

A computation is a unit of functionality that reads data from the ‘public’ {or shared) state space

to some ‘private’ space (which is some space not shared by any other computations). Processing

92

public space

side-effect - write

o ot of o

L ! L {

I T | T

_ : s time
read process

private space
Figuré 5-4: A computation being performed

then takes place on this private space and then once the proc'essing is completed the shared
. state space is updated according to the result of the processing. A computation therefore passes
through three phases; -

e read,

e process, and

e write.

We also allow for ‘destructive’ reading of the pﬁblic space where the value of the public space |
is altered by the act of reading it. We call this the ‘side-effect’. '
Consider figure 5-4. It shows how a computation is performed; each phase is bounded by

two states, known as. ..
o the ‘start state’, denoted by an undecorated sigma ¢ in the figure,

e the ‘next state’, denoted by o™ in the figure which is the value of the state after the state

- - in the start state is copied to the private space and the side-effect has occurred,

e the ‘penultimate state’, denoted by o® in the figure which is the value of the state some
finite time after the next state and after the process phase has completed (the process
phase may be ‘null’; it may have no effect on the private space and therefore take no time),

and

93

e the ‘final state’, denoted by ¢’ in the figure, which is the value of the state after the public

space has been updated acc'ording' to the value of the private space.

The horizontal line represents the passage of time. Abéve the line is the state space that is public
and shared by other computations, below the line is the space that is briva,te to the computation.
In order to prevent interference between concurrent computations the ste'p from the start
state to the next state and the step from the penultimate state to the final state are atomic; in
other words only one read or write phase can occur at a time, but several process phases can
occur concurrently.
So let us now express take and put as computations. We can express computations using five
clauses (in the next chapter we show how we can express complicated computations more clearly
using eight clauses). Firstly we list all the variables that maké up the public space. The public
| space is divided into the input space and the output space. The variables listed in the input
space can only have their value altered in the read phase by the side-effect, likewise variables in
the output space can only have their value changed in the write phase. In the casé of take the
input space is the variable ¢n and the oufput space is pool.
N éxt we describe the enabling condition, a property that describes under what circumstances
the computation can take place. In the case of take we can only remove items from in iff there

are items in it 4.e. ¢n is not an empty bag...
in#0

Next we describe the side-effect (if any); the relé,tionship between the input space in the
start and next state. We denote values of variables in the start state by undecorated variables
and in.the next state by variables decorated by ™. take’s side effect is to remove one item from
in, therefore formally. ..

i:Item e in = in™ W {i}

In words; ‘there is an item ¢ which is in the input bag in the start state, but is removed from
the input bag in the next state.” The operator & is the bag union operator.
- Finally we describe the ‘outcome’ relation which essentially describes the read, process and

write phases together. It is a relationship between the start, penultimate and final state. take

~

94

has a null process phase, it simply adds the item removed from in by the side-effect into pool.

If i is the item removed by the side-effect then the outcome relation is...
pool’ = poolP W {Ji} .

. We bring these four clauses together using a VDM-like notation.

take = input : in
output : pool
enabled by : in # 0 (5.16)
side-effect : Ji:ltem o in = in"™ W {i}
outcome : pool’ = pool® W {ji[}

Note that the scope of the existentially quantified variable ¢ carries over all the remaining
clauses. Generally this is always the case l.mless.we explicitly delimit the scope to particular
clauses using bracketing. If we were to quantify a variable in the enabling condition then its
scope would carry tb the side-effect and outcome clause.

Having defined take we can now define put in a very similar way.

put = input : pool
. output : out :
enabled by : pool # 0 (5.17)
side-effect : 3i: Jtem o pool = pool™ W {i[} ‘ '
outcome : out’ = out? W {if}

In words; ‘put is enabled by there being items in pool. Its side effect is to remove one of
those items and its outcome is to put that item into out.’

This completes the speciﬁcai:ion for the system.

5.5.2 Does this specification fulfill the requirements?

Having'proposed this specification we need to show that it is indeed consistent with the require-
ments. In a fully rigorous development process we would formally prove the consistency and as
we have expressed both the re.quirements.and the specification in temporal logic we are conﬁdent '
that we can express this proof using temporal logic methodologies. However an involved proof

-

95

is not our concern here so we discuss rather than prove the consistency. 4
It is crucial to note that the specification not only describes what the system can do, it also
expresses everything the system can do. Behaviour that is inconsistent with the specification
will not be allowed in the system. E ' '
Hence we can satisfy ourselves of the safety condition because the changes to the system are
“caused by put or take and these computations only move items around they do not create or
destroy them. '
put and fake describe how one item moves through the system. We have made the design
decision that only one item at a time moves from one space to the next, hence we have narrowed
the set of possibilities in the way we described in section 5.2. We could have defined more general
puts and takes which move several items at a tirhé, but this would not have illustrated a strict
refinement.
Lastly the obligatory nature of the computation assures that the final state as defined in the
liveness condition will eventually be reached as items will be removed from in whenever there

are items to be removed and will eventually all finish up in out.

5.5.3 A quick review of how far we have got

' So far we have described the requirementé for a system, then reviewed those requirements and

widened them into requirements for a more general class of systems. i
We then proceeded to specify an abstract system which fulfilled those requirements and
~ discussed how that abstract system fulfills those requirements.

However the requirements and specification only describe how items move through the sys-
terﬁ, it says nothing about the actual effect of processing the those items. It only describes the
kernel functionality which moves items through the system; we could add a layer of environ-"
ment which places items in m to be processed and removes items from out once they have been
processed. Furthermore it does not describe how qumkly we want the computatlons to occur or

how many processors we expect the system to use.

'Wé shall look at these issues in the next section.

96

5.6 Developing the system specification

5.6.1 The effect of processing

So far we have only described how items move through the system, now we can look at how
they are actually processed. Assume that processing one item is described by the function
f:Item ~» Item. The aim of the system is to apply f to each item initially in in. We can say
that none of the items in in have had f applied to them and all the items in out have.

In order to describe the effect of processing we introduce a function fbag on bags that returns

the bag of items that have had f applied to them.

fbag:B(Iteﬁz) —-)B(Itém)

Soag(items) = {|f(i) [i € itemsl} (5.18)

Restating the requirements

Using this relationship we can restate the requirements to ensure that f has been applied to
every item in ouf. Liveness states that eventually out contains all the items in the initial value
" of in such that f has been applied to each item.
in=ga in=0

live=3ze| A A A
‘ out =0 out = fbag(z)

(5.19)

Safety ﬁvhich only describes how the input and output ba,gé decreése and increase through
time does not need to be restated to take into account the processing of items.

We can now look at two ways of specifying a system that are consistent with these new
requifements. Both are ‘correct’, but the second is a little more concrete and looks mc;re like
an actual system. It is worth noting that though 'bdth are consistent with the requifements
they are not consistent with each other, (neither is a correct refinement of the other) they could
_ be‘ thought of as .representing the start of two separate design processés resulting in different

designs.

97

Restating the specification (first pass)

The first specification simply reworks the put computation so that the processed version of an
item is put into out.
put = input : pool
output : out
enabled by : pool # § (5.20)

side-effect : 3i: Item o pool™ = pool \ {i[}
outcome : out’ = out? ¥ {f (i)}t

This is straight forward and obviously consistent with the réquirements; but is it reasonable
as a model of a system? We are effectively saying that processing occurs as part of the put
computation. It would make more sense to split processing and putting, and this is what we do

in the next formulation of the system.

Restating the specification (second pass)

Instead of simply taking items from in this new system specification takes items and changes
“them into ‘processing items’. A processing item is an item along with a Boolean ﬂag-which
‘denotes whether it has been processed yet. These processiﬁg items are passed into the pool by
take, once in the pool each processing item has its item converted to the processed form and its
flag set to true. The put compﬁtation selects processed items from the pool, strips away the flag
and places the item in out. '

-

So, pool is redefined as a bag of processing items. . .

pltem = Item X B (5.21)
pool : B(pltem) ‘ ' (5.22)

" The specification states that the computations that are obligatory are take, convert and

put...

98

sys = init A Q[take V convert V put)

(5.23)

(init, that says that the pool and output bag are initially empty does not need changing)

take takes item

¢

s from in and places them as processing items in j;:ool

take = input : in

output : pool

enabled by : in # 0 _
side-effect : Ji:ltem o in = {if} W in™
outcome : pool’ = pool”) {|(¢, false) [}

... convert processes items in the pool...

convert = input : pool

output : pool

enabled by : 3i:ltem e (i, false) € pool
side-effect : pool = pool™ ¥ {|(3, false) |}
outcome : pool’ = pool® W {(f(7), true)[}

...and put places converted items in out...

{

outcome : out’ = out? W {if}

put = input : pool

output : oul
enabled by : 3i:Item e (i, true) € pool
side-effect : pool = pool™ & (i, true)}

5.6.2 Number of processors and timing’

(5.24)

(5.25)

(5.26)

So far we have made little mention of the number of processors needed to implement the system.

This is deliberate; we assert that our specification technique is neither sequential or concurrent,

it is abstract enough that the decision about the number processors available is a design deci-

sion. The semantics for the language describe the behaviour of a system consistent with the

specification in a way that is abstract from the machine(s) on which the implementation is to

be run.

Furthermore we have said nothing about how long it takes for items to pasé through the

99

system; liveness assures that items move through the system in a finite time, but other than
that we have said nothing about time. Typically, épeciﬁcation techriques abstract away from
time because processing time is usually very machine d_ependent. However reactive systems
(especially safety critical systems) may need to make reference to time. For example a reactive
system that responds to a gas burner, tu;‘ning the gas supply off when fhe flame goes out
will need to respond in an explicit time in order to prevent a dangercus build up of gas [99].
Furthermore usability in interactive systems can rely heavily on the response speed of the kernel.

We therefore include apparatus for explicitly discussing time.

Number of processes

Let us assume'_that it takes one process to perform one computation and we can ha.vé have N
processes at a time. We can maintain a count p of the number of processeé currently working and
include in the enabling condition for each computation a condition stating that a computation
can onlj‘r be launched when p < N. Furthermore we conjoin the fact that p is zero when the
system starts. |

Formally...

NN | | | . (5.27) -
init=...Ap=0 (5.28)

take=input: ...,p
output:...,p
enabled by: ... Ap< N (5.29)
side-effect: ... Ap"=p+1
outcome: ... Ap =p" -1

...and so on for convert and pui. _
The side effect increments p, effectively claiming a process for the computation and does
not release it until its write phase is completed. This a simple model of procéss allocation; we

100

could provide a more complicated model that allows more than one process to work on a single

computation and so on.

Timing considerations . -

To describe timing considerations we use the special \;a,ria,ble t. tis a real number that behavesin
certain ways, most notably it always increases. This makes t distinct from all the other variables
in a specification which only change their value when its is explicitly épeéiﬁed that they can.
 Time changes its .va.lu'e implicitly. '

Assuming fha,t the time units are seconds we can specify that take occurs in at most 5 seconds

" as follows. ..

take=input: ...
~output: _
enabled by : ... (5.30)
side-effect : ...
outcome: ... At/ <t+35

Obviously we should not do impossible things with time; such as t’ < t.

Timiﬁg considerations should only be brought into an abstract specification if really nec-
essary. We must be aware that including timing constraints may limit us to systems that are
very difficult to implement, timings on computations may simply to be too fast for a reasonable
machine to perform. Say we place a time constraint oh convert, then we need to be sure that
the. function f can be pérformed in that time. If f is simple then this posés no problem, but
what if Items are data lists and f is a sort? The time to perform f is exponentially related to

the size of each item and putting a simple time limit on it can be very restrictive.

5.6.3 Including the environment

‘So far we have looked at a fairly static system that simply processes a given number of items
and then stops. Now we widen the boundaries of our system and assume we have another agent
that places items in in and removes them from out. What we have described so far is the system

kernel and the agent that does the putting and removing is the syétem environment.

101

Redefining the requirements

Safety and liveness are now two sides of the saine coin; safety states that every item that gets
into the output bag must originally have been in the input bag and liveness states the reverse;
every item in the input bag must eventually get into the output b_;xg. So we can express the
two in one formula (hence demonstrating our point about safety and liveness becoming easily
intertwined). . . |

safelive = Hﬂ T = H‘J y | (5.31)

Cin=x Q out=y

In words ‘the union of all the items that are ever in in is the same as the union of all items ever
in out’.
The initial condition was implicit in the old liveness condition, this is not the case now, so

" we need to express it explicitly. ..

initial = out = { . - (5.32)

So our new requirements are. ..

req = safelive A initial ‘ - (5.33)

Redefining the specification

~ put, convert and take do not need to be redefined, but we need to be aware that square brackets
around a computation not only denote obligation on the computations but also ‘fairness’. When
we had a finite number of items in the system then we did not need to worry about fairness.
We fnay have proposed an iﬁiplementation strategy that takes all the items out of the input bag
first, then processes them, then puts them in the output bag. This would be a successful strategy
if we were sure that there would only be a finite number of items placed in the input bag. If

an infinite number of items were placed in the input bag we would keep indefinitely launching

102

takes to deal with them, such that convert and put never get the chance to launch; that would
be an unfair systefh. All obligatory computa,tions\a,re assumed to be fair, {.e. overall they must
roughly occur as often as they are enabled. Fairness is defined as being “if a computation is,
enabled infinitely often then it must be launched infinitely often.?’ -

There are several implementation strategies that guarantee fairness such as ‘round-robin’

polling ete.

Optional coniputations

The two cdmputations place and remove place items in the input bag and remove them from

the output bag respectively.

place = output : in

outcome : Ji:ltem o in' = in? W {Ji} (5.34)

remove = output : out '
enabled by : out # (_ (5.35)
outcome : Ji:ltem o out? = {if} W out’ .

We do not wish to assume that these cbmputations are eagerly processed, indeed we would
make very little sense if they were. In particular place is always enabled (if there is no explicit
enabling condition then it is held to be true) and we do not wish to say that place is always oc-
curring. Obviously a computation cannot occur unless it is enabled; obligatory processing means

‘that a computation is processed whenever it is enabled (subject to processing resources being
available), optional processing means that a non-deterministic choice abouf, whether processing
occurs or not is made whenever a computation is enabled. Optional processing is denoted by

enclosing the computation in a.ngie brackets, hence our specification is... |

sys = init A Ofput V convert V take] A O(place V remove) (5.36)

2This is the ‘strong fairmess’ definition. There are other definitions that are not our concern here. See [55].

103

Equation 5.36 shows the canonical form for RSSL specifications; an initial predicate, a dis-
junction of obligatory kernel computations and a disjunction of optional environment computa-

tions.

5.6.4 A reactive ‘system

It is easy to see that we can pair certain optional and obligatory computations together. Consider
place and take; the outcome of place enables take and the obligatory nature of fake ensures it
occurs. We can therefore say that place ‘causes’ take.

We can capture this causality in a ‘reaction’; an explicit pairing of optional and obligatory
computations. The reaction formed by pairing place and take is denoted placeg take. As place is

optional then the whole reaction is optional too. The following two specifications are equivaient;

sys = init A O[take] A O{place) , ‘ (5.37)

sys = init A O{place § take) ' (5.38)

In the second equation the ndtion of obligation is subsumed into the notion of reaction. We
use reactions to delimit another layer of ‘typicalness’ in our rea,ctive.systems; typicall& for each
6ptiona.l environment computation, called an ‘invocation’ there is a corresponding obligatory
computation, called a ‘response’, that is caused by it. A specification in the ‘reaction style’ is
simply a device for making this causality between computations clearer.

However we need to be explicit about which environment computation causes which oblig-
atory computation. To do this, as well as an enabled by clause in the 6bliga.tory computation
we add an ‘invoked by’ clause which explicitly states which optional computafion is causing it.

Hence, in the reaction style of specification, we would rewrite Zake as follows. ..

104

take = .
invoked. by : place

enabled by : in % 0 (5-39)

In order to show the need for"explicit invocation clauses consider the following cautionary

specification.

A cautionary specification of a reactive system

A display panel in a nuclear power plant control centre shows the condition of a valve using
some icon. The icon can have two states; open and closed as can the valve iteelf.

The controller can open or close a valve by manipulating i;he icon (by some means we are
not too interested in) and there is a safety device in the reactor that can close or open the valve
to prevent explosions, lea,ks or other undesirable occurrences in times of crisis.

The requirements (of which we shall give no details) say that the icon should represent the

condition of the valve as often as possible. Note that the icon and valve cannot have the same
. value all the time; there must be some (minimal) time lag between one changing an the the
other changing in response. ' o

There are two kernel computatiens that change the value of the icon or valve so that the two
match each other, and there are two environment computations one representing the co'ntroller.
changing the value of the icon and one representing the safety system changing the value of the
valve. We assume that system starts in a state where the icon and valve have the same value.
All this is shown in figure 5-5. -

If we assume that the outcomes occur as fast as possible we still have a very big problem
with this specxﬁca.txon Imagine a situation where the valve is open, there is an emergency in
the pla,nt and safety system shuts the valve. Now the icon and the valve have dlﬁ'erent values, 50
updatelcon is enabled and as it is obligatory then the icon should be updated as we Would expect.
However, both up'dateIcon_ and uﬁdate Velve have the same enabling condition, so we could have
a situation where in order to get the valve and icon to have the same value, updafe Valve is

launched with possibly disastrous consequences.

105

icon:{Open, Closed} : (5.40)
valve:{Open, Closed}
badSpec = init A D{update Valve V updatelcon] A O{controller V safety) (5.41)
init = icon = valve (5.42)
update Valve = : updatelecon =
input : icon : : input ; valve '
output : valve ‘ (5.43) . output: icon (5.44)
enabled by : icon # valve enabled. by : icon # valve
outcome : valve’ = icon ' outcome : valve = icon’
‘ . p
controller = ' safety =
output : icon : (5.45) output : valve _ (5.46)
outcome : icon’ £ icon outcome : valve’ # valve

Figure 5-5: An innocuous lboking, but very dangerous specification

- "Obviously safety should be paired with updatelcon and controller should be paired with
update Valve. We need to add more conditions to the enabling conditions to make cle.ar which
computation should be la.unchéd_. We could do this with Boolean flags that are set to true when
an invocation is launched and the enabling condition for the response includes them being true.
However the use of flags like this tends to clutter the formulae so we ﬁrovide reactions as a
syntactic sugar to hide these flags. (In fact as we shall see in the next chapter, reactions hide
counters of how many invocations there have been.) 7 |

An important poinf in favour of the reaction style of specification is that it discourages us
from defining specifications which look satisfactory, such as figure 5-5, but which in fact are not..
The proble.m.with figure 5-5 is not immediately obvious and one of the main ‘seiling points’ of
formal approachesis that thgy lay problems open to inspection because of their abstract natire.

It would be (more) difficult to make this mistake when describing the system in the reaction
style. Again we return to one of our running themes; techniques for describing typical systems
whilst still retaining enough generality to describe atypical ones too and making it easier to
‘describe typical systems so as to expose atypicalities. |

An improved specification is shown in figure 5-6. The controller and updateValvé computa-

106

goodSpec = init A O{controller § update Valve V safety § updatelcon) - (5.47)

init = icon = valve . .. (5.48)
update Valve = _ updatelcon =
input : icon : input : valve

output : valve output : icon

invoked by : controller (5.49) " invoked by : safety ‘ (5.50)
enabled by : icon # valve . enabled by : icon # valve
outcome : valve' = icon " outcome : valve = icon’
controller = ' ' safety =
output: icon . (5.51) output : valve (5.52)
outcome: icon’ # icon outcome : valve' # valve

Figure 5-6: An improved specification

tions are explicitly paired to form a reaction, as are safety and updatelcon. Both the responses
have ‘invoked by’ clauses added to show which optional computations invoke them.

Note that this system bears a marked resemblance to ‘direct manipulation’ systems where
- both the user and some underlying functionalify have access to some representation that they can
both manipulate. We have shown a simple specification for maintaining consistency between the -
representation and the functiona.lity. See for example, the similarity between the specification
here and the specification of a scroll bar presented in [23)].

A speciﬁca.tion in the reaction style is. a collection of optiona,l reactions. The notio.n' of

obligation is ‘hidden’ in the reactions.

5.7 Some implementation strategies

We now look some sample implementations of the system. There are, as yet, very few tried and
tested techniques® for program derivation in concurrent systems. Therefore we must proceed
with caution. We suggest an implementation structure and show how we can produce some

implementations based on our speciﬁca,tio_ns; There is however, as yet, no generally agreed

3 At least not ‘tried and tested’ to the extent that VDM’s refinement calculus has been tried and tested, for
example. ‘ _

107

derivation from specification to impleméntation; we propose an implementation and then would
need to prove that it fulfills some specification by a post hoc verification.

Such post hoc verifications can be notoriously laborious, so we suggest that the system‘
designer refines the specification as far as possible before making the'step into implementations;

this should ease the discharging of proof obligations.

5.7.1 _Specification refinement

We know that a specification ¢y is a refiement of ¢ if 4, does not do anything considered
illegal in 12 and does everything that is expected of it. .In other words, the refinement respects
the safety and liveness conditions implicit in the specification it refines.

Ensuring safety is simply a case q.f showing that the behaviour described by a refinement is
a sub-set of the ’behavidur des-c'ribed by its specification. Actually proving this would be very

“arduous, buﬁ as our specification language is within the bounds of TLA we contend that we
can import the proof me‘ﬁhodology of TLA and then we can equiva.leﬁtly prove that s = 9.
Liveness is more iﬁ\}olved and is described in the next chapter.

A system designer can get considerable mileage in refining a specification in this manner;
he can progressively split computaiions into sev‘era.l more refined computations and he can also
introduce ideas about the behaviour rof internal state by existentially unantifying the internal
state, so long as the refinement is correct with respect to the more abstract Speciﬁc;a,tion. This
refinement process should keep the new, refined specifications within the bounds of our speci-
fication étyle; they should still describe an initial predicate and sets of obligatory and obtional
computations, even if the sets are very large and the computationé very detailed and concrete.
Complexity should only be introduced into our specifications in two ways; more computations
and more complicated computations. _ _

At some point we need to take the step from a description of a system in RSSL style to a
description that looks like a programming language. First we must be sure which parts of the

system we are going to implement. :

108

5.7.2 Splitting the kernel from the environment

Recall that the environment is part of the system that already exists; we do not therefore need

to worry about implementing it. The system we wish to implement is speciﬁed by...

sys = init A O[take V convert V put] A O{place V remove)

.. .therefore we assume that we already have a system that behaves as. . .

environ = O(place V remove) o (5.53)

...and we need to implement a system that behaves as...

kernel = init A Q[take V convert V put) : (5.54)
Actually init may be set up by the kernel or environment or a combination of the two.

5.7.3 An implementation structure

Our implementation structure for the kernel is based on a construct similar (but not the same)

as the do loop suggested by Dijkstra [36].

initg
do
in#0-T
0 |

Ji:item o (i,false) € pool = C | (5.55)

Ji:item o (i, true) € pool — P
else

true — skip
od :

...where T, C and P are code fragments representing the side-effects and outcomes of fake, -
convert and put respectively.

Once we have established the initial conditions the program enters an infinite loop where

109

the guards are evaluated. (the guards being synonymous with the enabling conditions). ard a
single computation is selected from those that have their guards evaluate to true. If no guards
eva,h‘la,te to true the else clause is performed; nothing happens and the system waits for the
environment to trigger further computations. We assume that computations are not simply
_ non-deterministica.lly selected once their guards are true but that the selection is guided by the
fairness conditions. We assume a ‘fair scheduler’ on the do loop. Such things are described in
[55]. Note that this program is non-terminating. We consider termination to effectively be the
indefinite selection of the else clause. '

We cén iﬁlplément init by;
(out, pool) := (0,0)

For each of the code fragments we need some code that has the effect of the side-effects
occurring ‘next’; control does not pass back to the do loop until the side-effect is completed and

a train of events is put in place that ensures the eventual completion of the outcome.

5.7.4 Implementation using sequential constructs

We can place the side-effect and outcome in sequence as long as the side-effect is not destructive.
In the case of take the side-effect is destructive so we need to be careful with the implementation.
We can copy the relevant parts of the global space to some internal variables, perform the side-
effect and then perform the outcome based on the value of the interha.l variables. So T may have
the form... |

i := removefrom(in)s

in := remaining(in)3’ ‘ - (5.56)
pool := pool W {(i, false) [} '

The operation removefrom is deterministic — it removes an item from a bag, but given
/" the same bag, it always removes the same item from the bag. It is paired with the operation
remaining which returns the bag with the item selected by removefrom removed.

Note that control does not return to the do loop until both the side-effect and outcome have

110

been completed, hence only one instance of take can be performed at a time using this sort of
implementation.
A generic code fragment for i'mplementing computations in a sequential programming lan-

guage is; -

copy global variables to internal § side-effect § outcome using internal variables
- We would, of course, implement the ot_'her two fragments C' and P in this way too.

5.7.5 Implementation using concurrent constructs

" Assume now that we have a language that supports the following constructs. ..

e P || S — parallel composition. P and S are started in the same instant and run in parailel. |

The construct does not complete until both P and S are completed.

o fork(P) — a process is forked to deal with P. P runs concurrently to whatever else is

_going on in the system.

- ...we can implement T as follows...

i := removefrom(in) § (in := remaining(in) ||

fork(pool := pool W { (1, false} })) (5.57)

Global variables ai‘e copied to internal space and then the side-effect and outcome are per- -
formed in parallel. The side-effect is performed immediately and a process is forked to deal with
the outcome. Because the time taken to’ perform a fork is minimal control returns to the do
loop- as soon as the side-effect is completed. -

A generic form code fragment implementing computations is;

copy to internal § (side-effect || fork(outcome using internal))

1

5.8 Summary

We have taken care to describe our notion of reactive systems and have suggested how reactive
systems relate to intéfactive systems. ' .

A reactive system is a collection of interacting sub-systems. The éﬁb—systems can be divided
into environment sub-systems and kernel sub-systems. The environiment sub-systems are highly
non-deterministic and typically are the parts of the system that are already extant. Typically,
the kerﬁel sub-systems are automated and fairly deterministic in their behaviour. It is usually
the kernel that is designed and built.

To conclude this chapter let us run t.hrough a generalised system and see how parts of it fit

into a design process.

5.8.1 A design process stated generally
Requirements

Requirements describe the problem space that we need a system to fulfill. Typically requirements

are expressed as a conjunction of safety and liveness conditions.
reg = safe A live

A safety condition states that bad things never happen and a Iivenesé condition states that
something good does eventually happen. Reactive systems may require a slightly more complex
exﬁression of liveness condition. Liveness in the kernel is dependent on the environment —
something good only need eventually happen if the environment requests it., This unfortunately
blurs the distinction between requirements and speciﬁcations._ Ideally requirements should be
stated in complete isolation to any ideas of what system fulfils them. However liveness stated
in this way needs to have some idea of system in order to make the distinction between kernel
and environment. ‘ '

The requirements are generated by requirements engineers. -

112

« System specification

Specifications describe systems which fulfill requirements. A system specification is a conjunc-
tion of an environment specification and a kernel specification, sometimes known simply as the
specification. | ’

Our model of reactive system proposes that the environment makes requests of the kernel
by enabling the requested functionality. Once enabled the kernel functionality must Iiespond by
performing that enabled functionality (assuming there are processing resources available).

The system specification lists all the pieces of functionality that the environment can perform
and all the pieces of functionality that the kernel must performt when enabled. Also included
in the system specification is a description of the legal initial states. If .{el, «vyen} is all the
environment computations, {k1, .., kn} is all the kernel computations and init is the description

of legal initial states then the system specification will have the form...
sys = init AQk1 V .. VE]AD(e1V .. Vey,)

The angle brackets denote thé optional nature of the environment functionality and the
square brackets denote the_obliga,tory nature of the kernel functionality. This specification will
be prdduced by a system designer. - | o | |

. Functionality is modelled by a novel entity Whiéh we call a computation, A computation
shows the relationéhip betweeﬁ some internal state space and the public sfate space. The per-
formance of a computation passes through three stages; the read phaée where.data. is copied
from the public space to the internal and the public space may also be updated, followed by a
process phase where processing is performed on the internal space alone and finally the public
space is updated with the result of thé procéss phase. _

Typically environment and kernel computations can be paired fogether'; the purpose of en-
vironment éomputations is to enable kernel computations, Because kernei computations are
obligated to occur once enabled we can say that certain environment computations cause cer-
tain kernel computations. To make it clearer what is going on we can e}fplicitly pair these
computations together to form a reaction. If computation e causes computation & then the reac-

tion formed by pairing the twois denoted by egk. We can then specify a system as a disjunction

113

of optional reactions. We call this a specification in the reaction style.

sys = it ADO(r V .. v T'n)
...where for all ¢ between 1 and n, r; = ¢; § k;. The following specification is equivalent to the

one above. .
sys= it AQ[k YV .. VE JAD(e V .. Vey)

The reaction style specification is simply a tool for making the interplajr between the envi-

ronment and kernel clearer.

Refinement of the kernel

The system specification is divided into the assumptions (which capture the part of the system
that does not need to be built) and the kernel specification which does need to be built. Typically

the assumptions will be the part of the system captured in the optional computations...
assume =0{(e; V .. Vep)
.. .and the kernel specification will be the initial state description and the kernel computa,tionls. .
kernel = init AQ[k1 V .. V ky)

If the kernel is purely automated functionality fhen the above is the specification for the
. software system. _ '

Refinement is the process of consistently adding extra description and compleﬁcity to speci-
fications to make them more ‘executable’. The extra complexity added is determined by design
decisions made by the refiner. The only way of adding complexity is more complicated computa-
tions or more computations, therefore the actual form of the specification does not alter through
' the majority of the reﬁnément process; only the computations in the speciﬁcation alter.

A refinement process should maintain safety, (i.e. not introduce behaviour that is unsafe)

114

. and ensure liveness. Safety can be thought of as the maximum a system should do and liveness
~can be thought of as the minimum a system should do. How we define the safety and liveness
implicit conditions in a specification is involved and a way of doing so is suggested in the next
chapter when we give a definition of the refinement opera.tor >,

As the kernel computations represent pieces of software the process of reﬁmng them is the

province of software engineers. -

Irﬁplementatidn

| Assuming that the software system specification has the _followihg form...

kernel = init AQ[ky V .. V ky]

...then the following is a suggestion for an implementa.tion framework for the system. .

nitg
do '
ki.E — copy to internal § (k;.S || fork(k,.0))
0 o |

[| |
kn.E -+ copy to internal § (k,.S |} fork(k,.0))
else
true — skip .
od .- 3

...where .E .extracts’ the enabling condition from a computation, .§ extracts the side-effect
and .0 extracts the outcome. |} is a parallelism operator and fork generates a process fork that
performs its argument. ' | |

. The step from spec1ﬁcat10n to implementation is still part of the software engmeerlng pro-

cessing, after that we are into the realm of the programmer.

115

Chapter 6 | | -
A.formal semanti.cs for RSSL

Having introduced RSSL in the previous chapter we now proceed to give a formal semantics for

its notations.

6.1 Fox_'ma,l specification notations

Before going into details for our notations we first look at formal notations in general. In the
context'o.f this work a formal notation is a language for expressing models of system behaviour.
A formal notation is characterised by defining three mathematical objects and defining the

relationship between them. These three objects are. . .

A model of system behaviour showing how a system develops or changes through time.
This change can be modelled in several ways and in the literature has many different
namés; ‘a trace’ or ‘a history’ or a ‘a computation’. We call such an object ‘an activity’
and model it as a mapping from time to system state. We define system ‘behaviour’ to be

the set of all activities that a systém can-legally perform.

The syntax for the notation is usually expressed as a collection of rules for generating a set

of well formed system descriptions.

A formal semantic function which takes a well formed system description and returns the

behaviour that that description describes. If Behaviour is the set of all models of system

116

behaviour and D is the setlolf well formed descriptions generated by the syntax then a

semantic function has the signature...

D — Behaviour

The purpose of this chapter is to define the set Behaviour, specific instances of D for temporal -
logic and RSSL speciﬁca,fions and semantic functions for both. Section 6.2 defines the set
Behaviour, section 6.4 defines the syntax for the simple temporal logic used in RSSL which is
denoted F and a semantic function f: F — Behaviour which defines the behaviour described by
elements of F'. Likewise section 6.6 defines RSSL.the set of all RSSL specifications and section
6.7 defines the semantic function s: RSSL — Behaviour. '

This discussion makes clear that the two notations we have so far proposed only differ in

style; they both describe the same thing, only in different ways.

6.2 A model of real time system behaviour

There are several ways of describing or conceptualising system activity. Most common Ain the
literature is an infinite sequence of states; do, 01,02, ... The system is thought of moving dis-
cretely from one state to the next. It tends not to be clear how time is dealt with in such a
model. Possibly each state is thought of as lasting for a fixed period of time, or maybe each
state is thought of as lasting until there is a state change. S-uch models are usuélly the basis for
specification techniques that abstract away from time altogether, hence the ambiguity.

We wish to be able to déa,l with time expliéitly, so we intend to be Iexa,cting about how we
‘deal with time. Pnueli (98] uses a real time model to describe system activity; time is modelled
using a ‘dense set’. (A dense set being defined as a set for which each pair of distinct elements
~ has at least one element lying ‘between’ them. The reals are a classic example 6f a dense set.)

This approach, we believe, has two major advantages;
e there is no fixed gra.nulé,ﬁty in the model; refinement is simplified, and therefore

e using real time elegantly overcomes the ‘stuttering problem’ [74, section 5.1].

117

However, to counterbalance these advantages there is the philosophical problem of ‘Zeno’s para-
dox’ (which is fully eprained_in' section 6.2.5).

This section deals with four entities;

State — a ‘snap-shot’ of a system at a single instance. State is characterised by the assignment

of values to the variables in a system.

- Time — Abadi and Lamport [1] show that TLA can be made to deal with explicit timing issues
- by including time ambhgst the variables in a specification. We take the stance that there
are enough differences between time and other variables to treat time as a special case. We
wish to describe state changes explicitly, so that only state changes explicitly described in
the spe;:iﬁcation can occur in the system. Having to eiplicitly describe all time changes in
a system would lead to rather bizarre and cumbersome specifications. The ma.jo‘r difference
bétWeen state and time is that state changes must be described explicitly whereas times

changes implicitly.

Activity — a model of how sjrstem state develops through time.
Behaviour — all the activities that a system can perform.

Because we are dea.ling. with real time we need to discount ‘Zeno’s paradox’ from our model 6f
activity. The formalism for this is quite involved and so we relegate it to sub-section 6.2.5 at
the end of this section. This sub-section can be omitted without losing track of the rest of this
chapter.

Now let us look at t‘hese ideas formally.

6.2.1 State

A state is a mapping from variable names to values. We make no particular restriction as to
what constitutes a variable name, but in our work we stay with convention, naming variables
using finite sequences of characters. A value can be any denotation whatsoever.

We denote state by . Forma,ily; ..

Var=... (6.1)

118

Val=... ' | (6.2)
Y= Var — Val ‘ (6.3)

Following from Lamport [74, Note 1] we assume that Val is the set of all sets. Hence the set

Val includes all the real numbers. ..
R C Val

A useful relation over states which we make use of later is canVary. Given two states and
a set of variable names, canVary holds if the two states are the same apart from (possibly) the

values of the variables in the given set.

canVary:Z X Z X F(Var) > B

canVary(oy, 02, z8) = Vu: Var e v € 25 = 01 (v) = o2(v) (6-4)
Ih words; ‘all variables not in the set zs must have the same value ih oy and o3’
6.2.2 Time
We model time using the non-negative reals.
T2[0,00] (6.5)

...that is the {dense) set of all real numbers greater than or equal to zero.

6.2.3 Activities
An activity shows how the state of the system develops through time.

In most such models presented in the literature activities are modelled as a sequence of states.
However, as we discussed earlier, what the index to that sequence represents is not clear. The
index may represent the passage of a fixed unit of time, for example if o is a sequence of states

then a(3) denotes the state after three units of time. Alternatively the index may represent the

number of state changes, hence a(3) denotes the state after the third state change;

119

Both of these represenlta.tions have problems; in the the first case time has a fixed lower
limit of granularity and this may cause problems in refinement and in the second case time is
abstracted away from altogether. In many situations this may be desirable, but in the sort of
reactive and interactive systems we will be specifying time may be critical. We may wish to
- ab'st;act away from explicit time, but it may be crucial that we do not.

We model activities as a partial function from time to state. Even though time itself is
uncounta_blé we only wish to consider activities that represent a countable number of state
changes. A simple function from time to state does not preclude activities with an uncountable
number of state changes. Such activities are not really what we are interested in. We call such

a function a ‘raw activity’.

RavActivity=T B2 (6.6)

An activity that undergoes uncountable state changes can be suffering from ‘Zeno’s paradox’
where time advances, but by infintessimally small increments so there is a finite point of time
that is never reached. Obviously it would be impossible to implement a system with such ‘Zenc’

activities, so we define Activity to be the set of all non-Zeno! activities.

Activity = {o: RawActivity | nonZeno(0)} (6.7)

In words; ‘an activity is any raw activity that does not suffer from Zeno’s paradox.’

Henceforth when we refer to an activity we mean a non-Zeno activity.

" Pictorial representations of activities

Figure 6-1: An example of an activity pictoria,lly' represented

!The predicate nonZenc is defined in section 6.2.5

120

It is .:ather more difficult to represent a real-time activity than it is represent a discrete
sequence of states, Thérefore we introduce a pictorial representation of activities, an example of
which is shown in figure 6-1.

An activity is represented by a horizontal bar labeled by the fiame of the activity at the
far left. Distance along the horizontal represents time. Time zero is usually included at the
far left of the bar and the far right of the bar has a pointer attached to represent that the
activity extends to infinite time. We can describe what is true at given times in an activity by
marking the bar with vertical lines, labeling those Iinés underneath the bar with times and above
with descriptions of what is true at this given time. We can show that descriptions hold over
continuous times by marking the start time and end time and spanning the two marked times
with a line labeled with the description. If the condition holds indefinitely then we mark the
start time at which the condition becomes true and span the rest of the activity with a line that
is dashed at the right extreme. Furthermore, if the horizontal line spanning contiguous time is

. tenﬁinated by an empty circle shows that the description holds immediately before or after that
time, but not.a,t that time. If the circle is solid then the description holds at precisely that time.

Figure 6-1 shows that in activity o, ¢ is true between (but not including) times 10 and 15
and that ¢ is true at time 20 and holds indefinitely thereafter. | '

This pictorial representa,tibn ié ndt infended to be a pari:icﬁlarly rigbrbus notation, merely
an aid to comprehension which is particularly useful in section 6.4 where we introduce several

variations of temporal logic operators.

Activity application

As an activity is a partial function from time to staté, we may have times for which no state is
defined. In these cases we infer that the state is the same as it was ai the most recently defined
time. For example, assume we have an activity for which the state is only deﬁned. at integer
times (0,1,2,3,...). The state at time 2.5 is assumed to be the same as the most receﬁtly defined
time, which in this case is 2. '

For this assumption to hold we need to assert that an a,ctivitj' has at least the state at time

zero defined;

121 .

Ya: Activity ¢ 0 € dom o - (68)

In words; ‘it is always the case that an activity contains a state defined at time zero.’
We denote activity application (the state at a given time) by bold brackets — a(t) where

o: Activity and ¢:T. Formally...

a(t) = arecent)

where recent = maz({early:T | early € dom a A early < t}) (6.9)

In words; ‘a(t) denotes the state in o at time recent where recent is the most recent time for
which there is a defined statein a.’
Also it is useful to consider the state and time together as a pair, so the notation a{(t)) does

" this.

I

o(t) = (alt),t) (6.10)

In words; ‘a((t)) denotes the pair of state and time such that the state is the state at time ¢ in

a and the time is ¢}

. Variant activities

A useful equivalence on activities is variant which holds iff two activities may only differ by the

value of a given variable.

variant : Activity X Activity X Var - B.
variant(o, o/, z) = Vt: T e Yu: Var e ¢ # v = ot} (v) = o/ (t)(v)

(6.11)

In words; ‘at all times all the variables except z have the same value in both a and /.

.

-6.2.4 Behaviour

Systems will be able to engage in many different activities. The behaviour of a system is the set

of all activities that the system can engage in.

Behaviour = P(Activity) (6.12)

122

6.2.5 Non-zeno activities

An activity that is non-zeno only allows a finite number of state changes in a finite time. Another
way of looking at this is to ‘chop’ an activity up into sections of equal time and to insist that at
most one state change occurs in each section. As each section is of: equal length, a finite piece
of activity can only be split into a finite number of sections. Furthermore as at most one state
cha,nge‘can occur in a section then there must only be a finite number of state changes in that.
finite piece of activity.)

However, what if two variables change value at the same time; is this one or two state
changes? Having two variables changing value at the same time is fine, but we do not want
either of them to change value again during that portion. More subtly, we want to allow distinct _
variables to change value slightly out of step with one another {as most variables will do at a
fine enough level of time granularity) without this ‘out—of-stepneés’ being construed as two state -
changes in an infinitesimally short time. -

Hence our definition of non-Zenoness is ‘an activity can be divided into sections of equal
length and a variable can 'only change its value at most once in each section.’

Assume that there is a predicate atMostOne which takes a raw activity and two times and

holds true if every variable changes value at most once in that activity between the two times.

We can define the predicate nonZeno as follows. ..

nonZeno: RewActivity -+ B
nonZeno(o)=35:Ted>0A (6.13)
' VYn:Ne atMostOne(a,n x §,(n+ 1) x §)
In words; ‘an activity is non-Zeno if it can be divided into sections of length & and each variable
changes its value at most once in each section.’ .
A variable changes its value at most once in a section if the section can be divided in two
such that the value of the variable does not change in the first ‘half’ or second ‘half’ (but the

variable may have different values in each half. The predicate atMostOne is defined based on

this idea. ..

123

atMostOne: RowActivity x Tx T —B
atMostOne(a,t,t") = Vz: Var o
Imid:Tet <mid <t' A : (6.14) -
constant(e, z,t, mid) A
constant(e, z, mid, t')
In words; ‘for each variable z the section between ¢ and # is divided into two ‘halves’ bounded
by t and mid and mid and ¢’ and ¢ does not change value in both ‘halves’.’

The predicaté constant holds true if the given variable does not change value between the

two given times.

constant : RawActivity X Var xTxTSB _
constant (e, 7,1, '} = Vmid: T et < mid < t/ = : (6.15)
o(t) (2) = a(mid) (s)
In words; ‘the value of z is the same from time ¢ to (and not including} ¢’ is the same as it was

at time ¢,

6.3 State relationships and properties

Fundamental to our notations is the ability to describe what is or is not true about states and
* times. We could describe a state by listing all the variables and their corresponding values.
This, of coursé, is cumbersome and does not allow us any degree of a.pbroximation. We need
descriptions of states and times that are compact and allow approximation, Such descriptions
are ‘state relationships’ (or relationships for short) and we make great use of them in the rest of
this chapter, so we devote a section now to describing them and giving their semantics.

State relationships describe relations that either hold true or false between stat.es. For ex-
ample the TLA action ' = z + 1 is a state relation and the outcome clause in 2 computation is
also a state relation. We use decorations on variables to denote th;a value of variables in different
states.

A special case of state relationships are ‘properties’ which describe what is or is not true in

a single state. z=2is a property. Properties are relationships with no decorated variables.

124

6.'3.1 Truth valued functions

" A state relationship is a truth valued function and a list of é,rguments to that function. 2 =4
is a truth valued function which has the value false. = is the function and 2 and 4 are the

a,rguments; Assume we have a set of functions TVF...
TVF = ... | (6.16)

...which we do not enumerate here, but we assume the set includes such basic operators as =,
<, <, ete. We also adopt pre-fix notation for simplicity. 2 = 4 is expressed as = (2, 4). (This is
just to make life easier whilst defining the semantics of our notations. The user of our notations
should be able to express truth valued functions using in- ﬁx or whatever notation suits hlm, S0
long as there is a clear and unambiguous mapping to pre—ﬁx notation.)

The semantic function ¢v (starding for ‘truth value’) takes a function and a list of values as

its arguments and returns the truth value of the function.

 tiTVF x Val* -+ B (6.17)

'As we have not enumerated TVF we cannot give a definition for tv,r but it should be intuitive.

For'exa.mplé. .

to[=, (2, 4)] =false

, tv[isEven, (2)] =true
 tu]A, (true, false)] = false

" tv[isMortal, (qurates)] = true

...and so forth.

6.3.2 Argument lists

This is all very well so long as we wish to evaluate truth valued functions over argument. lists
containing only constant values, We do not of course; also wish to use truth valued functions to

describe the value of certain variables. In fact argument lists can contain three types of symbols

125

(collectively known as ‘terms’); variable names (members of the set Var), constants (members

of the set Val) and the special variable t denéting time.

Term= Var U Val U {t} L (6.18)

However, to complicate matters each term in a relation’s argument list may be decorated
- with certain symbols. A decoration is a symbol super-scripted to a term.
In RSSL we use four decorations; ®, ?, / and ¥*"¢ (an undecorated term ¢m is a short-hand

for tmMon¢), The decorations used in RSSL are collected in the set Dec.

Dec {n, », 1+ Nomey | (6.19)

A state relationship is a truth valued function and an argument list consisting of terms and

their decorations.

R= TVF x (Term x Dec)* _ (6.20)

x

For example,'a,ssumé that there is a truth valued function Eglnc: TVF (Eglnc being short
for ‘equal to increment’) which takes two arguments and holds true if the second argument is

precisely one greater than the first.
Va,b:Ne tv[Eglne, (e,)] =a+1=1b

The TLA action z’ = z + 1 is a shorthand for the state relationship. ..

(Eqlnc, ((311%“): (2)))

126

z=20 2 =21

o ! !
a 1 I

to t ¢

Figure 6-2: The TLA action to increment the \—ra,lue of z

6.3.3 ' Evaluating argument lists

To evaluate a state relationship we first need to evaluate its argument list into a list of values
which we can then pass to the function fv. The value of a term is dependent on its decoration.
Each decoration denotes a different state and time.

Consider figure 6-2. Given. .
e an activity o,
e two states g and oy,
" e two times tg and f;, such that :
* the va.lue of 2 is 20 in gy and 21 in &1, and

e lg<ly

...then we can evaluate the TLA action 2’ = z + 1 in these states and times. If we evaluate
undecorated terms using ¢p and fp and the variables decorated with / using &; and t; then we
can see that the action is true; it evaluates to 21 = 20+ 1. (Time is dealt with implicitly and
must advance; hence as tp is the time at the start of the action and t; the time at the end then
to<ti) |

We define which state and time.relate to which decoration in a state relationship with a

‘decoration map’. This is a function from decoration to state and time.

DecMap = Dec B (% T) o (6.21)

(A decoration map is partial because in many circumstances we will be dealing with relationships

. that do not contain all decorations in their argument list.)

127

The decoration map we would use to evaluate the TLA action described above would be
{Noners (o9, to),’— (01,1)}; undecorated variables are mapped to the state and time (oy,t)
and variables decorated with / aré mapped to the state and time (o3,%).

The semantic function eval takes a term and a state/time pair ahd returns the value of the

term in that state/time,

eval: Term = (Ex T) = Val
eval[z](o,t) = o(z) — where z: Var
‘eval[c](c,t) = ¢ — where ¢: Val
evalt](o,t) =t

(6.22)

In words; “if the term is a variable then its value in o is returned. If the term is a constant then

the constant is returned. If the term is the special variable t then the time ¢ is returned.’

6.3.4 Evaluating state relationships

Evaluating a state relationship is a matter of evaluating each of the decorated terms in its
argument list against some decoration map, then passing these values to the function tv to

determine the truth (or otherwise) of the relationship.

" rel: R — DecMap — B : ‘
1“‘BI[[fi ((ml, dl)s ‘. :(mm d'n.))]]ﬁm\"'é (6.23)

to[f, eval[mi}dm(d,), .., eval{m,jdm(d,)]

In words; ‘each term from m; to m, is evaluated by extracting the state and time from the dec- .

oration map dm appropriate to the decoration (d; to dy,) of the term. This evaluated argument -
list is then passed to the function tv.’ | | o

As an example let us work through the TLA action z' = z + 1. We have already shown that

‘2’ = z + 1 is a shorthand for the state relationship (Eglne, {(z,Y°"), (z,'))). Let us evaluate

this against the states and times shown in figure 6-2. The decoration map for this evaluation is-
dm = {Vemews (oo, t0),'— (o1, 81)} where oo(z) = 20 and o1 (z) = 21. |

We areé then evaluating the following formula. ..

rel[Eqlne, {(z,"°*), (z,))]dm

128

...which is equal by definition to...

~ tw[Eqlne(eva.l [z)dm(¥°™), eval [-’c]l dm("))]

Now we extract the appropriate states and times from the decoration map dm...

| tv[EqIn;:, (eval, [z] (0, to), éval[z] (a'l., t1))]
...and we can then evaluate the two terms against fhese states and times...
tvf Eqlnc(20, 21)]
. and ﬁna.lly_ we pass this list of values to fhe functioﬁ tv to get the result...

true

6.3.5 Properties

A property describes what is true at a single state and time. Its definition is very similar to that
given for state relationships. ' '

A property is a truth valued function and sequence of (undecorated) terms.

P= TVF x Term" (6.24)

The semantic function for properties prop evaluates a property given a state and time.

prop:P = (ExT) =B
- prop[f,{m1, ..,mu)](c,t) =

| - (6.25) -
tol f, (eval[m;] (e, t), . ., eva!l[mn] (e,2))]

In words; ‘each term in the argument list of the property is evaluated against (o,t) and this

evaluated list is passed to the function tv.”

129

6.4 A simple temporal logic

We have now put down enough formal preliminaries that we can begin to formalise RSSL’s
temporal logic notation. Recall from the introductory section that we need to define the model
of system behaviour (which we did in section 6.2), the syntax ‘of the notation and the semantic

function for the notation.

6.4.1 Formulae

The syntax for the temporal logic recursively defines a set of ‘formulae’ F. A formula is a well
formed temporal logic expression.
The base case for the syntax definition is that all properties as defined in section 6.3.5 are

formulae, If z is a variable name, § is a time and ¢ and % are formulae then so are...

¢ AP Sxedp O¢ Od O5d

...and nothing else is a formula.
Formally...
Fu=P |

-F |FAF|3VareF| (6.26)
OF| OF | OrF -

The operators =, A and 3 have their usual predicate logic meanings; negation, conjunction
and existential quantification respectively. The temporal operator O has the meaning ‘hence-

forth’, the operator < is ‘eventually’. and O7 is ‘timed-eventually’.

. 6.4.2 Semantics for formulae - | '

We begin the semantics for formulae by defining the semantic formulae form which returns
whether a given formula holds true at a given time in a given activity. The given time is
assumed to be ‘now’. So if the current time is ten, the formula z = 15 A isMortal(y) holds true
in activity « if ¢(10)(z) = 15 and a(10)(y) = Socrates. -

The semantic function form has the following signature...

130

form:F — (Activity x T) = B ' - (6.27)

The base case — properties

form for the base case formulae (i.e. properties) is based on the function prop (equation 6.25 in
the previous section}. We use the given time to extract the current state from the given activity
(using the double brackets notation — see formula 6.10) and then pass this to the prop function

to evaluate the property. Given that pr:P...

form[pr] (a,'now)lé proplpr]e(t)) 66.28)

Negation and conjunction

The definitions for ~ and A are straight forward and should be familiar to a reader with any
experience with denota.tiong,l semantics. For the formula —¢ (wh'e're ¢ is a formula) to hold now
in an activity then it is the case that ¢ does not hold now in the activity. Similarly for ¢ A ¢
(where ¢ and 1 are both formulae) to hold now in an ;activity it is the case that both ¢ and ¢
hold in the activity. o

Fofmally, given that ¢ and ¢ are formulae. ..

form[~¢](e, now) = ~form[¢](a, now) | | (6.29)
form[é A] (e, now) = form[¢](e, now} A form[4] (a, now) (6.39)

Existential quantification

To define existential quantification we use the variant equivalence (equation 6.11) we defined on
activities. For 3z ¢ (where z is a variable and ¢ is a formula) to hold now in a given activity it
_is the case that there is at least one related activity in which ¢ holds now. The related activity

should be the same as the given activity except (possibly) for its values of z. In other words

131

23 (24, } t
now now t now < ¢
(2)0¢ (b} 09
¢ i
04 } 1
now i now < £ € now+4
(c) Os¢

Figure 6-3: Pictorial representations of the temporal logic operators

there exist some values for z (not necessarily those in the given activity) such that ¢ holds.

Formally, given that z is a variable name and ¢ is a formula.. .

form[3z o ¢)(e, now) = 3o’ : Activity e variant(e, o, z) A form[¢] (¢, now) (6.31)

The henceforth ppérator

For O ¢ (where ¢ is formula) tb hoid now in an a,cfivity ¢ musf hold now and é.t‘a.ll,tirhes in
the future. O ¢ is graphically illustrated in figure 6-3(a).

Formally, given that ¢ is a formula...

férm[D ¢](e, ﬁow) =Vi:Tet ?_- now => form{¢] (;x, t) (6.32)

In words; ‘¢ holds true in o at all times after (and including) now’.

The eventually operators

The eventually operator ¢ (illustrated in figure 6-3(b)) states that a formula holds now or at

some time in the future.

form[© ¢)(a, now) =3¢ :‘T ot > now A form[¢](e,t) (6.33)

132

In words; ‘there is a time ¢ which is later than (or equal t0) now at which ¢ holds true in 0.’
_ The eventually operator can also be expressed as a dual of the always operator (and vice
versa)., Hence... |

O ¢z ~0-¢ (6.34)

In words; ‘it is not the case that ¢ never happens.’
The timed eventually operator (illustrated in figure 6-3(c)) places a limit on the amount of
time it takes for the formula to become true. The time limit is sub-scripted to the eventually

operator.

form[Os ¢](a@, now) = 3t:T e now < t < now + 6 A form[¢] (e, t) (6.35)

In words; ‘there is a time ¢ which is later than (or equal to) now but not'later than now + 4 at
which ¢ holds true in @’

So far we have described a fairly sparse set of operators for our temporal logic. We can now
proceed to show several definitions of other opera,tofs as syntactic replacements of the bpéra.tors_

we have already defined.

Other predicate logic operators

Predicate logic operators are defined in the traditional way. ..

BV Y 2(~g A1) | (6.36)

. Disjunction :
b pEgVy | ()
Implication . '
¢ P=(d=> A (Y=) - (6.38)
Biconditional _ :
Vzeg= _-Elz: *¢ ‘ - | (6.39)

_ Universal quantification

133

Followed by

A weak idea of sequencing is introduced using the ~» operator. ¢~+ % means that whenever ¢
holds true it is followed sometime in the future by % holding true.

b $=0(p=0¢) - (6.40)

Note that this operator does not state that 1 being true is immediately followed by 1 being
true. This operator should not be therefore used as a replacement for sequencing as normally

used in the programming language sense.

~ Other temporal logic operators

Pnueli [98] defines a clutch of other temporal légic operators, including until, waiting and ‘strict’

variants of the henceforth and éventually operators. The strict operators state that something

. holds at times not including now. Usually temporal logics give a semantic definition for an until
operator and define henceforth and eventually from it. We have limited ourselves to defining
just the operators needed to define safety and liveness properties. If needed however we are .
confident we can define the other operators defined by Pnueli. (Lamport [74] argues that only

" the bare minimum of tempora,l opera,toré should be ﬁsed as théy tend to be unfamiliar and cause
confusion. We broadly agree with this argument.) '

Many temporal logics include the ‘next’ operator ©. In a real time model ‘next’ has little
meaning; a given time has no defined ‘next’ time. We could however define © ¢ to haye the '
meaning ‘¢ holds after the next state change’.

But we still have philosophical difficulties with this definition. Assume we wish to say that
after the next staté change 2 has the value 2; O(z = 2). What if z = 2 already holds in the
current state? _ | ' | ‘

We omit a definition of O because we believe that in the context of a real time system it can

very easy be misused by the unwary.

134

Y

6.4.3 The behaviour described by a formula

The behaviour described by a formula is the set of all activities that satisfy the formula from
time zero. Hence sub-formulae that are not guarded by a temporal logic operator hold true at

time zero.

fi1F > behaviour

FI81 = {o: Activity | form[$](a, 0)} (6.41)

A definition of the semantic function f is the purpose of this section; given any temporal
logic formula ¢ we can 5pply f to calculate the behaviour of a system for which ¢ is a statement
of requirements.

~ For example the formula z = 0 A O(z < 2') describes a system where the value of z starts at

0 and néver decreases. flz =0A D(a; < z')] defines the set of all activities which start with z at
0 and continue (to infinite time) with = never decreasing. (Note that this is a safety condition;
.z is not guaranteed to increase in this formula.) .
So in this section, as desired, we have defined the set of all simple temporal logic descriptions

(equation 6.26) and defined how those descriptions relate to behaviour (equation 6.41).

6.5 Computations

Essentially an RSSL specification describes how a collection of its unit of functionality, a com-
putation, is legally performed by a system. Before being able to give the semantics for RSSL
‘'specifications we first need to thoroughly discuss and define computations.

TLA uses an ‘action’ as its unit of functionality. An action is simply a relationship between
two states, We take a rather more operational entity as our unit of fundiona.lity which we call
a ‘computation’. (Computatmns were briefly mtroduced in section 5.5.1.)

The simplicity of an action means that it is a very powerful descriptive tool, but this also
means that it can be easily misused. Our computation is a specialisation of an action which
we consider to be ‘sensible’. Computations are therefore more.c.c\ﬁstrained, but, we hope, not

restrictively so.

135

First read Second read First read Second

launched launched causes. . read?
input = {i}f - znput {]l}
) I
o E_ | i 1 l
to b ta i3

Figure 6-4: The problem with launching concurrent actions

6.5.1 The problem with actions

To show a p0551b1e d1ﬂiculty with actions consider the following example In a multiprocessor
system we wish to read items from an input bag. The action read takes items from the input

bag input. In TLA we could specify read as...
input # Q A input = -l]:z:’ I} & input’

The above action is ‘enabled’ when input s (¢ — the input bag is not empty, or in other
words there are items in the input to be read. The a.ction takes an item from the input bag and
places the value on z. (Presumably there will be some other processmg that will do something
to z, but this is not our concern here.) ' ' ‘ |

Assume now that we can launch several instances of read concurrently. Obviously we cannot
launch any instances until the action is enabled, but what if there is just one item in the input
list and we concurrently launch more than one instance of read? The first instance to actually
remove the item from the input bag will disable the other iﬁsta.nces, so they cannot complete,
or will complete with undefined results. We wish to prevent this éort of interference.

This problem is illustrated in figure 6-4. At time ¢o there is one item in the input bag and
so at time ¢; an instance of read is launched. However, for some reason that action is slow
at getting going and at ¢; the item is still in the input list and so another instance of read is
launched. At £ the first instance of read finally removes the item from the input bag and this
Jeaves the second insiance‘ hanging; launched, but with no items to read from the input bag,

Typically concurrent systems will have locking mechanisms on critical sections, so that only

one instance can access the data at a time, or we could only launch one instance at a time. Lock-

136

ing mechanisms are rather concrete; we wish to be more abstract about our systems. Performing

one action at a time reduces us to sequential systems.

The pseudo-interleaved concurrent model .

We overcome these problems by assuming that we have an ‘pseudo-interleaved concurrent’ model
of system behaviour. We assert that typically actions will read data from some ‘public’ space
to some ‘private’ space, perform processing on the data in the private space and then write the
result Qf the processing onto the public space. Because the private space is internal to each
instance of an action then we can perform processing on it without interfering with any other
concurrently working actions (or, indeed, being interfered with by other actions). It is only when
reading and writing to the public space that interference can occur. We therefﬁre ‘interleave’
the reads and writes; only one can occur at a time, but the processing can occur concurrently.
We refer to this approa.dh as pseudo-interleaved because although the semantics describe only
this interleaved behavfoﬁr we wish to be able to géneralise this interleaving to fully concurfent
systems. The argument beinAg that we wish to implement systems that have the same effect
as the behaviour described by their specifications. The semantics we shall define in the next
chapter will be a canonical model based on this pseudo-mterlea.ved model. We could develop

this model into a truly concurrent model using the approaches shown in [7] etc

Justifying computations

A co:ﬁputation is a unit of functionality that makes the read, write and process phases exﬁlicit.
This ai first sight is rather complicated and limiting. We are apparently dictating an architecture -
for our language by sfating that all actions act in a certain way. Sut::h a conceﬁtual overhead
surely limits how abstract our language can be. | 7 |
We contend, however, that dictating that a unit of functionality behaves in (what we believe

to be) a sensible way greatly eases much of the reasoning we would wish to do with our models.
For example, following from Abadi and Lamport [1] we would wish that if we had n sub-
systerﬁs specified by the formulae ¢4, .., ¢, then the spec{ﬁca;tion of the overall system ¢ would
be ¢1 A .. A ¢n. Things are not that simple, of course. Abadi and Lamport give theorems

which speciﬁcationé must fulfill for the above simple conjunction to hold. Although a great

137

improvement on previous techniques the theoréms are still rather involved and fiddly. The
problem béing th@t =g A .. A d”f‘ breaks down when the sub-systems start interfering with
each other. | ‘

Using computations Iimits this interference and so the deéompdsition of specifications be-
comes rather simpler. Furthermore, we contend that computations are a natural way of thinking
about systems and they have plenty of precedent in the hardware and concurrency litera;ture.
Prescribing a system as being based on our notion of computations should not therefore be too

much of a radical depa.rturé from the norm for system designefs.

6.5.2 A syntax for computations

Recall from the previous chapter we introduced computations in a form with five clauses; this
was the ‘shorthand’ form, where the read, process and write phases are expressed in one single
relationship. For more complicated computations it will be préferable to describe the read,
process and write phases éeparately. This is done with the ‘longhand’ form. The two forms‘only
differ in style — they are mathematically equivalent. Clarity to the reader should be paramount;
simple, elegant computations are probably best expressed in the shorthand form so as not to
_ be cluttered with _(proba,bly trivial) relationships in the private space. More complex, concrete

computations are probably better suited to the longhand form.

Longhand computations

Longhand computations describe computations in much the same way as we characterised them

earlier in this section.

longC =input : X

output: Y

 private: I
enabled by : FE
read : Re
side-effect : S
process : Pr
write : W -

(6.42)

...where, ..

138

¢ X:F(Var) is a finite set of variables which are public (shared by other computations) and

are read by the computation,

¢ Y:F(Var)is a finite set of variables which are public (shared by other computations) and

are written to by the computation,
o I:F(Var) is a finite set of private variables,
e E:P is an enabling condition,

e Re: R is a state relationship (containing va,ria,bles_from' X which are undecorated and
“variables from I which are decorated with ") describing the how values are copied from

the public space to the private,

e S5:Ris arelationship (only containing variables from X which are undecorated or decorated

with *) describing the side-effect; how the public space is effected by the read phase,

¢ Pr:R is a relationship (only containing variables from I decorated by ™ or 7} describing

how the private space is updated by the processing phase,

. W is a relationship (containing variables from I decorated by ? and variables from Y
decorated by ? or /) describing how the public space is updated in the write_' phase, usually

by copying values from the private space,
e if the enabling predicate is .omitted it is assumed to be the logical constant true,
e if any of the relationship cla.uses are omitted they are assumed to be the identity, .

o if quantified variables are introduced in any of the clauses then the scope of those variables

carries down to all the following clauses (unless explicitly prevented by bracketing).
i

Note that although the input, output and internal clauses denote a set of variable names, we
" need not bother with the delimiting set brackets in the actual declaration.

input : {a,b,c}

...is the same as. ..

input : a,b,c

139

Shorthand computations

Shorthand computations describe relationships between variables in the public scope only.

shortC =input : X .
output: Y
enabled by : E - _ (6.43) -
side-effect : .S
outcome: O

...Where...
| o. X:F (Var) is a finite set .of public variables th;a.t are reéd by the computation,
o Y:F(Var) is a finite set of public variables thé.i: are written to by the computation, -
o E:Pisan ena.bling condition,

e S:Risa relationship (only conta.ining variables from X which are undecorated or decorated

with "} describing the side-effect; how the public space is effected by the read phase,

e O:R is a state relationship (containing undecorated variables from X and variables from
Y decorated by ? or ’) describing the relationship between the public space in the launch

state, the penultimate state and the final state, and

"o the same rules concerning omission of the enabling predicate and relations and the scope
of quantified variables that applied to Jonghand computations apply. to shorthand compu-

tations.

Are loné and short-hand computations equivalent?

In order to make the link between the long and short-hand forms clear, assume that the re-
lationships describe functions on the state. A generic long-hand computation would have the

féllowing form. ..

140

genericLongC = input : z

output : y

private : ¢
enabled by : E

read : " = R(z)
side-effect : 2" = S(z)
process : i? = P(i") ~
“write : ¢ = W(#,47)

. (6.44)

The following short-hand computation is equivalent to the above computation:

equivC = Input : 2
output : y
enabled by : F
side-effect : z* =S(z) (6.45)
outcome : 3i*, e " = R(z) A
i? = P(i") A
y =W(P,y?)

The internal variables are existentially quantified and the the outcome is the composition of
R, P and W. | |

By substituting appropriate functions into formula 6.44 we can describe computations and for
‘any long-hdnd computation in this form we can derive .an equivalent short-hand computation (as

shown in formula 6.45), hence computations can be expressed equivalently in long or short-hand.

6.5.3 An abstract syntax for computations

As the two forms are equivalent the abstract syntax of computations is based on the shorthand

~ form for simplicity. A computation is a 5-tuple...
C= (F(Var) x F(Var) x Px R x R) (6.46)
~ ...where iff (X,Y,E, S,0):C then...

¢ X is the input space of the computation,

e Y is the output space of the computation, : .

141

o E is the enabling predicate,

e S is the side-effect, and

¢ O is the outcome. . : -

There are rather involved well-formed conditions for computations which we shall discuss
and formalise in the next section when we give a full semantics for them.

6.5.4 The semantics for computations

A computation is semantically characterised by three functions;

IS

o the enable function defines the state/times in which a computation is enabled,

e the side function is given an initial state/time and defines a set of acceptable next state/times

signifying the completion of the read phase, and

e the outcome function is given initial and penultimate state/times and defines 2 set of

acceptable final state/times signifying the completion of the computation.

o the do function combines the above three functions to describe a legal performance of a
computation over four state/time pairs.
Semantics for fhe_enabling predicate

We have previously given semantics for properties using the prop function. enable uses the prop

function to define a set of state/times in which a computation is enabled.

enable:C — P(T X T)

enable[(X, Y, E,S,0)]2 {(0,t):Ex T | prop[E] (o, 1)} (6.47)

In words; ‘the set of all state/times in which the E property holds are returned.’

Semantics for the side-effect

In the state relationship that describes the side-effect undecorated z-;rguments denote valuesin the

‘launch’ state/time and arguments decorated by * denote values in the ‘next’ state/time (recall

142

figure 5-4). Therefore in order to define the semantics for the side-effect we pass a decoration
map that maps the decoration None to the launch stete/time and ™ to the next state/time and

pass this to the semantic function for state relationships rel to evaluate the side-effect.

side:C =3 (ZxT)=2P(ExT)
side[(X,Y, E, 5,0)](c,8) & :
| | . - (6.48)
¢ {(e™,t"): 2 x T |rel[SH " (0,8)," = (e™ tM)} A ~
canVary(o, 0" X)} '
~ In words; ‘the set of all ‘next’ state/time pairs (¢™ and ") which are valid next state/times in
relation to the glven computation and the given ‘launch’ sta,te/tlme are returned. The canVary
predicate ensures that the only variables that are altered in the side-effect are those defined by
the input clause to be accessible to the computation to read.’
If the input space is {z} and the side-effect is z™ = z + 1 then z is incremented by the side-
effect and all other public variables are unchanged. More subtly if the input space is {z,y} and

the side-effect is ™ = 2+ 1 then z is incremented by the side-effect and y can assume any value.

If we do not want y to changein the side-effect, we must state this explicitly; " = z+1Ay" = y.

Semantics for the outcome

~ The semantic function for the outcome relation is similar to that for the side-effect. A decoration
map that maps the appropriate decoration to state/time pair and the outcome relationship is
evaluated using the rel function. Again the canVary predicate ensures that only those variables

in the output space are altered by the outcome.

outcome:C = (ExT) = (ExT) = P(Tx T)
’ outcome[(X,Y, E, S, 0))(o,t)(o?, t7) =

: (6.49)
{{(o/,t):ZxT| rell[O]I{N‘"“n—) (0,t),P— (a" tP), — (o', 8} A ’

canVary(o?, o', Y}} :

In words; * glven a computation, launch state/time and penultlmate state/time the set of all
valid final state/times is re}turned The decoration Vere ig mapped to the start state/time, the
decoratlon P to the penultlmate state/time and ’ to the ﬁnai state/ time. The relationship O is’

evaluated using this decoratlon map and canVary assures that only the variables in the output

143

space are changed by the outcome.’

Putting the enabling condition, the side-effect relation and the outcome relation

together

We can now deﬁne a predicate do Whlch describes the performance of a computation over four

state/time pairs.

do:C = (ExT)*—B ' -
do[c]({ay), (™€), (0%, 87), (0',2')) = (0 t) € enabled[c] A :
' (o™, t™) € side[c]{o,2) A (6.50)
(¢, t') € outcome[c] (o, t) (a” t?) A
t<tt <P < t

In words; ‘the four state/times are a valid performance of a qomputatidn cif...
e cis enabled in the launch state/time (o, %),

" e the step from the launch state/time to the next state/time, (o,t) to (¢™,t"), is a valid

side-effect for ¢, and

e the step from the penultlmate state/tlme to the final state/time, (o7, t?) to (a ¥),isa

- valid outcome (with respect to the launch state/time), and

o the times are correctly ordered.’

Well formed conditions for computations

We glanced over the conditions for computations to be well formed when we gave their syntax
because at that point we did not have the apparatus to deal with them. We can deﬁne them
now using their semantlc definitions. ‘ _

| The enabling condition should imply the side-effect and o.utc'ome fela.tions; in other words
for every state/time the computation is enabled in there must be at least one resultant state
"defined for the side-effect and outcome. We say the side-effect and outcome must be ‘wider”

than the enabling condition. Formally...

144

wider:C — B '
wider(c) = enable[c] C {(o,t) | side[c](o,t) # 0} A (6.51)
enable[c] € {(o,t) | 3(c?, tP) outcome[c](o, t) (o, t7) # 0}
In words; ‘the first line of the definition of wider states that the set of all state/times in which
a computation is enabled is a sub-set of the set of .a.ll launch sta.te/time pairs for which there is
a next state/time pair defined. In a similar way the second line states that the enabled set is a
sub-set of all launch state/tlme pairs for which thereis a final state/time defined.’

A second condition states that it is always the case that it is poss1b1e for the write phase to
eventually occur. Unfortunate]y this ‘well formed’ condition is dependent on the context of the
specification. .

Consider the following syetem; some environment computation periodically places values to

be processed on an input variable input. input is either a natural number or the token Null.

input:N U {Null} (6.52)

" If there is a natural number on énput then we assume that that number is yet to be processed.
If Null is on input then we assume that there is no data to be processed. The environment
computation effectively cha.nées input from Null.

A kernel computation is enabled when there is a natural ﬁumber on input, it takes the
natural number off input processes it using some function f and places the result on the end of

an output list.

output:N* : - (6.53)

Hence. ..

kernel = input ; input
output : oulpui ‘ ' . \
enabled.by : input 5 Null (6.54)
side-effect : input™ = Null . : :
outcome : output’ = output? ~(f (mput))

145

This is all very well, but what if we limit the size of the output sequence to (say) 107 We
cannot include |output| < 10 in the enabling condition because computation may take an input
value when the output list is not full, take a long time over processing it and find that several
othe; computations have ‘overtaken’ it and filled up the output list.

The problem is that it may ﬁot be possible to predict at the time of launching a computation
whether or not it will be possible to perform the write phase. Indeed we can envisage compu-
tations that can launch at times when it is impéssz’ble to perform the write phase, but we are
assured that something will happen in the system to make the write pha;se become possible.

So the computation kernel working on a limited output list is not invalid per se, but we
need to be aware of the rest of the system (maybe the environment will not place more than 10
numbers on input anyway, or'thére may be another kernel computation that fakes numbers out
- of the 6utput list, so even if it fills up it will eventually empty again). '

We can deﬁm}a a set of ‘write compiete’ computations, for which the write phase is possible

in all states and times.

wComplete:C - B
wComplete(c) = (Z x T) = {(¢?,17)| 3(o,8):(Ex T) » ‘ (6.55)
- ' outcome[c](c, 1) (0P, t?) # 0} .
In ’wprds ‘the set of penultimate state/time pairs fbr which there is a final state/time defined is
the set of all state/time pairs.’
Making all the computations in a specification write complete is a very strong requirgment, ‘

but it assures that we do rot run into the sort of problems described above.

6.6 The syntax for the RSSL specification notation

A system specification consists of a property ﬁrhich describes acceptable initial states for the
‘ 'systém and a collection of computations which determine how the system evolves froni an ini-
tial state. In certain situations computations become enabled and may then be launched; the
specification includes deontic operators which.r assert whether a computation may or must be

launched.

146

6.6.1 Specification syntax

A specification has the following syntax. ..

fnitAD[v k1A O(v ey ; ' (6._56)
' i€l..n - i€l..m . .

. .where. ..
. mzt _is a propérty,
. {kl, v ka} IS a set of kernel computations, and
N {e1, .. ,ém} is a set qf e.nvi.ronme'nt computations.

~

inét is the initial property, which can describe any configuration of the state but must describe
time as being zero. The operator O has its temporal meaning; ‘henceforth’, square brackets round
- a disjunctioh of computations means that the disjunction is obligatory, angle brackets meéan the

disjunction is optional.
'6.6.'2 | Abst.ract‘ 's_ynta..x for speciﬁcati.o_né K
Aﬁ é.béti{a.cf syntax for a sy;ste‘r.zl.épeciﬁéa.fion is a "3-tu1')1é.. - - . .
RSSI= (P x f(d) <FCy (5.57). o
.. .wheré if (z'nif,lobl, opt).':RSSL then ...)
o init ié the initial pr.oper'ty, whicﬁ describes states at time zero,
. o.bl is the set of obligat.ory computati.ons, and

e opt is the set of optional computations.

6.7 The semantics for the RSSL speéiﬁcatidn notation

Recall that the result of section 6.4 was the semantic function f that given a temporal logic

formula returns the set of all activities (the behaviour) described by that formula. The purpose

147

+ Activity
I
U

Read/write ordering -

4

¢

cs={A,B,C,D)
Computation sequence

Figure 6-5: An overview of the approach to defining RS'_SL specification semantics |

of this section is the same; the definition of a semantic formula s which takes a specification and

returns the behaviour described by the specification.

$:RSSL — Behaviour

However specifications are rather more involved than temporal logic formulae and so the

route we take to a definition of s will be rather more circuitous.

6.7.1 An overview of the approach to be taken

There are three ‘levels’ to the semantic definition of RSSL specifications ~— the ‘computation
sequencé’ level, the ‘read/write ordering’ level and the ‘activity’ level. (See figure 6-5). _

We start with a sequence of computations. The middle level is the interleaving of the read
~ and write phases of those computations. For each computa.tion in the computaf.ion sequence
its read and write phase should occur in the read/write ordering, its read phése should occur
before its write phaée and read phases should occur in the same order as their computations do
in the computation sequence level. The final level is an actiﬁity which contains (only) the state
changes caused by the read and write phases in the read/write ordering. There are functions
from one level to the next — the function from the computation sequence to the read/write

ordering is denoted ¢ (for ‘interleaving’) and the function from the read/write ordering to an

148

activity is denoted u (for ‘updates’).
The rest of this section concerns the definition of those functions and how they are used to

describe the set of all activities that are legal with respect to a specification.

6.7.2 Interleaving functions that take computation sequences to read/write

orderings

I is the set of all interleaving functions.

I=N; = (N1 X N1) : . (658)

A'ft-lnction 1 : I projects the brdinal position of computa.tioné in the comput’a.tion_sequenée to
the ordinal position of their read and write phases in the read /write ordering.

If a computation is the nth to occur in the computation sequence and i(n) = (z,y) then
its read phase occurs zth and its write phase occurs yth-in the read/write ordering. A useful
syntactic sugar separates the read and write parts in the range of a function i as follows...

Vil e
tr={(n—=2)|Ty:Nye(n (z,y)) €} A (6.59)
ity ={(npy)|3z:Nye(n— (z,3)) €}

In words; ‘for all functions ¢ there are two related functions 7, : N; =&+ Nj and ¢, : Ny = N
which return the ordinal positions of read phases and write phases respectively.” Hence if -a,
computation occurs nth in the computation sequence then.its read phase occurs i.(n)th in the
rea,d/v}rite ordering and its write phase occurs ¢,,{n)th. |

An interleaving function must fulfill several properties to correctly map a computation se-
quence to a read/write 6rdering. We define a predicé,te interleaving that takes a function ¢ and

holds true if ¢ has the properties we require.

interleaving: I = B

interleaving(i) =
1. contig(dom 1) A : :
2. contig(ran i, Uran ,) A (ran i, Nran &, = @) A . (6.60)

Vn,n':Nye{n,n'} Cdomi=
3. () =1An>n)= (i (n) >ir(n)) A
4. iy(n) > i.(n)

149

In words; ‘the numbers in the left hand column refer to the enumerated points below. For a

function ¢ to be interleaving, it must...

1. have a contiguous domain. (See B.9 for a formal definition of the predicate contig.) i.e.
if the domain is finite and the number = is in the domain t-hen 1..n must be in the
‘domain, if the domain is infinite then all non-zero natural mumbers must be included in. -

| the domain. This ensures that if (say) there ére four computations in the computation
sequence then there are read and write positions defined for the first, second, third and

fourth computations.

2. have a contiguous and non-overlapping range. This means that if the domain of ¢ is {1..n}
then the union of the ranges of ¢, and iy, is {1 ..2n}. This ensures that there cannot be
a point in the read/write ordering (other than those greater than 2n) for which nothing
happens and that only one read or? write. happens at each ordinal point in the read/write

ordering. -

3. result in a function 4, that is strictly increasing from 1. This means that the read phase
of the first computation in the computation sequence is the first thing to happen and the
computations in the computation sequence happen in the same order as their read phases

in the read/write ordering,

4. result in functions ¢, and 7., such that the read phase of a computation always occurs prior -

to its write phase'.’

6.7.3 Update functions that take read/write orderings to activities

An activity is a series of state changes. A specification should account for all of those staté
changes, i.e. an activity that is correct with regard to a specification has all its state changes
predicted by the spéciﬁca.tion. The function « maps the read and write phases of computations

to state changes in an activity.

2Exclusive or!

150

Figure 6-6: A state discontinuity shown pictorially -

State discontinuities

First we must capture ‘state discontinuities’. A diécontinuitjr is the momen.t in time at which
the state changes. For a time ¢ to be a discontinuity then the state at the times immediately
earlier than ¢ must be different to that state at t. Consider figure 6-6. Time ¢ is the preé:ise
point that the variable z changes from 1 to 2.

The predicate discont holds true if a given time is a change point in a given activity.

discont: Activity x T -B
discont(a,t)= Jearly:T e early < tA a(early) # a(t) A . (6.61)
Ymid:T e early < mid < t = ofearly) = a(mid)
_In words; ‘there is a time early that is earlier than ¢ at which the state was different to which

it is at t. The state does not change at any time from early up to (but not including) £.’

The function disconts returns the set of all discontinuities in an activity.

disconts : Activity — P(T)

disconts(a) = {t:T | discont(a,t)} (6.62)

U_'pdafes

We are considering machines that produce state changes and they will take a non-zero amount
. of time to do so. We also have to consider null state changes, where something happens — a
computation performs its read or write phase but this does not effect the state. We therefore
consider ‘updates’ which are pairs of times with at most one discontinuity between them.

“An update function u maps the ordinal position of read and write phases to updates. Hence

-

151

the set U is all the update functions.

U=Nij—=(TxT) (6.63)
Again we split this one function into two derivative functions u',_, and u. which return the

start and end times respectively of a read or write phase.

Yu:U » : : ‘
U ={(n—1)|H:Te(n— (&) €u} A’ (6.64)
e = {(n—t")|3t:Te(n (1,t") € u} ' '

In words; “for all functions u there are two related functions u,:N; — T and u.: Ny — T which
return the start and end times of the updates respectively.” Hence if a read /write phase occurs
nth in the read/write ordering then the update caused by that phase starts at time u,(n) and
ends at time u.(n). ' | |

The predicate updates takes an update function and an activity and holds true if the function
has reQuired properties with respect to the activity. f.e. it captu.res all the discontinuities in
the activity as occurring in at most one update, all its updates occur in non-zero time and it
maintains the ordering of the read/write ordering. | .

~updates:U X Activity — B
updates(u, a) =

1 contig(dom u) A
Vn:Nyen & domu = (6.65)

2 |{t:T [t € disconts(a) Auy(n) <t < ue(n)}=1A
3 35:Ted >0Au(n)+8& < up(n) A
4 na+ledomu=u.(n) < un+1)

In words; ‘each of the numbers in the left column refer to the enumerated points below. For a

function to be a correct update function with respect to an activity it must...

\
]

1. have a contiguous domain.

2. capture every discontinuity in the abtivity in an update and allow at most one discontinuity

per update. i.e. the set of discontanities that occur in each u‘pd'ate is singleton,

3. result in each update taking some minimum non-zero time. i.e. there is some non-zero

-~

152

time § which no update is quicker than. Note that this property ensures that we do not

have problems with Zeno’s paradox.

4. have no overlapping updates. i.e..for each update u(n) if there is an update after it then

u(n+ 1) must not start earlier than u(n} finishes.’

.6.7.4 Correctness between computation sequences and activities -

Now we can put the interleaving arid update functions together to define whether a sequence of
éomputations is projected correctly onto an activity.

Reéall that the predicate do takes a computation and four state/time pairs and holds true
if those four state/times are a correct performance of that computation. If the éompu’cation ¢
“occurs nth in a computation sequence and we have functions ¢ and u then the four state/time

pairs from an activity o relating to that computation are as follows. ..

o thestart state/timeis a{{u,(¢,(n)))). (Recall the use of double brackets to denote the state
and time at a given time in an activity — formula 6.10.) That is the i, function applied to
‘n to get the ordinal position of the read phase of ¢ and u, applied to that ordinal position

to get the time of the start ‘of the update caused by the read phase.

e the next state/timeis a((%.(¢+(n)))). That is the ¢, function applied to n to get the ordinal
. position of the read phase of ¢ and ue applied to that ordinal position to get the time of
the end of the update caused by the read phase.

e the penultimate state/time is a((%,(iw(n)))). That is the i, function applied to n to get
the ordinal position of the write phase of ¢ and u, applied to that ordinal position to get
the time of the start of the update caused by the write phase.

o the final state/time is a((¢e(iw(n))). That is the %, function applied to n to get the
ordinal position of the write phase of ¢ and u. applied to that ordinal positioh to get the

time of the end of the update caused by the write phase.

So the nth computation ¢ is projected correctly onto the activity o by the functions ¢ and «
if... - “

153

‘L8 77 - 87 57287 8Tl

I l I P I l 1 I

1\/t2 ta\/t4\/5\/t6 tT\/tWO tvz
o
L
o

(o] =(A’ B’ C’ D)

jslf-

1

Figure 6-7: The computation sequencecs projected onto the activity o

- dofe] (o(us (%: (7)))y (e (ir (7))) (s (§ (7)) s (e (i ())

The predicate correct returns true if all the computations in a computation sequence are

correctly projected onto an activity.

correct:I x U x C x Activity > B
correct(t, u, c5,@) = VYn:Nj e n € dom o =
do[es(n)](o((us(ir (7)), a(e(r (n)))),
o(us(iw(n)))), (e (iw(n))))

In words; “for every n which is the ordinal position of a computation in ¢s the nth computation

(6-66)

is projected correctly by ¢ and u onto the activity a.’

~ To illustrate this predicate, consider figure 6-7 which shows the possible prOJectlon of the
computa.txon sequence ¢s onto the activity a. (This is effectively ﬁgure 6-5 in more detail.)
6.7.5 Obligatory computations

Before we can derive the behaviours of a specification there are two other matters we must deal

with — obligation and fairness.

154

n n+1
Figure 6-8: Idle time shown pictorially

Obligation asserts that the system cannot be idle while there are obligated computations
_ enabled. In the definition of the update function we allowed for idle times in the activity. For a
given n the start of the update u(n+1) does not ha{re to occur immediately after the end of u(n),
this period between two consecutive updates is known as ‘idle time’ (see figure 6-8). Returning
to figure 6-.-7 there are idle times between £; and ?3, between ¢ and #; and between 5 and ;3.
There can be no state changes during idle time because, by definition, all the discontinuities lie
within updates. .

The predlcate oblig takes an update function, an activity and a set ‘of computations and

~ returns true if none of those computa,tlons are enabled during idle time in the activity.

oblig:U x Activity X F(C) - B
oblig(u, o, 0bl) = Vt: Te3c:Cec € obl Aa((t)) € enabled[c]] = - (6.67)
In:Nyeus(n) <1t < u(n)
In Words-; “for all times ¢, if there is a computation from ob! which is enabled at ¢ then there

must be an update u(n) which ¢ occurs in.’

6.7.6 Fairness

The notion of fairness we capture is that of ‘strong fairness’. If an obligated computation is
enabled inﬁnitt_ely often then it must occur infinitely often. For something to occur ‘infinitely
often’ does not mean that it occurs all the time, but that at all times there is a future time when

it occurs. We can express fairness in slogan terms using temporal logic operators as follows. ..

-

155

O O(A is enabled) = O O(A is done)

To capture fairness we need reference to both an activity to define whether a computation
is enabled infinitely.often and a computation sequence to define whether 2 computation occurs
infinitely often. The predicate fair captures fairness: '

fair:C% x Activity x F(C) - B
fair(cs, o, 0bl) = ' - _
Ve:Cec € obl = (6.68)
(Vi:Tet':Tet' > tAat) € enabled(c)) =
(Vn:NyeIn':N; e 0’ > n A es(n’) =)
In words; ‘for all computations ¢ that are in obl if ¢ is enabled infinitely often (for every time .
t there is a later ¢’ at which ¢ is enabled) in & then it occurs infinitely often in ¢s (for every

ordinal position n there is a later position n’ at which ¢ occurs).’

6.7.7 The behaviour described by specifications

Now we can start putting things together. The predicate perform brings correct, oblig and fair .
together in a single predicate and also adds the condition that an activity must start in a state

described by the initial property in a specification.

perform: RSSL x Activity x C* -5 B

perform((init, obl, opt), a, cs) =
Ji:J e Ju:U e interleaving(i) A updates(u, o)} A
(ran i, Uran i,) = dom u A dom cs = dom ¢ A
prop[inif]a(0)) A
es € (bl U opt)® A correct(i, u, cs, af) A

- oblig(u, a, obl) A
Jair{cs, a, obl)

(6.69)

S ok

In words; ‘given a specification, an activity and a computation sequence then perform holds

trueif...

1 there exist mterleavmg and update functions such that the interleaving functmn is correct

and the update function is correct with respect to the activity,

156

2. the computation sequence and the two functions ‘fit together’ correctly. i.e. the domain
of the sequence is equal to the doma.m of the interleaving function and the union of the

ranges of the interleaving function is equal to the domain of the updates function,

3. the state at time zero in the activity is described by the initial property in the specification,

4. all the computations in the .computation sequence come from computations described in

the specification and the computation sequence is corréctly projected onto the activity,
5. the obligation conditioﬁ holds, and
6. the fairness condition holds.’
Using.thi.s we can des;ribe the set of activities that are legal for a speciﬁcafion.

8: RSSL — Behaviour

s(spec) = {a: Activity | Jes:C% o perform(spec, @, cs)} (6.70)

In wordé; ‘s returns the set of all activities o for which there exists a computation sequence cs
which can correctly be applied to the prediéa.te perform.’

This concludes the definition of the semantics for RSSL specifications, however we define
one other uéeful functién on RSSL speciﬁéa.tioné. The function seQBeh_ (standing for ‘sequence
behaviour’) is similar to s, but returns the set of all computation sequences which are correct

for a specification.

seqBeh: RSSL — P(CY)

seqBeh(spec) = {cs:C | Ja: Activity s perform(spec, @ c5)} 6.1

In words; ‘segBeh returns the set of all computation sequences e¢s for which there exists an

activity e which can correctly be applied to the predicate perform.’

6.8 Refining specifications

If we crudely think that a refinement ‘throws away’ parts of the behaviour space then such an
approach must maintain safety — if specification % is safe and we refine it to specification ¢

~such that the behaviour of ¢ is a sub-set of the behaviour of 4, then safety must be maintained.

157

All the activities in the behaviour of 19 are safe and the behaviour of ¢ is a sub-set of that of 9
so all the activities in behaviour of ¢ must be safe.

However ‘thfowing away’ activities arbitrarily in a refinement does not guarantee liveness.
In fact we could just throw away all the activities, so getting a system that is safe, because it
~ does not do anything, but could hardly be described as live. |

Traditionally refinement is a case of addiné detail to a specification such that the behaviour
space is constrained. This approach is usually based on specifications where liveness is implicit.
However RSSL specifications do not guarantee liveness and therefore we need to show that a
refinement maintains liveness.

Given a series of specifications that we propose is a refinement process as follows...
spec,, $pecy, . . , Spec,

... where spec; is the most abstract specification and spec,, the most concrete. We can theoret-

ically define a safety property and a liveness property for each specification such that...
spec; & live; A safe;

...for each i such that 1 <i < n. Specification spec;,, is a correct refinement of specification

spec; (denoted spec; D> spec;y,y) iff. ..

safe; . = safe; A live; = live; 1y

Iﬁ words; ‘the refinement constrains the behaviour of the specification without losihg liveness.’

- Theoretically this is fine, but in practice it is unlikely that we would be able to divide an

afbitra.ry specification into safety and liveness components like this. So we sketch an approach
“that demonstrates that safety and liveness properties are upheld by given specifications.

Assume we have requirements defined as follows. ..

reg 2 0(g) AO(p = O) | (6.2

158,

...where O(¢) is the safety condition and O(3) = <) is the liveness condition. (¢ is an
environment request and ¢ is a kernél response.)

Furthermore we have two RSSL specifications spec and spec’. The following two sections -
sketch out how we might go a,bout'- showing that spec and spec’ are ¢onsistent with the require-

ments and furthermore that spec’ is a refinement of spec.

6.8.1 Safety

Proving safety for spec is a case of showing that all activities in its behaviour contain only safe

state/times. i.e. ones consistent with ¢.

Yo: Activity e o € sfspec] = Vt:T e prop[[ci)]]a((t)) ‘ (6.73)

In words; ‘for each activity a in spec’s behaviour, for every time ¢ the state/time pair at time ¢
in"a is safe.’ -
For spec’ to be a refinement of spec then the behaviour of spec should contain no more

activities than spec.

s[spec’] € s[spec] S - (6.74)

6.8.2 Liveness

There are two issues to deal with in liveness — firstly that the system always eventually gets to
‘live’ states and secondlj,r how much the system deviates getting to those live states.
The liveness property O(4=>< ¢) states that if a request 1 is made then there must eventually
_be a response ¢. In other words, for all activities that are legal for specification if at any time
in that activity there is a state consistent with) then all legal extensions of that activity must
contain a sté,te that is consistent with ¢.

Formally. ..

159

Vo: Activity e o € s[spec] =
Vt:T e prop[¢]a(t)) =

Va!: Activity » o/ € s[spec] A |) (6.75)

Vearly:T o early < t = a(early) = o/(early)
3t': T e prop[p]e’ (')

In v&ords; ‘for all activities o that are legal for the specification if _there is a time ¢t at which the
request 1 is made then all activities o’ which are extensions of o must show the response ¢.
By ‘extension’ we mean an activity that is legal for the specification and is the same as o up to
time ¢'.’ | _ |

This guarantees liveness for specification spec.7 More subtly we want to be able to capture
~ that after a request is made the systeni always gets closer to the response, either until the system

gets to the response or until another request is made. Assume we have a measurement scheme

M on states and times.

M:ZxXT—=N - (6.76)

...such that a state/time that is a response ¢ measures 0 and the highest measurement in the
scheme is for state/times that are requests . M therefore measures ‘how far away’ from the
response state the system is. Formally...

V(e,4):Ex T e proplel(o, 8} = M((o,1)) = 0 A

prop[¥l(o,t) = M((o,t)) = maz(ran M) (6.'77)

We cannot sensibly assert that the value of M in an activity always decreases after requests,
because that would lead us into problems similar to the stuttering problem, so we assert that

" the value of M must never increase (unless a request is made).

160

Ya: Activity e o € s[spec] =

Vt:Totgreqs=>' .
M(a((t)) £ M(af(nearest(regs,t)})) (6.78)

where |

regs = {t:T| P.T‘Opl[ﬂb]la((t))}

nearest:P(MxT—=T ’ '
nearest(ts,t) = oo if t 2 maz(ts) - o . (6.79)
min({t':T|t' € ts At' > t}) otherwise
In words;“for all legal activities « there is a set of times regs which is all the times at which
requests are made. For any time ¢ which is not in regs all the times between ¢ and the next
request the value of M must not be any greater than it is at £. The function nearest returns the
value from a given set of times that is closest but greater than a given time.’

The value of M may remain constant and the system never get anywhere according to
equation 6.78, but by conjoining it with equation 6.75 we assure ourselves that a response is
eventually reached. . ' |

" We suggest that we can capture the refinement of livéness by defining different measurement

schemes for different specifications. The most general measurement scheme is as follows. ..

V{o,£):Z x T o prop[pl(o,t) = M{(0,t)) =0 A
- —prop[)(e,)= M((o, 1)) = 1

All state/times measure 1 unless they are a response, so the system can go through any sequence
of state/times to get to a response. | ‘
We can then define other measurement schemes that progressively limit the sequences the
sysfem canl go through to get to a response whilst still assuring that the system does get to a
response eventually. |
If spec is live based on a measurement scheme M and spec’ is live based on M’ then sped is

a refinement of spec if...

161

Y(0,8): 5 x T o M((0:8) < M(,8)) (6.80)

..i.e. each state/time in the more concrete specification is measured at least as far away from
the response as they are in the more abstract. In other words tne refined system can only
devidte in getting from the request to the response as much as the abstract system can. A strict
‘refirement will deviate less.
So for a specification spec to be a refinement of requirements reg, denoted req t> spec, then
formulae 6.73 and 6.75 must hold. For a specification spec to be a refinement of specification

spec’, denoted spec b> spec’ then formulae 6.74 and 6.80 must hold.

6.8.3 Words of caution

This is only a nketch of how we may go about refining RSSL specifications. Actually proving
these relationships would be very arduous. Proving safety is fairly straight forward. Most
traditional specification la.ngua.ges (such as VDM and CSP) have liveness implicit in them, so
any refinement preserves hveness by default. There is plenty of work showmg how to refine such
specifications, but in reality this is only a refinement of safety.

There is little work that we can tap into to show how we can refine liveness prt;perties. There
is work in progress being done by TLA researchers to capture liveness reﬁnément buf. it is not as
yet complete or published. Peter Ladkin said in a personal comment that refinement of liveness

properties is the next big challenge for temporal logic specifications.

6.9 Reactions

Recall from the previous chapter (section 5.6.4) we described a reactive system as being a set of
optlonal rea,ctxons, where a reaction is a pair consisting of an env:ronment computatlon (known
as the mvoca,tlon) and a kernel computa,tlon (known as the response).

A reactive system spec1ﬁed in this way is simply a syntactic sugaring of a specification
expressed as an initial 'predicate, a set of obligatory computations and a set of optional compu-
tations. Once again we are simply describing differences in style, rather than any fundamental

substance

-

162

-

Given a specification in the reaction style with just one reaction. ..
W= init AO{es k) . (6.81)

...and the two computations e and % are defined as follows. ..

e=input : X
output : eY
enabled by : ¢F (6.82)
side-effect : €S
, outcome : eQ

k=input : kX
output : kY
invoked by : e
enabled by : kE
side-effect : kS
outcome : kO

(6.83)

...then we say that k is invoked by e. These computations ‘hide’ a count eCount : N which
is incremented every time the invocation occurs. The response is enabled whenever eCount is
greater than zero and its side-effect decrements eCount.

So e is a syntactic sugar for. ..

eSugar = input : eX, eCount
output: eY : .
enabled by : ¢F ‘ _ . (6.84)
~ side-effect : &S A eCount™ = eCount + 1
outcome : eQ '

...and k is a sugar for...

kSugar = input : kX, eCount
output : kY , '
enabled by : kE A eCount > 0 {6.85)
side-effect : kS A eCount™ = eCount - 1
outcome: k0

163

Overall the reaction style specification ¥ is a sugar for the following specification. .

U ugar = init A eCount = 0 A O[kSugar] A O{eSuger) (6.86)

The reaction style specification we have introduced is (once agdin) a technique for specifying
‘typical’ systems, which hopefully does not overly restrict us from specifying atypical systems,

but makes us think about what we are doing if we do.

6.9.1 A specialisation of RSSL based purely on reactions

- A reaction is a pair of computations.

React = (C' x C) (6.87)

..where if (e, k) : React then e is the environment computation and % the kernel computation.
RSSLreact is the set of all RSSL specifications based purely on reax:tlons, i.e. where every

environment computation is paired with a kernel computation.

RSSLreact =P x F (React) ‘ - (6..88)_

In words; ‘an RSSL specification based on reactions is an initial predicate and a finite set of
optional reactions.’ |

We can convert any RSSLreact to an RS5SL specification as follows...

conv: RSSLreact = RSSL
conv((init, reacts)) = (init, {k:C'| e : C o (e, k) € reacts}, (6.89)
{e:C|Je:C e (e, k) € reacts})
In words; ‘an RSSL speciﬁéa.tion is converted from a RSSLreact specification by separating the
environment and kernel computations out from each reaction.’
Note that it is possible to turn every RSSLreact specification into an RSSL specification, but

not vice versa. Specifications in the reaction style are a specialisation of RSSL specifications.

164

Al

6.9.2 Semantics for specifications in the reaction style

Determining the behaviour for a specification the reaction style is simply a case of converting it
into an RSSL specification and applying the semantic function s. |
However a useful way of thinking about the behaviour of a reaction style specification is in

terms of sequences of reactions that can be legally generated. We define two functions. ..

e reactBeh® which returns the set of all possibly infinite sequences of reactions which are

legal, and
e reactBeh which returns the set of all finite sequences of reactions which are legal.

In the next two chapters we shall discuss how we can describe the probabilistic behaviour of
systems by attaching probability méasurements to reactions in a specification. The probability
of a sequence of reactions occurring is the product of the all the probabilities of individual
reactions occurring. If a sequence is infinite then such a product cannot be calculated, so we
define reactBeh to return only the legal finite seqﬁences.

A reaction se(iuence is legal for a specification if the computations that make up the reactions
can be interleaved onto a sequence of computations that is legal for the specification. The notion
- of interleaving is exactly the same as we used to map computa.tibn sequences onto read /write
orderings previously, so we can reuse the function interleaving. Given an interleaving function
i then if a reaction occurs nth in a reaction sequence and i(n) = (z,y) then its environment
coinputation should occur zth in a computation sequence and its kernel computation should
occur yth.

Formally...

reactBeh™ : RSSLreact — P(React™)
reactBeh™ (spec) =
{rs: React™ | 3cs:C? @ ¢s € seqBeh(conv(spec)) A J
Ji: I e interleaving(i)Adomi=domrs A - (6.90)
Yn:Nien € dom rs =
Jz,y:Ny e 3(e, k): Reacte i(n) = (z,y) A
rs(n) = (e, k) A cs(z) = e A cs(y) = k}

In words; ‘the set of all reaction sequences is returned such that there exists a computation

sequence cs that is legal for the specification and there exists an interleaving function i that maps. -

-

165

the reactions in the reaction sequence onto the computations on the computation sequence.’
The function reactBeh simply delimits the set returned by reactBeh™ to finite sequences

only.

reactBeh: RSSLreact — P(React*)

reactBeh(spec) = {rs: React” | rs € reactBeh® (spec)} (6.-91)

In words; ‘all the finite sequences of computations that are legal for the specification are re-

turned.’

166

Chapter 7 : :

" Describing the use of a system with an
Interactive System | Specification

Language (ISSL) |

In this chapter we describe a ‘framework’ for specifying how a device might be used by its user .
: populétion. Our framework is similar in concept to the Interaction Framework (IF) cﬁ‘ Blandford -
et al. [17). We start by describing the behaviour of a system and then we use our framework to
consider various issues about how that behaviour might be influenced. IF takes the description of
the interaction itself as its starting point, describes properties of the interaction and then provides
‘hooks’ for device and user models. It can then be proved that the interactions generated by the
composition of the user and device models are consiétent with the properties described by IF.
~ Both ouf framework and IF deal .with ‘non-functional’ requirements for a system.

Being a ‘framework’ however, the approach described in this chapter is more about providing
a context for analysts to ask questions about use and usa.bﬂityl issues, rather than providing firm
answers to these questions. In the absence of aﬁ accepted body of HCI theory, frameworks
which separate concerns allow the analyst to ga,in answers from heuristics and craft expertise

if necessary, and to feed those answers into 2 sensible context. In this way we are proposing

©_ structures that provide bridges into experimental psychology in the same spirit as the templates

work {102]. We realise that HCI findings cannot be completely formalised and fed into an

167

interactive design process. The next two chapters show structures that are as mathematical as
is sensible and attempt to make the design decisions that are made within the structures explicit,

inspectable and reusable, as required by good design practice. .

7.1 The behaviour and the use of systems .

The previous two chapters described an approach for describing and specifying reactive systems.
The next two chapters déscribe how we can take this apprdach and specialise it for interactive
systems. ‘ i

RSSL (Reactive System Specification La,hguage) describes the legal behaviour of a system in
a discrete way — either an activity is legal or it is not. Such a description of a system is wholly
adequate for modelling computerised machinery. Computeriéed machinery tends to be based on
* discrete mechanisms and so a language based on discrete mathematics is appropria,té. '

However the user side of an interactive system is less well modelled using discrete mathemat-
ics. When a system is modelled discretely then we have to allow user behaviour a high degree of
non-determinism. It possible to determine (at least) two sources of non-determinism in a system -

description, namely...

Specification non-determinism which results from aBstra.ction ih a S};stem des:criptic;n. At
| abstract levels there will be non-determinism in a description, which essentially states that
thé specifier does not care how things occur as long as the effect is as specified. Consider

the non-deterministic operator in CSP [64] P N Q. This specifies a system which behaves

like P or Q. It is very unlikely that an implemented device would actually behave like P

or Q, making a genuinely non-deterministic choice between the two at run-time. IhStea»d

it is up the designer to decide which is mbre suitable a.ccc;rding to some design criteria and
implement a system that behaves like P or a system that behaves like (. The refinement
process should remove specification non-determinism until the behaviour of fhe device is-ll :

. (as good as) deterministic.

User choice non-determinism which results from the user being presented with a collection.
of actions to invoke and making a choice between them. In CSP terms this kind of non-

determinism is denoted by the choice operator; (x = P | y — @). z and y are distinct

168

events which are offered to the environment to choose from. The device then behaves like P
or Q depending on which event is chosen by the environment. It is certainly well beyond
the scope of this thesis to discuss whether human behaviour shows genuine free will 6i‘
whether if we are reductionist enough we can describe human behaviour in a mechanistic
~way. We simply assume that at any one time an interactive system offers a finite collection

of options to a user and that a user makes a choice between them.

There are two extreme approaches to user behaviour; as a random choice between options
or as a mechanistic deterministic choice. We opt for 2 sensible middle ground, where we can
describe the probability of the choice a user makes.

In a software engineering context it is important to delimit the user’s options to a finite set
so that we can describe everything the user can possibly do with the device zind we can specify a
device that cannot be ‘defeated’ by the user — the user cannot do something for which the device
- response is undefined. However in the context of usability analysis and user interface design we
put more structure on the space of 'user choice non-determinism, describing in a probabilistic
way what is or is not likely to occur.

In summary, the previous two chapters concentrated on the ‘beha.vmur space’ of a system,
- behaviour being the set of legal act1v1t1es for a system. The following two chapters look at the
‘use’ of a system, use (or usage)} being a probabilistic distribution over the behaviour space of a

system.

7.2 TUsage require_ménts and interface speciﬁ(.:atio'ns

The use of system is capfured in fwo ways. Firstly the overall use of a system is looked at in
order to capture how ‘good’ the use is. Secondly a lower level look is taken a.t the user interface
in terms of what options the interface biases the user to choosing. The two are rela,ted so that
we can assess what effect changing the user interface has on the use of a system — whether it
makes the use ‘better’ or not. '

The two approaches capture the requirements and specification of the use of a system. The
requirements are stated in terms of how good we require the usé to be. The specification is

stated in terms of what effect the interface should have in order that the use of the system is

-~

169

that described in the requirements.

7.2,.1 What effect a user interface has on use

A user interface modifies the use of the system. A ‘good’ user interface is one that improves the
use of the system (where an ‘improvement’ is a modification for the better). Note that a user
interface only changes the use of the system, it does not alter the behaviour Space of a system.
. The user interface is not the only entity in an interactive system that will alter the use, The
user’s intentions and motivations will play a considerable role too.

We shall suggest some degree of separa,t.ion between the alteration of the use caused by
the user and alteration caused by the interface (known as the ‘user effect’ and ‘interface effect’
respectively). Such a separation enables us to discuss interfaces in a way which is independent
of their user population and vice versa. However, such a separation cannot be complete and will

be contentious. We discuss these matters in more detail in the discussion section 7.7.2.

7.2.2 A word processor example

To illustrate the concepts introduced in this chapter we use a WOfd processor example. We
assume some requirements have been stated ‘and the following abstract specification has been
drawn up. |
There are three possible reactions; one for editing text, one for formating text and one for disk
~operations. There are four objects in the state space;. an input device, the text, the formatting
and the contents of the hard disk. The kernel computations alter the latter three objects. The
users alter the input device, but at this level of abstraction we are not concerned about how
they do it — only that the state of the input device is in some way altered.

The system starts in a state where there is no text in memory. The user cannot invoke
| fofmatting or ectiting until there is some text to edit or format i.e. some text has been loaded.
All this is shown in figure 7-1. The formatting is considered to be like 2 ‘filter’ over the text (see

figure 7-2) heﬁce the computation to alter the text may also alter the.forma,tting. If we insert a
character at the insertion point in figure 7-2 then the italic ‘filter’ must extend by one charactel.-f_
save and load are functions that describe the reading and writing of data to and from the hard

drive.

170

WP = init A D{edit V format V disk) (&Y
inDev:... (7.2) init = test = Null (7.6)
tezt:. .. (7.3) edit = edit] g editR (7.7)
formatting:. .. (7.4) format = formatl § formatR (7.8)
disk:... (7.5) disk = diskl g diskR (7.9)
edit] =) editR < .
output : inDev) output : tezt, formatting 711
enabled by : testzNull (1) invoked by : edit! (7:11)
outcome : inDev inDev’ outcome : text' # text
. JormatR =
Jormat] = . ' : output : formatting :
output : inDev (7.12) invoked.by : formatl (7.13)
enabled_by': tezt;é'Null) outcome :
outcome : inDevz inDev formatting # formatting
diskR =
output : text, formatting, disk
diskl = invoked by : diskl
output : inDev (7.14) " outcome : . (7.15)
Outcome ' inDeu#iﬂDev’ d’.&k' = save(text,.fomattiﬂg, d"sk)
ot .
(test!, formotting') = load(disk)

Figure 7-1: A word proéessor specification

The ‘specification non-determinism’ (caused by abstraction on the kernel computations) is
inherent in the responses. fert’ # tezt is a highly non-deterministic statement and this non-
determinism is reduced by the refinement process. The user choice non-determinism is inherent in
the optional nature of the environment computations. This non-determinism is not (particularly)
redluced by refinement. It is this non-determinism we look at when investigating the use of a
system. Hence for most of this chapter we assume that software engineers are engaged in reﬁning

the kernel responses whilst we look in more detail at how the users control the invocations.

7.3 ‘Describing usage requirements

We want to be able to capture how ‘good’ the use of a system is.

171

5

Screen Some words in -
rendering a word processor

Formatting | . normal | italic I
Text Some words in <NL> a word processor
- cursor

‘Figure 7-2: The formatting as a “filter’ over the text

7.3.1 Optimal behaviour

For every task there is an optimal way of achieving it with a given device. Blandford et al.
[17] describe ‘canonical trajectories’ which are interaction paths that achieve a given goal in the
most efficient manner possible. We describe such activities as ‘optimal activities’ (or optimal

béhaviduf if we are talking about a collection of them). Conceptually, our notion of optimal
| activities is the same as these canonical trajectories.

By definition there is no better way of ‘achieving a task than the optimal v;fa,y. It is the
behaviour that gets a task done most efficiently and with as little expending of resources as
possible. A given task may have several different optimal activities. What is optimal is heavily
dependeht on the task; a user who has the task of editing a letter may be considered to be acting
sub-optimally if she needs to access the help system to learn how to use the formatting tools.
But if the task is ‘edit-a.'document whilst learning to usé the formatting tools’ then so long as
the use of the help system is optimal the activity may be optimal |

A ‘good’ use of a system i is one that is close to the optimal beha,vzour

Assume a user employs the word processor specified in figure 7-1 to open a file w1th the
contents shown in figure 7-3(a), edit and format that file so it looks like figure 7-3(b) and save
the file. We also assume that we want the user to conform with good typesetting practice and
edit the text before formatting it.) . |

Assuming that edit inserts one character at a time and cbrr_ectly formatting the address,
the ‘Dear sir,’ line, the main body and the “Yours etc.’ line each requires one format then the

optimal behaviour of the task is...

172

12 The Bladders,

Lower Blodsleigh,
Quants.
HP12 TLA.
12 The Bladders, Dear sir, .
Lower Blodsleigh In reference to our recent conversation,
ch)m;s © & please find enclosed my shoes,
Epm ’I;LA' o Yours etc.
‘ours etc.
(a) The starting file | . {b) The required file

Figure 7-3: Sample file contents for a word processor

" WPoptimal = disk edit® format* disk (7.16) .

...where WPoptimal is expressed in a regular grammar-like notation. i.e. the optimal behaviour
is a disk, followed by 83 edits, followed by 4 forma’is followed by a disk.

Of course, WPoptimal is extremely task specific, but we cén define more general optimal
~ behaviour if we were considering the word processor in more general use. We may dec1de (based
on heuristic knowledge or experimental evidence ga,thered from observmg expert users working
- with word processors) that typically the user performs apprommately 20 times as many edits
- as formats when preparing any document. Hence the general case for optimal behaviour with a._'

word processor may be described as...

WPgenopt = disk edit™ format™ disk e n =~ 20m _ - (7.17)

The ‘o’ reads ‘where’, hence the general optimal behaviour for a word proceséor is a disk opera-
tions followed by a series of edits, followed by a series of formats, followed by a disk operation,
where there are around 20 times as many edits as formats.

This formula shows that a task may have several different optlmal activities. assocxa.ted with

it. As a rule of thumb we suggest that the more general the task definition, the greater the set

173

of possible equally optimal activities to achieve it.

7.3.2 Measurement schemes

Once we have captured the optimal behaviour of a system then we can consider how “far’ a given
activity is from the optimal. We need a scheme over activities to measure this dista;nce from the

optimal. . o |
| We would like for HCI as a field to be in the position where we could propose measurement
schemes and validate them against a body of inspectable HCI theory. Without such theory we
can pfopose small scale schemes that describe user performance or we can propose larger, more
general schemes that are necessarily contentious and open to question. We shall look at both

approaches.

3

A measurement scheme based on user performance

Given the task of producing the document in figure 7-3 we assert that the user cannot achieve that
task in less than 89 invocations. Therefore an activity that successfully achieves the task with 89
invocations is optimal. The more invocations it takes to achieve the goal, the less optimal is the
_activity. We can capture a measure of optimality as a ;étio of number of erroneous invocations to
the number of invocations made. We can §imply ca,lcula.te thé number of errénéous ilnvoca.tions
by subtracting 89 from the total number of invocations made. _ |

If a user typed ‘Dear madam,’ then preséed the delete key 6 times and continued with ‘sir,’
and the rest of t]:‘le letter successfully then he would take 101 invocations to achieve the task.

Hence his error ratio would be...

101--89 12
—_——=— 0,11
101 101 0.119
The greater the number of errors the greater the error ratio. An error ratio of 0 is optimal.
By this calculation an error ratio of 1 is impossible, but that value can be used to indicate that
the user fails to complete the task altogether. | '
There are a few problems with this measurement scheme; the user may format the address

first, then enter the text and format the rest of the letter in 89 invocations. This activity is

174

not optimal according to WPoptimal, but scores a error ratio of 0. Hence we are in a good
position to argue that the measurement scheme is inadequate. The question is, are we more
concerned about the user getting the task done or are we worried about the user conforming
to good typesetting practice? In the former case then this simple "error ratio measurement is
adequate. In more complicated tasks, failure to adhere to good .typesetting practice can lead to

extremely sub-optimal behaviour and we would need to capture this sub-optimality.

Towards a ‘theory of measurement for optimality’

When users perform a task using a computer they will pass through a finite number of interaction
steps, from some starting state to some state signifying the complefibn of a task. In the word
processing example, we would define a user task as that of editing a document. -

Again, much of the discussion here is very similar to the discussion of ‘canonical trajectories’
[17]. In our example the task starts with the loading of 2 document, is followed by several edits
and formats and finishes with the saving of the document. We éssert_ that expert behaviour is
characterised by the user choosing the most efficient way from the start state to the end state
in his task. We call this most efficient path a.n. ‘optirrial path’. Distance from the optimal is
proportional to the deviation from this optimal path.

That said, it is not clear how we measure deviation. We can ideﬁti’fy three types of devia,t'io_n;

o detours — the user unnecessarily meanders in her interaction,

"o loops — the user finds herself in 2 situation she has previously been in without consciously

backtracking, and

e errors — the user gets to a point in the interaction, realises she is in error and then has to

retrace her steps to a point where she believes herself to be back on the ﬁght path again.

It could of course easilj be argued that loops and errors are just special instances of detours,
but we make the distinction because we want to be able to distingﬁish between different types of
- deviation so we can make a decision about which deviations are more undesirable than others.
For example, a detour is probably preferable to an error of the same size because the user is

more likely to become frustrated with errors.

175

This way of looking at a measurement scheme would work well creating ordering on activities
that are very different, but it is much more difficult to order activities that are only slightly
different.
~ All these ideas are wide opeﬁ to debate and there are lots of woolly areas even in this sh.ort '
discussion; for example what do we mean by the most ‘efficient’ path? Is it the quickest in terms
- of time, or the one that requires least input from the user, or the one that places least cognitive
load on the user, or the one that gets the task done efficiently whilst still allowing the user to
feel he is in control of the task (as suggested in [89]), and so on. Furthermore are two small
errors worse than a big loop? ' _ ’

Also to take into account is how well the task is performed — do we allow the completion of
the task to be signified by the production of a result that is approzimately similar to the result
required? In our example, if the user produces a document with ‘conversation’ spelt incorrectly
very efficiently then is this better than a user who produées a letter identical to that required,
but produces it inefficiently? |

There needs to be much more work in HCI to be able to answer these questiéns ina wéj that
is general to all (or even most) tasks. In the meantime we need to proceed taking the context

of the task into account and relying on common sense and craft skill.

7.3.3 Usage distributions

: _ \ :
Assume that we prototype a device based on the kernel specification in figure 7-1 and give it to

n users to perform the task shown in figure 7-3. Each user attempts the task and we observe
what they do. Using the error ratio scheme we measure how close to the optimal is what each
user does, _ _ ' |
Plotting the error ratio a.ga.ihst the normalised frequency of users with that error ratio (the
normalised frequency is a real number between 0 and 1; 0.5 representing 50% of the users and
so on) we possibly would obtain graphs that look like those shown in figure 7-4 We call such
graphs ‘usage distributions’. | | '
Note that the normalised user ratio is effectively the same as probability, a usage distribution
can be thought of as mapping an error ratio {or whatever measurement scheme is used) to the

probability of activities with that error ratio occurring.

-

176

1 1
error - €rror
ratio . ratio
0 (]) > 0 -
probability 1 0 probability 1
(a) A fairly optimal diss = (b} A less optimal distri-

tribution _ bution

Figure 7-4: Example usage distributions

Figure 7-4(a) shows more optimal use than that in figure 7-4(b) — more users show more
optimal behaviour. The ‘bettef’ the syé,tem the greater the proportion of its usage distribution .
falls in the lower error ratios. . | _ | |

We are not aware of any empirical Worﬁ that would allow us to predict the shape of usage
distributions. We assume that the curves fall into regular distributions because common sense
predict's they shpuld. A usage distribution is a description of how effective users are at performing
a task and therefore the distributions are q'nlikely to be purely random. If they are then we must
fundamentally question HCI as a field. If the use of an interactive system is purely random then
there is little point studying it and attempting to propose interfaces that modify the use for the
better. '

We cohsi_der usage distributions to be the ‘requirements’ for the use of an interactive system.
They describe the use of a system in manner that is independent of the interface implementation.
In the next section we consider the specification of uses — i.e. the description of systems that

will give rise to the required uses as described by a usage distribution.

7.4 Specifying interactive sy_stéms o

Consider the specification in figure 7-1. Once the user has started the device and performed a disk
- operation (initially disk is the only invocation that is enabled) she is offered a non-deterministic

choice of what to do next. By repeatedly observing what choices the users make in this situation

-

177

we can assign probabilities to each of the invocations. In doing so we are moving the system
- model out of the realm of discrete mathematics which only describes a set of non-deterministic
choices into the realm of probabilistic mathematics where we can describe what the user actually)
chooses to do in 2 more expressive way. |

In any situation the total probability of what the user can do next is 1. In all likelihood these
will not be static, context-free probabilities; what the user does next will be to a large degree
determined By what they have already done and the visible state of the device.

What the user has done so far and the visible state of the device can be calculated from

" the sequences of reactions that leads up to any given choice beingr made. Therefore instead of

' _ attaching simple probabilities to each invocation we attach functions which take the interaction

so far as an argument and returns the probability of an event occurring next.

We attach the following three probability functions to each of the invocations, ..

' Pedit:React™ =+ [0, 1]
Pformat: React”™ — [0, 1]
Pdisk:React* — [0, 1]

...where after any reaction sequence the total probability returned by the functions is 1.

Formally. ..

Vrs: React” ® pegit(rs) + Prormat (r8) + paisk (rs) =1

7.4.1 Interface and user effects

Having captured these probabilities the important question is what causes them; why is one
choice more or less likely than another? There is no simple answer of course, but we argue that
we can separately consider the user interface and the users’ intentions, which we refer to as the

‘interface effects” and ‘user effects’ respectively.

The interface effect is what is fundamental about an interface, what biasing effect it has on

the use independent of the user population. -

178

file Edit V?eWMorg

=2EBOE |-

Some text... [{

|

)

Figure 7-5: An example word processor interface

The user effect, conversely, captures what is fundamental about the user populatior; what
they will try to do with the device no matter what interface they have to work with. User
effect is therefore a blanket term covering all aspects of the user side of a system; their

beliefs, motivations, intentions and so on.

An example interface effect

Consider a user interface to the word processor. The interface is shown in figure 7-5 and is based
on the earlier versions of Word for Windows. We can present an estimation of the interface effect
for this interface as follows. |

Editing takes place in a prominent window and editing commands are simple and will gener-
ally have a one-to-one relationship to device commands; for instance the edit command ‘insert (i)’
is invoked by pressing the key marked /’. The interface therefore gives éditing a very high prob-
ability; 0.95. Formatting is caused by pressiﬁg graphical buttons on a less préminent tool bar.
This requires more effort; moving the mouse or a sequence of command keys. Thé interface
probability of formatting is low; 0.04. The disk operations are in the menu system and therefore
require more effort still and are therefore even less likely to be invoked; 07.01.

This is effectively a ‘reverse engineering’ of the interface. The use of probability measures

179

" enables us to capture ‘what’ the interface does — the biasing it exerts on the user, rather than
‘how’ the interface causes this biasing. We want to be able to produce an ‘interface specification’
which describes in probabilistic terms what biasing the interface has on the tse. We can then
. pass this interface specification to a human factors épecia.list who will "kﬁow’ what presentation
issues and interface designs will produce this biasing. . o

This interface is ‘static’ ~ it does not alter during the interaction, but by using probability
functions to describe the interface effect we can describe ‘intelligent’ interfaces that adapt them-
gelves to the user. For example we could build an interface that prompts the user to perform disk
- operations if she has not done so for a long time. Heﬁce we could define probabilistic functions
that increase the probability of a disk operation occurring (and correspondingly decrease the
probability of edits and formats) after a fixed number of invocations that do not include a disk
operation. The degree of increase in the probability of a disk operation will be dependent on
how the prompting is impiemented. Presumably a dialogue box containing the text ‘You may
wish to perform a disk opération now’ will increase the probability less than a dialogue bo:;
which contains ‘Do a disk operation. Now.’ and is accompanied by a warning sound. We are
however, only really interested in the probabilities rather than the actual interface features that

cause those probabilities.

User effects

The proposing of user effects i‘s a possible point of contact in our approach to user modelling .
(25, 11, 118]. We would like to be able to emp_loy' a user mod.elling technique that could feed
predictive results into our approach'withou_t having to resort to to expensive user tests to analyse
. évery design decision. |

To feed the results of a user modelling analysis into our approacil we would need to ‘translate’
the results into a collection of probability functions. This translation is beyond the scope of this
work but should figure very highly in the ‘proposed further work’. Interfacing a good user
modelling approach to our work will allow us to make valid Hesign decisions earlier in the design
lifecycle. _ |

The uéer effect is much less Iikely to be static than the interface effect. What the user wé.nts

to do next will be heavily influenced by what they have done so far. We could model a fairly

180

competent user performing the simple letter editing task with a collection of functions that model
the probability of the first invocation Being a disk operation as being 1, then the probability of
edit being very high until around 85 edits have been performed, then the probability of format
becomes high until 5 have been invoked and then the dis;k operation becomes.very likeiy. We
could then take this model and capture a less competent user as one. where the difference between
the probaEilities is not so pronounced. |
At the other extreme we can model the user population of a ‘walk up and use’ system as
being simply random. In the case of our word proceésor the user effect shows no difference
. between each option; each invocation has the probability of 1/3. Note that this should not be
| the same as a model of novice users; novice users will have characteristics that are not just pﬁrelf
random. However a walk up and use system assumes an infinite user population and therefore

ultimately the probabilities should ‘average out’ making all options equally likely.

Combining user and interface effects with probabilistic filters

We can think of the interface effects and user effects as ‘filters’ over the core system. ‘Filtering’
is a way of combining the interface and user effects s0 as make predictions about what the user
will do next. | | |

| To illustrate this ﬁltering consider two very simble user effects and the sirﬁple static interface
effect described above.. Firstly an extreme user who Just wants to perform edits. Edltmg has a
probability of 1, formatting and disk operatlons have a probability of 0. In this extreme case
. the interface has no effect; the user will only perform edits no matter what the interface tries
© to bias her to. See figure 7-6(a); the column u lists the user effect probabilities, the column i
lists the interface eﬁ'ect probabilities and the column F lists the overall eﬁ'édt of the user effect
filtered through the interface effect.

Another user (figure 7-6(b)) only wants to do formats or disk opera.tlons and is not bothered
whlch The overall effect is that edits have a probability of 0, formats have a proba.blhty of 0.8
and disk operations have a probability of 0.2. As the user does not care which of formats or d:sk
operations she does then the bia.sing is due to the interface; the interface makes formats four
times more likely than disk operations.

The filtering is calcula.ted by first multlplymg the probabilities of each pair of user and

181

lv i E v i E
edil 1 095 1 edit 0 09 0
format [0 0.04 0 format | 0.5~ 0.04 0.8
disk 0 001 O disk 0.5 0.01 0.2
{a) A user that c;nly wants to do edits (b) A user that only wants to do formats

or disk operations

U1 E
option; | w1 %1 w X4 X1/T
optiony | ug iz uz Xi2x1/T

option,, | Un in Up X i X 1/T

~ where T = S (s x45)
1<j<n

(c) A general approach to filters

Figure 7-6: Modelling probabilistic filters

interface effect. These multiplied probabilities are then normalised by multiplying each 6ne
by 1/T where T is the sum of all the multiplied probabilities. This general case is shown in
ﬁgﬁre 7-6(c). Note that it is possible to define filters that are inconsistent with each other such
that each event is defined as being impoésible by either the user or interface effect. Hence T is .
zero and 1/T has no meaning. Obviously a device that offers no choices that the user has any
intention of doing is extremely problematic, 50 éuch inconsistent filters will be rarely observed

and be avoided if specifying an interface.

The Interactive System Specification Language (ISSL)

An Interactive System Specification Language (ISSL) is based on reaction style RSSL, where
user and interface effects are included in the invocation definitions. We include the probability
functions for each invocation by adding extra clauses into their specification. The specification

of the invocations in a word processor based on the simple interface and a ‘walk up and use’

182

user is given in figure 7-7.

edit] = format] = ‘
enabled_ by : text # Null enabled by : text 7 Null
usger : 1/3 (7.18) ~ user: 1/3- . (719)
interface: 0.95 interface : 0.04
disk] =
usger: 1/3
interface : 0.01 (7.20)

Figure 7-7: Adding probability measures to the invocations in a specification

If we need to attach probability functions rather than static probabilities to the invocations
then we :an name those functions, include the name of the function in the specification of the
inv&cation and define the function underneath the specification. For example the specification
of diskI for a walk up and use user and the ‘intelligent’ interface we described in section 7.4.1is

shown in figure 7-8.

diskl = :

enabled by : text £ Null

©ouser: 1/3 (7.21)
interface : paiskintel

Pdiak!met(”) = o
rs=A . =1 (7.22)
rs = (edit + disk + format)*edit(format + edit)" 00 < n £ 100 =20.01 R
rs = {edit + disk + format)* edit(format + edit)™ e n > 100 =0.1

Figure 7-8: Defining probability functions for the invocation specifications

The interface effect for editing remains at a constant 0.95 until the user has performed 100
consecutive edits, then the interface reduces the probability of edits occurring. To capture this
we define a probability function paiskimtel (standing for ‘probability of disk with an intelligent

interface’).

183

In the notation for describing the probability function rs is the reaction sequence so far. The
body of the definition lists various values for rs (using the regular grammar—liké notation we
used for describing optimal behaviour) and their corresponding probability values after the =
symbol. If nothing has happened yet (rs = A) then it is impossible to perform edits or formats,
Henc_e the probability of disk operations is one. The next line in the function definition describes
all the activities for which there have not been any disk operations in (up to) the most recent
100 invocations. In this case the interface effect probability of a disk operation is 0.01. The last
line ‘describes activities for which there have not been any disk operations in the most recent
100 invocations and in this situation the probability of a disk operation increases to 0.1. (Note
that we would have to define the probability functions for the edits and formats to drecrease

correspondingly once the probability of the disk operation increases.)

Impossible or illegal?

Note tl-xat if the ‘enabled by’ condition fails then the probability of the invocation must be zero,
but not vice versa. Enabling conditions denote the legality of computations, the filter clause

“denotes the poséibility of computa.tioris. An illegal computation is necessarily impossible, but an
impossible computation is not necessarily ille‘ga.l’. (Ap ‘lllegal’ computa,tion' is one for which the
enabling condition has failed. An ‘impossible’ computation is ohe with a ﬁrobability of zero.)
Hence in figure 7-7 the enabling conditions in edit] and formatl override the interface effect and
set it to zero if the enabling condition fails.

Consider the example shown in figure 7.4.1. The user is offered 2 dialogue box and they
should enter the name of a file to save in a text slot and then click on the ‘Done’ button.
Until there is a valid file name entered in the slot the ‘Done’ button is greyed out and cannot
be pressed; the invocation of pressing the button is illegal until a valid file name is entered.
However imagine a sysfem with overlapping windows such that the ‘Done’ button is covered by
another window and the user cannot get to it without moving one of the windows. In this case
even if a valid file name is entered in the slot then the invocation of pressing the ‘Done’ button
will still be impossible. The enabling condition is about functionality and the interface and user

effects are about the use.

184

S e e W-%Wg

ﬂease enter & valid
DOS filename...

ile.toolo

Pease enter 8 vdld
DoS filename...

(2) An illegal invocation (b) An impossible invocation

Figure 7-9: The difference between an impossible and illega] invocation

Refinement of ISSL specifications

If we decompose a reaction into a collection of sub-reactions then we need to show that the total

probability of the sub-reactions is equal to the probability of the reaction from which they were

decomposed.
Assume the software engmeers who are reﬁnmg the reactions have split them into insert,

delete, moveC’ursor, copy and paste where each one is composed of an invocation and response

insert = insertl § insertR

..and so on.

If Pinsy Pdels PCy Peopy aNd Ppaste are the probability functions for insert!, deletel, moveCursorl,
copyl and pastel respectively (calculated by filtering the user effect through the interface effect

defined for each one) then the refinement of the probabilities is a case of showing that. ..

¥rs:React” o (Pins(rs) +Pdel(r3) + PmC(TS) + Pcopy(’"-"') + Ppaste(rs)) = Ped:‘t(rs)

... (recall that p.4;; is the probability function for editf).

185

7.5 Relating usage requirements and interface speciﬁcaiions

The previous two sections have described alternative ways of describing the use of interactive
systems. Firstly in an ‘overview’ manner — attempting to capture what constitutes a ‘good’.
use, Secondly, looking in more detail at the mechanics of the usage,‘ what interface features and
user intentions and motivations effect the use of the system. ’

In the next chapter we shall define semantics for both usage distributions and ISSL specifi-
cations. Hence we can formally assert whether a usage distribution and an ISSL specification
are describing the same use, and hence are ‘consistent” if they are.

A usage distribution determines the requirements of the use of a system. It is possible -to
define detailed graphs for the requirements, but more likely are statements such as ‘the users .
have at least a 0.5 probabiﬁty of p;erforming their tasks ﬁrith a error ratio less than 0.05” which
we can translate into usage distributions.

The user effect constitutes the assumptions about the usér population and the interface
effect constitutes the specification of the interface. Given requirements for the use and a set of

' assumptions about the user population we can design an interface specification which filtered
through the user effect produces the requirea use. In user interface terms the crucial question
‘is what effect does a change in the probabilities attached to the interface specification 6f the

 interface have on the usage distributions? The goal of an interface designer is to ‘tweak’ the
values of these probabilities in order to achieve a greater proportion of usages with a required
low error ratio.

. The specified interface effect is then passed to a human factors specialist who will know whé.t
interface features to implement in order to achieve the biasing required by the interface effect.

One way of making our approach more practical would be to devise a collection of interface
widgets in a toolkit where the biasing effect of each widget is known and documented in the
toolkit.

7.6 A synthesis process for interactive syStems

We now describe how interactive systemé might be synthesized. The process contains two

(broadly) concurrent streams; one dealing with the behaviour of the system and one dealing

186

with the use of the system.

The process ‘starts’”! with the definition of the functional requirements in terms of safety
'a,nd liveness prdperties. A very abstract system can be specified which is a refinement of these
requirements. This specification is expfe‘ssed in terms of a set of reactions which the user invokes
- and it defines a space of legal behaviour. The set of reactions will be suggested by the result of
a task analysis. Given a task, we wish to know what “tools’ will be useful in the achievement of
that task. In our example we have implicitly assumed that the task of producing a document
will be helped by the tools edit, format and disk. We can think of a reattion being a ‘tool’ for
a user to employ in an interactive system. o

At this point the procesé can split into its two streams. A more ‘traditional’ software engi-
neering stream which deals with the functional refinement of the responses in the specification
and an interface stream which deals with the invocations — how the tools are used by the user.
A required use is proposed as are assumptions about the user population and an interface effect
is specified. The output produced by the responses is also going to have an effect on how the user
invokes reactions. Hence the software engineering stream feeds information about the output of
the responses into the interface stream so that decisions can be made about how that output is
presented to the user. The interface specification can then be passed to human factors specialists
who know what actual interface fea,tureé khave the effect specified in probabilistic terms by the
interface specification. '

Each tool determines a task so we can apply a task analysis to each tool, which defines
a more refined set of tools. The edit reaction might be decomposed into insert, delete and
" moveCursor. The composition of these three reactions should be a functional refinement of edit
and the total probability of.them occurring in any situation should be equal to the probability

of edit occurring in fha.t situation. .
- This refinement proceeds inductively until the responses can be translated into software and
the invocations can be mapped onto low level device'commands such as key presses and mouse
movements. Ideally we would like to be able to ‘design’ the device commands, but often the

hardware will be given so the design will have work ‘towards’ a collection of device commands

1This where the formal approach starts, there will be some body of semi-formal or completely informal
requirements gathering before this.

187

that are available. However the decision of which invocations are ma.pped to which (collection of)}
device commands should be delayed as much as possible. Typically there will more invocations
than there are device commands and so there will need to be a ‘syntax layer’ that translates -

sequences or combinations of device commands into invocations.

7.7 Discussion

The ideas presented in this chapter show many similarities to the Intex;a,ction' Framework [10,
17). However IF starts by describing intera,ctionsr in a way that is abstract from the users and
devices that cause those interactions, and then provide ‘hooks’ to device and user modelling 80
that interaction properties can be deﬁned and then user and system models devised that when
interacting with one another will fulfill those properties.
We start with user and device models expressed in an RSSL épeciﬁcation; these delimit what
behaviour is legal. We then look at how such a behaviour is used with usage distributions and
“then define how that use is caused by an ISSL specification. Hence we build extra non-functional
mformatlon into the functional description of a system whereas IF develops functionality from
the non-functional requirements described for a system. ‘
 We have made several simpljfying assumptions in this chapter. These points are discussed -

below.

7.7.1 Measurement schemes

We have illustrated our approach with a measurement scheme based on number of errors made.
" It could be argued that our é,pproach is therefore more about improving performance than about
improving usability. We take the stance that the point of making a device usable is to improve
the user’s performance of their given tasks. Therefore requmng a high leve] of performance from
a system equates to requiring a h1gh level of usability.

Other measurement schemes are possible. For example an analyst might decide that usability
is more about how happy users are after having performed a task with a given device. The
a,nalysi_could observe users performing a task and then apply a psychometric test to determine

how happy they are afterwards. Presumably some activities make users happier than others and

188

the analyst could then specify interfaces that make those activities more likely.
We can change the measurements scheme, but this does not require that we change the

framework in which the scheme sits.

7.7.2 Separation of user and interface effects

In an idealiworld we enﬁsa.ge a function which would generate the probability of what happens
next and would bel parameterised by the user effect » and the interface effect ¢. By changing
u, (i.e. by observing what different classes of users do with the system,) or by changing 7 (i.e.
by giving different intérfacés to the same users) we should f.heoretically be able to study why
certain classes of user work well {or otherwise) with different typés of interface.

However it would not be difficult to argue that it is impossible to change z without having
an effect on u and vice versa. The interface presents the device to the users and colours the
users’ beliefs and perceptions about the device, so changing the interface will also change the
users’ beliefs. An interface is not just a simple channel ‘of communication between users and the
de.vice, its role is more profound and subtle than that. This explains the worries expressed by
some authors (108, 32] a.bbut drawing strict boundary lines between functionality and interface.

However; different users do make different uses of interfaces so there must be some level of
separation to be made even if it is not the clean, simple separatlon we have suggested here. We -
- suggest a move towards separation of user and mterfa.ce effects is beneficial even if a complete

separat:on is 1mp0551b1e

7.7.3 Other implications of the use of the framework

Using our framework also allows us to capture interesting ideas about interactive systems we
have not gone into detail with in the body of this chapter. Some of those ideas are catalogued

below.

Interface construction as engineering

Our model of user-interface allows us to put the endeavour of interface building into an engi-
neermg context, where the necessny of building good interfaces is set against the cost of building

the interfaces.

189

1 1 1 1

error error €rTor error

ratio ratio ratio ratio
04— 0 05— e 0 -
0 probability 170 probability 170 probability 1. . 0 probability 1

Figure 7-10: The effect of learning

t

We can get an idea of the comparative ‘powers’ of interfaces by looking at the amount
of alteration they cause to usage distributions. The more alteration, the more powerful the
interface. It is not unreasonable to assume that more powerful interfaces are going to be more
expensive to produce.

- We can therefore set the cost of producing the interface against the potential pay-off. Assum-
ing the user population are employees of the client we are building a system for, an improved
inter'fa,ce will presumably result in improved efficiency for the employges and an increase in

- productivity and profits for the client. This increase in profits can be set against the cost of
building the interface. Another example is that of producing software systems for genefal uée;
_‘user-friendliness’ is a positive selling point and we can set the cost of producing a good user
";ntefface against the projected increase in sales due to the interface. |

An important factor that can also be considered is necessity of user training. If an interface
is needed that is prohibitively expensive then we f:ould alter the other side of the equation by

~ training the user population to act more like expert users, thereby reducihg the needed power
of the interfa.ce and the cost of building it. Of course training involves éost too, and the two

should be traded off against each other.

Learnability _

We can also express learnability with usage distributions. Assume we have users performing the
same task n tifnes, then we propose that we will get a series of distributions. like that shown
in figure 7-10. As the user learns to use the interface the usage distributions will become more
biased to the optimal. We can capture this as the degree of change in the distribution with

respect to the number of usages. We call this degree of éhange the ‘learnability’.

-

190

We would be given a required learnability, the assumed learnability of the user population
and we would calculate the necessary learnability to be built into the interface to satisfy the

requirements.

Our framework contrasted to the ‘usability properties approach’

We can contrast our approach to interactive systems to-the ‘usability properties approach’ typi-
fied by [41, 61, 112]}. We attempt te characterise behaviour and usage that result from a usable
device and then design interface effects which will bring about this sort of behaviour and usage.

The usability properties approaeh considers various properties that are held (with varying
levels of confidence) to have relevance to usability; for example, predictability, visibility and so
. on. Ultixha,tely one would wish to have a set of properties the fulfillment of which guarantees
usability. This approach therefore considers usability to be a composite of sub-properties whereas
.the approach reported here considers usability in a more ‘holistic’ way.

The two approaches are complementary. For example an analyst may make the assumption
that users are likely to get easilf lost, a fact that is expressed in a user effect. To prevent this
the analyst may make the decision that a highly visible interface be implemented (based on the
deﬁmtmn of visability given in [61]) and this notion of v1sxb111ty can be defined in the interface
eﬁ‘ect The usability property is then a method guldlng the 1mp1ementat10n of an mterface that

biases the users away from getting lost.

7.8 Conclusion

" Our approach defines a formal framework for asking questions about usebility and user interfaces;)
the answers to those questions then feed back to help the synthesis of an interactive system. Such
a framework constitutes an attempt to move HCI work into a more rlgorous, theoretical context. .
However our framework is only a framework and is therefore more about asking questions than
providing answers. The crucial point is that we have a sensible and well defined context into
which to feed those answers. _

A framework also helps in proposing an agenda for further work. We suggest that in order to

use our framework in a more predictive manner we need to pay more attention to user models,

191

or at least to how we interface the results of existing user models to our approach.

192

Chapter 8 IR -
A formal semantics for ISSL

In the previous chapter we introduced several concepts and ideas which we ﬁow give formal de-
scriptions of. The chapter was.about describing the use of systems, so firstly a formal description
of use is given (section 8.1), followed by a definition of usage distributions and their sema.ntics-
(section 8.2) and a definition of ISSL speciﬁcatidns' and their semantics (section 8.3). This section
also shows \how' we can compare uses described by usagé distributions and ISSL specifications.
Sections 8.4 and 8.5 give the forrﬁal definition for the other objects used in chapter 7, namely
the regular grammar-like notation used for describing optimal behaviour and the notation for-
describing probability functions. We conclude with a discussion of the mathematical entities we

have chosen to employ in this chapter (séctidn 8.6).

8.1 A formal definition of use

The model of use we shall propose is based on sequences of reactions mapped to the probability of

- that sequence occurring. A useis therefore a probability distribution over sequences of reactions.

Use = React* = [0,1] | CRY

~ The total of all probabilities in a use should be 6ne, hence. ..

Yu:Uses E u(rs):llll. - | (8.2)

rs:React™

193

Note that a use is a distribution over all possible reaction sequences as it is a total function.
Reaction sequences that are illegal for a given system are simply modelled as having a probability

~ of zero.

' 8.1.1 Why such a simple model of use?

The definition of use we are working with is deliberately restrictively simple. A more general

model may be a function from activities to probabilities, as follows. . .
Use = Activity — [0, 1]

...and indeed it would b.e possible to construct the semantics we shall describe in this chapter
based on this model, but it would be significantly more complicated and would obscure the main
formal points of this chapter.

This chapter shows one way of dealing with models of use. We do not claim it to be the
mosf general way, but we do claim it to be one of the most simple and clear. In section 8.6 we
sketch out how we might go about describing use based on the activity model and look at the
pitfalls in doing so. We list some of those pitfalls here to convince the reader of the benefits of

~ the simple model of use.

e The set React" is countably large, whereas the set Activity is uncountably large (owing to
~ its real tixﬁe index). In an uncountably large space it is meaningless to assign probabilities
to individual members of that space — they would all have zero (or at most infinitesimally
small) proba.bili_tiés. Hence we would have to ‘a.pproxima,té’ activities into sets of similar
activities in order to make the space countable. rfhis is an extra layer of complexitx not

needed with React®.

" e Activities are infinitely long whereas sequences of reactions are by definition finite. The
probability of a sequence of events occurring is calculated by the product of all the con-
stituent events occurring. If the sequence is infinitely long then the p;‘oliability of that

sequence is likely to be zero.

A specification can describe the same activity as being caused in several different ways —

194

a user may save a file by selecting the appropriate option in a menu system or by pressing
F12. At a certain level of abstraction these will result in the same activity (i.e. the model of |
the hard-disk will be updated by according to the value of the currentljr open‘applica,tion)
but this activity can be caused by (at least) two different invocation sequences. As we will
_calculate the probability of an activity from the probability of its constituent invocations
then a given activity may have several pfobabilities associated with it. Again this is a level
of complexity that obscures the main ideas. By considering only the sequences of reactions

we do away with this extra level of complexity. -

8.2 Usage distributions

Section 7.3.3 showed usage distributions as a function from error ratio to probability. However we
then argued that error ratio is not necessarily the best measurement scheme to use to evaluate
how well a user is using a device. We argued that it is not currently possible to propose a
general measurement scheme to capture this ‘goodness’ of use and so we proposed that any
sensible measurement scheme could be employed depending on the context of the analysis.
Meas is the set of measurement schemes that take reaction sequences to a normalised mea-

surement (between 0 and 1) of how ‘good’ that sequence is.

Meas = React* — [0, 1] o (8.3)

A distribution is a function from a normalised measurement to probability. Distr is the set

‘o‘f all such distributions.

Distr = [0,1] = [0,1] | (8.4)

A usage distribution only makes sense if it explicitly includes a measurement scheme. Hence

a usage distribution is a pair of measurement scheme and distribution.
UD = Meas x Distr o (8.5)

195

Now we can show how usage distributions relate to the model of use we have proposed.
A usage distribution is an approximation of use — a shérthand as it were. Hence a single
distri-bution can describe several uses. This approximation is based on the measurement scheme,
the measurement scheme defines equivaiences sets of reaction sequences (where an equivalence
set is a set of all reaction sequences that have the same measurement), and the distribution
defines how likely it is for all those reaction sequences to occur.

The function equivSet takes a measurement scheme and a normalised measure between 0
and 1 and retﬁrné the set of all reaction seﬁuences that have that measure according to the

measurement scheme,

equivSet: Meas X [0, 1} = P(React*)
equivSet(m, val) = {rs: React* | m(rs) = val}

(8.6)
In words; ‘the set of reaction sequences rs is returned such that rs measures val according to

the measurement scheme m.’
_ The predicate useUD takes a usage distribution and a use and holds true if the usage distri-

~ bution correctly describes the use.

useUD:UD X Use = B ‘
useUD((m, d), u) = .
Vval:[0,1] @ 3rss: P(React™) o rss = equivSet(m, val) A
Y u(rs) = d{val) A
rsgrss

Jp:{0,1] @ Vrs: React” o rs € rss => u(rs) ~p

(8.7)

In words; ‘for every measurement val there is an equivalence set rss of reaction sequences that
~ share that measurement. The distribution defines a probability for all those reaction sequences
as being d(val). The total of all the probabilities of the reaction sequences in rss defined by '
the use should equal the probability defined in the distribution. Furthermore all the reaction j
sequences in rss should have approximately the same probability.’

This caveat ensuring that all reaction sequences in an equivalence set have roughly the sa.me.

probability ensures that we cannot propose a use in which all the reaction sequences ir an

equivalence set have the probability 0 except one which has the probability d(val), which is-not

-

196

what we are really after.

8.3 ISSL specifications

8.3.1 An abstract syntax for ISSL speciﬁcations

~ An ISSL specification s similar to a reaction style RSSL specification (see section 6.9) except
that each reaction is associated with a probability function which gives the probability of that

reaction happening next. Pf is the set of all such functions.

Pf = React* — [0, 1] ' _ (8.8)

ISSL is the set of all ISSL specifications.
ISSL= P x (React 5 Pf) (8.9)

..where if (init, reacts):ISSL then...
- e tnit is the initial predicate which describes states at time zero,

e reacts is the set of reactions niapped to a probability function describing how likely they

are to occur, and

e at any time the probabilities generated by the probability functions must total 1.

Vrs: React* o > reacts(r)(rs) =1

redom reacts

Each probability function in an ISSL specification is expressed as a pé,ir of probability func-
tions for the user and interface effect. A ‘raw’ ISSL specification is one where each reaction is

associated with a pair of probability functions.

1SSLraw = P x (React — (Pf x Pf)) | (8.10)

197

We shall give semantics for ISSL specifications, so we need to show how to convert a raw
ISSL specification to an ISSL specification. The function filter takes the reactions and proba-
bility“functions of a raw speciﬁcg.tion and returns those reéctions mapped to single probability
functions. Those single functions are fhe result of ‘filtering’ the user and intérfa.ce effects in the

raw specification (as described in section 7.4.1).

filter:(React 5 (Pf X Pf)) — (React 5 Pf)
filter({ry = (¥1,%1)y « oy (Unyin)) =

A{rie {rs = (ui(rs) xi;(rs)x 1/T) | . (8.11)
T= zk: (ur(rs) xix(rs))} | 1<j< n}
1<k<n

In words; ‘the function ﬁlter; takes n reactions associated with pairs of prdbability functions.
For each of these a reaction associated with a éingle probability function is returned such that
the probability function maps reaction sequences rs to a probability calculated by multiplying
the interface effect for rs to the user effect for rs to a nbrma.lising value 1/T where T is the total
of all fhe multiplied together user and interface effects for rs.’ |

Converting a raw ISSL specification is simply a case of applying filter f_o its reactions and

probability functions. The function unraw does this.

unraw ; ISSLraw - ISSL

unraw((init, rawReacts)) = (zmt ﬁlter(rawReacts)) (8.12)

8.3.2 Semantics for ISSL specifications

Our aim is to define a function: that takes an ISSL specification to a use. First we define the

function prob that calculates the probability of a sequence of reactions occurring.

prob:ISSL x React™ — [0,1] -
prob((init, reacts), {ry, . ., Ta}) = :
0if {r1, .. ,ra) é reactBeh((init, dom reacts)) (8.13)

T reacts(r)({r1, - ., riz1)) otherwise
1<i<n

198

In words; ‘if the reaction sequence (ry, .., 1) is illegal then it has a probability of 0. Otherwise
the product of all the individual probabilities is returned. An individu@l pr_oba.bility (say for
reaction ry) is calculated by extracting the appropriate probability function from the specification
reacts(r;) and then applying the sequence of reactions so far (ry, . .7 ri-1) to that function.’

Calculating the use described by a ISSL speciﬁcation is simply a case of mapping all reaction

sequences to the probabﬂity defined for them by prob. The function uselSSL does this.

uselSSE: ISSL — Use

uselSSL(spec) = {TS —~plp= prob(spec, rs)} (8.14)

It is interesting to note that the semantics for an ISSL specification define a singlé use for a
specification, whereas the semantics for usage distributions define a collection of uses that are
described by a single diétribuﬁon. If we consider usage distributions to be requifements for use .
and that ISSL is a specification for use then we have sensible relation between the two according
to our semantics. A usage distribution is an approximation of use aﬁd therefore defines a space
of possible uses whereas an ISSL specification defines precisely one use. The predicate consistent
holds true if the use defined by an ISSL specification is one that is valid for a usage distribution.

consistent: UD x ISSL—B -
consistent(ud, spec) = useUD (ud, uselSSL(spec)

We can achieve this neat relationship between usage distributions and ISSL specifications
because of the simple nature of the underlying model. If we were using the more involved model
that maps activities .to probabilities then an ISSL specification would describe a set of possible
“uses. This is because of the argument that one ak:ti\?ity can be caused by severalll_‘eaction
sequences, and hence it would not be possible to calculate one definitive probability for an
activity.

Theoretically we would define consistency between distributions and speciﬁcationsr as holding
if the uses described by the specification 'aré a sub-set of those described by the distribution.
However, although mathematically neat this may be impractical. By their nature all the models

and concepts we use in considering the use of a system are approximate, especially things like

199

(8.15)

" measurement schemes, and hence the comparison of sets of uses should be equally approximate.

Showing this sort of sub-set consistency would only be sensible if the usage distributions and
‘the user and interface effects we use in the analysis are ﬁ;ecise. In the a.bsence. of such precision
we can only expect approximate comparisons — consistency would be more likely to be based
on there being 2 significant intgrsection between the uses described by a distribution and a ISSL
Speciﬁcation. What is ‘significant® is open to debate.

By employing the simpler model of use we do not need to worry so much about these matters.

8.4 A regular grammar-like notation

In the previous chaptef we used a regular grammar notation to describe the optimal behaviour
of a system and we also used it in defining prlobla.bilistic functions for the user and interface
effects. . _ |

This notation describes orderingé of reactions and is defined inductively.‘ A null sequence
(denoted A) or a single reaction is the base case and if n is a natural number, tf is a truth

valued function and R, R; and R, are valid regular sentences then so are...
R\R, Ry + Ry R*. R R o tuf

(The last sentence describes a sentence repeated z times where z is a natural number which
satisfies the truth-valued function. e.g. R e 1 < z < 10 is the repetition of R between 1 and 10
times.)

Formally...
. RG u:= A | React| RG RG| RG + RG | RG™ | RG* | RG® TVF (8.16)

The predicate rg takes a sentence from RG and a sequence of reactions and holds true if

that sequence is correctly described by the sentence.

200

rg:RG — React” — B
' rg[Alrs=rs = ()
rg[rirs = rs = (r)
rglR1R2]rs = 3rsy, rsa: React™ e rg[Ry]rsy A rg[Ra]rsa A
: s = rs17rse
rg[R1 + Ra]rs = rg[Ri]rs V rg[Rz]rs i (8.17)
rlRrs 2 rs={) |
rg[R™*1]rs = Irsy, rsy: React™e rg[R]rsy A rg[R™]rs2 A
_ . rs = 181" TS
rg[R*jrs =3n:Ne rg[R"]rs
rg[R* o tuf]rs =3n:N e rg[R™]rs A to[ivf, (n)]

" In words;
e ‘the null case — rs is the null sequence,
o the base case — a reaction describes a singleton list containing that reaction,

e sequence — rs can be split into two sub-sequences the first of which is described by R;

and the second sub-sequence is described by Ry,
e disjunction — rs is described by either of the sentences R; or Ry,
e repetition 0 times — rs is the null sequence,

e repetition n+1 times — rs can be split into two sub-sequences the first of which is described

by the sentence R and the second is described by R repeated n times,

e repetition arbitrarily — R repeated an arbitrary (but finite) number of times describes rs, |

and -

¢ repetition a defined number of times -—— R is repeated n times where n satisfies the truth-

valued function tuf.’

" These regular grammar sentences are used to describe a constraining of the set of reactions
sequences that are legal for a specification. For example the sentence WPoptimal (formula 7.16)
defined in the previous chapfer defines a sub-set of the legal reaction sequences of the word

processor specification WP (figure 7-1).

201

The function rgBeh takes a reaction style specification and a regular grammar sentence and
returns the set of reaction sequences that are legal for the specification and described by the

sentence.

rgBeh: RG x RSSLreact — P(React*)

rgBeh(Rz SPeq) = {rs:React* | rs € reactBe_h(spec) A rg[R]rs} (8-13)

In words; ‘the set of reaction sequences rs is returned that are in the set of legal reaction

sequences for spec and are correctly described by R.’

8.5 Probability functions

Recall that a probability function is a function from reaction sequences to probability.
Pf:React* 5 [0, 1]

We desf:ribe probability functions as a collection of regular grammar sentences and associated
probabilities as demonstrated in figure 7-8. All the reaction sequences described by a sentence
will be mapped to the probability assoc:lated w1th it. The abstract syntax for the probablhty

function definitions is a set of paired regular grammar “sentences and probabilities.

Pfdef = P(RG x [0, 1]) | (8.19)

If pfd: Pfdef then all fhe sentences in pfd should describe distinct sets of reaction sequences.

The following description of a probability function is not acceptable. ..

(A+ B) =05

(B+C) =0.25 - (820)

rd .
...as it defines two values for the sequence (B). Formally, the intersection of all the sets of
reaction sequences described by all the sentences in a probability function definition is the empty

~

set.

202

Vpfd:Pfdef e ((] {rs:React*| rg[[R]rs}) =0 (8.21)
{Rp)erfd

In words; ‘the interéection ofl all set of reaction sequences described by the sentences R in a
probability function definition is null.’ ' '

- These descriptions are converted to a probability fur'x'ction by ev;lua,t_:ing the regular grammar
sentences using the function rg defined in the previous section and mappiﬁg them to the given

probabilities. The function pf performs this conversion.

pf : Pfdef = Pf o '
pf (pfd)= {rs > 0| rs: React*} .

(8.22) -
{rs = p|3R:RG ¢ (R,p) € pfd A rg[R]rs} |

In words; ‘the probability function which maps all reaction sequences to 0 is overwritten with
a partial function from reaction sequences described by sentences R in pdf to the probability R
- is paired with. (Note that probability functions are total, hence the need to overwrite the ‘null’

probability function to ensure totality.)’

8.6 Discussion

.This chapter has formalised the ideas introduced in chapter 7. We have used a very simple ‘
model of use, namely a distribution of probability over sequences of reactions. In doing. SO we
have captured fairly elegantly the distinction between usage distributions and ISSL specifications;
namely that usage distributions describe a collection of possible uses whereas ISSL specifications .
describe precisely one use. - | .

We have alluded to the possibility of using a more complicated model of use which is a -
distribution of probability over real-time activities. We can now look in a little more detail at
this model, how we might go about formalising it and why this formalisation is considerably

more complicated than the one introduced in this chapter.

203

8.6.1 An uncountably large space of activities

Bec#use an activity is indexed b& real time, a behaviour will typically contain uncountably many
activities. Asking the probability of 2 single event in an uncounta_ble space has little meaning.
Consider the probability of obtaining a single point from a contim.ious space of real numbers.
" The probability of obtaining 7.5 is zero (or at most infinitesimally small) and so it only makes
 sense to consider the probability of obtaining a value in a range of real numbers, say 7.4 — 7.6.

Now consider the following specification.

increm = z = 0 A OfjustAddOne] . (8.23)

JjustAddOne=input: =
output : 2
enabled by : z =(
outcome: 2’ =z + 1A <t+2

(8.24)

Y

Assuming that time is measured in one second units this specifies a system that adds onetoz
in the first two seconds and then stops. Even this simple specification descrlbes an uncountably
large set of activities. The change from z = 0 to z = 1 can take place at (say) time 0.5, or
time 1, or ’any time in between. As time is real then there are an uncountable number of time
values in between 0.5 and 1 that the change can take place in, hence the behaviour space 1sr

"uncountably large

If even a very simple specification such as increm has an uncountably large behaviour space
then it is not unreasonable to assume that the majority of specifications will have too. Indeed
unless a specification is exact about the tlme for every state change then a specification must
have an uncountably large behaviour space.

To overcome this problem we would perhaps approximate behaviours by only considering

behaviours where state discontinuities oceur (if they occur at all) at regular intervals.

204

8.6.2 Infinitely long activities

An ISSL specification applies probabilities to reactions. An activity that represents an infinite
number of reactions has a proba,bility' of zero. Therefore we need_ to add a further level of
a.bproxima.tion to activities by considering only those that rebresent a finite number of reactions.

Typically aspecification in the reaction style will describe plenty of such finite legal activities.
If we were considéring specifications with perpetually enabled obligatory computations then there
would be no legal finite activities. As we are only considering reaction style specifications then
~ the .obligatory computations are only enabled by environment computations, hence there will be
legal finite activities. | - | | _ o

The problems with prdba,bilistic non-determinism in infinite activities are addressed in [68],

but the application of that work to this is beyond our scope.

8.6.3 The relationship between reaction sequences and activities

The relationship between reaction sequences and activities is not a function. The probability
of an activity occurring is calculated from the reaction sequence, so a single activity will haﬂvel
several probabilities associated with it. This means that the function uselSSL that takes ISSL
specifications to single uses cannot be defined — we need to define a function that takes ISSL
specifications to sets of possible uses. Thi.s adds a level of complexity to the comparison bétween
the uses described by usage distributions and ISSL specifications and it is debatable how we
should deal with that comparison. Because of the ap}iroxima.té nature of many of the entities we_
have used (notably measurement schemes, and user and interface effects) then we must be aware
-that we will be putting approximate information into our models and getting approximate results
out. In this light it is not too sensible to be extremely rigorous in comparing the evaluations of

different models.

8.6.4 Conclusion

This chapter has described formally ways of expressing the requirements and specifications of
- system use. We do not claim these to be only ways of doing so, but we have linked them to
the RSSL specification language we presented in earlier chapters. Indeed a different way of

- specifying use is presented in [24].

205

We propose that there are two sets REQ and SPEC which are the sets of all mathematical
entities that may be used to describe use requirements and specifications respectively. UD is a
sub-set of REQ and ISSL is a sub-set of SPEC'. We can also propose two semantic functions for

evaluating entities in these sets.

R:REQ — P(Use) (8.25)
S:SPEC — P(Use) (8.26)

“Although useUD and uselSSL do not strictly fit into these template signatures, it ﬁrould not
be difficult to redefine them so they did so. When choosing entities from REQ and SPEC as
tools for describing use, it is best to choose entities that allow fairly approximate descriptions
for requirements and less approximate descriptions from SPEC. This is triviélly the case for
UD and ISSL because useUD defines which uses are correct for a given usage distribution and

uselSSL defines which single use is correct for a given specification.

206

Chapter 9 - -
Some examples of our technique in use

In this chapter we apply our a.pproa,éh to some examples and see if we can expose some strengths
and weaknesses. Firstly we attempt to express sofne PIE-like properties (section 9.1), then we
refine part of the specification of the word processor presented in chapter 7 (section 9.2). Then
we take a well-kno_wn psychological effect and show how we can use it to guide the design of an

interactive system (section 9.3). We conclude with a discussion of the examples (section 9.4).

9.1 Expressing PIE-like properties

In this section we show that we can express PIE-like usability properties [41] within our approach.
We do this to show that we can link in the usability properties approach to our work and that
we can describe systems (or system requirements) in a2 way as abstract as the PIE model. _

We shall express f.he properties in the simple temporal logic we use for expreésing system
requirements. We contend the usability properties proposed by Dix and others are about re-
quirements for a system rather being a model of the system itself, we therefore express them
in our ‘requirements language’. We also note from [1] the elegant way that properties can be
dealt with by TLA, i.e. if P is a property and sys is a model of a system then showmg that the
system fulfills that property is smp]y a case of showing that.. '

sys=> P

207

We contend that as our system modelling approach is based on TLA we would be able to use

this method too.

9.1.1 Observability - <

The observability properties are straight forward to formulate within our approach and in fact
are close to being a word-for-word translation from [38]. ' .
The state space for the required system consists of the internal effect e, the display d and

the result r.

e:E .' : : (9.1)

d:D : . (9.2)
riR _ (9.3)

The result and display are a function of the effect; there are two functions that take effect to

display and result.

' display:E — D ' (9.4) -
resull:E — R ' - (9.5)

"There is a safety property that ensures that the display and result are alwaysl a correct repre-

sentation of the effect.

El(d = display(e) A r = display(e)) S ~ (9.6)

An observable system is one in which it is possible to determine what the result would. be
from the display, i.e. there is a function bbs from displays to results which is related to the two
functions display and result. Strict observability says that the result and display are always

- linked by this function.

! Actually this is too strong — we need an infinitely fast machine to 1mplement. this safety property. See [23]
_ for a way of getting round this problem.

208

strictObserve = Jobs: D — ReVe': E o obs(display(e’)) = result(e’) AO(obs(d)=1r) (9.7)

All the caveats that apply to the PIE formalisation of this property also apply here. obs
should be a sensible function — we can propose a function obs that takes word processed
documents in English on-_the screen to printed documents in Greek. In this case the function -
obs exists, is valid and holds between d and r but we would be hard pressed to argue that it
captures a WYSIWYG system. Furthermore this property is too stréng for any result that is
. too large to fit on one screen. Dix gets round this by proposing that the display is in fact a
sub-set of the <.)bs'ervab1e area, that the observaﬁ]e é,rea. is related to the result by obs and the
user can get to any part of the observable area by a ‘passive’ collection of commands.

‘Note in our formulation saying ‘there exists a function that always holds between d and r’is
not the same as saying that ‘there always exists a function that holds between d and r’. In this
latter case obs could change during run-time, so one time we may print a document and get it
in English and another time get it in Greek. '
~ We can loosen the observability property temporally perhaps by saying that obs always
" eventually Holds between d and r, so the. sysf_;éni ca;n a.lwdys get into a Ista,te wheré t.h‘e“resulf is
observable from the screen. Again this is too strong — we only want the system to get in such a
state if requested by the usér. Assume there is some predicate obsReg that holds when the user
has requested the device to show the entire result. (This equates to selecting ‘print preview’ in

a drawing package.)

requestObserve =3Jobs:D — ReVe':Ee obs(dzsplay(e ")) = result(e’) A

O(obsRegq = <(obs(d) =r)) (9.8)

9.1.2 Reachability

Reachability captures that it is never possible to get the system into a dead-end, i.e. every state

~ can be eventually got to from any other state. If we assume that e is the underlying state then

209

’

we might express reachability as follows. ..
strictReach=Jz e Ole = 2) = O C(e = z) (9.9)

In words; ‘if the system gets into a state where e = z at all then it must always reaches that
state in the future.’ |)

This is not what we want though. What we should be saying is that if the system canget toa
state v\}here e = z then it can always get into that state. Hence we can argue that temporal logic
is not quite the language for expressing reachability as it does not clearly distinguish between
‘can’ and ‘must’. | | |

However if we assume that a livleness propérty is given which captures fhe fact that the

environment makes requests that the kernel must eventually respond to.
Tive = O(reg => < resp) (9.10)
Now we could define reachability as follows...

rgach =3z e O(e = 2) = O(reg = Ofe = 1)) ' (9.11)

In words; f the syétem gets to a state where e = z then it is always the case that when the -
environment makes an appropriate request then the system will get the system state to where
e=gzg. |

Note that reg neéd not corréspond in a one to one way to invocations in the system specifi-

cation, so req may be specified as a collection of invocations.

9.1.3 Conclusions about the PIE properties

We ha,fe expressed observability quite elegantly in our framework and see no reason why we
cannot capture the caveats to these properties that Dix formalises. Capturing reachability was
a bit more tricky and it is debatable that our definition 6f reachability is strictly equivalent to
the PIE version — it depends on how we define the liveness property. It would probably be
more sensible to define reachability on a system épeciﬁcation where thé reactions are cieﬁned

explicitly. Defining reachability would then be a case of expressing whether there is at least one

‘ 210

sequence of reactions that can get the system from one state to any other.

9.2 Refining the word processing example

Recall the word-processor example from chapter 7 — the model defined three reactions for
editirig the text, formatting the text and performing disk operatig)ns. In this section we refine
the edit reaction and the state model.

The first matter to consider is the possible concurrency in the system. It is important to
con_trcﬂ the concurrency, because we want characters to be inserted into the text in the same
order as the commands to insert them were issued. We do not want a system that inserts all the
right Igtﬁers but not necessarily in the right order. To achieve this we constrain the 'concurrency
in the :.system so that only one reaction can occur at a time. There is a boolean flag free whfcﬁ
is set false once any invocation occurs and is not set true until its response has completed.

Invocations are not enabled while free is false,

free:B (9.12).

This approach may be considered overly restrictive. In section 9.2.4 we sketch out a specifi-
cation for a system which allows for buffered commands offered by the elivironmer_xt and a kernel
that processes the buffer in a batch-like way as is done in distributed systems.

'Recall in chapter 7 we left the state space to be fairly undefined. ..

tnDev:, ..,

text:..
formatting:...
o disk:...

The reaction edit consists of an invocation that does something (that is undéﬁned) to inDev

"and a response that changes tezt and poésibly changes formatting.

211

9.2.1 Refining the state space

In this refinement we do not refine the model of inDev, nor do we worry about disk. To refine i

tezt and formatting we define a set of characters and a set of formats as follows. ..

Form = {normal, bold, itafic,...} (9.13)
Char = {A,B,(,...,a,b,c,...,0,1,2,.. .} (9.14)

We define text to be four sequences of Char. The first sequence is all the text before the
cursor, the second is all the text that is selected, the third is all the text after the cursor and the
fourth is all the text on the paste board. If there is no selected text then the second sequence is

null.

tezi:(Char* x Char* x Char* x Char*)U {Null} (9.15)

The token value Null is included to denote the value of text before anything has been loaded
from the disk. ' _ | |
The formatting is similar — each character in test has a set of formats associated with it. So
formatting is four sequences of sets of formats, each sequence corresponding to the sequence in
text — the first sequence is all the formatting before the cursor, the second all the formatting of
" the selected text, the third all the forﬁatting after the cursor and the fourth all the formatting

on the paste board.

forinatting:(P(form))* x (P{form))* x (P (form))* x (P (form))* U {Null} (9.16)

We can furthermore propose a safety property that expresses that the corresponding se-

quences in text and formatiing are the same size...

212

O(3st, cur, end, pb, stf, curf, endf, pbf o
text = (st, cur, end, pb) A
formatting = (stf, curf, endf, pbf) A (9.17)
|st] = |stf| A |cur| = |eurfl A \ '
|end| = |endf| A [pb| = [pbf])

...50 that there is the same amount of formatting before the cursor as there is text and so on.

9.2.2 Reﬁhing the reaction edit

Recall from section 7.4.1 we suggested that we refine the reaction edit into five decomposed reac-
tions insert, delete, moveCursor, copy and paste. Each of these reactions consists of invocations

and responses as follows. ..

insert = insertl § insertR (9.18)

delete = deletel § deleteR - (9.19)
moveCursor = moveCursorl § moveCursorR (9.20)
copy = copyl 3 copyR (9.21)

paste = pastel § pasteR . (9.22)

The invocations

The invocations still degcribe the alteration of the input device in some way, but as yet we are-
not at a low enough level of abstraction to define the actual alterations to -th'e input device. -
The invocations are not enabled until free is true and copyl is not enabled unless there is some
selected text, deletel is not enabled if there is nothing before the cursor and pastel is not enabled

if there is nothing on the pasfe board. All this is shown in figure 9-1.

- The response insertR

Al the responses have similar forms. The read clause extracts the parts of the state that we

wish to manipulate and passes them to the private space. The process clause manipulates the

213

insert] = .
moveCursor] =

input : free » -
output: inDev g:xl:t;f; t ﬁfzpeu |

bled by : text # Null ' : : :
e,ila oy fre‘:e 7l (9:23) enabled by : text # Null A (9.25)
side-effect : —free” . = free

side-effect : —~free™

outcome : inDev # inDev' X .
outcome : inDev # inDev’

delete] = _ co;::yI =
input: free input: fn?e
output : inDev Outill.lt d Jt)nDev 4
enabled.by : tert # Null A .enabled.by : text # Null A 9.26
 free A (9.24) free A (9.26)
tezt (), 0, , teat (4 (),
side-effect : —free” side-effect : —free
outcome : inDev # inDev’ - outcome : inDev # inDev’
pastel =

input: free
output : inDev
enabled by : tezt # Null A
free A
| tezt # (- -- ()
side-effect : —free”
outcome : inDev # inDev’

(9.27)

Figure 9-1: Refined invocations

private space and then the write clause writes the manipulated parts of the state back to the
public space.

In the following formalisations we use the following denotations to split up text and formatting. ..
tezt = (st, cur, end, pb)

formatting = (stf, curf, endf, pbf)

insertR adds a character to the end of the first sequence and deletes any text that is selected.
This new character either assumes the formatting of the last character in the first sequence if

there is no text selected or it assumes the formatting of the first character of the selected text.

-

214

insertR = input : tezt, formatting
- output : free, text, formatting
private : st, cur, stf, curf
invoked by : insert]

read : Jend, pb, endf, pbf o
text = (st*, cur®, end, pb) A~

formatting = (stf", curf™, endf, pbf) (9.28)

process : 3ce st? = st () A curP = curff =) A
) curf™ = () = stf? = stf" (It (stf™)) A
curf™ {) = stf? = stf™ (hd(curf™)

:Write: tezt’ = (stP, cur?, end, pb) A
formatting' = (stf?, curf?, endf, pbf) A
free' -
In words; ‘the computation insertR takes input from tert and formatting and outpufs to tezt,
' fématting and free. It has internal space consisting of st, cﬁr, stf and curf to which the
values of the text before the cursor; the selected text, the fornﬁatting before the cursor and the
formatting of the selected text are copied respectively. | .
The read phase copies values from the_ public space to the internal space and the write phase
copies the processed versions back to the external space. The write phase also sets free to true, N
Note that the text and formatting after the cursor and the paste board are unaffected.
The process phase adds some character ¢ to the text before the cursor and deletes any text
that is selected. The new character assumes the formatting of the character that was previously.

immediately before the cursor, or the formatting of the first character of the selected text.’

The response deleteR

The response deleteR is similar to insertR. It does not effect the text after the cursor or the
paste board. If there is selected text then it is deleted. If there is no selected text then the
character immediately before the cursor is deleted. (Recall that the invocation deletel is not

enabled if there is nothing to delete.)

215

deleteR = input : text, formaiting
, output : free, text, formatting
- private : st, cur, stf -
invoked by : deletel

' read : Jeurf, end, pb, endf,.pbf .
text = (st”, cur™, end, pb) A -
formatting = (stf™, curf, endf, pbf) - {9.29)

process : cur®™ = () => stP = fi(st®) A stf? = fi(stf*) A
cur™ # () = st™ = stP A stf™ = stf?

write : text' = (stP, (), end, pb) A

formatting’ = (stf?, (), endf, pbf) A

free” o
In words; ‘the appropriate parts of the public space are copied to st, cur and stf. If cur is
empty then the character (and its formatting) before the cursor is removed, whereas if cur is
not empty then st and sif are unchanged. The private space is then copied back to the public

space and the selected text is set to being empty.’

. The response moveCursorR

moveCursorR simply reorganises (in some way) the first three sequences in text and formatting - |

without losing any of their information or changing their order.

moveCursorB = ,
input : text, formatting
output : free, text, formatting _
, private : st, cur, end, stf, curf, endf
invoked by : moveCursord '

read : Hpb,pbf ° _
text = (st™, cur™, end™, pb) A
 formatting = (stf™, curf™, endf™, pbf) ‘ (9.30)

process : st“"‘cur"‘_"‘ehd“ = st cur? " end? A -
sif* " curf" " endf™ = stfP " curfP " endf? A
|st?| = |stfP| A |eur?] = |curf?| A |end?| = |endfP|

write : tezt’' = (st?, cur?, end®, pb) A

formatting’ = (stf?, curf?, endf?, pbf) A
Jree!

216

In words; ‘the process phase reorganises the text before the cursor, the selected text and the
text after the cursor in some way. No text or formatting is lost and the formatting is reorganised

in the same way that the text is,l so there is as much formatting before the cursor as there is

text ete.’

The .respon.se copyR

The copyR response copies the selected text and formatting to the paste board.

copyR = input : text, formatting
output : free, text, formatting
private : cur, pb, curf, pbf -
invoked by : copyl

read : 3st, end, stf, endf o
text = (st, cur™, end, pb™) A

formatting = (stf, curf", endf, pbf") . (9.31)

process : pb? = cur™ A pbf? = curf™ A-
cur™ = cur? A curf™ = curf?
write : tezt' = (st, cur?, end, pb*} A
 formatting' = (stf, curf?, endf, pbf?) A
free'

The response pasteR

pasteR copies all the text and formatting from the paste board to before the cursor position and

removes all the selected text.

217

pasteR = input : text, formatting
output : free, text, formatting
private : st, pb, stf, pbf
invoked by : pastel

read : Jdeur, end, curf, endf »
text = (st™, cur, end, pb™) A _
formatting = (stf", curf, endf, pbf™) (9.32)

process : stP = st " pb™ A stf? = stf" " pbf™ A
pb™ = pb®? A pbf™ = pbf?

write : text’' = (st?, (}, end, pb”)-/\
formatting' = (stf?, {}, endf, pbf?) A
free!

-~

9.2.3 Summary

We have shown how we can refine a specification by refining the state space and decomposing
computations. Furthermore we have demonstrated the long-hand computation style which makes
more detailed computations clearer. In each computation the relevant parts of the public space

are copied to the private space, processed and copied back to the public space.

9.2.4 A sketch of a specification of a distributed word processor

The specification we _ha,ve shown above is locked into sequential behaviour. This is fine for
single ‘user systems, but would be less suitable forl a distrib_utéd‘editor where several users can
concurrently edi1-: a document. |

Instead of starting by breaking the reactions into edits, formats and disk operations we |
would group them all together into one single reaction consisting of an invocation that adds
commands to 2 pool and a response that takes commands from the pool and 'processes them.
The specification is therefore similar to the specification we used to introduce RSSL in chapter
5' |

The invocation passes commands into a pool of as yet unprocessed commands along with
a time ‘stamp’ denoting the time at which the command was issued. The response selects

outstanding commands from the pool and processes them in the order of their time stamps.

218

There needs to be some resolution strategy for commands with the same time stamp that make
contfadictory éhanges to the state. It is possible to also define such things as user precedence
so that commands issued by a user with a high precedence override contradictory commands
issued by low precedence users. E

There is no neceséity for the response to process commands one by one — we can define
a more batch-like process where several commands are processed at once and state is updated
with the cumulative effect of several commands at once. This can minimise the need for a high

“band-width of information pa,ssed from the kernel to the environment, which can be useful if the |

system is distributed over a wide geographic area.

9.3 The ‘trailing sub-goals’ problem

" The ‘trailing sub-goals’ problem is an interesting effect to be found in several interactive systems.
A user’s task can be characterised by the achievement of a goal. In achieving this goal the user
may initiate sub-tasks, but if the user does not complete the all the sub-tasks before completing
the main task then these sub-tasks can be easily forgotten and not éompleted.

Consider an automatic teller machine — the user’s main goal in using such a machine is to
withdraw cash. In order to do so the user must initiate a sub-goal to insert and remove the
bank card. In early implementations of some teller machines the cash was dispensed before the |
card was returned and users had a considerable tendency to take the cash a,hd walk away having
forgotten the card. The problem here is that the main goal of obtaining cash is satisfied before
- the sub-goal of removing the card and hence that sub-goal ié easily forgotten.

" Here we shall discuss another variant of this problem, ‘the unselected widow’ problefn. This
problem was analysed at the research symposium of CHI94 by four research teams to see what
light could be shed on the problem by different HCI approaches [117]. In a similar way we shall

apply our approaéh to the problem and see what light we can shed.

9.3.1 A statement of the problem

“The problem is described by [117] as follows. ..

219

‘A user is composing a messagé in window A of a multi-window interface and needé
to consult a timetable in window B. The user selects window B, finds the required
information and then continues to type the message, forgetting to reselect window
A. In these circumstances the typed input goes into the wrorng window, which may
~or may not have disastrous consequences. The error is frequent and persistent é.nd
probably occurs at least as much for ‘experts’ as for ‘novices’. Why does it happen
and how can the interface be re-designed so as to minimise its occurrence and/or

mitigate its effects?’

- Why this happens is not our concern, we view the problem from the standpoint of a designer
who knows it happens, maybe even knows how likely it is to happen and wants to design an

interface to reduqe that likelihood.

19.3.2 A system speciﬁcatioh

Our system model is very simple — it abstracts away from the task altogether, simply describing
a system where some feaction is invoked to perform some work, some reaction is invoked that
completes the task and some reaction which moves the focus from one window to another. These
reactions are work, finish and move respectively. Given some sensible initial property the system

specification is...

uwp = init A O{work V finish V move) _ (9.33)

(uwp stands for ‘unselected window problem’).

We define the optimal behaviour to be...

vwpOptimal = ((work™) finish move)* (9.34)

In words; ‘an optimal user repeatedly does work, finishes the task and then moves to another
window and repeats the process.’ |

The problem stems frqm the fact that a user is likely to miss out the move reaction. We shall
discuss whether it is possible to overcome this problem is a purely functional way by in some

way linking finish to move so that the device can detect a finish and do the move automatically,

-

220

thus negating the problem altogether. In many cases this will not be possible to we look at some

interface solutions to the problem, that reduce its occurrence if not wholly negating it.

9.3.3 Looking at the problem functionally | -

If we.can get the device to recognis.e a finish reaction then we can overcome the problem. Indeed
this is how the problem was curéd for the early teller machines we described earlier — the
removal of cash from the machine can be easily recognised as the end of the task and therefore

we can design a majchine‘ that does not allow the user to complete the task until all the sub-taéks
are complete. i.e. the cash is dispensed affer the card. - _

However in a génera] purpose interactive machine it is likelsr that it will be impossible to
discriminate work from finish. There are a few tricks that we can use in order to determine
whether the user has completed their ‘taskb — several interfaces have Windows that once opened
cannot .be deselected and close automatically once a :Done’ button is pressed. In this case the
user cannot progress to another task until the ‘Done’ button is pressed and hence the finish
reaction can be discriminated and move occurs auiomatica.lly. The problem with this approach
is that a degree of user freedom is lost because the user cannot perform sub-tasks in different
windows. o | 7 ‘

_~ When the task that is ddne in a window is ‘well defined, for. exé,inple selecting file names, then
there is good chance thgt we can get the device to recognise finish and we can therefore specify
a ‘get-around’ for the unselected window problem. Generally these get-arounds can restrict user

freedom therefore they should be used with caution.

9.3.4 Looking at the problem from the interface perspective

Let us assume that we are defining a general purpose system and therefore cannot use functional
remedies to the problem. We therefore need to define interfaces that are going to bias the
behaviour to the optimal. -

Use requirements

First of all let us define a very simple measurement scheme m which captures how good a given

reaction sequence is. As we are only wdrrying about the unselected window problem then we

221

only need a very simple scheme that returns 0 if the sequence is optimal or 1 otherwise.

m:Meas
m(rs) = 0 if rs € rgBeh[uwpOptimal, vwp] (9.35)
1 otherwise -

Then we express the use requirements in terms of a usage distribution shown in figure 9-2.
These requirements say that users make the unselected window mistake only 10% of the time.
This distribution d is defined below...

d:Dist

d= {0+ 09,1~ 0.1} (9.36)

...and overall the the usage distribution ud is the pairing of the measurement scheme and

distribution.

wd=(md) . | (s

‘goodness’ 1 -‘
of reaction .
sequence

0.1 0.
probability

Figure 9-2: A usage distribution for the unselected window problem

" The interface specification

We propose a user effect for tﬁe system, then we suggest an interface effect so that when we
filter the two together we get a system the use of which matches that of the usage distribution
ud. '

A partial specification of the reactions for the system is given in figure 9-3. Each reaction

is split into their constituent invocations and responses and the invocations include pointers to

222

the probability functions for the user and interface effects.

work = workl § workR (9.38)
finish = finishl g finishR ~ (9.39)
move=movel g moveR (9.40)

workl = " finishl =
user : Pl (9.41) user : PYfinish (9.42)
interface : pi, o interface : pig,;,
movel =
user : pu,,,,, : (9.43)

interface : pi,, ..

Figure 9-3: A partial definition of the reactions

- The usér effect is that of a competent user — one who has no proBlems with th_e rest of the
task, but is likely to get into trouble with the unselected windows. |
~ The definition of the uéer effect probability functions are shown in figure 9-4. The important
two figures are the probability of invoking work after finish (0.4) and the probability of invoking
move after finish (0.6) — these express the probability of the user making a mistake with

selecting the window and we have assumed that the user will make the mistake 2 in 5 times. .

There are two functions ¢ and ¢’ that take care of the task performance side of the specification.

| The probability of doing more work reactions is defined by ¢ and the probability of invoking a
_ finish is defined by t'. For simpliéity we assume tha.f t is 1 for several work reactibﬁs and then
t goes to 0 and & goes to 1. . | ' '
We can define a state ﬁlachine to express this user effect graphically. This is shbw'n in figure
9-5. Each node expresses the most recent reaction invoked and the arcs between the nodes
express the next reaction to be invoked and probability of that reaction being invoked. The

thick arcs show the reactions we are interested in i.e. the reactions with a probability greater

223

PUyork(rs) =
rs=A =1
rs = (work + finish + move)*work =t ' (9.44)
rs = (work + finish + move)*finish =0.4
rs = (work + finish + move)*move =1

Pl gnis(rs) = -
rs=A . =0
rs = (work + finish + move)*work =t' (9.45)
rs = (work + finish + move)” finish =0 -
rs = (work + finish + move)*move =0

PUpope (m) =)
rs=A =0 .
rs = (work + finish + move)*work =0 (9.46)
rs = (work + finish + move)*finish =0.6 '
rs = (work + finish + move)*move =0

Figure 9-4: The definition of the user effect

than zero. _ _
Now we can start to consider an interface effect that together with this user effect defines a
system that is consistent with the use requirements. In this example this is quite simple as the
only points that are crucial are where the user is likely to make a mistake with the windows.
As it stands, if we had a user-interface that placed no biasing on the use then we would have a
system that does not make the mistake 60% of the time, we therefore need to specify an interface
that is going to bias this ﬁgure up to 90%. So we define an interface effect that places more .
emphasis on the reaction move after a finish. Such an interface effect is shown in figure 9-6.
The probabilities in bold denote the overall biasing of the user and interface effects combined.
_ .Essentia.lly we set all the interface effect probabilities to 1/3 which corresponds to a null

interface effect and then we ‘tweak’ the values of the probabilities for the reactions work after’

224

work ¢

move 0.6

Figure 9-5: The user effect shown graphically

a finish and for move after finish until we get values for the overall biasing that match (ap-
proximately) the required 0.1 and 0.9. Because this is the only mistake that we assume our
competent user will make (and after all the measurement scheme only captures that mistake)

‘then we assert that the user and interface effects are consistent with the usage distribution.

Some caveats

There are of course several simplifications made here. _

- Firstly in order to get the interface values of 0.145 and 0.855 we have to correspondingly
reduce the interface effect of performing a finish after a finish to 0. This is acceptable in the case
of our competént user who will not do this anyway but if we were considering a less competent
user then there is a probability that the user may tnake this mistake. Whether or not we wantto -
‘allow the user to is context dependent — using the interface to ‘block off’ certain parts of legal
functmnahty is not really what the interface is for by our definition. If we do want to block out
this possibility we should re-specify the underlying functionality to make it illegal rather than
using the interface to make it impossible. In making this possibility impossible we also reduce
* the user freedom in an interaction. There is a trade-off to be made; user freedom against the

reduction of user errors. A positive note to be made is that our approach exposes this trade-off

225

piwork(rs) =
rs=A =1/3 1
rs = (work + finish + move)*work =1/3 t {9.47)
rs = (work + finish + move)*finish =0.145" 0.102
rs = (work + finish + move)*move =1/3 1

piﬁm’sh (rs) =
rs=A : =1/3 0
rs = (work + finish + move)*work =1/3 t' (9.48)

rs = (work 4 finish + move)*finish=0 0
rs = (work + finish + move)*move =1/3 0

Pimove (r8) =
rs=A =1/3 0 _ :
rs = (work + finish + move)*work =1/3 0O (9.49)
rs = (work + finish 4+ move)*finish =-0.855 0.898
rs = (work + finish + move)*move =1/3 0

Figure 9-6: The definition of the interface effect and the resultant overall biasing

clearly to the designer. _

Secoﬁdly and more subtly we require an interface that increases the probability of performing
a move after a finish, but as it stands the interface effect must be able to discriminate between
finishes and work to be able to do this. If the interface can discriminate between these then
there is no reason why the underlying functionality cannot and we should probably use some of
the apprba»cheé we catalogued when we discussed functional approaches to the problem. A more
realistic definition would make moves generally more probable whether they follow finishes or
not. We can do this easily within our approach. But this would considera,bly complicate the
mathematics of calculating the overall biasing and may therefore obscure the fundamentals of
the exampie. '

. Thirdly the user effect described here only approximately gets the correct value for the overall

-~

226

. Al
biasing. We are satisfled with this approximation because it makes very little sense to define

a user effect to an accuracy of four or more decimal places (indeed its debatable that anything
more than a couple of decimal places is all that sensible). Thé user effects are a specification
_ that needs to be passed to an interface dresigner — the fechniques'- and tools available to the
interface designer are most unlikely to be able determine whether interface features have the

specified effect to this level of accuracy.

9.3.5 Implementing an interface from the specified user effect

We pass the specified interface to an interface designer to build an interface with that effect.
This is where our formal approach finishes — we have produced a formal speciﬁcation of an
interface and it is beyond the s<:0pé of this wbrk to provide definitive answers to question of
what interface widgets and fea.iﬁres produce what biasing,. |

Let ué look at the problem in an informal way though. The most popular interface remedy .
" to the problem that is described in [il?’] is to make the border of the selected window more
prominent and this of course neatly fits in with our interface specification. Making the selected
window more prominent increases the probability of the user noticing that they are about to
enter data into the wrong window and_the more promineﬁt the window the niére likely the user
is to notice and fherefore correctly invoke a move. In ‘ou.r exd:ﬁple we. have assumed a user
effect where the mistake is very common and hence we need a very prominent selected window,
possibly not just in bright colours but also with a ‘ﬁzzy’l border that consistently attracts the
user’s attention and possibly we may also wish to considerably ‘grey out’ the unselected windows.
If the user effect was not so error prone then the interface effect would not be so dra.rha.ti_c and -
we would not need to resort to such méasurés. .

~ Our approach also allows for more novel approaches. Usually the selected window is selected

and remains selected until something occurs to change that. We may wish to make moﬁe the
‘default’ reaction that occurs unless the user actively does something to prevent it — this makes
it considerable more likely to occur. Windows might activelir have to be ‘held’ open by the user
so that, for example, the user may only be able to enter data into a window when a function.
key is being held down. ‘

The problem with this interface is that .it may interferé with the task itself and reduce the

227

probability of the user doing the task correctly, the user being more worried about holding
function keys down to get the right window to stay open than they are about the task itself.
The model as it stands is not expressive enough to cé,pture this. We would have to decompose
work and finish so that we can express whether the task itself is done badly and then we may
define a four state measurement scheme consisting of ‘task done efficiently and no problems
with unselected windows', ‘task done efficiently and problems with unselected windows’, ‘task
done badly and no problems with unselected windows’ and ‘task done badly and problems with
unselected windows’.. The chances are that move being default increases the probability of the
task being done badly. In this new model we would have to state a requirement for hov&‘r often
we wish the task to be done efficiently and then make assumptions about the user population
and so on. | o ’ .
A compromise in this situation may be to make the main task window default and then make -
sub-task windows have to be actively held open. This reduces the interference on the main task)

at least.

- 9.3.6 Summary of this example

" This example has laid out the strategy‘of our ra.pproa_,ch to s_pecifyiqg more usable systems. ..
1. define the functionality ot" the system,

2. describe how ‘good’ we want the use of that system to be,

3. make a.ssumptions about what the users are likely to do with the system,

4. specify an interface that is going to bias what the user does so that the use is as good as

‘required, and

5. pass this specification to an interface designer who will implement the actual interface-

features that match this specification.

As well it has also been shown that the act of forma.iising a system in an abstract way allows
for the designer to consider the system in a clear way., We have been able to split ways of
overcoming the unselected windows problem into three categories and discuss them in a fairly

elegant way.

-

228

hN

1. Functional solutions which rely on the device being able to discriminate when the user has

completed the task and then switching window automatically.

2. Interface solutions which make move more likely possibly by making the difference bétween

the selected window and the other windows more prominent.

3. Extreme solutions which make move morelikely but at the cost of interfering with the rest

of the task.

These categories were not explicitly captured in [117], we argue that the abstraction level offered

by our é,pproach enables such insights to be captured and new perspectives to be analysed.

" 9.4 Conclusions

We have shown that we cﬁn link our approz;,ch to the usability properties appxt‘oa,ch in section
9.1. In chapter 5 we showed how we can define requirements and then develop these reqﬁire—
ments into abstract system specifications and suggested how we can map these speciﬁca.ti'ons
onto implemenfations. In section 9.2 we showed a middle ground — how we can add detail
to specifications by adding more reactions and more complicated reactions to a specification. -
Finally we showed in section 9.3 how we can feed psychologically valid information (or at least

7 information that can be exposed to psychological investigation) into the design of user interfaces
in order to make the use of a system closer to good use.

We have therefore shown several facets of our ﬁvork and hopefully shown how they interre-
late in order to produce an integrated approach for designing aLnd building better interactive
systems. We contend also that our approach can comfortably deal with the three levels of ab-
straction detailed by Dearden and Harrison [35]. Dearden and Harrison argue that PIE models
are so abstract that it is difficult to express genuinely useful interaction concerns. Indeed the
numerous caveats that Dix suggests for the properties demonstrate this point. The problems
we showed. for formulating rea,cha,bility show that 6ur definition of requirements will be even
more abstract than a PIE model, hence Dearden and Harrison’s arguments against excessive
abstraction apply even more so to our statements of requirements. Furthermore Dearden and

Harrison question approaches that formalise the interface (such as the interactors model} in that

229

their representations afe too concrete to be re-used across several applications. Dearden and
Harrison therefore suggest a middle abstraction ground where generié models of different types
of system are described. '

We assert that our approach is flexible enough to cover all three of these levels of abstrac-
tion. The nuclear power plant example we used in section 5.6.4_to show the benefit of using
a reaction style specification is an exa,rhple of a specification expressed at this middle level of
abstraction. The specification expresses a central representation (in this case the valve icon)
which is manipulated by two agents. The specification describes how the central representation
changes according to stimuli from the two agents. The specification shows a marked similarity
to that presented in [23] which describes how a scroll-bar representation reacts to manipulations
from the scroll buttons being pressed and to the movement of the window in a windowed data
structure. ‘ 7

Both these examples can be thought of as cases of ‘direct manipulation’ systems where there
is layer of representation between the user and the functionality. The user can change the
representation and expect that the state of the underlying functionality to change in concert
with it. In a similar way the underlying functionality can have its state changed (possibly by
stimuli not generé,ted by the user) and must reflect those changes onto the representation so the
user can be aware of them. ' n

Although we contend that our framework is general enough to capture models at all three
of Dearden and Harrison’s levels we question their assertion that one of these levels is ixi some
way ‘better’ than the others. Properties and analyses tend to have a level of abstraction at
which they are best expressed and because an interactive system has many relevant propérties
that need capturing then it is likely that we need an approach tﬁa,t can épa,n many levels of

abstraction and has well defined mapping between them.

230

Chapter 10 -

Summary, conclusions and agenda for

future work

To summa.ri'se the thesis we first compare what has been reported to the aims and objectives
laid down in chapter 2. We then discuss the use of the framework in a generalised context,
suggesting how it should guide both functional and non-functional requirements for systems.
- We discuss how the repeated use of the framework may ‘firm up’ HCI theory. We then look at

the weaknesses of the work and propose an agenda for further work and conclude the thesis.

10.1 Coniparing the work done to the aims and objectives

10.1.1 Interactivé systems as reactive systems

We have proposed a technique for specifying reactive systems and then specialised it to a tech-
nique for specifying interactive systems. Bfoadly what distinguishes the two is that we have -

added probablistic apparatus for describing the use of interactive syStems.

10.1.2 Including usability as part of the system synthesis process

We have contended that a usable system is one the use of which is similar to that of an in-
teractive system where the user population is expert. We have augmented the design process

with describing what the behaviour of such an expert user population would be and describing

21

measurement schemes that express how ‘neat’ to this expert behaviour some activity is. We can
then express requirements for the proposed use in terms of how likely it is that the use obtains a
certaih value according to the measurement scheme. We then showed how we can specify user-
interfaces in terms of the biasing they exert on use and how we can show consistency between a
sp'eci_ﬁed interface and the required use. i |

Therefore we can require different levels of usability. and guide the design of user-interfaces
such that the use of a system matches those requirements. ‘

We are aware, however, that the theory needed to fully guide design decisions made within
our framework is weak. Although our main objective was the definition of a framework that aids

in the construction of interactive systems we will argue in the next section that the framework

~ can be used in a more analytic manner to develop useful HCI theory.

10.1.3 Notations

We have purposely treated our notations lightly. The notations we have presented were simply
those that we felt comfortable with. The author was introduced to formal methods with VDM
“and hence the notations (particularly for corﬁputations) have a VDM feel to therﬁ: We do not
cleim this notation to be any better or worse than any other notation although we believe them
to be a;dequa.te' for what we have presented here. 1t is frequently claimed (e.g. [3]) thé,t non-
formal workers prefer to work with graphical notations. There is little empirical justification for
this claim other than [67] where it was shown that specifiers are happier with natural language
descriptions. but (po§sib1y paradoxically) made less errors with a temporal logic. There exist
graphical notations (75, 59] that could be fairly easily integrated into our'approa,gh. We discuss

these in more detail in the next section.

10.1.4 Viewing usability ‘from above’

We have contrasted our approach to usability to the usability properties approach in section 7.7. .
In section 9.1 we captured some of the ‘classic’ usability propertieslin témporal logic. A more
extensive collection of usa.bility properties expressed in temporal logic is shown in [83] (although
branching temporal action logic is used). We contend that our approach to usability is more

-holistic and encompassing than the usé.bility properties approach.

232

10.1.5 Towards statistical and probabilistic models

We have proposed ways of incorporating probabilistic information into models of interactive
systems. We have kept the semantics underlying the probabilistic side deliberately very simple
as more complex models require considerably more con"xpllex seman-ﬁc underpinnings [68]. We |
note that our models may share much in common with Ma,rkov models and that an investigation
of such models may be warranted to show the tractability (or othermse) of the mathematics

required to ma,ke our approach work.

10.1.6 A comparative framework

The compilation of a collection of case studies within our framework has been judged to be
beyond the scope of this work. Without a collection of case studies ﬁvhich is generally accepted
to be an adequate coverage of the field then the work involved in attempting to compile such a
collection would be considerable, never mind expressing all the examples in our framework. We
have shovs;n examples that cover a wide range of generality, including the HCI ‘white rat’, the

word processor.

- 10.2 Developing interactive systems

Assume we are developing an interactive system.

10.2.1 Developing functionality

First of all we would determine requirements for the system based on what task the customer
wants the sysf.em to perform. Note that the customer need not be the end-users and we consider
the system to include the users. This reqﬁirements gathering is likely to be informal and based
on questions asked of the' customer and analysis of existing systemé. |

We can now formalise 1_;he requirements by describing the functionality requiredl of the sslrst.em.
We capture the functionality by describir.lg the state space that is shared by the proposed device
and the users. This shared state space can typically consist of the keyboard, mouse and screen

etc. but will be expressed at a level of abstraction that does not dictate actual hardware.

233

The formal requirements express the relationéhips that hold between the various entities in
the shared space. A specification is then developed from requirements which describes in more
detail the invdca,tions made of the device and the responses generated by the device. We pair
the invocations and responses together into reactions. |

We can decompose the reactions into sub-reactions using hierarchical task analysis methods.
A task analysis suggests a collection of tools that the user will find useful in the achievement of
a given task. Reactions should correspond closely to to tools reco‘mmended by a task analysis.
A hierarchical task analysis suggests how a tool can be iteratively decomposed into sub-tools.
For example an ‘edit-text’ tool would be decomposed into ‘insert-char’, ‘delete’, ‘cut’, ‘copy’,
‘paste’ etc. A hierarchical task a.na]ysisl therefofe should relé.te closé]y to the decomposition of
reactions. |

We then refine the responses by describing how we wish the device to generate the responses
- and how we want the user to make requests. |
Functional decomposition, task analysis and refinement are well documented and nothing we

have described so far in this section should be surprising,.

10.2.2 Developing the (non-functional) usage requirements

‘We claim that our a.pproach is novel in how it deals with non-functional requirements, in partic-
ular how we expect the system to perform the tasks collected in the requirements and detailed
in the task analyses. We argue that for any task there is an optimail manner in which the user
can use the tools given to achieve that task and we further argue that a usable syétém is one

which makes this optimal behaviour more likely.

- Usability requirements .

“The ‘a,chievement of a task is modelled as a sequence of reactions which p]a.ces_thé system in some
goal state.. We can consider a collection of those sequences to be optimal and we can also devise
a measurement scheme that takes an arbitrary reaction sequence and determines a measure of
how close that sequence is to the optimal.

| The definition of optimality and measurement schemes is heavily context dépendent and

relies on the judgerhent of the developer. Simplistically we could consider the shortest sequence

234

of reactions that results in a goal state to be the optimal. Furthermore the measurement sthéme
is proportional té the length of a reaction sequence (the shorter the better). Such an approach
would be unrealistic for all but the simplest tasks however, a more realistic approach would take
into account a plethora of other issues.

Given a way of capturing how ‘good’ a reaction séquence the developer can describe the
usability réquirements,_ This can be done in terms of matching goodness of reaction sequence to
the probability of a reaction sequence of that goodness occurring. A precise set of requirements
can be described usiﬂg a graph plotting goodness against probability. Less precise descriptions
of the form ‘50% of the time the system performs adequately, 20% of the time excellently, 20%
of the time badly and 10% of the time dreadfully’ are also perfectly acceptable. Our framework
asserts no level of precision. Hence a precise graph based on a very detailed measurement scheme

maps into exactly the same mathematical entity as less precise textual requirements.

Levels of abstraction and modularity

At higher levels of abstraction the generality of tasks may mean that little useful can be described
for usability requirements. A word processing task (producihg a document) is a very geheral
thing. Even if it is possible to define optimality‘ and a measurement scheme it would be debatable
whether a rdevelo.per' would wish fo assert fhat the systerm be heavily biased to the optimal —
one of the benefits of interactive systems is that they leave plenty of Iroom for the user to explore.

- User freedom must be traded agé.inst biasing'to the optimal.

We argue, however, that at lower levels of abstraction it is possible to determine optimality

in a quite precise manner. Consider a dialogue box requesting that the user select a file for
opening. We can be definite about good and bad ways of interacting with the dialogue box in
much more precise way than we can be about good and bad ways of interacting with a word
processor. Recall the discussion above where we suggested that reactions equate to tools for
pelrforming tasks — we suggest that the more decomposed the reactions, and hence the lower
the abstraction of the task then the more precise we can be about optimal ways of using those
reactions to perform that task. We can argue, however, that a ‘good’ reaction sequence expressed
at a high level of abstraction is built from good sub-reacton sequences. It may not be possible

to be explicit about a good use of a word processor, but we are likely to be explicit about good

-

235 -

uses of the tools supplied by the word processor. |

Usability requirements inherit the modularity of the reactions deﬁ;led in the development
of the functionality. For each level of decomposition optimality can be defined for the use of
each collection of reactions. A question not addressed in this work is how genuinely modular |
usability requirements can be. We can define optima.lity for an open file dialogue box, but how
independent of the rest of the system is this optimality? The; arguments of Carroll [28] we
outlined in chapter 3 suggest that usability ideas are not amenable to simple modularity in th.er

same way that functionality is. Further investigation is required.

Specifying user interfaces

Given usability requirements we have suggested that we can specify user interfaces and make
assumptions about the user population such that the system fulfills the usability requirements.

The derivation of user effects is problematic,. We argue th;i.t we can still define interfaces
without an explicit user effect — if we assume the user population to be a random variable then
an interface that biases a random user population to the optimal will bias any population to the
optimal. We suggested that the amount of biasing caused by an interface can be thought of as
the ‘strength’ of the interface. In most cases capturing user effects allows the developer to define
weaker interfaces that still fulfill the usability requirements. | | A -

A developer can use rapid prototyping techniques to capture user and interface effects. Given
a functional specification of a system the developer can rapidly prototype an interface for that
functionality and test it on a user population representative of the proposed user population. .
By keeping the user population constant and varying the prototyped interfaces the developer
can capture user effects — variations in the use will be caused by the various interfaces and
- normalising for the interfaces will determine the user effect. Obviously there will be confounding

effects that need controlling for, for example learning effects.

10.2.3 Building HCI theory

Repeatedly developing interactive systemsin this way will allow for developers to collect together
user and interface effects and to refine already defined effects. In this way the framework is being '

used in a more analytic manner. The first few times the framework is used by a developer will be |

236

very experimental and there will be little guarantee of success (at any rate no more guarantee of
success than if the system was constructed in the more usual ad foc manner). However Because
systems are being constructed within the framework the design decisions made are explicit and
the results of those deciéions can be ca;ptured in a explicit wa.y.l -

Hence HCI theory is captured and can be reused in other interactive system development
and can be exposed to critical analysis by human factors workers. Essentially the repeated use
of the framework takes the heuristic knowledge of HCI workers and captures it formally and
explicitly. | , |

Ideally HCI theory which has been exposed by the use of our framework should be captured
in such a way that it can be reused not only in our framework but in other HCI development as
well. In a similar way repeatedly using our framework should not be about reinventing wheels
— HCI theory that has already been captured in other work should be able to be reused within
our framework. Such claims of transfer are well beyond the scope of this thesis. However the
work of [13) shows how several formal HCI approaches can be harnessed into a single design

space and that there is transfer between them.

10.3 An agenda for further work

As the framework we have presented is rather broad in scope there is plenty of room for further
work to make our approach more practical, to make the semantics more expressive and to ground
it more firmly in psychological theory. Some of the avenues that we feel would be beneficial to

follow are listed in this section. There are likely to be several others.

10.3.1 HCI practitioner-friendly notations

We have repea,tédly expressed worries about the significance atfached to the choice of notations.
However it may be useful to move the notations we have used into a more graphical domain for
the benefit of workers who are used .to such notations. |
‘ - A particularly interesting approach to graphical notations is presented by Lamport [75] called
“TLA in pictures’. Lamport attempts to overcome the problems of complexity in graphical’

specifications by proposing a graphical notation that need not express all of a specification, only

237

salient parts of lt A full formal treatment of the notation is given and it can therefore be easily
shown that if D is a diagram and spec is a speciﬁeation‘then Disa represeﬁta.tidn of part of

| that specification if spec = D. Hence it is possible to not only show several diagrams of salient

~ parts of a specification, we can also use different diagrams to give complementary views of the .

same part of a specification. - | . S _

TLA in pictures is therefore not a complete specification technique (particularly as they only
express safety properties), it is an aid to the comprehe"nsion of TLA specifications.

We feel that we could 'propose a similar notations for RSSL and ISSL, in fact in section 9.3
we used a graphical state machine to extract the user effect from a specification is exactly the
‘spirit of TLA in pi._ctures. This was only a rough sketch though 'alnd'_we need to show a formal
.semantics for the notation for it to be a genuinely useful tool. In particular RSSL speciﬁcations ‘
split computations into obligatory and optional computations and guarantee liveness for the
- obligatory computations. TLA in pictures cannot express liveness and _therefore.we would need
to carefully consider how we were to express obligation graphically if at all poss_ible.' We would

also like to integrate the work on state-charts [59] which allows modularity in graphical notations.

10.3.2 Approximation and tolerances
| _ At 1‘1.17:.1-11.y.peints in‘thie- ;n.rerkrwe have a.ll_uded te t'her need fer a.ppi'eici.‘r-natio'n. in the produetion”of. -
models. We are aware that psycholqgical HCI can in many cases not provide precise results and

therefore it makes nio Sense_ to insist that its results are straight-jacketed into a formal fra;me\;«'ofk.
| An interesting and practical avenue would be to redefine the_ work on uses and ISSL spec?.
ifications allowing for a.pproximations within tolerated boundaries. In section 9.3 we worked _
through an example concentrating on the use of a system, the result being a spec1ﬁcat10n for
an interface that approzimately generates use that is consistent with the requn‘ements It would

be valuable to be able to require some use from a system and also descnbe a tolerance for that

requlrement ~— how close to the requ:red use an 1mplemented use can be and still con51dered to

be acceptable '

It is worth reitere.ting that the evaluation of models within our framework can oﬁly be -

as precise as the description of the entities that we have used in the framework. It is no =

good demanding a high level of accuracy in the use displayed by an implemented 'system if _

- 238

the specification of that use is based on an approximate model of user effect and there is littlé
‘ e{ridence'that the actual interface features implemented have the interface effect that has been
specified for them. Ar.lother source of approximation is the measurement scheme used to capture
how good an interaction is. An interesting question is how these thrée sources of approximation
combine — if z is the approximation due to the measurement scheme, y the approximation due
to the user effect and z the approximation due to implementation of the interface effect then is
the overall approximation in the model z+y+z, & Xy % z or ¢*t¥*? (where c is some constant)?
If we can get even a rough é.nswer to this question then we can dictate how much emphasis
should be plé.ced on the result of modelling a system using our approach.

10.3.3 True concurrency f

The semantic definition for RSSL specifications is based on a ‘pseudo-interleaved’ concurrent
model. We have been'careful to define a specification language that separates out all the points
where concurrently performing computations may interfere with one another (i.e. the réa,d and
write phases). The semantics describe these phases as being interleaved and the rest of the
functionality as possibly occurring concurrently. o

Hence the semantics describe a ‘canonical’ model of activity, the idea being that we can
implement a system that has the ‘same effect’ as these canonical actiﬁties. We ha.ve not described
in any detail how we can map this canonical model to a genuinely concurrent model where the
réa,d and write pha.ges can occur concurrently — we need some way of formalising what ‘same
effect’ means. | | _

We might do this by instigating a thorough redefinition of the RSSL semantics that relate
partial orderings of computations to activities rather than sequences of computations as we have
done in this work.

Alternatively we may take an activity (which is a total ordgring) of state changes and apply
" the following rule; ‘Assume we can describe an activity as a sequence of state changes denoted
(A; B;C...) where A, B and C are state changes. If there are two valid activities o3 and o2

which are the same except that...

a3 =(.A,B)

239

az={(..BjA..)

...and the state change caused by A;B in oy is the sdme as caused by B; A in a3 thén we
can implement a system where it does not matter which order A and B occur in — i.e. we can
implement them concurrently.’ _

Unfortunately things are not that simple. Consider the following counter example — two
computations A and B incremer;t and decrement the value of variable z respectively. Each
computation copies the value of to some internal storé, increments or decrements the value
and copies it back to z. If the t\(yﬁo are performed in éequence then it does not matter which is
performed first, the net result is no change to z. However once we put them in parallel then
the two may copy z to their internal store increment and decrement those copies concurrently
and then copy them back to . The net effect in this case is either an increment and decrément
depénding on which computation completes last. Hence we need to consider a rule like the one

given above but with several constraining clauses.

10.3.4 Obligation

The notion of obligation we have included in the RSSL semantics is very weak — surprisingly so.
When an obligatory computation is enabled the system must do something, but the something it

does need not be the launching of that obligatory computation. Hence there are situations where
an obligatory computation may become enabled and something may happen before that compl‘l—‘ ‘
tation has chance to be launched to disable it once more. However an 'obliga.tory computation
cannot be indefinitely locked out in this manner — fairness ensures this.

We have allowed this very weak notion of obligafion on purpose, because otherwise an in-
definitely enabled obligatory computation would lock out everything else. Consider a model
where the environment enables a kernel computa.tioﬁ which repeatedly performs its processing
until the envirohment_ actively does something to disable it. Under a strong notion of obligation
(where if an obligated computation is enabled then it is possible and nothing else is) then once
the environment has enabled the kernel computation it would never be able to stop it, because
everything apart from the kernel computation would be impossible. _

So we have a choice between a very strong notion of obligation that easily traps the unwary

specifier, and a fairly weak notion that may result in a surp'r'ising amount of inactivity for

240

the kernel. Our problem is that the heuristic definition of obligation; ‘the system is obliged
to perfofm enabled kernel computations if processing resources are available’ is very difficult to
sensibly formalise because the semantics for RSSL specifications deliberately abstract away from
any notion of the machines that we may wish to implement the described systems. Hence the
notion of ‘processing resources’ being available is'tricky to capture, there being no explicit model
of processing resources. _ |
The legal behaviour for an RSSL specification should cover all possible machine configura-
tions, from single processor to distributed multi-processor machines. In section 5.6.2 we showed
how we can explicifly limit the number of concurrently occurring computations by putting extra
conditions on the enabling clauses, so that computations cannot be launched if there are not
- enough processing resources available. However there is no way of enéuring that if (say) there
are ten processors available and there are ten obligatory computations enabled then all those
computations will be processed concurrently. The semantics presented in chapter 6 ensure that
at least one of the computations will get processed, but do not ensure that any more than one ‘.
get processed, which may seem surpnsmg _
~ We could propose a new more operational semantics for RSSL where the processing resources
_are included as a special vana.ble {in the same way that time is considered to be a special
variable). Therefore we could capture a notion of obligation that is rather closer to the heuristic

definition of obligation, though at the cost of some abstraction.

10.3.5 Proof techniques and methodologies

-We have assumed that we can import the proof.technique of TLA into RSSL because we contend
- that RSSL is a specialisation TLA, not an extension to it (see the arguments in [23]). To be
fully confident of this claim we would need to formally prove it.

Even if we do prove this then we are aware that the proof techniques presented for TLA are
only techniques, they are not a full methodoiogy, in the sense that TLA asserts that we can prove
things about TLA specifications, but givés only very sparse information about how to actually .
- perform those proofs. As TLA and similar notations become more widely used and investigated

then a proof methodology should emerge as well as automated tools to aid the methodology.

241

10.3.6 User models

In order for our approach to produce more predictive results it needs to be interfaced to a good
user modellmg technique. We argue that we can still obtain some level of useful results by simply
assuming the user is a random variable — if we can design an mterface that is ‘strong’ enough
to bias totally random users into a good use then it should also work with actua.l users. However
considerably more leverage would be obtained if a sensible user model was used.

‘Many of the user models presented for evaluating HCI systems are deterministic and therefore
we may have problems linking them to our probabilistic approach. However a little imadgina;tion
should overcome this.

Consider the PUM [118] approach based on problem solving techniques. The user model is
given a model of fhe device and some knowledge about that device and some knowledge of the
goals. PUM predicts how the user will use this information to make a rational choice of what
to do next. Typically there will be several such rational choices and therefore the analyst can
employ several other heuristics and guidelines to decide which choice is the most likely for the
user to make. PUM uses these heuristics in order to constrain the behaviour space that is to be
analysed. We can use these heuristics to encode a measure of the probability of what the user
does next instead of using them to constrain the behaviour space. If a certain activity contradicts
several heuristics then we can predict that it is unlikely whereas if several heuristics promote an
activity then we can predict it as being likely. Again the ideas of approximation come into play
here and we also need to consider the psychological justifications for any heuristics.

This is a thumb-nail sketch of how we fnight interface a PUM model to our approach and
presumably similar arguments may be made for interfacing other user models to our approach.
Another avenue to invéstiga.te is the definition of a user model specifically targeted at our ap-
proach so that ideas of probability are addressed directly.

Another a.bproa,ch that does a.wa,jr with ﬁser models altogether is the collection of behaviour
datain a ‘black-hox’ way. We mighl". observe us.ers interacting with a certain dévice, then change
the device slightly and infer that changes in the use are due to the change in the device. In
this way we can build up a picture of user effect in a behaviourist way rather than by using a
cognitive usef model that attempts to explain the user effect. Suggesting a return to behaviourist

psychology is likely to be contentious and there would be an awful lot of work involved in building

242

up a useful picture of a user effect in this way. It is debatable whether that work would pay off

in terms of the improvements to interactive systems it would supply.

10.3.7 Towards an engineering approach ;

We have pointed out several places in this work where the application of our framework allows
for explicit reasoning behind engineering decisions. For example in chapter 7 we suggested that -
the biasing exerted by a user interface is likely to be proportional to the cost of producing that
interface. Therefore we can trade-off the benefit of improving user performa.nce with a better
' interface against the cost of producmg that interface. |
Another important consideration when moving our approach into a more practical domain is
that it should ‘hide’ the underlying theory whilst applying the results of that theory to the design
process. A software engineer should not need to know the full psychological reasons behind a
user effect, but should be able to use that user effect in the design of user interfaces,
An ultimate aim of this work would be to provide a library of user effects expressed for
a variety of tasks and classes of users, a similar library of interface widgets and features with
defined interface effects. These libraries should be.available to engiﬁeers to apply in a design
setting and also a.vaileble to human factors workers to justify and explain why the effects relate to
| 'the interface fea.f.ures and so on. In this wey such libraries would constitute a iré.lua.ble, practical

and explicitly justified tool in interactive system design.

104 Conclusion_s

We presented a framework of ideas for capturing psychologma.lly relevant ideas and feedmg them
into the design of interactive systems. We have presented this framework in a formal manner
'so that the ideas and concepts captured can, ultimately, be rigorously demonstrated to hold in
implemented systems. Having done so, we also contend that our framework is useful in a mofe'
informal context — there is much anecdotal evidence from the Amodeus project that simply
the act of abstractly deseribing an interactive systeﬁ can exﬁose many previously hidden errors
and inconsistencies. Furthermore we can argue that the act of taking psychological evidence

and expressing it within the mathematical structures we have presented forces us to justify and

243

rationalise this psychological evidence. In traditional HCI circles ‘psychological evidence’ is often
captured as heuristic knowledge and craft skill of usability experts. It was argued in chapter 3
that such evidence does not generalise and cannot easily be reused unless it is expressed in the
form of a theory. We contend that the .use of our framework not only feeds existing theories into
the interactive system design process, but also helps in codifying heuristic and craft evidence in
. a more formal and fheoretica.l manner, |

However, in describing a framework we have necessé,fily made assumptions about what we
consider a desirable interactivesystem to be (a.nd not be). We therefore must accept the fact that
the framework will bias the design of interactive systenis. There are arguments for and against
such an approach — there is a loss of generality which could be argued to be undesirable, yet
a framework that is fully general is not a framework at all. We have made the assumptions
about the framework explicit as it was described, however it may not be reasonable to expect
a developer intending to use our framework to be fully aware of these -assumptions. A similar
argurrjleDt can be raised in relation to t?he concentration on notations found in some other formal
HCI work — our worry is that notations step away from the underlying semantics and may
therefore hide various assumpi;ions. Both our framework and notations hide assumptions to a
certain extent.

We do not intend for our framework to be a foﬁnal ‘straiéht jacket’ on the field of HCI
however. We are aware that there are many aspects of usability and interface design that
- cannot be captured formally in a sensible manner. The mapping from an interface specification
expréssed as an interface effect to actual interface features is very loose and vague, indeed resting .
_on the skill a,nd" heuristic knowledge of usability experts. What this thesis suggested is a process
whereby the reasoning that leads the design process to the interface effect is made explicit and
therefore opeﬁ to scrutiny. In a nutshell we aim to explain what an interface does and why we
want the interface to do it. How the interface does it is where our work finishes. Experience
with our framework will firm up the mapping from interface eﬁ'éct to interface features — if_
an interface impleménter fepea,tedly finds that he implements tﬁe same intefface effect with the
same interface features then we contend that this is a ‘fact’ (in Storrs’ [109] terminology) to be
added to HCI theory. The proposition of u_sér effects and measurement schemes are other points
in our framework with similarly weak mappings from psychological and usability evidence to our

244

structures.

We have furthermore proposed a link from the probabilistic models used to describe psy-
chological information to the discrete models used to describe device functionality. We have
suggested refinement strategies and techniques for taking abstract discrete models towards con-
‘crete impleméntations. Again these refinement techniques are not as formally rigoﬁrous as would
ideally be hoped. We understand that there is work underway by researchers in the TLA group
to pin down the methodology of refinement of TLA and similar specifications (76} and we contend
that we can tap our framework into this work as it progresses.

.Ail in all our framework is broad in scope and thefefore asks many more questions than it
a.nswers.‘ Crucially though, it provides a sensible well defined context which answers can be fed
back into once they are captured. -Furtherrnore. it provides a structure for better, .'more abstract |
and sensible asking of questions and a way of making the reasoning behind the need for the

asking of those q'ﬁestions to be made explicit.

245

Bibliography

[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming'
Languages and Systems, 17(2):366-393, 1995.

[2] G. Abowd. Formal Aspects of Human-Computer Interaction. PhD thésis, University of
Oxford, 1991. |

[3] G. Abowd, A Dix, and M. Harrison. State of the art: Formal aspects of user interfaces.
Internal report, HCI Group, Dept. of Comp. Sci., University of York, 1990.

[4] G. D. Abowd, J. Coutaz, and L. Nigé.y. Structuring the space of interactive system prop-
erties, In J. Larson and C. Unger, editors, Engineering for Human-Computer Interaction,

~ pages 113-129. Elsevier Science Publishers, 1992.

[5] G. D. Abowd and A. J. Dix. Integrating status and event phenomena in formal specifica-

_ tions of interactive systems. Softwate Engineering Noticés, 19(5):44-52, 1994.

(6] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21:181—
185, 1985.

[7] R. J. R. Back and R. Kurki-Suounio. Distributed co-operation with action systems. ACM
Transactions on Programmz'ng Languages and Systems, 10(4):513-554, 1988.

| [8] P. Barnard. Interacting cognitive subsytems: A psycholinguistic approach to short term
'memory. In Progress in the psychology of language, volume 2, pages 197-258. Lawrence

Erlbaum, 1985.

246

[9] P. Barnard. Bridging between basic theroies and the artifacts of human-computer interac-
tion. In Designing Interaction: Psychology at the human-computer interface, Cambridge

Series on Human-Computer Interaction, pages 103-127. Cambridge University Press, 1991.

[10] P. Barnard and M D. Harrison. Integrating cognritive and system modéls in human com-
' puter interaction. In A. G. Sutcliffe and L. A. Macauley, editors, People and Computers
V. Cambridge University Press, 1989.

[11] P. Barnard and J. May. Cogpnitive modelling for user requirements. In P. F. Byerley,
Barnard P. J., and J. May, editors, Computers, Communications and Usability: Design

issues, research and methods for integrated service, pages 101-145. Elsevier, 1993.

[12] L. Bass. Working group on formal methods in HCI and software engineering. In R. N. Tay-
lor and C. Couta,z, editors, Software engineering and human-computer interaction (Lecture

notes in computer science vol. 89\6), pages 14-16. Spﬁnger Verlag, 1995.

[13] V. Bellotti, A. Blandford, D. Duke, A. MacLean, J. May, and L. Nigay. Interpersonal
access control in comp'uter mediated communications: A systematic analysis of the design

space. Human Computer Interaction, 11(4):357-432, 1996.

[14] A. Blandford, R. J. Butterworth, and J. P. Good. Users as rational interacting agents:
formalising assumptions about cognition and interaction. In M. D. Harrison and J. C.
Torres, editors, Proceedings of Design, Specification and Verification of Interactive Systems

’97, pages 51-66. Springer, 1997. Page numbers refer to pre-print copy.

[15] A. Blandford and R. M. Young. Specifying user knowledge for the design of interactive
systems. Software Engineering Journal, pages 323-333, 1996.

[16] A. E. Blandford, M. D. Harrison, and P. J. Barnard. Integrating user requirements and
system specification. In P, F. Byerley, P.J. Barnard, and J. May, edltors, Computers, Com-_
munication and Usability: Design Issues, Research and Methods for Integrated Services,

pages 165—196. Elsevier, 1993.

247

[17] A. E. Blandford, M. D. Harrison, and P. J. Barnard. Using Interaction Framework to
guide the design of interactive systems. International journal of human-computer studies,”

43:101-130, 1995.

- [18] A. E. Blandford and R. M. Young. Developing runnable user m-odels.: Separating the prob-
lem solving techniques from the do'ma.in knowledge. In J. Alty, D. Diaper, and S. Guest,
editors, People and Computers VIII, Proceedings of HCI’93, ‘pa.ges' 111-122. Cambridge
University Press, 1993.

[19] P. A. Booth. Redefining software: a comment on Thimbleby’s paper. Interacting with
computers, 2(1}:26-32, 1990. '

'[20] J. P. Bowen and M. G. Hinchey. Ten commandments of formal methods. Computer, pages

56-63, April 1995.

[21] P. Brun and M. Beaudouin-Lafon. A taxonomy and evaluation of formalisms for the

specification of intecative systems. In People and Computers X, pa,ges 197-212, 1995.

[22] P. Bumbuhs, P. 8. C. Alencar, D. D. Cowan, and C. J. P. Lucena. Combmmg formal
. techniques and prototyping in user interface construction and veljlﬁca.txon. In P. Pa.lanque
and R. Bastide, editors, Proceedings of Design, Specification and Verification of Interactive

Systems '95, pages 174~192. Springer, 1995.

[23] R. J. Butterworth and D. J. Cooke. Using temporal logic in the specification of reactive
and interactive syst.ems. In Formal Aspects of the Human Computer Interface. BCS-FACS,
Springer Verlag, 1996. o

[24]) R. J. Butterworth and D. J. Cooke. On biasing behaviour to the optimal. In M. D
Harrison and J. C. Torres, editors, Proceedings of Design, Specification and Verification of .

- Interactive Systems 97, pa.ges 323-340. Springer, 1997. Page numbers refer to pre-print
copy.

[25] S. Card, T. Moran, and A. Newell. The Psychology of Human—(,.’ompute'r Interaction.

Lawrence Erlbaum Assoc, 1983.

248

[26] J. M. Carroll. Taking artifacts seriously. In S. Maas and H. Oberquelle, editors, Software-
Ergonomie ‘89, pages 36-50, 1989.

-{27] J. M. Carroll. Infinite detail and emulation in an ontologically minimized HCI. In J. C.
Chew and J. Whlte51de, editors, Empowering People, Proceedings of CHI’90 Conference,
" pages 321-327, 1990)

| (28] J. M. Carroll, editor. Designing Interaction: Psychology at the human-computer interface.

Cambridge Series en Human-Computer Interaction. Cambridge University Press, 1991.

{29] J. M. Carroll and R. L. Campbell Softemng up hard science: Reply to Newell and Card.
Human-Computer Intemctzon 2:227-249, 1986.

[30] J. M. Carroll and R. L. Campbell. Artifacts as psychological theories: The case of human-
computer interaction. Behkaviour and Information Technology, 8:247-256, 1989.

[31) J. M. Carroll, W. A. Kellog, and M. B. Rosson. The task-artifact cycle. In Designing
Interaction: Psychology at the human-computer interface, .Cam'b‘ridge Series on Human-

Computer Interaction, pages 74-102. Cambridge University Press, 1991.

[32] G. Cockton. Where do we draw the line? Derivation and evaluation of user interface
software separation rules. In M. Harrison and A. F. Monk, editors, People and Computers '

Designing for Usability, pages 417-432. Cambridge University Press, 1986.

[33] J. Coutaz. PAC, an object oriented model for dialogue design. In H. J. Bullinger and
~ B. Shackel, editors, Human-computer interaction — INTERACT’87, pages 431-436. North
Holland, 1987. '

(34] B. De Carolis and F. De Rosis. Modelling adaptive interaction of OPADE by Petri nets.
SIGCHI Bulletin, 26(2):48-52, 1094. |

[35] A. M. Dearden and M. D. Harrison. Abstract models for HCL International journal of
human-computer studies, 46:151~177, 1997,

[36] E. W. Dijkstra. A discipline of programming. Prentice Hall, 1976.

249

[37] A. Dix and G. Abowd. Modelling status and event behaviour of interactive systems.
Software Engineering Journal, pages 334-346, November 1996,

[38] .A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-computer interaction. Prentice Hall,
1993.

[39] A.J. Dix. The myth of the infinitely fast machine. In D. Diaper and R. Winder, editors,
People and Computers Il HCI'87, pages 215-228, Cambridge University Press, 1987.

[40] A. J. Dix. Nondeterminism as a paradigm for understanding the user interface. In For-
mal Methods in Human-Computer Intemétz’on, Cambridge series on HCI, pages 97-127.
Cambridge Uni. Press, 1990. ‘

[41] A. J. Dix. Formal Methods for Interactive Systems. Computers and People Series. Aca-
demic Press, 1991.) -

[42] A. J. Dix and M. Harrison. Principles and interaction models for window managers. In
M. Harrison and A. F. Monk, editors, People and Computers: Designing for Usability,
- pages 352-366. Cambridge University Press, 1986.

[43] A. J. Dix and M. D. Harrison. Interactive systems design and formal development are -
mcompatlble In J. A. McDermid, editor, Proceedmgs 1988 Refinement Workshop. But-
terworth Scientific, 1989.

[44] A. J. Dix and C. Runciman. Abstract models of interactive systems. In P. Johnson and
S. Cook, editors, People and Computers: Designing the Interface, pages 13-22. Cambridge
University Press, 1985. | -

[45] J. Dowell and J. Long. Towards a conception for an engineering discipline of human factors.

Ergonomics, 32(11):1513-1535, 1989.

[46] D. Duce and D. Duke. The formalisation of a cognitive architecture and its application to

reasoniilg about human computer interaction. Submitted to FACS for publication, 1996.

[47] D. J. Duke, P. J Barnard, D. A. Duce, and May J. Syndetlc modelling. Subrmtted for
journal pubhcatmn, 1996

-

250

[48] D. J. Duke and M. D. Harrison. Abstract interaction objects. Computer Graphics Forum, |
12(3):25-36, 1993.

[49] D. J. Duke and M. D. Harrison. Connections from A(V) to Z. Technical Report SM/WP21,
Amodeus project. ESPRIT BRA 7040, 1994,

- [50] D.J. Duke and M. D. Harrison. FSM: Overview and worked examples. Technical Report
SM/WP44, Amodeus ESPRIT BRA 7040, 1994. |

[51] D. J. Duke and M. D. Harrison. Event model of human-system interaction. Software

Engineering Journal, 10(1):3-12, 1995.

‘[52] R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language. In
Technology of Object-Oriented Languages and Systems: TOQLS. Prentice Hall, 1991.

.[53] E. Elwert and E. Schlungbaum. Modelling and genefation of graphical user interfaces in
the TADEUS approach. In P. Palanque and R. Bastide, editors, Proceedi'ngs of Design,
Specification and Verification of Interactive Systems ’95, pages 193-208. Springer, 1995.

. [54] G. Faconti and F. Paternd. An approach to the formal specification of the components
of an interaction. In C. Vandoni and.D. Duce, editors, Eurographics 90, pages 481-494.
North-Holland, 1990. | -

[55] N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag, 1986.

[56] P. D. Gray, D. England, and S. McGowan. XUAN: Enhancing UAN to capture temporal
relations among actioxi_s. In G. Cockton, S. W. Draper, and G. R. S. Weir, editors, People
and Computers IX, pages 301-312. Cambridge University Press, 1994,

' [57] P.D.Grayand C.J ohnsoh. Requirements for the next generation of user interface specifica-
tion languages. In P. Palanque and R. Bastide, editoré, Proceedings of Design, Specification

and Verification of Interactive Systems 95, pages 113-133. Springer, 1995,

[58] J. Grudin. The case against user interface consistency. Communications of the ACM,

32(10):1164-1173, 1989.

251

[59] D. Harel. Statecha.rts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274, 1987. '

[60] M. Harrison and A. J. Dix. A state model of direct manipulation in interactive systems. In
. Formal Methods in Human-Computer Interaction, Cambridge series on HCI, pages 129-
" 151. Cambridge Uni. Press, 1990.

[61] M. D. Harrison and D. J. Duke. A review of formalisms for describing interactive behaviour.
In R. N. Taylor and C. Coutaz, editors, Software engineering and human-computer inter-

action (Lecture notes in computer science vol. 896), pages 49-75. Springer Verlag, 1995.

[62] M. D. Harrison, C. R. Roast, and P. C. Wright. Complementary methods for the iterative
design of interactive systems. In Designing and Using Human-Computer Interfaces and

Knowledge Based Systems, pages 651-658. Elsevier Scientiﬁé, 1989.

[63) D. Hix and H. R. Hartson. Developing User Interfaces: ensuring usability through product
and process. J. Wiley, 1993. |)

[64] C. A. R. Hoare. Communicatirig Sequential Processes. Prentice Hall International, 1985.

[65] A. Howes and S. J. Payne. Display-based competence: towards user-models for menu

~ driven interfaces. International Journal of Man-Machine Studies, 33:637-655, 1990. |

[66] R. J. K Jacob. Using formal specifications in the design of a human-computer interface.

‘Communications of the ACM, 26(4):259-264, 1983.

[67] C. Johnson. The evaluation of user interface notations. In F. Bodart and J. Vanderdonckt,
editors, Proceedings of Design, Specification and Verification of Interactive .S'ystems- 96,

pages 188-206. Springer, 1996.
[68] C. Jones. Probablistic Non-determinism. PhD thesis, University of Edinburgh, 1990.

[69] C. B. Jones. Specification and design of (parallel) programs. In R. E. A. Mason, editor, .
Intomation Processing 83: Proceedings of the IFIP 9th World Congress, pages 321-332.
IFIP, North-Holland, 1983, '

252

[70] C. B. Jones. Systematic Software Development Using VDM. Series in Computer Science.
Prentice Hall International, 1986.

[71] D. E. Kieras and D. E. Meyer. An overview if the EPIC architecture for cognition and per-
formance with application to human-computer interaction. Technical Report TR-95/ONR-

'EPIC-5, EPIC, 1995,

[72] D. E Kieras and P. G Polson. An approach to the formal analysis of user complemty
International Joumal of Man-Machine Studies, 22:365-394, 1985.

[73] L. La,mport Provmg the correctness of mu1t1process programs IEEFE Transactions in

" Software Engineering, 3:125~143, 1977,

[74] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872-923, 1994,

[75] L. Lamport. TLA in pictures. IEEE Transactions on Software Engineering, 21(9):768-775,
1995.

[76] L. La,mport.. Personal commurication — ‘Re: A TLA related question. . .". email meassage

id: 9608051619.AA05596@hemlock.pa.dec.com, 1996.

[77] T. K. Landauer. Lets get real: A posmon paper on the role of cogmt:ve psychology in the
‘design of humanly useful and usuable systems. In Designing Interaction: Psychology at
the human-computer interface, Cambridge Series on H_uma,n-Computer Interaction, pages.

60-73. Cambridge University Press, 1991.
[78] B. Laurel. Computers as theatre. Addison Wesley, second edition, 1993.

[79] J. Long. Theory in Human-Computer Interaction. In IEE Colloguim on ‘Theory in Human-
Computer Interaction (HCI)’ (Digest No.192). IEE, 1991.

[80] J. B. Long. Cognitive ergonomics and human-computer interaction: An introduction.
In Cognitive Ergonomics and Human Computer Interaction, pages 4-34. Cambridge Uni.

Press, 1989,

253

[81] J. B. Long and A. D. Whitefield, editors. Cognitive Ergonomsics and Human Computer
Interaction. Cambridge Uni. Press, 1989.

[82] T. Maibaum. Temporal reasoning over deontic specifications. In Deontic Logic in Computer

Science — Normative system specification, pages 141-202. Wiley, 1993.

[83] M. Mezzanotte and F. Paternd. Verification of properties of human-computer dialogues
with an infinite number of states. In Formal Aspects of the Human Computer Interface.

BCS-FACS, Springer Verlag, 1996,

[84] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture notes in computer

science. Springer Verlag, 1980.
[85] A. Newell. The knowledge level. AT Magazine, pages 1-20, 1981.
[86] A. Newell. Unified theories of cognition. Harvard University Press, 1990.

[87) A. Newell and S. K. Card. The prospects for psychological science in hﬁman—computer
interaction. Human-Computer Interaction, 1:209-242, 1985.

[88] A. Newell and S. K. Card. Straightening out softening up: Responce. to Carroll and
" Campbell.” Human-Computer Interaction, 2:251-267, 1986.

[89) D. A. Norman. Cognitive Engineering. In User Centered System Design - New Perspectives

on Human-Computer Interaction, pages 31-61. Lawrence Erlbaum Associates, 1986.

[90] P. Palanque and R. Bastide. Formal specification and verification of CSCW using the
interactive cooperative object formalism. In People and Computers X, pages 213-231,

1995.

[91] P. A. Palanque and R. Bastide.. Petri net based design of user-driven inetrfaces using
the Interactive Cooperative Objects formalism. In F. Paternd, editor, Proceedings of the
- Eurographics Workshop on Design Specification and Verification of Interactive Systems

94, pages 215-228. Eurographics, 1995.

[92] F. Paternd and M. Mezzanotte. Analysing MATIS by interactors and ACTL. Technical
Report SM/WP36, Amodeus project. ESPRIT BRA 7040, 1994.

254

[93] F. Paterné and P. Palanque. Formal methods and human-computer interaction. Compar-
isons, benefits, open questions. SIGCHI Bulletin, 28(4):46-48, 1996 Summary of CHI'96

workshop

[94] S. G. Payne and T. R. G. Green. Task-action grammars: a model of mental representation

“of task languages. Human-Computer Interactz’oﬁ, 2(2):93-133, 1986.
[95] J. L. Peterson. Petri net theory and the modeling of systems. Prentice Hall, 1981.

[96] G. E. Pfaff, editor. User Interface Management Systems. EurographicSeminars. Springer-
Verlag, 1985. '

N

[97] A. Pnueli. The temporal logic of programs. In Proceedings of 18th IEEE Symposium of
Foundations of Computer Science, pages 46-57, 1977. o

(98] A. Pnueli. System specification and refinement in temporal logic. Lecture Notes in Com-

puter Science, Vol 652, pages 1-38, 1992,

[99] P. Ravn, H. Rischel, and K. Mark Hansen. Specifying and verifying requirements of real-
time systems. IEEE Transactions on Soﬂware Engineering, 19(1):41-55, 1993.

[100] P. Reisner. Formal gramma,r and design of an mteractwe system IEEE Transactzons on

Software Engineering, SE-5:229-240, 1981,

[101] P. Reisner. What is inconsistency? In D. Diaper, D. Gilmore, G. Cockton, and B. Sha.kel
editors, Human-Computer Interaction — INTERACT’90 pages 175-181. Elsevier S(:1ence
- Publishers, 1990.

[102] C.R. Roast and M. D. Harrison. User centred system modelling using the template model.
In F. Paternd, editor, Proceedings of the Eurographics Workshop on Design Specification
and Veriﬁéation of Interactive Systems ’9, pageé 261-273. Eurographics, 1995. '

[103] M. Ryan, J. Fiadeiro, and T. Maibaum, Sharing actions and attributes and modal action
Io'gic. In T. Ho and A. Meyer, editors, Proceedings on the International Conference on

Theoretical Aspects of Computer Science, pages 569-593. Springer Verlag, 1991.

255

[104] F. Schiele and T. Green. HCI formalisms and cognitive psychology: the case of task action
grammars. In Formal Methods in Human-Computer Interaction, Cambridge series on HCI,

pages 9-62. Cambridge Uni. Press, 1990.

[105] E. Schlungbaum and T. Elwert. Dialogue graphs — a formal and visual specification
techmque for dialogue modelling. In Formal Aspects of the Human Computer Interface.
BCS-FACS Springer Verlag, 1996.

[106] J. A. Simpson and E. S. C. Wemer, editors. The Ozford English Dictionary. Cla.rent;lonA
Press, Oxford, second edition, 1989,

[107] J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer Science. Prentice
Hall International, 1989.

(108] G. Storrs. A conceptual model of human-computer interaction. Behaviour and information

technology, 8(5):323-334, 1989.

[109] G. Storrs. A Conceptualisation of Human-Computer Interaction. In IEE Colloguim on
" ‘Theory in Human-Computer Interaction (HCI)’ (Digest No.192). IEE, 1991.'

[110] G. Storrs. A conceptualization of multiparty interaction. Interacting with C’omputer&, :
6(2):173-189, 1994.

f111] G. Storrs. The notion of task in huma,n-computér interaction. In People and Computers

X, pages 357-365, 1995.

[112] B. Sufrin and J. He. Specification, analysis and refinement of interactive processes. In
Formal Methods in Human-Computer Interaction, Cambridge series on HCI, pages 153—
199. Cambridge Uni. Press, 1990. '

[113] K. Systd. Specifying user interfaces in DisCo. SIGCHI Bulletin, 26(2):53-58, 1994.

[114] H. Thimbleby. On formal methods in HCI. In IEE Collogiium on ‘Formal methods in |
HCI: 11’ (Digest No. 151). IEE, 1989.

[115] H. Th'imbleby. You’re right about the cure: don’t do that. Interacting with computers,
2(1):8-25, 1990.

256

{116] J. C. Torres and B. Clares. Using an abstract model for the formal specification of inter-
active graphic systems. In F. Paternd, editor, Proceedings of the Eurographics Workshop
on Design Specification and Verification of Interactive Systems ’4, pages 275-292. Euro-

_graphiés, 1995.

(117] R. M. Young, P. J. Barnard, A. E. Blandford, and M. D. Harrison. The unselected window
_ scenario. Technical Report CP52, Amodeus ESPRIT BRA 7040, 1994,

[118] R. M. Young, T. R. G. Green, and T. Simon. Programmable user models for predictive
evaluation of interface design. In K. Bice and C. H. Lewis, editors, Proceedings of CHI ’89:
- Human Factors in Computing Systems, pages 15-19. Association of computing machinery,

1989,

257 .

Appendix A :
A glossary of terminology

Action A state relationship describing the relafionship between two states. An action is the

unit of functionality in TLA.

Activity A description of how the state develops through time. Activities are assumed not to

suffer from Zeno’s paradox.
Assumptions Descriptions of parts of systems that already exist and cannot be built.
Behaviour The set of all activities that are legal for a system to perform.-

‘Computation The unit of functionality in an RSSL specification. It consists of an internal
and external state space and its behaviour is formally defined by a collection of state

relationships which describe. ..

e when it is enabled,

e aread phase which copies values from the public space to the private and may update

the value of the public space,
e a process phase where values in the private space are updated, and

e a write phase where the value of i;he public space is updated according to the value

of the private space. -

Closed system A system that is entirely gelf contained — it is uneffected by and has no effect

on any entities external to the system.

-

258

Decoration A symbol super-scripted to a variable name in a state relationship.

Dense set A set of items that can be ordered and for any pair of distinct items from that set

there is always another item from that set that lies between then according to the ordering.

Deontic logic A logic augmented with operators to describe whether actions may or must

OCCur.

Device The kernel of an interactive system. Devices tend to be pre-progra.mrhed with instruc-

tions on how to respond to their environment.
Enabling condition A property describing when it is possible for a computation to occur.

. Environment Sub-systems in a reactive system that can pass requests to the kernel and can

“expect an obligated response.

Fa.irhess A condition that prevents computations from being locked out from occurring. The
definition of fairness used in this work is that of strong fairness — if a computation is

enabled infinitely often then it occurs infinitely often.

Filter A mathematical formula for combining interface and user effects into a single probability

. function.

Interactive system A reactive system where the environment is populated by users and-the

kernel by devices.
Interface effect The biasing to a use that is due purely to the user interface.

~ Interleaving function A function that takes the ordinal position of a computation in a com-

putation sequence to the ordinal position of its read and write phase.

ISSL specification An Interactive System Specification Language specification. An ISSL spec-
ification is an RSSL specification such that each reaction has a probability function asso-

ciated with it that describes the probability of a reaction occurring in given contexts.
\

Kernel Sub—syétems in a reactive system that are obligated to respond to requests from the

environment.

259

Liveness Part of a statement of requirements that expresses what the proposed system should

eventually do.
Open system A system that can effect or be effected by entities efcterna,l to the éystem.
Optimal behaviour Behaviour that gets a given task done as efficiently as possible.
Out;iome .Hc;w the };ublic space is updated by the write phase of a coinputation.
Property A state relationship which expresses what is true about is single state.

Probability function A fun{:tidn that takes what has happened so far in a system and returns

the probability of the user invoking a certain reaction next.
Raw activity An activity that may suffer from Zeno’s paradox.

Raw ISSL specification An ISSL specification where reactions are mapped to pairs of prob-

- ability functions — one representing the user effect and one the interface effect.

Reaction A pair of computations where the first computation is an optional environment com-

putation which enables an obiigatory kernel computation, thereby causing it to occur.

Reaction style RSSL specification A specification consisting of an initial property and a

collection of optional reactions.

Reactive system A system that can be divided into sub-systems which can be put in two

exclusive categories, the environment and the kernel.

Refinement The process of adding detail to an abstract description. This addition of detail
constrains the behaviour of a described system whilst still ensuring that the system does

everything that it must.

Requirements A description of the behaviour of a proposed system that makes as little ref-
erence to the mechanics of the system as possible. Requirements should be more about

describing the problem the system is intended to overcome rather than the system itself.

RSSL specification A Reactive System Specification Language specification. An RSSL con-
sists of an initial property and a collection of obligatory computations and a collection of

 optional computations.

~

260

~

Safety Part of a statement of requirements that expresses what proposed system should never
do. |

Side effect How the public spabe is updated by the read phase of a computation.

Specification A (probably) abstract description of a system. A specification can also be a
description of sub-systems that need to be buil{, as opposed to assumptions which describe

the existing sub-systems.

Specification non-determinism Non-determinism that is introduced into a specification due-
to abstraction, sometimes known as ‘don’t care’ non-determinism. It is reduced by refine-

ment.

State A snap-shot of the condition of a system at a particular instance. The state space for a
system is a collection of variable names. The state of a éystem is an assignment of values

to the variables in its state space.
State discontinuity A point at which the state changes.

State relationship An expression of what is true about a certain collection of states. In this

work state relationships are expressed in a predicate logic notation with decorations added

to the variables to denote which state their value is extracted from.
System A collection of entities that work together to produce some behaviour.
Temporal logic A logic that is augmented with operators to describe how time develops.

Truth valued function A mathematical entity which can be evaluated against a list of values

tokgive a Boolean value.
' Updaﬂ:e A pair of times during which a most one state discontinuity occurs.

Update function A function that takes the ordinal position of a read or write phase to an

update.

Usage distribution A graph that maps how ‘good’ an interaction is against how likely it is -

for an interaction that good to occur.

261

Use A probability distribution over what a system does. In this work we model-use as a
probability distribution over sequences of reactions. Alternatively we could model use as

a probability distribution over a behaviour space.

User effect The biasing to a use that is caused purely by the user’s intentions and motivations.

User interface An entity in an interactive system that alters the use (but not the behaviour)

of a system.

User non-determinism Non-determinism in a discrete model of system behaviour caused by

the specifier’s inability to precisely determine what the user will do.

!

Zeno’s paradox A philosophical difficulty encountered with real time models of behaviour.
Time advances, but by infintessimally small increments and hence thereis a time finitely

in the future that is never reached.

- 262

'Appehdix B
Mathematical notation

B.1 Logical operators and constants

i ~true, false Logical constants
ii : ~P Negation
iii PAQ Conjﬁnction
iv Pv @ Disjunction
v - Pv@ Exclusive disjunction
vi P=Q Implication
il P& Q Biconditional (iff)
viii . 3z ¢ P Existential quantification
ix Vz ¢ P Universal quéntiﬁca.tion ;
B.2 Sets
i {1,2,3} Explicit set

ii {2:X|P(z)} Implicit set — all the elements of type X that satisfy the predicate P. If
the type of « is clear through context then it may be omitted.

i " z€X Set membership — z is a member of set X.
iv B Boolean values — {true, false}
v N Natural numbers — {0,1,2,3,.. }

263

vi

vii

viii
ix
xi
xii

xiii

Xv

xvi
B.3

i

iii

Ny

R
m..n
P(X)

- F(X)
X xY
XCY
XcYy
XYy
XnY
X\Y

Bags (or

REEA
zeX
B(X)

Xcy
XwY
X\Y

Non-zero natural numbers — {1,2,3,...}

Real numbers — [—o0, oc]

Enumeration — {{:N|m < i < n}

All subsets of X

All finite subsets of X o
Cross product of X and Y — {(z,y) [z € X A y.e Y}
X isasubsetof Y '
X is a proper subset of Y

Set union — {z]z € X Vz €Y}

Set intersection — {.5 lze XAz €Y}

Set minus — {z |z € X Az ¢ Y}

multisets)

Explicit bag

Bag membership _
All subbags of X (ﬁrhere X is a set)
X is a sub-bag of Y |
Bag union

Bag minus

B.4 Functions

ii

iii

iv

X5y

e
dom f
ran f

XY
H®fa

Partial function from X to Y — if f:X 5 Y then...
f{zmy)z: X Ay:Y A3ze (a: - 2) € f=y=2}
Functibn a.pplicatiqn — f(z) =y such that (z = y) € f
Function domain — {z |3y e (z — y) € f}

Function range — {y |3z ¢ (z = y) € f}

Total function from X to Y. If f: X — Y then-dom f=X
Functionl overwrite. (f1® f2)(z) = f2(z) is z € dom fa, fi(z) otherwise. -

264

"B.5

ii

ifi
iv

vi

vii

B.6

{a,b,c)
X*

CXv

| X%

1
S(n)
S179,

‘Sequences

Explicit sequence

All finite sequences of elements of X. A finite sequence s : X™* is a.partial

- function from N; to X such that contig{dom s). (The predicate contig

is defined in the next section.)
All inﬁnite sequen-ces of elements of X An infinite sequence z: X% isa -
total function from N to X

All finite or infinite sequences of X — X* U X%
Length of finite sequence S | _ |

nth item of sequence § (1 < n < |5))

Sequence concatenation (S; must be finite)

Some miscellaneous functions and predicates

The functions maz and min respectively extract the largest and smallest items from a non-empty

set of natural numbers.

maz:P(N)= N , : '
maz(ns)=n ' | _ (B.1)
where n € nsA3x:Nez > nAze ns=>r=n

min:P(N) =+ N
min(ns)=n o (B.2)
where ne€nsAdz:Nez<nAze€ns=z=n

In words; ‘the function maz returns a number n from the set ns such that if there is number z

also in ns that is greater of equal to n then z = n. Similarly min returns n such that if z is less

of equal to n then z = n.’

The following list processing functions are defined; hd , t, 1t and ft which return the head of

a sequence, the tail of a sequence, the last item in a sequence and the front of a list respectively.

hd: X% = X

hd(_(zh 332,33,...))._;. 1 (B'3)

265

t: X% - X%

tl((zl: T2y 2350)) = (3‘2, T3y) (B4)
t:X*=X
. N—— (.., Tna2, Trwl, Tn)) = Tn (B.5)
f
X=X ©6)

A((. ",xn-2:xn—1: $n>) = (. 1 Zn=2) J71’1—.1)

pref and suff take a sequence and return sets of sequences that are prefixes and suffixes of

the given sequence.

. pref: X% o P(XY)

pref(seq) = {start: X* | Jend: X D o s0q = stdrt"end} (B.7)

suff : X* = P(X™)

suff (seq) = {end:X* | Tstart: X" e seq = start"end} (BE).

In words; ‘the set of all prefixes of seq is the set of all sequences start such that there is a
sequence end which concatenated to start gives seq. Similarly the set of all suffixes of seq is all
the sequences end such that thereis a sequénée étdrt,’

The predicate contig holds true if the given set contains all the natural numbers between 1
and the maximum value in the set, or contains all the non-zero natural numbers if the set is
~ infinite. | |
contig:P(Nl) —+B ‘
contig(ns) = (3n: N @ n = maz(ns) A ns = {1..n}) (B9)

. A
(ns = Nl)

266

In words; ‘if there is a maximum value in ns then all numbers from 1 to n are in ns. If ns is

infinite then all the non-zero natural numbers are in ns.’

267

