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ABSTRACT 

This thesis is concerned with the problem of how to represent 

a biological object for computerised identification. Images of 

biological objects have been generally characterised by shapes 

and colour patterns in the biology domain and the pattern 

recognition domain. Thus, it is necessary to represent the 

biological object using descriptors for the shape and the colour 

pattern. The basic requirements which a description method 

should satisfy are those such as invariance of scale, location and 

orientation of an object; direct involvement in the identification 

stage; easy assessment of results. The major task to deal with in 

this thesis was to develop a shape-description method and a 

colour-pattern description method which could accommodate all 

of the basic requirements and could be generally applied in both 

domains. 

In the colour-pattern description stage, an important task was 

to segment a colour image into meaningful segments. The most 

efficient method for this task is to apply' Cluster Analysis. In 

the image analysis and pattern recognition domains, the majority 

of approaches to this method have been constrained by the 

problem of dealing with inordinate amounts of data, i.e. a large 

number of pixels of an image. In order to directly apply '­

Cluster Analysis to the colour image segmentation, data 

structure, the Auxiliary Means is developed in this thesis. 



1. INTRODUCTION. 

1.1 Background. 

1.2 Objectives. 

CONTENTS 

1.3 Summary: Chapter By Chapter. 

2. COLOUR FOR COLOUR IMAGE ANALYSIS. 

2.1 Introduction. 

2.2 The Nature of Colour. 

2.3 Uniform Colour Spaces. 

2.4 The CIE RGB System and The CIE XYZ System. 

Page no, 

1 

2 

5 

8 

11 

12 

14 

18 

26 

2.5 Calibration of a Colour Image Scanner Digitising System 

in the CIE L*a*b* Colour Space. 38 

2.6 Conclusion. 

3. BOUNDARY EXTRACTION METHODS. 

3.1 Introduction. 

3.2 Characteristics of Edges. 

3.3 Edge Detection. 

3.3.1 Differentiation Methods. 

3.3.1 Mask Matching Methods. 

3.4 Boundary Extraction from Colour Image. 

3.5 Conclusion. 

4. COLOUR PATTERN EXTRACTION METHODS. 

4.1 Introduction. 

4.2 Image Segmentation. 

4.3 Cluster Analysis. 

4.4 Colour Pattern Extraction. 

52 

54 

55 

57 

59 

59 

69 

75 

91 

92 

93 

95 

102 

112 



4.4.1 Auxiliary Means for Colour Image Segmentation. 112 

4.4.2 A Procedure for Colour Pattern Extraction. 119 

4.5 Conclusion. 144 

5. SHAPE DESCRIPTION METHODS. 147 

5.1 Introduction. 148 

5.2 Existing Shape Descriptors. 150 

5.3 New Shape Description Method. 170 

5.3.1 The background and Basic Principle of this Method. 170 

5.3.2 The Algorithm for this Method. 177 

5.3.2.1 Detecting a Principal Axis. 182 

5.3.2.2 Calculation of Ratios. 186 

5.3.2.2.1 Rotation of a Contour. 186 

5.3.2.2.2 Calculation of Areas of Segments. 191 

5.3.2.2.3 Calculation of Ratios. 195 

5.4 Conclusion. 200 

6. COLOUR PATTERN DESCRIPTION METHODS. 202 

6.1 Introduction. 203 

6.2 Major Factors for Colour Pattern Description. 205 

6.2.1 The Number of Different Colour Patterns. 206 

6.2.2 Colour Feature of Each Colour Pattern. 207 

6.2.3 The Ratio of the Area of Each Colour Pattern Over the 

Total Area of an Object. 209 

6.2.4 Normalised Centre of Gravity of Each Colour Pattern. 210 

6.2.5 The Slope of the Regression Line of Each Colour Pattern. 

213 

6.2.6 The Ratios for Segments of Each Colour Pattern. 216 

6.3 Colour Pattern Description. 219 

6.3.1 Calculation of the Major Factors. 219 

6.3.1.1 The L "a"b" Colour Feature of Colour Pattern. 219 



6.3.1.2 The Ratio (the Area of Colour Pattern/the Total Area) 

220 

6.3.1.3 Normalised Centre of Gravity of Colour Pattern. 221 

6.3.1.4 The Slope of the Regression Line of Each Colour Pattern. 

223 

6.3.1.5 The Ratios for Segments of Each Colour Pattern. 224 

6.3.2 Hierarchical Organisation of Factors. 225 

6.4 Conclusion. 230 

7. THE STRUCTURE OF SPECIES IDENTIFICATION SYSTEM. 

7.1 Introduction. 

7.2 Configuration of Hardware and Software. 

7.3 Species Identification System. 

7.3.1 Learning System. 

233 

234 

236 

237 

7.3.2 Implementation System. 237 

7.3.3 Leaf Species and Butterfly Species Identification 

Systems. 

7.3.3.1 Leaf Species Identification System. 

7.3.3.2 Butterfly Species Identification System. 

7.4 Conclusion. 

8. CONCLUSIONS. 

9. REFERENCES. 

APPENDIX. 

A. Leaf Species Identification. 

B. Butterfly Species Identification. 

238 

238 

248 

262 

264 

267 



LIST OF FIGURES 
Page no. 

CHAPTER 2. 

Figure 2.1 Isaac Newton's Colour circles. 15 

Figure 2.2 The distribution of colours in the spectrum. 16 

Figure 2.3 Munsell colour specification system. 20 

Figure 2.4 The CIELUV colour space. 22 

Figure 2.5 A tristimulus colour space. 27 

Figure 2.6 Chromaticity diagrams. 29 

Figure 2.7 A monochromatic stimulus of wavelength A.. 30 

Figure 2.8 An equal-energy stimulus. 31 

Figure 2.9 Diagram of an arrangement of monochromators forthe, 

colour-matching experiment. 

Figure 2.10 Colour-matching functions. 

Figure 2.11 A multiform colour space of the CIE 1931 (x, y)­

chromaticity diagram. 

Figure 2.12 Scatter diagrams. 

CHAPTER 3. 

Figure 3.1 The idealised edge models. 

Figure 3.2 Function formulation. 

Figure 3.3 Geometrical feature of a derivative. 

32 

36 

37 

43 

58 

60 

61 

Figure 3.4 Elements of edge detection by derivative operators. 62 

Figure 3.5 Geometrical illustration of the partial derivative. 64 

Figure 3.6 Goldmark operator. 66 

Figure 3.7 Roberts cross operator. 67 

Figure 3.8 Prewitt operator. 68 

Figure 3.9 Sobel operator. 69 

Figure 3.10 Major factors for the edge detecting operation. 71 

Figure 3.11 A sample local image. 73 

Figure 3.12 Boundary extraction procedure. 76 



Figure 3.13 The scanning methods for boundary detection. 78 

Figure 3.14 The histogram along the diagonal line of the gradient 

array G. 

Figure 3.15 A local gradient image and arrays assigned with 

gradients and the x-and y-coordinates of the point 

(i, j). 

Figure 3.16 Boundary point detecting operation. 

Figure 3.17 Boundary detecting process. 

Figure 3.18 Boundary detecting process. 

Figure 3.19 Boundary detecting process. 

Figure 3.20 The images and their boundaries. 

CHAPTER 4. 

80 

82 

84 

86 

87 

88 

90 

Figure 4.1 Unimodal distribution and bimodal distribution. 96 

Figure 4.2 A smoothed histogram and valley point. 97 

Figure 4.3 Colour distribution and rectangular decision surface 

with colour features. 99 

Figure 4.4 The smallest distance between the newly formed 

cluster and one of the remaining clusters. 106 

Figure 4.5 The longest distance between the newly formed 

cluster and one of the remaining clusters. 107 

Figure 4.6 The average distance between the newly formed 

cluster and one of the remaining clusters. 108 

Figure 4.7 The distance between the centroids. 109 

Figure 4.8 Colour images and three-dimensional histograms. 113 

Figure 4.9 The Auxiliary Means (its hypothetical description). 115 

Figure 4.10 The structure of a unit of the Auxiliary Means. 117 

Figure 4.11 The algorithm of the colour pattern extraction. 121 

Figure 4.12 Pixels including noise. 127 

Figure 4.13 The connectivity test. 129 

Figure 4.14 A comparison of the complete linkage method and the 



single linkage method. 

Figure 4.15 The original image and enlarged Image. 

Figure 4.16 The scattered diagrams of clusters. 

Figure 4.17 A dendrogram. 

Figure 4.18 Cluster Membership of Cases. 

131 

132 

134 

137 

139 

Figure 4.19 Assigning the cluster Ld. to the unit of the Auxiliary 

Means. 141 

Figure 4.20 The procedure for displaying patterns. 142 

Figure 4.21 The patterns extracted. 143 

Figure 5.1 Descriptors and objects with different features. 152 

Figure 5.2 Contour function z(t). 160 

Figure 5.3 Chain code. 165 

Figure 5.4 Objects'shapes from the lateral view. 171 

Figure 5.5 Comparison of each pair of horizontal line segments. 

172 

Figure 5.6 Areas of segments. 

Figure 5.~ Areas of segments for hypothetical objects. 

173 

174 

Figure 5.8 Reconstruction of the shapes using the components of 

shape descriptor. 176 

Figure 5.9 Contour segmentation. 178 

Figure 5.10 The tree of ratios. 180 

Figure 5.11 Calculations of distances for finding a diameter. 183 

Figure 5.12 Circumscribing rectangles. 185 

Figure 5.13 The property of tan(9). 187 

Figure 5.14 Rotation of points. 190 

Figure 5.15 Contours of biological objects. 191 

Figure 5.16 The areas of segments. 193 

Figure 5.17 Area of a segment in the upper or lower part. 194 

Figure 5.18 Assigning areas into S1 [k) and S2[k). 195 



Figure 5.19 Diagrammatical representation of ratios. 

Figure 5.20 The bottom-up process for a ratio tree. 

CHAPTER 6. 

196 

199 

Figure 6.1 Wing patterns. 208 

Figure 6.2 Wing patterns. 208 

Figure 6.3 Wing patterns. 208 

Figure 6.4 Normalisation of the centre of gravity. 211 

Figure 6.5 Wing patterns. 208 

Figure 6.6 The hypothetical patterns. 216 

Figure 6.7 Calculation of the normalised centre of gravity. 223 

Figure 6.S Segments of a pattern. 225 

Figure 6.9 The hierarchical organisation of factors. 228 

CHAPTER 7. 

Figure 7.1 Configuration of hardware and software. 234 

Figure 7.2 A flow chart of a learning system for a leaf species 

identification system. 239 

Figure 7.3 A flow chart of an implementation system for a leaf 

species identification system. 

Figure 7.4 Sample images. 

Figure 7.5 The ratio for each segment. 

Figure 7.6 Scatter diagrams. 

Figure 7.7 A flow chart of a learning system for a butterfly 

242 

244 

245 

247 

species identification system. 250 

Figure 7.8 A flow chart of a colour pattern extraction process. 

Figure 7.9 A flow chart of an implementation system for a 

butterfly species identification system with colour 

patterns. 

251 

253 



Figure 7.10 Wing patterns and major factors for each pattern of 

Species A. 255 

Figure 7.11 Wing patterns 

Species B. 

and major factors for each pattern of 

256 

Figure 7.12 Range of each descriptor for the size of each colour 

pattern. 259 

Figure 7.13 A scatter diagram of the normalised centre of 

gravity x values against the normalised centre of 

gravity y values for each colour pattern. 260 

Figure 7.14 A scatter diagram for the location of colour patterns 

(1 and 3). 261 



LIST OF TABLES 

Page no. 

CHAPTER 2. 

Table 2.1 Average colour-matching functions F(A), g(A) and 6(A), 

and x(}..), y(}..) end Z(A). 35 

Table 2.2 Colour names and specifications. 39 

Table 2.3 The X, Y, Z, L*, a*, and b* values calculated using the x, 

y and Y values in Table 2.2. 41 

Table 2.4 The results of regression analyses. 44 

Table 2.5 The results of multiple regression analyses. 

Table 2.6 Macbeth colours measured by colour image digitising 

systems. 

CHAPTER 3. 

Table 3.1 Four sets of mask for computing the gradient and 

orientation 

CHAPTER 4. 

Table 4.1 The calculation of the outlier. 

CHAPTER 6. 

Table 6.1 Object representation by factors. 

CHAPTER 7. 

Table 7.1 The number of samples involved in the validation stage. 

Table 7.2 The result of the identification test. 

46 

51 

72 

128 

220 

243 

245 

Table 7.3 The number of samples involved in the validation stage. 

254 

Table 7.4 The result of the identification test. 258 



Chapter 1 

INTRODUCTION. 

1.1 Background. 

1.2 Objectives. 

1.3 Summary: chapter by chapter. 
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1.1 BACKGROUND. 

There are an enormous number of different kinds of biological 

objects in the natural world. For each biological object, there are 

a great number of species. For example, there are about 15,000 

species of butterfly known to science (Ehrlich & Raven, 1965). One 

species is generally discriminated from the other by means of 

various features such as life style, internal or external structure, 

shape or colour etc. In the domain of morphology, which is one of 

the academic branches of biology, the shape is an important 

feature which is employed in species identification. A great deal 

of research work on computerised species identification by means 

of shape, such as chromosome identification and leaf species 

identification and so on has been conducted in the domain of 

biology (see, for example ,West & Noble, 1984,', Ferson et. ai, 

1985,). On the other hand, in some domains, such as the domain of 

the butterfly, no attempt to undertake computerised species 

identification using wing shapes or colour patterns on the wings 

has been made. A visual comparison of butterflies is currently 

done manually and requires great experience and expertise. 

Most of the research which has been performed for automatic 

and semi-automatic species identification in the biology domain 

has mainly relied on black-and-white images rather than colour, 

since shape has been regarded as the most important feature in 

species identification. On the other hand, in butterfly species 

identification, colour features play an important role because the 

colour patterns on the wings of butterflies are essential for 

speCies identification. There are several reasons for manual, 

visual comparison in the domain of the butterfly such as: 
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(1) Firstly, sophisticated computer equipment which is essential 

to colour image analysis was not generally available. 

(2) Secondly, existing methods for colour pattern extraction 

which have been published are generally so complex that they have 

not been applicable in practice. Another difficulty with the 

existing methods is that they require enormous computing time in 

their implementation. 

Recent technological developments have made it possible to 

utilise not only colour image capturing devices, but also high 

resolution colour image analysis devices. Thus, there is no longer 

a colour device problem in this domain. An immediate necessity in 

biological object identification is to develop new methods which 

can be generally applied to colour pattern extraction utilising 

these new devices. 

In the botany domain, various shape description methods, 

published in the pattern recognition and image analysis domains, 

have been widely employed in computer systems to discriminate 
Ileaf~ - species.~~ - - - -- - --- -However,- -Whit~-_ a~d prenti~;1 

l~1~~8)~-h_~V~ Ip~~~d out that, amo~g -biologist~, systematists prefer 

the more ~raditional manual measurement method, that is, a 

method relying on measuring lengths, widths and angles, etc. of 

leaves in order to quantify shape variation patterns. This reveals 

that existing shape description methods do not satisfy all the 

requirements of species identification in the botany domain. The 

detailed investigation, described in this thesis, on the 

corresponding existing methods for shape description has also 

revealed exactly the same problems. Thus, the development of a 

new method for shape description which can be generally and 

efficiently used in species identification is required. 

3 



In colour image analysis, it is generally considered that colour 

comparison for various purposes such as colour pattern extraction 

and boundary extraction etc. should be undertaken in a three­

dimensional uniform colour space (e.g., RGB) to obtain a precise 

result. However, most colour image digitising systems do not 

directly create the three-dimensional colour space, and also the 

spectral sensitivity of a colour image capturing device is usually 

different from that of another colour image capturing device. 

Thus, it is impossible to apply a system which has been 

established for one computer system to another computer system 

which has a colour image capturing device whose spectral 

sensitivity is different from that of the first system. However, 

most colour comparisons for colour image analysis have been 

performed without seriously considering this sensitivity problem. 

Thus, it is necessary to calibrate the colour image capturing 

system to establish a correct three-dimensional uniform colour 

space. There are several reasons for the lack of attention paid to 

calibration in the colour image analysis domain, such as lack of 

equipment or expertise. 

4 



1.2 OBJECTIVES. 

The main objective of the work described in this thesis was to 

develop representation methods for biological objects which 

could be generally applied to a computerised system for object 

identification. The second objective was to construct a prototype 

identification system which would be used for the evaluation of 

the methods developed in this thesis. The shapes of biological 

objects are characterised into two categories:-

o two-dimensional shapes, 

o three-dimensional shapes. 

The subject of this thesis concerns representation methods for 

biological objects which have two-dimensional shape such as 

leaves and butterflies. 

The basic design strategies of the representation of each 

biological object were: 

(1) The features of a biological object should be described in 

order to be independent of the scale, location and orientation of 

the object in an image. Objectsin images taken by camera or image 

scanner usually vary in size, location and orientation. Since these 

variations seriously affect the various measurements of an 

object, a descriptor should be designed to be independent of these 

variations. 

(2) The features of a biological object should be described in 

order to be directly involved in an identification procedure. A 

descriptor usually plays an important role in computerised 

object-identification. Shape descriptors and colour pattern 

descriptors were designed to be utilised in the object 

identification stage without any additional modification. In 

5 



general, the external features of biological objects vary in size, 

shape and colour pattern within a species (Bookstein et al., 1985). 

Thus, in this design strategy the variation factor was considered. 

(3) Descriptors should be easily interpreted not only by visual 

assessment, but also by systematic methods. When the result of a 

computerised object-identification is analysed, if the descriptors 

are easily interpreted, it will be possible to make a correct 

decision on the result as a human expert does. 

(4) Descriptors should be used as input data to the multivariate 

statistical analysis procedure for further study in a relevant 

domain. 

In order to accommodate these basic design strategies, shape 

descriptors were developed based on ratios of segments; and 

colour pattern descriptors were developed based on important 

factors such as normalised centre of gravity and ratios for 

segments which can characterise each colour pattern forming an 

object. 

For colour pattern extraction and boundary extraction, colour 

comparison was required. The colour comparison should be 

undertaken in a three-dimensional uniform colour space in order 

to obtain a precise result. Since the spectral sensitivity of a 

colour image capturing device is usually different from that of 

another colour capturing device, it was decided to develop a 

calibration method for a colour image scanner digitising system 

in the elE L*a*b* colour space by utilising the Macbeth colour 

checker chart which is a widely available colour reference 

standard. 

The success of colour pattern description is dominated by a 

reasonable and efficient method for extracting colour patterns 
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from colour images. Development of this method was considered 

as a sub-objective of this thesis. In order to improve a method for 

colour-pattern extraction, an algorithm which can directly apply 

I c~u;~~r~ ~~!,~~I~~iS: -J to the colour image segmentation was 

developed. In particular, this algorithm was designed to employ 

I-A~~iI-i~rY --- M;a~;--J which was devised in this thesis to make the 
L- ________ ---------,' 

algorithm directly apply ,Cluster Analysis to colour pattern 

extraction. 

The sample objects which were chosen to test the various 

methods developed in this thesis are leaves and butterflies. As 

far as image analysis is concerned, leaves are characterised by 

their shapes (outlines); and butterflies are characterised by wing 

shapes and the colour patterns. Thus, in the case of leaves the 

design of the representation concentrated on the shapes; and in 

the case of butterflies, on the wing shapes and the colour 

patterns of wings. 
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1.3 SUMMARY: CHAPTER BY CHAPTER. 

Chapter 2. Colour for Colour Image Analysis: 

This chapter reviews colour from its basic concepts to its 

uniform spaces such as the CIE L*A*B* space since colour, as 

argued earlier, is an important factor in the biological image 

analysis and pattern recognition. Once a colour image is digitised, 

each colour composing the image is expressed numerically. The 

numerical values are utilised in colour comparison enabling a 

colour image analysis system to extract the boundary of an 

object; to segment the object into meaningful regions; to 

discriminate a segmented region from other regions and so on. To 

perform an accurate colour comparison it is shown that it is 

necessary to establish a three-dimensional uniform colour space. 

An algorithm for calibration of a colour image scanner digitising 

system in this space is illustrated. An important feature of the 

algorithm is the use of the Macbeth colour checker chart, which is 

a widely available colour reference standard. 

Chapter 3. Boundary Extraction Methods: 

This chapter concerns the algorithms for extraction of the 

boundary of an object in a colour image. Algorithms concerning 

the boundary extraction are surveyed. The procedure of the 

boundary extraction algorithm which utilises a three-dimensional 

uniform colour space is illustrated. 

Chapter 4, Colour Pattern Extraction Methods: 

This chapter concerns algorithms for splitting a colour image into 

meaningful segments. Existing algorithms concerning colour 

image segmentation are surveyed. The three-dimensional 
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clustering method is known to be the most efficient method for 

colour image segmentation. However, this method has been 

avoided in the colour image analysIs domain because it requires 

enormous core memory. A detailed review of Cluster Analysis is 

undertaken to clarify the basic algorithm of the Cluster Analysis 

and the reason why it has not been utilised in practice. The major 

concept of the Auxiliary Means, which was developed to directly 

apply the colour image segmentation to the Cluster Analysis, is 

illustrated. An algorithm for colour image segmentation 

employing the Auxiliary Means to the Cluster Analysis routine in 

the SPSS-X (a statistical package) is discussed. 

Chapter 5, Shape Description Methods: 

This chapter reviews the existing shape description methods and 

proposesa. new method to improve some of the deficiency for 

biological objects which are utilised in a species identification 

procedure. In particular, a detailed analysis of the existing 

methods which are closely related to the shape description for 

biological objects is performed, attempting to extract problems 

and to resolve them. The new shape description method, based on 

human colour vision, developed in this thesis is illustrated. 

Chapter 6. Colour Pattern Extraction Methods: 

This chapter describes important factors for colour pattern 

descriptions. A colour pattern description method which was 

developed based on these factors is discussed. The discussion of 

the colour pattern description method is accomplished utilising 

wing patterns of butterflies as samples. 
f:k 

Chapter 7. The Structure 0hSpecies Identification System: 

This chapter describes the structure of the prototype system for 
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a species classification for biological objects. The system is an 

integration of the algorithms developed in the previous chapters. 

For the system two kinds of biological objects are used as 

samples: leaf and butterfly. 

Chapter 8. Conclusions: 

This chapter attempts to draw conclusions about biological object 

representation. 

Chapter 9. References. 

10 



Chapter 2 

COLOUR FOR COLOUR IMAGE ANAL VSIS. 

2.1 Introduction. 

2.2 The Nature of Colour. 

2.3 Uniform Colour Spaces. 

2.4 The CIE RGB System and the CIE XVZ System. 

2.5 Calibration of a Colour Image Scanner Digitising System in the 

CIE L·a·b· Colour Space. 

2.6 Conclusion. 
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2.1 INTRODUCTION. 

In colour image analysis, colour obviously plays an important 

role. Once a colour image is digitised using a colour image 

digitising system, each colour composing the image is 

represented by tristimulus values of R (red), G (green) and B 

(blue); and each of these tristimulus values is represented by a 

numerical value. The numerical values of each colour are utilised 

in colour comparison enabling a colour image analysis system to 

extract the boundary of an object in an image plane; to segment 

the object into meaningful regions; to discriminate a segmented 

region from other regions and so on. In this chapter, the 

investigation will concentrate on several aspects of colour from 

its nature to its representation in three-dimensional space, thus 

giving the theoretical background of colour pertinent to colour 

image analysis. In section 2.2, the nature of colour is discussed. 

In section 2.3, uniform colour spaces, which have been introduced 

by the CIE (Commission Internationale de l'Eclairage, i.e. 

International Commission on Illumination), are discussed. A 

colour comparison is performed in this uniform colour space. In 

particular, the necessity of the uniform colour spaces and their 

formulae is discussed in detail. In section 2.4, quite a detailed 

investigation on a transformation procedure from the CIE RGB 

system to the CIE XYZ (an alternative colour space) system is 

undertaken. It is necessary to understand this transformation 

procedure because the CIE XYZ system is essential to the formulae 

for the uniform colour spaces, but the XYZ system cannot be 

obtained directly from any colour digitising system. There are 

various kinds of colour image digitising systems such as colour 

video digitising systems, colour image scanning systems and so 

12 



on. If each colour composing an Image is treated in a uniform 

colour space, the colour Image digitising system should be 

calibrated. A method for this calibration utilising the Macbeth 

colour chart is illustrated in section 2.5. 
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2.2 THE NATURE OF COLOUR. 

In this section, the investigation will concentrate on the 

nature of colour and the basic aspects of human vision which 

perceive colour. In colour science, colour is defined as perceived 

colour (Bouma, 1971): 

Perceived colour is that aspect of visual perception by which an 

observer may distinguish differences between two fields of view 

of the same size, shape and structure, such as may be caused by 

differences in the spectral composition of the radiation concerned 

in the observation. 

Then, how many different colours can be distinguished by the 

I_h~nian - -v!~ual-=-sis~e~? =~ _= =~JUd~~ ~~d _\tViS~~Ck£(1975)J 
estimated that an experienced person with normal colour vision 

can distinguish about ten million different surface colours under 

optimum viewing conditions. What an enormous number it is! What 

are the major factors of the nature of colour? An immediate 

answer to this question is that there are two important factors 

that are commonly known in colour science: light and the human 

visual system. 

Firstly, let us consider the importance of light in detail. In 

1666, Sir Isaac Newton discovered that white sunlight was 

composed of a mixture of all the colours of the spectrum. Figure 

2.1.(a) is a sketch of his proposed colour diagram, in which seven 

monochromatic (single-wavelength) spectral colours, i.e. red, 

orange, yellow, green, blue, indigo and violet, are placed around 

the periphery of a circle in the order that they appear in the 

spectrum. He then found that these colours could be recombined 

into white light with a lens. Newton also demonstrated that the 

14 



set of perceived colours is but a small subset of all the possible 

colours obtainable by mixing different combinations of colours 

(Rodieck, 1973). He mixed red with green and created yellow as 

shown in Figure 2.1.(b). 

Orange 

(b) 

Figure 2.1 I sooc Newton's Colour circles. (0) Newton's colour 

circle. (b) MiHture of R (red) ond G (green) yields Y (yellow). 

In physics, light is known to be a form of radiant energy. More 

precisely, light is electromagnetic energy, a category of radiant 

energy that includes X-rays, radio waves, etc. In general, light is 

commonly defined as visible radiant energy. The term visible 

radiant energy for light implies correctly that the visual system 

responds to it giving the experience of seeing. Since all light has 

wave-like properties, and the light in different parts of the 

spectrum corresponds to waves of a different length, it is 

convenient to define each spectral colour by the wavelength of its 

light. The main spectral colours occupy approximately the 

following wavelength bands: violet 450 nm and less; blue 450 to 

480 nm; blue-green 480 to 510 nm; green 510 to 550 nm; yellow­

green 550 to 570 nm; yellow 570 to 590 nm; orange 590 to 630 

nm; and red 630 nm and greater, where nm is the nanometre 
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which is one thousand-millionth (10- 9) of a metre (Agoston, 

1979). These regions are shown in Figure 2.2. This implies that 

the visible range of radiation extends from 380 to 780 nm. It is 

generally known that a normal eye is essentially blind to all 

radiation of wavelengths shorter than 380 nm and longer than 780 

nm. 

Yello,*, Green 
Blue Green 

"' ...... N e 11 o,*, 

,IF I, IF 
Violet Blue Green Oreng Red 

, 
400 500 600 700 

Wavelength (nm) 

Figure 2.2 The distribution of colours In the spectrum. 

Secondly, let us briefly consider the human visual system. How 

does the normal eye recognise various kinds of colours? To 

consider an answer to this question let us take a close look at the 

human visual system. There are two types of light-sensitive 

receptor cells in the retina, known as rods and cones (Hurvich, 

1981). It is known that the rods, which respond only to light and 

dark, are characterised by high sensitivity; they are capable of 

responding to light of very low intensity. Thus, the rods enable us 

to see in dimly lit rooms or in moonlight. At such low levels of 

illumination we are unable to distinguish hues and we cannot 

discern detail as well as we can in daylight (Evance, 1974). 

Evance (ibid.) has noted that at very low light intensities the 

cones, which are responsible for colour vision, are considered not 

sensitive enough to respond. He has added that there are three 
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classes of photo-sensitive pigments: one pigment absorbs reddish 

light. another greenish light. and a third bluish light; and each 

cone contains only one of the three types of pigments. Electrical 

signals are generated in the form of nerve impulses and these 

signals convey colour information to the brain. This is the way the 

normal eye recognises each of the colours. 
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2.3 UNIFORM COLOUR SPACES. 

In colour-image analysis, a basic task IS the comparison of 

colours. Suppose that there are two colours which are to be 

compared with each other. An immediate problem for this 

comparison is how to describe these colours. In practice, this 

problem corresponds to what kind of attributes should be involved 

in the description of each colour. The overwhelming empirical 

evidence is that for an observer with normal colour vision three 

specific component attributes are sufficient for him to 

completely describe any colour he perceives, regardless of the 

observing conditions under which he views the display (Wyszecki, 

1981). The three perceptual attributes of colour are lightness, 

hue, and chroma which are also defined as follows (Wyszecki & 

Stiles, 1982): 

(1) Lightness is that attribute of a visual sensation according to 

which the area in which the visual stimulus is presented appears 

to emit more or less light in proportion to that emitted by a 

similarly illuminated area perceived as a 'white' stimulus. In a 

sense, lightness may be referred to as relative brightness. 

(2) Hue is that attribute of colour perception denoted by blue, 

green, yellow, red, purple and so on. 

(3) Chroma is that attribute of a visual sensation which permits a 

judgment to be made of the degree to which a chromatic stimulus 

differs from an achromatic stimulus of the same brightness. 

Wyszecki has noted that since any colour perception which is 

represented by a point P lying within the bounded domain of 

chromatic perceptions can be varied in only three independent 

ways P1, P2 and P3, represented by the three perceptual 

attributes lightness, hue and chroma, these attributes form a 
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three-dimensional space. 

The most prominent example of a three-dimensional colour 

space composed of these perceptual attributes is the Munsell 

colour space. The Munsell colour space consists of painted colour 

chips which are equally spaced in each of the three dimensions. On 

each constant-hue chart the chips are arranged in rows and 

columns. It was intended that the chips in anyone row should be 

perceived to have equal lightness under ordinary viewing 

conditions and that the chips in anyone column should be 

perceived to have colours of equal chroma, where the ordinary 

viewing condition is defined as average daylight illumination that 

corresponds to the standard illuminant C. These colour chips were 

stuck on charts and published as the first colour atlas in 1915 

(McLaren, 1983). 

The logical representation of this colour space is a three­

dimensional Euclidian space expressed in cylindrical coordinates 

as shown in Figure 2.3, There are five principal hues in the hue 

circle and each hue is subdivided into finer divisions which are 

equally spaced scales as shown in Figure 2.3.(a). The vertical axis 

represents the lightness which is designated on a scale 0 to 10 as 

shown in Figure 2.3.(b). Each of the concentric cylinders as shown 

in Figure 2.3.(b) represents constant chroma. 

These Munsell colour chips can only be used for visual 

evaluations. Thus the development of a satisfactory colour­

difference formula which can be applied to systematic colour 

comparison is necessary. In fact, this task obviously corresponds 

to the development of a three-dimensional uniform colour space. 
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The uniform colour space would simplify colour specification and 

the setting of colour tolerances, it would be an important guide to 

the preparation of reference colour samples as standards, and it 

would aid the selection of harmonious colour combinations (Judd 

& Wyszecki, 1975). The development of a uniform colour space has 

generally been regarded as one of the most challenging projects in 

the field of colour science. 

C/) 

·---11----·· .... __ .- , ---
....J • 

---.--- --., 
• .. --_-+-.::>01<::: 

· --~----~----~.~, • Chroma 
• 

:---+--....! ......---:-- "";'---...... 
• ._---.---_. I 

'" . • Black~' ~ -._----_ ... _---------------
(a) (b) 

Figure 2.3 Munsell colour specification system. (a) Munsell hue 
circle. (b) Cylindrical arrangement of lightness, hue and 
chroma in Munsell colour space. 

At the 18th session of the CIE held in London in 1975 the 

Colorimetry Committee approved the adoption of two new colour 

spaces and associated colour difference formulae, known as the 

1976 L*u*v* colour space (CIELUV space) and the CIE 1976 

L*a*b* colour space (CIELAB space) (CIE, 1986). Although these 

two formulae are only approximately uniform colour spaces, they 

are considered as the best formulae recommended by the CIE. 
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(1) The CIE 1976 L'u'v' Colour Space and Colour­
Difference Formula 

The first approximately uniform colour space is produced by 

plotting in rectangular coordinates, L', u* and v*, quantities 

denoted by the following equations (CIE, 1986): 

L* = 116(VIY
0
)1/3_16 ifVlYo> 0.008856, 

L * = 903.3(VIY J if VIY c <= 0.008856, 

u* =13L*(u - uJ, 

v* =13L*(v - vJ, (2.3-1) 

where V, u and v are the colour stimulus and V 0' Uo and Vc are a 

specified white object colour stimulus. In Equation (2.3-1), the 

quantities u, v, Uo and Vo are calculated from: 

4X 
u = x + 15V + 3Z 

4Xo 
Uo= -----­

Xo+ 15Vo+ 3Zo 

9V 
Y= x + 15V + 3Z , 

9Vo 
Yo = 

Xo + 15Vo + 3Zo 

(2.3-2) 
The tristimulus values Xo' Vo and Zo define the colour of the 

nominally white object-colour stimulus. This stimulus is usually 

given by the spectral radiant power distribution of one of the CIE 

standard illuminants, such as A or C, reflected into the observer's 

eye by the perfect diffuser. Under these conditions, Xo' V 0 and Zo 

are the stimulus values of the chosen standard illuminant, and Vc 

is equal to 100. The tristimulus values X, V and Z will be 

illustrated in detail in section 2.4. 

The CIE 1976 L*u*y* colour-difference formula dEu/ that 

applies to the L 'u*v* colour space is given by the Euclidian 

distance: 
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(2.3-3) 

where lilo, liu* and liv* are the differences between two colours 

in L*, u* and v*, respectively. In fact, liEu/ is equal to the 

distance between the two points representing colours in the 

CIELUV space. In the CIELUV colour space, there is a vertical 

metric lightness L* (also called the CIE 1976 lightness function) 

axis passing through evenly spaced horizontal planes that are 

subdivided into square grids containing coordinates (u*, vOl· 

Figure 2.4 shows the vertical axis L* that passes through the 

horizontal plane (u*, v*), at L* .. 50, for example. 

100( .... hit.) 

90 

80 

70 

30 
20 

10 

O(black) 

Figure 2.4 The CIELUU colour space. 

(2) The CIE 1976 L*a*b* Colour Space and Colour­

Difference Formula 

The second approximately uniform colour space is produced by 

plotting in rectangular coordinates, L *, a* and b*, quantities 

defined by the following equations (CIE, 1986): 

L* os 116(YlYcJI/3_16, ifYlYo > 0.008856, 
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l* = 903.3(YIV0)' 

a*= 500[(x/Xo)1/3 - (YIVO)1/3], 

a* = 500[f(x/Xo) - f(YlVo)], 

b* = 200[f(YIV0 ) - f(ZlZo)] , 

where f(x/XO> = (XlXo) 1 13, 

f(X/Xo) = 7.787(XlXo) + 161116, 

f(Y/Yo) = (YIV 0>113, 

f(YIYo) = 7.787(YIV0 ) + 16/116, 

f(Z/Zo) = (ZlZO> 1 13, 

f(Z/Zo= 7.787(Z/ZO> + 16/116, 

if YlVo <= 0.008856, 

if x/Xo > 0.008856 and 

YIYo> 0.008856, 

if YlVo > 0.008856 and 

Z/Zo > 0.008856, 

(2.3-4) 

if XlXo > 0.008856, 

if XlXo <= 0.008856, 

if YlVo > 0.008856, 

if YlVo <= 0.008856, 

if ZlZo > 0.008856, 

if Z/Zo <= 0.008856. 

The tristimulus values Xo' Yc and Zo are respectively those of the 

tristimulus values X, Y and Z, for the appropriately chosen 

reference white. The tristimulus values X, Y and Z will be 

illustrated in section 2.4. The CIE 1976 l*a*b* colour-difference 

formula aEat,* that applies to the l*a*b* colour space is given by 

the Euclidian distance: 

(2.3-5) 

where al*, aa* and ab* are the differences between two colours 

in l*, a* and b*, respectively. In fact, aEat,* is equal to the 

distance between the two points representing colours in the 

CIElAB space. It should be noted that the CIElUV space or the 

CIElAB space can be easily linked to the Munsell colour space as 

follows: 

The quantity l*, given in Equation (2.3-1) or (2.3-4) is directly 

used as the lightness quantity of the Munsell colour space. The 

hue-angle, H, of the Munsell colour space is obtained by the CIE 
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1976 u, v hue-angle: 

I-iu/ = arctan[(v - volt(u - uo)] 

.. arctan(v*tu*), 

the CIE 1976 a, b hue-angle: 

Hab* .. arctan(b*ta*). 

(2.3-6) 

(2.3-7) 

The chroma, C, of the Munsell colour space is obtained by the CIE 

1976 u, v chroma: 

Cu/ = (U*2 + V*2)112, 

the CIE 1976 a, b chroma: 

(2.3-8) 

Cab* = (a*2 + b*2)112. (2.3-9) 

The lightness difference ~L* and chroma difference ~C* 

corresponding to the Munsell colour space are simply calculated 

as follows: 

~L* .. L1* - L2*, 

~C* = C1* - C2*, 

where L 1* and L2* are the quantities of lightness of two points 

in the Munsell colour space, respectively; and C1* and C2* are the 

quantities of chroma of two points in the Munsell colour space, 

respectively. The hue difference, ~H*, however, is obtained using 

~Eu/ or ~Em*, ~Cu/ or ~Cab', and ~L', as follows: 

the CIE 1976 u, v hue difference ~I-iu/: 

~I-iu/ = [(~Eu/)2 - (~L')2 - (~Cu/ )2]1'2, 

the Cl E 1976 a, b hue difference ~Hab' : 

~Hm' = [(~Em' )2 - (~L *)2 - (~Cab* )2]112. 

Consequently, either the CIELUV space or the CIELAB space can be 

directly employed in the systematic operation for the colour 

comparison task. The important feature of each space is that this 

can be easily transformed to the Munsell colour space as 

previously shown. Thus, a computerised operation with the 
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transformed space from the CIELUV or the CIELAB space can 

replace any task which could be performed by visual evaluations 

with the colour chips in the traditional Munsell Book of Colour. 

However, it is unfortunate that in 1976 the CIE could not 

recommend a single colour space and associated colour difference 

formula. Since the CIELUV and CIELAB colour spaces were 

recommended, much research (Robertson, 1977; Kuehni, 1977; 

Pointer, 1981; McLaren, 1981) has been carried out to compare the 

two spaces, revealing that there are no significant differences 

I betwe;n---the CIELUV and CIELA.B sp~~~s~- On th~ ~ther hand,l 
, - - -- -----~ - - -- - ~ --- --- ------ -- -~ 

Lozano, (1977) showed that the CIELAB was significantly more 

reliable. Ohta et al. (j'f80} -, have argued that the 

CIELAB space gives better results than the CIELUV space in 

segmenting colour pictures. Thus, the CIELAB space will be 

employed in this thesis. 
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2.4 THE CIE RGB SYSTEM AND THE CIE XYZ SYSTEM. 

In the previous section, the uniform colour systems, have been 

considered. However, none of these systems have clarified the 

relationship with the RGB system. In order to correctly 

understand these uniform colour systems, it is necessary to 

consider the relationship between the CIE RGB system and the CIE 

XYZ system. This consideration will obviously provide the 

fundamental background and guide the calibration of a colour 

image digitising system which is the major subject of the next 

section. Let us firstly consider the relationship among the three 

colour coordinate systems, Le. the CIE RGB system, the CIE XYZ 

system and the CIE LAB system, each of which is a colour 

specification system. As al ready discussed in the foregoing 

section, a uniform colour space is required to obtain the optimum 

result of a colour comparison in colour image analysis. Since the 

CIE RGB system or the CIE XYZ system does not form a uniform 

colour space as Figure 2.12 shows, the CIE has developed an 

approximately uniform colour space, that is, the CIELAB colour 

space. The CIELAB colour coordinate system is transformed from 

the CIE XYZ system, where it seems that the CIE RGB system is 

not involved, but, in fact the CIE RGB system is involved in the 

derivation of the CIE XYZ system. The relationships between these 

systems can be described using the functional forms as follOWS: 

the CIELAB system ~ f(X, Y, Z), 

the CIE XYZ system ~ f(R, G, B). 

Consequently, the CIELAB system is a function of the CIE RGB 

system, where the parameters are the red (R), green (G) and blue 

(B) values. Equation (2.3-4) which defines the CIELAB space only 

includes the X, Y and Z tristimulus values. It should be noted that 
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an image capturing device usually provides the R, G and B 

tristimulus values of a colour rather than the X, Y and Z 

tristimulus values. Thus, the transformation from the elE RGB 

system to the elE XYZ system would precede adopting the elE 

system in a practical implementation. 

B B 

6=1 

G 

o 
b 

unit plene 

(b) R=l R 

Figure 2.5 R tri$timulu$ colour $pace. 

To clarify the basic concept of the RGB system, let us consider 

a colour space in which a colour C is represented by the 

coordinates Rc, Gc and Bc measured along three axis represented 

by the three primary stimuli R, G and B. If the intensity of this 

colour is changed, each of the coordinates Rc, Gc and Bc will be 

changed proportionally. The locus of points corresponding to 

changes of intensity is a straight line passing through the origin 

and the point (Rc, Gc, Bc) as shown in Figure 2.5.(a). This colour 

can be expressed by the simple equation: 

C = Rc x R + Gc x G + Bc x B. (2.4-1 ) 

This equation is usually used to match a given colour C to the 

additive matrix in suitable amounts of the three fixed primary 
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l~tim~1i - R, G - and- -B~-----Wy~;e~ki-~nd Stil~s (1982) I 
-~-~-- -- - ---- - ------ - --- --- ~ - -- - - ----- - -- ----~--------
have noted that the representation of colour stimuli in the colour 

space IS informative, but usually not convenient in colorimetric 

practice, thus a two-dimensional representation is commonly 

preferred. The two-dimensional representation is obtained in the 

unit plane which is formed by connecting the three points of the 

three axes, each of which marks the unit length as shown in 

Figure 2.5.(b). The unit plane is commonly called the chromaticity 

diagram. The unit plane which is in the shape of an equilateral 

triangle was used in the early days of colorimetric practice and is 

sometimes referred to as the Maxwell colour triangle. In practice, 

the triangle defines chromaticity coordinates (r, g, b). The 

chromaticity coordinates of a point C which is an intersection of 

the straight line QC with the unit plane are related to the 

tristimulus values R = Rc, G =Gc and B = Bc of C by the following 

equations: 

r c = R/(R + G + B), 

gc = G/(R + G + B), 

bc = B/(R + G + B). (2.4-2) 

The coordinates rc' gc and bc are given by the distances of C from 

the three sides of the triangle, that is, from GB, BR and RG, 

respectively, as shown in Figure 2.6.(a), where R, G and B are the 

chromaticty points of the primary stimuli n, G and B which are 

located at the corners of the triangle. A more convenient version 

is a right-angled triangle in which the rand g coordinate axes are 

perpendicular to one another as shown in Figure 2.6.(b) (Bouma, 

1971 ). 
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Figure 2.6 Chromaticity dia grams. (a) Chromaticity diagram 
(equilateral trIangles). (b) Chromaticity dIagram (right-angled 
triangle). 

So far some basic concepts of the RGB system have been 

discussed, let us briefly consider the colour-matching function 

and the corresponding chromaticity diagram of the RGB system 

which were both introduced by the CIE, since they dominate the 

properties of the RGB system. The CIE derived the colour­

matching function in Figure 2.10.(a) from the data in Table 2.1 

LObtaine_d~~~i~ __ GlJild~~~~~~1T_~_~ ~~~-~=_~~~~_~t-=(i~2~)~ __ T~ I 
understand this function it is necessary to review the theoretical 

background of obtaining the data and a way of using this function. 

Imagine _ a visible spectrum ranging from I..a = 380 nm to I..b = 
780 nm as shown in Figure 2.7, where I.. is wavelength and nm is 

nano (10· 9) metre. The spectrum is subdivided into n intervals, 

each interval has a wavelength band ill... Within each interval, a 

wavelength I..i is chosen at which the spectral connection is PAl. 

The radiant power in the wavelength interval of width dA centred 

at the wavelength I..i which is represented by PAl x dA, the area of 
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the shaded rectangle in Figure 2.7, is a monochromatic stimulus 

CA of wavelength A. 

Rad! 
{P). d}..}ci 

,. 

}..a=380 

V1S1ble Spectrum 

}..b= 
Wavel ength(}..) 

Figure 2.7 A monochromotic stimulus of wouelength A 
(Wyszecki & Stiles, 1982). 

Each monochromatic stimulus CA is expressed by applying 

Equation (2.4-1) as follows: 

(2.4-3) 

where RA' GA and BA are the tristimulus values of CA' The 

tristimulus values of a colour stimulus are generally defined as 

the amounts of the three primary colour stimuli required to give 

by additive mixture a colour match with the colour stimulus 

considered (Wyszecki & Stiles. 1982). All the monochromatic 

stimuli CA which have unit radiant power, i.e. PA is equal to 1. at 

every wavelength I.. within the visible spectrum. as shown in 

Figure 2.8, are equal-energy stimuli denoted by EA' The equation 

for a colour match involving a monochromatic constituent EA 0 f 

the equal-energy stimulus Eis: 

~ = F(}..)R + g(}..)6 + 6(}")B, (2.4-4) 

where m.), gc}..) and bC)') are spectrum tristlmulus values of~. 
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In the colour matching experiment by Guild and Wright, four 

monochromators were used as shown in Figure 2.9, three to 

produce primary stimuli; and one to produce the test stimulus EA.' 

The monochromator is an optical device which disperses the 

radiant flux from an incandescent lamp into its spectrum, from 

which any desired narrow band of wavelengths can be isolated 

with a slit aperture (Wyszecki & stiles, 1982). The primary 

stimuli were set at AR = 700 nm for red (R), at AG = 546.1 nm for 

p), 

Radiant 
Power 

COO 

:10 

40 

:s.o 
z.» 
10 

{P), d}.)ci 

}.a=380 

Visible Spectrum 

Ab=780 
Wavelength(}') 

Figure 2.8 Rn equal-energy stimulus. 

green (6) and AB = 435.8 nm for blue (8). The unit values of these 

primaries were chosen so that the colour of a mixture of unit 

amounts of the primaries might match the colour of an equal­

energy stimulus. As Figure 2.9 shows, whenever each test 

stimulus EA of wavelength A, from A = 380 nm to 780 nm at 

intervals of ~A nm, was produced by the monochromator located in 

the lower part of Figure 2.9, the mixture of the primary stimuli 

which matched the test stimulus was produced by the three 

monochromators, where the amount of each primary stimulus 

involved in the match was obtained. The amounts of primary 
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stimuli matched at wavelength A. are 

respectively, as shown in Table 2.1, where in many cases, one of 

the tristimulus values is negative, in other cases, one or two 

tristimulus values are zero. The set of spectral tristimulus 

values f()..), g()..) and ii()..) of the monochromatic stimuli E~ of unit 

radiant power are called colour-matching functions. Figure 2.10 

illustrates these functions as drawn from the set of data. The 

chromaticity diagram in Figure 2.10.(c) was drawn by applying the 

spectral tristimulus values f()..) , g(),,) and ii()..) to Equation (2.4-2). 

An important fact to note is how to use these functions. To 

illustrate the use of these COlour-matching functions consider 

Monochrometors 

Observer with 
Normal 
Colour Vision 

Monochrometor 

Figure 2.9 Diagram of an arrangement of monochromators for 
colour-matching eHperiment. 

how to determine the tristimulus values of a colour stimulus C 

which is defined by a spectral radiant power distribution {P~dA.}c 

in Figure 2.7. In order to apply Equation (2.4-4) to a colour 

stimulus C of the various sizes of bands of wavelength, multiply 

radiant power, p~ x dA., both sides of Equation (2.4-4), then the 

following equation is obtained: 
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(P). x dA)E). 

= (PA x d)..)r()..)R + (PA X d)..)g()..)6 + (PA X d)..)b()..)B, (24-5) 

where (P). x dA)E). is equal to C)., because E). has Unit radiant power 

in Figure 2.8. Since P). in Figure 2.7 is assumed to be a continuous 

function, Equation (2.4-5) is integrable. . Thus, the tristimulus 

values Rc, Gc and Bc of the stimulus C are respectively, 

I
)'b 

Rc = Aa PAr(}.) d}', 

J
}'b 

Gc = Aa P).. Q(}.) d}', 

J
)'b 

Bc = Aa P).. b(}.) d}', (2.4-6) 

where Aa and Ab are respectively the lower and upper limits of 

the band of wavelength of the stimulus C. If there are two colour 

stimuli C1 and C2 which are respectively defined by spectral 

radiant power distributions {P adA} and {P2).dA}, the two sets of 

tristimulus values of the colours are: 

J
)'b 

RCI = F'1).. r()..) d}' 
Aa ' 

GCI = e F'1).. Q(}.) d}', 

I
)'b 

BCI = Aa F'1).. b(}.) d}', 

RC2 = I: P2)..r(}.) d}', 

GC2 = I: P2).. Q(}.) d}', 

J
)'b -) 

BC2 = Aa P2)..b(}' d}'. 

If Rc1 = Rc2, Gc1 = Gc2 and Bc1 = 

(2.4-7) 

Rc2, the colour stimulus C1 

matches the colour stimulus C2. Consequently, the colour­

matching functions are used for a colour match. As previously 
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illustrated, the colour-matching functions and the corresponding 

chromaticity coordinates include negative values. When Equation 

(2.4-6) is applied to evaluate tristimulus values of a test colour, 

the calculation with positive or zero values is simple, but the 

calculation with negative and positive values is complex. This is 

inconvenient. It is known that there are many cases in which 

negative values are used in spite of this inconvenience. However, 

since these cases are not related to the subject in this thesis, it 

is not necessary to consider them. pue to such reasons, the elE 

has developed the spectral values x().,), y().,) and z().,) which are 

also called the colour-matching fynctions in which negative 

values are not included as shown in Figure 2.10.(b). The colour­

matching functions x().,), y().,) and z().,) were transformed by the 

elE from the colour-matching functions F().,) , g().,) and ii()") using 
the following equations: 

x().,) = 0.49 F().,) + 0.31 g().,) + 0.26 ii()") , 

y().,) = 0.17697F().,)+ 0.6 1 24g().,) + 0.01063 ii()") , 

z().,) = 0.0 F(A)+ 0.01 g(A) + 0.99ii(A). (2.4-6) 

These colour-matching functions are used in calculations to 

provide the elE tristimulus values X, Y and Z. The X, Y and Z are 

obtained from the following equations: 

J
)'b 

X = ).a P). x(A) dA, 

y = J: P). yeA) dA, 

J
?b 

Z = ).a pJ. z(A) d)". 
(2.4-9) 

Although colours can be specified by the elE tristimulus values X, 

Y and Z, this is rarely done (Agoston, 1979). It is more meaningful 
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to employ the chromaticity coordinates x(A.). y(j.) and z(A.) of the 

spectral stimuli than to use the spectral stimulus values X, Y and 

Z. The chromaticity coordinates x(A.). y(A.) and z(A.) of the spectral 

stimuli are derived from the spectral tristimulus values x().), 

y().) and Z().) , by forming ratios (CIE. 1986): 

x().) 
x().) = --~'---­

x().) + y(}.) + z(}.) 

().) = y(}.) 
Y x(}.) + y().) + z(}.) 

().) = z(}.) 
z x(}.) + y().) + Z().) (2.4-10) 

The CIE 1931 (x, y)-chromaticity diagram which is drawn using 

the chromaticity coordinates is shown in Figure 2.10.{d). The 

chromaticity coordinates x{I), y{l) and z{l) are converted to the 

tristimulus values X, Y and Z as follows (the CIE, 1986): 

)( 
X = (T) V and Z = ( ~ ) V. (2.4-11 ) 

Wave-
length 

Trlstlmulus Values 

A (nrn) r(A) g(A) li(A) il(A) yeA) z(A) 

380 0.00003 -0.00001 0.00117 0.0014 0.0000 0.0065 
400 0.00030 -0.00014 0.01214 0.0143 0.0004 0.0679 
420 0.00211 -0.00110 0.11541 0.1344 0.0040 0.6456 
440 -D.00261 000149 0.31228 0.3483 0.0230 1.7471 
460 -D.02608 0.01485 0.29821 0.2908 0.0600 1.6692 
480 -D.04939 0.03914 0.14494 00956 0.1390 0.8130 . . . . . . . . . 
760 0.00006 0.00000 000000 0.0002 0.0001 0.0000 

Teble 2.1 Auerege colour-metching functions r(}.), g{).) end ii(}.), 

end x(}.), y(}.) and z(}.) (Judd & Wyszeclci, 1975). 
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It is important to note that the chromaticity diagram of either 

the CIE RGB system or the CIE XYZ system has no uniform colour 

space. Colours within each ellipse in Figure 2.11 have the same 

chromaticity. Since the CIE 1931 (x, y)-chromaticity coordinate 

system has a multiform colour space, the CIE has developed the 

CIELAB system and the CIELUV system. 
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Figure 2.10 Colour-matching functions. (a) i'(,l..) , g(,l..), b(A) 

colour-matching function. (b) X(A), !j(A) and Z(A) colour­
matching function. (c) The CIE 1931 (r, g) chromaticity 
diagram. (d) The CIE 1931 (H, y) chromaticity diagram 
(Wyszeckl & Stiles, 1982). 
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The concepts of the CIE RGB system and the CIE XYZ system and 

the backgrounds and motivation of the development of the CIE 

1931 XYZ system have been previously considered to allow the 

understanding of the relationship between these two systems. 
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1'0.6 
IJ 
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0.2 
OL-~ ___ ~~ 

o 0.2 0.4 0.6 0.8 1.0 
X--7 

Figure 2.11 R multiform colour space of the Cl E 1931 (H, y)­
chromaticity diagram (Judd & Wyszecki, 1975). 
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2.5 CALIBRATION OF A COLOUR IMAGE SCANNER DIGITISING 

SYSTEM IN THE CIE L*A*B* COLOUR SPACE. 

There are many kinds of measuring devices which measure 

weight, distance, length, volume, electrical resistance, speed, 

etc. Some of them need calibration before use because of changes 

of environmental factors which can affect the result of 

measurement. In the colour image analysis field, colour images 

are usually captured using colour video cameras or colour image 

scanners, etc. If the captured images are analysed utilising colour 

comparison applying the uniform colour space such as the CIE 

L*a*b* colour space, calibration of the colour image capturing 

system is required because a digitising system's spectral 

sensitivities are not always the same as the human colour­

matching functions illustrated in the previous section. In much 

research undertaken in the image analysis field, colour has been 

used to segment images into sets of uniform colour regions. 

However, little attention has been paid to calibration. Ito and 

i Fukushima(1976) - have noted that ~ -the- -filteri 

characteristics of their colour film reader and digital colour TV 

scanner are different from the CIE standards, so they have 

developed two new transformation-coefficient matrices for their 

devices, where each matrix is used for transforming the RG8 

values into the XYZ values. However, the detailed procedure for 

obtaining these matrices has not been illustrated. Strachan et al. 
-- ---~--~- ---- - --- - ------ -- - --- ---------

: (1990) published a paper describing -thei 
------ - --~--------------~----------- -

calibration of a video dig itising system with a detailed 

procedural illustration and assessment of the result obtained. 

However, no paper describing a method of calibrating a colour 

image scanner digitising system has been published. One of the 
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main reasons for the small amount of attention paid to calibration 

in the colour image analysis field is that special equipment which 

is dominately required to obtain the most relevant information 

for colour analysis and the relevant expertise is not available. In 

the colour science domain, the spectral irradiance of the 

illuminant and the spectral reflectance of the colour samples are 

used as the basic data for colour analysis, where this information 

can only be obtained using spectroradiometers and sophisticated 

illumination standards. However, if a digitising system's spectral 

elE (1931) 
No. Name 

x y Y 

1. dark skin 0.4002 0.3504 10. OS 
2. light skin 0.3773 0.3446 35.82 
3. hlue sky 0.2470 0.2514 19.33 
4. .foliage 0.3372 0.4220 13.29 
5. hlue .flower 0.2651 0.2400 24.27 
6. hluish green 0.2608 0.3430 43.06 
7. orange 0.5060 0.4070 30. os 
8. purplish blue 0.211 0 0.1750 12.00 
9. moderate red 0.4533 0.3058 19.77 

10. purple 0.2845 0.2020 6.56 
11. yello'll' green 0.3800 0.4887 44.29 
12. orange yello'll' 0.4729 0.4375 43.06 
13. Blue 0.1866 0.1285 6.11 
14 Green 0.3046 0.4782 23.39 
15. Red 0.5385 0.3129 12.00 
16. Yello'll' 0.4480 0.4703 59.10 
17. lfagenta 0.3635 0.2325 19.77 
18. Cyan 0.1958 0.2519 19.77 
19. white 0.3101 0.3163 90.01 
20. *neutral 8 0.3101 0.3163 59.10 
21. *neutral 6.5 0.3101 0.3163 36.20 
22. *neutral 5 0.3101 0.3163 19.77 
23. - "neutral. 3. 5 0.3101 0.3163 9.00 
24. black 0.3101 0.3163 3.13 

Toble 2.2 Colour nomes ond specificotions (McComy et 01., 
1976). The chromoticity coordinotes ore bosed on the CIE 
lIIumlnont C. ( ... ): The neutrol greys ore nomed os the Munsell 
nototions ore usuolly spoken. 
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sensitivities are different from the human visual system and 

spectral devices which can be used' for measuring the spectral 

sensitivities of the digitising system are not available, how can 

the three-dimensional uniform colour space be obtained? In order 

to give a reasonable answer to this question, a simple method of 

calibrating a colour image scanner digitising system using the 

Macbeth colour chart in the CIE L *a*b* colour space will be 

described. The Macbeth colour chart which is a subset of the 

Munsell colour standards has been developed to facilitate 

quantitative or visual evaluation of colour reproduction processes 

employed in photography, television, and colour printing. The chart 

consists of the 4 x 6 array of patches, each about 50 mm square, 

which includes a well-spaced series of six neutral patches 

ranging from white to black, and a wide gamut of chromatic 

colours, additive and subtractive primaries. Each patch is 

characterised by an assigned name and the CIE 1931 x, y and V as 

shown in Table 2.2 (McCamy et aI., 1976), where the chromaticity 

coordinates of each colour have been obtained under the CIE 

illuminant C (average daylight). The chromaticity coordinates x, y 

and V are transformed into the tristimulus values X, V and Z, using 

Equation (2.4-11). The tristimulus values X, V and Z are also 

transformed into the CIE L*, a* and b* coordinates by simply 

applying Equation (2.3-4), where the coordinates Xo, Vo and Zo for 

the illuminant C reference white are: 

Xo .. 98.07, Vo =100.0 and Z .. 118.23 (Hunt, 1989). 

The X, V and Z values calculated using the x, y and V values in 

Table 2.2 and the L*, a* and b* values calculated using these X, V 

and Z values are in Table 2.3. Thus, the calibration of a colour 

image scanner can be performed using the Macbeth colour chart 

and the tristimulus values X, V and Z derived from the 
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chromaticity coordinates of each patch created by McCamy et al. 

If the tristimulus values R, G and B of each patch of the Macbeth 

colour chart are obtained by scanning the chart using a colour 

image scanner, the problem of this calibration can be abstracted 

to a modelling problem, where these R, G and B values are 

independent variables and the corresponding X, Y and Z values are 

dependent variables. Let us consider the modelling procedure in 

detail. Firstly, the 24 colours in the Macbeth colour chart were 

measured using the colour image scanner (JX600) which was 

connected to a Macintosh IIx system. As Table 2.6 shows, the red, 

green and blue levels of the black patch (No. 24) in the chart were 

:lro. X Y Z L* a* h* 

1. 11.49 10.05 7.15 37.93 12.12 14.49 
2. 39.22 35.92 29.91 66.39 13.28 16.97 
3. 18.99 19.33 38.57 51.07 .17 -22.04 
4. 10.62 13.29 7.58 43.20 -16.84 22.02 
5. 26.81 24.27 50.05 56.36 12.62 -25.42 
6. 32.74 43.06 49.74 71.60 -30.71 1.17 
7. 37.36 30.05 6.42 61.70 27.56 58.23 
8. 14.47 12.00 42.10 41.22 17.59 -43.11 
9. 29.31 19.77 15.57 51.59 43.02 14.76 

10. 9.24 6.56 16.68 30.78 25.86 -23.46 
11. 34.44 44.29 11.90 72.42 -28.37 59.42 
12. 46.54 43.06 9.82 71.60 12.43 66.83 
13. 8.87 6.11 32.57 29.69 27.51 -51.36 
14 14.90 23.39 10.62 55.47 -41.27 33.66 
15. 20.65 12.00 5.70 41.22 50.84 25.86 
16. 56.30 59.10 10.27 81.35 -4.04 79.26 
17. 30.91 19.77 34.35 51.58 48.99 -15.95 
18. 15.37 19.77 43.35 51.58 -21.70 -26.64 
19. 88.25 90.01 106.32 96.00 -.04 .06 
20. 57.94 59.10 69.81 81.35 -.05 .05 
21. 35.49 36.20 42.76 66.67 -.04 .04 
22. 19.38 19.77 23.35 51.58 -.04 .04 
23. 8.82 9.00 10.63 35.98 -.05 .03 
24. 3.07 3.13 3.70 20.56 .01 .00 

Table 2.3 The H, Y, 2, L *, a*, and b* ualues colculated using the 
H, y and Y ualues in Table 2.2. 
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too high to be used In a normalisation procedure. Thus, a nearly 

perfect reflecting diffuser which had a black colour was 

additionally scanned. Although each patch had a uniform colour, 

the captured image of each patch contained a number of slightly 

different colours because of minor surface-irregularity. Thus, 

3600 red, green and blue values for each patch were selected in 

order to calculate an average value. In this measuring procedure, 

the 25 sets of red, green and blue values for each patch were 

obtained, which are given in Table 2.6. The red, green and blue 

values of each of the 24 colours were then normalised according 

to the black and white levels as follows: 

Rn = R(j) - R(b) 
)( 100. 

R(w) - R(b) 

Gn = G(j) - G(b) )( 100, 
G(w) - G(b) 

Bn = B(i) - B(b) x 100, 
B(w) - B(b) (2.5-1) 

where nand i - 1, 2, 3, ......• 24, respectively; R(i), G(i) and B(i) 

represent the red, green and blue values of each of 24 colours; 

R(b), G(b) and B(b) represent the red, green and blue values of 

black; and R(w), G(w) and B(w) represent the red, green and blue 

values of white. The reason for this normalisation is that the red, 

green and blue values of each of the 24 colours are to be corrected 

according to the values of black and white. The normalised Rn, Gn 

Bn values are given in Table 2.6. In the colour science domain, it 

is well known that the Y tristimulus value has a linear 

relationship with the intensity of each of the tristimulus values 

red, green and blue of each colour (Judd & Wyszecki, 1975). 

However, the Y tristimulus values did not have a linear 

relationship with the correspondlng Rn, Gn and Bn values of the 24 

42 



colours. Figures 2.12.(a) through to (c) show a non-linear 

relationship between the Y tristimulus values and each of their 

corresponding Rn, Gn and 8n values. In the particular case of the 
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Figure 2.12 Scatter diagrams. (a) A scatter diagram of the Rn 
ualues against the Y ualues. (b) A scatter diagram of the Gn 
ualues against the Y ualues. (c) A scatter diagram of the Bn 
ualues against the Y ualues. (d) A scatter diagram of the 
10gloRn against the log 10Y ualues. (e) A scatter diagram of the 

10gloGn against the log10Y ualues. (f) A scatter diagram of the 
10g1oBn against the 10glOY ualues. 
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non-linear relationship, the non-linear relationship can be 

reduced to a linear relationship by an appropriate transformation 

of variables. Thus, transform the Y tristimulus values into the 

Common logarithm of Y, 10g,oY; and the Rn, Gn and Bn into log 1 oRn, 

10gloGn and log 1 oBn, respectively. Then, the log, 0 Y values have a 

linear relationship with the log10Rn, log, oGn or Log,oBn values. 

Figures 2.12.(d) through to (f) show a linear relationship between 

the 10gl 0 Y values and the log, oRn, log10Gn or 109, oBn values. 

Finally, obtaining the linear relationship becomes a problem 

of calculating a regression coefficient using the transformed 

variables 10gl 0 Y and each of log, oRn, 10g,oGn and 10g,oBn as 

follows: 

109,oRn = 'YAlog, oY, 

10g,oGn ='Yalogl0Y' and 

10910Bn = 'YBlogloY, (2.5-2) 

where '"fA' '"fa and '"fB are respectively the regression coefficients of 

the regression equations. These regression coefficients, obtained 

by applying the regression analysis routine of the SPSS-X, are 'YA" 

1.26094, '"fa = 1.23629 and '"fB = 1.22524, respectively, as Table 2.4 

shows. It can be concluded that each regression equation 

accurately represents the sample data, which have been involved 

Dependent Independent Regression Standard T Value Prob. R square 
Variable Variable Coefficient Error (Ta) (1)T8) 

10g,oRn 10g,oV 1.26094 0.05 26.30 00 0.97 

log1C6n 10g,oV 1.23629 0.04 30.57 0.0 0.98 

log108n IOg10V 1.22524 0.06 20.66 0.0 0.95 

Table 2.4 The results of regression analyses. 
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in the regression analysis, since each R-square is nearly 1.0 and 

each significant value (probability of T > Ta) IS 0.0. Each of the 

equations in Equation (2.5-2) IS transformed Into the following 

equations which have no logarithms: 

Y = Rn( 1 'YR>, 

Y = Gn(1 'Ya>, and 

Y = Bn( 1 'Ye>. (2.5-3) 

Since the Y values have a linear relationship with their 

corresponding Rn(1 'YR>, Gn(1 'YcJ or Bn(1 'Ye> values, these latter 

values can be involved in the following modelling procedures. Let 

Rn( 1 'YR>. Gn( 1 'Ya> and Bn( 1 'Ye> be Rr, Gr and Br, respectively. 

The conventional model which has been used to transform the 

Rr. Gr and Br values into the X. Y and Z tristimulus values in the 

colour science field is defined as follows (Hunt, 1989): 

[
X] [ C 1 1 C 12 C 1 3] [ Rr] V = C21 C22 C23 Gr 
Z C31 C32 C33 Br , (2.5-4) 

where the 3 x 3 matrix represents the transformation 

coefficients. In this model, since the variables X, Y and Z are 

independent of each other, this model 

three different submodels as follOWS: 

X .. C11Rr + C12Gr + C13Br. 

Y .. C21 Rr + C22Gr + C23Br and 

Z .. C31 Rr + C32Gr + C33Br. 

can be broken down into 

(2.5-5.a) 

(2.5-5.b) 

(2.5-5.c) 

To obtain each coefficient, a multiple regression analysis has 

been performed using the regression analysis routine of the SPSS­

X, where the Rr, Gr and Br values and the tristimulus X. Y and Z 
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Dependent Independent RegressIon Standard TValue Prob. R square 
Variable Variable Coeffi Cl e nt Error (Ta) (T>Ta) 

X Rr 0.5184 038 1.36 o 19 0.89 

Gr 1.1304 0.52 2.16 0.04 

Br -0.4065 030 -1.35 0.19 

V Rr -0.2616 0.38 -0.70 0.49 0.89 

Gr 2.1879 0.52 422 0.0 

Br -06730 0.29 -2.27 0.03 

Z Rr -0.7748 0.47 -1.66 0.11 0.86 

Gr 0.3829 0.64 0.59 0.55 

Br 1.5719 0.37 4.25 0.0 

Table 2.5 The results of mUltiple regression analyses. 

values of each of the 24 colours in the Macbeth colour chart have 

been used as the sample data. The results obtained by the 

regression analysis as shown in Table 2.5 are as follows: 

X = 0.5184Rr + 1.1304Gr - 0.4065Br. (2.5-6.a) 

V .. -0.261SRr + 2.1879Gr - 0.S730Br, (2.5-S.b) 

Z =-0.7748Rr + 0.3829Gr + 1.5719Br. (2.5-S.c) 

The results of the multiple regression analysis can be evaluated 

by the following procedure. Firstly, calculate the L*, a* and b* 

values using the X, V and Z tristimulus values, measured by 

McCamy et aI., by applying Equation (2.3-4), where the Xo, Vo and 

Zo for the illuminant C reference white are 98.07, 100.0 and 

118.23, respectively. Secondly, calculate the L*, a* and b* values 

using the X, V and Z values which are calculated from the models 

in Equation (2.5-S) by applying Equation (2:3-5). Let the L*, a* and 
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b* values obtained in the first step be L * M:' a* M: and b* Mc. 

respectively; and those obtained in the second step be 

respectively L - cal' a- cal and b- cal' Applying the colour difference 

formula in Equation (2.3-5) results in: 

8Eab-

.. [(L*M: - L"c'1)2 + (a-M: - a*cal)2 + (b*M: - b"cal) 2] 1 12. (2.5-7) 

After calculating the colour difference 8Eab* for each of the 24 

colours, the average value of 8Eabt, where i = 1 to 24, which has 

been calculated is 11.93. No criterion for evaluating the average 

value of 8Eabt has been introduced. However, the basic principle 

of the evaluation obviously is that the lower the average value of 

8Eabt. the better. To reduce the average value, several 

experiments with the different types of models were performed, 

where the three variables Rr. Gr and Br were basically used with 

various combinations, making sure all variables undergo similar 

operations, since they are the primary stimuli of human 

vision. Among the models, the following model could provide the 

least average value of 8Eabt : 

Cl3 Cl4 CIS Cl6 Cl? Cl8 

C23 C24 C2S C26 C2? C2S 

C33 C34 C3S C36 C3? C38 

C19] 
C29 

C39 

Rr 
Gr 
Br 
Rr2 

2 Gr
2 

Br 
RrGr 
GrBr 

BrRr 

(2.5-7) 

This model can be broken down into three different submodels as 

follows: 
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log10X = C11Rr + C12Gr + C13Br + C14Rr2 + C15Gr2+ C16Br2 + C17RrGr 

+ C18GrBr + C19BrRr, (2.5-8.a) 
log10Y = C21Rr + C22Gr + C23Br + C24Rr2 + C25Gr2 + C26Br2 + C27RrGr 

+ C28GrBr + C29BrRr, (2.5-8.b) 
10gloZ = C31Rr + C32Gr + C33Br + C34Rr2 + C35Gr2 + C36Br2 + C37RrGr 

+ C38GrBr + C39BrRr. (2.5-8.c) 
The result of the multiple regression analyses are as follows: 

10glo X = O.022514Rr 

+ O.046143Gr 
- O.005592Br 

+ (9.04773E-05)Rr2 

- (3.28888E-04)Gr2 

+ (2.93842E-04)Br2 

- (1.66215E-04)RrGr 
- (1.62771E-04)GrBr 

- (9.93195E-05)BrRr, 

IOg10 y = - O.016447Rr 

+ O.l00839Gr 

- O.020879Br 

+ (3.60334E-04)Rr2 

- O.001285Gr2 

+ (1.98717E-04)Br2 

+ (5.43750E-05)RrGr 
+ (1.87177E-04)GrBr 

+ (1.10345E-04)BrRr, 

- O. 003715Rr 

- O.024801Gr 
+ O.OB8003Br 

- (1.63468E-04)Rr2 

+ (3.08820E-04)Gr2 

- O. OOl085Br2 

+ (2.96476E-04)RrGr 

+ (3.22757E-04)GrBr 

+ (3.64685E-05)BrRr. 
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The R-square for each multiple regression analysIs is greater 

than 0.99. In a practical calculation, equations (2.5-9.a) through 

to (2.5-9.c) are respectively transformed into the following 

equations: 

X 10** ( O. 022514Rr 

+ 0.046143Gr 

- 0.005592Br 

+ (9.04773E-05)Rr2 

- (3.28888E-04)Gr2 

+ (2.93842E-04)Br2 

- (1.66215E-04)RrGr 
- (1.62771E-04)GrBr 

- (9.93195E-05)BrRr), 

Y = 10**( - 0.016447Rr 

+ 0.100839Gr 
- 0.020879Br 

+ (3.60334E-04)Rr2 

- 0.001285Gr2 

+ (1.98717E-04)Br2 

+ (5.43750E-05)RrGr 
+ (1.87177E-04)GrBr 

+ (1.10345E-04)BrRr), 

Z = 10**( - 0.003715Rr 

- 0.024801Gr 
+ 0.088003Br 

- (1.63468E-04)Rr2 

+ (3.08820E-04)Gr2 

- 0.001085Br2 

+ (2.96476E-04)RrGr 
+ (3.22757E-04)GrBr 

+ (3.64685E-05)BrRr). 
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These X, Y and Z values calculated by ~uations (2.5-10.a) through 

to (2.5-10.c) are in Table 2.6. The L *, a* and b* values calculated 

using the X, Y and Z values and Xo, Yo and Zo values for the 

illuminant C reference white by applying Equation (2.3-4) are 

shown in Table 2.6. The ~Eabt values in the right-most column of 

Table 2.6 are calculated by Equation (2.5-7). The average value of 

~Eabt obtained applying '~uations (2.5-10.a) through to (2.5-10.c) 

is 4.54 and the standard deviation of ~Eabl* is 2.07. This average 

value compares very well with a value of 9.11 obtained by 

f_St~cha~- ~t al._0-9~'01' _. . .. -_' .... They._me-~~~~~~ the ~ed:-J 
green and blue values of the 24 colours in the Macbeth colour 

chart with a colour video camera under illuminant A. They 

obtained the conventional style 3 x 3 matrix as shown in Equation 

(2.5-4) by minimising the average value of ~Euvt, where the 

L*u*v* values of the Macbeth chart under illuminant A which 

were measured using a colorimeter by a Hunter Lab Colour QUEST 

Spectrophotometer were used as reference data. 
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Table 2.6 Macbeth colours measured by colour image digitising system. 

1'10. lb. Gi lli Rn Gn in Rr er Br Jp Yp Zg L* a.'" 1>* ll.Eabi p p g 

01 ..... 

I. 33041 23'01 20571 5D.24 36.28 31.14 22.34 18.26 16.55 13.04 11.32 7.53 40.11 13.33 16.88 3.46 2. 57224 4258& 4262' 87.27 64.88 6~.'2 34.61 29.23 30.14 43.51 39.64 31.89 '9 21 14.04 1'1 '9 3.02 
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2.6 CONCLUSION. 

Smce the three-dimensional uniform colour spaces such as the 

CIELAB and the CIELUV spaces were introduced by the CIE in 1976, 

these uniform colour spaces have been commonly used for colour 

image analysis. Thus, in this chapter, the detailed aspects which 

are pertinent to transforming the RGB values into one of these 

three-dimensional colour spaces have been investigated. In the 

transformation procedure, it was necessary to understand several 

fundamental concepts of colour, from its nature to various colour 

systems such as the CIE RGB system and the CIE XYZ system. It 

has become apparent during the investigation that the spectral 

sensitivity of a colour digitising system is not always the same 

as that of another system. Therefore, the tristimulus R, G and B 

values of an image measured by one colour digitising system are 

not always the same as those measured by another system. An 

important fact to note is that a three-dimensional uniform colour 

space cannot be obtained without the calibration of a colour 

image digitising system. To cope with the variation of the 

spectral sensitivity of a colour image scanner digitising system 

and to obtain a three-dimensional uniform colour space with 

minimum errors, a calibration method for the space has been 

developed applying regression analysis. An important feature of 

this method is that neither expensive devices such as 

spectroradiometers nor sophisticated illumination standards are 

required, only the Macbeth colour checker chart. Since the Macbeth 

colour chart can be easily obtained, the method developed in this 

thesis can be widely adopted in the calibration of a colour image 

scanner digitising system. Thus, colour comparison for various 

purposes in colour image analysis can be mora accurately 
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performed in a three-dimensional uniform colour space with 

minimum errors. 
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Chapter 3 

BOUNDARY EXTRACTION METHODS. 
; 

3.1 Introduction. 

3.2 Characteristics of Edges. 

3.3 Edge Detection. 

3.3.1 Differentiation Methods. 

3.3.2 Mask Matching Methods. 

3.4 Boundary Extraction From Colour Image. 

3.4 Conclusion. 
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3.1 INTRODUCTION. 

In object identification, extracting the boundary of an object 

from a scanned image is a very important stage. The boundary is 

defined as a border line lying between a background and an 

object. The boundary data extracted from an image plays an 

important role in describing a shape of a two- or three­

dimensional object. The current concern of boundary extraction 

methodologies seems to be how to extract the boundary of an 

object from a natural image using computers to mimic human 

beings and animals. 

The majority of research pertaining to boundary extraction 

that had been performed by the early 1980's was mainly 

concerned with black-and-white images. The main reason for this 

was due to the fact that image handling devices were available 

only for black-and-white image handling. Most of the 

methodologies for black-and-white images have usually relied 

on one-dimensional information. In fact, the criteria for decision 

making obtained from one-dimensional information are 

theoretically limited to the one-dimensional domain. As far as 

colour image handling is concerned, proper methods to deal with 

three-dimensional colour features such as lightness, hue and 

chroma are inevitably required. The algorithm developed in this 

thesis has been designed to extract the boundary of an object 

applying three-dimensional colour features, that is, the CIE L*, 

a* and b* colour features. 

For boundary extraction, an investigation has been carried out 

not only to understand the theoretical concepts and backgrounds 
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of closely related methodologies, but also to devise feasible 

methods. A number of methods for boundary extraction have been 

developed using region segmentation techniques. In general, most 

of the methods were designed mainly for region extraction. Of 

course, these methods can be applied to boundary extraction 

which is the main subject of this chapter. However, the pertinent 

point is that after the region of an object is extracted from an 

image, the creation of boundary data, which will be used in shape 

analysis, should be undertaken. This seems a duplication of 

effort to extract a region and create a set of boundary data using 

the extracted region. Thus, in this chapter, the illustration of 

boundary extraction will focus on differentiation methods, mask 

matching methods, and a method combining the two above 

methods. 
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3.2 CHARACTERISTICS OF EDGES. 

Before boundary extraction is considered, it is worth taking a 

detailed look at features of edges and their detection 

methodologies. An edge, defined as the boundary between two 

regions with relatively distinct grey levels or colour properties 

has its profile, which has one of the features in Figure 3.1. The 

features are represented by an abrupt change in grey level of a 

black-and-white image or values of colour feature the CIE L*, a* 

and b* of a colour image when a cross section across the 

boundary between regions is viewed. 

The idealised edge models (Levine, 1985) in Figure 3.1 are: 

(1) An ideal step, as shown in Figure 3.1.(a), is usually considered 

as an edge feature with an assumption that an image consists of 

an object with a constant colour feature; and a background with a 

uniform colour feature or another object, adjacent to the first, 

which has also another different uniform colour feature. In this 

case the point e1 in Figure 3.1.(a) is an edge point. 

(2) An ideal roof edge, as shown in Figure 3.1.(b), which is made 

up of two ramp singularities is explained as an edge feature when 

an image consists of an object with various colour features and 

another object with various colour features different from the 

features of the former. The point e2 in Figure 3.1.(b) is an edge 

point. 

(3) An edge combining the unit step with the unit ramp, as shown 

in Figure 3.1.(c), is explained as an edge feature when an image 

consists of an object with a uniform colour feature and another 
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object, adjacent to the first, which has various colour features. 

The point e3 in Figure 3.1.(C) is an edge point. 

(4) A spike edge, as shown in Figure 3.1.(d), which has two unit 

steps is for an image containing a line which is highly contrasted 

to the background in colour features. An edge in this case is 

either point e4 or point e5 in Figure 3.1.(d). 

colour colour 
feature feature 

I 
• • • • 
• 
• 

e 1 distance 82 distance 
(a) an i delll step (b) an ideal roof edge 

colour colour 
reature reature 

~ ~ 
• • • • • • • • • • • • • • • • • • 

e3 distance e4 es distance 
(c) a combined edge (d) a spike edge 

Figure 3.1 The idealised edge models. 
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3.3 EDGE DETECTION. 

In the previous section, the characteristics of edges have been 

illustrated with their local features. In this section, the 

principal concepts of edge detection methods will be discussed. 

Chow and Kaneko (1972) have divided edge , 
_______ ~_ I 

detection algorithms into two categories based on one of the two 

basic properties of colour features or grey levels of pixels: 

(1) discontinuity, and 

(2) similarity. 

In the first category, an edge is detected when colour features or 

grey levels of pixels change abruptly at a border point lying 

between two neighbouring regions. The methods in this category 

are usually called 'differentiation methods'. 

In the second category, an edge is determined based on whether a 

local feature of colours or grey levels of pixels is similar to a 

predefined pattern or not. The methods in this category are 

usually called 'mask' or 'template' matching methods. 

3.3.1 Differentiation Methods. 

The basic paradigm of the edge detection method that is 

illustrated in this section is the computation of a local 

derivative operator. The main reason why the derivative operator 

has been used in edge detection will become clear after the 

geometrical features of a derivative are considered. 

Suppose that one of the rows is extracted from an image array, 

the row is the x-axis and the grey level of each pixel is the 
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y-axis, then a function y = f(x) can be imagined, as in Figure 3 2, 

connecting the top mid point of every value of colour feature or 

grey level along the x-axis. 

J 
Colour 

/ feoture 
or V Grey 
level L 

/ 
V 

,.-
• I •• I ••• 

T I I 
0 Locotlons of horizontol pil<els 

Figure 3.2 Function formulotion. 

Where the function y = f(x) obtained above is given in Figure 3.3, 

~x denotes a change from an arbitrary pOint b of x and ~y 

denotes a change of y; if ~x approaches zero (~x ~ 0), the 

derivative of the function at the point b is defined as follows: 

a f(x) _~-"Y~ = llm f(b +~x) - f(b) ---= lim (3.3.1-1) 
ex AX .... O AX AX-+O AX 

The derivative af(x)/ax in Equation (3.3.1-1) is usually 

considered as the gradient of the line segment joining the two 

points P and 0 because in geometry a gradient of the line segment 

PO is represented by change in y divided by the change in x: 

gradient of a line segment PO = (change in y)/(change in x) 

= (~y I~x). 
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Figure 3.3 Geometrical feature of a deriuatiue. 

- C --Fu, -G-on~al~;and- Lee -(1987) -- ill~;t;~ed - - this - ;o~~e~~ I 
\~ith __ th~ ai~ __ ()f __ ~~u~e_3.~. _____ ~he __ ~m~g_e __ of a_lig~tl 

object with a constant grey level on a dark background has a 

grey-level profile along a horizontal scan line, The dotted parts 

of both sides of the object denote slightly blurred areas, where 

the level of the blurring is reducing as the location moves further 

from the background along the horizontal line. Below the grey­

level profile the first and second derivatives of the profile are 

depicted, The locations a, b, c, d, e and f of the image correspond 

to the locations a', b', c', d', e' and f' of the profile respectively 

along the horizontal line, Take a close look at the profile along 

the horizontal line, and it may be found that since segment lines, 

a'b', c'd' and eT, have constant grey levels respectively, their 

first derivatives are all O's (zeros), However, the segment line 

b'c' has a positive slope with respect to the horizontal line, 

therefore the first derivative of any location in this segment line 

has a positive value +h, on the other hand, the segment line d'e' 
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has a negative slope with respect to the horizontal line, thus the 

first derivative of any location. in this segment line has a 

negative value -h. It is clear that at the location b' the first 

derivative value has been changed abruptly from 0 (zero) to +h 

and at the location e' the first derivative value has also changed 

abruptly from -h to O. Since both the locations, b' and e', are 

physically boundary locations, it can be concluded that the first 

derivative values can be used efficiently to detect an edge lying 

between neighbouring regions. 

a 

• , , 

b c d e 

, , 
I c' d' : 

f 

Image 

• , , 
a' 

, i--"""::; , 

ti/: l"":e' f' Profile of a 
----:: I I I horizontal1ine 
I'. I 
I' I I 

I • I I I I 

+h ~~--------~------,---,-------,-, , , 
o 1-1 ..... _ ..... _...;... __ i--;.. __ .;.:_First 

: :: :: : derivative 
-h - -:- - - - - - - - ~ - - - ~ - - - - - - t--! ------ - ~ _. 

• I. I I I 
I I. •• • 
I I I I I I 
I I. I. I --1-------- .... -r .. -----,--- -------, .. -

• 
o~~---~~-~~~--~:_Second 
:: :: derivative _ ... ________ L ____________ J _______ J ... 

Figure 3.4 Elements of edge detection by derluatlue operators. 

The second derivatives are usually obtained through a calculation 

using the first derivative values. The second derivatives at the 

locations, b' and e'. are +h's and oh's at the locations, c· and d'. On 
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the other hand, the second derivatives of the other locations 

except these points are all O·s. An important fact to be noted is 

that the positive values of the second derivative are located at 

both the boundary locations, b' and e', while, the negative values 

of the second derivative are located inside the object, the 

locations, c' and d'. Based on the previous findings, it can be 

concluded that the sign of the second derivative is able to be 

used to determine whether an edge pixel lies on the dark or light 

side of an edge. 

The previous discussion has been limited to a one-dimensional 

horizontal profile, however, since an actual image has a two­

dimensional profile, the previous concepts should be applied to 

the horizontal profile and the vertical profile simultaneously. 

Assume that a function z = f(x, y) representing the two­

dimensional profile is given, the gradient of the horizontal 

profile, Le. the partial derivative of f(x, y) with respect to x, at a 

point (a, b) is 

gradient of x = af 
ax 

= Um f( 8 +AX, y) - Ha, b) 
Ax-+D AX (3.3.1-2) 

the gradient of the vertical profile, i.e. the partial derivative 

with respect to y, at the point (a, b) is 

gradient of y = af 
ay 

= Iim f( 8, b+Ay) - Ha, b) 

Ay-+O AY (3.3.1-3) 

The partial derivatives of f(x, y) with respect to x and y at the 

point (a, b) can be geometrically interpreted as the gradients of 
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the curves of the intersection of the surface z = f(x, y) with the 

planes, y=b and x=a, respectively. Figure 3.5 shows geometrically 

gr6dient=~ 
ax z 

curve of 
1 ntersecti on 

rfoce 
z=f(x,y) 

Figure 3.5 Geometrical illustration of the portlol derluatlue. 

the partial derivative, af/ ax, with respect to x, where the 

shaded plane is a plane, Y = b, and is parallel to the plane xoz; and 

the slope of the tilted straight line touching, at the point (a, b, 

fea, b)), the curve of the intersection of the surface z = fex, y) 

with the shaded plane is the gradient, az/ax. 

The previous discussion can be arranged as follows, if a 

function f(x, y) is given, the gradient of f(x, y) at coordinates (x, 

y) is defined as the vector, 

[
Grx] = [JL:f~ ] Gr[f(x, y») = 

Gry ay 

(3.3.1-4) 
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where Grx is a partial derivative of f(x. y) with respect to x. 

Gry is a partial derivative of f(x. y) with respect to y. 

x=1. 2. 3 ........ n-1. (n: the number of pixels in a row) 

y=1. 2. 3 •......• 1-1. (I: the number of pixels in a column). 

In practice. there are two important properties (Goldmark & 

Hollywood. 1951) of the gradient:' 

(1) the vector Gr[f(x. y)) represents the direction of the maximum 

rate of increase of the function f(x. y). and 

(2) the magnitude of Gr[f(x. y)] denoted by Mag_Gr[f(x. y)] is given 

by 

Mag_Gr[f(x. y)] = magnitude[Gr] 

= (Gr/ + Gr/)1/2 

= J [~~ J + [ :~ J 
:: 1 Grx 1 + IGry I· (3.3.1-5) 

This equals the maximum rate of increase of f(x. y) per unit 

distance in the direction Gr. In image differentiation methods. 

the magnitude of the gradient in the equation (3.3.1-5) has been 

considered as the basis for a number of algorithms. As a matter 

of fact. modelling the function f(x. y) using digital image data 

usually not only needs laborious effort. but also is considered a 

meaningless procedure in the image domain. Therefore it is 

necessary to approximate the partial derivatives in the equation 

(3.3.1-5). Thus. other methods that can be used to calculate the 

magnitude of the gradient approximately have been developed. 

based on the theoretical background as discussed above. by 
iGOld~~~k- ~~d -H~ilyw~-od (1-951-)--;~d -Ro-b~rts (1965). -- - - - - -
------ ~----~------------ ~-- ---- --- ---- --------- -
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One of the methods in which the partial derivatives in 

Equation (3.3.1-5) are approximated by differences is given by 

the relation (Goldmark & Hollywood, 1951), 

Mag_Gr[f(x, V)] 

:; { [f(x, y) - f(x+1, y)]2 + [f(x, y) - f(x, y+1)]2 )1/2. (3.3.1-6) 

Using absolute values produces similar results, 

Mag_Gr[f(x, V)] 

:; If(x, y) - f(x+ 1, y)1 + If(x, y) - f(x, y+ 1 )1. (3.3.1-7) 

This approximation reflects not only the theoretical basis of 

calculating the partial derivatives but also the efficiency and 

adaptability of a computer implementation. The basic principle 

behind the relationship between pixels in equations (3.3.1-6) and 

(3.3.1-7) is clearly shown in Figure 3.6. 

f(x, y) - f(x, y+ 1) ... .. 
f(x+ I, y) 

(Il) 

-1 

-1 

(b) 

Figure 3.6 Goldmark operator. (a) R procedure for computing 

a two-dimensional, discrete gradient. (b) The masks for the 

operator. 

The values of f(x, y) - f(x+ 1, y) and f(x, y) - f(x. y+ 1) in Figure 3.6 

approximate those of af/ ax and af/ ay in the equation (3.3.1-
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5), respectively. This approach is very efficient in computing 

terms, but, on the other hand, there has been some criticism 

about its sensitivity to noise. 

Another method in which the partial derivatives, Grx and Gry' 

in the equation (3.3.1-5) are approximated by differences is given 

by the following relation, the so-called Roberts cross operator 

(Roberts, 1965): 

Mag_Gr[f(x, y)] = 
( [f(x, y) - f(x+1, y+1)]2 + [f(x+1, y) - f(x, y+1)]2 }1/2 (3.3.1-8) 

or using absolute value, 

Mag_Gr[f(x, y» ;; 
If(x, y) - f(x+1, y+1)1 + If(x+1, y) - f(x, y+1}1. (3.3.1-9) 

The relationship between pixels and masks for this operator are 

shown in Figure 3.7. 

(x, y) 
"\ 1/ 

(x, y+ 1) 

r(x+ 1, y) 
t/ ~ 

f(x+ 1, y+ 1) 

(a) 

o o -1 

o -1 o 

(b) 

Figure 3.7 Roberts cross operator. (a) R procedure for 

computing a two-dimensional discrete gradient. (b) The 

masks for the Roberts cross operator. 
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It is commonly known that the Roberts cross operator can be 

efficiently used - to detect both horizontal and vertical edges, 

while it is also sensitive to noise and object surface 

irregularities. However, thiS approach and the previous one have 

been used in computerised tomography to detect edges in three­

dimensional object space and for colour edge detection in the 

three-dimensional colour space (Liu, 1977; Sankar, 1978). 

I~_~ pr~witt_~197~~_-_and __ So~~_JRob!~S~~,_ 1977)-_jevi-se~ ~i 
other slightly more complicated methods using a 3 x 3 operator 

to approximate the partial derivatives at an arbitrary point (x, y). 

Their intention was to make the derivative operations less 

sensitive to noise. First, consider the Prewitt operator in Figure 

3.8. The mask in Figure 3.8.(b) is used to approximate the partial 

derivative Grx' and another mask in Figure 3.8.(c) is used to 

approximate the partial derivative Gry. The gradient in the x­

direction at a point (x, y) is obtained by employing the former 

mask as follows: 

Gr x = f(x+ 1, y-1) + f(x+ 1, y) + f(x+ 1, y+ 1) - f(x-1, y-1) - f(x-1, y) 

-f(x-1, y+1). (3.3.1-10) 

The gradient in the y-direction at a point (x, y) is obtained by 

employing the latter mask as follows: 

Gry - f(x-1, y-1) + f(x, y-1) + f(x+1, y-1) - f(x-1, y+1) - f(x, y+1) 

-f(x+ 1, y+ 1). (3.3.1-11) 

(5) f(x-I,y-I) f(x-I, y) f(x-I, y+l) 

f(x, y-I) f{x, y) f(x, y+ I) 

f(x+ I, y- I) f(x+ I, y) f(x+l, y+1) 

Figure 3.8 Prewitt operator. (a) A 3 H 3 locol Image. (b) Mask 
for Gr H ot (H, y). (c) Mask for Gr y ot (H, y) (continued). 
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(b) -
- 1 -1 -1 

(c) 
1 0 -1 

0 0 0 1 0 -1 

1 1 1 1 0 - 1 

Figure 3.8 Prewitt operator. (a) A 3 x 3 local image. (b) Mask 
for Gr H at hf, y). (c) Mask for Gr y at (H, y) (continued). 

The magnitudes of these gradients are obtained by convolving the 

two masks. 

Second, the So bel operator gives greater weight to points 

lying closer to (x, y) as shown in Figure 3.9. Apart from this 

weighting, it is similar to the Prewitt operator. It is known that 

the result obtained using the Sobel operator is superior to that of 

the Prewitt operator in diagonal edge detection. 

-1 -2 -1 1 0 -1 

0 0 0 2 0 -2 

1 2 1 1 0 -1 

(0) (b) 

Figure 3.9 Sobel operator. (a) Mask for Gr H at (H, y). (b) Mask 

for Gr y at (H, y). 

3.3.2 Mask Matching Methods. 

In the previous section, boundary detection methods using the 

approximated magnitudes of thJ g-radi~nt;'were discussed. These 
I __ ~-------.-_ I 

approaches, ideally, yield only pixels lying on the boundary 
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between an object and the background. however. if there is severe 

noise in the image. the result obtained applying these ap'proaches 

will be different from the real boundary. Thus. in order to cover 

such situations mask matching methods have been used in the 

image analysis domain. In this section. edge detection methods in 

which local patterns or masks (templates) are involved will be 

discussed. 

There are a few masks that have been used to detect an abrupt 

change in colour features or grey levels and the edge orientation 

at that point. Let us consider four different kinds of operators. 

which have commonly been used in the image analysis domain. 

each of which has eight parallel masks as shown in Figure 3.11. 

where each mask is just the rotated version of a standard 

operator. The standard operator is a mask which is considered as 

a basis and is composed of nine components. Le. a 3 x 3 array. At 

the centre of the mask. a current point (x. y) is located. The first 

and third columns in Figure 3.11 are the Prewitt operator and the 

second column is the Kirsch operator. It is known that the Kirsch 

operator is quite sensitive to small changes in gradient. The 

right-most column in Figure 3.11 is the Sobel operator in which 

greater weight i.s assigned to the points lying closer to the 

location of a current point (x. y). In the application of these 

operators. a contrast function and the edge orientation play an 

important role in boundary detection. The contrast function. 
- --- --~ 

denoted by Contr(x. y). which is' corresponds to, the first 

differences in eight directions at each location (x. y) is defined by 

Contr(x. y) 

= max{ IGro(x. Y)I. IGr1(x. Y)I. IGr2 (x. Y)I •......• IGr7(x. y)I} (3.3.2-1) 
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9 
where Gr

t
· = L. (w .. f), (3 3 2-2) 

J=l J J . 

i = 0, 1, 2, ...... , 7 (the location of each of eight neighbours as 

shown in Figure 3.1 O.(c); 

j = 1, 2, 3, ...... , 9 (the location of each point in Figure 3.10.(a) 

or (b)); 

w
J 

= each component of a mask as shown in Figure 3.10.(b); 

f j = each grey level of a local image of a 3x3 array in Figure 

3.10.(a). 

The edge orientation Sex, y) is defined as 

S(x, y) = compass direction of largest Grj, (3.3.2-3) 

where 8 compass directions are shown in Figure 3.10.(c). 

fl f2 f3 WI W2 W3 
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Figure 3.10 Mojor foctors for the edge detecting operotion. 

(0) Grey levels of 0 locol imoge. (b) Components of 0 mosk:. (c) 

The compon directions. 
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DirectlOn Directi on Prewltt Klrsch Prewltt Sobel 
of edge of gradl ent operator operator operator operator 

0 N 1 1 1 555 1 1 1 1 2 1 
1-2 1 -3 0-3 000 000 

-1 -1 -1 -3-3 -3 -1 -1-1 -1- 2 -1 

1 NW 1 1 1 5 5-3 1 1 0 2 1 0 
1-2 -1 5 0-3 1 0-1 1 0-1 
1 -1 -1 -3-3-3 o -1 -1 0-1-2 

2 W 1 1 -1 5-3-3 1 0-1 1 0-1 
1- 2-1 5 0-3 1 0-1 2 0-2 
1 1 -1 5-3-3 1 0-1 1 0-1 

3 SW 1 -1 -1 -3-3-3 0-1-1 0-1 -2 
1- 2-1 5 0-3 1 0-1 1 0-1 
1 1 1 5 5-3 1 1 0 2 1 0 

4 S -1 -1 -I -3 -3-3 -1 -I -1 -1-2 -1 
1-2 1 -3 0-3 000 000 
1 1 1 555 1 1 1 1 2 1 

5 SE -1 -1 1 -3-3-3 -1 -1 0 -2 -I 0 
-1-2 1 -3 0 5 -1 0 1 -1 0 1 

1 1 1 -3 5 5 0 1 1 0 1 2 

6 E -1 1 1 -3-3 5 -1 0 1 -1 0 1 
-1-2 1 - 3 0 5 -1 0 1 -2 0 2 
-1 1 1 -3-3 5 -1 0 1 -1 0 1 

7 NE 1 1 1 -3 5 5 0 1 1 0 1 2 
-1 -2 1 -3 0 5 -1 0 1 -1 0 1 
-1 -1 1 -3-3-3 -1 -1 0 -2 -1 0 

Table 3.1 Four sets of mask for computing the gradient and 
orientation (Robinson, 1977). 

In the edge detection operation, an edge detector moves from the 

current location (x, y) to one of eight neighbouring points 
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according to the edge orientation. It is important to note that, In a 

boundary extraction· process, in order to detect a maximum 

gradient and its direction, each of eight parallel maskS' in Table 

3.1 should be involved in this calculation. Note that in Table 3.1 

the direction of the edge is perpendicular to that of the gradient. 

This information and the previous location are used in deciding 

the direction of movement of an edge detector. In order to clarify 

I.~n~ ~.. to _ -ex_a~~~~ .. _ ~ the - ~efficie~cy - of - - - th~:~ -~etho~s - ! 
consider the procedure for finding the maximum gradient and the 

orientation of jthe gradient at an arbitrary point (x, y) with the 

following example by applying the So bel operator. Suppose a local 
. - -_. - .-- .-.. - .. -~ --- - -- ... - ... ··-1 

i image represented by a 3 x 3 array in Figure 3.11. Apply I 
, 

: the Sobel operator in Table 3.1 to the image to detect a 

I maximum gradient and the orientation of the gradient at the 1- _~ _________________________ ~ ______________ ~___ _ ___ __ 

0 0 0.9 

0 0.2 0 

0 O.S 0 

Figure 3.11 A somple locollmoge. 

location (the centre of the array) whose intensity level is 0.2, 

where the previous location is assumed to be the location whose 

intensity is 0.5. The result of the application of Equation (3.3.2-2) 

is as follows: 

Gro = (1xO + 2xO + 1xO.9 + OxO + OxO.2+ OxO -1xO -2xO.S -1xO) = -0.1 

Grl = (2xO + 1xO + OxO.9 + 1xO + OxO.2 -1xO + OxO -1xO.S -2xO) = -O.S 

Gr2 = (1xO + OxO -1xO.9 + 2xO + OxO.2 -2xO + 1xO + OxO.S -1xO) = -0.9 
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Gr3 = (OxO -lxO -2xO.9 + 1xO + OxO 2 -lxO + 2xO + 1xO.5 + OxO) = -1.3 

Gr4 = (-lxO -2xO-1 xO.9 + OxO + OxO.2 + OxO + 1 xO +2xO.5 + 1 xO) = 0.9 

Grs = (-2xO -lxO + OxO.9 -lxO + OxO.2 + 1xO + OxO + 1xO.5 + 2xO) = 0.5 

Gre = (-1 xO + OxO + 1 xO.9 -2xO + OxO.2 + 2xO -1 xO + OxO.5 + 1 xO) = 0.9 

Gr7 = (OxO + 1 xO + 2xO.9 -1 xO + OxO.2 + 1 xO -2xO -1 xO.5 + OxO) = 1.3 

Since values, IGr31 = IGr71 = 1.3, are maximum, the directions of 

i:J1f. edge are 3 and 7; and the directions o~radients are SW and NE. 

Considering the result and the previous location, an edge detector 

would move from the location of grey level 0.2 to the upper right 

corner in Figure 3.11. In fact, the edge detecting operation should 

be carried out at each pixel point with a similar procedure. There 

is no doubt that these approaches are inefficient because they 

require a considerable amount of time. When one of these 

approaches is employed to detect the boundary of an object in a 

colour image, this operation should be carried out on a gradient 

image rather than on separated images of the lightness, hue and 

chroma. This is another aspect that makes these approaches 

worse in terms of system efficiency. 
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3.4 BOUNDARY EXTRACTION FROM COLOUR IMAGES. 

In this section, the design of the boundary extraction system 

which has been developed In this thesis is discussed in detail. It 

was considered in the design stage that the system should be 

flexible enough to be used to extract a boundary not only from 

colour images but also from black-and-white images. This 

flexibility may be undoubtedly regarded as an attractive and 

strong feature of this system. Another important feature of this 

system is the extraction of a boundary without creating a binary 

edge map which consists of O's and 1 'so However, most approaches 

published commonly rely on the binary edge map, which the 

contour-following or border-following procedure utilises. The 

procedure mainly consists of three steps. The first step is to 

transform an input image into the gradient image. The second step 

is to create a binary edge map using a thresholding operation. The 

third step is to perform a contour- or border-following procedure. 

On the other hand, even though the mask matching method is 

adopted for the edge detection, the binary edge map is also 

created and then a contour- or border-following procedure is 

followed. 

Note that in a system, for instance, a robot vision system, 

where the execution time is an important factor, the previous 

approaches employing the edge-detecting procedure and the 

contour- or border-following procedure separately cause error in 

an urgent situation. The procedure developed in this thesis was 

designed to extract a boundary accurately. Apart from the 

previous features such as flexibility and efficiency, the accuracy 

of the boundary extraction procedure has been emphasised since 
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not only the shape description stage, but also the colour pattern 

description stage -depend entirely upon the result of the procedure. 

This principle is not exclusive to this problem. Consider one of 

many practical approaches in this domain, the so-called Papert's 

turtle (Papert, 1973). It has been assumed that a turtle crosses a 

binary edge map until it reaches a boundary point, then passes 

through the boundary, and immediately turns to the left and 

crosses the neighbouring boundary point and then turns to the 

right as in Figure 3.12.(a). Repeating this process, the turtle will 

follow the boundary in a clockwise direction until it returns to 

the starting point of the boundary. The set of points passed by the 

turtle eventually forms a boundary data set. This idea, from the 

behaviour of a turtle, is brilliant enough. However, as Figure 

3.12.{b) shows, the turtle failed to pass the sharp curve on the 

upper right corner. In practice, this approach cannot be used to 

extract the boundaries of objects such as maple leaves that have 

sharp curves. 

"- - - .... 
~~ r-;:~ I -v , • " 

~ 

J -\. -.!."'- ..... j ~ ~ '\ .... ..... -- - ( ... ~ 

"'" , ... I .... 
r-- ,...-~ r-- r--'" 

J ~ 
, ~ J A , It , i' I' 

'-- '--

(I'l) (b) 

Figure 3.12 Boundary eHtraction procedure. 

From now on the boundary extraction procedure developed by 

this thesis will be illustrated step by step. The procedure 
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consists of two steps: the first step is to create a gradient array 

using the CiELAB c-olour difference formula and the second step is 

to extract a boundary directly from the gradient array without 

creating any binary edge map. 

In the first step, before creating the gradient array it was 

necessary to choose a colour difference calculation formula, 

which could be used to calculate a colour difference betwe.e:i two 

colour points, among the many formulae published so far inl\colour 

science domain. According to McLaren's survey (McLaren, 1983), 

over twenty colour difference formulae were developed between 

1936 and 1976. Fortunately, the CIE (International Commission on 

Illumination) has recommended a colour difference calculatioh 

formula called the CIELAB, because uniformity of practice allows 

for the exchange of information on a common basis. 

As already illustrated in section 2.3, the (L., a*, b*) coordinates 

of the CIELAB space can be obtained by merely applying simpler 

functions to X/Xo, VIVo and Z/Zo. Suppose the (L*, a*, b*) 

coordinates of two points, P1{i, j) and P2{i, j+1), in the CIELAB 

space obtained are (Lij, aiJ' b,J) and (Li(j+l)' ai(j+l)' b
'
(j+1)). 

respectively, and 

I LW Li(j+l) I > 0, 

lalj- al(j+l) I >0, 

and I bij - b
'
(J+1) I> O. 

Thus, ALlj .i(J+l) = L,j - LI(J+l)' 

AaIJ .i(j+l) = aij - ai(j+l)' 

and AbIJ.I(j+l) = bij - bl(j+l)' 

where A signifies 'difference'. The colour difference between the 

two points can be represented by: 
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(3.4-1) 

In fact, the ~E;J.i(J+1) is the Euclidian distance between two points 

In the CIELAB space. The gradient of an arbitrary point (i, j) is 

calculated employing Equation (3.3.1-5) as follows: 

G[i, j] = ~E;j' (i+1)J + ~E;j. '0+1) 

= [(~L,j, (i+ 1)/ + (M'J. (i+ 1)/ + (~b,j. (i+ 1 )J}2 ] 1/2 

+ [(~L'J. '(j+1)}2 + (~a,j. iO+1)}2 + (~b,j. '(J+1)}2 ]1/2 

= [(L,j - L('+1)? + (a'j - a(i+1)j}2 + (b'j - b(,+l)? ]1/2 

+ [(L,j - Li(j+1)}2 + (aiJ - a,(j+1)}2 + (b'j - b,(j+1)}2 ]1/2. (3.4-2) 

Hence, the gradient array G for each point (i, j), i=1, 2, 3, ... , m-1, 

j=1,2, 3, ... , n-1, is created, where m is the number of rows and n 

is the number of columns, in the array G. 
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(a) (b) 
Figure 3.13 The scanning methods for boundary detection. 

The second step begins with an operation for detecting a 

larger value of the gradient than a predetermined threshold from 

the upper left corner of the gradient array G. The starting point of 

the operation is not restricted to the corner, but could be one of 

the points on the outskirts of the array G in Figure 3.13.(a}. The 

direction of the operation is straightforward to the centre of the 

array G as Figure 3.13.(a} shows. This strategy, under the 

78 



assumption that an object forming a boundary lies in the middle 

of an image plane, has two effects: 

(1) it quickly reaches one of boundary pOints, 

(2) the probability of avoiding spot-like noise Will be increased. 

However, most of the existing boundary detection operations have 

been designed to scan line by line, as Figure 3.13.(b) shows. If the 

size of an image plane is quite large and that of an object is 

relatively small, this scanning operation will be inefficient. 

Determination of a Threshold 

Although the original background has a uniform colour, tiny 

bubble-like spots have been scattered because of the surface 

irregularity. However, there is little difference between the 

colour of the spots and that of the other part of the background. 

This fact becomes clear when we examine the histogram in Figure 

3.14. The vertical axis represents the locations of array 

components of the array G along the diagonal line and the 

horizontal axis represents the gradient level of each location. 

Both the extreme upper and lower parts of the horizontal axis 

correspond to the background. Very little fluctuation of the 

gradient levels in the two extremes reveals that there are colour 

differences among the pixels in the background, but these are 

extremely small. After analysing the histogram or the frequency 

of the gradient levels in the background a threshold value was 

determined. The threshold value is critical because it is used to 

decide whether an arbitrary point belongs to the background or is 

one of the boundary points. The process of the decision making 

can be represented by: 

if G[i, ij S; T, the pOint (i, j) e the background, 
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if G[i, jJ > T, the point (i, j) e the boundary, 

where T is a threshold value determined above. 
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Figure 3.14 The histogram along the diagonal line of the 
gradient array G. 

tk 
As soon as one of "boundary points is detected, the immediate 

process is as follows: 

Initially, assign the gradient values of the eight neighbours of the 
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point (i, j) into a ring-shaped 1 x 8 array Et, respectively, as 

Figure 3.15.{b) shows: 

Et[1] = G[i-1, j-1J, 

Et[2] = G[i-1, j], 

Et[3] = G[i-1, j+ 1], 

Et[4] .. G[i, j+1], 

Et[5] = G[i+1, j+1], 

Et[6] .. G[i+ 1, j], 

Et[7] = G[i+1, j-1], 

- Et[8] .. G[i, j-1], 

where the 3 x 3 array in Figure 3.15.{a) represents the local 

gradient image and the ring-shaped 1 x 8 array Et stores the 

gradient values of the eight neighbours of the current point (i, j). 

Note that the ring shaped one-dimensional array Et in Figure 

3.15.{b) is involved in the circling operation of boundary 

detection. Then, assign the x- and y-coordinates of the eight 

neighbours into 1 x 8 arrays X and Y, respectively, as in Figures 

3.15.{c) and 3.15.{d) show, 

X[1] .. i-1, Y[1] .. j-1, 

X[2] = i-1, Y[2] = j, 
X[3] = i-1, Y[3] .. j+1, 

X[4] .. i, Y[4] .. j+1, 

X[5] = i+1, Y[5] = j+1, 

X[6] = i+1, Y[6] .. j, 

X[7] os i+1, Y[7] = j-1, 

X[8] = i, Y[8] .. j-1, 

where the arrays X and Y temporarily store the (x, y) coordinates 

of the eight neighbours of the current point (i, j). At the same 

time, assign a number, which can be used as an identifier (Ld.) of 

the boundary point in the boundary extraction and the colour 
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pattern extraction procedures, and is. larger than the maximum 

gradient values, to the G[I, i] where a boundary point was 

detected. In fact, the gradient values will always be less than 

1,000, hence this value is assigned to the first Ld. assigned 

would be 1,000. Later on, whenever a new boundary point is 

detected, the Ld is incremented and assigned to the G[i, il· 

Array Et 
Et[21 Et[31 

A Local GradIent Image 

G[1-1,j -11 G[1-1,jl G[I-1,j+1I 

G[I, j-ll G[I, jl G[l, j+lI 

G[1+ l,j-lI G[I+1,j] G[1+ 1,j+ 11 

(a) 

Et[7] (b) Et[6] 

(c) (d) 

Figure 3.15 R local gradient image and arrays assigned with 
gradients and the K-and y-coordinates of the point (I, J). (a) R 
local gradient Image. (b) Gradient values of eIght neighbours 
which are assigned to the array Et. (c) The K-coordlnates of 
the eight neighbours of the point (I, J) which are assigned to 
the array H. (d) The y-coordinates of the eight neighbours 
which are assigned to the array Y. 
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This boundary point becomes the current boundary point. In the 
-

second step, the principal focus of the boundary detecting process 

is detecting the location of the next boundary point among the 

eight neighbours of the current boundary point (i, j). Firstly, 

detect the largest value from the eight neighbouring gradient 

values since the location of the previous boundary point found has 

an Ld. value greater or equal to 1,000. Figure 3.16 represents the 

details of this process. Secondly, the next boundary point is 

determined by thresholding (refer to Equation (3.4-3)) clockwise 

each eight neighbouring points, starting from the previous 

boundary point, where the threshold value, T =20, is used. This 

process is represented in detail in Figure 3.16. The value n, at 

the end of the second process in Figure 3.16, represents the 

location of the next boundary point in the array Et. Hence, the 

corresponding (x, y) coordinates are X[n] and Y[n], respectively. 

Finally, the process will stop when the starting boundary pOint is 

detected. 

The algorithm developed in this thesis is similar in principle 

to Ledley's (Ledley, 1964). The main difference is that his 

algorithm is mainly for black-and-white images, however, the 

algorithm developed in this thesis is for colour images as well as 

black-and-white images. The so-called border-following 

; algorith~ - published by~-Rosenf;ld- -(1-969) -i;~ ~;r~inated -J 
from Tedfey's- algorithm: --The-border-following -algorith-m-is-aTso­

similar to the algorithm in this thesis. Rosenfeld's algorithm is 

for the binary images which consists of O's and 1's. 
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Figure 3.16 Boundary point detecting operation (continued). 
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Figure 3.16 Boundary point detecting operation (continued). 
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In order to clarify the concepts of the two previous processes,­

consider the follOWing examples as shown in Figures 3.17 through 

3.19. These examples are just a small portion of all the possible 

cases in the practical situation. In the examples, P stands for a 

previous boundary point, C for a present boundary point, and Q for 

a next boundary point. A value larger than 1,000 assigned to a 

previous boundary pOint represents an arbitrary point already 

traversed. The shaded regions on the left-hand side of Figures 

3.17 through 3.19 are a part of the actual boundary shape, and the 

ring-shaped one-dimensional arrays on the right-hand side of 

Figures 3.17 through 3.19 represent the gradient values g1, g2, ... , 

g8 of the eight neighbours of the present boundary point which 

are assigned to an 1 x 8 array Et. 

(1) When a boundary forms a straight line segment: 

~! .' 

(6) (b) 

Figure 3.17 Boundary detecting process. (a) Actual boundary 
shape. (b) Ring-shaped 1 x 8 array Et. 

Let the gradients, g1, g2, g3, g5, g6 and g7 be less than a 

threshold T and g4 be larger than T; and 1,005 be an Ld. assigned 

to the previous boundary point. In the first process in Figure 3.16, 

the location of the 8th component of the array Et whose value is 

maximum (1,005) can be detected. In the second process in Figure 
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3.16, a series of thresholdings is performed clockwise, as Figure 

3.17.{b) shows, from the first component of the array Et, because 

the largest value was detected at the eighth component of the 

array Et, as follows: 

since Et[1] = g1 < T, the boundary detector moves to Et[2], 

since Et[2] = g2 < T, the boundary detector moves to Et[3] , 

since Et[3] = g3 < T, the boundary detector moves to Et[4], 

since Et[4] = g4 > T, the point Et[4] is regarded as a next boundary 

point. Thus, the boundary detector moves from the point C to the 

point Q as Figure 3.17.(a) shows. 

(2) When a boundary point forms a sharp curve :. 

(a) When a boundary forms a sharp convex curve: ; 

"---"-'T'''---"';'-----: , 

(6) (b) 

Figure 3.18 Boundary detecting process. (a) Rctual boundary 
shape. (b) R ring-shaped 1 x 8 array Et. 

let the gradients, g1, g2, g3, g4, g7 and g8 be less than a 

threshold T and g5 be larger than T; and 1,027 be an Ld. assigned 

to the previous boundary point. In the first process, the location 

of the 6th component of the array Et whose value is the largest 

(1,027) can be detected. In the second process in Figure 3.16, a 
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series of thresholdlngs is performed clockwise, as Figure 3.18.{b) 

shows, from the seventh component of the array Et, because the 

largest value was detected at the sixth component of the array Et, 

as follows: 

since Et[7] = g7 < T, the boundary detector moves to Et[8] , 

since Et[8] = g8 < T, the boundary detector moves to Et[1], 

since Et[1] = g1 < T, the boundary detector moves to Et[2] , 

since Et[2] ~ g2 < T, the boundary detector moves to Et[3], 

since Et[3] = g3 < T, the boundary detector moves to Et[4] , 

since Et[4] = g4 < T, the boundary detector moves to Et[5] , 

since Et[5] = g5 > T, the point Et[5] is regarded a next boundary 

point. Thus, the boundary detector moves from the point C to the 

point Q as Figure 3.18.(a) shows. 

(b) When a boundary forms a sharp concave curve: 

Array Et Et(3) 

(0) (b) 

Figure 3.19 Boundory detecting process. (0) Rctuol boundory 
shOpe. (b) R ring-shoped 1 x 8 orroy Et. 

Let the gradients g1, g2, g4, g6, g7 and g8 be less than a threshold 

T and g5 be larger than T; and 1,134 be an i.d. assigned to the 

previous boundary point. In the first process, the location of the 

third component of the array Et whose value is maximum (1,134) 
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is, detected. In the second process, a series of thresholdings is 

performed clockwise, as Figure 3.19.(b) shows, from the fifth 

component of the array Et, because the largest value was detected 

at the third component of the array Et, as follows: 

since Et(4) = g4 < T, the boundary detector moves to Et(5) , 

since Et(5) = g5 > T, the point Et(5) is regarded as a next boundary 

point. Thus, the boundary detector moves from the point C to the 

point Q as Figure 3.19.(a) shows. 

As the above examples show, the algorithm can be easily used 

to extract any boundary that has even quite sharp curves or has a 
1- - -' --- - -- - j - - -- - ---- - - ~ 

.. r:mole' complicated shape. The examples of the application of 
I 

r.tne .•. algorithm are shown in Figure 3.20. As the figure shows, the 
---~--- ~ - .. --- -----------'--- ~- ---

boundary of a maple leaf which had a complicated shape was 

successfully extracted. 
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(a) (b) 

(c) (d) 

Figure ~.20 The images and their boundaries. 
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3.5 CONCLUSION. 

A boundary extracted from an image plays an important role in 

image analysis, since it is usually used for shape-description and 

also for region-extraction procedures. As rapid progress has 

recently been made in the development of colour-image capturing 

devices, the demand for colour-image analysis is increasing 

dramatically. However, most of the boundary extracting 

algorithms so far developed have been restricted only to black­

and-white images. Thus, it was necessary to develop a new 

algorithm which could extract a boundary not only from a black­

and-white image, but also from a colour image and could be 

generally used in this domain. The CIELAB colour difference 

formula has been adopted to calculat~olour difference between 

pixels in this algorithm. In fact, the colour difference has been 

determined in the CIELAB space which is a three-dimensional 

space of L*, a* and b*. In the calculation of gradients of each 

point of the image, partial derivatives have been approximated by 

II.t(-h1e9-51)-.r~latI~nTh-e- P~bbliso-hu-endd-ary-bY--GOld~ark ~~-d- Hollywood 

extracting processor in this 
--~- --~ - --~- ---~ --
thesis has been designed to be ~implemented on the g-radientPlane 

using a threshold. 
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Chapter 4 

COLOUR PATTERN EXTRACTION METHODS. 

4.1 Introduction. 

4.2 Image Segmentation. 

4.3 Cluster Analysis. 

4.4 Colour Pattern Extraction. 

4.4.1 Auxiliary Means for Colour Image Segmentation. 

4.4.2 A Procedure for Colour Pattern Extraction. 

4.5 Conclusion. 
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4.1 INTRODUCTION. 

In the image analysis domain, it has been regarded as a very 

important task to split an image into meaningful segments. The 

reason is that each of the segments is essentially used in the 

procedure of identifying the whole image. For example, suppose 

that two different species of butterfly have exactly the same 

shape of wings as well as other organs, but different colour 

patterns. The discrimination of the two species by a computer 

system using only a shape interpretation function will soon show 

its limitations by producing a wrong result, e.g. they appear to be 

exactly the same species. The main aim of this chapter is to 

explain how to extract the patterns with distinctly different 

colour features from the colour image of an object. In terms of 

the whole system for the identification of biological objects, the 

procedure of extracting patterns is a preliminary stage for the 

description of patterns in the next procedure. Since the 

description of each pattern absolutely depends upon the result of 

the extraction procedure, this procedure is usually regarded as a 

very important task. 

So many approaches have been performed attempting to 

achieve the same goal of splitting a colour image into meaningful 

segments that a vast range of papers has been produced. The 

majority of the approaches mainly rely on one- or two­

dimensional histograms. An investigation of some of the 

approaches which are closely related to the subject of this thesis 

has been carried out. The important fact to be noted is that most 

of the approaches are regarded as just alternatives to a three­

dimensional clustering method. The investigation will concentrate 
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on clarifying the major reason why the direct application of the 

three-dimensional Cluster Analysis to the colour Image 

segmentation has been avoided. In order to clarify the reason, the 

theoretical aspect of the Cluster Analysis which is one of 

multivariate analyses in statistics will be reviewed in detail. 

The concept of the Auxiliary Means which has been devised in 

this thesis will be introduced from the motivation for its 

development and~ecessity to its actual application to, Cluster 

Analysis. The method for applying the Cluster Analysis procedure 

to colour image segmentation employing the Auxiliary Means will 

be discussed. At the same time, a sub-algorithm to remove noise 

will be introduced; noise being a problem with this approach. This 

approach has been successfully implemented to extract patterns 

of distinctly different colour features from an image containing 

the left-side wings of a butterfly. 
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4.2 IMAGE SEGMENTATION. -

In this section, existing methods for segmenting an Image into 

regions which contain pixels with similar features are 

investigated. There are two approaches to the image 

segmentation: the region-merging method and the region-splitting 

method. In the region-merging method, the pixels are firstly 

grouped into regions based on the similarities of some attribute 

such as grey level or colour feature, and then these regions are 

checked for merging with the neighbouring. regions based on their 

average properties and spatial relationships. In the region­

splitting method, large regions are successively split into 

smaller regions based on differences between the properties of 

the pixels in the regions. Another method is the split-and-merging 

method, combining the two previous methods. 

The dynal1lic_ threshold method developed by Chow and Kaneko 

! (19-72). - i which is an example of a region-splitting 

method, WtIS used to extract the shape of the left ventricle from a 

cardiac cineangiogram, an x-ray motion picture of a heart image. 

It is important to note that the fundamental assumption in their 

method is that the probability distribution of the intensity for 

any small region of the image consisting solely of the object or 

the background is unimodal. This is because the intensity seldom 

remains constant over any region in the image. Thus, in a small 

region of the image which contains a boundary, there are two 

unimodal distributions, one for the object and one for the 

background as in Figures 4.1.(a) and (b), respectively. These two 

distributions generally overlap. Chow and Kaneko have contended 

that the overall distribution of the small region is consequently a 
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mixture of two unimodal distributions and is generally bimodal as 

Figure 4.1.(c) shows. They divided the entire area into 7 x 7 

regions with 50 % overlap. Each region contains 64 x 64 picture 

elements. 

Number 
of poinh 

unimodel unlmodel 
d1stribution + distribution 

(e) (b) 

bimodel 
di stri but ion 

(c) Grey Level 

Figure 4.1 Unimodal distribution and bimodel distribution. (a) 
The histogram of a background region. (b) The histogram of an 
object. (c) The histogram of a region containing a boundary. 

An intenSity histogram w~computed over each region. Since it is 

quite difficult to find the right valley point from a raw 

histogram, the histogram is smoothed. The right valley point can 

be used to divide the image into an object and a background. This 

procedure is illustrated in Figure 4.2. In this method, the valley 

point is considered as an important threshold. Ballard and Brown 

,(1982) - - - ---- -- have pointed out that problems can occur 
_____ ~~_ _ ___ J 

with this kind of method using a single threshold when an image 

has a background of varying grey levels, or when regions vary 

smoothly in grey levels by more than the threshold. However, in 

this method the threshold varies depending upon the location of 

the region. Thus, the difficulty with the Single threshold is 

increased. However, the main critical problem in this method is 
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that a sub-image can fail to have a threshold If the grey-level 

histogram is not bimodal, that is, if the histogram has more than 

two peaks. Another problem is that if the two distributions 

heavily overlap, using the threshold obtained from the histogram 

can produce quite different sub-images. A histogram obtained 

from a colour image containing a biological object, for instance, a 

butterfly (which is pertinent to this thesis), will in general 

consist of more than two peaks. Therefore, if this method is 

applied to the extraction of patterns with various colours, the 

above problems, undoubtedly, could arise immediately. 

Smoothed ,.-
His~gr6m jFI\ Threshold 

f-' 
r-

~ /i""~ Number 
of 1-"-
Pixels 

.... 
1 

\R-ff ,L 
A \ 

Grey Level 

Figure 4.2 R smoothed histogram and l10lley pOint. 

Another approach is a recursive region splitting method, 

developed by Ohlander et al. (Ohlander, Price, & Reddy, 1978), 

which has been commonly used even for colour images. The 

principle of the segmentation operation is based on some 

generalisation of the Chow and Kaneko's ideas, that is, histogram 

analysIs. They have computed nine histograms of the red, blue and 

green colour components, the intensity, hue and saturation 

components and Y, I and Q components which are parameters used 

in the N.T.S.C. colour television. Since this method was published, 

a number of similar studies have been undertaken in the colour 
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analysis domain. Most of the approaches have adopted the 

principal philosophy of peak-finding from a histogram. Thus, it 

will be worth considering the detailed procedure of the method. 

The process of Ohlander et al.'s method IS as follows: 

(1) Take an entire region of the image. 

(2) Compute histograms for the nine components of the portion of 

the image which is contained in the region. At the same time, 

smooth the histograms to eliminate small peaks. 

(3) Apply a peak-finding test to each histogram. If at least one 

component passes the test, pick the component. On the other hand, 

if all the histograms fail the test then this region is considered 

to be segmented. 

(4) Determine two thresholds, one either side of the peak and 

divide the region into subregions using these thresholds. 

(5) Eliminate small holes in regions, small regions, or thin 

connections between regions by smoothing. 

(6) Continue the segmentation process on the remainder of the 

region which had been segmented. Terminate the segmentation of 

the remaining region when there are too few pixels left. 

Obviously, this approach applied to a high-resolution image is 

computationally expensive because the nine histograms must be 

calculated in every repeating process and the smoothing operation 

must be performed in each process. Nevatia f(1982)II has 

stated that small regions in a large image may not produce a 

distinct histogram peak, even if they are distinct from their 
1-- -- --- --~-- --- - 1 

surroundings. Ohta et aIL(~ 982) _ ____ _ _I, conducted experiments 

to derive a set of effective colour features using 

this algorithm. Tomina 1-(1988) - -I has further explored this 
I~_- _________ _ 

approach using colour features of lightness, hue and chroma, 

where each of the features is projected. Similar research has 
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_ been performed by Celenki (1988). I. The primary principle of 
- --- -

the foregoing approaches based on peak finding and valley finding 

is called a one-dimensional histogram method. A more improved 

technique, a tw~-dimensionaI3leproa~~ ~escri~ed by Underwood 

and Aggarwal i (1977) and Ali and 

Aggarwal ~197~7~ ___ - ___ -_ _ ___ i-i~b~-sed on the projections of 

the (X, Y, I) normalised colour space onto the X-V, X-I and Y-I 

planes. In this interactive method, rectangular-type broad and 

refined colour bandpass filters are used to detect a specific 

region from an image. AIi et al.::(1-~?7) _ ~ ~ ____ : further explored 

this approach for colour aerial photographs, where the 

segmentation was accomplished by rather simple decision 

surfaces in the (X, Y, I) normalised colour feature space. They have 

developed a system which allows the user to specify, 

y y 
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Figure 4.3 Colour distribution and rectangular decision surface 
with colour features. 
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interactively, the rectangular decision surface, which is then 

applied to the pixels of the image. The surface in Figure 4.3 IS 

bounded so that feature points indicating the desired colour 

characteristics fall within the volume defined by the bounded 

surface. In this approach, the decision surfaces in the colour 

feature space obviously play an important role in separating 

regions in an image. However, for instance, if many colours of 

different regions in an image are distributed very closely, like a 

foggy rainbow, without clear borders amongst the colours in the 

colour feature space, it might be impossible to separate the 

colours with the decision surfaces, no matter how small their 

sizes are. 

In general, a problem of separating colours in a three­

dimensional colour feature space is, theoretically and practically, 

a three-dimensional clustering problem, neither a two-, nor one­

dimensional clustering problem at all. It has usually been 

believed, in image analysis, that a three-dimensional process 

which operates on the whole image is computationally costly and 

that huge quantities of pixels cannot be processed even in a super 

computer since they need an enormous core memory capacity to 

process. One remedy for this problem is to project the colour 

feature space onto a two-dimensional space, employing the 

previous approach (Sarabi and Aggarwal, 1981). In fact, it might 

not be a general and perfect method to accommodate every 

possible case in the three-dimensional space, but only an 

immediate remedial technique to cover some portion of the whole 

cases in the space. Under this projection it is possible that some 

clusters which were separable in the three-dimensional space are 

no longer separable on any projection. A still more drastic method 
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of dimenslonality reduction is, of course, to project the colour 

feature space onto a one-dimensional space such as one of the 

colour feature axes. The resulting projection is nothing more than 

the grey level histogram of one of the prrmary colour component 

intensities of an image. Although many chromatic features, for 

instance nine are used in Ohlander et aI., (1978), eventually the 

number of dimensions for the process at a time is still one, not 

more than that. Sarabi and Aggarwal I} 19-51 )-~ =~_~~-~==-I 
have developed a general interactive system which provides a 
means of solving this problem. The system allows the user to 

specify an initial number of clusters and then the clustering 

process continues until the number of clusters are generated. The 

colour feature (X, Y, I) histogram is examined to see if there are 

nodes which are not assigned to any cluster, if so, the user can 

increase the number of clusters or modify the tolerance, or 

terminate the cluster detection process. It is true that this 

approach has improved the level of the dimensionality from two 

to three. However rectangular parallelpiped box plays a key role in 

determining a cluster in the colour space. In colour science an 

ellipsoid tolerance is used' to cluster the same colour features 

rather than a box shaped region. The above approach is an 

alternative to the Cluster Analysis in multivariate statistical 

methods. 
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4.3 CLUSTER ANALYSIS. 

In this section Cluster Analysis will be reviewed not only to 

make a clear exposition of the concept and background of the 

analysis, but also to apply a proper clustering methodology, among 

the so many methodologies published thus far, to the image­

segmentation problem. The pertinent point is that most 

researchers seem to believe that the Cluster Analysis procedure 

employed in colour image segmentation could produce a better 

result than any other approach such as one-dimensional 

histogramming methods: two-dimensional projecting methods: 

etC, ""~. The primary obstacle to implementing this method is that 

it requires inordinate amounts of core memory; indeed in some 

situations this requirement exceeds the available memory of even 

super computers. It follows that most research in this area has 

been concerned with finding alternative implementations that do 

not require so much memory. Some methods published do however 

require very lengthy processing computation times. The underlying 

assumption in some of these efforts, has been that to reduce core 

memory requirements inevitably means an increase in processing 

time, and vice versa. 

Consider 'Cluster Analysis' from the definition of the term 

cluster. Among the many proposed definitions of the term cluster, 

the definition by Zupan\ (1-98ij~- ~\_ is clearer than others: 

"Clusters are groups of objects linked together according to 

some rule. The goal of clustering is to find groups containing 

objects most homogeneous within these groups, while at the same 

time the groups are heterogeneous between themselves as much 

as possible. The terms 'homogeneous' and 'heterogeneous' are 
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referring to the common properties of the objects according to 

which we are trying to cluster the given set of data." 

From the definition, Cluster Analysis seems to be qUite a useful 

tool to solve the problem in _ 

practice, applying this analysis 

image segmentation. However, in 

to image segmentation has 

been avoided so far. Thus, the investigation has been concentrated 

on two aspects: 

(1) What is the main difficulty of applying _. Cluster Analysis to 

_ -! image segmentation? 

(2) Which analysis, among several Cluster Analysis methods, is 

closely related to the image segmentation problem? 

Cluster Analysis procedures have been classified into four 

types by Everitt[l1-9~~~-=_=:=i\as follows: 

(1) Hierarchical Procedures 

These procedures are sub-divided into agglomerative methods and 

divisive methods. The agglomerative methods are to merge 

individual entities into groups successively, where the entity has 

more than one attribute which describes the feature of the entity. 

The divisive methods are to partition the entire set of entities 

into individual elements. 

(2) Partitioning Procedures 

These procedures are used to partition the set of entities so as to 

optimise some predefined criterion. These approaches assume 

that the number of groups has been decided a priori byauser, 

although some do allow the number to be changed during the 

course of analysis. 
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(3) Density Search Procedures 

Clusters are formed by searching for regions containing relatively 

high density in the data. 

(4) Clumping Procedures 

These procedures allow overlapping between the clusters. The 

feature of overlapping the clusters is in contrast to the other 

procedures since the results of other approaches are disjoint 

clusters. 

Considering the important features of the procedures will be 

useful to a correct application. Note that the second procedures 

have some weak points, that is, they usually require large 

amounts of computing time, and a priori knowledge about how, for 

example, clustering criteria affects the efficiency and computing 

time as well. The third procedures have the disadvantage of 

relying on the values of various parameters which must be set by 

the user. The results obtained depend heavily on the values. A 

further difficulty lies in the assumption of multivariate normal 

distribution. The last procedures are suitable to specific areas 

such as language studies where words tend to have several 

meanings. On the other hand, the first procedures provide the user 

with a large number of options for the Cluster Analysis. Using the 

hierarchical procedures, the user can select clusters with 

different levels of clustering criteria. These procedures are also 

known as 'standard methods' (Zupan. 1982) in various fields of 

data handling. The hierarchical procedures with the features are 

best suited to the image segmentation. Thus let us take a close 

look at the algorithms of the several methods in the hierarchical 

procedures. 
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Hierarchical Procedures 

As already illustrated, the hierarchical procedures are 

subdivided into agglomerative hierarchical me~hods and divisive 

hierarchical methods. Since the latter metnods work in an 

opposite sense to the agglomerative methods, the investigation 

will be concentrated on the agglomerative hierarchical methods. 

Let us consider the agglomerative hierarchical methods in further 

detail. These methods start processing with the individual 

entities. Thus, there are initially as many clusters as the number 

of entities. Firstly, the process selects the most similar entities 

from the entities and merges the two entities into a group, and 

these initial groups are merged according to their similarities. 

Eventually, all subgroups are merged into a single heterogeneous 

cluster, where the similarity of the cluster decreases. The 

similarity which is used to determine a homogeneous group is 

measured by the Euclidian distance between entities or between 

subgroups, or between an entity and subgroup. According to how 

the calculation of the distance between two clusters is carried 

out, the agglomerative methods are also subdivided as follows: 

(1) The Single Linkage or the Nearest Neighbour Method 

This method (Sneath, 1957), which is probably one of the 

simplest clustering methods, can be used with similarities or 

distances between pair of clusters. In this method, the entities 

which are nearest to one another are merged into a new cluster. 

The procedure is as follows: 

(i) In the first stage, calculate an n x n symmetric distance 

matrix from the initial set of n entities, where the distances 
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between entities are calculated uSing the Euclidian distance 

function. 

(ii) In the second stage, search the distance matrix for the 

smallest distance. 

(iii) In the third stage, merge the clusters with the smallest 

distance into a new cluster, and label the newly formed cluster. 

Then, update the entries in the distance matrix as follows: 

(a) Delete the rows and columns corresponding to the clusters 

found in the second stage from the distance matrix. 

(b) Calculate the smallest distances between the newly formed 

cluster and the remaining clusters, where the number of the 

smallest distances is that of the remaining clusters. For 

example, the smallest distance between the newly formed 

cluster and one of the remaining clusters is depicted in Figure 

4.4. 

(c) Add a row and column with the smallest distances to the 

distance matrix. 

(iv) In the fourth stage, repeat stages (U) and (iii) until all the 

clusters have been merged into the final single cluster. 

the smallest dIstance 

the newly formed cluster one of the remaining clusters 

Figure 4.4 The smallest distance between the newly formed 
cluster and one of the remaining clusters. 
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(2) The Complete Linkage or the Furthest Neighbour 
Method 

This method by Lance and Williams i (19-6-7) 
--- - --~-~ 

t ._~ ~_ 

proceeds in much the same manner as single linkage, with one 

important exception. At each stage, the distance between clusters 

is determined by the longest distance between the clusters. This 

is in opposition to the single linkage method in which the distance 

between the clusters is determined by the smallest distance. As 

far as the algorithm is concerned, all the stages but the item (b) 

in the third stage in the algorithm of the single linkage can be 

applied. The item (b) is changed as follows: 

Calculate the longest distances between the newly formed cluster 

and the remaining clusters, where the number of the longest 

distances is that of the remaining clusters. For example, the 

longest distance between the newly formed cluster and one of the 

remaining clusters is depicted in Figure 4.5. 

the longest distflnce 

the newly formed cluster one of the remflining clusters 

Figure 4.5 The longest distance between the newly formed 
cluster find one of the remaining clusters. 
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(3) The Average Linkage Method 

This method by Sokal and Michener : (1958) , 
f • ~ ________________ ~ 

also proceeds In much the same manner as the single linkage and 

the complete linkage, with one important exception. At each 

stage, the distance between clusters is determined by the average 

distance between all pairs of entities where one member of a pair 

belongs to each cluster. All the stages but the item (b) in the 

third stage in the algorithm of both the single linkage and the 

complete linkage can be applied. The item (b) is changed as 

follows: 

Calculate the average distances between the newly formed 

cluster and the remaining clusters. For example, the average 

distance between the newly formed cluster and one of the 

remaining clusters is depicted in Figure 4.6. 

the average distance 
4 

1 5 

the newly formed cluster one of the rema1n1ng clusters 

Figure 4.6 The al1erage distance between the newly formed 
cluster and one of the remaining clusters. 

(4) The Centroid Method 

I . Thi~ -~~th~d -also -propo;~d - -b~ . S~k~1 and Michener I 
~~~f3).~.als~.p~oceeds in much the same manner as the I 

foregoing methods, but the difference lies in the calculation of 

the distance between clusters. As for the other algorithms, the 
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item (b) of the third stage is changed as follows: 

Calculate the coordinates of the centroid, from where every 

entity in the cluster has an equal distance, of the newly formed 

cluster, and then calculate the distances between the coordinates 

and those of the centroids of the remaining clusters. For example, 

the distance between the coordinates of the centroid of the newly 

formed cluster and those of the one of the remaining cluster is 

depicted in Figure 4.7. 

the distance between 
the centroids 

the newly formed cluster one of the rema1ning clusters 

Figure 4.7 The distance between the centrolds. 

There are still a few other agglomerative methods that differ 

in the method used to calculate the distance between the clusters. 

However, the methods already discussed are dominately employed 

in many fields, and the further detailed investigation of other 

methods is out of the scope of this thesis because they are 

irrelevant to the colour image segmentation. Thus, the other 

methods will not be considered. Let us consider the basic problem 

occurring when Cluster Analysis is employed in ,colour-image 

analysis. There is no doubt that, in the Cluster Analysis methods 

discussed previously, the most important stage is the beginning 

of the procedure, that is, the first stage, where the n x n 

symmetric distance matrix is produced using the 

entities. When one of the methods is adopted in·. 
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segmentation, the entities are pixels forming an image. In order 

to produce the matrix containing the minimum distances between 

pixels, three different kinds of colour features such as R (red), G 

(green), B (blue), or X, Y, Z, or L*, a*, b*, or X, Y, I, or etc. are used 

as the attnbutes of each entity, that is, pixel. Imagine, for 

example, a colour image consisting of 100 x 100 pixels (which is 

in practice a tiny image). The number of initial entities will be 

10,000, since each pixel with three colour features is regarded as 

an entity in the Cluster Analysis. In the first stage of. • Cluster 

Analysis, the procedure will produce the 10,000 x 10,000 

symmetric distance matrix using the initial set of pixels. In fact, 

the procedure needs at least 100,000,000 (10,000 x 10,000) 

elements of core memory at the first stage. On the other hand, if 

the size of an image is, for another instance, 300 x 300, the 

minimum size of the core memory needed will be 8,100,000,000 

(90,000 x 90,000). In general, if an image has n x n pixels, the 

size of the distance matrix to be calculated in the first stage of 

Cluster Analysis is n4, i.e. (n x n) x (n x n), since each of the 

pixels in an image is treated as an entity in -- Cluster Analysis. 

The main reason why Cluster Analysis has been avoided, so 

far, in the colour-image segmentation lies in the core memory 

problem from the first stage of the procedure. Due to this 

bottleneck, nearly all of the approaches, with considerable 

efforts, have pursued alternative ways. In one approach, Fukada 
I - -- - -- ---~- - - ~ , 

IJ1_9!~ __ ~\ divided a colour image with 256_~256_ pix~l~ in~~ __ _ 

sub-images of 8 x 8 pixels, and then applied Cluster Analysis to the I --------____ _ _______________ J 

I sub-image~_1 After getting the results a complex procedure 

for combining the incomplete clusters has to be employed. It could 

produce unexpected results or even poor quality results with a 

complicated colour image. This sort of approach would have a lot 
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of deficiencies and, may not be a reasonable way, but it is an 

alternative method. 

Confronted with these circumstances, this thesis develops an 

improved algorithm for this area of investigation. This algorithm 

can directly apply Cluster Analysis to the colour image 

segmentation with a colour image of various quality and sizes. 

The detailed algorithm developed will be illustrated in the next 

section. Cluster Analysis methods described previously are 

also discussed. 
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4.4 COLOUR PATTERN EXTRACTION. 

As the title implies, in this section an algorithm to extract 

colour patterns from a colour Image will be illustrated. In order 

to improve the quality of the results, the Cluster Analysis 

procedure is directly applied in the algorithm. 

4.4.1 Auxiliary Means for Colour Image Segmentation. 

For the correct concept of a colour feature space, first of all 

consider the relationship between a colour image and its colour 

feature space. Usually, a colour image consists of pixels with R, G 

and B values. These R, G and B values are transformed into the CIE 

L*, a* and b* values for the further analysis as discussed in 

Chapter 2. On the other hand, a black-and-white image consists of 

pixels with grey levels. In the image segmentation of a black-and­

white image, the grey levels are analysed using a one-dimensional 

histogram since the histogram reveals the composition of the 

various grey levels forming the image. When the grey levels with 

locations in the image are investigated, a two-dimensional 

histogram is efficiently used. On the other hand, a colour image is 

investigated in a three-dimensional colour feature space. Note the 

features of the histograms. The shape of a one-dimensional 

histogram physically shows a two-dimensional shape, i.e. various 

shapes of mountains projected onto a plane. The shape of the two­

dimensional histogram is depicted as a three-dimensional shape, 

like cubic mountains with various heights and shapes. Thus, it can 

be concluded that the n-dimensional histogram can be displayed 

with the (n+ 1 )-dimensional shape. Theoretically, a three­

dimensional histogram is depicted as a four-dimensional shape. 
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However, it is impossible to display a four-dimensional shape in 

practice. 

Consider the following examples with two hypothetical colour 

images. The image in Figure 4.B.(a) contains four squares filled 

with the red, green, blue, and yellow pixels of 10 x 10, 

respectively. Another image in Figure 4.B.(b) contains the same 

colours with 20 x 20 pixels. The compositions of the colour 

features in the image are depicted in the three-dimensional 

colour feature (The CIE L*, a* and b*) spaces in Figures 4.B.(c) and 

(d), respectively. As the graphs show, the two colour-feature 

spaces look the same, not different at all. As far as colour image 

segmentation is concerned, most of the required decision making 

may not be possible with the three-dimensional spaces. This could 

be a reason why there are not three-dimensional histograms, but 

[]]I] 
I]]]] 

(a) Four squares of R, G, Band Y 
with 10 H 10 piHels. 

L* 

J-----b* 

a* 

~ 
~ 

(b) Four squares of R, G, B 
and Y with 20 H 20 piHels. 

L* 

V· 

J-----b* 

a* 
(c) The L "', a'" and b'" space. (d) The L "', a'" and b'" space. 

Figure 4.8 Colour images and three-dimensional histograms. 
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(f) Frequencies of piHels. 

Figure 4.8 Colour images and three-dimensional histograms 
(continued). 

three-dimensional spaces displaying locations of the four pixels 

graphically. This fact might be one of the important factors 

playing a major role in making the majority of the approaches to 

colour image segmentation difficult and complicated. Let us 

consider an Auxiliary Means which enables a three-dimensional 

histogram to be imaged in practice. Actually, every point in 

Figures 4.8.(c) and (d) is no longer a single point. Each point in 

Figure 4.8.(c) has 100 frequencies, and each point in Figure 4.8.(d) 

has 400 frequencies, but they are hidden. Thus. if the hidden 

frequencies are able to be displayed by a certain means, it may be 

regarded as an Auxiliary Means to make a three-dimensional 

histogram comprehensible. The Auxiliary Means devised uses the 

one-dimensional histograms depicted in Figures 4.8.(e) and (f), 

where the horizontal axes represent the values of pixels and the 

vertical axes frequencies. Note that the Auxiliary Means provides 

nothing but information about frequencies of pixels. Let us 

consider some reasonable methods to improve the Auxiliary Means 

so it can be used efficiently and actively in the further colour 

image segmentation procedure. First. extract the (x, y) 
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coordinates of pixels in the red square In Figure 4 8 (a) and put all 

of them in the bar on the R in Figure 4.8.(e); and carry out the 

same task with the green, blue and yellow squares in turn; and 

then with the squares in Figure 4.8.(b) and put them in the bar in 

Figure 4.8.(f), correspondingly. Second, after getting the results, 

assign one set of colour feature values (the CIE L*, a* and b*) into 

the bars on the R, G, 8 and y, respectively. The Auxiliary Means in 

Figures 4.8.(e) and (f) are changed into those in Figures 4.9.(a) and 

(b), respectively. Now, it is desirable that the Auxiliary Means, 

with the three-dimensional colour feature space, can be used by 

the further colour image segmentation procedure. Let us consider 

the structural aspect of the Auxiliary Means in detail. Assume 

that each bar in Figure 4.9 is defined as a unit of the Auxiliary 

Means. Actually, each bar can obviously be considered as an entity 

in the Cluster Analysis. As Figure 4.10 shows, each unit consists 

of six items: (1) Cluster 1.0., (2) 1.0., (3) Pixel Value, (4) Colour 

Feature (the L*, a* and b*), (5) N.D.P., and (6) the (x, y) coordinates, 

Frequency 
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00 4 
(Xl,yl) (Xl,yl) 
(x2,y2) (x2,y2) 
(x3,y3) (x3,y3) 
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(xn,yn) (xn,yn) (xn,yn) (xn,yn) (xn~yn) (xn',yn) 
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I I I I I I 
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Figure 4.9 The RUHiliary Means (its hypothetical description). 
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The first item IS an identification value of a cluster. After the 

Cluster Analysis is performed, a cluster value IS assigned. The 

second Item IS an identification value for a set of pixels having 

the same pixel value. The 1.0. for the red colour (R) In Figure 

4.9.(a) is assigned 1, and that for the yellow colour (Y) IS assigned 

4. An important property to be remembered is that once a value is 

assigned to the 1.0., it would not be changed any more during an 

operation since it should be used until the whole procedure for 

colour pattern extraction is finished. On the other hand, if there is 

noise, it is changed. A detailed discussion will be performed later. 

The third item is the value of a pixel which is an element 

displaying a colour image on a screen. The fourth item consists of 

three colour feature values, the L*, a* and b*, which play a 

primary role, like attributes of an entity, in the Cluster Analysis. 

Note that the colour feature (the L*, a* and b*) in colour image 

analysis usually occupies memory space three times as much as 

that of all the pixels in an image since each of them (the L*, a* 

and b*) is created by being transformed from the R, G and 8 values 

of each pixel using the model developed in Chapter 2. However, 

employing the Auxiliary Means can dramatically reduce the 

memory space for the colour feature. The fifth item is the number 

of pixels with the same value. For example, the N.O.P. for one of 

the Auxiliary Means in Figure 4.9.(a) is 100 and the N.O.P. for that 

in Figure 4.9.(b) is 400. Finally, the sixth item contains the (x, y) 

coordinates of all the pixels of the same value in an image. These 

coordinates are used to display an actual pattern after the Cluster 

1.0. is determined. 

The structure of the unit of the so-called Auxiliary Means and 

its components with functional aspects have been considered. 
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Item 

(I) 

(2) 

(3) 

(4) 

(5) 

(6) 

Cl uster 1.0. 

ID 

Pixel Vol ue 

L* 0* b* 

N.D P. (number of pixels) 

(xl,yl) 
(x2, y2) 
(x3, y3) 

· 
· · · 

(xn, yn) 

Figure 4.10 The structure of a unit of the AUHiliary Means. 

Then, the important question will be how many units should be 
created? Judd and Wyszecki 1(19'75)- -- - -- -- - --'1 have 

~-

estimated that the number of different colours that we can 

distinguish is ten million. However, in practice, the number of 

different colours to be dealt with at a time by a computer is 

limited. In any system, the primary factor that can determine the 

number of different colours to be displayed and to be dealt with 

simultaneously depends upon the number of bits which are used to 

display colours on a screen. For example, for a screen which can 

display an image by six bits, the number of different colours to be 

displayed at the same time is 64 (=26). For a screen with eight 

bits, the possible maximum number of different colours 256 (=28). 

The number of bits to be dealt with is usually considered as the 

resolution of a displayed image. The majority of the colour image 
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handling systems, which have commonly been used, use six- or 

eight-bit machines. In the case of a six-bit display system, the 

maximum number of units of the Auxiliary Means IS 64 since the 

number of different colours displayed and treated with the 

system is 64. On the other hand, the maximum number with an 

eight-bit screen is 256. Suppose a colour image of 500 x 500 

pixels IS coded by a six-bit system. Let's say the image contains 

forty different colours. Then, the number of units of the Auxiliary 

Means that should be created is forty. From the forty units, the 

same number of sets of the L*, a* and b* values are obtained, and 

used as input data to . - Cluster Analysis. When a single linkage 

method is adopted, which is one of the hierarchical Cluster 

Analysis procedures, only a 40 x 40 symmetric distance matrix is 

created at the first stage. As soon as the result of , - Cluste.r.._ 

I Analy~i~-i ~ obtained~ach ~Iuster i.d.i-;assig-n~d t ~the- ~-orre-sponding I,' 
1___ -------' 

unit of the Auxiliary Means, where the number of clusters is 

determined depending upon the number of patterns with different 

colours in an image by visual decision. After assigning the cluster 

i.d., the units with the same cluster i.d. are merged into a group. 

The important feature of this improved algorithm is that 

Cluster Analysis is performed, in this example, with only the 

forty different colour features, where all of the pixels are not 

involved. When the implementation of the Cluster Analysis 

procedure is completely finished, all of the pixels are only 

utilised in the assigning stage. The improved algorithm does not 

have to create a 250,000 x 250,000 symmetric distance matrix at 

all, nor must it segment the whole image into many pieces to 

manage a complex and inefficient partial Cluster Analysis. 
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In summary, the functional aspect of the Auxiliary Means 

derived from a three-dimensIOnal histogram can be summarised 

as follows: 

(1) The immediate motivation for devising the Auxiliary Means in 

this thesis is to explore a direct application of the Cluster 

Analysis technique to colour image segmentation. 

(2) The function of the Auxiliary Means has been designed to 

reduce the memory space as much as possible. The majority of the 

existing methods for colour image segmentation inevitably have a 

tendency to waste the memory space. Thus, the Auxiliary Means 

can play an important role in breaking this tendency. 

(3) When the Auxiliary Means is applied to 

dramatically reduces the execution time. 

image analysis, it 

(4) This Auxiliary Means can be generally applied to Cluster 

Analysis problems arising in all relevant research areas. 

4.4.2 A Procedure for Colour Pattern Extraction. 

In the previous section, the motivation and background of the 

newly devised concept of the Auxiliary Means have been discussed. 

This has efficiently been used in colour image segmentation 

applying Cluster Analysis. In this section, a practical approach to 

colour image segmentation employing the Cluster Analysis 

procedure with the Auxiliary Means will be Illustrated in detail 

from a design strategy to a procedural aspect. The basic strategy 

of this approach is as follows: 

119 



(1) The algorithm should directly apply the existing Cluster 

Analysis procedure to colour image segmentation witnout being 

restricted by image size. 

(2) The algorithm should take advantage of existing Cluster 

Analysis procedures. 

(3) The number of pixels in an image should be minimised to 

optimise the segmenting and merging procedures. 

(4) The system should provide the user with sufficient 

opportunity for reasonable decision making in order that the 

colour pattern extracted by the system may be consistent with 

human vision. 

The algorithm developed under the strategy is shown in Figure 

4.11 and is to be illustrated in detail. 

(i) In the first step, the image of an object is extracted from the 

image containing an object using the boundary data created in 

section 3.4. The boundary data have been extracted from the 

gradient plane (array) in the previous chapter and consist of the 

(x, y) coordinates and serial numbers starting from 1,000 which 

are larger than any pixel value in the image. The process creates a 

copy version of the original image and assigns the boundary data 

to the copy version. Thus, the copy version contains the image of 

the object surrounded by the serial numbers which can efficiently 

be used to extract the image of the object. Then, scan the image 

(array) from left to right and top to bottom with an attempt to 

detect one of the serial numbers. Note that since the serial 

numbers are larger than any other pixel value, they can be 

detected without any difficulty. As soon as one of the serial 

numbers is detected, pixels are extracted until another 
,~-- - - ----

I serial number lis detected. On the other hand, the Cluster Analysis 
~-_~~~_I 
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Extr<\Ct the Image of an object 
f~om an Image 

~ 
Transform the image mto N 
units of the hl><lliarll Means 

~ 
Fall RemDve the nDise 

unit & ~oa~nnge 
id vllues 

Ext~act N sets of L", a", b" data 
f~om the hJXlliary Muns 1 ..... ----1 

Execute the clust.r anal~sis 
routine in SPSS-X ,*,Ith N sets 
of L + , a" , b" data 

The number of 
diffrent coIGU~S 
from the USer 

Assign the nsult of the cluster 
ana 1) sis to the hJxBia~y Mtans 

N~ 

Display colClJr patterns 
aec~din9 to the clusb~ id 

Figure 4.11 The algorithm of the colour pattern eHtraction. 

procedure might also be applied to this step. However, if the 

colour of the pixels inside the object is the same as that of the 
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background, the pixels lying inside the object and the background 

will simultaneously be extracted. This will cause the situation to 

be complicated, and therefore the Cluster Analysis routine cannot 

be adopted in this step. 

(ii) In the second step, the image of an object extracted in the 

previous step is segmented and then the segments are 

transformed into n different units of the Auxiliary Means. This is 

carried out according to the pixel value, where n is the number of 

different values of pixels in the image. When the first pixel value 

is detected, assign an Ld. value 1 to the 1.0. of the first unit of the 

Auxiliary Means; assign the pixel value to the Pixel Value in the 

unit; transform the pixel value into the L*, a* and b* values and 

assign them into the corresponding item in the unit. These 

operations so far are performed only once whenever a new pixel 

group is detected. Finally assign the (x, y) coordinates of the pixel 

to the top of the item in the unit. Then, assign 1 to the N.O.P. in 

the unit; and remove the pixel value and the (x, y) coordinates of 

the pixel from the image. Search the extracted image for the same 

pixel value as that just detected. Whenever the same pixel value 

is detected, put the (x, y) coordinates of the pixel underneath the 

coordinates of the (x, y) coordinates of the pixel previously 

detected; increase the value by one in the N.O.P.; and remove the 

pixel value and the (x, y) coordinates of the pixel from the image. 

This task will be continued until the last pixel of the image is 

detected. When the task is finished, another pixel value can be 

easily detected and assign an Ld. value 2 to the 1.0. of the second 

unit and then this process can be continued. When no pixel is left 

in the image, this step is complete. If the number of different 

values of pixels is n, then n units of the Auxiliary Means will be 
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created. 

(iii) In the third step, check whether or not the Auxiliary Means 

contains random noise; and if any random noise is discovered, 

delete the corresponding unit, and rearrange the values of the 

item 1.0. in the Auxiliary Means. In the first process, search every 

N.O.P. for the number of pixels that is less than, for example, one 

percent of the total number of pixels in the image of the object, 

where this percentage can be determined after analysing the 

image of each unit in the Auxiliary Means or the whole image (this 

problem will be discussed in the later part of this section again). 

If at least one unit which has less pixels than the predetermined 

criterion, for each unit calculate the average distance between 

_the unit and other units using the L*, a* and b* values. Then, 

calculate the mean and standard deviation of the average 

distances. Then, examine whether or not the average distance for 

the unit, which has less value of the N.O.P. than the criterion, is 

an outlier, that is, larger than [mean + 3 x standard deviation]. If 

at least one outlier is found, carry out the connectivity test for 

the pixels contained in the unit. If the pixels in a unit are noise 

according to the test, remove the corresponding unit and 

rearrange the Ld. values in the item 1.0. of the Auxiliary Means. 

The further discussion will be performed in the later part of this 

section since the noise handling is very important in the Cluster 

Analysis employing the Auxiliary Means suggested in this thesis. 

(iv) In the fourth step, n sets of the L*, a* and b* data are easily 

extracted from the Auxiliary Means, where n is the number of 

units. The important thing is that they should be extracted from 

every unit in the order of the i.d. values. The data set obtained in 
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this step is an n x 3 matrix and is to be used as an input data set 

to the SPSS-X Cluster Analysis procedure. The maximum size of n 

is 64 In a system of six-bit resolution or 256 with an eight-bit 

resolution. 

(v) In the fifth step, execute the Cluster Analysis routine in the 

SPSS-X using the input data obtained in the previous step. In the 

routine, an n x n symmetric distance matrix is created, and 

additionally other operations illustrated in section 4.3 are 

performed., where the single linkage method is adopted. The 

routine produces lot of information which is useful for decision 

making. In particular, the Agglomeration Schedule, Cluster 

Membership of Cases, and the Oendrogram in the output are 

dominately used for clustering. The Cluster Membership of Cases 

is used as an input data set to the next step. 

(vi) In the sixth step, the number of different colours found in the 

object is supplied by the user. 

(vii) In the seventh step, the result of the Cluster Analysis is 

assigned to the first item of every unit of the Auxiliary Means. 

(viii) In the eighth step, display the colour pattern using the pixel 

value and the (x, y) coordinates in the units having the same value 

of the Cluster 1.0. Display the colour patterns equal to the number 

of clusters. The important thing to be noted is that if there is no 

noise, the value of the 1.0. in each of the units of the Auxiliary 

Means is not changed once it is assigned in the second step. This 

means that the segmentation of pixels in the image is performed 

only once, and the pixels are not phYSically merged, but 
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temporally called when the Cluster I.D. which they belong to is 

called. 

(viiii) In the last step, if the colour patterns displayed are 

consistent with those of human vision, then the procedure is 

stopped; otherwise, the procedure requires the new number of 

different colours to be specified by the user. The important 

feature of this algorithm is that after this step the Cluster 

Analysis routine no longer needs to be implemented and the output 

already produced is used. Once the routine stops at the end of the 

procedure, the Auxiliary Means assigned with the cluster values in 

the final stage is used in the colour pattern description in Chapter 

6. 

The handling of the random noise considered in the third step 

is an important problem that causes the image analysis to be 

disfunctional. The Cluster Analysis approach itself is not exempt 

from this tendency. The important fact to be noted is that, in the 

Cluster Analysis which has been designed to employ the Auxiliary 

Means, the pixels of an image are not involved directly in the 

Cluster Analysis procedure, but only unique colour values. If some 

pixels regarded as random noise have very strange features, the 

result of a clustering will be severely damaged by the pixels. The 

main idea to deal with the random noise is to strengthen this 

approach and to enable this procedure to produce the high quality 

of colour patterns consistent with that of . human vision. In 

this procedure, it is assumed that some pixels that have all of the 

following features are determined as the random noise. 

(1) The number of pixels with the same value is very small. 

(2) The colour feature of the pixel is distinctly different from 
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those of other pixels. 

(3) The pixels are scattered. 

There is a problem with the above criteria, that is, can a small 

area of colour be defined as noise or as part of a pattern. In order 

to define the criteria, consider the butterfly domain, spot 

patterns in the wing of a butterfly are generally studied, where 

the area of a spot and the number of spots are among the 

important factors for the identification (Schwanwitsch, 1924; 

Nijhout, 1978; Brakefiel, 1979). This fact reveals that even a tiny 

spot in an image plays an important role and cannot be ignored at 

all. Taking into account this fact, the criterion for the small 

number in the first feature is determined as one percent of the 

total number of pixels in an image. If the criterion is determined 

with the number of pixels rather than the percentage, a severe 

problem is expected when the image of a butterfly is enlarged or 

reduced. 

For the second criterion, for one pixel in each unit of the 

Auxiliary Means, calculate the distances between the pixel and 

pixels of the other units using the L *, a* and b* values; and 

calculate the average distance. If the number of units of Auxiliary 

Means is n, the number of average distances obtained is n. Then, 

calculate the mean and standard deviation of the average 

distances. Let the average distances be m1, m2, m3 , ••• , mn, the 

mean, maV9' and the standard deviation, S, of the average 

distances are respectively, 

mavg = (ml + m2 + ... + mn}/n, 

S = [L(mavg - ml }211/2, 

where, i=1, 2, 3, ... , n. In statistical analysis, the criterion for an 

outlier is usually [mean ± 3 x S1 in the normal distribution. 
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Suppose that an average distance for a pixel regarded as random 

noise is m
J
• and if the mJ is greater than [mavg + 3 x SJ. it is 

concluded that the pixel IS aberrant. Where. the meaning of this 

aberration is that the pixel has a very distinctive colour feature 

which is in contrast to other pixels. To clarify. note the following 

example with four pixels A. B. C and D. in Figure 4.12. where the 

figures between the pixels are distances. The average distances 

for the four pixels are 5.3. 11. 6.3 and 5.3. respectively. as shown 

in Table 4.1. The mean of the average distances is 6.9, the 

standard deviation of the average distances is 1.2. and the 

criterion for the outlier calculated is 10.5. The pixel B is 

considered as an outlier since the average distance of the pixel is 

11 which is greater than the criterion 10.5. In other wordS, it is 

considered that the pixel B has a distinctly different colour 

feature. If only a few pixels with the colour feature are 

scattered. the result of clustering will not be consistent with 

human vision. 

--~----~---::~ 
.... ---- .... ..:;----- ~ 

1!l----- 11 _-------- ·~r. :,3 
.. _.. .._---- ...... I, 

-------------- 12 "'0' 
~-;;:::::--------------------------------- C 

Figure 4.12 PiHels including nOise. 

The connectivity for the third feature is another important 

concept having been used to characterise a region in an image. The 

connectivity stands for the connection of pixels in an image. The 

connectivity test is performed using a 3 x 3 array. For instance. 

dark pixels in Figures 4.13.(b) and (c) are connected ones and. on 
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the other hand, dark pixels in Figure 4.13.{a) are completely 

unconnected. Note the 3 x 3 array containing a pixel with the dark 

feature in the middle as shown in Figure 4.13.{a'), each of the 

eight neighbours has~light feature, thus it is concluded that the 

pixel with the dark feature is isolated. On the other hand, each 

The Mean of the The Standard 
Pixel Distance Average Distance Average Distances Deviation of 

(ml) (mavg) Average 
Distances 

AB=10 m1= 10+4+2 
A AC=4 3 

-5.3 . 
AD= 2 

10+11+12 
mavg 

. BA-10 m2- 3 5.3+11 +6.3+5.3 
B BD.11 ~ 

BC=12 .11 4 

CD=3 m3- 3+4+12 = 6.9 
3 S = 1.2 C CA=4 

CB=12 -6.3 

DA=2 m4= 
2+11+3 

0 DB-11 
3 

DC-3 =~.3 

Criterion for the outlier: 6.9 + 3 x 1.2 = 10.5 

Table 4.1 The calculation of the outller. 

pixel centred at the array in Figure 4.13.(b') and (c') has two 

neighbours with dark features, respectively. Hence, it is 

concluded that the pixels in Figure 4.13.{b'} and (c') are connected. 

In the actual process, first, assign any number larger than the 

maximum pixel value of a system, 1,000 for instance, to every 
, 

cell of an array of the same size as the image, and assign the 

values of the pixels being examined to the array then each pixel 

value being examined can clearly be discriminated from other 
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pixel values. Second, carry out the connectivity test for each pixel 

being tested. Whenever an isolated pixel is detected during the 

test, count the number of isolated pixels. If the number is equal to 

the number of pixels being tested, it is concluded that the pixels 

are fully isolated. After the connectivity test, If some pixels 

(B) i sol Bted (b) connected (c) connected 
pixels pixels ixel s 

i~@ Im~~ ~ 
Im~l :~mi 

WW 

,Ir ,Ir , 

mm mm 
IHill [HW 

(13') (b') (c') 

Figure 4.13 The connectiuity test. 

become clearly unconnected, have distinctly different colour 

features from each other, and are only a few in number, then it is 

concluded that the pixels are random noise and the corresponding 

unit is removed. 

After the input data set to the Cluster Analysis is prepared, 

the Cluster Analysis is performed in the fifth step, where the 

single linkage method is applied. Let us investigate the suitability 

of the single linkage method. As already discussed in section 4.3, 

there are many techniques in the hierarchical met~ods of Cluster 

Analysis procedure, such as the single linkage method, the 
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complete linkage method, the average linkage method and the 

centroid method. Among these techniques, which method is most 

suitable to colour image segmentation? This is not a simple 

question since the quality of a result depends upon the method. 

Everitt U1974)-,-_~=--'has also pointed out that the major 

difficulty with the hierarchical techniques lies in the choice of 

one method from the many available and in the choice of which 

'similarity' to use. The important thing to be noted is that in the 

average linkage method and the centroid method all of the data 

obtained from the whole pixels of an image should be involved in 

the calculation of the average or the centroid. However, the data 

prepared in the fourth step are a set of sample pixels 

representing each group of pixels having the same colour feature. 

Apart from the limitation, it is known that the two methods and 

the complete linkage method are likely to result in overlapping 

clusters (Lorr, 1983). The complete linkage method, as already 

explained in section 4.3, is that the longest distance between one 

of entities in one cluster and that in another cluster is 

calculated, thus the number of longest distances obtained is n(n-

1 )/2, where n is the number of clusters, Eventually, the two 

clusters having the minimum value are merged. However, This 

method leads to some problems when applied to image 

segmentation as shown in Figure 4.14. Let d1 be the longest 

distance between the clusters A and B, and d2 be the longest 

distance between the clusters A and C as shown in Figure 4.14.(a); 

and d3 be the shortest distance between the clusters A and B, and 

d4 be the shortest distance between the clusters A and C as 

shown in Figure 4.14.(b). According to the algorithm of the 

compete linkage method, the cluster A and the cluster Bare 

merged because the distance d2 is shorter than the distance d1. 
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However, in fact, as Figure 4.14.{a) shows, the cluster B is 

located more closely to the cluster A than the cluster C, although 

the variance of the cluster B is larger than that of the cluster C. 

On the other hand, in the single linkage method, the cluster B is 

merged into the cluster A because the distance d3 is shorter than 

the distance d4. Consequently, comparing the two results 

undoubtedly reveals that the single linkage method produces the 

more reasonable result than the compete linkage method. In terms 

of~practical application of the single linkage method, Everitt 

I (-197 4) - - -- - i has suggested that if one is looking for optimally L _______ _ 

connected clusters, the single linkage method may be useful. 
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Figure 4.14 A comporlson of the complete linkoge method ond 
the single linkoge method. 

For the time being, let us focus on the properties of the 

natural colours in the wing-patterns of butterflies. The important 

feature found in the empirical study of the wing-patterns of 

butterflies is that when the area near the border line between 
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two patterns of completely different colours is zoomed up, many 

different colours are easily detected. In particular, the colours 

are changed from one colour to another gradually rather than 

abruptly. Note the images Of'ing-patterns of a butterfly in 

Figure 4.15. 

(a) (b) 
Figure 4.15 The original image and enlarged image. (a) Rn 
original Image of the left-hand side wing of 11 butterfly. (b) 
The enlarged Image of the Image bounded by a bOH In (a). 

The image on the left-hand side is the original image of the left 

wing of a butterfly and the image on the right-hand side is an 

enlarged image of the image inside the small box in Figure 

4.15.(a). From the image on the left-hand side, we can detect two 

kinds of different colours one is dark brown and another is orange. 

Consequently, this fact found in the investigation suggests the 

important facts and directions of the colour image segmentation 

are as follows: 

(1) When a natural image consists of more than two colour 

patterns, the distribution of the scanned colours composing each 

pattern in the L ·a·b· colour feature space usually forms a 

chaining shape as Figure 4.16 shows. 
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(2) In the L"a"b" colour feature space, the shape of the cluster of 

the colours constructing a meaningful pattern may be qUite 

different from the simple cube such as the ellipsoid or spherical 

shape which is commonly used for a tolerance limit to 

discriminate different colours in the colour feature space in the 

colour science domain. 

(3) In a complex situation, that iS,when an object image consists 

of more than two patterns of slightly different colours or with 

unclear borders among them, it is ambiguous to make a clear 

border line separating the groups (clusters) of similar colours 

composing the different patterns. 
fu 

If the theoretical aspect of the single linkage method and "facts 

obtained in the investigation are put together, it will be 

undoubtedly concluded that a method to detect elongated or curved 

cluster structures is the single linkage method. The scatter 

diagrams shown in Figure 4.16 are the results obtained from 

applying the single linkage method to the extraction of colour 

patterns from the image of a butterfly, plexippus in Figure 

4.1S.(a) whose wing has two patterns of different colour groups. 

Each of the diagrams in Figure 4.16 is a two-dimensional scatter 

diagram projecting the clusters in the three-dimensional L", a" 

and b" colour feature space onto an a"b" plane, an L"a" plane, or 

an L"b" plane. In the diagrams, each number surrounded by the 

closed curve represents the cluster Ld. As the diagrams show, the 

shape of each cluster is so complex that it is obviously difficult 

not only to simply describe it using a mathematical formula, but 

also to characterise it without the combination of the three 

diagrams. 
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Figure 4.16 The scattered diagrams of clusters. (continued) 
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Figure 4.16 The scattered diagrams of clusters. (continued) 

After the result of Cluster Analysis is obtained, the 

immediate problem in the sixth step is how many patterns with 

different colours should be extracted. If the image under 

processing consists of patterns with clearly different colours, 

and the patterns formulate simple blocks, the number of different 

colours to be supplied by the user will not be a problem. On the 

other hand, if patterns with similar colours are scattered without 

clear border lines among them, there will be a confusion or 

difficulty in deciding the number of different colours in the image 
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under processing. The sample image of a butterfly, plexippus, in 

Figure 4.15 shows one of the examples related to the above case. 

The reason for the difficulty in the decision making is because a 

similarity among the different colours and ambiguous border lines 

among them make a visual judgment difficult. As human vision 

has difficulties in decision making with a complex image, so the 

determination of how many groups are present in the result of the 

Cluster Analysis has difficulties. The reason for the difficulties 

lies in the complex nature of multivariate sampling distributions. 

The problem of how many patterns with different colours should 

be extracted from an image obviously corresponds to a problem of 

how many clusters should be chosen from the result of the Cluster 

Analysis. In the social sciences, decision making for choosing the 

number of clusters is generally carried out using the tree 

structure of a dendrogram, which is one of the results obtained 

from the Cluster Analysis routine of the SPSS-X, as shown in 

Figure 4.17. The dendrogram obtained using the input data created 

from the image in Figure 4.1S.(a) consists of three kinds of 

components: 

(a) a hierarchical tree, 

(b) labelled cases, 

(c) distance level. 

The tree which is a connected graph without cycles is used as a 

representation of the clustering hierarchy for the twenty-eight 

entities which are the different kinds of pixels of the image in 

Figure 4.15.(a). The root on the right-hand side of the tree is the 

initial vertex of the tree to which all other vertices (entities) are 

connected. Eventually, the tree is subdivided into binary trees, so 

it is possible to travel from any entity to another along the tree. 

The reason why the binary trees are used in the clustering 
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hierarchy IS shown in the algorithm of merging clusters in section 

4.3. The labelled cases on the vertical aXIs on the left-hand side 

in Figure 4.17 Include twenty-eight entitles, where each of the 

entities is labelled according to the sequence in the input data set 

and is located in the corresponding clusters. The horizontal axis 

represents the distance level between clusters. The number of 

clusters is always associated with the distance level on the 

horizontal axis. For instance, cut the tree along the vertical 

direction at the distance level 23 as shown in Figure 4.17, then 

* * * HIE R ARC H I C A L C L U 5 T ERA N A L Y 5 IS' * * 
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Figure 4.17 A dendrogram. 
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there will be two subtrees. Collect the entities at the ends of 

each tree, then two clusters are obtained as follows: 

cluster 1 = [25, 26, 22, 12, 6, 27, 28, 20, 19, 21, 18, 8, 9, 4, 17, 

10, 14, 24, 1, 11, 13, 23], 

cluster 2 = [3, 15, 7, 16, 5, 2]. 

If the tree is cut in the same manner at a different distance level, 

the number of clusters and the contents in each of the clusters 

are obviously changed. Consequently, the number of clusters and 

the contents in each of the clusters are determined depending 

upon the distance level. In fact, it is impossible for the ordinary 

user to get the distance level directly from an image. According 

to this fact, the system has been designed to enable the user to 

enter the number of different colours. When the original image of 

an object is displayed,/ the user decides the number of patterns 

with different colours in the image and enters the number of 

colours. On the other hand, it is possible to design a procedure to 

use the distance level instead of the number of different colours 

to determine the number of clusters. However, for the practical 

application, the system was designed to only handle the number of 

different colours. The seventh step in the process selects the 

number of clusters, corresponding to the number entered by the 

user, from the Cluster Membership of Cases which is one of 

tkoutputs of the Cluster Analysis routine of . 0 SPSS-X in Figure 

4.18. The Cluster Membership of Cases in Figure 4.18 is a sample 

output for the image in Figure 4.1S.(a). It contains only part of the 

output, where the top line represents the number of clusters, the 

left most column represents the labelled cases, and the other 

columns below the number of clusters represent the cluster Ld. 

values. If the number entered by the user is 2, for instance, a 

column corresponding to 2 (the number of clusters) is selected. 
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The column surrounded by a dashed line in Figure 4.18 has cluster 

Ld. values which are arranged In the sequence of the labelled 

cases. Eventually, each of the cluster Ld. values is assigned 

individually to the item 1.0. of the unit in the Auxiliary Means, in 

the sequence of the labelled cases. 

* * * HIE R ARC H I C A L C L U 5 T E R A N A L Y 5 15* * * 

Cluster Membership of Cases using Single Linkage 

Number of Clusters 

Label Case 10 9 8 7 6 5 4 3 -"2"' 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 3 2 

4 4 4 4 4 4 4 4 1 1 
5 5 5 5 5 5 5 3 3 2 

6 6 6 6 6 4 4 4 1 1 
7 3 3 3 3 3 3 3 3 2 

8 7 7 7 4 4 4 4 1 1 
9 7 7 7 4 4 4 4 1 1 

10 8 4 4 4 4 4 4 1 1 
11 1 1 1 1 1 1 1 1 1 
12 6 6 6 6 4 4 4 1 1 

13 9 8 1 1 1 1 1 1 1 
14 8 4 4 4 4 4 4 1 1 
15 3 3 3 3 3 3 3 3 2 
16 10 9 8 7 6 3 3 3 2 
17 4 4 4 4 4 4 4 1 1 
18 6 6 6 6 4 4 4 1 1 
19 6 6 6 6 4 4 4 1 1 
20 6 6 6 6 4 4 4 1 1 
21 6 6 6 6 4 4 4 1 1 
22 6 6 6 6 4 4 4 1 1 

23 9 8 1 1 1 1 1 1 1 
24 8 4 4 4 4 4 4 1 1 
25 6 6 6 6 4 4 4 1 1 
26 6 6 6 6 4 4 4 1 1 

27 6 6 6 6 4 4 4 1 1 

28 6 6 6 6 4 4 4 1 1 , 
--_ .. -' 

Figure 4.18 Cluster Membership of Cases. 

, 
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This concept of assigning the result of the Cluster Analysis to the 

Auxiliary Means is one of the important kernel points in this 

approach to the colour image segmentation. In terms of system 

efficiency, applying this concept actually dramatically reduces 

not only the computing time, but also the memory space since all 

of the pixels in an image are not involved in assigning the cluster 

Ld. The sample image in Figure 4.1S.(a) has twenty-eight different 

kinds of pixels with different values and its size is, for instance, 

200 x 200. In this case, the operation of assigning the cluster Ld. 

to the Auxiliary Means is performed only twenty-eight times, 

rather than 40,000 times. It needs only 28/40,OOOths of the 

computing time and the corresponding memory space. When the 

image is enlarged, the values will be dramatically reduced. Let us 

have a close look at the process. The process picks the right most 

column from the Cluster Membership of Cases in Figure 4.18 

according to the number of patterns with different colours from 

the user. In Figure 4.19, the top line is the Label Case where each 

labelled case is arranged in sequence from the left to right, and 

the next line includes the cluster Ld. values which correspond to 

the labelled cases, respectively. Below this line, the twenty-eight 

units of the Auxiliary Means are arranged in the sequence of the 

labelled cases. In the process, each of the cluster Ld. values in the 

second line is assigned to each of the units of the Auxiliary Means 

in sequence, one by one. After performing this process, the unit in 

the left most has been aSSigned 1, the next unit 2, the third unit 

2, and finally the unit in the right most 1, as in Figure 4.19 

shows. When the number of patterns with different colours 

entered by the user is 3, the first unit will be assigned 1, the 

second unit 2, the third unit 3, and the last unit 1. After all of the 

units in the Auxiliary Means have been assigned cluster Ld. values, 
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each of the patterns is displayed In the eighth step. Consider the 

procedure of displaying each of the patterns with the previous 

example. In the process of displaYing an image, the major 

components of an image are (I) the size of an image, (ii) the value 

of each pixel, and (lIi) the (x, y) coordinates of each pixel. In the 

procedure in Figure 4.20, the first parameter i, which is the 

number of patterns with different colours, has values of 1 and 2. 

The procedure of displaying a pattern is performed twice. In the 

next step, the image of 200 x 200 is cleared with the pixel value 

in the background. As soon as the image is cleared, each head of 

Label Case 1 2 3 4 . . 28 

Cluster \ 2\. 2, 1 . . } 

\ \~ j 
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2 2 
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2 3 28 
I.D. 1 

p3 . p28 
Pixel Vel ue pI p2 

53.7 120.7198.3 
L*,a*,b* 37.71 4.9 14O.S .71-3.4 .51 12.1 

n28 n3 
N.O P. nl n2 

(x, y) (x 1.1 , yl.l) , y2. I) 
, y3. I) (x28.1, y28.1) 
, y3.2) (x28.2, y28.2) 

coordt nates (x 1.2, y 1.2) , y2.2) ... . . . . . . . . . . . . . . 
, y2.n2) , y3.n3) (x28.n28,y28.n28) 

(xl.nl, yl.nl) 

Figure 4.19 Rssigning the cluster i.d. to the unit of the 
RUHiliary Means. 

28 units of the Auxiliary Means is searched for the same value of 

i. When the cluster i.d. in the head of the unit in the Auxiliary 

Means is equal to the value of i, assign the pixel value to the (x, y) 
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of the image array, where x and y are each of the (x, y) 

coordinates in the unit. If all of the pixels In the units having the 

same cluster i.d. are assigned to the array, display the image. 

Each of the images containing the pattern obtained in this 

procedure is depicted in Figure 4.21. The important feature to be 

noted in the procedure is that since searching is performed only 

with the heads of the units in the Auxiliary Means, the computing 

time is also dramatically reduced. 

Do j = 1 to 2 

I clear lmage_array(x,yl I 
Do j = 1 to 28 

~ No 
Cluster?i.d. EO i 

, 

Ves 
Do n = 1 to N.O.P. 

lml!!ge_l!!rrl!!y(x,yl = plxel value I 
.. 

I dl splay lmage_array(x,yl I 

Figure 4.20 The procedure for displaying patterns. 
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Pattern 1 Pattern 2 

Figure 4.21 The patterns eHtracted. 
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4.5 CONCLUSION. 

In the image analysis domain, the majority of approaches to 

segmenting a colour image into meaningful segments have been 

constrained by the problem of dealing With inordinate amounts of 

data, i.e. a large number of pixels of an image. In spite of this 

difficulty, many approaches from slightly different angles have 

been carried out to achieve the same goal. It has generally been 

realised that the majority of the approaches in the colour image 

segmentation could not be achieved othe~ a roundabout route. 

However, they are clearly aware that a short cut exists, but they 

are also aware of a major difficulty with this short cut. This 

method suggested in this chapter provides such a short cut. The 

Auxiliary Means is a reasonable way to the short cut. To get 

through this short cut one must directly apply the Cluster 

Analysis to the colour image segmentation. In the practical 

applications which have been performed using sample images, the 

Auxiliary Means has successfully been used. To strengthen the 

function of the Auxiliary Means in the colour image segmentation 

a new algorithm has been added. In this algorithm, a method to 

remove random noise, which weakens the Auxiliary Means, has 

been considered. 

During the development of the algorithm of this approach, 

Cluster Analysis has been thoroughly reviewed from the 

theoretical aspect to the practical application. Indeed, the 

application of the Cluster Analysis to colour image segmentation 

has led to a reasonable solution. The main reason is that the 

problem of the colour image segmentation is originally 

formulated in a three-dimensional colour feature space, 1I<lt in 

144 



a one-dimensional domain, nor in a two-dimensional plane. Most 

of the existing approaches such as the mode-seeking method 

(Chow & Kaneko, 1972), the recursive region splitting method 

(Ohlander, Price & Reddy, 1978), and the decision surface method 

(Underwood & Aggarwal, 1977), etc., have tried to find the 

solution in a one-dimensional or two-dimensional domain in spite 

of an enormous use of computing time. It is believed that the 

designers of these approaches have done their best and the basic 

ideas have been brilliant within the circumstances, i.e. one- or 

two-dimensional domains. In fact, when one tries to solve a 

three-dimensional problem which is not simple in a one- or two­

dimensional domain, the problem suddenly becomes more complex 

than imagined. In Cluster Analysis, the basic requirement is to 

calculate a distance matrix. If the matrix is calculated for an n x 

n image, the size of the matrix is (n x n) x (n x n) which usually 

exceeds the size of the core memory of existing main frames 

although the size of an image is small, for instance 100 x 100. It 

has been regarded as an obstacle like an incurable cancer in 

tlu... medical domain. Eventually, the important fact to be noted is that 

it is impossible to carry out the application without employing 

the Auxiliary Means. Another desirable aspect of the Auxiliary 

Means is that it can be efficiently used in the operation of 

displaying each of~atterns extracted to reduce memory space as 

well as computing time. As far as system efficiency is concerned, 

the most important factors to be considered not only in the design 

stage, but also in the implementation stage are how to minimise 

the computing time and the memory space, and to produce the 

highest quality output. From this point of view, the algorithm 

applying Cluster Analysis to the colour image segmentation with 

the Auxiliary Means in this thesis accommodates the important 
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factors. 

In particular, the major concept of the Auxiliary Means 

developed in this thesis can be generally used in Cluster Analysis 

for any kinds of problems in the academic or the industrial 

research fields. For example, census data usually consist of a 

huge number of observations, so it is not easy to perform Cluster 

Analysis. However, since most of the variables in the census data 

include categorical values, the concept of the Auxiliary Means can 

be applied without any difficulty. 
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Chapter 5 

SHAPE DESCRIPTION METHODS. 

5.1 Introduction. 

5.2 Existing Shape Descriptors. 

5.3 New Shape Description Method. 

5.3.1 The background and Basic Principle of this Method. 

5.3.2 The Algorithm for this Method. 

5.3.2.1 Detecting a Principal Axis. 

5.3.2.2 Calculation of Ratios. 

5.3.2.2.1 Rotation of a Contour. 

5.3.2.2.2 Calculation of Areas of Segments. 

5.3.2.2.3 Calculation of Ratios. 

5.4 Conclusion. 
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5.1 INTRODUCTION. 

Extracting the boundary of an object from an image is 

generally not a simple procedure. The main objective of extracting 

the boundary is to use the boundary in an object discrimination 

procedure. In this procedure. shape descriptors play the most 

important role. No matter how accurate the boundary may be, if a 

shape descriptor is inefficiently organised in its function, the 

effort which has been involved in producing the boundary will 

become meaningless, and the efficiency of a system which 

employs the descriptor will decrease. In some cases, the system 

might even produce unreasonable results. It is obvious that the 

importance of the shape descriptor in object discrimination 

procedures cannot be emphasised too much. 

To date, many different approaches have been attempted for 

describing the boundary of an object. An investigation of some of 

the approaches which are closely related to the subject of this 

thesis will be carried out. The invariant moment method, the 

Fourier description method and the chain coding method are quite 

commonly used in the object discrimination domain. The 

investigation will concentrate on the theoretical background, the 

detailed procedure and the final product of each approach. 

Comparing, in parallel, the method to each other along functional 

lines. The main objective of the investigation is to understand the 

current state of the art of the existing methods, thus discovering 

any problems, pertinent to this thesis, that then need to be solved. 

An improved method for shape description will be clearly 

illustrated from the motivation for its development to its 

algorithm. One of the distinctive features of this method is that 
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it has been designed to be directly involved in object 

discrimination procedures. 
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5.2 EXISTING SHAPE DESCRIPTORS. 

When the shape of an object is extracted from an image, the 

immediate task is how to describe the shape based on its external 

characteristics. In terms of biology, the external characteristics 

of an object are usually called morphological features. The 

methods for describing the morphological features are usually 

associated with tasks where the shape is important but that 

I ~-C:;~tai~~d within it is of little or no interest. In this thesis, both -_____ ~1 

the shape and its interior are of importance, so they are 

separately discussed. In this section, the existing shape 

description methods will be investigated. In particular, the 

investigation will focus on the invariant moment method, the 

Fourier descriptor, and the chain code, since they are commonly 

used in this domain. An important principle that should be 

considered at the design stage is to describe the features of an 

object in order to be independent of the starting point, scale, 

translation and orientation (Alt, 1962). Actually, it has been 

regarded as a basic condition for a shape descriptor. In practical 

applications, the variations are such that it is unlikely that the 

shapes, sizes, positions and orientations of two objects will be 

identical. In fact, the major difficulties in describing the 

features of an object arise because of these variations. Although 

only one of these variations is ignored, it will give rise to serious 

difficulty in an object identification process, because this can 

affect the various measurements of an object. 

One scalar method using mathematical properties derived from 

the area within a shape contour is simple to implement. The 

descriptors usually take the form of numerical measures of the 
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shape rather than representing symbolic properties. It is known 

that in simple scalar techniquesj area, perimeter length, diameter, 

the orientation of the major axis, and curvatures, etc. have been 

efficiently used for many years in the field of robotic vision and 

object recognition. The area of a shape is simply the number of 

pixels within a shape. A rough approximation of the perimeter 

length is obtained by counting the number of pixels along the 

contour. The diameter of a shape is defined by those two extrema 

on the boundary that have the greatest distance between them. 

The orientation of the major axis is an angle with a horizontal 

line of an image. The curvature of a shape is defined as the rate of 

change of slope. These descriptors are quite simply calculated, 

although some of them have a serious weakness in that they yield 

the same values for objects of distinctly different shapes. 

To illustrate some problems with some of these descriptors, 

let us consider the following example. A rectangle of 1 x 20 in 

Figure 5.1.{a) is cut into three pieces, i.e. one rectangle of 1 x 18 

and two squares of 1 x 1 as shown in Figure 5.1.{b). Put one of the 

squares on the rectangle slightly to the left-hand side and the 

other square underneath the rectangle slightly to the right-hand 

side. Then, an object in Figure 5.1.{c) is produced. On the other 

hand, put the two squares on the rectangle slightly apart from 

each other, then another object in Figure 5.1.{d) can be obtained. 

All of the numbers represent measurements of distances. Note the 

two objects of distinctly different shape in Figures 5.1.{c) and (d). 

The descriptor area yields 20 for each of the objects. The 

descriptor perimeter length yields 42 for each of the two objects. 

The diameter also yields the same value 18.03 for each ~of them. 

Although the three descriptors are used at the same time to 
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classify the two objects in Figures 5.1.(c) and (d) with widely 

different features, they show their limitations in the task by 

yielding the same values for the objects. 

(a) 

1 ~"",~"""""""""""""""", """""""""""""""""""" """""""""""""""""""" 
20 

(c) 

7 

7 

area = 18 x 1 + 2( 1 x 1) 
= 20 

perimeter = 42 1 
diameter = (1 + 182 )1 2 

= 18.03 

(b) 

1 """"""""""""""", 00' ", 1 """"""""""""""", " ", """"""""""""""", " ", 
1 B 1 1 

(d) 

7 2 7 

18 

area = 18 x 1 + 2( 1 )( 1) 
= 20 

perimeter = 42 
di ameter = (1 + 182 )1/2 

= 18.03 

Figure 5.1 Descriptors and objects with different feature. 

A shape can be described by the spatial moments of its 

intensity function, where this method is called the method of 

moments. The main paradigm of this method is that all possible 

measurement features of a shape can be represented in the set of 

moments. The term "moment" comes from the domain of 

statistics. The moments are easily calculated for an intensity 

function, f(x, y). The two-dimensional (p + q)th order moments 

which are called the (p + q)th generalised moments are: 
• 

(5.2-1) 
where p, q = 0, 1, 2, 3, ...... , and f(x, y) is the intensity function 

representing a shape. It should be noted from Equation (5.2-1) that 

since the generalised moments are scalars calculated from the 
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original data without any transformation, they are not 

independent of size, position and orientation. In other words, 

when two sets of the generalised moments are calculated for two 

different shapes, if the sizes, positions and orientations of the 

objects in the images are different, it is impossible to compare 

the objects using the sets. To accomplish this task successfully 

it is necessary to make the moments invariant to these 

conditions. What should be done in the first step is to transform 

the generalised moments into the central moments which are 

moments about the means o~ and y coordinates. If all of the x 

and y coordinates of the shape are shifted so that its origin 

coincides with (X, y), where X and 9 are the mean values of the 

image coordinates x and y, respectively, this translation results 

in a set of central moments. The two mean values are calculated 

by applying Equation (5.2-1): 

X = mlo 
moo , 

_ mol 
Y = moo , 

where moo = E EXOyO(x, y) 
x 11 

= ~ t (x, y) 

(5.2-2) 

represents the total number of pixels in the image; and m10 and 

mo1 are the first order moments which are the summations of the 

x and y coordinates, respectively: 

mlO = E EXIY°f(x, y) = E E x (x, Y), 
XII XII 

mOl = ~tXoylf(X,y) = ~tYf(x,y). 

Replacing xPyq with (x - X )P(y - g)q in Equation (5.2-1) results in 

the central moments ~pq: 

JJ.pq = ~ ~(X - X )p(y - y)q (x, y). (5.2-3) 
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Equation (5.2-3) is usually called the central moment generation 

function. By applying the central moment generation function the 

central moments are expressed in terms of the ordinary moments 

for the first four orders (Hu, 1962): 

I-loo = moo = n, 

1-l10 = l-lo1 = 0, 

1-l20 = m20 - nx2, 

1-l11 .. m11 - n X g, 

l-lo2 = mo2 - ng 2, 
- -3 1-l30 = m30 - 3m2ox + 2nX , 

- 2-1-l21 .. m21 - m20Y - 2m11 x + 2nx Y, 

1-l12=m12 - m02x- 2m11 g+2nxg, 
- g3 l-lo3 .. mo3 - 3mo2Y + 2n . 

The central moments are invariant only to the locations of the 

images. In the second step, by using the second- and third-order 

central moments the seven low-order invariant moments are 

known to be obtained. It is obvious that the invariant moments are 

functions of the central moments. The invariant moments 

proposed by HU\(1962)--_iare: 

M1 .. Jl20 + I-lo2 ' 

M2 .. (Jl2o - l-lo2)2 + 4 1-l112, 

M3 = (l-l3o - 3 1-l12)2 + (3 Jl21 - J.103)2, 

M4 = (l-l3o + 1-l12)2 + (Jl21 + 1-lo3)2, 

M5 = (l-l3o - 3 1-l12)(l-l3o + 1-l12)[ (l-l3o + 1-l12)2 - 3(Jl21 + l-l3o)]2 

+ (3 Jl21 - 1-lo3)(Jl21 + 1-lo3)[3 (1-l3 0 + 1-l12)2 - (Jl21 + 1-lo3)2] , 

M6 .. (Jl2o - I-102)[(l-l3o + 1-l12)2 - (1-l21 + I-103)2] 

+ 4 1-l12 (l-l3o + 1-l12)(Jl21 + J.103)' 

M7 = (3 Jl21 - 1-lo3)(l-l3o + 1-l12)[(l-l3o + 1-l12)2 - 3(Jl21 + l-lo3)2] 

- (l-l3o - 3 1-l12)(Jl21 + 1-lo3)[3(l-l3o + 1-l12)2 - (Jl21 + 1-lo3)2]. 
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Hu (ibid.) has shown that the first six moments M1 through to M6 

are invariant under rotation, while the seventh moment M7 is 

useful in distinguishing mirror images. This method has been used 

to accomplish pattern identification independently of position, 

size and orientation. Hall et a1.1(1975) ~ lhave applied the 
~~~~--

method of moments to classify the radiographs of coal workers. In 

this study, only central moments were used, since it was 

determined that translation invariance was desirable, but size 

and rotation invariance was undesirable. Also, the moment 

computation was limited to the set of second order moments. 
------------, 

Dudani et aLl (1977) I have also applied this method to 

an automatic recognition of aircraft types, using plastic models, 

from optical images. In this study, all of the seven invariant 

moment functions, M1 through to M7, were used. They found that it 

was difficult to arrive at any meaningful results regarding the 

relationship of recognition accuracy to the number of aircrafts in 

the given class because of the fact that similarity or 

dissimilarity in shapes of aircraft under consideration greatly 

affected the--,"ecognition accuracy. Smith and Wright . 
1--- I 

i (1971) j have undertaken a study to determine the 

feasibility of~utomatic interpretation of ship photographs using 

the method of moments. They used the invariant moments of up to 

the fifth order in their automatic identification system. Alt : 

6962) carried out the automatic recognition of printed characters 

employing the invariant moments from the third to the sixth order 

and demonstrated that a small number of moments is adequate to 
., 

characterise certain patterns and discriminate among the 

patterns of a certain set, such as alphabetical and numerical 

characters. He explained the difficulty of deciding the number of 

moments and choosing the proper order among the moments in his 
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project wasdue to the fact that the effectiveness of the process of 

classificatIon depends strongly on the order in which different 

moments are Introduced. Hu (Ibid.), who proposed the method of 

moments, has undertaken the representation of the printed 

characters on the two-dimensional space using the first and 

second order invariant moments to demonstrate the suitability of 

his method for its application to the classification of patterns. 

There have been lots of applications of this method to pattern 

classification as previously introduced. However, the important 

fact to be noted is that the number of different moments and the 

orders of the moments employed in those applications were 

different to each other. From this approach, one obvious question 

is how many different moments and which order of the moments 

should be selected to distinguish significantly different 

patterns? This question reveals that this method has some 

deficiency in its generality; generality being a desirable 

condition. It will be shown that this is a major problem with this 
method. White and Prenticel (19-88),----- ------ - - - -l in their 

I I 

study of discriminating leaf outlines, pointed out the problem 

that since this method summarised mainly the overall shape, it is 

difficult to interpret the result. Another criticism by Rohlf and 

Archi{{1984r~--------I. is that, using this approach, one 

cannot easily reconstruct an image from the descriptors. 

Another approach to extracting a finite set of numerical 

features from a shape is the Fourier descriptor, first suggested 

by Cosgriff [(1960~ ____ 1' The main idea of this approach is 

that look-alike shapes are usually near each other in a space of 

Fourier descriptor features endowed with the Euclidian metric 

(Zahn & Roskies, 1972). The basic principle in this method is to 
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transform a continuous function f(x) into the 

F(T'), which is called the Fourier transform of 

the equation (Brig ham, 1974): 

r( ,f' } = F(Ol) = L: f(x) exp(-j21t0lX) dx, 

Fourier integral 

f'. ' defined by 

(5.2-4) 
where j = (_1)1/2. Before looking into this method in detail, 

consider the obvious question; What kind of factors make It 

possible to apply the Fourier transform to the image analysis? Let 

us consider some brief answers: 

(1) The first immediate factor would be that the closeJ.curve of 

an object extracted from an image usually consists of a very 

complex form which cannot be transformed into an ordinary 

mathematical equation. 

(2) The second factor will be that the Fourier transform 

frequency domain contains exactly the same information as that 

of the original function; they differ only in the manner of 

presentation of the information. 

(3) The third factor which is very relevant to this inquiry can be 

found out from the properties of the tWO-dimensional Fourier 

transform described by Brigham r(1974)~ --'I 

(i) the translation property, 

(ii) the scaling property, 

(Hi) the rotation property. 

(iv) the periodicity property. 

These properties are thought to be closely related to the 

conditions which should be considered at the initial stage of 

describing the features of a shape independent of position, size 

and orientation as previously illustrated. 

(4) Finally, once a function is transformed, the graphical form of 

the transformed function usually looks so different from that of 
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fuoriginal one that it is difficult to imagine the graphical form of 

the original function. However, when the Fourier transform of a 

function is given, the original function can be easily obtained by 

using the inverse Fourier transform (Brigham, 1972): 

1 I-r- { f } = f(x) = __ F(fJJ) exp(J21tIllX) dill. 
(5.2-5) 

Replacing f(x), -j and dx in the right most part of Equation (5.2-4) 

with F(ro), j and dOl, respectively, results in Equation (5.2-5). This 

shows the ease of obtaining the inverse. In fact, this is a very 

important property that enables a wide range of applications in 

the image processing domain. This property is in contrast to that 

of the method of moments. In practice, the Fourier transform of 

f in Equation (5.2-4) is a periodic function, sines and cosines, 

since the exponential term is expressed in the form: 

exp( -j2lt rox) = cos(2lt rox) - jsin(2lt rox), 

so it is not easy to imagine the graphical form of the original 

function with that of the transformed function. It is known that 

the Fourier transform of a real function f is generally complex, 

that is, 

F(ro) = R(ro) + jX(ro) = IF(ro)lei<)(Oll (5.2-6) 

where R(ro) is the real component of F(ro) , 

X(ro) is the imaginary component of F(ro) , 

I F(ro) I is called the Fourier spectrum of f(x), 

$(00) is called the phase spectrum or phase angle of F(ro). 

(F(ro) ( can be denoted by [R2(ro) +X2(ro)]1I2, $(00) can be denoted by 

tan- 1 (X(ro)/R (00)). The variable co in the Fourier transform is often 

called the frequency variable. If f(x) is a one-dimensional 

discrete function, the one-dimensional discrete Fourier transform 

of f and its inverse function are given by (Brigham, 1972): 
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I N-1 
F(w) = N £'Of(x) exp(-J2nwx/N) 

for co= 0,1,2,3, ...... , N-1, and F(O), F(1), F(2), ...... , 
(5 2-7) 

F(N-1) are 

called the Fourier coefficients. In each of the coefficient 

calculations all the values of f(x) are involved. 

N-1 
f(x) = ~ F(oo) exp(J 2ft ooxIN) 

00=0 (5.2-8) 
for x = 0, 1, 2, 3, ...... , N-1. 

In practice, images are typically digitised in square arrays, the 

two-dimensional discrete Fourier transform of f(x. y) and its 

inverse function are: 

I N-1 N-1 
F(u, v) =-N ~ ~ f(x, y)exp(-j2ft(ux + vy)/N) 

x=O y=o (5.2-9) 
for u. v = 0, 1, 2, 3, ......• N-1, and 

f(x , y) = NI ~' ~' F(u, v) exp(j2ft(UX + vy)/N) 
u=o v=o (5.2-10) 

for x, y .. 0,1,2.3, ......• N-1. 

Another important factor, although. which is not directly related 

to the description, is that when random noise corrupts the image 

signal during transmission through channels, the pixels in the 

image f(x. y) are highly correlated but the elements of F(u, v) are 

decorrelated (Huang & Schultheiss, 1963). 

Thus far, the background and general aspect of the Fourier 

transform have been considered. Let us have a close look at the 

practical aspects of the Fourier descriptor of a shape from the 

definition to the procedure including the normalisation of the 

Fourier coefficients. The Fourier descriptor is clearly defined by 
----~----

Wesley et alr(~-990): I 
"A closed curve may be represented by a periodic function of a 

continuous parameter, or alternatively. by a set of Fourier 
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coefficients of this function. The coefficients in this 

collection are referred to as 'Fourier descriptors'. The Fourier 

descriptors provide a means for representing the boundary of a 

two-dimensional shape." 

In general, it is difficult to use the ordinary Fourier coefficients 

as input to a classifier because they contain factors dependent 

upon size, orientation, and starting point. In order to make the 

Fourier coefficients invariant to the size, orientation, and 

starting point of a contour it is necessary to perform a 

normalisation in the Fourier domain. Such Fourier-domain 

normalisation was initially developed by Granlund \ 

(1972). The procedure developed by him is as follows. 

Consider a closed contour C in the complex plane as shown in 

Figure 5.2. 

Im 

Imaginary 
Axis 

L---:--:~=='_Re 
Real Axis 

Figure 5_2 Contour function z(t). 

Trace the contour from an arbitrary point in the clockwise 

direction at a constant speed v, and simultaneously, pick at every 

time t a complex number z, then the contour function is defined by 

z = z(t), (5.2-11) 

where the parameter t means a parameter of length along the 

contour. Choose v so that T = 27t. Traversing the contour more than 

once yields a periodic function: 

z(t + nT) = z(t). (5.2-12) 
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T can be expressed as a complex Fourier series The Fourier 

descriptor of C is the complex Fourier series expansion of z(t), 

z(t) = ~ F(w)e Jnt 

n=-oo ' (5.2-13) 
where 

F(w) = _1 J~ z(t) e-jntdt 
2ft o· (5.2-14) 

This Fourier descriptor depends upon both the contour C and the 

starting point of z(t). Since the contour C is in practice taken 

from a digitised image, z(t) is not expressed as a continuous 

function. The normalisation process consists of translation, 

* rotation, and change of scale. It is assumed that F(w) is a 

specific set of Fourier coefficients from the original contour, and 

* * l(t) is the inverse of F(w) 

(a) Translatjon 

* The translation of a contour let) with the complex vector l 

results in the following (Brig ham, 1972): 

Z(t) = Z(t)* + z = fz(t)*e jnt + Z. -. 
The Fourier transform of the translated contour is expressed by: 

F(w) = {F(W)*, forwtO, 
F(w)* + Z, for w = 0. (5.2-15) 

All coefficients except F(O) are not dependent upon translation, 

F(O) is simply the complex vector indicating the position of the 

centre of gravity of a contour. 

(b) RQtatjon 

To rotate a contour in the spatial domain simply requires 

* multiplying l(t) by ele (Brig ham, 1972): 

let) = Z(t)*ei e 
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where a is the angle of rotation. Due to linearity, the Fourier 

transform of the rotated contour is: 

F(w) = F(w)' eJ 9. (5.2-16) 

(cl Change of Scale 

To change the scale of the contour, each of the Fourier 

coefficients is simply multiplied by a constant S (Brigham, 1972): 

* F(w) = SF(w) . (5.2-17) 

(d) Change of a Starting Point 

There are many different sets of Fourier coefficients for a 

certain contour depending upon the position of a starting point. 

The Fourier coefficients differ from one another with respect to a 

parameter t. Assume that there exists a certain function 

* Z(t) = Z(t) 

and, subsequently, the lower functions are given by 

* Z(t) = Z(t + t) . 

The resulting Fourier coefficients become (Brigham, 1972): 

F(w) = ;ft J~ Z(t + ""(")*e-Jnt dt 

= ejn~ _1_ J2n
z(t)*e-Jnt dt 

2ft 0 

_ Jn~F( )* _e w . (5.2-18) 

When Equations (5.2-15) through to (5.2-18) are combined 

together, the general form for the Fourier transform of a contour 

which is invariant to translation, orientation, scale and starting 

point is given by (Granlund, 1972): 

{ 
F(w) = F(II)* e~n~ 5 ejS

, for (1) "'" 0, 
*)n~.s T 

F(II) = F(II) e 5 e) + Z, for (1) = o. (5.2-19) 
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In practice, when a pOint IS selected during tracing the contour in 

Figure 5.2, a vector (x, y) IS obtained. The x and y are, 

respectively, 

{
X = Re Z(t), 
y = Im Z(t). 

The computation of the Fourier coefficients of Re Z(t) and Im Z(t) 

is performed as follows (Granlund, 1972): 

F(w) =J..JT 
Z(t) exp(-jn21ttlT) dt 

T 0 

= Re F(w) + j·lm F(w) , 

where 

Re F(w) = i J: [ Re Z(t) cos(n21ttlT) + Im Z(t> sln(n21ttlT) J dt, 

(5.2-20) 

Im F(w) = i J: [ Im Z(t) cos(n21ttlT) + Re Z(t) sln(n21ttlT) J dt. 

(5.2-21 ) 

Thus, the Fourier descriptor of a contour is obtained by applying 

Equations (5.2-20) and (5.2-21). Finally, to make the Fourier 

descriptor invariant to translation, orientation, scale and starting 

point apply Re F(w) and Im F(w) to Equation (5.2-19), respectively. 

At last, the Fourier descriptor obtained is ready to be used. The 

important fact to be noted here is that the previous procedure 

involving high level mathematical calculations of exponents of 

complex numbers, trigonometry and integrations obtains a N x 2 

vector. This only contains a set of (u, v) coordinates in a two­

dimensional Fourier plane for a certain contour. If the objective 

of a task is only boundary coding or reconstruction of a shape, a 

result is obtained but it requires unnecessarily time-consuming 
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effort. On the other hand, if the objective of a task is object 

identification, it is only the beginning of the task, although much 

effort has been involved in the procedure. It is necessary to 

extract some values such as maximal diameter of a shape, area, 

some angles, and perimeter length etc. from the vector for the 

object identification procedure. The majority of researchers who 

apply this approach use it mainly for shape description, since it is 

their final objective. Granlund I !!_~72)~ _. : ~---~. has carried out 

the description of the shape of hand printed characters to validate 

the normalisation algorithm he developed. Rohlf and Archie 

1_~1_984)~-----_J,have performed the description of the wing shape 

of mosquitoes applying this methods. Bookstein et al. :- ,1 

[-(1 ?_82-)-=-_~; have pointed out that a change in part of a shape (a 

'local change') may result in changes in the values of many of the 

coefficients making them more complicated. It is obvious that the 

drawback of this approach is: 

(1) The algorithm is simple, but not familiar to the designer and 

programmer because of several complex mathematical equations. 

(2) This approach requires a large amount of computing time. 

(3) It is not easy to modify some parts of the procedure when the 

results of an implementation are different to that expected. 

The previous approaches are based on the description of a 

shape by means of scalars. The descriptors, as have already been 

discussed, have taken the form of numerical measures of the 

shape rather than representing symbolic features. From now on, 

the investigation of the description of a shape will focus on 

external space domain techniques. One of the techniques is the 

chain coding technique. This method was introduced by Freeman 

1696-1)---~'1 and has been, to date, widely used to describe a 
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shape. In this method, an arbitrary geometric contour is encoded 

so as to facilitate its analysis and manipulation by means of a 

digital computer. He has also proposed algorithms for 

normalisation to expand and rotate a given contour, and to 

redefine a starting point. As an illustration of the procedure 

developed by Freeman, consider the boundary of Figure 5.3.{b) 

drawn in the x-y plane. Trace the boundary from the point A in the 

clockwise direction and assign one of the directions in Figure 

5.3.{a) to each segment connecting every pair of pixels. 

2 

4"'-~~-"O 

5 
6 

(6) 

7 

(b) 

A 
.. 2 

4 4 4 

(c) 

Figure 5.3 Chain code. (a) 8-directionlll chain code. (b) A 
boundllry. (c) A chain coded boundary. 

For a rectangular grid, if a point on a boundary is known, the next 

point will be only one of eight neighbours. If the decimal digits 

zero through to seven are assigned to these eight positions, 

starting with the one which is horizontally to the right and 

processing in a counter-clockwise direction, the code of Figure 

5.3.{a) is obtained. Whenever a new segment is met during the 

tracing, select a proper direction which is approximately the 

same direction as the segment and assign it to the segment. The 

result of assigning directions is shown in Figure S.3.{c) and is 

represented by the coded sequence: 
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6 4 4 4 2 1 1 7 7. 

This sequence is called a chain code. The code can be represented 

in binary form: 

110 100 100 100010001001111111. 

The important thing to be noted is that each code requires only 

three bits to specify. Freeman has argued that the required 

memory capacity for a continuous contour encoded in this way is 

then only 15 percent of that required for a contour which has all 

its points independently specified in a 1024 x 1024 point array. 

This is obviously one of~dvantages of this method; it saves 

memory space. In this approach, there are some normalisation 

techniques for manipulating contours invariant to translation, 

scale, orientation and starting point. 

(a) Expansion 

A chain coded contour stored in the memory of a digital 

computer can be expanded without any difficulty. To expand a 

contour by a ratio N, each of the digits of the contour must be 

replaced by a set of N identical digits, where N should be an 

integer. For example, if the contour in Figure 5.3.(c) is to be 

expanded exactly twice the size, the expanded contour is given by 

the chain code: 

6 6 444 444 2 2 1 1 1 1 7 7 7 ~ 

(b) Rotation 

It is known that one of the advantages of the chain coding 

technique is to rotate a contour easily. The procedure of the 

rotation of a contour is to add any even number n to each of the 

digits in the decimal representation of a contour and divide the 

digit by 8, then the remainders of the calculation are the result. 
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The result is a rotation of 90° in a counter-clockwise rotation. 

The addition or subtraction of any even number n will cause a 

rotation equal to (n/2) x 90°. If '1' is added to each digit, a 

rotation of 45° is achieved; however, this rotation is nearly 

always accomplished with distortion. The main reason for the 

distortion (Freeman, 1961) is that in rotation by this approach 

only the angle is considered. In general, both the angle and the 

distance between the axis of rotation and each point of the 

contour are important parameters in the rotation of a contour. 

However, in this approach only one parameter, i.e. angle is 

considered. This obviously reveals the limitation of this approach. 

(c) Translation 

One of the important features of the chain coding technique is 

shifting a contour with ease. Each point on a curve is located 

relative to the previous one, thus, if the (x, y) coordinates of a 

starting point are determined on an x-y plane, the (x, y) 

coordinates of each of the remaining points are relatively 

determined. To shift a contour vertically or horizontally, only the 

(x, y) coordinates of the first point are required changing. 

(d) Changing of Starting point 

The chain code obtained from a boundary depends upon the 

starting point. The procedure for normalising the code is very 

simple, that is, consider the code as a circular sequence of 

direction numbers and redefine the starting point in order to 

obtain the sequence of numbers having the minimum value. As an 

illustration, consider the chain code for Figure 5.3.(c). The 

original chain code is 6 4 4 4 2 1 1 7 7. To obtain the normalised 

code redefine the starting point and find the minimum magnitude: 
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6 4 4 4 2 1 1 7 7 (the onginal code) 

4 442 1 177 6 

4 4 2 1 1 7 7 6 4 

4 2 1 1 7 7 6 4 4 

2 1 1 7 7 6 4 4 4 

1 1 7 7 6 4 4 4 2 (the normalised code) 

1 7 7644421 

7 7 6 4 4 4 2 1 1 

7 6 4 4 4 2 1 1 7. 

Since the string 1 1 7 7 6 4 4 4 2 has the minimum magnitude, it 

is the normalised code. Note that the computing time for this 

process mainly depends upon the length of the string. If the 

magnitude of a string exceeds the maximum number allowed in a 

computer, this process suddenly becomes complicated. 

Marshalli i1-989) ---- --- ~i has pointed out some of 

disadvantages of this approach. The primary disadvantage of this 

code is that it is sensitive to noise as errors are cumulative, i.e., 

if one bit is in error, the remainder of the curve will be 

incorrectly reconstructed from the code. Another disadvantage 

pointed out by him is that the value of this code for recognition 

purposes is limited in this form. However, this approach has been 

widely used in the domain of boundary description. 

Three shape-description methods have been investigated in 

detail. During the investigation the advantages as well as 

disadvantages of each method have been thoroughly considered. 

The important fact to be noted is that in all the approaches the 

final output is not features which can be directly used in the 

shape identification process, but the vector of a contour invariant 
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to the starting point, scale, translation and orientation of the 

contour. The vector obtained usually needs further processing to 

extract some features that are traditional measures, such as the 

length of an object, maximum width, perimeter length, ratios, 

angles, etc., whIch are frequently used by biologists attempting to 

quantify shape variation patterns. Apart from the advantages or 

disadvantages of these methods, none of them takes this aspect 

into account at all. The main reason is that the features required 

in the object identification process depend upon the kind of 

objects and domain. For instance, the features that have been used 

in the leaf species identification are completely different from 

those in fish species identification. 
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5.3 NEW SHAPE DESCRIPTION METHOD. 

5.3.1 The Background and Basic Principle of this Method. 

The foregoing section has clearly shown that the three 

existing shape description methods produce a vector, as a result 

of a complex process, which contains information only about the 

boundary of an object. The vector is invariant to location, scale, 

orientation and starting point factors. The vector produced by the 

Fourier descriptor or chain code cannot directly be used in the 

object identification process. In this section, a new shape 

description method will be introduced. The important facts that 

have been considered in the design stage are as follows: 

(1) The shape descriptor should be created on a similar basis to 

that of object discrimination in human vision. 

(2) The shape descriptor should be easily interpreted not only by 

visual assessment, but also by systematic methods. 

(3) With a simple procedure, the shape descriptor which is 

independent of location, scale, orientation and starting point of a 

contour should be easily obtained. 

(4) A reflected image (a mirror image) should be processable. 

(5) The shape descriptor should be directly involved in the object 

identification procedure without any additional modification. 

(6) The shape descriptor should be used as input data to the 

multivariate statistical analysis procedure for further study. 

As an illustration of object identification using usual 

judgment, consider the objects in Figure 5.4. It is assumed that 

the major interest lies in the shapes of the objects without 

considering their size. When the shapes in Figure 5.4 are viewed 
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without any prejudice, it is easily recognised by human vision 

that the objects on the left-hand side have symmetrical shapes 

and those on the right-hand side asymmetrical shapes. It seems 

that the yardstick for this judgment would be the dotted line 

overlapped on the centre of each shape in the mind of the viewer. 

In the case of the objects on the left-hand side, each dotted line 

might divide the boundary into two curves. Then, the curves could 

be compared to each other top to bottom as shown in Figures 

S.S.(a) and (c). 

(a) (b) 

(c) (d) 

Figure 5.4 Objects shapes from the lateral uiew. 

Since each pair of horizontal line segments have equal distances, 

it can be concluded that the objects have symmetrical shapes. On 

the other hand, in the case of the objects on the right-hand side, 

some pairs of horizontal line segments around the handle part 

differ from each other in length as shown in Figures S.S.(b) and 

(d), hence it can be concluded that the objects have asymmetrical 

shapes. Let us consider a way of distinguishing symmetrical 

objects with different shapes. The objects in Figures 5.4. (a) and 

(c) have symmetrical shapes but are different from each other. A 
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property of the shape in Figure SA.(a) is that the area of the upper 

half is undoubtedly greater than that of the lower half. On the 

other hand, a property of the shape in Figure S.4.(c) IS in contrast 

to that of the shape in Figure SA.(a), i.e., the area of the lower 

half is greater than that of the upper half. These properties can 

obviously be used to distinguish the shape from each other. 

r.... 
,\ 

) ~ 
\ f... )) 
'\. -t:: f:j 

(6) (b) 

~ i h 
~ / " ( \ )} 

\ J 1=/ , 7' 

(c) (d) 

Figure 5.5 Comparison of each pair of horizontal line 
segments. 

This can be quantified by calculating the area of each segment as 

shown in Figure 5.6. The straight line PQ in Figure 5.6 is an axis 

which divides the boundary into two curves of the same shape and 

the straight line MN is a perpendicular line to the line PQ at the 

middle point of the line PQ. Let the areas of the segments in 

Figure S.6.(a) be 81, 82, 83 and 84, respectively; and the areas of 

the segments in Figure S.6.(b) be R1, R2, R3 and R4, respectively. 

In fact, since the area of the object in Figure S.6.(a) is different 

from that of the object in Figure S.6.(b), it is meaningless to 

compare the two objects by the areas. Note that each object has a 

symmetrical shape, so it will be reasonable to consider one of the 
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curves for each object. Thus, to make the comparison, consider 

the ratios r11, r12, r21 and r22 defined by: 

rl1 =_..;:.5...:...1_ 
51 + 52 , 

r 1 2 = _.::.52=--_ 
51 + 52 , 

r22 = _~R.::.2 __ 

(5.3.1-1) 
where r11 is a ratio of the area of the upper half of the curve 

r21 = _R;..:..:....I_ 
RI + R2 , RI + R2 , 

bounded by PO over the area of the curve bounded by PO, r12 

is that of the area of the lower half of the curve bounded by PO 

over the area of the curve bounded by PO, for the object in Figure 

5.6.(a): and r21 and r22 are ratios for the object in Figure 5.6.(b). 

51 

M 

p 

Q 

(0) 

53 

N M 

p 

....... ---+------+N 

Q 
(b) 

R4 

Figure 5.6 Areas of segments. 

In the identification process, r11 is compared with r21 and r12 

with r22. This method seems plausible for comparing shapes, 

since the ratios are independent of the scale, orientation, location 

and starting point of the contour of each object. However, taking 

a close look at the properties of the ratios gives rise to a further 

enhancement of the comparison process. As an illustration of this 
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fundamental problem, consider the two hypothetical objects that 

are different in shape as shown in Figure 5.7. Assume that each 

small box in the object is a Unit square. As before, only the left 

half of each object is considered. Each area of the segment is: S1 

= 2, S2 = 4, R1 = 4 and R2 = 8. The ratios r11, r12, r21 and r22 are 

respectively calculated 

rll = 2 = _1_ 
2+4 3 

r21 = 4 --4+8 3 

p 

51+--1 

-52--1-+--1 
I 

Q 
(0) 

by 

, 

, 

the following: 

r12 = 4 2 
=-

2+4 3 , 

r22 = 8 2 
= 3' 4+8 

p 

r-Jl 

R2 
I 

Q 
(b) 

Figure 5.7 Rreos of segments for hypothetlcol objects. 

In the identification process, since r11 .. r21 .. 1/3 and r12 = r22 

= 2/3, it can be concluded that the shape of the object in Figure 

5.7.(a) is the same as that of the object in Figure 5.7.(b). However, 

in fact, the objects are completely different in shape, that is, the 

object on the left-hand side is thinner than that on the right-hand 

side although the ratios r11 and r12 are equal to r21 and r22, 

respectively. Consequently, it is obvious that the ratios obtained 

only from the areas cannot be used alone in the object 

discrimination process. 

Thus, to discriminate the hypothetical objects in Figure 5.7, 
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the axis, the straight line PO, should also be considered. The line 

PO plays a major role in causing the ratios to form a close 

relationship with their respective objects. Suppose that A 1 and 

A2 are defined by: 

Al = 51 + 52 
pQ2 , 

A2 = RI + R2 
pQ2 

where A1 is a ratio of (S1 + S2) over pQ2, 

A2 is a ratio of (R1 + R2) over pQ2 

and P02 is the area of a PO x PO square. 

New ratios r11', r12', r21' and r22' are defined by: 

rll'=Alx 51 rl2'=Alx 52 
51 + 52 , 51 + 52 , 

r21' = A2 x RI r22' = A2 x R2 
R 1 + R2 , R 1 + R2 . 

(5.3.1-2) 

(5.3.1-3) 
Since the ratios r11', r12', r21' and r22' are properly linked with 

the (axis)2, they can be involved in the discrimination process. 

This can be checked by carrying out the process with the practical 

data in Figure 5.s. The length of the axis PO is 4 because the 

square is unity. The A1 and A2 are: 

Al = 2 + 4 = l... A2 = 4 + B = ~ 
4 2 8, 4 2 8· 

Applying these values to Equation (5.3.1-3) results in: 

rl1'=Al x 51 3 2 1 
51 + 52 = '8 x 2 + 4 = 8" , 

r12' = A 1 x 
52 3 4 2 

51 + 52 = '8 x =-2+4 B , 

r21' = A2 x RI 6 4 2 =- x =8" , RI + R2 8 4+8 

r22' = A2 x 
R2 6 8 4 =- x =8". RI + R2 8 4+8 

175 



When r11' is compared with r21' and r12' with r22', It is 

concluded that the object in Figure 5.7.(a} is different in shape 

from that in Figure 5.7.(b) since r11' !\; r21' and r12' !\; r22'. In the 

process of the identification of the objects in Figure 5.6, 

Equations (5.3.1-2) and (5.3.1-3) can be efficiently used. 

P 
, , , , , , 

1--+-4-....... --1 4 
• • • • • 

L..:-:-:-l---Ji.-..I...~': .................. 4-- ... --- .. Q 

P 
, , , , , , 

~+--4--+--I4 • • • • • • 
~"""'--I-.l~' 
'~""'4--·---·Q 

(b) 

Figure S.B Reconstruction of the shopes using the components 
of shope descrlptor. 

Let us consider the effect of using the axis in the process by 

reconstructing the shapes of the objects in Figure 5.7. It is 

assumed that the reconstruction is limited to the left half of each 

shape. Firstly, draw two 4 x 4 squares as shown in Figure 5.8. 

Secondly, divide it into eight 2 x 1 rectangles. For the object in 

Figure 5.7.(a), since r11' = 1/8 and r12' = 2/8, select one 

rectangle on the extreme right of the upper half of the square and 

two rectangles on the right side of the lower half of the square. 

Performing a similar procedure results in reconstruction of the 

object in Figure 5.7.(b}. The left half of each object has been 

reconstructed using the data of the axis, r11', r12', r21' and r22' 

as depicted in Figure 5.8. As the process has shown, the axis has 

played an important role in the shape description. Marr and 
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Nishihara (Marr & Nishihara, 1978) have also emphasised the 

necessity of an axis for the representation of a shape. 

5.3.2 The Algorithm for this Method. 

Thus far, the background and basic principles dominating the 

new shape description method developed in this thesis have been 

illustrated. Consider the algorithm for the general method which 

can be used in biological object identification in further detail. 

Usually, the shape of a biological object is too complex to be 

expressed in a mathematical formula. It is therefore essential to 

find a method which can replace mathematical formulation. Iba 
basic idea of this method is to transform a two-dimensional 

shape into a one-dimensional form, and to extract some 

descriptive elements, from this form, This is an alternative to 

mathematical formulation. In the dimensional transformation, the 

most important element is an axis. In an automatic system, it is a 

difficult task to define an axis. Thus, a straight line connecting 

two extreme points of a contour is usually regarded as an axis. 

For example, consider the contour in Figure 5.9.(a). The straight 

line connecting the two extreme points P and 0 of the contour 

forms its axis. Another important element in the transformation 

are the ratios defined in ~.quations (5.3.1-2) and (5.3.1-3). In the 

hypothetical-object identification in Figure 5.7, only two ratios 

for each segment have been used, however, if an object has a 

complex shape, the number of ratios should be increased. The 

accuracy of the identification depends upon the number of these 

ratios. The number of ratios is determined by the number of equal 

segments of an axis. For example, consider the segments in Figure 

5.9. The axis PO in Figure 5.9.(a) divides the contour into two 
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segments, one for the left-hand side, the other for the right-hand 

side. Their areas are respectively 81 and 82. This aXIs is divided 

into two equal segments as shown in Figure 5.9.(b). If a line 

perpendicular to PO is drawn through the middle point of PO, the 

contour is divided into four segments, where the areas of the 

segments are respectively 811, 812, 821 and 822, i.e., 811 and 812 

for the left-hand side, and 821 and 822 for the right-hand side. 

Dividing the axis in Figure 5.9.(C) into four equal segments results 

(a) 
(b) 

5
,= 

5,22, 

5,2,2 52122 

5,211 52121 

51122 52112 

51121 52111 

51112 

Figure 5.9 contour segmentation. 

in eight segments, where their areas are S"" 8112, 8,2" 8122, 8211, 
. ----~-, 

8212, 8221 and 8222, respectively. Further I division of the axis will 1 _____ ~J 

produce a large number of smaller segments. The ratio for each 

segment can be obtained as previously shown in e.quations (5.3.1-

2) and (5.3.1-3). The ratios for the segmentations in Figure 5.9.(a) 

are respectively: 
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51 
n=Al=­

P02 , 
52 

r2 = A2 =­P02. (5.3.2-1) 
Figure 5.9.{b) The ratios for 

respectively: 

the segmentations in 

r1 1 = Al X 511 
51 , 

r21 = A2 X 521 
52 , 

r12 = Al X 512 r22 = A2 X S22 
51 , S2 . 

The ratios for the segments in Figure 5.9.{c) are respectively: 

r1 1 1 = Al X .§!.!.!. r211 = A2 X 5211 
51 , 52 , 

rl12 = AI x SI12 
51 , 

r121 = Al X 
S121 

SI 

r122 = AI X 
5122 

SI , 

, 

r212 = A2 X S212 
52, 

r221 = A2 X S221 
S2 , 

r222 = A2 X S222 
52 . 

The ratios for the segments in Figure 5.9.{d) are respectively: 

SIIII 
r1 I11 = AI X SI 

r1112=Al x51112 
SI , 

, 

r1121 = AI X 51121 
SI , 

r1 122 = AI X S1122 
SI , 

r1211 = Al X 51211 
51 , 

r2111 = A2 X S2111 
52 , 

r2112=A2X 52112 
52, 

52121 
r2121 = A2 X ---

52 , 

r2122 = A2 X 52122 
S2 , 

r2211 = A2 X 52211 
52 , 
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r1212=Al X 
51212 1"2212 = A2 X 

52212 

51 , 52, 

r1221 = Al X 
51221 1"2221 = A2 X 

52221 

51 S2 , 

51222 
1"2222 = A2 X 

52222 
r1222 = AI X 5 52 1 , 

Consequently, the ratio for each segment can be obtained using 

the ratio A1 or A2, and area 51 or 52 and the area of the segment 

itself. After the ratios are obtained, the ratios can be represented 

in the tree-type hierarchical structure as shown in Figure 5.10. 

the 2nd 
level 

the 1st 
level 

Figure 5.10 The tree of ratios. 
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I n the object identification process, the ratio tree can be 

efficiently used. Let us take a close look at this process. When a 

new ratio tree is compared with the library data, the comparison 

is performed from the first level in Figure 5.10. Let a set of 

ratios in the library data be a set of d's and newly calculated 

ratios be r's. In the first level, if r1 !I; d1 or r1 !I; d2, it is 

concluded that the new object is different from the object in the 

library. On the other hand, if r1 = d1 and r2 = d2, the process 

moves to the second level. If r11 !I; d11, r12 !I; d12, r21 !I; d21 or 

r22 !I; d22, it is concluded that the object differs' from that of the 

library in shape. Otherwise, i.e., r11 = d11, r12 = d12, r21 = d21 

and r22 = d22, the process moves down to the next level, where a 

similar operation is undertaken. This process is a top-down 

method; alternatively if the process is performed from the lowest 

level, it becomes a bottom-up method. Either method can be 

employed depending upon the situation. As far as the result is 

concerned, there will be no difference between the methods. 

However, the main difference will be in computing time. If the 
-- - -----l 

majority of the objects under; ~~nside_rat~on, have completely 

different shapes, the top-down method will be quicker. This is 

because most of the results can be obtained in the upper levels. On 

the other hand, if the majority of the objects have very similar 

shapes, the bottom-up method will be better. The reason is that in 

most cases when the top-down method is adopted, the 

dissimilarity is determined around the bottom level. 

Let us focus on the library data for biological objects. For 

example, in a species of butterfly there will be some variation 

among the shapes of butterflies. When the library data are built, 

this variation should be considered. In image analysis, this 
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variation is usually called a tolerance. This tolerance should be 

considered at every level of the ratio tree in Figure 5.10. If the 

variation for each ratio is obtained, each node of the ratio tree in 

the library data will have upper and lower limits of a ratio. In the 

object identification process, the comparison is performed using 

the upper, lower limits and newly obtained ratio. In the first 

level, if dl L < r1 < dl u and d2L < r2 < d2U, the process moves down to 

the next level; otherwise, it is determined that the new object 

has a different shape, where d,L represents the lower limit and diu 

the upper limit. 

Additionally, consider how to identify the shape of a reflected 

image (a mirror image). In this method, the task can be easily 

accomplished using the ratio tree. In the first level, if dl L < r2 < 

dl U and d2L < r1 < d2u, the process moves down to the next level; 

otherwise, it is determined that the new object has a different 

shape. This process only differs from the previous process, in the 

comparison of ratios. The ratio r1 is replaced by the ratio r2, and 

vice versa. 

In practice, how can an axis and the ratio, which play a major 

role in object identification, be obtained? 

5 3.2.1 Detecting a Principal Axis. 

Firstly, note the procedure for searching a principal axis. The 

simple traditional method to obtain the axis of a contour 

consisting of N points is as follows: 

(i) For each point in a contour, calculate distances from the point 

to the other points in the contour, and select two points forming 
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the longest distance. 

(ii) N longest distances were obtained in the step (i). Select the 

maximum distance from the N longest distances. 

In this method, the number of distances calculated is N(N-1}. Let 

us consider the number of distance calculations using the nine 

points in Figure 5.11.(a}. For the pOint A, eight distances of the 

solid lines will be calculated, and for the point B, another eight 

distances of the dotted lines will be calculated. Likewise, this 

calculation will be repeated for the other seven points. The 

number of distances calculated in this case is 9 x (9-1) = 72 . 

. '. ". ". '. 

(x...min. \I=p~~L _______________ d 1'- _____________ J~:=-!!'.!~. \I..J'TIax) 
,,' " .. 

-- , 
B .. ---".'::.:.:.:.: ::: : .. ---.. ..-- .. -!-_ .... ---- ----_ ...... _ ...... 
~ ............. ... 

'~~ ......... .. ','" .. , ........ , .. 
I ............ 

, , 
\ , 
1 

, 
• • 
~ , ....... 

A r~~~t;;=·=····~· .. ~ j ............ 
'. " . ......... 

J 
~~~ ________ ~-L~~ ______ ~ __ ~. 

(x...min. \I..J'TIin) M(xm. Ym) (x...max. \I...min) 

(b) 

Figure 5.11 Calculations of distances for finding a diameter_ 
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The more efficient method, which was devised in this thesis, to 

obtain the axis of a contour is as follows: 

(1) Draw the smallest circumscribing rectangle whose sides are 

chosen to be parallel to the coordinate axes as shown in Figures 

S.12.(a) and (b). 

(2) Select the longer side of the rectangle and find the middle 

point of the side. 

(3) Divide the contour into two curves using 'the x- or y­

coordinate of the middle point. If the longer side is parallel to the 

x-axis as shown in Figure S.12.(a), the x-coordinate should be 

used; otherwise, as shown in Figure S.12.(b), the y-coordinate 

should be used. 

(4) Let the curve on one side be Curve A, and that on the other side 

be Curve B. For each point on the Curve A, calculate the distance 

from the point to every point on the Curve B, and select the 

longest distance with the (x, y) coordinates of the two points 

forming this distance. Then, the number of the longest distances 

selected is equal to the number of points on the Curve A. 

(S) Select the maximum distance from the longest distances with 

the (x, y) coordinates of the two points forming this distance. The 

maximum distance obtained is a diameter and the two points of 

the axis are the extreme points. 

As an illustration of this method, consider the procedure with 

the contour consisting of nine points in Figure S.11.(b) whiCh is 

the same as that in Figure S.11.(a). (1) Search the x-coordinates 

for the minimum and maximum values, and also search the y­

coordinates for the minimum and maximum values. Let the 

minimum and maximum values of the x-coordinates be 

respectively x_min and x_max, and those of the y-coordinates 
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y_min and y-max, respectively. Thus, the smallest circumscribing 

rectangle as shown in Figure 5.11.(b) is obtained. (2) The sides of 

the rectangle which are parallel to the x-axis are the longer 

sides, since d1 > d2. The middle point M(xm, ym) is obtained by: 

Xm = x_min + (x_max - x_min)/2, 

ym = y-min + (y-max - y_min)/2. 

(2) Since the longer sides are parallel to the x-axis, the x­

coordinate Xm is used to divide the contour into two curves, i.e., 

Curve A and Curve B. 

If Xi <= Xm, (XI, Yl) e Curve A, 

otherwise, (XI, Yl) e Curve B. 

The four points on Curve A are located on the left-hand side of the 

dashed vertical line in Figure 5.11.(b) and the remaining five 

points are located on the right-hand side. (4) For each point on 

Curve A, five distances are calculated, and the longest distance is 

selected. Likewise, the number of distances calculated is 4 X 5 = 

20. (5) The maximum distance can be selected from the longest 

distances. 

,,_ ......... -.. ,.---- ... -.,. 
I 

, .......... -_ .. - " .. _----

(13) 

,,.. ...... ----------, , , , , , , , , 
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(b) 

Figure 5.12 Circumscribing rectangles. 
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Consequently, this method can reduce the computing time. If a 

contour consists of a larger number of pOints, the traditional 

method causes a serious problem in the operation with time­

consuming calculations. The basic paradigm behind this method is 

that the approximate locations of the extreme points of a contour 

can be found out in advance using a simple method. In a 

circumscribing rectangle in Figure 5.12.(a) or (b), the extreme 

pOints of a contour are obviously located around the end parts of 

the longer side, respectively, as depicted by the dotted zones in 

Figures 5.12.(a) and (b). Once the locations are determined, the 

curve in one of the zones can be separated from the curve in the 

other zone. Dealing with the separated curves to find a diameter 

can reduce the number of calculations where all of the points are 

involved. The maximum number of calculations for distances 

involving N points is (N/2) x (N/2). The weakness in this approach 

is that it is only applicable in the case of a rectangle. Another 

weakness of this approach is that it is no longer applicable if a 

contour has more than one axis. 

5.3.2.2 Calculation of Ratios. 

In a procedure for calculating ratios, an important task to be 

undertaken is calculating the area of each segment. In practice, 

the image of an object is arbitrarily located in an image plane, so 

the orientation of an image is usually different from that of the 

other image. Thus, this makes the task complex. 

5,3.2.2,1 Rotation of a Contour. 

To simplify this task the first operation to be carried out is to 

rotate a contour, formed by an object, using one of the extreme 
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points obtained in the previous procedure. The major objective of 

the rotation is to make a principal axis, connected between two 

extreme pOints of the contour, parallel to the x-axis. The method 

for rotating the contour at the centre of rotation is to rotate 

every point on the contour by an angle formed with the principal 

axis and the x-axis. This centre of rotation is one of the extreme 

points. The procedure for the rotation is as follows: 

(1) Choose one of the extreme points obtained, which is to be 

regarded as the centre of rotation. Assume that the extreme point 

chosen is P, and the other extreme point is O. Let the (x, y) 

coordinates of the points P and 0 be (xp, yp) and (xq, yq), 

respectively. 

(2) Once the centre of rotation is determined, the rotation of 

every point C(xc, ye) on the contour is performed on the centre of 

rotation P(xp, yp). Firstly, an angle er for the rotation which is 

formed with the principal axis PO and the x-axis is calculated. 

1t 

"2 tan(8) 

II III IV 

Figure 5.13 The property of t6n(9). 
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Secondly, an angle ee formed with a straight line PC and the x­

axis is calculated, where the straight line PC is a line connected 

between the point P(xp, yp) and each point C(Xe, ye) on the contour. 

In general, an angle e formed with a straight line, connected 

between the origin 0(0, 0) of the x-y plane and an arbitrary point 

A(xa, ya), and the x-axis is calculated by applying the 

trigonometric function, e.g., 9 - arctan(yal xa). It is necessary to 

note the property of the function tan(9) before applying it. As 

Figure 5.13 shows, the value of tan(9) is determined by an angle 9 

and a quadrant to which a point belongs. Since the property of this 

function is well known, it does not need a detailed explanation. 

Thus, it is necessary to consider the location of a point O(Xq, yq) 

in order to obtain a correct angle by applying the arctangent 

function. The angle 9r for rotation can be calculated as follows: 

It is assumed that the point P(xp, yp) is regarded as an origin of 

the x-y plane. 

(i) When the point O(Xq, yq) is located in the quadrant I, the angle 

9r is obtained by 9r .. arctan [(yq - yp) I (xq - xp)]. 

(ii) When the point O(xq, yq) is located in the quadrant 11, the angle 

9r is obtained by 9r .. It + arctan [(yq - yp) I (xq - xp)]. 

(Hi) When the point O(xq, yq) is located in the quadrant Ill, the 

angle 9r is obtained by 9r .. It + arctan [(yq - yp) / (xq - xp)]. 

(iv) When the point O(xq, yq) is located in the quadrant IV, the 

angle 9r is obtained by 9r .. 21t - arctan [(yq - yp)/(xq - xp)]. 

In all cases of (i), (ii), (iii) and (iv), a case when the straight line 

PO is parallel to either the x- or y-axis is not included. Note that 

this case will be treated by particular method which will be 

illustrated in detail in the step (4) below. 
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(3) In this step, the angle, denoted by ee, formed with the straight 

line PC and the x-axis is calculated. In fact, this calculation is 

performed for every point on the contour. Thus, the number of 

angles to be obtained is equal to [the number of points on a 

contour - 1] since the point P is fixed. This calculation is 

performed by the same method as in step (2), but only the two 

cases (v) and (vi) are added. 

(i) When the point C(xe, ye) is located in the quadrant I, the angle 

ee is obtained by ee = arctan [(ye - yp) 1 (xe - xp)]. 

(ii) When the point C(xe, ye) is located in the quadrant 11, the angle 

ee is obtained by ee = 1t + arctan [(ye - yp) 1 (xe - xp)]. 

(iii) When the point C(xe, ye) is located in the quadrant Ill, the 

angle ee is obtained by ee = 1t + arctan [(ye - yp)/(xe - xp)]. 

(iv) When the point C(xe, ye) is located in the quadrant IV, the 

angle ee is obtained by ee = 21t + arctan [(ye - yp)/(xe - xp)]. 

(v) When the point C(xe, ye) is located on the border line between 

the quadrants I and 11, the angle ee is obtained by ee = 1t/2. 

(vi) When the point C(xe, ye) is located on the border line between 

the quadrants III and IV, the angle ee is obtained by ee = 31t/2. 

(4) The method of rotation is subdivided into two categories 

depending upon a feature of the straight line PO: (i) the first 

category corresponds to a case when the straight line PO is 

parallel to either the x- or, y-axis, (ii) the second category 

corresponds to a case when the straight line PO is not parallel to 

any axis, i.e., the x- or y-axis. 

(i) In the first category, when the straight line PO is parallel to 

the x-axis, it is unnecessary to rotate the contour because the 

objective of the rotation is to make the straight line PO parallel 
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to the x-axis. On the other hand. when the straight line PO is 

parallel to the y-axis. the x-coordinates of every point on the 

contour are simply replaced by the y-coordinate of the point. and 

vice versa. 
(ii) In the second category, every point C(xc, yc) on the contour is 

rotated with the angle of rotation er, which has been calculated in 

the step (2), on the centre of rotation P in the counter-clockwise 

direction. For instance, if the points C(xc, yc), O(xq, yq) and C'(xc', 

yc') are located in the quadrant I, as shown in Figure 5.14, where 

. C'(xc', yc') is a point resultant from the rotation of the point C(xc, 

yc), the angle LC'PX will play an important role in calculating the 

(x, y) coordinates of the point C'. Since the angle LCPX = ec and the 

rotating angle LOPX = er, the rotated angle LCPC' = er. Thus, the 

angle LC'PX = LCPX - LCPC' = ec - er. Using this angle LC'PX (ec -

er), the x-coordinate of the point C', denoted by xc', and the y­

coordinate of the point C', denoted by yc' are respectively 

calculated by the following equations: 

xc' = Xp + PC' cos(ec - er), 

yc' = yp + PC' sin(ec - er). 

• 

Figure 5.14 Rototion of points. 
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The (x, y) coordinates of every point rotated can be obtained by 

applying Equations (5.3.2.2.1-1) and (5.3.2.2.1-2) with the values 

of the angles er and ee calculated in steps (1) and (2). 

5,3.2,2.2 Calculation of Areas of Segments. 

Once the principal axis of a contour has been rotated parallel 

to the x-axis, calculation of the area of each segment is 

performed. Before performing the calculation, consider the 

different types of contours which appear in biological object 

analysis, as shown in Figure 5.15. In the type of contours shown in 

Figures 5.15.(a) and (b), the contour is divided into two curves: 

one is above the principal axis PO and the other is below the axis. 

On the other hand, in the type of a contour in Figure 5.15.(c), the 

contour is not divided by the axis PO. In this case, the whole 

contour is located above the axis PO. 

P'+-------f 
p Q 

(8) (b) (c) 

Figure 5.15 Contours of biological objects. 

This shows that a principal axis PO of a contour does not always 

divides the contour into two segments. The procedures for 

calculating areas of segments are as follows: 

(1) The first task is to select every point whose y-coordinate is 

greater than or equal to the y-coordinate of the point P or 0, and 
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to select every point whose y-coordinate is less than or equal to 

the y-coordinate of the point P or Q. In cases of the contours in 

Figures 5.15.{a) and (b), two vectors are obtained: one for the 

upper part and the other part for the lower part. On the other hand, 

in the case of Figure S.1S.{c), only one vector is obtained, since 

the whole contour is located in the upper part. The vector contains 

(x, y) coordinates of every point in the upper part or lower part of 

the axis. 

(2) In the second step, rearrange the vectors so that the pOint P or 

Q may be put first. The vectors are represented by: 

the vector for the upper part the vector for the lower part 

(xp' yp) 

(xu1' YU1) 

(XU2' Yu2) 

{xp' yrJ 
(xL1 ' Yl1) 

(xL2' YL2) 

(3) In the third step, divide the principal axis PQ into N equal 

segments, where N should be 2", where n >= O. N = 2" is selected 

for the convenience of constructing a ratio tree. The accuracy of 

discriminating objects mainly depends upon the N. Two arrays, 

e.g., 81 [kj and S2[kj, where k = 1, 2, 3, ...... , N, which can be used to 

assign the area of each segment are needed. The arrays 81 [k] and 

S2[k] are for the upper part and the lower part, respectively. 
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(4) The area of each segment is calculated by applying a 

trapezoidal method. In this method, the number of parameters 

required is four: xI' xl+', f(xl), and f(xi+') as shown in Figure 

5.16.(a). The area S of each diagram in Figures 5.16 (a) and (b) is 

calculated by the following equations: 

S = (1/2) (f(xl) + f(xl+,)) (XI+1 - xi)' (5.3.2.2.2-1) 

where if xl+1 > xI'S> 0, 

if xi+1 < xi'S < O. 

In the case of the diagram in 

(5.3.2.2.2-1 a) 

(5.3.2.2.2-1 b) 

Figure 5.17.(a), the area is 

calculated by Equation (5.3.2.2.2-1a), since xi+1 > xi' On the other 

hand, in~ase of the diagram in Figure 5.16.(b), the shaded area is 

calculated by applying Equations (5.3.2.2.2-1 a) and (5.3.2.2.2-1 b). 

Let us have a closer look at the process of calculating the area in 

the latter case. Assume that the lines AB and CD in Figure 5.16.(b) 

are straight lines, respectively. Firstly, calculate the area of 

trapezoid ABFE, Sa' by applying Equation (5.3.2.2.2-1 a). Secondly, 

calculate the area of trapezoid CDEF, Sp' by applying Equation 

(5.3.2.2.2-1 b), where the area Sp is less than zero, since the point 

C appears earlier than the point D in a vector obtained in the step 

(2). Thus, the shaded area is Sa + Sp. 

f(X i+1 ) 
f(x I) f(xi+l ) 

I! 
f(X~ t /' , ' , , 

1 .... f(xi+2) , , , , , S 
, , , , , , , 

f(x.+3, ;V , , , , , , /,0 , , , , , 
Xi XI+1 E F 

(a) (b) 

Figure 5.16 The oreos of segments. 
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In practice, areas of segments in the upper part or the lower part 

of a principal axis PO are calculated by the following equations, 

respectively: 

For the area of each segment In the upper part: 

81 = (1/2) [(Yul - y~ + (Yui+l - y~](xui+l - XUI), (5.3.2.2.2-2) 

where (xUl' YUI ) and (xul+l' YUi+l) are (x, y) coordinates of the two 

adjacent points on the curve in the upper part as shown in Figure 

5.17. For the area of each segment in the lower part: 

82 = (1/2) [(Yp - YLI) + (Yp - YLj+l)](XLj+l - xLI)' (5.3.2.2.2-3) 

where (xLI' YLj) and (XLj+l' YLj+l) are (x, y) coordinates of the two 

adjacent pOints on the curve in the lower part as shown in Figure 

5.17. 

(Xul+l , Yui+l) 
(Xui, Y~Ui~) ~r;;"----

Figure 5.17 Rrea of a segment In the upper or lower part. 

Whenever the area of a minor segment within a specific range, 

e.g., from xA to xB as shown in Figure 5.18, which has been 

determined in step (3), is obtained, this area is assigned to the 

corresponding array, e.g., 81 [kj or 82[kj, where k is an index for the 

kth segment. The range of k is from xA to xB. Once the area of 

every minor segment is assigned to the corresponding array, the 

result is as follows: 
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For the segments in the upper part of a contour, the array 81 [k], 

where k = 1, 2, 3, ...... , N, containing areas is: 

51 I 511111 5112]1 5113] 151 [4]1· .... ·1 S1lk] I· ... E 
For the segments in the lower part of a contour, the array 82[k], 

where k = 1, 2, 3, ...... , N, containing areas is: 

52 1 52[ 1] 1 52[2] 1 52[3] I 52[4]1· .... ·1 52[k] I· ... B 
Let the total area of the upper part of a contour be 81 T and the 

total area of the lower part of a contour be 82 T. The 81 T and 82 T 

are respectively calculated by: 

N 
51 T = i: Sl[k], 

k=l 

N 
52 T = i: S2[k!. 

k=l 

,---tlhis area is ossigned to 51[k] 

P +-__ ...c..,~=-~+-'O<...-______ ~Q 

s oreo is 6Ssi gned to 5..lk] 

Figure 5.18 Rsslgning areas into Sl[k) and S2[k). 

5.3.2.2.3 Calculation of Ratios. 

An efficient way of establishing a ratio tree is to use a 

bottom-up method in which the tree is built up from the bottom 
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level to the top level. This approach saves computing time in 

calculating areas. The process is as follows: 

(1) Firstly, calculate the ratios Al and A2. The ratio Al is a ratio 

of the area of the upper part of a contour SI over the area of a PO 

x PO square which can be drawn on the straight line PO as shown 

in Figure 5.19. The ratio A2 is a ratio of the area of the lower part 

of a contour S2 over the area of a PO x PO square which can be 

drawn underneath the straight line PO as shown in Figure 5.19. 

The ratios A 1 and A2 are respectively calculated by Equation 

(5.3.1-2): 

At = 5t 
pQ2 , 

A2 = 52 
pQ2 

Let the ratios At and A2 be rt and r2, respectively. 

Figure 5.19 Dlogrommoticol representotion of rotios. 

(2) In the second step, the ratios from the bottom level to the 

second level are calculated. Let the ratios for the segments in the 
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upper part of the bottom level be r1 [1]. r1 [2]. r1 [3] •......• rl [N]. and 

the ratios for the segments in the lower part of the same level be 

r2[1]. r2[2J. r2[3J .......• r2[NJ. The ratios are calculated by: 

n[1]=Alx 511 1] 

51T 

n[2]=Al )( 51 [2] 

51
T 

n[3] = Al x 51[3] 
51 T 

, 

, 

n[k) = Al x 51[k) 
SIT , 

n [N) = Al X 51 [N] 
51 T , 

1"2[ 11 = A2 x 52[ I] 
52

T 

1"2[2] = A2 x 52[2] 

52T 

1"2[3] = A2 X 52[3] 

52T 

In the upper part. the ratios for the segments of the level one 

level above the bottom level are calculated by: 

r1 (1,2) = AI )( 51[ 11 + 5J!2) 
SIT 

r1 [3,4) = Al x S1(3) .. SI (4) 
SIT 

rt[S, 6) = AI )( 51(5) + 51(6) 
SIT 

, 

r1 [k, k+ 1 ) = Al X SI [kl ... SI [k"'ll 
SIT 

1"2[1,2) = A2)( 52[1] + 52(2) 
SzT 

1'"2[3, 4) = A2 x S2[3[ • Sz(4) 

5zT 

1"2[5, 6) = Az)( 52[51 + 52(6) 
S2 T 

, 

, 
l'"2[k, k+ 1) = A2)1 S2[k). S2 [k·ll 

52r 
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rdN-l, NI = Al X S1[N-l) • SdN] r2!N-l, NI = A2 X S2[N-l] +S2[N] 
SIT S2r 

, 
Likewise, the ratios for each level of the tree can be calculated. 

The process for building up the tree is graphically illustrated in 

Figure 5.20. 
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n[1,2, .. ,N/21 

/~ 

nh,2, ... ,NI 

(the upper part) 

1"211 ,2, ... , NI 

(the lower part) 

I"2[NI2,( N/2)+1, ..• , NI 

/~ 

Figure 5.20 The bottom-up process for a ratio tree. 
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5.4 CONCLUSION. 

It IS well known that the result of a computerised object 

discrimination system mostly relies on the shape descriptor. This 

means that "how well is a shape descriptor organised in its 

function?" corresponds to "how well can an object discrimination 

system operate?". The most important factors which have been 

emphasised for an object discrimination system are accuracy, 

efficiency and generality. With this view point in mind, an 

investigation has been carried out on the existing shape 

description methods. Among them, three methods such as the 

invariant moment, the Fourier descriptor and the chain code have 

been considered, since they have been commonly used in the shape 

description domain. Each method has been reviewed from the 

theoretical background and detailed procedure to the final 

product. Some case studies, applying each method, have been 

investigated to correctly evaluate the functional aspects of each 

method. The investigation has revealed the following important 

facts. The first is that the latter two methods cannot directly be 

involved in the object discrimination procedure. The second 

important fact is that two of them have commonly been designed 

to produce only a vector that can represent a normalised contour 

which is invariant to location, orientation and starting point 

factors. In practice, some important attributes such as diameters, 

widths, ratios and angles, etc. are extracted from the vector in 

the object discrimination procedure. On the other hand, most case 

studies applying the invariant moment method have commonly 

argued that seven different kinds of invariant moments do not 

provide a practical description and this causes confusion when 

selecting the optimum number of invariant moments for use with 
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an object discrimination procedure. 

Consequently, it was necessary to develop a new shape 

descriptor which could be directly involved in an object 

discrimination procedure. This improved method is to transform a 

two-dimensional contour of an object into two one-dimensional 

curves; and to calculate ratios using the area of each segment, the 

area of a curve bounded by an axis, and the area of a [length of an 

axis] x [length of a'n axis] square. A hierarchical tree which is 

established by ratios can be directly involved in an object 

discrimination procedure. The most important feature of this 

improved method is that it is an attempt to discriminate an 

object using the similar method to that of human vision. This 

shape descriptor accommodates the basic requirements that a 

shape descriptor should be independent of location, orientation 

and starting point of a contour. In addition, this shape descriptor 

can easily be used in discriminating a reflected image, i.e., a 

mirror image. On the other hand, this method has a deficiency in 

discriminating an object which has more than one axis. 
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6.1 INTRODUCTION. 

In a biological object identification process the information 

which is obtained from each object's shape is not always good 

enough to discriminate one object from another. If however, each 

object also consists of complicated patterns with distinctively 

different colours, the information obtained from the various 

colour patterns within each object is added to the information 

from the shape, the object identification is likely to be improved. 

In the real world, a great majority of biological objects have the 

same shape but contain various colour patterns. Thus it is 

necessary to consider the colour patterns in the object 

identification process. It may not be too much to say that the 

success of the object identification depends upon the information 

from the colour patterns which form the surface of an object. An 

important task which immediately arises is how to describe the 

information in such a way that it can be successfully utilised in 

the object identification process. From this point of view, the 

colour pattern description is worthy of investigation. 

The literature survey which has been performed in this thesis 

has revealed that a great amount of research has already been 

accomplished in the shape description domain, but, on the other 

hand, only a little research has been performed in the colour 

pattern description domain. The reason for this might be that 

since most algorithms for colour pattern extraction which have 

been published require laborious effort, they are not good enough 

to be generally applied in other academic or industrial research 

fields. In practice, because colour pattern extraction requires a 

complicated methodology in which a colour pattern has first to be 
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decided on, it was considered unreasonable to expect active 

research in this field in an object classification procedure. The 

colour image capturing devices were not generally available to 

deal with colour pattern extraction. Pattern descriptors which 

have been commonly used are a measure of compactness of a 

pattern which is defined as (perimeter)2/area, the area of a 

pattern, the orientation of the principal axis, the mean of the grey 

levels, and the variance of a pattern, etc. In fact, colour patterns 

in an object cannot be completely described by anyone of these 

descriptors alone. The reason for this will be discussed in detail. 

In this chapter, several important factors which are required 

to represent the features of each colour pattern within an object 

are defined. The background and motivation of the definition of 

these factors will be discussed. In particular the organisation of 

these factors for the object identification will be discussed. 

204 



6.2 MAJOR FACTORS FOR COLOUR PATTERN DESCRIPTION. 

In the great majority of butterflies, wings usually consist of 

colour patterns. Some species of butterflies have no colour 

pattern on their wings, but most species do. The colour pattern is 

defined as a region which is composed of picture cells having 

similar colour features which are connected to each other (Duda & 

Hart, 1973). Each colour pattern varies depending upon 

characteristics such as colour feature, size feature, location 

feature and shape feature. The colour feature is a property of 

colour sensation which each colour pattern shows. The size 

feature is a property representing the area of each colour pattern 

in relation to the total area of an object to which each colour 

pattern belongs. The location feature is a property representing 

the position of each pattern within an object. The shape feature is 

a morphological property which each pattern forms. These 

features play an important role in species discrimination, and 

"they can be used as major factors for colour pattern description. 

The colour patterns obtained by applying the algorithm in Chapter 

4 are represented by these major factors which can be used to 

classify objects. In the object discrimination procedure, all the 

major factors should be simultaneously considered because if any 

one of the factors fails to be assessed it is difficult to 

successfully carry out the discrimination. The background and 

necessity of each factor will be illustrated. An important fact to 

be noted is that these factors will dominate the algorithm for the 

discrimination of butterfly species with colour-patterned wings. 

205 



6.2.1 The Number of Different Colour Patterns. 

As an illustration, consider three different wing patterns of 

butterflies as shown in Figure 6.1. The wings in Figure 6.1 are 

those of childrenae, Iycimenes and dardanus. At first glance, they 

look similar. However, they have completely different wing 

pattern features. How then can one make it possible for an 

automatic object discrimination system to classify their 

different features? This question implies a necessity for a 

systematic organisation of these features in a colour pattern 

description. let us only consider the colour patterns on the wings 

in Figure 6.1, not their shapes. The wings in Figures 6.1.(a) and (b) 

contain three different colour patterns. On the other hand, the 

wings in Figure 6.1.(c) contain two different colour patterns. All 

of the wings have a similar colour feature on the background. 

Thus, it is possible to simply discriminate the wings in Figures 

6.1.(a) and (b) from the wings in figure 6.1.(c) using the number of 

different colour patterns. However, it is impossible to 

discriminate the wings in Figure 6.1.(a) from the wings in Figure 

6.1.{b) using the number of different colour patterns because they 

have equal number. Consequently, the number of different 

colour patterns can be regarded as a factor for colour pattern 

description although it does not completely discriminate objects. 

USing this factor in the actual discrimination procedure can 

obviously reduce the number of cases, when searching in library 

data by excluding objects whose number of different colour 

patterns is not equal to that of the object under consideration. 
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6.2.2 Colour Feature of Each Colour Pattern. 

If the number of different colour patterns cannot discriminate 

the object in Figure 6.1.(a) from the object In Figure 6.1.(b), let us 

consider the easiest way of the discriminating these objects. An 

immediate method for the discrimination is to consider the colour 

feature of each pattern. The colour of the small pattern in the 

upper part of the wings in Figure 6.1 (a) is yellow. The colour of 

the pattern in the middle part of the wings in Figure 6.1.(a) is 

yellow-green. The colour of the lower part is red. The colours of 

the upper and the lower parts of the wings in Figure 6.1.(b) are 

respectively the same as those of the upper and the lower parts of 

the wings in Figure 6.1.(a). On the other hand, the colour of the 

middle part of the wings in Figure 6.1 (b) is green. When the 

colours of the patterns in Figure 6.1.(a) are respectively compared 

with those of the patterns in Figure 6.1.(b), it can be concluded 

that the two objects are different because of the colour 

difference between the pattern in the middle part of the object in 

Figure 6.1.(a) and that in the middle part of the object in Figure 

6.1.(b). Consequently, this colour feature undoubtedly plays an 

important role in a colour object discrimination procedure. Thus, 

this colour feature can obviously be regarded as the second 

factor of colour pattern description. The important fact to be 

noted is that there are many factors such as environmental 

conditions, film speed, the size of the aperture and shutter speed 

of a camera, etc. which affect the colour representation of a 

photograph. If an image is obtained from a photograph, there are 

some variations in the colour features of an object due to these 

factors. Thus, the variations of a colour feature should be 

considered in the description. 
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# 

• • 
(a) (b) (c) 

Figure 6.1 Wing patterns. (a) The left wings of chlldrenae. (b) 
The left wings of Iyclmenes. (c) The left wings of dardanus. 

(a) (b) 

Figure 6.2 Wing patterns. 

(a) (b) 
Figure 6.3 wing patterns. 

(a) (b) 
Figure 6.5 Wing patterns. 
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6.2.3 The Ratio of the Area of Each Colour Pattern Over 

the Total Area of an Object. 

As Figure 6.2 shows, if the colour features do not make a 

difference, the alternative to using the colour feature is to use 

the size of each colour pattern relative to the size of the whole 

object. This means that the size of an object varies depending 

upon the photograph size, but also upon the size of an object 

itself. Thus, a reasonable way of using the size of each colour 

pattern is to use the ratio of the area of each colour pattern over 

the area of an object. Let the ratio of the area of the yellow 

pattern over the total area of the wings be ral; the ratio of the 

area of the green pattern over the total area be ra2; and the ratio 

of the area of the red pattern over the total area be ra3, in Figure 

6.2.(a). Likewise, let the ratios of the areas of the colour patterns 

over the total area of the wings in Figure 6.2.(b) be respectively 

rbl, rb2 and fb3. These ratios should be arranged, in descending 

order as ra2 > ra3 > ral and rb2 > fb3 > fbl. In the discrimination 

procedure, this pair of ratios with the same order can be 

efficiently used. In fact, the arrangement of the different colour 

patterns in an object, as shown in Figure 6.2.(a) or (b) is so 

random that a reasonable arrangement of the ratios in descending 

order is necessary, since this arrangement is invariant to 

irregular arrangement of the patterns within an object. The basic 

idea of this arrangement is that a certain colour pattern which 

has the largest area can initially be denoted by human vision, and 

each colour pattern can also be detected in the order of its size. 

In the discrimination procedure, if ra2 = fb2, ra3 = fb3, and ral = fbI, 

it is concluded that the two objects have patterns with the same 

number, same colour features, and same ratios; otherwise, it is 
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concluded that the two objects have different colour patterns. In 

fact, in the case of Figure 6.2, ra2!1; rb2, ra3!1; rb3 and ral !I; rbl, thus 

it is concluded that these wings have different patterns. 

Consequently, the ratio of the area of each colour pattern over the 

total area of an object can be regarded as the third factor of 

colour pattern description. 

6.2.4 Normalised Centre of Gravity of Each Colour 

Pattern. 

As Figure 6.3 shows, each object has three different colour 

patterns, where each pair of colour patterns have similar colour 

features and similar ratios, but different locations within each 

object. These objects in Figure 6.3 cannot be discriminated by the 

three previous factors of colour pattern description, i.e., the 

number of different colour patterns, the colour feature, and the 

ratio of the area of each colour pattern over the total area of an 

object. Thus, employing a locational factor should additionally be 

considered in order to discriminate such objects as in Figure 6.3. 

To describe the location of a colour pattern is not a simple task 

because the orientation of the principal axis, location and size of 

an object to which the colour pattern belongs varies. The basic 

procedure for describing the location of a colour pattern is to 

describe its location such that it is independent of the 

orientation, location and size of an object. In the region 

description domain, the location of the centre of gravity has 

commonly been used. However, the· location of the centre of the 

gravity of a pattern depends upon the orientation of the principal 

axis, location and size of an object. Therefore, the centre of 

gravity of a colour pattern cannot be used without any kind of 
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normalisation. There should be two kinds of normalisation , i.e., 

the normalisation of the orientation of the principal axis of an 

object, and the normalisation of the location and size of an 

object. The normalisation of the orientation is carried out by a 

similar method to that which has been developed in the previous 

chapter. Since this normalisation has an important effect on the 

other factors which will be discussed in the following stages, the 

detailed calculation method will be illustrated in section 6.3. 

Once this normalisation is performed, the result will be obtained 

as shown in Figure 6.4. Let the length of the principal axis PO in 

Figure 6.4 be d. For the normalisation of the (x, y) coordinates of 

the centre of gravity, two d x d squares should be drawn as shown 

in Figure 6.4. Then, calculate the (x, y) coordinates of the centre 

of gravity for each colour pattern. Let the (x, y) coordinates of the 

centre of gravity for one o~olour patterns be (Xr, Yr) as shown in 

Figure 6.4. 

" I 
I 
I 
I 
I 
I 

d 
I , , 
• 

..- -- ---- d . __ • - -- -A. ' • E 

P(Xp, Y;~'f----II. l---* .. ,Q(Xq, Yq) 
c: , I , 

I 
I 
I 

Yr- Yes. 
I 
I 

d 
I 
I 
I 
I 

Figure 6.4 Normalisation of the centre of grauity. 
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Let the (x, y) coordinates of the lower left corner of the rectangle 

in Figure 6.4 be (xp, ya). Note that the centre of gravity is a point 

C(Xr, Yr) which can easily be changed depending upon the location 

and size of the whole image. Thus, it is necessary to make the 

centre of gravity invariant to the location and size of the whole 

image. The most convenient and efficient way of doing this is to 

make use of the (x, y) coordinates of the centre of gravity, (xp, 

ya), the (d + d) x d rectangle, and the (x, y) coordinates of the 

lower left corner as shown in Figure 6.4. The basic principle of 

this normalisation is to describe the point C(Xr, Yr) in relation to 

the rectangle and the (x, y) coordinates of the lower left corner, 

(xp, ya). Note that the rectangle, ABDE, in Figure 6.4, is determined 

by the length of the principal axis of an object, and is invariant to 

the location of the object. Let the (x, y) coordinates of the 

normalised centre of gravity be (Xn, !:In). The (x, y) coordinates of 

the normalised centre of gravity, (Rn, Yn), are calculated as 

follows: 

Xn = Xr - Xp 
d , (6.2.4-1) 

(6.2.4-2) 

As Equations (6.2.4-1) and (6.2.4-2) show, Xn and gn are ratios, 

i.e., Xn is the ratio of (Xr - xp) over d and gn is the ratio of (gr - ya) 

over Cd + d). These ratios are calculated in relation to the 

rectangle and the (x, y) coordinates of the lower left corner in 

Figure 6.4, therefore they are invariant to the location and size of 

an object. This normalised centre of gravity can be used in the 

object discrimination procedure. Consider, for example, the colour 
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patterns in each object in Figure 6.3. The normalised centre of 

gravity of the green pattern in each object will have a similar 

value. On the other hand, the normalised (x, y) coordinates of 

tk centre of gravity of the yellow pattern in Figure 6.3.(a) will be 

quite different from those of the yellow pattern in Figure 6.3.(b); 
'fu.. 

and the normalised (x, y) coordinates ofl\centre of gravity of the 

red pattern in Figure 6.3.(a) will also be quite different from 

those of the red pattern in Figure 6.3.(b). Note that since variation 

in the normalised centres of gravity for the target colour patterns 

is usual even in the same species, this variation should be 

considered in a practical implementation. Consequently, the 

normalised centre of gravity of each colour pattern can be used as 

the fourth factor of colour pattern description. 

6.2.5 The Slope of the Regression Line of Each Colour 

Pattern. 

The yellow and red patterns in Figure 6.5.(b) are respectively 

those in Figure 6.5.(a) rotated through 90° in the counter­

clockwise direction. As Figure 6.5 shows, each object has an equal 

number of different colour patterns, where each pair of colour 

patterns have similar colour features, similar ratios of their 

areas over the total area, and similar normalised centres of 

gravity, but different orientations of the principal axis. These 

objects cannot be discriminated by the four factors of colour 

pattern description, i.e., the number of different colour patterns, 

the colour feature, the ratio of the area of each colour pattern 

over the total area of an object, and the normalised centre of 

gravity. Therefore, it is necessary to additionally consider the 

morphological aspects of each pair of colour patterns in order to 
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classify the objects in Figure 6.5. The shapes of the colour 

patterns in Figure 6.5 could be considered to be simple in their 

description. However, the description of the shape of a colour 

pattern in an object usually is a complicated task as the previous 

chapter has shown. Note that the main objective of the colour 

pattern description in this system is not for detailed 

morphological analysis relevant to a particular domain, but for a 

computerised object discrimination procedure which can 

generally be adopted in the biological object discrimination 

domain. For this purpose, four important factors of colour pattern 

description have already been introduced. Applied simultaneously 

in an object searching procedure, they should dramatically 

reduce· the number of likely candidates in a sample space. Thus, 

if only a few basic factors for shape description are added to the 

previous factors, they will be able to cover a wide range of 

various cases. The first sub-factor of shape description for a 

colour pattern which is commonly used in the region description 

domain is the orientation of the principal axis of a colour pattern. 

Since this orientation usually varies depending upon the 

orientation of an object to which the colour pattern belongs, the 

normalisation of this orientation is inevitably required. The 

normalisation is performed by rotating the principal axis such 

that it becomes parallel to the horizontal line, as already 

illustrated in the normalisation of the centre of gravity. Once the 

prinCipal axis is rotated, the orientation of the principal axis of 

each colour pattern is approximated by applying simple regression 

analysis. In this regression analysis, a simple regression equation 

is usually represented by: 

(6.2.5-1) 
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where 

Xi is the independent variable which is the x-coordinate of each 

pixel in colour pattern, 

Vi is the dependent variable which is the y-coordinate of each 

pixel in a colour pattern, 

~o is the intercept of the V-axis, 

~1 is the regression coefficient which represents the slope of the 

regression line, 

£I is the error term. 

An important fact to be noted is that since ~o varies depending 

upon the location and size of an object itself, this value cannot 

directly be used as a factor of colour pattern description. In 

particular, since the normalised centre of gravity can efficiently 

be used to represent the location of a certain colour pattern and 

the regression line usually passes through the centre of gravity of 

the rotated pattern, ~o, which represents the intercept of the V­

axis, does not need to be involved in the shape description. 

Consider, for example, the colour patterns in Figure 6.5. Let 

the ~1 for the red pattern in Figure 6.S.Ca) be ~la, the /l1 for the red 

pattern in Figure 6.5.Cb) be ~lb. The value of ~la is different from 

that of /llb, since the red pattern in Figure 6.5.Cb) is the red 

pattern in Figure 6.5.Ca) rotated through 900 in the counter 

clockwise direction. For simplicity of illustration, compare ~la 

with /llb. Since /lla is different from /llb, it can be concluded that 

the two objects are different from each other. Consequently, the 

slope of a simple regression line can be regarded as the fifth 

factor of colour pattern description. 
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6.2.6 The Ratios for Segments of Each Colour Pattern. 

Suppose that two objects have an equal number of different 

colour patterns, where the corresponding colour patterns have '-, 

similar values for all of the corresponding factors previously 

discussed, but still look different from each other in their shapes. 

In order to solve the additional problem of classifying the shapes 

of the colour patterns, consider the second sub-factor of shape 

description for a colour pattern which is the ratios of areas of 

segments over the area of a colour pattern. Since the orientation 

Sa2 

y = y ••• 

Sa3 

x=x 
(B) 

Sal 

Sb2 

• ••••• y = y ._--

Sa4 

Sb3 

x=x 
(b) 

Figure 6.6 The hypothetical patterns. 

Sbl 

Sb4 

of the principal axis of a colour pattern usually varies depending 

upon the orientation of an object to which the colour pattern 

belongs, the normalisation of this orientation should be performed 

as shown previously. In general, the ratios of areas are invariant 

to the size of an object, so the size factor does not need to be 

considered in the ratios. The basic principle behind the ratio 

calculation is similar to that of the ratio calculation in the 
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previous chapter. The ratio calculation which is now under 

consideration is performed using the (x, y) coordinates of the 

centre of gravity of a colour pattern. Suppose, for example, two 

hypothetical colour patterns as shown in Figure 6.6, where all the 

corresponding factors, which have been considered, have similar 

values. In order to discriminate these patterns, draw dashed lines, 

at the centre of gravity, each of which is parallel to the 

horizontal or the vertical line and then split each pattern into 

four segments, as shown in Figure 6.6. Count the number of pixels 

in each segment. Let the area of each segment for the pattern in 

Figure 6.6.(a) be Sal, Sa2, Sa3 and Sa4; the area of each segment for 

the pattern in Figure 6.6.(b) be Sbl, Sb2, Sb3 and Sb4; and the total 

area of each pattern be SaT and SbT. The ratio of the area of the 

upper half over the total area of the pattern in Figure 6.6.(a) is: 

Ha I = _S;..i;.;,I ;:-+_S;..i_2_ 
SaT (6.26-1 ) 

and the ratio of the area of the lower half over the total area of 

the pattern in Figure 6.6.(a) is 

Ha2= Sa3+ Sa4 

SaT (6.26- 2) 

Likewise, the ratios for the upper half and the lower half of the 

pattern in Figure 6.6.(b) are respectively: 

Hbl = Sbl + Sb2 

SbT I (62.6-3) 

Hb2= Sb3 + Sb4 

SbT (6.2.6-4) 

Since it has been assumed that all the corresponding factors have 

had the same values, if each hole in Figure 6.6 has equal area, Hal 

.. Hbl and Ha2 = Hb2. These ratios cannot discriminate these 

patterns. Thus, consider the ratio for each segment to 
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discriminate these patterns. The ratios of the area of each 

segment over the total area of the patterns are: 

Qal : Sal Qbl : Sbl 
SaT SbT • 

Qa2: Sa2 Qb2: Sb2 
SaT • SbT 

Qa3 : Sa3 Qb3: Sb3 
SH SbT • 

QH: Sa4 Qb4: Sb4 
SaT • SbT • (6.2.6-5) 

where Qa1 through Qa4 are ratios for the segments in Figure 6.6.Ca) 

and Qb1 through Qb4 are ratios for the segments in Figure 6.6.Cb). 

Under the previous assumption, the corresponding ratios are 

different from each other. Thus, these four ratios such as Qj1, QJ 2, 

Q 3 and Qj 4 will successfully be used as shape descriptors, where 

j is a subscript for the different patterns. Although the previous 

two ratios such as HJ 1 and Hj 2 could not discriminate these 

patterns, they will also be used as shape descriptors because 

every descriptor does not always discriminate different patterns. 

Consequently, these ratios, i.e., Hj1, HJ2, Qj1, Q2, QJ3 and QJ4 can 

obviously be regarded as the sixth factor of colour pattern 

description. 

So far, the six factors of colour pattern description have been 

defined. The background and motivation of each factor has been 

also illustrated. In fact, these factors can play an important role 

in describing any colour pattern in an object because they have 

been designed to accommodate the basic requirement which a 

colour pattern descriptor should be invariant to the size, 

orientation and location of an object to which each colour pattern 

belongs. 
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6.3 COLOUR PATTERN DESCRIPTION. 

In the previous section, six major factors which are important 

when discriminating objects have been defined, where each object 

usually consists of patterns with various colour features, sizes, 

locations and shapes. It has also been shown that each factor luIs 
its own limitations in describing the various colour patterns, thus 

all the factors should simultaneously be involved in the object 

discrimination process. In the following sub-sections, the 

detailed procedure for calculating each factor will be illustrated, 

and then object representation with various colour patterns will 

also be discussed. Once all the factors are obtained, these factors 

should be hierarchically organised to reduce computing time when 

searching library data for an optimum solution. 

6.3.1 . Calculation of the Major Factors. 

6.3.1.1 The L"a*b* Coloyr Feature of Colour pattern. 

Suppose, for example, that an object is described by these 

factors as shown in Table 6.1. This object consists of three 

different colour patterns. The colour of each pattern is described 

by the L"a"b" colour features. Note that each colour pattern has 

been obtained by applying . ~ , Cluster Analysis as in Chapter 4. 

Thus, there are two possible cases in which a colour pattern is 

described by the L"a"b" colour features. One case is that of a 

colour pattern constructed by pixels of completely homogeneous 

L"a"b" colour features. The other case is that of a colour pattern 

constructed by pixels which have slightly different L "a"b" colour 

features, where this set of pixels forms a certain shape of 
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pattern which is clearly distinguished from its neighbouring 

pixels. In the former case, this pattern can be described by one 

set of the L'a'b' colour features. In the latter case, this pattern 

can be described by the centre of gravity of L*a*b*. This value 

can be easily obtained by simply calculating the mean value of 

each of the L*, a* and b* from the units having equal Cluster Ld.s 

of the Auxiliary Means created in Chapter 4. In Table 6.1, the 

colour features for each pattern are represented by the centres of 

gravity, Le., Lm), Am) and Bm), where j represents- each pattern. 

Area of 
Factor Colour Pattern Normalised Slope of feature Over Centre of Regression Ratios 

Total 
Pattern Area 

Gravity Line 

A Lma AmaBma r~ xna Yna Jlal Hal Qal Qa2 
Ha2 Qa3 Qa4 

B Lmb AmbBmb rb xnb ynb !hI Hbl Qbl Qb2 
Hb2 Qb3 Qb4 

C Lmc AmcBmc rc xnc Yne !le 1 Hel Qcl Qe2 
Hc2 Qc3Qc4 

Table 6.1 Object representation by factors. 

6,3,1.2 The Ratio (the Area of Colour patternlthe Total Area). 

The third column in Table 6.1 shows the ratios of the area of 

each colour pattern over the total area of the object. Each ratio 

can be obtained by using the Auxiliary Means created in Chapter 4. 

For each ratio, simply add all the values in the NOP of every unit 

having an equal Cluster Ld. in the Auxiliary means; and divide the 

result by the total number of pixels in this object. Then, the 

ratios obtained are ra, rb and rc. As already illustrated in the 
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previous section, these ratios should be arranged in descending 

order. Hence, these ratios are arranged as ra > Ib > rc. If these 

ratios are equal to each other, they should be rearranged by 

considering the (x, y) coordinates of the normalised centre of 

gravity. This will be discussed in detail later. 

6,3.1,3 Normalised Centre of Gravity of Colour pattern. 

The fourth column in Table 6.1 shows the normalised centre of 

gravity of each colour pattern. This normalised centre of gravity 

of each colour pattern in an object is obtained by the following 

steps: 

(1) If a principal axis of an object is not parallel to the x-axis, 

every point in the object should be rotated by an angle which is 

formed with the principal axis and the x-axis on the centre of 

rotation, i.e., one of the principal axis. 

(2) Once the principal axis has been rotated to be parallel to the 

x-axis, the centre of gravity of each pattern in the object is 

calculated. 

(3) The (x, y) coordinates of the centre of gravity of each pattern 

which have previously been obtained are normalised. 

In the first step, the angle which is formed with the principal 

axis PO which has been obtained in section 5.3, and the x-axis is 

calculated using the method in section 5.3. If the angle is equal to 

zero, the rotation of every point is unnecessary otherwise every 

point in the object should be rotated by the method in section 5.3. 

In practice, the (x, y) coordinates of the rotated points are 

obtained by applying the (x, y) coordinates of every point in each 

unit which has an equal Cluster Ld. in the Auxiliary Means, to 
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--------------- - --

Equations (5.3-5) and (5.3-6). 

In the second step, the centre of gravity of each rotated 

pattern is calculated. Let the (x, y) coordinates of every point in 

the pattern be (Xr i, yr ,), and the centre of gravity of the pattern be 

(Xr, Yr). The centre of gravity is calculated by 

n 
2: Xri 

1=1 
Xr = 

n , 

n 
2: yri 

yr = 1= 1 
n 

where n is the number of pixels in the pattern. 

In the third step, the normalised centre of gravity is 

calculated. In this step, the most important (x, y) coordinates of 

the lower left corner of the rectangle ABDE in Figure 6.7 are 

respectively calculated as follows: the x-coordinate is the same 

as the x-coordinate of the point P, i.e., xp, whereas the y­

coordinate ya. is: 

ya. = yp od, 

where d is the length of the principal axis PO which is calculated 

by: 

d = (Yq - y~. 

The distance d2 between two points Band C' in Figure 6.7 is: 

d2 = Xr - Xp, 

where the point C' is the crossing point of the straight line DB 

and the vertical line from the point C which is the centre of 
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gravity of the pattern. The distance d3 between two pOints Band 

C" in Figure 6.7 is: 

d3 = gr . ya = gr • (yp. d), 

where the point e" is the crossing point of the straight line AB 

and the horizontal line from the point C. The normalised (x, y) 

coordinates of the centre of gravity of the rotated pattern (Xn, gn) 

are calculated by: 

Xn = d2 
d 

yn = d3 
d+d 

= Xr - xp 

= 

d 

yr - !p-

d+d 
= 

yr - (yp - d) 

2d 

.••••••• d .••••••• 
/J., .' • E .' , , , , , 

• 
d 

, 
• • 

P(Xp, Y~~'f-----f\ ,<---*.,Q(Xq, Yq) 
c: 

• , , , 
• 

/ I 

d 
• • • • • • 

" . 
• • Ir-----+lf-,'-;--...l. •• 

B(Xp , !:b.) \,· .. ·d2"····c· D 

Figure 6.7 Calculation of the normalised centre of gravity. 

6.3.1.4 The Slope of the Regression Line of Each Colour Pattern. 

Since every point of the object has already been rotated in the 

previous process of the normalisation of the centre of gravity of a 
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pattern, the calculation of the slope of a regression line can be 

carried out immediately. In simple regression analysis, the 

regression line is represented by Equation (6.25-1): 

Vi = 130+ 131 Xi +£1. 

The intercept of the V-axis, 130, does not need to be involved in the 

shape description as illustrated in section 6.2.5, so the regression 

coefficient, 131, which is generally regarded as a slope of a 

regression line is only considered in this stage. The regression 

coefficient is simply calculated by: 

n 2 ( 2: x. ) 
i=l 1 

I 

where Xi and yl are respectively the x- and y-coordinate of every 

point in the rotated pattern, and Xr and gr are respectively the x­

and y-coordinate of the centre of gravity of the rotated pattern. 

6.3.1.5 The Ratios for Segments of Each Colour Pattern. 

Divide a pattern, which has already been rotated in the 

previous step, into four segments as shown in Figure 6.8, where 

the horizontal and vertical lines cross at the centre of gravity of 

the pattern. Let the area of each segment be Sl, S2, S3 and S4. The 

area of each segment is obtained by simply counting the number of 

pixe/s in each segment. Let the area of the upper half of the 
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pattern be SH1, and the area of the lower half of the pattern be 

SH2. SHl is SI + S2, and SH2 is S3 + S4. The total area of the pattern, 

Sr, is SI + S2 + S3 + S4. 

.-.... 
;51 

[~~ : ..•... g . , 

;..: ~~ 

Figure 6.8 Segments of a pattern. 

The ratio of the area of each segment over the total area of the 

pattern is: 

Ql = 51 
5r 

, Q2 = 52 ,Q3 = 53 ,and Q4 = 54 
5r 5r 5r 

The ratio of the area of the upper half of the pattern over the 

total area is HI = SH1, and the ratio of the area of the lower half 

of the pattern over the total area is H2 = SH2I ST. 

6.3.2 Hierarchical Organisation of Factors. 

As briefly stated in the early stages of this section, once all 

the factors for colour pattern description have been obtained, 

these factors should hierarchically be organised in order to be 

efficiently used in the object identification stage. This 

hierarchical organisation is required not only for the object in the 
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library data but also for an object under consideration. Before 

performing the organisation, consider the following facts which 

are essential to optimise this organisation. The number of sets of 

factors by which an object is represented depends absolutely upon 

the number of patterns with distinctively different colours of 

which the object consists. Since the number of different colour 

patterns dominates the structure of the colour pattern descriptor, 

this factor can be used as an important variable. A crucial fact to 

be noted is that if an object image is obtained from a photograph, 

each colour element of the image is usually affected by many 

factors such as environmental conditions, film speed, the size of 

the aperture and shutter speed of a camera, etc. (Hunt, 1987). 

Consequently, the colour features of the image which are obtained 

from the photographs of an object with different environmental 

factors are not always identical to each other. However, if an 

image is captured under the ordinary environment, the number of 

different colour patterns is invariant to the environment. The 

reason for this is that the intrinsic nature of the colour features 

of a material of which th~ surface of an object consists is not 

changed with different environmental factors, but are viewed 

differently. This fact shows that the number of different colour 

patterns is obviously invariant to environmental change. The 

important point is that the same kind of objects, i.e., the same 

species of butterflies, usually have variations of value for each of 

factors except the number of different colour-pattern factors. 

Thus, the number of different colour pattern factors can be 

regarded as a primary factor for colour pattern description. 

If the number of different colour patterns has been 

determined, the area of each colour pattern is determined in 
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relation to the total area of an object to which each pattern 

belongs. This factor is the ratio of the area of each colour pattern 

over the total area of an object. If an object consists of N 

different colour patterns, the number of ratios is N. To improve 

the efficiency of an identification process, it is necessary to 

arrange these ratios in descending order. If these ratios are not 

arranged in this order, the process will unnecessarily spend time 

on searching the library data for a corresponding ratio. Once these 

ratios are arranged in the descending order, other factors such as 

the normalised centre of gravity, slope of regression line and 

ratios for the shape of each colour pattern should accordingly be 

arranged. On the other hand, since the colour feature factor has 

variations depending upon environmental factors, it is reasonable 

to place this factor at the end of the hierarchy. Thus, these 

factors are arranged in the hierarchical structure as shown in 

Figure 6.9. Finally, the name of an object is put on the bottom of 

the structure. For example, if an object has three different colour 

patterns, and the descending order of the ratios for these patterns 

is ra > rb > rc, then the factors are organised as shown in Figure 

6.9. On the top of the Figure 6.9, the number of colour patterns is 

placed, ra, rb and re on the second level are the ratios, where each 

ratio rj is obtained by: 

(the number of plxels In eoch colour pottern) 
rj = 

(the number of pixels In on object) 
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Colour Patterns 

~ 
Size 
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Location 
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Feature Ha2 Hb2 Hc2 
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/ 
Name of 
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Figure 6.9 The hierarchical organisation of factors. 

On the third level, (Xna, gna), (Xp, gnb) and (Xnc, gnc) are the 

normalised centre of gravity of each colour pattern. On the fourth 

level, ~at, ~bl and ~Cl are the slope of a regreSSion line of each 
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colour pattern. On the fifth level, [Hal, Ha2], [Hbl, Hb2] and [Hel, He2] 

are ratios, where each ratio HJ I, where j=1, 2, 3, is obtained by: 

(the number of plxels In the upper helf segment) 
H·, = --,...------..:.----------:-.:....---

J (the number of plxels In eech object) , 

and each ratio HJ 2 is obtained by: 

(the number of pixels in the lower helf segment) 
Hj2 = ------------------

(the number of pixels in eech object) 

On the sixth level, QJ1,QJ2,QJ3 and Qj4, where j=1, 2, 3, are ratios, 

where each ratio is obtained by: 

Qj = 
(the number of pixels In a segment) 

(the number of pixels in an object) 

On the seventh level, [Lm
J
, Am

J
, Bm

J
], where j=1, 2, 3, are 

respectively the centre of gravity of L'a'b' of each colour 

pattern. On the bottom level, the name o~pecies is placed. An 

important fact to be noted is that all the factors are invariant to 

the size, orientation and location of an object. 
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6.4 CONCLUSION. 

It is well known in the region description domain that most 

pattern (region) descriptors should satisfy the basic requirements 

that every pattern descriptor should be invariant to the size, 

orientation and location of an object to which each pattern 

belongs. Among the descriptors which have been commonly used in 

the description of each pattern of an object in a black-and-white 

image, such descriptors as a measure of compactness, which is 

defined as (perimeter)2/area, and the Euler number, i.e., the 

number of holes in an object, are invariant to the size, orientation 

and location of an object. On the other hand, the majority of 

pattern descriptors such as the area, orientation of the principal 

axis and centre of gravity of each pattern are variant Ol\- the size, 

orientation and location of an object, thus they do not satisfy the 

basic requirements. 

These requirements are particularly important in colour 

pattern descriptors for biological objects because the images of 

these objects are usually obtained from photographs or video 

films. When these objects are taken by camera, the sizes, 

orientations and locations of these objects are not always 

constant. In the biological objects, each colour pattern has its 

own features such as colour feature, size feature, location 

feature and shape feature. Since these features are constant 

within an object, if the size, orientation and location of the 

object image is changed these features except the colour features 

are accordingly changed. In this chapter, the six major factors 

which are required to represent these features of each colour 

pattern of an object have been defined. These factors have been 
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designed to accommodate the basic requirements. These factors 

can be generally used in the colour pattern description domain. 

Additionally. these factors have been hierarchically organised in 

order to be efficiently used in the object identification process. 
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Chapter 7 

'Tl\e-
THE STRUCTURE OFASPECIES IDENTIFICATION SYSTEM. 

R , 

7.1 Introduction. 

7.2 Configuration of Hardware and Software. 

7.3 Species Identification System. 

7.3.1 Learning System. 

7.3.2 Implementation System. 

7.3.3 Leaf Species and Butterfly Species Identification 

Systems. 

7.3.3.1 Leaf Species Identification System. 

7.3.3.2 Butterfly Species Identification System. 

7.4 Conclusion. 
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7.1 INTRODUCTION. 

In the previous chapters, the representation methods for 

biological objects which were developed in this thesis have been 

discussed. In this chapter, all the representation methods are 

integrated into a prototype system. There are two prototype 

systems: one for leaves and another for butterflies. The system 

for leaves was designed to evaluate the algorithms for shape 

description. On the other hand, the system for butterflies was 

designed to evaluate the algorithms for shape description, colour 

pattern extraction and colour pattern description. Each prototype 

system consists of two subsystems:-

o a learning system, and 

o an implementation system. 

The learning system was designed to calculate variations of 

the external features of biological objects such as size, shape and 

colour pattern within a species. The implementation system was 

designed to identify a species under test by referring the lower 

and upper limits of each descriptor determined by the learning 

system. These systems were designed to be easily expanded into 

an actual system which would be used for various purposes such 

as discovering a new species and so on in biology. 

Each system was tested using sample species in the validation 

stage. The results of the experiment were discussed based on two 

aspects: 

(1) the identification ability of each system, and 

(2) the effectiveness of the descriptors in~~liscrimination of the 

sample data. 
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7.2 CONFIGURATION OF HARDWARE AND SOFTWARE. 

In this section, the configuration of the hardware and 

software which are basically required for a prototype system is 

illustrated. The prototype system was established based on the 

configuration in Figure 7.1. The main body of _ this system was 

built using the C programming language installed on a Hewlett 

Packard workstation running under Unix version 8B, where the X­

window system was utilised to display a colour image on a VDU. 

Photograph 

--------~---------, 
Colour Image I VDU I 
Scanner • • 

X-Window 
Colour Studio .. System • 

Macintosh IIX ... .. 
C Programming 

I SPSS-X 
Colour Image I Language J. 

I r I 

Capturing System: 
Unl)( versi on 8 A I Unix version 8B I ___________________ J 

Figure 7.1 Configuration of hardware and software. 

The colour image of an object is captured by a colour image 

scanner (JX600) connected to a Macintosh IIX system, where the 

Colour Studio application, installed on the Macintosh system, is 

utilised to digitise a scanned image. A digitised colour image is 
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transferred to Unix version BB. This digitised colour image is used 

as input data to the prototype system. In the processing stage for 

colour pattern extraction, input data to the Cluster Analysis are 

transferred to Unix version BA where the SPSS-X application, a 

statistical package, is installed. A Cluster Analysis routine in the 

SPSS-X produces the result using thise input data. This result is 

transferred to Unix version BB and is used for colour pattern 

extraction. 
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7.3 SPECIES IDENTIFICATION SYSTEM. 

A species identification system consists of two subsystems: 

o a learning system, and 

o an implementation system. 

The learning system was designed to calculate variations of the 

external features of biological objects such as size, shape and 

colour pattern within a species. The implementation system was 

designed to identify a species under test, based on the lower and 

upper limits of each descriptor determined by the learning 

system. 

There are two species identification systems which were 

separately designed to evaluate the representation methods, 

which were developed in this thesis, by applying sample objects: 

leaves and butterflies. The prototype system for leaves was 

designed to evaluate the algorithms for shape description. On the 

other hand, the prototype system for butterflies was designed to 

evaluate the algorithms for shape description, colour pattern 

extraction and colour pattern description. These prototype 

systems were designed only to examine basic functions such as 

the calculation of each descriptor since the main objective of this 

thesis lies in the development of biological object description 

methods. However, these systems are easily expanded into actual 

systems which can be used for various purposes such as 

discovering a new species and so on. For the actual system, an 

expertise in the relevant domain and plenty of sample images to 

cover each species are required. 
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7.3.1 learning System. 

As discussed in Chapter 1, the external features of biological 

objects vary in size, shape and colour pattern within a species, 

thus a species identification system should accommodate these 

variations. In order to satisfy this principle, a learning system 

was designed to calculate the variation of each descriptor which 

was extracted from the images of the sample species. For each 

descriptor, the lower and upper limits are determined by a 

statistical normalisation method. The normalisation method 

consists of two steps: 

(1) Calculate the mean and standard deviation of each descriptor 

using the images of the sample species. 

(2) Infer the lower and upper limits of a population distribution 

using the sample mean and standard deviation. 

let the sample mean value of a descriptor be M, the sample 

standard deviation S. The lower and upper limits are inferred by 

using the sample mean and standard deviation as follows: 

o the lower limit: M - 3S, 

o the upper limit: M + 3S, 

where the lower and upper limits cover the 99.74 % of the normal 

distribution with the mean M and standard deviation S. The reason 

for this statistical normalisation using the sample mean and 

standard deviation is that even for an actual system it is 

impossible to collect all of the images of objects in every 

species. 

7.3.2 Implementation System. 

Once the lower and upper limits of each descriptor for each 

species is determined by a learning system using given samples, 
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an object image which is under test is examined by an 

implementation system. This implementation system was 

designed to evaluate values of every descriptor, that is, to 

examine whether or not each value was within the lower and 

upper limits of the corresponding descriptor previously calculated 

by the learning system. If a value of a descriptor is within the 

ranges, it is decided that the value of the descriptor is identical 

to that of the corresponding ratio previously learned. Otherwise, 

it is decided that the value of the descriptor is different from 

that of the corresponding descriptor. Thus this implementation 

system was designed to summarise the detailed results of the 

examination which would be utilised in further analysis in a 

relevant domain. 

7.3.3 Leaf Species and Butterfly Species Identification 

Systems. 

7,3.3,1 leaf Species Identification System. 

A leaf species identification system was designed to identify 

leaf species based on the shape of the leaf. This system consists 

of a learning system and an implementation system. The learning 

system was designed to build up library data using the images of 

the sample species. The library data were designed to contain the 

lower and upper limits of each ratio in a ratio tree for each 

species and the name of the species. The implementation system 

was designed to identify leaf species by examining whether or not 

the value of each ratio in a ratio tree was within the ranges of 

the corresponding ratio in the library data, which were built up by 

the learning system. 
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Figure 7.2 R flow chart of a learning system for a leaf species 
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Let us consider the detailed procedure of the learning system 

as shown in Figure 7.2, for leaf species identification. In Figure 

7.2, a number in parentheses on the upper left corner of a box 

represents a process; and a 0 and a number in a box at the left­

hand end represents a file. In process 1, each leaf is scanned using 

a colour image scanner which is connected to a Macintosh IIX, 

where a colour image 01, which is composed of R, G and B values, 

is created. This image is transferred to Unix version 8B. In 

process 2, this image is read. Thus, this image is displayed on the 

CRT screen to verify that it is the correct image. In process 4, the 

R, G and B values of each pixel in the image are transformed into 

L*, a* and b* values, where the result of the calibration of the 

image scanner is employed. In process 5, a gradient array G is 

created by applying L*, a* and b* values of each pixel in the 

image. In process 6, the boundary of an object in the image is 

extracted using the gradient array G. The extracted boundary data 

are stored in file 02 and this boundary image is displayed, again 

for verification. In process 8, a principal axis of the boundary is 

detected, where two (x, y) coordinates of the extreme points, 

which form the principal axis of the boundary, are obtained. These 

(x, y) coordinates are stored in file 03. In process 9, the boundary 

is rotated in order to make the principal axis parallel to the x­

axis. In process 10, the rotated boundary is divided into two 

parts, that is, the upper part and the lower part. To verify this 

process, the boundary with the principal axis is displayed on the 

CRT screen. In process 12, each part is divided into 2N segments. 

In process 13, the ratio for each segment is calculated. In process 

14, a ratio tree is constructed using the ratio calculated in the 

previous process. This ratio tree is stored in file 04 each time 

through the loop. That is for 10 samples 04 would contain 10 ratio 

240 



trees. If all the sample images of a species are processed, the 

lower and upper limits of each ratio are calculated in process 15. 

These lower and upper limits for each species are stored in file 

05. This file is used as the library data in the implementation 

system and thus contains a single ratio tree with ranges. 

Let us consider the detailed procedure of the implementation 

system in Figure 7.3, for a leaf species identification system. The 

functions of the processes 1 through to 14 in Figure 7.3 are 

exactly the same as those of the processes 1 through to 14 in 

Figure 7.2. The contents of the files 01 through to 04 in Figure 7.3 

are similar to those of the files 01 through to 04 in Figure 7.2. As 

soon as a ratio tree is produced in process 14 in Figure 7.3, each 

ratio is examined, in process 15, whether or not it is within the 

lower and upper limits of its corresponding ratio in 05 which has 

been created in the learning stage. Finally, in process 16, the 

result of the comparison is displayed. 
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Figure 7.3 R flow chart of an implementation system for a leaf 
species identification system. 

242 



In the validation stage, two different kinds of leaf species, as 

shown in Figure 7.4, were chosen to test the system. As Table 7.1 

shows, ten samples of Species A and sixteen samples of Species 8 

were randomly selected from the given samples for the learning 

stage; and five samples for Species A and ten samples for Species 

8 were selected for the implementation stage. 

Species No. of Samples in No. ofSemples in the 
Total the Leer ni ng stage Implementation Stage 

Species A 10 5 15 
Species B 16 10 26 

Total 26 15 41 

Toble 7.1 The number of somples inuolued In the uolldotlon 
stoge. 

The original image of each species is shown in Figures 7.4.(a) and 

(b). In process 6, the boundary of each sample as shown in Figures 

7.4.(c) and (d) was extracted. As Figures 7.4.(e) and (f) show, a 

principal axis of each boundary was detected. As the shapes of 

the species show, the shape of each species is completely 

different. Thus, in process 12, the upper and lower parts of the 

boundary were divided into 23 segments as shown in Figures 

7.4.(i) and (j). After a calculation of the ratio for each segment 

using samples involved in the learning stage, the library data 

containing the lower and upper limits of each ratio were created. 

In the implementation stage, the ratio for each segment of 

individual test species was calculated and examined whether or 

not it was within the lower and upper limits of its corresponding 

ratio of each species in the library data which had been created in 

the learning stage. The result of the test undertaken is shown in 
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Species B 

(a) (b) 

(c) (d) 

(e) (f) 

(9) (h) 

(i) (j) 

Figure 1.4 Sample Images. (a) and (b) Original Images. (c) and 
(d) Boundaries eHtracted. (e) and (f) Principal aHes. (g) and (h) 
Rotated boundaries. (I) and (j) Segmented boundaries. 
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Table 7.2. The method for the test was that if the ratio for every 

segment calculated using a test sample species was within the 

range of Its corresponding ratio of a species in the library data, it 

was considered as the same species that was in the library data. 

In the test with five samples of Species A, four samples were 

correctly identified as Species A, while one sample was not 

identified, because only one ratio was determined as an outlier. In 

the test with ten samples of Species B, nine samples were 

identified as Species B, while one sample was not identified. 

Consequently, 87% (13 out of 15) of the samples were correctly 

identified. 

Species No.ofTe,t Identified Fall ed Semples 

Species A 5 4 1 
Species B 10 9 1 

Total 15 13 2 

Table 7.2 The result of the Identification test. 

Figure 7.5 The ratio for each segment. 

In order to examine the effectiveness of these descriptors 

(ratios) in the leaf species classification using distributions of 

sample species, 16 samples were selected from each species. Let 
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the samples of Species A be group 1 and those of Species B group 

2. Let the ratio for each segment in the lower part be U1, U2, U3, 

... , U8 and that in the upper part be L 1, L2, L3, ... , L8 as shown in 

Figure 7.5. The diagrams in Figure 7.6 show the distribution of the 

sample species. The diagram in Figure 7.6.(a) is a scatter diagram 

of the U1 values against the L1 values; that in Figure 7.6.(b) is a 

scatter diagram of the U3 values against the L3 values. In each 

diagram, each of the pOints represents individual sample species; 

and the number '1' represents group 1 and the number '2' group 2. 

The diagrams in Figures 7.6.(c) and (d) are respectively the same 

diagrams in Figures 7.6.(a) and (b), where one-dimensional 

distribution of the values corresponding to each axis is added to 

each axis. The points in Figure 7.6.(a) can be categorised into their 

corresponding groups by a vertical line against the U1-axis, as 

Figure 7.6.(c) shows, since the one-dimensional distributions of 

the U1 values of both groups can be clearly separated; however 

these points cannot be categorised into their corresponding 

groups by a vertical line against the L 1-axis because the one­

dimensional distributions of the L 1 values of both groups are 

completely overlapped, as Figure 7.6.(c) shows. On the other hand, 

the points in Figure 7.6.(b) can be categorised into their 

corresponding groups by a vertical line and a horizontal line, as 

Figure 7.6.(d) shows, because the one-dimensional distributions of 

the U3 values of both groups can be clearly separated and those of 

the L3 values of both groups can be clearly separated. This reveals 

that the points cannot be separated into their corresponding 

groups by the ratio L 1, but they can be clearly separated by the 

ratios U1, L3 and U3. It can be concluded that if all of the ratios 

are simultaneously used in the identification stage, as already 

explained in Chapter 5, these samples can be completely 
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categorised into their corresponding groups. 

Additionally. in an actual system with various shapes of 

species. the number of segments of the upper and lower parts of 

the boundary should be increased depending upon the accuracy of 

the result which is required. 
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7.3.3.2 Butterfly Species Identification System. 

A butterfly species identification system was designed to 

identify butterfly species based on the wing shape and colour 

pattern on the wings. This system also consists of a learning 

system and an implementation system. Due to the variations of 

the shape and the colour pattern in a species, the learning system 

was designed to build up library data using the images of the 

same species. The library data were designed to contain the lower 

and upper limits of each descriptor for each species and the name 

of the species. The implementation system was designed to 

identify butterfly species by examining whether or not the value 

of each descriptor was within the ranges of the corresponding 

descriptor in the library data, which were built up by the learning 

system. In the butterfly domain, both the' colour pattern and the 

wing shape are commonly used for butterfly species 

classification. Thus, the implementation system was designed to 

identify butterfly species by alternatively using the shape of the 

wings. 

Let us consider the detailed procedure of the learning system 

as shown in Figure 7.7 and 7.8, for butterfly identification. The 

functions of the processes 1 through to 14 in Figure 7.7 are 

exactly the same as those of the processes 1 through to 14 in 

Figure 7.2. The contents of the files D1 through to D5 in Figure 7.7 

are similar to those of the files D1 through to D5 in Figure 7.2. In 

process 8 in Figure 7.7, colour patterns are extracted from an 

image created in process 1. The detailed procedure for this 

process is depicted in Figure 7.8. As soon as process 14 in Figure 

7.7 is carried out, the image of an object is extracted from the 
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colour image stored in file 01 in process 15 in Figure 7.S, where 

the boundary data stored in file 02 are used. The Image extracted 

in process 15 is displayed on the CRT screen. In process 17, this 

image is rotated to make the principal axis parallel to the x-axis. 

In process 19, the Auxiliary Means is created by using the rotated 

image. After a random noise test, N sets of l*, a* and b* data are 

extracted from the Auxiliary Means in process 22, where N is the 

number of pixels with different colour features in the image of an 

object. File OS is transferred to Unix version SA where the SPSS-

X is available. A Cluster Analysis routine in the SPSS-X is 

executed in process 23. The result of the Cluster Analysis is 

transferred to Unix version SA. In process 24, this result of the 

Cluster Analysis is assigned to the Auxiliary Means, where the 

number of colour patterns supplied by the user is used to 

determine the number of clusters. In process 24, each colour 

pattern extracted is displayed for a visual test. Afte~isual test, 

in process 26, five different kinds of major factors for 

description are calculated. This calculation is repeated as many tt'MS 

as the number of colour patterns. In process 27, major factors 

calculated in process 26 are arranged in descending order 

according to the value of the size factor. The major factors 

arranged are stored in file 015. If all the sample images of a 

species are processed, the lower and upper limits of each 

descriptor are calculated in process 2S. This process produces 

two important files 05 and 016. The 05 is used as the library data 

for colour pattern description in the implementation system. 
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Figure 7.7 R flow chart of a learning system for a butterfly 
species identification system. 
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Let us consider the detailed procedure of the implementation 

system for a butterfly species identification system. In~ase of a 

butterfly species identification system relying on the wing 

shapes, the implementation system is exactly the same as that 

for the leaf species identification in Figure 7.3. On the other hand, 

{q- a butterfly species identification system relying on the colour 

patterns on the wings, the flow chart of'mplementation system 

is depicted in Figure 7.9. The functions of the processes 1 through 

to 7 in Figure 7.9 are exactly the same as those of the processes 1 

through to 7 in Figure 7.7. The contents of the files 01, 02 and 

015 in Figure 7.9 are similar to those of the files 01, 02 and 015 

in Figure 7.7. Whereas, the detailed procedure for the process 8 in 

Figure 7.9 is also exactly the same as that in Figure 7.8. In 

process 28 in Figure 7.9, each major factor value stored in file 

015 is compared with the corresponding major factor value in file 

016 in the hierarchical order in Figure 6.8 in Chapter 6. Finally, 

the result of the comparison is displayed. 
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Figure 7.9 A flow chart of an Implementation system for a 

butterfly species identification system with colour patterns. 
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In the validation stage, two different kinds of butterfly 

species, as shown in Figure 7.10.(a) and Figure 7.11.(a), were 

chosen to test the system. As Table 7.3 shows, ten samples for 

each species were randomly selected from the given samples for 

the learning stage; and five samples for each species were 

selected for the implementation stage. 

Species No. of Semple, in No. ofSemple, in the 
Totel the Learni ng Stege Implementation Stege 

SpecIes A 10 5 15 
Species B 10 5 15 

Totel 20 10 30 

Table 7.3 The number of samples Inuolued in the uaIJdatlon 
stage. 

As the images show, the wing shapes of each species were 

completely different. The species identification by shape had been 

performed in the leaf species identification, therefore in this 

validation stage the butterfly species identification was carried 

out based on the colour pattern of the wings. The butterfly has 

four wings: two wings on the left-hand side and another two on 

the right-hand side. The shapes and patterns of the one-side 

wings are exactly the same as those of the other-side wings. In 

the butterfly domain, one-sided wings are generally used for 

species classification. Thus, in this experiment the images of the 

left-hand-side wings were manually extracted to concentrate on 

the validation test of the algorithms for colour pattern extraction 

and its description. In process 15 in Figure 7.8, two different 

colour patterns for species A, as shown in Figures 7.10.(b) and (c), 

were extracted; three different colour patterns for species B, as 

shown in Figures 7.11.(b), (c) and (d), were extracted. As Figures 
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(8) 
Species A 

Pet tern 1 Pattern 2 
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(;) 

Figure 1.10 Wing patterns and major factors for each pattern 
of Species R. (a) The left-hand side wings. (b) and (c) Colour 
patterns. (d) and (e) Rotated patterns and principal aHis. (f) 
and (g) Centre of grauity and four quadrants. (h) and (j) 
Regression lines. 
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(a) Species B 

Pattern 3 Pattern 4 Pattern 5 

(b) (c) 

(e) (f) 

(i) 

(k) (I) (m) 
Figure 7.11 Wing patterns and major factors for each pattern 
of Species B. (a) The left-hand side wings. (b)-(d) Colour 
patterns. (e)-(g) Rotated patterns and prinCipal aHis. (h)-(j) 
Centre of grauity and four quadrants. (k)-(m) Regression lines. 
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7.10.{d) and (e) and Figures 7.11.{e), (f) and (g) show, each colour 

pattern was rotated using a principal axis. In process 26 in Figure 

7.B, major factors, which were designed for colour-pattern 

description, were calculated. The number of descriptors 

calculated for each colour pattern was 14. Although these 

descriptors were already illustrated in Chapter 6, some of them 

are depicted in Figures 7.10 and 7.11 for clear understanding. 

Figures 7.1 O.{f) and (g) and Figures 7.11.{h), (i) and 0) show the 

centre of gravity and four quadrants for each colour pattern. As 

Figures 7.10.{h) and (i) and Figures 7.11.{k), (I) and (m) show, a 

regression line for each colour pattern, which represents a slope 

of a pattern, was calculated. After the calculation of the 

descriptors for each colour pattern using sample species involved 
1 

in the learning stage, the library data containing the lower and 

upper limits of each descriptor were created. 

In the implementation stage, the descriptors for each colour 

pattern of individual test species were calculated and arranged in 

descending order according to the size of each colour pattern. 

Since the number of colour patterns of Species A is different 

from that of Species B, the result of~omparison between species 

is apparent. Thus, in this test each colour pattern of a test 

species was compared with each of five colour patterns (2 for 

Species A, 3 for SpeCies B) in the library data, that is, the 

comparison was performed between the colour patterns rather 

than between the species. If every descriptor of a test colour 

pattern was within the range of its corresponding descriptor of a 

colour pattern in the library data, it was considered as the same 

colour pattern that was in the library data. In~ase of the test 

with five samples of Species A, there were two different kinds of 
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colour patterns. Let the colour pattern with a larger number of 

pixels, as shown in Figure 7.10.(b), be Pattern 1 and that with a 

smaller number of pixels, as shown in Figure 7.10.(c), Pattern 2. 

These patterns were correctly identified as shown in Table 7.4. In 

tkcase of the test with five samples of Species B, there are three 

different kinds of colour patterns. Let the colour pattern of the 

larger size, as shown in Figure 7.11.(b), be Pattern 3, that of the 

medium size, as shown in Figure 7.11.(c) Pattern 4, and that of the 

smaller size, as shown in Figure 7.11.(d), Pattern 5. As Table 7.4 

shows, all of the test colour patterns corresponding to Pattern 3 

were correctly identified; three of the test colour patterns 

corresponding to Pattern 4 were correctly identified, while two 

of them were not identified; and four of the test colour patterns 

corresponding to Pattern 5 were correctly identified, while one of 

them WM, not identified. Consequently, 88 % (22 out of 25) of the 

colour patterns were correctly identified. 

Species No. of Test Identified Failed Pattern Samples 

Species A Pattern 1 5 5 0 
Pattern 2 5 5 0 

Pattern 3 5 5 0 
Species B Pattern 4 5 3 2 

Pattern 5 5 4 1 

Total 5 25 22 3 

Table 7.4 The result of the identification test. 

In order to examine the effectiveness of the colour-pattern 

descriptors in the colour pattern classification, let us look into 

the distributions of all the samples. Among 14 different kinds of 

descriptors, a descriptor for the size of a colour pattern and 
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descriptors for the location of a colour pattern were chosen to be 

examined. A diagram in Figure 7.12 shows ranges of the descriptor 

for the size of each pattern, where Pattern 5 can be clearly 

separated from the other Patterns. However, Patterns 2 and 4 as 

well as Patterns 1 and 3 are duplicated. Thus, Pattern 2 cannot be 

separated from Pattern 4 and Pattern 1 cannot be separated from 

Pattern 3 using this descriptor. On the other hand, Patterns 2 and 

4 can be clearly separated from Patterns 1 and 3. 
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Figure 7.12 Range o~f each descrlptor for the size of each 
colour pattern. 

To examine the clear separation of the Pattern.s2 and 4 as well 

as the Patterns 1 and 3, let us look into another diagram in Figure 

7.13. The diagram in Figure 7.13 is a scatter diagram of the values 

of the normalised centre of gravity x against the values of the 

normalised centre of gravity y. As this scatter diagram shows, 

Pattern 2 can be clearly separated from Pattern 4. However, it is 

still difficult to judge the discrimination of Pattern 1 from 
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Pattern 3 using this scatter diagram because three different 

kinds of Patterns are mixed in the central part of the scatter 

diagram. Thus, let us look into another scatter diagram in Figure 

7.14, where only Patterns 1 and 3 are plotted. As this scatter 

diagram shows, Pattern 1 can be clearly separated from Pattern 3. 

As leaf species classification showed, this reveals that if all of 

the descriptors are involved in the colour-pattern classification, 

each colour pattern can be clearly separated into its 

corresponding group. 
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7.4 CONCLUSION. 

The presentation methods for biological objects which have 

been developed in~esis are categorised into two domains:-

(1) the shape description domain, and 

(2) the colour pattern description domain. 

In this chapter, all the procedures which were required to create 

each of these descriptors were considered by establishing a 

prototype system. One prototype system for a leaf identification 

system was designed to evaluate the shape description method. 

Another prototype system for a butterfly species identification 

system was designed to evaluate the colour pattern description 

method. In particular, the colour pattern extraction method 

applying a Cluster Analysis routine in the SPSS-X was utilised to 

extract colour patterns from the images of butterflies in the 

latter prototype system. 

In the validation stage, the main focus of the experiment was 

on the effectiveness of shape and colour pattern descriptors in 

the classification of sample data. The experiment was undertaken 

utilising two prototype systems: one for leaf species 

identification and the other for colour pattern classification, 

where images of leaves and butterflies were respectively used 

for the validation. In brief, both the descriptors produced 

sufficient information which could be used for species 

classification. Whenever the system provided the output of an 

execution, it could be interpreted and assessed without 

difficultj'. , 
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fu 
In addition, as the diagram for;,!anges of the size of each 

Pattern in Figure 7.12 and the scatter diagram for the location of 

each colour pattern in Figure 7.13 show, colour patterns having 

similar features form groups. This reveals that the algorithm for 

colour pattern extraction which was discussed in Chapter 4 

works properly. 
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8 CONCLUSIONS. 

This thesis has primarily been concerned with the problem of 

how to represent a biological object for computerised 

identification. Images of biological objects have been generally 

characterised by shapes and colour patterns in the biological 

domain and the pattern recognition domain. Thus, it was necessary 

to represent the biological object using descriptors for the shape 

and the colour pattern. In the pattern recognition domain, many 

description methods for shapes and colour patterns have been 

published. The basic requirements which a description method 

should satisfy are those such as invariance of scale, location and 

orientation of an object; direct involvement in the identification 

stage; easy assessment of results and so on. The literature survey 

undertaken in this thesis revealed that the majority of existing 

methods were well designed to meet some the requirements but 

not sufficient to meet all of them. Thus, it was necessary to 

develop improved methods not only for shape description, but also 

for colour pattern description. The major task to deal with in this 

thesis was to develop a shape-description method and a colour­

pattern description method which could accommodate all of the 

basic requirements and could be generally applied in the 

biological and pattern recognition domains. The main principle of 

the shape-description method is theoretically the same as that of 

the COlour-pattern description method with respect to the 

following: 

(1) A prinCipal axis of an object is considered as a major 

parameter which dominates most of the values of the descriptors, 

because they are calculated based on the rotated principal axis; 

(2) Most of the descriptors are ratios, because they can 
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In the colour-pattern description stage, an important task was 

to segment a colour image into meaningful segments. The most 

efficient method for this task is to apply the Cluster Analysis. In 

the image analysis and pattern recognition domains, the majority 

of approaches to this method have been constrained by the 

problem of dealing with inordinate amounts of data, i.e. a large 

number of pixels of an image. In order to directly apply the 

Cluster Analysis to the colour image segmentation, the Auxiliary 

Means which is a kind of data structure was devised in this 

thesis. However, the method employing the Auxiliary Means had a 

serious problem with random noise. To overcome this problem a 

method to remove random noise was considered. In the validation 

stage, this method employing the Auxiliary Means was 

successfully applied. One of the important features of this 

approach was to utilise the Cluster Analysis routine of the SPSS­

x. It is desirable to build the Cluster Analysis routine in a 

practical system for the system's flexibility since the routine in 

the SPSS-X has a limit on the number of cases it can manage, for 

example 150 cases in an 80K workspace. 

Additionally, a calibration method for a colour scanner 

digitising system in the CIE L*A*B* colour space, which was 

developed utiliSing the Macbeth colour chart in this thesis, can be 

widely applied, because the spectral sensitivity of O'"lIedevice is 

usually different from that of another. 
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A. LEAF SPECIES IDENTIFICATION. 

B. BUTTERFLY SPECIES IDENTIFICATION. 
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A. LEAF SPECIES IDENTIFICATION. 

In this Appendix, the dat~ and~esult Of~nalYSiS which were 

obtained during the validation stage for leaf species 

classification are described. There were two different kinds of 

leaf species involved in the test. For species A in Figure A.1.(a), 

the number of samples was 16, where 10 samples was randomly 

selected from the given samples for the learning stage; and 6 for 

the implementation stage. For species 8 in Figure A.1.(b), the 

number pf samples was 26, where 16 samples were randomly 

selected from the given samples for the learning stage; and 10 for 

the implementation stage. 

Species 8 

(a) (b) 

Figure A.t The Images of sample species. 

After rotation of the boundary of each sample using a principal 

axis, the upper and lower parts were divided into ~ segments as 

shown in Figure A.2.(a), and the ratio for each segment was 

calculated. Another ratio for each segment of 22 segments for the 

upper and lower parts, as shown in Figure A.2.(b), was calculated 

using the ratios for 23 segments. The ratio for each segment of 21 

segments for the upper and lower parts, as shown in Figure 

A.2.(c), was calculated using the ratios for 22 segments. Finally, 

the ratios for the upper and lower parts, as shown in Figure 

A.2.(d), were calculated using the ratios for 21 segments. Thus, 
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the number of ratios (descriptors) for each part is 15. The value 

of each ratio (descriptor) for each sample involved in the 

validation stage is shown in Table A.1. through to Table A.6. 

(b) 

(c) (d) 
Figure A.2 The ratio for each segment. 

The main objective of the experiment was to examine the function 

of the descriptor which was designed to discriminate one group 

from another. Two-dimensional scatter diagrams usually show the 

relationship between observations of each group. As most of the 

scatter diagrams in Figure A.3 through Figure A.19 show, each 

sample group can be clearly separated from the other group. 
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Toble A.1.(0) The rotios for the upper port for 10 somples of 
Species A inlJollJed in the leorning stoge. 

LTol LHl LH2 LOl L02 L03 L04 Lt L2 L3 L4 L5 L6 L7 L8 

---------------------------------------
276314081355 3191089 7.67 588 .69 250 5.76 513 368 3.99 4.43 1.45 

26.54 13.11 13.43 1.60 11.51 8.38 5.05 .66 .94 602 5.49 432 4.06 369 1.36 

26.5014.70 11.80 4.30 1040 6.38 5.42 1.23 307 5.75 465 3.12 326 353 189 

35.17 17.67 17.50 460 13.07 9.97 7.53 .83 3.77 595 7.12 6.12 3.85 4.58 2.95 

32.4216.51 1591 284 13.67 9.35 656 .77 2.07 6.78 689 5.20 4.15 4.31 2.25 

33 9916.73 17 26 5.1411.59 9.68 7.58 .80 434 6.28 5.31 507 4.61 495 263 

34.80 17.08 17.72 3.88 1320 988 7.84 .57 331 6.81 6.39 527 4.61 5.34 2.50 

25.32 10.97 1435 133 964 7.64 671 .55 .78 4.50 5.14 4.42 3.22 4.31 2.40 

28.67 12.79 1588 269 10.10 9.05 683 .82 187 5.16 4.94 4.50 455 4.99 1.84 

25.73 12.74 1299 2.1610.58 6.99 6.00 .76 1.40 590 4.68 385 3.14 3.48 2.52 

-----

Toble A.1.(b) The rotlos for the lower port for 10 somples of 
Species R inlJollJed in the leorning stoge. 

UTot UHl UH2 UOl UQ2 U03 U04 Ul U2 U3 U4 US U6 U7 U8 

------------------
23.59 12.84 10.75 3.96 888 6.70 4.05 1.23 273 4.35 4.53 3.79 291 268 1.37 

22.60 13.51 9.09 4.84 8.67 5.50 3.59 1.63 3.21 4.46 4.21 2.89 2.61 2.50 1.09 

18.67 11.07 7.60 4.05 702 5.01 259 1.17 2.88 3 59 3.43 2.83 2.18 189 .70 
20.29 12.14 8.15 4.55 7.59 4.81 3.34 1.54 301 3.58 401 2.74 2.07 2.25 1.09 

19.22 11.21 8.01 3.65 7.56 5.03 2.98 1.18 247 361 3.95 2.96 2.07 2.07 .91 

19.28 1223 7.05 420 803 4.39 2.66 129 291 4.02 4.01 2.64 1.75 1.68 98 

233712.2111.16 4.13 8.08 698 4.18 1.25 2.88 3.91 417 441 257 243 1.75 

24.9213.7511.17 4.29 9.46 7.30 3.87 1.36 293 4.48 498 467 2.63 253 1.34 

21.43 12.51 8.92 4.12 8 39 5.44 3.48 1.31 2.81 4.07 4.32 3.11 2.33 2.24 1.24 

22.79 12.07 10.72 359 8.48 6.60 4.12 1.02 257 4.18 430 3.55 3.05 2.58 1.54 
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TBble R.2.(B) The meBn of eBch rBtio for the upper pBrt using 
10 sBmples of Species R inuolued in the leBrning stBge. 

LTo! LHl LH2 LOl L02 L03 L04 L 1 l2 L3 L4 L5 L6 L7 L8 

29.6814641504 31711.46 8.50 654 077 240 589 557 455 394 436 2.18 

TBble R.2.(b) The stBndBrd deuiBtion of eBch rBtio for the upper 
pBrt using 10 sBmples of Species R inuolued in the leBrning 
stBge. 

LTo! LHl LH2 LOl L02 L03 L04 Lt l2 l3 L4 L5 L6 L7 L8 

-------------
3 98 2.26 2 10 1 29 1.41 1.28 0.95 0 19 1 21 0.69 0 90 0.88 0.57 0 64 0.52 

TBble R.2.(c) The meBn of eBch rBtlo for the lower pBrt using 
10 sBmples of Species R Inuolued in the leBrnlng stBge. 

UTo! UHl UH2 UOl U02 U03 U04 Ul U2 U3 U4 U5 U6 U7 U8 

--------
21.6212.35 9.26 4.14 8.22 5.78 3.49 1.30 284 4.02 4.19 336 2.42 2.28 1.20 

TBble R.2.(d) The stBndard deuiatlon of eBch rBtlo for the lower 
pBrt using 10 samples of Species R Inuolued In the leBrnlng 
stBge. 

UTo! UHl UH2 UOl UQ2 U03 U04 Ul U2 U3 U4 U5 U6 U7 U8 

2.16 0.86 157 0.38 0.71 1.03 059 0.18 0.21 035 0.40 0.72 0.41 0.32 0.31 

A-5 



Table R.3.(a) The ratios for the upper part for 6 samples of 
Species R involved In the implementation stage. 

LTot LHl LH2 LOl L02 L03 L04 Ll l2 L3 L4 L5 L6 L7 L8 

31.7516841491 4.44 1240 823 668 .71 3.73 650 590 441 382 4.32 236 

33.55 17.15 16.40 5.9611.19 9.05 7.35 .95 501 5.44 575 4.69 4.36 4.44 2.91 

28.01 13.17 1484 1.79 1138 8.22 662 .62 1.17 563 575 4.98 3.24 4.08 254 

33 72 17.22 16 50 505 12.17 9.30 7.20 .78 4.27 648 569 511 4.19 454 2.66 

27.02 1269 1433 2.32 10.37 7.95 6.38 .71 1 61 4.71 566 4.41 3.54 429 209 

35.43 17.75 1768 60011.75 9.71 7.97 .97 503 5.90 585 5.35 4.36 5.34 263 

Table R.3.(b) The ratios for the lower part for 6 samples of 
Species R Involved In the Implementation stage. 

UTot UHl UH2 UOl UQ2 U03 U04 Ul U2 U3 U4 US U6 U7 U8 

22.75 1243 1032 3.91 8.52 5.77 4.55 1.35 2.56 4.12 440 297 280 309 1.46 

18.35 11.59 6.76 365 7.94 3.89 2.87 1.24 2.41 3.96 3.98 1.98 1.91 1.82 1.05 

24.93 13.80 11.13 4.16 9.64 7.14 3.99 1.58 2.58 4.33 531 463 2.51 2.30 1.69 

25.0413.64 11.40 3.97 9.67 6.80 4.60 1.39 2.58 4.78 4.89 3.90 290 308 1.50 

2626 15.32 1094 4.64 10.68 7.26 3 68 1.30 3.34 5.37 5.31 4.46 2.80 2.34 1.34 

21.26 12.44 8 82 3.90 8.54 5 49 3 33 1.26 2.64 4 06 4.48 3.37 2.12 2.26 1.07 
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Table R.4.(a) The ratios for the upper port for 16 samples of 
Species B inuolued in the learning stage. 

LTo! LHl LH2 LOl L02 L03 L04 Lt L2 L3 L4 L5 L6 L7 L6 

------------------------------------------------1752 7.44 1008 2.77 4.67 628 380 .93 184 218 2.49 307 321 268 1.12 

14.93 7.38 7.55 2.51 4.87 5.00 2.55 .34 2.17 2.29 2.58 2.80 2.20 1.85 .70 

16.31 7.72 8.59 242 530 542 3.17 .81 1 61 226 304 2.85 257 228 .89 

14.32 6.65 767 244 421 498 2.69 84 1.60 2.09 2.12 2.70 228 197 .72 

16.51 8.01 8.50 2.63 5.38 5.72 2.78 1.01 1.62 2.53 2.85 2.88 2.84 2.10 68 

16.84 7.14 9.70 2.23 4.91 6.32 3.38 .69 1.54 1.95 2.96 320 3.12 2.48 .90 

13.71 5.97 7.74 1.78 4.19 5.23 2.51 .62 1.16 1.57 262 2.70 253 193 .58 

15.83 7.47 836 2.53 494 5.63 2.73 .74 1.79 2.44 2.50 2.81 2.82 2.15 .58 

1967 846 11.21 2.54 5.92 6.66 4.55 80 1.74 2.72 3.20 322 344 3.13 1.42 

15.15 580 9.35 1.65 4.15 6.20 3.15 .51 1.14 1.96 2.19 3.13 3.07 2.24 .91 

15.56 654 9.02 1.94 4.60 5.95 3.07 66 1.28 228 2.32 3.19 2.76 2.23 .84 

10.88 440 6.48 1.45 2.95 4.09 239 .53 .92 1.18 1.77 2.06 2.03 1.76 .63 

17.01 5.63 11.38 1.35 4.28 694 444 .43 .92 2.15 2.13 3.58 3.36 3.16 1.28 

1455 5.57 898 1.43 4.14 563 3.35 .45 .98 1.51 2.63 2.50 3.13 2.38 97 

12.96 427 8.69 1.25 3.02 5.53 3.16 .47 .78 1.23 1.79 2.65 2.88 2.21 .95 

14.31 6.73 7.58 2.07 4.66 4.88 2.70 .56 1.51 2.17 2.49 250 2.38 1.86 .84 
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Table A.4.(b) The ratios for the lower part for 16 samples of 
Species B inuoJued in the learning stage. 

UTo! UHl UH2 UQl UQ2 UQ3 UQ4 Ul U2 U3 U4 US U6 U7 U8 

-----------------------------------------
16.13 658 955 1.93 4.65 6.11 344 .70 1.23 1.79 286 294 3.17 256 .88 

1422 6.63 7.59 1.44 5.19 470 2.89 .23 1.21 2.05 3.14 256 2.14 202 .87 

1501 5.73 928 1.45 4.28 5.67 361 .46 .99 1.65 263 2.50 3.17 2.47 1.14 

12.43 444 7.99 1.24 320 484 3.15 .42 82 1.27 1.93 2.45 239 2.15 1.00 

16.58 689 969 2.10 4.79 5.99 3.70 .70 1.40 2.38 241 3.10 2.89 262 1.08 

19.93 8.42 11.51 282 560 7.08 4.43 1.15 1 67 2.51 3.09 363 3.45 309 1.34 

1634 7.29 905 201 5.28 5.75 3.30 .60 1.41 202 326 2.94 2.81 2.25 1.05 

15.91 6.23 9.68 1.49 4.74 5.93 3.75 .43 1.06 1.66 3.08 2.79 3.14 257 1.18 

1355 6.15 7.40 2.17 3.98 5.09 2.31 .75 1.42 1.87 2.11 2.48 261 1.80 .51 

19.02 8.4210.60 2.48 5.94 6.67 3.93 .71 1.77 2.33 361 3.25 3.42 2.94 .99 

15.82 629 9.53 1.50 479 624 3.29 .51 .99 1.70 3.09 3.05 3.19 2.41 .88 

14.91 6.42 8.49 201 4.41 5.52 2.97 .66 1.35 1.81 2.60 2.78 2.74 2.12 .85 

1523 643 8.80 150 4.93 5.64 3.16 .23 1.27 2.02 2.91 2.58 3.06 2.38 .78 

17.99 8.40 9.59 2.87 5.53 6.44 3.15 .97 1.90 2.43 3.10 3.13 3.31 2.45 .70 

18.17 820 9.97 2.57 5.63 6.68 329 .79 1.78 2.40 3.23 3.37 3.31 2.61 .68 

11.53 5.74 5.79 1.89 3.85 3.98 1.81 .50 1.39 1.50 2.35 2.08 1.90 1.39 .42 
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Table A.S.(a) The mean of each ratio for the upper part using 
16 samples (Species B) inl/ollled in the learning stage. 

LTe! LHl LH2 LQl LQ2 LQ3 LQ4 11 l2 L3 L4 L5 L6 L7 L8 

1538 6578812.064.51565315065 1.41 2032.48287279228088 

Table A.S.(b) The standard delllatlon of each ratio for the upper 
part using 16 samples of Species B Inllollled In the learning 
stage. 

LTe! LHl l.H2 LQl LQ2 LQ3 LQ4 11 l2 l3 L4 L5 L6 L7 La 

2.04 1.22 1.33 051 0.78 0.73 0.64 0.19 040 0.45 042 0.36 0.42 0.42 024 

Table A.S.(c) The mean of each rotio for the lower part using 
16 samples of Species B Inl/ollled In the learning stage. 

UTa! UHl UH2 UQl UQ2 UQ3 UQ4 Ul U2 U3 U4 US U6 U7 U8 

15.80 6.77 9.03 1.97 4.80 5.77 3.26 0.61 1.35 1.96 284 2.85 2.92 2.36 0.90 

Table A.S.(d) The standard delllaUon of each ratio for the lower 
part using 16 samples of Species B Inl/ollled In the learning 
stage. 

UTe! UHl UH2 UQl UQ2 UQ3 UQ4 Ul U2 U3 U4 US U6 U7 U8 

2.28 1.13 1.36 0.51 0.74 082 0.61 0.25 0.31 0.37 0.46 0.40 0.46 0.42 0.24 
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Table R.6.(a) The ratios for the upper part for 10 samples of 
Species B inuolued in the implementation stage. 

LTot LHl LH2 L01 L02 L03 L04 Ll l2 L3 L4 L5 L6 L7 L8 

1652 7.01 951 2 19 482 620 3 31 .53 1 66 1 91 291 285 335 264 .67 

1432 591 841 1.90 4.01 5.17 3.24 .66 1.24 1.54 2.47 226 2.91 2.16 1.08 

1527 6.10 9.17 1.85 4.25 5.82 3.35 .62 1.23 1.78 2.47 293 2.89 248 .87 

14.98 6.90 808 220 470 5.30 2.78 .54 1.66 201 2.69 280 250 2.01 .77 

17.35 651 1084 1.88 4.63 6.49 4.35 .70 1.18 1.50 3.13 2.83 366 293 1 42 

14.49 6.36 8.13 179 457 5.13 300 .52 127 1.94 263 2.41 2.72 2.16 84 

16.70 7.84 886 265 5.19 6.01 2.85 .86 1.79 243 2.76 3.07 294 2.02 .83 

14.385.858.531834025.393.14.601231.79223 262 2.77 2.17.97 

13.34 5.65 7.69 1.57 4 08 4 83 2.86 .42 1.15 1.71 2.37 2.56 2.27 2.07 .79 

16.99 69610.03 1.98 4.98 602 4.01 .64 1.34 1.87 3.11 2.98 3.04 2.78 1.23 

Table R.6.(b) The ratios for the lower part for 10 samples of 
Species B Inuolued In the Implementation stage. 

UTol UHl UH2 UOl UQ2 U03 U04 Ul U2 U3 U4 US U6 U7 U8 

17.00 7.30 9.70 1 87 5.43 6.40 330 .56 1.31 2.13 3.30 308 3.32 2.29 1.01 

13.29 5.67 7.62 1.70 3.97 4.81 281 .59 1.11 1.64 2.33 2.16 265 1.96 .85 

21.4010.751065 3.69 7.06 7.19 3.46 1.17 252 3.00 4.06 3.59 360 2.65 .81 

15.15 6.33 882 2.14 4.19 5.44 3.38 .71 1.43 1.66 2.53 2.83 2.61 2.45 .93 

14.71 6.65 8.06 2.31 4.34 532 2.74 .75 1.56 1.79 2.55 2.96 2.36 1.98 .76 

12.96 6.60 6.36 2.11 4.49 4.57 1.79 .57 1.54 1.94 2.55 2.44 2.13 1.31 .48 

17.04 6.21 10.83 1.58 4.63 6.52 4.31 .56 1.02 2.15 2.48 322 330 2.96 1.35 

1384 600 784 1.99 401 5.44 2.40 77 1.22 1.65 2.36 2.75 2.69 1.90 .50 

15.96 6.61 9.35 2.26 4.35 5.85 3.50 .68 1.58 2.01 2.34 2.79 3.06 2.42 1.08 

14.37 5.86 8.51 1.66 4.20 5.39 3.12 .55 1.11 1.62 258 2.69 2.70 2.30 .82 
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Figure A.3 A scatter diagram of the LTot ualues against the 
UTot ualues. 
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Figure R.4 R scatter diagram of the lHI ualues against the UHI 
ualues. 
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Figure A.S A scatter diagram of the LH2 values against th e UH2 
values. 
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Figure R.6 R scatter diagram of the LH 1 lIalues against the LH2 
lIalues. 
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Figure A.7 A scatter diagram of the UH1 ualues against the UH2 
ualues. 
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Figure R.B R scatter diagram of the LQ 1 ualues against the UQ 1 
ualues. 
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Figure R.9 R scatter diagram of the LQ2 lJalues against the UQ2 
lJalues. 

L 
Q 
2 

PLOT OF LQ2 WITh UQ2 BY ID 
++----+----+----+----+----+----+----+----+----+----+----+----+----++ 

16+ 
I 

14+ 
I 

12+ 
I 
I 
I 

10+ 
I 
I 

8+ 

6+ 

4+ 

I 
I 
I 
I 

2+ 
I 
I 
I 

0+ 

2 
2 

2 

2 2 
22 2 2 

2 
2 22 

2 
2 

+ 

+ 
1 
1 1 

1 
1 + 

1 1 
1 1 

1 
1 1 1 

1 + 
1 

+ 

+ 

+ 

+ 

+ 
++----+----+----+----+----+----+----+----+----+----+----+----+----++ 
o 2 4 6 8 10 12 

UQ2 

32 cases plotted. 
Use first digit of ID as plotting symbol and $ for multiple 

occurrence. 

A-17 



Figure R.1 0 R scatter diagram of the LQ3 values against the 
UQ3 values. 
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Figure A.tt A scatter diagram of the LQ4 l1alues against the 
UQ4l1alues. 
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Figure R.12 R scatter diagram of the L1 ualues against the U I 
ualues. 
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Figure R.13 R scatter diagram of the L2 lJalues against the U2 
values. 
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Figure A.14 A scatter diagram of the L3 ualues against the U3 
ualues. 
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Figure A.15 A scatter diagram of the L4 lJalues against the U4 
lJalues. 
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Figure A.16 A scatter diagram of the L5 ualues against the U6 
ualues. 
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Figure A.17 A scatter diagram of the L6 ualues against the U6 
ualues. 
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32 cases plotted. 
Use first digit of ID as plotting symbol and $ for multiple 

occurrence. 
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Figure A.lS A scatter diagram of the L 7 ualues against the U7 
ualues. 
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Figure A.1 9 A scetter diegrem of the La uelues egainst the ua 
uelues. 
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B. COLOUR PATTERN IDENTIFICATION. 

In this Appendix, the data and result of analysis which were 

obtained during the validation stage for colour pattern 

classification are described. There were two different kinds of 

butterfly species, as shown in Figures B.1.(a) and (d), involved in 

the test. Since the number of colour patterns of Species A is 

different from that of Species B, the result of comparison 

between species is apparent. Thus, in this test each colour 

pattern of a test species was compared with each of five colour 

patterns (2 for Species A, 3 for Species B) in the library data. For 

each species the number of samples was 15, where 10 samples 

for each species were randomly selected from the given samples 

for the learning stage; and 5 for the implementation stage. Each 

colour pattern extracted from each species is shown in Figures 

B.1.(b), (c), (e), (f) and (g). After rotation of each pattern 13 

descriptors for each pattern were calculated. Each descriptor is 

illustrated as following: 

Size : the number of pixels in a patternltotal number of pixels 

N_cx : the normalised centre of gravity x of a pattern 

N_cy : the normalised centre of gravity y of a pattern 

Beta : the slope of a pattern 

H1 : the number of pixels in the upper part/total number of 

pixels in a pattern 

H2 : the number of pixels in the lower part/total number of 

pixels in a pattern 

01 : the number of pixels in the quadrant 1/ total number of 

pixels in a pattern 

02 : the number of pixels in the quadrant III total number of 

pixels in a pattern 

03 : the number of pixels in the quadrant "" total number of 
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pixels in a pattern 

Q4 : the number of pixels in the quadrant IVI total number of 

pixels in a pattern 

L_m the average value of L* contained in a pattern 

A_m the average value of A* contained in a pattern 

B_m the average value of S* contained in a pattern 
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(b) 

(a) 
Species A 

Pottern 1 

Pattern 3 

Pattern 2 

(c) 

(d) Species B 

Pattern 4 Pattern 5 

(~ ro ~ 
Figure B.l Wing patterns and colour patterns. (a) The left-hand 
side wings of Species R. (b) Gnd (c) Colour patterns of Species 
R. (d) The left-hand side wings of species B. (e)-(g) Colour 
patterns of Species B. 
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Table B.I.(a) The ualues of descriptors for 10 samples of 
Pattern 1 inuolued in the learning stage. 

Size N_cx N_cy Beta H1 H2 01 02 03 04 L_m A_m B_m 

52.34 0.59 0.55 0.04 0.49 0.51 0.25 0.24 0.20 0.31 51. 78 6.87 87.42 

65.54 0.53 0.55 0.04 0.46 0.54 0.24 0.22 0.23 0.31 18.62 -4.65 6.75 

75.05 0.52 0.53 0.04 0.49 0.51 0.26 0.23 0.24 0.27 34.23 -1.58 24.91 

64.39 0.52 0.54 0.07 0.46 0.54 0.24 0.22 0.24 0.30 31.29 -3.16 19.54 

58.29 0.60 0.57 0.01 0.48 0.52 0.24 0.24 0.21 0.31 48.84 12.71 80.06 

71.52 0.52 0.53 0.06 0.47 0.53 0.25 0.22 0.23 0.30 35.64 -2.5728.79 

52.98 0.57 0.55 0.03 0.47 0.53 0.25 0.22 0.22 0.31 41.62 8.22 55.87 

62.21 0.57 0.55 0.04 0.50 0.50 0.24 0.26 0.20 0.30 51.88 7.52 85.48 

61.03 0.56 0.54 0.06 0.49 0.51 0.22 0.28 0.20 0.31 49.44 12.56 81.68 

57.42 0.59 0.54 0.03 0.48 0.52 0.24 0.24 0.21 0.31 52.27 7.45 89.27 

Table B.l.(b) The ualues of descriptors for 5 samples of Pattern 
1 InuolUed in the Implementation stage. 

Size N_cx N_cy Beta H1 H2 01 02 03 04 L_m A_m B_m 

59.63 0.60 0.55 0.05 0.50 0.50 0.25 0.25 0.18 0.32 51.81 9.06 94.77 

55.81 0.55 0.53 0.06 0.48 0.52 0.19 0.28 0.24 0.28 45.84 6.71 76.61 

53.23 0.58 0.54 0.07 0.46 0.54 0.21 0.24 0.21 0.33 45.31 9.17 72.46 

63.96 0.53 0.55 0.02 0.48 0.52 0.25 0.23 0.24 0.28 41.34 3.12 59.09 

61. 74 0.59 0.55 0.05 0.49 0.51 0.22 0.27 0.20 0.30 51.13 9.24 94.96 
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Table 0.2.(a) The ualues of descriptors for 10 samples of 
Pattern 2 inuolued in the learning stage. 

Size N_cx N_cy Beta Hl H2 01 02 03 04 L_m A_m B_m 

47.66 0.51 0.53 0.08 0.45 0.55 0.22 0.23 0.24 0.31 22.30 -4.6 8.13 

34.46 0.61 0.56 0.04 0.48 0.52 0.25 0.24 0.21 0.30 49.39 8.08 79.73 

I , 

I 
24.95 0.64 0.53 0.08 0.50 0.50 0.29 0.21 0.15 0.35 57.22 7.67 123.94 

I 35.61 0.60 0.55 0.08 0.51 0.49 0.23 0.28 0.19 0.30 0.00 0.00 0.00 

I 
41. 71 0.50 0.54 0.04 0.44 0.56 0.22 0.22 0.25 0.31 28.27 -5.11 10.57 

28.48 0.63 0.55 0.07 0.51 0.49 0.24 0.27 0.17 0.32 0.00 0.00 0.00 

47 .02 0.54 0.51 0.13 0.42 0.58 0.18 0.24 0.20 0.38 28.63 -2.42 10.99 

37.79 0.52 0.52 0.15 0.47 0.53 0.20 0.27 0.19 0.34 28.73 -1.59 10.83 

38.97 0.51 0.54 0.07 0.47 0.53 0.25 0.21 0.23 0.31 28.94 -0.38 11.25 

42.58 0.54 0.53 0.06 0.46 0.54 0.25 0.21 0.24 0.30 28.19 -6.00 10.42 

Table D.2.Cb) The ualues of descrlptors for 5 samples of Pattern 
2 Inuolued In the Implementation stage. 

Size N_cx N_cy Beta Hl H2 01 02 03 04 L_m A_m B_m 

40.37 0.50 0.53 0.06 0.46 0.54 0.23 0.23 0.25 0.29 28.45 -3.57 10.81 

44.19 0.50 0.51 0.08 0.41 0.59 0.20 0.21 0.26 0.33 28.63 -2.48 10.98 

46.77 0.49 0.52 0.08 0.44 0.56 0.21 0.23 0.24 0.32 28.28 -4.93 10.59 

36.04 0.58 0.51 0.10 0.39 0.61 0.22 0.17 0.25 0.36 28.91 -1. 00 11. 02 

38.26 0.49 0.52 0.07 0.40 0.60 0.18 0.22 0.27 0.33 28.46 -3.42 10.85 

B-5 



Table B.3.(a) The ualues of descriptors for 10 samples of 
Pattern 3 inuolUed In the learning stage. 

Size N_cx N_cy Beta H1 H2 Q1 Q2 Q3 Q4 L_m A_m B_m 

57.43 0.52 0.52 -0.02 0.47 0.53 0.25 0.22 0.25 0.28 28.16 -5.59 10.54 

57.60 0.49 0.49 0.13 0.54 0.46 0.23 0.31 0.18 0.28 28.68 -4.91 11.38 

63.66 0.54 0.51 0.04 0.48 0.52 0.25 0.24 0.22 0.30 28.54 -4.33 11.27 

57.06 0.53 0.49 0.11 0.50 0.50 0.24 0.27 0.19 0.31 28.08 -6.15 10.46 

65.84 0.52 0.52 -0.01 0.48 0.52 0.23 0.24 0.25 0.27 29.51 -4.79 14.79 

61.45 0.52 0.51 -0.02 0.47 0.53 0.25 0.22 0.26 0.27 29.23 -5.60 14 .40 

59.19 0.52 0.52 -0.02 0.47 0.53 0.24 0.23 0.26 0.27 28.09 -6.10 10.47 

65.32 0.55 0.52 0.01 0.49 0.51 0.25 0.24 0.23 0.29 28.91 -4.42 12.73 

58.40 0.50 0.50 0.08 0.52 0.48 0.23 0.28 0.21 0.28 28.25 -4.95 10.63 

68.74 0.53 0.51 0.05 0.50 0.50 0.24 0.25 0.23 0.27 30.51 -2.15 17.08 

Toble B.3.(b) The uolues of descrlptors for 5 somples of Pottern 
3 inuolued in the Implementation stage. 

Size N_cx N_cy Beta H1 H2 Q1 Q2 Q3 Q4 L_m A_m B_m 

58.67 0.49 0.50 0.09 0.51 0.49 0.23 0.28 0.23 0.26 28.27 -4.90 10.64 

57.59 0.52 0.52 0.00 0.50 0.50 0.25 0.25 0.24 0.27 28.25 -4.99 10.62 

58.12 0.52 0.51 0.05 0.49 0.51 0.24 0.25 0.22 0.29 28.24 -4.96 10.63 

62.68 0.54 0.51 0.07 0.49 0.51 0.25 0.24 0.21 0.30 28.50 -4.90 11.08 

56.64 0.52 0.53 -0.02 0.46 0.54 0.25 0.21 0.25 0.29 28.08 -6.15 10.46 
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Toble B.4.(0) The uolues of descriptors for 10 somples of 
Pottern 4 inuolued in the leorning stoge. 

Size N _cx N_cy Beta H1 H2 Q1 Q2 Q3 Q4 L_m A_m B_m 

31. 85 0.71 0.53 -0.06 0.50 0.50 0.26 0.24 0.25 0.25 51.11 11.50 91.99 

34.64 0.12 0.41 -0.04 0.41 0.53 0.24 0.23 0.21 0.26 52.51 9.63 106.05 

21.13 0.10 0.52 -0.09 0.49 0.51 0.25 0.24 0.28 0.23 51.24 13.06 96.83 

28.12 0.71 0.50 -0.10 0.50 0.50 0.26 0.24 0.21 0.23 51.01 13.44 93.86 

29.08 0.68 0.54 -0.06 0.50 0.50 0.26 0.24 0.25 0.25 53.45 12.22 105.31 

31.83 0.66 0.53 -0.04 O~50 0.50 0.26 0.24 0.24 0.26 51.58 13.40 96.88 

34.33 0.61 0.54 -0.05 0.49 0.51 0.26 0.23 0.24 0.26 52.21 11.50 98.49 

29.35 0.69 0.53 -0.09 0.50 0.50 0.26 0.24 0.25 0.24 51.96 11.35 100.45 

33.01 0.10 0.51 -0.03 0.49 0.51 0.25 0.24 0.26 0.25 54.54 13.40 109.84 

25.46 0.10 0.51 -0.06 0.49 0.51 0.25 0.24 0.21 0.24 54.24 13.35 108.44 

Toble B.4.(b) The uolues of descriptors for 5 samples of Pattern 
4 Inuolued In the Implementation stage. 

Size N_cx N_cy Beta H1 H2 Q1 Q2 Q3 Q4 L_m A_m B_m 

36.48 0.11 0.49 -0.04 0.48 0.52 0.26 0.22 0.26 0.26 49.45 9.55 90.35 

34.45 0.69 0.53 -0.08 0.50 0.50 0.21 0.22 0.26 0.24 50.31 10.81 92.26 

33.60 0.66 0.52 0.01 0.49 0.51 0.25 0.24 0.23 0.21 41.69 13.90 11.61 

24.89 0.12 0.52 -0.02 0.49 0.51 0.24 0.25 0.25 0.25 52.06 13.18 99.33 

30.51 0.10 0.55 -0.14 0.51 0.49 0.28 0.23 0.25 0.24 46.12 11.59 15.15 
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Table 8.5.(a) The ualues of des c ri pto rs for 10 samples of 
Pattern 5 inuolued in the learning stage. 

Size N_cx N_cy Beta H1 H2 01 02 03 Q4 L_m A_m B_m 

10.72 0.35 0.51 0.18 0.50 0.50 0.21 0.29 0.26 :.23 66.40 -1.22 37.77 

7.76 0.34 0.51 0.13 0.54 0.46 0.31 0.23 0.28 C.18 71.73 -0.38 33.29 

9.21 0.35 0.53 0.00 0.50 0.50 0.34 0.15 0.27 0.23 64.44 2.95 45.34 

14.22 0.39 0.52 0.15 0.56 0.44 0.30 0.26 0.28 C.17 64.52 -0.16 38.85 

5.08 0.32 0.53 0.02 0.51 0.49 0.31 0.21 0.24 0.24 71.19 -2.84 55.89 

6.72 0.37 0.53 0.10 0.52 0.48 0.21 0.31 0.28 0.20 66.66 -2.58 50.53 

6.47 0.33 0.52 0.19 0.49 0.51 0.28 0.22 0.27 0.23 67.50 0.76 83.03 

5.34 0.30 0.53 0.14 0.51 0.49 0.33 0.18 0.36 C.13 68.66 -3.71 20.12 

8.59 0.43 0.52 0.27 0.53 0.47 0.15 0.38 0.27 0.20 56.75 -1.25 49.05 

5.81 0.38 0.55 0.16 0.54 0.46 0.41 0.14 0.25 0.20 65.91 -5.04 45.94 

Table 8.5.(b) The ualues of descriptors for 5 samples of Pattern 
5 Inuolued In the Implementation stage. 

Size N_cx N_cy Beta H1 H2 01 02 Q3 Q4 L_m A_m B_m 

4.85 0.39 0.51 0.35 0.56 0.44 0.30 0.26 0.22 0.22 65.13 -5.09 44.02 

7.96 0.33 0.52 0.15 0.49 0.51 0.30 0.19 0.25 0.26 66.88 0.17 61.26 

8.28 0.34 0.53 0.20 0.53 0.47 0.31 0.22 0.24 C.23 65.79 -5.20 46.28 

12.43 0.38 0.53 0.16 0.55 0.45 0.32 0.23 0.25 0.20 63.81 0.84 65.36 

12.85 0.34 0.55 -0.09 0.49 0.51 0.36 0.13 0.25 0.26 70.77 -9.26 30.61 
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Table 8.6.(a) The mean and standard deuiation of each 
descriptor using 10 samples of each Pattern inuolued in the 
learning stage. 

P 
~11 
~ SD SizeN_cxN_cy BetaHl H2 Ql Q2 Q3 Q4 L_m A_m B_m 
r 
n 
1 M 62.08 0.56 0.55 0.04 0.48 052 024 024 0.22 030 41.56 4.345598 

SO 738 003 001 002 0.01 001 001 002 002 001 11.36 66632.77 

2 M 37.92 0.56 0.54 0.08 0.47 053 0.23 0.24 0.21 0.32 27.17 -0.44 26.59 
SO 7.38 005 002 0.04 0.03 0.03 0.03 0.03 0.03 003 17.97 4.89 41 23 

3 M 61.47 052 051 003 049 0.51 0.24 025 0.23 028 2880 -4.90 12.38 
SO 4.18 0.02 001 0.06 002 0.02 0.01 0.03 003 0.01 0.78 1.16 2.31 

4 M 30.54 0.69 052 -006 0.49 0.51 0.25 0.24 0.26 0.25 52.40 12 29 101.42 
SO 3.07 002 0.02 002 0.01 001 001 000 001 0.01 1.28 1.28 5.55 

5 M 7.99 036 0.52 0.13 0.52 0.48 0.29 0.24 0.28 0.20 66.38 -1.35 45.98 
SO 2.83 0.04 0.01 0.08 002 0.02 008 007 0.03 0.03 4.20 232 165 
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Figure B.2 R diagram for the ranges of Size of eoch pottern. 
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Figure B.3 R diagrom for the ranges of Beto of eoch pottern. 
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Figure B.4 A scatter diagram of the N_cy ualues against the 
N_CH ualues. 
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Figure B.S A scatter diagram of the Q2 ualues against the QI 
ualues. 
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Figure B.6 A sCBtter diBgrBm of the 03 uBlues BgBinst the 04 
uBlues. 
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Figure B.7 A scatter diagram of the 02 lIalues against the 03 
lIalues. 
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Figure B.8 A scatter diilgrilm of the 01 lJalues ilgilinst the 04 
lJalues. 
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75 cases plotted. 
Use first digit of ID as plotting symbol and $ for multiple occurrence. 
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Figure B.9 R scatter diagram of the Lm lJalues against the 
R_m lJalues. 
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15 cases plotted. 
Use first digit of ID as plotting symbol and $ for multiple occurrence. 
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Figure B.10 R scatter diagram of the Lm ualues against the 
B_m ualues. 
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7S cases plotted. 
Ose first digit of ID as plotting symbol and $ for multiple occurrence. 
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Figure B.11 R scatter diagram of the B_m l1alues against the 
R_m l1alues. 
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75 cases plotted. 
Use first digit of ID as plotting symbol and $ for multiple occurrence. 
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