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ABSTRACT

This thesis is concerned with the problem of how to represent
a biological object for computerised identification. Images of
biological objects have been generally characterised by shapes
and colour patterns in the biology domain and the pattern
recognition domain. Thus, it is necessary to represent the
biological object using descriptors for the shape and the colour
pattern. The basic requirements which a description method
should satisfy are those such as invariance of scale, location and
orientation of an object; direct involvement in the identification
stage; easy assessment of results. The major task to deal with in
this thesis was to develop a shape-description method and a
colour-pattern description method which could accommodate all
of the basic requirements and could be generally applied in both
domains.

In the colour-pattern description stage, an important task was
to segment a colour image into meaningful segments. The most
efficient method for this task is to apply =~  Cluster Analysis. In
the image analysis and pattern recognition domains, the majority
of approaches to this method have been constrained by the
problem of dealing with inordinate amounts of data, i.e. a large
number of pixels of an image. In order to directly apply -
Cluster Analysis to the colour image segmentation, data
structure, the Auxiliary Means is developed in this thesis.
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1.1 BACKGROUND.

There are an enormous number of different kinds of biological
objects in the natural world. For each biological object, there are
a great number of species. For example, there are about 15,000
species of butterfly known to science (Ehrlich & Raven, 1965). One
species is generally discriminated from the other by means of
various features such as life style, internal or external structure,
shape or colour etc. In the domain of morphology, which is one of
the academic branches of biclogy, the shape is an important
feature which is employed in species identification. A great deal
of research work on computerised species identification by means
of shape, such as chromosome identification and leaf species
identification and so on has been conducted in the domain of
biology (see, for example 'West & Noble, 1984', Ferson et. al,
1985 ). On the other hand, in some domains, such as the domain of
the butterfly, no attempt to undertake computerised species
identification using wing shapes or colour patterns on the wings
has been made. A visual comparison of butterflies is currently
done manually and requires great experience and expertise.

Most of the research which has been performed for automatic
and semi-automatic species identification in the biology domain
has mainly relied on black-and-white images rather than colour,
since shape has been regarded as the most important feature in
species identification. On the other hand, in butterfly species
identification, colour features play an important role because the
colour patterns on the wings of butterflies are essential for
species identification. There are several reasons for manual,

visual comparison in the domain of the butterfly such as:
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(1) Firstly, sophisticated computer equipment which is essential
to colour image analysis was not generally available.

(2) Secondly, existing methods for colour pattern extraction
which have been published are generally so complex that they have
not been applicable in practice. Another difficulty with the
existing methods is that they require enormous computing time in
their implementation.

Recent technological developments have made it possible to
utilise not only colour image capturing devices, but also high
resolution colour image analysis devices. Thus, there is no longer
a colour device problem in this domain. An immediate necessity in
biological object identification is to develop new methods which
can be generally applied to colour pattern extraction utilising
these new devices.

In the botany domain, various shape description methods,
published in the pattern recognition and image analysis domains,
have been wndely employed in computer systems to discriminate

e T — - R — e

1Ieaf Specues However White and Prentlce‘

(1988) have pomted out that, among bno!oglsts systematlsts prefer
the more traditional manual measurement method, that is, a
method relying on measuring lengths, widths and angles, etc. of
leaves in order to quantify shape variation patterns. This reveals
that existing shape description methods do not satisfy all the
requirements of species identification in the botany domain. The
detailed investigation, described in this thesis, on the
corresponding existing methods for shape description has also
revealed exactly the same problems. Thus, the development of a
new method for shape description which can be generally and

efficiently used in species identification is required.
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In colour image analysis, it is generally considered that colour
comparison for various purposes such as colour pattern extraction
and boundary extraction etc. should be undertaken in a three-
dimensional uniform colour space (e.g., RGB) to obtain a precise
result. However, most colour image digitising systems do not
directly create the three-dimensiona! colour space, and also the
spectral sensitivity of a colour image capturing device is usually
different from that of another colour image capturing device.
Thus, it is impossible to apply a system which has been
established for one computer system to another computer system
which has a colour image capturing device whose spectral
sensitivity is different from that of the first system. However,
most colour comparisons for colour image analysis have been
performed without seriously considering this sensitivity problem.
Thus, it is necessary to calibrate the colour image capturing
system to establish a correct three-dimensional uniform colour
space. There are several reasons for the lack of attention paid to
calibration in the colour image analysis domain, such as lack of
equipment or expertise.




1.2 OBJECTIVES.

The main objective of the work described in this thesis was to
develop representation methods for biological objects which
could be generally applied to a computerised system for object
identification. The second objective was to construct a prototype
identification system which would be used for the evaluation of
the methods developed in this thesis. The shapes of biological
objects are characterised into two categories:-

o two-dimensional shapes,

o three-dimensional shapes.

The subject of this thesis concerns representation methods for

biological objects which have two-dimensional shape such as

leaves and butterflies.

The basic design strategies of the representation of each
biological object were:
(1) The features of a biological object should be described in
order to be independent of the scale, location and orientation of
the object in an image. Objectsin images taken by camera or image
scanner usually vary in size, location and orientation. Since these
variations seriously affect the various measurements of an
object, a descriptor should be designed to be independent of these
variations.
(2) The features of a biological object should be described in
order to be directly invoived in an identification procedure. A
descriptor usually plays an important role in computerised
object-identification. Shape descriptors and colour pattern
descriptors were designed to be utilised in the object
identification stage without any additional modification. In

5



general, the external features of biological objects vary in size,
shape and colour pattern within a species (Bookstein et al., 1985).
Thus, in this design strategy the variation factor was considered.
(3) Descriptors should be easily interpreted not only by visual
assessment, but also by systematic methods. When the result of a
computerised object-identification is analysed, if the descriptors
are easily interpreted, it will be possible to make a correct
decision on the result as a human expert does.

(4) Descriptors should be used as input data to the multivariate
statistical analysis procedure for further study in a relevant
domain.

In order to accommodate these basic design strategies, shape
descriptors were developed based on ratios of segments; and
colour pattern descriptors were developed based on important
factors such as normalised centre of gravity and ratios for
segments which can characterise each colour pattern forming an

object.

For colour pattern extraction and boundary extraction, colour
comparison was required. The colour comparison should be
undertaken in a three-dimensional uniform colour space in order
to obtain a precise result. Since the spectral sensitivity of a
colour image capturing device is usuaily different from that of
another colour capturing device, it was decided to develop a
calibration method for a colour image scanner digitising system
in the CIE L*a*b* colour space by utilising the Macbeth colour
checker chart which is a widely available colour reference
standard.

The success of colour pattern description is dominated by a
reasonable and efficient method for extracting colour patterns

6




from colour images. Development of this method was considered
as a sub-objective of this thesis. In order to improve a method for
colour-pattern extractlon an algorithm which can directly apply

)Cluster Analysns to the colour image segmentation was

developed. In partlcular this algorithm was designed to employ

[Auxlllary Means whuch was devised in this thesis to make the
algorithm dlrectly apply . Cluster Analysis to colour pattern

extraction.

The sample objects which were chosen to test the various
methods developed in this thesis are leaves and butterflies. As
far as image analysis is concerned, leaves are characterised by
their shapes (outlines); and butterflies are characterised by wing
shapes and the colour patterns. Thus, in the case of leaves the
design of the representation concentrated on the shapes; and in
the case of butterflies, on the wing shapes and the colour
patterns of wings.




1.3 SUMMARY: CHAPTER BY CHAPTER.

Chapter 2, Colour for Colour Image Analysis:

This chapter reviews colour from its basic concepts to its
uniform spaces such as the CIE L*A'B* space since colour, as
argued earlier, is an important factor in the biological image
analysis and pattern recognition. Once a colour image is digitised,
each colour composing the image is expressed numerically. The
numerical values are utilised in colour comparison enabling a
colour image analysis system to extract the boundary of an
object; to segment the object into meaningful regions; to
discriminate a segmented region from other regions and so on. To
perform an accurate colour comparison it is shown that it is
necessary to establish a three-dimensional uniform colour space.
An algorithm for calibration of a colour image scanner digitising
system in this space is illustrated. An important feature of the
algorithm is the use of the Macbeth colour checker chart, which is
a widely available colour reference standard.

Chapter 3, Boundary Extraction Methods:

This chapter concerns the algorithms for extraction of the
boundary of an object in a colour image. Algorithms concerning
the boundary extraction are surveyed. The procedure of the
boundary extraction algorithm which utilises a three-dimensional

uniform colour space is illustrated.

Chapter 4, Colour Pattern Extraction Methods:

This chapter concerns algorithms for splitting a colour image into
meaningful segments. Existing algorithms concerning colour
image segmentation are surveyed. The three-dimensional

8



clustering method is known to be the most efficient method for
colour image segmentation. However, this method has been
avoided in the colour image analysis domain because it requires
enormous core memory. A detailed review of Cluster Analysis is
undertaken to clarify the basic algorithm of the Cluster Analysis
and the reason why it has not been utilised in practice. The major
concept of the Auxiliary Means, which was developed to directly
apply the colour image segmentation to the Cluster Analysis, is
illustrated. An algorithm for colour image segmentation
employing the Auxiliary Means to the Cluster Analysis routine in
the SPSS-X (a statistical package) is discussed.

Chapter 5, Shape Description Methods:

This chapter reviews the existing shape description methods and
proposesanew method to improve some of the deficiency for
biological objects which are utilised in a species identification
procedure. In particular, a detailed analysis of the existing
methods which are closely related to the shape description for
biological objects is performed, attempting to extract problems
and to resolve them. The new shape description method, based on
human colour vision, developed in this thesis is illustrated.

Chapter 6. Colour Pattern Extraction Methods:

This chapter describes important factors for colour pattern
descriptions. A colour pattern description method which was
developed based on these factors is discussed. The discussion of
the colour pattern description method is accomplished utilising
wing patterns of butterflies as samples.

Chapter 7. The Structure ofsSpecies Identification System:

This chapter describes the structure of the prototype system for

9




a species classification for biological objects. The system is an
integration of the algorithms developed in the previous chapters.
For the system two kinds of biological objects are used as

samples: leaf and butterfly.

Chapter 8, Conclusions:

This chapter attempts to draw conclusions about biological object

representation.

Chapter 9, References.
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Chapter 2

COLOUR FOR COLOUR IMAGE ANALYSIS,

2.1 Introduction.

2.2 The Nature of Colour.

2.3 Uniform Colour Spaces.

2.4 The CIE RGB System and the CIE XYZ System.

2.5 Calibration of a Colour Image Scanner Digitising System in the

CIE L*a*d* Colour Space.

2.6 Conclusion.
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2.1 INTRODUCTION.

In colour image analysis, colour obviously plays an important
role. Once a colour image is digitised using a colour image
digitising system, each colour composing the image is
represented by tristimulus values of R (red), G (green) and B
(blue); and each of these tristimulus values is represented by a
numerical value. The numerical values of each colour are utilised
in colour comparison enabling a colour image analysis system to
extract the boundary of an object in an image plane; to segment
the object into meaningful regions; to discriminate a segmented
region from other regions and so on. In this chapter, the
investigation will concentrate on several aspects of colour from
its nature to its representation in three-dimensional space, thus
giving the theoretical background of colour pertinent to celour
image analysis. In section 2.2, the nature of colour is discussed.
In section 2.3, uniform colour spaces, which have been introduced
by the CIE (Commission Internationale de [I'Eclairage, i.e.
International Commission on lllumination), are discussed. A
colour comparison is performed in this uniform colour space. In
particular, the necessity of the uniform colour spaces and their
formulae is discussed in detail. In section 2.4, quite a detailed
investigation on a transformation procedure from the CIE RGB
system to the CIE XYZ (an alternative colour space) system is
undertaken. It is necessary to understand this transformation
procedure because the CIE XYZ system is essential to the formulae
for the uniform colour spaces, but the XYZ system cannot be
obtained directly from any colour digitising system. There are
various kinds of colour image digitising systems such as colour
video digitising systems, colour image scanning systems and so

12



on. If each colour composing an image is treated in a uniform
colour space, the colour i1mage digitising system should be
calibrated. A method for this calibration utilising the Macbeth

colour chart is illustrated in section 2.5.

13




2.2 THE NATURE OF COLOUR.

In this section, the investigation will concentrate on the
nature of colour and the basic aspects of human vision which
perceive colour. In colour science, colour is defined as perceived

colour (Bouma, 1971):

Perceived colour is that aspect of visual perception by which an
observer may distinguish differences between two fields of view
of the same size, shape and structure, such as may be caused by
differences in the spectral composition of the radiation concerned

in the observation.
Then, how many different colours can be distinguished by the

human visual system'? Judd and Wyszecki (*ISJ?S)J

estimated that an expenenced person wnth normal colour vision
can distinguish about ten million different surface colours under

optimum viewing conditions. What an enormous number it is! What
are the major factors of the nature of colour? An immediate
answer to this question is that there are two important factors
that are commonly known in colour science: light and the human

visual system.

Firstly, let us consider the importance of light in detail. In
1666, Sir Isaac Newton discovered that white sunlight was
composed of a mixture of all the colours of the spectrum. Figure
2.1.(a) is a sketch of his proposed colour diagram, in which seven
monochromatic (single-wavelength) spectral colours, i.e. red,
orange, yellow, green, blue, indigo and violet, are placed around
the periphery of a circle in the order that they appear in the
spectrum. He then found that these colours could be recombined
into white light with a lens. Newton also demonstrated that the

14




set of perceived colours is but a small subset of all the possible
colours obtainable by mixing different combinations of colours
(Rodieck, 1973). He mixed red with green anc created yellow as
shown in Figure 2.1.(b).

Qrange

Red Yellow

Indigo Blue
(a) (b)

Figure 2.1 Isaac Newton’s Colour circles. {a) Newton’s colour
circle. (b) Mixture of R (red) and 6 (green) yields ¥ (yellow).

In physics, light is known to be a form of radiant energy. More
precisely, light is electromagnetic energy, a category of radiant
energy that includes X-rays, radio waves, etc. In general, light is
commonly defined as visible radiant energy. The term visible
radiant energy for light implies correctly that the visual system
responds to it giving the experience of seeing. Since all light has
wave-like properties, and the light in different parts of the
spectrum corresponds to waves of a different length, it is
convenient to define each spectral colour by the wavelength of its
light. The main spectral colours occupy approximately the
following wavelength bands: violet 450 nm and less; blue 450 to
480 nm; blue-green 480 to 510 nm; green 510 to 550 nm; yellow-
green 550 to 570 nm; yellow 570 to 590 nm; orange 590 to 630
nm; and red 630 nm and greater, where nm is the nanometre

15




which is one thousand-millionth (10-°) of a metre (Agoston,
1979). These regions are shown in Figure 2.2. This implies that
the visible range of radiation extends from 380 to 780 nm. It is
generally known that a normal eye is essentially blind to all
radiation of wavelengths shorter than 380 nm and longer than 780

nm.

Yellow Green
Blue Green '/Yellow
Yiolet Blue Green Orange Red
[ { i ] 1
400 500 600 700
Wavelength (nm)

Figure 2.2 The distribution of colours in the spectrum.

Secondly, let us briefly consider the human visual system. How
does the normal eye recognise various kinds of colours? To
consider an answer to this question let us take a close look at the
human visual system. There are two types of IigHt-sensitive
receptor cells in the retina, known as rods and cones (Hurvich,
1981). It is known that the rods, which respond only to light and
dark, are characterised by high sensitivity; they are capable of
responding to light of very low intensity. Thus, the rods enable us
to see in dimly lit rooms or in moonlight. At such low levels of
illumination we are unable to distinguish hues and we cannot
discern detail as well as we can in daylight (Evance, 1874).
Evance (ibid.) has noted that at very low light intensities the
cones, which are responsible for colour vision, are considered not
sensitive enough to respond. He has added that there are three

16




classes of photo-sensitive pigments: one pigment absorbs reddish
light, another greenish light, and a third bluish light; and each
cone contains only one of the three types of pigments. Electrical
signals are generated in the form of nerve impulses and these
signals convey colour information to the brain. This is the way the
normal eye recognises each of the colours.

17




2.3 UNIFORM COLOUR SPACES.

In colour-image analysis, a basic task 1s the comparison of
colours. Suppose that there are two colours which are to be

compared with each other. An immediate problem for this

comparison is how to describe these colours. In practice, this
problem corresponds to what kind of attributes should be involved
in the description of each colour. The overwhelming empirical
evidence is that for an observer with normal colour vision three
specific component attributes are sufficient for him to
completely describe any colour he perceives, regardless of the
observing conditions under which he views the display (Wyszecki,
1981). The three perceptual attributes of colour are lightness,
hue, and chroma which are also defined as follows (Wyszecki &
Stiles, 1982):

(1) Lightness is that attribute of a visual sensation according to
which the area in which the visual stimulus is presented appears
to emit more or less light in proportion to that emitted by a
similarly illuminated area perceived as a ‘white’ stimulus. In a
sense, lightness may be referred to as relative brightness.

(2) Hue is that attribute of  colour perception denoted by blue,
green, yellow, red, purple and so on.

(3) Chroma is that attribute of a visual sensation which permits a
judgment to be made of the degree to which a chromatic stimulus
differs from an achromatic stimulus of the same brightness.
Wyszecki has noted that since any colour perception which is
represented by a point P lying within the bounded domain of
chromatic perceptions can be varied in only three independent
ways P1, P2 and P3, represented by the three perceptual
attributes lightness, hue and chroma, these attributes form a
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three-dimensional space.

The most prominent example of a three-dimensional colour
space composed of these perceptual attributes is the Munsell
colour space. The Munsell colour space consists of painted colour
chips which are equally spaced in each of the three dimensions. On
each constant-hue chart the chips are arranged in rows and
columns. it was intended that the chips in any one row should be
perceived to have equal lightness under ordinary viewing
conditions and that the chips in any one column should be
perceived to have colours of equal chroma, where the ordinary
viewing condition is defined as average daylight illumination that
corresponds to the standard illuminant C. These colour chips were
stuck on charts and published as the first colour atlas in 1915
(McLaren, 1983).

The logical representation of this colour space is a three-
dimensional Euclidian space expressed in cylindrical coordinates
as shown in Figure 2.3, There are five principal hues in the hue
circle and each hue is subdivided into finer divisions which are
equally spaced scales as shown in Figure 2.3.(a). The vertical axis
represents the lightness which is designated on a scale 0 to 10 as
shown in Figure 2.3.(b). Each of the concentric cylinders as shown
in Figure 2.3.(b) represents constant chroma.

These Munsell colour chips can only be used for visual
evaluations. Thus the development of a satisfactory colour-
difference formula which can be applied to systematic colour
comparison is necessary. In fact, this task obviously corresponds
to the development of a three-dimensional uniform colour space.
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The uniform colour space would simplify colour specification and
the setting of colour tolerances, it would be an important guide to
the preparation of reference colour samples as standards, and it
would aid the selection of harmonious colour combinations (Judd
& Wyszecki, 1975). The development of a uniform colour space has
generally been regarded as one of the most challenging projects in

the field of colour science.

()
=
=
o
3
o

(a) (b)

Figure 2.3 Munsell colour specification system. (a) Munsell hue
circle. (b) Cylindrical arrangement of lightness, hue and
chroma in Munsell colour space.

At the 18th session of the CIE held in London in 1975 the
Colorimetry Committee approved the adoption of two new colour
spaces and associated colour difference formulae, known as the
1976 L*u*v* colour space (CIELUV space) and the CIE 1976
L*a*b* colour space (CIELAB space) (CIE, 1986). Although these
two formulae are only approximately uniform colour spaces, they
are considered as the best formulae recommended by the CIE.
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(1) The CIE 1976 L*u*v* Colour Space and Colour-
Difference Formula

The first approximately uniform colour space is produced by
plotting in rectangular coordinates, L*, u* and v*, quantities
denoted by the following equations (CIE, 1986):

L* = 116(Y/Y)!/3- 16 if Y/Y, > 0.008856,

L* = 903.3(Y/Y,) if Y/Y, <= 0.008856,

u* =13L*(u - uy),

v =13L%v - v, (2.3-1)

where Y, u and v are the colour stimulus and Y, u, and v, are a
specified white object colour stimulus. In Equation (2.3-1), the
quantities u, v, u,and v, are calculated from:

i ax _ oy
S X+eisy+32 , VT Tx+isvye+3z .
4%o Yo
- o=
Xo + 15Yo + 320, Yo + 15Yo + 326 .

(2.3-2)
The tristimulus values X, Y, and Z, define the colour of the

nominally white object-colour stimulus. This stimulus is usually
given by the spectral radiant power distribution of one of the CIE
standard illuminants, such as A or C, reflected into the observer's
eye by the perfect diffuser. Under these conditions, X,, Y, and Z,
are the stimulus values of the chosen standard illuminant, and Y,
is equal to 100. The tristimulus values X, Y and Z will be
illustrated in detail in section 2.4.

The CIE 1976 L*u*v* colour-difference formula AE,* that
applies to the L*u*v* colour space is given by the Euclidian
distance:
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AE, = [ (AL*)2 + (Au*)2 + (Av*)2 1172 (2.3-3)
where AL*, Au* and Av* are the differences between two colours
in L*, u* and v*, respectively. In fact, AE, is equal to the
distance between the two points representing colours in the
CIELUV space. In the CIELUV colour space, there is a vertical
metric lightness L* (also called the CIE 1976 lightness function)
axis passing through evenly spaced horizontal planes that are
subdivided into square grids containing coordinates (u*, v°).
Figure 2.4 shows the vertical axis L' that passes through the
horizonta! plane (u*, v*), at L* = 50, for example.

100(white)
F90
80
70
—_— T—— v

10
o(bTack)

Figure 2.4 The CIELUD colour space.

(2) The CIE_ 1976 L*a*b* Colour Space and Colour-
Differen Formul

The second approximately uniform colour space is produced by
plotting in rectangular coordinates, L*, a* and b*, quantities
defined by the following equations (CIE, 1986):

L* = 116(Y/Y,)1/3 - 16, if Y/Y, > 0.008856,
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L* = 903.3(Y/Y,), if Y/Y, <= 0.008856,

a*= 500[(X/X)1/3- (Y/Yo)'/3, if X/X, > 0.008856 and
Y/Y, > 0.008856,
b* = 200[(Y/Y,)'/3- (Z/Z)'13), if Y/Y, > 0.008856 and

2/z, > 0.008856,

a* = S500[f{(X/X,) - f(Y/Y )l
b* = 200[f(Y/Y,) - f(Z/Z)], (2.3-4)
where f(X/X;) = (X/X)1/3, if X/X, > 0.008856,
f(XIX;) = 7.787(X/X;) + 16/116, if X/X, <= 0.008856,
HYIY) = (YIY )3, if Y/Y, > 0.008856,
f(YIY,) = 7.787(Y/Y,) + 16/116,  if Y/Y, <= 0.008856,
£(Z/1Zy) = (Z1Z)''3, if 2/Z, > 0.008858,

f(21Z, = 7.787(Z/Z,) + 16/116, if Z/Z, <= 0.008856.
The tristimulus values X, Y, and Z, are respectively those of the
tristimulus values X, Y and Z, for the appropriately chosen
reference white. The ftristimulus values X, Y and Z will be
iustrated in section 2.4. The CIE 1976 L*a*b* colour-difference
formula AE,* that applies to the L*a'b* colour space is given by
the Euclidian distance:

AE,* = [ (AL*)2 + (Aa*)? + (Ab*)2]1/2, (2.3-5)
where AL*, Aa* and Ab* are the differences between two colours
in L*, a* and b*, respectively. In fact, AE," is equal to the
distance between the two points representing colours in the
CIELAB space. It should be noted that the CIELUV space or the
CIELAB space can be easily linked to the Munsell colour space as
follows:

The quantity L*, given in Equation (2.3-1) or (2.3-4) is directly
used as the lightness quantity of the Munsell colour space. The
hue-angle, H, of the Munsell colour space is obtained by the CIE
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1976 u, v hue-angle:
H,, = arctan[(v - v )/(u - Uo)]

= arctan(v*/u*), (2.3-6)
the CIE 1976 a, b hue-angle:
H," = arctan(b*/a*). (2.3-7)

The chroma, C, of the Munsell colour space is obtained by the CIE

1976 u, v chroma:

Cy = (u*2 + v*2)1/2 (2.3-8)
the CIE 1976 a, b chroma:
Cyp' = (a*2 + b*2)1/2 (2.3-9)

The lightness difference AL* and chroma difference AC*®
corresponding to the Munsell colour space are simply calculated
as foliows:

AL* = L1* - L2°%,

AC* = C1* - C2%,
where L1* and L2' are the quantities of lightness of two points
in the Munsell colour space, respectively; and C1* and C2* are the
quantities of chroma of two points in the Munsell colour space,
respectively. The hue difference, AH*, however, is obtained using
AE,* or AE*, AC,," or AC,*, and AL*, as follows:
the CIE 1976 u, v hue difference AH,*:

AH,* = [(AE,, )2 - (AL*)2- (AG,," '3,
the CIE 1976 a, b hue difference AH,,":

AHy' = [(AER" )2 - (AL*)2- (ACy")?V/2.
Consequently, either the CIELUV space or the CIELAB space can be
directly employed in the systematic operation for the colour
comparison task. The important feature of each space is that this
can be easily transformed to the Munsell colour space as
previously shown. Thus, a computerised operation with the
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transformed space from the CIELUV or the CIELAB space can
replace any task which could be performed by visual evaluations
with the colour chips in the traditional Munsell Book of Colour.
However, it is unfortunate that in 1976 the CIE could not
recommend a single colour space and associated colour difference
formula. Since the CIELUV and CIELAB colour spaces were
recommended, much research (Robertson, 1977; Kuehni, 1977;
Pointer, 1981; McLaren, 1981) has been carried out to compare the
two spaces, revealmg that there are no sngnmcant _differences

lbetween the CIELUV and CIELAB spaces. On the other hand

Lozano (1977) showed that the CIELAB was significantly more
reliable. Ohta et al. (4g9g0) -.- . =~ have argued that the
CIELAB space gives better results than the CIELUV space in
segmenting colour pictures. Thus, the CIELAB space will be
employed in this thesis.
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2.4 THE CIE RGB SYSTEM AND THE CIE XYZ SYSTEM.

In the previous section, the uniform colour systems have been
considered. However, none of these systems have clarified the
relationship with the RGB system. In order to correctly
understand these uniform colour systems, it is necessary to
consider the relationship between the CIE RGB system and the CIE
XYZ system. This consideration will obviously provide the
fundamental background and gquide the calibration of a colour
image digitising system which is the major subject of the next
section. Let us firstly consider the relationship among the three
colour coordinate systems, i.e. the CIE RGB system, the CIE XYZ
system and the CIE LAB system, each of which is a colour
specification system. As already discussed in the foregoing
section, a uniform colour space is required to obtain the optimum
result of a colour comparisoen in colour image analysis. Since the
CIE RGB system or the CIE XYZ system does not form a uniform
colour space as Figure 2.12 shows, the CIE has developed an
approximately uniform colour space, that is, the CIELAB colour
space. The CIELAB colour coordinate system is transformed from
the CIE XYZ system, where it seems that the CIE RGB system is
not involved, but, in fact the CIE RGB system is involved in the
derivation of the CIE XYZ system. The relationships between these
systems can be described using the functional forms as follows:

the CIELAB system = f(X, Y, Z),

the CIE XYZ system = (R, G, B).

Consequently, the CIELAB system is a function of the CIE RGB
system, where the parameters are the red (R), green {Q) and blue
(B) values. Equation (2.3-4) which defines the CIELAB space only
includes the X, Y and Z tristimulus values. It should be noted that
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an image capturing device usually provides the R, G and B
tristimulus values of a colour rather than the X, Y and 2
tristimulus values. Thus, the transformation from the CIE RGB
system to the CIE XYZ system would precede adopting the CIE

system in a practical implementation.

b7-unit plane

() R=1"NR

Figure 2.5 B tristimulus colour space.

To clarify the basic concept of the RGB system, let us consider
a colour space in which a colour € is represented by the
coordinates Rc, Gc and Bc measured along three axis represented
by the three primary stimuli R, 6 and B. if the intensity of this
colour is changed, each of the coordinates Rc, Gc and Be will be
changed proportionally. The locus of points corresponding to
changes of intensity is a straight line passing through the origin
and the point (Re, Ge, Be) as shown in Figure 2.5.(a). This colour
can be expressed by the simple equation:

C=RcxR+Gcx6 +Bc xB. (2.4-1)
This equation is usually used to match a given colour C to the
additive matrix in suitable amounts of the three fixed primary
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'stimuli R, G and B. Wyszecki and Stiles (1982)

have noted that the rebresentation of colour stimuli in the colour
space Is informative, but usually not convenient in colorimetric
practice, thus a two-dimensional representation is commonly
preferred. The two-dimensional representation is obtained in the
unit plane which is formed by connecting the three points of the
three axes, each of which marks the unit length as shown in
Figure 2.5.(b). The unit plane is commonly called the chromaticity
diagram. The unit plane which is in the shape of an equilateral
triangle was used in the early days of colorimetric practice and is
sometimes referred to as the Maxwell colour triangle. In practice,
the triangle defines chromaticity coordinates (r, g, b). The
chromaticity coordinates of a point C which is an intersection of
the straight line OC with the unit plane are related to the
tristimulus values R = Re, G =Gc and B = Be of C by the following

equations:

ro.=R(R+G+B),
g. =G/(R+G +B),
b, = B/(R + G + B). (2.4-2)

The coordinates r., g, and b_ are given by the distances of C from
the three sides of the triangle, that is, from GB, BR and RG,
respectively, as shown in Figure 2.6.(a), where R, G and B are the
chromaticty points of the primary stimuli R, 6 and B which are
located at the corners of the triangle. A more convenient version
is a right-angled triangle in which the r and g coordinate axes are
perpendicular to one another as shown in Figure 2.6.(b}) (Bouma,
1971).
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(b)

Figure 2.6 Chromaticity diagrams. (a) Chromaticity diagram
(equilateral triangles). (b) Chromaticity diagram (right-angled
triangle).

So far some basic concepts of the RGB system have been
discussed, let us briefly consider the colour-matching function
and the corresponding chromaticity diagram of the RGB system

which were both introduced by the CIE, since they dominate the
properties of the RGB system. The CIE derived the colour-
matching functlon in Flgure 2. 10 (a) from the data in Table 2.1

|
|
jobtalned by Gunld (1931) and Wright  (1928). Tol
|

understand this functlon it is necessary to review the theoretical
background of obtaining the data and a way of using this function.
Imagine . a visible spectrum ranging from Ay =380 nmto Ap =
780 nm as shown in Figure 2.7, where A is wavelength and nm is
nano (10°°) metre. The spectrum is subdivided into n intervals,
each interval has a wavelength band AA. Within each interval, a
wavelength 1i is chosen at which the spectral connection is P,,.
The radiant power in the wavelength interval of width d, centred
at the wavelength Ai which is represented by P,, x d,, the area of
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the shaded rectangle in Figure 2.7, is a monochromatic stimulus

C, of wavelength A.

P Visible Spectrum

Radiant
Power
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Ag=380 Af Ap=780
—»| 4, e Wavelength(d)

Figure 2.7 A monochromatic stimulus of wavelength A
(Wyszecki & Stiles, 1982).

Each monochromatic stimulus C, is expressed by applying
Equation (2.4-1) as foliows:

C,=R, xR +G,x6 + B, xB, (2.4-3)
where R,, G, and B, are the tristimulus values of C,. The
tristimulus values of a colour stimulus are generally defined as
the amounts of the three primary colour stimuli required to give
by additive mixture a colour match with the colour stimulus
considered (Wyszecki & Stiles, 1982). All the monochromatic
stimuli C, which have unit radiant power, i.e. P, is equal to 1, at
every wavelength A within the visible spectrum, as shown in
Figure 2.8, are equal-energy stimuli denoted by E,. The equation
for a colour match involving a monochromatic constituent E, of
the equal-energy stimulus E is:

Ex = FQAOR + §(A)6 + bQR)B, (2.4-4)
where F(1), G(A) and b(A) are spectrum tristimulus values of Ea.
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In the colour matching experiment by Guild and Wright, four
monochromators were used as shown in Figure 2.9, three to
produce primary stimuli; and one to produce the test stimulus E,.
The monochromator is an optical device which disperses the
radiant flux from an incandescent lamp into its spectrum, from
which any desired narrow band of wavelengths can be isolated
with a slit aperture (Wyszecki & stiles, 1982). The primary
stimuli were set at Ag= 700 nm for red (R), at Ag= 546.1 nm for

P
3 Visible Spectrum |

Radiant
Power
-

104
404
304
01

Ak Btk

»
)n-l Abz'{ao
dz - Wavelength(A)

10+ deseerracndesenracanernrdrrpmrfrcccsassrcccnnns
w0

ah
.

Figure 2.8 An equal-energy stimulus.

green (6) and Ag = 435.8 nm for blue (B). The unit values of these
primaries were chosen so that the colour of a mixture of unit
amounts of the primaries might match the colour of an equal-
energy stimulus. As Figure 2.9 shows, whenever each test
stimulus E, of wavelength A, from A = 380 nm to 780 nm at
intervals of AL nm, was produced by the monochromator located in
the lower part of Figure 2.9, the mixture of the primary stimuli
which matched the test stimulus was produced by the three
monochromators, where the amount of each primary stimulus
involved in the match was obtained. The amounts of primary
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stimuli matched at wavelength A are [(A),JQR)end b(x),
respectively, as shown in Table 2.1, where in many cases, one of
the ftristimulus values is negative, in other cases, one or two

tristimulus values are zero. The set of spectral tristimulus
values (), 3(A) and B(X) of the monochromatic stimuli E, of unit
radiant power are called colour-matching functions. Figure 2.10
illustrates these functions as drawn from the set of data. The
chromaticity diagram in Figure 2.10.(c) was drawn by applying the
spectral tristimulus values F(x), 9A) and B(X) to Equation (2.4-2).
An important fact to note is how to use these functions. To
illustrate the use of these colour-matching functions consider

—Monochromators

Observer with
Normal
Colour Vision

— Monochromator

Figure 2.9 Diagram of an arrangement of monochromators for
colour-matching experiment.

how to determine the tristimulus values of a colour stimulus C
which is defined by a spectral radiant power distribution {P,dA},
in Figure 2.7. In order to apply Equation (2.4-4) to a colour
stimulus C of the various sizes of bands of wavelength, multiply
radiant power, P, x di, both sides of Equation (2.4-4), then the
following equation is obtained:

32




(P, x dA)E;

= (Pa X dA)FQA)R + (Pa % dA)G(A)6 + (Pa x dA)D(A)B, (2 4-5)
where (P, x dA)E, is equal to C,, because E, has unit radiant power
in Figure 2.8. Since P, in Figure 2.7 is assumed to be a conftinuous
function, Equation (2.4-5) is integrable, . Thus, the tristimulus
values Rc, Ge and Bc of the stimulus C are respectively,

Ab

Rc=] PAF() dA,
2
Ab

GC = J PAg(A) da,
p I

Be = .["" PAB(A) dA, (2.4-6)
" .

where Aa and Ab are respectively the lower and upper limits of
the band of wavelength of the stimulus C. If there are two colour
stimuli C1 and C2 which are respectively defined by spectral
radiant power distributions {P,;dA} and {P,,dA}, the two sets of
tristimulus values of the colours are:
Ab
Rcr = Pa () daA,

1)3

(Ab
6o = | Pagh) da,
Jla

rAb
Bel = Pab(r) dr,

™ PoaP(R) A,

Rez2 =
I
D o =
lk
Bez = [*° P2ab(R) dA
ba ' (2.4-7)

If Re1 = Rc2, Gel = Ge2 and Bel = Re2, the colour stimulus CH
matches the colour stimulus €2. Consequently, the colour-
matching functions are used for a colour match. As previously
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illustrated, the colour-matching functions and the corresponding
chromaticity coordinates include negative values. When Egquation
(2.4-6) is applied to evaluate tristimulus values of a test colour,
the calculation with positive or zero values is simple, but the
calculation with negative and positive values is complex. This is
inconvenient. It is known that there are many cases in which
negative values are used in spite of this inconvenience. However,
since these cases are not related to the subject in this thesis, it

is not necessary to consider them. Due to such reasons. the CIE

has_developed the spectral values i(l), Q(A) and Z(R) which are

I led ti lour-matchi [ . . hict i
values are not included as shown in Figure 2.10.(b). The colour-

matching functions X(A), Y() and Z(d) were transformed by the

CIE from the colour-matching functions F(X), 3(A) and B(A) using
the following equations:

%(A) = 0.49 F(A)+ 0.313(A) + 0.266(),
G = 0.17697F(A)+ 0.8124F(R)+ 0.01063B6()
2(A) = 0.0F(A)+ 0.013(A) + 0.995(). (2.4-8)

These colour-matching functions are used in calculations to
provide the CIE tristimulus values X, Y and Z. The X, Y and Z are
obtained from the following equations:

b
X=[" Px&Q) dA,
Jia
v =[P g) dr,
JAa
2= P30y
-.).a ' (2.4-9)

Although colours can be specified by the CIE tristimulus values X,
Y and Z, this is rarely done (Agoston, 1979). It is more meaningful
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to employ the chromaticity coordinates x(A), y(A) and z(}) of the
spectral stimuli than to use the spectral stimulus values X, Y and
Z. The chromaticity coordinates x(A), y(A) and z{_) of the spectral

stimuli are derived from the spectral tristimulus values XQ1),

4(A) and 2(1), by forming ratios (CIE, 1986):

) - 7(A)
R0 + GO + ZQ)
()
)=
WA =T I
7(A)
A) = L
W =75 + g + Z(A) (2.4-10)

The CIE 1931 (x, y)-chromaticity diagram which is drawn using
the chromaticity coordinates is shown in Figure 2.10.(d). The
chromaticity coordinates x(I), y(l) and z(l) are converted to the
tristimulus values X, Y and Z as follows (the CIE, 1986):

Yy Z
X=(g)y end  Z=(5)V. (2.4-11)
Wave- Tristimulus Values
length
Am) | PR g B | B §)  3Q)

380 0.00003 -0.00001 0.00117 | 0.0014 0.0000 0.0065
400 0.00030 -0.00014 0.01214 ] 0.0143 0.0004 0.0679
420 0.00211 -0.00110 0.11541 | 0.1344 0.0040 0.6456
440 -D.00261 000149 0.31228 | 0.3483 0.0230 1.7471
460 -D.02608 0.01485 0.29821 | 0.2908 0.0600 1.6692
480 -D.04939  0.03%14 0.14494 | 00956 0.1390 0.8130

------

760 0.00006 0.00000 000000| 0.0002 0.0001 0.0000

Table 2.1 Average colour-matching functions F(), 3(A) and B(R),
and XQ), §Qd) and Z(A) (yudd & Wyszecki, 1975).
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It is important to note that the chromaticity diagram of either
the CIE RGB system or the CIE XYZ system has no uniform colour i
space. Colours within each ellipse in Figure 2.11 have the same i
chromaticity. Since the CIE 1931 (x, y)-chromaticity coordinate
system has a multiform colour space, the CIE has developed the
CIELAB system and the CIELUV system.
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Figure 2.10 Colour-matching functiens. (8) T(R), g(x), ()
colour-matching function. (b) X(), YR and ZQ) colour-
matching function. (¢) The CIE 1931 (r, g) chromaticity
diagram. {(d) The CIE 1931 (%, y) chromaticity diagram
(byszecki & Stiles, 1982).




The concepts of the CIE RGB system and the CIE XYZ system and
the backgrounds and motivation of the development of the CIE
1931 XYZ system have been previously considered to allow the
understanding of the relationship between these two systems.

1.0
0.8
{
Po.s ®®
y ® &
0.4 & &
&
02\ 8%
0 02 04 0.6 0.8 1.0
X3

Figure 2.11 A multiform colour space of the CIE 1931 (&, y)-
chromaticity diagram (Judd & Wyszecki, 1975).
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2.5 CALIBRATION OF A COLOUR IMAGE SCANNER DIGITISING
SYSTEM IN THE CIE L*A*B* COLOUR SPACE.

There are many kinds of measuring devices which measure
weight, distance, length, volume, electrical resistance, speed,
etc. Some of them need calibration before use because of changes
of environmental factors which can affect the result of
measurement. In the colour image analysis field, colour images
are usually captured using colour video cameras or colour image
scanners, etc. If the captured images are analysed utilising colour
comparison applying the uniform colour space such as the CIE
L*a*b* colour space, calibration of the colour image capturing
system is required because a digitising system’s spectral
sengitivities are not always the same as the human colour-
matching functions illustrated in the previous section. In much
research undertaken in the image analysis field, colour has been
used to segment images into sets of uniform colour regions.
However, Ilttle attentlon has been pard to callbratlon lto and

Fukushima (1976) have noted that " the 7f_iitﬁe_rl

characteristics of their colour film reader and dlgltal colour TV
scanner are different from the CIE standards, so they have
developed two new transformation-coefficient matrices for their
devices, where each matrix is used for transforming the RGB
values into the XYZ values. However, the detailed procedure for
‘obtaining these matrices has not been :llustrated Strachan et al.

(1 990) published a paper describing th91

—_— ———— e — e

callbratlon of a video dlgrtlsmg system with a detarled
procedural illustration and assessment of the result obtained.
However, no paper describing a method of calibrating a colour
image scanner digitising system has been published. One of the
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main reasons for the small amount of attention paid to calibration
in the colour image analysis field is that special equipment which
is dominately required to obtain the most relevant information
for colour analysis and the relevant expertise is not available. In
the colour science domain, the spectral irradiance of the
iluminant and the spectral reflectance of the colour samples are
used as the basic data for colour analysis, where this information
can only be obtained using spectroradiometers and sophisticated
illumination standards. However, if a digitising system’s spectral

CIE (1931)
No. Name
X Y Y

1. dark skin 0.4002 | 0.3504 | 10.05
2. | 1light skin 0.3773 0.3446 | 35.82
3. | blue sky 0.2470 0.2514 | 19.33
4. | foliage 0.3372 | 0.4220 | 13.29
S. | blue flower 0.2651 0.2400 | 24.27
6. bluish green 0.2608 0.3430 43.06
7. | orange 0.5060 | 0.4070 | 30.05
B. purplish blue 0.2110 0.1750 12.00
9. moderate red £0.4533 0.3058 19.77
10, | purple 0.2845 | 0.2020 6.56
11. | yellow green 0.3800 | 0.4887 | 44.2%9
12. orange yellow 0.4729 0.4375 | 43.086
13. | Blue 0.1866 | 0.1285 6.11
14 Green 0.3046 0.4782 | 23.39
15. | Red 0.5385 | 0.3129 | 12.00
16. | Yellow 0.4480 | 0.4703 | 59.10
17. Magenta 0.3635 0.2325 | 19.77
18. Cyan 0.1958 ¢.2519 19.77
15. white 0.3101 0.3163 ] 90.01
20, *neutral © 0.3101 0.3163 | 59.10
21. | *nevktral 6.5 0.3101 0.3163 | 36.20
22. | *neutral S 0.2101 0.3163 | 19.77
23.-| *neutral 3.5 0.3101 0.3163 9.00
24. black 0.3101 0.3163 3.13

Table 2.2 Colour names and specifications (McCamy et al.,
1976). The chromaticity coordinates are based on the CIE
iluminant C. (*): The neutral greys are named as the Munsell
notations are usually spoken,
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sensitivities are different from the human visual system and
spectral devices which can be used for measuring the spectral
sensitivities of the digitising system are not available, how can
the three-dimensional uniform colour space be obtained? In order
to give a reasonable answer to this question, a simple method of
calibrating a colour image scanner digitising system using the
Macbeth colour chart in the CIE L*a*b* colour space will be
described. The Macbeth colour chart which is a subset of the
Munsell colour standards has been developed to facilitate
quantitative or visual evaluation of colour reproduction processes
employed in photography, television, and colour printing. The chart
consists of the 4 x 6 array of patches, each about 50 mm squars,
which includes a well-spaced series of six neutral patches
ranging from white to black, and a wide gamut of chromatic
colours, additive and subtractive primaries. Each patch is
characterised by an assigned name and the CIE 1931 x, y and Y as
shown in Table 2.2 (McCamy et al., 1976), where the chromaticity
coordinates of each colour have been obtained under the CIE
iluminant C (average daylight). The chromaticity coordinates x, y
and Y are transformed into the tristimulus values X, Y and Z, using
Equation (2.4-11). The ftristimulus values X, Y and Z are also
transformed into the CIE L*, a* and b* coordinates by simply
applying Equation (2.3-4), where the coordinates Xo, Yo and Zo for
the illuminant C reference white are:
Xo = 98.07, Yo =100.0 and Z = 118.23 (Hunt, 1989).

The X, Y and Z values calculated using the x, y and Y values in
Table 2.2 and the L*, a* and b* values calculated using these X, Y
and Z values are in Table 2.3. Thus, the calibration of a colour
image scanner can be performed using the Macbeth colour chart
and the tristimulus values X, Y and Z derived from the
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chromaticity coordinates of each patch created by McCamy et al.
If the tristimulus values R, G and B of each patch of the Macbeth
colour chart are obtained by scanning the chart using a colour
image scanner, the problem of this calibration can be abstracted
to a modelling problem, where these R, G and B values are
independent variables and the corresponding X, Y and Z values are
dependent variables. Let us consider the modelling procedure in
detail. Firstly, the 24 colours in the Macbeth colour chart were
measured using the colour image scanner (JX600) which was
connected to a Macintosh lIx system. As Table 2.6 shows, the red,
green and blue levels of the black patch (No. 24) in the chart were

No. X Y 2 L+ ak b+
1. 11.48 10.05 7.15 37.93 12,12 14.48
2. 39.22 35.82 28.91 66.38 13.28 16.97
3. 18.99 19.33 38.57 51.07 A7 -22.04
4. 10.62 13.29 7.58 43.20 -16.84 22.02
S. 26.81 24.27 S0.05 56.36 12,62 -25.42
6. 32.74 43.06 49.74 71.60 <=30.7%1 1.17
7. 37.36 30.05 6.42 61.70 27.56 58.23
8. 14.47 12.00 42.10 41 .22 17.59 -43.11
9. 29.31 19.77 15.57 S51.58 43.02 14.76

10. 9.24 6.56 16.68 30.78 25.86 =23.46

11. 34.44 44 .29 11.90 72.42 -28.37 59.42

12. 46.54 43.06 8.82 71.60 12.43 66.83

13. 8.87 6.11 32.57 29.69 27.51 -51.36

14 14.90 23.39 10.62 55.47 -41.27 33.66

15. 20.65 12.00 5.70 41.22 50.84 25.86

16. 96.30 59.10 10.27 81.35 -4.04 79.26

17. 30.91 19.77 34.35 51.58 48.99 -15.95

18. 15.37 19.77 43.35 51.58 =21.70 -=26.64

19, 88.25 90.01 106.32 96.00 -.04 .06

29. 57.94 59.10 €9.81 81.35 -.05 .05

21. 35.49 36.20 42.76 66.67 -.04 ., 04

22. 19.38 19.77 23.35 51.58 -, 04 .04

23. g.82 9.00 10.63 35.98 -.05 .03

24. 3.07 3.13 3.70 20.56 .0t .00

Table 2.3 The #, ¥, 2, L*, a*, and b* values calculated using the
H, Yy and Y values in Table 2.2.
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too high to be used in a normalisation procedure. Thus, a nearly
perfect reflecting diffuser which had a black colour was
additionally scanned. Although each patch had a uniform colour,
the captured image of each patch contained a number of slightly
different colours because of minor surface-irregularity. Thus,
3600 red, green and blue values for each patch were selected in
order to calculate an average value. In this measuring procedurs,
the 25 sets of red, green and blue values for each patch were
obtained, which are given in Table 2.6. The red, green and blue
values of each of the 24 colours were then normalised according
to the black and white levels as follows:

R(i) - R(b) % 100,

Rn =
R(w) - R(b)
G{w) - G(b)
B(w) - B(b) (2.5-1)

where nand i = 1, 2, 3, ...... . 24, respectively; R(i), G(i) and B(i)
represent the red, green and blue values of each of 24 colours;

R(b), G(b) and B(b) represent the red, green and blue values of
black; and R(w), G(w) and B(w) represent the red, green and blue
values of white. The reason for this normalisation is that the red,
green and blue values of each of the 24 colours are to be corrected
according to the values of black and white. The normalised Rn, Gn
Bn values are given in Table 2.6. In the colour science domain, it
is well known that the Y tristimulus value has a linear
relationship with the intensity of each of the tristimulus values
red, green and blue of each colour (Judd & Wyszecki, 1975).
However, the Y tristimulus values did not have a linear
relationship with the corresponding Rn, Gn and Bn values of the 24
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colours. Figures 2.12.(a) through to (c) show a non-linear
relationship between the Y f{ristimulus values and each of their
corresponding Rn, Gn and Bn values. In the particular case of the

RN (e) Gn (b Bn (c)
- L] t ' ' ) - . t - ] A N
B . La" < Jlt} - : 3
- ? t - l= - ! la
ity ! b [ I | .
Y ‘ Y Y
TogRn (d) logGn (e) logBn (n
[ " l 1 L F [ , [
LI T W ] per,
“ . .: " l’ll:= N t
s 2 ] t LS I= b ' 2 b
11 * l- » ." y m Y.
log¥ logV TogY

Figure 2.12 Scatter diagrams. (a) A scatter diagram of the Rn
values against the ¥ values. (b) A scatter diagram of the Gn
values against the ¥ values. (c) A scatter diagram of the Bn
values against the ¥ values. (d) A scatter diagram of the
log,,Rn against the log,,Y values, (e) A scatter diagram of the
log,,Gn against the log,,Y values. (f) A scatter diagram of the

log,,Bn against the log,,Y values.
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non-linear relationship, the non-linear relationship can be
reduced to a linear relationship by an appropriate transformation
of variables. Thus, transform the Y tristimulus values into the
Common logarithm of Y, log,,y;: and the Rn, Gn and Bn into log, oRn,
log; ,Gn and log, ,Bn, respectively. Then, the log,,Y values have a
linear relationship with the log;,Rn, log,,Gn or Log,,Bn values.
Figures 2.12.{(d) through to (f) show a linear relationship between
the log, Y values and the log,,Rn, log, ,Gn or log, ,Bn values.

Finally, obtaining the linear relationship becomes a problem
of calculating a regression coefficient using the transformed
variables log,,Y and each of log,,Rn, log,,Gn and log,,Bn as
follows:

log;oRn =vi0g,,Y,

l0g,,Gn =vd09,,Y, and

log,4Bn = 1log,,Y, (2.5-2)
where ¥, Y5 and y, are respectively the regression coefficients of
the regression equations. These regression coefficients, obtained
by applying the regression analysis routine of the SPSS-X, are v, =
1.26094, v, = 1.23629 and vy, = 1.22524, respectively, as Table 2.4
shows. It can be concluded that each regression equation
accurately represents the sample data, which have been involved

Dependent | Independent | Regression| Standsrd| T Yalue| Prob. | Raquare
Variable | Variable Coefficient | Error (Ta) (T>Ta)

log1oRn Tog1oY 1.26094 0.05 26.30] 00 0.97
log1oGn log1oY 1.23629 0.04 30.57| 0.0 0.98
log1oBn log1oY 1.22524 0.06 20.66 0.0 0.95

Table 2.4 The results of regression analyses.
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in the regression analysis, since each R-square is nearly 1.0 and
each significant value (probability of T > Ta) is 0.0. Each of the
equations in Equation (2.5-2) s transformed into the following

equations which have no logarithms:

Yan(‘lr{n),

Y =Gnlt", and

Y = Bn{1 ), (2.5-3)
Since the Y values have a linear relationship with their
corresponding Rn{17%R), Gn{'d or Bnl1% values, these latter
values can be involved in the following modelling procedures. Let

Rn{1 7R, Gn(1/s) and Bn{1/s) be Rr, Gr and Br, respectively.

The conventional model which has been used to transform the
Rr, Gr and Br values into the X, Y and Z tristimulus values in the

colour science field is defined as follows (Hunt, 1989):

X ct1 c12 c13] [rr
v |=|c21 c22 c23| |Gr
z €31 €32 €33 | |Br| (2.5-4)

where the 3 x 3 matrix represents the transformation
coefficients. In this model, since the variables X, Y and Z are
independent of each other, this model can be broken down into
three different submodels as follows:

X = C11Rr + C12Gr + C13Br, (2.5-5.a)
Y = C21Rr + C22Gr + C23Br and (2.5-5.b)
Z = C31Rr + C32Gr + C33Br. (2.5-5.¢)

To obtain each coefficient, a multiple regression analysis has
been performed using the regression analysis routine of the SPSS-
X, where the Rr, Gr and Br values and the tristimulus X, Y and Z
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Dependent | independent § Regression| Standerd | T Vslue| Prob. } R square
Yariable | Yariable Coeffictent | Error (Te) (T>Ta)
X Rr 0.5184 038 1.36 019} 0.89
Gr 1.1304 0.52 2.16 0.04
Br -0.4065 030 -1.35 0.19
Y Rr -0.2616 038 | -0.70 | 0.49| 0.89
Gr 2.1879 0.52 422 0.0
Br -0 6730 029 | -2.27| 0.03
Z Rr -0.7748 0.47 -1.66 0.11 0.86
Gr 0.3829 0.64 059 | 0.55
Br 1.5719 0.37 4.25 0.0

Table 2.5 The resutlts of multiple regression analyses.

values of each of the 24 colours in the Macbeth colour chart have
been used as the sample data. The results obtained by the
regression analysis as shown in Table 2.5 are as follows:

X = 0.5184Rr + 1.1304Gr - 0.4065Br, (2.5-6.2)
Y =-0.2616Rr + 2.1879Gr - 0.6730Br, (2.5-6.b)
Z =-0.7748Rr + 0.3829Gr + 1.5719Br. (2.5-6.¢)

The results of the multiple regression analysis can be evaluated
by the following procedure. Firstly, calculate the L*, a* and b*
values using the X, Y and Z tristimulus values, measured by
McCamy et al., by applying Equation (2.3-4), where the Xo, Yo and
Zo for the illuminant C reference white are 98.07, 100.0 and
118.23, respectively. Secondly, calculate the L*, a* and b* values
using the X, Y and Z values which are calculated from the models
in Equation (2.5-6) by applying Equation (2.3-5). Let the L*, a* and
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b* values obtained in the first step be L*,, a*, and b*,.
respectively; and those obtained in the second step be
respectively L*_, a*. and b*_. Applying the colour difference
formula in Equation (2.3-5) results in:

AE,"

= [(L' - L2+ (@' - %2+ (0'n - b%,)?01 /2 (2.5-7)
After calculating the colour difference AE," for each of the 24
colours, the average value of AE,,*, where i = 1 to 24, which has
been calculated is 11.93. No criterion for evaluating the average
value of AE,,* has been introduced. However, the basic principle
of the evaluation obviously is that the lower the average value of
AE,", the better. To reduce the average value, several
experiments with the different types of models were performed,
where the three variables Rr, Gr and Br were basically used with
various combinations, making sure all variables undergo similar
operations, since they are the primary stimuli of . human
vision. Among the models, the following model could provide the

least average value of AE,,;":

log, X Cil Ci12 C13 C14 Ci5 Ci6 C17 Ci18 C19 Rr
log,,Y | =] C2t czz2 c23 C24 C25 C26 C27 C28 C29 Gr
Br
Rr2
2
Gr2
Br
RrGr
GrBr

Brrr

log,,2Z C31 C32 C33 C34 C35 C36 C37 C38 C39

(2.5-7)

This model can be broken down into three different submodels as
follows:
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[0GoX = C11Rr + C12Gr + C13Br + C14Rr2 + C15Gr2+ C16Br2 + C17RGr

+ C18GrBr + C19BrRr, (2.5-8.3)
10gy0Y = C21Rr + C22Gr + C23Br + C24Rr2 + C25Gi2+ C26Br2 + C27RrGr
+ C28GrBr + C29BrRr, {2.5-8.b)
l0g,pZ = C31Rr + C32Gr + C33Br + C34Rr2 + C35Gr2+ C36Br2 + CA7RIGr
+ C38GrBr + C39BrRr. (2.5-8.c)
The result of the multiple regression analyses are as follows:
log,,x = 0.022514Rr
+ 0.,046143Gr
- 0.005592Br

+ (9.04773E-05)Rr?
- (3.28888E-04)Gr?
+ (2.93842E-04) Br?

- {1.66215E~04)RrGr
- (1.62771E-04)GrBr

- (9.93195E-05)BrRr, (2.5-9.a)

10940Y = - 0.016447Rr
+ 0.100839Gr
- 0.020879Br
+ (3.60334E-04)Rr?
- 0.001285Gr?
(1.98717E-04) Br?

+
+ (5.43750E-05)RrGr
+ (1.87177E-04)GrBr
+

(1.10345E-04) BrRr, (2.5-9.b)

0g0Z = - 0.003715Rr

- 0.024801Gr
+ 0.088003Br

- (1.63468E-04)Rx2
+ (3.08820E~-04)Gr?
- 0.001085Br2

(2.96476E-04) RrGr
(3.22757E-04)GrBr

(3.64685E-05)BrRr. (2.5-9.¢)
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The R-square for each multiple regression analysis is greater

than 0.99. In a practical calculation, equations (2.5-9.a) through

to (2.5-9.¢) are

equations:
X =
+
+
Y = 10**( -
+
+
+
+
+
+
Z = 10**( -

10**( 0.022514Rr
+ 0.046143Gr

+ + +

0.005592Br

(9.04773E~05) Rr?
(3.28888E-04)Gr2
(2.93842E-04)Br2

(1.66215E-04)RxGr
(1.62771E-04)GrBr

(9.93195E-05)BrRr),

0.016447Rr
0.100839Gr
0.020879Br
(3.60334E-04)Rr?
0.001285Gr?
(1.98717E-04)Br?

(5.43750E-05) RxGr
(1.87177E-04) GrBr

(1.10345E-04) BxRr),

0.003715Rr
0.024801Gr
0.088003Br

{1.63468E-04)Rr2
(3.08820E~-04)Gr?

0.001085Br?
(2.96476E-04)RrGr
(3.22757E-04)GrBr

(3.64685E~05)BrRr) .
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These X, Y and Z values calculated by eguations (2.5-10.a) through
to (2.5-10.c) are in Table 2.6. The L*, a" and b* values calculated
using the X, Y and Z values and Xo, Yo and Zo values for the

|
iluminant C reference white by applying Equation (2.3-4) are
|

shown in Table 2.6. The AE,;* values in the right-most column of
Table 2.6 are calculated by Equation (2.5-7). The average value of
AE,;" obtained applying 'equations (2.5-10.a) through to (2.5-10.c)
is 4.54 and the standard deviation of AE,,* is 2.07. This average
value compares very well wsth a va!ue of 9.11 obtained by

1Strachan et al (1990) 7 They measured the red, J‘

green and blue values of the 24 colours in the Macbeth colour
chart with a colour video camera under illuminant A. They
obtained the conventional style 3 x 3 matrix as shown in Equation
(2.5-4) by minimising the average value of AE,,*, where the
L*u*v* values of the Macbeth chart under illuminant A which
were measured using a colorimeter by a Hunter Lab Colour QUEST

Spectrophotometer were used as reference data.
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Table 2.6 Macbeth colours measured by colour image digitising system.

¢

R Gi Bi Rn ©Gan Bn Rr &r Br o Yp Z, L% a% b*, AEabt

1.133041 23901 20571 SD.24 36.28 3L.14 | 22.34 18.26 16.55 13.04 11.32 7.53 40.11 13.33 16.88 3.46
2.1597224 42586 42629 87.27 64.88 64.92 | 34.61 29.23 20.14 432.51 39.64 21.29 €9 21 14.04 17 £9 3.02
3.125%6534 3392¢ 49149 44.90 51.62 74.90 | 20.43 24.29 33.88 19.37 19.22 40.71 50.95 2.64 -24.75 2 &7
4.]| 22901 26986 20541 34.25 41.0h 3L.12 17.24 20.1& 14.54 11.46 14.33 T.81 44.70 -17.16 22.79 2.34
5.]2e71 25980 51943 S55.95 54.77 79.18 24.23 25.48 35.45 5.0 Q.69 44d.09 54.7%% 12.27 -21.97 2.82
£.]| 33713 485823 47354 S1.27 74.08 72,16 22.70 12,52 32.06 29."M 3B.35 4&.00 €¢8.28 -27.35 -.T0 5.08
7.]59168 34352 21043 90.25 52.482 3l.e6 35.55 24.54 16.906 26.04 ap a1 6.713 61.05 D9.65 55.90 2 65
£.]|a239592 26985 S2133 3£.22 41.0D0 79.47 17.27 20.16 35.55 14.11 11.59 421.35 40.55 16.25 -44.54 1.7
Q.| 54723 29159 21975 03.44 44.3¢ 40.45 | 33.40 21.50 23.74 ©£7.064 1b.41 15.29 49,99 44 .15 12.41 3 05
10.]| 26594 20561 30195 4b.97 21.17 45,00 19.00 16.15 23.71 2.7 7.45 16 230 32.02 21.54 -19.32 6.32
11, 41111 45745 29901 €9.60 &9.71 25.%4 26.59 230.97 10.73 91.10 92.95 10.74 69,01 -25.123 S6.66 S5.46
12. | 54452 41119 20719 69.03 &2,.69 31.9% 92.27 20.4D 16.65 39.29 3B.5Y T7.20 ¢8.33 4.11 67.03 8.87
13.| 20560 20831 47641 31.12 9%1.20 7¢.59 15.20 16.2) 33.12 9.63 6.69 37.29 31.10 27.70 -Y4.95 3.86
14 | 23941 230960 26648 I5.25 59 234 4D, 44 17.24¢ 27.19 20.48 17.03 27.33 13.19 3946 ~d5.20 233.81 6.30
13.]93372 23901 20064 BL.3%8 36,28 3L.12 32.73 18.26 16.74¢ ZZ.33 13.14 6.40 4Z2.98 JZ.03 26,01 Z.12
16, | 63314 33321 23909 96.60 &1.61 36.23 37.91 33.18 18.74 B51.6% 6Z.B9 10.91 83.39 .01 BU.?7 4.8B3
17.| 31707 29333 426170 78.83 44.94 61.8Y 31.93 21.7Z 3¢.13 27.48 17.92 27.56 48.91 47.38 -11.16 5. 71
1B. | 20360 34431 44299 31.13 S2.4D0 67.48 13.278 74.57 31,11 15.04 19.69 35.10 51.48 -23.26 -17 07 9.70
19.]| 67333 63333 65433 100.00 100, QD 10D, 00 38.95 41.47 42.89 BS.45 8B.28 104.76 95.28 -2.09 1 24 3,07
20. 197269 56370 64167 87.34 85.97 97.90 | 34.63 36.70 42.1 £5.62 66.B9 77.98 85.45 .05 .81 4.17
21. (44282 441856 50948 67.46 6€7.33 77.66 | 28.22 30.11 34.89 35.58 35.24 47.30 66.70 A5 -4.78 4.82
23.]|31868 31868 J7B1 48.45 48.48 57.19 | 21.70 23.09 27.18 17.47 17.58 24.97 48.99 1.23 -7.06 7 66
23.(20632 20615 23903 31.24 31.26 36.24 | 15.32 16.19 18.73 8.06 B.11 19.81 34.21 .98 -3.53 4.11
2¢.| 9991 9l19 9836 14.95 13.66 14.69 | 8.54 8.2% §.96 3.17 3.08 3.32 20.35 2.54 1.88 3.16
z3.| 229 193 241 0.00 0.00 0.00




2.6 CONCLUSION.

Since the three-dimensional uniform colour spaces such as the
CIELAB and the CIELUV spaces were introduced by the CIE in 19786,
these uniform colour spaces have been commonly used for colour
image analysis. Thus, in this chapter, the detailed aspects which
are pertinent to transforming the RGB values into one of these
three-dimensional colour spaces have been investigated. In the
transformation procedure, it was necessary to understand several
fundamental concepts of colour, from its nature to various colour
systems such as the CIE RGB system and the CIE XYZ system. It
has become apparent during the investigation that the spectral
sensitivity of a colour digitising system is not always the same
as that of another system. Therefore, the tristimulus R, G and B
values of an image measured by one colour digitising system are
not always the same as those measured by another system. An
important fact to note is that a three-dimensional uniform colour
space cannot be obtained without the calibration of a colour
image digitising system. To cope with the variation of the
spectral sensitivity of a colour image scanner digitising system
and to obtain a three-dimensional uniform colour space with
minimum errors, a calibration method for the space has been
developed applying regression analysis. An important feature of
this method is that neither expensive devices such as
spectroradiometers nor sophisticated illumination standards are
required, only the Macbeth colour checker chart. Since the Macbsth
colour chart can be easily obtained, the method developed in this
thesis can be widely adopted in the calibration of a colour image
scanner digitising system. Thus, colour comparison for various
purposes in colour image analysis can be more accurately
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performed in a three-dimensional uniform colour space with

minimum errors.

53




Chapter 3

BOUNDARY EXTRACTION METHQDS,
/

3.1 Introduction.

3.2 Characteristics of Edges.

3.3 Edge Detection.

3.3.1 Differentiation Methods.

3.3.2 Mask Matching Methods.

3.4 Boundary Extraction From Colour Image.

3.4 Conclusion.
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3.1 INTRODUCTION.

In object identification, extracting the boundary of an object
from a scanned image is a very important stage. The boundary is
defined as a border line lying between a background and an
object. The boundary data exiracted from an image plays an
important role in describing a shape of a two- or three-
dimensional object. The current concern of boundary extraction
methodologies seems to be how to extract the boundary of an
object from a natural image using computers to mimic human
beings and animals.

The majority of research pertaining to boundary extraction
that had been performed by the early 1980's was mainly
concerned with black-and-white images. The main reason for this
was due to the fact that image handling devices were available
only for black-and-white image handling. Most of the
methodologies for black-and-white images have usually relied
on one-dimensional information. In fact, the criteria for decision
making obtained from one-dimensional information are
theoretically limited to the one-dimensional domain. As far as
colour image handling is concerned, proper methods to deal with
three-dimensional colour features such as lightness, hue and
chroma are inevitably required. The algorithm developed in this
thesis has been designed to extract the boundary of an object
applying three-dimensional colour features, that is, the CIE L%,
a* and b* colour features.

For boundary extraction, an investigation has been carried out
not only to understand the thecretical concepts and backgrounds
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of closely related methodologies, but also to devise feasible

methods. A number of methods for boundary extraction have been
developed using region segmentation techniques. In general, most
of the methods were designed mainly for region extraction. Of
course, these methods can be applied to boundary extraction
which is the main subject of this chapter. However, the pertinent
point is that after the region of an object is extracted from an
image, the creation of boundary data, which will be used in shape
analysis, should be undertaken. This seems a duplication of
effort to extract a region and create a set of boundary data using
the extracted region. Thus, in this chapter, the illustration of
boundary extraction will focus on differentiation methods, mask
matching methods, and a method combining the two above

methods.
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3.2 CHARACTERISTICS OF EDGES.

Before boundary extraction is considered, it is worth taking a
detailed look at features of edges and their detection
methodologies. An edge, defined as the boundary between two
regions with relatively distinct grey levels or colour properties
has its profile, which has one of the features in Figure 3.1. The
features are represented by an abrupt change in grey level of a
black-and-white image or values of colour feature the CIE L*, a*
and b* of a colour image when a cross section across the
boundary between regions is viewed.

The idealised edge models {Levine, 1985) in Figure 3.1 are:
(1) An ideal step, as shown in Figure 3.1.(a), is usually considered
as an edge feature with an assumption that an image consists of
an object with a constant colour feature; and a background with a
uniform colour feature or another object, adjacent to the first,
which has also another different uniform colour feature. In this
case the point et in Figure 3.1.(a) is an edge point.

(2) An ideal roof edge, as shown in Figure 3.1.(b), which is made
up of two ramp singularities is explained as an edge feature when
an image consists of an object with various colour features and
another object with various colour features different from the
features of the former. The point e2 in Figure 3.1.(b) is an edge
point.

(3) An edge combining the unit step with the unit ramp, as shown
in Figure 3.1.(c), is explained as an edge feature when an image
consists of an object with a uniform colour feature and another
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object, adjacent to the first, which has various colour features.

The point e3 in Figure 3.1.(c) is an edge point.

(4) A spike edge, as shown in Figure 3.1.(d), which has two unit
steps is for an image containing a line which is highly contrasted
to the background in colour features. An edge in this case is

either point e4 or point es in Figure 3.1.(d).

colaur colour
. feature feature
el distance 02 distance
| (a) an idesl step (b) an ideel roof edge |
| colour colour
| Teature Tealure
i _ I\ |
ex distance e4e5 distance
(c) a combined edge (d) a spike edge
Figure 3.1 The idealised edge models.
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3.3 EDGE DETECTION.

In the previous section, the characteristics of edges have been
illustrated with their local features. In this section, the
principal concepts of edge detection methods will be discussed.

Chow and Kaneko (1972) have dw:ded edge .

detection algorithms into two categones based on one of the two

basic properties of colour features or grey levels of pixels:

(1) discontinuity, and

(2) similarity.
In the first category, an edge is detected when colour features or
grey levels of pixels change abruptly at a border point lying
between two neighbouring regions. The methods in this category
are usually called ‘differentiation methods’.
In the second category, an edge is determined based on whether a
local feature of colours or grey levels of pixels is similar to a
predefined pattern or not. The methods in this category are
usually called ‘mask’ or ‘template’ matching methods.

3.3.1 Differentiation Methods.

The basic paradigm of the edge detection method that is
illustrated in this section is the computation of a local
derivative operator. The main reason why the derivative operator
has been used in edge detection will become clear after the
geometrical features of a derivative are considered.

Suppose that one of the rows is extracted from an image array,
the row is the x-axis and the grey level of each pixel is the
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y-axis, then a function y = f(x) can be imagined, as in Figure 3 2,
connecting the top mid point of every value of colour feature or

grey level along the x-axis.

Colour j
feature
or /
Grey

level /

P

e (NN TR RN

0 Locations of horizontal pixels

Figure 3.2 Function formulation,

Where the function y = f(x) obtained above is given in Figure 3.3,
ax denotes a change from an arbitrary point b of x and ay

denotes a change of y; if &x approaches zero {(ax — 0), the
derivative of the function at the point b is defined as follows:
af(x) ~ ay

f(b +ox) - f(b)
=lim ——=1im
ax Aax-0 &X a%-20 P

(3.3.1-1)

The derivative af(x)/ax in Equation (3.3.1-1) is usually

considered as the gradient of the line segment joining the two
points P and Q because in geometry a gradient of the line segment
PQ is represented by change in y divided by the change in x:

gradient of a line segment PQ = (change in y)/(change in x)
= (ay /o).
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Figure 3.3 Geometrical feature of a derijvative.

} Fu, Gonzalez and Lee (1987) illustrated  this conceptl
lwnh the aid of Figure 3.4. The image of a Ilght}

object with a constant grey level on a dark background has a
grey-level profile along a horizontal scan line. The dotted parts
of both sides of the object denote slightly blurred areas, where
the level of the blurring is reducing as the location moves further
from the background along the horizontal line. Below the grey-
level profile the first and second derivatives of the profile are
depicted. The locations a, b, ¢, d, e and f of the image correspond
to the locations a’, b’, ¢', d’, ¢ and f of the profile respectively
along the horizontal line. Take a close look at the profile along
the horizontal line, and it may be found that since segment lines,
a’b’, ¢’'d’ and e'f, have constant grey levels respectively, their
first derivatives are all 0's (zeros). However, the segment line
b'c’ has a positive slope with respect to the horizontal line,
therefore the first derivative of any location in this segment line
has a positive value +h, on the other hand, the segment line d'e’

61




has a negative slope with respect to the horizontal line, thus the
first derivative of any location in this segment line has a
negative value -h. 1t is clear that at the location b’ the first
derivative value has been changed abruptly from 0 (zero) to +h
and at the location e' the first derivative value has also changed
abruptly from -h to 0. Since both the locations, b' and e’, are
physically boundary locations, it can be concluded that the first
derivative values can be used efficiently to detect an edge lying
between neighbouring regions.
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Figure 3.4 Elements of edge detection by derivative operators.

The second derivatives are usually obtained through a calculation
using the first derivative values. The second derivatives at the
locations, b’ and €', are +h's and -h’s at the locations, ¢' and d'. On
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the other hand, the second derivatives of the other locations
except these points are all 0's. An important fact to be noted is
that the positive values of the second derivative are located at
both the boundary locations, b’ and e’, while, the negative values
of the second derivative are located inside the object, the
locations, ¢’ and d'. Based on the previous findings, it can be
concluded that the sign of the second derivative is able to be
used to determine whether an edge pixel lies on the dark or light

side of an edge.

The previous discussion has been limited to a one-dimensional
horizontal profile, however, since an actual image has a two-
dimensional profile, the previous concepts should be applied to
the horizontal profile and the vertical profile simultaneously.
Assume that a function z = f(x, y) representing the two-
dimensiona! profile is given, the gradient of the horizontal
profile, i.e. the partial derivative of f(x, y) with respect to x, at a
point (a, b) is

gradient of x = 2/

- 1im f(a+ax,y) - f(a, b)
AX>0 X ! (3.3.1-2)

the gradient of the vertical profile, i.e. the partial derivative
with respect to y, at the point (a, b) is

gradient of y = ,_:L_
- 1im f(a, b+ay) - f(a, b) ’
2y-0 ad (3.3.1-3)

The partial derivatives of f(x, y) with respect to x and y at the
point (a, b) can be geometrically interpreted as the gradients of
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the curves of the intersection of the surface z = f(x, y) with the
planes, y=b and x=a, respectively. Figure 3.5 shows geometrically

(a,b,f(a,b))

curve of
intersection

Figure 3.5 Geometrical illustration of the partial derivative.

the partial derivative, 3f/2X, with respect to x, where the

shaded plane is a plane, y = b, and is parallel to the plane x0z; and
the slope of the tilted straight line touching, at the point (a, b,
f(a, b)), the curve of the intersection of the surface z = f(x, y)
with the shaded plane is the gradient, 92/8X,

The previous discussion can be arranged as follows, if a
function f(x, y) is given, the gradient of f(x, y) at coordinates (x,
y) is defined as the vector,

Gr. et
Grif(x, yl=| %= °X (3.3.1-4)
Gr 18
y ay
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where Gr, is a partial derivative of f(x, y) with respect to x,
Gr, is a partial denvative of f(x, y) with respect to y,
x=1, 2, 3, ...... , n-1, (n: the number of pixels in a row)

y=1, 2, 3, ...... , -1, (I: the number of pixels in a column).
In practice, there are two important properties (Goldmark &
Hollywood, 1951) of the gradient:’
(1) the vector Gr[f(x, y)] represents the direction of the maximum

rate of increase of the function f(x, y), and

(2) the magnitude of Gr[f(x, y)] denoted by Mag_Gr[f(x, y)] is given
by
Mag_Gr[f(x, y)] = magnitude[G]
= (Gr,2 + Gry?-’)1 /2

- JET-T&T

= | Gry | +]Gry |. (3.3.1-5)

This equals the maximum rate of increase of f(x, y) per unit
distance in the direction Gr. In image differentiation methods,
the magnitude of the gradient in the equation (3.3.1-5) has been
considered as the basis for a number of algorithms. As a matter
of fact, modelling the function f(x, y) using digital image data
usually not only needs laborious effort, but also is considered a
meaningless procedure in the image domain. Therefore it is
necessary to approximate the partial derivatives in the equation
(3.3.1-5). Thus, other methods that can be used to calculate the
magnitude of the gradient approximately have been developed,

based on the theoretical background as discussed above, by

rGoIdmark and Hol!ywood (1951) and Roberts (1965).
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One of the methods in which the partial derivatives in
Equation (3.3.1-5) are approximated by differences is given by
the relation (Goldmark & Hollywood, 1951),

Mag_Gr{f(x, y)]

={ [f(x, y) - f(x+1, V)P + [f(x, y) - f(x, y+1)]?}'/2. (3.3.1-6)

Using absolute values produces similar results,
Mag_Gr[f(x, y)]

= [f{x, y} - f(x+1, y)l + |f(x, y) - f(x, y+1)]. (3.3.1-7)
This approximation reflects not only the theoretical basis of
calculating the partial derivatives but also the efficiency and
adaptability of a computer implementation. The basic principle
behind the relationship between pixels in equations (3.3.1-6) and
(3.83.1-7) is clearly shown in Figure 3.6.

(X, 4) <« f(x,y+1)

f(x+1, y)

(a)

(b)
Figure 3.6 Goldmark operator. (a) A procedure for computing
a two-dimensional, discrete gradient. (b) The masks for the

operator,

The values of f(x, y} - f(x+1, y) and f(x, y) - f(x, y+1) in Figure 3.6
approximate those of 3f/3X and 8f/8Y in the equation (3.3.1-
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5), respectively. This approach is very efficient in computing
terms, but, on the other hand, there has been some criticism
about its sensitivity to noise.

Another method in which the partial derivatives, Gr, and Gry,
in the equation (3.3.1-5) are approximated by differences is given
by the following relation, the so-called Roberts cross operator
(Roberts, 1965):

Mag_Girlf(x, y)] =
{ [f(x, y) - f(x+1, y+1)2 + [f(x+1, y) - f(x, y+1)[2}1/2 (3.3.1-8)
or using absolute value,
Mag—Grif(x, Yi=
[f(x, ¥} - f(x+1, y+1)| + [f(x+1, y) - f(x, y+1)|. (3.3.1-9)
The relationship between pixels and masks for this operator are
shown in Figure 3.7.

f(x, y) f(x, y+1)
f(x+1, y) f(x+1, y+1)
(e)
1 0 0 -1
0 -1 1 0
(b)

Figure 3.7 Roberts cross operator. (a) R procedure for
computing a two-dimensional discrete gradient. {(b) The
masks foy the Roberts cross operator.
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It is commonly known that the Roberts cross operator can be
efficiently used to detect both horizontal and vertical edges,

while it is also sensitive to noise and object surface

irregularities. However, this approach and the previous one have

been used in computerised tomography to detect edges in three-
dimensiona! object space and for colour edge detection in the
three-dimensional colour space (Liu, 1977; Sankar, 1978).

" Prewitt (1970) and  Sobel (Robinson, 1977)

- devised

m;{ﬁe:'sligiii_ly more complicated methods using a 3 x 3 operator
to approximate the partial derivatives at an arbitrary point (x, y).
Their intention was to make the derivative operations less
sensitive to noise. First, consider the Prewitt operator in Figure
3.8. The mask in Figure 3.8.(b) is used to approximate the partial
derivative Gr,, and another mask in Figure 3.8.(c) is used to
approximate the partial derivative Gry. The gradient in the x-
direction at a point (x, y) is obtained by employing the former

mask as follows:

Gry = f(x+1, y-1) + f(x+1, y) + f(x+1, y+1) - f(x-1, y-1) - f(x-1, y)

f{x-1, y+1).

(3.3.1-10)

The gradient in the y-direction at a point (x, y) is obtained by
employing the latter mask as follows:
Gry = f(x-1, y-1) + f(x, y-1) + f(x+1, y-1) - f(x-1, y+1) - f(x, y+1)

(3.3.1-11)

f(x+1, y+1).
@ L x-1,4-0 | 1x-1,9) | f(x-1,y+1)
f{x, y=1) (X, y) f(x, y+1)
f(x+1,y=1)| f(x+1,u) f(x+1,y+1)

Figure 3.8 Prewitt operator. (a) A 3 # 3 local image. (b) Mask
for Gr, at (x, y). (c} Mask for Gry at (%, y) (continued).
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(b) -y |- (c) 1 o | -1

0] 0 0 1 0 -1
1 1 1 1 0 { -1

Figure 3.8 Prewitt operator. {a) A 3 x 3 local image. {(b) Mask
for Gry at (%, y). (c) Mask for Gry at (2, y) (continued).

The magnitudes of these gradients are obtained by convolving the

two masks.

Second, the Sobel operator gives greater weight to points
lying closer to (x, y) as shown in Figure 3.9. Apart from this
weighting, it is similar to the Prewitt operator. It is known that
the result obtained using the Sobel operator is superior to that of
the Prewitt operator in diagonal edge detection.

-1 -2 |- 1] o |-t
o| o o 2 | 0 |-2
1| 2 1 1 o | -1

(8) (b)

Figure 3.9 Sobel operator. (a) Mask for Gr, at (%, y). (b) Mask
for Grg at (, y).

3.3.2 Mask Matching Methods.

In the previous section, boundary detection methods using the
approximated magnitudes of thel[ gradiente‘;:Were discussed. These

B —

approaches, ideally, yield only pixels lying on the boundary
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between an object and the background, however, if there is severe
noise in the image, the result obtained applying these approaches
will be different from the real boundary. Thus, in order to cover
such situations mask matching methods have been used in the
image analysis domain. In this section, edge detection methods in
which local patterns or masks (templates) are involved will be

discussed.

There are a few masks that have been used to detect an abrupt
change in colour features or grey levels and the edge orientation
at that point. Let us consider four different kinds of operators,
which have commonly been used in the image analysis domain,
each of which has eight parallel masks as shown in Figure 3.11,
where each mask is just the rotated version of a standard
operator. The standard operator is a mask which is considered as
a basis and is composed of nine components, i.e. a 3 x 3 array. At
the centre of the mask, a current point (x, y) is located. The first
and third columns in Figure 3.11 are the Prewitt operator and the
second column is the Kirsch operator. It is known that the Kirsch
operator is quite sensitive to small changes in gradient. The
right-most column in Figure 3.11 is the Sobel operator in which
greater weight is assigned to the points lying closer to the
location of a current point (x, y). In the application of these
operators, a contrast function and the edge orientation play an
important role in boundary detection. The contrast function,
denoted by Contr{x, y), which 551106[;:é5290n_d5:77 tb:xthe first
differences in eight directions at each location (x; y) is defined by

Contr{x, y)
= max{ [Grg(x, Y)I, [Gry(x, V)|, |Cra(X, Y)I, «..cey 1Crp(x, )} (3.3.2-1)
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where Gr; =J§1(WJ* ), (33 2,-2_)

, 7 (the location of each of eight neighbours as
shown in Figure 3.10.(c);
, 9 (the location of each point in Figure 3.10.(a)
or (b));
W, = each component of a mask as shown in Figure 3.10.(b);

fj = each grey level of a local image of a 3x3 array in Figure

3.10.(a).
The edge orientation 6(x, y) is defined as

8(x, y) = compass direction of largest Gr;, (3.3.2-3)
where 8 compass directions are shown in Figure 3.10.(c).

f1 f2 f3 wi | W2 | w3

f4 1S 6 W4 | WS | W6

7 f8 f9 W7 | W8 | W9

NW NE

SW SE
(c)
Figure 3.10 Major factors for the edge detecting operation.

(a) Grey levels of a local image. (b) Components of a mask. (c)

The compass directions.
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Table 3.1 Four sets of mask for computing the gradient and

orientation (Robinson, 1977).

In the edge detection operation, an edge detector moves from the

current location (x, y) to one of eight neighbouring points
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according to the edge orientation. It is important to note that, in a
boundary extraction -process, in order to detect a maximum
gradient and its direction, each of eight parallel masks- in Table
3.1 should be involved in this calculation. Note that in Table 3.1
the direction of the edge is perpendicular to that of the gradient.
This information and the previous location are used in deciding
the direction of movement of an edge detector In order to clarify

| 'and to examine the efflc:ency of these methods

‘consider the procedure for “finding the maximum gradlent and the
orientation of ‘the gradient at an arbitrary point (x, y) with the
following example by applymg the Sobel operator. Suppose a local

§|mage representéd by a 3x3 array in Figure 3.11. Apply!
the  Sobel operator in Table 3.1 to the image to detect a
|max1mum gradlent and the or:entatlon of the gradient at the

0 0 0.9
0 0.2 0
0 0.5 0

Figure 3.11 A sample local image.

location (the centre of the array) whose intensity level is 0.2,
where the previous location is assumed to be the location whose
intensity is 0.5. The result of the application of Equation (3.3.2-2)
is as follows:

Gro= (1x0 + 2x0 + 1x0.9 + 0x0 + 0x0.2+ 0x0 -1x0 -2x0.5 -1x0) = -0.1
Gry = (20 + 1x0 + 0x0.9 + 1x0 + 0x0.2 -1x0 + 0x0 -1x0.5 -2x0) = -0.5

Gry = (1%0 + 0x0 -1x0.9 + 2x0 + 0x0.2 -2x0 + 1x0 + 0x0.5 -1x0) = -0.9
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Gry = (0x0 -1x0 -2x0.9 + 1x0 + 0x0 2 -1x0 + 2x0 + 1x0.5 + 0x0) = -1.3
Grg = (-1x0 -2x0-1x0.9 + 0x0 + 0x0.2 + 0x0 + 1x0 +2x0.5 + 1x0) = 0.9
Grg = (-2x0 -1x0 + 0x0.9 -1x0 + 0x0.2 + 1x0 + 0x0 + 1x0.5 + 2x0) = 0.5
Grg = (-1x0 + 0x0 + 1x0.9 -2x0 + 0x0.2 + 2x0 -1x0 + 0x0.5 + 1x0) = 0.9

Gry = (0x0 + 1x0 + 2x0.9 ~1x0 + 0x0.2 + 1x0 -2x0 -1x0.5 + 0x0) = 1.3

Since values, |Gry] = |Gry| = 1.3, are maximum, the directions of

the edge are 3 and 7; and the directions of/\gradients are SW and NE.
Considering the result and the previous location, an edge detector
would move from the location of grey level 0.2 to the upper right
corner in Figure 3.11. In fact, the edge detecting operation should
be carried out at each pixel point with a similar procedure. There
is no doubt that these approaches are inefficient because they
require a considerable amount of time. When one of these
approaches is employed to detect the boundary of an object in a
colour image, this operation should be carried out on a gradient
image rather than on separated images of the lightness, hue and
chroma. This is another aspect that makes these approaches
worse in terms of system efficiency.
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3.4 BOUNDARY EXTRACTION FROM COLOUR IMAGES.

In this section, the design of the boundary extraction system
which has been developed in this thesis is discussed in detail. It
was considered in the design stage that the system should be
flexible enough to be used to extract a boundary not only from
colour images but also from black-and-white images. This
flexibility may be undoubtedly regarded as an attractive and
strong feature of this system. Another important feature of this
system is the extraction of a boundary without creating a binary
edge map which consists of 0's and 1's. However, most approaches
published commonly rely on the binary edge map, which the
contour-following or border-following procedure utilises. The
procedure mainly consists of three steps. The first step is to
transform an input image into the gradient image. The second step
is to create a binary edge map using a thresholding operation. The
third step is to perform a contour- or border-following procedure.
On the other hand, even though the mask matching method is
adopted for the edge detection, the binary edge map is also
created and then a contour- or border-following procedure is
followed.

Note that in a system, for instance, a robot vision system,
where the execution time is an important factor, the previous
approaches employing the edge-detecting procedure and the
contour- or border-following procedure separately cause error in
an urgent situation. The procedure developed in this thesis was
designed to extract a boundary accurately. Apart from the
previous features such as flexibility and efficiency, the accuracy
of the boundary extraction procedure has been emphasised since
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not only the shape description stage, but also the colour pattern
description stage ‘depend entirely upon the result of the procedure.
This principle is not exclusive to this problem. Consider one of
many practical approaches in this domain, the so-called Papert's
turtle (Papert, 1973). It has been assumed that a turtle crosses a
binary edge map until it reaches a boundary point, then passes
through the boundary, and immediately turns to the left and
crosses the neighbouring boundary point and then turns to the
right as in Figure 3.12.(a). Repeating this process, the turtle will
follow the boundary in a clockwise direction until it returns to
the starting point of the boundary. The set of points passed by the
turtle eventually forms a boundary data set. This idea, from the
behaviour of a turtle, is brilliant enough. However, as Figure
3.12.(b) shows, the turtle failed to pass the sharp curve on the
upper right corner. In practice, this approach cannot be used to
extract the boundaries of objects such as maple leaves that have
sharp curves.

Ar o
—>1 : >>1—
] -

B
by

| (a) (b)

Figure 3.12 Boundary extraction procedure.
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From now on the boundary extraction procedure developed by
this thesis will be illustrated step by step. The procedure
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consists of two steps: the first step is to create a gradient array
L:sing the CIELAB colour difference formula and the second step is
to extract a boundary directly from the gradient array without

creating any binary edge map.

In the first step, before creating the gradient array it was
necessary to choose a colour difference calculation formula,
which could be used to calculate a colour difference between fwo
colour points, among the many formulae published so far inscolour
science domain. According to McLaren's survey (Mclaren, 1983),
over twenty colour difference formulae were developed between
1936 and 1976. Fortunately, the CIE (International Commission on
lllumination) has recommended a colour difference calculation
formula called the CIELAB, because uniformity of practice allows
for the exchange of information on a common basis.

As already illustrated in section 2.3, the (L*, a*, b%) coordinates
of the CIELAB space can be obtained by merely applying simpler
functions to X/Xo, Y/Yo and Z/Zo. Suppose the (L*, a*, b*)
coordinates of two points, P1(i, j) and P2(i, j+1), in the CIELAB
space obtained are (L, 2;, b)) and (L. @igey By (je1))s
respectively, and
ILj- Ligen [0,
laj- g 1>0
and | b;;- b1y >0

Thus, AL.j,i(,n) = Llj i Ll(1+1)’
A3, ije1) = &ij " Higary
and Abu,.un) = bij ' bl(i+1)'

where A signifies ‘difference’. The colour difference between the

two points can be represented by:
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AE ey =1 (AL gery)? + (Aa, 1) + (b, 1?1172 (34-1)
In fact, the AE j,.1)is the Euclidian distance between two points
in the CIELAB space. The gradient of an arbitrary point (i, j) is
calculated employing Equation (3.3.1-5) as follows:
Gli, il = ABj gary + 46y, 1gen)

= [(ALy, oy + (83, (un)? + (Aby uny)? 1172

£ 1ALy, ga)?+ (A2, 1) + @By )12

=Ty Loy + @)= 3aen)? + 0= Bpary)? 112

+[(L;- Li(j+1))2 + (a,- a,(j,,,,)2 +(b,;- b,(j,,,,)2 1'/2. (3.4-2)
Hence, the gradient array G for each point (i, j), i=1, 2, 3, ..., m-1,
j=1,2, 3, ..., n-1, is created, where m is the number of rows and n

is the number of columns, in the array G.

-----------------------------

------------------------------

Figure 3.13 Tl(matz scanning methods for boufnbc}arg detection.

The second step begins with an operation for detecting a
larger value of the gradient than a predetermined threshold from
the upper left corer of the gradient array G. The starting point of
the operation is not restricted to the corner, but could be one of
the points on the outskirts of the array G in Figure 3.13.(a). The
direction of the operation is straightforward to the centre of the
array G as Figure 3.13.(a) shows. This strategy, under the
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assumption that an object forming a boundary lies in the middle
of an image plane, has two effects:

(1) it quickly reaches one of boundary points,

(2) the probability of avoiding spot-like noise will be increased.
However, most of the existing boundary detection operations have
been designed to scan line by line, as Figure 3.13.(b) shows. If the
size of an image plane is quite large and that of an object is
relatively small, this scanning operation will be inefficient.

D inati hreshol

Although the original background has a uniform colour, tiny
bubble-like spots have been scattered because of the surface
irregularity. However, there is little difference between the
colour of the spots and that of the other part of the background.
This fact becomes clear when we examine the histogram in Figure
3.14. The vertical axis represents the locations of array
components of the array G along the diagonal line and the
horizontal axis represents the gradient level of each location.
Both the extreme upper and lower parts of the horizontal axis
correspond to the background. Very little fluctuation of the
gradient levels in the two extremes reveals that there are colour
differences among the pixels in the background, but these are
extremely small. After analysing the histogram or the frequency
of the gradient levels in the background a threshold value was
determined. The threshold value is critical because it is used to
decide whether an arbitrary point belongs to the background or is
one of the boundary points. The process of the decision making
can be represented by:
if G[i, j] £ T, the point (i, j) €the background,
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if G[i, j] > T, the point (i, j) € the boundary, - - (3.4-3)
where T is a threshold value determined above.
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Figure 3.14 The histogram along the diagonal line of the
gradient array G.

the

As soon as one of,boundary points is detected, the immediate
process is as follows:
Initially, assign the gradient values of the eight neighbours of the
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point (i, j} into a ring-shaped 1 x 8 array Et, respectively, as

i Figure 3.15.(b) shows:

Et[1] = G[i-1, j-1],

Et[2] = G[i-1, ]].

Et[3]) = G[i-1, j+1],

Et[4] = GIi, j+1],

Et[5] = G[i+1, J+1],

Et[6]) = Gli+1, jl,

Et[7] = G[i+1, j-1],

- Et{8] = GIi, j-1],

where the 3 x 3 array in Figure 3.15.(a) represents the local
gradient image and the ring-shaped 1 x 8 array Et stores the
gradient values of the eight neighbours of the current point (i, J).
Note that the ring shaped one-dimensicnal array Et in Figure
3.15.(b)} is involved in the circling operation of boundary
detection. Then, assign the x- and y-coordinates of the eight
neighbours into 1 x 8 arrays X and Y, respectively, as in Figures
3.15.(c) and 3.15.(d) show,

X[1] = i-1, Y[1] = j-1,

X[2]=i1, Y[2] =]

X[3] = i1,  YI[3] = j+1,

X[4] =i, Y[4] = j+1,

X[5] = i+1,  YI[5] = j+1,

X[e]=i+1, Y[6]=}

X[ =i+1, Y[7] =j1,

X[8] =1, Y[8] = j-1,
where the arrays X and Y temporarily store the (x, y) coordinates
of the eight neighbours of the current point {i, j). At the same
time, assign a number, which can be used as an identifier (i.d.) of
the boundary point in the boundary extraction and the coclour
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pattern extraction procedures, and is larger than the maximum
gradient values, to the G, jj where a boundary point was
detected. In fact, the gradient values will always be less than
1,000, hence this value is assigned to the first i.d. assigned
would be 1,000. Later on, whenever a new boundary point is
detected, the i.d is incremented and assigned to the Gfi, j].

Array Et
Et{2] Et[3]

A Local Gradient Image Et[1) 6li-1,j} Et{4]
Gli-1,j-1]|6li-1, j1|Gli-1,]+1]

6li, j-11| Gfi, j1 }Gh, j+1]

G[i+1,j-|1| 6li+1, jllGli+1,j+1]
(a)

Et[S]

Gli+1,j]

Array X

oy Y

(c) (d)

Figure 3.15 A local gradient image and arrays assigned with
gradients and the #-and y-coordinates of the point (i, j). (a) A
local gradient image. (b) Gradient values of eight neighbours
which are assigned to the array Et. (c) The s#-coordinates of
the eight neighbours of the point (i, J) which are assigned to
the array R. (d) The y-coordinates of the eight neighbours
which are assigned to the array Y.
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This boundary point becomes the current boundary point. In the
second step, the principal focus of the -boundary detecting process
is detecting the location of the next boundary point among the
eight neighbours of the current boundary point (i, j). Firstly,
detect the largest value from the eight neighbouring gradient
values since the location of the previous boundary point found has
an i.d. value greater or equal to 1,000. Figure 3.16 represents the
details of this process. Secondly, the next boundary point is
determined by thresholding (refer to Equation (3.4-3)) clockwise
each eight neighbouring points, starting from the previous
boundary point, where the threshold value, T=20, is used. This
process is represented in detail in Figure 3.16. The value n, at
the end of the second process in Figure 3.16, represents the
location of the next boundary point in the array Et. Hence, the
corresponding (x, y) coordinates are X[n] and Y[n], respectively.
Finally, the process will stop when the starting boundary point is
detected.

The algorithm developed in this thesis is similar in principle
to Ledley's (Ledley, 1964). The main difference is that his
algorithm is mainly for black-and-white images, however, the
algorithm developed in this thesis is for colour images as well as
black-and-white images. The so-called border-following

ialgorithm published by Rosenfeld (1969) s originated

“from Ledley's algorithm. The border-following algorithm is also

similar to the algorithm in this thesis. Rosenfeld’'s algorithm is
for the binary images which consists of 0's and 1's.
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Figure 3.16 Boundary point detecting operation (continued).
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while G[i,J] NE 1000
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| Figure 3.16 Boundary point detecting operation (continued).
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In order to clarify the concepts of the two previous processes,
consider the following examples as shown in Figures 3.17 through
3.19. These examples are just a small portion of all the possible
cases in the practical situation. In the examples, P stands for a
previous boundary point, C for a present boundary point, and Q for
a next boundary point. A value larger than 1,000 assigned to a
previous boundary point represents an arbitrary point already
traversed. The shaded regions on the left-hand side of Figures
3.17 through 3.19 are a part of the actual boundary shape, and the
ring-shaped one-dimensional arrays on the right-hand side of
Figures 3.17 through 3.19 represent the gradient values g1, g2, ...,
g8 of the eight neighbours of the present boundary point which
are assigned to an 1 x 8 array Et.

(1) When a boundary forms a straight line segment:

- e

(a) (b)

Figure 3.17 Boundary detecting process. (a) Actual boundary
shape. (b) Ring-shaped 1 x 8 array Et.

Let the gradients, g1, 92, g3, g5, g6 and g7 be less than a
threshold T and g4 be larger than T; and 1,005 be an i.d. assigned
to the previous boundary point. In the first process in Figure 3.186,
the location of the 8th component of the array Et whose value is
maximum (1,005) can be detected. In the second process in Figure

86




3.16, a series of thresholdings is performed clockwise, as Figure
3.1—7.(b5 shows, from the first component of the array Et, because
the largest value was detected at the eighth component of the
array Et, as follows:

since Et[1] = g1 < T, the boundary detector moves to Et[2],

since Et[2] = g2 < T, the boundary detector moves to Et[3],

since Et[3] = g3 < T, the boundary detector moves to Et[4],

since Et[4] = g4 > T, the point Et[4] is regarded as a next boundary
point. Thus, the boundary detector moves from the point C to the
point Q as Figure 3.17.(a) shows.

(2) When a boundary point forms a sharp curve .

(a) When a boundary forms a sharp convex curve: ;

Array Et

Y YYYYW Y YY)

Figure 3.18 Boundary detecting process. {a) Actual boundary
shape. (b) A ring-shaped 1 x 8 array Et.

Let the gradients, g1, g2, ¢3, g4, g7 and g8 be less than a
threshold T and g5 be larger than T; and 1,027 be an i.d. assigned
to the previous boundary point. In the first process, the location
of the 6th component of the array Et whose value is the largest
(1,027) can be detected. In the second process in Figure 3.16, a
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series of thresholdings is performed clockwise, as Figure 3.18.(b)
shows, from the seventh component of the array Et, because the
largest value was detected at the sixth component of the array E,
as follows:

since Et[7] = g7 < T, the boundary detector moves to Et{8],

since E{[8] = g8 < T, the boundary detector moves to E{[1],

since Et[1] = g1 < T, the boundary detector moves to Et[2],

since Et[2] = g2 < T, the boundary detector moves to E{{3],

since E[3] = g3 < T, the boundary detector moves to Et{4],

since Et[4] = g4 < T, the boundary detector moves to Et[5],

since Et[5] = g5 > T, the point Et[5] is regarded a next boundary
point. Thus, the boundary detector moves from the point C to the
point Q as Figure 3.18.(a) shows.

(b) When a boundary forms a sharp concave curve:

!

4
HLLLLLL

(a)

Figure 3.19 Boundary detecting process. (a) Actual boundary
shape. (b) A ring-shaped 1 x 8 array Et.

Let the gradients g1, g2, g4, g6, g7 and g8 be less than a threshold
T and g5 be larger than T; and 1,134 be an i.d. assigned to the
previous boundary point. In the first process, the location of the
third component of the array Et whose value is maximum (1,134)
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is. detected. In the second process, a series of thresholdings is
performed clockwise, as Figure 3.19.(b) shows, from the fifth
component of the array Et, because the largest value was detected
at the third component of the array Et, as follows:
since Et[4] = g4 < T, the boundary detector moves to E{[5],
since Et[5] = g5 > T, the point Et[5] is regarded as a next boundary
point. Thus, the boundary detector moves from the point C to the
point Q as Figure 3.19.(a) shows.

As the above examples show, the algorithm can be easily used
to extract any boundary that has even qunte sharp curves or. has a

. r:mo::e compllcated shape. The examples of the application of |
k:the algorithm are shown in Figure 3.20. As the flgure shows, the |

boundary of a maple leaf which had a comphcated shape was

successfully extracted.
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(€) (d)

Figure 3.20 The images and their boundaries.




!

3.5 CONCLUSION.

A boundary extracted from an image plays an important role in
image analysis, since it is usually used for shape-description and
also for region-extraction procedures. As rapid progress has
recently been made in the development of colour-image capturing
devices, the demand for colour-image analysis is increasing
dramatically. However, most of the boundary extracting
algorithms so far developed have been restricted only to black-
and-white images. Thus, it was necessary to develop a new
algorithm which could extract a boundary not only from a black-
and-white image, but also from a colour image and could be
generally used in this domain. The CIELAB colour difference
formula has been adopted to calculate/\colour difference between
pixels in this algorithm. In fact, the colour difference has been
determined in the CIELAB space which is a three-dimensional
space of L*, a* and b*. In the calculation of gradients of each
pomt of the image, partlal denvat:ves have been approx:mated by

‘the  relation publlshed by Goldmark and Hollywood

| (1951). The boundary extracting processor in this |

thesis has been deStgned to be ‘implemented on the grad:ent plane
using a threshold.
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Chapter 4

COLOUR PATTERN EXTRACTION METHODS.

4.1 Introduction.

" 4.2 Image Segmentation.

4.3 Cluster Analysis.

4.4 Colour Pattern Extraction.

4.4.1 Auxiliary Means for Colour Image Segmentation.

4,42 A Procedure for Colour Pattern Extraction.

4.5 Conclusion.

92




4.1 INTRODUCTION.

In the image analysis domain, it has been regarded as a very
important task to split an image into meaningful segments. The
reason is that each of the segmenis is essentially used in the
procedure of identifying the whole image. For example, suppose
that two different species of butterfly have exactly the same
shape of wings as well as other organs, but different colour
patterns. The discrimination of the two species by a computer
system using only a shape interpretation function will soon show
its limitations by producing a wrong result, e.g. they appear to be
exactly the same species. The main aim of this chapter is to
explain how to extract the patterns with distinctly different
colour features from the colour image of an object. In terms of
the whole system for the identification of biological objects, the
procedure of extracting patterns is a preliminary stage for the
description of patterns in the next procedure. Since the
description of each pattern absolutely depends upecn the result of
the extraction procedure, this procedure is usually regarded as a
very important task.

So many approaches have been performed attempting to
achieve the same goal of splitting a colour image into meaningful
segments that a vast range of papers has been produced. The
majority of the approaches mainly rely on one- or two-
dimensional histograms. An investigation of some of the
approaches which are closely related to the subject of this thesis
has been carried out. The important fact to be noted is that most
of the approaches are regarded as just alternatives to a three-
dimensional clustering method. The investigation will concentrate
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on clarifying the major reason why the direct application of the
three-dimensional Cluster Analysis to the colour image
segmentation has been avoided. In order to clanfy the reason, the
theoretical aspect of the Cluster Analysis which is one of
muitivariate analyses in statistics will be reviewed in detail.

The concept of the Auxiliary Means which has been devised in
this thesis will be introduced from the motivation for iis
development and/\necessity to its actual application to .  Cluster
Analysis. The method for applying the Cluster Analysis procedure
to colour image segmentation employing the Auxiliary Means will
be discussed. At the same time, a sub-algorithm to remove noise
will be introduced; noise being a problem with this approach. This
approach has been successfully implemented to extract patterns
of distinctly different colour features from an image containing
the left-side wings of a butterfly.
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4.2 IMAGE SEGMENTATION. -

In this section, existing methods for segmenting an image into
regions which contain pixels with similar features are
investigated. There are two approaches to the image
segmentation: the region-merging method and the region-splitting
method. In the region-merging method, the pixels are firstly
grouped into regions based on the similarities of some attribute
such as grey level or colour feature, and then these regions are
checked for merging with the neighbouring regions based on their
average properties and spatial relationships. In the region-
splitting method, large regions are successively split into
smaller regions based on differences between the properties of
the pixels in the regions. Another method is the split-and-merging
method, combining the two previous methods.

- The dynamic_threshold method developed by Chow and Kaneko
! (1972), o 'which is an example of a region-splitting
‘ﬁieitﬁgd,vwas used to extract the shape of the left ventricle from a
cardiac cineangiogram, an x-ray motion picture of a heart image.
It is important to note that the fundamental assumption in their
method is that the probability distribution of the intensity for
any small region of the image consisting solely of the object or
the background is unimodal. This is because the intensity seldom
remains constant over any region in the image. Thus, in a small
region of the image which contains a boundary, there are two
unimodal distributions, one for the object and one for the
background as in Figures 4.1.(a) and (b), respectively. These two
distributions generally overlap. Chow and Kaneko have contended
that the overall distribution of the small region is consequently a
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mixture of two unimodal distributions and is generally bimodal as
Figure 4.1.(c) shows. They divided the entire area into 7 x 7
regions with 50 % overlap. Each region contains 64 x 64 picture

elements.
unimodal unimodal _ bimodal
distribution distribution =  distribution
Number
of points
Grey Level
(a) (b) {c) v

Figure 4.1 Unimodatl distribution and bimodal distribution. (a)
The histogram of a background region. (b) The histogram of an
object. (c) The histogram of a region containing a boundary.

An intensity histogram wascomputed over each region. Since it is
quite difficult to find the right valley point from a raw
histogram, the histogram is smoothed. The right valley point can
be used to divide the image into an object and a background. This
procedure is illustrated in Figure 4.2. In this method, the valley
point is conSIdered as an important threshold. Ballard and Brown

1 (1982) Whave pointed out that problems can occur
~_\r;&h—thls kind of method usmg a single threshold when an image
has a background of varying grey levels, or when regions vary
smoothly in grey levels by more than the threshold. However, in
this method the threshold varies depending upon the location of

the region. Thus, the difficulty with the single threshold is

increased. However, the main critical problem in this method is
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that a sub-image can fail to have a threshold if the grey-level
histogram is not bimodal, that is, if the histogram has more than
two peaks. Another problem is that if the two distributions
heavily overlap, using the threshold obtained from the histogram
can produce quite different sub-images. A histogram obtained
from a colour image containing a biclogical object, for instance, a
butterily (which is pertinent to this thesis), will in general
consist of more than two peaks. Therefore, if this method is
applied to the extraction of patterns with various colours, the
above problems, undoubtedly, could arise immediately.

Smoothed
Histogram 5 Threshold

Number
of
Pixels

1N

Grey Level

Figure 4.2 A smoothed histogram and veliey point.

Another approach is a recursive region splitting method,
developed by Ohlander et al. (Ohlander, Price, & Reddy, 1978),
which has been commonly used even for colour images. The
principle of the segmentation operation is based on some
generalisation of the Chow and Kaneko’s ideas, that is, histogram
analysis. They have computed nine histograms of the red, blue and
green colour components, the intensity, hue and saturation
components and Y, | and Q components which are parameters used
in the N.T.S.C. colour television. Since this method was published,
a number of similar studies have been undertaken in the colour
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analysis domain. Most of the approaches have adopted the
principal philosophy of peak-finding from a histogram. Thus, it
will be worth considering the detailed procedure of the method.
The process of Ohlander et al.'s method 1s as follows:

(1) Take an entire region of the image.

(2) Compute histograms for the nine components of the portion of
the image which is contained in the region. At the same time,
smooth the histograms to eliminate small peaks.

(3) Apply a peak-finding test to each histogram. If at least one
component passes the test, pick the component. On the other hand,
if all the histograms fail the test then this region is considered
to be segmented.

(4) Determine two thresholds, one either side of the peak and
divide the region into subregions using these thresholds.

(5) Eliminate small holes in regions, small regions, or thin
connections between regions by smoothing.

(6) Continue the segmentation process on the remainder of the
region which had been segmented. Terminate the segmentation of
the remaining region when there are too few pixels left.
Obviously, this approach applied to a high-resolution image is
computationally expensive because the nine histograms must be
calculated in every repeating process and the smoothing operation
must be performed in each process. Nevatia {(L@az—) _1 has
stated that small regions in a large image may not produce a
distinct histogram peak, even if they are distinct from their

surroundings. Ohta et al!l (1982)

to derive a set 5? _eﬁe(;t"ivgimcolour features using
this algorithm. Tomina{_(_LQ__BB) - / has further explored this
approach using colour features of lightness, hue and chroma,

l). conducted experiments

where each of the features is projected. Similar research has
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. been performed by Celenk1 (1988). | The primary principle of
the foregoing approaches b_a:;ed on peak finding and ‘valley finding
is called a one-dimensional histogram method. A more improved
technique, a two-dimensicnal approach described by Underwood
and Aggl_aﬁqglj(197_7) ' | | and Ali and

e e

Aggarwall{(1977) ‘_is based on the projections of

the (X, Y, 1) normalised colour space onto the X-Y, X-1 and Y-l
planes. In this interactive method, rectangular-type broad and

refined colour bandpass filters are used to detect a specific
qurther explored

region from an image. Ali et al.E(1§77)
this approach for colour éé?igf.ﬂﬁaémgréphs, where the
segmentation was accomplished by rather simple decision
surfaces in the (X, Y, I) normalised colour feature space. They have

developed a system which allows the user to specify,

Y Y
2D
PPy Dkt
v 30! :
1 + : : X
] 1 I : :
" \ 1 : H
LY \ 1 L}
\ A ' N
\ “a : H
b3 . 1 1
b Y L 4 (]
~ - 4 ]
N\ bl e L ]
©'Q
2@
X

Figure 4.3 Colour distribution and rectangular decision surface
with colour features.
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interactively, the rectangular decision surface, which is then
applied to the pixels of the image. The surface in Figure 4.3 1s
bounded so that feature points indicating the desired colour
characteristics fall within the volume defined by the bounded
surface. In this approach, the decision surfaces in the colour
feature space obviously play an important role in separating
regions in an image. However, for instance, if many colours of
different regions in an image are distributed very closely, like a
foggy rainbow, without clear borders amongst the colours in the
colour feature space, it might be impossible to separate the
colours with the decision surfaces, no matter how small their

sizes are.

In general, a problem of separating colours in a three-
dimensional colour feature space is, theoretically and practically,
a three-dimensional clustering problem, neither a two-, nor one-
dimensional clustering problem at all. It has usually been
believed, in image analysis, that a three-dimensional process
which operates on the whole image is computationally costly and
that huge quantities of pixels cannot be processed even in a super
computer since they need an enormous core memory capacity to
process. One remedy for this problem is to project the colour
feature space onto a two-dimensional space, employing the
previous approach (Sarabi and Aggarwal, 1981). [n fact, it might
not be a general and perfect method to accommodate every
possible case in the three-dimensional space, but only an
immediate remedial technique to cover some portion of the whole
cases in the space. Under this projection it is possible that some
clusters which were separable in the three-dimensional space are
no longer separable on any projection. A still more drastic method
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of dimenstonality reduction is, of course, to project the colour
feature space onto a one-dimensional space such as one of the
colour feature axes. The resulting projection is nothing more than
the grey leve! histogram of one of the prnimary colour component
intensities of an image. Although many chromatic features, for
instance nine are used in Ohlander et al.,, (1978}, eventually the
number of dimensions for the process at a time is still one, not
more than that. Sarabi and Aggarwal I(l 981) _

have developed a general interactive system which provides a

means of solving this problem. The system allows the user o
specify an initial number of clusters and then the clustering
process continues until the number of clusters are generated. The
colour feature (X, Y, I) histogram is examined to see if there are
nodes which are not assigned to any cluster, if so, the user can
increase the number of clusters or modify the tolerance, or
terminate the cluster detection process. It is true that this
approach has improved the level of the dimensionality from two
to three. However rectangular parallelpiped box plays a key role in
determining a cluster in the colour space. In colour science an
ellipsoid tolerance is used: to cluster the same colour features
rather than a box shaped region. The above approach is an
alternative to the Cluster Analysis in multivariate statistical
methods.
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4.3 CLUSTER ANALYSIS.

In this section Cluster Analysis will be reviewed not only to
make a clear exposition of the concept and background of the
analysis, but also to apply a proper clustering methodology, among
the so many methodologies published thus far, to the image-
segmentation problem. The pertinent point is that most
researchers seem to believe that the Cluster Analysis procedure
employed in colour image segmentation could produce a better
result than any other approach such as one-dimensional
histogramming methods; two-dimensional projecting methods;
gke, =s. The primary obstacle to implementing this method is that
it requires inordinate amounts of core memory; indeed in some
situations this requirement exceeds the available memory of even
super computers. It follows that most research in this area has
been concerned with finding alternative implementations that do
not require so much memory. Some methods published do however
require very lengthy processing computation times. The underlying
assumption in some of these efforts, has been that to reduce core
memory requirements inevitably means an increase in processing
time, and vice versa.

Consider ‘Cluster Analysis’ from the definition of the term
cluster. Among the many proposed definitions of the term cluster,

the definition by Zupan“l ({68—5) \| is clearer than others:
“Clusters are groups of objects linked together according to
some rule. The goal of clustering is to find groups containing
objects most homogeneous within these groups, while at the same
time the groups are heterogeneous between themselves as much

as possible. The terms ‘homogeneous’ and ‘heterogeneous’ are
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referring to the common properties of the objects according to
which we are trying to cluster the given set of data.”

From the definition, Cluster Analysis seems to be quite a useful
tool to solve the problem in  image segmentation. However, in
practice, applying this analysis to image segmentation has
been avoided so far. Thus, the investigation has been concentrated
on two aspects:

(1) What is the main difficulty of applying .~ Cluster Analysis to
. -+ image segmentation?

(2) Which analysis, among several Cluster Analysis methods, is
closely related to the image segmentation problem?

Cluster Analysis procedures have been classified into four

]

types by Everitt[(wjf)ﬂ,ﬁmm__ \as follows:

(1) Hierarchical Procedures

These procedures are sub-divided into agglomerative methods and
divisive methods. The agglomerative methods are to merge
individual entities into groups successively, where the entity has
more than one attribute which describes the feature of the entity.
The divisive methods are to partition the entire set of entities

into individual elements.

(2} Partitioning Procedures

These procedures are used to partition the set of entities so as to
optimise some predefined criterion. These approaches assume
that the number of groups has been decided a priori byauser,
although some do allow the number to be changed during the
course of analysis.
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(3) Density Search Procedures
Clusters are formed by searching for regions containing relatively

high density in the data.

(4) Clumping Procedures

These procedures allow overlapping between the clusters. The
feature of overlapping the clusters is in contrast to the other
procedures since the results of other approaches are disjoint

clusters.

Considering the important features of the procedures will be
useful to a correct application. Note that the second procedures
have some weak points, that is, they usually require large
amounts of computing time, and a priori knowledge about how, for
example, clustering criteria affects the efficiency and computing
time as well. The third procedures have the disadvantage of
relying on the values of various paramsters which must be set by
the user. The resuits obtained depend heavily on the values. A
further difficulty lies in the assumption of multivariate normal
distribution. The last procedures are suitable to specific areas
such as language studies where words tend to have several
meanings. On the other hand, the first procedures provide the user
with a large number of options for the Cluster Analysis. Using the
hierarchical procedures, the user can select clusters with
different levels of clustering criteria. These procedures are also
known as ‘standard methods’ (Zupan, 1982) in various fields of
data handling. The hierarchical procedures with the features are
best suited to the image segmentation. Thus let us take a close
look at the algorithms of the several methods in the hierarchical
procedures.
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Hierarchical Pr r

As already illustrated, the hierarchical procedures are
subdivided into agglomerative hierarchical methods and divisive
hierarchical methods. Since the latter metaods work in an
opposite sense to the agglomerative methods, the investigation
will be concentrated on the agglomerative hierarchical methods.
Let us consider the agglomerative hierarchical methods in further
detail. These methods start processing with the individual
entities. Thus, there are initially as many clusters as the number
of entities. Firstly, the process selects the most similar entities
from the entities and merges the two entities into a group, and
these initial groups are merged according to their similarities.
Eventually, all subgroups are merged into a single heterogeneous
cluster, where the similarity of the cluster decreases. The
similarity which is used to determine a homogeneous group is
measured by the Euclidian distance between entities or between
subgroups, or between an entity and subgroup. According to how
the calculation of the distance between two clusters is carried
out, the agglomerative methods are also subdivided as follows:

(1} The Single Linkage or the Nearest Neighbour Method

This method (Sneath, 1957), which is probably one of the
simplest clustering methods, can be used with similarities or
distances between pair of clusters. In this method, the entities
which are nearest to one another are merged into a new cluster.
The procedure is as follows:

(i) In the first stage, calculate an n x n symmetric distance
matrix from the initial set of n entities, where the distances
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between entities are calculated using the Euclidian distance

function.

(i) In the second stage, search the distance matrix for the

smallest distance.

(iii) In the third stage, merge the clusters with the smallest
distance into a new cluster, and label the newly formed cluster.
Then, update the entries in the distance matrix as follows:
(a) Delete the rows and columns corresponding to the clusters
found in the second stage from the distance matrix.
(b) Calculate the smallest distances between the newly formed
cluster and the remaining clusters, where the number of the
smallest distances is that of the remaining clusters. For
example, the smallest distance between the newly formed
cluster and one of the remaining clusters is depicted in Figure
44,
(c) Add a row and column with the smallest distances to the

distance matrix.

(iv) In the fourth stage, repeat stages (ii) and (iii) until all the
clusters have been merged into the final single cluster.

the newly formed cluster one of the remaining clusters

Figure 4.4 The smailest distance between the newly formed
cluster and one of the remaining clusters.
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(2) The Complete Linkage or the Furthest Neighhour

Method

This method by Lance and Williams' (1967) !
proceeds in much the same manner aéﬁsiﬁvgle iiEf&d&,’"vﬁFEﬁE
important exception. At each stage, the distance between clusters
is determined by the longest distance between the clusters. This
is in opposition to the single linkage method in which the distance
between the clusters is determined by the smallest distance. As
far as the algorithm is concerned, all the stages but the item (b)
in the third stage in the algorithm of the single linkage can be
applied. The item (b) is changed as follows:

Calculate the longest distances between the newly formed cluster
and the remaining clusters, where the number of the longest
distances is that of the remaining clusters. For example, the
longest distance between the newly formed cluster and one of the

remaining clusters is depicted in Figure 4.5.

the longest distance

the newly formed cluster one of the remaining clusters

Figure 4.5 The longest distance between the newly formed
cluster and one of the remaining clusters.
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(3) The Averaqe Linkage Method

This method by Sokal and Michener - (1958) . |
also proceeds in much the same manner as t_he;;r;;; ﬁﬂﬁ%z@é_gg
the complete linkage, with one important exception. At each
stage, the distance between clusters is determined by the average
distance between all pairs of entities where one member of a pair
belongs to each cluster. All the stages but the item (b) in the
third stage in the algorithm of both the single linkage and the
complete linkage can be applied. The item (b) is changed as
follows:

Calculate the average distances between the newly formed
cluster and the remaining clusters. For example, the average
distance between the newly formed cluster and one of the

remaining clusters is depicted in Figure 4.6.

the average distance

the newly formed cluster che of the remaining clusters

Figure 4.6 The average distance between the newly formed
cluster and one of the remaining clusters.

4) Th ntroid Meth

This method also proposed by Sokal and Mlchenerl
(1958) - also proceeds in much the same manner as thel

_— e - e e

foregoing methods, but the difference lies in the calculatlon of
the distance between clusters. As for the other algorithms, the
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item (b) of the third stage is changed as follows:

Calculate the coordinates of the centroid, from where 7every
entity in the cluster has an equal distance, of the newly formed
cluster, and then calculate the distances between the coordinates
and those of the centroids of the remaining clusters. For example,
the distance between the coordinates of the centroid of the newly
formed cluster and those of the one of the remaining cluster is

depicted in Figure 4.7.

the distance between 4
the centroids
—i—@
oo
S
the newly formed cluster one of the remaining clusters

Figure 4.7 The distance between the centroids.

There are still a few other agglomerative methods that differ
in the method used to calculate the distance between the clusters.
However, the methods already discussed are dominately employed
in many fields, and the further detailed investigation of other
methods is out of the scope of this thesis because they are
irrelevant to the colour image segmentation. Thus, the other
methods will not be considered. Let us consider the basic problem
occurring when Cluster Analysis is employed in . colour-image
analysis. There is no doubt that, in the Cluster Analysis methods
discussed previously, the most important stage is the beginning
of the procedure, that is, the first stage, where the n x n
symmetric distance matrix is produced using the initial set of n
entities. When one of the methods is adopted in-.  colour image
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segmentation, the entittes are pixels forming an image. [n order
to produce the matrix containing the minimum distances between
pixels, three different kinds of colour features such as R (red), G
(green), B (blue), or X, Y, Z, or L*, a*, b*, or X, Y, |, or eic. are used
as the attributes of each entity, that is, pixel. Imagine, for
example, a colour image consisting of 100 x 100 pixels (which is
in practice a tiny image). The number of initial entities will be
10,000, since each pixel with three colour features is regarded as
an entity in the Cluster Analysis. [n the first stage of . ' Cluster
Analysis, the procedure will produce the 10,000 x 10,000
symmetric distance matrix using the Initial set of pixels. In fact,
the procedure needs at least 100,000,000 (10,000 x 10,000)
elements of core memory at the first stage. On the other hand, if
the size of an image is, for another instance, 300 x 300, the
minimum size of the core memory needed will be 8,100,000,000
(90,000 x 90,000). In general, if an image has n x n pixels, the
size of the distance matrix to be calculated in the first stage of

Cluster Analysis is n?, i.e. (n x n) x (n x n), since each of the
pixels in an image is treated as an entity in =~ Cluster Analysis.
The main reason why Cluster Analysis has been avoided, so
far, in the colour-image segmentation lies in the core memory
problem from the first stage of the procedure. Due to this
bottleneck, nearly all of the approaches, with considerable
efforts, have pursued alternative ways. In one approach, Fukada

l (1978) \dlwded a colour image with 256 x 256 pixels into

sub-i -images of 8 x 8 pixels, and then applied Cluster Analysns to the'

1sub image, ‘After getting the results a complex procedure

for comb:nlng the incomplete clusters has to be employed. It could
produce unexpected results or even poor quality results with a
complicated colour image. This sort of approach would have a ot
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of deficiencies and, may not be a reasonable way, but it is an

alternative method.

Confronted with these circumstances, this thesis develops an
improved algorithm for this area of investigation. This algorithm
can directly apply Cluster Analysis to the colour image
segmentation with a colour image of various quality and sizes.
The detailed algorithm developed will be illustrated in the next
section. - Cluster Analysis methods described previously are

also discussed,
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4.4 COLOUR PATTERN EXTRACTION,

As the title implies, in this section an algorithm to extract
colour patterns from a colour image will be illustrated. In order
to improve the quality of the results, the Cluster Analysis

procedure is direcily applied in the algorithm.

4.4.1 Auxiliary Means for Colour Image Segmentation.

For the correct concept of a colour feature space, first of all
consider the relationship between a colour image and its colour
feature space. Usually, a colour image consists of pixels with R, G
and B values. These R, G and B values are transformed into the CIE
L*, a* and b* values for the further analysis as discussed in
Chapter 2. On the other hand, a black-and-white image consists of
pixels with grey levels. In the image segmentation of a black-and-
white image, the grey levels are analysed using a one-dimensional
histogram since the histogram reveals the composition of the
various grey levels forming the image. When the grey levels with
locations in the image are investigated, a two-dimensional
histogram is efficiently used. On the other hand, a colour image is
investigated in a three-dimensional colour feature space. Note the
features of the histograms. The shape of a one-dimensional
histogram physically shows a two-dimensional shape, i.e. various
shapes of mountains projected onto a plane. The shape of the two-
dimensional histogram is depicted as a three-dimensional shape,
like cubic mountains with various heights and shapes. Thus, it can
be concluded that the n-dimensional histogram can be displayed
with the (n+1)-dimensional shape. Theoretically, a three-
dimensional histogram is depicted as a four-dimensional shape.
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However, it is impossible to display a four-dimensional shape in

practice.

Consider the following examples with two hypothetical colour
images. The image in Figure 4.8.(a) contains four squares filled
with the red, green, blue, and yellow pixels of 10 x 10,
respectively. Another image in Figure 4.8.(b) contains the same
colours with 20 x 20 pixels. The compositions of the colour
features in the image are depicted in the three-dimensional
colour feature (The CIE L*, a* and b*) spaces in Figures 4.8.(c) and
(d), respectively. As the graphs show, the two colour-feature
spaces look the same, not different at all. As far as colour image
segmentation is concerned, most of the required decision making
may not be possible with the three-dimensional spaces. This could
be a reason why there are not three-dimensional histograms, but

G|B
G| B
(a) Four squares of R, G, B and ¥ (b) Four squares of R, G, B
with 10 ¥ 10 pigels. and Y with 20 ¥ 20 pixels.
L* L*
ye Ve
R. .G R. .G
Be b* Be bh*
ﬂ* a*
(c) The L*, a* and b* space. (d) The L*, a* and b* space.

Figure 4.8 Colour images and three-dimensional histograms.
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Figure 4.8 Colour images and three-dimensional histograms
(continued).

three-dimensional spaces displaying locations of the four pixels
graphically. This fact might be one of the important factors
playing a major role in making the majority of the approaches to
colour image segmentation difficult and complicated. Let us
consider an Auxiliary Means which enables a three-dimensional
histogram to be imaged in practice. Actually, every point in
Figures 4.8.(c) and (d) is no longer a single point. Each point in
Figure 4.8.(c) has 100 frequencies, and each point in Figure 4.8.(d)
has 400 frequencies, but they are hidden. Thus, if the hidden
frequencies are able to be displayed by a certain means, it may be
regarded as an Auxiliary Means to make a three-dimensional
histogram comprehensible. The Auxiliary Means devised uses the
one-dimensional histograms depicted in Figures 4.8.(e) and (f),
where the horizontal axes represent the values of pixels and the
vertical axes frequencies. Note that the Auxiliary Means provides
nothing but information about frequencies of pixels. Let us
consider some reasonable methods to improve the Auxiliary Means
so it can be used efficiently and actively in the further colour
image segmentation procedure. First, extract the (x, )
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coordinates of pixels in the red square in Figure 4 8 (a) and put all
of them in the bar on the R in Figure 4.8.(e); and carry out the
same task with the green, blue and yellow squares in turn; and
then with the squares in Figure 4.8.(b) and put them in the bar in
Figure 4.8.(f), correspondingly. Second, after getting the results,
assign one set of colour feature values (the CIE L*, a* and b*) into
the bars on the R, G, B and Y, respectively. The Auxiliary Means in
Figures 4.8.(e) and (f) are changed into those in Figures 4.9.(a) and
(b), respectively. Now, it is desirable that the Auxiliary Means,
with the three-dimensional colour feature space, can be used by
the further colour image segmentation procedure. Let us consider
the structural aspect of the Auxiliary Means in detail. Assume
that each bar in Figure 4.9 is defined as a unit of the Auxiliary
Means. Actually, each bar can obviously be considered as an entity
in the Cluster Analysis. As Figure 4.10 shows, each unit consists
of six items: (1) Cluster 1.D., (2) I.D., (3) Pixel Value, (4) Colour
Feature (the L*, a* and b*), (5)N.O.P., and (6) the (x, y) coordinates,

Frequency Frequency
2004 i
400 (1,41 10c1,y9)] [Kx1,y8)] J(xt y1)
(x2,42)] [(x2,y2)] [(x2,y2)] [(x2,y2)
TI(x3,y3) |[(x3,u3) |(x3,y3)0 |3 ,y3)
100 G |G ]Gt g 1Y T 19 10120
Jxz.y2> (xZ 42 [(x2,yZX(x2,y2)
Cxn,yn) |[(xn yn} [10en yn) jl(xn,¥n) OxnLyn)} |Censynd] [(enjyn)| G yn)
R G B Y R G B Y Pixel
l I I | I I I Valure
Lr Lg Lb Ly Lr Lg Lb Ly
br bg bb bg br bg by bg
(a) (b)

Figure 4.9 The Ruxiliary Means (its hypothetical description).
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The first item 1s an identification value of a cluster. After the
Cluster Analysis is performed, a cluster value 1s assigned. The
second item s an identification value for a set of pixels having
the same pixe! value. The 1.D. for the red colour (R) in Figure
4.9.(a) is assigned 1, and that for the ysllow colour (Y) i1s assigned
4. An important property to be remembered is that once a value is
assigned to the L.D., it would not be changed any more during an
operation since it should be used until the whole procedure for
colour pattern extraction is finished. On the other hand, if there is
noise, it is changed. A detailed discussion will be performed later.
The third item is the value of a pixel which is an element
displaying a colour image on a screen. The fourth item consists of
three colour feature values, the L*, a* and b*, which play a
primary role, like attributes of an entity, in the Cluster Analysis.
Note that the colour feature (the L*, a* and b*) in colour image
analysis usually occupies memory space three times as much as
that of all the pixels in an image since each of them (the L*, a*
and b*) is created by being transformed from the R, G and B values
of each pixel using the model developed in Chapter 2. However,
employing the Auxiliary Means can dramatically reduce the
memory space for the colour feature. The fifth item is the number
of pixels with the same value. For example, the N.O.P. for one of
the Auxiliary Means in Figure 4.9.(a) is 100 and the N.O.P. for that
in Figure 4.9.(b) is 400. Finally, the sixth item contains the (x, y)
coordinates of all the pixels of the same value in an image. These
coordinates are used to display an actual pattern after the Cluster
I.D. is determined.

The structure of the unit of the so-called Auxiliary Means and
its components with functional aspects have been considered.
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item

(1) Cluster |.D.

(2) I D

(3) Pixel Value

(4) L* a¥* b*

(5) N.0 P. (number of pixels)

(x1,y1)
(6) (x2, y2)
(x3, y3)

(xn,. yn)

Figure 4.10 The structure of a unit of the fAuxiliary Means.

Then, the important question will be how many units should be

created? Judd and Wyszecki ‘;(1975) 'jhave
estimated that the number of—defgre;t_EaguE that we can
distinguish is ten million. However, in practice, the number of
different colours to be dealt with at a time by a computer is
limited. In any system, the primary factor that can determine the
number of different colours to be displayed and to be dealt with
simultaneously depends upon the number of bits which are used to
display colours on a screen. For example, for a screen which can
display an image by six bits, the number of different colours to be
displayed at the same time is 64 (=2%). For a screen with eight
bits, the possible maximum number of different colours 256 (=28).
The number of bits to be dealt with is usually considered as the

resolution of a displayed image. The majority of the colour image
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handling systems, which have commonly been used, use six- or
eight-bit machines. In the case of a six-bit display system, the
maximum number of units of the Auxiliary Means I1s 64 since the
number of different colours displayed and treated with the
system is 64. On the other hand, the maximum number with an
eight-bit screen is 256. Suppose a colour image of 500 x 500
pixels 1s coded by a six-bit system. Let's say the image contains
forty different colours. Then, the number of units of the Auxiliary
Means that should be created is forty. From the forty units, the
same number of sets of the L*, a* and b* values are obtained, and
used as input data to - Cluster Analysis. When a single linkage
method is adopted, which is one of the hierarchical Cluster
Analysis procedures, only a 40 x 40 symmetric distance matrix is
created at the first stage As soon as the result of . - Cluster

1Analysnsnsobta1ned each clusteri.d. 1sassugnedtothe correspondlng!
“unit of the Auxiliary Means, where the number of clusters is
determined depending upon the number of patterns with different
colours in an image by visual decision. After assigning the cluster

i.d., the units with the same cluster i.d. are merged into a group.
The important feature of this improved algorithm is that .
Cluster Analysis is performed, in this example, with only the
forty different colour features, where all of the pixels are not
involved. When the implementation of the Cluster Analysis
procedure is completely finished, all of the pixels are only
utilised in the assigning stage. The improved algorithm does not
have to create a 250,000 x 250,000 symmetric distance matrix at
all, nor must it segment the whole image into many pieces to
manage a complex and inefficient partial Cluster Analysis.
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In summary, the functional aspect of the Auxiliary Means
derived from a three:d:mensuonal histogram can be summarised
as follows:

(1) The immediate motivation for devising the Auxiliary Means in
this thesis is to explore a direct application of the Cluster
Analysis technique to colour image segmentation.

(2) The function of the Auxiliary Means has been designed to
reduce the memory space as much as possible. The majority of the
existing methods for colour image segmentation inevitably have a
tendency to waste the memory space. Thus, the Auxiliary Means
can play an important role in breaking this tendency.

(3) When the Auxiliary Means is applied to _. image analysis, it
dramatically reduces the execution time.

(4) This Auxiliary Means can be generally applied to Cluster
Analysis problems arising in all relevant research areas.

4.4.2 A Procedure for Colour Pattern Extraction.

In the previous section, the motivation and background of the
newly devised concept of the Auxiliary Means have been discussed.
This has efficiently been used in colour image segmentation
applying Cluster Analysis. In this section, a practical approach to
colour image segmentation employing the Cluster Analysis
procedure with the Auxiliary Means will be illustrated in detail
from a design strategy to a procedural aspect. The basic strategy
of this approach is as follows:
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(1) The algorithm should directly apply the existing Cluster
Analysis procedure to colour image segmentation without being
restricted by image size.

(2) The algorithm should take advantage of existing Cluster
Analysis procedures.

(3) The number of pixels in an image should be minimised to
optimise the segmenting and merging procedures.

(4) The system should provide the user with sufficient
opportunity for reasonable decision making in order that the
colour pattern extracted by the system may be consistent with

human vision.

The algorithm developed under the strategy is shown in Figure
4.11 and is to be illustrated in detail.
(i) In the first step, the image of an object is extracted from the
image containing an object using the boundary data created in
section 3.4. The boundary data have been extracted from the
gradient plane (array) in the previous chapter and consist of the
(x, y} coordinates and serial numbers starting from 1,000 which
are larger than any pixel value in the image. The process creates a
copy version of the original image and assigns the boundary data
to the copy version. Thus, the copy version contains the image of
the object surrounded by the serial numbers which can efficiently
be used to extract the image of the object. Then, scan the image
(array) from left to right and top to bottom with an attempt to
detect one of the serial numbers. Note that since the serial
numbers are larger than any other pixel value, they can be
detected without any difficulty. As soon as one of the serial
numbers is detected, pixels are extracted until another

!r serial rlg_mberl‘is detected. On the other hand, the Cluster Analysis
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Figure 4.11 The algorithm of the colour pattern extraction.

e

procedure might also be applied to this step. However, if the
colour of the pixels inside the object is the same as that of the
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background, the pixels lying inside the object and the background
will simuftaneously be extracted. This will cause the situation to
be complicated, and therefore the Cluster Analysis routine cannot

be adopted in this step.

(i) In the second step, the image of an object extracted in the
previous step is segmented and then the segments are
transformed into n different units of the Auxiliary Means. This is
carried out according to the pixel value, where n is the number of
different values of pixels in the image. When the first pixel value
is detected, assign an i.d. value 1 to the L.D. of the first unit of the
Auxiliary Means; assign the pixel value to the Pixel Value in the
unit; transform the pixel value into the L*, a* and b* values and
assign them into the corresponding item in the unit. These
operations so far are performed only once whenever a new pixel
group is detected. Finally assign the (x, y)} coordinates of the pixel
to the top of the item in the unit. Then, assign 1 to the N.O.P. in
the unit; and remove the pixel value and the (x, y) coordinates of
the pixel from the image. Search the extracted image for the same
pixel value as that just detected. Whenever the same pixel value
is detected, put the (x, y) coordinates of the pixel underneath the
coordinates of the (x, y) coordinates of the pixel previously
detected; increase the value by one in the N.O.P.; and remove the
pixel value and the (x, y} coordinates of the pixel from the image.
This task will be continued until the last pixel of the image is
detected. When the task is finished, another pixel value can be
easily detected and assign an i.d. value 2 to the 1.D. of the second
unit and then this process can be continued. When no pixel is left
in the image, this step is complete. If the number of different
values of pixels is n, then n units of the Auxiliary Means will be
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created.

(iii) In the third step, check whether or not the Auxiliary Means
contains random noise; and if any random noise is discovered,
delete the corresponding unit, and rearrange the values of the
item 1.D. in the Auxiliary Means. In the first process, search every
N.O.P. for the number of pixels that is less than, for example, one
percent of the total number of pixels in the image of the object,
where this percentage can be determined after analysing the
image of each unit in the Auxiliary Means or the whole image (this
problem will be discussed in the later part of this section again).
If at least one unit which has less pixels than the predetermined
criterion, for each unit calculate the average distance between
the unit and other units using the L*, a* and b* values. Then,
calculate the mean and standard deviation of the average

distances. Then, examine whether or not the average distance for
the unit, which has less value of the N.O.P. than the criterion, is
an outlier, that is, larger than [mean + 3 x standard deviation]. If
at least one outlier is found, carry out the connectivity test for
the pixels contained in the unit. If the pixels in a unit are noise
according to the test, remove the corresponding unit and
rearrange the i.d. values in the item 1L.D. of the Auxiliary Means.
The further discussion will be performed in the later part of this
section since the noise handling is very important in the Cluster
Analysis employing the Auxiliary Means suggested in this thesis.

(iv) In the fourth step, n sets of the L*, a* and b* data are easily
extracted from the Auxiliary Means, where n is the number of
units. The important thing is that they should be extracted from
every unit in the order of the i.d. values. The data set obtained in
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this step is an n x 3 matrix and is to be used as an input data set
to the SPSS-X Cluster Analysis procedure. The maximum size of n
is 64 1n a system of six-bit resolution or 256 with an eight-bit

resolution.

(v) In the fifth step, execute the Cluster Analysis routine in the
SPSS-X using the input data obtained in the previous step. In the
routine, an n x n symmetric distance matrix is created, and
additionally other operations illustrated in section 4.3 are
performed., where the single linkage method is adopted. The
routine produces lot of information which is useful for decision
making. In particular, the Agglomeration Schedule, Cluster
Membership of Cases, and the Dendrogram in the output are
dominately used for clustering. The Cluster Membership of Cases
is used as an input data set to the next step.

(vi) In the sixth step, the number of different colours found in the
object is supplied by the user.

(vii) In the seventh step, the result of the Cluster Analysis is
assigned to the first item of every unit of the Auxiliary Means.

(viii) In the eighth step, display the colour pattern using the pixel
value and the (x, y) coordinates in the units having the same value
of the Cluster I.D. Display the colour patterns equal to the number
of clusters. The important thing to be noted is that if there is no
noise, the value of the I.D. in each of the units of the Auxiliary
Means is not changed once it is assigned in the second step. This
means that the segmentation of pixels in the image is performed
only once, and the pixels are not physically merged, but
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temporally called when the Cluster |.D. which they belong to is

called.

(viiii) In the last step, if the colour patterns displayed are
consistent with those of human vision, then the procedure is
stopped; otherwise, the procedure requires the new number of
different colours to be specified by the user. The important
feature of this algorithm is that after this step the Cluster
Analysis routine no longer needs to be implemented and the output
already produced is used. Once the routine stops at the end of the
procedure, the Auxiliary Means assigned with the cluster values in
the final stage is used in the colour pattern description in Chapter
6.

The handling of the random noise considered in the third step
is an important problem that causes the image analysis to be
disfunctional. The Cluster Analysis approach itself is not exempt
from this tendency. The important fact to be noted is that, in the
Cluster Analysis which has been designed to employ the Auxiliary
Means, the pixels of an image are not involved directly in the
Cluster Analysis procedure, but only unique colour values. If some
pixels regarded as random noise have very strange features, the
result of a clustering will be severely damaged by the pixels. The
main idea to deal with the random noise is to strengthen this
approach and to enable this procedure to produce the high quality
of colour patterns consistent with that of ©~ human vision. In
this procedure, it is assumed that some pixels that have all of the
following features are determined as the random noise.

(1) The number of pixels with the same value is very small.
(2) The colour feature of the pixel is distinctly different from
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those of other pixels.

(3) The pixels are scattered.

There is a problem with the above criteria, that is, can a small
area of colour be defined as noise or as part of a pattern. In order
to define the criteria, consider the butterfly domain, spot
patterns in the wing of a butterfly are generally studied, where
the area of a spot and the number of spots are among the
important factors for the identification (Schwanwitsch, 1924;
Nijhout, 1978; Brakefiel, 1979). This fact reveals that even a tiny
spot in an image plays an important role and cannot be ignored at
all. Taking into account this fact, the criterion for the small
number in the first feature is determined as one percent of the
total number of pixels in an image. If the criterion is determined
with the number of pixels rather than the percentage, a severe
problem is expected when the image of a butterfly is enlarged or

reduced.

For the second criterion, for one pixel in each unit of the
Auxiliary Means, calculate the  distances between the pixel and
pixels of the other units using the L*, a* and b* values; and
calculate the average distance. If the number of units of Auxiliary
Means is n, the number of average distances obtained is n. Then,
calculate the mean and standard deviation of the average
distances. Let the average distances be m,, m,, mg, ..., m, the
mean, Mgy, and the standard deviation, S, of the average
distances are respectively,

Mavg = My + My +... +my)/n,

§ = [Z(myyg+ m)2]'2,
where, i=1, 2, 3, ..., n. In statistical analysis, the criterion for an
outlier is usually [mean *# 3 x S] in the normal distribution.
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Suppose that an average distance for a pixel regarded as random
noise is m, and if the m, is greater than [m,,, + 3 x S, it is
concluded that the pixel 1s aberrant. Where, the meaning of this
aberration is that the pixel has a very distinctive colour feature

which is in contrast to other pixels. To clarify, note the following
example with four pixels A, B, C and D, in Figure 4.12, where the
figures between the pixels are distances. The average distances
for the four pixels are 5.3, 11, 6.3 and 5.3, respectively, as shown
in Table 4.1. The mean of the average distances is 6.9, the
standard deviation of the average distances is 1.2, and the
criterion for the outlier calculated is 10.5. The pixel B is
considered as an outlier since the average distance of the pixel is
11 which is greater than the criterion 10.5. [n other words, it is
considered that the pixel B has a distinctly different colour
feature. If only a few pixels with the colour feature are
scattered, the result of clustering will not be consistent with
human vision.

Figure 4.12 Pisels including noise,

The connectivity for the third feature is another important
concept having been used to characterise a region in an image. The
connectivity stands for the connection of pixels in an image. The
connectivity test is performed using a 3 x 3 array. For instance,
dark pixels in Figures 4.13.(b) and (¢) are connected ones and, on
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the other hand, dark pixels in Figure 4.13.(a) are completely
unconnected. Note the 3 x 3 array containing a pixel with the dark
feature in the middle as shown in Figure 4.13.(a’}, each of the
eight neighbours hasalight feature, thus it is concluded that the
pixel with the dark feature is isolated. On the other hand, each

The Mean of the The Standard
Pixel | Distance | Average Distance Average Distances| Deviation of
{mi) {mavg) Average
Distances
AB=10 |mi1= 10+4+2
A AC=4 =5.3 3
AD=2 ’
10+11+12 mave
BA=10 m2.——+—3—— 5.3+11+6.3+5.3
B | BD=11 ‘1 = 4
BC=12 =
CD=23 Mm3= 3+4+12 = 6.9
c CA= 4 3 S =12
CB=12 =6.3
DA=2 |ma=-2t11+3
D | pB=1t 8
DC=3 =5.3
Criterion for the outlier: 6.9 + 3 x 1.2 = 105

Table 4.1 The calculation of the outlier.

pixel centred at the array in Figure 4.13.(b’) and (c¢') has two
neighbours with dark features, respectively. Hence, it is
concluded that the pixels in Figure 4.13.(b’) and (¢’) are connected.
In the actual process, first, assign any number larger than the
maximum pixel value of a system, 1,000 for instance, to every
cell of an array of the same size as the image, and assign the

values of the pixels being examined to the array then each pixel

value being examined can clearly be discriminated from other
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pixel values. Second, carry out the connectivity test for each pixel
being tested. Whenever an isolated pixel is detected during the
test, count the number of isolated pixels. |f the number is equa! to
the number of pixels being tested, it is concluded that the pixels
are fully isolated. After the connectivity test, if some pixels

(a) isolated (b) connected (¢) connected
pixels pixels pixels
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Figure 4.13 The connectivity test.

become clearly unconnected, have distinctly different colour
features from each other, and are only a few in number, then it is
concluded that the pixels are random noise and the corresponding
unit is removed.

After the input data set to the Cluster Analysis is prepared,
the Cluster Analysis is performed in the fifth step, where the
single linkage method is applied. Let us investigate the suitability
of the single linkage method. As already discussed in section 4.3,
there are many techniques in the hierarchical methods of Cluster
Analysis procedure, such as the single linkage method, the

129




complete linkage method, the average linkage method and the
centroid method. Among these techniques, which method is most
suitable to colour image segmentation? This is not a simple
qguestion since the quallty of a result depends upon the method.

Ever:ttl_(1974) ‘has also pointed out that the major
difficulty y with the hierarchical techniques lies in the choice of
one method from the many available and in the choice of which
‘similarity’ to use. The important thing to be noted is that in the
average linkage method and the centroid method all of the data
obtained from the whole pixels of an image should be involved in
the calculation of the average or the centroid. However, the data
prepared in the fourth step are a set of sample pixels
representing each group of pixels having the same colour feature.
Apart from the limitation, it is known that the two methods and
the complete linkage method are likely to result in overlapping
clusters (Lorr, 1983). The complete linkage method, as already
explained in section 4.3, is that the longest distance between one
of entities in one cluster and that in another cluster is
calculated, thus the number of longest distances obtained is n{n-
1)/2, where n is the number of clusters, Eventually, the two
clusters having the minimum value are merged. However, This
method leads to some problems when applied to image
segmentation as shown in Figure 4.14. Let d1 be the longest
distance between the clusters A and B, and d2 be the longest
distance between the clusters A and C as shown in Figure 4.14.(a);
and d3 be the shortest distance between the clusters A and B, and
d4 be the shortest distance between the clusters A and C as
shown in Figure 4.14.(b). According to the algorithm of the
compete linkage method, the cluster A and the cluster B are
merged because the distance d2 is shorter than the distance di.
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However, in fact, as Figure 4.14.(a) shows, the cluster B is
located more closely to the cluster A than the cluster C, although
the variance of the cluster B is larger than that of the cluster C.
OCn the other hand, in the single linkage method, the cluster B is
merged into the cluster A because the distance d3 is shorter than
the distance d4. Consequently, comparing the two results
undoubtedly reveals that the single linkage method produces the
more reasonable result than the compete linkage method. In terms
of%ractlcal application of the single linkage method, Everitt

L(1974)___ llhas suggested that if one is looking for optimally

connected clusters, the single linkage method may be useful.
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Cluster A Cluster A
(8) the complete linkage (b) the single linkage method
method

Figure 4.14 A comparison of the complete linkage method and
the single linkage method.

For the time being, let us focus on the properties of the
natural colours in the wing-patterns of butterflies. The important
feature found in the empirical study of the wing-patterns of
butterflies is that when the area near the border line between
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two patterns of completely different colours is zoomed up, many
different colours are easily detected. In particular, the colours
are changed from one colour to another gradually rather than
abruptly. Note the images o&fving-patterns of a butterfly in
Figure 4.15.

(a) (b)
Figure 4.15 The original image and enlarged image. (a) An
original image of the left-hand side wing of a butterfly. (b)
The enlarged image of the image bounded by a bos in (a).

The image on the left-hand side is the original image of the left
wing of a butterfly and the image on the right-hand side is an
enlarged image of the image inside the small box in Figure
4.15.(a). From the image on the left-hand side, we can detect two
kinds of different colours one is dark brown and another is orange.
Consequently, this fact found in the investigation suggests the
important facts and directions of the colour image segmentation
are as follows:
(1) When a natural image consists of more than two colour
patterns, the distribution of the scanned colours composing each
pattern in the L*a*b* colour feature space usually forms a
chaining shape as Figure 4.16 shows.
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(2) In the L*a*b* colour feature space, the shape of the cluster of
the colours constructing a meaningful pattern may be quite
different from the simple cube such as the ellipsoid or spherical
shape which is commonly used for a tolerance limit to
discriminate different colours in the colour feature space in the
colour science domain.

(3) In a complex situation, that is,when an object image consists
of more than two patterns of slightly different colours or with
unclear borders among them, it is ambiguous to make a clear
border line separating the groups (clusters) of similar colours
composing the different patterns. ™

If the theoretical aspect of the single linkage method andafacts
obtained in the investigation are put together, it will be
undoubtedly concluded that a method to detect elongated or curved
cluster structures is the single linkage method. The scatter
diagrams shown in Figure 4.16 are the results obtained from
applying the single linkage method to the extraction of colour
patterns from the image of a butterfly, plexippus in Figure
4.15.(a) whose wing has two patterns of different colour groups.
Each of the diagrams in Figure 4.16 is a two-dimensional scatter
diagram projecting the clusters in the three-dimensional L*, a*
and b* colour feature space onto an a*b* plane, an L*a* plane, or
an L*b* plane. In the diagrams, each number surrounded by the
closed curve represents the cluster i.d. As the diagrams show, the
shape of each cluster is so complex that it is obviously difficult
not only to simply describe it using a mathematical formula, but
also to characterise it without the combination of the three

diagrams.
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Figure 4.16 The scattered diagrams of clusters. (continued)

After the result of Cluster Analysis is obtained, the
immediate problem in the sixth step is how many patterns with
different colours should be extracted. If the image under
processing consists of patterns with clearly different colours,
and the patterns formulate simple blocks, the number of different
colours to be supplied by the user will not be a problem. On the
other hand, if patterns with similar colours are scattered without
clear border lines among them, there will be a confusion or
difficulty in deciding the number of different colours in the image
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under processing. The sample image of a butterfly, plexippus, in
Figure 4.15 shows one of the examples related to the above case.
The reason for the difficulty in the decision making is because a
similarity among the different colours and ambiguous border lines
among them make a visual judgment difficult. As =~ human vision
has difficulties in decision making with a complex image, so the
determination of how many groups are present in the result of the
Cluster Analysis has difficulties. The reason for the difficulties
lies in the complex nature of multivariate sampling distributions.
The problem of how many patterns with different colours should
be extracted from an image obviously corresponds to a problem of
how many clusters should be chosen from the result of the Cluster
Analysis. In the social sciences, decision making for choosing the
number of clusters is generally carried out using the tree
structure of a dendrogram, which is one of the results obtained
from the Cluster Analysis routine of the SPSS-X, as shown in
Figure 4.17. The dendrogram obtained using the input data created
from the image in Figure 4.15.(a) consists of three kinds of
components:

(a) a hierarchical tree,

(b) labelled cases,

(c) distance level.

The tree which is a connected graph without cycles is used as a
representation of the clustering hierarchy for the twenty-eight
entities which are the different kinds of pixels of the image in
Figure 4.15.(a). The root on the right-hand side of the tree is the
initial vertex of the tree to which all other vertices (entities) are
connected. Eventually, the tree is subdivided into binary trees, so
it is possible to travel from any entity to another along the tree.
The reason why the binary trees are used in the clustering
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hierarchy 1s shown in the algorithm of merging clusters in section
4.3. The labelled cases on the vertical axis on the left-hand side
in Figure 4.17 include twenty-eight entities, where each of the
entities is labelled according to the sequence in the input data set
and is located in the corresponding clusters. The horizontal axis
represents the distance level between clusters. The number of
clusters is always associated with the distance level on the
horizontal axis. For instance, cut the tree along the vertical
direction at the distance level 23 as shown in Figure 4.17, then
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there will be two subtrees. Collect the entities at the ends of
each tree, then two clusters are obtained as follows:

cluster 1 = [25, 26, 22, 12, 6, 27, 28, 20, 19, 21, 18, 8, 9, 4, 17,
10, 14, 24, 1, 11, 13, 23],

cluster 2 = [3, 15, 7, 16, 5, 2].

If the tree is cut in the same manner at a different distance level,
the number of clusters and the contents in each of the clusters
are obviously changed. Consequently, the number of clusters and
the contents in each of the clusters are determined depending
upon the distance level. In fact, it is impossible for the ordinary
user to get the distance level directly from an image. According
to this fact, the system has been designed to enable the user to
enter the number of different colours. When the original image of
an object is displayed,” the user decides the number of patterns
with different colours in the image and enters the number of
colours. On the other hand, it is possible to design a procedure to
use the distance level instead of the number of different colours
to determine the number of clusters. However, for the practical
application, the system was designed to only handle the number of
different colours. The seventh step in the process selects the
number of clusters, corresponding to the number entered by the
user, from the Cluster Membership of Cases which is one of

the outputs of the Cluster Analysis routine of ° - SPSS-X in Figure

4.18. The Cluster Membership of Cases in Figure 4.18 is a sample
output for the image in Figure 4.15.(a). It contains only part of the
output, where the top line represents the number of clusters, the
left most column represents the labelled cases, and the other
columns below the number of clusters represent the cluster i.d.
values. if the number entered by the user is 2, for instance, a
column corresponding to 2 (the number of clusters) is selected.
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The column surrounded by a dashed line in Figure 4.18 has cluster
i d. values which are arranged in the sequence of the labelled
cases. Eventually, each of the cluster i.d. values is assigned
individually to the item 1.D. of the unit in the Auxiliary Means, in

the sequence of the labelled cases.

* * * HIERARCHICAL CLUSTER ANALYSIS * * *
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Figure 4.18 Cluster Membership of Cases.
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This concept of assigning the result of the Cluster Analysis to the
Auxiliary Means is one of the important kernel points in this
approach to the colour image segmentation. In terms of system
efficiency, applying this concept actually dramatically reduces
not only the computing time, but also the memory space since all
of the pixels in an image are not involved in assigning the cluster
i.d. The sample image in Figure 4.15.(a) has twenty-eight different
kinds of pixels with different values and its size is, for instance,
200 x 200. In this case, the operation of assigning the cluster i.d.
to the Auxiliary Means is performed only twenty-eight times,
rather than 40,000 times. It needs only 28/40,000ths of the
computing time and the corresponding memory space. When the
image is enlarged, the values will be dramatically reduced. Let us
have a close look at the process. The process picks the right most
column from the Cluster Membership of Cases in Figure 4.18
according to the number of patterns with different colours from
the user. In Figure 4.19, the top line is the Label Case where each
labelled case is arranged in sequence from the left to right, and
the next line includes the cluster i.d. values which correspond to
the labelled cases, respectively. Below this line, the twenty-eight
units of the Auxiliary Means are arranged in the sequence of the
labelled cases. In the process, each of the cluster i.d. values in the
second line is assigned to each of the units of the Auxiliary Means
in sequence, one by one. After performing this process, the unit in
the left most has been assigned 1, the next unit 2, the third unit
2, and finally the unit in the right most 1, as in Figure 4.19
shows. When the number of patterns with different colours
entered by the user is 3, the first unit will be assigned 1, the
second unit 2, the third unit 3, and the last unit 1. After all of the
units in the Auxiliary Means have been assigned cluster i.d. values,
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each of the patterns is displayed in the eighth step. Consider the
procedure of displaying each of the patterns with the previous
example. In the process of displaying an image, the major
components of an image are (1) the size of an image, (ii) the value
of each pixel, and (ni) the (x, y) coordinates of each pixel. In the
procedure in Figure 4.20, the first parameter i, which is the
number of patterns with different colours, has values of 1 and 2.
The procedure of displaying a pattern is performed twice. In the
next step, the image of 200 x 200 is cleared with the pixel value
in the background. As soon as the image is cleared, each head of

Label Case 1 2 3 4 . . . . . . 28
Cluster l 2 2 1
\, \ /
2 1
Cluster 1.D. 1 2
> 3 . 28
1.D. 1 3 : 028
Pixel Yalue pl p2 .
L% 0% b* [37.7] 4.5 [40.8|7]-3:4 | 121 2t ZZZ 23
NOP. nt 2 n331) ' (231n 28.1)
, Y3, -1 (x28.1, y28.
(x,y) (xt.1,y1.1) | y2.1) 28 28
coordinates| (x1.2.4t.2) | y22) [93-2 (% 2“ 2)
(x.I .1' .,,'1 . 1') " y2.02) | y3.n3) | [(x28.n28,y28.n28)
ni, N

Figure 4.19 Assigning the cluster i.d. to the unit of the
Auxiliary Means,

28 units of the Auxiliary Means is searched for the same value of
i. When the cluster i.d. in the head of the unit in the Auxiliary
Means is equal to the value of i, assign the pixel value to the (x, y)
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of the image array, where x and y are each of the (x, y)
coordinates in the unit. If all of the pixels in the units having the
same cluster i.d. are assigned to the array, display the image.
Each of the images containing the pattern obtained in this
procedure is depicted in Figure 4.21. The important feature to be
noted in the procedure is that since searching is performed only
with the heads of the units in the Auxiliary Means, the computing
time is also dramatically reduced.

Do i=1 to 2

clear image_array(x,yl

l
Do j=1 to 28

Do n=1 to N.O.P

image_array(x,yl = pixel value

a

display image_arraylx,y]

!

Figure 4.20 The procedure for displaying patterns.
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Pattern 1 Pattern 2

Figure 4.21 The patterns extracted.
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4.5 CONCLUSION.

In the image analysis domain, the majority of approaches to
segmenting a colour image into meaningful segments have been
constrained by the problem of dealing with inordinate amounts of
data, i.e. a large number of pixels of an image. In spite of this
difficulty, many approaches from slightly different angles have
been carried out to achieve the same goal. It has generally been
realised that the majority of the approaches in the colour image
segmentation could not be achieved other,by a roundabout route.
However, they are clearly aware that a short cut exists, but they
are also aware of a major difficulty with this short cut. This
method suggested in this chapter provides such a short cut. The
Auxiliary Means is a reasonable way to the short cut. To get
through this short cut one must directly apply the Cluster
Analysis to the colour image segmentation. In the practical
applications which have been performed using sample images, the
Auxiliary Means has successfully been used. To strengthen the
function of the Auxiliary Means in the colour image segmentation
a new algorithm has been added. In this algorithm, a method to
remove random noise, which weakens the Auxiliary Means, has
been considered.

During the development of the algorithm of this approach,
Cluster Analysis has been thoroughly reviewed from the
theoretical aspect to the practical application. Indeed, the
application of the Cluster Analysis to colour image segmentation
has led to a reasonable solution. The main reason is that the
problem of the colour image segmentation is originally
formulated in a three-dimensional colour feature space, Mot in
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a one-dimensional domain, nor in a two-dimensional plane. Most
of the existing approaches such as the mode-seeking method
(Chow & Kaneko, 1972), the recursive region splitting method
(Ohlander, Price & Reddy, 1978), and the decision surface method
(Underwood & Aggarwal, 1977), etc., have tried to find the
solution in a one-dimensional or two-dimensional domain in spite
of an enormous use of computing time. It is believed that the
designers of these approaches have done their best and the basic
ideas have been brilliant within the circumstances, i.e. one- or
two-dimensional domains. In fact, when one tries to solve a
three-dimensional problem which is not simple in a one- or two-
dimensional domain, the problem suddenly becomes more complex
than imagined. In Cluster Analysis, the basic requirement is to
calculate a distance matrix. If the matrix is calculated for an n x
n image, the size of the matrix is {n x n} x (n x n) which usually
exceeds the size of the core memory of existing main frames
although the size of an image is small, for instance 100 x 100. It
has been regarded as an obstacle like an incurable cancer in

the medical domain. Eventually, the important fact to be noted is that

it is impossible to carry out the application without employing
the Auxiliary Means. Another desirable aspect of the Auxiliary
Means is that it can be efficiently used in the operation of
displaying each of \patterns extracted to reduce memory space as
well as computing time. As far as system efficiency is concerned,
the most important factors to be considered not only in the design
stage, but also in the implementation stage are how to minimise
the computing time and the memory space, and to produce the
highest qualty output. From this point of view, the algorithm
applying Cluster Analysis to the colour image segmentation with
the Auxiliary Means in this thesis accommodates the important

145




factors.

In particular, the major concept of the Auxiliary Means
developed in this thesis can be generally used in Cluster Analysis
for any kinds of problems in the academic or the industrial
research fields. For example, census data usually consist. of a
huge number of observations, so it is not easy to perform Cluster
Analysis. However, since most of the variables in the census data
include categorical values, the concept of the Auxiliary Means can
be applied without any difficulty.
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Chapter 5

SHAPE DESCRIPTION METHODS.

5.1 Introduction.

5.2 Existing Shape Descriptors.

5.3 New Shape Description Method.
5.3.1 The background and Basic Principle of this Method.

5.3.2 The Algorithm for this Method.
5.3.2.1 Detecting a Principal Axis.
5.3.2.2 Calculation of Ratios.
5.3.2.2.1 Rotation of a Contour.
5.3.2.2.2 Calculation of Areas of Segments.
5.3.2.2.3 Calculation of Ratios.

5.4 Conclusion.
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5.1 INTRODUCTION.

Extracting the boundary of an object from an image is
generally not a simple procedure. The main objective of extracting
the boundary is to use the boundary in an object discrimination
procedure. In this procedure, shape descriptors play the most
important role. No matter how accurate the boundary may be, if a
shape descriptor is inefficiently organised in its function, the
effort which has been involved in producing the boundary will
become meaningless, and the efficiency of a system which
employs the descriptor will decrease. In some cases, the system
might even produce unreasonable results. It is obvious that the
importance of the shape descriptor in object discrimination
procedures cannot be emphasised too much.

To date, many different approaches have been attempted for
describing the boundary of an object. An investigation of some of
the approaches which are closely related to the subject of this
thesis will be carried out. The invariant moment method, the
Fourier description method and the chain coding method are quite
commonly used in the object discrimination domain. The
investigation will concentrate on the theoretical background, the
detailed procedure and the final product of each approach.
Comparing, in parallel, the method to each other along functional
lines. The main objective of the investigation is to understand the
current state of the art of the existing methods, thus discovering
any problems, pertinent to this thesis, that then need to be solved.
An improved method for shape description will be clearly
illustrated from the motivation for its development to its
algorithm. One of the distinctive features of this method is that
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it has been designed to be directly involved in object
discrimination procedures.
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5.2 EXISTING SHAPE DESCRIPTORS.

When the shape of an object is extracted from an image, the
immediate task is how to describe the shape based on its external
characteristics. In terms of biology, the external characteristics
of an object are usually called morphological features. The
methods for describing the morphological features are usually
associated with tasks where the shape is important but that

[

| contained within it is of little or no interest. In this thesis, both
the Ekége and its interior are of importance, so they are
separately discussed. In this section, the existing shape
description methods will be investigated. In particular, the
investigation will focus on the invariant moment method, the
Fourier descriptor, and the chain code, since they are commonly
used in this domain. An important principle that should be
considered at the design stage is to describe the features of an
object in order to be independent of the starting point, scale,
translation and orientation (Alt, 1962). Actually, it has been
regarded as a basic condition for a shape descriptor. In practical
applications, the variations are such that it is unlikely that the
shapes, sizes, positions and orientations of two objects will be
identical. In fact, the major difficulties in describing the
features of an object arise because of these variations. Although
only one of these variations is ignored, it will give rise to serious
difficulty in an object identification process, because this can

affect the various measurements of an object.

One scalar method using mathematical properties derived from
the area within a shape contour is simple to implement. The
descriptors usually take the form of numerical measures of the
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shape rather than representing symbolic properties. It is known
that in simple scalar techniques;area, perimeter length, diameter,
the orientation of the major axis, and curvatures, etc. have been
efficiently used for many years in the field of robotic vision and
object recognition. The area of a shape is simply the number of
pixels within a shape. A rough approximation of the perimeter
length is obtained by counting the number of pixels along the
contour. The diameter of a shape is defined by those two extrema
on the boundary that have the greatest distance between them.
The orientation of the major axis is an angle with a horizontal
line of an image. The curvature of a shape is defined as the rate of
change of slope. These descriptors are quite simply calculated,
althcugh some of them have a serious weakness in that they yield
the same values for objects of distinctly different shapes.

To illustrate some problems with some of these descriptors,
let us consider the following example. A rectangle of 1 x 20 in
Figure 5.1.(a) is cut into three pieces, i.e. one rectangle of 1 xi8
and two squares of 1 x 1 as shown in Figure 5.1.(b). Put one of the
squares on the rectangle slightly to the left-hand side and the
other square underneath the rectangle slightly to the right-hand
side. Then, an object in Figure 5.1.(c) is produced. On the other
hand, put the two squares on the rectangle shghtly apart from
each other, then another object in Figure 5.1.(d) can be obtained.
All of the numbers represent measurements of distances. Note the
two objects of distinctly different shape in Figures 5.1.(c) and (d).
The descriptor area yields 20 for each of the objects. The
descriptor perimeter length yields 42 for each of the two objects.
The diameter also yields the same value 18.03 for each of them.
Although the three descriptors are used at the same time to
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classify the two objects in Figures 5.1.(c) and (d} with widely
different features, they show their limitations in the task by

yielding the same values for the objects.

(a) (b)

(d)
1 {
1 P 2 B 7
V\Pizsiznsiianiiieiiesierssisi)
18
area=18x1 +2(1 x 1) area=18x1+2(1 x 1)
=20 =20
perimeter = 42 ' Jo perimeter = 42 (/2
diameter=(1 + 182) diameter = (1 + 182%)
=18.03 = 18.03

Figure 5.1 Descriptors and objects with different feature.

A shape can be described by the spatial moments of its
intensity function, where this method is called the method of
moments. The main paradigm of this method is that all possible
measurement features of a shape can be represented in the set of
moments. The term “moment” comes from the domain of
statistics. The moments are easily calculated for an intensity
function, f(x, y). The two-dimensional (p + q)th order moments
which are called the (p + q)th generalised moments are:

Mpe= TILXY 1%, ), (5.2-1)
where p, q =0, 1, 2, 3, ...... , and f(x, y) is the intensity function
representing a shape. It should be noted from Equation (5.2-1) that
since the generalised moments are scalars calculated from the
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original data without any transformation, they are not
independent of size, position and orientation. In other words,
when two sets of the generalised moments are calculated for two
different shapes, if the sizes, positions and orientations of the
objects in the images are different, it is impossible to compare
the objects using the sets. To accomplish this task successfully
it is necessary to make the moments invariant to these
conditions. What should be done in the first step is to transform
the generalised moments into the central moments which are
moments about the means of,x and y coordinates. If all of the x
and y coordinates of the shape are shifted so that its origin
coincides with (%, U), where X and U are the mean values of the
image coordinates x and y, respectively, this translation results
in a set of central moments. The two mean values are calculated
by applying Equation (5.2-1):

" Mmio — _ Mol _

Meo , 9 Moo, (5.2-2)
where Mmoo = Z T X°yef(x, u)
y

= §§. f(x, y)
represents the total number of pixels in the image; and mio and
moi are the first order moments which are the summations of the
x and y coordinates, respectively:

Mo = ;‘,%x'gﬁ(x, y) §,§xr(x, ),

= 0
Mo1 ;%x yrfix, y) §%‘.Qf(x, y),

Replacing xPyd with (x - R )P(y - §)%in Equation (5.2-1) results in
the central moments J: '

Mpg = Z %(x -2y - 1(x, y). (5.2-3)
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Equation (5.2-3) is usually called the central moment generation
function. By applying the central moment generation function the
central moments are expressed in terms of the ordinary moments
for the first four orders (Hu, 1962):

Moo = Mgy =N,

Kio=Ho1 = 0,

Moo = My, - nX2,

Ryy=my, - nRY,

Moz = Mgz - NY2,

Hao = Mgy~ 3MyeX + 2nX3,

Hoq =My, - My,J- 2m X + 2n&k23,

Hyp=my,- mo% - 2m, U+ 2n&{,

Hog = Myz - 3m 9+ 2n83,
The central moments are invariant only to the locations of the
images. In the second step, by using the second- and third-order
central moments the seven low-order invariant moments are
known to be obtained. It is obvious that the invariant moments are

functions of the central moments. The invariant moments
t

proposed by HuL(J_gEgi_
M1 =l + Hoz »
M2 = (Lo - Ho2)? + 411442,
M3 = (0 - 31202 + (3 oy - Hoa)?,
M4 = (Lo + 11)2 + (Haq + Hg3)2,
M5 = (lag - 3Hy2) (Mo + He2) [ (Mao + 142)2 - 3(py + go)
+ (31 - Hoad oy + Moa)[3(lao + 1 2)% - (a4 + Hoa)2l,
M6 = (Lo - Ho2)[(Hao + 112)% - (Haq + Hog)?]
+ 415 (Kgo + Hy2) (Hay + Kog)s
M7 = (3 Hay - Hoz) (Moo + Hy2) [(Mao + 1y2)2 - Blipy + Ho3)?]
- (Hao = 3 Ry2) Moy + Hoad[3(Hgo + Hy2)? - (o1 + Hog)?).
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Hu (ibid.) has shown that the first six moments M1 through to M6
are invariant under rotation, while the seventh moment M7 is
useful in distinguishing mirror images. This method has been used
to accomplish pattern identification independently of position,
size and orientation. Hall et a!.{ (1975) ihave applied the
method of moments to classify the radiographs of coal workers. In
this study, only central moments were used, since it was
determined that translation invariance was desirable, but size
and rotation invariance was undesirable. Also, the moment
computation was limited to the set of second order moments.
Dudani et aI.L(1 977) ]p have also applied this method to
an automatic recognition of aircraft types, using plastic models,
from optical images. In this study, all of the seven invariant
moment functions, M1 through to M7, were used. They found that it
was difficult to arrive at any meaningful results regarding the

relationship of recognition accuracy to the number of aircrafts in
the given class because of the fact that similarity or
dissimilarity in shapes of aircraft under consideration greatly
Ima_f_fgggg__@e*[?cognition accuracy. Smith and Wright -
1 (1871) | have undertaken a study to determine the
feasibility of%utomatic interpretation of ship photographs using
the method of moments. They used the invariant moments of up to
the fifth order in their automatic identification system. Alt
1962) carried out the automatic recognition of printed characters
employing the invariant moments from the third to the sixth order
and demonstrated that a small number of moments is adequate to

characterise certain patterns and discriminate among the
patterns of a certain set, such as alphabetical and numerical
characters. He explained the difficulty of deciding the number of
moments and choosing the proper order among the moments in his
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project wasdue to the fact that the effectiveness of the process of
classification depends strongly on the order in which different
moments are introduced. Hu (ibid.), who proposed the method of
moments, has undertaken the representation of the printed
characters on the two-dimensional space using the first and
second order invariant moments to demonstrate the suitability of
his method for its application to the classification of patterns.
There have been lots of applications of this method to pattern
classification as previously introduced. However, the important
fact to be noted is that the number of different moments and the
orders of the moments employed in those applications were
different to each other. From this approach, one obvious question
is how many different moments and which order of the moments
should be selected to distinguish significantly different
patterns? This question reveals that this method has some
deficiency in its generality; generality being a desirable
condition. It will be shown that this is a major problem with this

method. White and Prenticef'ugas), | in their
study of discriminating leaf outlines, pointed out the problem
that since this method summarised mainly the overall shape, it is
difficult to interpret the result. Another criticism by Rohlf and
Archief;("‘l:978‘£l)" _ f*ﬂw—ib‘ is that, using this approach, one

cannot easily reconstruct an image from the descriptors.

Another approach to extracting a finite set of numerical
features from a shape is the Fourier descriptor, first suggested
by Cosgriffﬁ?g}m, . The main idea of this approach is
that look-alike shapes are usually near each other in a space of
Fourier descriptor features endowed with the Euclidian metric

(Zahn & Roskies, 1972). The basic principle in this method is to
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transform a continuous function f(x) into the Fourier integral
F('¥"), which is calied the Fourier transform of f , defined by

the equation (Brigham, 1974):
F{ € }=Flw = r' 1(x) exp(-j2rnwx) dx,

- (5.2-4)
where j = (-1)!/2. Before looking into this method in detail,
consider the obvious question; What kind of factors make it
possible to apply the Fourier transform to the image analysis? Let
us consider some brief answers;

(1) The first immediate factor would be that the closedcurve of
an object extracted from an image usually consists of a very
complex form which cannot be transformed into an ordinary
mathematical equation.

(2) The second factor will be that the Fourier transform
frequency domain contains exactly the same information as that
of the original function; they differ only in the manner of
presentation of the information.

(3) The third factor which is very relevant to this inquiry can be
found out from the propertiesﬁof the two-dimensional Fourier

1974} 1

transform described by Brighamj (1974):_
(i) the translation property,
(i) the scaling property,

(iii} the rotation property.

(iv) the periodicity property.
These properties are thought to be closely related to the
conditions which should be considered at the initial stage of
describing the features of a shape independent of position, size
and orientation as previously illustrated.
(4) Finally, once a function is transformed, the graphical form of
the transformed function usually looks so different from that of
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H\.o_original one that it is difficult to imagine the graphica! form of
the original function. However, when the Fourier transform of a
function is given, the original function can be easily obtained by
using the inverse Fourier transform (Brigham, 1972):

FU e }=f(x)=]

L ]

F(w) exp()2n wX) dw.
ot (5.2-5)

Replacing f(x), -j and dx in the right most part of Equation (5.2-4)
with F(w), ] and dw, respectively, results in Equation (5.2-5). This
shows the ease of obtaining the inverse. In fact, this is a very
important property that enables a wide range of applications in
the image processing domain. This property is in contrast to that
of the method of moments. In practice, the Fourier transform of
f in Equation (5.2-4) is a periodic function, sines and cosines,
since the exponential term is expressed in the form:
exp{-j2r wx) = cos{2x wx) - jsin(2xr wx),
so it is not easy to imagine the graphical form of the original
function with that of the transformed function. It is known that
the Fourier transform of a real function f & is generally complex,
that is,
F(w) = R(®) + jX({w) = |F(w)]el%® (5.2-6)

where R(w) is the real component of F(w),

X(w) is the imaginary component of F(w),

|F(w)| is called the Fourier spectrum of f(x),

o{w) is called the phase spectrum or phase angle of F(w).
{F(w)} can be denoted by [R%(w) +X3(w)]'/?, ¢(w) can be denoted by
tan”1(X(w)/R(w)). The variable w in the Fourier transform is often
called the frequency variable. If f(x) is a one-dimensional
discrete function, the one-dimensional discrete Fourier transform
of f and its inverse function are given by (Brigham, 1972):
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1 Not
Fl) = - 2 1(x) exp(=) 2n0x/N) (5 2-7)

for «=10, 1,2, 3, ...... , N-1, and F(O), F(1), F(2), ...... , F{N-1) are
called the Fourier coefficients. In each of the coefficient

calculations all the values of f(x) are involved.

(%) = b5} F(w) exp()2n wx/N)
w=0 (5.2-8)

forx=0,1,2 3, ...... , N-1.
In practice, images are typically digitised in square arrays, the
two-dimensional discrete Fourier transform of f(x, y) and its

inverse function are:

1 N1 N-f ,
F(u, v) =N Z, éo f(x, ylexp(-j2n (ux + vy)/N)

(5.2-9)
foru,v=01,2,3, ... , N-1, and
1(x, V) ..-Ufg' z' F(u, v) exp(j2n(ux + vy)/N)
Ny=ov=0 (5.2-10)

forx,y=0,1,2,3, ... ,N-1.

Another important factor, although, which is not directly related
to the description, is that when random noise corrupts the image
signal during transmission through channels, the pixels in the
image f(x, y) are highly correlated but the elements of F(u, v) are
decorrelated (Huang & Schultheiss, 1963).

Thus far, the background and general aspect of the Fourier
transform have been considered. Let us have a close look at the
practical aspects of the Fourier descriptor of a shape from the
definition to the procedure including the normalisation of the
Fourier coefficients. The Fourier descriptor is clearly defined by

Wesley et al.| (1990): |
“A closed curve may be represented by a periodic function of a

continuous parameter, or alternatively, by a set of Fourier
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coefficients of this function. The coefficients in this
collection are referred to as ‘Fourier descriptors’. The Fourier
descriptors provide a means for representing the boundary of a

two-dimensional shape.”
In general, it is difficult to use the ordinary Fourier coefficients

as input to a classifier because they contain factors dependent
upon size, orientation, and starting point. in order to make the
Fourier coefficients invariant to the size, orientation, and
starting point of a contour it is necessary to perform a
normalisation in the Fourier domain. Such Fourier-domain
normalisation was initially developed by Granlund |

(1972). The procedure developed by him is as follows.

Consider a closed contour C in the complex plane as shown in
Figure 5.2.

Im Starting
Point
Imaginary N
Axis
Re
Real Axis

Figure 5.2 Contour function z(t).

Trace the contour from an arbitrary point in the clockwise

direction at a constant speed v, and simultaneously, pick at every
time t a complex number z, then the contour function is defined by

z = z{t), (5.2-11)
where the parameter t means a parameter of length along the
contour. Choose v so that T = 2xr. Traversing the contour more than
once yields a periodic function:

z(t + nT) = z(t). (5.2-12)

160




T can be expressed as a complex Fourier series The Fourier
descriptor of C is the complex Fourier series expansion of z(t),

2(t)= ¥ Flo)e™
n=- ! (5.2-13)

where
F((IJ) = _.1._]‘21‘ Z(t) e‘jntdt
g : (5.2-14)

This Fourier descriptor depends upon both the contour C and the
starting point of z(t). Since the contour C is in practice taken
from a digitised image, z(t) is not expressed as a continuous
function. The normalisation process consists of translation,

rotation, and change of scale. It is assumed that F(m)* is a
specific set of Fourier coefficients from the original contour, and
Z(t) is the inverse of F(a) .
(a) Translation

The translation of a contour Z(t)' with the complex vector Z
results in the following (Brigham, 1972):

2= 20* + 2= Ez() e+ 2

The Fourier transform of the translated contour is expressed by:

%*
Flo) = {F(w)*, forw 0,
Flw)* + Z, forow=0. (5.2-15)
All coefficients except F(0) are not dependent upon translation,

F(0) is simply the complex vector indicating the position of the
centre of gravity of a contour.

(b) Rotation
To rotate a contour in the spatial domain simply requires
multiplying Z(t)* by e!® (Brigham, 1972):
Z(t) = Z(t)*el®
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where 0 is the angle of rotation. Due to linearity, the Fourier
transform of the rotated contour is:
F(w) = F(w)*e!®. (5.2-16)

(c) Change of Scale

To change the scale of the contour, each of the Fourier
coefficients is simply multiplied by a constant S (Brigham, 1972):

F(o) = SF() . (5.2-17)

d) Cl { a Starting_Point

There are many different sets of Fourier coefficients for a
certain contour depending upon the position of a starting point.
The Fourier coefficients differ from one another with respect to a

parameter 1. Assume that there exists a certain function

M) = Z()
and, subsequently, the lower functions are given by

Z() = Z(t + T) .
The resulting Fourier coefficients become (Brigham, 1972):

1 [z *_=jnt
F(m):—J Z(t + D% M dt
2n 0

. 2n
=™ ZL I 7(t)*e ™ dt
Tlo

jne

=e Flw)* . (5.2-18)
When Equations (5.2-15) through to (5.2-18) are combined
together, the general form for the Fourier transform of a contour
which is invariant to translation, orientation, scale and starting
point is given by (Granlund, 1972):
{ Flw) = F(cu):ej,"'s e’:a, forwm O,
Flw)=Flw) e Se* +2, forws=0. (5.2-19)
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In practice, when a point 1s selected during tracing the contour in
Figure 5.2, a vector (x, y) 1s obtained. The x and y are,

respectively,

¥ = Re Z(t),

The computation of the Fourier coefficients of Re Z(t) and Im Z(t)
is performed as follows (Granlund, 1972):

Flo) =< ITZ(t) exp(-jn2nt/T) dt
T Jo

= Re F(w) + j-Im F(w),
where

Re F(w) =-_—:_—L: [ Re Z(t) cos(n2at/T) + Im Z(t) sin(n2nt/T) ] dt,
(5.2-20)

Im Flw) =71r-[: [ Im Z(t) cos(n2at/T) + Re Z(t) sin(n2nt/T) | dt.

(5.2-21)
Thus, the Fourier descriptor of a contour is obtained by applying
Equations (5.2-20) and (5.2-21). Finally, to make the Fourier
descriptor invariant to translation, orientation, scale and starting
point apply Re F({w) and Im F{w) to Equation (5.2-19), respectively.
At last, the Fourier descriptor obtained is ready to be used. The
important fact to be noted here is that the previous procedure
involving high level mathematical calculations of exponents of
complex numbers, trigonometry and integrations obtains a N x 2
vector. This only contains a set of (u, v) coordinates in a two-
dimensional Fourier plane for a certain contour. If the objective
of a task is only boundary coding or reconstruction of a shape, a
result is obtained but it requires unnecessarily time-consuming
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effort. On the other hand, if the objective of a task is object
identification, it is only the beginning of the task, although much
effort has been involved in the procedure. It is necessary to
extract some values such as maximal diameter of a shape, area,
some angles, and perimeter length etc. from the vector for the
object identification procedure. The majority of researchers who
apply this approach use it mainly for shape descrlptlon since it is

their final objective. Granlundl (1972) o has carried out

C e ———

the description of the shape of hand pnnted characters to validate
the normalisation algorithm he developed. Rohlf and Archie

]

J (1984) ‘have performed the description of the wing shape
of mosqmtoes applymg this methods. Bookstein et al. =~ A

[(1982) have pointed out that a change in part of a shape (a

local change) may result in changes in the values of many of the
coefficients making them more complicated. It is obvious that the
drawback of this approach is:

(1) The algorithm is simple, but not familiar to the designer and
programmer because of several complex mathematical equations.
(2) This approach requires a large amount of computing time.

(3) it is not easy to modify some parts of the procedure when the
results of an implementation are different to that expected.

The previous approaches are based on the description of a
shape by means of scalars. The descriptors, as have already been
discussed, have taken the form of numerical measures of the
shape rather than representing symbolic features. From now on,
the investigation of the description of a shape will focus on
external space domain techniques. One of the techniques is the
chain coding technique. This method was introduced by Freeman

‘ (1961) N | and has been, to date, widely used to describe a
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shape. In this method, an arbitrary geometric contour is encoded
so as to facilitate its analysis and manipulation by means of a
digital computer. He has also proposed algorithms for
normalisation to expand and rotate a given contour, and to
redefine a starting point. As an illustration of the procedure
developed by Freeman, consider the boundary of Figure 5.3.(b)
drawn in the x-y plane. Trace the boundary from the point A in the
clockwise direction and assign one of the directions in Figure
5.3.(a) to each segment connecting every pair of pixels.

4441‘{///, »-0

(a) (b) (c)

Figure 5.3 Chain code. (a) 8-directional chain code. (b} A
boundary. (c) A chain coded boundary.

For a rectangular grid, if a point on a boundary is known, the next

point will be only one of eight neighbours. If the decimal digits
zero through to seven are assigned to these eight positions,
starting with the one which is horizontally to the right and
processing in a counter-clockwise direction, the code of Figure
5.3.(a) is obtained. Whenever a new segment is met during the
tracing, select a proper direction which is approximately the
same direction as the segment and assign it to the segment. The
result of assigning directions is shown in Figure 5.3.(¢c) and is
represented by the coded sequence:
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644421177
This sequence is called a chain code. The code can be represented
in binary form:

110 100 100 100 010 001 001 111 111.
The important thing to be noted is that each code requires only
three bits to specify. Freeman has argued that the required
memory capacity for a continuous contour encoded in this way is
then only 15 percent of that required for a contour which has all
its points independently specified in a 1024 x 1024 point array.
This is obviously one of advantages of this method; it saves
memory space. In this approach, there are some normalisation
techniques for manipulating contours invariant to translation,

scale, orientation and starting point.

(a) Expansion.

A chain coded contour stored in the memory of a digital
computer can be expanded without any difficulty. To expand a
contour by a ratio N, each of the digits of the contour must be
replaced by a set of N identical digits, where N should be an
integer. For example, if the contour in Figure 5.3.(c) is to be
expanded exactly twice the size, the expanded contour is given by
the chain code:

66 444444 22 1111 7777.

(b} Rotation

It is known that one of the advantages of the chain coding
technique is to rotate a contour easily. The procedure of the
rotation of a contour is to add any even number n to each of the
digits in the decimal representation of a contour and divide the
digit by 8, then the remainders of the calculation are the result.
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The result is a rotation of 90° in a counter-clockwise rotation.
The addition or subtraction of any even number n will cause a
rotation equal to (n/2) x 90° If ‘1’ is added to each digit, a

rotation of 45° is achieved; however, this rotation is nearly
always accomplished with distortion. The main reason for the
distortion (Freeman, 1961) is that in rotation by this approach
only the angle is considered. In general, both the angle and the
distance between the axis of rotation and each point of the
contour are important parameters in the rotation of a contour.
However, in this approach only one parameter, i.e. angle is
considered. This obviously reveals the limitation of this approach.

(c) Translation

One of the important features of the chain coding technique is
shifting a contour with ease. Each point on a curve is located
relative to the previous one, thus, if the (x, y) coordinates of a
starting point are determined on an x-y plane, the (x, y)
coordinates of each of the remaining points are relatively
determined. To shift a contour vertically or horizontally, only the
(x, y) coordinates of the first point are required changing.

d) Changing of Starting Point

The chain code obtained from a boundary depends upon the
starting point. The procedure for normalising the code is very
simple, that is, consider the code as a circular sequence of
direction numbers and redefine the starting point in order to
obtain the sequence of numbers having the minimum value. As an
illustration, consider the chain code for Figure 5.3.(c). The
original chain code is 6 4 4 4 2 1 1 7 7. To obtain the normalised
code redefine the starting point and find the minimum magnitude:
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4 4 2 1 1 7 7 (the onginal code)

421177686

2117764

1177644

177 6444

77 6 4 4 4 2 (the normalised code)

7644421

6444211

64442117

Since the string 1 1 7 7 6 4 4 4 2 has the minimum magnitude, it
is the normalised code. Note that the computing time for this
process mainly depends upon the length of the string. If the
magnitude of a string exceeds the maximum number allowed in a

et BN BT Y A T - S N . N o) ]
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computer, this process suddenly becomes complicated.

Marshall1(_1_—98‘é)m_ o blx has pointed out some of
disadvantages of this approach. The primary disadvantage of this
code is that it is sensitive to noise as errors are cumulative, i.e.,
if one bit is in error, the remainder of the curve will be
incorrectly reconstructed from the code. Another disadvantage
pointed out by him is that the value of this code for recognition
purposes is limited in this form. However, this approach has been
widely used in the domain of boundary description.

Three shape-description methods have been investigated in
detail. During the investigation the advantages as well as
disadvantages of each method have been thoroughly considered.
The important fact to be noted is that in all the approaches the
final output is not features which can be directly used in the
shape identification process, but the vector of a contour invariant
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to the starting point, scale, translation and orientation of the
contour. The vector obtained usually needs further processing to
extract some features that are traditional measures, such as the
length of an object, maximum width, perimeter length, ratios,
angles, etc., which are frequently used by biologists attempting to
quantify shape variation patterns. Apart from the advantages or
disadvantages of these methods, none of them takes this aspect
into account at all. The main reason is that the features required
in the object identification process depend upon the kind of
objects and domain. For instance, the features that have been used
in the leaf species identification are completely different from

those in fish species identification.




5.3 NEW SHAPE DESCRIPTION METHOD.

5.3.1 The Background and Basic Principle of this Method.

The foregoing section has clearly shown that the three
existing shape description methods produce a vector, as a result
of a complex process, which contains information only about the
boundary of an object. The vector is invariant to location, scale,
orientation and starting point factors. The vector produced by the
Fourier descriptor or chain code cannot directly be used in the
object identification process. In this section, a new shape
description method will be introduced. The important facts that
have been considered in the design stage are as follows:

(1) The shape descriptor should be created on a similar basis to
that of object discrimination in human vision.

(2) The shape descriptor should be easily interpreted not only by
visual assessment, but also by systematic methods.

(3) With a simple procedure, the shape descriptor which is
independent of location, scale, orientation and starting point of a
contour should be easily obtained.

(4) A reflected image (a mirror image) should be processable.

(5) The shape descriptor should be directly involved in the object
identification procedure without any additional modification.

(6) The shape descriptor should be used as input data to the
multivariate statistical analysis procedure for further study.

As an illustration of object identification using usual
judgment, consider the objects in Figure 5.4. It is assumed that
the major interest lies in the shapes of the objects without
considering their size. When the shapes in Figure 5.4 are viewed
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without any prejudice, it is easily recognised by human vision
that the objects on the left-hand side have symmetrical shapes
and those on the right-hand side asymmetrical shapes. It seems
that the yardstick for this judgment would be the dotted line
overlapped on the centre of each shape in the mind of the viewer.
In the case of the objects on the left-hand side, each dotted line
might divide the boundary into two curves. Then, the curves could
be compared to each other top to bottom as shown in Figures
5.5.(a) and (c).

(]

(a) (b)

O

(c) (d)

Figure 5.4 Objects shapes from the lateral view.

Since each pair of horizontal line segments have equal distances,
it can be concluded that the objects have symmetrical shapes. On
the other hand, in the case of the objects on the right-hand side,
some pairs of horizontal line segments around the handle part
differ from each other in length as shown in Figures 5.5.(b) and
(d), hence it can be concluded that the objects have asymmetrical
shapes. Let us consider a way of distinguishing symmetrical
objects with different shapes. The objects in Figures 5.4.(a) and
(¢) have symmetrical shapes but are different from each other. A
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property of the shape in Figure 5.4.(a) is that the area of the upper
half is undoubtedly greater than that of the lower half. On the
other hand, a property of the shape in Figure 5.4.(c) 1s in contrast
to that of the shape in Figure 5.4.(a), i.e., the area of the lower
half is greater than that of the upper half. These properties can
obviously be used to distinguish the shape from each other.

N
N
\ )
(b)
éé )
T
[~
(d)

Figure 5.5 Comparison of each pair of horizontal line
segments.

This can be quantified by calculating the area of each segment as
shown in Figure 5.6. The straight line PQ in Figure 5.6 is an axis
which divides the boundary into two curves of the same shape and
the straight line MN is a perpendicular line to the line PQ at the
middle point of the line PQ. Let the areas of the segments in
Figure 5.6.(a) be S1, S2, S3 and S4, respectively; and the areas of
the segments in Figure 5.6.(b) be R1, R2, R3 and R4, respectively.
In fact, since the area of the object in Figure 5.6.(a) is different
from that of the object in Figure 5.6.(b), it is meaningless to
compare the two objects by the areas. Note that each object has a
symmetrical shape, so it will be reasonable to consider one of the
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curves for each object. Thus, to make the comparison, consider
the ratios r11, ri2, r21 and r22 defined by:

Pl s —31 r2= —32
St +52, S1+852,
21 =R r22=—R2__
Rt +R2 ., R1 +R2, (53.1_1)
where r11 is a ratio of the area of the upper half of the curve
bounded by PQ over the area of the curve bounded by PQ, r12

is that of the area of the lower half of the curve bounded by PQ
over the area of the curve bounded by PQ, for the object in Figure
5.6.(a); and r21 and r22 are ratios for the object in Figure 5.6.(b).

P
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S2 | 54
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Q
(a)

Figure 5.6 Areas of segments,

In the identification process, r11 is compared with r21 and r12
with r22. This method seems plausible for comparing shapes,
since the ratios are independent of the scale, orientation, location
and starting point of the contour of each object. However, taking
a close look at the properties of the ratios gives rise to a further
enhancement of the comparison process. As an illustration of this
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fundamental problem, consider the two hypothetical objects that
are different in shape as shown in Figure 5.7. Assume that each
small box in the object is a unit square. As before, only the left
half of each object is considered. Each area of the segment is: St
=2, 82 = 4, R1 = 4 and R2 = 8. The ratios ri1, ri2, r21 and r22 are

respectively calculated by the following:

Pz —2 -] F2=2 .2
24+ 4 3 2+4 3.
4 1 8 2

21 = = r22 = =
e s a+8 _ 3
P P

. | I

—S2 l r R2 l
] [ 1]

Q Q
(a) (b)

Figure 5.7 Areas of segments for hypothetical objects,

In the identification process, since ri1 = r21 = 1/3 and ri2 = r22
= 2/3, it can be concluded that the shape of the object in Figure
5.7.(a) is the same as that of the object in Figure 5.7.(b). However,
in fact, the objects are completely different in shape, that is, the
object on the left-hand side is thinner than that on the right-hand
side althocugh the ratios r11 and r12 are equal to r21 and r22,
respectively. Consequently, it is obvious that the ratios obtained
only from the areas cannot be used alone in the object
discrimination process.

Thus, to discriminate the hypothetical objects in Figure 5.7,
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the axis, the straight line PQ, should also be considered. The line
PQ plays a major role in causing the ratios to form a close
relationship with their respective objects. Suppose that A1 and

A2 are defined by:
PQ2 , PQ* . (5.3.1-2)
where A1 is a ratio of (S1 + S2) over PQZ?,
A2 is a ratio of (R1 + R2) over PQ?
and PQ? is the area of a PQ x PQ square.

New ratios r11°, r12’, r21’ and r22' are defined by:

Al

[l Sl . 32
P11 2 Al X —2 b F12' = Al X —a2
51+52, S1+52,
F21"z A2x —R1 r22' = A2 x —R2__
R1+R2 ., R1+R2.  (53.1.3)

Since the ratios r11’, r12’, r21' and r22' are properly linked with
the (axis)2, they can be involved in the discrimination process.
This can be checked by carrying out the process with the practical
data in Figure 5.8. The length of the axis PQ is 4 because the
square is unity. The A1 and A2 are:

A1=2+24 :-—3— A2= 4+28 :E.
4 8 . 4 8 .
Applying these values to Equation (5.3.1-3) results in:
PP =Alx—21 -3 2 1
S1+52 8 2+4 8 .
. S2 3 4 2
2' = X ——————=— =
Fl2=AX S s 8 *2+a "5,
21 =A2x —~ -6, 4 2
Ri+R2 B8 4+8 8 .,
22 =A2x —2__.6 8 _ 4
Ri+R2 8 4+8 8 .
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When r11' is compared with r21' and ri12' with r22’, it is
concluded that the object in Figure 5.7.(a) is different in shape
from that in Figure 5.7.(b) since ri1’ xr21’ and r12' xr22'. In the
process of the identification of the objects in Figure 5.6,
Equations (5.3.1-2) and (5.3.1-3) can be efficiently used.

O
]

- -
bW L
g - P
L) -
AL RN L

vy - S s
‘s-...4__--“’ L’I ""5‘4_-"" Q
(a) (b)

Figure 5.8 Reconstruction of the shapes using the components
of shape descriptor.

Let us consider the effect of using the axis in the process by
reconstructing the shapes of the objects in Figure 5.7. It is
assumed that the reconstruction is limited to the left half of each
shape. Firstly, draw two 4 x 4 squares as shown in Figure 5.8.
Secondly, divide it into eight 2 x 1 rectangles. For the object in
Figure 5.7.(a), since r11’ = 1/8 and ri2' = 2/8, select one
rectangle on the extreme right of the upper half of the square and
two rectangles on the right side of the lower half of the square.
Performing a similar procedure results in reconstruction of the
object in Figure 5.7.(b). The left half of each object has been
reconstructed using the data of the axis, r11’, r12', r21’ and r22’
as depicted in Figure 5.8. As the process has shown, the axis has
played an important role in the shape description. Marr and
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Nishihara (Marr & Nishihara, 1978) have also emphasised the
necessity of an axis for the representation of a shape.

5.3.2 The Algorithm for this Method.

Thus far, the background and basic principles dominating the
new shape description method developed in this thesis have been
illustrated. Consider the algorithm for the general method which
can be used in biclogical object identification in further detail.
Usually, the shape of a biological object is too complex to be
expressed in a mathematical formula. It is therefore essential to
find a method which can replace mathematical formulation. Ihe

ic i i i ransf wo-dimension
I int di ional f | | tract
descriptive elements, from this form. This is an alternative to
mathematical formulation. In the dimensional transformation, the
most important element is an axis. In an automatic system, it is a
difficult task to define an axis. Thus, a straight line connecting
two extreme points of a contour is usually regarded as an axis.
For example, consider the contour in Figure 5.9.(a). The straight
line connecting the two exireme points P and Q of the contour
forms its axis. Another important element in the transformation
are the ratios defined in Qquations (5.3.1-2) and (5.3.1-3). In the
hypothetical-object identification in Figure 5.7, only two ratios
for each segment have been used, however, if an object has a
complex shape, the number of ratios should be increased. The
accuracy of the identification depends upon the number of these
ratios. The number of ratios is determined by the number of equal
segments of an axis. For example, consider the segments in Figure
5.9. The axis PQ in Figure 5.9.(a) divides the contour into two
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segments, one for the left-hand side, the other for the nght-hand
side. Their areas are respectively St and S2. This axis is divided
into two equal segments as shown in Figure 5.9.(b). If a line
perpendicular to PQ is drawn through the middle point of PQ, the
contour is divided into four segments, where the areas of the
segments are respectively S11, S12, S21 and S22, i.e.,, S11 and S12
for the left-hand side, and S21 and S22 for the right-hand side.
Dividing the axis in Figure 5.9.(C) into four equal segments resuits

Figure 5.9 Contour segmentation.

in eight segments, where their areas are S, Si12, S121, S122, Sa1y,

Sz12, Szm'and S22, respectively. Further{divisionjof the axis will
produce a large number of smaller segrﬁérﬁsfhﬂje ratio for each
segment can be obtained as previously shown in gquations (5.3.1-
2) and (5.3.1-3). The ratios for the segmentations in Figure 5.9.(a)

are respectively:
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M=Al =2

PQ? -

The ratios for the segmentations in

respectively:

Si1 S21
= A1 ¥ rzi = Az X
riz=A 51, 1 2
2 = Al x —12 rez = A2 x —222_
St , S2
The ratios for the segments in Figure 5.9.(c) are respectively:
S111 S211
ritt = At X r211 = A2 ¥ ——
St , S2 ,
ri2 = At x% rz12 = Az ¥ 5212
St , S2,
rizt = At % S121 rz2t1 = A2 ¥ S221
St o, s2 ,
r122 = At x 2122 r222 = A2 x 2222
S, S2

The ratios for the segments in Figure 5.9.(d) are respectively:

St

rii11 = A1 %
St ,
S1112
ri11z = A1 ¥ !
St ,
riizt = At x St121
St ,

ri22 = A1 x 21122
S1

S1211
S1 ,

rizit = A1 x

r2=A2=

S2

PQ® - (5.3.2-1)
Figure 5.9.(b)

r2111 = Az x 22111
rz112 = A2 ¥ S2112
S2,
S2121
121 = A2 X
Sz ,
r2122 = A2 ¥ 52122
rz211 = A2 ¥ S2211
S2 ,
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r212 = At x 21212
St ,
ri2z21 = At ¥ S1221
S,
S1222
ri2z2 = At ¥ 3

S22
rz2iz = Az % 12
S2,
S2221
rz2z1 = A2 X
S2 ,
S2222
r2z2zz2 = A2 ¥ ———
S2 .

Consequently, the ratio for each segment can be obtained using
the ratio A1 or A2, and area S1 or S2 and the area of the segment
itself. After the ratios are obtained, the ratios can be represented

in the tree-type hierarchical structure as shown in Figure 5.10.
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Figure 5.10 The tree of ratios.
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In the object identification process, the ratio tree can be
efficiently used. Let us take a close look at this process. When a
new ratio tree is compared with the hbrary data, the comparison
is performed from the first level in Figure 5.10. Let a set of
ratios in the library data be a set of d's and newly calculated
ratios be r's. In the first level, if r1 % d1 or r1 X d2, it is
concluded that the new object is different from the object in the
library. On the other hand, if r1 = d1 and r2 = d2, the process
moves to the second level. If ri1 xdi1, ri2 xd12, r21 x d21 or
r22 xd22, it is concluded that the object differs” from that of the
library in shape. Otherwise, i.e., r11 = di1, r12 = d12, r21 = d21
and r22 = d22, the process moves down to the next level, where a
similar operation is undertaken. This process is a top-down
method; alternatively if the process is performed from the lowest
level, it becomes a bottom-up method. Either method can be
employed depending upon the situation. As far as the result is
concerned, there will be no difference between the methods.
However, the main difference will be in computing time. If the

majority of the objects underf_éénfjderﬂior{have completely
different shapes, the top-down method will be quicker. This is
because most of the results can be obtained in the upper levels. On
the other hand, if the majority of the objects have very similar
shapes, the bottom-up method will be better. The reason is that in
most cases when the top-down method is adopted, the

dissimilarity is determined around the bottom level.

Let us focus on the library data for biological objects. For
example, in a species of butterfly there will be some variation
among the shapes of butterflies. When the library data are built,
this variation should be considered. In image analysis, this
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variation is usually called a tolerance. This tolerance should be
considered at every level of the ratio tree in Figure 5.10. if the
variation for each ratio is obtained, each node of the ratio tree in
the library data will have upper and lower limits of a ratio. In the
object identification process, the comparison is performed using
the upper, lower limits and newly obtained ratio. In the first
level, if dit < r1 <diYand dol < r2 <d2Y, the process moves down to
the next level; otherwise, it is determined that the new object
has a different shape, where dl represents the lower limit and dv

the upper limit.

Additionally, consider how to identify the shape of a reflected
image (a mirror image). In this method, the task can be easily
accomplished using the ratio tree. In the first level, if dit <r2 <
diV and d2L < r1 < d2Y, the process moves down to the next level;
otherwise, it is determined that the new object has a different
shape. This process only differs from the previous process, in the
comparison of ratios. The ratio r1 is replaced by the ratio r2, and

vice versa.

In practice, how can an axis and the ratio, which play a major
role in object identification, be obtained?

21D in Principal Axi

Firstly, note the procedure for searching a principal axis. The
simple traditional method to obtain the axis of a contour
consisting of N points is as follows:

(i) For each point in a contour, calculate distances from the point
to the other points in the contour, and select two points forming
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the longest distance.

(i) N longest distances were obtained in the step (i). Select the
maximum distance from the N longest distances.

In this method, the number of distances calculated is N(N-1). Let
us consider the number of distance calculations using the nine
points in Figure 5.11.(a). For the point A, eight distances of the
solid lines will be calculated, and for the point B, another eight
distances of the dotted lines will be calculated. Likewise, this
calculation will be repeated for the other seven points. The
number of distances calculated in this case is 9 x (9-1) = 72.

-
-

e

{

-
\‘I“---‘.-.BP-.-..-"

(x_min, y_min) M(Xm , Ym (x.max, y_min)

(b)

Figure 5.11 Calculations of distances for finding a diameter,
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The more efficient method, which was devised in this thesis, to
obtain the axis of a contour is as follows:

(1) Draw the smallest circumscribing rectangle whose sides are
chosen to be parallel to the coordinate axes as shown in Figures
5.12.(a) and (b).

(2) Select the longer side of the rectangle and find the middle
point of the side.

(3) Divide the contour into two curves using the x- or y-
coordinate of the middle point. If the longer side is parallel to the
x-axis as shown in Figure 5.12.(a), the x-coordinate should be
used; otherwise, as shown in Figure 5.12.(b), the y-coordinate
should be used.

(4) Let the curve on one side be Curve A, and that on the other side
be Curve B. For each point on the Curve A, calculate the distance
from the point to every point on the Curve B, and select the
longest distance with the (x, y) coordinates of the two points
forming this distance. Then, the number of the longest distances
selected is equal to the number of points on the Curve A.

(5) Select the maximum distance from the longest distances with
the (x, y) coordinates of the two points forming this distance. The
maximum distance obtained is a diameter and the two points of
the axis are the extreme points.

As an illustration of this method, consider the procedure with
the contour consisting of nine points in Figure 5.11.(b) which is
the same as that in Figure 5.11.(a). (1) Search the x-coordinates
for the minimum and maximum values, and also search the y-
coordinates for the minimum and maximum values. Let the
minimum and maximum values of the x-coordinates be
respectively x_min and x_max, and those of the y-coordinates
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y_min and y_max, respectively. Thus, the smallest circumscribing
rectangle as shown in Figure 5.11.(b) is obtained. (2) The sides of
the rectangle which are parallel to the x-axis are the longer
sides, since d1 > d2. The middle point M{xm, ym) is obtained by:

Xm = X_min + (x_max - x_min)/2,

ym = y_min + {y_max - y_min)/2.
(2) Since the longer sides are parallel to the x-axis, the x-
coordinate xm is used to divide the contour into two curves, i.e.,
Curve A and Curve B.

If xi <=xm, (X1, y;} € Curve A,

otherwise, (x, y;) € Curve B.
The four points on Curve A are located on the left-hand side of the
dashed vertical line in Figure 5.11.(b) and the remaining five
points are located on the right-hand side. (4) For each point on
Curve A, five distances are calculated, and the longest distance is
selected. Likewise, the number of distances calculated is 4 x § =
20. (5) The maximum distance can be selected from the longest
distances.

--------
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Figure 5.12 Circumscribing rectangles.




Consequently, this method can reduce the computing time. If a
contour consists of a larger number of points, the traditional
method causes a serious problem in the operation with time-
consuming calculations. The basic paradigm behind this method is
that the approximate locations of the extreme points of a contour
can be found out in advance using a simple method. In a
circumscribing rectangle in Figure 5.12.(a) or (b), the extreme
points of a contour are obviously located around the end parts of
the longer side, respectively, as depicted by the dotted zones in
Figures 5.12.(a) and (b). Once the locations are determined, the
curve in one of the zones can be separated from the curve in the
other zone. Dealing with the separated curves to find a diameter
can reduce the number of calculations where all of the points are
involved. The maximum number of calculations for distances
involving N points is (N/2) x (N/2). The weakness in this approach
is that it is only applicable in the case of a rectangle. Another
weakness of this approach is that it is no longer applicable if a
contour has more than one axis.

2 Calculation of Rati

In a procedure for calculating ratios, an important task to be
undertaken is calculating the area of each segment. In practice,
the image of an object is arbitrarily located in an image plane, so
the orientation of an image is usually different from that of the
other image. Thus, this makes the task complex.

5.3.2.2.1 Rotation of a_Contour,_

To simplify this task the first operation to be carried out is to
rotate a contour, formed by an object, using one of the extreme
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points obtained in the previous procedure. The major objective of
the rotation is to make a principal axis, connected between two
extreme points of the contour, parallel to the x-axis. The method
for rotating the contour at the centre of rotation is to rotate
every point on the contour by an angle formed with the principal
axis and the x-axis. This centre of rotation is one of the extreme
points. The procedure for the rotation is as follows:

(1) Choose one of the extreme points obtained, which is to be
regarded as the centre of rotation. Assume that the extreme point
chosen is P, and the other extreme point is Q. Let the (x, y)
coordinates of the points P and Q be (xp, yp) and (xq, Yq),

respectively.

(2) Once the centre of rotation is determined, the rotation of
every point C(xc, yc) on the contour is performed on the centre of
rotation P(xp, yp). Firstly, an angle 6r for the rotation which is
formed with the principal axis PQ and the x-axis is calculated.

tan(e)
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Figure 5.13 The property of tan(o).
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Secondly, an angle 6¢c formed with a straight line PC and the x-
axis is calculated, where the straight line PC is a line connected
between the point P(xp, yp) and each point C(xc, yc) on the contour.
In general, an angle 6 formed with a straight line, connected
between the origin O(0, 0) of the x-y plane and an arbitrary point
A(xa, ya), and the x-axis is calculated by applying the
trigonometric function, e.g., 8 = arctan(ys/ xa). It is necessary to
note the property of the function tan(e) before applying it. As
Figure 5.13 shows, the value of tan(8) is determined by an angle ©
and a quadrant to which a point belongs. Since the property of this
function is well known, it does not need a detailed explanation.
Thus, it is necessary to consider the location of a point Q(xq, Yyaq)
in order to obtain a correct angle by applying the arctangent
function. The angle 8r for rotation can be calculated as follows:

It is assumed that the point P(xp, yp) is regarded as an origin of
the x-y plane.

(i) When the point Q(xq, yq) is located in the quadrant |, the angle
Or is obtained by or = arctan [{yq- yp)/(Xq- Xp)].

(i) When the point Q(xq, yq) is located in the quadrant I, the angle
Or is obtained by or =x + arctan [(yq- yp)/(xq - Xp)}.

(i) When the point Q(xq, yq) is located in the quadrant Ill, the
angle 6r is obtained by 6r = = + arctan [{yq- yp)/{xq- xp)].

(iv) When the point Q(xq, yq) is located in the quadrant 1V, the
angle or is obtained by 6r = 2r - arctan [(yq- yp)/(Xq- Xp)].

In all cases of (i), (ii), (iii} and (iv), a case when the straight line
PQ is parallel to either the x- or y-axis is not included. Note that
this case will be treated by particular method which will be
illustrated in detail in the step (4) below.
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(3) In this step, the angle, denoted by 8¢, formed with the straight
line PC and the x-axis is calculated. In fact, this calculation is
performed for every point on the contour. Thus, the number of
angles to be obtained is equal to [the number of points on a
contour - 1] since the point P is fixed. This calculation is
performed by the same method as in step (2), but only the two
cases (v) and (vi) are added.

(i) When the point C(xc, yc) is located in the quadrant |, the angle
8¢ is obtained by 8c = arctan [(yc - yp)/{xc - xp)].

(ii) When the point C(xc, yc) is located in the quadrant I, the angle
6c is obtained by 6c ==n + arctan [(yc - yp)/(xc - xp)].

(i) When the point C(xc, yc) is located in the quadrant I, the
angle 8¢ is obtained by 8¢ == + arctan [(yc - yp)/(Xc - Xp)].

(iv) When the point C(xc, yc) is located in the quadrant IV, the
angle 9¢c is obtained by 8¢ = 2r + arctan [(yc - yp)/(xc - xp)].

(v) When the point C(xc, yc) is located on the border line between
the quadrants | and I, the angle 8¢ is obtained by 6c =n/2.

(vi) When the point C(xc, yc) is located on the border line between
the quadrants Il and IV, the angle 8¢ is obtained by 6c = 3n/2.

(4) The method of rotation is subdivided into two categories
depending upon a feature of the straight line PQ: (i) the first
category corresponds to a case when the straight line PQ is
parallel to either the x- or y-axis, (ii) the second category
corresponds to a case when the straight line PQ is not parallel to
any axis, i.e., the x- or y-axis.

(i) In the first category, when the straight line PQ is parallel to
the x-axis, it is unnecessary to rotate the contour because the
objective of the rotation is to make the straight line PQ paraliel
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to the x-axis. On the other hand, when the straight line PQ is
parallei to the y-axis, the x-coordinates of every point on the
contour are simply replaced by the y-coordinate of the point, and
vice versa.

(i) In the second category, every point C(xc, yc) on the contour is
rotated with the angle of rotation @r, which has been calculated in
the step (2), on the centre of rotation P in thé counter-clockwise
direction. For instance, if the points C(xe, yc), Q{xq, yq) and C'(xc’,
yc') are located in the quadrant |, as shown in Figure 5.14, where
_C'(x¢', y¢') is a point resultant from the rotation of the point C(xc,
ye), the angle ZC'PX will play an important role in calculating the
(x, y) coordinates of the point C'. Since the angle LCPX =8¢ and the
rotating angle ZQPX=0r, the rotated angle ZCPC'=6r. Thus, the
angle ZC'PX = ZCPX - ZCPC' =6c - 6r. Using this angle ZC'PX (6c -
or), the x-coordinate of the point C’, denoted by xc', and the y-
coordinate of the point C’, denoted by yc' are respectively
calculated by the following equations:

x¢' = xp + PC' cos(6c - 6r), (5.3.2.2.1-1)
ye' = yp + PC’ sin(0c - 6r). (5.3.2.2.1-2)
4 C(x,, y,)
Clx;, u.)
Q(xq, gq)
8,/ \ (8,- 6,)
8, E
8, \ 4 X
P(x,. 4,)

Figure 5.14 Rotation of points.
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The (x, y) coordinates of every point rotated can be obtained by
applying Equations (5.3.2.2.1-1) and (5.3.2.2.1-2) with the values

of the angles 8r and 8¢ calculated in steps (1) and (2).

5.3.2.2.2 Calculation of Areas of Segments.

Once the principal axis of a contour has been rotated parallel
to the x-axis, calculation of the area of each segment is
performed. Before performing the calculation, consider the
different types of contours which appear in biological object
analysis, as shown in Figure 5.15. In the type of contours shown in
Figures 5.15.(a) and (b), the contour is divided into two curves:
one is above the principal axis PQ and the other is below the axis.
On the other hand, in the type of a contour in Figure 5.15.(c), the
contour is not divided by the axis PQ. In this case, the whole

contour is located above the axis PQ.

N2V

TN
\_/ P Q
(a) (c)

Figure 5.15 Contours of biological objects.

This shows that a principal axis PQ of a contour does not always
divides the contour into two segments. The procedures for
calculating areas of segments are as follows:

(1) The first task is to select every point whose y-coordinate is
greater than or equal to the y-coordinate of the point P or Q, and
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to select every point whose y-coordinate is less than or equal to
the y-coordinate of the point P or Q. In cases of the contours in
Figures 5.15.(a) and (b), two vectors are obtained: one for the
upper part and the other part for the lower part. On the other hand,
in the case of Figure 5.15.(c), only one vector is obtained, since
the whole contour is located in the upper part. The vector contains
(x, y) coordinates of every point in the upper part or lower part of

the axis.

(2) In the second step, rearrange the vectors so that the point P or
Q may be put first. The vectors are represented by:

the vector for the upper part the vector for the lower part

(X1 ¥p) (X5 ¥p)
(xu1u yU'[) (xl.‘l' yL‘l)
(Xu2r Yu2) (XL2r Yi2)
(xu.l' Yol (XL;' i)
(Xg Yo (xq: Yo

(3) In the third step, divide the principal axis PQ into N equal
segments, where N should be 2", where n >= 0. N = 2" is selected
for the convenience of constructing a ratio tree. The accuracy of
discriminating objects mainly depends upon the N. Two arrays,
e.g., S1lk] and Sz[k], where k = 1, 2, 3, ...... , N, which can be used to
assign the area of each segment are needed. The arrays S1[k] and
Sz[k] are for the upper part and the lower part, respectively.

192




(4) The area of each segment is calculated by applying a
trapezoidal method. In this method, the number of parameters
required is four: x,, X,,{ f(x), and f(x;,4) as shown in Figure
5.16.(a). The area S of each diagram in Figures 5.16 (a) and (b) is
calculated by the following equations:

S = (1/2) (f{x) + f(x,¢)) (X,1- %) (5.3.2.2.2-1)
where if x, 4>%,8 >0, (5.3.2.2.2-1a)
if xi+1 < Xi, S < 0. (5.3-2-2.2'1 b)

In the case of the diagram in Figure 5.17.(a), the area is
calculated by Equation (5.3.2.2.2-1a), since x;,, > X;. On the other
hand, in,case of the diagram in Figure 5.16.(b), the shaded area is
calculated by applying Equations {5.3.2.2.2-1a) and (5.3.2.2.2-1b).
Let us have a closer look at the process of calculating the area in
the latter case. Assume that the lines AB and CD in Figure 5.16.(b)
are straight lines, respectively. Firstly, calculate the area of
trapezoid ABFE, S,, by applying Equation (5.3.2.2.2-1a). Secondly,
calculate the area of trapezoid CDEF, SB' by applying Equation
(5.3.2.2.2-1b), where the area Sy is less than zero, since the point
C appears earlier than the point D in a vector obtained in the step
(2). Thus, the shaded area is S + S,

f(Mia- )
f(xf).-—’/ﬂi 1
' > f(x.
xi >l('l'-l-l
(8) (b)

Figure 5.16 The areas of segments.
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In practice, areas of segments in the upper part or the lower part
of a principal axis PQ are calculated by the following equations,
respectively:

For the area of each segment in the upper part:

St = (1/2) [{yy - ¥p) + Wuiet = YRl (Xuisr = Xy (5.3.2.2.2-2)
where (X, Y,) and (X,1 Yui.q) are (x, y) coordinates of the two
adjacent points on the curve in the upper part as shown in Figure
5.17. For the area of each segment in the lower part:

S2 = (1/2) [(yp— y,_j) + (¥p - yl_jﬂ)](:n:,_i,,1 - X)) (5.3.2.2.2-3)
where (X, ¥ j) and (Xj,1, Yije1) are (x, y) coordinates of the two
adjacent points on the curve in the lower part as shown in Figure
5.17.

(Xui+1, Yui+1)

(%ui, Yui)

SRRV
ALRRLRRNRAR NS

7 Qx .,y )l
P(XPJQP) 7 ’ ~=p’ P

Figure 5.17 Area of a segment in the upper or lower part.

Whenever the area of a minor segment within a specific range,
e.g., from x, to x5 as shown in Figure 5.18, which has been
determined in step (3), is obtained, this area is assigned to the
corresponding array, e.g., S1[k] or Sz[k], where k is an index for the
kth segment. The range of k is from x, to xg. Once the area of
every minor segment is assigned to the corresponding array, the
result is as follows:
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For the segments in the upper part of a contour, the array S1[k],
where k=1, 2, 3, ...... , N, containing areas is:

St | sil1] | sil2] | sil3) | slalf------ Silk] |-+~ S1iN]

For the segments in the lower part of a contour, the array Sz[K],
where k = 1, 2, 3, ...... , N, containing areas is:

S2 | s2[1] | S212]) | s213] | S214]| - - - - - S2{k) [------ S2[N]

Let the total area of the upper part of a contour be S17 and the

total area of the lower part of a contour be S2T. The S17 and S2T
are respectively calculated by:

N
St = W ilkl,
k=1

N
S2T = 3 S,[K],
k=1

this ares is assigned to Silk]

2
{r1]

AR AR Y
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RO b
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~
\i%

this area is assigned to SJK]

Figure 5.18 fissigning areas into S1[k] and S2[k].
I ion Rati

An efficient way of establishing a ratio tree is to use a
bottom-up method in which the tree is built up from the bottom
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leve! to the top level. This approach saves computing time in
calculating areas. The process is as follows:

(1) Firstly, calculate the ratios A1 and A2. The ratio A1is a ratio
of the area of the upper part of a contour S1 over the area of a PQ
x PQ square which can be drawn on the straight line PQ as shown
in Figure 5.19. The ratio A2 is a ratio of the area of the lower part
of a contour Sz over the area of a PQ x PQ square which can be
drawn underneath the straight line PQ as shown in Figure 5.19.
The ratios A1 and A2 are respectively calculated by Equation
(5.3.1-2):

Al = St A2 = 52
PQ? . PQ

Let the ratios At and A2 be r1 and r2, respectively.

2

—r

oL

Figure 5.19 Diagrammatical representation of ratios.

(2) In the second step, the ratios from the bottom level to the
second level are calculated. Let the ratios for the segments in the
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upper part of the bottom level be ri1[1], r1{2], n[3], ...... , I[N}, and
the ratios for the segments in the lower part of the same level be

re[1], r2[2], r2[3], ...... , 12[N]. The ratios are calculated by:
r[1] = Ar x S11] r2[1] = Az x S2l!]
TH s2'

rl2] = A1 x 112 (2] = A2 x _S2l2]
' si’ s2'

r1{3] = At x S13] r2[3] = Az x 52131
S‘T ’ 32T ,

rilkl = A1 x SUKL i) = Az x _S2lKI
ST, ST |

S1lN] rz(k} = Az x Sz[NI
ST, S27

ri[N] = A1

In the upper part, the ratios for the segments of the level one
level above the bottom level are calculated by:

rl1, 2] = A1 x S1{1] +Si(2] r2l1, 2] = Az x S21] + S2[2]

517 ' 52! ’
ri3, 41 = a1 x 181+ S114] r2[3, 4] = A2 x SA3I + Szl4]

S‘T ’ SZT ’
nls, 6] = A1 x S1SH+ S1l6] ralS, 6] = A2 x S2ASI * S2(6]

1! ! Sa' :

rilk, k+1]= At x Stk +Stlke 1] ok, ke 1] = A2 & 5z[k] + Sz[k+1]
517 ) g2T ,
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StIN-1] + S1[N] \oIN-1, NI = A2 X S2[N-1] + 52[N]
S‘T s2r

2

Likewise, the ratios for each level of the tree can be calculated.
The process for building up the tree is graphically illustrated in
Figure 5.20.

ri[N-1, NI = At X
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rilt,27..,n/2]
rilt, 2, ..., 4]
ri1, 2} rifs,¢] ...

A
rzl1,2; ..., n/2]
A
rz(1] rzf2] r23] re2f4]. . ..

r1d >[2] rié

\

ril4]

rili,z,.

« .o

.., N]

rlN/e,(N/2)+1, .., N]

/N
N\

r1 [k k+1 k+2 k+3]

/N

rilk, k+1] rln-1, N

ccccc

ré rki]. .. r14\ul

(the upper part)

rzl1,2,.

.N]

r2IN/2,( N/2)+1, ..., N]

"

rzlk, k+1] rz2{n-1, n]
. rzfk] ;I]. .. reln-1] 2wl

(the 1ower part)

Figure 5.20 The bottom-up process for a ratio tree.
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5.4 CONCLUSION.

It 1s well known that the result of a computerised object
discrimination system mostly relies on the shape descriptor. This
means that *how well is a shape descriptor organised in its
function?” corresponds to “how well can an object discrimination
system operate?”. The most important factors which have been
emphasised for an object discrimination system are accuracy,
efficiency and generality. With this view point in mind, an
investigation has been carried out on the existing shape
description methods. Among them, three methods such as the
invariant moment, the Fourier descriptor and the chain code have
been considered, since they have been commonly used in the shape
description domain. Each method has been reviewed from the
theoretical background and detailed procedure to the final
product. Some case studies, applying each method, have been
investigated to correctly evaluate the functional aspects of each
method. The investigation has revealed the following important
facts. The first is that the latter two methods cannot directly be
involved in the object discrimination procedure. The second
important fact is that two of them have commonly been designed
to produce only a vector that can represent a normalised contour
which is invariant to location, orientation and starting point
factors. In practice, some important attributes such as diameters,
widths, ratios and angles, etc. are extracted from the vector in
the object discrimination procedure. On the other hand, most case
studies applying the invariant moment method have commonly
argued that seven different kinds of invariant momenis do not
provide a practical description and this causes confusion when
selecting the optimum number of invariant moments for use with

200




an object discrimination procedurs.

Consequently, it was necessary to develop a new shape
descriptor which could be directly involved in an object
discrimination procedure. This improved method is to transform a
two-dimensiona! contour of an object into two one-dimensional
curves; and to calculate ratios using the area of each segment, the
area of a curve bounded by an axis, and the area of a {length of an
axis] x [lfength of an axis] square. A hierarchical tree which is
established by ratios can be directly involved in an object
discrimination procedure. The most important feature of this
improved method is that it is an attempt to discriminate an
object using the similar method to that of human vision. This
shape descriptor accommodates the basic requirements that a
shape descriptor should be independent of location, orientation
and starting point of a contour. In addition, this shape descriptor
can easily be used in discriminating a reflected image, i.e., a
mirror image. On the other hand, this method has a deficiency in
discriminating an object which has more than one axis.
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6.1 INTRODUCTION,

In a biological object identification process the information
which is obtained from each object’'s shape is not always good
enough to discriminate one object from another. If however, each
object also consists of complicated patterns with distinctively
different colours, the information obtained from the various
colour patterns within each object is added to the information
from the shape, the object identification is likely to be improved.
In the real world, a great majority of biological objects have the
same shape but contain various colour patterns. Thus it is
necessary to consider the colour patterns in the object
identification process. It may not be too much to say that the
success of the object identification depends upon the information
from the colour patterns which form the surface of an object. An
important task which immediately arises is how to describe the
information in such a way that it can be successfully utilised in
the object identification process. From this point of view, the
colour pattern description is worthy of investigation.

The literature survey which has been performed in this thesis
has revealed that a great amount of research has already been
accomplished in the shape description domain, but, on the other
hand, only a little research has been performed in the colour
pattern description domain. The reason for this might be that
since most algorithms for colour pattern extraction which have
been published require laborious effort, they are not good enough
to be generally applied in other academic or industrial research
fields. In practice, because colour pattern extraction requires a
complicated methodology in which a colour pattern has first to be
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decided on, it was considered unreasonable to expect active
research in this field in an object classification procedure. The
colour image capturing devices were not generally available to
deal with colour pattern extraction. Pattern descriptors which
have been commonly used are a measure of compactness of a

pattern which is defined as (perimeter)/area, the area of a
pattern, the orientation of the principal axis, the mean of the grey
levels, and the variance of a pattern, etc. In fact, colour patterns
in an object cannot be completely described by any one of these
descriptors alone. The reason for this will be discussed in detail.

In this chapter, several important factors which are required
to represent the features of each colour pattern within an object
are defined. The background and motivation of the definition of
these factors will be discussed. In particular the organisation of
these factors for the object identification will be discussed.
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6.2 MAJOR FACTORS FOR COLOUR PATTERN DESCRIPTION.

In the great majority of butterflies, wings usually consist of
colour patterns. Some species of butterflies have no colour
pattern on their wings, but most species do. The colour pattern is
defined as a region which is composed of picture cells having
similar colour features which are connected to each other (Duda &
Hart, 1973). Each colour pattern varies depending upon
characteristics such as colour feature, size feature, location
feature and shape feature. The colour feature is a property of
colour sensation which each colour pattern shows. The size
feature is a property representing the area of each colour pattern
in relation to the total area of an object to which each colour
pattern belongs. The location feature is a property representing
the position of each pattern within an object. The shape feature is
a morphological property which each pattern forms. These
features play an important role in species discrimination, and
they can be used as major factors for colour pattern description.
The colour patterns obtained by applying the algorithm in Chapter
4 are represented by these major factors which can be used to
classify objects. In the object discrimination procedure, all the
major factors should be simultaneously considered because if any
one of the factors fails to be assessed it is difficult to
successfully carry out the discrimination. The background and
necessity of each factor will be illustrated. An important fact to
be noted is that these factors will dominate the algorithm for the
discrimination of butterfly species with colour-patterned wings.

2056




6.2.1 The Number of Different Colour Patterns.

As an illustration, consider three different wing patterns of
butterflies as shown in Figure 6.1. The wings in Figure 6.1 are
those of childrenae, lycimenes and dardanus. At first glance, they
look similar. However, they have completely different wing
pattern features. How then can one make it possible for an
automatic object discrimination system to classify their
different features? This question implies a necessity for a
systematic organisation of these features in a colour pattern
description. Let us only consider the colour patterns on the wings
in Figure 6.1, not their shapes. The wings in Figures 6.1.(a) and (b)
contain three different colour patterns. On the other hand, the
wings in Figure 6.1.(c) contain two different colour patterns. All
of the wings have a similar colour feature on the background.
Thus, it is possible to simply discriminate the wings in Figures
6.1.(a) and (b) from the wings in figure 6.1.(c) using the number of
different colour patterns. However, it is impossible to
discriminate the wings in Figure 6.1.(a) from the wings in Figure
6.1.(b) using the number of different colour patterns because they
have equal number. Consequently, the number of different
colour patterns can be regarded as a factor for colour pattern
description although it does not completely discriminate objects.
Using this factor in the actual discrimination procedure can
obviously reduce the number of cases, when searching in library
data by excluding objects whose number of different colour
patterns is not equal to that of the object under consideration.
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6.2.2 Colour Feature of Each Colour Pattern.

If the number of different colour patterns cannot discriminate
the object in Figure 6.1.(a) from the object in Figure 6.1.(b), let us
consider the easiest way of the discriminating these objects. An
immediate method for the discrimination is to consider the colour
feature of each pattern. The colour of the small pattern in the
upper part of the wings in Figure 6.1(a) is yellow. The colour of
the pattern in the middle part of the wings in Figure 6.1.(a) is
yellow-green. The colour of the lower part is red. The colours of
the upper and the lower parts of the wings in Figure 6.1.(b) are
respectively the same as those of the upper and the lower parts of
the wings in Figure 6.1.(a). On the other hand, the colour of the
middle part of the wings in Figure 6.1(b) is green. When the
colours of the patterns in Figure 6.1.(a) are respectively compared
with those of the patterns in Figure 6.1.(b), it can be concluded
that the two objects are different because of the colour
difference between the pattern in the middle part of the object in
Figure 6.1.(a) and that in the middle part of the object in Figure
6.1.(b). Consequently, this colour feature undoubtedly plays an
important role in a colour object discrimination procedure. Thus,
this colour feature can obviously be regarded ‘as the second
factor of colour pattern description. The important fact to be
noted is that there are many factors such as environmental
conditions, film speed, the size of the aperture and shutter speed
of a camera, etc. which affect the colour representation of a
photograph. If an image is obtained from a photograph, there are
some variations in the colour features of an object due to these
factors. Thus, the variations of a colour feature should be
considered in the description.
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(a) (b) (c)
Figure 6.1 Wing patterns. (a) The left wings of childrenae. (b)
The left wings of Iycimenes. (c) The left wings of dardanus.

"9

(a) (b)
Figure 6.2 Wing patterns.

* Y

(a) (b)
Figure 6.3 wing patterns.

* Y

(a) (b)
Figure 6.5 Wing patterns.
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6.2.3 The Ratio of the Area of Each Colour Pattern Over
the Total Area of an Object.

As Figure 6.2 shows, if the colour features do not make a
difference, the alternative to using the colour feature is to use
the size of each colour pattern relative to the size of the whole
object. This means that the size of an object varies depending
upon the photograph size, but also upon the size of an object
itself. Thus, a reasonable way of using the size of each colour
pattern is to use the ratio of the area of each colour pattern over
the area of an object. Let the ratio of the area of the yellow
pattern over the total area of the wings be ra1; the ratio of the
area of the green pattern over the total area be ra2; and the ratio
of the area of the red pattern over the total area be ra3, in Figure
6.2.(a). Likewise, let the ratios of the areas of the colour patterns
over the total area of the wings in Figure 6.2.(b) be respectively
ro1, w2 and m3., These ratios should be arranged, in descending
order as ra2 > ra3 > rat and rb2 > 3 > mt. In the discrimination
procedure, this pair of ratios with the same order can be
efficiently used. In fact, the arrangement of the different colour
patterns in an object, as shown in Figure 6.2.(a) or (b) is so
random that a reasonable arrangement of the ratios in descending
order is necessary, since this arrangement is invariant to
irregular arrangement of the patterns within an object. The basic
idea of this arrangement is that a certain c¢olour pattern which
has the largest area can initially be denoted by human vision, and
each colour pattern can also be detected in the order of its size.
In the discrimination procedure, if ra2 = 2, ra3 = 3, and rat = w1,
it is concluded that the two objects have patterns with the same
number, same colour features, and same ratios; otherwise, it is
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concluded that the two objects have different colour patterns. In
fact, in the case of Figure 6.2, ra2 X rb2, ra3 Xrb3 and rat X ros, thus
it is concluded that these wings have different patterns.
Consequently, the ratio of the area of each colour pattern over the
totat area of an object can be regarded as the third factor of

colour pattern description.

6.2.4 Normalised Centre of Gravity of Each Colour
Pattern.

As Figure 6.3 shows, each object has three different colour
patterns, where each pair of colour patterns have similar colour
features and similar ratios, but different locations within each
object. These objects in Figure 6.3 cannot be discriminated by the
three previous factors of colour pattern description, i.e., the
number of different colour patterns, the colour feature, and the
ratio of the area of each colour pattern over the total area of an
object. Thus, employing a locational factor should additionally be
considered in order to discriminate such objects as in Figure 6.3.
To describe the location of a colour pattern is not a simple task
because the orientation of the principal axis, location and size of
an object to which the colour pattern belongs varies. The basic
procedure for describing the location of a colour pattern is to
describe its location such that it is independent of the
orientation, location and size of an object. In the region
description domain, the location of the centre of gravity has
commonly been used. However, the location of the centre of the
gravity of a pattern depends upon the orientation of the principal
axis, location and size of an object. Therefore, the centre of
gravity of a colour pattern cannot be used without any kind of
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normalisation. There should be two kinds of normalisation , i.e.,
the normalisation of the orientation of the principal axis of an
object, and the normalisation of the location and size of an
object. The normalisation of the orientation is carried out by a
similar method to that which has been developed in the previous
chapter. Since this normalisation has an important effect on the
other factors which will be discussed in the following stages, the
detailed calculation method will be illustrated in section 6.3.
Once this normalisation is performed, the result will be obtained
as shown in Figure 6.4. Let the length of the principal axis PQ in
Figure 6.4 be d. For the normalisation of the (x, y) coordinates of
the centre of gravity, two d x d squares should be drawn as shown
in Figure 6.4. Then, calculate the (x, y) coordinates of the centre
of gravity for each colour pattern. Let the (x, y) coordinates of the

the -
centre of gravity for one ofAcotour patterns be (Xr, %) as shown in

Figure 6.4.
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Figure 6.4 Normalisation of the centre of gravity.
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Let the (x, y) coordinates of the lower left corner of the rectangle
in Figure 6.4 be (xp, ya). Note that the centre of gravity is a point

C(%r, ) which can easily be changed depending upon the location
and size of the whole image. Thus, it is necessary to make the
centre of gravity invariant to the location and size of the whole
image. The most convenient and efficient way of doing this is to
make use of the (X, y) coordinates of the centre of gravity, (xp,
ve), the {d + d) x d rectangle, and the (x, y) coordinates of the
lower left corner as shown in Figure 6.4. The basic principle of

this normalisation is to describe the point C(%r, &) in relation to
the rectangle and the (x, y) coordinates of the lower left corner,
(xp, ya). Note that the rectangle, ABDE, in Figure 6.4, is determined
by the length of the principal axis of an object, and is invariant to
the location of the object. Let the (x, y) coordinates of the

normalised centre of gravity be (%n, Un). The (x, y) coordinates of

the normalised centre of gravity, (%n, Un), are calculated as

follows:
Rn = Xr - ¥p
d ) (6.2.4-1)
gn=_.g_':.l
d+d

: (6.2.4-2)
As Equations (6.2.4-1) and (6.2.4-2) show, %n and Uy are ratios,

i.e., Rnis the ratio of (%r - xp) over d and Unis the ratio of (Ur - yo)
over (d + d). These ratios are calculated in relation to the
rectangle and the (x, y) coordinates of the lower left corner in
Figure 6.4, therefore they are invariant to the location and size of
an object. This normalised centre of gravity can be used in the
object discrimination procedure. Consider, for example, the colour
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patterns in each object in Figure 6.3. The normalised centre of
gravity of the green pattern in each object will have a similar
value. On the other hand, the normalised (x, y) coordinates of
Ha centre of gravity of the yellow pattern in Figure 6.3.(a) will be
quite different from those of the yellow pattern in Figure 6.3.(b};
and the normalised (x, y) coordinates of /\centre of gravity of the
red pattern in Figure 6.3.(a) will also be quite different from
those of the red pattern in Figure 6.3.(b). Note that since variation
in the normalised centres of gravity for the target colour patterns
is usual even in the same species, this variation should be
considered in a practical implementation. Consequently, the
normalised centre of gravity of each colour pattern can be used as

the fourth factor of colour pattern description.

6.2.5 The Slope of the Regression Line of Each Colour
Pattern.

The yellow and red patterns in Figure 6.5.(b) are respectively
those in Figure 6.5.(a) rotated through 90° in the counter-
clockwise direction. As Figure 6.5 shows, each object has an equal
number of different colour patterns, where each pair of colour
patterns have similar colour features, similar ratios of their
areas over the total area, and similar normalised centres of
gravity, but different orientations of the principal axis. These
objects cannot be discriminated by the four factors of colour
pattern description, i.e., the number of different colour patterns,
the colour feature, the ratio of the area of each colour pattern
over the total area of an object, and the normalised centre of
gravity. Therefore, it is necessary to additionally consider the
morphological aspects of each pair of colour patterns in order to
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classify the objects in Figure 6.5. The shapes of the colour
patterns in Figure 6.5 could be considered to be simple in therw
description. However, the description of the shape of a colour
pattern in an object usually is a complicated task as the previous
chapter has shown. Note that the main objective of the colour
pattern description in this system is not for detailed
morphological analysis relevant to a particular domain, but for a
computerised object discrimination procedure which can
generally be adopted in the biological object discrimination
domain. For this purpose, four important factors of colour pattern
description have already been introduced. Applied simultaneously
in an object searching procedure, they should dramatically
reduce: the number of likely candidates in a sample space. Thus,
if only a few basic factors for shape description are added to the
previous facters, they will be able to cover a wide range of
various cases. The first sub-factor of shape description for a
colour pattern which is commonly used in the region description
domain is the orientation of the principal axis of a colour pattern.
Since this orientation usually varies depending upon the
orientation of an object to which the colour pattern belongs, the
normalisation of this orientation is inevitably required. The
normalisation is performed by rotating the principal axis such
that it becomes parallel to the horizontal line, as already
illustrated in the normalisation of the centre of gravity. Once the
principal axis is rotated, the orientation of the principal axis of
each colour pattern is approximated by applying simple regression
analysis. In this regression analysis, a simple regression equation
is usually represented by:

Yi = Bo+B1X +8i (6.2.5-1)
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where
% is the independent variable which is the x-coordinate of each

pixel in colour pattern,

Y is the dependent variable which is the y-coordinate of each
pixel in a colour pattern,

Bo is the intercept of the Y-axis,

B1 is the regression coefficient which represents the slope of the
regression line,

& is the error term.
An important fact to be noted is that since Bo varies depending

upon the location and size of an object itself, this value cannot
directly be used as a factor of colour pattern description. In
particular, since the normalised centre of gravity can efficiently
be used to represent the location of a certain colour pattern and
the regression line usually passes through the centre of gravity of
the rotated pattern, Po, which represents the intercept of the Y-
axis, does not need to be involved in the shape description.

Consider, for example, the colour patterns in Figure 6.5. Let
the B1 for the red pattern in Figure 6.5.(a) be B1a, the B1 for the red
pattern in Figure 6.5.(b) be Bib. The value of B1ais different from
that of B1b, since the red pattern in Figure 6.5.(b) is the red
pattern in Figure 6.5.(a) rotated through 90° in the counter
clockwise direction. For simplicity of illustration, compare $1a
with Pp1b. Since P1a is different from Pib, it can be concluded that
the two objects are different from each other. Consequently, the
slope of a simple regression line can be regarded as the fifth
factor of colour pattern description.
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6.2.6 The Ratios for Segments of Each Colour Pattern.

Suppose that two objects have an equal number of different
colour patterns, where the corresponding colour patterns have
similar values for all of the corresponding factors previously
discussed, but still look different from each other in their shapes.
In order to solve the additional problem of classifying the shapes
of the colour patterns, consider the second sub-factor of shape
description for a colour pattern which is the ratios of areas of

segments over the area of a colour pattern. Since the orientation

Sa3

Figure 6.6 The hypothetical patterns.

of the principal axis of a colour pattern usually varies depending
upon the orientation of an object to which the colour pattern
belongs, the normalisation of this orientation should be performed
as shown previously. in general, the ratios of areas are invariant
to the size of an object, so the size factor does not need to be
considered in the ratios. The basic principle behind the ratio
calculation is similar to that of the ratio calculation in the
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previous chapter. The ratio calculation which is now under
consideration is performed using the (x, y) coordinates of the

centre of gravity of a colour pattern. Suppose, for example, two
hypothetical colour patterns as shown in Figure 6.6, where all the
corresponding factors, which have been considered, have similar
values. In order to discriminate these patterns, draw dashed lines,
at the centre of gravity, each of which is parallel to the
horizontal or the vertical line and then split each pattern into
four segments, as shown in Figure 6.6. Count the number of pixels
in each segment. Let the area of each segment for the pattern in
Figure 6.6.(a) be Sat, Sa2, Sa3 and Sas; the area of each segment for
the pattern in Figure 6.6.(b) be Sbt, Sb2, Sb3 and Sv4; and the tota!l
area of each pattern be Sar and SuT. The ratio of the area of the
upper half over the total area of the pattern in Figure 6.6.(a) is:

Hat = Sa1 + Sa2
Sar ’ (6.26-1)

and the ratio of the area of the lower half over the total area of
the pattern in Figure 6.6.(a) is

Sas+ Sa4
Sar . (6.26-2)

Likewise, the ratios for the upper half and the lower half of the
pattern in Figure 6.6.(b) are respectively:

Hbt = __ 9b1 + Sb2
Sbr , (6 2.6-3)

Ha2 =

Hba = __ Sb3 + Sb4
Sbr . (6.2.6-4)

Since it has been assumed that all the corresponding factors have
had the same values, if each hole in Figure 6.6 has equal area, Hai
= Hb1 and Ha2 = Hv2. These ratios cannot discriminate these

patterns. Thus, consider the ratio for each segment to
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discriminate these patterns. The ratios of the area of each

segment over the total area of the patterns are:

Qa1 = .93t Qby = __Sbd
Sat |, Sbr
Qa2=z S22 Qb2=_Sb2
Sat |, SbT
Qas= _Sa3 Qbs=_ Sb3
Sat |, Sbr |,
Qas= _ 534 _ Qbe= __Sbe _
Sat Sbt (6.2.6-5)

where Qa1 through Qa4 are ratios for the segments in Figure 6.6.(a)
and Qb1 through Qb4 are ratios for the segments in Figure 6.6.(b).
Under the previous assumption, the corresponding ratios are
different from each other. Thus, these four ratios such as Qj1, Q2
Q3 and Qj4 will successfully be used as shape descriptors, where
j is a subscript for the different patterns. Aithough the previous
two ratios such as Hj1 and Hj2 could not discriminate these
patterns, they will also be used as shape descriptors because
every descriptor does not always discriminate different patterns.
Consequently, these ratios, i.e., Hj1, H2 Qj1, Q2 ;3 and Oy4 can
cbviously be regarded as the sixth factor of colour pattern
description.

So far, the six factors of colour pattern description have been
defined. The background and motivation of each factor has been
also illustrated. In fact, these factors can play an important role
in describing any colour pattern in an object because they have
been designed to accommodate the basic requirement which a
colour pattern descriptor should be invariant to the size,
orientation and location of an object to which each colour pattern
belongs.
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6.3 COLOUR PATTERN DESCRIPTION.

In the previous section, six major factors which are important
when discriminating objects have been defined, where each object
usually consists of patterns with various colour features, sizes,
locations and shapes. It has also been shown that each factor has
its own limitations in describing the various colour patterns, thus
all the factors should simultaneously be involved in the object
discrimination process. In the following sub-sections, the
detailed procedure for calculating each factor will be illustrated,
and then object representation with various colour patterns will
also be discussed. Once all the factors are obtained, these factors
should be hierarchically organised to reduce computing time when
searching library data for an optimum solution.

6.3.1 Calculation of the Major Factors.

o W i

Suppose, for example, that an object is described by these
factors as shown in Table 6.1. This object consists of three
different colour patterns. The colour of each pattern is described
by the L*a*0* colour features. Note that each colour pattern has
been obtained by applying - - Cluster Analysis as in Chapter 4.
Thus, there are two possible cases in which a colour pattern is
described by the L*a*h* colour features. One case is that of a
colour pattern constructed by pixels of completely homogeneous
L*a*b* colour features. The other case is that of a colour pattern
constructed by pixels which have slightly different L*a*b* colour
features, where this set of pixels forms a certain shape of
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pattern which is clearly distinguished from its neighbouring
pixels. In the former case, this pattern can be described by one
set of the L*a*b* colour features. In the latter case, this pattern
can be described by the centre of gravity of L*a*b*. This vaiue
can be easily obtained by simply calculating the mean value of
each of the L*, a* and b* from the units having equal Cluster i.d.s
of the Auxiliary Means created in Chapter 4. In Table 6.1, the
colour features for each pattern are represented by the centres of
gravity, i.e., Lmj, /ﬁ\mJ and ij, where j represents- each pattern.

Area of
Factor Colour | Pattern Normalised| g1
ope of
Feature ?-Z::I Centre of | Regression Ratios
Gravit
Pattern Area v Line

A Lma Ama Bma ra %ha Una Bat I:ia1 gai %az
a2 a3 Qad

B |umbAmbBmb| rb | Xnbinb b1 E: ; g:; g::

c Lmc Ame Bme re %ne Unc Pt fl':c; gciz gci
[+ -] (-}

Table 6.1 Object representation by factors.

6.3.1.2 The Ratio (the Area of Colour Pattern/the Total Area),

The third column in Table 6.1 shows the ratios of the area of
each colour pattern over the total area of the object. Each ratio
can be obtained by using the Auxiliary Means created in Chapter 4.
For each ratio, simply add all the values in the NOP of every unit
having an equal Cluster i.d. in the Auxiliary means; and divide the
result by the total number of pixels in this object. Then, the
ratios obtained are ra, rb and rc. As already illustrated in the
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previous section, these ratios should be arranged in descending
order. Hence, these ratics are arranged as ra > o > rc. If these
ratios are equal to each other, they should be rearranged by
considering the (x, y) coordinates of the normalised centre of
gravity. This will be discussed in detail later.

Normalised Centre of Gravity of Colour Patt

The fourth column in Table 6.1 shows the normalised centre of
gravity of each colour pattern. This normalised centre of gravity
of each colour pattern in an object is obtained by the following
steps:

(1) If a principal axis of an object is not parallel to the x-axis,
every point in the object should be rotated by an angle which is
formed with the principal axis and the x-axis on the centre of
rotation, i.e., ocne of the principal axis.

(2) Once the principal axis has been rotated to be parallel to the
x-axis, the centre of gravity of each pattern in the object is
calculated.

(3) The (x, y) coordinates of the centre of gravity of each pattern
which have previously been obtained are normalised.

In the first step, the angle which is formed with the principal
axis PQ which has been obtained in section 5.3, and the x-axis is
caleulated using the method in section 5.3. If the angle is equal to
zero, the rotation of every point is unnecessary otherwise every
point in the object should be rotated by the method in section 5.3.
In practice, the (x, y) coordinates of the rotated points are
obtained by applying the (x, y) coordinates of every point in each
unit which has an equal Cluster i.d. in the Auxiliary Means, to
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Equations (5.3-5) and (5.3-6).

In the second step, the centre of gravity of each rotated
pattern is calculated. Let the (x, y) coordinates of every point in
the pattern be (xri, yr1), and the centre of gravity of the pattern be

(%r, Ur). The centre of gravity is calculated by

n
E Xri
i=1

n

h
 Uri

- =1
n ’

where n is the number of pixels in the pattern.

In the third step, the normalised centre of gravity is
calculated. In this step, the most important (x, y) coordinates of
the lower left corner of the rectangle ABDE in Figure 6.7 are
respectively calculated as follows: the x-coordinate is the same
as the x-coordinate of the point P, i.e., xp, whereas the y-
coordinate yais:

ye = yp -d,
where d is the length of the principal axis PQ which is calculated
by:

d=(yq- Yp)
The distance d2 between two points B and C’ in Figure 6.7 is:

d2 = Xr - Xp,
where the point C' is the crossing point of the straight line DB
and the vertical line from the point C which is the centre of
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gravity of the pattern. The distance d3 between two points B and
C" in Figure 6.7 is:

d3=U - ya=U - (yp- d),
where the point C” is the crossing point of the straight line AB
and the horizontal line from the point C. The normalised (x, y)

coordinates of the centre of gravity of the rotated pattern (%n, Un)
are calculated by:

d d
Gre_ 05 o Or-W o Gr-(p-d
d+d d+d 2d
et doenon
G z
d o
' C(%, U,)
P(%p, !-i.).
2 ,g(xq, Yg)
b i
ds § d
B(Xp, gy) S~ -rg2="C D

Figure 6.7 Caiculation of the normalised centre of gravity.

1.4 [ i i Each Col Pattern

Since every point of the object has already been rotated in the
previous process of the normalisation of the centre of gravity of a
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pattern, the calculation of the slope of a regression line can be
carried out immediately. In simple regression analysis, the
regression line is represented by Equation (6.2 5-1):
Y=Bo+p1X +8&.

The intercept of the Y-axis, Bo, does not need to be involved in the
shape description as illustrated in section 6.2.5, so the regression
coefficient, f1, which is generally regarded as a slope of a
regression line is only considered in this stage. The regression
coefficient is simply calculated by:

n n n
nxRY - (ExiNE‘Ui)
=

p1 i=1 j=1

= - -
nE xiz- (E xi)z
i=1 i=1

n
E(Xi - §,-)(Ui = gr)
i=1

n
T (%, - %)°

=1 ’
where xi and yi are respectively the x- and y-coordinate of every
point in the rotated pattern, and %r and Ur are respectively the x-

and y-coordinate of the centre of gravity of the rotated pattern.

1 i n lour Patter

Divide a pattern, which has already been rotated in the
previous step, into four segments as shown in Figure 6.8, where
the horizontal and vertical lines cross at the centre of gravity of
the pattern. Let the area of each segment be S1, S2, S3 and S4. The
area of each segment is obtained by simply counting the number of
pixels in each segment. Let the area of the upper half of the
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pattern be SHi, and the area of the lower half of the pattern be
SHz2. SH1 is S1 + 82, and SHz is S3 + S4. The total area of the pattern,
St, is S1 + 52 + 83 + S4.

Figure 6.8 Segments of a pattern.

The ratio of the area of each segment over the total area of the

pattern is:

Q=_S'"_, q=_52_, 03=_53_, andQs=_S4
ST ST ST ST

The ratio of the area of the upper half of the pattern over the
total area is H1 = SH1, and the ratio of the area of the lower half
of the pattern over the total area is H2 = SH2/ ST.

6.3.2 Hierarchical Organisation of Factors.

As briefly stated in the early stages of this section, once all
the factors for colour pattern description have been obtained,
these factors should hierarchically be organised in order to be
efficiently used in the object identification stage. This
hierarchical organisation is required not only for the object in the
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library data but also for an object under consideration. Before
performing the organisation, consider the following facts which
are essential to optimise this organisation. The number of sets of
factors by which an object is represented depends absolutely upon
the number of patterns with distinctively different colours of
which the object consists. Since the number of different colour
patterns dominates the structure of the colour pattern descriptor,
this factor can be used as an important variable. A crucial fact to
be noted is that if an object image is obtained from a photograph,
each colour element of the image is usually affected by many
factors such as environmental conditions, film speed, the size of
the aperture and shutter speed of a camera, etc. (Hunt, 1987).
Consequently, the colour features of the image which are obtained
from the photographs of an object with different environmental
factors are not always identical to each other. However, if an
image is captured under the ordinary environment, the number of
different colour patterns is invariant to the environment. The
reason for this is that the intrinsic nature of the colour features
of a material of which the surface of an object consists is not
changed with different environmental factors, but are viewed
differently. This fact shows that the number of different colour
patterns is obviously invariant to environmental change. The
important point is that the same kind of objects, i.e., the same
species of butterflies, usually have variations of value for each of
factors except the number of different colour-pattern factors.
Thus, the number of different colour pattern factors can be
regarded as a primary factor for colour pattern description.

If the number of different colour patterns has been
determined, the area of each colour pattern is determined in
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relation to the total area of an object to which each pattern
belongs. This factor is the ratio of the area of each colour pattern
over the total area of an object. If an object consists of N
different colour patterns, the number of ratios is N. To improve
the efficiency of an identification process, it is necessary to
arrange these ratios in descending order. If these ratios are not
arranged in this order, the process will unnecessarily spend time
on searching the library data for a corresponding ratio. Once these
ratios are arranged in the descending order, other factors such as
the normalised centre of gravity, slope of regression line and
ratios for the shape of each colour pattern should accordingly be
arranged. On the other hand, since the colour feature factor has
variations depending upon environmental factors, it is reasonable
to place this factor at the end of the hierarchy. Thus, these
factors are arranged in the hierarchical structure as shown in
Figure 6.9. Finally, the name of an object is put on the bottom of
the structure. For example, if an object has three different colour
patterns, and the descending order of the ratios for these patterns
is ra> rb> re, then the factors are organised as shown in Figure
6.9. On the top of the Figure 6.9, the number of colour patterns is
placed, ra, m and re on the second level are the ratios, where each

ratio y is obtained by:
(the number of pixels in each colour pattern)

3T (the number of pixels in an object)




Number of
Different
Colour Patterns
Size
.
Feature ra re
Location Xna Una Znb gnb Xne Une
Feature
~
Bat bt Be1
Shape Hat Hb1 Het
Feature Ha2 Hb2 He2
Qa1 Qa2 Qb1 Qb2 Qo1  Qe2
g Qaz Qa4 Qb3 Qb4 Qe3 Qe4
Colour Lma Ama Bma Lmb Amb Bmb Lme Amc Bme
Feature
Name of
Species

Figure 6.9 The hierarchical organisation of factors.

On the third level, (Rna, Yn), (Xep, Uw) and (Rnc, Unc) are the
normalised centre of gravity of each colour pattern. On the fourth

level, Ba1, Bbt and Bc1 are the slope of a regression line of each
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colour pattern. On the fifth level, [Ha1, Ha2], [Hb1, Hb2] and [He1, He2)
are ratios, where each ratio H;1, where j=1, 2, 3, is obtained by:

(the number of pixels in the upper half segment)
(the number of pixels in each object) ,

Hj1 =

and each ratio Hj2 is obtained by:

(the number of pixels in the lower half segment)

Hj2 =
(the number of pixels in each object)

On the sixth level, Q;1, Qy2, Q43 and Qj4, where j=1, 2, 3, are ratios,
where each ratio is obtained by:

0 (the number of pixels in a segment)
J -

(the number of pixels in an object) .

On the seventh level, [Lmj. Am,, Brnl], where j=1, 2, 3, are
respectively the centre of gravity of L*'a*b* of each colour
pattern. On the bottom level, the name of,species is placed. An
important fact to be noted is that all the factors are invariant to
the size, orientation and location of an object.




6.4 CONCLUSION.

It is well known in the region description domain that most
pattern (region) descriptors should satisfy the basic requirements
that every pattern descriptor should be invariant to the size,
orientation and location of an object to which each pattern
belongs. Among the descriptors which have been commonly used in
the description of each pattern of an object in a black-and-white
image, such descriptors as a measure of compactness, which is
defined as (perimeter)é/area, and the Euler number, i.e., the
number of holes in an object, are invariant to the size, orientation
and location of an object. On the other hand, the majority of
pattern descriptors such as the area, orientation of the principal
axis and centre of gravity of each pattern are variant gn the size,
orientation and location of an object, thus they do not satisfy the
basic requirements.

These requirements are particularly important in colour
pattern descriptors for biological objects because the images of
these objects are usually obtained from photographs or video
films. When these objects are taken by camera, the sizes,
orientations and locations of these objects are not always
constant. In the biological objects, each colour pattern has its
own features such as colour feature, size feature, location
feature and shape feature. Since these features are constant
within an object, if the size, orientation and location of the
object image is changed these features except the colour features
are accordingly changed. In this chapter, the six major factors
which are required to represent these features of each colour
pattern of an object have been defined. These factors have been
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designed to accommodate the basic requirements. These factors
can be generally used in the colour pattern description domain.
Additionally, these factors have been hierarchically organised in
order to be efficiently used in the object identification process.
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7.1 INTRODUCTION.

In the previous chapters, the representation methods for
biological objects which were developed in this thesis have been
discussed. In this chapter, all the representation methods are
integrated into a prototype system. There are two prototype
systems: one for leaves and another for butterflies. The system
for leaves was designed to evaluate the algorithms for shape
description. On the other hand, the system for butterflies was
designed to evaluate the algorithms for shape description, colour
pattern extraction and colour pattern description. Each prototype
system consists of two subsystems:-

oa learning system, and
oan implementation system.

The learning system was designed to calculate variations of
the external features of biolegical objects such as size, shape and
colour pattern within a species. The implementation system was
designed to identify a species under test by referring the lower
and upper limits of each descriptor determined by the learning
system. These systems were designed to be easily expanded into
an actual system which would be used for various purposes such
as discovering a new species and so on in biology.

Each system was tested using sample species in the validation
stage. The results of the experiment were discussed based on two
aspects:

(1) the identification ability of each system, and
(2) the effectiveness of the descriptors in /\discrimination of the
sample data.

233



7.2 CONFIGURATION OF HARDWARE AND SOFTWARE.

In this section, the configuration of the hardware and
software which are basically required for a prototype system is
illustrated. The prototype system was established based on the
configuration in Figure 7.1. The main body of . this system was
built using the C programming language installed on a Hewlett
Packard workstation running under Unix version 8B, where the X-
window system was utilised to display a colour image on a VDU.

Photograph JJ
: | colour Image VDU
+ | Scanner : A
i ; X-window
1 | Colour Studio —-—b- System
| Mactntesh 11X |: vy A
C Programming —T SPSS-X
: Colour Image i || Language L__
' Cepturing System !
" 3 Unix version 8B Unix version 8A

Figure 7.1 Configuration of hardware and software.

The colour image of an object is captured by a colour image
scanner (JX600) connected to a Macintosh X system, where the
Colour Studio application, installed on the Macintosh system, is
utilised to digitise a scanned image. A digitised colour image is
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transferred to Unix version 8B. This digitised colour image is used
as input data to the prototype system. In the processing stage for
colour pattern extraction, input data to the Cluster Analysis are
transferred to Unix version 8A where the SPSS-X application, a
statistical package, is installed. A Cluster Analysis routine in the
SPSS-X produces the result using thise input data. This result is
transferred to Unix version 8B and is used for colour pattern
extraction.
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7.3 SPECIES IDENTIFICATION SYSTEM.

A species identification system consists of two subsystems:

o a learning system, and
o an implementation system.

The learning system was designed to calculate variations of the
external features of biological objects such as size, shape and
colour pattern within a species. The implementation system was
designed to identify a species under test, based on the lower and
upper limits of each descriptor determined by the learning

system.

There are two species identification systems which were
separately designed to evaluate the representation methods,
which were developed in this thesis, by applying sample objects:
leaves and butterflies. The prototype system for leaves was
designed to evaluate the algorithms for shape description. On the
other hand, the prototype system for butterflies was designed to
evaluate the algorithms for shape description, colour pattern
extraction and colour pattern description. These prototype
systems were designed only to examine basic functions such as
the calculation of each descriptor since the main objective of this
thesis lies in the development of biological object description
methods, However, these systems are easily expanded into actual
systems which can be used for various purposes such as
discovering a new species and so on. For the actual system, an
expertise in the relevant domain and plenty of sample images to
cover each species are required.
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7.3.1 Learning System.

As discussed in Chapter 1, the external features of biological
objects vary in size, shape and colour pattern within a species,
thus a species identification system should accommodate these
variations. In order to satisfy this principle, a learning system
was designed to calculate the variation of each descriptor which
was extracted from the images of the sample species. For each
descriptor, the lower and upper limits are determined by a
statistical normalisation method. The normalisation method
consists of two steps:

(1) Calculate the mean and standard deviation of each descriptor
using the images of the sample species.

(2) Infer the lower and upper limits of a population distribution
using the sample mean and standard deviation.

Let the sample mean value of a descriptor be M, the sample
standard deviation S. The lower and upper limits are inferred by
using the sample mean and standard deviation as follows:

o the lower limit: M - 3S,

o the upper limit: M + 35,
where the lower and upper limits cover the 99.74 % of the normal
distribution with the mean M and standard deviation S. The reason
for this statistical normalisation using the sample mean and
standard deviation is that even for an actual system it is
impossible to collect all of the images of objects in every
species.

7.3.2 Implementation System.

Once the lower and upper limits of each descriptor for each
species is determined by a learning system using given samples,
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an object image which is under test is examined by an
implementation system. This implementation system was
designed to evaluate values of every descriptor, that is, to
examine whether or not each value was within the lower and
upper limits of the corresponding descriptor previously calculated
by the learning system. If a value of a descriptor is within the
ranges, it is decided that the value of the descriptor is identical
to that of the corresponding ratio previously learned. Otherwise,
it is decided that the value of the descriptor is different from
that of the corresponding descriptor. Thus this implementation
system was designed to summarise the detailed results of the
examination which would be utilised in further analysis in a

relevant domain.

7.3.3 Leaf Species and Butterfly Species Identification
Systems.

7.3.31 Leaf Species Identification Syst

A leaf species identification system was designed to identify
leaf species based on the shape of the leaf. This system consists
of a learning system and an implementation system. The learning
system was designed to build up library data using the images of
the sample species. The library data were designed to contain the
lower and upper limits of each ratio in a ratio tree for each
species and the name of the species. The implementation system
was designed to identify leaf species by examining whether or not
the value of each ratio in a ratio tree was within the ranges of
the corresponding ratio in the library data, which were built up by
the learning system.
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Do 1 =1 to the number of species
Do j =1 to the number of samples
{
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Figure 7.2 A flow chart of a learning system for a leaf species
identification system,
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Let us consider the detailed procedure of the learning system
as shown in Figure 7.2, for leaf species identification. In Figure
7.2, a number in parentheses on the upper left corner of a box
represents a process; and a D and a number in a box at the left-
hand end represents a file. In process 1, each leaf is scanned using
a colour image scanner which is connected to a Macintosh IIX,
where a colour image D1, which is composed of R, G and B values,
is created. This image is transferred to Unix version 8B. In
process 2, this image is read. Thus, this image is displayed on the
CRT screen to verify that it is the correct image. In process 4, the
R, G and B values of each pixel in the image are transformed into
L*, a* and b* values, where the result of the calibration of the
image scanner is employed. In process 5, a gradient array G is
created by applying L*, a* and b* values of each pixel in the
image. In process 6, the boundary of an object in the image is
extracted using the gradient array G. The extracted boundary data
are stored in file D2 and this boundary image is displayed, again
for verification. In process 8, a principal axis of the boundary is
detected, where two (x, y) coordinates of the extreme points,
which form the principal axis of the boundary, are obtained. These
(x, y) coordinates are stored in file D3. In process 9, the boundary
is rotated in order to make the principal axis parallel to the x-
axis. In process 10, the rotated boundary is divided into two
parts, that is, the upper part and the lower part. To verify this
process, the boundary with the principal axis is displayed on the
CRT screen. In process 12, each part is divided into 2N segments.
In process 13, the ratio for each segment is calculated. In process
14, a ratio tree is constructed using the ratio calculated in the
previous process. This ratio tree is stored in file D4 each time
through the loop. That is for 10 samples D4 would contain 10 ratio
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trees. If all the sample images of a species are processed, the
lower and upper limits of each ratio are calculated in process 15.
These lower and upper limits for each species are stored in file
D5. This file is used as the library data in the implementation
system and thus contains a single ratio tree with ranges.

Let us consider the detailed procedure of the implementation
system in Figure 7.3, for a leaf species identification system. The
functions of the processes 1 through to 14 in Figure 7.3 are
exactly the same as those of the processes 1 through to 14 in
Figure 7.2. The contents of the files D1 through to D4 in Figure 7.3
are similar to those of the files D1 through to D4 in Figure 7.2. As
soon as a ratio tree is produced in process 14 in Figure 7.3, each
ratio is examined, in process 15, whether or not it is within the
lower and upper limits of its corresponding ratio in D5 which has
been created in the learning stage. Finally, in process 16, the
result of the comparison is displayed.
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Figure 7.3 A flow chart of an implementation system for a leaf
species identification system.
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In the validation stage, two different kinds of leaf species, as
shown in Figure 7.4, were chosen to test the system. As Table 7.1
shows, ten samples of Species A and sixteen samples of Species B
were randomly selected from the given samples for the learning
stage; and five samples for Species A and ten samples for Species
B were selected for the implementation stage.

No. of Samplesin No.of Samples in the
Specles the Learning Stage Implementation Stage Total
Species A 10 S 15
Species B 16 10 26
Total 26 15 41

Table 7.1 The number of samples involved in the validation
stage.

The original image of each species is shown in Figures 7.4.(a) and
(b). In process 6, the boundary of each sample as shown in Figures
7.4.(c) and (d) was extracted. As Figures 7.4.(e) and (f) show, a
principal axis of each boundary was detected. As the shapes of
the species show, the shape of each species is completely
different. Thus, in process 12, the upper and lower parts of the
boundary were divided into 23 segments as shown in Figures
7.4.(i) and (j). After a calculation of the ratio for each segment
using samples involved in the learning stage, the library data
containing the lower and upper limits of each ratio were created.

In the implementation stage, the ratio for each segment of
individual test species was calculated and examined whether or
not it was within the lower and upper limits of its corresponding
ratio of each species in the library data which had been created in
the learning stage. The result of the test undertaken is shown in

243




Species B

A Lok,
L

o i

? F(%W;?%a :’,4;, S
PR S L I F: i
R 43?‘*5 2 et

b

x o
L

by

36l
L%y

o4
e tls

(a)

(d)

(f)

(h)

Figure 7.4 Sample images. (a) and (b) Original images. (c) and
(d) Boundaries extracted. (e) and (f) Principal axes. (g) and (h)
Rotated boundaries. (i) and (j) Segmented boundaries.
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Table 7.2. The method for the test was that if the ratio for every
segment calculated using a test sample species was within the
range of its corresponding ratio of a species in the library data, it
was considered as the same species that was in the library data.
In the test with five samples of Species A, four samples were
correctly identified as Species A, while one sample was not
identified, because only one ratio was determined as an outlier. In
the test with ten samples of Species B, nine samples were
identified as Species B, while one sample was not identified.
Consequently, 87% (13 out of 15) of the samples were correctly
identified.

Species g:r-:;e’:" Identified Failed
Species A S 4 1
Species B 10 9 1

Total 15 13 2

Table 7.2 The result of the identification test.

Figure 2.5 The ratio for each segment.

In order to examine the effectiveness of these descriptors
(ratios) in the leaf species classification using distributions of
sample species, 16 samples were selected from each species. Let
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the samples of Species A be group 1 and those of Species B group
2. Let the ratio for each segment in the lower part be U1, U2, U3,
..., U8 and that in the upper part be L1, L2, L3, ..., L8 as shown in
Figure 7.5. The diagrams in Figure 7.6 show the distribution of the
sample species. The diagram in Figure 7.6.(a) is a scatter diagram
of the U1 values against the L1 values; that in Figure 7.6.(b) is a
scatter diagram of the U3 values against the L3 values. In each
diagram, each of the points represents individual sample species;
and the number ‘1’ represents group 1 and the number ‘2’ group 2.
The diagrams in Figures 7.6.(c) and (d)} are respectively the same
diagrams in Figures 7.6.(a) and (b}, where one-dimensional
distribution of the values corresponding to each axis is added to
each axis. The points in Figure 7.6.(a) can be categorised into their
corresponding groups by a vertical line against the Ui-axis, as
Figure 7.6.(c) shows, since the one-dimensional distributions of
the U1 values of both groups can be clearly separated; however
these points cannot be categorised into their corresponding
groups by a vertical line against the L1-axis because the one-
dimensional distributions of the L1 values of both groups are
completely overlapped, as Figure 7.6.(c) shows. On the other hand,
the points in Figure 7.6.(b) can be categorised into their
corresponding groups by a vertical line and a horizontal line, as
Figure 7.6.(d) shows, because the one-dimensional distributions of
the U3 values of both groups can be clearly separated and those of
the L3 values of both groups can be clearly separated. This reveals
that the points cannot be separated into their corresponding
groups by the ratio L1, but they can be clearly separated by the
ratios U1, L3 and U3. It can be concluded that if all of the ratios
are simultaneously used in the identification stage, as already
explained in Chapter 5, these samples can be completely
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categorised into their corresponding groups.

Additionally, in an actual system with various shapes of
species, the number of segments of the upper and lower parts of
the boundary should be increased depending upon the accuracy of
the result which is required.
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Figure 7.6 Scatter diagrams. (a) and (c) Scatter diagrams of
the U1 values against the L1 values. (b) and (d) Scatter
diagrams of the U3 values against the L3 values.
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niificati m

A butterfly species identification system was designed to
identify butterfly species based on the wing shape and colour
pattern on the wings. This system also consists of a learning
system and an implementation system. Due to the variations of
the shape and the colour pattern in a species, the learning system
was designed to build up library data using the images of the
same species. The library data were designed to contain the lower
and upper limits of each descriptor for each species and the name
of the species. The implementation system was designed to
identify butterfly species by examining whether or not the value
of each descriptor was within the ranges of the corresponding
descriptor in the library data, which were built up by the learning
system. In the butterfly domain, both the ‘colour pattern and the
wing shape are commonly used for butterfly species
classification. Thus, the implementation system was designed to
identify butterfly species by alternatively using the shape of the
wings.

Let us consider the detailed procedure of the learning system
as shown in Figure 7.7 and 7.8, for butterfly identification. The
functions of the processes 1 through to 14 in Figure 7.7 are
exactly the same as those of the processes 1 through to 14 in
Figure 7.2. The contents of the files D1 through to D5 in Figure 7.7
are similar to those of the files D1 through to D5 in Figure 7.2. In
process B in Figure 7.7, colour patterns are extracted from an
image created in process 1. The detailed procedure for this
process is depicted in Figure 7.8. As soon as process 14 in Figure
7.7 is carried out, the image of an object is extracted from the

248




colour image stored in file D1 in process 15 in Figure 7.8, where
the boundary data stored in file D2 are used. The image extracted
in process 15 is displayed on the CRT screen. In process 17, this
image is rotated to make the principal axis parallel to the x-axis.
In process 19, the Auxiliary Means is created by using the rotated
image. After a random noise test, N sets of L*, a* and b* data are
extracted from the Auxiliary Means in process 22, where N is the
number of pixels with different colour features in the image of an
object. File D8 is transferred to Unix version 8A where the SPSS-
X is available. A Cluster Analysis routine in the SPSS-X is
executed in process 23. The result of the Cluster Analysis is
transferred to Unix version 8A. In process 24, this result of the
Cluster Analysis is assigned to the Auxiliary Means, where the
number of colour patterns supplied by the user is used to
determine the number of clusters. In process 24, each colour
pattern extracted is displayed for a visual test. After,visual test,
in process 26, five ditferent kinds of major factors for
description are calculated. This calculation is repeated as many timas
as the number of colour patterns. In process 27, major factors
calculated in process 26 are arranged in descending order
according to the value of the size factor. The major factors
arranged are stored in file D15. If all the sample images of a
species are processed, the lower and upper limits of each
descriptor are calculated in process 28. This process produces
two important files D5 and D16. The D5 is used as the library data
for colour pattern description in the implementation system.
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Figure 2.7 A flow chart of a learning system for a butterfly
species identification system.
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Let us consider the detailed procedure of the implementation
system for a butterfly species identification system. ln{;“\é“ase of a
butterfly species identification system relying on the wing
shapes, the implementation system is exactly the same as that
for the leaf species identification in Figure 7.3. On the other hand,

fora butterfly species identification system relying on the colour
patterns on the wings, the flow chart of,implementation system
is depicted in Figure 7.9. The functions of the processes 1 through
to 7 in Figure 7.9 are exactly the same as those of the processes 1
through to 7 in Figure 7.7. The contents of the files D1, D2 and
D15 in Figure 7.9 are similar to those of the files D1, D2 and D15
in Figure 7.7. Whereas, the detailed procedure for the process B in
Figure 7.9 is also exactly the same as that in Figure 7.8. In
process 28 in Figure 7.9, each major factor value stored in file
D15 is compared with the corresponding major factor value in file
D16 in the hierarchical order in Figure 6.8 in Chapter 6. Finally,
the result of the comparison is displayed.
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In the validation stage, two different kinds of butterfly
species, as shown in Figure 7.10.(a) and Figure 7.11.(a), were
chosen to test the system. As Table 7.3 shows, ten samples for
each species were randomly selected from the given samples for
the learning stage; and five samples for each species were
selected for the implementation stage.

. No. of Samplesin No. of Semples in the
S es
pect the Learning Stage Implementation Stage Total
Species A 10 S 15
Species B 10 5 15
Total 20 10 30

Table 7.3 The number of samples involved in the validation
stage.

As the images show, the wing shapes of each species were
completely different. The species identification by shape had been
performed in the leaf species identification, therefore in this
validation stage the butterfly species identification was carried
out based on the colour pattern of the wings. The butterfly has
four wings: two wings on the left-hand side and another two on
the right-hand side. The shapes and patterns of the one-side
wings are exactly the same as those of the other-side wings. In
the butterfly domain, one-sided wings are generally used for
species classification. Thus, in this experiment the images of the
left-hand-side wings were manually extracted to concentrate on
the validation test of the algorithms for colour pattern extraction
and its description. In process 15 in Figure 7.8, two different
colour patterns for species A, as shown in Figures 7.10.(b)} and (c),
were extracted; three different colour patterns for species B, as
shown in Figures 7.11.(b), (c) and (d), were extracted. As Figures
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Figure 7.10 Wing patterns and major factors for each pattern
of Species A. (a) The left-hand side wings. (b) and (c) Colour
patterns. (d) and (e) Rotated patterns and principal axis. (f)
and (g) Centre of gravity and four quadrants. (h) and (i)
Regression lines.
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Figure 7.11 Wing patterns and major factors for each pattern
of Species B. (a) The left-hand side wings. (b)-(d) Colour
patterns. (e)-(g) Rotated patterns and principal asis. (h)-(j)
Centre of gravity and four quadrants. (k)-(m) Regression lines.
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7.10.(d) and (e) and Figures 7.11.(e), (f) and (g) show, each colour
pattern was rotated using a principal axis. In process 26 in Figure
7.8, major factors, which were designed for colour-pattern
description, were calculated. The number of descriptors
calculated for each colour pattern was 14. Although these
descriptors were already illustrated in Chapter 6, some of them
are depicted in Figures 7.10 and 7.11 for clear understanding.
Figures 7.10.(f) and (g) and Figures 7.11.(h), (i) and (j) show the
centre of gravity and four quadrants for each colour pattern. As
Figures 7.10.(h) and (i) and Figures 7.11.(k), (I) and (m) show, a
regression line for each colour pattern, which represents a slope
of a pattern, was calculated. After the calculation of the
descriptors for each colour pattern using sample species involved
in thé learning stage, the library data containing the lower and
upper limits of each descriptor were created.

In the implementation stage, the descriptors for each colour
pattern of individual test species were calculated and arranged in
descending order according to the size of each colour pattern.
Since the number of colour patterns of Species A is different
from that of Species B, the result of,gomparison between species
is apparent. Thus, in this test each colour pattern of a test
species was compared with each of five colour patterns (2 for
Species A, 3 for Species B) in the library data, that is, the
comparison was performed between the colour patterns rather
than between the species. If every descriptor of a test colour
pattern was within the range of its corresponding descriptor of a
colour pattern in the library data, it was considered as the same
colour pattern that was in the library data. In%ase of the test
with five samples of Species A, there were two different kinds of
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colour patterns. Let the colour pattern with a larger number of
pixels, as shown in Figure 7.10.(b), be Pattern 1 and that with a
smaller number of pixels, as shown in Figure 7.10.(c), Pattern 2.
These patterns were correctly identified as shown in Table 7.4. In

the case of the test with five samples of Species B, there are three
different kinds of colour patterns. Let the colour pattern of the
larger size, as shown in Figure 7.11.(b), be Pattern 3, that of the
medium size, as shown in Figure 7.11.(c) Pattern 4, and that of the
smaller size, as shown in Figure 7.11.(d), Pattern 5. As Table 7.4
shows, all of the test colour patterns corresponding to Pattern 3
were correctly identified; three of the test colour patterns
corresponding to Pattern 4 were correctly identified, while two
of them were not identified; and four of the test colour patterns
corresponding to Pattern 5 were correctly identified, while one of
them was not identified. Consequently, 88 % (22 out of 25) of the
colour patterns were correctly identified.

Species | Pattern g:ﬁf;,l-:ﬁ Identified Failed
Species A| Pattern | S S o)
Pattern 2 S S 0
Pattern 3 S S 0
Species B| Pattern 4 5 3 2
Pattern S5 S 4 1
Total 5] 25 22 3

Table 7.4 The result of the identification test.

In order to examine the effectiveness of the colour-pattern
descriptors in the colour pattern classification, let us look into
the distributions of all the samples. Among 14 different kinds of
descriptors, a descriptor for the size of a colour pattern and
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descriptors for the location of a colour pattern were chosen to be
examined. A diagram in Figure 7.12 shows ranges of the descriptor
for the size of each pattern, where Pattern 5 can be clearly
separated from the other Patterns. However, Patterns 2 and 4 as
well as Patterns 1 and 3 are duplicated. Thus, Pattern 2 cannot be
separated from Pattern 4 and Pattern 1 cannot be separated from
Pattern 3 using this descriptor. On the other hand, Patterns 2 and
4 can be clearly separated from Patterns 1 and 3.

0 10 20 30 40 50 60 70 80
Pattern 5
Pattern 4
Pattern 3
Pattern 2

------------------- - y ateEREELEEEEEEEEEEESIEED

Pattern 1
--------------------------------------- - y anbdt
0 10 20 30 40 50 60 720 {(R)so

Ratio

Figure ?7.12 Range of each descriptor for the size of each
colour pattern.

To examine the clear separation of the Patterns2 and 4 as well
as the Patterns 1 and 3, let us look into another diagram in Figure
7.13. The diagram in Figure 7.13 is a scatter diagram of the values
of the normalised centre of gravity x against the values of the
normalised centre of gravity y. As this scatter diagram shows,
Pattern 2 can be clearly separated from Pattern 4. However, it is
still difficult to judge the discrimination of Pattern 1 from
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Pattern 3 using this scatter diagram because three different
kinds of Patterns are mixed in the central part of the scatter
diagram. Thus, let us look into another scatter diagram in Figure
7.14, where only Patterns 1 and 3 are plotted. As this scatter
diagram shows, Pattern 1 can be clearly separated from Pattern 3.
As leaf species classification showed, this reveals that if all of
the descriptors are involved in the colour-pattern classification,
each colour pattern can be clearly separated into its

corresponding group.
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Figure 7.13 A scatter diagram of the normalised centre of
gravity s values against the normalised centre of gravity y
values for each colour pattern.
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7.4 CONCLUSION.

The presentation methods for biological objects which have
been developed in/\thesis are categorised into two domains:-

(1) the shape description domain, and
(2) the colour pattern description domain.

In this chapter, all the procedures which were required to create
each of these descriptors were considered by establishing a
prototype system. One prototype system for a leaf identification
system was designed {o evaluate the shape description method.
Another prototype system for a butterfly species identification
system was designed to evaluate the colour pattern description
method. In particular, the colour pattern extraction method
applying a Cluster Analysis routine in the SPSS-X was utilised to
extract colour patterns from the images of butterflies in the
latter prototype system.

In the validation stage, the main focus of the experiment was
on the effectiveness of shape and colour pattern descriptors in
the classification of sample data. The experiment was undertaken
utilising two prototype systems: one for leaf species
identification and the other for colour pattern classification,
where images of leaves and butterflies were respectively used
for the validation. In brief, both the descriptors produced
sufficient information which could be used for species
classification. Whenever the system provided the output of an
execution, it could be interpreted and assessed without

difficultj*. :
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In addition, as the diagram foraranges of the size of each
Pattern in Figure 7.12 and the scatter diagram for the location of
each colour pattern in Figure 7.13 show, colour patterns having
similar features form groups. This reveals that the algorithm for
colour pattern extraction which was discussed in Chapter 4

works properly.




8 CONCLUSIONS.

This thesis has primarily been concerned with the problem of
how to represent a biclogical object for computerised
identification. Images of biological objects have been generally
characterised by shapes and colour patterns in the biological
domain and the pattern recognition domain. Thus, it was necessary
to represent the biological object using descriptors for the shape
and the colour pattern. In the pattern recognition domain, many
description methods for shapes and colour patterns have been
published. The basic requirements which a description method
should satisfy are those such as invariance of scale, location and
orientation of an object; direct involvement in the identification
stage; easy assessment of results and so on. The literature survey
undertaken in this thesis revealed that the majority of existing
methods were well designed to meet some the requirements but
not sufficient to meet all of them. Thus, it was necessary to
develop improved methods not only for shape description, but also
for colour pattern description. The major task to deal with in this
thesis was to develop a shape-description method and a colour-
pattern description method which could accommodate all of the
basic requirements and could be generally applied in the
biological and pattern recognition domains. The main principle of
the shape-description method is theoretically the same as that of
the colour-pattern description method with respect to the
following:

(1) A principal axis of an object is considered as a major
parameter which dominates most of the values of the descriptors,
because they are calculated based on the rotated principal axis;

(2) Most of the descriptors are ratios, because they can
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accommodate the important requirement previously discussed.

However, the shape-description method which was discussed
in Chapter 5 was designed slightly differently from the colour-
pattern description method which was discussed in Chapter 6. The
main reason for this is that the shape of a biological object can
be simply characterised based on the boundary of an object; on the
other hand the colour pattern of a biological object can be
characterised based on the interior of the image of an object. The
important information to characterise each colour pattern
consists of various factors such as size, location, shape and
colour as already discussed in Chapter 6.

From the view point of the user, important aspects of a
description method might be accuracy, efficiency, flexibility,
simplicity and so on. However, no matter how well a method is
designed to cover all of these aspects, if the method has
difficulty in interpretation or assessment of the result obtained
by applying the method, it might f;@tﬁéé_;easy to avoid criticisms.
When considering this aspect of the description methods
developed in this thesis, each descriptor was designed to
represent practical component of an image of factor which could
be interpretable, the result obtained by this method could be
immediately interpreted or assessed. In the validation stage,
these description methods proved highly effective for those
objects with one principal axis. For objects with more than one

principal axis system problems will arise when these methods are

applied. The author suggests a further study for improving this
aspect of these methods.




In the colour-pattern description stage, an important task was
to segment a colour image into meaningful segments. The most
efficient method for this task is to apply the Cluster Analysis. In
the image analysis and pattern recognition domains, the majority
of approaches to this method have been constrained by the
problem of dealing with inordinate amounts of data, i.e. a large
number of pixels of an image. In order to directly apply the
Cluster Analysis to the colour image segmentation, the Auxiliary
Means which is a kind of data structure was devised in this
thesis. However, the method employing the Auxiliary Means had a
serious problem with random noise. To overcome this problem a
method to remove random noise was considered. In the validation
stage, this method employing the Auxiliary Means was
successfully applied. One of the important features of this
approach was to utilise the Cluster Analysis routine of the SPSS-
X. It is desirable to build the Cluster Analysis routine in a
practical system for the system’s flexibility since the routine in
the SPSS-X has a limit on the number of cases it can manage, for
example 150 cases in an 80K workspace.

Additionally, a calibration method for a colour scanner
digitising system in the CIE L*A*B* colour space, which was
developed utilising the Macbeth colour chart in this thesis, can be
widely applied, because the spectral sensitivity of ognedevice is
usually different from that of another.
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A. LEAF SPECIES IDENTIFICATION.

f

In this Appendix, the data and?\‘ry‘esult ofﬁkalnaiysis which were
‘ obtained during the validation stage for leaf species
| classification are described. There were two different kinds of
\ leaf species involved in the test. For species A in Figure A.1.(a),
‘ the number of samples was 16, where 10 samples was randomly
selected from the given samples for the learning stage; and 6 for
the implementation stage. For species B in Figure A.1.(b), the
number of samples was 26, where 16 samples were randomly
selected from the given samples for the learning stage; and 10 for

the implementation stage.

Species A Species B

(b)

Figure A.1 The images of sample species,

(a)

After rotation of the boundary of each sample using a principal
axis, the upper and lower parts were divided into 23 segments as
shown in Figure A.2.(a), and the ratio for each segment was
calculated. Another ratio for each segment of 22 segments for the
upper and lower parts, as shown in Figure A.2.(b), was calculated
using the ratios for 23 segments. The ratio for each segment of 2!
segments for the upper and lower parts, as shown in Figure
A.2.(c), was calculated using the ratios for 22 segments. Finally,
the ratios for the upper and lower parts, as shown in Figure

A.2.(d), were calculated using the ratios for 2! segments. Thus,

A-2




the number of ratios (descriptors) for each part is 15. The value
of each ratio (descriptor) for each sample involved in the
validation stage is shown in Table A.1. through to Table A.6.

(@)

Figure A.2 The ratio for each segment,

The main objective of the experiment was to examine the function
of the descriptor which was designed to discriminate one group
from another. Two-dimensional scatter diagrams usually show the
relationship between observations of each group. As most of the
scatter diagrams in Figure A.3 through Figure A.19 show, each
sample group can be clearly separated from the other group.




Table A.1.(a) The ratios for the upper part for 10 samples of
Species A inveolved in the learning stage.

LTot LH1 LH2 LQt Q2 LQ3 Q4 L1 12 3 W4 Ls L6 L7 L8

27631408 1355 319 1089 767 588 .69 250 576 513 368 3.99 4.43 1.45
26.54 13.11 13.43 1.6011.51 838 505 .66 .94 602 549 432 4.056 369 136
26.50 14.70 11.80 4.30 1040 6.38 5.42 1.23 307 575 465 3.12 326 353 189
35.17 17.67 17.50 460 13.07 9.97 7.53 .83 3.77 595 7.12 6.12 3.85 4.58 295
32,42 16,51 1591 284 13.67 9.35 €58 .77 2.07 6.78 689 520 4.15 431 225
33991673 17268 514 1159 9.68 758 .80 434 628 531 507 461 495 263
34.80 17.08 17.72 3.88 1320 988 784 .57 331 681 6.39 5§27 4.61 534 250
2532 10.97 1435 133 964 764 671 .55 .78 450 5.14 442 322 431 240
28.67 12.79 16588 269 1010 9.05 683 .82 187 516 4.94 450 455 499 1.84

25.73 12.74 1299 2.16 10.58 6.99 6.00 .76 140 590 468 385 3.14 348 252

Table A.1.(b) The ratios for the lower part for 10 samples of
Specles A involved In the learning stage.

UTot UH!T UH2 UQ1 UQ2 UQ3 UQ4 U1 U2 U3 W Us Us U7 Us

23.59 12.84 10.75 3.96 888 670 4.05 1.23 273 435 4.53 3.79 2901 268 1.37
22,60 13.51 9.09 4.84 867 550 359 1.63 3.21 446 42t 289 261 250 1.09

18.67 11,07 7.60 4.05 702 501 259 1.17 288 359 3.43 283 218 189 .70
20,29 12.14 8.15 455 7.59 481 334 154 301 3.58 401 274 207 225 1.09

19.22 11.21  8.01 3.65 756 503 298 1.18 247 361 3.95 296 207 207 .9
19.28 1223 7.05 420 803 439 2.66 129 291 402 401 264 175 1.68 98
2337 12.21 11,16 4.13 8.08 698 4.18 1.25 288 3.91 417 441 257 243 175
24.92 13.75 11.17 429 946 7.30 3.87 1.36 293 448 498 467 263 253 1.34
2143 1251 8.92 412 839 544 348 1.31 281 4.07 432 3.11 233 224 1.24

22,79 12.07 10,72 359 848 6.60 4.12 1.02 257 4,18 430 355 3.05 258 1.54
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Table A.2.(a) The mean of each ratio for the upper part using
10 samples of Species A inveolved in the learning stage.

LTot LH1 LH2 LQ1 LQ2 LQ3 LG4 L1 L2 L3 L4 L5 L6 L7 Ls

29.68 1464 1504 317 11.46 850 654 077 240 589 557 455 394 438 218

Table A.2.(b) The standard deviation of each ratio for the upper

part using 10 samples of Species A involved in the learning
stage.

LTot LH1 LH2 LOt LQ2 LQ3 LQ4 L1 L2 13 W14 L5 L. L7 Ls

398 226 210 129 141 1.28 095 019 121 0.69 090 088 0.57 064 052

Table A.2.(c) The mean of each ratio for the lower part using
10 samples of Species A involved in the learning stage.

UTot UH1 UH2 UQt1 UQG2 UQ3 UG4 U1 U2 U3 U4 U5 Us U7 Us

21,62 12.35 0.26 4.14 822 578 3.49 1.30 284 402 419 336 242 228 1.20

Table R.2.(d) The standard deviation of each ratio for the lower

part using 10 samples of Species i involved in the learning
stage.

UTot UH1 UHZ UG UQ2 UQ3 UQ4 U1 U2 U3 U4 Us Ue U7 U8B

2.16 086 157 038 0.71 1.03 059 0.18 021 035 040 072 041 0.32 0.31




Table A.3.(a) The ratios for the upper part for 6 sampies of
Species fl involved in the implementation stage.

LTot LH1 LH2 LO1 LQ2 LQ3 L4 LY L2 L3 K L5 Le L7 L8

31.75 1684 1491 444 1240 823 668 .71 3.73 650 580 441 382 432 236
33.55 17.15 16,40 5.96 11.19 905 735 .95 501 544 575 4.69 436 4,44 291
28.01 13.17 1484 1.79 1138 822 662 .62 1.17 563 575 4.98 3.24 408 254
337217.22 1650 505 1217 930 7.20 .78 427 648 569 511 419 454 266
27.02 1269 1433 232 1037 7.95 638 .71 161 471 566 4.41 3.54 429 209

35.43 17.75 1768 600 11,75 971 797 .97 503 590 585 535 4.36 534 263

Table A.3.(b) The ratios for the lower part for 6 samples of
Species A involved in the implementation stage.

UTot UH1T UH2 UQ1 UQ2 UQ3 UQ4 Ul U2 U3 U4 Us Us U7 Uus

22.75 1243 1032 3.91 852 577 455 135 256 4.12 440 297 280 309 146
18.35 11.59 676 365 7.94 3.89 287 124 241 3.9 3.98 1.98 1.91 182 1.05
24,93 13.80 11.13 4.16 9.64 7.14 3.99 1.58 258 433 531 463 251 2.30 1.69
25.04 13.64 11.40 3.97 9.67 680 460 139 258 4.78 489 3.90 290 308 150
2626 1532 1094 4.64 1068 7.26 368 1.30 3.34 537 531 446 280 234 134

21.26 1244 882 3.90 8.54 549 333 1.26 2.64 406 4.48 3.37 212 226 1.07




Table R.4.(a) The ratios for the upper part for 16 samples of
Species B involved in the learning stage.

LTot LH1 LH2 LQ1 LQ2 LQ3 Q4 LY L2 3 14 L5 L L7 L8

1752 7.44 1008 2.77 467 628 380 .93 184 218 243 307 321 268 1.12
14.93 7.38 755 251 4.87 500 255 .34 217 229 2.58 2.80 2.20 185 .70
16.31 7.72 859 242 530 542 317 .81 161 226 304 285 257 228 .89
1432 665 767 244 421 468 269 84 160 209 212 270 228 197 .72
1651 8.01 850 263 538 572 278 1.01 162 253 285 288 284 210 €8
16.84 7.14 970 223 491 632 338 .69 154 195 296 320 3,12 248 .90
13.71 597 7.74 1.78 419 523 251 .62 1.16 1,657 262 270 253 1983 .58
1583 7.47 836 253 494 583 273 .74 1.79 2.44 250 281 282 215 .58
1967 B46 11,21 254 592 666 455 80 1.74 272 3.20 322 344 3.13 1.42
1515 580 935 1.65 4,15 620 3.15 .51 1.14 196 2.19 3.13 3.07 224 .91

16,56 654 9.02 1.94 460 595 3.07 66 128 228 232 3.19 2.76 223 .84
10.88 440 648 1.45 295 409 23% .53 .92 1.18 1,77 2.08 2,03 1.76 .63

17.01 5.63 1138 1.35 428 694 444 43 .92 215 213 358 3.36 3.16 1.28
1455 557 898 143 414 563 3.35 45 .98 151 263 250 3.13 238 97

1296 427 869 1256 3.02 553 3.16 47 .78 1.23 1.79 265 288 221 .95

1431 673 7.58 2.07 466 488 270 .56 1.51 2.17 249 250 233 186 .84




Table A.4.(b) The ratios for the lower part for 16 samples of
Species B involved in the |earning stage.

UTot UHt UH2 UQT UQ2 UQ3 UQ4 W1 U2 U3 U4 US Us U7 U8
16.13 658 955 1,93 4.65 6.11 344 .70 1.23 1.79 286 294 3.17 2568 .88
1422 6.63 759 1.44 518 470 289 .23 121 205 3.14 256 214 202 .87
1501 573 928 145 428 567 361 46 .99 165 263 250 317 247 1.14
1243 444 799 1.24 320 484 3.15 .42 82 1.27 1.93 245 239 215 1.00
16586 689 969 210 479 599 3.70 .70 1.40 238 241 3.10 289 262 1.08
19.93 842 1151 282 560 7.08 443 1.15 167 251 3.09 363 3.45 309 1.34
1634 729 905 201 528 575 3.30 .60 1.41 202 326 294 281 225 105
15.91 6.23 9.68 1.49 474 593 3.75 .43 1.06 1.66 3.08 279 314 257 1.18
1355 6.15 740 217 3.98 509 231 .75 1.42 187 211 248 2861 180 .51
19.02 8421060 248 5.94 €67 3.93 .71 1.77 233 3861 325 342 294 .99
15682 629 953 150 479 624 329 51 .93 1.70 3.09 3.05 3.19 241 .88
14.91 6.42 849 201 441 552 297 .66 135 181 260 278 274 212 .85
1523 643 880 150 493 564 3.16 .23 127 2.02 291 258 3.06 238 .78
17.99 840 959 287 553 644 3.15 .97 1.90 243 3.10 3.13 331 245 .70
18.17 820 997 257 563 668 329 .79 1.78 2.40 3.23 3.37 3.31 261 .68
11.53 674 579 1.80 3.85 3.98 1.81 .50 1.39 1,50 235 2.08 .80 139 .42
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Table A.5.(a) The mean of each ratio for the upper part using
16 samples (Species B) involved in the learning stage.

LTot LHY LH2 Q1 LQ2 LQ3 LQ4 L1 L2 L3 L4 L5 e L7 L8

1538 657 881 206 451 565 315 065 1.41 203 248 287 279 228 088

Table A.5.(b) The standard deviation of each ratio for the upper
part using 16 samples of Species B involved in the learning
stage.

LTot LH1 LH2 Q1 LQ2 1Q3 LG4 L1 L2 13 14 Ls e L7 Ls

2.04 122 1.33 051 0.78 0.73 0.64 0.19 040 045 042 036 042 042 024

Table A.5.(c) The mean of each ratio for the lower part using
16 samples of Species B invclved in the learning stage.

UTet UH1 UH2 UQ1 UQ2 UQ3 UQ4 U1 U2 U3 U4 US Us U7 Us

15.80 6.77 9.03 1.97 4.80 5.77 3.26 0.61 1,35 1.96 284 2.85 292 2.36 0.90

Table R.5.(d} The standard deviation of each ratio for the lower
part using 16 samples of Species B involved in the learning
stage.

UTot UH! UH2 UQ! UQ2 UQ3 UQ4 W1 U2 U3 U4 Us Us U7 Us

228 1.13 136 051 074 082 0.61 025 0.31 0.37 046 040 046 0.42 0.24




Table A.6.(a) The ratios for the upper part for 10 samples of
Species B involved in the implementation stage.

LTot LH1 LH2 LQ1 LQ2 LQ3 Q4 L1 12 13 L4 5 L L7 L8

1652 7.01 951 219 482 620 331 .53 166 191 291 285 335 264 .67
1432 591 841 1.90 4.01 517 3.24 .66 1.24 1.54 247 226 291 2.16 1.08
1527 6.10 917 1,85 425 582 3.35 .62 1.23 1.78 247 293 289 248 .87
14.98 690 808 220 470 530 2.78 .54 1.66 201 269 280 250 201 .77
17.35 651 1084 188 483 649 435 .70 1.18 1.50 3.13 283 366 293 142
1449 6.36 813 179 457 513 300 .52 127 194 263 241 272 216 84
16.70 7.84 886 2865 519 6,01 285 .86 1.79 243 276 3.07 294 2.02 .83
1438 585 853 183 402 539 3.14 .60 123 1.79 223 262 2.77 217 .97
13.34 565 7.69 157 408 483 286 .42 1.15 1.71 237 256 227 207 .79

16.99 €96 10.03 198 498 602 4.01 .64 134 187 3.11 298 3.04 278 1.23

Table A.6.(b) The ratios for the lower part for 10 samples of
Species B involved in the implementation stage.

UTot UH1 UH2 UQt UQ2 UQ3 UQ4 U1 U2 U3 U4 Us Us U7 Us

$7.00 7.30 9.70 187 543 640 330 .5 1.31 213 3.30 308 332 229 1.01
13.29 §.67 7.62 1.70 3.97 481 281 .59 111 1.64 233 216 265 1.96 .85
21.40 10.75 1065 3.69 7.06 7.19 3.46 1.17 252 3.00 4.06 3.59 360 265 .81
1515 633 882 214 419 544 338 .71 143 1.66 253 283 261 245 .93
14.71 6.65 806 231 434 532 274 .75 156 1.79 255 296 236 1.98 .76
12,96 6.60 6356 2.11 449 457 1,79 57 1.54 1,94 255 244 213 131 .48
17.04 6.21 10.83 1.58 4.63 652 431 .56 1.02 215 248 322 330 296 1.35
1384 600 784 1.99 401 544 240 77 1.22 1,65 236 275 2.69 1.90 .50
1596 6.61 935 226 435 585 3.50 .68 1.58 2.01 234 279 3.06 2.42 1.08

1437 586 851 1.66 420 539 3.12 .55 1.11 1.62 258 2.69 270 230 .82
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Figure A.3 A scatter diagram of the LTot values against the
UTot values.
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Figure A.4 R scatter diagram of the LH1 values against the UH1
values.
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Figure A.5 A scatter diagram of the LH2 values against the UH2

values,
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Figure A.6 A scatter diagram of the LH1 values against the LH2
values,
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Figure A.7 A scatter diagram of the UH1 values against the UH2
values.
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Figure A.8 A scatter diagram of the LQ1 values against the UQ1

values.
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Figure A.9 A scatter diagram of the LQ2 values against the UQ2
values.
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Figure A.10 R scatter diagram of the LQ3 values against the
UQ3 values.
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Figure A.11 A scatter diagram of the LQ4 values against the
UQ4 values.
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Figure A.12 A scatter diagram of the L1 values against the U1
values.
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Figure A.13 A scatter diagram of the L2 values against the U2
values.
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Figure R.14 A scatter diagram of the L3 values against the U3
values.
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Figure A.15 A scatter diagram of the L4 values against the U4
values.
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Figure A.16 A scatter diagram of the L5 values against the U6

values.
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Figure R.17 A scatter diagram of the L6 values against the U6
values.
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Figure R.18 R scatter diagram of the L? values against the U?
values,
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Figure R.19 A scatter diagram of the L8 values against the U8

values,
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B. COLOUR PATTERN IDENTIFICATION.

In this Appendix, the data and result of analysis which were
obtained during the validation stage for colour pattern
classification are described. There were two different kinds of
butterfly species, as shown in Figures B.1.(a) and (d), involved in
the test. Since the number of colour patterns of Species A is
different from that of Species B, the result of comparison
between species is apparent. Thus, in this test each colour
pattern of a test species was compared with each of five colour
patterns (2 for Species A, 3 for Species B) in the library data. For
each species the number of samples was 15, where 10 samples
for each species were randomly selected from the given samples
for the learning stage; and 5 for the implementation stage. Each
colour pattern extracted frem each species is shown in Figures
B.1.(b), (c), (e), (f) and (g). After rotation of each pattern 13
descriptors for each pattern were calculated. Each descriptor is
illustrated as following:

Size : the number of pixels in a pattern/total number of pixels

N_cx : the normalised centre of gravity x of a pattern

N_cy : the normalised centre of gravity y of a pattern

Beta : the slope of a pattern

H1 : the number of pixels in the upper part/total number of
pixels in a pattern

H2 : the number of pixels in the lower part/total number of
pixels in a pattern

Q1 : the number of pixels in the quadrant I/ total number of
pixels in a pattern

Q2 : the number of pixels in the quadrant II/ total number of

pixels in a pattern
Q3 : the number of pixels in the quadrant 1ll/ total number of
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pixels in a pattern

Q4 : the number of pixels in the quadrant IV/ total number of
pixels in a pattern

L_m : the average value of L* contained in a pattern

B_m : the average value of B* contained in a pattern

A_m : the average value of A* contained in a pattern
|




(a) =
Species &

Pattern 1 o Pattern 2

(b) (c)

(d) Species B

Pattern 3 Pattern 4 Pattern 5

Cmnme-

@

(e) ® Q)
Figure B.1 Wing patterns and colour patterns. (a) The left-hand

side wings of Species A. (b) and (c) Colour patterns of Species
A. (d) The left-hand side wings of species B. (e)-(g) Colour
patterns of Species B.




Table B.1.(a) The values of descriptors for 10 samples of

Pattern 1 involved in the learning stage.

Size Ncx Ney BetaHt H2 Q1 Q2 Q3 Q4 L.m A_m B_m
52.34 0.59 0.55 0.04 0.49 0.51 0.25 0.24 0.20 0.31 51.78 6.87 B7.42
65.54 0.53 0.55 0,04 0.46 0.5 0,24 0.22 0.23 0.31 18.62 -4.65 6.75
75.05 0.52 0.53 0,04 0.49 0.51 0.26 0,23 0,24 0,27 34.23 -1,58 24.91
64.39 0,52 0.5 0,07 0.46 0.54 0.24 0.22 0,24 0,30 31,29 -3.16 19,54
58.29 0.60 0.57 0.01 0.48 0.52 0.24 0.24 0,21 0,31 48,84 12.71 80.06
71.52 0.52 0.53 0.06 0.47 0.53 0,25 0.22 0.23 0.30 35.64 -2.57 28.79
52.98 0.57 0.55 0,03 0.47 0.53 0.25 0.22 0.22 0.31 41.62 8.22 55.87
62.21 0.57 0.55 0,04 0,50 0.50 0,24 0.26 0.20 0.30 51.88 7.52 85.48
61.03 0.56 0.54 0,06 0.49 0,51 0.22 0.28 0.20 0.31 49.44 12.56 81.68
57.42 0.59 0.54 0,03 0.48 0.52 0,24 0.24 0.21 0.31 52.27 7.45 89.27

Table B.1.(b) The values of descriptors for 5 samples of Pattern

1 involved in the implementation stage.

SizeNcexNcy Betai1 H2Z Q1 Q2 Q3 Q4 Lm Am B_m
59,63 0.€60 0.55 0,05 0,50 0.50 0,25 0.25 0.18 0.32 51.81 9.06 84,77
55,81 0.55 0.53 0,06 ©0.48 0,52 0.19 0.28 0,24 0.28 45,84 6,71 76.61
53.23 0.58 0.5 0,07 0.46 0.54 0.21 0.24 0.21 0,33 45,31 9.17 72.4¢
63,96 0.53 0.5 0,02 0,48 0.52 0,25 0.23 0.24 0,28 41,34 3.12 59,09
61.74 0.59 0.55 0,05 0,49 0.51 0.22 0.27 0,20 0.30 51.13 9.24 94.96
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Table B.2.(a) The values of descriptors for 10 samples of
Pattern 2 involued in the learning stage.

Size N_cx N_cy Beta H1 H2 Q1 Q2 @3 Q4 L.m A.m Bm
47.66 0.51 0.53 0.08 0.45 0.55 0.22 0.23 0.24 0.31 22.30 -4.6  8.13
34,46 0,61 0.56 0.04 0.48 0.52 0.25 0.24 0.21 0.30 49,39 8.08 79.73
24.95 0.64 0.53 0.08 0.50 0.50 0,29 0.21 0.15 0.35 57.22 7.67 123.94
35.61 0.60 0.55 0.08 0.51 0.49 0.23 0.28 0.19 0.30 0.00 0.00 0.00
41.71 0.50 0.54 0.04 0.44 0.56 0.22 0.22 0.25 0.31 28.27 =5,11 10.57
28,48 0.63 0,55 0.07 0.51 0.49 0.24 0.27 0.17 0.32 0.00 0.00 0.00
47.02 0.5¢ 0.51 0.13 0.42 0.58 0,18 0.24 0.20 0.38 28.63 -2.42 10.99
37.7% 0.52 0,52 0,15 0.47 0.53 0,20 0,27 0,18 0,34 28,73 -1.53 10.83
38.97 0.51 0.54 0.07 0.47 0.53 0.25 0.21 0.23 0.31 28,94 -0.38 11.25
42,58 0.54 0,53 0,06 0.46 0.5 0.25 0.21 0.24 0.30 28,19 =6,00 10,42

Table B.2.(b) The values of descriptors for 5 samples of Pattern
2 involved in the implementation stage.

Size NcxNecy BetaHI H2 Q1 Q2 Q3 QfF L_m Am Bm
40,37 0.50 90,53 0.06 0.46 0.54 0.23 0.23 0.25 0.29 28.45 =-3.57 10.81
44,19 0,50 0,51 0,08 90,41 0,59 0,20 0.21 0,26 0,33 28,63 =2.48 10,98
46.77 0.4% 0.52 0,08 0.44 0.56 0.21 0.23 0.24 0,32 28,28 ~-4.93 10.59
6,04 0.58 0.51 0.10 0,39 0.61 0,22 0.17 0,25 0.36 28.91 ~-1.00 11.02
38,26 0.49 0.52 0.07 0.40 0.60 0.18 0.22 0.27 0,33 28.46 -3.42 10.85




Table B.3.(a) The values of descriptors for 10 samples of

Pattern 3 involved in the learning stage.

Size NcxNcy BetaHI H2 Q1 Q2 Q3 Q4 L_m Am B_m
57.43 0.52 0.52 =-0,02 0.47 0.53 0.25 0.22 0.25 0.28 28,16 -5,59 10.54
57.60 0.4% 0.49 0,13 0,54 0,46 0.23 0.31 0.18 0.28 28.68 =-4.91 11.38
63.66 0,54 0,51 0,04 0,48 0.52 0.25 0.24 0.22 0.30 28,54 =-4.33 11.27
57.06 0,53 0,45 0.11 0.50 0.350 0.24 0.27 0.19 0.31 28.08 -6.15 10,46
€5.84 0.52 0.52 -0,01 0.48 0.52 0.23 0.24 0.25 0.27 29.51 -4,79 14.79
61.,4% 0,52 0.51 -0.02 0.47 0.53 0.25 0,22 0.26 0.27 29,23 -5,60 14.40
59,19 0,52 0.52 -0.,02 0.47 0.53 0.24 0,23 0,26 0.27 28.09 =-6,10 10.47
65.32 0,55 0,52 0.01 0.49 0.51 0.25 0.24 0.23 0.29 28,91 -4,42 12.73
8,40 0,50 0.50 0.08 0.52 0.48 0.23 0.28 0.21 0.28 28.25 =-4,95 10,63
68.74 0.53 0.51 0,05 0,50 0.50 0.24 0.25 0.23 0.27 30.51 -2.15 17.08

Table B.3.(b) The values of descriptors for 5 samples of Pattern

3 involved in the implementation stage.

Size Ncx Ncy BetaHI H2 Q1 Q2 Q3 Q4 Lm Am B_m
58.67 0.49 ¢.50 0,09 ¢@.,51 0.49 0.23 0.28 0.23 0.26 28,27 -4.90 10.64
$7.59 0.52 0.52 0,00 0.50 0.50 0.25 0.25 0.24 0.27 28.25 -4.99 10.62
$8.12 0.52 0.51 0.05 0.49 0.51 0.24 0.25 0.22 0.29 28.24 -4.96 10.63
62,68 0.54 0,51 0.07 0.49 0.51 0.25 0.24 0.21 0.30 28,50 -4,5%0 11,08
56,64 0,52 0.53 -0,02 0.46 0.54 0.25% 0.21 0.25 0.29 28,08 -6,15 10.46
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Table B.4.(a) The values of descriptors
Pattern 4 involved in the learning stage.

for 10 samples of

SizeNcxNcy BetaHi H2 Q1 Q2 Q3 Q4 Lm Am Bm
31.85 0.71 0.53 -0,06 0,50 0.50 0.26 e.24 0.25 £.25% 51.11 11.50 97,99
34.64 0.72 0.47 -0.04 ©0.47 0,53 0.24 0.23 .27 0,26 52.57 9,63 106.05
27.13 0.70 0,52 -0,09 90,49 0.51 0.25 0.24 0.28 0.23 51.24 13,06 896,83
28,72 0.71 0.50 -0.,10¢ 0,50 0,50 0,26 0.24 0,27 0.23 51.07 13.44 93.86
29,08 0,68 0.54 -0.06 0,50 0.50 0,26 0.24 0.25 0.25 53.45 12.22 105,37
31.83 0.66 0,53 -0,04 0,50 O0.50 0,26 0.24 0,24 0.26 51.58 13.40 96.88
34.33 0.67 0,54 -0.05 0.49 0.5 0.26 0.23 0,24 0,26 52,21 11.50 98.49
29,35 0.69 0,53 -0.09 0©0.50 0.50 0.26 0.24 0,25 0,24 51,96 11,35 100,45
33,01 0,70 0.51 -0.03 0.49 0.51 0,25 0.24 0.26 0,25 54.54 13.40 109.84
25,46 0,70 0.51 -0.06 0.49 0.51 0,25 0.24 0.27 0.24 54,24 13.35 108,44

Table B.4.(b) The values of descriptors for 5 samples of Pattern
4 Involved in the implementation stage.

Size Nex Ncy BetaHt H2 Q1 Q2 Q3 Q4 L.m A_m Bm
36.48 0.71 0.4% -0.04 0©.48 0.52 0,26 0.22 0.26 0.26 49.45 9.55 90.3%
34.45 0.69 0.53 -0.08 0,50 0,50 ©0.27 0.22 0.26 0.24 50.37 10.87 92.26
33.60 0.66 0,52 0,01 0©0.4%9 0,51 0.25 0.21 0.23 0.27 47.69 13,90 7?.67
24,89 0.72 0,52 -0.02 0,49 0,51 0.24 0.25 ¢.25 0.25 52.06 13.78 99.33
3¢.51 0,70 0,55 -0,14 O0.51 0.49 0.28 0.23 0.25 0.24 46.72 11.59 75.15




Table B.5.(a) The values of descriptors for 10 samples of
Pattern 5 involved in the learning stage.

Size N_cx N_cy Beta H1 H2 Q1 Q2 Q3 Q4 L_m A_m B_m

10,72 ©¢.35 0.51 0.18 0.30 0.50 0.21 0.29 0.26 .23 66,40 -=1,22 37.77
7.7¢ 0.34 0.51 0.13 0.54 0.46 0.31 0.23 0.28 ¢.18 71,73 -0.38 233.29
8.21 0.35 0.53 0.00 0.50 0.50 0.34 0.15 0.27 ©£.23 64,44 2.95 45.34

14,22 0.39 0.52 0.15 0.56 0.44 0.30 0.26 0.28 02,17 e4.52 -0.16 38.85
5.08 0.32 0,53 0.02 0.51 0.49 0.31 0.21 0.24 2.24 71.1% -2.84 55,89
6,72 0.37 0.53 0.10 0.52 0.48 0.21 0.31 0.28 0.20 66,66 -2,58 50,53
6.47 0.33 0.52 0.19 0.49%9 0.51 0.28 0,22 0.27 0.23 67.50 0.76 83,03
5.34 0,30 0.53 0.14 0.51 0.49 0.33 0.18 0.36 .13 68.66 -3,71 20,12
8,59 0,43 0,52 0,27 0,53 0.17 0.15 0.38 0.27 ©£.20 56.75 =-1.25 49.05

5.81 o0.38 0.55 0.16 0.54 0.46 0.41 0.14 0.25 ¢0.20 65.91 =5,04 45,94

Table B.5.(b) The values of descriptors for 5 samples of Pattern
S involved in the implementation stage.

Size Ncx Ncy BetaHi H2 Q1 Q2 Q3 Q4 Lm Am Bm

4.85 0.39 0.51 0.35 0.56 0,44 0.30 ©0.26 0,22 0.22 65.13 -5.09 44,02
7.96 0,33 0,52 0,15 0.49 0,51 0,30 0.19 0.25 0,26 66,88 0.17 6l.26
8.28 0,34 0.53 0.20 0.53 0.47 0.31 0.22 0.24 0,23 65.79 -5.20 46.28
12.43 0.38 0.53 0.16 0.55 0.45 0.32 0,23 0.25 0.20 63.81 0.84 65,36

12.85 0.34 0.55 -0.09 0.49 0,51 ©.36 0,13 0.25 0.26 70.77 -9.26 30,61




Table B.6.(a) The mean and standard deviation of each
descriptor using 10 samples of each Pattern involved in the
learning stage.

p

a
tn

e SD
n
1

Size N_cxN_cy BetaH1 H2 Q1 Q2 Q3 Q4 L_.m A_m B_m

R

M 6208 056 055 004 048 052 024 024 022 030 4156 434 5598
SD 738 003 001 002 0.01 001t 001 002 002 001 1138 866 32.77

2 M 3792 056 054 0.08 047 053 023 024 021 032 27.17 -0.44 26.59
8D 7.38 005 002 0.4 0.03 003 0.03 003 003 003 17.97 489 4123

3 M 6147 052 051 003 049 051 024 025 023 028 2880 -490 1238
SD 4.18 0.02 001 0.06 002 002 0.01 003 003 0.01 0.78 1.16 231

4 M3054 0.69 052.006 0.49 0.51 025 024 0.28 0.25 52.40 1229 101.42
SD 3.07 002 002 002 001 001 001 000 001 0.01f 128 128 555

5 M 799 036 052 013 0.52 048 029 024 028 0.20 66.38 -1.35 45.98
SD 283 0.04 0,01 008 002 002 008 007 0.03 003 420 232 165




Figure B.2 A diagram for the ranges of Size of each pattern.
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Figure B.3 A diagram for the ranges of Beta of each pattern.
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Figure B.4 A scatter diagram of the N_cy values against the |
N_cH values. ;
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Figure B.5 A scatter diagram of the Q2 values against the Q1

values.
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Figure B.6 A scatter diagram of the Q3 values against the Q4
values.
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Figure B.7 A scatter diagram of the 02 values against the Q3

values,
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Figure B.8 A scatter diagram of the Q1 values against the Q4
values.
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A_m values,
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Figure B.10 A scatter diagram of the L_m values against the
B_m values.
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Figure B.11 A scatter diagram of the B_m values against the
A_m values.
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