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Abstract 

The systolic array research was pioneered by H. T. Kung and C. E. Leiser­

son. Systolic arrays are special purpose synchronous architectures consisting 

of simple, regular and modular processors which are regularly interconnected 

to form an array. 

Systolic arrays are well suited for computational bound problems in Linear 

Algebra. In this thesis, the numerical problems, especially iterative algorithms 

are chosen and implemented on the linear systolic array. 

Iterative methods perform a sequence of repetitive steps to obtain a new ap­

proximation which converge to a solution. The accuracy of the method de­

pends on the number of iterations performed. The iterative process is termi­

nated when the difference between the successive approximation satisfies some 

tolerance. 

Several iterative methods like the Jacobi, Gauss-Seidel, S.O.R., S.S.O.R., 

A.O.R., M.S.O.R. etc. are mapped on to a linear systolic array. The sys­

tolic designs are simulated in OCCAM. 

Problems involving rates of change of two or more independent variables rep­

resenting some physical quantity leads to a partial differential equation. These 

equations can be discretised and then solved by applying the iterative meth­

ods. The 2-dimensional and 3-dimensional problems are taken as example and 

are discretised. The discretised problems generate sparse matrix systems. The 

concept of a Virtual IPS cell is introduced to cope with wide sparse matrix 

systems. Using these cells, a linear systolic array is simulated and several 

iterative algorithms are used to solve PDE's by the second order Richardson 

iterative method, S.O.R., Steepest Descent, Conjugate Gradient and Precondi­

tioned Conjugate Gradient methods. The concept of Virtual IPS cell reduces 

the area requirements of the array but the computational time remains the 

same. 
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Chapter 1 

Introduction and Fundamentals 

of Parallel Computer 

Architectures 

This chapter provides introduction to the thesis, an overview of parallel pro­

cessing and different system organizations. Increased computational applica­

tions, new computer technologies and novel concepts in system organizations 

have lead to an increasing interest in highly powerful and reliable computer 

architectures. Several approaches have been developed to increase the power 

and throughput of the conventional Von Neumann architecture. Pipelining is 

used to achieve concurrency on a time overlap basis. The idea of having several 

memory units instead of one, is used to fetch the operands concurrently from 

separate memory units, thus improving throughput. The use of more than 

one processor to solve large problems fast gave birth to the field of parallel 

processing. 

1 



1.1 Introduction 

The solution of many important problems related to scientific and engineering 

applications require solving large systems of linear equations. Examples in­

clude fluid dynamics, weather predictions, aircraft design, structural problems 

and many others. These systems arise from modeling with partial differential 

equations by the use of finite difference/element methods. Thus, solving large 

systems of equations has been a central issue in numerical methodology and 

analysis. Two basic families of methods for solving systems can be distin­

guished: direct and iterative. There are times that one should prefer to use a 

direct method but the opposite is also true. 

Besides being important from this point of view, developments in computer 

technology bring additional interest to the study of iterative methods. Al­

though some well known iterative schemes are very old, it was the growth 

of digital computers and their increased use in solving the partial differential 

equations that triggered considerable new interest in the area. Thus, the fifties 

and sixties became the period in which most of the significant results on itera­

tive methods were produced. Memory limitations, that adversely affect direct 

methods, were the main reason for this. The memory and speed of computers 

have increased dramatically since then, but so has the computational needs 

of researchers and developers, reaching the point of requiring the solution of 

systems with millions of unknowns. The development of parallel and vector 

computers changed the nature of numerical algorithms. Computer algorithms 

and architectures became closely related and affect each other. Then in the new 

super computer architectures, communication costs and bottlenecks became a 

major limitation in the efficient implementation of algorithms. The develop­

ments in micro-electronics have revolutionised computer design. Integrated 

circuit technology has increased the number and complexity of components 

that can fit on a chip. The Very Large Scale Integrated (VLSI) technology 

makes it feasible to build low-cost special purpose designs to rapidly solve so-

2 



phisticated problems. Iterative methods seem to behave considerably better 

than direct methods, thus attracted renewed interest. 

This work is motivated not only by the importance of the iterative methods, as 

explained above, but also by the unresolved issues that these methods present. 

With the exception of the Jacobi iterative method (which, when it converges, 

converges slowly), known iterative methods do not present inherent paral­

lelism. One solution to this problem requires modification of existing methods 

or to discover new methods with increased parallelism. The other solution 

is to select existing computer architectures or design new ones that are most 

suitable for the implementation of parallel iterative methods. The designs de­

veloped will have different hardware requirements and execution times. So the 

design may be implementable but too expensive (difficult) to fabricate. Even if 

some methods are implementable, convergence may be too slow. Of the many 

methods one often does not know which one will converge significantly fast 

and definitely one will prefer to use the fastest possible. This leads to discover 

better implementation schemes in terms of parallelism. The issues related to 

the practical implementation will not be dealt with in this thesis. 

Rest of this chapter briefly describes the different parallel computer organisa­

tions. 

Chapter 2, contains basic mathematical definitions in the areas of numerical 

solution of the systems of linear equations and the discrete approximation 

to the solution of partial differential equations. Some basic matrix iterative 

methods are explained briefly as well. 

Chapter 3, is an introduction to the basic concepts of the systolic approach 

in parallel processing. It starts with a description of the basic building block 

of the systolic design. Later in the chapter, the matrix vector multiplication 

example is presented on a linear systolic array, proposed by H. T. Kung. Then 

different techniques to improve the utilisation of the array, and to decrease the 

chip area are explained. We implement these new ideas to the basic iterative 

3 



methods and describe their usefulness. 

Chapter 4, describes the systolic implementation of the S.O.R. and S.S.O.R. 

iterative methods on the linear systolic array. The Conrad-Wallach strategy is 

implemented in order to reduce the iteration time of the array and hence the 

computational work is reduced to that of the S.O.R. iterative method. 

Chapter 5, describes the first and second order stationary and nonstationary 

Richardson iterative methods. The A.O.R. iterative method and the S.A.O.R. 

iterative method are also described. The systolic implementation of these 

methods are developed. A similar strategy as Conrad-Wallach is applied to 

the S.A.O.R. iterative method. Different pipelining techniques to improve the 

utilisation are shown and explained. 

Chapter 6, presents the systolic designs for the 2-dimensional and 3-

dimensional problems obtained from the discretisation of partial differential 

equations. The discretised problems are solved using the J.O.R., S.O.R. and 

second order Richardson (with and without Chebyshev acceleration) iterative 

methods. Later we explain the Conjugate Gradient and Preconditioned Con­

jugate Gradient methods and implement them systolically. 

Chapter 7, completes this thesis with a review of the main results and some 

general conclusions, that reflect the research areas mentioned in this thesis. A 

list of references is also given, consisting of material covering a wide spectrum 

of research interests in the systolic systems and computing. 

1.2 Architectural configuration of parallel 

computers 

The Von Neumann computer model (classical sequential model) of computa­

tion consists of a stream of instructions and a stream of data, executing one 

instruction at a time, to produce a computational result, as shown in figure 

(1.1). The Von Neumann architecture is improved by using multiple proces-

4 



- Memory e-

PE 

Figure 1.1: Von Neumann computer model. 

sors that can communicate and cooperate, which gave birth to the field of 

parallel processing (see Almasi and Gottlieb [1]). Parallel computers can be 

classified according to their architectures namely; Pipelined computers, Array 

processors, Multiprocessor systems, Data flow computers and VLSI algorithmic 

processors. Data flow computers and VLSI algorithmic processor architectures 

demand extensive hardware to achieve parallelism. The revolution brought by 

the VLSI technology has made these two approaches an interesting research 

area. 

1.2.1 Pipelined computers 

Pipelined computers have emerged and received considerable attention as an 

attribute and an economical way of speeding up computer systems. Pipelining 

offers an economical way to realise "temporal" parallelism in digital comput­

ers. The pipelining approach is based on the fact that the execution of many 

machine instructions consumes several clock periods, usually using the same 

hardware iteratively. If such hardware is replicated serially, then a number of 

operations may be streamed into the processors at the same time and be exe­

cuted in an overlapped fashion. Hence input tasks (processes) must be divided 

into a sequence of subtasks, each of which can be executed by a specialised 

hardware stage that operates concurrently with other stages in the pipeline. 

Therefore, a pipeline processor can be described as consisting of a sequence of 

processing circuits, called segments or stages, through which the data stream 

5 



Control Unit 

I 
1 1 1 -- j 

r--" Stage 1 Stage 2 Stage 3 ... Stage n 

1 Memory I. 
I I 

Figure 1.2: n-stage pipelined computer. 

passes. The data is processed partially by each segment and the final result 

is obtained after the data has passed through all the segments of the pipeline. 

The result stream returns to memory. Here parallelism is achieved by hav­

ing distinct operand sets or processes manipulated in several segments at the 

same time (see Hennessy and Patterson [38], Baer [3]). Figure (1.2) shows a 

schematic diagram of an n-stage pipelined machine. Due to the overlapped 

instruction and arithmetic execution, it is obvious that pipeline machines are 

better tuned to perform the same operations repeatedly through the pipeline. 

Whenever there is a change of operation, say from "add" to "multiply", the 

arithmetic pipeline must be drained and reconfigured, which will cause extra 

time delays. Therefore, pipeline computers are more attractive for vector pro­

cessing, where component operations may be repeated many times such as in 

matrix computations. 

Now to explain how parallelism can be achieved by pipelining, let us con­

sider the process of executing an instruction. Usually the process of executing 

an instruction in a digital computer involves four major steps: fetching the 

instruction (IF) from the main memory; decoding it (ID) to identify the oper­

ation to be carried; fetching the operand(s) (OF) if required; and finally the 

execution (EX) of the decoded arithmetic logic operation. If this process is 

to be carried out in a non-pipelined computer, then these four steps must be 

6 



Instruction i Instruction i+ 1 Instruction i+2 Instruction i+3 

IF I ID IOF lEX IF I ID IOF lEX IF [ID IOF lEX IF I ID IOF lEX 

Figure 1.3: Non-pipelined execution. 

Instruction 
Pipe Cycle 

number 1 2 3 4 5 6 7 

i IF ID OF EX 

i+I IF ID OF EX 

i+2 IF ID OF EX 

i+3 IF ID OF EX 

Figure lA: Pipelined execution. 

completed before the next instruction can be issued, as can be seen from the 

space-time diagram in figure (1.3) for the non-pipelined processor . 

.In a pipelined computer, successive instructions are executed in an overlapped 

fashion, by the four pipelined stages, IF, ID, OF and EX, which are arranged 

into a linear cascade (see figure lA). 

An instruction cycle consists of multiple pipeline cycles. A pipeline cycle can 

be set equal to the delay of the slowest stage. The operation of all stages 

is synchronised under a common clock control. For non-pipelined computers 

it takes four pipeline cycles to complete One instruction. Once a pipeline is 

filled up, an output result is produced from the pipeline on each cycle. The 

instruction cycle has been effectively reduced to one-fourth of the original 

cycle time by such overlapped execution. According to the levels of processing 

Handler, in [36], classified the pipeline processors into three classes which are: 
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• Arithmetic pipelining: These processors have been constructed for per­

forming either a single arithmetic function or the four basic operations 

on both fixed- and floating-point numbers. 

• Instruction pipelining: The purpose of such a pipeline is to overlap 

the execution of the current instruction with the subsequent instruc­

tion stages. This is done by the decomposition of instruction execution 

into a linear series of autonomous stages e.g. fetch, decode etc. 

• Processor pipelining: In this type of pipelining, a cascade of processors, 

each with a specific task, process the same data stream. The first pro­

cessor manipulates the passing data stream and the results are stored 

in a memory block which is accessible by the second processor. The 2nd 

processor passes the refined data stream to the third processor and so 

on. 

The first two classes are "low-level parallelism" and hence are excluded from 

the set of parallel architecture. There are two reasons for such exclusion; the 

first one being that the failure to adopt a more restrictive standard might 

make the majority of modern computers "parallel architecture" negating the 

term's usefulness. The second reason is that architectures having only these 

features do not offer an explicit, coherent framework for developing high-level 

parallel solutions. Theoretically, the maximum speed-up that can be gained 

from a pipeline processor with n-stages is n, i.e. when the pipeline is full. 

However, in practice this perfect speed-up cannot be achieved due to memory 

conflicts, data dependency, program branches and interrupt handling. Some of 

the most obvious machines that use pipelining technology are: IBM 360/195, 

CDC STAR, and the University of Manchester MU5 computer. 
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1.2.2 J\rray processors 

An array processor can be defined as a synchronous parallel computer with 

multiple arithmetic logic units called processing elements (PE's). Those pro­

cessing elements are controlled by a single control unit (CU) i.e. processor 

only operates on command from control unit. Each PE is independent i.e. has 

its own registers, an arithmetic and logical unit (ALU) and a local memory. 

"Spatial" parallelism can be achieved by the replication of the ALU's. 

Two essential reasons were behind the idea of building array processors. The 

first is an economic reason for it is cheaper to build n processors with only one 

control unit rather than n similar computers. The second reason is that the 

communication bandwidth, of the interprocessor communication, can be fully 

utilised. 

The PE's are passive devices without instruction decoding capabilities and they 

are synchronised to perform the same function at the same time. The control 

unit fetches and decodes the instructions and broadcasts the data, i.e. vectors 

to the PE's for distributed execution over different components. Operands are 

fetched directly from the local memories. Scalar and control instructions are 

directly executed in the control unit itself. 

Different array processors may use different interconnecting patterns among 

the PE's. In order to maximise the parallelism in an array processor, utilisation 

of the available memory and processor bandwidths must be very high. 

An example of an array processor is the ICL DAP computer. Figure (1.5) is a 

schematic diagram of the general structure of this machine. 

The ICL DAP has simple identical processing elements (upto 4096 processors, 

arranged in a (64 x 64) grid). A single master processor broadcasts program 

instructions to individual PEs which execute the same instruction on their 

respective data items. In the DAP, the PEs are connected in a square array. 

Each PE can simultaneously shift one bit in one direction and receive a bit 

from the opposite direction. Repeated shifts can move large volumes of data 
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Figure 1.5: ICL OAP architecture. 

from any part of the grid to any other. This is a basic example of a vector or 

array processor. 

Speedup is achieved compared to the Von Neumann model as there is no 

separate instruction fetch for each data item, and the execution of the data 

items is done in parallel. This is an expensive solution as multiple processing 

elements are required. The operational speed of an array processor is supposed 

to increase linearly as the number of the PE's is increased. However, this is 

not the case due to the interprocessor communication and the data access 

overheads. 

Some of the application areas that have been suggested as suitable for ar­

ray processors and in particular for the Illiac IV, the BSP, the MPP and 

the STARAN systems include: Matrix algebra (multiplication, decomposi­

tion, inversion), matrix eigenvalue calculation, linear and integer program­

ming, weather modeling, beam forming and convolution, filtering and Fourier 

analysis, image processing and pattern recognition, wind-tunnel experiments, 

automated map generation, and real-time scene analysis. 
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The above list is by no means exhaustive. Most of these applications need to 

process spatially distributed data. 

1.2.3 Multiprocessor systems 

Multiprocessor systems have been developed as part of the research efforts 

aimed to improve the speed, reliability, throughput and availability of com­

puter systems. A multiprocessor system is defined in the American National 

Standard Vocabulary of Information Processing as "a computer employing two 

or more processing units under integrated control". This definition is not com­

plete as the concept of sharing and interaction, which are at the core of the 

techniques of multiprocessing are not included in the ANSI definition. Enslow, 

in [13), defines the multiprocessor system which has the following characteris­

tics. 

A multiprocessor system contains two or more processors of approximately 

comparable capabilities. All processors share access to common memory mod­

ules, I/O channels and peripheral devices. Most importantly, the entire sys­

tem is controlled by one operating system which provides interactions between 

processors and their programs at various levels. Each processor has its lo­

cal memory and private devices. Figure (1.6) shows a basic multiprocessor 

organisation. 

Processors, in these systems can communicate with each other, either through 

the shared memory or through an interrupt network. This interconnecting 

structure between the memories and the processors and between memories 

and I/O channels is the primary determination of multiprocessor hardware 

system organisation. 

Among these interconnecting structures, three fundamental types have been 

identified by Hwang and Briggs, in [41), to be used in multiprocessors. 

1. Time-shared/Common bus 
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Figure 1.6: Multiprocessor architecture. 
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Figure 1. 7: Time-shared bus (single bus) multiprocessor. 

This is the simplest interconnecting structure for either single or multiple 

processors system. It consists of a common communication path (single 

bus) connecting all of the functional units, in which each one of them 

consists of a number of processors, memories and I/O devices. 

The time shared bus involves the lowest overall system cost for hardware 

as the bus can be a simple multiconductor cable, and hence is least 

complex. The system configuration can be physically modified simply 

by adding or removing the functional units. However, expanding the 

system by the addition of functional units may degrade the overall system 

performance and hence is suitable for small systems. The major draw 

back of this organisation is that a bus failure halts the entire system. 

Figure (1.7) illustrates a general scheme of a common bus multiprocessor 

system. 

2. Cross-bar switch network 

To overcome the major drawback of the time-shared bus organisation 

mentioned earlier, the crossbar switch networks are used. 

The crossbar interconnecting technology uses a crossbar switch of PxM 

cross points to connect P processors to M memories. Thus, the intercon­

nections between processors and memory units are increased in such a 
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Figure 1.8: Crossbar switch network multiprocessor. 

way that each processor is allowed to have equal access to any nonbusy 

memory unit. Therefore, each memory unit CM) has its own separate 

path to a processor (P) as shown in figure (1.8). 

The crossbar switch is the most complex interconnection system. The 

functional units are the simplest and hence cheapest because the con­

trol and switching logic is in the switch. The main characteristics of 

this organisation are the high throughput, highest potential for system 

efficiency. System expansion improves the overall performance, the ex­

pansion of the system is limited only by the size of the switch. Also, this 

organisation has the potential for the highest total transfer rate. It is 

quite easy to partition the system to isolate the malfunctioning devices 

or to establish independent systems. However, the system proves to be 

too costly (PM) and complex for highly parallel systems because of too 

many connections. 

3. Multiport memories 
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Figure 1.9: Multiport memories multiprocessor organisation. 

In this organisation, the switching is concentrated in the memory mod­

ule. Each processor has access through its own bus to all of the mem­

ory modules. Conflicts are resolved by assigning a fixed priority to the 

memory ports. It is possible to designate a portion of the memory as 

private to certain processors, I/O units, or a combination of both. Figure 

(1.9) shows a multiport memory multiprocessor organisation. Multiport 

memory requires the most expensive units since most of the control and 

switching circuitry is included in the memory units. The system has 

a very high transfer rate. The size and configuration options are de­

termined by the number and type of memory ports available, and this 

decision is made quite early in the overall design process and is difficult 

to modify. This organisation requires number of cables and connectors. 

Cost wise, the time-shared bus is the cheapest and the crossbar is the most 

expenSIve. The memory modules of the multiport organisation must have 

additional logic in their controllers and hence become expensive. The time­

shared bus allows easy expansions, but the performance of the systems de­

grades rapidly if the system bus is overloaded. In terms of reliability, the 

time-shared bus and crossbar switches appear equally poor. Finally, both 
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crossbar and multi port schemes allow maximum concurrency. 

1.2.4 Data flow computers 

The conventional Von Neumann machines are known as control flow comput­

ers because instructions are executed sequentially as controlled by a program 

counter. Therefore computation in such computers is done according to the 

flow of control in the program and each instruction is executed in turn making 

program execution inherently slow. To exploit parallelism in a program, data 

flow computers were developed. The basic concept behind this development is 

to schedule each operation in the function being carried out at run time when 

all the operands are available. The sequence of operations in the data flow 

computers obey the precedence constraints imposed by the algorithm rather 

than by the location of the instructions in the memory. The instructions in a 

program are not ordered, hence no program counter is required. 

In theory, the amount of con currency exploited in data flow machines is con­

strained by the availability of hardware resources, i.e. how many instructions 

can be executed simultaneously by the computer. 

After executing the instruction, the result is distributed to all subsequent in­

structions, which make use of this partial result as an operand. In this way the 

data flow model of computation exploits the natural parallelism of algorithms. 

In computer architecture this makes it possible to create systems which can 

dynamically adopt their inner configuration to the natural structure of the 

algorithm being performed. 

Programs for data-driven computations can be represented by "data flow 

graphs". An example of a data flow graph is given in figure (1.10) for the 

calculation of the mean and standard deviation (SD) given by following for­

mulas: 

(x + y + z) 
mean = 3 ' (1.2.1) 
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Figure 1.10: Data flow graph for calculating mean and standard deviation. 

(1.2.2) 

Miller and Cocke, in [58J, designed the two basic models of data flow computer 

architectures which are: 

• Search Mode configuration computer (SM-type) . 

• Interconnecting Mode configuration computer (IM-type). 

Both models are characterised by the possibility of dynamic adoption of its 

configuration to the structure of the algorithms. This is done by interconnect­

ing (according to the graph) the processors that correspond to the operators 

in the data flow program of the problem. The reconfiguration is done either 

by hardware or software means. In the IM-type, the interconnection between 

processors is actually implemented through a large switch, i.e. by hardware 

means. In the SM-type, the interconnection is simulated by using a special 

instruction format, i.e. by software means. Due to reconfigurability, the data 

flow computer is able to achieve the performance of a specialised system whilst 

still keeping its general purpose capabilities. 
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In data flow computers, information items are either operation packets or 

data tokens. An operation packet is composed of the op-code, operands 

and destination of its successor instructions. A data token is formed with a 

result value and its destinations. Depending on the way these data tokens are 

handled, data flow computers are subdivided into a static model or a dynamic 

model. 

The static model of data flow computers provides a fixed amount of storage 

per arc, i.e. only one data token is allowed to exist on any arc at any given 

time, otherwise the successive sets of tokens cannot be distinguished. In the 

dynamic model the machine uses tagged tokens so that more than one token 

can exist in an arc at the same time. An architectural comparison of data flow 

machines is described in Srini [72J. 

1.2.5 VLSI systems 

As a result of the advancement in large-scale integration (LSI) technology, 

Very Large-Scale Integration (VLSI) technology has been developed. In this 

technology, circuit designs were introduced in which the number of transistors 

has been increased by a factor of 10 to 100 compared to the LSI technology. 

The VLSI technology has made possible for a 32-bit processor' with memory 

and I/O support to be fabricated on a single chip. 

The main advantages offered by the VLSI technology are; its capacity to imple­

ment enormous number of devices on a chip, at a very low cost, reduced power 

consumption and physical size, and reliability. Additionally, the high level of 

integration conceivably eliminates the need to physically separate processors 

from the memory, thus eliminating the bottleneck between them. The main 

problem with VLSI technology is to overcome the design complexity. This 

problem can be solved by using regular design structures e.g. a memory chip. 

Software tools as well as hardware aspects are becoming more and more im­

portant in the design and testing stages of VLSI circuits. This leads to the 
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fact that the production of a new chip requires software as much as hardware 

engineering knowledge. 

The two major difficulties exercised by conventional computers are the sepa­

ration between the processor from its memory and the limited opportunities 

for concurrent processing. By using VLSI technology it became possible to 

overcome these difficulties because memory and processing architecture can 

be implemented with the same technology and by their close proximity. Be­

side that the potential power of VLSI has come from the large amount of 

con currency that the technology supports. 

The degree of con currency or parallelism in VLSI computing structure is largely 

determined by the underlying algorithm. The I/O bottleneck problem in VLSI 

systems presents a serious restriction imposed on the algorithm design. The 

challenge is to design parallel algorithms which can be partitioned such that 

the amount of communication between modules is as small as possible. Enor­

mous parallelism can be obtained by introducing a high degree of pipelining 

and multiprocessing while designing the algorithm. Properly designed parallel 

structures that need to communicate only with their nearest neighbours will 

gain the most out of the VLSI design. 

One way of achieving parallelism is by attaching a special-purpose parallel pro­

cessor to the system bus of a microcomputer to speed-up the compute-bound 

algorithm rather than the I/O-bound computation. In a compute-bound algo­

rithm, the number of computing operations is larger than the total number of 

I/O operations. Otherwise, the problem is I/O-bound. The attached parallel 

processor shown in figure (l.ll) has two general architectural designs. The 

first being the multiprocessor lattice architecture based on the idea of several 

processing elements operating under centralised control and the second is a 

systolic array architecture which makes extensive use of pipelining. 

A multiprocessor lattice architecture is an (n * n) array of processing elements 

working concurrently under a centralised control and transmitted via a long 
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Figure 1.11: Achieving parallelism by using a special-purpose parallel proces­

sor. 

local communication path connecting neighbouring processing elements. Each 

processing element has a private memory to store both results and any other 

temporary values which might be needed. The ICL DAP (see figure 1.5) is an 

example of an array lattice architecture. Designing a VLSI systolic system it 

is assumed that the processing cells (elements) in the array can be of different 

types and perform different operations. However, one design goal is to reduce 

the number of processing cell types. 

The mapping of algorithms into systolic arrays is different than mapping of 

algorithms into architectures with fixed number of processors and interconnec­

tions. In case of systolic arrays, one has to deal with issues ranging from the 

organisation of the network of processing elements to the detailed operation of 

the processing elements. In fact, the mapping is the design of the VLSI array 

according to the properties of the algorithm and a set of design goals. 

The design and implementation of a VLSI array can be broken into three main 

phases; task definition, design and processing (see Kung [44]). The design 

phase can be subdivided into system level, algorithms, logic circuit level and 

geometric layout. The processing phase concentrates on pattern generation, 

mask generation, wafer fabrication, device packaging and circuit testing. 

A computer organisation can be obtained by having several special purpose 

VLSI processor arrays connected to the host computer and main memory via 

an interconnection network, (see Moldovan [60]). Figure (1.12) presents such a 
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Figure 1.12: Computer system with several VLSI processor arrays. 

design, the idea is to improve the performance of an existing computer system, 

using VLSI array processors. For example asystolic VLSI device implementing 

linear algebra routines can be built and connected to the system bus. The host 

computer when required calls these hardware routines by downloading the data 

into the device, and collects the results when available. Such devices are known 

as hardware accelerators (see Megson [56]). Each VLSI device consists of a 

number of processors working in parallel. The systolic array can be defined 

according to Kung and Leiserson, in [46], as a computing structure for making 

use of special-purpose VLSI chips. 

A chip based on a systolic design consists, essentially of a few types of very 

simple cells (processing elements) which are mesh-interconnected in a regular 

and modular way and which achieve high performance through extensive con­

current and pipeline use of the cells. Figure (1.13) shows the basic principles 

of a systolic array. 

The name systolic given by Kung and Leiserson is taken from the physiology of 

living cells. A "systole" is a contraction of the heart by means of which blood 

is pumped to the different components of the organism. In the systolic system, 

the information (data and instructions) is rhythmically given into a structure 

of elementary processors (cells) to be processed and passed to a neighbour cell 

until a result reaches some boundary of the system communicating with the 
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Figure 1.13: Systolic processor array. 

The speedup obtained in systolic arrays is not linear. The computational time 

can be divided into a parallel portion and serial portion. The speedup is 

asymptotically limited by the serial portion (performed on a single processor); 

independent of the parallel portion. This principle is known as Amdahl's law. 

If there are a sequence of 100 operations to be performed in parallel, compared 

to a single processor machine an 80 processor machine would attain a speedup 

of 5 or less but not 80! Similarly systolic arrays have the Von Neumann 

bottleneck. Systolic arrays have applications in the field of numerical problems, 

signal processing, pattern recognition. 

1.3 Classification of computer systems 

The Von Neumann model (classical sequential model) of computation consists 

of a stream of instructions and a stream of data, executing one instruction at 

a time, to produce a computational result, as shown in figure (1.1). The Von 

Neumann architecture is improved by using multiple processors and gave birth 
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to the field of parallel processing. Flynn, in [23], give a taxonomy to classify 

these computational models as follows. 

A computer architecture, can be classified in terms of parallelism within the 

data stream and instruction stream. A stream simply means a sequence of 

items as executed or operated on by a processor. In this context, instruction 

stream means the sequence of instructions that are executed in a processing 

unit and data stream means the sequence of operands that are manipulated in 

a processor. 

Flynn classified computer systems into four classes according to the replication 

of instruction streams and data streams. These classes which are demonstrated 

in figure (1.14) are: 

1. Single-Instruction Single-Data stream (SISD): This, in fact, is the 

sequential computer (Von Neumann machine), where at any time, only 

one instruction is in execution affecting at most one item of data. 

2. Single-Instruction Multiple-Data stream (SIMD): This is a class 

of computers in which the data stream has been replicated. There­

fore, each instruction operates on a data vector rather than on a single 

operand. One well known class of SIMD machines is the array processors 

(e.g. IIIiac IV which contains an array of 64 fast floating point proces­

sors). Other SIMD computers, like the the Distributed Array Processor 

(DAP), Connection machine are the classical examples. 

3. Multiple-Instruction Single-Data stream (MISD): Here in this 

class the replication is in the instruction stream instead of the data 

stream. Each operand is operated upon simultaneously by several in­

structions. This mode of operation is generally unrealistic for parallel 

computers. The nearest example for such a machine is the punched card 

processor (see Stone [74]). There has been no commercial machine built 

of this type. 
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4. Multiple-Instruction Multiple-Data stream (MIMD): In this type 

of machine parallelism is combined in both the instruction and data 

streams. A computer system of this class is composed of n processors 

each of which is a complete computer with the processors connected 

together to provide a means for cooperating during computation. 

Multiprocessors are a subclass of MIMD systems in which processors have com­

mon access to the primary memory and I/O channels with a single operating 

system controlling the entire complex. Shared memory machines like (Sequent 

Balance) and distributed memory systems (The Hypercube and Transputer 

networks) discussed later in this chapter are the examples of MIMD machines. 

Of the four types of computer systems mentioned above, the two of immediate 

interest are the SIMD and MIMD computers. These two types, which will be 

discussed in more detail later, are vastly different in how they attain parallelism 

of operations. 

Flynn's macroscopic classification of parallel architecture does not depend on 

the structure of the machines, but rather on how the machine relates its in­

structions to the data being processed. Therefore, this classification scheme 

can be considered too broad. 

Other classification schemes were designed depending on different criteria. One 

of these classifications is Shore's classification (see Shore [68]) which was based 

on how the computer is organised from its constituent parts. According to this 

criteria six different types of machines were recognized. These types which are 

distinguished by a numerical designator are: 

• Machine I : This is the conventional Von Neumann computer with one 

control unit, one processing unit, an instruction memory and a data 

memory. This data memory reads all bits of any word for processing in 

parallel by the processing unit . 

• Machine 11 : Same as machine I except that the data memory reads a 
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Figure 1.14: Flynn's classification of computer systems. 

25 



bit slice from all words in memory instead of all bits of one word. The 

processing unit in this machine is organised to perform its operations in 

a bit-serial fashion. 

• Machine III : Combination of machines I and Il. 

• Machine IV: This machine can be obtained by replicating processor units 

and data memory units of machine I. 

• Machine V : This is machine III with additional facility that proces­

sor units are arranged in a line and nearest-neighbour connections are 

provided. 

• Machine VI : In this machine processor logic is distributed throughout the 

memory and because of that it is called logic-in-memory array (LIMA). 

Skillicorn, in [69], presented a classification scheme, or taxonomy, that extends 

Flynn's to make some discrimination. This taxonomy is based on a functional 

view of architecture and on the information flow between units. 

Feng's scheme, in [21], is based on serial versus parallel processing. It is a 

performance oriented classification that describes the parallelism of the set of 

processors in a machine in terms of the number of bits that can be processed 

simultaneously. 

Another approach used by Reddi and Feustel, in [65], made use of the phys­

ical organisation, information flow and representation and transformation of 

information as the basis for classification. 

Handler, in [36], in his classification describes architectures by giving the num­

ber of processors and how they can be pipelined together. 

1.3.1 SIMD computers 

The original motivation for developing SIMD computers was to perform par­

allel computations on vector or array types of data. 
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Figure 1.15: The SIMD computer organisation. 

The SIMD computers consist of identical processing elements (PE's) arranged 

in an array and controlled by a single control unit. In this type of machine the 

same operation is performed at the same time over-all data in all processing 

elements. A simplified model of an SIMD computer is shown in figure (1.15). 

This organisation has an identical number of processors and memory units 

beside the alignment network that allows the data to be transferred from one 

processor to another. 

Because the PE's are passive devices without the capability of instruction 

decoding, user's programs are therefore loaded into the control unit (CU) which 

decodes the instructions and decides where to send them for execution. Scalar-

control-type instructions are executed inside the CV itself whereas the vector­

type ones are broadcast to the PE's for execution. 

One of the major issues in the design of SIMD computers is the interconnection 

and transfer of data between the PE's. Therefore different interconnection 

networks have been proposed for this type of computer with the complete 

network, where each processor is connected to all other processors and which 
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is the most expensive and most difficult to manage by both designers and users. 

Hwang and Briggs [41] is one of the good references covering this issue. 

Many parallel processing algorithms have been developed for the SIMD com­

puters. These algorithms can be used to perform matrix multiplication, Fast 

Fourier Transforms (FFT), matrix transposition, summation of vector ele­

ments, matrix inversion, parallel sorting, linear recurrence, Boolean matrix 

operations and solving partial differential equations (PDE's). 

1.3.2 MIMD computers 

The MIMD computer system architecture is an alternative design of great 

promise to produce high speed computers. It can be considered as a collection 

or network of minicomputers or microcomputers and collectively as a multi­

processor system. 

An MIMD computer is composed of a number of processors each of which is 

a separate computer generating its own instruction stream which it executes 

on its data stream. These processors are connected either through a shared 

memory or via high-speed or low-speed data links. 

Figure (1.16) shows an MIMD structure consisting of n processing units, m 

memory modules and p I/O channels. 

By aiming to reduce the number of expensive components, i.e., the arith­

metic and logic function units, Flynn, Podvin and Shmizu, in [24], presented 

a new approach for MIMD computer design. They proposed to intercon­

nect several independent processors each executing an independent instruc­

tion stream. These processors, according to the proposal, are to be converted 

into "skeleton" processors by removing all the arithmetic functions and com­

putational logic units from them. These functions are to be performed by 

highly-specialised high-speed processors that are shared amongst the "skele­

ton" processors. Hence, the new system avoids many of the contention prob­

lems usually associated with a shared resource system (figure 1.17). 
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Figure 1.16: MIMD computer organisation. 
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Figure 1.17: MIMD systems with skeleton processors. 
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There are two factors that degrade the MIMD system performance: the mem­

ory conflicts - in the software and the hardware - and the processor's intercon­

nections. A software memory access conflict occurs when a processor attempts 

to use data that is currently being accessed by another processor which has 

activated a "lock" to prevent any other processor from accessing the same data 

set. This data set is called the "critical section". These types of conflicts are 

often known as "memory lockout". However, when a processor encounters a 

memory lockout it waits and repeatedly checks the status of the lock until the 

"unlock" state is set by the "locking" processor. 

In a multiprocessing system with shared global memory, large memory latency 

is introduced by the communication subsystems (bus or multistage network). 

This memory latency can be mostly avoided by providing each processor with 

a cache memory so that most memory references can be satisfied locally. This 

kind of solution presents a special problem when copies of a given piece of 

information may potentially exist in several caches as well as in the main 

memory. When a processor changes one of these copies, the modification must 

eventually be reflected in all the others. 

A hardware memory conflict occurs when two or more processors attempt to 

access the same memory module (or unit) simultaneously, i.e. the conflicting 

requests are issued during a single memory cycle. Since only one access can 

be made per memory cycle therefore the other requests must wait usually for 

a cycle or two in each case. To reduce the effect of these two factors, the 

use of the private memory (memory associated with each processor to store 

important data frequently needed by the processor) was increased. 

The main advantages of MIMD computers are the high throughput and the 

greater reliability. High throughput is achieved by dividing the processes into 

many sub processes which can run on different processors concurrently. Greater 

reliability can be achieved by easily isolating the faulty resources (processors 

and memory modules) and results in a better fault tolerant system. 
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MIMD designs are capable of performing well over a broader range of applica­

tions than the SIMD computers. The processors in an MIMD system need not 

be synchronised instruction-by-instruction as in a SIMD system. However, it 

is required that the processing algorithms exhibit a high degree of parallelism 

so that several processors are active at the same time. 

Next two sections describe two classifications of the MIMD computers known 

as the loosely-coupled systems and the tightly-coupled systems. 

1.4 Loosely-Coupled Systems (LCS) 

The essence of the Loosely-Coupled Systems is a group of processors each of 

which has its own local memory, a CPU and a set of input-output devices or 

communication links. This combination is called a node or a computer module. 

Communications between computer modules is established at the I/O level 

through a Message-Transfer System (MTS). This method of communication 

differentiates this model of architecture from a tightly-coupled architecture 

discussed in the next section. 

A loosely-coupled system's characteristics can be summarised by the following 

points: 

1. Each processor in the system has its own memory, therefore they do not 

encounter the same degree of memory conflicts experienced with tightly­

coupled systems. 

2. An explicit communication interface between the processors is needed. 

3. Concurrent tasks may not be performed in synchronisation. 

4. Each processor can stand by itself with its own storage. 

5. Efficiency is high when the interactions between tasks is minimum. 
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Figure 1.18: Loosely-coupled (LCS) multiprocessor module. 

A computer module of a loosely-coupled multiprocessor system with a connec­

tion to the message-transfer system is shown in figure (1.18). Each computer 

module consists of a processor, a local memory, local input-output devices and 

an interface to the other modules called the channel and arbiter switch (CAS). 

The CAS is needed only when there is a conflict in accessing a physical seg­

ment of message-transfer system, the arbiter resolves the conflict. The channel 

within the CAS may have a high-speed communication memory which is ac­

cessible by all processors and is used for buffering block transfers of messages. 

With the advent of VLSI technology, the computer module can be fabricated 

on a single integrated circuit and be used as a building block for multiprocessor 

systems. 

In this type of coupling, normally one of the processors is designated as an over­

all system control (global processor) while the other processors are considered 

as local processors. All the tasks enter the system through the global processor 

and if this processor fails, one of the local processors may take over as a global 

processor. One of the important factors that determines the performance of a 

LCS is the message-transfer system. 
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Figure 1.19: Communications between tasks·in a LCS multiprocessor. 

The message-transfer system could be a single time-shared bus or a shared 

memory system. For a LCS configuration using a single time-shared bus, the 

performance is limited by the message arrival rate on the bus, the message 

length and the bus capacity (in bits per second). Contentions for the bus in­

crease as the number of computer modules increases. For the LCS with shared 

memory MTS, the limiting factor is the memory conflict problem imposed by 

the processor-memory interconnection network. The communication memory 

may also be centralised and connected to a time-shared bus or be part of the 

shared memory system. This type of memory can, conceptually, be considered 

as consisting of logical ports which can be accessed by the processors. As figure 

(1.19) shows, for each processor there is an associated communication port re­

siding in the communication memory that works as the processor's input port. 

Thus, communication messages between tasks allocated to different processors 

are transferred in two steps through the communication memory, whilst com­

munications between tasks allocated to the same processor take place through 

the processor's local memory. 

In a loosely-coupled system's synchronisation, task partitioning, software con-
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trol and data transfers are the problems to be taken into consideration. To 

improve the performance the user must determine how to divide the task be­

tween the nodes or processors so that they can operate in an efficient mode of 

parallelism. 

A loosely-coupled parallel computer can be characterised by three parameters: 

f, the floating-point speed, s the start-up time for an I/O operation and 

r the transfer rate, with all the parameters being measured in seconds per 

operation. It is important to note that, at least in current implementations 

s is dominated by software costs (system calls, memory allocation) and thus 

restricts the overlapping between I/O operations (or communications) with 

computations on the nodes. Now in current implementations s ~ f since 

much effort has been devoted to fast floating-point chips. For similar reasons 

s ~ r. The pattern of connections between processors is called the topology of 

a parallel processor. The most common topologies for loosely-coupled systems 

are the ring, the mesh (usually 2-dimensional) and the binary n-cube or the 

Hypercube. 

1.5 Tightly-Coupled Systems (TCS) 

In this model of MIMD architecture, the number of processing units is fixed 

and they operate under the supervision of a strict control scheme. Processors 

in this system communicate with each other through a shared main memory, 

allowing each one of them access to all the other's memories. 

As a result the data transfer rate is dependent on the bandwidth of the mem­

ory. The complete connectivity between the processors and the memory can 

be accomplished either by inserting an interconnection network or by a multi­

ported memory. 

The system's performance is limited by two major factors. The first one is 

the degradation due to conflicts to access the main memory or the I/O devices 
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while the second one arises in synchronising and scheduling jobs to the multiple 

processors. Therefore, and because of these two limiting factors, it is realised 

that a large number of processors cannot be utilised effectively in a multipro­

cessor system having such coupling. Hence, a small number of processors is 

preferable in designing an MIMD tightly-coupled system. 

The set of processors used in a multiprocessor system may be homogeneous or 

heterogeneous. It is homogeneous if the processors are functionally identical. 

Even if the processors are homogeneous, they may be asymmetric. That is, 

two functionally identical components may differ along other dimensions, such 

as I/O accessibility, performance or reliability. The symmetry or asymmetry 

of the processors in a multiprocessor system is usually transparent to the user 

processes. 

Multiprocessor systems with a heterogeneous set of processors perform several 

different operations in parallel - rather than the same operation on several 

sets of data. These machines have become available in the last few years (see 

Browne [8]). The Heterogeneous Element Processors (HEP) built by Denelcor 

was probably the first commercially available general-purpose computer that 

can perform several operations concurrently. The HEP system may have up to 

16 process execution modules and up to 128 data memory modules connected 

by a packet-switched network. Each of the process execution modules can 

use multiplexing to work on up to 100 active processes or instruction streams 

concurrently. 

Finally, the tightly-coupled model of architecture can be used to build either 

SIMD machines for specialized applications or MIMD machines with custom­

designed functional units or a mixture of both as in pipeline processors. More­

over this architecture is more suitable for systems which are aimed to have raw 

computing power and fast response time or real-time operation. 
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Figure 1.20: Sequent Balance 8000 architecture. 

1.5.1 The Sequent Balance and Symmetry systems 

An example of the tightly-coupled MIMD architecture system or more precisely 

the shared bus architecture, which we will discuss in this section, is the Sequent 

computer architecture. 

The Sequent Computer Systems Inc., have developed two families of parallel 

computers; the Balance Series and the Symmetry Series. These two series 

are very similar in their structure, configuration, operating system, and user 

software. However, the primary difference between them is the type of micro­

processor used to build the CPU's in each of them which has led to a substantial 

difference between the two series at the machine language level. There are, of 

course, other differences such as the speed, performance and memory size (see 

Trew and Wilson [76]). 

In this discussion we shall concentrate on the Balance series and in particular, 

on the Balance 8000 model of the series because most of the early part of 

this research has been carried out using a simulator running on this type of 

machine. 

The Balance 8000 model can have up to twelve 32-bit processors in a tightly­

coupled manner (see figure 1.20). The machine at Loughborough University's 

Parallel Algorithm Research Centre (PARC) has 12 processors. These proces-
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sors are connected via a high-speed bus to all peripherals and shared memory 

and concurrently execute a shared copy of a Unix-based operating system. 

Any processor can execute any program to achieve dynamic load balancing 

and multiple processors can work in parallel on a single application and to 

minirrrise accesses to the system bus each processor has its own cache memory. 

All of the CPU units have a Floating Point Unit (FPU) and a Memory Man­

agement Unit (MMU) and a System Link and Interrupt Controller (S1IC) 

whose task is to manage the control of multiple processors. 

The DYNIX (Dynamic Unix) operating system is an enhanced versIOn of 

Berkely Unix 4.2bsd which can emulate Unix System V at the system-call 

and command levels. To support the Balance multiprocessing architecture, 

the DYNIX operating system kernel has been made completely shareable so 

that multiple CPU's can execute identical system calls and other kernel codes 

simultaneously. 

1.6 The Hypercube systems 

As computer systems consisting of tens and even hundreds of processors have 

already been built, research is carried out, nowadays, to investigate the feasibil­

ity of practical machines that can be expanded economically to have thousands 

of processors all working on one problem instantaneously. As previously men­

tioned, MIMD parallel computers can be classified, in very broad terms, into 

tightly-coupled represented by the shared-memory systems and loosely-coupled 

represented by the message-passing systems. 

A computer of loosely-coupled type of architecture is, essentially, composed 

of a large number of identical processors connected to each other according 

to ·some convenient pattern Each of these processors contains a local mem­

ory , a CPU and communication links, over which messages are sent to or 

received from other processors. This combination forms a node. On the con-
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Figure 1.21: Hardware structures for memory-shared and message-passing sys­

tems. 

trary to the computer systems of shared-memory type of architecture where 

communications between processors are carried out through messages left in 

the common memory bank, we see that the communication between computer 

systems of message-passing type of architecture is performed by exchanging 

messages across the links or communication channels. Figure (1.21) shows, 

schematically, the hardware structure of both the shared-memory and the 

message-passing multiprocessor systems. 

To solve problems on a concurrent machine requires partitioning the prob­

lems into a number of segments that can run independently on more than 

one processor. Many applications, particularly in scientific computing, lend 

themselves to this form of partitioning. One of the most suitable parallel ar­

chitecture designs for these partitioned applications is the Hypercube system. 

A Hypercube is a concurrent processor in which nodes can be imagined to be 

at the vertices of an n-dimensional cube. Each node of the Hypercube is linked 

to d neighbouring processors and the entire network contains 2d nodes (see Fox 

and Otto [28]). The important features of Hypercube systems are; the number 

of links is fairly small, although it is still dense enough to support efficient 

communication between arbitrary processors. The number of links between a 

node and its neighbours increases slowly relative to the increase in the number 
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Figure 1.22: The Transputer chip. 

of nodes, or in other words, the Hypercube computational capacity. The Hy­

percube design is flexible due to its interconnection scheme which allows these 

machines to possess excellent mapping capabilities. 

1.7 Transputer systems 

Among the most suitable processors for parallel processing systems is the IN­

MOS transputer, which has been designed explicitly as a basic building block 

for processor arrays of limited size due to the communication problems re­

ferred to previously. The transputer provides a direct implementation of the 

message-passing mode of parallel computation of loosely-coupled systems. It is 

a high performance single chip computer (see figure 1.22) with link interfaces 

which enable a number of transputers to be readily assembled into networks 

of general topologies like linear array, square mesh etc. 

The transputer architecture defines a family of programmable VLSI compo­

nents. A typical member of the transputer product family is a single chip 
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containing processor, memory and communication links which provide point 

to point connection between transputers. The treatment of parallel processing 

in transputer systems is based on a model of computation called Communi­

cating Sequential Processes (CSP), proposed by Hoare, in [40j. In this model 

a computing system is a collection of concurrent active sequential processes 

which can only communicate with each other over channels (i.e. using mes­

sage passing rather than shared memory communication). Only two processors 

may be connected by a channel, which can only carry messages in one direction 

therefore if communication in both directions between the two processors is 

required, two channels must be used. Channel communication must be syn­

chronised (i.e. a process wanting to send a message over a channel is always 

forced to wait until the receiving process reads the message). 

The transputer has been designed to be a hardware realisation of the CSP 

model. Each transputer processor has four serial links to connect it with other 

transputers. Each link has two hardware channels, one in each direction. The 

hardware channels behave exactly like the abstract channels; they provide 

synchronised unidirectional communication. Arbitrary networks of transput­

ers can be constructed simply by connecting their links together with ordinary 

wires; the only limitation being that each processor cannot be directly con­

nected to more than four others. Transputers can be programmed efficiently 

in most high level languages like C, Fortran, Pascal and Occam (the INMOS 

parallel processing language). If it is required to exploit concurrency, but still 

to use standard languages, Occam can be used as a harness to link modules 

written in the selected standard language. To acquire the greatest advantage 

from transputer architecture, the whole system should be programmed in Oc­

cam. This language provides all the benefits of a high level language, the 

maximum program efficiency and the ability to use the special features of the 

transputers related to parallelism. 

One of the most important aspects of parallel processing is the ability to build 

a system that models the problem to be solved. High performance systems to 
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match different applications can quickly and easily be assembled using trans­

puter technology and also by linking transputers together, massive processing 

power can be provided for super-computing applications. 
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2.1 Introduction 

In this chapter some basic definitions and theory concerning linear algebra, 

linear systems and partial differential equations are given. Linear algebra deals 

with the specification and solution of linear systems (of equations) which can 

be derived from various problems in Mathematics, Engineering, Business and 

Economics. In fact partial differential equations can be discretised on a finite 

difference/ element grid in terms of linear systems. 

The chapter includes definitions of vectors, matrices along with relevant prop­

erties and relations. This base is then used to represent the linear systems in 

matrix/vector notation and to discuss direct and indirect methods for solving 

linear systems. Partial differential equations are then defined. Finally finite 

difference techniques are explained to obtain the linear system of equations 

corresponding to the continuous partial differential equations. 

Introductory material can be found in (Kolman [42], Burden and Faires [9], 

Lipschutz [49], Forsythe and Wasow [25], Smith [70]), and for the advanced 

text see (Varga [78], Young [82], Mitchell and Griffiths [59]). 

2.2 Vectors and Matrices 

Matrices provide a concise method for specifying and manipulating large num­

bers of linear equations. This section provides some basic definitions of matrix 

computations specifically related to the numerical algorithms used later on. 

A linear system of m equations is represented in the form 

allXI + a12x2 + ... + aInXn = bl 

a2IxI + a22x2 + ... + a2nXn - b2 (2.2.1) 
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where A is a (m * n) coefficient matrix, x is a unknown vector and b is the 

known right hand side vector. 

A solution to a linear system (2.2.4) is a sequence of n numbers SI, S2, ... , Sn, 

which have the property that each equation in (2.2.4) is satisfied when Xl = SI, 

X2 = S2, ••• , Xn = Sn are substituted. 

If the linear system represented by equation (2.2.4) has no solution it is said 

to be inconsistent; if it has a solution, it is called consistent. If bl = b2 = ... = 
bn = 0 then the linear system (2.2.4) is called a homogeneous system. The 

solution Xl = X2 = ... = Xn = 0 to a homogeneous system is called the trivial 

solution. A solution to a homogeneous system in which not all of the Xl, X2, 

••• , X n , are zero is called a nontrivial solution. 

If A and B are (m * n) matrices then C = A ± B is defined by; C;j = a;j ± b;j, 

i = 1,2, ... , m, j = 1,2, ... , n. If A is a (m * n) matrix and B is a (n * p) 

matrix then C = AB is a (m * p) matrix with, 

n 

C;j - L a;kbkj 

k=l 

In general AB # BA. 

i = 1,2, ... , m 
(2.2.5) 

j = 1,2, ... ,p 

If X and y are two vectors with n components then if. = "'- ± l!.. is defined by, 

Zj = Xi ±Yi, i = 1,2, ... ,n. 

If A is a (m * n) matrix and "'- is a vector with n entries then l!.. = A;!'. is a 

vector of m entries, with y; = E~=l a;kx;, i = 1,2, ... , m. Similarly for ",-T a 

row vector with m elements, J!.T = !f.T A produces a row vector with n entries. 

The inner product of two vectors of n elements l!..T",- is a scalar, while the outer 

product of the two vectors, "'-l!..T is a (n * n) matrix. The inner product of two 

vectors can be written as 

n 

LX;y;. 
i=1 

(2.2.6) 
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This relation can also be written as a recurrence relation, 

Z(l) = 0, (2.2.7) 

Z(i+l) = Z(i) + XiYi, i = 1,2, ... ,n (2.2.8) 

(2.2.9) 

The computation of z(i+l) = z(i) + XiYi is called the inner product step. The 

inner product of two vectors is usually called the dot product. 

Suppose that we have n vectors :!:1, :!:2, ..• ,;!:n all with n components. If the 

relation, 

has the only solution 

Cl + C2 + ... + en = 0, 

the vectors are said to be linearly independent. 

A scaled matrix A is the matrix sA where "s" is a scalar chosen so that all 

entries of A are kept within desirable size bounds." Usually "s" is a power of 

2. Normalization of A is a scaling operation where "8" is a suitably chosen 

element of A. Similarly, a scaled or norrpalized vector, x can be defined. The 

scaling or normalization operation is useful in cases where the entries of a 

given matrix or vector differ greatly in size. Also, in cases where successive 

matrix-vector or matrix-matrix multiplications are performed and there is a 

rapid increase or decrease in the size of the matrix or vector elements" . 

Zero (null) matrix is the matrix with all its elements equal to zero and IS 

represented by "0". Zero (null) vector is a vector with all its elements equal 

to zero and is denoted by Q. 
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The set of elements aii, i = 1,2, ... , n of a matrix A is the main diagonal of 

A. The diagonals above (below) the main diagonal are called super- (sub_) 

diagonals. 

If aij = 0 for i oF j, the matrix A is said to be a diagonal matrix, usually 

denoted by D. 

The identity matrix, I, is a diagonal matrix with all diagonal elements equal 

to 1. 

The matrix A is a lower triangular matrix if aij = 0 for i < j (i ::; j). 

Similarly, A is an upper triangular matrix if aij = 0 for i > j (i :::: j). A unit 

lower (upper) triangular matrix has all the main diagonal elements equal to 1. 

A lower (upper) triangular matrix is usually denoted by L(U). 

An (n * n) matrix A is said to be a banded matrix if integers p and q, 1 < p, 

q < n, exist, with the property that aij = 0 whenever, i + P ::; j or j + q ::; i. 

The bandwidth of the matrix is defined to be w = p + q - 1. Since this is 

the number of non-zero diagonals in the band. If p = q = 2 then matrix A is 

called tridiagonal, if p = q = 3 then matrix is called quindiagonal. 

The inverse of an (n X n) matrix A is an (n X n) matrix A-I, such that 

AA-I = A-I A = I. Matrices with inverses are termed nonsingular and those 

without singular. A matrix is said to be singular if det(A) = O. 

The transpose of (n x n) matrix A is an (n X n) matrix AT, obtained by 

interchanging the rows and columns of A, i.e. aij = aji for all i oF j. A 

matrix whose transpose is itself (i.e. AT "7 A) is said to be symmetric. A 

symmetric (n x n) matrix A is said to be positive definite if !f.T A;!;. > 0 for 

every n-dimensional column vector x oF O. 

If most of the elements aij of a matrix A are zero, then A is said to be a sparse 

matrix. If most of the elements of the matrix A are non-zero, then the matrix 

A is a full (dense) matrix. A matrix is termed sparsely banded if there are 

null diagonals between the significant diagonals. 

A matrix is called upper (lower) Hessenberg matrix if aij = 0 for all i > j + 1 
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(for all j > i + 1), i,j = 1,2, ... ,no 

A matrix is called Toeplitz matrix if its elements are constant along each 

diagonal, i.e. aij is a function of I j - i I. , 

2.2.1 Vector and Matrix Norms 

\ 
'"t, 

, 
\ / 

We can measure the size of a vector ";r", for "size" the word norm is used, with 

notation II~II and is a real positive number. The norm II~II is a non-negative 

number with the properties, 

II~II # 0 unless ~ = Q, and IIQII = 0 (2.2.10) 

IIO'~II =1 0' III~II where 0' is a constant (2.2.11) 

(2.2.12) 

Different vector norms are denoted by a subscript e.g. 1I~lIp for the p-norm. 

Three different vector norms most commonly used are given by, 

1I~lloo - max I Xi I 
• 

n 

1I~lIl L I'Xi I (2.2.13) 
i=l 

1I~1I2 - [t IXi '2f 

The importance of the norm lies in the fact that ~(k) -> ~ if and only if 

11~(k) _ ill -> O. (2.2.14) 

This means that a series of vectors ,,(k) converges to a vector if under a norm 

if for c > 0, and some integer s 

1I~(k) _ ~II < c for all k > s (2.2.15) 
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Equation (2.2.15) indicates an error bound on the approximation and is used 

as an algorithm termination criteria. In iterative algorithms the value "/':" is 

termed as the tolerance representing the accuracy of the solution i.e. when 

the distance between an approximate and exact solution vector is considered 

close enough. A matrix "norm" for a (n * n) matrix "A" is a function denoted 

by IIAII and is a real positive number giving a measure of the "size" of the 

matrix. For matrices A, B and a scalar a, matrix norms satisfy the following 

properties, 

IIAII > 0, if A # 0 (2.2.16) 

IlaAII =1 a IIIAII (2.2.17) 

IIA + BII ~ IIAII + IIBII (2.2.18) 

IIABII ~ IIAIIIIBII (2.2.19) 

Since matrices and vectors occur together in iterative methods, for example 

the left hand side of equation (2.4.1) uses matrix vector multiplication, hence 

matrix norms connected with vector norms are required. This means that the 

two norms are compatible. Compatibility means satisfying the condition, 

(2.2.20) 

which is as equatiOrl" (2.2.19) where the matrix B is replaced by the vector if.. 

2.2.2 Eigenvalues and Eigenvectors 

An eigenvalue of a matrix A is a number "A" such that for some Q # 0 we have 

(2.2.21 ) 

49 



An eigenvector of A is a vector .!!.such that Q i' Q.and for some "A" in equation 

(2.2.21) holds. Equation (2.2.21) can be written as, 

(A->.1)Q=Q (2.2.22) 

The nontriviaJ solution Q i'.2, to this matrix exists if and only if the matrix of 

the system is singular, i.e., 

det(A - >.1) = 0 (2.2.23) 

Equation (2.2.23) is called the characteristic equation of A and the left hand 

side is called the characteristic polynomial of A, which can be written as, 

(2.2.24) 

Since the coefficients of An are not zero, then the equation (2.2.24) has n 

roots (complex and real) which are the n eigenvalues of the matrix A, namely, 

AI, A2, ... , An (not necessarily all distinct), each of them corresponding eigen­

vectors. Wilkinson, in [81], described many methods for obtaining the eigen­

values along with corresponding eigenvectors. 

. : .- ,'. 

If A is a square matrix of order n with eigenvalues AI, A2, ... , An, then 

n n 

det A = IT Ai, trace A = L Ai (2.2.25) 
i=] i=l 

If A and B are similar, then they have the same eigenvalues. Moreover, ")." 

is an eigenvalue of A of multiplicity k if and only if "A" is an eigenvalue of B 

of multiplicity k. 

The spectral radius of a matrix A is defined as 

S(A) = max 1 ). I, 
~ESA 

(2.2.26) 
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where A is an eigenvalue of A. From equation (2.2.26) it can be easily shown 

that for any (n * n) matrix A and any norm, 

S(A} ::; IIAII (2.2.27) 

This can be proved as follows, 

Let Ai be an arbitrary eigenvalue of A and !!.; its corresponding eigenvector 

then, 

(2.2.28) 

and 

for any compatible norm. Thus, 

Since Ai was arbitrary chosen, therefore we get, 

S(A} ::; IIAII. 

2.3 Computational linear algebra 

Given a linear system of the form 

(2.3.1 ) 

where A is a (n * n) coefficient matrix, l!. is a known n_vector and 3i is an 

unknown n_vector whose value is to be found. If the determinant of A is 

non-zero i.e. (det A -=I O), the unique solution of the equation (2.3.1) can be 

expressed as, 

(2.3.2) 
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where A-I is the inverse of matrix A. 

In numerical analysis, however, the computation of this inverse is preferably 

avoided. The matrix A can be dense or sparse. Different solution methods are 

used to solve these two types of matrices and these are classified as direct or 

indirect (iterative) methods. 

The system represented by equation (2.3.1), can be solved by using a direct 

method i.e. by changing the matrix A (most suitable for dense matrices) to 

a easily inverted form i.e. triangular, or by simply using iterative methods 

which does not alter matrix A (most suitable for sparse matrices). In the case 

of dense matrices, when stored in fuU, n2 memory locations are required and 

any zero elements can be changed to non-zero elements which can be disastrous 

for the later category of matrices i.e. sparse. In that case, a matrix is likely to 

be generated and only the non-zero elements need to be stored. 

2.3.1 Direct methods 

The direct methods are principally based on elimination techniques and the 

amount of work involved is fixed and known beforehand. Furthermore, the 

solution process is done just once and the only errors in the solution are the 

round-off errors introduced in the computation. 

The most common direct method for the solution of the linear system repre­

sented by equation (2.3.1) is known as the Gaussian elimination method (see 

Golub and Loan [30]). The method decomposes the matrix A into lower and 

upper triangular matrices Land U respectively, of the same order as the ma­

trix A, with matrix U having l's on its diagonal. This method is known as 

triangular decomposition, or LU-decomposition method and is feasible only if 

the matrix A is nonsingular. Hence, equation (2.3.1) can be replaced by 

LUif = Q, (2.3.3) 

or by introducing an auxiliary vector say ± the linear system of equations 
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(2.3.3) can be rewritten as, 

L£=Q, (2.3.4) 

Uif. = £. (2.3.5) 

The original set of equations (2.3.1) is solved in two stages, by solving the 

equation (2.3.4) for £, followed by the equation (2.3.5) for if., called forward 

elimination and backward substitution procedures, respectively. However, for 

this proposition to be viable, equations (2.3.4) and (2.3.5) must be easily solv­

able. 

2.3.2 Indirect methods 

In contrast to the direct methods are the iterative methods. These methods 

generate a sequence of approximate solutions if.(k) and essentially involve the 

matrix A only in the context of matrix-vector multiplication. The evaluation 

of an iterative method invariably focuses on how quickly the iterates if.(k) con­

verge. The iterative procedure is said to be convergent when the difference 

between the exact solution and the successive approximation tends to zero, as 

the number of iterations increases. 

The basic idea of iterative methods can be described as follows: 

• The matrix A is written as the difference of two matrices M and N, so 

that 

A=M+N. (2.3.6) 

This decomposition is known as splitting the matrix A . 

• An initial approximation ~(O) is made for the solution vector if.(t) which 

is the true solution of the system. 
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• A sequence ;!;.(1),;!;.(2),;!;.(3), ..• , of estimates to ;!;.(t) IS generated by the 

formula, 

M;!;.(k+1)=!!._N;!;.(k), k=O,1,2, .... (2.3.7) 

It can be observed that solving the system (2.3.1) is equivalent to solving the 

system 

(2.3.8) 

In order to find out what will be the best choice for M and N, we consider 

formula (2.3.7). This formula suggests that if we have ;!;.(k), then we can get 

the next iterate ;!;.(k+I) provided we can solve the linear system, 

(2.3.9) 

where the vector f1.(k) is given by 

(2.3.10) 

Thus, it is clear that we must require M to be nonsingular in order to be 

assured that we can implement the iteration. Furthermore, for an iterative 

procedure to be efficient, M should be chosen so that the linear system (2.3.9) 

is quite easy to solve; this is the case if, for instance, M is chosen to be a 

triangular or diagonal matrix. However, the total amount of work involved 

is not known, as the calculations continue indefinitely until the answers have 

converged and to sufficient accuracy. In fact, the process may not even converge 

and therefore it is important to know of any conditions under which an iterative 

procedure can be guaranteed to converge (see Varga [78]). 

The first and simplest iterative method is the Jacobi iterative method. For 

the purposes of briefly discussing this method it is convenient to think of the 

matrix N as the sum of lower and upper triangular matrices. To be specific, 
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let L, D, and U to be the lower triangular, diagonal, and upper triangular 

components of the (n * n) matrix A. Thus, 

A=L+D+U, (2.3.11 ) 

and so the Jacohi splitting is given by, 

M = D, 

(2.3.12) 

N = (L+U). 

The Jacobi iterative method for solving the system (2.3.1) is given by, 

(2.3.13) 

while the matrix 

(2.3.14) 

is called the Jacobi iteration matrix. 

In actual computation, equation (2.3.13) needs to be written out element-wise. 

Suppose the vector !f(k) is given by 

k = 0,1,2, ... (2.3.15) 

(k) 
Xn 

Then, equation (2.3.13) leads to the following iteration for the ith component 

of !f.(k): 

(k+1) -1 Ln 

(k) 
xi = -[ aijX' - bi], a.. J 

U (j=l) 

i = 1,2, ... ;11. (2.3.16) 

(#i) 
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which shows that the Jacobi iteration is quite easy to program. The only real 

problem is to determine an efficient test for terminating the iteration. However, 

in order for the Jacobi iterative method to be used, the diagonal elements of A 

must all be non-zero, but this requirement causes no real difficulty. The Jacobi 

iterative method will produce the solution A-I£. for arbitrary !!:(O) if and only 

if all the eigenvalues of D-I(L + U) are less than one in absolute. Equation 

(2.3.13) can be rewritten as 

where H = _D-I(L + U). Now, 

If all the eigenvalues of I H I are less than one, then 

lim Hkx(O) = 0 
k_oo -

and 

k-I 

lim L Hi = (I - H)-I 
k_oo 

i=O 

The sum is convergent. Therefore, 

k
lim !!:(k) = (I - H)-I D-I !!. 
_00 

substituting the value of H we get, 

k
lim !!:(k) = (I + D-I (L + U)t1 D-I !!. 
_00 

k
lim !!:(k) = (D + L + utI!!. 
_00 
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There are many other, much faster, iterative methods besides Jacobi, the most 

important being, the Gauss-Seidel method (see Norton [61]) , the Succes­

sIve Overrelaxation (S.O.R.) method, Symmetric Successive Overrelaxation 

. (S.S.O.R.) method, for which a good advanced reference is Varga [78]. 

Finally, arranged in a tabular form, we shall summarize the merits of iterative 

methods compared with the elimination methods: 

Advantages 

• Probably more efficient for large order systems. 

• Implementation is simpler. 

• Advantages can be taken of a known approximate solution, if one exists. 

• Low accuracy solutions can be obtained quickly. 

• Where the equation have a repetitive form, their coefficients need not be 

stored but can be generated. 

• In case of sparse matrices only: 

Less storage space is required for an iterative solution, 

The storage requirement is more easily defined in advance, 

The order of specification of the variables is not, usually, important. 

Disadvantages 

• Additional right hand sides are not easily processed. 

• Convergence, even if assured, may be slow and so the amount of work is 

not predictable. 

• The time and accuracy of the result depends on a judicious choice of 

parameters. 
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• If the convergence rate is poor, the results must be interpreted with 

caution . 

• No advantage in time per iteration can be gained if the coefficient matrix 

is symmetric. For the elimination method the time can be halved. 

All the iterative methods are similar to ~(k+I) = H~(k) + Q, 

so that if H is a (n*n) full matrix, the number of multiplications is of O(n') per 

iteration. Since this number for elimination methods is of O( ;3), an iterative 

method for solving the equation (2.3.1) is likely to be viable if the number of 

iterations is less than ~ (or less than ~ for a symmetric matrix A). 

The iterative method represented by equation (2.3.7) can be easily solved if 

M-I exists i.e. M is nonsingular. If M is a diagonal matrix then the re­

sulting iterative method is called the Simultaneous Displacement (SI) iterative 

method. The Jacobi and Richardson iterative methods are examples of si­

multaneous displacement methods. If M is a lower triangular matrix then the 

resulting iterative method is known as the Successive Displacement (SU) itera­

tive method. The Gauss-Seidel, S.O.R. and S.S.O.R. iterative methods are all 

examples of such methods. In the case of the simultaneous displacement meth­

ods the order in which the elements of ~(k) are updated is unimportant, where 

as in the case of successive displacement methods a sequential modification 

order of the evaluation of the unknowns xlk
) i = 1,2, ... , n is imposed. 

2.3.3 Simultaneous Displacement (SI) methods 

Consider the Jacobi iterative method explained in section (2.3.2) represented 

by the equation (2.3.13). which can also be written as, 
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Rearranging we get, 

(2.3.17) 

illustrating that the difference between successive approximations is propor­

tional to the difference between the true solution ;;:(t) and the ;;:(k-l) estimate 

to the solution. If we define "a" a scalar and dk-l)= D-1(!! - A~(k-l») the 

convergence to the exact solution ~(t) can be accelerated by the formula, 

(2.3.18) 

This is known as the accelerated simultaneous displacement method. The 

choice of acceleration parameter "a" is clearly important, and for some types 

of matrices derived from differential equations bounds can be placed on it. 

An alternative to equation (2.3.18) which is more sensitive to the round off 

errors in approximation theory is to define "a; i = 1,2, ... " a series of vector 

constants for each iteration giving the Richardson iterative method, 

(2.3.19) 

The simultaneous displacement method represented by equation (2.3.18) is 

called stationary because the error of approximation is always affected by the 

same amount "a", whereas in the case of equation (2.3.19) the error at each 

iteration is not the same because of the different "a;", the methods are termed 

as non-stationary. Consequently the choice of "a;" is generally more difficult 

than in the case of stationary methods. 

2.3.4 Successive Displacement (SD) methods 

If we substitute A = D + L + U and, M = (D + L) and N = U then equation 

(2.3.1) can be written as, 

(2.3.20) 
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or 

(2.3.21 ) 

and is known as the Gauss-Seidel iterative method. This iterative method is 

superior to the Jacobi iterative method because (D + L) is a lower triangular 

matrix and so the latest estimates of the components in ;;;.(k) can be incorpo­

rated to produce the remaining components. Implicitly using the most recent 

values implies that ;;;.(k-I) can be overwritten with the ;;;.(k) and hence requires 

the storage of only one approximation vector instead of two needed by the 

Jacobi iterative method. 

As for the simultaneous displacement methods, an acceleration parameter "w" 

can be introduced. From equation (2.3.21) 

(2.3.22) 

or 

(2.3.23) 

If we introduce the acceleration parameter "w" then, 

(2.3.24 ) 

(2.3.25) 

or 

The iterative method represented by equation (2.3.26) is known as the Succes­

sive Over-relaxation (S.O.R.) method. 
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2.4 Convergence of iterative methods 

The methods discussed in the section (2.3) can be written in the general iter­

ative form 

(2.4.1 ) 

M = (I + D-' A), ,= D-'~ Jacobi method 

M = (D + L)-IU, .£:;;; (D + L)-l2. Gauss-Seidel method (2.4.2) 

M = (1 - wD-' L)-'[(1 - w) - wD-'UI, ,= (I - wD-' L)-'wD-'~ S.O.R. method 

The error vector ~(k) associated with the kth iterate ;!C(k) is, 

(2.4.3) 

and with ;!C(t) the exact solution substituted in equation (2.4.1) is given as, 

(2.4.4) 

subtracting equation (2.4.1) from equation (2.4.4) 

(2.4.5) 

or, 

. 
;!C(t) _ ;!C(k-l) = M(;!C(t) _ ;!C(k-2)) . (2.4.6) 

Hence 

(2.4.7) 

and consequently, 

(2.4.8) 
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where ~(O) = ~(t) _ ~(O) with ~(O) an arbitrary but known set of initial values. 

The sequence of iterative values ~(1), ~(2), ... , ~(k) will converge to ~(t) as k --t 

00 if 

lim e(k) = O. 
k_oo-

From equation (2.4.8) this can happen if and only if ~k~(O) --t ~ (the null 

vector) as k --t 00. This condition, as the following theorem states will be 

true if and only if S(M) < 1. 

Theorem 2.1 If A is an (n * n) matrix, then A is convergent if and only if 

S(A) < 1, where S(A) is the spectral radius of the matrix A. 

For proof see Varga [78J, page 13. 

Corollary 2.1 A sufficient condition for the convergence of the system In 

equation (2--4-l) is that, 

IIMII < 1. 

Since S(M) :::::: IIMII., in. most cases it happens that IIMII > 1 but S(M) < 1 

which guarantees the convergence of the iterative process, therefore IIMII < 1 

is a sufficient condition but not a necessary condition. 

The error vectors of equation (2.3.18) the simultaneous displacement iterative 

methods· and (2.3.19), Richardson's iterative method, satisfy, 

(2.4.9) 

and 

k 

~(k+l) = IT (I - a;A)~(O) (2.4.10) 
i=O 

indicating the stationary and non-stationary nature of the methods. 
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If a method converges, it might converge too slowly to be of practical value. 

Therefore, it is necessary to determine the effectiveness of an iterative method. 

To accomplish this both the work required per iteration and the number of 

iterations necessary for convergence to a specified accuracy must be considered. 

The usual approach is to iterate until the norm of the vector f:(k) is reduced to 

less than some predetermined factor (tolerance) "e;" of the initial vector f(O). 

From equation (2.4.8) and using (2.2.20) we have 

(2.4.11 ) 

Then if and only if f(O) '" Q, IIf(k)II < e;lIf(O)11. 

By theorem (2.1) we know that IIMkl1 -> 0 as k -> 00 if S(M) < 1. Therefore 

equation (2.4.11) can be satisfied by choosing k sufficiently large such that 

(2.4.12) 

If k is large enough so that IIMkll < 1, it follows that equation (2.4.12) is 

equi valent to, 

k > -log e; . 
-1-i-logIlMkll 

(2.4.13) 

From the inequality (2.4.13) a lower bound for the number of iterations for the 

iterative methods can be obtained. 

Young, in [82], concluded that the average rate of convergence after k iterations 

for any convergent iterative method in the form of equation (2.4.1) is the 

quantity, 

(2.4.14 ) 

or 

(2.4.15) 
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Note that the number of iterations is inversely proportional to the average 

rate of convergence. If Rk(Mt ) < Rk(M2), then M2 is iteratively faster for k 

iterations than Mt. The asymptotic rate of convergence of equation (2.4.1) is 

defined as, 

R (M) = tim Rk(M) = -log S(M). 
k-oo 

(2.4.16) 

Equation (2.4.16) holds since, 

(2.4.17) 

which is a result proved by Young, in [82] on page 87. R(M) is referred to as 

the rate of convergence. 

It is normal for iterative processes to converge slowly in substantial or large 

problems corresponding to S(M) being only slightly less than 1 and conse­

quently the rate of convergence is nearly zero. 

To obtain an estimate of the number of iterations, k, upon replacing IIMkll by 

[S(M)Jk in equation (2.4.12) IIMkll ::; E; We see that 

E; ? [S(M)]k 

and hence 

k > - log E; > - log E; 

- -logS(M) - R (M) 

(2.4.18) 

(2.4.19) 

giving an upper bound for the number of iterations required for the algorithm 

to converge. 

Equation (2.4.1) can be written in the norm notation represented by equation 

(2.2.20) for any p-norm as, 

(2.4.20) 
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-------------------------------------------------------------------

Thus IIMkll p gives a measure by which the norm of the error has been reduced 

after k iterations. 

Different iterative methods produce different rates of convergence and this 

together with the amount of work required for each iteration dictates which 

iterative method is used for a particular problem. A complicated iterative 

method may converge significantly faster than a simple iterative method, but 

may involve much work per iteration; unless the work done in two competing 

methods is approximately the same. The simple iterative method may out 

perform a complex iterative method in terms of total number of operations. 

Further the choice of initial approximation ;!C{D) is very important too. A bad 

choice of ;!C{O) may force even an efficient method to perform a large amount of 

computations. 

2.5 Partial differential equations 

Partial differential equations represent functions of more than one independent 

variable. Most of the scientific problems have mathematical models that are 

governed by second-order equations, i.e., the highest order of the derivative 

being second. The most general form of the two dimensional second order 

partial differential equations can be written as: 

(2.5.1 ) 

The independent variables x and y may both be space coordinates, or one 

may be a space coordinate and the other a time variable. A, B, C, ... ,G may 

be functions of the independent variables and of the dependent variable u. 

Equation (2.5.1) can be classified into three particular types depending on the 

sign of the discriminant B2 - 4AC. Therefore it is said to be: 

1. Ellipitic if B2 < 4AC, 

2. Parabolic if B2 = 4AC, 
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Figure 2.1: Grid. 

3. Hyperbolic if B2 > 4AC. 

If u is a continuous function of two independent variables x and y then 

au2 au2 

V~=(-+-)=O 
ax2 ay2 

(2.5.2) 

is called Laplace's equation and is an example of an elliptic partial differential 

equation. Laplace's equation describes the velocity potential for the steady 

flow of an incompressible non-viscous fluid and is the mathematical expression 

of the physical law which states that the rate at which such a fluid enters a 

given region is equal to the rate at which it leaves the region. Such problems 

are referred to as "boundary value problems" , since the dependent variable is 

usually specified on the boundary of the region underconsideration. To solve 

the Laplace equation on a region in the xy-plane, we subdivide the region with 

equally spaced lines parallel to the x- and y-axis. Let h = Ll.x = Ll.y be the grid 

spacing in the x- and y-direction as depicted in figure (2.1). If the function 

U(x) is continuous, the solution can be approximated by applying at each grid 

point the Taylor series to obtain, 
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Equation (2.5.3) and (2.5.4) are known as the forward and backward difference 

equations. Adding (2.5.3) and (2.5.4) and truncating the Taylor series we 

obtain, 

[U(Xn + h) + u(xn - h) - 2u(xn)] = u( ) O(h2) 
h2 U Xn + (2.5.5) 

which can be rewritten as, 

(2.5.6) 

O( h2) means that the error approaches proportionality to h2 as h -> O. When 

U is a function of both x and y, we derive the second-order partial derivative 

with respect to x, ~:~, by holding Y constant and evaluating the function at 

three points where:J; equals Xn, Xn + hand Xn - h. The partial derivative of 

U with respect to y is similarly computed, holding x constant. 

To solve the Laplace equation on a region in the xy-plane, we subdivide the 

region with equal spaced lines parallel to the x- and y-axis. Consider a portion 

near (x;,Yj) where we will approximate 

(2.5.7) 

Replacing the derivative by difference quotients which approximates the deriva­

tive at the point (x;, Yj), see figure (2.1), 

or 

2 U(Xi+l, Yj) - 2u(x;, Yj) + U(X;_I, Yj) 
V' U(;,j) :::: (~X)2 + 

u(x;, Yj+l) - 2u(x;, Yj) + u(x;, Yj-l) 
(~y)2 

U'+1 . - 2u' . + U"_I" u" "+1 - 2u" " + u" "-I ~ I ,) I,J ',) + I,J 1,1 1,1 

(~x)2 (~y)2 
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Ui-l,i 

Ui,;-l 

Figure 2.2: Laplace computational molecule. 

Note that five points are involved in the relationship of equation (2.5.9). Points 

to the right, left, above and below the central point. Since ~x = ~y = h 

equation (2.5.9) can be rewritten as, 

Ui+l,j - 4Ui,j + Ui_l,j + ui,j+1 + Ui,j_1 
~ 

h2 
(2.5.10) 

The relation can be represented in the form of a computational molecule as 

shown in figure (2.2). 

From the molecule we can write 

""'-J Ui+l,j + Ui-l,i + ui,i+l + Ui,j-l 
U·· ""'-J ., 4 (2.5.11) 

Equation (2.5.11) can be written as an iterative procedure using the subscripts, 

(k) (k) (k) (k) 
(k+l) _ ui+l,j + Ui_l,j + Ui,j+1 + Ui,j_1 

U.. -., 4 (2.5.12) 

Adding and subtracting J7!j on the right hand side :"'e get, 

(k) (k) (k) (k) (k) 
(HI) _ (k) [Ui+l,j + Ui_l,j + Ui,j+1 + Ui,j_l - 4ui ,j J 
~ -~+ 4 . (2.5.13) 

The term in brackets is known as the "residual" and will be zero when the 

solution is achieved. The bracketed term is an adjustment to the old approxi­

mation, which gives the improved approximation. Equation (2.5.13) represents 

the Jacobi iterative method. If the new approximation of the components of 
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1!.(k+I) is incorporated to produce the remaining components then equation 

(2.5.13) can be rewritten as, 

(2.5.14) 

to represent the Gauss-Seidel iterative method. If a larger adjustment to the 

old approximation is added, faster convergence may result. This is known as 

overrelaxation. If 'w' is the overrelaxation factor then the equation (2.5.14) 

can be written as, 

(k) (k+I) (k) (k+I) (k) 
(k+l) _ (k) + [uiH,j + Ui_l,j + Ui,j+1 + Ui,j_1 - 4Ui,j 1 

Uij - Uij W 4 (2.5.15) 

to give the S.O.R. iterative method. Maximum acceleration is obtained for a 

optimum value of 'w', which lies between 1 and 2. 
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Chapter 3 

Design of Systolic Arrays 

This chapter briefly explains the systolic array concepts introduced in late 

1970s and early 1980s, in the field of Computer Science and Electrical engineer­

ing. A systolic array represents a computing engine with symmetric, regular 

organisation of simple processing elements with pipelined data flow and mul­

tiprocessing. The algorithms implemented on a systolic array are termed as 

systolic algorithms. The advances in the VLSI technology and the suitability 

of systolic arrays, due to their simple and modular structure (a key feature for 

VLSI designs) triggered the research interest in this area. Later in the chap­

ter different systolic designs for the matrix vector multiplication algorithm are 

explained. These designs are then used to realise the systolic array designs for 

the basic iterative methods to solve linear systems of equations. 
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3.1 Introduction 

SystoJic arrays are the result of advances in semiconductor technology and 

applications that require extensive computation. An application is said to be 

compute bound if the number of computing operations is larger than the total 

number of input and output elements, otherwise it is termed as I/O bound. 

As regards to structure they resemble a grid in which each point corresponds 

to a processor and a line corresponds to a link between processors. Systolic 

architectures are regular and modular, and hence adopt well to VLSI (Very 

Large Scale Integration) architectures for area efficient layouts. The term 

systolic in the context of systolic arrays means that pipelined computations 

take place along all dimensions of the array and result in a high throughput. 

Systolic arrays schedule computations in such a way that a data item is not 

only used when it is input but is reused as it moves through the pipelines 

in the array. This results in balancing the processing and I/O bandwidths. 

For the excellent introduction to the area see Kung and Leiserson [46], Kung 

[43J, Fisher and Kung [22J, Quinton and Robert [64], Evans [15], Megson [56], 

Petkov [16J, Fortes and Wah [26J, Quinton [62J. 

The VLSI technology permits the manufacturing of regular and modular lay­

outs at reasonable cost for small and simple interconnection patterns, repli­

cated in one or two dimensions. Systolic arrays have triggered extensive related 

work and research in the areas of processor array architecture, algorithm design 

and analysis, and parallel programming. 

The systolic array design can either be general purpose or special purpose. 

Generally a systolic array is designed to implement a specific algorithm. The 

design philosophy of a special purpose VLSI chip is explained in the paper 

by Foster and Kung [27J. A design of systolic arrays which is capable of 

executing more than one algorithm is a promising architecture, Warp [1985J 

by H. T. Kung and CHiP [1982J by Laurence Snyder are examples of such 

architectures. These two architectures use different approaches, for the general 
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Memory 

J PE PE ... PE I 
L I 

Figure 3.1: Linear systolic array. 

purpose systolic design. 

3.2 Systolic array 

A systolic array is a combination of simple processing elements (PEs), each 

capable of performing some simple operations, connected to each other by 

communication links. The basic principle of a systolic array is shown in figure 

(3.1). This architecture differs from that of Von Neumann, where the single 

processing element is replaced by an array of processing elements (cells). This 

results in a higher computation throughput without increasing the memory 

bandwidth. Suppose that the I/O bandwidth between the host computer and 

the processing element is 10 million bytes per second and assume that at 

least two bytes of data are read from or written to the host computer per 

operation. Then the maximum rate will be 5MOPS (million operations per 

second), irrespective of the speed of the PE. With the systolic array consisting 

of say 5 processing elements the peak rate of 25 MOPS is possible, if multiple 

computations are performed per I/O access. 

The array is connected to a host computer. The data stream flows from the 

host computer memory in a rhythmic fashion, passing through each processing 

element before returning to the host computer memory. This rhythmic data 

flow resembles the blood circulation from and to the heart (the host memory), 

and hence gets the name" systolic". 
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Figure 3.2: Systolic structures. 

The cells that connect the array to the host computer are called the boundary 

cells, and communication with the outside world occurs only through them. 

The systolic arrays can assume different structures, figure (3.2) shows various 

systolic array configurations. The processing elements in these arrays are inter­

connected with each other in vertical, horizontal and diagonal directions. The 

linear array can be uni-directional or bi-directional according to the data flow, 

i.e. the number of data paths and the flow direction. In a uni-directionallinear 

array data streams flow in the same direction. The processing elements can 

communicate by one, two or three data paths. In the case of a bi-directional 

linear array two data streams flow in opposite directions. The data flow for 

the matrix vector multiplication (mvm) algorithm for the uni-directional and 

bi-directional processor arrays are shown in figures (3.3) and (3.4) respectively. 

In a uni-directional array the "y" values do not move in the array, hence are 

termed as stationary, whereas "x" and "a" values are nonstationary. The 

uni-directional and hi-directional implementations of the matrix vector multi­

plication execute the algorithm in the same time but the uni-directionallinear 
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Figure 3.3: Uni-directional systolic array. 

Figure 3.4: Bi-directional systolic array. 

array uses half the number of processors compared to the bi-directional lin­

ear array. However the uni-directional implementation uses resident data and 

hence additional load/store times are required for the total processing time. 

The simplest cell used in the matrix-vector multiplication is called the inner 

product step processor, as described below. 

The single operation common to all the algorithms is the inner product step, 

defined as, 

The processor capable of performing the inner product step is called inner 

product step processor. The processor consists of three registers Ra, Rx, Ry, 

a multiplier and an adder. Each register has two connections, one f0tJnput 

and one for output. On each cycle the data on the input lines represented by 

a, x, y is shifted into Ra, Rx and Ry respectively; Ry t- Ry + (Ra * Rx) is 

computed; and the input values of Ra, Rx and newly computed Ry are output 

on the output lines denoted by a, x and y respectively. All outputs are latched 

and the logic is clocked so that when one processor is connected to another, 
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Xou~Xin 

Yout = Yin + ain * xin 

IPS representation 
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(b) IPS Architecture 

Figure 3.5: IPS processor. 

y 

y=y+a*x 

the changing output of one during a unit time interval will not interfere with 

the input to another during this time interval. Figure (3.5) shows such an 

processor. 

The systolic arrays can be classified as pure or semi systolic arrays (see Bekakos 

and Evans [6], Leiserson [48]). 

3.2.1 Semi systolic designs 

A design is said to be a Semi systolic design if the data is globally commu­

nicated, the array is then termed a semi systolic. An example of polynomial 

multiplication is illustrated below to describe such a design (see Margaritis 

[51]). 

Given two polynomials f(x) and g(x) of degree n their product f(x)g(x) is a 

polynomial of degree 2n. For simplicity we assume that our polynomials are 

of degree two and are defined as, 
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The product 

where the coefficients are defined as, 

Co - aobo 

Cl aobl + albo 

C2 = aOb2 + al bl + a2bo 

C3 - a1 b2 + a2bl 

C4 - a2b2 

(3.2.1) 

From the equation (3.2.1) it is obvious that each of the coefficients bo, bl , and 

b2 are multiplied by all the coefficients of f(x). Notice that the coefficient bo 

meets the first coefficient ao, then al and finally a2' Similarly for bi> but starts 

with the calculation of Cb and a similar pattern follows, i.e. b2 starts with 

the calculation of C2' The calculation at most involves only two arithmetic 

operations, i.e. multiplication and addition to produce the new coefficients as 

a series of inner products. 

A straight forward systolic design, that maps the computation of the product 

onto a processing structure is shown in figure (3.6). A global clock synchronises 

the computations in the system, and has a time cycle (step, unit) which can 

accommodate the most complex function performed by a processor, including 

the data transfer. In each time cycle the processors in the array simultaneously 

perform their I/O and then execute their operation, i.e. inner product, see 

figure (3.6). The processor consists of an adder and multiplier. 

To solve a polynomial multiplication problem of degree n the array consists of 

n + 1 processors, (for the example discussed 3 processors are used as shown 

in figure (3.6». The coefficients of f(x), i.e. ao,al and a2 are stored in their 

respective processors. The coefficients of g( x) form a data stream and is broad­

cast to all the processors, one coefficient per computational step. At time unit 

1, bo is broadcast to all the processors and Co enters the right most processor 
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Figure 3.6: Polynomial multiplication on a Semi systolic array. 

and initially contains zero. The computation of resulting coefficients is ob­

tained by accumulating the partial products in the pipeline. For example, Cl 

is computed in two steps. First alba is calculated in the middle processor, and 

then in the next time step this value is passed to the right hand side processor, 

which computes aabl and is added to alba to form Cl' On the successive time 

step Cl is output. It takes (2n + 2) time units to complete the polynomial 

multiplication. 

The main draw back of this design is the presence of the broadcast mechanism. 

This design involves large wire interconnections and therefore long communi­

cation delays, and clocking problem. 

3.2.2 Pure systolic designs 

If the data in the systolic array is not communicated globally then the array 

is classified as Pure systolic array and the design is termed as Pure systolic 
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design. Pure systolic systems avoid long or irregular wires for data communi­

cations. The only global communication is the system clock. In figure (3.7) 

a pure systolic design is shown, along with the I/O data streams and the 

corresponding snapshots of its computations. 

The broadcasting is eliminated by having two data streams b's and c's moving 

in opposite directions. The C stream accumulates the partial results as it passes 

through the array till the final result is obtained. Consecutive b's and c's are 

separated by two cycles. There is a delay element between the two consecutive 

b's and c's. For example at time step 2, the partial result for Cl, i.e. al bo is 

computed in the middle processor and at time step 3, no useful computation 

is performed by the middle processor. In time step 3 the Cl partial result is 

shifted to the right processor, where aobl is computed and at time step 4, Cl is 

output. This delay element is used to synchronise the data stream movement 

in the array. The design has no global interconnections and therefore it is 

easily expandable to accommodate polynomials of any degree. In this design 

the processor performs one useful computation every two cycles. 

3.2.3 Hybrid systolic designs 

The Hybrid systolic designs allow for programmable components with signifi­

cant amounts of local memory and control. 

3.3 Systolic architectures and VLSI 

Until the advent of VLSI, the development of parallel computers with large 

number of processing elements had been limited by the high production cost. 

Using the VLSI technology in the circuits the size and the cost of processing 

logic, memory and communication hardware has dramatically reduced. VLSI 

has made feasible to produce highly parallel architectures like systolic systems 

(Mead and Conway [55J, Haynes et al. [37]). 
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Figure 3.7: Polynomial multiplication on a Pure systolic array. 
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Mapping of a complex systolic system directly on a silicon wafer, is confined to 

a two dimensional plane, a VLSI constraint. VLSI is achieved by a combination 

of circuit design with high resolution photographic techniques, where it is 

convenient to place wires on rectangular grids, and limit the number of parallel 

layers of semiconductor material containing wires and circuit elements. A two 

dimensional graph is termed planar if it can be drawn in the plane with no 

arcs intersecting at places other than nodes. The designer of the VLSI runs 

into problems, when the number of wires and transistors approach the limits 

of photographic resolution, and hence becomes impossible to achieve further 

miniaturisation and the actual circuit becomes a key issue. Furthermore, the 

chip area is limited in order to maintain high yield, and the number of pins 

(connections to the outside world) is limited by the finite size of the chip 

perimeter. 

Some of these constraints are eliminated when the systolic algorithms are im­

plemented on processor arrays. For example, the actual chip design is not an 

issue any longer, since it is a programmable processor. Also the interconnec­

tions need not be strictly planar. However, simplicity and regularity remains 

the most important factor for an efficient systolic design. In systolic archi­

tectures these factors are ensured by relatively few types of simple processing 

elements, which mainly communicate with their nearest neighbours only (see 

Kung [45]). 

The replication of a simple processing element in large numbers makes the 

design cost-effective and easy to produce. The simplicity of the cell design de­

pends on the implementation requirement of a particular algorithm. In case a 

systolic system is to be implemented on a single chip, each processing element 

should contain a simple control logic, arithmetic unit and a few words of mem­

ory. On the other hand for a board array implementations each processing 

element can have a complex control logic, a high performance arithmetic unit 

and a couple of thousand words of memory. The processing element can even 

be a simple microcomputer. The trade off between simplicity and flexibility is 
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always there in the terms of control, programming overheads and the system 

performance. The systolic algorithms can be classified as (see Megson [56]) 

1. Hard SystoJic Algorithms 

These algorithms are hard wired programmed, i.e. the electronic circuits 

for control and switching logic are built as a part of overall system. Such 

systems implement a particular algorithm and hence are categorised as 

special purpose systems. 

2. Hybrid Systolic Algorithms 

These designs permit certain degree of flexibility by microprogramming 

or control tags attached to the data stream. Such designs are cost effec­

tive and more desirable as the processing elements can perform various 

types of operations. The array structure remains the same. 

3. Soft SystoJic Algorithms 

These designs provide high degree of programmability. Using the prin­

ciple of systolic computation, the algorithm is mapped onto an available 

parallel architecture. 

3.4 Performance issues 

A measure of performance for a systolic system is given by the speedup factor 

defined by S. Y. Kung, in [47], as, 

sequential computation time 

S = systolic computation time 
(3.4.1 ) 

A speedup of order n, where n is the number of processors in the systolic system 

indicates a successful systolic system. In the case of polynomial multiplication 

s is between n/2 and n/4 for the respective designs. Here n is the degree of 

the polynomials and the number of processors in the designs. This indicates 

a linear speedup and therefore a good performance of systolic algorithms. A 
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similar measure can be obtained by the computation to communication ratio 

(see Dew et al. [12]). 

sequential total number of processors 
c= 

systolic number of boundary processors 
(3.4.2) 

A large c indicates high utilisation of the input data. In the case of polynomial 

multiplication, c ~ n, which indicates a high utilisation. 

Processor utilisation is defined as 

u= 
total number of active processors during all computation steps 

number of processors * number of steps 
(3.4.3) 

A processor is called "active" if, at a given time step, it performs useful compu­

tation, i.e. a computation that contributes in formulation of required results, 

otherwise it is called "neutral" (dummy) computation and the processois cycle 

is termed an "idle" cycle. In the polynomial multiplication example utilisation 

of processors is 1/2 and 1/4 respectively. 

Area of the systolic array is measured in terms of number of processors (cells) 

in the design. Since the basic component of the systolic array is the IPS 

processor, all the other processors in the design are defined in terms of IPS 

processor units, i.e. equivalent of multiply-add operations that are involved. 

The area occupied by interconnections, registers is considered negligible, and 

not taken into account. For example, all the designs discussed for polynomial 

multiplication have area equivalent to (n + 1) IPS processors. 

Computation time is usually measured in terms of steps (cycles, units), where 

a time unit is taken to be the time required for the most complex cell function 

to be performed. The data transfer time is assumed to be negligible due to 

the locality of the communication. So an IPS step is the time required for a 

sequence of one multiplication and one addition to be performed. 
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Figure 3.8: The Warp programmable, one dimensional systolic array. 

3.5 WARP architecture 

The Warp machine (see Kung [2]) is a systolic array computer of linearly con­

nected cells, each of which is a programmable processor capable of performing 

10 million floating point operations per second (10 MFLOPS). A typical Warp 

array includes ten identical cells as shown in figure (3.8), thus having a peak 

computation rate of 100 MFLOPS. 

The first prototype was completed in 1986. The Warp machine is attached to 

a general purpose host computer running the Unix operating system via an 

interface unit. The interface unit handles the input/output between the array 

and the host computer. The host computer carries out high level application 

routines and supplies data to the Warp processor array. 

The data flows through the systolic array in two channels (links) x and y. Each 

Warp processing element (cell) is a microprocessor with its own sequencer, pro­

gram memory, data memory (4Kwords) and a high communication bandwidth 

(80 Mbytes/sec) to and from its neighbouring cells. A high level language 

called W2 is used to program the Warp. The Warp array can be extended to 

include more cells to accommodate applications capable of using the increased 

computational bandwidth. 

Warp uses software support to map different algorithms onto its fixed architec­

ture, hence tools like compilers, programming languages, operating systems, 
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which help in implementing an efficient systolic design are required. 

Several application programs have been developed to evaluate the Warp. The 

application areas are computer vision, signal processing and scientific comput­

ing. The Successive overrelaxation method was also developed for the solution 

of partial differential equations. 

3.6 CHiP architecture 

The CHiP (Configurable, Highly Parallel) computer design (see Snyder [71], 

Hwang and Briggs [41]) uses hardware support to reconfigure the array's in­

terconnection pattern, a programmable lattice of switches is used for reconfig­

uration. The CHiP computer is a lattice of identical processing elements set 

into a lattice of identical switches and a controller. Figure (3.9) shows an ex­

ample of the CHiP computer configured as a square systolic array. The square 

boxes represent the processing elements and circles represent the switches. The 

number of ports per switch are four to eight, while the number of ports on the 

cells is eight or less. Each switch in the lattice has its own local memory to 

store several switch settings for different configurations. The controller is re­

sponsible for loading the configuration instructions into the switch memories. 

Configuration instructions are loaded in parallel with the loading of programs 

into the processing elements, prior to the execution of the programs. The 

whole grid is usually square in shape with perimeter switches being connected 

to external storage devices. 

3.7 Design improvements 

Research work has been done to improve the efficiency of the conventional 

systolic arrays. The attempts are made to decrease both the time and number 

of processors using different techniques. The traditiona.l systolic array proposed 

84 



o o o 

o o 

o o 

o o 0 0 
CHiP configured as a Hex array CHiP configured as a rectangular array 

Figure 3.9: CHiP lattice of intermixed switch and processing elements. 

by H. T. Kung has delays in the data stream and results in 50% utilisation 

of the processing element (cell). This can be seen from figure (3.12) which 

describes the matrix-vector multiplication (mvm) algorithm for a (n*n) dense 

matrix with n = 4, i.e. the order of the problem represented by equation 

(3.7.1). 

YI all al2 al3 a14 Xl 

Y2 a2l a22 an a24 X2 
(3.7.1) - * 

Y3 a31 a32 a33 a34 X3 

Y4 a4l a42 a43 a44 X4 

The matrix-vector multiplication can be described by the following recurrence 

relation. 

(n+1) . k 2 Yi = Yi ,l, = 1, , ... , n. 

To fully utilise the potential throughput, two independent matrix-vector com­

putations can be performed in the same systolic array. 
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Folding is used to obtain less processors with more efficient processor activity 

with the same or less execution time. Megson and Evans, in [57], used this idea 

to fold the array and obtain smaller processor arrays consisting of processor 

elements working more efficiently. Their solution results in an irregular data 

flow in a subset of processors. Evans and Gusev, in [17], propose a design which 

offers double efficiency with regular data flow. Their design is well suited for 

solving a dense system. 

Suros and Montagne, in [75], proposed the Fitted Diagonal method in order 

to halve the number of processors and improve the processor utilisation. The 

computational time of the algorithm remains unchanged but the hardware is 

halved with some modifications. 

3.7.1 Kung's design 

The linear array proposed by Kung for the matrix vector multiplication consists 

of (2n-l) cells. The cells communicate to each other by the two links indicated 

by arrowed lines. One link communicates with the right hand side cell while 

the other communicates with the left hand side cell. There is an input link for 

the multiplicand in each cell. Input data stream and output data stream use 

one of these links for the I/O. The cell operations are shown in figure (3.10). 

The cell has three inputs, Xin, Yin and ain, and two output links Xout and Yout, 

hence three registers Rx , Ry and R. are present at the I/O links. The additive­

multiply operation is required to perform the inner product of two vectors and 

is obvious from the recurrence relation. The value received on the Xin link is 

multiplied with the value on the ain link and the result is added to the input 

on the Yin link. The whole operation can be written as Yout = Yin + Xin * ain, 

and is the output. The Xin value is passed unaltered by the Xout link. 

The first computation takes place after (n - 1) time units, the algorithm re­

quires (2n - 1) time units and the last result leaves the array after n more 

time units. The total execution time for the matrix vector multiplication al-
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Xout Xin Xout = Xin 

Yin Yout Yout = Yin + ain :+; xin 

Figure 3.10: The inner product step cell. 

gorithm is (4n - 2) time units. The diagonals of the matrix are fed in from 

the top, and a new element is input to each processing element every second 

time step. The components of the vector x are pumped in from the right and 

move left wards without modification. The components of the vector y are fed 

through the left hand end, initially all the components of y are initialised to 

zero. The elements of x and y flow in the opposite directions in the array. The 

computation is performed when the elements of x and y reach the same cell, 

the new value of y continues the data flow in the right hand side cell while 

accumulating successively all its terms. The implementation of the algorithm 

is explained below. Assume that the cells are numbered by integral 1,2, ... ,7 

from left to right end cell in figure (3.12) which shows the snapshots of the 

matrix vector multiplication algorithm. Initially all the cells contain zeros in 

their respective registers. Each step of the algorithm consists of the following 

operations : 

1. Shift 

R. gets the new element of the matrix A. R", gets the contents of register 

R", from the right neighbouring node (In case of processor 7 R", gets the 

new component of vector x from the host computer). 14 gets the contents 

of the register 14 from the left neighbouring node (Processor 7 outputs 

its Ry contents for the host computer and the 14 in processor 1 gets zero). 

Note that for odd numbered time steps, only odd numbered processors 

are active (i.e. perform useful computation) and for even number time 

steps only even numbered processors are active. 
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2. Multiply and Add 

At time step 1, Xl is fed into the right most processor, i.e. processor 7 and YI 

is fed into the the left most processor, i.e. first processor, initialised to zero. 

At time step 2, Xl and YI move one place left and right respectively, and keep 

moving this way. At time step 3, X2 enters the right most processor and Y2 

enters from the left most cell. At time step 4, an enters the 4'h processor 

where YI is updated 

YI = anXI. At time step 5, al2 and a2l enter the 5'h and 3rd processor respec­

tively. 

and Y2 = a21 * Xl· 

At time step 6, a13, an and a31 enter the 6'h, 4'h and 2nd processor respectively. 

At time step 7, a!4, a23, a32 and a41 enter the 7'h, 5'h,3rd and I" processor 

respectively. 
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At time step 8, Yt is output, a24, a33 and a42 enter the 6th , 4th and 2nd processor 

respectively. 

At time step 9, a34 and a43 enter the 5t h, and 3rd processor respectively. 

At time step 10, Y2 is output and a44 enter the 4th processor. 

3.7.2 The Evans and Bekakos design 

Evans and Bekakos make use of the delays appearing in the data stream of 

the Kung's approach. They fold the opposite extreme ends of the matrix to 

form a deque. . with elements of the lower half of the matrix interleaved in the 

previous delay spaces. This technique is not a simple folding of the matrix, 

but involves a simultaneous rotation of the off diagonals. The systolic design 

for matrix vector multiply explained in section (3.7.1) and by figure (3.12), i.e. 

the Kung's design for a (4*4) matrix is exemplified to illustrate this approach. 

The design proposed by Evans and Bekakos uses less area and time as com­

pared to the Kung's design. The data should be rotated and folded prior to 
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Xout 

Yin 

Yout = Yin + ain * Xin 
Xout = Xin 

or 
Yout Yout = Yin 

Xout = xin + ain * Yin 

Figure 3.11: Switch inner product step cell. 

processing by array, in the host computer. The elements of the product also 

come out in irregular order, hence the host computer must store them in the 

right order. The other overhead for the host computer is that the x vector 

needs to be repumped twice. Once in the forward direction and then in the 

reverse order for the 2nd time, this fact is evident from figure (3.13). For a 

more detailed discussion see Bekakos [5J. The matrix vector multiplication for 

a square matrix takes (3n - 1) time units and the number of IPS .. processors 

(cells) required is (n + 1). 

3.7.3 The Evans and Gusev design 

To implement the idea of folding proposed by Evans and Gusev, the cells in 

the array are modified. The modified design results in a smaller processor 

array, circular data flow, decreased I/O time and efficiently utilised processing 

elements (cells). The modified cell is called the Switch Inner Product Step 

(SIPS) cell and is shown in figure (3.11). Each cell performs an inner product 

step operation as the normal cell, but the inputs to the arithmetic unit are 

switched on every time cycle. On one time cycle processor computes Yout = 

Yin + ain * Xin and passes the value Xout = Xin, and on alternative time cycle 

processor computes Xout = Xin + ain * Yin and passes the value You! = Yin' 

The matrix vector multiplication design using the idea of folding proposed by 

Evans and Gusev is shown in figure (3.14). Note that only the right hand 

side boundary processor communicates with the host computer. Input data 

90 



stream (x and y values) enter the array from the upper link and the output 

data stream leaves the array from the lower link. The left hand side boundary 

cell is short connected, so that the output data stream becomes the input data 

stream to this cell. 

The first computation takes place after n time units, the algorithm requires 

(2n - 1) time units and the last result leaves the array after (n + 1) more time 

units. The total execution time for the matrix vector multiply algorithm is 4n 

time units. 

A comparison can be made with the number of cells used in the arrays proposed 

by Kung, Evans and Gusev. It shows that the number of cells is halved using 

the idea of folding. On the other hand the complexity of the cell is increased, 

i.e. the control logic and the switching circuitry for the arithmetic unit. How­

ever the gain obtained by saving the chip area, surpasses the complexity issue. 

The time required by this design for the matrix vector operation is two time 

steps more than that of the conventional design, and is not significant. 

3.7.4 The Suros and Montagne design 

Suros and Montagne, in [75], proposed the idea of the Fitted Diagonal Method 

(FDM). In this method the number of diagonals is halved and therefore halves 

the number of processors. If A is a diagonal matrix with even bandwidth w, 

then the number of diagonals can be reduced to * (w~l) for odd bandwidth) 

by fitting into adjacent diagonal pairs. 

Now we apply the FDM method to the matrix vector multiplication example 

described in section (3.7.1). The resulting array and the snap shots of the 

execution of the algorithm are shown in figure (3.15). The number of processors 

required are four instead of seven (not halved as the bandwidth is odd). The 

time required to execute the algorithm is one time step more than that of 

Kung's design. 

The reduction in the number of processors is quite impressive. To execute the 
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algorithm correctly the IPS cells need some minor modification. The FDM 

requires that the elements of vectors x and y must be kept in each processor 

for two time steps. The processor utilisation is also improved. 

3.7.5 Comparison of different mvm designs 

A comparison can be made for area and time requirements, and the utilisation 

of the processors, for the linear systolic matrix vector multiplication designs 

presented in sections (3.7.1), (3.7.2), (3.7.3) and (3.7.4). Table (3.1) shows 

these requirements for different designs, for brevity the designs are valid for 

square dense matrices which result in an odd bandwidth. The following obser­

vations can be made regarding these designs. 

1. Area 

The area requirements for Evans and Gusev, and Suros and Montagne 

designs are same and are almost half (half + one) than that of Kung's 

design. Area required by the Evans and Bekakos design for small size 

problems is bit more than half but for large problems it is almost half. 

2. Time 

The Evans and Bekakos design takes about 25% less time as compared 

to the Kung's design. The Evans and Gusev and Suros and Montagne 

designs take one and two time step more than that of the K ung's design 

respectively. 

3. Utilisation 

When n is small, Suros and Montagne design performs the best. For large 

n, Evans and Bekakos design is the best. For large n, the utilisation 

for the Evans and Bekakos, Evans and Gusev, Suros and Montagne, 

and Kung's design are 1/3, 1/4, 1/4 and 1/8 respectively. In general, 

all the designs perform better than Kung's original design. The choice 

of design depends on a particular application, cost, time and the area 
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Architecture Time Area (IPS cells) Utilisation 

Kung 4n -2 2n -1 n2 /((4n - 2)(2n -1)) 

Evans and Bekakos 3n -1 n+l n2 /((3n - 1 )(n + 1)) 

Evans and Gusev 4n n 1/4 

Suros and Montagne 4n -1 n n/(4n-l) 

Table 3.1: Statistics for matrix vector multiply. 

requirements. 
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Figure 3.12: The matrix vector multiply design proposed by H. T. Kung. 
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Figure 3.13: The matrix vector multiply design proposed by Evans and 

Bekakos. 
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Figure 3.14: Matrix vector multiply design proposed by Evans and Gusev. 
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Figure 3.15: Matrix vector multiply design proposed by Suros and Montagne. 
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3.8 Application of systolic designs to the it­

erative solvers 

The most simplest of the iterative methods is known as the Jacobi iterative 

method. It is written in mathematical form as, 

(3.8.1 ) 

Equation (3.8.1) suggests that the matrix vector multiplication is the basic 

ingredient of the iterative methods. In the following section we describe the 

implementation of the various matrix vector multiplication designs, discussed 

earlier, to the Jacobi iterative method. 

3.8.1 Systolic designs for the Jacohi iterative method 

The systolic array to compute the Jacobi iterative method for the (4 * 4) 

example discussed for Kung's design is shown in figure (3.16). 

There is a special cell at the right hand side end of the linear systolic array. 

The special (boundary) cell gets the value Yi = aijX~ for i, j = 1,2, ... , n, with 

i of j from the right hand side processor and computes the new approximation 

to the solution, i.e. xl = (bi - Yi)/aii for i = 1,2, ... , n. This cell performs a 

division operation instead of the multiplication operation done by the IPS cell. 

Also the addition operation is changed to a subtraction operation, we call this 

cell a SDC (Subtract Divide Cell). The division operation can be avoided if 

the given matrix A is divided by its diagonals, i.e. (D-l A) is performed by the 

host computer prior to sending data to the array. Similarly the subtraction 

operation can be changed into a addition operation by multiplying .the matrix 

A by -1, which can be done in parallel when (D- 1 A) is being performed, i.e. to 

perform (-D- 1 A). The remainder of the array is the well known matrix vector 

multiplication array previously discussed. The designs to perform the Jacobi 

iterative method proposed by Kung [45], Evans and Bekakos [5], Evans and 
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Architecture Time Area ((IPS) + SDC cells) Utilisation 

Kung 4n (2n - 1) + 1 1/8 

Evans and Bekakos 3n + 1 (n+l)+1 n2/(3n + l)(n + 1) 

Evans and Gusev 4n+2 (n) + 1 n2/(4n+2)(n+l) 

Suros and Montagne 4n + 1 (n) + 1 n2/(4n + l)(n + 1) 

Table 3.2: Time, area and utilisation of the Jacobi iterative method. 

Gusev [17J and Suros and Montagne [75J are shown in figure (3.16), (3.17), 

(3.17) and (3.19) respectively. The following table (3.2) shows the area and 

time requirements of the linear systolic array implementing the Jacobi iterative 

method on various matrix vector multiply designs. Table (3.2) presents the 

area, time and utilisation of the Jacobi iterative method on different linear 

systolic arrays. It is assumed for simplicity that the IPS and SDC cells take 

the same amount of time to perform their respective operations. 

The utilisation of the arrays implementing the Jacobi iterative method is de­

creased. This is due to the diagonal elements of the matrix, which are re­

moved from the matrix vector multiply portion of the array. This means that 

the portion performing aii * Xi for i = 1,2, ... , n is replaced by the dummy 

computation 0 * Xi for i = 1,2, ... ,n due to the algorithm. This can be seen 

very prominently in figures (3.16) and figure (3.17) implementing the Jacobi 

iterative method on Kung's and the Evans and Bekakos array. The results 

come out of order in the Evans and Bekakos design as explained in section 

(3.7.2). 
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3.8.2 Systolic designs for the Gauss-Seidel iterative 

method 

The Jacobi iterative method is greatly improved if the method uses the most 

recent values of the variables Xi-\ to evaluate the new approximation of Xi for 

the value 1 ~ i ~ n. The method thus obtained is known as the Gauss-Seidel 

iterative method and is written as, 

(3.8.2) 

This method suggests that an order is imposed on calculating the approxi­

mations, i.e. ordering is necessary (Xi_l is to be evaluated before Xi). This 

means that the idea of Evans and Bekakos does not allow the Gauss-Seidel 

iterative method to be implemented on the systolic array. The method of 

fitted diagonals proposed by Suros and Montagne can not be used to imple­

ment the Gauss-Seidel iterative method, due to synchronisation of data for the 

lower part of the algorithm. However, the design proposed by Kung, Evans 

and Gusev can be implemented to perform the Gauss-Seidel iterative method. 

Figures 3.20 and 3.21 show the Gauss-Seidel iterative method implemented on 

the Kung's and, Evans and Gusev array. 

The area requirement of the design using the Evans and Gusev [17] matrix 

vector multiplication is less compared to the Kung's design. The time required 

to compute each iteration step is the same. The IPS cell used by Evans and 

Gusev (SIPS) has a complex control and switching logic, which enables the 

two computational streams to be accomplished. 

One fact to note here is that if the matrix is dense then the processor utilisation 

is quite low. So the systolic algorithms are not well suited for these types of 

matrices. If the matrix is banded but dense, i.e. the number of non-zeros on 

the sub and super diagonals of the matrix is much less compared to the zeros 

then the systolic array has best utilisation. Table (3.3) gives area, time and 

utilisation of the linear systolic array implementing the Gauss-Seidel iterative 
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Architecture Time Area ((IPS)+Boundary cell) Utilisation 

Kung 4n - 3 (2n - 2) + 1 n2 /(4n - 3)(2n - 1) 

Evans and Bekakos N.A. 

Evans and Gusev 4n - 3 (n) + 1 n2 /(4n + 3)(n + 1) 

Suros and Montagne N.A. 

Table 3.3: Time, area and utilisation of Guass-Seidel iterative method. 

method. 

The matrix vector multiplication design proposed by Evans and Bekakos [5], 

Suros and Montagne [75] and, Evans and Gusev [17] are well suited for dense 

matrices. The problems originating from the Engineering and scientific fields, 

when discretised by using the finite difference approximation result into sparse 

matrices, i.e. the one dimensional problem produces a tridiagonal matrix while 

the higher dimensional problems produce large sparse matrices e.g. a 2 dimen-

sional discretised problem looks like, 

4 -1 0 -1 Xl bl 

-1 4 -1 0 -1 0 x2 b2 

0 -1 4 0 0 -1 X3 b3 

-1 0 0 4 -1 0 -1 X4 b4 

-1 0 -1 4 -1 0 -1 * Xs = bs (3.8.3) 

-1 0 -1 4 0 0 -1 Xs bs 

-1 0 0 4 -1 0 X7 b7 

0 -1 0 -1 4 -1 Xs bs 

-1 0 -1 4 X9 b9 

as the order of the system is increased the gap between the sub diagonals is 

increased. This suggests that the concept of folding does not give any advan-

tage as the number of non-zero diagonals is small and hence the system under 

consideration becomes more complex and expensive, as compared to Kung's 
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original design. Later in this thesis we propose a new design to implement 

such problems on a linear systolic array. 

Note that in the case of the Jacobi and Gauss-Seidel iterative methods the 

diagonals are pumped to the boundary cells. However their original position 

in the matrix vector multiply is changed with dummy data, i.e. there is some 

extra overhead for the host computer, in all the implementations discussed. 
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Figure 3.20: The Gauss-Seidel iterative method on Kung's array. 
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Chapter 4 

Systolic Arrays for the 

Symmetric S.D.R. and Related 

Methods 

This chapter presents the systolic designs for the Jacobi overrelaxation 

(J.O.R.), Successive Overrelaxation (S.O.R.), Modified Successive Overrelax­

ation (M.S.O.R.) and Symmetric Successive Overrelaxation (S.S.O.R.) meth­

ods for the iterative solution of linear systems such that the computational 

time is decreased. The Conrad-Wallach technique [11 J is incorporated in the 

S.S.O.R. systolic design so that the overall work is comparable to that of the 

S.O.R. iterative method. The systolic array for matrix vector multiplication 

(mvm) is used to compute the iterations. 
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---------

4.1 Introduction 

Several iterative solutions to the large sparse linear systems obtained from the 

finite difference/element discretisation of boundary value problems are well 

known like the Jacobi, Gauss-Seidel, J.O.R. and S.O.R. methods (see Young 

[82], Hageman and Young [34]). Further several acceleration and overrelax­

ation strategies have been developed and incorporated into the methods (in 

order to decrease the computation time). For these computational methods 

several systolic designs have also been developed (see Evans and Margaritis 

[20], Berzins, Buckley and Dew [7], Margaritis [51J, Casasent [10J, Quinton, 

Jannault and Gachet [63]). 

The systolic array processor WaS introduced by H. T. Kung [45J and is a linearly 

connected array of simple processors. The array is highly pipelined with few 

memory references. The data is fed into the array and each processor utilises 

the data as it passes through the array and at the end of the computation the 

result is sent to the memory. The systolic array is best suited for computation 

bound problems. Thus it is well suited for the iterative solvers of large linear 

banded systems. 

The systolic solution for the Jacobi, Gauss-Seidel and S.O.R. iterative methods 

have been presented in Berzins, Buckley and Dew [7J and Margaritis [51J. The 

solutions consist of pipeline designs both inside each iteration as well as in 

successive iterations. In Quinton et al. [63J and, Evans and Margaritis [20J a 

reusable systolic design for matrix-matrix-multiplication (mmm) and matrix 

vector-multiplication (mvm) are presented. Using these concepts an improved 

systolic design for the S.S.O.R. iterative method is presented. 
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4.2 Basic iterative methods 

The equation, 

Ax = b - -, (4.2.1) 

represents a system of n linear equations with n unknowns. Here A is the 

(n X n) coefficient matrix, !l: are the n unknowns and!!. represents the n known 

constants. If matrix A is split such that, 

where D is the diagonal matrix with non-zero elements, J has zeros on its 

diagonals and Land U are strictly lower and upper triangular matrices, then 

the Jacobi iterative method is defined as 

~(k+l) = D-1 (f! _ J ~(k)), ( 4.2.2) 

and is independent of the ordering of the equations in (4.2.2). The matrix-D-1 J 

is called the Jacobi iteration matrix. It can be seen from equation (4.2.2) that 

the operations involved in each iteration are a matrix vector multiplication, 

one addition and a scalar multiplication. Equation (4.2.2) representing the 

Jacobi iterative method can also be written in the iterative form as follows, 

(4.2.3) 

Figure (4.1) represents a simple systolic implementation of the J acobi iterative 

method on a linear array. 

The boundary processor on the right hand side performs the addition and 

the scalar multiplication whereas the remaining processors perform the matrix 

vector multiplication. The Jacobi iterative method can be improved greatly by 

the Gauss-Seidel and S.O.R. iterative methods, where the most recent iterate is 
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Figure 4.1: Systolic design for the Jacobi iterative method. 

used in the computation. This is the basic difference between the Gauss-Seidel 

and the Jacobi iterative methods, and explains the ordering requirements for 

the Gauss-Seidel iterative method. The Gauss-Seidel method does not require 

the simultaneous storage of the new and old approximations in the course of 

computation. 

4.2.1 The Jacohi Overrelaxation method 

The equation (4.2.2) can be written as, 

(4.2.4) 

where the term [D-1(l! - hP») - ;E(k)] is the correction factor. If we multiply 

this correction factor by a constant w, then we get, 

(4.2.5) 

which can be re-written as, 

(4.2.6) 

The constant w is called the acceleration factor. When w > 1, then equation 

(4.2.6) is called the Jacobi overrelaxation (J.O.R.) method. If w < 1 then the 
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method is known as the Jacobi underrelaxation method. Expanding equation 

(4.2.6) we get, 

where [(1 - w)I - wD-1(L + U)j is the J.O.R. iteration matrix. 

4.2.2 The Successive Overrelaxation method 

For the standard Gauss-Seidel iterative method the new vector approximation 

is written as, 

(4.2.7) 

The equation (4.2.7) can be written as 

( 4.2.8) 

( 4.2.9) 

where-{ 1+ D-1 L tl D-1 U is the Gauss-Seidel iteration matrix. The correction 

vector in the Gauss-Seidel iterative method is given by [D-1(l! - L:f.(k+1) -

U;f(k)) - ;f(k)j. Now the equation (4.2.7) can be written as, 

(4.2.1O) 
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If an overrelaxation factor w is applied to the equation (4.2.10) then we get, 

(4.2.11) 

Equation (4.2.12) represents the successive overrelaxation (S.O.R.) iterative 

method. The matrix S = (I + wD-1 L)-I[-wD-1U + (1 - w)I] is called the 

S.O.R. iteration matrix. 

The overrelaxation strategy is used to achieve a faster rate of convergence for 

the iterative methods. The standard S.O.R. iterative method is written as, 

(4.2.13) 

Young, [82], has shown that this method for solving equations such as (A;E = 11) 

converges for 0 < w < 2 if A is symmetric positive definite matrix. Also the 

optimum value "wo" of w for maximum convergence is given by, 

2 
Wo = , 

1 + V(1-1'-2) 

where I'- is the spectral radius of the Jacobi iteration matrix. 

4.2.3 The Modified Successive Overrelaxat'ion method 

The equation (4.2.1), represents the system of n linear equations with n un­

knowns. Here if A represents a block matrix of the form, 
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where D., D2, At, A2, are block sub matrices, and D t and D2 contain only 

the diagonal elements. If we consider a red/black ordering of the equations 

then At contains all the "black" points of matrix A and A2 contains all the 

"red" points of A. As before!!:. are the n unknowns and Q represents the n 

known constants. !!:. and Q are partitioned to match the red/black partitioning 

of matrix A. The matrix A is known as a 2-cyclic matrix. The matrix A can 

also be scaled in the form, 

(4.2.14) 

The sub-matrices Ft and F2 have the following properties. 

1. If n is even the Ft and F2 are (~, ~) matrices. If n is odd then Ft and 

F2 are «n~t), (n;t») and «n;1) , (n~t») matrices respectively. 

2. In case of even n, Ft is lower triangular bidiagonal and F2 IS upper 

triangular bidiagonal matrix. For odd n, FI and F2 can be transformed 

to lower and upper triangular bidiagonal matrices, by adding a dummy 

column and row respectively. 

Similarly for even n, Xt, X2, ILt, JlJ. are (~, 1) matrices and for n odd XI, ILt are 

(n~t), 1) and X2, and JlJ. are (n;I), 1) matrices. 

The b; for i = 1,2, ... ,n is also modified accordingly and represented as g; = 

b;J a;; for i = 1,2, ... ,n. 

The S.D.R. iterative method can be written for A in the form (4.2.14) as (see 

Varga [78]), 

X(k+1) = w(F x(k) + g ) + (1 _ w)x(k) 
-1 1_2 -1 -1 , (4.2.15) 

X(k+1) = w(F X(HI) + g ) + (1 _ w)x(k). 
-2 2_t _2 -2 (4.2.16) 

If two overrelaxation factors "w" and "w", are applied to the S.D.R. itera­

tive method, such that one overrelaxation factor is used for the red ordered 
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equations and the other for the black ordered equations the iterative method 

obtained is known as modified S.O.R. (see Young [82J, Martins [54], Evans, 

Haider and Martin [19]). The following equations represent the M.S.O.R. it­

erative method, 

X(Hl) = w(F x(k) + 9 ) + (1 _ w)x(k) -1 1_2 _1 _1 , 

(k+l) _ '(F (HI) + ) + (1 _ ') (k) if2 - w 2ifl fl.2 W if2 . 

(4.2.17) 

(4.2.18) 

If w = w' then the M.S.O.R. iterative method reduces to the S.O.R. iterative 

method. 

4.2.4 The Symmetric Successive Overrelaxation method 

A variant to the S.O.R. iterative method called the Symmetric Successive Over­

relaxation (S.S.O.R.) was proposed by Sheldon [67J. In this iterative method 

the S.O.R. iterative method is applied first by using the forward ordering of 

the equations and then to the backward ordering of the equations. So the 2nd 

half iteration of the S.S.O.R. iterative method will be given by, 

(4.2.19) 

The iteration matrix for the first half iteration is as that of the S.O.R. iterative 

method and the iteration matrix for the second half is given by G = (I + 
wD-1Ut1[-wD-l L + (1 - w)I]. By applying the iterations in this order it 

can be shown that the iteration matrix K is symmetric and positive definite 

for 0 < w < 2. Consequently the eigenvalues of K are all real. 

Since if(k+1) and if(k+2) are the I" and 2nd half of the S.S.O.R. iterative method, 

they can be written as if(H}) and if(k+l) notation. So equation (4.2.12) and 

equation (4.2.19) can be rewritten as, 

(4.2.21 ) 
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(4.2.22) 

Eliminating ~(k+t) in equation (4.2.22) by using equation (4.2.21) we get, 

(4.2.23) 

where !J.. is evaluated as follows, 

substituting the value of G we get, 

!J.. - {(I+wD-lUt l [(I-w)I-wD-l L] 

(I + wD-l Ltl + (I + wD-lUtl} (wD-1Q) 

!J.. = {[(I - w)I - wD-1 L] (I + wD-1 Ltl + I} (I + wD-1U)-1(wD-1Q) 

!J.. - [(I-w)I-wD-1L+I+wD-1L] 

(I + wD-1 Ltl(I + wD-1Utl(wD-lQ) 

f{ = GS 

f{ - (I + wD-1Utl [-wD-1 L + (1 - w)I] 

(I + wD-1 Ltl [-wD-1 U + (1 - w)I] 

f{ _ (I +wD-1Ut1(I+wD-1Ltl 

[(1 - w)I - wD-1 L] [(1 - w)I - wD-1U]. 

(4.2.24) 

By observing equations (4.2.13) and (4.2.19) it can be seen that the L~(k+l) 

factor is common, so there is no need for it to be calculated twice. Similarly 
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for the factor U !!;.(k+2) which becomes U!!;. for the next iteration (see equation 

(4.2.25)). This increases the storage requirement although the computational 

work load is now similar to the S.O.R. iterative method. 

This strategy is known as the Conrad-Wallach technique (see Conrad and 

Wallach [11 D. The area requirements for the S.S.O.R. iterative method with 

and without the Conrad-Wallach technique remain the same but the time 

requirements are different. The next iteration for the S.S.O.R. iterative method 

after (4.2.19) will be, 

(4.2.25) 

So if successive iterations for the S.S.O.R. iterative method are written, it can 

be observed that U !!;.(O) is the only computation required to be done. The 

L!!;.(k+l) and U!!;.(k+2) terms for the remainder of the iterations are precomputed 

in the most recent previous iteration respectively. 

4.2.5 The V.S.S.O.R. iterative method 

If two overrelaxation parameters "w" and "w" are cyclically used alterna­

tively in successive iterations of the S.S.O.R. iterative method, the method 

obtained is known as Unsymmetric Successive Overrelaxation (U .S.S.O.R.). 

The equations (4.2.13), (4.2.19) and (4.2.25) can be rewritten to represent the 

U .S.S.O.R. iterative method as follows: 

(4.2.26) 

(4.2.27) 

( 4.2.28) 
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Figure 4.2: IPS and DIV ADD IPS cells. 

4.3 Systolic designs for the iterative solvers 

The following sections present the systolic designs for the S.O.R., J.O.R., 

M.S.O.R. and S.S.O.R. iterative methods. The designs are simulated soft 

systolically using OCCAM as a hardware description language. 

4.3.1 The S.O.R. systolic design 

The S.O.R. systolic design is shown in figure (4.3) and figure (4.4) shows the 

snap shots of the I" iteration. The design consists of three parts. These parts 

compute the L,dk+l
) , U .Jk) and xlk+l

) (i.e. the new approximation to the 

solution vector) for i = 0,1 ... , n. Here n is the size of the matrix and k is the 

number of iterations performed. The banded system with bandwidth w = 5 is 

chosen and a (4 * 4) system is simulated and given by the following equation, 

an al2 al3 0 Xl bl 

a2l a22 a23 a24 x2 b2 
(4.3.1) * -

a3l a32 a33 a34 X3 b3 

0 a42 a43 a44 X4 b4 

The S.O.R. linear systolic array works as follows, 
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Let us compute the new approximation x~. The Lx part consists of compu­

tation (a31x~ + a32xD and the Ux part consists of computation (a34x~). The 

overall computation can be written as, 

x~ = (((b3 - Lx - UX)W)Ja33) + (1 - w)x~. 

In figure (4.4) Lx and U x computation is represented by y~ and yg respectively. 

The processors in the array are marked from left to right (irrespective of the 

type) with processor 1 being the leftmost processor and processor 5 being 

the rightmost processor. At time step 8, xl moves into processor 1. The 

computation (a31xD is performed and y~ = a31xl. x~ enters the processor 

5 and (a34x~) is performed and yg = a34x~. The processor 3 computes x~, 

this processor is known as the DIY ADD IPS processor and is shown in figure 

(4.2). At time step 9, y~ moves to processor 2 and (a32x~) is performed and 

y~ = a31 x l + a32x~. The processor 4 passes the value yg unaltered. At time 

step 10, the yg and y~ enter the DIY ADD IPS cell along with b3, w, a33 and xg, 

and x~ is computed. 
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Figure 4.3: Systolic design for the 1" iteration of the S.O.R. iterative method. 
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Figure 4.4: Snap shots of the 1't iteration for the S.O.R. iterative method. 
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4.3.2 The J .O.R. systolic design 

The J.O.R. iterative method expressed by the equation (4.2.6) is very similar 

to the S.O.R. iterative method (with J = L+U). Comparing equations (4.2.6) 

and (4.2.13) it can be seen that the J.O.R. iterative method does not use the 

most recent approximations to compute the new approximation. If in the 

S.O.R. systolic design the old values of .f.(k) are fed in by the host computer to 

the section computing Lx part then the design will work as the J .O.R. iterative 

method. Figure (4.5) shows the snap shots for the 1st iteration of the J .O.R. 

systolic design. The working of the design is the same as that of the S.O.R. 

systolic design. 

123 



0 0 0 x1 0 0 
0 

j tj MOw o'x1~ to t = 1 

0 0 0 0 0 

t=j 
0 

0 

j tj MOw oox! ~o t=2 

0 0 0 
xg 

0 0 

t
X

: 

0 j tj MDw ooxg~ t = 3 = 1 

.lj 0 0 0 0 0 x· 
012 

tj HOw tj 012 ,xgt.1 t ;;;;: 4:::; 2 

0 

t=j 
0 0 

xg 
013 0 

tX; 0 

j HI~wa13 .xgtj t =5= 3 

.~ 

.~j 
0 0 

ljlio~ 
0 x· 

023 

tj Wa23*xgt.g t =6= 4 .1 
0 t=j a2:2~x~HD~ 0:,2: x:tj 0 

tX; 0 

j t == 7;;;; 5 . ~ 
XI xl 2 

1 031 0 

ljciIJ~ 
0 

X· 
aa. .3j 031 'x1tj tj a,. * x:t.g t =8= 6 

x1 .g 
0 

t=j a3:3:xgHD~ 
0 0 tXo: 0 

x(j t,j t =9= 7 

xg,x~ .3 
1 a42 0 

ljciIJ~ 
0 0 

., j of> oxgtj tj t·: t;;;;IO=8 xg .g 
0 

t=j a':':x!HD~ 
0 0 

0 x(j t,j to t=11=9 

xgxl " 0 0 

ljciIJ~ 
0 0 

0 

j t,j tj to t = 12 = 10 

x3 .: 
0 0 0 0 0 0 

0 

MDW xgj tj tj to t=13=11 

9i = (W,bi,Oii,X?) 
x~ xl xl = ((((b; - .? - .: )w)/a;;) + (1 - w)x?J) } i = 1,2, ... ,n 

Figure 4.5: Snap shots of the 1't iteration for the J.O.R. iterative method. 
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4.3.3 The M.S.O.R. systolic design 

The systolic design for the M.S.O.R. iterative method is shown in figure (4.6) 

and figure (4.7) shows the snap shots. The systolic designs for the Jacobi, 

Gauss-Seidel and S.O.R. iterative methods using cyclic reduction are presented 

in Margaritis and Evans [52]. The design is simulated for a (5 * 5) tridiagonal 

matrix (w = 3). The system to be solved is represented by equation (4.3.2). 

a11 al2 Xl bl 

a21 a22 an 0 X2 b2 

a32 a33 a34 * X3 = b3 (4.3.2) 

0 a43 a44 a4S X4 b4 

aS4 ass Xs bs 

The scaled and block representation of the system is represented by equation 

( 4.3.3). 

m11 ml2 Xl 91 

m33 m32 m34 X3 93 

mss mS4 Xs 9s 
( 4.3.3) * -

m21 m23 m22 x2 92 

m43 m4S m44 X4 94 

The given tridiagonal matrix A, and b vector are converted in the form of 

equation (4.2.14) by the host computer. A simple systolic preprocessor can be 

designed to do so but no special gain will be achieved. The design works as 

following. 

The "red" part consists of Xl, x3 and Xs and the "black" part consists of X2 

and X4. Since the algorithm is divided into two parts hence, the hardware 

to implement consists of two (physically) identical parts also, one to solve 

the red part and the other to solve the black part. Each part consists of 
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two IPS and a ADD IPS cell (this cell is similar to the DIV ADD IPS cell 

shown in figure (4.2) except that the DIV operation has been removed due 

to prescaling of the matrix A). The working of each part is same as the 

S.D.R. systolic design. The left hand side part of the hardware computes the 

successive red new approximations. The right hand side part uses the newly 

evaluated approximations (produced by left hand side part) to produce new 

black approximations. According to the algorithm the red part should be 

computed first as the black part is dependent on the results of the red part. 

Though this dependency exists by expanding equations (4.2.17) and (4.2.18) 

and observing equation (4.3.3) it can be seen that the computation of the black 

part can be started as soon as the partial dependent part has been solved. To 

understand this fact and the working of the array consider the computation of 

x~ (black part) and x~ (red part) which are given by, 

and x~ = w(ms4x~ + 9s) + (1 - w)x~ respectively. 

Note that host provides mij = -aij/aii for i,j = 1,2, ... , n; i # j. 

For simplicity consider that the whole system (array) is numbered from left 

to right with processor 1 being the left most cell and processor 6 being the 

right most cell. At time step 4, xl is available, indicating that the partial 

computation for the black portion can be started. At time step 5, xl moves to 

processor 6 which computes y~ = m21xl. Also note that processor 3 computes 

x~, which is needed by the processor 5 in the next step. Processor 1 computes 

y~ = mS4x~. At time step 6, processor 5 computes m23x~ and y~ = m21xl + 
m23x~ and y~ moves through processor 2 unaltered. At time step 7, processor 

4 computes x~ and processor 3 computes x~. 

The area and time requirements for a single iteration are shown in table (4.1). 

Table (4.1) is valid only for the tridiagonal system of linear equations. Note 

that as the size of the matrix is increased the utilisation of the array is im-
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Method Order Time Area 

M.S.O.R. n-odd (n + 5) 4 IPS + 2 ADD cells 

M.S.O.R. n-even (n + 6) 4 IPS + 2 ADD cells 

Table 4.1: Area and time requirements for M.S.O.R. design 1. 

Method Order Time Area 

M.S.O.R. n-odd (2n + 2) 2 IPS + 1 ADD cells 

M.S.O.R. n-even (2n + 4) 2 IPS + 1 ADD cells 

Table 4.2: Area and time requirements for M.S.O.R. design 2. 

proved, for large n (i.e. n > 100) the utilisation of the M.S.O.R. linear systolic 

array is about 50%. 

The other possible way to design the systolic array for the M.S.O.R. iterative 

method is to let the red part be completed and then to start the black part on 

the same hardware. Such a systolic design can be implemented using half the 

array, compared to the systolic design represented by figure (4.6). The new 

design is represented by figure (4.8). The area is half but it takes more time to 

complete the single iteration. The utilisation is better for small n as compared 

to the previous design (design 1) and is same for large n (i.e. n > 100). The 

time taken by design 2 to complete one iteration is almost twice. So if a fast 

response time is required then one must use design 1 and if it is not important 

then the design 2 is preferable due to low area, hence cost. The area and time 

requirements for design 2 are shown in table (4.2). 
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Figure 4.6: Systolic design for the M.S.O.R. iterative method. 
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Figure 4.7: Snap shots of the M.S.O.R. systolic design 1. 
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Figure 4.8: Snap shots of the M.S.O.R. systolic design 2. 
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4.3.4 The S.S.O.R. systolic design 

The systolic design for the S.S.O.R. iterative method with and without the 

Conrad- Wallach technique has been simulated as follows. The systolic design is 

shown in figures (4.3) and (4.9). Figure (4.3) represents the very first iteration 

and figure (4.9) shows the successive iterations of the method. One fact to 

note here is that the extra hardware required for computing U ;[.(0) is used only 

once in the first iteration. If the initial guess is always taken to be zero then 

this computation is not needed as the U ;[.(0) vector will be zero, however this 

may not always be the best assumption. The systolic design shown in figures 

(4.3) and (4.9) is for a (4 x 4) banded matrix with q less than or equal to p. 

This is required due to the nature of the problem. The snap shots are shown in 

figures (4.4) and (4.10) for the first and the successive iterations respectively. 

The area requirements for the S.S.O.R. with and without the Conrad-Wallach 

technique are the same, but the time requirements are different, as shown 

in table (4.3) (w is the bandwidth of the system and is 5 in our design, k 

represents the number of iterations performed). The DIV ADD IPS and IPS 

cells are shown in figure (4.2). In the second and successive iterations as stated 

above the upper portion of the hardware is not used (see figure (4.9)). The 

host computer feeds the L;[.(k+!) and U ;[.(k+2) and so on, which are precomputed 

in the most recent previous iteration. The working of the array is similar to 

that of the S.O.R. linear 'systolic array. 

Method Architecture Time Area (IPS) + OIV-ADD-IPS 

S.S.O.R. Normal k(2n + w) (w - 1) + 1 

S.S.O.R. Conrad-Wallach (2n + w) + (k - l)(w + 2n - 3) (w - 1)+1 

Table 4.3: Area and time requirements for S.S.O.R. iterative method. 
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Figure 4.9: Systolic design for the 2nd iteration of S.S.O.R. iterative method. 
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Figure 4.10: Snap shots for the 2nd iteration of the S.S.O.R. iterative method. 
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4.3.5 The V.S.S.O.R. systolic design 

The systolic design remains the same except that in figure (4.9) and figure 

(4.10) w is replaced by w i.e. the second overrelaxation parameter. The time 

and area requirements remain the Same but the host computer needs to do a 

little extra work to take care of two overrelaxation factors. 

4.4 Further design improvements 

The J.O.R., S.O.R. and S.S.O.R. systolic designs can be improved by observing 

the following facts: 

a) In figure (4.3) the factor marked XI in the upper triangular matrix need 

not be implemented in the design since this factor will always be zero. 

This can be seen by expanding equation (4.2.13). 

b) In figure (4.9) the factor marked YI is not required to be computed as it 

will always be zero as is apparent from figure (4.10). 

c) The DIY ADD IPS cell can be simplified by using the systolic preprocessor. 

The preprocessor divides all the rows by their respective diagonals and 

multiplies the whole matrix by w, (also the Q is modified) as this is done 

in iterations. 

Table (4.4) presents the area and time requirements for the improved design 

(k represents the number of iterations performed and w the bandwidth of the 

system, 5 in the example discussed). 

4.4.1 Pipelining 

Each iteration in the design is pipelined within itself but successive iterations 

cannot be pipelined (see Berzins, Buckley and Dew [7]) due to the reversal 

of the equations in the 2nd half iterations. This makes the systolic design 
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Method Architecture Time Area(IPS)+DIV-ADD-IPS 

S.S.O.R. Normal k(w + 2n - 2) w-1+1 

S.S.O.R. Conrad-Wallach (w + 2n - 2) + (k - l)(w + 2n- 5) w-l+1 

Table 4.4: Area and time requirements for the improved S.S.O.R. design. 

simple, with no delays and extra area requirements. The price paid here is the 

repumping of data by the host computer. The systolic array is re-used in this 

design for the computation of successive iterations. 

4.4.2 Systolic design for pumping data 

The architectural consideration about the pumping of data is also important. 

As the host computer is repumping data repeatedly for the iterations, there 

are advantages and disadvantages which are outlined below. 

The host computer cannot do any other useful work and the memory used to 

store the matrix and vectors cannot be overwritten or reclaimed by the host 

computer. 

There are two ways by which data can be pumped from the host computer to 

the linear systolic array: 

1. By saving the matrix and vectors in the memory and after each iter­

ation reverse the data in these locations. This strategy degrades the 

performance of the design. 

2. By saving the matrix and vectors in the memory along with their reverse 

images. This increases the memory requirements for the host computer 

but is worth consideration. 

Method 1 requires less memory and hence more host computing time. Method 

2 on the other hand requires more memory but less host computing time. 
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If the data is pumped every iteration from the host computer then the perfor­

mance of the array will be degraded due to a slow host computer (communi­

cation overheads). If the data is permanently stored in the array then a large 

resident memory is required by each processor. An example of this architecture 

is WARP (Tseng [77]). Also, the reverse image technique to be implemented 

needs attention so that the overheads are reduced to a minimum. 

4.5 Conclusions 

The methods simulated above are faster, i.e. the computational time is less and 

so is the area requirement as compared to fully pipelined designs. The S.S.O.R. 

iterative method using the Conrad-Wallach technique is 23.08% faster than the 

usual S.S.O.R. iterative method. The improved design is 20.00% faster than 

the improved normal S.S.O.R. iterative method and is 38.46% faster than the 

unimproved normal S.S.O.R. iterative method. This speedup is calculated for 

n =4. 

The advantage of ordering the given equations into red, black points and using 

the concept of block matrices results in a speedup to a certain degree which 

can be achieved. However, the area requirement is definitely increased. The 

speedup will be less than double due to the dependencies. As can be seen from 

figure (4.7) the computation x~ cannot be started until x~ and x~ have been 

computed. The area requirement also depends on the order of the matrix and 

also on the even and odd orderings of the equations. The same will be true 

for the time requirements. 

Since a very special case has been discussed in this chapter no general com­

parisons can be made. However a comparison can be made for the area and 

time requirements between the M.S.O.R. and S.O.R. (using two overrelaxation 

parameters alternately) iterative methods. Also, this comparison can be ex­

tended for the overall methods, i.e. which one converges faster for the special 
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case discussed above. 
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Chapter 5 

Further Matrix Iterative 

Methods 

In this chapter we present the systolic designs for the stationary and non­

stationary second order Richardson iterative methods for solving large linear 

systems generated from discretisation of boundary value problems. It is well 

known that the Chebyshev polynomials have the following "Equal ripple" prop­

erty, i.e. the Chebyshev polynomial Tk(X) oscillates between the interval [-1,1] 

exactly k times as x goes from -1 to 1. This property of the Chebyshev poly­

nomials is used to reduce the error norm of the iterative method and hence 

achieve fast convergence. The systolic array is reusable and each cell has its 

own local memory. The design is highly parallel and pipelined. 

Later in the chapter the systolic design for the Accelerated Overrelaxation 

iterative method (see Hadjidimos [33]) for solving large systems of linear equa­

tions is presented based on the VLSI techniques discussed earlier, in Evans 

and Haider [18], for the Jacobi, Gauss-Seidel, S.O.R. and S.S.O.R. iterative 

methods. Finally, a similar strategy (see Conrad and Wallach [11], Evans and 

Haider [18]) is used to accomplish the S.A.O.R. iterative method involving no 

extra computational work. 
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5.1 Introduction 

The equation, 

A~=Q, (5.1.1) 

represents a system of n linear equations in n unknowns, where A is a (n * n) 

coefficient matrix, ~ and Q represent the n unknown and known constants 

respectively. If the matrix A is split such that, 

A=D+L+U, (5.1.2) 

where D, L, U are (n * n) matrices, with D containing only the diagonal 

elements of A, U and L are the strictly upper and lower triangular matrices 

wi th zero diagonals. 

5.1.1 The first order Richardson iterative method 

The first order Richardson iterative method is defined as, 

~(k+I) = ~(k) + O:(Q _ A~(k)). (5.1.3) 

The residual vector is given by, 

and is the measure of the error in the method. The factor 0: is used to get a 

faster convergence (accelerate the iterative process). The error §.k is defined 

to be of the form ~k - A-IQ (where A-IQ is the exact solution of the equation 

(5.1.3)). The equation (5.1.3) can also be written in the form 

~(k) = ~(k-I) + O:(Q _ A~(k-I)). (5.1.4) 
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A recurrence relation for the error vectors can be defined from equations (5.1.3) 

and (5.1.4) and is of the form 

~(k+l) = ~(k) + a( _A~(k», 

where 

~(k+l) = ~(k+l) _ ~(k). 

The method is said to be a stationary iterative method if a remains constant 

(the error operator remains constant through out the iterative process). Now 

the above recurrence relation can be written in the form 

Let Jli be the eigenvalues of the matrix A, which implies that A~i = Jli£.; 

corresponding to its eigenvectors £.;, z = 1,2, ... , n. Since A is positive 

definite, all Jli > O. If Ai be the eigenvalues of I - aA corresponding to its 

eigenvectors £.; implies that (I - aA hi = Ai~i or, 

Therefore we have for each value of i, 

Ai=(l-aJli) i=1,2, ... ,n. 

Since for convergence we require 1 Ai 1< 1 then, 

1 (1 - aJli) 1< 1. 

Now using the modulus property i.e. 1 z 1< a => -a < z < a we get, 

-1 < 1 - aJl; < 1 
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(-1) - 1 < (1 - a/-,;) - 1 < (1) - 1 

-2 < -a/-,; < O. 

Now for convergence 

1. we can establish that 

2 > a/-,;. 

Since /-'; > 0, then :; > a or 

2 V' a < - t = 1,2, ... ,n. 
/-'; 

As this is true for Vi, then it is also true for some i such that, 

2 
(5.1.5) a<---

max; /-,; 

2. -a/-,; < 0 implies that 

a/-,; > 0 

therefore, 

a > 0 since /-,; > O. 

Hence it is established that, the convergence range of the Richardson 

iterative method is, 

2 
O<a<--- (5.1.6) 

This means for the first order Richardson iterative method to achieve 

accelerated convergence, a should be in the bound defined by equation 

(5.1.6). 
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Suppose all we know about the Jl; is that they lie in an interval [a, b] and 

o < a < b < 00. For every function 11 - aJl 1 assumes its maximum at one of 

the end points Jl = a or Jl = b. The best choice of a is the one for which, 

1 - aa = -1(1 - ab) 

to give 

2 
a=--

a+b 

with this choice of a, the maximum value of 1 - aJl; at the end point a is given 

by, 

2 
l---a 

a+b 

which gives 

b-a 

a+b 

and it must be true that 

b-a 
11 - aJl; 1< -b - < 1. 

+a 

This means that the convergence factor for this method with a chosen constant 

,a is bounded by a certain function of ~ or P the condition number. The rate 

of convergence is given by, 

[
-1 +~] R = -log ba, 
1 +-a 

[
-1 + P] 

R = -log 1 + P , 

[
_I+P]-l 

R = log 1 + P , 
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[ 
1 + P ] 

R = log -1 + P , 

R = log ~ [
1 + 1 ] 

1- p 

or, 

R = 10g(1 + M -log(l - j,) 

Expanding the log series we get, 

1 1 1 1 1 1 
R = (p - 2p2 + 3p3 - ... ) - (- p + 2p2 - 3p3 + ... ) 

2 2 
R= p + 3p3 + ... 

Neglecting the higher powers of P we get, 

2 
R:e p. 

5.1.2 The first order Richardson iterative method with 

Chebyshev acceleration 

If the parameter a is varied with each iteration then the iterative method 

obtained is known as a nonstationary method. Now the equation (5.1.3) can 

be written as, 

(5.1.7) 

to represent the first order Richardson iterative method with Chebyshev ac­

celeration. Also, 

which is equivalent to a nonstationary method 
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or can be written in the form 

where 

k-1 

Pk(X} = II(1- aiX) 
i=O 

is a polynomial in x with the property Pk(O} = 1. The numbers ;, are the 

zeros of the polynomial Pk and PkC) = 0, can cause round off difficulties. 

It is desired that tl should be made as small as possible, hence that Pk(A) 

be made as small as possible. The obvious choice is ai = Ail, where Ai are 

the eigenvalues of A. This is not possibl~ since we have no predetermined 

knowledge of the Ai. So an alternative procedure of making hex} small over 

the interval [c,d] is adopted. If the eigenvalues of A lie in the range, c::; x ::; 

d < 1 where c and d represent the minimum and maximum eigenvalues of A 

and are real we have 11 f(k) 11::; 11 Pd A} 1111 fO 11, and since 

A polynomial of degree k is required such that 

is a minimum under the constraint Pk(O) = 1. Such a polynomial was given 

by W. Markoff (in 1892) and is defined by, 

P ( ) = Tk(x) 
k x Tk(d) 

where Tk(X) is the Chebyshev polynomial and Pk(x) = 1 and 

1 
max IPk(x}I=T(d)' -lS-Sl k 

(5.1.8) 

Chebyshev polynomials of degree k are represented by {Td. For x E [1, -1], 

define 

Tk(X} = cos[karccos(x)] for each k > 0 
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Let arccos(x) = 0 => x = cos(O) 

=> Tk(O) = cos(kO), 0 E [0,7r] 

A recurrence relation can be derived by noting that 

Tk+l (0) = cos( (k + 1 )0) 

= cos( kO) cos( 0) - sin( kO) sin( 0) 

and 

Tk-l(O) = cos((k - 1)0) 

= cos( k9) cos( 0) + sin( kO) sin( 9) 

So Tk+1(8) = 2cos(kO)cos(O) - Tk_1 (O). 

Returning to the variable x, we obtain 

(5.1.9) 

The Chebyshev polynomials are now easily obtained in a sequential manner 

by using the three term recurrence relation obtained from equation (5.1.9), 

To(x) = 1 

T1(x) = x 

Tk+1(x) = 2xTk(X) - Tk-l(X) 

So by using these concepts we can write 

where Yo = ~ and Tk(Y) is a Chebyshev polynomial of degree k adjusted in 

the interval -1 ::; Y ::; 1. Then, Pk(X) is a Chebyshev polynomial of degree 

k adjusted to the interval a ::; x ::; b and scaled so that Pk(O) = 1. Let 

Y = bt_-,,2X I then yo is the value of y for X. = 0, i.e. Yo = ~ for x = a, y = 1 
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and for x = b, y = -1. The I Pk(y) I has a maximum value T.(yo). The average 

rate of convergence per iteration, defined as the lower bound is not less than, 

R= 
ktl b-a 1 

[

T: (b±a-2X)] 
(k + 1) log Tktl (~) . 

Since the maximum absolute value of the numerator is unity hence 

R = - (k : 1) log [ Tktl 1( ~) ] . 

As b/a = P then equation (5.1.11) can be written as, 

-1 [ P+l]-l 
R=(k+l)log Tk±lp_l 

Since ~!: > 1 then Tk(X) is defined as, 

Tk(X) = cosh(kcosh-1 x) 

and for large k we have, 

lim log [cosh(kcosh-1 x)t = cosh-1 x. 
k_oo 

Let m = cosh-1 x, then 

em + e-m 
cosh m = x = ---.:...--

2 

so e2m 
- 2xem + 1 = 0 

or em = x ± vx2 - 1 since em > 0 hence, 

em =x+vx2-10r, 

m = log(x + vx2 - 1) or, 

cosh-1 X = log [x + vx2 - 1] 
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[
p + 1 

= log P -1 + 

[
p + 1 

= log P -1 + 
(P+l)2-(P-l)2] 

(P - 1)2 

-10 [P+l M] 
- g P -1 + (P - 1) 

= I [p + 1 + 2v'?] 
og (P _ 1) 

=1 [(v'? + 1)2] 
og (P-I) 

_ 10 [ (v'? + 1 )2 ] 
- g (v'?-I)(v'?+I) 

= 10 [(v'? + 1)] 
g (v'?-I) 

expanding the series and neglecting higher powers of P we get 

2 
R=-. 

v'? 

The operational aspects of this method are as follows. One must choose in 

advance the k parameters Cl;, given only a, b, k and the value of the ratio :~~:~I 
at which the iteration is to be terminated. The best choice is given by 

Cl; = [(a+b)-(b~a)Cos~l i=I,2, ... ,k 

This choice would ensure fastest convergence in the absence of rounding errors 

but in practice the iteration is very sensitive to rounding errors when ~ is very 

small. This sensitivity, often a feature of nonstationary iterations, is due to 

the fact that for some values of Cl; the later factors of 

k-l 

Pk(X) = II(1- Cl;X) 
i=O 
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are large and the earlier factors small. Therefore, some of the rounding errors 

committed in the earlier iterations are often accentuated instead of attenuated 

by the later iterations. 

An improved version which is less sensitive to round off error was suggested 

by Stiefel, in [73], and is given below. 

5.1.3 The second order Richardson iterative method 

The equation, 

(5.1.12) 

represents the second order Richardson iterative method (see Frankel [29], 

Young [82], Golub and Varga [31], Hageman and Young [34], Haider and Evans 

[35]). The second order methods involve two previous iterates. For the first 

iteration the well known first order form of the Richardson method is used, i.e. 

For later iterations both ;f.(k-I) and ;f.(k) are used with two parameters 0 and 

{3 chosen to speed up the convergence. These parameters remain constant 

throughout the iteration process. The error at the (k + l)th iterate is defined 

as, 

(k+l) _ [1 + {3 - (1 ,.)] (k) _ {3 (k-I) 
~i - 0' - A, fi ~, 

where (1- Ai) are the eigenvalues of A. Let,i be the eigenvalues of the matrix 

. associated with the iteration process. Then 

(k+I) _ . (k) _ 2 (k-I) 
fi - '~"fi - li fi . 

Now we can write, 

~k+l) = [1 + (3 - 0(1 _ Ai) _ ~] ~k) 
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or 

if - (1 + (3 - a + aAi) ii + (3 = o. 

Let ki = (1 + (3 - a + aAi) in the above equation, which represents a quadratic 

equation in i, which gives, 

if - (kih + (3 = o. 

The above equation gives the solution, 

ki ± Jk? - 4(3 
ii = 2 . (5.1.13) 

If a and (3 are chosen so that (k; - 4(3) is negative for all Ai, then all the ii 

will be complex and all I ii I identical. If ii are real and identical then, 

k~ - 4(3 = 0 =} k1 = ±2--fi 

k~ - 4(3 = 0 =} kn = - ± 2--fi 

1 + (3 - a + aAn = -2--fi. 

Let I'i = 1 - Ai in the above two equations we get, 

(5.1.14) 

1 + (3 - al'n = -2--fi. (5.1.15) 

Solving for a, and adding equations (5.1.14) and (5.1.15) we get 

or 

(
1+(3) a=2 . 

1'1 + I'n 
(5.1.16) 
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Substituting the value of Cl< from equation (5.1.16) in equation (5.1.14) we get, 

(
2 + 2,8) la 1 + ,8 - /Ll = 2V ,8 

/Ll + /Ln 

1 + ,8 - 2/Ll - 2/Ll ,8 = 2,JP 
/Ll + /Ln /Ll + /Ln 

,8 (1 - 2/Ll ) - 2,JP + (1 _ 2/Ll ) = 0 
/Ll + /Ln /Ll + /Ln 

,8 (/Ll + /Ln - 2/Ll ) _ 2,JP + (/Ll + /Ln - 2/Ll ) = 0 
/Ll + /Ln /Ll + /Ln 

(5.1.17) 

Equation (5.1.17) is a quadratic equation in ViJ and can be solved for ViJ, 
and we get 

,JP = 2(/Ll + /Ln) ± 2J/L~ + /L~ + 2/Ll/Ln - /L~ - /L~ + 2/Ll/Ln 
2(/Ln - /Ll) 

since we want ,8 to be less than unity hence we take negative value, 
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Substituting the value of (3 in (5.1.16) we get, 

[

1 + (';;;;;--.0)2] 
a = 2 ';;;;;+-.0 

{ll + {In 

a = 2 [/1n + {ll + 2ffnv1i1 + ~n + /11 - 2ffnv1i11 
(ffn + v1i1) ({ll + {In) 

a - 2 2 ({In + {ll) 
- (ffn + v1i1/ ({Id {In) 

The a is calculated by using the relation, 

and (3 is calculated using the relation 

..;a-Vb 
[ ]

2 

(3= va+Vb ' 

(5.1.18) 

(5.1.19) 

(5.1.20) 

where "a" and "b" are the lower and upper bounds to the eigenvalue spectrum 

of A. The spectral radius of this iteration is J7J and the rate of convergence 

is .}p (see Hageman and Young [34], Wachspress [79]). 
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5.1.4 The Chebyshev acceleration of the second order 

Richardson iterative method 

The Chebyshev acceleration of equation (5.1.12) has the form 

(5.1.21) 

with the parameters O/k and f3k varying with each iteration. If;f is the exact 

solution then (5.1.21) can be written as 

(5.1.22) 

Subtracting (5.1.22) from (5.1.21) we get, 

As ;f(k) -;f = ~(k) represents the error after the k'h iteration, equation (5.1.23) 

can be written as 

(5.1.24) 

where A = (b-a)z + (b+a) matching of A and "a" and "b" are the lower and 
2 2 

upper bounds to the eigenvalue spectrum of A respectively adjusted to the 

interval (-1,1). z is defined as 

b+a 
Z=--. 

b-a 
(5.1.25) 

Now by the definition we have ~(k) can be substituted for ~:il)) so equation 
" 

(5.1.24) becomes, 

(5.1.26) 
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Now to generate the Chebyshev polynomial, we form the recurrence relation 

which the Chebyshev polynomials must satisfy, 

(5.1.27) 

equating the co-efficients of z on the right hand side of equations (5.1.26) and 

(5.1.27) we obtain, 

or 

Similarly, we obtain 

where 

(b - a) 
JI.=2-(b+a)" 

The error reduction is given by the equation 

[
T (~)] e(k+t) = k+t b-a e(O) 

- T (~) -k+I b-a 

and the average rate of convergence is given by 

R = - (k : 1) log [Tk+t G ~ :) r 
which reduces to (for proof see section (5.1.1)), 
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(5.1.32) 



Since the coefficients Ok and f3k are less than unity, roundoff difficulties do not 

arise and hence this method is preferred. 

The asymptotic rate of convergence of the second order nonstationary Richard­

son iterative method is -jp (P is the P-condition number given by 1 ! I) (Hage­

man and Young [34], Westlake [80]). A matrix with large P-condition number 

is an ill conditioned matrix and causes great difficulties in solving the linear 

system. The greater the P-condition number of the matrix the smaller is the 

rate of convergence. An average value for the P-condition number is n. The 

maximum and minimum eigenvalues can be calculated using the Gersgorin and 

Collatz theorems which are given by 

n 

1.\lmax ~ max L laijl and 
j=l 

n 

1.\lmin 2: aii - L laijl respectively. 
i~j 

(5.1.33) 

(5.1.34) 

5.1.5 The Accelerated Overrelaxation (A.O.R.) itera­

tive method 

Now it can be shown from (Hadjidimos, [33]) that, the equation, 

represents the Accelerated Overrelaxation iterative method (A.O.R.), where 

"w" and "r" are the overrelaxation and acceleration factors, applied to the 

U:f.(k) and L:f.(k+J) respectively, (Martins, [53]). Here, equation (5.1.35) rep­

resents the forward ordering of the equations (5.1.1) and (5.1.2). Equation 

(5.1.35) can be written as, 

:f.(k+I) + r D-1 L:f.(k+I) _ (1 - w):f.(k) + w D-1 (Q - U :f.(k) - WL:f.(k)) + 

r D-1 L:f.(k) 
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(I + rD-' L);r.(k+') = [(1 - w)1 - D-'(wU + wL - rL)] ;r.(k) + 

(wD-' !!) 

;r.(k+I) _ [I + rD-' Lr' [(1 - w)1 - D-'(wU + wL - rL)] ,!.(k) + 

[I + rD-' Lr' (wD-'!!) (5.1.36) 

The matrix [I + rD-' L r' [(1 - w)1 - D-'(wU + wL - rL)) IS called the 

A.O.R. iteration matrix. 

The 2nd and 3rd iterations of the A.O.R. iterative method are as follows, 

Observing equations (5.1.35), (5.1.37) and (5.1.38) it can be noticed that the 

factors L;r.(k+I) and L;r.(k+2) are common in equations (5.1.35), (5.1.37) and 

(5.1.37), (5.1.38) respectively. Hence these need be computed only once. This 

will reduce the computational work in the iterative solver as the factor L;r.(k) 

is the only one which needs to be computed. A similar technique has been 

previously used for the S.S.O.R. iterative method by Conrad and Wallach (11) 

and, Evans and Haider (18). Thus, extra hardware is only required to compute 

the L;r.(k) factor for the 1 ,t iteration, because in the successive iterations the 

computation is already performed. 

The optimum value of "r" and "w" can be found by using the relations (see 

Hadjidimos [33]) 

where p. is the maximum eigenvalue obtained from the Jacobi iteration matrix. 
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5.1.6 The Symmetric A.O.R. iterative method 

Equation (5.1.35) represents the forward ordering of the A.O.R. iterative 

method, similarly, using the backward ordering of the vector x(k+l), the A.O.R. 

iterative method can also be written as follows, 

Finally, if the iterations are performed alternately using the forward and back­

ward orderings respectively then the method is known as the Symmetric Ac­

celerated Overrelaxation (S.A.O.R.) iterative method. 

The next iteration of the S.A.O.R. iterative method after equation (5.1.39) 

will be, 

Equation (5.1.39) can be written in the form, 

;f(k+2) _ [I + rD-IU'-r 1 [(I - w)I - D-I(wL + wU - rU)h(k+l) + 

[I + rD-IUrl (wD- I!!.) (5.1.41) 

The iteration matrix for the 1st half IS as that of the A.O.R. iter­

ative method and the iteration matrix for the 2nd half IS given by, 

[I + rD-IU r 1 [{I - w)I - D-I (wL + wU - rU)J. A single sweep of the 

S.A.O.R. iterative method comprises of a forward and a backward iteration. 

This means that ;f(k+ I ) and ;f(k) are the l't and 2nd half of the S.A.O.R. iterative 

method, and can be written as, 

;f(k+!) = [I + rD- I L]-1 [(I - w)I - D-I{wU + wL - rL)] ;f(k) + 

[I + rD- I Lrl (wD- I!!.) (5.1.42) 

;f(k+1) _ [I+rD- IUrl [{l-w)I-D- I{wL+wU-rU)],,(k+!)+ 

[I + rD-1Ur1 (wD- 1!!.) (5.1.43) 
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Eliminating !f(k+~) in equation (5.1.43) we get, 

or, 

~(k+') = [I + rD-'Ur' [(1 - w)1 - D-'(wL + wU - TU)] 

[1 + rD-'Lr' [(1-w)1 - D-'(wU +wL - rL)] ~(k) + 

[I + rD-'Ur' [(1 - w)I - D-'(wL + wU - TU)] 

{[1 + TD- 1 Lr' (wD-'/t)} + [I + rD-'Ur' (wD-'/t) 

and !l. and f{ are evaluated as follows, 

!l. [I + rD-'Ur' [f + rD-' Lr' 
[(1 - w)f - D-'(wL + wU - rU - rL) + I] (wD-'/t) 

- [I + rD-'Ur' [1+rD-1Lrl 

[(2 - w)I - D-' {w(L + U) - r(L + U)}] (wD-'/t) 

- w [I + rD-'Ur' [I + rD-' Lrl 

[(2 - w)l + D-'(r - w) [L + ull (D-'/t). 

f{ - [I + rD-'Ur' [1+ rD-1 Lr
l 

[(1 - w)l - D-'(wL + wU - rU)] 

[(1 - w)l - D-'(wU + wL - rL)]. 

The matrix f{ represents the S.A.O.R. iteration matrix. When r == w the 

S.S.O.R. iterative method is obtained. 

5.1.7 The Unsymmetric A.O.R. iterative method 

If two overrelaxation and acceleration parameters w, rand wand r are cycli­

cally used alternatively in the successive iterations of the S.A.O.R. method, the 
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new method obtained is known as Un symmetric Accelerated Overrelaxation 

iterative method (U.S.A.O.R). If equation (5.1.39) is changed to, 

Then the equations (5.1.35), (5.1.44) and (5.1.40) represent the 1't three iter­

ations of the U.S.A.O.R. iterative method. 

5.2 Systolic designs 

5.2.1 Systolic design for the second order Richardson 

iterative method with Chebyshev acceleration 

The design can simulate a dense (n x n) system of linear equations. The user 

needs to define the order of the system at compile time. The "a", "b", "<:>0" 

and "f30" are precomputed in the host computer. 

Equation (5.1.21) can be decomposed into the following sub-computations 

(5.2.1) 

(5.2.2) 

(5.2.3) 

(5.2.4) 

which comprises of matrix-vector and constant vector multiplications together 

with vector addition and subtraction operations. This decomposition suggests 

that for a system of order n, (n + 2) processing cells are required to form 

the array to solve the system. To compute the product Ai!'. represented by 

equation (5.2.1) n cells are required. One cell is required to compute equation 

(5.2.2). The remaining cell is the boundary cell which computes the equations 
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cell! W cell2 W cell3 wl~w@1 

Figure 5.1: Linear systolic array for the second order Richardson iterative 

method. 

(5.2.3) and (5.2.4). The equation (5.2.3) is computed in the idle cycles of this 

cell, because the computation is not required "on the fly". The new "a" and 

"(3" are also computed in the idle cycle by the boundary cell, expressed by 

equation (5.1.28) and (5.1.29) respectively. The old value of er is kept in the 

boundary cell until the newer is computed for the next iteration. The old er 

is sent to ce1l4 (in our example) and simultaneously the newer is computed in 

the boundary cell. This is done because the er cannot be updated in the ce1l4 

until the last component of ~~, i.e. equation (5.2.2) has been calculated. So 

an extra register or memory location is required in the boundary cell (ce1l5). 

This process speeds up the iteration by saving the extra cycles required for 

calculating the er and (3 for the next iterations. 

The system configured for a (3 x 3) system of linear equations is described 

as follows. The system consists of 5 cells as shown in figure (5.1). celll, 

ce1l2, and ce1l3 are the basic inner product step (IPS) cells with cell! having 

a slightly different I/O architecture. The celll does not need to send and 

receive any data on the channels x o.' and Yin. This eliminates the need of 

a source and sink provided by the array hardware or the host computer and 

saves both area and time requirements. Ce1l4 performs the operation defined 

by equation (5.2.2) and ce1l5 does the job expressed by the equations (5.2.3), 

(5.2.4), (5.1.28) and (5.1.29). Figure (5.2) shows the structure of the cells and 

the operations performed. Figure (5.3) shows the snap shots for each iteration 

of the nonstationary second order Richardson iterative method. The array 

takes 12 time steps to complete the each iteration. 

The cells are initialised with the required data. The cells (ce1l3, ce1l2, and 
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"'in 

.~, 

"'in 

input channel for 'a' vector from hOBt 

'a' vector 
Zin 

re~Bten 

IIII Slout 

operation 
Zin ! Z 

Slin! SI 

Zout ! zlmp 

if available Sloul ! SIre' 

else You! ! Slhnp 

SIre, "" SIre, + a )( % 

input cbannel for QO and 'b' vector from ho .. t 

'b' vector 

re~lten 

IIII .~, 

operation 
Zin ! Z 

Slin! '" 
Zout ! ztmp 

if a.va.Hable Slout ",re! 

else Youl ! Sllmp 

yre, = Qk(b - y) 

input channel for fJo and '1-' from ho .. t 

operatIOn 
Yin ! Y 

.~, 

Zout ! ztmp 

if ava.i!"ble lIou! ! ",re. 

",re' "" (y + %0 + z) 
do "k(z - %0) in idle cycle. 

compute new fJk and al\:' 

Figure 5.2: Cell operations for the nonstationary second order Richardson 

iterative method. 
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As in the array there are different operations going on and the arrayc needs 

to be synchronised, so that the global timing of the system is preserved. If 

a slow memory is used then due to fetch/store operations the systems global 

timing needs to be adjusted, which can degrade the performance of the array 

considerably. If a high speed memory is available then this problem might not 

be of great importance. 

The design could have been designed to process the data as soon as the data 

enters from the host computer to the array but it needs rather complex cell 

structures and synchronisation which slows down the first iteration. Already 

ce1l5 is quite complex due to its control and operational requirements. The 

array starts iterating and terminates the process when one of the following 

conditions occur. 

• The solution is found, i.e. the system has converged. 

• The number of iteration performed equals the maximum allowed. 

The array interrupts the host computer to receive the solution or'the error 

message, which is then displayed on the host screen. An upper limit on the 

number of iterations to be performed is implemented so that the system escapes 

from the infinite loop, in the case, the system does not converge. When an 

element of ~(k+l) is computed then the convergence test is performed for the 

element computed. The convergence test is performed by comparing ~(k+l) and 

~(k-l) elements as they are produced. This was done because while comparing 

the elements of ~(k+l) and ~(k) the results were almost the same and the process 

was terminated "False termination". The solution obtained was close but not 

correct. The array processing can be terminated in one of the following 

ways, 

• After convergence has been achieved a reset signal can be broadcast to 

reset the array. However in the systolic designs broadcasting of signals 

is avoided so this strategy is not implemented. 
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,------,b" . x~t:L:3:::1Dt:t:Dl t = 3 

~31' x1~12 .x~~Dt:JOI t = 4 

,------,b22 • x~~,-----,t:JD~01 t = 5 

Figure 5.3: Snap shots for the nonstationary second order Richardson iterative 

method. 
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t = 1 

t = 2 

,= 3 

iter/l,te. , = " 
+Ih==='lr----11lf.=::t-

t = 5 

Figure 5.4: Termination process for a (3 x 3) system . 

• Reset the array automatically before the convergence test is made (i.e. 

the iteration is complete.) But in our design two iterations are being 

performed simultaneously in the array, so implementing this strategy 

will be a disaster . 

• If the system has converged the pipeline can be flushed by a reset signal 

generated by the boundary cell. This has been implemented to reset the 

array gracefully. 

It takes (n + 2) cycles to reset the array. The termination process is shown in 

figure (5.4). The cells marked with double lines terminate after sending the 

reset signal to the neighbouring cell. The boundary cell, i.e. cell5, terminates 

after sending all the data to the host computer including the iteration count. 

5.2.2 Design improvements 

The systolic design presented by figure (5.3) processes one iteration at a time. 

If we are ready to pay for more complex control logic and utilise the idle cycles 

of the ce1l5 we can modify the design in such a way that two iterations can be 

partially processed. As soon as boundary cell has evaluated the first element 
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of new solution vector 2nd iteration can be started in the l't iteration at time 

step 9. At time step 12, the second iteration has progressed one third (see 

figure (5.5)). Now we start the second iteration cycle. At time step 2, the new 

a is calculated and the previous a is sent to the ce1l4. The new fJ is computed 

in the time step 3, (see figure (5.6)). The second and successive iterations 

take (2n + 2) time steps, this is quite an improvement over the normal regu­

lar systolic design which takes (4n) time steps to complete an iteration. The 

computation of a and fJ in the idle cycles, saves two time steps per iteration. 

The pipeline design saves 4 time steps per iteration after the first iteration, in 

case of our example. Thus the hardware is utilised more efficiently. The other 

improvement can be achieved by using some other technique to terminate the 

iterating process. The convergence test we have implemented takes a substan­

tial amount of computing. If the approximate number of iteration required 

could be predicted and the system is allowed to perform the upper bound of 

the approximation then the overhead of convergence can be eliminated. This 

means that the approximation should be very close to the exact number, other 

wise the overhead due to extra iterations performed would over come the time 

required to perform the convergence test. 
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L---...JW ~ml 
,---,W ~Ol 
,---,b21'X1t:cJ:jD~01 
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t = 1 

t=2 

t = 3 

t = 4 

t = 5 

Figure 5.5: Snap shots for the pipelined design of the 18t iteration of the 

nonstationary second order Richardson iterative method. 
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t=5 

Figure 5.6: Snap shots for the pipelined design of the 2nd iteration of the 

nonstationary second order Richardson iterative method. 
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5.2.3 Systolic design for the stationary second order 

Richardson iterative method 

The systolic design for the second order Richardson iterative method (see Ha­

t . and Evans [35]) is exactly the same as the systolic design for the non­

stationary second order Richardson iterative method. The parameters "a" 

and "(3" remain constant. This does not affect the design as these parameters 

are calculated in the idle cycles for the nonstationary second order Richard­

son iterative method. The area and time requirements for the stationary and 

nonstationary second order Richardson iterative method with and without im­

proved design are given in table (5.1) for comparison, where "k" is the number 

of iterations performed and "n" is the size of the system. 

5.2.4 Systolic design for the A.O.R. iterative method 

The systolic design for the A.O.R. iterative method for a (n * n) banded linear 

system, with bandwidth 5, is simulated soft systolically in OCCAM as follows. 

The example discussed is for a (4 * 4) linear system with p = q = 3. 

The systolic design for the I" iteration of the A.O.R. iterative method is shown 

in figure (5.7). Figure (5.8) shows the systolic design for the successive itera­

tions of the A.O.R. iterative method. Figures (5.9) and (5.10) show the snap 

Method Architecture Time Area 

Richardson Normal k(4n) n +2 

Richardson Pipelined (2n - 2) + (k -1) x (2n + 2) n+2 

Chebyshev Normal k(4n) n+2 

Chebyshev Pipelined (2n - 2) + (k - 1) x (2n + 2) n+2 

Table 5.1: Area and time requirements for the stationary and nonstationary 

second order Richardson iterative method. 
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Iterative method Over relaxation factor Acceleration factor 

Jacobi 1 0 

Gauss-Seidel 1 1 

S.O.R. w w 

A.O.R. w r 

Table 5.2: Combination of wand r to yield different iterative methods. 

shots for the I" and successive iterations respectively. It takes "w + 2n - 2" 

time units to compute the 1" and the successive iterations. However, speedup 

is not obtained as the U;£ factor is to be computed in all the iterations. 

Consider figures (5.7) and (5.9). The L;£(k+l) factor need not be computed in 

the 2nd iteration because it is precomputed in the IS' iteration. This reduces the 

computational work but not the time, as this factor is computed in parallel 

with the Lif(k+2). However if the U if factor was precomputed in the most 

previous iteration then both the computational work as well as the time to 

complete the iteration would be reduced. Thus it can be proved that the 

amount of work of the S.A.O.R. iterative method is equivalent to that of the 

A.O.R. iterative method. The U;£ factor dominates the computational work, 

as the lower factor Lif cannot be started until the I" element of the U if. factor 

has been computed. This can be seen from the figures (5.9) and (5.10) and 

also by expanding equations (5.1.35) and (5.1.37). 

The different combination of "r" and "w" yield different iterative methods. 

Table (5.2) represents this fact. 

To realise the linear systolic array implementing the A.O.R. algorithm consider 

equation (5.1.35). Equation (5.1.35) can be decomposed into the following sub­

computations. 

(5.2.5) 
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(5.2.6) 

(5.2.7) 

(5.2.8) 

This decomposition suggests that the linear systolic array consists of four hard­

ware parts each performing the sub-computations (5.2.5), (5.2.6), (5.2.7) and 

(5.2.8). 

To compute x~, the following computations are performed by the respective 

parts. yi = a21x~, yg = a23xg + a24x~, y~ = a21xl and x~ = (1 - w) ,'!'.g + 
(W(Q2 - yg) - (w - r)yi - ryn/a22. In figure (5.9), assume that the cells are 

numbered from 1 to 7, starting from left to right. Cells 1 and 2 compute y~, 

cells 4 and 5 compute yg, cells 6 and 7 compute yi and cell 3 computes x~. 

At time step 4, y~ enters cellland yi enters cell 6 and are passed unaltered, 

yg enters cell 5 and gets the partial result y~ = a23xg. Cell 3 computes xl. 
At time step 5, y~ enters cell 2 and y~ = a21xl is computed. yi enters cell 

7 and yi = a21x~ is computed. ygenters the cell 4 and yg = a23xg + a24x~. 
Now the sub-computations y~, y~ and yi have been computed. At time step 

6, cell 3 gets y~, y~, yi, xg, b2, a22, wand r and x~ is computed. The y~ 

sub-computation is saved and reused as yi sub-computation in the successive 

iteration. This means that the sub computations yl are not performed in the 

successive iterations. 
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Figure 5.7: Systolic design for the I" iteration of the A.O.R. iterative method. 
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Figure 5.8: Systolic design for the 2nd iteration of the A.O.R. iterative method. 
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Figure 5.9: Snap shots for the 1" iteration of the A.O.R. iterative method. 
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Figure 5.10: Snap shots for the 2nd iteration of the A.O.R, iterative method. 

174 



5.2.5 Systolic design for the S.A.O.R. iterative method 

Equations (5.1.35) and (5.1.39) represent the forward and backward ordering 

for the A.O.R. iterative method respectively. If the iterations are performed 

alternately using forward and backward ordering then as has been shown earlier 

the method Symmetric Accelerated Overrelaxation (S.A.O.R.) follows. In the 

S.A.O.R. systolic design it can be noticed that, 

1. The terms L:r.(k+I), L:r.(k+2) as computed in the previous iterations for the 

A.O.R. iterative method are no longer common in the S.A.O.R. iterative 

method. As explained for the A.O.R. iterative method these factors 

do not decrease the iteration time but the computational work. In the 

S.A.O.R. iterative method these factors are not computed in the most 

recent previous iterations. Thus the computational work is increased 

without increasing the time to compute the iteration. 

2. Observing equations (5.1.35), (5.1.39) and (5.1.40), the factors L:f(k+t), 

U:r.(k+2) are common in equations (5.1.35) and (5.1.39), (5.1.39) and 

(5.1.40) and hence need be computed only once. This is known as 

the Conrad-Wallach technique. One fact to note here is that L:r.(k), 

U :r.(k+I), . .. are always new and hence are computed for every iteration. 

This requires extra hardware but as these factors are computed along 

with the L:r.(k+I), U :r.(k+2), . .. no extra delay or time is required and so the 

computation time is the same as the S.S.O.R. (see Evans and Haider[18]) 

iterative method. 

Figures (5.7) and (5.12) represent the systolic design and figures (5.9) and 

(5.13) represent the snap shots for }" and successive iterations of the S.A.O.R. 

iterative method respectively. Table (5.3) gives the information of hardware 

area requirements and computation times. 

Note that the area requirements for the S.A.O.R. iterative method is (p-1) IPS 

cells more than the S.S.O.R. (see Evans and Raider [18]) iterative method, but 
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Method Area (IPS+ DIV-ADD-IPS) Time 

S.A.O.R. ~+I 2 {w+ 2n- 2)k 

S.A.O.R. (Conrad Wallach) same as S.A.O.R. (w + 2n - 2) + (w+ 2n - 5) x (k - 1) 

Table 5.3: Area and time requirements for the S.A.O.R. iterative method. 

ain 

YOU'BYin IPS 
Xin Xout 

Yout = Yin + ain x Xin 

rin 
Win 

bin 
ain 
Xin 

IV-ADD-IP 

• 
LXin X out 

x;"', = {({{b;n - UX;n)w - (w - r)Lx) - rLx' /a;n) + ((1 - w)x;n)) 

Figure 5.11: Cells for the A.O.R. and S.A.O.R. iterative methods. 

the computation time is the same for the I" and successive iterations respec­

tively, as explained earlier. The working of the 2nd and successive iterations is 

similar to that of the S.S.O.R. iterative method. The DIV ADD IPS and IPS 

cell design is shown in figure (5.11). 
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Figure 5.12: Systolic design for the 2nd iteration of the S.A.O.R. iterative 

method. 
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Figure 5.13: Snap shots for the 2nd iteration of the S.A.O.R. iterative method. 
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5.2.6 Systolic design for the U.S.A.O.R. iterative 

method 

The systolic design for the U.S.A.O.R iterative method is the same for the 1st 

iteration as shown in figures (5.7) and (5.9) but for figures (5.12) and (5.13) 

wand r are replaced by wand r. The area and time requirements remain the 

same. However the host computer does a little extra work to take care of the 

two overrelaxation and acceleration factors. 

5.3 Conclusions 

The stationary and nonstationary Richardson methods take asymptotically 

the same number of iterations for a specified degree of accuracy. The systolic 

designs for stationary and nonstationary second order Richardson iterative 

methods take same area and time, for both normal and pipelined design. The 

pipelined systolic design has complex control logic due to the switching process 

which takes place after the 1 st iteration. The data is permanently stored in 

the cells which increases the area requirements and hence the cost of the cells. 

The local memory of each cell increases the throughput of the overall system 

as the communication time is reduced. The array is independent of the host 

computer after the data has been transferred to the array and reuses its local 

data and resources as many times until the solution is achieved. The draw 

back of such a design is that as the problem size increases the length of the 

array is increased. 

For large linear systems of linear equations the A.O.R. iterative method con­

verges faster. The S.A.O.R. iterative method using the Conrad-Wallach tech­

nique for n = 4 takes 72.72 % of the computational time required by the A.O.R. 

iterative method. The A.O.R. and S.A.O.R.linear systolic arrays require extra 

hardware compared to the S.S.O.R. linear systolic array, but are more flexible 

as different combinations of wand r yield different iterative methods, hence 
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the A.O.R. and S.A.O.R. linear arrays are more general purpose. 
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5.4 Example 

The following example of a (5 x 5) system of linear equations is generated by 

the discretisation of the system (1 - x3)sin h7rx. 

2.274156 -1 0 0 0 Xl 

-1 2.274156 -1 0 0 X2 

A= 0 -1 2.274156 -1 0 x X3 = 

0 0 -1 2.274156 -1 X4 

0 0 0 -1 2.274156 Xs 

where Xi is arhitary and for this example is taken to be (12121f. 

a = 0.274156, b = 4.274156 and Error = 0.05 

Number of iterations performed = 11 

exact result error 

1. 552483, 1.556690, -0.004207 

2.286404, 2.307172, -0.020768 

3.426299, 3.436317 , -0.010018 

5.294988, 5.369592, -0.074604 

8.396328, 8.458521, -0.062193 
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1.247647 

0.228754 

0.225092 

0.244276 

13.842661 



Chapter 6 

2D-Design of Systolic Arrays 

This chapter presents the systolic designs for the Jacohi Overrelaxation 

(J.O.R.), Successive Overrelaxation (S.O.R.), Accelerated Overrelaxation 

(A.O.R.), stationary and non-stationary second order Richardson, Conjugate 

Gradient and Preconditioned Conjugate Gradient methods for the iterative 

solution of large linear systems. The linear systems are obtained from the 

discretisation of a two and three dimensional Laplace equation by the finite 

difference method and the coefficient matrices are sparse symmetric and pos­

itive definite. We investigate the hardware implementation of this system to 

achieve a low cost and optimal area efficient VLSI solution. 
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6.1 Introduction 

Several iterative solutions to the large sparse linear systems obtained from the 

finite difference discretisation of boundary value problems have been developed 

like the Jacobi, Gauss-Seidel and S.O.R. methods (Young [82], Hageman and 

Young [34]). Further several acceleration and overrelaxation strategies have 

been incorporated in order to decrease the computation time. 

The S.O.R., A.O.R., S.S.O.R. and non-stationary iterative methods depend 

upon parameters which sometimes are difficult to choose properly. For the 

Chebyshev acceleration (second order Richardson iterative method) to be suc­

cessful a good estimate of the largest and smallest eigenvalues of the iteration 

matrix is required. 

This chapter deals with the well known Conjugate Gradient method devel­

oped by Hestenes and Stiefel [39], without having the difficulty of the above 

mentioned methods. Later in the chapter we describe the Preconditioned Con­

jugate Gradient method in which a preconditioning strategy is introduced, to 

improve the rate of convergence, which is quite dramatic for large linear sys­

tems. 

The systolic array solution for the Jacobi, Gauss-Seidel and S.O.R. iterative 

methods for dense and one dimensional problems have been previously pre­

sented in Margaritis [51]. The solutions consist of pipeline designs. Several 

other designs have been presented to enhance the utilisation of the array either 

by reducing the area or the execution time, and by using different techniques. 

See chapter 3 and Kung [45], Bekakos [5], Suros and Montagne [75], Gusev 

[32] and Berzins, Buckley and Dew [7]. 

For the systems under consideration in this chapter these designs do not offer 

greater efficiency due to the sparseness of the system. Most of the time the 

processors will be doing unwanted computations and need extra I/O which 

increases the bandwidth for pumping the data. 
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A design is required that can reduce the area as well as the I/O and hence the 

bandwidth of the data path. The unwanted computations can be eliminated 

(skipped) by using the concept of Virtual IPS cells. These cells do not require 

the expensive multiplier and adder, therefore area is saved and so the cost. 

Also these cells do not require the matrix elements to be pumped from the 

host hence the I/O bandwidth is saved. These cells consist of delays with an 

amount equal to the clock period of the synchronising clock. The execution 

time of the iteration remains the same. The sparseness of the matrix increases 

as the size of the problem increases. The efficient solution to this problem 

will be to manufacture a Programmable Virtual IPS cell which will enable the 

array to be used for different problem sizes. Using these concepts improved 

sparse systolic designs for the matrix iterative methods are presented. 

6.2 The overrelaxation iterative methods 

Consider equation, 

(6.2.1) 

which represents the evaluation of the five point molecule and can be rewritten 

in the form, 

(6.2.2) 

We want to develop a system of linear equations, for the Laplace equation in the 

unit square with 9 internal mesh points (see figure 6.1). The left, right, lower 

and upper boundaries i.e. UO,j, un+i,j, u;,o and U;,n+1 for i,j = 0,1, ... , n + 1 

respectively are known (n = 3 for the example discussed). Expanding equation 

(6.2.2) for i,j = 1,2, ... , n (n = 3) we get, for i = 1,j = 1 (by scanning the 

points row wise from left to right, and from lower to upper) 

-UI 0 - Uo I + 4uI I - U2 I - UI 2 = O. • • I , • 
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3 6 9 

2 5 8 

1 4 7 

Figure 6.1: Unit square with 9 internal mesh points. 

UI,O and UO,I are the known boundary values, we shift them to the right hand 

side and get, 

4UI,1 - U2,1 - UI,2 = UI,O + UO,I (6.2.3) 

Sinlilarly for i = 2, and j = 1, 

(6.2.4) 

for i = 3, and j = 1, 

-U2 I + 4U3 I - U3 2 = U30 + U4 I , , I , I 
(6.2.5) 

for i = 1, and j = 2, 

-UI I + 4UI 2 - U2 2 - UI 3 = Uo 2 , , , , . (6.2.6) 

for i = 2, and j = 2, 

(6.2.7) 

for i = 3, and j = 2, 

(6.2.8) 
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for i = 1, and j = 3, 

-UI,2 + 4UI,3 - U2,3 = UI,4 + UO,3 (6.2.9) 

for i = 2, and j = 3, 

-U22 - UI 3 + 4U2 3 - U33 = U24 , I , • , (6.2.10) 

and for i = 3, and j = 3, 

(6.2.11) 

The equations (6.2.3), (6.2.4), (6.2.5), (6.2.6), (6.2.7), (6.2.8), (6.2.9), (6.2.10) 

and (6.2.11) can be written in the matrix form as follows, 

4 -1 0 -1 

0 
Ut,! tit,O + tiO,l 

-1 4 -1 0 -1 til,l U2,O 

0 -1 4 0 0 -1 U3,1 U3,O + U',l 

-1 0 0 4 -1 0 -1 HI,2 UO,2 

-1 0 -1 4 -1 0 -1 • U2,2 = 0 (6.2.12) 

-1 0 -1 4 0 0 -1 Ua,2 U4,2 

-1 0 0 4 -1 0 Ul,3 Ut,", + tiO,3 

0 -1 0 -1 4 -1 
U2,3 ti2,' 

-1 0 -1 4 
U3,3 ti3,4 + U4.,3 

As the right hand side of equation (6.2.12) is constant we can replace them by a 

single subscript letter bi for i = 1,2, ... n and similarly the Ui,i can be replaced 

by the single subscript as Xi for i = 1,2, ... ,n and we get the equation, 

4 -1 0 -1 Xl bI 

-1 4 -1 0 -1 0 x2 b2 

0 -1 4 0 0 -1 X3 b3 

-1 0 0 4 -1 0 -1 X4 b4 

-1 0 -1 4 -1 0 -1 * X5 = b5 (6.2.13) 

.-1 0 -1 4 0 0 -1 X6 b6 

-1 0 0 4 -1 0 X7 b7 

0 -1 0 -1 4 -1 Xs bs 

-1 0 -1 4 X9 b9 
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which represents the linear system 

A;f = Q. 

6.2.1 The J .O.R. iterative method 

Now equation (6.2.1) can be written as an iterative procedure using the sub­

scripts, 

(k) (k) (k) (k) 
(k+l) _ ui+\,j + Ui_l,j + Ui,j+\ + Ui,j_1 

u·· -0,3 4 

Adding and subtracting ul1 on the right hand side we get, 

(k) (k) (k) (k) (k) 
(k+l) _ (k) + [Ui+l,j + Ui_l,j + Ui,j+1 + Ui,j_1 - 4u i ,j 1 

u·· - u·· 
I,J ',] 4 

(6.2.14) 

(6.2.15) 

The term in brackets is known as the "residual" and will be zero when the 

solution is achieved. The bracketed term is an adjustment to the old approx­

imation, which gives the improved approximation. If a larger value is added, 

faster convergence will result. This is known as overrelaxation. If "w" is the 

overrelaxation factor then equation (6.2.15) can be written as, 

(k) (k) (k) (k) (k) 
(k+I) _ (k) + [Ui+1,j + Ui_l,j + ui,j+1 + Ui,j_1 - 4u i ,j 1 

u·· - u·· w '" -,) 4 
(6.2.16) 

Equation (6.2.16) represents the J.O.R. iterative method. Maximum accelera­

tion is obtained for some optimum value of "w", which lies in the range 0 and 

~, where b is the largest eigenvalue of the matrix A. 

6.2.2 The S.O.R. iterative method 

Similarly we can apply the S.O.R. iterative method to the equation (6.2.1) 

which can be written as an iterative procedure using the subscripts, 

(k) (k+I) (k) + u\k+II) 
(k+I) _ ui+l,j + Ui_l,j + Ui,j+1 0,3-

U·· -
',3 4 (6.2.17) 
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n-2 n-2 , , 

n 2 - n-1 
(a) Two dimensional (b) Three dimensional 

Figure 6.2: Two and three dimensional forms of sparse matrices. 

Adding and subtracting ul~ on the right hand side we get, 

(k) (k+l) (k) (k+1) 4 (k) 
(k+l) _ (k) + [Ui+l,j + Ui_l,j + ui,j+1 + Ui,j_1 - Ui,j J 

u·· - u·· 
J,) l.) 4 (6.2.18) 

The term in brackets is known as the "residual" and will be zero when the 

solution is achieved. The bracketed term is an adjustment to the old approx­

imation, which gives the improved approximation. If a larger value is added, 

faster convergence will result. This is known as overrelaxation. If "w" is the 

overrelaxation factor then equation can be written as, 

(k) (k+I) (k) (k+l) (k) 
u(k'+l) = u(k} + W[Ui+I,j + Ui_l,j + Ui,j+1 + Ui,j_1 - 4Ui,j J 

I" I,) 4 (6.2.19) 

Equation (6.2.19) represents the S.O.R. iterative method. Maximum acceler­

ation is obtained for some optimum value of "w", which lies between 1 and 

2. 

6.3 Virtual IPS cell 

The two and three dimensional problems obtained from the discretisation of the 

partial differential equations encompasses matrices of the form, shown in figure 

(6.2). The two dimensional matrices have 2(n - 2) null sub diagonals, where 

n is the size of the grid. No useful computations are performed by these null 
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Grid points 9 16 81 196 

Group 

Group 1 2 4 14 24 

Group 2 10 22 142 362 

Total 12 26 156 386 

Table 6.1: Number of Virtual IPS cells vs Grid points. 

sub diagonals, and they cannot be eliminated due to synchronisations of the 

data movement in the systolic array. The data movement can be, synchronised. 

in the systolic array by delaying the data movement for the null sub diagonals, 

i.e. introducing a Virtual IPS cell in place of a IPS cell. The working of a 

Virtual IPS cell is the same as the ordinary IPS cell except that it does not 

have the multiplier and adder circuitry. The Virtual IPS cell consists of a 

simple D flip flop, the data on the input channel of the D flip flop is available 

on the output channel after one clock cycle. A Virtual IPS cell (VC) is shown 

in figure (6.3). 

As the grid size is increased or the number of points in the system are increased 

the number of null sub diagonals is increased. Table (6.1) shows the number 

of null sub diagonals and the size of the grid. A two dimessional problem with 

(n * n) grid generates a (n2 * n2 ) matrix with the band width, w = 2n + 1. 

The number of null subdiagonals in this band width is 2(n - 2). A three 

dimensional problem with (n*n) grid generates an (n3 *n3 ) matrix with band 

width, w = 2n2 + 1. In this case there are two groups of the null sub diagonals. 

One contains 2(n - 2) null sub diagonals and the other contains 2(n2 - n -1) 

null sub diagonals as indicated in figure (6.2), with a total of 2(n2 - 3) null sub 

diagonals. In table (6.1) group 1 gives the number of Virtual IPS cells for a 

two dimensional problem, whereas in the case of a three dimensional problem 

both groups are present. The working of the Programmable Virtual cell is 

shown in figure (6.3). 
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Xoue:.;:.'+---I 

Yin 

Xin = Xout 
Yin = Yout 

Yout 

Figure 6.3: Virtual IPS cell. 

A cascade of Virtual IPS cells can be used to implement the systolic array. 

This solution is not very graceful, as the Virtual IPS cell is very small in size 

and it will be quite time consuming to set the array for different grid sizes. 

Also the wire connections will be long and so the signals and data will have 

delays. To solve this problem the idea of a Programmable Virtual IPS cell 

(PVC) is introduced. Such a cell may contain a number of cascaded Virtual 

cells depending on the implementations. The PVC can be a module, which can 

be easily plugged into the systolic array. A partial realisation of such a design 

with four delays is shown in figure (6.4) (i.e. a single input channel). The 

PVC can be programmed either by hardware switches to provide the required 

delay or can be done by software switches. Flexibility in the PVC is obtained 

at the cost of extra control logic. 

6.4 Systolic designs for the overrelaxation it-

6.4.1 

erative methods 

Systolic Sparse Array Design (SSAD) for the 

J .O.R. iterative method 

To understand the operational aspects of the design a simple model problem 

of the Laplace equation in the unit square with 9 internal mesh points (see 
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switch 

D D D 

clk--'-------'-----'----1 

D 
D, D flip Hop 
A : 2 input AND gate 
o : 4 input OR gate 

Figure 6.4: Section of a Programmable Virtual IPS cell. 

Method Time IPS VirtualIPS DIV-ADD-IPS 

J.O.R. (2n2 + 2n -1) 4 2(n - 2) 1 

Xout 

Table 6.2: Area and time requirements for the 2D-J.O.R. systolic design. 

figure (6.1)) is selected leading to the sparse matrix A shown in figure (6.5). 

The design for the model example consists of 4 IPS cells, a boundary cell (DIV­

ADD-IPS cell) and two Programmable Virtual IPS cells (which can simulate 

4 IPS cells each, in other words they are capable of producing 4 delays each). 

The black boxes in figure (6.6) represent the Programmable Virtual IPS cells 

and the box with a cut is the boundary cell. The systolic design is simulated in 

OCCAM. The design can solve any size 2D-discretised problem. The systolic 

simulator for the J .O.R. iterative method solving 2D-discretised proble111S was 

tested for correctness of the design for different sizes of the problems and 

varying overrelaxation factor "w". The area and time requirements for the 

J.O.R. design are shown in table (6.2), where "n" is the size of the grid. 

Figure (6.6) represents the first 10 snap shots of the J.O.R. iterative method. 
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Figure 6.5: Sparse matrix A. 

The system of equations solved is represented by equation (6.2.13). 

To compute x~t) the following :computation is done, 

In the snap shots shown in figure (6.6) at time step 5, Y~O) enters the right most 

cell i.e. cell 7 (cells are numbered 1 through 7 from left to right irrespective of 

the type) and a23x~0) is computed i.e. Y~O) = a23x~0). y~l) enters the leftmost 

cell i.e. cell 1 and is passed unaltered. At time step 6, y~O) and y~l) enter the 

cells 6 and 2 (Programmable Virtual IPS cells) respectively. They remain in 

these Programmable Virtual IPS cells for one clock cycle and no operation is 

performed, simulating the dummy computation a24xiO) for cell 6. At time step 

7, y~O) and y~l) enter the cells 5 and 3 respectively to form y~O) = a23x~O) +a25x~0) 
(1) (0). (0) (1) (0) and Y2 = a21Xl . At tIme step 8, Y2 'Y2 , b2, a22, X2 and w enter cell 4 

(boundary cell) and x~t) is computed. 

Table (6.3) represents the results of the design, with w varied from 0.2 to 1.0. 

For this particular problem the fastest convergence is obtained when w = 1. If 

w is increased beyond 1 then the method diverges. 
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w .2 .3 .4 .5 .6 .7 .8 .9 1.0 

size 

16 291 200 152 124 109 89 78 69 63 

81 885 616 476 390 330 287 255 228 220 

196 1620 1142 889 730 622 542 482 435 395 

361 2417 1721 1348 1117 954 837 744 673 668 

Table 6.3: Iteration count for the J.O.R. iterative method for different sizes 

and w. 
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w 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

size 

16 28 21 17 20 24 32 45 72 151 

81 94 77 63 49 36 39 48 71 146 

196 182 151 125 100 80 60 52 74 152 

361 286 236 196 161 132 99 69 81 161 

Table 6.4: Iteration counts for the S.O.R. iterative method for different sizes 

and w. 

6.4.2 Systolic design for the S.O.R. iterative method 

The systolic design is similar to the J.O.R. iterative method, except that 

the J.O.R. iterative method uses the old values of the initial approximation, 

whereas the S.O.R. iterative method uses the newly computed approximations. 

The time and area requirements of the design are same as the J.O.R. systolic 

design (see the table (6.2)). Figure (6.7) represents the I't 10 snap shots of the 

S.O.R. iterative method for solving the linear system of equations represented 

by equation (6.2.13). 

The systolic simulator was tested for correctness of the design for different 

sizes of the problem and varying acceleration factor w. The results are shown 

in table (6.4). 
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Figure 6.6: 1" 10 snap shots for the J.O.R. iterative method. 
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w 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

sIze 

64 29 22 17 20 28 34 47 74 153 

729 137 112 89 69 48 44 63 93 186 

2744 327 269 218 173 132 92 68 105 203 

Table 6.5: Iteration counts for the S.O.R. iterative method for different sizes 

andw. 

6.4.3 Systolic designs for the S.S.O.R., A.O.R. and 

S.A.O.R. iterative methods 

The systolic designs for the S.S.O.R., A.O.R. and S.A.O.R. iterative methods 

for 2 dimensional problems are straight forward to implement. The S.O.R. 

design can be extended to perform the S.S.O.R. iterative method if the order 

of the system is reversed on each iteration. 

6.5 3D Problems 

The 3D matrix form obtained from the discretisation of the partial differen­

tial equation is shown in figure (6.2). The linear systolic array design for 

the J.O.R., S.O.R., stationary and non-stationary second order Richardson 

method, C.G. and P.C.G. methods have been developed, simulated and tested 

for correctness. The structure of the linear systolic array is shown in the figure 

(6.8). Table (6.5) shows the results for the S.O.R. iterative method for differ­

ent problem sizes and parameter "w". The working of the designs are similar 

to that of the 2D problems, but the area and time requirements are different, 

due to the larger bandwidth of the 3D problems. 
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Figure 6.8: 3D design for the S.O.R. systolic array. 
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6.6 The Gradient method 

The li near system of equation represented by 

A;!'.=Q, (6.6.1) 

can be written as the gradient of the quadratic function, 

(6.6.2) 

where A is a positive definite (n*n) matrix, i.e. all the eigenvalues are positive, 

x is the unknown and b is the known vector. We want to find vector x which - - -
minimizes F(;!'.). The Gradient of a function F(;!'.) is defined as, 

(6.6.3) 

The function F(;!'.) defines an ellipsoid in n-dimensional space of the ;r, with 

a common center at A-1Q. If ;!'.(k) is an arbitrary solution of equation (6.6.1), 

then the residual vector is given by, 

r(k) = b - Ax(k) - - -, (6.6.4) 

(6.6.5) 

The Gradient method can be represented by the non-stationary iterative 

method, 

(6.6.6) 

where £¥k is a scalar and p(k) is a vector to be defined. 

We want to. choose £¥k such that the quadratic function F(;!'.(k+1») will be mini­

mum in the direction l!.(k). Using equation (6.6.2) we can write equation (6.6.6) 

as, 
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The gradient of equation (6.6. 7) can be written as, 

(6.6.8) 

or 

(6.6.9) 

(6.6.10) 

(6.6.11) 

The optimum Ok will be given when V F(.f.(k+1) = 0 , i.e. 

(6.6.12) 

or 

(6.6.13) 

Thus Ok minimizes F(.f.(k+l) for any given !!.(k). 

Hence the Gradient method can be represented as, 

( (k) (k)) 
X(k+I) _ x(k) _ P ,1: (k) 

- - - (p(k), Ap(k))!!. 
- -

(6.6.14) 

Now we wish to determine !!.(k) so that the correction term Ok!!.(k) in equation 

(6.6.6) is minimized. 

Let !!.(k) = 1:(k) then we get, 

(6.6.15) 

This method is also known as the Steepest Descent method. 
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6.7 The Conjugate Direction method 

Conjugate Direction methods were initially designed and analysed for minimis­

ing the purely quadratic problem represented by (6.6.2) where A is an (n * n) 

symmetric positive definite matrix. 

The Conjugate Direction algorithms have been one of major creativity in the 

field of linear programming. Indeed, Conjugate Direction methods, especially 

the method of Conjugate Gradients have proved to be extremely effective in 

dealing with general objective functions. In addition, Conjugate Direction 

methods have recently gained acceptance as methods for solving the sparse 

linear systems of finite difference/element equations. 

If A is a symmetric matrix, then two vectors PI and P2 are said to be A­

orthogonal, or Conjugate with respect to A if (PI, Ap2) = O. Now we describe 

the standard Conjugate Direction method whose important properties are es­

tablished in the following theorems. 

Theorem 6.1 If the vectors !!.(j) are mutually conjugate, then they are linearly 

independent. 

Proof 

Suppose that, L:. O<jp(j) = 0 for some scalar j. If k is anyone of the values of 1 _ 

j, then 

1.e., 

Since A is positive definite and !!.(k) =1= 0, therefore O<k = 0 

Corresponding to the (n * n) positive definite matrix A let !!.(O), !!.(I), ... , p(n-I), 

be n nonzero A-orthogonal vectors. By the above theorem they are linearly 
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independent which implies that the solution vector x can be expressed as, 

;!;. = L Ojr.(j) 

j 

By multiplying by A on both sides we get, 

A;!;. = L OjAr.(i) 
j 

and taking the scalar product with r.(k) yields, 

(r.(i) ,A;!;.) = L 0 j (r.(j) , Ar.(i)) 
j 

Solving for Ok gives, 

(p(k), .I!) (p(k) , A;!;.) 

(p(k), Ap(k)) 
- -

- (r.(k) , Ar.(k)) . 

This shows that the Ok'S and consequently the solution;!;. can be found by the 

evaluation of some simple scalar products. The final result is, 

The expansion for;!;. can be considered to be the result of an iterative process 

of n steps where at the k'h step OkEk is added. By viewing the procedure 

this way and allowing for an arbitrary initial point for the iteration, the basic 

Conjugate Direction method is obtained. 

Theorem 6.2 Conjugate Direction Theorem 

Let [r.(i)] ,j = 0,1, ... , n - 1 be a set of non-zero A-orthogonal vectors. For 

any;!;. E Er' the sequence ;!;.(k) is generated according to, 
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with 

and 

(dk), p(k») 

(p'(k) , Ap'(k») 

r.(k) = Q _ A*.(k) 

converges to the unique solution if of Aif = Q after n steps, that is if(n) = if· 

Proof 

(For proof of this theorem see Luenberger [50]). 

6.8 The Conjugate Gradient method 

The Conjugate Gradient (C.G.) method was developed by Hestenes and Stiefel 

[39] for solving linear systems (see Beckman [4], Reid [66]). The solution is 

usually achieved in less than n steps, where n is the size of the system. 

Given a linear system of equations, 

Aif = Q. (6.8.1) 

The C.G. method for solving equation (6.8.1) can be described as follows: 

(6.8.2) 

The initial approximation, if(O), to the solution is arbitrary and p(k) is a direc­

tion vector given by the relation, 

if k = 0 

(6.8.3) 

r.(k) + Ctkp'(k-l) k = 1, 2, ... 

(6.8.4) 
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r(k) is the residual vector and is given by 

r.(k) = Q _ A!f(k) k = 0,1,2, ... 

(~('),A"('-I» 
(Et' Ij,A~(k 1)) k = 1,2, ... 

(6.8.5) 

(6.8.6) 

From equation (6.8.3) we observe that the new direction vector is dependent on 

the previous direction vector. The Conjugate Gradient method is classified as 

a direct method for solving small dense system of linear equations, and hence 

is not a popular method. But if the linear system of equations is sparse and 

well conditioned then this fact is no longer valid and the Conjugate Gradient 

method is very powerful as it requires no estimation of the parameters A and 

0<. 

6.8.1 Systolic design for the C.G. iterative method 

The algorithm suggests that the }" step towards computing the new approx­

imation is to calculate the residual vector r.(k). The next step is to set !!,(O) 

vector equal to the 1:(0) vector for the first iteratation. The next step is to 

calculate A!!,(k) and simultaneously compute the dot product (r.(k) , !!.(k»). As 

soon as the first element of A!!,(k) is available the dot prod~ct (!!.(k) , Ae(k») is 

evaluated. Next Ak is computed and then the new approximation is computed. 

For the 2nd iteration as soon as the first residual vector element is computed 

the product (r.(k+l), Ae(k») is evaluated and when this is computed O<k is eval­

uated and the new direction vector is computed. The remaining procedure is 

the same as that of the 1" iteration. From the different operations involved 

i.e. dot product, inner step product, subtraction etc. the cell design has a 

complex control circuitry. 

Figures (6.9, 6.10, 6.11, 6.12, 6.13, and 6.14) represent the data flow for the 

second iteration of the C.G. method for solving linear system of equation rep­

resented by equation (6.2.13). Table (6.6) gives the area and time requirements 
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Method Time IPS Virtual IPS Boundary cell 

2D-C.G. (6n' + 2n + 5) + k{Sn' + 4n + 4) 5 2{n - 2) 2 

Table 6.6: Area and time requirements for the 2D-C.G. systolic design. 

of the C.G. method for solving linear system obtained by discretisation of 2D 

Laplace equation (k represents the number of iterations). 
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Figure 6.9: Snap shots for the 2nd iteration of the C.G. iterative method. 
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Figure 6.10: Snap shots for the 2nd iteration of the C.G. iterative method. 
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Figure 6.11: Snap shots for the 2nd iteration of the C.G. iterative method. 
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Figure 6.14: Snap shots for the 2nd iteration of the C.G. iterative method. 
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6.9 The Preconditioned Conjugate Gradient 

method 

Consider the (n * n) symmetric positive definite linear system A£ = Q. The 

idea behind the Preconditioned Conjugate Gradient (P.C.G.) is to apply the 

regular Conjugate Gradient method to the transformed system, 

(6.9.1 ) 

where A = M-I AM-t, it = M-I£ and l!. = M-I!! and M is symmetric positive 

definite. M should be chosen such that A is well conditioned. 

The technique of preconditioning was introduced by Evans [14J. The idea was 

to increase the rate of convergence of an iterative method by minimising the 

P-condition number of the coefficient matrix A. Decreasing the P-condition 

number speeds up the rate of convergence, which explains why the precondi­

tioning of the coefficient matrix prior to solving the system is an interesting 

idea. The preconditioned matrix M-I A has a smaller condition number than 

the coefficient matrix A, i.e. 

(6.9.2) 

The other important qualities of the good preconditioner matrix M are that 

M should be sparse and easy to construct. For the detailed survey of precon­

ditioning strategies see Evans [16J. Several preconditioning techniques have 

been developed such as, 

Diagonal Preconditioner 

The simplest preconditioner is the diagonal of the matrix A, i.e., 

M = diag(A) (6.9.3) 

Unfortunately this preconditioner even though it is perfectly parallel is not 

efficient regarding the rate of convergence. However simplicity is often a main 
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factor when compared with a more complex form of preconditioner. 

Tridiagonal Precondition er 

This preconditioner is simply the tridiagonal part of matrix A, 

M = tridiag(A) 

Polynomial Preconditioners 

(6.9.4) 

The most efficient parallel preconditioners, i.e. explicit polynomial precondi­

tioning is obtained from truncating the finite Neumann expansion of A-I. 

Consider the form A = I - J 

Then, 

A-I = (I - J)-I = 1+ J + J2 + .... 

Then we can consider M to have the forms: 

1st order M = I + J 

2nd order M = 1+ J(I + J) 

Thus our P.C.G. method can be applied to the systems as, 

(I + J)A,!. = (I + J)!!.. 

(6.9.5) 

(6.9.6) 

In this thesis we present the polynomial preconditioning of the Conjugate 

Gradient method. So we will be solving the linear system 

P(A)A,!. = PtA)!!. = b (6.9.7) 

where P(A) represents a polynomial in matrix A. The polynomial P is chosen 

so that the matrix P(A)A when used by the Conjugate Gradient method 

converges faster than that of matrix A. 

The preconditioned Conjugate Gradient algorithm to solve the system of linear 

equations is as follows, 

Choose !E(O) 

(6.9.8) 
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solve the auxiliary system M!f.(O) = r:(0) i.e. !f.(0) = M-1dO) and where M-I = 

[1 + J(I + J)]. Let 

compute, 

k = 1,2,··· 

compute Ar.k -
1 

X(k) = x(k-l) _ a _ p(k-l) _ _ k 1_ 

IF convergence test = TRUE 

then END 

solve the auxiliary system M !f.(k+1) = r:(k+l) 
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(6.9.9) 

(6.9.10) 

(6.9.11) 

(6.9.12) 

(6.9.13) 

(6.9.14) 

(6.9.15) 

(6.9.16) 

(6.9.17) 



Method Time IPS VirtualIPS Boundary Cell 

2D-C.G. (tOn' + 2n + 5) + k{lOn' + 4n + 4) 5 2{n - 2) 2 

Table 6.7: Area and time requirements for the 2D-P.C.G. systolic design. 

6.9.1 Systolic design for the P.C.G. iterative method 

The systolic design for the P.C.G. iterative method for solving a 2D discretised 

problem is similar to the C.G. method, except that in the P.C.G. iterative 

method extra matrix vector multiplication operations are performed due to the 

application of preconditioning. Table (6.7) give the time and area requirements 

of the 2D P.C.G. systolic design. 

6.10 The Model problem 

The large sparse system of linear equations of the form 

(6.10.1) 

commonly arise when one uses the method of finite differences to approx­

imate the solutions of partial differential equations. The self-adjoint elliptic 

boundary-value problem in two dimensions will be considered here. This prob­

lem can be written as, 

a au a au 
F(u) = ax(a(x'Y)ax) + ay(b(x'Y)a) + c(x,y)u = f(x,y) (6.10.2) 

for u(x,y) and (x,y) E D with Dirichlet boundary conditions, 

u(x,y) = 0 for x E SD 

where D is the interior of the unit square and SD is the boundary of D. 
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where N = n2 and!! is the vector of unknowns U(i,j) in the order given when 

a "natural ordering" is used. ("Natural ordering" is given by labelling the 

mesh points in order row by row from left to right, beginning with the bottom 

row). The matrix A is symmetric and block tridiagonal, and each row of A 

contains no more than five non-zero entries. 

T\ D\ 0 

A= 
D\ (6.10.6) 

Dn-\ 

0 Dn_
1 Tn 

where the D;'s are the n*n diagonal sub matrices and T;'s are (n*n) tridiagonal 

sub matrices. 

6.10.1 Model problem 1 

The first model problem that will be considered is for the specified coefficients, 

a(x,y) = b(x,y) = -1.0 (6.10.7) 

c(x,y) = 0.0 (6.10.8) 

that is 

82u 82u 
- 8x2 - 8y2 = f(x,y) [Poisson's Eqnation] (6.10.9) 

Table (6.8) shows the results of this model problem for various methods. 

6.10.2 Model problem 2 

The second model problem that will be considered is defined as the specified 

coefficients, 

a(x,y) = b(x,y) = { 
-10.0 

-1.0 

in the subsquare (~,~) * (~,~) 
(6.10.10) 

elsewhere 
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Method 2DRICH C.G. P.C.G. 

sIze 

16 26 4 4 

81 48 14 11 

196 69 24 14 

361 91 33 20 

576 112 40 23 

841 133 48 28 

Table 6.8: Iteration counts for various iterative methods for model problem 1. 

c(x,y) =0.0 (6.10.11) 

that is 

82u 82u 
- 8x2 - 8y2 = f(x,y) [Poisson's Equation] (6.10.12) 

The table (6.9) gives the results of model problem 2 for various iterative 

method. 

6.11 Conclusions 

The designs presented in this chapter are best suited for sparse matrices oc­

curring in 2D and 3D problems. In case of overrelaxation methods, the array 

design requires only 4 IPS, 1 DIV-ADD-IPS and 2(n - 2) Virtual IPS cells. 

So the design is capable of solving any order problem and only requires the 

cascading of Virtual IPS cells, programming effort and computational time for 

the algorithm. It is therefore of practical value to consider such a design for 

which the number of working processors is fixed for any size problem. Using 

the Programmable Virtual IPS cell, the design becomes simple, regular and 

free of hardware modification. The computational time for the algorithm re-
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Method 2DRICH C.G. P.C.G. 

sIze 

16 111 4 4 

81 202 15 12 

196 210 25 15 

361 322 34 21 

576 276 42 24 

841 427 51 30 

Table 6.9: Iteration counts for various iterative methods for model problem 2. 

mains the same but chip area is saved by using the Programmable Virtual IPS 

cell. 

The cell designs for the J.O.R., S.O.R., A.O.R., stationary and non-stationary 

second order Richardson methods are simple, but the C.G. and P.C.G. methods 

require special cells (two cells at the extreme right hand side see figure (6.9» 

which have complex control logic due to the various mathematical operations 

to be performed. Some of these operations degrade the utilisation of the array 

due to systolic design constraint. 
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Chapter 7 

Conclusions and suggestions for 

further work 
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The sequential architecture devised by Von Neumann was brilliantly successful 

in matching the technology of the 1940s and several decades there after, when 

the processor and memory were both expensive and precious resources. By 

now, however, there have been a million-fold improvements in the speed, cost, 

and power dissipation of processors as well as the size and speed of memories, 

and these no longer stand in the way of parallel computer architectures. 

The advent of VLSI technology and falling cost of hardware was the original 

motivation behind the systolic array architectures. The design complexity in 

systolic arrays (having one or few different types of simple processing elements) 

is reduced due to their regularity, repetitiveness, expandability and modularity 

compared to a complex processor design. The same is true for layout design 

and verification. The simple control logic of the systolic arrays makes them 

area efficient as well, because complex control logic requires substantial VLSI 

area. 

Data once input into the systolic array is reused and intermediate results re­

main in the systolic array until the final results are produced. Thus the exten­

sive use of pipelining, multiprocessing and reusability of data in systolic arrays 

increases the on-chip speed. 

Systolic arrays are special purpose devices. The production count is low com­

pared to a general purpose VLSI device, hence the high cost per chip. This 

is one of the reasons why their use is not widespread. But in case of real 

time applications the product count and cost could be immaterial. The inner 

product step function (y = y + ab) when realised with a 64 bit floating point 

multiplier and adder may take the area equivalent to an advanced micropro­

cessor on a chip, hence it will be difficult to build a whole systolic array on a 

chip. In addition, for a particular application once the array is implemented 

as an integrated circuit, its size and application is fixed. 

As the size of systolic array is increased (i.e. the number of cells) the pm 

count becomes high, which is limited by the length of the chip perimeter and 
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the current packaging technology. 

This thesis has introduced some new systolic algorithms and architectures for 

the solution of matrix iterative methods, on linear VLSI systolic arrays. 

The OCCAM simulator, developed at Loughborough University of Technology, 

is extensively used for the soft-systolic simulation, and the verification of the 

matrix iterative methods presented. By soft-systolic simulation we mean the 

simulation of systolic designs on a conventional uniprocessor. By verification 

we mean the production of expected results for given inputs. Thus, systolic 

architectures are considered as a network of processes, rather than processors, 

and the computation is data driven. All the simulators developed may possibly 

be implemented directly on VLSI processor arrays with minor modifications. 

The appendix includes the listing of the program that simulates the systolic 

array implementing the S.A.O.R. iterative method. 

In this thesis, the aim was to develop linear systolic arrays for the matrix 

iterative methods. 

In chapter 3 various systolic designs for the matrix vector multiplication (mvm) 

algorithm were explained. We then applied the matrix iterative methods to 

these designs for their systolic solution. It was found that some of these designs 

were not suitable for such application, even though they are area and time 

efficient. 

Chapter 4 described the S.S.O.R and related iterative methods with their sys­

tolic designs. It was shown that the computational work done by the S.S.O.R. 

iterative method is comparable to that of the S.O.R. iterative method. 

Chapter 5 presented two different design philosophies. The systolic designs for 

the stationary and non-stationary second order Richardson iterative method 

use the row wise distribution of the elements of the coefficient matrix. The 

IPS cell accumulates the partial results, i.e. the elements x and a enter the cell 

and after the multiplication their product is accumulated in y, which resides in 

the cell, until the final result is obtained. The rows of the matrix are delayed 
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by one clock cycle for synchronisation with the x component. This design is 

well suited for the dense matrices. This accumulation of the partial results in 

the design allows us to schedule two iterations (one full and the other partial) 

of the same problem to be pipelined and hence improves the utilisation of 

the array. The design requires nIPS cells where n is the number of rows of 

the coefficient matrix. The execution time of the array for the mvm portion 

can be reduced if only the mvm part is required. In this particular design 

the cells are allowed to have enough local memory to store the rows of the 

coefficient matrix and the newly computed solution vector (in the boundary 

cells). This elinllnates the host requirement after the data is downloaded into 

the array. The design is well suited for the iterative algorithms as there is 

no host communication delay and the array can run at its maximum speed. 

As the data is down loaded from the host the pin count can be decreased by 

having control logic for distributing the data to the respective cells, this might 

increase the chip area but is still worth consideration. 

The second design philosophy is the column wise distribution of the coefficient 

matrix. In this case, the elements of the coefficient matrix are multiplied by 

the x element and the partial result is passed to the neighbouring cell until the 

final result is obtained. This type of design is well suited for sparse banded 

matrices and algorithms where the diagonal element is elinllnated from the 

coefficient matrix for the mvm operation like Gauss-Seidel iterative method. 

This design requires (2n - 1) IPS cells for the square coefficient matrix, or 

in general (p + q - 1) IPS cells. The execution time for the mvm part of the 

array remains the same. Systolic designs for the A.O.R. and S.A.O.R. iterative 

methods are similarly designed on this philosophy. The A.O.R. and S.A.O.R. 

designs are more general compared to the S.O.R. and S.S.O.R. designs as 

different combinations of the parameters "w" and "r" yield different iterative 

methods. As for certain problems one method might out perform the other. 

In chapter 6 we presented systolic designs for the sparse systems obtained from 

the discretisation of 2D and 3D partial differential equations by finite difference 
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methods and the concept of Virtual IPS cell was introduced. This design allows 

the expansion of the array by adding modules of programmable Virtual IPS 

cells to cope with different program sizes. This concept can be extended to the 

general systolic arrays, i.e. any size problem can be dealt with by adding these 

modules especially in case of iterative methods and the boundary cell can be 

programmed for data and control synchronisation. In this way, the restriction 

on the size of the systolic array can be eliminated to a certain degree and a 

module can have the maximum processing elements on one chip permissible 

by the VLSI technology. The chapter presented the systolic designs for the 

C.G. and P.C.G. (for the first and second order polynomial) algorithms. The 

main objective was to choose a suitable preconditioning technique for the C.G. 

method so its rate of convergence is accelerated by an order of magnitude 

especially when it is used to solve ill conditioned systems. The polynomial 

preconditioning strategy was implemented due to its high degree of inherent 

parallelism. The efficiency of the algorithm increases until it almost reaches 

its optimum. The order of the preconditioning polynomial can be increased 

for a better convergence rate, however, the results will not be very impressive 

compared to the amount of extra computational work involved. 

In conclusion, the lessons learnt from the application of systolic arrays for the 

matrix iterative methods are that the application requires making the process­

ing elements programmable and reconfigurable to a certain degree, at the cost 

of complex control logic and hence larger silicon area. The increased avail­

ability of Transputer systems and general purpose parallel computers having 

structures appropriate for implementing systolic array algorithms has broad­

ened the horizons for the systolic concepts. In addition, the knowledge ob­

tained so far in the field of systolic arrays can contribute to the organisation 

of the computations efficiently on a multiprocessing system 

To sum up, of the systolic architectures proposed for the VLSI implementation, 

only few bit level systolic arrays have been developed. The systolic architecture 

proposed in the literature and this thesis are simulators, which provide the 
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computational and communications requirements of the respective algorithms. 
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Appendix A 

Systolic simulator for the 

S.A.O.R. iterative method 

A.1 Main program 

-- This program simulate. the .Jstolic design for the S.1.0.R. 

iterative method for paqm3 and n is even . 

•••••••••••••••••••• 
• S.1.0.a. • 
•••••••••••••••••••• 

EITERlAL PROe num.to.screen(VALUE n); 

EXTERllL PRoe str,to.screen(VALUE a[l): 

EITERBAL PROe fp.num.to.screen(VALUE FLOAT n): 

EXTERlAL PRDC fp.num.to.screen.f(VALUE FLOAT n, VALUE v,d): 

EXTERlAL PROe fp.num.from,teyboard(YAR FLOAT n): 

EITERBAL PROe getdata(VAR FLOAT xvD ,u[] ,bv(] tr ,v ,VALUE n): 

EXTERBAL PRoe errortest(VAR FLOAT v&ID ,vaU[] ,VAll con,VALUE FLOAT err,VALUE n): 

EXTERlAL PROe invertdata(VAR FLOAT aa[l. XX[] , bb[] , xxx[] , VALUE n): 

SXrERlAL PROC putdata(VAR itera, VALUE FLOAT x[], VALUE flag, n): 

EITEB.IAL PROC cell (CHAI zin, yin, xout, fout, a): 

EXTERlAL PROC eelldta(CHAI etl, col, ei2, ci3, ei4, bn, an, rn, wn, nga): 

DEFnaS: 

DEF m&xiterations a 100: 

LIBRARY VAR total.time: 

LIBRARY VAR flag. cony. k, j, iterations: 
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LIBRARY VAR FLOAT aval(n.n], xval(n), bval(n]. yin(n]: 

LIBRAlY VAR FLOAT temp, error, rmega. Lsx(n.n)+l]: 

LIBRARY VAR FLOAT omega, dummy. yval(n+l], xval.l(n], Lx(n.n)+l]: 

LIBRARY CHAI x (n+l], y(n+l], a[n+l]: 

LIBRAlY CHAI x.l(n+l]. J.l[n+l], a.l[n+l]: 

LIBRARY CHAI x. 2 [n+l]. J. 2 [n+l]. a. 2 [n+l] : 

LIBRARY CHAI ain, vin. bin, XiD, riD. nevgss: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Provides a,v,r,b,i and x vectors to the DIV ADD IPS cell • 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PROC source(CHAI d,v,r.h.m,VAR FLOAT a[] ,b[] ,xO .VALUE FLOAT om,ra,VALUE del)"" 

VAR k. j. svitch: 

SEQ 

k .:a 1 

j ::a 1 

svitch := true 

SEQ i :a [1 FOR total.time] 

SEQ 

IF 

i < (del+1) 

IF 

PAR 

d 1.0 

m 0.0 

h 0.0 

v 0.0 

r 0.0 

« k ( (n+l) ) OR ( J ( (n+l») 

IF 

s"itch 

SEQ 

PAR 

d 

• 
b 

• 
r 

.[«k-l).n)+(k-l)j 

x[k-lj 

b[k-lj 

•• 
rm 

k := k + 1 

svitch ::a 1alse 

true 

SEQ 

PAR 

d 1.0 

m 0.0 
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h 0.0 

v 0.0 

r 0.0 

j := j + 1 

svitch :11 true: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Provides the lover and upper matrices to the desired cells • 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PROC 8ourcea(CHAI aO, ai, VAR FLOAT aD, VALUE delay, set) "" 

VAR It, j, 8vitch, delayl,dummy,l1m1,lim2,kinit,jinit: 

SEQ 

8vitch :- true 

IF 

.et 

SEQ 

delay1 := delay 

d .... y ,= delay + 

k ,. , 
j ,. , 
kinit ,= k-' 

jinit ,. j 

true 

SEQ 

delayl :D delay 

dUmDly ,= 2 

k '. 2 

j '. 3 

kinit ,. (-1).1t 

jinit := (-t).j 

SEQ i = [1 FOR delayl] 

SEQ 

PAR 

aO 0.0 

al 0.0 

4 

+ 3 

SEQ i = [1 FOR (total.time-(delayl+dummy») 

SEQ 

IF 

nitch 

SEQ 

IF 

.et 

PAR 

aO «-l.O).(a[«(k-l).n)+(t+tinit»)) 

at 0.0 
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true 

PAR 

al «-1.0).(a((k-l).n)+(k+kinit»)) 

aD 0.0 

k := k + 1 

svitch :D false 

true 

SEQ 

IF 

.et 

PAR 

aD 0.0 

al «-l.O).(a((j-l).n)+(j+jinit»]» 

true 

PAR 

al 0.0 

00 «-1.0).(0[«(j-l)'n)+(j+jinit»]» 

j := j + 1 

SEQ i 

SEQ 

svi tch : =: true 

[1 FOR d ..... y] 

PAR 

aD 0.0 

al 0.0: 

......... __ •........... 
Collects the garbage -

•••••• _*_ •••••••••••••• 

PROC sinkl.l(CHAB xoutl) .. 

VAR FLOAT dummy: 

SEQ i • [1 FOR total.time] 

xout 1 ? dummy: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
used to provide the pre computed upper or lover matrix -

•••••••• ** ••••••••••••••••••••••••••• __ ••••••••••••••••• 

PROC source.precomputed.upper(CHAI output) .. 

SEQ 

SEQ i = (1 FOR total.time) 

SEQ 

output (Lsx[i]) : 

._* ••••••••• * ••••••••• -*********** •••• 

Collects the nevly computed solution * 
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-- ************************************** 

paoc sinkl(CHAI xout, VALUE delay) ... 

VAR k, set: 

VAR FLOAT %in: 

SEQ 

k:'" 0 

set .... true 

SEQ i ... [1 Foa total. time] 

SEQ 

xout ? xin 

IF 

i > (delay +3) 

SEQ 

IF 

set 

SEQ 

xval.l[k] : ... xin 

k:= k+l 

set ... false 

true 

set :D true: 

******* •••• * •• *** ••• *.***** ••• *.***** ••••• *.**** •••• ********** 

This arranges the nev solution to be repumped in right order * 
.* ••• ****.****.***.*** ••• ****** •• ********.****.********* •• **.* 

paoc nux (VALUE ranl, ran2) .. 

SEQ 

j:= ran2 

k:a ranl 

SEQ i- [1 FOR (n/2)] 

SEQ 

temp := Lx[k] 

Lx[kl ,- Lx[jl 

Lx[j] .... temp 

j'=j-2 

k:=)(.+2 

SEQ i= [1 FOR total.time] 

SEQ 

Lsx[i] :a Lx[i] 

Lx[U :a 0.0: 

*.***.*.*.* ••• *** ••• ******.* ••• ****.***.** •• **** 

Depending on the arguments prow ides the x or y * 
••••••• ***.* ••• ***** ••• ****.**** ••• *****.* •• *.** 
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PROC aource.x.or.y(CHAI xl, VAR FLOAT x[], VALUE delay, flag) D 

VAR k, avitcb, dummy: 

SHQ 

IF 

flag 

SHQ 

k := 2 

dummy 'D (total.ti.e-«delay+(n.2»-3» 

true 

SHQ 

k :0 1 

dummy := (total.time-«delay+(n.2»-1» 

switch :"" true 

SEQ i ... [1 FOR delay] 

xl ! 0.0 

SEQ i "" [1 FOR (total.ti.e-(delay+dummy»] 

SHQ 

IF 

svitch 

SHQ 

true 

xl x[k-l] 

k ::1:1 k + 1 

svitch :a false 

SHQ 

xi ! 0.0 

svitch :- true 

SHQ i • [1 FOR .ummy] 

xl ! 0.0: 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
The routines lover, upper, lover2 and central represent. 

-- ••••...........•..........••......................•••.... 

PROC lover(VALUE delayl, flagl, delay2, flag2) D 

.HQ 

PAR 

aource.x.or.y(y.l[O), yval, delayl, flagl) 

8ourcea(a.1[0] , a.l[l], aval, delay2.tlag2) 

PAR j • [1 FOR 2] 

col1( •. 1[j], y.1[j-1] ••. 1[j-1], y.1[j], 0.1[j-1]) 

8inkl.l(x.l[O): 

PROC lover2(VALUE delayl, flagl, delay2. flag2, delay3. flag3) D 

SHQ 
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PAR 

source.x,or.y(x.2[2), xvaI, delayt, flag1) 

source.x,or.y(y.2[O]. ,vaI. delay2. f1ag2) 

source.(a.2[O), a.2(1], avaI. delay3,flag3) 

PAR j • [1 FOR 2) 

cdUx.2[j], y.2[j-l], x.2[j-t]. y.2[jl. •. Hj-l]) 

sinkl.l(x.2[O): 

paQe upper(VALUE delayt, flag1, delay2, f1ag2, delay3. flag3) D 

SEQ 

PAR 

source.x.or.y(x[2], xval, delayt, flagl) 

8ource.x,or.y(y[Ol. yvaI, delaY2, f1ag2) 

sourcea(a[O]. a[l]. avd, delay3, flag3) 

PAR j • [1 FOR 2) 

cdUx[j). y[j-l). x[j-l). y[j). '[j-l]) 

sinkl. 1(x[O]): 

PRQe central(YALUE delayt, delay2) D 

SEQ 

PAR 

8ourc.(ain.vin.rin.bin.xin.aval.bval.xval.~.ga.rm.ga.d.layl) 

celldia(y[2] ,x.t[2] ,y.l[21 ,xin,y.2(2].bin,ain,rin.vin. nevgss) 

slnkl(nevgss,delay2): 

•••••••••••••••••••••••••• 
Initialize the variables * 
•••••••••••••••••••••••••• 

PRQe setup .. 

SEQ 

total.time := (2.n)+3 

iterations ... 1 

error :- 0.00001 

conY :11 true 

SEQ ill [0 FOR n] 

SEQ 

xval.l[i] :11 0.0 

yval[i] := 0.0: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Sets up the nev solution in correct order as the delays change • 

for 2nd and successive iterations • 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PRoe nevsetup 
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SEQ 

total.time :~ (2.n) 

SEQ i ~ [1 FOR total. time] 

SEQ 

Lax[i] .~ Lsx[i+3]: 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Check if the iterations have exceded the max allowed • 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PROC max.iter.check(VAR ite, fIg, con. VALUE maxite) ~ 

SEQ 

IF 

ite > maxite 

SEQ 

fIg .= true 

con :D falae: 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Thi. routine performs the 1st iteration of the method • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PRDC iter1 

PAa 

10ver(I, false, I, fals.) 

lover2(4, false. 1, false, 1. false) 

upper(O, true, 1, fal.e, 1. true) 

central(3,1): 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Thi. routine performs the 2nd and .uccessive it.rations • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PROC iter2 = 
pn 

lover(O, true, -2, false) 

lower2(1, fal.e, 0, true. -2, false) 

central(O,-2) 

.ource.precomputed.upper(y[2]): 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Thi. routine perfoss various t •• ta in the host system • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PRDC hostcomp(VALUE arg1, arg2, flag2) ~ 

SEQ 
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errortest(xval,xval.1,conv,error,n) -- for conyergence 

SEQ 

IF 

cony a true -- more iterations to be perfor.ed 

SEQ 

iterations := iterations+l 

invertdata(aval, xYal, byal, xYal.1, n) 

nux(arg1,arg2) 

max.iter.check(iterations, flag. cony, Daxiterations) 

IF 

flag2 -- if 1.t iteration 

nevsetup : -- setup of data and delays for 2nd iteration 

•••••••• 
• main • 

•••••••• 

SEQ 

getdata(xval,aval,bval,rmega.omega.n) 

•• tup 

iter1 

hostcomp(4, (2.n)+2, true) 

WHILE cony 

SEQ 

iter2 

hostcomp(l, (2.(n-1»+1. fals.) 

putdata(iterations, xval. flag. n) 
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A.2 Cell architecture 

EXTEJlI'AL VAR total. tiJlle: 

EXTERBAL VAR FLOAT Lx(): 

••••••••••••••••••••••••••••••••• 
The DIY ADD IPS Cell definition * 
••••••••••••••••••••••••••••••••• 

LIBRARY paoe celldia(CHAI eil, col, ei2, ci3, ci4, bn. an, rn, VD, nge) ... 

VAR FLOAT xl, x2, %3, %4. b. a, v, r. tmpxl: 

SEQ 

tmpxl :a 0.0 

SEQ i ... [1 FOR total.time) 

SEQ 

PAR 

SEQ 

SEQ 

cH ? xl 

ci2 ? x2 

ci3 ? x3 

ci4 ? x4 

bn ? b 

an? a 

VD ? v 

rn ? r 

col tmpd 

ngs taapxl 

tmpxl := «««xl+b).v)+«v-r).x4»+(r*x2»/a)+«1.O-v).x3» 

Lx[i] .= x2: 

••••••••••••••••••••• 
The Basic IPS Cell • 

••••••••••••••••••••• 

LIBRARY PROe cell(CHlI xin. yin, Iout, fout, .) D 

VAR FLOAT x, y, xtmp, ytmp. p: 

SEQ 

xtmp :D 0.0 

ytmp :11 0.0 

SEQ i D [1 FOR total. time] 

SEQ 

PAR 

xin ? x 

yin ? y 

a ? p 
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xout xtmp 

yout ytmp 

ytmp 'D y + (p.x) 

XtlllP :D x: 
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A.3 Get data routine 

EITEaJAL PRoe num.to.8cr •• n(VALUE n): 

EXTERlAL PRoe str,to.scr •• n(VALUE se]): 

EXTERlAL PRoe fp.num.to.scr •• n(VALUE FLOAT n): 

EITEBlAL PROe fp.num.from,chan(CHAI c, VAR FLOAT n): 

EXTERlAL PROe open,tile(VALUE path,na.e(). acc ••• []. CHi. io.chan): 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Thi. routine reads data from the key board or a file and store. + 

it in the desired format. • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

LIBRARY PRoe getda.ta(VAR FLOAT :z:v[] ,av[] ,bvD. r,w, VALUE n) SI 

CRAB chfin: 

SEQ 

str.to.8creen(" Tbe order of the matrix A is ") 

num,to.screen(n) 

screen! 'en' 

str.to.8creen(" Input A Illatrix ") 

screen! 'en' 

open. fil.("data". "r". chlin) 

SEQ i-[l FOR nl 

SEQ 

acreen!'_n';'[' 

SEQ j=[l FOR. n] 

SEQ 

fp.num.from.chan(chfin. av[«(i-l)-n)+j)-l]) 

fp.num.to.acreen(av[«(i-l)-n)+j)-l]) 

screen! '_s' 

acreen!'l ' 

screen! ' -n' 

acreen!'-n' 

atr.to.screen(" Input B vector 11) 

screen! '_n' 

screen! '_n';' [, 

SEQ i-[O FOR nl 

SEQ 

fp.num.lro..chan(chfin, bv[i]) 

fp.num.to.screen(bv[i]) 

screen! '-a' 

acreen! ']'; '_n' 

screen! ' -n ' 

str.to.screen(" Input initial guess vector ") 

screen! I_n' 

screen!'-n';'[' 
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SEQ i-[O FOR nl 

SEQ 

~p.num.1rom.chan(chtin. x.[1]) 

fp.num.to.8cr •• n(xv[i) 

acreen! ' •• ' 

acre.n! 'J'; '.0' 

acreen! '.n' 

atr.to.8cr •• n(" Input omega SIt ") 

SEQ 

fp.nulD.from.chan(chfin, v) 

fp.num.to,8cr •• n(v) 

acre en ! '*n' 

acreen! '*n' 

atr.to.screen(" Input acceleration factor r· ") 

SEQ 

fp.num,from.chan(chfin, r) 

fp.num,to.8cr •• n(r) 

acreen! '.n': 
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A.4 Convergence test 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
This routine test. for convergence for a given tolerance * 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

LIBItJJlY PRoe errortest(VAR FLOAT yal(].val1D ,VAB. con,VALUE FLOAT err,VALUE n) .. 

VAR FLOAT ab.x, ab.y. dum.y, test: 

SEQ 

dUJI'IDy := 0.0 

con : .. fal •• 

SEQ i = [0 FOR .) 

SEQ 

absx := val[i1 

IF it the hUlllher is -Ye take its absolute value 

abax < dumsay 

SEQ 

absx :"" «-1.0).(absx» 

abBy ... va.l1 [1] 

IF 

IF 

IF 

abay < dummy 

abay :a «-1.0).Cabsy» 

(absx - abs,) < dummy 

test :11 «-1.0).(absx - absy» 

true 

t.st :a (absx - abay) 

(test> err) 

SEQ 

con :"" true: 
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A.S Reverse the system 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Inverts the data in the A matrix and the vectors b. x etc. * 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

LIBllJJlY PRoe invertdata(VAR FLOAT aa[]. xx(]. bbD. xxx[]. VALUE n)" 

VAIl FLOAT tempa. tempb. tempx: 

VU t, 

SEQ 

SEQ i • (0 FOR .) 

SEQ 

uti] : .. x:r.x[i] 

xxx[i] ;'"" 0.0 

k:D n-l 

SEQ i • (0 FOR (n/2») 

SEQ 

k;1I 

SEQ 

tempb ;"" bb[k) 

tempx :"" n[t] 

bb(t) ,. bb[i) 

xx[k] :D u[i] 

bb[i] := talllpb 

xx(i] : .. tempx 

k := It-I 

(n*n) -1 

i .. [0 FOR (n.n)/2] 

SEQ 

temp. ,. aa[k) 

.. (t) , . aaU] 

•• tn .. tempa 

It :- It-I: 
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A.6 Display the results 

EXTEBIAL PROC Dum. to. screen(VALUE n): 

EXTERlAL PRoe atr. to .scre.n(VALUE .0): 

EXTERlAL PROC fp.num.to.screen(VALUE FLOAT n): 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
This routine prints the solution OD the standard output • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

LIBRARY PRoe putdata(VAR itera. VALUE FLOAT x[], VALUE fl, n) a 

SEQ 

IF 

fl 

SEQ 

screen! '*0' 

str.to.screen("The Solution '11'&8 not found because: *n") 

str.to,8creen("The number of iterations has exceeded 11) 

num.to.8creen(itera-l) 

screen! I.n' 

str.to.8cr •• n("The Solution 80 far is *n") 

TRUE 

SEQ 

SEQ 

screen! '.n' 

str.to.8creen("The nUlllber of iterations performed D OI) 

Dum.to.8creen(itera.) 

screen! '.0' 
8tr.to.8creen("The Solution Vector i8 _nil) 

SEQ i = [0 FOR n) 

SEQ 

fp.num,to.8creen(x[i) 

8creen! '.n' 

screen! '.n': 
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