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Name: Christopher Hugh Messom 

Definitive Title:-

Engineering Reliable Neural Network Systems 

Synopsis:-

This thesis presents a study of neural network representation and 

behaviour. The study places neural networks in the context of designing 

reliable systems. Several new results on network size and topology are 

presented. 

Knowledge based training of neural networks is examined. This is 

essential for designing reliable neural systems in which the 

subsymbolic reasoning processes are well defined. Sandwich nodes are 

introduced and studied as atomic knowledge elements in neural 

networks. Two new network architectures are introduced, the 

Loughborough Net and the Loughborough Control Net. These make use of 

the parallelism inherent in sandwich node representations. 

The interpretation of neural network representations as logical 

transformations and rule systems are presented. An equivalence of the 

rule systems and neural network representation is proposed and 

discussed. This equivalence is required in order that the total behaviour 

of the neural network can be understood. 

A new methodology for designing reliable neural network systems 

making use of knowledge based training is proposed. This is used to 

present a general design methodology for the construction of. reliable 

neural network control systems using the Loughborough Control Net 

architecture. A case study is discussed where the methodology was 

applied to the design of an adhesive dispensing controller. 
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Part I. Introductory Ideas 



Chapter 1. Introduction and Background 

Human history has been a record of the design and appliance of tools, from the bone 

clubs and flint blades of prehistoric man to the computerised automated systems of modern 

man (Bronowski '73, Birdsall & Cipolla '79). The tools that were available extended the 

power and experience of man and in turn motivated the development of ever more 

sophisticated technology (Forbes & Dijksterius '63). 

The tools that have stimulated the development of the mind have led to the peaks of 

human achievement, unmanned space exploration being just one example (Clark '85, Lilley 

'65). As the tasks that man attempted became greater and more ambitious, calculating 

systems and machines were developed. Symbolic mathematics provided a framework for 

abstract reasoning while the use of predicate logic formalised linguistic reasoning and 

argument. 

The development of the electronic computer revolutionised calculating and reasoning 

systems. Automating logical reasoning allowed evermore complex systems to be developed, 

leading to the design and construction of automated machines. 

Truly automated processes would require no human operator or controller. This may 

seem attractive, especially for very mundane activities. However any process, automated or 

otherwise must be sufficiently understood to ensure the safety and reliability of the system. 

A human controller or agent has knowledge about the behaviour of the automated process and 

can therefore predict the behaviour of the system under various conditions. This human agent 

can then ensure the reliability of the system. This is especially desirable in the case of safety 

critical applications (Warwick & Tham '91). 

Outline of chapter 

This chapter provides a historical background and systematic development of the basic 

ideas of the field of neural network systems. The place of formal logic . in automated systems 

1 



is discussed. Historically it has been the motivating force behind the pursuit of automated 

systems and provides a foundation on which more complex systems can be built. 

Neural networks are introduced as a possible solution to the performance limitations 

of logical systems. The general monotonic and incremental nature of logical systems 

effectively places a bound on performance in real time. As the knowledge base becomes ever 

larger, the response time of the system will increase. Neural network techniques offer a 

solution to this problem via the inherent parallel nature 01 neural network execution. 

However large the network becomes, the response time of a network implemented in 

hardware is only dependent on the depth (the number of layers) of the feedforward network 

and not the number of nodes in the network. Difficulties exist with neural network 

representation and behaviour, which provides the motivation for this thesis. The motivating 

issues of this thesis are discussed in chapter two. 

The basic properties of neural network systems are introduced in this chapter, 

highlighting their representational limitations. A leedforward network does not have the 

representational power of a first order logical system, while a recurrent network has the 

same representational capability as the first order logical system. These questions are 

relevant for the design considerations of neural systems. 

The various different network architectures, recurrent and feedforward networks and 

the training techniques they employ are introduced. They are discussed In further depth in 

chapter three and four. 

Overview of reasoning with logic 

Reasoning systems have existed for many centuries, since the time of the Greeks with 

Aristotelian reasoning to the work of 8001e(,47 & '58), Carroll('S8 & '77). Keynes('06) 

and Russell('03 & '19) in more recent history. These symbolic systems provided an 

excellent framework for reasoning through complex arguments, however most failed when 

confronted with uncertainty. 

Everyday linguistic reasoning was seen not to obey many of the properties of these 
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formal systems, namely that of consistency and the conditions for ambiguity. Similarly 

problem solving and spatial reasoning could not be modelled by these systems, limiting their 

overall usefulness. 

The work of Keynes(,21) and Venn('94) on probability provided a foundation for 

working in systems where certainty was not guaranteed and unknown elements existed. 

Automating these problems proved difficult and significant extensions and variations were 

required to overcome them. 

Many of the issues addressed in this thesis have existed for many years. Early 

civilisations were interested in thought processes and the mechanisms of reasoning. 

Traditional or Aristotelian logic was developed in the time of the Greeks (Soyer & Merzbach 

'89) and is thought to have been used in the training of the lawyers and magistrates and by 

extension the politicians of the city states. 

Significant traditions of logic in Arab, Indian and Chinese civilisations also existed 

(Mikami '74). These traditions spawned algebraic logic which separated logic from its use 

and misuse in language and argument. 800Ie('47) with "The mathematical analysis of logic· 

and De Morgan('47) with "Formal logic" provided a wider structure In which logic could be 

studied. 

The formal logic as studied, provided a strong mathematical foundation for symbolic 

reasoning, which was amenable to automation. One of the limitations that resulted was Its 

abstraction from everyday reasoning and the inherent uncertainties that result. Only 

dichotic, true- false systems were considered, partly due to ijs Simplicity of representation 

and execution. 

Logical systems 

Logic is the oldest formal system for reasoning, which allows natural language like 

statements to be manipulated so proving whether they are consistent or not. Proofs of 

queries could be given by showing that the negation of the query and the statements in the 

database were inconSistent (reductio ad absurdum). 
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These logical systems were so successful in providing reasoning systems, that it 

formed the basis for many computerised reasoning machines. One of the most successful 

using only statements in clausal form is Prolog (Clocksin et al'87 and Shapiro et al'86) 

which allows queries to be made on a dalabase. A depth first search strategy is used and a 

relevance condition is required on the search, so allowing the system to behave correctly 

even if an inconsistency exists in the database of clauses. 

First order propositional logic is a system in which formulae exist employing atoms 

which take the values either true or false, with the logical connectives and, or, not and 

implication, as well as more intricate operators made from a combination of these. The 

calculus of the logical operations provide the ability to give absolute truth values to the 

formulae. 

Reasoning processes can occur due to the implication symbol, defined in table 1.1. 

B 

A~ B T F 

T T F 
A 

F T T 

Table 1.1 Truth table for the implication operator 

With modus ponens (fig 1.1 a)we have the reasoning process reaching the conclusions 

shown. With modus tollens (fig 1.1 b) we have a variation. 

a 

b .... a 

then b 

b 4- a 

not(b) 

then not(a) 

Fig 1.1 a. Modus ponens reasoning, b. Modus tollens reasoning 
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The logical statements form a knowledge base that may be accessed. To find out if a 

given statement. the query. is consistent with the set of logical statements. the knowledge 

base. it is necessary to construct a proof of the statement. 

This can be a particularly complex procedure. considering the variety of consistent 

transformations that can be made on the knowledge base. The procedure of "reductio ad 

absurdum" overcomes these problems. This procedure consists of adding the negation of the 

query to the knowledge base and then search for a contradiction. If a contradiction arises. 

that is the existence of both a true and a false instantiation of the same formula. then it can 

be assumed that it is due to the addition of the query formula. That is the negation of the 

query gives rise to the inconsistency and so the query must be consistent with the knowledge 

base. The query is proved. 

Problems that could arise include the possibility that the set of logical statements are 

already inconsistent. that is contains a contradiction. The previous proof procedure would 

prove anything true with this knowledge base. even (a and not(a)). To overcome this 

difficulty. several methods can be employed. Maintaining the integrity of the knowledge base 

is one. but for large real world systems this may be particularly difficult. The second 

method is to maintain a relevancy criterion to the proof procedure. The query depends on 

several atoms and if the contradiction in the knowledge base is discovered to depend on a 

completely disjoint set of atoms then the inconsistency can be seen to be irrelevant to the 

query. This second method means that only relevant formulae are used in the proof 

procedure. reducing its complexity greatly. 

Clausal form 

However much the relevancy criterion reduces the complexity of proof procedures in 

first order logical systems. the variety of manipulations and transformations that can be 

applied to the formulae ensure that the proof procedure is in general difficult. Methods to 

overcome this problem centre around using a reduced subset of first order logic. such that 

representative power is still maintained while the proof procedures are simplified. 
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Horn clauses are such a reduced set of logic. Their structure is that of an implication. 

the head of the clause being implied by the antecedents. Kowalski('SO) provides a 

comprehensive study of such syslems. The proof procedure reduces to that of graph search 

and with suitable search algorithms ensures that the proofs can be completed. 

Kowalski demonstrates how the clausal structure can be exploited in a logical problem 

solving environment. The approach is declarative. puuing the solution of problems in logical 

bounds. leaving the search algorithms to provide the proofs to the solutions. 

Benefits of logical systems 

The greatest advantage of the propositional logic systems are the incremental nature 

of the knowledge structure. Large problems can be structured using subcomponents which 

are modelled separately and then recombined. The knowledge is added incrementally and 

monotonically. Even with systems of nonmonotonic reasoning great restructuring of the 

knowledge base is not necessary. As time goes by the knowledge based system improves 

incrementally and equally increases incrementally. 

As the size of the knowledge base increases and the reasoning processes become more 

complex (as in uncertain reasoning). this incremental nature of the knowledge base 

approach becomes a liability. The size and computing power required to model the ever 

increasing body of knowledge has meant that something radical must be done. Increasing the 

performance of single processors and memory chips is not the solution since they have 

almost reached their physical limits (Hwang & Briggs 'S5). As the cost of processors 

decrease the competitive advantage will be to those automated systems that efficiently employ 

many processing units. This means that approaches that make use of multiple cooperating 

processors will be of greater advantage. 

Making use of only a few processors would require complex processors with 

sophisticated communication to solve significant problems ( as in the distributed computing 

approach with its message passing environment (Sloman & Kramer 'S7 )). Making use of 

many simple processors on the other hand will admit simple connection and communication. 

6 



This approach is pursued by neural network systems. 

The processing elements in neural systems are all identical and extremely simple in 

operation. The connection pattern is dense, each element being connected to many others. The 

message passing is simple consisting of a scalar function of activity. Although each 

processing unit is simple the behaviour of the total system can be quite complex. With the 

existence of automated training algorithms, system implementation can successfully be 

realised. 

Connectionist models and neural networks 

The main motivation for studying distributed representations of knowledge is the 

experimental field of the neurosciences (Amari '77 and Amari et al '77). Work in the 

neurosciences showed that the brain was constructed via the interconnection of neurons 

(Kolb et al '80). Neurons being on the face of it, particularly simple units. Identifying the 

functions of individual neurons proved impossible, the specific function being distributed 

over a pattern of activity of many neurons. 

The human mind can perform feats that modern computers with sophisticated 

programming can not as yet match. The hardware available to the programmer however 

seems far superior, being about 106 times as fast at performing a single computation than 

the human mind (Kolb et al '80). The human mind makes up for this speed disadvantage via a 

highly parallel mechanism of execution. Evidence suggests this parallelism is implemented 

in a distributed representation, namely that the various concepts are stored as a pattern of 

activity over a distributed region of the brain. 

Anned with these motivating elements, a working model, that is the brain, and a 

means of constructing new models, on sophisticated digital computers, researchers have 

invested considerable time and effort in achieving some notable results. These will be 

outlined further, starting from the original work on perceptrons through simple neural nets 

to sophisticated representational schemes making use of Bolzmann machines. 

7 



Success in knowledge representations via production rules and logical systems has so 

far outreached that of conneclionist models. However the neural techniques are improving, 

ultimately trying to reach the stage where significant problems can be solved in the 100 

time step limit, that achieved by the brain, as proposed by Feldmanl'82). 

Distributed representation 

A local representation is one in which discrete elements are used to represent unique 

discrete functions. Within the connectionist framework this generally refers to the custom 

built neural networks where each node is considered to represent some particular function. 

This is seen in the Willshaw's ('81) graphemel word set semantic sememe feed forward net 

and McClelland's ('85) word perception model. 

Distributed representations are very different. The network topology of the two nets, 

one with local the other with distributed representation, may look very similar, however 

they will essentially be distinct. A distributed representation, represents functions as a 

pattern of activity over a variety of units which themselves may be involved in representing 

distinct functions under a different pattern of activity (Feldman et al '82). 

The difficulty of the distributed representation is in comprehending the meaning and 

behaviour of any particular net. Static observation of the nodes and weights would yield little 

information since the concepts are at a higher level, and since they interact in a distributed 

manner it would be almost impossible to decipher any meaningful structures. Observing the 

net at work will yield some of the meaning hidden in the units, but may still defy analysis of 

the complex interacting concepts driving the net. 

There are many advantages in a distributed representation, robustness, general 

learning mechanisms and graceful degradation. However the problem of understanding the 

distributed representation must be resolved. This thesis formalises simple distributed 

representations so providing a mechanism for interpreting their function and behaviour. 
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Structure of neural models 

The principle behind connectionisl or neural models is that given particular inpuls 

the model, Ihe neural net, propagates a pattern of activity across its structure producing an 

output pattern. There is no attempt at explicit manipulation 01 the inpul as in conventional 

computational techniques. 

ANode. 

x 
2 

Xi 

Xo 
x n 

Inputs Output Actvation 

Fig 1.2 a. Single node with inputs and linearly summed output 

This is facilitated by the netlike structure of connectionist models, constructed from 

simple node units and connection paths. The node units can be of various types, but the most 

studied have been of linear summation type. Le the output activation is the sum of the input 

values. Xc! = l:"I=1 XI' And variations have included linear summalion threshold units or 

linear threshold squashing units, respectively Xc! = l:"I=1 XI' B (B is the threshold bias 

for the node) and Xc! = '0 (l:"I=1 XI) (fo is the squashing function). See fig 1.2a for a 

schematic representation ot a node unit. 

An added sophistication is the weights that are given to the connections between the 

various nodes. These provide an easy mechanism tor changing the structure and behaviour ot 

the net. Namely altering these weights, reducing the weight to zero being equivalent to 

removing a connection. Therefore the final input trom one node to another node is equal to the 

output trom the first times the weight governing that connection. See fig 1.2b for a 
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schematic representation of a weighted node unit. 

x 
2 

X 0 
Xi 

X n 

Fig 1.2 b. Single node with weighted inputs and thresholded output 

Variable xi is the output from the nodes, Yi is the input to the node, and wi is the 

weight governing the connection. 

Input to node on line i is YI = wl * xI. 

So for a general linear summation squashing unit Xo = foC ~nl=1 WI* XI)· 

Recurrent networks 

Recurrent networks are fully interconnected neural networks. Fig 1.3 shows a simple 

recurrent network structure. There are no explicit input and outputs nodes. Each node 

associates a weight value with those 10 which it is connected. Hopfield formalised the 

associative net by considering the nodes as bipolar threshold units in which the outputs to 

each unit i, is fed back to each unit j, with the associated weight Wj j CHopfield '84). 
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Fig 1.3 A recurrent network structure 

To ensure the convergence of the net Hopfietd used an iterative update procedure, 

with the added constraint that Wij = Wj i' The capacity of the network must not be exceeded for 

this convergence criterion to be valid. The format definition of the net was carried out as 

follows; 

The weights were assigned as, 

Wij = O:Ny=o xYi .xYj i .. i. 

o i=j.} 

wi j is the weight from node i to j, xYi is the ith element of the training set y. 

Therefore the behaviour of the net could be likened to minimising the energy function, 

E= -~<j xY i .xYj' wi j + ~ Xj '''j' This follows since the derivative of this function represents 

the change in output at each stage of the update procedure that is emptoyed in the convergence 

of the Hopfield net. 

Essentially the structure of a Hopfield net is very simple, but its representational 

and behavioural power is fairly great. Its main function is that of an associative memory 

device or that of an optimiser. Its behaviour as an associative memory device is obvious, 

since it is a mathematical model of such devices (hard wired or theoretical), as discussed 

above. Given partial or noise affected input, the Hopfield net can extract the best example 

from the set of representative patterns, that it most closely matches. 

The power of such devices is not limitless. Hopfield places a bound on the capacity of 

0.15" the number of nodes as the maximum number of representative classes that can be 

stored, without degrading the performance to an unacceptable level. 
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Hopfield nets can also be applied to optimisation problems. Tank & Hopfield(,86 & 

'86) demonstrate how a Hopfield net can be used in solving an optimisation problem in 

shelving rates and also a net solution to the travelling salesman problem. Both these 

problems require astute coding, namely the specification of inhibitory connections to limit 

impossible solutions. In the application of these nets to general problem solving, the question 

of convergence rates and efficiency in execution arise. Providing varialions in the update 

schemes, would provide the possibility of improvement. 

Another learning technique which stems from the biological sciences, is Hebbian 

learning. This involves rewarding connections to nodes that contribute most in activity. This 

means that nodes which contribute the greatest to the representative scheme receive the 

greater biases. Jacyna & Malaret(,89) study the performance of a Hopfield net. using a 

Hebbian learning rule. 

Associative memory devices represent a class of systems which require an input to be 

given which will on convergence remain stable. That is the input units are also the output 

units and these values (input and output), in the stable case, will be equal. Therefore, in 

such systems no complications arise due to considerations of non linear transformations 

since in one iterative cycle the transformation maintains the input. 

In coding general functional transformations, the Hopfield net is of little use. Here we 

are considering the problem of receiving a relatively clean input vector and require an 

output vector that is a general Boolean transformation of the input. These transformations 

being non linear can not be coded in a network without hidden unns. This can be seen when we 

examine the stable state criterion, see chapter four. 

Bolzmann machines can be viewed as an extension to the Hopfield net scheme. The 

update is stochastic and there are hidden units which allow for general functional 

representation. The units in a Bolzmann machine take output values of 1 or O. That is, they 

are active or inactive. The units take these values in proportion to its energy contribution, 

which is the sigmoid of the sum of the input values to that node. 

That is, the probability that a unit is active is given by the formula; 

prob_active(unit x) = 1/(1 + exp(.~Ex/T), 
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where T is the temperature function, while 6Ex is the energy contribution of the node x. This 

value is the sum of the inputs. 

6Ex = Li wix·Oi ' 

wi x is the weight from the ith unit to unit x while 0i is the state of the ith unit. 

Given repeated application of the update rules the network reaches an equilibrium. 

This is termed the thermodynamic equilibrium. At high temperatures the network converges 

to equilibrium quickly, while at low temperatures this is not the case. High temperatures 

allow many high energy states, while low temperatures allow lower energy states to be more 

probable. Simulated annealing has been studied as a possible scheme to increase convergence 

while promoting low energy states. 

The mathematics of the training scheme for Bolzmann machines proceeds in many 

ways similar to that of a gradient descent scheme. The weights are adjusted via the formula, 

6Wij = 1.1-( < Dig >+ - < Dig >- ) , 

where < Dig > represents the probability that over all cases that unit i and j are both active, 

while the superscripts + and - represent the cases when the network has the output units 

clamped to their required value and are unclamped, respectively. Varying the learning rate 

ensures the global properties of the learning scheme are maintained as required. Small JL 

ensures that the scheme exhibits gradient descent. 

Kirkpatrick et al('83) discuss the behaviour of statistical computational machines. 

They show that the implementation of Bolzmann machines and similar computational schemes 

are possible in hardware. They discuss an optimisation problem, the travelling salesman 

problem, to demonstrate some of the properties of the system. 

Perceptrons 

Perceptrons, particularly single layered threshold units have been extensively 

studied, see Minsky & Papert ('69).Their applications and particularly their limitations 

were well documented. 
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Perceptrons are feed forward nets with in general linear threshold units with a hard 

limiting squashing function (fig l.4a). Single layer perceptrons have been shown to be able 

to classify objects into two regions separated by a hyperplane. Rosenblatt ('62) developed 

the perceptron convergence procedure which demonstrated this. 

Some Squashing Functions 

Hard logical limiter Linear threshold logic Sigmoid function 

c a b 

Fig 1.4 Squashing functions 

. Multilayer perceptrons lacked a learning procedure (Block '70) such as the one 

developed for single layer perceptrons and so were not extensively studied until recently. 

The back propagation algorithm provided a general learning scheme for the feed forward 

multilayer perceptrons using a sigmoid squashing function as seen in fig 1.4c ( this is 

further discussed in chapter four). Although convergence for this and other schemes could 

not be guaranteed, many interesting properties could be observed. 

Structure Type of decision region Most general shape 

Single layer Half plane bounded by hyper plane 

Two layer Convex regions 

Three layer Arbitrary 

Table.).2 Properties of perceptrons 

The multi layer perceptrons use non linear nodes to gain full advantage of their 

structure, since a linear multilayer net can not do more than a single layer perceptron, 
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(shown by the equivalence of a linear multi layer perceptron to a particular single layered 

one). Using a hard limiting squashing function (fig 1.4a), which is non linear, a two layer 

perceptron can solve the exclusive or problem (fig 1.5) and with multilayered perceptrons 

with suitable numbers of units, any decision region may be modelled (Table 1.2). 

The exclusive OR problem 

Fig 1.5 Segmentation of the input space to solve the "exclusive or" problem 

Using the sigmoid squashing function can produce smoothly bound decision regions and 

so even the most general situations can be modelled using a reasonable number of units. 

Feedforward networks 

Feedforward neural networks have been developed from perceptron based approaches 

to multilayered systems. 

Intermediate 
2 2 

2 2 

layers 

n k p 

Fig 1.6 A feedforward network structure 
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A feed forward net refers to a net where the output from a unit at a particular level 

(one layer) goes to the input of nodes only at a subsequent level. That is the output can not go 

to any node in its own layer or a lower one. Therefore there are no loops or cyclic paths in 

the activation propagation. Fig 1.6 shows a feedforward network structure. 

Given a feed forward network the back propagation algorithm may be used to produce 

a network after convergence with various interesting properties. Hinton ('86) demonstrated 

the power of this convergence scheme to discover underlying semantic features in a 

knowledge domain. Back propagation has also been used in nets for text to speech mapping 

(Sejnowski & Rosenberg '87 ) and phoneme recognition models. The power of feedforward 

net comes from their ability to represent general transformations, and the existence of 

training algorithms to train the net with a representative set of the transformation. 

Feedforward neural networks are trained via the back propagation training scheme. A 

network is set up with weights that are small random numbers. The training set is applied to 

the net and the output values noted. The energy function for this procedure is the difference, 

squared and summed, between the required outputs and the actual outputs computed by the 

network. (Refer to the annotations of fig 1.7). 

E= 0.5' ls, i( aOs, i-cOs, i ) 2 , where aOs, i is the required output over output i given 

the training sample s. 

Minimising this energy function would provide the best solution to the problem. 

1 
1 

2 
2 

k p 

mOk mWki pOi pWij cOj 

Fig 1.7 A multilayered feedforward network with annotated nodes and weights 
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The calculated outputs being a function of the weights, the problem of minimising the 

energy becomes that of varying the weights to solve the problem. Seeing the contribution of a 

particular weight change to the total energy provides a scheme of altering the weights, via 

gradient descent. 

b wij = -11 aE/awij. 

It can be seen that this scheme for a small learning parameter IL will execute 

iterative hill climb. That is the scheme will find the nearest local optimum. Problems will 

obviously arise if this is not the global optimum and so several techniques exist to ensure 

that the search does not get stranded in unfavourable optima, while still retaining reasonably 

rapid convergence. The details of the back propagation algorithm are discussed in chapter 

four. 

Vogl et al('88) discuss methods for ensuring rapid convergence of neural net. 

Parallel presentation of the training set is suggested as one method for ensuring true hill 

climbing properties of the training algorithm. Another method presented is that of varying 

the convergence rates depending on the performance of the algorithm. This involves 

manipulating the learning parameter in the particular manner required. 

The performance of the algorithm is taken into account by increasing the parameter if 

the last update decreased the error function. A momentum term is also applied, (namely a 

factor proportional to the last update term, to ensure more rapid movement in the direction 

of convergence). If a step produces an increase in the error then the learning factor Is 

decreased and the momentum term removed, (the last update did not provide an 

improvement). 

bWij(m+l)=11 ;,aE/a Wij+ B t.wij(m), 

where 11 is the learning rate, B the momentum term and m the iterative index. 

Neural representations 

From an external viewpoint the functional characteristics of neural network systems 

consist of the inputs that are applied to the system and the outputs that are received. 
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However, no knowledge of the internal structure and behaviour would exist. As the extensive 

literature in the field of expert systems and decision support systems shows, actual 

solutions to problems can often be of little use if it is not supported by a structured reasoned 

argument. The human, expert or otherwise needs evidence to support the conclusion (Turban 

'88). 

It is this property that distributed systems lack. The nature of the hidden units in the 

systems is to adopt the required behaviour to ensure successful operation. Many localised 

network representations have been hand crafted, that is specially designed and developed, 

where the hidden nodes could be given clear functional interpretations. (Chapter three 

discusses some hand crafted neural networkS). Given a generalised distributed scheme 

however the analYSis has been limited. This thesis analyses the internal structure of neural 

networks and provides a suitable interpretive scheme. 

Restricting ourselves to feed forward neural nets, several insights Into the behaviour 

of hidden and output units can be gained. Viewing the global behaviour of the inpuV output 

units we see the representation as Boolean transformations, ( the analysis for noise affected, 

hard threshold devices is similar for perfectly trained nets). These transformations have a 

symbolic representation and logical rules can be constructed to represent them. These logical 

rules can be transformed to a neural representation and vice versa. The extraction of the 

rules from the net was introduced by Hinde('90) and this is discussed in chapter three. 

Representational power of neural networks 

Due to the distributed nature of many connectionist representations the question of 

representative power is ill defined.- Hopfield gives the factor 0.15 • number of nodes, as the 

number of different classes that the Hopfield net can model, but this Is a rather arbitrary 

figure. Upmann(,87) discusses the capacity of feed forward nets, suggesting the three layer 

model as the most general. He demonstrates further a timit on the number of intermediate 

nodes, based on an analysis of connected components in the input space. A figure of three 

times the input nodes, based on this argument and a convexity requirement is presented 
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(each convex connected space requires at least three nodes). 

Mirchandani and Cao(,89) studied the role of hidden nodes in modelling decision 

regions and so presented some results relating the number of hidden nodes, dimensionallity 

of the problem and the number of decision regions required. This work is discussed with the 

new results on network size and topology in chapter seven, in which it is seen that for nets 

with a single output node, the hidden layer needs to be only as large as the input layer. This 

follows from the inherent planar nature of the points in multidimensional hypercubes. The 

results generalise showing how multioutput nets can still have limited hidden layers. 

Tani et al('89) provide a different approach to minimising the size of a net used to 

model a problem. The method they employ is to include in the energy function a term that is 

related to the size and complexity of the net. This ensures minimising Ihe energy function 

produces a minimised net representation. That is, after full convergence, the net discovered 

will represent the problem perfectly and have a minimal form. More problems of ensuring 

convergence exist here, but if these are overcome the representations formed would be 

topologically optimal. 

Another application of the new energy function is in providing simplified rule 

representations of nets. Tani et al (,89), show how altering the energy function to allow 

over simplification of the net results in the discovery of simplified rules that approximately 

model the problem. This work relates to that of Hinde(,90), showing how the hidden nodes 

may be associated with rules. 

Connectionist symbol processing 

The feedforward neural systems discussed so far have a representational power which 

is far below that of predicate systems. Recurrent networks offer the representational power 

of first order logical systems. The need to develop neural systems with the full power of 

predicate systems that can manipulate symbols has led to several different advances. 

A limited symbolic representation exists in the coding of input! output vectors as 

presented by Dolan & Dyer(,87) but this is not true symbolic manipulation in the general 
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sense. Hinton('90) and Pollack('90) present several ways in which recursive structures, 

trees, lists and hierarchies can be represented in neural systems. These techniques aim to 

extend th~ representational power 01 leedlorward systems enabling them to execute general 

computation (Feldman et al '88 and Gallant '88). 

Advantages of neural network systems 

A neural network system offers several advantages over standard Von Neumann 

computational schemes. The first advantage is that 01 performance. A neural network system 

can be implemented in hardware offering great performance improvements over a 

conventional approach. The individual nodes in the network will be implemented as separate 

processors on a single piece 01 silicon. The activity of the nodes will pass from the inputs to 

the outputs in parallel producing extremely good performance. 

The second benelit of a neural system is the existence of the training algorithms for 

implementing the networks. Any reasonably complex system requires a significant effort to 

design and build. Automatic training systems must exist to ensure suitable networks that 

produce the correct behaviour are constructed. 

The types of training algorithm that exist vary considerably. The prescriptive 

methods of the Hopfield net ensure correct behaviour 01 the neural system, but in turn 

inhibits the representational power 01 the network. The backpropagation algorithm for 

feedforward networks provides a method lor constructing neural networks that model a given 

training set. 

A structured design and analysis 01 neural systems must be maintained if their 

behaviour. is to be reliable (see chapter eight and nine lor lurther discussion). 

Neural networks have not, as yet, been used in general reasoning systems. This has 

been the case since no inference operator exists in neural systems. All the manipulations are 

at the bit level. This has led to the label of subsymbolic processing being applied to neural 

systems in general. 

Neural techniques have been applied to specilic reasoning problems, Hinton's ('89) 
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knowledge base of family relationships is just one example. The knowledge, the family 

relationship between the set of people, is stored in the network systems by the relationships 

between the nodes and the information retrieved by the activity of the nodes. This network 

could correctly answer queries about the stored knowledge, that is act as an associative 

memory device. The network also correctly answered queries about relationships that it had 

not been specifically trained upon. That is some subsymbolic level of reasoning had taken 

place. The structure of this reasoning process requires further investigation. The complex 

interacting subsymbolic processes must be fully understood in order that the global 

behaviour of the network can be explained. 

Neural network systems are trained on sample data, which are correctly stored in the 

net. The behaviour of the net in generalisation is not so predictable. The neural networks can 

learn to model any specified transformation (see chapter six and seven), but are only 

reliable over the training set. The generalisation properties are not well defined. A degree of 

well defined subsymbolic reasoning can be implemented by sufficiently constraining the 

network under consideration. The constraints induce a specified form of generalisation which 

is a manifestation of the subsymbolic processing. 

Traditional logic based approaches are reliable. They are constructed incrementally 

and in general monotonically. The addition of each piece of new knowledge has a specifIC 

effect. Even nonmonotonic systems behave in a specified manner when more knowledge is 

added. 

Neural systems generally do not behave this way. The system Is only defined by the 

training set and is not reliable outside of this set. The different network representations that 

are produced when presenting the training set in a different order demonstrates the 

unpredictability of the systems. Adding a new piece of knowledge to the training set has 

similar unpredictable properties, often requiring a complete restructuring of the network 

to accommodate the new piece of information. A reliable approach to neural network design 

must exist if neural techniques are to be applied to general reasoning systems. 
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Summary 

The basic properties of neural systems have been discussed, their training 

algorithms and representational properties. Their relevance to automated processes and 

reasoning systems have been examined. The notion that logical systems play an important 

part in ensuring neural network reliability has been introduced. 
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Chapter 2. Motivation of Study 

Outline of chapter 

The study that is presented in this thesis is motivated by the of lack of reliability of 

neural systems and their design. The questions of the design of the neural system, its 

interpretation and its behaviour are discussed. The lack of design tools available to the 

system implementor has led to ad hoc approaches (such as oversupply of nodes in the neural 

network and the training of the network over large data sets) in design. Neural network 

training has been well studied while that of network reliability and interpretation has not. 

This chapter examines the elements of neural network systems implementation that are 

important to the system designer. The properties of predictability and reliability are 

emphasised. The elements that must be investigated to ensure these properties are discussed, 

namely the network size and topology constraints as well as the internal function of the 

neural network. Having provided the motivation for the investigations of this thesis an 

outline of the thesis contents is given, highlighting the new contributions to the field. 

Neural systems 

The work in this study was motivated by the actual usefulness of the available 

techniques in neural system development. Neural networks have been used in many 

situations, from content addressable memories and distributed memories to. constraint 

problem solving (Hopfield '84) and pattern recognition (Amari '67, Rumelhart et al '86 

and Aleksander '90). However most work has concentrated on the properties of neural 

networks themselves and not on how to apply them to a given problem. This is seen from the 

work of Rumelhart et al(,86), Minsky et al('69) and Rosenblatt(,62). This work has been 

of little direct use to the designer of a neural network system. 

The early work on the properties of neural network systems has led to the 

development of more general systems (Hopfield et al '86 and Hinton '89) which are 
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applicable in a larger number of domains and so more useful to the systems designer. A 

general design methodology for such systems are not as yet widely used, but will be required 

if neural network technology is to become more successful. 

Design development 

Work on neural systems has proceeded in several directions, training, input 

representation and quantisation, and network structure and representation. These 

correspond to the three network properties that can be varied, the training procedure, the 

input transformation and the internal structure of the network. 

To date training has attracted the most attention. This stems from the fact that any 

sufficiently large network structure is in theory capable of representing some given 

function or transformation (see chapter three and seven). Therefore the problem of applying 

neural network technology to a specific problem area reduces to a problem of training, 

having selected a suitably large network structure. 

The attention to training has reaped many benefits. Almost all the advances in neural 

systems have been from the developments in training. The previous chapter described some 

current technologies all of which are based on a few standard network topologies and differ 

only in the sophistication of their training methodologies. These training methodologies are 

important, as without them designing neural systems would be difficult If not impossible. 

The usefulness of neural network systems hinges on the input quantisation and 

representation as well as the network structure and representation that are available. The 

current techniques can all make use of the same input quantisations and representations. 

These are transformations of the input space that considerably simplify the problem space 

that is being modelled (Padaline techniques). 

Little attention has been paid to the role that the internal structure and 

representation has when designing neural systems. It is often taken as a given property 

selecting one of the standard structures. Training then proceeds producing a network 

representation that will allow the training algorithm to converge. This approach neglects the 
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role that structure and particularly the representation adopted has on the specific behaviour 

of the neural network. Predicting the behaviour of the network therefore is difficult if the 

representation adopted by the training scheme is not easily recognised and is perhaps 

unknown. 

Usefulness of present techniques 

Powerful training techniques exist in neural computing (automated learning via 

backpropagation), but they are not immediately applicable to a great many problems which 

are suitable for modelling by neural networks. 

The four main areas of application have been; 

i. Constraint problem solving 

ii. Pattern recognition 

ili. Control problems 

Iv. General neural computing 

Early work centred on pattern recognition and constraint problem solving. 

Hopfield(,84) made use of Hopfield nets to model constraints and relational systems. These 

systems allowed the modelling of specific problem spaces with neural techniques. Within the 

problem space the models behaved very well solving the particular constraint problem in 

question. Their limitations were in the transference to new related problems, which 

required new network solutions rather than minor variations of the networks that had 

already been constructed. 

Pattern recognition in neural networks allowed the development of sophisticated 

vision systems. Fairly small recurrent neural network systems could be automatically 

trained to recognise and classify several different visual inputs (Aleksander '90). However 

they suffered from several problems which made them unsuitable for robust systems, these 

included pattern interference (that is linear combinations of stored patterns would also be 

recognised). Feedforward pattern recognition systems would not suffer from the same 

troubles but like all neural systems representational problems still existed. If no internal 
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representation of the neural network existed then the behaviour of the network could not be 

guaranteed for input patterns that were not in the training se\. 

Neural networks have been used in the construction of control systems. From the 

work of Barto et al('83) and Zhang et al('91) to more complex safety critical systems 

(Miller et al '90 with the control of industrial robots), the neural network solution of 

control problems provides a significant area of application. 

Predictability is a major concern in control problems. The behaviour of neural 

network controllers must be perfectly predictable if they are to prove practical. This is 

obviously vital when the question of safety critical control systems arise. Current 

techniques which rely on only a training set to specify the behaviour of a neural net are not 

suitable for these engineering applications. This is the motivation for the study in this 

thesis, the development of predictable and reliable neural network systems. 

Areas of investigation 

To date study has focussed on the theoretical basis of neural systems. Actual 

implementations have generally been lacking as several fundamental questions must be 

addressed before neural techniques can be applied to specifIC problems. This thesis addresses 

the questions raised by the attempt to implement neural systems. 

When a neural network is being constructed, be it a theoretica'l project or a specific 

engineering implementation, several points must be addressed. The simple methodology in fig 

2.1 highlights the three basic questions that must be examined when designing a neural 

network 

i. Establish the number of inputs and outputs needed by the system. 

ii. What is the initial internal structure of the network, 

iii. What is the training algorithm that is to be adopted. 

Fig 2.1 Simplified design methodology 
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Current work in neurat systems has concentrated on the training aspect (part iii. of 

fig 2.1), the final part of the methodotogy for constructing neural systems. The first part of 

the methodology, the number of inputs and outputs will in general be specified immediately 

by the nature of the problem in question. If it is not clear, a system of analysis with the use 

of padaJine techniques will identify important and relevant inputs and outputs to the system. 

The greatest difficulty in pursuing this design methodology will centre around the 

internal structure that is initially adopted. The final internal structure of the net will be 

problem dependent and so the initial structure should be influenced by the problem in 

question. Most training algorithms do not manipulate the structure of the network itself 

(except via a form of network trimming) so an initial structure general enough to be 

suitable for all problems is used. A large fully interconnected network provides the most 

general option, but this still leaves the question of how large should the net be ? How many 

layers are required in the internal structure of the net and how large should the layers be ? 

This is the area that requires special attention. What is the smallest fully interconnected 

network that can model any problem with a specified number of inputs and outputs ? This 

question is addressed in chapter seven of this thesiS. 

Having provided a suitable initial internal structure for the neural network, training 

can proceed. A suitable training set must also be provided. This is especially the case with 

problems with a large number of input nodes as these would require an impracticably large 

number of training points to be fully defined. 

Therefore new tech niques must be provided to be able to systematically reduce the 

number of training points required to produce a suitable network that behaves correctly. 

This raises the question about how we can be confident about the behaviour of the net over 

input values that have not been used in the training phase of the network. Work is required 

to investigate the relationship between the structure and representation of the network and 

the behaviour that is produced. Is there a method for ensuring that a network is perfectly 

predictable over all points ? Is this related to the internal representation of the network ? 

What is the best internal representation for ensuring correct behaviour of network ? 
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Outline of thesis 

The overall contribution of this thesis is in the study of neural network 

representation and behaviour and the presentation of a methodology for designing and 

constructing neural network systems. Part III of the thesis discusses the design methodology 

and the specific properties of networks that must be known when implementing this 

methodology. Its application to the design of reliable neural systems is examined. 

The design methodology makes use of several techniques and properties that have 

already been well established (the feedforward network structure and the padaline 

linearising technique). as well as new techniques and properties developed in this thesis 

(for example. sandwich nodes which isolate independent regions which can be treated as 

knowledge atoms and results on the size of networks required to model specific problems). 

The design methodology systematically presents the essential stages in constructing a 

reliable neural network system. The size and topology of a neural network must be known 

before the design can proceed. The number of nodes and layers required for the specific 

application must be specified. This question is extensively examined in this study and the 

results are presented in chapter seven. Boolean transformations are examined and results on 

the number of layers and size of the layers required presented. A new network topology the 

I..oughborough Net is presented. This network topology exploits the parallel dependencies that 

exist in the nodes in the hidden layer of the network. 

The analysis is extended to the case of real valued inputs in chapter eight. This draws 

on work by Huang et al('91). and Mirchandani et al(,89), extending their work to the 

considerations of reliable network systems. Finally the methodology for engineering reliable 

neura:l networks is applied to the design of control systems. The Loughborough Control Net is 

presented in chapter eight. This is a new network topology suitable for implementing neural 

control systems. The Loughborough Control Net is applied to the design of a neural controller 

for a glue dispenser and presented in chapter nine. 

Part 11 of this thesis discusses the properties of neural network systems and their 

representations. Interpretations of neural network representations are introduced. The 
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interpretations of neural networks be it of a logical transformation, a rule system or 

another formal representation, is the only knowledge available about the internal structure 

and representation of the network. The importance of the interpretation is placed in the 

context that the belief about the behaviour of the network can only be based on this 

interpretation of the network. If this interpretation of the network is unreliable then the 

behaviour of the network will be unpredictable. 

Chapter three examines the internal structure of neural networks and provides an 

interpretation of the nodes as Boolean transformations. This in turn provides an 

interpretation of the neural network representation as a system of rules and vice-versa. 

Understanding the internal structure of a neural network is essential for ensuring the 

reliable behaviour of the network. 

In chapter four the structure of the internal representations of neural networks is 

discussed. The behaviour of the representations under various different learning algorithms 

is examined. Several specific problems are examined (parity in particular), to examine the 

success of the training mechanisms. 

New representational dependencies are discussed in chapter five. These are the 

parallel and ghosting techniques which provide a computational approach to implementing 

c. sandwich nodes in networks. These can be viewed as the atomic knowfedge elements which can 

be manipulated in the networks. Several experiments are described which show the various 

merits of different internal representational schemes. The computation merits of 

introducing dependencies into the internal representations is discussed. 

The ability to make use of knowledge in the implementation of reliable neural systems 

is examined in chapter six. The sandwich nodes that are introduced here are an ideal 

representational scheme which are further developed and applied to control problems in 

chapter nine. 

This thesis does not address general recurrent neural networks or symbolic neural 

computation. Both these areas are important fields of study in the development of general 

computational systems. The work in this thesis will aid the design of general neural 

reasoning systems, providing a framework in which the behaviour of neural networks can be 
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fully understood. Chapter ten gives a more detailed account of the avenues that are opened by 

this thesis. 

Summary 

The motivation for the work in this thesis was analysed in this chapter. The need to 

understand neural network model's function and behaviour was emphasised. The lack of 

literature in this area was highlighted. 

The structure of the thesis was outlined examining the themes of neural network 

representational properties. neural network interpretation and neural network reliability. 
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Part 11. Properties of Neural Representations 



Chapter 3. Interpretation of Neural Network Systems 

Outline of chapter 

The modelling of Boolean transformations by neural networks are examined in this 

chapter. Viewing neural networks as Boolean transformations gives an insight into their 

representational power. This is discussed further in chapter seven and eight. 

An equivalence between bipolar neural networks and Boolean transformations is 

established. The modelling of standard Boolean functionlwith neural networks are e.xamined 

and the Boolean representational power of single nodes are studied. The "object" definition of 

a Boolean transformation with a small number of inputs is presented. It is used as a tool to 

examine the structure of neural network models of Boolean transformations. 

An interpretation scheme for transforming from bipolar neural network models to 

Boolean transformation models is presented. This is then extended to rule system 

representations. 

The analysis of Hopfield networks as Boolean panems of activity are examined and 

will aid analysis of the training techniques discussed in chapter four. Finally the 

interpretation of neural networks as models of training sets is examined. This gives insight 

into the neural network structure required to model the data in question. 

Bipolar feedforward neural networks 

A specific class of bipolar feedforward network are studied in this thesis. but the 

extensions and generalisations to other systems will be discussed. Throughout this section we 

will consider feedforward networks. with standard summing bipolar threshold units as the 

nodes (see fig 3.1). The output from node Yk i is given by the formula: 

Yki = threshOld(L"j=owij" Yk-1j). 

Yk i is the output of the node i in layer k and Wj j is the weight on the connection between the 
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node Yk i and the node Yk., j ard y. 0 is identically' and is known as the bias of the node. 

threshold is the threshold function (fig 3.2) defined as: 

threshold(X) = +1, for all X > 0, 

threshold(X) = ·1, for all X < 0. 

Therefore whatever the input to any particular node the output will always be either +1 or • 

1. This type of network can be easily generalised to those using a sigmoid function with a 

targe derivative at the zero point (see fig 3.2c). That is , for a sigmoid function defined as: 

slgmoid(X) = (2/(1 + exp(·X/T» . 1) 

where T is the temperature, if T is small the derivative of sigmoid(X) will be large at X = O. 

The temperature T is taken from the analogy with the Bolzmann nets (Hinton '89 and 

Rummelhart et al '86) which generate the output values stochastically based on the output of 

the sigmoid function. 

A node with a threshold unit will always have bounded output values. If the unit is 

thresholded in a bipolar manner the output values will be constrained such that -1:S; Yki:S; " 

see fig 3.2 a,b & c. Given a sigmoid threshold function with a low temperature factor T or 

conversely a large input value Xki then the output values of the node can effectively be 

constrained to -1:s; Y k i :s; -1 + B or 1 - B:s; Y k i SI, where B is a small positive constant. 

Therefore given a network with a low temperature, ensuring high input values will 

effectively guarantee Boolean decision values. That is the output from each node is either + 1 

or -1. When a network has converged after training, the nodes in the network essentially 

behave as Boolean units (see chapter four), all the weights have been suitably reinforced to 

produce large inputs. 
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Input Nodes 

Y(k-l)l 

Threshold 
Unit Output Node 

Y(k-l)j Of--_W~ijl--_~ Xki I ~~ 'r1<i 

Fig 3.1 The connection scheme between layer k-l and a node on layer k in a feedforward 

network 

a b 

Fig 3.2 8. Threshold function threshold. b. Sigmoid function sigmoid 

c 

Fig 3.2 c. Sigmoid function with a low temperature 
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Neural networks as models of Boolean transformations 

1 1 

2 
Hidden 

2 
2 

2 
network 

n k 
Structure 

p 

Fig 3.3 Structure of a general neural network. There are n input nodes, p output nodes. The 

activity feeds forward from input nodes to the output nodes 

The function f: Bn_ >BP, a Boolean transformation from n inputs to p outputs, can be 

modelled by a bipolar neural network with n inputs and p outputs. Fig 3.3 shows a general 

neural network with a multilayer hidden network structure. The intermediate network 

structure that is required to model the given mapping is discussed in generality in chapter 

seven. The properties of individual nodes and their ability to model Boolean functions is 

examined in this chapter. 

a b 

ror 
c 

Fig 3.4 Single node representations of; a. AND, b. OR, and c. NOT. The bias nodes are shown as 

solid circles, the values of which are identically 1.0 

Any Boolean transformation can be modelled by a neural net. This is the case since we 

can give a formula of any Boolean transformation using just the operators AND, OR, and NOT, 

which in turn can be modelled by a single node each (see fig 3.4 a, b, cl and placing the 

formula in disjunctive or conjunctive normal form. The standard logical AND and OR 
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operators for any number of arguments can be modelled by one layer of weights, that is a 

single node. As seen from fig 3.5 a, b, the AND is constructed by a large negative weight and 

the OR by a large positive weight on the bias line that can only just be overcome by all of the 

arguments being true (+1) or false (-1) respectively. The NOT operator is represented by a 

negation of the value of the weight connection and so does not add any extra layers to model. 

2 

k 

AND 

a 

1 

2 

k 

b 

Fig 3.5 Single node representations of a. k input AND and b. k input OR transformations 

Therefore the neural network can be constructed from the Boolean formula of the 

transformation with node units that represent the atomic Boolean operations. Huang et 

al('91) presents a different scheme for producing a neural representation of a Boolean 

transformation given the training points to be modelled .. This is achieved by constructing 

hidden nodes that isolate the separable elements of the training set. In general these 

techniques do not produce optimal representations. That is, networks that use the minimal 

number of nodes that are required to model the problem in question. This is largely due to the 

fact that strictly Boolean operators are a subset of those that can be implemented by a single 

neural operator. This is easily demonstrated by taking the two extreme cases of the k input 

AND and the k input OR operators shown in figure 7. The OR node represents the truth of the 

statement onenode(on), that is there is at least one node firing +1 in order for the output to 

be +1. By reducing the bias weight by 2.0 we require any 2 nodes to be on in order for the 

output to be +1 giving a modal operator twonode(on). There are many of these operators 
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derived solely by allering the bias weights and keeping the input weights fixed at 1.0. By 

altering the input weights we can derive a further large class of operators. Although these 

operators are more general than the class of Boolean operators they cannot represent more 

statements than those representable by an arbitrary collection of Boolean operators, 

however they are more economical in their representation. 

Object definition of Boolean transformations 

Neural networks with a single output node are examined in this section. This 

Simplification aids the analysiS considerably although some of the results which are 

immediately applicable will be extended to the mulliple output case. We can view any 

particular transformation with n input nodes and one output node as defining an object in an n 

dimensional Boolean space, where if f(x)= +1 then that point is in the object, i.e. it is of 

interest, while if f(x)= -1 then that point is outside of the object, it is not of interest. 

The nodes in the hidden layer represents a hypersurface in the n dimensional space 

that separates the space into two regions. One where the node gives a value +1 and the other 

side of the hypersurface where the node gives the value -1. This idea is used to produce 

diagrams of specific transformations. The input space is shown as corners of a hypercube. 

When f(x)= +1 the point is shown by a filled Circle while when f(x)= -1 the point is shown 

by a empty circle. Exclusive OR in two dimensions is shown in Table 3.1, and its object 

definition in fig 3.6a. These object representations will reduce the need to give full inpuV 

output definitions for particular transformations under consideration. Annotations with 

planes representing the hidden nodes will remove the need to give the network 

representations. The object representation will show both the transformation definition and 

the networks that model it. 
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B 

+1 -1 

+1 +1 -1 

A 

-1 -1 +1 

Table 3.1 Table of values for the transformation XOR shown in fig 3.6a 

a b 

Fig 3.6 a. Object representation for XOR. b. Object definition of not(or) showing the node line 

that mOdels the problem 

The node defined by the bias -1. and two weights -1 and -1 (represented as node(-

1.-1.-1» defines the Boolean function not(or). The object definition of this function and the 

line that represents node( -1.-1.-1) is shown in fig 3.6b. 

As stated above. any node can be represented as a Boolean transformation. Its formal 

representation may be particularly complicated. nevertheless it is a Boolean formula. Given 

a node we can convert it to Boolean form by the following technique. 

Given a node with its bias value and weights. say (b.w1.w2 •..• wn) ; 

if Ibl > r"i=l Iwd. then node value is True if b > O. or node value is False if b < O. and 

similarly for all the weights; 

if Iw11 > Ibl + r n
i=2 1 wd. then node value is inpuCnode_l. if wl > O. or node value is 

input_node_2. If wl < O •• _ •• 
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if IWnl > Ibl + r n-1;= 1 I w;l, then node value is inpucnode_n if wn > 0, or node value is 

inpucnode_n if wn < O. 

Otherwise node is (b + w1,w2, .. ,wnl 0 r (b - w1,w2, .. ,wnl, where (b + w1 ,w2, .. ,wnl and 

(b - wl ,w2, .. ,wn) are two nodes with one less input node than the original node. 

The above provides an iterative scheme for converting all neural network nodes to 

Boolean formulae. A complete neural network can similarly be converted into a Single large 

Boolean transformation by converting all the nodes in the network to Boolean representation. 

Example 

Given the node 0 in fig 3.7, we can derive a logical definition of its function. 

A 

8 o 

C 
Fig 3.7 A node with three inputs 

node (bias, A, B, Cl has no weight such that IWj I > r3;:O,i,oj Iw;l, therefore set A= 

+1 and A=-1,then; 

node(bias, A, B, Cl = (A and node(bias+0.5, B, Cll or (not(A) and node(bias-0.5, 

B, Cll. 

node(bias+0.5, B, Cl has no weight such that IWjl > r 2;=o,;,oj Iw;l, therefore set B= 

+1 and B=-1,then; 

node(bias+0.5, B, C)= (B and node(bias+0.5+0.75, Cll or (not(B) and 

node(bias+0.5-0.75, Cll. 

node(bias-0.5, B, C) has weight B such that 10.751 > 101 + 10.51. therefore 

node(bias-0.5, B, C) = B. 
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node(bias+ 1.25, C) has weight bias such that 11.751 > 10.51. therefore node(bias-

0.5, B, C) = +1. 

node(bias-0.25, C) has weight C such that 10.51 > 10.251. therefore node(bias-0.25, 

C) not(C). 

Therefore D = node(bias, A, B, C) = (A and (B and + 1) or (not(B) and not(C))) or 

(not(A) and B)) = ((A and B) or (not(B) and not(C))) or (not(A) and Bll. 

The Boolean formulae for the nodes can be considered to be rules and the neural 

network a system of rules. The equivalence of the node to the Boolean transformation is 

interpreted as an implication operation. Namely the logical equivalence; 

D = ((A and B) or (not(B) and not(C))) or (not(A) and B)) is given as; 

D <- ((A and B) or (not(B) and not(C))) or (not(A) and B)), with the usual 

definition of implication. Normal node execution performs the modus ponens reasoning 

scheme. There is no natural and simple network execution strategy that will perform modus 

torrens. 

This provides a natural transformation between rule systems and neural networks. 

Due to the feedforward nature of the neural networks, no recursive rules can be implemented 

in the neural system. 

Example 

The network given in fig 3.8 can be interpreted as the rule set; 

D <- fl (A,B,C), E <- f2(B,C), F <- f3(A,C), G <- f4(D,E), H <- f5(D,F), where the 
functions fl-f5 are Boolean transformations. 

A 

B 

c 
Fig 3.8 A neural network that can be inlerpreted as a rule system 
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Boolean models of Hopfield network behaviour 

The nodes in a Hopfield recurrent network can be modelled by Boolean activities. This 

is natural il we have hard limiting logical devices, but also applies to sigmoid thresholded 

systems in which the network has converged to a stable state. In this case the stable values 

are Boolean patterns and so the representation and behaviour can be analysed accordingly. 

The stable state patterns are stored over a fixed number of nodes and so the behaviour 01 the 

Hoplield network can be studied by analysing the matrix 01 activity patterns over the 

different nodes. This is illustrated in fig 3.9 for the stored pattern in table 3.2. The 

recurrent network structure that models this problem is shown in fig 3.10. 

pat ~ 0 1 2 3 

0 -1 -1 -1 -1 

1 -1 -1 1 1 

2 -1 1 -1 1 

3 -1 1 1 -1 

4 1 -1 -1 1 

5 1 -1 1 -1 

6 1 1 -1 1 

7 1 1 1 -1 

Table 3.2 Matrix of node activity over the training set 
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.. 3 
Fig 3.9 Plot of the training points shown in table 3.2 

Whenever we are interested in the behaviour of a particular node. over the various 

input patterns (that is the stored patterns). the relevant column in the activity matrix 

provides the required information. Since the pattern of activity of different nodes are distinct 

( if this were not the case they could be amalgamated ( see chapter seven) and treated as a 

single node). the node behaviour can be correlated against the other distinct nodes. The 

correlation values of the node activities are important when we come to examine the 

representational properties and training schemes of Hopfield networks (see chapter four) . 

. Fig 3.10 Hopfield network used to model the problem in table 3.2 

Training sets and interpreting neural networks 

Throughout this study. neural networks are examined on their ability to model a 

specific transformation. In the recurrent Hopfield network regime there are no specific 

input and output nodes as such. A number of patterns are stored by these networks. The 

network truly represents the patterns that are stored over the nodes and not some specified 

transformation from input nodes to output nodes. 
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With this motivating example we can view feedforward neural network systems via 

the training sets that they are required to model. Given these conditions the neural system 

need only model the training set in question and its performance over any other point is 

ignored. it is not drawn into question. This contrasts with the transformation approach to 

feedforward systems. where the network has to model a specific transfonnation which is 

defined over all the input space. 

The usefulness of this approach is in the number of different transformations that can 

possibly model a small training set. A small training set specifies output values for only a 

few input points in the training set and so does not constrain the values of the outputs on the 

remaining input points. Therefore many underspecified transformations will be capable of 

modelling the training set in question. 

A training set has the following properties. The training set is a set of arbitrary 

binary data points and so is not dependent on the network architecture under consideration. 

The data itself need not be viewed as specific input and output values but should be viewed as 

activity over specified nodes. In the feedlorward neural network environment. the structure 

of the network forces an interpretation of input and output nodes onto the various nodes In 

question. 

A training set can be viewed to be a definition of the space 01 interest. the points that 

are in the training set. and that not 01 interest. the points that are not in the training set. 

Given the specific training set we can predict whether a particular network structure can 

model that training set or not. This is further examined later in this chapter. 
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Feedforward neural networks 

t~ patt Input 1 Input 2 Output 

0 -I -I 1 

1 -I 1 -I 

2 1 -I -I 

3 1 1 1 

Table 3.3 The exclusive or transformation from two inputs to one output 

A feedforward architecture has explicit input and output nodes (Table 3.3), yet the 

training set can still be viewed as a data pattern explicit from the input output structure 

(Table 3.4). The training set are then just bit patterns that have to be stored in the network. 

With the unbiased data points, we can make any inpuVoutput decisions required to model the 

data with the given architecture. Effectively, we can break away from viewing the training 

set as a predefined input and output structure, but can choose whichever nodes most 

effectively perform the function of an output node. 

I~ patt 0 1 2 

0 -I -I 1 

1 -I 1 -I 

2 1 -I -I 

3 1 1 1 

Table 3.4 Training set for the exclusive or problem with two inputs and one output 

The properties of the network architecture chosen will dictate whether the training 

set can be represented or not. The property of the McCulloch and Pitts neuron which can only 

distinguish linearly separable sets provides the representational limitations of neural 
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networks. Training sets as arbitrary patterns arise naturally in recurrent network 

structures such as the Hoplield network. The properties of Hopfield networks and their 

abilities and limitations at storing bit patterns are discussed in chapter lour. 

For a leedlorward network to model a training set an explicit output must be defined. 

This is the output node specified by the network architecture of the feedlorward network. The 

simplest method of defining this output node is to provide the value + 1 il the given input 

point is in the training set and -1 if the given point Is not. That is the network works as a 

metalevel pattern recogniser, rather than as an implicit input output transformation unit. 

t~ pall 0 1 2 3 

0 -1 -1 -1 -1 

1 -1 -1 1 1 

2 -1 1 -1 1 

3 -1 1 1 -1 

4 1 -1 -1 1 

5 1 -1 1 -1 

6 1 1 -1 -1 

7 1 1 1 1 

Table 3.5 Metalevel definition 01 Exclusive or with two inputs and one output, the final node 

provides a decision as to whether the pallern over the other nodes is a stored pattem or not 

When a data point is presented to the network, the activity is passed through the 

network, resulting in the final output of + 1 or -1, depending on whether the presented 

pattern was part of the training set or not. The main problem with pursuing this approach is 

the inefficiency of the network structure adopted. Many extra metalevel training points must 

be provided to fully define this pattern recogniser. This is illustrated by examining the 

"exclusive or" example. Table 3.5 illustrates all the points that must be stored in this 

metalevel network system, when the original training set was a large factor smaller (table 
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3.4). 

To fully exploit the power of the feedforward representation. we must employ a 

network that has at least one explicit output node. That is an output node that behaves as one 

of the nodes in the training set. For such a node to exist. the training set must be closely 

examined. For a node in the training set to be an output node. it must be uniquely defined for 

all the patterns in the training set over the other nodes in the training set. This is illustrated 

by the example in table 3.6a. where any single node can act as an output node. In table 3.6b. 

node A and node B can not act as output nodes. since If A was an output node. we would have the 

transformation B. C -> A : (-1.1) -> 1 and (-1.1) -> -1. which is inconsistent. and 

similarly with B as an output node. The only possible consistent output node is C. 

I~ pan A B C pat t~ A B C 

0 -1 -1 1 0 -1 -1 1 

1 -1 1 -1 1 -1 1 1 

2 1 -1 -1 2 1 -1 1 

3 1 1 1 3 1 1 -1 

a b 

Table 3.6 a. Training set where any node can act as the single output node. b. Training set 

where node C is the only possible consistent output 

Multiple output nodes 

Given more than one possible output node. we can select anyone to act as the output 

node of the system. Having selected one output node. H may be possible to select more output 

nodes without any inconsistencies arising. We continue this process until no more output 

nodes can be selected. In Table 3.6a. any node can be a single output node. but no two together 

can act as output nodes since inconsistencies arise. For transformation A -> (B.C) we have 1 

-> (1.1) and 1 -> (-1.-1) and similarly for output nodes (A.B) and (A.C). 
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pat t~ A B C 0 

0 -1 -1 1 -1 

1 -1 1 -1 -1 

2 1 -1 -1 1 

Table 3_7 A Training node that explicitly allows multiple output nodes 

Table 3_7 shows an example where any node can act as a single oulput node, but only 

(0, A or B or C) can be double output nodes_ That is, (B,C) can not be double output nodes 

since (A,D) -> (B,C) have the training points (-1,-1) -> (1,-1) and (-1,-1) -> (-1,1), 

which are inconsistent. 

Summary 

This chapter examined the role of Boolean representations of neural networks. The 

equivalence between converged neural networks and Boolean transformations brings the 

connectionist techniques into the realm of reliable and predictable systems. These ideas are 

further developed in the following chapters. 

Neural networks were examined as model of training sets. The training sets admit an 

interpretation as a transformation which can then be modelled by feedforward systems. This 

notion of neural models of training data will be used to construct a measure of neural network 

reliability and predictability in chapter four. 
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Chapter 4. Learning and the Behaviour of Internal 

Representations 

Outline of chapter 

Backpropagation is used to train feedlorward neural networks. The training algorithm 

executes iterative hill climb to minimise the delined error function 01 the system. Perfect 

steepest gradient descent schemes would force the system into the nearest local minima. This 

is undesirable, so varying iterative schemes are examined. These hope to avoid the local 

minima and converge to the global minima. This chapter provides some insight into the 

experimental result on neural network convergence. 

Training is examined as the problem 01 modelling data sets with neural network 

systems. Different training schemes are discussed, outlining the role 01 temperature, 

learning rate and momentum terms in the backpropagation training algorithm. 

The local properties 01 the training algorithms are examined. The effect of training on 

the weights and node activity are examined. The nole 01 temperature, learning rate and 

momentum terms in avoiding problems of local minima are examined. 

The training algorithms developed lor Hopfield nets (Aleksander et al '90, Hinton '89 

and Rumelhart et al '86) are examined. The training of hidden nodes in recurrent networks 

are examined particularly the Markov chain models. It is shown that specific cases exist 

where the hidden nodes can be trained using a one pass Hebbian training rule. 

The training of networks over reduced training sets are examined and the role that 

they play in the reliability of the neural network is discussed. Two measures of reliability 

are introduced. One based on ihe uncertainty in the transformation being modelled and the 

second based on the reliability of the behaviour of the neural network. 
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Training Neural Networks 

In order to construct useful network representations of transformations, a specific 

methodology must be adopted. The following three elements are required; 

i. the initial network structure, 

ii. the set of data on which to train the net, and 

iii. the training algorithm that is needed to adapt the initial network structure. 

More broadly we can view this as follows; 

i. the initial knowledge of the system. 

ii. the new knowledge to be imparted, the training set, and 

Hi. the training methodology. 

When implementing a neural network for a specific problem it must be trained. 

Training a neural network is a matter of manipulating the behaviour of the network. Once the 

behaviour corresponds to that which is desired, training can cease. 

The system requires a specific behaviour, that is a specified transformation from 

input to output. A specific Boolean transformation may exist, a rule system or another 

formula for the desired behaviour. This behaviour will be defined over a given subset of the 

input space. Training will proceed over this subset of the input domain. The neural network 

is said to have converged when the training set is correctly modelled. The correct behaviour 

of the neural network is only guaranteed over the training set, therefore the total behaviour 

of the neural network is only guaranteed if the training set is the whole input space. That is 

neural network training should be viewed as a convergence to correct behaviour over the 

training set. Correct training of the neural network can be viewed as the representation of 

the given 800le8n transformation, rule set or another specified formula of behaviour. 

Available knowledge 

When modelling an arbitrary transformation there are some pieces of information 
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available, we have some knowledge of the system. The most basic knowledge is that of the 

number of inputs and outputs, which is defined by the nature of the transformation being 

modelled. This is available even if the actual specifics of the transformation considered is 

unknown. Any binary valued transformations have well defined input and output fields, while 

continuous real valued input and output fields can be digitised to a prerequisite degree of 

accuracy. Nothing is lost by specifying this digitisation of the input fields since all neural 

systems essentially deal with digitised data after the first layer of nodes. 

Given the limit of one hidden layer in a network as discussed in chapter seven, we 

specify that the Boolean neural networks we construct have no more than three layers of 

nodes. The limit of the same number of hidden nodes as input nodes for each output node as 

also discussed in chapter seven provides us with the number of hidden nodes that the network 

will have. This will be the maximum number of nodes and layers that we will require, 

whatever the actual transformation being modelled. The nodes in successive layers are fully 

interconnected. Given this topological limit on the network we can proceed to train it to 

behave correctly. 

When no knowledge about the actual transformation being modelled exists, the above 

network structure is the best that can be constructed. The value of the weights in the network 

are given by the specific knowledge that may exist about the transformation being modelled. 

If the initial knowledge about the transformation is nil, then this will be reflected in the 

weights of the network. When no information exists small random weights are used since if 

they were all zero, the training algorithms would not distinguish them from the case where 

no links exiSt. The experiments of appendix A 1 show that the initial weight values of the 

neural network have a great influence on the success of the automated training algorithm. 

If knowledge about the transformation exists, this is the stage at which it should be 

included. If the transformation is known to be symmetric about an input, this would be 

reflected in the weights. If a network representation of a subspace of the transformation is 

known, this would be a stage to include it in the new representation. Improvements in the 

training phase will be gained by the use of this knowledge. An experiment is discussed in 

appendix A4 in which the training performance of neural networks initialised with different 
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information about the transformation being modelled is examined. 

Training examples 

The training examples are used to to train the network, they are a subset of the total 

input space. The initial configuration of the network will in general not correctly represent 

the training set. The training algorithm adapts the network to the point where it maximally 

represents the training set. If the algorithm does not become stranded in a local minimum, 

the network produced after training will fully represent the training set. 

Unless the training set is full, that is, it is the complete input space, it cannot be 

. guaranteed to model a specific transformation. This means that points in the input space that 

are not in the training set will behave in a manner dependent on the initial configuration of 

the net and the training algorithm employed, and not the particular transformation in mind. 

We can see that this is the case from the following analysis. Given a network with a 

specific weight configuration we can train it on a subset of a transformation say A and also on 

a subset of a transformation 8. If A(t)= 8(t), for all t from the training set, then the two 

networks that have been trained will be identical. Now if A and 8 are distinct transformations 

then there will exist a point x say, outside the training set for which A(x) .. SIx). The 

network representation of A and 8 will both produce the same output for the input x and so 

one of the network representations will be incorrect for this input. 

Therefore predicting the generalisation properties of networks are almost 

impossible. More knowledge about the network representation prOduced must be employed 

before we can predict its behaviour over points not in the training set. 

Training methodologies 

The training methodology most commonly used for feed forward networks is that based 

on backpropagation. The procedure for investigating learning via backpropagation involves 
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examining the behaviour of the net over the training set and seeing how much the actual 

behaviour differs from that of the desired behaviour. All the weights in the network are 

updated in a direction and by an amount that minimises this difference. The details of the 

algorithm are discussed below. 

Backpropagation 

The error in the output for a particular input x, E(x), is given by the formula; 

E(x)= O(x) - R(x), 

where O(x) is the desired output for the input x while R(x) is the actual output for the net. 

The update that is applied to each weight in the net is proportional to its effect on the error 

function, namely, l1w= -11 dEldw, where 11 is a positive constant called the learning rate. 

The backpropagation may proceed iteratively over the input values, that is the 

weights are adjusted after each example from the training set is taken. A different approach 

is to calculate a total error function over all the training set. This second method would 

behave in a truer gradient descent manner, but as discussed below, this in itself is not an 

advantage when the search space has many points of local minima. Therefore for the most 

part, systems that adjust the weight space after each pass of the input examples have been 

implemented. 

It can be seen that backpropagation instigates an error gradient descent in weight 

space. If it were a true steepest gradient descent procedure, then it will almost certainly get 

stranded in any local minima that exist. This is the case, since in a network which is near a 

local minimum, the steepest gradient will be towards that minimum. On reaching the 

minimum the training algorithm will not be able to move away since the gradient will be zero 

at that point. For real applications we must utilise a training algorithm that overcomes these 

problems. Several strategies already exist. 
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Temperature, learning rate and momentum terms 

In order for the backpropagation algorithm to execute true steepest gradient descent 

any update in the weight space must be infinitesimal. In any real implementation this is 

impossible. 

The first factor that affects the behaviour of the backpropagation algorithm is the 

learning rate. This is the proportional constant that influences the magnitude of the update 

that is carried out on each iteration. If the learning rate is too high, then the network will 

oscillate between nonoptimal states. If it is too low then convergence will take many 

iterations, which is undesirable. (See appendix A2). 

There is a close relationship between the learning rate adopted and the temperature of 

the network system. The temperature is the proportional constant applied to the input in the 

sigmoid threshold function. The node formula is given by Output= sigmoid(l;wjxj)' where 

WjXj are the weighted outputs of the nodes from the previous layer. The sigmoid function is 

given by the formula; 

sigmoid(x)= 2/(1 +exp(-xll)) - 1, and 

dsigmoid(x)/dx = 2 exp( -xll)1 t (1 +exp( _xlI))2. 

The update formula for the weights w can be given in the form; 

Ilw= -11 dEldw = -11 dEldv.dv/dy.dy/dw, where v= sigmoid(y), y= l;wjxj' 

00 Ilw= -11. 2( exp(-xlI)1 t).(1+exp(-xll))2.( dE/dv.dy/dw). 

Therefore from the formula above we see that the term lit behaves like a learning 

rate parameter. That is. by decreasing t we can effectively increase the learning rate. (See 

appendix A3). 

The final method by which standard backpropagation algorithms deviate from steepest 

gradient descent approaches are with the use of momentum tenns. If a steepest gradient 

descent procedure gets stranded about a local minimum the search is unable to proceed 

further, the algorithm oscillates about this minimum. To inhibit this property. momentum 

terms are applied to the update procedure. The function is to reduce oscillation and ensure 
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that the search proceeds in a purposeful direction. 

The momentum terms are implemented by applying a proportion of the previous 

update to the present update. That is the weight update formula is given by; 

l!Wt+ \ = -11 dE/dwt + 6. l!Wt 

as the iterative cycle continues the eHect of the momentum term diminishes if 6<1. That is 

the momentum term is only eHective for a few cycles after it is initialised, it decays. 

Properties of the backpropagation algorithm 

Training a neural network system with the backpropagation algorithm is a balance of 

interrelated elements. The combined action of the nodes in the diHerent layers of the network 

produce the specific behaviour. The training algorithm coordinates the perturbation of the 

weights and nodes such that the total behaviour of the network over the training set converges 

to that which is desired. The training algorithm is examined in detail, emphasising the 

specific elements that aid optimal convergence. 

Training an individual node 

Given a particular output node (fig 4.1) we can define an error function on the node 

for each training example as; 

E = (Od - 0a) 2, where 0a is the actual output from the node while Od is the desired 

output. 

2 

k 
Wi 

Fig 4.1 A single node with several inputs and one bias weight 
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The update formula for the backpropagation algorithm is; 

LI. wi = -11 ilE/ilwi ' where E is the error function of the network, -11 the 

learning rate, a small constant and wi the weight values. The iterative update of the weights is 

such that the error function is minimised. 

The first point of interest about the update rule is that when a point is correctly 

classified, no change in weight is made. Only incorrectly classified points contribute to the 

learning. This is desirable since if all the training set is correctly modelled by the network, 

no update in the weight values would be required. One disadvantage is that there is no positive 

training factor. That is all the points that are correctly classified will not contribute to 

actively maintaining the structure of the network. There is no resistance force from the 

correctly classified points to changes in the weight space. The few incorrectly trained points 

will provide all the forces for developing the network. 

If the incorrectly classified points contribute constructively in training then the 

algorithm will converge rapidly. Fig 4.2a illustrates this point. 

=> 
Fig 4.2 a. Constructive training 

In destructive training the incorrectly classified points force the representations to 

either oscillate or diverge to such an extent that originally correctly classified points become 

misclassified. Fig 4.2 a & b illustrate these points. 

<==> 
Fig 4.2 b. Destructive training 1) oscillation 
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==> 
Fig 4.2 c. Destructive training 2) divergence 

The simple examples above illustrate cases where the distinction between constructive and 

destructive learning are clear. Given systems with many more inputs and incorrectly 

classified points, changes that reclassify a few points either correctly or incorrectly, can not 

so easily be termed constructive or destructive learning. Only the global behaviour of the 

algorithm in correctly classifying different numbers of points can allow this judgment. This 

can be seen in the results of the experiments described in appendix B. During 

backpropagation training, many iterations produce an increase in the sum squared error 

measure. Destructive learning has occurred at this point. Often this destructive learning is 

advantageous as it allows the present representative structure to be broken, so allowing a 

more favourable start point from which to converge. 

Local learning 

The specific effect of an incorrectly classified point on the training algorithm is a 

significant point of interest. The global activity of the training algorithm will depend on the 

interactions of these micro activities. By examining the effect of an incorrectly classified 

point on different nodes we will be able to gain an intuitive idea of the effect of the point on 

all the different nodes in a particular network representation. 

Given a node threshold function f(rwjq), we have the node weight update formula; 

AWj = -1l(Od - 0a)(df(x)/dx)Oj, 

The term (Od - 0a) depends on how badly the training point is classified. Assuming we have 

just Boolean transformations, (a hard threshold function is employed), then (Od - 0a)= 0 if 
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just Boolean transformations, (a hard threshold function is employed), then (Od - 0a)= 0 if 

the point is correctly classified and (Od - 0a)= ±2, if incorrectly classified. Similarly 0i = 

±1. All these elements provide a component as to the direction of the change that is most 

suitable to model the training point in question. The magnitude of the change is depe ndent on 

the term df{x)/dx, which for a hard threshold function is almost zero (small) everywhere 

except when x is almost zero, where df{x)/dx is very large. This gives the resuR that for 

training points where LWiq is not almost zero, the magnitude of 6wi is dependent on the 

learning rate, that is this term must be adjusted for optimal performance. 

Now consider the case where we have outputs in the range IOal~1, that is we have soft 

threshold functions such as the sigmoid function with a high temperature term. These 

conditions give the following constraints, HOd - 0all ~ 2, (df{x)/dx) = 2 exp{x/T)/T(1 + 

exp(x/T))2; which is shown irifig 4.3. The important points to note are that (df(x)/dx»O 

and that it attains its maximum at x=O. (See fig 4.3). 

Fig 4.3 The differential of the sigmoid function 

With these criterion we can see that the magnnude of the weight update depends on 

how badly classified the point is and how close LWiq is to zero. The measure LWiq is a 

function of how close the training point is to the hyperplane that the node represents. 

Therefore the closer the training point to the node plane the greater its effect on the training. 

If I(Od - 0all « 1, then effectively the point is correctly classified. However, since the term 

is not zero there is still a contribution to the training algorithm. This is an advantage over 

the strict Boolean case, since even essentially correctly classified points have an effect on the 

training algorithm. 
\ 
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II we now consider the case where the input values can range over the values, 10d SI, 

we have a different effect manifesting itself in the training algorithm. The activity of the 

input nodes to the node have an effect not only on the direction 01 the update 01 the weights, 

but also its magnitude. The greater the activity of the particular input node, the greater the 

update in the weight value. This means that if the input node provides hard evidence, that is 

iOd = 1, it has the greatest effect on training, while il 10i I = 0, very little training is 

carried out. 

Training a two layer subnetwork 

Refer to the annotations of fig 4.4 lor the lollowing analysis of the training of a two 

layer subnetwork. 

2 

9 

mOk pOi 

Wki Wi 

Fig 4.4 Two layer network 

A two layer network consists of several different subcomponents which correspond to 

the situations discussed above. The inputs to the whole network are fixed Boolean inputs, The 

threshold functions are all sigmoid functions. 

Therefore the inputs to the nodes in the hidden layer are m(\ = il while the outputs 

01 the nodes in the hidden layer are in the region IpOd S 1. The analysis 01 the misclassified 

points corresponds to the situation above. The update formula is; 

~mwki = 'IL aElapOi *(df(x)/dx) * ax;lamwki = 'IL aElapOi *(dl(x)/dx) * mOk' 
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6mwkj = -~ aE/apOj ·(df(x)/dx) • ax/amwkj = -~ a EfapOj ·(df(x)/dx) • mOk, 

aEfapOj = I j aElaOa ·(df(y)/dy) 

x = ImwkjrrOk, 

y = IWjJl)j. 

An examination of the relevant formulae shows that the differences to the case 

discussed above, concerns the magnitude of the update based on the term aElapOj _ This shows 

that nodes that are weighted by a larger amount in the following layer are updated more. 

Corrections applied as a result of rnisclassifications by the neural network system can 

interleave one with another leading to interference on the training signal, that is the effect of 

aElapOj. If a point is misclassified by the whole system but correctly classified by a given 

node, a form of overtraining will take place on this node. Its weight values will be updated for 

the particularly misclassified point, even though it is essentially correctly classified by the 

node. 

The training of the second layer of weights is analogous to the case discussed above 

with IpOjl S 1, and HOd - 0all S 2. 

Multiple output nodes 

Refer to the annotations of fig 4.5 for the following analysis of the training of general 

two layer feedforward neural networks. 

mOk pOi cOj 

Wkj Wjj 

Fig 4.5 Multiple output network 
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The final layer of a multiple output network corresponcs to the single output case and 

training proceeds as described in the previous section. The raining of the first layer of 

weights must take into account the effect of the different outpul nodes. Each hidden node 

contributes to all the outputs of the network and so receives backpropagated error values 

from all of them. This is shown by the update equation below; 

amwkj = -11 aE/apOj *(df(x)/dx) * ax/amwkj = -11 aSlapOj *(df(x)/dx) * mOk• 

aE/apOj = ;(Lt aE/<lOa * dfy/dYj * <lydapOj) = ~(dE/aOa *dfy/dYj * Wjj)' 

x = l:mwkjrrOk• 

Yj = l:Wj jIDj. 

This illustrates how a hidden node can receive inconsstent signals from the following 

layers. This can lead to destructive learning if the node or nodes model a subproblem of the 

input space. Constructive learning will occur if the error signals allow the nodes to converge 

to more accurate representations of the input data. 

Intralayer communication and learning 

The existence of destructive learning in the hidden layer of a neural network can be 

illustrated by the example shown in fig 4.6. Here two nodes isolate a given region of the input 

space. The effect of a single point incorrectly classified by the network is to either expand or 

contract the two nodes' region of influence. Each node provides a contribution to the decision 

of the incorrectly classified point. but taken together they effectively cancel out. Namely if 

+ 1 is provided by the nodes for the region between the nodes, then the regions outside the two 

nodes will have a contribution of + 1 from one node and -1 frem the other. A total of zero. 

Therefore as a whole the incorrectly classified point is not influenced by the pair of nodes and 

so the pair should not be affected during training. The incorrectly classified point should be 

modelled by another point of the network structure. 
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a b 

Fig 4.6 a. Expanding influence in the hidden layer, b. Contracting influence in the hidden 

layer 

Fig 4.7 illustrates a situation where constructive learning can occur when a pair of 

nodes are being considered. In this case the incorrectly classified point is very near one of 

the nodes and so adjusting one of the nodes solves the problem. 

o t o 

c d 
Fig 4.6 Constructive learning in hidden layer, c. Before application of training action, d. 

After application of training action 

The overall effect of the interfering hidden nodes in general can not be predicted. 

Therefore this thesis proposes to structure the relationships between the nodes in the hidden 

layers. This formalises the interactions that occur and so allows better understanding of the 

network behaviour. This is further pursued in chapter fIVe and six. 
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Hopfield nets 

Hopfield nets are fully interconnected neural networks. The network connections are 

weighted and in general symmetric, that is Wj j = Wj j' where Wj j is the weight value of the 

connection from node i to node j. The output of a node is the weighted sum of the inputs to the 

node. A threshold may be applied to this value. The update of the nodes in the network may be 

synchronous or asynchronous. The node weights can be trained via a Hebbian learning scheme 

given by the formula below; 

Wj j = 1.1 ~Pk=1VkjVkj (for i ~ D, where vk are the members of the training set and 1.1 is 

a small constant. An iterative approach may also be adopted. 

If patterns are linearly independent, a pseudo inverse approach can be adopted (Geszti '90); 

Wj j = (1/N) ~Pk,1 =1Vkj( q' 1) klV1j' where N is the number of nodes in the network, 

~I = (1/N) ~Nj =1VkjV1j. 

Capacity of Hopfield nets 

Several results on the capacity of Hopfield nets exist. The first consideration is that of 

the representational power of the networks. In making capacity judgments, the limitations of 

the McCulloch and Pitts neurons must be considered. Each node ( a McCulloch and Pitts 

neuron) in a Hopfield net effectively behaves as an output. Each McCulloch and Pitts neuron 

is incapable of modelling the parity problem and its non linear variants and so a training set 

that includes these properties can not be modelled by a Hopfield net. This can only be 

overcome with the addition of true hidden nodes. This case is discussed later in this chapter. 

The pseudo inverse method of network training admits a quick limit on the capacity of 

the network. N·1 linearly independent patterns can be stored in a Hopfield net. This is seen 

from the fact that there are at most N linearly independent patterns in the N dimensional (N 

node) case. If there were N training patterns, the training sets would span the whole space. 
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This means that the training would give the weight values as Wj r 1, i=j and Wj r 0 for i.<j. 

(see Hertz 'Sl, Aleksander et al 'SO and Abu Mustafa '85). Therefore we can have at most N-

1 linearly independent patterns. 

When we have patterns that are not linearly independent, a different analysis must be 

made. Considering the input to each node hi when the pattern vi< is applied to the inputs, we 

have the following equation; 

hk. = ~N .. , w .. vk. = (l/N) ~N. ,~PI ,vl.vl. vk. therefore 
I "'-J= IJ J "'-J=" RI J J' 

hk. = vk. + (l/N) rN. _,LPI _, (I k)vl.v l. vk .. 
I I J- -,"'IJJ 

Defining the crossover term ck i as; 

ck i = -vkj(l/N) rNj =,rPI ="(I,,,k)vljVlj Vkj ,we have the condition that if ck j is 

positive and greater than one, then hkj will flip, that is it is an unstable node. The term ck j is 

a measure of the capacity of the net for the patterns chosen. Given a general training set, we 

can test Ckj for all k and all i, to see if the patterns will be stable. If they are unstable then a 

different network approach must be adopted. 

A general capacity measure of Hopfield nets would be useful, especially for large nets 

(large N) with many stored patterns (large p), since the calculation of all the ck j will grow 

exponentially in Nand p. Making assumptions that Nand p are large and that the training 

patterns are random give the capacity of the Hopfield net as p $ 0.138N (see Geszti '90 and 

Hertz 'Sl). This also agrees favourably with experimental measures 01 the capacity, p $ 

0.14N (Hertz 'Sl and Aleksander et al 'SO). 

By a similar analysis the capacity of the Hoplield net, using the statistical Bolzmann 

executjon strategy js found to be p $ 0.138N. 

Energy functions 

A Hopfield network with a specific update strategy can be associated with an energy 
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) function. This energy function will be minimised in the execution of the network. Therefore 

given an energy function whose minima are the trained states, the network will converge to 

these trained states. 

Given an energy function E defined over all the nodes hj we have; 

E = -(1/2)LNj =1 Wj jhjhj , 

dEldt = dEldhj .dhj/dt, where dh;ldt is given by the update rule, 

~hj = (St+~t) j - (SI) j' 

(SI+~I)j = sign(LNj =1 Wjj (SI)j), for the usual Hopfield update rule, 

dE/dhj is defined by the weight space Wj j. 

Optimisation 

With the existence of the energy function, the Hopfield nel can be used as an 

optimiser. If a cost function exists for a particular problem that can be defined in terms of 

the energy of a Hopfield net, that is all terms are linear in the nodes hj and there are no 

terms of higher order than hj hj then a network can be constructed to model the problem. 

When the network is executed the energy function and so the cost function will be minimised. 

The minimised solution may not be a global minimum and so the net must be run many times 

to obtain the best solution. 

Training hidden nodes 

Since the Hopfield model has significant capacity limitations, large networks must be 

used to model large training sets. The training patterns will be defined over a limited bit field 

and so hidden nodes must be exploited to gain the capacity to model the problem. How do we 

train the Hopfield net when we have these hidden nodes? Allowing the hidden nodes to settle on 

the most appropriate minima would be ideal. For a given input pattern the hidden node could 

take either value +1 or -1. One of these values will be suitable for each particular input 
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pattern. An approach to training the net and finding suitable convergence points for the 

hidden nodes is via the use of a Markov model of the net. (This is discussed be Aleksander et al 

'90) . 

Markov model of the Hopfield net 

The following symbols are introduced for the analysis of the Hopfield net and the 

states that it can represent; 

Training set defined over n nodes. DO. 0, •.. 0a •..• Dr. 0 saS r. 

o S r S (2n_ '). 

The network has N+ I nodes. N-n+ 1 hidden nodes. one bias node whose activity is 1. 

The number of possible states are 2N.namely; 

So. S" .. Sp •..• Sp. 0 s P s p. P = (2N_ I). 

The activity of the ith node in state Sp is (Spl j. The activity of the ith node in training state 0a 

is (Oa) i· 

The probability of a node being active in state Sp is; 

Pi = lhreshold(1f(1 + Bll= +1 or O. B = exp(-l:Nj =1 Wij (S~jIT). 

The probability of a node being inactive in state Sp is; 

~~ = threshold(BI(1 + Bll= 0 or +1. 

The probability of being in a state X with the clamped environment (that is the case where 

each input and output node is fixed to a training value) is P+(X). The probability of being in a 

state X with the unclamped environment is P"(X). 

P+( 0a) is 1fr since each of the trained states are equally probable, 

P" (Oa) 1=0 = P+( 0a) can be assumed. 

64 



Markov model of unclamped state 

The initial probability of being in an unclamped case is related to the probability of 

being in a training state; 

p- (Spl 1=0 = P- (Da) I=d 2N-n ,where Da Is the member of the training set that 

corresponds to Sp over the input nodes, that is for all input nodes k, (Spl k ~ (Da) k' 

P- (Spl 1=0 = 0 if there is no Da a member of the training set such that for all input 

nodes k, (Spl k = (Da) k· 

The progression of this system in time is given by; 

P- (Spl I = r P b =0 P- (St» 1-1 p(b,p), where p(b,p) is the probability of passing from 

state ~ to Sp in one bit change, 

p(b,p) = 0, for more than one bit change, 

p(b,p) = p((St» i)/N, for (St» i" (Spl i and (St» j ~ (Spl j .for i"i, 

p(b,p) = ~P((~ i)' for Sb = SP' and 

p( (St» i) = Pi' if (St» i = -1, or p((~ i) = ~R' if (~i = 1. 

These equations allow the converged state of the network to be calculated. The probability of 

the trained states occurring can be calculated from the relevant unclamped states; 

P- (Da) = r P b =0 P- (St»r(a,b), where r(a,b) is a relevance measure such that, 

r(a,b) = 1 if (~k = (Da) k over the input nodes k, 

r(a,b) = 0 otherwise. 

Markov model of the clamped state 

The initial probability of being in a clamped state is evenly distributed over the 

hidden nodes; 

P+(Spl 1=0 = P+( Da) 12N-n , where Da is the member of the training set that 

corresponds to Sp over the input nodes, that is for all input nodes k, (Spl k = (Da) k' 
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P+(Spl t=o = 0 if there is no Da a member of the training set such that for all input 

nodes k. (Spl k = (Da) k' 

When a network is running in a clamped mode only the unclamped nodes are allowed to 

change. This means that at each update the network states perturbs and then these states are 

clamped. This situation is modelled by the equations; 

P+(Spl't = r P
b =0 P+(St>l t.1 p(b.p). see previous definition of p(b.p). 

P+( Spl t = r P b =0 P+( St>l' t d(b.p). where d(b.p) is a relevancy measure when the 

network is clamped. 

d(b.p) = 1. if (Spl j = (St>l j' for all j not input nodes. 

d(b.p) = O. if there exists j such that (Spl j 7' (St>l j • where j is not an input node. 

After letting the Markov model converge the probability of the trained states occurring can 

be calculated from the relevant clamped states; 

P+( 0a) = r P b =0 P+( St>lr(a.b). where r(a.b) is defined above. 

Training 

The local update rule for the weights is; 

6Wi j = ·6G.T/( P+j j' p' j j)' where G is the information function 

p+ i j is the probability that unit i and j are both active in the clamped environment and p' i j 

the probability that they will both be active in the unclamped environment. The values of p+ i j 

and p' i j can be calculated from the Markov models above via the formulae; 

P+ij = r P b =0 P+(StJl f( i.j. StJl • 

P'i j = r P b =0 p' (StJl f (i. j • StJl. where f(i.j.StJl is a measure of the relevance 01 states 

%. suclh that. 

l(i.j.StJl = 1. if (St>l i = (St>l j = 1. 
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f (i ,j. St>l = 0, otherwise. 

The network can be trained by this mechanism but will require a great deal of 

computation. A similar performance can be obtained by judiciously selecting the hidden node 

values and training the Hopfield net as if there were no hidden nodes and giving the hidden 

nodes these specified values during training. 

Input pattern coding 

In order that a Hopfield net can model the training set, each training pattern must be 

defined over all the nodes, including the hidden nodes. This means that an almost arbitrary 

coding of the training pattern over the input nodes must be applied over all the nodes. This 

network must be capable of modelling the training set, so several criterion must be satisfied. 

Each node in the network is a McCulloch and PillS neuron and so is only capable of modelling 

thresholded linear transformations. Therefore the output node must be a linear 

transformation of the input and hidden nodes for the network to be capable of modelling the 

training set. This must also be true of the hidden nodes in the network. These considerations 

provide a constraint on the values the hidden nodes can take over the whole training set. 

If a large network exists, random patterns over the hidden nodes may solve the 

problem. However a more structured approach must be adopted to ensure suitable 

performance. 

The training algorithm for Hopfield nets make use of the correlation factor between 

the two nodes concerned to specify the weight; 

wi j = 11 rPk=IVkiVkj (for i '" j). This value depends on the hamming distance between 

the bit vectors Vi and Vj . Namely; 

rPk=IVkjVkj = p - 2·hamming_dislance( Vj' Vj)' From this equation it can be seen 

that the correlation of two nodes can be increased by decreasing the hamming distance 

between the nodes. A non linearity between input and output nodes is often asSOCiated with a 

low correlation between these nodes. Providing hidden nodes with a small hamming distance 
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from both the input and output nodes provides the possibility of modelling the training set 

with a Hopfield net. The hidden nodes provide a high correlation path between input and 

output. 

A necessary and sufficient criterion for linearity of the hidden and output nodes based 

on these correlation values can not be found. This is illustrated by the examples in tables 4.1 

a, b, c, that provide identical correlation values for the respective nodes but are linear and 

non linear transformations respectively. 

t~ pall 0 1 2 t~ pall 0 1 2 

0 -1 -1 1 0 -1 -1 1 

1 -1 1 -1 1 -1 1 1 

2 1 -1 -1 2 1 -1 -1 

3 1 1 -1 3 1 1 -1 

a b 
Table 4.1 a. & b. Linear transformations 

t~ patt 0 1 2 

0 -1 -1 1 

1 -1 1 -1 

2 1 -1 -1 

3 1 1 1 

Table 4.1 c. Non linear transformation 

Therefore the correlation values of the Hebbian learning technique do not guarantee 

correct representation unless we have a linear relationship between the input and output 

nodes. It is the linearity of the transformation that is the signifICant factor and not the 

correlation factors that determine whether a network can be trained. If a linear 

transformation exists then the Hebbian learning scheme is valid otherwise new network 

models with different hidden node values must be investigated. 
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Neural network reliability 

A neural network can be trained on a set of data. Its ability to model this training set 

and the ability to generalise to points not in the training set depends on the reliability and 

predictability of the neural model. To formalise these ideas a mathematical definition of 

reliability is given. 

Reliability of network output = Probability that output is correct. 

Given a network with a single output node and taking the simplified model of network 

training, that is the network converges to model the training set perfectly but is unable to 

predict the output over the other input values, we can give the following reliability 

measures; 

then; 

Probability(correct outputltraining point) = 1, 

Probability(correct outputlnot training point) = 1/2, 

n = number of input nodes, N = number of training points, 

Reliability = Probability(correct output) = (N + 2") 1 2n+ 1. 

Representational reliability 

Representational reliability of a neural model is dependent on the uncertainty in the 

transformation that is being modelled. Since there are a large number of possible 

transformations for a given number of inputs, the probability of correctly modelling a 

transformation decreases dramatically as the training set is reduced. 

Representational reliability = Probability that transformation is correctly modelled 

Therefore given a perfectly modelled training set; 

Probability(correct outputltraining point) = 1, 

Probability(correct outputlnot training point) = 112, 
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then; 

n = number of input nodes. N = number of training points. 

N· = 2n - N = number of input points not in training set. 

Representational reliability = Probability(correct model) = (112 )N· . 

Summary 

The various training algorithms that exist for creating neural models of data have 

been examined. These include those for feedforward systems. those based on backpropagation 

and those for recurrent networks. such as Hopfield and Bolzmann nets. which use variations 

on the Hebbian training rule. 

The local node level effect of the backpropagation training algorithm was examined and 

the types of internode interference that can occur discussed. Two reliability measures of the 

trained networks were introduced as a formal technique for examining the effect of training 

set size on the reliability and predictability of neural models. These measures will be used to 

analyse the effect of node parallelisation and similar structural techniques on neural network 

reliability (see chapter five and six). 
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Chapter 5. Paralielisation of Nodes in the Hidden Layer 

Outline of chapter 

The use of node parallelisation in neural systems is introduced. Parallelisation in the 

hidden layer is introduced as a mechanism of introducing interdependencies between the 

nodes. It is seen that this is one of the basic mechanisms for providing the training 

algorithms with knowledge of the node representations in the hidden layer. It is shown that 

sandwich parallelisation is natural in binary feedforward networks, and are indeed essential 

for minimal representations of some transformations. A training algorithm is presented 

making use of parallel nodes (ghost nodes). Sandwich parallelisation and polygonal 

segmentation are examined as techniques for structuring the nodes in the hidden layers of 

feedforward neural networks. 

Introduction 

Throughout this chapter we will be discussing bipolar feedforward network systems. 

As previously demonstrated (Hinde '90), these networks only require one hidden layer of 

nodes. Further work (chapter seven), addresses the number of hidden nodes required. The 

network is fully interconnected between the layers and can represent any Boolean 

transformation, given the number of input and output units. 

In all the studies to date no structural dependencies have been applied to the hidden 

layer of a neural network (Hinton '89, Rumelhart et al '86). This was done so that there 

would be no Initial constraints on the network representations. The training was allowed to 

proceed freely in order that it may converge to an optimal solution. Any extra constraints of 

intemal structure were neglected. This may have been because authors felt that they may 

inhibit the training process, although none explicitly mention this problem. This lack of 

structure may be deemed appropriate for biological reasons, Wasserman ('72) however, 

shows that biological neural linkages are predetemnined to a large extent and that the 
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topology of the brain is highly determined at birth. 

The main disadvantage of standard training algorithms. that is backpropagation. is the 

way they treat each hidden node identically and in isolation. When the weight space of a hidden 

node is updated. only the effect of that node on the error function is taken into account. The 

way that the hidden node interacts with the rest of the hidden layer in order to model the 

transformation is not taken into account with this approach. 

In the case when a hidden node correctly models a subspace of the training set over 

which it makes the most significant contribution. then it is better to leave it unperturbed 

rather than spuriously adjusting it for short term gain in error minimisation. It would be 

better to perturb another node in the hidden layer to ultimately produce a beller model for 

the incorrectly classified training examples. This will become more apparent when we 

examine sandwich nodes and their behaviour under the learning algorithm. 

Short term error minimisation often leads to the undesirable property that existing 

neural representations that model the transformation well. are knocked out to produce non 

optimal locally minimal representations. Introducing some structure and dependencies into 

the hidden layer ensures that adjustments to each hidden node can act in concert with the rest 

of the representation. The simplest dependency relation between nodes is that of parallelism 

which is discussed below. 

Nodes are conSidered to be parallel if they have identical weight vectors (to a scalar 

factor) defined over the same inputs. with possibly distinct bias weights. The ideas discussed 

in this chapter are more simple. essentially that node parallelisation is implemented via 

duplications in weights space. namely one or more nodes shadow or ghost the reference node. 

their weights are just a duplicate of the reference node or its simple negation. 

Parallel or as introduced in Messom ('92) ghost nodes allow for general duplication 

of hidden nodes (their structure are discussed later). which can then be used as parallel 

nodes that output to a Single output node. providing a dependency between the hidden nodes of a 

particular neural net. 
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Structure in the hidden layer 

Two types of dependencies are investigated, both are closely related. 

i. Parallel hidden nodes. 

ii. Sandwich hidden nodes. 

i. Parallel hidden nodes; 

are defined by the criterion that the bias weights are independent while all the other 

weights are pairwise identical. That is, given two nodes, they are Parallel if the weight 

vectors are identical except for the bias factors. (See fig 5.1 a). 

ii. Sandwich hidden nodes; 

are defined by the criterion that the bias weights are independent while the other 

weights are pairwise additive inverse. That is, given two nodes, they form a sandwich if the 

weight vectors are additive inverses except for the bias factors. (See fig 5.1b). 

a b 

Fig 5.1 a. Parallel nodes in two input space, b. SandwiCh nodes in two input space 

Sandwich nodes are a pair of close opposite facing nodes that isolate a small subspace 

of the input region. The advantage of using sandwich nodes over arbitrary single nodes Is that 

the sandwich node will isolate a given region, which it will contribute a positive or negative 

decision, while not contribute significantly to the outer regions. That is the sandwich node 

behaves as an atomic declaration of truth over the input space. This means that the overall 

definition of the input space can be constructed via a number of atomic declarations. 

Introducing the dependencies above offer several advantages. The first advantage is one 
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of representation. Introducing dependencies in the hidden layer, reduces the variety of 

representations of the given transformation. This gives more structure to the network 

representation. The networks can then be reasoned about, since their structure will be 

transformation dependent. 

The second advantage of the interdependent nodes in the hidden layer is the natural 

improvement in computational performance that it offers. The weights being equal means that 

the weight component of the input of a node need only be calculated once, rather than every 

time each node is passed. The ghost system offers this property of a reduced computational 

load. 

Ghost nodes 

Ghost nodes are nodes that are dependent on at least one other node in the hidden layer. 

There are two basic dependencies that exist corresponding to the parallel and sandwich cases. 

i. the ghost nodes are parallel, this means that they have identical weight spaces, 

that is they share a weight space vector, although they have independent bias weights. 

ii. the ghost nodes are anti parallel, this means that the two nodes have weight spaces 

that are additive inverse, although they have independent bias weights. These antiparallel 

ghost nodes also share a weight space vector although one node must apply a negate the vector 

before making use of the weights. 

Training 

The training of ghost nodes proceeds in a similar manner to standard backpropagation. 

Each ghost node is updated by the backpropagation algorithm in a manner proportional to its 

contribution to the error function. However since the ghost nodes shadow each other any 

update on one ghost node is also applied to the weights of the corresponding ghost nodes, that 

is the shared weight vector is updated each time one of the ghost nodes are trained. The bias 
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weights are the only weights that are not updated when corresponding ghost nodes are updated. 

Segmentation of the input space 

Two antiparallel planes that are distinct, that is not coplanar isolate a segment of the 

input space. The sandwich so formed provides an output of say + 1 for the region between the 

planes, while for the region outside the sandwich there is an effective output of zero, since 

the individual planes contribute + 1 and -1 which effectively cancel. A neural network 

consisting of a single pair of nodes forming a sandwich effectively segments the input space 

into three regions. That inside the sandwich providing an output of +1 say, while for the two 

regions outside the sandwich provides the output -1. (The -1 is aChieved in the region 

where the sandwich node effectively makes no contribution by providing a bias of -Ion the 

output node of the network). 

The single sandwich can be implemented by a pair of ghost nodes that are antiparallel. 

Similarly we can segment the input space into any number of parallel regions with an array 

of antiparallel planes, (see fig 5.2). This is achieved by interleaving two sets of ghosted 

nodes that are all parallel but mutually anti parallel between the two sets. 

Fig 5.2 Segmentation of the input space 
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In this way, a region between two antiparallel planes will provide an output of say, 

+1, while its neighbouring region, contained by the neighbouring pair of antiparallel planes 

will provide the output -1. And carrying through this analysis for the whole input space, we 

have parallel regions where the output value is either +1 or -1. Therefore we can segment 

any input space into arbitrary bands of parallel regions with a paired set of Interleaved ghost 

nodes. 

Utility of ghosted segmentation 

The utility of the parallel segmentation of the input space using ghosted arrays of 

antiparallel nodes comes to light when we consider general Boolean transformations from 

multiple inputs to a single output. Essentially any transformation can be implemented as a 

parallel segmentation of an input space. Each parallel segmentation yields a unique 

transformation, but of course each transformation can be modelled by many parallel 

segmentations. We can see the truth of these statements by following the analysis below. 

i. Each parallel segmentation yields a unique transformation; 

This follows directly from the fact that we can implement a neural representation of the 

parallel segmentation of the input space, which can in turn provide output values for specific 

Boolean input values. This in turn defines a transformation which is that yielded by the 

original parallel segmentation of the input space. 

if. Each transformation can be modelled by many parallel segmentations; 

This is less obvious but can be proved by construction. Consider a point in the Boolean input 

space, say a. There exists a hyperplane that goes through a but does not intersect the 

hypercube that is the whole input space except for the point a, which also is not parallel to 

any plane that goes through any two points in the Boolean input space. There is a plane 

parallel to this one that goes through the point not(a), but does not intersect the hypercube 

that is .the whole input space except for the point not(a). 

We can continuously transform the first plane going through point a until we reach 

the second plane going through point not(a). As we do this, the plane passes through every 
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point in the Boolean input space, so inducing an ordering on the Boolean input space, 

beginning at point a and ending at point not(a). This ordering is a strict ordering by the 

criterion that the original plane is not parallel to any plane going through any two points in 

the Boolean input space. 

Any change in output value as we examine two neighbouring input values in this 

ordering of input points, can be implemented in a network representation by the addition of 

an appropriate ghost node parallel or antiparallel to the original plane through point a , 

which passes through the point that bisects the line between the two input points in question. 

Examining the whole ordering yields a ghosted network of interleaved parallel and 

antiparallel nodes. This ghosted network yields a parallel segmentation of the input space. 

Choosing another point say b and another suitable plane and carrying through the 

analysis would have yielded another, different segmentation of the input space. Therefore any 

transformation can be modelled by many parallel segmentations of the input space. 

Representing transformations via ghosted parallel segments 

The analysis above proves that any transformation can be modelled by an array of 

ghosted parallel and antiparallel nodes. Finding this ghosted network that is suitably minimal 

provides the major difficulty. Constructing such a network fOllowing the analysis above does 

not guarantee minimality and may require networks with a large number of hidden nodes. 

This problem is overcome by allowing the network to be trained by the ghosted 

backpropagation training scheme. ( See appendix C). 

The parity transformation for n inputs can be modelled by n hidden nodes. This is the 

minimal representation for the n dimensional parity problem and in fact can also be modelled 

by a suitably ghosted system using just n ghost nodes. This ghosted representation can be 

constructed or discovered by training. It should be noted that the convergence algorithm will 

often get stranded in local minima and so must be carefully monitored. 
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Models of the parity problem using ghost nodes 

Parity in two dimensions as discussed in chapter three is the exclusive or problem. 

This could be modelled by two parallel nodes. The network structure is shown in fig 5.3, 

while the weight matrix that define the hidden layer are shown in fig 5.4a. The weights shown 

are in the form (bias, weigh,-l, weight_2, .. ,weighl_n). 

Fig 5.3 Ghosted neural network model of the parity problem 

-2, 1, 1, 1 
3,-1,-1,-1,-1 
-1,1,1,1,1 (' ., ., ) 

o -1 -1 -1 , , ' , , -1,-1,-1,-1,-1 
1, 1, 1 2, 1, 1, 1 

3, 1, 1, 1, 1 

a b c 

Fig 5.4 Weight matrices for the parity problem in a. two, b. three, and c. four dimensions 

Fig 5.4b and fig 5.4c show the matrices for the parity problem in three and four 

dimensions. Parity in general dimensions follows the same paHern. If a given input vector 

has the output + 1, then the same vector perturbed by just one bit will give the output value 

-1. We can construct the general matrix of weights for parity by starting with the point (-

1,-1, ... ,-1) and traversing the input space to the point (1,1, ... ,1). We segment the Input 

space into parallel regions that provide the outputs +1, and -1 respectively. These regions 

are formed by the planar boundaries that have the structure, just one input has value +1, no 

more than n-2 inputs have value -1 etc. Matrix representation is distinct for odd or even 

number of input nodes due to the structure of the problem. An odd number of input nodes that 

all have the value +1, will require the output + 1, while an even number of input nodes that 

all have the value +1, will require the output -1. Fig 5.5 a & b show the weight matrix of 

the hidden nodes of the neural network models of parity. 
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-(n-1). 1 .....•.... 1 

n-3.-1 •....•...• -1 

-(n-5). 1 •....•...• 1 

n-5.1 •....•...• 1 

-(n-3).-1 •....•.... -1 

n-1. 1 •....•...• 1 

a 

n-1.-1 .........• -1 

-(n-3). 1 •....•...• 1 

n-5.-1 •........• -1 

n-5. 1 •........• 1 

-(n-3).-1 •....•...• -1 

n-1. 1 •....•...• 1 

b 

Fig 5.5 Matrix of weights for the parity probtem with a. Odd number of input nodes. b. Even 

number of input nodes 

Ghosted nodes for real valued inputs 

We can apply the ghosting techniques to certain classes of transformations from real 

valued input spaces to Boolean output spaces. 

Transformations from input spaces whose areas of interest are. or can be 

approximated by. parallel segments or intersections of parallel segments are ideal for 

implementation via the ghosting procedure. See fig 5.6 & 5.7 for examples of segmentation of 

the real line and plane. 

" • 1 " " - 1 " • - 1 " 

Fig 5.6 Segmentation of the real line 
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Fig 5.7 Segmentation of the real plane, forming two polygonal regions 

Encapsulated ghost nodes 

Using ghost nodes in the neural network system ensures that the structure of the 

hidden nodes is well defined. This does not mean that the backpropagation algorithm proceeds 

without error interference and destructive learning (as discussed in chapter four). A method 

that can be employed to reduce internode error interference is to add an extra layer of nodes 
I 

that encapsulate the sandwich node function. The network structure is illustrated in fig 5.8 

which shows the sandwich nodes which encapsulate the function of two planar nodes. With 

this network structure the error effects of incorrectly classified points are not back 

propagated to sandwich units that do not significantly contribute to the error. 

Fig 5.8 Encapsulated sandwich node network structure 

If a training point is significantly away from the pair of planar nodes that make up 
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the sandwich, the contribution of each is approximately equal but opposite in sign effectively 

cancelling each other, so stopping the error backpropagation. If the training point is close to 

at least one of the planar nodes, then significantly different contributions will be made by 

each node so providing a contribution to the error from the sandwich pair. In this case error 

backpropagation and weight update occurs. 

Polygonal segmentation 

A sandwich node is constructed from two planar nodes. Similarly more complex 

encapsulated regions can be constructed by employing more nodes. Three nodes form a 

triangular segmentation region, this is illustrated by the fig 5.9. The network structure that 

can support this encapsulated polygonal segmentation is shown in fig 5.10. More planar nodes 

can be employed to form encapsulated polygonal and polyhedral segmentation units. 

Fig 5.9 Segmentation of a two dimensional space into triangular regions 

The encapsulated polygonal segmentation units have the same advantage as the 

encapsulated sandwich nodes of non interfering error backpropagalion. The encapsulation of 

node representations is discussed in greater detail in chapter six. 
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Fig 5.10 Network structure employing encapsulated triangular units 

Summary 

This chapter has introduced node parallelisation as a mechanism for structuring the 

hidden layers of a neural network. Its utility in modelling several transformations. 

particularly parity. has been demonstrated. Parallel nodes as a scheme for segmenting real 

valued input spaces have been investigated and shown to be a suitable mechanism for 

constructing linear quantisers. 

Finally. encapsulated sandwich and polygonal segmentation nodes were introduced as a 

mechanism for solving the intralayer error interlerence problem that causes destructive 

learning under backpropagation training. 
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Chapter 6. Making use of Knowledge in Neural Nets 

Outline of chapter 

The major problem associated with neural network systems is the lack of structure to 

the representation. Each transformation is fully represented by a large network structure 

often with a large degree of distributed activity. This property restricts the ease with which 

the behaviour of the network can be predicted. It also is almost impossible to combine 

properties of different networks to produce a more reliable network structure. 

Neural network representations lack a knowledge structure with which they can be 

successfully reasoned about. In this chapter several new structures are introduced which go 

some way towards solving this problem. 

The parallel sandwich node is introduced as the atomic element of a monotonic neural 

system. The concept is extended to general sandwich nodes which allow a knowledge 

representational scheme to be built. This scheme allows the neural network subsymbolic 

reasoning processes to be formalised and encapsulated. Finally the reliability of sandwich 

node systems are investigated, showing that even when they are trained over reduced data sets 

the neural network behaviour is reliable and predictable. 

Knowledge representations of neural networks 

The simplest knowledge structure is the neural network node itself. These can be 

combined in a predetermined manner to produce more complex knowledge structures which 

can be manipulated and interpreted in a well defined symbolic manner. This Introduces the 

possibility of providing a neural network environment with properties more familiar in 

knowledge engineering, the atomicity of knowledge and the monotonicity of information. 

Building upon these basic structures, well defined nonmonotonicity can be introduced as 

information is updated and manipulated. 

Neural network behaviour is hard to predict. Neural networks have been modelled as 
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systems of Boolean transformations and as rule systems but neither offers a high level model 

of the subsymbolic behaviour of the neural networks. 

Underlying physical 

- ~Ytm 1--
Interacting physical 

• I elements 

- ~ T -r- - - -j - t- -
Functional knowledge UndeJying Iunctional 

, I motation 

- - T -r- - - - -1-t 
Numerical representation I. 11: I Physical activity 

<> -- - Real interaction 

Virtual Interaction 

Actual path of interaction 

Fig 6.1 Interaction between models of neural networks and actual neural network systems 

The need for a high level model of neural systems can be seen with the system 

interaction model in fig 6.1. This model draws on the three level human-computer interface 

model of Clarke ('86). which discusses the different levels of interaction between user and 

machine. In fig 6.1 we examine the various levels of interaction between a neural 

implementation of a physical system and the human model of the neural network. 

At the basic bit level we have the one to one mapping between the neural network and 

Its mental model. Each local process in the neural network is understood and any particular 

interacting elements of the network process can be understood. A higher level understanding 

of the network depends on the functional model of the network. In the neural network side of 

the model this may be the functional declaration of the neural network processes. The mental 

model would be an understanding of the functional processes. 

As demonstrated by Clarke. the path of interaction between the two sides of the model 

is via the base level of the model. that is via the neural network implementation. so even if 

the underlying functional model is well known. it is manifested via the neural network 
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behaviour. We can develop a higher level model of the neural network, a Boolean model or a 

rule based model, but even these are unreliable if they are derived from the neural network 

behaviour over a limited number of input cases. If these models corresponded to the 

interacting physical systems that produced the network behaviour itself then we could 

construct a reliable predictive model of the neural network. This is not the case with the 

training schemes used at present. A general prescriptive model of the neural network based 

on well defined knowledge elements within a neural network that interact in a well 

structured manner will provide the basis for a high level model of the subsymbolic processes 

within the neural network. The high level model of the neural network will begin to allow a 

high level model of the relevant physical system to be derived. 

Producing models of general physical systems will require sophisticated knowledge 

elements within the neural network. Particularly simple knowledge elements such as 

sandwich nodes and parallel nodes are discussed in this chapter in the hope that future work 

will build on these structures to provide suitable elements to model general physical systems 

(see chapter nine). 

Knowledge elements and subsymbolic reasoning 

The processing in neural networks have been described as subsymbolic. All the 

transformations from input to output take place at the bit level. This is the case as only 

simple -1 and + 1 signals pass between the neuronal processing elements. The processing 

elements at each node treats all messages from different units identically and so the bit level 

activity can not be viewed globally as a high level message passing paradigm. 

Neural networks admit a subsymbolic reasoning model of their behaviour as follows. 

The network is trained on sample data pOints, the training data which will be correctly 

modelled by the network after optimal convergence of the training algorithm. This training 

set can be viewed as the knowledge base of the neural network. The neural network execution 

admits an inference engine on the knowledge base. Every input pattern produces a specific 

output from the network and so this output can be viewed as having been achieved by a 
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process of subsymbolic reasoning. If the input point was part of the training set, then the 

stored data point will yield the output that is stored in the knowledge base of the network. If a 

novel input pattern is presented, a form of subsymbolic inference on the knowledge base 

takes place yielding an inferred output. 

The great disadvantage about the subsymbolic reasoning processes is that they are 

generally ill defined. Different network structures that model the same training data will 

apply different subsymbolic processes yielding oHen distinct outputs. This is extremely 

undesirable if subsymblic reasoning is to be reliabfe and in some sense predictable. 

Symbolic reasoning systems have the property that every conclusion reached can be 

explained simply by the presentation of the subset of the rule base used to reach the 

conclusion. Neural networks in general have a great deal of distributed activity that can not 

explain a conclusion without quoting the structure of the whole network. The existence of 

diverse subsymbolic processing schemes for distinct networks means that a general 

explanation can not be implemented either. Each unique network can have its own explanation 

scheme based on the execution strategy of the specific network. 

Knowledge elements within neural networks go some way towards formalising 

subsymbolic processing within neural networks to the point that they can be relied upon, 

understood and explained. 

Formalising subsymbolic systems 

Subsymbolic reasoning in neural networks is extremely network dependent. 

Introducing the concept of atomic knowledge elements into neural systems allows us to 

develop a general framework in which subsymbolic reasoning can be discussed. A 

subsymbolic paradigm can be modelled as a formal symbolic system if we can provide atomic 

formulae and the combinations and transformations that can be applied. The subsymbolic 

paradigm must therefore have; 

a. atomic knowledge elements; the atomic formulae of the subsymbolic system. 

b. well defined interconnection properties; the transformations that can be applied to 
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the atomic knowledge elements. 

In a neural network environment the atomic knowledge elements are nodes, sandwich 

nodes, subnetwork structures or olher more complex alomic elements. It should be noted that 

sandwich nodes are not alomic in the sense Ihat they are constructed from two nodes, but are 

indeed atomic knowledge elements since they specify atomically whether an input pattern is 

within a region or not and there is no complex interaction within the sandwich node. 

The interconnection properties relate the possible firing patterns of the atomic 

knowledge nodes and how they can be connected to form the output. 

Given this formal structure of the knowledge neural networks, training can proceed 

in two ways. 

i. Specified; the network is constructed on the basis of the properties of the knowledge 

atoms and their connection properties. The behaviour of this network will be perfectly 

predictable since it has been specified. 

ii. Learned; the network is presented with sample data points and trained, subject to 

the constraints of using the atomic elements and the specified interconnection patterns 

allowed. These constraints may limit system identification but if knowledge about the system 

exists, the network can be explicitly structured with suitable knowledge elements to improve 

the automated system identification. On convergence the subsymbolic reasoning properties 

can be predicted by examining the knowledge atoms employed by the network and the specific 

connection patterns employed by the converged network. 

The execution of the network can be viewed as a subsymbolic reasoning process that 

can provide explanation of the conclusion reached. An input data point is presented to the 

network. An output is computed which is explained by the following sequence. 

i. Disclose the atomic knowledge elements that fired. 

ii. Disclose the interaction pattern or connection pattern that was employed to reach 

the conclusion. 

iii. Disclose the training patterns that have similar claSSifications and corresponding 

connection and firing patterns. 

This explanation sequence recognises an input pattern that is one of the training data 
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and .gives its relevant constructed knowledge class. Given an input pattern that is not a 

training point, it will identify the pOinl"s relevant class, explain the structure of that class 

in terms of the fired atomic elements and also present examples of the training set that have 

the same class. Such a neural network system can be fully understood and so prove to be 

reliable. 

Interpretation of neural networks 

A feed forward network system can be naturally interpreted as a functional 

transformation. Therefore, there always exists an interpretation of the network at this 

lowest level. For large systems, this form of interpretation is cumbersome and 

incomprehensible. This means that a more structured approach must be adopted. 

The interpretation of a network representing a Boolean transformation Is well 

documented. The transformation can be seen to be implemented by a set of logical rules, this 

is discussed by Hinde ('90) and in chapter three. However these basic rule systems are not 

easy to interpret, each nodes contribution being viewed in a possibly verbose logical form 

rather than an arithmetic functional form. 

The logical interpretation of networks can be extended to the analysis of parallel 

ghost nodes. The sandwich nodes are an aid to interpreting ghost node network structures. 

The structure of these nodes should be maintained, even when viewing them as logical 

transformations since these structural units in the networks provide atomic non interfering 

encapsulated representations about which we can reason. Reasoning about the behaviour of 

the net is simplified with these sandwich and ghost concepts. 

Sandwich nodes 

A sandwich node is a pair of close opposite facing nodes. Formally this means that a 

single sandwich node is a pair of weight vectors, which are mutually inverse and the biases 
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are close. The condition that the biases are close is satisfied if there are no other nodes in the 

network parallel to the sandwich node which have scaled biases larger than one bias but 

smaller than the other. This means that there are no other nodes in the network that are 

between the two nodes in the sandwich. 

Closed Sandwich 

Fig 6.2 a. A sandwich node in three space 

Such a sandwich can be viewed as an isolating element in network. Over the region the 

sandwich isolates, it is the only contributing element. Everything that is stated about this 

region is only provided by the sandwich, (see fig 6.2a). Similarly we can consider an open 

sandwich. 

~ Open Sandwich 

Fig 6.2 b. An open sandwich node in three space 

When a single node isolates a region such that all other nodes are nil-separating 

hyperplanes of that space, then essentially that single node sandwiches off that region. It is 

the only node that oontributes to that region, adding just a bias weight to the other side of the 

sandwich. (See fig 6.2b). 

Pairs of antiparallel ghost nodes (see chapter five) can be oonsidered to be single 

conceptual structures called sandwiches. Individual nodes that are not ghosted can be 

considered to be open or half sandwiches, if they are nil oontributing in each half space of the 
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other hidden nodes. A node is nil contributing in a subspace if its contribution in this region 

is a fixed value. 

Formalised subsymbolic reasoning with sandwich nodes 

General sandwich nodes have the following formal structure which defines an atomic 

knowledge element. The definition of a sandwich node can be extended to that of a node formed 

by two nodes that do not intersect within the input space, that is they de not have to be 

parallel. A single node can be classed as an open sandwich node. 

The interconnection constraints of a sandwich system are defined by the constraint 

that the sandwich nodes in each layer must not intersect in the input space and must not be 

nested. 

Due to these constraints only a single closed sandwich node or a coherent set of open 

sandwich nodes will fire in each layer. This is the case since each sandwich node isolates a 

convex subspace of input space and no sandwich nodes overlap, therefore if a sandwich node 

fires, only one will fire. A set of open sandwiches can coherently isolate a convex subspace of 

the input space, since they do not intersect each other or any sandwich node, therefore if a set 

of coherent nodes fire, then no other coherent set of open nodes will fire. 

These criterion ensure that the input space is structured into well defined convex 

spaces in which a specified output can be defined. The output layer then consists of selecting 

suitable subsets of the convex spaces such that the required output is given. These properties 

can be illustrated by considering several simple examples with the relevant properties. 

Examples 

To simplify the discussion and the diagrams employed, the following examples are 

from an input space of two dimensional real values with an output space of Boolean values. 

The analysis is valid for higher dimenSions and subsumes Boolean input spaces. 
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a b 

Fig 6.3 a. A decision region of an open sandwich node, b. Unear separation by an open 

sandwich node 

A single open sandwich can isolate any linearly separable set of samples. One side of 

the node gives an output of +1, the other -1 . See fig 6.3 a & b. 

o 

x xx 
o 

c d 

Fig 6.3 c. Decision region of a closed sandwich node, d. Segmentation by a closed sandwich 

node 

A single sandwich node isolates a space with "exclusive or" properties. These sample 

points are not linearly separable. The sandwich node gives an output of + 1 within the 

sandwich and -1 outside of the sandwich. See fig 6.3 c & d. 
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Fig 6.4 Coherent segmentation with a set of open sandwich nodes 

A set of coherent sandwich nodes isolate convex region of the input space (see fig 6.4 

for an illustrated example). Each node provides an output of + 1/3 on the positive side of the 

node and an output of -5/3 on the negative side of the nodes. These node values give a coherent 

combination of the outputs to provides value of +1 for the convex region within the open 

sandwich nodes and a value of -1 in the region outside of the set of open nodes. 

Interacting sandwich nodes 

For general sets of data that can not be isolated by a single convex region, a set of 

interacting sandwich nodes must be employed. In fig, each sandwich node can provide an 

output of +3/2 within the sandwich nodes and -1/2 in the region outside the nodes to produce 

a combined output of +1 within the sandwiches and -1 outside them. This same system can be 

viewed in several different ways, either as a system of three closed sandwiches that are flush 

together with two extra open sandwiches, or a single closed sandwich surrounded by two open 

sandwiches. Whichever interpretation is adopted suitable coherent output values of the 

various nodes exist. Values of +1 and 0 inside and outside of the positive sandwiches, while 

the negative sandwich in the middle with the values -1 and 0 inside and outside with outputs 

of 0 and -1 for the relevant open sandwiches, defines a suitable segmentation of the input 

space. 
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Fig 6.5 Segmentation of data using closed sandwiches 

Subsymbolic reasoning in general sandwich systems 

Given a sandwich representation of a training set, either specified or learned through 

a learning algorithm such as the ghost node training of chapter five, execution of the network 

can proceed as a well defined system of subsymbolic reasoning. Given the network in fig 6.6a 

we can ask a query about point A (fig 6.6b). The network execution reveals that an answer of 

+ 1 is given. The explanation of this solution is given via the presentation of the relevant 

coherent set of nodes, fig 6.6c and any training patterns that are part of this atomic 

knowledge element. More complicated cases where interacting elements exist are dealt with 

via a similar process, where the relevant interacting elements constructed from atomic 

elements are presented in the explanation. 

O/X~ -< X X 
X 

XXX o 
o 
~ 0" 
··X ............. O 

a 

O/X~ -< A X X 
X 

o XXX 
o 
~ 0" 
··X ............. O 

b 

/X~ -< X X 
X 

c 

Fig 6.6 a. Segmentation of a set of data, b. Query of input A, c. Explanation region of query A 
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Sandwich nodes and hidden layers 

The structural constraints associated with sandwich nodes ensure that no complex 

Boolean interaction oocurs between the sandwich nodes of each layer. This ensures that a 

linear combination of the sandwich nodes exist to provide the required output values. 

Therefore with the relevant sandwich node constraints only one layer of hidden nodes is 

required to model any problem. If explicit encapsulation of sandwich nodes Is required as 

discussed in chapter five then an extra layer of hidden nodes are required. This is illustrated 

in fig 6.7 a & b, for the two input and multiple input case. 

a b 

Fig 6.7 Explicit encapsulated sandwich nodes a. Two input case, b. Multiple input case 

Explicit node encapsulation 

Node encapsulation relies on the existence of a neural model of a region of the input 

space in which the output values are defined by the training set, while the output of zero is 

given for the remaining regions of the input space. A few simple examples of node 

encapsulation are examined. 

The simplest case is when a single value of +1 or -1 is required on a single convex 

region of the input space. With a single node the activation function can be implemented via a 

node with a single input and a bias of 1.0. This has an inpuV output relationship illustrated 
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in fig 6.8. Similar activation functions for output values of -1 and differenl regional 

boundaries can also be implemented. 

_----+1 

o 

Fig 6.8 InpuV output relationship of node d, fig 6.9 

Fig 6.9 Explicit encapsulation of a sandwich node 

An encapsulated sandwich node of a region defined by two lines can also be illustrated. 

Fig 6.10a shows the region of interest, while fig 6.9 shows a suitable network structure in 

which the node weights are defined as, node_a{O,l,l), node_b{O,l,·l), node_c{-l,l,l) 

and node_d{l,l). 

a b c 
Fig 6.10 Sandwich segmentation of a region of the input space, a. Shaded region of interest, b. 

Output from a standard node, c. Output from the encapsulated sandwich node, making use of 

the activation function 

The output of node_c is illustrated by the figure 6.10b which is defined over the 

whole input space and does not encapsulate the node function to the desired region. The output 
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of node_d is shown in fig 6.10c, which is encapsulated to the desired region. 

The function of a transformation over the whole input space can be constructed by 

using several disjoint encapsulated nodes that provide the correct output over the relevant 

region in which they contribute. An example in which a closed convex region is employed to 

construct a suitable encapsulated model of a problem is illustrated below. 

Fig 6.11 Neural network structure that employs triangular encapsulation and biplanar 

segmentation 

Figure 6.11 shows the network structure used to model the problem while fig 6.12a 

shows the regions of the input space that are of interest. The weights in the neural model are 

defined by the input segmentation nodes node_It (-1 ,-2,1), node_12(-I, 1 ,-2),node_13(-

1,1,1), the hidden decision region nodes node_a*(1 ,-1 ,-1), node_b*(1 ,-1 ,-1), 

node_c*(2,1,1,1), node_d*(I,-I,-I), the encapsulated sandwich nodes node_S*(I,I) and 

the final output node node_e*(O,I, 1,1,1). 

a b c 
Fig 6.12 Segmentation of the input space into regions of interest, a. Shaded regions of 

interest, b. Output from an output node defined by three hidden nodes (lines in the input 

space) forming a triangular region, c. Output from an output node defined by two nodes (lines 

in the input space) 
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Figure 6.12 b & c show the standard output values of the decision nodes node_c and 

node_d respectively. These contribute in regions that we do not require and so an activation 

value must be applied. The output values from node3S" is shown in fig 6.12d, while the 

output of the total system node_eo is shown in fig 6.12e. The output values for the other 

regions of the input space where the output is required to be -1 can be constructed in a 

similar manner. However if all of the remaining regions must provide an output of -1, we 

can achieve the outputs shown in fig 6.12f with a small negative bias applied to the output 

node, that is give the weights node_e(-O.01, 1,1,1,1). 

d e f 
Fig 6.12 d. Encapsulated sandwich activity of triangular node, e. Activity of encapsulated 

system of a triangular node and three biplanar segments, f. A general system of activity 

Putting knowledge into neural network models 

Given a training set that is already modelled by a neural network or an extension of a 

set of data that has already been modelled, then automated backpropagation training 

techniques need not be employed. The knowledge available can be utilised to directly model the 

new training set. If known neural models do not exist for the subsets that form a disjoint 

partition of the new training set, then only a partial model can be constructed. The remaining 

components must be constructed via an automated training scheme. These problems are 

outlined below and illustrated by examples below. 
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There are three main mechanisms for deriving larger training sets from smaller 

ones. The first is that of the addition of input nodes so increasing the number of possible 

input patterns. The second is the expansion of the training set to cover a region of the input 

space that was not modelled before, that is the data consist of two or more subsets that can be 

modelled independently and amalgamated. The third and final mechanism for training set 

expansion is the general increased number of data points in the regions of the Input space that 

are already modelled so leading to greater acuity in the neural model required. The first two 

cases can be dealt with via the amalgamation of suitable neural models of the subspaces and 

are discussed below. The third case requires automated training to be applied to extensions of 

the models that already exist so leading to models with greater acuity. This is discussed 

further. 

Increasing input dimension 

An n input data set can be viewed as two n-l input data sets. That is the two sets define 

the values over the n-l subspaces of the n dimensional input space. If neural models of the 

data sets of the n-l subspaces exist then we can construct an n input neural model of the 

whole data set. This can be achieved via the use of encapsulated sandwich nodes that provide 

the required input values over the relevant subspace and an output value of zero over the 

remaining region. Fig 6.13 shows a neural model of one of the n-l subspaces (in this case n 

= 5), a similar neural model will exist for the other n-l subspace. The four input model's 

output node is defined by the weights node_04(b,wl,w2,w3'w4). 

Fig 6.13 Neural model of a four input data set 
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For this example, the five input neural model must provide the correct output 

depending on whether the input data point is in the first four dimensional subspace or the 

second. Amalgamating the two submodels directly via summing the outputs and thresholding 

them is two simplistic and will only provide the correct output when the two submodels agree 

on the output over the four input nodes (fig 6.14a). If the two submodels provide a 

conflicting result the total output will be zero and no information can be gained . 

...... ,.,,'utputs ±1 

utputs ±l,O 

a b 

Fig 6.14 a. Simple amalgamation of models leading to invalid outputs, b. Encapsulated 

sandwich models amalgamated to produce valid output 

Making use of encapsulated sandwich nodes that ensure the respective submodels give 

an output of zero over the region that they do not model ensures that a correct five input 

modal is derived. This can in practise be achieved in two ways. The use of encapsulating and 

activating nodes in the final layer or in the hidden layer. 

Inputs Outputs -1 +1 

-1 -1 -1 0.0 0.0 

+1 0.0 +1 -1 +1 

Table 6.1 a. Output values of node A, the activation node used for the encapsulated sandwich 

nodes with one activation input, b. Output values of node B, the activated encapsulated 

sandwich nodes 

The activation node used for this example is given by the node weights node_A(-I,I), 
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whose output values are shown in table 6.1 a. No output is given when the fifth input node 

(node X in fig 6.15a) has value +1, since the output of the submodel is required for this 

value. An output of·l is given for activation when the input is ·1 as this value is required to 

cancel with the activity of the whole system, which is ·1 when the fifth input node has value 

.1. 

The encapsulated sandwich node is defined by the weights node_B(O,l ,·1), whose 

output values are shown in table 6.1 b. The input values are the inputs to node_A and the 

output from the five input node system, node_O. ( The weight values of the five input system 

are given by the weight matrix node_Os ( b· ws' w1' w2' w3' w4' ws), where 2.ws > b + L4i= 1 

I Wj I ). As can be seen from the output values of node_B, the encapsulated system has an 

output of zero for the region not modelled by the sub model and the specific output ±1 for the 

region modelled by the submodel. 

a b 
Fig 6.15 Neural model of half of the five input training set based on the four input model 

using a. Encapsulated sandwich nodes in the final layer, b. Encapsulated sandwich nodes in the 

hidden layer 

The activated encapsulation nodes can be implemented in the hidden layer. Effectively 

each hidden node provides an output of zero when node_X has value ·1, while providing the 

same output as the four node model when the input node node_X has value +1 (see fig 6.15b). 

Another amalgamation of subspace representations Is considered in chapter seven that does 

not make use of the explicit encapsulation of the subspace activities. Instead the implicit 

nature of the subspace representation's interaction is exploited, implementing an 
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amalgamation scheme that makes use of standard nodes in a single hidden layer. 

Amalgamating regional models 

The example above essentially solved the problem of amalgamating submodels of a 

problem where the submodels where defined over a reduced set of inputs, that is a lower 

dimensional space. The case where the submodels are defined over different regions of the 

same dimensional space can also be solved with a suitable amalgamation scheme. As before we 

must be able to produce activated encapsulated models of the subregions over which the given 

submodels are valid. This means that a trigger node or nodes are required which provide the 

output +1 if the submodel is valid over the given input point and -1 if the submodel is not 

necessarily valid. 

-1 + 1 

-1 -1 -1 

+1 -1 0.0 

Table 6.2 Output values of node C, the activation node used for the encapsulated sandwich 

nodes with two activation inputs 

We can illustrate this with the example below. Take the four input network model of 

fig 6.13 to be the given submodel of a region of the input space. Two nodes node_ Y and node_Z 

are the activating inputs whereby if both node_ Y and node_Z give the output +1, the output of 

the given submodel is valid. The structure of the activation illustrated in table 6.2 is given 

by the weights node_C(-I, 1,1). This is the generalisation of activation node_A to two 

inputs. 
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a b 

Fig 6.16 Neural model of a subregion of the training set defined by the nodes Y and Z, based on 

the model of the subregion, using a. encapsulated sandwich nodes in the final layer, b. 

encapsulated sandwich nodes in the hidden layer 

Fig 6.16a shows the case where the activated encapsulated sandwich node is applied to 

the output node. The output node node_O is analogous to the example above, ( The weight 

values of the system are given by the weight matrix node_O(b·ws- w6,w"w2,w3,w4'wS' 

w6). where 2.(ws- w6) > b + r.4i=, IWil). This system provides the required output over 

the specified region and zero everywhere else, so allowing it to be immediately amalgamated 

with models of disjoint subregions of the input space. The structure of the model using 

encapsulated sandwich nodes in the hidden layer is shown in fig 6.16b. The construction of 

these models are again analogous to the example above with the node_C acting as the activation 

node for the sandwich nodes. 

Neural model development 

The final case to be considered is when a training set is enhanced by adding more data 

points in the region that has already been modelled by the neural network. In this case the 

data points that have been added are either correctly or incorrectly modelled by the old 

model. If the new points are correctly modelled by the old network then no improvement can 

be made or need be made. New points that are incorrectly modelled contribute to improving 
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the neural model. Since no separate model of the new data points exist a solution employing an 

amalgamation technique is not possible. An aulomated training system can be employed 

making use of the existing model. As the experiments of appendices A4 and 0 show this may 

not converge to optimal solutions and often the previous trained model is lost. To overcome 

the problem of convergence a larger network can be employed, with its greater 

representational power. 

Reliability of encapsulated sandwich schemes 

The reliability of a sandwich neural network model can be examined in a similar 

manner to the analysis of standard neural techniques based on the training sets employed. A 

trained sandwich neural model contains the training set and the regions of the input space 

that these data points occupy. There are essentially two situations to consider. Firstly the 

unknown data point falls in the region that is modelled, if this occurs, we can identify the 

region, the encapsulated nodes that fire and the members of the training set that are 

characteristic cases for the given input region, whether the unknown data point is a training 

point or not. That is; 

Probability(correct outputlmember of modelled region) = 1. 

If the unknown data point is not part of the modelled region of the input space no information 

is available about the value that the point should take and so; 

Probability(correct outputlnot member of modelled region) = 1/2. 

Even this final uncertainty in network behaviour can be removed by ensuring that all regions 

not modelled by the network explicitly have a specified output value of either + 1 or -1. That 

is the whole of the input space ;s essentially modelled by the network and so becomes 

perfectly predictable. 

Summary 

This chapter introduced the sandwich node as the atomic element of a monotonic neural 
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networ1< knowledge representational scheme. It was shown that the function of a sandwich 

node or system of nodes could be encapsulated in a single node that only contributed to the 

decision in a well defined region of the input space. This was illustrated with several 

simplified examples. Finally the reliability and predictability of encapsulated sandwich 

systems were seen to be greater than standard neural network techniques, since the 

interaction between the hidden nodes of the sandwich systems were well structured and so 

minimised. 
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Part Ill. Designing Neural Network Systems 



Chapter 7. Network Size and Topology 

Introduction 

The number of input nodes and output nodes and the transformation being modelled 

influences the number of hidden layers and size of these layers needed in the feedforward 

neural network. 

The number of input and output nodes is a function of the application domain itself and 

so will be known. The transformation being modelled is typically unknown unless specialised 

knowledge of the domain exists. Constructing a suitable network becomes a question of 

knowing how many layers and of what size are required to model a possibly unknown 

transformation, given the number of input and output nodes. The hidden structure of the 

network between the input and output nodes that is needed to model a given transformation is 

investigated in this chapter. 

Existing results 

Lipmann('S7), studying a four layer network (that is one with two layers of hidden 

nodes) suggests that at least three times the number of nodes in the second hidden layer is 

required for the first hidden layer. Lipmann argues that the second hidden layer would have 

as many nodes as the number of disjoint decision regions in the input space where a decision 

region is an area in the input space with a specified output. Each disjoinl region of the input 

space would require a node in the second hidden layer to recognise whether the input case was· 

in that region. The output can then be calculated for that particular input case. Each disjoint 

decision region will be generated by at least three lines and so there will be three times the 

number of nodes in the first layer as the second (see region A of figure 7.1). Lipmann's limit 

is an upper bound as shown by the simple addition of one more line to figureT.1 creating at 

least one more disjoint area, region B. 
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Fig 7.1 Three lines are required to enclose an area A, however an extra area can be created 

by adding one more line giving area B 

Mirchandani et al(,89) present some more results on the node requirement of the 

hidden layer based on the number of linearly separable decision regions that exist in the 

space in question. This limit provides a measure of the size of the feedforward network 

required to model a particular problem, given the number of training examples. The result 

presented is that M(H,n)= L"k=O~ and ~= 0, if H< k, where M(H,n) is the maximum 

number of decision regions possible with H hidden nodes in an n dimensional space and ~ 

the standard binomial coefficient. This result gives an idea of how many independent training 

points can be learned. To apply this analysis to the general case however, where the decision 

regions are not necessarily known, is impossible. Therefore a general limit on the size 

requirement of the hidden layer can not be provided from this result. 

Huang et al('91) provide another comprehensive study on the number of hidden 

neurons required in feedforward systems. They approach the problem in the same manner as 

Mirchandani et al('89). That is, they consider the size of the training set and the number of 

nodes required to model that set. For the special case of n dimensional Boolean functions with 

one output they present the result that an {n° L«m+ 1)/ 2).1+ 1) element training set can 

be modelled by a feedforward net with m hidden nodes. ( LxJ is the largest integer less than or 

equal to x). For a three input net we have a total Boolean training set of eight elements giving 

a value for m of five. It can be easily verified by exhaustive search that only three hidden 

nodes are required to model any three dimensional Boolean function. The work of Mirchandani 

et al and Huang et al are examined in the context of real valued inputs in chapter eight. 
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Hertz et al('91) discuss size limitations of feedforward systems, and offer the single 

hidden layer limit, as does Hinde(,90), for the case of Boolean transformations. The question 

of the size of this hidden layer is not discussed in depth by Hertz and the weak limit of 2", 

where n, the number of input units, is given. This is the network in which each input case 

has its own individual hidden unit to recognise it. 

Properties of feedforward Representations 

In studying neural networks several interesting representational properties have 

been encountered. The first is that for some particularly simple transformations, very few 

hidden nodes are needed. For instance, if the output is dependent on only two of the input 

nodes, then even if we have a k dimensional problem, where k is a large number, only two 

hidden nodes are required. A seemingly complex transformation like that of parity requires 

only k hidden nodes for the k input case. (The modelling of the parity problem is discussed in 

chapter five). The second point of interest is that there are many network representations of 

each transformation, many of which will require a large number of hidden nodes. For 

instance the parity case can be modelled in as many as 2k different ways using just k hidden 

nodes, while it can also be modelled by a net which has hidden nodes that isolate a single input 

example each. This case will have 2'<·1 hidden nodes for the k input case. 

Splitting and projecting nodes 

Given that the nodes represent hyperplanes in the k dimensional Input space, they can 

be projected onto any other hyperplane in the space. The hyperplanes formed by considering 

any input node and fixing the nodes value at + 1 or -1 defines two distinct hyperplanes in the 

k dimensional input space. Fig 7.2 a, b, c, d, e shows how fixing an input node reduces the 

dimensionallity of the given node. 
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A A' B B' 

b c d e 
Fig 7.2 a. A three input node. Splitting a node into its component parts by fixing one of the 

inputs at, b. +1 or, d. -1, c. & e. Lower dimensional network that can emulate the original 

network 

The projections of the hidden node hyperplanes onto the input node hyperplanes can be 

classified into three groups. See fig 7.3 for the original hyperplanes and fig 7.4 for their 

respective projections. 

Bisecting Reducing Splitting 

a b c 

Fig 7.3 Three general forms of nodes viewed with respect to a given input axis. a. Bisecting, 

b. Reducing, c. Splitting. The projecting planes are denoted by 1 and -1 

These three groups are respectively bisecting hyperplanes, reducing hyperplanes and 

splitting hyperplanes. Bisecting hyperplanes can also be represented by the hyperplane 

input node= 0, and so do not make a contribution to the points in the subspace other than as an 
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external bias. (Fig 7.4a). Reducing hyperplanes have a contributing projection in only one 

subspace and in the other only offer an external bias. (Fig 7.4b). Splitting planes have a 

contributing projection into both subspaces, input node= +1 or -1. (Fig 7.4c). 

~ -1 

Reducing 

~ -, 
Splitting 

Fig 7.4 Views of the three types of nodes after spliHing along an axis, a.Bisecting, b. 

Reducing, c. Splitting 

The analysis can proceed in a similar manner for nodes with a general number of 

inputs. (Fig 7.5a). 

/ 
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Fig 7.5 a. A general m input node 

By fixing an input node at either +1 or -1 the m dimensional node can be split into two m-1 

dimensional cases. The two splits 01 the m dimensional nodes are equivalent to the two m-1 

dimensional nodes as seen in lig 7.5 b & c. 

--

b 

0 1 

--

c 
Fig 7.S The equivalence 01 two splits to the component nodes. the fixed input node acting as a 

contribution to the bias 01 the projected node. b. Selling the node value at + 1. c. Selling the 

node values at -1 
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Constructing network representations 

Methods for constructing neural networks were "briefly discussed in chapter 1, but 

they do not make use of the large body of knowledge that may exist about the transformation 

being modelled. Huang et al(,91),s technique, makes specific use of the knowledge of the 

training data to construct the network required to model the transformation. It does not make 

use of any larger knowledge structures that may already exist, such as representations of 

subspaces of the transformation (see chapter six). Techniques that amalgamate knowledge of 

lower dimensional subspace representations into representations of the total transformation 

are presented below. 

Amalgamation of representations 

Neural representations of a transformation can be constructed from the lower 

dimensional representations that may already exist. This is achieved by amalgamating the 

lower dimensional schemes into an overall higher dimensional representation. At the 

simplest level, assume an n input transformation exists whose splits about a single input 

node, that is two n-1 input transformations have neural representations, as shown in fig 7.6 

a & b. 

2 2 

n-1 n-1 

a b 

Fig 7.6 Representation of the two n-1 input subsets of the full transformation, a. The split 

input node= +1, b. The split input node= -1 
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The two subset representations are defined by the weights on the nodes in the hidden 

layers and the output layer, that is, wj /, 1s is k', Os js n for the hidden layer and Wj', Os 

is k' ,for the output node of the first split and also Wj i" 1 s is k", O~ js n for the hidden 

layer and Wj", Os is k", for the output node of the second split. The weights with subscripts 

of zero refer to the bias weights. We can construct a higher dimensional representation 

making use of two barrages of nodes from the lower dimensional representation. This is 

shown in fig 7.7. 

1 

2~' ... ' 

n 

Fig 7.7 Representation of the total n input transformation 

This amalgamated representation is defined by the weights, wij' 1 s i~ k' + k", ~ jS 

n for the hidden layer and wi' Os is k'+ k", for the output node. The weights in this 

representation all correspond to weights in the two subspace representations with the 

exception of the bias weights and the weight on the nth node, about which the representation 

was split. 

The weights that are unaffected are as follows; 

wi( wi/' 1S is k', 1s j~ n·1 and 

Wij= Wjt, k'+1s i~ k'+ k", 1S j~ n·1 for the hidden layer and 

Wj = wi', 1S i~ k' and 

wi = w;", k'+1s is k'+ k", for the output node. 
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The as yet undefined weights can be calculated by examining the behaviour of the n input 

representation with the behaviour of the subset representations. This is done by setting the 

nth input node, about which the problem is split, at +1 and -1 . 

The condition that each barrage of nodes only contributes in a discriminatory manner 

when the nth input node is set at either +1 or -1 but not both is required. Adding the 

condition that the nodes output -1 over the region that they do not contribute, gives us the 

following equations over the weights of nodes in the hidden layer. It should be noted, the 

substitution bi'= wiO" bi"= wiO'" bi= wiO' for 1S is k'+ k", has been made in the following 

equations to make clear which weights are the bias weights. 

threshold( bi' - win' + Lj=l n-l Wj i'· »)= -1, for all input vectors X. 

threshold( b·" + w· "+ L' ,n-, w··" • x,)= -1, for all input vectors X. I In J= JI-1 

These equations give us 

b·' - w· < 5. , n-, Iw·.'1 for 1< i< k' and I In '<"J= J I - -

b " ... n-l I "I f k'<'< k' k" i + win < -:"j = 1 Wj i or - L + . 

Since the only unknown is win it can be specified to satisfy the equations above for 1 S is k'+ 

kit . 

The fact that over the regions that the barrages of weights contributes in a 

discriminatory manner, the output of the n dimensional net is identical to that of the sub 

representations, gives us the following equations. 

{ b ... n-l • x,} {b' ... n-I '. x,} f 1 . k' d i + win+ '<"j=1 Wji -j = i + :"j=1 Wji -j or SIS an 

{ bi - Win + Lj=ln-1 Wji • »} = { bt" + l1= ,n-' Wj r • »} for k'S is k'+ k". 

These equations simplify to 

{ bi + Win! = bi' for 1S is k' and 

{ bi - win} = bt for k's is k'+ k". 

Since the only unknown is bi, its value can be calculated for 1S is k'+ k". 

Having specified all the bias values and weight values from the nth input node of all 

113 



the nodes of the hidden layer, the bias weight of the output node can be calculated. Again, the 

substitution bout= wo' bout'= wo', and bout"= wo", is made in order that the bias weight can 

be clearly distinguished. The nth input node of the n dimensional representation is set at +1 

and -1 and its behaviour compared to that of the sub representations. The following equations 

are obtained. 

nth input node= +1 and 

k' k'+ k" * kit 
{ bout - Lj=1 Wj i+ Lj=k'+ 1 Wji~} = { bout' + li=1 wji"·~} for the 

case nth input node= -1. 

These equations reduce to 

{ bout - Lj=k'+ 1k'+ k" Wj J = bout' for the case nth input node: +1 and 

{ bout - Lj=t k ' Wj J = bout" for the case nth input node: -1. 

The only unknown is bout and the equations are consistent if 

{bout'- Lj=k'+ 1k'+ k" Wj J = {bout'- Ljc1k' Wj J, which can be achieved by a suitable 

scaling one set of weights. Therefore we can provide a consistent value for bout. 

Amalgamation of nodes 

The method for constructing networks by amalgamating low dimensional 

representations will produce representations that are far from minimal. The method treats 

each subspace independently, not exploiting the similarities that may exist within the 

representations chosen. Several methods are presented that will reduce the size of the 

network representations. This will be achieved by amalgamating nodes that do not provide any 

extra information in a representation. 

Two nodes can be amalgamated in a particular layer that contribute identical outputs 

over the set of inputs and create a new node which produces this required output (the 
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conditions under which this is possible is discussed below). Nodes in the next layer that were 

connected to either of the original nodes are connected to the new node using their original 

weights. If the node in the next layer was connected to both of the original nodes then the new 

weight is the scalar sum of the original weights. 

1 

-
2 - 2 -

k k 

Fig 7.8 Nodes are equivalent if the weights vectors are scalar multiples,(b,wl,w2, .. ,wk)= 

c'(b', wl',w2', .. ,wk'), where c is a scalar constant 

This amalgamation scheme is useful since it offers us the possibility of reducing the 

size of representations that are constructed. The difficulty in making use of this property is 

that of recognising if two nodes are synchronised over the set of inputs. For large input 

spaces and a large number of nodes it would be impractical to verify if two nodes are 

synchronised. 

Examining the weight space that defines the nodes allows us to decide whether two 

nodes are synchronised without observing the behaviour of the nodes over all the input cases. 

Let us consider two nodes, node' and node". If node' and node" are defined over the same inputs 

and have identical weights or identical weights to a scalar factor, then Ihe two nodes are 

synchronised (see fig 7.8). This follows directly from the node formula. 

If the weights are perturbed Slightly the two nodes may still be synchronised. That is, 

if node N and node N' have similar weights, they may be synchronised. We examine the 

conditions under which two nodes are synchronised. 

To ensure that the weight vectors are scaled equally the largest weight of node N is 

selected, wl say, and the weights of node N' scaled so that w1 = w1'. The perturbation of the ith 
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weight, dWj, is defined as the djfference between the ith weight of node N and node N' . That is 

dWj= wj' - wj. The weight vectors being similar, a new node, node N", can be constructed by 

selecting one of the weights Wj or Wj' for each component w;". This new node will be 

synchronised with node N and node N' if the sum of the possible perturbations, Lj=,nldWjl, is 

small enough to preserve the output. Since the output is threshold( L;c,"wj • Xj), where 

threshold(X) = +1, for all X > 0, threshold(X) = -1, for all X < 0, we have the condition 

that; 

if 1L;=,"wj * X;I > Lj=,nldW;I, and ILj=,"wj' * Xjl > Lj=,nldWjl, for all input values X, 

then the nodes node N and node N' are synchronised. The node N and node N' can be amalgamated 

into node N", so reducing the size of the neural representation. 

Thjs requires us to check the output behaviour of the nodes over the whole input set. 

Again, this may not be practical for large training sets. By ensuring that Il:j =,"wj * X;I > C 

and ILj=,"wj' * X;I > c, for all input values, where c is a non zero positive constant, during 

the training of the network, the problem is reduced to that of checking that c > Lj=,nldW;I. If 

this is the case the nodes are synchronised and so can be amalgamated. 

Amalgamation of nodes in different barrages 

When two nodes contribute in a discriminatory manner over two distinct regions of 

the input space it may be possible to amalgamate them into a single node. This new node will 

be synchronised with the original nodes over the regions that they are not null. The case 

where we have nodes from different barrages represents the simplest possible case. Nodes in 

one barrage only contribute in a discriminatory manner over half the input set. One barrage 

fully represents the problem when a particular node is set at + 1 while the other does so 

when the node is set at -1. The barrages together, fully represent the total problem. 
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2 

n 

Fig 7.9 Two nodes in different barrages 

As was the case with the amalgamation of the synchronised nodes in the previous 

section, two nodes from different barrages that have weight vectors that are identical over 

the independent input nodes examined (see fig 7.9 and fig 7.10 a & b). These nodes are 

defined by the biases band b' and weights wi and wi', where wi = wi', for 1 S is n-1. The bias 

nodes and nth input node weight are in general distinct since these would have been specified 

by the technique of amalgamating the representations as discussed t above. 

a b c 

Fig 7.10 The two n-1 input nodes that contribute in different splits about the nth input node, 

with their amalgamated node defined over n input lines, a. node N, b. node N', c. amalgamated 

rode 

If a node N" that represented the whole problem existed (fig 7. tOe), defined by the 

bias b and weights wi then it would have to satisfy the following equations. 

{ b"+W"+L' n-1 w.••• X·}={b+W+L· n.1 w·* Xl n J=1 J'] n J=1 J']' 
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we have that wi' '= wi = wi', so 

b" - wn" = b' - wn'. 

Solving these simultaneous equations, unknowns are band wn ' gives 

b" = (b+ b'+ wn - wn') / 2, 

wn= (b- b'+ wn + wn')/2. 

Therefore the two nodes can be amalgamated into a single node, reducing the overall 

representational scheme. In general the condition that wi = wi', for 1:S; i:s; n-l, is not 

required but that (discounting the effect of the bias and nth input weight) the nodes are 

synchronised. 

Carrying through the analysis from the amalgamation of nodes above, if ILj=,n-'Wi' 

~I > Li=ln"I~wi"I, and ILi=,n-,wi' • Xd > Lj=,n-'I~wtl, for all input values X, a single 

amalgamated node can be constructed. 

And Similarly by ensuring that ILj=,n-'Wi • Xii> c and ILi=,n.twi' • Xd > c, for all 

input values, where c is a non zero positive constant, during the training of the network 

means that if c > Li=,n"I~wil, a single amalgamated node can be constructed. 

Definitions 

Some terms are defined below which will be used in the following sections. 

Minimal: representations 

We can create many different networks to represent an individual transformation. 

The smallest network that can represent a transformation is called the minimal 
• 

representation. The number of nodes in this network is the minimum number of nodes 

required to model the transformation in question. 
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Oversupplied networks 

A network representation that has more nodes than the minimum number required to 

model the transformation in question, is capable of modelling the transformation. Given such 

a network, training can begin. Back propagation can be applied over the training data and 

after the convergence of the training algorithm, the network will represent the 

transformation. A network which is not minimal with respect to a given transformation and 

has more nodes than the minimal representation is said to be oversupplied. 

Undersupplied networks 

Conversely, if we try to train a network with fewer nodes than the minimal 

representation, then the training algorithm will not converge. The network is incapable of 

representing the particular transformation and no amount of training will overcome the 

problem. Such a network is said to be undersupplied. 

Worst transformation 

Given a specific number of input nodes n say, and a single output node, we have a 

possible 2( 2") transformations that we can choose from. Different transformations will 

have different minimal representations. One or more transformations will have a minimal 

representation that is at least as large, if not larger than all the other minimal 

representations. This transformation is called the worst transformation and will be referred 

to as the worst case. 

Fullness 

A representation is said to be full if it uses at least as many hidden nodes as would be 

required to model the worst problem for that particular number of input nodes. This means 

that a full representation is capable of representing any transformation, it is just the 

training algorithm that perturbs the hidden nodes to produce a particular representation of 
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the problem in question. A full representation will be oversupplied if it is not modelling the 

worst transformation. 

Tightness 

A representation is said to be tight if it uses as many but no more hidden nodes than 

would be required to model the worst problem. A tight representation is not oversupplied 

when modelling the worst case for that particular number of input nodes. A tight 

representation will be oversupplied when modelling a transformation that is not the worst 

case. 

Null nodes 

If a node or set of nodes produces an output that is identically +1 or -lover a specific 

set of input examples, then that node or nodes is said to be null or null contributing over that 

input set. (Huang et al '91). A null node does not contribute in a discriminatory manner over 

the input set and so can be considered to be an external bias rather than a contributing node. 

Representational defin itions 

More terms which are relevant in discussing neural network models of specific 

transformations are defined below. 

i. A transformation is said to be k-representable if a neural net with k·hidden nodes can 

represent the problem. 

ii. Two nodes defined over the same inputs are said to be consistent the outputs are 

synchronised. 

iii. A node defined over a subset of inputs is said to s-consistent with a node defined over the 

whole set of inputs if in the subspace of the input space, the second node is consistent with the 

first. 

iv. Two nodes are said to be m-consistent if there exists a node, possibly defined over a 
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larger set of inputs, such that these two nodes are s-consistenl with it. 

v. Two planes in two k-l dimensional projected spaces are l-consistent if there exists a 

plane in the k dimensional space such that on projecting along the particular axis the 

splitting planes produced are the ones in question. Therefore if two k-l dimensional nodes 

are l-consistent, we can construct a k dimensional node which when projected along the 

required axis provides the two nodes in question. The k dimensional node which is constructed 

is s-consistent with the two k-l dimensional nodes. The two I-consistent k-l dimensional 

nodes are themselves m-consistent. 

vi. Two planes in two k-l dimensional projected spaces are 2-consistent if there exists a 

plane in the k+ 1 dimensional space such that on projecting along the two axes the splitting 

planes so formed are the ones in question. Therefore if two k-l dimensional nodes are 2-

consistent, we can construct a k+ 1 dimensional node which when projected along the required 

axes provides the two nodes in question. The k+ 1 dimensional node which is constructed is s

consistent with the two k-l dimensional nodes. The two .2.-coosistent k-l dimensional nodes 

are themselves m-consistent. 

Topological limits on feedforward nets 

Number of layers required 

In this section we will only consider Boolean transformations to a single binary 

output, i.e. f: Bn_ >B (see fig 7.11). The extension of the resuH to multiple output nodes is 

natural, since each output can be considered independently and so does not require any extra 

layers. 

1 
1 

Hidden 
2 

2 2 
network 

n k 
Structure 

Fig 7.11 Structure of a general neural network with a single output 
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This transformation f: B"- >B , can be represented by a logical function of the input 

units. This transformation can be converted into conjunctive normal form or conjunctive 

canonical form as it is sometimes called, using just the standard logical NOT, AND and OR 

operators (Birkhoff et al '70 & '77). 

Any Boolean transformation can be put into conjunctive normal form (Birkhoff et al 

'70). This is derived from the fact that all Boolean transformations are generated by the 

operators conjunction, disjunction, negation and the atomic propositions. Conjunctive normal 

form is the representation of a Boolean formula, using just the conjunction and disjunction 

operators, in which the formula is just a conjunction of disjunctions. The operators AND and 

OR satisfy the distributive equations; 

a AND (b OR c)= (a AND b) OR (a AND c) and 

a OR (b AND c)=(a OR b) AND (a OR c). 

and the conversion operation under NOT; 

NOT(a AND b)= (NOT(a) OR NOT(b)), 

NOT(a OR b)= (NOT(a) AND NOT(b)). 

It can be shown that any Boolean formula of conjunctions, disjunctions negations and 

atomic propositions can be transformed into conjunctive normal form using the formula 

transformations above. 

An example of a Boolean formula over the propositions, a, b, c, d and e in conjunctive 

normal form is; 

(a OR b OR NOT (c)) AND(b OR NOT (d)) AND(a OR e) AND( NOT (c) OR d OR e) 

Therefore the conjunctive normal form can be represented by a network with two 

layers of weights, i.e. one with just one hidden layer of nodes (see fig 7.12). And so we derive 

the fact that any Boolean transformation f can be modelled by a feedforward net with at most 

one hidden layer of nodes. 
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2 

n 

a>o,b>o,c:>O etc. 

Fig 7.12 Neural net representation of conjunctive normal form of a transformation 

The general Boolean transformation f: Bk. >BP can be considered as p distinct Boolean 

transformations f: Bk. >B which can be modelled with a single layer. Therefore the multiple 

output case also requires only one hidden layer, with the output nodes sharing hidden nodes 

when the conjunctive normal form possesses identical terms (see fig 7.13). In fig 7.13, and 

other complex diagrams of network structure, the bias node is not shown. Suppressing the 

bias nodes allows the number of nodes and interconnection pattem to be viewed unobstructed. 

2 2 

k p 

Fig 7.13 Neural net with a single hidden layer 

Size of the hidden layer 

In this section we will restrict ourselves to transformations with just one output 

unit, i.e. f: Bn. >B. The extension of the result to the multiple output case will be presented 
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in the next section. 

We will prove the theorem that for a neural net of n input nodes and one output node a 

maximum of n nodes are required in the hidden layer to fully represent any transformation. 

Some problems easily satisfy the theorem, while general transformations don't easily 

lend themselves to the same analysis. Enumerating each transformation and its network 

representation is impractical for large dimensional transformations. 

Theorem All Boolean transformations with n inputs can be modelled by at most n hidden 

nodes. 

Proof 

a. output b. output 

+ 1 + 1 +1 - 1 

A A 

- 1 + 1 - 1 - 1 

c. output d. output 

+ 1 + 1 + 1 - 1 

A A 

- 1 - 1 - 1 + 1 

Table 7.1 Enumeration of the possible Boolean transformations with a single input 

The theorem is true for n= 1, 2, and 3 by enumerating the possible Boolean 

transformations and showing that they can be modelled by networks satisfying the hypothesis. 

table 7.1 shows the four possible transformations for n= 1. They can all be modelled by a 

single node, so having no hidden node trivially satisfy the hypothesis. For n= 2, the sixteen 

possible transformations are seen in table 7.2 . All these can be solved with a single node, 

without any hidden layers except the two exclusive OR cases (case d table 7.2).The worst case 
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is when we have the exclusive OR type problem and this can be solved with two nodes (see fig 

7.14a ), i.e. two discriminating lines. It also clear thal by enumerating all the sixty four 

possible cases, that the conjeclure is true for n= 3. Most satisfy the theorem trivially, the 

exclusive OR or parity in three dimensions, providing the worst case, which can be modelled 

with three hidden nodes (see fig 7.14b). 

B B 

a + 1 - 1 b. + 1 - 1 

+ 1 + 1 + 1 + 1 + 1 + 1 

A A 

- 1 + 1 + 1 - 1 + 1 - 1 

B B 

c. + 1 - 1 d. + 1 - 1 

+1 + 1 + 1 + 1 - 1 + 1 

A A 

- 1 - 1 - 1 - 1 + 1 - 1 

Table 7.2 Enumeration of the possible Boolean transformations with two inputs. The sixteen 

possible transformations are given by negating the output or input lines of the four cases 

above, Case a. and its negated outputs gives two distinct transformations, Case b. and its 

negated inputs and outputs gives a total of eight distinct transformations, Case c. and its 

negated inputs gives a total of four distinct transformations, Case d. and its negated outputs 

gives two distinct transformations 

a b 
Fig 7.14 a. NOT (exclusive OR) separated with just two lines, b. Parity in three dimensions 
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For n~ 5 the following induction argument on the number of input nodes. provides the 

proof. A proof for n= 4 is just the apptication of the proof procedure given below, taking into 

account the small number of nodes involved in the problem. 

The Hypothesis 

There exists a tight representation of the worst n dimensional transformation using n 

nodes, whose n-l dimensional splits are tight requiring n-l nodes. 

For n= 3 the worst case by enumeration is the parity problem. The parallel 

representation of the parity problem satisfies the hypothesis. Appendix E2 shows a suitable 

proof of the case n= 4 based on the methods developed in appendix El. Therefore the 

hypothesis is true for n= 3 and n= 4. 

Induction hypothesis 

If there exists a tight representation of the worst n-l dimensional transformation 

using n-l nodes, whose n-2 dimensional splits are tight requiring n-2 nodes, then there 

exists a tight representation of the worst n dimensional transformation using n nodes, whose 

n-l dimensional splits are tight requiring n-l nodes. 

Assuming the hypothesis for n= k-l , we examine the case for n= k. If we could solve 

every transformation in k nodes or less then the hypothesis would be proved so now assume 

we have the worst possible transformation f say. We prove that this worsl case does not 

violate the induction hypothesis. 

Proof of induction hypothesis 

Due to the assumptions there exists a k-l representation of the two k-l dimensional 

splits of the worst k dimensional transformation under consideration. These representations 

are tight and their k-2 dimensional splits exist and are themselves tight. We can construct 

full representations of the k dimensional problem that are tight in the k-l dimensional 
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splits by using each of the k-1 dimensional representations given above to represent each 

side of the split of the k dimensional transformation. This is done via the technique of 

amalgamating the lower dimensional representations, as discussed earlier. We choose a 

representation that is minimal, the minimal representation for the worst case is by 

definition tight. The amalgamation scheme in appendix E3 shows that given the above 

conditions the worst k dimensional transformation requires at least k and no more nodes to 

represent it fully. 

Since we have that the original hypothesis is true for n= 3 and n= 4 it follows via the 

induction argument that it is true for n~ 5. 

Size limitations of general n-m-p nets 

The results on neural network size and topology can be generalised to the multiple 

output case. (Fig 7.15). 

2 

n 

Fig 7.15 Multiple output neural network structure 

Each of the p output nodes can be considered individually as single output problems 

and so we can get the quick generalisation that the n-m-p net can be solved as stated in the 

two layers of weights with a maximum of n*p nodes in the hidden layer. (See fig 7.16). 
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n 

Fig 7.16 Three layer multiple output neural network structure in which the hidden layer 

consists of p distinct sets of n nodes 

This net can be transformed into one of the form (n+ceiling(log2P))·m.1. where 

ceiling(x) is the smallest integer greater than or equal to x. This is carried out by 

considering pairs of output nodes as representing projections in a higher dimension. Doing 

this until we have only one output node results in the form as stated above and so this net can 

be solved with a hidden layer of m=(n+ceiling( 1og2P)). (See fig 7.17). 

Fig 7.17 The multiple output neural network structure transformed to an equivalent single 
output neural network structure 
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A disadvantage with this form of the net is the loss of parallelism in execution. 

Namely the different output nodes must each be calculated separately by specifying the value 

of the ceiling( 1092P) extra input nodes. A method that is successful in regaining the 

parallelism inherent in neural networks is transforming the net into the Loughborough form 

making use of the specialised m-type hidden nodes. The m-type nodes have a single set of 

weights and a given number (say k) of bias values which provide the (k) different output 

values. A single m-type node with k bias values behaves like k nodes with identical weight 

values. This is discussed further below. 

The Loughborough net 

To regain the parallelism of a general n-m-p net we remove the extra input nodes and 

use them to define the extra biases that must be applied to the m-type nodes. 

1 2 •• p 

Fig 7.18 The Loughborough neural network structure. The single output network 

transformed to an equivalent multiple output neural network structure using m-type hidden 

nodes 

The m-type nodes have ceiling( 1092P) separate bias weights that are applied to the 

node. Each bias is applied after the node has worked out the input from the input nodes. These 
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separate m-biases are then applied and the outputs passed on to the p output nodes. 

The Loughborough form has the topology of an n-(n+ceiling( iog2P))-P feed forward 

net with specialised m-type hidden nodes (fig 7.18). Therefore given any Boolean 

transformation, f:Sn- >SP, in the Loughborough form requires a maximum of (n+ceiling( 

log2P)) m-type hidden nodes to model the problem. 

Node Parallelisation 

As demonstrated above, the size of network needed to model a problem can be greatly 

reduced if node parallelisation can be achieved. If we consider the parity problem, the planes 

that the nodes represent are all parallel, although there are in fact two classes of parallel 

plane of different polarity (see chapter three). 

2 

k 

Fig 7.19 Single output neural network structure making use of singly outputting m-type 

nodes 

This means that the parity problem could be modelled with two m-type hidden nodes 

for all dimensions. These m-type nodes in fact output to just one output node and so should be 

distinguished by classing then as singly outputting m-type nodes, or som-type nodes (fig 

7.19) . 

Since we have successfully parallelised the parity case, the question arises as to 
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whether in general we can make use of the property of parallelism in the node representation 

to reduce the problem. If we can spot parallel nodes in a representation, then we can make 

use of the som-type nodes. However this would be a very laborious search process and may in 

general not occur. 

Summary 

This chapter has given a new lowest upper bound on the number of nodes in the hidden 

layer of feedforward neural networks representing Boolean transformations with multiple 

inputs and a single output. This result was further generalised to multiple output cases. 

Specific transformations can often be modelled by fewer nodes than the limit presented in 

this chapter. Methods for producing this minimal representation require further study. 

Existing techniques include those of Tani et al(,89), where an oversupplied network is 

pruned to obtain the minimal representation. 

This chapter has examined techniques for amalgamating nodes in neural network$,SO 

reducing the size of the neural network models. Transformationsthat can be implemented by 

sets of parallel hyperplanes in the hidden layer can be further reduced in size and 

complexity. This is achieved by amalgamating the parallel nodes and providing multiple bias 

weights to provide the function of the separate nodes. 

This technique was introduced within the framework of the new neural network 

architecture, the Loughborough net. This architecture used two new node structures. These 

nodes consisted of multiple biases, forming the multiple outputting node, the m-type node and 

the singly outputting m-type node, the som-type node. 
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Chapter 8. Engineering Reliable Neural Systems 

Outline of chapter 

Previous chapters have examined neural network models of transformations from 

multidimensional Boolean input spaces to either single or multidimensional Boolean output 

spaces. This chapter examines transformations from real valued input spaces. The continuity 

of real valued spaces makes a great difference to the types of transformations that can be 

modelled. The results obtained in previous chapters can be transferred to the case of real 

valued input spaces if we consider training sets with discrete, isolated points whose output 

values are Boolean values. 

The discrete nature of these input values allows us to construct atomic knowledge 

elements such as sandwich nodes which can then be manipulated and trained in much the same 

manner as the Boolean cases. The neural network size results do not generalise immediately 

since the topological structure of the two spaces are distinct. Several results by Mirchandani 

& Cao(,88), Huang & Huang('91) and Baum('88) are applicable to the first layer 01 weights 

in the real input leedforward neural network. General results on network size and topology 

can be given by applying the Boolean network size results to the following layers of the 

network. 

Continuous Spaces 

The most significant property of real valued spaces is their continuity. Any 

transformation defined on such spaces contains an infinite number of data points. Training 

neural networks to model such transformations provide significant difficulties. Arai(,89) 

discusses a scheme whereby an infinite three layer network can model arbitrary continuous 

transformations, but physical implementation of such systems would be impractical. 

Transformations that are constructed from basic neural network atoms, that is linear 

summation nodes with linear or nonlinear threshold operators, can be modelled by neural 
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systems. This is due to the algebraic identity of the transformations under consideration and 

the neural network model. This is demonstrated by the simple transformation, Z= 5X + Y + 

10, whose neural model is shown in fig 8.1. The threshold function used in this network is 

just the simple linear identity threshold. 

x 
z 

y 

Fig 8.1 Neural network model of the transformation Z= 5X + Y + 10 

Given an unknown transformation, the problem of finding a suitable neural network 

model becomes very difficult. If strong constraints are made on the size and architecture as 

well as the threshold functions of the network this problem is un solvable in the most general 

case. Classifiers are studied by Baum('88), Mirchandani & Cao(,88), and Huang & 

Huang('91). A different classification is made depending on the region of space that is under 

consideration. Feedforward neural networks with hard logical threshold nodes behave as 

classifiers and so are ideal for modelling classification transformations. 

At the simplest level classifiers form a dichotomy on a set. This means that the neural 

network model requires only a single output node. The second simplification is an assumption 

on the structure of the real valued input spaces. The assumption is that the decision regions 

can be separated by rectilinear segmentation. This is required if we are to use the standard 

neurons with a hard limiting threshold. Several basic properties of these networks are 

dependent on the size of the network under consideration. 

Table 1.2 (chapter one) shows the representational properties that depend on the 

number of layers of the network. Increasing the number of nodes in the layers of ·the network 

allows the implementation of more complex decision regions. To analyse such regions we 

must introduce some concepts relevant to rectilinear geometry. 
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A set of data points which can be separated by a single hyperplane is said to be 

linearly separable. A set of data points which can be separated by a finite intersection of 

hyperplanes is said to be separable by a single neural system. 

Polytope classes 

The intersection of hyperplanes has been studied by Mirchandani & Cao('88) and 

Huang & Huang('91). Huang & Huang has formalised the study, considering the hyperplanes 

as closed half spaces. The intersection of two or more of the spaces forms polytopes. which 

may be empty, bounded, or unbounded. A region formed by the intersection of two half planes 

is termed a two-polytope, three a three-polytope and n an n-polytope. Fig 8.2 shows several 

different polytopes, bounded and unbounded that can be constructed by the intersection of 

several half spaces. 

Fig 8.2 Three half spaces intersect to form six l-polytopes, twelve 2-polytopes and six 3-

polytopes 

It is possible to gain some bounds on the number of nodes required to model the 

problem in question by examining the number of regions into which the input space is 

partitioned. Mirchandani & Cao showed that the maximum number of regions (M(H,d» that 

are separable using H hidden nodes in a d dimensional space is given by the formula, 

M(H,d) = rdk=o (H,k), where (H,k) is the binomial coefficient such th~t (H,k) = 0 

if H < k. I 
. equation 8.1. 
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Fig 8.3 Five regions of the two dimensional input space require four parallel nodes to 

separate them 

This result gives the minimum number of nodes required to model a particular 

problem. We find the minimum number H such that M(H,d} is greater than the given number 

of separable regions. The actual neural model of the problem in question may require many 

more nodes. At the Simplest level, this occurs when we have parallelisation of the decision 
c 

regions as discussed by Mirchandani & Cao. In fig 8.3 we have five decision regions requiring 

four hidden nodes when the formula would give M(4,2}= 11, that is the maximum number of 

decision regions in a two dimensional input space using four nodes is eleven. The case in 

question, the decision region parallelisation, is not a maximal case. Huang & Huang and Baum 

discuss more complicated examples where similar arguments apply, see fig 8.4a where seven 

data points require three nodes is a maximal case, while seven data points require four nodes 

to be separated in fig 8.4b. 

a b 

Fig 8.4 a. Maximal separation of seven points by three nodes, b. Non maximal separation of 

seven points requiring four nodes 
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The above analysis demonstrates that the number of nodes required in the hidden layer 

is highly dependent on the structure of the regions to be separated and not just the number of 

regions. The difficulty with finding methods of modelling such problems with neural 

networks is that once the structure of the classification regions are known, essentially the 

problem is solved. Referring to fig 8.5a, it can be seen that the boundaries of the separable 

regions represent nodes in the first layer of the neural network. The selection of the 

combination of suitable regions in classification occurs through two Boolean transformation 

layers (all Boolean transformations can be modelled by two layers of a feedforward neural 

network, see chapter seven) that follow the boundary decision layer of the network, fig 8.5b. 

Fig 8.6 shows the general neural network model of a transformation from a multiple real 

valued input space to a single Boolean output. 

Segmentation Boolean 
Layer Layers 

a b 
Fig 8.5 a. Four regions with an XOR classification transformation and, b. Its neural 

Segmentation 
Layer 

representation 

Boolean 
Layers 

Fig 8.6 A general neural network model of a real valued classification transformation 
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Automated training 

Many automated training regimes such as backpropagation make use of isolated data 

points. The classification of regions of the input space have no meaning except via the 

specification of the set of data points that make up the regions. Ideally for complete 

specification all the points in the continuous space of the input space must be specified. In 

reality this is impractical and so a finite subset of points specify the classification 

transformation. The points that are modelled by the node boundaries in fig B.7 specify the 

XOR transformation shown in fig B.5a. 

x 
x 

0 
X 

X 
0 
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0 
0 
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0 

0 
0 XXX 0 

X 
X 

X 

X 

Fig B.7 Separation of a real data set into XOR regions by two segmentation nodes 

Given a finite training set with isolated training points, the notion of a unique 

regional classification is lost. The best possible segmentation of the data points can be sought, 

which would ideally represent the classification transformation being modelled. As discussed 

by Huang & Huang('91) and Arai('B9), isolated data points provide the possibility of 

implementing arbitrary mappings on a training set. This is the case since each isolated data 

point can be associated with a unique output which can be suitably implemented by the 

manipulation of the weights in the network. 

137 



Properties of isolated data pOints in real valued spaces 

Interleaved rectilinear points from different classes must be separated by multiple 

interleaved planes. The separating planes are linear in structure and so a single plane (or a 

reduced number) can not separate the points in question. Fig 8.8a shows five rectilinear 

points that must be separated by four nodes. Anything less, for example a single node can not 

separate the whole set (fig 8.8b). 

x 

a b 
Fig 8.8 a. Separation of five points by four segmentation nodes, b. It is impossible to separate 

the points with fewer nodes 

A pair of nodes can isolate n points in an n dimensional input space. If a point from a 

different classification lies on a line between any two such points or on the plane intersecting 

the n points, more nodes must be added (as above) to fully separate the set. Fig 8.Bc shows 

how two points in two dimensions can be separated·. by two nodes. These do not interfere 

with any other data points. In fig 8.Bd the point from another class lies within the 

segmentation and so more nodes are required to fully separate this set. 

c d 
Fig 8.8 c. Two rectilinear points can be separated from the rest of the input space with a pair 

of segmentation nodes, d. Three rectilinear points can not be separated if the points are from 

different classes 

Baum('88) provides some result on the number of hidden nodes required to model 
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problems in which the data pOints are in general posilion. Data points in an n dimensional 

space are in general position if there are no subsets of these data points. with n + 1 

elements. lie on an n -1 dimensional hyperplane. Baum demonstrates that an N element set in 

a d dimensional space can be separated by a ceiling(N/d) nodes into albitrary dichotomies. 

Fig 8.9 shows an example in two dimensions that requires this limit to model the problem. 

o 

Fig 8.9 Separation of N points in general position on a circle by ceiling(N/2) segmentation 

nodes 

General classification 

If we now consider general classification problems which have multiple output 

classes. the analysis becomes more complex. Making the assumption that each point must be 

separated from every other point in the training set provides an upper bound on the number 

of nodes required to model the training set. These assumptions mean that M-1 nodes are 

required to separate M points even if all the points are not rectilinear. This result is quoted 

by Kung & Hwang(,88). Mirchandani & Cao('88). Baum(,88) and Arai('89). The results of 

Mirchandani & Cao can be ex1ended to this case. The number of points become the number of 

decision regions that we have. Similar problems as discussed earlier apply to this case if the 

separation scheme is not maximal. The formula does not provide the correct maximum 

number of nodes required to model non maximal cases such as rectilinear data points. 

Padalines 

Given classification problems defined on Isolated data points. the accuracy of the 
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neural network model will depend on a number of factors. The first is the number of nodes in 

the network. The greater the number of nodes available the greater the accuracy of the neural 

model of the transformation in question. This is demonstrated by the fact that the four node 

neural network can model the classification problem of fig 8.8a while a single node network 

can not. The greater the number of nodes available the greater the number of neural models 

that can represent the classification problem. 

The other major factor that determines neural network model accuracy is the the type 

of nodes that we use. Polynomial adalines were introduced by Sprecht('67} and Hinde('74). 

They allow input parameters to be transformed polynomially, so removing the constraint 

that a node boundary has to be linear in the input space. Caudhill('88) provides an 

introduction to the algorithm and its uses. The representational power of neural networks can 

be altered by applying various different transformation to the input layer. Sprecht's('90} 

statistical functions and fuzzy neuronal systems such as, that make use of B-spline maps or 

fuzzy masks and the CMAC technology (Krait '90) all improve the representional power of 

neural networks by providing different input transformations to the network. 

x 

Fig 8.10 Separation of five rectilinear points using two polynomial segmentation nodes 

Fig 8.10 illustrates how the five rectilinear points of fig 8.8 a- d can be separated 

with two padaline nodes. The power of these input transformations can also be illustrated by 

the example shown in fig 8.11a. By applying a squaring coordinate transformation, the 

circular region shown can be implemented in a Single layer with the inputs, X, V, X·V, X2, 

y2. The corresponding standard neural model (8.11 b) would require many more nodes to 

isolate region and require more hidden layers to implement the transformation required 10 

model the problem. 
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o 
o 

o 

a b 
Fig 8.11 a. Polynomial separation of the training points requiring a single segmentation 

node, b. Linear separation of the data points requiring many segmentation nodes 

Finding the relevant transformation for problem in question becomes an automated 

learning task. All the possible polynomial transformations, that is first order, second order, 

etc, up to the model required, are provided as inputs to the network. The coefficients 

associated with this transformation are learned as the first layer of weights in the network. 

Therefore irrelevant input transformations have weights that decay to zero, while relevant 

input nodes are learned via the back propagation of the error. This means that we can provide 

a padaline neural model of a transformation to any given order. The learning algorithm will 

learn the shapes of the decision algorithm and identify the relevant transformation involved. 

Introducing other input variable transformations allow different properties of a 

training set to be modelled. Periodic and exponential functional transformations of the Input 

variable allow relevant physical systems to be modelled by neural network systems. 

Learning input quantisation values 

Given linear summation units and hard limiting threshold elements, the boundaries of 

the decision regions are straight lines and the output after the first hidden layer are Boolean 

values. Therefore the first layer can be considered to be a quantisation layer. Real values are 

input to the hidden layer and quanti sed Boolean values are output. These Boolean values are 

then manipulated by the neural network structure providing suitable output values. 
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The behaviour of the training algorithm over various different input sets given 

different neural network structures are examined in appendix F1 and FS. The real input 

quantisation is examined and the ability of single layers of nodes to model arbitrary 

quantisations discussed. 

Real output nodes 

Dealing with transformations that provide real output represent a significant 

difficulty. The data passing between the internal layers of a neural network are essentially 

Boolean in characteristic, even if the values are actually real values near +1 . and ·1. This is 

due to the shape of hard limiting thresholds. All the output values of the internal nodes tend 

towards either +1 or ·1 preserving the Boolean structure. 

Constructing real valued outputs from these Boolean values requires a decoding layer 

of weights. The magnitude of real valued outputs is provided by a suitable multiplication of 

the quantised values by the weight values. The output is in fact a quantised real value and not 

a continuous real valued output. 

Providing more output quantisation nodes allows a finer grain of coding. The problem 

associated with output decoding is that the quantisation values can not be easily learned. 

Ideally we would be able to train the values of the output decoding layer, such that the best 

decoding scheme is used to model the transformation under consideration. Appendix F2 & F3 

discusses experiments that investigate the learning properties of neural network when 

modelling transformations from Boolean inputs to a real valued output. 

Real inputs and Real outputs 

Neural network models with real input and real output nodes have a quanti sat ion layer 

of weights and a decoding layer of weights as discussed above. A Boolean transformation must 

be Implemented between these two structures. The results of chapter seven show that two 
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layers of weights are required to model Boolean transformations. Therefore models of real 

input real output transformations will consist of four layers of weights. 

Appendix F4 discusses some experiments for training neural networks to model 

transformations from real valued input spaces to real valued output spaces. 

Network size and topology 

The results on network size and topology presented in chapter seven can be 

generalised to neural networks with real valued inputs. The structure of these networks is 

that of a quantisation layer followed by the Boolean network structure. Therefore if the size 

of the quantisation layer is known the network size results immediately apply. 

Given an n dimensional real input space with 0 linearly separable regions, the work 

of Mirchandani et al provides a limit on H the number of nodes in the first layer, see equation· 

8.1. M(H,d) is the maximum number of regions that can be separated by H nodes in a d 

dimensional space. Therefore given a dichotic classification problem with M(H,d) linearly 

separable regions that are maxim ally separated by H nodes in the quantisation layer, we 

require another H nodes in the hidden layer of the Boolean layers (given by the result in 

chapter seven). If we do not have a dichotic classification, but a transformation to p output 

nodes, we require H + ceiling(log2P) hidden nodes in the Boolean transformation layers. This 

case generalises the Loughborough network to real valued inputs and uses m-nodes in the 

hidden Boolean layer of the network. 

If we have 0 data points in general position in a d dimensional space, as discussed by 

Baum, then we derive the result that arbitrary dichotomies on the set can be modelled by 

networks with a ceiling(N/d) nodes in the first hidden layer(see Baum '88) and similarly 

ceiling(N/d) in the second hidden layer (see chapter seven). Since the transformation forms 

a dichotomy only a single output node is required. 

Methodology for designing reliable neural systems 

The design methodology places the implementation of neural systems into the area of 
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reliable systems. Each stage of the design process is well understood and the behaviour of the 

network explained in terms of the atomic nodes that contribute to the decision processes. 

The system identification phase investigates the structure of the input space 

identifying the significant components of the decision algorithm. The quantisation layer fine 

tunes these structural identifications providing the most optimal quantisation value via the 

trained weights. The Boolean layer of the network implements the best transformation that 

can model the given data set. Essentially it identifies the knowledge structure underlying the 

data. The atomic knowledge elements provide a succinct representation of this knowledge that 

could be transformed to a disjunctive encapsulated rule set. 

The total neural network structure is reliable since its behaviour is well defined and 

can be predicted. Not only does the network model the given training set, but it has 

predictable generalisation properties. The generalisation properties are predictable since 

the atomic knowledge elements do not interfere in an unknown manner. Everything about the 

network is well known. The nodes and knowledge elements possess the desirable properties of 

atomicity. 

A neural network is designed to model a specific set of data by constructing a suitable 

network structure of nodes and to specifying the weight values of the connections between the 

nodes. Automated search techniques exist for finding suitable network structures, 

(Mirchandani et al). However they involve a high computational load and are not guaranteed 

to produce optimal neural network models. 

The work of the previous chapters have allowed the behaviour and structure of neural 

network systems to be understood and explained. This in turn allows a general design 

methodology to proposed for the construction of reliable neural network systems. The 

structure of the designed system will be that of a feedforward net with the following 

components; 

i. Input transformations, 

ii. Input quantisation layer, 

iii. Boolean transformation layers, 

iv. Decoding layer. 
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These components are illustrated by the network structure shown in fig 8.12. The 

transformed input values are fed to the input nodes of the neural network. 

Boolean Transformation 
Real Valued .... .. 

..... .... 
Quantisation Decoding 

Layer Layer 

Fig 8.12 Real input real output neural network structure 

System Identification 

The set of training data is presented which must be modelled by a neural network. If 

no specific output nodes are designated then the dependent output node in the data must be 

identified. The conditions that must be satisfied are that all the output nodes are dependent 

variables of the input nodes. That is, each unique input datum is associated with only one 

output value, the transformation is an injective function. 

The nodes in a neural network only provide linear combinations of input nodes that 

are then thresholded. Therefore the separated regions of the input space will only have linear 

boundaries. This can be overcome with the use of input variable translormations, for 

example polynomial transformations. The non linear relationships that exist between the 

input variables must be identified. Decoupled models of the system provides a suitable 

method. For a fixed output value, the decoupled variables are correlated by various 

polynomial relationships. The polynomial transformations identified define the shape of the 

boundaries of the quantised regions in the input space. 
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Quantisation layer 

Having identified the system under study the quantisation layer specifies the position 

of the boundaries of the segmented regions of the input space. This is achieved via the 

variation of the weights in the quantisation layer. The quantisation layer defines the number 

of different quantised regions of the input space since the interaction of the different regional 

boundaries of the nodes occurs here. Appendix F1 and F5 describe experiments that 

investigate the ability of a single layer of quantisation nodes to model arbitrary 

transformations from real to Boolean spaces. 

Boolean layer 

The Boolean transformation layer provides the actual functional transformation 

between the input quantised regions and the output quantisation units. If the relevant 

transformation is well known, then it can be immediately implemented with the relevant 

neural network nodes. If only the input! output data is known then the layers are trained 

automatically via the backpropagation technique. Appendix F3 and F7 describe experiments 

that investigate the ability of a multi layer of nodes to model arbitrary transformations from 

real to Boolean spaces. Effectively this is a system of a quantisation layer followed by two 

Boolean layers of weights. This system is more able to model the arbitrary transformations 

than the single layer quanti sat ion system since the Boolean layers can model arbitrary 
/ 

transformations between the input and output layers. 

Decoding layer 

The output quantisation represents the acuity that is required of the transformation. 
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This is related to the inpuV output data that the system is required to model. If there is 

greater variety in the output signals the larger the number of nodes required to feed into the 

decoding layer. This follows from the fact that the greater the number of possible signals, the 

greater the acuity that can be achieved by the decoding nodes. Appendix F2 and F6 describe 

experiments that investigate the ability of a single layer of decoding nodes to model arbitrary 

transformations from Boolean to real spaces. 

This design methodology has been applied to the design of a neural network controller. 

This is discussed in chapter nine. The design process can be very laborious as the 

identification of the relevant system variables is a difficult task. The design methodology 

structures the implementation of the neural network systems so that their structure, 

function and behaviour are well understood. 

Summary 

This chapter has discussed neural network models of real valued transformations. 

Real valued transformations that are defined on a finite set of discrete training points were 

modelled by neural networks systems. 

Real valued neural networks were shown to consist of four layers of weights, the 

quantisation layer, the two Boolean transformation layers and the decoding layer. These 

insights led to the generalisation of the results on neural network size and topology to the 

real valued cases. 

Finally a design methodology was described which allowed reliable neural network 

systems to be implemented. 
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Chapter 9. Controlling Processes with Neural Networks 

Introduction 

This chapter addresses the design and implementation of a neural network controller 

for the dispensing of adhesives in the manufacture of mixed technology printed circuit boards 

(Chandraker et al '89 and Barbiarz '89). Adhesive dispensing is one example of the many 

industrial processes (metal cutting, Wright et al '91, arc welding. Karsai et at '92. cement 

manufacture, Haspel '86 and other batch chemical processes) that are not amenable to 

standard controt techniques. The standard techniques are not suitable since they can not deat 

with unpredictable process variations and process faults that may occur (Williams '90 and 

Antsaklis '92). This is discussed further b.elow. Table 9.1 shows other manufacturing 

processes that have required intelligent control techniques such as expert systems. fuzzy 

controllers and neural network controllers. 

Neural Networks have been used to model control processes (Barto '90), that is aid in 

the system identification phase of control process design, control process optimisation 

(Barto '83) and the actual control of processes. This chapter deals with neural network 

techniques that control processes (Miller at al '90 and Grant et al '89). 

A control problem typically consists of the maintaining the process outputs between 

set limits. This is achieved by identifying the actions that must be taken when the process 

approaches or exceeds these limits. These limits are reached either because of process drift 

or catastrophic process errors. 

Hard control problems that can not be solved by current techniques are generally only 

partially understood. A complete mathematical model of the process does not exist or cannot 

be found. Some of the process characteristics can be described and modelled mathematically. 

whereas others can not. To date, ad hoc approaches such as trial and error implementation of 

feedback control have been used. Since no formal models of these controllers exist robustness 

and stability measures cannot be easily provided. A systematic approach must be developed so 

that each control process can be understood. This will allow stability and reliability to be 
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ensured. 

The intelligent controllers of the future must be able to recognise and predict the 

onset of the catastrophes in order that suitable corrective measures can be applied. Control 

systems that can be partially designed and then trained automatically are of great importance 

in hard control processes. Neural network learning offers a method for automatic training 

that is very attractive. However, they are difficult to configure and interpret after training 

(Materna et al '89, Hertz et al '91 and Mirchandani et al '89). Interpretation of the neural 

network representations is extremely important, especially in safety critical applications. 

The structured neural networks discussed in this chapter allow a readily interpretable 

control model which is a great advantage over standard neural approaches. 

Process Control Technique Reference 

Blast Furnace Fuzzy Controller Sakurai et al '89 

Adhesive Dispensing Expert Controller Chandraker et al '90 

Multi-layer Bottle Expert Controller Morgan '90 
Blowing 

Cement Kiln Fuzzy Controller Efstathiou '85 & '89 

Metal Cutting linguistic Controller Bourne '86 & '87 

Grinding Fuzzy Controller Pei Van et al '90 

Lumber Cutting Expert System Massey et al '90 

Wafer Etching Tt Etch Diagnostic System Budge et al '90 

Newsprint Production Expert System Opdahl'89 

Fermentation ExperV Neural Estimator Aynsley et al '89 

Gas Arc Welding Neural Network Karsai et al '92 

Table 9.1 Manufacturing processes that have been controlled by intelligent techniques 

It will be shown that many functions relevant to control processes, such as system 

variable thresholding and system variable segmentation into acceptable and unacceptable 
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bands, can be implemented with simple neural networks. The linear threshold properties of 

nodes allow for immediate quantisation of the system variables, while the Boolean 

transformation layers allow intelligent control actions to be constructed. The process 

failures can also be monitored by neural network structures. These provide suitable 

corrective actions when the failures occur. The structured combination of these neural 

networks represents the design of the total control process. Parts of this chapter have been 

presented in Messom et al '92. 

Control Processes 

Inputs I 
-------1~~ Process 

Outputs 

Fig 9.1 a. Schematic representation of a process transformation 

A process (or plant) can be characterised by the input output transformation of the 

state variables of the system over time (see fig 9.1 a). The schematic representation of open 

loop control is shown in fig 9.1 b in which the corrective control actions are applied to the 

process inputs. Such a system is prone to steady state errors in process performance as well 

as being susceptible to process drift. Feedforward control requires a very good model of the 

process in order that the performance of the system is robust and reliable. 

Inputs 

Control 
Action 

Process 
Outputs 

Fig 9.1 b. Schematic representation of a feedforward control process 

If feedback is applied to the system the performance of the process can be constantly 
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monitored and the control actions adjusted. Fig 9.1 c shows a schematic representation of the 

feedback control system. This means that steady state errors are minimised and the process 

drift due to external factors reduced. In practise problems exist in this system due to the 

variable or unknown time lag between the process action and the application of the control 

action. In the worst case the time lag can lead to undesirable oscillatory behaviour of the 

system. The tools of standard control attempts to provide control systems without these 

undesirable properties. 

Process 

Control 

Fig 9.1 c. Schematic representation of a feedback control system 

Adhesive dispensing 

The neural network techniques discussed in the previous chapters is applied to the 

design of a controller adhesive dispensing. The specifics of the application will be briefly 

discussed while the general properties of neural networks in control systems will be 

discussed in depth. 

The process investigated in this study is the dispensing of adhesive used in the 

manufacture of mixed technology printed circuit boards. The adhesive is dispensed on the 

printed circuit board to secure the surface mount components prior to wave soldering. 

Several techniques for dispensing the adhesive exist, pin transfer, screen printing and 

pressure syringe dispensing. Bridgeman ('89) and Barbiarz ('89) discuss the advantages 

and disadvantages of the various techniques. Problems associated with the screen printing 

include smudging of adhesive, while the pin transfer method can only apply equal sized 
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adhesive blobs. Both systems suffer from the fact that they can only be applied to flat 

surfaces but have the advantage that adhesive is applied quickly and simultaneously over the 

whole board. The pressure syringe method can only dispense 'individual blobs but can 

perform well on any surface. The pressure syringe method also offers great flexibility in 

blob size dispensed and does not rely on guaranteed adhesive homogeneity if it can be 

counteracted by suitable control process applied to the system. 

The system studied consisted of the following components. 

i) dispensing unit; 

consisting of a syringe of adhesive coupled to a pressure control unit. 

ii) Seiko RT3000 robot manipulator; 

that positioned the dispensing unit and the image processing unit at the appropriate 

place on the board. 

iii) Image processing system for visual feedback; 

consisting of Imaging Technology ITI 151 coupled to a camera with a magnifying 

optical system. 

iv) The control system; 

The structure of the system is shown in fig 9.2 (Chandraker et al '89, West et al '88). 

Development Interface User Interface 

11 

Controller Vision 
System 

SUN 3/160 
ITI151 

+ 1 _1 
Dispenser 
Controller Robot Motion Controller 

Seiko IQ 180 

Fig 9.2 Structure of the controlled adhesive dispensing system 
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Process Characteristics 

The process studied requires specified volumes of adhesive to be dispensed at well 

defined positions on the printed circuit board. A syringe contains the adhesive which is 

dispensed via the application of a pressure pulse to the adhesive. The volume of the adhesive 

dispensed is related to the properties of the adhesive and the pressure pulse applied to the 

adhesive. Variations in the adhesive include temperature sensitive viscosity, erratic 

thixotropic behaviour (that is time variant viscosity due to the application of shear forces) 

and material inhomogeneity. 

A model for the process cannot be derived since the relevant process variables are not 

known and those that may be relevant (such as syringe nozzle pressure, velocity and 

viscosity variations) cannot be measured by available technology. The properties of the 

adhesive dispensing process are discussed further below, highlighting the properties that 

make the derivation of a suitable mathematical model impossible. 

The control variables associated with the adhesive dispensing process are the 

pressure pulse characteristics. The pressure pulse is defined by the pulse height and width, 

the rise time and the fall time. Fig 9.3 illustrates the trace of the pressure pulse. Varying 

the pressure pulse height and keeping the pulse width constant effectively simplifies the 

manipulation of the control parameters, reducing the dimensionallity of the system. Keeping 

the pulse width constant also simplifies any timing constraints associated with the process. 

The pulse width can be increased in the exceptional circumstances that a large pulse area is 

required which cannot be achieved by the maximum available pulse height. The control model 

of the system can be simplified by decoupling the system into smaller noninteracting 

components. Essentially the controller becomes modular in design. 
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Fig 9.3 The pressure pulse variation within the syringe 

Graphs 9.1a and 9.4a shows the variation in blob area (the output performance) for 

a fixed open loop input signal (fig 9.1 b). There is extensive variation in output performance, 

the area of the blob produced varies greatly and in an unpredictable manner, for the fixed 

pressure pulse applied to the system. There are low and high frequency components in the 

variation. Some physical insight can give an explanation for this variation. Material 

inhomogeneity may explain the low frequency variation. The high frequency variations are 

due to the onset of bubbles in the flow (as discussed below). Variation in external 

temperature and pressure also effects the system, since a 10°C variation in temperature can 

halve or double the viscosity of the adhesive (Bridgeman '89). The blob size dispensed for a 

given pressure pulse is related to the amount of adhesive that remains in the syringe and 

with improvements to the dispensing system, variations of over 7% have been observed 

between full and empty syringes (Knapp '87). 
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Graph 9.1 a. Open loop performance of the adhesive dispensing system 
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Graph 9.1 b. The pressure pulse variation that was applied to the system 
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Fig 9.4 Feedback control loop of the adhesive dispensing system 
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The system was run closed loop using a rule based controller that exercised the full 

range of the pressure variable while maintaining satisfactory control although the process 

failures due to the existence of bubbles still occurs. Graph 9.2a shows the performance of the 

output variable and Graph 9.2b the pressure variation required to produce this performance. 

Photograph 9.1 shows the dispensed blobs during an experiment that was under control. 

Correlation analysis between the pressure variation and the blob area performance criterion 

show that there was no significant correlation between the two variables. The variation in the 

system is essentially stochastic and not correlated with the measured system variables (West 

'92). The variation therefore can not be predicted and makes this example a hard control 

problem. The open loop process variations are small from dispense to dispense and so the 

system can be controlled. 
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Graph 9.2 b. The pressure pulse variation that was applied to the system 
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Mathematical models of specific runs or sets of runs can be constructed. but these 

models do not provide a predictive model of subsequent runs. Any particular run can be 

modelled by a polynomial of required order. but this does not represent a general model of the 

system. A simulation model of the system can be constructed which possesses the qualitative 

properties of the real system. That is low frequency variation in output performance. high 

frequency stochastic noise and the onset of process failures in stochastic time. The various 

catastrophic process failures that can occur in the dispensing of adhesive and the methods for 

dealing with them using neural networks are discussed below. 

Photograph 9.1 Dispensed blobs during an experiment that was under control. Note the 

general uniform blob size. Note the excess adhesive in the centre of the photograph which is a 

characteristic precursor to a void 

Process Faults 

The controlled run of Graph 9.2a shows that in this case the bang-bang controller was 

very successful. The output area is maintained between the 10% error bands for most of the 
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dispenses. The simple bang·bang conlroller is unable to deal with the onset of failures due to 

process faults. The process faults associated with the adhesive dispensing process are the 

onset of voids in the adhesive leading to erratic blob size , soiling of the solder pads due to the 

dragging of blobs and the sticky solenoid valve problem which leads to the soiling of the 

printed circuit board with the excess adhesive dispensed and the airline loading which leads 

to drift in the pulse height produced so effecting the blob area output performance. 

The volume of the blob of adhesive dispensed is the important criterion for 

determining if a particular dispense has been good or bad. The second criterion is that it is 

well centred and in the position required. The position of the blob is well defined via the 

robotic system and performs well to the given tolerances (West '88). The volume of the blob 

can be determined from the plan area and height of the blob. For a good dispense, that is a 

circular well centred blob, the height is fairly uniform (Knapp '87) and so the main 

feedback variable is the plan area of the blob dispensed. 

Photograph 9.2 Process faults due to the blobs that have fallen over. The tails of the blobs are 

likely to contaminate the adjacent solder pads 
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a b 

c d 
Fig 9.5 a. A good dispense. b. A bad dispense. c. Plan area and circumscribing box of a good 

dispense. d. Plan area and circumscribing box of a bad dispense 

A good dispensed blob forms a conical shape. fig 9.Sa. When the syringe is moved to 

the next dispensed position the blob may be dragged. fig 9.Sb. This produces the process fault 

of the blob falling over which can soil the solder pads on the printed circuit board. This 

process fault is heightened by the variation in the stringy nature of the adhesive. The 

stringier the adhesive the greater the likelihood of the blob being dragged. Photograph 9.2 

shows blobs that have been dragged. The box area ratio. that is the ratio of the plan area of the 

dispensed blob and the area of its circumscribing box. proves to be a good measure of a good 

dispense. A circular blob (a good dispense. fig 9.5c) will achieve the ratio of approximately 

0.78. while a blob that has been dragged (a bad dispense. fig 9.5d) will be below this 

threshold value. fig 9.6. Graph 9.3a shows process data in which we have a good box area· 

ratio performance. while graph 9.3b shows a bad box area ratio performance. 

BAR 
GOOD 

threshold 

dispenses .. 
Fig 9.6 The box area ratio threshold. a good indication of the quality of the dispense 
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Voids in the adhesive occur from time to time and are characterised via a sharp 

increase in the blob area followed by a sharp decrease or total void of the area (see graph 9.4 

and photograph 9.3). This is undesirable since the control of the blob size is important in 

ensuring that the surface components are securely fixed without using too much adhesive 

which would soil the board or the solder mountings. When the void occurs no adhesive is 

dispensed and the surface mount component will not be secure during the solder curing stage 

of manufacture. In the worst case the component will fail to be secured to the printed circuit 

board after soldering. Therefore the control process must recognise the onset of bubbles and 

take corrective measures. In this case it would take the syringe off board and clear the void 

before returning to normal execution. 

When the airline that supplies the dispense unit is overloaded, the measured pulse 

height decays (graph 9.6). This condition must be monitored in order that the dispense 

process can be terminated and the fault rectified. This fault can result in erratic adhesive 

dispense performance (photograph 9.5). 
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Graph 9.4 Open loop performance of a dispense experiment in which the properties of the 

bubbles can be seen 
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Photograph 9.3 Dispensed blobs which show the appearance of two poor dispenses following 

bubbles. Note, the random dispense order means that the increases (see photograph 9.1) 

prior to these dispenses are not adjacent. 

At times the solenoid valve of the pressure pulse regulator sticks in the open position, 

giving a pressure pulse with a larger fall time. The increased fall time allows a greater 

volume of adhesive to be dispensed. Graph 9.5a shows process data associated with a sticky 

solenoid valve. The graph shows the dispenses where the fall time increases by about 50 % of 

its normal value. If this problem is not corrected off line immediately the whole board will 

be fouled with excess adhesive . Photograph 9.4 shows the excess adhesive that may be 

dispensed when the solenoid valve starts to stick. Recognising this situation depends upon 

monitoring the fall time of the pressure pulse. 
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Graph 9.5 b. Rise time. fall time and pulse width performance of a normal dispense 
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Photograph 9.4 Dispensed blobs when the solenoid valve was sticking. Note the excess 

adhesive that was dispensed when the solenoid valve failed catastrophically 
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Graph 9.6 The pulse height variation when extra load was applied to the air line 
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Photograph 9.5 Dispensed blobs when the extra load was applied to the air line. Note the 

material variation also contributes to the erratic blob sizes 

Neural network implementations of control processes 

Neural networks can model thresholds, bands and trends. These can be combined to 

construct reliable neural network implementations of controllers. A design of a neural 

network controller for the adhesive dispensing system is described below. 

The feedback variables can be passed through a simple neural network controller that 

provides qualitative corrective actions. (The details of the neural network controller for the 

adhesive dispensing system are given in appendix G). The simplest case is represented by the 

box area ratio decision unit, which requires a single threshold device. Fig 9.7a shows the 

system variable (in this case the box area ratio thresholded in to the two regions) . Fig 9.7b 

shows the single node that can implement this function . 
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System Variable _ 

Box Area 
Ratio 

a b 

Good or Bad 
Dispense 

Fig 9.7 a. Thresholding of a single system variable. b.Neural network representation of the 

box area ratio threshold unit 

The box area ratio is acceptable (output is +1) if it is larger than the given limit 

(0.78 in this case). while unacceptable (output is -1) if it is lower than the given limit. 

Similarly the pulse height drift can be monitored by a threshold unit that will flag the fault 

associated with the air line. 

System_Variable High v Low 

Fig 9.8 a. Neural network representation of the operator that keeps a single variable within 

given limits 

The bang-bang controller of the blob area can be implemented in a neural network but 

requires two hidden nodes (fig 9.8a). The blob area has an acceptable value to within a given 

tolerance. This means that a region (or a band) of the system variable is acceptable 

surrounded by two regions that are unacceptable (see fig 9.8b). The output blob area decision 

unit is a logical or of the two hidden threshold units that provide the regional boundaries. No 

action (output is -1) is taken within the acceptable region of the system variable (blob 
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area), while when the process strays outside of this region action (output is + 1) is taken. 

Low 

c 

~ 
I~ 

c: 
3 

"" 

High 

System Variable ~ 

Fig 9.8 b. Segmentation of a single system variable into three regions 

More complicated qualitative controllers require larger multilayered neural 

networks. Intelligent controllers are constructed via the addition of Boolean decision units 

within the hidden layers that provide the relevant control actions. Quantitative controllers 

are constructed via the addition of a decoding layer of weights from the qualitative decisions. 

Area_2 

Area 
Trend 

Fig 9.9 Trend analysis using a neural network unit 

A neural network can be used to monitor blob area trend to anticipate an appearance of 

a bubble in the adhesive. The simplest approach would be to monitor the direction of change of 

the blob area of the latest dispenses, say the last three (see fig 9.9). A Boolean function of the 

inputs (in this case logical and) would ensure the correct qualitative response, take action 

or not, is made. A similar trend analysiS of the fall time will recognise the sticky solenoid 

valve problem. 
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Training the neural network controller 

Training a neural network requires data. Data can be obtained from the simulation 

models or from real process runs. The inputs to the network are the various process 

variables, while the outputs are the control actions that must be applied. The network is then 

trained automatically over all the data until satisfactory convergence is obtained. 

The training sequence of the neural network controller requires that the network 

structure is well known and adequate for representing the transformation in question. The 

work presented in this thesis allows us to proceed and construct a neural network structure 

that is suitable for modelling the control problem. 

The outputs of the neural network are Boolean values that provide decisions of say 

increase pressure or decrease pressure without specifying by how much or the actual real 

value. 

A regional segmentation model of the blob area coupled with a box area ratio measure 

will provide a network structure suitable for most of the problems associated with this 

process, namely steady state process control and the detection of dragging of adhesive as well 

as the blockage of the syringe needle. Adding a trend analyser for the fall time and the blob 

area will take into account the remaining factors, namely the appearance of bubbles and the 

sticky solenoid valve problem. Fig 9.10 shows a suitable network structure for the control 

process. If enough is known explicitly about the process the weight values can be hand 

crafted. Otherwise the network must be trained automatically with the process data available. 

That is the network structure is tuned to the specific application. 

Appendix G describes the various different neural network structures that were 

designed and the different methods used to train them. Including knowledge available about the 

control process rapidly improves the automated training algorithm's convergence 

performance. 
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Fig 9.10 Neural model of an adhesive dispensing controller 

The application of intelligent control actions such as the recovery from potentially 

catastrophic situations requires qualitative outputs from the controller. The signals from the 

controller essentially only initiate the required action, which is then carried out by 

specialised systems. 

Intelligent control using neural networks 

The Boolean layers of the neural network allow intelligent control actions to be 

implemented. This is illustrated by a simple two dimensional example. A trajectory must be 

maintained within a given tolerance (see fig 9.11). Corrective action is applied in the region 

outside the accepta~le band. For intelligent control we require different corrective actions to 

be taken in different regions of the state space. Fig 9.11 shows a case where two separate 

actions must be taken in the regions A and B. The neural model of this example is shown in fig 

9.12. 
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System Variable 2 

B 

System Variable 1 

Fig 9.11 Simplified two variable example of intelligent control. Different control actions are 

required in different regions of the state space 

The segmentation of the system variable requires four nodes while the trajectory 

tolerance boundaries require two nodes. The hidden nodes are required to model the Boolean 

transformation that provides the relevant control action. 

Trajectory 
Segmentation 
Nodes 

System Variable 
Segmentation Nodes 

Fig 9.12 Neural model of intelligent controller shown in fig 9.11 

Similarly intelligent control actions can be applied in the adhesive dispensing 

process. The bimodal warning operator possesses some of these properties. A warning signal 

is required when the process strays a given percentage from the ideal, so that preparations 
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can be made for when the corrective actions are applied when the process strays outside the 

action error boundary. No warning signal is required when action is taking place. This is 

illustrated in fig 9.13. The neural model for this case is shown in fig 9.14. The four 

threshold nodes in the hidden layer represent the four warning and action error boundaries. 

Blob Area 

action -> 5% 
warning -> 2% 

Dispenses 
Fig 9.13 The bimodal warning operator 

System_Variable 

No Warning 

Waming 

No Warning 

Warning 

No Warning 

Bimodal 
Warn 

Fig 9.14 Neural implementation of the bimodal warning operator 

Real output values 

For more sophisticated controllers the control actions of the pressure pulse, namely 

increase or decrease pulse height is not a true qualitative action. A real valued quantity must 

be provided and so a decoding layer is necessary. At this point a design decision must be made 

as to how to achieve this output. 

172 



A fully quantised approach as discussed in chapter eight may be adopted, but this 

relies on the existence of an injective function from the input data to the output data, which 

may not exist with most control systems if we consider the effect 01 external variations on 

the system. The second approach is to maintain the qualitative decision to increase or 

decrease pressure but to decode it via a real valued weighted decoding unit which can be 

trained by the system (see fig 9.15 for a simplified network model). The output decoding unit 

is tuned to the data that is modelled, and so, if the data is representative of the system the 

best possible quantised decoding value will be found. 

Blob Area 

Quantisation 
Layer 

Boolean 
Layer 

Decoding 
Layer 

Real 
Pressure 
Change 

Fig 9.15 Simplified controller that provides real valued output signals 

This fixed quanti sed decoding system is a rough model of the output parameters. An 

improved model can be sought by enhancing the system with a variable decoding unit. This 

allows the amount by which the pressure is varied to be increased or decreased. In this 

system there is an extra node which determines the magnitude of the decoding weight. The 

decoding weight is increased or decreased depending on the value of the change_decision node 

(fig 9.16). This development will be pursued further in the future. The structure of the 

neural network for this case is shown in fig 9.16. 
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Fig 9.16 Network architecture for a controller that gives a variable pressure change 

Summary 

This chapter has discussed the design and implementation of a neural network 

controller for an adhesive dispensing system. The properties of the system were discussed 

and the various process characteristics and process faults highlighted. 

It was shown that neural network techniques could implement the thresholding and 

banding of the process variables which allowed the relevant control signals to be output and 

the relevant process faults to be flagged. Ideas for implementing intelligent control actions 

using neural networks were discussed. 

The neural network that was designed solved the adhesive dispensing control problem. 

The designed neural network controller was predictable and reliable since its behaviour was 

well defined over the whole input space. Appendix G shows the performance of the neural 

network controller. 
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Chapter 10. Conclusions and Direction of Future Work 

Summary of Thesis 

This thesis has addressed the question of reliable neural network design and a study of 

feed forward neural networks has been given. The training of neural networks was discussed. 

Particularly the backpropagation algorithm has been examined and its use in training real as 

well as Boolean transformation networks has been studied. 

The treatment of the hidden nodes as Boolean transformations has moved neural 

network techniques into the area of reliable systems. The introduction of parallel nodes 

enabled the hidden layers to be structured and the performance of the networks to be 

guaranteed. The parallel nodes were proposed as atomic elements in a general knowledge based 

representation of neural systems. These systems were extensively studied and compared to 

standard feedforward systems. 

As well as the computational advantage of the parallel node system (the reduction of 

the number of weights which lead to the reduced load on the learning algorithm) the 

significant advantage of the new proposals was the reliability of the neural network 

behaviour and the ability to interpret the neural network structure in an atomic manner. 

On the basis of the investigations into neural network structure and behaviour 

several results on network size and topology were presented. These results are crucial in the 

design of neural network systems. Only after a suitable size and topology of a network has 

been chosen do the automatic training algorithms provide the weight values of the network 

that model the inpuV output data. 

Given.the knowledge about the constraints on neural network size and topology a 

general design methodology was proposed. The methodology provides a· prescriptive scheme of 

action for designing neural models of inpuV output systems. whether they be real or Boolean 

values. Finally the work was applied to the design of a real time neural network controller of 

an adhesive dispensing system. The application demonstrated the importance of the design of 
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reliable systems whose behaviour is fully understood. This allowed important system 

characteristics that were already known to be included in the network structure so reducing 

the training phase of the neural network. 

Future work 

Future work will be in the following areas: 

i. Training algorithms, 

ii. Knowledge representations, 

iii. Design tools, 

iv. Real applications. 

Training algorithms 

The backpropagation algorithm has pushed neural networks to the forefront of public 

attention. As well as the advantage of parallel representation and distributed activity over 

simple units, it is the automated training algorithms that make neural network 

representations attractive. The experiments described in part 11 and appendices A, B, C and F 

of this thesis show that training is still a long and difficult process. When the training 

performance is so dependent on the possibly random start point, it can be seen that more 

study is required. The application of genetiC algorithms is likely to be one of the most fruitful 

paths. The genetic algorithm will be able to propagate multiple start points which can then be 

optimised by a backpropagation technique. The parallel nature of the genetic algorithm will 

allow this technique to be fully exploited as multiprocessor systems become more powerful 

and sophisticated. 
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Knowledge representations 

The key to understanding the behaviour of neural nelwor1<. models is 10 have a well 

defined structure and interaction of nodes in the nelwork. The parallel nodes represent a 

starting poin!. The nodes are well defined, that is parallel and there is no interaction between 

pairs of parallel nodes. Hyperpolygonal systems as well as systems Ihat allow more complex 

interaction between the nodes will be developed in the future. Encapsulating the function and 

behaviour of nelwor1<.s and subnetwor1<.s in much the same manner as object orientated 

systems will allow the hierarchical design of neural networ1<. systems without losing their 

inherent parallelism. 

The representational capabilities of neural systems can also be extended by the use of 

Fuzzy and probabilistic modelling techniques. The development of fuzzy and stochastic neural 

models are discussed by Sprecht '90. The use of knowledge representations in these systems 

would formalise system perfonmance and aid understanding of the behaviour of the neural 

networks. 

Design tools 

As more complex systems are modelled by neural network structures, automated 

design tools must be made available. Automated interpreters for converting from neural 

networ1<. to Boolean representations and vice versa would be a start point. Automated networ1<. 

encapsulation systems would allow rapid prototyping and development 01 designed neural 

systems. The reliability of the systems would be maintained by the use of parallel nodes as 

well as other specified knowledge structures. 

Applications 

As neural network techniques develop their applications to real world systems will 

increase. Significant engineering applications are possible as the question of neural network 
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reliability has been addressed by this thesis. The control problem discussed in chapter nine 

is a case in point. The low level nature of real time signal processing makes the neural 

network systems which have been implemented in hardware an ideal solution. 

The development of the structured knowledge representation of neural systems will 

allow higher level applications of neural networks. General neural network computational 

systems may then be built on this structured approach to distributed neural computation. 
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Appendices 



Appendix A 1. Start Point Experiment 

Aim: 

To identify the effect of the start point on neural networ1< training algorithm 

convergence. That is the effect of different initial neural networ1< weight configurations on 

training algorithm performance. 

Method: 

Four data sets where selected to examine the performance of the backpropagation 

training algorithm over different start points. These where odd and even parity with three 

and four inputs. 

Three input even parity 

p(·t,·t,-t,t). 

p(-t,-t,t,-t ). 

p(-t,t,-t,-t ). 

p(-t,t,t,t). 

p(t,-t,-t,-t ). 

p(t,-t,t,t). 

p(t,t,-t,t). 

p(t,t,t,-t). 

L 
t90 

Three input odd parity 

p(-t,-t,-t,-t ). 

p(-t,-t,t,t). 

p(-t,t,-t,t). 

p(-t,t,t,-t). 

p(t,-t,-t,t). 

p(t,-t,t,·t). 

p(t,t,-t,-t). 

p(t,t,t,t). 



Four input even parity 

p(-l,-l,-l,-l,l ). 

p(-l.,-l,-l,l,-l). 

p(-l,-l,l,-l,-l). 

p(-l,-l,l,l,l). 

p(-l,l,-l,-l,-l). 

p(-l,l,-l,l,l). 

p(-l,l,l,-l,l). 

p(-l,l,l,l,-l). 

p(l,-l,-l,-l,-l ). 

p(l,-l,-l,l,l ). 

p(l,-l,l,-l,l ). 

p(l,-l,l,l,-l). 

p(l,l,-l,-l,l). 

p(l,l,-l,l,-l). 

p(l,l,l,-l,-l). 

p(l,l,l,l,l)_ 

Four input odd parity 

p(-l,-l,-l,-l,-l). 

p(-l,-l,-l,l,l). 

p(-l,-l,l,-l,l). 

p(-l,-l,l,l,-l). 

p(-l,l,-l,-l,l). 

p(-l,l,-l,l,-l). 

p(-l,l,l,-l,-l). 

p( -1,1,1,1 ,1). 

p(l,-l,-l,-1,l). 

p(l,-l,-l,1,-1). 

p(l,-l,l,-l.-l). 

p(l,-l,l,l,1). 

p(l,1,-l,-1,-1). 

p(l,l,-l,l,l). 

p(l,l,l,-l,l). 

p(l,l,l,l,-1). 

The different start points that where used in this experiment -where generated by a 

seeded pseudorandom scheme. A three input and four input fully connected structure with 

three hidden nodes and one output node network structure requires sixteen and twenty five 

weights respectively. The first weight is generated from the seed value via the following 

function; 

Weight= (Seed - 505)/1000, 

Nextseed= (Seed • 997 • 101) mod 1009, 

while the next weight is generated from the next seed. This process continues iteratively for 

all the weights in the network. 

The learning rate that was employed was 0.01, while the temperature value was 0.1. 

Seed values from 3 to 51 were used in this experiment. Each initial configuration was 
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trained over the odd and even parity data separately for 2000 iterations. The results are 

presented in the graphs Al.l a- d and table A 1.1 below. 

Several of the typical convergence paths are displayed in graphs A 1.2 a- g. 

Results: 

As shown in the graphs Al.l a- d the sum squared error convergence performance of 

the backpropagation algorithm is highly dependent on the start point, Ihe initial 

configuration of the neural network. For the three input case it is seen that a third (17 for 

even parity and 18 for odd parity) of the neural networks converge within the 1000 

iterations examined. For the four input case it is seen that a sixteenth (3 for even parity and 

3 for odd parity) of the neural networks converge within the 1000 iterations while there is 

a large variation in sum squared error values for the other start points. 

Experiment Mean Variance 

3 input even parity 5.238 4.566 

3 input odd parity 4.920 4.483 

4 input even parity 12.405 8.691 

4 input odd parity 13.290 10.181 

Table Al.l The mean and variance of the sum square error convergence performance of the 

four sets of experiments 

Analysis: 

The typical sum squared error convergence paths that are shown in graphs A 1.2 a- g 

vary greatly. This is dependent on the initial configuration of the neural networks and not the 

training data. The great variation in convergence cannot be explained by the four training 

data, but is a function of the initial configurations of the neural networks (the start points). 
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Appendix A2. Experiment on Learning Rate 

Aim: 

The effect of various different learning rates, that is the constant 11. in the update 

formula of the backpropagation algorithm; 

t.w = -11. iJE/cm, 

on convergence performance is examined. 

Method: 

The four data sets which where selected to examine the performance of the 

backpropagation training algorithm over different learning rates where odd and even parity 

with three and four inputs. These data sets are as defined in Appendix Al. 

The initial network structures that were employed were selected by examining the 

results of the experiment in appendix A 1. An initial network structure was selected that 

provided convergence before 2000 iterations at the temperature of 0.1 and the learning rate 

of 0.01. These initial nets where; 

for the three input even parity case, net generated with seed 31. 

for the three input odd parity case, net generated with seed 52. 

for the four input even parity case, net generated with seed 32. 

for the four input odd parity case, net generated with seed 38. 

The convergence of the four initial network configurations where examined over 3000 

iterations at the temperature of 0.1 for various different learning rate values. The results 

are presented in graphs A2.1 a· d. 

Results: 

The graphs A.2.1 a-d show that for low learning rates, learning rate < 0.001, and 
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high learning rate. learning rate> 0.05. the training had not converged in the 3000 

iterations examined. For the examples examined in this experiment. the ideal learning rate 

was seen to be 0.01. 

Analysis: 

When the learning rate is large the weight update values are large and so gradient 

descent does not occur. The updates essentially over shoot the ideal path. When the leaming 

rate is very low. the weight updates become very small. true gradient descent occurs. 

However. two problems exist for this case. Firstly. the updates are so small many iterations 

are required for the algorithm to converge. Secondly. the algorithm may get stranded in local 

minima. since the updates are so small. when a local minima is traversed the algorithm. may 

get stranded. 

Graphs: 
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Appendix A3. Experiment on Temperature Value 

Aim: 

The effect of various different temperature values on the backpropagation algorithms 

convergence performance is examined. The temperature value is the constant T in the node 

formula; 

Output (2/(1 + exp(·Weighted_lnpuVT)) . 1) 

Method: 

The four data sets which where selected to examine the performance of the 

backpropagation training algorithm over different learning rates where odd and even parity 

with three and four inputs. These data sets are as defined in Appendix A 1. 

The initial network structures that were employed were identical to those discussed 

In appendix A2. The convergence of the four initial network conflQurations where examined 

over 3000 iterations at the learning rate of 0.01 for various different temperature values. 

The results are presented in graphs A3.1 a· d. 

Results: 

The graphs A.3.1 a· d show that for low temperature values, temperature < 0.05, and 

high temperature values, temperature> 0.5, the training had not converged in the 3000 

iterations examined. For the examples examined in this experiment, the ideal temperature 

value was seen to be 0.1. 

Analysis: 

When the temperature is large the sigmoid function is soft, that is the derivative of 
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the sigmoid function is not large. This means that the update values of the weights remain 

small. Also since the soft sigmoid function requires large inputs to provide outputs in the 

region ±1 training must progress for a long time before convergence occurs. When the 

temperature value is very low the sigmoid function is hard. That is its derivative is almost 

zero everywhere except near zero where it is large. If the node inputs are near zero, the 

problem associated with a high learning rate, that of large weight update occurs. Gradient 

descent does not occur. If the node inputs are not near zero, the hard sigmoid ensures that the 

weight updates are very small. This is the same problem as that associated with a low 

learning rate, the updates are so small that convergence will take many iterations while the 

chance of stranding in local minima is increased greatly. 

Graphs: 
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Appendix A4. Retraining Neural Networks on New Training 

Data 

Aim: 

To observe the convergence properties of training models of odd and even parity on 

even and odd training data respectively. 

Method: 

Models of odd and even parity with three and four inputs were selected from those 

neural networi< models that converged in the experiments of appendix A 1. These are identical 

to those discussed in appendix A2 and A3. These neural networks were retrained on opposite 

data for a maximum of 1000 iterations at a learning rate of 0.01 and a temperature of 0.1. 

The convergence results are shown in graphs A.4.1 a· d. 

Results: 

The convergence performance of the four experiments as shown in graphs A.4.1 a- d 

have the following sum squares errors of; 

a. 0 b. 0 c. 4 d. 12. 

The three input parity experiments converged in under 1000 iterations. this was in 600 and 

200 iterations respectively. The four input parity experiments did not converge. Retraining 

neural network models to new conflicting data is very difficult for large input spaces. 

Analysis: 

The neural models of odd and even parity differ by a negation of the output weights or 
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the hidden layer weighls. That is the update of just one of the layers of weights leading to the 

negation of all the weight values. However, the update of the training scheme is iterative over 

the whole weight space and so can not isolate the update in the optimal manner. There is an 

interfering effect over the updates that are provided by the training algorithm. 

Graphs: 
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Appendix B. Experiment on Learning Performance 

Aim: 

The aim of this experiment is to identify the learning performance of the 

backpropagation training algorithm over different training data and different initial neural 

network configurations. 

Method: 

The data that was used for this experiment was generated via a seeded pseudorandom 

scheme. The output values were generated iteratively for all the possible input values. The 

first output value is generated from the seed via the formula; 

Outputvalue= ((Seed mod 2) - 1/2) • 2. 

Nextseed= (Seed' 101 • 992) mod 1009. 

and the next output value is generated from the nextseed value. This is continued iteratively 

for all the input cases. The input values start at (1.1 •...• 1.1) then (1.1 •...• 1.-1) and 

(1.1 •...• -1.1) and (1.1 •...• ·1.·1) and progress iteratively to (·1.·1 •...• -1.·1). 

The initial network configurations of the neural networks were generated in the 

manner as discussed in appendix AI. In this case an n input neural network with n hidden 

nodes and one output nodes is fully defined by (n + 1)2 weight values. 

Twenty four experiments were conducted for each number of input nodes. These 

experiments were generated by selecting a pseudorandom data set and a pseudo random initial 

neural network configuration given by the formula; 

Dataseed= 7 • Inputnodes. 

Netseed= 3 • Inputnodes. 

Experiment is net(Netseed) trained on data(Dataseed). 

Nextdataseed= (Dataseed • 101 • 992) mod 1009. 
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Nextnetseed= (Netseed • 101 • 992) mod 1009. 

The neural networks were trained over 1000 iterations at a temperature of 0.1 and a 

learning rate of 0.01. The results are presented in graphs B.l a· d and B.2 a· d. Several 

typical sum squares error convergence characteristics are shown in fig B.3 a· o. 

Results: 

The low input node experiments in general converged before the 1000 iteration 

mark, and so the number of iterations that were required for convergence are a good measure 

of convergence performance. The experiments with many input nodes generally did not 

converge to the optimal solution within the 1000 iterations and so the sum squared error 

value after 1000 iterations is a good measure of convergence performance. These figures are 

shown in table B.1. 

Two input case; 

Three input case; 

Four input case; 

Five input case; 

191 24 experiments converged within 100 iterations. 

121 24 experiments converged within 100 iterations. 

131 24 experiments converged within 100 iterations. 

71 24 experiments converged within 200 iterations. 

Experiment Mean Variance 

2 input case 0.319 0.999 

3 input case 0.943 1.587 

4 input case 0.934 1.562 

5 input case 3.066 3.562 

6 input case 5.926 4.509 

7 input case 27.185 7.480 

8 input case 151.930 47.434 

Table B.l. Mean and variance of the sum squared error performance after 1000 iterations 
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Analysis: 

These results show that the backpropagation algorithm converges quickly for a small 

number of inputs. As Ihe number of inputs increases the convergence performance 

deteriorates quickly. These results serve as a good performance measure against other neural 

network structures such as the Ghost node neural networks discussed in appendix C. 
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Graph B.l a. Number of iterations required for convergence of two input neural networks 
(maximum number of iterations allowed is 1000) 
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(maximum number of iterations allowed is 1000) 
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Graph B.1 d. Number of iterations required for convergence of five input neural networks 
(maximum number of iterations allowed is 1000) 
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Graph 8.3 c. Sum squared error convergence performance of a three input neural network 
with a specific training set 
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Graph 8.3 d. Sum squared error convergence performance of a three input neural network 
with a specific training set 
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Appendix C. Experiment on Ghost Learning Performance 

Aim: 

The aim of this experiment is to identify the learning performance of the 

backpropagation training algorithm over different training data and different initial ghost 

neural network configurations. 

Method: 

The data that was used for this experiment was generated in the same manner as the 

data discussed in appendix B. 

The initial network configurations of the neural networks were generated by a 

pseudorandom scheme similar to that discussed in appendix Al. The ghost node networks have 

fewer weight values than standard neural network structures. The hidden nodes in the ghost 

node neural networks share weight values and have distinct biases. Therefore for a fully 

connected n input ghost node neural network with n hidden ghost nodes and one output node we 

require 3·n +1 weights. The weights were selected such that the weight values of the ghost 

nodes were identical to the weight values of the first node in the corresponding neural 

network in appendix B. The ghost nodes in the hidden layer had biases identical to the biases 

of the nodes in the network of the corresponding experiment in appendix B. 

Twenty four experiments were conducted for each number of input nodes. These 

experiments were generated by selecting a pseudorandom data set and a pseudorandom initial 

neural network configuration in an identical manner as to that discussed in appendix B. The 

neural networks were trained over 1000 iterations at a temperature of 0.1 and a learning 

rate of 0.01. The results are presented in graphs C.l a- d, C.2 a· e and table C.l. Several 

typical sum squares error convergence characteristics are shown in graphs C.3 a- i. 
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Results: 

The low input node experiments in general converged before the 1000 iterations, and 

so the number of iterations that were required for convergence are a good measure of 

convergence performance. The experiments with many input nodes generally did not converge 

to the optimal solution within the 1000 iterations and so the sum squared error value after 

1000 iterations is a good measure of convergence performance. The iterative performance of 

the experiments are shown in graphs C.l a- d. The sum squared error convergence 

performance are presented in, C.2 a- e, and table C.l. 

Two input case; 

Three input case; 

Four input case; 

Five input case; 

181 24 experiments converged within 100 iterations. 

91 24 experiments converged within 100 iterations. 

61 24 experiments converged within 100 iterations. 

41 24 experiments converged within 200 iterations. 

Experiment Mean Variance 

2 input case 0.767 1.462 

3 input case 1.938 2.542 

4 input case 2.003 2.903 

5 input case 6.647 5.416 

6 input case 25.339 10.687 

7 input case 86.902 26.062 

8 input case 350.968 57.593 

Table C.l. Mean and variance of the sum squared error after 1000 iterations 

Analysis: 

Similar to the standard neural network performance measures these results show 
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that the backpropagation algorithm converges quickly for ghost node neural networks with a 

small number of inputs. As the number of inputs increases the convergence performance 

deteriorates quickly. 

Comparing these results with the results that are given in appendix B. the 

performance of the ghost node neural networks under backpropagation learning are generally 

much worse than that of the standard system. The performance over two and three input nodes 

are comparabte. For the larger number input values the sum square error performance of 

the ghost node neural networks is about twice that of the standard system. 

Many isolated examples can be seen where the performance of a ghost node neurat 

network is better than that of the corresponding standard neural network start point. This 

highlights the fact that the ghost node structure can often better model the transformation in 

question. 
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Graph C.1 c. Number of iterations required for convergence of four input ghosted neural 
networks (maximum number of iterations allowed is 1000) 
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Graph C.3 f. Sum squared error convergence performance of a six input ghosted neural 
network with a specific training set 
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Graph C.3 g. Sum squared error convergence performance of a six input ghosted neural 
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Graph C.3 h. Sum squared error convergence performance of a seven input ghosted neural 
network with a specific training set 
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Appendix D. Encapsulated Sandwich Nets 

Aim: 

To design an encapsulated sandwich network model of odd parity with three and four 

inputs. To observe the convergence performance of the odd parity model when trained on even 

parity data. 

Method: 

The following encapsulated models of odd parity with three and four inputs were 

designed. The first layer of nodes (for the three input case) consist of the hidden nodes that 

isolate the pOint (1,1,1) giving the output 1, and the point(-I,-1 ,-1) giving the output -I, 

and the parallel hyperplane between them. The first layer of nodes (for the four input case) 

consist of the hidden nodes that isolate the point (1 ,1,1,1) giving the output -I, and the 

point (-1,-1,-1,-1) giving the output -I, and the two parallel hyperplanes between them. 

Results: 

The encapsulated models of odd parity were seen to be correct. They correctly 

modelled odd parity over all the training points. The convergence performance of the training 

algorithm on odd parity neural network models being trained over even parity are shown in 

graphs 0.1 a & b. 

Analysis: 

To construct an even model of parity, all the weight values 01 either the output layer, 

the sandwich layer or the first hidden layer must be negated. The sum squared error 
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performance compares unfavourably with the experiments of appendix A4. This reflects the 

extra structure of encapsulated sandwich nodes, which inhibits disruptive training from 

inconsistent training data. 

Graphs: 
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Graph 0.1 a. Sum squared error convergence properties of the encapsulated model of three 
input odd parity when trained over even parity 

239 



~~~-----------------------------, 

~ 30 0 
~ 
~ • I • ~ • " ... 
• I 
E 20 " • 

104---~--r-~ __ ~---r--~--~--r-~ __ ~ 
o 200 400 600 800 1000 

lIerallon 
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Appendix E1. Amalgamation Schemes for Neural Networks 

Schemes for amalgamating lower dimensional schemes of neural networks are presented. 

Such schemes are useful in determining minimal network topotogies and give insights into 

the construction and design of neural networks. 

Schematic representation of nodes 

Schematic diagrams of nodes are presented. These allow complex network structures 

to be succinctly represented. 

The horizontal line across the axis represents a splitting plane, making a 

contribution in each projection. (fig E1.1 a) 

a b c 
Fig E1.1 a. Schematic diagram of a node split across an axis (the dotted line), that is a node 

which does not reduce, b. Schematic diagram of a node split which reduces across an axis, c. 

Schematic diagram of a two reducing nodes split across an axis 

Fig E1.1 b shows a single small line which represents a reducing plane that only 

contributes to one half of the split. Fig E1.1c shows a schematic diagram of two reducing 

planes contributing in opposite sides of the split. 

Square nets 

Square nets are single output neural networks with the same number of hidden nodes 
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as input nodes. A k-representation of a k input transformation consists of k input nodes and 

k hidden nodes and so forms a square net. 

Lemma 

If we have a k node representation of a k input node transformation, the tight 

representations of the k-l dimensional splits will consist of k-2 splitting nodes and one 

reducing node each. 

2 

k 

Fig El.2 A square neural net in which the number of hidden nodes equals the number of input 

nodes 

Proof 

Given a k dimensional space represented by k nodes (see fig El.2), we choose an axis 

and split the problem. The k nodes are then projected into the k-l dimensional spaces, 

viewing them all as splitting nodes. Assuming the k-l dimensional problem can be solved in 

k-l nodes that is the k-l dimensional representation is tight, only k-l nodes need 

contribute in the projection (see fig El.3). Of the original k nodes one node does not 

contribute in each split, and so there are two reducing node. The other k-2 nodes are either 

splitting nodes or reducing nodes. 
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Fig El.3 Nodes that contribute in a split across a single axis 

The two splits share at least k-2 nodes (see fig E1.4). This is the case since if they 

share less, then the requirement that the k-l dimensional problem is tight is violated. If 

they share k·l nodes then the k dimensional problem is not full and only requires k-l nodes 

to represent the problem. 

k nodes 

/ 
k nodes I k nodes 

k-1 nodes k-1 nodes 

k-2 nodes 

Fig El.4. Schematic diagram of the number of nodes that split or reduce across an axis. k-2 

nodes are shared by both splits, that is they are splitting nodes, while the two remaining 

nodes only contribute to one of the splits, they are reducing nodes 

Amalgamation of consistent nodes 

There is no difference between amalgamating reducing nodes or splitting nodes. A k 

243 



dimensional node s-consistent with those k-l dimensional nodes we are amalgamating must 

be constructed. Given either a reducing or splitting node it can be viewed as being defined 

over the whole k dimensional space, even though it may in fact only really contribute in a 

discriminating manner in a subspace (fig EI.Sa). Fig EI.Sb shows nodes that contribute as 

both splitting and reduCing nodes across the two splits. 

---+---
I 

I 
r 

a b 
Fig El,S a, Schematic diagram showing just nodes splitting across each axis A and B, b. 

Schematic diagram showing both splitting and reducing nodes 

The nodes of fig EI.Sb can be amalgamated if they are consistent over the subspaces 

in which they contribute in a discriminatory manner. A node that has appeared in the A axis 

split amalgamates with a consistent node from the B axis split. Three situations can occur. 

Two splitting nodes amalgamate, two reducing nodes amalgamate or one splitting node 

amalgamates a with a reducing node. 

Fig EI.6c shows two splitting nodes that have amalgamated, these are called doubly 

splitting nodes. Fig EI.6a shows two reducing nodes that have amalgamated. These are called 

doubly reducing nodes. Fig El .6b shows a reducing node amalgamating with a splitting node, 

These are called singly splitting or singly reducing nodes. 

I 
-,----

Fig El .6 a. An amalgamation scheme for two reducing nodes 
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Fig El .6 b. An amalgamation scheme for a splitting node and a reducing node, c. An 

amalgamation scheme, with two splitting nodes 

By amalgamating the nodes in all four quadrants we are constructing a single node in 

the full k dimensional problem. By the analysis the k-l dimensional nodes are proved to be 

m-consistent with another node in their complement space. The amalgamation of the nodes in 

the four quadrants result in four types of amalgamated nodes in the k dimensional space. 

The simplest form is the doubly reducing node (fig E1.7a). This is a node in the k 

dimensional space that only contributes in a k-2 dimensional subspace of the problem. The 

singly splitting node shown in fig E1.7b, is the next case. This is a splitting node (of say the 

A split) that amalgamates with two reducing nodes (of the B split). A singly splitting node is 

a node in the k dimensional space that only contributes in a k-l subspace of the problem. 

The third case occurs when two splitting nodes amalgamate in a quadrant and amalgamate 

with two reducing nodes in two other quadrants. This case is shown in fig El.7c and is called 

a partially reducing or a partially splitting node. A partially splitting node is a node in the k 

dimensional space that contributes in three k-2 subspaces of the problem. The final case is 

the doubly splitting node, shown in fig El.7d. This node is formed by amalgamating four 

splitting nodes. The doubly splitting node is a node in the k dimensional space that 

contributes in the whole space. 
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Fig 1.7 a. A doubly reducing node, b. A singly splilling node, c. A.partially splitting node, d. A 

doubly splitting node. 
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Appendix E2. Amalgamation Scheme for the Case n= 4 

We Prove the hypothesis that there exists a tight representation of the worst 4 

dimensional transformation using 4 nodes whose 3 dimensional splits are tight requiring 3 

nodes. 

We can construct full representations of the 4 dimensional transformation by 

amalgamating two tight 3 dimensional models of the problem. The minimal such model is 

selected. 

We can choose an axis along which to split the problem. Fig E2.1 a & b show two such 

splits. 

3 dimensions 

3 dimensions 
Fig E2.1 a. A split along axis A 

2 dimensions 2 dimensions 

3 dimensions 3 dimensions 

2 dimensions 2 dimensions 

b c 
Fig E2.1 b. A split along axis B. c. A splits along axes A and B 

Each of these 3 dimensional spaces can be further split into 2 dimensional subspaces 

by splitting along the other axis. This results in four distinct 2 dimensional spaces from the 

four 3 dimensional spaces. See fig E2.1 c for the schematic representation. 

From the analySiS of appendix El, we see that given 3-representations of the 3 

dimensional subspaces, the tight 2 dimensional subspaces must consist of 1 splitting node 

pluS one reducing node. 
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a b 
Fig E2.2 a. Schematic diagram of the nodes spmting across axis B. b. Schematic diagram of 

the nodes splitting across axis A 

Given the minimal model of the worst 4 dimensional problem. say a 1-

representation. then splitting the problem along axes A and B would have the nodes 

appearing in the manner shown in fig E2.2 a & b. Putting all the nodes. in all the projections 

on one diagram we have the case as shown in flQ E2.2c. 

Fig E2.2c. Schematic diagram with both the nodes that split across axis A and axis B 

In each quadrant we have two representations of each node appearing from the two 

different ways we split the problem so we must produce a scheme to amalgamate the 

representations. We can amalgamate the nodes in each quadrant since each node in one of the 

two dimensional splits (say the A then B split) is consistent with another node from the 

other two dimensional split (the B then A split). This is the case since each node in the 

original I-representation appears at least twice (due to the two different splitting 
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schemes). 

The following amalgamation schemes are possible; 

For the case in fig E2.3a. 

1 splitting node + 4 doubly reducing nodes = 5 nodes. 

I 
r 

I 
r 

a . b 
Fig E2.3 a. All the reducing nodes amalgamate and all the splitting nodes amalgamate. b. Two 

reducing nodes amalgamate. the others amalgamate to form partially splitting nodes 

For the case in fig E2.3b. 

2 partial splitting nodes +2 doubly reducing nodes = 4 nodes. 

For the case in fig E2.3c. 

1 partial splitting nodes + 1 doubly reducing nodes +2 singly splitting node = 4 nodes. 

I 
r 

c 

I 
r 

d 
Fig E2.3 c. One reducing node amalgamates. one partially splitting one is formed. and two 

singly splitting nodes are formed. d. All the nodes formed split an axis singly 

For the case in fig E2.3d. 
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4 singly splilling node = 4 nodes. 

Of all the possibilities, we have only one amalgamation scheme that violates the hypothesis 

(fig E2.3a). This case is considered further. ( see fig 016) 

Fig E2.4 a. Unique labelling of the reducing nodes 

Considering the splitting of the problem along the axes x and y, we can label the nodes 

formed as shown, ignoring the splitting ones (fig E2.4a). DOing the same along the axes y and 

z gives us the situation as shown below (fig E2.4b). If this were not the case then the splits 

with respect to the axes z and y would form one of the other amalgamation schemes, so 

proving the hypothesis. The important point to note is that the reducing nodes a, b, c and d 

can not be one of the splitting planes in this new projection since these splilling planes do 

not reduce with respect to the y axis, which the nodes a, b, c and d do. 

z~ 

y 
or some other permutation 
preserving the splits. 

Fig E2.4 b. Permutation of the nodes, preserving the unique labelling 
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We continue the procedure over the remaining axis, which gives us the result that 

the nodes a, b, c and d reduce in all the projections, that is they select just one point of the 

4 dimensional hypercube. In this case a different amalgamation scheme is possible. 

Three of the nodes can be selected and isolated from the rest of the points using two 

planes, forming a sandwich. One of the nodes is untouched, but the other three can be 

represented by these two new nodes. Therefore one of the nodes in the original formulation is 

redundant, so proving the result. For this case na 4, four points can be isolated by just two 

high dimensional nodes since four points form a three dimensional hyperplane in a four 

dimensional space. Using these two nodes, the total number of nodes in this representation 

will be three. If this were the case, the fact that we are modelling the worst possible case 

(we already know that parity requires 4 nodes), would be violated. Therefore this 

representation and amalgamation scheme can not occur. 

So the hypothesis that there exists a tight representation of the worst 4 input 

transformation using 4 hidden nodes whose 3 dimensional splits are tight is proved. 
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Appendix E3. Amalgamation Scheme for the Case n= k 

We prove that given the minimal representation of the worst k transformation whose 

k·1 dimensional and k·2 dimensional representations are tight can not have more than k 

hidden nodes. This is proved by examining the possible amalgamation scheme in the tight 

representations of the k·2 dimensional splits. 

2 

k 

Fig E3.1 General neural net representation of a Boolean transformation 

Given a k dimensional problem, with its minimal representation, the I· 

representation (fig E3.1), we can choose two distinct axes in which to split the problem into 

lower dimensional problems. (fig E3.2 a & b) 

k-1 

k-1 
Fig E3.2 a. A split along axis A 
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k-2 k-2 

k-1 k-1 

k-2 k-2 

b c 
Fig E3.2 b. A split atong axis B, c. A split along axes A and B 

Each of these k-l dimensional spaces can be further split into k-2 dimensional 

subspaces by splitting along the other axis. This results in four distinct k-2 dimensional 

spaces from the four k-l dimensional spaces. See fig E3.2c for the schematic representation 

and fig E3.3 a- d, for the network representation. 

a b 

c d 
Fig E3.3 Network representation of a split along two axes a. A, and c. B. The two different 

orders of applying the splits, b. A then B, and d. B then A 
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From the analysis of appendix E I, we see that given k-1 representations of the k-1 

dimensional subspaces, the tight k-2 dimensional subspaces must consist of k-3 splitting 

nodes plus one reducing node. This is shown by fig E3.4 a & b. 

a b 
Fig E3.4 a. Schematic diagram of the nodes splitting across axis B, b. Schematic diagram of 

the nodes splitting across axis A 

If we had a model of the k dimensional problem, say a I-representation, then 

splitting the problem along the two axes A and B would have the nodes appearing in the 

manner in fig E3.4 a & b. Putting all the nodes, in all the projections on one diagram we 

have the nodes as shown in fig E3.4 c. 

Lk-~ k~ ~3L r kl3 r 
Fig E3.4 c. Schematic diagram with both the nodes that split across axis A and axis B 
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) 
I 

-..1 __ 

a b 
Fig E3.5 a. Singly splitting and partially reducing nodes, these do not form doubly splitting 

nodes, b. The k-5 doubly splitting nodes that are formed when splitting nodes amalgamate 

together 

In each quadrant we have at least two representations of each node appearing from the 

two different ways we split the problem so we must produce a scheme to amalgamate the 

representations. 

We can amalgamate the various nodes if they are consistent over the relevant 

subspaces. The consistency of the nodes are satisfied by the fact that the subspaces are tight. 

Each k-1 dimensional subproblem is (k-1)-representable, while each k-2 dimensional 

subproblem is (k-2)-representable and so perpendicular splits of two k-1 representations 

in a k-2 subspace must be consistent. That is each node in each representation must have a 

corresponding consistent node in the other and so can be amalgamated. 

""' 
I . I I 

-) 
I I 

l-- -- r4 
I I 

~t=tlt-~) (C-n:::t=~ 
I I 

c d e 
Fig E3.5 c. Two partially reducing nodes, d. Two other partially reducing nodes, e. k-5 

doubly splitting nodes 

255 



The amalgamation scheme in which the least number of doubly splitting nodes appear 

is when a splitting node in one k-1 dimensional space is in fact a reducing one in its 

complement. these nodes are partially reducing nodes or singly splitting nodes (see fig 

E3_5al_ This means that since each k-l space has only two reducing nodes. a total of at least 

k-5 nodes are still in fact splitting nodes across the two reducing axes_ (fig E3_5bl 

For the example in fig E3_5 c- e. we have; 

k-5 splitting nodes + 4 partially reducing nodes = k-1 nodes_ This does not violate the 

induction hypothesis_ The case were we have three partially reducing nodes is similar_ 

If there are less than three partially splitting nodes in the amalgamated 

representations then there will be at least k-4 doubly splitting nodes_ The following 

amalgamation schemes are possible 

For the case in fig E3_6a. 

k-4 original splitting nodes + 1 splitting node + 4 doubly reducing nodes = k+ 1 nodes_ 

I 
r 

I 
r 

a b 
Fig E3_6 a_ All the reducing nodes amalgamate and all the splitting nodes amalgamate. b_ Two 

reducing nodes amalgamate. the others amalgamate to form partially splitting nodes 

For the case in fig E3.6b. 

k-4 original splitting nodes +2 partial splitting nodes +2 doubly reducing nodes = k nodes. 

For the case in fig E3.6c. 
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k-4 original splitting nodes +1 partial splitting nodes + 1 doubly reducing nodes +2 singly 

splitting node = k nodes. 

I 
r 

I 
r 

c d 
Fig E3.6 c. One reducing node amalgamates, one partially splitting one is formed, and two 

singly splitting nodes are formed, d. All the nodes formed split an axis singly 

For the case in fig E3.6d, 

k-4 original splitting nodes +4 singly splitting node = k nodes. 

Of all the possibilities, we have only one amalgamation scheme that violates the hypothesis 

(fig E3.6a). This case can be proved to be non minimal in an identical manner to that of 

appendix E2. So the hypothesis that the minimal representation of the worst k 

transformation whose k·1 dimensional and k-2 dimensional representations are tight can 

not have more than k hidden nodes is proved. 
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Appendix F1. Quantisation Experiments 

Aim: 

To identify the ability of a single layer of nodes to model the arbitrary quantisation of 

real valued input to a Boolean output. 

Method: 

The data sets where generated by a seeded pseudorandom scheme. The data consisted of 

a real valued input value followed by the Boolean output values. The real valued output is 

given by the formula; 

Output= (Seed - 505)/ 505, 

Nextseed= (Seed' 101 ' 992) mod 1009, 

and the Boolean outputs were generated in the order (1,1, ... ,1,1) then (1,1, ... ,1,-1) and 

(1,1, ... ,-1,1) and (1,1,00.,-1,-1) and iteratively to (-1,-1,00.,-1,-1). 

The initial neural network configurations where generated in the same manner as 

those of appendix AI. The quantisation nets with one input and n quantisation nodes are 

defined by 2'n weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four 

pseudorandom neural network configurations were selected to be trained on pseudo random 

data sets given by the formula; 

Dataseed= 7 ' Inputnodes, 

Netseed= 11 ' Input nodes, 

Experiment is net(Netseed) trained on data(Dataseed), 

Nextdataseed= (Dataseed ' 101 ' 992) mod 1009, 

Nextnetseed= (Netseed ' 101 ' 992) mod 1009. 

The temperature value of 0.1 and a learning rate of 0.01 was used. The experiments were 
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run for 1000 iterations. The sum squared error convergence characteristics are shown in 

graphs F1.1 a- c and table F1.1. 

Results: 

The sum squared error values of the arbitrary input quantisation neural network 

increases as the number of input quantisation nodes increases. Most of the experiments do not 

converge completely within the 1000 iterations examined. Table F1.1 shows the mean and 

variance of the sum squared error performance for the specific number of quantisation nodes 

used. Graphs F1.1 a- c show the sum squared error performance for each of the experiments. 

These values will be used to compare the performance of different neural network structures 

at modelling arbitrary real valued transformations. 

Experiment Mean Variance 

2 output case 0.465 0.594 

3 output case 1.722 1.444 

4 output case 7.010 3.239 

Table F1.1. Mean and variance of the sum squared error convergence after 1000 iterations 

for the single layer quantisation neural network structure 

Analysis: 

The results show that as the number of quantisation nodes are increased the single 

layer quantisation neural network's ability to model the arbitrary real input quantisation 

decreases. A single layer quantisation neural network structure can only model linear 

quantisation transformations. Since the training data are random input quantisations many 

will be non linear. The poor convergence performance of the single layered neural network 
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quantisation structure can be explained by its inability to model the nonlinear 

transformations. The deterioration in performance as the number of quantisation nodes 

increase are explained by the increased probability of non linear transformations for the 

larger number of quantisation nodes. 

Graphs: 
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Graph F1.1 a. Sum square error performance of the single layer quantisation neural network 
structure with two quantisation nodes after 1000 iterations 
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Graph F1.1 b. Sum square error performance of the single layer quantisation neural network 
structure with three quantisation nodes after 1000 iterations 
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Graph F1.1 c. Sum square error performance of the single layer quantisation neural network 
structure with four quantisation nodes after 1000 iterations 
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Appendix F2. Decoding Experiments 

Aim: 

To identify the ability of a single nodes to model the arbitrary decoding of Boolean 

input to a real valued output. 

Method: 

The data sets were generated by a seeded pseudo random scheme. The data consisted of 

the Boolean input values generated as the outputs of the experiments in appendix F1 followed 

by a real valued output generated as the inputs of the experiments in appendix F1. 

The initial neural network configurations where generated in the same manner as 

those of appendix A1. The quantisation nets with one decoding output node and n input nodes 

are defined by n + 1 weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural networK configurations were selected to be trained on random data sets in an identical 

manner to that of appendix F1. The temperature value of 0.1 and a leaming rate of 0.01 was 

used. The experiments were run for 1000 iterations. The sum squared error convergence 

characteristics are shown in graphs F2.1 a- c and table F2.1. 

Results: 

The single layer decoding neural network structure·s sum squared error values 

increases as the number of input nodes increases. The performance is significantly worse 

than that of the single layer quantisation neural networK. Table F2.1 shows the mean and 

variance of the sum squared error performance for the specific number of input nodes used. 

Graphs F2.1 a- c show the sum squared error performance for each of the experiments. 
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Experiment Mean Variance 

2 input case 4.019 1.917 

3 input case 13.325 3.085 

4 input case 35.814 2.748 

Table F2.1 Mean and variance of the sum squared error after 1000 iterations for the single 

layer decoding neural network structure 

Analysis: 

A single layer decoding neural network cannot model arbitrary transformations from 

a Boolean to a real valued space unless the transformation is monotonic over the Boolean 

space. That is the Boolean space does not possess any exclusive 0 r properties. The sum 

squared error performance of the decoding system is worse than that of the quantisation 

system since the condition that input quantisations are linear transformations are more 

probable than the condition that the output decoding is monotonic over the input space. 
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Graph F2.1 a. Sum square error performance of the single layer decoding neural network 
structure with two decoding nodes after 1000 iterations 
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Graph F2.1 b. Sum square error perfonnance of the single layer decoding neural network 
structure with three decoding nodes after 1000 iterations 
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Graph F2.1 c. Sum square error performance of the single layer decoding neural network 
structure with four decoding nodes after 1000 iterations 
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Appendix F3. Multilayer Quantisation Experiments 

Aim: 

To identify the ability of three tayers of nodes to modet the arbitrary quantisation of 

reat vatued input to a Bootean output. 

Method: 

The data sets were identicat to those in appendix F1. 

The initial neural network configurations where generated in the same manner as 

those of appendix A 1. The quantisation nets with one input and three layers of n quantisation 

nodes are defined by 2'n'(n+ 1) weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural network configurations were selected to be trained on random data sets in an identical 

manner to that of appendix F1. The temperature value of 0.1 and a leaming rate of 0.01 was 

used. The experiments were run for .1000 iterations. The iterative convergence 

characteristics are shown in graphs F3.1 a & b. The sum squared error convergence 

performance is shown in graphs F3.2 a· e and table F3.1. 

Results: 

The sum squared error values of the multilayer quantisation neural network 

increases as the number of nodes increases. The sum squared error values are less than those 

of the single layer quantisation neural networks. 

Two input case; 

Three input case; 

121 24 experiments converged within 1000 iterations. 

111 24 experiments converged within 1000 iterations. 
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Experiment Mean Variance 

2 output case 0.290 0.572 

3 output case 0.439 0.701 

4 output case 1.120 2.044 

5 output case 4.211 4.119 

6 output case 22.249 10.910 

Table F3.1 Mean and variance of the sum squared error after 1000 iterations for the three 

layer decoding neural network structure 

Analysis: 

The ability of three layered quantisation neural network structures to model 

arbitrary quantisations is better than that of single layered structures. The representational 

power increases with the increased number of layers and is demonstrated by the results. The 

three layered quantisation neural network structure is not limited to modelling linear 

quantisation transformations. 
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Graph F3.1 a. Number of iterations required for convergence of the three layer quantisation . 
neural network structure with two input and hidden nodes 
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Graph F3.1 b. Number of iterations required for convergence of the three layer quantisation 
neural network structure with three input and hidden nodes 
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Graph F3.2 a. Sum square error performance of the three layer quantisation neural network 
structure with two input and hidden nodes after 1000 iterations 
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Graph F3.2 b. Sum square error performance of the three layer quantisation neural network 
structure with three input and hidden nodes after 1000 iterations 
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Graph F3.2 c. Sum square error performance of the three layer quantisation neural network 
structure with four input and hidden nodes after 1000 iterations 
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Graph F3.2 d. Sum square error performance of the three layer quantisation neural network 
structure with five input and hidden nodes after 1000 iterations 
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Graph F3.2 e. Sum square error performance of the three layer quantisation neural network 
structure with six input and hidden nodes after 1000 iterations 
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Appendix F4. Quantising and Decoding Experiments 

Aim: 

To identify the ability of three layers of hidden nodes to model the arbitrary 

quantisation and decoding of a real valued input to a real valued output. 

Method: 

The data sets were generated by a seeded pseudorandom scheme. The data consisted of a 

real valued input followed by a real valued output. These were generated via; 

Output= (Outputseed - 505)/ 505. 

Input= (Inputseed - 505)/ 505. 

Nextoutputseed= (Outputseed • 101 • 992) mod 1009. 

Nextinputseed= (Intputseed • 101 • 992) mod 1009. 

and continued iteratively for all the whole input set. namely 2" data points. 

The initial neural network configurations where generated in the same manner as 

those of appendix A 1. The quantisation nets with one input node three layers of n hidden nodes 

and one output node are defined by 2·n2 + S·n + 1 weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural network configurations were selected to be trained on random data sets. The 

temperature value of 0.1 and a learning rate of 0.01 was used. The experiments were run for 

1000 iterations. The convergence characteristics are shown in graphs F4.1 a- d. 

Results: 

The final sum squared error values after 1000 iterations of the multilayer 
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quantising and decoding neural network increases as the number of hidden nodes increases. 

The sum squared error values are comparable to those obtained for single layered decoding 

neural networks in appendix F2. 

Experiment Mean Variance 

2 hidden nodes 1.250 0.860 

3 hidden nodes 3.409 2.448 

4 hidden nodes 7.637 4.738 

5 hidden nodes 19.393 8.523 

Table F4.1 Mean and variance of the sum squared error after 1000 iterations for the four 

layer quantisation and decoding neural network structure 

Analysis: 

A larger neural network structure has greater representational power than a smaller 

neural network structure. Given a larger neural network structure, larger training sets can 

be modelled. Larger training sets provide more conflicting update values and so optimal 

convergence requires more than the 1000 iterations studied in this experiment. The 

comparable performance with the single layered decoding neural network reflects the fact 

that the output layer of the multi layer quantising and decoding neural network is a single 

layered decoding layer. The sum squared error convergence performance of the multilayered 

neural network as compared with the single layered decoding neural network will improve 

with more iterations since the multilayered neural network can manipulate the values fed 

forward to the decoding layer. 
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Graph F4.1 a. Sum square error performance of the four layer quantisation and decoding 
neural network structure with two nodes in each hidden layer after 1000 iterations 
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Graph F4.1 b. Sum square error performance of the four layer quantisation and decoding 
neural network structure with three nodes in each hidden layer after 1000 iterations 
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Graph F4.1 c. Sum square error performance of the four layer quanlisation and decoding 
neural network structure with four nodes in each hidden layer after 1000 iterations 
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Graph F4.1 d. Sum square error performance of the four layer quantisation and decoding 
neural network structure with five nodes in each hidden layer after 1000 iterations 
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Appendix F5. Reduced Input Quantisation Experiments 

Aim: 

To identify the ability of a single layer of nodes to model the arbitrary quantisation of 

real valued input to a Boolean output given a reduced training set. 

Method: 

The data sets were generated by a seeded pseudo random scheme. The data consisted of a 

real valued input generated as the outputs of the experiments in appendix FI followed by the 

Boolean input values generated as the inputs of the experiments in appendix FI. The reduced 

training sets that were generated consisted of n·(n+ I) points for n<:: Sand 2" points for ns 

4. This is the same sized training sets for ns 4 as in appendix FI and a reduced set for n<:: S. 

The initial neural network configurations where generated in the same manner as 

those of appendix A I. The quantisation nets with one input node and n decoding output nodes 

are defined by 2·n weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural network configurations were selected to be trained on random data sets in an identical 

manner to that of appendix FI. The temperature value of 0.1 and a learning rate of 0.01 was 

used. The experiments were run for 1000 iterations. The sum squared error convergence 

characteristics are shown in graphs FS.I a- c and table FS.I. 

Results: 

The final sum squared error values after 1000 iterations of the arbitrary reduced 

input quantisation neural network increases as the number of input quantisation nodes 

increases. The sum squared error convergence performance is comparable to those of 
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appendix Ft when the training sets were of identical size, namely n$ 4, while the sum 

squared error convergence performance is much improved over the reduced training sets n;;, 

5. Table F5.1 shows the mean and variance of the sum squared error performance for the 

specific number of input nodes used. Graphs F5.1 a· d show the sum squared error 

performance for each of the experiments. 

Experiment Mean Variance 

2 output case 0.471 1.113 

3 output case 1.809 1.507 

4 output case 7.776 2.669 

5 output case 18.067 4.158 

Table F5.1 Mean and variance of the sum squared error after 1000 iterations of the reduced 

input set single layer quantisation neural network structure 

Analysis: 

The reduced training sets that were employed in this experiment allow training sets 

that are linear to be more probable than before. Therefore the single layered neural 

networks are more likely to converge with the reduced training sets. 
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Graph FS.1 a. Sum square error performance of the reduced input set single layer 
quantisation neural network structure with two quantisation nodes after 1000 iterations 
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Graph FS.1 b. Sum square error performance of the reduced input set single layer 
quantisation neural network structure with three quantisation nodes after 1000 iterations 
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Graph FS.l c. Sum square error performance of the reduced input set single layer 
quantisation neural network structure with four quantisation nodes after 1000 iterations 
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Graph FS.l d. Sum square error performance of the reduced input set single layer 
quantisation neural network structure with five quantisation nodes after 1000 iterations 
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Appendix F6. Reduced Input Decoding Experiments 

Aim: 

To identify the ability of a single nodes to model the arbitrary decoding of Boolean 

input to a real valued output over a reduced training set. 

Method: 

The data sets were generated by a seeded pseudorandom scheme. The data consisted of 

the Boolean input values generated as the outputs of the experiments in appendix FI followed 

by a real valued output generated as the inputs of the experiments in appendix FI. The 

reduced training sets were defined as in appendix FS. 

The initial neural network configurations where generated in the same manner as 

those of appendix A I. The quantisation nets with one decoding output node and n input nodes 

are defined by n +1 weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural network configurations were selected to be trained on random data sets in an identical 

manner to that of appendix FI. The temperature value of 0.1 and a learning rate of 0.01 was 

used. The experiments were run for 1000 iterations. The sum squared error convergence 

characteristics are shown in graphs F2.1 a- d and table FS.I. 

Results: 

The sum squared error values of a single layered decoding neural network structure 

trained on reduced data sets increase as the number of inputs increase. The sum squared 

error convergence performance is comparable to those of appendix F2 when the training sets 

were of identical size, namely n~ 4, while the sum squared error convergence performance 
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is much improved over the reduced training sets n~ 5. Table F6.1 shows the mean and 

variance of the sum squared error performance for the specific number of quantisation nodes 

used. Graphs F6.1 a- d show the sum squared error performance for each of the experiments. 

Experiment Mean Variance 

2 input case 4.952 1.765 

3 input case 14.191 1.776 

4 input case 35.020 2.647 

5 input case 68.590 3.451 

Table F6.1 Mean and variance of the sum squared error after 1000 ilerations of the reduced 

input set single layer decoding neural network structure 

Analysis: 

The reduced data sets allow the transformations from Boolean to real valued spaces 

that are monotonic to be more probable. This means that the training algorithm is more 

likely to converge given reduced training data sets. 
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Graph F6.1 a. Sum square error performance of the reduced input set single layer decoding 
neural network structure with two decoding nodes after 1000 iterations 
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Graph F6.1 b. Sum square error performance of the reduced input set single layer decoding 
neural network structure with three decoding nodes after 1000 iterations 
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Graph FS.l c. Sum square error performance of the reduced input set single layer decoding 
neural network structure with four decoding nodes after 1000 iterations 
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Graph FS.l d. Sum square error performance of the reduced input set single layer decoding 
neural network structure with five decoding nodes after 1000 iterations 
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Appendix F7. Reduced Input Multilayer Quantisation 

Experiments 

Aim: 

To identify the ability of three layers of nodes to model the arbitrary quantisation of 

real valued input to a Boolean output over a reduced training set. 

Method: 

The data sets were identical to those in appendix F5. 

The initial neural network configurations where generated in the same manner as 

those of appendix A 1. The quantisation nets with one input and three layers of n quantisation 

nodes are defined by 2"n"(n+ 1) weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural network configurations were selected to be trained on random data sets in an identical 

manner to that of appendix F1. The temperature value of 0.1 and a leaming rate of 0.01 was 

used. The experiments were run for 1000 iterations. The iterative convergence 

characteristics are shown in graphs F7.1 a· c. The sum squared error convergence 

characteristics are shown in graphs F7.2 a· g and table F7.1. 

Results: 

The sum squared error values of a multilayered quantisation neural network 

structure trained on reduced data sets increase as the number of inputs increase. The sum 

squared error convergence performance is comparable to those of appendix F3 when the 

training sets were of identical size, namely n<; 4, while the sum squared error convergence 
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performance is much improved over the reduced training sets n~ 5. Table F7.1 shows the 

mean and variance of the sum squared error performance for the specific number of output 

nodes. Graphs F7.2 a- g show the sum squared error performance for each of the 

experiments. 

The sum squared error values of this experiment is much better than those of the 

single layered quantisation experiment as discussed in appendix F5. 

Experiment Mean Variance 

2 output case 0.256 0.752 

3 output case 0.350 0.852 

4 output case 1.527 2.053 

5 output case 3.440 3.225 

6 output case 10.388 6.110 

7 output case 21.272 8.913 

8 output case 32.861 9.040 

Table F7.1 Mean and variance of the sum squared error after 1000 iterations of the reduced 

input set. three layer quantisation neural network structure 

Analysis: 

The larger neural network structure is beller able to model quantisation 

transformation. whether it is linear or non linear. This explains why the sum squared error 

convergence performance of the multilayered quantisation system (see appendix F3) is much 

better than that of the single layered system. The reduced data sets allow the simple linear 

transformations to be more probable. Therefore a multilayer quantisation neural network 

structure with a reduced training data set is more likely to converge than a single layer 

quantisation neural network structure with a large training set. 
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Graph F7.1 a. Number of iterations required for convergence of the reduced input set three 
. layer quantisation neural network structure with two input and hidden nodes 
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Graph F7.1 b. Number of iterations required for convergence of the reduced input set three 
layer quantisation neural network structure with three input and hidden nodes 
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quantisation neural network structure with two input nodes after 1000 iterations 
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Graph F7.2 b. Sum square error performance of the reduced input set three layer 
quantisation neural network structure with three input nodes after 1000 iterations 
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Graph F7.2 c. Sum square error performance of the reduced input set three layer 
quantisation neural network structure with four input nodes after 1000 iterations 
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Graph F7.2 d. Sum square error performance of the reduced input set three layer 
quantisation neural network structure with five input nodes after 1000 iterations 
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Graph F7.2 e. Sum square error performance of the reduced input set three layer 
quantisalion neural network structure with six input nodes after 1000 iterations 
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Appendix F8. Reduced Input Quantising and Decoding 

Experiments 

Aim: • 

To identify the ability of three layers of hidden nodes to model the arbitrary 

quantisation and decoding of a real valued input to a real valued output over a reduced training 

set. 

Method: 

The data sets were generated by a seeded pseudorandom scheme. The data was generated 

in an identical manner to that of appendix F4. The reduced data sets were defined in an 

identical manner to that of appendix FS. 

The initial neural network configurations where generated in the same manner as 

those of appendix Al. The quantisation nets with one input node three layers of n hidden nodes 

and one output node are defined by 2"n2 + S"n +1 weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural network configurations were selected to be trained on random data sets. The 

temperature value of 0.1 and a learning rate of 0.Q1 was used. The experiments were run for 

1000 iterations. The sum squared error convergence characteristics are shown in graphs 

FS.l a· d and table FS.l. 

Results: 

The sum squared error values of a multilayered quantising and decoding neural 

network structure trained on reduced data sets increase as the number of inputs increase. 
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The sum squared error convergence performance is much improved over the reduced training 

sets n~ 5. Table F8.1 shows the mean and variance of the sum squared error performance for 

the specific number of output nodes. Graphs F8.1 a- d show the sum squared error 

performance for each of the experiments. 

The sum squared error values of this experiment are beller than those of the single 

layered decoding experiment as discussed in appendix F6. 

Experiment Mean Variance 

5 hidden nodes 15.885 7.525 

6 hidden nodes 27.288 12.472 

7 hidden nodes 38.441 18.990 

8 hidden nodes 53.345 22.789 

Table F8.1 Mean and variance of the sum squared error after 1000 iterations of the reduced 

input set, four layer quantisation and decoding neural network structure 

Analysis: 

The reduced data sets allow simpler linear transformations to be more probable and 

so are easier to model than larger training sets. This is demonstrated by the improved 

performance of the training algorithms for these reduced training sets. 

The improved representational power of larger neural network structures over 

smaller neural network structures is demonstrated by the smaller sum squared error values 

of this experiment as compared to that of the single layered decoding neural network of 

appendix F6. 
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Graph FS.! a. Sum square error performance of the reduced input set four layer quantisation 
and decoding neural network structure with five nodes in each hidden layer(! 000 iterations) 

~ 

: 
E 
" z 

c • E 
';: 

:t .. w 

~~~ ............ .---------~ 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 

131;;;;;;;;;;;;;;;;;;~ ........... 12 
11 
10 
9 
8 
7 
6 
5 
4 

~J::;::;::;::;:~--'--'---r--~-r--~-J 
o 10 20 30 40 50 60 

Graph FS.! b. Sum square error performance of the reduced input set four layer quantisation 
and decoding neural network structure with six nodes in each hidden layer(! 000 iterations) 
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Appendix G: Training a Neural Network Controller for 

Adhesive Dispensing 

Aim: 

To examine various methods of training a neural network controller for adhesive 

dispensing (see chapter nine, Williams et al '90 and West '92). To examine the performance 

of the learning phase and to evaluate the performance of the execution phase. To examine the 

ease with which the trained neural network's structure and behaviour could be understood 

and explained. 

Method: 

Eight different training experiments were implemented corresponding to the different 

training data, neural network structure and weights that were aSSigned. 

Data sets 

The following training data were used; 

i. Real control data: 

These were obtained by observing the adhesive dispensing system under control with a 

rule based bang bang controller. The problem with using this type of data is that all the 

possible process faults may not be present in the data. 

ii. Hand crafted data: 

All the observed process characteristics and process faults were used to construct a 

set of training data. This set had the advantage of possessing all the process characteristics 

and faults that had been observed in many experiments. Also this training set was small since 

only useful learning data had been included. This disadvantage with this data set is that any 
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hidden properties of the real system such as correlations between the system variables were 

lost in the hand crafted data. 

Neural network structure 

The following neural network structures were used; 

i. Fully connected: 

This neural network structure consisted of the seven input nodes and the ten output 

nodes specified by the system. The fully interconnected structure has ten hidden nodes. These 

hidden nodes corresponded to the three banded regions of the area, area_change and 

pulse_height system variables (six hidden nodes) and the four threshold boundaries of the 

rise_time, fall_time, pulse_width and box_area_ratio system variables (four hidden 

nodes). 

ii. Structured fully interconnected neural network: 

This neural network structure consisted of the specified input and output nodes, 

corresponding to the system variables and six hidden nodes. The threshold units of the four 

threshold boundaries of the rise_time, fall_time, pulse_width and box_area_ratio system 

variables can be implemented without hidden nodes while the six hidden nodes correspond to 

the three banded regions of the area, area3hange and pulse_height system variables (Six 

hidden nodes). The connection pattern of this system was; 

a. All the input nodes were fully inlerconnected to all the hidden nodes .. 

b. All the input nodes were fully interconnected to all the thresholding flag outputs, 

namely the rise_time_flag, fall_time_flag, pulse_width_flag and box_area_ratio_f1ag 

nodes. 

c. All the hidden nodes were fully interconnected to all the banded flag and decision 

outputs, namely the area_action,change_area, bubble_flag, bubble_decision, 

pulse_height_flag and pulse_heighCdecision nodes. 

iii. Structured partially connected neural network: 

This neural network structure consisted of the specified input and output nodes, 
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corresponding to the system variables and six hidden nodes. The Ihreshold units of the four 

threshold boundaries of the rise_time, fall_time, pulse_width and box_area_ratio system 

variables can be implemented without hidden nodes while the six hidden nodes correspond to 

the three banded regions of the area, area_change and pulse_height system variables (six 

hidden nodes). The connection pattern of this system was; 

a. Each thresholded input node was connected to its corresponding output flag and no 

other, e.g. the box_are a_ratio input node was connected to the box_area_ratio_flag output 

node. 

b. The banded input nodes were connected to a pair of hidden nodes and no others, e.g 

the area input node was connected to midnodel and midnode2 and no others. 

c. Each hidden node pair was connected to its corresponding output flag or decision 

node, e.g. the midnodel and midnode2 nodes were connected to output nodes area_action and 

change_area and no others. 

Neural network weights 

The following weight specifications were used; 

i. Small random weight values: 

This means that no information is given to the initial neural network structure. 

ii. Small hand crafted weights: 

This means that the knowledge available about the control problem is used to give the 

neural network structure an approximate measure of where the set points of the banded 

region and thresholds are in the input space. 

iii. Large derived weights: 

This means that the greater knowledge about the control problem is used to specify the 

set points of the banded region and thresholds are in the input space as well as the tolerances 

that are required on these set points. The smaller the tolerances that are required the greater 

the magnitude of the weights of the neural network. This is also related to the temperature 

value of the neural network. 
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Experiments 

The neural network convergence experiments were run with a learning rate of 0.01 

and a temperature of 0.1. The maximum number of iterations that were allowed was 5000. 

This set an upper limit on the training procedure. If the training algorithm did not converge 

within this limit the sum squared error values after 5000 iterations were used to examine 

the performance of the training algorithm. 

Results: 

The results of the experiments are shown in table G.1. The sum squared error 

convergence characteristics of each of the experiments are shown in graphs G.l a- f and G.2 

a- f. The performance of the converged neural network controller on the real process is 

shown in graph G.3. 

Neural Initial 
Network Weight Simulated Data Real Data 

Structure Specification Iterations Sum square error Iterations Sum square error 

Small 
Fully Random 5000 155.957 5000 279.987 
Interconnected Weights 
Structure 

Small 
Specified 5000 20.079 5000 269.436 
Values 

Reduced Small 
Interconnected Random 2343 0.045 5000 146.888 
Structure WeiQhts 

Small 
Random 5000 41.065 5000 159.561 

Minimal Weights 
Designed 
Structure Small 

Specified 2874 0.187 5000 123.111 
Values 

Large 
Derived 4 0.065 44 0.116 
Weiahts 

Table G.l Convergence properties of the training algorithm for different initial neural 

network structure and training data 
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Analysis: 

Improved sum squared error convergence performanCB was obtained by increasing the 

design effort implementing the neural network controller. Tt1e mosl significant factor that 

effected the performance of the automated training was the structure of the initial neural 

network that was trained. Pruning the neural network to the minimum that was required to 

model the problem aided optimal convergence. 

The second significant factor was the Initial weight specification. Small random 

weights provided no information. The sum squared error convergence was not good. Including 

small weight values that were designed to place the initial neural network in the approximate 

region of the control problem set points improved the convergence performance. This model 

converged on the simulated data but did not converge within the 5000 iterations ( examined 

in this experiment) on real data. This was due to the fact that the real training data contained 

data that required decisions to be made over small tolerances which can only be achieved by a 

neural network with a low temperature or one with large weight values. 

Deriving large weight values that modelled the control set points to finer tolerances 

ensured that the automated training would converge in fewer iterations. This method 

effectively starts the neural network in a configuration that is very close to a suitable 

controller. The automated training fine tunes the neural network to produce the required 

controller. The fine tuning is normally necessary given real data since the real data will 

possess properties that are not modelled by the designed neural network. 
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Graph G.1 a. Sum squared error performance of the fully interconnected neural network 
structure with small random weights trained on selected simulated data 
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Graph G.1 b. Sum squared error performance of the fully interconnected neural network 
structure with small specified weight values trained on selected simulated data 
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Graph G.1 d. Sum squared error performance of the minimal designed neural network 
structure with small random weights trained on selected simulated data 
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Graph G.l e. Sum squared error performance of the minimal designed neural network 
structure with small specified weight values trained on selected simulated data (note the 

change of scale on the horizontal axis) 
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Graph G.l f. Sum squared error performance of the minimal designed neural network 
structure with large derived weight values trained on selected simulated data (note the 

change of scale on the horizontal axis) 
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Graph G.2 a. Sum squared error performance of the fully interconnected neural network 
structure with small random weights trained on selected real data 
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Graph G.2 b. Sum squared error performance of the fully interconnected neural network 
structure with small specified weight values trained on selected real data 
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Graph G.2 c. Sum squared error performance of the reduced interconnected neural network 
structure with small specified weight values trained on selected real data 
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Graph G.2 d. Sum squared error performance of the minimal designed neural network 
structure with small random weights trained on selected real data 
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Graph G.2 e. Sum squared error performance of the minimal designed neural network 
structure with small specified weight values trained on selected real data 
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Graph G.2 f. Sum squared error performance of the minimal designed neural network 
structure with large derived weight values trained on selected real dala (note the change of 

scale on the horizontal axis) 
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Graph G.3 a. Blob area control performance of a neural network controller. Note that the blob 

area variation is kept within the 5% (2000 units) limits of the target value (40000 units) 
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Graph G.3 b. The applied pressure pulse variation used to produce the control performance of 

Graph G.3a. Note the initial increase in pressure required to reach the target area of 40000 

units when the system initially started dispensing blobs of 30000 units 
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