

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

. Mf.S.St)M C·H.
-----------------------~----------------------

ACCESSION/COPY NO.

CS'-to 0 bObOS --------- - ------- ---- --- ---- -- - -- --- ---- -- - - -- - - --
VOL NO. CLASS MARK

-1 JUL 1994i'

3 0 .!\:: 1995

2'~

27 dYN 1997

1 7 MAR 1 9ft 6 SEP 1994 27 JUN 1997
6 SEP 1994

-1 JUL 1994 . 30 JUi,j 1995 26 JUN 1998

0400606054

111111 11111111111111111111111111111' , .

'~.~.

Engineering Reliable Neural Network Systems

by

Christopher Hugh Messom

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy in Computer Studies

of the Loughborough University of Technology

November 1992.

© Christopher Hugh Messom, 1992.

,

L\)U:~r")t:Qn . .h • .J'" Vnh't'Jft.(to,

11t T ~ •. ",..,.;. "1, ~.~1 .If)'

I " 04:1Jo ~t?O~

\.) q"l 2 0':; (,.y

Name: Christopher Hugh Messom

Definitive Title:-

Engineering Reliable Neural Network Systems

Synopsis:-

This thesis presents a study of neural network representation and

behaviour. The study places neural networks in the context of designing

reliable systems. Several new results on network size and topology are

presented.

Knowledge based training of neural networks is examined. This is

essential for designing reliable neural systems in which the

subsymbolic reasoning processes are well defined. Sandwich nodes are

introduced and studied as atomic knowledge elements in neural

networks. Two new network architectures are introduced, the

Loughborough Net and the Loughborough Control Net. These make use of

the parallelism inherent in sandwich node representations.

The interpretation of neural network representations as logical

transformations and rule systems are presented. An equivalence of the

rule systems and neural network representation is proposed and

discussed. This equivalence is required in order that the total behaviour

of the neural network can be understood.

A new methodology for designing reliable neural network systems

making use of knowledge based training is proposed. This is used to

present a general design methodology for the construction of. reliable

neural network control systems using the Loughborough Control Net

architecture. A case study is discussed where the methodology was

applied to the design of an adhesive dispensing controller.

i i

Acknowledgements

I would like to thank;

Dr Christopher Hinde, my supervisor for his help and support

throughout my study.

Professor E.A. Edmonds, my director of research.

Dr AA West and Professor D. Williams of the Manufacturing

Engineering Department of the Loughborough University of Technology

for collaborating on the implementation of a neural network controller

for an adhesive dispensing process in the manufacture of mixed

technology printed circuit boards.

i i i

Contents

Declaration

Title and Synopsis

Acknowledgements

Contents

List of Figures

List of Tables

List of Graphs

List of Photographs

Part I. Introductory Ideas

Chapter 1. Introduction and Background

Outline of Chapter

Overview of Reasoning with Logic

Logical Systems

Clausal Form

Benefits of Logical Systems

Connectionist Models and Neural Networks

Distributed Representation

Structure of Neural Models

Recurrent Networks

Perceptrons

Feed Forward Networks

Neural Representations

Representational Power of Neural Networks

iv

Page no

i i

i i i

iv

xi i

xx

xxii

xx iii

1

2

3

5

6

7

8

9

1 0

13

15

17

18

Connectionist Symbol Processing

Advantages of Neural Network Systems

Summary

Chapter 2. Motivation of Study

Outline of Chapter .

Neural Systems

Design Development

Usefulness of Present Techniques

Areas of Investigation

Outline of Thesis

Summary

Part 11. Properties of Network Representations

Chapter 3. Interpretation of Neural Systems

1 9

20

22

23

23

24

25

26

28

30

Outline of Chapter 3 1

Bipolar Feed Forward Neural Networks 3 1

Neural Networks as models of Boolean Transformations 34

Object Definition of Boolean Transformations 36

Boolean Models of Hopfield Network Behaviour 40

Training Sets and Interpreting Neural Networks 4 1

Feed Forward Neural Networks 43

Multiple Output Nodes 4 5

Summary 46

Chapter 4. Learning and the Behaviour of Internal Representations

Outline of Chapter 4 7

Training Neural Networks 48

Available Knowledge 4 8

v

Training Examples

Training Methodologies

Backpropagation

Temperature, Learning Rate and Momentum Terms

Properties 01 the Backpropagation Algorithm

Local Learning

Training a Two Layer Subnetwor1<.

Multiple Output Nodes

Intralayer Communication and Learning

Hopfield Nets

Capacity 01 Hoplield Nets

Energy Functions

Optimisation

Training Hidden Nodes

Markov Model 01 The Hopfield Net

Markov Model 01 Unclamped State

Markov Model 01 the Clamped State

Training

Input Pattern Coding

Neural Networ1<. Reliability

Representational Reliability.

Summary

Chapter 5. Parallelisation 01 Nodes in the Hidden Layer

Outline 01 Chapter

Introduction

Structure in the Hidden Layer

Ghost Nodes

Training

vi

50

50

51

52

53

55

57

58

59

61

61

62

63

63

64

65

65

66

67

69

69

70

71

71

73

74

74

Segmentation of the Input Space

Utility of Ghosted Segmentation

75

76

Representing Transformations Via Ghosted Parallel Segments 77

Models of the Parity Problem using Ghost Nodes 7 8

Ghosted Nodes for Real Valued Inputs 79

Encapsulated Ghost Nodes 8 0

Polygonal Segmentation

Summary

Chapter 6. Making use of Knowledge in Neural Nets

81

82

Outline of Chapter 83

Knowledge Representations of Neural Networks 8 3

Knowledge Elements and Subsymbolic Reasoning 8 5

Formalising Subsymbolic Systems 86

Interpretation of Neural Networks 88

Sandwich Nodes 8 8

Formalised Subsymbolic Reasoning with Sandwich Nodes 90

Interacting Sandwich Nodes 92

Subsymbolic Reasoning in General Sandwich Systems 93

Explicit Node Encapsulation 94

Putting Knowledge into Neural Network Models 97

Increasing Input Dimension 98

Amalgamating Regional Models I 0 I

Neural Model Development 102

Reliability of Encapsulated Sandwich Schemes I 03

Summary 103

vii

Part Ill. Designing Neural Network Systems

Chapter 7. Netsize Results

Introduction

Existing Results

Properties of Feedforward Representations

Splitting and Projecting Nodes

Constructing Network Representations

Amalgamation of Representations

Amalgamation of Nodes

Amalgamation of Nodes in Different Barrages

Definitions

Representational Definitions

Topological Limits on Feedforward Nets

Number of Layers Required

Size of the Hidden layer

Size Limitations of General n·m-p Nets

The Loughborough Net

Node Parallelisation

Summary

Chapter 8. Design Methodology for Engineering Reliable Neural Systems

105

105

107

107

111

111

114

11 6

11 8

120

121

123

127

129

130

131

Outline of Chapter 1 32

Continuous Spaces 1 3 2

Polytope Classes 1 34

Automated Training 1 37

Properties of Isolated Data Points in Real Valued Spaces 1 38

General Classification 1 39

Padalines 1 39

viii

Learning Real Input Quantisation Values

Real Output Nodes

Real Inputs and Real Outputs

Network Size and Topology

Methodology for Designing Reliable Neural Systems

Summary

Chapter 9. Manufacturing Process Control Application

141

142

142

143

143

147

Introduction 148

Control Processes 1 50

Adhesive Dispensing 1 51

Process Characteristics 1 53

Process Faults 1 58

Neural Network Implementations of Control Processes 1 66

Training the Neural Network Controller 1 69

Intelligent Control Using Neural Networks 1 70

Real Output Values 172

Summary 174

Chapter 10. Conclusions and Future Work

Summary of Thesis 1 75

Future Work 1 76

Training Algorithms 1 76

Knowledge Representations 1 77

Design Tools 1 77

Applications 1 77

References 1 79

ix

Appendices

Appendix A 1. Start Point Experiment 1 9 0

Appendix A2. Experiment on Learning Rate 199

Appendix A3. Experiment on Temperature Value 203

Appendix A4. Retraining Neural Networks on New Training Data 207

Appendix B. Experiment on Learning Performance 21 1

Appendix C. Experiment on Ghost Learning Performance 226

Appendix D. Encapsulated Sandwich Neural Networks 238

Appendix E1. Amalgamation Schemes for Neural Networks 241

Appendix E2. Amalgamation Scheme for the Case n= 4 247

Appendix E3. Amalgamation Scheme for the Case n= k 252

Appendix F1. Quantisation Experiments 258

Appendix F2. Decoding Experiments 262

Appendix F3. Multilayer Quantisation Experiments 266

x

Appendix F4. Ouantising and Decoding Experiments 272

Appendix F5. Reduced Input Ouantisation Experiments 276

Appendix F6. Reduced Input Decoding Experiments 280

Appendix F7. Reduced Input Multilayer Ouantisation Experiments 284

Appendix F8. Reduced Input Ouantising and Decoding Experiments 291

Appendix G. Training a Neural Network Controller for Adhesive

Dispensing

xi

295

List of Figures

Fig 1.1

Fig 1.2

Fig 1.3

Fig 1.4

Fig 1.5

Fig 1.6

Fig 1.7

Fig 2.1

Fig 3.1

Fig 3.2

Fig 3.3

Fig 3.4

a. Modus ponens reasoning

b. Modus toll ens reasoning

a. Single node with inputs and linearly summed output

b. Single node with weighted inputs and thresholded output

A recurrent network structure

Squashing functions. a. Hard logical Iimiter

b. Unear threshold logic

c. Sigmoid function

Segmentation of the input space to solve the "exclusive or"

problem

A feedforward network structure

A multilayered feedforward network with annotated nodes

and weights

Simplified design methodology

The connection scheme between layer k·1 and a node on layer

k in a feedforward network

a. Threshold function threshold

b. Sigmoid function sigmoid

c. Sigmoid function with a low temperature

Structure of a general neural network

Single node representations of 8001ean; a. AND

b.OR

c.NOT

xi i

4

4

9

10

1 1

14

14

14

15

15

16

26

33

33

33

33

34

34

34

34

Fig 3.5 Single node representations of a. k input AND

b. k input OR transformations

Fig 3.6

Fig 3.7

Fig 3.8

Fig 3.9

Fig 3.10

Fig 4.1

Fig 4.2

Fig 4.3

Fig 4.4

Fig 4.5

Fig 4.6

a. Object representation for XOR

b. Object definition of not(or) showing the node line that

models the problem

A node with three inputs

A neural network that can be interpreted as a rule system

Plot of the training points shown in table 3.2

Hopfield network used to model the problem in table 3.2

A single node with several inputs and one bias weight

a. Constructive training

b. Destructive training 1) oscillation

c. Destructive training 2) divergence

The differential of the sigmoid function

Two layer network

Multiple output network

a. Expanding influence in the hidden layer

b. Contracting influence in the hidden layer

Constructive learning in hidden layer;

c. Before application of training action

d. After application of training action

Fig 5.1 a. Parallel nodes in two input space

b. Sandwich nodes in two input space

Fig 5.2 Segmentation of the input space

Fig 5.3 Ghosted neural network model of the parity problem

Fig 5.4 Weight matrices for the parity problem in;

xiii

35

35

37

37

38

39

41

41

53

54

54

55

56

57

58

60

60

60

60

73

73

75

78

a. two dimensions 78

b. three dimensions 78

c. four dimensions 78

Fig 5.5 Matrix of weights for the parity problem with a. Odd

number of input nodes 79

b. Even number of input nodes 79

Fig 5.6 Segmentation of the real line 79

Fig 5.7 Segmentation of the real plane, forming two polygonal

regions 80

Fig 5.8 Encapsulated sandwich node network structure 80

Fig 5.9 Segmentation of a two dimensional space into triangular

regions 81

Fig 5.10 Network structure employing encapsulated triangular

units 82

Fig 6.1 Interaction between models of neural networks and actual

neural network systems 84

Fig 6.2 . a. A sandwich node in three space 89

b. An open sandwich node in three space 89

Fig 6.3 a. A decision region of an open sandwich node 91

b. Unear separation by an open sandwich node 91

c. Decision region of a closed sandwich node 91

d. Segmentation by a closed sandwich node 91

Fig 6.4 Coherent segmentation with a set of open sandwich nodes 92

Fig 6.5 Segmentation of data using closed sandwiches 93

Fig 6.6 a. Segmentation of a set of data 93

b. Query of input A 93

c. Explanation region of query A 93

xiv

Fig 6.7 Explicit encapsulated sandwich nodes a. Two input case 94

b. Multiple input case 94

Fig 6.8 InpuV output relationship of node d, fig 6.9 95

Fig 6.9 Explicit encapsulation of a sandwich node 95

Fig 6.10 Sandwich segmentation of a region of the input space,

a. Shaded region of interest 95

b. Output from a standard node 95

c. Output from the encapsulated sandwich node, making

use of the activation function 95

Fig 6.11 Neural network structure that employs triangular

encapsulation and biplanar segmentation 96

Fig 6.12 Segmentation of the input space into regions of interest,

a. Shaded regions of interest 96

b. Output from an output node defined by three hidden nodes

forming a triangular region 96

. c. Output from an output node defined by two nodes 96

d. Encapsulated sandwich activity of triangular node 97

e. Activity of encapsulated system of a triangular node and

three biplanar segments 97

f. A general system of activity 97

Fig 6.13 Neural model of a four input data set 98

Fig 6.14 a. Simple amalgamation of models leading to invalid outputs 99

b. Encapsulated sandwich models amalgamated to produce valid

output 99

Fig 6.15 Neural model of half of the five input training set based on the

four input model using a. Encapsulated sandwich nodes in the

final layer 100

b. Encapsulated sandwich nodes in the hidden layer 100

xv

Fig 6.16 Neural model of a subregion of the training set defined by the

nodes Y and Z, based on the model of the subregion, using

Fig 7.1

Fig 7.2

a. encapsulated sandwich nodes in the final layer

b. encapsulated sandwich nodes in the hidden layer

Three lines are required to enclose an area A, however an

extra area can be created by adding one more line giving

area B

a. A three input node

Splitting a node into its component parts by fixing one of the inputs at,

b. +1

d. -1

102

102

106

108

108

108

c. & e. Lower dimensional network that can emulate the original

network

Fig 7.3 Three general forms of nodes viewed with respect to a given

input axis. a. Bisecting

b. Reducing

c. Splitting

Fig 7.4 Views of the three types of nodes after splitting along an axis,

a.Bisecting

b. Reducing

c. Splitting

Fig 7.S a. A general m input node

The equivalence of two splits to .the component nodes, the fixed input node

acting as a contribution to the bias of the projected node,

Fig 7.6

b. Setting the node value at +1

c. Setting the node values at -1

Representation of the two n-l input subsets of the full

xvi

108

108

108

108

109

109

109

11 0

11 0

110

Fig 7.7

Fig 7.8

Fig 7.9

Fig 7.10

Fig 7.11

Fig 7.12

Fig 7.13

Fig 7.14

Fig 7.15

Fig 7.16

Fig 7.17

Fig 7.18

Fig 7.19

Fig 8.1

Fig 8.2

transformation, a. The split input node= +1 1 1 1

b. The split input node= -1 111

Representation of the total n input transformation 112

Nodes that are equivalent if the weights vectors are scalar

multiples 115

Two nodes in different barrages 117

The two n-l input nodes that contribute in different splits

about the nth input node, with their amalgamated node defined

over n input lines, a. node N 117

b. node N' 117

c. amalgamated node 11 7

Structure of a general neural network with a single output 121

Neural net representation of conjunctive normal form of a

transformation 123

Neural net with a single hidden layer 123

a. NOT(exclusive OR) separated with just two lines 125

b. Parity in three dimensions 125

Multiple output neural network structure 127

Three layer multiple output neural network structure in

which the hidden layer consists of p distinct sets of n nodes 128

The multiple output neural network structure transformed to

an equivalent single output neural network structure 128

The Loughborough neural network structure 129

Single output neural network structure making use of singly

outpulling m-type nodes 130

Neural network model of the transformation Z= 5X + Y + 10 1 33

Three half spaces intersect to form six 1-polytopes, twelve

xvii

2-polytopes and six 3-polytopes 134

Fig 803 Five regions of the two dimensional input space require four

parallel nodes to separate them 135

Fig 804 ao Maximal separation of seven points by three nodes 135

bo Non maximal separation of seven points requiring four

rodes 135

Fig 805 ao Four regions with an XOR classifICation transformation 136

bo Its neural representation 136

Fig 806 A general neural network model of a real valued classification

transformation 136

Fig 807 Separation of a real data set into XOR regions by two

segmentation nodes 137

Fig 808 ao Separation of five points by four segmentation nodes 138

bo It is impossible to separate the points with fewer nodes 138

Co Two rectilinear points can be separated from the rest of the

input space with a pair of segmentation nodes 138

do Three rectilinear points can not be separated if the points

are from different classes 138

Fig 809 Separation of N points in general position on a circle by

ceiling(N/2) segmentation nodes 139

Fig 8010 Separation of five rectilinear points using two polynomial

segmentation nodes 140

Fig 8011 ao Polynomial separation of the training points requiring a

single segmentation node 141

bo Unear separation of the data points requiring many

segmentation nodes 141

Fig 8012 Real input real output neural network structure 145

xviii

Fig 9.1 a. Schematic representation of a process transformation 150

b. Schematic representation of a feedforward control process 150

c. Schematic representation of a feedback control system 151

Fig 9.2 Structure of the controlled adhesive dispensing system 152

Fig 9.3 The pressure pulse variation within the syringe 154

Fig 9.4 Feedback control loop of the adhesive dispensing system 156

Fig 9.5 a. A good dispense 160

b. A bad dispense 160

c. Plan area and circumscribing box of a good dispense 160

d. Plan area and circumscribing box of a bad dispense 160

Fig 9.6 The box area ratio threshold 160

Fig 9.7 a. Thresholding of a Single system variable 167

b. Neural network representation of the box area ratio

threshold unit 167

Fig 9.8 a. Neural network representation of the operator that keeps a

single variable within given limits 167

b. Segmentation of a single system variable into three regions 168

Fig 9.9 Trend analysis using a neural network unit 168

Fig 9.10 Neural model of an adhesive dispensing controller 170

Fig 9.11 Simplified two variable example of intelligent control 171

Fig 9.12 Neural model of intelligent controller shown in fig 9.11 171

Fig 9.13 The bimodal warning operator 172

Fig 9.14 Neural implementation of the bimodal warning operator 172

Fig 9.15 Simplified controller that provides real valued output

signals 173

Fig 9.16 Network architecture for a controller that gives a variable

pressure change 174

xix

List of Tables

Table 1.1 Truth table for the implication operator

Table 1.2 Properties of perceptrons

Table 3.1 Table of values for the transformation XOR shown in

fig 3.6a

Table 3.2 Matrix of node activity over the training set

Table 3.3 The exclusive or transformation from two inputs to one

output

Table 3.4 Training set for the exclusive or problem with two inputs

and one output

Table 3.5 Metalevel definition of Exclusive or with two inputs and

one output

Table 3.6 a. Training set where any node can act as the single output

node

b. Training set where node C is the only possible consistent

output

Table 3.7 A Training node that explicitly allows multiple output nodes

Table 4.1 a. & b. Unear transformations

c. Non linear transformation

Table 6.1 a. Output values of node A. the activation node used for the

4

14

37

49

43

43

44

45

45

46

68

68

encapsulated sandwich nodes with one activation input 99

b. Output values of node B. the activated encapsulated

sandwich nodes

Table 6.2 Output values of node C. the activation node used for the

xx

99

encapsulated sandwich nodes with two activation inputs 1 0 1

Table 7.1 Enumeration of the possible Boolean transformations with a

single input

Table 7.2 Enumeration of the possible Boolean transformations with

two inputs.

Table 9.1 Manufacturing processes that have been controlled by

intelligent techniques

xxi

124

125

149

List of Graphs

Graph 9.1 a. Open loop performance of the adhesive dispensing system 155

b. The pressure pulse variation that was applied to the

system 155

Graph 9.2 a. Closed loop performance of the adhesive dispensing system 157

b. The pressure pulse variation that was applied to the

system 157

Graph 9.3 a. Good box area ratio performance for different dispense

experiments 161

b. Bad box area ratio performance for different dispense

experiment 161

Graph 9.4 Open loop performance of a dispense experiment in which the

properties of the bubbles can be seen 162

Graph 9.5 a. Rise time. fall time and pulse width performance of a

dispense experiment that had a sticky solenoid valve problem 164

b. Rise time. fall time and pulse width performance of a

normal dispense experiment 164

Graph 9.6 The pulse height variation when extra load was applied to the

air line 165

xxii

List of Photographs

Photograph 9.1 Dispensed blobs during an experiment that was

under control 158

Photograph 9.2 Process faults due to blobs that have fallen over 159

Photograph 9.3 Dispensed blobs which show the appearanoe of two

poor dispenses following bubbles 163

Photograph 9.4 Dispensed blobs when the solenoid valve was

sticking 165

Photograph 9.5 Dispensed blobs when extra load was applied to the

air line 166

xxiii

Part I. Introductory Ideas

Chapter 1. Introduction and Background

Human history has been a record of the design and appliance of tools, from the bone

clubs and flint blades of prehistoric man to the computerised automated systems of modern

man (Bronowski '73, Birdsall & Cipolla '79). The tools that were available extended the

power and experience of man and in turn motivated the development of ever more

sophisticated technology (Forbes & Dijksterius '63).

The tools that have stimulated the development of the mind have led to the peaks of

human achievement, unmanned space exploration being just one example (Clark '85, Lilley

'65). As the tasks that man attempted became greater and more ambitious, calculating

systems and machines were developed. Symbolic mathematics provided a framework for

abstract reasoning while the use of predicate logic formalised linguistic reasoning and

argument.

The development of the electronic computer revolutionised calculating and reasoning

systems. Automating logical reasoning allowed evermore complex systems to be developed,

leading to the design and construction of automated machines.

Truly automated processes would require no human operator or controller. This may

seem attractive, especially for very mundane activities. However any process, automated or

otherwise must be sufficiently understood to ensure the safety and reliability of the system.

A human controller or agent has knowledge about the behaviour of the automated process and

can therefore predict the behaviour of the system under various conditions. This human agent

can then ensure the reliability of the system. This is especially desirable in the case of safety

critical applications (Warwick & Tham '91).

Outline of chapter

This chapter provides a historical background and systematic development of the basic

ideas of the field of neural network systems. The place of formal logic . in automated systems

1

is discussed. Historically it has been the motivating force behind the pursuit of automated

systems and provides a foundation on which more complex systems can be built.

Neural networks are introduced as a possible solution to the performance limitations

of logical systems. The general monotonic and incremental nature of logical systems

effectively places a bound on performance in real time. As the knowledge base becomes ever

larger, the response time of the system will increase. Neural network techniques offer a

solution to this problem via the inherent parallel nature 01 neural network execution.

However large the network becomes, the response time of a network implemented in

hardware is only dependent on the depth (the number of layers) of the feedforward network

and not the number of nodes in the network. Difficulties exist with neural network

representation and behaviour, which provides the motivation for this thesis. The motivating

issues of this thesis are discussed in chapter two.

The basic properties of neural network systems are introduced in this chapter,

highlighting their representational limitations. A leedforward network does not have the

representational power of a first order logical system, while a recurrent network has the

same representational capability as the first order logical system. These questions are

relevant for the design considerations of neural systems.

The various different network architectures, recurrent and feedforward networks and

the training techniques they employ are introduced. They are discussed In further depth in

chapter three and four.

Overview of reasoning with logic

Reasoning systems have existed for many centuries, since the time of the Greeks with

Aristotelian reasoning to the work of 8001e(,47 & '58), Carroll('S8 & '77). Keynes('06)

and Russell('03 & '19) in more recent history. These symbolic systems provided an

excellent framework for reasoning through complex arguments, however most failed when

confronted with uncertainty.

Everyday linguistic reasoning was seen not to obey many of the properties of these

2

formal systems, namely that of consistency and the conditions for ambiguity. Similarly

problem solving and spatial reasoning could not be modelled by these systems, limiting their

overall usefulness.

The work of Keynes(,21) and Venn('94) on probability provided a foundation for

working in systems where certainty was not guaranteed and unknown elements existed.

Automating these problems proved difficult and significant extensions and variations were

required to overcome them.

Many of the issues addressed in this thesis have existed for many years. Early

civilisations were interested in thought processes and the mechanisms of reasoning.

Traditional or Aristotelian logic was developed in the time of the Greeks (Soyer & Merzbach

'89) and is thought to have been used in the training of the lawyers and magistrates and by

extension the politicians of the city states.

Significant traditions of logic in Arab, Indian and Chinese civilisations also existed

(Mikami '74). These traditions spawned algebraic logic which separated logic from its use

and misuse in language and argument. 800Ie('47) with "The mathematical analysis of logic·

and De Morgan('47) with "Formal logic" provided a wider structure In which logic could be

studied.

The formal logic as studied, provided a strong mathematical foundation for symbolic

reasoning, which was amenable to automation. One of the limitations that resulted was Its

abstraction from everyday reasoning and the inherent uncertainties that result. Only

dichotic, true- false systems were considered, partly due to ijs Simplicity of representation

and execution.

Logical systems

Logic is the oldest formal system for reasoning, which allows natural language like

statements to be manipulated so proving whether they are consistent or not. Proofs of

queries could be given by showing that the negation of the query and the statements in the

database were inconSistent (reductio ad absurdum).

3

These logical systems were so successful in providing reasoning systems, that it

formed the basis for many computerised reasoning machines. One of the most successful

using only statements in clausal form is Prolog (Clocksin et al'87 and Shapiro et al'86)

which allows queries to be made on a dalabase. A depth first search strategy is used and a

relevance condition is required on the search, so allowing the system to behave correctly

even if an inconsistency exists in the database of clauses.

First order propositional logic is a system in which formulae exist employing atoms

which take the values either true or false, with the logical connectives and, or, not and

implication, as well as more intricate operators made from a combination of these. The

calculus of the logical operations provide the ability to give absolute truth values to the

formulae.

Reasoning processes can occur due to the implication symbol, defined in table 1.1.

B

A~ B T F

T T F
A

F T T

Table 1.1 Truth table for the implication operator

With modus ponens (fig 1.1 a)we have the reasoning process reaching the conclusions

shown. With modus tollens (fig 1.1 b) we have a variation.

a

b a

then b

b 4- a

not(b)

then not(a)

Fig 1.1 a. Modus ponens reasoning, b. Modus tollens reasoning

4

The logical statements form a knowledge base that may be accessed. To find out if a

given statement. the query. is consistent with the set of logical statements. the knowledge

base. it is necessary to construct a proof of the statement.

This can be a particularly complex procedure. considering the variety of consistent

transformations that can be made on the knowledge base. The procedure of "reductio ad

absurdum" overcomes these problems. This procedure consists of adding the negation of the

query to the knowledge base and then search for a contradiction. If a contradiction arises.

that is the existence of both a true and a false instantiation of the same formula. then it can

be assumed that it is due to the addition of the query formula. That is the negation of the

query gives rise to the inconsistency and so the query must be consistent with the knowledge

base. The query is proved.

Problems that could arise include the possibility that the set of logical statements are

already inconsistent. that is contains a contradiction. The previous proof procedure would

prove anything true with this knowledge base. even (a and not(a)). To overcome this

difficulty. several methods can be employed. Maintaining the integrity of the knowledge base

is one. but for large real world systems this may be particularly difficult. The second

method is to maintain a relevancy criterion to the proof procedure. The query depends on

several atoms and if the contradiction in the knowledge base is discovered to depend on a

completely disjoint set of atoms then the inconsistency can be seen to be irrelevant to the

query. This second method means that only relevant formulae are used in the proof

procedure. reducing its complexity greatly.

Clausal form

However much the relevancy criterion reduces the complexity of proof procedures in

first order logical systems. the variety of manipulations and transformations that can be

applied to the formulae ensure that the proof procedure is in general difficult. Methods to

overcome this problem centre around using a reduced subset of first order logic. such that

representative power is still maintained while the proof procedures are simplified.

5

Horn clauses are such a reduced set of logic. Their structure is that of an implication.

the head of the clause being implied by the antecedents. Kowalski('SO) provides a

comprehensive study of such syslems. The proof procedure reduces to that of graph search

and with suitable search algorithms ensures that the proofs can be completed.

Kowalski demonstrates how the clausal structure can be exploited in a logical problem

solving environment. The approach is declarative. puuing the solution of problems in logical

bounds. leaving the search algorithms to provide the proofs to the solutions.

Benefits of logical systems

The greatest advantage of the propositional logic systems are the incremental nature

of the knowledge structure. Large problems can be structured using subcomponents which

are modelled separately and then recombined. The knowledge is added incrementally and

monotonically. Even with systems of nonmonotonic reasoning great restructuring of the

knowledge base is not necessary. As time goes by the knowledge based system improves

incrementally and equally increases incrementally.

As the size of the knowledge base increases and the reasoning processes become more

complex (as in uncertain reasoning). this incremental nature of the knowledge base

approach becomes a liability. The size and computing power required to model the ever

increasing body of knowledge has meant that something radical must be done. Increasing the

performance of single processors and memory chips is not the solution since they have

almost reached their physical limits (Hwang & Briggs 'S5). As the cost of processors

decrease the competitive advantage will be to those automated systems that efficiently employ

many processing units. This means that approaches that make use of multiple cooperating

processors will be of greater advantage.

Making use of only a few processors would require complex processors with

sophisticated communication to solve significant problems (as in the distributed computing

approach with its message passing environment (Sloman & Kramer 'S7)). Making use of

many simple processors on the other hand will admit simple connection and communication.

6

This approach is pursued by neural network systems.

The processing elements in neural systems are all identical and extremely simple in

operation. The connection pattern is dense, each element being connected to many others. The

message passing is simple consisting of a scalar function of activity. Although each

processing unit is simple the behaviour of the total system can be quite complex. With the

existence of automated training algorithms, system implementation can successfully be

realised.

Connectionist models and neural networks

The main motivation for studying distributed representations of knowledge is the

experimental field of the neurosciences (Amari '77 and Amari et al '77). Work in the

neurosciences showed that the brain was constructed via the interconnection of neurons

(Kolb et al '80). Neurons being on the face of it, particularly simple units. Identifying the

functions of individual neurons proved impossible, the specific function being distributed

over a pattern of activity of many neurons.

The human mind can perform feats that modern computers with sophisticated

programming can not as yet match. The hardware available to the programmer however

seems far superior, being about 106 times as fast at performing a single computation than

the human mind (Kolb et al '80). The human mind makes up for this speed disadvantage via a

highly parallel mechanism of execution. Evidence suggests this parallelism is implemented

in a distributed representation, namely that the various concepts are stored as a pattern of

activity over a distributed region of the brain.

Anned with these motivating elements, a working model, that is the brain, and a

means of constructing new models, on sophisticated digital computers, researchers have

invested considerable time and effort in achieving some notable results. These will be

outlined further, starting from the original work on perceptrons through simple neural nets

to sophisticated representational schemes making use of Bolzmann machines.

7

Success in knowledge representations via production rules and logical systems has so

far outreached that of conneclionist models. However the neural techniques are improving,

ultimately trying to reach the stage where significant problems can be solved in the 100

time step limit, that achieved by the brain, as proposed by Feldmanl'82).

Distributed representation

A local representation is one in which discrete elements are used to represent unique

discrete functions. Within the connectionist framework this generally refers to the custom

built neural networks where each node is considered to represent some particular function.

This is seen in the Willshaw's ('81) graphemel word set semantic sememe feed forward net

and McClelland's ('85) word perception model.

Distributed representations are very different. The network topology of the two nets,

one with local the other with distributed representation, may look very similar, however

they will essentially be distinct. A distributed representation, represents functions as a

pattern of activity over a variety of units which themselves may be involved in representing

distinct functions under a different pattern of activity (Feldman et al '82).

The difficulty of the distributed representation is in comprehending the meaning and

behaviour of any particular net. Static observation of the nodes and weights would yield little

information since the concepts are at a higher level, and since they interact in a distributed

manner it would be almost impossible to decipher any meaningful structures. Observing the

net at work will yield some of the meaning hidden in the units, but may still defy analysis of

the complex interacting concepts driving the net.

There are many advantages in a distributed representation, robustness, general

learning mechanisms and graceful degradation. However the problem of understanding the

distributed representation must be resolved. This thesis formalises simple distributed

representations so providing a mechanism for interpreting their function and behaviour.

8

Structure of neural models

The principle behind connectionisl or neural models is that given particular inpuls

the model, Ihe neural net, propagates a pattern of activity across its structure producing an

output pattern. There is no attempt at explicit manipulation 01 the inpul as in conventional

computational techniques.

ANode.

x
2

Xi

Xo
x n

Inputs Output Actvation

Fig 1.2 a. Single node with inputs and linearly summed output

This is facilitated by the netlike structure of connectionist models, constructed from

simple node units and connection paths. The node units can be of various types, but the most

studied have been of linear summation type. Le the output activation is the sum of the input

values. Xc! = l:"I=1 XI' And variations have included linear summalion threshold units or

linear threshold squashing units, respectively Xc! = l:"I=1 XI' B (B is the threshold bias

for the node) and Xc! = '0 (l:"I=1 XI) (fo is the squashing function). See fig 1.2a for a

schematic representation ot a node unit.

An added sophistication is the weights that are given to the connections between the

various nodes. These provide an easy mechanism tor changing the structure and behaviour ot

the net. Namely altering these weights, reducing the weight to zero being equivalent to

removing a connection. Therefore the final input trom one node to another node is equal to the

output trom the first times the weight governing that connection. See fig 1.2b for a

9

schematic representation of a weighted node unit.

x
2

X 0
Xi

X n

Fig 1.2 b. Single node with weighted inputs and thresholded output

Variable xi is the output from the nodes, Yi is the input to the node, and wi is the

weight governing the connection.

Input to node on line i is YI = wl * xI.

So for a general linear summation squashing unit Xo = foC ~nl=1 WI* XI)·

Recurrent networks

Recurrent networks are fully interconnected neural networks. Fig 1.3 shows a simple

recurrent network structure. There are no explicit input and outputs nodes. Each node

associates a weight value with those 10 which it is connected. Hopfield formalised the

associative net by considering the nodes as bipolar threshold units in which the outputs to

each unit i, is fed back to each unit j, with the associated weight Wj j CHopfield '84).

10

Fig 1.3 A recurrent network structure

To ensure the convergence of the net Hopfietd used an iterative update procedure,

with the added constraint that Wij = Wj i' The capacity of the network must not be exceeded for

this convergence criterion to be valid. The format definition of the net was carried out as

follows;

The weights were assigned as,

Wij = O:Ny=o xYi .xYj i .. i.

o i=j.}

wi j is the weight from node i to j, xYi is the ith element of the training set y.

Therefore the behaviour of the net could be likened to minimising the energy function,

E= -~<j xY i .xYj' wi j + ~ Xj '''j' This follows since the derivative of this function represents

the change in output at each stage of the update procedure that is emptoyed in the convergence

of the Hopfield net.

Essentially the structure of a Hopfield net is very simple, but its representational

and behavioural power is fairly great. Its main function is that of an associative memory

device or that of an optimiser. Its behaviour as an associative memory device is obvious,

since it is a mathematical model of such devices (hard wired or theoretical), as discussed

above. Given partial or noise affected input, the Hopfield net can extract the best example

from the set of representative patterns, that it most closely matches.

The power of such devices is not limitless. Hopfield places a bound on the capacity of

0.15" the number of nodes as the maximum number of representative classes that can be

stored, without degrading the performance to an unacceptable level.

11

Hopfield nets can also be applied to optimisation problems. Tank & Hopfield(,86 &

'86) demonstrate how a Hopfield net can be used in solving an optimisation problem in

shelving rates and also a net solution to the travelling salesman problem. Both these

problems require astute coding, namely the specification of inhibitory connections to limit

impossible solutions. In the application of these nets to general problem solving, the question

of convergence rates and efficiency in execution arise. Providing varialions in the update

schemes, would provide the possibility of improvement.

Another learning technique which stems from the biological sciences, is Hebbian

learning. This involves rewarding connections to nodes that contribute most in activity. This

means that nodes which contribute the greatest to the representative scheme receive the

greater biases. Jacyna & Malaret(,89) study the performance of a Hopfield net. using a

Hebbian learning rule.

Associative memory devices represent a class of systems which require an input to be

given which will on convergence remain stable. That is the input units are also the output

units and these values (input and output), in the stable case, will be equal. Therefore, in

such systems no complications arise due to considerations of non linear transformations

since in one iterative cycle the transformation maintains the input.

In coding general functional transformations, the Hopfield net is of little use. Here we

are considering the problem of receiving a relatively clean input vector and require an

output vector that is a general Boolean transformation of the input. These transformations

being non linear can not be coded in a network without hidden unns. This can be seen when we

examine the stable state criterion, see chapter four.

Bolzmann machines can be viewed as an extension to the Hopfield net scheme. The

update is stochastic and there are hidden units which allow for general functional

representation. The units in a Bolzmann machine take output values of 1 or O. That is, they

are active or inactive. The units take these values in proportion to its energy contribution,

which is the sigmoid of the sum of the input values to that node.

That is, the probability that a unit is active is given by the formula;

prob_active(unit x) = 1/(1 + exp(.~Ex/T),

12

where T is the temperature function, while 6Ex is the energy contribution of the node x. This

value is the sum of the inputs.

6Ex = Li wix·Oi '

wi x is the weight from the ith unit to unit x while 0i is the state of the ith unit.

Given repeated application of the update rules the network reaches an equilibrium.

This is termed the thermodynamic equilibrium. At high temperatures the network converges

to equilibrium quickly, while at low temperatures this is not the case. High temperatures

allow many high energy states, while low temperatures allow lower energy states to be more

probable. Simulated annealing has been studied as a possible scheme to increase convergence

while promoting low energy states.

The mathematics of the training scheme for Bolzmann machines proceeds in many

ways similar to that of a gradient descent scheme. The weights are adjusted via the formula,

6Wij = 1.1-(< Dig >+ - < Dig >-) ,

where < Dig > represents the probability that over all cases that unit i and j are both active,

while the superscripts + and - represent the cases when the network has the output units

clamped to their required value and are unclamped, respectively. Varying the learning rate

ensures the global properties of the learning scheme are maintained as required. Small JL

ensures that the scheme exhibits gradient descent.

Kirkpatrick et al('83) discuss the behaviour of statistical computational machines.

They show that the implementation of Bolzmann machines and similar computational schemes

are possible in hardware. They discuss an optimisation problem, the travelling salesman

problem, to demonstrate some of the properties of the system.

Perceptrons

Perceptrons, particularly single layered threshold units have been extensively

studied, see Minsky & Papert ('69).Their applications and particularly their limitations

were well documented.

13

Perceptrons are feed forward nets with in general linear threshold units with a hard

limiting squashing function (fig l.4a). Single layer perceptrons have been shown to be able

to classify objects into two regions separated by a hyperplane. Rosenblatt ('62) developed

the perceptron convergence procedure which demonstrated this.

Some Squashing Functions

Hard logical limiter Linear threshold logic Sigmoid function

c a b

Fig 1.4 Squashing functions

. Multilayer perceptrons lacked a learning procedure (Block '70) such as the one

developed for single layer perceptrons and so were not extensively studied until recently.

The back propagation algorithm provided a general learning scheme for the feed forward

multilayer perceptrons using a sigmoid squashing function as seen in fig 1.4c (this is

further discussed in chapter four). Although convergence for this and other schemes could

not be guaranteed, many interesting properties could be observed.

Structure Type of decision region Most general shape

Single layer Half plane bounded by hyper plane

Two layer Convex regions

Three layer Arbitrary

Table.).2 Properties of perceptrons

The multi layer perceptrons use non linear nodes to gain full advantage of their

structure, since a linear multilayer net can not do more than a single layer perceptron,

14

(shown by the equivalence of a linear multi layer perceptron to a particular single layered

one). Using a hard limiting squashing function (fig 1.4a), which is non linear, a two layer

perceptron can solve the exclusive or problem (fig 1.5) and with multilayered perceptrons

with suitable numbers of units, any decision region may be modelled (Table 1.2).

The exclusive OR problem

Fig 1.5 Segmentation of the input space to solve the "exclusive or" problem

Using the sigmoid squashing function can produce smoothly bound decision regions and

so even the most general situations can be modelled using a reasonable number of units.

Feedforward networks

Feedforward neural networks have been developed from perceptron based approaches

to multilayered systems.

Intermediate
2 2

2 2

layers

n k p

Fig 1.6 A feedforward network structure

15

A feed forward net refers to a net where the output from a unit at a particular level

(one layer) goes to the input of nodes only at a subsequent level. That is the output can not go

to any node in its own layer or a lower one. Therefore there are no loops or cyclic paths in

the activation propagation. Fig 1.6 shows a feedforward network structure.

Given a feed forward network the back propagation algorithm may be used to produce

a network after convergence with various interesting properties. Hinton ('86) demonstrated

the power of this convergence scheme to discover underlying semantic features in a

knowledge domain. Back propagation has also been used in nets for text to speech mapping

(Sejnowski & Rosenberg '87) and phoneme recognition models. The power of feedforward

net comes from their ability to represent general transformations, and the existence of

training algorithms to train the net with a representative set of the transformation.

Feedforward neural networks are trained via the back propagation training scheme. A

network is set up with weights that are small random numbers. The training set is applied to

the net and the output values noted. The energy function for this procedure is the difference,

squared and summed, between the required outputs and the actual outputs computed by the

network. (Refer to the annotations of fig 1.7).

E= 0.5' ls, i(aOs, i-cOs, i) 2 , where aOs, i is the required output over output i given

the training sample s.

Minimising this energy function would provide the best solution to the problem.

1
1

2
2

k p

mOk mWki pOi pWij cOj

Fig 1.7 A multilayered feedforward network with annotated nodes and weights

16

The calculated outputs being a function of the weights, the problem of minimising the

energy becomes that of varying the weights to solve the problem. Seeing the contribution of a

particular weight change to the total energy provides a scheme of altering the weights, via

gradient descent.

b wij = -11 aE/awij.

It can be seen that this scheme for a small learning parameter IL will execute

iterative hill climb. That is the scheme will find the nearest local optimum. Problems will

obviously arise if this is not the global optimum and so several techniques exist to ensure

that the search does not get stranded in unfavourable optima, while still retaining reasonably

rapid convergence. The details of the back propagation algorithm are discussed in chapter

four.

Vogl et al('88) discuss methods for ensuring rapid convergence of neural net.

Parallel presentation of the training set is suggested as one method for ensuring true hill

climbing properties of the training algorithm. Another method presented is that of varying

the convergence rates depending on the performance of the algorithm. This involves

manipulating the learning parameter in the particular manner required.

The performance of the algorithm is taken into account by increasing the parameter if

the last update decreased the error function. A momentum term is also applied, (namely a

factor proportional to the last update term, to ensure more rapid movement in the direction

of convergence). If a step produces an increase in the error then the learning factor Is

decreased and the momentum term removed, (the last update did not provide an

improvement).

bWij(m+l)=11 ;,aE/a Wij+ B t.wij(m),

where 11 is the learning rate, B the momentum term and m the iterative index.

Neural representations

From an external viewpoint the functional characteristics of neural network systems

consist of the inputs that are applied to the system and the outputs that are received.

17

However, no knowledge of the internal structure and behaviour would exist. As the extensive

literature in the field of expert systems and decision support systems shows, actual

solutions to problems can often be of little use if it is not supported by a structured reasoned

argument. The human, expert or otherwise needs evidence to support the conclusion (Turban

'88).

It is this property that distributed systems lack. The nature of the hidden units in the

systems is to adopt the required behaviour to ensure successful operation. Many localised

network representations have been hand crafted, that is specially designed and developed,

where the hidden nodes could be given clear functional interpretations. (Chapter three

discusses some hand crafted neural networkS). Given a generalised distributed scheme

however the analYSis has been limited. This thesis analyses the internal structure of neural

networks and provides a suitable interpretive scheme.

Restricting ourselves to feed forward neural nets, several insights Into the behaviour

of hidden and output units can be gained. Viewing the global behaviour of the inpuV output

units we see the representation as Boolean transformations, (the analysis for noise affected,

hard threshold devices is similar for perfectly trained nets). These transformations have a

symbolic representation and logical rules can be constructed to represent them. These logical

rules can be transformed to a neural representation and vice versa. The extraction of the

rules from the net was introduced by Hinde('90) and this is discussed in chapter three.

Representational power of neural networks

Due to the distributed nature of many connectionist representations the question of

representative power is ill defined.- Hopfield gives the factor 0.15 • number of nodes, as the

number of different classes that the Hopfield net can model, but this Is a rather arbitrary

figure. Upmann(,87) discusses the capacity of feed forward nets, suggesting the three layer

model as the most general. He demonstrates further a timit on the number of intermediate

nodes, based on an analysis of connected components in the input space. A figure of three

times the input nodes, based on this argument and a convexity requirement is presented

18

(each convex connected space requires at least three nodes).

Mirchandani and Cao(,89) studied the role of hidden nodes in modelling decision

regions and so presented some results relating the number of hidden nodes, dimensionallity

of the problem and the number of decision regions required. This work is discussed with the

new results on network size and topology in chapter seven, in which it is seen that for nets

with a single output node, the hidden layer needs to be only as large as the input layer. This

follows from the inherent planar nature of the points in multidimensional hypercubes. The

results generalise showing how multioutput nets can still have limited hidden layers.

Tani et al('89) provide a different approach to minimising the size of a net used to

model a problem. The method they employ is to include in the energy function a term that is

related to the size and complexity of the net. This ensures minimising Ihe energy function

produces a minimised net representation. That is, after full convergence, the net discovered

will represent the problem perfectly and have a minimal form. More problems of ensuring

convergence exist here, but if these are overcome the representations formed would be

topologically optimal.

Another application of the new energy function is in providing simplified rule

representations of nets. Tani et al (,89), show how altering the energy function to allow

over simplification of the net results in the discovery of simplified rules that approximately

model the problem. This work relates to that of Hinde(,90), showing how the hidden nodes

may be associated with rules.

Connectionist symbol processing

The feedforward neural systems discussed so far have a representational power which

is far below that of predicate systems. Recurrent networks offer the representational power

of first order logical systems. The need to develop neural systems with the full power of

predicate systems that can manipulate symbols has led to several different advances.

A limited symbolic representation exists in the coding of input! output vectors as

presented by Dolan & Dyer(,87) but this is not true symbolic manipulation in the general

19

sense. Hinton('90) and Pollack('90) present several ways in which recursive structures,

trees, lists and hierarchies can be represented in neural systems. These techniques aim to

extend th~ representational power 01 leedlorward systems enabling them to execute general

computation (Feldman et al '88 and Gallant '88).

Advantages of neural network systems

A neural network system offers several advantages over standard Von Neumann

computational schemes. The first advantage is that 01 performance. A neural network system

can be implemented in hardware offering great performance improvements over a

conventional approach. The individual nodes in the network will be implemented as separate

processors on a single piece 01 silicon. The activity of the nodes will pass from the inputs to

the outputs in parallel producing extremely good performance.

The second benelit of a neural system is the existence of the training algorithms for

implementing the networks. Any reasonably complex system requires a significant effort to

design and build. Automatic training systems must exist to ensure suitable networks that

produce the correct behaviour are constructed.

The types of training algorithm that exist vary considerably. The prescriptive

methods of the Hopfield net ensure correct behaviour 01 the neural system, but in turn

inhibits the representational power 01 the network. The backpropagation algorithm for

feedforward networks provides a method lor constructing neural networks that model a given

training set.

A structured design and analysis 01 neural systems must be maintained if their

behaviour. is to be reliable (see chapter eight and nine lor lurther discussion).

Neural networks have not, as yet, been used in general reasoning systems. This has

been the case since no inference operator exists in neural systems. All the manipulations are

at the bit level. This has led to the label of subsymbolic processing being applied to neural

systems in general.

Neural techniques have been applied to specilic reasoning problems, Hinton's ('89)

20

knowledge base of family relationships is just one example. The knowledge, the family

relationship between the set of people, is stored in the network systems by the relationships

between the nodes and the information retrieved by the activity of the nodes. This network

could correctly answer queries about the stored knowledge, that is act as an associative

memory device. The network also correctly answered queries about relationships that it had

not been specifically trained upon. That is some subsymbolic level of reasoning had taken

place. The structure of this reasoning process requires further investigation. The complex

interacting subsymbolic processes must be fully understood in order that the global

behaviour of the network can be explained.

Neural network systems are trained on sample data, which are correctly stored in the

net. The behaviour of the net in generalisation is not so predictable. The neural networks can

learn to model any specified transformation (see chapter six and seven), but are only

reliable over the training set. The generalisation properties are not well defined. A degree of

well defined subsymbolic reasoning can be implemented by sufficiently constraining the

network under consideration. The constraints induce a specified form of generalisation which

is a manifestation of the subsymbolic processing.

Traditional logic based approaches are reliable. They are constructed incrementally

and in general monotonically. The addition of each piece of new knowledge has a specifIC

effect. Even nonmonotonic systems behave in a specified manner when more knowledge is

added.

Neural systems generally do not behave this way. The system Is only defined by the

training set and is not reliable outside of this set. The different network representations that

are produced when presenting the training set in a different order demonstrates the

unpredictability of the systems. Adding a new piece of knowledge to the training set has

similar unpredictable properties, often requiring a complete restructuring of the network

to accommodate the new piece of information. A reliable approach to neural network design

must exist if neural techniques are to be applied to general reasoning systems.

21

Summary

The basic properties of neural systems have been discussed, their training

algorithms and representational properties. Their relevance to automated processes and

reasoning systems have been examined. The notion that logical systems play an important

part in ensuring neural network reliability has been introduced.

22

Chapter 2. Motivation of Study

Outline of chapter

The study that is presented in this thesis is motivated by the of lack of reliability of

neural systems and their design. The questions of the design of the neural system, its

interpretation and its behaviour are discussed. The lack of design tools available to the

system implementor has led to ad hoc approaches (such as oversupply of nodes in the neural

network and the training of the network over large data sets) in design. Neural network

training has been well studied while that of network reliability and interpretation has not.

This chapter examines the elements of neural network systems implementation that are

important to the system designer. The properties of predictability and reliability are

emphasised. The elements that must be investigated to ensure these properties are discussed,

namely the network size and topology constraints as well as the internal function of the

neural network. Having provided the motivation for the investigations of this thesis an

outline of the thesis contents is given, highlighting the new contributions to the field.

Neural systems

The work in this study was motivated by the actual usefulness of the available

techniques in neural system development. Neural networks have been used in many

situations, from content addressable memories and distributed memories to. constraint

problem solving (Hopfield '84) and pattern recognition (Amari '67, Rumelhart et al '86

and Aleksander '90). However most work has concentrated on the properties of neural

networks themselves and not on how to apply them to a given problem. This is seen from the

work of Rumelhart et al(,86), Minsky et al('69) and Rosenblatt(,62). This work has been

of little direct use to the designer of a neural network system.

The early work on the properties of neural network systems has led to the

development of more general systems (Hopfield et al '86 and Hinton '89) which are

23

applicable in a larger number of domains and so more useful to the systems designer. A

general design methodology for such systems are not as yet widely used, but will be required

if neural network technology is to become more successful.

Design development

Work on neural systems has proceeded in several directions, training, input

representation and quantisation, and network structure and representation. These

correspond to the three network properties that can be varied, the training procedure, the

input transformation and the internal structure of the network.

To date training has attracted the most attention. This stems from the fact that any

sufficiently large network structure is in theory capable of representing some given

function or transformation (see chapter three and seven). Therefore the problem of applying

neural network technology to a specific problem area reduces to a problem of training,

having selected a suitably large network structure.

The attention to training has reaped many benefits. Almost all the advances in neural

systems have been from the developments in training. The previous chapter described some

current technologies all of which are based on a few standard network topologies and differ

only in the sophistication of their training methodologies. These training methodologies are

important, as without them designing neural systems would be difficult If not impossible.

The usefulness of neural network systems hinges on the input quantisation and

representation as well as the network structure and representation that are available. The

current techniques can all make use of the same input quantisations and representations.

These are transformations of the input space that considerably simplify the problem space

that is being modelled (Padaline techniques).

Little attention has been paid to the role that the internal structure and

representation has when designing neural systems. It is often taken as a given property

selecting one of the standard structures. Training then proceeds producing a network

representation that will allow the training algorithm to converge. This approach neglects the

24

role that structure and particularly the representation adopted has on the specific behaviour

of the neural network. Predicting the behaviour of the network therefore is difficult if the

representation adopted by the training scheme is not easily recognised and is perhaps

unknown.

Usefulness of present techniques

Powerful training techniques exist in neural computing (automated learning via

backpropagation), but they are not immediately applicable to a great many problems which

are suitable for modelling by neural networks.

The four main areas of application have been;

i. Constraint problem solving

ii. Pattern recognition

ili. Control problems

Iv. General neural computing

Early work centred on pattern recognition and constraint problem solving.

Hopfield(,84) made use of Hopfield nets to model constraints and relational systems. These

systems allowed the modelling of specific problem spaces with neural techniques. Within the

problem space the models behaved very well solving the particular constraint problem in

question. Their limitations were in the transference to new related problems, which

required new network solutions rather than minor variations of the networks that had

already been constructed.

Pattern recognition in neural networks allowed the development of sophisticated

vision systems. Fairly small recurrent neural network systems could be automatically

trained to recognise and classify several different visual inputs (Aleksander '90). However

they suffered from several problems which made them unsuitable for robust systems, these

included pattern interference (that is linear combinations of stored patterns would also be

recognised). Feedforward pattern recognition systems would not suffer from the same

troubles but like all neural systems representational problems still existed. If no internal

25

representation of the neural network existed then the behaviour of the network could not be

guaranteed for input patterns that were not in the training se\.

Neural networks have been used in the construction of control systems. From the

work of Barto et al('83) and Zhang et al('91) to more complex safety critical systems

(Miller et al '90 with the control of industrial robots), the neural network solution of

control problems provides a significant area of application.

Predictability is a major concern in control problems. The behaviour of neural

network controllers must be perfectly predictable if they are to prove practical. This is

obviously vital when the question of safety critical control systems arise. Current

techniques which rely on only a training set to specify the behaviour of a neural net are not

suitable for these engineering applications. This is the motivation for the study in this

thesis, the development of predictable and reliable neural network systems.

Areas of investigation

To date study has focussed on the theoretical basis of neural systems. Actual

implementations have generally been lacking as several fundamental questions must be

addressed before neural techniques can be applied to specifIC problems. This thesis addresses

the questions raised by the attempt to implement neural systems.

When a neural network is being constructed, be it a theoretica'l project or a specific

engineering implementation, several points must be addressed. The simple methodology in fig

2.1 highlights the three basic questions that must be examined when designing a neural

network

i. Establish the number of inputs and outputs needed by the system.

ii. What is the initial internal structure of the network,

iii. What is the training algorithm that is to be adopted.

Fig 2.1 Simplified design methodology

26

Current work in neurat systems has concentrated on the training aspect (part iii. of

fig 2.1), the final part of the methodotogy for constructing neural systems. The first part of

the methodology, the number of inputs and outputs will in general be specified immediately

by the nature of the problem in question. If it is not clear, a system of analysis with the use

of padaJine techniques will identify important and relevant inputs and outputs to the system.

The greatest difficulty in pursuing this design methodology will centre around the

internal structure that is initially adopted. The final internal structure of the net will be

problem dependent and so the initial structure should be influenced by the problem in

question. Most training algorithms do not manipulate the structure of the network itself

(except via a form of network trimming) so an initial structure general enough to be

suitable for all problems is used. A large fully interconnected network provides the most

general option, but this still leaves the question of how large should the net be ? How many

layers are required in the internal structure of the net and how large should the layers be ?

This is the area that requires special attention. What is the smallest fully interconnected

network that can model any problem with a specified number of inputs and outputs ? This

question is addressed in chapter seven of this thesiS.

Having provided a suitable initial internal structure for the neural network, training

can proceed. A suitable training set must also be provided. This is especially the case with

problems with a large number of input nodes as these would require an impracticably large

number of training points to be fully defined.

Therefore new tech niques must be provided to be able to systematically reduce the

number of training points required to produce a suitable network that behaves correctly.

This raises the question about how we can be confident about the behaviour of the net over

input values that have not been used in the training phase of the network. Work is required

to investigate the relationship between the structure and representation of the network and

the behaviour that is produced. Is there a method for ensuring that a network is perfectly

predictable over all points ? Is this related to the internal representation of the network ?

What is the best internal representation for ensuring correct behaviour of network ?

27

Outline of thesis

The overall contribution of this thesis is in the study of neural network

representation and behaviour and the presentation of a methodology for designing and

constructing neural network systems. Part III of the thesis discusses the design methodology

and the specific properties of networks that must be known when implementing this

methodology. Its application to the design of reliable neural systems is examined.

The design methodology makes use of several techniques and properties that have

already been well established (the feedforward network structure and the padaline

linearising technique). as well as new techniques and properties developed in this thesis

(for example. sandwich nodes which isolate independent regions which can be treated as

knowledge atoms and results on the size of networks required to model specific problems).

The design methodology systematically presents the essential stages in constructing a

reliable neural network system. The size and topology of a neural network must be known

before the design can proceed. The number of nodes and layers required for the specific

application must be specified. This question is extensively examined in this study and the

results are presented in chapter seven. Boolean transformations are examined and results on

the number of layers and size of the layers required presented. A new network topology the

I..oughborough Net is presented. This network topology exploits the parallel dependencies that

exist in the nodes in the hidden layer of the network.

The analysis is extended to the case of real valued inputs in chapter eight. This draws

on work by Huang et al('91). and Mirchandani et al(,89), extending their work to the

considerations of reliable network systems. Finally the methodology for engineering reliable

neura:l networks is applied to the design of control systems. The Loughborough Control Net is

presented in chapter eight. This is a new network topology suitable for implementing neural

control systems. The Loughborough Control Net is applied to the design of a neural controller

for a glue dispenser and presented in chapter nine.

Part 11 of this thesis discusses the properties of neural network systems and their

representations. Interpretations of neural network representations are introduced. The

28

interpretations of neural networks be it of a logical transformation, a rule system or

another formal representation, is the only knowledge available about the internal structure

and representation of the network. The importance of the interpretation is placed in the

context that the belief about the behaviour of the network can only be based on this

interpretation of the network. If this interpretation of the network is unreliable then the

behaviour of the network will be unpredictable.

Chapter three examines the internal structure of neural networks and provides an

interpretation of the nodes as Boolean transformations. This in turn provides an

interpretation of the neural network representation as a system of rules and vice-versa.

Understanding the internal structure of a neural network is essential for ensuring the

reliable behaviour of the network.

In chapter four the structure of the internal representations of neural networks is

discussed. The behaviour of the representations under various different learning algorithms

is examined. Several specific problems are examined (parity in particular), to examine the

success of the training mechanisms.

New representational dependencies are discussed in chapter five. These are the

parallel and ghosting techniques which provide a computational approach to implementing

c. sandwich nodes in networks. These can be viewed as the atomic knowfedge elements which can

be manipulated in the networks. Several experiments are described which show the various

merits of different internal representational schemes. The computation merits of

introducing dependencies into the internal representations is discussed.

The ability to make use of knowledge in the implementation of reliable neural systems

is examined in chapter six. The sandwich nodes that are introduced here are an ideal

representational scheme which are further developed and applied to control problems in

chapter nine.

This thesis does not address general recurrent neural networks or symbolic neural

computation. Both these areas are important fields of study in the development of general

computational systems. The work in this thesis will aid the design of general neural

reasoning systems, providing a framework in which the behaviour of neural networks can be

29

fully understood. Chapter ten gives a more detailed account of the avenues that are opened by

this thesis.

Summary

The motivation for the work in this thesis was analysed in this chapter. The need to

understand neural network model's function and behaviour was emphasised. The lack of

literature in this area was highlighted.

The structure of the thesis was outlined examining the themes of neural network

representational properties. neural network interpretation and neural network reliability.

30

Part 11. Properties of Neural Representations

Chapter 3. Interpretation of Neural Network Systems

Outline of chapter

The modelling of Boolean transformations by neural networks are examined in this

chapter. Viewing neural networks as Boolean transformations gives an insight into their

representational power. This is discussed further in chapter seven and eight.

An equivalence between bipolar neural networks and Boolean transformations is

established. The modelling of standard Boolean functionlwith neural networks are e.xamined

and the Boolean representational power of single nodes are studied. The "object" definition of

a Boolean transformation with a small number of inputs is presented. It is used as a tool to

examine the structure of neural network models of Boolean transformations.

An interpretation scheme for transforming from bipolar neural network models to

Boolean transformation models is presented. This is then extended to rule system

representations.

The analysis of Hopfield networks as Boolean panems of activity are examined and

will aid analysis of the training techniques discussed in chapter four. Finally the

interpretation of neural networks as models of training sets is examined. This gives insight

into the neural network structure required to model the data in question.

Bipolar feedforward neural networks

A specific class of bipolar feedforward network are studied in this thesis. but the

extensions and generalisations to other systems will be discussed. Throughout this section we

will consider feedforward networks. with standard summing bipolar threshold units as the

nodes (see fig 3.1). The output from node Yk i is given by the formula:

Yki = threshOld(L"j=owij" Yk-1j).

Yk i is the output of the node i in layer k and Wj j is the weight on the connection between the

31

node Yk i and the node Yk., j ard y. 0 is identically' and is known as the bias of the node.

threshold is the threshold function (fig 3.2) defined as:

threshold(X) = +1, for all X > 0,

threshold(X) = ·1, for all X < 0.

Therefore whatever the input to any particular node the output will always be either +1 or •

1. This type of network can be easily generalised to those using a sigmoid function with a

targe derivative at the zero point (see fig 3.2c). That is , for a sigmoid function defined as:

slgmoid(X) = (2/(1 + exp(·X/T» . 1)

where T is the temperature, if T is small the derivative of sigmoid(X) will be large at X = O.

The temperature T is taken from the analogy with the Bolzmann nets (Hinton '89 and

Rummelhart et al '86) which generate the output values stochastically based on the output of

the sigmoid function.

A node with a threshold unit will always have bounded output values. If the unit is

thresholded in a bipolar manner the output values will be constrained such that -1:S; Yki:S; "

see fig 3.2 a,b & c. Given a sigmoid threshold function with a low temperature factor T or

conversely a large input value Xki then the output values of the node can effectively be

constrained to -1:s; Y k i :s; -1 + B or 1 - B:s; Y k i SI, where B is a small positive constant.

Therefore given a network with a low temperature, ensuring high input values will

effectively guarantee Boolean decision values. That is the output from each node is either + 1

or -1. When a network has converged after training, the nodes in the network essentially

behave as Boolean units (see chapter four), all the weights have been suitably reinforced to

produce large inputs.

32

Input Nodes

Y(k-l)l

Threshold
Unit Output Node

Y(k-l)j Of--_W~ijl--_~ Xki I ~~ 'r1<i

Fig 3.1 The connection scheme between layer k-l and a node on layer k in a feedforward

network

a b

Fig 3.2 8. Threshold function threshold. b. Sigmoid function sigmoid

c

Fig 3.2 c. Sigmoid function with a low temperature

33

Neural networks as models of Boolean transformations

1 1

2
Hidden

2
2

2
network

n k
Structure

p

Fig 3.3 Structure of a general neural network. There are n input nodes, p output nodes. The

activity feeds forward from input nodes to the output nodes

The function f: Bn_ >BP, a Boolean transformation from n inputs to p outputs, can be

modelled by a bipolar neural network with n inputs and p outputs. Fig 3.3 shows a general

neural network with a multilayer hidden network structure. The intermediate network

structure that is required to model the given mapping is discussed in generality in chapter

seven. The properties of individual nodes and their ability to model Boolean functions is

examined in this chapter.

a b

ror
c

Fig 3.4 Single node representations of; a. AND, b. OR, and c. NOT. The bias nodes are shown as

solid circles, the values of which are identically 1.0

Any Boolean transformation can be modelled by a neural net. This is the case since we

can give a formula of any Boolean transformation using just the operators AND, OR, and NOT,

which in turn can be modelled by a single node each (see fig 3.4 a, b, cl and placing the

formula in disjunctive or conjunctive normal form. The standard logical AND and OR

34

operators for any number of arguments can be modelled by one layer of weights, that is a

single node. As seen from fig 3.5 a, b, the AND is constructed by a large negative weight and

the OR by a large positive weight on the bias line that can only just be overcome by all of the

arguments being true (+1) or false (-1) respectively. The NOT operator is represented by a

negation of the value of the weight connection and so does not add any extra layers to model.

2

k

AND

a

1

2

k

b

Fig 3.5 Single node representations of a. k input AND and b. k input OR transformations

Therefore the neural network can be constructed from the Boolean formula of the

transformation with node units that represent the atomic Boolean operations. Huang et

al('91) presents a different scheme for producing a neural representation of a Boolean

transformation given the training points to be modelled .. This is achieved by constructing

hidden nodes that isolate the separable elements of the training set. In general these

techniques do not produce optimal representations. That is, networks that use the minimal

number of nodes that are required to model the problem in question. This is largely due to the

fact that strictly Boolean operators are a subset of those that can be implemented by a single

neural operator. This is easily demonstrated by taking the two extreme cases of the k input

AND and the k input OR operators shown in figure 7. The OR node represents the truth of the

statement onenode(on), that is there is at least one node firing +1 in order for the output to

be +1. By reducing the bias weight by 2.0 we require any 2 nodes to be on in order for the

output to be +1 giving a modal operator twonode(on). There are many of these operators

35

derived solely by allering the bias weights and keeping the input weights fixed at 1.0. By

altering the input weights we can derive a further large class of operators. Although these

operators are more general than the class of Boolean operators they cannot represent more

statements than those representable by an arbitrary collection of Boolean operators,

however they are more economical in their representation.

Object definition of Boolean transformations

Neural networks with a single output node are examined in this section. This

Simplification aids the analysiS considerably although some of the results which are

immediately applicable will be extended to the mulliple output case. We can view any

particular transformation with n input nodes and one output node as defining an object in an n

dimensional Boolean space, where if f(x)= +1 then that point is in the object, i.e. it is of

interest, while if f(x)= -1 then that point is outside of the object, it is not of interest.

The nodes in the hidden layer represents a hypersurface in the n dimensional space

that separates the space into two regions. One where the node gives a value +1 and the other

side of the hypersurface where the node gives the value -1. This idea is used to produce

diagrams of specific transformations. The input space is shown as corners of a hypercube.

When f(x)= +1 the point is shown by a filled Circle while when f(x)= -1 the point is shown

by a empty circle. Exclusive OR in two dimensions is shown in Table 3.1, and its object

definition in fig 3.6a. These object representations will reduce the need to give full inpuV

output definitions for particular transformations under consideration. Annotations with

planes representing the hidden nodes will remove the need to give the network

representations. The object representation will show both the transformation definition and

the networks that model it.

36

B

+1 -1

+1 +1 -1

A

-1 -1 +1

Table 3.1 Table of values for the transformation XOR shown in fig 3.6a

a b

Fig 3.6 a. Object representation for XOR. b. Object definition of not(or) showing the node line

that mOdels the problem

The node defined by the bias -1. and two weights -1 and -1 (represented as node(-

1.-1.-1» defines the Boolean function not(or). The object definition of this function and the

line that represents node(-1.-1.-1) is shown in fig 3.6b.

As stated above. any node can be represented as a Boolean transformation. Its formal

representation may be particularly complicated. nevertheless it is a Boolean formula. Given

a node we can convert it to Boolean form by the following technique.

Given a node with its bias value and weights. say (b.w1.w2 •..• wn) ;

if Ibl > r"i=l Iwd. then node value is True if b > O. or node value is False if b < O. and

similarly for all the weights;

if Iw11 > Ibl + r n
i=2 1 wd. then node value is inpuCnode_l. if wl > O. or node value is

input_node_2. If wl < O •• _ ••

37

if IWnl > Ibl + r n-1;= 1 I w;l, then node value is inpucnode_n if wn > 0, or node value is

inpucnode_n if wn < O.

Otherwise node is (b + w1,w2, .. ,wnl 0 r (b - w1,w2, .. ,wnl, where (b + w1 ,w2, .. ,wnl and

(b - wl ,w2, .. ,wn) are two nodes with one less input node than the original node.

The above provides an iterative scheme for converting all neural network nodes to

Boolean formulae. A complete neural network can similarly be converted into a Single large

Boolean transformation by converting all the nodes in the network to Boolean representation.

Example

Given the node 0 in fig 3.7, we can derive a logical definition of its function.

A

8 o

C
Fig 3.7 A node with three inputs

node (bias, A, B, Cl has no weight such that IWj I > r3;:O,i,oj Iw;l, therefore set A=

+1 and A=-1,then;

node(bias, A, B, Cl = (A and node(bias+0.5, B, Cll or (not(A) and node(bias-0.5,

B, Cll.

node(bias+0.5, B, Cl has no weight such that IWjl > r 2;=o,;,oj Iw;l, therefore set B=

+1 and B=-1,then;

node(bias+0.5, B, C)= (B and node(bias+0.5+0.75, Cll or (not(B) and

node(bias+0.5-0.75, Cll.

node(bias-0.5, B, C) has weight B such that 10.751 > 101 + 10.51. therefore

node(bias-0.5, B, C) = B.

38

node(bias+ 1.25, C) has weight bias such that 11.751 > 10.51. therefore node(bias-

0.5, B, C) = +1.

node(bias-0.25, C) has weight C such that 10.51 > 10.251. therefore node(bias-0.25,

C) not(C).

Therefore D = node(bias, A, B, C) = (A and (B and + 1) or (not(B) and not(C))) or

(not(A) and B)) = ((A and B) or (not(B) and not(C))) or (not(A) and Bll.

The Boolean formulae for the nodes can be considered to be rules and the neural

network a system of rules. The equivalence of the node to the Boolean transformation is

interpreted as an implication operation. Namely the logical equivalence;

D = ((A and B) or (not(B) and not(C))) or (not(A) and B)) is given as;

D <- ((A and B) or (not(B) and not(C))) or (not(A) and B)), with the usual

definition of implication. Normal node execution performs the modus ponens reasoning

scheme. There is no natural and simple network execution strategy that will perform modus

torrens.

This provides a natural transformation between rule systems and neural networks.

Due to the feedforward nature of the neural networks, no recursive rules can be implemented

in the neural system.

Example

The network given in fig 3.8 can be interpreted as the rule set;

D <- fl (A,B,C), E <- f2(B,C), F <- f3(A,C), G <- f4(D,E), H <- f5(D,F), where the
functions fl-f5 are Boolean transformations.

A

B

c
Fig 3.8 A neural network that can be inlerpreted as a rule system

39

Boolean models of Hopfield network behaviour

The nodes in a Hopfield recurrent network can be modelled by Boolean activities. This

is natural il we have hard limiting logical devices, but also applies to sigmoid thresholded

systems in which the network has converged to a stable state. In this case the stable values

are Boolean patterns and so the representation and behaviour can be analysed accordingly.

The stable state patterns are stored over a fixed number of nodes and so the behaviour 01 the

Hoplield network can be studied by analysing the matrix 01 activity patterns over the

different nodes. This is illustrated in fig 3.9 for the stored pattern in table 3.2. The

recurrent network structure that models this problem is shown in fig 3.10.

pat ~ 0 1 2 3

0 -1 -1 -1 -1

1 -1 -1 1 1

2 -1 1 -1 1

3 -1 1 1 -1

4 1 -1 -1 1

5 1 -1 1 -1

6 1 1 -1 1

7 1 1 1 -1

Table 3.2 Matrix of node activity over the training set

40

.. 3
Fig 3.9 Plot of the training points shown in table 3.2

Whenever we are interested in the behaviour of a particular node. over the various

input patterns (that is the stored patterns). the relevant column in the activity matrix

provides the required information. Since the pattern of activity of different nodes are distinct

(if this were not the case they could be amalgamated (see chapter seven) and treated as a

single node). the node behaviour can be correlated against the other distinct nodes. The

correlation values of the node activities are important when we come to examine the

representational properties and training schemes of Hopfield networks (see chapter four) .

. Fig 3.10 Hopfield network used to model the problem in table 3.2

Training sets and interpreting neural networks

Throughout this study. neural networks are examined on their ability to model a

specific transformation. In the recurrent Hopfield network regime there are no specific

input and output nodes as such. A number of patterns are stored by these networks. The

network truly represents the patterns that are stored over the nodes and not some specified

transformation from input nodes to output nodes.

41

With this motivating example we can view feedforward neural network systems via

the training sets that they are required to model. Given these conditions the neural system

need only model the training set in question and its performance over any other point is

ignored. it is not drawn into question. This contrasts with the transformation approach to

feedforward systems. where the network has to model a specific transfonnation which is

defined over all the input space.

The usefulness of this approach is in the number of different transformations that can

possibly model a small training set. A small training set specifies output values for only a

few input points in the training set and so does not constrain the values of the outputs on the

remaining input points. Therefore many underspecified transformations will be capable of

modelling the training set in question.

A training set has the following properties. The training set is a set of arbitrary

binary data points and so is not dependent on the network architecture under consideration.

The data itself need not be viewed as specific input and output values but should be viewed as

activity over specified nodes. In the feedlorward neural network environment. the structure

of the network forces an interpretation of input and output nodes onto the various nodes In

question.

A training set can be viewed to be a definition of the space 01 interest. the points that

are in the training set. and that not 01 interest. the points that are not in the training set.

Given the specific training set we can predict whether a particular network structure can

model that training set or not. This is further examined later in this chapter.

42

Feedforward neural networks

t~ patt Input 1 Input 2 Output

0 -I -I 1

1 -I 1 -I

2 1 -I -I

3 1 1 1

Table 3.3 The exclusive or transformation from two inputs to one output

A feedforward architecture has explicit input and output nodes (Table 3.3), yet the

training set can still be viewed as a data pattern explicit from the input output structure

(Table 3.4). The training set are then just bit patterns that have to be stored in the network.

With the unbiased data points, we can make any inpuVoutput decisions required to model the

data with the given architecture. Effectively, we can break away from viewing the training

set as a predefined input and output structure, but can choose whichever nodes most

effectively perform the function of an output node.

I~ patt 0 1 2

0 -I -I 1

1 -I 1 -I

2 1 -I -I

3 1 1 1

Table 3.4 Training set for the exclusive or problem with two inputs and one output

The properties of the network architecture chosen will dictate whether the training

set can be represented or not. The property of the McCulloch and Pitts neuron which can only

distinguish linearly separable sets provides the representational limitations of neural

43

networks. Training sets as arbitrary patterns arise naturally in recurrent network

structures such as the Hoplield network. The properties of Hopfield networks and their

abilities and limitations at storing bit patterns are discussed in chapter lour.

For a leedlorward network to model a training set an explicit output must be defined.

This is the output node specified by the network architecture of the feedlorward network. The

simplest method of defining this output node is to provide the value + 1 il the given input

point is in the training set and -1 if the given point Is not. That is the network works as a

metalevel pattern recogniser, rather than as an implicit input output transformation unit.

t~ pall 0 1 2 3

0 -1 -1 -1 -1

1 -1 -1 1 1

2 -1 1 -1 1

3 -1 1 1 -1

4 1 -1 -1 1

5 1 -1 1 -1

6 1 1 -1 -1

7 1 1 1 1

Table 3.5 Metalevel definition 01 Exclusive or with two inputs and one output, the final node

provides a decision as to whether the pallern over the other nodes is a stored pattem or not

When a data point is presented to the network, the activity is passed through the

network, resulting in the final output of + 1 or -1, depending on whether the presented

pattern was part of the training set or not. The main problem with pursuing this approach is

the inefficiency of the network structure adopted. Many extra metalevel training points must

be provided to fully define this pattern recogniser. This is illustrated by examining the

"exclusive or" example. Table 3.5 illustrates all the points that must be stored in this

metalevel network system, when the original training set was a large factor smaller (table

44

3.4).

To fully exploit the power of the feedforward representation. we must employ a

network that has at least one explicit output node. That is an output node that behaves as one

of the nodes in the training set. For such a node to exist. the training set must be closely

examined. For a node in the training set to be an output node. it must be uniquely defined for

all the patterns in the training set over the other nodes in the training set. This is illustrated

by the example in table 3.6a. where any single node can act as an output node. In table 3.6b.

node A and node B can not act as output nodes. since If A was an output node. we would have the

transformation B. C -> A : (-1.1) -> 1 and (-1.1) -> -1. which is inconsistent. and

similarly with B as an output node. The only possible consistent output node is C.

I~ pan A B C pat t~ A B C

0 -1 -1 1 0 -1 -1 1

1 -1 1 -1 1 -1 1 1

2 1 -1 -1 2 1 -1 1

3 1 1 1 3 1 1 -1

a b

Table 3.6 a. Training set where any node can act as the single output node. b. Training set

where node C is the only possible consistent output

Multiple output nodes

Given more than one possible output node. we can select anyone to act as the output

node of the system. Having selected one output node. H may be possible to select more output

nodes without any inconsistencies arising. We continue this process until no more output

nodes can be selected. In Table 3.6a. any node can be a single output node. but no two together

can act as output nodes since inconsistencies arise. For transformation A -> (B.C) we have 1

-> (1.1) and 1 -> (-1.-1) and similarly for output nodes (A.B) and (A.C).

45

pat t~ A B C 0

0 -1 -1 1 -1

1 -1 1 -1 -1

2 1 -1 -1 1

Table 3_7 A Training node that explicitly allows multiple output nodes

Table 3_7 shows an example where any node can act as a single oulput node, but only

(0, A or B or C) can be double output nodes_ That is, (B,C) can not be double output nodes

since (A,D) -> (B,C) have the training points (-1,-1) -> (1,-1) and (-1,-1) -> (-1,1),

which are inconsistent.

Summary

This chapter examined the role of Boolean representations of neural networks. The

equivalence between converged neural networks and Boolean transformations brings the

connectionist techniques into the realm of reliable and predictable systems. These ideas are

further developed in the following chapters.

Neural networks were examined as model of training sets. The training sets admit an

interpretation as a transformation which can then be modelled by feedforward systems. This

notion of neural models of training data will be used to construct a measure of neural network

reliability and predictability in chapter four.

46

Chapter 4. Learning and the Behaviour of Internal

Representations

Outline of chapter

Backpropagation is used to train feedlorward neural networks. The training algorithm

executes iterative hill climb to minimise the delined error function 01 the system. Perfect

steepest gradient descent schemes would force the system into the nearest local minima. This

is undesirable, so varying iterative schemes are examined. These hope to avoid the local

minima and converge to the global minima. This chapter provides some insight into the

experimental result on neural network convergence.

Training is examined as the problem 01 modelling data sets with neural network

systems. Different training schemes are discussed, outlining the role 01 temperature,

learning rate and momentum terms in the backpropagation training algorithm.

The local properties 01 the training algorithms are examined. The effect of training on

the weights and node activity are examined. The nole 01 temperature, learning rate and

momentum terms in avoiding problems of local minima are examined.

The training algorithms developed lor Hopfield nets (Aleksander et al '90, Hinton '89

and Rumelhart et al '86) are examined. The training of hidden nodes in recurrent networks

are examined particularly the Markov chain models. It is shown that specific cases exist

where the hidden nodes can be trained using a one pass Hebbian training rule.

The training of networks over reduced training sets are examined and the role that

they play in the reliability of the neural network is discussed. Two measures of reliability

are introduced. One based on ihe uncertainty in the transformation being modelled and the

second based on the reliability of the behaviour of the neural network.

47

Training Neural Networks

In order to construct useful network representations of transformations, a specific

methodology must be adopted. The following three elements are required;

i. the initial network structure,

ii. the set of data on which to train the net, and

iii. the training algorithm that is needed to adapt the initial network structure.

More broadly we can view this as follows;

i. the initial knowledge of the system.

ii. the new knowledge to be imparted, the training set, and

Hi. the training methodology.

When implementing a neural network for a specific problem it must be trained.

Training a neural network is a matter of manipulating the behaviour of the network. Once the

behaviour corresponds to that which is desired, training can cease.

The system requires a specific behaviour, that is a specified transformation from

input to output. A specific Boolean transformation may exist, a rule system or another

formula for the desired behaviour. This behaviour will be defined over a given subset of the

input space. Training will proceed over this subset of the input domain. The neural network

is said to have converged when the training set is correctly modelled. The correct behaviour

of the neural network is only guaranteed over the training set, therefore the total behaviour

of the neural network is only guaranteed if the training set is the whole input space. That is

neural network training should be viewed as a convergence to correct behaviour over the

training set. Correct training of the neural network can be viewed as the representation of

the given 800le8n transformation, rule set or another specified formula of behaviour.

Available knowledge

When modelling an arbitrary transformation there are some pieces of information

48

available, we have some knowledge of the system. The most basic knowledge is that of the

number of inputs and outputs, which is defined by the nature of the transformation being

modelled. This is available even if the actual specifics of the transformation considered is

unknown. Any binary valued transformations have well defined input and output fields, while

continuous real valued input and output fields can be digitised to a prerequisite degree of

accuracy. Nothing is lost by specifying this digitisation of the input fields since all neural

systems essentially deal with digitised data after the first layer of nodes.

Given the limit of one hidden layer in a network as discussed in chapter seven, we

specify that the Boolean neural networks we construct have no more than three layers of

nodes. The limit of the same number of hidden nodes as input nodes for each output node as

also discussed in chapter seven provides us with the number of hidden nodes that the network

will have. This will be the maximum number of nodes and layers that we will require,

whatever the actual transformation being modelled. The nodes in successive layers are fully

interconnected. Given this topological limit on the network we can proceed to train it to

behave correctly.

When no knowledge about the actual transformation being modelled exists, the above

network structure is the best that can be constructed. The value of the weights in the network

are given by the specific knowledge that may exist about the transformation being modelled.

If the initial knowledge about the transformation is nil, then this will be reflected in the

weights of the network. When no information exists small random weights are used since if

they were all zero, the training algorithms would not distinguish them from the case where

no links exiSt. The experiments of appendix A 1 show that the initial weight values of the

neural network have a great influence on the success of the automated training algorithm.

If knowledge about the transformation exists, this is the stage at which it should be

included. If the transformation is known to be symmetric about an input, this would be

reflected in the weights. If a network representation of a subspace of the transformation is

known, this would be a stage to include it in the new representation. Improvements in the

training phase will be gained by the use of this knowledge. An experiment is discussed in

appendix A4 in which the training performance of neural networks initialised with different

49

information about the transformation being modelled is examined.

Training examples

The training examples are used to to train the network, they are a subset of the total

input space. The initial configuration of the network will in general not correctly represent

the training set. The training algorithm adapts the network to the point where it maximally

represents the training set. If the algorithm does not become stranded in a local minimum,

the network produced after training will fully represent the training set.

Unless the training set is full, that is, it is the complete input space, it cannot be

. guaranteed to model a specific transformation. This means that points in the input space that

are not in the training set will behave in a manner dependent on the initial configuration of

the net and the training algorithm employed, and not the particular transformation in mind.

We can see that this is the case from the following analysis. Given a network with a

specific weight configuration we can train it on a subset of a transformation say A and also on

a subset of a transformation 8. If A(t)= 8(t), for all t from the training set, then the two

networks that have been trained will be identical. Now if A and 8 are distinct transformations

then there will exist a point x say, outside the training set for which A(x) .. SIx). The

network representation of A and 8 will both produce the same output for the input x and so

one of the network representations will be incorrect for this input.

Therefore predicting the generalisation properties of networks are almost

impossible. More knowledge about the network representation prOduced must be employed

before we can predict its behaviour over points not in the training set.

Training methodologies

The training methodology most commonly used for feed forward networks is that based

on backpropagation. The procedure for investigating learning via backpropagation involves

50

examining the behaviour of the net over the training set and seeing how much the actual

behaviour differs from that of the desired behaviour. All the weights in the network are

updated in a direction and by an amount that minimises this difference. The details of the

algorithm are discussed below.

Backpropagation

The error in the output for a particular input x, E(x), is given by the formula;

E(x)= O(x) - R(x),

where O(x) is the desired output for the input x while R(x) is the actual output for the net.

The update that is applied to each weight in the net is proportional to its effect on the error

function, namely, l1w= -11 dEldw, where 11 is a positive constant called the learning rate.

The backpropagation may proceed iteratively over the input values, that is the

weights are adjusted after each example from the training set is taken. A different approach

is to calculate a total error function over all the training set. This second method would

behave in a truer gradient descent manner, but as discussed below, this in itself is not an

advantage when the search space has many points of local minima. Therefore for the most

part, systems that adjust the weight space after each pass of the input examples have been

implemented.

It can be seen that backpropagation instigates an error gradient descent in weight

space. If it were a true steepest gradient descent procedure, then it will almost certainly get

stranded in any local minima that exist. This is the case, since in a network which is near a

local minimum, the steepest gradient will be towards that minimum. On reaching the

minimum the training algorithm will not be able to move away since the gradient will be zero

at that point. For real applications we must utilise a training algorithm that overcomes these

problems. Several strategies already exist.

51

Temperature, learning rate and momentum terms

In order for the backpropagation algorithm to execute true steepest gradient descent

any update in the weight space must be infinitesimal. In any real implementation this is

impossible.

The first factor that affects the behaviour of the backpropagation algorithm is the

learning rate. This is the proportional constant that influences the magnitude of the update

that is carried out on each iteration. If the learning rate is too high, then the network will

oscillate between nonoptimal states. If it is too low then convergence will take many

iterations, which is undesirable. (See appendix A2).

There is a close relationship between the learning rate adopted and the temperature of

the network system. The temperature is the proportional constant applied to the input in the

sigmoid threshold function. The node formula is given by Output= sigmoid(l;wjxj)' where

WjXj are the weighted outputs of the nodes from the previous layer. The sigmoid function is

given by the formula;

sigmoid(x)= 2/(1 +exp(-xll)) - 1, and

dsigmoid(x)/dx = 2 exp(-xll)1 t (1 +exp(_xlI))2.

The update formula for the weights w can be given in the form;

Ilw= -11 dEldw = -11 dEldv.dv/dy.dy/dw, where v= sigmoid(y), y= l;wjxj'

00 Ilw= -11. 2(exp(-xlI)1 t).(1+exp(-xll))2.(dE/dv.dy/dw).

Therefore from the formula above we see that the term lit behaves like a learning

rate parameter. That is. by decreasing t we can effectively increase the learning rate. (See

appendix A3).

The final method by which standard backpropagation algorithms deviate from steepest

gradient descent approaches are with the use of momentum tenns. If a steepest gradient

descent procedure gets stranded about a local minimum the search is unable to proceed

further, the algorithm oscillates about this minimum. To inhibit this property. momentum

terms are applied to the update procedure. The function is to reduce oscillation and ensure

52

that the search proceeds in a purposeful direction.

The momentum terms are implemented by applying a proportion of the previous

update to the present update. That is the weight update formula is given by;

l!Wt+ \ = -11 dE/dwt + 6. l!Wt

as the iterative cycle continues the eHect of the momentum term diminishes if 6<1. That is

the momentum term is only eHective for a few cycles after it is initialised, it decays.

Properties of the backpropagation algorithm

Training a neural network system with the backpropagation algorithm is a balance of

interrelated elements. The combined action of the nodes in the diHerent layers of the network

produce the specific behaviour. The training algorithm coordinates the perturbation of the

weights and nodes such that the total behaviour of the network over the training set converges

to that which is desired. The training algorithm is examined in detail, emphasising the

specific elements that aid optimal convergence.

Training an individual node

Given a particular output node (fig 4.1) we can define an error function on the node

for each training example as;

E = (Od - 0a) 2, where 0a is the actual output from the node while Od is the desired

output.

2

k
Wi

Fig 4.1 A single node with several inputs and one bias weight

53

The update formula for the backpropagation algorithm is;

LI. wi = -11 ilE/ilwi ' where E is the error function of the network, -11 the

learning rate, a small constant and wi the weight values. The iterative update of the weights is

such that the error function is minimised.

The first point of interest about the update rule is that when a point is correctly

classified, no change in weight is made. Only incorrectly classified points contribute to the

learning. This is desirable since if all the training set is correctly modelled by the network,

no update in the weight values would be required. One disadvantage is that there is no positive

training factor. That is all the points that are correctly classified will not contribute to

actively maintaining the structure of the network. There is no resistance force from the

correctly classified points to changes in the weight space. The few incorrectly trained points

will provide all the forces for developing the network.

If the incorrectly classified points contribute constructively in training then the

algorithm will converge rapidly. Fig 4.2a illustrates this point.

=>
Fig 4.2 a. Constructive training

In destructive training the incorrectly classified points force the representations to

either oscillate or diverge to such an extent that originally correctly classified points become

misclassified. Fig 4.2 a & b illustrate these points.

<==>
Fig 4.2 b. Destructive training 1) oscillation

54

==>
Fig 4.2 c. Destructive training 2) divergence

The simple examples above illustrate cases where the distinction between constructive and

destructive learning are clear. Given systems with many more inputs and incorrectly

classified points, changes that reclassify a few points either correctly or incorrectly, can not

so easily be termed constructive or destructive learning. Only the global behaviour of the

algorithm in correctly classifying different numbers of points can allow this judgment. This

can be seen in the results of the experiments described in appendix B. During

backpropagation training, many iterations produce an increase in the sum squared error

measure. Destructive learning has occurred at this point. Often this destructive learning is

advantageous as it allows the present representative structure to be broken, so allowing a

more favourable start point from which to converge.

Local learning

The specific effect of an incorrectly classified point on the training algorithm is a

significant point of interest. The global activity of the training algorithm will depend on the

interactions of these micro activities. By examining the effect of an incorrectly classified

point on different nodes we will be able to gain an intuitive idea of the effect of the point on

all the different nodes in a particular network representation.

Given a node threshold function f(rwjq), we have the node weight update formula;

AWj = -1l(Od - 0a)(df(x)/dx)Oj,

The term (Od - 0a) depends on how badly the training point is classified. Assuming we have

just Boolean transformations, (a hard threshold function is employed), then (Od - 0a)= 0 if

55

,
, .

just Boolean transformations, (a hard threshold function is employed), then (Od - 0a)= 0 if

the point is correctly classified and (Od - 0a)= ±2, if incorrectly classified. Similarly 0i =

±1. All these elements provide a component as to the direction of the change that is most

suitable to model the training point in question. The magnitude of the change is depe ndent on

the term df{x)/dx, which for a hard threshold function is almost zero (small) everywhere

except when x is almost zero, where df{x)/dx is very large. This gives the resuR that for

training points where LWiq is not almost zero, the magnitude of 6wi is dependent on the

learning rate, that is this term must be adjusted for optimal performance.

Now consider the case where we have outputs in the range IOal~1, that is we have soft

threshold functions such as the sigmoid function with a high temperature term. These

conditions give the following constraints, HOd - 0all ~ 2, (df{x)/dx) = 2 exp{x/T)/T(1 +

exp(x/T))2; which is shown irifig 4.3. The important points to note are that (df(x)/dx»O

and that it attains its maximum at x=O. (See fig 4.3).

Fig 4.3 The differential of the sigmoid function

With these criterion we can see that the magnnude of the weight update depends on

how badly classified the point is and how close LWiq is to zero. The measure LWiq is a

function of how close the training point is to the hyperplane that the node represents.

Therefore the closer the training point to the node plane the greater its effect on the training.

If I(Od - 0all « 1, then effectively the point is correctly classified. However, since the term

is not zero there is still a contribution to the training algorithm. This is an advantage over

the strict Boolean case, since even essentially correctly classified points have an effect on the

training algorithm.
\

56

II we now consider the case where the input values can range over the values, 10d SI,

we have a different effect manifesting itself in the training algorithm. The activity of the

input nodes to the node have an effect not only on the direction 01 the update 01 the weights,

but also its magnitude. The greater the activity of the particular input node, the greater the

update in the weight value. This means that if the input node provides hard evidence, that is

iOd = 1, it has the greatest effect on training, while il 10i I = 0, very little training is

carried out.

Training a two layer subnetwork

Refer to the annotations of fig 4.4 lor the lollowing analysis of the training of a two

layer subnetwork.

2

9

mOk pOi

Wki Wi

Fig 4.4 Two layer network

A two layer network consists of several different subcomponents which correspond to

the situations discussed above. The inputs to the whole network are fixed Boolean inputs, The

threshold functions are all sigmoid functions.

Therefore the inputs to the nodes in the hidden layer are m(\ = il while the outputs

01 the nodes in the hidden layer are in the region IpOd S 1. The analysis 01 the misclassified

points corresponds to the situation above. The update formula is;

~mwki = 'IL aElapOi *(df(x)/dx) * ax;lamwki = 'IL aElapOi *(dl(x)/dx) * mOk'

57

6mwkj = -~ aE/apOj ·(df(x)/dx) • ax/amwkj = -~ a EfapOj ·(df(x)/dx) • mOk,

aEfapOj = I j aElaOa ·(df(y)/dy)

x = ImwkjrrOk,

y = IWjJl)j.

An examination of the relevant formulae shows that the differences to the case

discussed above, concerns the magnitude of the update based on the term aElapOj _ This shows

that nodes that are weighted by a larger amount in the following layer are updated more.

Corrections applied as a result of rnisclassifications by the neural network system can

interleave one with another leading to interference on the training signal, that is the effect of

aElapOj. If a point is misclassified by the whole system but correctly classified by a given

node, a form of overtraining will take place on this node. Its weight values will be updated for

the particularly misclassified point, even though it is essentially correctly classified by the

node.

The training of the second layer of weights is analogous to the case discussed above

with IpOjl S 1, and HOd - 0all S 2.

Multiple output nodes

Refer to the annotations of fig 4.5 for the following analysis of the training of general

two layer feedforward neural networks.

mOk pOi cOj

Wkj Wjj

Fig 4.5 Multiple output network

58

1

2

h

The final layer of a multiple output network corresponcs to the single output case and

training proceeds as described in the previous section. The raining of the first layer of

weights must take into account the effect of the different outpul nodes. Each hidden node

contributes to all the outputs of the network and so receives backpropagated error values

from all of them. This is shown by the update equation below;

amwkj = -11 aE/apOj *(df(x)/dx) * ax/amwkj = -11 aSlapOj *(df(x)/dx) * mOk•

aE/apOj = ;(Lt aE/<lOa * dfy/dYj * <lydapOj) = ~(dE/aOa *dfy/dYj * Wjj)'

x = l:mwkjrrOk•

Yj = l:Wj jIDj.

This illustrates how a hidden node can receive inconsstent signals from the following

layers. This can lead to destructive learning if the node or nodes model a subproblem of the

input space. Constructive learning will occur if the error signals allow the nodes to converge

to more accurate representations of the input data.

Intralayer communication and learning

The existence of destructive learning in the hidden layer of a neural network can be

illustrated by the example shown in fig 4.6. Here two nodes isolate a given region of the input

space. The effect of a single point incorrectly classified by the network is to either expand or

contract the two nodes' region of influence. Each node provides a contribution to the decision

of the incorrectly classified point. but taken together they effectively cancel out. Namely if

+ 1 is provided by the nodes for the region between the nodes, then the regions outside the two

nodes will have a contribution of + 1 from one node and -1 frem the other. A total of zero.

Therefore as a whole the incorrectly classified point is not influenced by the pair of nodes and

so the pair should not be affected during training. The incorrectly classified point should be

modelled by another point of the network structure.

59

o

t
o

a b

Fig 4.6 a. Expanding influence in the hidden layer, b. Contracting influence in the hidden

layer

Fig 4.7 illustrates a situation where constructive learning can occur when a pair of

nodes are being considered. In this case the incorrectly classified point is very near one of

the nodes and so adjusting one of the nodes solves the problem.

o t o

c d
Fig 4.6 Constructive learning in hidden layer, c. Before application of training action, d.

After application of training action

The overall effect of the interfering hidden nodes in general can not be predicted.

Therefore this thesis proposes to structure the relationships between the nodes in the hidden

layers. This formalises the interactions that occur and so allows better understanding of the

network behaviour. This is further pursued in chapter fIVe and six.

60

Hopfield nets

Hopfield nets are fully interconnected neural networks. The network connections are

weighted and in general symmetric, that is Wj j = Wj j' where Wj j is the weight value of the

connection from node i to node j. The output of a node is the weighted sum of the inputs to the

node. A threshold may be applied to this value. The update of the nodes in the network may be

synchronous or asynchronous. The node weights can be trained via a Hebbian learning scheme

given by the formula below;

Wj j = 1.1 ~Pk=1VkjVkj (for i ~ D, where vk are the members of the training set and 1.1 is

a small constant. An iterative approach may also be adopted.

If patterns are linearly independent, a pseudo inverse approach can be adopted (Geszti '90);

Wj j = (1/N) ~Pk,1 =1Vkj(q' 1) klV1j' where N is the number of nodes in the network,

~I = (1/N) ~Nj =1VkjV1j.

Capacity of Hopfield nets

Several results on the capacity of Hopfield nets exist. The first consideration is that of

the representational power of the networks. In making capacity judgments, the limitations of

the McCulloch and Pitts neurons must be considered. Each node (a McCulloch and Pitts

neuron) in a Hopfield net effectively behaves as an output. Each McCulloch and Pitts neuron

is incapable of modelling the parity problem and its non linear variants and so a training set

that includes these properties can not be modelled by a Hopfield net. This can only be

overcome with the addition of true hidden nodes. This case is discussed later in this chapter.

The pseudo inverse method of network training admits a quick limit on the capacity of

the network. N·1 linearly independent patterns can be stored in a Hopfield net. This is seen

from the fact that there are at most N linearly independent patterns in the N dimensional (N

node) case. If there were N training patterns, the training sets would span the whole space.

61

This means that the training would give the weight values as Wj r 1, i=j and Wj r 0 for i.<j.

(see Hertz 'Sl, Aleksander et al 'SO and Abu Mustafa '85). Therefore we can have at most N-

1 linearly independent patterns.

When we have patterns that are not linearly independent, a different analysis must be

made. Considering the input to each node hi when the pattern vi< is applied to the inputs, we

have the following equation;

hk. = ~N .. , w .. vk. = (l/N) ~N. ,~PI ,vl.vl. vk. therefore
I "'-J= IJ J "'-J=" RI J J'

hk. = vk. + (l/N) rN. _,LPI _, (I k)vl.v l. vk ..
I I J- -,"'IJJ

Defining the crossover term ck i as;

ck i = -vkj(l/N) rNj =,rPI ="(I,,,k)vljVlj Vkj ,we have the condition that if ck j is

positive and greater than one, then hkj will flip, that is it is an unstable node. The term ck j is

a measure of the capacity of the net for the patterns chosen. Given a general training set, we

can test Ckj for all k and all i, to see if the patterns will be stable. If they are unstable then a

different network approach must be adopted.

A general capacity measure of Hopfield nets would be useful, especially for large nets

(large N) with many stored patterns (large p), since the calculation of all the ck j will grow

exponentially in Nand p. Making assumptions that Nand p are large and that the training

patterns are random give the capacity of the Hopfield net as p $ 0.138N (see Geszti '90 and

Hertz 'Sl). This also agrees favourably with experimental measures 01 the capacity, p $

0.14N (Hertz 'Sl and Aleksander et al 'SO).

By a similar analysis the capacity of the Hoplield net, using the statistical Bolzmann

executjon strategy js found to be p $ 0.138N.

Energy functions

A Hopfield network with a specific update strategy can be associated with an energy

62

) function. This energy function will be minimised in the execution of the network. Therefore

given an energy function whose minima are the trained states, the network will converge to

these trained states.

Given an energy function E defined over all the nodes hj we have;

E = -(1/2)LNj =1 Wj jhjhj ,

dEldt = dEldhj .dhj/dt, where dh;ldt is given by the update rule,

~hj = (St+~t) j - (SI) j'

(SI+~I)j = sign(LNj =1 Wjj (SI)j), for the usual Hopfield update rule,

dE/dhj is defined by the weight space Wj j.

Optimisation

With the existence of the energy function, the Hopfield nel can be used as an

optimiser. If a cost function exists for a particular problem that can be defined in terms of

the energy of a Hopfield net, that is all terms are linear in the nodes hj and there are no

terms of higher order than hj hj then a network can be constructed to model the problem.

When the network is executed the energy function and so the cost function will be minimised.

The minimised solution may not be a global minimum and so the net must be run many times

to obtain the best solution.

Training hidden nodes

Since the Hopfield model has significant capacity limitations, large networks must be

used to model large training sets. The training patterns will be defined over a limited bit field

and so hidden nodes must be exploited to gain the capacity to model the problem. How do we

train the Hopfield net when we have these hidden nodes? Allowing the hidden nodes to settle on

the most appropriate minima would be ideal. For a given input pattern the hidden node could

take either value +1 or -1. One of these values will be suitable for each particular input

63

pattern. An approach to training the net and finding suitable convergence points for the

hidden nodes is via the use of a Markov model of the net. (This is discussed be Aleksander et al

'90) .

Markov model of the Hopfield net

The following symbols are introduced for the analysis of the Hopfield net and the

states that it can represent;

Training set defined over n nodes. DO. 0, •.. 0a •..• Dr. 0 saS r.

o S r S (2n_ ').

The network has N+ I nodes. N-n+ 1 hidden nodes. one bias node whose activity is 1.

The number of possible states are 2N.namely;

So. S" .. Sp •..• Sp. 0 s P s p. P = (2N_ I).

The activity of the ith node in state Sp is (Spl j. The activity of the ith node in training state 0a

is (Oa) i·

The probability of a node being active in state Sp is;

Pi = lhreshold(1f(1 + Bll= +1 or O. B = exp(-l:Nj =1 Wij (S~jIT).

The probability of a node being inactive in state Sp is;

~~ = threshold(BI(1 + Bll= 0 or +1.

The probability of being in a state X with the clamped environment (that is the case where

each input and output node is fixed to a training value) is P+(X). The probability of being in a

state X with the unclamped environment is P"(X).

P+(0a) is 1fr since each of the trained states are equally probable,

P" (Oa) 1=0 = P+(0a) can be assumed.

64

Markov model of unclamped state

The initial probability of being in an unclamped case is related to the probability of

being in a training state;

p- (Spl 1=0 = P- (Da) I=d 2N-n ,where Da Is the member of the training set that

corresponds to Sp over the input nodes, that is for all input nodes k, (Spl k ~ (Da) k'

P- (Spl 1=0 = 0 if there is no Da a member of the training set such that for all input

nodes k, (Spl k = (Da) k·

The progression of this system in time is given by;

P- (Spl I = r P b =0 P- (St» 1-1 p(b,p), where p(b,p) is the probability of passing from

state ~ to Sp in one bit change,

p(b,p) = 0, for more than one bit change,

p(b,p) = p((St» i)/N, for (St» i" (Spl i and (St» j ~ (Spl j .for i"i,

p(b,p) = ~P((~ i)' for Sb = SP' and

p((St» i) = Pi' if (St» i = -1, or p((~ i) = ~R' if (~i = 1.

These equations allow the converged state of the network to be calculated. The probability of

the trained states occurring can be calculated from the relevant unclamped states;

P- (Da) = r P b =0 P- (St»r(a,b), where r(a,b) is a relevance measure such that,

r(a,b) = 1 if (~k = (Da) k over the input nodes k,

r(a,b) = 0 otherwise.

Markov model of the clamped state

The initial probability of being in a clamped state is evenly distributed over the

hidden nodes;

P+(Spl 1=0 = P+(Da) 12N-n , where Da is the member of the training set that

corresponds to Sp over the input nodes, that is for all input nodes k, (Spl k = (Da) k'

65

P+(Spl t=o = 0 if there is no Da a member of the training set such that for all input

nodes k. (Spl k = (Da) k'

When a network is running in a clamped mode only the unclamped nodes are allowed to

change. This means that at each update the network states perturbs and then these states are

clamped. This situation is modelled by the equations;

P+(Spl't = r P
b =0 P+(St>l t.1 p(b.p). see previous definition of p(b.p).

P+(Spl t = r P b =0 P+(St>l' t d(b.p). where d(b.p) is a relevancy measure when the

network is clamped.

d(b.p) = 1. if (Spl j = (St>l j' for all j not input nodes.

d(b.p) = O. if there exists j such that (Spl j 7' (St>l j • where j is not an input node.

After letting the Markov model converge the probability of the trained states occurring can

be calculated from the relevant clamped states;

P+(0a) = r P b =0 P+(St>lr(a.b). where r(a.b) is defined above.

Training

The local update rule for the weights is;

6Wi j = ·6G.T/(P+j j' p' j j)' where G is the information function

p+ i j is the probability that unit i and j are both active in the clamped environment and p' i j

the probability that they will both be active in the unclamped environment. The values of p+ i j

and p' i j can be calculated from the Markov models above via the formulae;

P+ij = r P b =0 P+(StJl f(i.j. StJl •

P'i j = r P b =0 p' (StJl f (i. j • StJl. where f(i.j.StJl is a measure of the relevance 01 states

%. suclh that.

l(i.j.StJl = 1. if (St>l i = (St>l j = 1.

66

f (i ,j. St>l = 0, otherwise.

The network can be trained by this mechanism but will require a great deal of

computation. A similar performance can be obtained by judiciously selecting the hidden node

values and training the Hopfield net as if there were no hidden nodes and giving the hidden

nodes these specified values during training.

Input pattern coding

In order that a Hopfield net can model the training set, each training pattern must be

defined over all the nodes, including the hidden nodes. This means that an almost arbitrary

coding of the training pattern over the input nodes must be applied over all the nodes. This

network must be capable of modelling the training set, so several criterion must be satisfied.

Each node in the network is a McCulloch and PillS neuron and so is only capable of modelling

thresholded linear transformations. Therefore the output node must be a linear

transformation of the input and hidden nodes for the network to be capable of modelling the

training set. This must also be true of the hidden nodes in the network. These considerations

provide a constraint on the values the hidden nodes can take over the whole training set.

If a large network exists, random patterns over the hidden nodes may solve the

problem. However a more structured approach must be adopted to ensure suitable

performance.

The training algorithm for Hopfield nets make use of the correlation factor between

the two nodes concerned to specify the weight;

wi j = 11 rPk=IVkiVkj (for i '" j). This value depends on the hamming distance between

the bit vectors Vi and Vj . Namely;

rPk=IVkjVkj = p - 2·hamming_dislance(Vj' Vj)' From this equation it can be seen

that the correlation of two nodes can be increased by decreasing the hamming distance

between the nodes. A non linearity between input and output nodes is often asSOCiated with a

low correlation between these nodes. Providing hidden nodes with a small hamming distance

67

from both the input and output nodes provides the possibility of modelling the training set

with a Hopfield net. The hidden nodes provide a high correlation path between input and

output.

A necessary and sufficient criterion for linearity of the hidden and output nodes based

on these correlation values can not be found. This is illustrated by the examples in tables 4.1

a, b, c, that provide identical correlation values for the respective nodes but are linear and

non linear transformations respectively.

t~ pall 0 1 2 t~ pall 0 1 2

0 -1 -1 1 0 -1 -1 1

1 -1 1 -1 1 -1 1 1

2 1 -1 -1 2 1 -1 -1

3 1 1 -1 3 1 1 -1

a b
Table 4.1 a. & b. Linear transformations

t~ patt 0 1 2

0 -1 -1 1

1 -1 1 -1

2 1 -1 -1

3 1 1 1

Table 4.1 c. Non linear transformation

Therefore the correlation values of the Hebbian learning technique do not guarantee

correct representation unless we have a linear relationship between the input and output

nodes. It is the linearity of the transformation that is the signifICant factor and not the

correlation factors that determine whether a network can be trained. If a linear

transformation exists then the Hebbian learning scheme is valid otherwise new network

models with different hidden node values must be investigated.

68

Neural network reliability

A neural network can be trained on a set of data. Its ability to model this training set

and the ability to generalise to points not in the training set depends on the reliability and

predictability of the neural model. To formalise these ideas a mathematical definition of

reliability is given.

Reliability of network output = Probability that output is correct.

Given a network with a single output node and taking the simplified model of network

training, that is the network converges to model the training set perfectly but is unable to

predict the output over the other input values, we can give the following reliability

measures;

then;

Probability(correct outputltraining point) = 1,

Probability(correct outputlnot training point) = 1/2,

n = number of input nodes, N = number of training points,

Reliability = Probability(correct output) = (N + 2") 1 2n+ 1.

Representational reliability

Representational reliability of a neural model is dependent on the uncertainty in the

transformation that is being modelled. Since there are a large number of possible

transformations for a given number of inputs, the probability of correctly modelling a

transformation decreases dramatically as the training set is reduced.

Representational reliability = Probability that transformation is correctly modelled

Therefore given a perfectly modelled training set;

Probability(correct outputltraining point) = 1,

Probability(correct outputlnot training point) = 112,

69

then;

n = number of input nodes. N = number of training points.

N· = 2n - N = number of input points not in training set.

Representational reliability = Probability(correct model) = (112)N· .

Summary

The various training algorithms that exist for creating neural models of data have

been examined. These include those for feedforward systems. those based on backpropagation

and those for recurrent networks. such as Hopfield and Bolzmann nets. which use variations

on the Hebbian training rule.

The local node level effect of the backpropagation training algorithm was examined and

the types of internode interference that can occur discussed. Two reliability measures of the

trained networks were introduced as a formal technique for examining the effect of training

set size on the reliability and predictability of neural models. These measures will be used to

analyse the effect of node parallelisation and similar structural techniques on neural network

reliability (see chapter five and six).

70

Chapter 5. Paralielisation of Nodes in the Hidden Layer

Outline of chapter

The use of node parallelisation in neural systems is introduced. Parallelisation in the

hidden layer is introduced as a mechanism of introducing interdependencies between the

nodes. It is seen that this is one of the basic mechanisms for providing the training

algorithms with knowledge of the node representations in the hidden layer. It is shown that

sandwich parallelisation is natural in binary feedforward networks, and are indeed essential

for minimal representations of some transformations. A training algorithm is presented

making use of parallel nodes (ghost nodes). Sandwich parallelisation and polygonal

segmentation are examined as techniques for structuring the nodes in the hidden layers of

feedforward neural networks.

Introduction

Throughout this chapter we will be discussing bipolar feedforward network systems.

As previously demonstrated (Hinde '90), these networks only require one hidden layer of

nodes. Further work (chapter seven), addresses the number of hidden nodes required. The

network is fully interconnected between the layers and can represent any Boolean

transformation, given the number of input and output units.

In all the studies to date no structural dependencies have been applied to the hidden

layer of a neural network (Hinton '89, Rumelhart et al '86). This was done so that there

would be no Initial constraints on the network representations. The training was allowed to

proceed freely in order that it may converge to an optimal solution. Any extra constraints of

intemal structure were neglected. This may have been because authors felt that they may

inhibit the training process, although none explicitly mention this problem. This lack of

structure may be deemed appropriate for biological reasons, Wasserman ('72) however,

shows that biological neural linkages are predetemnined to a large extent and that the

71

topology of the brain is highly determined at birth.

The main disadvantage of standard training algorithms. that is backpropagation. is the

way they treat each hidden node identically and in isolation. When the weight space of a hidden

node is updated. only the effect of that node on the error function is taken into account. The

way that the hidden node interacts with the rest of the hidden layer in order to model the

transformation is not taken into account with this approach.

In the case when a hidden node correctly models a subspace of the training set over

which it makes the most significant contribution. then it is better to leave it unperturbed

rather than spuriously adjusting it for short term gain in error minimisation. It would be

better to perturb another node in the hidden layer to ultimately produce a beller model for

the incorrectly classified training examples. This will become more apparent when we

examine sandwich nodes and their behaviour under the learning algorithm.

Short term error minimisation often leads to the undesirable property that existing

neural representations that model the transformation well. are knocked out to produce non

optimal locally minimal representations. Introducing some structure and dependencies into

the hidden layer ensures that adjustments to each hidden node can act in concert with the rest

of the representation. The simplest dependency relation between nodes is that of parallelism

which is discussed below.

Nodes are conSidered to be parallel if they have identical weight vectors (to a scalar

factor) defined over the same inputs. with possibly distinct bias weights. The ideas discussed

in this chapter are more simple. essentially that node parallelisation is implemented via

duplications in weights space. namely one or more nodes shadow or ghost the reference node.

their weights are just a duplicate of the reference node or its simple negation.

Parallel or as introduced in Messom ('92) ghost nodes allow for general duplication

of hidden nodes (their structure are discussed later). which can then be used as parallel

nodes that output to a Single output node. providing a dependency between the hidden nodes of a

particular neural net.

72

Structure in the hidden layer

Two types of dependencies are investigated, both are closely related.

i. Parallel hidden nodes.

ii. Sandwich hidden nodes.

i. Parallel hidden nodes;

are defined by the criterion that the bias weights are independent while all the other

weights are pairwise identical. That is, given two nodes, they are Parallel if the weight

vectors are identical except for the bias factors. (See fig 5.1 a).

ii. Sandwich hidden nodes;

are defined by the criterion that the bias weights are independent while the other

weights are pairwise additive inverse. That is, given two nodes, they form a sandwich if the

weight vectors are additive inverses except for the bias factors. (See fig 5.1b).

a b

Fig 5.1 a. Parallel nodes in two input space, b. SandwiCh nodes in two input space

Sandwich nodes are a pair of close opposite facing nodes that isolate a small subspace

of the input region. The advantage of using sandwich nodes over arbitrary single nodes Is that

the sandwich node will isolate a given region, which it will contribute a positive or negative

decision, while not contribute significantly to the outer regions. That is the sandwich node

behaves as an atomic declaration of truth over the input space. This means that the overall

definition of the input space can be constructed via a number of atomic declarations.

Introducing the dependencies above offer several advantages. The first advantage is one

73

of representation. Introducing dependencies in the hidden layer, reduces the variety of

representations of the given transformation. This gives more structure to the network

representation. The networks can then be reasoned about, since their structure will be

transformation dependent.

The second advantage of the interdependent nodes in the hidden layer is the natural

improvement in computational performance that it offers. The weights being equal means that

the weight component of the input of a node need only be calculated once, rather than every

time each node is passed. The ghost system offers this property of a reduced computational

load.

Ghost nodes

Ghost nodes are nodes that are dependent on at least one other node in the hidden layer.

There are two basic dependencies that exist corresponding to the parallel and sandwich cases.

i. the ghost nodes are parallel, this means that they have identical weight spaces,

that is they share a weight space vector, although they have independent bias weights.

ii. the ghost nodes are anti parallel, this means that the two nodes have weight spaces

that are additive inverse, although they have independent bias weights. These antiparallel

ghost nodes also share a weight space vector although one node must apply a negate the vector

before making use of the weights.

Training

The training of ghost nodes proceeds in a similar manner to standard backpropagation.

Each ghost node is updated by the backpropagation algorithm in a manner proportional to its

contribution to the error function. However since the ghost nodes shadow each other any

update on one ghost node is also applied to the weights of the corresponding ghost nodes, that

is the shared weight vector is updated each time one of the ghost nodes are trained. The bias

74

weights are the only weights that are not updated when corresponding ghost nodes are updated.

Segmentation of the input space

Two antiparallel planes that are distinct, that is not coplanar isolate a segment of the

input space. The sandwich so formed provides an output of say + 1 for the region between the

planes, while for the region outside the sandwich there is an effective output of zero, since

the individual planes contribute + 1 and -1 which effectively cancel. A neural network

consisting of a single pair of nodes forming a sandwich effectively segments the input space

into three regions. That inside the sandwich providing an output of +1 say, while for the two

regions outside the sandwich provides the output -1. (The -1 is aChieved in the region

where the sandwich node effectively makes no contribution by providing a bias of -Ion the

output node of the network).

The single sandwich can be implemented by a pair of ghost nodes that are antiparallel.

Similarly we can segment the input space into any number of parallel regions with an array

of antiparallel planes, (see fig 5.2). This is achieved by interleaving two sets of ghosted

nodes that are all parallel but mutually anti parallel between the two sets.

Fig 5.2 Segmentation of the input space

75

In this way, a region between two antiparallel planes will provide an output of say,

+1, while its neighbouring region, contained by the neighbouring pair of antiparallel planes

will provide the output -1. And carrying through this analysis for the whole input space, we

have parallel regions where the output value is either +1 or -1. Therefore we can segment

any input space into arbitrary bands of parallel regions with a paired set of Interleaved ghost

nodes.

Utility of ghosted segmentation

The utility of the parallel segmentation of the input space using ghosted arrays of

antiparallel nodes comes to light when we consider general Boolean transformations from

multiple inputs to a single output. Essentially any transformation can be implemented as a

parallel segmentation of an input space. Each parallel segmentation yields a unique

transformation, but of course each transformation can be modelled by many parallel

segmentations. We can see the truth of these statements by following the analysis below.

i. Each parallel segmentation yields a unique transformation;

This follows directly from the fact that we can implement a neural representation of the

parallel segmentation of the input space, which can in turn provide output values for specific

Boolean input values. This in turn defines a transformation which is that yielded by the

original parallel segmentation of the input space.

if. Each transformation can be modelled by many parallel segmentations;

This is less obvious but can be proved by construction. Consider a point in the Boolean input

space, say a. There exists a hyperplane that goes through a but does not intersect the

hypercube that is the whole input space except for the point a, which also is not parallel to

any plane that goes through any two points in the Boolean input space. There is a plane

parallel to this one that goes through the point not(a), but does not intersect the hypercube

that is .the whole input space except for the point not(a).

We can continuously transform the first plane going through point a until we reach

the second plane going through point not(a). As we do this, the plane passes through every

76

point in the Boolean input space, so inducing an ordering on the Boolean input space,

beginning at point a and ending at point not(a). This ordering is a strict ordering by the

criterion that the original plane is not parallel to any plane going through any two points in

the Boolean input space.

Any change in output value as we examine two neighbouring input values in this

ordering of input points, can be implemented in a network representation by the addition of

an appropriate ghost node parallel or antiparallel to the original plane through point a ,

which passes through the point that bisects the line between the two input points in question.

Examining the whole ordering yields a ghosted network of interleaved parallel and

antiparallel nodes. This ghosted network yields a parallel segmentation of the input space.

Choosing another point say b and another suitable plane and carrying through the

analysis would have yielded another, different segmentation of the input space. Therefore any

transformation can be modelled by many parallel segmentations of the input space.

Representing transformations via ghosted parallel segments

The analysis above proves that any transformation can be modelled by an array of

ghosted parallel and antiparallel nodes. Finding this ghosted network that is suitably minimal

provides the major difficulty. Constructing such a network fOllowing the analysis above does

not guarantee minimality and may require networks with a large number of hidden nodes.

This problem is overcome by allowing the network to be trained by the ghosted

backpropagation training scheme. (See appendix C).

The parity transformation for n inputs can be modelled by n hidden nodes. This is the

minimal representation for the n dimensional parity problem and in fact can also be modelled

by a suitably ghosted system using just n ghost nodes. This ghosted representation can be

constructed or discovered by training. It should be noted that the convergence algorithm will

often get stranded in local minima and so must be carefully monitored.

77

Models of the parity problem using ghost nodes

Parity in two dimensions as discussed in chapter three is the exclusive or problem.

This could be modelled by two parallel nodes. The network structure is shown in fig 5.3,

while the weight matrix that define the hidden layer are shown in fig 5.4a. The weights shown

are in the form (bias, weigh,-l, weight_2, .. ,weighl_n).

Fig 5.3 Ghosted neural network model of the parity problem

-2, 1, 1, 1
3,-1,-1,-1,-1
-1,1,1,1,1 (' ., .,)

o -1 -1 -1 , , ' , , -1,-1,-1,-1,-1
1, 1, 1 2, 1, 1, 1

3, 1, 1, 1, 1

a b c

Fig 5.4 Weight matrices for the parity problem in a. two, b. three, and c. four dimensions

Fig 5.4b and fig 5.4c show the matrices for the parity problem in three and four

dimensions. Parity in general dimensions follows the same paHern. If a given input vector

has the output + 1, then the same vector perturbed by just one bit will give the output value

-1. We can construct the general matrix of weights for parity by starting with the point (-

1,-1, ... ,-1) and traversing the input space to the point (1,1, ... ,1). We segment the Input

space into parallel regions that provide the outputs +1, and -1 respectively. These regions

are formed by the planar boundaries that have the structure, just one input has value +1, no

more than n-2 inputs have value -1 etc. Matrix representation is distinct for odd or even

number of input nodes due to the structure of the problem. An odd number of input nodes that

all have the value +1, will require the output + 1, while an even number of input nodes that

all have the value +1, will require the output -1. Fig 5.5 a & b show the weight matrix of

the hidden nodes of the neural network models of parity.

78

-(n-1). 1•.... 1

n-3.-1 •....•...• -1

-(n-5). 1 •....•...• 1

n-5.1 •....•...• 1

-(n-3).-1 •....•.... -1

n-1. 1 •....•...• 1

a

n-1.-1• -1

-(n-3). 1 •....•...• 1

n-5.-1 •........• -1

n-5. 1 •........• 1

-(n-3).-1 •....•...• -1

n-1. 1 •....•...• 1

b

Fig 5.5 Matrix of weights for the parity probtem with a. Odd number of input nodes. b. Even

number of input nodes

Ghosted nodes for real valued inputs

We can apply the ghosting techniques to certain classes of transformations from real

valued input spaces to Boolean output spaces.

Transformations from input spaces whose areas of interest are. or can be

approximated by. parallel segments or intersections of parallel segments are ideal for

implementation via the ghosting procedure. See fig 5.6 & 5.7 for examples of segmentation of

the real line and plane.

" • 1 " " - 1 " • - 1 "

Fig 5.6 Segmentation of the real line

79

Fig 5.7 Segmentation of the real plane, forming two polygonal regions

Encapsulated ghost nodes

Using ghost nodes in the neural network system ensures that the structure of the

hidden nodes is well defined. This does not mean that the backpropagation algorithm proceeds

without error interference and destructive learning (as discussed in chapter four). A method

that can be employed to reduce internode error interference is to add an extra layer of nodes
I

that encapsulate the sandwich node function. The network structure is illustrated in fig 5.8

which shows the sandwich nodes which encapsulate the function of two planar nodes. With

this network structure the error effects of incorrectly classified points are not back

propagated to sandwich units that do not significantly contribute to the error.

Fig 5.8 Encapsulated sandwich node network structure

If a training point is significantly away from the pair of planar nodes that make up

80

the sandwich, the contribution of each is approximately equal but opposite in sign effectively

cancelling each other, so stopping the error backpropagation. If the training point is close to

at least one of the planar nodes, then significantly different contributions will be made by

each node so providing a contribution to the error from the sandwich pair. In this case error

backpropagation and weight update occurs.

Polygonal segmentation

A sandwich node is constructed from two planar nodes. Similarly more complex

encapsulated regions can be constructed by employing more nodes. Three nodes form a

triangular segmentation region, this is illustrated by the fig 5.9. The network structure that

can support this encapsulated polygonal segmentation is shown in fig 5.10. More planar nodes

can be employed to form encapsulated polygonal and polyhedral segmentation units.

Fig 5.9 Segmentation of a two dimensional space into triangular regions

The encapsulated polygonal segmentation units have the same advantage as the

encapsulated sandwich nodes of non interfering error backpropagalion. The encapsulation of

node representations is discussed in greater detail in chapter six.

81

Fig 5.10 Network structure employing encapsulated triangular units

Summary

This chapter has introduced node parallelisation as a mechanism for structuring the

hidden layers of a neural network. Its utility in modelling several transformations.

particularly parity. has been demonstrated. Parallel nodes as a scheme for segmenting real

valued input spaces have been investigated and shown to be a suitable mechanism for

constructing linear quantisers.

Finally. encapsulated sandwich and polygonal segmentation nodes were introduced as a

mechanism for solving the intralayer error interlerence problem that causes destructive

learning under backpropagation training.

82

Chapter 6. Making use of Knowledge in Neural Nets

Outline of chapter

The major problem associated with neural network systems is the lack of structure to

the representation. Each transformation is fully represented by a large network structure

often with a large degree of distributed activity. This property restricts the ease with which

the behaviour of the network can be predicted. It also is almost impossible to combine

properties of different networks to produce a more reliable network structure.

Neural network representations lack a knowledge structure with which they can be

successfully reasoned about. In this chapter several new structures are introduced which go

some way towards solving this problem.

The parallel sandwich node is introduced as the atomic element of a monotonic neural

system. The concept is extended to general sandwich nodes which allow a knowledge

representational scheme to be built. This scheme allows the neural network subsymbolic

reasoning processes to be formalised and encapsulated. Finally the reliability of sandwich

node systems are investigated, showing that even when they are trained over reduced data sets

the neural network behaviour is reliable and predictable.

Knowledge representations of neural networks

The simplest knowledge structure is the neural network node itself. These can be

combined in a predetermined manner to produce more complex knowledge structures which

can be manipulated and interpreted in a well defined symbolic manner. This Introduces the

possibility of providing a neural network environment with properties more familiar in

knowledge engineering, the atomicity of knowledge and the monotonicity of information.

Building upon these basic structures, well defined nonmonotonicity can be introduced as

information is updated and manipulated.

Neural network behaviour is hard to predict. Neural networks have been modelled as

83

systems of Boolean transformations and as rule systems but neither offers a high level model

of the subsymbolic behaviour of the neural networks.

Underlying physical

- ~Ytm 1--
Interacting physical

• I elements

- ~ T -r- - - -j - t- -
Functional knowledge UndeJying Iunctional

, I motation

- - T -r- - - - -1-t
Numerical representation I. 11: I Physical activity

<> -- - Real interaction

Virtual Interaction

Actual path of interaction

Fig 6.1 Interaction between models of neural networks and actual neural network systems

The need for a high level model of neural systems can be seen with the system

interaction model in fig 6.1. This model draws on the three level human-computer interface

model of Clarke ('86). which discusses the different levels of interaction between user and

machine. In fig 6.1 we examine the various levels of interaction between a neural

implementation of a physical system and the human model of the neural network.

At the basic bit level we have the one to one mapping between the neural network and

Its mental model. Each local process in the neural network is understood and any particular

interacting elements of the network process can be understood. A higher level understanding

of the network depends on the functional model of the network. In the neural network side of

the model this may be the functional declaration of the neural network processes. The mental

model would be an understanding of the functional processes.

As demonstrated by Clarke. the path of interaction between the two sides of the model

is via the base level of the model. that is via the neural network implementation. so even if

the underlying functional model is well known. it is manifested via the neural network

84

behaviour. We can develop a higher level model of the neural network, a Boolean model or a

rule based model, but even these are unreliable if they are derived from the neural network

behaviour over a limited number of input cases. If these models corresponded to the

interacting physical systems that produced the network behaviour itself then we could

construct a reliable predictive model of the neural network. This is not the case with the

training schemes used at present. A general prescriptive model of the neural network based

on well defined knowledge elements within a neural network that interact in a well

structured manner will provide the basis for a high level model of the subsymbolic processes

within the neural network. The high level model of the neural network will begin to allow a

high level model of the relevant physical system to be derived.

Producing models of general physical systems will require sophisticated knowledge

elements within the neural network. Particularly simple knowledge elements such as

sandwich nodes and parallel nodes are discussed in this chapter in the hope that future work

will build on these structures to provide suitable elements to model general physical systems

(see chapter nine).

Knowledge elements and subsymbolic reasoning

The processing in neural networks have been described as subsymbolic. All the

transformations from input to output take place at the bit level. This is the case as only

simple -1 and + 1 signals pass between the neuronal processing elements. The processing

elements at each node treats all messages from different units identically and so the bit level

activity can not be viewed globally as a high level message passing paradigm.

Neural networks admit a subsymbolic reasoning model of their behaviour as follows.

The network is trained on sample data pOints, the training data which will be correctly

modelled by the network after optimal convergence of the training algorithm. This training

set can be viewed as the knowledge base of the neural network. The neural network execution

admits an inference engine on the knowledge base. Every input pattern produces a specific

output from the network and so this output can be viewed as having been achieved by a

85

process of subsymbolic reasoning. If the input point was part of the training set, then the

stored data point will yield the output that is stored in the knowledge base of the network. If a

novel input pattern is presented, a form of subsymbolic inference on the knowledge base

takes place yielding an inferred output.

The great disadvantage about the subsymbolic reasoning processes is that they are

generally ill defined. Different network structures that model the same training data will

apply different subsymbolic processes yielding oHen distinct outputs. This is extremely

undesirable if subsymblic reasoning is to be reliabfe and in some sense predictable.

Symbolic reasoning systems have the property that every conclusion reached can be

explained simply by the presentation of the subset of the rule base used to reach the

conclusion. Neural networks in general have a great deal of distributed activity that can not

explain a conclusion without quoting the structure of the whole network. The existence of

diverse subsymbolic processing schemes for distinct networks means that a general

explanation can not be implemented either. Each unique network can have its own explanation

scheme based on the execution strategy of the specific network.

Knowledge elements within neural networks go some way towards formalising

subsymbolic processing within neural networks to the point that they can be relied upon,

understood and explained.

Formalising subsymbolic systems

Subsymbolic reasoning in neural networks is extremely network dependent.

Introducing the concept of atomic knowledge elements into neural systems allows us to

develop a general framework in which subsymbolic reasoning can be discussed. A

subsymbolic paradigm can be modelled as a formal symbolic system if we can provide atomic

formulae and the combinations and transformations that can be applied. The subsymbolic

paradigm must therefore have;

a. atomic knowledge elements; the atomic formulae of the subsymbolic system.

b. well defined interconnection properties; the transformations that can be applied to

86

the atomic knowledge elements.

In a neural network environment the atomic knowledge elements are nodes, sandwich

nodes, subnetwork structures or olher more complex alomic elements. It should be noted that

sandwich nodes are not alomic in the sense Ihat they are constructed from two nodes, but are

indeed atomic knowledge elements since they specify atomically whether an input pattern is

within a region or not and there is no complex interaction within the sandwich node.

The interconnection properties relate the possible firing patterns of the atomic

knowledge nodes and how they can be connected to form the output.

Given this formal structure of the knowledge neural networks, training can proceed

in two ways.

i. Specified; the network is constructed on the basis of the properties of the knowledge

atoms and their connection properties. The behaviour of this network will be perfectly

predictable since it has been specified.

ii. Learned; the network is presented with sample data points and trained, subject to

the constraints of using the atomic elements and the specified interconnection patterns

allowed. These constraints may limit system identification but if knowledge about the system

exists, the network can be explicitly structured with suitable knowledge elements to improve

the automated system identification. On convergence the subsymbolic reasoning properties

can be predicted by examining the knowledge atoms employed by the network and the specific

connection patterns employed by the converged network.

The execution of the network can be viewed as a subsymbolic reasoning process that

can provide explanation of the conclusion reached. An input data point is presented to the

network. An output is computed which is explained by the following sequence.

i. Disclose the atomic knowledge elements that fired.

ii. Disclose the interaction pattern or connection pattern that was employed to reach

the conclusion.

iii. Disclose the training patterns that have similar claSSifications and corresponding

connection and firing patterns.

This explanation sequence recognises an input pattern that is one of the training data

87

and .gives its relevant constructed knowledge class. Given an input pattern that is not a

training point, it will identify the pOinl"s relevant class, explain the structure of that class

in terms of the fired atomic elements and also present examples of the training set that have

the same class. Such a neural network system can be fully understood and so prove to be

reliable.

Interpretation of neural networks

A feed forward network system can be naturally interpreted as a functional

transformation. Therefore, there always exists an interpretation of the network at this

lowest level. For large systems, this form of interpretation is cumbersome and

incomprehensible. This means that a more structured approach must be adopted.

The interpretation of a network representing a Boolean transformation Is well

documented. The transformation can be seen to be implemented by a set of logical rules, this

is discussed by Hinde ('90) and in chapter three. However these basic rule systems are not

easy to interpret, each nodes contribution being viewed in a possibly verbose logical form

rather than an arithmetic functional form.

The logical interpretation of networks can be extended to the analysis of parallel

ghost nodes. The sandwich nodes are an aid to interpreting ghost node network structures.

The structure of these nodes should be maintained, even when viewing them as logical

transformations since these structural units in the networks provide atomic non interfering

encapsulated representations about which we can reason. Reasoning about the behaviour of

the net is simplified with these sandwich and ghost concepts.

Sandwich nodes

A sandwich node is a pair of close opposite facing nodes. Formally this means that a

single sandwich node is a pair of weight vectors, which are mutually inverse and the biases

88

are close. The condition that the biases are close is satisfied if there are no other nodes in the

network parallel to the sandwich node which have scaled biases larger than one bias but

smaller than the other. This means that there are no other nodes in the network that are

between the two nodes in the sandwich.

Closed Sandwich

Fig 6.2 a. A sandwich node in three space

Such a sandwich can be viewed as an isolating element in network. Over the region the

sandwich isolates, it is the only contributing element. Everything that is stated about this

region is only provided by the sandwich, (see fig 6.2a). Similarly we can consider an open

sandwich.

~ Open Sandwich

Fig 6.2 b. An open sandwich node in three space

When a single node isolates a region such that all other nodes are nil-separating

hyperplanes of that space, then essentially that single node sandwiches off that region. It is

the only node that oontributes to that region, adding just a bias weight to the other side of the

sandwich. (See fig 6.2b).

Pairs of antiparallel ghost nodes (see chapter five) can be oonsidered to be single

conceptual structures called sandwiches. Individual nodes that are not ghosted can be

considered to be open or half sandwiches, if they are nil oontributing in each half space of the

89

other hidden nodes. A node is nil contributing in a subspace if its contribution in this region

is a fixed value.

Formalised subsymbolic reasoning with sandwich nodes

General sandwich nodes have the following formal structure which defines an atomic

knowledge element. The definition of a sandwich node can be extended to that of a node formed

by two nodes that do not intersect within the input space, that is they de not have to be

parallel. A single node can be classed as an open sandwich node.

The interconnection constraints of a sandwich system are defined by the constraint

that the sandwich nodes in each layer must not intersect in the input space and must not be

nested.

Due to these constraints only a single closed sandwich node or a coherent set of open

sandwich nodes will fire in each layer. This is the case since each sandwich node isolates a

convex subspace of input space and no sandwich nodes overlap, therefore if a sandwich node

fires, only one will fire. A set of open sandwiches can coherently isolate a convex subspace of

the input space, since they do not intersect each other or any sandwich node, therefore if a set

of coherent nodes fire, then no other coherent set of open nodes will fire.

These criterion ensure that the input space is structured into well defined convex

spaces in which a specified output can be defined. The output layer then consists of selecting

suitable subsets of the convex spaces such that the required output is given. These properties

can be illustrated by considering several simple examples with the relevant properties.

Examples

To simplify the discussion and the diagrams employed, the following examples are

from an input space of two dimensional real values with an output space of Boolean values.

The analysis is valid for higher dimenSions and subsumes Boolean input spaces.

90

o

a b

Fig 6.3 a. A decision region of an open sandwich node, b. Unear separation by an open

sandwich node

A single open sandwich can isolate any linearly separable set of samples. One side of

the node gives an output of +1, the other -1 . See fig 6.3 a & b.

o

x xx
o

c d

Fig 6.3 c. Decision region of a closed sandwich node, d. Segmentation by a closed sandwich

node

A single sandwich node isolates a space with "exclusive or" properties. These sample

points are not linearly separable. The sandwich node gives an output of + 1 within the

sandwich and -1 outside of the sandwich. See fig 6.3 c & d.

91

Fig 6.4 Coherent segmentation with a set of open sandwich nodes

A set of coherent sandwich nodes isolate convex region of the input space (see fig 6.4

for an illustrated example). Each node provides an output of + 1/3 on the positive side of the

node and an output of -5/3 on the negative side of the nodes. These node values give a coherent

combination of the outputs to provides value of +1 for the convex region within the open

sandwich nodes and a value of -1 in the region outside of the set of open nodes.

Interacting sandwich nodes

For general sets of data that can not be isolated by a single convex region, a set of

interacting sandwich nodes must be employed. In fig, each sandwich node can provide an

output of +3/2 within the sandwich nodes and -1/2 in the region outside the nodes to produce

a combined output of +1 within the sandwiches and -1 outside them. This same system can be

viewed in several different ways, either as a system of three closed sandwiches that are flush

together with two extra open sandwiches, or a single closed sandwich surrounded by two open

sandwiches. Whichever interpretation is adopted suitable coherent output values of the

various nodes exist. Values of +1 and 0 inside and outside of the positive sandwiches, while

the negative sandwich in the middle with the values -1 and 0 inside and outside with outputs

of 0 and -1 for the relevant open sandwiches, defines a suitable segmentation of the input

space.

92

Fig 6.5 Segmentation of data using closed sandwiches

Subsymbolic reasoning in general sandwich systems

Given a sandwich representation of a training set, either specified or learned through

a learning algorithm such as the ghost node training of chapter five, execution of the network

can proceed as a well defined system of subsymbolic reasoning. Given the network in fig 6.6a

we can ask a query about point A (fig 6.6b). The network execution reveals that an answer of

+ 1 is given. The explanation of this solution is given via the presentation of the relevant

coherent set of nodes, fig 6.6c and any training patterns that are part of this atomic

knowledge element. More complicated cases where interacting elements exist are dealt with

via a similar process, where the relevant interacting elements constructed from atomic

elements are presented in the explanation.

O/X~ -< X X
X

XXX o
o
~ 0"
··X O

a

O/X~ -< A X X
X

o XXX
o
~ 0"
··X O

b

/X~ -< X X
X

c

Fig 6.6 a. Segmentation of a set of data, b. Query of input A, c. Explanation region of query A

93

Sandwich nodes and hidden layers

The structural constraints associated with sandwich nodes ensure that no complex

Boolean interaction oocurs between the sandwich nodes of each layer. This ensures that a

linear combination of the sandwich nodes exist to provide the required output values.

Therefore with the relevant sandwich node constraints only one layer of hidden nodes is

required to model any problem. If explicit encapsulation of sandwich nodes Is required as

discussed in chapter five then an extra layer of hidden nodes are required. This is illustrated

in fig 6.7 a & b, for the two input and multiple input case.

a b

Fig 6.7 Explicit encapsulated sandwich nodes a. Two input case, b. Multiple input case

Explicit node encapsulation

Node encapsulation relies on the existence of a neural model of a region of the input

space in which the output values are defined by the training set, while the output of zero is

given for the remaining regions of the input space. A few simple examples of node

encapsulation are examined.

The simplest case is when a single value of +1 or -1 is required on a single convex

region of the input space. With a single node the activation function can be implemented via a

node with a single input and a bias of 1.0. This has an inpuV output relationship illustrated

94

in fig 6.8. Similar activation functions for output values of -1 and differenl regional

boundaries can also be implemented.

_----+1

o

Fig 6.8 InpuV output relationship of node d, fig 6.9

Fig 6.9 Explicit encapsulation of a sandwich node

An encapsulated sandwich node of a region defined by two lines can also be illustrated.

Fig 6.10a shows the region of interest, while fig 6.9 shows a suitable network structure in

which the node weights are defined as, node_a{O,l,l), node_b{O,l,·l), node_c{-l,l,l)

and node_d{l,l).

a b c
Fig 6.10 Sandwich segmentation of a region of the input space, a. Shaded region of interest, b.

Output from a standard node, c. Output from the encapsulated sandwich node, making use of

the activation function

The output of node_c is illustrated by the figure 6.10b which is defined over the

whole input space and does not encapsulate the node function to the desired region. The output

95

of node_d is shown in fig 6.10c, which is encapsulated to the desired region.

The function of a transformation over the whole input space can be constructed by

using several disjoint encapsulated nodes that provide the correct output over the relevant

region in which they contribute. An example in which a closed convex region is employed to

construct a suitable encapsulated model of a problem is illustrated below.

Fig 6.11 Neural network structure that employs triangular encapsulation and biplanar

segmentation

Figure 6.11 shows the network structure used to model the problem while fig 6.12a

shows the regions of the input space that are of interest. The weights in the neural model are

defined by the input segmentation nodes node_It (-1 ,-2,1), node_12(-I, 1 ,-2),node_13(-

1,1,1), the hidden decision region nodes node_a*(1 ,-1 ,-1), node_b*(1 ,-1 ,-1),

node_c*(2,1,1,1), node_d*(I,-I,-I), the encapsulated sandwich nodes node_S*(I,I) and

the final output node node_e*(O,I, 1,1,1).

a b c
Fig 6.12 Segmentation of the input space into regions of interest, a. Shaded regions of

interest, b. Output from an output node defined by three hidden nodes (lines in the input

space) forming a triangular region, c. Output from an output node defined by two nodes (lines

in the input space)

96

Figure 6.12 b & c show the standard output values of the decision nodes node_c and

node_d respectively. These contribute in regions that we do not require and so an activation

value must be applied. The output values from node3S" is shown in fig 6.12d, while the

output of the total system node_eo is shown in fig 6.12e. The output values for the other

regions of the input space where the output is required to be -1 can be constructed in a

similar manner. However if all of the remaining regions must provide an output of -1, we

can achieve the outputs shown in fig 6.12f with a small negative bias applied to the output

node, that is give the weights node_e(-O.01, 1,1,1,1).

d e f
Fig 6.12 d. Encapsulated sandwich activity of triangular node, e. Activity of encapsulated

system of a triangular node and three biplanar segments, f. A general system of activity

Putting knowledge into neural network models

Given a training set that is already modelled by a neural network or an extension of a

set of data that has already been modelled, then automated backpropagation training

techniques need not be employed. The knowledge available can be utilised to directly model the

new training set. If known neural models do not exist for the subsets that form a disjoint

partition of the new training set, then only a partial model can be constructed. The remaining

components must be constructed via an automated training scheme. These problems are

outlined below and illustrated by examples below.

97

There are three main mechanisms for deriving larger training sets from smaller

ones. The first is that of the addition of input nodes so increasing the number of possible

input patterns. The second is the expansion of the training set to cover a region of the input

space that was not modelled before, that is the data consist of two or more subsets that can be

modelled independently and amalgamated. The third and final mechanism for training set

expansion is the general increased number of data points in the regions of the Input space that

are already modelled so leading to greater acuity in the neural model required. The first two

cases can be dealt with via the amalgamation of suitable neural models of the subspaces and

are discussed below. The third case requires automated training to be applied to extensions of

the models that already exist so leading to models with greater acuity. This is discussed

further.

Increasing input dimension

An n input data set can be viewed as two n-l input data sets. That is the two sets define

the values over the n-l subspaces of the n dimensional input space. If neural models of the

data sets of the n-l subspaces exist then we can construct an n input neural model of the

whole data set. This can be achieved via the use of encapsulated sandwich nodes that provide

the required input values over the relevant subspace and an output value of zero over the

remaining region. Fig 6.13 shows a neural model of one of the n-l subspaces (in this case n

= 5), a similar neural model will exist for the other n-l subspace. The four input model's

output node is defined by the weights node_04(b,wl,w2,w3'w4).

Fig 6.13 Neural model of a four input data set

98

For this example, the five input neural model must provide the correct output

depending on whether the input data point is in the first four dimensional subspace or the

second. Amalgamating the two submodels directly via summing the outputs and thresholding

them is two simplistic and will only provide the correct output when the two submodels agree

on the output over the four input nodes (fig 6.14a). If the two submodels provide a

conflicting result the total output will be zero and no information can be gained .

...... ,.,,'utputs ±1

utputs ±l,O

a b

Fig 6.14 a. Simple amalgamation of models leading to invalid outputs, b. Encapsulated

sandwich models amalgamated to produce valid output

Making use of encapsulated sandwich nodes that ensure the respective submodels give

an output of zero over the region that they do not model ensures that a correct five input

modal is derived. This can in practise be achieved in two ways. The use of encapsulating and

activating nodes in the final layer or in the hidden layer.

Inputs Outputs -1 +1

-1 -1 -1 0.0 0.0

+1 0.0 +1 -1 +1

Table 6.1 a. Output values of node A, the activation node used for the encapsulated sandwich

nodes with one activation input, b. Output values of node B, the activated encapsulated

sandwich nodes

The activation node used for this example is given by the node weights node_A(-I,I),

99

whose output values are shown in table 6.1 a. No output is given when the fifth input node

(node X in fig 6.15a) has value +1, since the output of the submodel is required for this

value. An output of·l is given for activation when the input is ·1 as this value is required to

cancel with the activity of the whole system, which is ·1 when the fifth input node has value

.1.

The encapsulated sandwich node is defined by the weights node_B(O,l ,·1), whose

output values are shown in table 6.1 b. The input values are the inputs to node_A and the

output from the five input node system, node_O. (The weight values of the five input system

are given by the weight matrix node_Os (b· ws' w1' w2' w3' w4' ws), where 2.ws > b + L4i= 1

I Wj I). As can be seen from the output values of node_B, the encapsulated system has an

output of zero for the region not modelled by the sub model and the specific output ±1 for the

region modelled by the submodel.

a b
Fig 6.15 Neural model of half of the five input training set based on the four input model

using a. Encapsulated sandwich nodes in the final layer, b. Encapsulated sandwich nodes in the

hidden layer

The activated encapsulation nodes can be implemented in the hidden layer. Effectively

each hidden node provides an output of zero when node_X has value ·1, while providing the

same output as the four node model when the input node node_X has value +1 (see fig 6.15b).

Another amalgamation of subspace representations Is considered in chapter seven that does

not make use of the explicit encapsulation of the subspace activities. Instead the implicit

nature of the subspace representation's interaction is exploited, implementing an

100

amalgamation scheme that makes use of standard nodes in a single hidden layer.

Amalgamating regional models

The example above essentially solved the problem of amalgamating submodels of a

problem where the submodels where defined over a reduced set of inputs, that is a lower

dimensional space. The case where the submodels are defined over different regions of the

same dimensional space can also be solved with a suitable amalgamation scheme. As before we

must be able to produce activated encapsulated models of the subregions over which the given

submodels are valid. This means that a trigger node or nodes are required which provide the

output +1 if the submodel is valid over the given input point and -1 if the submodel is not

necessarily valid.

-1 + 1

-1 -1 -1

+1 -1 0.0

Table 6.2 Output values of node C, the activation node used for the encapsulated sandwich

nodes with two activation inputs

We can illustrate this with the example below. Take the four input network model of

fig 6.13 to be the given submodel of a region of the input space. Two nodes node_ Y and node_Z

are the activating inputs whereby if both node_ Y and node_Z give the output +1, the output of

the given submodel is valid. The structure of the activation illustrated in table 6.2 is given

by the weights node_C(-I, 1,1). This is the generalisation of activation node_A to two

inputs.

101

a b

Fig 6.16 Neural model of a subregion of the training set defined by the nodes Y and Z, based on

the model of the subregion, using a. encapsulated sandwich nodes in the final layer, b.

encapsulated sandwich nodes in the hidden layer

Fig 6.16a shows the case where the activated encapsulated sandwich node is applied to

the output node. The output node node_O is analogous to the example above, (The weight

values of the system are given by the weight matrix node_O(b·ws- w6,w"w2,w3,w4'wS'

w6). where 2.(ws- w6) > b + r.4i=, IWil). This system provides the required output over

the specified region and zero everywhere else, so allowing it to be immediately amalgamated

with models of disjoint subregions of the input space. The structure of the model using

encapsulated sandwich nodes in the hidden layer is shown in fig 6.16b. The construction of

these models are again analogous to the example above with the node_C acting as the activation

node for the sandwich nodes.

Neural model development

The final case to be considered is when a training set is enhanced by adding more data

points in the region that has already been modelled by the neural network. In this case the

data points that have been added are either correctly or incorrectly modelled by the old

model. If the new points are correctly modelled by the old network then no improvement can

be made or need be made. New points that are incorrectly modelled contribute to improving

102

the neural model. Since no separate model of the new data points exist a solution employing an

amalgamation technique is not possible. An aulomated training system can be employed

making use of the existing model. As the experiments of appendices A4 and 0 show this may

not converge to optimal solutions and often the previous trained model is lost. To overcome

the problem of convergence a larger network can be employed, with its greater

representational power.

Reliability of encapsulated sandwich schemes

The reliability of a sandwich neural network model can be examined in a similar

manner to the analysis of standard neural techniques based on the training sets employed. A

trained sandwich neural model contains the training set and the regions of the input space

that these data points occupy. There are essentially two situations to consider. Firstly the

unknown data point falls in the region that is modelled, if this occurs, we can identify the

region, the encapsulated nodes that fire and the members of the training set that are

characteristic cases for the given input region, whether the unknown data point is a training

point or not. That is;

Probability(correct outputlmember of modelled region) = 1.

If the unknown data point is not part of the modelled region of the input space no information

is available about the value that the point should take and so;

Probability(correct outputlnot member of modelled region) = 1/2.

Even this final uncertainty in network behaviour can be removed by ensuring that all regions

not modelled by the network explicitly have a specified output value of either + 1 or -1. That

is the whole of the input space ;s essentially modelled by the network and so becomes

perfectly predictable.

Summary

This chapter introduced the sandwich node as the atomic element of a monotonic neural

103

networ1< knowledge representational scheme. It was shown that the function of a sandwich

node or system of nodes could be encapsulated in a single node that only contributed to the

decision in a well defined region of the input space. This was illustrated with several

simplified examples. Finally the reliability and predictability of encapsulated sandwich

systems were seen to be greater than standard neural network techniques, since the

interaction between the hidden nodes of the sandwich systems were well structured and so

minimised.

104

Part Ill. Designing Neural Network Systems

Chapter 7. Network Size and Topology

Introduction

The number of input nodes and output nodes and the transformation being modelled

influences the number of hidden layers and size of these layers needed in the feedforward

neural network.

The number of input and output nodes is a function of the application domain itself and

so will be known. The transformation being modelled is typically unknown unless specialised

knowledge of the domain exists. Constructing a suitable network becomes a question of

knowing how many layers and of what size are required to model a possibly unknown

transformation, given the number of input and output nodes. The hidden structure of the

network between the input and output nodes that is needed to model a given transformation is

investigated in this chapter.

Existing results

Lipmann('S7), studying a four layer network (that is one with two layers of hidden

nodes) suggests that at least three times the number of nodes in the second hidden layer is

required for the first hidden layer. Lipmann argues that the second hidden layer would have

as many nodes as the number of disjoint decision regions in the input space where a decision

region is an area in the input space with a specified output. Each disjoinl region of the input

space would require a node in the second hidden layer to recognise whether the input case was·

in that region. The output can then be calculated for that particular input case. Each disjoint

decision region will be generated by at least three lines and so there will be three times the

number of nodes in the first layer as the second (see region A of figure 7.1). Lipmann's limit

is an upper bound as shown by the simple addition of one more line to figureT.1 creating at

least one more disjoint area, region B.

105

\

\
\

\

Fig 7.1 Three lines are required to enclose an area A, however an extra area can be created

by adding one more line giving area B

Mirchandani et al(,89) present some more results on the node requirement of the

hidden layer based on the number of linearly separable decision regions that exist in the

space in question. This limit provides a measure of the size of the feedforward network

required to model a particular problem, given the number of training examples. The result

presented is that M(H,n)= L"k=O~ and ~= 0, if H< k, where M(H,n) is the maximum

number of decision regions possible with H hidden nodes in an n dimensional space and ~

the standard binomial coefficient. This result gives an idea of how many independent training

points can be learned. To apply this analysis to the general case however, where the decision

regions are not necessarily known, is impossible. Therefore a general limit on the size

requirement of the hidden layer can not be provided from this result.

Huang et al('91) provide another comprehensive study on the number of hidden

neurons required in feedforward systems. They approach the problem in the same manner as

Mirchandani et al('89). That is, they consider the size of the training set and the number of

nodes required to model that set. For the special case of n dimensional Boolean functions with

one output they present the result that an {n° L«m+ 1)/ 2).1+ 1) element training set can

be modelled by a feedforward net with m hidden nodes. (LxJ is the largest integer less than or

equal to x). For a three input net we have a total Boolean training set of eight elements giving

a value for m of five. It can be easily verified by exhaustive search that only three hidden

nodes are required to model any three dimensional Boolean function. The work of Mirchandani

et al and Huang et al are examined in the context of real valued inputs in chapter eight.

106

~-

Hertz et al('91) discuss size limitations of feedforward systems, and offer the single

hidden layer limit, as does Hinde(,90), for the case of Boolean transformations. The question

of the size of this hidden layer is not discussed in depth by Hertz and the weak limit of 2",

where n, the number of input units, is given. This is the network in which each input case

has its own individual hidden unit to recognise it.

Properties of feedforward Representations

In studying neural networks several interesting representational properties have

been encountered. The first is that for some particularly simple transformations, very few

hidden nodes are needed. For instance, if the output is dependent on only two of the input

nodes, then even if we have a k dimensional problem, where k is a large number, only two

hidden nodes are required. A seemingly complex transformation like that of parity requires

only k hidden nodes for the k input case. (The modelling of the parity problem is discussed in

chapter five). The second point of interest is that there are many network representations of

each transformation, many of which will require a large number of hidden nodes. For

instance the parity case can be modelled in as many as 2k different ways using just k hidden

nodes, while it can also be modelled by a net which has hidden nodes that isolate a single input

example each. This case will have 2'<·1 hidden nodes for the k input case.

Splitting and projecting nodes

Given that the nodes represent hyperplanes in the k dimensional Input space, they can

be projected onto any other hyperplane in the space. The hyperplanes formed by considering

any input node and fixing the nodes value at + 1 or -1 defines two distinct hyperplanes in the

k dimensional input space. Fig 7.2 a, b, c, d, e shows how fixing an input node reduces the

dimensionallity of the given node.

107

a

A A' B B'

b c d e
Fig 7.2 a. A three input node. Splitting a node into its component parts by fixing one of the

inputs at, b. +1 or, d. -1, c. & e. Lower dimensional network that can emulate the original

network

The projections of the hidden node hyperplanes onto the input node hyperplanes can be

classified into three groups. See fig 7.3 for the original hyperplanes and fig 7.4 for their

respective projections.

Bisecting Reducing Splitting

a b c

Fig 7.3 Three general forms of nodes viewed with respect to a given input axis. a. Bisecting,

b. Reducing, c. Splitting. The projecting planes are denoted by 1 and -1

These three groups are respectively bisecting hyperplanes, reducing hyperplanes and

splitting hyperplanes. Bisecting hyperplanes can also be represented by the hyperplane

input node= 0, and so do not make a contribution to the points in the subspace other than as an

108

\

external bias. (Fig 7.4a). Reducing hyperplanes have a contributing projection in only one

subspace and in the other only offer an external bias. (Fig 7.4b). Splitting planes have a

contributing projection into both subspaces, input node= +1 or -1. (Fig 7.4c).

~ -1

Reducing

~ -,
Splitting

Fig 7.4 Views of the three types of nodes after spliHing along an axis, a.Bisecting, b.

Reducing, c. Splitting

The analysis can proceed in a similar manner for nodes with a general number of

inputs. (Fig 7.5a).

/

109

Fig 7.5 a. A general m input node

By fixing an input node at either +1 or -1 the m dimensional node can be split into two m-1

dimensional cases. The two splits 01 the m dimensional nodes are equivalent to the two m-1

dimensional nodes as seen in lig 7.5 b & c.

--

b

0 1

--

c
Fig 7.S The equivalence 01 two splits to the component nodes. the fixed input node acting as a

contribution to the bias 01 the projected node. b. Selling the node value at + 1. c. Selling the

node values at -1

110

Constructing network representations

Methods for constructing neural networks were "briefly discussed in chapter 1, but

they do not make use of the large body of knowledge that may exist about the transformation

being modelled. Huang et al(,91),s technique, makes specific use of the knowledge of the

training data to construct the network required to model the transformation. It does not make

use of any larger knowledge structures that may already exist, such as representations of

subspaces of the transformation (see chapter six). Techniques that amalgamate knowledge of

lower dimensional subspace representations into representations of the total transformation

are presented below.

Amalgamation of representations

Neural representations of a transformation can be constructed from the lower

dimensional representations that may already exist. This is achieved by amalgamating the

lower dimensional schemes into an overall higher dimensional representation. At the

simplest level, assume an n input transformation exists whose splits about a single input

node, that is two n-1 input transformations have neural representations, as shown in fig 7.6

a & b.

2 2

n-1 n-1

a b

Fig 7.6 Representation of the two n-1 input subsets of the full transformation, a. The split

input node= +1, b. The split input node= -1

111

The two subset representations are defined by the weights on the nodes in the hidden

layers and the output layer, that is, wj /, 1s is k', Os js n for the hidden layer and Wj', Os

is k' ,for the output node of the first split and also Wj i" 1 s is k", O~ js n for the hidden

layer and Wj", Os is k", for the output node of the second split. The weights with subscripts

of zero refer to the bias weights. We can construct a higher dimensional representation

making use of two barrages of nodes from the lower dimensional representation. This is

shown in fig 7.7.

1

2~' ... '

n

Fig 7.7 Representation of the total n input transformation

This amalgamated representation is defined by the weights, wij' 1 s i~ k' + k", ~ jS

n for the hidden layer and wi' Os is k'+ k", for the output node. The weights in this

representation all correspond to weights in the two subspace representations with the

exception of the bias weights and the weight on the nth node, about which the representation

was split.

The weights that are unaffected are as follows;

wi(wi/' 1S is k', 1s j~ n·1 and

Wij= Wjt, k'+1s i~ k'+ k", 1S j~ n·1 for the hidden layer and

Wj = wi', 1S i~ k' and

wi = w;", k'+1s is k'+ k", for the output node.

112

The as yet undefined weights can be calculated by examining the behaviour of the n input

representation with the behaviour of the subset representations. This is done by setting the

nth input node, about which the problem is split, at +1 and -1 .

The condition that each barrage of nodes only contributes in a discriminatory manner

when the nth input node is set at either +1 or -1 but not both is required. Adding the

condition that the nodes output -1 over the region that they do not contribute, gives us the

following equations over the weights of nodes in the hidden layer. It should be noted, the

substitution bi'= wiO" bi"= wiO'" bi= wiO' for 1S is k'+ k", has been made in the following

equations to make clear which weights are the bias weights.

threshold(bi' - win' + Lj=l n-l Wj i'· »)= -1, for all input vectors X.

threshold(b·" + w· "+ L' ,n-, w··" • x,)= -1, for all input vectors X. I In J= JI-1

These equations give us

b·' - w· < 5. , n-, Iw·.'1 for 1< i< k' and I In '<"J= J I - -

b " ... n-l I "I f k'<'< k' k" i + win < -:"j = 1 Wj i or - L + .

Since the only unknown is win it can be specified to satisfy the equations above for 1 S is k'+

kit .

The fact that over the regions that the barrages of weights contributes in a

discriminatory manner, the output of the n dimensional net is identical to that of the sub

representations, gives us the following equations.

{ b ... n-l • x,} {b' ... n-I '. x,} f 1 . k' d i + win+ '<"j=1 Wji -j = i + :"j=1 Wji -j or SIS an

{ bi - Win + Lj=ln-1 Wji • »} = { bt" + l1= ,n-' Wj r • »} for k'S is k'+ k".

These equations simplify to

{ bi + Win! = bi' for 1S is k' and

{ bi - win} = bt for k's is k'+ k".

Since the only unknown is bi, its value can be calculated for 1S is k'+ k".

Having specified all the bias values and weight values from the nth input node of all

113

the nodes of the hidden layer, the bias weight of the output node can be calculated. Again, the

substitution bout= wo' bout'= wo', and bout"= wo", is made in order that the bias weight can

be clearly distinguished. The nth input node of the n dimensional representation is set at +1

and -1 and its behaviour compared to that of the sub representations. The following equations

are obtained.

nth input node= +1 and

k' k'+ k" * kit
{ bout - Lj=1 Wj i+ Lj=k'+ 1 Wji~} = { bout' + li=1 wji"·~} for the

case nth input node= -1.

These equations reduce to

{ bout - Lj=k'+ 1k'+ k" Wj J = bout' for the case nth input node: +1 and

{ bout - Lj=t k ' Wj J = bout" for the case nth input node: -1.

The only unknown is bout and the equations are consistent if

{bout'- Lj=k'+ 1k'+ k" Wj J = {bout'- Ljc1k' Wj J, which can be achieved by a suitable

scaling one set of weights. Therefore we can provide a consistent value for bout.

Amalgamation of nodes

The method for constructing networks by amalgamating low dimensional

representations will produce representations that are far from minimal. The method treats

each subspace independently, not exploiting the similarities that may exist within the

representations chosen. Several methods are presented that will reduce the size of the

network representations. This will be achieved by amalgamating nodes that do not provide any

extra information in a representation.

Two nodes can be amalgamated in a particular layer that contribute identical outputs

over the set of inputs and create a new node which produces this required output (the

114

conditions under which this is possible is discussed below). Nodes in the next layer that were

connected to either of the original nodes are connected to the new node using their original

weights. If the node in the next layer was connected to both of the original nodes then the new

weight is the scalar sum of the original weights.

1

-
2 - 2 -

k k

Fig 7.8 Nodes are equivalent if the weights vectors are scalar multiples,(b,wl,w2, .. ,wk)=

c'(b', wl',w2', .. ,wk'), where c is a scalar constant

This amalgamation scheme is useful since it offers us the possibility of reducing the

size of representations that are constructed. The difficulty in making use of this property is

that of recognising if two nodes are synchronised over the set of inputs. For large input

spaces and a large number of nodes it would be impractical to verify if two nodes are

synchronised.

Examining the weight space that defines the nodes allows us to decide whether two

nodes are synchronised without observing the behaviour of the nodes over all the input cases.

Let us consider two nodes, node' and node". If node' and node" are defined over the same inputs

and have identical weights or identical weights to a scalar factor, then Ihe two nodes are

synchronised (see fig 7.8). This follows directly from the node formula.

If the weights are perturbed Slightly the two nodes may still be synchronised. That is,

if node N and node N' have similar weights, they may be synchronised. We examine the

conditions under which two nodes are synchronised.

To ensure that the weight vectors are scaled equally the largest weight of node N is

selected, wl say, and the weights of node N' scaled so that w1 = w1'. The perturbation of the ith

115

weight, dWj, is defined as the djfference between the ith weight of node N and node N' . That is

dWj= wj' - wj. The weight vectors being similar, a new node, node N", can be constructed by

selecting one of the weights Wj or Wj' for each component w;". This new node will be

synchronised with node N and node N' if the sum of the possible perturbations, Lj=,nldWjl, is

small enough to preserve the output. Since the output is threshold(L;c,"wj • Xj), where

threshold(X) = +1, for all X > 0, threshold(X) = -1, for all X < 0, we have the condition

that;

if 1L;=,"wj * X;I > Lj=,nldW;I, and ILj=,"wj' * Xjl > Lj=,nldWjl, for all input values X,

then the nodes node N and node N' are synchronised. The node N and node N' can be amalgamated

into node N", so reducing the size of the neural representation.

Thjs requires us to check the output behaviour of the nodes over the whole input set.

Again, this may not be practical for large training sets. By ensuring that Il:j =,"wj * X;I > C

and ILj=,"wj' * X;I > c, for all input values, where c is a non zero positive constant, during

the training of the network, the problem is reduced to that of checking that c > Lj=,nldW;I. If

this is the case the nodes are synchronised and so can be amalgamated.

Amalgamation of nodes in different barrages

When two nodes contribute in a discriminatory manner over two distinct regions of

the input space it may be possible to amalgamate them into a single node. This new node will

be synchronised with the original nodes over the regions that they are not null. The case

where we have nodes from different barrages represents the simplest possible case. Nodes in

one barrage only contribute in a discriminatory manner over half the input set. One barrage

fully represents the problem when a particular node is set at + 1 while the other does so

when the node is set at -1. The barrages together, fully represent the total problem.

116

2

n

Fig 7.9 Two nodes in different barrages

As was the case with the amalgamation of the synchronised nodes in the previous

section, two nodes from different barrages that have weight vectors that are identical over

the independent input nodes examined (see fig 7.9 and fig 7.10 a & b). These nodes are

defined by the biases band b' and weights wi and wi', where wi = wi', for 1 S is n-1. The bias

nodes and nth input node weight are in general distinct since these would have been specified

by the technique of amalgamating the representations as discussed t above.

a b c

Fig 7.10 The two n-1 input nodes that contribute in different splits about the nth input node,

with their amalgamated node defined over n input lines, a. node N, b. node N', c. amalgamated

rode

If a node N" that represented the whole problem existed (fig 7. tOe), defined by the

bias b and weights wi then it would have to satisfy the following equations.

{ b"+W"+L' n-1 w.••• X·}={b+W+L· n.1 w·* Xl n J=1 J'] n J=1 J']'

117

we have that wi' '= wi = wi', so

b" - wn" = b' - wn'.

Solving these simultaneous equations, unknowns are band wn ' gives

b" = (b+ b'+ wn - wn') / 2,

wn= (b- b'+ wn + wn')/2.

Therefore the two nodes can be amalgamated into a single node, reducing the overall

representational scheme. In general the condition that wi = wi', for 1:S; i:s; n-l, is not

required but that (discounting the effect of the bias and nth input weight) the nodes are

synchronised.

Carrying through the analysis from the amalgamation of nodes above, if ILj=,n-'Wi'

~I > Li=ln"I~wi"I, and ILi=,n-,wi' • Xd > Lj=,n-'I~wtl, for all input values X, a single

amalgamated node can be constructed.

And Similarly by ensuring that ILj=,n-'Wi • Xii> c and ILi=,n.twi' • Xd > c, for all

input values, where c is a non zero positive constant, during the training of the network

means that if c > Li=,n"I~wil, a single amalgamated node can be constructed.

Definitions

Some terms are defined below which will be used in the following sections.

Minimal: representations

We can create many different networks to represent an individual transformation.

The smallest network that can represent a transformation is called the minimal
•

representation. The number of nodes in this network is the minimum number of nodes

required to model the transformation in question.

"8

Oversupplied networks

A network representation that has more nodes than the minimum number required to

model the transformation in question, is capable of modelling the transformation. Given such

a network, training can begin. Back propagation can be applied over the training data and

after the convergence of the training algorithm, the network will represent the

transformation. A network which is not minimal with respect to a given transformation and

has more nodes than the minimal representation is said to be oversupplied.

Undersupplied networks

Conversely, if we try to train a network with fewer nodes than the minimal

representation, then the training algorithm will not converge. The network is incapable of

representing the particular transformation and no amount of training will overcome the

problem. Such a network is said to be undersupplied.

Worst transformation

Given a specific number of input nodes n say, and a single output node, we have a

possible 2(2") transformations that we can choose from. Different transformations will

have different minimal representations. One or more transformations will have a minimal

representation that is at least as large, if not larger than all the other minimal

representations. This transformation is called the worst transformation and will be referred

to as the worst case.

Fullness

A representation is said to be full if it uses at least as many hidden nodes as would be

required to model the worst problem for that particular number of input nodes. This means

that a full representation is capable of representing any transformation, it is just the

training algorithm that perturbs the hidden nodes to produce a particular representation of

119

the problem in question. A full representation will be oversupplied if it is not modelling the

worst transformation.

Tightness

A representation is said to be tight if it uses as many but no more hidden nodes than

would be required to model the worst problem. A tight representation is not oversupplied

when modelling the worst case for that particular number of input nodes. A tight

representation will be oversupplied when modelling a transformation that is not the worst

case.

Null nodes

If a node or set of nodes produces an output that is identically +1 or -lover a specific

set of input examples, then that node or nodes is said to be null or null contributing over that

input set. (Huang et al '91). A null node does not contribute in a discriminatory manner over

the input set and so can be considered to be an external bias rather than a contributing node.

Representational defin itions

More terms which are relevant in discussing neural network models of specific

transformations are defined below.

i. A transformation is said to be k-representable if a neural net with k·hidden nodes can

represent the problem.

ii. Two nodes defined over the same inputs are said to be consistent the outputs are

synchronised.

iii. A node defined over a subset of inputs is said to s-consistent with a node defined over the

whole set of inputs if in the subspace of the input space, the second node is consistent with the

first.

iv. Two nodes are said to be m-consistent if there exists a node, possibly defined over a

120

larger set of inputs, such that these two nodes are s-consistenl with it.

v. Two planes in two k-l dimensional projected spaces are l-consistent if there exists a

plane in the k dimensional space such that on projecting along the particular axis the

splitting planes produced are the ones in question. Therefore if two k-l dimensional nodes

are l-consistent, we can construct a k dimensional node which when projected along the

required axis provides the two nodes in question. The k dimensional node which is constructed

is s-consistent with the two k-l dimensional nodes. The two I-consistent k-l dimensional

nodes are themselves m-consistent.

vi. Two planes in two k-l dimensional projected spaces are 2-consistent if there exists a

plane in the k+ 1 dimensional space such that on projecting along the two axes the splitting

planes so formed are the ones in question. Therefore if two k-l dimensional nodes are 2-

consistent, we can construct a k+ 1 dimensional node which when projected along the required

axes provides the two nodes in question. The k+ 1 dimensional node which is constructed is s­

consistent with the two k-l dimensional nodes. The two .2.-coosistent k-l dimensional nodes

are themselves m-consistent.

Topological limits on feedforward nets

Number of layers required

In this section we will only consider Boolean transformations to a single binary

output, i.e. f: Bn_ >B (see fig 7.11). The extension of the resuH to multiple output nodes is

natural, since each output can be considered independently and so does not require any extra

layers.

1
1

Hidden
2

2 2
network

n k
Structure

Fig 7.11 Structure of a general neural network with a single output

121

This transformation f: B"- >B , can be represented by a logical function of the input

units. This transformation can be converted into conjunctive normal form or conjunctive

canonical form as it is sometimes called, using just the standard logical NOT, AND and OR

operators (Birkhoff et al '70 & '77).

Any Boolean transformation can be put into conjunctive normal form (Birkhoff et al

'70). This is derived from the fact that all Boolean transformations are generated by the

operators conjunction, disjunction, negation and the atomic propositions. Conjunctive normal

form is the representation of a Boolean formula, using just the conjunction and disjunction

operators, in which the formula is just a conjunction of disjunctions. The operators AND and

OR satisfy the distributive equations;

a AND (b OR c)= (a AND b) OR (a AND c) and

a OR (b AND c)=(a OR b) AND (a OR c).

and the conversion operation under NOT;

NOT(a AND b)= (NOT(a) OR NOT(b)),

NOT(a OR b)= (NOT(a) AND NOT(b)).

It can be shown that any Boolean formula of conjunctions, disjunctions negations and

atomic propositions can be transformed into conjunctive normal form using the formula

transformations above.

An example of a Boolean formula over the propositions, a, b, c, d and e in conjunctive

normal form is;

(a OR b OR NOT (c)) AND(b OR NOT (d)) AND(a OR e) AND(NOT (c) OR d OR e)

Therefore the conjunctive normal form can be represented by a network with two

layers of weights, i.e. one with just one hidden layer of nodes (see fig 7.12). And so we derive

the fact that any Boolean transformation f can be modelled by a feedforward net with at most

one hidden layer of nodes.

122

2

n

a>o,b>o,c:>O etc.

Fig 7.12 Neural net representation of conjunctive normal form of a transformation

The general Boolean transformation f: Bk. >BP can be considered as p distinct Boolean

transformations f: Bk. >B which can be modelled with a single layer. Therefore the multiple

output case also requires only one hidden layer, with the output nodes sharing hidden nodes

when the conjunctive normal form possesses identical terms (see fig 7.13). In fig 7.13, and

other complex diagrams of network structure, the bias node is not shown. Suppressing the

bias nodes allows the number of nodes and interconnection pattem to be viewed unobstructed.

2 2

k p

Fig 7.13 Neural net with a single hidden layer

Size of the hidden layer

In this section we will restrict ourselves to transformations with just one output

unit, i.e. f: Bn. >B. The extension of the result to the multiple output case will be presented

123

in the next section.

We will prove the theorem that for a neural net of n input nodes and one output node a

maximum of n nodes are required in the hidden layer to fully represent any transformation.

Some problems easily satisfy the theorem, while general transformations don't easily

lend themselves to the same analysis. Enumerating each transformation and its network

representation is impractical for large dimensional transformations.

Theorem All Boolean transformations with n inputs can be modelled by at most n hidden

nodes.

Proof

a. output b. output

+ 1 + 1 +1 - 1

A A

- 1 + 1 - 1 - 1

c. output d. output

+ 1 + 1 + 1 - 1

A A

- 1 - 1 - 1 + 1

Table 7.1 Enumeration of the possible Boolean transformations with a single input

The theorem is true for n= 1, 2, and 3 by enumerating the possible Boolean

transformations and showing that they can be modelled by networks satisfying the hypothesis.

table 7.1 shows the four possible transformations for n= 1. They can all be modelled by a

single node, so having no hidden node trivially satisfy the hypothesis. For n= 2, the sixteen

possible transformations are seen in table 7.2 . All these can be solved with a single node,

without any hidden layers except the two exclusive OR cases (case d table 7.2).The worst case

124

is when we have the exclusive OR type problem and this can be solved with two nodes (see fig

7.14a), i.e. two discriminating lines. It also clear thal by enumerating all the sixty four

possible cases, that the conjeclure is true for n= 3. Most satisfy the theorem trivially, the

exclusive OR or parity in three dimensions, providing the worst case, which can be modelled

with three hidden nodes (see fig 7.14b).

B B

a + 1 - 1 b. + 1 - 1

+ 1 + 1 + 1 + 1 + 1 + 1

A A

- 1 + 1 + 1 - 1 + 1 - 1

B B

c. + 1 - 1 d. + 1 - 1

+1 + 1 + 1 + 1 - 1 + 1

A A

- 1 - 1 - 1 - 1 + 1 - 1

Table 7.2 Enumeration of the possible Boolean transformations with two inputs. The sixteen

possible transformations are given by negating the output or input lines of the four cases

above, Case a. and its negated outputs gives two distinct transformations, Case b. and its

negated inputs and outputs gives a total of eight distinct transformations, Case c. and its

negated inputs gives a total of four distinct transformations, Case d. and its negated outputs

gives two distinct transformations

a b
Fig 7.14 a. NOT (exclusive OR) separated with just two lines, b. Parity in three dimensions

125

For n~ 5 the following induction argument on the number of input nodes. provides the

proof. A proof for n= 4 is just the apptication of the proof procedure given below, taking into

account the small number of nodes involved in the problem.

The Hypothesis

There exists a tight representation of the worst n dimensional transformation using n

nodes, whose n-l dimensional splits are tight requiring n-l nodes.

For n= 3 the worst case by enumeration is the parity problem. The parallel

representation of the parity problem satisfies the hypothesis. Appendix E2 shows a suitable

proof of the case n= 4 based on the methods developed in appendix El. Therefore the

hypothesis is true for n= 3 and n= 4.

Induction hypothesis

If there exists a tight representation of the worst n-l dimensional transformation

using n-l nodes, whose n-2 dimensional splits are tight requiring n-2 nodes, then there

exists a tight representation of the worst n dimensional transformation using n nodes, whose

n-l dimensional splits are tight requiring n-l nodes.

Assuming the hypothesis for n= k-l , we examine the case for n= k. If we could solve

every transformation in k nodes or less then the hypothesis would be proved so now assume

we have the worst possible transformation f say. We prove that this worsl case does not

violate the induction hypothesis.

Proof of induction hypothesis

Due to the assumptions there exists a k-l representation of the two k-l dimensional

splits of the worst k dimensional transformation under consideration. These representations

are tight and their k-2 dimensional splits exist and are themselves tight. We can construct

full representations of the k dimensional problem that are tight in the k-l dimensional

126

splits by using each of the k-1 dimensional representations given above to represent each

side of the split of the k dimensional transformation. This is done via the technique of

amalgamating the lower dimensional representations, as discussed earlier. We choose a

representation that is minimal, the minimal representation for the worst case is by

definition tight. The amalgamation scheme in appendix E3 shows that given the above

conditions the worst k dimensional transformation requires at least k and no more nodes to

represent it fully.

Since we have that the original hypothesis is true for n= 3 and n= 4 it follows via the

induction argument that it is true for n~ 5.

Size limitations of general n-m-p nets

The results on neural network size and topology can be generalised to the multiple

output case. (Fig 7.15).

2

n

Fig 7.15 Multiple output neural network structure

Each of the p output nodes can be considered individually as single output problems

and so we can get the quick generalisation that the n-m-p net can be solved as stated in the

two layers of weights with a maximum of n*p nodes in the hidden layer. (See fig 7.16).

127

2

n

Fig 7.16 Three layer multiple output neural network structure in which the hidden layer

consists of p distinct sets of n nodes

This net can be transformed into one of the form (n+ceiling(log2P))·m.1. where

ceiling(x) is the smallest integer greater than or equal to x. This is carried out by

considering pairs of output nodes as representing projections in a higher dimension. Doing

this until we have only one output node results in the form as stated above and so this net can

be solved with a hidden layer of m=(n+ceiling(1og2P)). (See fig 7.17).

Fig 7.17 The multiple output neural network structure transformed to an equivalent single
output neural network structure

128

A disadvantage with this form of the net is the loss of parallelism in execution.

Namely the different output nodes must each be calculated separately by specifying the value

of the ceiling(1092P) extra input nodes. A method that is successful in regaining the

parallelism inherent in neural networks is transforming the net into the Loughborough form

making use of the specialised m-type hidden nodes. The m-type nodes have a single set of

weights and a given number (say k) of bias values which provide the (k) different output

values. A single m-type node with k bias values behaves like k nodes with identical weight

values. This is discussed further below.

The Loughborough net

To regain the parallelism of a general n-m-p net we remove the extra input nodes and

use them to define the extra biases that must be applied to the m-type nodes.

1 2 •• p

Fig 7.18 The Loughborough neural network structure. The single output network

transformed to an equivalent multiple output neural network structure using m-type hidden

nodes

The m-type nodes have ceiling(1092P) separate bias weights that are applied to the

node. Each bias is applied after the node has worked out the input from the input nodes. These

129

separate m-biases are then applied and the outputs passed on to the p output nodes.

The Loughborough form has the topology of an n-(n+ceiling(iog2P))-P feed forward

net with specialised m-type hidden nodes (fig 7.18). Therefore given any Boolean

transformation, f:Sn- >SP, in the Loughborough form requires a maximum of (n+ceiling(

log2P)) m-type hidden nodes to model the problem.

Node Parallelisation

As demonstrated above, the size of network needed to model a problem can be greatly

reduced if node parallelisation can be achieved. If we consider the parity problem, the planes

that the nodes represent are all parallel, although there are in fact two classes of parallel

plane of different polarity (see chapter three).

2

k

Fig 7.19 Single output neural network structure making use of singly outputting m-type

nodes

This means that the parity problem could be modelled with two m-type hidden nodes

for all dimensions. These m-type nodes in fact output to just one output node and so should be

distinguished by classing then as singly outputting m-type nodes, or som-type nodes (fig

7.19) .

Since we have successfully parallelised the parity case, the question arises as to

130

whether in general we can make use of the property of parallelism in the node representation

to reduce the problem. If we can spot parallel nodes in a representation, then we can make

use of the som-type nodes. However this would be a very laborious search process and may in

general not occur.

Summary

This chapter has given a new lowest upper bound on the number of nodes in the hidden

layer of feedforward neural networks representing Boolean transformations with multiple

inputs and a single output. This result was further generalised to multiple output cases.

Specific transformations can often be modelled by fewer nodes than the limit presented in

this chapter. Methods for producing this minimal representation require further study.

Existing techniques include those of Tani et al(,89), where an oversupplied network is

pruned to obtain the minimal representation.

This chapter has examined techniques for amalgamating nodes in neural network$,SO

reducing the size of the neural network models. Transformationsthat can be implemented by

sets of parallel hyperplanes in the hidden layer can be further reduced in size and

complexity. This is achieved by amalgamating the parallel nodes and providing multiple bias

weights to provide the function of the separate nodes.

This technique was introduced within the framework of the new neural network

architecture, the Loughborough net. This architecture used two new node structures. These

nodes consisted of multiple biases, forming the multiple outputting node, the m-type node and

the singly outputting m-type node, the som-type node.

131

Chapter 8. Engineering Reliable Neural Systems

Outline of chapter

Previous chapters have examined neural network models of transformations from

multidimensional Boolean input spaces to either single or multidimensional Boolean output

spaces. This chapter examines transformations from real valued input spaces. The continuity

of real valued spaces makes a great difference to the types of transformations that can be

modelled. The results obtained in previous chapters can be transferred to the case of real

valued input spaces if we consider training sets with discrete, isolated points whose output

values are Boolean values.

The discrete nature of these input values allows us to construct atomic knowledge

elements such as sandwich nodes which can then be manipulated and trained in much the same

manner as the Boolean cases. The neural network size results do not generalise immediately

since the topological structure of the two spaces are distinct. Several results by Mirchandani

& Cao(,88), Huang & Huang('91) and Baum('88) are applicable to the first layer 01 weights

in the real input leedforward neural network. General results on network size and topology

can be given by applying the Boolean network size results to the following layers of the

network.

Continuous Spaces

The most significant property of real valued spaces is their continuity. Any

transformation defined on such spaces contains an infinite number of data points. Training

neural networks to model such transformations provide significant difficulties. Arai(,89)

discusses a scheme whereby an infinite three layer network can model arbitrary continuous

transformations, but physical implementation of such systems would be impractical.

Transformations that are constructed from basic neural network atoms, that is linear

summation nodes with linear or nonlinear threshold operators, can be modelled by neural

132

systems. This is due to the algebraic identity of the transformations under consideration and

the neural network model. This is demonstrated by the simple transformation, Z= 5X + Y +

10, whose neural model is shown in fig 8.1. The threshold function used in this network is

just the simple linear identity threshold.

x
z

y

Fig 8.1 Neural network model of the transformation Z= 5X + Y + 10

Given an unknown transformation, the problem of finding a suitable neural network

model becomes very difficult. If strong constraints are made on the size and architecture as

well as the threshold functions of the network this problem is un solvable in the most general

case. Classifiers are studied by Baum('88), Mirchandani & Cao(,88), and Huang &

Huang('91). A different classification is made depending on the region of space that is under

consideration. Feedforward neural networks with hard logical threshold nodes behave as

classifiers and so are ideal for modelling classification transformations.

At the simplest level classifiers form a dichotomy on a set. This means that the neural

network model requires only a single output node. The second simplification is an assumption

on the structure of the real valued input spaces. The assumption is that the decision regions

can be separated by rectilinear segmentation. This is required if we are to use the standard

neurons with a hard limiting threshold. Several basic properties of these networks are

dependent on the size of the network under consideration.

Table 1.2 (chapter one) shows the representational properties that depend on the

number of layers of the network. Increasing the number of nodes in the layers of ·the network

allows the implementation of more complex decision regions. To analyse such regions we

must introduce some concepts relevant to rectilinear geometry.

133

A set of data points which can be separated by a single hyperplane is said to be

linearly separable. A set of data points which can be separated by a finite intersection of

hyperplanes is said to be separable by a single neural system.

Polytope classes

The intersection of hyperplanes has been studied by Mirchandani & Cao('88) and

Huang & Huang('91). Huang & Huang has formalised the study, considering the hyperplanes

as closed half spaces. The intersection of two or more of the spaces forms polytopes. which

may be empty, bounded, or unbounded. A region formed by the intersection of two half planes

is termed a two-polytope, three a three-polytope and n an n-polytope. Fig 8.2 shows several

different polytopes, bounded and unbounded that can be constructed by the intersection of

several half spaces.

Fig 8.2 Three half spaces intersect to form six l-polytopes, twelve 2-polytopes and six 3-

polytopes

It is possible to gain some bounds on the number of nodes required to model the

problem in question by examining the number of regions into which the input space is

partitioned. Mirchandani & Cao showed that the maximum number of regions (M(H,d» that

are separable using H hidden nodes in a d dimensional space is given by the formula,

M(H,d) = rdk=o (H,k), where (H,k) is the binomial coefficient such th~t (H,k) = 0

if H < k. I
. equation 8.1.

134

Fig 8.3 Five regions of the two dimensional input space require four parallel nodes to

separate them

This result gives the minimum number of nodes required to model a particular

problem. We find the minimum number H such that M(H,d} is greater than the given number

of separable regions. The actual neural model of the problem in question may require many

more nodes. At the Simplest level, this occurs when we have parallelisation of the decision
c

regions as discussed by Mirchandani & Cao. In fig 8.3 we have five decision regions requiring

four hidden nodes when the formula would give M(4,2}= 11, that is the maximum number of

decision regions in a two dimensional input space using four nodes is eleven. The case in

question, the decision region parallelisation, is not a maximal case. Huang & Huang and Baum

discuss more complicated examples where similar arguments apply, see fig 8.4a where seven

data points require three nodes is a maximal case, while seven data points require four nodes

to be separated in fig 8.4b.

a b

Fig 8.4 a. Maximal separation of seven points by three nodes, b. Non maximal separation of

seven points requiring four nodes

135

The above analysis demonstrates that the number of nodes required in the hidden layer

is highly dependent on the structure of the regions to be separated and not just the number of

regions. The difficulty with finding methods of modelling such problems with neural

networks is that once the structure of the classification regions are known, essentially the

problem is solved. Referring to fig 8.5a, it can be seen that the boundaries of the separable

regions represent nodes in the first layer of the neural network. The selection of the

combination of suitable regions in classification occurs through two Boolean transformation

layers (all Boolean transformations can be modelled by two layers of a feedforward neural

network, see chapter seven) that follow the boundary decision layer of the network, fig 8.5b.

Fig 8.6 shows the general neural network model of a transformation from a multiple real

valued input space to a single Boolean output.

Segmentation Boolean
Layer Layers

a b
Fig 8.5 a. Four regions with an XOR classification transformation and, b. Its neural

Segmentation
Layer

representation

Boolean
Layers

Fig 8.6 A general neural network model of a real valued classification transformation

136

Automated training

Many automated training regimes such as backpropagation make use of isolated data

points. The classification of regions of the input space have no meaning except via the

specification of the set of data points that make up the regions. Ideally for complete

specification all the points in the continuous space of the input space must be specified. In

reality this is impractical and so a finite subset of points specify the classification

transformation. The points that are modelled by the node boundaries in fig B.7 specify the

XOR transformation shown in fig B.5a.

x
x

0
X

X
0

0 0 0 X X 0

0
0

0 o Ox 0
0

0
0 XXX 0

X
X

X

X

Fig B.7 Separation of a real data set into XOR regions by two segmentation nodes

Given a finite training set with isolated training points, the notion of a unique

regional classification is lost. The best possible segmentation of the data points can be sought,

which would ideally represent the classification transformation being modelled. As discussed

by Huang & Huang('91) and Arai('B9), isolated data points provide the possibility of

implementing arbitrary mappings on a training set. This is the case since each isolated data

point can be associated with a unique output which can be suitably implemented by the

manipulation of the weights in the network.

137

Properties of isolated data pOints in real valued spaces

Interleaved rectilinear points from different classes must be separated by multiple

interleaved planes. The separating planes are linear in structure and so a single plane (or a

reduced number) can not separate the points in question. Fig 8.8a shows five rectilinear

points that must be separated by four nodes. Anything less, for example a single node can not

separate the whole set (fig 8.8b).

x

a b
Fig 8.8 a. Separation of five points by four segmentation nodes, b. It is impossible to separate

the points with fewer nodes

A pair of nodes can isolate n points in an n dimensional input space. If a point from a

different classification lies on a line between any two such points or on the plane intersecting

the n points, more nodes must be added (as above) to fully separate the set. Fig 8.Bc shows

how two points in two dimensions can be separated·. by two nodes. These do not interfere

with any other data points. In fig 8.Bd the point from another class lies within the

segmentation and so more nodes are required to fully separate this set.

c d
Fig 8.8 c. Two rectilinear points can be separated from the rest of the input space with a pair

of segmentation nodes, d. Three rectilinear points can not be separated if the points are from

different classes

Baum('88) provides some result on the number of hidden nodes required to model

138

problems in which the data pOints are in general posilion. Data points in an n dimensional

space are in general position if there are no subsets of these data points. with n + 1

elements. lie on an n -1 dimensional hyperplane. Baum demonstrates that an N element set in

a d dimensional space can be separated by a ceiling(N/d) nodes into albitrary dichotomies.

Fig 8.9 shows an example in two dimensions that requires this limit to model the problem.

o

Fig 8.9 Separation of N points in general position on a circle by ceiling(N/2) segmentation

nodes

General classification

If we now consider general classification problems which have multiple output

classes. the analysis becomes more complex. Making the assumption that each point must be

separated from every other point in the training set provides an upper bound on the number

of nodes required to model the training set. These assumptions mean that M-1 nodes are

required to separate M points even if all the points are not rectilinear. This result is quoted

by Kung & Hwang(,88). Mirchandani & Cao('88). Baum(,88) and Arai('89). The results of

Mirchandani & Cao can be ex1ended to this case. The number of points become the number of

decision regions that we have. Similar problems as discussed earlier apply to this case if the

separation scheme is not maximal. The formula does not provide the correct maximum

number of nodes required to model non maximal cases such as rectilinear data points.

Padalines

Given classification problems defined on Isolated data points. the accuracy of the

139

neural network model will depend on a number of factors. The first is the number of nodes in

the network. The greater the number of nodes available the greater the accuracy of the neural

model of the transformation in question. This is demonstrated by the fact that the four node

neural network can model the classification problem of fig 8.8a while a single node network

can not. The greater the number of nodes available the greater the number of neural models

that can represent the classification problem.

The other major factor that determines neural network model accuracy is the the type

of nodes that we use. Polynomial adalines were introduced by Sprecht('67} and Hinde('74).

They allow input parameters to be transformed polynomially, so removing the constraint

that a node boundary has to be linear in the input space. Caudhill('88) provides an

introduction to the algorithm and its uses. The representational power of neural networks can

be altered by applying various different transformation to the input layer. Sprecht's('90}

statistical functions and fuzzy neuronal systems such as, that make use of B-spline maps or

fuzzy masks and the CMAC technology (Krait '90) all improve the representional power of

neural networks by providing different input transformations to the network.

x

Fig 8.10 Separation of five rectilinear points using two polynomial segmentation nodes

Fig 8.10 illustrates how the five rectilinear points of fig 8.8 a- d can be separated

with two padaline nodes. The power of these input transformations can also be illustrated by

the example shown in fig 8.11a. By applying a squaring coordinate transformation, the

circular region shown can be implemented in a Single layer with the inputs, X, V, X·V, X2,

y2. The corresponding standard neural model (8.11 b) would require many more nodes to

isolate region and require more hidden layers to implement the transformation required 10

model the problem.

140

o
o

o

a b
Fig 8.11 a. Polynomial separation of the training points requiring a single segmentation

node, b. Linear separation of the data points requiring many segmentation nodes

Finding the relevant transformation for problem in question becomes an automated

learning task. All the possible polynomial transformations, that is first order, second order,

etc, up to the model required, are provided as inputs to the network. The coefficients

associated with this transformation are learned as the first layer of weights in the network.

Therefore irrelevant input transformations have weights that decay to zero, while relevant

input nodes are learned via the back propagation of the error. This means that we can provide

a padaline neural model of a transformation to any given order. The learning algorithm will

learn the shapes of the decision algorithm and identify the relevant transformation involved.

Introducing other input variable transformations allow different properties of a

training set to be modelled. Periodic and exponential functional transformations of the Input

variable allow relevant physical systems to be modelled by neural network systems.

Learning input quantisation values

Given linear summation units and hard limiting threshold elements, the boundaries of

the decision regions are straight lines and the output after the first hidden layer are Boolean

values. Therefore the first layer can be considered to be a quantisation layer. Real values are

input to the hidden layer and quanti sed Boolean values are output. These Boolean values are

then manipulated by the neural network structure providing suitable output values.

141

The behaviour of the training algorithm over various different input sets given

different neural network structures are examined in appendix F1 and FS. The real input

quantisation is examined and the ability of single layers of nodes to model arbitrary

quantisations discussed.

Real output nodes

Dealing with transformations that provide real output represent a significant

difficulty. The data passing between the internal layers of a neural network are essentially

Boolean in characteristic, even if the values are actually real values near +1 . and ·1. This is

due to the shape of hard limiting thresholds. All the output values of the internal nodes tend

towards either +1 or ·1 preserving the Boolean structure.

Constructing real valued outputs from these Boolean values requires a decoding layer

of weights. The magnitude of real valued outputs is provided by a suitable multiplication of

the quantised values by the weight values. The output is in fact a quantised real value and not

a continuous real valued output.

Providing more output quantisation nodes allows a finer grain of coding. The problem

associated with output decoding is that the quantisation values can not be easily learned.

Ideally we would be able to train the values of the output decoding layer, such that the best

decoding scheme is used to model the transformation under consideration. Appendix F2 & F3

discusses experiments that investigate the learning properties of neural network when

modelling transformations from Boolean inputs to a real valued output.

Real inputs and Real outputs

Neural network models with real input and real output nodes have a quanti sat ion layer

of weights and a decoding layer of weights as discussed above. A Boolean transformation must

be Implemented between these two structures. The results of chapter seven show that two

142

layers of weights are required to model Boolean transformations. Therefore models of real

input real output transformations will consist of four layers of weights.

Appendix F4 discusses some experiments for training neural networks to model

transformations from real valued input spaces to real valued output spaces.

Network size and topology

The results on network size and topology presented in chapter seven can be

generalised to neural networks with real valued inputs. The structure of these networks is

that of a quantisation layer followed by the Boolean network structure. Therefore if the size

of the quantisation layer is known the network size results immediately apply.

Given an n dimensional real input space with 0 linearly separable regions, the work

of Mirchandani et al provides a limit on H the number of nodes in the first layer, see equation·

8.1. M(H,d) is the maximum number of regions that can be separated by H nodes in a d

dimensional space. Therefore given a dichotic classification problem with M(H,d) linearly

separable regions that are maxim ally separated by H nodes in the quantisation layer, we

require another H nodes in the hidden layer of the Boolean layers (given by the result in

chapter seven). If we do not have a dichotic classification, but a transformation to p output

nodes, we require H + ceiling(log2P) hidden nodes in the Boolean transformation layers. This

case generalises the Loughborough network to real valued inputs and uses m-nodes in the

hidden Boolean layer of the network.

If we have 0 data points in general position in a d dimensional space, as discussed by

Baum, then we derive the result that arbitrary dichotomies on the set can be modelled by

networks with a ceiling(N/d) nodes in the first hidden layer(see Baum '88) and similarly

ceiling(N/d) in the second hidden layer (see chapter seven). Since the transformation forms

a dichotomy only a single output node is required.

Methodology for designing reliable neural systems

The design methodology places the implementation of neural systems into the area of

143

reliable systems. Each stage of the design process is well understood and the behaviour of the

network explained in terms of the atomic nodes that contribute to the decision processes.

The system identification phase investigates the structure of the input space

identifying the significant components of the decision algorithm. The quantisation layer fine

tunes these structural identifications providing the most optimal quantisation value via the

trained weights. The Boolean layer of the network implements the best transformation that

can model the given data set. Essentially it identifies the knowledge structure underlying the

data. The atomic knowledge elements provide a succinct representation of this knowledge that

could be transformed to a disjunctive encapsulated rule set.

The total neural network structure is reliable since its behaviour is well defined and

can be predicted. Not only does the network model the given training set, but it has

predictable generalisation properties. The generalisation properties are predictable since

the atomic knowledge elements do not interfere in an unknown manner. Everything about the

network is well known. The nodes and knowledge elements possess the desirable properties of

atomicity.

A neural network is designed to model a specific set of data by constructing a suitable

network structure of nodes and to specifying the weight values of the connections between the

nodes. Automated search techniques exist for finding suitable network structures,

(Mirchandani et al). However they involve a high computational load and are not guaranteed

to produce optimal neural network models.

The work of the previous chapters have allowed the behaviour and structure of neural

network systems to be understood and explained. This in turn allows a general design

methodology to proposed for the construction of reliable neural network systems. The

structure of the designed system will be that of a feedforward net with the following

components;

i. Input transformations,

ii. Input quantisation layer,

iii. Boolean transformation layers,

iv. Decoding layer.

144

These components are illustrated by the network structure shown in fig 8.12. The

transformed input values are fed to the input nodes of the neural network.

Boolean Transformation
Real Valued

.....
Quantisation Decoding

Layer Layer

Fig 8.12 Real input real output neural network structure

System Identification

The set of training data is presented which must be modelled by a neural network. If

no specific output nodes are designated then the dependent output node in the data must be

identified. The conditions that must be satisfied are that all the output nodes are dependent

variables of the input nodes. That is, each unique input datum is associated with only one

output value, the transformation is an injective function.

The nodes in a neural network only provide linear combinations of input nodes that

are then thresholded. Therefore the separated regions of the input space will only have linear

boundaries. This can be overcome with the use of input variable translormations, for

example polynomial transformations. The non linear relationships that exist between the

input variables must be identified. Decoupled models of the system provides a suitable

method. For a fixed output value, the decoupled variables are correlated by various

polynomial relationships. The polynomial transformations identified define the shape of the

boundaries of the quantised regions in the input space.

145

Quantisation layer

Having identified the system under study the quantisation layer specifies the position

of the boundaries of the segmented regions of the input space. This is achieved via the

variation of the weights in the quantisation layer. The quantisation layer defines the number

of different quantised regions of the input space since the interaction of the different regional

boundaries of the nodes occurs here. Appendix F1 and F5 describe experiments that

investigate the ability of a single layer of quantisation nodes to model arbitrary

transformations from real to Boolean spaces.

Boolean layer

The Boolean transformation layer provides the actual functional transformation

between the input quantised regions and the output quantisation units. If the relevant

transformation is well known, then it can be immediately implemented with the relevant

neural network nodes. If only the input! output data is known then the layers are trained

automatically via the backpropagation technique. Appendix F3 and F7 describe experiments

that investigate the ability of a multi layer of nodes to model arbitrary transformations from

real to Boolean spaces. Effectively this is a system of a quantisation layer followed by two

Boolean layers of weights. This system is more able to model the arbitrary transformations

than the single layer quanti sat ion system since the Boolean layers can model arbitrary
/

transformations between the input and output layers.

Decoding layer

The output quantisation represents the acuity that is required of the transformation.

146

This is related to the inpuV output data that the system is required to model. If there is

greater variety in the output signals the larger the number of nodes required to feed into the

decoding layer. This follows from the fact that the greater the number of possible signals, the

greater the acuity that can be achieved by the decoding nodes. Appendix F2 and F6 describe

experiments that investigate the ability of a single layer of decoding nodes to model arbitrary

transformations from Boolean to real spaces.

This design methodology has been applied to the design of a neural network controller.

This is discussed in chapter nine. The design process can be very laborious as the

identification of the relevant system variables is a difficult task. The design methodology

structures the implementation of the neural network systems so that their structure,

function and behaviour are well understood.

Summary

This chapter has discussed neural network models of real valued transformations.

Real valued transformations that are defined on a finite set of discrete training points were

modelled by neural networks systems.

Real valued neural networks were shown to consist of four layers of weights, the

quantisation layer, the two Boolean transformation layers and the decoding layer. These

insights led to the generalisation of the results on neural network size and topology to the

real valued cases.

Finally a design methodology was described which allowed reliable neural network

systems to be implemented.

147

Chapter 9. Controlling Processes with Neural Networks

Introduction

This chapter addresses the design and implementation of a neural network controller

for the dispensing of adhesives in the manufacture of mixed technology printed circuit boards

(Chandraker et al '89 and Barbiarz '89). Adhesive dispensing is one example of the many

industrial processes (metal cutting, Wright et al '91, arc welding. Karsai et at '92. cement

manufacture, Haspel '86 and other batch chemical processes) that are not amenable to

standard controt techniques. The standard techniques are not suitable since they can not deat

with unpredictable process variations and process faults that may occur (Williams '90 and

Antsaklis '92). This is discussed further b.elow. Table 9.1 shows other manufacturing

processes that have required intelligent control techniques such as expert systems. fuzzy

controllers and neural network controllers.

Neural Networks have been used to model control processes (Barto '90), that is aid in

the system identification phase of control process design, control process optimisation

(Barto '83) and the actual control of processes. This chapter deals with neural network

techniques that control processes (Miller at al '90 and Grant et al '89).

A control problem typically consists of the maintaining the process outputs between

set limits. This is achieved by identifying the actions that must be taken when the process

approaches or exceeds these limits. These limits are reached either because of process drift

or catastrophic process errors.

Hard control problems that can not be solved by current techniques are generally only

partially understood. A complete mathematical model of the process does not exist or cannot

be found. Some of the process characteristics can be described and modelled mathematically.

whereas others can not. To date, ad hoc approaches such as trial and error implementation of

feedback control have been used. Since no formal models of these controllers exist robustness

and stability measures cannot be easily provided. A systematic approach must be developed so

that each control process can be understood. This will allow stability and reliability to be

148

ensured.

The intelligent controllers of the future must be able to recognise and predict the

onset of the catastrophes in order that suitable corrective measures can be applied. Control

systems that can be partially designed and then trained automatically are of great importance

in hard control processes. Neural network learning offers a method for automatic training

that is very attractive. However, they are difficult to configure and interpret after training

(Materna et al '89, Hertz et al '91 and Mirchandani et al '89). Interpretation of the neural

network representations is extremely important, especially in safety critical applications.

The structured neural networks discussed in this chapter allow a readily interpretable

control model which is a great advantage over standard neural approaches.

Process Control Technique Reference

Blast Furnace Fuzzy Controller Sakurai et al '89

Adhesive Dispensing Expert Controller Chandraker et al '90

Multi-layer Bottle Expert Controller Morgan '90
Blowing

Cement Kiln Fuzzy Controller Efstathiou '85 & '89

Metal Cutting linguistic Controller Bourne '86 & '87

Grinding Fuzzy Controller Pei Van et al '90

Lumber Cutting Expert System Massey et al '90

Wafer Etching Tt Etch Diagnostic System Budge et al '90

Newsprint Production Expert System Opdahl'89

Fermentation ExperV Neural Estimator Aynsley et al '89

Gas Arc Welding Neural Network Karsai et al '92

Table 9.1 Manufacturing processes that have been controlled by intelligent techniques

It will be shown that many functions relevant to control processes, such as system

variable thresholding and system variable segmentation into acceptable and unacceptable

149

bands, can be implemented with simple neural networks. The linear threshold properties of

nodes allow for immediate quantisation of the system variables, while the Boolean

transformation layers allow intelligent control actions to be constructed. The process

failures can also be monitored by neural network structures. These provide suitable

corrective actions when the failures occur. The structured combination of these neural

networks represents the design of the total control process. Parts of this chapter have been

presented in Messom et al '92.

Control Processes

Inputs I
-------1~~ Process

Outputs

Fig 9.1 a. Schematic representation of a process transformation

A process (or plant) can be characterised by the input output transformation of the

state variables of the system over time (see fig 9.1 a). The schematic representation of open

loop control is shown in fig 9.1 b in which the corrective control actions are applied to the

process inputs. Such a system is prone to steady state errors in process performance as well

as being susceptible to process drift. Feedforward control requires a very good model of the

process in order that the performance of the system is robust and reliable.

Inputs

Control
Action

Process
Outputs

Fig 9.1 b. Schematic representation of a feedforward control process

If feedback is applied to the system the performance of the process can be constantly

150

monitored and the control actions adjusted. Fig 9.1 c shows a schematic representation of the

feedback control system. This means that steady state errors are minimised and the process

drift due to external factors reduced. In practise problems exist in this system due to the

variable or unknown time lag between the process action and the application of the control

action. In the worst case the time lag can lead to undesirable oscillatory behaviour of the

system. The tools of standard control attempts to provide control systems without these

undesirable properties.

Process

Control

Fig 9.1 c. Schematic representation of a feedback control system

Adhesive dispensing

The neural network techniques discussed in the previous chapters is applied to the

design of a controller adhesive dispensing. The specifics of the application will be briefly

discussed while the general properties of neural networks in control systems will be

discussed in depth.

The process investigated in this study is the dispensing of adhesive used in the

manufacture of mixed technology printed circuit boards. The adhesive is dispensed on the

printed circuit board to secure the surface mount components prior to wave soldering.

Several techniques for dispensing the adhesive exist, pin transfer, screen printing and

pressure syringe dispensing. Bridgeman ('89) and Barbiarz ('89) discuss the advantages

and disadvantages of the various techniques. Problems associated with the screen printing

include smudging of adhesive, while the pin transfer method can only apply equal sized

151

adhesive blobs. Both systems suffer from the fact that they can only be applied to flat

surfaces but have the advantage that adhesive is applied quickly and simultaneously over the

whole board. The pressure syringe method can only dispense 'individual blobs but can

perform well on any surface. The pressure syringe method also offers great flexibility in

blob size dispensed and does not rely on guaranteed adhesive homogeneity if it can be

counteracted by suitable control process applied to the system.

The system studied consisted of the following components.

i) dispensing unit;

consisting of a syringe of adhesive coupled to a pressure control unit.

ii) Seiko RT3000 robot manipulator;

that positioned the dispensing unit and the image processing unit at the appropriate

place on the board.

iii) Image processing system for visual feedback;

consisting of Imaging Technology ITI 151 coupled to a camera with a magnifying

optical system.

iv) The control system;

The structure of the system is shown in fig 9.2 (Chandraker et al '89, West et al '88).

Development Interface User Interface

11

Controller Vision
System

SUN 3/160
ITI151

+ 1 _1
Dispenser
Controller Robot Motion Controller

Seiko IQ 180

Fig 9.2 Structure of the controlled adhesive dispensing system

152

Process Characteristics

The process studied requires specified volumes of adhesive to be dispensed at well

defined positions on the printed circuit board. A syringe contains the adhesive which is

dispensed via the application of a pressure pulse to the adhesive. The volume of the adhesive

dispensed is related to the properties of the adhesive and the pressure pulse applied to the

adhesive. Variations in the adhesive include temperature sensitive viscosity, erratic

thixotropic behaviour (that is time variant viscosity due to the application of shear forces)

and material inhomogeneity.

A model for the process cannot be derived since the relevant process variables are not

known and those that may be relevant (such as syringe nozzle pressure, velocity and

viscosity variations) cannot be measured by available technology. The properties of the

adhesive dispensing process are discussed further below, highlighting the properties that

make the derivation of a suitable mathematical model impossible.

The control variables associated with the adhesive dispensing process are the

pressure pulse characteristics. The pressure pulse is defined by the pulse height and width,

the rise time and the fall time. Fig 9.3 illustrates the trace of the pressure pulse. Varying

the pressure pulse height and keeping the pulse width constant effectively simplifies the

manipulation of the control parameters, reducing the dimensionallity of the system. Keeping

the pulse width constant also simplifies any timing constraints associated with the process.

The pulse width can be increased in the exceptional circumstances that a large pulse area is

required which cannot be achieved by the maximum available pulse height. The control model

of the system can be simplified by decoupling the system into smaller noninteracting

components. Essentially the controller becomes modular in design.

153

risetime

pulse
height

...
pulse
width

falltime

I
Fig 9.3 The pressure pulse variation within the syringe

Graphs 9.1a and 9.4a shows the variation in blob area (the output performance) for

a fixed open loop input signal (fig 9.1 b). There is extensive variation in output performance,

the area of the blob produced varies greatly and in an unpredictable manner, for the fixed

pressure pulse applied to the system. There are low and high frequency components in the

variation. Some physical insight can give an explanation for this variation. Material

inhomogeneity may explain the low frequency variation. The high frequency variations are

due to the onset of bubbles in the flow (as discussed below). Variation in external

temperature and pressure also effects the system, since a 10°C variation in temperature can

halve or double the viscosity of the adhesive (Bridgeman '89). The blob size dispensed for a

given pressure pulse is related to the amount of adhesive that remains in the syringe and

with improvements to the dispensing system, variations of over 7% have been observed

between full and empty syringes (Knapp '87).

154

..
:! ..

I
~
o
~

z:
to ..
z:

I
" ...

~oo,----------------------------------,

50000 -

30000 -

~OO~--~-r--~-,.--~--r-~--'---~-r-.-T--~
o 100 200 300 400 500 600

dlspense_numba,

Graph 9.1 a. Open loop performance of the adhesive dispensing system

1200,-------------------,

1000 ~ --............ - --..... ---

800

~-

dlspense_numbe,

pulse_height

",ogrammed..pulse_height

Graph 9.1 b. The pressure pulse variation that was applied to the system

155

T arget
Area ..

+

~
j

Compensator

~ Bang-bang

-

Blob
Area

I Vision I

Pressure
Pulse Dispensing ..

System

1

Fig 9.4 Feedback control loop of the adhesive dispensing system

Dispe nsed
Blob ..

The system was run closed loop using a rule based controller that exercised the full

range of the pressure variable while maintaining satisfactory control although the process

failures due to the existence of bubbles still occurs. Graph 9.2a shows the performance of the

output variable and Graph 9.2b the pressure variation required to produce this performance.

Photograph 9.1 shows the dispensed blobs during an experiment that was under control.

Correlation analysis between the pressure variation and the blob area performance criterion

show that there was no significant correlation between the two variables. The variation in the

system is essentially stochastic and not correlated with the measured system variables (West

'92). The variation therefore can not be predicted and makes this example a hard control

problem. The open loop process variations are small from dispense to dispense and so the

system can be controlled.

156

• • ~ • I
.a
o
.a

80000-.-------------------,

60000

•

40000

• •
20000

O~~_~-~_r--r__r--r__?--~_T--_._~

o 100 200 300 400 500 600

dispense_number

Graph 9.2 a. Closed loop performance of the adhesive dispensing system

l~O,_----------------------------------__,

1000

800

600

400~--__ ~--'_ __ ~-r--T--'--~--__ ~---'-~

o 100 200 300 400 500 600

dispense_number

pulse_heighl

programmed...Jlulse_helghl

Graph 9.2 b. The pressure pulse variation that was applied to the system

157

Mathematical models of specific runs or sets of runs can be constructed. but these

models do not provide a predictive model of subsequent runs. Any particular run can be

modelled by a polynomial of required order. but this does not represent a general model of the

system. A simulation model of the system can be constructed which possesses the qualitative

properties of the real system. That is low frequency variation in output performance. high

frequency stochastic noise and the onset of process failures in stochastic time. The various

catastrophic process failures that can occur in the dispensing of adhesive and the methods for

dealing with them using neural networks are discussed below.

Photograph 9.1 Dispensed blobs during an experiment that was under control. Note the

general uniform blob size. Note the excess adhesive in the centre of the photograph which is a

characteristic precursor to a void

Process Faults

The controlled run of Graph 9.2a shows that in this case the bang-bang controller was

very successful. The output area is maintained between the 10% error bands for most of the

158

dispenses. The simple bang·bang conlroller is unable to deal with the onset of failures due to

process faults. The process faults associated with the adhesive dispensing process are the

onset of voids in the adhesive leading to erratic blob size , soiling of the solder pads due to the

dragging of blobs and the sticky solenoid valve problem which leads to the soiling of the

printed circuit board with the excess adhesive dispensed and the airline loading which leads

to drift in the pulse height produced so effecting the blob area output performance.

The volume of the blob of adhesive dispensed is the important criterion for

determining if a particular dispense has been good or bad. The second criterion is that it is

well centred and in the position required. The position of the blob is well defined via the

robotic system and performs well to the given tolerances (West '88). The volume of the blob

can be determined from the plan area and height of the blob. For a good dispense, that is a

circular well centred blob, the height is fairly uniform (Knapp '87) and so the main

feedback variable is the plan area of the blob dispensed.

Photograph 9.2 Process faults due to the blobs that have fallen over. The tails of the blobs are

likely to contaminate the adjacent solder pads

159

a b

c d
Fig 9.5 a. A good dispense. b. A bad dispense. c. Plan area and circumscribing box of a good

dispense. d. Plan area and circumscribing box of a bad dispense

A good dispensed blob forms a conical shape. fig 9.Sa. When the syringe is moved to

the next dispensed position the blob may be dragged. fig 9.Sb. This produces the process fault

of the blob falling over which can soil the solder pads on the printed circuit board. This

process fault is heightened by the variation in the stringy nature of the adhesive. The

stringier the adhesive the greater the likelihood of the blob being dragged. Photograph 9.2

shows blobs that have been dragged. The box area ratio. that is the ratio of the plan area of the

dispensed blob and the area of its circumscribing box. proves to be a good measure of a good

dispense. A circular blob (a good dispense. fig 9.5c) will achieve the ratio of approximately

0.78. while a blob that has been dragged (a bad dispense. fig 9.5d) will be below this

threshold value. fig 9.6. Graph 9.3a shows process data in which we have a good box area·

ratio performance. while graph 9.3b shows a bad box area ratio performance.

BAR
GOOD

threshold

dispenses ..
Fig 9.6 The box area ratio threshold. a good indication of the quality of the dispense

160

• • =, ..
o

'"

0.9-.------------------...,

0.8

0.7

, , , • • • •••

~.:~" '. "v.,' ~,'~' " .. - .. ' J _ , .. 7jt..~ !o.. -'>.. ~' • •• ~w;-. , __ . ~~, , .-, "'... .:".~ " •• ~ 1~,~ •••••
• ',', J. '.... , '

0.6 +-~-T"""--r-r_....,...-r_-.--r_-.-___,r_.....-__f
o 100 200 300 400 500 600

dlspense_numb.r

Graph 9.3 a. Good box area ratio performance for a given dispense experiment

• ! . , ..
o

'"

1.0.,--------------------,

0.8'" • '" ". '. • • ,. .. (, ,~, '';;:>~'..,.~ · • ,.!..' .. , ~ • :,.,.,,..,~ ,5 ~
~,'. . ." .. ,,' ~
• ..- .'~ \i •• __ ~. ,'. .'.\ ••
• ,'-""'" •• 't,l'

0.6"'· , '\. .. I 't""'" f.. .' .. :....... ,_,' f#.
,. I"J • • " .. V' lilt fII • .. . " 't, .- . .

• • • • _.t. . • ..
0.4

,
, ,

0.2

," , . ,
" , I:. . ,

..... ,t :,.,1,-
~ , ',,,:. '\ .. -~ .. ,...... . ,. · . -)' .

, . , . , ,
" , ..

" .:. • , " .. , .. . , " , ',. . , ,

0.0 +--.-...-__r-,---r-r_-.--r_-.-___,r_-.-__f
o 100 200 300 400 500 600

Graph 9.3 b. Bad box area ratio performance for a different dispense experiment

161

Voids in the adhesive occur from time to time and are characterised via a sharp

increase in the blob area followed by a sharp decrease or total void of the area (see graph 9.4

and photograph 9.3). This is undesirable since the control of the blob size is important in

ensuring that the surface components are securely fixed without using too much adhesive

which would soil the board or the solder mountings. When the void occurs no adhesive is

dispensed and the surface mount component will not be secure during the solder curing stage

of manufacture. In the worst case the component will fail to be secured to the printed circuit

board after soldering. Therefore the control process must recognise the onset of bubbles and

take corrective measures. In this case it would take the syringe off board and clear the void

before returning to normal execution.

When the airline that supplies the dispense unit is overloaded, the measured pulse

height decays (graph 9.6). This condition must be monitored in order that the dispense

process can be terminated and the fault rectified. This fault can result in erratic adhesive

dispense performance (photograph 9.5).

J

ocooo,--------------------------------,

•
60000 •

..
!! .. 40000 I
I!J
0
:;;

•
~ • •

~1f •
•
,~

• •
20000

Graph 9.4 Open loop performance of a dispense experiment in which the properties of the

bubbles can be seen

162

Photograph 9.3 Dispensed blobs which show the appearance of two poor dispenses following

bubbles. Note, the random dispense order means that the increases (see photograph 9.1)

prior to these dispenses are not adjacent.

At times the solenoid valve of the pressure pulse regulator sticks in the open position,

giving a pressure pulse with a larger fall time. The increased fall time allows a greater

volume of adhesive to be dispensed. Graph 9.5a shows process data associated with a sticky

solenoid valve. The graph shows the dispenses where the fall time increases by about 50 % of

its normal value. If this problem is not corrected off line immediately the whole board will

be fouled with excess adhesive . Photograph 9.4 shows the excess adhesive that may be

dispensed when the solenoid valve starts to stick. Recognising this situation depends upon

monitoring the fall time of the pressure pulse.

163

•
E -• •
~

roo~----------------------------,

risetime
faJltime

pulse_width

Graph 9.5 a. Rise time. fall time and pulse width performance of a dispense experiment that
had a sticky solenoid valve problem

•
E

• •
~

60

40

20

risetime
faJltime

pulse_width

Graph 9.5 b. Rise time. fall time and pulse width performance of a normal dispense
experiment

164

Photograph 9.4 Dispensed blobs when the solenoid valve was sticking. Note the excess

adhesive that was dispensed when the solenoid valve failed catastrophically

1000

900

BOO

;:
~
~

~
I

700
~

!!
~
Q.

BOO

500

400

+---------_.

0 100 200 300

dIspense_number

400 500

pulse_heighl
programmed...,pulse_height

Graph 9.6 The pulse height variation when extra load was applied to the air line

165

• • • • • • •
• •

• •
• •

•

• •
•

• •

•

• •

Photograph 9.5 Dispensed blobs when the extra load was applied to the air line. Note the

material variation also contributes to the erratic blob sizes

Neural network implementations of control processes

Neural networks can model thresholds, bands and trends. These can be combined to

construct reliable neural network implementations of controllers. A design of a neural

network controller for the adhesive dispensing system is described below.

The feedback variables can be passed through a simple neural network controller that

provides qualitative corrective actions. (The details of the neural network controller for the

adhesive dispensing system are given in appendix G). The simplest case is represented by the

box area ratio decision unit, which requires a single threshold device. Fig 9.7a shows the

system variable (in this case the box area ratio thresholded in to the two regions) . Fig 9.7b

shows the single node that can implement this function .

166

System Variable _

Box Area
Ratio

a b

Good or Bad
Dispense

Fig 9.7 a. Thresholding of a single system variable. b.Neural network representation of the

box area ratio threshold unit

The box area ratio is acceptable (output is +1) if it is larger than the given limit

(0.78 in this case). while unacceptable (output is -1) if it is lower than the given limit.

Similarly the pulse height drift can be monitored by a threshold unit that will flag the fault

associated with the air line.

System_Variable High v Low

Fig 9.8 a. Neural network representation of the operator that keeps a single variable within

given limits

The bang-bang controller of the blob area can be implemented in a neural network but

requires two hidden nodes (fig 9.8a). The blob area has an acceptable value to within a given

tolerance. This means that a region (or a band) of the system variable is acceptable

surrounded by two regions that are unacceptable (see fig 9.8b). The output blob area decision

unit is a logical or of the two hidden threshold units that provide the regional boundaries. No

action (output is -1) is taken within the acceptable region of the system variable (blob

167

area), while when the process strays outside of this region action (output is + 1) is taken.

Low

c

~
I~

c:
3

""

High

System Variable ~

Fig 9.8 b. Segmentation of a single system variable into three regions

More complicated qualitative controllers require larger multilayered neural

networks. Intelligent controllers are constructed via the addition of Boolean decision units

within the hidden layers that provide the relevant control actions. Quantitative controllers

are constructed via the addition of a decoding layer of weights from the qualitative decisions.

Area_2

Area
Trend

Fig 9.9 Trend analysis using a neural network unit

A neural network can be used to monitor blob area trend to anticipate an appearance of

a bubble in the adhesive. The simplest approach would be to monitor the direction of change of

the blob area of the latest dispenses, say the last three (see fig 9.9). A Boolean function of the

inputs (in this case logical and) would ensure the correct qualitative response, take action

or not, is made. A similar trend analysiS of the fall time will recognise the sticky solenoid

valve problem.

168

Training the neural network controller

Training a neural network requires data. Data can be obtained from the simulation

models or from real process runs. The inputs to the network are the various process

variables, while the outputs are the control actions that must be applied. The network is then

trained automatically over all the data until satisfactory convergence is obtained.

The training sequence of the neural network controller requires that the network

structure is well known and adequate for representing the transformation in question. The

work presented in this thesis allows us to proceed and construct a neural network structure

that is suitable for modelling the control problem.

The outputs of the neural network are Boolean values that provide decisions of say

increase pressure or decrease pressure without specifying by how much or the actual real

value.

A regional segmentation model of the blob area coupled with a box area ratio measure

will provide a network structure suitable for most of the problems associated with this

process, namely steady state process control and the detection of dragging of adhesive as well

as the blockage of the syringe needle. Adding a trend analyser for the fall time and the blob

area will take into account the remaining factors, namely the appearance of bubbles and the

sticky solenoid valve problem. Fig 9.10 shows a suitable network structure for the control

process. If enough is known explicitly about the process the weight values can be hand

crafted. Otherwise the network must be trained automatically with the process data available.

That is the network structure is tuned to the specific application.

Appendix G describes the various different neural network structures that were

designed and the different methods used to train them. Including knowledge available about the

control process rapidly improves the automated training algorithm's convergence

performance.

169

Blob Area

Box Area
Ratio

Fall Time

Pressure Decision

Good or Bad Dispense

Sticky Solenoid
Valve Decision

Fig 9.10 Neural model of an adhesive dispensing controller

The application of intelligent control actions such as the recovery from potentially

catastrophic situations requires qualitative outputs from the controller. The signals from the

controller essentially only initiate the required action, which is then carried out by

specialised systems.

Intelligent control using neural networks

The Boolean layers of the neural network allow intelligent control actions to be

implemented. This is illustrated by a simple two dimensional example. A trajectory must be

maintained within a given tolerance (see fig 9.11). Corrective action is applied in the region

outside the accepta~le band. For intelligent control we require different corrective actions to

be taken in different regions of the state space. Fig 9.11 shows a case where two separate

actions must be taken in the regions A and B. The neural model of this example is shown in fig

9.12.

170

System Variable 2

B

System Variable 1

Fig 9.11 Simplified two variable example of intelligent control. Different control actions are

required in different regions of the state space

The segmentation of the system variable requires four nodes while the trajectory

tolerance boundaries require two nodes. The hidden nodes are required to model the Boolean

transformation that provides the relevant control action.

Trajectory
Segmentation
Nodes

System Variable
Segmentation Nodes

Fig 9.12 Neural model of intelligent controller shown in fig 9.11

Similarly intelligent control actions can be applied in the adhesive dispensing

process. The bimodal warning operator possesses some of these properties. A warning signal

is required when the process strays a given percentage from the ideal, so that preparations

171

can be made for when the corrective actions are applied when the process strays outside the

action error boundary. No warning signal is required when action is taking place. This is

illustrated in fig 9.13. The neural model for this case is shown in fig 9.14. The four

threshold nodes in the hidden layer represent the four warning and action error boundaries.

Blob Area

action -> 5%
warning -> 2%

Dispenses
Fig 9.13 The bimodal warning operator

System_Variable

No Warning

Waming

No Warning

Warning

No Warning

Bimodal
Warn

Fig 9.14 Neural implementation of the bimodal warning operator

Real output values

For more sophisticated controllers the control actions of the pressure pulse, namely

increase or decrease pulse height is not a true qualitative action. A real valued quantity must

be provided and so a decoding layer is necessary. At this point a design decision must be made

as to how to achieve this output.

172

A fully quantised approach as discussed in chapter eight may be adopted, but this

relies on the existence of an injective function from the input data to the output data, which

may not exist with most control systems if we consider the effect 01 external variations on

the system. The second approach is to maintain the qualitative decision to increase or

decrease pressure but to decode it via a real valued weighted decoding unit which can be

trained by the system (see fig 9.15 for a simplified network model). The output decoding unit

is tuned to the data that is modelled, and so, if the data is representative of the system the

best possible quantised decoding value will be found.

Blob Area

Quantisation
Layer

Boolean
Layer

Decoding
Layer

Real
Pressure
Change

Fig 9.15 Simplified controller that provides real valued output signals

This fixed quanti sed decoding system is a rough model of the output parameters. An

improved model can be sought by enhancing the system with a variable decoding unit. This

allows the amount by which the pressure is varied to be increased or decreased. In this

system there is an extra node which determines the magnitude of the decoding weight. The

decoding weight is increased or decreased depending on the value of the change_decision node

(fig 9.16). This development will be pursued further in the future. The structure of the

neural network for this case is shown in fig 9.16.

173

Blob Area

Previous Real
Pressure
Charge

Real
Pressure
Change

Fig 9.16 Network architecture for a controller that gives a variable pressure change

Summary

This chapter has discussed the design and implementation of a neural network

controller for an adhesive dispensing system. The properties of the system were discussed

and the various process characteristics and process faults highlighted.

It was shown that neural network techniques could implement the thresholding and

banding of the process variables which allowed the relevant control signals to be output and

the relevant process faults to be flagged. Ideas for implementing intelligent control actions

using neural networks were discussed.

The neural network that was designed solved the adhesive dispensing control problem.

The designed neural network controller was predictable and reliable since its behaviour was

well defined over the whole input space. Appendix G shows the performance of the neural

network controller.

174

Chapter 10. Conclusions and Direction of Future Work

Summary of Thesis

This thesis has addressed the question of reliable neural network design and a study of

feed forward neural networks has been given. The training of neural networks was discussed.

Particularly the backpropagation algorithm has been examined and its use in training real as

well as Boolean transformation networks has been studied.

The treatment of the hidden nodes as Boolean transformations has moved neural

network techniques into the area of reliable systems. The introduction of parallel nodes

enabled the hidden layers to be structured and the performance of the networks to be

guaranteed. The parallel nodes were proposed as atomic elements in a general knowledge based

representation of neural systems. These systems were extensively studied and compared to

standard feedforward systems.

As well as the computational advantage of the parallel node system (the reduction of

the number of weights which lead to the reduced load on the learning algorithm) the

significant advantage of the new proposals was the reliability of the neural network

behaviour and the ability to interpret the neural network structure in an atomic manner.

On the basis of the investigations into neural network structure and behaviour

several results on network size and topology were presented. These results are crucial in the

design of neural network systems. Only after a suitable size and topology of a network has

been chosen do the automatic training algorithms provide the weight values of the network

that model the inpuV output data.

Given.the knowledge about the constraints on neural network size and topology a

general design methodology was proposed. The methodology provides a· prescriptive scheme of

action for designing neural models of inpuV output systems. whether they be real or Boolean

values. Finally the work was applied to the design of a real time neural network controller of

an adhesive dispensing system. The application demonstrated the importance of the design of

175

reliable systems whose behaviour is fully understood. This allowed important system

characteristics that were already known to be included in the network structure so reducing

the training phase of the neural network.

Future work

Future work will be in the following areas:

i. Training algorithms,

ii. Knowledge representations,

iii. Design tools,

iv. Real applications.

Training algorithms

The backpropagation algorithm has pushed neural networks to the forefront of public

attention. As well as the advantage of parallel representation and distributed activity over

simple units, it is the automated training algorithms that make neural network

representations attractive. The experiments described in part 11 and appendices A, B, C and F

of this thesis show that training is still a long and difficult process. When the training

performance is so dependent on the possibly random start point, it can be seen that more

study is required. The application of genetiC algorithms is likely to be one of the most fruitful

paths. The genetic algorithm will be able to propagate multiple start points which can then be

optimised by a backpropagation technique. The parallel nature of the genetic algorithm will

allow this technique to be fully exploited as multiprocessor systems become more powerful

and sophisticated.

176

Knowledge representations

The key to understanding the behaviour of neural nelwor1<. models is 10 have a well

defined structure and interaction of nodes in the nelwork. The parallel nodes represent a

starting poin!. The nodes are well defined, that is parallel and there is no interaction between

pairs of parallel nodes. Hyperpolygonal systems as well as systems Ihat allow more complex

interaction between the nodes will be developed in the future. Encapsulating the function and

behaviour of nelwor1<.s and subnetwor1<.s in much the same manner as object orientated

systems will allow the hierarchical design of neural networ1<. systems without losing their

inherent parallelism.

The representational capabilities of neural systems can also be extended by the use of

Fuzzy and probabilistic modelling techniques. The development of fuzzy and stochastic neural

models are discussed by Sprecht '90. The use of knowledge representations in these systems

would formalise system perfonmance and aid understanding of the behaviour of the neural

networks.

Design tools

As more complex systems are modelled by neural network structures, automated

design tools must be made available. Automated interpreters for converting from neural

networ1<. to Boolean representations and vice versa would be a start point. Automated networ1<.

encapsulation systems would allow rapid prototyping and development 01 designed neural

systems. The reliability of the systems would be maintained by the use of parallel nodes as

well as other specified knowledge structures.

Applications

As neural network techniques develop their applications to real world systems will

increase. Significant engineering applications are possible as the question of neural network

177

reliability has been addressed by this thesis. The control problem discussed in chapter nine

is a case in point. The low level nature of real time signal processing makes the neural

network systems which have been implemented in hardware an ideal solution.

The development of the structured knowledge representation of neural systems will

allow higher level applications of neural networks. General neural network computational

systems may then be built on this structured approach to distributed neural computation.

178

References

Abu Mustafa, Y.S. & St Jacques, J.M.(1985), Information Capacity of the Hopfield model,

IEEE Transactions on Information Theory, vol 31, pp 461- 464.

Aleksander, I. & Morton, H.(1990), An Introduction to Neural Computing, Chapman and Hall,

London.

Amari, S.I.(1967), A Theory of Adaptive Pattern Classifiers, IEEE Transactions on

Electronic Computers, vol EC 16, pp 299- 307.

Amari, S.I.(1977), A Mathematical Approach to Neural Systems, Arbib, MA & Metzler,

J.(Eds): Systeme Neuroscience, pp 67- 117, Academic Press, New York.

Amari, S.1. & Arbib, M.A.(1977), Competition and Cooperation in Neural Nets, Arbib, MA &

Metzler, J.(Eds): Systeme Neuroscience, pp 119- 165, Academic Press, New York.

Antsaklis, P.J.(1992), Neural Networks in Control Systems, IEEE Control Systems

Magazine, vol 12, pp 8- 10.

Arai, M.(1989), Mapping Abilities of Three Layer Neural Networks, International Joint

Conference on Neural Networks, pp 419- 423.

Aynsley, M., Peel, D. & Morris, A.J.(1989), A Real Time Knowledge Based System for

Fermentation Control, American Control Conference, pp 2239- 2244.

Barbiarz, A.J.(1989), Adhesive Dispensing for Surface Mount Assembly, Printed Circuit

179

Assembly. July. pp 8- 11.

Barlo. A.G .• Sulton. R.S. & Anderson. C.w.(1983). Neuronlike Adaptive Elements that can

Solve Difficult Learning Control Problems. IEEE Transactions on Systems Man and

Cybernetics. vol 13. pp 834- 846.

Bano. A.G.(1990). Connectionist Learning for Control. Neural Networks for Control. Sulton

R.S. & Werbos. P.J.(editors). MIT Press. Cambridge MA.

Baum. E.B.(1988). On the Capabilities of Multilayer Perceptrons. Journal of Complexity.

vol 4. pp 193- 215.

Birdsall. D. & Cipolla. C.M.(1979). The Technology of Man. Wildwood House Ltd. London.

Birkhoff. G. & Barlee. T.(1970). Modern Applied Algebra. McGraw-Hill Book Company,

London.

Birkhoff, G. & Maclane S.(1977), A Survey of Modern Algebra, Macmillan.

Block, H.D.(1970), A review of ·Perceptrons: an introduction to computational geometry",

Information and Control. 17. pp 501-522.

Boole. G.(1847), The Mathematical Analysis of Logic. Macmillan, Cambridge.

Boole. G.(1958). An Investigation of the Laws of Thought, Dover Publications, New York.

Bourne, D.A.(1986). CML- A Meta Interpreter for Manufacturing, AI Magazine. vol 7, pp

86- 96.

180

Bourne. D.A.(1987). The Automated Craftsman· Preliminary Research. CMU·RI· TR·87·

22.

Boyer. C.B. & Merzbach. U.C.(1989). A History of Mathematics. Second Edition. John Wiley

and Sons. Chichester.

Bridgeman. K.(1989). Dispensing Liquid Adhesives. Engineering. June.

Bronowski. J.(1973). The Ascent of Man. British Broadcasting Corporation. London.

Budge. T .• Craven. S .• Duran • S .• Pearson. J.T .• Welch. R. & Wossun. M.(1990). PARSEC·

Process Analysis with Recipe Support for Etcher Control. IEEE Transactions on Semi·

conductor Manufacturing. vol 3. pp 28· 32.

Carroll. L .• Bartley.W.W.(editor).(1977). Symbolic Logic. The Harvester Press Limited.

Hassocks. England.

Carroll. L.(1958). Symbolic Logic and the Game of LogiC. Dover Publications. New York.

Caudhill. M.(1988). The Polynomial Adaline Algorithm. Comput Language. vol Dec. pp 53·

59.

Chandraker. R.. West. A. A. and Williams. D. J.(1989). Knowledge based Control of Adhesive

dispensing for Surface Mount Device Assembly. IEEE Components Hybrids and Manufacturing

Technology Symposium. September.

Chandraker. R.. West. A. A. and Williams. D. J.(1990). Intelligent control of Adhesive

Dispensing. IJCIM. Special issue in Intelligent Control. vol. 3. No 1. pp. 2~·34.

1 81

Clark. R.W.(1985). Works of Man. Century Publishing. London.

Clocksin. W. & Mel/ish. C.(1987).Programming in Prolog. 3rd Ed .• Springer-Verlag.

Clarke. A.A.(1986). A Three Level Human Computer Interface Model. International Journal

of Man Machine Studies. Vol 24. pp 503· 517.

DeMorgan. A.(1847}. Formal Logic. Taylor and Wallon. London.

Dolan. C.P. & Dyer. M.G.(1987). Towards the Evolution of Symbols. Proceedings of the

Second International Conference on Genetic Algorithms. pp 123- 131.

Efstathiou. J.(1985). Rule Based Process Control. Expert Systems in Process Control and

Optimisation. Proceedings of Seminar Dec 1985. Unicom Seminars.

Efstathiou. J.(1989). Rule Based Process Control. Longmans. London.

Feldman. J.A.(1982). Dynamic Connections in Neural Networks. Biological Cybernetics. vol

46. pp 27- 39.

Feldman. J.A. & Bal/ard. D.H.(1982). Connectionist Models and their Properties. Cognitive

Science. 6. pp 205- 254.

Feldman. J.A .• Fanty. M.A.. Goddard. N.H. &" Kenton. J.L.(1988). Computing with Structured

Connectionist Networks. Communications of the ACM. 31. pp 170- 187.

Forbes. R.J. & Dijksterius. E.J.(1963). A History of Science and Technology. Vol. 1 & 2.

182

Penguin Book Ltd, Harmondsworth.

Gallant, S.I.(1988), Connectionist Expert Systems, Communications of the ACM, 31, pp

152- 169.

Geszti, T.(1990), Physical Models of Neural Networks, World Scientific.

Grant, E. & Zhang, B.(1989), A Neural Net Approach to Supervised Learning of Pole

Balancing, Proc. 4th International Symposium on Intelligent Control, 25-27 September,

Albany, New York, pp 123- 129.

Hertz, J., Krogh, A. & Palmer, R.G.(1991), Introduction to the Theory of Neural

Compu1ation, Addison Wesley Publishing Company, Wokingham, United Kingdom.

Hinde, C.J.(1974), Heuristic techniques applied to an industrial situation, Ph.D. thesis

Brunei University.

Hinde, C.J.(1990), A Comparative Review of Neural Nets and Rule Induction Systems,

Department of Computer Studies Technical Report, LUT TR 575.

Hinton, G.E.(1986), Learning Distributed Representations of Concepts, Proceedings of the

Eighth Annual Conference of the Cognitive Science Society, Amherst, pp 1- 12.

Hinton, G.E.(1989). Connectionist learning procedures, Artificial Intelligence, 40, pp 185-

234.

Hinton, G.E.(1990), Mapping Part Whole Hierarchies into Connectionist Networks,

Artificial Intelligence, vol 46, pp 47- 76.

183

Hopfield, J.J. & Tank, D.W.(1986), Computing with Neural Circuits: A Model, Science, 233,

pp 625-633.

Hopfield, J.J.(1984), Neurons with Graded Response have Collective Computational

Properties like those of Two-state Neurons, Proceedings of the National Academy of Science

USA, vol 81, pp 3088- 3092.

Huang, S.C. & Huang, Y.F.(1991), Bounds on the Number of Hidden Neurons in Multilayer

Perceptrons, IEEE Transactions on Neural Networks, 2, pp 47- 55.

Hwang, K. & Briggs, F.A.(1985), Computer Architecture and Parallel Processing, McGraw

Hill Book Company, London.

Jacyna, G.M. & Malaret, E.R.(1989), Classification Performance of a Hopfield Neural

Network Based on a Hebbian-like Learning Rule, IEEE Transactions on Information Theory,

vol 35, pp 263- 280.

Karsai, (1992), Journal of Intelligent Manufacturing: Special Issue on Neural Networks, pp

56- 65.

Keynes, J.N.(1906), Studies and Exercises in Formal Logic, Macmillan, London.

Keynes, J.M.(1921), A Treatise on Probability, Macmillan, London.

Kolb, B. & Whishaw, I.Q.(1980), Fundamentals of Human Neuropsychology, W.H.Freeman

and Company.

Kowalski, R.(1980), Logic for Problem solving, North-Holland.

184

Knapp,L.(1987), SMD adhesives and Dispense systems, Industrial Report.

Krait, L.G. & Campagna, D.P.(1990), A Summary Comparison of CMAC Neural Network and

Traditional Adaptive Control Systems, in Neural Networks for Control, (editors Miller,W.T.,

Sullon, R.S. & Werbos, P.J.), The MIT press, London.

Kung, S.Y. & Hwang, J.N.(1988), An Algebraic Projection Analysis for Optimal Hidden Units

Size and Learning Rates in Back Propagation Learning, IEEE International Conference on

Neural Networks, pp 363- 370.

Ulley, S.(1965), Man Machines and History, Lawrence and Wishart, London.

Upmann, R.P.(1987), An Introduction to Computing with Neural Nets, IEEE ASSP Mag, 4, pp

4- 22.

Massey, J.G., Wickman, J.L. & Cook, D.F.(1990), Incorporating Statistical Process Control

into a Lumber Manufacturing System, AI in Engineering, pp 155- 166, Boston.

Materna, T.(1987), "Neural networks enter high speed marketplace", Computer Technology

Review, vol. 7, No 7, June.

McClelland, J.L. & Rumelhart, D.E.(1985), Distributed Memory and the Representation of

General and Specific Information, Journal of Experimental Psychology: General, vol 114, pp

159- 188.

McCulloch & Pitts,(1943), A Logical Calculus of the Ideas Immanent in Nervous Activity,

Bulletin of Mathematical Biophysics, vol 5, pp 115- 133.

185

Messom. C.H.(1992). Dependencies in the hidden layer of neural systems. Dep\. Computer

Studies. Loughborough University of Technology Internal Report TR 674.

Messom. C.H .• Hinde. C.J .• West. AA & Williams. D.J.(1992). Designing Neural Networks

for Manufacturing Process Control Systems. IEEE International Symposium on Intelligent

Control. Glasgow.

Mikami. Y.(1974). The Development of Mathematics in China and Japan. Chelsea Publishing

Company. New York.

Miller; W.T .• Hewes. R.P .• Glanz. F.H. & Krait. L.G.(1990). Real·time Dynamic Control of

an Industrial Manipulator Using a Neural Network Based Learning Controller. IEEE

Transactions on Robotics and Control. vol 6. pp 1· 9.

Minsky. M.L. and Papert. S.(1969). Perceptrons. M.I.T. press.

Mirchandani. G. & Cao. W.(1989). On Hidden Nodes for Neural Nets. IEEE Transactions on

Circuits and Systems. 36. pp 661· 664.

Morgan. A.J.(1990). Real Time Expert Systems in the Cogsys Environment. in Research and

Development in Expert Systems VII. Proceedings of Expert Systems 90. London. September

1990. pp 104· 115.

Opdahl. P.O.(1989). EPAK· Expert System for Paper Quality. Gensyn Users Society. Fall

Meeting. Cambridge. MA. October 1989.

Pei·Yan. Z .• & Bin. L.(1990). A Fuzzy Control Method for a Cylindrical Grinding Process.

CAPE6 Conference. London. November 1990. pp 491· 493.

186

Pollack, J.B.(1990), Recursive Distributed Representations, Artificial Intelligence, vol 46,

pp 77- 106.

Rosenblatt, F .(1962), Principles of neurodynamics, Spartan books.

Rumelhart, D.E., McClelland, J.L. & PDP Research Group.(1986), Parallel Distributed

Processing;- Explorations in the Microstructure of Cognition, 1 & 2, MIT Press.

Russell, B.(1919), Introduction to Mathematical Philosophy, Alien and Unwin, London.

Russell, B.(1903), The Principals of Mathematics, Alien and Unwin, London.

Sakurai, M., Wakimoto, K., Nakajima, R. Maki, A. & Sakai, A.(1989), Operation Control of a

Blast Furnace by Artificial Intelligence, Iron and Steel Manufacturing, November, pp 59-

67.

Sejnowski, T.J. & Rosenberg, C.R.(1987), Parallel Networks that Learn to Pronounce

English Text, Complex Systems, vol I, pp 145-168.

Shapiro, E.Y. & Stirling, L.(1985), The Art of Prolog: Advance Programming Techniques,

M.I.T. Press.

Sloman, M. & Kramer, J.(1987), Distributed Systems and Computer Networks, Prentice

Hall International, London.

Sprecht, D.F.(1967), Generation of Polynomial Discriminant Functions for Pattern

Recognition, IEEE Trans Electron Comput, vol EC 16, pp 308- 319.

Sprecht, D.F.(1990), Probabilistic Neural Networks and the Polynomial Adatine as

187

Complementary Techniques for Classification, IEEE Transactions on Neural Networks, vol I,

pp 111- 121.

Stengel, R.F.(1991), Intelligent Failure-Tolerant Control, IEEE Control Systems Magazine,

Volll, N04, pp 14- 23.

Tani, J., Hirobe, T., Niida, K., Koshijima, I. & Murakami, H.(1989), New Learning

Algorithm for Rule Extraction by Neural Network and its Application, AAAI.

Tank, D.W. & Hopfield, J.J.(1986), Collective Computation in Neuronlike Circuits, pp 62-

70.

Tank, D.w. & Hopfield, J.J.(1986). Computing with Neural Networks: A Model, Science, Vol

233, pp 625- 633.

Turban, E.(1988), Decision Support and Expert Systems, MacMillan Publishing Company,

London.

Venn, J.(1894), Symbolic Logic, Macmillan, London.

Vogl, T.P., Mangis, J.K., Rigler, A.K., link, W.T. & Alkon, D.L.(1988), Accelerating the

Convergence of Backpropagation, Biological Cybernetics, vol 59, pp 257· 263.

Wasserman, G.D.(1972), Molecular Control of Cell Differentiation and Morphogenesis: a

systematic theory, Marcel Dekker, New York.

Wasserman, P.D. & Schwartz, T.(1987), Neural Networks:- Why is Everybody Interested in

them Now; Part I, IEEE Winter 1987, pp 10-15.

188

Wasserman, P.D. & Schwartz, T.(1988), Neural Networks:- Why is Everybody Interested in

them Now; Part 2, IEEE Spring 1988, pp 10-15.

Warwick, K. & Tham, M.T., Editors,(1991), Failsafe Control Systems: Applications and

Emergency Management, Chapman and Hall, London.

West, A.A., Chandraker, R., Williams, D.J., Mulvaney, D.J.(1988), Hybrid Representations

of Real-time Control Rules for Manufacturing Process Control in Electronics Manufacture,

Proceedings of the IEEE Symposium on Intelligent Control, Arlington, Virginia, September.

West, A.A.(1992), ACME Grant GRI F 71973 & GRI G 37101, Final Report.

Williams, D.J.(1990), The hidden Problems of Surface Mount Device Assembly, Assembly

Automation, vol 9, No 2, P 59- 60.

Williams, D.J., West, A.A., Chandraker, R.(1989), Knowledge Based Control of Adhesive

Dispensing for SMD Assembly, SERC ACME Grant GAlE 40040 Final Report.

Willshaw, D.J.(1981), Models of Distributed Asociative Memory, Doctoral Dissertation,

University of Edinburgh.

Wright, P. K., Pavlakos, E. & Hansen, F.(1991), 'Controlling the Physics of Machining on a

New Open-Architecture Manufacturing System", ASME Winter Annual Meeting.

Zhang, B. & Grant, E.(1991), A Neural Net Approach to Adaptive State Space Partition for

Learning Control.

189

Appendices

Appendix A 1. Start Point Experiment

Aim:

To identify the effect of the start point on neural networ1< training algorithm

convergence. That is the effect of different initial neural networ1< weight configurations on

training algorithm performance.

Method:

Four data sets where selected to examine the performance of the backpropagation

training algorithm over different start points. These where odd and even parity with three

and four inputs.

Three input even parity

p(·t,·t,-t,t).

p(-t,-t,t,-t).

p(-t,t,-t,-t).

p(-t,t,t,t).

p(t,-t,-t,-t).

p(t,-t,t,t).

p(t,t,-t,t).

p(t,t,t,-t).

L
t90

Three input odd parity

p(-t,-t,-t,-t).

p(-t,-t,t,t).

p(-t,t,-t,t).

p(-t,t,t,-t).

p(t,-t,-t,t).

p(t,-t,t,·t).

p(t,t,-t,-t).

p(t,t,t,t).

Four input even parity

p(-l,-l,-l,-l,l).

p(-l.,-l,-l,l,-l).

p(-l,-l,l,-l,-l).

p(-l,-l,l,l,l).

p(-l,l,-l,-l,-l).

p(-l,l,-l,l,l).

p(-l,l,l,-l,l).

p(-l,l,l,l,-l).

p(l,-l,-l,-l,-l).

p(l,-l,-l,l,l).

p(l,-l,l,-l,l).

p(l,-l,l,l,-l).

p(l,l,-l,-l,l).

p(l,l,-l,l,-l).

p(l,l,l,-l,-l).

p(l,l,l,l,l)_

Four input odd parity

p(-l,-l,-l,-l,-l).

p(-l,-l,-l,l,l).

p(-l,-l,l,-l,l).

p(-l,-l,l,l,-l).

p(-l,l,-l,-l,l).

p(-l,l,-l,l,-l).

p(-l,l,l,-l,-l).

p(-1,1,1,1 ,1).

p(l,-l,-l,-1,l).

p(l,-l,-l,1,-1).

p(l,-l,l,-l.-l).

p(l,-l,l,l,1).

p(l,1,-l,-1,-1).

p(l,l,-l,l,l).

p(l,l,l,-l,l).

p(l,l,l,l,-1).

The different start points that where used in this experiment -where generated by a

seeded pseudorandom scheme. A three input and four input fully connected structure with

three hidden nodes and one output node network structure requires sixteen and twenty five

weights respectively. The first weight is generated from the seed value via the following

function;

Weight= (Seed - 505)/1000,

Nextseed= (Seed • 997 • 101) mod 1009,

while the next weight is generated from the next seed. This process continues iteratively for

all the weights in the network.

The learning rate that was employed was 0.01, while the temperature value was 0.1.

Seed values from 3 to 51 were used in this experiment. Each initial configuration was

191

trained over the odd and even parity data separately for 2000 iterations. The results are

presented in the graphs Al.l a- d and table A 1.1 below.

Several of the typical convergence paths are displayed in graphs A 1.2 a- g.

Results:

As shown in the graphs Al.l a- d the sum squared error convergence performance of

the backpropagation algorithm is highly dependent on the start point, Ihe initial

configuration of the neural network. For the three input case it is seen that a third (17 for

even parity and 18 for odd parity) of the neural networks converge within the 1000

iterations examined. For the four input case it is seen that a sixteenth (3 for even parity and

3 for odd parity) of the neural networks converge within the 1000 iterations while there is

a large variation in sum squared error values for the other start points.

Experiment Mean Variance

3 input even parity 5.238 4.566

3 input odd parity 4.920 4.483

4 input even parity 12.405 8.691

4 input odd parity 13.290 10.181

Table Al.l The mean and variance of the sum square error convergence performance of the

four sets of experiments

Analysis:

The typical sum squared error convergence paths that are shown in graphs A 1.2 a- g

vary greatly. This is dependent on the initial configuration of the neural networks and not the

training data. The great variation in convergence cannot be explained by the four training

data, but is a function of the initial configurations of the neural networks (the start points).

192

Graphs:

.. .. .,
H ..
"

~ l!
• u

" ~ " E " .. " ..
Z ..

" .. c ..
" • ..

~
..
~ ..

=
.. "
SE III .. ,. ..

" " " • • ,
I • , , ,

0 10 20

Graph A 1.1 a. Sum square error performance of training algorithm with three input even
parity

• • Q

•
~
0
Q ..
• • • p

=
a •

~ D »
E • D

" • z • • • c ~ • • D

~
» • »

= • • ... " .. • III ..
" ..
" " ~ • • ,
I • , , ,

0 10 20

Graph A 1.1 b. Sum square error performance of training algorithm with three input odd
parity

193

~ • ~
E
" z

c • E
':: •
w

o 10 20 30 40

Graph A 1.1 c. Sum square error performance of training algorithm with four input even
parity

..
:I
~

" :I ..
D

l!
" ~ 11 ..

~ " " E II
" .. z 11 ..
C r-• " E " ':: il .. • ;1 w ~ ..

u

" " " • • ,
• • • ,
• ,

0 10 20 30 40

Graph A1.1d. Sum square error performance of training algorithm with four input odd parity

194

8~----------------------------~

6

-~
• ,
~

4 • ~ ... • ,
E
~ •

2

O+---~--~--~--r-__ ~ __ ~--~~
o 200 400 600 800

Ite,.tlon

Graph A 1.2 a. Sum squared error performance of a specific neural network start point
trained on three input even parity

1; --.,
~
• ~ ,
E
~ •

20~-------------------------------,

10

O+---~--r-~--~--~--~--'-~
o 10 20 30 40

iteration

Graph A 1.2 b. Sum squared error performance of a specific neural network start point
trained on three input odd parity

195

20~-------------------------------,

~

~
• ,
•
:. 10
~ ,
E
~ •

10 20 30 .0 50

iteration

Graph A 1.2 c. Sum squared error performance of a specific neural network start point
trained on three input even parity

~
•
~'
• ~ ...
•
E
~

•

,

30

20

10

o
o

.-

~ ...,
......

1000 2000

It.ntlon

Graph Al.2 d. Sum squared error performance of a specific neural network start point
trained on four input even parity

196

•
~ .,
~ • ~ ...
• ,
E
~

•

16.0..------------------,

15.8

15.6

15.4 lI-"'\

15.2

15.0

14.8+----~----.._---..,...----\
o 1000 2000

lIer.tlon

Graph A 1.2 e. Sum squared error performance of a specific neural network start point
trained on four input odd parity

~ • •
~'
• ~ ...
•
E
~

•

,

4.0,.-------------------,

3.9

3.8

3.7+----...... ---.,.---'---.-----\
o 1000 2000

ltera1l0n

Graph A 1.2 f. Sum squared error performance of a specific neural network start point
trained on four input even parity

197

~

g
;.
• • ... • I
E
• •

30,--------------------------------,

20

o 200 400 600 800 1000 1200

Ilerallon

Graph A 1.2 g. Sum squared error performance of a specific neural network start point
trained on four input odd parity

198

Appendix A2. Experiment on Learning Rate

Aim:

The effect of various different learning rates, that is the constant 11. in the update

formula of the backpropagation algorithm;

t.w = -11. iJE/cm,

on convergence performance is examined.

Method:

The four data sets which where selected to examine the performance of the

backpropagation training algorithm over different learning rates where odd and even parity

with three and four inputs. These data sets are as defined in Appendix Al.

The initial network structures that were employed were selected by examining the

results of the experiment in appendix A 1. An initial network structure was selected that

provided convergence before 2000 iterations at the temperature of 0.1 and the learning rate

of 0.01. These initial nets where;

for the three input even parity case, net generated with seed 31.

for the three input odd parity case, net generated with seed 52.

for the four input even parity case, net generated with seed 32.

for the four input odd parity case, net generated with seed 38.

The convergence of the four initial network configurations where examined over 3000

iterations at the temperature of 0.1 for various different learning rate values. The results

are presented in graphs A2.1 a· d.

Results:

The graphs A.2.1 a-d show that for low learning rates, learning rate < 0.001, and

199

high learning rate. learning rate> 0.05. the training had not converged in the 3000

iterations examined. For the examples examined in this experiment. the ideal learning rate

was seen to be 0.01.

Analysis:

When the learning rate is large the weight update values are large and so gradient

descent does not occur. The updates essentially over shoot the ideal path. When the leaming

rate is very low. the weight updates become very small. true gradient descent occurs.

However. two problems exist for this case. Firstly. the updates are so small many iterations

are required for the algorithm to converge. Secondly. the algorithm may get stranded in local

minima. since the updates are so small. when a local minima is traversed the algorithm. may

get stranded.

Graphs:

~

o
~
~

•
• I

ro,--------------------------------,

:; 10

" .,.
e

I
E

" e.

o
10 0.1 0.05 0.025 0.01 0.005 0.001

Graph A2.1 a. Sum squared error performance of training algorithm with three input even
parity given different learning rates

200

~

o
~
~ .,

~~------------------------------~

:!
• 10
" .,.
•
E

" •

,

o
10 0.1 0.05 0.025 0.01 0.005 0.001

Graph A2.1 b. Sum squared error performance of training algorithm with three input odd
parity given different learning rates

~~-------------------------------,

30

~

0
~
~ • ,
• ~

~ • " .,.
• ,
E

" •
10

o
10 0.1 0.05 0.025 0.01 0.005 0.001

Graph A2.1 c. Sum squared error performance of training algorithm with four input even
parity given different learning rates

201

~

o
~
~ .,
• ~
• " er •
E
" •

,

~'-----------------------------,

20

10

o
10 0.1 0.05 0.025 0.01 0.005 0.001

Graph A2.1 d. Sum squared error performance of training algorithm with four input odd
parity given different learning rates

202

Appendix A3. Experiment on Temperature Value

Aim:

The effect of various different temperature values on the backpropagation algorithms

convergence performance is examined. The temperature value is the constant T in the node

formula;

Output (2/(1 + exp(·Weighted_lnpuVT)) . 1)

Method:

The four data sets which where selected to examine the performance of the

backpropagation training algorithm over different learning rates where odd and even parity

with three and four inputs. These data sets are as defined in Appendix A 1.

The initial network structures that were employed were identical to those discussed

In appendix A2. The convergence of the four initial network conflQurations where examined

over 3000 iterations at the learning rate of 0.01 for various different temperature values.

The results are presented in graphs A3.1 a· d.

Results:

The graphs A.3.1 a· d show that for low temperature values, temperature < 0.05, and

high temperature values, temperature> 0.5, the training had not converged in the 3000

iterations examined. For the examples examined in this experiment, the ideal temperature

value was seen to be 0.1.

Analysis:

When the temperature is large the sigmoid function is soft, that is the derivative of

203

the sigmoid function is not large. This means that the update values of the weights remain

small. Also since the soft sigmoid function requires large inputs to provide outputs in the

region ±1 training must progress for a long time before convergence occurs. When the

temperature value is very low the sigmoid function is hard. That is its derivative is almost

zero everywhere except near zero where it is large. If the node inputs are near zero, the

problem associated with a high learning rate, that of large weight update occurs. Gradient

descent does not occur. If the node inputs are not near zero, the hard sigmoid ensures that the

weight updates are very small. This is the same problem as that associated with a low

learning rate, the updates are so small that convergence will take many iterations while the

chance of stranding in local minima is increased greatly.

Graphs:

10,---------------------------------,

8

~

0
~
~ 6 • I • ~ ..
" IT .. 4

I
E
" ..

2

o
10 0.5 0.25 0.1 0.05 0.01 0.001

temp.ratur.

Graph A3.1 a. Sum squared error performance of training algorithm with three input even
parity given different temperature values

204

15,---------------------------------~

~ 10 0
~
~ • I
:! •
" .,.
• I
E 5
" •

o
10 0.5 0.25 0.1 0.05 0.01 0.001

temper.tur.

Graph A3.1 b. Sum squared error performance of training algorithm with three Input odd
parity given different temperature values

~

o
~
~

•
• ~ I
•
" .,.
•
E
" •

I

~~-------------------------------,

20

10

o
10 0.5 0.25 0.1 0.05 0.01 0.001

temperature

Graph A3.1 c. Sum squared error performance of training algorithm with four input even
parity given different temperature values

205

~

o
~
~

•
• ~
• ~

I

...
• I
E
~ •

~,--------------------------------,

20

10

o
10 0.5 0.25 0.1 0.05 0.01 0.001

temperature

Graph A3.1 d. Sum squared error performance of training algorithm with four input odd
parity given different temperature values

206

Appendix A4. Retraining Neural Networks on New Training

Data

Aim:

To observe the convergence properties of training models of odd and even parity on

even and odd training data respectively.

Method:

Models of odd and even parity with three and four inputs were selected from those

neural networi< models that converged in the experiments of appendix A 1. These are identical

to those discussed in appendix A2 and A3. These neural networks were retrained on opposite

data for a maximum of 1000 iterations at a learning rate of 0.01 and a temperature of 0.1.

The convergence results are shown in graphs A.4.1 a· d.

Results:

The convergence performance of the four experiments as shown in graphs A.4.1 a- d

have the following sum squares errors of;

a. 0 b. 0 c. 4 d. 12.

The three input parity experiments converged in under 1000 iterations. this was in 600 and

200 iterations respectively. The four input parity experiments did not converge. Retraining

neural network models to new conflicting data is very difficult for large input spaces.

Analysis:

The neural models of odd and even parity differ by a negation of the output weights or

207

the hidden layer weighls. That is the update of just one of the layers of weights leading to the

negation of all the weight values. However, the update of the training scheme is iterative over

the whole weight space and so can not isolate the update in the optimal manner. There is an

interfering effect over the updates that are provided by the training algorithm.

Graphs:

...
o

15,-----------------------------~

GI 10 -
I

GI ...
III
:s
IT

"'I 5 -
E
:s

'"
04---r_~1---r--'1---r--,-,--r-~~-r--~
600 800 1000 1200 1400 1600

iteration

Graph A4.1 a. Sum squared error convergence of neural network modelled on three input
even parity , when trained on odd parity

208

~~-------------------------------,

30

~

0
~
~ • I • ~ 20-•
" ...
• I
E

"

~
~---.....,\

O+-------~----_,------~~----~

•
10 -

1100 1200 1300

lteraU"on

Graph A4.1 b. Sum squared error convergence of neural network modelled on three input odd
parity , when trained on even parity

~

o
~
~ •
• ~ I • " ... •
E
" •

I

~~---r--------------------------~

30

20

10+--r~r-~~--~-r~r-'-~--r-~~
1800 2000 2200 2400 2600 2800 3000

iteration

Graph A4.1 c. Sum squared error convergence of neural network modelled on four input even
parity , when trained on odd parity

209

~

o
~
~ •
• ~ I • " ... • I
E

" •

~,-,------------------------------,

20

10

o+-------~------r_----~------~
1000 2000 3000

iteration

Graph A4.1 d. Sum squared error convergence of neural network modelled on four input odd
parity , when trained on even parity

210

Appendix B. Experiment on Learning Performance

Aim:

The aim of this experiment is to identify the learning performance of the

backpropagation training algorithm over different training data and different initial neural

network configurations.

Method:

The data that was used for this experiment was generated via a seeded pseudorandom

scheme. The output values were generated iteratively for all the possible input values. The

first output value is generated from the seed via the formula;

Outputvalue= ((Seed mod 2) - 1/2) • 2.

Nextseed= (Seed' 101 • 992) mod 1009.

and the next output value is generated from the nextseed value. This is continued iteratively

for all the input cases. The input values start at (1.1 •...• 1.1) then (1.1 •...• 1.-1) and

(1.1 •...• -1.1) and (1.1 •...• ·1.·1) and progress iteratively to (·1.·1 •...• -1.·1).

The initial network configurations of the neural networks were generated in the

manner as discussed in appendix AI. In this case an n input neural network with n hidden

nodes and one output nodes is fully defined by (n + 1)2 weight values.

Twenty four experiments were conducted for each number of input nodes. These

experiments were generated by selecting a pseudorandom data set and a pseudo random initial

neural network configuration given by the formula;

Dataseed= 7 • Inputnodes.

Netseed= 3 • Inputnodes.

Experiment is net(Netseed) trained on data(Dataseed).

Nextdataseed= (Dataseed • 101 • 992) mod 1009.

211

Nextnetseed= (Netseed • 101 • 992) mod 1009.

The neural networks were trained over 1000 iterations at a temperature of 0.1 and a

learning rate of 0.01. The results are presented in graphs B.l a· d and B.2 a· d. Several

typical sum squares error convergence characteristics are shown in fig B.3 a· o.

Results:

The low input node experiments in general converged before the 1000 iteration

mark, and so the number of iterations that were required for convergence are a good measure

of convergence performance. The experiments with many input nodes generally did not

converge to the optimal solution within the 1000 iterations and so the sum squared error

value after 1000 iterations is a good measure of convergence performance. These figures are

shown in table B.1.

Two input case;

Three input case;

Four input case;

Five input case;

191 24 experiments converged within 100 iterations.

121 24 experiments converged within 100 iterations.

131 24 experiments converged within 100 iterations.

71 24 experiments converged within 200 iterations.

Experiment Mean Variance

2 input case 0.319 0.999

3 input case 0.943 1.587

4 input case 0.934 1.562

5 input case 3.066 3.562

6 input case 5.926 4.509

7 input case 27.185 7.480

8 input case 151.930 47.434

Table B.l. Mean and variance of the sum squared error performance after 1000 iterations

212

Analysis:

These results show that the backpropagation algorithm converges quickly for a small

number of inputs. As Ihe number of inputs increases the convergence performance

deteriorates quickly. These results serve as a good performance measure against other neural

network structures such as the Ghost node neural networks discussed in appendix C.

Graphs:

24

t 23
22
21
20
19

~
18 -• 17 .a

E 16

" 15 z 14

C 13

• 12
E 11

=-
-;: 10 • 9 A .. 8 w

i ~
4

~'=
0 200 400 600 800 1000 1200

IUratlon

Graph B.l a. Number of iterations required for convergence of two input neural networks
(maximum number of iterations allowed is 1000)

213

~ • IJ
E
:0
Z

~ • E
':: •

24
23

~~----­
~~ ==---18
17
16
15
14
13
12~ ____ .. _ _
11 .l"

1~ jiI

~~-----...... --.. .. ! 1;;::::.
~~~ ... -... ---......... ... 
1 ~~~r-~~--~-r~--,-~--r-~~ 

o 200 400 600 800 1000 1200 

iteration 

Graph B.1 b. Number of iterations required for convergence of three input neural networks 
(maximum number of iterations allowed is 1000) 

~ • IJ 
E 
:0 
Z 

24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14~ .... ___ ~ .. _ ... mII_ .. 
13 .l" 
12 
11 
10 

~~ ... -... -........ -... --
i J;;;;;;;;;;;;;;;;;;:::::~ ...... . 
~ l;;;:::::::::::::::::::::::::::::: 
1 f==;---r--~-'--~--r--r--'-~---r--~-i 

o 200 400 600 800 1000 1200 

iteration 

Graph B.1 c. Number of iterations required for convergence of four input neural networks 
(maximum number of iterations allowed is 1000) 

214 



~ 

~ 
E 

" z 

i .. 
E 
-;: .. ... .. ... 

24~~~~~~~~~~~~--l 
23 
22 
~ ~;;==~iiiiiiiiiiiiiiiiiiiiiiiiii 
19 
18 

17!5===~= 16 
15 
14 
13 

12 ~;:======== 11 
10 
9 
8 
7 

! J;~~~~!!::::::::::::::::==:::: 
3 
2 
1 

o 200 400 600 800 1000 

iteration 

1200 

Graph B.1 d. Number of iterations required for convergence of five input neural networks 
(maximum number of iterations allowed is 1000) 

24 
23 
22 
21 
20 
19 

~ 
18 .. 17 

~ 

E 16 

" 15 z 14 

i 13 .. 12 
E 11 
-;: 10 .. 

9 Do .. 8 w 
7 
6 
5 
4 
3 
2 
1 

0 5 10 15 

Graph B.2 a. Sum squared error values of five input neural networks after 1000 iterations 

215 



~ • .a 
E 

" z 
;: 
• E 
':: • ca. .. w 

24~""----------------------' 

~,;;;; 21 1! 
20 
19 

18 E;;::===-17 
16 
15 
14 
13 
12 
11 
10 
9 
8 

~~~~!IB---5 
4

~j;;;;;;;~r---------r-------~~-------J
o 10 20

Graph B.2 b. Sum squared error values of six input neural networks after 1000 iterations

. 24
23
22
21
20
19

~
18

• 17 .a 16 E
" 15
Z 14
;: 13

• 12
E 11
':: 10 • 9 ca. .. 8 w

7
6
5
4
3
2
1

0 10 20 30 40

Graph B.2 c. Sum squared error values of seven input neural networks after 1000 iterations

216

24
23
22
21
20
19

~
18

• 17 A
E 16

" 15
Z 14

E 13

• 12
E 11
-:: 10 • 9 8 w

7
8
5
4
3
2
1

0

Graph B.2 d. Sum squared error values of eight input neural networks after 1000 iterations

217

8~--------------------------~

6

~

~
• I • ~ • • ~ .. • I
E
~

•
2

0+---~--~--r---r---r---~--r--4
o ,00 200 300 400

iteration

Graph B03 ao Sum squared error convergence performance of a two input neural network with
a specific training set

'2

'0

;; 8
~
~ • I •
~ 6
~ .. • I
E • ~ •

2

\.
0

0 20 40 60 80 '00

iteration

Graph B03 bo Sum squared error convergence performance of a two input neural network
with a specific training set

218

Graph 8.3 c. Sum squared error convergence performance of a three input neural network
with a specific training set

12

10

~ 8 2

= I
~ 6 • ~ ... • I
E • ~

•

2

0
0 100 200 300 400 500 600

iteration

Graph 8.3 d. Sum squared error convergence performance of a three input neural network
with a specific training set

219

5~-----------------------------,

4

~
3 • ,

~
• ~
or • 2 ,
E
~ •

O+---~--~--~--r---~--r-~~~
o 200 400 600 800

lIe,.lIon

Graph B.3 e. Sum squared error convergence performance 01 a lour input neural network
with a specilic training set

• e
~,
~
• ~
or .,
E
~ •

30~-----------------------------,

20

,0

20 40 60 80

iteration

Graph B.3 I. Sum squared error convergence performance 01 a four input neural network
with a specific training set

220

15~---------------------------------,

0 10
~
• I

" ~
• ~
D' • I
E 5
~

•

O+-~-T--~~~-T __ ~~~-T-L~
o 100 200 300 400 500 600

Graph B.3 g. Sum squared error convergence performance of a four input neural network
with a specific training sel

40

30

~

~
• I
~ 20 • ~
D' • I
E
~

•
10 \ JJ.

I \

o l
o 200 400 600 600

iteration

Graph B.3 h. Sum squared error convergence performance of a five inpul neural network
with a specific training set

221

80.,--------------.,

60

~ • ,
• ~ 40 • ~ .. • ,
E
~

•
20

'0 20 30 40

Iter.tlon

Graph B.3 i. Sum squared error convergence performance of a five input neural network
with a specific training set

~
=,
~
• ~ .. . ,
E
~ •

'5,---------------------------------~

'0

5

'00 200 300 400 500 600

iteration

Graph B.3 j. Sum squared error convergence performance of a five input neural network
with a specific training set

222

l00~------------------------------~

80

~

~
60 • I

~
• • .,.
• I
E • •

20

O+---T---T---~--~~~--~--r-~
o 20 40 60 60

iteration

Graph B.3 k. Sum squared error convergence performance of a six input neural network with
a specific training set

100

60

~
~
~ 60 • I
~
• • .,.
• I
E • •

20

O+-------~------~------~----~
o 100 200

iteration

Graph B.3 I. Sum squared error convergence performance of a six input neural network with
a specific training set

223

~

~ • ,
~
• • ..
• ,
E • •

200~----------------------------,

'00

O+-~--~--~-r--~~--~~--~~
o 200 400 600 800 1000

iteration

Graph B.3 m. Sum squared error convergence performance of a seven input neural network
with a specific training set

~ •
~'
• • .. . ,
E • •

200~------------------------------,

'00

200 400 600 800 1000

iteration

Graph B.3 n. Sum squared error convergence performance of a seven Input neural network
with a specific training set

224

~~-----------------------------,

300

~

~
~

• I • ~ 200 • ~ ...
• I
E
~

•
100

200 400 600 800 1000

Iterallon

Graph B.3 o. Sum squared error convergence performance of a eight input neural network
with a specific training set

225

Appendix C. Experiment on Ghost Learning Performance

Aim:

The aim of this experiment is to identify the learning performance of the

backpropagation training algorithm over different training data and different initial ghost

neural network configurations.

Method:

The data that was used for this experiment was generated in the same manner as the

data discussed in appendix B.

The initial network configurations of the neural networks were generated by a

pseudorandom scheme similar to that discussed in appendix Al. The ghost node networks have

fewer weight values than standard neural network structures. The hidden nodes in the ghost

node neural networks share weight values and have distinct biases. Therefore for a fully

connected n input ghost node neural network with n hidden ghost nodes and one output node we

require 3·n +1 weights. The weights were selected such that the weight values of the ghost

nodes were identical to the weight values of the first node in the corresponding neural

network in appendix B. The ghost nodes in the hidden layer had biases identical to the biases

of the nodes in the network of the corresponding experiment in appendix B.

Twenty four experiments were conducted for each number of input nodes. These

experiments were generated by selecting a pseudorandom data set and a pseudorandom initial

neural network configuration in an identical manner as to that discussed in appendix B. The

neural networks were trained over 1000 iterations at a temperature of 0.1 and a learning

rate of 0.01. The results are presented in graphs C.l a- d, C.2 a· e and table C.l. Several

typical sum squares error convergence characteristics are shown in graphs C.3 a- i.

226

Results:

The low input node experiments in general converged before the 1000 iterations, and

so the number of iterations that were required for convergence are a good measure of

convergence performance. The experiments with many input nodes generally did not converge

to the optimal solution within the 1000 iterations and so the sum squared error value after

1000 iterations is a good measure of convergence performance. The iterative performance of

the experiments are shown in graphs C.l a- d. The sum squared error convergence

performance are presented in, C.2 a- e, and table C.l.

Two input case;

Three input case;

Four input case;

Five input case;

181 24 experiments converged within 100 iterations.

91 24 experiments converged within 100 iterations.

61 24 experiments converged within 100 iterations.

41 24 experiments converged within 200 iterations.

Experiment Mean Variance

2 input case 0.767 1.462

3 input case 1.938 2.542

4 input case 2.003 2.903

5 input case 6.647 5.416

6 input case 25.339 10.687

7 input case 86.902 26.062

8 input case 350.968 57.593

Table C.l. Mean and variance of the sum squared error after 1000 iterations

Analysis:

Similar to the standard neural network performance measures these results show

227

that the backpropagation algorithm converges quickly for ghost node neural networks with a

small number of inputs. As the number of inputs increases the convergence performance

deteriorates quickly.

Comparing these results with the results that are given in appendix B. the

performance of the ghost node neural networks under backpropagation learning are generally

much worse than that of the standard system. The performance over two and three input nodes

are comparabte. For the larger number input values the sum square error performance of

the ghost node neural networks is about twice that of the standard system.

Many isolated examples can be seen where the performance of a ghost node neurat

network is better than that of the corresponding standard neural network start point. This

highlights the fact that the ghost node structure can often better model the transformation in

question.

Graphs:

~ • ~
E

" z

c: • E
-:: • co. ..
"'

24
23
22
21
20
19~~~!!I!!!!II!
18
17
16
15
14
13

12~ 11 .j'"
10
9
8
7
6
5
4
3
2
1

o 200 400 600 800 1000

lIarallon

1200

Graph C.I a. Number of iterations required for convergence of two input ghosted neural
networks (maximum number of iterations allowed is 1000)

228

~ .:
E
" z
c • !
:;
a. .. w

~ 1=:::::::::::::::::::::::::::::::
~!!~
19
18
17

16 155=== 15
14
13
12
11

1~ l!!!I
~~
~ ~~~ii::::i5555555::55i555:::
2
1

o '200 400 600 800 1000

Iteration

1200

Graph C.1 b. Number of iterations required for convergence of three input ghosted neural
networks (maximum number of iterations allowed is 1000)

~ .:
E
" z

c • E
':: • a. .. w

24 ~===:::::--~I 23~

22 ~=======:._ 21
20
19
18

17 ;;;;;;;;;;;;;;;;;;;;;;;; 16
15
14
13
12

11 1~;;==:::::::::::::::::r"""" 10
9
8
7
6

~==i!:::::=~ o 200 400 600 800 1000 1200

iteration

Graph C.1 c. Number of iterations required for convergence of four input ghosted neural
networks (maximum number of iterations allowed is 1000)

229

~ .:
E
" z
c • E
;:
•

o 200 400 600 800 1000 1200

iteration

Graph C.l d. Number of iterations required for convergence of five input ghosted neural
networks (maximum number of iterations allowed is t 000)

~ .:
E
" z

c • E
;:
•

24
23
22

~~----19
18

17 1;;;;;; 16
15 14 ____ _

13
12
11 "'-___ _
10 ~
9
8

~). .. --------.....
i .======-------2
1 +-~--,-~--,_~~,_--~-r--r__r--T_~

o 2 4 6 8 10 12

Graph C.2 a. Sum squared error values of four input ghosted neural networks after 1000
iterations

230

~ • S>
E
" z
c • E
': • Go ..
III

~);;;;;::::::::::----------------------~
22

~l------19
18

17E!L._ 16
15
14
13

12 ~==:.. ___ _ 11
10
9

is;;··-
; ------2)111_
1

o 10 20 30

Graph C.2 b. Sum squared error values of five input ghosted neural networks after 1000
iterations

24
23
22
21
20
19

~
18

• 17 S>
E 16

" 15
Z 14

C 13

• 12
E 11
': 10 • 9 Go .. 8 III

7
6
5
4
3
2
1

0 10 20 30 40 50

Graph C.2 c. Sum squared error values of six input ghosted neural networks after 1000
iterations

231

li
" E
" z
c ..
E
;: w

o 100 200

Graph C.2 d. Sum squared error values of seven input ghosted neural networks after 1000
iterations

24
23
22
21
20
19

~
18 .. 17

" E 16

" 15 z 14

C 13 .. 12
E 11
;: 10 ..

9 8 w
7
6
5
4
3
2
1

0 100 200 300 400 500

Graph C.2 e. Sum squared error values of eight input ghosted neural networks after 1000
iterations

232

12

10

~ 8 g
• ,
~ 8 • ~ ...
• ,
E • ~ •

2-

0
0 200 400 600 800

iteration

Graph C.3 a. Sum squared error convergence performance of a four Input ghosted neural
nelwork with a specific Iraining set

e
~ • .'
~ • ~ ... • ,
E
~

•

~~----------------------------~

20

10

O+---~--~---r---?---?--~--~--~
o 10 20 30 40

Iterallon

Graph C.3 b. Sum squared error convergence performance of a four input ghosted neural
network wilh a specific Iraining set

233

20.,...-----------------,

~
~

• ,
!!
• 10
" fT .,
E

" •

O+--..--..--~-r_-~-r_-~~
o 200 400 600 800

lIorallon

Graph C.3 c. Sum squared error convergence performance of a four input ghosted neural
network with a specific training set

Graph C.3 d. Sum squared error convergence performance of a five input ghosted neural
network with a specific training set

234

~~----------------------------~

40

~

~ 30 • I • ~ • ~
<IT • 20 I
E
~

•
'0

0
\

0 '00 200

iteration

Graph C.3 e. Sum squared error convergence performance of a five input ghosted neural
network with a specific training set

60

~

~

~ 40 • I
~
• ~
<IT • 30 I
E
~

•
20

'0~--r-~--~~~-r--~--~~--,--4
o 200 400 600 800 1000

iteration

Graph C.3 f. Sum squared error convergence performance of a six input ghosted neural
network with a specific training set

235

80

70

80

~ • 50 I
~
• ~ ... 40 • I \I
E
~ • 30

20

10
0 200 400 600 800 1000

iteration

Graph C.3 g. Sum squared error convergence performance of a six input ghosted neural
network with a specific training set

200

180

~ 180
~ • I
~ 140 • ~ ... • I
E 120
~ •

100

60
0 200 400 600

iteration

Graph C.3 h. Sum squared error convergence performance of a seven input ghosted neural
network with a specific training set

236

200

180

~ 180
~

• 1
~ 140 • ~ ...
• I
E 120
~ •

100

80
0 200 400 600 800 1000

Iteratlon

Graph C.3 i. Sum squared error convergence performance of a seven input ghosted neural
network with a specific training set

237

Appendix D. Encapsulated Sandwich Nets

Aim:

To design an encapsulated sandwich network model of odd parity with three and four

inputs. To observe the convergence performance of the odd parity model when trained on even

parity data.

Method:

The following encapsulated models of odd parity with three and four inputs were

designed. The first layer of nodes (for the three input case) consist of the hidden nodes that

isolate the pOint (1,1,1) giving the output 1, and the point(-I,-1 ,-1) giving the output -I,

and the parallel hyperplane between them. The first layer of nodes (for the four input case)

consist of the hidden nodes that isolate the point (1 ,1,1,1) giving the output -I, and the

point (-1,-1,-1,-1) giving the output -I, and the two parallel hyperplanes between them.

Results:

The encapsulated models of odd parity were seen to be correct. They correctly

modelled odd parity over all the training points. The convergence performance of the training

algorithm on odd parity neural network models being trained over even parity are shown in

graphs 0.1 a & b.

Analysis:

To construct an even model of parity, all the weight values 01 either the output layer,

the sandwich layer or the first hidden layer must be negated. The sum squared error

238

performance compares unfavourably with the experiments of appendix A4. This reflects the

extra structure of encapsulated sandwich nodes, which inhibits disruptive training from

inconsistent training data.

Graphs:

~,--------------------------------,

~

20 -0
~
~ • I • ~ •
" ...
• I
E 10 " -
•

o 200 400 600 800 1000

!leratlon

Graph 0.1 a. Sum squared error convergence properties of the encapsulated model of three
input odd parity when trained over even parity

239


~~~-----------------------------, 

~ 30 0 
~ 
~ • I • ~ • " ... 
• I 
E 20 " • 

104---~--r-~ __ ~---r--~--~--r-~ __ ~ 
o 200 400 600 800 1000 

lIerallon 

Graph 0.1 b. Sum squared error convergence properties of the encapsulated model of four 
input odd parity when trained over even parity 

240 



Appendix E1. Amalgamation Schemes for Neural Networks 

Schemes for amalgamating lower dimensional schemes of neural networks are presented. 

Such schemes are useful in determining minimal network topotogies and give insights into 

the construction and design of neural networks. 

Schematic representation of nodes 

Schematic diagrams of nodes are presented. These allow complex network structures 

to be succinctly represented. 

The horizontal line across the axis represents a splitting plane, making a 

contribution in each projection. (fig E1.1 a) 

a b c 
Fig E1.1 a. Schematic diagram of a node split across an axis (the dotted line), that is a node 

which does not reduce, b. Schematic diagram of a node split which reduces across an axis, c. 

Schematic diagram of a two reducing nodes split across an axis 

Fig E1.1 b shows a single small line which represents a reducing plane that only 

contributes to one half of the split. Fig E1.1c shows a schematic diagram of two reducing 

planes contributing in opposite sides of the split. 

Square nets 

Square nets are single output neural networks with the same number of hidden nodes 

241 



as input nodes. A k-representation of a k input transformation consists of k input nodes and 

k hidden nodes and so forms a square net. 

Lemma 

If we have a k node representation of a k input node transformation, the tight 

representations of the k-l dimensional splits will consist of k-2 splitting nodes and one 

reducing node each. 

2 

k 

Fig El.2 A square neural net in which the number of hidden nodes equals the number of input 

nodes 

Proof 

Given a k dimensional space represented by k nodes (see fig El.2), we choose an axis 

and split the problem. The k nodes are then projected into the k-l dimensional spaces, 

viewing them all as splitting nodes. Assuming the k-l dimensional problem can be solved in 

k-l nodes that is the k-l dimensional representation is tight, only k-l nodes need 

contribute in the projection (see fig El.3). Of the original k nodes one node does not 

contribute in each split, and so there are two reducing node. The other k-2 nodes are either 

splitting nodes or reducing nodes. 

242 



Fig El.3 Nodes that contribute in a split across a single axis 

The two splits share at least k-2 nodes (see fig E1.4). This is the case since if they 

share less, then the requirement that the k-l dimensional problem is tight is violated. If 

they share k·l nodes then the k dimensional problem is not full and only requires k-l nodes 

to represent the problem. 

k nodes 

/ 
k nodes I k nodes 

k-1 nodes k-1 nodes 

k-2 nodes 

Fig El.4. Schematic diagram of the number of nodes that split or reduce across an axis. k-2 

nodes are shared by both splits, that is they are splitting nodes, while the two remaining 

nodes only contribute to one of the splits, they are reducing nodes 

Amalgamation of consistent nodes 

There is no difference between amalgamating reducing nodes or splitting nodes. A k 

243 



dimensional node s-consistent with those k-l dimensional nodes we are amalgamating must 

be constructed. Given either a reducing or splitting node it can be viewed as being defined 

over the whole k dimensional space, even though it may in fact only really contribute in a 

discriminating manner in a subspace (fig EI.Sa). Fig EI.Sb shows nodes that contribute as 

both splitting and reduCing nodes across the two splits. 

---+---
I 

I 
r 

a b 
Fig El,S a, Schematic diagram showing just nodes splitting across each axis A and B, b. 

Schematic diagram showing both splitting and reducing nodes 

The nodes of fig EI.Sb can be amalgamated if they are consistent over the subspaces 

in which they contribute in a discriminatory manner. A node that has appeared in the A axis 

split amalgamates with a consistent node from the B axis split. Three situations can occur. 

Two splitting nodes amalgamate, two reducing nodes amalgamate or one splitting node 

amalgamates a with a reducing node. 

Fig EI.6c shows two splitting nodes that have amalgamated, these are called doubly 

splitting nodes. Fig EI.6a shows two reducing nodes that have amalgamated. These are called 

doubly reducing nodes. Fig El .6b shows a reducing node amalgamating with a splitting node, 

These are called singly splitting or singly reducing nodes. 

I 
-,----

Fig El .6 a. An amalgamation scheme for two reducing nodes 
244 



I 
'"" I I 

( -I 
I -I I -, -,- --

'-" 
a b 

Fig El .6 b. An amalgamation scheme for a splitting node and a reducing node, c. An 

amalgamation scheme, with two splitting nodes 

By amalgamating the nodes in all four quadrants we are constructing a single node in 

the full k dimensional problem. By the analysis the k-l dimensional nodes are proved to be 

m-consistent with another node in their complement space. The amalgamation of the nodes in 

the four quadrants result in four types of amalgamated nodes in the k dimensional space. 

The simplest form is the doubly reducing node (fig E1.7a). This is a node in the k 

dimensional space that only contributes in a k-2 dimensional subspace of the problem. The 

singly splitting node shown in fig E1.7b, is the next case. This is a splitting node (of say the 

A split) that amalgamates with two reducing nodes (of the B split). A singly splitting node is 

a node in the k dimensional space that only contributes in a k-l subspace of the problem. 

The third case occurs when two splitting nodes amalgamate in a quadrant and amalgamate 

with two reducing nodes in two other quadrants. This case is shown in fig El.7c and is called 

a partially reducing or a partially splitting node. A partially splitting node is a node in the k 

dimensional space that contributes in three k-2 subspaces of the problem. The final case is 

the doubly splitting node, shown in fig El.7d. This node is formed by amalgamating four 

splitting nodes. The doubly splitting node is a node in the k dimensional space that 

contributes in the whole space. 

245 



I 
--1 ___ _ 

a 

-

I 
--1_ 

b 

I 

I 

I 
- r-

I 

c d 

f-

Fig 1.7 a. A doubly reducing node, b. A singly splilling node, c. A.partially splitting node, d. A 

doubly splitting node. 

246 



Appendix E2. Amalgamation Scheme for the Case n= 4 

We Prove the hypothesis that there exists a tight representation of the worst 4 

dimensional transformation using 4 nodes whose 3 dimensional splits are tight requiring 3 

nodes. 

We can construct full representations of the 4 dimensional transformation by 

amalgamating two tight 3 dimensional models of the problem. The minimal such model is 

selected. 

We can choose an axis along which to split the problem. Fig E2.1 a & b show two such 

splits. 

3 dimensions 

3 dimensions 
Fig E2.1 a. A split along axis A 

2 dimensions 2 dimensions 

3 dimensions 3 dimensions 

2 dimensions 2 dimensions 

b c 
Fig E2.1 b. A split along axis B. c. A splits along axes A and B 

Each of these 3 dimensional spaces can be further split into 2 dimensional subspaces 

by splitting along the other axis. This results in four distinct 2 dimensional spaces from the 

four 3 dimensional spaces. See fig E2.1 c for the schematic representation. 

From the analySiS of appendix El, we see that given 3-representations of the 3 

dimensional subspaces, the tight 2 dimensional subspaces must consist of 1 splitting node 

pluS one reducing node. 

247 



I 
1 npde 

-1-

1 nbde ~ node: 1 node~ 
-1-

I 

a b 
Fig E2.2 a. Schematic diagram of the nodes spmting across axis B. b. Schematic diagram of 

the nodes splitting across axis A 

Given the minimal model of the worst 4 dimensional problem. say a 1-

representation. then splitting the problem along axes A and B would have the nodes 

appearing in the manner shown in fig E2.2 a & b. Putting all the nodes. in all the projections 

on one diagram we have the case as shown in flQ E2.2c. 

Fig E2.2c. Schematic diagram with both the nodes that split across axis A and axis B 

In each quadrant we have two representations of each node appearing from the two 

different ways we split the problem so we must produce a scheme to amalgamate the 

representations. We can amalgamate the nodes in each quadrant since each node in one of the 

two dimensional splits (say the A then B split) is consistent with another node from the 

other two dimensional split (the B then A split). This is the case since each node in the 

original I-representation appears at least twice (due to the two different splitting 

248 



schemes). 

The following amalgamation schemes are possible; 

For the case in fig E2.3a. 

1 splitting node + 4 doubly reducing nodes = 5 nodes. 

I 
r 

I 
r 

a . b 
Fig E2.3 a. All the reducing nodes amalgamate and all the splitting nodes amalgamate. b. Two 

reducing nodes amalgamate. the others amalgamate to form partially splitting nodes 

For the case in fig E2.3b. 

2 partial splitting nodes +2 doubly reducing nodes = 4 nodes. 

For the case in fig E2.3c. 

1 partial splitting nodes + 1 doubly reducing nodes +2 singly splitting node = 4 nodes. 

I 
r 

c 

I 
r 

d 
Fig E2.3 c. One reducing node amalgamates. one partially splitting one is formed. and two 

singly splitting nodes are formed. d. All the nodes formed split an axis singly 

For the case in fig E2.3d. 

249 



4 singly splilling node = 4 nodes. 

Of all the possibilities, we have only one amalgamation scheme that violates the hypothesis 

(fig E2.3a). This case is considered further. ( see fig 016) 

Fig E2.4 a. Unique labelling of the reducing nodes 

Considering the splitting of the problem along the axes x and y, we can label the nodes 

formed as shown, ignoring the splitting ones (fig E2.4a). DOing the same along the axes y and 

z gives us the situation as shown below (fig E2.4b). If this were not the case then the splits 

with respect to the axes z and y would form one of the other amalgamation schemes, so 

proving the hypothesis. The important point to note is that the reducing nodes a, b, c and d 

can not be one of the splitting planes in this new projection since these splilling planes do 

not reduce with respect to the y axis, which the nodes a, b, c and d do. 

z~ 

y 
or some other permutation 
preserving the splits. 

Fig E2.4 b. Permutation of the nodes, preserving the unique labelling 

250 



We continue the procedure over the remaining axis, which gives us the result that 

the nodes a, b, c and d reduce in all the projections, that is they select just one point of the 

4 dimensional hypercube. In this case a different amalgamation scheme is possible. 

Three of the nodes can be selected and isolated from the rest of the points using two 

planes, forming a sandwich. One of the nodes is untouched, but the other three can be 

represented by these two new nodes. Therefore one of the nodes in the original formulation is 

redundant, so proving the result. For this case na 4, four points can be isolated by just two 

high dimensional nodes since four points form a three dimensional hyperplane in a four 

dimensional space. Using these two nodes, the total number of nodes in this representation 

will be three. If this were the case, the fact that we are modelling the worst possible case 

(we already know that parity requires 4 nodes), would be violated. Therefore this 

representation and amalgamation scheme can not occur. 

So the hypothesis that there exists a tight representation of the worst 4 input 

transformation using 4 hidden nodes whose 3 dimensional splits are tight is proved. 

251 



Appendix E3. Amalgamation Scheme for the Case n= k 

We prove that given the minimal representation of the worst k transformation whose 

k·1 dimensional and k·2 dimensional representations are tight can not have more than k 

hidden nodes. This is proved by examining the possible amalgamation scheme in the tight 

representations of the k·2 dimensional splits. 

2 

k 

Fig E3.1 General neural net representation of a Boolean transformation 

Given a k dimensional problem, with its minimal representation, the I· 

representation (fig E3.1), we can choose two distinct axes in which to split the problem into 

lower dimensional problems. (fig E3.2 a & b) 

k-1 

k-1 
Fig E3.2 a. A split along axis A 

252 



k-2 k-2 

k-1 k-1 

k-2 k-2 

b c 
Fig E3.2 b. A split atong axis B, c. A split along axes A and B 

Each of these k-l dimensional spaces can be further split into k-2 dimensional 

subspaces by splitting along the other axis. This results in four distinct k-2 dimensional 

spaces from the four k-l dimensional spaces. See fig E3.2c for the schematic representation 

and fig E3.3 a- d, for the network representation. 

a b 

c d 
Fig E3.3 Network representation of a split along two axes a. A, and c. B. The two different 

orders of applying the splits, b. A then B, and d. B then A 

253 



From the analysis of appendix E I, we see that given k-1 representations of the k-1 

dimensional subspaces, the tight k-2 dimensional subspaces must consist of k-3 splitting 

nodes plus one reducing node. This is shown by fig E3.4 a & b. 

a b 
Fig E3.4 a. Schematic diagram of the nodes splitting across axis B, b. Schematic diagram of 

the nodes splitting across axis A 

If we had a model of the k dimensional problem, say a I-representation, then 

splitting the problem along the two axes A and B would have the nodes appearing in the 

manner in fig E3.4 a & b. Putting all the nodes, in all the projections on one diagram we 

have the nodes as shown in fig E3.4 c. 

Lk-~ k~ ~3L r kl3 r 
Fig E3.4 c. Schematic diagram with both the nodes that split across axis A and axis B 

254 



,.-.. 
I 

) 
I 

-..1 __ 

a b 
Fig E3.5 a. Singly splitting and partially reducing nodes, these do not form doubly splitting 

nodes, b. The k-5 doubly splitting nodes that are formed when splitting nodes amalgamate 

together 

In each quadrant we have at least two representations of each node appearing from the 

two different ways we split the problem so we must produce a scheme to amalgamate the 

representations. 

We can amalgamate the various nodes if they are consistent over the relevant 

subspaces. The consistency of the nodes are satisfied by the fact that the subspaces are tight. 

Each k-1 dimensional subproblem is (k-1)-representable, while each k-2 dimensional 

subproblem is (k-2)-representable and so perpendicular splits of two k-1 representations 

in a k-2 subspace must be consistent. That is each node in each representation must have a 

corresponding consistent node in the other and so can be amalgamated. 

""' 
I . I I 

-) 
I I 

l-- -- r4 
I I 

~t=tlt-~) (C-n:::t=~ 
I I 

c d e 
Fig E3.5 c. Two partially reducing nodes, d. Two other partially reducing nodes, e. k-5 

doubly splitting nodes 

255 



The amalgamation scheme in which the least number of doubly splitting nodes appear 

is when a splitting node in one k-1 dimensional space is in fact a reducing one in its 

complement. these nodes are partially reducing nodes or singly splitting nodes (see fig 

E3_5al_ This means that since each k-l space has only two reducing nodes. a total of at least 

k-5 nodes are still in fact splitting nodes across the two reducing axes_ (fig E3_5bl 

For the example in fig E3_5 c- e. we have; 

k-5 splitting nodes + 4 partially reducing nodes = k-1 nodes_ This does not violate the 

induction hypothesis_ The case were we have three partially reducing nodes is similar_ 

If there are less than three partially splitting nodes in the amalgamated 

representations then there will be at least k-4 doubly splitting nodes_ The following 

amalgamation schemes are possible 

For the case in fig E3_6a. 

k-4 original splitting nodes + 1 splitting node + 4 doubly reducing nodes = k+ 1 nodes_ 

I 
r 

I 
r 

a b 
Fig E3_6 a_ All the reducing nodes amalgamate and all the splitting nodes amalgamate. b_ Two 

reducing nodes amalgamate. the others amalgamate to form partially splitting nodes 

For the case in fig E3.6b. 

k-4 original splitting nodes +2 partial splitting nodes +2 doubly reducing nodes = k nodes. 

For the case in fig E3.6c. 

256 



k-4 original splitting nodes +1 partial splitting nodes + 1 doubly reducing nodes +2 singly 

splitting node = k nodes. 

I 
r 

I 
r 

c d 
Fig E3.6 c. One reducing node amalgamates, one partially splitting one is formed, and two 

singly splitting nodes are formed, d. All the nodes formed split an axis singly 

For the case in fig E3.6d, 

k-4 original splitting nodes +4 singly splitting node = k nodes. 

Of all the possibilities, we have only one amalgamation scheme that violates the hypothesis 

(fig E3.6a). This case can be proved to be non minimal in an identical manner to that of 

appendix E2. So the hypothesis that the minimal representation of the worst k 

transformation whose k·1 dimensional and k-2 dimensional representations are tight can 

not have more than k hidden nodes is proved. 

257 



Appendix F1. Quantisation Experiments 

Aim: 

To identify the ability of a single layer of nodes to model the arbitrary quantisation of 

real valued input to a Boolean output. 

Method: 

The data sets where generated by a seeded pseudorandom scheme. The data consisted of 

a real valued input value followed by the Boolean output values. The real valued output is 

given by the formula; 

Output= (Seed - 505)/ 505, 

Nextseed= (Seed' 101 ' 992) mod 1009, 

and the Boolean outputs were generated in the order (1,1, ... ,1,1) then (1,1, ... ,1,-1) and 

(1,1, ... ,-1,1) and (1,1,00.,-1,-1) and iteratively to (-1,-1,00.,-1,-1). 

The initial neural network configurations where generated in the same manner as 

those of appendix AI. The quantisation nets with one input and n quantisation nodes are 

defined by 2'n weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four 

pseudorandom neural network configurations were selected to be trained on pseudo random 

data sets given by the formula; 

Dataseed= 7 ' Inputnodes, 

Netseed= 11 ' Input nodes, 

Experiment is net(Netseed) trained on data(Dataseed), 

Nextdataseed= (Dataseed ' 101 ' 992) mod 1009, 

Nextnetseed= (Netseed ' 101 ' 992) mod 1009. 

The temperature value of 0.1 and a learning rate of 0.01 was used. The experiments were 

258 



run for 1000 iterations. The sum squared error convergence characteristics are shown in 

graphs F1.1 a- c and table F1.1. 

Results: 

The sum squared error values of the arbitrary input quantisation neural network 

increases as the number of input quantisation nodes increases. Most of the experiments do not 

converge completely within the 1000 iterations examined. Table F1.1 shows the mean and 

variance of the sum squared error performance for the specific number of quantisation nodes 

used. Graphs F1.1 a- c show the sum squared error performance for each of the experiments. 

These values will be used to compare the performance of different neural network structures 

at modelling arbitrary real valued transformations. 

Experiment Mean Variance 

2 output case 0.465 0.594 

3 output case 1.722 1.444 

4 output case 7.010 3.239 

Table F1.1. Mean and variance of the sum squared error convergence after 1000 iterations 

for the single layer quantisation neural network structure 

Analysis: 

The results show that as the number of quantisation nodes are increased the single 

layer quantisation neural network's ability to model the arbitrary real input quantisation 

decreases. A single layer quantisation neural network structure can only model linear 

quantisation transformations. Since the training data are random input quantisations many 

will be non linear. The poor convergence performance of the single layered neural network 

259 



quantisation structure can be explained by its inability to model the nonlinear 

transformations. The deterioration in performance as the number of quantisation nodes 

increase are explained by the increased probability of non linear transformations for the 

larger number of quantisation nodes. 

Graphs: 

c • E 
;: 
• Cl. .. ... 

24~""~"~.e ...... -------, 
23 
22 

~i!!II-
19~~ ............ .. 18 -I!! 
17 
16 
15 
14 
13 
12 
11 
10 

~;====----. 6 

~j.--. 
3 
2 
1 

o 2 

8um_squarl_Irror 

3 

Graph F1.1 a. Sum square error performance of the single layer quantisation neural network 
structure with two quantisation nodes after 1000 iterations 

260 



24~~ .............. .. 23 .f'" 

~~--.......... --21 ~ 
20 
19 
18 

17=;;; 16 
15 

14 iE::====-13 
12 
11 
10 
9 
8 
7 
6 

~~~~ 
o 2 3 4 5 6

Graph F1.1 b. Sum square error performance of the single layer quantisation neural network
structure with three quantisation nodes after 1000 iterations

~ • .,
E
~
z

24~r----~
23~
22
21
20
19
18
17
16
15

14ii~ 13
12
11
10

iiiii;;:: ; ==--2
1

o 10 20

Graph F1.1 c. Sum square error performance of the single layer quantisation neural network
structure with four quantisation nodes after 1000 iterations

261

Appendix F2. Decoding Experiments

Aim:

To identify the ability of a single nodes to model the arbitrary decoding of Boolean

input to a real valued output.

Method:

The data sets were generated by a seeded pseudo random scheme. The data consisted of

the Boolean input values generated as the outputs of the experiments in appendix F1 followed

by a real valued output generated as the inputs of the experiments in appendix F1.

The initial neural network configurations where generated in the same manner as

those of appendix A1. The quantisation nets with one decoding output node and n input nodes

are defined by n + 1 weight values.

The experiments were generated with a pseudorandom scheme. Twenty four random

neural networK configurations were selected to be trained on random data sets in an identical

manner to that of appendix F1. The temperature value of 0.1 and a leaming rate of 0.01 was

used. The experiments were run for 1000 iterations. The sum squared error convergence

characteristics are shown in graphs F2.1 a- c and table F2.1.

Results:

The single layer decoding neural network structure·s sum squared error values

increases as the number of input nodes increases. The performance is significantly worse

than that of the single layer quantisation neural networK. Table F2.1 shows the mean and

variance of the sum squared error performance for the specific number of input nodes used.

Graphs F2.1 a- c show the sum squared error performance for each of the experiments.

262

Experiment Mean Variance

2 input case 4.019 1.917

3 input case 13.325 3.085

4 input case 35.814 2.748

Table F2.1 Mean and variance of the sum squared error after 1000 iterations for the single

layer decoding neural network structure

Analysis:

A single layer decoding neural network cannot model arbitrary transformations from

a Boolean to a real valued space unless the transformation is monotonic over the Boolean

space. That is the Boolean space does not possess any exclusive 0 r properties. The sum

squared error performance of the decoding system is worse than that of the quantisation

system since the condition that input quantisations are linear transformations are more

probable than the condition that the output decoding is monotonic over the input space.

263

Graphs:

24
23
22
21
20
19

~
18 .. 17

" 16 E

" 15
Z 14
;: 13 .. 12
.5 11

:. 10
a. 9 .. 8 UJ

7
6
5
4
3
2

0 2 4 6 8

8um_aquarl_1 rror

Graph F2.1 a. Sum square error performance of the single layer decoding neural network
structure with two decoding nodes after 1000 iterations

24
23
22
21
20
19

~
18 .. 17

" 16 E

" 15
z 14
;: 13 .. 12
.5 11

:. 10
a. 9 .. 8 UJ

7
6
5
4
3
2

0 10 20

Graph F2.1 b. Sum square error perfonnance of the single layer decoding neural network
structure with three decoding nodes after 1000 iterations

264

~ ..
~

E
" z

c ..
E
'l: ..
Q. ..
W

24~~==1 23~

~E~E= 19
18
17
16
15
14
13
12
11
10

9

i l!5!!55!5!5!5!5!5!!55!5!5!::::
4
3
2
1

o 10 20 30 40 50

Graph F2.1 c. Sum square error performance of the single layer decoding neural network
structure with four decoding nodes after 1000 iterations

265

Appendix F3. Multilayer Quantisation Experiments

Aim:

To identify the ability of three tayers of nodes to modet the arbitrary quantisation of

reat vatued input to a Bootean output.

Method:

The data sets were identicat to those in appendix F1.

The initial neural network configurations where generated in the same manner as

those of appendix A 1. The quantisation nets with one input and three layers of n quantisation

nodes are defined by 2'n'(n+ 1) weight values.

The experiments were generated with a pseudorandom scheme. Twenty four random

neural network configurations were selected to be trained on random data sets in an identical

manner to that of appendix F1. The temperature value of 0.1 and a leaming rate of 0.01 was

used. The experiments were run for .1000 iterations. The iterative convergence

characteristics are shown in graphs F3.1 a & b. The sum squared error convergence

performance is shown in graphs F3.2 a· e and table F3.1.

Results:

The sum squared error values of the multilayer quantisation neural network

increases as the number of nodes increases. The sum squared error values are less than those

of the single layer quantisation neural networks.

Two input case;

Three input case;

121 24 experiments converged within 1000 iterations.

111 24 experiments converged within 1000 iterations.

266

Experiment Mean Variance

2 output case 0.290 0.572

3 output case 0.439 0.701

4 output case 1.120 2.044

5 output case 4.211 4.119

6 output case 22.249 10.910

Table F3.1 Mean and variance of the sum squared error after 1000 iterations for the three

layer decoding neural network structure

Analysis:

The ability of three layered quantisation neural network structures to model

arbitrary quantisations is better than that of single layered structures. The representational

power increases with the increased number of layers and is demonstrated by the results. The

three layered quantisation neural network structure is not limited to modelling linear

quantisation transformations.

267

Graphs:

:.
.D
E

" z

E ..
E

'"

24
23
22
21 ~~!!!!!
20

19E!==~= 18
17
16
15
14 13
12
11
10!! ~

~ J;;;;;;;;;;::::::::::::::::::::::
!);;;;;;::::::::::::::::::::::::::
3

~~ijE~~ .. ~~~ .. ~~~~~
o 200 400 600 800 1000 1200

iteration

Graph F3.1 a. Number of iterations required for convergence of the three layer quantisation .
neural network structure with two input and hidden nodes

~ ..
.D
E

" z

E ..
E
~

:t

~ ~~ii:::::::::::::::::::::::::::-----l
21
20 19
18
17

16~~~~~~~~~~~. 15 ~
14

13E~== 12 11
10
9
8
7
6
5
4

~~iiiiii
1

o 200 400 600 800 1000

iteration

1200

Graph F3.1 b. Number of iterations required for convergence of the three layer quantisation
neural network structure with three input and hidden nodes

268

~

GO .a
E

" z

C
GO

.§
:;;
Q.

24 ~-----------------------------------,
23
22
21
20 19
18
17
16
15

14~ _
13 ~
12 ~
11
10 ~

~)::::::: a.
6
5
4 J--
3
2

1 f-----~----r_----~--~r_--~----~
o 2 3

Graph F3.2 a. Sum square error performance of the three layer quantisation neural network
structure with two input and hidden nodes after 1000 iterations

:;;
.a
E
" z

c ..
E
-.: ..
Q.

24
23
22 :piII .. _
21
20

19~""_"""""""""'" 18 17)-.......... _ _
16"'-........ _ 15 .p

14 ""!I""_" 13 -I:
12 11
10
9
8
7
6
5
4
3
2

1 f-----~----r_----~--~r_--~----~
o 2 3

Graph F3.2 b. Sum square error performance of the three layer quantisation neural network
structure with three input and hidden nodes after 1000 iterations

269

24
23
22

~ 21
20
19

:;; 18 .. 17
~ E 16

" 15 z 14

C 13
CD 12
.!! 11
:;; 10
a. 9 .. 8 w

7
6
5
4
3
2
1

0 2 3 4 5 6

a um_8qu ar8_lrror

Graph F3.2 c. Sum square error performance of the three layer quantisation neural network
structure with four input and hidden nodes after 1000 iterations

:;; ..
E

" z

c
CD
E
-.:
CD
a. ..
w

24
23
22
21
20 19--== 18~
17
16
15
14
13
12
11

1~ ;::F==
6

~ I!:::====~
1

o 10 20

Graph F3.2 d. Sum square error performance of the three layer quantisation neural network
structure with five input and hidden nodes after 1000 iterations

270

24
23
22
21
20
19

:. 18
17

~
16 E

" 15 z 14

C 13 .. 12
E 11

'" 10 ..
9 a. .. 8 w
7
6
5
4
3
2
1

0 10 20 30 40 50

sum_square_error

Graph F3.2 e. Sum square error performance of the three layer quantisation neural network
structure with six input and hidden nodes after 1000 iterations

271

Appendix F4. Quantising and Decoding Experiments

Aim:

To identify the ability of three layers of hidden nodes to model the arbitrary

quantisation and decoding of a real valued input to a real valued output.

Method:

The data sets were generated by a seeded pseudorandom scheme. The data consisted of a

real valued input followed by a real valued output. These were generated via;

Output= (Outputseed - 505)/ 505.

Input= (Inputseed - 505)/ 505.

Nextoutputseed= (Outputseed • 101 • 992) mod 1009.

Nextinputseed= (Intputseed • 101 • 992) mod 1009.

and continued iteratively for all the whole input set. namely 2" data points.

The initial neural network configurations where generated in the same manner as

those of appendix A 1. The quantisation nets with one input node three layers of n hidden nodes

and one output node are defined by 2·n2 + S·n + 1 weight values.

The experiments were generated with a pseudorandom scheme. Twenty four random

neural network configurations were selected to be trained on random data sets. The

temperature value of 0.1 and a learning rate of 0.01 was used. The experiments were run for

1000 iterations. The convergence characteristics are shown in graphs F4.1 a- d.

Results:

The final sum squared error values after 1000 iterations of the multilayer

272

quantising and decoding neural network increases as the number of hidden nodes increases.

The sum squared error values are comparable to those obtained for single layered decoding

neural networks in appendix F2.

Experiment Mean Variance

2 hidden nodes 1.250 0.860

3 hidden nodes 3.409 2.448

4 hidden nodes 7.637 4.738

5 hidden nodes 19.393 8.523

Table F4.1 Mean and variance of the sum squared error after 1000 iterations for the four

layer quantisation and decoding neural network structure

Analysis:

A larger neural network structure has greater representational power than a smaller

neural network structure. Given a larger neural network structure, larger training sets can

be modelled. Larger training sets provide more conflicting update values and so optimal

convergence requires more than the 1000 iterations studied in this experiment. The

comparable performance with the single layered decoding neural network reflects the fact

that the output layer of the multi layer quantising and decoding neural network is a single

layered decoding layer. The sum squared error convergence performance of the multilayered

neural network as compared with the single layered decoding neural network will improve

with more iterations since the multilayered neural network can manipulate the values fed

forward to the decoding layer.

273

Graphs:

~ • S>

E
" z
c • .§

= ...
>< ...

24 =::::-----1 23
22

~ 1;:::.
19 18 17iiiiEE 16
15
14
13
12
11
10
9
8
7
6
5
4

~Ii;;;;;;~!---T----r---,----~--~---J
o 2 3 4

Graph F4.1 a. Sum square error performance of the four layer quantisation and decoding
neural network structure with two nodes in each hidden layer after 1000 iterations

~ • S>
E
" z

c • E
"i: • ...
>< ...

24

~ jiiiiiiiiii
21
20
19

181;;;~ 17
16
15

14~~ =-.... . 13 .e
12

11~===-10 JII!I
9

! ;!;J~;;======:'
5
4

~ J;;;;;;;;;~~~~~~~~~~~~--l
o 2 6 8 10

Graph F4.1 b. Sum square error performance of the four layer quantisation and decoding
neural network structure with three nodes in each hidden layer after 1000 iterations

274

24
23
22
21
20
19

~
18

GO 17 ..,
16 E

" 15
Z 14

C
13

GO 12
E 11
';: 10
GO

9 a. .. 8 UJ
7
6
5
4
3
2
1

o 10 20

Graph F4.1 c. Sum square error performance of the four layer quanlisation and decoding
neural network structure with four nodes in each hidden layer after 1000 iterations

:;; ..,
E

" z
C
GO

-E
GO
a. ..
UJ

~~~""""""'---------I 23 
22 
21 
20 

19~~ 18 
17 
16 
15 14&5 13 
12 
11 
10 
9 

~~~ ............ .. 
6
5
4
3
2
1

o

, ,
._,' -
.~ ~

, ,'-
,... r. ~

10 20 30 40

Graph F4.1 d. Sum square error performance of the four layer quantisation and decoding
neural network structure with five nodes in each hidden layer after 1000 iterations

275

Appendix F5. Reduced Input Quantisation Experiments

Aim:

To identify the ability of a single layer of nodes to model the arbitrary quantisation of

real valued input to a Boolean output given a reduced training set.

Method:

The data sets were generated by a seeded pseudo random scheme. The data consisted of a

real valued input generated as the outputs of the experiments in appendix FI followed by the

Boolean input values generated as the inputs of the experiments in appendix FI. The reduced

training sets that were generated consisted of n·(n+ I) points for n<:: Sand 2" points for ns

4. This is the same sized training sets for ns 4 as in appendix FI and a reduced set for n<:: S.

The initial neural network configurations where generated in the same manner as

those of appendix A I. The quantisation nets with one input node and n decoding output nodes

are defined by 2·n weight values.

The experiments were generated with a pseudorandom scheme. Twenty four random

neural network configurations were selected to be trained on random data sets in an identical

manner to that of appendix FI. The temperature value of 0.1 and a learning rate of 0.01 was

used. The experiments were run for 1000 iterations. The sum squared error convergence

characteristics are shown in graphs FS.I a- c and table FS.I.

Results:

The final sum squared error values after 1000 iterations of the arbitrary reduced

input quantisation neural network increases as the number of input quantisation nodes

increases. The sum squared error convergence performance is comparable to those of

276

appendix Ft when the training sets were of identical size, namely n$ 4, while the sum

squared error convergence performance is much improved over the reduced training sets n;;,

5. Table F5.1 shows the mean and variance of the sum squared error performance for the

specific number of input nodes used. Graphs F5.1 a· d show the sum squared error

performance for each of the experiments.

Experiment Mean Variance

2 output case 0.471 1.113

3 output case 1.809 1.507

4 output case 7.776 2.669

5 output case 18.067 4.158

Table F5.1 Mean and variance of the sum squared error after 1000 iterations of the reduced

input set single layer quantisation neural network structure

Analysis:

The reduced training sets that were employed in this experiment allow training sets

that are linear to be more probable than before. Therefore the single layered neural

networks are more likely to converge with the reduced training sets.

277

Graphs:

~ ..
.a
E

" z

os ..
E

'" ..
Go ..
W

~~----------------------------------,
23
22
21
20
19 :J---
18 171-__
16
15
14
13
12
11 191-__
8
7
6
5
4
3
2

1 +-~~-r--~--r-~--~--~--r-~--~
o 2 3 4 5

Graph FS.1 a. Sum square error performance of the reduced input set single layer
quantisation neural network structure with two quantisation nodes after 1000 iterations

~ ..
.a
E
" z

os ..
E

'" ..
Go ..
W

~ ~----------------------------------,
23
22
21
20
19

18~~~~~ _____ ..
17 .e
16
15
14
13
12
11

l~Ji5i5ii55!::::"""""""""-
! ~;~!I!!!!!!!!
3

~~"~"-r~-.r-~.-~-r~~
o 2 3 4 5 6

Graph FS.1 b. Sum square error performance of the reduced input set single layer
quantisation neural network structure with three quantisation nodes after 1000 iterations

278

~ • ..
E
" z

c: • E
'l: • a. ..
w

24 --;;;==~ ___ ~ 23~
22

~~=--19 :;;=
18

17=~:; 16
15
14

13===~ 12
11
10

!iEEEE:::::::~
4

~ j;iiiiii;;~!L ______ r-________________ -J
o 10 20

Graph FS.l c. Sum square error performance of the reduced input set single layer
quantisation neural network structure with four quantisation nodes after 1000 iterations

~ • ..
E
" z

c: • E
'l: • a. .. w

24
23
22
21
20

~- .".
'. ~.-

19 Eiiiliiiiilii==--18
17
16
15

14 "Ciiiiiiiiiiiiiiiiiiiiiiiiiiii" 13 ~
12
11
10

~;iiiiiiiiiiiiiiiiiiiiii
7
6
5
4

~ jiiiii;;iiii;;ii;;;;~== __ '-____ -r ____ -J
o 10 20 30

Graph FS.l d. Sum square error performance of the reduced input set single layer
quantisation neural network structure with five quantisation nodes after 1000 iterations

279

Appendix F6. Reduced Input Decoding Experiments

Aim:

To identify the ability of a single nodes to model the arbitrary decoding of Boolean

input to a real valued output over a reduced training set.

Method:

The data sets were generated by a seeded pseudorandom scheme. The data consisted of

the Boolean input values generated as the outputs of the experiments in appendix FI followed

by a real valued output generated as the inputs of the experiments in appendix FI. The

reduced training sets were defined as in appendix FS.

The initial neural network configurations where generated in the same manner as

those of appendix A I. The quantisation nets with one decoding output node and n input nodes

are defined by n +1 weight values.

The experiments were generated with a pseudorandom scheme. Twenty four random

neural network configurations were selected to be trained on random data sets in an identical

manner to that of appendix FI. The temperature value of 0.1 and a learning rate of 0.01 was

used. The experiments were run for 1000 iterations. The sum squared error convergence

characteristics are shown in graphs F2.1 a- d and table FS.I.

Results:

The sum squared error values of a single layered decoding neural network structure

trained on reduced data sets increase as the number of inputs increase. The sum squared

error convergence performance is comparable to those of appendix F2 when the training sets

were of identical size, namely n~ 4, while the sum squared error convergence performance

280

is much improved over the reduced training sets n~ 5. Table F6.1 shows the mean and

variance of the sum squared error performance for the specific number of quantisation nodes

used. Graphs F6.1 a- d show the sum squared error performance for each of the experiments.

Experiment Mean Variance

2 input case 4.952 1.765

3 input case 14.191 1.776

4 input case 35.020 2.647

5 input case 68.590 3.451

Table F6.1 Mean and variance of the sum squared error after 1000 ilerations of the reduced

input set single layer decoding neural network structure

Analysis:

The reduced data sets allow the transformations from Boolean to real valued spaces

that are monotonic to be more probable. This means that the training algorithm is more

likely to converge given reduced training data sets.

281

Graphs:

~ ..
s­
E
" z

c ..
E
:-... ..
w

o 2 4 6 8

Graph F6.1 a. Sum square error performance of the reduced input set single layer decoding
neural network structure with two decoding nodes after 1000 iterations

/

~ ..
s­
E

" z

c ..
~
~ ..
w

24JB~~~~~~~~""----~
23
22
21
20
19
18
17
16
15
14
13
12
11

1~1!:::;:::;::::::::::::::::~ _
7
6

~ iiiiiiiiii
3

~Jiiiii~iiiiii~ii" __ ~
o 10 20

Graph F6.1 b. Sum square error performance of the reduced input set single layer decoding
neural network structure with three decoding nodes after 1000 iterations

282

24
23
22
21
20
19

:. 18

&> 17
E 16

" 15 z 14

C 13

• 12
E 11
-:: 10 • 9 CL .. 8 III

7
6
5
4
3
2
1

0 10 20 30 40 50

Graph FS.l c. Sum square error performance of the reduced input set single layer decoding
neural network structure with four decoding nodes after 1000 iterations

24
23
22
21
20
19

~
18

• 17 &> 16 E

" 15 z U

C 13

• 12
E 11
-:: 10 • 9 CL .. 8 III

7
6
5
4
3
2
1

0 20 40 60 80

Graph FS.l d. Sum square error performance of the reduced input set single layer decoding
neural network structure with five decoding nodes after 1000 iterations

283

Appendix F7. Reduced Input Multilayer Quantisation

Experiments

Aim:

To identify the ability of three layers of nodes to model the arbitrary quantisation of

real valued input to a Boolean output over a reduced training set.

Method:

The data sets were identical to those in appendix F5.

The initial neural network configurations where generated in the same manner as

those of appendix A 1. The quantisation nets with one input and three layers of n quantisation

nodes are defined by 2"n"(n+ 1) weight values.

The experiments were generated with a pseudorandom scheme. Twenty four random

neural network configurations were selected to be trained on random data sets in an identical

manner to that of appendix F1. The temperature value of 0.1 and a leaming rate of 0.01 was

used. The experiments were run for 1000 iterations. The iterative convergence

characteristics are shown in graphs F7.1 a· c. The sum squared error convergence

characteristics are shown in graphs F7.2 a· g and table F7.1.

Results:

The sum squared error values of a multilayered quantisation neural network

structure trained on reduced data sets increase as the number of inputs increase. The sum

squared error convergence performance is comparable to those of appendix F3 when the

training sets were of identical size, namely n<; 4, while the sum squared error convergence

284

performance is much improved over the reduced training sets n~ 5. Table F7.1 shows the

mean and variance of the sum squared error performance for the specific number of output

nodes. Graphs F7.2 a- g show the sum squared error performance for each of the

experiments.

The sum squared error values of this experiment is much better than those of the

single layered quantisation experiment as discussed in appendix F5.

Experiment Mean Variance

2 output case 0.256 0.752

3 output case 0.350 0.852

4 output case 1.527 2.053

5 output case 3.440 3.225

6 output case 10.388 6.110

7 output case 21.272 8.913

8 output case 32.861 9.040

Table F7.1 Mean and variance of the sum squared error after 1000 iterations of the reduced

input set. three layer quantisation neural network structure

Analysis:

The larger neural network structure is beller able to model quantisation

transformation. whether it is linear or non linear. This explains why the sum squared error

convergence performance of the multilayered quantisation system (see appendix F3) is much

better than that of the single layered system. The reduced data sets allow the simple linear

transformations to be more probable. Therefore a multilayer quantisation neural network

structure with a reduced training data set is more likely to converge than a single layer

quantisation neural network structure with a large training set.

285

Graphs:

~ :
E
" z

ii • !
:;
III

~ ~----------------------------------~
23
22
21
20

19!!~==== 18
17

16~ ~ 15 -I'" 14!5===== 13
12
11

19~~ _
8

~~
~~ -
3
2

o 200 400 600 800 1000

iteration

1200

Graph F7.1 a. Number of iterations required for convergence of the reduced input set three
. layer quantisation neural network structure with two input and hidden nodes

~ • Z>
E

" z

ii • !
i ..
III

24 ~~c=======z=----, 23
22
21
20 19
18
17

16 I;;;;;;;;~;;;;;;;;~!!!!!!~ .. 15
14
13
12 11
10

9

! J:====::-.......... .
5
4

~J::;::;::;~~~~~~~~=:==~-,--j
o 200 400 600 800 1000 1200

iteration

Graph F7.1 b. Number of iterations required for convergence of the reduced input set three
layer quantisation neural network structure with three input and hidden nodes

286

~ • Z>
E

" z

iteration

Graph F7.1 c. Number of iterations required for convergence of the reduced input set three
layer quantisalion neural network structure with four input and hidden nodes

~ .:
E
" z

c • E
':: •
III

24
23
22
21
20 19l--
18~ __ _
17,p
18
15

14~ _ 13 J'
12 ;. 11 _

10
9~
8
7
6
5
4
3
2

1 f---~--,---~--~---r--_r---T--~
o 2 3 4

Graph F7.2 a. Sum square error performance of the reduced input set three layer
quantisation neural network structure with two input nodes after 1000 iterations

287

c: • E
':: • ... • w

24
23
22
21
20
19
18
17
16
15 _
1. of'"
13
12
11
10
9
8
7
6
5
4
3
2

1 +--'---r--~-'--~--r-~---r--~~
o 2 3 4 5

Graph F7.2 b. Sum square error performance of the reduced input set three layer
quantisation neural network structure with three input nodes after 1000 iterations

~ • ..
E
~ z
c: • E
'::
l • w

24~"~""""------------l 23
22

~ J:::::::::::::::::::::::::::~
19
18
17

16 ••
15 of"
14
13

12 "'!~!IIII __ •
11 -I:
10
9
8
7

~l----.
~1----­
~~~~~~~~~~~~~--~ 

o 2 4 6 8 

Graph F7.2 c. Sum square error performance of the reduced input set three layer 
quantisation neural network structure with four input nodes after 1000 iterations 

288 



~ 

.z 
E 
" z 

-~ • E 

'" .. ... .. 
III 

24~"~""""'-----------~ 23 
22 

~~~ ............ .. 
19

18 1;:===:-___ _ 17
16
15
14
13 12=:=--__ 11
10

~~~!IIII 
~ ..... 
~ ~;::.---. 
2 
1 

o 5 10 15 

Graph F7.2 d. Sum square error performance of the reduced input set three layer 
quantisation neural network structure with five input nodes after 1000 iterations 

~ .. .., 
E 
" z 

c .. 
E 

'" :. .. 
III 

24--=-_~-~ 
23~ 
22 

~~;;:=:::=:-
19~~~~~~ ...... 18 of! 
17 
16 
15 
14 
13 
12 
11 
10 

i~;===~----" 
~ ~!!!!!!~~~~!!!!!!! 
4 
3 
2 
1 

o 10 20 30 

Graph F7.2 e. Sum square error performance of the reduced input set three layer 
quantisalion neural network structure with six input nodes after 1000 iterations 

289 





Appendix F8. Reduced Input Quantising and Decoding 

Experiments 

Aim: • 

To identify the ability of three layers of hidden nodes to model the arbitrary 

quantisation and decoding of a real valued input to a real valued output over a reduced training 

set. 

Method: 

The data sets were generated by a seeded pseudorandom scheme. The data was generated 

in an identical manner to that of appendix F4. The reduced data sets were defined in an 

identical manner to that of appendix FS. 

The initial neural network configurations where generated in the same manner as 

those of appendix Al. The quantisation nets with one input node three layers of n hidden nodes 

and one output node are defined by 2"n2 + S"n +1 weight values. 

The experiments were generated with a pseudorandom scheme. Twenty four random 

neural network configurations were selected to be trained on random data sets. The 

temperature value of 0.1 and a learning rate of 0.Q1 was used. The experiments were run for 

1000 iterations. The sum squared error convergence characteristics are shown in graphs 

FS.l a· d and table FS.l. 

Results: 

The sum squared error values of a multilayered quantising and decoding neural 

network structure trained on reduced data sets increase as the number of inputs increase. 

291 



The sum squared error convergence performance is much improved over the reduced training 

sets n~ 5. Table F8.1 shows the mean and variance of the sum squared error performance for 

the specific number of output nodes. Graphs F8.1 a- d show the sum squared error 

performance for each of the experiments. 

The sum squared error values of this experiment are beller than those of the single 

layered decoding experiment as discussed in appendix F6. 

Experiment Mean Variance 

5 hidden nodes 15.885 7.525 

6 hidden nodes 27.288 12.472 

7 hidden nodes 38.441 18.990 

8 hidden nodes 53.345 22.789 

Table F8.1 Mean and variance of the sum squared error after 1000 iterations of the reduced 

input set, four layer quantisation and decoding neural network structure 

Analysis: 

The reduced data sets allow simpler linear transformations to be more probable and 

so are easier to model than larger training sets. This is demonstrated by the improved 

performance of the training algorithms for these reduced training sets. 

The improved representational power of larger neural network structures over 

smaller neural network structures is demonstrated by the smaller sum squared error values 

of this experiment as compared to that of the single layered decoding neural network of 

appendix F6. 

292 



Graphs: 

~ • .t:J 
E 

" z 

c • E 
';: • ... .. 
w 

24 
23 

~I!!i;;;;;;;;::::::~""""". 
18~~~~~~~ 
17 :.... __ • 

18 1;;;;;:;;;;;;;;;;;;_ 15 
14 

131!~;=-_ 12 
11 
10 
9 
8 
7 

li§~~~~~~~ 
o 10 20 30 40 

Graph FS.! a. Sum square error performance of the reduced input set four layer quantisation 
and decoding neural network structure with five nodes in each hidden layer(! 000 iterations) 

~ 

: 
E 
" z 

c • E 
';: 

:t .. w 

~~~ ............ .---------~ 
23
22
21
20
19
18
17
16
15
14

131;;;;;;;;;;;;;;;;;;~ 12
11
10
9
8
7
6
5
4

~J::;::;::;::;:~--'--'---r--~-r--~-J
o 10 20 30 40 50 60

Graph FS.! b. Sum square error performance of the reduced input set four layer quantisation
and decoding neural network structure with six nodes in each hidden layer(! 000 iterations)

293

Appendix G: Training a Neural Network Controller for

Adhesive Dispensing

Aim:

To examine various methods of training a neural network controller for adhesive

dispensing (see chapter nine, Williams et al '90 and West '92). To examine the performance

of the learning phase and to evaluate the performance of the execution phase. To examine the

ease with which the trained neural network's structure and behaviour could be understood

and explained.

Method:

Eight different training experiments were implemented corresponding to the different

training data, neural network structure and weights that were aSSigned.

Data sets

The following training data were used;

i. Real control data:

These were obtained by observing the adhesive dispensing system under control with a

rule based bang bang controller. The problem with using this type of data is that all the

possible process faults may not be present in the data.

ii. Hand crafted data:

All the observed process characteristics and process faults were used to construct a

set of training data. This set had the advantage of possessing all the process characteristics

and faults that had been observed in many experiments. Also this training set was small since

only useful learning data had been included. This disadvantage with this data set is that any

295

hidden properties of the real system such as correlations between the system variables were

lost in the hand crafted data.

Neural network structure

The following neural network structures were used;

i. Fully connected:

This neural network structure consisted of the seven input nodes and the ten output

nodes specified by the system. The fully interconnected structure has ten hidden nodes. These

hidden nodes corresponded to the three banded regions of the area, area_change and

pulse_height system variables (six hidden nodes) and the four threshold boundaries of the

rise_time, fall_time, pulse_width and box_area_ratio system variables (four hidden

nodes).

ii. Structured fully interconnected neural network:

This neural network structure consisted of the specified input and output nodes,

corresponding to the system variables and six hidden nodes. The threshold units of the four

threshold boundaries of the rise_time, fall_time, pulse_width and box_area_ratio system

variables can be implemented without hidden nodes while the six hidden nodes correspond to

the three banded regions of the area, area3hange and pulse_height system variables (Six

hidden nodes). The connection pattern of this system was;

a. All the input nodes were fully inlerconnected to all the hidden nodes ..

b. All the input nodes were fully interconnected to all the thresholding flag outputs,

namely the rise_time_flag, fall_time_flag, pulse_width_flag and box_area_ratio_f1ag

nodes.

c. All the hidden nodes were fully interconnected to all the banded flag and decision

outputs, namely the area_action,change_area, bubble_flag, bubble_decision,

pulse_height_flag and pulse_heighCdecision nodes.

iii. Structured partially connected neural network:

This neural network structure consisted of the specified input and output nodes,

296

corresponding to the system variables and six hidden nodes. The Ihreshold units of the four

threshold boundaries of the rise_time, fall_time, pulse_width and box_area_ratio system

variables can be implemented without hidden nodes while the six hidden nodes correspond to

the three banded regions of the area, area_change and pulse_height system variables (six

hidden nodes). The connection pattern of this system was;

a. Each thresholded input node was connected to its corresponding output flag and no

other, e.g. the box_are a_ratio input node was connected to the box_area_ratio_flag output

node.

b. The banded input nodes were connected to a pair of hidden nodes and no others, e.g

the area input node was connected to midnodel and midnode2 and no others.

c. Each hidden node pair was connected to its corresponding output flag or decision

node, e.g. the midnodel and midnode2 nodes were connected to output nodes area_action and

change_area and no others.

Neural network weights

The following weight specifications were used;

i. Small random weight values:

This means that no information is given to the initial neural network structure.

ii. Small hand crafted weights:

This means that the knowledge available about the control problem is used to give the

neural network structure an approximate measure of where the set points of the banded

region and thresholds are in the input space.

iii. Large derived weights:

This means that the greater knowledge about the control problem is used to specify the

set points of the banded region and thresholds are in the input space as well as the tolerances

that are required on these set points. The smaller the tolerances that are required the greater

the magnitude of the weights of the neural network. This is also related to the temperature

value of the neural network.

297 .

Experiments

The neural network convergence experiments were run with a learning rate of 0.01

and a temperature of 0.1. The maximum number of iterations that were allowed was 5000.

This set an upper limit on the training procedure. If the training algorithm did not converge

within this limit the sum squared error values after 5000 iterations were used to examine

the performance of the training algorithm.

Results:

The results of the experiments are shown in table G.1. The sum squared error

convergence characteristics of each of the experiments are shown in graphs G.l a- f and G.2

a- f. The performance of the converged neural network controller on the real process is

shown in graph G.3.

Neural Initial
Network Weight Simulated Data Real Data

Structure Specification Iterations Sum square error Iterations Sum square error

Small
Fully Random 5000 155.957 5000 279.987
Interconnected Weights
Structure

Small
Specified 5000 20.079 5000 269.436
Values

Reduced Small
Interconnected Random 2343 0.045 5000 146.888
Structure WeiQhts

Small
Random 5000 41.065 5000 159.561

Minimal Weights
Designed
Structure Small

Specified 2874 0.187 5000 123.111
Values

Large
Derived 4 0.065 44 0.116
Weiahts

Table G.l Convergence properties of the training algorithm for different initial neural

network structure and training data

298

Analysis:

Improved sum squared error convergence performanCB was obtained by increasing the

design effort implementing the neural network controller. Tt1e mosl significant factor that

effected the performance of the automated training was the structure of the initial neural

network that was trained. Pruning the neural network to the minimum that was required to

model the problem aided optimal convergence.

The second significant factor was the Initial weight specification. Small random

weights provided no information. The sum squared error convergence was not good. Including

small weight values that were designed to place the initial neural network in the approximate

region of the control problem set points improved the convergence performance. This model

converged on the simulated data but did not converge within the 5000 iterations (examined

in this experiment) on real data. This was due to the fact that the real training data contained

data that required decisions to be made over small tolerances which can only be achieved by a

neural network with a low temperature or one with large weight values.

Deriving large weight values that modelled the control set points to finer tolerances

ensured that the automated training would converge in fewer iterations. This method

effectively starts the neural network in a configuration that is very close to a suitable

controller. The automated training fine tunes the neural network to produce the required

controller. The fine tuning is normally necessary given real data since the real data will

possess properties that are not modelled by the designed neural network.

299

Graphs:

160

140

~ 120

• 1
e 100 • • ..
• I
E 80 • • I

,.1\
If4\ ~

v

60

40
0 1000 2000 3000 4000 5000

Ite ration

Graph G.1 a. Sum squared error performance of the fully interconnected neural network
structure with small random weights trained on selected simulated data

~
• I e
• • ..
•
E • •

I

~O~---------------------------------,

100

O~--~-'---r---,~--~-,--~--~--~~
o 1000 2000 3000 4000 5000

Iteration

Graph G.1 b. Sum squared error performance of the fully interconnected neural network
structure with small specified weight values trained on selected simulated data

300

40T----------------------------------,

30

~ · • I e 20 • ~ ...
• I
E
~

•
'0

O+---~~--_r----r_--~~--~--~
o 1000 2000 3000

II.,atlon

Graph G.1 c. Sum squared error performance of the reduced interconnected neural network
structure with small random weights trained on selected simulated data (note the change of

scale on the horizontal axis)

44

42 ~
• 40
~
• I •
~ 38
~ ... • I
E 36 ~

•
34

32
0 1000 2000 3000 4000 5000

iteration

Graph G.1 d. Sum squared error performance of the minimal designed neural network
structure with small random weights trained on selected simulated data

301

30,-------------------------------~

" 20
~

• I
~
• ~
<T • I
E 10
~

•

1000 2000 3000

iteration

Graph G.l e. Sum squared error performance of the minimal designed neural network
structure with small specified weight values trained on selected simulated data (note the

change of scale on the horizontal axis)

"
~
•
~
• ~

I

<T
•
E
~ •

I

3~----------------------------_,

2

2 3 4 5

Ilerallon

Graph G.l f. Sum squared error performance of the minimal designed neural network
structure with large derived weight values trained on selected simulated data (note the

change of scale on the horizontal axis)

302

,ooo~---------------------------------,

800

"
~
0

I
~ 600 • •
" • I
E
• •

400

o 1000 2000 3000 4000 5000

iteration

Graph G.2 a. Sum squared error performance of the fully interconnected neural network
structure with small random weights trained on selected real data

"
~
o

~ • •

I

" •
E
• •

I

600,----------------------------------,

400

300

~O+_--r-~--_r--~--r_~r_-r--_r--T_~

o 1000 2000 3000 4000 5000

Iteration

Graph G.2 b. Sum squared error performance of the fully interconnected neural network
structure with small specified weight values trained on selected real data

303

190~---------------------------------,

Graph G.2 c. Sum squared error performance of the reduced interconnected neural network
structure with small specified weight values trained on selected real data

280~---------------------------------,

260

g
240 • I

~
• • Cl" • 220

I
E
• •

200

180+---r--'---r--~--r--'---r--~--r-~
o 1000 2000 3000 4000 5000

IteraHon

Graph G.2 d. Sum squared error performance of the minimal designed neural network
structure with small random weights trained on selected real data

304

240

220

(; 200
~
• I
~

180 • • ...
• I
E 160 • •

140

120
0 1000 2000 3000 4000 5000

iteration

Graph G.2 e. Sum squared error performance of the minimal designed neural network
structure with small specified weight values trained on selected real data

4T----------------------------------,

3

-~
• I
~
• 2 • ...
•
E
• •

I

o 10 20 30 40 50

iteration

Graph G.2 f. Sum squared error performance of the minimal designed neural network
structure with large derived weight values trained on selected real dala (note the change of

scale on the horizontal axis)

305

CD
Cl
~

CD
I

IJ
o
IJ

45000~----------------------------~

40000·

• • •
~-;. .
f"~".rJ.~~t,.~" · ~~iI·-~"
• •

• •

35000 •
I
•

•
300004-....... --r-~-T-,-r-,-, --r-~-T-,....,...~

o 100 200 300 400 500 600

dispense_number

Graph G.3 a. Blob area control performance of a neural network controller. Note that the blob

area variation is kept within the 5% (2000 units) limits of the target value (40000 units)

-r.

'" Cl
r.

I
Cl •
::I ...

1100 -r---------------,
1000· ~,.. __ ...

900 .

800 .

700

600 •

500 . j--. _---J,......?

pulss_ eight

Progralnmed...Pulse_height

400 +....,...-.... ,....,.......,--...-"r-...-"r-.,.....-r ~
o 1 00 200 300 400 500 600

dispense_number

Graph G.3 b. The applied pressure pulse variation used to produce the control performance of

Graph G.3a. Note the initial increase in pressure required to reach the target area of 40000

units when the system initially started dispensing blobs of 30000 units

306

