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ABS'l'RAC'l' 

This thesis is concerned with the numerical solutions of 

initial value problems with ordinary differential 

equations and the boundary value problems involving 

partial differential equations. 

Chapter 1 is an introductory chapter on the initial 

value and boundary value problems in ordinary and 

partial differential equations. This is then followed by 

a chapter on the basic mathematical preliminaries and 

fundamental concepts of Numerical Analysis which are 

applied in the thesis. A survey of the current numerical 

algorithms for solving the initial value problems in 

ordinary differential equations by the step by step 

marching methods and the boundary value problems derived 

from elliptic partial differential equations by solving 

the large sets of linear equations which occur when the 

partial differential equation is discretized by the 

finite difference method is described in chapter 3. The 

discussion on the advantages and disadvantages of 

several strategies in terms of stability and truncation 

error is also considered. 

Chapter 3 further discusses the partial differential 

equations solvers, mainly on the boundary value problems 

involving elliptic partial differential equations. 

Discretization of the problems leads to solving very 

large sparsely structured systems of linear equations. 

Direct and iterative methods of solution are considered 

such as the LU decomposition, Gaussian Elimination, 

Cyclic or Odd/Even Reduction, and the Jacobi, Gauss­

Seidel and SOR methods. 

Chapters 4 and 5 investigate the ordinary differential 

equations solvers based on the Geometric Mean (GM) 

strategy. Chapter 4 concentrates on the single-step 

method application of the GM strategy, mainly on the 
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modified GM Runge-Kutta (RK-GM) method together with an 

adaptive strategy for the RK-GM method. Chapter 5 deals 

with the multistep (specifically, the two-step) method 

application of the GM strategy. A modified GM Numerov 

method is also derived. 

Chapter 6 concentrates on the numerical solution of 

elliptic partial differential equations. In this special 

situation the spectral decomposition method can be 

efficiently utilised. The direct methods are now 

extended to block odd/even cyclic reduction and the 

block tri-reduction algorithm introduced. Then a new 

direct method, utilising the 'stride of 3' algorithm is 

devised and the Buneman modified version is also 

proposed and shown to be stable. Finally, the iterative 

solvers are considered and an optimum relaxation 

parameter for the SLOR technique for solving iteratively 

the system of equations obtained by the discretization 

of the periodic boundary value problems involving 

elliptic partial differential equations is also derived. 

The final chapter contains the conclusions and 

recommendations for further research. 
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CHAPTER 1 
INTRODUCTION 

1.1 DIFFERENTIAL EQUATIONS 

Many problems in Applied Mathematics lead to 

differential equations or systems of differential 

equations. Differential equations are equations that 

involve derivatives of some unknown functions of time 

and/or space. The solutions can only be explicitly 

determined in a relatively few cases. 

numerical methods are essential to 

sufficiently accurate approximation to 

solutions. 

Therefore, 

produce a 

the desired 

Differential equations which involve only ordinary 

derivatives are called ordinary differential equations 

(ODEs). Partial differential equations (PDEs) are those 

differential equations which involve partial 

derivatives. For example, 

y (1 ) - xy = 2 (1.1-1) 

y(2) + 3y(1) + Y = cosh (x) (1.1-2) 

i)2u i)2u 
0 (1.1-3) i)x2 + i)t2 

are all differential equations. In (1.1-1) and (1.1-2) 

the unknown function is represented by y and is assumed 

to be a function of the single independent variable x, 

that is y = y (x). For notational 

suppress the argument x in y(x) and 
terms y(l) and y(2) in (1.1-1) 

simplicity, we may 

its derivatives. The 

and (1.1-2) are 

respectively, the first and second derivatives of the 

function y(x) with respect to x. In (1.1-3), the 

unknown u is assumed to be a function of the two 

independent variables t and x, that is u = u(t,x). Then 
i)2u i)2u 
i)t2 and i)x2 are the second partial derivatives of the 

function u(t,x) with respect to t and x, respectively. 

Equations (1.1-1) and (1.1-2) involve ordinary 



derivatives only and are therefore called ordinary 

differential equations. Equation (1.1-3) involves 

partial derivatives and therefore is a partial 

differential equation. 

The general form of a differential equation can be 

written as 

D[y) = f (1.1-4) 

where D is a differential operator and f is a given 
function of the independent variables ti ; i = 1,2, ... ,n 

and n is the number of independent variables. The order 

of a differential equation is the order of its highest 

derivative and the degree of the derivative of the 

highest order in the rationalised equation is its 

degree. A linear equation is one which does not contain 

the product of the dependent variable with itself or any 

of its derivatives, otherwise it is said to be 

nonlinear. The general solution of the mth order 

differential equation may contain m independent 

arbitrary constants. In order to determine the arbitrary 

constants in the general solution, m conditions need to 

be prescribed. If the m conditions are prescribed at one 

point, they are called initial conditions. The 

differential equation together with the initial 

conditions is known as the initial value problem. If the 

m conditions are prescribed at more than one point, they 

are called boundary conditions. The differential 

equation together with the boundary conditions is termed 

as the boundary value problem. 

1 .2 NUMERICAL SOLUTIONS OF ODES AND PDES 

Differential equations are at the heart of our 

perception of the physical universe. The analytical 

solutions can only be explicitly determined in a 

relatively few simple cases. For this reason and with 

the advent of modern computers, numerical methods for 

their solution are central tools for obtaining 
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quantitative information on the physical behaviour. In 

the remaining parts of the thesis, we shall only 

concentrate on the numerical solutions of ODEs and PDEs. 

Thus the word solution (s) will only imply numerical 

solution(s) unless otherwise stated. 

In the solution of the ODEs, we can classify two classes 

of methods, namely a single step method and a multistep 

method. A single step method determines the 
approximation Yk+l at the abscissa xk+1 = x k + h primarily 

on the basis of the approximation point (xk, Yk). In 

contrast, a multistep method uses the knowledge at the 

previous source abscissae xk-l1 

Yk In general, we need 

Xk- 2 ' ••• , xk-n ' to compute 

to distinguish certain 

properties when the procedures are applied in practice. 

For systems of ODEs arising in physical problems, such 

as physics, chemistry, biology or engineering sciences, 

we often have specific criteria which influence the 

choice of the method. 

As most ODEs of higher order can be reduced to systems 

of first order ODEs, the procedure will be presented, 

for simplicity and clarity; on the basis of the scalar 

differential equations of first order y(1) = f (x, y) for a 

single unknown function y(x). An initial condition y(xo) 

= Yo' stating the value Yo at a given starting abscissa 

x o' is necessary in order to determine a certain 

solution among the one parameter family of solutions of 

ODEs of first order. The existence and uniqueness of a 

solution is assumed on the basis that the corresponding 

hypotheses are satisfied. Further treatments of 

numerical methods for the solution of ODEs are given in 

Gear[1971), Gekeler [1984), Henrici [1962), Jain [1984), 

Lambert[19~f), Lapidus and Seinfe1d[1971), Shampine and 

Gordon [1975), Aiken [1985), Butcher [1987), Hairer et 

al[1987). In Sanugi[1986), a new treatment of numerical 

methods for the solution of ODEs based on the Geometric 

Mean (GM) approach is given. This approach is further 

extended to derive the composite GM method. From the 

3 
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single step method application of the GM strategy, we 

will obtain the usual standard methods of Euler, 

Trapezoidal and Runge-Kutta. The combination of the 

standard Runge-Kutta and the new GM Runge-Kutta (RK-GM) 

methods offers an alternative adaptive strategy. From 

the multistep (specifically, the two step) method 

application of the GM strategy, a modified GM Numerov 

method is derived. The derivation of the closed and open 

formulae offers alternative formulae to be applied in 

the predictor corrector method. 

!Many mathematical formulation of problems in physics, 

chemistry or biology involve functions of several 

independent variables. This would eventually lead.to 

satisfying certain POEs. 

POEs and systems of 

There is an enormous variety of 

POEs that arise in these 

applications and their appropriate numerical analysis 

often 

their 

requires special 

numerical methods 

strategies. Broadly speaking, 

can be classified into two 

groups; namely the direct method and the iterative 

method. In a direct method, the solution is obtained in 

a fixed number of steps, subject only to rounding 

errors. In contrast, an iterative method starts with an 

initial approximation vector u(O) to the solution vector 
u, and generates a sequence of vectors (U(k) };=o that 

converges to the vector u. Many efficient direct methods 

exist {Reid[1977], George[1973], and Irons[l970]}. 

However, from a practical point of view, the best 

solution method is one that accomplishes the job with a 

minimum total cost. The cost would include computer cost 

and the man-hour cost to develop and program the 

solution scheme. If the computer time is irrelevant, 

then the solution method selected should be one that 
is 

works well and~easily implemented, not necessarily the 

best. However, for large scientific applications which 

easily saturate the computer capabilities, details of 

implementation become more important. Thus the most 

effective iterative methods to be used for large scale 
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computations are those which converge at a reasonable 

rate (not necessarily the fastest rate) and which can be 

easily adaPte ~o the architectural features of the 

available co puter at hand. Given the choice between 

direct and iterative methods, the usual criteria to 

decide are storage and work (number of arithmetic 

operations). For many problems, there is a limit to the 

number of unknowns above which a 'good' iterative method 

becomes more cost effective than a 'good' direct method 

(Young and Hageman[1981]) . Further extensive 

representations of the numerical methods for solving the 

various types of PDEs can be found in Ames [1977], 

Collatz [1966], Gladwell and Wait [1979], Jain [1984], 

Mitchell and Griffiths[1980], Parter[1979], Smith[198!], 

Twizell[1984], Vemuri and Karplus[1981] and 

Hackbusch[1986] . 

In this thesis, we restrict our attention to solving 

second order PDEs for an unknown function with two 

independent variables. Moreover, The PDEs are of the 

self-ad joint elliptic case and the problem is of the 

periodic boundary value type. An alternative direct 

method of solving the systems of linear equations which 

result from the discretization of the problem is 

obtained. This method, which we called the Tri-Reduction 

(TR3) direct method in its modified form is proved to be 

numerically stable. We shall also discuss the iterative 

methods of solving the systems of linear equations 

mentioned above. In particular we shall show that the 

well known optimum relaxation parameter of the SOR 

theory cannot be applied to the case of the periodic 

problem. Alternatively, we shall derive the optimum 

relaxation parameter for the periodic case, which is 

distinct from that of the SOR theory. 
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CHAPTER 2 
BASIC PRELIMINARIES AND 
FUNDAMENTALS OF NUMERICAL 
METHODS 

2.1 INTRODUCTION 

This chapter contains a short review of basic topics 

that will be repeatedly required in later chapters, 

together with an introduction to the terminology related 

to the discussion of the numerical solutions of 

differential equations (ODEs and PDEs) . 

2.2 BASIC PRELIMINARIES 

In this section we shall list the definitions of terms 

and state basic results that are tools for numerical 

methods discussed in the following chapters. 

2.2.1 MEANS 
Suppose we are given a set of n numbers x .. 

i for i = 
l" .. ,n. Assume that xi ~ O. Define the generalized 

mean by 

(2.2.1-1) 

If at least one of the xi is zero and m is negative, we 

set Mm to zero. In particular, we have the arithmetic 

mean, for m = 1, 

1. n 
= L xi 

n i=l 

the geometric mean, if 

[ nn Xi] l/n G = lim Mm = 
m~O i=l 

and the harmonic mean, if 

[
1 n -1]-1 

H = M_l = - L Xi • 
n i~l 

(2.2.1-2) 

(2.2.1-3) 

(2.2.1-4) 



When neither all of the xi are identical nor some of the 

Xi are zero and m 
increasing with m 

~ 0, then Mm is strictly monotonically 
i lim Mm = max Xi and lim ~ = min xi' 

m~oo i m-.t -00 i 

Thus, we have 

min xi ~ Mm ~ m<:,x Xi' 
i , 

(2.2.1-5) 

and in particular 

H ~ G ~ A. (2.2.1-6) 

In addition, we may define other means as follows: 

Given two positive numbers Xl and x2' the logarithmic 

mean of Xl and x2 is defined as 

(2.2.1-7) 

A more general concept is the weighted means, two of 

which are the weighted arithmetic mean and the weighted 

geometric mean. 

Suppose that we have a set of numbers X = {xii i 

1,2, ... ,n} and weight w = { Wii i = 1,2, ... ,n}, then the 

weighted arithmetic mean x'm' is defined as 

(2.2.1-8) 

and the weighted geometric mean Xgm , is defined by 

1 

[ IT <i] LWi 
i=l . 

(2.2.1-9) 

In most practical applications, the weight w is 

normalit.ed so that L wi = 1. 
i 
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Thus it is clear from the two computations of the means 
~n"t. 

in (2.2.1-8) and (2.2.1-9),~the weighted arithmetic mean 

involves n multiplications and one division, while the 

weighted geometric mean consists of n + 1 powers. This 

means that any computation in the sense of the geometric 

mean incurs more computational work. 

2.2.2 POWER SERIES 

Suppose F is a field, which may be -the. field of complex 
numbers. Let a and Cif for i = 0,1, ... , be the elements 

of F. A power series in one variable z, is defined as 

i 
Z = L cdz - a] , 

i=D 
(2.2.2-1) 

The radius of convergence R, of a power series is a 

unique real finite number R such that Z converges if Iz­

a 1 < R and diverges if R < 1 z-a I. The circle 1 z-a 1 < R is 

called the circle of convergence of Z. The value of R is 

/ 
l/i 

given by R = 1 {lim sup [ 1 Ci 11 } • 
i .... ,. 

A power series is absolutely and uniformly convergent in 

its circle of 

valued complex 

function of 

convergeqce, where it defines a single-
. f(~)h . f . . h 1 h . funct~onJi' 'r ~s unct~on ~s a 0 omorp ~c 

z, since the series is termwise 

differentiable. Conversely, any holomorphic function in 

its domain can be represented by a power series in the 

neighbourhood of each point a of the domain. The 

representation is called the Taylor's expansion of f(z) 

at point a or in the neighbourhood of a. 

Besides (2.2.2-1), we may have a power series of the 

form 

Z (2.2.2-2) 

t.J.H" centre at infinity and its value at infinity is 
co. By suitable transformations of (2.2.2-1) and (2.2.2-

2), we may write every power series in the form 

8 
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(2.2.2-3) 

where t is called the canonical parameter. When t is a 

local canonical parameter, we obtain the Laurent series 

given in the form i citi. T":J'- series are also called 
-~ 

{'OWLV' series. 

2.2.3 SYMBOLIC COMPUTATION 

Symbolic computation is a technique of manipulation of 

symbolic expressions on a computer. The term symbolic 

computation or computer algebra raises two distinct 

classes of activity: 

(a) the theoretical and structural development of all 

computer algebra systems, 

(b) the application of any of the existing systems to 

problems in mathematics, science and technology. 

However, for the purpose of the work in this thesis, we 

are concerned exclusively ",',~h. class (b), that is, the 

manipulation of algebraic formulae. Thus we shall 

restrict the discussion in this Section to this topic 

only. 

There are several symbolic computation systems available 

that have been developed over the past thirty years. The 

first general purpose (non-numerical) symbolic 

computation systems appeared in the mid 1960's. Between 
~"e 

then andAlate 1980's, there have emerged systems such as 

MACSYMA, Scratchpad, REDUCE, FORMAC, Schoonship, CAMAL, 

ALTRAN, ALPAK, MATLAB, DERIVE, SMP, SAC-I, MAPLE and 

Mathematica. There are also some special purpose systems 

like LAM and Sheep for General Relativity. By 

restricting ourselves only to general purpose systems, 

the field may be narrowed down to about six only, 

namely, MACSYMA, Maple, Mathematica, REDUCE, Scratchpad 

and Derive. 
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Derive can only run on PC-DOS/MS-DOS systems and is of 

limited applicability. ~~ the other extreme, Scratchpad 

is available only on IBM mainframes and needs about 8-

12Mb of the main memory. The other four are the most 

commonly used. Of these MACSYMA is probably the most 

extensively developed but it requires about 4-5Mb of 

main memory and is only available on some machines. 

Mathematica which is claimed for applications that span 

all areas of science, technology and business where 

quantitative methods are used, also needs about 4Mb and 

upwards of memory. As at the end of 1990, versions of 

Mathematica are available for a wide variety of computer 

systems, including Apple Macintosh, CONVEX, DEC VAX 

(Ultrix and VMS) and RISC, Hewlett-Packard/Apollo, IBM 

386-based compatibles (MS-DOS and Microsoft Windows) and 

IBM RISe, MIPS, NeXT, Silicon Graphics, Sony and Sun 

(and SPARC compatibles). Reviews of the system have 

appeared in both the popular and scientific press (see, 

for example, Barwise [1988), Simon [1989), Taubes [1988) 

and Wayner [1989)). Some initial impression of 

Mathematica's capabilities are given by Barwise[1988). 

Maple and REDUCE require only a minimum of 1Mb of main 

memory and with 4Mb one can I!\V~ quite complex problems. 

Also, Maple and REDUCE will run on a large variety of 

machines ranging from PC's to Crays. Jenson and 

Niordson[1977) have given a comparative study of some of 

the systems listed. 

We shall now describe REDUCE in some detail. REDUCE is a 

system for performing algebraic operations accurately; 

irrespective of the complexity of the expressions. It 

can do various manipulations of polynomials including 

expansion and factori~ation as well as the 

extraction of parts of polynomials as required. REDUCE 

has the facilities for defining new functions and 

extending program syntax and 

differentiation and integration 

capabilities of REDUCE include 

10 
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solution of a variety of algebraic equations, facilities 

for the output of expressions in a variety of formats, 

facilities for manipulation of symbolic arrays and 

matrix operations, facilities for generating numerical 

programs from symbolic input, simplifications of 

expressions and substitutions and pattern matching in 

various forms. There are also user-contributed packages. 

The basic REDUCE system is being continually extended by 

a library of packages contributed by users. At present 

there are two classes of such packages: those that are 

distributed with the system and those that have been 

written since the appearance of the current version of 

REDUCE. These packages may be available from the REDUCE 

network library at the e-mail address reduce­

network@rand.org. 

REDUCE can be run in both modes, the batch and 

interactive modes. Its design of being an interactive 

system enables the user to input an algebraic expression 

and inspect its value before moving on to the next 

calculation. However, if necessary, a sequence of 

commands can be given to REDUCE and the results obtained 

without any intervention by the user during the 

computation. 

We shall now illustrate the interactive use of REDUCE. 

After a successful logging-in, the user can run REDUCE 

on the SUNA at Loughborough University by typing 

'reduce' at the prompt 'suna%', after which REDUCE will 

respond with a banner message which reports the version 

number and the current system release date which may 

change from time to time i.e., 

suna% reduce 

REDUCE 3.4, 15-Jul-91 

It then prompts the user for input by 

1 : 
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... 
We can now type a REDUCE expression, terminated by~semi-

colon to indicate the end of the REDUCE expression, for 

example: 

1: (x**4 - y**4)/(x - y); 

Note that we type the expression exactly like that of 

the FORTRAN expression except that the REDUCE expression 

is terminated by a semi-colon. When the end-of-line 

character is encountered, which is normally the RETURN 

key on an ASCII terminal, the statement ending with ; or 

$ is processed. Thus for the illustration above, we 

obtain the results as follows: 

3 2 2 3 
X + X *y + X*Y + Y 

2 : 

where (2: is automatically assigned to the next 

command. Input may be in the lower or upper case, but 

the output is in the upper case. 

The results of a given calculation are also saved in the 

variable WS (for WorkSpace), which enables it to be used 

in the next calculation for further processing. 

For example, if we enter on line (2: following the 

results of evaluation of line (1: ), the expression 

int(ws,x) ; 

will integrate the function 3 + 2 
+ 

2 
+ 

3 with x x Y xy Y 
respect to x to obtain 

3 2 2 3 
x*(3*X + 4*X *y + 6*X*Y + 12*Y ) 

12 

3 : 

Note that after each evaluation of an expression a line 

number command which prompts the user for the next input 
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follows. If we do not have anything to process further 

and wish to leave the REDUCE session, we may do so by 

typing the word 'bye'. Th·,S ends the REDUCE session 

and returns to the system prompt. 

However, in many cases, we may continue further and use 

some previous results in the succeeding calculations. 

One way of doing this is by assigning a variable name to 

an expression as follows, 

u := (x**4 - y**4)/(x - y); 

This enables the value of the right-hand side of the 

above to be represented by u and used in later 

calculations. 

REDUCE also has the capability of handling symbolic 

matrices. For example, 

matrix m(2,2); 

declares m to be a 2 x 2 matrix, and 

m := mat((a,b), (c,d)); 

gives its element values. Expressions which involve 

matrix operations may now be evaluated. For example, l/m 

evaluates the inverse of a matrix rn, det(m) calculates 

the determinant of the matrix m and n**2*m**(-2) gives 

another combined matrix, assuming that m and n have been 

declared as matrices. 

REDUCE has a wide range of substitution capabilities. 

The system knows about elementary functions, but does 

not automatically reckon their well-known 

characteristics. However, REDUCE has an important class 

of commands which allows substitutions for variables and 

expressions to be defined during the evaluation of 

expressions. Such substitutions use forms of the command 

LET. 
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The LET rules will stay in effect until replaced or 

CLEARed. For example, after assigning the expression 
4 4 

X - Y 
x - Y to u, we can set the numerical values of x and y 

and thus obtain the numerical value of u by using the 

command LET as follows: 

let x = 1, Y = 2; 

u; 

REDUCE will respond to give the result 

15 

But if we wish to assign the value to another variable 

v, then we write as follows: 

let x 1, Y = 2; 

v := U; 

REDUCE will then respond with 

V := 15 

Another very useful command for the purpose of 

substitution is the OPERATOR command. The user may add 

new prefix operators to the system by using the 

declaration OPERATOR. For example, 

operator p,q,taylor; 

p, q and taylor to 

such as p(x,y), 

the system. 

q(x/y,z), 

adds the prefix operators 

This allows symbols 

taylor(x,n) to be used 

LET statement with the 

in expressions. By associating 

operator declaration statement, 

we can have a meaningful operator symbol or a definition 

of some of its properties. For example, if we wish to 

arbitrarily define the average of two numbers x and y, 

we may declare the operator 'av' as follows: 

operator av; 

for all x,y let av(x,y) = (x + y)/2; 
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Hence, if we have the command: 

m := av(10,50); 

REDUCE will give the average of 10 and 50 as 

m := 30 

Thus we may use this facility as a tool to simplify 

complicated algebraic expressions. For example, we may 

express the product of the cosine of two angles, say 

cos (a) x cos (b), into the sum of two trigonometric values 
1 .. as 2[cos(a-b) + 'cos(a+b)]. Th~s can be done ~n REDUCE as 

follows: 

operator p; 

for all a,b let p(a)*p(b) = (p(a-b) + p(a+b»/2; 

This will result in any product of two trigonometric 

cosines to be simplified into the sum of two related 

trigonometric values. 

Note that we have used the FOR ALL declaration in the 

above example; this may be used if a substitution for 

all possible values of a given argument of an operator 

is required. The LET command may also be used as an 

asymptotic command. For example, in the expansions of 

polynomials involving variables which are known to be 

small, it is often desirable to curtail the expansions 

after certain finite powers of these variables. Thus the 

command 

will cause the system to expand the polynomial up to and 

including the seventh power of x only. However, this 

substitution should be used with care because it is 

applied only during polynomial manipulation rather than 

to the whole evaluated expression. If several variables 

are involved, it is neces sary to supply an asymptot ic 
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weight to each variable and count up the total weight of 

each product in an expanded expression before the 

decision to keep the term or not is made. 

There are also a number of reserved operators from the 

three classes of operators, namely the in fix, prefix and 

mathematical operators supplied together with the 

system. The user can add further rules for the reduction 

of expressions involving the reserved mathematical 

operators by using the LET command. New infix operators 

may be added by the user by using the declarations INFIX 

and PRECEDENCE. 

We shall now describe another operator which is very 

handy for the solution of simultaneous algebraic 

equations. The SOLVE operator allows one to solve one or 

more simultaneous algebraic equations. For example, 

solve(log(sin(x+3))A5 = 8,x); 

solve(a*log(sin(x+3))AS = b, sin(x+3)); 

solve({a*x + y = 3,y = -2, (x,y)); 

SOLVE returns a list of solutions. If there is only one 

unknown, each solution is an equation for the unknown. 

If a complete solution was found, the unknown will 

appear automatically on the left-hand side of the 

equation. On the other hand, if the solve package could 

not find a solution, the "solution" will be an equation 

for the unknown. If there are several unknowns, each 

solution will be a list of equations for the unknowns. 

By turning the switch MULTIPLICITIES, a list of the 

multiplicities of the solutions will be explicitly 

displayed. There are also several options which can be 

used with the SOLVE operator. By turning the switch 

SOLVESINGULAR on the default setting), degenerate 

systems may be solved by introducing appropriate 

arbitrary constants. By switching OFF SOLVESINGULAR 

suppresses the solutions of consistent singular 

equations. 
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A REDUCE program is composed from a set of functional 

commands which are evaluated sequentially by the 

computer. These commands are constructed from 

declarations, statements and expressions which we have 

just explained in the preceding paragraphs. We shall now 

illustrate a simple REDUCE program of solving a system 

of linear equations in four unknowns p, q, rand s. 

Suppose the equations are given as follows: 

3p + 2q - 4r +s = 5, 

4p 4q + r - Ss 1, 

p + 2q + 4r + 2s 9, 

8p + 6q + r + 9s 12 

The REDUCE program can be written as follows: 

%Line begins with '%' is a comment statement; 

%REDUCE program to solve system of equations; 

solve({3*p + 2*q - 4*r +s = 5, 

4*p - 4*q + r - 5*s = 1, 

P + 2*q + 4*r + 2*s = 9, 

8*p + 6*q + r + 9*s = 12), (p,q,r,s); 

end; 

In many applications, we may need to load previously 

prepared REDUCE files into the system, or write the 

output onto other files. The commands IN and OUT in 

REDUCE offer the facility for this purpose. The command 

IN takes in a list of file names as argument and directs 

the system to input each file into the system for 

processing. For example, if the REDUCE program to solve 

the system of four equations written above is kept in a 

file named 'solve', then 

1: in solve; 

wi 11 load the file named ' sol ve'. A file to be read 

using IN must end with ';end;'. 
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If we are using the interactive mode, on the successful 

processing of the program the results will automatically 

be printed on the screen as follows: 

%Line begins with '%' is a comment statement; 

%REDUCE program to solve system of equations; 

solve({3*p + 2*q - 4*r +s 5, 

4*p - 4*q + r - 5*s 1, 

P + 2*q + 4*r + 2*s = 9, 

8*p + 6*q + r + 9*s = 12), {p,q,r,s); 

346 2929 361 - 296 
{{p=-----,Q=------,R=-----,S=--------)) 

327 654 327 109 

end; 

2: 

To terminate the REDUCE session, we type after the 

REDUCE prompt '2: ' the word 'bye'. 

However, if we are using batch mode, where we need to 

transfer the results of the REDUCE program to some other 

file, we may use the command OUT. For the same example 

above, let the output file be named as 'result'. To run 

the program we execute the following commands in 

sequence on entering the REDUCE session. 

1: out result; 

2: in solve; 

3: bye; 

Note that we need to inform the REDUCE system, first the 

output file where the results are to be directed to, 

then followed by the relevant input file to the system. 

The command OUT takes a single file name as argument, 

and directs the output to the named file until another 

OUT changes the output file, or SHUT closes it. Again we 

end the REDUCE session by typing the word 'bye'. Thus 

the results are contained in the file 'result'. 
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Symbolic computation is practically useful especially in 

the context of modelling and field problems. Brown and 

Hearn[1978] have cited some of these reasons as follows: 

(1) Sometimes it is prohibitively expensive, or even 

impossible, to solve an essentially numerical problem by 

purely numerical means because it involves too many 

variables, demands a greater accuracy, or is presented 

in an ill-conditioned or intractable form. However, a 

symbolic transformation may reduce the dimensionality, 

evade a large source of round-off error, finesse the 

ill-conditioning, and otherwise change the problem into 

one that can be solved by standard numerical methods. 

Transformations are a very general and natural way to 

represent many kinds of information, particularly 

mathematical relations Wolfram[1991] . 

(2) The algebraic result obtained from symbolic 

computation may subsequently be evaluated using a 

variety of parameter values. 

(3) Symbolic computation lends an opportunity for 

realizing the important computational symbiosis between 

numerical experiments and symbolic theories. 

(4) Symbolic computat ion can be used to generate a 

needed numerical subroutine. 

(5) Lastly, in the realm of partial differential 

equations, Cloutman and Fullerton[1977] have used 

symbolic multidimensional Taylor series expansions, 

computed by the Altran system, to analyse the 

discretization and round-off errors of various methods, 

to eliminate inaccurate and unstable methods prior to 

coding and testing and to develop methods j" ,Ai ,I. tl.t.lowest 

order errors cancel each other out. We shall utilize 

this idea in the treatment of the geometric mean (GM) 

methods for the ordinary differential equations 

discussed in Chapters 4 and 5. 
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2 . 3 FUNDAMENTALS OF NUMERICAL METHODS 

The numerical solution of a differential equation on a 

fixed number of grid points starts with finding how to 

express the solution on the discrete coordinate points 

and how to approximate the differential and integral 

operators in the discrete space. A finite number of 

dependent variables may be represented by a vector. 

Numerical approximations of the differential or integral 

operators may be expressed by matrices. Thus, linear 

. algebra is an important tool in numerical analysis. In 

the section to follow we shall list some of the relevant 

definitions and results associated with vectors and 

matrices. 

2 • 3 . 1 VECTOR AND MATRIX 

One of the fundamental reasons for reformulating 

problems as equivalent linear algebra problems is to 

introduce some geometric insight. Vector and matrix 

algebra offer comprehensive concepts to this process. In 

the following paragraphs we shall list definitions and 

results which are useful in this context. 

Definition 2.3.1-1 Let V be a vector space and let 
vi'V2 , ••• ,VmEV. We say that v lf v 2 ' ••• ,vm are linearly 

dependent if there exists a set of scalars Ui ,U2 , ""Um 

with at least one non zero scalar such that 

(2.3.1-1) 

Without loss of generality, we assume u i 'f' 0, .so that 

(2.3.1-1a) 

We say that vi is a linear combination of the vectors 

We say the vectors vi'" "Vm are linearly independent if 

they are not dependent. Therefore, the only choice of 
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scalars <Xl"'" <Xm for (2.3.1-1) to be true is the 

trivial case of <Xl = 

The set {vI'" .,vm) is a basis for V if for every VEV, 

there exists unique scalars <Xl'" .,<Xm such that 

(2.3.1-1b) 

Note that this implies vI' ""vm are independent. 

Theorem 2.3.1-1 If V is a vector space with basis 
{vI'" .,vm), then every basis for V will contain exactly 

m vectors. The number m is called the dimension of V. 

An array of n numbers may be expressed either "as a 

column or row vector of order n. We shall define a 

column vector representing a column~ wise array of n 

numbers by 

and each xi for i 

of the vector x. 

Definition 2.3.1-2 

(2.3.1-2) 

1,2, ... ,n, is called the component 

The transpose of a vector x is 

denoted by x T and represented by a •• ",-wise vector 

(2.3.1-3) 

The null vector is represented by 0 which means that the 

vector 0 has all its components zero. 

Some basic operations and properties of vectors are as 

follows: 
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Definition 2.3.1-3 : The addition and subtraction of 

two vectors x and y are defined as 

x ± Y = (2.3.1-4) 

Definition 2.3.1-4 The scalar mUltiplication of a 

vector x by c is defined by 

cx xc (2.3.1-5) 

Definition 2.3.1-5 Two vectors, x and y, are said 
to be equal if xi = Yi for all i = 1, 2, ... ,n. 

Definition 2.3.1-6 The inner (scalar) product of 

two vectors, x and y, is written and defined as 

n 

(x,y) = xTy = yTx = I XiYi. 
i=l 

(2.3.1-6) 

Definition 2.3.1-7 Two vectors, x and y, are 

orthogonal if and only if the scalar product is zero, 

that is, 

(x,y) = o. (2.3.1-7) 

Definition 2.3.1-8 The Euclidean norm of a vector x 

in en or Rn is denoted and defined by 

= (i IXi '2f2 I x I =...J(x,x) (2.3.1-8) 2 i=l 

If {Xli ... ,xn } forms a basis for en or Rn, and if (xi,Xj) 

= 0, for all i * j, 1 S i,j S n, then we say {Xl' ••• ,xn } 
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is an orthogonal 
Euclidean norm 1, 

basis. If all basis vectors have 
i. e. (xi' Xi) = 1, then the basis is 

called orthonorma1. 

By introducing an orthonormal basis for a vector space 

V, one can decompose an arbitrary vector into its 

components in the direction of the basis vectors. Let 
(u1' ... ,un ) be an orthonorma1 basis for V and let XEV. 

By using the basis, we may express the vector X in the 

form 

for some unique coefficients 0. 1"", an' Now the 

coefficient a j , for every 1 ~ j ~ n, can be found by 

forming the inner product of x and Uj; 

since (u1 , ••• ,un ) is an orthonorma1 basis for V. Thus 

n 

X = L (x,uj)Uj' 
j=l 

(2.3.1-8a) 

The formula (2.3.1-8a) gives the decomposition of a 

vector into its components in the direction of the basis 

vectors. 

A matrix A is a rectangular array of real or complex 

numbers and defined by 

a 12 • •• a 1n 

a22 .•. a 2n 

(2.3.1-9) 

h '11 d th 1 t' th l.,th row and J,th were aij l.S ca e e e emen l.n e 

column. We say the matrix in (2.3.1-9) to be of order mx 

n. Generally, we denote matrices by capital letters and 
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their entries by small letters, usually corresponding to 

the name of the matrix, as above. We may also use the 
notation (aij) to denote the matrix A. A column vector or 

a row vector may be considered as special cases of 

matrices. When n = m, the matrix is said to be a square 

matrix. A matrix of order n is shorthand for a square 

matrix of order n x n. 

The following definitions give the common operations on 

matrices. 

Definition 2.3.1-9 : Let A be a matrix of order m x n. 

The transpose of a real matrix A is denoted by AT and 
defined by AT = (aij ) T = (aji)' AT is now of order n x m. 

* Similarly, the conjugate transpose A of a complex 

matrix A also has order n x m, 

denotes the complex conjugate of the complex number aji 

for every i and j. If aji = a ji , for every i and j, then 

we have a real matrix A and vice-versa. 

Definition 2.3.1-10 The identity matrix I is 

defined as the matrix",l,lf~ Ho. diagonal elements are 1 and 

off-diagonal elements are O. 

For all matrices A of order m x nand B of order n x p, we 

have 

AI = A and IB = B. 

Definition 2.3.1-11 Suppose A is a square 

order n. The inverse of a matrix A is denoted 

defined by 

matrix of 
-1 by A and 

(2.3.1-10) 

The inverse of a matrix, if it exists is unique. 
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Definition 2.3.1-12 A matrix is a null matrix of 

order m x n if all its entries are zero. We denote a null 

matrix by O. 

Definition 2.3.1-13 : A matrix A is symmetric if it 

is equal to its transpose. Thus, AT = A or aij = aji for 

every i, j = 1,2, ... , n . 

Of necessity, all matrices which are symmetric must also 

be square. 

Definition 2.3.1-14 A matrix A is said to be a 

diagonal matrix if all the off-diagonal elements are 
zero. That is aij = 0 for every i * j. 

Definition 2.3.1-15 : A matrix A is lower triangular 
if aij = 0 for every i > j and A is 'strictly lower 

triangular if aij = 0 for every i ~ j. 

Definition 2.3.1-16 : A matrix A is upper triangular 
if aij = 0 for every i < j and A is strictly upper 

triangular if aij = 0 for every i ~ j. 

Definition 2.3.1-17 A matrix A is said to be 

nonsingular if det (A) * 0, where det (A) denotes the 

determinant of the matrix A. Thus it is clear that if A 

is nonsingular A-1 exists. 

Definition 2.3.1-18 : The rank of a square matrix is 

the maximum number of independent columns. 

The rank of A is equal to that of AT; which means that 

the number of independent columns 6f A is always 

identical with the number of independent rows. If the 

rank of A is equal to the order of A, then the 

determinant of A is nonzero, det(A) * O. If det(A) = 0, 

the rank of A is less than n and A is said to be 

singular. 
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Definition 2.3.1-19 : A is diagonally dominant if I all I 
~ i: laljl, for i=1,2, ... ,n and A is said to be 

j~l . 
. " t 

stiictly diagonally dominant if the strict inequality 

holds for every i = 1,2, ... ,n, that is, I ail I > i: I aij I 
j-l. 
j4l 

Definition 2.3.1-20 A real matrix A is positive 

definite if xTAx > 0 for all x ~ O. Thus the real matrix 

A is positive definite if and only if it is symmetric 

and all its eigenvalues are positive. 

Definition 2.3.1-21 : Suppose A and B are two given 

matrices, each of order m x n. Matrix addition and 

subtraction are defined by 

(2.3.1-11) 

where C = (Clj) denotes the resultant matrix and is of 

order m x n. 

Thus for any matrix A of order m x n, combining 

definitions (2.3.1-12) and (2.3.1-21), we have 

A + 0 = 0 + A = A. 

Definition 2.3.1-22 The scalar mUltiplication of a 

matrix A of order m x n, by a scalar a. gives another 

matrix C defined by 

C a.A = Aa. (2.3.1-12) 

The order of C is also m x n. 

Definition 2.3.1-23 : Two matrices A and B of order m 
x n are said to be equal only if alj = b lj for every i = 

1, ... , m and j = 1, ... , n . 
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Definition 2.3.1-24 Let A have order m x nand B 

have order n x p. The product C = AB is of order m x p 

defined by 

(2.3.1-13) 

In general, AB ~ BA. However, if AB = BA then we say the 

two matrices A and B commute. 

The following arithmetic properties of matrices can be 

easily shown to be true for any order, not necessarily 

that they should be square. 

(a) A + B = B + A 

(c) A(B + C) = AB + AC 

(e) (A + B) T = AT + B T 

(b) (A + B) + C = A + (B + C) 

(d) A (BC) (AB)C 

Definition 2.3.1-25 : Let A be a matrix of order mxn 
and a vector x [xl'" .,Xn1T. The product of a matrix A 

and a vector x is a vector y = [Yl' ... ,Ym1T, defined by 

(2.3.1-14) 

This definition enables one to write the linear system 

} (2.3.1-15) 

in matrix form as Ax = b. 

The following theorem summarizes the results on matrix 

inverses and the solvability of linear systems. 
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Theorem 2.3.1-2 Let A be a square matrix ; .. -wl., .. 1., ~~e 

elements may be real or complex numbers. Let the vector 
, n n • space V to be elther R or C, then the followlng are 

equivalent statements. 

(1 ) 

(2 ) 

(3 ) 

(4) 

(5 ) 

Ax b has a unique solution xeV for every beV. 

Ax = 0 implies x = o. 
A-1 exists. 

det(A) "# O. 

Rank (A) = n. 

Definition 2.3.1-26 : The number 'A, complex or real 

is an eigenvalue of the square matrix A if there is a 

vector, x "# 0, such that 

Ax = 'Ax. (2.3.1-16) 

The vector x is called an eigenvector corresponding to 
the eigenvalue 'A. 

From Theorem 2.3.1-2, statements (2) and (4), 'A is an 

eigenvalue of A if and only if 

det(A - 'AI) = O. (2.3.1-17) 

The relation (2.3.1-17) is called the characteristic 
equation for A. If A is of order n, then fA('A) = det(A -

'AI) is a polynomial of degree n exactly, called the 

characteristic polynomial of A. Therefore we may write 
fA ('A) in the form 

'(_l)n,n n-1 ,n-1 f A(/\.) = /\. + (-1) (all + ... + ann)/\' 

+ (terms of degree ~ n-2) . (2.3.1-18) 

From the coefficient of 'A
n
-
1

, we define 

trace (A) = all + a 22 + ... + ann (2.3.1-19) 

which is often a quantity of interest in the study of A. 
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Since fA (1,.) is of degree n, therefore in general, a n x n 

matrix has at most, n distinct eigenvalues. 

Definition 2.3.1-27 : Let A and B be square matrices 

of the same order. Then A is similar to B if there 

exists a nonsingular matrix P such that 

-1 
B = PAP. (2.3.1-20) 

Note that this is a symmetric relation since 

-1 
Q = P (2.3.1-20a) 

The relation (2.3.1-20) can be interpreted as follows: A 

and B are matrix representations of the same linear 

transformation T from V to V, but with respect to 

different bases for V. The matrix P is known as the 

change of basis matrix, which relates the two 
representations of a vector XEV with respect to the two 

bases used. 

Some of the simple properties of similar matrices and 

their eigenvalues are as follows: 

(1) If A and B are similar, then fA(A) = fB(A). 

This follows from the definition (2.3.1-20) for 

since 

fB(A) = det(B - AI) 
-1 = det (P (A - AI) P) 

= det(p-
1
)det(A -AI)det(P) 

-1 
det (P) (P ) 

-1 
det (PP ) det(I) = 1. 

(2) Similar matrices have exactly the same eigenvalues 

and there is a one-to-one correspondence of the 

eigenvectors. IfAx = AX, then using (2.3.1-20), 
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Bz 

-1 
= AP x 

= AZ 
-1 

Z = P X 

Trivially, z * 0, otherwise x would have been zero. 

Similarly, given any eigenvector z of B, this argument 

can be reversed to obtain a corresponding eigenvector x 

= pz for A. 

(3) We have fA (A) is invariant under similarity 

transformations of A, therefore the coefficients of 

are also invariant under such similarity 

transformations. In particular, if A and B are similar, 

then 

trace (A) = trace (B) det(A) = det(B). (2.3.1-21) 

We now state some important results about the canonical 

forms for matrices. These forms relate the structure of 

a matrix to its eigenvalues and eigenvectors. They find 

use in many applications in other areas of mathematics 

and science. 

Definition 2.3.1-28 

unitary if 

* * 

A square matrix U is called 

UU=UU =I 

* where U 

matrix, 

is the 

it is 

conjugate 

usually 

transpose of U. If 

called orthogonal 

U is a real 
* and U is 

replaced by the transpose of U. The rows (or columns) of 

a unitary matrix of order n form an orthonormal basis 

for en. Similarly for orthonormal matrices for Rn. 
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Theorem 2.3.1-3 (Schur normal form) Let the 

matrix be of order n with elements from C. Then there 

exists a unitary matrix U such that 

* T=UAU (2.3.1-22) 

* -1 is upper triangular. Since T is triangular, and U = U , 

(2.3.1-23) 

and thus the eigenvalues of A are the diagonal elements 

of T. 

We note that by combining (2.3.1-21) and (2.3.1-22), we 

obtain 

n n 

trace (A) = I. A. 
j=l J 

det (A) = IT A. 
j=l J 

(2.3.1-24) 

where Aj; 1 $ j $ n are the eigenvalues of A and they 

form the diagonal elements of T. 

The theorem 2.3.1-3 is more of a theoretical tool, 

rather than a computational one. Theorem 2.3.1-4 to 

follow has a more important application. 

Theorem 2.3.1-4 (Principal axes theorem) Let A 
. * be a Hermitian matrix of order n. That lS A = A. Then A 

has real eigenval ues Aj ; 1 $ j $ n, not necessarily 

distinct, and corresponding eigenvectors u j ; 1 $ j $ n, 

which form an orthonormal basis for Cn. If A is also 
real, the eigenvectors u j ; 1 $ j $ n, can be considered 

as real; 
n 

and they form an orthonormal basis for R . 

Finally there exists a unitary matrix U for which 

(2.3.1-25) 

where D is a diagonal matrix with diagonal elements Aj; 

for 1 $ j $ n. For the case of a real matrix A, then U 

is considered as orthogonal and the result of (2.3.1-25) 
. * T follows wlth U replaced by U . 
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For the completeness of the review on the canonical 

forms of matrices, we state another canonical form which 

is useful for problems in numerical linear algebra, 

especially for solving overdetermined systems of linear 

equations. Theorem 2.3.1-5 states this result. 

Theorem 2.3.1-5 (Singular value decomposition) 

Let A be order n x m. Then there exists unitary matrices 

U and W, of orders m and n, respectively, such that 

* W AU = F (2.3.1-26) 

is a diagonal rectangular matrix of order n x rn, 

~l 

~2 

0 
F I I (2.3.1-27) 

~r 
0 

l 0 

.J 
with fll = ~i; 1 ~ i ~ r. The real positive numbers ~l; 1 

~ i ~ r are called the singular values of A and can be 

arranged so that 

~l .;:: ~2 ;:: .•. ;:: ~r > 0 (2.3.1-27a) 

where r is the rank of the matrix A. 

Finally, before we state the most important canonical 

form called the Jordan canonical form, we define the n x 

n matrix In(A) known as a Jordan block by 
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A. 1 0 o 
A. 1 

I n (A.) = n~1. 

lo . ~J 
In(A.) has the single value eigenvalue A., of algebraic 

multiplicity n and geometric multiplicity 1. The 
algebraic multiplicity of an eigenvalue A. of a matrix A 

is its multiplicity as a root of the characteristic 
polynomial fA (A.); while its geometric multiplicity is 

the maximum number of linearly independent eigenvectors 

associated with the eigenvalue. The algebraic and 

geometric mUltiplicities of an eigenvalue need not be 

equal. 

Theorem 2.3.1-6 (Jordan canonical form) Let A be 

of order n. Then there exists a nonsingular matrix P 

such that 

(2.3.1-28) 

The eigenvalues A.i; 1 ~ i ~ r, need not be distinct. For 

A Hermitian, Theorem 2.3.1-4 implies that n i = 1; 1 ~ i 

~ r. Therefore, the sum of the geometric multiplicities 

is n, the order of the matrix A. 
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2 . 3 • 2 VECTOR AND MATRIX NORMS 

The introduction of the concept of the norm of a vector 

allows one to measure the size of a vector. 

Definition 2.3.2-1 : Let V be a vector space and let 
II . II be a real-valued function defined on V. Then II x II 

is a norm if 

1) Ilxll;::o for all XEV; and Ilxll =0 if and only if x=O. 

2) Ilax II lal ~x~, for all XEV and all scalars a. 

3) Ilx + yll ~ Ilxll + hll, for all x,yEV. 

Simple consequences of the definition of the norm are 

the triangle inequality 

Ilx-yll ~ Ilx-zll + Ilz-yll (2.3.2-1) 

and the reverse triangle inequality, 

Illxll - hili ~ Ilx - yll (2.3.2-2) 

for all x, yEV. 

For 1 ~ P < ~ and XEV, we define the p-norm by 

(

n I IP)l/P !Ix II = ~ Xj . 
P 1'\ 

(2.3.2-3) 

The maximum norm is defined by 

II x II = max Ixjl 
00 lSjSn 

(2.3.2-4) 

for XEV. 

Note that the norm of x on en or Rn is a continuous 

function of the components of x. 
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Theorem 2.3.2-1 (Equivalence of norms) Let Nand 

M be two norms on a finite dimensional space V. Then, 
for all XEV, there are constants C1,C2 > 0 such that 

(2.3.2-5) 

Note that this theorem does not generalize to infinite 

dimensional spaces. 

Many numerical methods for problems involving linear 
systems result in a sequence of vectors (xiii ~ 0), and 

the concept of convergence is of prime importance. 

Definition 2.3.2-2 A sequence of vectors 

{X 1 ,X2' ••• ' X m, ... } in V (real or complex) is said to 

converge to a vector x if and only if 

as m ~ 00. (2.3.2-6) 

By using Theorem 2.3.2-1 and Definition 2.3.2-2, we may 
conclude that xm ~ x with the M norm if and only if it 

converges with the N norm. We should emphasize that this 

result is only true for the finite dimensional spaces. 

We shall now extend Definition 2.3.2-1 to cope with the 

matrix norm. As we have noted earlier in Section 2.3.1 

that a vector is a special case of a matrix, thus a 

matrix norm should satisfy the usual three requirements 

of a vector norm listed in Definition 2.3.2-1. By using 

the same notation of norm, we define the matrix norm as 

follows: 

Definition 2.3.2-3 The matrix norm satisfies the 

requirements 1,2 and 3 of Definition 2.3.2-1 in addition 

to two other conditions set as follows: 

4) 11 AB 11 ~ 1lAIIIIBII 

5) Usually the vector space, V, which we 
working with will have some vector norm, say 
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all XEV. We require that the matrix and vector norms to 

be compatible, 

IJAx 11 :;; IJA 11 11 x 11 , 
v v 

(2.3.2-8) 

for all XEV, and for all A. 

Usually when given a vector space with a norm 11. 11 , an 
v 

associated matrix norm is defined by 

IJAx 11 
11 A 11 = sup _---"-v 

x~o 11 x 11 v 
(2.3.2-9) 

It is often known as the operator norm. Table (2.3.2) 
gives some of the most important operator norms 11 A 11 of 

p 

a matrix A induced by the vector norms 11 x 11 . 
p 

Definition 

is denoted 

2.3.2-4 

by P (A) 

The spectral radius of 

and is defined by P(A) = 

a matrix A 

max I 1..1 I 
1 

where 1..1,1..2, •.• ,A.n are the eigenvalues of the matrix A. 

The spectrum of A is the set of all eigenvalues of A. 

Vector norm Matrix norm 

11 x 111 
n 

IJA 111 
n 

= L IXil = max L laijl 
1=1 lSjSn 1=1 

[n r2 
~ A 112 ~ P (A'A) 11 x 112 = i~l I Xi 12 = 

Ilxll = max IXil IJA 11 
n 

~ = max L I aij I l~i~n ~ 

l::;;i$;n j;l 

Table(2.3.2): Vector norms and the associated operator 
matrix norms 

The operator norm of the matrix A defined by 

called the column norm, while that defined by 

called the row norm of A. 
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Theorem 2.3.2-2 : Let A be any square matrix. Then for 

an arbitrary matrix norm, 

P(A) ~ hll. (2.3.2-10) 

Moreover, if e > 0 is given, then there exists an 

operator matrix norm 11. 11 e' such that 

(2.3.2-10a) 

This theorem can be used to analyse the rate of 

convergence of some of the iteration methods considered 

in chapter 3. As a consequence of Theorem 2.3.2-2, an 

important corollary follows. 

Corollary 2.3.2-1 For a square matrix A, P(A) < 1 if 

and only if 11 A 11 < 1 for some operator matrix norm. 

2.3.3 CONVERGENCE AND PERTURBATION THEOREMS 

The results to follow form the theoretical framework 

from which we can construct error analysis for numerical 

methods for linear systems of equations. 

Theorem 2.3.3-1 : Let A be a square matrix of order n. 
Then Am t th t ' ~' f d converges 0 e zero ma r~x as m ~ 00 ~ an 

only if P(A) < 1. 

Theorem 2.3.3-2 

square matrix. If 

(Geometric series) 
-1 

P(A) ~ 1, then (I - A) 

can be expressed as a convergent series, 

-1 2 m 
(I - A) = I + A + A + ... + A + ... 

Let A be a 

exists which 

(2.3.3-1) 

Conversely, if the series in (2.3.3-1) is convergent, 
then P (A) < 1. 
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Theorem 2.3.3-3 : Let A be a square matrix. If for 

some operator matrix norm, IIAII ~ 1, then (I - A)-l 
exists and has the geometric series expansion (2.3.3-1). 

Moreover, 

1 
~ 

1 - IIAII· 
(2.3.3-2) 

We shall illustrate Theorem 2.3.3-3 by considering the 

invertibility of the matrix 

A 
I~ 
I : 
L 

We rewrite A as 

A 
where 

r~ 
I ~ 

B I : 
l~ 

1 0 0 
4 1 0 
1 4 1 

1 
0 

4(1 + B) 

1 
0 0 4 

0 1 0 4 

4 
1 

o 

o 
1 
4 

o 

1 
4 

o 

By taking the row norm of B, we obtain 11 B 11 ~ = ~. Thus by 

-1 
Theorem 2.3.3-3, (I + B) exists and from (2.3.3-2), 

-1 
Therefore A 

11 (I + B) -1 11 ~ 1 1 = 2. 

1 - 2 

1 (I + B)-I, and ~A-lll 
4 ~ 
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By using the definition of row norm and inequality 

(2.3.2-10), we obtain 

P(A) :s; 6 and 
-1 P (A ) :s; 1. 

2 

Since A is nonsingular, we can easily show that the 
-1 

eigenvalues of A are the reciprocal of those of A. 

Furthermore since A is Hermitian, all eigenvalues of A 
are real. Hence we have, for all AE a(A), the bound 

2 :s; IAI :s; 6 

where a(A) is the set of all eigenvalues of A. 

, 
Theorem 2.3.3-4 : Let A and B be square matrices of 

the same order. Assume that A is nonsingular and suppose 

that 

(2.3.3-3) 

then B is also nonsingular, 

(2.3.3-4) 
1 -

and 

(2.3.3-5) 

This theorem states that all sufficiently close 

perturbations of a nonsingular matrix are nonsingular. 

The proofs of the theorems quoted in this chapter may be 

found in Atkinson[l978], and Isaacson and Keller[1966] 

or any other standard books on linear algebra. 
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CHAPTER 
SURVEYS 
SOLVERS 

3 
OF ODE AND PDE 

3.1 INTRODUCTION 

This ~hapter consists of two sections. In the first 

section we describe the ODE solvers and in the second 

~ection we outline the various direct and iterative 

methods of solving the elliptic PDE 

form the basis of the work accounted in 

3.2 ODE' SOLVERS 

problems, 

Chapter 6. 

which 

The ODE, solvers described in this ,ection consist of 

the standard basic single-step methods and the multistep 

methods for the special problems y In) = f (x, y). These 

methods will be modified to form the GM variations which 

we shall describe in detail in chapters 4 and 5. 

3.2.1 BASIC DEFINITIONS AND THEOREMS 

We shall first state the following fairly elementary 

results which are important tools used throughout 

numerical analysis. 

Theorem 3.2.1-1 (Mean Value Theorem) : Let f (x) be 

a continuous and differentiable function in [a,b]. Then 
there exists at least one point ~E[a,b] such that 

fIb) - f(a) = f(1) (~) (b - a). (3.2.1-1) 

Theorem 3.2.1-2 (Taylor's Theorem) Let f (x) have 

n + 1 continuous derivatives on [a,b] for some n ~ 0, 
and let x, XoE [a,b]. Then 

f (x) (3.2.1-2) 

where 



Rn+l (x) 

n (x - x o) 
= I { . , 

~ . 
i 

~! r (x 
- t) nf (n+l) (t) dt 

= 
(x - xo) n+l 

(n+l) ! 
f (n+l) (~) 

(3.2.1-3) 

(3.2.1-4) 

for some ~ between Xo and Xi O! = 1 and f(O) (xo) = f (xo) . 

The Tay10r series of a function fIx) can be calculated 

directly from the definition 3.2.1-3 with as many terms 

included as desired. However, due to the complexity of 

the differentiation of some functions, they are often 

obtained indirectly. 

The Taylor's Theorem 3.2.1-2 may be extended to several 

dimensions. We shall now state the Taylor's Theorem for 

functions of two variables. 

Theorem 3.2.1-3 (Taylor's Theorem of two 

dimensions) : Let f(x,y) be a given function of two 
independent variables x and y. Let L(xo,YoiXl'Yl) denote 

the set of all points (x,y) on the straight line segment 
joining (xo, Yo) and (xl' Yl)' Let (xo' Yo) and (xo+~' yo+ll) be 

two given points and assume that f(x,y) is n + 1 times 

continuously differentiable for all (x,y) in some 
neighbourhood of L(xo,Yoi xo+~,Yo+ll). Then 

n 1 a 
+I {-., [~-

j=l J. ax 
+ a] if(x,y) 

llay 

1 
+ (n+l) 

a 
[~- + 

ax 

a n+l I 
ll-a] f(x,y) - 9' Y x-xQ+ ~ 

y=yo+eTj 

for some 0 ::; e ::; 1. The point (xo+e~,Yo+ell) is an 

arbitrary point on the line L (Xo,Yoi xo+~'Yo+ll). 
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Consider the initial value problem for a single-first 

order ODE 

(1) 
Y = f (x, y) , (3.2.1-5) 

Let XE [a,b] be an arbitrary point where a and bare 

finite. We assume that the exact solution of (3.2.1-5) 

exists and is unique in the closed interval [a,b]. 
Consider the sequence of points defined by xn = a + nh; 

for n = 0,1,2, .... The parameter h is assumed to be 

constant and is called the steplength, stepwidth, 

stepsize or simply the step of the method. We seek an 
approximate solution denoted by Yn on the discrete set 

of points (xn; n = 0,1, ... , (b-a) /h). Let fn = f (xn' yn), be 

the corresponding value of f at the discrete point 

(x n, Yn). A computational method for determining the 

sequence of approximate solutions {Yn } is called a 

linear multistep method of stepnumber k or a linear k­
step method if the relationship between Yn+j and f n+j , for 

j 0,1, ... , k is linear. In a multistep method, the 
computation of Yn+l requires the explicit knowledge of 

some or all of the values of Yn' Yn-l"'" Yn+l-k' In 

addition, multistep methods require a special starting 

procedure and a special computation may also be required 

at points where there is a change in stepsize. In 
contrast, in a single-step method, the value of Yn+l can 

be found if only Yn is known; knowledge of any of 

the values of Yn-l' Yn-2"" is not required. On the other 

hand, in single-step methods, every lattice point may be 

considered as a new starting point, since the starting 

point does not play any special role. 

In the following subsections we shall survey some 

relevant basic theories of both the single-step and 

multistep methods which are essential for the discussion 

in Chapters 4 and 5 where the new GM methods are 

formulated. All the basic work is quoted without proofs, 

which may be found in standard texts such as 
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Henrici [1962], Isaacson and Keller [1966], Dahlquist, 

Bjorck and Anderson[1974] and Butcher[1987] . 

Theorem 3.2.1-4 states the condition on f (x, y) which 

guarantee the existence of a unique solution of the 

initial value problem (3.2.1-5). The proof may be found 

in Henrici[1962] which we omit. 

Theorem 3.2.1-4 : Let f(x,y) be defined and continuous 
for all points (x, y) in the region Rl = {(x, y); a S; x S; b, 

-00 < Y < oo}, where a and b are finite. Let there exist a 
* constant Le such that, for every x, y, y such that (x,y) 

* and (x, y) are both in Rp 

If(x,y) - f(x,y*) Is; Le1Y - y*l. (3.2.1-6) 

Let ~ be any given number. Then, there exists a unique 

solution y(x) of the initial value problem (3.2.1-5) 

such that y(x) is continuous and differentiable for all 
(x, y) in Rl . 

The condition (3.2.1-6) is known as a Lipschitz 
condition and Le is called the Lipschitz constant. Note 

that in particular, if f (x, y) is 
differentiable with respect to y for all 

then by the mean value theorem 

continuously 
(x, y) in Rl , 

* of _ * 
F(x,y) - F(x,y ) = Oy(x,y) (y - y ), 

where y is an interior point of the interval wiH" end-
points y and y*, and (x,y) and (x,y*) are both in Rl • 

Thus by choosing 

sup 
(x,y)ERl 

I ~~(x,y) I 

the condition (3.2.1-6) is guaranteed. 
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In cases where we have a system of m simultaneous first 
order equations in m dependent variables zl' z2'" .,zm 

and assuming that each of these variables satisfies a 

given condition at the same initial point a. then we 

have an initial value problem for a first-order system, 

which may be written as 

(1) 
z = f(x,z), } 
z(a) = 1], 

where the respective vectors z, f and 1] 

T 

~ 
z = [zl,z2 / ... ,zm] , 

f 
T = [fl' f 2 ... ·, fm) , 

T J 1] = [1]1.1]2' ... ,1]m) . 

If the z· . 
1 i=1.2, .... m satisfy the 

(3.2.1-8) 

are as follows: 

(3.2.1-9) 

conditions at 

different points a.b.c •... of x. then we have a multi­

point boundary-value problem; if there are only two 

different points of x, then we have a two-point boundary~ 

value problem. 

Theorem 3.2.1-4 may then have to be generalized to cater 

for the necessary conditions of the unique existence of 
the solution of (3.2.1-8). Thus the region RI reads as 

RI = { (x, z); a ~ x ~ b. -00 <; z i <; 00; i = 1,2, ... , m} , (3 . 2 . 1-10) 

and the condition (3.2.1-6) becomes 

11 f (x, z) - f (x, z *) 11 ~ Le 11 z - z * 11 , (3.2.1-11) 

where (x.z) and (x.z*) are interior points of RI and 1.11 
denotes a vector norm. In the case when each of the 
functions fi (x. zl' z2' ... , zm); i =1,2, ... ,m is continuously 

differentiable with respect to each of the zi i = 

1,2 •... ,m then we may choose 
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(3.2.1-12) 

df 
where is known as the Jacobian of f with respect to z 

dZ 
and 

of 
oz (

Of, ) 
= oz ~ (x, zlf ••• , zm) 

J m X m 
(3.2.1-13) 

iSC<n mxmmatrix. The norm 11.11 in (3.2.1-12) is the 

subordinate matrix norm to the vector norm used· in 

(3.2.1-11) (see Mitchell[1969]). 

3.2.2 SINGLE-STEP AND RI< METHODS 

Single-step methods for solving (3.2.1-5) require only a 
knowledge of the numerical solution Yn and the initial 

value Yo in order to compute the next value Yn+1' The 

best known single-step methods are the RK methods while 

the simplest single-step method is based on using the 

Taylor series. 

Let y(x) be the solution of (3.2.1-5) and be r + 1 times 
continuously differentiable. By expanding y(xo+h) about 

Xo using Taylor expansion, we obtain 

h r +1 
+ y (r+11 (~) , 

(r+1) ! (3.2.2-1) 

for some Xo ~ ~ ~ Xo + h. 

The Taylor series method is obtained by neglecting the 

remainder term in (3.2.2-1). Thus an approximation for 

y (xo+h) may be obtained provided we can calculate 
(21 (rl y ( xo) , ... , y ( xo) . 

y(ll (x) = f(x,y(x)) 

f(x,y(x)) fy(x,y(x)) 

y(x). However, 

This can be done by differentiating 

to obtain y(21 (x) = fx (x, y (x)) + 

and higher order derivatives of 

in most cases we avoid the 
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differentiation of f (x, y). Therefore we turn to the RK 

methods which are closely related to the Taylor series 

expansion of y(x) in (3.2.2-1), but do not involve the 

differentiation of f(x,y). 

We shall write the general RK methods in the form 

Yn+l Yn + h<l>(x",yn,h;f) 

for n ~ O. In the case of <l>(x,y,h;f) 

a method of the form 

Yn+l = Yn + hf (xn, Yn) ; n ~ 0 

which is called the Euler method. 

(3.2.2-2) 

f(x,y), we obtain 

(3.2.2-3) 

We assume the arithmetic to be exact and neglect 

rounding errors, because they are often negligible. With 

these hypotheses we define the following quantity. 

Definition 3.2.2-1: The local truncation error, Tn+l 

for (3.2.2-2) at xn+l is defined by 

(3.2.2-4) 

for n ~ O. 

The local truncation error, Tn+l measures how well the 

exact solution fits the formula (3.2.2-2). 

Now define 'tn+1 such that 

(3.2.2-5) 

Therefore by combining (3.2.2-4) and (3.2.2-5), we 

obtain 

for n ~ O. 

46 



Now, in order to obtain convergence of (3.2.2-2), we 
need to have tn+l ~ 0 as h ~ o. Since 

therefore we require that 

<I>(x,y(x) ,h;f) ~ f(x,y(x» as h ~ o. 

By defining, 

/) (h) = max 
xE [a,b] 

yE(-oo,oo) 

I f(x,y) - <I>(x,y,h;f) I 

and assume that /) (h) ~ 0 as h ~ 0, we have the 

consistency condition for (3.2.2-2) defined as follows: 

Definition 3.2.2-2 : A single-step method (3.2.2-2) is 

said to be consistent with the differential equation yell 

= f(x,y(x» if 

lim /)(h) 
h-tO 

o. (3.2.2-7) 

For practical purposes the total error between the 

computed approximation and the exact solution, after 

several integration steps, is of interest. Hence we 

define the following quantity. 

Definition 3.2.2-3 : The global truncation error gn at 

xn is defined as 

(3.2.2-8) 

In order to be able to estimate the global error gn' we 

assume that the function <I> (x, y, h; f) satisfies a 

Lipschitz condition, with respect to the dependent 
variable y, for all XoE [a,b], yE (-00,00) and sufficiently 

small h > 0, 

I <I>(x,y,h;f) - <I>(x,z,h;f) I (3.2.2-9) 

where 0 < Le < 00. 
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From the definition of the local truncation error 

(3.2.2-1), it follows that 

Now subtract (3.2.2-2) from (3.2.2-10), we obtain 

By assumption (3.2.2-9), we obtain the following 

estimate 

I gn+! I !> Ignl +hl<l>(xn,y(xn),h;f) -<l>(xn'Yn,h;f) 1+ I Tn+! I 

!> I gn I + hLc I y (xn) - Yn I + I Tn+! I 

(3.2.2-11) 

If we assume that the absolute value of the local 

truncation error is bounded, say, 

max ITn I !> D, 
n 

(3.2.2-12) 

then the absolute value of the global truncation error 
gn' for n = 0,1,2, .. " satisfies the inequality 

(3.2.2-13) 

By repeated application of (3.2.2-13), we can show that 

(3.2.2-14) 

Furthermore, from the fact that the function et is 

convex, so that the tangent at t = 0 is below the curve 

and 1 + t !> et for all real values of t, --\1..'; it follows 

that 

(3.2.2-15) 
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From (3.2.2-14) and (3.2.2-15), we deduce the following 

results. 

Lemma 3.2.2-1 

13), then 

If the global error satisfies (3.2.2-

Consequently, from Lemma 3.2.2-1 and since the global 
truncation error satisfies go = y(xo) - Yo = 0, we deduce 

the following theorem. 

Theorem 3.2.2-1 The global truncation error gn' at 

the fixed abscissa xn = Xo + nh is bounded by 

(3.2.2-17) 

From (3.2.2-17), we note that there are two decisive 

quantities to be considered; namely 
constant Le' of the function cl>(x,y,h;f) 

the Lipschitz 
and the local 

truncation error Tn+ l , in the qualitative judgement of a 

single-step method. Thus, if we assume that the function 

f(x,y) and the solution y(x) are sufficiently many times 

continuously differentiable, the local truncation error 

may be determined by means of Taylor series. 

We further note that if 

satisfied in Theorem 
solution (Yn) converges 

the condition (3.2.2-7) is also 

3.2.2-1, then the numerical 
to y(x). For proof of Theorem 

(3.2.2-1), see Atkinson[1978], pg.374. 
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Definition 3.2.2-4 Let En (f) be an exact error 

formula, and let En(f) be an estimate of it. We say that 

En(f) is an asymptotic error estimate for En(f) if 

En (f) 

d-J.ro, En (f) = 1 

or equivalently, 

lim 
n->"" 

En (f) - En (f) 
En (f) 

= o. 

Next, we define a special notation which we shall be 

using very frequently in the discussion throughout the 

thesis. 

Definition 3.2.2-5 Suppose B(x,h) is a function 
defined for XE [xo,bl and for all sufficiently small h, 

then the notation 

for some p > 0 means that there is a constant c such 

that 

I B (x, h) I ::; chP 

for all XE [xo,bl and for all sufficiently small h. If B 

depends on h only, the same kind of bound is implied. 

Definition 3.2.2-6 : The method (3.2.2-2) is said to 

have order p if p is the largest integer for which 
y(x+h) - y(x) - h<l>(x,y(x),h;f) = O(hP +1

) holds, where 

y(x) is the exact solution of the initial-value problem 

(3.2.1-5). 

Now as a consequence of Theorem 3.2.2-1, we have the 

following result. 

Corollary 3.2.2-1 : If the single-step method (3.2.2-
2) has a local truncation error Tn+l = O(hP+1

), then the 

rate of convergence of {Yn} to y (xn) is O(hP
) • 

50 



The asymptotic error formula for (3.2.2-2) may be 

derived by assuming that 

(3.2.2-18) 

with ~(x) determined by y(x) and f(x,y(x». 

In chapter 4, we shall define 
modified form of (3.2.2-2) 

a new RK method using the 
where <II(xn'Yn,h;f) is 

nonlinear which we shall call the RK-GM methods. This 

work was first studied by Sanugi [1986]. We shall then 

extend this and show that the classical RK methods as 

well as those of Sanugi[1986] are special cases of these 

nonlinear forms. 

3.2.3 STABILITY ANALYSIS FOR EXPLICIT RI< 

METHODS 

The first analysis of instability phenomena and stepsize 

.restrictions for hyperbolic equations was reported by 

Courant, Friedrichs and Lewy in 1928. It was later 

followed by many authors independently, notably Guillou 

and Lago in 1961. 

a) EULER METHOD 

Suppose $(x) is a smooth function of y(1) = f(x,y). Now 

linearize f in its neighbourhood as follows: 

(1) 
y (x) = f(x,$(x» + fy(x,$(x» [y(x) - $(x)] + .... (3.2.3-1) 

By rearranging the terms, we have 

(1) '" '" y (x) - f(x,'I'(x» = fy(x,'I'(x» [y(x) - $(x)] + ...• (3.2.3-2) 

By letting y(x) = y(x) - $(x), (3.2.3-2) becomes 

y(l) (x) fy(x,$(x»y(x) + 

J(x)y(x) + .... 
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By neglecting the error terms, we may obtain as a first 

approximation by treating the Jacobian J(x) as constant 

and arrive at a general representation given as 

yl11 = Jy. (3.2.3-4) 

Now applying Euler method to (3.2.3-4), we obtain 

Yn+l = R(hJ)Yn (3.2.3-5) 

with 

R(z) = 1 + z. (3.2.3-6) 

'The .'.0 plot of (3.2.3-6) is a circle of radius 1 and 

centre (-1,0). 

b) EXPLICIT RK METHODS 

Following the notation of Hairer et al.[1987], we 

redefine the RK method (3.2.2-2) as follows: 

Let kit be such that 

(3.2.3-7) 

for i = 1, ... ,s. Then the RK method is defined by 

with 

for i 

s 

Yn+1t = Ynt + h L {bjft (Vj1' ... , Vjm) } 
j=l 

i-l 

Vit = Ynt + h L {aijft (Vjl1 ... , Vjm) } 
j=l 

1,2, ... ,s. 

(3.2.3-8) 

(3.2.3-9) 

On applying the RK method (3.2.3-8) to (3.2.3-4), we 

have 

and 

s 

Yn + hJL aijv j 
j=l 

s 

Yn+1 = Yn + hJ L bjvj. 
j=l 
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On combining (3.2.3-11) and (3.2.3-10), we obtain 

Yn+l = R(hJ) Y n (3.2.3-12) 

where 

(3.2.3-13) 

is a polynomial of degree ~ s with z = hJ. Thus we have 

the following definition. 

Definition 

(3.2.3-13) 

3.2.3-1 The 

is called the 

method (3.2.2-2). The set 

polynomial 

stability 

s = {ZE C; I R (z) I $ l} 

function R (z) of 

function of the 

(3.2.3-14) 

is called the stability region of the method (3.2.2-2). 

The stability function R(z) may be interpreted as the 

numerical solution after one step of the Dalquist test 

equation, 

(1) , 
Y = A.y, Yo = 1, z = hA.. (3.2.3-15) 

The theorem below relates the stability region and the 

order of the RK method. 

Theorem 3.2.3-1 : If the RK method is of order p, then 

R (z) (3.2.3-16) 

Its proof follows directly by considering the difference 

between the exact and numerical solution of (3.2.3-15). 

The stability regions of the explicit RK methods with s 

= 1,2,3,4 are plotted in Figure(4.3.4b) where they are 

compared with those of the RK-GM methods. 
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3.2.4 LINEAR MULTISTEP METHODS FOR THE 

SPECIAL CLASS OF ODE' PROBLEMS 

In this section and in Chapter 5, we shall be 

concentrating on the study of the methods for problems 

of the type 

y(2) = f(x,y), (3.2.4-1) 

that is, no derivatives appear in the right-hand side of 

the differential equation. Equations of the form y (n) = 
f(x,y); for any integer n ~ 2 belong to a special class 

of differential equations. Such equations or systems of 

such equations occur frequently, for example, in 

mechanical problems without dissipation. Although we can 

reformulate (3.2.4-1) into a system of first~order 

equations; ,:' it may seem unnatural to introduce the 

first derivatives when their values are irrelevant to 

the problem, In fact, astronomers have for more than a 

century been integrating such problems using methods 

which work without first derivatives. 

3.2 .5 GENERAL OPERATORS FOR SPECIAL SECOND­

ORDER EQUATIONS 

Consider a linear k-step method of the form 

k ~ 2 (3.2.5-1) 

where a k # 0, and a o and Po do not vanish simultaneously. 

Without loss of generality, we may assume that a k = 1. 

If Pk = 0, then (3.2.5-1) is called an explicit k-step 

method, otherwise it is known as an implicit k-step 

method. The direct application of (3.2.5-1) to problems 

of the form (3,2.4-1) finds theoretical evidence in 

Ash [1969] . 

Now associated to the linear multistep method (3.2.5-1), 

we define the linear difference operator L as follows: 
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L[y(x) ;h) 
k 
I [<xjy(x+jh) - h2~jy(21 (x+jh) 1, 
j~O 

(3.2.5-2) 

where y (x) is an arbitrary and continuously 

differentiable function on an interval [a, b). Assume 

that y(x) has sufficiently many higher derivatives. Then 

by Taylor expansion about x, we have 

q i (i) 
L[y(x);h) = IhCiy (x) + 

i=O 
. .. , (3.2.5-3) 

where the coefficients Ci; i = 0,1, ... are constants and 

independent of the stepsize h and the function y (x). By 

simple manipulation, we obtain these coefficients as 

listed below. 

1 k q 
~ i <X, 

q !... • 
i~l 

for q = 3,4, . .. . 

Definition 3.2.5-1 

k 

Cl = I i<xi , 
i=l 

1 k q-2 

I i ~i' 
i=l 

(q-2) ! 

(3.2.5-4) 

The difference operator (3.2.5-

2) and the associated multistep method (3.2.5-1) are 
said to be of order p if, in (3.2.5-3); Cq = 0, for q = 
0,1, ... ,p+1; and Cp +2 '* O. 

From the definition above, it is clear that only the 

first of the nonvanishing coefficients in the expression 
(3.2.5-3), namely Cp +2' has any significance. 

Thus we define Cp +2 as the error constant. 

Definition 3.2.5-2 The local truncation error Tn+k 

at xn+k of the method (3.2.5-1) is defined as the 

expression L[y(xn);h) given by (3.2.5-2), when y(x) is 

the exact solution of the problem (3.2.4-1). 
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Consider the application of (3.2.5-1) to yield Yn+k under 

the assumption that no previous truncation errors have 
been made. In particular, assume that Yn+j = Y (xn+j) j = 

0,1, ... ,k-1. From (3.2.5-2), we obtain 

k 

L ujy(xn+jh) 
j=O 

k 

= h2Z; Pjf(xn+jh,y(xn+jh» + L[y(xn);h], (3.2.5-5) 
j=O 

since in this context, y(x) is assumed to be the exact 
solution of (3.2.4-1). The value of Yn+k given by (3.2.5-

1) satisfies 

(3.2.5-6) 

Subtract (3.2.5-6) from (3.2.5-5) and use the assumption 

stated above, to obtain 

By the mean value theorem, 

where lln+k is an interior point of the interval ""i~"-

end-points Yn+k and Y (xn+k). Therefore, we obtain 

Tn+k 
af (xn+k, lln+k) ] 

ay 
(3.2.5-7) 

Hence the local truncation error of an explicit method 

is the difference between the exact solution and the 

numerical solution generated by the method under the 

assumption stated. On the other hand, for an implicit 

method, the local truncation error is approximately 

proportional to the difference between the two solutions 

mentioned. Next, if we make a further assumption that 
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the exact solution y(x) has continuous derivatives of 

sufficiently high order, then, both the explicit and the 

implicit methods satisfy the following result, 

where p is the order of the method. The term 

C h P+2 (p+2) ( ) 
p+2 Y xn is the principal local truncation error 

at the point xn. 

We note that the results (3.2.5-7) and (3.2.5-8) are 

true only under the assumption that no previous 

truncation errors have been made, which could be 

unrealistic. Thus if we make 
the error gn+k = Y (xn + k ) 

no such assumption, then 
yn+k is the global or 

accumulated truncation error. This error involves all 

the truncation errors made at each application of the 

method. It is this error which should tend to zero as h 
~ 0, n ~ ~ for nh = xn - a remains fixed as a criterion 

for convergence. 

The coefficients Ci ; i 0,1,2, ... defined in (3.2.5-4) 

can be used to derive a linear multistep method of any 
structure and order. For a given k, the parameters (Xi 

and ~i can be determined such that the order is optimal. 

By doing so we prescribe the conditions for the desired 

structure of the mu1tistep method. 

3.2.6 BASIC PROPERTIES OF LINEAR MOLTISTEP 

METHODS 

An important basic property of a linear multistep method 
to be of any value is that the sequence of solutions 

{y n} generated by the method converges to the exact 

solution y (x) 

have the 

as the stepsize h tends to zero. Thus we 

following definition of convergence 

(Lambert [1973]) . 
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Definition 3.2.6-1 The linear multistep method 

(3.2.5-1) is said to be convergent if, for all initial 

value problems (3.2.4-1) subject to the hypothesis of 

Theorem 3.2.1-4, we have that 

lim Yn = Y (xn ) 
h~O 

nh=x-a 

(3.2.6-1) 

holds for all XE [a,b], and for all solutions {Yn ) of the 

difference equation (3.2.5-1) satisfying starting 
conditions Y~ = ~~(h) for which lim~~(h) = ~ and 

h~O 

--'~r::..~ _( h_)_-----'~.:...o _( h_) 
lim - h 
h~O 

'" ~; for ~ 0,1,2, ... ,k-1. 

Definition 3.2.6-2 The linear multistep method 
(3.2.5-1) is said to be consistent if it has order p ~ 1. 

From (3.2.5-4) it follows that the method (3.2.5-1) is 

consistent if and only if 

Let 

k 

0; I. iUi = 0; 
i=l 

k 

I. ~i' 
i=O 

lim Yn Y (x) 
h--;O 
n-+>o 

nh=x-a 

and for i = 0,1, ... ,k, 

lim Yn+i = y(x) . 
h~O 
n-+>o 

nh=x-a 

Write for i = 0,1, ... ,k, 

Y (x) = Yn+i + 9in (h) ; 

where 

lirn 9in (h) O. 
n-+>o 
h~O 
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Hence 

2 k 
= h L ~ifn+i 

i~O 

by using (3.2.5-1). 

k 

L aiOin (h) , 
i~O 

k 
+ L aiOin (h) , 

i~O 

(3.2.6-3) 

Now as h ~ 0 and n ~ 00, both terms on the right-hand 

side of (3.2.6-3) vanish, whereas the left-hand side 

term is unaffected. Therefore it must be zero. Since 
k 

y (x) is in general not zero, therefore L a i must be 
i~O 

zero, which is the first condition of (3.2.6-2). We can 

easily show that the second condition of (3.2.6-2) 

follows directly from the situation of the problem that 

the right-hand side of (3.2.4-1) is independent of the 

first derivative. 

Next, under the limiting conditions of h ~ 0 and n ~ 00 

we have for i = 1,2, .. . ,k, 

l ' y -2Yn + y ~m ~n+~i~~~ __ ~n~-~i y(2) (x) ; 

n~ (ih) 2 
h-40 

or 

Yn+i -2Yn + Yn-i = (ih) 2y (2) (x) + (ih) 2Kin (h) ; 

where lim Kin (h) = O. 
n~ 

h-40 

Hence 

k 

L aSn+i 
i=O 

k 

Since L a i = 0, we have on dividing by 2h2, 
i~O 

k 1 (2) ( ) '" ,2~, 2 Y x £., ~ ~, 
i:cO 

59 



But lim fn+i = f (x, y (x)) and lim Kin (h) = 0. 
h~O h~O 

Hence we obtain 

k 

f(x,y(x)) L 13i 
i~O 

Y (2) (x) 

Therefore y (x) 

(3.2.4-1) if and 

satisfies the 
k 

only if L 13i = 
i=O 

1 k ,2 
-2' L ~ <Xi' 

. i~O 

(3.2.6-4) 

differential equation 
1 k ,2 
2! i~l ~ <Xi' Thus we have 

shown that a convergent linear multistep method is 

necessar ily consistent. However, consistency alone is 

not sufficient for convergence (Lambert [1973]). By 

defining the first and second characteristic polynomials 

cr(~) = 
k i 
L 13i ~ , 
i~O 

we can easily verify that method(3.2.5-1) is consistent 

if and only if 

p (1) pili (1) = 0, pl21 (1) = 2cr(1) • 

We should note that for a consistent method to be 
meaningful, k ~ 2. The pOlynomial p(~) associated with 

the consistent method has a double root at 1; which is 

called the principal root while the other roots are 

spurious. Thus we have zero-stability defined as 

follows: 

Definition 3.2.6-3 The linear multistep method 

(3.2.5-1) is said to be zero-stable if no root of the 

first characteristic polynomial p(~) has modulus greater 

than one, and if every root of modulus one has 

multiplicity not greater than two. 

We now state the theorem which gives the necessary and 

sufficient conditions for convergence of method (3.2.5-

1) • 
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Theorem 3.2.6-1 The necessary and sufficient 

conditions for a linear multistep method to be 

convergent are that it be consistent and zero-stable. 

Another important theorem which limits the order of a 

zero-stable linear k-step method depending on whether k 

is odd or even is stated as follows: 

Theorem 3.2.6-2 No zero-stable linear mul t istep 

method of stepnumber k can have order exceeding k + 1 

when k is odd, or exceeding k + 2 when k is even. 

The proofs of Theorem 3.2.6-1 and Theorem 3.2.6-2 are 

given in Henrici [1962] . 

Definition 3.2.6-4 A zero-stable linear k-step 

method which has order k + 2 is called an optimal 

method. 

Thus from the results above, we can conclude that a 

necessary condition for optimalityis that k be even and 
that all the roots of p (~) have .... ,h .. \us ... "j +., 

3.2.7 STORMER-COWELL METHODS 

In the pre computer-oriented methods, the right-hand 

side of a linear multistep method is written in terms of 

a power series in a difference operator. A typical 

example is 

Y - Yn = h (1 - 1 V n+l 2 ... }fn +1 • (3.2.7-1) 

By truncating the series (3.2. 7-1), we can obtain the 

following methods 

1 
Yn+l - Yn = 2" h(fn +1 + f n}, 

and 

Yn+l - Yn 
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The existence of formulae similar to (3.2.7-1) has 

resulted in family names associated to classes of linear 

multistep methods, of different stepnumber,i .... ,.,t..i,t.../I.<first 

characteristic polynomial p (~) is common. Thus the 

methods of the form (3.2.4-1), which equate yn+2 - 2Yn+l + 
y n to power series and ',.i,1tv c first characteristic 

y yk yk-l yk-2 
polynomial p (.,,) =." - 2." +.", are often known as 

Stormer-Cowell methods. The most well known such method 

is the optimal two-step method of Numerov given as 

(3.2.7-2) 

In Chapter 5 we shall modify (3.2.7-2) to obtain its GM 

version. 

3 • 2 • 8 BOUNDS FOR THE 

TRUNCATION ERRORS OF 

Let 

LOCAL AND GLOBAL 

METHODS (3.2.5-1) 

Y max 
xE[a,bJ 

I y(P+l1 I (3.2.8-1) 

and 

G = I Cp +2 1 , (3.2.8-2) 

where Cp +2 is the error constant of (3.2.5-1). 

A bound for the global error when (3.2.5-1) is applied 

to (3.2.4-1) is given in Henrici[1962] page 314. This 

bound reflects the different influences of starting 

error, local truncation error and local round-off error. 

However, 

GYh P +2 , 

if the local truncation error is bounded by 

then the global truncation error 

proportionately bounded by GYhP (Lambert [1973]) . 

3.2 . 9 ABSOLUTE AND RELATIVE STABILITY OF 

LINEAR MULTISTEP METHODS 

is 

The theory of weak stability attempts to provide a 

criterion, involving h, for the global error to be 

damped out as the computation progresses. Thus it 
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enables one to choose h small enough for the criterion 

to be fulfilled while the local truncation error is kept 
af 

acceptably small. By assuming that ay = A constant, and 

the local error equals $0' a constant, then the 

linearized error equation is given by 

(3.2.9-1) 

where en = y(xn) - "in' for ("in) is the sequence of 

solutions of (3.2.5-1) where the round-off error has 

been included. The general solution (see Lambert[1973], 

page~~) of (3.2.9-1) is 

e = n 

where d s are arbitrary constants and rs are the roots , 

assumed constant, of the stability polynomial 

It(r,h) = per) - hcr(r), (3.2.9-2) 

Since for many methods rl and r2 lie on the unit circle 

when h is small and negative, we have the following 

definition of absolute and relative stability for the 

linear multistep methods for the special second order 

problems (Lambert [1973] ) . 

Definition 3.2.9-1 The linear multistep method 

(3.2.5-1) is said to be absolutely stable for a given h 

if, for that h, all the roots rs of (3.2.9-2) satisfy 

I rs I :S;1, s = 1,2, ... ,k; and to be relatively stable if, 

for that h, I rs I:s; min ( I r 1 I , I r21 ), s = 3,4, ... , k. An 
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interval [a, ~ 1 of the real line is said to be an 

interval of absolute or relative stability if the method 

is absolutely or relatively stable for all h E [a,~l . 

We also have that every zero-stable consistent linear 

multistep method of class (3.2.5-1) is absolutely 

unstable for small positive h. 

For 
A 
df 
dY' 

a system of equations y(2) = f(x,y}, we then consider 
\<I.,.~e ~-l. 

. the~eigenvalue, assumed constant, of the Jacobian 

which may be complex. The intervals of the absolute 

or relative stability discussed in the previous 

paragraph are replaced by regions of absolute or 

relative stability. 
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3.3 ELLIPTIC PDE SOLVERS 

Many physical or engineering systems can be described by 

means of functions of several independent variables 

which from natural energy principles must satisfy 

certain PDEs. There is an enormous variety of PDEs and 

systems of PDEs that occur in these applications. Their 

appropriate numerical solution often requires special 

procedures. In this section, we shall survey some of the 

current elliptic PDE solvers and highlight some of 

their characteristics. We shall restrict the discussion 

to the treatment of the second-order PDEs for an unknown 

function with two independent variables of the form 

Au xx + 2Buxy + CU yy + Dux + EU y + Fu = G (3.3-1) 

where u(x,y) 

the region 
is the function that 

2 R1CR and satisfies 
we are looking for in 

(3.3-1). The given 

coefficients A,B,C,D,E,F and G in (3.3-1) may be 

piecewise continuous functions of x and y. 

3.3.1 CLASSIFICATION OF PDES AND TYPES OF 

ELLIPTIC PROBLEMS 

Analogously to the classification of conic sections 

AX2 + 2Bxy + Cy2 + Dx + Ey + F = 0 (3.3.1-1) 

the PDEs (3.3-1) are divided into three classes 

according to the Definition 3.3.1-1. 

Definition 3.3.1-1 In a region Rl, a second-order 

partial differential equation of the form (3.3-1) with 
A2 + B2 + C2 

#- 0 is called 

(1) elliptic if AC _ B2 > 0 for all (x,y)eR1, 

(2 ) hyperbolic if AC _ B2 < 0 for all (x,y)eR1, 

(3) parabolic if AC _ B2 = 0 for all (X,y)eRl' 

However the classification defined by Definition 3.3.1-1 

above depends, in general, on the region of the (x,y) 

plane under consideration. The differential equation 
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xuxx(x,y) + Uyy(x,y) = 0, (3.3.1-1a) 

for instance, is elliptic for x > 0, hyperbolic for x < 0 

and parabolic for x = O. 

The well known special cases of elliptic differential 

equations are 

(1) Laplace equation: 

(2 ) Poisson equation: 

(2 ) Helmholtz equation: 

where V2 

V2u 

V2u = 

V2u = 

0, 

f(x,y) , 

r(x,y)u, 

(3.3.1-2a) 

(3.3.1-2b) 

(3.3.1-2b) 

The Laplace equation occurs in problems of elasticity 

and hydrodynamics. The solution of the Poisson equation 

can describe the static temperature distribution in a 

homogeneous medium or the stress in some torsion 

problems. The Helmholtz equation or sometimes called the 

'reduced wave' equation arises in the theories of sound, 

electromagnetic waves and tidal waves. 

In order to define the desired solution of an elliptic 

differential equation uniquely, certain boundary 

conditions must be imposed on the boundary of the region 

R1' To simplify the problem, we assume that the region 

R1 is bounded and that its boundary is a constituent of 

several curves, as shown in Figure(3.3.1). We denote the 

synthesis of all boundary curves by [. The boundary 

should consist of piecewise continuously differentiable 

curves on which the normal vector n pointing outward 

from the region R1 can be defined. The boundary [ is 

assumed to consist of three disjoint components [1, [2 

and [3 such that 

It is possible that [i = 0, for i 

denotes the empty set. 

66 

(3.3.1-3) 

1, 2, or 3, where 0 



y 

n 

x 

Figure(3.3.1) :Region R1 and boundary f. 

There are four distinct problems involving (3.3-1) 
depending on the boundary conditions prescribed on f as 

follows: 

(1 ) Dirichlet condition: u = Cl> on f1 (3.3.1-4a) 

(2 ) Neumann condition: du 
= 'l' on f2 (3.3.1-4b) dn 

(3 ) Cauchy condition: 
du 
dn + au = ~ on f3 (3.3.1-4c) 

(4 ) Periodic condition: Uo = UT (3.3.1-4d) 

where a, ~, 'l' and Cl> are given functions on the 

respective boundary components and T is the period of 

the function u in the case of condition (3.3.1-4d). If 

the elliptic differential equation is only subjected to 

condition (3.3.1-4a), then the problem is called a 

Dirichlet boundary value problem. If we have f = f2' then 

it is the Neumann boundary value problem. Similarly, if 
f= f3' the problem is known as the Cauchy boundary-value 

problem, while the periodic problem has no boundary 

conditions. This latter problem will be dealt with in 

more detail in chapter 6. 

Before developing finite difference methods for solving 

elliptic equations, we shall state an analytical tool in 

the study of elliptic PDEs - The Maximum (Minimum) 

Modulus Theorem - that is, the solution 

the Laplace equation (3.3.1-2a) has no 

at interior points of the domain 

Alternatively, it states that every 
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maxima or minima 

of integration. 
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elliptic equation achieves its maximum or minimum values 

on the boundary. Thus, a problem of mathematical physics 

is well-posed if its solution exists, is unique, and 

depends continuously on the data. Therefore we maintain 

that an elliptic problem is well-posed provided the 

boundary is closed. 

3.3.2 DISCRETIZATION OF THE ELLIPTIC 

BOUNDARY - VALUE PROBLEMS 

The problem (3.3-1) or specifically (3.3.1-2a), (3.3.1-

2b) or (3.3.1-2c) can be solved approximately in a given 
region Rl subject to boundary conditions (3.3 .1-4a) to 

(3.3.1-4d) through the application of the finite 

difference method as illustrated below. 

Step 1: Discretization of the region 

The desired function u(x,y) is substituted by its values 
at the discrete points of the region Rl and the boundary 

r. For convenience, the function u (x, y) is discretized 

using a regular square net with mesh size h in the 
region Rl as shown in Figure(3.3.2a). 

The values of u are those obtained at the grid points 

unless they are already known from the boundary 

conditions. In the case of curved boundary components, 

we introduce points as the intersection of grid lines 

with the boundary. In Figure(3.3.2a), the grid points 

are those given by the intersections of the lines such 

as the points marked P, W, N, Sand E. 

y 

Rl [\[ 

T,l 
h I\. b 

?' "\ 

\ S 
x 

Figure(3.3.2a) :Region with mesh and grid points. 
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Let the value of the exact solution be U(Xi,Yj) and the 

corresponding approximate value be Uij' We note that in 

certain problems it is necessary to use variable mesh 

sizes in the x and Y directions in order to accommodate 

the shape of the region or the nature of the desired 

solution (Marsal[1976]). Moreover, regular triangular or 

hexagonal nets may be useful (Collatz[1966], 

Marsal [1976]) because a regular hexagonal net easily 

admits to locally finer discretization. In practical 

problems, the use of triangular grids arises for curved 

boundaries as used in Finite Element method. 

Step 2: Finite difference approximation of the 

dependent variable and its derivatives 

For the chosen discretization of the function the 

partial differential equation is approximated at the 

grid points by means of the discrete function values Uij' 

In the case of a regular square net, the first and 

second partial derivatives may be approximated by means 

of difference quotients. We can use the central 

difference quotient to approximate the first partial 

derivatives as it is convenient and simple and 

furthermore it gives a good approximation of the first 

derivative since it represents the slope of the 

interpolating parabola at the mid point. For a regular 

interior point P (x,y) which has fouT neighbouring grid 

points at a distance h away, we adopt the approximations 

Ui+l~ - Ui-l~ 

} Ux(Xi,Yj) ~ 

2h 

ui.i+l - ui,j-l 
Uy(Xi,Yj) ~ 

2h 

(3.3.2-1a) 

Ui+l,j - 2Ui,j + Ui-l,j 
u xx (Xi, Yj) ~ 

h 2 

(3.3.2-1b) 
lli,j+l - 2u· . + Ui,i-l 

Uyy (Xi, Yj) ~ 
~il 

h 2 
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where the difference quotients are defined by means of 

the approximate values at the grid points. 

In Figure(3.3.2a), the four neighbouring grid points are 

labelled as N, S, E and W. Thus we define 

Up = Ul,j UN Ui,j+l , Uw = Ui-l,:l' } (3.3.2-2) 
Us = Ui,J-l UE Ui+lJj· 

We can now approximate the Poisson equation (3.3.l-2b) 

at the grid point P(x,y) by the difference equation 

(3.3.2-3) 

where fp denotes f (Xi, Yj) . 

Multiply (3.3.2-3) throughout by _h2 and rearrange, we 

obtain 

2 - UE - Uw + 4up - UN - Us + h fp = o. (3.3.2-4) 

It is often written in operator form as 

-1 

(3.3.2-5) 

Step 3:Adaptation of the difference approximation 

to the boundary conditions 

The prescribed boundary conditions of the problem must 

be taken into account, and the difference approximation 

of the differential equation may have to be adapted to 

the boundary conditions. 
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If there is only a Dirichlet boundary condition to be 

satisfied, then the net can be such as to generate 

regular interior grid points. In such a case, the 

operator form of (3.3.2-5) can be superimposed on all 

interior grid points with unknown function values, while 

the known boundary values can simply be substituted. If 

there exist irregular grid points as in Figure(3.3.2a), 

then appropriate difference equations must be derived 

for them. We shall consider such cases in Section 

(3.3.3) . 

In this preliminary discussion, we assume that the 

boundary coincides with a net line parallel to the y 

axis, and that the Neumann boundary condition requires 

the normal derivative to vanish (see Figure(3.3.2b». 

The outward normal vector n points 

direction of the x axis. Let E be a 

in the positive 

fictitious point 
with value UE. The derivative in the normal direction 

can be approximated by means of the central difference 

quotient as 

dui 
dn (3.3.2-6) 

p 

Since it vanishes, therefore) ..... <eu,). o<dO(, 

(3.3.2-7) 

·N 

....,Jl;'+----~_ .. n . E 

Figure(3.3.2b):Neumann boundary condition 

Thus we have u (x, y) is symmetric with respect to the 

boundary. Hence by using (3.3.2-4), it follows that 
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1 1 1 2 
- Uw + 2u p - 2" UN - 2" Us + 2" h fp O. 

Therefore its corresponding operator form is 

-1/2 

2 

• -1/2 

1 2 Ou + 2"h fp=O 

aul aul an = ax = 0 
p p 

for a regular boundary point P(x,y) 

neighbouring grid points N, Wand S. 

(3.3.2-8) 

(3.3.2-9) 

with three 

Step 4: Representation of the problem as a system 

of linear equations 

In order to determine the numerical approximation of the 

unknown values at the grid points, we need an equation 

at each point. These we can obtain from the preceding 

two steps where we have a linear difference equation for 

each grid point. Upon applying it on all the grid points 

we are able to give a system of linear equations for the 

unknown values. The grid points of the net i~ ",I.,',h ""e 
function values are unknown are numbered. It is done in 

a suitable way so that the appropriate structure for the 

resulting system of equations will permit an efficient 

solution procedure. Thus the system of linear equation.s 

represents the discrete form of the given boundary_value 

problem. This system of linear equations can be written 

in a compact form as 

Mu = s (3.3.2-10) 

72 



where M is the matrix derived from applying the operator 

forms (3.3.2-5) and (3.3.2-9) on the grid points, u is 

the vector of the unknown values at the grid points and 

s is the constant vector obtained from applying the 

operator forms (3.3.2-5) and (3.3.2-9) on the grid 

points. 

We shall now describe in detail how the discretization 

process can be carried out. There are three well known 

methods of obtaining finite difference approximation to 

partial derivatives. These methods are based upon 

variational formulations, Taylor series expansion and 

integral equations. All these approximations may 

introduce truncation errors; ~"ei... presence will be 

denoted by the asymptotic 0 notation. We shall derive 

the finite difference approximations based on finite 

Taylor series expansion of the solution vector over the 

domain of integration. 

As previously outlined in Step 1, in order to apply the 

method of finite differences to obtain an approximate 

solution for the problem defined by (3.3-1), grid lines 

parallel to the coordinate axes are super-imposed on the 

region so that for any grid point (i,j) 

x = ih i=O,1,2 ... n-l 

} (3.3.2-11) 

Y = jh j=O,1,2 ... m-1 

where for simplicity we have chosen an equal mesh size 
h. We may choose x = ih1 and y = jh2 such that hl = ah 

and h2 = bh for a ;t b to obtain unequal mesh sizes. 

Assume that u(x,y) has continuous partial derivatives at 

least of fourth order in the neighbourhood of (x,y). By 

using the Taylor series expansions, we obtain 
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u(x±h,y) = u(x,y) ± hux(x,y) 

h 2 

Uxx(X,y) ± 
h 3 

u xxx (x, y) 
h4 

Uxxxx (x, y) + 2! 3! +4T 

± 
h 5 

uxxxxx (x, y) 
h 6 

Uxxxxxx (x, y) 5! +61 

+ O(h7
) (3.3.2-12a) 

u (x, y±h) = u(x,y) ± huy(x,y) 

h 2 

Uyy (x, y) ± 
h

3 

Uyyy (x, y) 
h4 

Uyyyy (x, y) + 2! 3! +4T 

± 
h 5 h 6 

Uyyyyyy (x, y) 5! Uyyyyy (x, y) +61 

+O(h7
). (3.3.2-12b) 

By subtracting u(x-h,y) from u(x+h,y), we obtain 

Ux (x, y) = 2
1
h [u (x+h, y) - u (x-h, y)] + 0 (h2

) • (3.3.2-13) 

By adding u(x-h,y) to u(x+h,y), we have 

u xx (x, y) = ~ [u (x+h, y) - 2u (x, y) + u (x-h, y)] + 0 (h2
) • 

h 

Similarly, we may obtain 

uy (x, y) = 2
1
h [u (x, y+h) - u (x, y-h)] + 0 (h2

) 

and 

U yy (x, y) = ~ [u (x, y+h) - 2u (x, y) + u (x, y-h) ] 
h 

(3.3.2-14) 

(3.3.2-15) 

+O(h2
). 

(3.3.2-16) 

By a similar application of the Taylor series expansion 

in two dimensions, we may obtain 

u(x±h,y+h) = u(x,y) ± hux(x,y) + huy(x,y) 

h
2 

+ 2! [uxx (x, y) ± 2uxy (x, y) + Uyy (x, y) ] 

h
3 

+ 3T[±Uxxx (x,y) + 3uxxy (x,y) 

± 3uxyy (x,y) + Uyyy(X,y)] 
h4 

+ 4T [uxxxx (x, y) ± 4uxxxy (x, y) 

+ 6uxxyy (x,y) ± 4uxyyy (x,y) + Uyyyy(x,y)] 

+ O(h5
) • (3.3.2-17) 
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Correspondingly, . we may obtain the expressions for 

u (x±h, y-h). Hence we have the result 

uxy(x,y) = ~[U(X+h,y+h) - u(x-h,y+h) 
4h 
- u(x+h,y-h) + u(x-h,y-h)] + O(h2). (3.3.2-18) 

Now for the case when B = 0 in (3.3-1), and neglecting 
2 

terms of order h and higher in (3.3.2-12) to (3.3.2-

16), we arrive at the five-point finite difference 

approximation to the partial differential equation (3.3-

1) at a grid point (i,j), 

(3.3.2-19) 

where the ai i = 0,1,2,3 and 4 are functions of x 

and y and are given by 

4 
h2 

ao = L ak - Fi,j 
k~l 

al = Al,j + 
1 
2 h Di,j 

a2 = Ai,j !. h Dl,j 2 (3.3.2-20) 

a3 = Ci,j + 
1 

h 2 
E· . ',J 

a 4 = Ci,j 
1 
2 h El,j 

2 
Si,j = h Gi,j 

and we have u(x,y) = u(ih,jh) denoted by Ui,j' Similarly 

with the Ai,j = A (ih, jh), Di,j = D (ih, jh), Ci,j = C (ih, jh), 

Ei,j = E (ih, jh), Fi,j = F (ih, jh) and Gi,j = G (ih, jh) for all 

(i,j)Ef, 

Clearly, all the ai will be positive provided that h 

satisfies the condition 

o < h < min { 
2Ai,j 

IDi,jl' 

2Ci,j 

I Ei,j I 
}, (3,3.2-21) 

where the minimum is taken over all points of R1Uf. 

Since A,C > 0 and F ~ 0 and are bounded, there exists a 

positive minimum and for that h 
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(3.3.2-22) 

This relation will be important in the discussion of 

iterative methods of solving the resulting equations 

obtained from Step 4. 

Now suppose the number of interior grid points is n. By 

applying the five-point computational operator (3.3.2-

19) at every interior grid point yields a set of n 

simultaneous linear equations whose matrix form is 

Mu = s. (3.3.2-23) 

The vectors u and s consist of n unknowns and the 
quantities -SLj together with boundary values 

respectively. The matrix M in normally square and sparse 

(but with real coefficients),;"".I,:,~"'. main diagonal entries 
are the eta of (3.3.2-20) and the off diagonal entries 

are the negatives of the eti of (3.3.2-20) which do not 

correspond to boundary points. Before proceeding to the 

discussion of the various methods available for solving 

the system given by (3.3.2-23), we shall note the 

following properties of the matrix M. 

Let M = (mj,j), 

( 1 ) mi,j > 0 'if i = j 

mi,j :5 0 'if i;t j 

(2) ml,i <: i I mi,j I with strict inequality . (3.3.2-24) 
j-I 

for some i 

(3) M is irreducible 

Conditions (1) and (2) follow from (3.3.2-21) and its 

preceding argument. The fact that the inequality holds 

for some i can be observed by applying the five-point 

76 



operator at an interior grid point adjacent to a 

boundary. 

Now (3.3.2-23) and in particular (3.3.2-10) can be 

solved for the unknown vector u either by a direct 

method or an iterative method which is described in 

Section (3.3.5) 

3.3.3 GRID POINTS NEAR THE BOUNDARY AND 

GENERAL BOUNDARY CONDITIONS 

In this section we shall illustrate the treatment of the 

situations when we have grid points near the boundary 

and general boundary conditions have to be satisfied. We 

consider a typical example which can be obviously 

generali2ed. The basic problem consists of constructing 

an appropriate difference approximation of a given 

differential operator, say that of u xx + U yy • 

Suppose P(x,y) be an irregular interior grid point which 

lies near the boundary r as shown in Figure(3.3.3a). Let 

W' and S' be the points where the boundary curve rand 

the net lines intersect at ah and bh distances away from 

P(x,y) respectively, with 0 < a,b < 1. 

r 

Figure(3.3.3a) : Irregular grid point near the boundary 

We aim to obtain the approximations of Uxx and Uyy at the 

grid point P(x,y) such that they are linear combinations 

of the values of Up,UE and UW' and Up,UN and us' 

respectively. We assume that u (x, y) is sufficiently 
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continuously differentiable. By means of the 

Taylor series expansion of the function u about x we may 

obtain the following expressions: 

u(x+h,y) 1 2 
= u(x,y) + hux(x,y) + 2' h uxx(x,y) 

1 3 
+ "6 h uxxx(x,y) + .. , 

u (x-ah, y) u(x,y) 122 - ahux(x,y) + 2" a h Uxx(x,y) 

133 - "6 a h uxxx(x,y) + ... 

u(x,y) = u(x,y) 

Suppose that Cl, C2 and C3 are some constants such that 

clu(x+h,y) + c2u(x-ah,y) + C3U(X,y) 

Since this 

of u xx at 

(Cl + C2 + C3)U(X,y) + (Cl - aC2)hux(X,Y) 
212 

+ (Cl + a C2)2" h uxx(X,Y) + ... 

linear combination 
the point P(x,y), 

has to be an approximation 

therefore we obtain the 

necessary conditions 

Hence we obtain 

2 2 
2 • 

ha 

Since the approximate function values of u are known at 

the points P(x,y), E and W', we can use this information 

to approximate Uxx ' Thus we have at the point P(x,y) 

u xx 
2 { UE Uw· 

= h2 1 + a + a (1 + a) 
up} 
a (3.3.3-1a) 

Similarly, we can obtain an approximation of Uyy at the 

point P(x,y) as 

U yy 
2 { UN us' up} 

= h2 1 + b + b(l + b) - b . (3.3.3-1b) 
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Thus by multiplying both equations (3.3.3-1a) and 
2 (3.3.3-1b) by -h and adding the results, we may obtain 

the difference equation for the Poisson equation (3.3.1-

2b) as 

(3.3.3-2) 

Note that in general, the symmetricity of M is dependent 

on the equality between a and b since for a ~ b, we have 
the coefficients of UN and UE in (3.3.3-2) are different. 

Even by scaling the difference equations we may not in 

general attain symmetry. In the particular case a = b we 

may multiply (3.3.3-2) by the factor l~a so that M is 

symmetric with respect to the grid point P (x, y). The 

difference equation is then modified to 

1 +a 1 1 1 2 
2 [--] Up - UN -- UW' -- us' - UE +- (1+a)h fp = O. (333-3) a a a 2 .. 

Next we 5~ffo5~ ""'~e a Neumann condition is to be satisfied 
on the boundary part r 2 ~~J.. we assume that the boundary 

point P(x,y) is a grid point and the boundary is as 

shown in Figure(3.3.3b). Let the angle between the outer 

normal vector n at the point P(x,y) and 
axis ~ V, measured anti-clockwise. 

the 
By 

positive x 
using an 

appropriate linear combination of the expression of the 

normal derivative and the function values of u at the 

neighbouring grid points W,S,R and T of the grid point 

P(x,y), it can be shown that the resulting difference 

equation of the Poisson equation for the grid point 

P(x,y) is given by 

-cpup - cwuw - csus - CRUR - CTUT - Cl. ~~ I p + fp = 0, (3.3.3-4) 

with 
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Cl. 
2(a + b + 2) 

hW: 
2 (sin,!, - cos'!') 

ah 2N 
2 (cos,!, - sin,!,) 

bh2W: 

(3.3.3-5) 

where w: is defined b~ N = (a+l) sin,!, + (b+l) cos,!, and 

a, b, hand '!' are given. The known value of 

the Neumann boundary condition is then substituted into 

(3.3.3-4) . 

S ah T 

Figure(3.3.3b) :Neumann condition at the boundary point 

The treatment of a Cauchy boundary condition at a 

general point is similar to that of the Neumann 

condition. Consider the situation as shown in 

Figure(3.3.3c). Let P(x,y) be a boundary point which is 

not the intersection point of grid lines. Let the 

direction of the outer normal vector be defined by the 

angle '!'. 

Then it can be shown that the resulting difference 

equation of the Poisson equation is given by 

(3.3.3-6) 

where y is a known value of the Cauchy condition. The 

boundary condition at the point P (x, y) is expressed 
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implicitly in terms of the coefficients of the u values 
of (3.3.3-6) and the explicit constant c~y. 

n 

h 

h S ah T 

Figure(3.3.3c) :Cauchy condition at the boundary point 

Generally, Cz is nonzero and even if Z is a regular 

interior grid point, in which case we can use the five­

point difference equation (3.3.2-4) for Z; the matrix M 

of the system of equations is in any event nonsymmetric. 

The derivation of difference equations for boundary 

points with Neumann or Cauchy condition is tedious and 

susceptible to errors. However, the coefficients can be 

easily determined by means of a computer program where 

it only needs the information about points neighbouring 

to the boundary point, the type of boundary condition 
including the numerical values of 0/, a, ~ and y and the 

elliptic differential equation to be approximated. 

Alternatively, we may use the computer to generate the 

complete system of difference equations corresponding to 

a. given boundary-value problem such as in the form of 

the operator equations. 

3.3.4 DISCRETIZATION ERRORS 

The solution of the system of linear difference 

equations represent the approximation of the function 

values of the solutions u (x, y) of the given boundary 

problem. Therefore in order to have an idea of (at 

least) qualitative estimates, we need to determine the 

local truncation error of the difference approximation. 

We shall consider the Poisson equation and the 
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difference equations used so far to illustrate our 

discussion. 

The local truncation error of a difference equation is 

defined as the value that results when the exact 

solution of the differential equation is substituted 

into the difference equation. 

Therefore in the case of the five-point difference 

equation (3.3.2-4) valid for a regular interior grid 
point P(x,y), the local truncation error Tp is given by 

Tp = ~[u(x+h,y) + u(x-h,y) + u(x,y-h) + u(x,y+h) 
h 

- 4u(x,y)] - f(x,y). (3.3.4-1) 

By substituting (3.3.2-12a) and (3.3.2-12b) in (3.3.4-1) 

we obtain for function values at P(x,y) 

Tp Uxx (x, y) + Uyy (x, y) - f (x, y) 
1 2 

+ 12 h [uxxxx (x, y) + U yyyy (x, y) 1 
146 

+ 360 h [uxxxxxx(x,y) + Uyyyyyy(x,y) 1 + O(h) (3.3.4-2) 

By the assumption that u(x,y) is a solution of the 

Poisson equation, the local truncation error 

of the five-point difference equation at a regular 

interior grid point P (x, y) is given by 

1 2 [ ] Tp = 12 h Uxxxx (x, y) + U yyyy (x, y) 

1 4 [ ] + 360 h uxxxxxx (x, y) + Uyyyyyy (x, y) (3.3.4-3) 

Thus we deduce that Tp is O(h2
). This result holds true 

au 
even for boundary points with the Neumann condition an =0 

whenever the boundary coincides either with a mesh line 

or a diagonal of it. 

For an irregular grid point P (x, y) near the boundary 

(see Figure(3.3.3a», it can be shown that the local 
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truncation error is proportional to the mesh size h. 

Thus, we have the local truncation error is O(h) . 

Next we shall investigate the relationship between the 
local truncation error Tp and the error 1p = u(x,y) - up 

of the numerical approximation at the point p (x, y) . 

First, we assume that at all grid points, the difference 

equation used has a local truncation error of the form 

(3.3.4-3). Consider a typical regular interior grid 

point P(x,y). Thus, from (3.3.4-1), we have 

~[U(X,y+h) + u(x-h,y) + u(x,y-h) + u(x+h,y) 
h 

- 4u(x,y)] - f(x,y) - Tp = O. (3.3.4-4) 

From (3.3.2-4), we have the approximations satisfy the 

difference equation 

~[UN + Uw + Us + UE - 4up] - f(x,y) = O. (3.3.4-5) 
h 

By subtracting (3.3.4-5) from (3.3.4-4), we obtain the 

error equation as 

~ [1N + 1w + 15 + 1E - 41p] - Tp = O. 
h 

(3.3.4-6) 

By taking (3.3.4-4) into account and multiplying (3.3.4-

6) 2 by -h , we obtain for each regular interior grid 

point P (x, y) , 

(3.3.4-7) 

where Cp, Dp, ... are constants that depend on the point 

P(x,y) and on the solution u(x,y). The discrete errors 

satisfy a system of linear equations;~ ..... ;,1., 1-\..0. matrix is 

identical to that of the system of difference equations. 

The components of the constant vectors of (3.3.4-7) are 
O(h4

). Let 1 denote the error vector at the grid points, 

~ and ~ denote the vectors of the constants Cp and Dp 

respectively. Therefore from (3.3.4-7), we obtain the 

system 
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(3.3.4-8) 

Since M is nonsingular, the existence of t is 

guaranteed. Hence from (3.3.4-8), we obtain 

-1 4r 6~ 't = - M [h ':> + h ':> + ... ]. (3.3.4-9) 

By taking the Euclidean vector norm and the subordinate 

spectral norm, from (3.3.4-9), the error estimate is 

obtained as 

It can be shown that the spectral norm of the inverse of 

M satisfies 11 M-
1

11 2 $ Kh- 2 for some constant K (see 

Schwarz[1989],pp.453-455). Consequently, from (3.3.4-

10), the following error estimate is obtained 

(3.3.4-11) 

The Euclidean norm of the error decreases as h 2
• Thus 

the order of convergence of the five-point formula 

(3.3.2-4) is two. It also follows that the approximate 

solutions at the grid points converge, as h tends to 

zero, to the exact solutions of the boundary- value 

problem. We have implicitly assumed that the solution 

u (x, y) is sufficiently continuously 

differentiable on the closed domain. The inequality 

(3.3.4-11) can also be derived by other methods 

(Co11atz [1966]; Finkenstein[1977]). 

However, if difference equations with a local truncation 

error O(h) are present, then (3.3.4-10) will involve an 
3 h term. Consequently, the bound for the norm of the 

error is only proportional to h. 

In the situations where the assumption that the solution 

u (x, y) has to be at least four times continuously 

differentiable is not fulfilled; special analytical 

techniques are required to describe the convergence 
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behaviour correctly (Bramble et al.[1968]). Such 

instances occur, for example, if Dirichlet boundary 

conditions are discontinuous, or if the domain has 

obtuse corners. Then the low-order partial derivatives 

of the solution are singular at the points concerned. 

Thus it is quite advantageous in the numerical solution 

of such problems to incorporate analytical tools 

adequately in order to treat the points of singularity 

(Gladwell and Wait[1979]; Mitchell and Griffiths[1980]). 

The accuracy of the approximate solution of the 

difference equations may be increased by decreasing the 

mesh size h. The error estimate (3.3.4-11) will 

correspondingly reduce the error at the expense of a 

considerable increase in the order of the system of the 

linear 

matrix 

large, 
11 M-1 

11 2 , 

equations. Moreover, the condition number of the 

M of the system of difference equations becomes 

because of the increase of the spectral norm 

Another possibility of improving the accuracy of the 

approximate solution is to increase the order of the 

difference equations. This is achieved by taking more 

function values into the approximations. The second 

partial derivative may be approximated by means of the 

difference approximation 

uxx(x,y) ~ ~[- u(x-2h,y) + 16u(x-h,y) - 30u(x,y) 
12h 

+ 16u(x+h,y) - u(x+2h,y)], (3.3.4-12) 

~\+\.v truncation error .f 0 (h 4). However, this approach 

will result in a difference equation which involves grid 

points further from the central point of interest. Thus 

it has the disadvantage of deriving 

approximations for too many grid 

boundary. 
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A better approach is to approximate the differential 
expression L'.u = u xx + Uyy at the point P (x, y) as an 

entity by a linear combination of function values. 

Consider eight neighbouring grid points of P (x, y) as 

depicted in Figure(3.3.4). 

NW N NE 

h 

P h 

SW S SE 

Figure(3.3.4) :Eight neighbouring points of a grid point 

From (3.3.2-12a) and (3.3.2-12b) we have the expressions 

for u(x±h,y) and u(x,y±h) respectively. While from 

(3.3.2-17) we have the expression for u(x±h,y+h) and 

then u(x±h,y-h) can be deduced from it. 

Next we combine the function values of four grid points 

to form the following expressions: 

El = u(x,y+h) + u(x-h,y) + u(x,y-h) + u(x+h,y) 
2 4u (x, y) + h [uxx (x, y) + Uyy (x, y) ] 

h4 
+ 12 [uxxxx(x,y) + Uyyyy(x,y)] + O(h 6

) (3.3.4-13a) 

u(x+h,y+h) + u(x-h,y+h) + u(x-h,y-h) 
2 4u (x, y) + 2h [uxx (x, y) + Uyy (x, y) ] 

+ u(x+h,y-h) 

h4 
+ 6" [uxxxx (x, y) + 6uxxyy (x, y) + 6 Uyyyy(x,y)] + O(h). 

(3.3.4-13b) 

So by some combination of (3.3.4-13a) and (3.3.4-13b), 

we obtain 

4El + E2 - 20u(x,y) 
2 = 6h [uxx(x,y) + Uyy(x,y)] 

h4 
+ "2 [uxxxx (x, y) + 2uxxyy (x, y) + U yyyy (x, y) ] 

(3.3.4-13c) 
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However, we can write that 

uxxxx(x,y) + 2uxxyy (x,y) + Uyyyy(x,y) 

[uxx(x,y) + Uyy(x,y) lxx + [uxx(x,y) + Uyy(x,y) lyy 

= Ll(Llu) • 

Using the fact that u(x,y) should be the solution of the 

Poisson equation so that we have Llu = f. 

Hence 

Ll(Llu) (x, y) = Llf (x, y) = fxx (x, y) + fyy (x, y) 

where all the values are evaluated at the grid point 

P(x,y). 

Therefore by replacing the expression within the second 

parentheses of (3.3.4-13c) without error from the value 

of Llf(x,y),we obtain 

[uxx(x,y)+uyy(x,y) 1 -

Next we substitute the exact values of the solution with 

the approximations at the corresponding grid points in 

(3.3.4-13a) and (3.3.4-13b) and multiply the result by -

6h2 to obtain the following difference equation for a 

regular interior grid point p(x,y) 

In operator form the representation is given as 

- -4 - 1 -. 

-4 -I 20 , -
O. (3.3.4-15) 

• -1 -4 -1 
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The constant term in (3.3.4-15) constitutes the function 

value and the sum of fxx (x, y) + fyy (x, y) evaluated at the 

point P(x,y). If f(x,y) is a constant function, then the 

last term of (3.3.4-15) is not present. For the Laplace 

equation the constant term is completely absent from 

(3.3.4-15). It is clear that from the derivation, the 

local truncation error of the difference approximation 

is O(h4
). 

Another strategy of increasing the order of the 

difference approximation for the Poisson equation 

without enlarging the number of grid points can be done 

as described in the following paragraphs. 

The differential expression itself is used in some of 

the neighbouring grid points beside the function values. 

The value of the differential expression at the 

corresponding grid points are replaced by the known 

function on the right-hand side of the given 

differential equation. 

The Taylor series expansion of u xx + Uyy at the four 

neighbouring grid points N,W,S and E can be obtained as 

u xx (x±h, y) + uyy(x±h,y) 

= Uxx (x, y) + Uyy (x, y) ± huxxx (x, y) ± huxyy (x, y) 
1 2 

+ "2 h [uxxyy (x, y) + u xxxx (x, y) 1 + ... (3.3. 4-16a) 

uxx(x,y±h) + Uyy(x,y±h) 

U xx (x, y) + U yy (x, y) 
1 2 

± huxxy (x, y) ± hUyyy (x, y) 

+ "2 h [uxxyy (x, y) + Uyyyy(x,y) 1 + (3 . 3 . 4 -16b) 

By adding (3.3.4-16a) and (3.3.4-16b) we obtain 

L3 = Uxx (x, y+h) + Uyy (x, y+h) + Uxx (x-h, y) + Uyy (x-h, y) 

+ uxx(x,y-h) + Uyy(x,y-h) + uxx(x+h,y) + uyy(x+h,y) 

= 4 [uxx(x,y) + Uyy(x,y) 1 
2 

+ h [uxxxx(x,y) + 2uxxyy (x,y) + Uyyyy(x,y) 1 + .... 

(3.3.4-17) 
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By taking a suitable linear combination of Ll, L2 and L3, 

we may eliminate the fourth partial derivatives and 

obtain the following relationship 

SLl + 2L2 - h2L3 - 40u 

= Sh2 [uxx(x,y) + Uyy(x,y)] + O(h6
). (3.3.4-1S) 

Thus we obtain the approximation 

1 2 
uxx (x, y) + Uyy (x, y) = --2 [SLl + 2L2 - h L3 - 40u], 

. Sh 

the quantities Uxx + Uyy occurring in L3 is substituted by 

the values of f at the corresponding four grid points. 

Hence by substituting the function values of u with 

their respective approximations, for the Poisson 

equation (3.3.1-2b), we obtain the difference equation 

valid for a regular interior grid point P(x,y) 

20up - 4 [UN + Uw + Us + UE] - UNE - UNW - usw - USE 

h
2 

+ T[Sfp + fN + fw + fs + f E]= O. (3.3.4-19) 

Written in operator form, we have 

- -4 -1 1 

• 

20 -4 -4 1 
Qu + .---1 ... --..... 

S 1 
o 

-1 -4 -1 1 

(3.3.4-20) 

which is called the multiple-point operator or the 

Hermitian operator (Collatz[1966]). It is clear that the 

local truncation error of (3.3.4-19) is at least O(h4
). 

However, a careful analysis shows that it is 0 (h 6) 

accurate and thus for some problems it admits a high 

accuracy of the approximate solutions. 
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3 .3. 5 METHODS OF SOLUTION OF Mu - s 

The conditions in (3.3.2-24) are sufficient to prove the 

existence of a unique solution to the system (3.3.2-23). 

We remark here that the matrix M is nonsingular and 

hence the unique solution of (3.3.2-23) exists and is 

given by 

-1 
U = M s. (3.3.5-1) 

Methods of solut ion for the system (3.3.2-23) can be 

classified into two groups: 

methods. 

direct and iterative 

In the discussion of the various basic methods of 

solving the system of linear equations (3.3.2-23), we 

assume the entries of the matrix M and the right-hand 

side vector s are given by (3.3.2-20). 

3.3.6 DIRECT METHODS OF SOLVING (3.3.2-23) 

Broadly speaking, direct methods obtain the solution 

(neglecting round-off errors) of (3.3.2-23) in a finite 

number of steps. These methods depend on the fact that a 

closed-form solution to the discretized problem exists. 

There is a class of fast direct methods that are often 

used to solve certain class of linear systems. Such 

systems arise from the discretization of linear elliptic 

PDEs with constant coefficients over rectangular 

domains. 

During the pre 1965 large-scale computers, direct 

methods were seldom used for solving large scale linear 

systems (3.3.2-23) arising from elliptic difference 
,'_ :l.- Ov '1 -1); .... (,,~ ,0.,.,' 

equationsA. However, especially for the finite element 

approximations widely used since 1965 in structural 

mechanics, direct methods have become increasingly 
) _ i)\ ... ~ .. \io .... 

adopted for solving - ~ problems. 

90 



We shall now describe the outline of the basic direct 

methods for solving linear systems of equations (3.3.2-

23). We may state some standard theorems without proofs. 

Consider the linear system of equations (3.3.2-23) where 

M is a nonsingular nxn matrix. For the purpose of the 

discussion, we assume that M is a full dense matrix. 

a) GAUSSIAN ELIMINATION AND LU DECOMPOSITION 

The most common form of Gaussian elimination subtracts 

multiples of rows of M from other rows so as to reduce 

(3.3.2-23) to an upper triangular system. The unknown 

vector u is then solved by back substitution. 

Mathematically, this is equivalent to first forming the 

decomposition 

M = LU, (3.3.6-1) 

where L is a lower triangular matrix with unity on the 

main diagonal and U is an upper triangular matrix. Then, 

the solutions are obtained through solving the 

triangular systems 

Lv = s, Uu = v 

which are known as the forward 

substitutions. 

Now if the matrix M is symmetric positive 

one has the alternative of using 

decomposition 

(3.3.6-2) 

and backward 

definite, then 

the Choleski 

(3.3.6-3) 

where L is a lower triangular matrix, followed by the 

forward and backward substitutions 

Lv = s, T -L u = v (3.3.6-4) 

to solve the linear system Mu = s. 
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b) ORTHOGONAL REDUCTION 

An alternative to LU decomposition is the reduction 

M = QR, (3.3.6-5) 

where Q is an orthogonal matrix and R is upper 

triangular. 

There are two usual approaches to the factorization 

(3.3.6-5), namely, the Householder transformations and 

Givens transformations. However, they are both slower 

than the LU decomposition, even though they are 

numerically stable without any row interchanges; but 

this does not overcome the operation count advantage of 

LU decomposition, even with pivoting. Consequently, they 

are rarely used for nonsingular systems of equations. 

Instead, they are widely used such as for eigenvalues 

determination, least-square problems and 

orthogonalization of vectors. 

A Householder transformation is a matrix of the form 1-

wwT where w is a real column vector such that wTw = 2. 

Thus a Householder transformation is symmetric and 
orthogonal. The reduction is done as follows. Let ml be 

the first column of M and define 

where 

y 2 -1 
(a - mlla) , , 

w = 1l'U (3.3.6-6) 

(3.3.6-7) 

and the sign of a is always opposite to that of mll for 

numerical stability. 

Therefore the effect of the Householder transformations 
applied to M successively is to produce a matrix Mi 

which has zero elements below the main diagonal such 

that 
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(3.3.6-8) 

where Ri is a matrix such that zero elements occur below 

the main diagonal from the first column to the ith column 

in the last n - i positions. Thus finally, we have 

where R is 

orthogonal 

(3.3.6-9) 

upper triangular. The matrices Pi are all 
-1 so that P Pn - 1 ••• P 1 and P are also 

orthogonal and Q = p- 1 is the orthogonal matrix of 

(3.3.6-5) . 

A Givens transformation is a plane rotation matrix of 

the form 

j--> 

1 

i 
l 

case 

-sine 

1 

j 

l 

sine 

1 
casS· 

t 

(3.3.6-10) 

with sine and cosine elements in the ith and jth rows and 
columns as in (3.3.6-10). The matrix P~j is orthogonal; 

in fact any plane rotation matrix is orthogonal. The 
matrix p .. is now used to achieve the QR reduction >,] 

(3.3. 6-5) in a similar manner as the Householder 

transformations to obtain 

R (3.3.6-11) 
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where R is upper triangular. The matrices P l,J are all 

orthogonal so that P and p-1 are also orthogonal. Define 
-1 Q = P , then (3.3.6-11) gives the QR decomposition of 

(3.3.6-5). 

c) PARTITIONING METHODS 

In the above discussion, we assumed that the matrix M 

was full; now we treat banded systems. Next, we consider 

a class of methods based on the partitioning of the 

coefficient matrix M. We shall write the banded system 

in block form 

(3.3.6-12) 

where Ai; for i = 1,2, ... , pare qxq matrices and for 

simplicity, we assume that q = in/pl is an integer. In 
general the matrices Bi and Ci are lower and upper 

triangular respectively. 

We assume that the Ai are nonsingular. In particular, if 

M is symmetric positive definite or nonsingular and 
diagonally dominant, then the Ai have a stable LU 

decomposition. We then solve the systems 

(3.3.6-13) 

using the decompositions 

(3.3.6-14) 

On mUltiplying the system (3.3.6-12) by the 
-1 -1 

diag [Al·"" ,Ap 1, we have reduced the original system 

(3.3.6-12) to the form 
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(3.3.6-15) 

where we have to solve (3.3.6-13). 

Assume that the matrix M has bandwith ~. We note that 

the jth column of Wi is A~l times the jth column of Bi . In 

general, even if Ai is banded, A~l will be full and the 

jth column of Wi will be full whenever the corresponding 

column of Bi is nonzero; that is, the Wi "fill-in" the 

nonzero columns of Bi . Likewise, the nonzero columns of 

the Ci are "fill-in" elements. 

Now for the case of M with bandwith ~, we obtain only 

the first ~ columns of each Wi and the last P columns of 

each Vi are nonzero. Thus we write these matrices in the 

form 

where the submatrices Wi,l1 Wi,3' V;'l and Vi,3 are of order 

/3x~ and the Wl,2 and Vi~ are of order (q-2~)x~; assuming 

that q > 2~. The vectors u i and d i are partitioned 

likewise. Thus we have the first block equation of 

(3.3.6-15) written in the form 

(3.3.6-16) 

Similarly, the second block equation is given as 

(3.3.6-17) 
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The remaining block equations can be written in the same 

manner as above. 

We observe that the equations 

(3.3.6-18) 

are independent of Ui,2' Therefore, we can solve the 

reduced system (3.3.6-18) independently of u~. Once the 

system (3.3.6-18) has been solved, the vectors u~ can be 

obtained from the second equations of (3.3.6-16) and 

(3.3.6-17) as 

U1,2 d 1,2 - W1,2U2,1 

} and (3.3.6-19) 

u~ di ,2 - V i,2u i-l,3 - W1,2ui+l,l 

for i ~ 2 . 

The first and the last vectors, namely, ul,l and u p,3 do 

not appear in the reduced system. Thus we may obtain u~l 

fro~ the first equation of (3.3.6-16) as 

. Similarly, up,) may be obtained from the last block 

equation of (3.3.6-15) as 

The method described above is called the Lawrie-Sameh 

partitioning algorithm. It is summarized as follows: 

Step 1: Do LU decomposition (3.3.6-14) 

and solve (3.3.6-13). 
Step 2: Solve (3.3.6-18) to obtain ui,l and u i,3' 

Step 3: Obtain u~2 from (3.3.6-19), 

then obtain Ul,l and u p,3' 

96 



Next we consider the Johnsson' s partitioning method 

where the reduced system is only half as large as the 
previous method. As before, we assume that q = rn/pl is 

an integer. The matrix Ai of (3.3.6-12) is partitioned 

as 

(3.3.6-22) 

where the submatrices AJ,' ~re. of order I3xl3 and Ail is of 

order (q-l3) x (q-I3). Likewise, the matrices Bi and Ci and 

the vectors ui and si are partitioned as 

Bi = [0 
B:i,l 

(3.3.6-23) 

and 

(3.3.6-24) 

in which case the submatrices Bi,2 and Ci,2 are null if 213::;;q. 

Now by means of the LU decompositions Ail , 
solve the systems 

(3.3.6-25) 

We shall now illustrate this concept in (3.3.6-26) for 

the case p = 3 . Effectively, the solution (3.3.6-25) is 
~ -1-1 

to multiply the original system by diag [A1,l' I,A2,l' I, . .. J 

to obtain a new system. We have for p = 3, 

I A!,2 (1) 

T:~l 
S~l (1) 

A1? Al,' Bl,l B1,2 S~2 
C2,1(1) I A2?-(1) S2,l (1) 

C2i/ A2;J A2,' B2~ B~ r~J S2?-
C3~ (1) I A3;2(l) U 3,1 S3,1 (1) 

C3i/ A3,3 A3,' U 3,2 S3?-

(3.3.6-26) 
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Next mUltiply the first block equation of (3.3.6-26) by 
-A~3 and the third block equation by -B1~ and add them to 

the second block equation to obtain a new equation 

where 

AM (1) 

B1,2(1) 

Sl;2 (1) 

A1~ - A~3A1.2 (1) - B1;t C2,1 (1) , 

B'2 - B2,lA¥ (1), 

= Sl,2 - Al,3S1~ (1) - B1,1S2,l (1) . 

(3.3.6-27) 

Continuing in this way, we mUltiply the third block 
equation by -A2~ and the fifth block equation by -B2,1 and 

add them to the fourth block equation to obtain a new 

equation. Finally, we multiply the fifth block equation 
by -A3~ and add to the sixth block equation, we obtain a 

new block system of equations 

f' Al.2 (1) 1""1 f'u (.) 1 A14 (1) 0 B1,2 (1) U~2 S1,2 (1) 
C2,1(1) I A2,2 (1) 0 

B,,(.) f~ J t~::: J l C2,2 (1) 0 A24 (1) 0 , 
C3,l (1) I A1,2 (1) U3,1 S3,l (1) 
C3~ (1) 0 A3,4 (1) U3,2 S3,2 (1) 

(3.3.6-28) 

Note that the even-indexed block equations in (3.3.6-28) 

are independent of the odd-indexed block equations. Thus 

they form the reduced system of equations 

(3.3.6-29) 

After (3.3.6-29) has been solved, the U~l can be obtained 

from the odd-indexed block equations of (3.3.6-28) and 

are given by 
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(3.3.6-30) 

for i = 1,2, ... ,p. Note that if i = 1, the last term of 

(3.3.6-30) i~ not present. 

Thus (3.3.6-26) to (3.3.6-29) illustrate the computation 

for p = 3 which can be generalized for any value of p. 

In particular, the reduced system (3.3.6-29) is a pxp 
block tridiagonal system with block size ~x~; thus its 

semiband width is 2~-1. The algorithm may be summarized 

as follows. 

Step 1: Form the LU decompositions A~l 

the system (3.3.6-25). 

Li,lUi,l and solve 

Step 2: Solve the reduced system (3.3.6-29) which in 

general may be pxp block tridiagonal. 
Step 3: Solve the remaining unknowns ui,l from (3.3.6-30). 

We note that the reduced system for the Johnsson' s 
method has only ~p equations as opposed to 2~(p-1) with 

the Lawrie-Sameh method. 

d) DOMAIN DECOMPOSITION METHOD 

We shall illustrate the basic idea of this class of 

methods by means of the tridiagonal matrix 

I-~ 
-1 

l 2 -1 

M I I (3.3.6-31) 

l -1 2 -~J -1 

For simplicity, we assume that n = pq + p - 1. We divide 
the unknowns into p+1 subsets Di ; i = 1,2, ... ,p and T 

such that each Di consists of q unknowns. The p - 1 

unknowns in the set T = UTi separate the unknowns in the 

sets Di as follows. Suppose that the unknowns are lined 

up and partitioned as 
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(3.3.6-32) 

Each set Ti in (3.3.6-32) consists of p - 1 unknowns. The 

jth equation in the system Mu = s is of the form 

j+p-l 
+ I. mj}< u k = s j • 

k=j-p+l 
(3.3.6-33) 

Therefore, if UjE 0i' then (3.3.6-33) does not contain 

unknowns of any of the other Ok' The sets Ti separate 

the unknowns in the 0i so that each equation in the 

system contains unknowns only in one 0i' 

The unknowns are now renumbered so that those in the 

separator sets come last. The equations are then written 

in the corresponding order. Thus we obtain a generalized 

form of the new system of linear equations 

BllfUll f

Sl 
B2 u 2 S2 

. . . 

~pJl~pJ = l~p 
AT UT ST 

(3.3.6-34) 

where Ai are qxq tridiagonal matrices; for i = 1, ... , P 

and AT is (p-l)x(p-l) diagonal matrix, and Bi are qx(p-1) 

matrices; for i = 1, ... ,p. 

Now let 

(B l1 ... ,Bp)' 
TT} 

where it is assumed that AI is nonsingular. 

Then, we can write (3.3.6-34) as 

Arur + BUT = sr 

CUr + ATuT = ST 

where 
T T T 

and 
T T T 

u r (u lI ••• , up) SI = (SI'" .,Sp)' 
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Next, multiply (3.3.6-36a) by _CA~l and add to (3.3.6-
~"s 

36b); we~obtain the equation 

AUT = s, (3.3.6-37) 

where 

A AT - CA-lE 1 I 

-1 
S UT - CA I u I J 

(3.3.6-37a) 

The matrix A is known as the Gauss transform or Schur 
complement. Once the system (3.3.6-37) is solved for UT' 

the remaining unknown vectors u i can be determined by 

solving the systems 

(3.3.6-38) 

for i = 1, ... ,p using the LU decomposition. method as 

follows. 

Let Ai' for i = 1, ... ,p have stable LU decomposition 

Ai = LiUi · (3.3.6-39) 

We then solve the systems 

LiYi Bif LiYi Si' } 
UiZi = Y if UiZ i = Yi' 

(3.3.6-40) 

for i 1, ... ,p. 

Now 

(3.3.6-41a) 

and, 

(3.3.6-41b) 
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Therefore using (3.3.6-41a) and (3.3.6-41b) in (3.3.6-

37a) , we obtain 

p -1 P 
A = AT - I CiAi Bi AT - I CiZ i (3.3.6-42a) 

1=1 i=1 

and 

p -1 P 
S = ST - I CiAi Si ST - IC1z i · (3.3.6-42b) 

i=l i=1 

Thus we have the domain decomposition algorithm 

summarized as follows. 

Step 1: Form the LU decomposition (3.3.6-39) and solve 

the systems (3.3.6-40). 
Step 2: Form CiZi and Cizi ; i = 1, ... ,p. 

Step 3 : Form A and 5 and solve the system AUT = s. 
Step 4 : Form c 1 = Si - Biur ; i = 1, ... , p. 

Step 5 : Solve the systems Aiui Ci; i = 1, ... , p using 

the LU decompositions (3.3.6-39). 

Next, if M is symmetric positive definite and since the 

matrix of (3.3.6-34), call it M, arises from M by 

interchanges of equations and unknowns, it is related to 

- T M by M = PMP, where P is a permutation matrix. Hence, 

all the matrices ~, Ai and AT are symmetric positive 

definite. Therefore, we may use the Choleski 

decomposi tion', 

instead of the factorization (3.3.6-39) in step 1 of the 

domain decomposition algorithm above. Then, we solve the 

systems 

(3.3.6-44) 

for i = 1, ... ,p. 
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T 
By symmetry, Ci = Bi , therefore, we have 

A s = (3.3.6-45) 

Since 

(3.3.6-46) 

therefore substituting (3.3.6-44) and (3.3.6-46) into 

(3.3.6-45), we obtain 

A (3.3.6-47) 

Clearly, A is symmetric. Furthermore it is positive 
definite since for any non zero vector u 2 of length p-1 

-1 
and set u 1 = -AI Bu2 , then, by the positive definiteness 

of M, we obtain 

Therefore, we have 

which shows that A is positive definite. The algorithm 

for the symmetric positive definite domain decomposition 

can be summarized as follows. 

Step 1: Form the Choleski decomposition. (3.3.6-43) and 

solve the systems (3.3.6-44). 

Step 2: Form hand s by (3.3.6-47) and solve AUT = s 

Step 3: For i = 1, ... ,p; form c i = si - BiuT and solve 

the systems Ai ui = Ci' 
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e) ODD-EVEN/CYCLIC REDUCTION METHOD 

The partitioning and domain decomposition methods all 

apply in principle to tridiagonal systems. Another 

approach to the solution of tridiagonal systems is known 

as the cyclic/odd-even reduction method. With the advent 

of parallel and vector computers, this algorithm, or one 

of its variants, has probably been the most popular 

method for tridiagonal systems. It was first proposed by 

G. Golub and R. Hockney for special block tridiagonal 

systems (see Hockney[1965]), but it soon became apparent 

(Hockney [1970]) that it could be applied to general 

tridiagonal systems. 

The details of this algorithm ~'''' described in Section 

6.5.1. Therefore in this section, we shall only give a 

brief outline of the method. We write the tridiagonal 

systems in the form 

a1u1 + b1u2 = d1 

C2U1 + a2u2 + b2u3 = d 2 

C3U2 + a 3u 3 + b 3u 4 = d 3 (3.3.6-48) 

By mUltiplying the first equation of (3.3.6-48) with 
a, 

and add,.,l the results to the second equation , we 
eliminate the term involving Ul from the second 

equation. Next multiply the third equation by -b2 and add a 3 

to the second equation to eliminate the term involving 
u3 from the second equation. Thus we obtain a new second 

equation of the form 

The same thing is done with the other equations; every 

time working with overlapping groups of three equations 

to produce new middle equations in which the odd-indexed 
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unknowns have been eliminated. Thus, if n is odd, we 

obtain at the end of the process a modified system 

(3.3.6-49) 

which involves only the unknowns u 2 ' u 4' ... , un-l. The 

system (3.3.6-49) is tridiagonal in the unknowns 

u 2 ,u4' .... The process of obtaining a new system which 

contains only the even-indexed unknowns is continued 

until no further reduction is possible. We note that)by 

this process, 

the initial 

we have at each stage of the reduction, 

system is split up into two disjoint 

subsystems; one contains the even-indexed unknowns and 

the other contains the odd-indexed unknowns. We call the 

even-indexed ones the reduced system and the odd-indexed 

ones the eliminated system. In case of n = 2q 
- 1, the 

algorithm will terminate with a single final equation. 

The final equation is then solved and the other vectors 

of the unknowns can be computed by back substitution. 

If n ~ 2q 
- 1, the process may be terminated in a system 

with .f~w'r unknowns which can be solved 

separately prior to the back substitution process. 

Alternatively, we may add a dummy equation of the form 
ui 1 to the system so that the total number of 

unknowns is 2q 
- 1, for some q. He11er[1976] showed that 

during the cyclic reduction process the off-diagonal 

elements decrease quadratically in size relative to the 

diagonal elements; thus allowing termination before the 

full log n steps have been performed. Lambiotte and 

Voigt[1975] showed that cyclic reduction is a Gaussian 

elimination applied to the matrix PMp
T for some 

permutation matrix P. Therefore, if M is symmetric 

positive definite, so is PMp
T and cyclic reduction is 

105 



numerically stable. However, we still need to handle the 

right-hand side carefully to ensure numerical stability 

(see Golub and van Loan[1983]). Since Gaussian 

elimination will cause fill-in when applied to PMpT, the 

arithmetic operation count of cyclic reduction is 

roughly twice that of Gaussian elimination applied to 

the tridiagonal system. 

3.3.7 BASIC ITERATIVE METHODS FOR LINEAR 

EQUATIONS 

Consider the 
23), where 

system of linear equations given by (3.3.2-
M is a nxn nonsingular matrix, u 

In general, the 

coefficient matrix M is sparse, that is , most of its 

elements are zeros. 

Alternative to the class of methods discussed 

previously, is another class of methods called 

iterative methods which obtain the solution of the 

problem by successive approximations. In the use of 

iterative methods, one starts with an arbitrary initial 

guess to the solution and then successively improves the 

approximation. The iterations will be stopped after some 

prescribed criteria are met. 

• (r) 
Th~s is equivalent to finding a sequence of vectors u , 

r = 0,1,2, ... such that, 

lim u (r) 
r ...... 

-1 
M s. (3.3.7-1) 

Therefore, we can express the vector u(r) as a function 
(r-l) (r-k) of M, s, u , ... , u , where k is called the degree or 

order of the iterative method. Usually we choose a first 

degree method; that is, k = 1. Thus we can write the 

first degree iterative method as 

(3.3.7-2) 
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The iteration method is said to be 
some i > 0, F r is independent of 

otherwise it is nonstationary. 

stationary if for 
r for all r;;:: i, 

The iterative method (3.3.7-2) is said to be linear, if 
f h F · l' f t' f U 1r- 1

), otherw~se or eac r, r ~s a ~near unc ~on 0 _ 

it is nonlinear. 

The most general linear, stationary iterative method of 

first degree is of the form, 

U 1r +1 ) = Gu 1r ) + g, (3.3.7-3) 

where G is called the iteration matrix, which depends on 

M and s; g is a column vector. 

If u is the exact solution, then from (3.3.7-1) and 

(3.3.7-3) we obtain, 

-1 -1 
M s = GM s + g. 

Hence, we have 

-1 g = (I - G)M s. (3.3.7-4) 

Now (3.3.7-4) is called the consistency condition. If 

this consistency condition applies, then there is an r. 
say r o' such that, 

U 1ro+
1

) = Gu 1roi + g = Gu + g = u. (3.3.7-5) 

This means that as soon as the solution is obtained, 

further iterations do not modify the successive 

iterates. 

Now suppose that the matrix M is partitioned as 

M = H - T, 

where Hand T are square matrices and H is nonsingular. 

Then (3.3.2-23) becomes, 
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Hu = Tu + s. (3.3.7-6) 

By introducing the iteration count r in (3.3.7-6), we 

obtain the iterative method, 

Hu (r+11 = Tu (rl + s. (3.3.7-7) 

Thus, it is clear that we may have different iterative 

methods for various splittingsof the matrix M. 

Let the coefficient matrix M be split into the form, 

M = D - L - U, (3.3.7-8) 

where D is a positive diagonal matrix'~wh;""J.c. elements are 

the diagonal elements of M, and Land U are lower and 

upper triangular matrices with null diagonals 

respectively. Equation (3.3.2-23) then becomes 

(D - L - U)u = s. (3.3.7-9) 

In this discussion, we shall briefly describe the basic 

iterative methods for solving systems of linear 

equations. These methods may be grouped into two 

classes; namely, the point -iterative methods and the 

block-iterative methods. In the point-iterative methods, 

each component of successive approximations to the 

solution is computed explicitly, while in the block 

methods, several systems of linear equations are solved 

at each stage of the computation. However, each of these 

systems is smaller than the original system derived 

directly from the problem. 

a) JACOBI METHOD 

Now consider (3.3.7-9). Since D is a positive diagonal 

matrix, D-1 exists. By letting 

-1 -1 
GB = D (L + U) and gB = D s, 

then (3.3.7-9) can be written in the form 

u = Gau + gB' 
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By introducing the iteration count in (3.3.7-11), we 

obtain the Jacobi iterative method as 

Ir+1) _ G Ir) + 
U - BU gB' (3.3.7-12) 

where GB and gB are defined in (3.3.7-10). The matrix GB 

is known as the Jacobi iteration matrix. 

b) JACOBI OVERRELAXATION (JOR) METHOD 

This is a modified Jacobi method where the convergence 

of the approximation to the solution is accelerated 

using a real parameter Cll > 1. 

Accordingly, we have from (3.3.7-12), 

which upon simplifying gives, 

U lr+1) = [CllG B + (1 - Cll) I]u lr ) + CllgB• (3.3.7-13) 

where Gm = [CllGB + (1 - Cll) I] is the JOR iteration matrix and 

GB as already defined in (3.3.7-10). Note that if Cll = 1, 

the JOR method reduces to the Jacobi method. 

c) GAUSS-SEIDEL METHOD (GS) 

Consider the matrix M given in (3.3.7-8), where again D 

is the diagonal of M and -L and -U are the strictly 

lower and upper triangular 

reasonable to use the most 

parts of M. Now it is 

current updates of the 

sequence of the approximations in the computation of the 

subsequent vectors of the unknowns. 

the iterative method as 

D Ir+1) L Ir+1) + U Ir) + 
U = U U S 

Thus we may write 

(3.3.7-14) 

for r = 0,1,2, .... and u lO
) is the initial guess vector. 

Since D - L is just the lower triangular part of M, its 

inverse exists by assuming that the matrix M has nonzero 
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diagonal elements. Hence we can write (3.3.7-14) in the 

form (3.3.7-15) for r=O,1,2, ... , 

where 

and 

(r+l) 
U = Hu (r) + d, 

-1 
d = (0 - L) s. 

(3.3.7-15) 

(3.3.7-15a) 

The iterative method defined by (3.3.7-15) is called the 

Gauss-Seidel iterative method and H as defined in 

(3.3.7-15a) is known as the Gauss-Seidel (GS) iteration 

matrix. 

d) SUCCESSIVE OVERRELAXATION (SOR) METHOD 

The GS method defined in (3.3.7-15) can be modified by 

introducing an acceleration parameter ro as follows. 

Let the GS iteration vector given by (3.3.7-14) be 

denoted by v(r+1). Oefine 

U (r+1) = U (r) + ro (v(r+!) _ U (r» . 

Substitut,03 the representation of 

(3.3.7-14) into (3.3.7-16), we obtain 

(r+l) 
v 

(3.3.7-16) 

as given by 

u(r+1) = (1 - ro) u(r) + roo-1 [LU(r+1) + Vu(r) + s] 

or 

(0 - roL)u(r+1) = [rou + (1 - ro)O]u(r) + ros. (3.3.7-17) 

We assume that 0 is nonsingular, then (0 - roLl -1 exists. 

Hence, we can write (3.3.7-17) in the form, 

(3.3.7-18) 

where Loo = (D - roL)-1[rou + (1 - ro)O] denotes the SOR 

iteration matrix. Notice that if ro = 1, the method 
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becomes the GS method and for Cl) < 1 we call the method as 

successive underrelaxation (SUR). 

Table (3.3.7) summarizes all the iterative methods we 

have just discussed, which can be described by the 

general formula (3.3.7-3). 

METHOD ITERATION MATRIX G 

JACOBl 

JOR 
-1 

roD [L + U] + [1 - roll 

GS 

SOR -1 . 
[D - roLl [rou + (1 - ro) D1 

Table(3.3.7): Iterative Methods 

VECTOR e 

-1 
D s 

-1 
roD s 

3 .3. 8 CONVERGENCE OF ITERATIVE METHODS 

In this Section, we discuss some of the classical 

results of the convergence theorems for the basic 

iterative methods. These results and their proofs may be 

found in Varga[1962), Young[1971) and Ortega[1987). 

Now consider the iterative method (3.3.7-3), that is, 

u(r+l) = Gu(r) + q (3.3.8-1) 

for r = 0,1,2, ... , which gives the approximate solutions 

of the linear system (3.3.2-23), that is, 

Mu = s. (3.3.8-2) 

By assuming that M is a nonsingular matrix and that u is 

the exact solution of (3.3.8-2), then the iterative 

method (3.3.8-1) is consistent with (3.3.8-2) if 

u = GU + q. (3.3.8-3) 

Consequently, by subtracting (3.3.8-3) from (3.3.8-1), 

we obtain the basic error vector equation, 

(r+1) G (r) e = e , (3.3.8-4) 
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(1) (1) 
for r=O,1,2, ... , where e =U -u is the error vector 

at the • th l. iteration step. Hence by introducing an 

l.·nl.·tl.·al error vector e(O), we have by l.·nductl.·on the , 
error vector equation (3.3.8-4) written as 

(3.3.8-5) 

forr=1,2, .... 

Now the error e (r) 

b 't e(O) l.·f ar l. rary 

converges to a 

and only if Gr 
null vector for any 

converges to a null 

matrix as r increases. Gr converges to a null matrix if 
the spectral radius ~(G) of the matrix G is less than 

unity. Thus the convergence rate of the iterative scheme 

depends on how fast Gr converges to the null matrix. For 

proofs of these classical results, we refer to 

Varga[1962], Young[197l] and Ortega[1987]. 

If there is no eigenvector deficiency with G, then the 

eigenvectors form a complete set. Accordingly, we may 

expand the initial error vector, e (0) in terms of the 

eigenvectors of G, 

(3.3.8-6) 

where Vj is an eigenvector satisfying 

(3.3.8-7) 

Substitute (3.3.8-6) into (3.3.8-5) and using (3.3.8-7), 

we obtain 

e (r) = ~ a 0 rv 
.. jl\.j j' 
j 

By taking norms, we have 

11 e (r) 11 = 11 L a jA..~ v j 11 $ ~ r 11 e ( 0) 11 , 

j 

(3.3.8-8) 

(3.3.8-9) 

where ~ is the spectral radius of G and is given by 
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, . 

In practical problems, the initial error vector, a IO
), is 

arbi trary. Therefore, we may use 11 r as a bas is for 

comparing the convergence rate of various iterative 

methods. 

Now define the convergence rate as 

d r 
R = -dr In(ll) = -In 11. (3.3.8-11) 

Suppose that the eigenvalue corresponding to 11 is a 

double root and an eigenvector deficiency occurs, then 
s 

the above discussion is not valid (wac~ress[19661). So 
we assume that G has only one double root equal to 11. By 

using the similarity transformation of G, we obtain its 

Jordan canonical form, 

-1 
.M = P MP 

where M may be written as 

M 

r ~ ~: 1 
------1------------

1 1 1.3 I. l A, J 
Premultiplying (3.3.8-5) by p-1, we obtain 

By letting 

1;lr) = p-1e lr ) 

we can write (3.3.8-13) as 

113 

(3.3.8-12) 

(3.3.8-13) 

(3.3.8-14) 

(3.3.8-15) 



The initial vector ~ (0) may be expressed as 

~(O) (3.3.8-16) 

where the Vj' s with j '" 2 are normalized eigenvectors of 

M and v2 is the auxiliary vector. Since M is the Jordan 

canonical form of M,. " '-,_. . each of the Vj including 

for j = 2, is a unit vector. 

Hence by combining (3.3.8-15) and (3.3.8-16), we obtain 

~(r) = 

Now consider the terms in (3.3.8-17). The last term 

approaches zero faster than the first two terms. The 

first term in the parentheses occurs due to the 

eigenvector deficiency and is the dominant term as r 

approaches infinity. Thus we have the limit, 

(3.3.8-18) 

as r increases. We. note that r~r-l is an increasing 

function until r approaches -l/ln~, ~hen it then tends 

to decrease as r increases further. Thus the decay rate 
of r~r-l may be defined by 

r-l d r-l (1 + 1 11) R ( r~ ) == - dr ln (r~ ) = - -;;- n..- . (3.3.8-19) 

Hence we see that as r becomes larger, the decay rate 

approaches (3.3.8-11). 
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3.3 . 9 'l'HE OP'l'IMUM SOR PARAME'l'ER 

vie shall now restrict the discussion on the SOR 

iterative method. Consider the SOR iterative method 

(3.3.7-18). It is not only restricted to the finite 

difference equation for the elliptic differential 

equation. A sufficient condition for (3.3.7-18) to be 

convergent is that M is positive definite (see 

Varga[1962], pg.77). This condition is useful if the SOR 

method is applied to the finite element method (see 

Nakamura[1977], chapter 7). However, even when M is not 

symmetric nor positive definite , the SOR method 

is convergent provided all the diagonal elements of M 

are positive and M is irreducibly diagonally dominant 

(see Nakamura[1977], section 8.3). 

In the remaining parts of this section, we shall study 

the eigenvector~and-eigenvalues relationship of the SOR 

iteration matrix and then derive the optimum SOR 
parameter roopt • 

From the SOR method (3.3.7-18), we have 

Loo = (D - roLl -1 [rou + (1 - ro) D] (3.3.9-1) 

-1 
goo = (D - roLl ros. (3.3.9-2) 

Let ~j be the eigenvectors of Loo and Yj the corresponding 

eigenvalues, then we have 

(3.3.9-3) 

Assume that the matrix M is consistently ordered, and 

partitioned into the form (3.3.7-8). 
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Let 

r
D1 

D I 

l 
r~l 0 

L2 

L I 
I 
l 
f' U1 

0 

U = I 

l 
where Det , Let and 

I 

D2 

U2 

o 

.J 

l 
.J 

(3.3.9-4) 

(3.3.9-5) 

(3.3.9-6) 

submatrices and 0 are 

null submatrices. In the case of a consistently ordered 

point scheme, D is a block diagonal matrix consisting of 
strictly diagonal submatrices Dot; submatrices of the 

lower block triangular matrix L are all null matrices 
except Lot, which are not square matrices; U is an upper 

block triangular matrix with ftcn-"~I submatrices Uot and 

U = LT. 

scheme, 
In 
Dot, 

the case of 
Lot and Uot are 

a consistently ordered line 
all square submatrices; Du is 

tridiagonal, and Lu and Uu are diagonal matrices. 

Therefore (3.3.7-18) can be written in terms of the 
submatrices Du, Uu and Let as 
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(r+l) (r+l) 
Daua - roL"u"_l 

(3.3.9-7) 

where (3.3.7-18) is premultiplied by (D - roL). 

Similarly, (3.3.9-3) can be written in the form 

(3.3.9-8) 

where 'llja is the a th 
block subvector of 'llj. 

Now define the eigenvectors ~j of the Jacobi iteration 

matrix GB by 

(3.3.9-9) 

where A. j are the corresponding eigenvalues. These 

eigenvalues are such that 

(3.3.9-10) 

The eigenvectors 'llj of the SOR iterative method are 

related to the eigenvectors ~j of the Jacobi iterative 

method by 

(3.3.9-11) 

Substitute (3.3.9-11) into (3.3.9-8), we obtain 

(3.3.9-12) 

Divide throughout by and simplify, (3.3.9-12) 

becomes 

(3.3.9-13) 
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Since we may express the Jacobi iteration matrix GB in 

terms of the submatrices Da, La and Ua as 

(3.3.9-14) 

and (3.3.9-9) in the form 

(3.3.9-15) 

where th 
is the IX subvector of <l'j' therefore by 

applying (3.3.9-15) to the right-hand side of (3.3.9-

13), we obtain 

(3.3.9-16) 

Thus by equating coefficients of both the left and 

right-hand sides of (3.3.9-16) we have 

(3.3.9-17) 

Hence 'Yj is the root of (3.3.9-17) and (3.3.9-11) is 

proved. 

Now the eigenvalues 'Yj of the SOR iterative matrix are 
1/2 

obtained by solving (3.3.9-17) for 'Yj , 

• 2 

1/2 OlA j [(OlAj) ] 1/2 
'Yj = 2 ± 2 - 00 + 1 (3.3.9-18) 

By squaring both sides, (3.3.9-18) becomes 

(OlAS 
2 - 00 + 1 ± 00 1 Aj 1 ( )

2 
OlAj 1/2 

[2 -00+1] (3.3.9-19) 

We have for the Jacobi iteration matrix; 1 Aj 1 and -I Aj 1 
are both eigenvalues. Therefore each yields an 
identical pair of 'Yj's. 
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± 
Now Yj become complex if 

2 4(0)-1) 
Aj < (3.3.9-20) 

and this results in 

I Aj I = F = 0> - 1, (3.3.9-21) 

which is a constant. 

Thus (3.3.9-21) states that for all Aj satisfying 

(3.3.9-20), the corresponding 

circumference of a circle of radius 

Yj'S 
0> - 1. 

lie on the 

For those Aj 

not satisfying (3.3.9-20), Y; is greater than 0> - 1 and yj 

is less than 0> - 1. The distribution of the SOR 

eigenvalues are illustrated in Figure(3.3.9), + 
where Yj 

-and Yj are assumed to correspond to Aj. Notice that the 

positions of the SOR eigenvalues change as 0> is changed. 

Imaginary axis 

"I; 'Y~ 
--------4-------~~~--~----~------~----~Real axis 

1 

Figure(3.3.9): Distribution of SOR eigenvalues 

As 0> is gradually increased, the radius of the circle is 

increased; Y; and Y; meet at Y = 0> - 1 and then split into 
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two complex eigenvalues on the circle. If co is further 

increased, 'Y: is decreased and 'Y~ increased until 'Y~ and 

-
'V meet at co - 1, when co satisfies the relationship 
'I· 

(3.3.9-22) and (3.3.9-23), 

0, (3.3.9-22) 

and 

+ -
'Yl = 'Yl = co - 1, (3.3.9-23) 

where ~ (GB) = Al is the spectral radius of the Jacobi 

iteration matrix GB. The minimum spectral radius is 

attained when (3.3.9-22) is satisfied, thus giving the 
optimum SOR relaxation factor COopt as 

2 
(3.3.9-24) 

1 + --J1 

where we have chosen the smaller root of (3.3.9-22). 

Hence the minimum spectral radius of the SOR method is 

given by 

(3.3.9-25) 

Thus if a sufficiently large number of iteration is 
allowed, it can be shown that the use of COo~ results in 

the fastest convergence. However, in pract ice, the 

iterations are stopped when a certain criterion is met 

or a prescribed limit of iteration count is attained. It 
must be recognized that when co = COo pt is used, at least 

one eigenvector 

eigenvalue equal 

decay is governed 

deficiency occurs with the double 

to ~ as given by (3.3.9-23). The error 

by r~r-l instead of ~r as discussed in 

Section 3.3.8. So by restricting the number of 

iterations, the effect of eigenvector deficiency is a 
serious drawback with CO opt • In fact, if the maximum 

iteration count is restricted, an co slightly larger than 
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mo~ should result in a faster convergence even though 

the spectral radius is larger. 

In chapter 6 we shall study the eigenvectors and 

eigenvalues relationship for the SOR iterative method 

applied to a periodic problem and show that the standard 

SOR parameter is not applicable for this type of 

problem. Instead we shall derive the SOR parameter for 

such a problem. 

121 



CHAPTER 4 
NUMERICAL SOLUTION OF 
PROBLEMS INVOLVING ODES. 
BY USING THE GM SINGLE 
STEP METHODS 

4.1 XNTRODUCTXON 
Suppose that the solution of the initial value problem, 

y(1) = f(x,y), y(xo) = Yo, (4.1-1) 

is approximated by an explicit single step method of the 

form, 

(4.1-2) 

where Yn+1 approximates y (xn + h) and let Cl> be the 

increment function of the method. 

The general explicit s-stage RK method, which is in fact 

a special case of (4.1-2) may be defined as 

with 

yn+1 = Yn + hCll(x,y;h), 

s 
Cl>(x,y;h) = I wik1 

1=1 
k1 = f (x, y) 

r-1 
kr = f(x + crh,y + hI arik1) 

1=1 I 

r-1 
c r = L a'i1 ' for r 

1=1 
2,3, ... , s. 

(4.1-3a) 

(4.1-3b) 

(4.1-3c) 

We observe that the s-stage RK method involves s 

function evaluations per step. Each of the functions 

kr(x,y;h), r=1,2, ... ,s, may be interpreted as an 

approximation to the derivative y(l) (x), and the 

increment function Cl> (x, y; h) as a weighted average of 



these approximations. Note that consistency constrains 
s 

the conditions to :E wi=l. By choosing values for the 
i-1 

constants ad' wi' c r such that the expansion of the 

function <lI(x,y;h) defined by (4.l-3b) in powers of h 

differs from the truncated Taylor series expansion for 
<lI(x,y;h) only in the pth and higher powers of h, then 

the method clearly has order y-l. We have assumed that 

y(x) has sufficient continuous derivatives of at least 

order p on the closed interval [a,b]. 

Similarly, in the light of the discussion above, we may 
now define the s-stage RK-GM method by Yn+1 as given in 

(4.1-3a), kri r=1,2, ... ,s as given in (4.1-3b), c r ' r= 

2,3, ... ,s as given in (4.1-3c) but the increment 
function <lI(x,y;h) is defined by 

<lI(x,y;h) = f wl,f..Jkikj , 
i,j~l 

where wi is now replaced by Wi,j' 

(4.1-3d) 

In the following sections we shall derive the GM single 

step methods which correspond to (4.1-2) and then the 3-

stage third - order and 4-stage fourth - order RK-GM 

methods. As a further extension to the latter case, we 

shall develop a new adaptive strategy based on the 

combination of the new RK-GM method with the classical 

RK method. Finally we show how the RK-GM methods may be 

extended to systems of ODEs. 

4.2 DERIVATION OF COMPOSITE SINGLE STEP GM 

METHODS 

Recall the initial-value problem given in (4.1-1) of the 

first order ODE 

(1) 
Y = f (x, y) , y (xo) = Yo' 

Lambert [1973] defines the class of linear single step 

methods of order one as 
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(4.2-1) 

This method has the truncation error of (in terms of a) 

(a _ -21)h2 Yn(2) + (9 1) 3 (3) Tn+1 = 2" -"3 h Yn+l· (4.2-2) 

This error is smallest when a=t and hence the method is 

of order 2. It is A-stable if and only if a ~ t and the 
-1 3 (3) w4-9.~,.· 

truncation error is 12 h Yn+1Z The method given by (4.2-1) 

is also known as the a-method. 

We define the general nonlinear single step GM method or 

the composite single step GM method by 

(4.2-3) 

where the constant coefficients (Xii i = 1,2,3 are to be 

determined depending on the order of the method. We 

shall now derive the explicit form of (4.2-3) by 

determining the values of the (Xi, i = 1,2,3. 

First we introduce the notation 

f f(x,y), etc. 

By using the Taylor series expansion of fn+l about xn and 

with the help of the REDUCE program for symbolic 

manipulation, we obtain 

2 3 + h4 f(4) (1) + .!:L f (2) + .!:L f (3) + 0 (h5
) (4.2-4) fn+l = fn + hfn 2! n 3! n 4! n 

and 

(4.2-5) 

where 
2 3 

.!:Lf (3) + .!:Lf (4) 1 
3! n 4! n • (4.2-6) 
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On substituting (4.2-6) into (4.2-5) and neglecting 

O(h4
) approximations, we obtain 

'" f -../1 + F • n 

On expanding -../1 + F , we have 

'" f {1 + .lL [f(1) + lLf (2) + 
n 2fn n 2! n 

(1/2) (-1/2) (lL) 2 [fell 
+ 2 f n + 

n 

+ (1/2) (-1~2) (-3/2) (~ ) 3 [f~l) 
n 

2 .!Lf (3) ] 

3! n 

Therefore 

hf(l) f(2) (1) 

'" fn { 1 
n 2 n (~) 2] -../1 + F + 2fn 

+ .!L [2-
8 fn fn 

f (3) 
f(1)f(2) (1) 

3 n n 
(~) 3] + ~8 [4 

n 
} 

fn 
- 6 

f2 + 3 
fn 

n 

(4.2-7) 

(4.2-8) 

On substituting (4.2-4) and (4.2-8) into (4.2-3), we 

obtain 

(f~l) ) 3 

+ 

(f~1»)2 
!X3) 3 { (-1"6 h 2--

f
-- + 2h--- - h----} 

fn fn n 
(4.2-9) 

But by expanding Yn+l about xn' we have 

1 2 (1) 1 3 (2) 1 4 (3) 
Yn+l '" Yn + hfn + 2"h fn +"6 h fn + 24 h fn (4.2-10) 
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Now by equating the coefficients of like terms in (4.2-

9) and (4.2-10) we arrive at the following consistency 

conditions : 

= 1 

= 1 
2 

for the method to be of order 2 accurate. 

(4.2-11a) 

(4.2-11b) 

There are now two equations in three unknowns. Thus 

there is one arbitrary parameter to choose. Therefore 

the parameters of the method are obtained as 

} (4.2-12) 

and the resulting method may be written in the form 

yn+l (4.2-13) 

where a is an arbitrary constant. 

We note that the Trapezoidal method can be deduced from 

(4.2-13) by letting a=t; that is 

(4.2-14) 

If a=O we obtain the original GM method as 

(4.2-15) 

The method defined in (4.2-13) has the truncation error 

given by 

(4.2-16) 

The Taylor series expansion of y(xn+1 ) about xn is given 

by 

2 

Yn + hfn + !Lf(l) + 
2t n 
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We have from (4.2-9), (4.2-11a), (4.2-11b) and (4.2-12), 

Yn+l 

(4.2-18) 

Therefore, by subtracting (4.2-18) from (4.2-17) and 

assuming that the method is of order 2 accurate, we 

obtain the truncation error as 

GM 
Tn+l (4.2-19) 

Now write 2a = a, ~ (fn + fn+l) = Fn and ...Jfn + fn+l = Gn in 

(4.2-13), then (4.2-13) becomes 

(4.2-20) 

By comparing the forms of (4.2-1) and (4.2-20), the 

composite GM method given by (4.2-20) is non1inear since 

Gn is non1inear. Furthermore, (4.2-20) contains as 

special cases, the Trapezoida1 (a = 1) and the original 

GM (a = 0) methods. 

4.2.1 ACCURACY AND STABILITY ANALYSIS OF 

EQUATION (4.2-20) 

To recapitulate, the truncation error of (4.2-20) is 

given as 

GM 
Tn+l (4.2.1-1) 

Note that when a = 1, T~~l = - ~~ f In
2

), which is the 

truncation error of the Trapezoida1 method. 
ff!2l n n 

If it is 

possible to make a= 1 _ 2 
3 

then the truncation 

GM 
error Tn+l given in (4.2.1-1) will vanish. 
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Now assume that 

(4.2.1-2) 

Next we write 

(1) 

Yn = fn' 

y~2) = f~l), 

, 
( 

(2) (2) ) 
Yn+l - Yn 

(3) 

Yn = h 
, 

fn+2 - fn+l 
h = h 

Then 

9 , 

1 
= 

3 

provided 

= 1, 

or 

i.e. (4.2.1-3) 

Now if 9= t, (4.2-20) becomes 

(4.2.1-4) 

1 
By substituting Fn = 2(f n + fn+l) and Gn , we 

obtain 

(4.2.1-5) 
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4.2.2 NUMERICAL RESULTS FROM USING (4.2.1-5) 
(1) -x Problem 1 y = e 

Initial condition Xo = 0, y (0) = 1. 
-x The exact solution is y = -e + 2. 

xn exact solution computed solution 

.10 .10951625819640E+01 GM .10951625852673E+01 
TR .10952418709018E+01 

.20 . 11812692469220E+01 GM .11812692532142E+01 
TR .11814202794575E+01 

.30 . 12591817793183E+01 GM .12591817883150E+01 
TR .12593977281455E+01 

.40 .13296799539644E+01 GM .13296799654082E+01 
TR .13299546414813E+01 

.50 .13934693402874E+01 GM .13934693539454E+01 
TR .13937971767688E+01 

.60 .14511883639060E+01 GM .14511883795676E+01 
TR .14515642915591E+01 

.70 .15034146962086E+01 GM .15034147136831E+01 
TR .15038341385534E+01 

.80 .15506710358828E+01 GM .15506710549976E+01 
TR .15511298519488E+01 

.90 .15934303402594E+01 GM .15934303608585E+01 
TR .15939247831417E+01 

absolute error 

.30162400221854E-08 

.72399239220941E-04 

.53266419441053E-08 
.12785614784293E-03 

.71448695996741E-08 
.17149932658229E-03 

.86064428726028E-08 
.20658167867241E-03 

.98014821757484E-08 
.23526637574057E-03 

.10792259460366E-07 
.25904814459039E-03 

.11623190800500E-07 

.27899311203584E-03 

.12326813608665E-07 
.29588226993488E-03 

.12927511672595E-07 
.31030090854644E-03 

1.0 .16321205588286E+01 GM .16321205807707E+01 .13443921036412E-07 
TR .16326472381873E+01 .32269635713130E-03 

================================================================== 

euclidean norm of the error :. 317811E-07 (GM) 
.762847E-03(TR) 

================================================================== 

Table (4.2.2a) 
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Problem 2 (1) 
y 

Initial condition Xo = 0, y (0) = 1. 

The exact solution is y = x 3 + 1. 

xn exact solution computed solution absolute error 
.10 .10010000000000E+01 GM .10005000000000E+01 .49950049950044E-03 

TR .10015000000000E+01 .49950049950067E-03 

.20 .10080000000000E+01 GM .10070000000000E+01 .99206349206360E-03 
TR .10090000000000E+01 .99206349206360E-03 

.30 .10270000000000E+01 GM .10255000000000E+01 .14605647517040E-02 
TR .10285000000000E+01 .14605647517043E-02 

.40 .10640000000000E+01 GM .10620000000000E+01 .18796992481205E-02 
TR .10660000000000E+01 .18796992481205E-02 

.50 .11250000000000E+01 GM .11225000000000E+01 .22222222222224E-02 
TR .11275000000000E+01 .22222222222226E-02 

.60 .12160000000000E+01 GM .12130000000000E+01 .24671052631580E-02 
TR .12190000000000E+01 .24671052631582E-02 

.70 .13430000000000E+01 GM .13395000000000E+01 .26061057334327E-02 
TR .13465000000000E+01 .26061057334328E-02 

.80 .15120000000000E+01 GM .15080000000000E+01 .26455026455026E-02 
TR .15160000000000E+01 .26455026455028E-02 

.90 .17290000000000E+Ol GM .17245000000000E+Ol .26026604973972E-02 
TR .17335000000000E+Ol .26026604973977E-02 

1.0 .20000000000000E+01 GM .19950000000000E+Ol .24999999999998E-02 
TR .20050000000000E+Ol .25000000000004E-02 

=======================================================-========== 

euclidean norm of the error :. 668875E-02 (GM) 
.668875E-02(TR) 

======================================================-=========== 

Table (4.2.2b) 

Notation 

GM denotes the method (4.2.1-5) 

TR denotes the Trapezoidal method (4.2-14). 

We note that in problem 1, 

(1) -x -h 
Yn+l en, 

(1) -x 
Yn e n, 

and 

(1) -x -2h 
Yn+2 = en, 
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therefore 

( 
(1» 2 -2x -2h 

Yn+l = en, 

(1) (1) 

Yn Yn +2' 

which is the condition to be satisfied for method 

(4.2.1-5) to be competitive. 

In problem 2, we have 

(1) 3 ( + h) 2. Yn+1 = Xn 

Therefore 

( (1» 2 = 9 ( + h) 4 Yn+1 Xn • 

However, 

and 

(1) 2 
Yn +2 = 3 (xn + 2h) . 

Therefore 

(1) (1) 2 2 
Yn Yn+2 = 9xn (Xn + 2h) . 

Hence for this problem, the condition (4.2.1-3) is 

satisfied only for h « 1. 

We observe that in both problems, the GM method (4.2.1-5) 

gives better results. This is because the condition 

(4.2.1-3) is satisfied by the problems; especially 

problem 1. Thus we have shown that the method (4.2.1-5) 

is favourable for problems having the properties defined 

by (4.2.1-3). 
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4.2.3 S'rABILI'rY ANALYSIS OF (4.2-20) 
Consider the test equation y(l) = AY and the application 

of the composite GM method (4.2-20) to this problem. The 

following difference equation will be obtained. 

9 
Yn+l = Yn + hA [2(Yn + Yn+1) + (1 -9)..jYnYn+l ]. (4.2.3-1) 

Note that (4.2.3-1) is dependent on 9. If 9 = 1, we have 

the Trapezoidal rule and (4.2.3-1) reduces to 

hA 
Yn+1 = Yn + 2 [Yn + Yn+l] . 

Write Yn+l = Qn, we obtain 
Yn 

hA 
Qn = 1 + 2" [1 + Qn] . 

On solving for Qn in terms of h and A, we have 

Qn 

hA 
1 + 2 

hA 
1 - 2 

Absolute stability requires that 

hA 
1 + 2 

hA 
1 --

2 

< 1. 

Next we consider 9=0. This reduces (4.2.3-1) to 

" Yn+l , By wr~t~ng -- = Qn, we obta~n 
Yn 

Qn = 1 + hA....ro:: . 

2 
Substitute Qn =Pn, we obtain a quadratic in Pn, 
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(4.2.3-2) 

(4.2.3-3) 

(4.2.3-4) 

(4.2.3-5) 

(4.2.3-6) 

(4.2.3-7) 



(4 .. 2.3-8) 

h~v;~!?i two roots given by 

hA, ± ..J (hA,) 2 + 4 
2 

,i=1,2. (4.2.3-9) 

The conditions I Pin I < 1, i = 1,2, imply that 

We shall now consider the cases corresponding to the 

root 

+ 4 
2 (4.2.3-10) 

There are two cases to be considered. Firstly hA, is real 

and secondly hA, is purely imaginary. 

Let hA, = z, where z can be real or imaginary. 

Case(l) hA, is real.. 

Thus we obtain the function in z as 

f (z) = z + " z2 + 4 • (4.2.3-11) 

We observe that 

f (z) = z + " (2 +z) 2 - 4z 

and 

If (z) I I z + " (2+z) 2 - 4z I. 
Let z = -x for z < 0 and x > O. Then 

I f (-x) I 

~ I -x + --J (0. .. "-) ... 

~ I-x + 2 + xl. 
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Hence 

If(z)1 < 2 for all z < o. 

Similarly, we obtain 

If(z) I > 2 for all z > o. 

Case(2) z is purely imaginary. 

Let z = ix where x is real. Then we obtain 

and 

f(z) = ix + " (ix)2 + 4 

If(z)l= I ix + " 4 

2. 

2 
- X 

(4.2.3-12) 

(4.2.3-13) 

Hence the method is absolutely stable for hA lying on 

the left half of the complex plane. 

+ 4 
By considering the root P2n = 2 and follow 

a similar discussion above, we can easily show that the 

method is absolutely stable for hA lying on the right 

half of the complex plane. 

Thus the imaginary axis of the complex plane is the 

boundary for the region of absolute stability of the 

method. 

2 Next, we consider. the stability of (4.2.3-1) when 9="3. 

This reduces (4.2.3-1) to 

hA [ 
Yn+l = Yn + 3 Yn+l + Yn + "';Yn+lYn ] . (4.2.3-14) 

Yn+l __ Q2 On writing Yn n' 
we obtain after some rearrangement, 

hA hA hA 
Q~(l - 3) - 30n - (1 + 3) = o. (4.2.3-15) 
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The roots of (4.2.3-15), for i = 1,2, are given as 

hA ~ I (hA)2 
3"± 'J4 -3-

Qin = -"---2-( l--'--_--ch:-:A;-)--"---

3 

(4.2.3-16) 

The conditions IQinl < 1, for i = 1,2, imply that 

hA ± 
3 

1 _ hA 
3 

(hA) 2 

3 

We shall now consider the root 

< 2. (4.2.3-17) 

(4.2.3-18) 

As before, we need to consider two cases, firstly if hA 

is real and secondly if hA is purely imaginary. 

Let hA=Z, where Z can be real or imaginary. 

Case (1) z is real. 

Thus we have a function in Z defined as 

+ -V 4 

2 
~ Z 

3 - 3 
f(z) = z 

1 - 3 

Now since z2 > 0 for all z real, we notice that 

If(z) I < 

z 
2 + 3 

z 
1 - 3 

(4.2.3-19) 

(4.2.3-20) 

Let hA = -x for hA < 0 and x > O. Then from (4.2.3-20) 

I f (-x) I < 

x 
2 - 3 

< 2. 
x (4.2.3-21) 

1 + 3 
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Thus 

If(z)I<2 for all z <: O. (4.2.3-22) 

Similarly, 

If(z)I>2 for all z > O. (4.2.3-23) 

Case(2) z is purel.y imaginary. 

Let z = ix where x is real. Therefore from (4.2.3-18), we 

obtain 

f(z) 

ix x 2 1/2 
3 + {3" + 4) 

ix (4.2.3-24) 
1 --3 

By taking the modulus on both sides, we have 

I f (z) I 
ix x 2 

1/2 
3 + {3" + 4} 

ix 
1 --

3 

= 2. 

A similar conclusion as in the case of 6=0 follows. That 

is, the imaginary axis of the complex plane is the 

boundary for the region of absolute stability of the 
method. The method is absolutely stable for hA lying on 

the left half and right half of the complex plane 

depending on which root is being taken as given by 

(4.2.3-26) . 

4.3 DERIVATION OF COMPOSITE RK-GM METHODS 

At the beginning of this·· chapter we have defined the s­

stage RK-GM method as that given by (4.1-3a), (4.1-3b), 

(4.1-3c) and (4.1-3d). From this we can derive the RK-GM 

methods of various orders depending on the accuracy of 
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the Taylor series being used in the evaluation of the 

various terms involved. 

We note that as in the case of the standard RK method, 

the first-order formula involves only a single function 

evaluation. Thus, the first. order RK-GM method is 

identical to the Euler method, i.e. 

Yn+l = Yn + hkl } (4.3-1) 

4 . 3 . 1 SECOND - ORDER lU(-GM METHOD 

The second-order two-stage RK method is given by 

(4.3.1-1) 

where 

} (4.3.1-2) 

Typical parameters for (4.3.1-1) and (4.3.1-2) are 

Cl 1, a2,l = 1, 

wl = w2 = 1. 

The corresponding RK-GM method is of the form 

(4.3.1-3) 

with kl and k2 given by (4.3.1-2). The coefficients Cl' 

a 2,lf and wi' i = 1,2,3 are to be determined so that 

(4.3.1-3) will have the highest accuracy possible. 

By using the Taylor series expansion of k2 about (xn'Yn), 

we obtain 
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k2 = f + clhfx + a;llhffy 

1 2 [ 2 + "2 h Cl fxx + 2Cla;:lffxy 

f {1 + h [Cl ~x + a2,l fy 

1 ( 2 fxx 2 )]} + "2 h Cl f + 2Cla2,lfxy + a 2,1 ffyy + .••. (4.3.1-4) 

where for 
fx=fx (x, y) , 

fyy=f yy (x, y) 

Now 

simplicity, 
fy=f y (x, y) , 

for all (x,y) 

we have denoted f=f(x,y), 
fxx=f xx (x, y), fxy=f xy (x, y) and 

in the domain of integration. 

k f 2 { 1 [!z. f 1 ( 2 fxx 
1 k2 = + h Cl f + a2,l y + "2 h Cl f 

+ 2Cla2,lfxy + a2/ffyy) ] }+ .••. (4.3.1-5) 

By letting 

(4.3.1-6) 

we obtain 

(4.3.1-7) 

Therefore after simplifying and rearranging (4.3.1-7), 

we have 

- 1. (4.3.1-8) 

Now reconsider the RK-GM method (4.3.1-3) and after 

substituting (4.3.1-7), we obtain 

(4.3.1-9) 

Note that by substituting (4.3.1-6) into (4.3.1-4), we 

have 

(4.3.1-10) 
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From (4.3.1-7), we obtain 

(4.3.1-11) 

or 

(4.3.1-12) 

Hence on substituting (4.3.1-4) and (4.3.1-12) into 

(4.3.1-3) and after some simplification and 

rearrangement we arrive at 

Now the Taylor series expansion of Y (xn+l) 
given by 

Since 

then 

Yn+l 

(1) h 2 
(2) 3 

yn+l = Yn + hYn +"2 Yn + 0 (h ) . 

(1) 
Y = f(x,y), 

'" Yn + hf + 

h
3 

+ 6" [fxx 
2 2 

+ 2ffxy + fxfy + f fyy + ffy 1 • 

(4.3.1-13) 

about Xn is 

(4.3.1-14) 

(4.3.1-15) 

(4.3.1-16) 

By equating (4.3.1-13) and (4.3.1-16) we obtain, 

coefficient of hf : Wl + W2 + W3 = 1 (4.3.1-17a) 

coefficient of h 2f (W2 
1 1 (4.3.1-17b) : + 2" W3) Cl = -x 2 

coefficient of h 2ff (W2 
1 1 (4.3.1-17c) y + 2" W3) a2,l 2 

Assume w2 *W3 * 0, then we obtain 
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(4.3.1-17d) 

for an arbitrary constant ~. 

By substituting 
1 . 

Cl = j3 l.nto (4.3.1-17b) and rearranging 

we obtain 

~. (4.3.1-17e) 

Now solve the simultaneous equations (4.3.1-17a) and 

(4.3.1-17e) for wl, W2 and W3, to obtain 

Wl = 1 - a 
W2 = ~ - a 
W3 2a - ~ 

} 
for some arbitrary constants a and ~. 

(4.3.1-18) 

Thus, the general second-order 2-stage RK-GM method for 
some arbitrary parameters (X and ~ is given by 

Yn+l = Yn + h[ (1- a)kl + (~- (X)k2 + (2a - ~).yklk2 ], (4.3.1-19a) 

where 

and 

kl = f (x,y) 

1 p= -
~ 

} (4.3.1-19b) 

As a and ~ are arbitrary constants, there are infinitely 

many formulae that can be derived from (4.3.1-19a) and 
(4.3.1-19b). One choice of ~ which tends to involve less 

work is 2. This results in the RK-GM formula of the form 

Yn+l = Y n + h [ (1 - a) kl + (2 - (X) k2 + 2 (a - 1) .ykl k2 ), (4.3 .1-20a) 

where 
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} (4.3.1-20b) 

Now (4.3.1-20a) can be written in a more compact form to 

give 

Yn+l = Yn (4.3.1-20c) 

Thus, if a=1, we obtain the formula 

Yn+l = Yn + hk2, (4.3.1-20d) 

where k2 is given in (4.3.1-20b) above. 

Another reasonable choice of ~ is to set ~=1. Hence from 

(4.3.1-19a) and (4.3.1-19b) we obtain another form of 

the RK-GM formula, which is given by 

Yn+l = Yn + h [(1 -a) (k1 + k2) + (2a - 1)...Jk1 k2 ], (4.3.1-20e) 

where 

} (4.3.1-20f) 
k2 f (xn + h, Yn + hk1 ) • 

Note that the classical RK method of order 2 can be 

deduced from (4.3.1-20e) by setting a=t to obtain the 

formula 

Yn+l (4.3.1-20g) 

If we set a= 1, we shall obtain the original RK-GM 

method of order 2 given as 

Yn+l = Yn + h...Jk1k 2 . (4.3.1-20h) 

with kl and k2 as defined in (4.3.1-20f) above. 
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Table (4.3.1) below lists some of the formulae that can 

be derived from (4.3.1-19a) and (4.3.1-19b) for various 

values of a and ~. 

0 Yn+1 = Yn + h [C..Jk1 - -ik2 ) 2 + ...jk1k2 1 , a = 
k1 = f (xnt Yn) , k2 = f (xn+h, Yn+hk1) . 

~= 1 a = 1 Yn+1 = Yn + h...jk1k2 , 
(4.3.1-20e) (4.3.1-20h) k1 = f (Xn, Yn) , k2 = f (xn+h, Yn+hk1) . 

1 h a = 2' Yn+1 = Yn + - [k1 + k21 , 2 

(4.3.1-20g) k1 = f (xn, Yn) , k2 = f (xn+h, Yn+hkll . 

Yn+l = Yn + h[(-ik1- -ik2 ) 2 + k21 , 

/3 = 2 a = 0 - -
k1 = f (Xn, Yn) , k2 = f (xn+h, Yn+hk1) . 

1 Yn+l = Yn + h[ (-ik1 - -ik2 ) 2 + 2k2 1 , (4.3.1-20a) a = 
2 

- -
k1 = f (xn, Yn) , k2 = f (xn+h, Yn+hk1) . 

h a = 1 Yn+l = Yn + hk2, -
h = 

2 (4.3.1-20d) - -
k1 = f(xn,Yn),k2 = f (xn+h, Yn+hkl) . 

Table(4.3.1) :Two-stage second-order RK-GM formulae. 

4.3.1.1 ERROR ANALYSIS FOR THE SECOND- ORDER 

METHODS 

Consider the second- order RK-GM methods derived in 

section 4.3.1. By using the definition of the local 

truncation error of a method, we therefore obtain the 

local truncation error of the second-order RK-GM methods 

as given by the difference between (4.3.1-16) and 

(4.3.1-13). Thus we have the desired local truncation 

error Tn+l as 

(4.3.1.1-1a) 

We note that given a specific problem, the truncation 

error Tn+1 is dependent on the method used. In other 

words, for a particular function f and its derivatives, 
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Tn+1 is totally dependent on the parameters of the method 

used, namely the wi , i = 1,2,3; Cl and a2,l' 

Now, by using (4.3.1-17d) and (4.3.1-17e), we may 

simplify (4.3.1.1-1a) to obtain 

3 
T(~) = !L { (313-1 - 2) G - 2Ffy}, 

n+l 12 (4.3.1.1-1b) 

where 

F = fx + ffy 

} and 

G = fxx + 2ffxy + 2 f f yy . 
(4.3.1.1-2) 

In section 4.3.1, we have derived two classes of the RK­

GM methods. In this section we shall discuss their 

respective local truncation errors. First, we shall 

consider the local trurication error of (4.3.1-20a) which 

can be deduced from (4.3.1.1-1b) by substituting 13=2 and 

is therefore given by 

(2) h
3

{ } 
Tn+1 = - 24 G + 4Ffy (4.3.1.1-3a) 

Next, if we substitute 13=1 in (4.3.1.1-1b), we shall 

obtain the truncation error of (4.3.1-20b), which is 

given as 

(4.3.1.1-3b) 

We observe that the difference between the two local 

truncation errors is 

or (4.3.1.1-4) 

where G is given in (4.3.1.1-2). 
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Now 't is positive 

positive. Thus Till 
n+l 

provided G = f xx + 2 f f xy + 

is always greater than 

2 f fyy is 
12 I 

T n+l for 

positive values of G. In other words, formula (4.3.1-

20e) will be less accurate than formula (4.3.1-20a) when 

applied to a function f such that G is always positive 

in the interval of integration. 

From (4.3 .1.1-lb), we can deduce the principal error 

function for the general second-order RK-GM method as 

'¥ (x, y) (4.3.1.1-5) 

By following 
Lotkin [1951], 

an argument originally suggested 
we can find a bound for '¥(x,y), if 

by 
we 

assume that the following bounds for f and its partial 
derivatives hold for XE [a,b], yE (- 00,00) : 

I f (x, y) I < Q, 
ai+jf (x, y) 

axiayj 

pi+j 
< jl,i+j~p, Q -

(4.3.1.1-6) 

where P and Q are positive constants, and p is the order 

of the method. In this case, we have p = 2. Hence using 

(4.3.1.1-6), we obtain the following: 

I fy I < P 

IFI I fx + ffy I < 2PQ (4.3.1.1-7) 

By substituting (4.3.1.1-7) into (4.3.1.1-5), we obtain 

(4.3.1.1-8) 

and the bound for the principal local truncation error 

as 

1'¥(x,y)h3 1 < ~[1 + 13/3-1 - 21lhVQ. (4.3.1.1-9) 
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However, Henrici[1962], shows that the bound for the 

principal local truncation error is also a bound for the 
whole local truncation error Tn +1 , even though the 

assumptions on the bounds for f and its partial 

derivatives are different from those of (4.3.1.1-6). 

This is a consequence of the fact that the RK method is 

a single-step explicit method (Lambert[1973]). Thus we 

may write instead of (4.3.1.1-9), 

(4.3.1.1-10) 

Hence the bounds for the methods for P=1 and P=2 are 

respectively obtained from (4.3.1.1-10) as. 

(4.3.1.1-10a) 

and 

(4.3.1.1-10b) 

Alternatively, the bound for the local truncation error 

can be found by the well known approach of Bieberbach; 

where, in the neighbourhood of 

I x - xo I < A, I y - yo I < B 

we have 

I f (x, y) I < Q, 
ai+jf (x, y) 

axiayj 
N < , i+j!'> 4 

Qj-l 

I x - Xo I N < 1 and AQ < B. 

(4.3.1.1-11) 

Thus the bound for the local truncation error of 

(4.3.1.-19a) is given by 

h 3 

I Tn+l I <"3 NQ(1 + N) (4.3.1.1-12) 

However, Lotkin showed numerically that the approach 

adopted in Lotkin[1951] gave a sharper bound than that 

adopted by 6il!.b';"'I)~c.\;. -( t..",,.,!, ... t. t. ,cn.n). 
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4 . 3 . 1 .2 NUMERICAL RESULTS 

Problem: y(1) (x) = e-x • 

Initial condition Xo = 0, Yo = 1. 
-x Exact solution y (x) = -e + 2. 

The three formulae used are as follows: 

A) (a = -1, /3 = ;0) Yn+1 = Yn 
h 

+ 2O{ 40k1 + 

B) (a = 0, /3 = 1 (RK Method» Yn+1 = Yn + 

C) (a = 1, /3 = 1 (Original GM» Yn+1 = Yn 

23k2 - 43 ..Jk1k2 } 

h 
2"{k1 + k2} 

+ ..Jk1 k2 

In Table (4.3.1.2a) we list the errors at the end point 

of the computation for each formula derived from (4.3.1-

19a). Table (4.3.1.2b) compares the results of using the 

second-order two-stage RK-GM method(A), the classical 

second-order two-stage RK method(B) and the original 

second-order two-stage RK-GM method (C) . For the given 

problem, the RK-GM method (A) has the least error as 

compared with the other two methods despite it being 

computationally expensive to use as we can see from its 

form. However, as the results show, the RK-GM method(A) 

may be useful if we require good accuracy by using only 

a low-order method. 

Parameters of 
formula (4.3.l-l9a Results at xn = 1.00 

Numerical solution Error at xn 
a ~ at xn I Y (xn) - Yn I en = 

0 1 .1573158E+01 .5896286E-01 
0 2 .1572094E+01 .6002608E-01 

1/2 1 .1572443E+01 .5967767E-01 

1/2 2 . 1571911E+01 .6020928E-01 
1 1 . 1571728E+01 .6039248E-01 
1 2 . 1571728E+01 .6039248E-01 

-1 1 .1574587E+01 .5753324E-01 
-1 3/4 .1576344E+01 . 5577667E-01 
-1 1/2 .1580607E+01 .5151320E-01 
-1 1/4 .1598490E+01 .3363025E-01 
-1 3/20 .163l026E+Ol .1094983E-02 
-1 1/8 .1649765E+01 .1764405E-01 

Table(4.3.1.2a): Numerical results from two-stage second­

order RK-GM Formulae 
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Xn Exact Solution Numerical Solution Error 

.10 .1095163E+01 .1094998E+Ol(A) .1648442E-03 
.1086286E+01(B) .8876563E-02 
.1086071E+Ol (C) .9091785E-02 

.20 .1181269E+01 .1180955E+Ol (A) .3l40015E-03 
.1164361E+Ol (B) .1690841E-Ol 
.1163951E+01 (C) .l731837E-Ol 

.30 .1259182E+01 .l258733E+01(A) .4489645E-03 
.1235006E+01(B) .24l7592E-Ol 
.1234420E+Ol(C) .2476210E-Ol 

.40 .1329680E+01 .1329109E+Ol(A) .5710842E-03 
.l298928E+Ol(B) .3075184E-Ol 
.1298l83E+Ol(C) .3l49745E-Ol 

.50 .1393469E+01 • 1392788E+01 (A) .68l5826E-03 
.1356767E+01(B) .3670198E-01 
.1355877E+Ol(C) .3759186E-Ol 

.60 .1451188E+01 .1450407E+01(A) .78l5656E-03 
.l409102E+Ol (B) .4208589E-Ol 
.1408082E+Ol(C) .43l0631E-Ol 

.70 .1503415E+01 .1502543E+Ol(A) .8720341E-03 
.1456457E+Ol(B) .4695745E-01 
.1455319E+Ol(C) .4809598E-Ol 

.80 .1550671E+01 .1549717E+Ol (A) .9538933E-03 
.1499306E+Ol (B) .5136542E-Ol 
.1498060E+01(C) .5261083E-Ol 

.90 .l593430E+Ol .l592402E+Ol (A) .1027963E-02 
.1538076E+Ol(B) .5535392E-Ol 
.1536734E+01(C) .5669603E-Ol 

1.00 .1632121E+01 .1631026E+Ol(A) .1094983E-02 
.1573158E+Ol(B) .5896286E-Ol 
• 1571728E+Ol (C) .6039248E-Ol 

Table(4.3.1.2b) :Results obtained from selected RK-GM 

formulae 

4.3.2 THIRD-ORDER RK-GM METHOD 

The standard third-order RK method for the problem (4.1-1) 

may be given by 

where 

3 

Yn+l = Yn + h L Wiki, 
i=l 

(4.3.2-1) 

(4.3.2-2) 
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A typical set of parameters used for the standard third­

order RK method is 

1 !. Cl = 2' a2,l = 2' 

C2 = 1, a 3,1 = -1, a3,2 = 2, (4.3.2-3) 

1 £ !. wl 6' w2 = 3' w3 = 6 • 

Thus we may write (4.3.2-1) as 

Yn+1 = Yn + ~ [kl + 4k2 + k3] (4.3.2-4) 

The corresponding third-order composite RK-GM method may 

be defined by the formula 

Yn+1 = Yn + h [wl...Jkl k 2 + w2...Jk2k3 + w3...Jk3k l 

+ w4kl + WSk2 + W6k3] . (4.3.2-5) 

where wi' i = 1,2, ... , 6 are to be determined so that the 

method is third-order accurate and the kii i = 1,2,3 are 

as specified in (4.3.2-2) above. 

The Taylor series expansion of Yn+l about xn is given by 

Yn+l h 
(1) h 2 (2) h 3 (3) 4 

= Yn + Yn + 2Yn + GYn + O(h ), (4.3.2-6) 

where 

Y
(l) = f , (2) 

Y = fx + ffy, 

and 

(4) 
Y = fxxx + 3ffxxy (4.3.2-7) 

2 2 + 3f fxyy + 4f fyfyy + fyfxx 
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Now expand k2 and k3 in (4.3.2-2) using the Taylor series 

expansion of a function of two variables and substitute 

the results in (4.3.2-5). Then use the REDUCE program to 

expand and obtain the right-hand side of (4.3.2-5). The 

left-hand side of (4.3.2-5) is given by (4.3.2-6). 

Hence, by equating the corresponding terms of the left­

and right-hand sides of (4.3.2-5), we obtain the 

following results: 

coefficient of hf: 
6 

L Wi = 1, 
i=l 

2 1. [ coefficient of h fx: 2 Cl (Wl + W2 + 2ws) 

+ C2 (W2 + W3 + 2W6)] = ~ 

coefficient 2 1 [a2,l (Wl + 2ws) of h ffy: 
2 + w2 

+ (a3,l + a~2) (W2 + w3 + 2w6) ] 

coefficient of h3fxx: 1 
[ c~ (Wl 

4 + w2 + 2ws) 

+ c~ (W2 + w3 + 2W6)] = ~ 

coefficient of h3ffxy: ~ [cla~l (Wl + w2 + 2ws) 

+ C2 (a3,l + a3,2) (W2 + W3 + 2W6) ] 

coefficient of h3ff~: ~ [a~,l (Wl + W2) - 2a2,la3,lw2 

- 2a2,la3,2 (3W2 + 2W3 + 4W6) 

+ (a3,l + a3,2) 2 (W2 + W3) ] 

coefficient of h
3
f2fyy: ! [a~,l (Wl + W2 + 2ws) 

3 coefficient of h fxfy: 

+ (a3,l + a3,2)2(w2 + W3 + 2W6)] 

--4
1 

[Cla2l (Wl + W2) - cla31w2 , , 

1 =-
2 

= 1 
3 

1 
6 

1 =-
6 

- C2a2,lw2 - cla3,2 (3W2 + 2W3 + 4W6) 

+ C2 (a3,l + a3,2) (W2 + W3)] = ~ 
f2 

coefficient of h
3 

fX: ~ [c~ (Wl + W2) - 2C1C2W2 
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Hence the resulting equations of condition are obtained 

as follows: 

Cl (Wl + W2 + 2wS) + C2 (W2 

a2;t (Wl + W2 + 2wS) + (a3,l + a3,2) (W2 
2 2 

Cl (Wl + W2 + 2ws) + C2 (W2 

6 

L Wl = 1 
1=1 

+ W3 + 2W6) = 1 

+ W3 + 2W6) = 1 

= ~ 
3 

2 
a 2,l (Wl + W2) - 2a2,la3,lW2 - 2a2,la~2 (3W2 + 2W3 + 4W6) 

2 + (a3,1 + a3,2) (W2 + W3) = 
4 
3 

2 2 2 
a 2,l (Wl + W2 + 2ws) + (a3,1 + a~2) (w2 + W3 + 2W6) = 3 

cla2~ (Wl + W2) - cla3,lw2 - C2a2,lW2 

- cla3,2 (3W2 + 2W3 + 4W6) + C2 (a3,1 + a3,2) (W2 + w3) = 
2 
3 

Recall the general s-stage RK method defined by (4.1-

3a) , (4. 1-3b) and (4 .l-3c). We may choose the Cl to 

cover the step interval while the al,j -', be some simple 

(preferably linear) combination of the Cl' .• Now setting 

Cl = a2,l and C2 = a3,l + a3;2 in the preceding set of equations 

reduces those equations to a set of linear equations of 

the form 

Mw = b, (4.3.2-8) 

where 

T (Wl,W2,W3,W4,WS,W6) , w 

b
T 2 4 2 

= (1,1'3'-3'-3,0) 

and 

M = (ml i) , for i, j = 1,2, .•. ,6. 

Hence the system of equations (4.3.2-8) may be solved 

for w in terms of the a:i,j and Cl c'. 

To st,,",pla~ f'lArt"'~,.. the method to be derived and hence 

obtain a method which is computationally competitive, we 
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may choose the ai,j' and Ci 

C2 = 1 and a3,2 = 2. This leads to solving the system of 

equations of the form 

M1W = b, (4.3.2-9) 

where 

1 1 1 1 1 1 
.!. ~ 1 0 1 2 2 2 
1 5 

1 0 1 2 4 4 2 
Ml 1 12 -3 0 0 -8 4 - 4 

1 7 
-3 0 0 -4 - --

4 4 
1 1. 1 0 0 0 4 4 

Using the REDUCE program for algebraic manipulation the 

solutions of (4.3.2-9) are obtained as 

Ws 0;1, W6 = 0;2 

Wl = ~[4 - 90;1 + 120;2] 

w2 = 1[4 - 31ll - 121l2] (4.3.2-10) 6 
1 

2] w3 = '6 [31l1 -
1 

21l2] W4 = 2"[0;1 -

where 0;1 and 112 are some arbitrary constants. 

By letting Wl = W2 = W3 = 0, that is III = ~ and 0;2 =~, we 

obtain the standard RK method of order 3. The general 

composite RK-GM method for the particular choice of the 

ai,i' and Ci' , is obtained as 

yn+1 = Yn + h [wl...Jk1k2 + w2...Jk2k3 + W3...Jk3kl 

+ W4k1 + WSk2 + W6k3] (4.3.2-11) 

where wi) i = 1,2, ... ,6 are given by (4.3.2-10) and 
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(4.3.2-11a) 

For Ws = w6 = 0, that is <Xl = <Xz = 0, we have the RK-GM 

method given by the formula 

Yn+l = Yn + ~ [2 (...jklkz + ...jkzk 3 ) - ...jk l k 3 ], (4.3.2-12) 

and the ki' are as specified in (4.3.2-11a). 

4.3.2.1 ERROR ANALYSIS OF THE THIRD - ORDER 

RK-GM METHOD 

Consider the third - order RK-GM methods derived in 

.section 4.3.2. By definition, the local truncation error 

of the method is given by the difference between (4.3.2-5) 

and (4.3.2-6) such that the method is third-order 

accurate. By using the REDUCE program, we obtain the 

local truncation error of the RK-GM method (4.3.2-12) as 

Thus the method defined by (4.3.2-12) is third-order 

accurate. This is shown numerically by the results given 

in section(4.3.2.2). 

4 .3 .2 .2 NUMERICAL RESULTS 
Problem y(l) = _e-x • 

Initial condition Xo = 0, Yo = 1. 

For values of x in the interval 0 ~ x ~1. 

Table (4.3.2.2) compares the results of the numerical 

solutions of the problem obtained by using the RK-GM 

method (4.3.2-12) and the classical RK method (4.3.2-4). 

Both formulae are of the third-order,three-stage,Runge­

Kutta class type of method. The numerical results show 

that the RK-GM method may give better results than the 

standard RK method for a certain class of problems. 
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Xn Exact Solution Numerical Solution Error 

.10 .9048374E+00 .9048337E+00(A) .3735045E-05 
.9048333E+00(B) .4084703E-05 

.20 .8187308E+00 • 8187240E+00 (A) . 6759204E-05 
· 8187234E+00 (B) . 7391967E-05 

.30 .7408182E+00 • 7408090E+00 (A) • 9173952E-05 
.7408082E+00(B) .1003277E-04 

.40 .6703200E+00 .6703090E+00(A) .1106789E-04 
.6703079E+00(B) .1210401E-04 

.50 .6065307E+00 .6065181E+00(A) .1251828E-04 
.6065170E+00(B) .1369017E-04 

.60 .5488116E+00 .5487980E+00(A) .1359238E-04 
.5487968E+00(B) .1486482E-04 

.70 .4965853E+00 .4965709E+00(A) .1434868E-04 
.4965696E+00(B) .1569191E-04 

.80 .4493290E+00 · 4493141E+00 (A) .1483793E-04 
.4493127E+00(B) .1622697E-04 

.90 .4065697E+00 .4065546E+00(A) .1510413E-04 
.4065531E+00(B) .1651808E-04 

1. 00 .3678794E+00 .3678643E+00(A) .1518528E-04 
.3678628E+00(B) .1660682E-04 

Table (4.3.2.2) : Comparison of (A) RK-GM formula 

(4.3.2-12) and (B) RK formula (4.3.2-4). 

4 • 3 • 3 FOURTH - ORDER METHOD 

The standard fourth- order RK method for the problem 

(4.1-1) may be given by 

where 

4 

Yn+l = Yn + h L Wiki, 
i~l 

k2 = f (xn+clh,Yn+a2,lhkl) 

k3 = f (Xn+C2h, Yn+a3,lhkl +a3,2hk2 ) 

k4 = f (Xn+C3h,Yn+a4,lhkl +a4,2hk2+a4,3hk3) • 

(4.3.3-1) 

(4.3.3-2) 

A typical set of parameter values for the standard 

fourth-order RK method is 

1 
Cl = C2 = a2,l = a3? = 2' 

a3,1 = a4,1 = a4,2 = 0, 
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C3 a4,3 = 1, 

Wl = w4 = 1 
6 

, 
1 

w2 w3 = 3' 

Thus, we obtain the standard RK method of the form 

Yn = Yn + ~ [k1 + 2 (k2 + k3) + k 4] (4.3.3-3) 

where 

kl = f (xn, Yn) 

k2 
1 1 

= f (xn+2"h, Yn+2"hk1 ) 

(4.3.3-4) 

k3 
1 1 

f (xn+2"h,Yn+2"hk2) 

k4 = f (xn+h,Yn+hk3) . 

We shall define a fourth-order composite RK-GM method by 

the formula 

Yn+l = Yn + h [wl...Jk 1k2 + w2...Jk2k3 + w3...Jk3k4 

+ w4...Jk4 kl + WS...Jk4k2 + w6...Jk4k3 

+ W7kl + Wek2 + w9k 3 + wlok4 ] , (4.3.3-5) 

where the ki; i=1,2,3,4 are specified in (4.3.3-2). The 

wi' i = 1, ... ,10 are to be determined so that the method 

is fourth-order accurate. 

Next set the following parameters 

1 
2 

(4.3.3-6) 

so that the ki' i = 1,2,3,4 of the RK-GM formula are the 

same as those of the AM formula (4.3.3-3). 
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Then use the Taylor series expansion of the ki' i = 

1,2,3,4 and the REDUCE program to expand the square root 

terms of (4.3.3-5). By equating like terms of the left­

and right-hand sides of (4.3.3-5), we obtain a set of 

equations which can be written in matrix form as 

Aw = b, 

where A is a 16 by 10 matrix of the form, 

A = 

1 
1 
1 

-1 
-1 

3 
1 
1 

-1 
-1 
-1 
-1 
-1 

3 
1 
1 

111 
2 1 2 
2 1 4 
4 3 4 
2 1 0 
o -5 8 
2 1 8 
o -3 8 
2 1 0 
434 
438 
6 5 12 
2 1-4 
o -1 8 
o 1 4 
018 

1 
3 
5 
7 
3 
9 
9 

11 
5 
9 

13 
17 

1 
1 
1 
3 

b is a column vector of the form, 

and 

1 
3 
5 

11 
5 
9 
9 

15 
7 

13 
17 
23 

3 
5 
1 
3 

1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

(4.3.3-7) 

1 1 1 
2 2 4 
228 
o 8 16 
o 4 8 
o 0 32 
2 2 16 
o 0 32 
o 4 16 
o 8 24 
o 8 32 
o 12 40 
o 4 8 
o 0 0 
o 0 0 
o 0 0 

Premultiplying both sides of (4.3.3-7) by AT gives 

where B = AT A is now a 10 x 10 square matrix. Hence the 

set of equations is now of the form 

Bw = d, (4.3.3-9) 

which) upon using the REDUCE program, produces the 

following results 
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We = (Xc, Wg = (Xl, W7 = (X2' W1C = w7 
1 

Wl = G[-12(X2 + 3 «Xl - (XO) + 2] 

W2 4(X2 - (Xl - (Xc 
1 

W3 G[-12(X2 - 3 «Xl - (Xc) + 2] 
1 

w4 = "3[6(X2 - 1], Ws = wl, w6 = w3 

(4.3.3-10) 

where (Xc, (Xl and (X2 are arbitrary constants. The choice 

of (Xc, (Xl and (X2 will now determine the method. 

Thus the standard RK method (4.3.3-3) can be easily 

deduced by setting Wl = W2 = W3 = W4 = 0 in (4.3.3-10), that 
1 1 

is when (Xc = (Xl ="3 and !X2 = G' 

The general composite RK-GM method may now be defined by 
(4.3.3-5) with the ki, i = 1,2,3,4 given by (4.3.3-4) and 

the Wi, i = 1,2, ... ,10 given by (4.3.3-10). 

By letting W7=We=Wg=0 in (4.3.3-10), that is when (Xi = 

0, i = 0,1,2 we obtain a typical RK-GM method which 

corresponds to the standard RK method (4.3.3-3). This 

particular RK-GM method is given as 

where the ki, i=1,2,3,4 are defined in (4.3.3-4). 

Note that we are free to set the constants Ci 

in (4.3.3-6) and hence obtain other forms of the 

composite RK-GM methods. The aim here is to obtain a RK­

GM method which corresponds to the standard RK method 

+r .. k;&\""'~ application will be shown to be of some 

importance. 

4 . 3.3.1 ERROR ANALYSIS OF (4.3.3-12) 

In the derivation of the fourth- order RK-GM method 

(4.3.3-5) we have used the Taylor series expansion of 

Yn+l about Xn up to and including the terms of O(hs ). Thus 

w.e may write 
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By differentiating (4.3.2-6) again, we obtain 

Y (5) = fxxxX + ffxxxy + 3 [fxfXXy + ffyfxxy + ffxxxy + f2fXXYY] 

+ 3 [fxXfXy + f (fxy) 2 + fxfxxy + ffXfXyy] 

+ 5 [fxfyfXy + f (fy) 2fXY + f (fxy) 2 

+ f2fXyfyy + ffyfxxy + f2fyfxyy] 

+ 3 [ (fx) 2fyy + ffxfyfyy + ffxxfyy 

2 2] + f fxyfyy + ffxfxyy + f fxfyyy 

+ 3 [2ffXfXyy + 2f2fyfXYy + f2fXXYy + f3fXYyy] 

+ 4 [2ffxfyfyy + f2fXyfyy + f2fyfXYy 

2 3 2 3 ] + 2 (ffy) fyy + f (fyy) + f fyfyyy 

+ [fxxfxy + ffxxfyy + fxxxfy + ffyfxxy] 

+ [fxx (fy) 2 + ffxy (fy) 2 + 2fxfyfxy + 2ffxfyfyy] 

+ [fx(fy)3 + f(fy)4 + 3f(fy) 2fXY + 3 (ffy)2fyy] 

+ [3f2fxfyyy + 3f3fyfyyy + f3fxyyy + f4fyyyy] , 

2 
fxxxx + 4ffxxxy + 6fxfxxy + 9ffyfxxy + 6f fxxyy 

2 + 4fxxfxy + Sf (fxy) + 12ffxfxyy + 7fxfyfxy 

2 2 2 2 + 9f (fy) fxy + 12f fxyfyy + 15f fyfxyy + 3 (fx) fyy 

(4.3.3-14) 

Hence by using the REDUCE program, the local truncation 

error of (4.3.3-12) is obtained as 

Tn+l (4.3.3-15) 

where 
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H = [8f7fyyyy + 16f6fyfyyy - 108f
6
f y/ + 32f6fXYyy 

5 5 2 5 5 + 48f fxfyyy + 228f fy fyy - 384f fxyfyy + 48f fxxyy 

4 4 4 4 4 + 384f fxfyy - 576f fXfxxy + 96f fxfxyy -267f fy 

4 2 4 4 + 72f fy fxy + 528f fyfxxy - 168f fxxfyy 

4 2 4 3 2 
- 336f fxy + 32f fxxxy + 204f fx fyy 

3 3 3 3 
- 312f fxfy + 96f fXfyfxy + 48f fxfxxy 

3 2 3 3 
- 12f fy fxx 32f fyfxxx -288f fxxfxy 

+ 8f3fxxxx - 30f
2
f/f/ + 120f

2
f/fXY 

- 60f2fx/ + 60ff/fxx - 15fx 
4

] 

4 .3 . 3 • 2 NUMERICAL RESULTS 

Problem : y(ll + Y = O. 
Initial condition Xo = 0, Yo = 1. 

Exact solution y = e -x. 

Solution domain [0,1]. 

00 

.10 

.20 

.30 

.40 

.50 

. 60 

.70 

.80 

.90 

1. 00 

Exact Solution 
.1000000E+01 

.9048374E+00 

.8187308E+00 

.7408182E+OO 

.6703200E+00 

.6065307E+00 

.5488116E+00 

.4965853E+00 

.4493290E+00 

.4065697E+00 

.3678794E+00 

Numerical solution 
.1000000E+Ol 

(A).9048375E+00 
(B) .9048375E+00 

(A) .8187310E+00 
(B) .8187309E+00 

(A) .7408185E+00 
(B).7408184E+OO 

(A) .6703204E+00 
(B) .6703203E+00 

(A) .6065310E+00 
(B) .6065309E+00 

(A).5488121E+00 
(B) .5488119E+OO 

(A) .4965857E+OO 
(B) .4965856E+00 

(A) .4493294E+00 
(B) .4493293E+00 

(A) .4065701E+00 
(B) .4065700E+00 

(A) .3678799E+00 
(B) .3678798E+00 

Relative Error 
o 

.5998097E-07 

.4302973E-07 

.1136851E-06 

.8155651E-07 

.1612057E-06 

.1156473E-06 

.2026952E-06 

.1454114E-06 

.2383607E-06 

.1709975E-06 

.2684584E-06 

.1925892E-06 

.2932861E-06 

.2104004E-06 

.3131760E-06 

.2246692E-06 

.3284863E-06 

.2356527E-06 

.3395930E-06 

.2436205E-06 

Table (4.3.3.2) :Results from (A) RK-GM formula 

(4.3.3-12) and (B) RK formula (4.3.3-3). 
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From the numerical results we observe that both the RK­

GM method (4.3.3-12) and the RK method (4.3.3-3) are 

comparable; they have the same order of accuracy. 

However, the RK-GM method involves more work which is 

required for the evaluation of the terms containing 

square root s. Nevertheless, we may combine the two 

methods to form an embedded formula with error control 

strategy. This is discussed and illustrated in Evans and 

Jayes[l9901 and in section 4.4. 

4.3.4 STABILITY ANALYSIS FOR THE !Ut-GM 

METHODS 

In this Section we shall endeavour to investigate the 

absolute stability property of the RK-GM methods 

developed in the preceding sections. To accomplish this 

objective we shall determine the region of stability of 

the various RK-GM methods. 

The first-order method in the class of RK-GM formulae is 

identical to the Euler method. We shall therefore omit 

the discussion of its stability property since it has 

been given earlier in section 3.2.3. 

We shall now consider the stability property of the 

second-order, two-stage RK-GM method. By applying the 
standard test problem y(l) =A.y to (4.3.1-l9a) and (4.3.1-

19b), we obtain 

} (4.3.4-1) 

(4.3.4-2) 

where z = 
1 

hA., P = ~ and P is an arbitrary constant. 

From (4.3.4-2), we obtain the pOlynomial Q(z) as 
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Q(z) 
yn+l 

Yn 

= 1 + Z[W1 + w2(1 + pz) + w3-V1 + PZ J. (4.3.4-3) 

Now by substituting the values of wi for i = 1, 2 and 3 

given in (4.3.1-18) into (4.3.4-3), we obtain 

Q(z) 1 + [1 + ~ - 20.] z + [1 - ;] z2 

+ [20. - ~] z [1 + p] 1/2 • (4.3.4-4) 

Note that we may write (4.3.4-3) in the form 

Hence for 

conclude. 
the form 

Q (z) = 1 + z + 0 (z2) • (4.3.4-5) 

,,<><I 

sufficiently small positive z, Q(z) > 1 A. we may 

that the interval of absolute stability has 
(/i,0) Moreover, if the two-stage method 

possesses order two, then (4.3.1-18) holds and (4.3.4-3) 

yields (4.3.4-4). 

1 
We observe that if w3 = 0, a. = 2" and ~ = 1, then the RK-

GM method reduces to the classical RK method of order 

two. The stability polynomial Q(z) is now independent of 

the coefficients of the method. Otherwise, we will 

always have Q (z) determined by the values of the 

parameters a. and ~ as indicated in (4.3.4-4) . Thus the 

plot of Q (z) against z is always established by the 
parameters a. and ~ of the method. However, in every case 

the plot of Q(z) against z reveals that IQ(z) 1< 1 
whenever ZE (li(o.,~),O). Hence in general, the interval of 

~ 

absolute stability of the second-orde~ two-stage RK-GM 
methods is governed by the parameters a. and ~. 

To illustrate this we shall consider the stability 

property of two second,order, two-stage RK-GM methods 
3 

derived from the set of parameters a. = -1, ~ = 20 and 0.= 

1, ~ = 1. 
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For a = 1 and P = 1, we have the RK-GM method given by 

yn+l = Yn + h...Jk1k2 (4.3.4-6) 

where 

} (4.3.4-6a) 

and for a = -1 and P 2~ the corresponding RK-GM method 

is 

Yn+l = Yn + ~o {40k1 + 23k2 - 43...Jk1 k2 } (4.3.4-7) 

where 

}. (4.3.4-7a) 

Now by applying the test function y(l) = A.y to (4.3.4-6) 

and (4.3.4-7), we obtain the respective stability 
polynomials Ql(Z) and Q2(Z) as 

case 1 : Qj(z) = 1 + z~l + z (4.3.4-8a) 

and 

case 2 

The plots of Ql(Z) and Q2(Z) are given in Figure(4.3.4a). 

2 

·2 1 

·1 

·2 

Figure(4.3.4a): Stability regions of the second-order, 

two-stage RK-GM methods for different set of parameters. 
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Next we shall discuss the stability property of the 

third-order, three-stage RK-GM methods. By applying the 
standard test problem y(1) =t..y to (4.3.2-11) we have 

kl = t..Yn' 

k2 t..[Yn 
1 

+ 2" ZYn] , 

= t..yn [1 + 
z 2"] , 

k3 t..yn [l Z (2 (1 
z 

1) ] , = + + -) -2 

= t..yn [1 + z(l + z) ] . 

Therefore, we obtain 

Yn+1 = Yn{l + Z [w1 (1 +~) 1/2 

+ W2 ( (1 + ~) (1 + z (1 + z») 

( ) 
1/2 

+ W3 1 + z (1 + z) + w4 + 

) 1/2 

Ws (1 

+ w6 (1 + z (1 + z» ] } • 

Hence the polynomial function Q(z) is obtained as 

Q(z) = Yn+1 
Yn 

1 + z { w1 (1 + ~) 1/2 

( 
z ) 1/2 + w2 (1 + 2")( 1 + z (1 + z» 

+ w3 (1 + z (1 + z») 1/2 + W4 + Ws + W6 

+ (~s + w6)z + W6z2 }. (4.3.4-8) 

From (4.3.4-8) it is easy to see that if the RK-GM 
6 

method is consistent, then L wi = 1. Moreover, if the 
i~l 

three stage RK-GM method is of order three, then 

equations (4.3.2-7a) to (4.3.2-7i) hold and the 

polynomial Q (z) is given by (4.3.4-8). Hence for 

sufficiently small positive z, Q(z»l, we may conclude 

that the interval of absolute stability of this method 

has the form (0,0). However, we note that from (4.3.4-

8), the polynomial Q(z) is governed by the coefficients 
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of the method as it is clearly indicated in the form of 

the expression of Q(z). Therefore, the interval of 

absolute stability of each member within the same class 

of three-stage third-order RK-GM methods may not be the 

same. 

121 
By substituting wi = 0, i = 1,2,3 and w4 = 6' Ws = 3' and w6 = 6' 

we have the classical RK method of order three. 

Its stability region defined by the pOlynomial Q(z) is 

given by 

Q (z) 
Z2 z3 

=1+z+ 2 + 6 (4.3.4-9) 

Now by letting Ws = W6 = 0, we obtain the RK-GM method 

(4.3.2-12). The. corresponding polynomial Q (z) which 

determines its stability region can be deduced from 
2 1 

(4.3.4-8) for w1 =w2 =3' w3 =-3 and w4 =0. Hence we have 

the stability region of the third- order RK-GM method 

(4.3.2-12) is given by 

Q (z) 1 + ~ z { 2 [ (1 + ~) 1/2 

( Z ) 1/2] + (1 + "2) (1 + z (1 + z» 

- (1 + z (1 + z) ) 1/2} • (4.3.4-10) 

Finally we consider the four-stage fourth- order RK-GM 

methods. Again) because of the complicated and lengthy 

derivation, we shall only concentrate on a particular 

case of the class of four-stage fourth - order RK-GM 

methods derived in section 4.3.3. Specifically, we shall 

discuss the stability region of (4.3.3-12). 

By applying the standard test problem y (1) = Ay in (4.3.3-

11) and (4.3.3-12), we obtain 
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z z 
k3 = A.Yn[l + 2(1 + 2)] 

, z z 
k4 = Ayn[l + z(l + 2(1 + 2»] (4.3.4-11) 

Yn+l = ynb +~[1 + [(1 + z(l +~(1 +~») 1/2] 

[ ( Z) 1/2 ( Z Z ) 1/2] 
X 1 + 2 + 1 + 2( 1 + 2) 

( Z Z) 1/2] } - 1 + z (1 + 2 (1 + 2» 

So we obtain the polynomial Q (z) which describes the 

stability region of the fourth- order RK-GM method 

(4.3.3-12) as given by 

The stability region of the classical fourth-order RK 

method can be easily obtained by applying the test 
problem y(l) = A.y in (4.3.3-3) and (4.3.3-4). Thus we have 

the polynomial 

Q(z) = 1 + z + 
z2 3 4 

+ L + z 
2 6 24· (4.3.4-13) 

Figure (4.3. 4b) shows the stability regions of both the 

classical RK method and the RK-GM method for orders s = 1 

to 4. Except for the order one method (which is the 

Euler method) the RK-GM methods appear to have smaller 

regions of stability. 
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3 
s - 4 3 

s = 4 
2 

1 

-3 1 

Method (1) -3 Method (2) -3 

Figure(4.3.4b): Stability regions of the RK-GM methods 

(Method (1» and the RK methods (Method (2» of orders 

s ~ 1,2,3 and 4. 

4 • 3 • 5 OPTIMAL EXPLICIT TWO-STAGE RI<: PROCESS 

Consider the explicit two-stage RK-GM process defined by 

(4.3.5-1) 

where 

(4.3.5-2) 

with constraint 

(4.3.5-3) 

Furthermore, we have 

}. (4.3.5-4) 

with constraint 

(4.3.5-5) 
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Therefore using (4.3.1-4) and (4.3.5-5) the Taylor 
series expansion of k2 about (xn, Yn) in the solution 

space is given as 

1 (fxx 
fy + 2" hCl f + 2fxy + 

+ O(h3
) (4.3.5-6) 

with all terms evaluated at (xn'Yn). 

Hence we obtain the expansion of Vklk2 as 

This yields the expression for ClIGM2 as 

(4.3.5-8) 

The equivalent increment function ClIT2 for the Taylor 

series expansion method is obtained as 

h h 2 2 2 
ClIT2 = f + 2" [fx + ffy 1 + 6"" [fxx + 2ffxy + fxfy + f fyy+ ffy 1 

(4.3.5-9) 

By equating like terms of (4.3.5-8) and (4.3.5-9), we 

obtain 

coefficient of hf: Wl + w2 + W3 = 1 

coefficient of h (fx + ffy) : (W2 
1 1-+ 2" W3) Cl = 2 

coefficient of 2 (f h f ----X1\ + 
f 2fxy + ffyy) 

2 (W2 W3) 1 
:cl "2 + 4" 6 
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Thus we have a set of three equations in four unknowns. 
Hence by setting Cl = a 2l = Cl *- 0 as the free parameter, we 

obtain 

Wl + W2 + w3 1 

2W2 + 
1 

w3 
Cl 

6W2 + 3W3 
2 

a2 

Therefore a= ~ and by setting wl = 13, we obtain w3 = t -213. 

Now the error function ~2 for the explicit two-stage RK­

GM process is obtained as 

= _ 1
3
-

6
4B f [ (ffX) 2 + 2fXffy 2] 1[ 2] + fy -"6 fxfy + ffy . 

By assuming that the Lotkin[1951] inequality (4.3.1.1-6) 

holds, this leads to the following bound on the error 
function ~2' 

(4.3.5-10) 

Now (4.3.5-10) attains its minimum value of ~ pQ2 when 

the free parameter 13 =~. Hence the coefficients of an 

optimal two-stage RK-GM process are obtained as 

The resulting method is 

which is called the Heun's two-stage scheme and 

kl = f (xnr Yn ) 

2 2 
k2 = f(xn + "3 h ,Yn +"3 hk l )· 
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4 . 4 ERROR CONTROL AND ADAPTIVE METHODS 

In section 4.3 we have developed the composite RK-GM 

methods of orders s = 2,3 and 4. It is well known that 

any single RK method has a fixed order. Moreover, a 

method involving only one equation has no way of 

monitoring the discretization error on its own. Hence it 

cannot select the appropriate step- size to maintain 

accuracy throughout the integration range. Thus it is 

necessary to combine two different methods to achieve 

automatic step-size control. Several adaptive RK methods 

have been derived recently. However, they are developed 

by the combination of two distinct RK methods of 

different orders. We propose here a method which is the 

combination of two different RK methods but of the same 

order. Nevertheless, this combined method is still of a 

fixed order and hence its effectiveness may be 

restricted. 

A composite Runge-Kutta arith-geometric mean method(AGM) 

was developed in Evans and Jayes[1990]. The combination 

of the classical RK method with the RK-GM method to form 

an adaptive error control strategy suggests an 

alternative Runge-Kutta AGM method to existing 

techniques. This is tested with the various library 

routines, namely the NAG (subroutine D02YAF), the IMSL 

(Subroutine DVERK) and the subroutine RKF45. Some 

interesting numerical results are obtained and commented 

upon. 

4 • 4 .1 ERROR ESTIMATION FOR RK PROCESSES 

The work of Lagrange in 1797 and more importantly of 

Cauchy has set the trend that every numerical method 

should be accompanied by a reliable error estimate. 

Runge in 

estimates 

1905 also found the 

for the RK methods. 

" ..... ,. 

""" 
importance of err.or 

"­
Thus a theorem on the'· 

rigorous error bounds can be expressed as: 
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'l'heorem 4.4.1-1 (Hairer et al.[1987]) Given an RK 

method (4.1-3a,-3b, -3c) of order p. Suppose all partial 

derivatives of f (x, y) up to order p exist and are 

continuous, then the local error of (4.1-3a) satisfies 

the following, 

11 (+h) 11 _< hp
+1 { 1 

U Y xn -yn+l (p+1) max i!y (p+l) (xn+th ) " 
tE [0,1] 

+ ~ i IWil max hi(th) I} (4.4.1-1) 
p. i-I ie [0,1] 

and hence also, 

, (4.4.1-2) 

where C is a constant. 

However for higher order methods, (4.4.1-1) seems 

impractical. Alternatively, it is more realistic to 

consider the principal error term of the method. For 

autonomous equations, this error term is obtained by 

subtracting the Taylor series expansion of the numerical 

solution from the Taylor series expansion of the exact 

solution. 

Another alternative way of obtaining an error estimate 

is to consider the global error of the method. A global 

error is the error of the computed solution after some 

integration steps. Suppose that we have a single-step 

method (4.1-3a) and the initial-value problem (4.1-1). 

The numerical solution of (4 .1-3a) at a point X > a is 

then obtained by a single-stepwise procedure, 

Xn+l - x n, (4.4.1-3) 

The global error is therefore given by, 

E = y (X) - YN (4.4.1-4) 

169 



which is found simply by transporting the local errors 
to the final point xN and then summing up. This can be 

done in any of the two following ways: 

Either (a) along the exact solution curves (Figure 

(4.4 .1a»; which can give distinct results when well 

defined estimates of error propagation for the exact 

solutions are known, 

or (b) along N-n steps of the numerical method (Figure 

(4.4.1b»; which was used by Cauchy in 1824 and Runge in 

1905. 

In either case we first estimate the local errors ei 

using Theorem 4.4.1-1 giving, 

(4.4.1-5) 

Then, the transported errors Ei are estimated 

accordingly. 

exact solutions 

Xo Xl X2 X3 XN-l XN 

Figure(4.4.1a):Global error 

estimation [method (a)l 

exact solution 

Xo Xl X2 X3 XN-l XN 

Figure(4.4.1b):Global error 

estimation [method (b)l 

(These figures are adapted from Hairer et al.[1987]) 
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a) For method(a) , the following theorem follows: 

Theorem 4.4.1-2(Hairer,et al,[1987]) Let U be a 

neighbourhood of {(x,y(x»; a~x~X} where y(x) is the 

exact solution of the problem (4.1-1). Suppose that in 

U, 

11 ~~ ~ ~ L or 
df 

Jl(dy) ~ L , (4.4.1-6) 

and that the local error estimates (4.4.1-5) are true in 

U. Then the global error (4.4.1-4) satisfies, 

where h = max hi' 
i 

{

C, 
C' -

C exp(-Lh), 

(4.4.1-7) 

L~O 

L<O 

and h is sufficiently small for the numerical solution 

to be within U. If L-70, then h ~ -7 hPC (x
N 
-a) . 

b) For the second method, we need to estimate 11 Zn+1-Yn+ll 

in terms of ~zn-yn~' where besides (4.4.1-3), 

is another numerical solution. Hence the theorem below 

follows: 

Theorem 4.4.1-3(Hairer et al.[1987]) : Suppose that the 

local error satisfies, for initial values on the exact 

solution, 

Iiy(x+h) - y(x) - hCl>(x,y(x) ;h) 11 ~ ChP+1 (4.4.1-9) 

and suppose that in a neighbourhood of the solution the 

increment function Cl> satisfies, 

11Cl>(x,z;h) - Cl>(x,y;h) 11 ~ L/z - y~ . (4.4.1-10) 
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Then the global error (4.4.1-4) can be estimated by, 

where h = max hi. 
i 

(4.4.1-11) 

Theorem 4.4.1-2 and Theorem 4.4.1-3 above discuss the 

convergence as a function of h as it tends to zero, 

where h is now interpreted as the maximum step size and 

assume that there is a function a (t) such that 0 < D ~ 

a (t) ~ 1 for t E [a, xN 1 and that, 

hn = ha (xn) } 

Xn+l = Xn + hno 
(4.4.1-12) 

We see that if h> 0, a finite number of steps will cover 
the interval [a, xN1 since h n ~ ~h > O. 

4 • 4 • 2 ADAPTIVE ERROR CONTROL STRATEGY 

The basic idea of an adaptive error control strategy is 

to compare two approximations and 

estimate of their accuracy. If 

acceptable, one of them is taken 

thereby obtain an 

the accuracy is 

as the numerical 

approximation at the mesh point. Otherwise, the step­

size is modified and the process repeated on the mesh 

points using the new step-size. 

To reduce the total number of function evaluations, the 

two methods should use the same points of evaluation. 

Since the standard Runge-Kutta (AM) and the RK-GM 

methods use the same ki, for i = 1,2,3,4, consequently 

the adaptive error control strategy which employs the AM 

and RK-GM pair requires only four function evaluations 

per step. 

We shall now pursue the analysis of the basic technique. 

Consider the solution of (4.1-1) and the approximation 

(4.1-2). The I best I method would be that, whenever a 
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tolerance TOL > 0 was given, the number of mesh points 
used to ensure that the global error, i.e.ly(xi) - yil, 

did not exceed TOL for any i = 1,2, ... ,n-l is minimal. In 

other words, the amount of computational work is 

minimized for the given error tolerance if h is chosen 
by h = hnen (tn) in the nth step of the iteration process. 

Generally, the global error of a difference method 

cannot be determined explicitly. Alternatively, we can 

work with the local truncation error of the method. That 

is we try to find an estimate of the global error in 

terms of the local truncation error. 

To recapitulate Theorems 4.4.1-2 and 4.4.1-3, we see 

that from Theorem 4.4.1-3, the global error is one order 

less than that of the local truncation error. Therefore 

it is justified to consider the control of the local 

error if we are interested in the control of the global 

error. 

Thus, an alternative approach to step-size selection is 

to exploit the determination of the local truncation 

error of a method as best we can while controlling its 

global error. 

Suppose two single-step methods (4.4.1-3) and (4.4.1-8) 

are used to approximate the solution of the initia1-

value problem (4.1-1). Denote the local truncation of 
(4.4.1-3) by 'tn+1 and that of (4.4.1-8) by On+1' Let them 

be of orders ' 1':1 and s accuracy respectively. 

Assume 0 < r ~ s. Suppose that Yn = Y (xn) = zn, then, 

y(xn+1) - Yn+1 

(4.4.2-1) 
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Since a method with local truncation error of order 

f· is given by 

So, the local truncation error of (4.4.1-3) can be 

written as 

1 
[y (xn+1) Yn+l1 '" -hn 

l [Y (Xn+l) zn+ll 
1 

[ zn+l Yn+11 = - +- -hn hn 

" l '" Un+1 + hn [zn+1 - Yn+ll (4.4.2-2) 

Consequently, 

(4.4.2-3) 

can be used to approximate the optimal step - size to 
control the global error. Now tn+l is of order r, so a 

constant p exists such that, 

r 1 
ph '" - [zn+1 - Yn+ll n hn 

(4.4.2-4) 

An approximate step - size can now be chosen by 

considering the truncation error with h n replaced by qhn 

where q is a positive number bounded above and away from 

zero. 

Hence, we may write 

~ (qhn) '" p(qhn)r 

r r 

'" q (phn ) 

'" 
g:: 

[ Zn+l - Yn+ll . hn 
(4.4.2-5) 

To bound ~(qhn) bye, choose q such that, 

r 

~ I Zn+l - Yn+ll '" ~ (qhn) ::;; e , (4.4.2-6) 
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that is, such that 

[ 
Eh J11r 

q:O; I Zn+l _n Yn+11 (4.4.2-7) 

In practice, the usual choice of q is such that, 

q = [I Ehn l]l/ r 
(4.4.2-8) 

2 zn+l - Yn+1 

The technique adopted that utilizes (4.4.2-7) for error 

control consists of using the RK-GM method, 

Zn+1 = Yn + ~ [~k1 (~k2 + ~k3 - ~k4) + ~k4(~k2 + ~k3)1, 
(4.4.2-9) 

with local truncation error of order 4 to estimate the 

local error in the AM method, 

(4.4.2-10) 

of order 4. We call this combined method the AM-GM 

scheme. 

Now by taking the absolute difference between (4.4.2-9) 

and (4.4.2-10) we have, 

I Yn+1 - zn+1 I 

(4.4.2-11) 

which can be used to control the error. 

Numerical results are obtained and compared with those 

from the RK-Fehlberg method with error control. The AM­

GM method above requires only four function evaluations 

per step as compared with the RK-Fehlberg which needs 

six function evaluations per step. Arbitrary RK methods 

of order four and five used together would require ten 

function evaluations per step. 
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4.4.3 ERROR CONTROL AND STEP SIZE SELECTION 

IN THE AM-GM METHOD 

Ralston [1962] provided an error bound (following the 

Lotkin[1951] technique) for the classical fourth-order 

Runge-Kutta scheme as 

(4.4.3-1) 

Similarly, we 

stage explicit 

can obtain an error bound for the four-

AM-GM scheme of order four 

the local truncation errors of the AM and 

We have for the AM method, 

AM 
Yn+l = Yn + LTEAM , 

and for the RK-GM method, 

GM 
Yn+1 = Yn + LTEGM , 

by considering 

RK-GM methods. 

(4.4.3-2) 

(4.4.3-3) 

AM GM 
where Yn+l and Yn+l are the numerical approximations at 

xn+l obtained by the AM and RK-GM methods respectively 

and LTEAM and LTEGM are the corresponding local 

truncation errors of the AM and RK-GM methods. 

It follows that. the difference between the AM and RK-GM 
numerical approximations at xn+l is given by 

AM GM 
Yn+l - Yn+l = LTEAM - LTEGM . (4.4.3-4) 

The local truncation error of the AM method is given by, 

2 2 2 2 
12ffxfxyy 4fyfxxx + 36f fyfyy - 18f fxyfyy + 6f fxxyy + -

+ 48ffJyf yy - 72 ffxfxxy - 24ff; + 
2 

24ffyfxy + 66ffyfxxy 

6ffxxfyy -
2 

4ffxxxy + 
2 3 - 12ffxy + fxxxx + 18fxfyy - 24fxfy 

(4.4.3-5) 
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The local truncation error of the RK-GM method is given 

by, 

6 6 2 6 
16f fyfyyy - 108f fyy + 32f fXyyy 

5 5 2 5 5 + 48f fXfyyy + 228f fyfyy - 384f fxyfyy + 48f fxxyy 

+ 384f4fxfyfyy - 576f4fxfxxy + 96f4fxfxyy - 267f4f~ 

42 4 4 42 
+ 72f fyfxy + 528f fyfxxy - 168f fXXfyy - 336f fxy 

+ 32f4fxxxy + 204f3f!fyy - 312f3fxf~ + 96f3fxfyfxy 

3 3 2 3 3 
+ 48f fxfxxy - 12f fyfxx - 32f fyfxxx - 288f fxxf xy 

+ 8f3fxxxx - 30f2f!f~ + 120f
2
f!f xy - 60f

2
f!x 

(4.4.3-6) 

Therefore the absolute difference between LTEAM and LTEGM 

is given by 

(4 • 4 .3-7) 

From Lotkin[1951] we have the inequalities (4.3.1.1-6) 

and by direct substitution of (4.3.1.1-6) into (4.4.3-7) 

we obtain 

Hence, 

I AM GM I 
Yn+l - Yn+l ~ 

"" \1 /; 
i ~_l, 
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Now suppose TOL is the user- set tolerance, then by 

setting, 

I AM GM I 
Yn+l - Yn+l :s; TOL , (4.4.3-10) 

the error control and step- size selection can be 

determined by (4.4.3-9). 

Example 

Consider the initial-value problem, 
() <: G./~ ! 

(1) < Y = Y , y(O) = 1 , 0 :s; x _ 1 '~ 

and we set TOL = 10-4 , P -;;;:exp(ij-"";;' 2.7'4 and G<... = 1. 00 . 
. { .J 

", 

Then, 

I..ll.. pQ4hsl < 10-4 
256 ' 

provided h :s; 0.2355. 

However the bound (4.4.3-9) by itself is of theoretical 

interest only. Perhaps by combining it with some other 

information it can be used for choosing the stepsize in 

practical problems. 

4.4.4 PRACTICAL ERROR CONTROL 

The error estimates given in section 4.4.1 are of little 

practical importance because they require the 

computation of several higher order derivatives. There 

are various alternative methods for error control, 

namely: 

(i) Richardson extrapolation, 

(ii) Automatic step-size control, 

(iii) Embedded RK formulae. 

Method (i) is basically summarized by the following 

theorem. 
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Theorem 4.4.4-1 (Hairer et al.[ 1987]) : Suppose that Y2 

is the numerical result of two steps with step-size h of 

a RK method of order p, and w is the result of one 
larger step with step-size 2h. Then the error of Y2 can 

be extrapolated (following Richardson) as, 

y(xo + 2h) - Y
2 

= 
y - W 

2 + 0(hP +2 ) , 

2P - 1 
(4.4.4-1) 

and 

A 

Y2 = Y2 + 
2P 

- 1 
, (4.4.4-2) 

is an approximation of order p+1 to y(xo +2h). 

In method (ii), the error used is obtained from (4.4.4-2) 

as 

1 I Y2 ,i - wil 
err = max 

di 
, 

2P - 1 i 
(4.4.4-3) 

where di is the scaling factor. 

Then the error, err,is compared with TOL to obtain the 

optimal step size from the error behaviour C hp+l as 

follows, 

TOL l/p+l 
h (err) . (4.4.4-4) 

The new step-size is computed from 

TOL l/p+1 
hnew=hxmin{facmax, max[facmin, fac (--) ]},(4.4.4-5) 

err 

where fac is the safety factor. 

If err S TOL, then the 
and the solution Y2 or 

two computed steps are accepted 
A 

Y2 is taken. A new step is tried 

with h new as step-size. Otherwise, both steps are 

rejected and the computations repeated using h new . The 
(~"";rt., et GJ • (11' 

usual choice of fac is 0.8,0.9, (0.25)1/P+l or (0.38)1/P+7{. 

The maximal step-size increase I fac max I is usually 

taken between 1.5 and 5. It prevent s -II-" ~"j"""" f"~ '"",i" vt'"' 
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I<M-~e &-Iel' i"cre",~e' -",,,cl 't.<>nhi \:,,,,~e~ .\.0 i-l-$ safety. If it is 

too small it increases the computational work 

unnecessarily. In cases after a step rejection the 

parameter fac max is set the value one is recommended 

(Shampine and Watt[1979]). 

In the third method, the aim is to develop a RK formula 
which contains two approximations Y1 and Y2' The latter 

can be of the same or higher order than the former. This 

can then serve for error and step-size control at every 

step and thus make step rejections economical. 

The embedded RK method was first proposed by 

Merson[1957], Ceschino[1962] and zonneveld[1963]. 

However, Merson's method is of order 5 for only linear 

equations with constant coefficients. Thus, the method 

over-estimates the error for small h. Similarly, 

Zonneveld's second formula does not estimate the 

truncation error. Ceschino's method is uneconomic 

because the error estimate is j;Qo_precise (Hairer et 

al.[1987]) . 

Sarafyan [1966], England [1969] and Fehlberg [1968, 1969] 

derived some other formulae of different orders. 

Fehlberg attempted to minimize the error coefficient of 
the lower order result Y1 in order to make his method 

optimal. Consequently, the difference between the two 

approximations might under-estimate the local error. 

Dormand and Prince[1980] developed a method for which 

the error terms of the higher order result are minimized 

and the lower order result is computed just for the 

step-size mechanism. This is claimed to give excellent 

results (Hairer et aIJ1987]). 
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4.4.5 MATRIX REPRESENTATION OF THE RK 

PROCESSES 

An s-stage RK process can be described by the matrix 

notation (see Fatunla[1988), 

where, 

A = 

bl,l b~2 b~s 

b~2 b2,s 

B = 

0 I 
bsJ 

and 

T 
C= [C1p+1, C2,s+1 , ••• , Cs,s+1) • 

The RK process is written as, 

where 

s 
Yn+1 = Yn + h L b~j (kikj) 1/2, 

i,j=l 
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k1 = f (xn, Yn) 

k2 = f (xn +c4s+lh, Yn + ha2,lkd 

(4.4.5-2a) 

s-l 
ks = f (Xn + cSS+lh, , Yn + h L as,jkj) 

I j=l 

Here we shall extend the matrix representation to the GM 

formulae. Some explicit RK schemes are represented as 

follows: 

Four-stage schemes: 

0 0 0 0 10 
1/2 0 0 0 11/2 
0 1/2 0 0 11/2 
0 0 1 0 11 

Classical: ---------- I (4.4.5-3) I 
, 

1/6 0 0 0 10 
0 2/6 0 0 10 
0 0 2/6 0 10 
0 0 0 1/6 10 

0 0 0 0 
10 l 1/3 0 0 0 11/3 

-1/3 1 0 0 12/3 
1 -1 1 0 11 

Kutta: ---------- I (4.4.5-4) I 
, 

1/8 0 0 0 10 
0 3/8 0 0 10 
0 0 3/8 0 10 
0 0 0 1/8 10 

0 0 0 0 10 
1/2 0 0 0 11/2 
0 1/2 0 0 11/2 
0 0 1 0 11 

RK-GM: I (4.4.5-5) ---------- --I I . 
o 1/3 1/3 -1/3 10 

l 0 0 0 1/3 10 

J 0 0 0 1/3 10 
0 0 0 0 10 
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Matrix representation of the RK-processes provides a 

brief description of such schemes. For the embedded RK 

schemes we propose a similar representation of the form 

(4.4.5-1) but with the diagonal elements of A 

representing the coefficients of the first approximation 

and the elements of B representing the coefficients of 

the second approximation. Thus we have the following 

matrix notation. 

1/6 0 0 0 10 
1/2 2/6 0 0 11/2 
0 1/2 2/6 0 11/2 
0 0 1 1/6 11 

AM-GM: ---------- I (4.4.5-6) I , 
0 1/3 1/3 -1/3 10 
0 0 0 1/3 10 
0 0 0 1/3 10 
0 0 0 0 10 

1/2 0 0 0 0 10 
1/3 0 0 0 0 11/3 
1/6 1/6 -3/2 0 0 11/3 
1/8 0 3/8 2 0 11/2 
1/2 0 -2/3 2 0 11 

Kutta Merson: - - - - - - - - - - - - - _1- _ 
I 

1/6 0 0 0 0 10 
0 0 0 0 0 10 
0 0 0 0 0 10 
0 0 0 4/6 0 10 
0 0 0 0 1/6 10 

(4.4.5-7) 
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and Fehlberg 4 (5) scheme: 

...ll.. 0 0 0 0 0 0 216 
1 

0 0 0 0 0 
1 

4 4 
2- .1... 1408 

0 0 0 1 
32 32 2565 8 

1932 _7200 7296 2197 
0 0 

12 
2197 2197 2197 4104 13' 

439 
-8 

3680 845 _l 0 1 
216 513 -4104 5 

_JL 2 
_3544, 1859 _ll 0 1 

27 2565 4104 40 2 

(4.4.5-8) ------------------------

16 
135 

o 
o 

o 

o 

o 

o 

o· 
o 

o 

o 

o 

o 

o 
6656 

12825 

o 

o 

o 

o 

o 
o 

28561 
56430 

o 

o 

o 

o 
o 

o 
_.1... 

50 

o 

o 

o 
o 

o 

o 
-L 
55 

o 

o 
o 

o 

o 

o 

4.4.6 DISCUSSION OF THE IMSL, NAG AND RKF45 

ERROR CONTROL STRATEGIES 

The subroutine used in the IMSL routine DVERK is based 

on a code designed by T.E. Hull, W.H. Enright and K.R. 

Jackson. It uses RK formulae of orders 5 and 6 that were 

developed by J.H. Verner. 

DVERK attempts to keep the global error proportional to 

a user-set tolerance TOL. The proportionality depends on 

the type of error control used, the differential 

equation and the range of integration. The 

proportionality is expected to be steady for the smaller 

values of TOL. Thus making TOL smaller improves the 

accuracy. 

The routine adopts a measure of the 'scale' of a 

problem, from which each method can calculate its 

appropriate maximum step-size HMAX. The SCALE parameter 
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provides such an attempt. The use of SCALE is based on a 

theoretical study of the application of DVERK's formula 

to homogeneous linear equations with constant 

coefficients. Thus SCALE is exactly the Lipschitz 

constant. 

Consequently DVERK works efficiently with non-stiff 

systems where derivative evaluations are inexpensive and 

the solutions are required at only a small number of 

spaced points. 

RKF45 is a subroutine for solving initial-value problems 

in ordinary differential equations. It is based on RK 

formulae developed by E. Fehlberg in 1970 and 

implemented by L.F. Shampine and H.A. Watts in 1974. It 

requires six function evaluations per step, four of 

these function values are combined with a set of 

coefficients to produce a fourth-order method, and all 

six values are combined with another set of coefficients 

to produce a fifth-order method. Comparison of the two 

values yields an error estimate which is used for step­

size control. As in many other popular RK routines, the 

RKF45 adopts error per step criterion and local 

extrapolation. 

RKF45 is primarily designed to solve non-stiff and 

mildly stiff differential equations when derivative 

evaluations are inexpensive. It should generally not be 

used when high accuracy is required. 

The NAG subroutine D02YAF is based on the RK-Merson 

formula. This subroutine is used by all the NAG routines 

D02BAF, B02BBF, and D02BDF. The D02BAF and D02BBF 

routines integrate a system of first-order differential 

equations over an interval. The D02BDF integrates a 

system of first - order di fferential equations over a 

range and computes a global error estimate. 
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The accuracy of the integration is governed by the 

parameter TOL. The routines have been designed so that 

for most problems, the error in the solution at XEND is 

approximately proportional to TOL. However, the actual 

relation between TOL and the accuracy achieved cannot be 

given precisely, but can be estimated from the global 

error estimates obtained by D02BDF. 

The global error estimates 

using a method similar 

used in D02BDF are computed 

to that in Shampine and 

Watt[1976]. D02BDF has an option of a stiffness check 

because the explicit RK-Merson method is not suitable 

for integrating stiff equations. The check used is an 

extension of a scheme described in Hall and Watt [1976] . 

In each routine we have substituted the standard formula 

with the new AM-GM pair and some interesting results 

were obtained. 

4 .4 . 7 EXPERIMENTAL RESOLTS 

The following is a list of sample problems used in the 

numerical experiments. The numerical results of testing 

the AM-GM and other methods are then obtained. 

Problem 1 y(l) + 3x2 y = ° 
Initial condition x = 0, y = 1 

3 
Exact solution y = e-x 

Problem 2 y(l) + Y = ° 
Initial condition x = 0, y = 1 

Exact solution y = e-x 

Problem 3 
(1) - ° y y = 

Initial condition x = 0, Y 1 

Exact solution x y = e 

Problem 4 y(l) + Y - x - 1 = ° 
Initial condition x = 0, y = 1 

Exact solution y = x + e-x 
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Probl.em 5 
(1) 20(2 -11 1 Y - - xl + = 

Initial condition x = 0, Y = 2-9 - 1 

solution 2(2 -10 Exact Y = - xl - x -

Probl.em 6 ( 1) 
y, - Y3 = 0 , 

(1) 
Y2 - Y4 0, 

(1) Y1 
Y3 + 0 , z 

Initial conditions x = 0, Y1 = 1 - e, 
1 +e 1/2 

Y2 = Y3 = 0, Y 4 = a {l-e} , 

where z = ~ {y~ + y~}3/2 and a 1t. 
a 

Probl.em 7 
( 1) 

Y1 

0 

1 

(1) 
Y2 = -0.032 tan(Y3l/Y - 0.02 Y sec(Y3l , 

(1) 2 
Y3 = -0. 032/Y2 

Initial conditions x = 0, Y1 = 0, Y2 = 0.5 and Y3 

Probl.em 8 (1) 4 
Y1 = -0.04Y1 + 1x10 Y2Y3 , 

(1) 4 7 2 
Y2 = O. 04Y1 - 1x10 Y2Y3 - 3x10 Y2 

(1) 7 2 
Y3 3x10 Y2 . 

Initial conditions x = 0, Y1 = 1, Y2 = Y3 = O. 

= P. 
5 

Given is a list of the numerical experiments performed 

and the corresponding numerical results. The notation 

NFC denotes the number of function evaluations. 
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Experiment 1 Comparison between the AM-GM method 

with error control and the RK-Fehlberg method with error 

control. Problems 1,2,3,4 and 5 were used in this 

experiment. The following parameters were set: 

tolerance, TOL = 5 x 10-5 , 

initial minimum step-size, HMIN = 0.02 

maximum step-size, HMAX = 0.1 

Problem 1 

Results from RK-Feh1berg method with error control 

x h 

.08409 .0840896 

.18409 .1000000 

.28409 .1000000 

.38409 .1000000 

.48409 .1000000 

.58409 .1000000 

.68409 .1000000 

.78409 .1000000 

.88409 .1000000 

.98409 .1000000 
1. 08409 .1000000 

Numerical 
Solution 

.999406E+00 

.993781E+00 

.977333E+00 

.944913E+00 

.892755E+00 

.819330E+00 

.726048E+00 

.617513E+00 

.501067E+00 

.385574E+00 

.279689E+00 

Exact 
Solution 

.999406E+00 

.993781E+00 

.977333E+00 

.944913E+00 

.892755E+00 

.819330E+00 

.726048E+00 

.617513E+00 

.501066E+00 

.385573E+00 

.279689E+00 

Table (4.4. 7a) 

Absolute 
Error 

.407979E-08 

.225594E-07 

.492812E-07 

.788102E-07 

.938627E-07 

.610187E-07 

. 612959E-07 

.286069E-06 

.521689E-06 

.478684E-06 

.363005E-06 

Results from RK-GM method with error control 

x h 

.08409 .0840896 

.18409 .1000000 

.28409 .1000000 

.38409 .1000000 

.48409 .1000000 

.58409 .1000000 

.68409.1000000 

.78409 .1000000 

.88409 .1000000 

.98409 .1000000 
1.08409 .1000000 

Numerical 
Solution 

.999406E+00 

.993781E+OO 

.977333E+OO 

.944913E+OO 

.892755E+00 

.819330E+00 
.726048E+OO 
.617513E+OO 
.501068E+OO 
.385578E+OO 
.279702E+OO 

Exact 
Solution 

.999406E+00 

.993781E+00 

.977333E+00 

.944913E+00 

.892755E+00 

.819330E+OO 

.726048E+OO 

.617513E+00 

.501066E+00 

.385573E+00 

.279689E+00 

Table(4.4.7b) 
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Absolute 
Error 

.1l0431E-07 

.420574E-07 

.723510E-07 

.102927E-06 

.138257E-06 

.176468E-06 

.155914E-06 

.184546E-06 

.153076E-05 

.516917E-05 

.128152E-04 

NFC 

NFC 

4 
8 

12 
16 
20 
24 
28 
32 
36 
40 
44 

6 
12 
18 
24 
30 
36 
42 
48 
54 
60 
66 



Probl.em 2 

Results from RK-Fehlberg method with error control 

x h 
Numerical 
Solution 

Exact 
Solution 

Absolute 
Error NFC 

------------------------------------------------------------------
.08409 .0840896 .919349E+00 .919349E+00 .587557E-08 6 
.18409 .1000000 .831861E+00 .831861E+00 .183618E-07 12 
.28409 .1000000 .752699E+00 .752699E+00 .284184E-07 18 
.38409 .1000000 .681070E+00 .681070E+00 .363947E-07 24 
.48409 .1000000 .616258E+00 .616258E+00 .425955E-07 30 
.58409 .1000000 .557613E+00 .557613E+00 .472866E-07 36 
.68409 .1000000 .504549E+00 .504549E+00 .506991E-07 42 
.78409 .1000000 .456535E+00 .456535E+00 .530339E-07 48 
.88409 .1000000 .413090E+00 .413090E+00 .544652E-07 54 
.98409 .1000000 . 373779E+00 .373779E+00 .551438E-07 60 

1. 08409 .1000000 .338209E+00 .338210E+00 .552001E-07 66 

Table (4.4. 7c) 

Results from RK-GM method with error control 

Numerical Exact Absolute 
x h Solution Solution Error NFC 

------------------------------------------------------------------
.08409 .0840896 .919349E+00 .919349E+00 .345521E-07 4 
.18409 .1000000 .831861E+00 .831861E+00 .106618E-06 8 
.28409 .1000000 .752699E+00 .752699E+00 .164654E-06 12 
.38409 .1000000 .681071E+00 .681070E+00 .210680E-06 16 
.48409 .1000000 .616258E+00 .616258E+00 .246454E-06 20 
.58409 .1000000 .557614E+00 .557613E+00 .273512E-06 24 
.68409 .1000000 .504550E+00 .504549E+00 .293188E-06 28 
.78409 .1000000 .456535E+00 .456535E+00 .306643E-06 32 
.88409 .1000000 .413090E+00 .413090E+00 .314881E-06 36 
.98409 .1000000 .373780E+00 .373779E+00 .318775E-06 40 

1. 08409 .1000000 .338210E+00 .338210E+00 .. 319076E-06 44 

Table (4.4. 7d) 
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Problem 3 

Results from RK-Fehlberg method with error control 

x h 
Numerical 

Solution 
Exact 

Solution 
Absolute 

Error NFC 
------------------------------------------------------------------

.08409 .0840896 .108773E+01 .108773E+01 .489335E-08 6 

.18409 .1000000 .120212E+01 .120212E+01 .178206E-07 12 

.28409 .1000000 .132855E+01 .132855E+01 .334129E-07 18 

.38409 .1000000 .146828E+01 .146828E+01 .520878E-07 24 

.48409 .1000000 .162270E+01 .162270E+01 .743212E-07 30 

.58409 .1000000 .179336E+01 .179336E+01 .100655E-06 36 

.68409 .1000000 .198197E+01 .198197E+01 .131706E-06 42 

.78409 .1000000 .219041E+01 .219041E+01 .168175E-06 48 

.88409 .1000000 .242078E+01 .242078E+01 .210858E-06 54 

.98409 .1000000 .267538E+01 .267538E+01 .260659E-06 60 
1.08409 .1000000 .295675E+01 .295675E+01 .318603E-06 66 

Table(4.4.7e) 

Results from RK-GM method with error control 

Numerical Exact Absolute 
x h Solution Solution Error NFC 

------------------------------------------------------------------
.08409 .0840896 .108773E+01 .108773E+01 .355344E-07 4 
.18409 .1000000 .120212E+01 .120212E+01 .131448E-06 8 
.28409 .1000000 .132855E+01 .132855E+01 .247143E-06 12 
.38409 .1000000 .146828E+01 .146828E+01 .385720E-06 16 
.48409 .1000000 .162270E+01 .162270E+01 .550712E-06 20 
.58409 .1000000 .179336E+01 .179336E+01 .746142E-06 24 
.68409 .1000000 .198197E+01 .198197E+01 .976587E-06 28 
.78409 .1000000 .219041E+01 .219041E+01 .124725E-05 32 
.88409 .1000000 .242078E+01 .242078E+01 .156405E-05 36 
.98409 .1000000 .267537E+01 .267538E+01 .193368E-05 40 

1. 08409 .1000000 .295674E+01 .295675E+01 .236377E-05 44 

Table (4 • 4 . 7 f) 
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Problem 4 

Results from RK-GM method with error control 

Numerical Exact Absolute 
x h Solution Solution Error NFC 

------------------------------------------------------------------
.00005 .0000512 .100000E+01 .100000E+01 .177636E-13 40 
.00009 .0000430 .100000E+01 .100000E+01 .177636E-13 44 
.00026 .0001721 .100000E+01 .100000E+01 .175415E-13 48 
.00092 .0006616 .100000E+01 .100000E+01 .175415E-13 52 
.00252 .0015992 .100000E+01 .100000E+01 .175415E-13 56 
.00613 .0036106 .100002E+01 .100002E+01 .124345E-13 60 
.01337 .0072422 .100009E+01 .100009E+01 .152545E-12 64 
.02675 .0133744 .100035E+01 .100035E+01 . 366129E-ll 68 
.04973 .0229842 .100122E+01 .100122E+01 .554201E-10 72 
.08689 .0371598 .100367E+01 .100367E+01 .611 7 42E-0 9 76 
.14381 .0569201 .100986E+01 .100986E+01 .509958E-08 80 
.22682 .0830057 .102389E+01 .102389E+01 .327426E-07 84 
.32682 .1000000 .104803E+01 .104803E+01 .949571E-07 88 
.42682 .1000000 .107940E+01 .107940E+01 . 145034E-06 92 
.52682 .1000000 .111730E+01 .111730E+01 .184720E-06 96 
.62682 .1000000 • 116111E+01 . 116111E+01 .215540E-06 100 
.72682 .1000000 .121027E+01 .121027E+01 .238821E-06 104 
.82682 .1000000 .126426E+01 .126426E+01 .255719E-06 108 
.92682 .1000000 .132263E+01 .132263E+01 .267238E-06 112 

1.02682 .1000000 .138497E+01 .138497E+01 .274249E-06 116 

Table(4.4.7g) 

Results from RK-Fehlberg method with error control 

Numerical Exact Absolute 
x h Solution Solution Error NFC 

------------------------------------------------------------------
.08409 .0840896 .100344E+01 .100344E+01 .587557E-08 6 
.18409 .1000000 .101595E+01 .101595E+01 .183618E-07 12 
.28409 .1000000 .103679E+01 .103679E+01 .284184E-07 18 
.38409 .1000000 .106516E+01 .106516E+01 .363947E-07 24 
.48409 .1000000 .110035E+01 .110035E+01 .425955E-07 30 
.58409 .1000000 .114170E+01 .114170E+01 .472866E-07 36 
.68409 .1000000 .118864E+01 .118864E+01 .506991E-07 42 
.78409 .1000000 .124062E+01 .124062E+01 .530339E-07 48 
.88409 .1000000 .129718E+01 .129718E+01 .544652E-07 54 
.98409 .1000000 .135787E+01 .135787E+01 .551438E-07 60 

1. 08409 .1000000 .142230E+01 . 142230E+01 .552001E-07 66 

Table(4.4.7h) 
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Problem 5 
Results from RK-Fehlberg method with error control 

Numerical Exact Absolute 
x h Solution Solution Error NFC 

------------------------------------------------------------------
.08409 .0840896 -.108109E+01 -.108109E+01 .292578E-08 6 
.18409 .1000000 -.117896E+01 -.117896E+01 .188044E-07 12 
.28409 .1000000 -.127505E+01 -.127505E+01 .561042E-07 18 
.38409 .1000000 -.136761E+01 -.136761E+01 .148290E-06 24 
.48409 .1000000 -.145288E+01 -.145288E+01 .389534E-06 30 
.58409 .1000000 -.152234E+01 -.152233E+01 .106314E-05 36 
.68409 .1000000 -.155563E+01 -.155563E+01 .308877E-05 42 
.78409 .1000000 -.150095E+01 -.150094E+01 .972445E-05 48 
.85437 .0702760 -.134084E+01 ~.134083E+01 .124725E-04 60 
.91240 .0580304 -.104879E+01 -.104878E+01 . 147492E-04 72 
.96116 .0487602 -.594932E+00 -.594915E+00 .166247E-04 84 

1. 00286 .0417026 .552076E-01 .552258E-01 .181931E-04 96 
Table(4.4.7i) 

Results from RK-GM method with error control 
Numerical Exact Absolute 

x h Solution Solution Error NFC 
------------------------------------------------------------------

.08409 .0840896 -.108109E+01 -.108109E+01 .295967E-07 4 

.18409 .1000000 -.117896E+01 -.117896E+01 .174971E-06 8 

.28409 .1000000 -.127505E+01 -.127505E+01 .507427E-06 12 

.38409 .1000000 -.136761E+01 -.136761E+01 .130539E-05 16 

.48409 .1000000 -.145288E+01 -.145288E+01 .332768E-05 20 

.54406 .0599730 -.149733E+01 -.149733E+01 .366976E-05 28 

.58875 .0446882 -.152492E+01 -.152493E+01 .380406E-05 36 

.62162 .0328730 -.154083E+01 -.154083E+01 .384765E-05 44 

.64531 .0236821 -.154923E+01 -.154923E+01 .385915E-05 52 

.66165 .0163399 -.155317E+01 -.155317E+01 .386139E-05 60 

.67217 .0105249 -.155478E+01 -.155479E+01 .386168E-05 68 

.67831 .0061345 -.155535E+01 -.155536E+01 .386170E-05 76 

.68345 .0051405 -.155561E+01 -.155561E+01 .386171E-05 84 

.68516 .0017166 -.155565E+01 -.155565E+01 .386171E-05 92 

.68636 .0011961 -.155566E+01 -.155566E+01 .386171E-05 100 

.68681 .0004558 -.155566E+01 -.155566E+01 .386171E-05 108 

.68695 .0001395 -.155566E+01 -.155566E+01 .386171E-05 120 

.68698 .0000268 -.155566E+01 -.155566E+01 .386171E-05 136 

.68701 .0000310 -.155566E+01 -.155566E+01 .386171E-05 140 

.68711 .0000961 -.155566E+01 -.155566E+01 .386171E-05 144 

.68734 .0002328 -.155566E+01 -.155566E+01 .386171E-05 148 

.68785 .0005090 -.155566E+01 -.155566E+01 .386171E-05 152 

.68885 .0010045 -.155565E+01 -.155565E+01 .386171E-05 156 

.69069 .0018337 -.155560E+01 -.155561E+01 .386171E-05 160 

.69383 .0031422 -.155546E+01 -.155546E+01 .386171E-OS 164 

.69895 .0051240 -.155504E+01 -.155504E+01 .386172E-05 168 

.70701 .0080562 -.155387E+01 -.155387E+01 .386184E-OS 172 

.71941 .0124032 -.155078E+01 -.155078E+01 .386295E-05 176 

.73860 .0191830 -.154249E+01 -.154249E+01 .387484E-05 180 

.77053 .0319317 -.151710E+01 - . 151711E+01 .408108E-05 184 

.80810 .0375717 -.146245E+01 -.146245E+01 .479280E-05 192 

.84306 .0349575 -.137756E+01 -.137757E+Ol .557572E-05 200 

.87350 .0304464 -.126574E+01 -.126574E+01 .617476E-05 208 

.90436 .0308547 -.110204E+Ol -.110205E+01 .713799E-05 212 

.9314 7 .0271094 -.90071lE+00 -.900719E+00 .788741E-05 216 

.95566 .0241886 -.659678E+00 -.659687E+00 .849461E-05 220 

.97758 .0219218 -.375328E+00 -.375337E+00 .901139E-05 224 

.99765 .0200747 -.439909E-01 -.440004E-01 .946410E-05 228 
1. 01617 .0185216 .338061E+00 .338051E+00 .986803E-05 232 

Table(4.4.7j) 

192 



Experiment 2 Investigation of integrating y(l) = -y 

from y(O) = 1 to x=20 for different values of the 

tolerance, TOL using the AM-GM method with error 

control. 
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Figure (4.4.7) : Integrating the test function from x = 
o to x = 20 for different values of tolerance using the 

RK-GM method with error control 
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Experiment 3 Substitution of the Kutta Verner 

standard formula in DVERK with the Kutta RK-GM formula. 

Problems 2,4,6 and 7 were used. The tolerance TOL was 

set at 0.1 X 10-3 • 

Problem 2 

1 : 
th 

Results from the classical RK & Kutta 4-stage 4 

order method with error control 

x Numerical Solution Exact Solution Absolute Error Time FNC 

1. 00 .367879E+00 .367879E+00 .539633E-08 .12 157 
2.00 .135335E+00 .135335E+00 .156l07E-07 .06 247 
3.00 .497871E-01 .497871E-01 .429597E-07 .04 302 
4.00 .183157E-01 .183l56E-01 .950234E-07 .02 337 
5.00 .673811E-02 .673795E-02 .167268E-06 .02 362 
6.00 .247925E-02 .247875E-02 .500959E-06 .01 377 
7.00 .912789E-03 .911882E-03 .906754E-06 .01 387 
8.00 .336062E-03 .335463E-03 .599566E-06 .00 397 
9.00 .126023E-03 .123410E-03 .261352E-05 .00 402 
10.00 .472587E-04 .453999E-04 .185882E-05 .00 407 

Table(4.4.7k) 

th 2:Results from the classical RK & RK-GM 4-stage 4 order 

method with error control 

x Numerical Solution Exact Solution Absolute Error Time FNC 

1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

.367930E+00 

.135461E+00 

.498728E-Ol 

.183617E-Ol 

.688565E-02 

.253509E-02 

.950661E-03 

.356498E-03 

.133687E-03 

.501325E-04 

.367879E+00 

.135335E+00 

.497871E-Ol 

.183156E-Ol 

.673795E-02 

.247875E-02 

.911882E-03 

.335463E-03 

.1234l0E-03 

.453999E-04 

Table(4.4.71) 

3: Results from the IMSL Routine 

.506931E-04 

.125865E-03 

. 857769E-04 

.460887E-04 

.147701E-03 

.563426E-04 

.387786E-04 

.210351E-04 

.102768E-04 

.473256E-05 

.01 

.01 

.01 

.01 

.00 

.01 

.01 

.01 

.01 

.00 

15 
25 
35 
45 
50 
60 
65 
70 
75 
80 

x Numerical Solution Exact Solution Absolute Error Time FNC 

1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

.367879E+00 

.135335E+00 

.497871E-Ol 

.183152E-Ol 

.673762E-02 

.247857E-02 

.911792E-03 

.335421E-03 

.123392E-03 

.453921E-04 

.367879E+00 

.135335E+00 

.497871E-Ol 

.183156E-Ol 

.673795E-02 

.247875E-02 

.911882E-03 

.335463E-03 

. 123410E-03 

.453999E-04 

Table(4.4.7m) 
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.418952E-08 

.671057E-08 

.437037E-08 

.450001E-06 

.331680E-06 

.183134E-06 

.898537E-07 

.413260E-07 

.182455E-07 

.783142E-08 

.01 

.01 

.01 

.00 

.01 

.01 

.01 

.01 

.01 

.00 

16 
32 
48 
56 
64 
72 
80 
88 
96 

104 



Problem 4 

1: Results from the classical RK & Kutta 4-stage 4th 

order method with error control 

x Numerical Solution Exact Solution Absolute Error Time FNC 

1. 00 .136788E+Ol .136788E+Ol .247152E-07 .09 113 
2.00 .2l3534E+Ol .2l3534E+Ol .12l996E-07 .09 238 
3.00 .304979E+Ol .304979E+Ol .638528E-08 .09 348 
4.00 .40l832E+Ol .40l832E+Ol .348820E-08 .08 448 
5.00 .500674E+Ol .500674E+Ol .189779E-08 .07 538 
6.00 .600248E+Ol .600248E+Ol .104384E-08 .06 618 
7.00 .700091E+Ol .70009lE+Ol .559230E-09 .06 693 
8.00 .800034E+Ol .800034E+Ol .28884lE-09 .05 763 
9.00 .9000l2E+Ol .9000l2E+Ol .146544E-09 .05 828 
10.00 .100000E+02 .1000OOE+02 .737526E-lO .05 888 

Table(4.4.7n) 

th 
2:Results from the classical RK & RK-GM 4-stage 4 order 

method with error control 

x Numerical Solution Exact Solution Absolute Error Time FNC 
--------------------------------------------------------
1. 00 .136790E+Ol 
2.00 .2l3545E+Ol 
3.00 .304987E+Ol 
4.00 .401870E+Ol 
5.00 .500701E+Ol 
6.00 .600263E+Ol 
7.00 .700099E+Ol 
8.00 .800037E+01 
9.00 .900014E+01 
10.00 .100001E+02 

3 : Results from the 

x 

1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

Numerical Solution 

.136788E+01 

.2l3534E+Ol 

.304979E+Ol 

.40l832E+01 

.500674E+01 

.600248E+01 

.700091E+01 

.800034E+01 

.9000l2E+01 

.100000E+02 

.136788E+Ol 

.2l3534E+Ol 

.304979E+Ol 

.401832E+Ol 

.500674E+Ol 

.600248E+Ol 

.700091E+Ol 

.800034E+01 

.9000l2E+Ol 

.1000OOE+02 

Table(4.4.7o) 

IMSL Routine 

Exact Solution 

.136788E+01 

.213534E+01 

.304979E+01 

.40l832E+Ol 

.500674E+01 

.600248E+01 

.700091E+01 

.800034E+01 

.900012E+01 

.100000E+02 

Table(4.4.7p) 

195 

.159371E-04 

.113069E-03 

.8l0657E-04 

.384911E-03 

.274759E-03 

.15l0l3E-03 

.742799E-04 

.343481E-04 

.152692E-04 

.660470E-05 

Absolute Error 

.418952E-08 

.671057E-08 

.437037E-08 

.450001E-06 

.33l680E-06 

.183134E-06 

.898537E-07 

.413260E-07 

.182455E-07 

.783142E-08 

.03 

.01 

.01 

.00 

.01 

.01 

.00 

.00 

.01 

.00 

Time 

.01 

.01 

.01 

.01 

.01 

.00 

.01 

.01 

.00 

.01 

33 
43 
53 
58 
63 
68 
73 
78 
83 
88 

FNC 

16 
32 
48 
56 
64 
72 
80 
88 
96 

104 



Problem 6 

1: Results from the classical RK & Kutta 4-stage 4th 

order method with error control 

x 

1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.0 

.294418E+00 
-.490300E+00 
-.105403E+01 
-.125000E+01 
-.105403E+01 
-.490299E+00 

.294418E+00 

.750000E+00 

.294417E+00 
-.490300E+00 

Numerical Solution 
Y2 Y3 

.812179E+00 

.939875E+00 

.575706E+00 
-.210655E-06 
-.575706E+00 
-.939875E+00 
-.812178E+00 

.462146E-06 

.812179E+00 

.939875E+00 

-.762596E+00 
-.719180E+00 
-.388829E+00 

.118433E-06 

.388830E+00 

.719180E+00 

.762596E+00 
-.538027E-06 
-.762596E+00 
-.719180E+00 

Table (4.4. 7q) 

.479233E+00 
-.172382E+00 
-.509100E+00 
-.608367E+00 
-.509100E+00 
- .172382E+00 

.479233E+00 

.101394E+01 

.479232E+00 
-.172383E+00 

Time NFC 

.36 

.32 

.28 

.28 

.27 

.27 

.31 

.33 

.34 

.32 

182 
342 
482 
622 
762 
902 

1062 
1232 
1402 
1562 

2:Results from the classical RK & RK-GM 4-stage 4th order 

method with error control 

x 

1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.0 

.294416E+00 
-.490376E+00 
-.105398E+Ol 
-.124950E+Ol 
- .105278E+Ol 
-.488217E+00 

.296660E+00 

.749806E+00 

.291466E+00 
-.493434E+00 

Numerical Solution 
Y2 Y3 

.812087E+00 

.939571E+00 

.575037E+00 
-.977888E-03 
-.576665E+00 
-.940125E+00 
-.810653E+00 

.308763E-02 

.813415E+00 

.938159E+00 

-.762683E+00 
-.719202E+00 
-.388564E+00 

.603705E-03 

.389689E+00 

.719918E+00 

.76l798E+00 
-.354989E-02 
-.764045E+00 
-.718334E+00 

Table (4 . 4 .7 r) 

3: Results from the IMSL Routine 

x 

1. 00 
2.00 
3.00 
4. 00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.0 

.294430E+00 
-.490250E+00 
-.105400E+Ol 
-.125008E+01 
-.105429E+Ol 
-.490732E+00 

.294100E+00 

.750025E+00 

.294973E+00 
-.489401E+00 

Numerical Solution 
Y2 Y3 

. 812194E+00 

.939978E+00 

.575948E+00 

.345204E-03 
-.575332E+00 
-.939623E+00 
-.812237E+00 
-.176106E-03 

.812375E+00 

.941219E+00 

-.762571E+00 
-.719158E+00 
-.388897E+00 
-.145958E-03 

.388635E+00 

.719159E+00 

.762871E+00 

.448063E-03 
-.762019E+00 
-.719227E+00 

Table(4.4.7s) 
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.479130E+00 
-.172694E+00 
-.509480E+00 
-.608577E+00 
-.508829E+00 
-.171187E+00 

.481478E+00 

.101403E+Ol 

.476280E+00 
-.175081E+00 

. 479277E+00 
-.172255E+00 
-.508965E+00 
-.608308E+00 
-.509186E+00 
- .172690E+00 

.478969E+00 

.101408E+Ol 

.479978E+00 
-.170916E+00 

Time NFC 

.12 

.15 

.03 

.04 

.04 

.03 

.20 

.07 

.09 

.16 

51 
115 
130 
149 
168 
178 
260 
288 
321 
385 

Time NFC 

.04 

.03 

.03 

.03 

.02 

.01 

.03 

.03 

.04 

.03 

24 
40 
56 
72 
80 
88 

104 
120 
144 
160 



Prob~em 7 

1: Results from the classical RK & Kutta 4-stage 4th 

order method with error control 

x 

1.00 . 627515EtOO 
2.00 .104995Et01 
3.00 .125818Et01 
4.00 .124323Et01 
5.00 .995912EtOO 
6.00 .506401EtOO 
7.00 -.236407EtOO 
8.00 -.124552EtOl 
9.00 -.253658EtOl 
10.00 -.412869Et01 

Numerical Solution 
Y2 

.446394E+00 .484640E+00 

.405429E+00 .306828EtOO 

.380484EtOO .978218E-01 

.374252EtOO -.128851EtOO 

.387238E+00 -.351464EtOO 

.417250EtOO -.550776EtOO 

.460480EtOO -.718036EtOO 

.512973EtOO -.853854E+00 

.571416EtOO -.963178EtOO 

.633281EtOO -.105167Et01 

Table(4.4.7t) 

Time NFC 

.38 157 

.28 277 

.21 367 

.21 457 

.22 552 

.31 682 

.38 842 

.54 1027 

.53 1187 

.44 1317 

2 :Results from the classical RK & RK-GM 4-stage th 4 order 

method with 

x 

error control 

Numerical Solution 
Y2 Time NFC 

--------------------------------------------------------
1. 00 .627514EtOO .446394EtOO .484640EtOO .04 15 
2.00 .104995Et01 .405429EtOO .306829EtOO .02 25 
3.00 .125818EtOl .380484EtOO .978233E-Ol .04 39 
4.00 .124322Et01 .374252EtOO -.128849EtOO .09 76 
5.00 .995910EtOO .387237EtOO -.351462E+00 .03 91 
6.00 .506407EtOO .417249E+00 -.550774EtOO .02 101 
7.00 -.236295EtOO .460477EtOO -.718025EtOO .02 106 
8.00 -.124531Et01 .512966EtOO -.853839EtOO .01 111 
9.00 -.253627Et01 .571408EtOO -.963161E+00 .01 116 
10.00 -.412829Et01 .633272EtOO -.105165Et01 .02 121 

Table(4.4.7u) 

3 : Results from the IMSL Routine 

Numerical Solution 
x Yl Y2 Y3 Time NFC 

1. 00 . 627515EtOO .446394EtOO .484640EtOO .03 16 
2.00 .104995Et01 .405429EtOO .306828EtOO .02 24 
3.00 .125818Et01 .380484EtOO .978213E-01 .01 32 
4.00 .124322Et01 .374252EtOO -.128851E+00 .02 40 
5.00 .995910EtOO .387238EtOO -.351464EtOO .02 48 
6.00 .506398EtOO .417250EtOO -.550776EtOO .02 56 
7.00 -.236411EtOO .460481EtOO -.718036EtOO .02 64 
8.00 -.124552Et01 .512973E+00 -.853854EtOO .02 72 
9.00 -.253658Et01 .571416EtOO -.963178EtOO .02 80 
10.00 -.412869Et01 . 633281EtOO -.105167E+01 .02 88 

Table(4.4.7v) 
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Experiment 4 Substitution of the Fehlberg standard 

formula in RKF45 with the RK-GM formula. Problems 2 and 

6 were used. 

Prob1em 2 

RELERR = .10E-OB 
ABSERR = .OOE+OO 

Results from RKF45 

x Numerical Solution Exact Solution 

.0 

.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0 
10.5 
11.0 
11.5 
12.0 
12.5 
13.0 
13.5 
14.0 
14.5 
15.0 
15.5 
16.0 
16.5 
17.0 
17.5 
18.0 
18.5 
19.0 
19.5 
20.0 

.100000000E+01 

.606530660E+00 

.367879441E+00 

.223130160E+00 

.135335283E+00 

.820849985E-01 

.497870683E-01 

.301973834E-01 

.183156389E-01 

.111089965E-01 

. 673794699E-02 

.408677143E-02 

.247875217E-02 

.150343919E-02 

.911881963E-03 

.553084369E-03 

.335462627E-03 

.203468368E-03 

.123409804E-03 

.748518296E-04 

.453999296E-04 

.275364492E-04 

.167017007E-04 

.101300936E-04 

.614421233E-05 

.372665316E-05 

.226032940E-05 

.137095908E-05 

.831528715E-06 

.504347660E-06 

.305902319E-06 

.185539135E-06 

.112535174E-06 

.682560334E-07 

.413993769E-07 

.251099914E-07 

.152299796E-07 

.923744960E-08 

.560279640E-08 

.339826780E-08 

.206115361E-08 

.100000000E+01 

.606530660E+00 

.367879441E+00 

.223130160E+00 

.135335283E+00 

.820849986E-01 

.497870684E-01 

.301973834E-01 

.183156389E-01 

.111089965E-01 

.673794700E-02 

.408677144E-02 

.247875218E-02 

.150343919E-02 

.911881966E-03 

.553084370E-03 

.335462628E-03 

.203468369E-03 

.123409804E-03 

.748518299E-04 

.453999298E-04 

.275364493E-04 

.167017008E-04 

.101300936E-04 

. 614421235E-05 

. 372665317E-05 

.226032941E-05 

.137095909E-05 

.831528719E-06 

.504347663E-06 

.305902321E-06 

.185539136E-06 

.112535175E-06 

.682560338E-07 

.413993772E-07 

.251099916E-07 

.152299797E-07 

.923744966E-08 

.560279644E-08 

.339826782E-08 

.206115362E-08 

Table(4.4.7w) 
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Absolute Error 

.OOOOOOOOOE+OO 

.109230291E-09 

.133512368E-09 

.121738647E-09 

.985598270E-10 

.747739926E-10 

.544473217E-10 

.385401329E-10 

.267214827E-10 

.182366813E-10 

.122919166E-10 

.820195734E-ll 

.542753256E-ll 

.356659580E-ll 

.232982383E-ll 

.151414103E-ll 

.979652069E-12 

.631356729E-12 

.405480960E-12 

.259609866E-12 

.165754549E-12 

.105565245E-12 

.670794359E-13 

.425361938E-13 

.269218555E-13 

.170096731E-13 

.107297793E-13 

.675837212E-14 

.425105624E-14 

.267052463E-14 

.167563440E-14 

.105021595E-14 

.657544702E-15 

.411288772E-15 

.257021864E-15 

.160478541E-15 

.100117226E-15 

.624115266E-16 

.388779454E-16 

.242014221E-16 

.150554196E-16 

NFC 

1 
67 

127 
187 
247 
307 
367 
427 
487 
547 
607 
667 
727 
787 
847 
907 
967 

1027 
1087 
1147 
1207 
1267 
1327 
1387 
1447 
1507 
1567 
1627 
1687 
1747 
1807 
1867 
1927 
1987 
2047 
2107 
2167 
2227 
2287 
2347 
2407 



Results from RKGM44 

x Numerical Solution Exact Solution Absolute Error NFC 
--------------------------------------------------------

.0 .lOOOOOOOOEtOl .lOOOOOOOOEt01 .000000000EtOO 1 

.5 .606530672EtOO .606530660EtOO .119927582E-07 49 
1.0 .367879459EtOO .367879441EtOO .174246161E-07 89 
1.5 .223130177EtOO .223130160EtOO .167640901E-07 129 
2.0 .135335297EtOO .135335283EtOO .139058159E-07 169 
2.5 .820850093E-01 .820849986E-01 .107108639E-07 209 
3.0 .497870762E-01 .497870684E-01 .787252005E-08 249 
3.5 .301973890E-01 .301973834E-01 .561181949E-08 289 
4.0 .183156428E-Ol .183156389E-01 .391020614E-08 329 
4.5 .111089992E-01 .111089965E-01 .267939583E-08 369 
5.0 .673794881E-02 . 673794700E-02 .181151460E-08 409 
5.5 .408677265E-02 .408677144E-02 .121191589E-08 449 
6.0 .247875298E-02 .247875218E-02 .803643984E-09 489 
6.5 .150343972E-02 .150343919E-02 .529062311E-09 529 
7.0 .911882312E-03 .911881966E-03 .346125250E-09 569 
7.5 .553084595E-03 .553084370E-03 .225247657E-09 609 
8.0 .335462774E-03 .335462628E-03 .145903093E-09 649 
8.5 .203468463E-03 .203468369E-03 .941272558E-IO 689 
9.0 .123409865E-03 .123409804E-03 .605064813E-IO 729 
9.5 .748518687E-04 .748518299E-04 .387710322E-IO 769 

10.0 .453999545E-04 .453999298E-04 .247723319E-IO 809 
10.5 .275364651E-04 .275364493E-04 .157873981E-10 849 
11. 0 .167017108E-04 .167017008E-04 .100377983E-10 889 
11.5 .101301000E-04 .101300936E-04 .636863125E-ll 929 
12.0 .614421639E-05 .614421235E-05 .403282805E-ll 969 
12.5 .372665572E-05 .372665317E-05 .254918535E-ll 1009 
13.0 .226033102E-05 .226032941E-05 .160872061E-ll 1049 
13.5 .137096010E-05 .137095909E-05 .101368534E-ll 1089 
14.0 .831529357E-06 .831528719E-06 .637846514E-12 1129 
14.5 .504348063E-06 .504347663E-06 .400833291E-12 1169 
15.0 .305902572E-06 .305902321E-06 .251584569E-12 1209 
15.5 .185539294E-06 .185539136E-06 .157729268E-12 1249 
16.0 .112535274E-06 .1l2535175E-06 .987824414E-13 1289 
16.5 .682560956E-07 .682560338E-07 .618038243E-13 1329 
17.0 .413994158E-07 .413993772E-07 .386317890E-13 1369 
17.5 .251100157E-07 .251099916E-07 .241263777E-13 1409 
18.0 .152299948E-07 .152299797E-07 .150549321E-13 1449 
18.5 .923745905E-08 .923744966E-08 .938695870E-14 1489 
19.0 .560280229E-08 .560279644E-08 .584855591E-14 1529 
19.5 .339827146E-08 .339826782E-08 . 364138811E-14 1569 
20.0 .206115589E-08 .206115362E-08 .226566345E-14 1609 

Table(4.4.7x) 
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Problem 6 
RELERR = .lOE-04, ABSERR = .OOE+OO 

Results from RKF45 
x 

.0 

.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 
10.5 
11. 0 
11.5 
12.0 

.750000000E+00 .OOOOOOOOOE+OO 

.619767068E+00 .477791194E+00 

.294414200E+00 .812176162E+00 
-.105182402E+00 .958032935E+00 
-.490307436E+00 .939865968E+00 
-.813950377E+00 .799577611E+00 
-.105403733E+01 .575689270E+OO 
-.120073792E+01 .300141410E+00 
-.124999925E+01 -.203220177E-04 
-.120073054E+01 -.300180438E+00 
-.105402372E+01 -.575723620E+00 
-.813932812E+00 -.799604771E+00 
-.490289189E+00 -.939884469E+00 
-.105167252E+00 -.958042932E+00 

.294423177E+00 -.812179506E+00 

.619768334E+00 -.477789287E+00 

.749992743E+00 .519256401E-05 

.619749395E+00 .477797051E+00 

.294384015E+00 .812175304E+00 
-.105220979E+00 .958018385E+00 
-.490347442E+00 .939834876E+00 
-.813985082E+00 .799530758E+00 
-.105406135E+01 .575629678E+00 
-.120074734E+01 .300073386E+00 
-.124999155E+01 -.916976293E-04 

Table(4.4.7y) 

Results from RKGM44 
x 

.0 .750000000E+00 .OOOOOOOOOE+OO 

.5 .619889683E+00 .476891715E+00 
1.0 .294371048E+00 .810342931E+00 
1.5 -.105820308E+00 .954515800E+OO 
2.0 -.491257114E+00 . 933523687E+00 
2.5 -.814175266E+00 .789461516E+00 
3.0 -.105198408E+01 .561354343E+00 
3.5 -.119456309E+01 .281781047E+00 
4.0 -.123774775E+01 -.214859845E-01 
4.5 -.118050702E+01 -.322990982E+00 
5.0 -.102422819E+01 -.597104235E+OO 
5.5 -.773678543E+00 -.815524725E+OO 
6.0 -.440221688E+00 -.944820297E+00 
6.5 -.490553995E-0l -.945112714E+00 
7.0 .347092196E+OO -.774931255E+OO 
7.5 .652291257E+00 -.416360037E+00 
8.0 .746470302E+00 .702246288E-01 
8.5 .581257348E+00 .532921413E+00 
9.0 .236039898E+00 .838300231E+OO 
9.5 - .168397143E+00 .952932064E+00 

10.0 -.547661917E+00 .906117222E+00 
10.5 -.857639536E+00 .741077913E+00 
11. 0 - .107769430E+01 .496996055E+00 
11.5 -.119875599E+01 .206688531E+00 
12.0 -.121736269E+01 -.101479029E+00 

Table (4.4. 7z) 
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NFC 

1 
29 
41 
53 
65 
77 
89 

101 
113 
125 
137 
149 
161 
173 
185 
197 
215 
233 
245 
257 
269 
281 
293 
305 
317 

NFC 

1 
5 
9 

13 
17 
21 
25 
29 
33 
37 
41 
45 
49 
53 
57 
61 
65 
69 
73 
77 
81 
85 
89 
93 
97 



Experiment 5 Substitution of the Kutta Merson 

standard formula in D02YAF with the AM-GM formula. 

Problems 2,7 and 8 were used. 

Problem 2 

Results from D02BBF 

Calculation with TOL = .lE-02 
x and solution at equally spaced points 

x Computed Solution Exact Solution 

.00 .10000000E+Ol .10000000E+Ol 
1.00 .36796495E+00 .36787940E+00 
2.00 .13538523E+00 .13533530E+00 
3.00 .49811389E-Ol .49787070E-Ol 
4.00 .18325715E-Ol .183l5640E-Ol 
5.00 .6726l683E-02 .67379470E-02 
6.00 .24306972E-02 .24787520E-02 
7.00 .87849704E-03 .911882l0E-03 
8.00 .3216275lE-03 .33546260E-03 

IFAIL 0 
Table(4.4.7aa) 

Calculation with TOL = .lE-03 
x and solution at equally spaced points 

x Computed Solution Exact Solution 

.00 .10000000E+Ol .10000000E+Ol 
1. 00 .36790l86E+00 .36787940E+00 
2.00 .13536003E+00 .13533530E+00 
3.00 .49804650E-Ol .49787070E-Ol 
4.00 .18325208E-Ol .183l5640E-Ol 
5.00 .67422989E-02 .67379470E-02 
6.00 .24800357E-02 .24787520E-02 
7.00 .9l2274l5E-03 .911882l0E-03 
8.00 .33545629E-03 .33546260E-03 

IFAIL 0 
Table(4.4.7ab) 

Calculation with TOL = .lE-04 
x and solution at equally spaced points 

x 

.00 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 

Computed Solution 

.10000000E+Ol 

.36788436E+00 

.13534067E+00 

.49792005E-Ol 

.183l9082E-Ol 

.67402237E-02 

.24800295E-02 

.9l256l52E-03 

.33596529E-03 

IFAIL 0 

Exact Solution 

.10000000E+Ol 

.36787940E+00 

.13533530E+00 

.49787070E-Ol 

.183l5640E-Ol 

.67379470E-02 

.24787520E-02 

.911882l0E-03 

.33546260E-03 

Table(4.4.7ac) 
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Absolute Error 

.OOOOOOOOE+OO 

.85499l90E-04 

.4995l740E-04 

.24322440E-04 

.10075480E-04 

. 11778730E-04 

.48055080E-04 

.33384940E-04 

.13835l20E-04 

Absolute Error 

.OOOOOOOOE+OO 

.22406850E-04 

.24752720E-04 

.17583530E-04 

.95683550E-05 

.435l86l0E-05 

.12833940E-05 

.392l7260E-06 

.63371990E-08 

Absolute Error 

.OOOOOOOOE+OO 

.49l20900E-05 

.53886090E-05 

.49377700E-05 

.34423050E-05 

.22767450E-05 

.12772290E-05 

.67955050E-06 

.502662l0E-06 



Results from RKGM44 

Calculation with TOL = .lE-02 
x and solution at equally spaced points 

x Computed Solution Exact Solution 

.00 .10000000E+Ol .1000OOOOE+Ol 
1. 00 .36787944E+00 .36787940E+00 
2.00 .13533528E+00 .13533530E+OO 
3.00 .49787068E-Ol .49787070E-Ol 
4.00 .183l5639E-Ol .18315640E-Ol 
5.00 .67379535E-02 .67379470E-02 
6.00 .24788007E-02 .24787520E-02 
7.00 .91213465E-03 .91188210E-03 
8.00 .33600717E-03 .33546260E-03 

IFAIL 0 
Table (4.4. 7ad) 

Calculation with TOL = .lE-03 
x and solution at equally spaced points 

x Computed Solution Exact Solution 

.00 .10000000E+Ol .10000000E+Ol 
1.00 .36787944E+00 .36787940E+00 
2.00 .13533528E+00 .13533530E+00 
3.00 .49787068E-Ol .49787070E-Ol 
4.00 .18315639E-Ol .18315640E-Ol 
5.00 .67379470E-02 .67379470E-02 
6.00 .24787522E-02 .24787520E-02 
7.00 .91188231E-03 .91188210E-03 
8.00 .33546482E-03 .33546260E-03 

I FAIL 0 
Table(4.4.7ae) 

Calculation with TOL = .lE-04 
x and solution at equally spaced points 

x Computed Solution Exact Solution 

.00 
1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 

.lOOOOOOOE+Ol 

.36787944E+00 

.l3533528E+00 

.49787068E-Ol 

.183l5639E-Ol 

.67379470E-02 

.24787522E-02 

.91188197E-03 

.33546263E-03 

IFAIL 0 

.10000000E+Ol 

.36787940E+00 

.13533530E+00 

.49787070E-Ol 

.18315640E-Ol 

.67379470E-02 

.24787520E-02 

.911882l0E-03 

.33546260E-03 

Table(4.4.7af) 

202 

Absolute Error 

.OOOOOOOOE+OO 

.91496190E-08 

.l7479400E-08 

.15345870E-08 

.14437950E-09 

.65383120E-08 

.48380780E-07 

.25267300E-06 

.54454480E-06 

Absolute Error 

.OOOOOOOOE+OO 

.91497550E-08 

.17453330E-08 

.14909810E-08 

.45799620E-09 

.26804160E-ll 

.80731060E-IO 

.33250880E-09 

.21973290E-08 

Absolute Error 

.OOOOOOOOE+OO 

.91497550E-08 

.17453330E-08 

.14909770E-08 

.45810380E-09 

.75775670E-12 

.10857130E-09 

.69348740E-ll 

.49373470E-ll 



Results from D02BAF 

Calculation with TOL = .lE-02 

x Computed Solution Exact Solution 

.00 .10000000E+Ol 
8.00 .32162751E-03 .33546260E-03 
IFAIL 0 

Calculation with TOL = .lE-03 

x 

.00 
8.00 

Computed Solution 

.10000000E+Ol 

.33545629E-03 

IFAIL 0 

Exact Solution 

.33546260E-03 

Calculation with TOL = .lE-04 

x 

.00 
8.00 

Computed Solution 

.10000000E+Ol 

.33596529E-03 

Results from RKGM44 

Exact Solution 

.33546260E-03 

Table(4.4.7ag) 

Calculation with TOL= .lE-02 

x Computed Solution Exact Solution 

.00 .10000000E+Ol 
8.00 .33600717E-03 .33546260E-03 
IFAIL = 0 

Calculation with TOL= .lE-03 

x Computed Solution Exact Solution 

.00 .10000000E+Ol 
8.00 .33546482E-03 .33546260E-03 
IFAIL = 0 

Calculation with TOL= .lE-04 

x Computed Solution Exact Solution 

.00 .10000000E+Ol 
8.00 .33546263E-03 .33546260E-03 
IFAIL = 0 

Table(4.4.7ah) 

203 

Absolute Error 

.13835120E-04 

Absolute Error 

.63371990E-08 

Absolute Error 

.50266210E-06 

Absolute Error 

.54454480E-06 

Absolute Error 

.21973240E-08 

Absolute Error 

.49373540E-ll 



Problem 7 

Results from D02BBF 

Calculation with TaL = .lE-02 
x 

.00 
1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 

.OOOOOE+OO 

.62692E+00 

.10490E+Ol 

.12573E+Ol 

.12423E+Ol 

.99526E+00 

.50661E+00 
-.23564E+00 
-.12441E+Ol 

.50000E+00 

.44644E+00 

.40548E+00 

.38053E+00 

.37428E+00 

.38724E+00 

.41720E+00 

.46041E+00 

.51288E+00 

Table(4.4.7ai) 

Calculation with TaL = .lE-03 
x 

.00 
1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 

.OOOOOE+OO 

.62751E+00 

.10499E+Ol 

.12581E+Ol 

.12432E+Ol 

.99589E+00 

.50643E+00 

.50000E+00 

.44639E+00 

.40543E+00 

.38049E+00 

.37425E+00 

.38724E+00 

.41725E+00 

Table(4.4.7aj) 

Results from RKGM44 

Calculation with TaL = .lE-02 
x 

.00 
1. 00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 

.OOOOOE+OO 

.62751E+00 

.10500E+Ol 

.12582E+Ol 

.12432E+Ol 

.99591E+00 

.50640E+00 
-.23641E+00 
-.12455E+Ol 

.50000E+00 

.44639E+00 

.40543E+00 

.38048E+00 

.37425E+00 

.38724E+00 

.41725E+00 

.46048E+00 

.51297E+00 

Table(4.4.7ak) 

Calculation with TaL = .lE-03 
x 

.00 
1. 00 
2.00 
4.00 
5.00 
6.00 
7.00 
8.00 

.OOOOOE+OO 

.62751E+00 

.10500E+Ol 

.12432E+Ol 

.99591E+00 

.50640E+00 
-.23641E+00 
-.12455E+Ol 

.50000E+00 

.44639E+00 

.40543E+00 

.37425E+00 

.38724E+00 

.41725E+00 

.46048E+00 

.51297E+00 

Table(4.4.7al) 
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.62857E+00 

.48496E+00 

.30698E+00 

.98060E-Ol 
-.12849E+00 
-.35l22E+00 
-.55049E+00 
-.71775E+00 
-.85360E+00 

.62857E+00 

.48464E+00 

.30683E+00 

.97830E-Ol 
-.12884E+00 
-.35145E+00 
-.55076E+00 

.62857E+00 

.48464E+00 

.30683E+00 

. 97822E-Ol 
-.12885E+00 
-.35146E+00 
-.55078E+00 
-.71804E+00 
-.85385E+00 

.62857E+00 

.48464E+00 

.30683E+00 
-.12885E+00 
-.35146E+00 
-.55078E+00 
-.71804E+00 
-.85385E+00 



Results from D02BAF 

Tolerance used, TOL = .lE-02 

x 

.00 
8.00 

IFAIL 0 

.OOOOOOOOE+OO 
-.12440529E+Ol 

.50000000E+00 

.51287614EtOO 

Tolerance used, TOL = .lE-03 

x 

.00 
8.00 

IFAIL 0 

.00000000EtOO 
-.12454177E+Ol 

.50000000EtOO 

.51296657EtOO 

Tolerance used, TOL = .lE-04 

x 

.00 
8.00 

IFAIL 0 

.OOOOOOOOE+OO 
-.12455092E+Ol 

Results from RKGM44 

.50000000EtOO 

.51297191E+00 

Table(4.4.7am) 

Tolerance used, TOL = .lE-02 

x 

.00 
8.00 

IFAIL 0 

.OOOOOOOOE+OO 
-.12455199E+Ol 

.50000000E+00 

.51297257E+00 

Tolerance used, TOL = .lE-03 

x 

.00 
8.00 

IFAIL = 0 

.OOOOOOOOE+OO 
-.12455199E+Ol 

Tolerance used, TOL 

x 

.00 
8.00 

IFAIL 0 

.OOOOOOOOE+OO 
-.12455199E+Ol 

.50000000E+00 

.51297257E+00 

.lE-04 

.50000000E+00 

.51297257EtOO 

Table(4.4.7an) 
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. 62857144E+00 
-.85360339E+00 

.62857144EtOO 
-.85384173E+00 

. 62857144E+00 
-.85385267E+00 

.62857144E+00 
-.85385403E+00 

. 62857144E+00 
-.85385403EtOO 

. 62857144E+00 
-.85385403EtOO 



Problem 8 

Tolerance used, TOL= .lE-OS 

Results from D02BDF 

X AND SOLUTION .13478 
CURRENT ERROR ESTIMATES 
MAXIMUM ERROR ESTIMATES 

.99475 
.4SE-06 
.48E-06 

NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .27038 .98974 
CURRENT ERROR ESTIMATES .19E-OS 
MAXIMUM ERROR ESTIMATES .19E-OS 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .30000 
CURRENT ERROR ESTIMATES 
MAXIMUM ERROR ESTIMATES 

.98867 
.23E-OS 
.23E-OS 

NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR .9126 

Table(4.4.7ao) 
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.00004 .00521 
.13E-OS -.18E-OS 
.1SE-OS -.18E-OS 
1. 73. 53. 

.00003 .01023 
-.29E-06 -.16E-OS 

.1SE-OS -.31E-OS 
1. 148. 53. 

.00003 .01129 
-.71E-07 -.22E-OS 

.1SE-OS -.3SE-OS 
1. 164. 53. 



Results from RKGM44 

X AND SOLUTION .03665 .99854 
CURRENT ERROR ESTIMATES .10E-12 
MAXIMUM ERROR ESTIMATES .10E-12 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .07852 .99691 
CURRENT ERROR ESTIMATES .10E-12 
MAXIMUM ERROR ESTIMATES .10E-12 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .12108 .99527 
CURRENT ERROR ESTIMATES .98E-13 
MAXIMUM ERROR ESTIMATES .10E-12 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .16437 .99363 
CURRENT ERROR ESTIMATES .96E-13 
MAXIMUM ERROR ESTIMATES .10E-12 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .20838 .99200 
CURRENT ERROR ESTIMATES .95E-13 
MAXIMUM ERROR ESTIMATES .10E-12 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .25313 .99036 
CURRENT ERROR ESTIMATES . 93E-13 
MAXIMUM ERROR ESTIMATES .10E-12 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 
X AND SOLUTION .29864 
CURRENT ERROR ESTIMATES 
MAXIMUM ERROR ESTIMATES 

.98872 
.92E-13 
.10E-12 

NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR 1.0000 

X AND SOLUTION .30000 .98867 
CURRENT ERROR ESTIMATES .92E-13 
MAXIMUM ERROR ESTIMATES .10E-12 
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE 
STIFFNESS FACTOR .5000 

Table (4.4.7ap) 
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.00004 .00142 
-.60E-15 -.10E-12 

.92E-09 -.92E-09 
5. 1. O. 

.00004 .00306 
-.63E-15 -.99E-13 

.92E-09 -.92E-09 
5. 1. O. 

.00004 .00469 
-.66E-15 -.97E-13 

.92E-09 -.92E-09 
5. 1. O. 

.00004 .00633 
-.69E-15 -.96E-13 

.92E-09 -.92E-09 
5. 1. O. 

.00004 .00797 
-.72E-15 -.94E-13 

.92E-09 -.92E-09 
5. 1. O. 

.00003 .00961 
-.76E-15 -.93E-13 

.92E-09 -.92E-09 
5. 1. O. 

.00003 .01124 
-.79E-15 -.91E-13 

.92E-09 -.92E-09 
5. 1. O. 

.00003 .01129 
-.59E-15 -.91E-13 

.92E-09 -.92E-09 
5. 1. O. 



4 .5 RK-GM METHOD FOR SYSTEM OF . ODES 

In this section we shall investigate the feasibility of 

extending the RK-GM methods to systems of ODEs. Before 

we deal with the RK-GM method, we shall first discuss 
CM 

how can the classical RK method~ be used to solve a 

system of ODEs. 

Consider the classical RK method of order four given by 

Yn +1 = Y n + ~ [k1 + 2 (k2 + k3) + k4 ] (4.5-1) 

where, 

kl f (xnt Yn ) 

h hkl 
k2 f (xn+ '2:- Yn+ -) 2 

(4.5-1a) 

k3 f (Xn+ 
h hk2 
2' Yn+ -) 2 

k4 f (xn+ h'Yn+ hk3) 

is used to solve the first-order initial-value problem 

(4.1-1). We shall now extend (4.5-1) and (5.4-1a) to 

solve the system of first-order differential equations 

(3.2.1-8) as follows. 

Choose an integer N> 0 and as usual set h = (b-a) IN. The 

interval [a,b] is partitioned into N subintervals with 

mesh points such that for each j = 0,1, ... ,N 

(4.5-2) 

Let Yi,j denote the approximation of zi (Xj) for each j = 

0,1, ... ,N and i = 1,2, ... ,m; that is Yi,j approximates the 

ith solution zi(x) of (3.2.1-8) at the jth mesh point Xj' 

For the initial conditions, set 
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(4.5-3) 

YrrfJ = ~ 

Suppose the values YI,j' Y2,j' ••• ' Ym,j have been computed, 

then YI,j+1' Y2,j+1' ••• ' Ym,j+1 can be obtained by first 

calculating the following quantities 

(4.5-4a) 

for each i = 1,2, ... , m; 

for each i = 1, 2, ... , m; 

for each i = 1,2, ... , m; 

for each i = 1,2, ... ,m; 

and then 

(4.5-4e) 

for each i = 1,2, ... ,m. 

We note that k I}., kl,2' ••. ' kJ,m must all be computed before 

k2,1 can be calculated. In general, each ks,l' k s,2f ••• ' k,.m 

must be determined before any of the expression ks+~i. 

We shall now adopt the technique to extend the RK-GM 

methods to solve systems of first-order initial-value 

problems defined by (3.2.1-8). We shall first consider 
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the extension of the second-order RK-GM method (4.3.1-

20h) to deal with the system of equations defined by 

(3.2.1-8). By using the same notation given earlier in 

this section, for the second-order RK-GM method (4.3.1-

20h) when applied to (3.2.1-8), we obtain the following 

algorithm. 

Let Yi,j be the approximation of zi (Xj) for each j = 

0,1, '" ,N and i = 1,2, ... ,m. Let the initial conditions 

be given by (4.5-3). 

Suppose the values of Yl,j' Y2,j' ... , Ymil have been computed, 

then the values of Yl,j+l' Y2,j+lf ... , YmJ+1 can be obtained by 

first calculating 

for each i = 1,2, ... ,m; 

(4.5-4b) 

for each i = 1, 2, ... ,m; 

and then 

(4.5-5c) 

for each i = 1,2, ... ,m. 

As noted earlier, we have to compute each ks,1' ks2' ... ,ks,m 

before any of the expression kS+l,lf k s+1,2' ... , kS+1,m can be 

obtained. 

Next we consider the extension of the third-order RK-GM 

method (4.3.2-4) to deal with systems of equations. To 

illustrate the idea, we shall consider the system of two 

equations of the form 

y(1) = fl (x,y,z) } (4.5-6) 
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By the application of (4.3.2-4) to (4.5-6) we therefore 

obtain 

3 
w6...Jk1k3} , Yi+1 = Yi + h { L wsks + w4...Jk1 k2 + WS...Jk3k2 + 

s=l 
(4.5-7a) 

and 

zi+l = zi + 
3 

h { L wsls + w4...J 1112 + Ws...J 1312 + w6...Jl113} , 
s=l 

(4.5-7b) 

where 

(4.5-7c) 

Now (4.5-7a) and (4.5-7b) may be written in vector form 

as 

(4.5-7d) 

where 
1 

W2 

Ci+l) , c:) , 
W3 

Y i+1,2 = YJ,2 = w = 
zi+l w4 

Ws 

w6 

and 
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k1 11 

k2 12 

k3 13 

K6X2 = 
--}k1 k2 --} 1112 

--}k3k 2 --} 131 2 

--}k1k 3 --}1113 

Hence we can write (4.5-7c) in vector notation as 

T 
= f(xi' YJ,2) 

(4.5-7e) 

Now we can easily extend the idea above to a system of m 

equations as follows. By deduction, we have from (4.5-

7d) 

(4.5-8) 

where 
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k 1,1 k1,2 kll" 

k2,l k2,2 k~m 

k31 
I 

k~2 k:jm 

K6Xm = 
...Jk~l k2;< ...Jkl,2k~2 ...Jk~mk~m 

...Jk2/1 k3,1 ...J k2,2 k 3,2 ...Jk~k3,m 

...Jk3,l k~l ...Jk~2k1,2 ...Jk~mk~ 

and 

T 
k~m = f(xi'Y~m) 

T T 
k2,m = f (xi+Clh, YJ,m+a2,lhk~m) (4.5-9) 

k3/R 
T T T 

f (xi +c2h, Y J,m +a3,lhk~m+a3,2hk2,m) 

The remaining RK-GM methods can similarly be extended to 

ODE systems. However to maintain accurate results, we 

have to examine the accuracy of every component of the 
numerical solution Y~m. If any of the components fail to 

be sufficiently accurate, the entire numerical solution 
Y~m must be recomputed. Since the RK-GM methods involve 

the computation of square roots, the truncation error 

introduced may be amplified. We therefore recommend for 

the method to be suitable only for systems of small 

orders and perhaps those which involve squared terms. We 

should also note that the function f should always 

maintain the same sign in its interval of evaluation in 

order for the method to be valid, otherwise there will 

be an evaluation of the square root of a negative term. 

Thus some form of error control needs to be incorporated 

into the algorithm. One possible and easy way of 

ensuring that the function is always of the same sign is 

to maintain the function to be on the same side of the 

x-axis. If there is a change in sign of the function, 
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then the step size is reduced until the two neighbouring 

values of the function are of the same sign again. 

The convergence theorems and error estimates for systems 

of ODEs are similar to those for the single equation, 

except that the bounds are given in terms of vector 

norms (Gear[1971]). 

4 .5. 1 NUMERICAL RESULTS FOR SYSTEMS 
Problem flex) = -ul U 2 , 

f2 (x) = 1.00. 
2 

-x 12 Exact solution u l (x) = e . 
u2 = x. 

Initial conditions x = 0, ul(O) = 1, u 2 (0) = O. 

x w (1, j+1) w(2,j+1) u(l,x) 

.00 .1000000000E+01 .OOOOOOOOOOE+OO .1000000000E+Ol 

absolute error 

GM .10 .1000000000E+01 .1000000000E+00 .9950124792E+OO .49875E-02 
RK .9950000000E+00 .1000000000E+00 .12479E-04 

GM .20 .9859287527E+00 .2000000000E+00 .9801986733E+OO .57301E-02 
RK .9801579167E+00 .2000000000E+00 .40757E-04 

GM .30 .9620212510E+00 .3000000000E+00 .9559974818E+OO .60238E-02 
RK .9559153442E+00 .3000000000E+00 .82138E-04 

GM .40 .9291995447E+00 .4000000000E+OO .9231163464E+OO .60832E-02 
RK .9229840606E+00 .4000000000E+OO .13229E-03 

GM .50 .8884840606E+00 .5000000000E+00 .8824969026E+OO .59872E-02 
RK .8823112297E+00 .5000000000E+00 .18567E-03 

GM .60 .8410519914E+00 .6000000000E+00 .8352702114E+00 .57818E-02 
RK .8350340529E+00 .6000000000E+00 .23616E-03 

GM .70 .7882060772E+00 .7000000000E+OO .7827045382E+00 .55015E-02 
RK .7824269076E+00 .7000000000E+00 .27763E-03 

GM .80 .7313240236E+00 .8000000000E+00 .7261490371E+00 .51750E-02 
RK .7258444017E+00 .8000000000E+00 .30464E-03 

GM .90 .6718030534E+00 .9000000000E+00 .6669768109E+00 .48262E-02 
RK .6666638882E+00 .9000000000E+OO .31292E-03 

GM 1.0 .6110058050E+00 .1000000000E+01 .6065306597E+00 .44751E-02 
RK .6062308067E+00 .1000000000E+01 .29985E-03 

Table (4.S.1a): Comparison of the RK and RK-GM methods 

(both of second-order) to solve systems of first-order 

ODEs. 
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x w(l,j+1) w(2,j+1) u(l,x) absolute error 

.00 .100000000E+01 .OOOOOOOOOE+OO .100000000E+01 

GM .10 .995988587E+OO .100000000E+00 .995012479E+00 .9761E-03 
RK .995012479E+00 .100000000E+00 .2602E-10 

GM .20 .981301132E+00 .200000000E+00 .980198673E+00 • 1102E-02 
RK .980198673E+00 .200000000E+00 .2526E-09 

GM .30 .957150973E+00 .300000000E+00 .955997482E+00 • 1153E-02 
RK .955997481E+00 .300000000E+00 .8050E-09 

GM .40 .924281083E+00 .400000000E+00 .923116346E+00 . 116SE-02 
RK .923116345E+00 .400000000E+00 .1581E-08 

GM .50 .883645264E+OO .500000000E+00 .882496903E+00 . 1148E-02 
RK .882496901E+00 .500000000E+00 .2050E-08 

GM .60 .836381164E+00 .600000000E+00 .835270211E+00 • 111lE-02 
RK .835270210E+00 .600000000E+00 .1053E-08 

GM .70 .783761749E+00 .700000000E+00 .782704538E+00 .1057E-02 
RK .782704542E+00 .700000000E+00 .3326E-08 

GM .80 .727140084E+OO .800000000E+00 .726149037E+00 .9910E-03 
RK .726149051E+00 .800000000E+00 .1379E-07 

GM .90 .667892765E+OO .900000000E+OO .666976811E+00 .9160E-03 
RK .666976845E+00 .900000000E+00 .3367E-07 

GM 1. 00 .607365774E+00 .100000000E+01 .606530660E+OO .8351E-03 
RK .606530726E+OO .100000000E+01 .6669E-07 

Table (4.S.1b): Comparison of the RK and RK-GM methods 

(both of fourth-order) to solve systems of first-order 

ODEs for h = 0.1. 

4.6 CONCLUSIONS AND RECOMMENDATIONS 

In this chapter we have derived the second,.., third- and 

fourth-order RK-GM methods. Numerical results show that 

they are worthy of further investigations. Thus we 

proceed with the study of the error control strategy 

using the RK-GM fourth-order method. 

From the numerical results obtained, the error control 

strategy implementation of the 

be less accurate compared 

AM-GM method appears to 

with its RK-Fehlberg 

counterpart. This is expected because the RK-Fehlberg 

method is of one order higher. However, the AM-GM method _.----------=--
requires only four function evaluations per step in 

contrast to the six function evaluations per step in the 
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case of the RK-Fehlberg method. This may have some 

advantages for equations with complicated functions and 

large order systems. / 

The investigation of integrating y(ll = -y for various 

values of the tolerance using the RK-GM method shows 

that the method is good for low accuracy only. It could 

form the basis of an integrating strategy in conjunction 

with extrapolation methods (Sanugi[1986]). 

The use of classical Runge-Kutta and Kutta fourth-order 

four-stage formulae in an embedded method incorporating 

error control involves a substantial amount of work in 

function evaluations. However, the accuracy of the 

results shows_the_.met.h.od to be competitive. This may be 
'"'--, "---"-. ~-... --.---.--"" .. -"--.,- .. ,.--,-.--.,,--.-".--~-

due to the fact that the two formulae use different 
values of the ki' . hence the increased work. 

> 

The numerical results obtained from experiment 5 

indicate that the AM-GM method could be more accurate 

than the Kutta-Merson method. The reason may be that the 

AM-GM method uses a smaller step-size than the Kutta 

Merson method. However, this may incur excessive work. 

Results of problem 8 in this experiment are self­

explanatory. 

The RK-GM formulae have been investigated as to their 

suitability for consideration to be included in embedded 

ordinary differential equation methods. The idea appears 

to be attractive because of their simplicity and ease of 

programmability. However the results are not so 

convincing when compared with the more well known 

methods. Nevertheless, the investigation is worthwhile 

as confirmed by the experimental results. 
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CHAPTER 5 
NUMERICAL SOLUTION OF 
PROBLEMS INVOLVING ODES -
GM MULTISTEP METHODS 

S.l INTRODUCTION 

Suppose that we are given 

problem, 

th a p -order 

(p) (1) (p-1) 
y =f(x,y,y , ... ,y ), 

initial- value 

(5.1-1) 

with initial conditions Xo ~ (Xo, y (xo) = Yo, y(1) (xo) = y~1), 

(p-1) (p-1) 
... , y (xo) = Yo . 

In this Chapter we shall seek to obtain an approximation 
of y (xn+l) as a GM combination of the values Ynr···' Yn-k-1 

and of the derivatives computed at Yn+1, Yn,"" Yn-k-1' 

Thus, 

for some fixed numbers (Xlr (X2, 

P(}k-1 and P1,!' ... , Pk-J,k-1. 

(5.1-2) 

... , 

It may happen, of course, that (Xk or PJ,k-1 is zero, but 

we assume that this is not the case for methods of order 

k. Under the assumption that k cannot be so reduced, the 

method given by (5.1-2) is known as a non linear k-step 

method or a GM multistep method. 

If all the cross coefficients PJ,j are equal to zero for i 

'" j, then (5.1-2) will be reduced to the linear k-step 

method. On the other hand, if all the coefficients P~ 

are zero for i = j, then (5.1-2) will be reduced to the 

GM multistep method of the form 



Yn+1 = U1Yn + U2 Yn-r!····+UkYn-k-1 
k-1 .!. 

+ h ~ ~J,j [f (Yn-i) f (Yn-j) ] 2. 
i,j:O 
h'j 

(5.1-2a) 

Note that (5.1-2) may give rise to either an explicit or 

implicit method depending on the value of ~O,j' j = 

0,1, ... , k-l. If all ~O,ji j = 0,1, ... , k-1 are zero, then 

the method is said to be explicit; otherwise it is 

implici t. For an explicit method Yn can be computed 

directly from (5.1-2), while in the implicit case, we 

have to solve an equation of the form 

Yn - h~opf(Yn) = v, 

where v is independent of Yn and is given by 

k-1 
V ~ [UiYn-i + h~~if (Yn-i) 1 • 

i:1 

(5.1-3) 

For a nonlinear function f, (5.1-3) requires the 

solution of a polynomial equation. If f has a small 

Lipschitz constant, then 

point iteration as the 
01 z , ... , where, for j:2:1, 

(5.1-3) can be solved by fixed­
(01 limit of the sequence z , 

z (jl is obtained as 

In the case of stiff problems, where the Lipschitz 

constant is necessarily large, this iterative method is 

not convergent 'and it is necessary to use some variant 

of the Newton method (Butcher[1987]). Another possible 

approach to using implicit methods is in the context of 

predictor-corrector pairs. 

5.2 NUMERICAL METHODS FOR FIRST -ORDER ODES 

Consider (5.1-1) for the case of p = 1, then we have the 

first-order initial-value problem (4.1-1). Let the 

general form of the formula which approximates Yn+1 be 

defined by 

Yn+1 - Yn (5.2-1) 
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The values of ai' a2 and a3 are to be determined so as to 

give the highest accuracy possible. 

Consider the Taylor series expansion of Yn+l about Xn and 

take the difference Yn+l - Yn. We obtain 

2 

Y - Y = hf + h...f(l) 
n+1 n n 2 n (5.2-2a) 

~ f;... '1-.' .lh') i-'"L\ -, 
Next we consider the right-hand side of (5.2-1). By the 
Taylor series expansion of fn+l about xn' we have 

(5.2-2b) 

If we multiply (5.2-2b) throughout by fn and take the 

square root, we obtain 

h h 2 
= f + _f(l) + 

n 2 n 8 

f(l)f(2) 
n n 3 

+ h... [H(3) _ 6;---=--
48 n fn 

f(l) f(3) 
n n 4 

+ 1L [8f(4) _ 16---
384 n fn 

+ 36;----=-­
f 2 

n 

(f~l) 3 

+ 3 
f 2 

n 

] 

(5.2-2c) 

By using (5.2-2b) and (5.2-2c), we obtain the right-hand 

side of (5.2-1) as 
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(5.2-2d) 

By equating the coefficients of like terms in (5.2-2a) 

and (5.2-2d), the following results are obtained: 

coefficient of hfn : Ul + U2 + U3 = 1 

coefficient of h2f~11 : 2u2 + U3 = 1 
(5.2-2e) 

coefficient of h3f~21 : 2U2 + U3 
2 
3 

Now (5.2-2e) is inconsistent because of the second and 

third equations. Therefore we solve only two equations 

in three unknowns. Since the third equation in (5.2-2e) 

is the coefficient of the term involving h 3
, we may 

choose to solve the set of two equations, namely the 

first and second equations of (5. 2-2e) in order to 

maintain the highest accuracy as possible. Hence we have 

a system of simultaneous equations 

U
2 

+ U3 = 1 - Ul 

2U2 + U3 = 1 }. 
On solving (5.2-2f) we obtain the solutions as 

and } 
for some arbitrary constant ~. 

(5.2-2f) 

(5.2-2g) 

Therefore the general GM formula can be written as 
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(5.2-3) 

where ~ is the parameter defined in (5.2-2g). 

Now the well known Trapezoidal formula (AM) can be 

deduced from (5.2-3) by substituting ~=t and obtain 

Y - Y + Q2 (fn + f n+1) . n+1 - n (5.2-3a) 

Similarly, the original GM formula can be derived from 
(5.2-3) by replacing ~=O to obtain 

(5.2-3b) 

The formula given by (5.2-3) is accurate up to order 

O(h2). Therefore, the local truncation error of (5.2-3) 

is obtained as 

h
3 

f(21 h 3 (f~11)2 
h

3 
f(21 GM 

T2 = - U3 4 n 8 fn 6 n , 

3 (f~ll) 2 
GM !:L { 2f (21 3U3 } . (5.2-4) or T2 -

fn 24 n 

Hence we deduce that, the local truncation error of the 

AM formula (5.2-3a) is 

(5.2-4a) 

and that of the original GM formula (5.2-3b) is given by 

GM h 3 

{ 2f~21 
(f21)2 

T2 = 24 - 3 } . (5.2-4b) 
fn 

Table(5.2) compares the computational complexity of the 

original GM formula with the AM formula 
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Formula Multiplication Addition Square Root 

AM 1 2 0 

GM 2 1 1 

Ratio:AM/GM 0.5 2 0 

Table(5.2): Computational complexity of the AM and GM 

formulae 

We observe that the GM formula involves an extra amount 

of work in the evaluation of a square root; assuming 
f..JiI/ 't.,,,"'l~ . 

that multiplication and addition" require "'" e1.;v.l,.t amount 

of work. However, if the problems to be solved contain 

the evaluation of a square of a function, then naturally 

the GM formula has an advantage over the AM formula. 

5.2.1 CONDITIONS UNDER WHICH THE GM FORMULA 

IS MORE ACCURATE THAN THE AM FORMULA 

We now compare the local truncation error of the GM 

formula (5.2-3) given by (5.2-4) with that of the AM 

formula (5.2-3a) given by (5.2-4a). We also note that if 
0:3 =0, then (5.2-3) reduces to (5.2-3a). Therefore, we 

shall discuss the error given by (5.2-4) for non-zero 
values of 0:3 and observe whether it is less or greater 

than (5.2-4a). 

We have from (5.2-4), the local truncation error of the 

GM formula as 

(5.2.1-1) 

For the GM formula to be better than the AM formula 

(5. 2-3a), we need I T~MI < I T~MI· Therefore, we have 

h
3 

< f(2) 
12 n 

(5.2.1-2) 
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If we assume that f(2 1 
n > 0, then the inequality (5.2.1-2) 

becomes 

h 3 h 3 3 (f~1I)2 
h 3 

f (21 f(21 U3h f(2) < < 12 n 12 n 8 fn 12 n , 

or 

h 3 
f (2) U h 3 (f~1I)2 

3 
O. (5.2.1-3) < - < 6 n 8 fn 

Let u
3

>0, then from the inequality (5.2.1-3), we obtain 

(5.2.1-4) 

(2) 
Next, if fn < 0 and let -f(2)=G>0 n , then inequality 

(5.2.1-2) becomes, 

h 3 h 3 U h 3 (f~l» 2 
h 3 

3 
G < G - < G, 12 a a fn 12 

or 

U h 3 (f 2) ) 2 
h 3 

0 
3 

< - 8 fn 
< 6 G. (5.2.1-5) 

Since we have assumed that U3 > 0, therefore from the 

left-hand side of inequality (5.2.1-5), we obtain fn < O. 

Let - f n= H > 0, then the right-hand side of inequality 

(5.2.1-5) becomes, 

3 (f~1»2 
h 3 U 3h 

8 H < 6 G, 

or 

GH > 
3a3 

4 
(f~1»2, 

i.e. 

f f(2) 
n n > 

3U3 (f2I)2, (5.2.1-6) 4 
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which is similar to the result obtained in the case of 
f~2) > O. 

Therefore, the necessary and sufficient condition for 

the GM formula (5.2-3) to be more accurate than the AM 

formula (5.2-3a) is that 

(5.2.1-7) 

for U 3 > O. 

Similarly, by following the same lines of argument as 

above, we can establish the condition under which the GM 

formula (5.2-3) is better than the AM formula (5.2-3a) 
for the case of U 3 < 0 as 

(5.2.1-8) 

5.2.2 STABILITY ANALYSIS OF (5.2-3) 

We shall now consider the stability regions of the class 

of methods defined by (5.2-3), namely 

By applying formula (5.2-3) to the test problem y(l) = A.y, 

we obtain 

Yn+l = Yn + hA. {~(Yn + Yn+l)+(I-'fh/YnYn+l }. (5.2.2-1) 

Now dividin~ (5.2.2-1) throughout by Yn, gives the result 

(5.2.2-1a) 

. Yn+l 2 
Now subst~tute --- = P n in (5.2.2-1a), and after some 

Yn 

rearrangement, we have 

P~(l - hA.~) + hA.(2~ - l)P n - (1 + hA.~) = o. (5.2.2-1b) 
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Now (5.2. 2-1b) is a quadratic in Pn which upon solving 

for Pn, gives 

112 

P 
= hA(l - 2P> ± { [hA(l - 2P> J' + 4 (1 - hAP> (1 + hAP> ) , 

n 2(1-hA.j3> .(5.2.2-2a) 

Absolute stability requires that 

or, similarly, 

Next consider the roots of the quadratic equation 

(5.2.2-1b) given in (5.2.2-2a). We shall consider the 

root 

p = hA(l - 2~> 
n 

2 1/2 
+ {[hA(l - 2P>J + 4(1 - hA~> (1 + hAP>) (5 2 2-2b) 

2(1-hAI3> ..• 

and discuss the condition under which 1 Pn 1 < 1. 

Now 1 P n 1 < 1 implies that 

f (hA.;~) = 1 hA(l - 2~> + {[hA(l - 2~> J' + 4 (1 - hA~> (1 + hAI3>) 1121 , 

< 2 1 1 - hA.~ 1 . 

Let hA.=z, then we have 

A 1 1121 f(z;~) = z(l - 2~> + {[z(l - 213)]' + 4(1 - z~> (1 + z~>) , 

< 211 - z~l. (5.2.2-3) 

''''~ '" -t.",+- ~ ~L.\t.,,,,,,,,<... -t4- ~.k.In.\.t'l, .,.~ i~ I 

Assume ~> 0, we have two cases to be considered,~ They 

are 

(a) z is real 

(b) z is purely imaginary. 

Consider case(a), we have 
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,.. 
f (z;(3) { 

2 } 1/2 
z(1-2(3) + (z(1-2(3)] + 4 (l-z(3) (1+z(3) , 

< 2 (1 - z(3) . (5.2.2-3a) 

or on rearranging the terms in the inequality (5.2.2-

3a), we obtain for real z, 

g(z;(3) = f(z;(3) + 2z(3, 

= z + {(z(1-2(3)]2 + 4 (l-z(3) (1+z(3)} 1/2 < 2. 

If we plot the function g(z;(3) against z, we notice that 

1 g(z;(3) 1 < 2 for all z < 0 and z > ~, for (3 > 0 and 

1 g (z; (3) 1 > 2 for 0 < z < * for (3 > O. 

Next consider case (b). Let z = iy where y is real. Then 

from inequality (5.2.2-3) we obtain 

L.H.S.= I iy(1-2(3) + {_[y(1_2(3)]2+ 4 (1+(y(3»2}
1/2 1, 

{[y(1-2(3)]2 + 4(1+(y(3)2) + [_[ (1-2(3)y]2] }1/2, 

2-/1 + (y(3)2 

R.H.S.= 211 - (3iy 1 

Hence (5.2.2-3) is an equality statement. This suggests 

that the imaginary axis of the complex plane is the 

boundary for the absolute stability region of the 

method, irrespective of the value of the parameter (3. 
The method is therefore absolutely stable for hA lying 

on the left half of the complex plane. 

5. 3 NUMERICAL METHODS FOR A SPECIAL CLASS OF 

SECOND -ORDER ODES 

By using the approach described in Section 4.5, it is 

clearly possible to express the second _ order 

differential equation 

(2) (1) Y = f(x,y,y ), (5.3-1a) 
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in the form of a first order system of 

= f(x,u,v), where u = y and v = y(l). If, 

has the special form 

ODES, that is (1) 
v 

however, (S.3-1a) 

y(2) = f(x,y), (S.3-1b) 

(1) that is, the function f is independent of y then it 

is natural to enquire whether there exist direct methods 

which do not require the explicit introduction of the 

first derivative, into an equation in which it does not 

already appear. We might ask the same sort of question 

about special higher order ODEs of the form y(m) = f(x,y). 

In section 5.3.1 we shall derive the GM method to deal 

with equations of the form (S.3-1b); while in section 

5.4 we shall consider the special class of fourth~order 

ODEs of the form y(4) = f(x,y). 

5.3.1 DERIVATION OF THE GM METHOD FOR 

PROBLEMS OF THE TYPE y (2) = f (x, y) 

Consider (S.l-la) for the case of p = 2 and that the 

function f is independent of y(l). Then, we have a 

special class of second - order, initial -value problems 

defined by the form (S.3-1b) with initial conditions 
(\') (I) 

Y (xo) = Yo ,,~J. 'j ( ... ) 4 )0 • 

Let the general form of the formula which approximates 
yn+l be defined as 

Yn-l - 2Yn + Yn+1 

}.(S.3.1-1) 

Now consider the expression for the right-hand side of 

(5.3.1-1). By using the REDUCE program for algebraic 

manipulation we obtain the following results: 
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a 4-v f n f n- 1 a4fn 

h
3 

48 

h4 
+ 384 

L 
3840 

+ 

b-

f(5) 
h5 n 

f(3) 
h3_n_ 

3! fn 

--- }+O(h
6
). 5! fn 

f(l) 

h
2 

[ 

f (2) 
h n n 
--- +""8 2 2 fn fn 

f(1)f(2) 
n n 

(S.3.1-2a) 

(S.3.1-2b) 

f(l) 

(_n ) 2 ] 
fn 

f(3) f (1) 

[4 n 
(_n ) 3 ] 

fn 
- 6 

f2 
+ 3 

fn 
n 

f(4) f(l) f(3) 
f(2) n n 

[ 8 
n 

(_n ) 2 

fn 
- 16 

f2 
- 12 

fn 
n 

f(2) (f~1))2 f(l) n 

+ 36 - lS (_n ) 4 ] 
f3 fn 

n 

f(2) f(3) 
n n 

- 40 - 80 

f (1) 
n 

( f~2) ) 2 

+ 180 
f3 

n 

+ 120 

f(2} 
n 

(f~1))3 

- 300 
f4 

n 

+ 10S 

+ O(h
6

) • (S.3.1-2c) 
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f
OI 

h
2 

[ 
f<21 fill 

ClS...J fnfn+l ClSfn { 1 
h n n 

(_n ) 2] + --- + 8 2 2 fn fn fn 

fl31 fill fl21 fill 
h

3 n n 

[4 n 
(_n ) 3] + 48 fn 

- 6 
f2 

+ 3 
fn 

n 

fl41 f OI fl31 fl21 
h4 

n n 

[8 n 
(_n ) 2 

+ 384 fn 
- 16 

f2 
- 12 

fn 
n 

fl2l (f~1I)2 fill n 

+ 36 - 15 (_n ) 4] 
f3 fn 

n 

f 151 fill fl41 fl21 fl31 

L 
n n n n 

[16 
n 

+ 3840 fn 
- 40 

f2 
80 

f2 
n n 

f
OI 
n (f~21) 2 fl31 

n ( f~ll ) 2 

+ 180 
f3 

+ 120 
f3 

n n 

fl21 (f~11)3 f 01 n 

- 300 + 105 (_n ) 5] } + o (h 6) • 
f4 fn 

n 

(5.3.1-2d) 

h
2 

fl21 f
OI 

b+ [ 
n 

(_n ) 2] Cl6...J fn-lf n+l = a6 f n 2 fn fn 

fl41 fl l lfl31 fl21 (f~11)2 
h4 

n n n 
[_n _ 4 + 24 f2 

+ 6 
f3 fn 

n n 

- 3 (5.3.1-2e) 

Now substituti""!l (5.3.1-2a), (5.3.1-2b), (5.3.1-2c), 

(5.3.1-2d) and (5.3.1-2e) into the right-hand side of 

(5.3.1-1), we obtain 
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f(ll 

[T] 3} + O(h6) . 
n 

(S.3.1-3) 

Next, we have the left-hand side of (S.3.1-1) given by 

h 2f' ..L h 4f(21 + _1_ h 6f<41 + O(hB), 
, n + 12 n 360 n (S.3.1-4) 

Therefore, by equating ('5.1-1-;;) and (5 .... \ -4) we obtain the 

following results: 

2 . 6 
coeff. of h fn. L ai = 1, 

i::l 

coeff. of h3f~11 : - 2a2 + 2a3 - a4 + as = 0 

coeff. of h4f~21: 2a2 + 2a3 + a 4 + as +2.a6 = ~, 

[f~1112 

coeff. of h4 0, 

coeff. of h S o. 

(S.3.1-Sa) 

(S.3.1-Sb) 

(S.3.1-Sc) 

(S.3.1-Sd) 

(S.3.1-Se) 

Now for (S.3.1-1) to be symmetric, we impose the 

condition 

(S.3.1-6) 
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Thus, we have a system of simultaneous equation of the 

form 

Aa = b, (5.3.1-7) 

to be solved, where A is a 6 by 6 matrix, 

r: 1 1 1 1 1 

-2 2 -1 1 0 

I 0 2 2 1 1 2 
A = I 0 

, 
0 0 1 1 4 

l: 0 0 1 -1 :J 1 -1 0 0 

-T 
a (al, a2, a3, a4 , as, (6) and b T 1 

(1,0'3,0,0,0) . 

By using the REDUCE program, we solve the system of 

equations (5.3.1-7) to obtain the solutions as 

a6 = a, a4 = as -2a 

a2 = a3 = ..L (1 + 6a) 12 

al = !. (5 + 12a) 6 

} ,5.3.1-8, 

where a is an arbitrary constant. 

By substituting (5.3.1-8) into (5.3.1-1), we obtain the 

general form of the GM formula as 

Yn-l - 2Yn + Yn+l 

h
2 

12 {2 (5 + 12a) fn 

- 12a [2 ( .. ../fnfn-l 

+ (1 + 6a) (fn- l + fn+l) 

+ " fnfn+l ) - " fn-lf n+l ]}, (5.3.1-9a) 

where the arbitrary parameter a is ~lve~' in (5.3.1-8). 

We may deduce the Numerov (AM) method from (5.3.1-9a) by 

substituting a= 0 to give 
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h 2 

Yn-l = 2Yn - Yn+l + 12 {fn- 1 + 10fn + fn+l}' (S.3.1-9b) 

and the GM formula is obtained by substituting a=-t to 

obtain 

Yn-l ] 

(S.3.1-9c) 

Another form of the GM formula may be obtained by 

substituting a= -1
5
2 in (S.3.1-9a) to give 

Yn-l h
2 

{ = 2Yn - Yn+l + 2 10 [2 (..J fnfn- 1 ) 

(S.3.1-9d) 

5.3.2 ERROR ANALYSIS OF (5. 3-9a) 

Next, we consider the derivation of the formula (S.3.1-

9a) to decide on the magnitude of its local truncation 

error. We observe that (S.3.1-9a) is accurate to order 

O(h4
). Therefore, the local truncation error of (S.3.1-

9a) can be obtained from (S.3.1-2a), (S.3.1-2b), (S.3.1-

2c), (S.3.1-2d), (5.3.1-2e) and (S.3.1-4) as 

T
GM 

h6 { 1 [30 ( ) lS ( ) 2] f
n
(4) n+l = 720 a2 + a3 + a6 + a4 + as -

+ 312 [3 (a4 + as) + 8a6] --f"""'2-­
n 

232 



= 5~:0 { 8 [30 (U2 + U3 + (6) + 15 (U4 + Us) - 2] f~4) 

f n ) f(3) 
n n [f~2)12 

- 240 [U4 + as + 4U6] - 180 [U4 + as] fn fn 

(5.3.2-1) 

By substituting the values of aii i = 1,2, ... ,6 given in 

(5.3.1-8) into (5.3.2-1), we obtain the local truncation 

error of (5.3.1-9a) as 

GM h
6 

{ [ ] (4) Tn+l 5760 8 5 (1 + 12a) - 2 (1 + 30u) fn 

- 4 }, 

6 
h {(4) [ 

= 480 2fn + 15a 4 }. 

Define 

(5.3.2-2) 

then we can write 

GM h
6 
{(4) } 

Tn+l = 480 2fn + 15UMn , (5.3.2-3a) 

where U is the parameter of the formula. 

For U= 0, we obtain the local truncation error of the AM 

formula and is given as 
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AM 
Tn+l = 

h
6 

f 
(4) 

240 n • (S.3.2-3b) 

Next we seek to find the condition under which the GM 

method results in a local truncation error smaller in 

modulus than the AM method. By comparing (S.3.2-3a) and 
GM AM 

(S.3.2-3b), we observe that assuming a> 0, then Tn+l < Tn+l 

provided Mn < O. 

Therefore by definition of Mn, it follows that 

< O. (S.3.2-4a) 

Since the numerator is always positive, we therefore 
have the condition that fn is negative for (S.3.2-4a) to 

be true. Thus we claim that for f negative 

interval of the integration and a>O, then IT~711< 

GM AM 
The condition of Tn+l < T n+l which requires that aMn < 0, 

for the case a< 0, implies that Mn> O. Hence we have 

> O. 

Since the numerator is always positive, 

must be always positive in the interval of 
Thus fn must be positive throughout the 

(S.3.2-4b) 

therefore 

integration. 
interval of 

integration and for a< 0, the GM formula has a smaller 

modulus value of local truncation error than the AM 

counterpart. 

Therefore there are possible functions f for which the 

local truncation error of the GM formula is smaller in 

modulus than the error introduced by the AM formula. 
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Now consider two particular cases of the GM formula 

given in (S.3.1-9c) and (S.3.1-9d). In the first case, 

we have (X= i. Therefore its local truncation error is 

given as 

In the second case, we have (X= 2.. 
12 • 

(S.3.2-Sa) 

Hence its local 

truncation error is obtained as 

(S.3.2-Sb) 

Table(S.3.2) compares the three formulae, namely the AM 

formula (S.3.1-9b) and the two GM formulae (S.3.1-9c) 

and (S.3.1-9d). The GM formulae are found to involve two 

times more work than 

Table (S. 3.2). However 

confirmed by the 

section(S.3.3) 

Formula 

AM Formula 
(5.3.1-9b) 

GM Formula 
(5.3.1-9c) 

GM Formula 
(5.3.1-9d) 

Addition 

4 

5 

6 

the AM formula as 

they are all 0 (h 4 ) 

numerical results 

Multiplication Square Root 

3 o 

6 4 

8 3 

indicated in 

accuracy as 

given in 

Local 
Truncation 

Error 

Table(S.3.2): Computational complexity of the 

AM and GM formulae 
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5. 3 . 3 NUMERICAL RESULTS 
Problem 1 yl21 + xy = O. 

III 
Initial conditions Xo = 0, Yo = 1, Yo = 2. 

Exact solution y = (1 - x 3
/3 + X

6
/180 - .•• ) 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

1. 00 

4 7 + 2 (x - x /12 + x /504 - ..• ) 

Numerical Solution Exact Solution 
.119965000595E+Ol .119965000595E+01 

.139806708690E+Ol(AI .139706707302E+01 

.139808941867E+01(B) 

.139812291632E+01(C) 

.159365496416E+01(A) .158965491786E+01 

.159369988491E+01(B) 

.159376726590E+Ol(C) 

.178442927854E+Ol(A) .177442925714E+01 

.178449670465E+Ol(B) 

.178459784349E+Ol(C) 

.196803408010E+Ol(A) .194803447421E+01 

.196812375478E+Ol(B) 

.196825826628E+Ol(C) 

.214176811045E+Ol(A) .210677028571E+Ol 

.214187958857E+Ol(B) 

.214204680503E+01(C) 

.230262257646E+Ol(A) .224663040833E+Ol 

.230275518922E+Ol(B) 

.230295410745E+Ol(C) 

.244733187537E+Ol(A) .236335522540E+01 

.244748469339E+Ol(B) 

.244771391933E+Ol(C) 

.257243840106E+Ol(A) .245250045357E+Ol 

.257261020039E+Ol(B) 

.257286789810E+Ol(C) 

.267437213004E+Ol(A) .250952380952E+Ol 

.267456136319E+Ol(B) 

.267484521144E+Ol(C) 

Table(5.3.3a) 
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Relative Error 

o 

.715795183538E-03 

.731779934094E-03 

.755757059928E-03 

.251629850849E-02 

.254455669036E-02 

.258694387026E-02 

.563562698202E-02 

.567362574206E-02 

.573062369611E-02 

.102665564462E-01 

.103125898631E-01 

.103816397197E-01 

.166120744014E-01 

.166649886290E-01 

.167443596286E-Ol 

.249227322500E-Ol 

.249817596535E-01 

.250703003513E-Ol 

.355328090634E-Ol 

.355974705342E-Ol 

.356944622725E-Ol 

.489043528245E-Ol 

.489744035077E-Ol 

.490794790066E-Ol 

.656890840780E-Ol 

.657644900745E-Ol 

.658775984861E-Ol 



Problem 2 y(2) + 2x2
y = 0 

Initial conditions Xo = 0, yo = 1, y~l) = 1 

Exact solution y 
4 8 

(1 - x /6 + x /168 - ... ) 

Xn 

.10 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

1.00 

5 9 
+ (- x /10 + x /360 - ... ) 

Numerical Solution 

.109998233340E+01 

.119970133876E+01(A) 

.119970148371E+01(B) 

.119970170113E+01(C) 

.129840729714E+01(A) 

.129840771400E+01(B) 

.129840833929E+01(C) 

.139471310095E+01(A) 

.139471390026E+01(B) 

.139471509923E+01(C) 

.148648365085E+01(A) 

.148648492608E+01(B) 

.148648683894E+01(C) 

.157074164286E+01(A) 

.157074346792E+01(B) 

.157074620553E+01(C) 

.164360423379E+01(A) 

.164360665899E+01(B) 

.164361029682E+01(C) 

.170027071388E+01(A) 

.170027376092E+01(B) 

.170027833152E+01(C) 

.173508683101E+01(A) 

.173509048788E+01(B) 

.173509597325E+01(C) 

.174171581559E+01(A) 

.174172003318E+01(B) 

.174172635964E+01(C) 

Exact Solution Relative Error 
.109998233340E+01 0 

.119970134999E+01 .936544166655E-08 
.111454780902E-06 
.292685114570E-06 

.129840744521E+01 .114042419673E-06 
.207014078941E-06 
.688599808733E-06 

.139471396246E+01 .617701420252E-06 
.446004673666E-07 
.815054255502E-06 

.148648701017E+01 .225990528824E-05 
.140202151487E-05 
.115188875393E-06 

.157075197074E+01 .657512117010E-05 
.541321910915E-05 
.367035407630E-05 

.164363156960E+01 .166313519292E-04 
.151558381446E-04 
.129425494473E-04 

.170033680417E+01 .388689400721E-04 
.370769185203E-04 
.343888611584E-04 

.173523947285E+01 .879658605241E-04 
.858584445949E-04 
.826972879105E-04 

.174206349206E+01 .199577383509E-03 
.197156351997E-03 
.193524763655E-03 

Table(5.3.3b) 
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Problem 3 y(2) + x 2 y 

Initial conditions Xo = 
1 + x + 
0, Yo = 

2 
X 

2 
(1) 

, Yo 2 

Exact solution y = 2(1 - X4/12 + 

+ 2 (x - x 5
/20 

8 
X /672 - ••• ) 

+ X
9
/1440 - ... ) 

.10 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

1.00 

Numerical Solution 

.220515731629E+01 

.242116719231E+01(A) 

.242116695965E+01(B) 

.242116661067E+01(C) 

.264857051467E+01(A) 

.264856965700E+01(B) 

.264856837048E+01(C) 

.288743990707E+01(A) 

.288743775492E+01(B) 

.288743452671E+01(C) 

.313722608903E+01(A) 

.313722141120E+01(B) 

.313721439451E+01(C) 

.339659195430E+01(A) 

.339658206413E+01(B) 

.339656722913E+01(C) 

.366323827217E+01(A) 

.366321433013E+01(B) 

.366317841905E+01(C) 

.393372811772E+01(A) 

.393380252836E+01(B) 

.393391394862E+01(C) 

.420332107723E+01(A) 

.420351786622E+01(B) 

.420381214595E+01(C) 

.446583286944E+01(A) 

.446617585261E+01(B) 

.446668869506E+01(C) 

Exact Solution Relative Error 

.220515731629E+01 0 

.242116688706E+01 .126074661035E-06 
.299825750827E-07 
.114155553755E-06 

.264856910711E+01 .531441912139E-06 
.207614850185E-06 
.278125189599E-06 

.288743590441E+01 .138623499026E-05 
.640885393397E-06 
.477135192944E-06 

.313721710689E+01 .286309062579E-05 
.137201393477E-05 
.864583432560E-06 

.339657430537E+01 .519609809508E-05 
.228428857071E-05 
.208334600216E-05 

.366320554629E+01 .893367162527E-05 
.239785523519E-05 
.740533036675E-05 

.393366680462E+01 .155867549444E-04 
.345031097912E-04 
.628278940337E-04 

.420319930665E+01 .289709273196E-04 
.757897843078E-04 
.145803056907E-03 

.446557539683E+01 .576572081016E-04 
.134463249736E-03 
.249306781711E-03 

Table(5.3.3c) 
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Problem 4 
(2) 

Y - Y = O. 

Initial conditions Xo = 0, Yo 
(1) 

= 1, Yo 

Exact solution y = e -x 

Xn 

.10 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

1.00 

Numerical Solution Exact Solution 
.904837418036E+00 .904837418036E+00 

.818723210252E+00(A) .818730753078E+00 

.818723204446E+00(B) 

.818723195738E+00(C) 

.740796234571E+00(A) .740818220682E+00 

.740796217646E+00(B) 

.740796192258E+00(C) 

.670277221236E+00(A) .670320046036E+00 

.670277188265E+00(B) 

.670277138808E+00(C) 

.606460980113E+00(A) .606530659713E+00 

.606460926459E+00(B) 

.606460845978E+00(C) 

.548709348791E+00(A) .548811636094E+00 

.548709270018E+00(B) 

.548709151859E+00(C) 

.496444810957E+00(A) .496585303791E+00 

.496444702746E+00(B) 

.496444540430E+00(C) 

.449144721232E+00(A) .449328964117E+OO 

.449144579303E+00(B) 

.449144366408E+OO(C) 

.406336078720E+OO(A) .406569659741E+00 

.406335898755E+00(B) 

.406335628808E+00(C) 

.367590796995E+00(A) .367879441171E+OO 

.367590574570E+00(B) 

.367590240932E+OO(C) 

Table (5.3. 3d) 
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-1. 

Relative Error 

o 
.921282811814E-05 
.921991941253E-05 
.923055635404E-05 

.296781450339E-04 

.297009915767E-04 

.297352613983E-04 

.638870942600E-04 

.639362813079E-04 

.640100619134E-04 

.114882238736E-03 

.114970698783E-03 

.115103388947E-03 

.186379618579E-03 

.186523151717E-03 

.186738451633E-03 

.282917826556E-03 

.283135736194E-03 

.283462601060E-03 

.410040081691E-03 

.410355951213E-03 

.410829756226E-03 

.574516605226E-03 

.574959246825E-03 

.575623210446E-03 

.784616219919E-03 

.785220833784E-03 

.786127756540E-03 



Problem 5 y(2) - y{ [(Q + Bx)/x1 2 - Q/x2) = O. 
(1) 

Initial conditions Xo = l'Ye = 10e'Ye = 10e (Q + B) • 

Exact solution y = CxQeBx. 
Set B = 1, C = 10, Q = 3/2 

1.10 

1.20 

1.30 

1. 40 

1.50 

1. 60 

1. 70 

1. 80 

1. 90 

2.00 

Numerical Solution Exact Solution 

.346587549802E+02 .346587549802E+02 

. 436390152385E+02(A) .436440703713E+02 

. 436389911205E+02(B) 

.436389549437E+02(C) 

.543715401009E+02(A) .543873445416E+02 

.543714673415E+02(B) 

.543713582034E+02(C) 

. 671413377291E+02 (A) .671744823128E+02 

. 671411902473E+02(B) 

.671409690280E+02(C) 

.822756510828E+02(A) .823338855610E+02 

.822754002360E+02(B) 

.822750239731E+02(C) 

.100149815184E+03(A) .100242328229E+03 

.100149428824E+03(B) 

.100148849297E+03(C) 

.121193894010E+03(A) .121331621407E+03 

.121193335539E+03(B) 

.121192497854E+03(C) 

.145900197789E+03(A) .146096168080E+03 

.145899425179E+03(B) 

.145898266297E+03(C) 

.174831793908E+03(A) .175101520393E+03 

.174830758642E+03(B) 

.174829205788E+03(C) 

.208632138690E+03(A) .208994066965E+03 

.208630784600E+03(B) 

.208628753528E+03(C) 

Table(5.3.3e) 

Notations 

Relative Error 

o 

.115826337471E-03 

.116378942430E-03 

.117207849867E-03 

.290590410221E-03 

.291928209623E-03 

.293934891700E-03 

.493410333302E-03 

.495605835950E-03 

.498899041178E-03 

.707296611036E-03 

.710343313008E-03 

.714913276563E-03 

.922894012738E-03 

.926748276880E-03 

.932529539024E-03 

.113513192929E-02 

.113973477670E-02 

.114663886846E-02 

.134137871608E-02 

.134666708162E-02 

.135459940673E-02 

.154040058834E-02 

.154631296640E-02 

.155518126903E-02 

.173176339644E-02 

.173824248020E-02 

.174796080318E-02 

The following not at ions are used in Table (5.3. 3a) -

Table(5.3.3e) . 

A denotes AM Formula (5.3.1-9b) 

B denotes GM Formula (5.3.1-9c) 

C denotes GM Formula (5.3.1-9d) 
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5 .3. 4 DERIVATION OF THE NEW GM STRATEGY WITH 

ERROR CONTROL 

Consider the new GM formula given by (5.3.1-9c) written 

as 

* 
yn+1 

Its local truncation error is obtained as 

where Mn is given by (5.3.2-2). 

(5.3.4-1) 

The AM formula given by (5.3.1-9b) is now written as 

(5.3.4-2) 

and its local truncation error is 

Thus we can write (5.3.4-1) and (5.3.4-2) respectively 

as 

and 

* 
yn+1 (5.3.4-3a) 

** h
6 

f(4) 
yn+1 ~ Y (Xn+1) - 240 n (5.3.4-3b) 

By subtracting (5.3.4-3b) from (5.3.4-3a), we obtain 

* ** 
Yn+l - Yn+l (5.3.4-4) 

Therefore the error in the final result is approximated 

by 
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** y(xn+1) - yn+l 
4 * 

::::: 5 (Yn+l 
** 

Yn+l) (5.3.4-5) 

Now f~41 can be obtained from (4.3.3-14) and by using the 

bounds for f and its derivatives given in (4.3.1.1-6), 

we may approximate the bound for (5.3.4-5) as 

1 

** 1 4 Y (Xn+l) - Yn+1 <"5 yn+l - yn+l S, 
1 

* ** 1 

where it can be shown that 

S = < 11 
32 • 

(5.3.4-6) 

Therefore the estimate for the local truncation error 
** EST, of yn+l is given by 

i.e. 

EST 
15

1 * ** 1 8 yn+l - Yn+1 . (5.3.4-7) 

We note that the method is 4th-order accurate when used 

to solve any problem of the type y(21 = f(x,y). The error 

estimate EST, is obtained by assuming that the function 

f (x, y) and its derivatives satisfy the bounds set by 

Lotkin[1951] as stated in (4.3.1.1-6). 
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5 . 3 . 5 NUMERICAL RESULTS 

Problem 1 y(2) + 2 (1 + 2x2) y = 0 

Initial conditions Xo 
Cl) 

0, Yo = 1, Yo = 0 

2 

Exact solution y = e -x 

Error tolerance = .SE-04 

End value of x is 1.00 

Initial value of h is .10 

Numerical 

Solution 

stepsize = .200000 
.40 .838355985316E+00 
.60 .654098199936E+00 
stepsize = .100000 
stepsize = .200000 
stepsize = .100000 
.60 .682157705837E+00 
.70 .592649391481E+00 
.80 .503447183285E+00 
.90 .418074783906E+00 
1.0 .339298962571E+00 
1.1 .269031977289E+00 

Exact 

Solution 

.852143788966E+OO 

. 697676326071E+OO 

.697676326071E+OO 

.612626394184E+OO 

.527292424043E+OO 

.444858066223E+OO 

.367879441171E+OO 

.298197279430E+OO 

Table(S.3.Sa) 

3 - 3x ) xy = 0 

Estimated 

Error 

.273514E-05 

.223660E-04 

.100610E-05 

.225991E-05 

.405816E-05 

.637544E-05 

.914598E-05 

.122611E-04 

Problem 2 y(2) + 3(2 

Initial conditions Xo 
(1) 

= 0, Yo = 1, Yo = 0 

_x3 
Exact solution y = e 

Error tolerance = .SE-OS 

End value of x is 1.00 

Initial value of h is .10 
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Relative 

Error 

.744424E-02 

.256693E-01 

.914109E-02 

.123879E-01 

.156128E-01 

.185370E-01 

.208940E-01 

.224660E-01 



Xn Numerical Exact Estimated Relative 

Solution Solution Error Error 
===================================================================== 
stepsize = .050000 
stepsize = .025000 
stepsize = .012500 

.0250 .999984375128E+00 .999984375122E+00 .628367E-06 .286085E-ll 
stepsize = .025000 

.0625 . 999755889541E+00 .999755889175E+00 .382381E-06 .182909E-09 
stepsize = .050000 

.1375 .997403789770E+00 .997403766683E+00 .182059E-05 .115584E-07 

.1875 .993429903457E+00 .993429881359E+00 .473009E-06 .1l0856E-07 

.2375 .986692869220E+00 .986692849158E+00 .238859E-06 .100978E-07 
stepsize == .100000 

.2375 .986692869220E+00 .986692849158E+00 .238859E-06 .100978E-07 
stepsize = .100000 
stepsize == .050000 

.2875 .976516477444E+00 .976516460795E+00 .174163E-06 .842382E-08 
stepsize = .100000 
stepsize = .050000 

.3375 . 962286219322E+00 .962286207688E+00 .159438E-06 .592838E-08 
stepsize == .100000 
stepsize == .050000 

.3875 .943474877305E+00 .943474872381E+00 .167036E-06 .253368E-08 
stepsize == .100000 
stepsize == .050000 

.4375 .919670120386E+00 .919670123753E+00 .188399E-06 .175437E-08 

.4875 .890602181746E+00 .890602194637E+00 .220495E-06 .681832E-08 

.5375 .856169304930E+00 .856169327952E+00 .262675E-06 .124027E-07 

.5875 .816458383600E+00 .816458416466E+00 .316626E-06 .180936E-07 

.6375 .771758163392E+00 .771758204691E+00 .388667E-06 .233099E-07 

.6875 .722562587107E+00 .722562634159E+00 .497253E-06 .273153E-07 

.7375 .669562387936E+00 .669562436783E+00 .699821E-06 .292575E-07 

.7875 .613623874279E+00 .613623919855E+00 .122749E-05 .282440E-07 

.8375 .S55754960699E+00 .555754997195E+00 .380470E-05 .234583E-07 
stepsize .025000 
stepsize .050000 
stepsize == .025000 
stepsize = .050000 
stepsize = .025000 

.8375 .555754996736E+00 .555754997195E+00 .128263E-06 .294733E-09 

.8625 .526439353933E+00 .526439354264E+00 .719990E-06 .217185E-09 
stepsize == .012500 
stepsize == .025000 
stepsize == .012500 

.8625 .526439354260E+00 .526439354264E+00 .328206E-07 .265009E-ll 

.8750 .511748556578E+00 .511748556581E+00 .555681E-06 .189540E-ll 
stepsize = .025000 
stepsize == .012500 

.8875 .497059808109E+00 .497059808111E+00 . 672323E-07 .107948E-ll 

.9000 .482391140115E+00 .482391140115E+00 .290194E-06 .203450E-12 
stepsize == .025000 

.9375 .438684585146E+00 .438684584982E+00 .544515E-06 .1l3566E-09 
stepsize == .050000 
1. 0125 .354172711588E+00 .354172674704E+00 .352268E-05 .272375E-07 

Table(5.3.5b) 
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Problem 3 y(21 - Y = O. 

Initial conditions Xc = 0, Ye 

Exact solution y = e -x 

Error tolerance = .5E-09 
End value of x is 1.00 
Initial value of h is .20 

(11 
= 1, Yo 

Numerical 

Solution 

Exact 

Solution 

= -1. 

Estimated 
Error 

Relative 

Error 
===================================================================== 

stepsize = .100000 
stepsize = .050000 

.100 .904837417995E+00 

.150 .860707976386E+00 

.200 .818730753041E+00 

.250 .778800783036E+00 

.300 .740818220648E+00 

.350 .704688089687E+00 

.400 .670320046005E+00 

.450 .637628151593E+00 

.500 .606530659685E+00 

.550 .576949810354E+00 

.600 .548811636069E+00 

.550 .576949810354E+00 

.600 .548811636069E+00 

.650 .522045776737E+00 

.700 .496585303769E+00 

.750 .472366552719E+00 

.800 .449328964097E+00 

.850 .427414931929E+00 

.900 .406569659722E+00 

.950 .386741023437E+00 
1.000 .367879441155E+00 

.904837418036E+00 

.860707976425E+00 

.818730753078E+00 

.778800783071E+00 

.740818220682E+00 

.704688089719E+00 

.670320046036E+00 

.637628151622E+00 

.606530659713E+00 

.576949810380E+00 

.548811636094E+00 

.576949810380E+00 

.548811636094E+00 

.522045776761E+00 

.496585303791E+00 

.472366552741E+00 

.449328964117E+00 

.427414931949E+00 

.406569659741E+00 

.386741023455E+00 

.367879441171E+00 

Table(5.3.5c) 
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.145037E-09 

.137964E-09 

.131235E-09 

.124835E-09 

.11874 6E-0 9 

.112955E-09 

.107446E-09 

.102206E-09 

.972214E-10 

.924798E-10 

.879694E-10 

.924798E-10 

.879694E-10 

.836791E-10 

.795981E-10 

.757161E-10 

. n0234E-IO 

.685107E-10 

.651694E-10 

.619910E-10 

.589677E-10 

.216752E-10 

.21l072E-10 

.205411E-10 

.199780E-10 

.194183E-10 

.188625E-IO 

.183120E-IO 

.177666E-IO 

. 172272E-IO 

.166945E-10 

.161686E-10 

.166945E-10 

.161686E-10 

.156508E-10 

.151406E-10 

.146391E-10 

.141465E-IO 

.136632E-10 

.131894E-10 

.127256E-10 

.122718E-10 



Problem 4 
(2) 

Y - Y = 0 

Initial conditions Xo = 0, Yo 

x Exact solution y = e . 

Error tolerance = .5E-09 

End value of x is 1.00 

Initial value of h is .20 

(1) 
= 1, Yo 

Numerical 

Solution 

Exact 

Solution 

= 1. 

Estimated 

Error 

Relative 

Error 
===================================================================== 
stepsize = .100000 
stepsize = .050000 

.100 .110517091803E+01 

.150 .116183424268E+01 

.200 .122140275811E+01 

.250 .128402541663E+01 

.300 .134985880752E+01 

.350 .141906754853E+01 

.400 .149182469758E+01 

.450 .156831218543E+01 

.500 .164872127063E+01 

.550 .173325301780E+01 

.600 .182211880032E+01 

.650 .191554082893E+01 

.700 .201375270739E+01 

.750 .211700001653E+01 

.800 .222554092840E+01 

.850 .233964685183E+01 

.900 .245960311l06E+01 

.950 .258570965921E+01 
1.000 .271828182835E+01 

.110517091808E+01 

.116183424273E+01 

.122140275816E+01 

.128402541669E+01 

.134985880758E+01 

.141906754859E+01 

.149182469764E+01 

.156831218549E+01 

.164872127070E+01 

.173325301787E+01 

.182211880039E+01 
.191554082901E+01 
.201375270747E+01 
.211700001661E+01 
.222554092849E+01 
.233964685193E+01 
.245960311116E+01 
.258570965932E+01 
.271828182846E+01 

Table(5.3.5d) 

.160297E-09 

.168516E-09 

. 177156E-O 9 

.186239E-09 

.195788E-09 

.205826E-09 

.216379E-09 

.227473E-09 

.239136E-09 

.251397E-09 

.264286E-09 

.277836E-09 

.292081E-09 

.307056E-09 

.322800E-09 

.339350E-09 

.356749E-09 

.375039E-09 

.394269E-09 

.216753E-10 

.221892E-10 

.227015E-10 

.2321l0E-10 

.237176E-10 

.242200E-10 

.247186E-10 

.252119E-10 

.257001E-10 

.261819E-10 

.266578E-10 

.271266E-10 

.275880E-10 

.280419E-10 

.284876E-10 

.289248E-10 

.293537E-10 

.297732E-10 

.301837E-10 

5 . 4 IMPLICIT FORMULA FOR A SPECIAL CLASS OF 

FOURTH - ORDER ODES. 

Consider the special fourth-order ODEs problems of the 

type 

y(4) = f(x,y) (5.4-1a) 

with the initial conditions at x = xo' y(xo) = Yo' y(l) (xo) 

= Y61
), y(2) (xo) = Y62

), y(3) (x o) = y63). Such problems occur 

in the vibration analysis of beams. 

Let the general form of the formula which approximates 

the solution of (5.4-1a) be defined by 
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Yn-2 - 4Yn-l + 6Yn - 4Yn+l + Yn+2 

h4 {<Xlfn + <X2fn-l + <X3fn-2 + <X4fn+l + <XSfn+2 

+ <X6...J fnfn- l + <X7...J fnfn+l + <Xa...J f nf n- 2 

+ <Xg...J fnfn+2 + <X10...J fn-lfn+l + <Xll...J f n- l f n-2 

+ <X12...J f n- l f n+2 + <X13...J f n+lfn- 2 + <X14...J fn+lfn+2 

}. (5.4-2) 

The Taylor series expansion of fn±l about Xn is given by 

fn±l = fn { 1 

f(l) 
n 

± h-­
fn 

f(S) 
hS_n_ 

± 
5! fn 

... } . (5.4-3a) 

Similarly, we can deduce the expansion of f n±2 from (5.4-

3a) above by substituting h with 2h. 

Hence using the expansion of fn±l and f n±2, we list the 

following results which were obtained from the REDUCE 

program for symbolic manipulation, 

f (1) f(2) f(l) 

...Jfnfn±l fn {I h._n_ h2 [ n (_n ) 2] ± 2 fn + - 2--
8 fn fn 

f(3) f(1) f(2) f (1) 
h

3 n n 

[ 4 
n (_n ) 3] ± - 6 + 3 48 fn f2 fn 

n 

f(4) f(l) f(3) f(2) 
h4 

n n 

[8 n (_n ) 2 + 384 fn 
- 16 

f2 
- 12 

fn 
n 

f (2) (f~1»)2 f(1) n 

+ 36 - 15 (_n ) 4] ± 
f3 fn 

n 
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L 
± 3840 - 40 - 80 

+ 180 + 120 

- 300 + 105 

- 96 + 360 

- 240 - 160 

+ 360 + 1440 

- 1200 - 2700 

+ 3150 - 945 

(5.4-4) 

f(4) f(l) f(3) f(2) (f~1))2 f(l) 
h4 

n n n 

+ [_n _ 4 + 6 - 3 (_n ) 4 ] 
24 fn f2 f3 fn 

n n 

f(6) f(l) f(5) 
f(3) f(4) (f~1))2 

h
6 n n n 

+ 
[_n _ 

6 - 10 (_n ) 2 + 15 + ... 720 fn i fn f3 
n n 
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+ 

+ 

+ 

f(1)f(2)f(3) 
n n n 

f(3) 
n 

(f~1»)3 (f~l) f~2) ) 2 

60 
f3 

- 60 
f4 

- 90 
f4 

n n n 

(f~l) ) 4f~2) f(l) 

135 - 45 (_n ) 6] + ... } . (5.4-5) 
fS fn 

n 

= fn { 1 
h

2 

+ 8 

± 

h
6 

f(3) f(l) f(2) 
f(l) 

h
3 n n 

± [12 _n_ - 6 + 3 (_n ) 3] 
16 fn f2 fn 

n 

f(4) f(l) f(3) f(2) 
h4 

n n 

[ 136 T 112 - 108 (_n ) 2 + 384 -
n f2 fn 

n 

+ 276----­
f3 

- 111 
n 

f(S) f(l) f(4) f(2) f(3) 

~ 
n n n n 

[ 176 
n 

3840 fn 
- 200 

f2 
- 560 

f2 
n n 

f(l) 
n 

( f~2) ) 2 f(3) 
n 

(f~1»)2 

+ 1140 
f3 

+ 680 
f3 

n n 

f(2) (f~1»)3 f (1) n 

- 1740 + 585 (_n ) 5] 
f4 fn 

n 

f(6) f(l) f(S) 
f(2) n n n 

--- [ 2080 - 2976 + 16200 (_n ) 3 
46080 fn f2 fn 

n 

f(2) f(4) 
f(3) n n 

- 10800 - 7840 (_n ) 2 

f2 fn 
n 

f(4) 
n 

(f~1»)2 f(1) f(2) f(3) 
n n n 

+ 12840 
f3 

+ 60000 
f3 

n n 
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- 44880 

+ 117990 

--J f n",lfn±2 

h4 
+ 384 

± 

~ 
± 3840 

fnb ± 

h
3 

[16 
16 

+ 756 

+ 5940 

- 107820 

f(l) 

--f-=S-- - 34065 ( ;n ) 6] 
n 

+ ... } • 

(5.4-6) 

f(l) f(2) f (1) 
1 n 

lh2 [ 10 
n (_n ) 2] -h-- + 
fn 

- 9 
2 fn 8 fn 

f(3) 
n 

fn 

- 432 

f(1) f(2) 
n n 

18 
f2 

n 

f(1) f(3) 
n n 

+ 9 

- 108 

- 351 

f (1) 

(_n ) 3] 
fn 

- 1800 2160 

+ 4920 

- 11340 + 4185 

~[ + 46080 2080 - 9504 ---:-- + 16200 
f2 

n 

- 10800 --- - 12960 
f2 

f(3) 

(_n_) 2 + 29160 _----: __ 
fn f3 

n n 

+ 108000 ---=--- - 101520 -----:---
f3 f4 

n n 
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(f~l) f~2) ) 2 (f~l» qf~2) 

- 192780 
f

q + 251910 
fS 

n n 

f (1) 

- 79785 (_n ) 6] + ... } . (5.4-7) 
fn 

Next, we may deduce the expansion of ..J f nf n±2 and..J fn-2fn+2 

respectively from (5.4-4) and (5.4-5) by substituting h 

with 2h. 

Now consider the parameters (Xi , i = 1,2,3, ... ,15 of 

(5.4-2). If all of the (Xi i i = 1,2,3, ... ,15 are nonzero 

and there is no cancellation of terms on the right-hand 

side of (5.4-2), then obviously the method given by 

(5.4-2) will involve more work. To minimize this work we 

can introduce some simplifying properties into the 

parameters (Xi i i = 1,2,3, ... ,15. This may automatically 

reduce the computational complexity, truncation error 

and rounding errors. Thus we set the guide-lines in 

selecting the parameters (Xi , i = 1,2,3, ... ,15 based on 

those criteria. Moreover, it is natural to set the 
parameters (Xi , i = 1,2,3, ... ,15 such that the formula 

given by (5.4-2) is symmetric. 

Hence by letting 

(X2 = (Xq, (X3 = (Xs, (X6 = (X7, 

(XS (Xg, (Xll = (XH, (X12 = (X13, 

we obtain the right-hand side of (5.4-2) as 

RHS (1) = h
q 

{(X1fn + (X2 [fn- 1 + f n+1] + (X3 [fn- 2 + f n+2 ] 

+ (X6 [ ..J f nf n-1 +..J fnfn+1 ] + (Xs [ ..J f nf n-2 +..J fnfn+2 ] 

+ (X10..J fn+1fn-1 + (Xll [ ..J f n-2f n- 1 +..J fn+2fn+1 ] 

+ (X12 [ ..J f n+1 f n-2 +..J fn-1fn+2 ] + (X1S ..J fn+2fn-2 } 

(5.4-8) 
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Again using the REDUCE program, we obtain (5.4-8) as 

RHS (1) = h 
4 

{ [a1 + 2 (a2 + a3 + a6 + as + all + (12) 

+ a10 + a15] fn 

+ 7~O [2 (a2 + 32 (2a3 + as + (15)) 

+ a6 + a10 + 65 (all + (12) ] h6l~6) 

+ 7a11 + 

f(l)f(3) 
n n 

27a12] h4 --=-­
fn 

f(l) 

] 
4 (2) (_n_) 2 

+ 23a11 h fn 
fn 

+ 37a11 + 117a12] h
4
--3-

fn 

+ 23~40 h
6

{ -96 [a6 + 2(16as + a10 + (15) 
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f(l) f(5) 
n n 

+ 31a11 + 9 9a12 ] ----::--­
fn 



+ 12 5<Xll ] ----:2-­
fn 

+ 107<Xll]------2--­
fn 

+ 599<Xll + 1071<X12] ---3--­

fn 

+ 187<Xll + 423<X12] ---3-­
fn 

+ 1311<Xll + 2799<X12] --------­
f

C4l 
n 

(fCll) 6 

n 5 }} + 757<Xll + 1773<X12] 
fn 

+ ... (5.4-9) 

Now the Taylor series expansion of Yn±l and Yn±2 about xn 

are respectively given by 
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Yn±1 
h (1) 1 h 2 (2) +...Lh 3 (3) +...Lh 4 (4) 

= Yn ± Yn + '2 Yn - 3! Yn 4! Yn 

1 5 (5) 1 6 (6) + 1 7 (7) 
±5ThYn +6ThYn -?T hYn 

+ ... (5.4-10a) 

and 

Yn±2 +_ 2hYn(1) + 2 h2Yn(2) + JL h 3 
(3) + llh4 (4) 

= Yn - 3! Yn 4! Yn 

+ ... (5.4-10b) 

Therefore the left-hand side of (5.4-2) is given as 

(4 ) 
since Yn = f n . 

17 10 (6) 
+ 30240 h fn + ... (5.4-11) 

Hence, by equating the coefficients of like terms in 

(5.4-9) and (5.4-11) we obtain the results given in 

Tab1e(5.4) . 

Thus we have a system of nine equations involving nine 

unknowns to be solved. By using the REDUCE program, we 

obtain the solutions given in (5.4-12), 

0.15 = a, 
1 

0.1 = -12-0 

0.12 =~, all = Ii 

(79 - 36000. - 1620~ + 1801i) 

0.2 = 1!0 (31 - 14400. - 630~ - 901i) 

_1_ (-1 + 3600. + 180~ - 1801i) 
720 

320. + 15~ - Ii 

1 (-40. - 3~ - Ii) 
2 

= -160. - 9~ + Ii 

where a, ~ and Ii are arbitrary parameters. 
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TERM COEFFICIENT OF RHS(l) LHS(l) , 
h fn (Xl +2 «(X2+(X3+a.6+(laHXll +CX12) +CX1O+a.15 1 

h'f('l 1 1 
n 2"{2 [a,+2 (2a3+a.+alS)] +a,+a,0+5 (all+a12) } 

6 

h· f('l 1 ..L n 24" { 2 [a,+8 (2a3+a.+a,S) ] +a,+a,0+l7 (all+a12) } 80 

10 f ('l 1 17 
h n 720 {2 [a,+32 (2a3+a,+a'Sl J +a,+a,o+65 (al1+a12l ) 30240 

h'[f2 l ]'/fn 
1 
"4{a,+2 [2 (a.+2a,S) +a,O] +all+9a12 } 0 

h'f(llf(3l/ f 
1 

n n n 12{a,+4 [a,0+4 (a,+2a, S)] +7all+27a12} 
0 

h' [f~1) 1'/fn 
1 

16{a,+l6a,+9 (all+a, ,) } 0 

a (2) f~l) 2 
1 

16{3 (a,+21a12 ) +4 [alO +4 (3a,+4a,S )] +23all l 0 h fn [-f-] 
n 

h· [f2l ]'/fn
3 1 

6"4{5a,+8 [a,0+2 (5a,+8a,S) ]+37all+117a12l 0 

Table (5.4) : Coefficients of GM4 Formula 

Thus there are infinitely many formulae which can be 

deduced from (5.4-2) depending on the parameters a, ~ 

and O. 

Now for a=~=o=o, (5.4-2) reduces to the AM formula 

given as 

1 4 { Yn+2 = 4Yn-1 - 6Yn + 4Yn+1 - Yn-2 + 720 h 474fn 

while for a=l!4' ~=3l0 and 0=0, 

new GM4 formula of the form 

Yn+2 = 4Yn-1 - 6Yn + 4Yn+l - Yn-2 

(5.4-2) reduces to the 

92 [ ..j f nf n- 2 +...j fnfn+2 ] 

+ 48 [..jfn+lfn- 2 + ..jfn- 1f n+2 ]}. (5.4-13b) 
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Another form of the GM4 formula which can be deduced 

from (5.4-12) is by setting al = 1 and a = ~ = O. Thus we 

obtain the GM4 formula as 

Ynt2 = 4Yn-1 - 6Yn + 4Yn+l - Yn-2 

+ 7~O h4 {nOfn + 42 [ (fn- l + f ntl ) - (fn- 2 + f nt2 ) ] 

82 [2 (...jfnfn-l + ...jfnfntl 

(...jfn-lfn+l + ...jfn- l f n-2 + ...jfntlfnt2 )) 

(5.4-13c) 

5.4 . 1 VARIANTS OF GM4 FORMULA 

We shall now investigate several alternative approaches 

of determining the values of the parameters ai' i = 

1,2, ... ,15 of (5.4-2). Given below is a list of some of 

the possible ways: 

case (1): set a2 = a4, a) = a5, a6 = a?, 

as = ag, all = a14, al2 = a13, 

case (2): set a2 = a4, a) = a5, a6 = -a?, 

as = -a9, all = a14, al2 = a13, 

case (3): set a2 = a4, a3 = a5, a6 = -a?, 

as = -a9, all = -aI4, al2 = -a13, 

case (4): set a2 = a4, a3 = a5, a6 = a?, 

as = ag, all = al2 = a13 = al4 = O. 

Case(l} has been dealt with previously in Table(5.4} and 

the parameters are given in (5.4-12). 

Now consider case(2} above. Then the right-hand side of 

(5.4-2) becomes 
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RHS (2) = h4 {Ulfn + U2 [fn-l + fn+l] + U3 [fn- 2 + f n+2] 

+ U6 [ ...J fnfn- l -...J fnfn+l ] + UB [ ...J f nf n- 2 -...J fnfn+2 ] 

+ U10 ...Jfn+lfn- l + Ull [...Jfn-2f n-l + ...Jfn+2fn+l ] 

+ U12 [ ...J f n+lfn- 2 +...J f n- l f n+2 ] + CX1S...J fn+2fn-2 } 

(5.4.1-1) 

By using (5.4-4), we obtain 

L[ + 3840 16 40 80 

f(l) 
n ( f~2) ) 2 

+ 180 
f3 

n 
+ 120 

f(2) 
n (f~1»)3 

- 300 
f4 

n 
+ 105 

+ ... }. (5.4.1-2a) 

...Jfnfn+2] is deduced from (5.4.1-2a) 

by substituting h with 2h. Thus we have 

f(1) 

= -2UBf n {h ;n 

+ 180 

257 

f(l)f(2) 
n n 

- 6 
f2 

n 

f(1)f(4) 
n n 

- 40 

+ 120 

f (1) 

+ 3 (_n ) 3] 
fn 

f (2) f(3) 
n n 

- 80 



f(l) 

+ 105 ( ;n ) 5] + ... }. (5.4. 1-2b) - 300 

By using (5.4-6), we obtain 

£ 
+ 384 

f(4) 

[136 -;- - 112 ---
n f2 

- 108 
n 

+ 276 -----:--­
f3 

n 

f(6) 

[2080 -;-
n 

f (2) f(4) 
n n 

2976--­
f2 

n 

f(3) 

- 10800 
f2 

- 7840 (_n ) 2 

fn 
+ 16200 

n 

f (4) 
n 

(f~l) ) 2 

+ 12840 
f3 

n 

f(3) 
n 

(f~l) ) 3 

- 44880 ----­
f4 

n 

f(1)f(2)f(3) 
n n n 

+ 60000 
f3 

n 

(f~l) f~2) ) 2 

- 107820 ----,---­
f4 

n 

+ 117990----::--­
fS 

n 

- 34065 

f(2) 

(_n ) 3 

fn 

+ ... } • 

(5.4.1-2c) 

+ .,. 
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f lS ) 

~ [ 176 
n 

+ 3840 fn 

+ 1140 

- 1740 

f (1) f(4) 
n n 

200 
f2 

n 

fll) 
n 

(f~2))2 

f3 
n 

f(2) 
n 

( f~l) ) 3 

f4 
n 

560 

+ 680----­
f3 

n 

f (1) 

+ 585 ( ;n ) S] + ... } . 

(5.4.1-2d) 

By using (5.4-7), we obtain 

JL 
+ 384 

~ + 46080 

+ 756 

f(6) 

[2080 ;n 

432 ---:-­
f2 

n 

f(2) 
n 

(f~1))2 

f3 
n 

- 108 

f (1) 

- 351 (_n ) 4] 
fn 

fll) f lS ) 
n n f(2) 

- 9504 + 16200 (_n ) 3 

f2 fn 
n 

f(2) f(4) 
n n f(3) 

- 10800 - 12960 (_n ) 2 

f2 fn 
n 

f(4) 
n 

(f~l)) 2 fll)fI2)
f

I3) 
n n n 

+ 29160 
f3 

+ 108000 
f3 

n n 

f(3) 
n 

(f~1))3 (f~l) f~2) ) 2 

- 101520 
f4 

- 192780 
f4 

n n 

(f2) ) 4f~2) f (1) 

+ 251910 - 79785 (-i-)6]+ ... }. 
fS n 

n 

(5.4.1-2e) 
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and 

(5) f(1)f(4) 
S f n n 

---+9 
f2 

n 

h [ n 
+ 3840 496 f - 1800 --2- - 2160 

n fn 

+ 5940 -----+ 4920 ----,----
f3 f3 

n n 

- 11340 ----- + 4185 
f4 

n 

(5.4.1-2f) 

Hence, by using (5.4-3a), (5.4-3b), (5.4-5), (5.4.1-2a), 

(5.4 .1-2b), (5.4 .1-2c) and (5.4 .1-2e); (5.4.1-1) becomes 

RHS(2) 

1 6 (6) 
+ 720 [2 (0.2 + 32 (20.3 + 0.15» + 0.10 + 65 (all + 0.12) ] h fn 

(f~1»2 

+ i [2 (0.10 + 40.15) + all + 90.12] h
2 

fn 

1 
8 

} + .... (5.4.1-3) 

By equating (5.4.1-3) and (5.4-11) we obtain the results 

given in Table(5.4.1a) 
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TERM COEFFICIENT OF RHS(2) LHS(2) 

4 a, + 2 (a2 + a3 + all + a,2) + alO + 0.15 1 
h fn 

h ·fI2) 1 
+ 2 (2a3 + 1. 

n 2"{2 [a2 (15) 1 + alO + 5 (all + a,2) } 
6 

h' f14) 1 .1... n 24"{2 [a2 + 8 (2U3 + a ,S ) 1 + a lO + 17 (all + a ,2 ) } 
80 

10 f l.) 1 17 
h 720{2[a2 + 3212a3 +U,S)) + a,O + 65 I all + a,2)} n 

30240 

.[f~')l 
2 1 

4{2 (a,O + 4a,S) + all + 9a,2} 0 
h 

fn 

h S fll) - {a. + 2a,) 0 
n 

h\13) 1 
n - G{a. + 8a,) 0 

9 (5) 1 
h fn -120{U.+ 32a,) 

0 

7[f~l)13 
1 0 

h 2 - sla. + 8a, ) 
fn 

Table(5.4.1a): Coefficients of GM4 Formula case(2) 

Thus by using the REDUCE program, the solutions of the 

equations obtained 
(5.4.1-6), where 

constants. 

from Table(5.4.1a) above are given in 
the a, ~ and 0 are some arbitrary 

Therefore the corresponding GM4 formula for case(2) is 

given by 

where the parameters of the formula are given in (5.4.1-
6) • 
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a 15 = 0, a 12 = 0, all = a, a lO = ~ 
aB = 0, a 6 = _1 (9~ + 0 + Sa) 2 

a 3 

__ 1_ 
[360 (a + ~ + 0) + 1] (5.4.1-6) 720 

a 2 
1 

[45(7~ - 0 + Sa) + 31] =-
180 

a l = .2'L 
120 

Similarly, by following the same lines of discussions as 

in the cases (1) and (2), we obtain the results for 

case(3) and case(4) as in Tab1e(5.4.1b) and 

Tab1e(5.4.1c) respectively. 

However the resulting coefficient matrix obtained from 

case (3) is singular as can be easily checked by 

computing its determinant. Thus we do not proceed 

further with this case. 

We shall now consider case(4). The results of equating 

the right-hand side of (5.4-2) and (5.4-11) are 

tabulated in Table(5.4.1c) 

By using the REDUCE program, the solutions obtained by 

solving the consistency equations derived for case (4) 

are as follows: 

a 15 = a, a lO = -16a, aB = -2a 
1 

a 6 32a, a 3 = 720 [360a - 1] 
1 

a 2 = 180 [-1440a + 31] 
1 

a l = 120 [-3600a + 79] 

(5.4.1-7) 

Thus an investigation of cases (1) to (4) resulted in 

formulae which are similar in many respects except in 
the combination of the parameters ai. 
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COEFFICIENT a , a 2 a 3 a 6 aa a ,O all a '2 a '5 RHS 
OF: 

• h fn 
1 2 2 0 0 1 0 0 1 1 

h 5 fll) 
n 0 0 0 1 2 0 3 1 0 0 

h6f(2) 1. 1 
n 0 1 4 0 0 2 0 0 2 6 

h\(3) 1 4 1. I 
n 0 0 0 6 3 0 2 6 0 0 

ha fl') 1 4 1 2 .l n 0 12 3 0 0 24 0 0 3 80 

h' f(5) 1 4 11 .l.L n 0 0 0 120 15 0 40 120 0 0 

10 f (6) 1 ~ 1 4 ----'"----h n 0 360 45 0 0 720 0 0 45 30240 

h
6 [f~1) J3 ffn 

1 
0 0 0 0 0 2 0 0 2 0 

h' [f~1)J3ffn2 1 1. 9 
0 0 0 8 1 0 8 8 0 0 

Table(S.4.1b): Coefficients of GM4 Formula for case(3) 

COEFFICIENT a , a 2 a 3 a 6 aa a ,O a '5 RHS 
OF: 

• 1 2 2 2 2 1 1 1 h fn 

h 6 f(2) 1 1. 1 
n 0 1 4 2 2 2 2 6 

haf l') 1 4 .l 2 1 ~ .l n 0 2 3 24 3 24 3 80 

10 f (6) 1 ~ 1 4 1 4 17 
h n 0 360 45 720 45 720 45 30240 

6 [f~') J 
2 

0 0 0 1 1 1. 2 0 
h 

fn 4 2 

a [f~2) J 
2 

0 0 0 1 1 0 0 0 
h 

fn 16 
f (1) 

a n 2 0 0 0 .l.. 3 1 4 0 h f~2) [i1 
n 16 4 

fll) f (3) 
n n 

0 0 0 1 4 1 8 0 a 
h 

fn 12 3 6 3 

[f (1) J • 
a n 0 0 0 2- ~ 1. 2 0 

h 
f3 64 4 8 

n 

Table(S.4.1c): Coefficients of GM4 formula for case(4) 
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5.4.2 ERROR ANALYSIS OF THE GM4 FORMULAE 

By using case (1) to illustrate the error analysis, we 

obtain the local truncation error of the GM4 formula as 

where 

10 
+ 65 (Ull + Ud 1 + 720R} - ~~~40 f~61 (5.4.2-1) 

[f~3112 

fn 
f~41 [f~1112 

[f~1116 

- 45 [3 (7U6 + 591(12) + 32 (21Ua + U10 + U1S) + 757Ulll S }. 
fn 

(5.4.2-1a) 
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For the case(l), we have the parameters of the formula 

as given in (5.4-12). Since there are infinitely many 

values of CJ., P and I) which may satisfy (5.4-12), we 

shall therefore consider only some values which will 

meet the criteria stated previously. 

First we shall rewrite (5.4.2-1a) in the form of 

R = (5.4.2-2) 

where 

al = -96{CJ.6 + 2 (16CJ.a + CJ.10 + CJ.ls) + 31CJ.ll + 99CJ.12} 

a2 = -240{CJ.6 + 32CJ.a + 45 (CJ.ll + CJ(12) } 

aJ = -160{CJ.6 + 2 (16CJ.a + CJ.10 + CJ.1S) + 49CJ.ll + 27CJ.12} 

a4 = 120{3 (CJ.6 + 81CJ(12) + 4 (24CJ.a + CJ.10 + CJ.1S) + 107CJ.ll} 

as = 480{3(CJ.6 + 75CJ(12) + 4 (24CJ.a + CJ.10 + CJ.1S) + 125CJ.ll} 

a6 = -180{3 (5CJ.6 + 357CJ(12) + 16 (30CJ.a + CJ.10 + CJ.1S) + 599CJ.ll} 

a7 = 360{CJ.6 + 32CJ.a + 45 (CJ.ll + CJ(12) } 

aB = -240 {5CJ.6 + 423CJ.12 + 8 (20CJ.a + CJ.10 + CJ.1S) + 187CJ.ll} 

a9 = 90 {35CJ.6 + 2799Ct12 + 16 (70CJ.B + 3 (CtlO + CtlS» + 1311Ctll} 

alO = -45{3 (7CJ.6 + 591CJ(12) + 32 (21CJ.a + CJ.10 + CJ.1S) + 757CJ.ll} 

and 

, 

5.4.2-2a) 

Xs = , (5.4.2-2b) 

, XB = 

X9 = X10 = 
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By letting Cl be arbitrary, and ~=O=O in (5.4-12), then 

by using the REDUCE program, we obtain the local 

truncation error as 

GM 
Tn+l 

h lO 
= 75600 (19530XlCl + 32550X2Cl - 245700X3Cl + 425250X4Cl 

- 37800XsCl + 220500X6Cl - 543375x7Cl + 170100xsCl 
• (6) (6) 

+ 25200XgCl - 61425xlOCl - 6048Clfn - 25fn }. 

(5.4.2-3) 

Now we consider (5.4.2-2) with a = [alf ... ,alol T and x = 

[xl' .•. , xlol T. Then R will vanish if and only ifaxT 
= O. 

If we assume that x is not a zero vector, that is, not 

all of the components of x will vanish at the same time, 

then we should have a = O. From (5.4.2-2a), for a = 0, 

this is equivalent to solving the system of simultaneous 

equations formed by the components of a. Thus we are 

required to solve the system of equations 

Cl6 + 2 (16Cls + ClIO + Cl15) + 31Clll + 99Cll2 = 0 

Cl6 + 32Cls + 45(Clll+ Cl12) = 0 

Cl6 + 2 (16Cls + ClIO + ClIS) + 49Clll + 27Cll2 = 0 

3 (Cl6 + 81Cl12) + 4 (24Cls + ClIO + ClIS) + 107Clll = 0 

3 (Cl6 + 75Cl12) + 4 (24Cls + ClIO + ClIS) + 125Clll = 0 

3 (5Cl6 + 357Cl12) + 16 (30aa + ClIO + ClIS) + 599Clll = 0 

Cl6 + 32Cls + 45(Clll + Cl12) = 0 

5Cl6 + 423Cll2 + 8 (20Cls + alO + alS) + 187all = 0 

35Cl6 + 2799Cll2 + 16 (70Cls + 3 (alO + ClIS)) + 1311Clll = 0 

3 (7Cl6 + 591ClI2) + 32(21as + ClIO + ClIS) + 757Clll = 0 

. (5.4.2-4) 

By using the REDUCE program, we obtain the solutions as 

Cls = 1 
Cl6 - 321 
ClIS = Cl (5.4.2-4a) 

ClIO -Cl 

Clll = Cll2 = O. 

266 



By substituting the values of the parameters given by 

(5.4.2-4a) in (5.4.2-1), we obtain the local truncation 

error of the GM4 formula for case(l) as 

GM 
Tn+l = 

1113(l + 25 (6) -"--=:::::-::-::-:-.=..:. h 1 0 f n • 
75600 (5.4.2-5) 

For the AM formula we have the local truncation error as 

Hence we have 

GM 
Tn+l 

1113(x + 25 
AM = 

75600 
3024, 

Tn+l 

1113(x + 25 

25 
For 

GM 
Tn+l 

AM 
Tn+l 

< 1, 

we therefore obtain the result -92."«<D. Hence we can 
1t11,. 

establish the condition under which the GM4 formula has 

a smaller local truncation error than the AM formula. 

5.4.3 COMPUTATIONAL COMPLEXITY OF GM4 

FORMULAE 

Again in this section we shall make use of the GM4 

formulae derived for case(l) to illustrate our 

discussion. Consider the three formulae given by (5.4-

13a), (5.4-13b) and (5.4-13c) 

their computational complexity. 

Table(5.4.3) compares 

Formula Addition Multiplication Square Root 

(5.4-13a) 8 7 0 

~5. 4-13b) 13 17 8 

(5.4-13c) 15 18 7 

Table(5.4.3): Computational complexity of GM4 formulae 
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Thus in any case (that is either formula (S.4-13b) or 

(S.4-13c», the GM4 formula involves twice as much work 

as the AM formula (S.4-13a). However, if the problem to 

be solved contains the computation of a squared 

function, then the GM4 formulae would have a better 

advantage. 

5 • 4 .4 NUMERICAL RESULTS 

Problem y(4) = Y 

Initial conditions x = 0, y = 1, y(l) = 1, y(2) 
x Exact solution y = e . 

(3) = 1, y 1 

The values of Yl' Y2 and Y3 were given by the values of 

the exact solution of the problem. 

Parameters of the equation 
CASE(l) a 0, ~ = 0, 8 = 0 (Formula(S.4-13a» 

1 1 
CASE(2) a = 144' ~ = 30' 8 = 0 (Formula(S.4-13b» 

CASE (3) a = 0, ~ = 0, 8 41 = 180 (Formula(S.4-13c» 

Xn Numerical Solution Exact Solution Relative Error 

.10 .110517091807565EtOl .110517091807565EtOl 0 

.20 .122140275816017Et01 .122140275816017EtOl 0 

.30 .134985880757600EtOl .134985880757600EtOl 0 

.40 .149182469764126EtOl(1) .149182469764127EtOl .803741129E-14 
.149182469764144EtOl(2) . 111630712E-12 
.149182469764083EtOl(3) .297979581E-12 

.50 .164872127070007EtOl(1) .164872127070013EtOl .369014598E-13 
.164872127070098EtOl(2) .515947053E-12 
.164872127069786EtOl(3) .137626284E-11 

.60 .182211880039032EtOl(1) .182211880039051EtOl .102484818E-12 
.182211880039312EtOl(2) .143137535E-11 
.182211880038356EtOl(3) .381472619E-ll 

.70 .201375270747003EtOl(1) .201375270747048EtOl .222292401E-12 
.201375270747670EtOl(2) .308849709E-ll 
.201375270745391EtOl(3) .822790622E-ll 

.80 .222554092849155EtOl(1) .222554092849247EtOl . 412254071E-12 
.222554092850518EtOl(2) .571309114E-ll 
.222554092845860EtOl(3) .152162858E-I0 

.90 .245960311115526EtOl(1) .245960311115695EtOl .687546582E-12 
.245960311118035EtOl(2) .951262584E-ll 
.245960311109463EtOl(3) .253355860E-I0 

1. 00 .271828182845616EtOl(1) .271828182845904EtOl .106109653E-ll 
.271828182849892EtOl(2) .146700884E-I0 
.271828182835283Et01(3) .390735115E-I0 

Table(S.4.4) 
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5 .5 EXl?LICIT FORMULA FOR A Sl?ECIAL CLASS OF 

FOURTH -ORDER ODES 

In Section 5.4, we have derived the implicit formulae 

for the special fourth-order ODEs problems of the type 

(5. 4-1a). Now it is characteristic of an implicit 

formula that it requires a predictor to start with. 

Therefore in this section, w~ shall derive an explicit 

formula which could be combined with the implicit 

formula (5.4-13a) to form a predictor-corrector pair to 

be used with the special fourth-order ODEs problems 

(5.4-1a) . 

Consider the explicit formula defined by 

Yn-2 - 4Yn-l + 6Yn - 4Yn+l + Yn+2 

(5.5-1) 

where ~i' i = 1,2,3,4 are the free parameters to be 

determined. 

By using the Taylor series expansion of f n- 2 and fn±l 

given in (5.4-3a), we can write the right-hand side of 

(5.5-1) as 

(5.5-2) 

Now the left-hand side of (5.5-1) is given by (5.4-11). 

Therefore by equating (5.5-2) and (5.4-11), we obtain 

the following results: 
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coeff. of 4 
131 + 132 133 + 134 1 h fn: + = 

coeff. of h5f~1) : -2131 - 132 + 134 = 0 

coeff. of h6f~2) : ~[4131 + 132 + 1341 
1 = 6 

(5.5-3) 

h 7 f ~3) : 1 
coeff. of "6 [-8131 - 132 + 1341 = 0 

On solving (5.5-3) we obtain the solutions as: 

(5.5-4) 

Thus the desired explicit formula is 

Yn+2 4Yn-1 - Yn-2 - 6Yn + 4Yn+l 

(5.5-5) 

Its local truncation error is obtained as 

(5.5-6) 

Hence the explicit formula given by (5.5-5) is O(h8
). 

This is confirmed by the numerical results given in 

section 5.5.1 that follows. 
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5 . 5 . 1 NUMERICAL RESULTS 

The numerical results obtained by applying the formula 

(5.5-5) to some selected problems confirm that it is 

O(hB
) accurate. 

Problem 1 Y 
(4 ) = 24 

Initial conditions xo 

Exact solution 4 
Y = x 

Xn Numerical Solution 
.2 .122300275816E+01 
.4 .151742469764E+01 
.6 .195171880039E+01 
.8 .263514093378E+01 

1.0 .371828185608E+01 
1.2 .539371700936E+01 
1.4 .789680017843E+01 
1.6 .115066328679E+02 
1.8 .165472483023E+02 
2.0 .233890575667E+02 

Problem 2 (4 ) 
Y = y. 

Initial conditions Xo 

+ 

+ 

K 
e 

(1) (2) 
0, Yo = Yo = Yo 

K e . 

Exact Solution 
.122300275816E+01 
.151742469764E+01 
.195171880039E+01 
.263514092849E+01 
.371828182846E+01 
.539371692274E+01 
.789679996684E+01 
.115066324244E+02 
.165472474644E+02 
.233890560989E+02 

Table(5.5.1a) 

0, Yo 
(1) (2) 

Yo = Yo 

K Exact solution y = e . 

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

.75 

.80 

.85 

.90 

.95 
1. 00 

Numerical Solution 

.105127109638E+01 

.110517091808E+01 

.116183424273E+01 

.122140275816E+01 

.128402541669E+01 

.134985880758E+01 

.141906754860E+01 

.149182469765E+01 

.156831218550E+01 

.164872127071E+01 

.173325301789E+01 

.182211880042E+01 

.191554082906E+01 

.201375270754E+01 

.211700001670E+01 

.222554092862E+01 

.233964685209E+01 

.245960311137E+01 

.258570965959E+01 

.271828182880E+01 

Exact Solution 

.105127109638E+01 

.110517091808E+01 

.116183424273E+01 

.122140275816E+01 

.128402541669E+01 

.134985880758E+01 

.141906754859E+01 

.149182469764E+01 

.156831218549E+01 

.164872127070E+01 

.173325301787E+01 

.182211880039E+01 

.191554082901E+01 

.201375270747E+01 

.211700001661E+01 

.222554092849E+01 

.233964685193E+01 

.245960311116E+01 

.258570965932E+01 

.271828182846E+01 

Table(5.5.1b) 
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(3) 
Yo = 1. 

Relative Error 
o 
o 
o 

.2007125152E-08 

.7427166474E-08 

.1605964691E-07 

.2679319322E-07 

.3854663472E-07 

.5063866395E-07 

.6275290991E-07 

(3) 
Yo = 1. 

Relative Error 

o 
o 
o 

.4799381310E-13 

.2315512778E-12 

.6691643954E-12 

.1504480092E-ll 

.2897040247E-ll 

.5019644364E-ll 

.8050848056E-ll 

.1217313470E-10 

.1756804247E-10 

.2441430112E-10 

.3288494096E-10 

.4314482921E-10 

.5534959871E-10 

.6964445783E-10 

.8616269483E-10 

.1050258385E-09 

.1263430240E-09 



Problem 3 y(4) = 34320 (2 _ x) -14 • 

Initial conditions xo = -2, Ye = 2-19 + 1. 

Exact solution y = 2(2 - x)-10 - X - 1. 

-1. 90 
-1.80 
-1.70 
-1. 60 
-1.50 
-1.40 
-1.30 
-1.20 
-1.10 
-1.00 
-0.90 
-0.80 
-0.70 
-0.60 
-0.50 
-0.40 
-0.30 
-0.20 
-0.10 
o 0 

Numerical Solution 
.900002456880E+00 
.800003185620E+00 
.700004159228E+00 
.600005470223E+00 
.500007250198E+00 
.400009688168E+00 
.300013058469E+00 
.200017763685E+00 
.100024401551E+00 
.338706660818E-04 

-.999524600654E-01 
-.199932475575E+00 
-.299902858094E+00 
-.399858318127E+00 
-.499790274267E+00 
-.599684540155E+00 
-.699517181761E+00 
-.799246918783E+00 
-.898800821963E+00 
-.998046621172E+00 

Exact Solution 
.900002456880E+00 
.800003185620E+00 
.700004159228E+00 
.600005470222E+00 
.500007250193E+00 
.400009688149E+00 
.300013058419E+00 
.200017763568E+00 
.100024401305E+00 
:338701756162E-04 

-.999524610028E-01 
-.199932477318E+00 
-.299902861285E+00 
-.399858323925E+00 
-.499790284800E+00 
-.599684559408E+00 
-.699517217371E+00 
-.799246985763E+00 
-.898800950677E+00 
-.998046875000E+00 

Table(5.5.1c) 

Problem 4 y(4) = cos (x) . 

Relative Error 
o 
o 
o 

.1632753109E-ll 

.1100348289E-10 

.4679199161E-10 

.1668920077E-09 

.5810853334E-09 

.2461445220E-08 

.1448075280E-04 

.9378402242E-08 

.8721265620E-08 

.1064142170E-07 

.1450027747E-07 

.2107453149E-07 

.3210568660E-07 

.5090699434E-07 

.8380342085E-07 

.1432061575E-06 

.2543249241E-06 

(2) 
Initial conditions xo = 0, Yo = -Yo 1 (1) (3) - O. , Yo = Ye -

Exact solution y = cos (x) . 

xn Numerical Solution Exact Solution Relative Error 
.15 .988771077936E+00 .988771077936E+00 0 
.30 .955336489126E+00 .955336489126E+00 0 
.45 .900447102353E+00 .900447102353E+00 0 
.60 .825335615250E+00 .825335614910E+00 .4126850341E-09 
.75 .731688870557E+00 .731688868874E+00 .2300772161E-08 
.90 .621609973255E+00 .621609968271E+00 .8018581516E-08 

1.05 .497571059352E+00 .497571047892E+00 .2303250344E-07 
1.20 .362357777026E+00 .362357754477E+00 .6222982817E-07 
1.35 .219006726961E+00 .219006687093E+00 .1820386036E-06 
1.50 .707372668276E-01 .707372016677E-01 .9211547398E-06 
1. 65 -.791207885575E-01 -.791208888067E-01 .1267038648E-05 
1. 80 -.227201947709E+00 -.227202094693E+00 . 6469301671E-06 
1. 95 -.370180624167E+00 -.370180831351E+00 .5596831312E-06 
2.10 -.504845822011E+00 -.504846104600E+00 .5597518007E-06 
2.25 -.628173247918E+00 -.628173622723E+00 .5966576789E-06 
2.40 -.737393230282E+00 -.737393715541E+00 .6580736222E-06 
2.55 -.830052920079E+00 -.830053535235E+00 .7411038314E-06 
2.70 -.904071376583E+00 -.904072142017E+00 .8466518442E-06 
2.85 -.957786300814E+00 -.957787237553E+00 .9780242184E-06 
3.00 -.989991367208E+00 -.989992496600E+00 .1140808767E-05 

Table(5.5.1d) 
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5.5.2 l?REDICTOR-CORRECTOR l?AIR USING (5.4-

13a) AND (5.5-5) 

By using (5.5-5) as the predictor and (5.4-l3a) as the 

corrector, we form a predictor-corrector pair and 

investigate numerically its suitability to solve some 

special fourth-order initial-value ODEs problems. Some 

numerical results are 

P(EC}"'E' algorithm is 

algorithm is as follows: 

given in section 5.5.3. 

used in this case. Thus 

Step l:Initialization of variables. 

S 2 d ' (PI 4 6 4 tep :Pre l.ct Yn+2 = Yn-! - Yn-2 - Yn + Yn+l 

h4 
+ ""6 [fn-l + 4 fn + fn+l] 

Step 3:Correct 
(Cl 

Yn+2 = 4Yn-l - Yn-2 - 6Yn + 4Yn+l 

h4 
+ 720 {474fn + 1'24 [fn- l + fn+l] 

- [fn- 2 + f~~~] } 

I 
(PI (C) I 

Step4: If Yn+2 - Yn+2 > E repeat step 3 , 

(Cl 
else accept Yn+2 as the numerical solution, 

advance to another step interval 

and repeat step 3 " 
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5 .5 . 3 NUMERICAL RESULTS 

In each problem, the first three solutions were obtained 

using the exact solution of the problem. 

Problem 1 
(4 ) 

Y = Y 
Initial conditions Xo = 0, Yo 

(1) 
= Yo 

(2) 

Yo 
(3) 

= Yo = 1. 

x Exact solution is y (x) = e . 

The value of eps was set at SE-ll. 

Xn 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

Numerical Solution. 
0.11051709180756E+01 
0.12214027581602E+01 
0.13498588075760E+01 
0.14918246976412E+01 
0.16487212706999E+01 
0.18221188003899E+01 
0.20137527074690E+01 
0.22255409284894E+01 
0.24596031111513E+01 
0.27182818284494E+01 

Exact Solution. 
0.11051709180756E+01 
0.12214027581602E+01 
0.13498588075760E+01 
0.14918246976413E+01 
0.16487212707001E+01 
0.18221188003905E+01 
0.20137527074705E+Ol 
0.22255409284925E+01 
0.24596031111569E+01 
0.27182818284494E+01 

Table(S.S.3a) 

Relative Error 
o 
o 
o 

0.270890529E-13 
0.124845450E-12 
0.346206143E-12 
0.747811042E-12 
o .138382477E-ll 
0.230494214E-ll 
0.355561276E-ll 

Problem 2 y(4) = cos (x) . 

Initial conditions Xo = 0, Yo 
(1) (3) 

= 1, Yo = Yo = O. 

Exact solution y = cos (x) . 

The value of eps was set to Se-lOo 

Xn 

.15 

.30 

.45 

.60 

.75 

.90 
1.05 
1.20 
1.35 
1.50 
1.50 
1. 65 
1.80 
1. 95 
2.10 
2.25 
2.40 
2.55 
2.70 
2.85 
3.00 

Numerical Solution 
.988771077936042E+00 
.955336489125606E+00 
.900447102352677E+00 
.825335614911496E+00 
.731688868882805E+00 
.621609968297267E+00 
.497571047952894E+00 
.362357754597030E+00 
.219006687305838E+00 
.707372020155056E-01 
.707372020155056E-01 

-.791208882716267E-01 
-.227202093908509E+00 
-.370180830245356E+00 
-.504846103091408E+00 
-.628173620722024E+00 
-.737393712950901E+00 
-.830053531951460E+00 
-.904072137931075E+00 
-.957787232552635E+00 
-.989992490571556E+00 

Exact Solution 
.988771077936042E+00 
.955336489125606E+OO 
.900447102352677E+00 
.825335614909678E+00 
.731688868873821E+00 
.621609968270664E+00 
.497571047891727E+00 
.362357754476674E+OO 
.219006687093042E+00 
.707372016677031E-01 
.707372016677031E-01 

-.791208888067337E-Ol 
-.227202094693087E+OO 
-.370180831351286E+OO 
-.504846104599857E+00 
-.628173622722739E+00 
-.737393715541245E+00 
-.830053535235222E+OO 
-.904072142017061E+OO 
-.957787237553090E+00 
-.989992496600445E+00 

Table(S.S.3b) 
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Relative Error 
o 
o 
o 

. 181754611E-ll 

.898436880E-ll 

.266026090E-l0 

.611673490E-l0 

.120356725E-09 

.212796558E-09 

.347802426E-09 

.347802426E-09 

.535106959E-09 

.784577264E-09 

.110592996E-08 

.150844937E-08 

.200071459E-08 

.259034449E-08 

.328376171E-08 

.408598544E-08 

.500045516E-08 

.602888928E-08 

\\ 



Problem 3 y (4
) = 24 + eX. 

Initial conditions Xo 0, Yo 
(1) 

= Yo 
(2) 

Yo 
(3) 

= Yo 1. 

Exact solution y 

The value of eps was set to 5e-07. 

xn 

.20 

.40 

.60 

.80 
1.00 
1.20 
1.40 
1. 60 
1. 80 
2.00 

Numerical Solution. 
.122300275816017E+01 
.151742469764l27E+Ol 
.195171880039051E+Ol 
.263514092844179E+01 
.3718281828l9444E+Ol 
.539371692190658E+01 
.789679996481741E+01 
.1l5066324201453E+02 
.165472474563843E+02 
.233890560848676E+02 

Exact Solution. 
.122300275816017E+Ol 
.151742469764l27E+Ol 
.195171880039051E+01 
.263514092849247E+01 
.371828182845904E+01, 
.539371692273655E+01 
.789679996684467E+01 
.115066324243951E+02 
.165472474644129E+02 
.233890560989306E+02 

Table(5.5.3c) 

Problem 4 y(4) = 34320 (2 _ x) -14. 

Initial conditions Xo = -2, Yo 2-
19 + 1. 

Exact solution y 2 (2 - x) -10 - x - 1. 

The value of eps was set to 5e-07. 

-1. 90 
-1.80 
-1.70 
-1. 60 
-1.50 
-1. 40 
-1.30 
-1.30 
-1.20 
-1.10 
-1.00 
-.90 
-.80 
-.70 
-.60 
-.50 
-.40 
-.30 
-.20 
-.10 

.00 

Numerical Solution. 
.900002456879889E+00 
.800003185620442E+00 
.700004159228257E+00 
.600005470222397E+00 
.500007250192412E+00 
.400009688148210E+OO 
.300013058415803E+00 
.300013058415803E+00 
.200017763560974E+00 
.100024401289039E+00 
.338701422661497E-04 

-.999524610690470E-01 
-.199932477447225E+OO 
-.299902861533303E+00 
-.399858324402958E+00 
-.499790285725370E+00 
-.599684561224631E+00 
-.699517221003311E+00 
-.799246993203639E+OO 
-.898800966360997E+OO 
-.998046909174331E+00 

Exact Solution. 
.900002456879889E+00 
.800003185620442E+00 
.700004159228257E+00 
.600005470222455E+00 
.500007250192741E+00 
.400009688l49351E+00 
.300013058418920E+00 
.300013058418920E+00 
.200017763568393E+00 
.100024401305222E+00 
.33870175616l797E-04 

-.999524610027672E-01 
-.199932477318294E+00 
-.299902861285008E+00 
-.399858323925223E+00 
-.499790284800001E+00 
-.5996845594084l9E+00 
-.699517217370856E+00 
-.799246985762834E+00 
-.898800950676679E+00 
-.998046875000001E+00 

Table(5.5.3d) 
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Relative Error 
o 
o 
o 

.506772402E-10 

.264606115E-09 

.829963653E-09 

.202726458E-08 

.424980584E-08 

.802864619E-08 

.140630867E-07 

Relative Error 
o 
o 
o 

.580646642E-13 

.329736238E-12 

. 114108722E-11 

.311745074E-11 

.311745074E-11 

.741962047E-11 

.161830410E-10 

.333500300E-10 

.662797595E-10 

.128930755E-09 

.248294774E-09 

.477735129E-09 

. 925369781E-09 

.181621251E-08 

.363245412E-08 

.744080486E-08 

.156843185E-07 

.341743300E-07 



5.6 CONCLUSIONS AND RECOMMENDATIONS 

In this chapter we have investigated the feasibility of 

extending the geometric mean (GM) approach of deriving 

numerical methods for the solution of problems involving 

ODEs. For the second-order ODE problems of special type, 

we have obtained the GM modified form (GM2) of the 

Numerov method which may be combined together with the 

Numerov method (AM) to form a new adaptive error control 

method. Numerical results are presented for the 

simplified prototype adaptive error control method 

formed by the combination of the GM2 and the AM methods. 

Therefore a carefully designed adaptive error control 

method utilizing these strategies may give some 

promising results. This could be an area of further 

research. 

We have also investigated special type problems 

invol ving fourth -'order ODEs. New implicit and explicit 

methods for solving these problems are derived. 

Numerical results for some selected problems show that 

the predictor-corrector pair formed by these formulae 

are encouraging. 

The GM methods may give encouraging results if some 

criteria are satisfied despite the fact that they may 

involve more computational work. However, the main 

contribution of the GM approach is in the derivation of 

alternative methods which are of the same order as the 

AM methods. These could then be combined together to 

form an adaptive error control method with fewer 

function evaluations than the more conventional approach 

of combining two methods of different order. 
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CHAPTER 6 
NUMERICAL SOLUTIONS OF 
PERIODIC BOUNDARY-VALUE 
PROBLEMS IN ELLIPTIC PDES 

6.1 INTRODUCTION 

Boundary-:value problems involving elliptic PDEs arise 

naturally as descriptions of processes or equilibrium 

states in many physical or engineering systems. In this 

chapter, we shall concentrate the discussion on periodic 

boundary-value problems of the elliptic PDE type. This 

type of problem occurs naturally in circular domains, 

periodic -time and torroidal - space structures. The 

elliptic PDE can be solved numerically through the 

applications of finite difference/element methods as 

described in chapter 3. This often leads to a large 

system of algebraic equations and their solution is a 

major numerical problem by itself. There are two 

alternative methods of solutions; namely direct and 

iterative methods. For the periodic problems ",,',\\, .h;,~ we are 

concerned, we shall show that the standard optimum 

SOR formula is not applicable and next we derive the 

optimum parameter for this problem. Finally, we shall 

develop a new direct method, analogous to the odd-even 
c of ",hi'"'-

reduction method, the modified form).. is numerically 

stable. 

6 .2 FORMULATION OF THE PROBLEM 

Consider the solution of the self-adjoint second-order 

elliptic PDE of the form 

- [A(x,y)ux(x,y) lx - [C(x,y)uy(x,y) ly + F(x,y)u(x,y) 

= G(x,y) (6.2-1) 

for (x,y)eR1 and R1={(x,y)IO$x$ll' O$y$l2) with 

u (x, y) periodic both in the x and y directions. 

According to Mikhlin[19641, this problem belongs to a 



_ b"'~W 

class of elliptic fourth,z boundary- value problems. The 

boundary conditions imposed are 

u(x,y) = U(x±ll'Y) 

u (x, y) = u (x, y±12) } (6.2-2) 

for all (X,y)ER1 • 

The functions A(x,y), C(x,y), F(x,y) and G(x,y) are 
assumed to be continuous in Rl and satisfy the following 

conditions: 

A(x,y»O, A (x, y) A (x±ll' y) = A (x, y±12) 

C(x,y»O, C(x,y) = C (X±ll' y) = C (x, y±12) 
(6.2-3) 

F(x,y)~O, F (x, y) = F(x±ll'Y) = F (x, y±12) 

G (x, y) = G (x±ll' y) = G(x,y±12) 

for all (x,y)ER1 • 

6.3 THE DIFFERENCE EQUATIONS 

In chapter 3, we have formulated the difference 

equations for the linear, second-order PDE (3.3-1) and 

thus obtain the system of simultaneous linear equations 

(3.3.2-10) to be solved. Similarly, in this section, we 

shall develop the corresponding difference equations 

which approximate the se1f-adjoint second - order PDE 

(6.2-1) with the prescribed boundary conditions (6.2-2). 

Thus, following the same technique as described in 

chapter 3J and at each grid point (i,j) we substitute the 

derivatives in (6.2-1) by their equivalent weighted 

difference representations, to the following 

approximations: 

Ai+~,j (Ui+l,j - Ui,j) - Ai-~d (uJ.,j - Ui-l,j) 

h 2 

(6.3-1a) 
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[C(x,y)uy(x,y) ly '" 
Ci,j+~ (Ui,j+1 - Ui,j) - Ci,j-~ (Ui,j - UJ,j-l) 

k
2 

(6.3-1b) 

Therefore at each grid point (i,j), we have the five­

point finite-difference approximation of (6.2-1) given -

by the form 

where the truncation error term is being neglected and 

x = ih i=0,1,2, ... ,n-1 

y jk j=O, 1,2, ... ,m-1 

2 2 a· . = -k Ai_%,j; Ci,j -k Ai+~,j ",J 

(6.3-3) 
di,j 

2 -h2Ci,j+~ = -h Cij_l' ei,j = 
, 2 ' 

b .. = h 2k 2F .. - ai,j - Ci,j - di,j - eij ",J l.,J 

S l,j = h
2
k

2
Gi;J 

NOw,hy taking all the internal grid points (i,j) yields 

a set of linear systems of equations of the form (3.3.2-

10) with M satisfying the properties in (3.3.2-24). Thus 

corresponding to the lines y = jk the partitioning of M 

takes the form 

r Bo Co 
Ao l Al Bl Cl 

0 I 
M = I (6.3-4a) 

I 0 
l A.t-2 Bm- 2 c'-'J Cm- l Am-l Bm- l 

where the Aj , B j and C j are nxn submatrices such that 
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bo,j co~ aO,j 
a1,l b1,j C1,j 

0 
Bj = (6.3-4b) 

0 
an-2~ b n-2,j Cn-2,j 

Cn-1,j an-l,j bn-1,:l 

and 

Aj = diag [do,J' d1,j' ... , dn-1J 1 } 
Cj = diag [eo,:!' e1,j' ... , en-ld 1 

(6.3-4c) 

for all j = 0,1, ... ,m-1. The vectors u and s of (3.3.2-

10) are then partitioned relative to the matrix M of 

(6.3-4a) . 

6.4 SPECTRAL DECOMPOSITION METHOD 

We consider the matrix equation, 

Mu = s (6.4-1) 

where M is the block matrix of order mn of the form, 

T S S l s T S 

0 I 
M I (6.4-1a) 

0 
S T S 

S S T 

and the submatrices Sand T are symmetric matrices of 

order n. We assume that Sand T commute, that is, 
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TS = ST. (6.4-1b) 

The vectors U and S are likewise partitioned. Thus we 

have 

"" .,. T } U [up u 2' ... , u m I 

..,. "J :r T 
S = [Sl,S2" ",sml 

(6.4-1c) 

where 

T } Uj [ul,j' u 2,:i' ... , un,:il 

T 
Sj = [Sl,:i' S2J"'" snJI 

(6.4-1d) 

for j=1,2, ... ,m. 

Now T and S are commutative; therefore they have a 

common basis of eigenvectors. 

Then, by the well·- known theorem of Frobenius (see 

Varga[19621, Bellman[19601) there exists an orthogonal 
, • T -1 . of .M,,\" 

matr~x Q (~. e., Q = Q )~he. columns" are the set of 

eigenvectors of T and S such that, 

QTTQ = A } (6.4-2) 
QTSQ = n 

where A and n are the diagonal matrices the elements 0( ",1.I<-\.. 

1.1 , COil i = 1,2, ... ,n are the eigenvalues of T and S 

respectively. 

The system (6.4-1) together with (6.4-1a) and (6.4-1b), 

may be written as, 

SUj_1 + TUj + SUj+l = Sj ; j=l, 2, ... ,m-1 (6.4-3) 

By using (6.4-2), we have 
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which upon substitution into (6.4-3), give the following 

equations, 

QVj_l + AVj + QVj+l = tj ; j=2,3, ... ,m-1 

where 

T 
Vj = Q Uj } 

(6.4-4) 

(6.4-4a) 

for j = 1,2, ... ,m. The components of Vj and tj; j = 

1,2, ... ,m are labelled as in (6.4-1c). 

Further, (6.4-4) may be resolved by writing them, for 

i=l, 2, ... ,n,as 

(6.4-5) 

Now, if we write 

r Ai coi coi 
coi Ai coi 

I 0 

Ti = I (6.4-6a) 

0 
COi Ai COi 

COi COi Ai 
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where Ti is a matrix of order m and correspondingly 

define the vectors wi and Yi such that 

and (6.4-6b) 

then (6.4-5) is equivalent to the system 

(6.4-7) 

Hence, the vector wi satisfies a symmetric tridiagonal 

matrix system of equations that has constant elements 

along the diagonal, the super- and sub-diagonals as in 

(6.4-6a) which can be solved efficiently (see 

Evans[l985]). After (6.4-7) has been solved, it is then 
possible to solve for u j = QVj for j = 1,2, ... ,m (Buzbee 

et al.[1970]). 

The above matrix decomposition algorithm is due to 

Buzbee et al.[1970]. The algorithm for solving (6.4-1) 

proceeds as follows: 

(1) Compute or determine the eigenvectors of T 

and eigenvalues of T and S. 
(2) Compute tj = QTSj , j = 1,2, ... m. 

i=1,2, ... ,n. 

(4) Compute u j QVj' j = 1,2, ... ,m. 

(Buzbee et aL[1970]). 

Hockney[1965] has analysed this algorithm for the 

solution of poisson's equation in a square, where he has 

taken into consideration the fact that the matrix Q is 

known and uses the fast Fourier Transform 

Tukey[1965]) to perform steps (2 ) 

(Cooley and 

and (4). 

Shintani [1968] has given methods of solving for the 

eigenvalues and eigenvectors in several special cases. 
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In fact, Sand T need not be computed. If we assume that 

S is positive definite and symmetric, then it is well 

known (Bellman [1960]) that there exists a matrix P such 

that 

s = ppT and T = p,1.pT, (6.4-8) 

where ,1. is the diagonal matrix of eigenvalues of S-l T and 
-T -1 

P is the matrix of eigenvectors of ST. Thus, using 

(6.4-8), Buzbee et al.[1970] give a modified form of the 

above algorithm as follows: 

(1 ) Compute or determine the eigenvalues 

and eigenvectors of S-l T . 

(2) Compute tj 
-1 

= P Sj, j=1,2, ... ,m. 

(3) For i=1,2, ... ,n, solve Tiwi = Yi' where 

lii 1 1 

1 lii 1 

0 

Ti = (6.4-9) 

0 
1 lii 1 

1 1 lii 

(4) Compute -T j=1,2, ... ,m. Uj = P Wj, 

The computation of S-lT should be avoided in order to 

preserve the sparseness of the matrices. G. H. Golub, 

R.Underwood and J.wilkinson have proposed an algorithm 
to solve Tu = IiSu where T and S are sparseCl3u~bee et ~l [1'1( 01). 

6.5 DIRECT METHOD FOR SOLVING THE SYSTEM 

(6.4-1) 

In the previous $ection, we have a method (Buzbee et 

al.[1970]) for which we need to know the eigenvalues and 

eigenvectors of a matrix. Further, Buzbee et al.[1970] 

derive a more direct method for solving the system 

(6.4-1), called the odd-even/cyclic reduction method 
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which we shall outline in Section 6.5.1. Evans and 

Li[1990] develop a new direct method, called the 

recursive tri-reduction method for tridiagonal 

systems. In Section 6.5.2, we extend this method to be 

applied to a symmetric constant diagonal periodic linear 

system. of equations (6.4-1). Then a stable version of 

this method is derived. 

6.5.1 BLOCK ODD-EVEN/CYCLIC REDUC'l'ION 

ALGORI'l'HM 

Consider the system of matrix equation (6.4-1) with all 

the assumptions about T and S and the partitioning of 

the matrices still being adopted. Furthermore, we assume 

that there are m blocks of matrices T and S along the 
k principal diagonal of M, and m = 2 -1, for some k 2! 2. 

Such equations are known to arise in the discretization 

of a certain class of elliptic PDEs, using the method of 

separation of variables (Buzbee et al.[1970]) . 

Now consider a set of three consecutive neighbouring 
equations about Uj for j = 2,4,6, ... ,m-I. We assume that 

u j and Sj are 0 for j < 1 and j > mn. Thus for (6.4-3) we 

obtain from the second equation, the following set of 

equations 

= Sj_l 

(6.5.1-1) 

By multiplying the first and the third equations by S, 

and the second by -T and adding them together, we obtain 

the result as 

(6.5.1-2) 

where 
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(6.5.1-2a) 

for j=2,4, ... ,m-1. 

Thus, in this first step of the reduction stage, the 
odd-indexed subvectors Uj-1 and Uj+1 have been eliminated. 

Then the given system (6.4-1) is split into two 

subsystems; one for the odd-indexed and another for the 

even-indexed terms, as follows: 

T (1) S (1) S (1) U 2 S2 (1) 

S (1) T (1) S (1) U 4 S4 (1) 

0 
= 

0 
S (1) T (1) S (1) U m- 3 Sm-3 (1) 

S (1) S (1) T (1) U m- 1 sm_l(l) 

(6.5.1-3) 

and 

T 

T 

o 
= (6.5.1-4) 

o 
T 

T 

where 
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Sj(l) = Sj - S[Uj_1 + Uj+l]' j=3,5, ... ,m-2 (6.5.1-4a) 

The system (6.5.1-3) is known as the reduced system, 

while that of (6.5.1-4) is known as the eliminated 

system. The process of reduction is called the odd­

even/cyclic reduction. Since we are manipulating with 

blocks of matrices, it is specifically called the block 

odd-even/cyclic reduction. 

The reduced system (6.5.1-3) has the same structure as 

the original system of matrix equation (6.4-1). 

Therefore we can repeat the reduction process to obtain 

another reduced and eliminated system, which will 

eventually terminate with only a single block of matrix 

equations. The unknowns can then be solved by means of 

Gaussian elimination and the whole set of unknowns are 

then obtained by back-substitution. However, as noted by 

Buzbee et al.[1970], we may stop the reduction process 

after any step and use the algorithm of section 6.4 to 

solve the resulting equations. 

To proceed with the reduction process of (6.5.1-3), we 

shall first introduce the following notations. 

Let for j=1,2, ... ,m, 

T (0) T 

S (0) S 
(6.5.1-5) 

and 

Next define, for j = 2,4,6, ... ,m-1, 
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T(l) = 2[8(0))2 - [T(0))2 

8(1) = [8(0))2 

Sj (1) = 8 (0) [Sj_l (0) + Sj+l (0)) - T (0) Sj (0) 

(6.5.1-6) 

Now,from the reduced system (6.5.1-3), consider a set of 
three consecutive neighbouring equations about Uj for j = 

4,8,12, ... ,m-3, 

(6.5.1-7) 

By multiplying the first and the third equations by 

8(1), the second by -T(l), and adding the three resulting 

equations, we have eliminated the subvectors with 

indices that are odd multiples of two, that is the 
subvectors u j_2 and Uj+2' Thus we obtain 

(6.5.1-8) 

where 

T(2) 2[8(1))2 - [T(1))2 

8 (2) [8(1))2 (6.5.1-9) 

for j=4,8,12, ... ,m-3. 

Therefore after two steps of the reduction process, we 

obtain the reduced system as 
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T (2) S (2) S (2) U 4 S4 (2) 

S (2) T (2) S (2) U a Sa (2) 

0 
= 

0 
S (2) T (2) S (2) U m- 7 Sm-7 (2) 

S (2) S (2) T (2) U m- 3 Sm-3 (2) 

(6.5.1-10) 

Correspondingly, we have the eliminated system as 

T (1) 

T (1) 

o 
(6.5.1-11) 

o 
T (1) 

T (1) 

where 

Thus, if we terminate the reduction process at this 

stage, the system (6.5.1-3) may be solved by first 
solving u 4 ,ua , ••• ,um_ 3 from (6.5.1-10) and then solve 

U 2 'U6 ' •.• ,um- 1 from (6.5.1-11) by using the algorithm of 

section 6.4. 
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However, we may continue with the reduction process. To 

generalize this reduction process, we define 

T (r) = 2 [8 (r-1) ] 2 - [T (r-1) ]2 

8(r) = [8(r_1)]2 (6.5.1-12) 

r-l . r r r k-r r 
where h=2 , J=2 ,2x2 ,3x2 , ... ,(2 -1)x2, and r= 

1,2, ... ,k. 

Hence.J after the rth step of the reduction process, we 

have a reduced system of the form 

R(r)Z(r) = f (r) , (6.5.1-13) 

where 

r T (r) 8 (r) 8 (r) 

8 (r) T (r) 8 (r) 

0 
R(r) = (6.5.1-13a) 

0 
8 (r) T (r) 8 (r) 

8 (r) S (r) T (r) 

is a matrix k-r 
of order 2 -1, 

Z (r) [U;,U;t, ... ,U~t" .• ,u~2k-r_1Itl T } 

T" ,. ,. T 
= [St (r), S2t (r) , ... , Sjt (r) , ... , S(2k- r _1It (r) 1 f (r) 

(6.5.1-13b) 

and t = 2r. 

The eliminated system after the rth step is given by 

E (r)W(r) = q(r), (6.5.1-14) 

where 
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rT (r-1) 

T (r-1) 

o 
E (r) (6.5.1-14a) 

o 
T(r-1) 

T (r-1) 

W (r) (6.5.1-14b) 

l 
q (r) = (6.5.1-14c) 

r k where t = 2p = 2 , and rn = 2 -1. 

Thus after k-1 steps, we have the block equation as 

(6.5.1-15) 

, 2k - 1 for) = • 

Since Uj = 0 for j S; 0 and j ~ rn, we have 

(6.5.1-16) 

Therefore we have 

R(k-1) = T(k-1) 

and 
(6.5.1-17) 

W (k-1) 
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Now (6.5.1-16) can be solved for U2 k-l. The other vectors 

ui 's are solved repeatedly in a binary tree pattern 

using the eliminated system. While (6.5.1-16) can be 

solved by the LU factorization, Buzbee et a1.[1970] and 

Lakshmivarahan and Dha11[1990] describe another method 

based on the factorization of the matrix T(k-1) . 

6.5.2 THE BLOCK TR:I-REDOCT:ION (TR3) 

ALGOR:ITHM 

The periodic block -tridiagonal system (6.4-1) can be 

written as 

TU1 + SU2 + SUm = S1 

SUj_1 + TU j + SUj+1 = Sj, j=2,3, ... ,m-1 (6.5.2-1) 

SU1 + SUm-1 + TUrn = sm 

where we assume that k for k ~ 2. m = 3 -1 some 

Consider the reduced block odd-even reduction algorithm 

deduced from section 6.5.1. Thus, after the first step 

of the odd-even reduction process, we have a set of 

three consecutive neighbouring blocks of equations 
centred around Uj as 

S(1)U
j
_3 + T(1)U j_1 + S(1)Uj+1 = Sj_1 (1) 

S (1)Uj_1 + T (1) Uj + S(1)Uj+1 = Sj 

S (1) Uj_1 + T(1)U j+1 + S(1)U j+3 Sj+1 (1) 

(6,5.2-2) 

By multiplying the first and the third equations by S, 

the second by -[S(1) + T(1)] and adding them together, we 

obtain 

SS(1)Uj_3 - T[S(1) + T(l)]Uj + SS(1)Uj+3 

= S[Sj_1(1) + Sj+l(1)] - [S(1) + T(1)]Sj' (6.5.2-3) 

Now define for j = 3,6,9, ... ,3 (3k-1_1) , 
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Q(l) = S3, Q(O) = S 

P(l) = T[T2 - 3S2), Plo) = T 

We have 

and 

T[S(l) + T(l») = T[S2 + 2S2 - T2) 

_T[T2 
- 3S2

) 

by the definitions (6.5.1-5) and (6.5.1-6). 

(6.5.2-4) 

Hence substituting (6.5.2-4) into (6.5.2-3), we have 

(6.5.2-5) 

k-l for j = 3,6,9, ... ,3 (3 -1). We assume that Uj and Dj are 

o for j < 1 and j > mn . 

We notice that) in arriving at (6.5.2-5), we have 
eliminated the immediate neighbouring vectors Uj_l and Uj+l 

of the vector Uj. This constitutes the first step of the 

TR3 reduction process. The next step proceeds by 

splitting the system derived from the second step of the 

odd-even reduction algorithm into two sub-systems using 

the TR3 reduction algorithm as follows: 

Consider a set of three consecutive blocks of equations 
centred around Uj after the second step of the odd-even 

reduction process. Thus we have the following set of 

equations. 

(6.5.2-6) 
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Now multiply the first and the last equations by 5(1), 

the second by -[5(2) + T(2)] and add them together, we 

have eliminated the subvectors Uj_3 and Uj+3' Thus we have 

the resulting block equation as 

(6.5.2-7) 

where 

Q(2) = 5(1)5(2) 

P(2) T(1){[T(1)]2 - 3[5(1)]2} 

(6.5.2-8) 

• k-2 for J=9,18,27, ... ,9(3 -1). 

By continuing in this way, we have after rth step of the 

TR3 reduction process, 

Q(r)Uj_h + P(r)Uj + Q(r)Uj+h = Dj(r) 

where 

Q(r) = 5(r-1)5(r) 

P (r) = T (r-1){ [T (r_1)]2 - 3 [5 (r-1) ]2} 

Dj (r) = 5 (r-1) [8 j_h (r) + Sj+h (r) ] 

2 2 + {[T (r-1)] - 3 [5 (r-1)] } 8j (r-1) 

(6.5.2-9) 

(6.5.2-10) 

• r r 3 r k-r r forJ=3,2x3,x3, ... ,(3 -1)x3, r = 1,2, ... , k and h = 

2x3r- 1 . 

After the rth step of the TR3 reduction process, the 

reduced system for the TR3 algorithm becomes 

R(r)~(r) = m(r), (6.5.2-11) 

where 
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P (r) CH" ) Q (r) 

Q (r) P (r) Q (r) 

0 
R (r) = 

0 
Q (r) P (r) Q (r) 

Q (r) Q (r) P (r) 

,..,. "T "Tk T 
m(r) = [Dt(r),D2t(r), •.. ,Djt(r), .•• ,D(3-rlt(r)] 

(6.5.2-11a) 

} (6.5.2-11bl 

and t = 3 r
• 

The eliminated system for the TR3 algorithm after the rth 

step of the reduction process can be written as 

E (r)\j1(r) = O>(r), (6.5.2-12) 

where 

0> (r) 

(6.5.2-12a) 

with t = 3q = 3 r 
and 
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P (r-1) 

P (r-1) 

o 
E (r) = 

o 
P (r-1) 

P (r-1) 

Therefore after k-1 steps, we are left with 

k-1 for j = 3 . 

Since u j = 0 for j:S; 0 and j ~ mn, we obtain 

Thus, 

R (k-1) = P (k-1) 

(6.5.2-12b) 

(6.5.2-13) 

(6.5.2-14) 

(6.5.2-15) 

Now (6.5.2-14) can be solved to obtain U 3k-1. Then)by 

using the eliminated system, we can solve the other 
subvectors u i in a binary tree pattern. 

Figure (6.5. 2a) and Figure (6.5. 2b) illustrate the steps 

in the reduction and solution process for the odd-even 

and TR3 reduction algorithms. By neglecting round-off 

errors (which can be eliminated by deriving the stable 

versions of the algorithms), it is clear from this 

graphical representation that the TR3 reduction 

algorithm is competitive if not faster than the odd-even 

reduction algorithm. Theoretically, for a given matrix 

of size N, the gain in using the TR3 reduction algorithm 
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instead of the odd-even reduction algorithm is given by 

the ratio 

(6.5.2-16) 

For the case illustrated in Figure(6.5.2a) and 

Figure (6.5. 2b), the gain obtained. is 

However the ratio given by (6.5.2-16) is only a 

comparison of the number of reduction stages. For an 

efficient comparison of the two algorithms, we should 

include a comparison of the work to be completed in the 

odd-even and the TR3 reduction stages. 

Further illustration is given in the next section where 
"-ne 

we compare ~ reduction times of both algorithms. As 

expected, for a given matrix, the TR3 reduction 

algorithm spends less time in its reduction stages than 

the odd-even reduction algorithm. This is illustrated in 

Figure(6.5.3). However, the amount of work in the TR3 

reduction stage is slightly more than that in the odd­

even reduction stage because at each stage, the TR3 

algorithm has to solve a system of 2x2 equations instead 

of a single equation as in the case of the odd-even 

algorithm. 

NOw, as the matrix size increases, round-off errors 

affect the numerical solutions of the problem causing 

instability. This could be overcome by deriving a stable 

version of the algorithm. This is discussed in section 

6.5.5. 
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6 .5 .3 NUMERICAL RESULTS 

In this experiment, we have chosen the discretization of 

the Laplace equation 

v2u = ° (6.5.3-1) 

subject to 

u (0, y) u (1, y) 

and 

u(x,O) = u(x,l) 

for all x,yE [0,1), using the five-point finite 

difference approximation (6.3-2). 

Thus we have the matrix ~ of the form 

1 1. 1 - -4 4 
1 

1 1. -- -4 4 

0 
M I (6.5.3-2) 

0 I 1 
1 

1 

l-~ 
-- --

4 4 
1 

1 --
4 

The graph in Figure(6.5.3) compares the reduction time 

between the odd-even and the TR3 reduction algorithms 

for matrix M of different sizes. It is found that the 
~ 

TR3 reduction algorithm gives a better reduction time 

than the odd-even reduction algorithm. We should 

emphasize here that the comparison is solely based on 

the reduction time of each algorithm. 
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Comparison of reduction time between 
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for various matrix sizes. 

6.5.4 STABILITY ANALYSIS OF THE BLOCK TR3 

REDUCTION ALGORITHM 

In (Lakshmivarahan and Dhall[1990), it is shown that 

the odd-even reduction suffers from a severe effect of 

round-off errors in the numerical processes. The main 

source of these round-off errors lies in the computation 

of the right-hand side of (6.5.1-2). Similarly, the TR3 

reduction algorithm does not possess good control over 

round-off errors. 

In this section, we shall analyse the stability of the 

block TR3 algorithm, and in the next section we shall 

exhibit a modified form of the block TR3 algorithm with 

an improved error-control property. 

As is evident from the odd-even reduction case, the main 

source of round-off errors in the TR3 reduction 

algorithm also lies in the computation of the right-hand 

side term of the equation. Thus) in this case, we shall 
analyse the term {[T(r_1»)2 + 3[S(r-1) )2)Sj(r_1) of (6.5.2-

9) • 

First, we introduce the sequence of polynomials defined 

by 
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with initial 

po(a,t) 

P2 (a,t) 

Let 

conditions 

= -2Pl(a,t) 

2 + 2t2. = -a 

when 

when 

a I < I 2t 

a I > I 2t 

-2tco,.} 

Then for t*,O, we use the transformation 

a = 
{ 

-2tcos9, 

-2tcosh$, 

when 

when 

al 

al 

< I 2t 

> I 2t 

(6.5.4-1) 

(6.5.4-1a) 

(6.5.4-1b) 

(6.5.4-2) 

It is evident that by a short manipulation, the 

polynomial can be recursively computed as follows 

(6.5.4-3) 

Now hyperbolic functions satisfy identities which are 

very similar to those satisfied by trigonometric 

functions. Therefore, we shall only discuss the 

conditions of the case related to the trigonometric 
functions; that is, the case when I a I < I 2t I. The 

case when I a I > I 2t I can then be similarly deduced. 

The case when I a I < I 2t I. 
By substituting a = -2tcos9 into (6.5.4-1b), we obtain 

(6.5.4-4) 

Consequently, for P3 (a, t) = 0, we obtain the conditions 

a a {3 ,a1t1t 51t 
that either cosu=O or cosu=±:1,that LS U=2' 6' or €i' 

Hence, we have 
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..£... 2 j-l 
2t = -cos[2x3~11~, (6.5.4-5) 

, 2 3 3r - 1 for )=1, , , ... , and r~2. 

Therefore the general sequence of polynomials may be 

factorized as, 

for r ~ 2. 

3 r - 1 

= IT {a 
j=l 

[ 2 j -l] } + 2tcos -1 1t , 
2x3 r (6.5.4-6) 

Now we can use this recursive definition to compute the 

term 

as follows. 

Let 

Tto -2s j (r-1) 

p r_1(T,8)Sj(r-1) 
3 

Tt1 TS j (r-1), Tt2 = T (1) Sj (r-1) 1 
Ttk 

2 
-TTtk-1 - 8 Ttk-2 J 

r-1 for k = 3,4, ... ,3 and r ~ 2. 

Therefore we obtain 

= {[T (r_1)]2 + 3 [8 (r-1) ]2 } Sj (r-1) . 

(6.5.4-7) 

(6.5.4-8) 

(6.5.4-9) 

However, due to the presence of round-off errors, the 

true computed sequence is given by 

~o = Tto 1 ~1 = TS j (r-1) + °0' ~2 = T(1)Sj(r-1) + °1 (6.5.4-10) 

~k = -T~k-1 - 82~k_2 + °k-1 J 
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where 01; i = 0,1,2, ... ,k-1 is the perturbation induced 

by the round-off errors. 

NOw, the matrices T and S are symmetric. Furthermore, 

they are commutative. Therefore from the well~ known 

theory of matrices (see Bellman[1960l or Varga[l962l), 

there exists an orthogonal matrix Q which diagonalizes T 

and S simultaneously. Hence we obtain 

T QAQT 

} 
S = QOQT 

(6.5.4-11) 

where 

A = diag[A,1,A,2' ... ,Anl } 
0 = diag [COl' CO2, ... , COnl 

(6.5.4-12) 

are diagonal matrices of eigenvalues of T and S, 

respectively. 

We may assume that the eigenvalues of T and S are 

distinct and that the columns of Q are normalized 

eigenvectors of T and S. 

Therefore on combining these with (6.5.4-10), (6.5.4-11) 

and (6.5.4-12), we have 

Po = -2qj (r-1) 

1 1 
P1 -2" Apo + '1'0 (6.5.4-13) 

Pk = -Apk-1 - 02Pk _2 + 'l'k-1 J 
where 
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(6.5.4-14) 

Now 11. and n are diagonal matrices as given in (6.5.4-

12). Therefore we can write (6.5.4-13) component-wise as 

(6.5.4-15) 

for j 1,2, ... ,n. 

The solution of the recursive relation (6.5.4-15) may be 

obtained by considering its characteristic equation 

(6.5.4-16) 

Next, we write the two roots of (6.5.4-16) as 

.r 2 2 
[-Al+~ (A j -4CJl j ) 1 2 2 [-ArV (Aj -4CJl j ) 1 

2 2 

Now there are two cases to be considered. 

Case(l): Jlj =V j • 

It can be shown from first principles that 

k-t k-t 
Jlj - Vj 

+ k~l [ ____ ] 
.£.. 'I' jt • 

t-1 Ilj - v j , 
(6.5.4-17) 

From (6.5.4-13) we have 

Pl,o = -2g jo (r-1) }. , 

1 
PJ,l = -2Ajpj,o + 'I' jO , 

(6.5.4-18) 
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Therefore on substituting (6.5.4-18) into (6.5.4-17), we 

obtain 

Pj,k 

k-1 k-1 
Ilj - V j 

+ 21l jVj [ ] gj,o (r-1) 
Ilj - V j 

which on simplifying, becomes 

k k 
Ilj - Vj 

k-t k-t 
Ilj - Vj 

k-1 

+ L [ ] 'I"t 
t=l Ilj - V j .., 

= { [ ] Aj + 21l jVj [----] } gj,o (r-1) 
Ilj-V j Ilj-Vj 

(6.5.4-19) 

Next, from the expres sions for Ilj and V j , it follows 

that Ilj and V j are complex conjugates if I Ajl < 12cojl and 

real if I Ajl > 12cojl . 

Let 

if I Ajl < 12COjl 

if I Ajl > 12COjl . 
(6.5.4-20) 

Now there are two subcases of case (1) to be considered. 

Case (la): IAjl < 12co j l and the roots Ilj and Vj are 
complex conjugates. 
Thus Ilj "" V j and 

(6.5.4-21) 

where i = H. 

By substituting (6.5.4-21) into (6.5.4-19), we obtain 
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ik9 j -ik9 j 
= {01k-1A [e - e ] 

j j i9 j -i9 j e - e 

k-l i (k-t) 9j 
{ k-t-l [e 

+ L O1 j i9 
t~O e j 

Thus we have 

k [sin ( (k-1) e j ) ] 
+ 201 

j sine j 

k-l{ k_t_l[Sin«k-t)e j )] } 
+ L O1 j . 'If jt . 

t=O S~nej' 

}gjo(r-l) , 

(6.5.4-22) 

When IAil < 1201il, we have from (6.5.4-20) Aj = -201jcose j • 

Therefore (6.5.4-22) can be simplified to obtain 

(6.5.4-23) 

,-

Case (lb): I Aj I > 1201j I and the roots ~j and Vj are 

real and distinct. 

Therefore we can write 

~j = O1 j (cosh<Pj + sinh<pj) = O1,e<i>j }. J 

(6.5.4-24) 

Vi = O1 j (cosh<Pj - s inh<pj) = 01 ,e -<i>j 
J 

By substituting (6.5.4-24) into (6.5.4-19) and 

simplifying, we obtain 

k [sinh ( (k-1) <Pj) ] 
+ 201 

j sinh<pj 

k-l{ k_t_l[sinh«k-t)<Pj)] } 
+ L O1 j • 'If jt • 

t=O S ~nh<pj • 
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From (6.5.4-20), since I A.j I> 12Wj I, we have A.j = -2Wjcoshc!>j' 

Therefore by cOmbining this with (6.5.4-22), we obtain 

(6.5.4-26) 

NOw, let Pk(A,n) be a diagonal matrix such that 

{ 

Pk O"j,Wj)' for j = 1 
[P

k 
(A, n) ] '1 = 

J. 
0, otherwise 

where from (6.5.4-1), we have 

From (6.5.4-11), we obtain 

(6.5.4-27) 

(6.5.4-28) 

(6.5.4-29) 

Similarly, we define a diagonal matrix R(q) such that 

[R(q)]j1 = 
• 

0, 

sinh (qc!>j) 

s inhc!>j , 

otherwise. 

(6.5.4-30 ) 

NOw, by using (6.5.4-27) and (6.5.4-30), Pk can be 

expressed in matrix-vector form as 

k-l 
Pk = Pk(A,n)gj(r-l) + L. R(k-t)'I't· (6.5.4-31) 

t=O 

Hence, by using (6.5.4-27) and (6.5.4-29); we can 

rewrite (6.5.4-31) to give 
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k-1 
~k = QPk = Pk(T,S)Sj(r-1) + LQR(k-t)QTOt . (6.5.4-32) 

t=O 

Therefore, in the case I ~ I > 1; if <l>n > <1>1' then it is 
200j 

evident that for large k, Pnk may become very large 

relative to P1k' Since ~k = QPk' the effect of Plk will be 

insignificant due to the round-off errors. 

?:i Case (2) : ~j = Vj = -2 . 

This happens only if A~ = 400~. It can be shown from first 

principles that 

k k-1 k-t-1 
(k-1)~jPjp + L [(k-t)~j "'jt]. (6.5.4-33) 

t=l J 

A 
BYSUbstituting~j=Vj=-~ and (6.5.4-13) into (6.5.4-

33), we have 

i. e. 

?:i k k-1 
-2 [-2] gj,o(r-1) + L {(k-t) 

t=O 
[ ?:i] k-t-1 
-2 "'j[-}' (6.5.4-34) 

Now, let Pk(A,Q) be a diagonal matrix defined as 

for j = 1 
(6.5.4-35) 

otherwise 

where 

(6.5.4-36) 
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From (6.5.4-11), we have 

(6.5.4-37) 

Similarly, we define a diagonal matrix R(q) such that 

for j = 1 
(6.5.4-38) 

otherwise. 

Therefore, by using (6.5.4-35) and (6.5.4-38), we may 
express Pk of (6.5.4-34) in matrix-vector form as 

k-l 
Pk = Pk(A,n)9j(r-l) + L R(k-t)'I't· 

t~O 

(6.5.4-39) 

Now, by using (6.5.4-35) and (6.5.4-37), we can rewrite 

(6.5.4-39) in the form 

k-l 
~k = QPk = Pk(T,S)sj(r-l) + L [QR(k-t)QTOt ] 

t+O 
(6.5.4-40) 

A 
In the case I ~I = 1, on combining (6.5.4-34) with Aj =-

2COj 

2COj and simplifying, we obtain 

Therefore we have 

and 

Pn~ 
k k-l [ k-t-l] = -2gnp (r-l)COn + L (k-t)COn 'l'n,t 

t=O 

(6.5.4-41) 

(6.5.4-41a) 

(6.5.4-41b) 

where COj; j = 1,2, ... ,n are the eigenva1ues of S. 

Since ~k = QPk' therefore it is evident that the vector 

~k will decay as k increases if the moduli of all the 

eigenvalues COl' j = 1,2, ... ,n are less than unity and 

hence will remain bounded. 
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6.5.5 STABLE VERSION OF 

ALGORITHM 

THE TR3 REDOCTION 

that 
It has been shown in the previous section~the TR3 

reduction algorithm is numerically unstable. In this 

section we shall derive a stable version of the TR3 

reduction algorithm. Basically, this is done by 

modifying the computation of the right-hand side term. 

From {6.5.2-4}, we note that P{l} is a polynomial of 

degree 3 in T and 8. By induction, it is easy to show 

that P{k} is a polynomial of degree 3k in the matrices T 

and 8. 

Therefore we obtain the factorization for P{l} as 

P {I} [ 2 j -1] } + 28cos 2x3 It • {6.5.5-1} 

Thus we obtain 

P{l} = T{T + {3 8) (T - {38) 

(6.5.5-1a) 

since, by (6.4-1b), T and 8 are commutative. 

Now by using (6.5.4-6) we obtain the factorization of 

P {k-1} as 

P (k-l) 

k-1 
3 
IT H j (k-l) , 
j=l 

where the matrix Hj {k-1} is defined by 

H j {k-1} = [T + 28 cose j (k-1) 1 

and 

[ 2j-1 ] ej {k-1} = k-1 It, 
2x3 

for j=l,2,3, ... ,3 k
-

l and k~2. 
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Therefore the single block matrix equation (6.5.2-14) 

can now be solved as follows. 

Substitute (6.5.5-2) into (6.5.2-14);we then obtain 

(6.5.5-3) 

Define 

and for j = 1,2, ... , 3 k
-

1
, we solve repeatedly for Zj using 

(6.5.5-4) 

Clearly, we have 

(6.5.5-5) 

Similarly, by using the same factorization we can solve 

the eliminated system (6.5.2-12), since the matrix E(r) 

depends on P(r-l) only. This solution process is 

motivated by Lakshmivarahan and Dhall[1990], and Buzbee 

et al.[1970]. 

As already stated in the previous 

source of round-off error lies in the 

section, the main 

computation of the 

right-hand side term. Therefore, in order to induce 

stability, we shall reorganize the computation of the 

right-hand side term. This idea was first motivated by 

Buneman[1969] , then followed by Buzbee et al~1970] and 

Lakshmivarahan and Dhall [1990]. Henceforth, we shall 

consider the special case of (6.4-1a), when S = I, the 

identity matrix of order n. 

We shall now consider the reorganization of the right­

hand side of (6.5.2-5) so as to obtain a stable version 

of the TR3 reduction algorithm. 

Now, after the first step of the TR3 reduction stage, we 

obtain from (6.5.2-5), 
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(6.5.5-6) 

where 

2 
P (1) = -T [T - 3I] (6.5.5-6a) 

(6.5.5-6b) 

for j = 3,6,9, ... ,3 (3
k
-
1
_1) • 

From the odd-even reduction algorithm, we have the 

definition, 

a j (0) = 0, 13 j (0) = Sj 

13 j -h (r) + ~j+h (r) - 2aj (r+1) 

and 

(6.5.5-7a) 

- P, ,.)] } 

(6.5.5-7b) 

Therefore we shall now write (6.5.5-6b) in the form 

Dj (1) = T(1)a j _1 (1) + ~j_1(1) + T(1)aj +1(1) + 13 j +1(1) 

+ T [T
2 

- 3I] T-1Sjt 

T(1) [a j _1 (1) + a j +1(1)] + 13 j _1(1) + ~j+1(1) 

(6.5.5-8) 

By adding and subtracting - [a j _1 (1) + a j +1 (1) ], we obtain 

-1 
P(1)T Sj + [T(1) + I] [a j _1 (1) +aj+1(1)] 

+ ~j-1(1) + 13 j +1(1) - [a j _1 (1) + a j +1(1)], 

= P (1) T-1 {Sj - [aj _1 (1) + a j +1 (1) ] } 

+ ~j-1 (1) + 13 j +1 (1) - [aj-1 (1) + a j +1 (1) ] • 

(6.5.5-9) 

Hence, we write (6.5.5-9) in the form 
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(6.5.5-10) 

where 

, k-l for J=3,6,9, ... ,3(3 -1). 

Next consider 

2 
Dj (2) = Sj_3 (2) + Sj+3 (2) + {[T (1)] - 3I }Sj (1) (6.5.5-11) 

which upon using (6.5.5-7c) can be written as 

D j (2) = T(2) [aj_3 (2) + a j +3 (2) 1 + I3 j _3(2) + I3 j +3(2) 

+ {[ T ( 1) ] 2 - 3 I} {T ( 1) a j (1) + 13 j (1) }, 

= P (2) a j (1) + T (2) [aj_3 (2) + aj+3 (2) 1 
+ {[T (1)]2 - 3I }l3j (1) + I3j-3 (2) + I3j+3 (2), 

p(2){aj (1) + [T(l)]-ll3 j (l)} 

+ T(2) [Uj_3 (2) + U j +3 (2) 1 
+ I3 j -3(2) + I3 j+3(2). (6.5.5-12) 

Now by adding and subtracting [aj_3(2) + a j +3 (2)], we 

obtain 

D j (2) = P(2) {Uj (l) + [T(l) ]-ll3 j (l)} 

+ [T (2) + I 1 [aj _3 (2) + a j +3 (2) 1 
+ I3 j -3 (2) + I3 j +3 (2) - [a j _3 (2) + a j +3 (2) 1 . 

Hence, we obtain 

(6.5.5-13) 

where 

U j (2) = a j (l) - [T(l) ]-1{aj_3(2) + a j +3 (2) - I3 j (l)} 

(6.5.5-13a) 

, 9 k-2 for J= ,18,27, ... ,9(3 -1). 
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Thus inductively, after r+1 steps for r = 0,1,2, ..• , of 

the reduction stages, we obtain the following results: 

where 

(6.5.5-14) 

<X j (r) - [T (r) ]-1 {<Xj _h (r+1) + <X j +h (r+1) - ~j (r) } 

(6.5.5-14a) 

~j-h (r+1) + ~j+h (r+1) - [<X j _h (r+1) + <Xj+h (r+1) ] 

(6.5.5-14b) 

f . = 3r +1 2 3r +1 3 3 r +1 (3k - r - 1_1) 3r +1• or J , x , x , ... , x, r = 0, 1, 2, . .. and 

h = 2x3r
-

1
• 

Now (6.5.5-14a) can be rewritten in the form 

T (r) [<X j (r) - U j (r+1)] = <X j _h (r+1) + <X j +h (r+1) - ~j (r) . 

(6.5.5-15) 

Since the <xj(r) 

quantities, then 

(6.5.5-15) . 

<Xj±h (r+1) < 

U j (r+1) may 

and ~j (r) . are known 

be obtained by solving 

It can be shown that the following results hold for the 

odd-even reduction stage 

T (r) [<Xj (r) - <X j (r+1)] = <X j _h (r) + <Xj+h (r) - ~j (r) 

(6.5.5-16) 

and T(r) is factorized as 

r 
2 

T (r) = -IT J j (r) 
j=l 

(6.5.5-17) 

where the matrix 

J (r) = [T + 21 cos ej (r)] (6.5.5-17a) 

and 

El j (r) = 
2j-1 

1t 
2r +1 (6.5.5-17b) 
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• 
(see Lakshmivarahan and 
information can be used to 

solving the U j (r+1) • 

Dhall[l990]), where the 
solve for <x' j (r+1) prior to 

After k-1 steps of the TR3 reduction stage, we obtain a 

reduced system of the form given by (6.5.2-13), 

(6.5.5-18) 

by using (6.5.5-14) and since m=3 k-1. 

Therefore we obtain the solution 

(6.5.5-19) 

where we can substitute the factorization of P (k-1) as 

given in (6.5.5-2) to compute the second term of the 

right-hand side of (6.5.5-19). 

The other solution vectors of (6.4-1) can be computed as 

follows. 

Consider the equations (6.5.2-8) and (6.5.5-14); thus 

for the appropriate r, we have 

(6.5.5-20) 

from which we deduce 

for j = 3 r ,2x3 r
, 4x3 r ,5x3 r

, ... ,(3 k
-

r _1)x3 r
; r = k-2,k­

r-1 3, ... ,2,1,0 and h=2x3 . 

Therefore (6.5.5-21) can be solved for Uj; j = 3",2x3 r
, 

r r ( k-r r 4x3 ,5x3 , ... ,3 -1)x3 and r = k-2,k-3, ... ,2,1,0 using 

the factorization of P(r) given in (6.5.5-2). 

Next we express the 'l>j (r) 

Uj as follows. 
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Consider the original governing equation, 

(6.5.5-22) 

From (6.5.5-10a), we can write 

(6.5.5-23) 

Now, it can be shown that from the odd-even reduction 

stage, we have 

(6.5.5-24a) 

and 

(6.5.5-24b) 

By combining (6.5.5-23) and (6.5.5-24a) we obtain 

Sj = TU j (1) + Uj_1 

= TU j (1) + Uj_1 

-1 + T [Uj + Uj+2l 

+ Uj+2l • 

(6.5.5-25) 

By substituting (6.5.5-25) into (6.5.5-22), we obtain 

Uj-1 + TUj + Uj+1 
-1 

= TU j (1) + Uj_1 + Uj+l + T [Uj_2 + 2Uj + Uj+2l • 

Therefore, we have 

(6.5.5-26) 

Next, from (6.5.5-10b) we have 

which.upon substituting (6.5.5-24a) and (6.5.5-24b), ~\v<1; 

K j (l) =Uj-3 

+ Uj+3 

- {Uj+1 

+ Uj_1 - T-
1

T (1) [U j _2 + ujl 

+ U j _1 - T-
1
T(1) [Uj+2 + ujl 

-1 
+ Uj_1 + T [Uj_2 + 2Uj + uj+2l } 
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Next, from the odd-even reduction stage, we know that 

and 

where 

2 

U j (2) = Uj - f, (2) L [Uj-(21-1) + Uj+(21-1)] 
1~1 

2 

(6.5.5-28a) 

~j (2) Uj-4 + Uj+4 + f, (2) T (2) L [Uj-(21-1) + Uj+(21-1)] 
1=1 

f,(2) = [T(O)T(l)]-l 

T (0) = T 
2 

T(l) = 21 - T • 

(6.5.5-28b) 

(6.5.5-28c) 

(6.5.5-28d) 

(6.5.5-28e) 

Hence using (6.5.5-24a), (6.5.5-24b) and (6.5.5-28a), we 
can simplify (6.5.5-13a) to obtain U j (2) in terms of the 

u j as 

-1 [ ] Uj (2) = Uj + T U j _1 + Uj+1 

- [T (1) ]-1 {Uj_3 - f, (2) 
2 

L [Uj_3_ (21-1) + Uj-3+(21-1)] 
1~1 

2 

+ Uj+3 - f, (2) L [Uj+3-(21-1) + Uj+3+(21-1)] 
1~1 

-1 } - [U j _2 + U j +2 - T T (1) [Uj_1 + U j +1 ]] 

= Uj - [T (1) ]-1 { [Uj_3 + Uj+3] - [Uj-2 + Uj+2] 

2 

- f, (2) L [Uj-2(1+1) + Uj+2(1+1) 
1~1 

+ Uj-2(1-2) + U j +2 (1-2)] }. (6.5.5-29a) 

Likewise, by using (6.5.5-28a), (6.5.5-28b) in (6.5.5-
13b), we can obtain the expression for Kj (2) in terms of 

the u j as 

K j (2) = Uj_7 + Uj+7 + Uj_1 + Uj+1 - [Uj-3 + Uj+3] 

2 

+ f, (2) [T (2) + I] { L [Uj_3_ (21-1) + Uj_3+ (21-1) 
1-1 

+ U j +3_ (21-1) + Uj+3+ (21-1)] } 

1 { 2 
+ f,(2)P(2) [T(l)]- L[Uj-2(1-2) + Uj+2(1-2) 

1~1 
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Now (6.5.5-29a) can be generalized to give 

r 
1 { 2 1 

[T(r)]- L(-1) [Uj-(1+1) + Uj+(1+1)] 
lK1 

2
r 

+ (_1)r~(r+1)L[Uj_2(1+1) + Uj+2(1+1) 
1-1 

+ Uj_2 (1-2) + Uj+2 (1-2) ] } • 

Therefore, we obtain for r ~ 1 

r 

-1 { 2 1+1 [ 
[T (r)] L(-1) Uj-(l+l) 

1=1 
+ Uj+ (1+1)] } 

2
r 

+ (-1) r+1~ (r+1) [T (r) ]-1 { L [U j _2 (1+1) + U j +2 (1+1) 
1=1 

+ Uj_2 (1-2) + U j +2 (1-2)] } • 

(6.5.5-30a) 

Similarly, we have for r ~ 1 

. r+1...:. 
+ (-1) ;;V(r+1)P(r+1) 

r 
1 { 2 

[T(r)]- L[U j - 2 (1+1) 
1=1 

+ U j +2 (1+1) 

+ Uj_2 (1-2) + Uj+2 (1-2)] } • 

(6.5.5-30b) 

Therefore on writing 

2
r 

6. j (r+1) = ~(r+1) L [Uj-2(1+1) + Uj+2(1+1) + Uj-2(1-2) + Uj+2(1-2)] 
1=1 

(6.5.5-31) 

for r ~ 1, we obtain 

r 

_1{2 1+1[ 
[T (r) ] L (-1) U j -(1+1) 

1-1 
+ U j +(1+1)] 

r+1. } + (-1) ilj (r+1) , (6.5.5-32a) 

r+1 [ ]-1. + (-1) P (r+1) T (r) ilj (r+1) , (6.5.5-32b) 

and 

~ (r+1) 
r -1 

= [IT T (1)] • (6.5.5-32c) 
1=0 
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We note that the matrix T is obtained from the 

discretized Poisson equation and is of the form 

r -i -1 
-11 4 -1 

0 
T = (6.5.5-33) 

0 

-1 -1 4 

Now let 

m 
11 U 11 = L 11 u j 11 • 

j- 1 
(6.5.5-34) 

Then, from (6.5.5-32a), we obtain 

Thus, we have 

IIU j (r+1) - ujll $ 11 [T(rl 1-111 {2 + 4 11£)(r+1) I} Ilu~. 
(6.5.5-35) 

By using (6.5.5-17), (6.5.5-17a) and (6.5.5-33) it is 

easy to show that 

(6.5.5-36) 

Furthermore, we have (Lakshmivarahan and Dhall[1990], 

pp. 403-405) that 

11 £) (r+1) 11 $ 
( r+1 )~. - 2 -1 ~ e , (6.5.5-37) 

where $* is defined such that 

(6.5.5-38) 

and $i is given by 

(6.5.5-39) 
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This happens when 

where I Ail ~ 2 since 

T is of the form. given in (6.5.5-33) 
i1t 

Ai = -4+2cos(n+1); i = 1,2, •.. ,n. 

Therefore by combining (6.5.5-36) and (6.5.5-37) with 

(6.5.5-35), we obtain 

r r+l * 
Ilv

j 
(r+1) - U

j 
II ~ 2-2 +1 {I + 2e-(2 -1)~} lull. (6.5.5-40) 

Now (6.5.5-40) states that as r tends to infinity, 

Vj (r+1) converges to the solution Uj. In other words, for 

large r, Vj (r+1) is a good approximation to Uj. 

Next, we also have that, when IAil~2, 

(6.5.5-41) 

From (6.5.5-32b), we obtain 

~ 4 IIT(r) 11-11IP(r+1)~(r+l) ~ Ilull. (6.5.5-42) 

Hence, by using (6.5.5-36) and (6.5.5-41) in (6.5.5-42), 

we have 

r 

3 H1 II - L (-1) [Uj_(21_1) + Uj+(21_1) 1 
1~1 

~ 4x2x2e~n Ilul = 16e~n Ilull. (6.5.5-43) 

Thus K j (r+1) remains bounded throughout the computation. 

This proves that the modified form of the TR3 reduction 

algorithm is numerically stable. 
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6. 6 ITERATIVE METHOD FOR SOLVING (6.4. 1) 

In chapter 3 we have outlined the basic iterative 

methods for solving the linear system of equations. In 

the following §ections, we shall use the successive line 

overrelaxation (SLOR) technique to solve the system of 

linear equations (6.4-1) derived from the discretization 

of the Poisson equation with periodic boundary 

conditions (6.2.2) using the five-point finite 

difference approximation (6.3-2). Next, we shall prove 

numerically that both the periodic and non-periodic 

problems share a common optimum parameter yet their 

spectral radii are different. Thus we conclude the 

chapter by deriving the relationship between the optimum 

parameter and the spectral radius for the elliptic 

periodic boundary-value problem. 

6. 6. 1 OUTLINE OF SLOR ITERATIVE METHOD FOR 

SOLVING (6.4-1) 

Consider the solutions of a system of linear equations 

derived from the discretization of the second - order 

elliptic PDE with periodic boundary conditions 

Mu = 8 (6.6.1-1) 

where 

(6.6.1-1a) 

(6.6.1-1b) 

The SLOR method may be written in the form 
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A (r+1) 
1,lU 1 

for i = 2,3, ... ,n-1 

(6.6.1-2) 

for r = 0,1,2, .... 

We can further simplify (6.6.1-2) to give 

(r+l) } (r) -1 (r) (r) sd 

1 
U 1 (1 - 00 U 1 + OOAJ,1 {AV U 2 + A 1,nUn + 

(r+l) (r) -1 (r+l) (r) 
Ui = (1 - OO}Ui + OOAJ,i {AJ,i-l Ui-l + A V +1U i+1 + 

ad r 
for i = 2,3, ... ,n-1 

(r+l) 
(1 _ OO}u~r) -1 (r+l) (r+l) 

Sn} J Un = + OOAn,n {An,n-l U n- 1 + An,I U 1 + 

(6.6.1-3) 

for r = 0,1,2, .... 

Now write 

(6.6.1-4) 

(r+l) -1 (r+1) (r) 
Vi AJ,i {AJ,i-1U i-l + AJ,i+1U i+l 

for i= 2,3, ... ,n-1 

(r+l) -1 (r+1) (r+l) 
Vn A"n {An,n-1U n-l + An,I Ul 

for r = 0,1,2, .... 

By combining (6.6.1-4) and (6.6.1-3), we obtain 
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(r+1) 
{1 } (r) + cov(r) 

1 
U l - (J) U 1 1 

(r+1) } (r) (r+1) 
U i = {1 - (J) Ui + COVi 

~ (6.6.1-5) 
for i=2,3, ... ,n-1 

( r+1) 
{1 } (r) + 

(r+1) 

J un = - (J) Un COVn 

for r = 0,1,2, .... 

Now we can solve (6.6.1-4) as a system of linear 

equations of the form 

Dv t (6.6.1-6) 

where 

r A1/l. 

(r) 
v l 

0 

Ai,i 
(r+1) 

D , v = vi (6.6.1-6a) 

0 

An!, 
(r+1) 

vn 

and 

1 
(r+l) 

t = A i ,i-l u i - 1 + 
(r) 

A i ,i+1U i+1 + si (6.6.1-6b) 

I 
(r+l) 

Anf'-l u n - 1 + A (r+l) 
'11 U 1 + snJ 

Now consider (6.6.1-6) for i = 2,3, ... ,n-I. The two end 

points at i = 1, and i = n can be easily deduced from the 
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general case of i = 2,3, ... , n-1 by taking into 

consideration the periodicity of the problem. 

Henceforth, we shall concentrate on the lines i = 

2,3, ... ,n-1. Therefore from (6.6.1-5), 

(6.6.1-6a) and (6.6.1-6b), we have 

(r+l) 
{1 o>}ulr ) (r+l) 

ui = - + COVi 

(6.6.1-6), 

(6.6.1-7) 

for i=2,3, ... ,n-1 and the matrix AJ,i is of the form 

ex -(3 -"( 

-"( ex -(3 
0 

AJ,i 0 
(6.6.1-7a) 

-!J -"( ex 
-13 -"( 

for i = 1,2, ... ,n. 

The system of linear equations (6.6.1-6) can either be 

solved directly (Benson[1969]) or iteratively. Thus we 

have n (including the two systems of equations derived 

from the first and the last lines) such systems of n 

linear equations to be solved. 

In the next section we shall derive the relationship 

between the spectral radius and overrelaxation factor 

for the periodic problem that we are now considering. 
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6.6.2 RELATIONSHIP 
AND OVERRELAXATION 

BETWEEN 
FACTOR 

SPECTRAL RADIUS 

Consider the general set of systems of equations given 

by 

Mu = s (6.6.2-1) 

where 

A~l -A~2 -Al,3 -Al.n 

-A~l A42 -A2,3 -A4n 

M (6.6.2-1a) 

-An) -An/2 -An,3 Aryt 

and A~i are square block submatrices of order nand Ai,j 

for i '" j are block submatrices. 

We may write 

M = D - E - F (6.6.2-2) 

where 

r~~ 0 1 A3,l A3,2 0 0 
E 

lA~ oJ An;;. Anf'-l 

and 

r
o Al;;. Al,3 

AI" 1 0 A2,3 A2,n 

F 

~"-~ J = 

l 0 
0 

Now for this general form, there does not exist any 

simple relationship between the eigenva1ues of the 
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Jacobi iteration matrix GB and the SOR iteration matrix 

Lw in order to optimize the convergence rate of the 

block SOR iterative method. However, Young[1954] and 

Arms, Gates and Zondek[1956] ha~ shown that when the 

matrix M is a consistently ordered block cyclic matrix 

of order 2, a simple relation does exist. This 

relationship is given by 

(6.6.2-3) 

where p (G 1 ) is the spectral radius of a consistently 

ordered block cyclic matrix G1 of the form 

o 
o 

-An-J,n-2 0 -An-J,n 

-An,n-l 0 

Henceforth, we shall consider the systems of linear 

equations defined by (6.6.1-1). 

We define the block Jacobi method by 

Du(r+l) = (E + F) u(r) + s, r ~ 0 

and the successive block overrelaxation method by 

(D - OOE)U(r+1) {OOF - (00 - l)D}u(r) + oos, r ~ O. 

Correspondingly, the block Jacobi iteration matrix GB is 

given as 

and the successive block overrelaxation matrix Lro as 

Lro = [0 -OOE]-l[OOF - (00 - l)D]. 

Now by letting 
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and 
-1 

U = D F, 

we can write the system (6.6.1-1) in the form 

(6.6.2-4) 

and the respective Jacobi and SOR iteration matrices are 

given as 

GB = L + U (6.6.2-4a) 

-1 
LID = [I -roL 1 [rou - (ro - 1) Il • (6.6.2-4b) 

Assume that the submatrices Ai! , of (6.6.1-7a) for i = 

1,2, ... ,n are in normalized form. Therefore we may write 

1 -Il -cr 
-cr 1 -0 

0 
Al,J- = T = 

0 
(6.6.2-5) 

l-o -cr 1 -Il 
-cr 1 

for i = 1,2, ... ,n. 

The block matrix M of (6.6.1-1) from the discretization 

of the problem is then given by 

r T -IlI 
-crI T 

-crI 
-IlI 

o 
M = I 0 

l-OI 
(6.6.2-6) 

-crI T -IlI 
-crI T 

Since the submatrices T and I are commutative, then by 

the spectral decomposition method and writing 
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T'P = PI' (6.6.2-7) 

where 'P and r are the respective eigenvectors and 

eigenvalues of T, deduced from section 6.4, then we may 

resolve the linear system of (6.6.1-1) as 

(6.6.2-8) 

There are n such systems of n linear equations to be 
solved where Ti , i = 1,2, ... ,n are of the form of the 

original block matrix M. Since the submatrices Ti are 

all the same, we shall now denote them by T as given by 

(6.6.2-5). Henceforth, we shall consider the point form 

given by (6.6.2-8) in the analysis. 

Now the Jacobi iteration matrix GB of the point 

equivalent is of the form 

r~ 
a (J' 

0 a 
0 

GB = I 0 

la 
(J 0 a 

(j 0 

(6.6.2-9) 

Thus we have 

GB Q1 + Q2' (6.6.2-10) 

where 

r~ 0 

0 
Q1 = I 0 

l (J 0 
(J 0 

(6.6.2-10a) 

and 
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0 () 

0 () 

0 
Q2 = 

0 
(6.6.2-10b) 

0 () 

0 

That is, we can express Q1 and Q2 in the form 

Q1 = L1 + U1 } (6.6.2-11) 
Q2 = L2 + U2 

where Li and U1 • i=1.2 are lower and upper triangular 

matrices respectively. 

Now suppose A is an eigenvalue of the SOR matrix Loo and let 

z be the corresponding eigenvector. then 

[ I - o)L 1 -1 [OlU - (0) - 1) I 1 Z = AZ. (6.6.2-12) 

Premultiplying both sides of (6.6.2-12) by [I - OlLl. we 

obtain 

[OlU - (0) - l)Ilz = A[I - o)Llz. 

Thus on simplifying, we obtain 

A + Ol - 1 
[U + ALlz = [ ]rz (6.6.2-13) 

Ol 

where the matrix [U + ALl has the form 
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a a a 
Aa a a 

0 
[U + ALl 

0 
(6.6.2-14) 

Aa a a 
Aa Aa a 

Now write 

(6.6.2-15) 

with 

r~ a Vl 
0 

P l = 

l ,J 
(6.6.2-15a) 

0 
Aa 

and 

ra a 
a a 

0 
P2 =1 0 

(6.6.2-15b) 

l Aa 
a a 

a 

That is, Pl and P2 can be expressed in the form 

Pl U1 + ALl }. 
P2 = U2 + AL2 

(6.6.2-16) 

We shall now establish a similarity transformation which 
relates the matrices CUi + ALil and CUi + Ld for i = 1,2. 

Let 
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Q = d' [1' -l/n ,-2/n ,- (n-1) /n] l.ag , fI., ,fI., , ••• , A ) (6.6.2-17) 

then , we have the inverse of Q as 

Q-1 = d' [1 ,1/n ,2/n ,(n-1)/n] l.ag , A I A , ••• , A • (6.6.2-18) 

By virtue of this similarity transformation, 

(6.6.2-19) 

But by substituting (6.6.2-17), (6.6.2-18) and P1 as 

given in (6.6.2-15a), we can easily show that 

(6.6.2-20) 

Therefore, by equating (6.6.2-19) and (6.6.2-20), we 

obtain 

(6.6.2-21) 

Similarly, we can show that 

(6.6.2-22) 

Next, we note that (6.6.2-13) can also be expressed as 

A+0>-1 
det{ [U + ALl - [ ] r} = 0, 

0> 

or 

{ [ A+O>-l]I} det [P 1 + P2 l - = O. 
0> 

(6.6.2-23) 

Thus 

or 

(6.6.2-24) 

Recall that 

det{B - AI} = 0, 
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may be written as 

n 
rr{~k(B) -A} = 0, 
k~O 

where ~k(B) are the eigenvalues of B. 

Therefore, (6.6.2-24) becomes, 

Now the general circulant matrix, 

has eigenvalues of the form 

o ~ j ~ n-l 

with the corresponding eigenvectors as 

r r2 r n- 1 T 
1>j = [l'':Ij'':Ij'" "':Ij 1 , 

where 

27t' • 
~j = eXP(7)' 

for 0 ~j ~ n-1 and i = ~ . 

O. (6.6.2-25) 

(6.6.2-26) 

(6.6.2-26a) 

(6.6.2-26b) 

(6.6.2-26c) 

Thus, for the matrix Ql' the eigenvalues are 

(6.6.2-27a) 

and for the matrix Q2' the eigenvalues are 

(6.6.2-27b) 

for 0 ~ j ~ n-1. 
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Their corresponding eigenvectors are 

r r2 r n- 1 ' 
(l''oj''oj'" "'oj ), (6.6.2-27c) 

for O:s; j :s; n-l. 

We shall now concentrate on the coincident eigenvectors 
of Q1 and Q2' The,,? by using (6.6.2-21) and (6.6.2-

22), we can simplify (6.6.2-25) to give 

O. (6.6.2-28) 

Since Q1 and Q2 have coincident eigenvectors, then there 

exists some k such that (6.6.2-28) reduces to 

I. + CO - 1 

CO 
(6.6.2-29) 

Now let A = 1.1/n~j and substitute J.I.(Ql) = cr~~-\ J.I.(Q2) = 

O~j and J s ince ~~ = 1, then 

An - An-1rocr - AroO + CO - 1 = O. (6.6.2-30) 

By adding and subtracting co2cro in (6.6.2-30), we obtain 

Therefore)given a system of linear equations of the form 

(6.6.1-1), (6.6.2-31) describes the relation 
between I., the eigenvalue of the SOR matrix Loo of (6.6.2-

4) ,and CO, the overrelaxation factor. 

In order to determine the optimum CO which satisfies 

(6.6.2-31), we let 

Gn (A) = An - An-1rocr - AroO + co2cro, 

Coo co2cro - CO + 1. 

Now,for (6.6.2-31) to be true, we should have 
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(6.6.2-34) 

for any 00 satisfying (6.6.2-32) and (6.6.2-33). But 

(6.6.2-33) is independent of A., therefore we may now 

write (6.6.2-31) as 

Cco ' 

where 

= a8{ 00 - ~ + 
2au 

Therefore we may write Cco in the form 

1 

2ao 

(6.6.2-35) 

Cco = ao {ro - _-----;::::2 ==}{ 00 __ -----;:=2.==} 
~ 1 - 4ao 1 - ~ 1 - 400 1 + 

(6.6.2-36) 

We observe that) for any 00 satisfying (6.6.2-32) and 

(6.6.2-36), the relation (6.6.2-35) is true. Thus 

it is necessary and sufficient to discuss the magnitude 
of Cco in order to determine the optimum A. which is true 

for (6.6.2-31). Note that Cco is only determined by 00 and 

it is independent of A., since a and 0 are constants. Now 

o < 00 < 2. If 00 = 0, then Cco = 1 and A. n = 1. Thus A. has a 

unity root of multiplicity n. This is obvious and 

expected. The numerical results confirm this. As 00 

moves away from zero towards unity, Cco = ro2ao + 1 - 00 

moves away from unity towards 00 which is always 

positive but less than unity since 

o < a,8 <~. But now as 00 moves further away from unity 

towards two, Cco = ro2a8 + (1 - 00) is governed by the sign 

of 1 - 00. Clearly, Coo will first be positive as long as 

1 - 00 > O. Then at 00 = roopt' CCOopt = 0 and then stays 

negative for 00 > roopt ' whet'\, at 00 = 2, Cco = 400 - 1 < 0 since 
1 

o<a,o<2"' 

335 



In the accompanying Figure (6.6.2), the optimizat ion 

strategy is illustrated. The graphs depict the roots of 

the characteristic polynomial described by (6.6.2-35) 
for different values of Cco as 0) progresses from zero 

towards two. In Figure(6.6.2a) where 0)= 0 and Cco = 1, all 

the eigenvalues are unity. As 0) increases from zero but 
Cco decreases from unity, some of the eigenvalues become 

complex pairs, Figure(6.6.2b) to Figure(6.6.2d). As 0) 

increases further, more eigenvalues become complex until 

eventually all of the eigenvalues lie on a circle of 
radius lA.optl at Cll = O)opt in Figure(6.6.2e) where lA.optl is 

the minimum of the maximum value of the moduli of the 
eigenvalues which is less than unity. At this point Cco opt 

is numerically equal to zero. For values of 0) beyond 

Cllopt ' Cco moves away from zero; the eigenvalues increase 

in moduli as shown in Figure(6.6.2f) and Figure(6.6.2g). 

Therefore, the optimum A is obtained corresponding to 

setting Cco = O. Hence the optimum relaxation parameter 0) 

is determined by solving the equation 

(6.6.2-37) 

Let O)opt be the solution of (6.6.2-37), therefore we have 

2 
Cllopt = --,.===::. 

1 + " 1 - 4a/) 

(6.6.2-38) 

since the other root 
2 1 --,===::.> 2 for 0 < a,/) < 2"' 

1 - " 1 - 4cr/) 

Similarly, if (J and /) are of opposite sign, we can 
is 

easily show that (6.6.2-38)i\still valid. Thus the 

optimum relaxation factor is given by (6.6.2-38). 

Finally the spectral radius A.oPt can be simply derived 

from (6.6.2-35) by substituting Cco = O. That is, 

{An
-

1 
- Cllcr}{A - roll} = O. (6.6.2-39) 
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Figure(6.6.2) Optimization process of the relaxation 

parameter for periodic problem. 
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Hence we obtain the solutions of (6.6.2-39) as 

11. = [OlO"ll/(n-l) or 11. = roll. 

Since 11. = ').}/n, therefore we have 

1 
Now for M symmetric and both Icrl, 101 < 2' so that 

therefore the optimum spectral radius Aopt , is given by 

, [ropln/(n-l), 
"'opt = (6.6.2-40) 

where lal 101 = p. 

Thus we problem, the 

standard 

observe that) for a periodic 

SOR formula is not applicable, although the, a., '1'" p""h'41l.-j .,; LI-'\...t....., .... IS 

optimum relaxation factors of both cases coincidek This 

phenomenoYl is illustrated 'in the numerical results given 

in the following section. 
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6.6.3 NUMERICAL RESULTS 
In this experiment, we have used the Laplace equation 

with Dirichlet boundary conditions (for the SOR method) 

and with periodic boundary conditions (for the 

confirmation of the theoretical results derived in the 

previous,section) . 

2000,--r-------------r--------------, 

a ~ 0.49 a 

1500 

1000 

500 

O~~~~~~~~~~ 
0.0 0.5 1.0 1.5 2.0 

relaxation factor 

Figure(6.6.3a) : Number of iterations against relaxation 

parameter for periodic problems. Matrix size 20 and 
tolerance set at 5e-06. U denotes the matrix element. 

In Table(6.6.3) we present the comparison of the 

theoretical values of the spectral radius for periodic 

problem and the spectral radius of the standard SOR 
method for different matrix elements U. The matrix used 

is of size 20 and symmetric. The results confirm that 

the standard SOR is not applicable for the periodic 

case. 
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Matrix size 20 
Tolerance used 5e-06 

Matrix Relaxation Number of 
element a parameter ro iterations 

Theoretical values of spectral 
radius (periodic) radius (sor) 

======================================================== 
.10 
.15 
.20 
.25 
.30 
.35 
.40 
.42 
.44 
.45 
.48 
.49 
.499 

1.01021 5 .10102E+00 
1.02357 6 .15354E+00 
1.04356 7 .20871E+00 
1. 07180 9 .26795E+00 
1.11111 11 .33333E+00 
1.16676 13 .40837E+00 
1.25000 17 .50000E+00 
1.29652 20 .54454E+00 
1. 35596 23 .59662E+00 
1. 39286 26 .62679E+00 
1.56250 42 .75000E+00 
1.66806 60 .81735E+00 
1. 88109 192 .93866E+00 

Table(6.6.3) 

l.°T----__ ~ 
o 
~ 
.~ 

~ 0.9 
~ 

.... 
'" ~ 
tl 
~ 0.8 
o 

.10205E-01 

.23573E-01 

.43561E-01 

.71797E-01 

.11111E+00 

.16676E+00 

.25000E+00 

.29652E+00 

.35596E+00 

.39286E+00 
.56250E+00 
.66806E+00 
.88109E+00 

O.7-r--------r--------,--------,--------, 
o 1 2 

relaxation factor 

Figure(6.6.3b) Spectral radius against relaxation 

factor for SOR and periodic problems 

(fo ... 0( ~ ". '-t~ S). 
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6.7 CONCLUSIONS AND RECOMMENDATIONS 

In this thapter, the iterative and direct methods of 

solving linear systems of equations derived from the 

discretization of the periodic boundary-value problems 

for the elliptic PDE were investigated. 

The investigation of the iterative method of the problem 

leads us to conclude that the standard optimum SOR 

parameter cannot be applied to the problem. Instead, we 

derive a new formula for the optimum parameter and hence 

deduce the rate of convergence of the method for the 

problem. Numerical experiments are presented to confirm 

the results. 

In the investigation of the direct method of solving the 

problem, a new tri-reduction (TR3) algorithm is derived 
of v-Il.-.;tl-

the modified formAis shown to be numerically stable. 

The reduction stage of the TR3 algorithm seems to be 

faster than that of the standard cyclic reduction 

algorithm. Furthermore, this algorithm may also be 

adapted for parallel computation. This could be an area 

of further research. 
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CHAPTER 7 
CONCLUSIONS AND 
RECOMMENDATIONS FOR 
FURTHER WORK 

The thesis can be mainly divided into two parts. The 

first part is concerned with the numerical solution of 

problems involving ODE. This part is discussed in 

chapters 4 and 5 after the introductory chapters 1-3. 

The second part is concerned with the numericai solution 

of periodic problems involving PDEs which is described 

in chapter 6. 

In Chapter 4 we have considered a modified RK method 

using the geometric mean (GM) principle since we can 

regard the classical RK method as an arithmetic mean of 

approximations at various points. If certain conditions 

of the problems are met, we show that the RK-GM method 

may give better results compared with the corresponding 

classical RK method. We illustrate this for the case of 

a second-order RK-GM method. However, the RK-GM method 

may be more computationally complex and the region of 

absolute stability is smaller than the classical RK 

method. The applicability of the RK-GM method is further 

investigated in an imbedded form with the classical RK 

method to develop an adaptive strategy. This seems to be 

promising since we have two methods of the same order 

and the combined formula requires only a small number of 

function evaluations. This is illustrated for the case 

of an 0(4) method. However, the numerical results 

obtained are less encouraging when compared with the 
------_._-----. __ ._- ,. __ .... ~-~ .•... ---. 

more established methods. Nevertheless, the 

investigation is worthwhile as confirmed by the 

comparable ""Me.; c<>.t results. 

In C:hapter 5, the suitability of the geometric mean 

approach is further investigated on the multistep 



(specifically, the two-step) methods for the numerical 

solution of special types of problems in ODEs. The 

geometric mean version of the Numerov method is found to 

be comparable in accuracy with the classical Numerov 

method. The two methods are then combined to form an 

adaptive formula. The prototype adaptive strategy 

involving the two methods however do not give convincing 

results. This could be due to the error control strategy 

used which is too simplistic. Further work in this area 

is warranted. 

The investigation on the multistep method for the fourth­

order special type problems results in both new implicit 

and explicit formulae. The numerical results obtained 

show good accuracy. Thus they may be combined together 

to form a predictor-corrector pair for the fourth-order 

special type ODE problems that occur in celestial 

mechanics, etc. 

Finally, in chapter 6 we are concerned with the 

numerical solution of periodic_P3oble~s involving PDEs. 

The investigation of the optimum parameter of the SOR 

method applied to periodic problems shows that the 

standard optimal SOR parameter is not applicable for 

these problems. A new formula is introduced for the 

optimal SOR parameter and its asymptotic rate of 

convergence established which is confirmed by numerical 

experiments. 

The study of a suitable direct method for solving the 

special systems of linear equations which occur for 

periodic problems leads to the derivation of a new 

strategy called the tri-reduction algorithm (TR3). The 

number of reduction stages of the TR3 algorithm is found 

to be less than that of the cyclic reduction algorithm. 

An efficient software implementation of the TR3 

algorithm would give better timing results than the 

cyclic reduction algorithm especially on a parallel 
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computer. We further study the stability of the TR3 

algorithm and derive a stabilized form of this 

algorithm. 

The idea of the TR3 reduction can be further extended on 

quarto- and quin-reduction algorithms. However, we have 

to be aware of rounding errors which may grow 

exponentially. The TR3 algorithm can also be 

investigated for its suitability as a parallel 

algorithm. 
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Appendix 1 

C THIS PROGRAM SOLVES Y' F(X,Y) USING RK-GM METHOD 
C OF ORDER 4 

program rkgm4 
C THE FILE prob.f contains the subroutine for the model problems. 
$INCLUDE prob.f 
C THE FILE parm4.f contains the subroutine that computes the residual 
C vectors fc(l) ... fc(n) for the parameters of the equation. 
$INCLUDE parm4.f 

implicit double precision (a-h,o-z) 
double precision x(30),fc(30),par(30),alphaO,alpha1,alpha2 
integer*4 nn(19),nd(19) 
external parrn4 
common/blk2/x,par/blk1/n,n1 
common/blk3/xO,xend,yO,npb,nsteps 
open(6,file='data10') 

C set number of equations 
print*,'number of equations nl=23 

number of unknowns n =19 I 

read*, nl,n 
m = n-10 
read(6,*) (par(i),i = 1,n1), (nn(i),nd(i),i 1,m) 

,alphaO,alpha1,alpha2 
do 10 i = 1,m 

x(i)=dble(nn(i))/nd(i) 
10 continue 

write(*,l) (par(i),i = 1,n1), (nn(j),nd(j),j = 1,m) 
,alphaO,alphal,alpha2 

1 format (2 (2x, 10 (f4 .2, 2x) /) ,2x, 3 (f4. 2, 2x) / / 'a1=' ,i2, ' /' ,i2, 
2x,'a2 =',i2,'/',i2,2x,'a3 -',i2,'/',i2,2x//'bl =',i2, 
'It ,i2,2x, Ib2 :=' ,i2, 1/', i2, 2x, 'b3 =' ,i2,' /1 ,i2,2xl 
1 b4 = I, i2, '/1 I i2, 2x, 'b5 = I I i2, 1/. ,i2, 2x, 1 b6 = 1 I i2, , / ' 
,i2,2x//'alphaO =',f5.2,2x, 'alpha1 =' 
,f5.2,2x,'alpha2 =',f5.2,///) 

C set the parameters of the equation 
a1 x(l) 
a2 x (2) 
a3 x (3) 
b1 x (4) 
b2 x (5) 
b3 x (6) 
b4 x (?) 
b5 x (8) 
b6 x (9) 
x(10) (-12.dO*alpha2 + 3.dO*alpha1 - 3.dO*alphaO+ 2.dO)/6.dO 
x(ll) 4.dO*alpha2 - alpha1 - alphaO 
x(12) (-12.dO*alpha2 - 3.dO*alpha1 + 3.dO*alphaO + 2.dO)/6.dO 
x (13) (6.dO*alpha2 - l.dO) /3.dO 
x(14) (-12.dO*alpha2+3.dO*alphal-3.dO*alphaO+2.dO)/6.dO 
x(15) (-12.dO*alpha2-3.dO*alpha1+3.dO*alphaO+2.dO)/6.dO 
x(16) alpha2 
x(l?) alphaO 
x(18) alpha1 
x(19) alpha2 
w1 x (10) 
w2 x(ll) 
w3 x(12) 
w4 x(13) 
w5 x(14) 
w6 x(15) 
w? x (16) 
w8 x(l?) 
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w9 = x(18) 
w10 = x (19) 
call parm4(fc) 
print*,'CHECK FOR CONSISTENCY' 
do 999 i = 1,n1 

write(*,100)i,fc(i) 
100 format(10x,'f(',i2,') ',e20.12) 

print* , 
print* , 

999 continue 
C set the number of points 

print*, 'number of points :10' 
read*,nsteps 

C call routine that generates the model problem 
250 print*, 'type problem number' 

read*,npb 
if(npb.lt.1)stop'end of problem' 
call problem 
h = (xend-xO)/nsteps 
xn = xO 
yn = yO 
print *, 'x exact computed· 

rel error t 

11 hk1 h*f(npb,xn,yn) 
hk2 h*f(npb,xn+h*a1,yn+hk1*b1) 
hk3 h*f(npb,xn+h*a2,yn+hk1*b2+hk2*b3) 
hk4 h*f(npb,xn+h*a3,yn+hk1*b4+hk2*b5+hk3*b6) 
yn1 yn+DSIGN(1.dO,f(npb,xn,yn»*(w1*dsqrt(dabs(hk1*hk2» 

- +w2*dsqrt(dabs(hk2*hk3»+w3*dsqrt(dabs(hk3*hkl» 
- + w4*dsqrt(dabs(hk4*hk1»+w5*dsqrt(dabs(hk4*hk2» 
- +w6*dsqrt(dabs(hk3*hk4»)+w7*hk1+w8*hk2+w9*hk3+w10*hk4 
err = dabs(yn _ exact(npb,xn»/(l.dO+dabs(exact(npb,xn») 
write(*,12)xn,exact(npb,xn),yn,err 

12 format(lx,f6.3,3(2x,e16.7» 
xn=xn+h 
yn = yn1 
if (xn.gt.xend) then 

go to 250 
else 

go to 11 
endif 
stop 
end 
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Appendix 2 

C 
C 

program tri-redn 
The file tr3.f contains the subroutine symp3(a,m,n,b,w,x) 
algorithm for the TR3 reduction 

$ INCLUDE tr3.f 

C 
C 
C 
C 

100 

C 

C 
C 
C 

implicit double precision (a-h,o-z) 
parameter (lim = 4000) 
dimension w(lim),b(lim),x(lim) 
external symp3 
a denotes diagonal element of the matrix A 
n denotes the size of the matrix A, n = 3**m 
bb denotes the right-hand side of the equation, 

Ax = b 
print*, 'enter a,n,bb ' 
read*,a,n,bb 
do 100 j = 1,n 

b(j) = bb 
continue 
m = int(log(real(n»/log(3.» 
print*,'The number of reduction steps m 

Start timing 
call symp3(a,m,n,b,w,x) 

Stop timing 
Print final results 

print*, (x(j),j 1,n) 
stop 
end 

subroutine symp3(a,m,n,b,w,x) 

, ,m 

C This subroutine solves the simeltaneous equation, A*x b 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

where, 
a is the diagonal element of A, 
n is the size of the matrix A, 
m is any integer number such that n = 3**m, 
b is the right hand side vector in the equation A*x = b, 
w is the vector of the multipliers of the diagonal elements of A, 
during the reduction process, 
t is the depth of recursion, 
x is the vector of the unknown in the equation A*x 

implicit double precision (a-h,o-z) 
parameter (lim = 200) 
dimension w(m+1),b(n),x(n),aa(lim,lim) 
integer tiro 
integer timel,time2 
double precision time 

Start timing 
call _clock_time(time1) 
w(l) = a 
do 10 t = 1,m-1 

w(t+1) = w(t)*(w(t)**2 - 3.dO) 
do 9 j = 3**t,n,3**t 

if (j .ne. (3**m» then 

b. 

b(j) = b(j-2*3**(t-1» - w(t)*(b(j-3**(t-1» 
+ b(j+3**(t-1») 

else 
b (j) 

endif 

+ (w(t)**2 - l.dO)*b(j) + b(j+2*3**(t-1» 

b(j-2*3**(t-1» - w(t)*(b(j-3**(t-1» + b(l» 
+ (w(t)**2 - l.dO)*b(j) + b(2) 

9 continue 
10 continue 
C Compute the inverse of the matrix B 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
C 
C 
C 

C 

200 
C 
C 
C 

11 
12 
C 
C 
C 
C 
C 
C 

1S 
20 

1 -
B 

where B*x b such that 
bb 1 1 

B 1 bb 1 

1 1 bb 
and 

1 dOe -1 -1 
1 

(l/d)*1 -1 d*e-1 
1 

1 -1 -1 d*e 
d = w(m)**2 + w(m) - 2.dO 
e = (w(m)**2 - l.dO)/(w(m)**3 - 3.dO*w(m) + 2.dO) 

Stop timing 
call clock time(time2) 
time ~ (time2 - time1)/100.dO 
write(*,200) time 
format(Sx,'elapsed time is ',e10.S) 

Solution process 
Obtain the values of u(3**(m-l)), 

u(2*3**(m-1)), and u(3**m) from u 
do 12 i = 3**(m-1),n,3**(m-1) 

xli) = O.dO 
do 11 j = 3**(m-1),n,3**(m-1) 

if (j .eq. i) then 
xli) (x(i) + e*b(j)) 
else 
xli) = (x(i) - (1.dO/d)*b(j)) 
endif 

continue 
continue 

Obtain the rest of the u's from 

1 c 
1 

1 1 

1 11 u1 
11 

c 11 u2 

bl 

b2 

do 20 i = 1,m-1 
t = m - i 
ww = 1.dO/(w(t)**2 - 1.dO) 
k = 3**t 
do 1S j = 3**(t-1),n - 3**(t-1),k 

if (j .ne. 3**(t-1)) then 

A*b 

x(j) = (w(t)*(b(j) - x(j-3**(t-1))) 
- (b (j+3** (t-1)) - x (j+2*3** (t-1)))) *ww 

x(j+3**(t-1)) (-(b(j) - x(j-3**(t-1))) 
+ w(t)*(b(j+3**(t-1)) 
- x(j+2*3**(t-l))))*ww 

else 
x(j) (w(t)*(b(j) - x(n)) 

else 
x(j) = (w(t)* (b(j) - x(n)) 

- (b(j+3** (t-l)) - x(j+2*3** (t-l)))) *ww 
x(j+3**(t-l)) (-(b(j) -x(n)) 

endif 
continue 

continue 
return 
end 

+ w(t)*(b(j+3**(t-l)) 
- x(j+2*3**(t-l))))*ww 
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Appendix 3 

program pred_crrtr 
C THIS PROGRAM IMPLEMENTS THE PREDICTOR CORRECTOR 
C PAIR USING 
C Yn+2 = -6*Yn + 4*Yn-1 + 4*Yn+1 -Yn-2 
C + (h**4/6)*(4*F(Xn,Yn) + F(Xn-1,Yn-1) 
C + F (Xn+1, Yn+1) } 
C AS THE PREDICTOR AND 
C Yn+2 = -6*Yn + 4*Yn-1 + 4*Yn+1 -Yn-2 
C + (h**4/720)*(474*F(Xn,¥n) 
C + 124[F(Xn-1,Yn-1) + F(Xn+1,Yn+1)] 
C - [F(Xn-2,Yn-2) + F(Xn+2,Yn+2)]} 
C 
C 
C 
C 

5 

6 

C 

8 

C 

AS THE CORRECTOR. 
THE PROBLEM SOLVED IS OF THE TYPE 

D4Y = F(X,Y) 
GIVEN THE INITIAL CONDITIONS XO ,YO,AND DYiO,i=1,2,3. 
implicit double precision (a-h,o-z) 
write(*,*) 'INITIAL VALUES OF epa,xO xend nsteps' 
read(*,*)eps,xO,xend,nsteps 
write(*,5)eps,xO,xend,nsteps 
format(e10.4,2f6.2,3x,i3) 
xnO = xO 
ynO = exact (xnO) 
h = dabs (xend - xO)/nsteps 
xn1 = xnO + h 
xn2 xn1 + h 
xn3 xn2 + h 
yn1 exact (xn1) 
yn2 = exact (xn2) 
yn3 exact (xn3) 
write(*,6)xnl,ynl,xn2,yn2,xn3,yn3 
format(lx,3(2(e25.15,5x)/» 
write (* I *) I xn4 computed 

exact , 
_I relative error' 
call predictor to obtain yn4 
do 10 j = 1 , nsteps-3 
call predic(h,xn1,xn2,xn3,yn1,yn2,yn3,ynO,yn4p) 
xn4 = xn3 + h 
yn4c 4.*yn3-6.*yn2+4.*yn1-ynO 

+ (h**4./720.)*(474.*f(xn2,yn2) 
+ 124.*(f(xn3,yn3)+f(xnl,yn1» 
- (f(xnO,ynO)+f(xn4,yn4p») 

exct exact (xn4) 
abserr = dabs (exct-yn4c) 
test if the required accuracy is satisfied 
if (dabs (yn4c-yn4p) .le. eps) then 

go to 9 
else 

go to 8 
endif 

9 write (*,lOO)xn4,yn4c,exct,abserr 
100 format(f7.2,2(e22.l5,2x),e15.9) 

write(*,*) 
xnO xnl 
xn1 xn2 
xn2 xn3 
xn3 xn4 
ynO yn1 
yn1 yn2 
yn2 yn3 
yn3 yn4c 
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10 continue 
stop 
end 

C Define the subroutine to predict the 'solution 
subroutine predic(h,xnl,xn2,xn3,ynl,yn2,yn3,ynO,yn4p) 
implicit double precision (a-h,o-z) 
yn4p 4.dO*yn3 - 6.dO*yn2 + 4.dO*ynl - ynO 

+ (h**4./6.)*(f(xnl,ynl) 
+ 4.dO*f(xn2,yn2) + f(xn3,yn3» 

return 
end 

C Define the function f(x,y) 
function f(x,y) 
implicit double precision (a-h,o-z) 

f = Y 
return 
end 

C Define the exact solution 
function exact (x) 
implicit double precision (a-h,o-z) 

exact = dexp(x) 
return 
end 
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Appendix 4 

PROGRAM GM44 
C THIS PROGRAM SOLVES AN ODE FIRST ORDER PROBLEM USING 
C THE NEW R-K-GM METHOD WITH ERROR CONTROL. 
C THE TWO R-K FORMULAE ARE OF THE SAME ORDER 4. 
C THE FOLLOWING FILES CONTAIN THE SUBROUTINES 
C THAT DEFINE THE MODEL PROBLEMS 
$INCLUDE .. /PROB.F 
$INCLUDE .. /ERROR.F 
$INCLUDE .. /RHS.F 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
LOGICAL EXSOL 
INTEGER FOUR,NPB,NEQN 
PARAMETER (LIM = 10) 
DOUBLE PRECISION K(4),Y(LIM),EXACT(LIM),ABSERR(LIM) 

,YPRIME(LIM),TOL,W(LIM), 
X,XEND,ALFASQ,HMIN,HMAX 

COMMON/BLK3/X,XEND,Y 
COMMON/BLK4/ALFASQ 
COMMON/BLK5/NPB 
COMMON/BLK6/NEQN 
COMMON/BLK7/EXACT,ABSERR 
COMMON/BLK8/EXSOL 
EXTERNAL FCN,PROBLEM,ERROR 
READ*,XEND,NPB,NEQN 
RK = .5DO 
FOUR = 4 
TOL = 5.0E-05 
HMAX = 0.1 
HMIN = 0.02 
CALL PROBLEM 
H = (TOL)**(0.25) 
WRITE(*,10) X,Y(l),HMAX,HMIN,TOL 

10 FORMAT(17X,'INITIAL CONDITIONS'/23X 
_,'X = ',F5.2/23X,'Y = ',E10.4 
-/17X,'MAXIMUM STEP SIZE IS HMAX =',E10.4 
-/17X,'MINIMUM STEP SIZE IS HMIN =',E10.4 
-/25X,'TOLERANCE',E10.4) 

NFC = 0 
WRITE(*,123) 

123 FORMAT(T6,'X',T15,'H',T30,'Y',T43,'EXACT',T57, 
-'ABS. ERROR',T74, 'NFC'/T1,80('-'» 
W(l) = Y(l) 

5 IF (X .LE. XEND) THEN 
CALL FCN (NEQN,X,W(l),YPRIME(l» 
K(l) = H*YPRIME(l) 
W(l) = Y(l) + K(l)*RK 
CALL FCN (NEQN,X+H*RK,W(l),YPRIME(l» 
K(2) = H*YPRIME(l) 
W(l) = Y(l) + K(2)*RK 
CALL FCN (NEQN,X+H*RK,W(l),YPRIME(l» 
K(3) = H*YPRIME(l) 
W(l) = Y(l) + K(3) 
CALL FCN (NEQN,X+H,W(l),YPRIME(l» 
K(4) = H*YPRIME(l) 
WAM (K(l) + 2.DO* (K(2) + K(3» + K(4» /6.DO 
WGM = DSIGN(1.DO,K(1»*(DSQRT(DABS(K(1»*DABS(K(2») 

+ DSQRT(DABS(K(1»*DABS(K(3») 
- DSQRT(DABS(K(1»*DABS(K(4») 
+ DSQRT(DABS(K(2»*DABS(K(4») 
+ DSQRT(DABS(K(3»*DABS(K(4»»/3.DO 

NFC NFC + FOUR 
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20 

ERR = DABS(WAM - WGM) 
R = ERR/H 
DELTA = 0.84*(TOL/R)**(0.25) 
IF (R .LE. TOL) THEN 

x = x + H 
Y(l) = Y(l) + WAM 
W(l) = Y(l) 
CALL ERROR 
WRITE(*,20) X,H,Y(l),EXACT(l),ABSERR(l),NFC 
FORMAT(T2,F7.5,T10,F10.7,T24,E12.6 
,T38,E12.6,T55,E12.6,T70,I6) 

ENDIF 
IF (DELTA .LE. 0.1) THEN 

H = O.l*H 
ELSE 

IF (DELTA .GE. 4.DO) THEN 
H 4.DO*H 

ELSE 
H DELTA*H 

ENDIF 
ENDIF 
IF (H .GT. HMAX) THEN 

H = HMAX 
ENDIF 
IF (H .LT. HMIN) THEN 

HMIN = HMIN/2.DO 
GO TO 5 

ENDIF 
GO TO 5 

ENDIF 
STOP 
END 
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Appendix 5 

program num_am_exp 
C Numerov type method for the special fourth order ODE. 
C (EXPLICIT METHOD) 
C 
C-----=T=HE=-p~R~07B~L~E=M~S~O~L~V~E=D~I~S~O~F~T=H=E~T=Y=P~E~-----------------------------

C D4Y = F (X, Y) 
C GIVEN THE INITIAL CONDITIONS XO , YO ,AND DYiO ,i - 1,2,3. 
C~ __ >=~~~~~~~~~~~~~ ____________________ ___ 

implicit double precision (a-h,o-z) 
write(*,*) 'INITIAL VALUES OF xO xend nsteps' 
read(*,*)xO,xend,nsteps 
yO = exact (xO) 
xnO = xO 
ynO = yO 
h = dabs(xend - xO)/nsteps 
write(*,*) 
write(*,*)' xn computed solution 

exact solution relative error' 
write(*,*) 

C calculate yl,y2,y3 using the exact solution 
xnl xnO + h 
xn2 xnl + h 
xn3 
ynl 
yn2 
yn3 
do 10 

xn2 + h 
exact (xnl) 
exact (xn2) 
exact (xn3) 
j = 1 , nsteps 
xn4 xn3 + h 
yn4 4.*(ynl + yn3) - 6.*yn2 - ynO 

+ ((h**4.) /6.) * (f (xn1,yn1) 
+ 4.*f(xn2,yn2) + f(xn3,yn3» 

exct = exact (xnl) 
if(exct .ne. O)then 

abserr dabs(exct - ynl)/dabs(exct) 
else 

abserr 
endif 

dabs(exct - yn1) 

write(*,lOO)xnl,ynl,exct,abserr 
100 format(f6.3,2e20.12,e18.10) 
C reset appropriate values of xnO,xnl,xn2,xn3,ynO,ynl,yn2,yn3 

xnO xnl 
xn1 xn2 
xn2 xn3 
xn3 xn4 
ynO yn1 
yn1 yn2 
yn2 yn3 
yn3 yn4 

10 continue 
stop 
end 
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C Define the function f(x,y) 
function f(x,y) 
implicit double precision (a-h,o-z) 

Cl f 24.dO + dexp(x) 
C2 f = Y 
C3 f = 34320.dO*(2.dO - x)**(-l4) 

f cos (x) 
return 
end 

C Define the exact solution 
function exact (x) 
implicit double precision (a-h,o-z) 

Cl exact = x**4 + dexp(x) 
C2 exact = dexp(x) 
C3 exact = 2.dO*(2.dO - x)**(-lO) - x - l.dO 

exact cos (x) 
return 
end 
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Appendix 6 

program ode2_cases 

C ____ ~~~~~~~~~~~~~~~~~~~~~~~~~ C THIS PROGRAM INVESTIGATES ALL POSSIBLE CASES OF THE PARAMETERS 
C FOR THE NEW GM FORMULA FOR SOLVING THE SPECIAL SECOND ORDER ODE 
C PROBLEMS. 

C ____ -.~._~~~~----._~--~~--_.-------------------------
implicit double prec~s~on (a-h,o-z) 
character answer,Y,N 

C choose problem number 
write(*,*) 

1111 write(*,*) 'PLEASE TYPE THE CORRECT PROBLEM NUMBER, 
-ANY OF 1 TO 6' 

1 

C 
C 
2 

C 

read*,num 
call problem(num,xO,yO,xend,nsteps) 
choose the parameters of the formula, say a -1/6 or a 
for a = 0 gives the Numerov formula 
do 9999 11 = 1 , 3 
print*,'INPUT THE NUMERATOR AND DENOMINATOR OF a ' 
read*, an, ad 
a = an/ad 
a1 (12.*a + 5.)/6. 
a2 (6.*a + 1.)/12. 
a3 a2 and a4 = as 
a4 -2.*a 
a6 = a 
print* , 
print*,'PARAMETER OF THE EQUATION' 
write(*,3) an, ad, a1, a2, a4, a6 

3 format (lx, 'a = ',f5.2,'/',f5.2//1x,4(f8.3,2x» 
print*, 
xnO = xO 
ynO = yO 
h = dabs (xend - xO)/nsteps 

C use the exact solution to obtain yl,x1=xO+h 
xn = xnO+h 
yn = exact(num,xn) 
write (*,7) 

7 format (5x, 'xn I I 7x, I computed' , 12x, 1 exact' , 
13x,'relative error') 

do 10 j = 1 , nsteps 
C call predictor to obtain yn1 

call predic(h,xn,yn1,yn,ynO) 
xn1 = xn + h 
yn1 = 2.*yn - ynO + (h**2.)*(a1*f(num,xn,yn) 

+ a2*(f(num,xnO,ynO)+f(num,xn1,yn1» 

-5/12 

+ dsign(1.dO,f(num,xn,yn»*(a4*(dsqrt(dabs(f(num,xn1,yn1») 
+ dsqrt(dabs(f(num,xnO,ynO»»*dsqrt(dabs(f(num,xn,yn») 
+ a6*dsqrt(dabs(f(num,xn1,ynl)*f(num,xnO,ynO»») 

C compute the exact solution of the problem 
exct = exact (num,xn) 

C compute the absolute difference between exact 
C and computed solutions 

if(exct.ne.O)then 
err dabs(exct - yn)/dabs(exct) 

else 
err 

endif 
dabs(exct - yn) 

write(*,lOO)xn,yn,exct,err 
C reset appropriate values of xnO,xn,xnl,ynO,yn 

xnO = xn 
xn = xnl 
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ynO = yn 
yn = yn1 

100 format(f7.4,3e23.12) 
10 continue 
9999 continue 

C 

C 

write(*,*) 'DO YOU WANT TO HAVE ANOTHER TRY,TYPE "Y" 
IF YES AND "N" IF NO' 

read(*,*)answer 
if (answer.eq.'Y') go to 1111 
stop 
end 

subroutine predic(h,xn,ynl,yn,ynO) 
implicit double precision (a-h,o-z) 
yn1 = 2.*yn-ynO+h**2.*f(num,xn,yn) 
return 
end 

subroutine problem(num,xO,yO,xend,nsteps) 
implicit double precision (a-h,o-z) 
common/blk1/b,c,q 
if (num.eq.1)then 

C PROBLEM: 1 Y" + x*y = 0 
C INITIAL CONDITIONS XO=0,YO=1,Y'=2 
C EXACT SOLUTION Y=(l - X**3/3 + X**6/180 - ... ) 
C + 2*(X - X**4/12 + X**7/504 - ... ) 
C CHOOSE SOLUTION DOMAIN [0,1] 

write(*,*)' PROBLEM:l Y"" + X*Y = 0' 
write(*,*)' INITIAL CONDITIONS XO=O,YO=l,Y' '=2' 
write(*,*)' EXACT SOLUTION Y=(l - X**3/3 + X**6/180 - ... )' 
write (*, *) , + 2* (X - X**4/12 + X**7/504 - ... )' 
write(*,*)' CHOOSE SOLUTION DOMAIN [0,1]' 
write(*,*) 'INPUT VALUES OF xO yO xend nsteps' 
read(*,*)xO,yO,xend,nsteps 
return 

e1seif(num.eq.2)then 
C PROBLEM: 2 Y" + 2*X**2*Y = 0 
C INITIAL CONDITIONS XO=O,YO=l,Y'=l 
C EXACT SOLUTION Y=(l - X**4/6 + X**8/168 - ... ) 
C + (X - X**5/10 + X**9/360 - ... ) 
C CHOOSE SOLUTION DOMAIN [0,1] 

write(*,*) I PROBLEM:2 Y"" + 2*X**2*Y = 0' 
write(*,*)' INITIAL CONDITIONS XO=O,YO=l,Y"=l' 
write(*,*)' EXACT SOLUTION Y=(l - X**4/6 + X**8/168 - ... )' 
write (*, *) , + (X - X**5/10 + X**9/360 - ... )' 
write(*,*)' CHOOSE SOLUTION DOMAIN [0,1]' 
write(*,*) 'INPUT VALUES OF xO yO xend nsteps' 
read*,xQ,yO,xend,nsteps 
return 

e1seif(num.eq.3)then 
C PROBLEM: 3 Y" + x**2*y = 1 + X + X**2 
C INITIAL CONDITIONS XO=0,YO=2,Y'=2 
C EXACT SOLUTION Y=2*(1 - X**4/12 + X**8/672 - ... ) 
C + 2*(X - X**5/20 + X**9/1440 - .•. ) 
C CHOOSE SOLUTION DOMAIN [0,1] 

write(*,*)' PROBLEM:3 Y"" + X**2*Y = 1 + X + X**2' 
write(*,*)' INITIAL CONDITIONS XO=0,YO=2,Y"=2' 
write(*,*)' EXACT SOLUTION Y=2*(1 - X**4/12 
+ X**S/672 - ... )' 
write (*, *) , + 2* (X - X**5/20 + X**9/1440 - ... )' 
write(*,*)' CHOOSE SOLUTION DOMAIN [0,1]' 
write(*,*) 'INPUT VALUES OF xO yO xend nsteps' 
read*,xO,yO,xend,nsteps 
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return 
elseif (num.eq.4) then 

C PROBLEM: 4 Y" - Y ~ 0 
C INITIAL CONDITIONS XO~O,YO~l,Y'O~-l 
C EXACT SOLUTION Y~exp(-X) 
C CHOOSE SOLUTION DOMAIN [0,1] 

write(*,*) 1 PROBLEM:4 Y"" - Y = O· 
write(*,*)' INITIAL CONDITIONS XO~O,YO~l,Y"O~-l' 
write(*,*)' EXACT SOLUTION Y~exp(-X)' 
write(*,*)' CHOOSE SOLUTION DOMAIN [0,1]' 
write(*,*) 'INPUT VALUES OF xO xend nsteps' 
read*,xO,yO,xend,nsteps 
return 

elseif(num.eq.5)then 
C PROBLEM:S Y" - 220.*(2.-x)**(-12) = 0 
C INITIAL CONDITIONS XO~1,YO=-2,Y'0~-1 
C EXACT SOLUTION Y~2*(2-X)**(-10)-X-1 
C CHOOSE SOLUTION DOMAIN [0,1] 

write(*,*)' PROBLEM:5 Y"" - 220*(2-X)**(-12) ~ 0' 
write(*,*)' INITIAL CONDITIONS XO~1,YO~0,Y"0~19' 
write(*,*)' EXACT SOLUTION Y~2*(2-X)**(-10)-X-1' 
write(*,*)' CHOOSE SOLUTION DOMAIN [0,1]' 
write(*,*) 'INPUT VALUES OF xO xend nsteps' 
read*,xO,yO,xend,nsteps 
return 

elseif(num.eq.6)then 
C PROBLEM: 6 Y" - y* « (Q + B*X) IX) **2 - Q/ (X**2» 0 
C INITIAL CONDITIONS XO~1,YO=10*e,Y'0~10*e*(Q + B) 
C EXACT SOLUTION Y~C*X**Q*EXP(B*X) 
C USE B~1,C~10,Q~3/2 

C 

write(*,*), PROBLEM:6 Y"" - Y*«(Q + B*X)/X)**2 - Q/(X**2» ~ 0' 
write(*,*)' INITIAL CONDITIONS XO~1,YO=10*e,Y"O=10*e*(Q + B)' 
write(*,*)' EXACT SOLUTION Y=C*X**Q*EXP(B*X)' 
write(*,*)' CHOOSE SOLUTION DOMAIN [1,2]' 
write(*,*)' USE B=1,C=10,Q=3/2' 
write(*,*) 'INPUT VALUES OF b c q xO xend nsteps' 
read*,b,c,q,xO,xend,nsteps 
yO = exact (num,xO) 
return 

else 
print*,'YOU HAVE NO SUCH PROBLEM NUMBER' 
stop 

endif 
end 

function f(num,x,y) 
implicit double precision(a-h,o-z) 
common/blk1/b,c,q 
if(num.eq.1)then 

f = -x*y 
return 

elseif (num.eq.2) then 
f ~ -2.dO*(x**2)*y 
return 

elseif(num.eq.3)then 
f = -x**2*y + 1.+x+x**2 
return 

elseif(num.eq.4)then 
f ~ Y 
return 

elseif (num.eq. S)then 
f = 220.dO*(2.dO-x)**(-12) 
return 
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c 

elseif(num.eq.6)then 
f = y*«(q+b*x)/x)**2 - q/x**2) 
return 

endif 
end 

function exact(num,x) 
implicit double precision(a-h,o-z) 
common/blk1/b,c,q 
if (num.eq.1)then 

exact = (1.-x**3/3.+x**6/180.)+2*(x-x**4/12.+x**7/504) 
return 

e1seif(num.eq.2)then 
exact = (1 - x**4/6. + x**8/168. ) 

+ (x - x**5/10. + x**9/360.) 
return 

elseif(num.eq. 3) then 
exact = 2*(1 - x**4/12. + x**8/672. ) 

+ 2*(x - x**5/20. + x**9/1440.) 
+ x**2/2. + x**3/6. + x**4/12. 
- x**6/60. - x**7/252. - x**8/672. 

return 
elseif(num.eq.4)then 

exact = exp(-x) 
return 

e1seif(num.eq. 5) then 
exact = 2.dO*(2.dO-x)**(-10)-x-1.dO 
return 

elseif(num.eq.6)then 
exact = c*x**q*exp(b*x) 
return 

endif 
end 
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