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ABSTRACT

This thesis is concerned with the numerical solutions of
initial value problems with ordinary differential
equations and the boundary value problems involving
partial differential equations.

Chapter 1 is an introductory chapter on the initial
value and boundary value problems in ordinary and
partial differential equations. This is then followed by
a chapter on the basic mathematical preliminaries and
fundamental concepts of Numerical 2nalysis which are
applied in the thesis. A survey of the current numerical
algorithms for solving the initial value problems in
ordinary differential equations by the step by step
marching methods and the boundary value problems derived
from elliptic partial differential equations by solving
the large sets of linear equations which occur when the
partial differential equation is discretized by the
finite difference methcd is described in chapter 3. The
discussion on the advantages and disadvantages of
several strategies in terms of stability and truncation

error is also considered.

Chapter 3 further discusses the partial differential
equations solvers, mainly on the boundary value problems
involving elliptic partial differential equations.
Discretization of the problems leads to sclving very
large sparsely structured systems of linear equations.
Direct and iterative methods of solution are considered
such as the LU decomposition, Gaussian Elimination,
Cyclic or Odd/Even Reduction, and the Jacobi, Gauss-
Seidel and SOR methods.

Chapters 4 and 5 investigate the ordinary differential
equations solvers based on the Geometric Mean (GM)
strategy. Chapter 4 concentrates on the single-step
method application of the GM strategy, mainly on the
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modified GM Runge-Kutta (RK-GM) method together with an
adaptive strategy for the RK-GM method. Chapter 5 deals
with the multistep (specifically, the two-step) method
application of the GM strategy. A modified GM Numerov
method is also derived.

Chapter 6 concentrates on the numerical solution of
elliptic partial differential equations. In this special
situation the spectral decomposition method can be
efficiently utilised. The direct methods are now
extended to block odd/even cyclic reduction and the
block tri-reduction algorithm introduced. Then a new
direct method, utilising the ‘stride of 3’ algorithm is
devised and the Buneman modified wversicon is also
proposed and shown to be stable. Finally, the iterative
solvers are considered and an optimum relaxation
parameter for the SLOR technique for solving iteratively
the system of equations obtained by the discretization
of the periodic boundary value problems involving

elliptic partial differential equations is also derived,

The final chapter contains the conclusions and
recommendations for further research.
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CHAPTER 1
INTRODUCTION

1.1 DIFFERENTIAL  EQUATIONS

Many problems in Applied Mathematics lead to
differential equations or systems of differential
equations. Differential equations are equations that
involve derivatives of some unknown functions of time
and/or space. The solutions can only be explicitly
determined in a relatively <few cases. Therefore,
numerical methods are essential to produce a
sufficiently accurate approximation to the desired

solutions.

Differential equations which involve only ordinary
derivatives are called crdinary differential equations
(CDEs) . Partial differential equations (PDEs) are those
differential equations which involve partial

derivatives. For example,

y - xy =2 (1.1-1)
v + 3y + v = cosh(x) (1.1-2)
g2 02

5;{% + 5;‘—2‘— = 0 (1.1-3)

are all differential equations. In (l1.1-1) and (1.1-2)
the unknown function is represented by y and is assumed
to be a function of the single independent wvariable x,
that is y = y(x). For notational simplicity, we may
suppress the argument x in y(x) and its derivatives. The
terms y(“ and y(m in (1.1-1) and (1.1-2) are
respectively, the first and second derivatives of the
function y(x) with respect to x. In (1.1-3), the
unknown u 1is assumed to be a function of the two
independent variables t and x, that is u = u(t,x). Then
d%u 02u

o2 and ox2 2re the second partial derivatives of the

function u(t,x) with respect to t and x, respectively.
Equations (1.1-1) and (1.1-2) inveolve ordinary



derivatives only and are therefore called ordinary
differential equations. Equation (1.1-3) involves
partial derivatives and therefore 1is a partial
differential equation.

The general form of a differential equation can be

written as
Dly] = £ (1.1-4)

where D is a differential operator and £ is a given
function of the independent variables t; ;7 i =1,2,...,n
and n is the number of independent variables. The order
of a differential equation is the order of its highest
derivative and the degree of the derivative of the
highest order in the rationalised equation 1is its
degree, A linear equation is one which does not contain
the product of the dependent variable with itself or any
of 1its derivatives, otherwise it 1is said to be
nonlinear. The general solution of the mth order
differential equation may contain m independent
arbitrary constants. In order to determine the arbitrary
constants in the general seclution, m conditions need to
be prescribed. If the m conditions are prescribed at one
point, they are called initial conditions. The
differential equation together with the initial
conditions is known as the initial value problem. If the
m conditions are prescribed at more than one point, they
are called boundary conditions., The differential
equation together with the boundary conditions is termed
as the boundary wvalue problem.

1.2 NUMERICAL SOLUTIONS OF ODES AND PDES

Differential equations are at the heart of our
perception of the physical universe, The analytical
solutions can only be explicitly determined in a
relatively few simple cases. For this reason and with
the advent of modern computers, numerical methods for

their solution are <central tools for obtaining



quantitative information on the physical behaviour. In
the remaining parts of the thesis, we shall only
concentrate on the numerical solutions of ODEs and PDEs.
Thus the word solution(s) will only imply numerical
soclution{s) unless otherwise stated.

In the solution of the ODEs, we can classify two classes
of methods, namely a single step method and a multistep

method. A single step method determines the
approximation y,,; at the abscissa x.,; = x + h primarily

on the basis of the approximation peoint (x,, y,). In
contrast, a multistep method uses the knowledge at the
previous source abscissae Xy i, Xy_zr ..+s Xx_,r LO compute
¥« . In general, we need to distinguish certain
properties when the procedures are applied in practice.
For systems of ODEs arising in physical problems, such
as physics, chemistry, biology or engineering sciences,
we often have specific criteria which influence the
choice of the method.

As most ODEs of higher order can be reduced to systems
of first order ODEs, the procedure will be presented,
for simplicity and clarity; on the basis of the scalar

differential equations of first order y“J = f(x,y)} for a

single unknown function y(x). An initial condition y(x,)
= y,, Sstating the value y, at a given starting abscissa
Xos 18 necessary in order to determine a certain
solution ameng the one parameter family of solutions of
ODEs of first order. The existence and unigueness of a
solution is assumed on the basis that the corresponding
hypotheses are satisfied. Further treatments of
numerical methods for the solution of ODEs are given in
Gear (19711, Gekeler[1984], Henricil[l962], Jain([1984],
Lambert[1991], Lapidus and Seinfeld[1971], Shampine and
Gordon[1975], Aiken[1985], Butcher[1987], Hairer et
al[1987]. In Sanugi[1986], a new treatment of numerical
methods for the solution of ODEs based on the Geometric
Mean (GM) approach is given. This approach is further
extended to derive the composite GM method. From the



single step method application of the GM strategy, we
will obtain the wusual standard methods of Euler,
Trapezoidal and Runge~Kutta. The combination of the
standard Runge-Kutta and the new GM Runge-Kutta (RK-GM)
methods offers an alternative adaptive strategy. From
the multistep (specifically, the two step) method
application of the GM strategy, a modified GM Numerov
method is derived. The derivation of the closed and open
formulae offers alternative formulae to be applied in
the predictor corrector method,

|

IMany mathematical formulation of problems in physics,
chemistry or biology involve functions of several
independent variables. This would eventually 1lead . to
satisfying certain PDEs. There is an enormous variety of
PDEs and systems of PDEs that arise in these
applications and their appropriate numerical analysis
cften requires special strategies. Broadly speaking,
their numerical methods can be classified into two
groups; namely the direct method and the i1terative
methed., In a direct method, the solution is obtained in
a fixed number of steps, subject only to rounding
errors. In contrast, an iterative method starts with an
initial approximation vector u{® to the solution vector
u, and generates a sequence of vectors {u”‘)}:;=0 that

converges to the vector u. Many efficient direct methods
exist (Reid[1977], George[l973], and Irons[1970]).
However, from a practical point of wview, the best
solution method is one that accomplishes the Jjob with a
minimum total cost. The cost would include computer cost
and the man-hour c¢ost to develop and program the
solution scheme. If the computer time is irrelevant,
then the solution method selected should be one that
works well andz;asily implemented, not necessarily the
best. However, for large scientific applications which
easily saturate the computer capabilities, details of
implementation become more important. Thus the most
effective iterative methods to be used for large scale



computations are those which converge at a reasonable
rate (not necessarily the fastest rate) and which can be
easily adapteﬁxgb the architectural features of the
available computer at hand. Given the choice between
direct and /iterative methods, the usual criteria to
decide are storage and work (number of arithmetic
operations). For many problems, there is a limit to the
number of unknowns above which a ‘good’ iterative method
becomes more cost effective than a ‘good’ direct method
{(Young and Hageman[1981]). Further extensive
representations of the numerical methods for solving the
various types of PDEs c¢an be found in Ames[1977],
Collatz[1966], Gladwell and Wait{1979], Jain{[1984],
Mitchell and Griffiths[1980], Parter[1979], Smith[1985],
Twizell[1984], Venuri and Karplus[1981] and

Hackbusch[1986].

In this thesis, we restrict our attention to solving
second order PDEs for an unknown function with two
independent variables. Moreover, The PDEs are of the
self-adjoint elliptic case and the prdblem is of the
periodic boundary value type. An alternative direct
method of solving the systems of linear equations which
result from the discretization of the problem 1s
obtained. This method, which we called the Tri-Reduction
(TR3) direct method in its modified form is proved to be
numerically stable. We shall also discuss the iterative
methods of solving the systems of linear equations
mentioned above. In particular we shall show that the
well known coptimum relaxation parameter of the SOR
theory cannot be applied to the case of the periodic
problem. Alternatively, we shall derive the optimum
relaxation parameter for the periodic case, which is
distinct from that of the SOR theory.



CHAPTER 2

BASIC PRELIMINARIES AND
FUNDAMENTALS OF NUMERICAL
METHODS

2.1 INTRODUCTION _

This chapter contains a short review of basic topics
that will be repeatedly required in later chapters,
together with an introduction to the terminology related
to the discussion of the numerical solutions of
differential equations (ODEs and PDEs).

2.2 BASIC PRELIMINARIES
In this section we shall list the definitions of terms
and state basic results that are tools for numerical

methods discussed in the following chapters.

2.2.1 MEANS
Suppose we are given a set of n numbers x;: for i =
1,...,n0. Assume that x; 2 0. Define the generalized

mean by
(2.2.1-1)

If at least one of the x; is zero and m is negative, we

set M, to zero. In particular, we have the arithmetic

mean, for m =1,

n
A=M1=l" 3 % (2.2.1-2)
L
the geometric mean, if
n 1/
G=1limM = [[[x] " (2.2.1-3)
m=30 i=1
and the harmonic mean, if
1 2 -1q-1
H=M, = [; yxi] . (2.2.1-4)



When neither all of the x; are identical nor some of the

x, are zero and m £ 0, then M, is strictly monotonically
increasing withm ; lim M, = max x; and lim M, = min x,.
me—pooe i m=3 —oo i

Thus, we have
min X S M = max X, (2.2.1-5)
and in particular

H<GZ=<A, (2.2.1-6)

In addition, we may define other means as follows:

Given two positive numbers x; and x,, the logarithmic

mean of x;, and x, is defined as

Migg = __E:EE— . (2.2.1-7)
In|—
X3

A more general concept is the weighted means, two of
which are the weighted arithmetic mean and the weighted

geometric mean.

Suppose that we have a set of numbers x = {x;; i =
1,2,...,n} and weight w = { w;; i = 1,2,...,n}, then the

weighted arithmetic mean x,,, is defined as

n
2 WiX;
i=1

Ry = o, (2.2.1-8)
2 v
i=1
and the weighted geometric mean x,, is defined by
1

Kgm = [iI_'[lx"_i'i] 2wy (2.2.1-9)

In most practical applications, the weight w is

normalized so that Sw o= 1.
i



Thus it is clear from the Rxe computations of the means
in (2.2.1-8) and (2.2.1-9),Aﬁhe weighted arithmetic mean
involves n multiplications and one division, while the
weighted geometric mean consists of n + 1 powers., This
means that any computation in the sense of the geometric

mean incurs more computational work.

2.2.2 POWER SERIES
Suppose F is a field, which may be the field of complex
numbers. Let a and ¢y, for i = 0,1,..., be the elements

of F. A power series in cone variable z, is defined as

Z = 3Yclz - a]i, ‘ (2.2.2-1)
i=0

The radius of convergence R, ©of a power series is a
unique real finite number R such that Z converges if |z-
al| <R and diverges if R < |z-a|. The circle |z-a| < R is
called the circle of convergence of Z. The value of R is
given by R = 1/{1im sup[lcil]”i}.

1=

A power series is absolutely and uniformly convergent in
its circle of convergence, where it defines a single-
valued complex functioqga%his function is a holomorphic
function of =z, since the series 1s termwise
differentiable. Conversely, any holomorphic function in
its domaln can be represented by a power series in the
neighbourhocod of each peoint a of the domain. The
representation is called the Taylor's expansion of f(z)

at point a or in the neighbourhood of a.

Besides (2.2.2-1), we may have a power series of the
form

7= % cyz; (2.2.2-2)
1=0

withh centre - at infinity and its value at infinity is
Co. By suitable transformations of (2.2.2-1) and (2.2.2-

2), we may write every power series in the form



T c,tt, (2.2.2-3)
1=0
where t is called the canonical parameter. When t is a

local canonical parameter, we obtain the Laurent series

given in the form Z:citi.Tbyar series are also called

Powev. series.

2.2.3 SYMBOLIC COMPUTATION

Symbolic computation is a technique of manipulation of
symbolic expressions on a computer. The term symbolic
computation or computer algebra raises two distinct
classes of activity: _

(a) the theoretical and structural development of all
computer algebra systemns,

(b) the application of any of the existing systems to
problems in mathematics, science and technology.

However, for the purpose of the work in this thesis, we
are concerned exclusively with class (b), that is, the
manipulation of algebraic formulae. Thus we shall
restrict the discussien in this Section to this topic
only.

There are several symbolic computation systems available
that have been developed over the past thirty years. The
first general purpose (non-numerical) .symbolic
computat&gn systems appeared in the mid 1960's. Between
then andflate 1980's, there have emerged systems such as
MACSYMA, Scratchpad, REDUCE, FORMAC, Schoonship, CAMAL,
ALTRAN, ALPAK, MATLAB, DERIVE, SMP, SAC-1, MAPLE and
Mathematica. There are also scome special purpose systems
like LAM and Sheep for General Relativity. By
restricting ourselves only to general purpcose systems,
the field may be narrowed down to about six only,
namely, MACSYMA, Maple, Mathematica, REDUCE, Scratchpad

and Derive.



Derive can only run on PC-DOS/MS-DOS systems and is of
limited applicability. At the other extreme, Scratchpad
is available only on IBM mainframes and needs about 8-
12Mb of the main memory. The other four are the most
commonly used. Of these MACSYMA is probably the most
extensively developed but it requires about 4-5Mb of
main memory and is only available on some machines.
Mathematica which is claimed for applications that span
all areas of science, technology and business where
quantitative methods are used, also needs about 4Mb and
upwards of memory. As at the end of 1990, versions of
Mathematica are available for a wide variety of computer
systems, including Apple Macintosh, CONVEX, DEC VAX
(Ultrix and VMS) and RISC, Hewlett-Packard/Apollo, IBM
386-based compatibles (MS-DOS and Microsoft Windows) and
IBM RISC, MIPS, NeXT, Silicon Graphics, Sony and Sun
{and SPARC compatibles). Reviews o©f the system have
appeared in both the popular and scientific press (see,
for example, Barwise([1988), Simon[1989], Taubes[1988]
and Wayner[1989]). Some initial impression of
Mathematica's capabilities are given by Barwise[1988].
Maple and REDUCE require only a minimum of 1Mb of main
memory and with 4Mb one can %lw quite complex problems.
Also, Maple and REDUCE will run on a large varilety of
machines ranging from PC's to Crays. Jenson and
Niordson[1277] have given a comparative study of some of
the systems listed.

We shall now describe REDUCE in some detail. REDUCE is a
system for performing algebraic operations accurately;
irrespective of the complexity of the expressions. It
can do various manipulations of polynomials including

expansion and factorization as well as the
extraction of parts of polynomials as required. REDUCE
has the facilities for defining new functions and
extending program syntax and can do analytic
differentiation and integration of functions. Other
capabilities of REDUCE include facilities for the
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solution of a variety of algebraic equations, facilities
for the output of expressions in a variety of formats,
facilities for manipulation of symbolic arrays and
matrix operations, facilities for generating numerical
programs from symbolic input, simplifications of
expressions and substitutions and pattern matching in
various forms, There are also user-contributed packages.
The basic REDUCE system is being continually extended by
a library of packages contributed by users. At present
there are two classes of such packages: those that are
distributed with the system and those that have been
written since the appearance of the current version of
REDUCE. These packages may be available from the REDUCE
network library at the e-mail address reduce-
network@rand.org.

REDUCE can be run in both modes, the batch and
interactive modes. Its design of being an interactive
system enables the user to input an algebraic expression
and inspect its wvalue before moving on to the next
calculation. However, 1if necessary, a sequence of
commands can be given to REDUCE and the results obtained
without any intervention by the user during the
computatiocn.

We shall now illustrate the interactive use of REDUCE.
After a successful logging-in, the user can run REDUCE
on the SUNA at Loughborough University by typing
'reduce' at the prompt 'suna%', after which REDUCE will
respond with a banner message which reports the version
number and the current system release date which may

change from time to time i.e.,

suna% reduce
REDUCE 3.4, 15-Jul-91

It then prompts the user for input by

11



o
We can now type a REDUCE expression, terminated byAsemi—

colon to indicate the end of the REDUCE expression, for
example:

1:(x**d - y**4) /(x - y)};

Note that we type the expression exactly like that of
the FORTRAN expression except that the REDUCE expression
is terminated by a semi~colon. When the end-of-line
character 1is encountered, which is normally the RETURN
key on an ASCII terminal, the statement ending with ; or
$ is processed. Thus for the illustration above, we

obtain the results as follows:

3 2 2 3
X + X *Y + X*Y + Y

2:

where (2: ) is automatically assigned to the next
command. Input may be in the lower or upper case, but
the output is in the upper case.

The results of a given calculation are also saved in the
variable WS (for WorkSpace), which enables it to be used

in the next calculation for further processing,

For example, if we enter on line (2: } following the

results of evaluation of line (1: ), the expression
int (ws,x);

will integrate the function x4+ xzy + xy2 + y3 with
respect to x to obtain
3 2 2 3
X*{3*X + 4*¥X *Y 4 6*X*Y + 12*Y )

Note that after each evaluation of an expression a line

number command which prompts the user for the next input

12



follows. If we do not have anything to process further
and wish to leave the REDUCE session, we may do so by
typing the word 'bye'. Thi$- . ends the REDUCE session
and returns to the system prompt.

However, in many cases, we may continue further and use
some previous results in the succeeding calculations.
One way of doing this is by assigning a variable name to

an expression as follows,
u = (x**4 - y**)/(x - y);

This enables the value of the right-hand side of the
above to be represented by u and used in later

calculations.

REDUCE also has the capability of handling symbolic

matrices. For example,
matrix m{2,2);

declares m to be a 2 x 2 matrix, and
m := mat((a,b), (c,d));

gives 1its element values. Expressions which involve
matrix operations may now be evaluated. For example, 1/m
evaluates the inverse of a matrix m, det (m) calculates
the determinant of the matrix m and n**2*m**(-2) gives
another combined matrix, assuming that m and n have been

declared as matrices.

REDUCE has a wide range of substitution capabilities.
The system knows about elementary functions, but does
not automatically reckon their well-known
characteristics. However, REDUCE has an important class
of commands which allows substitutions for wvariables and
expressions to be defined during the evaluation of
expressions. Such substitutions use forms of the command
LET.

13



The LET rules will stay in effect until replaced or

CLEARed. For example, after assigning the expression

4 4
X -V

X -y
and thus obtain the numerical value of u by using the

to u, we can set the numerical values of X and y

command LET as follows:

let x =1, v = 2;

us
REDUCE will respond to give the result
15

But if we wish to assign the value to another wvariable

v, then we write as follows:

let x =1, yv = 2;

v o= uy;
REDUCE will then respond with
vV 1= 15

Another very useful command for the purpose of
substitution is the OPERATQOR command., The user may add
new prefix operators to the system by using the
declaration OPERATOR. For example,

operator p,q,taylor;

adds the prefix coperators p, g and tayler to the system.
This allows symbols such as pli(x,y), 4ga(x/yv,z),
taylor(x,n) to be used in expressions. By associating
LET statement with the operator declaration statement,
we can have a meaningful operator symbol or a definition
of some of its properties. For example, if we wish to
arbitrarily define the average of two numbers x and y,

we may declare the operator 'av' as follows:

operator av;

for all %,y let av(xX,y) = (x + y)/2;

14



Hence, if we have the command:
m := av(1l0,50);

REDUCE will give the average of 10 and 50 as
m := 30

Thus we may use this facility as a tool to simplify
complicated algebraic expressions. For example, we may
express the product of the cosine of two angles, say
cos(a) x cos(b), into the sum of two trigonometric values
as %[cos(awb) + 'cos(a+k)]. This can be done in REDUCE as

follows:

operator p;
for all a,b let p(a)*p(b) = (pla-b) + platb))/2;

This will result in any product of two trigonometric
cosines to be simplified into the sum of two related

trigonometric values.,

Note that we have used the FOR ALL declaration in the
above example; this may be used if a substitution for
all possible values of a given argument of an operator
is required. The LET command may also be used as an
asymptotic command. For example, in the expansions of
polynomials involving variables which are known to be
small, it 1is often desirable to curtail the expansions
after certain finite powers of these variables. Thus the
command

let x"8 = 0Q;

will cause the system to expand the polynomial up to and
including the seventh power of x only. However, this
substitution should be used with care because it 1is
applied only during polynomial manipulation rather than
to the whole evaluated expression. If several variables
are involved, it is necessary to supply an asymptotic
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weight to each variable and count up the total weight of
each product in an expanded expression before the
decision to keep the term or not is made.

There are also a number of reserved operators from the
three classes of operators, namely the infix, prefix and
mathematical operators supplied together with the
system. The user can add further rules for the reduction
of expressions inveolving the reserved mathematical
operators by using the LET command. New infix operators
may be added by the user by using the declarations INFIX
and PRECEDENCE.

We shall now describe another operator which is very
handy for the solution of simultaneous algebraic
equations. The SOLVE cperator allows one to solve one or

more simultaneocus algebraic equations. For example,

solve{log(sin(x+3))"5 = 8,x);
solve{a*log(sin(x+3))"5 = b, sin(x+3));

solve({a*x + yv = 3,y = -2, {x,¥}):

SOLVE returns a list of sclutions. If there is only one
unknown, each solution is an equation for the unknown.
If a complete solution was found, the unknown will
appear automatically on the 1left-hand side of the
equation. On the other hand, if the solve package could
not find a solution, the "solution" will be an equation
for the unknown. If there are several unknowns, each
solution will be a list of equations for the unknowns.
By turning the switch MULTIPLICITIES, a list of the
multiplicities of the solutions will be explicitly
displayed. There are also several options which can be
used with the SOLVE operator. By turning the switch
SOLVESINGULAR on ( the default setting), degenerate
systems may be solved by introducing appropriate
arbitrary constants. By switching OFF SOLVESINGULAR
suppresses the solutions of consistent singular

equations.
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A REDUCE program is composed from a set of functional
commands which are evaluated sequentially by the
computer. These commands are constructed from
declarations, statements and expressions which we have
just explained in the preceding paragraphs. We shall now
illustrate a simple REDUCE program of solving a system
of 1linear equations in four unknowns p,gq,r and s.

Suppose the eguations are given as follows:

3p + 2q - 4r +s = 5,

dp — 4g + r - 55 = 1,
p + 2q + 4r + 258 = 9,
8p + 6g + r + 95 = 12

The REDUCE program can be written as follows:

$Line begins with '%' is a comment statement;
$REDUCE program to solve system of equations;
solve{{3*p + 2*q - 4*r +s = 5,

4*p - 4*q + r — 5*%s = 1,
p t 2*q + 4*r + 2*s = 9,
8*p + 6*q + r + 9*s = 12}, {p,q9,r,s});

end;

In many applications, we may need to locad previously
prepared REDUCE files into the system, or write the
output onto other files. The commands IN and OUT in
REDUCE offer the facility for this purpose. The command
IN takes in a list of file names as argument and directs
the system to input each file into the system for
processing. For example, if the REDUCE program to solve
the system of four equations written above is kept in a
file named 'solve', then

l: in solve;

will lcad the file named ‘solve'. A file to be read

using IN must end with ';end;'.

17



If we are using the interactive mode, on the successful
processing of the program the results will automatically
be printed on the screen as follows:

%2Line begins with '%' is a comment statement;
%$REDUCE program to solve system of equations;
solve({3*p + 2*q - 4*r +s = 5,
4*p - 4*q + r - 5*s =1,
p + 2*q + 4*r + 2*s = 9,
B*p + 6*q + r + 9*s = 12}, {p,q9,r,s});

346 2929 361 - 296
{{Pp=~=—-- rQ= —————— ¢ R=————= P 1}
327 £54 327 109
end;

2:

To terminate the REDUCE session, we type after the
REDUCE prompt '2: ' the word 'bye'.

However, if we are using batch mode, where we need to
transfer the results of the REDUCE program to some other
file, we may use the command OQUT. For the same example
above, let the output file be named as ‘result'. To run
the program we execute the following commands in

sequence on entering the REDUCE session.

1: out result;
2: in solve;

3: bye;

Note that we need to inform the REDUCE system, first the
output £file where the results are to be directed to,
then followed by the relevant input file to the system,
The command OUT takes a single file name as argument,
and directs the output to the named file until another
OUT changes the output file, or SHUT closes it. Again we
end the REDUCE session by typing the word 'bye'. Thus
the results are c¢ontained in the file 'result'.
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Symbolic computation is practically useful especially in
the context of modelling and field problems. Brown and
Hearn[1978] have cited some of these reasons as follows:

(1) Sometimes it is prohibitively expensive, or even
impossible, to solve an essentially numerical problem by
purely numerical means because it involves too many
variables, demands a greater accuracy, or is presented
in an ill-conditioned or intractable form. However, a
symbolic transformation may reduce the dimensionality,
evade a large source of round-off error, finesse the
ill-conditioning, and otherwise change the probklem into
one that can be solved by standard numerical methods.
Transformations are a very general and natural way to
represent many kinds of information, particularly
mathematical relations Wolfram[1991].

(2) The algebraic result obtained from symbolic
computation may subsequently be evaluated using a

variety of parameter values.

(3) Symbolic computation lends an opportunity for
realizing the important computational symbiosis between
numerical experiments and symbolic theories,

(4) Symbolic computation can be used to generate a

needed numerical subroutine.

(5) Lastly, in the realm of partial differential
equations, Cloutman and Fullerton[l1977] have used
symbolic multidimensional Taylor series expansions,
computed by the Altran system, to analyse the
discretization and round-off errors of various methods,
to eliminate inaccurate and unstable methods prior to
coding and testing and to develop methods i whickHelowest
order errors cancel each other out. We shall utilize
this idea in the treatment of the geometric mean (GM)
methods for the ordinary differential equations
discussed in Chapters 4 and 5,
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2.3 FUNDAMENTALS OF NUMERICAL METHODS

The numerical solution of a differential equation on a
fixed number of grid points starts with finding how to
express the sclution on the discrete coordinate points
and how to approximate the differential and integral
operators in the discrete space. A finite number of
dependent variables may be represented by a vector.
Numerical approximations of the differential or integral
operators may be expressed by matrices. Thus, linear

"algebra is an important tool in numerical analysis. In

the section to follow we shall list some of the relevant
definitions and results associated with vectors and

matrices.

2.3.1 VECTOR AND MATRIX

One of the fundamental reasons for reformulating
problems as equivalent linear algebra problems is to
introduce some geometric insight. Vector and matrix
algebra offer comprehensive concepts to this process. In
the following paragraphs we shall list definitions and
results which are useful in this context.

Definition 2.3.1-1 : Let V be a vector space and let
VieVor o V,EV, We say that vy,vy,...,v, are linearly

dependent if there exists a set of scalars O;, %, ..., 0

with at least one nonzero scalar such that
m
Eaivi = 0. (2.3.1—1)
i=1

Without loss of generality, we assume @; # 0, so that

- l m
Vo= T OV, (2.3.1-1a)
Oﬂi j=1
j=i
We say that v; is a linear combination of the vectors

Vl, vz,---,vi_l,Vi_'_l,...'vm.

We say the vectors v,,...,v, are linearly independent if

they are not dependent. Therefore, the only choice of
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for (2.3.1-1) to be true is the

trivial case of a; = ...= 0, = 0.

scalars O;,...,d

The set {v,,...,Vv,} is a basis for V if for every vevV,

there exists unique scalars o, ...,0, such that
m
v o= 3 vy {(2.3.1-1b)

=1

Note that this implies v;,...,v, are independent.

Theorem 2.3.1-1 : If V is a vector space with basis
{vysr...,v,}, then every basis for V will contain exactly

m vectors. The number m is called the dimension of V.

An array of n numbers may be expressed either as a
column or row vector of order n. We shall define a

column vector representing a column-wise array of n

numbers by
X1
X2
X = ) (2.3.1-2)
Xn
and each x%;. for i =1,2,...,n, is called the component
of the vector x.
Definition 2.3.1-2 : The transpose of a vector x is

denoted by x* and represented by a vew-wise vector

X = [Xy, %y, 000 %], (2.3.1-3)

The null vector is represented by 0 which means that the

vector 0 has all its components zero.

Some basic operations and properties of vectors are as
follows:
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Definition 2.3.1-3 : The addition and subtraction of

two vectors x and y are defined as

X v,
X £y,
xTy-= ' . (2.3.1-4)
X, £ vy,
Definition 2.3.1-4 : The scalar multiplication of a

vector x by ¢ is defined by

CcX,
CX = XC = . (2.3.1-5)
cX,
Definition 2.3.1-5 : Two vectors, x and y, are said

to be equal if x; =y, for all i =1, 2,...,n.

Definition 2.3,1-6 : The inner (scalar) product of

two vectors, x and y, is written and defined as

n

(x,y) = x'y = y'x = PESS (2.3.1-6)

Definition 2.3.1-7 : Two vectors, =x and y, are
orthogonal if and only if the scalar product is zero,
that is,

(x,y) = 0. (2.3.1-7)

Definition 2.3.1-8 : The Euclidean norm of a vector =x

in " or R" is denoted and defined by

1/2
n 2 -
2] = (%) =[z|xiu . 2.3.1-8)
2 i=1
If {%;,...,%,} forms a basis for C" or R", and if (x;,%;)
= 0, for all 1 # j, 1 £ i,j € n, then we say {X;,...,%X,}
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is an orthogonal basis. If all basis vectors have
Euclidean norm 1, i.e. (x;,x%;) = 1, then the basis is

called orthonormal.

By introducing an orthonormal basis for a vector space
V, one can decompose an arbitrary vector into its
components in the direction of the basis vectors. Let
{u;,...,u,} be an orthonormal basis for V and let =xeV.
By using the basis, we may express the vector x in the

form
X = C(lul +...+ O'.nun

for some unique coefficients o,,...,%,. Now the
coefficient a4, for every 1 = j £ n, can be found by

forming the i1nner product of x and uy;

(,uy5) = 0y (uy,uy) +...+ O (u,uy) = Oy
since {u;,...,u,} is an orthonormal basis for V. Thus
) n
X = 3 (x,uj)uy. (2.3.1-8a)
j=1

The formula (2.3.1-8a) gives the decomposition of a
vector into its components in the direction of the basis

vectors.

A matrix A is a rectangular array of real or complex

numbers and defined by

all a12- . oaln
Q1 8z2-..8p
A=" (2.3.1-9)

ap Apoe » o Qpp

th h

where a;; is called the element in the i row and 3

j
column., We say the matrix in (2.3.1-9) to be of order mx

'n, Generally, we denote matrices by capital letters and
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their entries by small letters, usually corresponding to

the name of the matrix, as above. We may also use the
notation (a;y} to denote the matrix A. A column vector or

a row vector may be considered as special cases of
matrices. When n = m, the matrix is said to be a square
matrix. A matrix of order n is shorthand for a square

matrix of order n xn.

The following definitions give the common operations on

matrices,

DPefinition 2.3.1-9 : Let A be a matrix of order mxn.

The transpose of a real matrix A is denoted by A" and
defined by A’ = (aij)T = (ay). A" is now of order n xm.

Similarly, the conjugate transpose A" of a complex

matrix A alsoc has order nxm, and A" = (551), where Eji

denotes the complex conjugate of the complex number ajy;

for every i and j. If ay; = ay;, for every i and j, then

we have a real matrix A and vice-versa.

Definition 2.3.1-10 : The identity matrix I is
defined as the matrixwheire ¥he diagonal elements are 1 and

off-diagonal elements are 0.

For all matrices A of order mxn and B of order nxp, we

have

AI = A and IB = B.

Definition 2.3.1-11 : Suppose A is a square matrix of
order n. The inverse of a matrix A is denoted by A" and
defined by

ATA=DAA" = 1I. (2.3.1-10)

The inverse of a matrix, if it exists is unique.
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Pefiniticon - 2.3.1-12 : A matrix 1is a null matrix of
order mxn if all its entries are zero. We denocte a null
matrix by 0.

Definition 2.3.1-13 : A matrix A is symmetric if it
is eqgual to its transpose. Thus, A" = A or aj4 = ayy for

every i,3 = 1,2,...,n.

0Of necessity, all matrices which are symmetric must also

be square.

Definition 2.3.1-14 : A matrix A 1s said to be a

diagonal matrix if all the off-diagonal elements are
zero. That is ajy = 0 for every 1 # j.

Definition 2.3.1-15 : A matrix A is lower triangular
if a;; = 0 for every 1 > j and A is ‘strictly lower

triangular if a;; = 0 for every i 2 j.

Definition 2.3.1-16 : A matrix A is upper triangular
if a;4 = 0 for every i < j and A is strictly upper
triangular if a;y = 0 for every i = jJ.

Definition 2.3.1-17 : A matrix A 1is said to be
nonsingular if det(A) # 0, where det(A) denotes the
determinant of the matrix A. Thus it is clear that if A

. . -1 .
is nonsingular A = exists.

Definition 2.3.1-18 : The rank of a square matrix is

the maximum number of independent columns.

The rank of A is equal to that of AT; which means that
the number of independent columns of A is always
identical with the number of independent rows. If the
rank of A is equal to the order of A, then the
determinant of A is nonzero, det(A) # 0. If det{(a) = 0,
the rank of A 1s less than n and A is said to be

singular,
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Definition 2,3.1-19 : A is diagonally dominant if Iaiil

n
2 3 Iaijl, for 1=1,2,...,n and A 1s said to be
3=1,
JHL
strictly diagonally dominant if the strict ineqguality
n
holds for every i=1,2,...,n, that is, Iaiil >3 laijl .
I=t,
s
Definition 2.3.1~20 : A real matrix A is positive
definite if x'Ax > 0 for all x # 0. Thus the real matrix
A is positive definite if and only if it is symmetric
and all its eigenvalues are positive.

Definition 2.3.1-21 : Suppose A and B are two given
matrices, each of order mxn. Matrix addition and

subtraction are defined by
where C = '(cij) denotes the resultant matrix and is of

order mxn.

Thus for any matrix A of order mx n, combining
definitions (2.3.1-12) and (2.3.1-21), we have

A+ 0=0+2AaA-=RA,

Definition 2.3.1-22 : The scalar multiplication of a
matrix A of order mxn, by a scalar o glves another

matrix C defined by

C. = 0A = A = (Oﬂaij) = (cij) . ’ (2.3.1_12)

The order of C is alsoc mxn.
Definition 2.3.1-23 : Two matrices A and B of order m

xn are said to be equal only if a;y = byy for every i =

l,...,mand j =1,...,n.
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Definition 2.3.1-24 : Let A have order mxn and B
have order nxp. The product C = AB is of order mxp
defined by

C=24aB = (kglaikbkj) = {Cy4) . (2.3.1-13)

In general, AB # BA. However, if AB = BA then we say the
two matrices A and B commute.

The following arithmetic properties of matrices can be
easily shown to be true for any order, not necessarily
that they should be square.

(a) A+ B =B+ A (b (A +B) +C=A+ (B + C)
(¢} A(B + C) = AB + AC (dy A(BC) = (ABR)C
(¢) (A + B)T =Aa" + B? (£) (aB)® = B'A"
Definition 2.3.1-25 : Let A be a matrix of order mxn
and a vector x = [xl,...,xn}T. The product of a matrix A
and a vector x is a vector y = [yl,...,ym]T, defined by
n
v = Ax = (j;laijxj] = (yy). (2.3.1-14)

This definition enables one to write the linear system

allxl + ...+ alnxn = bl

(2.3.1-195)

amXy * ...+t anx, = b
in matrix form as Ax = b.

The following theorem summarizes the results on matrix

inverses and the solvability of linear systems.
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Theorem 2.3.1-2 : Let A be a square matrix i.whick the
elements may be real or complex numbers., Let the wvector
space V to be either R" or C", then the following are

equivalent statements.

(1) Ax
(2) Ax
(3) A" exists. .
(4) det(n) # 0.
{(5) Rank(A} = n.

b has a unique sc¢lution xeV for every beV.

I

0 implies x = 0,

Definition 2.3.1-26 : The number A, complex or real

is an eigenvalue of the square matrix A if there is a
vector, x # 0, such that

Ax = Ax. (2.3.1-16)

The wvector x 1s called an eigenvector corresponding to
the eigenvalue A.

From Theorem 2.3.1-2, statements (2) and (4), A 1is an
elgenvalue of A if and only if

det (A - AI) = 0. (2.3.1-17)

The relation (2.3.1-17) is called the characteristic
equation for A. If A is of order n, then fA(l) = det (A -

AI) is a polynomial of degree n exactly, called the

characteristic polynomial of A. Therefore we may write
£,(A} in the form

£,0) = (DA + (-1)"Nay +...+ a A"

+ (terms of degree £ n-2). (2.3.1-18)

. . -1 .
From the coefficient of A’ , we define

trace(A) = aj; + a3 +...+ @, (2.3.1-19)

which is often a quantity of interest in the study of A.
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Since fA(l) is of degree n, therefore in general, a nxn

matrix has at most, n distinct eigenvalues.

Definition 2.3.1-27 : Let A and B be square matrices
of the same order. Then A 1is similar to B if there

exists a nonsingular matrix P such that
-1
B =P AP, {(2.3.1-20)
Note that this is a symmetric relation since

a = olmo o =p". (2.3.1-20a)

The relation (2.3.1-20) can be interpreted as fecllows: A
and B are matrix representations of the same linear
transformation T frem V to V, but with respect to
different bases for V. The matrix P is known as the

change of basis matrix, which relates the two
representations of a vector xeV with respect to the two

bases used.

Some of the simple properties of similar matrices and

their eigenvalues are as follows:
(1) If A and B are similar, then f,(A) = fz(A).
This follows from the definitien (2.3.1-20) for

fa{A) = det (B =~ AI)
= det (P (A ~ AI)P)
= det (P )det (A -AI)det (P) = £, (A)

since
det (P) (P7) = det (PP ') = det(I) = 1.

(2) Similar matrices have exactly the same eigenvalues

and there 1is a one-to-one correspondence of the
eigenvectors. If Ax = Ax, then using (2.3.1-20),
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plarp'x = AP 'k

Rz = Az z =P x

Trivially, z # 0, otherwise x would have been zero.
Similarly, given any eigenvector z of B, this argument
can be reversed to obtain a corresponding eigenvector x
= Pz for A.

(3) We have £,(A) is invariant under similarity
transformations of A, therefore the coefficients of

fA(l) are also invariant wunder such similarity

transformations., In particular, if A and B are similar,
then

trace(A) = trace(B) det (a) = det(B). (2.3.1-21)

We now state some important results about the canonical
forms for matrices. These forms relate the structure of
a matrix to its eigenvalues and eigenvectors. They find
use in many applications in other areas of mathematics

and science.

Definition 2.3.1-28 : A sqguare matrix U is called

unitary if
* *
U0 =00 =1
where U is the conjugate transpose of U. If U is a real
matrix, it i1s wusually called orthogonal and u" is
replaced by the transpose of U. The rows (or columns) of
a unitary matrix of order n form an orthonormal basis

for C". Similarly for orthonormal matrices for R".

30



Theorem 2.3.1-3 (Schur normal form) : Let the
matrix be of order n with elements from C. Then there

exists a unitary matrix U such that

T = UAU (2.3.1-22)
is upper triangular. Since T is triangular, and U =U"%,
£(A) = £0(A) = (A = ty) .. (A - t,) (2.3.1-23)

and thus the eigenvalues of A are the diagonal elements
of T.

We note that by combining (2.3.1-21) and {(2.3.1-22}), we
obtain

trace(A) =

e
Ik
.

Al det (a) = ﬁlj (2.3.1-24)
j=1

where lj; 1 £ j £ n are the eigenvalues of A and they

form the diagonal elements of T.

The theorem 2.3.1-3 is more of a theoretical tocl,
rather than a computational one. Theorem 2.3.1-4 to
fellow has a more important application.

Theorem 2.3.1-4 (Principal axes thecrem) : Let A

be a Hermitian matrix of order n. That is A" = A. Then A
has real elgenvalues lj; 1 £ jJ £ n, not necessarily

distinct, and corresponding eigenvectors ug; 1 S Jsn,
which form an orthonormal basis for ¢". If A is also
real, the eigenvectors uy; 1 s 3 € n, can be considered
as real; and they form an orthonormal basis for R,

Finally there exists a unitary matrix U for which
U'AU = D = diaglAy, ..., A,] (2.3.1-25)

where D is a diagonal matrix with diagonal elements lj:

for 1 £ jJ £ n. For the case of a real matrix A, then U
is considered as orthegonal and the result of (2.3.1-25)
follows with U replaced by u”.
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For the completeness of the review on the canonical
forms of matrices, we state ancther canonical form which
is useful for problems in numerical linear algebra,
especially for solving overdetermined systems of linear
equations. Theorem 2.3.1-5 states this result.

Theorem 2.3.1-5 (Singular value decomposition)
Let A be order nxm, Then there exists unitary matrices

U and W, of orders m and n, respectively, such that
WaU = F (2.3.1-26)

is a diagonal rectangular matrix of order n xm,

My
L

F = ) 2.3.1-27
0, ( )

with £, = ;7 1 € 1 £ r. The real positive numbers M;; 1
€ 1 £ r are called the singular values of A and can be
arranged so that

2 My 2...2 10, > 0 (2.3.1-27a)

where r is the rank of the matrix A.

Finally, before we state the most important canonical

form called the Jordan cancnical form, we define the n X
n matrix J,(A) known as a Jordan block by
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A1l 0
A
J, (A = -. ._ n=21
1
0 A

Jn(l) has the single value eigenvalue A, of algebraic
multiplicity n and geometric multiplicity 1. The
algebraic multiplicity of an eigenvalue A of a matrix A
is its multiplicity as a root of the characteristic
polynomial f£,(A); while its geometric multiplicity is
the maximum number of linearly independent eigenvectors
associated with the eigenvalue. The algebraic and
geometric multiplicities of an eigenvalue need not be

equal.

Theorem 2.3.1-6 (Jordan canonical form) : Let A be
of order n, Then there exists a nonsingular matrix P
such that

T (A1)

P AP = . . (2.3.1-28)

J, (A)

The eigenvalues Ki; 1 £ 1 £ r, need not be distinct. For
A Hermitian, Theorem 2.3.1-4 implies that n; = 1; 1 £ i

€ r. Therefore, the sum of the geometric multiplicities
is n, the order of the matrix A.
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2.3.2 VECTOR AND MATRIX NORMS

The introduction of the concept ¢f the norm of a vector

allows one to measure the size of a vector.

Definition 2.3.2-1 : Let V be a vector space and let
“.“ be a real-valued function defined on V. Then "x"

is a norm if

1) "xu 20 for all xevV; and “x“==0 if and only 1if x=0,
2) "ax“ = |a| "x", for all xeV and all scalars o.

3y = + Y" < =l + ||y||, for all x,yeV.

Simple consequences of the definition of the norm are

the triangle inequality

Ix - ¢l < Ix -2l + Iz - ¢l (2.3.2-1)
and the reverse triangle inequality,

[ Il - Bylls lx - yl (2.3.2-2)

for all x,yevVv.

For 1 £ p € o and x€V, we define the p-norm by

n l/p
=] = (E |Xj|p) . (2.3.2-3)
P

‘:1

The maximum norm is defined by

Il = max lx,f (2.3.2-4)
had 1sj<n

for xevVv.

Note that the norm of x on C or R° is a continuous

function of the components of x.
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Theorem 2.3.2-1 (Equivalence of norms) : Let N and

M be two norms on a finite dimensional space V. Then,
for all xeV, there are constants ¢,,¢, > 0 such that

cM(x) € N(x) £ c,M(x). (2.3.2-5)

Note that this theorem does not generalize to infinite

dimensiconal spaces.

Many numerical methods for problems involving linear
systems result in a sequence of vectors {x;;1i 2 0}, and

the concept of convergence is of prime importance.

Definition 2,3.2-2 i A sequence of vectors

{®,,%,...4%;, ...} in V (real or complex) is said to

converge to a vector x if and only if

I« - x, |- 0 as m — o. (2.3.2-6)

By using Theorem 2.3.2-1 and Definition 2.3.2-2, we may
conclude that x, — x with the M norm if and only if it
converges with the N norm. We should emphasize that this

result is only true for the finite dimensional spaces.

We shall now extend Definition 2,3.2~1 to cope with the
matrix norm. As we have noted earlier in Section 2.3.1
that a vector is a special case of a matrix, thus a
matrix norm should satisfy the usual three requirements
of a vector norm listed in Definition 2.3.2-1. By using
the same notation of norm, we define the matrix norm as
follows:

Definition 2.3.2-3 : The matrix norm satisfies the
requirements 1,2 and 3 of Definition 2.3.2-1 in addition

to two other conditions set as follows:
2y lasll < lallsl (2.3.2-7)

5) Usually the vector space, V, which we shall be
working with will have some vector norm, say "x“v, for

35



all xeV. We require that the matrix and vector norms to

be compatible,

laxl, < Iall=l, (2.3.2-8)

for all xeV, and for all A.

Usually when given a vector space with a norm ||.HV, an

associated matrix norm is defined by

nAx"v
"A" = sup

T (2.3.2-9)
o el

It is often known as the operator norm. Table(2.3.2)
gives some of the most important operator norms "A"p of

a matrix A induced by the vector norms "x"p.

Definition 2.3.2-4 : The spectral radius of a matrix A
is denoted by p(A) and is defined by p(A) = max |l1|

where Ay, A,,...,A, are the eigenvalues of the matrix A,

The spectrum of A is the set of all eigenvalues of A.

Vector norm Matrix norm

n n
"3"1 = 3 |l IlAIll = max lajqi

i=1 1<i<n_i=1

A RE ~ \f__fr__
Ixl = |2 Ix lal, = Vpa'a
2 i=1

— n
=l = max x| lal_ = max ¥ layl

1<i€n  4=1

Table(2.3.2): Vector norms and the assoclated operator
matrix norms

The operator norm of the matrix A defined by “A"1 is

called the column norm, while that defined by ||A||°° is

called the row norm of A.
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Theorem 2.3,2-2 : Let A be any square matrix. Then for

an arbitrary matrix norm,
pa) < lal. (2.3.2-10)

Moreover, 1f &€ > 0 is given, then there exists an

operator matrix norm "'“e’ such that

lal, < p@) + e, (2.3.2-10a)

This theorem can be wused to analyse the rate of
convergence of some of the iteration ﬁethods considered
" in ¢hapter 3. As a consequence of Theorem 2.3.2-2, an
important corollary follows.

Corollary 2.3.2-1 : For a square matrix A, p(a) < 1 if

and only if "A“ < 1 for some operator matrix norm.

2.3.3 CONVERGENCE AND PERTURBATION THEQOREMS

The results to follow form the theoretical framework
from which we can construct error analysis for numerical
methods for linear systems of equations.

Theorem 2.3.3-1 : Let A be a square matrix of order n.
Then A" converges to the zero matrix as m — e if and
only if p(a) < 1,

Theorem 2.3.3-2 (Geometric series) : Let A be a
square matrix. If p(A) € 1, then (I - A) " exists which

can be expressed as a convergent series,
-1 2 m
(I - A) = I +A+A +...+ A +.., (2.3.3-1)

Conversely, if the series in {(2.3.3-1) is convergent,
then p(a) < 1.
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Theorem 2.3.3-3 : Let A be a sgquare matrix., If for
. . -1
some operator matrix norm, "A|| < 1, then (I - BAa)

exists and has the geometric series expansion (2.3.3-1).

Moreover,

lr - a7 < (2.3.3-2)

1
1 - [all’

We shall illustrate Theorem 2.3.3-3 by considering the
invertibility of the matrix

4 1 0 O© 0
1 4 1 0
0O 1 4 1
A=
1 4 1
_O R 0 1 4_
We rewrite A as
A = 4(I + B)
where
. —_
0 2 0 0 .. 0
1 1
4 0 4 0
0
R =
1
0 4
1

By taking the row norm of B, we obtain "B"°° = %. Thus by

Theorem 2.3.3-3, (I + B)_l exists and from (2.3.3-2),

I+ )7l <

w |
“
+
=

1
joi]
o
o,
e

1
A

N

Therefore 2-‘1-1 =
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By using the definition of row norm and inegquality
(2.3.2-10), we obtain

-1
p(A) €6 and p(A)silz—.
Since A is nonsingular, we can easily show that the

-1
eigenvalues of A are the reciprocal of those of A,

Furthermore since A is Hermitian, all eigenvalues of A
are real. Hence we have, for all Ae G(A), the bound

25 Al s 6
where O(A) is the set of all eigenvalues of A.
Theorem 2.3.3-4 ; Let A and B be square matrices 6f

the same order. Assume that A is nonsingular and suppose
that

la - Bl < —— (2.3.3-3)
la=* |
then B is also nonsingular,
i Ia™}
Iz < - (2.3.3-4)
1 - a7 la - sl
and
-1y 2
-1 -1 "Alu I]A - B"
Ia™ - 87" < : (2.3.3-5)

1 - a7 1a- sl

This theorem states that all sufficiently close

perturbations of a neonsingular matrix are nonsingular.
The proofs of the theorems quoted in this chapter may be

found in Atkinson[1978], and Isaacson and Keller([l1966]
or any other standard bhooks on linear algebra.
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CHAPTER 3
SURVEYS OF ODE AND PDE
SOLVERS

3.1 INTRODUCTION

This chapter consists of two gections. In the first
section we describe the ODE: solvers and in the second
section we outline the wvarious direct and iterative
methods of solving the elliptic PDE problems, which
form the basis of the work accounted in chapter 6.

3.2 ODE ' SOLVERS

The ODE." solvers described in this gection consist of
the standard basic single-step methods and the multistep
methods for the special problems y”” = f(x,y). These
methods will be modified to form the GM variations which

we shall describe in detail in c¢hapters 4 and 5.

3.2,1 BASIC DEFINITIONS AND THEOREMS

We shall first state the following fairly elementary
results which are important tools used throughout

numerical analysis.

Thecrem 3.2.l1l-1 (Mean Value Theorem) : Let f£(x) be
a continuous and differentiable function in [a,b]. Then
there exists at least one point (e [a,b] such that

£(b) - £(a) = £ (O (b - a). (3.2.1-1)

Theorem 3.2.1-2 (Taylor‘'s Theorem) : Let £f(x) have

n + 1 continuous derivatives on [a,b] for scme n 2 0,
and let x, xy€[a,b]. Then

£(x) = P.(x) + Ry, (%) (3.2.1-2)

where



I
P (x) = 3 {—; £ (x4) } (3.2.1-3)
i=0 :
1 x no(n+l)
Ry (x) = 7 (x - t) £ (t)dt
*0
(X _ xo)m-l oy
¥ = __TH:ITT__ f (£) (3.2.1-4)
for some { between x, and x; 0! =1 and fw)(xd = £{xp}.

The Taylor series of a function f(x) can be calculated
directly from the definition 3.2.1-3 with as many terms
included as desired. However, due to the complexity of
the differentiation of some functions, they are often
obtained indirectly,

The Taylor's Theorem 3.2.1-2 may be extended to several
dimensions., We shall now state the Taylor's Theorem for

functions of two variables.

Theorem 3.2.1-3 (Taylor's Theorem of two
dimensions) : Let f(x,y) be a given function of two
independent variables x and y. Let L(xy,¥Yes%X;,Y;) denote
the set of all points (x,y) on the straight line segment
joining (x4,ve) and (x;,y;). Let (xq, ¥y} and (x4, yotn) be
two given points and assume that £(x,y) is n + 1 times

continuously differentiable for all (x,y) in some
neighbourhood of L(xy,vei Xo+l,ve+tN) . Then

o1 .9 993
£ (xg+, votN) = £(xq,Yo) +:Ei {ET' [C5; + ng;] f(x,y) |x_ }

_xo
Y=Yp
1 a a n+l
b —— [t= + =] fxy) ]
et Lt Moyl Lo

for some 0 £ 0 < 1. The point (%9+6C, yo+01) 1is an
arbitrary point on the line L{xg,vo: Xot{,yotm) .
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Consider the initial value problem for a single~first
order QDE

v o=, y) vk = v (3.2.1-5)

Let xe [a,b] be an arbitrary point where a and b are

finite. We assume that the exact solution of (3.2.1-5)
exists and is unique in the closed interval [a,b].
Consider the sequence of points defined by x,=a + nh;
for n = 0,1,2,.... The parameter h is assumed to be
constant and 1is called the steplength, stepwidth,

stepsize or simply the step of the method. We seek an
approximate solution denoted by y, on the discrete set

of points {x,; n=0,1,..., (b-a)/h}. Let £, = £(x,,vy,)}, be
the corresponding value of f at the discrete point
{(x,,¥,). A computational method for determining the
sequence of approximate solutions {y,} is called a

linear multistep method of stepnumber k or a linear k-
step method if the relationship between y,.4 and £y, for

j = 0,1,...,k is linear. In a multistep method, the
computation of y,,, reguires the explicit knowledge of

some or all of the values of y., ¥n-1r::-+ Yns1-x- 1IN

addition, multistep methods require a specilal starting
procedure and a special computation may also be required

at peoints where there is a change in stepsize. In
contrast, in a single-step method, the value of y,,; can

be found if only y, is known; . knowledge of any of

the values of y..;r ¥Yq4-2¢, ... 15 not required. On the other

hand, in single-step methods, every lattice point may be
considered as a new starting point, since the starting

point does not play any special role.

In the following subsections we shall survey some
relevant basic theories of both the single-step and
multistep methods which are essential for the discussion
in ¢hapters 4 and 5 where the new GM methods are
formulated. All the basic work is quoted without proofs,

which may be found in - standard texts such as
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Henrici[1962], Isaacson and Keller([1966], Dahlgquist,
Bjorck and Anderson[1974] and Butcher[1987].

Theorem 3.2.1-4 states the condition on f(x,y) which
guarantee the existence of a unique solution of the
initial wvalue problem (3.2.1-5). The proof may be found
in Henrici[1962] which we omit.

Theorem 3.2.1-4 : Let f(x,y) be defined and continuous
for all points (x,y) in the region R, = {(x,y); a £ x <D,

-0 <y <o}, where a and b are finite. Let there exist a
constant L. such that, for every x, y, y such that (x,y)

and (x,y") are both in R,,
| £x,v) - £(x,¥") | < L. y -y, (3.2.1-6)

Let 1 be any given number, Then, there exists a unique

solution y(x) of the initial wvalue problem (3.2,1-5)

such that y(x) is continuous and differentiable for all
(%x,¥) in R;.

The condition (3.2.1-6) is known as a Lipschitz
condition and L. is called the Lipschitz constant. Note

that in particular, if f(x,y) is continuously
differentiable with respect to y for all (x,y) in Ry,

then by the mean value theorem
* Jof — *
F(x,y) - F(x,y ) = g(x,y) (y ~y),

where ¥ is an interior point of the interval with end-
points - y and y, and (x,y) and (x,y’) are both in R,.

Thus by choosing

at
L = sup 3y (Xr¥) (3.2.1-7)
(X, yJER)

the condition (3.2.1-6) is guaranteed.
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In cases where we have a system of m simultaneous first
order equations in m dependent variables z;, Z,,...,2,
and assuming that each of these wvariables satisfies a
given condition at the same initial point a, then we
have an initial value problem for a first-order system,
which may be written as

2z = £(x,2),
(3.2.1-8)

z(a) =1,

where the respective vectors z, £ and 1 are as follows:

zZ = [zl,zz,...,zm]T,
£ = [f,,£,, ..., 517, (3.2.1-9)
)
n = [nlrnzr---fnm] . :
If the z;- i=1,2,...,m satisfy the conditions at
different points a,b,c¢,... of x, then we have a multi-

point boundary-value problem; if there are only two
different points of x, then we have a two-point boundary-
value problem.

Theorem 3.2.1-4 may then have to be generalized to cater

for the necessary conditions of the unique existence of
the solution of (3.2.1-8). Thus the region R, reads as

R, ={(x,2}); asxsb,~0<z;<e;i=1,2,...,m}, (3.2.1-10)
and the condition (3.2.1-6) becomes

l£(x,2) - £, 20 < lz - 2", (3.2.1-11)

where (x,z) and (x,z*) are interior points of R; and ﬂ.ll

denotes a vector norm. In the case when each of the
functions f,;(x,z,,2,,...,2,)7 1=1,2,...,m is continuously

differentiable with respect to each of the z; 1=

1,2,...,m then we may choose
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of
L, = sup lla—ll, (3.2.1-12)
(x,Z)€R, z ‘

£
where — is known as the Jaccobian of £ with respect to =z

oz
and
of %< ) 3
— XyZygeonrZ {(3.2.1-13)
oz azj i m X m
is ‘an mxm matrix. The norm I.} in (3.2.1-12) is the

subordinate matrix neorm to the vector norm used  in
(3.2,1-11) {(see Mitchell[1969]}.

3.2.2 SINGLE-STEP AND RK METHODS

Single-step methods for sclving (3.2.1-5}) require only a
knowledge of the numerical soclution y, and the initial

value y, in order to compute the next value y,,;. The
best known single-step methods are the RK methods while

the simplest single-step method is based on using the

Taylor series.

Let y(x) be the solution of (3.2.1-5) and be r + 1 times
continuously differentiable. By expanding y(x,+h) about

Xo using Taylor expansion, we obtain

h].’
¥ (Xpth) = yv(xg) + hym (xg) + ... + ;_-"1_ y(r) {xq)
hr+1
t T Y, (3.2.2-1)

for some x4 £ { € x4, + h.

The Taylor series method is cbtained by neglecting the

remainder term in (3.2.2-1). Thus an approximation for
¥y (xoth) may be obtained provided we can calculate
v (x4}, .. .,v" (%) . This can be done by differentiating

(1)

Y (x) = £(x,v(x)) to obtain y(z'

(x) = £, (x,y(x)) +
f(x,y(x))f,(x,¥y(x)) and higher order derivatives of

y(x). However, in most cases we avoid the
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differentiation of £f£(x,y). Therefore we turn to the RK
methods which are closely related to the Taylor series
expansion of y(x) in {(3.2.2-1), but do not involve the
differentiation of £(x,vy).

We shall write the general RK methods in the form
Ynsr = Yo + DQ(x,,y,,hi f) (3.2.2-2)

for n 2 0. In the case of ®(x,y,h;f) = f£f(x,y), we obtain

a method of the form

v
[

yn+1 = YH + hf(xnf Yn); n (3.2.2_3)

which is called the Euler method.

We assume the arithmetic to be exact and neglect
rounding errors, because they are often negligible. With

these hypotheses we define the following quantity.

Definition 3.2.2-1 : The local truncation error, T,,;
for (3.2.2-2) at x,,, is defined by

They = Y%y} = v(x,) - hd(x ,y(x,),h;£), (3.2.2-4)
for n 2 0.

The local truncation error, T,,; measures how well the

exact solution fits the formula (3.2.2-2).
Now define T,,, such that
Thoe1 = hToeq. (3.2.2-5)

Therefore by combining (3.2.2-4) and (3.2.2-5), we
obtain '

y(‘}‘:n+1) = y(xn) + hq)(xnfy(xn)lh;f) + h1n+lf (3.2.2_6)

for n 2 0.
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Now, in order to obtain convergence of (3.2.2-2), we
need to have T,,;, 20 as h —> 0. Since

vi{xa) - yix,)
Toep = t n - O(x,,y(x,),h;f),

therefore we require that
D(x,y(x),h;f) = £(x,y(x)) as h — 0.
By defining,

Shy = max | E(y) - ®(x,y,h;6) |
x€ [a,b]
YE(=00,09)
and assume that &(h) — 0 as h —= 0, we have the

consistency condition for (3.2.2-2) defined as follows:

Definition 3.2.2~-2 : A single-step method (3.2.2-2) is

said to be consistent with the differential equation y(”

= f(x,y(x)) if

lim 8(h) = 0. (3.2.2-7)
h=-0

For practical purposes the total error between the
computed approximation and the exact solution, after
several integration steps, 1is of interest. Hence we

define the following quantity.

Definition 3.2.2-3 : The global truncation error g, at

%x. 1s defined as

n
gn = Y (X)) = y,. (3.2,2-8)

In order to be able to estimate the global error g¢g,, we
assume that the function @ (x,y,h:f) satisfies a

Lipschitz condition, with respect to the dependent
variable y, for all x,€ [a,b], ye€ (-=,») and sufficiently

small h > 0,
| ®(x,y,0i8) - Oix,z,0:0) | < ly - 2] (3.2.2-9)

where 0 < L. < oo,
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From the definition of the local truncation error
(3.2.2-1), it follows that

y(x,,q) = y(x;) + hD(x,,y(x,),h;f) + Tp,;. (3.2.2-10)
Now subtract (3.2.2-2) from (3.2.2-10), we cbtain

9ps1 = g, + h{D(x,,y(x) hif) = Pix,,y,,h;f)) + T,y

By assumption (3.2.2-9), we obtain the following
estimate

| 9art| < 1 9n| +n]|®ix,, y(x,),hif) = D(x,, vy, h:E) | + | Tasa |

< lon! + hr |YG) = vo| + | Tan |

(1 + hi ] 9] + | Tana ], (3.2.2-11)

If we assume that the absolute wvalue of the local

truncation error is bounded, say,

max |Ta| < D, (3.2.2-12)
n

then the absoclute value of the global truncation error
g, for n = 0,1,2,..., satisfies the inequality

lgnil < 12 + n1 ) [ 9a] + D, (3.2.2-13)

By repeated application of (3.2.2-13), we can show that

(1 + hL )" - 1 A
D+ (1 +ht)"19%]|. (3.2.2-14)
hL, c

|ga] <

Furthermore, £from the fact that the function e’ is
convex, so that the tangent at t = 0 is below the curve
and 1 + t < &' for all real values of t, then it follows
that

hL

(1 + hLy) < eMe and (1 + hiy)" < &™F

c. (3.2.2-15)
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From (3.2.2-14) and (3.2.2-15), we deduce the following
results.

Lemma 3.2.2-1 : If the global error satisfies (3.2.2-
13}, then

nhlL

1+hL )" - 1
| 9, | < 220L) D+(1+hL.) ™ | 9o | s 2

nhlL
hL, hL, e-1) +e"Me | 9o | .

(e
(3.2.2-186)

Consequently, from Lemma 3.2.2-1 and since the global
truncation error satisfies gy = y(%y) - yo = 0, we deduce

the following theorem.

Theorem 3.2.2-1 : The global truncation error g,, at
the fixed abscissa x, = x; + nh is bounded by

nhL, _ ¢ -P_ _nhL ‘ _
hL, (e 1) = nL, © . (3.2.2-17)

N

Prom (3.2.2-17), we note that there are two decilisive

quantities to be considered; namely the Lipschitz
constant L., of the function ®(x,y,h;f) and the local

truncation error T,,,, in the qualitative judgement of a
single-step method. Thus, if we assume that the function .
f(%x,y) and the solution y(x) are sufficiently many times
continuously differentiable, the local truncation error

may be determined by means of Taylor series.

We further note that if the condition (3.2.2-7) is also

satisfied in Theorem 3.2.2-1, then the numerical
solution {y,} converges to y(x). For proof of Theorem

{3.2.2-1), see Atkinson[1978], pg.374.
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Definition 3.2.2-4 : Let E_ (f) be an exact error
formula, and let En(f) be an estimate of it. We say that

En(f) is an asymptotic error estimate for E (f) if

. Eg(f)
3% £ 5 T 1

or equivalently,

. E (f) - E (f)
a3n E_(£) =0

Next, we define a special notation which we shall be
using very frequently in the discussion throughout the
thesis,

Definition 3.2.2-5 : Suppose B(x,h) 1is a function
defined for x€[x,,b] and for all sufficiently small h,

then the notation
B(x,h) = O(n")

for some p > 0 means that there is a constant ¢ such
that

| B(x,h) | < cnP

for all xe€ [%4,b] and for all sufficiently small h. If B

depends on h only, the same kind of bound is implied.

Definition 3.2.2-6 : The method (3.2.2-2) is said to

have order p if p is the largest integer for which
y(x+h) - y(x) - h®(x,y(x),h;f) = O(hp+1) holds, where

y{x) 1s the exact sclution of the initialevalue problem
{(3.2.1-5).

Now as a consequence o©of Theorem 3.2.2-1, we have the
following result.

Corollary 3.2.2-1 : If the single-step method (3.2.2-

2) has a local truncation error T, ,, = O(hpu), then the

rate of convergence of {y,} to y(x,) is O(h").

50



The asymptotic error formula for (3.2.2-2) may be
derived by assuming that

T, = Wix,)h™ + o(h®?) (3.2.2-18)

with Y(x) determined by y(x) and £(x,y{(x)}.

In thapter 4, we shall define a new RK method using the
modified form of (3.2.2-2) where D (x,,y,, h;f) 1is

nonlinear which we shall call the RK-GM methods. This
work was first studied by Sanugi[l1986]. We shall then
extend this and show that the classical RK methods as
well as those of Sanugi[1986] are special cases of these

neonlinear forms.,

3.2.3 STABILITY ANALYSIS FOR EXPLICIT RK
METHODS

The first analysis of instability phenomena and stepsize
restrictions for hyperbolic equations was reported by
Courant, Friedrichs and Lewy 1in 1928. It was later
followed by many authors independently, notably Guillou
and Lago in 1961.

a) EULER METHOD
Suppose ¢(x} is a smooth function of y”’ = f(x,y). Now

linearize f in its neighbourhcod as follows:

y M) = £05,000)) + £,(x,0(0)) [y(x) - (x)] + ... (3.2.3-1)

By rearranging the terms, we have

vy - £ 000) = £,00,000) [vix) - 9(x)] + ... (3.2.3-2)

By letting ¥V(x) = y(x) - ¢{(x), (3.2.3-2) becomes
—{1) _ —
Y O(x) = £,(x,0(x))¥(x) +

= J(X)V(x) + ... . (3.2.3-3)
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By neglecting the error terms, we may obtain as a first
approximation by treating the Jacobian J(x)} as constant

and arrive at a general representation given as
y* = gy. (3.2.3-4)
Now applying Euler method to (3.2.3-4), we obtain

Vo1 = R(hJ)y, (3.2.3-5)

with
R{z) = 1 4+ z. {(3.2.3-6)

The = plot of (3.2.3-6) is a circle of radius 1 and
centre (-1,0).

b) EXPLICIT RK METHODS
Following the notation of Hairer et alf[l987], we
. redefine the RK method (3.2.2-2) as follows:

Let k;, be such that
Kie = £edVigree s Vg (3.2.3-7)

for 1 = 1,...,8. Then the RK method is defined by

s
Yne1e = Yoo t hjE{bjftwjl,...,vjm)} (3.2.3-8)
=}
with
i-1
Vie = ¥Ypr + B2 {aijft (Vy1r s --erm)} {3.2.3-9)
i=1
for i = 1,2,...,8.

On applying the RK method (3.2.3-8) to (3.2.3-4), we

have
L]
vy =y, + hIX a;yvy (3.2.3-10)
=1
and
5
Yne1 = ¥y + hJT ¥ byvy. (3.2.3-11)
j=1
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On combining (3.2.3-11) and (3.2.3-10), we cbtain

Yas1 = R(hJ) y, (3.2.3-12)
where

R{(z) =1 + 23 by + 2’y bjage + z ¥ {bjasa,}l  (3.2.3-13)
) 3ok ik, 1

is a polynomial of degree < s with z = hJd. Thus we have
the following definition.

Definition 3.2.3-1 : The polynomial function R(z) of
(3.2.3-13) 1is called the stability function of the
method (3.2.2-2). The set

s = {zec ; |rR(z)]| < 1} - (3.2.3-14)

is called the stability region of the metheod (3.2.2-2).

The stability function R(z) may be interpreted as the
numerical solution after one step of the Dalquist test

equation,

(1)

vy =AY, Yo =1, =z = hA. (3.2.3-15)

The theorem below relates the stability region and the
order of the RK method.

Thecrem 3.2.3-1 : If the RK method is of order p, then
+ 0z, (3.2.3-16)

P
R{z} = %

Its proof follows directly by considering the difference
between the exact and numerical solution of (3.2.3-15).

The stability regions of the explicit RK methods with s

= 1,2,3,4 are plotted in Figure(4.3.4b) where they are
compared with those of the RK-GM methods.
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3.2.4 LINEAR MULTISTEP METHODS FOR THE
SPECIAL CLASS OF ODE ' PROBLEMS

In this section and in chapter 5, we shall be
concentrating on the study of the methods for problems
of the type

v = f(x,y), (3.2.4-1)

that is, no derivatives appear in the right-hand side of
the differential equation. Equations of the form y™ =
f(x,v); for any integer n 2 2 belong to a specilal class
of differential equations. Such equations or systems of
such equations occur frequently, for example, in
mechanical problems without dissipation. Although we can
reformulate (3.2.4-1) into a system of first-order
equations; ~ :: 1t may seem unnatural to introduce the
first derivatives when their values are irrelevant to
the problem. In fact, astronomers have for more than a
century been integrating such problems using methods

which work without first derivatives.

3.2.5 GENERAL OPERATORS FOR SPECIAL SECOND-
ORDER EQUATIONS

Consider a linear k-step method of the form
k , k
> Os¥n,y = h™F Byf .y, k 22 (3.2.5-1)
3=0 3=0

where o, # 0, and ¢, and B, do not vanish simultaneously.
Without loss of generality, we may assume that o, = 1.
If B, = 0, then (3.2.5-1) is called an explicit k-step
method, otherwise it 1is known as an implicit k-step
method. The direct application of (3.2.5-1) to problems

of the form (3.2.4-1) finds theoretical evidence 1in
Ash[1969].

Now associlated to the linear multistep method (3.2.5-1),
we define the linear difference operator L as follows:
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@) (x+3h) ], (3.2.5-2)

k
; 2

Liy(x);h] = % [oyy(x+ih) - h'Byy

$=0
where y(x) is an arbitrary and continuously
differentiable function on an interval [a,b]. Assume
that y(x) has sufficiently many higher derivatives. Then
by Taylor expansion about x, we have

e,y + .., (3.2.5-3)
0

Liy{x):;h] =

q
1=

where the coefficients C;; 1 = 0,1,... are constants and

independent of the stepsize h and the function y(x). By
simple manipulation, we obtain these coefficients as

listed below.

X

;X K
C, =57 X i'oy - izoﬁir

i=1
s (3.2.5-4)
1 X .« 1 X a2
Cq = o 1)511 % T g Ell B
for g = 3,4,... . 4
Definition 3.2.5-1 : The difference operator (3.2.5-

2) and the associated multistep method (3.2.5-1) are
said to be of order p if, in (3.2.5-3); C, = 0, for g =

0,1,...,pt+l; and Cosz = 0.

q

From the definition above, it 1is clear that only the

first of the nonvanishing coefficients in the expression
(3.2.5-3), namely C,,,, has any "~ significance.

Thus we define C,,, as the error constant.

Definition 3.2.5-2 : The local truncation error T, ,,
at x,,, of the method (3.2.5-1) is defined as the
expression L[y(x,);h] given by (3.2.5-2), when y(x) is
the exact solution of the problem (3.2.4-1). |
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Consider the application of (3.2.5-1) to yield yp4 under

the assumption that no previocus truncation errors have
been made. In particular, assume that y,,; = y{(X,3) J =

O’l,-.-pk-l. FrOm (3.2.5_2)' we Obtain

(2)

13 k
> ayy(x,+3h) =h®3 By ¥ (x,+3h) + Lly(x,) :h]
j=0 5=0

k
= 13 Byt (x,+J0, ¥ (,#3h)) + LIY(x,) 7h), (3.2.5-5)
2

since in this context, y(x} is assumed to be the exact
solution of (3.2.4-1). The value of y,, given by (3.2.5-

1) satisfies

=~

) _
 Os¥ ey = hz‘zoﬁjf(xm,ymj). (3.2.5-6)
i=

1

b

Subtract (3.2.5-6) from (3.2.5-5) and use the assumption
stated above, to obtain

Y (Xnix) = Yaux
= thk[f(xnﬂ("y(xxwk)) = E{Xpigr Vo) 1 + Lly(x,)in].
By the mean value theorem,

OF (%00 Mpaxc)
f(xn+krY(Xn+k)) - f(Xl'H'k’YnH() = [y(xn+k) - yn+k] 5’; +k

where 1M_,, 1is an interior point of the interval u.itw

end-points Yasx and y(x,,.}. Therefore, we obtain

af (xn+kr nn+k)
dy

Torx = [1 - thk ] [Y(xn+k) - Yn+k} . {(3.2.5-7)

Hence the local truncation error of an explicit method
is the difference between the exact solution and the
numerical solution generated by the method under the
assumption stated. On the other hand, for an implicit
method, the local truncation error is approximately
proporticnal to the difference between the two solutions

mentioned. Next, if we make a further assumption that
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the exact solution y(x) has continuous derivatives of
sufficiently high order, then, both the explicit and the
implicit methods satisfy the following result,

Y (Xpskd = Yok = Corh™ v ™ (x) + 0(0®), (3.2.5-8)

where p 1s the order of the method. The term

Cor2h®?y ™' (x,) is the principal local truncation error

at the point x,.

We note that the results (3.2.5-7) and (3.2.5-8) are
true only under the assumption that no previous
truncation errors have been made, which c¢could be
unrealistic. Thus if we make no such assumption, then
the error g,,x = ¥Y{X,,x) = V¥Yn+x 18 the global or
accumulated truncation error. This error involves all
the truncation errors made at each application of the
method. It is this error which should tend to zero as h
— 0, n 5 = for nh = x - a remains fixed as a criterion

n

for convergence.

The coefficients C;; 1 = 0,1,2,... defined in (3.2.5-4)
can be used to derive a linear multistep method of any
structure and order. For a given k, the parameters o

and PB; can be determined such that the order is optimal.

By doing so we prescribe the conditiens for the desired
structure of the multistep method.

3.2.6 BASIC PROPERTIES OF LINEAR MULTISTEP
METHODS

An important basic property of a linear multistep method
to be of any value is that the sequence of solutions

{v,} generated by the method converges to the exact

solution y(x) as the stepsize h tends to zero. Thus we
have the following definition o©f <convergence
(Lambert [1973]).
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Definition 3.2.6-1 : The linear multistep method
(3.2.5-1) is said to be convergent if, for all initial
value problems (3.2.4-1}) subject to the hypothesis of
Theorem 3.2.1-4, we have that

lim y, = y(x,) (3.2.6-1)
h—0
nh=x-a

holds for all xe[a,b}, and for all solutions {y,} of the

difference eguation (3.2.5-1) satisfying starting

conditions Yp = My (h) for which linlnu(h) = 1N and
h—0
My (h) = Ng(h) ~
lim n = 7N; for p=20,1,2,...,k-1.
h—0
Definition 3.2.6-2 : The linear multistep metheod

(3.2.5-1) 1is said to be consistent if it has order p=2 1.

From {(3.2.5-4) it follows that the method (3.2.5-1) is

consistent if and only if

K X

Yo =0; Yio = 0;
i=0 i=1

{(3.2.6-2)
10k, k
o7 iy = 3B
i=1 i=0
Let

lim y, = y(x)

h—0

n—woe

nh=x-a

and for 1 = 0,1,...,k,

Write for 1 = 0,1,...,k,
y(x) = yn.q + 04,(h);
where

lim Gin(h) = 0.
n—xe
h—0
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Hence

K K X
T oy(x) = X Oyyng + X 030, (h),
=0 =0 i=0

k k k
v(x) T oy =’ F Byf,y + 3 oy, (h), (3.2.6-3)
i=0 i=0 1=0

by using (3.2.5-1).

Now &as h = 0 and n =y, both terms on the right-hand

side of (3.2.6-3) wvanish, whereas the left-hand side

term is unaffected. Therefore it must be zero. Since
k

y(x)}) is in general not =zero, therefore % o; must be
1=0

zero, which is the first condition of (3.2.6-2). We can
easily show that the second condition of (3.2.6-2)
follows directly from the situation of the problem that
the right-hand side of (3.2.4-1) is independent of the

first derivative.

Next, under the limiting conditions of h - 0 and n —

we have for i = 1,2,...,k,

1im Yn+t -2y, t ¥oo4 = y(Z)(x);

neo ()7

or

Yo =2¥n * Yaoi = (1) %y (x) + (ih) %k (h);

where lim K; (h) = 0.
n—oo
h->0

Hence

X K X
2 0iYoe — 2Y, 2 O + X 0y
i £=0 1=

i=0

X X
= h’y®(x) 3 1%a; + n® Tioyx,, (h).
1=0 i=0

k
Since Y o, = 0, we have on dividing by 2h2,

i=0
k k

k
1 1 . 2 1 , 2
2 S Pt 2 i=o 2 i
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But lim f_ ,, = £(x,y(x)) and 1lim K;,(h) = 0.
h—0 h—0
n-—yoo n—oo

Hence we obtain

£ _ @ E- Y
£y () BB = v (x) 57 B ity (3.2.6-4)
i=0 ' i=0

Therefore vy (x) satisfies the differential eqgquation

k k
(3.2.4~1) if and only if ¥ B, = 2% 3 i’a,. Thus we have

i=0 i=1
shown that a convergent linear multistep method is
necessarily consistent. However, consistency alone is
not sufficient for convergence (Lambert{1973]). By

defining the first and second characteristic polynomials
k i k i
P& = T ol o) = X Bl
=0 =0

we can easily verify that method(3.2.5-1) is consistent
if and only if

p(1y = pP iy =0, pP1) = 20(1).

We should note that for a consistent method to be
meaningful, k 2 2. The polynomial p(f) associated with
the consistent method has a double root at 1; which is
called the principal root while the other roots are
spurious. Thus we have zero-stability defined as
follows:

Definition 3.2.6-3 : The linear multistep method
(3.2.5-1) is said to be zero-stable if no root of the
first characteristic polynomial p({) has modulus greater
than one, and 1f every root of modulus one has
multiplicity not greater than two.

We now state the theorem which gives the necessary and

sufficient conditions for convergence of method (3.2.5-
1.
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Theorem 3.2.6-1 : The necessary and sufficient
conditions for a linear multistep method to be

convergent are that it be consistent and zero-stable.

Another important theorem which limits the order of a
zero-stable linear k-step method depending on whether k

is odd or even is stated as follows:

Theorem 3.2.6-2 : No =zero-stable linear multistep
method of stepnumber kx can have order exceeding k + 1
when k 1s odd, or exceeding k + 2 when k is even.

The proofs of Theorem 3.2.6-1 and Thecorem 3.2.6-2 are

given in Henrici[1962].

Definition 3.2.6-4 : A zero-stable linear k-step
method which has order k + 2 1is called an optimal
method.

Thus from the results above, we can conclude that a

necessary condition for optimality is that k be even and
that all the roots of p({) have modulus unity:

3.2.7 STORMER-COWELIL METHODS

In the pre computer-oriented methods, the right-hand
side of a linear multistep method is written in terms of
a power series 1in a difference operator. A typical

example is

1
Yn+1 — ¥a = h(1 - lyv-Sv-L1v_ e )£ (3.2.7-1)

By truncating the series (3.2.7-1), we can obtain the
following methods

1
Ynt1 — ¥n T Eh(frnl + fn)l

and
1
Yotr T ¥Yn T 7, h(5f,,, + 8f, - £,;).
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The existence of formulae similar to (3.2.7-1) has
resulted in family names assoclated to classes of linear
multistep methods, of different stepnumber,m whiththefirst
characteristic polynomial p({) is common. Thus the
methods of the form (3.2.4-1), which equate y ,, — 2y, t+
¥, to power series and ‘wdh. first characteristic
polynomial p({) = ¢ - 285 + % are often known as
Stormer—-Cowell methods. The most well known such method
is the optimal two-step method of Numerov given as

2
h
yn+2 - 2yn+1 + yn = 1_2 (fn+2 + 10fn+1 + fn) . (3.2.7—2)

In chapter 5 we shall modify (3.2.7-2) to obtain its GM

version.

3.2.8 BOUNDS FOR THE LOCAL AND GLOBAL
TRUNCATION ERRORS OF METHODS (3.2.5-1)
Let

| (p+1)|
Y = max (3.2.8-1)
x€la,b]
and
G = |Co2l, (3.2.8-2)

where C,,, is the error constant of (3.2.5-1).

A bound for the global error when (3.2.5-1) is applied
to (3.2.4-1} is given in Henrici[1962] page 314. This
bound reflects the different influences of starting
error, local truncation error and local round-off error.
However, 1f the local truncation error is bounded by
GYhP'?, then the global truncation error is
proportionately bounded by GYh® (Lambert[1973]).

3.2.9 ABSOLUTE.AND RELATIVE STABILITY OF
LINEAR MULTISTEP METHODS

The theory of weak stability attempts to provide a
criterion, involving h, for the global error to be

damped out as the computation progresses. Thus it
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enables one to choose h small enough for the criterion

to be fulfilled while the local truncation error is kept
of

acceptably small. By assuming that 3y = A constant, and

the 1local error equals ¢c, a constant, then the

linearized error equation is given by
£ 2 ~
T (o - hABy) &,y = b, (3.2.9-1)
i=0

where &, = y({x,) - ¥,, for {¥,} is the sequence of

solutions of (3.2.5-1) where the round-off error has
been included. The general soclution (see Lambert[1973],
pagex§) of (3.2.9-1) is

k

~n dsrrs1 - ¢c/ (hzxi Bi) '

s=1 i=0

@
[

where d, are arbitrary constants and r; are the roots ,

assumed constant, of the stability polynomial
n(r,h) = p{x) - ho(r), (3.2.9-2)
with b = n%A.

Let r, and r, be the two roots OF_(Q.QJQ_Q\ Mot tend o the
douhle \ar\‘ﬂu‘\’al rest 5 ° 41, Then (L—nw-lse\r‘tth"??')) R

1/2) 1/2)

r, = exp(h) + 0(h?*?) and r, = exp(-hA + 0(h**?),

EE +— £ T (

Since for many methods r; and r, lie on the unit circle
when h is small and negative, we have the following
definition of absolute and relative stability for the

linear multistep methods for the special second order
problems (Lambert([19731).

Definition 3.2.9-1 : The linear multistep method
(3.2.5-1) is said to be absclutely stable for a given h
if, for that h, all the roots r, of (3.2.9-2) satisfy
|rs|$1, s =1,2,...,k; and to be relatively stable if,
for that h, ]rs|S min( |r1|’|r2|) ; 5 = 3,4,...,%x. An
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interval [o,B) of the real line is said to be an

interval of absclute or relative stability if the method
is absolutely or relatively stable for all h €[c,B].

We also have that every zero-stable consistent linear
multistep method of class (3.2.5-1) is absolutely

unstable for small positive h.

For a syPFeQ of equations yw) = £(x%,y), we then consider
11 ['2-3

A the/eigenvalue, assumed constant, of the Jacobian

of

5;, which may be complex. The intervals of the absolute

or relative stability discussed in the previous
paragraph are replaced by regions of absolute or

relative stability.
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3.3 ELLIPTIC PDE SOLVERS

Many physical or engineering systems can be described by
means of functions of several independent variables
which from natural energy principles must satisfy
certain PDEs. There is an enormous variety of PDEs and
systems of PDEs that occur in these applications. Their
appropriate numerical solution often requires special
procedures. In this cection, we shall survey some of the
current elliptic PDE solvers and highlight some of
their characteristics. We shall restrict the discussion
to the treatment of the second-order PDEs for an unknown

function with two independent wvariables of the form

Au,y, *+ 2Buy, + Cuy, + Du, + Buy + Fu = G (3.3-1)

where u(x,y) is the function that we are looking for in
the region Rlcff and satisfies (3.3-1). The given

coefficients A,B,C,D,E,F and G in (3.3-1) may be

piecewise continuous functions of x and y.

3.3.1 CLASSIFICATION OF PDES AND TYPES OF
ELLIPTIC PROBLEMS

Analogously to the classification of conic sections
Ax? + 2Bxy + Cy° + Dx + Ey + F = 0 (3.3.1-1)

the PDEs (3.3-1) are divided into three classes

according to the Definition 3.3.1-1.

Definition 3.3.1-1 : In a region R;, a second-order

partial differential equation of the form (3.3-1) with
A’ + B + ¢#0 is called

(1) elliptic if AC - B® > 0 for all (x,y)€Ri,
(2) hyperbolic if AC - B® <
(3} parabolic if aCc - B?

0 for all (x,v)€Ry,
0 for all (x,vy}ER;.

However the classification defined by Definition 3.3.1-1
above depends, in general, on the region of the (x,y)
plane under consideration. The differential equation
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XUy (X, ¥) + Uy (X, V) = 0, (3.3.1-1a)

for instance, is elliptic for x > 0, hyperbolic for x <O
and parabolic for x = 0,

The well known special cases of elliptic differential
equations are

(1) Laplace equation: Ve = 0, ‘ (3.3.1-2a)

{2) Poisson eguation: Vi = £(x,v), (3.3.1-2b)

(2) Helmholtz equation: Vu = r(x,y)u, (3.3.1-2b)
2 2
where V Eji? + jL;
x dy

The Laplace equation occurs 1n problems of elasticity
and hydrodynamics. The sclution of the Poisson equation
can describe the static temperature distribution in a
homogenecus medium or the stress in some torsion
problems. The Helmholtz equation or sometimes called the
'reduced wave' equation arises in the theories of sound,
electromagnetic waves and tidal waves.

In order to define the desired solution of an elliptic
differential equation wuniquely, certain boundary

conditions must be imposed on the boundary of the region
R;. To simplify the problem, we assume that the region

Ry is bounded and that its boundary is a constituent of

several curves, as shown in Figure{(3.3.l1). We denote the
synthesis of all boundary curves by I'. The boundary

should consist of piecewise continuously differentiable
curves on which the normal vector n pointing outward
from the region R; can be defined. The boundary I is

assumed to consist of three disjoint components I';, I
and I's such that

rorurs =T, {3.3.1-3)

It is possible that I'; = &, for 1 = 1, 2, or 3, where &
denotes the empty set.
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X

Figure(3.3.1) :Region R; and boundary I.

There are four distinct problems involving (3.3-1)
depending on the boundary conditions prescribed on I' as

follows:

(1) Dirichlet condition: u = @ on I'y {(3.3.1-4a)
{(2) Neumann condition: %% =¥ on I'; {3.3.1-4b)
{(3) Cauchy condition: gﬁ +ou =8 on Iy (3.3.1-4¢)
(4) Periodic condition: up = ur (3.3.1-4d)

where o, B, ¥ and ® are given functions on the
respective boundary components and T is the period of
the function u in the case of condition (3.3.1-4d). If
the elliptic differential equation is only subjected to
condition (3.3.1-4a), then the problem 1is called a
Dirichlet boundary value problem. If we have I'= I, then

it is the Neumann boundary value problem. Similarly, if
I'= I's, the problem is known as the Cauchy boundary-value
problem, while the periodic problem has no boundary
conditions. This latter problem will be dealt with in

more detall in chapter 6.

Before developing finite difference methods for solving
elliptic equations, we shall state an analytical tool in
the study of elliptic PDEs - The Maximum (Minimum)
Modulus Theorem - that issthe solution of, for example,
the Laplace equation (3.3.1-2a) has no maxima or minima
at interior points of the domain of integration.

Alternatively, it states that every solution of the
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elliptic eguation achieves its maximum or minimum values
on the boundary. Thus, a problem of mathematical physics
is well-posed if its solution exists, is unique, and
depends continuously on the data. Therefore we maintain
that an elliptic problem 1s well=-posed provided the
boundary is closed.

3.3.2 DISCRETIZATION OF THE ELLIPTIC
BOUNDARY - VALUE PROBLEMS

The problem (3.3-1) or specifically (3.3.1-2a), (3.3.1-
2b) or (3.3.1-2¢c} can be solved approximately in a given
region R; subject to boundary conditions (3.3.1-4a) to
(3.3.1-4d) through .the application of the finite

difference method as illustrated below,.

Step 1l:Discretization of the region

The desired function u(x,y) is substituted by its wvalues
at the discrete points of the region R; and the boundary

I'. For convenience, the function u(x,y) is discretized

using a regular square net with mesh size h in the
region R; as shown in Figure(3.3.2a).

The values of u are those obtained at the grid points
unless they are already known from the boundary
conditions. In the case 0of curved boundary components,
we introduce points as the intersection of grid lines
with the boundary. In Figure(3.3.2a), the grid points
are those given by the intersections of the lines such
as the points marked P, W, N, S and E,.

Y\

Ry 3T r
4 \
Tl nhh i \
) N\
' \
I x
P

Figure (3.3.2a):Region with mesh and grid points.
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Let the value of the exact solution be u(x;,yj) and the

corresponding approximate value be u;y. We note that in

certain problems it is necessary to use variable mesh
sizes in the x and y directions in order to accommodate
the shape of the region or the nature of the desired
solution (Marsal[1976]). Moreover, regular triangular or
hexagonal nets may be useful (Collat=z[1966],
Marsal[l976]) because a regular hexagonal net easily
admits to locally finer discretization. In practical
problems, the use of triangular grids arises for curved

boundaries as used in Finite Element method.

Step 2:Finite difference approximation of the
dependent wvariable and its derivatives

For the chosen discretization of the functicen the
partial differential equation is approximated at the
grid points by means of the discrete function values uyj.
In the case of a regular square net, the first and
second partial derivatives may be approximated by means
of difference quotients. We can use the central
difference quotient to approximate the first partial
derivatives as it i1s convenient and simple and
furthermore it gives a good approximation of the first
derivative since 1t represents the slope of the
interpolating parabola at the mid peoint, For a regular
interior point P(x,y) which has feur neighbouring grid

points at a distance h away, we adopt the approximations

ui+1,j - ui'l‘,j
U (%1,y3) = o

r (3.3.2-1a)
Uigel — Wij5-1

Uitly T 2Usy T i1y )

uxx(XiIYj) = h2
4 (3.3.2-1b)
Uige1 = 2Us5 + Ui5-1
Uyy (X4, ¥35) = 2 )
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where the difference quotients are defined by means of

the approximate values at the grid points.

In Figure(3.3.2a), the four neighbouring grid points are
labelled as N, S, E and W. Thus we define

Up = U3 » Un = Uige1r 5 Uy = Ui-14,
(3.3.2-2)

Us = Uij-1 . U = Ui+n3-
We can now approximate the Poisson egquation (3.3.1-2b)
at the grid point P(x,y) by the difference equation

- 2u, + U uy - 2up + u
Up ‘;P W N 2? s £o, (3.3.2-3)
h h

where fp denotes f(xi,yy).

Multiply {3.3.2-3) throughout by -h? and rearrange, we
obtain

- ug = uy + 4u, - uy - ug + hzfg = 0. {3.3.2-4)

It is often written in operator form as

-1
®

-1 4 -1

o B———® Ou+ hif, = 0. (3.3.2-5)
@
-1

Step 3:Adaptation of the difference approximation
to the boundary conditions

The prescribed boundary conditions of the problem must
be taken into account, and the difference approximation
of the differential equation may have to be adapted to
the boundary conditions.
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If there is only a Dirichlet boundary condition to be
satisfied, then the net can be such as to generate
regular interior grid points. In such a case, the
operator form of (3.3.2-5) can be superimposed on all
interior grid points with unknown function values, while
the known boundary wvalues can simply be substituted. If
there exist irregular grid points as in Figure(3.3.2a),
theﬁ appropriate difference equations must be derived
for them. We shall consider such cases in Section
{3.3.3).

In this preliminary discussion, we assume that the
boundary coincides with a net line parallel to the vy
axis, and that the Neumann boundary condition requires
the normal derivative to vanish (see Figure(3.3.2b)).

The outward normal vector n points 1in the positive
direction of the x axis., Let E be a fictitious point
with wvalue ug. The derivative in the normal direction

can be approximated by means of the central difference

guotient as
on] = T on - (3.3.2-6)

Since it vanishes, therefore,tu cecond ovder,

Ug = Uy . (3.3.2=7)

Tl AP . -E

Ry

Figure (3.3.2b}):Neumann boundary condition

Thus we have u(x,y) 1s symmetric with respect to the
boundary. Hence by using (3.3.2-4), it follows that
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1
—ug 20 - 5 uy - % ug + % nf, = 0. (3.3.2-8)

Therefore its corresponding operator form is

_1/2 ™

> . (3.3.2-9)
@
-1/2
du du
on|] = ox| =0
P jod v

for a regular boundary point P({(x,y} with three
neighbouring grid points N, W and §S.

Step 4:Representation of the problem as a system
of linear egquations

In order to determine the numerical approximation of the
unknown values at the grid points, we need an equation
at each point. These we can obtain from the preceding
two steps where we have a linear difference equation for
each grid peint. Upon applying it on all the grid points
we are able to give a system of linear equations for the
unknown values. The grid points of the net i uwhich
function values are unknown are numbered. It is done in
a suitable way so that the appropriate structure for the
resulting system of equations will permit an efficient
solution procedure. Thus the system of linear equations
represents the discrete form of the given boundary-value
problem. This system of linear equations can be written

in a compact form as

Mu = s (3.3.2-10)
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where M is the matrix derived from applying the operator
forms (3.3.2-5) and (3.3.2-9) on the grid peoints, u is
the vector of the unknown values at the grid points and
8 1s the coeonstant vector obtained from applying the
operator forms (3.3.2-5) and (3.3.2-9) on the grid
points.

We shall now describe in detail how the discretization
process can be carried out, There are three well known
methods of obtaining finite difference approximation to
partial derivatives. These methods are based upon
variational formulations, Taylor series expansion and
integral equations. All these approximations may
introduce truncation errors; +their presence will be
dencted by the asymptotic O notation. We shall derive
the finite difference approximaticons based on finite
Taylor series expansion of the solution vector over the

domain of integration.

As previously outlined in Step 1, in order to apply the
method of finite differences to obtain an approximate
solution for the problem defined by (3.3-1), grid lines
parallel to the coordinate axes are super-imposed on the

region so that for any grid point (i, 3)

X = ih i=0>1)2--|n_'1

(3.3.2-11)
vy = jh 3=0,1,2...m-1

where for simplicity we have chosen an equal mesh size
h. We may choese x = 1ih; and y = jh, such that h, = ah
and h, = bh for a #b to obtain unequal mesh sizes.

Assume that u{x,y) has centinuous partial derivatives at
least of fourth order in the neighbourhood of (x,y). By

using the Taylor series expansions, we cobtain
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L]

fY) * huy(x, V)
2 3 4

u(xth,y) = uf

h h h
+ o7 Uk (X, ¥) £ 37 Uk (X ¥) YT W (X, ¥)
h5 é
o7 Wk (X, ¥) + BT Usxxx (%, Y)
+ 0(h’) (3.3.2-12a)
u({x,yxh) = u(fo) t huy(XIY)
2 3 4
h h h
+ o7 Uy (X, ¥) F ST uyyy (X, ¥) ot T Uyyyy (X, Y)
hS 6
s 'g"'- Uyyyyy(xr vy} + 6—' uyyyyyy(xr ¥)
+ o’y (3.3.2-12b)

By subtracting u(x-h,y}) from u(x+h,y), we obtain

Uy (x,y) = é%j[u(x+h,y) - u(x—h,y)] + O(hz). (3.3.2-13)

By adding u{x-h,y) to u(xth,y), we have

1

Uy (X, ¥) = ;[u(xm,y) - 2u(x,y) + u(x-h,y)] + o(m?.
{(3.3.2-14)

Similarly, we may obtain

1 2
uy(xry) = E[ (x,y+h) - U(Xfy-h)] + O(h") (3.3.2-15)
and

1 2
uyy (X, y) = gg[u(x,y+h) - 2u(x,y) + u(x,y-h)] + O(h™) .,

(3.3.2-16)
By a similar application of the Taylor series expansion
in two dimensions, we may obtain
u(xth,y+h) = u(x,y) £ huy(x,y) + huy(x,y)

2
h
+ 57 Lo, y) & 20y (2, 9) + uyy(x,9) ]

3
h
+ ET[-'—-uxxx(XrY) + 3uxxy(X'y)

+ BUKYY(X;Y) + uyyy(XIY)]
4

h
+ H[Uxxxx(er) T duyxxy (X, Y)

+ 6uxxyy(XJY) t 4uxyyy(er) + uyyyy(XJY)]
+ 0(h%). (3.3.2-17)
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Correspondingly, - we may obtain the expressions for

u{xth,y-h) . Hence we have the result
1
Upy (X, ¥) = E[u(x+h,y+h) - u(x-h, y+h)
- u(x+h,y-h) + u(x-h,y-h)] + o(h® . (3.3.2-18)
Now for the case when B=0 in (3.3-1), and neglecting
terms of order h® and higher in (3.3.2-12) to (3.3.2-
16), we arrive at the five-poilnt finite difference

approximation to the partial differential equation (3.3-
1) at a grid point (i,3),

— Oy + Gujeny + Cpui-15 + U3Usj41 + Walgj-1 = Sy (3.3.2-19)

where the o; © , 1 =0,1,2,3 and 4 are functions of x

and y and are given by

4 , n
Oy = 2 Ox — h" Figy
k=1
1
o = Ay + > h Dy
i
O = Ay = 3 b Dij > (3.3.2-20)
1
8 5 Ci,.j + _2' h Ei,j
1
a; = Ciy — "z'h Eij
2
Sij = h Gi,j A
and we have u(x,y) = u(ih,jh) denoted by uyy. Similarly

with the A;; = A(ih, jh), Di; = D({ih,jh), Ciy = C(ih,jh),
Ey; = E(ih,jh), Fi3 = F(ih, jh) and Gi; = G(ih, jh) for all
(i,j)el",

Clearly, all the o3 will be positive provided that h

satisfies the condition

2Ai.j 2Ci,j }
r

0 <n <nin IDis| " | Esy|

(3.3.2-21)
where the minimum is taken over all points of R,WI.

Since A,C > 0 and F £ 0 and are bounded, there exists a
positive minimum and for that h
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q
g b Eak. (3.3.2—22)
k=1

This relation will be important in the discussion of
iterative methods of solving the resulting equations
obtained from Step 4.

Now suppose the number of interior grid points is n. By
applying the five-point computational operator (3.3.2-
19) at every interior grid point yields a set of n

simultaneous linear equations whose matrix form is
Ma = s. {(3.3.2-23)

The vectors w and s consist of n unknowns and the
guantities ~si4 together with boundary wvalues
respectively. The matrix M in normally square and sparse

(but with real coefficients)wwime main diagonal entries
are the oy of (3.3.2-20) and the off diagonal entries

are the negatives of the o4 of (3.3.2-20) which do not

correspond to boundary points. Before proceeding to the
discussion of the wvarious methods available for solving
thg system given by (3.3.2-23), we shall note the
following properties of the matrix M.

Let M = (mij),
{L) my, 4 >0V i=j

1\

m

h |ij| with strict inequality ;. (3.3.2-24)
=1
%1

(2) my;

for some 1

(3) M is irreducible y

Conditieons (1) and (2) follow from (3.3.2-21) and its
preceding argument. The fact that the inequality holds
for some i can be observed by applying the five-point
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operator at an interior grid point adjacent to a
boundary.

Now (3.3.2-23) and in particular (3.3.2-10) can be
solved for the unknown vector u either by a direct
method or an iterative method which is described in
Section (3.3.5)

3.3.3 GRID POINTS NEAR THE BOUNDARY AND
GENERAL BOUNDARY CONDITIONS

In this section we shall illustrate the treatment ©of the
situations when we have grid points near the boundary
and general boundary conditiqns have to be satisfied. We
consider a typical example which can be obviously
generalized. The basic problem consists of constructing

an appropriate difference approximation of a given
differential operator, say that of uy, + Uyy.

Suppose P(x,y) be an irregular interior grid point which
lies near the boundary I' as shown in Figure(3.3.3a). Let

W' and S' be the points where the boundary curve I' and

the net lines intersect at ah and bh distances away from
P(x,y) respectively, with 0 < a,b < 1,

A

————

~ls.

Figure(3.3.3a):Irreqular grid point near the boundary

We aim to obtain the approximations of uy, and uyy, at the

grid point P(x,y) such that they are linear combinations
of the wvalues of up,ug and uy: and up,uy and ug.

respectively. We assume that u(x,y) is sufficiently
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continuously differentiable. By means of the
Taylor series expansion of the function u about x we may
obtain the following expressions:

u({x+h,y) = u(x,y) + hug(x,y) + %-h%hx(x,y)
* %hsuxxx(er) +
u(x-ah,y) = u(x,y) - ahu,(x,y) + %-azhﬁbm(x,y)
- % a’h uex (%, ¥) +
ul{x,y) = u(x,y)

Suppose that ¢;, ¢; and c; are some constants such that

cju{x+h,y} + cu(x-ah,y) + csu(x,y)
= {(¢c1 + ¢ + C3)U(X,Y) + (Cl - aCz)hux(X:}’)

1
+ (¢, + azcz)é_ hzuxx(le) +

Since this linear combination has te be an approximation
of u,y, at the point P(x,y), therefore we obtain the

necessary conditions
¢ + ¢ + ¢z =0

{(c1 - ac)h = 0

(c, + azcz)—;- n? =1

Hence we obtain

2 2
C. = 5 ’ Cz = 7, ’ Cz =
h“{l + a) ha(l + a)

2
na’
Since the approximate function values of u are known at
the points P(x,y), E and W', we can use this information
to approximate uyx. Thus we have at the point P(x,y)

2 Ug Uy Up

Uxx = ;5{1 +aa@ +a - ET} ) (3.3.3-1a)

Similarly, we can obtain an approximation of uy, at the

point P(x,y) as

Uy = 2 { Uy Ug: Up}

;5 T+ p t b(l + b) 5 {3.3.3-1b)
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Thus by multiplying both equations (3.3.3-1la) and
(3.3.3-1b) by -h’ and adding the results, we may ocbtain
the difference equation for the Poisson equation (3.3.1-
2b) as

2 2

2 2 2 2. _
1+b " T a(1l+a) %' T b(1+b) up + hifp =0

1 1 2
2[a+b]uP— u5|-1+a

(3.3.3-2)

Note that in general, the symmetricity of M is dependent
on the equality between a and b since for a # b, we have
the coefficlents of uy and ug in (3.3.3-2) are different.
Even by scaling the difference equations we may not in
general attain symmetry. In the particular case a = b we

may multiply (3.3.3-2) by the factor 132 so that M is

symmetric with respect to the grid point P(x,y). The
difference equation is then modified to
l4+a 1 1

2{—5—]up-uN-—g'uw--g usr—-uE-k% (1+a)h2fp==0. (3.3.3-3)

Next we swppose Yot  a Neumann condition is to be satisfied
on the boundary part I'; awd we assume that the boundary
point P{x,y}) 1is a grid point and the boundary is as
shown in Figure(3.3.3b). Let the angle between the outer
normal vector n at the point P(x,y) and the positive x
axis e VY, measured anti-clockwise. By using an
appropriate linear combination of the expression of the
normal derivative and the function wvalues of u at the
neighbouring grid points W,S,R and T of the grid point
P(x,v), it can be shown that the resulting difference
equation of the Poisson equation for the grid point
P(x,y) 1s given by
du

—Cplp — Cxly — Cglg — CrUR — CrlUfT = Clg +fp = 0, {(3.3.3-4)
|4

with
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2{a + b + 2) D

“L T hN
2(siny - cosy) .
Cr = -
T ah’N (3.3.3-5)
2(cosy - siny)
Crp & P
bh*N 4
where N is defined vy N = (a+l)siny + (b+1l)cosy and
a,b,h and y are given. The XkXnown wvalue cof

the Neumann boundary condition is then substituted into
(3.3.3-4).

\R
n
bh
h P y
W
h
S ah T

Figure (3.3.3b) :Neumann condition at the boundary point

The treatment of a Cauchy boundary condition at a
general point 1is similar to that of the Neumann
condition. <Consider the situation as shown in
Figure(3.3.3c). Let P(x,y) be a boundary point which is
not the intersection point of grid lines. Let the

direction of the ocuter normal vector be defined by the
angle vy.

Then it can be shown that the resulting difference

equation of the Poisson equation is given by

Ccpup + Cgug + Czuz + Crup t+ crup + cl¥Y - fp = 0, {3.3.3-6)

where Y is a known value of the Cauchy condition. The

boundary condition at the point P(x,y) 1is eXpressed
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implicitly in terms of the coefficients of the u values
of (3.3.3-6) and the explicit constant ci¥.

-\R Ch
\\\gzﬂfQZ:n
P
h
kh
7 h S| an {T
|

Figure(3.3.3c¢c):Cauchy condition at the boundary point

Generally, ¢z 1s nonzero and even 1f Z is a regular
interior grid point, in which case we can use the five-
point difference equation (3.3.2-4) for Z; the matrix M

of the system of equations is in any event nonsymmetric.

The derivation of difference equations for boundary
points with Neumann or Cauchy condition is tedious and
susceptible to errors. However, the coefficients can be
easily determined by means of a computer program where
it only needs the.information about points neighbouring
to the boundary point, the type of boundary condition
including the numerical values of Yy, o, B and ¥y and the
elliptic differential egquation to be approximated.
Alternatively, we may use the computer to generate the
complete system of difference equations corresponding to
a given boundary-value problem such as in the form of
the operator eguations,

3.3.4 DISCRETIZATION ERRORS

The solution of the system of 1linear difference
equations represent the approximation of the function
values of the solutions u(x,y) of the given boundary
problem. Therefore in order to have an idea of (at
least) qualitative estimates, we need to determine the
local truncation error of the difference approximation.

We shall consider the Poisson equation and the
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difference equations used so far to illustrate our

discussion.

The local truncation error of a difference equation is
defined as the wvalue that results when the exact
solution o©of the differential equation 1is substituted

intc the difference egquation.

Therefore in the case of the five-point difference

equation (3.3.2-4) valid for a regular interior grid
peint P(x,y), the local truncation error Tp is given by

Tp = ;ll—z[u(x«rh\y) t u(x-h,y) + ulx,y-h) + u(x,y+h)

- 4u(x,y)] - f{x,v). {(3.3.4-1)

By substituting (3.3.2-12a} and (3.3.2-12b}) in (3.3.4-1)
we obtain for functien values at P(x,y)

Tp = Uy (x,y) + uyy(x,y) - £(x,y)

1
+ I“z-hz [Wxxx (%, y) + uyyyy(xfy)]

+ E%arﬁ[uxmmxx(er) + Uyyyyyy (X, 70 ] + O0(R% (3.3.4-2)

By the assumption that u(x,y) is a solution of the
Poisson egquation, . the local truncation error
of the five-point difference equation at a regular

interior grid point P(x,y) is given by

1l 2
Tp = 1z h [uxxxx(xry) + uyyyy(er)]

1

* 360 B [t (2,7) uyynwy(xry)] + 0(h® (3.3.4-3)

Thus we deduce that Ty is O(hz). This result holds true

u
even for boundary points with the Neumann condition 5—==0
el

whenever the boundary coincides either with a mesh line
or a diagonal of it.

For an irregular grid point P(x,y) near the boundary
(see Figure(3.3.3a)), it can be shown that the local
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truncation error is proporticonal to the mesh size h,.

Thus, we have the local truncation error is O(h).

Next we shall investigate the relationship between the
local truncation error Tp and the error Tp = u(x,y} - W

of the numerical approximation at the point P(x,y).
First, we assume that at all grid points, the difference
equation used has a local truncation error of the form
(3.3.4-3). Consider a typical regular interior grid
point P(x,y}. Thus, from (3.3.4-1), we have

1
;5[u<x,y+h) + u(x-h,y) + u(x,y-h) + u(x+h,y)

- du(x,y)] - £(x,y) - Tp = O. (3.3.4-4)

From (3.3.2-4), we have the approximations satisfy the
difference equation

1
;E[UN + uy + ug +ug - 4up] - f(x,y) = 0. (3.3.4-5)

By subtracting (3.3.4-5) from (3.3.4-4), we ocbtain the

error egquation as

#[TN +Tw+'ts +TE - 419] —TP= 0. (3.3.4-6)

By taking (3.3.4-4) into account and multiplying (3.3.4-
6) by —hz, we obtain for each regular interior grid
point P(x,y),

4Tp = Ty — Ty — Ts — Tg + Cpht1 + Dph6 + O(ha) = 0 {(3.3.4-7)

where Cp, Dp,... are constants that depend on the point
P(x,y) and on the solution u(x,y). The discrete errors
satisfy a system of linear equationéi~JMwamatrix is
identical to that of the system of difference equations.
The components of the constant vectors of (3.3.4-7) are
O(hq). Let T denote the error vector at the grid points,
{ and & denote the vectors of the constants Cp and Dp
respectively. Therefore from (3.3.4-7), we obtain the
system
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i
o

Mt + h'f + n% + (3.3.4-8)

Since M 1is nonsingular, the existence of T \is

guaranteed. Hence from (3.3.4-8), we obtain

1 = - M[h% + n% + ...1. (3.3.4-9)

By taking the Euclidean vector norm and the subordinate
spectral norm, from (3.3.4=9), the error estimate is

obtained as
lel, < Il {nlgh, + nélel, + ...} . (3.3.4-10)

It can be shown that the spectral norm of the inverse of
M satisfies “M_luz < Kh™? for some constant K (see
Schwarz[1989],pp.453-455). Consequently, from (3.3.4-
10), the following error estimate is obtained

I<l, < k{n’lcl, + n*lel, + ...} . (3.3.4-11)

The Euclidean norm of the error decreases as h®. Thus
the crder of convergence of the five-point formula
(3.3.2-4) is two. It alsc follows that the approximate
solutions at the grid points converge, as h tends to
zero, to the exact solutions of the boundary. value
problem. We have implicitly assumed that the solution
uf{x,y) is sufficiently continuously
differentiable on the closed domain. The inequality
(3.3.4-11) can alsoc be derived by other methods
(Collatz[1966]; Finkenstein{1977]).

However, if difference equations with a local truncation
error O(h) are present, then (3.3.4-10) will involve an
h’ term. Consequently, the bound for the norm of the

error is only proportional to h.

In the situations where the assumption that the solution
u{x,y) has to be at least four times continuously
differentiable 1s not fulfilled; special analytical

techniques are required to describe the convergence
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behaviour correctly (Bramble et al[l1968]). Such
instances occur, for example, if Dirichlet boundary
conditions are discontinuous, or if the domain has
obtuse corners. Then the low-order partial derivatives
of the solution are singular at the points concerned.
Thus it is quite advantageous in the numerical solution
of such problems to incorporate analytical tools
adequately in order to treat the points of singularity
(Gladwell and Wait[1979); Mitchell and Griffiths(1980]).

The accuracy of the approximate solution of the
difference equations may ke increased by decreasing the
mesh size h., The error estimate (3.3.4-11) will
correspondingly reduce the error at the expense of a
considerable increase in the order of the system of the
linear eguations. Moreover, the condition number of the
matrix M of the system of difference equations becomes

large, because of the increase of the spectral norm
-1
I,

Another possibility of improving the accuracy of the
approximate solution is to increase the order of the
difference equations. This is achieved by taking more
function values 1into the approximations. The second
partial derivative may be approximated by means of the

difference approximation

1
Uxx (X, y) = 12h2[_ u(x-2h,y) + l6éu(x-h,y) - 30u(x,y)
+ 16u(x+h,y) - u(x+2h,y) ], (3.3.4-12)
with,  truncation error «f O(hq). However, this approach

will result in a difference equation which involves grid
points further from the central point of interest. Thus
it has the disadvantage of deriving special difference
approximations for too many grid points near the
boundary. '
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A better approach 1s to approximate the differential
expreéssion Au = u,, + u,, at the point P(x,y) as an
entity by a linear combination of function values.
Consider eight neilghbouring grid points of P(x,y) as
depicted in Figure(3.3.4).

NW N NE
h

¥ p__ b g

SW S SE

Figure(3.3.4):Eight neighbouring points of a grid point

From (3.3.2-12a) and (3.3.2-12b) we have the expressions
for u{xth,y) and u(z,yxh) respectively. While from
(3.3.2-17) we have the expression for u(xth,y+h) and
then u{xth,y-h) can be deduced from it.

Next we combine the function values of four grid points
to form the following expressions:

%, = u{x,y+h) + u(x-h,y) + u(x,y-h) + u(x+th,y)
= 4u(x,y) + B¥[un(x,y) + Uy (x,y)]
4
h
+ 77 [wooc (X, ¥) + Uyyyy(x,9) ] + O(1%)  (3.3.4-13a)
X; = u(x+h,y+h) + u(x~h,y+h) + u(x-h,y-h) + u{x+h,y-h)

= 4u(x,y) + 207 [y (%, y) + Uy (x,y)]

4
+ 3 [Uxxxx (X, ¥) + OUyyyy (X, ¥) + uyyyy(XfY)] + O(hG) .
{(3.3.4-13b)

So by some combination of (3.3.4-13a) and (3.3.4-13b),
we obtain
421 + 22 - 20u(x,y)

= 6h2 [uxx(er) + uyy(xry)]
4

+ —é— [Ugxxx (X, ¥) + 2uxxyy(XIY) + uyyyy(XfY)]

+ 0(h%) . (3.3.4-13c)
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However, we can write that

Uxxx (Kr V) + 2Uxxyy (X, Y} + Uyyyy (X, ¥)

[uux (X, ¥) + Uy (x,y) ]xx + [up(x,y) + uyy(xry)]yy

I

A(Au)

Using the fact that u(x,y) should be the solution of the
Poisson equation so that we have Au = £.

Hence

A(Au) (x,y) = Af(x,y) = fx(x,¥) + Eyyix,¥)

where all the wvalues are evaluated at the grid point
P(x,y).

Therefore by replacing the expression within the second

parentheses of (3.3.4-13c) without error from the wvalue

of Af(x,y),we obtain
2
1 h
[usx (2, ¥) +uyy(x'y)] = 6h2 [421+22“2OU(X;Y)] T 12 Af {(x,vy).

Next we substitute the exact values of the solution with
the approximations at the corresponding grid points in
(3.3.4-13a) and (3.2.4-13b) and multiply the result by -
6h? to obtain the following difference eguation for a

regular interior grid point P(x,y)

ZOUP had 4[uN + Uy + ug + UE} = Uxg — Uy — Usw — Use
4
h
+ S [Af], + én’f, = 0, (3.3.4-14)

In operator form the representation is given as

¢ rs P~

-4 20 - i
® | ® Ou+en’s, + -132— [A£], = 0. (3.3.4-15)
@ ®
—o
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The constant term in (3.3.4-15) constitutes the function
value and the sum of f(x,y) + fy,,(%x,y) evaluated at the
point P{(x,y). If f£(x,y) 1is a constant function, then the
last term of (3.3.4-15) is not present. For the Laplace
equation the constant term 1is completely absent from
{(3.3.4-15). It 1is clear that from the derivation, the
local truncation error of the difference approximation
is o(’.

Another strategy o©f increasing the order of the
difference approximation for the Poisson equation
without enlarging the number of grid points can be done
as described in the following paragraphs.

The differential expression itself is used in some of
the neighbouring grid points beside the function values.
The value of the differential expression at the
corresponding grid points are replaced by the known
function on the right-hand side of the given
differential equation.

The Taylor series expansion of uxx + uy, at the four

neighbouring grid points N,W,S and E can be obtained as

Uyx (xth,y) + Uyy {xth,y)

H

= Ugx (X, ¥) + Uyy(3,¥) T huxx(X,¥) hugyy (%, ¥)
1
+ 5 hz[umwy(x,y) + Uk (X,v)Y] + ... (3.3.4-16a)

Uxx (X, yth) + uyy (X, yth)

H

= Upe (X, ¥) + Uyy(X,¥) T hu,, (X,¥) huyyy (%, ¥)
1
+ 2 hz {uxxyy(xr V) + uyyyy (X, Y) 1+ ... (3.3.4-16b)

By adding (3.3.4-~16a) and (3.3.4-16b) we obtain

T3 = u (%, yth) + uyy (2, yth) + uy(x=h,y) + uy, (x-h,y)

+ Ugx (X, y-h) + uyy(%,y-h) + uy{x+h,y) + uyy(x+h,y)

= 4[uxx(xry) + uyy(x'y)]
+ hz[uxxxx(er) + 2uxxyy(er) + uyyyy(xr Y)] +

(3.3.4-17)
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By taking a suitable linear combination of Z;, I, and Xj,

we may eliminate the fourth partial derivatives and

obtain the following relationship

8%, + 2%, - h’Z; - 40u
= 8h’[uu(x,y) + Uyy(x,y)] + o(n®). (3.3.4-18)

Thus we obtain the approximation

1
Uxx (X, ¥) + Uyy(x,y) = EF [8%; + 2%, - h223.— 40u],

the quantities usy + uy, occurring in X; is substituted by

the wvalues of f at the corresponding four grid points.
Hence by substituting the function values of u with
their respective approximations, for the Poisson
equation (3.3.1-2b), we obtain the difference equation

valid for a regular interior grid point P(x,y)

20up - 4 [UN + uy + ug + UE] ~ Uyg — Unw — Usy — Usg

2
+ %[Sfp + fy + £y + £5 + £f5] = 0. (3.3.4-19)

Written in operator form, we have

1
- =4 -1
‘ L ® ®
_ 1 8 1 2
-4 20 h™f
¢ | ® Ou+@ i ® O =0
@ 9 o
-1 _.4 -1 1
{3.3.4-20)

which is called the multiple-point operator or the
Hermitian operator (Collatz[1966]). It is clear that the
local truncation error of (3.3.4-19) is at least O(hq).
However, a careful analysis shows that it is O(h®)
accurate and thus for some problems it admits a high

accuracy of the approximate solutions.
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3.3.5 METHCDS OF SOLUTION OF Mu = s

The conditicons in (3.3.2-24) are sufficient to prove the
existence of a unique sclution to the system (3.3.2-23).
We remark here that the matrix M is nonsingular and
hence the unique solution of (3.3.2-23) exists and 1is

given by

u = M's, (3.3.5-1)
Methods of solution for the system (3.3.2-23) can be
classified into two groups: direct and iterative
methods.

In the discussion of the wvarious basic methods of
solving the system of linear equations (3.3.2-23), we
assume the entries of the matrix M and the right-hand
side vector s are given by (3.3.2-20).

3.3.6 DIRECT METHODS OF SOLVING (3.3.2-23)

Broadly speaking, direct methods obtain the solution
{(neglecting round-off errors) of (3.3.2-23) in a finite
number of steps. These methods depend on the fact that a
closed-form solution to the discretized problem exists,
There is a class of fast direct methods that are often
used to solve certain c¢lass of linear systems. Such
systems arise from the discretization of linear elliptic
PDEs with constant coefficients over rectangular

domains,

During the pre 1965 large-scale computers, direct
methods were seldom used for solving large scale linear
system§9a53;3$§;£3L arising from elliptic difference
equations{ However, especially for the finite element
approximations widely used since 1965 in structural
mechanics, direct methods have become increasingly

3= Dimemtion

adopted for solving » A problems.
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We shall now describe the ocutline of the basic direct
methods for seolving linear systems of equations (3.3.2-
23). We may state some standard theorems without proofs.

Consider the linear system of egquations (3.3.2-23) where
M is a nonsingular nxn matrix. For the purpose of the

discussion, we assume that M is a full dense matrix.

a) GAUSSIAN ELIMINATION AND LU DECOMPOSITION

The most common form of Gaussian elimination subtracts
multiples of rows of M from other rows so as to reduce
(3.3.2-23) to an upper triangular system. The unknown
vector u is then solved by back substitution.
Mathematically, this is equivalent to first forming the
decomposition

M = LU, {3.3.6-1)

where L is a lower triangular matrix with unity on the
main diagonal and U is an upper triangular matrix. Then,
the solutions are obtained through solving the

triangular systems
Lv==s, Uu=v (3.3.6-2)

which are known as the forward and backward

substitutions.

Now 1if the matrix M is symmetric positive definite, then
one has the alternative of using the Choleski

decomposition
T

M = LL (3.3.6-3)

where L is a lower triangular matrix, followed by the
forward and backward substitutions

Lv = s, L'u = v (3.3.6-4)

to solve the linear system Mu = s.
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b) ORTHOGONAL REDUCTION
An alternative to LU decomposition is the reduction

M = QR, (3.3.6-5)

where Q 1s an corthogonal matrix and R 1s upper

triangular.

There are two usual approaches to the factorizatioen
{3.3.6-5), namely, the Householder transformations and
Givens transformations. However, they are both slower
than the LU decomposition, even though they are
numerically stable without any row interchanges; but
this does not overcome the operation count advantage of
LU decomposition, even with piveoting. Consequently, they
are rarely used for nonsingular systems of equations.
Instead, they are widely used such as for eigenvalues
determination, least-sqgquare problems and
orthogonalization of vectors.

A Householder transformation 1s a matrix of the form I-

T , T
ww where w is a real column vector such that ww = 2,

Thus a Householder transformation 1is symmetric and
orthogonal., The reduction is done as follows. Let m, be

the first column of M and define

V' = (Myy = CrMyyy.enrmy), w = [V (3.3.6-6)

T -
¢ = tmm) %, y=1( -muo7, p=y" (3.3.6=7)
and the sign of ¢ is always opposite to that of m,; for

numerical stability.

Therefore the effect of the Householder transformations
applied to M successively is to produce a matrix M;

which has zero elements below the main diagonal such
that
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M, = P,...P;M =R,, P, =1 - ww, (3.3.6-8)

where R; is a matrix such that zero elements occur below

the main diagonal from the first column to the i*" column
in the last n - 1 positions. Thus finally, we have
Pn—l" 'PIM = R (3-3.6”9)

where R 1s upper triangular. The matrices P; are all

orthogonal so that P = P, _;...P; and P! are also
orthogonal and Q = P! is the orthogonal matrix of
(3.3.6-5).

A Givens transfeormation 1s a plane rotation matrix of

the form
i j
1 1
1
1
1— cos sin®
1
Pi,j =
1
- -sin® cosB-
1
(3.3.6-10)

with sine and cosine elements in the i‘!" and jth rows and

columns as in {(3.3.6-10). The matrix Pi’j is orthogonal;

in fact any plane rotation matrix is orthogonal. The
matrix EHJ is now used to achieve the QR reduction
{(3.3.6-5) in a similar manner as the Householder

transformations to obtain

PM = Pn-],n" .PLzM = R (3.3-6_11)
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where R 1s upper triangular. The matrices P;j; are all

orthegonal so that P and P! are also orthogonal. Define
Q==P'1, then (3.3.6-11) gives the QR decomposition of

(3.3.6-5).

¢) PARTITIONING METHODS

In the above discussion, we assumed that the matrix M
was full; now we treat banded systems. Next, we consider
a class of methods based on the partitioning of the
coefficient matrix M. We shall write the banded system
in block form

-5, B, Tu; ~s, -
C, A; By 2 S2
=1 (3.3.6-12)
Bp-1 || Ye-1 Sp-1
Cp A u, S,
where A;; for i = 1,2,...,p are gxq matrices and for
simplicity, we assume that g = [n/pl is an integer. 1In

general the matrices B; and C; are lower and upper

triangular respectively.

We assume that the A; are nonsingular. In particular, if

M is symmetric positive definite or nonsingular and
diagonally dominant, then the A; have a stable LU

decomposition. We then solve the systems

AW; = By, AV, = Cy, A,d; = s; {3.3.6-13)

using the decompositions

Ai = LiUi' (3.3.6-14)

On multiplying the system (3.3.6-12) by the
, -1 -1 ' d
dlag[Af,..qZ¥ ], we have reduced the original system

(3.3.6-12) to the form
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1w, e 7 mdy T
v, I W, u, d,
=1 (3.3.6-15)
Weo1 || Me-2 do-q
v, I u d,

where we have to solve (3.3.6-13).

Assume that the matrix M has bandwith B. We note that

the 3°" column of W; is A, times the 3 column of B,. In

general, even if A; is banded, Azl will be full and the

3*® column of W, will be full whenever the corresponding

column of B; 1s nonzero; that is, the W; "fill-in" the
nonzero columns of B;. Likewise, the nonzero columns of

the C; are "fill-in" elements.

Now for the case of M with bandwith [, we obtain only
the first B columns of each W; and the last P columns of

each V; are nonzero. Thus we write these matrices in the

form
Wy, O 0 Vi, ;) di,
Wi = Wj,Z 0 ’ Vi,]. =10 Vi,2 P u; = ui'z ’ di = di,2

where the submatrices Wy,, W5, Vi,

BxB and the W, and V;, are of order (q-2B)xB; assuming

and V;, are of order

that g > 2B. The vectors u, and d; are partitioned

likewise. Thus we have the first block equation of
(3.3.6~15) written in the form

Uy, Wi dy,
Uso | + [Wyp U, = dy (3.3.6-16)
Uy Wia dys

Similarly, the second block equation is given as

Vaa Uz, Ws1 d,,
Varfuis + [Bo2| + | Wa2fus, = | daaf. (3.3.6-17)
V2,3 Uzs W3 dz}a
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The remaining block equations can be written in the same

manner as above.

We observe that the equations

U3+ Wiglpy = dys h
VW + Uy + Wyiuy = dyy
VoaUis + Up3 + Wysuyy = dp, f (3.3.6-18)

are independent of u Therefore, we can solve the

2~
reduced system (3.3.6-18) independently of u,,. Once the

system (3.3.6-18) has been scolved, the wvectors u;, can be

obtained from the second equations of (3.3.6-16) and
(3.3.6-17) as

U dy; - Wiolp,

and {3.3.6-19)

U, = dip - VipWyigy - WioUy,g
for i 2 2.

The first and the last vectors, namely, uy, and u,, do

not appear in the reduced system. Thus we may obtain Uy,

frem the first equation of (3.3.6-16) as
u,, = d; - Wyu,,. (3.3.6-20)

~Similarly, u,3 may be obtained from the last block

equation of (3.3.6-15) as

The method described above is called the Lawrie-Sameh

partitioning algorithm. It is summarized as follows:

Step 1: Do LU decomposition (3.3.6-14)

and solve (3.3.6-13).
Step 2: Solve (3.3.6-18) to obtain u;; and uy,.

Step 3: Cbtain U, from (3.3.6-19),

then obtain u); and 3.
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Next we consider the Johnsson's partitioning method

where the reduced system is only half as large as the
previous method. As before, we assume that g = I-n/p-| is
an integer. The matrix A; of (3.3.6-12) is partitioned

as
A = (3.3.6-22)

where the submatrices A, are of order Bxp and A;, is of
order (g-B)x(g-P). Likewise, the matrices B; and C; and

the vectors u; and s; are partitioned as

0 0 0 Ci,l
B; = ; Cy = (3.3.6-23)
Bia Bipl 0 Ci,z

Ui Sia
uy = ro 8 F (3.3.6-24)
Yip Si2

in which case the submatrices By, and C;, are null if 2B<q.

Now by means of the LU decompositions Aj; = Li;Uy,, we

solve the systems

Ai,lAi?(l) = Ai,Z’ Al,lcl,l(l) = CL]_, Ai,lsi,l(l) = 55,1' (3.3.6_25)

We shall now illustrate this concept in (3.3.6-26) for
the case p= 3. Effectively, the solution (3.3.6-25) is
to multiply the original system by diag[AIi,I,A;j,I, vl

to obtain a new system., We have for p = 3,

I A, (1) U1 811 (1)
By By By, Bip u;, 815
Ca (1) I Ays (1) Ujpy 8, (1)
Caz By By By By W | | S22
Cay (1) I Ay, (1) U3,y 83, (1)
B Cy Ay Ay Uiz || 83
(3.3.6-26)
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Next multiply the first block equation of (3.3.6-26) by
-Ay; and the third block equation by -By; and add them to

the second block equation to obtain a new equation

Ajg{1dug, + By (1) uy, = 85,(1) (3.3.6-27)
where

AL‘;(]') = Alfl - A1!3A1'2(1) - Bl;]_C%l (1),

By, (1) = By — ByiA, (1),

312(1) = 51'2 - A1,351,1(1) - Bl,lsz'l(l) .

Continuing in this way, we multiply the third block
equation by -A,; and the fifth block equation by —Bm_and

add them to the fourth block equation to obtain a new

equation. Finally, we multiply the fifth block equation
by —-A;; and add to the sixth block equation, we obtain a

new block system of equations

I A, (1) ug, 8., (1)
A, (1) 0 B, (1} u;, S, (1)
Cal(l) I Ay, (1) 0 u,; 5%1(1)
Cyp (1) 0 Ry, (1) 0 By, (1) Uy, || 852(2)

C3,1(1) I A32(1) uj, 83’1(1)
Csp (1) 0 Aj, (1) 13, 83, (1)
(3.3.6-28)

Note that the even-indexed block equations in (3.3.6-28)
are independent of the odd-indexed block equations. Thus

they form the reduced system of equations

C3z (1) Azp (1) || w3 S35 (1)

After (3.3.6-29) has been solved, the uy; can be obtained

from the odd-indexed bklock equations of (3.3.6-28) and
are given by
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for 1 = 1,2,...,p. Note that if i = 1, the last term of
{3.3.6-30} . is not present.

Thus (3.3.6-26) to (3.3.6-29) illustrate the computation
for p = 3 which can be generalized for any wvalue of p,.

In particular, the reduced system (3.3.6-29) is a Pxp
block tridiagonal system with block size PxB; thus its

semiband width is 2B-1. The algorithm may be summarized

as follows,

Step 1: Form the LU decompositions Aj; = LjUyy and solve

the system (3.3.6-25).
Step 2: Solve the reduced system (3.3.6-29) which in

general may be pxp block tridiagonal.
Step 3: Solve the remaining unknowns uy; from (3.3.6-30).

We note that the reduced system for the Johnssont's
method has only PBp equations as opposed to 2B(p-1) with

the Lawrie-Sameh method.

d) DOMAIN DECOMPOSITION METHOD
We shall illustrate the basic idea of this class of
methods by means of the tridiagonal matrix

- o 1 ' -

M = ) : : (3.3.6-31)

For simplicity, we assume that n = pg+p - 1. We divide
the unknowns into p+l subsets Dy; i=1,2,...,p and T

such that each D; consists of g unknowns. The p -1
unknowns in the set T = UT; separate the unknowns in the

sets D; as follows. Suppose that the unknowns are lined

up and partitioned as
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D (3.3.6-32)

Dl Tl D2 T2 . e Tp_l P

Each set T; in (3.3.6-32) consists of p - 1 unknowns. The
jth equation in the system Mu = s is of the form

j4p=-1
E s = 8..
k
k=3j-p+l * J

mysuy + (3.3.6-33)

(3.3.6-33) does not contailn

unknowns of any of the other Dy. The sets T; separate

Therefore, 1if u;e D;, then
the unknowns in the D; so that each equation in the

system contains unknowns only in one Dj.

The unknowns are now renumbered so that those in the
separator sets come last. The equations are then written
in the corresponding order. Thus we obtain a generalized
form of the new system of linear equations

A, B, u, s,
A, B, u, s,
=1 (3.3.6-34)
Ay By u, s,
C C, c Ar | ug Sq
where A; are gxg tridiagonal matrices; for i = 1,...,p

and A, is (p-1)x{p-1) diagonal matrix, and B; are gx(p-1)

matrices; for 1 = 1,...,p.
Now let
. T T
A, = diag(A;,...,A,), B" = (Bl,...,Bp), ‘
(3.3.6-35)
C= (Cy...,CQ)
where it is assumed that A; is nonsingular.
Then, we can write (3.3.6-34) as
Anu; + Bu, = s; (3.3.6-36a)
Cu; + Ay, = s, (3.3.6-36b)
where u? = (uf,...,ui) and s? = (sf,...,sg)

100



Next, multiply (3.3.6-36a) by -CA;' and add to (3.3.6-
Hhug
36b);werbtain the equation

Aup = 5, (3.3.6-37)

where

A, - CA;'B

e
{

(3.3.6-37a)

@)
fl

The matrix A is known as the Gauss transform or Schur
complement. Once the system (3.3.6-37) is solved for wug,

the remaining unknown vectors u; can be determined by

solving the systems

Aiui = Si - BiuT, (3.3.6_38)

for i = 1,...,p using the LU decomposition. method as
follows.

Let A;, for i = 1,...,p have stable LU decomposition
Ai = LiUi' (3-3-6—39)

We then solve the systems

L;Y; = By, Liy; = sy,
(3.3.6-40)
UsZ;y = Y3, Ujzy = ¥y,
for i = 1,...,p.
Now
C{AI'B; = Cy(LU;) 'B, = CUL'Y, = C,2, (3.3.6-41a)
and,
-1 - -1
CiAi Si = Ci(LiUi) 1LiYi = CiUi yi = Cizi. (3.3.6-41b)
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Therefore using (3.3.6-41a) and {3.3.6-41b) in (3.3.6-
37a), we obtain

_ P - P
A= AT - Z CiAilBi = AT - E CiZi (3.3.6"423)
i=1 i=1
and
_ P -1 P
s = ST - E CiAi Si = ST - Cizi. (3.3.6-42b)
i=1 i=1

Thus we have the domain decomposition algorithm

summarized as follows.

Step 1: Form the LU decomposition (3.3.6-39) and solve

the systems (3.3.6-40).
Step 2: Form C;Z; and Cyz;; 1 =1,...,p.

Step 3: Form A and § and solve the system Au; = 3.
Step 4: Form ¢; = s; -~ Byjuy; &+ =1,...,p.

Step 5: Solve the systems A;uy = ¢;; & = 1,...,p using

the LU decompositicons (3.3.6-39).

Next, 1f M is symmetric positive definite and since the

matrix of (3.3.6-34), call it M, arises from M by

interchanges of equations and unknowns, it is related to
M by M = PMP®, where P is a permutation matrix. Hence,

all the matrices M, A; and A. are symmetric positive

definite. Therefore, we may use the Choleski
decomposition:

A, = LL; (3.3.6-43)
instead of the factorization (3.3.6-39) in step 1 of the

domain decomposition algorithm above. Then, we solve the
systems

LiYy = By, Lyy; = sy (3.3.6-44)

for i =1,...,p.
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By symmetry, C; = BI, therefore, we have

— P r 1 — P r
i=1 i=1
Since
BiA; By = B'(L,L}) 'B, = Y.¥,, (3.3.6-46)

therefore substituting (3.3.6-44) and (3.3.6-46) into
(3.3.6-45), we obtain

— P P
K= a - i):lyfyi, S =8, - LYy (3.3.6-47)

i=1

Clearly, A is symmetric. Furthermore it is positive
definite since for any nonzero vector u, of length p-1

-1 . .o
and set u; = -A; Bu,, then, by the positive definiteness
of M, we obtain

A, B w,

T T
0 < (u;,u,) .
B Apfu,

Therefore, we have
T T T T o
0 < u;Au; + 2u;Bu;, + uAu, = u, Au,,

which shows that A is positive definite. The algorithm
for the symmetric positive definite domain decomposition

can be summarized as follows.
Step 1: Form the Choleski decomposition. (3.3.6-43) and
solve the systems (3.3.6-44).

Step 2: Form A.and S by (3.3.6-47) and solve Au, = 8
Step 3: For 1 = 1,...,p; form ¢; = s; - B;u;, and solve
the systems Aju;, = ¢;.
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e) ODD-EVEN/CYCLIC REDUCTION METHOD

The partitioning and domain decomposition methods all
apply in principle to tridiagonal systems. Another
approach to the solution of tridiagonal systems is known
as the cyclic/odd-even reduction method. With the advent
of parallel and vector computers, this algorithm, or one
of its wvariants, has probably been the most popular
method for tridiagonal systems. It was first proposed by
G. Golub and R. Hockney for special block tridiagonal
systems (see Hockney[1965]), but it soon became apparent
(Hockney (19701} that it could be applied to general

tridiagonal systems.

The details of this algorithm are described in section
6.5.1. Therefore in this section, we shall oconly give a
brief outline of the method. We write the tridiagonal
systems in the form

alul + b1u2 = dl h
couy + ayu; + byuy = d;

C3yup + azu; + byu, = d; - (3.3.6-48)

Cpuy.; + aju, = d, 4

~-c
By multiplying the first equation of (3.3.6-48) with :;l
1

and addisthe results to the second equation , we
eliminate the term involving wu,; from the second

-b
equation, Next multiply the third equation by-;—2 and add
3

to the second equation to eliminate the term involving
u; from the second equation.' Thus we obtain a new second

equation of the form

The same thing is done with the other equaticns; every
time working with overlapping groups of three equations

to produce new middle equations in which the odd-indexed
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unknowns have bkbeen eliminated. Thus, if n is odd, we

obtain at the end of the process a modified system
a2(1)u2 + bz(l)uq = dz(l) A

CZ(]‘)uZ + aq(l)uq + b"](l)us = dq(l)
> (3.3.6-49)

which invelves only the unknowns u,,u;,...,u,.;. The
system (3.3.6-49) 1s tridiagonal in the unknowns

U,,Uy,.... The process of obtaining a new system which

contains only the even-indexed unknowns is continued
until no further reduction is possible. We note that,6 by
this process, we have at each stage of the reduction,
the initial system is split up into two disjoint
subsystems; one contains the even-indexed unknowns and
the other contains the odd-indexed unknowns. We call the
even—indexed ones the reduced system and the odd-indexed
ones the eliminated system. In case of n = 27 - 1, the
algorithm will terminate with a single final equation.
The final equation is then solved and the other vectors

of the unknowns can be computed by back substitution.

If n # 2% - 1, the process may be terminated in a system
with fower unknowns which can Dbe solved
separately prior to the back substitution process.
Alternatively, we may add a dummy equation of the form
u; = 1 to the system so that the total number of
unknowns is 2% - 1, for some g. Heller[1976] showed that
during the cyclic reduction process the off-diagonal
elements decrease quadratically in size relative to the
diagonal elements; thus allcowing termination before the
full log n steps have bkeen performed. Lambiotte and
Voigt [1975] showed that cyclic reduction is a Gaussian
elimination applied tc the matrix PMP' for some
permutation matrix P. Therefore, if M is symmetric

positive definite, so 1is PMP' and cyclic reduction is
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numerically stable. However, we still need to handle the
right-hand side carefully to ensure numerical stability
{see Golub and wvan Loan[1983]). Since Gaussian
elimination will cause fill-in when applied to PMP', the
arithmetic operation count of cyclic reduction is
roughly twice that cof Gaussian elimination applied to

the tridiagonal system.

3.3.7 BASIC ITERATIVE METHODS FOR LINEAR
EQUATIONS

Consider the system of linear equations given by (3.3.2-
23), where M 1is a nxn nonsingular matrix, u =
(U, . .,un)T and s = (sl,...,sn)T. In general, the

coefficient matrix M 1is sparse, that 1is , most of its

elements are zeros.

Alternative to the «class of methods discussed
previously, 1s ancther class of methods called
iterative methods which obtain the solution of the
problem by successive approximations. In the use of
iterative methods, one starts with an arbitrary initial
guess to the solution and then successively improves the
approximation. The iterations will be stopped after some
prescribed criteria are met.

This is equivalent to finding a sequence of vectors u(”,
r=20,1,2,... such that,

s (ry _ .1 _
gig'u = M "s. (3.3.7-1)

(r)

Therefore, we c¢an express the vector u as a function

-1 -k .
of M, s, 't ),...,,u(r ), where k is called the degree or

order of the iterative method. Usually we choose a first
degree method; that 1is, k = 1., Thus we can write the

first degree iterative method as

(r)

u'’ = Fr(M,s,u‘r"l)

). (3.3.7-2)
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The iteration method is said to be stationary if for
some i >0, F_ is independent of r for all rz2i,

otherwise it is nonstationary.

The iterative method (3.3.7-2) is said to be linear, if

1 ] ‘ r=-1 ]
for each r, F, 1s a linear function of u' ), otherwise

it is nonlinear.

The most general linear, stationary iterative method of
first degree is of the form,

a1 o ogut? 4 g, (3.3.7-3)

where G is called the iteration matrix, which depends on

M and s; g is a column vector,.

If u is the exact solution, then from (3.3.7-1) and
(3.3.7-3) we obtain,

M's = GM's + g.
Hence, we have

g = (I - GM's. (3.3.7-4)

Now (3.3.7-4) 1is called the consistency condition. If

this consistency condition applies, then there is an r,
say rg,, such that, :

u(r0+1) - Gu(ro) + g = Gu + g = u. (3.3-7-5)

This means that as soon as the sclution is obtained,
further iterations do not modify the successive
iterates.

Now suppose that the matrix M is partitioned as
M=H-T,

where H and T are square matrices and H is nonsingular,
Then (3.3.2-23) becomes,
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Hu = Tu + s. {(3.3.7-6)

By introducing the iteration count r in (3.3.7-6), we
cbtain the iterative method,

+1
u(r )

H = Tu + 3. (3.3.7-7)

Thus, it is clear that we may have different iterative

methods for various splittingsof the matrix M,

Let the coefficient matrix M be split into the form,
M=D-L - U, (3.3.7-8)

where D is a positive diagonal matrixi» whkic#he elements are
the diagonal elements of M, and L and U are lower and
upper triangular matrices with null diagonals
respectively. Equation (3.3.2-23) then becomes

(D - L - U)u = s. (3.3.7-9)

In this discussion, we shall briefly describe the basic
iterative methods for solving systems of linear
equations. These methods may be grouped intc two
classes; namely, the point-iterative methods and the
block-iterative methods. In the point-iterative methods,
each component of successive approximations to the
solution 1is computed explicitly, while in the block
methods, several systems of linear equations are solved
at each stage of the computation. However, each of these
systems 1s smaller than the original system derived
directly from the problem,

a) JACOBI METHOD
Now consider (3.3.7-9). Since D is a positive diagonal
matrix, D' exists. By letting

G = D (L + U) and gz = D's, (3.3.7-10)

then (3.3.7-9) can be written in the form
u = Gyu + gg. (3.3.7-11)
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By introducing the iteration count in {(3.3.7-11), we
obtain the Jacobl iterative method as

1
uu+) )

= cu'™ + gy, ' (3.3.7-12)

where G, and gz are defined in (3.3.7-10). The matrix Gg

is known as the Jacobi iteration matrix.

b) JACOBI OVERRELAXATION (JOR) METHOD
This is a modified Jacobi method where the convergence

of the approximation to the solution 1is accelerated
using a real parameter ®>1.

Accordingly, we have from (3.3.7-12),

(r)

PRLARLI o (Gu'™ o+ gg) + (1 - w)Iu ',

which upon simplifying gives,

w™ = eg + (1 - @) 1Iu'™ + eg;. (3.3.7-13)
where Gy, = [0WGg + (1 - ®)I] is the JOR iteration matrix and

Gy as already defined in (3.3.7-10). Note that if w=1,
the JOR method reduces to the Jacobi method.

¢) GAUSS-SEIDEL METHOD (GS)

Consider the matrix M given in (3.3.7-8), where again D
is the diagonal of M and -L and -U are the strictly
lower and upper triangular parts of M. Now it is
reasonable to use the most c¢urrent updates of the
sequence of the approximations in the computatiocon of the
subsequent wvectors of the unknowns. Thus we may write

the iterative method as

(r+1)

Du = 1u'tY

(r)

+ Uu + s (3.3.7-14)

)

for r=0,1,2,....and u® is the initial guess vector.

Since D -1 is just the lower triangular part of M, its

inverse exists by assuming that the matrix M has nonzero
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diagonal elements. Hence we can write (3.3.7-14) in the
form (3.3.7-15) for r=20,1,2,...,

a4 g, (3.3.7-15)
where
H= (D~ 1)U
and (3.3.7-15a)
d= (0 - L) 's.

The iterative method defined by (3.3.7-15) is called the
Gauss-Seidel iterative method and H as defined in
(3.3.7-15a) 1is known as the Gauss-Seidel (GS) iteration

matrix.

d) SUCCESSIVE OVERRELAXATION (SOR) METHOD

The GS method defined in (3.3.7-15) can be modified by
introducing an acceleration parameter ® as follows,

Let the GS iteraticn vector given by (3.3.7-14) be
(r+l) ’

denoted by v Define
u(r+1) - u(r) + w(vtnl) _ u(r)) . (3.3.7-16)
Substituties the representation of v 4 given by
(3.3.7-14) into (3.3.7-16), we obtain
u™ = 1 - @yu™ o+ e L™+ vu® 4 s
or
O - oL)u™ = [oU + (1 - @Dlu’™ + ws. (3.3.7-17)

We assume that D is nonsingular, then (D--coL)'1 exists.

Hence, we can write (3.3.7-17) in the form,

+1
u(r ) r)

= Lu'™ + (D - oL) “os, (3.3.7-18)

1

where Ly = (D - 0WL) [0U + (1 - ®)D] denotes the SOR

iteration matrix. WNotice that 1f ® =1, the method
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beccomes the GS method and for W< 1 we call the method as

successive underrelaxation (SUR).

Table (3.3.7) summarizes all the iterative methods we
have Jjust discussed, which can be described by the

general formula (3.3.7-3).

METHOD ITERATION MATRIX G VECTOR e
JACOBI bl + U p” s
JOR @b N[L + Ul + (1 - @I @b s
GS b - L] v b - 1] s
SOR D - oLl {ou + (1 - ©)D] D -~ o] ‘os

Table(3.3.7): Iterative Methods

3.3.8 CONVERGENCE OF ITERATIVE METHODS
In this. sgecticon, we discuss some of the classical
results of the convergence theorems for the basic

iterative methods. These results and their proofs may be
found in Varga[l1962], Young[1971] and Ortega[1987].

Now consider the iterative method (3.3.7-3), that is,
u™ = cu'® + g (3.3.8-1)

for r=20,1,2,..., which gives the approximate solutions
of the linear system (3.3.2-23), that is,

Mu = s. (3.3.8-2)

By assuming that M is a nonsingular matrix and that u is
the exact solution of (3.3.8-2), then the iterative
method (3.3.8-~1) is consistent with (3.3.8-2) if

W= Cu + g. (3.3.8-3)

Consequently, by subtracting (3.3.8-3) from (3.3.8-1),
we obtain the basic error wvector equation,

e(r+1) — Ge(r)' (3.3.8—4)
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i i —
for r=20,1,2,..., where e()==u(’-u is the error vector

«th

at the i iteration step. Hence by introducing an

1 L] L] 0 L] 1
initial error vector e", we have by induction, the

error vector equation (3.3.8-~4) written as
e = g%, (3.3.8-5)
for r=1,2,....

Now the error e'r’

(0)

converges to a null vector for any
arbitrary e if and only if G° converges to a null
matrix as r increases. G’ converges to a null matrix if
the spectral radius U(G) of the matrix G is less than
unity. Thus the convergence rate of the iterative scheme
depends on how fast G° converges to the null matrix. For
proofs of these classical results, we refer to

Varga[l1962], Young[1971]) and Ortega[1987].

If there is no eigenvector deficiency with G, then the

eigenvectors form a complete set. Accordingly, we may

expand the initial erxrror vector, e'” in terms of the
eigenvectors of G,
(0y _
e = X avy (3.3.8-6)
3

where wv.

y 1s an eigenvector satisfying

GVj = A'ij' (3.3.8"7)

Substitute (3.3.8-6) into (3.3.8-5) and using (3.3.8-7),
we obtain

e™ =3 aljv,. (3.3.8-8)
3

By taking norms, we have

le®@ 1 = I apiv,l < pille® 1, (3.3.8-9)
3

where W is the spectral radius of G and is given by
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pno= m?xlljl. (3.3.8-10)

In practical problems, the initial error vector, e(m, is

arbitrary. Therefore, we may use M° as a basis for

comparing the convergence rate of various iterative
methods.,

Now define the convergence rate as

d
R = -3 In(u") = -1n u. (3.3.8-11)

Suppose that the eigenvalue corresponding to MU is a

double root and an eigenvector deficiency occurs, then
g

the above discussion is not wvalid (Wacgpress[1966]). So
\
we assume that G has only one double root equal to U. By

using the similarity transformation of G, we obtain its

Jordan canonical form,
.M = P lmp

where M may be written as

o1
0 Ko
______ ]___________u
s 3.3.8-12
M = .3.8~
M Y ( )
| )
I
I
b I —
Premultiplying (3.3.8-5) by P}, we obtain
pre™ = (p7'Mp)p eV = Mp !V, (3.3.8-13)
By letting
(= plet™! (3.3.8-14)
we can write (3.3.8-13) as
¢ = mig', (3.3.8-15)
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The initial vector {'” may be expressed as

g - iii = -
- Ta, v (3.3.8-16)
1=

where the ¥;'s with j=#2 are normalized eigenvectors of
M and ¥, is the auxiliary vector. Since M is the Jordan

canonical form of M, ."7."~ "~ “each of the ¥y including

for j = 2, is a unit vector.

Hence by combining (3.3.8-15) and (3.3.8-16), we obtain

n

{r} -
Cr - j%.ajgr vj

]

n
all’ ¥y oa (eI, + pTV,) + ¥ ah) 94.(3.3.8-17)
j=3

Now consider the terms in (3.3.8-17). The last term
approaches - zero faster than the first two terms. The
first term in the parentheses occurs due to the
eigenvector deficiency and is the dominant term as r

approaches infinity. Thus we have the limit,
(7 - a,rut T, (3.3.8-18)

as r increases. We note that rurﬂ' is an increasing
function until r approaches -1/1n |, when it then tends

to decrease as r increases further. Thus the decay rate
of rp"! may be defined by

1
R(xp™ )= -ad; In (cp™h) = -(; + 1n M). (3.3.8-19)

Hence we see that as r becomes larger, the decay rate
appreoaches (3.3.8-11).
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3.3.9 THE OPTIMUM SOR PARAMETER

wWe shall now restrict the discussion on the SOR
iterative method. Consider the SOR iterative method
{(3.3.7-18). It 4is not only restricted to the finite
difference equation for the elliptic differential
equation. A sufficient conditien for (3.3.7-18) to be
convergent is that M 1is positive definite (see
Varga[1962], pg.77). This condition is useful if the SOR
method 1s applied to the finite element method (see
Nakamura[1977], chapter 7). However, even when M is not
symmetric nor positive definite r the SOR method
is convergent provided all the diagonal elements of M
are positive and M is irreducibly diagonally dominant
(see Nakamura[l977]), section 8.3).

In the remaining parts of this section, we shall study
the eigenvectors-and-eigenvalues relationship of the SOR

iteration matrix and then derive the optimum SOR
parameter g .

From the SCOR method (3.3.7-18), we have

Lo = (D - OL) M [@U + (1 - ©)D] (3.3.9-1)

g, = (D - oL) 'ws. (3.3.9-2)

Let My be the eigenvectors of £, and Yy the corresponding

eigenvalues, then we have

LNy = TNy (3.3.9-3)

Assume that the matrix M is consistently ordered, and
partitioned into the form (3.3.7-8).
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Let

D>
D = . 3.3.9-4
Dy ( )
»—0 —
L,
L = "o (3.3.9-5)
LCt
0 U,
U= o Uq (3.3.9-6)
where Dy, L, and U, are non-null submatrices and 0 are

}
null submatrices. In the case of a consistently ordered

point scheme, D is a block diagonal matrix consisting of
strictly diagonal submatrices Dg; submatrices of the
lower block triangular matrix L are all null matrices
except Ly, which are not square matrices; U is an upper

block triangular matrix with ren-null submatrices U, and

U=1L". In the case of a consistently ordered line

scheme, Dy, Ly and U, are all sqguare submatrices; Dy is
tridiagonal, and Ly and Uy are diagonal matrices.

Therefore (3.3.7-18) can be written in terms of the
submatrices Dy, Uy and Ly as
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{r+1) (r+l)

(r

{r)
= (1 - ®)Dgu, + wlgu, .,

+ MSqy, (3.3.9-7)
where (3.3.7-18) i1s premultiplied by (D - L),

Similarly, (3.3.9-3) can be written in the form
Y3 [DeNsa = WLeNyg-1] = (1 - @) DaMya + @OUM 5041 (3.3.9-8)

where Ty, is the a™" block subvector of ny.

Now define the eigenvectors ¢4 of the Jacobi iteration
matrix G by

Gy = Ay0y (3.3.9-9)

where lj are the corresponding eigenvalues. These

eigenvalues are such that

Ay < A < . <A, < AL (3.3.9-10)

The eigenvectors ™My of the SOR iterative method are
related to the eigenvectors ¢4 of the Jacobi iterative

method by

MNse = Y?/Z(Pju- (3.3.9-11)

Substitute (3.3.9-11) into (3.3.9-8), we obtain

Q/2-1/2

'Yj[Da'Y?/z(Pja = OLgY; Piq-11

= (1 - m)Day‘;"?cpja + any?/“”chjaﬂ. (3.3.9-12)

of2

Divide throughout by 1y and simplify, (3.3.9-12)

becomes

(Y5 + © = 10050 = O3 [Lo@igey *+ UgPyqer) - (3.3.9-13)
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Since we may express the Jacobi iteration matrix Gy in
terms of the submatrices Dy, Ly and Uy as

Gy = D, [Ly + Ugl, (3.3.9-14)

and (3.3.9-9) in the form

-1 -1
Dy La®sa-1 + Dy Ua®Piarr = A3Pia (3.3.9-15)

where @44 1s the " subvector of ¢4, therefore by

applying (3.3.9-15) to the right-hand side of (3.3.9-
13), we obtain

(¥; + © = 1)Dg®iq = OF; hyDpPyq- (3.3.9-16)

Thus by equating coefficients of both the left and
right-hand sides of (3.3.9-16) we have
Y5 + @ - 1 = oy’ (3.3.9-17)

Hence 7Y, is the root of (3.3.9-17) and (3.3.9-11) 1is

proved.

Now the eigenvalues 7Y; of the SOR iterative matrix are

obtained by solving (3.3.9-17) for v}’

"\2
o~y WA 5

By squaring both sides, (3.3.9-18) becomes

ok, ¥ why ¥
:I:=(—2—1 Co+1tolM] [(71) —w+1]1"% . (3.3.9-19)

3
We have for the Jacobi iteration matrix; Iljl and —|ljl
are both eigenvalues. Therefore each - yields an

identical pair of 7yy's.

118



Now’ﬁ become complex if

4(0 - 1
A < (—-2-—-)— (3.3.9-20)
w

and this results in

| Ayl =.‘/~f; Y, =o-1, (3.3.9-21)

which is a constant.

Thus (3.3.9-21) states that for all Ay satisfying
(3.3.9-20), the <corresponding Yy's lie on the

circumference of a circle of radius W - 1. For those lj

not satisfying (3.3.9-20), 7; is greater than w -1 and 7;

is less than ® - 1. The distribution of the SOR

eigenvalues are illustrated in Figure(3.3.9), where Y;
and'@ are assumed to correspond to lj. Notice that the

positions of the SOR eigenvalues change as ® is changed.

Imaginary axis

\£!
Y % % .
-— — » —Real axis

Figure (3.3.9): Distribution of SOR eigenvalues

As ® is gradually increased, the radius of the circle is

increased;'ﬁ and Y, meet at Y=® -1 and then split into
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two complex eigenvalues on the circle. If ® 1is further

increased, YI is decreased and Y, increased until 7; and
ﬂf meet at @ - 1, when  satisfies the relationship

(3.3.9-22) and (3.3.9-23),

mH(GB)z
4 -+ 1 =0, (3.3.9-22)
and
'ﬁ =Y =o-1, (3.3.9-23)
where H(Gp) =A; is the spectral radius of the Jacobi

iteration matrix Gz. The minimum spectral radius is

attained when {3.3.9-22) is satisfied, thus giving the
optimum SOR relaxation factor ., as

wopt = 2 r (3.3.9—24)

1+ \/1 - (WG

where we have chosen the smaller root of (3.3.9-22).
Hence the minimum spectral radius of the SOR method is
given by

M{Ly) = Oy — 1. (3.3.9~25)

Thus if a sufficiently large number of iteration is
allowed, it can be shown that the use of ®,, results in
the fastest convergence. Howewver, in practice, the
iterations are stopped when a certain criterion is met
or a prescribed limit of iteration count is attained. It
must be recognized that when ® =®,,, is used, at least
one eigenvector deficiency occurs with the double
eigenvalue equal to U as given by (3.3.9-23). The error
decay is governed by r;.t’r"1 instead of p° as discussed in
section 3.3.8. So by restricting the number of

iterations, the effect of eigenvector deficiency is a
serious drawback with ©g,.. In fact, if the maximum

iteration count 1is restricted, an ® slightly larger than
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w should result in a faster convergence even though

opt

the spectral radius is larger.

In chapter 6 we shall study the eigenvectors and
elgenvalues relationship for the SOR iterative method
applied to a periodic problem and show that the standard
SOR parameter 1is not applicable for this type of
problem. Instead we shall derive the SOR parameter for

such a problem.
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CHAPTER 4

NUMERICAL SOLUTION OF
PROBLEMS INVOLVING ODES
BY USING THE GM SINGLE
STEP METHODS

4.1 INTRODUCTION

Suppose that the solution of the initial wvalue problem,

vV = fx, v, vix) =y, (4.1-1)

is approximated by an explicit single step method of the
form,
Yni1 = ¥n + h®(x,,y,ih), (4.1-2)

where vy,,; approximates y(x, +h) and let @ be the

increment function of the method.

The general explicit s-stage RK method, which is in fact
a special case of (4.1-2) may be defined as

Yo4l = ¥y + h(D(XrYFh)f {4.1-3a)
3 N
D(x,y;h) = Y wk;
i=1
kl = £ (x,y)
> (4.1-3b)
r-1
k, = £(x + c;h,y + h} ar,iki)J
i=1

with

r-1

c, = Ea];i, forr=2, 3,..., s. (4.1-3¢)
i=1

We observe that the s-stage RK method involves s

function evaluations per step. Each of the functions
k. (x,ysh), r=1,2,...,8, may be interpreted as an

approximation to the derivative y(l)(x), and the

increment function ®(x,y;h) as a weighted average of



these approximations. Note that consistency constrains
5

the conditions to } w;=1. By choosing values for the
i=1

constants a,;, W;, ¢, such that the expansion of the
" function ®(x,v:h) defined by (4.1-3b) in powers of h
differs from the truncated Taylor series expansion for
®(x,y;h) only in the pth and higher powers of h, then
the method clearly has order p-i. We have assumed that
y(x) has sufficient. continuous derivatives of at least
order p on the c¢losed interval [a,b].

Similarly, in the light of the discussion above, we may

now define the s—-stage RK-GM method by y,,; as given in
(4.1-3a), k,, r=1,2,...,5 as given in (4.1-3b), ¢, r=

2,3,...,8 as given in (4.1-3c) but the increment
function ®(x,y;h) is defined by

5
(I)(X,y;h) = ij’jdkikj ’ (4.1_3d)
1,4=1

where w; is now replaced by wij.

In the following sections we shall derive the GM single
step methods which correspeond to (4.1-2) and then the 3-
stage third -order and 4-stage fourth-order RK-GM
methods. As a further extension to the latter case, we
shall develop a new adaptive strategy based on the
combination of the new RK-GM method with the classical
RK method., Finally we show how the RK-GM methods may be
extended to systems of ODEs.

4.2 DERIVATION OF COMPOSITE SINGLE STEP GM
METHODS

Recall the initial-value problem given in (4.1-1) of the
first order QODE

y(l) = f(x’y)’ y(xo) = Yqo.

Lambert [1973] defines the class of linear single step

methods of order cone as
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yn-l-l = Yn + h‘{efn + (1 - e) fn+1} . (4.2-1)
This method has the truncation error of (in terms of 0)

Ty = (8- H)n?y® + (8- ) n’yan. (4.2-2)

This error is smallest when 9—— and hence the method is

of order 2. It is A-stable if and only if OS and the
=1 13, (3) whics B2

truncation error is 12 B ¥Ynsik The method given by (4.2-1)

is also known as the 9-method.

We define the general nonlinear single step GM method or
the composite single step GM method by

¥ne1 = ¥o T h{alf + pf,, + oVEE } (4.2-3)

where the constant coefficients o;; i=1,2,3 are to be

determined depending on the order of the method. We

shall now derive the explicit form of (4.2-3) by
determining the values of the oy, i=1,2,3.

First we introduce the notation

2 3
g _4df L df IC d’f

f = f(xf Y) r dxl dx2 dx3

By using the Taylor series expansion of f,,, about x, and

with the help of the REDUCE program for symbolic
manipulation, we obtain

2 3 4
(1) h 2y  h™ .3y  h' _(4) 5
fo=£f,+hf, 2! £, +—3! £, +57£f, +0(h7) (4.2-4)

4!
and
fofna = fﬁ{l + F} + 0% (4.2-5)
where
2 3 .
h (1) h _(2) h™ (3 h™
F==3 £, + o8 + 37 +47E 1. (4.2-6)
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On substituting (4.2-6) into (4.2-5) and neglecting
O(hq) approximations, we obtain

VE £, = £fN1+F . (4.2-7)

On expanding Vi1 + F ; we have

2
h (1) h _(2) h™ _(3)
Vi+F =f£{1 +—'2fn[fn + orfn + 3rEa ]

2) (- hy2 h 2
L AL QU (R 2o b

1/2y(-1/2)(-3/2 hy3 h 3
+i X 6)( )(_f:) [fr(]n +_2_!_f;2)] }

Therefore

2
Vi + F zfn{1+ 7 +%—[2f —(; )2]

N f;3, £, £, fél) ;
+ 35 L4 £, 0T g +3(fn)]}. (4.2-8)

On substituting (4.2-4) and (4.2-8) into (4.2-3), we
obtain

®3y,2_(1)
Yasr = Yo + (044 0y + 03)hf, + (CC2+ ?)h fa

G, %3, 3 @ O U3, 4 3
+ (P + (T pn'sy
(1yy 2 (1) {2} 1
(£) £, fa (£,7)°
+ (—ﬁ)h3{2—+2h - h
16 fn fn fn
(4.2-9)
But by expanding y,,; about x,, we have
1 5, () 1 3 (2 1 ,
¥a+1 = ¥a + hf, + Jh7E,  + ehf, +5hf . (4.2-10)
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Now by equating the coefficients of like terms in (4.2-
9) and (4.2-10) we arrive at the following consistency

conditions
2 o
N A -3 (4.2-11b)

for the method to be of order 2 accurate.

There are now two equations in three unknowns. Thus
there 1is one arbitrary parameter to choose. Therefore
the parameters of the method are obtained as

a, =0, = O
1 2 } (4.2-12)

o, = 1 - 20
and the resulting method may be written in the form
Yoer = ¥o + hlo(E, + £.,) + (1 - 20VE,£0r ] (4.2-13)
where O is an arbitrary constant.

We note that the Trapezocidal method can be deduced from

(4.2-13) by letting a=%; that is

h
yn+1 = YI] + E[fn + fn+1] . (4.2-14)
If o=0 we obtain the original GM method as
Ya1 = Yo ¥ BNEL,, . (4.2-15)

The method defined in (4.2-13) has the truncation error
given by

GM

Thoor = ¥(Xpp1) ~ Yner- (4.2-16)
The Taylor series expansion of y(x,,,) about x, is given
by

n’ n’ (2 4
Y (Xpa) =y, + hE, + 7 £+ 7L + O(hY) . (4.2-17)
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We have from (4.2-9),(4.2-1la),{(4.2-11b) and (4.2-12),

(f(l) ) 2
{1) {2) i

n’ n’
Ya1 = Yo *+ hEa + 57 £, + g 28" - (1 - 200 ——]

n

+ o(hly. (4.2-18)

Therefore, by subtracting (4.2-18) from (4.2-17) and
assuming that the method is of order 2 accurate, we

cbtain the truncation error as

(£Y)?
GM 3 1 _{(2) 1-2a__ "
Toe1 = h [—Efn + 3 r ] . (4.2-19)
Now write 2a =0, %(fn + £,41) =F, and V£, + f,,1 =G, in
{(4.2-13), then (4.2-13) becomes
Yo = ¥, + h{6F, + (1 - ®)G_,,}. (4.2-20)

By comparing the forms of (4.2-1) and (4.2-20), the
composite GM method given by (4.2-20) is nonlinear since
G, 1s nonlinear. Furthermore, (4.2-20) contains as
special cases, the Trapezoidal (0 =1) and the original
GM (0 =0) methods.

4.2.1 ACCURACY AND STABILITY ANALYSIS OF
EQUATION (4.2-20)

To recapitulate, the truncation error of (4.2-20) 1is

given as
(1,2
fr(12) (1-9) (£,7)
] ]
Toy = h |-/ + e : (4.2.1-1)
cM n’ _2)
Note that when 6=1, T,,,=-3;f, , which is the

truncation error of the Trapezoidal method. If it is

£ £

possible to make 0=1 -

w N

— . 5+ then the truncation
(f(l)
n

error Tib,fl given in (4.2.1-1) will vanish.
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Now assume that

2 fnfn
0 =1- 3 .z {(4.2.1-2)
(£, )
Next we write
(1)
n = fn'
(2) (1)
Yn = fn r
_ (fr41 — £0)
=y
(2) (2)
(Yn+l - ¥Yn )
(3)
Yn = h r
fhio fae1 _ foor - £,
h h
~ £re2 2, * £,
h2
Then
[fn+2 2f4 ¢ fn]
2
0-1-2%¢ B
3 n [fI'H'l - fn] 2 r
h
=1
3
provided
3 - 2f Mt -,
[fn+1 - fn]
2
or £, [fn+2 - 2f,, + fn] = [fn+1 - fn] ’
i.e. £, = £.fn1n- (4.2.1-3)
Now if @ = %, (4.2-20) becomes
h
Yas1 = Yo + 3 LFy + 2G,] . (4.2.1-4)
By substituting Fn=%(fn + £.,,) and G, =‘\/fnf]r1+1 y wWe
obtain
h (7
Ynel = ¥n F E[fn + ot AVEEL, ] ' (4.2.1-5)
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4.2.2 NUMERICAL RESULTS FROM USING (4.2.1-5)

Problem 1 y'!' = e %

Initial condition x,=0, y(0) =1.

+ 2,

The exact solution is y=-e ©

X, exact solution computed solution  absolute error

.10 .10951625819640E+01 GM .10951625852673E+01 .30162400221854E-08
TR .10952418709018E+01 .7239%9239220941E-04

.20 .11812692469220E+01 GM .11812692532142E+01 .53266419441053E~08
TR .11814202794575E+01 .12785614784293E-03

.30 .12591817793183E+01 GM .12591817883150E+01 .71448695996741E-08
TR .12593977281455E+01 .17149932658229E-03

.40 .13296799539644E+01 GM .13296799654082E+01 .86064428726028E-08
TR .13299546414813E+01 .20658167867241E-03

.50 .13934693402874E+01 GM ,13934693539454E+01 ,98014821757484E-08
TR .13937971767688E+01 .23526637574057E-03

.60 .14511883639060E+01 GM .14511883795676E+01 .10792259460366E-07
TR .14515642915591E+01 .25904814459039E-03

.70 .15034146962086E+01 GM .15034147136831E+01 .116231908005C0E-07
TR .15038341385534E+01 .27899311203584E-03

.80 .15506710358828E+01 GM ,15506710549976E+01 .12326813608665E-07
TR .155112985195488E+01 .29588226993498E~-03

.90 ,15934303402594E+01 GM .15934303608585E+01 .12927511672595E-07
TR .15939247831417E+01 .31030090854644E-03

1.0 .16321205588286E+01 GM .16321205807707E+01 .13443921036412E-07
TR .16326472381873E+01 .32269635713130E~-03

euclidean norm of the error :.317811E-07{(GM)
.762847E-03(TR)

Table (4.2.2a)
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Problem 2

(1)
y =

3x2

Initial condition x,=0, y(0) =1,

The exact solution is y= x3 + 1,

X, exact solution computed solution absolute error
.10 .10010000000000E+02 GM .10005000000000E+01 .49950049950044E-03
TR .100150000000Q00E+01 .49850049950067E-03
.20 .10080000000000E+01 GM .10070000000000E+01 .99206349206360E-03
TR .10090000000000E+01 .99206349206360E-03
.30 .10270000000000E+01 GM ,10255000000000E+01 .14605647517040E-02
TR .10285000000000E+01 .14605647517043E-02
L40 ,10640000000000E+901 GM .10620000000000E+01 .18796992481205E-02
TR .10660000000000E+01 .18796992481205E~02
.50 .11250000000000E401 GM .11225000000000E+01 ,22222222222224E-02
TR ,11275000000000E+01 .22222222222226E-02
.60 ,12160000000000E+01 GM ,12130000000000E+Q1 .24671052631580E~02
TR ,12190000000000E+01 .24671052631582E~-02
.70 .13430000000000E+01 GM ,13395000000000E4+01 .26061057334327E-02
TR .13465000000000E+01 .26061057334328E-02
.80 ,15120000000000E+01 GM ,150¢80000000000E+01 .26455026455026E-02
TR .15160000000000E+01 .26455026455028E~02
.90 .17290000000000E+01 GM .17245000000000E+01 .26026604973972E~02
TR .17335000000000E+01 .26026604973977E-02
1.0 .20000000000000E+01 GM ,19950000000000E4+01 .24999999999998E-02
TR .20050000000000E+01 .25000000000004E-02
euclidean norm of the error :.668875E-02(GM)
.668875E-02 (TR}
Table (4.2.2b)
Notation

GM denotes the method (4.2.1-5)
TR denotes the Trapezoidal method (4.2-14).

We note that in problem 1,

and

(L
n+l

(¥ 8]
n

(1)

. e-xn-Zh

n+2 =

e-xn-h

—X

r
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therefore

(1, 2 -2x_=2h
(Yn+1) = e n r
- -x_=2h
= (e *n) (¢" 0 Y,
1) (D
- n Yn+27

which is the conditieon to be satisfied for method

(4.2.1-5) to be competitive.

In problem 2, we have

(1)
Yna1 T 3(xn + h)z'

Therefore

()% = 9(x, + n)°.
However,

Yo = 3x,
and

) = 3(xa + 2n)2,
Therefore

W ovin = 9xa(xa + 20)2.

Hence for this problem, the condition (4.2.1-3) \is
satisfied only for h << 1.

We observe that in both problems, the GM method (4.2.1-5)
gives better results. This is because the condition
(4.2.1-3) is satisfied by the problems; especially
problem 1. Thus we have shown that the method (4.2.1-5)
is favourable for problems having the properties defined
by (4.2.1-3).
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4.2.3 STABILITY ANALYSIS OF (4.2-20)

Consider the test equation y(”

= Ay and the application

of the composite GM method (4.2-20) to this problem. The

following difference equation will be obtained,

0
Ynt1 = ¥Yp h [E(Yn + Yne1) + (1 -9) JYnle ] . (4.2,

Note that (4.2.3-1) is dependent on 0. If O=1, we

the Trapezoidal rule and (4.2.3-1) reduces to

hi
Yaur = Yo + 5 [va + vanl. (4.2

Yn+1

Write = Q,, We obtain

It
hi
0 =1+~ [1+0,]. (4.2

On solving for Q, in terms of h and A, we have

L2
2
= . 4,2
On E& (
1 f >
Absolute stability requires that
L 2
Yn+1 2
., Q = |7 <1, 4.2
Yn Inl h_l (
)

Next we consider 6=0. This reduces (4.2.3-1) to

Yorr = Yn + DAVY, V.0 - (4.2.

By writing Xiﬂ;= Qn, we obtain
n

0, = 1 + hhfQ, . (4.2

1] 2 1 [] L]
Substitute Q, =P,, we obtain a quadratic in P,
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P2 - hAP, - 1 =0 (4..2.3-8)

n

hoving two roots . given by

hli-'\/(h?uz + 4
Py, = 5 , 1=1,2. (4.2.3-9)

The conditions |Pin| <1, i =1,2, imply that

|h7t.i'\/(hl)2 +4 |< 2.

We shall now consider the cases corresponding to the
root

hA + \/(th + 4

Pip = 2 . (4.2.3-10)

There are two cases to be considered. Firstly hA is real

and secondly hA is purely imaginary.
Let hA = z, where z can be real or imaginary.

Case(l) : hA is real.

Thus we obtain the function in z as

f(z) = z + z" + 4, (4.2.3-11)

We observe that

f(z) = =z +'\/(2+z)2 - 4z

and
E ) = lz+ Ym? - 4z |
Let z = ~x for z < 0 and x > 0. Then
[£(-x)| = I-x +\/(2 ~x)% + yx |

< |—x +\J(l+x)" |

< |-x + 2 + x|.
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Hence
|£(z)] < 2 for all z < 0, (4.2.3-12)

Similarly, we obtain

1£(z)| > 2 for all z > O, (4.2.3-13)

Case(2) : z is purely imaginary.
Let z = ix where x is real. Then we obtain

f(z) = ix + V(ix)2 + 4

|ix + v4 - le
\f;2 + 4 - x2

2.

and

i
N

S
i

Hence the method is absolutely stable for hA lying on
the left half of the complex plane.

hA —-“J(hl)z + 4

By considering the root Py, = 2 and follow

a similar discussion above, we can easlily show that the
method is absolutely stable for hAh lying on the right

half of the complex plane,
Thus the imaginary axis of the complex plane is the
boundary for the region of absolute stability of the

method.

Next, we consider the stability of (4.2.3-1) when 0=

w [N
.

This reduces (4.2.3-1) to

hA
¥nt1 = Yo + ? [Yn+1 + Vo + V¥n+1¥n ] . (4.2.3-14)

¥Yn+1 2
= =0, we obtain after some rearrangement,

On writing
n

2 hA  hA hA
Qn(l _ ?) - ..3_Qn - (1 + T) = 0, (4.2-3"‘15)
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The roots of (4.2.3-15), for i = 1,2, are given as

Qn = -y . (4.2.3-16)

2(1 -‘5—)

The conditions [Q;,l <1, for 1 = 1,2, imply that

hA (h})
3 £ V4 - 73
oy < 2. (4.2.3-17)
1 -7
We shall now consider the root
nA (hA) ®
3 V V4 - 73
Q10 = .Y . (4.2.3-18)
2(1 - ?;)

As before, we need to consider two cases, firstly if hA

is real and secondly if hA is purely imaginary.
Let hA=z, where z can be real or imaginary.

Case (1) z is real,

Thus we have a function in 2z defined as

f(z) = . (4.2.3-19)

Now since 2z° > 0 for all z real, we notice that

[£(z) | < (4.2.3-20)

< 2. (4.2.3-21)
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Thus

[£(z)] < 2 for all z < 0. (4.2.3-22)
Similarly,

[£(z)]| > 2 for all z > 0. (4.2.3-23)
Case(2) z is purely imaginary.

Let z = ix where x 1is real. Therefore from (4.2.3-18), we

obtain
: 2 1/2
%% + {%; + 4}
f(z) = ix . {4.2.3-24)
1 =3

By taking the modulus on both sides, we have

: 2 1/2
S
|f(z)| = ix
1=
. . 1/2
4+§
%
1+ 5
= 2,

A similar conclusion as in the case of 6=0 follows. That

is, the imaginary axis of the complex plane 1is the

boundary for the region of absolute stability of the
method. The method is absolutely stable for hA lying on

the left half and right half of the complex plane

depending on which root is being taken as given by
- (4.2.3-26) .

4.3 DERIVATION OF COMPOSITE RK-~GM METHODS

At the beginning of this”?hapter we have defined the s-
stage RK-GM method as that given by (4.1-3a), (4.1-3b),
(4.1-3c) and (4.1-3d). From this we can derive the RK-GM

methods of various orders depending on the accuracy of
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the Taylor series being used in the evaluation of the
various terms involved,

We note that as in the case of the standard RK method,
the first-order formula involves only a single function
evaluation. Thus, the first- order RK-GM method is
identical to the Euler method, i.e.

Yp+t = ¥n + hkl

(4.3-1)
ki = £(x,,¥a) -
4.3.1 SECOND - ORDER RK~-GM METHOD
The second-order two-stage RK method is given by
h
Yner = Yo ¥ 35 [Wlkl + Wzkz] (4.3.1-1)
where
k1 = f(xn'Yn)
(4.3.1-2)

k, = £(x, + cih,y, + 25hk;).

Typical parameters for (4.3.1-1}) and (4.3.1-2) are

Cl = 1, a2,1 = 1!

Wy w, = 1.

The corresponding RK-GM method is of the form
Yne1 = ¥a + B [W1k1 + owpky + wyVkik, ] (4.3.1-3)

with k; and k, given by (4.3.1-2). The coefficients c¢,,
a,;, and w;, i=1,2,3 are to be determined so that

(4.3.1-3) will have the highest accuracy possible.

By using the Taylor series expansion of k, about (x,,y,),

we obtain
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k, = £ + ¢,hf, + a,hff,

1
+ 20’ [e)f,, + 2013588, + (ayD)°E, ]+ ...

£
- f{1-+h[Cff-+amfy

£
+ %—h(clz% + 201858,y + 8y ff,) ]+l (4.3.1-9)

where for simplicity, we have denoted f=f(x,y),
fu=f,(x,y), Ey=f (x,¥), L =fy(x,¥), f,=f,, (%X,¥) and

fy=fﬂjx,y) for all {(x,y) in the domain of integraticn.

b

Now
£ d
2 1 2
kik, = £ {1 + h[c:l—f21 + anf, + Eh(r.:l a
+ 2¢1a5F,, + a5 ff,) ] 1+ (4.3.1-5)
By letting
fX
g, = clh?; + a hf,
f
1 2
+ 50% [ 2% + 2013, 8, + a,’ff, ], (4.3.1-6)

we obtain

Therefore after simplifying and rearranging (4.3.1-7),
we have

X,k
g1=—;;2~- 1. (4.3.1-8)

Now recensider the RK-GM method (4.3.1-3) and after
substituting (4.3.1-7), we obtain

Ype1 = ¥, t h I:wlk1 + wk, + wyfVl + gy ] . (4.3.1-9)

Note that by substituting (4.3.1-6) into (4.3.1-4), we
have
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From (4.3.1-7), we obtain

Vkk, = £[1 + 2 g, (4.3.1-11)
or
h f
vk, = £{1 + Jled + agt,
b (e 2 e,,) 1}
+ohic” 7+ 2canty, + ay ff, . (4.3.1-12)

Hence on substituting (4.3.1-4) and (4.3.1-12) into
(4.3.1-3) and after some simplification and

rearrangement we arrive at

Yne1 = ¥n + (wl + Wy + W3)hf
f
1 2 X

+ (W2 + 5w3)h £ {Cl £ + a_,_,lfy

fxx

+ 20 {c,® T2 + 2cia,f,, + a, ff,,) }. (4.3.1-13)

Now the Taylor series expansion of y({x,,1) about x, is
given by

2
1 h™

Ynelt = ¥n T hyri ) + E_Yn) + O(ha) . (4.3.1-14)

Since
1y _

y = f(x,y), (4.3.1-15)

then
h2
Ynir = ¥a + hE + [ + £y ]
h3 2
+ o [fa + 285 + £,£, + £E, + ££,1. (4.3.1-16)

By equating (4.3.1-13) and (4.3.1-16) we obtain,

coefficient of hf : w; + wy + w3 =1 (4.3.1-17a)
coefficient of h’f, : (w, + %w;;)cl =% (4.3.1-17b)
coefficient of h’ff, : (w, + %w3)a2‘1 - % (4.3.1-17¢)

Assume w; #w3#0, then we obtain
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Cy = ag‘l = "]'-' ’ (4.3.1—17d)
B
for an arbitrary constant PB.
By substituting c1='§ into (4.3.1-17b) and rearranging
we obtain
2wy, + wy = P. (4.3.1-17e)

Now solve the simultaneocus equations (4.3.1-17a) and
{(4.3.1-17e) for w,, w; and w3, to obtain

wp =1 -0
w, =B - o (4.3.1-18)
W3y = 200 - B

for some arbitrary constants o and f.

Thus, the general second-order 2-stage RK-~GM method for
some arbitrary parameters © and f is given by

Vo1 =Va+h[(L=a)k, + (B- o)k, + (200 = Byykik, 1, (4.3.1-19a)

where

ki = £(x,¥)

{(4.3.1-19b)

1

5 -

and p=

As o and B are arbitrary constants, there are infinitely

many formulae that can be derived from (4.3.1-19a) and
(4.3.1-19b) . One choice of P which tends to involve less

work is 2. This results in the RK-GM formula of the form
Vary = Vo +h[(1 —0)k, + (2 -0k, + 2(0 — 1)k k, ], (4.3.1-20a)

where
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ky

f(x,, Yn)
(4.3.1-20b)

1 1
f(x, + 5 h, y, + 5 hk,)

k, 5

Now (4.3.1-20a) can be written in a more compact form to

give
Ymor = ¥a +h [ (1 =@ (Vky - Vk;)2 + k] . (4.3.1-20¢)

Thus, if =1, we obtain the formula
Yns1 = Yo + hky, ' (4.3.1-20d)

where k, is given in (4.3.1-20b) above.

Rnother reasonable choice of B is to set P=1. Hence from

{4.3.1-1%a) and (4.3.1-19b) we obtain another form of
the RK-GM formula, which is given by

Voe1 = ya+h [ (L —0) (X + ko) + (200 - 1)Vkaks ], (4.3.1-20e)

where

kl f(xn,yn)
(4.3.1-20f£)

k, f(xn + h, y, + hky).

]

Note that the classical RK method of order 2 can be

deduced from (4.3.1-20e) by setting (1=%’to obtain the

formula

h
Yoe1 = ¥Yp F 5 (kl + kz) . (4.3.1—209’)

If we set =1, we shall obtain the original RK-GM

method of order 2 given as
Ynt1 = ¥n + h k1k2' (4.3.1“"201’1)

with k; and k, as defined in (4.3.1-20f) above.
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Table (4.3.1) below lists some of the formulae that can

be derived from (4.3.1-19a) and (4.3.1-19b} for various
values of o and B.

o = 0 Yoer = ¥ + BL(VKy = Vk2)? + Vkk, 1,
ki = £(Xn,¥n) 1 ke = £(x,+h, yathkq) .

I?’= 1 a =1 Yn+1 = ¥a T hvkik;
(4.3.1-20e) 1 (4.3.1-20n) | X1 = £(Xn,¥n) ko = £(x,+h, y,+hk;) .
1 h
o =73 Yne1 = ¥Yn + 2 {ky + k21,

(4.3.1-209) [k, = £(Xn,¥n) k2 = £(Xp+h, yathk,y).

Yos1 = Yo + hl[(Vk, - \(kz)z + ki1,

ki = £(Xn,¥n) ko = £(x,+h, y,+hk;) .
_ = _ 2
(4.3.1-20a) o = % Yos1 = ¥n + h[(Vk; Vi) ? + 2k, 1,
ki = £(Xn,¥n) k> = £(x,+h, y,+hk,) .
- h o« =1 Yne1 = ¥a t+ hka,
R -3
(4.3.1-204)

ki = £(Xn,¥n) 1ks = £{Xa+h, yo+hky) .

Table{(4,3.1) :Two—-stage second-order RK-GM ‘-F-ormulae.

4.3.1.1 ERROR ANALYSIS FOR THE SECOND- ORDER
METHODS -

Consider the second-order RK-GM methods derived in
Section 4.3,1. By using the definition o¢f the 1local
truncation error of a method, we therefore ocbtain the
local truncation error of the second-order RK-GM methods
as given by the difference between (4.3.1-16) and

{(4.3.1-13). Thus we have the desired local truncation
error T, as

3
h 2
Toer = (2w + w3)T5{ (3¢] = 2)f4u + 2(3ciay — 2) £fyy
+ (335, - 2)£°6,, - 2(E + £E)E, ). (4.3.1.1-1a)
We note that given a specific problem, the truncation
error T,,, is dependent on the method used. In other

words, for a particular function f and its derivatives,
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Tnsy 1S totally dependent on the parameters of the methed
used, namely the w; , i=1,2,3; ¢; and ap;.

Now, by wusing (4.3.1-17d) and (4.3.1-17e), we may
simplify (4.3.1.1-la) to obtain

3
B 3;1_2{ (3p7! - 2)G6 - 2Ff,}, (4.3.1.1-1b)

n+l

where

F = fy + £f,
and (4.3.1.1-2)

2
G = Fyx + 2£f,, + £ f,y.

I

In section 4.3.1, we have derived two classes of the RK-
GM methods, In this section we shall discuss their
respective 1local truncation errors. First, we shall

consider the local truncation error of (4.3.1-20a) which
can be deduced from (4.3.1.1-1b) by substituting B=2 and

is therefore given by

3
72 = - 2{c + arg,} . (4.3.1.1-3a)

Next, if we substitute P=1 in (4.3.1.1-1b), we shall

obtain the truncaticn error of (4.3.1-20b), which is
given as

3
) = B¢ - 2rg,}. (4.3.1.1-3b)

We observe that the difference between the two local

truncation errors is

(1) (2)
T = Th1 = Trere

[

or T 24 G (4.3.1.1-4)

where G is given in (4.3.1.1-2).
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Now T is positive provided G=f,, + 2ff,, + f2fyy is
2)

positive. Thus T;?I is always greater than T;+1 for
positive values of G. In other words, formula (4.3.1-
20e) will be less accurate than formula (4.3.1-20a) when
applied to a function £ such that G is always positive
in the interval of integration.

From (4.3.1.1-1b), we can deduce the principal error
function for the general second-order RK-GM method as

¥z, y) - o5 { BB - 236 - 2rf, ). (4.3.1.1-5)

By folleowing an argument originally suggested by
Lotkin[1951)], we can find a bound for ¥(x,y), if we

assume that the following bounds for f and its partial
derivatives hold for xe€[a,b], Y€ (—oo,e0):

Pi+j

I (x, v)
X< o ,i+3<p, (4.3.1.1-6)

dx’ay?

1 £(x, ¥y} < Q,

where P and Q are positive constants, and p is the order
of the method. In this case, we have p= 2. Hence using
{(4.3.1.1-6), we obtain the following:

| £,] <P

IE|

| £« + ££,]| < 2PQ (4.3.1.1-7)

I

161 = | £ + 288, + £2£,,| < 4p%.

By substituting (4.3.1.1-7) into (4.3.1.1-5), we obtain

l¥,p | <3013 -2 +1]9%, (4.3.1.1-8)

and the bound for the principal local truncation error
as

¥, pn®l < 2[1+ [ 387 - 2] Ine. (4.3.1.1-9)
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However, Henrici[l1962)], shows that the bound for the

principal local truncation error is also a bound for the
whole 1local truncation error T,,;, even though the

assumptions on the bounds for f and its partial
derivatives are different from those of (4.3.1.1-6).
This is a consequence of the fact that the RK method is
a single-step explicit method (Lambert[1273]). Thus we
may write instead of (4.3.1.1-9),

| Tosa | < %[1 + |3p? = 2| In’pi0. (4.3.1.1-10)

Hence the bounds for the methods for P=1 and B=2 are
respectively obtained from (4.3.1.1-10) as.

(1)
Tn+1

N
L
LX)

< T h'PQ (4.3.1.1~-10a)

w

and

(2)

Tn+1 <

h™P Q. (4.3.1.1-10b)

N =

Alternatively, the bound for the local truncation error
can be found by the well known approach of Bieberbach;

where, in the neighbourhood of

]X-X0|<A, IY“‘Y0|<B

we have

I (x, v)

f 4 < r
[£{x, )] < Q ax'y)

Q (4.3.1.1-11)

|« - % |N <1 and BaQ < B.

Thus the bound feor the 1local truncation error of
(4.3.1.-1%9a) 1is given by

3
| Tasr | < h? NQ(1 + N). (4.3.1.1-12)

However, Lotkin showed numerically that the approach
adopted in Lotkin[1951] gave a sharper bound than that

adopted by Giehirhack{ Lambert T1a331),
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4.3.1.2 NUMERICAL RESULTS

Problem: y'*'(x) = e™*.

Initial condition x, = 0, y, = 1.

Exact solution y(x) = -e* + 2,

The three formulae used are as follows:

h
A (@==1, B=2) y.1 = ¥a + 20140k, + 23k, - 43 Vkk; }

B) (0t=0, B=1 (RK Method)) ¥pni = ¥, *+ %{k1 + Ky}

¢) (a=1, =1 (Original GM)) vy, = ¥ * Vkik,

In Table (4.3.1.2a) we list the errors at the end point
of the computation for each formula derived from (4.3.1-
19a) . Table (4.3.1.2b) compares the results of using the
second-order two-stage RK-GM method(A), the classical
second - order two—-stage RK method(B) and the original
second~order two—stage RK-GM method(C). For the given
problem, the RK~GM method(A) has the least error as
compared with the other two methods despite it being
computationally expensive to use as we can see from its
form. Howewver, as the results show, the RK-GM method(A)
may be useful if we require good accuracy by using only
a low-order method.

Parameters of
formula (4.3.1-19a) Results at x, = 1.00
Numerical solution Error at x|
o B at xn en = y(xn) - yn
0 1 .1573158E+01 . 5896286E-01
0 2 .1572094E+01 .6002608E-01
1/2 1 .1572443E+01 .5967767E~01
1/2 2 .1571911E+01 .6020928E-01
1 1 .1571728E+01 .6039248E-01
1 2 .1571728E+01 .6039248E-01
-1 1 .1574587E+01 .5753324E-01
-1 3/4 .1576344E+01 .5577667E-01
-1 1/2 .1580607E+01 .5151320E~-01
-1 1/4 .1598490E+01 .3363025E-01
-1 3/20 .1631026E+01 .1094983E-02
-1 1/8 .1649765E+01 .1764405E-01

Table(4.3.1.2a): Numerical results from two-stage second-
order RK-GM Formulae
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Xp Exact Solution Numerical Sclution Error

.10 .1095163E+01 .1094998E+01 (A) .1648442E-03
.1086286E+01 (B) .8876563E-02

.1086071E+01 (C) .9091785E-02

.20 .1181269E+01 .1180955E+01(A)  .3140015E-03
.1164361E+01 (B) .1690841E-01

.1163951E+01 (C) .1731837E-01

.30 .1259182E+01 .1258733E+01 (A) .4489645E-03
.1235006E+01 (B) .2417592E-01

.1234420E+01 (C) .2476210E-01

.40 .1329680E+01 .1329109E+01 (A) .5710842E-03
.1298928E+01 (B) .3075184E-01

.1298183E+01 (C) .3149745E-01

.50 .1393469E+01 .1392788E+01 (A) .6815826E-03
.1356767E+01 (B) .3670198E-01

.1355877E+01 (C) .3759186E-01

.60 .1451188E+01 .1450407E+01 (A) .7815656E-03
.1409102E+01 (B} .4208589E-01

.1408082E+01 (C) .4310631E-01

.70 .1503415E+01 .1502543E+01 (A) .8720341E-03
.1456457E+01 (B) .4695745E-01

.1455319E+01 (C) .4809598E-01

.80 .1550671E+01 .1549717E+01 (A) .9538933E-03
.1499306E+01 (B) .5136542E-01

.1498060E+01 (C) .5261083E-01

.90 .1593430E+01 .1592402E+01 () .1027963E-02
.1538076E+01 (B) .5535392E-01

.1536734E+01 (C) .5669603E-01

1.00 .1632121E+01 .1631026E+01 () .1094983E-02
.1573158E+01 (B) .5896286E-01

.1571728E+01 (C) .6039248E-01

Table(4.3.1.2b) :Results obtained from selected RK-GM

formulae

4.3.2 THIRD -ORDER RK-GM METHOD

The standard third-order RK method for the problem (4.1-1)
maylbe given by

3
Yo+l = ¥n + hizlwﬁci, (4.3.2-1)

where
ki = £(xXns¥n)
k2 = £(xptcih, yntay hky) (4.3.2-2)
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A typical set of parameters used for the standard third-
order RK methed is

1 1 A
C1=2; az,]_"'zr

Cz = 1, a3’1 = '-1’ a3)2 = 2] > (4-3.2“"’3)

L 2 1
Wy 67 W2=3r w3=6' y,

Thus we may write (4.3.2-1) as
h
Yari = ¥a + gLk1 + 4ko + k3], (4.3.2-4)

The corresponding third-order composite RK-GM method may
be defined by the formula

Yarr = ¥ + B [wiVkiks + wVkoks + wavksky

+ ngl + W5k2 + W5k3] . (4-3-2"5)

where w;, 1=1,2,...,6 are to be determined so that the
method is third-order accurate and the kyj; i=1,2,3 are

as specified in (4.3.2-2) above.

The Taylor series expansion of y,.; about x, is given by

2 3
(1) h™ (2 h™ 3
Yol = ¥o + By, + 5y, o+ gva + O(RY), (4.3.2-6)
where
(1) 2

Y = £, Y()=fx+ffyr W

vy = £ + 2£f,, + £2£,, + £4£, + ££,
and

) 2 frux + 3Efny > (4.3.2-7)

+ 3fxfyy + SEE,F,, + 3££,f,
2 2
+ 3E%E,,y + AETE Ey, + fyfy,

v Exf + ££. + £y
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Now expand k, and k; in (4.3.2-2) using the Taylor series

expansion of a function of two variables and substitute
the results in (4.3.2-5). Then use the REDUCE program to
expand and obtain the right-hand side of (4.3.2-5). The
left-hand side of (4.3.2-5) 1is given by (4.3.2-6).
Hence, by equating the corresponding terms of the left-
and right-hand sides of (4.3.2-5), we obtain the
following results:

Mo

coefficient of hf: wy =1,

i=1

coefficient of hzfx: -;— [cl(wl + Wy + 2ws)

+ co{wy + wy + 2W5)] =%
coefficlent of hszy: ‘;— [32,1(W1 + wy + 2wsg)
+ (8.3,1 + asz) {(wy + w3 + 2W6)] =%
coefficient of h3fxx: % [ci(wl + wy + 2ws)
+C§(W2+W3+2W5)] =%
1
coefficient of haffxy: > [clagl(wl + wy; + 2wsg)
+ 5 (a3,1 + a3’2) (wp + wy + 2W5)] =%
1] [} 3 2 l 2
coefficient of h'ff,: Y [az'1 (Wi + wz) - Zapnapw
- 2a2’1a3;(3w2 + 2wi + 4dwg)
2 = 1
coefficient of hafzfyy: % [ai’l(wl + Wy, + 2ws)
+ (a3’1_ + a3J2)2(w2 + w3y + 2W6)] =;61’
coefficient of h3fxfy: —% [claz)l (W + wy) — cianw,
- Craz; Wy -— C1a3'2(3W2 + 2w3 + 4dwg)
+ cylagp; + azp) (wy + wy) ] = %
£x
coefficient of ha?: -% [ci(wl + wy) = 2cicows
2
+ co{wy + W3)] =0
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Hence the resulting equations of condition are obtained
as follows:

6
Xw =1
i=1
cylwy + wy + 2W5) + co(wy + w3 + 2W6) =1
a2,1 (wy + wy + 2W5) + (a3,1 + a32) (wy, + wy + 2W5) =1
2 2
Cl(wl + wy + 2W5) + CZ(WZ + w3 + 2W5) = ':';"
2
Claz,l (wy + wp + 2W5) + Co (a:;}l + 332) {(wo + wy + 2W5) = 5
2
as (wy, + wp) - 28.2,18.3’1W2 - 2&12,1832 (3w, + 2wy + 4wg)
2 4
+ (a3'1 + a3)2) (W2 + W3) = -5
2 2 2
as, {wy + wy + 2wsg) +(a3}1 + 632) (wy + w3 + 2wg) = 3
ciazi(wy + wp) - ciamnwy, - Cranw,
2
- Ciaz (3w, + 2wy + 4dwg) + ©5 (a3’1 + 8.3}2) (ws + w3) = —5
2 2
cy(wy + wy) = 2cicowy + Co(wy + w3) = 0

Recall the general s-stage RK method defined by (4.1-
3a),(4.1-3b) and (4.1-3¢). We may choose the ¢y to

cover the step interval while the a;y°° be some simple
(preferably linear) combination of the c¢;° .. Now setting
€;=az and c; =az +aszp in the preceding set of equations
reduces those equations to a set of linear equations of
the form

Mw = b, (4.3.2-8)
where
T
w = (Wy,Wy,W3, Wy, Ws,Wg),
2 4 2
b’ = (1,1,%5-3,~5/0)
and

M= (mij), fOJ.’.‘ i'j = 1,2,.--,6-

Hence the system of equations (4.3.2-8) may be solved
for w in terms of the ajy and c¢; =.

To $implity further the method to be derived and hence
obtain a method which is computationally competitive, we
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may choose the ajjy'  and ¢; . such that az = c1==%, -ag3 =
c; =1 and as; = 2. This leads to solving the system of

equations of the form

Mw = b, (4.3.2-9)
where
-1 1 11 -
2 0 1
N
M=l 2 3 0 0 -8
-5 T -3 0 0 -4
L+ 7 1 00 o0 _

Using the REDUCE program for algebraic manipulation the

solutions of (4.3.2-9) are cbtained as

'\
wWs = 0O, Wg = 0Oy

1

wy = g4 - 90; + 120;]
1

wp = g4 - 30, - 120;] > (4.3.2-10)
1

wy = gl30y - 2]

1
wp = 5[0 = 20;] J

where O; and O, are some arbitrary constants.

' . 2

obtain the standard RK method of order 3. The general

composite RK-GM method for the particular choice of the
as;" and ¢;'s 1s obtained as

Yorr = ¥a + b [wiVkiky + woVkoks + wiVksk;

+ wyky + wsky + W6k3] (4.3.2~11)

where wy, 1i=1,2,...,6 are given by (4.3.2-10) and
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ki = £(Xn,¥n)

h 1
ky, = f(xn+5,yn+5hk1) {(4.3.2-11a)
k3 = f (x,+h,y,+h (2k-ky)) .

For ws =wg =0, that is o; =0, =0, we have the RK-GM
method given by the formula

ymr = vo + 2(2 (Wiaks + Vioks ) - Vkaks 1, (4.3.2-12)

and the k;' are as specified in (4.3.2-1la).

4.3.2.1 ERROR ANALYSIS OF THE THIRD- ORDER
RK-GM METHOD

Consider the third-order RK-GM methods derived in
Section 4.3.2. By definition, the local truncation error
of the method is given by the difference between (4.3.2-5)
and (4.3.2-6) such that the method is third-orderx
accurate. By using the REDUCE program, we obtain the
local truncation error of the RK-GM method (4.3.2-12) as

b Efyfy — £xf) + fufyy

4

h 2
Thus the method defined by (4.3.2-12) is third-order
accurate. This is shown numerically by the results given
in section(4.3.2.2).

4.3.2.2 NUMERICAL RESULTS

Problem y'!' = -¢7*

Initial condition x5, = 0, yo = 1.

For values of x in the interval 0 £ x £1.

Table (4.3.2.2) compares the results of the numerical
solutions of the problem obtained by using the RK-GM
method (4.3.2-12) and the c¢lassical RK method (4.3.2-4).
Both formulae are of the third—order)three—stage)Runge—
Kutta class type of method. The numerical results show
that the RK-GM metheod may give better results than the

standard RK method for a certain class of problems,
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.10

.20

.30

.40

.50

.60

.70

.80

.90

Exact Solution

.9048374E+00

.8187308E+00

.7408182E+00

.6703200E+00

.6065307E+00

.5488116E+00

.4965853E+00

.4493290E+00

.4065637E+00

.3678794E+00

Numerical Solution

Table (4.3.2.2):Comparison of (A)

.9048337E+00 (A)
.9048333E+00 (B)

.8187240E+00 (A)
.8187234E+00 (B)

.7408090E+00 (A)
.7408082E+00 (B)

.6703090E+00 (A)
-6703079E+00 (B)

-.6065181E+00 (A)
.6065170E+00 (B)

.5487980E+00 (A)
.5487968E+00 (B)

.4965709E+00 (A)
.4965696E+00 (B)

.4493141E+00(A)
.4493127E+00 (B}

.4065546E+00 (A)
.4065531E+00 (B)

.3678643E+00 (A)
.3678628E+00 (B)

Error

.3735045E-05
.4084703E-05

.6759204E-05
- 7381967E-05

.9173952E-05
.1003277E-04

.1106789E-04
-1210401E-04

.1251828E-04
.1369017E-04

.1359238E-04
.1486482E-04

.1434868E-04
.1569191E-04

.1483793E-04
.1622637E-04

.1510413E-04
.1651808E-04

.1518528E-04
.1660682E-04

RK-GM formula

(4.3.2-12) and (B) RK formula (4.3.2-4).

4.3.3 FOURTH—-ORDER METHOD
The standard fourth-order RK method for the problem
(4.1-1) may be given by

where

A typical set of parameter values for the
fourth-order RK method is

4

Yn+l = Yo t higlwikir

k1 = £(Xn,¥n)

ky = £(Xa*+C1h,ynot+azhk)

k3 = £(xptcoh, yotazghki+asyhka)
kg =

€1 = C2 = an = azp <~

a3,1 = a4,1 = aq; = Or

1

= f(xn+c3h,yn+a4,1hk1+a4,2hk2+ag,3hk3) . S

5:
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(4.3.3-2)
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C3=a413— 1,

Wi = Wy =

Wl o=
-

Wo = W3 =

Thus, we obtain the standard RK method of the form

h
Yo = ¥n + glki + 2(kz + k3) + k] (4.3.3-3)
where
ky = f(xn!Yn) h
1 1
ko = f(xn+5h,yn+5hk1)
> (4.3.3-4)
1 1
ky = f(xn+5haYn+-§hk2)
ky = £(xpth,y,thky) . y

We shall define a fourth-order composite RK-GM method by

the formula

Yar1 = ¥a + h[mvkik, + waovkoks + wavksk,
+ Wqqukl + W5\)k4k2 + WGVk4k3

+ wik; + wgks + woky + Wlokq] ’ (4.3.3-5)

where the k;; 1=1,2,3,4 are specified in (4.3.3-2). The
wi, 1=1,...,10 are to be determined so that the method

is fourth-order accurate.

Next set the following parameters

N =

Cl=C2=a2’1=a3’2=

a3,1 = a4; = a4)2 = 0 (4-3-3—6)

so that the ki, i=1,2,3,4 of the RK-GM formula are the
same as those of the AM formula (4.3.3-3).
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Then use the Taylor series expansion of the k;, 1i=

1,2,3,4 and the REDUCE program to expand the square root
terms of (4.3.3-5). By equating like terms of the left-
and right-hand sides of (4.3.3-5), we obtain a set of

equations which can be written in matrix form as
Aw = b, (4.3.3-7)

where A is a 16 by 10 matrix of the form,

1 1 1 1 1 1 1 1 1 1
1 2 1 2 3 3 0 2 2 4
1 2 1 4 5 5 0 2 2 8
-1 4 3 4 7 11 0 0 8 16
-1 2 1 0 3 5 0 0 4 8
3 0 -5 8 9 9 0 0 o 32
i 2 1 8 9 9 0 2 2 1o
| 1 o -3 8 11 15 0o 0 0 32
A=l . 2 1 0 5 7 0 0 4 16
-1 4 3 4 9 13 0 0 8 24
-1 4 3 8 13 17 0 0 8 32
-1 6 5 12 17 23 0 0 12 40
-1 2 1 -4 1 3 0 0 4 8
3 0 -1 8 1 5 0 0 0 0
1 0 1 4 1 1 0 0 0 0
- 1 0 1 8 3 3 0 0 0 0-
b is a column vector of the form,
b = (1,2,4,28,4,16 4,18 4,20 4328 5 0,0)
and
T= )
w = Wir W2, W3, Wy, W5, Wg, Wy, Wg, Wy, Wig -

Premultiplying both sides of (4.3.3-7) by a’ gives
T T
A'Aw = A'’b = d, (4.3.3-8)

where B=A"A is now a 10 x 10 square matrix. Hence the

set of equations 1s now of the form
Bw = d, (4.3.3-9)

which; upon using the REDUCE program, produces the
following results

155



. _ — _ B
Wg = Qp, Wg = O, Wy = 0Oy, Wi = Wy

wy = £1-120; + 3(0y - @) + 2]
Wy = 405 - O — O > (4.3.3-10)
Wy = g[=120; = 3(0y = @) + 2]

1
wg = 3[60z = 1], w5 = w, Wg = W3
where ¢, O and O are arbitrary constants. The choice
of Gy, O and o, will now determine the method.

Thus the standard RK method (4.3.3-3) can be easily
deduced by setting wi=w;=wi=w; =0 in (4.3.3-10), that

and o, = i,

is when ao=a1=l 5

3

The general composite REK-GM method may now be defined by
(4.3.3-5) with the k;, 1=1,2,3,4 given by (4.3.3-4) and
the wy, 1=121,2,...,10 given by (4.3.3-10).

By letting wy=wg=wsg=0 in (4,3,3-10), that is when 04 =

0, 1i=0,1,2 we obtain a typical RK-GM method which
corresponds to the standard RK method (4.3.3-3). This
particular RK-GM method is given as

h
Ynt1 = ¥n *+ ‘3'[(\[1(1 + Vka) (Vk2 + Vk3) - Vkike 1, (4.3.3-12)
where the kj;, 1=1,2,3,4 are defined in (4.3.3-4).

Note that we are free to set the constants c; - and asj

in (4.3.3-6) and hence obtain other forms of the
composite RK-GM methods. The aim here is to obtain a RK-
GM method which corresponds to the standard RK method
fer whiththe application will be shown to be of some

importance.

4.3.3.1 ERROR ANALYSIS OF (4.3.3-12)
In the derivation of the fourth-order RK-GM method

(4.3.3-5) we have used the Taylor series expansion of
Yn+1 about x, up to and including the terms of O(hs). Thus

we may write
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(1)

h? {2)

Yne1=¥n thy, +5 vy, +

n’

6

{3)
n

4

24 ¥n

5
Qﬁ (49 , h™ 5

+120 ¥a -(4.3.3-13)

By differentiating (4.3.2-6) again, we obtain

(3)
y

= Fuox * Efxxy * 3 [ Exfxxy + £EyFuxy + Efuxxy + £ Fyxyy)

+ 3 [fxxfxy + f(fxy)z + fxfuxy + ffxfxyy]

+

+

+

5 [ £,y fxy + £(E)  Ey + £(Eip)?

3[(£0)%Eyy + EELE,Eyy + E£Exxfyy

2 2
+ £y + Efyfaxy + £ EyExyy]

+ £, fy + EE.Ery + £ ExEyyy]

2 2 3
3[2Fffuyy + 2E°F,Fuyy + Efxuyy + £ Exyyyl

4 [2F5,8,8,y + E2E 0 fyy + £ 6 Exyy

+ 2(£E) 2 Eyy + B (£ + £E ]

[ £xxfuy + Efaxfyy + Exuxfy + EEyfany ]

[Eax(£)% + £,y (£)2 + 2£4E,F, + 2E£,E,,]

[£.(£)> + £(£)° + 3£(£) %5,y + 3(££,) %8, ]

2 3 3 4
[ 3£ Exfyyy + 3L Eyfyyy + £ fyyyy + £ fyyyy]f

2
= Luxxx t 4ffxxxy + 6fxf:n:xy + 9ff),'f:.:ncxy + 6f fxxyy

+ AfEyy + B8E(f,)° + 12£6,f,., + TE Ly Ly

+ 9F(£,) 2 Ey + 12£286, F,, + ISE2E,E,y + 3(£4) %L,y

+ 13££,E,Eyy + 8EEfyy + 6£ 6, Epyy + 4E Eupyy

-2 3 2 PR
+ 1L(FE) Eyy + 4E7 (£y)° + TEEyEyyy + £yfypy

+ Ea(E)? + £ (£ + (£t + £
'

Hence by using the REDUCE program,
error of (4.3.3-12) is obtained as

where

l:r-‘n+1

h5

© 23040¢°
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(4.3.3-14)

the local truncation
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H = [8£'f,,,, + 16£°,f,,, ~ 108£°¢,,% + 32£%F,,,,

+ 4BE°E,f ., + 228F°£,7f,, - 384L°f, £, + 48£°f,..,
+ 384 F,£,, - 5T6E F,Fuuy + 968 Fyfyyy -267£°F,"°

+ 72€°€%F,, + 528f'F, Fay - 168E'E,f,,
~ 336£ " + 32f'Fy + 204F°F,°Fy

- 3128°F,£,° + 96 E Fyfyy, + 48 F,Fyyy
- 128787 F 0 32£°F Fupx 288 F,Ey,

+ 8 fypx — 3I0£°EE7 + 120£°£,7° £,

- 60f£%f,,7 + 60ff, f, ~ 1581 ] .

4.3.3.2 NUMERICAL RESULTS

Problem

Exact solution yv = e

(1)

y + vy = 0.
Initial condition x, = 0, y, = 1.

=X

Sclution domain [0,1].

X,

Exact Sclution

Numerical solution

Relative Error

. 00 .1000000E+01 .1000000E+01 0
.10 .9048374E+00 (A).9048375E400 .5998097E-07
(B) .9048375E+00 .4302973E-07
.20 .8187308E+00 (A) .8187310E+00 .1136851E-06
(B) .8187309E+00 .B155651E=-07
.30 ., 7408182E+00 (A) ,7408185E+00 .1612057E-06
(B) .7408184E+00 .1156473E-06
.40 .6703200E+00 (A) .6703204E+00 .2026952E-06
(B) .6703203E+00 .1454114E-086
.50 .6065307E+00 (A) .6065310E+00 .2383607E-06
(B) .6065309E+00 .1709975E-06
. 60 .5488116E+00 (A).5488121E400 .2684584E-06
{B) .5488119E+00 .1925892E-06
.70 .4965853E+00 (A) .4965857E+00 .2932861E-06
(B) .4965856E+00 .2104004E-06
.80 .4493290E+00 (A) .4493294E+00 .3131760E-06
. (B) .4493293E+00 .2246692E-06
.90 .4065697E+00 {A) .4065701E+00 .3284863E-06
{B) .4065700E+00Q .2356527E-06
1.00 .36787%4E+00 (AR) .3678799E+00 .3395930E-06
(B) .3678798BE+00 .2436205E-06

(4.3.3-12)

Table (4.3.3.2):Results from (A) RK-GM formula

and (B) RK formula (4.3.3-3).
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From the numerical results we observe that both the RK-
GM method (4.3.3-12) and the RK method (4.3.3-3) are

comparable; they have the same order of accuracy.

However, the RK-GM method involvegmmore work which is
required for the evaluation of the tefgg-éoﬂféiﬁing
square roots. Nevertheless, we may combine the two
methods to form an embedded formula with error control
strategy. This is discussed and illustrated in Evans and
Jayes[1990] and in section 4.4.

4.3.4 STABILITY ANALYSIS FOR THE RK-GM
METHODS

In this sgection we shall endeavour to investigate the
absolute stability property of the RK-GM methods
developed in the preceding sections. To accomplish this
objective we shall determine the region of stability of
the various RK-GM methods.

The first—-order method in the class of RK-GM formulae is
identical to the Euler method. We shall therefore omit
the discussion of its stability property since it has

been given earlier in section 3.2.3.

We shall now consider the stability property of the

second-order, two-stage RK-GM method. By applying the
standard test problem y =Ay to (4.3.1-1%a) and (4.3.1~

19b), we obtain

ky

I

Ay,
(4.3.4-1)

kp = A(1 + p2)y,

Vorr = ¥o{l + z[w;, + wy(1 + pz) + w3'\f1 +pz 1} (4.3.4-2)

where z = hA, p = 7 and B is an arbitrary constant.

1
p

From (4.3.4-2), we obtain the polynomial Q(z) as
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Yn+1

Q(z) = v,

=1+ z[w + w,(1 + pz) + w1 + pz ]. (4.3.4-3)

Now by substituting the wvalues of w; for 1 = 1, 2 and 3
given in (4.3.1-18) into (4.3.4-3), we obtain

Q(z) =1+ [1+B - 2a]z + [1-E]z2

B
+ [2a - Blz[1 + E] 12 (4.3.4-4)
Note that we may write (4.3.4-3) in the form
Q(z) =1 + z + 0(z9). (4.3.4-5)
and

Hence for sufficiently small positive z, Q(z) >1 [ we may
conclude that the interval of absolute stability has
the form (6,0). Moreover, if the two-stage method
possesses order two, then (4.3.1-18) holds and (4.3.4-3)
yields (4.3.4-4).

We observe that if w;=0, O = % and B = 1, then the RK-

GM method reduces to the classical RK method of order
two. The stability polynomial Q(z) is now independent of
the coefficients of the method. QOtherwise, we will
always have Q{(z) determined by the values of the
parameters o and B as indicated in (4.3.4-4) . Thus the
plot of Q(z) against z 1is always established by the
parameters o and P of the method. However, in every case
the plot of Q(z) against 2z reveals that |Q0(z)] <1
whenever ze (§(a,[B),0). Hence in general, the interval of

absolute stability of the second-order, two-stage RK-~GM
methods is governed by the parameters o and J.

To illustrate this we shall consider the stability
property of two second~order, two-stage RK-GM methods
derived from the set of parameters o = -1, B = 2 and o=

20
1, B = 1.
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For « = 1 and B = 1, we have the RK-GM method given by

Yo+l = ¥ + BVK Kk (4.3,4-6)

where
ki = £(x,,v,)
(4.3.4-6a)
k, = f(x,+h,y,+thk,)
and for o = -1 and B = é% the corresponding RK-GM method
is
h
Yas1 = ¥a * 39 140k, + 23k, - 43vkk, } (4.3.4-7)
where

k, f(x,,¥,)

20 20 (4.3.4-7a)

k, = £(x,+5 h,y,+5 hk;)

Now by applying the test function y“J = Ay to (4.3.4-6)

and (4.3.4-7), we obtain the respective stability
polynomials @, (z) and Q,(z) as

case 1 : Q;(z) = 1 + zV1 + z (4.3.4-8a)

and
case 2 : Q(z) =1+22 5448052 43,1+ 22 (4.3.4-8D)

The plots of Q;(2) and Q,(z) are given in Figure(4.3.4a).

case 1

Figure(4.3.4a): Stability regions of the second-order,
two-stage RK-GM methods for different set of parameters.
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Next we shall discuss the stability property of the

third-order, three-stage RK-GM methods. By applying the
standard test problem y”’==ly to (4.3.2-11) we have

kl = ).yn,
1
ky = Aly, + 5 z¥41,
= Ay, (1 + %7,

ks = Ay [l + z(2(1 + g) - 1)1,

Ay [l + z(1 + 2)].

Therefore, we obtain

/2
Yo = ¥a{1 + z[w, (1 + ";')1

rw((1+3) (1+za+2))""°

+w3(1 + z(1 + z))l/2 + Wy +w5(l +§)

Fwg(l +z(1 +2))]}.

Hence the polynomial function Q{z) is obtained as

Yn+l
¥n

1+ z{wl(l +

Q(z) =

zy 1/2
2)

+rw(a+5Ha+za +z)

1/2
(1 + 200 +2)) 777 4wy oWy oW

w
F (Gt Wz + wez ). (4.3.4-8)

From (4.3.4-8) 1t is easy to see that if the RK-GM
6

method is consistent, then 3 w; = 1. Moreover, if the
i=1

three stage RK-GM method is of order three, then
equations (4.3.2-7a) to (4.3.2-7i) hold and the
polynomial Q(z) is given by (4.3.4-8). Hence for
sufficiently small positive 2z, Q{z} > 1, we may conclude
that the interval of absolute stability of this méthod
has the form (8,0). However, we note that from (4.3.4-

8), the polynomial Q(z} is governed by the coefficients
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of the method as it is clearly indicated in the form of
the expression of Q(z). Therefore, the interval of
absolute stability of each member within the same class
of three-stage third-order RK-GM methods may not be the

same.

s : : 1 2
By substituting w;=0,1=1,2,3 and w, =% Vs =73 and wg = 1;»

we have the classical RK method of order three.
Its- stability region defined by the polynomial Q(z) is
given by

2 3
0(z) =1 + 2z + z? + -26— X ‘ (4.3.4-9)

Now by letting wy; =wgs= 0, we obtain the RK-GM method

{4.3.2-12), -ﬂne, corresponding polynomial Q(z) which
determines its stability region can be deduced from

(4.3.4-8) for w,=w,=3, w; = - and w, = 0. Hence we have
the stability region of the third-order RK-GM method

(4.3.2-12) is given by

otz) =1+ z{2[ (1 + )"

r(a+EHa+za+2))”]

-(1+z1 +2)) "}, (4.3.4-10)

Finally we consider the four-stage fourth-order RK-GM
methods. Again, because of the complicated and lengthy
derivation, we shall only concentrate on a particular
case of the class of four-stage fourth-order RK-GM
methods derived in section 4.3.3. Specifically, we shall
discuss the stability region of (4.3.3-12).

By applying the standard test problem ym =Ay in (4.3.3-
11) and (4.3.3-12), we obtain
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ky = Ay, )

ky = Ayn[1 + 2]
ky = Ay,[1 + (1 + 5
kg = Ay,[1 + 2(1 + 3{1 + 2))] L(4.3.4—11)
var = ¥all+2[1+ [(1+2z0Q +§-(1+§)))m]
x[(1+2)7 ¢ (1+2+5)"]

- (1420 + 2+ 5)) 7] ) y

So we c¢btain the polynomial Q{(z) which describes the
stability region of the fourth-order RK-GM method
(4.3.3-12) as given by

o(z) =1+3{1 + [ (1 + z(1+ Z145)) ] x

TTaeHT e e )

- (1ez 42 a+d)) ) 7). (4.3.4-12)

The stability region of the classical fourth-order RK

method c¢an be easily obtained by applying the test
problem y*) =Ay in (4.3.3-3) and (4.3.3-4). Thus we have

the polynomial

2 3 g
z Z
Q(z) =1 + z + >t et 5 {(4.3.4-13)

NlN

Figure(4.3.4b) shows the stability regions of both the
classical RK method and the RK-GM method for orders s =1
to 4. Except for the order one method (which 1is the
Euler method) the RK-GM methods appear to have smaller
regions of stability.
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Method (2) -3

Method (1) -3

Figure(4.3.4b): Stability regions of the RK-GM methods
(Method (1)) and the RK methods (Method (2)) of orders
s =1,2,3 and 4.

4.3.5 OPTIMAL EXPLICIT TWO-STAGE RK PROCESS
Consider the explicit two-stage RK-GM process defined by
Yos1 = Yo + h®qp(x,,y,7h), (4.3.5-1)
where
Doy (X4 Yoih) = wiky + wk, + W3‘\lm (4.3.5-2)
with constraint

W1 + Wo + Wy = 1. (4.3.5—3)

Furthermore, we have

ki = £(x,,¥,)

{(4.3.5-4)
k, = £(x, + cth,y, + az,lhkl)

with constraint

Cl = a2;1' (4.3-5"'5)

165



Therefore using (4.3.1-4) and (4.3.5-5) the Taylor
series expansion of k, about (x,,y,) in the solution

space is given as

f £
ko = £{1 + he, [P+ £, + %hcl( ;" v 28, + ££,) ]}

+ 0(hY) (4.3.5-6)

with all terms evaluated at (x,,y,) .

Hence we obtain the expansion of \’klk2 as

£ £
Vkk, =£{1+ she [F+ £, + > hey ( 2 4 2f,, + ££,,) ]

£, f

fx
5 me? [ ()7 + 275 + 1] b+ om®. (a.3.5-7)

This yields the expression for @,,, as

1
Doy = (W1 + wz + wy)f + hey(wy + 5 ws) (£, + ££,)

2 4w W £
+ (hey) (5 + )£ (72 + 2£,, + £f
£,£

£
- s et [ () P+ 27t v £]] vomd) . (4.3.5-8)

w)

The equivalent increment function ®,, for the Taylor

series expansion method is obtained as

2
h
O, = £ + 2 [, + ££,1 + -116- [fax + 2fxy + £xEy + £fyy + ££5]

+ o(n?). (4.3.5-9)

By equating like terms of (4.3.5-8) and (4.3.5-9), we
ocbtain

coefficient of hf: wp t Wy + w3 =

coefficient of h(f, + ffy): (ws + %v@)cl
fxx
£

1
L
=2
1
6

2 s W2 W3
+ 2f, + ££,.) re) (F+ ) =

2
coefficient of h f( >
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Thus we have a set of three equations in four unknowns.
Hence by setting c,=a,; = #0 as the free parameter, we

obtain

Wi + wy *+ Wy = 1

1

2W2+W3=_

o

2

Bwy + 3wz = —

o

2 . ' . 1
Therefore @=7 and by setting w; =, we obtain w; =73 - 2.
Now the error function ¥, for the explicit two-stage RK-

GM process is obtained as

Tz = (Dcmz - ‘I’Tz

2
C1¥3 ey 2 £.£ 2 1 2
= - e[ (F)P+ 2+ )] - cleg, + ££]]

- £ £ £
- _Eﬁf[(?")2 27t v g] - tleg, +o£gl] .

By assuming that the Lotkin([1951] inequality (4.3.1.1-6)

holds, this leads to the following bound on the error
function ¥,,

| ¥, (x0, vain) | < ['L'g‘l@—I + 2] e’ (4.3.5-10)

Now {(4.3.5-10) attains its minimum wvalue of %PQ2 when

the free parameter B"'}I- Hence the coefficients of an
optimal two-stage RK-GM process are obtained as
2 1 3
Cl =a2'1=§, Wl=E’ W2=Z' W3= O.
The resulting method is

h
Yne1 = ¥p t Z[kl + 3k2]

which is called the Heun's two-stage scheme and

k, £{x,,Vn)
2 2
k, = £(x, +5~h,yrl +§hk1) .
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4.4 ERROR CONTROL AND ADAPTIVE METHODS

In secﬁion 4.3 we have developed the composite RK-GM
methods of orders s=2,3 and 4. It is well known that
any single RK method has a fixed order. Moreover, a
method involving only one equation has no way of
monitoring the discretization error on its own. Hence it
cannct select the appropriate step-size to maintain
accuracy throughout the integration range. Thus it is
necessary to combine two different methods to achieve
automatic step-size control. Several adaptive RK methods
have been derived recently. However, they are developed
by the combination of two distinct RK methods of
different orders. We propose here a method which 1is the
combination of two different RK methods but of the same
order. Nevertheless, this combined method is still of a
fixed order and hence 1its effectiveness may be
restricted.

A composite Runge-Kutta arith-geometric mean method (AGM)
was developed in Evans and Jayes[1990]. The combination
of the classical RK method with the RK-GM method to form
an adaptive error control strategy suggests an
alternative Runge-Kutta AGM method to existing
techniques. This is tested with the various library
routines, namely the NAG (subroutine DO2YAF), the IMSL
(Subroutine DVERK) and the subroutine RKF45, Sone
interesting numerical results are obtained and commented
upon.

4.4.1 ERROR ESTIMATION FOR RK PROCESSES
The work of Lagrange in 1797 and more importantly of
Cauchy has set the trend that every numerical method
should be accompanied by a reliable error estimate.

.

e

Runge 1in 1905 alsco found the importance of éiror
..
estimates for the RK methods. Thus a theorem on thé\uu

rigorous error bounds can be expressed as:
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Theorem 4.4.1-1 (Halrer et al.fl8%87]) : Giwven an RK
method (4.1-3a,-3b, -3c) of order p. Suppose all partial
derivatives of f(x,y) up to order p exist and are
continuous, then the local error of (4.1-3a) satisfies
the following,

|y (xo+h)—ynea | < 0P Iy a1 (xp+th) |

{—1— max
(p+1) ! teo,1)
+ L5 juy max Il (eny 0y (4.4.1-1)

P! 5 ie[0,1]

and hence also,

1y (xph)=ypaa I < c0®t (4.4.1-2)

where C is a constant.

However for higher order methods, (4.4.1-1) seems
impractical. Alternatively, it 1s more realistic to
consider the principal error term of the method. For
autonomous equations, this error term is obtained by
subtracting the Taylor series expansion of the numerical
solution from the Taylor series expansion of the exact

solution.

Another alternative way of obtaining an error estimate
is to consider the global error of the method. A global
error is the error of the computed solution after some
integration steps. Suppose that we have a single-step
method (4.1-3a) and the initial-value problem (4.1-1).

The numerical solution of (4.1-3a) at a point X>a is

then obtained by a single-stepwise procedure,

Yne1 = Yo + D@ (xn,vnihy),
h, = %p41 =~ Xn, {4.4.1-3)

xN=X.

The global error is therefore given by,

E=y(X -y, . (4.4.1-4)
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which is found simply by transporting the local errors
to the final point x; and then summing up. This can be

done in any of the two following ways:

Either (a) aleong the exact solution curves (Figure
(4.4.1a)); which can give distinct results when well
defined estimates of error propagation for the exact

solutions are known,

or (b) along N-n steps of the numerical method (Figure
(4.4.1b)); which was used by Cauchy in 1824 and Runge in
1905.

In either case we first estimate the local errors ej

using Theorem 4.4.1-1 giving,

fe;l < cn?y . (4.4.1-5)

Then, the transported errors Ej; are estimated

accordingly.

exact solutions exact solution

v {Xn) ¥ (xn)
Ei Ex = ey
Ez
Ea :
Es
Ez
en = Ey E;
¥N YN
- P
X X1 X2 X3 seens XN-1 Xy HXn-1 XN
Figure(4.4.la):Glcbal error Figure(4.4.1b) :Global error
estimation [method ({a)] estimation [methed (b)l

(These figures are adapted from Hairer et al[1987])
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a) For method{(a), the following thecorem follows:

Theorem 4.4.1-2(Hairer,et al.[1987]) : Let U be a
neighbourhood of ((x,y(x)); a < x <X} where y(x) is the
exact solution of the problem (4.1-1). Suppose that in
u,

df df _
Ildyll SL or p(g) SL, (4.4.1-6)

and that the local error estimates (4.4.1-5) are true in
U. Then the global error (4.4.1-4) satisfies,

Cl
lel < n®P = {exp(L(x -a)) - 1}, (4.4.1-7)
where h = m?x hiy,

{c, L20
cr =

C exp(-Lh), L<O0

and h is sufficiently small for the numerical solution
to be within U. If L—0, then [El-n’c(x -a).
b) For the second method, we need to estimate "zmu—ywu|
in terms of [zn,-y.l, where besides (4.4.1-3),

Zpel = Z5 t hnq)(xnfynr'hn) ’ (4.4.1-8)

is another numerical solution. Hence the theorem below
follows:

Theorem 4.4.1-3{(Hairer et al.,[1987]) : Suppose that the
local error satisfies, for initial wvalues on the exact
solution,

|y (x+h) = y(x) - nd(x,y(x);h) | < cn®*? (4.4.1-9)

and suppose that in a neighbourhood of the solution the
increment function @ satisfies,

l®(x,2:h) - dx,y:im | s ulz -yl . (4.4.1~-10)
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Then the global error (4.4.1-4) can be estimated by,
Ilel < nP % {exp (L(x -a)) -1} (4.4.1-11)

where h = max hjy.
i

Theorem 4.4.1-2 and Theorem 4.4.,1-3 above discuss the
convergence as a function of h as it tends to zero,

where h is now interpreted as the maximum step size and
assume that there is a function O(t) such that 0<D <
O(t) £1 for t e [a,xN] and that,

h, = hB(x,)
(4.4.1-12)

Xae1 = Xn + hp.

We see that if h>0, a finite number of steps will cover
the interwval [a,xN] since h, 2 Ah > 0.

4.4.2 ADAPTIVE ERROR CONTROL STRATEGY

The basic idea of an adaptive error control strategy is
to compare two approximations and thereby obtain an
estimate of their accuracy. If the accuracy 1is
acceptable, one of them is taken as the numerical
approximation at the mesh point. Otherwise, the step-
size is modified and the process repeated on the mesh
points using the new step-size.

To reduce the total number of function evaluations, the
two methods should use the same points of evaluation.
Since the standard Runge-Kutta (AM) and the RK-GM
methods use the same ki, for 1=1,2,3,4, consequently
the adaptive error control strategy which employs the AM
and RK-GM pair requires only four function evaluations
per step.

We shall now pursue the analysis of the basic technique.

Consider the solution of (4.1-1) and the approximation
(4.1-2)y. The 'best' methocd would be that, whenever a
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tolerance TOL > 0 was given, the number of mesh points
used to ensure that the global error, i.e.|y(xi) - yil,
did not exceed TOL for any 1i=1,2,...,n-1 is minimal. In
other words, the amount of computational work 1is

minimized for the given error tolerance if h 1s chosen
by h=h.0,(t,) in the nth step of the iteration process.

Generally, the global error of a difference method
cannot be determined explicitly. Alternatively, we can
work with the local truncation error of the method. That
is we try to find an estimate of the global error in
terms of the local truncation error.

To recapitulate Theorems 4.4.1-2 and 4.4.1-3, we see
that from Theorem 4.4.1-3, the global error is one order
less than that of the local truncation error. Therefore
it is Jjustified to consider the control of the 1local
error if we are interested in the contrel of the global

error.

Thus, an alternative approach to step-size selection is
to exploit the determination of the local truncation
error of a method as best we can while controlling its
global error.

Suppose two single-step methods (4.4.1-3) and (4.4.1-8)
are used to approximate the solution of the initial-

value problem (4.1-1). Denote the local truncation of
(4.4.1-3) by 7Tnm and that of (4.4.1-8) by 8,.1. Let them

be of orders ' vi  and €. accuracy respectively,

Assume 0 < r<s. Suppose that y, = y{xq) = z,, then,

Y(xnﬂ,) = ¥n+1 = Y(xn+1) = ¥Yn — hnq)(xnfy;nr'hn)

L

Y(Xp+1) = ¥ (Xn) - hnq)(xnrY(Xn)r'hn)

= hTpey - (4.4.2-1)
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Since a method with local truncation error of order
. is given by

The1 = Y(xn+1)h; y (%) - ®(x,, ¥ (xy):hy) .

So, the local truncation error of (4.4.1-3) can be
written as

i
Tart = - [¥(Xna1) = Yol
1 L L i
h. [Y{Xna) -~ 2nal hn [Zn41 Yn+1l
1
= 8n+1 + E; [Zns1 = ¥neal - (4.4.2-2)

Consequently,
1
A= he [Zaa1 — Yns1d (4.4.2-3)
n

can be used to approximate the optimal step-size to
controcl the global error. Now T,,; is of order F, s0 a

constant p exists such that,

1
phy = 7 [Zaa = Yol - (4.4.2-4)

n

An approximate step-size can now be chosen by
considering the truncation error with h, replaced by gh,

where g is a positive number bounded above and away from
zZero.

Hence, we may write

it

A(gh,) p(ghp)*

i

q" (phy)
r

b [Zni = vanl. (4.4.2-5)

it

To bound A{gh,) by &, choose g such that,

r
-;{; |zns1 - Ynel = Alghy) <&, (4.4.2-6)
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that is, such that

<[ &by ]m— | 4,4,2-7
4= | 2041 = ¥Ynse1l ) (4.4. )
In practice, the usual choice of g is such that,
€h, 1/
q = . (4-4-2_8)
2lzp - Yool

The technique adopted that utilizes (4.4.2-7) for error
control consists of using the RK-GM method,

Zon = ¥a + 5 [Vki (Vkp + Vky = Vke) + Vi Wiy + Vi) T,
(4.4.2-9)

with local truncation error of order 4 to estimate the
local error in the AM method,

h
Ynt1 = ¥n t g [k1 + 2(ky + k3) + k4l , (4.4.2-10)

of order 4. We call this combined method the AM-GM
schene,

Now by taking the absolute difference between (4.4.2-9)
and (4.4.2-10) we have,

| ¥n+1 = Zn+1l

o [

12 [Vky (Vkp + VYks — Vkg) + Vkg(Vk, + Vk3) ]
= [ky + 2(kz + k3) + kql| (4.4.2-11)

which can be used to control the error.

Numerical results are obtained and compared with those
from the RK-Fehlberg method with error control. The AM-
GM method above requires only four function evaluations
per‘step as compared with the RK-Fehlberg which needs
six function evaluations per step. Arbitrary RK methods
of order four and five used together would require ten

function evaluations per step.
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4.4.3 ERROR CONTROL AND STEP SIZE SELECTION
IN THE AM-GM METHOD
Ralston[1962] provided an error bound (following the
Lotkin{1951] technique) for the classical fourth-order
Runge-Kutta scheme as
73

INar yasb) | < 55 M0 (4.4.3-1)
Similarly, we can obtain an error bound for the four-
stage explicit AM-GM scheme of order four by considering

the local truncation errors of the AM and RK-GM methods.
We have for the AM method,

Yo = ¥, + LTEay , (4.4.3-2)

and for the RK-GM method,

You, = y, + LTEqy . (4.4.3-3)

AM

GM ' . '
.+p and y. ., are the numerical approximations at

where y

Xn+1 Obtained by the AM and RK-GM methods respectively
and LTEay and LTEgy are the c¢orresponding local
truncation errors of the AM and RK-GM methods.

It fellows that, the difference between the AM and RK-GM
numerical approximations at x,,; is given by

AM GM
Yn+1 = ¥Yn+1 = LTEam — LTEgy . (4.4,3-4)

The local truncation error of the AM method is given by,

h5

LTEpmy = Za50 0L Fyyyy + 2E°E,Eyyy = 6E°Ey, + AE'f,,, + 6E° £,
+ 36£7£,8,, — 18£°F, £, + 6£f,,, + 12f£,f, - 4£,f,,
+ 48E£, £ £, - T2fFf,f,,, - 24ff, + 24Ff,f, + 66LL,f,,,
— BEffyy ~ 126fh, + 4,0 + Eeux + 1BEE, - 24L,f,
¥ 126,86, F, + 68, Fpgy * 6Lof,y = 6Ffyy ). (4.4.3-5)
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The local truncation error of the RK-GM method 1s given
by,

n’ 7
LTEgy = — —<{8£'f

3 + 16£°f,£
23040F

6 L2 6
yyyy yEyyy ~ 108f fyy + 32f°fF

xYYY

+ 48fF°F. ... + 228£°¢F 384£%F £, + 48f°F

xTyyy yoyy XyTyy KXYY

+ 384f'€ £ £ - ST6E'EE, ., + 96£'F,f

4 _4
xEyEyy - 267f°f,

RRY xYY

v 72£%€08,, + 528£E, £, - 168£'f,f,, - 336£'¢],

+ 32£%,,, + 204£°ELF

3 3 3
wEyy — 312£°£, £, + 96E°E, £ £,

+A8EE, f,y — 1287 Fof,y = 32678, f - 288f3fxxfxy

2,22

3 £2£0 + 120£°£48,, - 60£°fL,

+ 8ff,,yx — 30f
2 4
+ G60ff f,, — 15£,}. (4.4.3-6)
Therefore the absolute difference between LTE,, and LTEg,
is given by
|LTE - LTEG

- 3
1536f

6.2 5.2 5 4.1
{agfs, + ag’t £, + 16876, £, + 5£°c,

+ BE'ERE,, + BE'f, £, + 16£'f, - 4£°fif

+ BEE £, + AFFof,, + L6E°L, £, + 2£°£Lf

Yy RX XXExy

X

- BE2fLf,, + AFCfe, ~ AFf.E, + £} (4.4.3-7)

From Lotkin[1951] we have . the inequalities (4.3.1.1-6)
and by direct substitution of (4.3.1.1-6) into (4.4.3-7)

we obtain Y o,
g :
LTEay ~ LTEaul < Tiag hf’&z“ = 5oz PO’ (4.4.3-8)
Hence,
AM GM 13 45
Yni1 = Yanl S 500 PQ'RT . (4.4.3-9)
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Now suppose TOL 1s the user- set tolerance, then by
setting,

AM GM
Yn+1 = Yperl S TOL (4.4.3-10)

the error control and step- size selection can be
determined by (4.4.3-9).

Example
Consider the initial-value problem, _
' 0L’
y =y v =1, 08xs1,

and we set TOL = 1074, P’%?é§511) =w§T?% andtgzé 1.00.

Then,

13

415 -4
256PQh|< 1074 ,

provided h £ 0.2355.

However the bound (4.4.3-9) by itself is of theoretical
interest only. Perhaps by combining it with some other
information it c¢an be used for choosing the stepsize in
practical problems,.

4.4.4 PRACTICAL ERROR CONTROL

The error estimates given in sgection 4.4.1 are of little
practical importance because they require the
computation of several higher order derivatives. There
are various alternative methods for error control,

namely:
(i) Richardson extrapolation,
(ii) Automatic step—size control,

{iii) Embedded RK formulae.

Method (i) 1is basically summarized by the following
theorem.
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Theorem 4.4.4-1 (Hairer et alJfl987]) : Suppose that y,

is the numerical result of two steps with step-size h of

a RK method of order p, and w is the result of one
larger step with step-size 2h. Then the error of y, can

be extrapolated (following Richardson) as,

y - W
y(xo + 2h) — y_ = ———1 + 0(h"*%) , (4.4.4-1)

and

v = vy, o+ , (4.4.4-2)
is an approximation of order p+l to y(xy +2h).

In method (ii), the error used is obtained from (4.4.4-2)
as

{4.4.4-3)

where d; is the scaling factor.
Then the error, err,is compared with TOL to obtain the
optimal step size from the error behaviour Cc hP*!' as

follows,
TOT,. 1/p+l
h(g;;) . (4.4.4-4)
The new step-size is computed from
. TOL, 1/p+1
hpey = h xmin{fac max, max[fac min, fac (a) 1}, (4.4.4-5)

where fac is the safety factor.

If err S TOL, then the two computed steps are accepted
and the solution y, or fé is taken. A new step is tried
with hp.y as step-size. Otherwise, both steps are
rejected and the computations repeated using hpey. The .

(Hairer et o] D1M
usual choice of fac is 0.8,0.9,(0.25)1/P*1 or (0.38)1/p*Y.
The maximal step-size increase 'fac max' is usually

taken between 1.5 and 5. It prevents “mpmywﬁ+um‘h~h§v03
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‘w-ge step increasec ‘and tordvibutes 1o kg safety. If it is
too small it increases the computational work
unnecessarily. In cases after a step rejection the
parameter fac max is set the wvalue one is recommended
(Shampine and Watt[1979]).

In the third method, the aim is to develop a RK formula
which contains two approximations y, and y,. The latter
can be of the same or higher order than the former. This
can then serve for error and step-size control at every
step and thus make step rejections economical,

The embedded RK method was first proposed by
Merson[1957], Ceschino[1962) and Zonneveld[1963].
However, Merson's method is of order 5 for only linear
equations with constant coefficients. Thus, the method
over—-estimates the error for small h. Similarly,
Zonneveld's second formula does not estimate the
truncation error. Ceschino's method is uneconomic

because the error estimate is too precise (Hairer et
al[1987}).

Sarafyan[1966], England[1962] and Fehlberg[1968, 19%69]
derived some other formulae of different orders.
Fehlberg attempted to minimize the error coefficient of
the lower order result y, in order to make his methed
optimal, Consequently, the difference between the two
approximations might under-estimate the local error.
Dormand and Prince[l1980] developed a method for which
the error terms of the higher order result are minimized
and the lower order result is computed just for the
step-size mechanism. This is claimed to give excellent
results (Hairer et alJfl1987]).
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4.4.5 MATRIX REPRESENTATION OF THE RK
PROCESSES

An s-stage RK process can be described by the matrix
notation (see Fatunla[19881)},

A C
B 0 (4.4.5-1)
where,
a],l aj2 . e s a]‘s
a2’1 az,z . s . azls
A =
8s-11 8s-1p R 85-1s
asf]_ asg . . . aslg o
b1y b2 bis
b2,2 - bz’s
B = O
bss
and
C= [Cl,s+ll c2,!‘:+1 [ 4 cs,s+1]T
The RK process is written as,
5
Yne1 = Yo * h X byy(kiky) 172, (4.4.5-2)
i,j=1

where
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ki = £(xp,¥n) A

kz = £(xp*Cyss1h, yn + haziki)

' F. (4.4.5-2a)
5-1

ks = £(x, + Cg543h, , yn + h jglasujkj))

Here we shall extend the matrix representation to the GM
formulae. Some explicit RK schemes are represented as
follows:

Four-stage schemes:

0 0 0 0 |0
1/2 0 0 0 [1/2
0 i/2 0 0 |1/2
0 0 1 0 |1
Classical: | ——-———————— :— S {(4.4.5-3)
1/6 0 8] 0 |10
0 2/6 0 0 |0
0 0 2/6 0 |0
| 0 0 0 1/6 |0 i
0 0 0] 0 |0
1/3 0 0 0 11/3
-1/3 1 0 0 12/3
1 -1 1 0 |1
Kutta: | ——™——— — — — — :— -1, (4.4,5-4)
1/8 Q 0 0 |0
0 3/8 O 0 |0
0 0 3/8 0 10
N 0 0 0 1/8 |0 _
0 0 o o |0 |
1/2 0 0 0 |11/2
0 1/2 0 0 [1/2
0 0 1 0 11
RK-GM: | —————— - === 1—— : (4.4.5-5)
0 /3 1/3 -1/3 |0
0 0 0 1/3 |0
0 0 0 1/3 |0
0 0 0 0 |0
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Matrix representation of the RK-processes provides a
brief description of such schemes. For the embedded RK
schemes we propose a similar representation of the form
{4.4.5-1) but with the diagonal elements of 2
representing the coefficients of the first approximation
and the elements of B representing the coefficients of
the second approximation. Thus we have the following
matrix notation.

1/6 0 0 0 |10
1/2 2/6 0 0 |1/2
0 1/2 2/6 0 11/2
0 0 1 1/6 |1
AM-GM: ] ———m == - - — = :— i (4.4.5-6)
0 /3 1/3 =-1/3 |0
0 0 0 1/3 |0
0 0 0 1/3 10
|0 0 0 0 10|
1/2 0 0 0 0 o |
/3 0 0 0 0 11/3
1/6 1/6 =3/2 0 0 |1/3
1/8 0 3/8 2 0 11/2
1/2 0 -2/3 2 0 |1
Kutta Merson:] — - — — — = — — = — — — — — ;_ -
1/6 0 0 0 0 )
0 0 0 0 0 10
0 0 0 0 0 |0
0 0 0 4/6 0 |0
0 0 0 0 1/6 |0

(4.4.5-7)
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and Fehlberg 4(5) scheme;

" 25 ]
216 0 0 ] 0 0 | 0
1 1
2 0 0 0 0 0 | 2
3 9 1408 3
32 32 2565 0 0 0 | 8
1932 _7200 7296 2197 0 0 12
2197 2197 2197 4104 13
439 -8 3680 __845 1 0 11
216 513 4104 5
8 2 _3544. 1859 11 0 | 1
27 2565 4104 40 2
________________________ l_ _|. (4.4.5-8)
16
135 0 0 0 0 0 10
0 0 0 0 0 | 0
6656
12825 0 0 o 1o
28561
0 0 0 56430 0 0 |1 0
9
0 0 0 0 "0 0 190
2
0 0 0 0 0 55 1 0 |

4.4.6 DISCUSSION OF THE IMSL, NAG AND RKF45
ERROR CONTROL STRATEGIES

The subroutine used in the IMSL routine DVERK is based
on a code designed by T.E. Hull, W.H. Enright and X.R.
Jackson. It uses RK formulae of orders 5 and 6 that were
developed by J.H. Verner.

DVERK attempts to keep the global error proportional to
a user-set tolerance TOL., The proportioconality depends on
the type of error control used, the differential
equation and the range of integration, The
proportionality is expected to be steady for the smaller
values of TOL. Thus making TOL smaller improves the
accuracy.

The routine adopts a measure of the 'scale' of a

problem, from which each method can calculate its
appropriate maximum step-size HMAX., The SCALE parameter
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provides such an attempt. The use of SCALE is based on a
theoretical study of the application of DVERK's formula
to homogeneous linear equations with constant
coefficients. Thus SCALE 1is exactly the Lipschitz
constant.

Consequently DVERK works efficiently with non-stiff
systems where derivative evaluations are inexpensive and
the solutions are required at only a small number of
spaced points.

RKF45 is a subroutine for solving initial-value problems
in ordinary differential equations. It is based on RK
formulae developed by E. Fehlberg 1in 1970 and
implemented by L.F. Shampine and H.A. Watts in 1974. It
requires six function evaluations per step, four of
these function values are combined with a set of
coefficients to produce a fourth-order method, and all
six values are combined with ancther set of ccefficients
to produce a fifth-order method. Comparison of the two
values yields an error estimate which is used for step-
size contreol. As in many other popular RK routines, the
RKF45 adopts error per step criterion and local

extrapolation.

RKF45 1is primarily designed to solve non-stiff and
mildly stiff differential equations when derivative
evaluations are inexpensive. It should generally not be

used when high accuracy is required.

The NAG subroutine D02YAF 1is based on the RK-Merson
formula. This subroutine is used by all the NAG routines
DO2BAF, BO2BBF, and DO2BDF. The DQGZBAF and DOZBBF
routines integrate a system of first-order differential
equations over an interval. The DO2BDF integrates a
system of first-order differential equations over a

range and computes a global error estimate.
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The accuracy o©f the integration is governed by the
parameter TOL. The routines have been designed so that
for most problems, the error in the solution at XEND is
approximately proportional to TOL. However, the actual
relation between TOL and the accuracy achieved cannot be
given precisely, but can be estimated from the global
error estimates obtained by DO2BDF.

The global error estimates used in DO2BDF are computed
using a method similar to that in Shampine and
Watt [1976]. DOZ2BDF has an option of a stiffness check
because the explicit RK-~Merson method is not suitable
for integrating stiff equations. The check used is an
extension of a scheme described in Hall and Watt[(1976].

In each routine we have substituted the standard formula
with the new AM-GM palr and some interesting results
were obtained.

4.4.7 EXPERIMENTAL RESULTS

The following is a list of sample problems used in the
numerical experiments. The numerical results of testing
the AM-GM and other methods are then obtained,

Problenm 1 y(“ + 3x%y = 0
Initial condition x =0, v =1
Exact solution y = e'xa
Problem 2 y'! + y =0
Initial condition x =0, y =1

Exact solution y = e™*

Problem 3 y(“ -y=20
Initial condition x =0, y =1

Exact solution y = e*

Problem 4 y(” +y - x-1=240

Initial condition x =0, v =1

Exact solution y = x + e ©
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Problem 5 y‘'Y’ - 2002 - x»"' + 1 =0

Initial condition x =0, y =2° - 1
Exact solution y = 2(2 - x)™% = x - 1

(1)

Problem 6 vy, -y =20,
{1
Y2 -ys =0,
Y
(1) 1
y;' + 5 =0,
y
(1) 2
yo *+77 =0

Initial conditions x=0,y, =1 - e,

l+e , 1/2
Y2=Y3=0rY4=a{1_e '

1 2 2
where z = a2 {y, + y2}3/2 and a = T.

1
Problem 7 Y(I)

tan(y,} .
(L)

yz = -0.032 tan(y;)/y - 0.02 y sec(y,) ,
ys = -0.032/y
Initial conditions x = 0, y; = 0, y, = 0.5 and y, = £ .
Problem 8 y‘ll) = -0.04y, + 1x10* Yo¥3 +
y; = 0.04y, - 1x10% y,y, - 3x107y: ,
y;“ = 3x107y§

Initial conditions x=0, y, =1, y, =y, =0.

3

Given is a list of the numerical experiments performed
and the corresponding numerical results. The notation

NFC denotes the number of function evaluations.
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Experiment 1

Comparison between the AM-GM method

with error control and the RK-Fehlberg method with error

control,

Problems

experiment., The following parameters were set:

tolerance,

maximum step-size, HMAX =

Problem 1

TOL =

5 x 10-% ,
initial minimum step-size, HMIN =
0.1

0.02

Results from RK-Fehlberg method with error control

Numerical
Solution

Exact
Solution

Absclute
Error

1,2,3,4 and 5 were used in this

.08408
.18409
.28409
. 38409
.48409
.58409
.68409
.78409
.88409
.98409
1.08409

.0840896
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000

.999406E+00
.993781E+00
«977333E+00
.944913E+00
.892755E+00
.819330E+00
.726048E+00
.617513E+00
.501067E+00
.385574E+00
.279689E+00

.999406E+00
. 993781E400
.977333E+00
.944%13E+00
.892755E+00
.819330E+00
.726048E+00
.617513E+00
-501066E+00
. 385573E+00
.279689E+00

Table(4.4.7a)

.407979E-08
.225594E-07
.492812E-07
-788102E-07
.938627E-07
.6101878E-07
.612959E-07
.286069E-06
. 521689E-06
.4786B4E-06
.363005E-06

Results from RK-GM method with error control

Numerical
Solution

Exact
Solution

Absolute
Error

.08409
.18409
.28409
.38408
.48409
.58409
. 68409
. 78409
.88409
.98409
1.08409

.0840896
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000

.998406E+00
. 993781E+00
< 977333E+00
.944913E+00
.892755E+00
.819330E+00
.726048E+00
.617513E+00
.501068E+00
.385578E+00
L2T79702E+00

.999406E+00
. 393781E+00
.977333E+00
.944913E+00
.892755E+00
.819330E+00
.726048E+00
.617513E+00
.301066E+00
.385573E+00
.279689E+00

Table(4.4.7b)
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.110431E-07
.420574E~07
.723510E-07
.102927E~-06
.138257E-06
.176468E-06
.155914E-06
.184546E-06
.153076E~05
.516917E-05
.128152E~04



Problem 2

Results from RK-Fehlberg method with error control

Numerical Exact Absolute

x h Solution Solution Error . NFC
.08409 .0840896 .919349E+00 .919349E+00 .587557E-08 6
.18409 .1000000 .831861E400 .831861E+00 .183618E-07 12
.28409 .1000000 .752699%9E+00 .752699E4+00 .284184E-07 18
.38409 .1000000 .68107Q0E+00 .681070E4+00 .363947E-07 24
.48409 ,1000000 .616258E+400 .616258E+00 .425955E-07 30
.58409 .1000000 .557613E+00 .557613E+00 .472866E-07 36
.68409 .1000000 .504549%E+00 .504549E+00 .506991E-07 42
.78409 .1000000 .456535E+00 .456535E+00 .530339E-07 48
.88409 .1000000 .413090E4+00 .413090E+00 .544652E-07 54
.98409 ,1000000 .373779E400 .373779E+00 .551438E~07 60
1.08409 .1000000 .338209E+00 .338210E+00 .552001E-07 66

Table(4.4.7c)

Results from RK-GM method with error control

Numerical Exact Absolute

x h Solution Solution Error NFC
.08409 .0840896 .919349E+00 .919349E+00 .345521E-07 4
.18409 ,1000000 .831861E+00 .831861E+00 .106618E-06 8
.28409 ,1000000 .752699E+00 .752698E+00 .164654E-06 12
.38409 .1000000 .681071E+00 .681070E+00 .210680E-06 16
.48409 .1000000 .616258E+00 .616258E+00 .246454E-06 20
.58409 .1000000 .557614E+00 .557613E+00 .273512E-06 24
.68409 .1000000 .504550E+00 .504549E+00 .293188E-06 28
.78409 .1000000 .456535E+00 .456535E4+00 .306643E-06 32
.88409 ,1000000 .41309CE+00 .413090E+00 .314881E~06 36
.98409 .1000000 .373780E+400 .373779E+00 .318775E-06 410
1.08409 .1000000 .338210E+00 .338210E+00 - .319076E-06 44

Table (4.4.7d)
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Problem 3

Results from RK-Fehlberg method with error control

Numerical Exact Absolute

x h Solution Solution Exrror NFC
.08409 .0840896 .108773E+01 .108773E4+01 .489335E-08 6
.18409 .1000000 .120212E+01 .120212E401 .178206E-07 12
.28409 ,1000000 .132855E+01 .132855E+01 .334129E-07 18
.38409 .1000000 .146828E+01 .146828E+01 .520878E-07 24
.48409 ,1000000 ,162270E+01 .162270E+01 .743212E-07 30
.58409 ,1000000 .179336E+01 .179336E+01 .100655E-06 36
.68409 .1000000 .198197E+01 .198197E+01 .131706E-06 42
.78409 ,1000000 .219041E+01 .219041E4+01 .168175E-06 48
.88409 .1000000 .242078E+01 .242078E4+01 .210858E-06 54
.98409 ,1000000 .267538E+01 .267538E401 .260659E-06 60
1.08409 .1000000 .295675E+01 .295675E+01 .318603E-06 66

Table(4.4.7e)

Results from RK-GM method with error control

Numerical Exact Absolute

X h Solutiecn Solutiecn Errcr NFC
.08409 .,0840896 .108773E+01 .108773E+01 .355344E-Q7 4
.18409 .1000000 .120212E+01 .120212E+01 .131448E-06 8
.28409 .1000000 .132855E+401 .132855E+01 .247143E-06 12
.38409 .1000000 .146828E+01 .146828E+01 .385720E~06 16
L.48409 .1000000 .,162270E+01 .162270E+01 .550712E-06 20
.58409 ,1000000 .179336E+01 .179336E+01 .7T46142E-06 24
.68409 ,1000000 .198197E+01 .198197E4+01 .976587E-006 28
.78409 ,1000000 .219041E+01 .219041E+01 .124725E-05 32
.88409 .1000000 .242078E+401 .242078E+01 .156405E~05 36
.98409 .,1000000 .267537E+01 .267538E+01 .193368E-05 40
1.08409 .1000000 .295674E+01 L 295675E+01 .236377E-05 44

Table(4.4.7f)
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Problem 4

Results from RK-GM method with error control

Numerical Exact Absolute

X h Solution Solution Error NFC
.00005 .0000512 .100000E+01 .100000E+01 .177636E-13 40
.00009 .0000430 .100000E+01 .100000E+01 .177636E-13 44
.00026 .0001721 .100000E+01 .100000E+01 .175415E-13 48
.00092 ,0006616 .100000E+01 .100000E+01 .175415E-13 52
.00252 .00159%2 .100000E+01 .100000E+01 .175415E-13 56
.00613 ,0036106 .100002E+01 .100002E+01 .124345E-13 60
.01337 .0072422 .100009E+01 .100009E+01 .152545E-12 64
.02675 .0133744 .100035E+401 .100035E+01 .366129E-11 68
.04973 .0229842 .100122E+01 .100122E+01 .554201E-10 72
.08689 .0371598 .100367E+01 .100367E+01 .611742E-09 76
.14381 .0569201 .100986E+01 .100986E+01 .509958E~08 80
.22682 ,0830057 .102389E+01 .102389E+01 .327426E-07 84
.32682 .1000000 .104803E+01 .104803E401 .949571E-07 88
42682 .1000000 .107940E401 .107940E+01 .145034E-06 92
.52682 .1000000 .111730E+01 .111730E+01 .184720E-06 96

.62682 ,1000000 .116111E+01 .116111E+01 .215540E-06 100
.72682 ,1000000 .121027E+01 .121027E+01 .238821E-06 104
.82682 .1000000 .126426E+01 .126426E+01 .255719E-06 108
.92682 .1000000 .132263E+01 .132263E+01 .267238E-06 112
1.02682 ,1000000 ,138497E+01 .138497E+01 .274249E-06 116

Table(4.4.7g)

Results from RK-Fehlberg method with error control

Numerical Exact Absolute

X h Solution Socluticn Error NFC
.08409 ,08408%96 .,100344E+01 .100344E4+01 .587557E-08 6
.18409 .1000000 .101595E+01 .101595E+01 .183618E~07 12
,28409 .1000000 .103679E+01 .103679E+01 .284184E-07 18
.38409 .1000000 .106516E+01 .106516E+01 .363947E-07 24
.48409 ,1000000 .110035E+01 .110035E+01 .425955E-07 30
.58409 ,1000000 .114170E+01 .114170E+01 .472866E-07 36
.68409 ,1000000 .118864E+01 .118864E+01 .506991E-07 42
.78409 .1000000 .124062E+401 .124062E+01 .530339E-07 48
.88409 .1000000 .129718E+01 .129718E+01 .544652E~07 54
.98409 .1000000 .135787E+01 .135787E+01 .551438E-07 60
1.08409 .1000000 .142230E+01 .142230E+01 .552001E-07 66

Table(4.4.7h)
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Problem 5
Results from RK-Fehlberg method with error control

.08409
.18409
.28409
.38409
.48409
.58409
.68408
.78408%
.85437
. 91240
.936116
1.00286

.0840896
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.1000000
.0702760
.0580304
.0487602
.0417026

Numerical
Solution

-.108109E+01
.117896E+01
.127505E+01
.136761E+01
.145288E+01
.152234E+01
.155563E+01
.150095E+01
.134084E+01
-.104879E+01
-.594932E+00

.552076E-01

Exact
Solution

-.108109E+01
-.117896E+01
-.127505E+01
~.136761E+01
-.145288E+01
-.152233E+01
-.155563E+01
-.150094E+01
~.134083E+01
-.104878E+01
~.594915E+00

.552258E-01

Table(4.4.71)

Absolute
Error

.292578E-08
.188044E-07
.561042E-07
.148290E-06
.389534E-06
.106314E~-05
.308877E-05
.972445E-05
.124725E-04
.147492E-04
.166247E-04
.181931E~04

Results from RK-GM method with errcor control

.08409
.18409
.28409
.38409
.48409
.54406
.58875
.62162
.64531
.66165
.67217
.67831
.68345
.68516
.68636
.68681
.68695
.68698
.68701
.68711
.68734
.68785
.68885
.69069
.69383
.69895
.70701
.71941
.73860
.77053
.80810
.B84306
.87350
.90436
. 93147
.95566
.97758
.99765
1.0161%7

.084089%6
.1000000
.1000000
.1000000
.1000000
.0599730
.0446882
.0328730
.0236821
.0163399
.0105249
. 0061345
.0051405
.0017166
.0011%61
.0004558
.0001395
.0000268
.0000310
.0000961
.0002328
.0005090
.0010045
.0018337
.0031422
.0051240
.0080562
.0124032
.0191830
-0319317
.0375717
.0349575
.0304464
.0308547
.0271094
.0241886
.0219218
.0200747
.0185216

Numerical
Solution

-.108109E+01
.117896E401
.127505E+01
.136761E+01
.145288E+01
.149733E+01
.152492E+01
.154083E401
.154923E+01
-155317E+01
.155478BE+01
.155535E+01
.155561E+01
.155565E+01
.155566E+01
.155566E+01
.155566E+01
.155566E+01
.155566E+01
.155566E+01
.155566E+01
.155566E+01
.155565E+01
.155560E+01
.155546E+01
.155504E+01
.155387E+01
.155078E+01
.154249E+01
.151710E+01
.146245E+01
.137756E+01
.126574E+01
.110204E+01
.900711E+00
-.659678E+00
-.375328E+00
-.439909E-01

.338061E+00

1

1

Exact
Solution

-.108109E+01
-.117896E+01
~,127505E+01
-.136761E+01
-.145288E+01
-.149733E+01
-.152493E+01
-.154083E+01
-.154923E4+01
-.155317E+01
-.155479%E+01
-.155536E+01
-.155561E+01
-,155565E+01
-.155566E+01
=.155566E+01
-.,155566E+01
-,155566E+01
-.155566E+01
-.155566E+01
-.155566E+01
-.155566E+01
-.155565E+01
-.155561E+4+01
-.155546E+01
-.155504E+01
-.155387E+01
-.155078E+01
-.154249E+01
-,151711E+01
-.146245E+01
-.137757E+01
-.126574E+01
-.110205E+01
-.900719E+00
-.659687E+00
-.375337E+00
~.440004E-01

.338051E+00

Table(4.4.73)
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Absolute
Error

.295967E-07
.174971E-06
.507427E-06
.13053%E-05
.332768E-05
.366976E-05
.380406E-05
.384765E-05
.385915E-05
.386139E~05
.386168E-05
.386170E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386171E-05
.386172E-05
-386184E-05
.386295E-05
.387484E-05
.408108E-05
.479280E-05
.557572E-05
.617476E-05
.713799E-05
.788741E-05
.849461E-05
.901139E-05
.946410E-05
.986803E-05

108
120
136
140
144
148
152
156
160
164
l68
172
176
180
184
192
200
208
212
216
220
224
228
232



Experiment 2 : Investigation of integrating y(“ = -y

from y(0) =1 to =x=20 for different wvalues of the
telerance, TOL using the AM-GM method with error
control.,

5000 ]

4000

3000 o

2000 —

1000

number of function evaluations

0 -

BEELJSUR A S B i) s s e Al s n L N A Ls . e u m il e Al e |
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10 12 10 10 10 10 ® 10 10 10 10 10

maximum absolute error
Figure (4.4.7) : Integrating the test function from x =

0 to x = 20 for different values of tolerance using the
RK-GM method with error control
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Experiment 3

Substitution of the

Kutta Verner

standard formula in DVERK with the Kutta RK-GM formula.

Problems 2,4,6 and 7 were used,.

set at 0.1 x 10-3,

The tolerance TOL was

Problem 2

1: Results from the classical RK & Kutta 4-stage 4th
order method with errcr control

X Numerical Solutien Exact Solution Absolute Error Time FNC
1.00 .367879E+00 .367879E+00 .539633E-08 .12 157
2.00 .135335E+00 .135335E+00 .156107E-07 .06 247
3.00 .497871E-01 .497871E-01 .429597E-07 .04 302
4,00 .183157E-01 .183156E-01 .950234E-07 .02 337
5,00 ., 673811E-02 .673795E-02 .167268E-06 .02 362
6.00 .247925E-02 .247875E-02 .500959E-06 .01 377
7.00 .912789E-03 .911882E-03 .906754E-06 .01 387
8.00 .336062E~03 .335463E-03 .599566E-06 .00 397
2.00 .126023E-03 .123410E-03 .261352E-05 .00 402
10.900 .472587E-04 .453999E-04 .185882E-05 .00 407

Table(4.4.7k)

2:Results from the classical RK & RK-GM 4-stage 4*" order
method with error control

x Numerical Solution Exact Solution Absolute Errcr Time FNC
1.00 .367930E+00 .367879E+00 .506931E-04 .01 15
2,00 .135461E+0Q0 .135335E+00 .125865E-03 .01 25
3.00 .498728E~-01 .497871E-01 .857769E-04 .01 35
4,00 .183617E-01 .183156E-01 .460887E-04 .01 45
5.00 .688565E-02 .673795E~02 .147701E-03 .00 50
6.00 .253509E-02 .24 7875E-02 .563426E-04 .01 60
7.00 .950661E-03 .911882E-03 .387786E~04 .01 65
8.00 .356498E-03 .335463E-03 .210351E-04 .01 70
9.00 .133687E-03 .123410E-03 .102768E-04 .01 75
10,00 .501325E-04 .453999E-04 .473256E~05 .00 80

Table(4.4.71)
3: Results from the IMSL Routine

X Numerical Solution Exact Solution BAbsolute Error Time FNC
1.00 .367879E+00 .367879E+00 .418952E-08 .01 16
2.00 .135335E+00 .135335E+00 .671057E-08 .01 32
3.00 .497871E-01 .497871E-01 .437037E-08 .01 48
4,00 .183152E-01 .183156E-01 .450001E-06 .00 56
5.00 .673762E-02 .673795E=02 .331680E-06 .01 64
6.00 .247857E~02 .247875E~Q2 .183134E-06 .01 72
7.00 .911792E-03 .911882E-03 .898537E-07 .01 80
8.00 .335421E-03 .335463E-03 .413260E-07 .01 a8
9.00 .123392E-03 .123410E-03 .182455E~-07 .01 96
10.00 .453921E-04 .453999E-04 .783142E-08 .00 104

Table (4.4.7m)
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Problem 4

1: Results from the classical RK & Kutta 4-stage

order method with error control

10.00

.136788E+01
.213534E+01
.304979E+01
.401832E+01
.500674E+401
. 60024BE+01
.700091E+01
.800034E+01
.900012E+01
.100000E+02

.136788E+01
.213534E+01
.304979E+01
-401832E+01
.500674E+01
.600248E+01
.700091E+01
.800034E+01
.900012E+01
-100000E+02

Table (4.4.7n)

.247152E-07
.121996E-07
.638528E-08
.348820E-08
.189779E-08
.104384E-08
.559230E-09
.288841E-09
.146544E-09
.737526E-10

2:Results from the classical RK & RK-GM 4-stage 4*" order

method with error control

b4 Numerical Solution Exact Solution Absclute Error

Time

FNC

10.00

.136790E+01
.213545E+01
.304987E+01
.401870E+01
.500701E+01
.600263E+01
.700099E+01
.800037E+01
.900014E+01
.100001E+02

.13678BE+01
.213534E+01
.304979E+01
.401832E+01
.500674E+01
.600248E+01
.700091E+01
.800034E+01
.900012E+01
.100000E+02

Table{(4.,4.70)

3: Results from the IMSL Routine

x Numerical Solution Exact Solution Absolute Error

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

.159371E-04
.113069E-03
.810657E-04
.384911E-03
.274759E-03
.151013E-03
.742799E-04
. 343481E-04
.152692E~04
.660470E-05

Time
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.136788E+01
.213534E+01
.304979E+01
.401832E+01
.500674E+01
.600248E+01
.700091E+01
.800034E+01
.900012E+01
.100000E+02

.136788E+01
.213534E+01
.304979E+01
.401832E+01
.500674E+01
.600248E+01
.700091E401
.800034E+01
.900012E+01
.100000E+02

Table(4.4.7p)
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.418952E-08
.671057E-08
.437037E-08
.450001E-06
.331680E-06
.183134E-06
.B898537E-07
.413260E-07
.182455E~07
.783142E-08
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Problem 6

1: Results from the classical RK & Kutta 4-stage 4th

order method with error control

Numerical Solution

Y,

¥3

X Y

1.00 .294418E+00
2.00 -,490300E+00
3.00 -.105403E+01
4.00 -.125000E+01
5.00 -.105403E+01
6.00 —.480299E+00
7.00 ,294418E400
8.00 .750000E+00
9.00 .294417E+00
10.0 -.490300E+00

.812179E+00
.939875E+00
.575706E+00
.210655E-06
.575706E+00
.939875E+00
.812178E+00
.462146E-06
.812179E+00
.939875E+00

-.762596E+00
-.719180E+00
~-.38882%E+00
.118433E-06
.388830E+00
.719180E+00
. 762596E+00
-.538027E-06
-.762596E+00
-.719180E+00

Table(4.4.7q)

JA479233E+00 .

-.172382E+00
~.509100E+00
-.608367E+00
-.509100E+00
=.172382E+00

.479233E+00

.1013%94E+01 .
.479232E+00 .

-.172383E+00

.31

2:Results from the classical RK & RK-GM 4-stage 4*" order
method with error control

Numerical Solution

Y2

¥3
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.294416E+00
~.490376E+00
.105398E+01
.124950E+01
-.105278E+01
-.488217E+00

.296660E+00

.749806E+00

.291466E+00
-.493434E+00

.812087E+00
. 939571E+00
.575037E+00
-.977888E-03
-.576665E+00
-.940125E+00
-.810653E+00
-308763E~02
.813415E+00
.938159E+00

—.762683E+00
-.719202E+00
—-.388564E+00
.603705E-03
.389689E+00
.719918E+00
.761798E+00
-.354989E-02
-.764045E+00
-.71B334E+00

Table {(4.4.7r)

3: Results from the IMSL Routine

Numerical Solution

Yo

Y3

-479130E+00
-.172694E+00
-.509480E+00
-.608577E+00
-.508829E+00
-.171187E400

.481478E+00

.101403E+01

.476280E+00
-.175081E+00

10.0

.294430E+00
-.490250E+00
-.105400E+01
-.125008E+01
-.105429E+01
-.490732E+00

+294100E+00

.750025E+00

.294973E+00
~.489401E+00

.812134E+00
. 939978E+00
.575%48E+00
.345204E-03
-.575332E+00
=.939623E+00
-.812237E+00
-.176106E-03
.812375E+00
.941219E+00

1

.762571E+00
.718158E+00
.388897E+00
.145958E~03
.388635E+00
.718159E+00
.762871E+00
.448063E-03
.762019E+00
.719227E+00

Table (4.4.7s)
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.279277TE+00
-.172255E+00
-.508965E+00
-.608308E+00
-.509186E+00
-.172690E+00

.478969E+00

.101408E+01

.473978E+00
-.170916E+00

Time NFC
.12 51
.15 115
.03 130
.04 149
.04 168
.03 178
.20 260
.07 288
.09 321
.16 385
Time NFC
.04 24
.03 40
.03 56
.03 72
.02 80
.01 88
.03 104
.03 120
.04 144
.03 160



Problem 7

1l: Results from the classical RK & Kutta 4-stage 4th

order method with error control

9.00

.627515E+00
.104995E+01
.125818E+01
.124323E+01
.995912E+00
.506401E+00
-.236407E+00
-.124552E+01
~.253658E+01

10.00 -.41286%E+01

Y2

.446394E+00
.405429E+00
-38048B4E+00
.374252E+00
.387238E+00
.417250E+00
.460480E+00
.512973E+00
.571416E+00
.633281E+00

Numerical Solution

¥3 Time NEC
.484640E+00 .38 157
.306828E+00 .28 2717
.978218E-01 .21 367
=.1288S1E+00 .21 457
~.251464E+00 .22 552
-.550776E+00 .31 682
-.71B036E+00 .38 842
-.B53854E+00 .54 1027
-.96317BE+00 .53 1187
-.105167E+01 .44 1317

Table(4.4.7t)

2:Results from the classical RK & RK-GM

method with error control

¥

Numerical Solution

4-stage 4™ order

.627514E+00
.104995E+01
.125818E+01
.124322E+01
.995%910E+00
.506407E+00
-.236295+00
-.124531E+01
-.253627E+01

10.00 -.412829E+01

.446394E4+00
.405429E+00
.380484E+00
.374252E+00
.387237E+00
.417249E+00
.460477E+00
.512966E+00
.571408E+00
.633272E+00

.484640E+00

.306829E+00

.978233E-01
-.128849E+00
-.351462E+00
~.550774E+00
-.718025E+00
-.853839E+00
-.963161E+00
-.105165E+01

Table(4.4.7u)

3: Results from the IMSL Routine

Numerical Solution

Y2

.02

.627515E+00
.104985E+01
.125818E+01
.124322E+01
. 99581 0E+00
.506398E+00
-.236411E+00
-.124552E+01
~.253658E+01

10.00 -.412869E+01

.446394E+00
.405429E+00
.380484E+00
.374252E4+00
.387238E+00
.417250E+4+00
.460481E+00
.512973E+4+00
.571416E+00
.633281E4+00

.484640E+00

.306828E+00

.978213E-01
-.128851E+00
-.351464E+00
-.550776E+00
-.718036E+00
-.853854E+00
~.963178E+00
-.105167E+01

Table(4.4.7v)
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Experiment 4 : Substitution of the Fehlberg standard
formula in RKF45 with the RK-GM formula. Problems 2 and
6 were used,

Problem 2

RELERR = .10E-08
ABSERR = ,0Q0E+00

Results from RKF45

% Numerical Solution Exact Solution Absolute Error NFC
.0 .100000000E+01 .100000000E+01 .000000000E400 1
.5 .606530660E+00 .606530660E+00 .109230291E-09 67
1.0 .367879441E+00 .367879441E+00 .133512368E-09 127
1.5 .223130160E+00 .223130160E+00 .121738647E-09 187
2.0 .135335283E+00 .135335283E+00 .985598270E-10 247
2.5 .820849985E-01 .B20849986E~01 .747739926E-10 307
3.0 .497870683E-01 .497870684E-01 .544473217E-10 367
3.5 .301973834E-01 .301973834E~-01 .385401329E-10 427
4.0 .183156389E-01 .183156389E-01 .267214827E-10 487
4.5 .111089965E-01 .111089965E-01 .182366813E-10 5417
5.0 .673794699%9E-02 .673794700E-02 .122919166E-10 607
5.5 .408677143E-02 .408677144E-02 .8201957348-11 667
6.0 .247875217E-02 .247875218E-02 .542753256E-11 727
6.5 .150343919E-02 .150343919E-02 .356659580E-11 787
7.0 .911881963E-03 .911881966E-03 .232982383E-11 847
7.5 .553084369E-03 .553084370E-03 .151414103E-11 907
8.0 .335462627E-03 .335462628E-03 .979652069E-12 967
8.5 .203468368E-03 .203468369E-03 .631356729E-12 1027
9.0 .123409804E-03 .123409804E-03 .405480960E-12 1087
9.5 .748518296E-04 .748518299E-04 ,259609866E-12 1147
10.0 .453999296E-04 .453999298E-04 .165754549E-12 1207
10.5 .275364492E-04 .275364493E-04 .105565245E-12 1267
11.0 .167017007E-04 .167017008E-04 .67079435%9E~-13 1327
11,5 .101300936E-04 .101300936E-04 .425361938E-13 1387
12.0 .614421233E-05 .614421235E-05 .269218555E-13 1447
12.5 .372665316E-05 .372665317E-05 .170096731E-13 1507
13.0 .226032940E-05 .226032941E-05 .107297793E-13 1567
13.5 .137095908E-05 .137095909E-05 .675837212E-14 1627
14.0 .831528715E-06 .831528719E-06 .,425105624E-14 1687
14.5 .504347660E-06 .504347663E-06 .267052463E-14 1747
15.0 .305902319%E-06 .305902321E-06 .167563440E-14 1807
15,5 .185539135E-06 .185539136E-06 .105021595E-14 1867
16,0 .112535174E-06 .112535175E-06 .657544702E-15 1927
16.5 .682560334E-07 .682560338E-07 .411288772E-15 1987
17.0 .413993769E-07 .413993772E~-07 .257021864E-15 2047
17.5 .251099914E-0Q7 .251099916E-07 .160478541E~-15 2107
18.0 .152299796E-07 .152299797E-07 .100117226E-15 2167
18.5 .923744960E-08 .923744966E-08 .624115266E~16 2227
19.0 .560279%640E-08 .560279644E-08 .388779454E-16 2287
19.5 .339826780E-08 .339826782E-08 .242014221E-16 2347
20,0 .206115361E-08 .206115362E-08 .150554196E-16 2407

Table(4.4.7w)
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Results from RKGM44

Numerical Solution

Exact Solution

Absolute Error

o e e e e T — A e e e e . fnin e e T T T s Al el oy o T — —— ———

ohowvmoupmomnmoobhonmooUhomo

COWWROMIITOHUWUMLa B WWwhNhNoE R
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fury

WPy
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» oW

12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
18,0
19.5
20.0

.100000000E+01
.606530672E+00
.367879459E+00
.223130177E+00
.135335297E+00
.820850093E-01
.497870762E-01
.301973890E-01
.183156428E-01
.111089992E-01
.673794881E-~02
.408677265E-02
.2478752%98E-02
.150343972E-02
.911882312E-03
.553084595E-03
.335462774E-03
.203468463E-03
.123409865E-03
.748518687E-04
.453999545E-04
.275364651E-04
.167017108E-04
.101301000E-04
.614421639E-05
.372665572E-05
.226033102E-05
.137096010E-05
.831529357E-06
.504348063E-06
.305902572E-06
.185539294E-06
.112535274E-06
.682560956E-07
.413994158E-07
.251100157E-07
.152299948E-07
.923745905E-08
.560280229E-08
.33982714¢6E-08
.206115589E-08

.100000000E+01
.606530660E+00
.367879441E+00
.223130160E+00
.135335283E+00
.820849986E-01
.497870684E-01
.301973834E-01
.183156389E-01
.111089965E-01
.673794700E-02
.408677144E-02
.247875218E-02
.150343919E-02
.911881966E-03
.553084370E-03
.335462628E-03
.203468369E-03
.123409804E-03
.748518299E-04
.453999298E-04
.275364493E-04
.167017008E-04
.101300936E-04
.614421235E-05
.372665317E-05
.226032941E-05
.137095909E-05
.831528719E-06
.504347663E-06
.305902321E-06
.185539136E-06
.112535175E-06
.682560338E-07
.413993772E-07
.251099916E-07
.152299797E-07
.923744966E-08
.560279644E-08
.339826782E-08
.206115362E-08

Table(4.4.7x)
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.0000000Q0E+00
.119527582E-07
.174246161E-07
.167640901E-07
.139058159E-07
.107108639E-07
.787252005E-08
.961181949E-08
.381020614E-08
.267939583E~08
.181151460E-08
.121191589E~-08
.803643984E-09
.529062311E-09
.346125250E-09
.225247657E-09
.145903093E-09
.941272558E-10
.605064813E-10
.387710322E-10
.247723319E-10
.157873981E-10
.100377583E-10
.636863125E-11
.403282805E-11
.254918535E-11
.160872061E-11
.101368534E-11
.637846514E-12
.400833291E-12
.251584569E-12
.157729268E-12
.987824414E-13
.618038243E-13
.38631783%0E-13
.2412637778~13
.150549321E-13
.938695870E-14
.584B55591E-14
.364138811E-14
.226566345E-14

729
769
809
849
889
529
269
1009
1049
1089
1129
1169
1209
1249
1289
1329
1369
1409
1449
1489
1529
1569
1608



Problem 6
RELERR =

.10E-04,

Results from RKF45

ABSERR =

—— T e e e e e e s — T —— ks e e e e o S T T i e e e " 1, T o} o e e e o

oOuUnmnonhoumoupmouocuogoumononouno

oOYwYwoodITonnd b WWhhDERE KM
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[ S
o
nowum

12.0

. 750000000E+00

.619767068E+00

.294414200E+00
-.105182402E+00
-.490307436E+00
-.813950377E+00
.105403733E+01
.120073792E+01
.124999925E+01
.120073054E+01
-.105402372E4+01
.813932812E400
.490289189E+00
.105167252E+00
.294423177E4+00
.619768334E+00
.749992743E4+00
.619749395E4+00
.294384015E+400
.105220979E400
.490347442E400
.813985082E+00
.105406135E+01
.120074734E401
.124999155E+01

Results from RKGM44

Loumouvounmohobhoumwoumobbononono

QLW =-lJaanvos b WWwhhNEe P

B
R o

12.0

¥i

.750000000E+00
.619889683E+00
.294371048E+00
.105820308E+00
.491257114E+400
.814175266E+00
.105198408E+01
.119456309E+01
.123774775E+01
.118050702E+01
.102422819E+01
.773678543E+00
.440221688E+00
.490553995E-01
.347092196E+00
.652291257E+00
.746470302E+00
.581257348E+00
.236039898E+00
.168397143E+00
.547661917E+00
.857639536E+00
.107769430E+01
.119875599E+01

1

.00E+00

¥ NFC
.000000000E+00 1
LA77791194E+00 29
.B12176162E+00 41
.958032935E+00 53
.939865968E+00 65
.799577611E+00 77
. 575689270E+090 89
.300141410E+00 101

-.203220177E-04 113
-.300180438E+00 125
-.575723620E+00 137
-.7292604771E+00 149
-.939884469E+00 161
-.958042932E4+00 173
-.812179506E+00 185
-.477789287E+00 197
.519256401E-05 215
LA77797051E400 233
.812175304E+00 245
.958018385E+00 257
.939834876E+00 269
.799530758E+00 281
.575623678E+00 293
.300073386E+00 305
-.916976293E~04 317
Table (4.4.7y)

Yo NFC
.000000000E+00 1
.476891715E+00 5
.B810342931E+00 9
.954515800E+00 13
.933523687E+00 17
.789461516E+00 21
.561354343E+00 25
.281781047E+00 29

-.214859845E-01 33
-.322990882E+00 37
-.597104235E+00 41
-.815524725E+00 45
-.5%44820297E+00 49
-.945112714E+00 53
-.774931255E+00 57
~.416360037E+00 61
.702246288E-01 65
.532921413E+00 69
.838300231E+00 13
.952932064E+00 77
.906117222E+00 81
.741077913E+00 85
.496996055E+00 89
.206688531E+00 93
-.101479029E+00 97

.121736269E+01

Table(4.4.7z)
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Experiment 5 : Substitution of the Kutta Merson
standard formula in DO2YAF with the AM-GM formula.
Problems 2,7 and B were used.

Problem 2
Results from DO2BBF

Calculation with TOL = .1E-02
x and solution at equally spaced points

X Computed Solution Exact Solution Absolute Error

.00 .10000000E+01 .10000000E+01 .00000000E+00
1.00 .36796495E+00 .36787940E+00 .85499190E~04
2.00 .13538523E+00 .13533530E+00 .49951740E-04
3.00 .49811389E-01 .49787070E-01 .24322440E-04
4.00 .18325715E~01 .18315640E-01 .10075480E-04
5.00 .67261683E-02 .67379470E-02 .11778730E-04
€.00 .24306972E~02 .24787520E-02 .48055080E~-04
7.00 .87849704E-03 .91188210E-03 .33384940E-04
§.00 .32162751E-03 .33546260E-03 .13835120E-04
IFAIL = 0

Table (4.4.7aa)

Calculation with TOL = ,1E-03
x and soluticn at equally spaced points

X Computed Solution Exact Sclution Absolute Error

.00 -10000000E+01 .10000000E+01 .00000000E+00
1.00 .36790186E+00 .36787940E+00 .22406850E-04
2.00 .13536003E+00 .13533530E+00 .24752720E-04
3.00 .49804650E-01 .49787070E-01 .17583530E~-04
4,00 .18325208E-01 .18315640E-01 .95683550E-05
5.00 .67422989E-02 .67379470E-02 .43518610E-05
6,00 .24800357E-02 .24787520E-02 .12833940E-05
7.00 .91227415E-03 .91188210E-03 .39217260E-06
8.00 .33545629E-03 .33546260E-03 .63371990E-08
IFAIL = 0

Table (4.4 .7ab)

Calculation with TOL = ,1E-04
x and solution at equally spaced points

X Computed Solution Exact Solution 2bsclute Error

.00 .10000000E+01 .10000000E+01 .00000000E+00
1.00 .36788436E+00 .36787940E+00 .49120900E-05
2.00 .13534067E+00 .13533530E+00 .538860%0E-05
3.00 .49792005E-01 .49787070E-01 .493777T00E-05
4.00 .18319082E-01 .18315640E-01 .34423050E-05
5.00 .67402237E-02 .67379470E-02 .2276T450E-05
6.00 .24800295E-02 .24787520E=-02 .12772290E-05
7.00 .91256152E-03 .91188210E~03 .67955050E-06
8.00 .33596529E-03 .33546260E~-03 .50266210E-06
IFAIL = 0

Table{(4.4.7ac)
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Results from RKGM44

Calculation with TOL
x and solution at equally spaced points
Computed Solution

.1E-02

Exact Solution

Absclute Error

— ———————— T T — T . T " —————— T o T ————— e o e T o O

Calculation with TOL

x and solution at equally spaced points
Computed Solution

.10000000E401
.36787944E+00
.13533528E+00
.49787068E-01
.18315639E-01
.67379535E~02
.24788007E-02
.91213465E-03
.33600717E-03

.10000000E+01
.36787940E+00
.13533530E+00
.43787070E-01
.18315640E-01
.67379470E-02
.24787520E-02
.91188210E-03
.33546260E-03

Table {(4.4.7ad)

.1E-03

Exact Solution

.00000000E+00
.91496190E-08
.17479400E-08
.15345870E~08
.14437950E-09
.65383120E-08
.48380780E-07
.25267300E-06
.54454480E-06

Absolute Error

Calculation with TOL
% and solution at equally spaced points
Computed Solution
.10000000E+01
.36787940E+00
.13533530E+00
.49787070E-01
.18315640E-01
.67379470E-02
.24787520E-02
.91188210E-03
.33546260E-03

.10000000E+01
.36787944E+00
.13533528E+00
.49787068E-01
.18315639E-01
.67379470E-02
.24787522E-02
.91188231E-03
.33546482E-03

.10000000E+01
.36787944E+00
.13533528E+00
.49787068E-01
.1831563%E-01
.67379470E-02
.24787522E-02
.91188197E-03
.33546263E-03

.10000000E+01
.36787940E+00
.13533530E+00
.49787070E-01
.18315640E-01
.67379470E-02
.24787520E-02
.91188210E-03
.33546260E-03

Table (4.4.7ae)

.1E-04

Exact Solution

Table (4.4 .7af)
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.00000000E+00
.91497550E-08
.17453330E~08
.14909810E-08
.45799620E-09
.26804160E-11
.80731060E-10
.33250880E-09
.21973290E-08

.00000000E+00
.91497550E-08
.17453330E-08
.14909770E-08
.45810380E-09
.75775670E~-12
.10857130E~-09
.69348740E-11
.49373470E-11

Absolute Error



Results from DOZBAF

Calculation with TOL

.1E-02

X Computed Solution Exact Solution
.00 .10000000E+01

8.00 .32162751E-03 .33546260E-03
IFAIL = 0

Calculaticn with TOL .1E-03

b4 Computed Solution Exact Solution

.00 .10000000E+01
8.00 .33545629%E-03

IFAIL = 0

.33546260E-03

Calculation with TOL .1E-04

X Computed Solution Exact Solution
.00 .10000000E+01
8.00 .33596529E-03 .33546260E-03

Table (4.4.7aqg)
Results from RKGM44

Calculation with T0L= .1E-0Q2

x Computed Solution Exact Solution
.00 .10000000E+01
8.00 .33600717E-03 .33546260E-03
IFAIL = 0

Calculation with TOL= .lE-03

X Computed Sclution Exact Solution
.00 .10000000E+01
8.00 .33546482E-03 .33546260E-03
IFAIL = 0

Calculation with TQOL= .1lE-04

bls Computed Solution Exact Solution
.00 -10000000E+01
8.00 .33546263E-03 .33546260E-03
IFAIL = 0

Table (4.,4.7ah)
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Absolute Error

.13835120E-04

Absolute Error

—————— . b O " T — ———

.63371990E-08

Absolute Error

———— s i ey T S o

.50266210E~06

Absolute Error

————— — — i T —————

.54454480E-06

BRbsclute Error

.21973240E-08

Absolute Error

.49373540E-11



Problem 7

Results from DO2BBF

Calculation with TOL =

.62857E+00
.48496E+00
. 30698E+00
.98060E-01
.12849E+00
.35122E+00
.55049E+00
-11775E+00
.85360E+00

Calculation with TOL =

o o e T b e e e e T A S o T D S R Sl e e . W S G ke e S T

.62857E+00
.48464E+00
.30683E+00
.97830E-~-01
.12884E+00
.35145E+00
.55076E+00

WM & lwhe

J1E-02
y1 Y2
.00000E+00 .50000E+00
.62692E+00 .44644E+00
.10490E+01 .40548E+00
.12573E+01 .38053E+00
.12423E+01 .37428E+00
«99526E+00 .38724E+00
.50661E+00 .41720E+00
-.23564E+00 .46041E+00
-.12441E+01 .S128BE+00

Table (4.4.7ai)

.1E~-03
¥i Y2
.00000E+00Q .50000E+00
.62751E+00 .446392E+00
.10499E+01 .40543E+00
.12581E+01 .38049E+00
.12432E+01 .37425E+00
.9958%E+00 .38724E+00
.50643E+00 LA41725E+00

Table (4.4.7a3)

Results from RKGM44

Calculation with TQL =

.62857E+00
.48464E+00
.30683E+00
.97822E-01
.1288SE+00
.35146E+400
.55078E+00
.71804E+00
.85385E+00

Calculation with TOL =

.62857E+00
.48464E+00
.30683E+00
.12885E+00
.35146E+00
.S507BE+00
.71804E+00
.85385E+00

w-dnnb wdPE
.

1E~-02
Y: ¥z
.00000E+00 .50000E+00
.62751E+00 .44639E+00
.10500E+01 .40543E4+00
.12582E+01 .38048E+00
.12432E+01 .37425E+00
.99591E+00 .38724E+00
.50640E+00 .41725E400
-.23641E+00 .46048E+00
-.12455E+01 .51297E+00

Table (4.4.7ak)

.1E-03
Y1 Y2
.00000E+00 .S0000E+00
.62751E+00 .44639E+00
.10500E+01 .40543E+00
.12432E4+01 .37425E+00
.99591E+00 .3B724E+00
.50640E+00 .41725E+00
-.23641E+00 .46048E+00
~.12455E+01 .51287E+00

Table(4.4.7al)
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Results from DOZ2BAF

Tolerance used, TOL = ,1E-02

X Y. ¥2 Ys3

.00 .00000000E400  .50000000E+00  .62857144E400
8.00 -.12440529E+01 .51287614E+00 -.B85360339E+00
IFAIL = 0

Tolerance used, TOL = .1E-03

x ¥, Yo ¥3

.00 .00000000E+00  .50000000E400  .62857144E400
8.00 -.12454177E+01 .51296657E+00 -.85384173E+00
IFAIL = 0

Tolerance used, TOL = ,1lE-04

x ¥1 ¥2 Y3

.00 .00000000E+00  .50000000E+00  .62857144E+00
8.00 ~.12455092E+01 .51297191E+00 -.85385267E+00
IFAIL = 0

Table(4.4.7am)

Results from RKGM44

Tolerance used, TOL = .1E-02

x ¥ ¥y Y3

.00 .00000000E+00  .50000000E400  .62857144E+00
B.0O -.12455199E+01 .51297257E+00 -.85385403E+00
IFAIL = 0

Tclerance used, TOL = ,1E-03

b4 Y, Yo Y3

.00 .00000000E+00  .50000000E+00 .62857144E+00
B.00 -.12455199E+01 .51297257E+00 -.85385403E+00
IFAIL = 0

Tolerance used, TOL = .lE-04

X Y1 Y2 Y3

.00 .00000000E+00  .50000000E+00  .62857144E400
§.00 -.12455193E+01 .51287257E+00 -.85385403E+00
IFAIL = 0

Table{(4.4.7an)
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Problem 8

Tolerance used, TOL= .1E=-05

Results from DOZBDF

X AND SOLUTION .13478 .99475
CURRENT ERROR ESTIMATES .45E-06
MAXIMUM ERROR ESTIMATES .48E-06
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SOLUTION .27038 -98974
CURRENT ERROR ESTIMATES .19E-03
MAXIMUM ERROR ESTIMATES .19E-05
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SOLUTICN .30000 .98867
CURRENT ERROR ESTIMATES . 23E-05
MAXIMUM ERROR ESTIMATES .23E-05
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR .9126

Table (4.4 .,7a0)

206

00004 .00521
.13E-05 -.18E-05
.15E-05 ~.18E-05
1. 73. 53,

.00003 . 01023

-.29E-06 -.16E-05
.15E-05 -.31E-05

1. 148. 53,

.00003 .01129
-.71E-07 -.22E-05
.15E-05 -.35E-05
1. 164. 53.



Results from RKGM44

X AND SOLUTION .03665 . 99854
CURRENT ERROR ESTIMATES .10E-12
MAXIMUM ERROR ESTIMATES .10E-12
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SOLUTION .07852 .99691
CURRENT ERROR ESTIMATES .10E-12
MAXIMUM ERROR ESTIMATES .10E-12
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SOLUTION .12108 . 89527
CURRENT ERROR ESTIMATES .98E-13
MAXIMUM ERROR ESTIMATES .10E-12
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SOLUTION .16437 .99363
CURRENT ERROR ESTIMATES . 36E-13
MAXIMUM ERROR ESTIMATES .10E-12
NUMBER CF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SOLUTION .20838 .99200
CURRENT ERRCR ESTIMATES .95E~13
MAXIMUM ERROR ESTIMATES .10E~12
NUMBER CF SIGN CHANGES FCOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SOLUTION .25313 .99036
CURRENT ERROR ESTIMATES .93E-13
MAXIMUM ERROR ESTIMATES .10E-12
NUMBER OF SIGN CHANGES FCR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

¥X AND SCLUTION .29864 .98872
CURRENT ERROR ESTIMATES .92E~-13
MAXIMUM ERROR ESTIMATES .10E-12
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR 1.0000

X AND SCLUTION .30000 . 98867
CURRENT ERROR ESTIMATES .92E-13
MAXIMUM ERROR ESTIMATES .10E-12
NUMBER OF SIGN CHANGES FOR EACH ESTIMATE
STIFFNESS FACTOR .5000

Table (4.4.7ap)

207

.00004 .00142
-.60E~15 -.10E-12
.92E-09 -.92E-09

5. 1. 0.

.00004 .00306
-.63E-15 ~.99E-13
.92E-09 -.92E-09
5. 1. 0.
.00004 .00469
-.66E-15 -.97E~13
. 92E-09 -.92E-09
5. 1. 0.
.00004 -00633
~.69E~-15 -.96E-13
.92E~09 -.92E-09
5. 1. 0.
.00004 .00797
~.72E-15 -.94E-13
.92E-09 -.92E~09
5. 1, 0.
.00003 .00961
-.76E-15 -.93E-13
.92E-09 -.92E-09
5. 1. 0.
.00003 .01124
-.79E-15 -.91E-13
. 92E~09 -.92E-09
5. 1. 0.
.00003 . 01129
-.59E-15 ~.91E-13
.92E-09 -.92E-08
5. 1. 0.



4.5 RK~-GM METHOD FOR SYSTEM OF ODES

In this section we shall investigate the feasibility of
extending the RK-GM methods to systems of ODEs, Before
we deal with the RK-GM method, W%WPhall first discuss
how c¢an the classical RK methodAbe used to solve a

system of ODEs.

Consider the classical RK method of order four given by

h
¥n+1 = ¥n + "é-[kl + 2 (kz + k3) + kq] (4.5""1)
where, ’
ky = £(x,,¥,) '\
h hk,
kz = f(xn+ E,yn‘l' 2 )

y > (4.5~1a)
h hk,
ky = £(x,+ 2r ¥t

~
o
]

f(x,+ h,y,+ hky) J

is used to solve the first-order initial-value problem
(4.1-1). We shall now extend (4.5-1) and (5.4-la) to
solve the system of first-order differential equations
{(3.2.1-8) as follows.

Choose an integer N >0 and as usual set h = (b-a)/N. The
interval [a,b] is partitioned into N subintervals with

mesh points such that for each j=20,1,...,N

Xy = a + jh. (4.5-2)

Let Yi4 denote the approximation of z;(xy) for each j=

6,1,...,N and i=1,2,...,m; that is Vi3 approximates the

1" solution z;(x) of (3.2.1-8) at the jth mesh point xy.

For the initial conditions, set
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Yl,o = a’l
Yop = O,

# ; (4.5-3)
Yrr}O = am J

Suppose the values ¥i4r Vagreevr Yuy have been computed,
then Yi3+1s Yz3e1r--+r Ynys1 Can be obtained by first

calculating the following quantities

kiyg = £3(X47¥13rY24r ++ 2 ¢ Yng) (4.5-4a)
for each i=1,2,...,m;

kz,i = f; (x4t 'lzl;yl’j+ _2“1A, y%j+ '—'2'1‘&, e oo r Ymgt %]ﬂ) (4.5-4b)
for each 1=1,2,...,m;

h bk hkgo hk
kyp = £0(Xy9% 50Yagt 3 h Vo3t T v e e Yyt =2 (4.5-4c)

for each i=1,2,...,m;
hk3! hk32 hk

h
Kot = 50Xyt 5iyish =5 1 ¥oqt "o v e o Ymgt —2)  (4.5-4d)

for each i=1,2,...,m;
and then

Yigel = Yig + %[ku.+ 2 (kg + kgy) + kyq] (4.5-4e)
for each i=1,2,...,mn,

We note that ku, km,...,kulmust all be computed before
k,; can be calculated. In general, each kg, Kgr...r kg
must be determined before any of the expression kg,,.

We shall now adopt the technique to extend the RK-GM
methods to solve systems of first-order initial-value
problems defined by (3.2.1-8). We shall first consider
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the extension of the second-order RK-GM method (4.3.1-
20h) to deal with the system of equations defined by
(3.2.1-8). By using the same notation given earlier in
this secticon, for the second-order RK-GM method (4.3.1-
20h) when applied to (3.2.1-8), we obtain the following
algorithm,

Let Y14 be the approximation of z;(xy) for each Jj=

0o,1,...,N and i=1,2,...,m. Let the initial conditions
be given by (4.5-3).

Suppose the wvalues of Yi3r Y247« 01 ¥my have been computed,
then the values oOf ¥y4,1/Y25+1r+++s¥n3+1 Can be obtained by

first calculating

kyy = fi(xj"YJ,erz),jr---er) {4.5-5a)

for each i=1,2,...,m;
kps = £3(xy+ hiyig+ hky,voq+ BRygr o oo s Yyt hkypy) (4.5-4b)

for each 1i=1,2,...,m;

and then

Yige1 = Yig hvkikay (4.5-5¢)

for each i=1,2,...,m.
As noted earlier, we have to compute each kﬂJkse,...,kgn
before any of the expression Kkgiyi,Kgiyor . .rkgen can be

obtained.

Next we consider the extension of the third-order RK=-GM
method (4.3.2-4) to deal with systems of equations. To
illustrate the idea, we shall consider the system of two
equations of the form

(§9]

£f.(x,y,2)
(4.5-6)

I

1
z 1 £,(x,v,2).
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By the application of (4.3.2-4) to (4.5-6) we therefore

obtain

3
Yis1r = ¥y * n{ X wk, + wyvkok, + weyksk, + Ws\lklka}'

s=1
(4.5-7a)
and
3
Zyy, = 23 T h{ lesls + w4'\flll2 + ws-\}l:,lz + ws\/lll3},
o=
(4.5-7b)
where
ki = £:{(xy,¥i,23) N
1, = £5(x4,¥1,24)
kZ = fl (xi+c1h’ yi+a2’1hk1, zi+a2,1hll)
> (4.5-7¢)

12 = fz(xi+clh, yi+32’1hk1, Zi+a2‘1hll)

k, = fl(xi+c1h,yi+a3}1hkl+a3,2hk2,zi+a3,1h11+a3,2h12)

13 = fz(Xi'l'Czh;yi+a3ilhkl+a%2hk2, Zi+a3,1hl1+a32hlz) .

Now (4.5-7a) and (4.5-7b) may be written in vector form

as
Y, = ¥, + hK'w (4.5-7d)
where
/)
Wi
Yin i W3
Y'li+:|_,2 = r Yj,z = ’ w =
2141 Zy Wy
‘ o
\Ws/
and
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k, 1,
ko 1,
kj 1;
Koo =
kX, 1,1,
Vksk, 1,1,
Vkiks 1,1,

Hence we can write (4.5-7c¢c) in vector notation as

T b

T T
= f(xi-i-clh, Yi’2+a2,1hk1,2) >

Nh‘
o
|

(4.5-7e)

ki, = £(xytc,h, Y +aghki+aghks,) .

o

Now we can easily extend the idea above to a system of m

equations as follows. By deduction, we have from (4.5-
7d)

Yiin = ¥i, + hK'w (4.5-8)
where

)
(Yi+1,1\ (Yj,l\ w,
Yi+])2 Yip ws

Y;f,;]}m = . ’ Yi;m = . r w = . '

3
w
\Yiesn ) \Yin / i
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K =
oxm Vkpko,  Akpk, ... Akokg,
Vkyiks; VoK v JE;E;H
Vkgiki Vkyky, .- VK 3ok o,

and

T
Ko = £(Xg, ¥,

T T '

Kan = £(xg+coh, ¥i,+aghk) +ashky,)

The remaining RK-GM methods can similarly be extended to
ODE systems. However to maintain accurate results, we
have to examine the accuracy of every component of the
numerical solution ¥, . If any of the components fail to

be sufficiently accurate, the entire numerical solution
Y,, must be recomputed. Since the RK-GM methods involve
the computation of square roots, the truncation error
introduced may be amplified. We therefore recommend for
the method to be suitable only for systems of small
orders and perhaps those which involve squared terms. We
should alsc note that the function £ should always
maintain the same sign in its interval of evaluation in
order for the method to be wvalid, otherwise there will
be an evaluation of the square root of a negative term,
Thus some form of error contrel needs to be incorporated
into the algorithm. One possible and easy way of
ensuring that the function is always of the same sign is
to maintain the function to be on the same side of the

x—axis. If there is a change in sign of the function,
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then the step size is reduced until the two neighbouring
values of the function are of the same sign again.

The convergence theorems and error estimates for systems
of
except that the bounds are given in terms of vector
norms (Gear[1971]}.

ODEs are similar to those for the single equation,

4.5.1 NUMERICAL RESULTS FOR SYSTEMS
Problem f,(x) = -uju,,
f,(x) = 1.00.

2
Exact solution u,(x) = ™72,

Initial conditions x = 0, u,(0)

® wi{l, j+1) w(2,j+1) u{l,x) absolute error
.00 .1000000000E+01 ,0000000000E+00 .1000000000E+01
GM .10 .1000000000E+01 .1000000000E+00 .9950124792E+00Q ,49875E-02
RK .9950000000E+00 .1000000000E+00 .12479E-04
GM .20 .92859287527E+00 .2000000000E+00 .9801986733E+00 .S57301E-02
RK .9801579167E+00 .200000000CE+00 .40757E-04
GM .30 .9620212510E+00 .3000000000E+00 .9559974818E+00 ,60238E-02
RK .9559153442E+00 .3000000000E+00 .82138E-04
GM .40 ,9291995447E+00 .4000000000E+00 .9231163464E+00 .60832E-02
RK .9229840606E+00 .4000000000E+00 .13229E-03
GM .50 .8884840606E+00 .5000000000E+00 .882496%026E+00 ,.59872E-02
RK .8823112297E4+00 .5000000000E+00 .18567E-03
GM .60 .8410519914E+00 .6000000000E+00 .8352702114E+00 .57818E-02
RK .8350340529E+00 .6000000000E+00 .23616E-03
GM .70 .7882060772E+00 ,7000000000E+00 .7827045382E+00 .55015E-Q2
RK .7824269076E+00 .7000000000E+00 .27763E-03
GM .80 .7313240236E+00 .8000000000E+00 .7261490371E+00 .51750E-02
RK .7258444017E+00 .8000000000E+00 .30464E-03
GM .90 .6718030534E4+00 .9000000000E+00 .6669768109E+00 ,48262E-02
RK .666663888B2E+00 .9000000000E+00 .31292E-03
GM 1.0 .6110058050E+00 .10000Q0000E+01 .6065306597E+00 .44751E-02
RK .6062308067E+00 .1000000000E+01 .29985E~-03

U.2=x.

= 1, u,(0) = 0.

Table (4.5.la): Comparison of the RK and RK-GM methods

{(both of second-order) to solve systems of first-order

CDEs.
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X w(l,j+1) w(2,3+1) u(l,x) absclute error
.00 .100000000E4+01 .000000000E+00 .100000000E+01
GM .10 .995988587E+00 ,100000000E+00 .99501247%E+00 .9761E~-03
RK .99501247%E+00 ,100000000E+00 .2602E-10
GM .20 .981301132E+00 .200000000E+00 ,980198673E+00 .1102E-02
RK .980198673E+00 .200000000E+00 .2526E~09
GM .30 .957150973E+00 .3000000G00E+00 .955997482E+00 .1153E-02
RK .955997481E+00 .30Q000000E+00Q .8050E-09
GM .40 .924281083E+00 ,400000000E+00 ,923116346E+00 ,1165E-02
RK .923116345E+00 .400000000E+00 .1581E-08
GM .50 .883645264E+00 ,500000000E+00 .B882496%03E+00 .1148E-0Q2
RK .882496901E+00 .500000000E+00 .2050E-08
GM .60 .836381164E+00 .600000000E+00 ,835270211E+00 ,1111E-02
RK .835270210E+00 .600000000E+00Q .1053E~-08
GM .70 .783761749E+00 .700000C00E+00 .782704538E+00 .1057E-02
RK .782704542E+00 .700000000E+00 .3326E-08
GM .80 .727140084E+00 .800000000E+00 .726149037E+00 .9910E-03
RK .726149051E+00 .8000Q0000E+00 .1379E-07
GM ,90 .667892765E+00 .900000000E4+00 .666976B1l1E+00 .9160E-03
RK .666976845E+00 .900000000E+00 .3367E-07
GM 1.00 .607365774E+00 ,10000C0000E+01 .606530660E+00 .8351E-(03
RK .606530726E+00 .100000000E+01 .6669E-Q7

Table (4.5.1b):

Comparison of the RK and RK-GM methods

(both of fourth~order) to solve systems of first-order

ODEs for h =

0.1.

4.6 CONCLUSIONS AND RECOMMENDATIONS

In this chapter we have derived the second-, third-and
fourth-order RK-GM methods. Numerical results show that

they are worthy of further investigations. Thus we
proceed with the study of the error control strategy
using the RK-GM fourth-order method.

From the numerical results obtained, the error control
strategy implementation of the AM-GM method appears to
be with RK-Fehlberg
counterpart. This is expected because the RK-~Fehlberg
the AM-GM method

requires only four function evaluations per step in

less accurate compared its

method is of one order higher. However,

s e i,

contrast to the six function evaluations per step in the
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case of the RK-Fehlberg method. This may have some
advantages for equations with complicated functions and

-

large order systems.
The investigation of integrating y‘“ = -y for various
values of the tolerance using the RK-GM method shows
that the method is good for low accuracy only., It could
form the basis of an integrating strategy in conjunction
with extrapolation methods (Sanugi([1986]).

The use of classical Runge-Kutta and Kutta fourth-order
four-stage formulae in an embedded method incorporating
error control involves a substantial amount of work in

function evaluations. However, the accuracy of the

results shows the method to be competitive. This may be
e —— R e - —
due to the fact that the two formulae use different
values of the ki; -hence the increased work.

The numerical results obtained from experiment 5
indicate that the AM-GM method could be more accurate
than the Kutta-Merson method. The reason may be that the
AM-GM method uses a smaller step-size than the Rutta
Merson method. However, this may incur excessive work.
Results of problem 8 in this experiment are self-
explanatory.

The RK-GM formulae have been investigated as to their
suitability for consideration to be included in embedded
ordinary differential eguation methods. The idea appears
to be attractive because of their simplicity and ease of
programmability. However the results are not so
convincing when compared with the more well known
methods. Nevertheless, the investigation is worthwhile

as confirmed by the experimental results.
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CHAPTER 5

NUMERICAL SOLUTION OF
PROBLEMS INVOLVING ODES -
GM MULTISTEP METHODS

5.1 INTRODUCTION
Suppose that we are given a puhorder initial~value

problem,

v = £(x,y, vy, v, (5.1-1)

with initial conditions Xg = Oy, y(Xq) = Yo, y””(xo)==y;“,

(p-1) (p-1)
v P (%) =y .

oy

In this chapter we shall seek to obtain an approximation
of y(x,,;) as a GM combination of the values y,,..., ¥ k-1

and of the derivatives computed at vp+1r ¥Ynr e« -r¥n-k-1-

Thus,

Yo+l = Oa¥n + CoVp-1bHt0Vnoxog

k-1 1
+ h{.zc?i,j[f(Yn-i)f(Yn—j) 12}, (5.1~2)
i,i=
for some fixed numbers Qi, Oz, ... ,0k, PBoo, Boi. Bo2s
ng—l and Bl,lf cen g Bk-],k—l-

It may happen, of course, that oy or Bix-1 is zero, but
we assume that this is not the case for methods of order
k. Under the assumption that k cannot be so reduced, the
method given by (5.1-2) is known as a ncnlinear k-step

method or a GM multistep method.

If all the cross coefficients Bw are equal to zero for i
# j, then (5.1-2) will be reduced to the linear k-step
method. On the other hand, if all the coefficients B%j
are zero for i =3, then (5.1-2) will be reduced tc the
GM multistep method of the form



Yne1l = 0q¥Vn + Opyp1t t0Ya_k-1

k-1 1
+h % Bis [ £(vn-1) £ya-p) ] 2. (5.1-2a)
, §=0

i#]

Note that (5.1-2) may give rise to either an explicit or
implicit method depending on the value of fo35, J=

0,1,...,k=-1. If all B%* j=0,1,...,k-1 are zero, then

the method 1is said to be explicit; otherwise it 1is
implicit. For an explicit method y, can be computed

directly from (5.1-2), while in the implicit case, we

have to solve an equation of the form
Yo — hBopf(yn) = v, (5.1-3)

where v is independent of y, and is given by
k-1
v = 121 (0yva-1 + DPiif(ya-1)].
For a nonlinear function £, {5.1-3) requires the

solution of a polynomial equation. If £ has a small
Lipschitz constant, then (5.1-3) can be solved by fixed-

point iteration as the limit of the sequence z(m,
zY, ..., where, for 321, 2z is obtained as
2z = v o+ hBO,Of(z(j_”) .

In the case of stiff problems, where the Lipschitz
constant 1s necessarily large, this iterative method is
not convergent '‘and it is necessary to use some variant
of the Newton method (Butcher([1987]). Another possible
approach to using implicit methods is in the context of

predictor-corrector pairs.

5.2 NUMERICAL METHODS FOR FIRST-ORDER ODES
Consider (5.1-1) for the case of p=1, then we have the

first—order iritial-—value problem (4.1-1}. Let the
general form of the formula which approximate$ y,,1 be

defined by

Vasr — ¥n = h{o £, + Opfpn + GV Enfrey ). (5.2-1)
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The values of 0y, O, and 3 are to be determined so as to

give the highest accuracy possible.

Consider the Taylor series expansion of y,,; about x, and

take the difference yu. - y,- We obtain

2 3 4
h h™ 2 h™ 5
Yner = ¥ T hfn + ?fn + ?fn + 24 fn +0(h7). (5.2-2a)

. HZ’ S .

Next we consider the right-hand side of (5.2-1}). By the
Taylor series expansion of f ,, about x , we have

{1 h’ 2 b’ _@ . h'_@ 5
faep = EothET + 5787 + £ +57E5, +0(hD). {(5.2-2b)
If we multiply (5.2-2b) throughout by £ and take the

square root, we obtain

(1
h_ , h (2) (£ 2l
fafan = £, + & + ry [2fn - £ ]
£VED s
h3[ (3) (£, ) ]
+ 7 L4f - b + 3
18 ! fn fn2
(1) . (3)
e
+ 382 [an - 16“"ja:—— - 12“‘;:——
£22 (g2 N
+ 36— - 15——— ]+ ox).  (5.2-2¢c)
fn fn

By using (5.2-2b) and (5.2-2c), we obtain the right-hand
side of (5.2-1) as
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2 3
h h™ _«
(@, + o, + a)hE + (20, + ;)7 £iM 4 (20, + Oy) 7 £17)

(1)
ha(fn )2 ¥ N
- a;g-—ar—-+zg[4(2a2+ o) £,
(1) _(2)
fn fn (flil"):3
- 60— + 30, ]+ o(r"). (5.2-2d)
n f

n

By equating the coefficients of like terms in (5.2-2a)
and (5,2-2d), the following results are obtained:

coefficient of hf : o + o, +a, =1

(1)

coefficient of hzfn

2o, + ¢, = 1
2 3 (5.2-2e)

, . 2 2
coefficient of h3f;): 20, + o, 3

Now (5.2-2e) 1is inconsistent because of the second and
third equaticons. Therefore we solve cnly two equations
in three unknowns. Since the third equation in (5.2-2e)
is the coefficient of the term involving h3, we may
choose to solve the set of two equations, namely the
first and second equations of (5.2-2e) in order to
maintain the highest accuracy as possible. Hence we have

a system of simultaneous equations

o, + o, =1 -«
2 ' } (5.2-2£)
20, + o, 1
On solving (5.2-2f) we cbtain the solutions as
a =o, = f .
and (5.2-29)

o 1 - 2B

3

for some arbitrary constant J.

Therefore the general GM formula can be written as
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Voo = vo * R{B(E, + £, + (1 - 2P)A[E £, } (5.2-3)

where B is the parameter defined in (5.2-2g).

Now the well known Trapezoidal formula (AM) can be
1
deduced from (5.2-3) by substituting (=3 and obtain
h
=yn+"2—(fn+f

(5.2-3a)

Yni1 n+1) *

Similarly, the original GM formula can be derived from
(5.2-3) by replacing B=0 to obtain

Yo =y, + hEE . . (5.2-3b)

The formula given by (5.2-3) is accurate up to order
O(hz). Therefore, the local truncation error of (5.2-3)

is obtained as

(n, 2
(£
er _h’_w@ n? "o : h® @
T2 - 4 fn - (13 8 f - 6 fI‘l ’
n
(1)
e h’ (2) (£ )’
or T; = 37 128, - 3a,——}. (5.2-4)

Hence we deduce that, the local truncation error of the
AM formula (5.2-3a) 1is

AM h3 (2)
T, =715 fn (5.2-4a)

and that of the original GM formula (5.2-3b) is given by

(1), 2
£
(2 (£, )

{2£)" -3 — }. (5.2-4b)

n

o _ b
T2 = 24

Table (5.2) compares the computational complexity of the

original GM formula with the AM formula
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Formula Multiplication Addition Square Root

AM 1 2 -0
GM 2 1 - 1
Ratio:AM/GM 0.5 2 0

Table (5.2): Computational complexity of the AM and GM

formulae

We observe that the GM formula inveolves an extra amount
of work in the evaluaticn Ofmﬁﬂfﬁﬁare root; assuming
that mult;plicatiop and additionkrequire gﬁmu&dmt amount
of work. However, 1f the problems to be solved contain
the evaluation of a square of a functicn, then naturally

the GM formula has an advantage over the AM formula.

5.2.1 CONDITIONS UNDER WHICH THE GM FORMULA
IS MORE ACCURATE THAN TEE AM FORMULA

We now compare the local truncation error of the GM
formula (5.2-3) given by (5.2-4) with that of the AM

formula (5.2-3a) given by (5.2-4a). We also note that if
®,=0, then (5.2-3) reduces to (5.2-3a). Therefore, we

shall discuss the error given by (5.2-4) for non-zero
values of @, and observe whether it 1is less or greater
than (5.2-4a). .

We have from (5.2-4), the local truncation error of the
GM formula as

3
Ty = o7 {257 - 30, ——1}. (5.2.1-1)

For the GM formula to be better than the AM formula

(5.2-3a), we need TgM < I@M . Therefore, we have
(1) .2
3 [fn 3
h”~ {2) h™ =
27 L2£, - 3a, £ < |15 £a (5.2.1-2)
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If we assume that f;m > 0, then the inequality (5.2.1-2)

becomes
(1, 2
3 (f
_n’ £ . n’ £ _ azh’ (fa ) < n’ £l2)
12 ™n 12 ~n 8 fn 12 —n F
or
), 2
R’ ozh’ (Fa )
SR -2 —— <. (5.2.1-3)

Let ¢, >0, then from the inequality (5.2.1-3), we obtain

300
£, > 0 and £,£," > (£ 2, (5.2.1-4)

n—n

Next, if £, < 0 and let -f.'=G>0, then inequality

{(5.2.1-2) becomes,

(1), 2
3 3 oa.nd (£, ) 3
R <L g
12 a a fn 12 ~f
or
(1), 2
a3h3 (fn ) h3
0 < -~ 5 £ <% G. (5.2.1-5)

Since we have assumed that &, >0, therefore from the
left-hand side of inequality (5.2.1-5), we obtain £ < 0.

Let -f =H> 0, then the right-hand side of inequality
{5.2.1-5) becomes,

(1), 2
ah’ Ea )0 s
8 B <6 G
or
30t
3
GH > —= (£4)%,
l1.€.
30
2) 3 (1)
£.5y > (£, (5.2.1-6)
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which is similar to the result obtained in the case of

£2 59,

n

Therefore, the necessary and sufficient condition for
the GM formula (5.2-3) to be more accurate than the AM
formula (5.2-3a) is that

2 _ 3% 1y,

££? > = (812, (5.2.1-7)

nn 4
for o, > 0.

Similarly, by following the same lines of argument as
above, we can establish the condition under which the GM

formula (5.2-3) is better than the AM formula (5.2-3a)
for the case of @, <0 as

30
£ £ <« =2 (g2, (5.2.1-8)

n"n 4

5.2.2 STABILITY ANALYSIS OF (5.2-3)
We shall now consider the stability regions of the class
of methods defined by (5.2-3), namely

Yarr = ¥n + B{B(En + £n41) + (1 = 2B)VEnEny ).

By applying formula (5.2-3) to the test problem y(n = Ay,

we obtain
Yasr = vn + BA{B(yn + YW yoyner 1. (5.2.2-1)

Now dividig (5.2.2-1) throughout by y,, gives the result -

n n Edthd /2
¥_+1=1+hx{ﬁ(1+yy”)+(1-2[3){yy”}1 }.  (5.2.2-1a)
n n

n

Yn+1

2
Now substitute = P, in (5.2.2-1la), and after some

n

rearrangement, we have

P2(1 - hAB) + hA(2B - 1)Py — (1 + hAB) = 0. (5.2.2-1b)
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Now (5.2.2-1b) 1is a guadratic in P, which upon solving

for P,, gives

P = hA(L - 2B) + {[hA(l - 2B)1% + 4(1 - WAB) (1 + hif) }U2

. 2 (1-50) . (5.2.2-2a)

Absolute stability requires that

Ynu1 2
jn = Pn <1
or, similarly,
| .| < 1.

Next consider the roots of the quadratic equation
(5.2.2-1b) given in (5.2.2-2a). We shall consider the

root

1/2
_bA(1 - 2B) + {[nA(1 - 28)1% + 4(1 - hAB) (1 + hAP) }

P, YR (5.2.2~2b)

and discuss the condition under which |P_ | <1,

Now |P,| <1 implies that

2(nA:B) = I mAc - 2p) + {mAa B a-mp asmp )|,
<2|1-nAp].

Let hA=2z, then we have

F(z:p) = |z - 2By + {z(1 - 2017 + 4(1 - 2By (1 + zB)}m| '
<21 - zB|. (5.2.2-3)

swfhuent b deMrwming. +ha shinliby g 10w,
Assume > 0, we have two cases to be COnsidered%:They

are

{a) z is real

(b) z is purely imaginary.

Consider case{a), we have
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~ 1/2
F(z;B) = z(1-2P) + {[z(1-2B) 1% + 4(1-2P) (1+zP) } ,

< 2(1 - zB). (5.2.2-3a)

or on rearranging the terms in the inequality (5.2.2-
3a), we obtain for real z, .

gz;B) = £(z:B) + 2zB,

z+ { [2(1-2P) 1% + 4 (1-zP) (1L+2P) }”2 < 2,

If we plot the function g(z;B) against z, we notice that

|§(z;B) |< 2 for all z<0 and z> =, for B >0 and

1

B

I@(z;ﬁ) |>2 for 0 <z <= for B>0.

Next consider case(b). Let 2z = 1y where y is real. Then

from inequality (5.2.2-3) we obtain

1/2
L.H.S.= | iy(1-2B) + {-Iy(1-2B)1%+a(1+(yP2} 7|,

1/2
{1y1-2p)1® + a1+ (yPrH + [-1(1-2Py121} 77,

2'\/1 + (y[_’))2

R.H.S.= 2|1 = Biy| = 2V1 + (By)?

Hence (5.2.2-3) 1s an equality statement. This suggests
that the imaginary axis of the complex plane is the

boundary for the absolute stability region of the
method, irrespective of the value of the parameter J.

The method is therefore absolutely stable for hA lying
on the left half of the complex plane.

5.3 NUMERICAL METHODS FOR A SPECIAL CLASS OF
SECOND -~ORDER ODES
By using the approach described in Section 4.5, it is

clearly ' possible to express the second —order
differential equation '

(2) {1)
Y )

= £(x,v,¥ ' (5.3-1a)
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in the form of a first order system of ODEs, that is v

= f(x,u,v), where u=y and v==y(“. If, however, (5.3-la)

has the special form

v = f£(x,y), (5.3-1b)
that is, the function f is independent of y”), then it
is natural to enguire whether there exist direct methods
which do not require the explicit introduction of the
first derivative.. into an equation in which it does not
already appear. We might ask the same sort of question
about special higher order ODEs of the form y'™ = f(x,y).
In Section 5.3.1 we shall derive the GM method to deal
with equations of the form (5.3-1b); while in sSection
5.4 we shall consider the special class of fourth-order
ODEs of the form y'*! = f(x,y).

5.3.1 DERIVATION OF THE GM METHOD FOR
PROBLEMS OF THE TYPE v® = f(x,y)
Consider (5.1-1a) for the case of p=2 and that the

function £ 1s independent of y(“.

Then, we have a
special class of second-order, initial-value problems
defined by the form (5.3-1b) with initial conditions

¢ ?
Y(Xo) = Yo and y(}'n.') = j: .

Let the general form of the formula which approximates
Vn+1 ke defined as

Yn-1 = 2Y¥n * ¥Yn+1

2
= h {alfn + Oxfyg + O3fh4

+ (xqqfnfn_l + asvfnfn_'_l + OV Ea-1En41 } L{5.3.1-1)

Now consider the expression for the right-hand side of
(5.3.1-1). By using the REDUCE program for algebraic

manipulation we obtain the following results:
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h hoon
o f-1 = 0f, {l - h P + 2—' z _ _5_'_ T n E e
{5)
5 n
B %" £ }+ om®. (5.3.1-2a)
" n
(1) (2) (3) (4)
f, x: £, x £, X £,
Ot3fr”’1=m3f“{1+hf Y21 g, Y g, tYay,
(5)
ps In ]
Ts1f }+ om®. (5.3.1-2b)
* n
‘(1) (2} (1)
f 2 £ f
-\} h " h n n 2
Oy fnfn—l = (X.qfn {1 - = e [2 _ ( ) ]
2 fn B fn fn
3 fr(‘s) g1 g2 ;1) 3
_213[4 £~ 6 e +3(fn)]
n
() PRESPNE) 2
hq [ " " " (fn ) 2
Paea LB TR T T T2 A
n
(2) ¢ (1Y 2
£ (£,) £
n 4
+ 36 3 - 15 ( : ) ]
£ n
(1) _(4) (2 _(3)
h5 [ féf’) f“ fn fn £,
16 - 40 - 80
3840 £ 2 z
g (£7) £ (g)
+ 180 + 120
£ £
{2} {1ry 3
£, (fn ) fil) ]
- 300 2 + 105 ( = ) ] }
£, n
+ O(n’). (5.3.1-2¢)
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1 2 1
f(J 2y (1}

£
osNEoE = asta {1+ Bt B [ o = (=) °]

£q £,
(3 fil)fiz) £ 0
Bl -6 ——+3 ()]
+ 48 fn £2 £a
{1) . t3)
. f;q) £, £, ;2) )
+384[8 fn'_l6 fz —12(fn)
n
(2) {11y 2
£, (£,) £
n 4
+ 36 - -15 (=) ]
£, n
{1) L t4) {2) L (3)
h5 l'(lS) fn fn fn fﬂ
+ 3840 [16 r _40T-80T
n n
(1) ¢ 22y 2 (3) {1y 2
£o (£2 ) £, (£2 )
+ 180 + 120
3 3
fn fl."l
fr(l2) (fr(]l))li f(l)
n 5
6
- 300 ———— + 105 ( T ) ] } + 0(h%.
fn
{(5.3.1-24d)
{2) (1)
2 fn fn
h 2
OV En-1£041 = efy {1 L [ £, - ( £, ) ]
(1) 2 (3) (2) (1Y 2
O
+ o7 -4 + 6
@ E TR :
(1)
fn
a
-3 - Y]} + omd. (5.3.1-2e)
]

Now substituting (5.3.1-2a),
(5.3.1-2d) and (5.3.1-2e)
{(5.3.1-1), we obtain

{5.3.1-2b}, (5.3.1-2¢),
into the right-hand side of
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{1}
n

hf

[
han{ E oy + (=20, + 203 - Oy + O5)
i=1

2f,
n’s (%
+ (20, + 203 + 04 + Os + 20) T
n
h3f;3)
+ ('—2(12 + 2&3 -y + O£5) 12fn
(1)
p? oo 2
+ (- 0y - O — AQg) g [ £, ]
(1) .(2)
h’ G h’ fa 3 ¢
+ (0~ 05) T+ (0 + @) g [ £ 13} +om.
(5.3.1-3)

Next, we have the left-hand side of (5.3.1-1) given by

2 A a2 1 et 8
hjfﬁ + 15 hf,  + 360 h'f, + O(h’), {(5.3.1-4)

Therefore, by equating ($1J~3) and ($-31-4) we obtain the

following results:

6
coeff. of hif,: Yoy = 1, (5.3.1-5a)
i=1
1
coeff. of hPtM: —20, + 205 - 0 + G5 = O (5.3.1-5b)
coeff. of hgf;”: 20, + 203 + Oy + O +20 = %} (5.3.1-5¢)
(1)
(£, 17
coeff. of h' —F i O + O + 406 = 0, (5.3.1-5d)
n
(1) . (2)
fn fn
coeff. of h’ 7 oy — O = 0. (5.3.1-5e)
n

Now for (5.3.1-1]) to be symmetric, we impose the

condition

oy -~ 03 = 0. (5.3.1-6)
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Thus, we have a system of simultaneous equation of the

form
S

A% = b, (5.3.1-7)
to be solved, where A is a 6 by 6 matrix,

21.111121.T

0-2 2-1 1 0

— 1
a® = (04,0, 05,0 ,05,0 and bT = (1,0,5,0,0,0).

By using the REDUCE program, we solve the system of
equations (5.3.1-7) to obtain the solutions as

Qg =0, Oy = 0z = =20

1

o = a3 = 75 (1 + 6a) (5.3.1-8)

oy =% (5 + 120)

where O is an arbitrary constant.
By substituting (5.3.1-8) into (5.3.1-1), we obtain the

general form of the GM formula as

Ya-1 — 2¥n + ¥Ynal
2

h
= 32{2(5 + 1200 £, + (1 + 60) (facy + £na1)

— 120[2 (NEafper + VEufmes ) = VEaeifner 1}, (5.3.1-9a)

where the arbitrary parameter ¢ is g{ven' in (5.3.1-8).

We may deduce the Numerov (AM) method from (5.3.1-%a) by
substituting a=0 to give
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2
h
Yn-1 = 2¥n = Ynel + 33 {£a-1 + 108, + £1n )}, (5.3.1-9b)

and the GM formula is obtained by substituting a==-% to

obtain

2
Yar = 2¥a = van + 5 138, + 2 [VEE + VEafan ]
~ VEraton . (5.3.1-9¢)

Another form of the GM formula may be obtained by
substituting a==-f% in (5.3.1-%a) to give

h2
¥n-1 = 2¥n = ¥Yn+1 + Y {10 [2 (qfnfn—l + VEafnu )
- VEafar ] = 3 (Fae + £aen) .o (5.3.1-9Q)

5.3.2 ERROR ANALYSIS OF (5.3-9a)

Next, we consider the derivation of the formula (5.3.1-
9a) to decide on the magnitude of its local truncation
error. We observe that (5.3.1-%a) is accurate to order
O(hq). Therefore, the local truncation error of (5.3.1-
9a) can be obtained from (5.3.1-2a), (5.3.1-2b), (5.3.1-
2c), (5.3.1-2d), (5.3.1-2e) and (5.3.1-4) as

GM 1 t4)
T.,, = h° -7—5-0-[30(0&2 + 03 + O¢) + 15(0; + O5) - 2] £,
f;;)féa) [fé21]2
—i[a + o +4a]——~1—[a +a]-—
24 4 5 6 f, 32 4 5 £,
(2) {1}
£ (£, 1°
1
4-55[3(a4+ os) + SQG}————;—“—
fn
[f(l)]4

- oo ls0g + s 4 1605 | —=— 1},
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6
h (a)
= 5760{8 [30(a, + 05 + ag) + 1500, + a5) - 2] £

n

fél)féa) [f(Z)]z
n
- 240 [a4+-a5+ 4a6] - - 180 [a4 + a5] —F
n n
(2) (1)
£ 1€, 12
+ 180[3((14"'(15) +8(X.6] 2
fn
(1
(£, 1"
- a5 [5(a + 0s) + 16a5] ——1 . (5.3.2-1)
n
By substituting the values of oy; 1=1,2,...,6 given in

(5.3.1-8) into (5.3.2-1), we obtain the local truncation
error of (5.3.1-%a) as

[
o, = 5?60{8 [501 + 1200 - 2(1 + 3000 ] £

(2) 1
(£ 2 £l 11142 TICRL
n n
+ 1800 [4 £, 4 22 + JE ] },
n n
(2) | (1), 2
e [f;mlz £, £, ] [fé“]q
AL (4)
=2 {2e® + 150 [ 4 e ]}.
n n
Define
[(£2)2 - 26,6 ] 2
n n-+n
M, = 3 ’ (5.3.2-2)
fn
then we can write
cM h® (4
Tn+1=m{2fn +150tMn}, (5.3.2-3a)

where O is the parameter of the formula.

For 0= 0, we obtain the local truncation error of the AM

formula and is given as

233



6
aM _ h (1)

ntl — 240 (5.3.2-3b)

Next we seek to find the condition under which the GM
method results in a local truncation error smaller in
modulus than the AM method. By comparing (5.3.2-3a) and
(5.3.2-3b), we observe that assuming o> 0, then TiT1< Tﬁh

provided M, < 0.

Therefore by definition of M, it follows that

[ ()72 - 26,682 ] :

n

Mp, = 3 < 0, {(5.3.2-4a)

Since the numerator is always positive, we therefore
have the condition that £, is negative for (5.3.2-4a) to

be true. Thus we claim that for f negative in the
GM AM
T

Tn+1 < n

interval of the integration and >0, then

GM AM \ ,
The condition of T,,; <T,,; which requires that aM, < 0,
for the case < 0, implies that M, > 0. Hence we have

[ (fél))z _ 2fnf;2)] 2

M, = . > 0, (5.3.2-4b)
£

n

\ . . 3
Since the numerator 1is always positive, therefore £

must be always positive in the interval of integration.
Thus £, must be positive throughout the interval of

integration and for o< 0, the GM formula has a smaller
nodulus wvalue of local truncation error than the 2AM

counterpart.
Therefore there are possible functions f for which the

local truncation error of the GM formula is smaller in
modulus than the error introduced by the AM formula.
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Now consider two particular cases of the GM formula

given in (5.3.1-9c) and (5.3.1-9d). In the first case,
1

we have = Y Therefore its local truncation error is

given as
GM1 n® {4)
The1 = %.0‘[4fn - 5Mn} . (5.3.2-5a)

In the second case, we have a==—f%. Hence its local

truncation error is obtained as

GM2 h® { (4 }
Tat1 = 7920 L 8E, — 25My J . (5.3.2-5b)

Table(5.3.2) compares the three formulae, namely the AM
formula (5.3.1-%b) and the two GM formulae (5.3.1-9¢)
and (5.3.1-9d). The GM formulae are found to invelwve two
times more work than the AM formula as indicated in
Table (5.3.2). However they are all O(hq) accuracy as
confirmed by the numerical results given in
section(5.3.3)

Local
Formula Addition Multiplicatien| Square Root | Truncation
Error
AM Formula h6
(5.3.1-9b) | 3 0 245 fn
GM Formula hs h6
{5.3.1-9¢) 5 6 4 Ezafn-igamn
Gb(dngn:{u-%z) 6 8 3 h°, _sny
tT 240°" 384 "

Table(5.3.2): Computational complexity of the
AM and GM formulae
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5.3.3 NUMERICAL RESULTS
{2)

Problem 1 vy + xy = 0.
1 * [ [} 1
Initial conditions x5, = 0, yo = 1, yé) = 2,
Exact solution y = (1 - x°/3 + x%/180 - ...)
+ 2(x - x°/12 + x'/504 - ...)
x, Numerical Solution Exact Solution Relative Error
.10 .1199650005%5E+01 .119965000595E+01 0
.20 .139806708B69%0E+01 (R) .1398706707302E+01 .715795183538E-03
.139808941867E+01(B) .731779934094E-03
.139812291632E+01(C) .755757059928E-03
.30 .159365496416E+01 (A) .158965491786E401 .251629850849E-02
.1593699884921E+01 (B) .254455669036E-02
.159376726590E+01 (C) .258694387026E-02
.40 .178442927854E+01(A) .177442925714E+01 .563562698202E-02
.178449670465E+01 (B) .5367362574206E-02
.178459784349E+01 (C) .573062369611E-02
.50 .196803408010E+01(A) .194803447421E+01 .102665564462E-01
.196812375478E+01 (B) .103125898631E~01
.196825826628E+01(C) .103816397197E-01
.60 .214176811045E+01(a) .210677028571E+01 .166120744014E-01
.214187958857E+01 (B) .16664988629%0E-01
.214204680503E+01 (C) .167443596286E-01
.70 .230262257646E+01(A) .224663040833E+01 .249227322500E-01
.230275518922E+01 (B) .249817596535E-01
.230295410745E+01 (C) .250703003513E-01
.80 .244733187537E+01(A) .236335522540E+01 .355328050634E-01
.244748469339E+01 (B) .355974705342E-01
.244771391933E+01(C) .356944622725E-01
.90 .257243840106E+01 (A) .245250045357E+01 .489043528245E-01
.25726102003%E+01 (B) .489744035077E-01
.257286789810E+01 (C} .490794790066E-01
1.00 .267437213004E+01{(A) .250952380952E+01 .656890840780E-01
.267456136319E+01 (B} .6576449300745E-01
.267484521144E+01(C) .658775984861E~-01

Table(5.3.3a)
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Problem 2 ym + 2x2y =0

(1)

Initial conditions x, =0, yo =1, y5 =1
Exact solution y = (1 - x"/6 + x%/168 - ve)
+ (= x°/10 + x°/360 — ...)
X, Numerical Solution Exact Socluticn Relative Error
.10 .109998233340E+01 »109998233340E+01 . 0
.20 .119970133876E+01 (A) .119970134999E4+01 .936544166655E-08
.119970148371E+01(B) .111454780902E-06
.119970170113E4+01(C) .292685114570E-06
.30 .129840729714E+01(A) .129840744521E+01 .114042419673E-06
.129840771400E+01 (B) .207014078941E-06
.129840833929E+01 (C) .688599808733E-06
.40 .139471310095E+01 (A) .139471396246E+01 .617701420252E-06
.139471390026E+01 (B) .446004673666E~07
.139471509923E+01(C) .B815054255502E-06
.50 .148648365085E+02(A) .148648701017E+01 .225990528824E-05
.148648492608E+01(B) .140202151487E-05
.148648683894E+01 (C) .115188875393E-06
.60 .157074164286E+01 (A) .157075197074E+01 .657512117010E-05
.157074346792E+01 (B) .541321910915E-05
.157074620553E+01({C) .367035407630E-05
.70 .164360423379E+01(Aa) .164363156960E+01 .166313519292E-04
.164360665899E+01 (B) .151558381446E~04
+164361029682E+01(C) .129425494473E-04
.80 L17002707138BE+01{A) .170033680417E+01 .388689%400721F-04
.170027376092E+01 (B) .370769185203E-04
.170027833152E+01(C) .343888611584E~04
.90 .173508683101E+01(A) .17352394728SE+01 ,879658605241E-04
.173509048788E+01(B) .858584445949E~04
.173509597325E+01(C) .826972879105E-04
1.00 .174171581559E+01(A) .174206349206E+01 .199577383509E-03
.174172003318E+01 (B) .187156351997E-03
.174172635964E+01(C} .183524763655E-03

Table (5.3.3b)
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Problem 3 yu’ + xzy =
Initial conditions x;, =

Exact solution y =

1.

.10
.20

.30

.40

.50

.60

.70

.80

.90

00

1
0,

+ x + x2

(1)
Yo = 2,

Yo =

2

2(1 - x'/12 + x%/672 - .. .)

+ 2(x - %°/20 + %°/1440 - ...)

Numerical Solution

.220515731629E+01

.242116719231E+01 (A)
.242116695965E+01 (B)
.242116661067E+01 (C)

.264857051467E+01 (A)
.264856965700E+01 (B)
.264856837048E+01 (C)

.288743990707E+01 (&)
.288743775492E+01 (B)
.288743452671E+01(C)

.313722608903E+01 (A)
.313722141120E+01 (B)
.313721439%451E+01 (C)

.339659195430E+01 (A)
.339658206413E+01(B)
.339656722913E+01(C)

.366323827217E4+01(a)
.366321433013E+01(B)
.366317841905E+01(C)

.393372811772E+01(A)
.393380252836E+01 (B)
.393391394862E+01(C)

.420332107723E+01 (A)
.420351786622E+01(B)
.420381214595E+01{C)

.446583286944E+01(A)
.446617585261E+01 (B)
.446668869506E+01(C)

Exact Solution

.220515731629E+01

.242116688706E+01

.264856910711E+01

.288743590441E+01

.313721710689E+01

.339657430537E+01

.366320554629E+01

.393366680462E+01

.420319930665E+01

.446557539683E+01

Table (5.3.3¢c)
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Relative Error

0

.126074661035E-06
.299825750827E~-07
.114155553753E-06

.531441912139%E-06
.207614850185E-06
.27812518959%E~06

.138623499026E-05
.640885393397E-06
.477135192944E-06

.2B63090625793E-05
.137201393477E-05
.864583432560E~06

.519609%809508E-05
.228428857071E-05
.208334600216E-05

.893367162527E-05
.239785523519E-05
.740533036675E-05

.155867549444E-04
.345031097912E~04
.628278940337E-04

.289709273196E-04
.757897843078E-04
.145803056907E-03

.576572081016E-04
.134463249736E~03
.249306781711E-03



Problem 4

(2)

Initial conditions x, =

Exact solution v = e

1.

£n
.10

.20

.30

.40

.50

.60

.70

.80

.90

00

-X

Numerical Solution

.904837418036E+00

.818723210252E+00 (A)
.818723204446E+00 (B)
.818723195738E+00(C)

.740796234571E+00 (A)
.740796217646E+00 (B)
.740796192258E+00 (C)

.670277221236E+00 (A)
.670277188265E+00 (B)
.670277138808E+00 (C)

.606460980113E+00(A)
.606460926459E+00(B)
.606460845978E+00(C)

.548709348791E+00 (A)
.548709270018E+0Q0 (B)
.548709151859E+00(C)

.496444810957E+00 (&)
.496444702746E+00 (B)
.496444540430E+00 (C)

.449144721232E+00 (R)
.449144579303E+00 (B)
.449144366408E+00 (C)

.406336078720E+00 (A)
.406335898755E+00 (B)
.406335628808E+00 (C)

.367590796995E+00 (A)
.367590574570E+00 (B)
.367590240932E+00 (C)

y -y =0.

Exact Solution
.904837418036E+00

.818730753078E+00

.740818220682E+00

.670320046036E+00

.606530659713E+00

.548811636094E+00

.496585303791E+00

.449328964117E+00

.406569659741E+00

.3678B75%441171E+00

Table (5.3.3d)
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Relative Error
0

.921282811814E-05
.921991941253E-05
.923055635404E-05

.296781450339E-04
.297009915767E-04
.297352613983E-04

.63887094260Q00E-04
.639362813079E-04
.640100619134E-04

.114882238736E-03
.114970698783E~03
.1151033885%47E-03

.186379618579E-03
.186523151717E-03
.186738451633E~03

.282917826556E-03
.283135736194E-03
.283462601060E-03

.410040081691E-03
.410355951213E-03
.410829756226E-03

.574516605226E-03
.574959246825E-03
.575623210446E-03

.784616219919E-03
.785220833784E-03
.786127756540E-03



Problem 5 y'* - y{[(Q + Bx)/x}” - Q/x*} = 0.
Initial conditions %, = 1,y = 1Oe,ySJ = 10e(Q + B).
Q_Bx

Exact solution y = Cx"e ",
Set B=1, C =10, Q = 3/2

Xp Numerical Solution Exact Solution Relative Error
1.10 .346587549802E+02 .346587549802E+02 0
1.20 .436390152385E+02(A) .436440703713E+02 .115826337471E-03
.436389911205E+02 (B) .116378942430E-03
.436389549437E+02 (C) .117207849867E-03
1.30 .543715401009E+02(R) .543873445416E+02 .290590410221E-03
.543714673415E+02 (B) . .291928209623E-03
.543713582034E+02(C) .293934891700E-03
1.40 .671413377291E+02(A) .671744823128E+02 -493410333302E-03
.671411902473E+02 (B) .495605835950E-03
.671409690280E+02 (C) .498899041178E-03
1.50 .822756510828E+02(A) .823338855610E+02 .707296611036E-03
.822754002360E+02 (B) .710343313008E-03
.822750239731E+02 (C) .714913276563E-03
1.60 .100149815184E+03(A) ,100242328229E+03  .922894012738E-03
.100149428824E+03 (B) .926748276880E~03
.100148849297E+03(C) .932529539024E-03
1.70 .121193894010E+03(A) .121331621407E+03 .11351315%2923E~02
-12119%3335539E+03 (B) .113973477670E-02
.121192497854E+03(C) .114663886846E-02
1.80 .145900197789E+03(A) .146096168080E+03 .134137871608E-02
.145899425179E+03 (B) .134666708162E-02
.145898266297E+03 (C) .135459940673E-02
1.%0 .174831793908E+03(¢(A) ,175101520393E+03 .154040058834E-02
.174830758642E+03(B) .154631296640E-02
.174829205788E+03 (C) -155518126903E-02
2.00 .208632138690E+03(A) .208994066965E+03 .173176339644E-02
.208630784600E+03 (B) .173824248020E-02
.208628753528E+03 (C) .174796080318E-02

Table (5.3.3e)
Notations
The following notations are used in Table(5.3.3a)-
Table(5.3.3e).
A denotes AM Formula (5.3.1-9b)
B denotes GM Formula (5.3.1-%¢)
C denotes GM Formula (5.3.1-9d)
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5.3.4 DERIVATION OF THE NEW GM STRATEGY WITH
ERROR CONTROL
Consider the new GM formula given by (5.3.1-9c) written

as

2
* h
Yarlr = 2¥n ~ Yp1 ¥ E{ 6f, + 4 \Ifn [\lfml + \Ifn-l]

- oE L E. ). (5.3.4-1)

Its local truncation error is obtained as

(1)
£

Ty = hs[zr;o - 1Mgnz] ’

where M, is given by (5.3.2-2),

The AM formula given by (5.3.1-9b) is now written as

* %

h2
Vi = 2Va = Yor * o{ fan + 108, + £}, (5.3.4-2)

and its local truncation error is

6
a2 _ h (4)
T = 240

Thus we can write (5.3.4-1) and (5.3.4-2) respectively

as
(4)
* 6 fn M,
Yne zY(xn-i-l) - h [240 - 192] ' (5.3.4-33.)
and
* % hs’ (q,
Yot ® ¥ {Xar1) — 500 - (5.3.4-3b)

By subtracting (5.3.4-3b) from (5.3.4-3a), we obtain

* *% hs

¥Ynt1 — Yp41 = 192 M,. (5.3.4-4)

Therefore the error in the final result is approximated

by
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(4)
£y

* % 4 * % ¥
Y(Xn+1) - yI'H'l = g (YTH'I - yl’H’l) Mn . (5.3.4-5)

Now £'" can be obtained from (4.3.3-14) and by using the

bounds for £ and its derivatives given in (4.3.1.1-6),

we may approximate the bound for (5.3.4-5) as

* ¥k

* %k 4
’Y(xn+1) - yn+l < —5_ Yn+1 - yn+1 S, (5.3.4—6)
where it can be shown that
{4)
fn
75
S = M, < 30

Therefore the estimate for the local truncation error

*

EST, of y,, is given by

4 * **
EST = _5- Yn+1 Ya+1 S!
l.e.
18 * * %
EST = g |¥Yae1 ~ Ynu1 (5.3.4-7)

We note that the method is 4'*"-order accurate when used

to solve any prcoblem of the type y(m

=f({x,y). The error
estimate EST, is obtained by assuming that the function
f({x,y) and its derivatives satisfy the bounds set by

Lotkin[1951] as stated in (4.3.1.1-6).
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5.3.5 NUMERICAL RESULTS

Problem 1 y(n

+ 2(1 + 2x2)y =0

Initial conditions x5 =0, yo =1, y, =0
Exact solution y = e
Error telerance = ,5E-04
End value of x is 1.00
Initial value of h is .10

X, Numerical Exact Estimated Relative

Solution Soclution Error Exror
stepsize = .200000
.40 .838355985316E+00 .85214378B8966E+00 .273514E-05 .744424E-02
.60 .654098199936E+00 .697676326071E+00 .223660E-04 .25669%3E-01
stepsize = ,100000
stepsize = ,200000
Stepsize = .100000
.60 .682157705837E+00 .697676326071E+00 .100610E-05 ,914109E-02
.70 .59264939%91481E+00 .612626394184E+00 .225991E-05 ,123879E-01
.B0 .503447183285E+00 .527292424043E+00 .405816E-05 .156128E-01
.90 ,.418074783906E+00 .444858066223E+00 .637544E-05 ,185370E-01
1.0 .339298962571E+00 ,367879441171E4+00 .914598E=-05 .208940E-01
1.1 .269031977289E+00 .298197279430E400 .122611E-04 .224660E-01
Table{5.3.5a)

Problem 2 ym} + 3(2 - 3x3)xy =0
Initial conditions x; = 0, y, = 1, yé“ =0

_.3
Exact solution y = e™*

.5E-05
End value of x is 1.00

Error tolerance =

Initial value of h is .10
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X, Numerical BExact Estimated Relative
Solution Solutien Error Error
stepsize = .050000
stepsize = .025000
stepsize = .012500
.0250 .999984375128E+00 .999984375122E+00 .628367E-06 .286085E-11
stepsize = ,025000
.0625 .999755889541E+00 .999755889175E+00 .382381E-06 .182%909E-09
stepsize = .050000
.1375 .997403789770E+00 .997403766683E+00 .182059E-05 .115584E-07
.1875 .99342990345S7E+00 .993429881359E+00 .473009E~-06 .110856E-07
L2375 .986692869220E+00 .986692849158E4+00 .238859%E~06 .100978E-07
stepsize = ,100000
L2375 .986692869220E+00 .986692849158E+00 .238859E-06 .100978E-07
stepsize = ,100000
stepsize = ,050000
.2875 .976516477444E+00 .976516460795E+00 .174163E-06 .842382E-08
stepsize = .100000
stepsize = .050000
.3375 ,962286219322E+00 .962286207688E+00 ,159438E-06 .592838E-08
stepsize = .100000
stepsize = .050000
.3875 .943474877305E+00 .943474872381E+00 ,167036E-06 ,253368E~08
stepsize = ,100000
stepsize = .050000
L4375 .919670120386E+00 .919670123753E+00 ,1883%9E-06 .175437E-08
.4875 .890602181746E+00 .890602194637E+00 .220495E-06 .681832E-08
.5375 .856169304930E+00 .856169327952E+00 .262675E~06 ,124027E-07
.5875 .B816458383600E+00 ,816458416466E+00 .316626E-06 .180936E-07
.6375 .771758163392E+00 .7717582046%91E+00 .388667E-06 .233099%9E-07
L6875 .722562587107E+00 .722562634159E+00 ,497253E-06 .273153E-07
.7375 .669562387936E+00 .669562436783E+00 ,699821E-06 ,292575E-07
.7875 .613623874279E+00 .613623919855E+00 ,122749E-05 .282440E-07
.8375 .555754960699E+00 .555754997195E+00 .380470E-05 .234583E-07
stepsize = .025000
stepsize = .050000
stepsize = .025000
stepsize = .050000
stepsize = .025000
.8375 .555754996736E+00 .555754997195E+00 .12B263E-06 .294733E-09
.B8625 ,526439353933E+00 .526439354264E+00 .71993%0E-06 .217185E-09
stepsize = .012500
stepsize = .025000
stepsize = .012500
.8625 .526439354260E+00 .526439354264E+00 .328206E-07 .265009E~11
.8750 .511748556578E+00 .511748556581E+00 .555681E-06 .189540E-11
stepsize = .025000
stepsize = ,012500
.8875 .497059808109E+00 .497059808111E+00 ,672323E-07 .1079%48E-11
.9000 .482391140115E+00 ,48239114Q115E+00 .290194E-06 .203450E-12
stepsize = ,025000
L9375 .438684585146E+00 ,438684584982E+00 .544515E-06 .113566E~09
stepsize = .050000
1.0125 .354172711588E+00 .354172674704E+00 .352268E-05 .272375E-07

Table (5.3.5b)
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2)

Problem 3 y( -y = 0.

Initial conditions x, = 0, y, = 1, ySJ = -1,

Exact solution y = e ™.

Error tolerance = ,5E-09

End value of x 1s 1.00

Initial value of h is .20
X, Numerical Exact Estimated Relative

Solution Solution Error Error

stepsize = ,100000

stepsize = .050000
.100 .904837417995E+00 .904837418036E+00 ,145037E-09 ,216752E-10
.150 .860707976386E+00 .860707976425E+00 ,137964E-09 .211072E-10
.200 .818730753041E4+00 .818730753078E+00 .131235E-09 .205411E-10
.250 .778800783036E+00 .778800783071E+00 .124835E-09 ,199780E-10
.300 .740818220648E+00 .740818220682E+00 .118746E~-09 .194183E-10
.350 .704688089687E+00 .,704688089719E4+00 .112955E-09 .188625E-10
.400 .670320046005E+00 .670320046036E+00 .107446E-09 .183120E-10
.450 ,6376281515%3E+00 .637628151622E+00 .102206E-09 .177666E-10
.500 .606530659685E+00 .606530659713E+00 ,972214E-10 ,172272E-10
.550 .576949810354E+00 .576949810380E+00 .924798E-10 .166945E-10
.600 .548811636069E400 .548811636094E+00 .879694E~10 .161686E-10
.550 .576949810354E+00 .576949810380E+00 ,924798E-10 ,166945E-10
.600 .54B8811636069E+00 .548811636094E+00 .879694E-10 .161686E-10
.650 .522045776737E+00 .522045776761E+00 .836791E-10 .156508E-10
.700 .496585303769E+00 ,496585303791E+00 .795981E-10 ,151406E-10
L750 .472366552719E4+00 .472366552741E+00 ,757161E~10 .146391E-10
L800 ,449328964097E+00 .449328964117E+00 .720234E-10 .141465E-10
.850 .427414931929E+00 .427414931948E+00 .685107E-10 .,136632E-10
.900 .406569659722E+00 .406569659741E+00 .651694E-10 .1318%4E-10
.950 .386741023437E+00 .386741023455E+00 .619910E-10 .127256E-10

1.000 .367879441155E+00 .367879441171E+00 .589677E-10 .122718E-10

Table (5.3.5¢)
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Problem 4 y”) -y =0

(L

Initial conditions x, =0, y, =1, yo = 1.

Exact solution y = e”.
.5E-09
End value of x is 1.00

Error tolerance =

Initial value of h is .20

X, Numerical Exact Estimated Relative
Solution Solution Error Error

stepsize = ,100000

stepsize = ,(050000
.100 .110517091803E+01 .110517091808E+01 .16029%97E-09 ,216753E-10
.150 .116183424268E+01 .116183424273E+01 ,168516E-09 ,221892E-10
.200 .122140275811E+01 .122140275816E+01 ,177156E-09 ,227015E-10
.250 .128402541663E+01 .128402541669E+01 .18623%E-09 .232110E-10
L300 ,134985880752E+01 ,134985880758E+01 .195788E-09 .237176E-10
.350 .141906754853E+01 .141906754859E401 .205826E-09 ,242200E-10
.400 ,149%9182469758E+01 .149182469764E+01 .216379E-09 .247186E-10
.450 .156831218543E+01 .156831218549E+01 .227473E-09 ,252119E-10
.500 ,164872127063E+01 .164872127070E+01 .239136E-09 .257001E-10
.550 .173325301780E+01 .173325301787E+01 ,251397E-09 _.261819E-10
.600 .182211880032E+01 .182211880039E+01 .264286E-09 .266578E-10
.650 ,191554082893E+01 ,191554082901E+01 .277836E-09 .271266E-10
.700 .201375270739E+01 .201375270747E+01 .292081E-09 ,275880E-10
.750 .211700001653E+01 .211700001661E+01 ,307056E-09 ,280419E-10
.800 ,222554092840E+01 .222554092849E+01 .322800E-09 .284876E-10
.850 .233964685183E+01 .233964685193E+01 .333350E-09 .289248E-10
.900 .245960311106E401 .245960311116E+01 ,356749E-09 .293537E-10
.950 .258570965921E+01 .258570965932E+01 .375039E-09 .297732E-10

1.000 .271828182835E401 .271828182846E+01 ,394269E-09 ,.301837E-10

Table(5.3.5d)

5.4 IMPLICIT FORMULA FOR A SPECIAL CLASS OF

FOURTH- ORDER ODES.

Consider the special fourth-order ODEs problems of the

type

y (1) = (5.4-1la)

f(x,y)

with the initial conditions at x = x4, y(x3) = yo y”)(xﬁ

(1) (2) (2)
o r Y (Xo) = Yo

3
' yw)(xd = yé). Such problems occur

in the wvibration analysis of beams.

Let the general form of the formula which approximates

the solution of (5.4-~1la) be defined by
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Yo-z = 4¥n-1 t 6¥n ~ 4¥ne1 t+ Yne2
= n’ {alfn + Opfp-y + O3fjs; + Ogfpyy + Osfpyo
@V Enfa-1  + @V Eafni  + OV Enfaz
0N £nfnve  + O1oVEn-1fniy  + Qi Enaafnos
O12VEa-1fns2  + OaVEnifaey  + GV Enifnse
+ N Enofmz . (5.4-2)

The Taylor series expansion of f.4; about %, is given by

+

+

+

(1) 2y . (3) (4)
{ f.’ﬂ h2 fn h3 fn hq fn
foe1 = i lihfn+afni§fn+4—!.fn
(s) (6) (7 (8)
b £ f £
. .h..i n . h_G n N .Ii n . h_B n
=51 e, 61 £, Tt £, T8l £,
(2 (10)
h9 fn hlo fn
t -9_!— fn + 101 fn + e } . (5 .4_33.)

Similarly, we can deduce the expansion of £,4, from (5.4-

3a) above by substituting h with 2h.

Hence using the expansion of £,34; and f.:+, we list the

following results which were obtained from the REDUCE

program for symbolic manipulation,

£ ) £t £
h " h n n 2
Vo Fns =fn{1i5fn+?[2 fn—(fn) ]
Lo W
t 48 [4 £ -6 fi + 3 ( f, ) ]
(1) _(3)
n? [ £y fa fa £\
+ 3ga L8 . 16 fi - 12 ( £ )
(2) {1}y 2
£, (fn ) fr(ll) )
+ 36 3 - 15 ( £ )] ¢

£

n
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(1) _(4) (2) .(3)

5 f(S) fn fn fn fn
h [ n
* 3520 16 £, " 40 f2 - 80 f2
n n
(1 (2)y 2 {3 (My 2
£ (£2%) £ (£,7)
+ 180 ——— + 120
3 3
fn fn
{2) 1)y 3
fn (fn ) f(l)
n 5
© 300 ———— + 105 () °]
f n
n
fm fr‘ll’ff’ f(2)
h® [ n ( n )3
* Je0so L3%2 g~ 9% £ * 360\
n
{2) _{4)
£, £, £t
n 2
- 240 —— - 160 ( )
£2 £a
n
1) {1y 2 (1) _(2) (D
fn (fn ) * fn fn f.’ﬂ
+ 360 3 + 1440 3
f.l'l fn
(3) {11y 3 (1) _{2)y 2
£, (£,7) (£, £,7)
- 1200 ———— - 2700 ;
fn fn
(frgl)) 4fr(12) f(l)
n [}
+3150—5-945(f ) ]+ }
£, n
(5.4-4)
(2) (1)
2 fn fn
h 2
NEp-1f0e1 = £ {l + 5 [ £, - ( f, ) ]
f(‘” f;“f,‘,m fI:2) (fr(ll) ) 2 f”')
+h—4[n—4 + 6 -3(n)q]
24 f 2 3 f
n fn fn n
£ 18 £ gl £ gl (g1V) 2
he [ (—)°
t a0 L -6 2 " 10 \¢ +15 = +
n n
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(1) _{2) . (3)

P (M) ()
+ 60 - 60 7 - 90 y
fi fn fn
(fr(ll)) 4f;2) fél) 6
+ 135 JE - 45( 2 ) ] + ... } . (5.4-5)

n

{1) 2) (1)
£ ) ‘ £

£
VEns2fnta =fn{1+%h £ +h?[10 ;n - (; )2]

(1) . (2)
,£3) fn fn ftl)

i1—6[12fn—6 22 +3(;n)3]

n

f(“ fr(ll)fr(l3) ¢
h' [ n ( n )2
+ 384 136 £ - 112 : - 108 £,

fr:2) (f;l) ) 2

n a
+ 276 f3 - 111 ( £, ) ]

n

(1) . (4) (2} _(3)
5 fr(15) fn fn fn fn

* 3870 [176 § - 200 Q= 560 )
n n
(1) {2) {3) {1) 2

£, (£.7)°2 £ (£,7")
+ 1140 + 680

£ £

ff) (f;l) ) 3 (1)

n 5
_1740T+585(fn) ]

f(s) fr(ll)fI:S) £
n® n ( n )3
Te0a0 2080 5~ - 2976 7 + 16200

+

(2) .(9)

£ £, £

- 10800 ——— - 7840 (—)°

{4) 1 (1) _(2) .(3)
£, (£17) 2 £

+ 12840 — 5 + 60000
£ £
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- 44880

v fn?lfniz

= 3840

* 46080

frtua) (f:il') 3

(fr(ll)f(Z) 2

f

+ 117990

fn{l

I+

fr(12) (fél) ) 2

+ 756

4

n

- 107820

(£f2) 22 e

- 432

1
2h

- 34065

£,

(1)

n

fa

+

{1)
n

{2)
n

£,F

(1}
n

(3}
n

£, £

2
n

(3)
n

n

f:ll) .(ff)) 2

- 1800

- 351

) "]

(2)

n

3
n

f £

(1)
n

(4)

n

3
f (3)

n

f

p B

2 - 2160

f

n

f2

n

fr(f” (fr(:l) ) 2

+ 5840

- 11340

{6
n

£
[2080

(2)
n

£, £

n

-10800

n

(1)
n

£, £

+ 108000

f

fr(l2) (f;l) ) 3

+ 4920

3
£

n

)

(4

{2)

n

3
n

2 + 4185 (
fq

(1) _(5)

n

£
+ 16200 (

(4}
n

£

2
£, ) ©+ 29160

()

£

(3)
n

£ -

~ 101520
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(ftl)fI:?))z (f(l))quZ)

n n 4|

- 192780 ————— + 251910 -
£ £

n n

1
f()

- 79785 { ;n)s] + . ). (5.4-7)

Next, we may deduce the expansion of \ffnfnﬂ and VE.-2fn4o
respectively from (5.4-4) and (5.4-5) by substituting h
with 2h.

Now consider the parameters o; , 1=1,2,3,...,15 of
{(5.4-2). If all of the 04y ;, 1i=1,2,3,...,15 are nonzero
and there 1s no cancellation of terms on the right-hand
side of (5.4-2), then obviously the method given by
{(56.4-2) will involve more work. To minimize this work we

can introduce some sinplifyving properties into the
parameters ¢; ; 1=1,2,3,...,15. This may automatically

reduce the computational complexity, truncation error

and rounding errors. Thus we set the guide-lines in
selecting the parameters o; , 1=1,2,3,...,15 based on

those c¢riteria. Moreover, it 15 natural to set the
parameters o; , 1=1,2,3,...,15 such that the formula

given by (5.4-2) 1is symmetric.

Hence by letting

O = Q4, O3 = 05, Og = O,
Og = Oy, 11 = B9, Oz = O3,

we obtain the right-hand side of (5.4-2) as

RHS (1) = h* {oufn + 0 [£0g + 0] + 03 [Frez + £aiz)

+ 0 [VEnfn-y + VEnfnar | + g [VEaEnz + VEnfaro ]
+ 0o VEns1fnr + O [\/fn—zfn-l + VEnr2fas ]
+ 0o [ VEns1fn-z + VEn-1fns2 | + Ous V Ensafn-s }

(5.4-8)
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Again using the REDUCE program, we obtain (5.4-8) as

4{[a1+2(a2+a3+a6+a5+a11+a12)

+ O + (115] fn

RHS(1) =h

+2 (200 + 2205 + a5 + o1s))

(2)
+ O + Oy + 5((111 + alz)]hzfn

+ '2_];1" [2((12 + 8(2&3 + O0g + a15))

q
+ Qs + Qo + 17 (0 + O3) ] h4fr(1 )

2

+ O + 0o + 65(0yy + 03) | hsfr(ls)

+ % [0&6 + 2(2 (ag + 2(115) + alo)

{1)
(£,7)°2
+ Oy + 904, h° -
n
1
+ o5 Lo + 404 + 2005) + o)
frﬁl)fr(l3)
+ 70, + 270(12] h4 £
n
(1)
. (£57)2
+ — [(15 + 1605 + + 9(a, + alz)]h4
16 fa

+ = [3(0’.6 + 21045) + 4(4(30g + 4015) + Oyp)
(1}
£,
4 .(2) 2
+ 230, 0% £, ()

n

+ 6—14- [50s + 8(2(50 + 80Lys) + 0uyo)
(1, 14
(£, )
+ 3706, + 117(112]1’14—3
fa
1 6
+ 23040 h {—96 [as + 2(16(18 + O + OL15)
fr(ll)fr(]5)
+ 31lo,, + 99&12} £
n
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2) . (1)
£l¥e

n n

- 240[0&6 + 320 + 45(0; + O;) ) £
n

- 160 [as + 2(160 + Oip + Oys5) + 4906, + 27(112]

+ 480 [3(a6 + 750,) + 424045 + O + Os))

1 2) (3
f( Jf( )f

n n n

+ 125041 ] - 2
£

+ 120 [3 (0t + 81l0y) + 4(240g + Qo + Ous))

(1) (1,2

£ ()

+ 1070',11] >

£,
- 180 [150¢ + 16(300s + o + Os)
1 2 2
(£ £l

+ 5990; + 10710, ——5
£
- (£17y°
+ 360 [0(6 + 3205 + 45(0C1; + 0512)] 2
tn

- 240 [506 + 8(200t + Cyo + Oys)

1y 3
f(3) (f; )

n

+ 1870, + 42300, ] .

fn
+ 90 [35(15 + 16(700g + 3(019 + Cy5))

(2) (1,4

£, (£, )

+ 13110y, + 2799&12] ()
il

- 45 [2106 + 32(21lag + O + Oys)

1 6
(£40)

)
+ 75701, + 177304;)] —— } }
fn

+ ... (5.4-9)

Now the Taylor series expansion of y,+; and yn,4 about x,

~are respectively given by
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4
¥9) 1.2 (2) + -1 3 (3 1 {4)

Ynt1 = Yo £ Dy, +Shy, *rhy,  +vhy,
1,5 (5) 1.6 (6 1.7 (D
i;hyn +'a-h Yn i;h Yn
1.8 (8) 1.9 (9) 1 10 (10)
+Hh ' i-é'!-h Vn +—-—10!h Yn
+ ... {5.4-10a)
and
(1) 2 (2 8 .3 (3) 16,4 (1)
Yotz = ¥a ¥ 2hy,” + 2hy, S Thy,” +Thy,
32,5 (5) 64 . 6 (6) 128, 7 (T
i'é—!h Yo +'g'!-h ¥n :t—,” hyn

256, 8 (8) 512.9 (9 1024, 1¢ (10}
gt B¥a TS D ¥a + 7R va

+ ... (5.4-10b)

+

Therefore the left-hand side of (5.4-2) is given as

4 3 8
LHS(1) = h £, + =n £/ + 2n £Y
6 In g0 In
17 10 (&)
T re B S (5.4-11)

' (4)
since y, = f,.

Hence, by equating the coefficients of 1like terms in
(5.4-9) and (5.4-11) we obtain the results given in
Table (5.4} .

Thus we have a system of nine equations involving nine
unknowns to be solved., By using the REDUCE program, we

obtain the solutions given in (5.4-12),

o5 =, O =f, o, =3 A

@, = 7,5 (79 - 36000 - 1620 + 1803)

o, = -1-%3 (31 - 14400 - 630B - 908)

3 = 52> (-1 + 360a + 1808 - 1803) g (5.4-12)
o, = 320 + 15B - &

@ = 7 (40 - 3B - §)

O, = =160t — 9B + o /

where o, P and & are arbitrary parameters.
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TERM COEFFICIENT OF RHS (1) LHS (1)
4
h £, Oy +2 (Ol +0l3+Clg+0lg+ 0l + 0y 5 ) +0L1 g+ 01 5 1
6 1 1
h fm '2-{2 [0y+2 (203404001 5) ] +Qg+0l1g+5 (O11+ 0 3) } ©
8 (1) 1 1
h £, 5{2 [az+8 (20,3+(18+(115) ]+a6+a10+17 (1140 0) } E(;
10 (g 17
h fn 720{2[&2“‘32 (2a3+(13+(115) ]+a6+a10+65 (Cl11+0ly 2} } m
{1} 1
n' [£n ] /f 3 {062 [2(01g+2015) +0 0] +00+ 9005 0
(1) . (3} 1
h fn £y /fn {0+ [00+4 (Og+2005) 1470142705} 0
(1) 1
[ n ] /f '1_6{(164'16&31'9 ((I11+a.12) } 0
£oH L
8 (2} n 2 16{3((15+21(112)+4 [a10+4(3a8+40'.15) ]+23a11} 0
hip 51
n
(1) 1
] /f 6_4{ 50'.6+8 [0.10+2 (5(13‘1'8(115) ]+37(111+11'7a12} 0

Table(5.4) : Coefficients of GM4 Formula

Thus there are infinitely many formulae which can be
deduced from (5.4-2) depending on the parameters o, B
and 9.

Now for o=B=08=0, (5.4-2) reduces to the AM formula

given as

Yne2 = 4¥Yn-1 = O¥n + 4¥Yni1 = ¥Yn-2 t 72011 {4741,
+124 [£00 + £ai1] = [£02 4 £0i2] } ) (5.4-132)
1

while for oU="Tygr [3——" and 8=0, (5.4-2) reduces to the

new GM4 formula of the form

Yotz = 4¥n-1 — 6¥n + 4¥Yne1 — ¥n-2

+ 1440 h ‘[15[f o+ fo] + 2040 [VE a1 + VEnFner )
+ 10 VEnofh-2  — 592Vfnnfn
- 92 [ NErfa-2 + NEafne2 ]

+ 48 [NEonfaz +VEoifarz 1 }. (5.4-13b)
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Another form of the GM4 formula which can be deduced
from (5.4-12) is by setting ;=1 and =0 =0. Thus we

obtain the GM4 formula as

Yns2 = 4¥n-1 = O6Yn * 4¥na1 = ¥Yin-2

1

720 h4 { 720f, + 42[ (fn—l + fn+1) - (fn-2 + fn+2) ]

+

- 82[2(NEEner + VEnfnss

- (\{fn-lfnﬂ + \’fn-lfn-z + an+1fn+2 ))

- (Nfafns + VEnfose ) ] } (5.4-13c)

5.4.1 VARIANTS OF GM4 FORMULA

We shall now investigate several alternative approaches
of determining the values of the parameters «o;, 1 =

1,2,...,15 of (5.4-2). Given below is a list of some of

the possible ways:

case(l): set O, = Oy, U3 = O35, O = Oy,
Qg = Og, 013 = Oly4, Oz = O3,

case(2): set Oy = 04, O3 = U5, Qg = =0,
Og = —Qy, O3 = Qyq, Oy = O3,

case(3): set O = Oy, O3 = Oz, O = -0y,
Qg = —Cg, Q1 = —Qyg, 12 = -3,

casef(d): set O; = Oy, O3 = A5, Og = O,
Og = Oy, 013 = W32 = 3 = Oyg = 0.

Case(l) has been dealt with previously in Table(5.4) and

the parameters are given in (5.4-12).

Now consider case(2) above. Then the right-hand side of

(5.4-2) becomes
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RHS (2) = h' {alfn + 0 [fn-l + fn+l] + o [fn-z + fn+2]

+ Og ['\lfnfn—l - '\lfnfn-l-l ] + Og [\’fnfn—z - '\lfnfn+2 ]
+ OgoVEpsrfa-1  + Oy [ VEn-2fa-1  + VEneafnn ]
+ 0y [VEnifoz + VEnifnez ] + sV Eni2fnos }

{(5.4,1~1)
By using (5.4-4), we obtain
o [VEnfn-s  — VEaFarr ]
(1) _(2)
{b . ha[ £, fo fn (fril)) ]
= =20.f o +-14 - 6 + 3
stn L2 g, *as £, £ £n
(1) . (4) (2) (3}
T O A
+ 16 - 40 ———— - 80 ———
3840 £a £ £2
(1) {2}y 2 (3} 1)y 2
fn (fn ) fJ.'I. (fn )
+ 180 + 120
£: £,
£® (g1 L
n 5
- 300 2 + 105 ( £ ) ]
f n
n
+ ]‘ (5.4.1-2a)

Next, as[\lfnfn_g - \/fnfmz ] is deduced from ({(5.4.,1-2a)
by substituting h with 2h. Thus we have

g [VEufnz - VEnfasz |

fm f(3) fr(‘nfr(‘z) ftl)
= 2ot e B[4 e ——— 4+ 3 (—) ]
= 8+n fn 6 £, f,21 fa
(1) . (4) (2) . (3)
S £ £ fa £a
+ T 16 - 40 —/m— - 80
120 f 2 2
n fn fn
(1) (2) 2 (3) (1) 2
£ (£,7) £ (£,7)
+ 180 + 120 - .
f3 f3

n n
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f(Z) (fril)) 3 ()

n fn 5
- 300 2 +105( P ) ]+ } {(5.4.1=-2b)
£ n
n
By using (5.4-6), we obtain
oyq [\lfn-lfn-z + ‘\/fn+1fn+2 ]
(2) f(l)
2 n n
h 2
=2allfn{l"" 8 [10 £, (fn) :'
(1) _ (3}
f(-‘l) fn fn f(Z)
b [ 136 — (=) °
+ 384 136 £ - 112 f2 - 108 £,
n
() o
n 4
¢ 27— 111 () ]
£, n
(1) . (5)
- £
+ 46080 [2080 £, -~ 2976 f2
n
(2) _(4)
£, £, £t , £ ;
- 10800 ——— -~ 7840 ( ) + 16200 ( )
fi t, f,
(4) (1yy 2 (1) _(2) _(3}
£, (£,) £, £, £,
+ 12840_"3—— + 60000 3
fn fn
(3) (1} 3
£, (£,7) (eiMel?) 2
- 44880—4—‘" - 107820 2
f, £,
(fr(ull)4fr(12) f“)
n 6
+ 117990 5 -34065(f ) ] +}
£ n
n
(5.4.1-2c¢c)
oy, [‘\/fn-lfn—z = '\lfn+1fn+2 ]
(1) _(2)
; r(11) 3 frfa) £.F, ;1)) 3]

n

+
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(1) (4} (2) .(3)

5 f‘s) fn fn fn fn
h [ " - -
* Sea0 L176 £ - 200 ——— -~ 560 —
n n
(1) ¢ .(2) (3) 7 (1Y 2
£, (£,7)° £a (£,)
+ 1140 + 680
£ £
fng) (f;l)) 3 e
n 5
—1740—"'q—+585(f) ]+}
£, n
(5.4.1-24d)
By using (5.4-7), we obtain
o [VEaifare + VEnnfar ]
1
L r(12) f;' i
(1) . (3)
(4) (2)
h4 [ fﬂ fn fn (fn )2
+ 57 L1365 - 432 ——— - 108 (¢
n
f;m (frrll) ) 2 ey
n 4
s e ()]
£, n
(1) _(5)
. f,:G’ £ E! f;:Z)
h [2080 - 9504 + 16200 ( ) ’
* 26080 £, £2 £,
ni
(2) _(4)
- 10800_2““—' - 12960 ( f )
i, n
(4) ¢ (1Y 2 (1) (2) _(3)
£ (g.") £ e gD
+ 29160 S + 108000 ————
fn fn
(3) ¢ _{1) (1) _(2)y 2
g2 (£,)° (£,7'£,7)
~ 101520 ; ~ 192780 -
fn fn
(1Y 4,.(2)
(£.%) s, £V
6
+ 251910 - - 79785 ( - Y ]+ ).
£, n
{(5.4.1-2e)
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and

alz[\lfn—lfmz - \]fn+1fn—2 ]
(1) _(2) .
f(l) 5 (3) fn fn f(1)
= 20,f, {ih— + & [16 —- 18 —) ]
= (X]_Z n 2 fn 16 fn f2 n
n
fés) f;l)féd} f£2)fé31
- 1800 - 2160
3840 £, fi fi
(1) (2)y 2 (3) (lyy 2
£ (£.°) £ (£7)
+ 5940 3 + 4920 3
fn fn
2 (e)°
-11340 2 + 4185 ( - }.
fn
(5.4.1-2f)
Hence, by using (5.4-3a}, (5.4-3b), (5.4-5), (5.4.1-2a),
(5.4.1-2b), (5.4.1-2c) and (5.4.1-2e); (5.4.1-1) becomes
RHS(2)

a
= h {[051"'2(0(2 + O3 + Oy + Og2) + O1g + Oys5] £,

[og + 2a8]hf(”

L [2 (0 + 2 (2053 + 0y5) )

3
= [a6 + 80,;]h f( )

24

720

-1
120

[2(0; + 8(2003 + O15) ) + Oy + 17 (07 + Q33) 1R E,

(2)
+ O + 5(0y; + 0y3) Jh°E,

(5)
[og + 32aa]h £,

(4)

[2 (az + 32(203 + O15)) + Oy + 65(0t1; + O13) 1h fm

(1)
. (£,)°
+ 1[2((110 + 4(115) + 011 + 90t12]h2 F
n
(1
(£1153
1 3
- 5 [0 + 8og]h — } o+ (5.4.1-3)
n

By equating
given in Table(5.4.1a)
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TERM COEFFICIENT OF RHS(2) LHS(2)
h4 £, O + 2{0; + O3 + Oyq + Oyp) + O3p + Oy 1
5_(2 1 1
h fn 5{2[&2 + 2 (2(13 + (115)] + Qg + 5(&11 + alz) } E
8t 1 1
h £, (2[00 + 8(206; + Oys) ] + Qg + 17 (04 + Oyp) ) vy

24 80

10 _(e) 1 17
h fn m{Z[az + 32(2“3 +0hs) ] + Oyg + 65 (0 + {!12)} -3_0_2'_4"6'
fu)z 1

sLEn ] g 12(0up + 40ys) + Oy + 90y} 0

h £,

hsf:l].) —{0‘.5 + 20(3} 0
7.3 1

h £, ~ glds + 80g} 0
$_(5) 1

h fn - 120{“5 + 32(13] 0

(1,3
(£, 1]
7 1 0
h 3 - 'g{as + Bag}
fn

Table(5.4.1a): Coefficilients of GM4 Formula case(2)

Thus by using the REDUCE program, the solutions of the
equations obtained from Table(5.4.la) above are given in
(5.4.1-6), where the o, P and & are some arbitrary

constants.

Therefore the corresponding GM4 formula for case(2) is

given by

Yotz = 4¥Yn-1 = 6¥n + 4¥ns1 ~VYn-2
1 .
+ 155 b {7980 + 1200, (£01 + £ar1) + 05 (£amz + £ni2)

+ O ('\/fnfn-l - ‘\/fnfml ) + Oy ('\lfnfn-z - '\!fnfn+2 )

+ Qo VEpsafa-1 + 0y (NEnnafn-2 + VEu1fhen ) ] } {5.4.1-5)

where the parameters of the formula are given in (5.4.1-
6)-
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s =0, G =0, 0y =0, 0 =P ]
a8=6,a5=—%(9ﬂ+5+8a)
1

oy = -5 [360(a + B+ & + 1] > (5.4.1-6)
R -
o, = 755 [45(7B - & + 8a) + 31]
a9
% = 120 7

Similarly, by following the same lines of discussions as
in the cases{(l) and (2), we obtain the results for
case (3) and case(4) as in Table(5.4.1b) and
Table(5.4.1c) respectively.

However the resulting coefficient matrix obtained from
case (3) 1is singular as can be easily checked by
computing its determinant. Thus we do not proceed
' further with this case.

We shall now consider case(4). The results of equating
the right-hand side of (5.4-2) and (5.4-11) are
tabulated in Table(5.4.1c)

By using the REDUCE program, the solutions obtained by
solving the consistency equations derived for case (4)

are as follows:

1
0 = 320, Q3 = 55 [360a - 1]

1 ;. (5.4.1-7)
50 [-1440a + 31]

1
120

[-36000 + 79] J

Thus an investigation of cases (1) to (4) resulted in

formulae which are similar in many respects except in
the combination of the parameters ;.
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COEFSE?IENT o |Gy &3 &g Qg Qg |Gy [Ogy [ Ogs RHS
h@
n 1 2 2 0 0 1 0 0 1 1
hsfm
n 0 ¢ 0 1 2 0 3 1 4] 0
5.2 1 1
h £y o |1 |4 o Jo |2 |o o |2 6
T3 1 4 3 1
h £n o o o |s {3 lo |2 % |o 0
L 1| 4 2 2 a
n 0 12 3 0 0 24 0 0 3 80
AT 1 4 11 | 31
n 0 0 0 |120 | 15 | o 40 |120 | © 0
Bl l® 1 8 1 4 17
n 0 360 45 0 0 720 0 0 45 | 30240
6 (1) 3 l
hitga 3 /8| 6 1o [ 6 o o |2 o [0 |2 0
T3, 2 1 3 )
hiI£271 /827 0 0 8 1 0 8 8 0 0

Takble(5.4.1b):

Coefficients of GM4

Formula for case(3)

COEFFICIENT o, o, o, a, Oy O | Oy RHS
OF:
4
n's, 1 2 2 2 2 1 1 1
6 _{2) 1 1 1
hf, 0 1 4 2 2 2 2 6
pe® 1 4 L] 2 1 12 L
n 0 2 3 24 3 24 3 80
AT 1 8 |_1_ 4 |1 A4 27
n 0 360 45 | 720 45 |720 45 30240
1,2
hs[fn ) 0 0 0 1 1 1 2 0
£, 4 2
2y .2
ha[fn ] 0 0 0 1 1 0 0 0
3 16
{1}
8 () £n 2 0 0 0 3 3 1 4 0
h £, [~z T n
nobog 16 4
fél)fr(,S)
8 0 0 0 1 | 4 1 8 0
h £, 12 3 6 3
1y, 4
hs[f“ ] 0 0 0 S5 | s 1 2 0
fs 64 4 8
n

Table(5.4.1c):

Coefficients of GM4 formula for case(4)
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5.4.2 ERROR ANALYSIS OF THE GM4 FORMULAE

By using case(l) to illustrate the error analysis, we
obtain the local truncation error of the GM4 formula as

GM _llii{f(G)

Tot1 = 730 1 £n [2(0; + 32 (203 + g + O15) ) + Gg + Cyg

10
LD 6 g g o)

+ 65(0y; + 055) ] + 720R} - 30240 ©n

where

(1) (5}

fn fn

{-96 [0 + 2(160g + 0typ + 0y5) + 31047 + 9905]

(2) ()
a I

L1
R =323040 £,

f

- 240 [dg + 3205 + 45 (0lyy + Oy5) ] 7
n

(3)
(£,71°

- 160[ag + 2(1605 + Oyg + Cy5) + 490, + 27a12]f—
n

(4)
n

.2
n )

£, [£

+ 120 [3 (0 + 810yn) + 4(240g + Oy + Olys) + 107(111]—2
£

n

1) _(2 3
F )f()

n n n

f

+ 480 [3(&6 + 750,5) + 4 (240'8 + O + O15) + 125(111]—2

n

(2) (1)
(£, €.

- 180 [3 (506 + 35703) + 16(3005 + Qg + Oy5) + 599, ] ———F——
‘ n

(2)
(£4'7°

+ 360 [0g + 3205 + 45(01 + Oyp) ] 5
n

{3) (1)
£, (£, 1°

- 240[506 + 423015 + 8 (2005 + Oy + Og5) + 187(111]_"'—'"'3_

+ 90 [3504 + 279900, + 16 (7005 + 3 (0 + Oy5) ) + 1311&11]"——4__
£

(1}
[£,1°

- 45[3 (70 + 5910,) + 32(210 + Qg + Oy5) + 75701 ———1 .

n

(5.4.2-1a)

264



For the case{l), we have the parameters of the formula
as given in (5.4-12). Since there are infinitely many
values of «, B and & which may satisfy (5.4-12), we
shall therefore consider only some values which will

"meet the criteria stated previously.

First we shall rewrite (5.4.2-la) in the form of

10

2304012 ajxy, (5.4.2—2)
=1

R =

where

a; = —96{0; + 2 {160 + Oy + O35} + 310, + 99051}
as —240{0‘6 + 32“8 + 45(@11 + alz)}
az = -160{0g + 2(16Qg + 0y + Oy5) + 490; + 2705}

i

a; = 120{3 (0 + 81at;,) + 4(24(!3 + Oy + Oys) + 107¢,)
as = 480{3(0g + 750t;5) + 4(240g + Qg + Qy5) + 1250}
_ \ X5.4.2-2a)
ag=-180{3(50g + 3570;5) + 16(3005 + Oy + Cy5) + 5990011}
ar = 360{0g + 320 + 45(011; + C12)}
ag = "240'{535 + 42302 + 8{200g + Oyp + O15) + 18701}
ag = 90{3504 + 2799015 + 16(700g + 3 (Qyp + O15) ) + 131104}
ajp = =45{3 (70 + 591043) + 32(210g + Qo + Oy5) + 7570011} )
and
f;Z)fr{lq) f!::l)fr(‘5) )
x = - - -
1 £, ’ X2 fn
(1) 1,2
et i)
Xz = — - Ky =
fn ! fi
1) . (2) . (3) (2) (1)
£, £, 1, (£, fn ]2
Xs =~ 3 Xe = 7 3 [, 5.4.2-2b
£2 ' £ ( )
(3) (1} .3
ey )
X7 == - Xg =
£ ' £
{2) 1) .4
£, £, 7] [f;“]s
Xy = a ’ X10 = 5
fn fn J
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By letting & be arbitrary, and B=38=0 in (5.4-12), then
by using the REDUCE program, we obtain the 1local

truncation error as

10
GM h
Toip = ;ggaa{19530x1a-+32550x2a-245700x3a-+425250x4a

- 37800xs0 + 220500x400 — 543375x%,00 + 170100%,

+ 25200%00 - 61425x;00 - 60480f " - 251},

(5.4.2-3)

Now we consider (5.4.2-2) with a = [al,...,alo]T and % =
[Xy, ..., %50) . Then R will vanish if and only if ax' =0.

If we assume that x is not a zero vector, that is, not
all of the components of x will vanish at the same time,
then we should have a =0, From (5.4.2-2a), for a=240,
this is equivalent to solving the system of simultaneous
egquations fdrmed by the components of a. Thus we are

required to solve the system of equations

O + 2(160g + O1g + Og5) + 310y, + 99, = 0 ° )
Og + 320 + 45(0; + O15) = 0 _

O + 2(160g + Oig + Oqs) + 490 + 2704, = O
3(0g + 8105) + 4{(2405 + Ojg + Oy5) + 10703 =0

3(0g + 7505) + 4(2405 + 0o + Oys) + 1250; =0
) H5.4.2-4)

3(50g + 3570;2) + 16 (300 + Olyg + Uy} + 5950, = 0

g + 320 + 45(0y + Q1) = 0

50 + 423015 + 8(2000g + O1g + Cy5) + 18701 =0

3506 + 27990, + 16(700 + 3{ig + Cys)) + 1311y =0
3(706 + 591043) + 32 (2108 + Oy + Oys) + 7570C; =0

By using the REDUCE program, we obtain the solutions as

\ -

O = 7Y

0g = -32Y

Oys = O 4 (5.4.2-4a)
O = -C

i1 = Uy = 0 J
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By substituting the values of the parameters given by
{5.4.2-4a) in (5.4.2-1),
error of the GM4 formula for case(l) as

we obtain the leocal truncation

cM 111300 + 25 14 (6)

Twi = = 78600 D In (5.4.2-5)

For the AM formula we have the local truncation error as

AM 1 10 . {€)
Tat = = 3024 P Ta

Hence we have

GM
Tn+1

111300 + 25 302
A | = " cgoe - 3024,
Tn+l 75600

11130 + 25

B 25 ’
For

GM
Tn+l
AM <1,
Tn+l

we therefore obtain the result-§%<d<o.Hence we can

establish the condition under which the GM4 formula has

a smaller local truncation error than the AM formula.

5.4.3 COMPUTATIONAL COMPLEXITY OF GMA4
FORMULAE

Again in this section we shall make use of the GM4

formulae derived for case(l) to illustrate our
discussion. Consider the three formulae given by (5.4-
13a), (5.4-13b) and (5.4-13c). Table(5.4.3) compares

their computational complexity.

Formula Addition Multiplication Square Root
(5.4~13a) 8 7 0
(5.4-13b) 13 17 8
(5.4~13c) 15 18 7

Table({5.4,.3): Computational complexity of GM4 formulae
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Thus in any case ({that is either formula (5.4-13b) or
(5.4-13¢)), the GM4 formula involves twice as much work
as the AM formula (5.4-13a). However, if the problem to
be so0lved contains the computation of a squared
function, then the GM4 formulae would have a better

advantage.

5.4.4 NUMERICAL RESULTS

Problem y(“ =Yy

Initial conditions x =0, vy =1, y =1, y =1, v =1

Exact solution y = e*.

The values of y,, y, and y; were given by the values of
the exact solution of the problem,

Parameters of the equation

CASE(l) a =0, P=0, 8 = 0 (Formula(5.4-13a))
1 1
CASE(2) a = 7,7+ B =35, 8 = 0 (Formula(5.4-13b))
41
CASE(3) a =0, B =0, 8 = 75 (Formula(5.4-13c))
X, Numerical Solution Exact Solution Relative Error
.10 .110517091807565E+01 .110517091807565E+01 0
.20 .122140275816017E+01 .122140275816017E+01 0
.30 .134985880757600E+01 .134985880757600E+01 0
.40 .149182469764126E+01(1) .149182469764127E+01 .803741129E-14
.149182469764144E+01(2) .111630712E-12
.149182469764083E+01 (3) .297979581E-12
.50 .164872127070007E+01(1) .164872127070013E+01 ,369014598E-13
.164872127070098E+01(2) .515947053E-12
.164872127069786E+01 (3} .137626284E-11
.60 .182211880039032E+01(1) .182211880039051E+01 ,102484818E-12
.182211880039312E+01 (2) .143137535E-11
.182211880038356E+01 (3) .381472619%E-11
.70 .201375270747003E+01 (1) .201375270747048E+01 ,222292401E-12
.201375270747670E+01 (2) .308849709E-11
.201375270745391E+01 (3} .822790622E-11
.80 .222554092849155E+01(1) .222554002849247E+01 .412254071E-12
.222554052850518E+01 (2) .571309114E-11
.222554092845860E+01 (3) .152162858E-10
.90  .245960311115526E+01(1) .245960311115695E+01 ,687546582E-12
.245960311118035E+01 (2) .951262584E~11
.245960311109463E+01 (3) .253355860E-10
1.00 .271828182845616E+01(1) .271828182845904E+01 .106109653E-11
.271828182849892E+01 (2) .146700884E-10
,271828182835283E+01 (3) .390735115E-10

Table(5.4.4)
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5.5 EXPLICIT FORMULA FOR A SPECIAL CLASS OF
FOURTH -ORDER ODES '

In secticn 5.4, we have derived the implicit formulae
for the special fourth-order CDEs problems of the type
{5.4-1la). Now 1t 1is characteristic of an implicit
formula that it requires a predictor to start with.
Therefore in this section, we shall derive an explicit
formula which could be combined with the implicit
formula (5.4-13a) to form a predictor-corrector pair to
be used with the special fourth-order ODEs problems
(5.4-1a}.

Consider the explicit formula defined by
Yo-2 = 4¥n-1 + 0Yn — 4¥n+1 + ¥Yns2

= hq‘[ﬁlfn-z + Bofaon + Paf, + B4fn+1} (5.5-1)

where Bi, i=1,2,3,4 are the free parameters to be

determined.

By using the Taylor series expansion of £, and fh1

given in (5.4-3a), we can write the right-hand side of
{5.5-1) as

n{ (B + B, + Bs + Ba)£a + n[-2B - B + Be] e

+h?2[451+[52+l34]f,:2) +h?3'[‘8[31 - By + BalE,
.h_4 (4) i (5

+ 24[16B1 + BZ + BQ] fn + 120[_’32B1 - Bz + Bq]fn

n® (6) }
+55-[ 64y + By + Bal £, + ... ). (5.5-2)

Now the left-hand side of (5.5-1) is given by (5.4-11).
Therefore by egquating (5.5-2) and (5.4-11), we obtain
the following results:

269



coeff. of hf,: Br + B #PBs +Ba=1 )

coeff. of Nty 2B - B, + P = O

n

> (5.5-3)
coeff. of hof!’: %[4[51 + P2 + Ba] =

=

coeff. of h'ey’: T[-8By - Bz + Bgl = 0

n

On solving (5.5-3) we obtain the solutions as:
Br =0, P2 =By = %l Bz = %- (5.5-4)
Thus the desired explicit formula is
Yn+2 = 4¥n-1 — ¥Yn-2 — 6Yan + 4¥an

4
h
+ [ famr + 4£, + £0a] . (5.5=5)

Its local truncation error is obtained as
sl A
II|n+1 =h [24(16B1 + BZ + B4) - 80] fn ’

8
_h _
= 750%a - (5.5-6)

Hence the explicit formula given by (5.5-5) is O(he).
This is confirmed by the numerical results given in
Ssection 5.5.1 that follows.
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5.5.1 NUMERICAL RESULTS
The numerical results obtained by applying the formula
{(5.5-5) to some selected problems confirm that it is

O(ha) accurate.

Problem 1 y'¥ = 24 + &*.

Co s (1) (2) (3)
Initial conditions %X, =0, ¥ =¥y =¥y = VYo = 1.
Exact solution y = x' + e*,

Xn Numerical Solution Exact Solution Relative Error
.2 .122300275816E+01 .122300275816E+01 0

.4 .151742469764E+01 .,151742469764E+01 0

.6 .195171880039E+01 .195171880039E+01 0

.8 .263514093378E+01 .263514092848E+01 .2007125152E-08
1.0 .371828185608E+01 .371828182846E+01 .7427166474E-08
1.2 .539371700936E+01 .538371692274E401 .1605964691E-07
1.4 .789680017843E+01 .789679996684E+01 .2679319322E-07
1.6 .115066328679E+02 .115066324244E+02 .3854663472E-07
1.8 .165472483023E+02 .165472474644E+02 .5063866395E~07
2.0 .233890575667E+02 .233890560989%E+02 .6275290991E-07

Table (5.5.1la)

Problem 2 y(“ =V.
(1) {2) (3)

Initial conditions x5 = 0, Yo = Yo = Yo = Yo = 1.
Exact solution y = e&*.

x, Numerical Solution Exact Solution Relative Error
.05 .105127109638E+01 .105127109638E+01 0

.10 .110517091808E+01 .110517091808E+01 0

.15 .116183424273E4+01 .116183424273E+01 0

.20 .122140275816E+01 .122140275816E+01 .4799381310E-13
.25 .128402541669E+01 .128402541669E+01 .2315512778E-12
.30 .134985880758E+01 .134985880758E+01 .6691643954E-12
.35 .141906754860E+01 ,141906754859E+01 .1504480092E-11
.40 .142182469765E4+01 .149182469764E+401 .2897040247E-11
.45 .156831218550E+01 .156831218549E+01 .5019644364E-11
.50 .164872127071E+01 .164872127070E+01 .8050848056E-11
.55 .173325301789E+01 .173325301787E+01 .1217313470E-10
.60 .182211880042E4+01 .182211880039E+01 .1756804247E-10
.65 .191554082906E+01 .191554082901E+01 .2441430112E-10
.70 .201375270754E+401 ,201375270747E+01 .3288494096E-10
.75 .211700001670E+01 .211700001661E4+01 .4314482921E-10
.80 .222554092862E+01 .222554092849E+01 .5534959871E-10
.85 .233964685208E+01 .233964685193E+01 .6964445783E-10
.90 .245960311137E+01 .,245960311116E+01 .8616269483E-10
.95 .258570965959E+01 .258570965932E4+01 .1050258385E-09
1.00 .271828182880E+01 .271828182846E+01 .1263430240E-09

Table (5.5.1b)
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Problem 3 v = 34320(2 - x)7*.

Initial conditions x, = -2, vy, = 27 41,
Exact solution y = 2(2 - x) 70 - x -1,

Xn Numerical Solution Exact Solution Relative Error
-1.90 .900002456880E+00 .900002456880E+00 0
-1.80 .8000031285620E+00 .B00003185620E+00 0
=-1.70 .700004159228E+00 .700004159228E+00 0
-1.60 .600005470223E+00 .600005470222E+00 .1632753109E-11
-1.50 .500007250198E+00 .500007250193E+00 .1100348289%E-10
-1.490 .400009688168E+00 .400009688149E+00 .4679199161E-10
~1.30 .300013058469E+00 .300013058419E4+00 .1668920077E-09
-1.20 .200017763685E+00 .200017763568E+00 .5810853334E-09
=-1.10 .100024401S5S1E400 .100024401305E+00 .2461445220E~08
-1.00 .338706660818E~04 .338701756162E-04 .1448075280E-04

-0.90 ~.999524600654E-01 .999524610028E-01

-0.80 =-.199932475575E+00 -.199932477318E+00
-0.70 -.29%9902858094E+00 ~-.299902861285E+00
-0.60 -.399858318127E+00 ~,399858323925E+00
-0.50 ~=.,499790274267E+00 -.499790284800E+00
=-0.40 —-.599684540155E+Q0 -.599684559408E+00
-0.30 -.699517181761E+00 -.699517217371E+00
-0.,20 =-.799246918783E+00 -.799246985763E+4+00
-0.10 -.898800821963E+00 -.898800950677E+00
00 -.998046621172E+00 -.998046875000E4+00
Table(5.5.1¢)
Problem 4 yM) = cos(x).
Initial conditions x, = 0, y0==—yém =1,

Exact solution y = cos(x).

.9378402242E-08
.8721265620E-08
.1064142170E-07
.1450027747E~07
.210745314%E-07
.3210568660E-07
.5090699434E-07
.8380342Q085E~-07
.1432061575E~06
.2543249241E-06

Zn Numerical Solution Exact Solution Relative Error

.15 .988771077936E400 L988771077936E+00 0

.30 .955336489126E+00 .955336489126E+00 0

.45 .900447102353E+00 L,900447102353E+00 0

.60 .825335615250E+00 .825335614910E+00 .4126850341E-09

.75 .731688870557E+00 .731688868874E+00 .2300772161E-08

.90 .621609973255E+00 .621609968271E+00 .8018581516E-08
1.05 .49757105%352E400 L497571047892E+00 .2303250344E~-07
1.20 .362357777026E+00 .36235775447T7E+Q0 .6222982817E~-07
1.35 .219006726961E+00 .219006687093E4+00 .1820386036E-06
1.50 .707372668276E-01 L707372016677E-01 .9211547398E-06
1.65 =-.791207885575E-01 -.791208888067E-01 .1267038648E-05
1.80 —.227201947709E+00 -.227202094693E+00 .6469301671E-06
1.95 =,370180624167E+00 -,370180831351E+0Q0 .5596831312E-06
2.10 -.504845822011E+00 -.504846104600E+00 .5597518007E-06
2.25 =~.628173247918E+00 -.628173622723E+00 .5966576789E-06
2.40 =.737393230282E4+00 -,737393715541E+00 .6580736222E-06
2.55 -.830052920079E+00 -.830053535235E+00 .7411038314E-06
2.70 =.904071376583E+00 -.904072142017E+00 .8466518442E-06
2.85 =~.957786300814E400 -.957787237553E+00 .9780242184E-06
3.00 -,989991367208E+00 -.989992496600E+00 .1140808767E-05

Table(5.5.1d)
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5.5.2 PREDICTOR-CORRECTOR PAIR USING (5.4-
13a) AND (5.5-5)

By using (5.5-5) as the predictor and (5.4-13a) as the
corrector, we form a predictor-corrector pair and
investigate numerically its suitability to solve scome
special fourth-order initial-value ODEs problems. Some
numerical results are given in section 5.5.3., The
PEC)E' algorithm is used in this case. Thus the
algorithm is as follows:

Step l:Initialization of variables.

. (P}
Step 2:Predict vy, = 4¥Yn-1 = ¥Yn-2 — 6¥n + 4¥na1

h‘l
+ "6_[fn—1 + 4f, + fn+1:|

(<)
Step 3:Correct ¥, = 4¥Yn-1 = ¥n-2 = 6Ya + 4¥na

h4

+ oos{ 4748, + 124 [0 + ]

- [fa + 2021 )

{P) (C)

Step4:If |Yn+z T ¥Yn+2| > € repeat step 3,

() . ;
else accept y,,, as the numerical soclution,

advance to another step interval
and repeat step. 3 .

273



5.5.3 NUMERICAL RESULTS

In each problem,

using the exact solution of the problem.

Problem 1

(4)
y =Y

Initial conditions x4 =

Exact solution is y(x) =e .

0,

(1) (2)

Yo =

X

The value cof eps was set at 5E-11.

Xn

Numerical Solution.

Exact Solution.

Yo = Yo =Y

the first three solutions were obtained

Relative Error

0.10
0.20
0.30
.40
.50
.60
.70
.80
.9¢
1.00

OO0 O0OO0O

0.11051709180756E+01
0.12214027581602E+01
0.13498588075760E+01
0.14918246976412E+01
0.16487212706999E+01
0.18221188003899E+01
0.20137527074690E+01
0.22255409284894E+01
0.24596031111513E+01
0.27182818284494E+01

.11051709180756E+01
.12214027581602E+01
.13498588075760E+01
.14818246976413E+01
0.16487212707001E+01
0.18221188003%05E+01
0.20137527074705E+01
0.22255409284925E4+01
0.24596031111569E+01
0.2718281828449%94E+01

(= ol e ]

Table(5.5.3a)

(4)

Problem 2 vy = cos(x).

ey o 2
Initial conditions x, = 0, y0==-yé) =1, Vg
Exact solution y = cos({x).

The value of eps was set to 5e-10.

(1)

0

0

0
0.270890529E-13
0.124B45450E-12
0.346206143E-12
0.747811042E-12
0.138382477E-11
0.230494214E~-11
0.355561276E-11

(3)

= Vg = (.

Xn Numerical Sclution Exact Solution Relative Error

.15 .988771077936042E+00 .988771077936042E+00 0

.30 .955336489125606E+00 .955336489125606E+00 0

.45  ,900447102352677E+00 .900447102352677E4+00 0

.60 .825335614911496E+00 .825335614909678E+Q0 .181754611E-11

.75 .731688868882805E+00 .731688868873821E+00 .898436880E-11

.90 .621609968297267E+00 .621609968270664E400 .266026090E-10
1.05 .497571047952894E+00 .497571047891727E+00 .611673490E-10
1.20 .362357754597030E+00 .362357754476674E+00 .120356725E-09
1.35 .219%006687303838E+00 .219006687093042E+00 .212796558E~09
1.50 .707372020155056E~01 .707372016677031E-01 .347802426E-09
1.50 .707372020155056E-01 .707372016677031E-01 .347802426E-09
1.65 —.791208882716267E-01 -—.791208888067337E-01 .535106959E-09
1.80 -.227202093%08509E400 -—.227202094693087E+00 .784577264E-09
1.95 -.3701B0830245356E+00 -.,370180831351286E+00 .110592996E-08
2,10 ~.504846103091408E+00 =-.504846104599857E+00 .150844937E-08
2.25 =-_.628173620722024E4+00 -.628173622722739E+00 .200071459E-08
2.40 =-.737393712950901E+00 -.737393715541245E+00 .259034449E-08
2.55 —-.830053531951460E+00 ~-.830053535235222E+00 .328376171E-08
2.70 —=.904072137931075E4+00 -.904072142017061E+00 .408598544E-08
2,85 =-,957787232552635E+00 =-,957787237553090E+00 .500045516E-08
3.00 ~.9B9992490571556E+00 —-.989992496600445E+00 .602888928E-08

Table (5.5.3b)
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Problem 3 yH) = 24 + e,
(1) (2) (3)

Initial conditions %, =0, Yo =¥, = Yo = Yo = L.

Exact solution y = x' + e*.

The value of eps was set to 5e-07.

Xn Numerical Solution. Exact Solution. Relative Error
.20 .122300275816017E+01 .122300275816017E+01 0
LA0 0 ,151742469764127E+01 .151742469764127E+01 v}
.60 .195171880039051E4+01 .195171880039051E+01 0

.80 .263514092844179E+01 .263514092849247E+01 .506772402E~10
1.00 .371828182819444E+01 .371828182845904E+01 , .264606115E-09
1.20 .539371692190658E+01 .5306371692273655E+01 .829963653E-09
1.40 .789679996481741E+01 .789679996684467E+01 .202726458E-08
1.60 .115066324201453E+02 .115066324243951E+02 .424980584E-08
1.80 .165472474563843E+02 .165472474644129%E+02 .802864619E-08
2.00 .233B90560848676E+02 .233890560989306E+02 .140630867E-07

Table (5.5.3¢)

Problem 4 y'* = 343202 - x)7*.
Initial conditions x4, = -2, yo = 2% 4+ 1.
Exact solution y = 2(2 - x) % - x - 1.

The value of eps was set to 5e-07.

Xn Numerical Solution. Exact Solution. Relative Error
-1.,90 .900002456879889E+00 .900002456879889E+00 0
-1.80 .800003185620442E+00 .800003185620442E+00 0
-1.70 .700004159228257E+00 .700004159228257E+00 0

-1.60 .600005470222397E+00 .600005470222455E+00 .580646642E-13
-1.50 .500007250192412E+00 .500007250192741E+00 .329736238E-12
-1.40 .400009688148210E+00 .400009688149351E+0C ,114108722E~11
=1.30 .300013058415803E+00 .300013058418920E+00 .311745074E-11
-1.30 .300013058415803E+00 .300013058418920E+400 .311745074E-11
-1.20 .200017763560974E+00 .200017763568393E+00 .741962047E~-11
-1.10 .100024402289033E+00 .100024401305222E+00 .161830410E-10
-1.00 .338701422661497E-04 .338701756161797E-04 .333500300E-10

-.90 -.999524610690470E-01 -.999524610027672E-01 .662797595E-10
=.80 —-.199932477447225E+00 -.1%9932477318294E+00 .128930755E-09
=.70 -.25%9902861533303E+00 -~.299902861285008E+00 .24829%4774E-09
-.60 —.399858324402958E+00 =~.3998568323925223E+00 .47773512%E-09
-.50 ~.499790285725370E+00 ~-.499790284800001E+00 .925369781E-09
-.40 —-.599684561224631E+00 -.599684559408419E+00 .181621251E-08
-.30 -.699517221003311E+00 -.699517217370856E+00 .363245412E-08
-.20 —-.799246993203639E+00 -.799246985762834E+00 .744080486E-08
-.10 -.898800966360997E+00 -.898800950676679E+00 .156843185E-07

00 -.998046909174331E+00 -.998046875000001E+00 .341743300E-07

Table (5.5.3d)
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5.6 CONCLUSIONS AND RECOMMENDATIONS

In this chapter we have investigated the feasibility of
extending the geometric mean (GM) approach of deriving
numerical metheds for the scolution of problems involving
ODEs. For the second~order ODE problems of special type,
we have obtained the GM modified form (GM2) of the
Numerov method which may be combined together with the
Numerov method (AM) to form a new adaptive error control
method. Numerical results are presented for the
simplified prototype adaptive error control method
formed by the combination of the GM2 and the AM methods.
Therefore a carefully designed adaptive error control
method utilizing these strategies may give some
promising results. This could be an area of further

research.

We have also investigated special type problems
involving fourth~order ODEs. New implicit and explicit
methods for solving these problems are derived.
Numerical results for some selected problems show that
the predictor-corrector pair formed by these formulae

are encouraging.

The GM methods may give encouraging results if some
criteria are satisfied despite the fact that they may
involve more computational work. However, the main
contribution of the GM approach is in the derivation of
alternative methods which are of the same order as the
AM methods. These could then be combined together to
form an adaptive error control method with fewer
function evaluations than the more conventional approach

of combining two methods of different order,
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CHAPTER 6

NUMERICAL SOLUTIONS OF
PERIODIC BOUNDARY - VALUE
PROBLEMS IN ELLIPTIC PDES

6.1 INTRODUCTION

Boundary-~value problems involving elliptic PDEs arise
naturally as descriptions of processes or equilibrium
states in many physical or engineering systems. In this
chapter, we shall concentrate the discussion on periodic
boundary-value problems of the elliptic PDE type. This
type of problem occurs naturally in circular domains,
periodic~time and torroidal ~space structures. The
elliptic PDE can be solved numerically through the
applications of finite difference/element methods as
described in chapter 3. This often leads to a large
system of algebraic equations and their solution is a
major numerical problem by itself. There are two
alternative methods of solutions; namely - direct and
iterative methods. For the pericdic problems withhidwe are
concerned, - we shall show that the standard optimum
SOR formula is not applicable and next we derive the
optimum parameter for this problem. Finally, we shall
develop a new direct method, analogous to the odd-even
reduction method, +the modified form%?gm;umerically
stable.

6.2 FORMULATION OF THE PROBLEM

Consider the solution of the self-adjoint second-order
elliptic PDE of the form

- [A{x,YIu,(x,¥) 1 - [C(x,¥)u,(x,¥) ], + F(x,¥)u(x,y)
= G(x,y) | (6.2-1)

for (x,y)€R; and R, ={(x,y)]|0sx<1,, 0y<1,} with

u(x,y) pericdic both in the x and y directions.
According to Mikhlin[1964], this problem belongs to a



- o-rJaW .
class of elliptic fourthy boundary-value problems. The
A

boundary conditions imposed are

u(xtl,,y) }

u(x,y)
(6.2-2)

u(x,y) = u(x,ytl,)

for all (x,y)€ER,.

The functions A(x,y), C(x,y), F(x,y) and G(x,y) are
assumed to be continucus in R, and satisfy the following

conditions:
A(x,y)>0, A(x,y) = A({x*l;,y) = A(x,y%l,) 3
C(x,y)>0, C(x,y) = C(x}l,,y) = C(x,ytl,)
P (6.2-3)
F(x,y)20, F(x,y) = F(Xiler) = F(Xryilz)

G(x,y) = G(xtl,,y) = G(x,ytl,) J

for all (x,y)€R,.

6.3 THE DIFFERENCE EQUATIONS

In chapter 3, we have formulated the difference
equations for the linear, second-order PDE (3.3-1) and
thus obtain the system of simultaneous linear equations
(3.3.2-10) to be solved. Similarly, in this section, we
shall develop the corresponding difference equations
which approximate the self-adjoint second-order PDE
(6.2-1) with the prescribed boundary conditions (6.2-2).

Thus, following the same technique as described in
chapter 3,and at each grid point (i,]) we substitute the
derivatives in (6.2-1) by their equivalent weighted
difference representations, to the following
approximations:

Apady (Uiayy = ¥gg) = By gy (W = Uggy)

[Alx,y)u(x,¥) ], = 12

{(6.3~1la)
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Ci,j+%(ui,j.+1 = uyy) = Cyg(ugy — ugyg)
[C{x,¥Iu,(x,¥}], = 2

{6.3-1b)

Therefore at each grid point (i,J), we have the five-
point finite~difference approximation of (6.2-1) given -
by the form

di,jui,j_l + aijui_l’j + bi,juj.,j + Ci;jui+1,j + ei’jui'j_'_l = Si;j (6-3-2)

where the truncation error term is being neglected and

x = ih i=0,1,2,...,n-1 3

y = jk 3=0,1,2,...,m-1

i3 = —szi—%,j? Ciy = "szﬂ%,j

dig = 'hzci,j—%i €y = —hzci,j»r% - (6.3-3)
by = hzkzFi,j ~ ajy — Ciy — diy — ey

2,2
Si,j=thi)‘j s

Now)by taking all the internal grid points (i,3j) yields -
a set of linear systems of equations of the form (3.3.2~
10) with M satisfying the properties in (3.3.2-24). Thus
corresponding to the lines y = jk the partitioning of M
takes the form '

r BO CO . AO

M = . . . (6.3‘-4&1)
By Bpa Cpoz

| Gz A1 Bpog

where the A,, By and C; are nxn submatrices such that
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boy  Coy 203
a3 b1y cy

[

By = . . . (6.3-4b)

an-2,j bn-Z,j cn-Z,j

Cn-l,j an—l,j bn--l,j_
and
Aj = diag[dojfdl’j, .. 'fdn-l,j]
(6.3—-4c)
Cj = diag[eolj; el’j, e ’en_lﬂ]

for all j=0,1,...,m-1. The vectors u and 8 of (3.3.2-
10) are then partitioned relative to the matrix M of
(6.3-4a).

6.4 SPECTRAL DECOMPOSITION METHOD

We consider the matrix equation,
Mu = s (6.4-1)

where M is the block matrix of order mn of the form,

T S s
s T s
M = . : : (6.4-1a)
s T s
s s T _

and the submatrices S and T are symmetric matrices of

order n. We assume that S and T commute, that is,
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TS = ST. (6.4-1b)

The vectors u and s are likewise partitioned. Thus we

have
u = [ﬁ;,u;,...,dL]T
(6.4-1¢c)
s = [8},8},...,380]"
where
uj - [ul,j'u2,j"""un,j]T
(6.4-1d)
Sj = [Sl,jfsz,j""'sn,j]T

for 3=1,2,...,m.

Now T and S are commutative; therefore they have a

common basis of eigenvectors.

Then, by the wellﬂknown theorem of Frobenius (see .
Varga[l962], Bellman[1960]) there existswaﬁ orthogonal

(14
matrix Q (i.e., QT==Q-H Jkke: columns) are the set of

eigenvectors of T and S such that,

Q'TQ = A

(6.4-2)
T

0'sQ = Q

where A and Q are the diagonal matrices the elements of ohich
A, ®W;; 1i=1,2,...,n are the eigenvalues of T and S

respectively.

The system (6.4-1) together with (6.4-la) and (6.4-1b),
may be written as,

Ta; + Su; + Su, = 8,
Suy, + Tuy + Suy, = 8y ; §=1,2,...,m-1 . (6.4=-3)

Su;, + Su,_y + Tu, = 8,

By using (6.4-2), we have
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which upon sub

equations,

Av, + Qv, + Qv

Qv + Avy +
Qu, + Qv _, +
where

V3

t,

for j=1,2,..

1,2,...,m are

Further,

i=1,2,...,n_,as

7

Mviy + vy, +

W;vig-1 + livig + W3 Vign =

Now, if we wri

Ay
@,

A

(6.4~

W,

T

QAQ
0Q0

T

stitution into (6.4-3), give the following

t,

ij+1 = tj ;7 3=2,3,...,m-1 (6.4-4)

Av, = t

m

(6.4-4a)

.rm. The components of wy and t; j=

labelled as in (6.4-1c).

4) may be resolved by writing them, for

tj_,j H j=2,3,..-'m—'1 (6.4"5)

+ A.iv

g = Ty

te

1

1 @Oy

(6.4-6a)
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where T, is a matrix of order m and correspondingly
define the vectors w; and y; such that

T

Wy Ivil’ Vizp PP ,Vim]

and {6.4-6b)

T
¥i = [ti1,Ci0r 00 urtyyl

then (6.4-5) is equivalent to the system
Tyw; = ¥y, i=1,2,...,n. (6.4-7)

Hence, the vector w; satisfies a symmetric tridiagonal

matrix system of equations that has constant elements
along the diagonal, the super- and sub-diagonals as in
(6.4-6a) which <can be solved efficiently (see
Evans[1985}). After (6.4-7) has been solved, it is then
possible to solve for uj==ij for j=1,2,...,m (Buzbee

et al,[1970]).

The above matrix decomposition algorithm is due to
Buzbee et al.,[1970]. The algorithm for solving (6.4-1)
proceeds as follows:
(1) Compute or determine the eigenvectors of T
and eigenvalues of T and S.
(2) Compute ty = QTsj, i=1,2,...m.
(3) Solve Tyw; = ¥i, i=1,2,...,n.
(4) Compute uy = ij, i=1,2,...,m.

(Buzbee et al.[l1970]).

Hockney[1965]) has analysed this algorithm for the
solution of Poissonsequation in a square, where he has
taken into consideration the fact that the matrix Q is
known and uses the fast Fourler Transform (Cooley and
Tukey[1965]) to perform steps (2) and (4).
Shintani[1968] has given methods of solving for the

eigenvalues and eigenvectors in several special cases.
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In fact, 8 and T need not be computed. If we assume that
S 1s positive definite and symmetric, then it is well
known {(Bellman[l1960]) that there existsa matrix P such
that

S = PPT and T = PAP, (6.4-8)

where A is the diagonal matrix of eigenvalues of S'T and
P™' is the matrix of eigenvectors of s, Thus, using
(6.4-8), Buzbee et al.[l1970] give a modified form of the
above algorithm as follows: '
(1) Compute or determine the eigenvalues

and eigenvectors of S 'T.
(2) Compute ty = quj, 3=1,2,...,m,
(3) For i=1,2,...,n, solve Tyw; = y;, where

8, 1 1

T, = . (6.4-9)

1 1§

{4) Compute u = quj, j=1,2,...,m.

The computation of S™'T should be avoided in order to
preserve the sparseness of the matrices. G.H.Golub,

R.Underwood and J.Wilkinson have proposed an algorithm
to solve Tu = 0Su where T and S are sparse(Buzbu:etaqu7m>-

6.5 DIRECT METHOD FOR SOLVING THE SYSTEM
(6.4-1)

In the previous section, we have a method (Buzbee et
al.[1970]) for which we need to know the eigenvalues and
eigenvectors of a matrix. Further, Buzbee et al.[1970)
derive: a more direct method for solving the system
(6.4-1), called the odd-even/cyclic reduction method

284



which we shall outline in Section 6.5.1. Evans and
Li[1990) develop a new direct method, called the
recursive tri~-reduction method for tridiagonal
systems, In Section 6.5.2, we extend this method to be
applied to a symmetric constant diagonal periodic linear
system of equations (6.4-1). Then a stable version of
this method is derived.

6.5.1 BLOCK ODD-EVEN/CYCLIC REDUCTION
ALGORITHM

Consider the system of matrix equation {(6.4-1) with all
the assumptions about T and S and the partitioning of
the matrices still being adopted. Furthermore, we assume
that there are m blocks of matrices T and S along the
principal diagonal of M, and m==2k-1, for some k22,
Such equations are known to arise in the discretization
of a certain class of elliptic PDEs, using the method of
separation of variables (Buzbee et al.[1970]).

Now consider a set of three consecutive neighbouring
equations about uy for i=2,4,6,...,m=1. We assume that

u; and sy are 0 for j <1 and j>mn. Thus for (6.4-3) we

obtain from the second equation, the following set of
equations

Suj—2 + T‘I.Ij_l + Suj = sj-l
Suy; + Tuy + Suy, = 3. . (6.5.1-1)

Suy + Tuy,; + Suy, = 85,
By multiplying the first and the third equations by S,

and the second by -T and adding them together, we obtain
the result as

S(1)uy., + T(l)uy + S{1)uy,, = s45(1) (6.5.1-2)

where
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2

I

S{1) S

2

T(1) = 282 - T (6.5.1-2a)

Sj(l) = Ssj-l - TSj + SSj+1

for j=2'4’...,m"'1-

Thus, in this first step of the reduction stage, the
odd-indexed subvectors u,,; and uy,; have been eliminated.
Then the given system (6.4-1) is split into two
subsystems; one for the odd-indexed and another for the
even—~indexed terms, as follows:

T (1) S{(1) S (1) u, s, (1)

S (1) T (1) S (1) u, 8, {1)

S (1) T (1) S (1) u,_3 s..3(1)
S(1) S (1) T (1) u,.; s, ; (1)
{6.5.1-3)
and
T u, s, (1)
T a, 33(1)
-1 (6.5.1-4)
T um-2 sm—z(l)
T u, s, (1)
where
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8,(1) = 8, - S[u, + u,_,]

Sj(l) 8y - S[uj-—l + uj+1]lj=3lsf cem=2 ¢, (6.5.1-4a)

8 (1) = 8, = S[u,; + u,]

The system (6.5.1-3) is known as the reduced system,
while that of (6.5.1-4) 1is known as the eliminated
system. The process of reduction is called the odd-
even/cyclic reduction. Since we are manipulating with
blocks of matrices, it is specifically called the block
odd-even/cyclic reduction.

The reduced system (6.53.1-3) has the same structure as
the original system of matrix equation (6.4-1).
Therefore we can repeat the reduction process to obtain
ancother reduced and eliminated system, which will
eventually terminate with only a single block of matrix
equations. The unknowns can then be solved by means of
Gaussian elimination and the whole set of unknowns are
then obtained by back-substitution. However, as noted by
Buzbee et al[l1970]), we may stop the reduction process
after any step and use the algorithm of section 6.4 to
solve the resulting equations.

To proceed with the reduction process of (6.5.1-3), we

shall first introduce the following notations.

Let for 3=1,2,...,m,

T{o) =T 3
S() = S
’ . (6.5.1-5)
and
Sj(O) = Sj S

Next define, for j=2,4,6,...,m1,
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T(1) = 2[S(a))% = [T(0)]?
S(1) = [S(0)]? . (6.5.1-6)
8;(1) = S(o) [84.1(0) + 85,,(0)] = T(o)sy(0)

Now, from the reduced system (6.5.1-3), consider a set of
three consecutive neighbouring equations about uy for j=

4,8,12, .. .’m_3p

S{1)uy_g + T(1)uy, + S(1)uy 84, (1)

S(1)uy, + T(1)uy; + S(1)uy,,

j s5(1)

S(1)uj + T(I)Uj+2 + S(l)u:l+4 = 5j+2(1)

(6.5.1-7)

By multiplying the first and the third equations by
S(1), the second by -T(1), and adding the three resulting
equations, we have eliminated the subvectors with

indices that are odd multiples of two, that is the
subvectors uy_, and uy,,. Thus we obtain

S(2)uy2 + T{2)uy + S(2)uy,,2 = 84(2) (6.5.1-8)
where
T(2) = 2[S(1)1° - [T(1)1?
S(2) = [S(1)]° (6.5.1-9)

85(2) = S(1) [85,(1) + 85,(1)] ~ T(1)s,(1)

for j=4,8f12po--fm-3.

Therefore after two steps of the reduction process, we
obtain the reduced system as
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p— — - e —

T(2) 5(2) 5(2) u, s,(2)

S(2) T (2) S (2) ug Sq(2)

S{2) T (2) S(2) Yp-7 8y.7(2)
S (2) S(2) T (2) 1 W 8,_3(2)
(6.5.1-10)

Correspondingly, we have the eliminated system as

T (1) u, 8, (2)

T (1) u, S (2)

R (6.5.1-11)
T (1) Uy.s Sp-5(2)
T (1) YUp-1 Sp-1 (2)

where
8,{(2) = 8,(1) = (1) [uy + u,_;]
85(2) = 84(1) - S(1) [uy, +uy,,]l, §=6,10,...,m-57 (6,5,1-11a)

Sy.1(2) = 8,,(1) = S(1) {u,_5 + yv,l

Thus, if we terminate the reduction process at this

stage, the system (6.5.1-3) may be solved by first
solving ug,ug,...,u,.; from (6.5,.1-10) and then solve

Uy,Ug,...,8, from (6.5.1-11) by using the algorithm of

'section 6.4.
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However, we may continue with the reduction process. To

generalize this reduction process, we define

T(r) = 2[S(r-1)1% = [T (-1} 1?

]

S(r) = [S(r-1)]° (6.5.1-12)

Sj(r) = S(r-1) [Bj_h(r-l) + sj+h(r-1)] - T(r-—l)Sj(r—l)

where h=2""%, §=2%,2x27,3x2%, ..., (25 "-1)x2", and r=

1,2,...,k.

Hence, after the r*P step of the reduction process, we

have a reduced system of the form

R(z)Z(r) = £(c), (6.5.1-13)
where
(T () S (r) S(r)
S (x) T (z) S (z)
R (r) = L (6.5.1-13a)
S(r) T{r) S(r)
[ s S(z) Tl |

1s a matrix of order 2%7%-1,

2(]:) = [ug,u;t' . s -,u;t' « s » ;u-‘;zk'r_l)t]T
£(r) = [SL(r) /8o (x) s e vrSye(r)yon, Sipkr ()17
(6.5.1-13b)
and t = 2%,
th

The eliminated system after the r = step is given by

E(r}w{z) = g(), (6.5.1-14)
where
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—T(r—l)

T(r-1)

E(r) = (6.5.1-14a)
T(r-1)
| T(r—l)_
T S P S (6.5.1-14b)
8. p(r-1} = S(r-1) [u, + U, ol
Soe-p(r-1) — S(z-1) [uye + u]
g(r) = . (6.5.1-14c)
sjt_p(r-l) - 8({r-1) [ujt + u(j—l)t]
8yk-re_p(r-1) = S(r-1) [uy + wu,_ ;]

where t = 2p = 2%, and m= 2k-1.

Thus after k-1 steps, we have the block equation as

S(k-1)uy k1 + T(k-1)uy + S(k-1)Uy, k-1 = 84 (k-1)

for j = 2k

-1

(6.5.1-15)

Since uy=0 for j<0 and j2m, we have

Therefore

and

T(k-1)uyk-1 = 8,k-1(k-1) .

we have

R{k-1)

Z (x-1)

w(k-1)

]

T{x-1)

U k-1

8,k-1 (k-1)

’

(6.5.1-16)

> . (6.5.1-17)

J
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Now (6.5.1-16) can be solved for u,-1. The other vectors

u;'s are solved repeatedly in a binary tree pattern

using the eliminated system. While (6.5.1-16) can be
solved by the LU factorization, Buzbee et alJf1970] and
Lakshmivarahan and Dhall[1990] describe another method
based on the factorization of the matrix T(x-1).

6.5.2 THE BLOCK TRI-REDUCTION (TR3)
ALGORITHM

The periodic block-tridiagonal system (6.4-1) can be
written as

Tu; + Su, + Suy = 8
Suj—l + Tuj + Suj+1 = 8y, j=2,3,...,m-1 ' (6.5.2-1)
Su; + Su,, + Tu, = 8,

where we assume that m= 3k—1 for some k2 2.

Consider the reduced block odd-even reduction algorithm
deduced from section 6.5.1. Thus, after the first step
of the odd-even reduction process, we have a set of

three consecutive neighbouring blocks of equations
centred around u; as

S(1)uy; + T(uy, + S(1)uy,, = Sj_l(l)
S(yuy, + T(1)uy + S{1)uyy, = 8y
S(1)uy, + T(uy,y + S(1)uy,; = 84,,(2)
(6.5.2-2)

By multiplying the first and the third equations by S,
- the second by -[S(1) + T{(1)] and adding them together, we
obtain

SS(1uy; = TIS() + T(1)]uy + SS(1)uy,,
= S[sj_l(l) + sj+1(1)] - [S{(1) + T(l)]sj- (6.5.2-3)

Now define for j = 3,6,9,...,3(3k_y—1),
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3

Q{1) =87, Qo) =8 h
P(1) = T[T - 38%], P(o) = T
>.  (6.5.2-4)
D, (1) = S[85,(1) + sy,,(1)] + [T° - 35°]s;
Dj(o) = Sj o
We have
ss(1) = §°
and

TIS(1) + T(1)] = T[(s® + 28° - T2

= -7(7% - 38%]

]

by the definitions (6.5.1-5) and (6.5.1-6).

Hence substituting (6.5.2-4) into (6.5.2-3), we have

Q(1)uy 3 + P(1)uy + O(1)uy,3 = Dy(1) (6.5.2~-5)

for j=3,6,9,...,3(3k-1—1). We assume that uy and D, are

0 for <1 and j > mn.

We notice that) in arriving at (6.5.2-5), we have
eliminated the immediate neighbouring vectors wuy.; and uy,,

of the vector uy. This constitutes the first step of the

TR3 reduction process. The next step proceeds by
splitting the system derived from the second step of the
odd-even reduction algorithm into two sub-systems using
the TR3 reduction algorithm as follows:

Consider a set of three consecutive blocks of equations
centred around uy after the second step of the odd-even

reduction process. Thus we have the following set of

equations.
S(2)uj¢ + T(2)uy_; + S(2)uy,; = 85_5(2)
S(1)uy_; + T(1)uy + S(1)uy,, = 84(1)
S(2)uy_3 + T(2)uy,; + S(2)uy6 = 84,5(2)
(6.5.2-6)
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Now multiply the first and the last equations by S(1),

the second by —-[S{2) + T(2)] and add them together, we
have eliminated the subvectors wuwy.; and u4,;. Thus we have

the resulting block equation as

Q(2)uy.g + P(2)uy + Q(2)uy,e = Dy(2} (6.5.2-7)
where
Q(2) = 8(1)8(2) 3

il

P(2) = T(){[T(1))? -~ 3[s(1)1?%}
> (6.5.2-8)

Dj(2) = S(1) [8y_3(2) + 84,3(2)]

+ {1712 - 3(5(1) 1%} s (1)

for § =9,18,27,...,9(3"%-1).

By continuing in this way, we have after rth step of the -

TR3 reduction process,

Q(r)uj_h + P(r)uj + Q(r)uj+h = Dj(r) (6.5.2-9)
where

Q(r) = S(z-1)8(r) h

P(x) = T(-1) {[T(-1)1% = 3[S(-1) 1%}

F (6.5.2-10)
Dj(r) = S(r-l) [sj_h(r) + sj+h(r)]

+ {IT(-1) 1 = 31S(x-1) 1P} sy (x-1)

for j=3%,2x3%,3x3%, ..., (3¥"-1)x3%, r=1,2,...,k and h =
2%x3"7L,

After the r™"
reduced system for the TR3 algorithm becomes

step of the TR3 reduction process, the

R(x){(x) = W(x), (6.5.2-11)

where
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B Q(x) |
Q(z)  P(:)  Ofr)

Ri{r) =

Q(r) P(r) Q(r)
| Q(r) Q(r) P (r) |

(6.5.2-11a)

T 4 T - T
(r) = REPPR PNPRRRYA IR AT e

N _r - - {(6.5.2-11b}
W(r) = [Dy(r) Dy (r)yeeesDip(x)seees DT (2) 17

and t = 3%,

The eliminated system for the TR3 algorithm after the h

step of the reduction process can be written as

E()W(r) = (), (6.5.2-12)
where
Y(c) = [u:_q,u;t_q, e ,u—;t_q, cee ,u-;;sk-r)t_q] :
@(r) = [Dy_q(r-1),Dpp_g(r-1); «ouy Do (r-1), .oy Dighoryp g (x-1) 17

(6.5.2-12a)

with t = 3g=3" and
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P(r-1)

P(r-1)

E(r) = ' . . (6.5.2-12Db)

P{r-1)

P(r-l)_
Therefore after k-1 steps, we are left with
Qk-1) Uy k1 + Px-1)uy + Q(k-1)uy, 301 = Dy(x-1) (6.5.2-13)

for § =371,

Since u;=0 for j<0 and j2mn, we obtain

P (k-1) gt = Dyeea (ko1) . (6.5.2-14)
Thus,

R (k-1) = P.(k-1)

2 (k1) = Uy : (6.5.2-15)

® (x-1) = Dyk-1 (k-1)
Now (6.5.2-14}) can be solved to obtain wu,x-1. Then, by

using the eliminated system, we can solve the other
subvectors u;° in a binary tree pattern.

Figure({6.5.2a) and Figure(6.5.2b) illustrate the steps
in the reduction and solution process for the odd-even
and TR3 reduction algorithms. By neglecting round-off
errors (which can be eliminated by deriving the stable
versions of the algorithms), it is clear from this
graphical representation that the TR3 reduction
algorithm is competitive if not faster than the odd-even
reduction algorithm. Theoretically, for a given matrix
of size N, the gain in using the TR3 reduction algorithm
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instead of the odd-even reduction algorithm is given by
the ratio

log,N

n-= (6.5.2-16)

log,N
For the <case 1illustrated in Figure(6.5.2a) and
Figure(6.5.2b), the gain obtained is

log,26
n= EBE;EI = 0.6.
However the ratio given by (6.5.2-16) 1is only a
comparison of the number of reduction stages. For an
efficient comparison of the two algorithms, we should
include a compariscn of the work to be completed in the

odd~even and the TR3 reduction stages.

Further illuiﬁyation is given in the next Section where -
we compare [reduction times of both algorithms. As
expected, for a given matrix, the TR3 reduction
algorithm spends less time in its reduction stages than
the odd-even reduction algorithm. This is illustrated in
Figure{6.5.3). However, the amount of work in the TR3
reduction stage is slightly more than that in the odd-
even reduction stage because at each stage, the TR3
algorithm has to solve a system of 2x2 equations instead
of a single equation as in the case of the odd-even
algorithm.

Now, as the matrix size increases, round-off errors
affect the numerical solutions of the problem causing
instability. This could be overcome by deriving a stable
version of the algorithm. This is discussed in section
6.5.5.
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Figure(6.5.2a) :0dd-Even Reduction Algorithm for
, a matrix of order N=2**5-1
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6.5.3 NUMERICAL RESULTS

In this experiment, we have chosen the discretization of
the Laplace equation

Viu =0 (6.5.3-1)

subject to
u{0,y) = u{l,y)

and

u({x,0) = u(x,1)

for all x,ye [(0,1)], wusing the five-point finite

difference approximation (6.3-2).

Thus we have the matrix M of the form

T ]
[ N o
o=

s

M = : : . . (6.5.3-2)

o
=
|
(S

]

=

The graph in Figure(6.5.3) compares the reduction time
between the odd-even and the TR3 reduction algorithms
for matrix M of different sizes. It is found that the
TR3 reduction algorithm gives a better reduction time
than the odd-even reduction algorithm. We should
emphasize here that the comparison is solely based on
the reduction time of each algorithm,
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Figure(6.5.3) : Comparison of reduction time between

TR3 (stride of 3) and odd-even(stride of 2) algbrithms

for various matrix sizes.

6.5.4 STABILITY ANALYSIS OF THE BLOCK TR3
REDUCTION ALGORITHM

In (Lakshmivarahan and Dhall[l199%0]), it 1s shown that
the odd-even reduction suffers from a severe effect of
round-off errors in the numerical processes. The main
source of these round-off errors lies in the computation
of the right-hand side of (6.5.1-2). Similarly, the TR3
reduction algorithm does not possess good control over

round-off errors.

In this section, we shall analyse the stability of the
block TR3 algorithm, and in the next section. we shall
exhibit a modified form of the block TR3 algorithm with
an improved error-control property.

As is evident from the odd—-even reduction case, the main
source of round-off errors in the TR3 reduction
algorithm also lies in the computation of the right-hand

side term of the equation. Thus)in this case, we shall

analyse the term {[T(r-1.)]2 + 3[S(r4)}2}sj(p¢) of (6.5.2-
9).

First, we introduce the sequence of polynomials defined
by
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-2t*cos(x0), when| al <] 2t |
prla,t) = {6.5.4-1)
-2t*cosh(x¢), when | al| > | 2t |

with initial conditions

Pola,t) = -2p;(a,t) = -2tcosb
(6.5-4—18-)
p,(a,t) = -a’ + 2t°. .
Let
ps{a,t) = a(a® - 3t%), (6.5.4-1b)

Then for t # 0, we use the transformation

~2tcosB, when!| al < | 2t |
a = . . {6.5.4-2)
-2tcosh¢, when | a | > | 2t |

It is evident that by a short manipulation, the
polynomial can be recursively computed as follows

pla,t) = —ap,_,(a,t) - tip,(a,t). (6.5.4-3)

Now hyperbolic functions satisfy identities which are
very similar to those satisfied by trigonometric
functions. Therefore, we shall only discuss the

conditions of the case related to the trigonometric
functions; that is, the case when | a | <' 2t |. The

case when | al > | 2t | can then be similarly deduced.

The case when | al < | 2t |
By substituting a = -2tcosf® into (6.5.4-1b), we obtain

piyl(a,t) = —2t3cose[4cosze— 31. (6.5.4-4)
Consequently, for pj(a,t) =0, we obtain the conditions
that either cosB=0 or cosﬁ=ii2_?i,that is 9=2, L o0

n_—
or gr OF o

Hence, we have

302



i, (6.5.4-5)
for 3=1,2,3,...,3"

Therefore the general sequence of polynomials may be
factorized as,

3r—1

Pr-1(a,t) = M {a + 2tcos [-2—"i]1c} (6.5.4-6)
j

for r= 2.

Now we can use this recursive definition to compute the

term
(IT(-1)1° + 3[S(-1) 1"} 8(-1) = p_,; (T, S)8y(x-1)  (6.5.4-7)
as follows.
Let
Ng = —ZSj(rd)
My = T8y(r-1), Ny = T{(1}84(r-1) (6.5.4-8)
Me = ~TMe-r = STy J

r-1

for k = 3,4,...,3 and r 2 2.

Therefore we obtain

Mz = Py (T,S)8,(r-1)

{ITG-01% + 31S(z-1) 1%} sy (1) & (6.5.4-9)

However, due to the presence of round-off errors, the
true computed sequence is given by

Lo = Mo
C1 = Tsy(x-1) + &, §, = T(1)sy(x-1) + §; (6.5.4-10)
L = -1y - S%Cn + 8yy J
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where 8,; 1=0,1,2,...,k=1 is the perturbation induced

by the round-off errors,

Now, the matrices T and S are symmetric. Furthermore,
they are commutative. Therefore from the well-known
theory of matrices (see Bellman[l1960] or Varga[l962]),
there exists an orthogonal matrix Q which diagonalizes T
and S simultaneously. Hence we obtain

T

T = QAQ
{(6.5.4-11)
s = 0QQ"
where
A = diag[llrlzf ---lln]
(6.5.4-12)
Q = diag[(ﬂl.-ﬂ)zr co @]

are diagonal matrices of eigenvalues of T and S,
respectively.

We may assume that the eigenvalues of T and § are
distinct and that the columns of Q are ncormalized
eigenvectors of T and S.

-1

We also know that 0T =0Q and QSZQT=Q2 where Q7 =

. 2 2 2
diag[®;,0,,...,®].

Therefore on combining these with (6.5.4-10), (6.5.4-11)
and (6.5.4-12), we have

Po = —2g;(z-1)
1
P1 = =5 Apy + Y (6.5.4~13)

P = “Apy1 - szk—Z + Y J

where
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P = Q'C,
gy(-1) = Q'sy(x-1) . (6.5.4-14)
Ve = QTSk J

Now A and € are diagonal matrices as given in (6.5.4-

12) . Therefore we can write (6.5.4-13) component-wise as
2
Pixe1 )”jpj)k T 0P = Wik (6.5.4-15)
for 3 =1,2,...,n.

The solution of the recursive relation (6.5.4-15) may be

obtained by considering its characteristic equation

vV + Ay o+ @) = 0. (6.5.4-16)

Next, we write the two roots of (6.5.4-16) as

[-A+V (Af-203) ] [-Ag-¢ (A3-403) ]
ch = > and Vj =

2

Now there are two cases to be considered.

Case(l): Hy = Vy.

It can be shown from first principles that

X k-1 k-1
Hy =Yy Hy = V3
Pix = [u-j v ]Pj; - u-j\’j[ by - v ]pjp
ul;-t _ vl;—t
k-1
+ 3 [l (6.5.4-17)

From (6.5.4~13) we have

Pio =

|
|
N
A
‘o
-
-
1
A

(6.5.4-18)
1
Py = —ZMPyp + Vo
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Therefore on substituting {6.5.4-18) inteo (6.5.4-17), we
obtain

X k
Ky = V3
= [—‘“‘“—] [A giglr-1) + ]
P Hy = Vy g e
u];-l - v};-l u];-t _ V];—t
+ Z2U.V [_"—_] gig(r-1) + kil [ ]‘V
u'] 3 u'j - Vj 30 £=1 j‘lj - vj j>t

which on simplifying, becomes

ER iy
Py =1 [uj _Vj]lj + 2P, [T_Tj'"] }agptem1)
L
+3 1 v, 1y, (6.5.4-19)

Next, from the expressions for Ky and vy , it follows
that My and v; are complex conjugates if |Aj<|20 and
real if |Aj> |20 .

Let

Cosej, if Ilji < |20)j|
= {6.3.4-20)
coshy, 1f Ay >120.

Ay
20,

Now there are two subcases of case (1} to be considered.

Case(la): |Ayl < |20,/ and the roots p, and v, are
complex conjugates,
Thus H;#V; and
o ie
My = @y{cosBy + isinby) = wye™]

(6.5.4-21)
-18y

]

w;e

Vj = (Dj(cosej - iSinej) 3

where 1 = Vv-1.
By substituting (6.5.4-21) into (6.5.4-19), we obtain
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ikej _ e—ikej

o105 _ -i8 J

1(k-185 _ ~1(k-1)6y

kre
+ 205 } gy (1)
J eiej _ e-iej ja .
k-1 i(k-t)ej -i(k-t)ej
k-t-1re - e
+ 3 {o v ).
RS o185 _ o-i8y I

Thus we have

sin((k—l)ﬁﬁ

~ o1 sin(kej) "
k-1 1 ~8in((k-t}0.)
+ 3 oy - =1y ). (6.5.4-22)
=0 1n9j ?

When |As| < {204], we have from (6.5.4-20) Ay=-2w,cosb,.
Therefore (6.5.4-22) can be simplified to obtain

Pix = =290 (x-1) wlj(COS (k05) + :{-": [w];-t-l — (S(i];e:)ej)_ ]
(6.5.4-23)
rd
Case(lb): |Ay| > |204] and the roots W; and Vv, are
real and distinct.
.Therefore we can write

{(6.5.4-24)

]

AY

3 (Oj (C05h¢j - Sinh¢j) (Dje_¢j

By substituting (6.5.4-24) into (6.5.4-19) and

simplifying, we obtain

sinh ((k-1) )

- sinh (k¢.)
{aj " [——] + 20 ] }aspten)

pj,k = b jL. Sinh(])l 3 sinh¢3
k-1 —t-1 rSinh ((k=t) )
+ 3 {7 , =Tyt (6.5.4-25)
£=0 inhoy
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From (6.5.4-20), since JAy|>|2@y], we have Ay=-2m;cosho,.
Therefore by combining this with (6.5.4-22), we obtain

Py = =29y (r-1) MjcOSh (k)

k-1 _t—1 Sinh{(k-t
s [m];tlsm {(k=t) ;)
£=0 sinhd,

" (6.5.4-26)

Now, let p,(A,Q) be a diagonal matrix such that

Pk (ljf(’)j)' for j =1
[, (A, 1)), = (6.5.4-27)
' o , otherwise

where from (6.5.4-1}), we have

cos (k9y), if !lj|<|2wjl
p, Ay @) = -20) (6.5.4-28)
cosh(kdy), 1if [Aq1>1204].

From (6.5.4-11), we obtain
P, (T,S) = 0p (A, Q)Q". (6.5.4-29)

Similarly, we define a diagonal matrix R{q) such that

[ (sin(g8,)
————1~ for j = 1 and 1Ay1<]20y]
Sinej
O
[Rea) ], =Y sinh (q¢;)

\ sinh¢,

r for 3 = 1 and [A;]>]20]

<o

' otherwise.
(6.5.4-30Q)

Now, by using (6.5.4-27) and (6.5.4-30), p, can be

expressed in matrix-vector form as

k=1
Px = Px (A, Q) gy(r-1) + ¥ R(x-t)V,. (6.5.4~31)
t=0

Hence, by wusing (6.5.4-27) and (6.5.4-29); we can
rewrite (6.5.4-31) to give
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k=1
Ly = Oy = Py (T/S)s;(x-1) + X QR(x-t)Q"S;. (6.5.4-32)
t=0

2y

Therefore, in the case |2a)| >1; if ¢, > ¢;, then it is
|

evident that for large k, p,x Mmay become very large

relative to py. Since {, = Qpx, the effect of p,, will be

insignificant due to the round-off errors.

A
Case(2): By = vy = —31.
This happens only if lﬁ = 40ﬁ. It can be shown from first

principles that

k-t=1

- k-1
Py = KHY Py = (k=Dipipyy + B [-t)ps W], (6.5.4-33)

A
By substituting py =vy = -Ef and (6.5.4-13) into (6.5.4-

33), we have
&i k-1
Pik = k [‘2 ] [ljgj,o(r-l) + Wj,o]
Ay
- k=[S [-2g5 00 ]

X-1 Ay x-t-
+ 3 { amt)y [5]7 b,
t=1 :

A k-1 Ayq poto
Py = ~2 [ g0 + 3 k-t [-5]yye). (6.5, 4-34)
’ t=0 »

Now, let p,(A,) be a diagonal matrix defined as

pk(lj,mj), for 3 =1

[p (A, = (6.5.4-35)
>
o otherwise
where
Aok
prhg 0 = -2[-F]". (6.5.4-36)
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From (6.5.4-11), we have

P (T,S) = Qp, (A, Q)Q". (6.5.4-37)

Similarly, we define a diagonal matrix R(q) such that

A
al-51°%  for j =1

[R(e)] = (6.5.4-38)
3

0 ’ otherwise.

Therefore, by using (6.5.4-35) and (6.5.4-38), we may
express P, of (6.5.4-34) in matrix-vector form as

k=1
Pe = P (A, Q)gy(e-1) + t‘t‘oR(k-t)wt. (6.5.4-39)

Now, by using (6.5.4-35) and (6.5.4-37), we can rewrite
(6.5.4-39) in the form

k-1
L = 0P = P (T, S)sy(-1) + ¥ [OR(x£)Q™8,].  (6.5.4-40)

t+0

M
20)j
2wy and simplifying, we obtain

In the case | l =1, on combining (6.5.4-34) with lj= -

. k-1 L
Py = —2g5, (10 + 3 [k-tye] Ty, ] . (6.5.4-41)
; £=0
Therefore we have
X k-1 k~t-1
Py = —2gy, (00 + I [(k-tre; Ty, ] (6.5.4-41a)
; t=0
and
x X3 k-t-1
Prx = =29 (1) 0, + X [(k-they Ty, ] (6.5.4-41b)
£=0
where ®y; j=1,2,...,n are the eigenvalues of §.

Since {;, =0Qp,, therefore it is evident that the vector
£, will decay as k increases if the moduli of all the

elgenvalues Wy, j=1,2,...,n are less than unity and

hence will remain bounded.
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6.5.5 STABLE VERSION OF THE TR3 REDUCTION
ALGORITHM : thet

It has been shown . in the previous sectionfthe TR3
reduction algorithm is numerically unstable. In this
section we shall derive a stable version of the TR3
reduction algorithm. Basically, this is done by
modifying the computation of the right-hand side term.

From (6.5.2-4), we note that P(1) is a polynomial of
degree 3 in T and S. By induction, it is easy to show
that P(x) is a polynomial of degree 3 in the matrices T
and S.

Therefore we obtain the factorization for P (1) as

3 1
P(1) = [I{T + ZScos[%ia}]n}. (6.5.5-1)
4=1

Thus we obtain
P(1) = T(T + V3 8)(T - V3 8)
= (7° - 35% (6.5.5-1a)
since, by (6.4-1b), T and S are commutative.

Now by using (6.5.4-6) we obtain the factorization of
P{x-1) as

k-1
3

P(x-1) = ] Hy(k-1), (6.5.5-2)
4=1

where the matrix Hy(x-1) is defined by

Hy(k-1) = [T + 28 cosfy(x-1)] (6.5.5-2a)
and
29-1
9. (x-1) = [=L=]= (6.5.5-2b)
i 2x3k1] ’
. k-1
for j=1,2,3,...,3 and k 2 2.
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Therefore the single block matrix equation (6.5.2-14)

can now be solved as follows,

Substitute (6.5.5-2) into (6.5.2—14)5we then obtain

[Hl(k-l)H2 (k-1) « » . H k1 {k-1) ]ua"'l = Dok-1(x-1) . (6.5.5-3)

Define

20 = D3k"l (k_l) r

and for j==1,2,...,3bﬂ, we solve repeatedly for zj using

Hj(k—l)zj' = zj-l' (6-5.5_"4)

Clearly, we have

Uk-1 = Z k-1, (6.5.5-5)

Similarly, by using the same factorization we can solve
the eliminated system (6.5.2-12), since the matrix E (r)
depends on P(r-1) only. This solution process 1is
motivated by Lakshmivarahan and Dhall[1990], and Buzbee
et alJfl1970].

As already stated in the previous section, the main
source of round-off error lies in the computation of the
right-hand side termn. Therefore,,in order to induce
stabllity, we shall reorganize the computation of the
right-hand side term. This idea was first motivated by
Buneman[1969], then followed by Buzbee et al.l1l970] and
Lakshmivarahan and Dhall[1990]. Henceforth, we shall
consider the special case of (6.4-la), when S =1, the

identity matrix of order n.
We shall now consider the reorganization of the right-
hand side of (6.5.2-5) so as to obtain a stable version

of the TR3 reduction algorithm,

Now, after the first step of the TR3 reduction stage, we
obtain from (6.5.2-5),
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where
P(1) = -T[T? - 3I] (6.5.5-6a)
Di(1) = 35.,(1) + s4,,(1) + [T° - 3Ils (6.5.5-6b)
k-1_

for 3=3,6,9,...,3(3 " -1).

From the odd-even reduction algorithm, we have the
definition,

oy (o) = 0, PByo) = s (6.5.5-7a)

Oy (r+1) = Oyfr) - [T(r)]-l[aj-h(r) + Oy (r) = By(o)]

By(r+1) = By () + Byunlx) = 204 (r+1)
(6.5,5~7b)
and

Sy{r) = T(r)Oy(r) + By(xr). (6.5.5-7c)

Therefore we shall now write (6.5.5-6b) in the form
Dy(1) = T(1)Qy, (1) + BT4(1) + T(1) 0y, (1) + Bjﬂjl)
+ T[T - 31]1T sy,
= T (1) [0y (1) + Oy (D] + By (1) + Byip (1)
+ T[T - 3117 sy, (6.5.5-8)

By adding and subtracting -[0y_;(1) + €y,;(1)], we obtain

Dyj(1) = P(1)T 'sy + [T(1) + IJ[0y;(1) + Oy (2)]
+ Bj—l(l) + Bj+1(1) - [(lj_l(l) + 0y (1) ],
= pWT {ay - [0y, (1) + @y, ()]}

+ Byop (1) + By (1) = [og (1) + @y (1)].
{(6.5.5=-9)

Hence, we write (6.5.5-9) in the form
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Dy(1) = P(1)Vy(1) + Ky(1) (6.5.5-10)
where
vy(1) = T {8y = [0y (1) + oy, (1)1} (6.5.5-10a)
K00 = By (1) + By (1) = [0y (1) + 0y, (1)1 (6.5.5-10b)

for §=3,6,9,...,3(31-1).

Next consider

Di(2) = sy_;(2) + Sy;(2) + {[T(1)1° - 3I}s;(1) (6.5.5-11)

which upon using (6.5.5-7¢c) can be written as

Dy(2) = T(2) [ay_3(2) + Uy3(2)] + Byz(2) + Pys(2)
+ {IT(1% - 3T}{T(Way) + By},

= P(2)0y(1) + T(2) [0y5(2) + Qy,3(2)]
+ {IT@W1% = 31}y + Bys(2) + Byia(2),

= P(2) {o5(1) + [T(1)17By(0)}
+ T(2) [0ty_5(2) + Oty,5(2)]
+ Bya2) + Byiat2) . (6.5.5-12)

Now by adding and subtracting [oy_3(2) + @y,5(2)]1, we

obtain

Dy(2) = P(2) {oy(1) + [T(21)17'By(1)}
+ [T{(2) + 1] [(Ij_3(2) + O!,j+3(2)]
+ Bj_3(2) + ﬁj+3(2) - [aj_3(2) + Oy, (2) 1.
Hence, we obtain
Dy(2) = P(2)U5(2) + K;(2) (6.5.5-13)

where

vy(2) = ;1) = [T oy, + aus2) - By}
(6.5.5-13a)

I

Kj(z) Bj_3 (2) + Bj+3(2) - {aj_3 (2) + aj+3(2)] (6-5-5_13b)
for §=19,18,27,...,9(3"%-1).
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Thus inductively, after r+l steps for r=0,1,2,..., of
the reduction stages, we obtain the following results:

Dj(r+1) = P(r+1)'0j(r+1) + Kj(r+1) {(6.5.5-14)
where

Vy(re1) = @) - [T() 17 {oyp(ra) + gy (xa1) = Byta) }
(6.5.5-14a)

Kj (r+1)

Bj-h(r+1) + Bj+h(r+1) - [(lj_h(r+1) -+ (xj+h(r+1)]
(6.5.5-14b)

k-r-1

for 4 = 3°*1, 253", 3x3%, .., (3 -1)x3"**; r=0,1,2,... and

h = 2x3"° 2,

Now (6.5.5-14a) can be rewritten in the form

T(r) [aj(r) - ‘Uj(r+1)] = (Ij_h(r+1) + aj+h(r+1) - Bj(r) .
{(6.5.5-15)

Since the O;(r) , Oy, (r+1) © and By(zr) . are known
quantities, then v,(r+1) may be obtained by solving

{(6.5.5-15}.

It can be shown that the following results hold for the

odd-even reduction stage

T(r) [aj(r) - (Zj(r+1)] = Oy (£} + (xj+h(r) - Bj(r)

{6.5.5-16)
and T(r) is factorized as
2r
T(c) = -1 Jy(r) (6.5.5=-17)
i=1
where the matrix
J(x) = [T + 2T cos 6,(x) ] (6.5.5-17a)
and
6j(r) = gzjr:—ll?t ‘ (6.5.5-17b}
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{see Lakshmivarahan and Dhall[1990]), where the
information can be used to solve for oy(r+1) prior to

solving the nj(ru).

After k-1 steps of the TR3 reduction stage, we obtain a
reduced system of the form given by (6.5.2-13),

P(k-l)uak_l = P(k-1)1)3k_1 (k-1) + Kak_l(k-l) {(6.5.5=-18)
by using (6.5.5-14) and since m=3%~1.

Therefore we obtain the solution

Wikor = Vg (1) + [P (k1) ] 7 Kgken (k1) (6.5.5-19)

where we can substitute the factorization of P (x-1) as
given in (6.5.5-2}) to compute the second term of the
right-hand side of (6.3.5-19).

The other solution vectors of (6.4-1) can be computed as
follows.

Consider the equations (6.5.2-8) and (6.5.5-14); thus
for the appropriate r, we have

Uy + P(r)uj + Uy, = P(r)‘Uj(r) + Ky (r) (6.5.5-20)

from which we deduce
P(r) [uy -~ vy{0) ] = K5(r) = [uyy + uyy) (6.5.5~21)

for j = 3%,2x3%, 4x3%,5x3%, ...,(3" "-1)x3%; r = k-2, k-
3,...,2,1,0 and h =2x3""},

Therefore (6.5.5~21) c¢an be solved for uy; j==3r,2x3r,
4x3%, 5x3%, .. .,(3""-1)x3" and r =%-2,%x-3,...,2,1,0 using

the factorization of P{r) given in (6.5.5-2).

Next we express the vy(r)~ and Xy(r) in terms of the

u. as follows.

J
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Consider the original governing equation,

uj_l + Tuj + uj+1 = Sj. (6.5-5_‘22)

From (6.5.5-10a), we can write

Sj = TUj(l) + aj_l(l) + aj+1(1) . (6-5-5_23)
Now, it can be shown that from the odd-even reduction
stage, we have

ayf1) = uy + T [uy 4 ouy,) (6.5.5-24a)
and

By() = uy, + Uy, — TT(1) [uy + uyyl.  (6.5.5-24b)

By combining (6.5.5-23) and (6.5.5-24a) we obtain

8y = Tuy(1) + uyy + T luy, + uyl + uyy + T [uy + uy,,]
= TU (1) + uy, + uyy + T [uy, + 2uy + uy,).
| (6.5.5-25)

By substituting (6.5.5~-25) into (6.5.5-22), we obtain

us_; + Tuy + uyy,

= TUj(l) + uj_l + uj+1 + T-l [uj_z + 2Uj + Uj,,,z] .
Therefore, we have
'03 (1) = uj - [T—l]z[uj_z + Zuj + uj+2] N (6.5.5_26)
Next, from (6.5.5-10b) we have

Kj(l) = Bj—l(l) + Bj+1(1) - [aj—l(l) + aj+1(1)]
which.upon substituting (6.5.5-24a) and (6.5.5-24b), 3iuas
Kij{1) = uy3 + uyy - T (1) (uyj, + uyl

+ Uy, t Uy - T-lT(l) [uj+2 + uj]
-1
T [uj_2 + ZUj + uj+2]}

+

={uyyy Fouy,

= Q43 + U3

T T(1) + I] [uy, + 2uy + uy,,]

TP (1) Uy, + 2uy + uy,,].
(6.5.5-27)

= Uy.3 t Uy,
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Next, from the odd-even reduction stage, we know that

oy(2) = uy - 5(2)1}2‘,1[111_(21_1, + Uy 01-1) ] (6.5.5-28a)
and
By(2) = uyy + uyyy + 5(2)T(2)§1[uj-¢21—1) + Uyy21-1 ]
(6.5.5-28b)

where
$(2) = [T()T(1)]"} (6.5.5-28¢)
T(o) =T (6.5.5-28d)
T() = 2T - T?. (6.5.5-28e)

Hence using (6.5.5-24a), (6.5.5-24b) and (6.5.5-28a), we
can simplify (6.5.5-13a) to obtain v;(2) in terms of the

uj as

2
-{T(1)] l{uj-s - 5 E,l[uj-s-(zl-l) + Wyo3s 211 )

2
+ Yy3 = ﬁ(Z) lg,l['l-'l;'|+3—(21-1) + "‘1-_1+3+(.'21—1):I
=1
= uy - [T {[uys + vyl = [uy, + uy,,)

2
- 5(2)121[113'-2(“1) t W0+

+ Uy0-2 F By ] } - (6.5.5-29a)

Likewise, by using (6.5.5-28a), (6.5.5-28b) in (6.5.5-
13b), we can obtain the expression for K, (2} in terms of

the uy as
Ky(2) = uyy + uyy +ouy, +ouyyy - [uyg +ouyg,l
2
+ H@)[T(2) + 1] {lzl[uj-3-(21-1) + W34 21-1)
+ Wy 21-1) T Wyese21-1) ) }

= uy, t Uy, tuy Fouy, - [uyg +ouy,l

2
+ &(2)P(2) [T(l)]_l{lZ[uj-—Z(l-Z) + Wy421-2)
=1

+ Wy 504 F uj+:e(1+1)] } .
{6.5.5-29Db)
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Now (6.5.5-2%a) can be generalized to give

r

2
Vy(r+1) = uy - [T(r)]-1{121(‘1)l[uj—(1+1) + Wy ]

r

+ (~1) & (z+1) 2wy 41y + By
1=1

+ Wyp01-2) + Uyep(1-2) ] }.
Therefore,

we obtain for r=21

r

2
Vy(z+1) = uy + [T(r)]-1{121('1)“1[“::-(“1) + Wyy(141) ) }

r

2
+ (1) (r41) [T(x) ] l{lzl[uj-zum t Uyio0141)

+ Wyo0-2 F Byg0-2] b
(6.5.5-30a)
Similarly, we have for r=1

31‘

1+1
Ky (z+1) = lg‘,l(-l) ' [uy-otoyy + Ugetoy]

r

. 2
+ (=1) " (r41) P (e01) [T(x) 17 Y5041y + Yyi2004
1=

+ W12 *t Wya-n ] }
(6.5.5-30b)
Therefore on writing

21‘

Ay(r+1) = §(r+1)l)_:1[uj-z¢1+1) + Ui+ F Wyo20-2) F Uyea(1-2) )

for r21, we obtain

(6.5.5-31)
Uj (r+1)

2 .
uy + [T(r)]-l{ 2_‘,(-1)1+1 [uj—(l+1) + uj+(l+1):I

1=1

+ (-1) " () },

{6.5.5-32a)
JT
Ky{r+1) = 1§1(—1)1+1[uj-(21—1) + Uyt ]
+ (=1)T7P (201) [Tx) 174 (242), (6.5.5-32b)
and
& (r+1) =

[llfl ()17t (6.5.5-32¢)
=0
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We note that the matrix T is obtained from the

discretized Poisson equation and is of the form

4 -1 -1
-1 4 -1
0
T= ‘ : : . . (6-5-5_33)
0
-1 -1 4
Now let
m
lul= 3 lu,l. (6.5.5-34)

=1

Then, from (6.5.5-32a), we obtain

lojzey = uyl < Iz )™ 1 {2 lul + lAjee) 1}

Thus, we have

lojeey = uyll < Hx 17 {2 + 2 1Sy 1} Jul.
(6.5.5-35)

By using (6.5.5-17), (6.5.5-17a) and (6.5.5-33) it is
easy to show that

I 178 < 272
{r) < 2 < 2. (6.5.5-36)

Furthermore, we have (Lakshmivarahan and Dhall[19920],

pp. 403-405) that

r+l1

I8 () | < 7@ Y, (6.5.5-37)
where ¢* is defined such that

[cosh (23¢*) 17 = m¢ax{ [cosh (279,317} (6.5.5~38)
i

and ¢; is given by

A

¢; = cosh™ (=5 . (6.5.5-39)
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This happens when T is of the form. given in (6.5.5-33)
ixm
where |yl 22 since Ay = -4+2cos( )i 1=1,2,...,n.

Therefore by combining (6.5,5-36) and (6.5.5-37) with
(6.5.5-35), we obtain

r r+l *
loj ) = wyll £ 277°0{2 + 26°@ "V} [ul.  (6.5.5-40)

Now (6.5.5-40) states that as r tends to infinity,
bj(nq) converges to the solution uy. In other words, for

large r, V;(r+1) is a good approximation to uj.
Next, we also have that,when |a,l22,

P (:+1)® (1) | < 26%, (6.5.5-41)

From (6.5.5-32b), we obtain

r

3
Iyt - 1%1(_1)“1[“1-(21-1) +uy oty ]|
calrey M ey S (o) | lull. (6.5.5-42)

Hence, by using (6.5.5-36) and (6.5.5-41) in (6.5.5-42),

we have

1+1

r
3
"Kj(r+1) - 1§1(—l) [uj-(zl_l) + Uj+(21_1)] "

< 4x2><2e¢n "uﬂ = 16e¢n "u" . (6.5.5-43)

Thus Xj{r+1) remains bounded throughout the computation.

This proves that the modified form of the TR3 reduction
algorithm is numerically stable.
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6.6 ITERATIVE METHOD FOR SOLVING (6.4.1)

In chapter 3 we have ocutlined the basic iterative
methods for solving the linear system of equations. In
the following sections, we shall use the successive line
overrelaxation (SLOR) technique to solve the system of
linear equations (6.,4~1) derived from the discretization
of the Poisson equation with periodic boundary
conditions (6.2.2) using the five-point finite
difference approximation (6.3-2). Next, we shall prove
numerically that“ both the periodic and non-periodic
problems share a common optimum parameter yet their
spectral radii are different. Thus we conclude the
chapter by deriving the relationship between the optimum
parameter and the spectral radius for the elliptic

periodic boundary-value problem.

6.6.1 OUTLINE OF SLOR ITERATIVE METHOD FOR
SOLVING (6.4-1)

Consider the solutions of a system of linear equations
derived from the discretization of the second-order

elliptic PDE with periodic boundary conditions

Mu = s {6.6.1-1)
where
~Ay Az Ay
. : : 0
M = . . . (6 . 6 . l-la)
0
—An—],n-2 An—],n—l "An-l,n
_'Al'l,l _An,n-l An'n
[ T T T 1T
u = U, Uy, o0,y
{6.6.1~-1b)
T -
8 = [sl,s.;, . .,Sn] T

The SLOR method may be written in the form
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(r+l}

{r)

(r) (r) (r)

(r+l) (r} (r+l) (r} {r)
Agjyuy = Ajuy + O{A quy 0+ AUy, to8; - Ajuy )
for i =2,3,...,n-1

(r+1) (r) (r+1) (r+1) (r)
Apu, = Aygu, t 0O{A e+ Apw s, - Aju, }J

(6;6-1-2)
for r = 0,1,2,....
We can further simplify (6.6.1-2) to give
(r+1) (r) -1 (r) (r)
D = (1 - elu, 4+ ©A {Apu, Aju, + 8} A
(r+1) (r) -1 (r+l) (r)
i = {1 - ooy + 0A, {Ayawy + Apaug + o8y g
for 1i=2,3,...,n-1
(r+1) (r) -1 {r+1) {(r+1)
. (1 - 0u, + OB {Ag gl + Agwy 4 8.}
(6.6.1-3)
for r=20,21,2,....
Now write
{r) -1 (r) {r}
vi = Ap{Apu, 0 4 Apu, + o8} )
{r+l) -1 (r+l) {r)
Vi = Ajy Ay’ + Apatyg + o8y &
(6.6.1-4)
for i=2,3,...,n-1
(r+l) -1 (r+l) (r+l)
n = An,n {Ar}n-lun-l + An,lul + sn}J

for r=20,1,2,....

By combining (6.6.1-4) and (6.6.1-3), we obtain
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{r+l) (r) {r) 3

uinl) - {1 - (D}u;r) + OJV_{““ & 6.6.1-5)
for i=2,3,...,n-1

(r+l) (r} (r+l)

nr = {1 - m}unr + mvnr )

for r = 0,1,2,....

Now we can solve (6.6.1-4) as a system of linear

equations of the form

Dv = ¢t ‘ {(6.6.1-6)
where
— - = {r) -
1
Ay
¢ .(r+1)
D = Agy ;, v =] Vi (6.6.1-6a)
1
B Bop | vt
and
-Alﬁu;r) + A]'nur(lr) + 3, 7]
(r+l) (r)
t o= Ayl Tt A oSy |, (6.6.1-6b)
(r+1) (r+1)
An"n_lt:tn_1 + An,1“1 + s,

Now consider (6.6.1-6) for 1i=2,3,...,n-1. The two end
points at i=1, and 1i=n can be easily deduced from the
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general case of i=2,3,.,..,n-1 by taking into

consideration the periodicity of the problem.

Henceforth, we shall concentrate on the 1lines 1i=
2,3,...,n-1, Therefore from (6.6.1-5), (6.6.1-6),
(6.6.1-6a) and (6.6.1-6b), we have '

{r+l) {r) {r+l)

for i=2,3,...,n-1 and the matrix Am_is of the form
- o B -W_
=Y o« -B
0 |
Ay = o . (6.6.1-7a)
-y o -B

-8 -y o«

for i = 1,2,...,n.

The system of linear equations (6.6.1-6) can either be
solved directly (Benson[1969]) or iteratively. Thus we
have n (including the two systems of equations derived
from the first and the last lines) such systems of n
linear equations to be solved.

In the next gection we shall derive the relationship

between the spectral radius and overrelaxation factor

for the periodic problem that we are now considering.
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6.6.2 RELATIONSHIP BETWEEN SPECTRAL RADIUS
AND OVERRELAXATION FACTOR

Consider the general set of systems of equations given
by

Mu = s (6.6.2-1)
where
AJ,]. _A]’z —A1)3 . . . _ALn-
_A%]' A2'2 -A2)3 . . . —Aan
M=1 j ) (6.6.2-1a)
-An}l —Anlz _'An)3 . . . Arm _

and A;; are square block submatrices of order n and A

for 1 # j are block submatrices.
We may write
M=D-E~-F (6.6.2-2)

where

D = diag[ALl'A%z' LR ’An,n] r

0
Ay Ay O 0
E =
An,.‘J. An,z An,n-l 0
and
_0 Alrz A1'3 - L] » Al,n =]
0 By Ay,
F = O
0 Pnyn
h— 0 L

Now for this general form, there does not exist any

simple relationship between the eigenvalues of the
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Jacobi iteration matrix G and the SOR iteration matrix
Ly in order to optimize the convergence rate of the

block SOR iterative method. However, Young(l1954] and
Arms, Gates and Z2ondek[1956} have shown that when the
matrix M is a consistently ordered block cyclic matrix
of order 2, a simple relation does exist. This

relationship is given by

0= = > (6.6.2-3)

1 +41 - [pGp1?

where p(G;) is the spectral radius of a consistently

ordered block cyclic matrix G; of the form

0

“RAyo1n-2 0 ~An-1n
-An,n-l 0

Henceforth, we shall consider the systems of 1linear

equations defined by (6.6.1-1).

We define the block Jacocbi method by

r+l)
u(

D (E+F)u(r) + 8, rz20

and the successive block overrelaxation method by

{r+l)

(D - WE)u {0F - (0 - 1)D}u'® + ws, r20.

Correspondingly, the block Jacobi iteration matrix Gy is

given as
-1
Gg =D (E + F)

and the successive block overrelaxation matrix £, as
Ly = [D -0E] '[@F - (0@ - 1)D].

Now by letting
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and

U = p'F,

we can write the system (6.6.1-1) in the form
1

[I - L -—Uju=D"s (6.6.2-4)

and the respective Jacobi and SOR iteration matrices are
given as |

Gg =L +U (6.6.2-4a)
Ly = [I -0L1 ' [0U - (0 - 1)I]. (6.6.2-4b)

Assume that the submatrices A%i of (6.6.1=-7a) for i=

1,2,...,n are in normalized form. Therefore we may write
1 -3 -G |
-0 1 -9
0
Ai’i =T = 0 * . : {6.6.2-5)
-6 1 -6
-8 -0 1
for 1 =1,2,...,n.

The block matrix M of (6.6.1-1) from the discretization
of the problem is then given by

T =8I -0I
-6I T =8I

M= . . . . 6.6.2-6
o . . . (6.6.2-6)

=3I -GI T

Since the submatrices T and I are commutative, then by

the spectral decomposition method and writing
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™Y = I'Y (6.6.2-7)

where ¥ and I' are the respective eigenvectors and

eigenvalues of T, deduced from section 6.4, then we may

resolve the linear system of (6.6.1-1) as

Tiwi = Yi' i=1,2,...,n. (6-6.2—8)

There are n such systems ©of n linear equations to be
solved where T;, 1=1,2,...,n are of the form of the

original block matrix M., Since the submatrices T; are

all the same, we shall now denote them by T as given by
(6.6.2-5) . Henceforth, we shall congider the point form
given by (6.6.2-8} in the analysis.

Now the Jacobi iteration matrix Gy of the point

equivalent is of the form

0 5 ‘07
c 0 o
Gp = O {(6.6.2-9)
o
o G 0
Thus we have
Gg = Q, + Qy, (6.6,2-10)
where
=0 &.
0
0
Q, = 0 (6.6.2-10a)
g
0
and
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(6.6.2-10b)

Q0
%]
i
o

That is, we can express Q; and Q, in the form

Q =L, + U,
(6.6.2-11)

Q.

where L; and U;, i=1,2 are lower and upper triangular

matrices respectively.

Now suppose A is an eigenvalue of the SOR matrix £, and kf

z be the corresponding eigenvector, then
[I - oL] ' [0U - (0 - 1)I]z = Az. (6.6.2-12)

Premultiplying both sides of (6.6.2-12) by [I - ©OL], we

obtain

[OU - (® - 1)I)z = A[I - wL]z.

Thus on simplifying, we obtain

A -1
U+ Az = [ 2]

Iz (6.6.2-13)
w

where the matrix [U + AL) has the form
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0 §
e 0 &
. 0
U + AL) =
‘ : 0 L
A 0
AD AC
Now write
(U + AL] = P, + Py,
with
-0 e
AG O
0
P1=
0 .
i AC 0_J
and
0 & T
0 o
0
P, = 0
0 )
Ad 0

g
(6.6.2-14)

0
(6.6.2-15)
(6.6.2-15a)
(6.6.2~15b})

That is, P, and P, can be expressed in the form

P, = U, + AL

P, = U, + AL,

(6.6.2-16)

We shall now establish a similarity transformation which
relates the matrices {U; + AL;} and [U; + L;]1 for i=1,2.

Let
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Q = diag[1,A Y™, A", .. .,A““‘“’"]) (6.6.2~17)
then , we have the inverse of Q as
ot = diag[1,AY", 22", ..., Al D/ (6.6.2-18)
By virtue of this similarity transformation,
QP,Q7" = P,. (6.6.2-19)

But by substituting (6.6.2-17), (6.6.2-18) and P, as

given in (6.6.2-15a), we can easily show that

op, 07t = AP g (6.6.2-20)

Therefore, by equating (6.6.2-19) and (6.6.2-20), we
obtain

P, = A"V/hg. . (6.6.2~21)

Similarly, we can show that

P, = A", . (6.6.2-22)

Next, we note that (6.6.2-13) can also be expressed as

[L’f“’_‘l]l}

det { [U + AL] - = 0,
(4]
or
A+ -1
det{[p, + P,] - [——]1} =o0. (6.6.2~-23)
Thus
A+ -1 1
get {Q[p, + P, - (—-m—)l]o } =o,
or
-1 -1 ?\,+(D" 1
det {or,07" + 0P07 - ( . )1} = 0.  (6.6.2-24)

Recall that

det{B - AI} = 0,
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may be written as
n
r[ {uk(B) - A} =0,
k=0

where W, (B) are the eigenvalues of B.

Therefore, (6.6.2-24) becomes,
n -1 -1 l + 0) - 1
M {pce0" + p0™ - (——) } =o.
k=0 @
Now the general circulant matrix,
Ca, a; a, -
4p-1 89 & Qn-2
a, a, a a
| %1 2 3 o |
has eigenvalues of the form
n-1 k
By = X al;, 0<£3j<n-1
k=0
with the corresponding eigenvectors as
2 n-1
vy = [11er§jr---er ]Tr
where
2wig
Cj = exp( n ),

for 0€y<n-1 and i=V-1 .

Thus, for the matrix Q,,” the eigenvalues are
o™

and for the matrix Q,, the eigenvalues are

8¢,

for 0£j<n-1.
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(6.6.2-26)

(6.6.2-26a)

(6.6.2-26Db)

{(6.6.2-26¢C)

(6.6.2-27a)

(6.6.2-27b)



Their corresponding eigenvectors are

-1 ¥
(1ijI’C§!"'fC2 l)r (6.6.2"-27C)

for 0 £ j<n-1.

We shall now concentrate on the coincident eigenvectors
of Q, and Q,. Then, . by using (6.6.2-21) and (6.6.2-

22); we can simplify (6.6.2-25) to give

n -1) /n n A+ o -1
T { A7 70, + A0y - (F——) }

=0. (6.6.2~-28)

Since Q; and Q, have coincident eigenvectors, then there

exists some k such that (6.6.2-28) reduces to

A+ o-1
——-—-—-—m )

?u(n-l)/nl.l(Ql) + lllnu(Qz) = (6.6.2-29)

Now let A = llhtj and substitute W(Q,) = GC?ﬂ, R{Q,) =

oL and since {; = 1, then

A" - A"'oo - A0S + ® - 1 = 0. (6.6.2-30)
By adding and subtracting 0’68 in (6.6.2-30), we obtain
(A" - A" 6 - AwS + 0°68] - (068 - @ + 1] =0. (6.6.2-31)

Therefore)given a system of linear equations of the form

{6.6.1-1), (6.6.2-31) describes the relation
between A, the eigenvalue of the SOR matrix £, of (6.6.2-

4))and @, the overrelaxation factor.
In order to determine the optimum ® which satisties
(6.6.2=-31), we let

G, (A) = A" - A" oo - Ad + 0’03, (6.6.2-32)

Cp = 008 - @ + 1. (6.6.2-33)

Now)for (6.6.2-31) to be true, we should have
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G, (A) = Cgur ' (6.6.2-34)

for any 0 satisfying (6.6.2-32) and (6.6.2-33). But
(6.6.2-33) is independent of A, therefore we may now

write (6.6.2-31) as

A" - A"ac - A + 0’08 = C,, (6.6.2-35)

W’od - © + 1,

1 \}1—408 1 1 - 409
+ Ho - - }
od 2

2008 oo 2068

O
e
I

os{w -

Therefore we may write C, in the form

¢y = o8{w - 2 Ho - £ }
1+ Y1 - 4068 1-\/1—408

(6.6.2-36)

We observe that, for any ® satisfying (6.6.2-32) and

(6.6.2-36), the relation (6.6.2-35) is true., Thus

it is necessary and sufficient to discuss the magnitude
of C, in order to determine the optimum A which is true

for (6.6.2-31). Note that Cy, is only determined by ® and

it is independent of A, since ¢ and & are constants. Now
0<®w<2, If ®=0, then C, =1 and A" =1. Thus A has a

unity root of multiplicity n. This is obvious and
expected. The numerical results confirm this. As ©

moves away from zero towards unity, Co= 0’0o+ 1 -
moves away from unity towards ¢8 which is always

positive : - . . but less than unity since
0<0,08< ;2-
towards two, Cm=0)268 + (1 - W) is governed by the sign

But now as ® moves further away from unity

of 1 - ®. Clearly, Cy will first be positive as long as
1 -®>0. Then at O = Wy, C‘%pt= 0 and then stays
negative. for @ > W,,, when at @=2, C,=408-1<0 since

1
0<0,8<5.
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In the accompanying Figure(6.6.2), the optimization
strategy is illustrated. The graphs depict the roots of

the characteristic polynomial described by (6.6.2-35)
for different values of C, as ® progresses from zero

towards two. In Figure(6.6.2a) where 0w =0 and C,=1, all

the eigenvalues are unity. As ® increases from zero but
C, decreases from unity, some of the elgenvalues become

complex pairs, Figure(6.6.2b) to Figure(6.6.2d). As @

increases further, more eigenvalues become complex until

eventually all of the eigenvalues lie on a circle of

radius |A,| at @ =@, in Figure(6.6.2e) where |A,,.| is

the minimum of the maximum value of the moduli of the
eigenvalues which is less than unity. At this point C"’opt

is numerically equal to zero. For values of ® beyond

Woper C Moves away from zero; the eigenvalues increase

in moduli as shown in Figure(6.6.2f) and Figure(6.6.2q9).

Therefore, the optimum A is obtained corresponding to
setting C, = 0. Hence the optimum relaxation parameter ®

is determined by solving the equation
w’cd + (1 - w) = 0. (6.6.2-37)
Let M, be the solution of (6.6.2-37), therefore we have

2
W, = (6.6.2-38)
° 1 + \)1 - 400

2

1—\]1—408

Similarly, if ¢ and & are of opposite sign, we can

. 1
since the other root >2 for O <0',8<5.

{S
easily show that (6.6.2—38)A still wvalid. Thus the

optimum relaxation factor is given by (6.6.2-38),

Finally the spectral radius A,,, can be simply derived
from (6.6.2-35) by substituting C,p= 0. That is,

(A" - wo}{A - @8} = 0. (6.6.2-39)
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6,00e~71 0.2+
4.00e-74 0.11
2.00e-71
L T L T T T T | T T 1 0.0
oo 0.2 0,4 0,6 0.8 1. 1.2
-2.00e-74 -0.1+
-4,00e-74
a:w=0 -0,2d
-6.00e-74
0.6-
0.4

=0.55 -

~1.08 - g:®=1.95

Figure(6.6.2) : Optimization process of the relaxation
parameter for periodic¢ problem.
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Hence we obtain the solutions of (6.6.2-39) as

A= 061"V or A= wd.

Since A = AY", therefore we have

l — |:0)(.).]1'1/(n-1) or ;\, = [0)5]".

‘ 1
Now for M symmetric and both |G|, 15|<<§, so that

n/{n-1)

[3]" < [wo] ,
therefore the optimum spectral radius A,,, is given by
Aope = [@p1®/ "7V, (6.6.2-40)

where |G| = (8} = p.

Thus we observe that) for a periodic problem, the

standard SOR formula is not applicable, although the .
a.sw-.’{-l.!,.‘q.w, ¥ u-"d—v'u n_is 'ijg_

optimum relaxation factors of both cases coinc1dg& This

phenomenen is illustrated in the numerical results given

in the follbwing section.
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6.6.3 NUMERICAL RESULTS

In this experiment, we have used the Laplace egquation
with Dirichlet boundary conditions (for the SOR method)
and with periodic bdundary conditions (for the
confirmation of the theoretical results derived in the

previous  section).

2000
E 1500 -
a
@]
[$]
g5 1000 -
-]
+
(13
o
3 5004
-
0 oy e T—t—r
0.0 0.5 1.0 1.5 2.0
relaxation factor
Figure(6.6.3a) : Number of iterations against relaxation

parameter for periodic problems. Matrix size 20 and
tolerance set at 5e-06. O denotes the matrix element.

In Table(6.6.3) we present the comparison of the
theoretical values of the spectral radius for periodic
problem and the spectral radius of the standard SOR
method for different matrix elements ¢o. The matrix used
is of size 20 and symmetric. The results confirm that
the standard SOR is not applicable for the periodic
case.
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Matrix size 20
Tolerance used 5e-06

Matrix Relaxation Number of Theoretical values of spectral
element o parameter ® iterations radius(periodic¢) radius(sor)

.10205E-01

.10 1.01021 S .10102E+00
.15 1.02357 (23 .15354E+4+00 .23573E-01
.20 1.04356 7 .20871E+00 .43561E-01
.25 1.067180 9 .26795E+00 .71797E-01
.30 1.11111 11 .33333E4+00 .11111E+00
.35 1.16676 13 .40837E400 .16676E+00
.40 1.25000 17 .50000E+00 " .25000E+00
.42 1.29652 20 .54454E+400 .29652E+4+00
.44 1.35596 23 .59662E+400 .35596E+00
.45 1.39286 26 .62679E+00 .39286E+400
.48 1.56250 42 .75000E+00 .56250E4+00
.49 1.66806 60 .81735E+00 .66806E+00
.499 1.88109 192 .93866E+00 .88109E+00
Table(6.6.3)
PERIODIC
1.0

oW

2 .

§ 0.9 |

o

ﬁ —

EJ; . SCR

% 0.8

0.7
T T 1

Figure (6.6.3b)

factor for SOR and periodic problems .
({51 o= o.495),

relaxation factor

: Spectral radius against relaxation



6.7 CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the iterative and direct methods of
solving linear systems of equations derived from the
discretization of the periodic boundary-value problems

for the elliptic PDE were investigated.

The investigation of the iterative method of the problem
leads us to conclude that the standard optimum SOR
parameter cannot be applied to the problem. Instead, we
derive a new formula for the optimum parameter and hence
deduce the rate of convergence of the method for the
problem. Numeriéal experiments are presented to confirm

the results.

In the investigation of the direct method of solving the
problem, a new tri—€$%iSEion {TR3) algorithm is derived
the modified formAis shown to be numerically stable.
The reduction stage of the TR3 algorithm seems to be
faster than that of the standard c¢yclic reduction
algorithm. Furthermore, this algorithm may also be
adapted for parallel computation. This could be an area

of further research.
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CHAPTER 7
CONCLUSIONS AND
RECOMMENDATIONS FOR
FURTHER WORK

The thesis can be mainly divided into two parts. The
first part is concerned with the numerical solution of
problems involving ODE. This part is discussed in
chapters 4 and 5 after the introductory chapters 1-3.
The second part is concerned with the numerical solution
of periodic problems involving PDEs which is described
in chapter 6.

In ¢hapter 4 we have considered a modified RK method
using the geometric mean (GM) principle since we can
regard the classical RK method as an arithmetic mean of
approximations at various points. If certain conditions
of the problems are met, we show that the RK-GM method
may give better results compared with the corresponding
classical RK method. We illustrate this for the case of
a second-order RK-GM method. However, the RK-GM nmethod
may be more computationally complex and the region of
absoclute stability is smaller than the classical RK
method. The applicability of the RK-GM method is further
investigated in an imbedded form with the classical RK
method to develop an adaptive strategy. This seems to be
promising since we have two methods of the same order
and the combined formula requires only a small number of
function evaluations. This is illustrated for the case
of an 0(4) method. However, the numerical results
obtained gggﬁ}ess encouraging when compared with the
more estab1£§HEH“”EZ€E§&s. Nevertheless, the
investigation 1is worthwhile as confirmed by the

comparable numewcal - results,

In chapter 5, the suitability of the geometric mean

approach 1s further investigated on the multistep



(specifically, the two-step) methods for the numerical
solution of special types of problems in ODEs. The
geometric mean version of the Numerov method is found to
be comparable in accuracy with the classical Numerov
method. The two methods are then combined to form an
adaptive formula. The prototype adaptive strategy
involving the two methods however do not give convincing
results. This could be due to the error contrel strategy
used which is too simplistic. Further work in this area

is warranted.

The investigation on the multistep method for the fourth-
order special type problems results in both new implicit
and explicit formulae. The numerical results obtained
show good accuracy. Thus they may be combined together
to form a predictor-corrector pair for the fourth-order
special type ODE problems that occur in celestial

mechanics, etc.

Finally, in chapter 6 we are concerned with the
numerical solution of periodic problems involving PDEs.

The investigation of the optimum parameter of the SOR
method applied to periodic problems shows that the
standard optimal SOR parameter is not applicable for
these problems. A new formula is introduced for the
cptimal SOR parameter and its asymptetic rate of
convergence established which is confirmed by numerical
experiments.

The sthdy of a suitable direct method for solving the
special systems of linear equations which occur for
periodic problems leads to the derivation of a new
strategy called the tri-reduction algorithm (TR3). The
number of reduction stages of the TR3 algorithm is found
to be less than that of the c¢yclic reduction algorithm.
An efficient software implementation of the TR3
algorithm would give better timing results than the

cyclic reduction algorithm especially on a parallel
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computer, We further study the stabllity of the TR3
algorithm and derive a stabilized form of this
algorithm.

The idea of the TR3 reduction can be further extended on
quarto- and quin-reduction algorithms. However, we have
to be aware of rounding errors which may grow
exponentially. The TR3 algorithm can also be
investigated for its suitability as a parallel
algorithm,
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Appendix 1

C
c

c

THIS PROGRAM SCLVES Y' = F(X,Y) USING RK-GM METHCD
OF ORDER 4
program rkgmé

THE FILE prob.f contains the subroutine for the model problems,

$INCLUDE prob.f

Cc
c

THE FILE parm4.f contains the subroutine that computes the residual

vectors fc(l) ... fc(n) for the parameters of the equation.

$INCLUDE parmd.f

10

implicit double precision (a=-h,o0-z)

double precision x(30),fc(30),par({30),alphal,alphal,alpha2

integer*4 nn(l%),nd(19)

external parmd

common/blk2/x,par/blkl/n,nl

common/blk3/x0, xend, y0, npb, nsteps

cpen(6,file="datal(")

set number of equations

print*, 'number of equations nl=23

~ number of unknowns n =19 !

read*, nl,n

m = n-10

read(6, *) (par(i),i = 1,nl), {nn{i),nd(i),1i = 1,m)

~ ,alphal,alphal,alpha2

do 10 i =1,m

x{i)=dble{nn({i)) /nd(i)

continue

write (*,1) (par(i),i = 1,nl), (an{(j),nd(J),J = 1,m)

~ ralpha0, alphal, alpha2

format (2(2x,10(f4.2,2x)/),2x,3(£f4.2,2x)//'al=",i2,%*/',1i2,

~ 2x,%'a2 =',i2,'/',i2,2x,'a3 =',4i2,'/',i2,2x//*bl =',i2,

~ V/1,i2,2x%,'b2 =',12,'/',i2,2x,"'b3 =',i2,"/',i2,2x%/
‘b4 =',i2,'/",12,2x,'b5 =%,42,%/",12,2x,'b6 =',1i2,' /"
,12,2x//%alpha0 =',£5.2,2x%, *alphal ="'
,£5.2,2x, YalphaZ =',£5.2,///)

set the parameters of the equation

t

4

4

al = x(1)

a2z = x(2)

a3 = x(3)

bl = x(4)

b2 = x(5)

b3 = x(6)

b4 = x(7)

bs = x(8)

b6 = x(9)

2(10) = (-12.d0*alpha2 + 3.d0*alphal - 3.d0*alpha0+ 2.d0)/6.40
x(1l1l) = 4.d0*%alphaZ - alphal - alpha0

x(12) = (-12.d0*alpha2 - 3.d0*alphal + 3.d0*alpha0 + 2.d40)/6.d0
x(13) = (6.d0*alpha2 - 1.d40)/3.40

x(14) = (-12.d0*alpha2+3.d0*alphal-3.d0*alpha0+2.d0)/6.40
x(15) = (-12.d0*alpha2-3.d0*alphal+3.d0*alpha0+2.d0)/6.d0
x(16} = alphaZ2

x (17} = alphal

x (18} = alphal

x(19) = alpha2

wl = x(10)

w2 = x(11)

w3 = x(12)

wd = x(13)

w5 = x(14)

w6 = x(15)

w7 = x(16)

wB = x(17)
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100

999

250

11

12

wd = x(18)
wl0 = x{19)
call parmd (fc)
print*, 'CHECK FOR CONSISTENCY'
do 999 i = 1,nl
write(*,100)i,fc(i)
format (10x,'£(',1i2,") = 1',e20.12)
print*,
print*,
continue
set the number of points
print*, '‘number of points :10"
read*,nsteps
call routine that generates the model problem
print*, ‘type problem number"'
read*,npb
if(npb.lt.1)stop'end of problem'
call problem
h = (xend-x0)/nsteps

xn = x0

yn = y0

print*,* x exact computed -
~ rel error !

hkl = h*f (npb,xn,yn)

hk2 = h*f (npb,xnt+h*al, ynthkl*bl)

hk3 = h*f (npb,xn+h*a2, yn+hkl*b2+hk2*b3)

hk4 = h*f (npb,xn+h*a3, yn+thkl*b4+hk2*b5+hk3*b6)

ynl = yn+DSIGN{1.d0,f (npb,xn,yn))* (wl*dsqrt (dabs(hkl*hk2))
~ +w2*dsqrt (dabs (hk2*hk3) ) +w3*dsqrt (dabs (hk3*hkl))
~ + wi*dsqgrt (dabs (hk4*hkl))+w5*dsqrt (dabs (hk4*hk2))
~ +two*rdsqgrt (dabs (hk3*hk4}))+w7*hkl+w8*hk2+w3*hk3+wl0*hk4
err = dabs({yn - exact (npb,xn))/(1.d0+dabs (exact (npb,xn})}
write (*,12)xn,exact {npb,xn), yn,err
format (1x,£6.3,3(2x,el6.7))
Xn = xn + h
yn = ynl
if (xn.gt.xend) then
go to 250
else
go to 11
endif
stop
end
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Appendix 2

program tri-redn
C The file tr3.f contains the subroutine symp3(a,m,n,b,w,x)
o algorithm for the TR3 reduction
S$INCLUDE ¢tr3.f
implicit double precision (a-h,o-2)
parameter (lim = 4000)
dimension w{lim),b(lim),x(1lim}
external symp3
a denotes diagonal element of the matrix A
n denotes the size of the matrix A, n = 3**n
bb denctes the right-hand side of the equation,
Ax = b
print*, 'enter a,n,bb’'
read*,a,n,bb
do 100 j = 1,n
b{j) = bb
100 continue
m = int{log(real(n))/log(3.))
print*, 'The number of reduction steps m = ',m
c Start timing
call symp3(a,m,n,b,w,x)
Stop timing
Print final results
print*, (x(3),3 = 1,n)
stop
end

[t Ee e Ne]

Qa0

subroutine symp3{a,m,n,b,w,x)
This subroutine solves the simeltaneous equation, A*x = b

a is the diagonal element of A,
n is the size of the matrix A,
m is any integer number such that n = 3*%*mn,
b is the right hand side vector in the equation A*x = b,
w is the vector of the multipliers of the diagonal elements of A,
during the reduction process,
t is the depth of recursion,
x is the vector of the unknown in the equation A*x = b,
implicit double precision (a-h,o-z)
parameter {(lim = 200)
dimension wi{m+l),b({n),x(n),aa(lim, lim)
integer t,m
integer timel, time2
double precision time
o Start timing
call _clock time{timel)
w(l) = a
do 10 £t = 1,m-1
w(t+l) = w(t)*(wi{L)**2 = 3.d40)
do 9 j = 3*%*t,n,3*x*¢
if (j .ne. (3**m)) then
b(j) = b(j=2*3**(t-1)) - w(t)*(b(j=-3**(t-1))

aQOaOQaaQaaan

~ + b{j3+3**(t-1)))
~ + (wt)**2 ~ 1.d0)*b(j) + b(J+2*%3**(t-1))
else
b(j) = b({j-2*3**(t-1)) - w{t)*(b(j-3**{t-1)) + b (1))
- + {w{t)**2 - 1.d0)*b{j) + b(2)
endif
9 continue
10 continue

Cc Compute the inverse ¢f the matrix B
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aaoaoaaoaaaaooaaoan

Q

200

15
20

where B*x = b such that
| bb 1 1 |
I |
B =] 1 bb 1 ]
| [
| 1 1 bb |
and
| d*e -1 -1 |
| |
= {1/d)*| -1 d*e -1 |
| |
I -1 -1 d*e l
d=w{m)**2 + wim) ~ 2.d0
e = (wi{m)**2 — 1.d0)/(wim)**3 - 3.d0*w(m) + 2.d0)

Stop timing

call _clock_time (time2)

time = (time2 - timel) /100.d0
write(*,200) time
format (5x, 'elapsed time is ',el0.5)

Solution process

Cbhta

Obtai

in the values of u{3**{m-1}),
w(2*¥3** (m-1)), and u(3**m) from u = A*b
do 12 i I** {m-1} ,n, 3**% (m-1)
z (i} 0.do
do 11 j = 3**(m-1),n,3** (m-1)
if (j .eq. i) then
(i) = (x(i) + e*b(j))

else
x(i) = (x(i) - (1.d0/d)*b(3))
endif
continue
continue
n the rest of the u's from

Il ¢ 1 1) vl | | bl |

| S N I =1 |

Pl c |l u2 | I b2 |

do 20 1 = 1,m-1
t=m-1
ww = L.d0/(w(t)**2 - 1,d0)
k = 3**¢
do 15 3 = 3**{t-1),n - 3I**{t-1),k
if {j .ne. 3**(t-1)) then
x(1) = (w(t)*(b(J) - x{(J=3**(t-1)))
— (b(j+3**(t=1)) = x(J+2*3**(£=-1))) ) *ww
x{3+3**({t-1)) = (=(b(J) - x(3-3**({t-1)))
+ w(t)* (b (J+3%* (t-1})
= XA{J+2*3** (£-1))) ) *ww

else
x(3) = (wt)*(b{}) - =x(n))
else
x(J) = (wit)*(b(j) - =x(n))

= (b(3+3**{t=-1)) - x(J+2*3** (£=1)))) *ww
x{j+3** (£-1)) = (~(b(J) - x{n))
+ wi{t) *(b{j+3** (t-1})
~ X{J+2*3**(t=1)))) *ww
endif
continue
continue
return
end
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Appendix 3

program pred_crrtr
THIS PROGRAM IMPLEMENTS THE PREDICTCR CORRECTOR
PAIR USING
Yn+2 = -6*¥Yn + 4*¥n-1 + 4*¥n+l -Yn-2
+ (h**4/6)*{4*F (Xn,¥n) + F{(Xn-1,¥n-1)
+ F(Xn+l,¥n+l)1}
AS THE PREDICTOR AND
¥n+2 = -6*Yn + 4*¥n-1 + 4*¥Yn+l -¥Yn-2
+ (h**4/720}*{474*F (Xn,¥Yn)
+ 124 [F(Xn=-1,¥Yn=-1) + F(¥Xn+l,¥Yn+1))}
- [F(Xn-2,¥n-2) + F(Xn+2,¥n+2)1}
AS THE CORRECTOR.
THE PROBLEM SOLVED IS OF THE TYPE
D4Y = F({X,Y)
GIVEN THE INITIAL CONDITIONS X0 ,Y0,AND DYi0,i=1,2,3.
implicit double precision (a-h,o-z)
write(*,*} "INITIAL VALUES OF eps,x(0 xend nsteps'
read(*, *)eps,x0,xend, nsteps
write(*,5)eps,x0,xend, nsteps
5 format (el0.4,2£6.2,3%,13)
xn0 = x0
yn0 = exact (xn0)
h = dabs(xend - x0)/nsteps
xnl xn0 + h
xn2 xnl + h
xn3 = xn2 + h
ynl = exact (xnl)
yn2 = exact (xn2)
yn3 = exact (xn3)
write(*,6)xnl,ynl,xn2,yn2,xn3,yn3
6 format (1x,3(2(e25.15,5x)/))
write (*,*)" xn4d computed
~ exact ',
~1 relative error'
c call predictor to cobtain yn4
do 10 j = 1 , nsteps-3
8 call predic(h,xnl,=zn2,xn3,ynl,yn2,yn3,yn0,yn4p)
xnd = xn3 + h
ynidc 4.*yn3-6.*yn2+4,*ynl-yn0
(h**4,/720.)* (474, *f (xn2,yn2)
124.*{f(xn3,yn3)+f ({xnl,ynl}))
{f {xn0,yn0)+£ {xnd, yndp)))
exct exact (xn4)
abserr = dabs(exct-yndc)
c test if the required accuracy is satisfied
if (dabs{yndc-yndp) .le. eps) then
go to 9

QOO0 0a0a0Ooan0n

([}

~

~

1+ + 1

~

else
go to 8

endif
9 write (*,100)xn4,yndc,exct, abserr
100 format (£7.2,2(e22.15,2x),el15.9)

write (¥, *)

xn0 = xznl

xnl = xn2

xn2 = xn3

xn3 = xnd

yn0 = ynl
ynl = yn2
yn2 = yn3
yn3 = yndc
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10

C

c

~

~

continue
stop
end
Define the subroutine to predict the ‘solution
subroutine predic(h,xnl,xn2,xn3,ynl,yn2,yn3,yn0, yndp)
implicit double precision (a-h,o-z}
yndp = 4.d0*yn3 ~ 6.d40*yn2 + 4.d0*ynl - yno
+ (h**4,/6.)* (£ (xnl,ynl)
+ 4.40*f ({xn2,yn2) + £{(xn3,yn3))

return
end
Define the functicn £ (x,y)
function £(x,y)
implicit double precision {(a-h,o-z)

t=y
return
end
Define the exact solution
function exact {x)
inmplicit double precision (a-h,o0-2)

exact = dexp(x)
return
end
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Appendix 4

PROGRAM GM44
THIS PROGRAM SOLVES AN ODE FIRST ORDER PROBLEM USING
THE NEW R-K-GM METHOD WITH ERROR CONTROL.
THE TWO R-K FORMULAE ARE OF THE SAME ORDER 4.
THE FOLLOWING FILES CONTAIN THE SUBROUTINES
THAT DEFINE THE MODEL PROBLEMS
SINCLUDE ../PRCB.F
$INCLUDE ../ERROR.F
SINCLUDE ../RHS.F
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
LOGICAL EXSOL
INTEGER FOUR,NPB,NEQN
PARAMETER (LIM = 10)
DOUBLE PRECISION K(4),Y(LIM),EXACT{LIM),ABSERR(LIM)
~ . YPRIME (LIM), TOL,W{LIM),
~ X, XEND, ALFASQ, HMIN, HMAY
COMMON/BLK3/X,XEND, Y
COMMON/BLK4 /ALFASQ
COMMON/BLKS/NFB
COMMON/BLKG/NEQN
COMMON/BLK7/EXACT, ABSERR
COMMON/BLKS /EXSOL
EXTERNAL FCN, PROBLEM, ERROR
READ*, XEND, NPB, NEQN
RK = .5D0
FOUR = 4
TOL = 5.0E-05
HMAX = 0.1
HMIN = 0.02
CALL PROBLEM
H = (TOL)**(0,25)
WRITE(*,10) X,¥(l),HMAX,HMIN, TOL
10 FORMAT (17X, 'INITIAL CONDITIONS'/23X
~,'X = ',F5,2/23X,'Y = ',E10.4
~/17X, '"MAXIMUM STEP SIZE IS HMAX =',E10.4
~/17%, "MINIMUM STEP SIZE IS HMIN =',E10.4
~ /25X, "TOLERANCE',E10.4)
NFC = 0
WRITE(*,123)
123  FORMAT(T6,'X',Tl5,'H',T30,'Y',T43, '"EXACT',T57,
~'ABS. ERROR',T74,'NFC'/T1,80("'-'))
W{l) = Y{(1)
5 IF (X .LE. XEND) THEN
CALL FCN (NEQN,X,W{l1),YPRIME (1))
K{l) = H*YPRIME(1)
W(l) = Y{1) + K(1)*RK
CALL FCN (NEQN,X+H*RK,W(l},YPRIME({1))
K(2} = H*YPRIME(1l)
W(l) = Y{1) + K(2)*RK
CALL FCN (NEQN,X+H*RK,W(1),YPRIME (1))
K({3) = H*YPRIME(l)
W(l) = Y(1) + K(3)
CALL FCN (NEQN,%+H,W(1l),YPRIME (1))
K(4) = H*YPRIME(1)
WAM {K(1) + 2,DO*(K(2) + K{3)) + K{4))/6.D0
WGM = DSIGN(1.D0,K(1))* (DSQRT (DABS (K (1))} *DABS(K{2)))
~ + DSQRT (DABS (K (1)) *DABS (K(3)})
~ - DSQRT(DABS(K(1))*DABS (K(4)))
~ + DSQRT (DABS (K (2) ) *DABS (K(4)))
~ + DSQRT(DABS(K(3))*DABS (K(4))))/3.D0
NFC = NFC + FOQUR

(s Ne N Ee T
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ERR = DABS (WAM -~ WGM)

R = ERR/H

DELTA = 0.84* (TOL/R)**(0,25)
IF (R ,LE. TOL) THEN

X=X+H

Y({l) = ¥(1) + WAM
W({l)y = ¥{(1)

CALL ERROR

WRITE{*,20) X,H,Y¥(1),EXACT(1),ABSERR(1l) ,NFC
FORMAT (T2,F7.5,T10,F10.7,T24,E12,6
T38,E12.6,T55,E12.6,T70,16)

ENDIF
IF (DELTA .LE, 0.l1) THEN
H=0.1*H
ELSE
IF (DELTA .GE. 4.D0) THEN
H = 4,D0*H
ELSE
H = DELTA*H
ENDIF
ENDIF
IF (H .GT. HMAX} THEN
H = HMAX
ENDIF

IF (H .LT. HMIN) THEN
HMIN = HMIN/2.D0
GO TO 5
ENDIF
GO TO 5
ENDIF
STOP
END
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Appendix 5

program num_am exp

o] Numerov type method for the special fourth order ODE,
C {(EXPLICIT METHOD)
c
C THE PROBLEM SOLVED IS OF THE TYPE
c D4Y = F (X, Y}
o GIVEN THE INITIAL CONDITIONS X0 , Y0 ,AND DYi0 ,i = 1,2,3,
c
implicit double precision (a-h,o0-2)
write(*,*) 'INITIAL VALUES OF x0 xend nsteps'
read (*, *)x0, xend, nsteps
v0 = exact (x0)
xn0 = x0
ynld = y0
h = dabs(xend - x0)/nsteps
write(*,*)
write(*,*)"' xn computed solution
~ exact solution relative error’
write (*,*)
C calculate yl,y2,y3 using the exact solution
xnl = xnQ + h
xn2 = xnl + h
xn3 = xn2 + h
ynl = exact (xnl)
yn2 = exact(xn2)
yn3 = exact (xn3)
de 10 j =1 , nsteps
%xnd4 = xn3 + h
ynd = 4.*%{ynl + yn3) - 6.*yn2 - yno
“ + ((h**4.)/6.)*(f (xnl,ynl)
~ + 4.*f(xn2,yn2) + £(xn3,yn3))
exct = exact (xnl)
if(exct .ne. 0)then
abserr = dabs(exct - ynl}/dabs{exct)
else
abserr = dabs(exct - ynl}
endif
write(*,100)xnl,ynl,exct,abserr
100 format (£6.3,2e20.12,e18.10)
C reset appropriate values of xnQ,xnl,xn2,xn3,yn0,ynl,yn2,vn3
xn0 = xnl
xnl = xn2
Xn2 = xn3
xn3 = xn4
yn0 = ynl
ynl = yn2
yn2 = yn3
yn3 = ynd
10 continue
stop
end
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Define the function f£i(x,y)
function f£(x,y)
implicit double precision {a-h,c-z)

£f = 24.40 + dexp(x)
£=y
f = 34320.d0*{2.40 - x)**(-14)
f = cos(x)
return
end

Define the exact sclution
function exact (x)
implicit double precision {(a-h,o-2)
exact = x**4 + dexp(x)
exact = dexp (x)
exact = 2.d0*{(2.40 - x)**%(-10) - x - 1.d0
exact = cos(x)
return
end
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Appendix 6

program odeZ_cases

Qa0

THIS PROGRAM INVESTIGATES ALL POSSIBLE CASES OF THE PARAMETERS
FOR THE NEW GM FORMULA FOR SOLVING THE SPECIAL SECOND ORDER (ODE
PROBLEMS.

c

1111

=

NOO

implicit double precision (a-~h,o-z)

character answer,Y,N

choose problem number

write(*, *)

write(*,*) "PLEASE TYPE THE CORRECT PROBLEM NUMBER,
~ANY QOF 1 TO 6!

read*, num

call problem(num,x0,y0,xend, nsteps)

choose the parameters of the formula, say a = -1/6 or a = =-5/12
for a = 0 gives the Numerov formula

do 9999 11 =1 , 3

print*, 'INPUT THE NUMERATQR AND DENOMINATCR OF a ‘!
read*, an, ad

a = an/ad

al = (12.*a + 5.} /6.

a2 = (6.*%a + 1,)/12,
a3 = a2 and a4 = a5
ag = =2.*%3

aé = a

print*,

print*,'PARAMETER QOF THE EQUATION !
write(*,3) an, ad, al, a2, a4, aé
format{lx,‘'a = ',£5.2,'/',£5.2//1x,4(£8.3,2x))

print¥*,
xn0 = x0
yn0 = yo0

h = dabs(xend - z0)/nsteps

use the exact solution to obtain yl,x1=x0+h

xn = xn0+h

yn = exact (num,xn})

write(*,7)

format (5x,'xn ',7x," computed',12x,’ exact’',

~ 13x, 'relative error'}

do 10 § =1 , nsteps

call predictor to obtain ynl

call predic(h,xn,ynl,yn,ynQ)

xnl xn + h

vnl 2,*%yn - yn0 + (h**2,}* (al*f (num,xn,yn)
+ a2* (f (num, ¥xn0, yn0)+£ {num, xnl, ynl))
+ dsign(1.d0, £ (num,xn,yn) ) * {ad* (dsqrt (dabs (f (num, xnl,ynl)))
+ dsqrt (dabs (f (num, xn0,yn0))) ) *dsqgrt (dabs (£ (num,xn,yn)))
+ ab6*dsgrt (dabs (f {num,xnl,ynl}*£ {num,xn0,yn0)})))

compute the exact soluticn of the problem

exct = exact (num, xn)

compute the absolute difference between exact

and computed solutions

if (exct.ne.0)then

err = dabs (exct - yn)/dabs (exct)
else
err = dabs(exct - yn)

endif

write (*,100)xn,yn,exct,err

reset appropriate values of xnQ,xn,xnl,yn0,vyn

xnd = xn

xn = xnl

2

?

X

t
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100
10
9939

QOO0

[eReR¢ R e Y

Qoo

ynd = yn

yn = ynl

format(£7.4,3e23.12)

continue

continue

write(*, *) 'D0O YOU WANT TO HAVE ANOTHER TRY,TYPE "Y"
IF YES AND "N" IF NO!

read(*,*)answer

if (answer.eq.'Y') go to 1111

stop

end

subroutine predic(h,xn,ynl,yn,yn0)
implicit double precision (a-h,o-2z)
ynl = 2.*yn-yn0+h**2 . *f (num, xn,yn)
return

end

subroutine problem(num,x0,v0,xend,nsteps)
implicit double precision (a-h,o0-z)
common/blkl/b,c,q
if(num.eq.l)then
PROBLEM: 1 Y'' + X*Y =0
INITIAL CONDITIONS X0=0,¥0=1,¥Y'=2
EXACT SOLUTION Y¥Y=(1 - X**3/3 + X**6/180 - ...)
+ 2% (X = X**4/12 + X**7/504 ~ ,..)
CHOQSE SOLUTION DOMAIN [0,1]
write(*,*)' PROBLEM:1 Y'''' 4+ X*Y = ('
write(*,*)' INITIAL CONDITIONS X0=0,Y0=1,Y*'=2!

write (*,*}' EXACT SOLUTION Y=(1 ~ X**3/3 + X**5/180 - ...

write (*,*)" + 2* (X - X**4/12 + X**7/504 -

write (*,*)"' CHOOSE SOLUTION DOMAIN {0,1)°

write (*,*) "INPUT VALUES OF x0 y0 =xend nsteps'

read{*,*)x0,y0,xend, nsteps

return

elseif (num.eq.2)then

PROBLEM:2 Y'' + 2#*X**2*Y = ()

INITIAL CONDITIONS X0=0,Y0=1,Y'=1

EXACT SOLUTICN Y=(1 - X**4/6 + X**8/168 - ...}
+ (X = X*¥*5/10 + X**9/360 - ...)

CHOQOSE SQLUTICON DOMAIN [0,1]

write(*,*)*' PROBLEM:2 Y'''! 4 2*YX**x2*Y = {)°

write(*,*)' INITIAL CONDITIONS X0=0,Y0=1,¥Y''=1"

write(*,*)' EXACT SOLUTION Y=(1 - X**4/6 + X**8/168 -
write (*, *)? + (X - X**5/10 + X**9/360 -

write (*,*)? CHOOSE SOLUTION DOMAIN [0,1]°
write (*,*) 'INPUT VALUES OF x0 y0 xend nsteps'
read*,x0,y0,xend, nsteps
return
elseif (num.eq.3)then
PROBLEM:3 Y'' 4 X**2%Y = 1 + X + X**2
INITIAL CONDITICNS X0=0,Y¥0=2,Y'=2
EXACT SOLUTION Y=2%* {1 - X**4/12 + X**8/672 - ...)

+ 2% (¥ - X**5/20 + X**3/1440 - ...)

CHCOSE SOLUTION DOMAIN [0,1]

)t

o)t

write(*,*)' PROBLEM:3 Y?F'' 4 X¥**2%Y = 1 4+ X + X¥*2?

write(*,*) 'INPUT VALUES OF x0 y0 xend nsteps'
read*,x0,y0,xend, nsteps

371

write(*, *)* INITIAL CONDITIONS X0=0,¥0=2,YT'=2"
write (¥, %) EXACT SOLUTION Y=2*({1 = X**x4/12
~ + X**B/672 - ...)"'
write (¥, *)° + 2% (X - X**5/20 + X**9/1440 -
write(*, %) CHCOSE SOLUTION DOMAIN ([0,1)°

)l

0

.e)!



OO

aQon

OO0

return

elseif (num.eq.4)then
PROBLEM:4 Y'' - Y =0
INITIAL CONDITIONS X0=0,Y0=1,Y'0=-1
EXACT SOLUTION Y=exp (-X}
CHOOSE SOLUTION DOMAIN [0,1]
write(*,*)' PROBLEM:4 Y'''' — Y = Q'

r
write(*, *)!' INITIAL CONDITIONS X0=0,Y¥0=1,Y''0=-1"'
write(*, *)! EXACT SOLUTION Y=exp{-X}'
write(*, *) ' CHOOSE SOLUTICON DOMAIN [0,1]°

write (¥, *) "INPUT VALUES OF x0 xend nsteps'
read*,x0,y0,xend, nsteps

return
elseif (num.eq.5)then
PROBLEM:5 Y'!' = 220.*%(2.-x)**(-12) = 0

INITIAL CONDITIONS X0=1,YQ=-2,Y'0=-1

EXACT SOLUTION Y=2*% (2-X)** (-10)-X-1

CHOOSE SOLUTION DOMAIN [0,1]

write(*,*)' PROBLEM:5 Y'''! = 220*(2-X)**(-12) = 0°F

write{*,*)'  INITIAL CONDITIONS X0=1,Y0=0,Y''0=19'
write (*, %) EXACT SOLUTION Y=2* (2-X)** (-10)-X-1"
write (*, %) CHOOSE SOLUTION DOMAIN [0,1)°

write (*,*) "INPUT VALUES OF x0 xend nsteps’
read*,x0,y0,xend, nsteps

return
elseif (num.eq.6)then _
PROBLEM:6 Y'' = Y*(({Q + B*X)/X)**%2 - Q/(X**2)) =0

INITIAL CONDITIONS X0=1,Y0=10*e,¥'0=10%e*(Q + B)
EXACT SOLUTION Y=C*X**Q*EXP (B*X)
USE B=1,C=10,Q=3/2

write(*,*) " PROBLEM:6 Y'''' — Y*({(Q + BXX)/X)}**2 - Q/(X**2)) = 0'
write{*, *) "' INITIAL CONDITIONS X0=1,Y0=10%*e,Y*''0=10*e*(Q + B)'
write(*,*)?* EXACT SOLUTION Y=C*X**Q*EXP (B*¥X) '

write (%, %) CHOOSE SOLUTION DOMAIN [1,2]"'

write (*,*)" USE B=1,C=10,0=3/2"'

write (*,*) VINPUT VALUES OF b ¢ g %0 xend nsteps'
read*,b,c,q,x0,xend, nsteps
y0 = exact (num,x0)
return
else
print*, 'YOU HAVE NO SUCH PROBLEM NUMBER'
stop
endif
end

function £ (num,x,y)
implicit double precision({a-h,o-z}
common/blkl/b,c,q
if (num.eq.l)then
f = -x*y
return
elseif {num.eq.2)then
f = -2,d0* (x**2)*y
return
elseif {num.eq.3)then
£f = —x¥*2%y + 1, +xbx**2
return
elseif (num.eq.4)then
£t=y
return
elseif (num.eq.5)then
f = 220.d0*({2,d0-x)**({-12)
return
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elseif (num.eq.6)then
£ = y*{{(g+th*x) /=) **2 - qf/x**2)
return

endif

end

function exact (num,x)
implicit double precision{a-h,o-2)
common/blkl/b,c, g
if (num.eq.l)then
exact = (1.-x**3/3.4x**6/180.)4+2* (x—x**4/12. +x**7/504)
return
elseif (num.eq.2)then
exact = (1 - x**4/6, + x**8/168, )
~ + (x - x**5/10, + x**93/360.)
return
elseif (num.eq, 3) then
exact = 2% (1 = x**4/12, + x**8/672, )

~ + 2% (x - x**5/20., + x**9/1440.)

~ + x**2/2 0 + x**3/6, + ux*k*x4/12,

~ - X**5/60, = x**7/252, - x**8/672.
return

elseif (num.eq.4)then
exact = exp(-x)
return

elseif (num.eq, 5) then
exact = 2.,d0*(2.d0~-x}**({-10)-x-1.d0
return

elselif (num.eq.6)then
exact = c*x**xgrexp (b*x)
return

endif

end
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