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Abstract

This thesis tackles a series of problems related to the evolution of com-
plete software systems both in terms of the underlying Genetic Programming
system and the application of that system.

A new representation is presented that addresses some of the issues with
other Genetic Program representations while keeping their advantages. This
combines the easy reproduction of the linear representation with the inherit-
able characteristics of the tree representation by using fixed-length blocks of
genes representing single program statements. This means that each block of
genes will always map to the same statement in the parent and child unless it
is mutated, irrespective of changes to the surrounding blocks. This method
is compared to the variable length gene blocks used by other representations
with a clear improvement in the similarity between parent and child.

Traditionally, fitness functions have either been created as a selection of
sample inputs with known outputs or as hand-crafted evaluation functions. A
new method of creating fitness evaluation functions is introduced that takes
the formal specification of the desired function as its basis. This approach
ensures that the fitness function is complete and concise. The fitness func-
tions created from formal specifications are compared to simple input/output
pairs and the results show that the functions created from formal specifica-
tions perform significantly better.

A set of list evaluation and manipulation functions was evolved as an
application of the new Genetic Program components. These functions have
the common feature that they all need to be 100% correct to be useful.
Traditional Genetic Programming problems have mainly been optimization
or approximation problems. The list results are good but do highlight the
problem of scalability in that more complex functions lead to a dramatic
increase in the required evolution time.

Finally, the evolution of graphical user interfaces is addressed. The rep-
resentation for the user interfaces is based on the new representation for
programs. In this case each gene block represents a component of the user
interface. The fitness of the interface is determined by comparing it to a series
of constraints, which specify the layout, style and functionality requirements.
A selection of web-based and desktop-based user interfaces were evolved.

With these new approaches to Genetic Programming, the evolution of
complete software systems is now a realistic goal.

Keywords: Genetic Algorithms, Genetic Programming, Representation,
Formal Specification, Graphical User Interfaces, Complete Software Systems
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Chapter 1

Introduction and Literature

Survey

1.1 Introduction

This thesis addresses the topic of evolving complete software systems using

Genetic Algorithms (GA) and Genetic Programming (GP). In recent years

GA and GP have developed a broad following in many fields from plant

biology [25] to architecture [18] (see for example [20, 68, 89]), but no one

appears to have investigated the development of entire software applications.

This thesis presents a method for GP which addresses some of the main

issues with the current approaches to the evolution of computer programs;

specifically the representation of a program and the creation of the fitness

function. It then looks at the main problems involved in evolving complete

software systems: both the basic algorithms and user interfaces.

The thesis is structured as follows:
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Chapter 1 introduces the areas of GA and GP and describes some of the

current and past methods used for GP, highlighting their strengths and

weaknesses.

Chapter 2 proposes a new representation for programs in GP that ad-

dresses some of the main weaknesses while retaining their strengths.

Chapter 3 proposes a new method for the creation of fitness functions,

based on the formal specification of the problem to be solved.

Chapter 4 applies the methods described in Chapters 2 and 3 to the evol-

ution of some list processing algorithms, such as sorting.

Chapter 5 discusses the problem of evolving graphical user interfaces (GUI)

and proposes a method for specifying the requirements and evaluating

the performance under the framework described in Chapter 2.

Chapter 6 summarises the work and discusses the future of evolving com-

plete software systems.

1.2 The Evolution of Genetic Algorithms

Using evolution as a problem solving method is not a new idea. Alan Turing

suggested it in the 1940s [84]. Evolutionary algorithms are part of a larger set

of biologically-inspired algorithms (shown in Figure 1.1). This set includes

Artificial Neural Networks based on the way in which the brain is believed

to work [75], Simulated Annealing based on the natural cooling process of a

system of molecules [53], Particle Swarm Optimisation based on bird flocking

or insect swarms [52] and Ant Colony Optimisation based on the movements

of ants along pheromone trails [24].
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Biologically-Inspired Algorithms

Artificial Neural Networks

Simulated Annealing

Partical Swarm Optimisation

Evolutionary Computing

Ant Colony Optimisation

Evolution Strategies Evolutionary Programming

Genetic Algorithms Genetic Programming

Figure 1.1: Class hierarchy of biologically-inspired algorithms

Within the class of evolutionary computing, there are two distinct groups.

The first group contains Evolution Strategies [73] and Evolutionary Progra-

mming [27] which work with small populations and generally only use asexual

reproduction and mutation as genetic operators. The second group contains

Genetic Algorithms (GA) [48] and Genetic Programming (GP) [55]. These

algorithms tend to work with larger populations and use more complex ge-

netic operators and sexual reproduction.

Evolutionary algorithms are based on the theory of natural selection.

This theory is mainly attributed to Charles Darwin, who put forward the

ideas in his book of 1859 “The Origin of Species” [21]. However, Alfred Rus-

sel Wallace independently came to the same conclusions at around the same

time [61]. Both Darwin and Wallace had similar experiences which inspired

their theories. Darwin had his historic voyage on HMS Beagle [22], while

Wallace had an expedition to the Amazon [14]. Both are also believed to

have been inspired by “An Essay on the Principle of Population” by Thomas

Malthus written in 1798 [60]. In his work, Malthus argues that population

will always outgrow the available resources of an area, and hence competi-
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tion between those occupying the same area will control the population. In

essence, Malthus is saying that those in the population that are better able

to acquire, or control, the available resources will prosper, whereas those who

are less able will die out through lack of those resources. This is an early

example of what later became known as “survival of the fittest”.

For natural selection to work, it is necessary for the offspring of individuals

to inherit the characteristics of their parents. This was first shown to be the

case by Gregor Mendel in the mid-19th century [62]. However, his work was

not widely known until the early 20th century [44]. Mendel was a monk with

a fascination for gardening. His ground-breaking work was on breeding pea

plants.

1.3 Genetic Algorithms

John Henry Holland is widely accepted as the father of Genetic Algorithms

in their current form, even though people had been using evolution strategies

and evolutionary programming for problem solving before Holland. Holland

is said to have been inspired by the work of R.A. Fisher [26] on the mathem-

atical modelling of evolution and published his book “Adaption in Natural

and Artificial Systems” in 1975 [48], although he had published work on GAs

well before that [46,47].

David Fogel, in his book “The Fossil Record” [29], presents a large selec-

tion of early papers from various areas of evolutionary computing and two

surveys of the history of evolutionary computing [3, 28]. These surveys tell

of researchers, other than Holland, who were working on similar algorithms

to simulate genetic systems at the same time and even earlier. These include

the work of Fraser [30–34], Bremermann et al. [6–13], and Reed et al. [74].
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Create New Population From Old

Terminate?

No

Yes

Figure 1.2: The basic flow diagram of a Genetic Algorithm

A genetic algorithm is a problem solving technique used to search a solu-

tion space until some termination criteria are met. A GA takes a population

of possible solutions to a given problem (individuals), evaluates these indi-

viduals based on some criteria (fitness) and then genetically recombines them

based on the fitness of the individuals in the population to form a new gen-

eration of the population. This process is repeated until some termination

criteria are met. Figure 1.2 gives the flow diagram of the basic GA.

Given that a high proportion of fitter individuals are chosen as parents,

the tendency is for good attributes to remain present throughout the gener-

ations while poor attributes are discarded.

The following sections describe aspects of the GA in more detail.
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1.3.1 Representation

The way that individuals in a population are represented (genome) can have

a great effect on the performance of a GA. In general, the larger the search

space that the representation allows, the longer it will take to find an ac-

ceptable solution. Goldberg [41] states that most GAs work with a coding

of the parameter set to be optimized, not with the parameters themselves.

The encoded form is often referred to as the ‘genotype’ and the parameter

set it represents, the ‘phenotype’. This separation of genotype and pheno-

type means that the genetic operators can be implemented more efficiently

without the restrictions that may be imposed on the actual parameters. This

separation of genotype and phenotype is one of the criticisms of GAs [66].

This is most likely due to an indirect translation between the genotype and

phenotype having the effect that small changes in the genotype cause large

disruptions in the phenotype. For this reason alone it is necessary to have

a fairly direct mapping between the coding and the actual parameters when

such a GA is used.

A more detailed discussion on representing problems is given in [77], which

looks at the use of redundancy and many-to-one mappings between the gen-

otype and phenotype.

1.3.2 Fitness Testing

The fitness testing, for a GA, determines how good an individual from a

population is at solving a given problem. The fitness is traditionally given

as some numerical value where the higher the value the greater the fitness.

For problems where the better fitness values are lower scores a normalization

function can be used to adjust the scores so a higher score is better. The
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fitness values are used to select parents for the reproduction stage of the

algorithm. The normalization function can also be used to adjust scores to

prevent one or two individuals completely dominating the parent selection.

For multi-criteria problems, a weighted sum of all the individual criteria

values can be used as the overall fitness value for an individual. It is vital that

the fitness accurately assesses an individual’s ability to solve the problem as

any errors may be exploited by the algorithm to achieve better fitness scores.

1.3.3 Parent Selection

Parent selection is used to determine which individuals from a population

will be used to create the next generation of individuals. There are two

main methods for selecting parents for reproduction: Fitness Proportionate

Selection and Tournament Selection.

Fitness Proportionate Selection: For this method of parent selection,

individuals are selected randomly with their chance of being selected

being proportional to their fitness values.

Tournament Selection: For this method, two individuals are selected ran-

domly from the population and the individual with the higher fitness

value is used. This process can be repeated to find a parent from a

larger number of individuals.

More parent selection methods are given in [41] and [59].

1.3.4 Genetic Operators

Genetic operators are used to manipulate the genes of selected parents to

create new individuals for the next generation. The main aim of the repro-
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duction stage is to produce a new generation that retains any useful char-

acteristics and discards any poor ones without losing the diversity in the

population. This allows the population to increase its average fitness while

still having access to a large amount of the search space. There are two main

genetic operators: Crossover and Mutation.

Parent One

Parent Two

Single-Point Crossover

Two-Point Crossover

Uniform Crossover

Single Mutation

Figure 1.3: Crossover and Mutation

Crossover This consists of combining the genes from two or more parent

individuals to create a new individual. This can take the form of pick-

ing a random point on the genome and using the first part from one

genome and the second part from the other (See single point crossover,

Figure 1.3). Multiple points can be taken and used in the same way. At

the most extreme, a decision can be made for every gene for which par-

ent to take it from. This assumes that all genomes are of the same fixed

length, although this is not essential. A comparison of these methods,
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which suggests uniform (every-point) crossover is best, can be found

in [83]. For a discussion on different numbers of parents see [87], where

the conclusion is that two parents generally produce the best result but

the overall solution can take longer to achieve than when more parents

are used.

Mutation: This consists of changing one or more genes in a single individual

to a new value.

1.3.5 Initial Population

The initial population of a GA is important as it specifies the gene values

that the GA has to work with. This gene pool can then be expanded using

mutation as the GA runs. There are three main ways of creating the initial

population.

The first, and most common, method is to randomly generate a selection

of individuals to fill the population. The major advantage of this method is

that it can provide great variation between individuals.

The second method is to seed the initial population with known solutions

to try and improve them. This gives the GA a head start towards finding a

solution of the required fitness. However, it can also limit the areas of the

search space that the GA has initial access to, making it less likely to find a

solution in other areas.

Finally, the third method is to create a random population using pre-

defined blocks of genes, rather than individual genes. This allows some

knowledge of the problem domain to be inserted into the population without

ignoring as much of the search space as using whole solutions.
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In addition, it would be possible to combine elements of the three ap-

proaches, however, it is possible that one approach may dominate the other(s).

For example, if a few highly fit individuals were put into a randomly gener-

ated population, they would be likely to take over the whole population in a

few generations.

1.3.6 Termination Conditions

The two main methods of terminating a GA are to pre-specify a number of

generations over which to run the algorithm or to run until a member of

the population reaches a specific fitness level. A GA can also be terminated

manually or using any method appropriate to the problem being tackled.

1.3.7 Population Size and Mutation Rate

Both population size and the probability of mutation can be instantiated

with different values. The values set can greatly affect the performance of a

GA. The larger the population size being used the greater the likelihood of

good characteristics being present in individuals within the initial generation

and therefore the lower the number of generations which need to be run.

However, the larger the population the longer it will take to fitness test

each generation. Goldberg presents a method for determining the correct

population size for a given problem in [42] but generally it is easier to run a

few tests and adjust the value manually. Varying the rate of mutation will

affect the rate of convergence to a solution. If the mutation rate is too high

then the search will in effect be random but if the mutation rate is too low

the population will quickly converge on a sub-optimal solution.
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1.4 Genetic Programming

One of the earliest known pieces of research on using evolution to create

computer programs was that of Friedberg et al. [36, 37]. Although the word

‘evolution’ does not appear in either paper the intent to simulate evolution

was plainly in the minds of the researchers [29]. Friedberg et al. adopted the

task of generating a set of machine language instructions that could perform

relatively simple calculations (in this case adding the numbers in two data

locations). The work of Fogel, Owens and Walsh [27], which evolved finite

state machines, and the work of Holland [48] and others on learning classifier

systems could also be classed as programming but in a much more restricted

sense.

Possibly the first work that explicitly used Genetic Algorithms to gen-

erate programs was that of Cramer [17] in 1985. This was closely followed

by the work of Fujiki et al. [38, 39], who used the method to solve the pris-

oner’s dilemma, and the work of Hicklin [45]. All of the above used a tree

representation for their programs. Banzhaf et al. describe three types of

representation; tree, linear, and graph [5].

The work which popularized the area (which became known as ‘Genetic

Programming’) was that of John Koza, initially with his 1989 paper [54]

and more so with his three epic works [55–57]. This work also used the

tree representation with the target programming language LISP (the same

as Fujiki et al.).

Since the work of Koza, a vast amount of research has been done on the

area of Genetic Programming. Some of the main systems which have been

developed are looked at in more detail in the following sections.
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1.4.1 Cramer

One of the first attempts that explicitly used Genetic Algorithms to evolve

programs was detailed in Cramer’s paper “A Representation for the Adaptive

Generation of Simple Sequential Programs” [17]. Cramer demonstrated an

adaptive system for generating short sequential computer functions (in the

paper two-input, single-output multiplication functions were evolved). The

functions were written initially in the simple language called JB, and later

in TB, which was a modified version of JB with a tree-like structure. The

representation for the programs was a list of integers which were then decoded

to produce a well-formed program.

For the JB language, the list of integers was first divided into fixed-

length groups that are long enough to specify any statement in the language

subset (in the case of the paper, three). Any integers remaining at the end

of the list were ignored. The first of the statements was then taken to be

the main statement and the remaining statements were auxiliary statements.

The functions executed the main statements which, typically, called one or

more of the auxiliary statements. This method had the advantage that any

list (of sufficient length and with the relevant constraint on the size of the

integers) could be used to generate a well-formed program. The problems

with this method are that infinite loops can be generated by the auxiliary

statements and, more seriously, the semantic-positioning of an integer-list

element is extremely sensitive to change. This problem is most damaging

when changes occur in the main statement.

To address these problem, a modified version of JB was created, called

TB. TB was fundamentally the same as JB except that auxiliary statements

were not used. Instead, when a TB statement is generated, any subsidiary
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statements which the statement contains are recursively expanded giving a

tree-like structure. Again, all lists of integers map to a syntactically correct

program. However, to avoid the problems of ‘catastrophic minor changes’ the

mutation and crossover operators have to be constrained. In this case, the

mutation operator can only change leaf statements or non-leaf statements

that only have arguments that are leaf operators. For the crossover, subtrees

are swapped between two parents.

Cramer also pointed to the work of Smith [82], which discussed that a

major problem is that of ‘hand-crafting’ the fitness evaluation function to

give partial credit to functions that exhibit behaviour similar to that which

is desired, without actually performing the desired task. Cramer proposed

four types of behaviour (for his multiplication function problem), with each

successive type given more credit.

1. Has the output value changed from its initial value?

2. Is the output value dependent on the input value?

3. Is the input value a factor of the output value?

4. Is the function multiplication?

Functions that were beyond a certain length were also penalized to ensure

functions remained short. In addition, the run-time of a function was limited.

1.4.2 Koza

Koza first introduced his method of Genetic Programming in his 1989 paper

“Hierarchical Genetic Algorithms Operating on Populations of Computer
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Programs” [54]. This work was then expanded on in great detail in three

large volumes [55–57].

For Koza’s Genetic Programming, the programs are represented as parse

trees. The language LISP was used, as a subroutine in LISP (or s-expression)

is essentially a parse tree expressed in a linear fashion. For Genetic Program-

ming, the user defines all the functions, variables and constants which can

be nodes in the parse tree. Variables, constants and functions which take no

arguments are called ‘terminals’. Functions which take arguments are called

‘non-terminals’. The search space is the set of all parse trees which only use

elements from the set of terminals and non-terminals.

Due to the complex nature of the structure of the genomes (LISP s-

expressions), the genomes cannot be easily generated randomly for the initial

population. The individuals in the initial population must be carefully con-

structed to preserve syntactic correctness. In addition, the genetic operators

used cannot be the standard versions of crossover and mutation. Instead,

mutation is accomplished by picking a random node in the tree and repla-

cing the subtree with a randomly generated (but syntactically valid) subtree.

The crossover operator is accomplished by swapping subtrees from two parent

individuals. The mutation and crossover operators are shown in Figure 1.4.

This method of Genetic Programming is still one of the most widely used

methods.

1.4.3 Banzhaf

In 1993, Wolfgang Banzhaf published “Genetic Programming for Pedestri-

ans” [4]. This paper introduced a method of Genetic Programming based

on traditional Genetic Algorithms. The method introduced mechanisms like
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transcription, editing and repairing and was applied to the problem of the

prediction of sequences of integer numbers. This is one of the first methods

to go back to using a linear genome, since Cramer [17] rejected the idea in

favour of a tree representation.

Banzhaf starts out with a population of binary strings which are sub-

sequently interpreted as programs. This interpretation is achieved by using

a coding or transcription table specifying which binary code of given length

corresponds to which element from the set of functions and terminals avail-

able. The generated program can not necessarily be guaranteed to be a

working program. After the binary strings have been translated into the

programming language, the resulting code segments are checked to see if

they are syntactically correct and any errors are repaired.

For the example problem (number sequence prediction) the fitness is eval-

uated as the sum of the square of the error i.e. the square of the difference

between the expected and actual output values for the program. One inter-

esting feature of the method is that, even though fixed length genomes were

used, the resulting programs could vary in length.

The work is extended by Kellar and Banzhaf in “Genetic Programming us-

ing Genotype-Phenotype Mapping from Linear Genomes into Linear Pheno-

types” [51]. Here they borrow heavily from molecular biology and only use

the mutation operator for genetic manipulation. They also show that their

method can map to an arbitrary context-free language.

1.4.4 Perkis

Timothy Perkis, in his 1994 paper “Stack-Based Genetic Programming” [71],

presented yet another approach to the evolution of programs that does not re-
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quire specialist genetic operators. In this approach, the genome is a sequence

of functions and terminals. Each element in the sequence is evaluated in turn.

If the element is a function it takes the necessary number of arguments off

the stack and puts its output back onto the stack. If there are not enough

values on the stack then the function is ignored. If the element is a terminal

it is pushed onto the stack. As there are no syntactical constraints on the se-

quences, the sequence can be treated in the same way as a traditional binary

string for a Genetic Algorithm.

The method was demonstrated using some symbolic regression problems

from Koza [55] and showed some evidence of improvement when the list

of functions used were adjusted to be more appropriate for the stack-based

method.

One limitation of the method presented is that it has no mechanism for

branching. In addition, it would be difficult to generate a program in a

specific target language using this method.

1.4.5 Montana

Montana was one of the first people to look at the problem of typing in

Genetic Programming (although it had been mentioned by Koza [55]) in a

technical report written in 1994 called “Strongly Typed Genetic Program-

ming” [65]. The approach built directly on top of the approach which Koza

used. Another approach was presented by Perkis using multiple stacks, one

for each type [71]. The use of strong typing in GP becomes essential when

the target language is e.g. c or pascal, as type mismatches would cause the

programs to fail to compile.

In addition to the method that Koza used (see Section 1.4.2), each func-
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tion was given requirements for the type of its arguments and its return

type and the generation of the initial population and the genetic operators

were changed to account for the new type constraints. Montana also intro-

duced generic functions (e.g. to handle matrix functions with different size

matrices) and generic data types for use with the functions, to ensure correct

typing without having to be specific about the type.

The method presented by Montana also introduced handling of runtime

errors, whereas the method used by Koza forced all functions to return valid

values e.g. the protected divide function returned 1 when dividing by zero,

rather than an error.

1.4.6 Whigham

One of the first people to use a context-free grammar as the basis of their

representation was Whigham, in his paper “Grammatically-based Genetic

Programming” [88]. Whigham still used the tree structure and therefore still

had the problem of complex genetic operators. One of the main advantages

of using the context-free grammar is that it allows the method to be applied

to any programming language. The grammar also allows variable typing to

be incorporated easily.

Whigham also used the idea of ‘bias’ (structuring the grammar in such a

way as to improve the chances of creating good programs). This is equivalent

to including extra knowledge about the problem e.g. if it is known that the

program should start with an if statement. Rather than manually adjusting

the grammar, Whigham modified the grammar during the evolution based

on analysis of fit individuals. Each generation some new individuals were

created from the updated grammar and incorporated into the population.
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In addition, Whigham used weighted production rules to make selection of

good rules more likely. This weighting was calculated as the new production

rules were created.

1.4.7 Paterson & Livesey

Paterson and Livesey continue on from the work of Banzhaf, in their paper

“Distinguishing genotype and phenotype in genetic programming” [69], by

introducing a method that converts a linear genotype (in this case a string

of integers) into a program. Unlike Banzhaf, however, there is no need for

a repair stage as the list of integers maps directly onto a BNF definition of

the language subset by recursively replacing all non-terminals with the pro-

duction rule that corresponds to the next integer in the genotype. Like Koza

and others, Paterson and Livesey initially use LISP as their target language

but in later work they use C [70], showing the advantage of the method being

language independent. One disadvantage of mapping the list of integers to

the BNF is that there is no guarantee that a complete program will be gen-

erated. There may be unresolved non-terminals when the string of integers

runs out. Other methods must then be used to fill in the missing data. One

interesting experiment conducted by Paterson and Livesey was to compare

two grammars that represent the same language subset. This highlights the

difficulty of specifying the language subset in the most appropriate way for

the problem.

Other work on linear and grammar-based representations for Genetic Pro-

gramming has been done by Freeman [35] and Ross [76].
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Listing 1.1: Example Grammar

(1 ) <expr > : := <expr><op><expr > (A)
| ( < expr> <op> <expr > ) (B)
| <pre−op> ( < expr > ) (C)
| <var > (D)

(2 ) <op> : := + (A)
| − (B)
| / (C)
| ∗ (D)

(3 ) <pre−op> : := Sin (A)
| Cos (B)
| Tan (C)
| Log (D)

(4 ) <var > : := X

Table 1.1: The number of choices for each production rule

Rule No. Choices

1 4
2 4
3 4
4 1

1.4.8 Ryan, Collins, & O’Neill

Ryan, Collins, and O’Neill present a method that is similar to Paterson

and Livesey, in their paper “Grammatical Evolution: Evolving Programs for

an Arbitrary Language” [78], but with a much simpler mapping between

the genotype and phenotype. Ryan, Collins and O’Neill still use the BNF

representation, although they use a binary string instead of a list of integers.
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To show how the mapping between the genotype and phenotype works,

consider the following genome (expressed as integers for clarity):

220 203 17 3 109 215 104 30

These numbers are used to make choices from the grammar in Listing 1.1.

The numbers of available choices for each production rule are summarized

in Table 1.1. Starting with <expr>, there are four options to choose from.

To make this choice, the first gene is taken and its value 220, modulo 4 (the

number of options), is used to choose the rule. In this case 220 mod 4 = 0,

therefore rule 1A is used. This is now:

<expr> <op> <expr>

Taking the next gene, 203 mod 4 = 3, the choice is 1D.

<var> <op> <expr>

There is no choice for the <var> rule (and so no need to use a gene).

X <op> <expr>

The mapping continues, reading genes from the genome as necessary, until

no unresolved non-terminals remain. This gives the following expression:

X + Sin(X)

Any unused genes are ignored and if there are unresolved non-terminals

when the end of the genome is reached the genes are reused from the begin-

ning until no unresolved non-terminals remain. The major disadvantage of

this method is from the point of view of inheritance of characteristics. When

a gene is passed on to a child individual there is a very high chance that the

gene will not represent the same value. One change early in the genome can
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change the entire path through the grammar and hence the child individual

will have very little resemblance to its parent.

Despite this drawback, Grammatical Evolution has been applied to a

variety of different problems by the original authors [67,68,79]. In addition,

the method is developing a following around the world [43,50].

1.4.9 Summary

This section has summarized the most relevant and interesting work on

evolving programs, with a specific bias towards the way in which they rep-

resent the programs. This work is built on in Chapter 2 when defining the

requirements of a good representation and developing a representation that

fits those requirements.

1.5 The Genetic Algorithm Used Through-

out The Thesis

The following is a description of the simple Genetic Algorithm which is used

for all of the experiments in the thesis. In addition to this algorithm, the way

in which the genotype is mapped to the phenotype is discussed in Chapter 2

(for general programming) and Chapter 5 (for generating user interfaces), and

the creation of the fitness function is discussed in Chapter 3. The problem

specific information is given with the experiments. This algorithm is kept

simple to keep the focus on the effects of the representation and the fitness

functions.

The simple Genetic Algorithm used is given in Algorithm 1. The genomes
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Algorithm 1 The simple Genetic Algorithm used for all experiments

P = Initialise Population
F = Test Fitness(P )
for generations = 1 to MAXGEN do

P = Reproduce(P, F )
F = Test Fitness(P )

end for

are represented as fixed length integer strings, as this is the easiest repres-

entation to work with in terms of the genotype/phenotype mapping and the

genetic manipulation. The representation does not, however, preclude the

use of variable length genomes. In the reproduction function, simple fitness

proportionate parent selection is used to select two parents, these two parents

are combined using uniform crossover and then there is a probability that

each gene will be mutated in the resulting individual. The best individual

from the previous generation is copied into the newly created population.

In most of this work, a relatively small population is used (usually 7) and

a relatively high mutation rate is used (usually 1 gene in 10 or 20). These

values are much smaller than are traditionally used, however, they appear to

produce high fitness individuals quickly (see Chapter 2, Section 2.5).

In addition to the above GA, a series of scripts were written to im-

prove productivity and ease the development of new GP tests. These in-

clude a script to generate a genotype to phenotype mapping function based

on a simply defined language subset and the representation presented in

Chapter 2. A template for the GP was also constructed, which only required

the addition of the main body of the fitness evaluation function. Other

scripts include the automatic running of experiments with a fixed set of ran-

dom number seeds with the storing of the results of the experiments and a

script to summarize the results of a series of experiments. This set of scripts
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meant that new GPs could be generated and the results of the execution

collated very quickly.

Finally, the experiments were run on a PIII 866 PC with 256MB of RAM,

running the Debian GNU/Linux 3.0 operating system. The programs were

written in Perl v5.6.1.
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Chapter 2

A New Representation for

Evolving Programs

2.1 Introduction

This chapter presents a new representation for Genetic Programming that

has the explicit inheritance of systems like Koza’s [55], which can be used

with the simple genetic operators of an ordinary genetic algorithm and can

be used to evolve programs in any language in the same way as systems like

Grammatical Evolution [78].

The representation presented is a linear representation for Genetic Pro-

gramming, which has a separate genotype and phenotype. This allows a

simple string (or list) of integers to be used for the genetic manipulation

needed to create new generations of solutions. This string is then mapped

onto the programming language used (in this case a subset of the Perl lan-

guage [86]), for the purpose of evaluating the fitness of the solution to the

given problem. The mapping process takes fixed-length blocks of genes from
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the genome and converts them into program statements. This type of map-

ping allows explicit inheritance of characteristics between parent and child

individuals. The separation of the genotype and phenotype leaves the system

looking more like a traditional Genetic Algorithm, with the interpretation of

the genome contained within the fitness function.

Section 2.2 of this chapter sets out a list of requirements for a Genetic

Programming representation, based on the analysis of the previous systems

described in Chapter 1. This list of requirements is then used as the basis

of a representation, which is presented in detail in Section 2.3. Section 2.4

presents an argument for the use of a fixed-length gene blocks to represent

program statements in terms of its preservation of characteristics between

parent and child. Finally, an example of the representation applied to a

symbolic regression problem is given, which is also used to justify the use of

small populations and to highlight the need to be specific with the choice of

language subset used.

2.2 Requirements

The following is a list of requirements for a Genetic Programming representa-

tion. It starts with some requirements for Genetic Algorithm representations

in general and then moves on to some more specific Genetic Programming

requirements, including the requirements of the mapping between the geno-

type and phenotype where they are separate. These requirements are largely

based on analysis of the representations presented in Chapter 1.

Quick Translation — In the case where the genotype and phenotype are

separate, every newly created individual in a population needs to be
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translated into an executable form for fitness evaluation. Therefore, the

mapping of the genotype to the phenotype needs to be efficient. For

example, if there were 500 individuals in a generation and the Genetic

Program was run for 50 generations, the translation of the genotype

to phenotype would occur 25000 times. This can be a significant pro-

portion of the running time of the Genetic Program. In the work by

Koza [55] and others who use languages such as LISP, this is not a

problem as the genes are stored directly as program fragments. In the

work of Banzhaf [4] there is the additional complication of the repair of

badly structured individuals, which can be costly in terms of run time.

Simple Genetic Manipulation — To create a new individual from one

or more parent individuals it is necessary to use some form of genetic

manipulation. This usually takes the form of combining the genes of

two or more parent individuals and/or performing some kind of ran-

dom mutation on the new individual. As this process occurs for all or

most newly created individuals the representation needs to allow it to

be simple and efficient. The representation used by Koza [55] does not

allow the use of simple mutation operators due to the complex struc-

tural requirements of the genome. It is even harder to create genetic

operators for the representation used by Montana [65]. This highlights

the advantage of using one representation (the genotype) for genetic

manipulation and another (the phenotype) for fitness evaluation.

Inheritable Characteristics — One of the main reasons why Genetic Al-

gorithms work is the principal of inheritance. This allows successful

characteristics in individuals to be propagated through multiple gen-

erations. Therefore, it is important that the individuals being evolved
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are represented in such a way that when a set of genes is passed on to

the offspring of the individual, characteristics of the parents are pre-

served. If the genotype and phenotype are to be separated, then there

needs to be a fairly direct relationship between the two in order for

phenotypic characteristics to be inheritable. Koza [55] has this prop-

erty because the genotype and phenotype are the same and, therefore,

the child phenotypes are constructed directly from parts of the parent

phenotypes. For representations such as Grammatical Evolution [78],

there is not a direct mapping between the parent and child phenotypes

and, therefore, crucial characteristics from the parents can be lost when

the child is generated.

Minimal Solution Space — In general, the smaller the solution space, the

faster the Genetic Program will be able to find a solution to the given

problem. Alternatively, the larger the percentage of all possible gen-

omes that correspond to good solutions the faster the Genetic Program

will find one. However, the solution space should not unduly restrict

the range of possible solutions to the problem. The size of the solution

space, in Genetic Programming, may be controlled by restricting the

language subset available to the Genetic Program. This may be part

of the use of the representation rather than the representation itself.

For example, in Grammatical Evolution [78] the solution space is de-

pendent on the BNF grammar given to the system by the user. An

additional factor which can have an effect is the shape of the solution

space. If for example there are many local minima (or maxima) then

it may be a more difficult space to search for the Genetic Algorithm.

Maintain Syntactic Correctness — The solution space is restricted also
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by only allowing syntactically correct programs (phenotypes) to be gen-

erated. This rules out a large number of programs that are badly

formed. Representations, such as Koza’s [55], needed complex genetic

operators to maintain syntactic correctness.

Limit Execution Errors — As well as errors in the syntax of the pro-

grams, other errors such as illegal array indexing and variable overflow

can cause problems during the fitness evaluation. Montana [65] had

problems with his system, in that very few of the initially generated

population of programs were correctly typed. It therefore took a long

time to find initial viable programs before they could be improved to

solve the task set. These problems need to be avoided where possible.

In addition, problems such as infinite loops can disrupt the fitness eval-

uation process and are especially difficult to deal with when the pro-

grams are being tested in their natural environment rather than with

limited runtime or through emulation.

Consistent Genotype to Phenotype Mapping — In the cases where

the genotype and phenotype are separate, it is essential that a given

genotype always maps to the same phenotype, in order to result in a

deterministic and robust fitness evaluation. Paterson and Livesey [69]

suggested that one possible approach in their representation, when the

genome ran out of genes in the mapping process, was to randomly gen-

erate the rest of the phenotype. This approach is not very good from

the perspective of inheritable characteristics.

To summarize, a representation is required that has a separate genotype

and phenotype, where the genotype is a simple representation for genetic

operators, which has no special constraints and the phenotype is a program

29



in the target language. Every genotype should only map to syntactically

correct programs in a concise language subset and where possible the lan-

guage subset should be restricted to avoid problems such as infinite loops.

Most importantly, the mapping between the genotype and phenotype must

be simple and fairly direct, so that the characteristics in the child phenotype

can be inherited from the parent phenotype during the genetic manipulation.

2.3 Representation

This section describes the representation and is divided into six subsections.

Sections 2.3.1 and 2.3.2 describe the genotype and phenotype. Section 2.3.3

describes the mapping between the genotype and phenotype. Section 2.3.4

describes useful extensions to the approach. Section 2.3.5 describes the use of

wrappers around the evolved code and finally Section 2.3.6 gives an example

individual and the mapping from its genotype to the phenotype.

2.3.1 Genotype

The genotype for the genetic program is stored as a simple string (or list) of

integers. The integers used in all the examples in this thesis are 8-bit (ranging

between 0 and 255) but any size integer is acceptable as long as it satisfies

the requirements of the mapping process. Representing the individuals as

a string of integers simplifies the process of genetic manipulation, crossover

and mutation.
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2.3.2 Phenotype

The phenotype, to which the genotype maps, is a program written in a

subset of some language, in the case of the examples in this thesis, Perl [86].

There are various reasons for using the Perl language. Perl is an interpreted

language, meaning that it is not necessary to compile the programs that

are evolved for fitness evaluation. Perl is also capable of executing program

statements that are generated during the running of a program, which means

that the evolved programs don’t have to be run externally to the GA. One

final feature of Perl that is an advantage in GP is that it has good error

handling and recovery, so if an evolved program does not work properly it

won’t affect the rest of the GP.

The subset of the language chosen for a particular problem can easily be

designed with certain semantic constraints, such as avoiding infinite loops.

For example, only include restricted ‘For’ loops, where the counter variable

can’t change within the body of the loop.

2.3.3 Mapping the Genotype to the Phenotype

The mapping between the genotype and phenotype ensures that all genotypes

map to a syntactically correct program in the required language.

The mapping starts by dividing the genotype into fixed-length blocks

of genes, each of which represents one program statement. The length of

the gene blocks is dependent on the statement type that requires the most

information. Each block is interpreted independently of the others. So, two

identical gene blocks in different places in the sequence will be interpreted

the same way. It can easily be seen that if all of the blocks are the same size,
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and they are interpreted independently, then when a block is inherited by a

child individual it will be in the same place and therefore be interpreted the

same way. This ensures the inheritance of phenotypical characteristics even

though a separated genotype and phenotype is being used. In addition, this

method of translating the genotype to the phenotype ensures that a complete

program will be generated without running out of genes as in the work of

Paterson and Livesey [69] or Ryan et al. [78].

The first gene in each block represents the type of statement. The state-

ment type is decided by taking the modulo of the gene value and the number

of different program statements. For example, if there were four statement

types and the gene value was 23 then 23 mod 4 = 3, so the fourth statement

(index number 3) would be chosen.

Each statement type uses the remaining genes in different ways. For

example, an ‘Addition’ statement would require one variable to assign the

result to and two variables to add together. Any remaining genes in the

block are redundant. Figure 2.1 shows an example of the mapping from a

gene block to a program statement and Table 2.2 shows a list of possible

statements, what the remaining genes are used for and the form in which the

statement is presented in the target language.

2.3.4 Extensions

In addition to the basic mapping, there are a few useful additions to be

able to evolve reasonable programs. The first is the need for an ability to

provide nested structures, such as looping and branching, without losing the

inheritance features of the current mapping. In this work it is achieved by

having a statement type e.g. a ‘For’ statement, which has a corresponding
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25 13 3 87 ...

Genome (genotype)

Add

If

For

While

Statements

X

Y

Z

Variables

==

!=

>

<

Comparisons

X

Y

Z

Variables

%4 %3 %4 %3

If Y < X

if(Y<X){...}

Program (phenotype)

Figure 2.1: Example mapping from individual gene block to program state-

ment
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‘End’ statement. All statements in between these two statements are then

nested within the loop or branch. Although a mutation to the statement type,

of the loop or branch statement, would change the structure of the subsequent

code, the meaning of the individual statements will still be preserved. Any

remaining nested structures that haven’t been terminated when the end of

the genome is reached can then be automatically terminated.

An additional feature that can be used is to distinguish between variables

that are read-only and read/write, so that any variables that should not be

changed cannot be assigned new values. In practice two sets of variables are

stored, one is all of the variables that can be read and the other is all variables

that can be assigned new values (therefore read/write variables appear in

both sets). For example, this may include loop counters that should only be

changed by the loop statement, or variables such as a list of integers that

need to be summed. If the list were changed during the execution then the

sum might not be accurate for the given list. As well as separating variables

by access permissions, it is also possible to separate by type. For example,

a list of integers and a list of floats can be kept separate and the statements

designed to preserve type correctness.

One final extension that is worth mentioning is the use of a counter to

limit the running time of the code. This only needs to be incremented each

iteration of a loop and can be used to terminate execution of excessively long

programs. For the work in this thesis, the Perl ‘eval’ function is used to

execute the evolved programs and this sets a variable with an error message

when there is an unnatural termination of the execution. This can be used

to detect errors and also for limiting the execution time of a program.
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Table 2.1: Example Genotype

28 34 64 124 127 130 33 83 201 5 41 50 201 9 69 73

Table 2.2: Statement type, type of additional genes, and form of statement

Index Statement Additional Genes Format

0 Assign variable,variable G1 = G2;

1 Multiply variable,variable,variable G1 = G2 * G3;

2 If variable,comparison,variable if(G1 G2 G3){
3 For variable,variable for G1 (0..G2){
4 End }

2.3.5 Wrapper

It will usually be convenient to add some header and footer code to the

evolved code for the purposes of declaring variables, receiving data passed

to the evolved code and returning data after the code has been executed.

This could be included as part of the evolution process but would make the

problem much harder without any real benefit. For example, see Listing 2.1.

This extra code is used in the experiments to allow the use of the Perl ‘eval’

function to test the evolved programs.

2.3.6 Example Individual

As an example of the mapping from the genotype to the phenotype using the

above method, a function to calculate the factorial of a number is presented.

Table 2.1 shows the genotype (the list of integers). This genotype is

converted using the statements listed in Table 2.2 and the additional genes

are translated using Tables 2.3 and 2.4. As can be seen from Table 2.2, the
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Table 2.3: List of variables

Index Variable

0 $n

1 $fact

2 $count

3 $zero

Table 2.4: List of comparison operators

Index Comparison

0 ==

1 !=

2 >

3 <

most additional genes required by a statement is three. Therefore, the length

of each gene block will be four (to include the choice of statement).

The first block of genes starts with the value 28. This represents the

statement type being used. In this case there are five types of statements,

so 28 mod 5 = 3 means that the statement is a ‘For’ (index 3). The ‘For’

statement requires the use of two more genes to choose from the ‘variable’ list.

The ‘variable’ list has four elements, therefore, 34 mod 4 = 2 and 64 mod 4 =

0 give the variables $count and $n. All together this gives the loop header

for $count (0..$n){. The gene 124 is redundant. The rest of the gene

blocks are decoded in the same way (see Table 2.5).

Finally, any missing closing braces are automatically added, along with

the wrapper (header and footer) code, to create the complete phenotype.

This is shown in Listing 2.1.
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Table 2.5: Conversion of Genotype to Phenotype

Genes Modulo Statement Code

28,34,64,124 3,2,0,x For for $count (0..$n){
127,130,33,83 2,2,1,3 If if($count != $zero){
201,5,41,50 1,1,1,2 Multiply $fact = $fact * $count;

94,231,0,13 4,x,x,x End }

Listing 2.1: The entire phenotype, including header and footer

# Header
my $n = $ARGV[ 0 ] ;
my $ f a c t = 1 ;
my $count = 0 ;
my $zero = 0 ;

# Evolved Code
for $count ( 0 . . $n ) {

i f ( $n != $z ) {
$ f a c t = $ f a c t ∗ $count ;

}
}

# Footer
return $ f a c t ;
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Table 2.6: List of statements for padding test

Index Statement Additional Genes Format

0 Print variable print G1

1 For variable,variable for G1 (0..G2){
2 Add variable,variable,variable G1 = G2 + G3;

Table 2.7: List of variables for padding test

Index Variable

0 $x

1 $y

2 $z

2.4 Comparison of Padded and Unpadded Rep-

resentation

This section investigates the fixed-length gene blocks (padded with redund-

ant genes) in comparison with variable-length gene blocks (unpadded), to

examine the preservation of characteristics after mutation and crossover with

another individual. The simple set of statements listed in Table 2.6 and the

set of variables listed in Table 2.7 are used to map the genotypes to the

phenotypes with the method presented in Section 2.3.3.

The first experiment is to compare how the padded version of an indi-

vidual changes under mutation in comparison with an unpadded individual.

Figure 2.2a shows an example individual with fixed-length gene blocks rep-

resenting the statement and Figure 2.3a shows the same individual without

the redundant genes. The ‘G’ represents an unused gene in the padded gen-
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0 2 G G 1 0 1 G 2 2 1 0

print z
for x ( 0 . . y) {

z = y + x ;
}

(a)

2 2 G G 1 0 1 G 2 2 1 0

z = G + G;
for x ( 0 . . y) {

z = y + x ;
}

(b)

Figure 2.2: (a)Parent 1 (Padded), (b)Parent 1 (Padded) Mutated

0 2 1 0 1 2 2 1 0

print z
for x ( 0 . . y) {

z = y + x ;
}

(a)

2 2 1 0 1 2 2 1 0 G

z = y + x ;
for z ( 0 . . z ) {

for y ( 0 . .G) {
}

}

(b)

Figure 2.3: (a)Parent 1 (Unpadded), (b)Parent 1 (Unpadded) Mutated
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1 2 0 G 2 1 1 2 0 1 G G

for z ( 0 . . x ) {
y = y + z ;
print y ;

}

(a)

1 2 0 2 1 1 2 0 1

for z ( 0 . . x ) {
y = y + z ;
print y ;

}

(b)

Figure 2.4: (a)Parent 2 (Padded), (b)Parent 2 (Unpadded)

otype, although these genes may be used after mutation or crossover and are

shown in the phenotypes as ‘G’ when used. The mapping for the unpadded

individual’s genotype to phenotype just uses the relevant number of genes

for each statement and starts the next statement immediately afterwards.

Figure 2.2b shows the first individual (Figure 2.2a) after a mutation of

the first gene (from 0 to 2). It can be seen that only the first statement of the

phenotype has changed and the rest is identical to the pre-mutation version.

However, Figure 2.3b shows the unpadded individual (Figure 2.3a) after the

same mutation. The phenotype of the individual is now completely different,

very little has been preserved from the original individual. This would not

be good from the perspective of the evolution as good characteristics, which

caused the individual to be selected for reproduction, are lost whereas with

the padded version most of the characteristics are preserved.

This problem would be expected to be even more pronounced when using

crossover, as there is much more change when the individuals are combined.

Figures 2.4a and 2.4b show the padded and unpadded versions of a second in-

dividual, which both map to the same phenotype. When the padded versions

of Parent 1 (Figure 2.2a) and Parent 2 (Figure 2.4a) are combined using cros-

sover (taking alternate genes starting with the first individual in this case)
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0 2 G G 1 0 1 G 2 2 1 0 Parent 1 (Padded)

1 2 0 G 2 1 1 2 0 1 G G Parent 2 (Padded)

0 2 G G 1 1 1 2 2 1 1 G Child (Padded)

print z ;
for y ( 0 . . y) {

y = y + x ;
}

Figure 2.5: Crossover Parent1 and Parent2 (Padded)

0 2 1 0 1 2 2 1 0 Parent 1 (Unpadded)

1 2 0 2 1 1 2 0 1 Parent 2 (Unpadded)

0 2 1 2 1 1 2 0 0 G Child (Unpadded)

print z ;
for z ( 0 . . y) {

for z ( 0 . . x ) {
print G;

}
}

Figure 2.6: Crossover Parent1 and Parent2 (Unpadded)
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the individual in Figure 2.5 is created. This individual looks quite similar

to the first parent, as the main statement type gene is always taken from

this individual (in this example) because the gene-length is even. When the

unpadded individuals (Figures 2.3a and 2.4b) are combined in the same way

as the padded individuals, Figure 2.6 is produced. Apart from maintaining

the statement type of the first individual, it is completely different to either

parent. The final gene ‘G’ in Figure 2.6 represents an extra gene required.

The alternative is to not use any gene block with insufficient genes, however,

this is not an issue with the padded version.

In conclusion, the small examples shown suggest that inheritable charac-

teristics are much more likely to be preserved when using fixed-length gene

blocks to represent individual statements. However, mutation and crossover

can still give variation to the child individuals without losing similarity to

the parents.

2.5 Example Problem: Symbolic Regression

The following example problem is used to show the representation in action.

In addition, it is used to justify the choice of small population sizes used in

the experiments in this thesis and to highlight the value of choosing relevant

language subsets.

The problem is a symbolic regression, which aims to evolve a program to

perform the calculation x4 +x3 +x2 +x. This problem has also been used in

the work of Koza [55] and Ryan et al. [78]. Unfortunately, they do not give

a detailed list of their results.

The Genetic Algorithm used was that described in Chapter 1, Section 1.5.
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Table 2.8: List of statements for the symbolic regression

Index Statement Additional Genes Form

0 Null
1 Assign variable,variable G1 = G2;

2 Add variable,variable,variable G1 = G2 + G3;

3 Sub variable,variable,variable G1 = G2 - G3;

4 Mul variable,variable,variable G1 = G2 * G3;

5 Div variable,variable,variable G1 = G2 / G3 if(G3 != 0);

6 Sin variable,variable G1 = Sin(G2);

7 Cos variable,variable G1 = Cos(G2);

8 Exp variable,variable,variable G1 = G2 ** G3;

9 Log variable,variable G1 = Log(G2) if(G2 != 0);

Table 2.9: List of variables for the symbolic regression

Index Variable

0 $x

1 $tmp
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The language subset used with the representation is shown in Table 2.8, and

is similar to that used by Koza [55] with adjustments to compensate for not

using a tree structure (Koza did not use the ‘Assign’ statement and only used

the variable X). The genome used was 40 genes long. This value was chosen as

it appears to be large enough to cover most solutions. In addition, a ‘Null’

statement is included to allow for variation in the length of the programs

evolved. The Genetic Algorithm was run with three different configurations.

Each configuration was run ten times with different random number seeds.

Population 500 — This is the population size used by Koza [55]. The

mutation rate used was 1 gene in every 80 and the maximum number

of generations was 51.

Population 7 — This experiment was run exactly the same way as the

previous one except that the population size was 7 and the mutation

rate was 1 gene in 20. The maximum number of generations was 3642,

which is equivalent to 51 with a population size of 500.

Population 7 and Minimal Language Subset — The last experiment

was run exactly the same as the previous one except that only the

‘Null’, ‘Assign’, ‘Add’, and ‘Mul’ statements were used.

2.5.1 Fitness Evaluation

Table 2.10 shows the list of test inputs with the expected outputs used to

evaluate the evolved programs. The fitness of an individual is calculated

as the sum of the absolute difference between the expected output and the

actual output returned by the evolved program (for each test input). This

value is then normalized, so the higher the score the better the individual
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Table 2.10: Test input and expected output for symbolic regression

Input Expected Output

-0.22 -0.17990544
0.85 2.70863125
-0.58 -0.32554704
0.97 3.70886581
0.43 0.72859501
0.17 0.20464821
-0.78 -0.27600144
0.56 1.14756096
0.07 0.07526701
0.73 1.93589941
-0.56 -0.32367104
-0.55 -0.32236875
0.28 0.38649856
-0.82 -0.24684624
0.57 1.18565301
0.9 3.0951
0.51 0.97040301
-0.86 -0.20944784
0.62 1.39049136
-0.2 -0.1664
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Table 2.11: Results for the symbolic regression with population 500

Seed Fitness (%) Evaluations Time

0 94.1 25500 4m27s
1 93.7 25500 4m25s
2 94.5 25500 4m25s
3 94.5 25500 4m22s
5 94.1 25500 6m38s
7 94.5 25500 4m53s
11 94.5 25500 4m23s
13 95.4 25500 4m23s
17 94.5 25500 4m21s
19 94.5 25500 4m30s

(this makes parent selection easier). The normalization procedure involved

subtracting the raw fitness value from 100. If the normalized fitness value is

less than 1 it is rounded up.

2.5.2 Results

Table 2.11 shows the results from the first experiment (with population 500).

It can be seen that none of the runs produce a completely correct solution

within the short time allowed. All of the solutions are approximately 94%

fit.

Table 2.12 shows the results of the second experiment (with population 7).

In this experiment (which is limited to run for the same number of fitness

evaluations as the first experiment) six out of the ten runs produce a fully

fit individual. All four runs that did not produce a fully fit individual, in

the time allowed, produced a much better fitness individual than all the

failed runs of the first experiment. This suggests that a smaller population

size is more appropriate for problems using this representation. Listing 2.2
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Table 2.12: Results for the symbolic regression with population 7

Seed Fitness (%) Evaluations Time

0 100 10850 1m35s
1 98.2 25494 3m44s
2 100 2688 23s
3 100 2121 17s
5 100 3934 33s
7 98.6 25494 3m43s
11 100 2450 21s
13 98.1 25494 3m46s
17 100 3402 28s
19 99.8 25494 3m50s

Listing 2.2: Example solution found from experiment 2, Seed 0

# Header
my $x = $ t e s t [ $t ] ;
my $tmp = 0;

# Evolved Code
$tmp = $x ;
$tmp = $tmp ; # Redundant
$x = $x ; # Redundant
$tmp = $x ∗ $x ;
$x = $x + $tmp ;
$tmp = $tmp ; # Redundant
$x = $x ; # Redundant
$tmp = $tmp ∗ $x ;
$x = $tmp + $x ;
$x = $x ; # Redundant

# Footer
return $x ;
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Table 2.13: Results for the symbolic regression with population 7 and min-
imal language subset

Seed Fitness (%) Evaluations Time

0 100 1428 12s
1 100 847 6s
2 100 483 4s
3 100 1610 12s
5 100 1197 9s
7 100 938 7s
11 100 3437 26s
13 100 3850 29s
17 100 224 2s
19 100 2772 21s

shows an example of a fully fit individual from the first run (Seed 0) of this

experiment.

Table 2.13 shows the results of the final experiment. In this experiment

all of the runs produced a fully fit individual in a very short time. This

suggests that it is much better to have a more specific language subset where

possible. Listing 2.3 shows an example individual from this experiment. It

should also be noted that it would be very easy to automatically remove

redundant code from the evolved individuals e.g. x=x; or if(x!=x){...}.
In some circumstances the statement x=y; can be removed from the sequence

x=y; x=z; as long as z is not dependent on the value of x.

2.6 Summary and Conclusions

The following list describes how the new representation fits in with the re-

quirements set out.
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Listing 2.3: Example solution found from experiment 3, Seed 0

# Header
my $x = $ t e s t [ $t ] ;
my $tmp = 0;

# Evolved Code
$tmp = $x ∗ $x ;
$x = $x + $tmp ;
$tmp = $x ∗ $tmp ;
$tmp = $x + $tmp ;
$x = $x ; # Redundant
$tmp = $tmp ; # Redundant
$x = $tmp ∗ $x ; # Redundant
$x = $tmp ∗ $tmp ; # Redundant
$x = $tmp ;

# Footer
return $x ;

Quick Translation — The representation implements a fairly direct map-

ping between the genotype and phenotype, which can be performed in

linear time.

Simple Genetic Manipulation — As the genotype is linear and there are

no special requirements for crossover and mutation, ordinary genetic

operators can be used.

Inheritable Characteristics — The representation implements statements

as fixed-length gene blocks that are independent of each other. There-

fore, each gene block always maps to the same statement in both the

parent and child.

Minimal Solution Space — This can be aided by keeping the number

of statement types to a minimum. Although, if the programs to be

generated are long then the solution space will be large anyway.
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Maintain Syntactic Correctness — The mapping from genotype to phen-

otype ensures that all lists of integers map successfully to a syntactic-

ally correct program, as long as the language subset provided is itself

syntactically correct.

Limit Execution Errors — This can also be achieved by careful construc-

tion of the language subset being used.

Consistent Genotype to Phenotype Mapping — A list of integers al-

ways maps to the same program, although multiple genotypes may map

to the same phenotype.

To summarize, a list of requirements for a GP representation was put

forward and then a new representation that followed the requirements was

developed. The choice of fixed-length gene blocks was then justified and a

series of experiments were run to justify the use of small population sizes with

the representation and to highlight the advantage of keeping the language

subset to a minimum.
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Chapter 3

Using Formal Specifications to

Create Fitness Functions

3.1 Introduction

This chapter focuses on the construction of fitness functions for use with the

new representation, presented in the previous chapter.

One way a fitness function for Genetic Programming can be constructed is

to use a set of sample inputs for a problem and compare the resultant outputs

from the evolved function with the expected outputs. The fitness function

can also be some evaluation function which was “hand-crafted” in which case

it is difficult to guarantee that all features of the problem have been covered,

especially for larger problems. While the first method may be suitable for

some simple situations, it is unlikely to generate an accurate fitness score,

on larger problems, without a very large number of test inputs. Cramer [17]

mentions that a major problem in evolving programs is one of “hand-crafting”

the evaluation function to give partial credit to a function that does not work
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but exhibits some of the relevant behaviour. In [55], for example, Koza hand-

crafts his fitness functions based on the natural terminology of the problem

but gives little justification of his choices. One possible solution, explored

in this chapter, is to work from a formal specification for the problem being

tackled and then to manipulate this specification into the form of a fitness

evaluation function. By using this process, the fitness evaluation function

should be able to perform the minimum number of checks on the individual

being tested while still covering all aspects of the problem to be solved.

Section 3.2 introduces the area of formal specification and the notation

being used. Section 3.3 presents two experiments to compare the perform-

ance of fitness functions created from formal specifications against using in-

put/output pairs to evaluate the fitness. Section 3.4 describes the results of

the experiments. Finally, the conclusions are summarized.

3.2 Formal Specification

A formal specification of a function is, in its simplest form, a description of

the mapping between the inputs and outputs of the function.

The formal specification of a function is made up from four elements;

the name, the type, the pre-condition and the post-condition. The name

is just a label which represents the function. The type is a specification of

the inputs and outputs in terms of the data they can contain, e.g. Z
∗ → Z,

says that the input of the function is a list of integers and the output is an

integer. A function must have an unique output for each input. The pre-

condition specifies any constraints on the input to the function, e.g. pre −
myfunc(in : Z) � in > 10, specifies that an input to the function myfunc

must be an integer greater than 10. A value lower than 11 would be an invalid
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Table 3.1: A list of symbols and their meanings

Symbol Meaning
a ∧ b a and b
a ∨ b a or b
a ⇒ b a implies b
∀ for all
∃ there exists

� is defined as
Z the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
P the set of positive integers {0, 1, 2, . . .}
R the set of real numbers

a : T a is of type T
Z

∗ the set of all lists of integers
L�M list concatenation
#L size of list
〈x〉 the list containing only x

input. When the function is valid for all inputs within the constraints of the

input data type, the pre-condition is just defined as True. Finally, the post-

condition is a boolean function that, given an input that satisfies the pre-

condition and an output, returns a True/False value which represents whether

the input is validly mapped to the output i.e. whether the input/output pair

is valid.

Table 3.1 summarizes some of the symbols that can be used in formal

specifications. The creation of specifications is beyond the scope of this

section but is covered in [19]. To convert the specification into a fitness

function, various manipulations of the specification are required. Cooke, in

his book Constructing Correct Software [19], describes various techniques for

converting the specification into a program which meets the specification.

This can be quite hard but in the context of this work it is only required to

convert the specification into a program that checks the output of a function
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SquareRoot
type: R → R

pre-SquareRoot(in) � in ≥ 0

post-SquareRoot(in, out) � (out2 = in) ∧ (out ≥ 0)

Figure 3.1: Specification of SquareRoot

to see if it meets the requirements of the specification. This is a much simpler

problem.

As an example of the conversion of a specification into a fitness function,

take the function SquareRoot as defined in Figure 3.1. In words, the post-

condition of the specification says:

the output of the function squared is equal to the input and the

output is greater than or equal to zero.

This specification is relatively simple to convert into a fitness function but

much harder to convert into a function which carries out the specified task.

The first stage of the conversion into the fitness function is to separate

the expressions in the post-condition, which are joined by the logical and

operator (∧). The first expression

out2 = in

can be converted directly into the target programming language (in this case

Perl [86]).

($out*$out) == $in

Some method of keeping track of the fitness is also required. Therefore a

variable $fitness is introduced to store this information. An if statement

is added to increment the fitness if the condition is true

if(($out*$out) == $in){$fitness++;}
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The second expression can be converted just as easily.

out ≥ 0

Again this expression can be converted directly into code

$out >= 0

and then it is surrounded by an if statement to keep track of the fitness.

if($out >= 0){$fitness++;}

There are two ways to arrange the above generated code fragments in the

fitness test, either:

i f ( $out∗$out ) == $in ) {
$ f i t n e s s++;
i f ( $out >= 0){

$ f i t n e s s++;
}

}

or:

i f ( ( $out∗$out ) == $in ) { $ f i t n e s s ++;}
i f ( $out >= 0){ $ f i t n e s s ++;}

In the first nested arrangement, the testing stops after the first failed

check (the statements can be nested in different orders) whereas in the second,

the total number of checks passed is calculated. The second method is the

one used in this thesis. In addition, the fitness of each test could be weighted

to give one test more impact on the overall fitness. However, all the fitness

increments are identical in this thesis.

Finally, when an individual is referred to as ‘fully fit’, it still has the

traditional GA/GP meaning. That is to say, the individual is correct for all

of the test inputs and not necessarily completely correct to the specification

for all possible inputs.
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3.3 The Experiments

This section will discuss the two example problems, which have been selected

to investigate the difference between fitness testing using input/output pairs

and fitness functions derived from the formal specification of the problem.

Both the input/output pairs and the fitness function created from the formal

specification are tested with the same inputs.

3.3.1 The Problems

The problems chosen are Listmax and Reverse. Listmax takes a list of in-

tegers as input and returns a single integer value containing the largest ele-

ment from the list. The specification for Listmax is given in Figure 3.2. In

words, the post-condition for Listmax can be read as:

the result m must be in the input list L and for any integer z, if

z is in the list L then z must be less than or equal to m.

Reverse takes a list of integers as input and returns a list containing the

same elements in reverse order. The specification for Reverse is given in

Figure 3.3. In words, the post-condition for Reverse can be read as

the length of the out list is the same as the length of the in list

and for any positive integer n less than the length of the in list

there exists an element x and four lists, L1, L2, L3, L4 such that

L1 concatenated with the list containing x concatenated with L2

recreates in list and L3 concatenated with the list containing x

concatenated with L4 recreates out list and the length of L1 is

the same as the length of L4 and the length of L1 equals n.
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Listmax
type: Z

∗ → Z

pre-Listmax(L) � #L �= 0

post-Listmax(L, m) � m in L ∧ (∀z : Z)(z in L ⇒ z ≤ m)

where (x in L) � (∃L1, L2 : Z
∗)(L = L1

�〈x〉�L2)

Figure 3.2: Specification of Listmax

Reverse
type: Z

∗ → Z
∗

pre-reverse(in list) � True

post-reverse(in list, out list) � #in list = #out list
∧(∀n : P)(n < #in list ⇒

(∃x : Z, L1, L2, L3, L4 : Z
∗)( in list = L1

�〈x〉�L2

∧out list = L3
�〈x〉�L4

∧#L1 = #L4

∧#L1 = n))

Figure 3.3: Specification of Reverse

These two problems are chosen to represent a fairly simple and a slightly

more complex specification.

3.3.2 The Fitness Functions

This section gives the fitness function for input/output pairs and then goes on

to show the conversion between the formal specifications given in Figures 3.2

and 3.3 and their corresponding fitness functions.

Input/Output Pairs

The fitness test for the input/output pairs method takes the result of the

individual being tested for each input and compares the result with the ex-

pected output. If the output is a single value then the fitness is incremented
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if it is the same as the expected output and remains the same if it is not.

If the output is a list then the fitness is incremented for every element in

the individual’s output list that matches the corresponding element in the

expected output list.

Listmax

The first step in the process of converting the specification, or more accur-

ately the post-condition (as only inputs that satisfy the pre-condition will

be used for testing), into a fitness function is to separate out the expressions

joined by the ∧ (logical and) operator. In more complex specifications it may

be necessary to rearrange the post-condition into conjunctive normal form.

This does not include ∧ operators in sub-expressions at this stage. Each of

these expressions is dealt with as a separate check on the individual being

evaluated. The aim is now to translate each expression into the target pro-

gramming language and add some scoring measure. This is usually a fairly

direct mapping for simple problems but on occasion further manipulation is

necessary.

The first expression in the Listmax post-condition is

m in L

This can be directly put into code as

isin($m,@L);

To this can be added the scoring measure in the form

if(isin($m,@L)){$fitness++;}

The function isin is defined to check if a given variable is in the given list

and return a True/False value. The if statement surrounds the boolean
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expression to increment the fitness if the statement is true about the output

from the current individual being evaluated.

The second expression in the Listmax post-condition is slightly more chal-

lenging as it requires some manipulation of the expression before putting it

into code. The expression

(∀z : Z)(z in L ⇒ z ≤ m)

covers the domain of all integers but only says something about that case

where z is in L. When z is not in L the implication expression is always

true regardless of the value of m. This is always a problem with implication

because it is a restriction on the domain. In general, only the restricted

domain needs to be used, eliminating the requirement for the implication.

For use in a fitness test, this expression is refined to be

(∀z in L)(z ≤ m)

This can easily be represented in code as

foreach my $z (@L){if($z <= $m){$fitness++;}}

again with the if statement surrounding the boolean sub-expression to count

the number of correct occurrences within the check.

The complete fitness function for Listmax is given in Listing 3.1

Reverse

Reverse, as specified in Figure 3.3, is now dealt with. Again the expressions

separated by the ∧ operator are separated and dealt with individually.
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Listing 3.1: The fitness function for Listmax

sub f i t n e s s t e s t {
my ($m, @L) = @ ;
my $ f i t n e s s = 0 ;

i f ( i s i n ($m,@L) ) { $ f i t n e s s ++;}
foreach my $z (@L) { i f ( $z <= $m) { $ f i t n e s s ++;}}

return $ f i t n e s s ;
}

The first expression in the post-condition for Reverse equates the size of

two lists

#in list = #out list

This can easily be translated directly into the code

if(scalar(@in list) == scalar(@out list)){$fitness++;}

The second expression in the Reverse post-condition is more problematic.

Firstly, taking the surrounding quantification expression

(∀n : P)(n < #in list ⇒ . . .)

This can be expressed in code as the loop statement

for(my $n=0; $n < scalar(@in list); $n++){...}

Next, taking the subexpression surrounded by the quantification expression

(∃x : Z, L1, L2, L3, L4 : Z
∗)( in list = L1

�〈x〉�L2

∧out list = L3
�〈x〉�L4

∧#L1 = #L4

∧#L1 = n)
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0 1 2 3 4 5
in list L1 x L2

out list L3 x L4

Figure 3.4: Comparison of the location of x in the input and output lists
when n = 3

The aim is to replace occurrences of x and L1, L2, L3, L4 by references

to in list and n using indexing. Again, the expressions, joined by the ∧
operator, of the sub-expression are separated. First consider

in list = L1
�〈x〉�L2

As Figure 3.4 shows this can be replaced by the expression

in list[#L1] = x

where L[i] is the element at index i of the list L. The second expression

out list = L3
�〈x〉�L4

can therefore also be replaced by

out list[#L3] = x

as shown in Figure 3.4, and given (#in list = #out list) and (#L1 = #L4)

out list[#L2] = x

this can be rearranged as

out list[#in list − #L1 − 1] = x

Given (#L1 = n) the previous expressions can be changed to

in list[n] = x ∧ out list[#in list − n − 1] = x
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Listing 3.2: The fitness function for Reverse

sub f i t n e s s t e s t {
my @ i n l i s t = @{ $ [ 0 ] } ;
my @out l i s t = @{ $ [ 1 ] } ;
my $ f i t n e s s = 0 ;

i f ( scalar ( @ i n l i s t ) == scalar ( @ou t l i s t ) ) { $ f i t n e s s ++;}
for (my $n=0; $n<scalar ( @ i n l i s t ) ; $n++){

i f ( $ i n l i s t [ $n ] == $ o u t l i s t [$# i n l i s t −$n ] ) { $ f i t n e s s
++;}

}

return $ f i t n e s s ;
}

and hence

in list[n] = out list[#in list − n − 1]

This can then be converted to the code

if($in list[$n] == $out list[$#in list-$n]){$fitness++;}

where $#in list refers to the last index of in list rather than its length.

Therefore, putting both parts of the expression together gives

for (my $n=0; $n<scalar ( @ i n l i s t ) ; $n++){
i f ( $ i n l i s t [ $n ] == $ o u t l i s t [$# i n l i s t −$n ] ) { $ f i t n e s s ++;}

}

Putting all the parts together gives the fitness function for Reverse shown

in Listing 3.2.

3.3.3 The Genetic Algorithm

The details of the Listmax and Reverse list experiments can be found in

Chapter 4, Sections 4.4 and 4.6. The Input/Output test is run the same way
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Table 3.2: Summary of the results for Listmax and Reverse (with mean
and standard deviation)

ListMax Reverse
Generations Time Generations Time

Fitness Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Input/Output 333.40 219.45 5.90s 5.19 134.67 127.18 6.55s 6.09
Formal 182.14 133.99 4.24s 3.19 105.28 98.74 5.17s 4.87

but replacing the fitness function. Each experiment is run 100 times with a

different random seed based on the first 100 prime numbers.

The population size is 7. The individuals are of a fixed length of 40 genes

where each gene is an 8-bit integer. Each run of the GP starts from a pseudo-

randomly generated population and is terminated after 50000 generations if

a solution with the maximum fitness value has not been found.

3.4 Results

Table 3.2 shows a summary of the results from the experiments. The com-

plete set of results can be found in Appendix B. For each test the average

number of generations and average time taken to find a solution with the

maximum fitness is given.

The results were evaluated using the Microsoft Excel T-Test function

and it was found that the formal specification based method produces a

fully fit individual in less generations than the Input/Output method with a

confidence of 99.9% for the Listmax problem and 98.0% confidence for the

Reverse problem. In terms of time, it was found that the formal specification

based method produced fully fit solutions faster with a confidence of 99.6%
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for the Listmax problem and 97.2% for the Reverse problem.

The results strongly suggest that, for these problems, using the fitness

functions created from the formal specification is significantly better than

using input/output pairs. The results also suggest that the Reverse problem

was easier than the Listmax problem. This was probably influenced by the

choice of language subset, which made the Reverse problem easier to solve.

3.5 Summary and Conclusions

In conclusion, the experiments have shown promising initial results by basing

the fitness function for Genetic Programming on the formal specification of

the problem to be solved. For the experiments shown, a large improvement

over using simple input/output pairs was achieved, however, further work is

required to establish the performance of using fitness functions created from

the formal specification in a wider selection of problems. It is hypothesised

that the improved performance using the fitness functions created from the

formal specification is due to an increased accuracy in the fitness scoring.

For example, whereas the fitness measured by the input/output pairs for

Listmax would give a fitness of zero for the second highest value in the list,

the fitness function created from the formal specification would return quite

a high fitness value. In addition, further work is needed on the best way

to use the fitness functions created from the formal specification; whether

to test an individual completely or until the first non-compliant feature is

found. In addition, the proposed method removes the need to write ‘ad hoc’

functions to test fitness and replaces it with a disciplined alternative that

seems to be easy to use.

To summarize, this chapter introduced a new method for the construction
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of fitness functions by basing them on the formal specification of the desired

function. Two examples were given of the use of fitness functions created

from a formal specification compared with the use of simple input/output

pairs to assess fitness, with promising results.
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Chapter 4

Evolving Some Interesting

Functions

4.1 Introduction

This chapter applies the methods previously presented to the evolution of a

series of list evaluation and manipulation functions. The particular functions

being evolved have some interesting features, which set them apart from tra-

ditional GP problems. Firstly, the functions need to achieve a 100% fitness

level to be useful. This moves away from the traditional GP optimisation

problems, where the idea is to improve upon current results, and just re-

quires search of the solution space for fully fit individuals. Secondly, these

functions are commonly used as part of larger programs, so can be used as

components to create larger programs after they have been evolved. For ex-

ample, the sumlist function could be incorporated into the statement list for

the evolution of the avelist function.

The following six sections detail the experiments evolving the following
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functions:

Sumlist — find the sum of a list of integers.

Avelist — find the average value of a list of integers.

Listmax — find the largest value in a list of integers.

Listmin — find the smallest value in a list of integers.

Reverse — reverse the ordering of a list of integers.

Sort — sort a list of integers into ascending order.

This set of problems starts with two functions that return numerical res-

ults (that do not necessarily appear in the input lists), the second two func-

tions return elements of the input lists and the final two return new lists. This

may be thought of as a series of problems of apparent increasing difficulty.

The final section summarizes the results.

All of the functions being evolved use the GA presented in Chapter 1,

Section 1.5, with a population size of 7 individuals, a mutation rate of 1 gene

in 10 and a genome of 40 genes. The GA is run for a maximum of 50000 gen-

erations with 10 different random seeds (the first 8 prime numbers, 0 and 1).

In addition, the execution time of each individual is limited by keeping count

of the number of iterations of loops. If the counter reaches 1000 the program

is terminated with an error and receives a minimal fitness value. All of the

example evolved programs shown in this chapter are taken from the first run

of GP (Seed 0).
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sumlist : Z
∗ → Z

pre-sumlist(L) � #L �= 0

post-sumlist(L, s) � s = (+x|x : Z, L1, L2 : Z
∗|L = L1

�〈x〉�L2)

Figure 4.1: Specification of sumlist

Listing 4.1: The fitness function for sumlist (without header)

my $t = 0 ;
foreach my $x (@L) {

$t += $x ;
}
$ f i t n e s s += abs ( $s−$t ) ;

4.2 Sumlist

The first function to be evolved was sumlist. This was chosen as a simple

starting point and the aim was to evolve a function to find the sum of a list

of integers. The specification (shown in Figure 4.1) simply says “the output

value s is equal to the sum of the list L”. The notation (+x|x : Z, L1, L2 :

Z
∗|L = L1

�〈x〉�L2), used in the specification, simply means “take each

element x in the list L and add it to the other elements in the list”. The

notation is described in more general terms in [19]. The specification is

converted into the function shown in Listing 4.1 using the method presented

in Chapter 3. One interesting adjustment to the standard conversion is the

use of the absolute difference between the expected and actual results. This

replaces the previous method of incrementing the fitness if the values are

equal. The adjustment was due to this particular specification only having

one test and therefore a very limited hill to climb. However, with the change

the hill becomes much bigger and less steep. Initial tests showed that the

next function, avelist, found great difficulty evolving without the change but

when the change was made to the fitness function avelist evolved much more

68



Listing 4.2: Set of test input lists for sumlist

[ 4 ,3 ,2 ,1 ] ,
[ 1 ,2 ,55 ,3 ] ,
[ 1 ,999 ,2 ,3 ] ,
[ 71 ,1 ,2 ,3 ] ,
[ 1 ,2 ,33 ] ,
[ 100 ,88 ,211 ] ,
[ 100 ,1 ,2 ] ,
[ 13 ,7 ] ,
[ 5 ,55 ] ,
[ 10 ]

easily. The use of absolute differences in values was not used in any of the

other functions as there were many more tests. In the only other place among

the series of tests that it could have been used (i.e. reverse), the performance

was good without it. This approach meant that larger values corresponded to

worse individuals, therefore the values were normalized by subtracting them

from 5000 (with a minimum score of 1) to make parent selection easier.

The list of test inputs used for fitness testing is given in Listing 4.2. The

test set includes a variety of different length lists and a variety of orderings

of the elements within the lists i.e. the largest and smallest elements are not

always in the same location.

Tables 4.1 and 4.2 give the list of statements and the meaning of addi-

tional genes. The set of statements used is fairly constrained, although some

statements, such as ‘Divide’, that could be considered unnecessary for the

problem were incorporated to see if any interesting use was made of them by

the evolution. The statements differentiate between variables that are read

only and those that can be assigned new values. For example, the size of

the list should not be changed in the evolved function. A read-only variable

is used for the counter (G1) in the ‘For’ statement, so that it would not be
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Table 4.1: List of statements used for sumlist

Index Statement Additional Genes Form

0 Null
1 Assign wvars,rvars G1 = G2;

2 Add wvars,rvars,rvars G1 = G2 + G3;

3 Subtract wvars,rvars,rvars G1 = G2 - G3;

4 Multiply wvars,rvars,rvars G1 = G2 * G3;

5 Divide wvars,rvars,rvars G1 = G2 / G3 if(G3 != 0);

6 If rvars,cmp,rvars if(G1 G2 G3){
7 For rvars,lsize for G1 (0..G2){
8 End }

Table 4.2: Additional Genes for sumlist

Index wvars rvars lsize cmp

0 $sum $sum $#list ==

1 $size !=

2 $tmp >

3 $list[$tmp%($#list+1)] <

4 >=

5 <=
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Table 4.3: The results for sumlist

Seed Generations Time

0 185 9s
1 256 12s
2 21 1s
3 37 2s
5 189 8s
7 166 8s
11 97 4s
13 34 3s
17 15 1s
19 15 1s

changed within the body of the loop. One final interesting feature is the

list index (Index 3 of the read-only variables, rvars in Table 4.2), which is

constrained to only be able to reference elements within the list by taking

the modulus of the size of the list. This seemed to be a fairly logical way of

constraining the list indexing.

Table 4.3 presents the results for the ten runs of the experiment. All of the

runs evolve a fully fit individual within a very small number of generations

(and a very short time). Even though all the results are achieved very quickly,

there is still some considerable variation in the values. This is the expected

result due to the non-deterministic nature of GA and GP.

Listing 4.3 shows an example individual evolved (the complete set of

evolved individuals is given in Appendix C). Taking into account that the

first two lines of code are redundant, as is the nested ‘If’ statement and its

contents, the resultant program is the same as might be written by a ‘real

programmer’ and will therefore find the sum of any input list.
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Listing 4.3: Example solution for sumlist, Seed 0

# Header
my @l i s t = @{ $ t e s t [ $t ] } ;
my $sum = 0;
my $ s i z e = $# l i s t +1;
my $tmp = 0;

# Evolved Code
$sum = $ s i z e ;
$sum = $tmp ;
for $tmp (0 . . $# l i s t ) {

$sum = $sum + $ l i s t [ $tmp%($# l i s t +1) ] ;
i f ( $ l i s t [ $tmp%($# l i s t +1) ] < $ l i s t [ $tmp%($# l i s t +1) ] ) {

for $tmp (0 . . $# l i s t ) {
}

}
}

# Footer
return $sum ;

avelist : Z
∗ → R

pre-avelist(L) � #L �= 0

post-avelist(L, s) � s = (+x|x : Z, L1, L2 : Z
∗|L = L1

�〈x〉�L2)/#L

Figure 4.2: Specification of avelist

4.3 Avelist

The avelist function is a natural progression from sumlist. The aim is to

find the average (mean) value of a list of integers. The expected result would

be the same as that for sumlist with a ‘Divide’ statement on the end. The

specification for the problem is given in Figure 4.2 and the fitness function

for the problem is given in Listing 4.4. Like the sumlist fitness function, the

fitness was calculated using the absolute difference between the expected and

actual results, as discussed above.
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Listing 4.4: The fitness function for avelist (without header)

my $t = 0 ;
foreach my $x (@L) {

$t += $x ;
}
$ f i t n e s s += abs ( $s−($t /($#L+1) ) ) ;

Table 4.4: The results for avelist

Seed Generations Time

0 141 7s
1 1727 1m17s
2 934 44s
3 165 7s
5 665 29s
7 557 24s
11 42 2s
13 2873 2m12s
17 415 19s
19 460 18s

The experiment was run using the same test data (Listing 4.2) as sumlist

and also the same set of statements (Table 4.1) and additional gene trans-

lations (Table 4.2). The only difference is that the variable $sum is replaced

by the variable $ave.

Table 4.4 gives the list of results for the ten runs of the experiment.

The results are slightly slower than those of the sumlist function, however,

this is to be expected due to the slight increase in problem difficulty (or

more accurately, in terms of the GA, a lower proportion of the solution space

containing fully fit individuals). All of the runs produced a fully fit individual

in a fast time and few generations.

Listing 4.5 shows an example fully fit individual generated. The first
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Listing 4.5: Example solution for avelist, Seed 0

# Header
my @l i s t = @{ $ t e s t [ $t ] } ;
my $ave = 0 ;
my $ s i z e = $# l i s t +1;
my $tmp = 0;

# Evolved Code
$ave = $tmp + $ave ;
for $tmp (0 . . $# l i s t ) {
}
for $tmp (0 . . $# l i s t ) {

$ave = $ l i s t [ $tmp%($# l i s t +1) ] + $ave ;
}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

# Footer
return $ave ;

listmax : Z
∗ → Z

pre-listmax(L) � #L �= 0

post-listmax(L, m) � m in L ∧ (∀z : Z)(z in L ⇒ z ≤ m)

where (x in L) � (∃L1, L2 : Z
∗)(L = L1

�〈x〉�L2)

Figure 4.3: Specification of listmax

three lines of code are redundant to the functionality of the program and

the remaining code is as would be expected (assuming a valid input to the

function) if the function was ‘hand-coded’. The complete list of outputs

generated is given in Appendix C.

4.4 Listmax

The listmax function is a more complex, multipart specification. The

aim is to find the largest element of a list of integers. The specification for

the function is given in Figure 4.3 and the fitness function derived from that
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Listing 4.6: The fitness function for listmax (without header)

i f ( i s i n ($m,@L) ) { $ f i t n e s s ++;}
foreach my $z (@L) {

i f ( $z <= $m) { $ f i t n e s s ++;}
}

Listing 4.7: Set of test input lists for listmax

[ 1 ,4 ,2 ,32 ,345 ] ,
[ −42,−34,−12,−235 ] ,
[ 46 ,0 ,2 ,23 ] ,
[ 54 ,13 ,1 ,24 ,235 ,35 ] ,
[ 12 ,245 ,6 ]

specification is shown in Listing 4.6. The derivation of this fitness function

is given in Chapter 3, Section 3.3.2.

The set of test inputs is given in Listing 4.7. The test set includes lists

of varying lengths with both positive and negative integers. The number of

tests used can affect the performance of the GP from both the perspective

of overall time to evaluate fitness and the number of generations required to

evolve a fully fit solution. The results, in this case, show that the number of

test cases was sufficient.

Tables 4.5 and 4.6 show the list of statements and meaning of additional

Table 4.5: List of statements used for listmax

Index Statement Additional Genes Form

0 Null
1 Assign wvars,rvars G1 = G2;

2 If rvars,cmp,rvars if(G1 G2 G3){
3 For rvars,lsize for G1 (0..G2){
4 End }
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Table 4.6: Additional Genes for listmax

Index wvars rvars lsize cmp

0 $max $max $#list ==

1 $tmp1 !=

2 $tmp2 >

3 $list[$tmp1%($#list+1)] <

4 $list[$tmp2%($#list+1)] >=

5 <=

Table 4.7: The results for listmax

Seed Generations Time

0 85 3s
1 15 1s
2 192 4s
3 56 1s
5 59 1s
7 236 6s
11 99 3s
13 10 1s
17 157 4s
19 111 2s

genes for the listmax problem. As the listmax function only returns a value

from the list of integers no arithmetic statements are included in the state-

ment list. As with sumlist and avelist the list indexes are constrained to only

index valid list elements.

The results for the ten runs of the listmax experiment are given in Table 4.7.

All ten runs produce a fully fit individual in a very short time. The perform-

ance is similar to that of sumlist and faster than avelist.

Listing 4.8 gives an example fully fit individual evolved by the GP. This
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Listing 4.8: Example solution for listmax, Seed 0

# Header
my @l i s t = @{ $ t e s t [ $t ] } ;
my $max = 0 ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;

# Evolved Code
for $tmp2 (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp1%($# l i s t +1)] <= $ l i s t [ $tmp2%($# l i s t +1) ] ) {
$max = $ l i s t [ $tmp2%($# l i s t +1) ] ;
i f ( $tmp2 >= $max) {

i f ( $ l i s t [ $tmp1%($# l i s t +1) ] == $max) {
$max = $ l i s t [ $tmp2%($# l i s t +1) ] ;
for $tmp1 (0 . . $# l i s t ) {
}

}
}

}
}

# Footer
return $max ;
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listmin : Z
∗ → Z

pre-listmin(L) � #L �= 0

post-listmin(L, m) � m in L ∧ (∀z : Z)(z in L ⇒ z ≥ m)

where (x in L) � (∃L1, L2 : Z
∗)(L = L1

�〈x〉�L2)

Figure 4.4: Specification of listmin

Listing 4.9: The fitness function for listmin (without header)

$ f i t n e s s++ i f ( i s i n ($m,@L) ) ;
foreach my $z (@L) {

$ f i t n e s s++ i f ( $z >= $m) ;
}

particular example works with the test input set and other similar lists but

not in the general case. For example, the list [-1,3,2,1] returns the value 1.

However, some of the functions evolved do return the correct value in the gen-

eral case (this was determined by inspection of the functions). Appendix C

lists the generated code for each run of the experiment.

4.5 Listmin

The listmin function is very similar to the listmax function. This function

was evolved to see if the slight change in requirements made any significant

difference to the evolution process. The aim of the function is to find the

smallest element of a list of integers. The specification and fitness function

are given in Figure 4.4 and Listing 4.9 and are identical to those of listmax

except for the change in the comparison operator.

The list of statements and meaning of additional genes are the same as

those used for listmax as shown in Tables 4.5 and 4.6. The only change

is that the variable $max is replaced with the variable $min. The listmin
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Table 4.8: The results for listmin

Seed Generations Time

0 170 5s
1 104 3s
2 160 4s
3 188 5s
5 234 7s
7 59 2s
11 699 19s
13 361 10s
17 270 9s
19 128 3s

function is also evolved using the same test input set (Listing 4.7).

The results for the ten runs of the listmin experiment are given in Table 4.8.

The number of generations and running times are slightly higher than the

listmax experiment but not significantly.

An example fully fit program evolved is given in Listing 4.10. As with

listmax, this example does not completely solve the problem but does work

with all of the test inputs. Appendix C has a complete list of evolved pro-

grams, which includes programs that do work with any list of integers that

conform to the specification precondition.

4.6 Reverse

The reverse function is used as a simple example of a function that returns

a list rather than a single value. The aim of the function is to reverse the

ordering of a list of integers. This function creates the new list in a separate

variable whereas the sort function in the next section gives an example of a
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Listing 4.10: Example solution for listmin, Seed 0

# Header
my @l i s t = @{ $ t e s t [ $t ] } ;
my $min = 0 ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;

# Evolved Code
for $tmp2 (0 . . $# l i s t ) {

i f ( $tmp2 != $ l i s t [ $tmp1%($# l i s t +1) ] ) {
$min = $ l i s t [ $tmp1%($# l i s t +1) ] ;
for $tmp2 (0 . . $# l i s t ) {

i f ( $min > $ l i s t [ $tmp2%($# l i s t +1) ] ) {
$min = $ l i s t [ $tmp2%($# l i s t +1) ] ;

}
}

}
}

# Footer
return $min ;

reverse : Z
∗ → Z

∗

pre-reverse(L) � True

post-reverse(L, N) � #L = #N
∧(∀n : P)(n < #L ⇒

(∃x : Z, L1, L2, N1, N2 : Z
∗)( L = L1

�〈x〉�L2

∧N = N1
�〈x〉�N2

∧#L1 = #N2

∧#L1 = n))

Figure 4.5: Specification of reverse

Listing 4.11: The fitness function for reverse (without header)

i f ( scalar (@L) == scalar (@N) ) { $ f i t n e s s ++;}
for (my $n=0; $n<scalar (@L) ; $n++){

i f ($L [ $n ] == $N[$#L−$n ] ) { $ f i t n e s s ++;}
}
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Table 4.9: List of statements used for reverse

Index Statement Additional Genes Form

0 Null
1 Assign wvars,rvars G1 = G2;

2 Add wvars,rvars,rvars G1 = G2 + G3;

3 Subtract wvars,rvars,rvars G1 = G2 - G3;

4 Multiply wvars,rvars,rvars G1 = G2 * G3;

5 Divide wvars,rvars,rvars G1 = G2 / G3 if(G3 != 0);

6 If rvars,cmp,rvars if(G1 G2 G3){
3 For rvars,lsize for G1 (0..G2){
8 End }

function creating the list in place. The specification for the reverse function is

given in Figure 4.5 and the fitness function is given in Listing 4.11. A detailed

description of the mapping is given in Chapter 3, Section 3.3.2. The set of

test inputs is the same as that used for the sumlist function (Listing 4.2).

Tables 4.9 and 4.10 give the list of statements used and the meaning of

additional genes. It is interesting to note the provision of list indexing of

the form L[#L-n]. This is a logical choice based on the interpretation of the

specification.

Table 4.11 gives the results of the ten runs of the experiment. The runs

all evolve fully fit individuals very quickly (both in terms of time and gen-

erations). This, slightly unexpected, performance is most likely due to the

inclusion of the L[#L-n] variables, which would appear to make the problem

much easier.

Listing 4.12 gives an example individual evolved. When redundant parts

are removed the function appears similar to the expected general solution

with the inclusion of a few additional statements that do not affect the func-
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Table 4.10: Additional Genes for reverse. All of the list indices are taken
modulo the size of the list, however this is not shown for clarity

Index wvars rvars lsize cmp

0 $out[$tmp1] $tmp1 $#in ==

1 $out[$#in - $tmp1] $tmp2 !=

2 $out[$tmp2] $in[$tmp1] >

3 $out[$#in - $tmp2] $in[$#in - $tmp1] <

4 $in[$tmp2] >=

5 $in[$#in - $tmp2] <=

6 $out[$tmp1]

7 $out[$#in - $tmp1]

8 $out[$tmp2]

9 $out[$#in - $tmp2]

Table 4.11: The results for reverse

Seed Generations Time

0 135 9s
1 288 20s
2 149 8s
3 112 6s
5 35 2s
7 70 4s
11 16 1s
13 95 4s
17 74 4s
19 9 1s
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Listing 4.12: Example solution for reverse, Seed 0. All of the list indices are
taken modulo the size of the list, however this code is not shown for clarity

# Header
my @in = @{ $ t e s t [ $t ] } ;
my @out = () ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;

# Evolved Code
$out [($# in − $tmp2 ) ] = $out [($# in − $tmp2 ) ] ;
for $tmp1 (0 . . $# in ) {

i f ( $ in [($# in − $tmp2 ) ] < $in [ $tmp1 ] ) {
}
$out [ $tmp1 ] = $tmp2 + $in [($# in − $tmp1 ) ] ;
i f ( $ in [ $tmp2] <= $in [ $tmp2 ] ) {

$out [ $tmp1 ] = $out [($# in − $tmp1 ) ] / $ in [ $tmp2 ] i f ( $ in [
$tmp2 ] != 0 ) ;

$out [ $tmp1 ] = $in [($# in − $tmp1 ) ] ;
}

}

# Footer
return @out ;
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sort : Z
∗ → Z

∗

pre-sort(L) � True

post-sort(L, N) � bag of(N) = bag of(L) ∧ ascending(N)
where bag of(〈〉) �� ∅

bag of(〈x〉) �� {|x|}
bag of(L1

�L2) �� bag of(L1)
⊎

bag of(L2)

ascending(N) � (∀x, y : Z)(x before y in N ⇒ x ≤ y)
and

x before y in N � (∃N1, N2, N3 : Z
∗)(N = N1

�〈x〉�N2
�〈y〉�N3)

Figure 4.6: Specification of sort

Listing 4.13: The fitness function for sort (without header)

$ f i t n e s s++ i f ( bageq (\@L, \@N) ) ;
i f ($#N > 0){

for my $x (0 . . $#N−1){
$ f i t n e s s++ i f ($N [ $x ] <= $N [ ( $x+1) ] ) ;

}
}

tionality. Appendix C gives the complete set of reverse functions evolved.

4.7 Sort

The final function evolved was sort. Like reverse, this function also re-

turns a list rather than an individual value. This is used as a more complex

example and is a standard Computer Science problem. The aim of the func-

tion is to sort the elements of an integer list into ascending order. The

specification for the problem is given in Figure 4.6 and the fitness function is

given in Listing 4.13. The fitness function has been simplified to decrease the

evaluation time, now only adjacent elements in the list are compared rather

than all element pairs.

Tables 4.12 and 4.13 give the list of statements used and the meaning of
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Table 4.12: List of statements used for sort

Index Statement Additional Genes Form

0 Null
1 Assign wvars,rvars G1 = G2;

2 If rvars,cmp,rvars if(G1 G2 G3){
3 For counter,lsize for G1 (0..G2){
4 Double counter,lsize,counter for G1 (0..G2){ for G3 (G1+1..G2){
5 End }

Table 4.13: Additional Genes for sort. All of the list indices are taken
modulo the size of the list, however this code is not shown for clarity

Index wvars rvars counter lsize cmp

0 $in[$tmp1] $in[$tmp1] $tmp1 $#in ==

1 $in[$tmp2] $in[$tmp2] $tmp2 !=

2 $tmp3 $tmp1 >

3 $tmp4 $tmp2 <

4 $tmp3 >=

5 $tmp4 <=
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Table 4.14: The results for sort

Seed Generations Time

0 47975 1h04m28s
1 14189 19m22s
2 8219 10m22s
3 16312 21m57s
5 31372 43m11s
7 5834 8m00s
11 28944 42m09s
13 18573 25m10s
17 36765 50m40s
19 1840 2m36s

additional genes. The list of statements now has the additional statement

type the ‘Double’ loop (Index 4). This is a standard structure used when

comparing elements in a list. In addition, it also demonstrates how larger

building blocks can be used to evolve programs (other possible building blocks

for this problem could include the ‘Swap’ function commonly used in sort

algorithms). Again, the same test input set is used as sumlist (Listing 4.2).

Table 4.14 gives the results of the ten runs of the experiment. It is clear

that this problem is much harder for the GP to solve. The times and number

of generations required to evolve a fully fit individual are considerably higher

than the previous experiments. However, all of the runs still produce a

fully fit individual within the number of generations allowed. The increased

difficulty is possibly due to there being a small number of correct solutions

in the set of all possible genomes. In addition, there could be local minima

around the optimal solutions, which make it difficult for the GP to produce

perfect individuals quickly.

Listing 4.14 shows an example solution from the sort experiment. The
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Listing 4.14: Example solution for sort, Seed 0. All of the list indices are
taken modulo the size of the list, however this is not shown in the code for
clarity

# Header
my @in = @{ $ t e s t [ $t ] } ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;
my $tmp3 = 0 ;
my $tmp4 = 0 ;

# Evolved Code
for $tmp2 (0 . . $# in ) {

for $tmp1 ( $tmp2+1..$# in ) {
i f ( $ in [ $tmp2 ] > $in [ $tmp1 ] ) {

i f ( $ in [ $tmp1 ] ! = $tmp2 ) {
$tmp3 = $in [ $tmp1 ] ;

}
i f ( $tmp3 <= $in [ $tmp2 ] ) {

$in [ $tmp1 ] = $in [ $tmp2 ] ;
}
$in [ $tmp2 ] = $tmp3 ;

}
}

}

# Footer
return @in ;
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code is nearly the same as a ‘bubble’ sort, however, the inclusion of two

additional ‘If’ statements in the body of the ‘Double’ loop means that the

function will not work in all cases. Some of the runs did evolve solutions that

work in the general case. The complete set of evolved programs are listed in

Appendix C. All of the solutions are variations on the ‘bubble’ sort. This

is most likely due to the constraints of the language subset used. However,

it is interesting to note that not all of the solutions took advantage of the

‘Double’ statement.

4.8 Summary and Conclusions

One of the biggest problems highlighted by the experiments is that an indi-

vidual gaining a 100% fitness value isn’t always correct in the general case.

This is due to the test input set not being exhaustive (if it were the time to

fitness test an individual would be impractical). The ideal solution to this

problem would be to formally verify the solutions that gained a 100% fitness

value, however, this would also be very hard on larger problems. Probably

the best compromise is to test any solutions that gain a 100% fitness against

a different (perhaps more extensive) set of inputs. Work has been done on

generating test data for software testing using Genetic Algorithms [15], how-

ever this would probably be impractical for this application as the fitness test

for each individual in the Genetic Algorithm would need to evolve a program

to test the effectiveness of the test data.

To summarize, a set of list evaluation and manipulation functions were

evolved with the interesting feature that they needed to be completely correct

to be useful. The experiments showed that it was possible to evolve these

functions, with this constraint, in a reasonably short amount of time. The

sort function, however, showed that as the complexity of the problem rises
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the time to solve the problem also rises quite sharply, suggesting that more

complex problems would be nearly impossible to evolve as one block of code.

There are two approaches to combating this problem. Either the larger

functions can be evolved from smaller blocks of code and calls to previously

evolved functions or the problem can be broken down into a series of smaller

problems that can be evolved, possibly in parallel.
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Chapter 5

Evolving the User Interface

5.1 Introduction

In this chapter a method for evolving graphical user interfaces is presented.

The method is based on those used for evolving functions presented earlier

(see Chapter 2), and is applied to both desktop and web-based user interfaces.

Why evolve Graphic User Interfaces? Firstly, any interactive program

requires some form of user interface. For a small program a simple text-

based interface may be sufficient, but for larger systems (such as a word

processor) a more complex user interface may be required. Secondly, to be

able to claim the evolution of a complete software system, the user interface

needs to be part of that evolution process. The evolution process allows some

element of variety in the design of the interface as it is not a deterministic

process. Furthermore, it is claimed that 50% of the project implementation

time is spent on the user interface [63].

A number of systems have demonstrated the automatic generation of user

interfaces from high level specifications [23,49,72,85]. Most of these systems
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are based on a data model specification. Lauridsen extends the approach to

work with a more abstract specification [58]. Other approaches include using

declarative models [80] and conceptual graphs [40]. No work appears to have

been done on using GAs or GP to generate user interfaces.

Section 5.2 covers the required predefined aspects of the problem. Sec-

tions 5.3 and 5.4 describe how these are used to construct the representation

for the user interface and the fitness evaluation. Section 5.5 presents some

example problems to show how the approach works in practice. Finally, a dis-

cussion on possible extensions to the method is given along with conclusions

drawn from the work.

5.2 Requirements

What information is needed to be able to evolve a graphical user interface?

Firstly, some content to be manipulated is required. There are two types

of content required, that associated directly with the interface, such as input

widgets (buttons, text boxes, etc.) and text, and that which provides the

underlying functionality.

Secondly, some constraints on the use and implementation of this content

are required. There are three main areas which can be be constrained: the

layout (the position of the widgets in relation to each other), the style (the

fonts, colours, etc.), and the functionality (what does each button do when

pressed, where do the underlying functions get their input from and where

do they put their output).

This information is needed to construct the representation and fitness

function of the genetic algorithm. The content is used to create the structure
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--------------------------------

| g1 | g2 | g3 | g4 |

--------------------------------

^ ^ ^ ^

| | | |

position font size colour

e.g. 35,times,12pt,black

Figure 5.1: Example gene block

of the genome and the constraints are used as the basis of the fitness function.

5.3 Representation

The representation is based on the method for representing programs de-

scribed earlier (see Chapter 4). Each widget is represented by a fixed-length

block of genes in the genome. Each of the genes represents one parameter of

the widget (e.g. the font size). The whole genome is made up from all of the

blocks of genes, one for each of the widgets. Each widget always appears in

the same place in the genome for each individual in the population.

For example, Figure 5.1 shows an example gene block, which gives the

position, font, size, and colour of a widget. In a user interface language where

there is a one dimensional ordering of the widgets (e.g. HTML), a single

position gene can be used. All the widgets are then sorted on this value to

give their position within the interface. In the case where two widgets have

the same positional value, the ordering is indeterminate.

Finally, a mapping from the genome to the actual program code is re-

quired. The genome can map to any language (or even multiple languages),

such as HTML or Perl/Tk. From Figure 5.1, the gene block might map to
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(where its position in the program is decided as defined above):

.

.

<font face="times" size="12pt" color="black">Hello World</font>

.

.

In addition, there may be some functionality associated with the widget.

Additional genes can be added to the gene blocks to represent the choice

of function, where to get the input and where to put the output (see the

example in Section 5.5.3).

5.4 Fitness Testing

It would be quite difficult to evaluate the entire user interface by executing

the program and seeing how it looks and what it does. One possible solution

to this problem is to evaluate all of the constraints individually by comparing

the relevant parameters in the genome. The constraint scores are then com-

bined to form the overall fitness of the individual. The combination operator

in the examples shown in this chapter is summation. Each constraint can be

weighted to give greater importance to certain constraints if necessary, and

other combination functions used.

Each constraint can be formally specified (as in Chapter 3). For example,

the specification of i must be before j might look something like:

post-MustBeBefore(i : W, j : W) � posi < posj

where W is the set of widgets and posi is the position attribute of the widget i.

An ANDed series of constraints form the specification, which in turn can then

be used to create the fitness function (see Chapter 3).
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5.5 Example Problems

To show how Graphical User Interfaces can be evolved, three example prob-

lems are presented.

1. The evolution of a simple text editor interface. This demonstrates the

layout constraints.

2. The evolution of a simple personal details web form. This adds style

constraints.

3. A complete (but simple) application, which is an interface to the previ-

ously evolved list evaluation and manipulation functions. This demon-

strates the functionality constraints in addition to layout and style.

5.5.1 A Text Editor

The first problem is a simple interface for a text editor. This demonstrates the

use of positional constraints. The text editor interface is simply a text input

area and a menu to select options (such as load and save). The constraints

for this interface are mainly the relative positions of the items in the menu.

Figure 5.2 shows the list of widgets used for the interface and the con-

straints which need to be met by the evolution process. The informal spe-

cification in Figure 5.2 is in two parts. The first part lists the set of widgets

to be used to construct the interface, and the second lists the constraints

that must be met to achieve a maximum fitness value.

Each widget in the list of widgets has a label, a type, and some text

value. In this example, the label also has some meaning attached to it,

which determines which items are in which section of the menu. Therefore,
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the contents of the menu are completely constrained but the ordering within

that hierarchy is free to be evolved.

Some widgets do not require a text label (such as the menubar in the

example), in this case the empty string is used.

Each constraint is a relation between two or more widgets or a require-

ment of one of the attributes of a widget. However, the implementation of

the method can be easily extended. One constraint that is worth explaining

is menufile must be before menufilenew (as well as similar constraints).

This constraint is used as the menufile widget needs to be declared in the

program before any items can be added to it. An alternative approach would

be to deal with all of the toplevel menu items first.

In this example, the constraints have the effect of completely constraining

the interface, so that only one possible output exists (not including redundant

genes). The phenotype is mapped to a Perl/Tk program. Normally, the

phenotype would be the program, but here the phenotype is the series of

attributes for ease of fitness testing.

Each gene-block in the genome is made up from three genes. The first

gene represents the position, and the second two (which are only used for

the textarea) represent the way in which the textarea fills the window and

expands when the window is resized.

Table 5.1 shows the results of ten example runs and, as the problem is

relatively simple, all runs produce a solution that completely satisfies the

constraints within a very short time. Figure 5.3 shows a user interface gen-

erated, but all fully fit user interfaces are constrained to be identical for this

problem. The menus for the user interface are shown in Figure 5.4.
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# Widgets

title: title "TextEdit"

menu: menubar ""

menufile: menulevel1 "File"

menuedit: menulevel1 "Edit"

menuhelp: menulevel1 "Help"

menufilenew: menulevel2 "New"

menufileopen: menulevel2 "Open"

menufilesave: menulevel2 "Save"

menufileexit: menulevel2 "Exit"

menueditcopy: menulevel2 "Copy"

menueditcut: menulevel2 "Cut"

menueditpaste: menulevel2 "Paste"

menuhelpabout: menulevel2 "About"

textarea: textarea ""

# Constraints

title must be first

menufile must be before menuedit

menuedit must be before menuhelp

menufile must be before menufilenew

menufilenew must be before menufileopen

menufileopen must be before menufilesave

menufilesave must be before menufileexit

menuedit must be before menueditcut

menueditcut must be before menueditcopy

menueditcopy must be before menueditpaste

menuhelp must be before menuhelpabout

textarea must be last

# Constraints (Style)

textarea must fill x and y

textarea must expand when the window is resized

Figure 5.2: The Widgets and Constraints for the Text Editor
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Table 5.1: Results for the text editor example

Seed Generations Time

2 481 3s
3 60 1s
5 77 1s
7 118 1s
11 387 3s
13 227 2s
17 329 2s
19 189 1s
23 199 2s
29 87 1s

Figure 5.3: Text Editor GUI - Seed 2
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Figure 5.4: Text Editor GUI (The Menus) - Seed 2

5.5.2 A Personal Details Web Form

The second problem is a “Personal Details” web form. This introduces style

constraints. The form contains a title and instructions, and a series of in-

put boxes of different types with labels. Again, there is a set of positional

constraints (such as labels must be immediately before the corresponding

input). There are also style constraints which deal with fonts, colours, etc.

For example, the title must be the largest font size and the labels must all

be the same style.

Figure 5.5 show the list of widgets and the constraints (both positional

and style) which need to be met by the evolution process in the Personal

Details web form.

The gene-blocks for each widget are five genes. The first gene rep-

resents the position of the widget (with the widgets being sorted on the

gene value), and the remaining four genes represent the style attributes:

size, colour, font, and alignment respectively. The size is chosen from the

list [12pt, 14pt, 16pt, 18pt, 24pt, 32pt], the colour is chosen from the list

[white, lightgray, gray, darkgray, black], the font is chosen from the list

[serif, sans-serif, monospace], and the alignment is chosen from the list
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# Widgets

title: title "Personal Details"

instructions: p "Enter your personal details in the form provided."

namelabel: p "Name"

nameinput: text ""

addresslabel: p "Address"

addressinput: text ""

townlabel: p "Town"

towninput: text ""

genderlabel: p "Gender"

genderinput: select ("male"/"female")

submitinput: submit ""

resetinput: reset ""

# Constraints (Layout)

title must be first

title must be immediately before instructions

namelabel must be immediately before nameinput

addresslabel must be immediately before addressinput

townlabel must be immediately before towninput

genderlabel must be immediately before genderinput

submitinput must be immediately before resetinput

nameinput must be immediately before addresslabel

addressinput must be immediately before townlabel

towninput must be immediately before genderlabel

reset must be last

# Constraints (Style)

title must have the largest font size

all labels must have the same style

font colours must be much darker than background colour

Figure 5.5: The Widgets and Constraints for the Web Form
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Table 5.2: Results for the personal details example

Seed Generations Time

2 45165 10m04s
3 7521 1m40s
5 8441 1m51s
7 50000 10m45s
11 12277 2m39s
13 5930 1m16s
17 2842 37s
19 2517 33s
23 6964 1m31s
29 7294 1m35s

[left, right, center]. To convert the gene value into the attribute, the mod-

ulo of the gene value and the number of elements in the attribute list is taken.

The position and attributes are then mapped to an HTML script.

Table 5.2 shows the results of ten example runs. It can be seen from

the times that the problem is much harder than the previous example. The

run which got to 50000 generations didn’t achieve a maximum fitness value

within the allowed number of generations. However, the other nine runs did

achieve a maximum fitness score. Figure 5.6 shows a user interface generated.

The complete set of generated interfaces can be found in Appendix D.

5.5.3 A Front-end for the List Functions

Finally, the third problem is a complete (although simple) application, which

is an interface to the list evaluation and manipulation functions that were

evolved earlier. This introduces functionality to the interface. In addition,

this example also demonstrates a possible approach to the problem of scalab-
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Figure 5.6: Personal Details GUI - Seed 3
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ility by evolving component functions and then evolving an interface to con-

nect them. The interface contains an input box, an output box, a list of

functions, and a button. The positional and style constraints are similar to

the previous problem, but now there are constraints on the functionality,

which determine where the function gets its input and puts its output.

There are two choices when dealing with the functionality, either it can

be hardcoded into the program or it can be evolved by the GA. The example

shows the use of both options:

• Hardcoded functionality is demonstrated with the choice of function

being chosen from the listbox (which returns the function name).

• Evolved functionality is demonstrated with the choice of widget the

input list for the function is taken from, and the choice of widget the

output list for the function is given to. Two extra genes are added to

the gene-block from the previous example to allow this functionality to

be evolved.

Figure 5.7 shows the list of widgets and the constraints to be met by the

evolution process in the list function front-end.

Table 5.3 shows the results of the ten runs. The results show that the

problem was quite simple, with all runs producing a result with maximum

fitness in a short time. Figure 5.8 shows a user interface generated. The

complete set of generated user interfaces can be found in Appendix D.

102



# Widgets

title: title "Sort"

instructions: p "Type in a list of integers, separated by spaces,

into the Input box, select a function from the listbox and press

the Run button."

list: listbox ("evolistmax"/"evolistmin"/"evosumlist"/"evoavelist"/

"evoreverse"/"evosort")

sourcelabel: p "Input"

sourceinput: text ""

targetlabel: p "Output"

targetinput: text ""

runbutton: button "Run!"

# Constraints (Layout)

title must be first

title must be immediately before instructions

sourcelabel must be immediately before sourceinput

targetlabel must be immediately before targetinput

sourcelabel must be before targetlabel

runbutton must be last

# Constraints (Style)

title must have the largest font size

all labels must have the same style

font colours must be much darker than background colour

# Constraints (Functionality)

sourceinput must be input for runbutton

targetinput must be output for runbutton

Figure 5.7: The Widgets and Constraints for the List Front-end
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Figure 5.8: Sort GUI - Seed 23
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Table 5.3: Results for the list front-end example

Seed Generations Time

2 1060 12s
3 310 4s
5 226 2s
7 337 4s
11 1419 16s
13 347 4s
17 1686 18s
19 2627 30s
23 424 5s
29 569 6s

5.6 Extensions

This method can easily be extended to cater for different types of user in-

terface by introducing genes for the required attributes of the interface using

the relevant constraints.

In addition, the constraints can be layered, so that there can be some

global constraints which all interfaces must follow (such as those published

by Apple [2] and Microsoft [64] or more generally following Shneiderman’s

‘Eight golden rules of dialog design’ [81]). Then there can be a layer of

constraints for specific groups of people. For example, dyslexic people prefer

buttons instead of menus, whereas non-dyslexic people generally prefer the

menu [16]. There can even be constraints to the level of the specific user.

And finally, there are the problem specific constraints.

The content can also be abstracted, so instead of specifying a list box,

a widget that chooses one item from many could be specified (which could

be evolved to be a list box or a set of radio buttons, etc.). An intermediate
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level of functionality can be evolved, which deals with changes to the user

interface (to produce dynamic interfaces). For example, certain menu items

might need to be disabled or enabled as a function of the state of the program

after a particular action by the user (e.g. disable some menu items if there

is no difference between saved and current versions).

The problem of scalability can be addressed by evolving the layout, style

and functionality separately for more complex interfaces. In addition, each

screen or window can be evolved separately when there are multiple screens

in an interface. The above all contribute to improved performance of the

evolution process on larger problems. This breakdown follows naturally from

the specification of the problem (see Chapter 3).

5.7 Summary and Conclusions

To summarize, a method for evolving Graphical User Interfaces has been

presented. This method is based on the previously given methods for evolving

programs. This method can be applied to many different problems for many

types of interfaces, in any required target language. The front-end for the

list functions also addresses the problem of scalability as the interface and

each of the functions are all evolved separately to create the whole system. In

addition, the method can be used where there are contradictory constraints.
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Chapter 6

Discussion and Conclusions

6.1 Introduction

This final chapter discusses the evolution of complete software systems as a

whole, including necessary and desirable future work for the area. The con-

tribution to knowledge made by this thesis is also discussed and summarized.

6.2 Evolution of Complete Software Systems

This section discusses the problems and possible solutions of evolving com-

plete software systems. It is firstly necessary to define what is meant by a

“complete software system”. A “complete software system” in this context is

considered to be a computer program that is interactive, multifunctional and

usually very big. Unfortunately, all three of these areas have been largely

neglected in the area of Genetic Programming. The question is therefore,

how do we evolve multifunctional, interactive programs using GAs and GPs?
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Before that, it is worth discussing the reasons for using GAs and GPs

to create software systems. Firstly, the method is declarative. It is only

necessary to express the requirements of the system and not how to actu-

ally implement it. Secondly, and this is most apparent in the user interface

evolution, the evolution process adds an element of variety to the process.

The GP will not produce a fixed, deterministic output. Various different

solutions to the problem are likely to be produced from each run of the GP if

the specified constraints and requirements allow multiple implementations.

Finally, it is possible that the GP will allow a faster implementation time for

the system (although this is dependent on the time spent setting up the GP

as well as the evolution time).

It must be stressed that the idea is to make the problem to be tackled by

the GP as simple as possible. Any knowledge that is already available should

be used to simplify the problem. In addition, functions that have already

been written, or evolved, should be available to the Genetic Program.

The following three subsections discuss the three main areas of evolving

complete software systems: the evolution of functions, the scalability issue

and the interactivity.

6.2.1 Function Evolution

The term ‘multifunctional’ suggests that multiple functions are required to

provide the elements of the system’s functionality. It would therefore be

reasonable to evolve each of these functions separately or even independently

in parallel.

There are various other aspects to evolving functions. As well as evolving

the body of a function from a fitness evaluation function created from the
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post-condition of the formal specification, it may also be desirable to evolve

error handling based on the pre-condition to check for valid inputs. This

could be included in the wrapper if it is a simple check but may need to

be evolved if the pre-condition is complex. In addition to the specification

of the function, it may be desirable to add time and/or space complexity

constraints to the fitness evaluation.

6.2.2 Scalability

What happens when the functions become larger and more complex? One

possible approach is to define the requirements for the function in a hier-

archical way, so that the function can be evolved from sub-functions. This

is relatively easy to do when working with the formal specification of the

function. For example, the post-condition for avelist might look like

post-avelist(L, s) � s = sumlist(L)/#L

and the sumlist function would be added to the language subset available. In

addition, compound statements can be used such as the ‘Double’ statement

in Chapter 4, Section 4.7.

As an example of using functions and compound statements to improve

the performance of the evolution process, the sort example from Chapter 4

is extended. The GP was already using the compound ‘Double’ statement.

To the previously used set of statements is added the function ‘Swap’, which

is common to many sort functions. The rest of the language subset and test

input is left unchanged (see Tables 4.12, 4.13 and Listing 4.2). The fitness

function also remains unchanged (see Listing 4.13).

Table 6.1 shows the results of the ten runs of the experiment. It can be

clearly seen that the introduction of the ‘Swap’ function has made a dramatic
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Table 6.1: The results from the sort experiment with ‘Swap’

Seed Generations Time

0 333 30s
1 10 1s
2 247 25s
3 661 1m04s
5 155 14s
7 32 2s
11 147 14s
13 204 19s
17 208 17s
19 354 30s

Listing 6.1: Example of the sort function using ‘Swap’, Seed 1

i f ( $ i n l i s t [ $tmp2] >= $tmp3 ) {
for $tmp2 (0 . . $# i n l i s t ) {

for $tmp1 ( $tmp2+1..$# i n l i s t ) {
i f ( $ i n l i s t [ $tmp2 ] > $ i n l i s t [ $tmp1 ] ) {

swap (\ $ i n l i s t [ $tmp1 ] ,\ $ i n l i s t [ $tmp2 ] ) ;
}

}
}

}

impact on the performance of the GP. From an average number of generations

of 21002 and an average time of 28m47s in Chapter 4, the average number

of generations is now just 235 and the average time is just 21s (the fastest

being 1s and the slowest being 64s). This is an improvement of roughly two

orders of magnitude.

Listing 6.1 shows an example function generated. Apart from the sur-

rounding ‘If’ statement, the code is the expected ‘bubble’ sort using the

‘Swap’ function to exchange elements of the list.
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6.2.3 Interactivity

Finally, to connect the functions and provide the interactivity for the system,

some form of user interface is required. For large, complex systems this user

interface is usually graphical. Depending on the application the user interface

can be either web-based or desktop-based, as appropriate. Often a static

user interface is sufficient to connect the functions and provide interactivity,

however, if a dynamic user interface is required, additional functions may

need to be evolved to manipulate the user interface.

6.2.4 Other Uses

In addition to evolving complete software systems it may be desirable to

evolve only small sections of code. For example, the GP could be used as

a programming assistance tool, to give the programmer a starting point for

writing a complex function. The user interface evolution could be used as a

stand-alone system for quickly testing user interface ideas and allowing quick

reimplementation after design changes.

6.3 Contribution of the Thesis

This thesis has addressed problems relating to the evolution of complete

software systems. This includes work on both the underlying Genetic Pro-

gramming system and the application of that system to relevant problems.

This section summarizes the main contributions.

A new representation for programs, along with a mapping between the

genotype and phenotype, has been presented. This representation has the
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benefits of explicitly inheritable characteristics, easy mapping between the

genotype and phenotype, support for arbitrary genetic operators, and the

ability to represent programs in any language. This representation was shown

to have better inheritance of characteristics between individuals than systems

such as Grammatical Evolution [78]. In addition, all genotypes map to a

complete program without reusing genes or randomly extending the genome,

unlike some systems [69,78].

A new method for the construction of fitness evaluation functions was

presented, which is based on the formal specification of the function to be

evolved. The post-condition of the formal specification is converted into the

target language with each comparison incrementing the fitness value if true.

This method was shown to have a better performance than using simple

input/output pairs. In addition, the fitness function is easier to construct

accurately than some “hand-crafted” function, with less likelihood of missing

important features of the problem.

A series of functions was evolved that was more appropriate for general

software evolution than traditional GP problems. The functions had the need

for a 100% fitness value over the given set of test inputs to be considered use-

ful, although even when this condition is met it is difficult to guarantee that

the function matches the specification for all inputs. However, this problem

is not unique to the evolution of functions, when humans write computer

programs the same problem exists. Previous researchers (e.g. Koza [55])

have applied GPs to problems where the solutions have a better/worse clas-

sification (such as ‘pole balancing’) rather than a right/wrong classification.

The experiments presented in this thesis have shown that GPs can be applied

to a wider selection of programming problems.

A method for evolving graphical user interfaces was presented. This area
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appears to have been completely ignored by the Genetic Programming com-

munity. This method was based on the representation for evolving programs

presented previously. The method uses an intermediate translation of the

genotype to test a series of constraints (which can be formally specified)

before converting fit individuals into actual programs. Various possible ex-

tensions were also suggested, which allowed for dynamic user interfaces and

also generation of interfaces with layered constraints. Although the example

user interfaces were not perfect, all of the tools required for the evolution

of user interfaces were demonstrated and it was shown that the approach is

feasible.

A method of dealing with scalability issues was briefly introduced, which

evolved larger functions from more abstract code segments such as compound

statements and function calls. This showed a dramatic improvement from

the previously presented version of the experiment.

Future work should involve the evolution of a ‘real’ software system, such

as a simple word processor or an online shop. Work on the time taken to

evolve functions (including setting up the GP) should be carried out and

compared to the manual programming time. In addition, it would be inter-

esting to experiment with the evolution of programs within other language

paradigms. Prolog, for example, might be interesting as the program struc-

ture is quite different to a procedural language and there is less dependence

on the order of the ‘statements’. The only changes to accommodate the new

paradigm would be the use of a different language subset and the appropriate

compiler/interpreter.

With these new approaches to Genetic Programming, the evolution of

complete software systems is now a realistic goal.
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Mark Withall, Chris Hinde, Roger Stone & Jason Cooper, IEA2003AIE.
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• “Automatic Drawing of Gate-Level Circuit Diagrams using Genetic Al-
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Hinde) Department of Computer Science, Internal Seminar 30 March
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Appendix B

Complete Results for the

Formal Specification Test

This appendix contains the complete results of the formal specification based

fitness functions compared to to the input/output pair fitness functions

(Chapter 3).

• Table B.1 gives the results for input/output pairs for the Listmax prob-

lem.

• Table B.2 gives the results for formal specification based fitness func-

tions for the Listmax problem.

• Table B.3 gives the results for input/output pairs for the Reverse prob-

lem.

• Table B.4 gives the results for formal specification based fitness func-

tions for the Reverse problem.

126



Table B.1: The results of the Listmax experiment with Input/Output pairs

Seed Gens Time

2 145 2s
3 544 10s
5 125 3s
7 194 3s
11 258 4s
13 147 2s
17 483 8s
19 135 2s
23 533 9s
29 813 15s
31 241 4s
37 242 4s
41 511 8s
43 45 1s
47 142 2s
53 59 2s
59 407 7s
61 439 8s
67 195 3s
71 353 6s
73 110 3s
79 387 7s
83 396 7s
89 149 3s
97 378 6s
101 88 1s
103 180 3s
107 152 2s
109 424 8s
113 13 1s
127 552 10s
131 85 2s
137 383 7s

Seed Gens Time

139 598 10s
149 282 5s
151 396 8s
157 444 7s
163 82 2s
167 30 1s
173 102 2s
179 37 1s
181 302 5s
191 733 12s
193 197 3s
197 215 4s
199 1396 25s
211 386 7s
223 32 1s
227 202 3s
229 426 7s
233 62 1s
239 606 10s
241 86 1s
251 220 3s
257 130 3s
263 1170 19s
269 318 6s
271 514 9s
277 353 7s
281 350 7s
283 65 1s
293 1035 18s
307 1655 29s
311 231 4s
313 834 15s
317 302 5s
331 229 4s

Seed Gens Time

337 244 5s
347 574 10s
349 368 7s
353 200 3s
359 78 2s
367 344 7s
373 158 2s
379 386 7s
383 281 5s
389 206 4s
397 177 4s
401 192 3s
409 1045 18s
419 252 5s
421 128 3s
431 345 6s
433 842 15s
439 152 3s
443 414 8s
449 551 11s
457 46 1s
461 418 9s
463 303 5s
467 75 1s
479 123 2s
487 9 1s
491 132 3s
499 445 7s
503 111 2s
509 47 1s
521 169 2s
523 436 8s
541 761 17s
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Table B.2: The results of the Listmax experiment with Formal Specification
based fitness function

Seed Gens Time

2 192 4s
3 56 1s
5 59 1s
7 236 6s
11 99 3s
13 10 1s
17 157 4s
19 111 2s
23 327 8s
29 195 4s
31 15 1s
37 179 5s
41 52 1s
43 42 1s
47 123 3s
53 198 4s
59 256 6s
61 148 3s
67 314 7s
71 236 6s
73 273 6s
79 230 5s
83 91 3s
89 43 1s
97 283 7s
101 274 6s
103 501 11s
107 196 5s
109 106 2s
113 40 1s
127 421 8s
131 182 4s
137 162 4s

Seed Gens Time

139 217 5s
149 94 2s
151 245 6s
157 214 4s
163 531 14s
167 170 4s
173 70 2s
179 18 1s
181 236 5s
191 22 1s
193 562 14s
197 99 3s
199 405 9s
211 161 4s
223 382 9s
227 115 3s
229 67 2s
233 427 10s
239 102 3s
241 148 4s
251 94 2s
257 11 1s
263 423 11s
269 197 4s
271 88 2s
277 311 6s
281 123 3s
283 29 1s
293 291 6s
307 55 1s
311 53 1s
313 82 2s
317 112 3s
331 34 1s

Seed Gens Time

337 158 3s
347 192 4s
349 38 1s
353 213 4s
359 65 1s
367 87 2s
373 80 2s
379 566 14s
383 295 7s
389 187 5s
397 381 9s
401 382 9s
409 131 3s
419 192 4s
421 336 7s
431 197 5s
433 145 3s
439 85 2s
443 263 6s
449 71 1s
457 181 4s
461 47 1s
463 36 1s
467 486 12s
479 333 8s
487 34 1s
491 290 7s
499 93 2s
503 195 4s
509 64 2s
521 9 1s
523 128 3s
541 259 6s
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Table B.3: The results of the Reverse experiment with Input/Output pairs

Seed Gens Time

2 420 20s
3 37 2s
5 18 1s
7 114 5s
11 29 1s
13 93 5s
17 215 11s
19 16 1s
23 4 1s
29 69 3s
31 26 1s
37 744 35s
41 78 4s
43 94 4s
47 212 10s
53 54 3s
59 179 9s
61 133 7s
67 104 5s
71 179 9s
73 60 3s
79 189 9s
83 66 4s
89 201 9s
97 80 4s
101 83 4s
103 24 1s
107 221 10s
109 286 14s
113 217 10s
127 399 18s
131 105 5s
137 88 5s

Seed Gens Time

139 36 2s
149 101 5s
151 10 1s
157 146 7s
163 252 12s
167 219 10s
173 135 7s
179 36 2s
181 124 6s
191 153 7s
193 273 13s
197 87 4s
199 91 5s
211 99 5s
223 58 2s
227 250 12s
229 176 8s
233 127 6s
239 12 1s
241 44 2s
251 151 7s
257 30 1s
269 78 4s
271 17 1s
277 497 24s
281 231 12s
283 11 1s
293 51 2s
307 392 19s
311 90 4s
313 341 16s
317 8 1s
331 179 10s

Seed Gens Time

337 48 2s
347 48 3s
349 313 15s
353 21 1s
359 13 1s
367 127 7s
373 116 5s
379 144 6s
383 32 1s
389 319 15s
397 9 1s
401 166 8s
409 13 1s
419 29 2s
421 313 16s
431 66 3s
433 207 11s
439 124 6s
443 283 15s
449 29 1s
457 286 13s
461 74 3s
463 6 1s
467 7 1s
479 392 19s
487 160 8s
491 93 4s
499 43 2s
503 281 13s
509 18 1s
521 4 1s
523 260 13s
541 81 3s
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Table B.4: The results of the Reverse experiment with Formal Specification
based fitness function

Seed Gens Time

2 149 8s
3 112 6s
5 35 2s
7 70 4s
11 16 1s
13 95 4s
17 74 4s
19 9 1s
23 41 2s
29 252 12s
31 239 12s
37 105 6s
41 160 7s
43 238 12s
47 226 11s
53 60 3s
59 6 1s
61 227 11s
67 162 8s
71 480 24s
73 35 2s
79 28 1s
83 168 8s
89 102 5s
97 3 1s
101 30 1s
103 20 1s
107 65 4s
109 147 7s
113 40 2s
127 38 2s
131 215 11s
137 170 9s

Seed Gens Time

139 46 2s
149 42 2s
151 81 4s
157 44 2s
163 43 3s
167 96 4s
173 52 3s
179 85 4s
181 131 6s
191 77 4s
193 55 3s
197 59 3s
199 18 1s
211 77 3s
223 13 1s
227 302 15s
229 120 7s
233 36 1s
239 35 1s
241 64 3s
251 14 1s
257 168 8s
263 16 1s
269 176 9s
271 279 14s
277 87 4s
281 54 2s
283 146 8s
293 48 2s
307 87 4s
311 456 22s
313 265 13s
317 17 1s
331 194 9s

Seed Gens Time

337 118 6s
347 31 1s
349 21 1s
353 15 1s
359 15 1s
367 31 2s
373 108 5s
379 304 14s
383 139 8s
389 229 11s
397 16 1s
401 306 14s
409 28 1s
419 375 18s
421 96 5s
431 38 1s
433 43 2s
439 85 4s
443 109 5s
449 35 2s
457 32 2s
461 29 2s
463 55 3s
467 65 3s
479 42 3s
487 141 7s
491 43 2s
499 40 2s
503 25 1s
509 146 7s
521 0 1s
523 239 12s
541 229 11s

130



Appendix C

Complete Set of List Functions

Evolved

This appendix contains the complete list of functions evolved in the exper-

iments in Chapter 4. The list indices in the code examples are presented

without stating that they are modulo the size of the list for clarity. The

code examples are also presented with most of the obviously redundant code

removed.
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C.1 Sumlist

Listing C.1: Sumlist Seed 0

for $tmp (0 . . $# l i s t ) {
$sum = $sum + $ l i s t [ $tmp ] ;

}

Listing C.2: Sumlist Seed 1

for $tmp (0 . . $# l i s t ) {
$sum = $ l i s t [ $tmp ] + $sum ;
i f ( $ l i s t [ $tmp] == $ s i z e ) {

$sum = $sum / $sum i f ($sum != 0) ;
$sum = $ l i s t [ $tmp ] ∗ $sum ;

}
}

Listing C.3: Sumlist Seed 2

i f ($sum < $ l i s t [ $tmp) {
for $tmp (0 . . $# l i s t ) {

$sum = $sum + $ l i s t [ $tmp ] ;
}

}

Listing C.4: Sumlist Seed 3

for $tmp (0 . . $# l i s t ) {
$sum = $sum + $ l i s t [ $tmp ] ;

}

Listing C.5: Sumlist Seed 5

for $tmp (0 . . $# l i s t ) {
i f ($tmp < $ s i z e ) {

$sum = $sum + $ l i s t [ $tmp ] ;
}

}

Listing C.6: Sumlist Seed 7

for $tmp (0 . . $# l i s t ) {
$sum = $sum + $ l i s t [ $tmp ] ;

}
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Listing C.7: Sumlist Seed 11

for $tmp (0 . . $# l i s t ) {
$sum = $ l i s t [ $tmp ] + $sum ;

}

Listing C.8: Sumlist Seed 13

for $tmp (0 . . $# l i s t ) {
$sum = $ l i s t [ $tmp ] + $sum ;

}

Listing C.9: Sumlist Seed 17

for $tmp (0 . . $# l i s t ) {
$sum = $ l i s t [ $tmp ] + $sum ;

}

Listing C.10: Sumlist Seed 19

for $tmp (0 . . $# l i s t ) {
$sum = $sum + $ l i s t [ $tmp ] ;

}

C.2 Avelist

Listing C.11: Avelist Seed 0

for $tmp (0 . . $# l i s t ) {
$ave = $ l i s t [ $tmp ] + $ave ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

Listing C.12: Avelist Seed 1

for $tmp (0 . . $# l i s t ) {
$ave = $ l i s t [ $tmp ] + $ave ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;
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Listing C.13: Avelist Seed 2

for $tmp (0 . . $# l i s t ) {
$ave = $ave + $ l i s t [ $tmp ] ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

Listing C.14: Avelist Seed 3

for $tmp (0 . . $# l i s t ) {
$ave = $ave + $ l i s t [ $tmp ] ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

Listing C.15: Avelist Seed 5

$ave = $ l i s t [ $tmp ] + $ s i z e ;
$ave = $tmp / $ l i s t [ $tmp ] i f ( $ l i s t [ $tmp ] != 0 ) ;
for $tmp (0 . . $# l i s t ) {

$ave = $ l i s t [ $tmp ] + $ave ;
}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

Listing C.16: Avelist Seed 7

for $tmp (0 . . $# l i s t ) {
$ave = $ave + $ l i s t [ $tmp ] ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

Listing C.17: Avelist Seed 11

for $tmp (0 . . $# l i s t ) {
$ave = $ave + $ l i s t [ $tmp ] ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

Listing C.18: Avelist Seed 13

for $tmp (0 . . $# l i s t ) {
$ave = $ l i s t [ $tmp ] + $ave ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;
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Listing C.19: Avelist Seed 17

for $tmp (0 . . $# l i s t ) {
$ave = $ l i s t [ $tmp ] + $ave ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

Listing C.20: Avelist Seed 19

for $tmp (0 . . $# l i s t ) {
$ave = $ave + $ l i s t [ $tmp ] ;

}
$ave = $ave / $ s i z e i f ( $ s i z e != 0 ) ;

C.3 Listmax

Listing C.21: Listmax Seed 0

for $tmp2 (0 . . $# l i s t ) {
i f ( $ l i s t [ $tmp1 ) ] <= $ l i s t [ $tmp2 ] ) {

$max = $ l i s t [ $tmp2 ] ;
i f ( $tmp2 >= $max) {

i f ( $ l i s t [ $tmp1 ) ] == $max) {
$max = $ l i s t [ $tmp2 ] ;

}
}

}
}

Listing C.22: Listmax Seed 1

$max = $ l i s t [ $tmp1 ] ;
for $tmp1 (0 . . $# l i s t ) {

i f ($max <= $ l i s t [ $tmp1 ] ) {
$max = $ l i s t [ $tmp1 ] ;

}
}
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Listing C.23: Listmax Seed 2

$max = $ l i s t [ $tmp2 ] ;
for $tmp1 (0 . . $# l i s t ) {

i f ($max <= $ l i s t [ $tmp1 ] ) {
$max = $ l i s t [ $tmp1 ] ;

}
}

Listing C.24: Listmax Seed 3

for $tmp2 (0 . . $# l i s t ) {
i f ( $ l i s t [ $tmp1] == $ l i s t [ $tmp2 ] ) {

$max = $ l i s t [ $tmp1 ] ;
}
i f ($max < $ l i s t [ $tmp2 ] ) {

$max = $ l i s t [ $tmp2 ] ;
}

}

Listing C.25: Listmax Seed 5

$max = $ l i s t [ $tmp2 ] ;
for $tmp2 (0 . . $# l i s t ) {

i f ($max <= $ l i s t [ $tmp2 ] ) {
$max = $ l i s t [ $tmp2 ] ;

}
}

Listing C.26: Listmax Seed 7

$max = $ l i s t [ $tmp1 ] ;
for $tmp1 (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp1 ] > $max) {
$max = $ l i s t [ $tmp1 ] ;

}
}

Listing C.27: Listmax Seed 11

$max = $ l i s t [ $tmp1 ] ;
for $tmp1 (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp1] >= $max) {
$max = $ l i s t [ $tmp1 ] ;

}
}
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Listing C.28: Listmax Seed 13

for $tmp1 (0 . . $# l i s t ) {
$max = $ l i s t [ $tmp1 ] ;
for $tmp2 (0 . . $# l i s t ) {

i f ($max < $ l i s t [ $tmp2 ] ) {
$max = $ l i s t [ $tmp2 ] ;

}
}

}

Listing C.29: Listmax Seed 17

i f ($max >= $tmp2 ) {
for $tmp2 (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp2] >= $ l i s t [ $tmp1 ] ) {
$max = $ l i s t [ $tmp2 ] ;

}
}

}

Listing C.30: Listmax Seed 19

for $tmp1 (0 . . $# l i s t ) {
i f ( $ l i s t [ $tmp1] >= $ l i s t [ $tmp2 ] ) {

$max = $ l i s t [ $tmp1 ] ;
}

}

C.4 Listmin

Listing C.31: Listmin Seed 0

for $tmp2 (0 . . $# l i s t ) {
i f ( $tmp2 != $ l i s t [ $tmp1 ] ) {

$min = $ l i s t [ $tmp1 ] ;
for $tmp2 (0 . . $# l i s t ) {

i f ( $min > $ l i s t [ $tmp2 ] ) {
$min = $ l i s t [ $tmp2 ] ;

}
}

}
}
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Listing C.32: Listmin Seed 1

$min = $ l i s t [ $tmp2 ] ;
for $tmp1 (0 . . $# l i s t ) {

for $tmp2 (0 . . $# l i s t ) {
i f ( $ l i s t [ $tmp1 ] < $min ) {

$min = $ l i s t [ $tmp1 ] ;
}

}
}

Listing C.33: Listmin Seed 2

$min = $ l i s t [ $tmp2 ] ;
for $tmp1 (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp1 ] < $min ) {
$min = $ l i s t [ $tmp1 ] ;

}
}

Listing C.34: Listmin Seed 3

i f ( $tmp1 <= $tmp2 ) {
$min = $ l i s t [ $tmp2 ] ;
for $tmp2 (0 . . $# l i s t ) {

i f ( $min > $ l i s t [ $tmp2 ] ) {
$min = $ l i s t [ $tmp2 ] ;

}
}

}

Listing C.35: Listmin Seed 5

$min = $ l i s t [ $tmp1 ] ;
i f ( $ l i s t [ $tmp2] <= $min ) {

for $tmp2 (0 . . $# l i s t ) {
for $tmp1 (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp1] <= $min ) {
$min = $ l i s t [ $tmp1 ] ;

}
}

}
}
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Listing C.36: Listmin Seed 7

$min = $ l i s t [ $tmp1 ] ;
for $tmp1 (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp1] <= $min ) {
$min = $ l i s t [ $tmp1 ] ;

}
}

Listing C.37: Listmin Seed 11

$min = $ l i s t [ $tmp2 ] ;
for $tmp2 (0 . . $# l i s t ) {

i f ( $min >= $ l i s t [ $tmp2 ] ) {
$min = $ l i s t [ $tmp2 ] ;

}
}

Listing C.38: Listmin Seed 13

$min = $ l i s t [ $tmp1 ] ;
i f ( $tmp2 != $ l i s t [ $tmp1 ] ) {

$min = $ l i s t [ $tmp1 ] ;
for $tmp1 (0 . . $# l i s t ) {

for $tmp2 (0 . . $# l i s t ) {
i f ( $min >= $ l i s t [ $tmp2 ] ) {

$min = $ l i s t [ $tmp2 ] ;
}

}
}

}

Listing C.39: Listmin Seed 17

$min = $ l i s t [ $tmp1 ] ;
for $tmp1 (0 . . $# l i s t ) {

$min = $ l i s t [ $tmp1 ] ;
for $tmp1 (0 . . $# l i s t ) {

i f ( $tmp1 < $min ) {
$min = $ l i s t [ $tmp1 ] ;

}
}

}
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Listing C.40: Listmin Seed 19

$min = $ l i s t [ $tmp2 ] ;
for $tmp2 (0 . . $# l i s t ) {

i f ( $min > $ l i s t [ $tmp2 ] ) {
$min = $ l i s t [ $tmp2 ] ;
for $min (0 . . $# l i s t ) {

i f ( $ l i s t [ $tmp1 ] < $tmp2 ) {
$min = $min ;
i f ( $tmp1 > $ l i s t [ $tmp2 ] ) {

$min = $tmp2 ;
}

}
}

}
}

C.5 Reverse

Listing C.41: Reverse Seed 0

for $tmp1 (0 . . $# i n l i s t ) {
i f ( $ i n l i s t [ $tmp2] <= $ i n l i s t [ $tmp2 ] ) {

$ o u t l i s t [ $tmp1 ] = $ i n l i s t [($# i n l i s t − $tmp1 ) ] ;
}

}

Listing C.42: Reverse Seed 1

$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $tmp1 ;
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [($# i n l i s t − $tmp1 )

] − $ i n l i s t [($# i n l i s t − $tmp1 ) ] ;
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [ $tmp1 ] / $ o u t l i s t [

$tmp2 ] i f ( $ o u t l i s t [ $tmp2 ] != 0 ) ;
for $tmp1 (0 . . $# i n l i s t ) {

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [ $tmp1 ] ;
}

140



Listing C.43: Reverse Seed 2

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ o u t l i s t [ $tmp2 ] / $tmp2 i f (
$tmp2 != 0 ) ;

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [($# i n l i s t − $tmp2 )
] / $ o u t l i s t [($# i n l i s t − $tmp2 ) ] i f ( $ o u t l i s t [($# i n l i s t
− $tmp2 ) ] != 0 ) ;

i f ( $ o u t l i s t [ $tmp1 ] < $tmp2 ) {
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ o u t l i s t [($# i n l i s t − $tmp1

) ] ;
}
for $tmp1 (0 . . $# i n l i s t ) {

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [ $tmp1 ] ;
}

Listing C.44: Reverse Seed 3

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $tmp2 ;
$ o u t l i s t [ $tmp1 ] = $ i n l i s t [ $tmp1 ] − $ o u t l i s t [($# i n l i s t −

$tmp1 ) ] ;
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [($# i n l i s t − $tmp1 )

] + $ o u t l i s t [($# i n l i s t − $tmp1 ) ] ;
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ o u t l i s t [ $tmp1 ] + $ i n l i s t

[($# i n l i s t − $tmp1 ) ] ;
for $tmp2 (0 . . $# i n l i s t ) {

$ o u t l i s t [ $tmp2 ] = $ o u t l i s t [ $tmp2 ] ;
$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $ i n l i s t [ $tmp2 ] ;

}

Listing C.45: Reverse Seed 5

$ o u t l i s t [ $tmp1 ] = $ o u t l i s t [($# i n l i s t − $tmp2 ) ] / $tmp2 i f (
$tmp2 != 0 ) ;

$ o u t l i s t [ $tmp2 ] = $ o u t l i s t [($# i n l i s t − $tmp2 ) ] ∗ $ i n l i s t [
$tmp1 ] ;

$ o u t l i s t [ $tmp2 ] = $ o u t l i s t [($# i n l i s t − $tmp2 ) ] − $tmp1 ;
for $tmp2 (0 . . $# i n l i s t ) {

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $tmp2 ∗ $tmp2 ;
$ o u t l i s t [ $tmp2 ] = $ i n l i s t [($# i n l i s t − $tmp2 ) ] ;

}
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Listing C.46: Reverse Seed 7

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [ $tmp2 ] ;
$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $ o u t l i s t [ $tmp1 ] / $ i n l i s t

[($# i n l i s t − $tmp1 ) ] i f ( $ i n l i s t [($# i n l i s t − $tmp1 )
] != 0 ) ;

for $tmp2 (0 . . $# i n l i s t ) {
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ o u t l i s t [ $tmp1 ] / $ i n l i s t [

$tmp2 ] i f ( $ i n l i s t [ $tmp2 ] != 0 ) ;
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ o u t l i s t [($# i n l i s t − $tmp1

) ] ;
$ o u t l i s t [ $tmp2 ] = $ i n l i s t [($# i n l i s t − $tmp2 ) ] ;

}

Listing C.47: Reverse Seed 11

for $tmp1 (0 . . $# i n l i s t ) {
$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $tmp2 + $tmp2 ;
$ o u t l i s t [ $tmp1 ] = $ i n l i s t [($# i n l i s t − $tmp1 ) ] − $tmp2 ;

}

Listing C.48: Reverse Seed 13

$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $tmp2 − $ o u t l i s t [($# i n l i s t
− $tmp1 ) ] ;

for $tmp1 (0 . . $# i n l i s t ) {
i f ( $ o u t l i s t [($# i n l i s t − $tmp1 ) ] == $ i n l i s t [($# i n l i s t −

$tmp1 ) ] ) {
$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $tmp2 ;
$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $ o u t l i s t [ $tmp2 ] ;

}
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $tmp2 + $ i n l i s t [ $tmp1 ] ;

}
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Listing C.49: Reverse Seed 17

$ o u t l i s t [ $tmp2 ] = $tmp1 ;
$ o u t l i s t [ $tmp2 ] = $ o u t l i s t [($# i n l i s t − $tmp2 ) ] / $ i n l i s t

[($# i n l i s t − $tmp2 ) ] i f ( $ i n l i s t [($# i n l i s t − $tmp2 )
] != 0 ) ;

i f ( $ i n l i s t [ $tmp2 ] > $ o u t l i s t [($# i n l i s t − $tmp2 ) ] ) {
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ o u t l i s t [ $tmp1 ] / $ i n l i s t

[($# i n l i s t − $tmp2 ) ] i f ( $ i n l i s t [($# i n l i s t − $tmp2 )
] != 0 ) ;

for $tmp1 (0 . . $# i n l i s t ) {
$ o u t l i s t [ $tmp2 ] = $tmp1 − $ o u t l i s t [ $tmp2 ] ;
$ o u t l i s t [($# i n l i s t − $tmp1 ) ] = $ i n l i s t [ $tmp1 ] − $tmp2 ;

}
}

Listing C.50: Reverse Seed 19

$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $ o u t l i s t [ $tmp1 ] − $ i n l i s t
[($# i n l i s t − $tmp1 ) ] ;

$ o u t l i s t [ $tmp1 ] = $ o u t l i s t [($# i n l i s t − $tmp2 ) ] / $ i n l i s t [
$tmp2 ] i f ( $ i n l i s t [ $tmp2 ] != 0 ) ;

$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $ o u t l i s t [ $tmp2 ] ;
$ o u t l i s t [($# i n l i s t − $tmp2 ) ] = $ o u t l i s t [ $tmp1 ] ∗ $ i n l i s t [

$tmp2 ] ;
for $tmp2 (0 . . $# i n l i s t ) {

$ o u t l i s t [ $tmp2 ] = $ i n l i s t [($# i n l i s t − $tmp2 ) ] ;
}
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C.6 Sort

Listing C.51: Sort Seed 0

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp1 ( $tmp2+1..$# i n l i s t ) {

i f ( $ i n l i s t [ $tmp2 ] > $ i n l i s t [ $tmp1 ] ) {
i f ( $ i n l i s t [ $tmp1 ] ! = $tmp2 ) {

$tmp3 = $ i n l i s t [ $tmp1 ] ;
}
i f ( $tmp3 <= $ i n l i s t [ $tmp2 ] ) {

$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
}
$ i n l i s t [ $tmp2 ] = $tmp3 ;

}
}

}

Listing C.52: Sort Seed 1

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp1 ( $tmp2+1..$# i n l i s t ) {

$tmp4 = $ i n l i s t [ $tmp1 ] ;
$tmp3 = $ i n l i s t [ $tmp2 ] ;
i f ( $ i n l i s t [ $tmp2 ] > $ i n l i s t [ $tmp1 ] ) {

$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
for $tmp1 (0 . . $# i n l i s t ) {

i f ( $tmp4 != $tmp3 ) {
$ i n l i s t [ $tmp2 ] = $tmp4 ;

}
}

}
}

}
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Listing C.53: Sort Seed 2

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp1 ( $tmp2+1..$# i n l i s t ) {

i f ( $ i n l i s t [ $tmp1] <= $ i n l i s t [ $tmp2 ] ) {
$tmp3 = $ i n l i s t [ $tmp1 ] ;
$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
$ i n l i s t [ $tmp2 ] = $tmp3 ;

}
}

}

Listing C.54: Sort Seed 3

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp1 ( $tmp2+1..$# i n l i s t ) {

i f ( $ i n l i s t [ $tmp1 ] < $ i n l i s t [ $tmp2 ] ) {
$tmp3 = $ i n l i s t [ $tmp1 ] ;
$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
for $tmp1 (0 . . $# i n l i s t ) {

$ i n l i s t [ $tmp2 ] = $tmp3 ;
}

}
}

}

Listing C.55: Sort Seed 5

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp1 (0 . . $# i n l i s t ) {

i f ( $ i n l i s t [ $tmp2] <= $ i n l i s t [ $tmp1 ] ) {
$tmp4 = $ i n l i s t [ $tmp1 ] ;
$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
$ i n l i s t [ $tmp2 ] = $tmp4 ;

}
}

}
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Listing C.56: Sort Seed 7

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp2 ( $tmp2+1..$# i n l i s t ) {

for $tmp1 (0 . . $# i n l i s t ) {
$tmp4 = $ i n l i s t [ $tmp1 ] ;
i f ( $tmp3 <= $ i n l i s t [ $tmp1 ] ) {

i f ( $tmp4 >= $ i n l i s t [ $tmp2 ] ) {
$tmp3 = $ i n l i s t [ $tmp2 ] ;
$ i n l i s t [ $tmp1 ] = $tmp3 ;
$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
$ i n l i s t [ $tmp2 ] = $tmp4 ;

}
}

}
}

}

Listing C.57: Sort Seed 11

for $tmp1 (0 . . $# i n l i s t ) {
for $tmp1 ( $tmp1+1..$# i n l i s t ) {

for $tmp1 (0 . . $# i n l i s t ) {
for $tmp2 ( $tmp1+1..$# i n l i s t ) {

$tmp4 = $ i n l i s t [ $tmp2 ] ;
i f ( $ i n l i s t [ $tmp1] >= $ i n l i s t [ $tmp2 ] ) {

$ i n l i s t [ $tmp2 ] = $ i n l i s t [ $tmp1 ] ;
$ i n l i s t [ $tmp1 ] = $tmp4 ;

}
}

}
}

}
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Listing C.58: Sort Seed 13

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp2 (0 . . $# i n l i s t ) {

for $tmp1 ( $tmp2+1..$# i n l i s t ) {
$tmp3 = $ i n l i s t [ $tmp2 ] ;
i f ( $tmp3 >= $ i n l i s t [ $tmp1 ] ) {

$tmp4 = $ i n l i s t [ $tmp1 ] ;
$tmp3 = $tmp4 ;
$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
$ i n l i s t [ $tmp2 ] = $tmp3 ;

}
}

}
}

Listing C.59: Sort Seed 17

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp1 (0 . . $# i n l i s t ) {

for $tmp2 ( $tmp1+1..$# i n l i s t ) {
i f ( $ i n l i s t [ $tmp2] <= $ i n l i s t [ $tmp1 ] ) {

$tmp3 = $ i n l i s t [ $tmp1 ] ;
$tmp4 = $ i n l i s t [ $tmp1 ] ;
$ i n l i s t [ $tmp1 ] = $tmp4 ;
$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
$ i n l i s t [ $tmp2 ] = $tmp3 ;

}
}

}
}
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Listing C.60: Sort Seed 19

for $tmp2 (0 . . $# i n l i s t ) {
for $tmp1 ( $tmp2+1..$# i n l i s t ) {

i f ( $ i n l i s t [ $tmp2] >= $ i n l i s t [ $tmp1 ] ) {
$tmp3 = $ i n l i s t [ $tmp1 ] ;
$ i n l i s t [ $tmp1 ] = $ i n l i s t [ $tmp2 ] ;
i f ( $ i n l i s t [ $tmp2] <= $ i n l i s t [ $tmp1 ] ) {

for $tmp1 (0 . . $# i n l i s t ) {
for $tmp1 ( $tmp1+1..$# i n l i s t ) {

$ i n l i s t [ $tmp2 ] = $tmp3 ;
}

}
}

}
}

}
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Appendix D

Complete Set of User Interfaces

Evolved

This appendix contains the complete set of user interfaces generated in

Chapter 5, for the ‘Personal Details’ web page and the list functions front-

end.
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Figure D.1: Personal Details Form, Seed 2

Figure D.2: Personal Details Form, Seed 3
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Figure D.3: Personal Details Form, Seed 5

Figure D.4: Personal Details Form, Seed 7

151



Figure D.5: Personal Details Form, Seed 11

Figure D.6: Personal Details Form, Seed 13
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Figure D.7: Personal Details Form, Seed 17

Figure D.8: Personal Details Form, Seed 19
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Figure D.9: Personal Details Form, Seed 23

Figure D.10: Personal Details Form, Seed 29
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Figure D.11: Sort GUI, Seed 2

Figure D.12: Sort GUI, Seed 3
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Figure D.13: Sort GUI, Seed 5

Figure D.14: Sort GUI, Seed 7
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Figure D.15: Sort GUI, Seed 11

Figure D.16: Sort GUI, Seed 13
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Figure D.17: Sort GUI, Seed 17

Figure D.18: Sort GUI, Seed 19
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Figure D.19: Sort GUI, Seed 23

Figure D.20: Sort GUI, Seed 29
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