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CHAPTER |

INTRODUCTION AND MATHEMATICAL BACKGROUND




1.1 INTRODUCTION

In this introductory chapter we shall be concerned principally with the
occurrences, nature and classification of certain types of partial differential
equations leaving aside the discussion of particular numerical methods of
solution to the remaining chapters.

For a large variety of physical and engineering problems, the dependent
variable is expressed in terms of several independent variables; Such
problems inherently give rise to the need for partial derivatives in the
description of their behaviour. The study of the differential equations
arising from these problems/constitutes the field of "Partial Differential
Equations'.

The order of equation being equal (by analogy with the theory of
Ordinary Differential Equations) to the order of the highest partial
differential coefficient occuring in it.

In general, the solution of partial differential equations presents a
much more difficult problem than the solution of ordinary differential
equations and except fgr certain special types of linear partial differential
equations, no general method of solution is available. The most important
-difference between the solution of partial differential equations and
ordinary differential equations is that, the general solution of a linear
ordinary differential equation contains arbitrary constants of integration
whereas the general solution of a linear partial differential equation
contains arbitrary functions. In most cases, the general solution of a
partial differentialrequation is of little use, since it has to be made to
satisfy other conditions called "boundary conditions" which arise from the
physics of the problem (we shall be discussing "boundary conditions' later).

For example, the equations

2 3u ou

23, M. (1.1.1)



32 32 |
.......1..;_ + a(x,y)..._% =0 (1 -1.2)
Ix oy

(where a{x,y)} is any given function) are typical partial differential
equations of first and second order respectively, x and'y being the
independent variables and uZu(x,y) is the dependent variable whose form
is to be found. The equations(l.1.1) and (1.1.2) are linear in the sense
that u and its partial derivatives occur only to first degree, and that
products of u and its derivatives are absent. A typical non-linear equation
in one independent variable is:
u 32 Ju ;
=~ - e (Burger's equation) {1.1.3)

u
at axz ax

A linear equation is said to be homogeneous if each term contains
either the dependent variable or one of its derivatives. For example,

2 2

3_% + 3_%.= 0 (Laplace's equation) (1.1.4)
ox oy

is homogeneous, whereas
32 32 s
__%.+ __%% = f(x,y} (Poisson's equation)  {1.1.5)
9x ay

where f(x,y) is a given function, called an inhomogeneous equation.
As in the case of ordinary differential equations, if UysUgseeaslly
are n different solutions of a linear homogeneous partial differential

equation, in some given domain then

= : {1.1.6)
U = CaU e Uy, . hC U

is also a solution in the same domain where cysC aeeeaG BT arbitrary

2

constant.



1.2 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations are frequently classified in terms of
their mathematical form (such as elliptic, parabolic,...) or in terms of
the type of problems to which they apply (e.g. the wave equation, the
diffusion equation,...).

In the mathematical sense, the second-order linear partial differential

equation, in two independent variables such as

- azu 32u Bzu du 3du
Lu = A(x,y)™—5 * B(XY)gggy * CXY)—5 + E(y,u5ne) = 0 (1.2.1)

X )% B3
can be classified according to the nature of the coefficients A,B and C.
These coefficients are then constant or depend on the independent variables
x and y only.

If BZ—AC«:O, the equation is elliptic, if BZ-AC=O, the equation is
parabolic and finally, BZ-AC>0 will lead to a hyperbolic equation. (This
classification has been made as the equation (1.1.7) resembles that of 2
general conic section which gives, elliptic, parabolic and hyperbolic
equations according to whether A=B2-AC<,= or >0). This classification
scheme is rather interesting since the values of A,B and C depend on the
‘independent variables, thus it is possible for a partial differential
equation to change its classification within the different regions of the
domain for whiéh the problem is defined. For example, the equation,

2 2 ‘ 2
y.a__g.q.zXa__Ll_.py-a—_%.:O’ (1.2.4)

3X
. e . 2 2 . .
is elliptic in the region where x -y <0, parabolic along the lines
xz-y2=0 and hyperbolic in the region where xz-y2>0.
A similar but more complicated classification can be carried out
for linear equations in three or more independent variables. In the case

of three independent variables, the terms elliptic, parabolic and hyperbolic



should be replaced by their three dimensional analogous (ellipsoidal, etec.)
However the two-dimensional terms are often used for higher dimensional
problems (e.g. the Laplace equation V2u=0 in two or three variables is
elliptic type, G. Stephenson (1970) p.14).

The second-order partial differential equations can also have constraints
in the form of boundary values, initial values, or combinations of both. The
elliptic class are equilibrium problems and are described in terms of a
closed region having boundary conditions prescribed at every point on the
region's boundary. Problems in the parabolic and hyperbolic class are
"propagation'" problems and can have prescribed boundary conditions on some
part of the boundaries initial conditions along other parts, and can also
have open-ended regions into which the solution propagates.

A list of the more familiar partial differential equations which

frequentiy occur in physics and engineering is given in the following table

2 2
(in this table, V2 is known as the Laplace operator — ¢+ §~§).

[:3.9 ay

Equation Type Eq:z;;on Equation Application
. S - flow h
Laplace's equation V2u=0 aﬁﬁad uiﬁgte ow of heat
X . 2 Heat transfer with internal
) =a
Poisson's equation Vu=-f heating
. . s 2 1 3u Non-equilibrium states of heat
The Diffusion equation v u—K2 7t conduction
2 1 32
The wave equation v u=—§-——% Propagation of acoustic wave
c" st
The Biharmonic equation V4u=F(x,y) Deformation of a plate

TABLE 1.1



1.3 WELL-POSEDNESS AND BOUNDARY CONDITIONS

In practical applications, it is very seldom that the general solution
of an equation such as (1.2.1) is required; what is needed is a particular
solution satisfying certain boundary conditions.

"The mathematical representation of a physical phenomenon by a partial
differential equation and a set of boundary conditions is said to be well-
posed or well-formulated provided two criteria are satisfied.

Firstly, the existing solution should be unique, since our experience
of nature is such that a given set of circumstances leads to just one outcome.

Secondly, the solution obtained should be stable. In other words, a
small change in the given boundary conditions should preduce only a
correspondingly small change in the solution. This is vital since, when the
boundary conditions are arrived at by experiment, certain small observation
errors in their values will always exist and these errors should not lead to
large changes in the solution", (G. Stephenson, 1974, p.21).

To demonstrate the well-posedness condition, consider the Laplace's
equation in two-dimensions, ) ,

3—% + 3—% =0 (1.3.1)
X 3y ' '

with the given boundary conditions

u(x’O) = .S_lﬂhl{ ,
3u -
(3y)y=0 0 (1.3.2)

where n is a parameter. The solution can be found by separation of

variables, to be,

u(x,y) = % sin nx. cosh ny (1.3.3)
As n+», the boundary conditions converge to u(x,0)=0, %$-= 0 which

together with (1.3.1) implies, by Taylor's series, u(x,y)=0.
However, as m, u{x,y) given in (1.3.3) becomes infinitely large.

Consequently, the problem defined by (1.3.1)-(1.3.2) is not well-posed



and could not be associated with a physical phenomenon.

Concerning the boundary conditions, there are four main types of such
conditions which arise frequently in the description of physical phenomena,
these are:

1. Dirichlet conditions, where u is specified at each point of the
boundary of a region. For instance the problem of solving Laplace's
equation V2u=0 inside a region with prescribed values of u on the
boundary is called the Dirichlet problem.

2. Neumann conditions, where values of the normal derivatives %%-of
the function are given on the boundary.

3. Mixed or Robin's conditions, where a combination of u and its

derivatives 1is given on the boundary e.g.mill + Bu =yat x = 0.

ax
4, Periodic conditions where the values of u and gg-are such that
_ u{a) _ Ju(b)
u(a) = u(b) and TR X

In mathematical terminology the equilibrium problems (which are steady
state problems) are known as ‘boundary value problems" (The typical physical
examples are steady viscous flow, steady temperature distributions, etc.)
The governing equations for equilibrium problems are usually "elliptic",

Propagation problems are initial value problems that have an unsteady

state or transient nature. As an example we consider the diffusion equation,

2
Lu = %‘;_l - n(x,t)i—;,l = H(x,t) (1.3.4)
X

for O<x<1 and O<tgT, with the initial condition

u uO(x) for t=0 (1.3.5)

and the boundary condition,

u = u(x,t) for x=0 and x=l. (1.3.6)
In mathematical parlance such problems are known as "initial
boundary value problems™.

The governing equations for propagation problems are parabolic or

hyperbolic.



1.4 CHARACTERISTIC OF PARTIAL DIFFERENTIAL EQUATIONS

There is a further important aspect of the classification of partial
differential equations into hyperbolic, parabolic and elliptic types. This
classification is due to the characteristics of the equation.

Here we shall study the characteristics of such equations and determine
the specific directions for which integration of the_partial differential
equation reduces to the integration of an equation involving total differential
only (G. Smith, 1975, p.98). |

Let the ISt and an derivatives in equation {1.2.1) be denoted as

follows: 9 2 2
_ su - Su -3u - du _ 9
P=3x 4 3y T ;;?5 S = 3%y and t = ;;f . (1.4.1)

Let T be a curve in the x-y plane on which the values of u, p and q

are such that they and the 2nd order derivatives r,s and t satisfy the
equation (1.2.1). (T is different from the initial values curve, since

on the latter curve, the values of u are known). Therefore, the differentials

of u, p and q in the directions tangential to T satisfy the following

equations:
=§R -a-R =
dp o dx + Sy dy = rdx + sdy ,
(1.4.2)
=39 59 4y -
dq' X dx + 3y dy = sdx + rdy ,
where the partial differential equation (1.2.1) is written as
Ar + 2Bs +.Ct + E = 0 ,
Thus it is easy to show - by subétitutioﬁ using (1.4.2) that
Ail(dp-sdy)+ZBs+C41{dq:sdx)+E =
dx dy
. dp dp | dq , pdy, .
i.e., {A{ ] ZB( ) +C}- {A Iy + Cdx + de} 0 (1.4.3)
Now if we choose'g§-, the tangent to [ at a peint V(i,y) to
satisfy
A(—X) 2% = 0 (1.4.4)

dx



then along these two lines (i.e. the two roots of the first bracket of
1.4.3) - - the partial differential equation reduces to the ordinary

differential equation

dp dq _ dp , dy _
Age oo+ O+ % 0 (1.4.5)

giving the relationship between the total differential dp and dq with
Tespect to x and y.

The roots of the equation (1.4.4) are called the characteristic
directions of the differential equation which can be used for step-by-step

integration.
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1.5 APPROXIMATE SQLUTIONS

As mentioned before, the majority of partial differential equations
cannot be integrated analytically. In these cases, it is necessary to
employ some method of apprbximation. There exist many different approximate
techniques, such as fintte differences and finite element methods for solving
partial differential equations.

‘ Finite difference methods are still far and away the most widely used
and understood for evolutionary problems. Although this is less true for
parabolic equations, where finite element methods are increasingly important
however, the finite difference methods remain as simple and flexible general
purpose tools (Morton, K.W., 1877, p.700).

This thesis deals with finite difference methods where applied to solve
parabolic partial differential equations, which shall be given in the next

chapter,



1.6 MATHEMATICAL BACKGROUND IN MATRIX THEORY

Notations
A square matrix of order n
ai,j number in the real field which is the element in the :i.th TOW,
and jth columns of the matrix A, If ai,j are themselves
matrices, then A is called a block matrix.
Awl inverse of A

AT or A* transpose of A

AH conjugate transpose of A
|A] determinant of A
p(A) - spectral radius of A
I unit matrix éf order n
0 mull matrix
X column vector with elements x; (i=1,2,...,H)
x complex conjugate of x
Al norm of A
llx]|  norm of x
Definitions

1.6.1 The matrix A is
1.6.2 diagonal if its only non-zero elements lie on the diagonal
1.6.3 non-singular if Det(A)#0
1.6.4 symmetric if A=A’ (a. .=a. ., i,j=1,2,...,n)
1,] 7,21
1.6.5 orthogonal if A™1=AT
n
1.6.6 diagonally dominant if lai if 21 Iai j[’ for all 1gign
3 j—}- 3
j#L
A is said to be strictly diagonally dominant if the strict inequality

holds for all lgign in (1.6).

11
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1.6.7 A 1s Hermitian if AH=A.In terms of scalars A is Hermitian if and

only if a, .=a. ..
1,3 J».2

Since this implies that a; 4= (a

. . is real), hence the diagonal
i,

i,i
elements of a Hermitian matrix are real. A real symmetric matrix is always

Hermitian, but a Hermitian matrix is symmetric only if it is real.

1.6.8 If A is real and x is complex, then A is posttive definite if
(x,Ax) > O for all x#0
n
(N.B, if x and y are complex then (x,y)= I xiygb. A is non-negative or semi

i=1
positive definite if (x,Ax)>0 for all x#0 with equality for at least one x#0.

1.6.9 A is a band matrix of bandwidth w=p+q+l if a; j=0 for j>i+p or i>j+q.

Many problems (e.g. boundary value problems) result in sparse linear
systems, where the non-zero elements are located in a band centered along
the principal diagonal. If p=q=1, then A is tridiagonal and a pentadiagonal
matrix can be obtained when p=q=2.

Here we state an important theorem (without proof) which is sometimes

used as a definition for positive (non-negative) definite matrices.

1.6.10 Two matrices A and B are called commutative if AB=BA. They possess

the same set of eigenvectors,

Theorem 1.1

A real matrix is positive (non-negative) definite if and only if it is
symmetric and all its eigenvalues are positive (non-negative, with at least
one eigenvalue equal to zero),

If A is positive definite therefore, it can be written as A=sH !

where J is a positive diagonal matrix (H.IFH_1 is the Jofdan canonical form of

A), It is known (Young, 1971, p.16) that, H can be taken to be an orthogonal
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matrix (i.e. HT;H-I). If Ji denotes the diagonal matrix whose elements are

the positive square roots of the elements of J, then A!=HJ£H-1 is positive
2_ .4

t

definite by Theorem 1.1 (Hence (A®) =(HJ H-1)2=A is obtained).

Theorem 1.2
A real symmetric matrix A is positive (non-negative)} definite if and
only if it can be written in the form‘A=PTP where P is some non-singular
(singular) matrix.
Proof:
i} Assume A=PTP (|P|#0) then for any vector V{0
VIav = VTPTpv = (P0)TPY > 0 > A is positive definite.
ii) Let A be positive definite (and real). Since A=A£Ai and Aé is
symmetric therefore A=(A£)TA£. As Ai is also positive definite
]A£|#0, Thus putting P=Ai gives the required condition. (The proof

of non-negative can be done in the same manner).
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1.7 VECTOR AND MATRIX NORMS

For the purpose of quantitatively discussing errors, it is convenient
to associate with any vector or matrix a non-negative scalar that in some
sense measures its magnitude. Such a quantity will be called a norm. The

most common vector norms are special cases of Lp-norms which follow:
' | ‘ 1
Hxll, = UxgPelxy[Peelx [P 1gpes

The Euclidean norm is obtained when p=2 and the maximum norm is the case

when p=< i.e., n 2.1/2
IEIPEEREA /
1:

Hxll, = sup x|
lgign
For any vector norm, there exists a consistent matrix norm. Such a norm

is given by the matriz-bound norm subordinate to the vector norm (G. Dahlquist

1974, p.175), i.e, . ”A-xll
| [JA]] = max -
xf0 ||x}|
which is equivalent to
Hall = max j[ax]|
Hxll = 1.

The matrix norm subrodinate to IIEJ]P is denoted by [IA]IP as follows:

1al] = max T lag |
S
]]Allz = (max eigenvalue of ATA)i
and : [{All, = m;x Z[ai,jl'
J

The maximum vector norm {|x|| and its subordinate matrix norm |[A]]
aie very often used as they have the advantage of being very simple to compute,.
The vector norm must have the following properties:
i) [{x[]>0 if xf0,
ii) |lex|]=la] ||x]]|, a is scalar,

i) eyl szt



If a matrix and vector norm are related such that:
[lax|| < HAll.llx[]  for any A and x

then the two norms are said to be consistent or compatible.

15



1.8 EIGENVALUES AND EIGENVECTORS OF A MATRIX

The eigenvalues Ai and eigenvectors X, of A satisfy:
(A-AiI)Ei =0 Eifo
i.e. the eigenvalues of A are n-roots of the characteristic equation
P,V = |AAI] =0
where pA(A) is a polynomial of degree n.
The maximum eigenvalue Ai’ i=1,2,...,n is called the spectral radius

of A and is denoted by p(A).

Theorem 1.3 (Gerschgorin)

Let A have n eigenvalues Ai, i=1,2,...,n, Then each Ai liesin the union

of the n discs n
| |28y 1l € 7y 7y 0 j§1|ai.j|
in the z-plane. j#i
From the Gerschgorin Theorem we obtain,
p(A) ¢ min(max § |a. .|, max Jla, .|
i J 1,] J i 1,]
Proof
For any A the following inequality is satisfied:
I =l = [x]] = Hax] <] [al].Hx]]

which indicates that:
p(A) s ||A|| for any norm

(N.B. m?x g Iai,j|=||A||1 and m?x E 'ai,j|=[|A!lm)'

Theorem 1.4
If A is symmetric, diagonally dominant matrix with positive diagonal

elements, it is positive definite.
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Proof

Since A is symmetric, the eigenvalues of A are real. The application
of Gerschgorin's theorem indicates that the eigenvalues of A are all
positive since A is diagonally dominant with positive diagonal elements.
Therefore according to theorem 1.1 A is positive definite.

In our new developments such matrices occur frequently.
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1.9 CONVERGENCE OF SEQUENCES OF MATRICES

The matrix A is'convergent to zero if the sequence of matrices A,AZ,AZ

converge to the null matrix O, (Mitchell, 1976, p.15).

Theorem 1.5
1im AT = 0 if  ||a}]<1.
b anay
Proof
1TAT11 = 1a A7 slal AT s Al 2 AT 2 s . el [a)

Hence the result follows. This is a sufficient condition but not necessary.

The following theorem states the necessary and sufficient condition.

Theorem 1.6
lim A¥=0 if and only if Ili|<1 for all eigenvalues Ai of A. For proof

see Mitchell, 1976, p.15.

Theorem 1.7

Let A be an eigenvalue of A with eigenvector x. Then

1. aX is an eigenvalue of cA with eigenvector Xx,
2, A-y is an eigenvalue of A-ul with eigenvector X,
3. if A is non-singular, then A#0 and A'I is an eigenvalue of A-l with eigen-

vector X.

Proof

The equation Ax=Ax implies that oaAx=oix and (A~uI)x=(A-u)x. This
indicates part 1 and 2. For part 3, note that A=0 implies Ax=0.x=0. Hence,
the homogeneous equation Ax=0 has a non-trivial solution and A is singular.
Since A is assumed non-singular we must have A#0. Then Ax=3x implies that

1

A x=1"1x (G.W. Stewart (1973), p.266).
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1.10 THE EIGENVALUES OF SOME COMMON MATRICES
The eigenvalues of the {nxn) matrix

NE ]

~ ® (1-10.1)

™
~ N
0 ~

4

~

~
¢ a

where b and ¢ are both real and have the same sign and a is real or
complex, are given by

- im .
Ai = a + 2vbe cos(E:T) i=1,2,...,n. (1.10.2)

If A is a (nxn) cyeclic tridiagonal matrix, i.e.,

ESR c|
c a b
~ N \\ 0
~
A= NN O (1.10.3)
~ ~
0 ~"«< b
b T af

then the eigenvalues are given by

i=0,1,...,n-1.  (1.10.4)

il

A, = a+2vbe cos(giﬂa
i n
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1,11 NUMERICAL SOLUTION OF A SYSTEM OF EQUATIONS WITH SOME SPECIAL MATRICES

Given the system of equations

Au=f (1.11.1)
where _ _
a; b
¢y 3y by 0
b ™ \\ .
Y ~ ~ Y -
A= TR (1.11.2)
R “bn 1
. - -
0 S c T a
b— n —

then the solution can be obtained by successive subtraction of a suitable
multiple of each equation from each succeeding one, which changes the

system to a simpler one,

Let b1 bi
MTaE b YiT & (1.11.3)
1 1 1i-1
f f.-c.g.
=21 . = i _i7i-1
and 8 " a3, ¢ i © 3. c.w, (1.11.4)
1 i "i'i-1

i=2,3,...,n.

The components uy of the solution vector u are then given recursively

by:

3 U. =

: i=n-1,n-2,...,1. (1.11.5)

. -W. .U,
g1 i i+l

This is an algorithm which is used very often,

_ 1\
Another algorithm which is frequently used is the system (1.10.1)

where — _
a, b c1
¢, 2, by 0
\.\ \\ ~
A= RN (1.11.6)
~ \\ \\
0 \\\\\ ~b -1
bn ~C a

Then the solution can be obtained in a similar manner:



Let

and

n
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by
& “acrn
R B LS
ci.h._1
h, = a——_cl_ (1.11.7)
R e L5 8 |
f.+c.h, 1
k; = EiféL‘L:‘ , i=2,3,...,n-1.
i 3851
G = 8518
By = Hi 1764
F, = F,_,*6 k| i=2,3,...,m-1,
=G =0 H
n n

Hoy- (Gn-1+cn)(gn-1+hn-1) ;

I1=-

-

= F 1+(Gn-1+an)fn-1 ’

The components u, of the solution vector u are then given recursively by

(Gane, 1974, p.70).

u
n

k
=0 ; u, = k.+g..u. .+h.u , i=n-1,n-2,...,1.
l-ln i i 21771+l i n’
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2.1 PARABOLIC EQUATIONS

The parabolic partial differential equations usually arise from
mathematical descriptions of time-dependent or evolutionary processes; the
solution of such equations can be thought of as evolving as time increasés
from a given initial state under the influence of certain boundary conditioens,

The equations arising from diffusion in an isotropic median, heat
conduction, boundary layer flow over a flat plate, and many others are of
parabolic type. (Watt, 1978, Current Problems and Methods in P.D.E.s, Chapter
7).

A linear parabolic equation is often written in.the alternative form,

2
au _ 3u 3 u
- f(t,x,—ax,———axz) : (2.1.1)

As a typical example of a parabolic equation, consider the diffusion or
heat conduction problem, which in general may be given in self-adjoint

form, Ju _ ] Ju
a(xst’u)ﬁ = g(x,t,U)""é';[k(X,t,U)‘a—i“] H (2-12}

where 2(x,t,u) is the heat capacity, g(x,t,u) is the source term and
k(x,t,u) is the conductivity. The domain of solution for a parabolic

equation usually has one of the forms illustrated below.

A ]
0 1 0 1 %x
(t;X) €(0,0)%x(-=,=) | (t,x) €(0,=)x(0,1)
(a) (b)

FIGURE 2.1.1
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The case (a) leads to a purely initial_value (Cauchy) problem, with
initiél values given as:
u(x,0) = f(x) for t=0 and -w=<x<= . (2.1.3)
The second case (b) is an initial-boundary value problem, where the
initial and boundary values are,
u(x,0) = £(x)} at t=0, and Ogxgl (initial condition)
al(x,t)u+b1(x,t)%§-= cl(x,t) at x=0Q and t>0 (2.1.4)

Ju N
az(x,t)u+b2(x,t)§§-= cz(x,t) at x=1 and t>0

The usual conditions satisfied by the coefficients are:

ale, blso and azao, bzao s _ (2.1.5)

(Mitchell, A.R., 1976, p.18)
As a specific example, let us consider the case of diffusion or linear
heat flow in one space dimension. If x denotes a coordinate along the
length of a thin insolated bar in which heat can flow, and if u{x,t)
denotes the temperature at position x, fime t, the temperature satisfies

the differential equation,

a(x,t)ee = Lk (x,0)23] (2.1.6)

where a(x,t} is the heat capacity of the material per unit volume, and
k(x,t) is the thermal conductivity, (Richtmyer § Morton, 1967, p.4).

The equation (2.1.6) is linear with variable coefficients, but if we
allowed a(x,t) and k(x,t) to vary with the temperature (a=a(x,t,u),
k=k(x,t,u), then (2.1.6) becomes a non-linear equation. However, if a and
k are constant coefficients, we obtain the simplest non-trivial member of
the class (2.1.1) which is frequently used for analytical study, i.e.,

2

Ju 3 u
2

A ot Ix

(2.1.7)

The analytical solution of (2.1.7) may be found by separation of

variables. Assuming a solution of the form u(x,t)=X(x).T(t) leads to,
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1 T _ 1 3%x
T 93 X 72
X
. 2 .
A solution of this equation is u(x,t)=elsx.e-S t which reduces to e>>F for

t=0. (Stephenson, G., 1974, p.47).

This result indicates that, the solution has an exponential decay
component in the t-direction. However, if a source term is present, the
characteristics of the solution may be different. We shall be considering

such a problem later when we are dealing with non-linear equations.
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2.2 FINITE DIFFERENCE DISCRETIZATIONS

| The finite-difference method for the solution of partial differential
equations is based on the use of finite-difference approximations for
derivatives. It consists of three steps:

i} The solution domain is divided into a grid of '"node'" points. This
grid is uniformly spaced, and its shape reflects the nature of the
problem and its boundary conditions.

ii) The governing partial differential equation is written in terms of
the most convenient coordinate system available and is transformed
into a partial differential equation by means of finite-difference
approximations to the derivatives involved.

iii} Obtain the solution of difference equations at all the grid points

by a suitable method.

Although this three-phase process may seem simple, considerable variation in
grid types, grid sizes, partial differential equations, finite-difference
approximations to these equations, the problem of consistency in approximating
the continuous problem by a discrete problem, convergency of this approximate
solution to the exact solution makes the topic of computer solution of partial

differential equations an extremely diverse and interesting study.
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2.3 INTRODUCTORY DISCRETIZATION THEORY

In generai, to solve an initial boundary value problem, one associates
a discrete problem to it, which can be solved by elementary algebraic
manipulations (Van der Houwen, 1968, p.4). Hence we define the discrete
analogue of an initial-boundary value problem.

Consider the equation (2.1.7) in a domain of the following shape,

. J

u(0,t)=y(t) — 3t

insclated

a

J
\\\\\\T\\\\\\\\\\\\

%iE

> X
0 1
u(x,0)=£(x)
FIGURE 2.3.1
au_ 2%
at axz
initial values: u(x,0) = £(x} t=0, Ogxgl , (2.3.1)
boundary values: u(0,t) = g(t) t>0, x=0
(2.3.2)
2u(l,t) | 0 t>0, x=1
o X
(N.B, §E%§i51-= 0, means no heat flow at the boundary x=1).

First we replace the continuous interval [0,T] by a discrete set

{tj|0=t0<t1<...<tM=T} where we denote Atj and At by:

Atj = j=0,1,...,M-1

tj*’l‘tj

AT = max Atj 0gigM-1.

J
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Together with the set of {tj}?=0' we take a finite set of points

{xi|0=xo<x1<...<xN=1} and in the same way as AT, we define

Axi = xi+1—xi i=0,1,...,N-1,
AXx = max Axi OgigN-1.
i

The set of nodes composed of the intersection of the set {tj} and {xi} creates

a rectangular grid which we denote by D(h) and it is illustrated in Figure 2.3.2.
t
'y
T s s
’/”,,p(x-(1+l)Axi,T-(J+1)AT
P
/”/’,
i1
! 4
AT
L 4
0 i+] €A x=1 >x

FIGURE 2.3.2

The rectangular grid D(h) is the most commonly used grid system for partial

differential equations. However, in many engineering problems where other
coordinates rather than Cartesian are imposed (e.g. cylindrical, polar,
spherical), a grid of different type (ng. circular, triangular, etc.) might
be more applicable.

In our analysis, we concentrate attention on the first type of grid
considered above {Figure 2.3.2), and without loss of generality, we denote

Axi and Atj to be constant which are defined by h and k respectively.
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The next step is to obtain an approximation form associated with the
partial differential equation. Let u§=u(iAx,jAT) be the exact value at the
point (X=iAx,TEjAT),rwhere the approximation to pi is denoted by Ui. Cne of
the simplest difference equations approximating the differential equation

(2.1.7) is,

J*1_y3 s P I - -
Ui Ui i Ui-l 2Ui+Ui+1 i=1,2,...,N-1 (2.3.3)
AT Ax2 j=1,2,...,M-1
where Ug=f(iﬂx), Ug and U% are given,

To find (2.3.3) we use Taylor's expansion, assuming sufficient
differentiability for the solution at the point (X=1AX,T=jAT) with respect

to x and t:

u(xeh,t) = u(x,t)+h 2, L 2u Mo du h du, 435
x "2 YT . 3T 3
ax X X
2.2 3.3 4 4
u(x-h,t) = u(x,t)-h B P du=h du h 3w 45 (2.3.4)
5x T2 2 3T .3 AT .4
ax 3x 23X
2.2 .33
u(x,t+k) = u(x,t)+k 2L . X 3w (Ko du 504
3t 2T 2 T3 3

Therefore, by some algebraic manipulation we obtain:

2 3%  nt st 6
u(x+h,t)-2u(x,t}+u(x-h,t) = h —~%—+ Tﬁ'_*% + 0(h™)
ax 3x
(2.3.5)
u k2 32u k3 83u 4
u(x,t+k}-uf{x,t) = k EE'+ STtz 3 * 0k ) '
. oAt o3t

where as mentioned before, h=Ax and k=AT.
Using the result (2.3.4) and (2.3.5) in the equation (2.1.7), and

the abbreviations ui,uiﬂ,uJ 12t for u(x,t), u{x+h,t),u{x-h,t),... we have,

wl*t -
1

3uy k".3"u h” 3'u

(1-2 k/h Ju + (u )+ k( -2 (= -

h2 1+1 1 -1 at2 2 Bt2 6k 3x4

3.3 4 6
IR LI 2}+ e (2.3.6)
at 60k 2
By simplification of (2.3.6), bearing in mind that (-—-- E——J is zero

Bx

in the given domain, we obtain



3
Y Yiel

where p=k/h2. In formula (2.3.7), the term 0(k2+kh2) states the order

2 .2 2 .4

of the locai truncation error with the principal part 5;{3 > - E—'Q—EJ
2 atz 6k ax4
stated in (2.3.6).

The fofmula (2.3.3) is obtained from the truncated form of (2.3.7)
where Ui denotes the approximate value of ui, and it is called an explieit

P R : : j+
finite-difference scheme, since it expressed only one unknown value of Ug 1

at the advanced time directly, in terms of known values of the previous time

Ievel (Figure 2.3.3).

The equation (2.3.3) is sometimes called a forward step finite

difference equation.

v
»

A O i-1 i i+l

FIGURE 2.3.3

30

1+1 = (1_2p)ui+p(ui_l+ J )+0(k2+kh2), (2.3.7)
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2.4 CONVERGENCY
By solving the purely algebraic system of equations (2.3.3) as an
approximation of (2.1.7}, two questions may arise:
1. Does the approximate SOlutioh approach the exact solution of the
differential equation when h and k tend to zero? |
2. Is the numerical difference scheme stable? In other words, what
is the behaviour of the round-off errors when they are transmitted
forward? Are they amplified or diminished during transmission?
To answer these questions, we shall consider the role of the Local Truncation

Error (in abbreviation we call it L.T.E.).

Definition 2.4.1

The value l|ui-Ugll which represents the difference between the theoretical

solution of the differential and difference‘equation at a grid point (X=ih,

T=jk), when ||.|| is a suitable norm, is called the discretization error.

Definition 2.4.2

A difference scheme is said to be convergent, if the discretization error

converges to zero as h*0 (h and k are related), (P.J. Van Der Houwen, 1968, p.8).

As an example of the convergence analysis for a difference formula, we

turn to the explicit formula (2.3.3), introducing

N JTS
2y = uy-Uf (2.4.1)

The value of z; satisfies a difference equation which can be obtained by

subtracting (2.3.3) from (2.3.7) i.e.

3+l _ 0 3 b j 2.,.2
2 T o= (1 2p)zi+p(zi_1+zi+1)+0(k +kh™) . (2.4.2)

2 4
If 3—% and-a%f in the principal part of L.T.E. remain bounded, we find
at 3x

by taking the modulus of (2.4.2) that,
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o . . o
23*H splzd, [plz]_ I+(-2p) |2d [+ak®sk.n?) (2.4.3)

Let ||zj||= max]zi| and suppose 0<pgl/2, then (2.4.3) becomes,
i

2221 < 12 HaoPan?y
Since the exact value ui and the approximate value Ui have the same

magnitude on the initial line, I|z°||=o, i=1,2,...,N-1. Therefore,

Hz ] s 1120 [sacekn?) = agZan®

112%]] < |12} ]+axn?) ¢ 2a0%+nd)

H2M ) s 112 ea®kn?) ¢ Ma®exn?)

where k is denoted by T/M. Thus we obtain the result

1im ||| ¢ 1im TAG+h®) = O (2.4.4)
h0 h=0
k-0 k+0

Consequently, under the condition Ospsl/2, the approximate solution
(2.3.3) tends to the exact solution of the differential equation
(2.1.7), upon unlimited refinement of the grid i.e. h*0 and k»0 (at a
fixed point, which means k and h are related as k=p.h2).

However, Ogpgl/2 is a severe restriction on the time step in the
explicit formula, and it is a necessary condition for convergence. In
a later section where the stability of a general formula is investigated

we demonstrate how p>1/2 causes divergency.
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2.5 CONSISTENCY
Here we concentrate on the condition for which a discrete problem is an
approximation of the continuous problem. This is called the consistency
problem. Let us first give a more general definition of an initial-boundary
value problem,
Suppose we are required to find the solution of, .
L(w =0 ’ (2.5.1)
in a region 0={0<x<1}x{0<t<T}, with initial condition
u = uo(x) for t=0 (2.5.2)

and the boundary conditions
u(0,t) = ¢,(t) x=0 >0

(2.5.3)
u(l,t) = ¢2(t) x=1 t>0
3 32
where L is a linear operator (in (2.1.7), L=§E - L could also be
X

a non-linear operator). Let Lh denote an approximation to L on the grid

net as shown in Figure 2.3.3.

Definition 2.5.1

The difference scheme Lh(U) is said to be consistent with the

initial-boundary value problem (2.5.1)-(2.5.3), if
IILh(U)-L(u)ll + 0 as h*0 (2.5.4)

at each point (X=ih,T=jk) in region, where |[|.]] is a suitable norm.
The value []Lh(U}-L(u)||is called the error of approximation.

In practice, consistency in the sense of definition (2.5.1) is
easily verified. As an example, reconsider the initial-boundary value

problem (2.1.7), and the finite difference scheme (2.3.3). Thus,
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A Ry o W WRCY
HLh(U)-L(U)” = ”( K . hz )- ( 2)H =
X
2 .4
k
= |3 h 2R 24115 0 as w0, k=0(%)0,
ax
a2 2
provided —> and 2 are bounded at every point of the region. Therefore,
at X

for consistency of the difference approximation to a parabolic equation,

we require
Local Truncation Error
k

+ 0 as k,h=0.

As an example of an inconsistent difference replacement to (2.1.7),

we examine the well-known Du-fort Frankel scheme which is obtained as follows:

pitlod-l ol UJ+1 J-1,)
i il 1 i-1 2855
2k - h2 . ( - - )

This is an explicit three level scheme which is stable (we show the

stability proof later), and has

3 4 3.2
LTE = ¢k 28 Typflo o 2u, (2.5.6)
at x h™ 3t
L.T.E. 2%u X
Hence h;i;ﬁﬂ' (h) 2 as h+0, k=0(h)+0, and if Ho%s the scheme (2.5.5)
. at
is not consistent with (2.1.7), but with the hyperbolic equation
2 2
R of 28 (2.5.7)
X at -

However, if k»0 faster than h (e.g. k=0(h2)), then (2.2.5) is consistent
with the diffusion equation {2.1.7).
The consistency of a difference scheme does not guarantee the

convergence of the difference solution to the analytical solution,
j "

j-1
i-1 i i+l

FIGURE 2.5.1 f
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2.6 STABILITY

In the preceding sections we have discussed the convergency, and have
given the conditions for which a finite difference scheme is convergent. In
actual computations, however, one cannot construct the difference solution
exactly, as one is faced with the phenomenon of round-off errors which give
rise to a numerical solution ﬁg instead of the exact solution Ui at any point

(X=ih, T=jk}, (P.J. Van Der Houwen, 1968, pp.8).

Definition 2.6.1:

The value llug—ﬁi[| i.e. the difference between the exact and numerical
solution of a difference equation is called the numerical error.

In practice, one would of course, like this value to be small.

There are many definitions of stability (see P.J. Van Der Houwen, 1968,
p.10) . that are used in parti;ular circumstances, but the basic idea is finding
the conditions under which the numerical error, with increasing j, tends to
zero uniformly for all OgigN (or at any rate remain bounded). We shall be
investigating these conditions below.

Together with the differential equation which is given in the operator

:'EOITI'I :

L{u) = £, (2.6.1)

¢,

"~ with some boundary conditions &(u)
we consider the difference equation, which is applied to obtain the

approximate solution, given in the symbolic form,

h., _ (h)
L) =1 (2.6.2)

b WY = M

¢ >
is the solution of the difference equation, Lh and Eh are the

difference operators associated with the difference scheme and the boundary
() 4 ()

n

(h)

where U

condition respectively. The index (h) attached to U and emphasizes
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that these functions are not defined over the entire intervals but only at the
points of the difference grid of step h (Godonov § Ryabenki, 1964, p.31)}. As
we already assumed, k 1s defined in terms of h, so that the grid depends only

on one parameter,
The basic idea of stability consists of considering a complete set of

. _ j j=l,2""’M
solutions U‘{Ui}i=l,2,---’N'1

differential equation together with its boundary conditions and a perturbed

X . L~ g §s1,2,... M
set of equations with the solution U {Ui}i=1,2,...,N-1'

originating from the discretization of the

Suppose
L ®) - o0
~ (2.6.3)
and Lh(U(h)) = B(h) ’
(h)

where o and B(h) are associated with the right-hand side of (2.6.2) and
the discretization error of the boundary conditions and its perturbed form
respectively. It is important to remember that, when h decreases, the
number of equations increases.
We say the difference scheme is stable if in a suitable norm,
Hu®™ B < clla®™ g, (2.6.4)
for some constant C and for 511 values of h,.0<h<h0 (i.e., when the mesh
is refined)}. 1In other words a difference scheme is stable, if small
perturbations in the equations causes small perturbations in their solution
uniformly (i.e. does not depend on the point considered) for all small h,
In this analysis, we considered the whole region of the problem.
However, in an evolutionary problem, where step by step schemes are applied,
it is more convenient to simplify the stability discussion to each step
separately. To show this let the difference equation and the boundary
condition (2.6.3) be reduced to the form given by,
P s cmulakm, G6,), | (2.6.5)

1? is given.
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For equation (2.6.3) which now is given by (2.6.5) to be stable, we

require,

Hem ™| < kK, for m.ksT (2.6.6)
(Godonov, Ryabenki, 1964, p.160) and the requirement usually is
satisfied when

1o, ®-v, @ | s X [T . (2.6.7)
We shall apply this analysis to demonstrate the stability of a general
form of two-step scheme in the next sections. We also consider multistep
‘schemes (e.g. three level scheme) and define the amplification matrix which

can be used for stability purposes.
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2.7 A GENERAL FINITE-DIFFERENCE REPLACEMENT FOR PARABOLIC EQUATIONS

Before introducing the implicit finite-difference schemes, let us
describe the domain of dependence for the solution of (2.17) when the eiplicit
formula is applied for approximation.

As illustrated in Figure (2.3.3) the solution Ui at every point within
the triangle ABC can be calculated provided the values on the initial line are
known. Moreover, the knowledge of the boundary values on AB and BE is not
required. Therefore, the explicit schemes act as a hyperbolic equation with
two characteristics AC and BC. If we denote the slope of AC by tan® then,

1

tan 8 = E—= —— + = as h*0Q, p=const. (2.7.1)

i.e. 82+7/2 as h=0,
which simply means, the two characteristics AC and BE become the real
characteristic DE of the parabolic equation. Thus, the explicit method
for such initial boundary value problems requires small values of h and for
large h does not give a good model for the parabolic equation. On the
other hand, the requiremeht p=k/h2$1/2 for stability serves as a restriction
which increases the computation involved.

Consequently, inspite of the simplicity of explicit method, it is
desirable to establish a more efficient formula regarding the amount of

computational work,



2.8 WEIGHTED AVERAGE FORMULA

We now consider a family of schemes as follows,

ot

with finite-difference replacements:

AR 2 1 .2
4 i a1 j 8y L j+l
AT ahz 6, Ui *(1-9) 2 6 Ui

where 6 is a positive constant; 0=1 gives the explicit scheme.

dulx,t) e[—-———az“(j:”pu-e) U, by,
ax ax

39

(2.8.1)

Other values

of 8 give the implicit schemes. In particular, 6=0 gives the fully implicit

four-point scheme with backward time-step, and the six-points scheme with

centred time-step, or the Crank-Nicolson form is obtained when 8=1/2.

j*l -

i-1 i i+l

FIGURE 2.8.1

The L.T.E. of (2.8.1) can be easily verified by application of the

Taylor's expansion and is of order O(k+kh2), with the principal part as,

e otk e 2 S
2

12 "3t et

1 4

In the case 8=1/2, the second term vanishes and the L.T.E. becomes

2

Ok +h2) which is one of the advantages of the Crank-Nicolson scheme,

S20 L el (S
Ix ax 2 to X

(2.8.2)
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2.9 STABILITY OF THE €-METHOD

We can examine the stability of finite-difference schemes either by the
Fourier method or by matrix analysis.

The Fourier method effectively ignores the boundary conditions and as they
may affect the stability criterion, the matrix method is preferable (Fox, L.,
1966, p.234). However, we shall consider first the Fourier analysié for the
8-formula, and obtain the result for 6=0,1/2 and 1. This method considers the
growth of propagated errors of an initial line and expresses this erxrror by
Fourier series.

In the same manner, as finding the analytical solution of partial
differential equations (separation of variables) we can determine the solution
of the error propagation. (We use the complex exponential form rather than

the sinusocidal form for simplicity).

Let e/TT nnx

A /-1 i gyh
n

= A e
n

where Bn=nn and An is the Fourier coefficient. Let Ei denote the error at

each pivotal point on t=0, 0<x<1, therefore,

N /1 g, ih

E; = 1 A e i=0,1,...,N. (2.9.1)
n=0

The system (2.9.1) determines the (n+l) unknowns Ai uniquely. However,

in the case of linear finite-difference schemes, An can always be ignored

(Smith G.D., 1969, p.71) and we need to consider only the term e/:TBnlh.

To investigate the propagation of this error as t increases we need

V-1 B,ih

to find a solution of the finite-difference equation which reduces to e

when t=0. Such a solution which is denoted by E.i ; has the form,
]

B = e/:T Bx. eat e/:T Bx'ea}k - eJ:T-Bx

1,3

= g (2.9.2)

where £=eak, and a in general is a complex constant (Smith D.G., 1966,

p.71). If |&lgl then the error is bounded as t increases.
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Substituting (2.9.2) in the 0-formula, using central differences, gives

ea]k.e#fi Blh(eJk_l) - p.B.e—Blh.equ(e/:T Bh.euk-ZeGk+e-/:T Bh'eak) .

pﬁ_e)e/-_l Bih _okj (e/-T Bh_2+e-/:f Bh)
- . ak ak
(e” -1) = p.6.e (2cosBh-2)+p(1-6) (2cosBh-2)
or we can write,
euk[1+2p9(1-c058h)] = [1+2p(1-8) (cosBh-1)]
which leads to
L l-4p(1-8)sin’ ER
ak _ 2 :
= % . (2.9.3)
1+4p 6, sin >

For stability we require |eaklsl. Therefore the stability of (2.8.1)

depends on 8. If 6=0, we have the explicit (2.3.3), hence (2.9.3)

becomes,

k
e = 1-4p sin?-%? .

Thus stability is guaranteed if pgl/2.

If 8=1, we obtain the implicit scheme and for p>0, the stability

is unrestricted. For 8=1/2, we have,

. 2 gh

eak ) 1-2p sin >
= Tk

2

1+2p sinm

which also implies that the Crank-Nicolson form is unconditionally stable.
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2,10 STABILITY BY THE MATRIX METHOD

As we mentioned above, boundary conditions are ignored when the Fourier
analysis is used for stability, while in matrix method, the effect of
boundary values are included automatically.

We now consider the expanded form of the 6-formula (2.8.1), i.e.,

'+1 .+1 l+1 ’ - L) -
-pBU§_1+(1+2pB)Ui -pou) p(l-S)Ui+1+[1-2p(l-B)]Ug+p(1-9)Ui_1

i+l

1=0,1,...,N. (2.10.1)

For i=0, we have

-peUfI1+(1+2pe)Ug*1+peUi+1 = p(l—B]Ui+[1-2p(l-e)]Ug+p(1-B]Ui (2.10.2)
and for i=N, (2.10.i) becomes,
-Pelgii+(l+2p@lﬂsliﬁﬂ£:}=p(l-e)Ui+1+[1-2p(1-3)]u%+p(1,6)ug—1 (2.10.3)

Suppose the boundary values are of the mixed type, i.e.,

Ju _ _
alu+b1 I c1 at x=0
t>0 (2.10.4)
a.u+b 22-= c at x=]
2 2 2
which can be replaced by
j+l _j+l
. U =-U . a . . c
+1 1 -1 _ j*l _ 5, 1, §+1 .3+1 , "1
aIU% +b1 T =c; - U_1 = 2 bl h.U0 +U1 2 bl .h
(2.10.5)
J+1 . 3+1
s U =U . a . . c
j+1 N+1 °N-1 _ I+l 5 2 3%l 0l L, "2
a Uy by T = ¢ P Ujyy T 2 5, h.uy 1¥0y.1*2 b, -h

Therefore, for all the mesh points (2.10.1) can be written in the

following matrix form,
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T+2p0(1- ) -2po T R 7341
1
-po 1+2p6 -pb U
~ 1
~ N ~ 0 1
~ . -~ - ~ i
- \\ ~ ~ !
h ~ \\. ~ ' -—
~ - ~. ~ . , =
0 ~ N ~. . "'pe UN-].
~ “ ~ 3,2
~-2p8 1+2p68(1+ =h) U
b, N
— 4 =
_ a, _ s _Cy
1-2p(1-6) (1- $=h) -2p(1-6) U, ] - 5=
1 1
-pb 1-2p(1-8) -p(1-9) 0 U, 0
~ ~ I
* -~ ~ ~ ~ ~ 1 t
~ . . ~ ~ ~ - : +2ph '
~ S ~ - | 1
~ ~ > ~ > -~ ! :
-~ L
N -p(1-6) ) 0
0 N S - N-1
h y 32 )
-po 1-2p(1-8) (1+ $=h) | |Uy | o~
- 2 - L - ’2...
(2.10.6)
The matrix equation (2.10.6) might be expressed in a more compact form as,
(1-peB) Wt = (Tep(1-6)B)U +2ph.b (2.10.7)
where
-2+ E— 2
1
1 -2 1 0
.\ ~
B = SRR (2.10.8)
~ > ~
0 N 1
~
a
2 22
— 2 -

and I is the unitary NN matrix, b is the constant vector shown in (2.10.6).
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It can be seen from (2.10.8) that diagonal dominancy of B requires the
conditions (2.1.5) to be satisfied which was mentioned earlier.

In the case of the implicit form (i.e. 051), one is faced with a system
of algebraic equations to solve. Fortunately, this system is of such a
simple nature that a very elementary procedure i.e. the Gauss-elimimination
method can be conveniently applied.

The formula (2.10.7) can also be represented by

| ™o s kv (2.10.9)
where C=(I-p93)-1(1+p(1fB)B] and y= %{I-pBB)-IE_(as was mentioned in
(2.6.5).

Consequently, for stability of (2.10.4) to be satisfied, we need the
norm of C to not exceed the value unity. If the eigenvalues of C are denoted
by li and the eigenvalues of B by Hys then by the Theorem (1.7), we can write,

1+p(1-8)u,

- i
Ai - 1-pdu
PUMy

For the matrix B and the Dirichlet boundary conditions, it is shown (Lowan, A.N.,

2 ith

1957, p.81) that, pi=—45in N

, i=1,2,...,N-1, hence,

1-4p(1-8)sin> 1ML

2N
- . 2 imh
1+4posin N

A,

; (2.10.10)

thch is an identical result to (2.9.3) obtained by Fourier analysis and
-hence, the stability is unrestricted for ogl/2.

It is important to notice that, although the p-formula is sable for
8¢1/2, for any p, we still have to choose the step lengths h and k small
enough to obtain a reasonable accuracy, i.e. to make the truncation error
for the finite-difference method negligible (Walsh, J., 1966, p.109}.
Application of large timé—step not only distrubs the accuracy, for some
schemes (e.g. the Crank-Nicolson formula) but also causes a jump in the

solution which is called the noise effect. This will be investigated later.
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2.11 EQUATIONS OF INCREASED ACCURACY

The principal criteria of any finite-difference scheme, for the numerical
approximation of.an equation, are as follows:

1. Stability

2. Order of error of approximation

3. Simplicity (Saul,yev, 1964, p.83).
. So far we have discussed the problem of'stability and it has been shown that,
stability almost always leads to convergency (or at least in some sense, e.g.
Richtwmyer. § Lax stability gives convergence)}. However convergence may be of
various degrees. Slow convergence requires more computational work and is
impracticable whilst rapidly convergent processes need less arithmetical
operations, hence are more desirable. Therefore, the speed or order of the
convergency is important.

Let L{u)=0 denote a differential equation, with the corresponding finite-
difference scheme Lhﬁlg)=0. Then, for a sufficiently smooth function v(x,t)
satisfy the equation L(v)=0, the expression .

Lh(vi) = 0% (0>0) (2.11.1)

denotes that the order of the error incurred by épproximating the operator
L'by Lh at the node (ih,jk)lis ¢, for the class of function satisfying the
equation L{v)=0 (Saul,yev, 1964,p.84).

As a general example, suppose L(u}=0 is the 6-formula with the finite-

difference replacement (2.8.1). Therefore,

4.3 j 2 4 3

i 2 V. vy, b T 2 v,
jy . b 3 i ko3 i i h 1. ) 2
Lh{vi) - 12 ax4 + 2 t [ at -2 axz ] +B 2 {atzax"z]"' sa e = 0(k+h )

(2.11.2)

If k=0(h2), then (2.11.2) indicates that the 6-formula has accuracy
of O(hz). However, 8=1/2 (i.e. the Crank-Nicolson scheme) gives rise to
a more accurate form which is 0(K2+h2) for any k. Thus, as far as the

accuracy is concerned, the Crank-Nicolson scheme is more desirable, simply
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because one can apply a larger time-step and reduce the amount of
computational work. But as was mentioned previously, large time-step causes
the noise-effect which is an obvious drawback for the Crank-Nicolson scheme.

There are some alternative approaches fo obtain accurate difference
schemes, which can be expressed in the following classifications.

a) Impiicit schemes with choice of certain parameters

b} Alternating methods and extrapolation

¢} Multi-level schemes.

We shall explain these methods and present examples of finite-difference
equations illustrating each of the aforesaid types.

In the first category we have:

i) Formulae with higher order central differences

One method for attaining a higher order of accuracy (i.e. larger o) is
based on the introduction of additional nodes in the approximation for the

derivatives in the equation L(u)z0. As an example, consider the second

2
derivative Ewg , which can be expressed as:
X
ity . P11 .25 1 45 . 1 63
u » — - - e =
ax2 = ax2 h2 (s ui- i3 8 U * 59 8 up + ees) (2.11.3)

where GZLui (2=1,2,...) are the standard central differences of even order.

Substitution of (2.11.3) in (2.1.7) results,
J+1_ 3
AN 121

j
- u;

D) i
(2.11.4)

6 oo-+L

1-1 2
6 0("1) {(1'1)!] 529’)

The formula (2.11.4) reduces to the simple explicit scheme when 2=1. -~

For £>1, one needs more information to match up the central differences form
near the boundaries. However, the use of (2.11.4) indicates that, the order
of accuracy for L(u)=0 is G(k+h2£} but it worsens the stébility restriction

~ in the case of the explicit scheme i.e. for stability, it is now required,
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2 ,
k = f e (Saul,yev, 1964, p.89)  (2.11.5)

2(1+ 1z * §a-+...)

In the impliicit case, one obtains,

6

U;,'_+1 _ _15_(52 B -%—64 . -—]-'—6

i+l _ 3
2 : 550 ---)U3 ul (2.11.6)

which retains the unconditional stability of the method.

ii) Formulae with choice of parameters

Consider first, two unsymmetric explicit formulae of order O(h) which

have been introduced by Saul,yev, 1964, p.31

j+l _ 1 i+l i i j

% % e [“‘%_1*(1'“)‘%_1*@“ (2-w-a)U;] (2.11.7)
and

i+l _ 1 341 j i j

Ui = o [“”i+1*(1'“)ui+1+Ui_1 (2 m—a)lk] > (2.11.8)

where m=1/p=h2/k, Ogagl.
The template of (2.11.7) and (2.11.8) are shown in Figure (2.11.1) in

(a) and (b) respectively.

je1¥ 7
(2)
j x
i-1 i i+l
° X 41
(b)

X
Cde

i+l

[N
1

—

=)

FIGURE 2.11.1
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As can be seen (2.11.1a) can be applied from left to right and (2.11.1bH)
from the opposite direction.
A combination of (2.11.1a) and (2.11.1b) gives rise to an implicit

equation of the form,

[H]

2 j TS L G, £ | J*l o, j j J_
2h Lh(Ui) a(Ui_1+Ui+1)+2(m+u)Ui (2 a)(Ui_1+Ui+1)+2(2—m-a)Ui =0

(2.11.9)

The equation (2.11.9) is equivalent to the 6-form for a=20.

Theorem 2.1
If the solution of (2.1.7) has derivatives up to eight order which are

bounded in absolute magnitude throughout D, then the following relations hold

in D:

0om®)  if  ofl-u/, axl-w/2 |
L(ui]—Lh(ug) = domYy  if  ocl-ws, of2/5 (2.11.10)
ow®)  if  a-l-w/B, a=2/%

where u is the solution of (2.1.7) and L(ug) and Lh(ui) are the differential

and difference expressions respectively.

Proof
In the proof, we shall consider two subjects:
i) Stability
ii) Accuracy.
For the investigation of the stability of (2.11.9), we use a matrix method.

Hence we write (2.11.9) in the following form,

5 el -l
AU = A > P =T

zlf (2.11.11)

where A1=-uB+2mI and A2=(2-a)B+2mI, B is a triangular matrix as given

before and I is the unitary matrix,
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2 v

Since the eigenvalues of B are Az(B)=~4 sin N £=1,2,...,N-1 therefore,
- A
Ag(Al] = 2w+4 sin N
and A (A) = 2m'+4(a-2)sin2 L 2=1,2 N-1
LY72 2N Py '
For the stability of (2.11.9) it is sufficient that,
A (A,) w+2(a—2)sin2 ol
"&TKET 5 1, (2.11.12)
Az 11 w+2asin N
or
. 24T . 22T . 2 &n
~w-2asin Eﬁ's w+2(a-2) sin N § w+2asin N - (2.11.13)

The right hand side is always fulfilled and for the left hand side, we’
obtain
2 2
LAl h

2(1l-a)sin” == £ w -+ 2(1l-0)gw~+k £ ETT:ET

5N (2.11.14)

which is the criterion for the stability of (2.11.9).

Thus, for any value of a, we have a specific value for w to satisfy
the stability condition.

For accuracy of (2.11.9)}, we can apply the Taylor series expansion in
the usual manner to replace the derivatives involved and having done that,

the following result can be obtained,

2 3+1
ﬂjj+1)—L(uj+1) - h2(6—6a—w) 3 Y3 - h4(120+w2~30m+15am-90a)
O3 i 12w " 3600
asuj+1
i 6
7 + O0(h") (2.11.15)
at

This is the formula to express the order of aécuracy, which in general,
is O(hz). However, if 6-6a-w=0, or a=l-w/f, then the accuracy of (2.11.9)
increases to 0(h4). Finally if for such a, we choose w in order the

following equation holds, 2
120+w -30w+15¢w~-90a = 0

i.e. w=2¥5, then the accuracy of 0(h6) can be achieved.
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Comment on formula (2.11.9)

1. For a=0, and w=6, an explicit equation of the form

pi*l - Lod wd 2 y3

i sVi-1*Yi.0) * 7 Uj

i (2.11.16)

is obtainable with an accuracy of 0(h4).

2. The stability restriction for the usual explicit equation is deduced
from (2,11.14).

3. For a=l-w/6, the eduation coincides with the Douglas method having an

accuracy of O(h”) if w#2/5 and 0(h®) where w=2/5.
A 2=1,2, ...
at* az'BtaZBx g=1,2,...

4. The identity has been applied to

Theorem (2.1) whilst it can not be extended directly to the variable

coefficient case or the multidimensional equations.

b: Alternating Methods and Extrapolation

As was mentioned earlier, the usual explicit and implicit finite-
difference replacements for a parabolic equation are accurate of 0(k+h2);

i.e.,

i+l 3 j i3
u.  -ul ur . =2us+u,
it o.al 1 L, O(k+h?) (2.11.17)
. h
and . . . . .
S N e K |
X = 5 + 0(k+h) . (2.11.18)
h

If we use equations (2,11.17) at alternate levels (e.g. use (2.11.17)
at odd levels and (2.11.18) at even levels), then the time-step k for even
levels can be taken comparatively large while for the odd levels where
(2.11.17) is applied, k should satisfy the stability condition k/h251/2.
However, these combinations can be shown by the following theorem to prove

otherwise,
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Theorem 2.2

The scheme
I g
. = 12 1 (2.11.19)
h
U?j+2_0?j+l U?j+1-2U?j+1+Uzj+1
i . i . _i-1 z i+] (2.11.20)
h

is absolutely stable, if the step k is constant or changes after an evén

number of steps (Saul,yev, 1964, p.24).

Proof
It is easy to show that the coefficient of stability for (2.11.19)

is
(1%45 sin2 2gh)-l
h

and for (2.11.20)

4k . 2 arh
(1 5 sin > )

h

2=1,2,...,N=1,

Accordingly, for any paired step, the coefficient of stability becomes:

1-4psin® 421

2 gmh ’
2

(2.11.21)
1+4psin

which has a modulus smaller thén unity for any value of k, h and 2.

One can also apply (2.11.19) and (2.11.20) at alternate nodes rather
than alternate levels. This is the Implicitly-Explicit method proposed by
Saul,yev (1964) § P. Gordon (1965), and it was called "Hopscotch" later by
AR, Goquay (1970), where in his paper, he investigates the full analysis
of the method and shows that it is a second order, fast algorithm for solving
partial differential equations. We shall be considering this method in detail
later.

Here, we show different combinations of (2.11.17) and (2.11.18) which

include some second order schemes. A typical example is obtained by taking
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average of (2.11.17) and (2.11.18), i

"

j+l
Yj i_1 C
k T2

-] o, -2U’+Uil olii-2ul el
5 + 5 ) (2.11.22)

h h

which is the well-known Crank-Nicolson scheme and as mentioned earlier,

is accurate to O(k2+h2)

The summation of (2.11.19) and (2.11.20) also gives the following

scheme, U2j+2-Uzj 23+1 2U23+1 2j+1
i Zk 1 = l-l 2 1+1 (2.11-23)
h

which for convenience we shall write in the form (j odd),

2=2j+1. (2.11.24)

This is the Richardson scheme and has an accuracy of 0(k2+h2] but
surprisingly it is absolutely unstable. (See next section).

The extrapolation method also has been applied over implicit formula
(2.11.18) in a recent paper by J.D. Lawson and J.L1.Morris (1977), where
the authors use a‘different analysis. Here we shall consider their method
(but before, we pay attention to the Crank-Nicolson scheme and describe
tﬁe notse effect).

First, let us consider the heat equation in one dimensional space,

]

du
2

where the initial and boundary values are provided in the usual way and a
uni form grid_is imposed in the region as before.

The replacemeﬁt of the second order derivatives by the central-
difference operator gives risé to the following differential equation

du 62x 2
F = —Zulx,t) + o) . (2.11.25)

h
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Equation (2.11.25) is then applied to all the interior mesh points to produce

a system of ordinary differential equations

G - T 7
ul N 2 1 u1
u 1 -2 u
2 \ 0 2
: \ |
4 ' \ '
= | ! +0(h%) (2.11.26)
I '\ i
I N
1 !
: | L
N1 L ] e
or
du
- Au(t) , (2.11.27)
where u is the approximation vector which corresponds to the exact
solution u(x,t)}. The solution of (2.11.27) is found to be,
u = exp(.A)u(0) (2.11.28)
where u(0)=£f(x) is the initial vector.
One can also write {2.11.28) in a step-wise fashion as
u(t+k) = exp(k.A)u(t) t=X,2k,... (2.11.29)

The Padé approximation may be applied to obtain the value u(t+k) and in
ﬁarticular the (1,1) Padé approximation leads to the following replacement
of (2.11.29),

I+3kA
£—u(t)
I-zkA

which represents the familiar Crank-Nicolson scheme.

E(t-l-k) = (2.11.30)

If we assume that the eigenvalues of A are Ai (Ai<OJ and the

corresponding eigenvectors are ;s then it is an easy matter to write the
N-1
initial vector f(x)= Z a w, and the theoretical solution of (2.11.30) is
i=1 _
N-1 1+k/2 A,

- 1in :
u(X,t) = lzl Gi[mﬂ;] wi (2.11.31)
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where

4 . 2 Jdw, .
i ;f sin [ENJ i=1,2,...,N-1.

The growth factor (1-k/2 Ai)'1(1+k/2 Ai) has always a modulus smaller
than unity for any value of k which indicates no restriction on the stability.
However, if k takes large values then this factor becomes -1, while
exp(n.k.ki)*o. This is the origin of the Crank-Nicolson noise effect and the
reason why the method may be called marginally stable.

This will alsc be the case if h is small for those A. corresponding to

2 (N l)ﬂ

i=N-1,N-2,..., since for example, sin” [*~—==—]=1 and AN Ia--—- (i.e. k/2 1 is

h
large). Accordingly, one may expect to see components Oy 1N_ 170N 2N

of the initial condition preserved at subsequent solution steps, but with
alternating sign (Lawson, J.D. and Morris, J.L1l. 1977).

There will be no oscillation if k is kept smaller than the critical value

2
max A

In contrast to proposing the (1, 1) Padé approximation to exp(k.A), one

may use the (1,0) Padé approximation to obtain fully implicit schemes,

(I-kA)u(t+k) = u(t) (2.11.32)
Thus, the growth factor in (2.11.31), in this case is always positive and
hence there is no oscillatory behaviour. However, the equation (2.11.32)
is only 0(K+h2) i.e. first order accurate in time, and it requires more
computational work to attain the same accuracy as that in the Crank-Nicolsoﬁ
scheme. If we apply (2.11.32) over a time-step 2k, we obtain
u(t+2k) = (I- 2kA) u(t) - (2.11.33)

while by the use of (2.11.32) on two following time-step k, we have,
u(ts2k) = (I-kA) " r-xa) "luce) (2.11.34)

The expansion of the matrix inversion in (2.11.33) and (2.11.34) produce

respectively,
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u(te2k) = (I+2kA+ak2A%egk ASyu(e)+0 (k™ (2.11.35)

u(te2k) = (I+2kA+3k2+4a5)u(t)okh) (2.11.36)

On the other hand the Maclaurin expansion of exp(2kA) produces:
u(t+2k) = (I+2kA+2k2A2 A JU(t)+0(L ) . (2.11.37)

By the combination of 2 times (2.11.36) and subtracting (2.11.35) we find
2,2 3
u(t+2k) = (I+2kA+2k“A)u(t)+0(k") (2.11.38)

Equation (2.11.38) represents a second order approximation to the
solution u(t+2k). It can be seen that the method is unconditionally stable

and the growth factor tends to zero monotically.

c:  Multi-level difference equations

The multi-level difference replacements are often used to construct a
difference equation of higher accuracy than the minimum level scheme required

by the differential equation.

For instance to improve the accuracy of the fully implicit scheme for

the heat equation
u?*l_u? u3+i 2u3+1+u3+i 2
1 . 1. ; 2+ 0(K) + o(h) , (2.11.39)
h

One can apply the following three level implicit scheme (Ritchmyer R.B.

and Morton K.W., 1967 p.68),

%U?+1-ZU?+1/2 uj'l 1é+1 u3+1+u]+i
RS = +0(k%)+0(n%).
_ h (2.11.40)

As we can see, one needs initial data on two levels (say t and t+k)
to obtain the solution at t+2k. The extra initial information can be
taken from a simple two level scheme at the start of the procedure.

A full discussion of multi-level schemes is given by Ritchmyer &
Morton and also by Saul,yev. Here we only consider two well-known examples

of three level schemes and refer the interested reader to the quoted references,
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The first example is the explicit Richardson scheme,

#1071 pud
u;, “=u u -2Ul+
i i 1+1 i i-1 2 2
S i . 2 172+ 0k +0 ) (2.11.41)

which can be written in the form

j*+1 _ 2.3 j-1
U™ = 2ps Ul 4 1T (2.11.42)

The stability of (2.11.42) can be examined either by Fourier analysis
directly (Ames, W.1969, p.55) or by a splitting method (Mitchel, A.R., 1976,

p;88). Here, we apply the last method and rewrite (2.11.42) as the two level

system, W o 2psZud 4 v
1 X 1 1
. . 2.11.43
il _ oyl ( )
i i
which can be represented in vector form as,
j+1 2 j
U; p8, 11y
= (2.11.44)
Vi Loy

U
If we introduce W=[;], and a typical Fourier term as

w? = e/:f gih
i 0
where Wé is a constant vector, and substitute into (2.11.44)}, the result,
2
-8p sin %—1— 1
wi*l = W
1 ol *

is obtained. The above matrix is called amplification matrix of the

system with the eigenvalues

Ai = -4p sin2 %?-i (1+16p251n2 %;91/2

, 1=1,2,.
2
where p=k/h".
Now for stability of the system (2.11.43), we require ]Aifsl, i=1,2,

This condition violated by Ay for all values of p. Therefore the Richardson

scheme is unconditionally umstable, if it is taken as a marching process.
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if however,'the’initial-boundary value problem being considered is
reduced to a pure boundary value problem, then the chhardson scheme becomes

stable (Saul,yev, 1964, p.90). The last chapter of this thesis is concerned

»

. with this problem.

In coﬁtrast with (2.11.41) if we replace ug by %{u;+1+ug'1} in 6§ui,

~

then we obtain another well-known scheme which has been presented by Du-fort-

Frankel, . . ’ -
w*tlyd-l oy . J+1 uJ L) 1 2 2 k.2
i i i+ 12 + O[k“+h +(§3 ] . (2.11.45)
7k h2 h

On designating E? as the vector of mesh values along the jth line, one
can write the formulal(2.11.45) in matrix form as

ai*l - Byl 4t (2.11.46)

For the specific case under consideration, the matrices are:

0 1\\
-
= (1+2p}I, €= (1-2p)I and —213 RS
~ ~_ 1
~1.0
Now, we write (2.11.46) as
U atey s Al (2.11.47)
Then it can be reduced to the two-level scheme
! aAls ATl
wWo ) white W= |, | and M=
. 1] . I 0
(2.11.48)
For stability, we require that the characteristic roots of M to be
smaller than unity in modulus, and they can be found (upon dsing the
definition of M} to be the zetos of the determinental eQuation.
5 - :
luA-uB-Cc}] =0, (2.11.49)

Since the matrix A'IB and A*IC are commutative, (2.11.49) can be replaced

by
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2 =
U -Aiu- n; = 0 (2.11.50)
where Ai and n; represent the eigenvalues of A_IB and A-1C respectively.
Considering the definition of A,B and C, it is easy to show that u is

the root of

2 _4p im 1-2p

T+2p cos LI T+2p =0 i=i,2,...,N-1, {2.11.51)

and clearly |u|sl for all p, thereby establishing stability,

However, this explicit second order scheme suffers from the tern %
appearing in the L.T.E. (as seen before) which makes the finite-difference
replacement inconsistent with the heat equation over large time step and one
has to apply time-steps k=0(ha), a>l,

Here we conclude that although it may appear in general that,
concerning accuracy, three level formulae have an advantage over two-level
schemes in the soluticn of parabolic equations it is possible that the

introduction of an extra level may cause trouble in a particular sense (e.g.

stability for Richardson, consistency for Du-Fort-Frankel).
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2,12 NON-LINEAR EQUATIONS

Until now, we have considered only linear parabolic equations, but in
actual fact, many scientific and engineering problems have a non-linear form.
As an example, the heat conduction equation which has been used for analytical
purposes has a more physically reasonable mode,

u

PC 3t

= %[K(u)-g—%] , (2.12.1)

where the thermal conductivity term K(u) depends upon the temperature,
p(density) and c (the specific heat) may also depend on u. Equation
(2.12.1) is called a self-adjoint formula,

A more general case of a non-linear parabolic equation may be given as:

af

u
XX

u

U ofextu,e, Y
ax 2
: Ix

at

> 0) (2.12.2)

in the region D={0gx<1}x{0<t<T}, subject to the appropriate initial and

(possibly-non-linear) boundary conditions.

Finite-Difference Replacement

One of the advantages of the finite-difference technique is that many
of the methods and proofs, based on linear equations with constant
coefficient carry over directly to non-linear equations (Mitcheli, A.R., 1976,
p.95). However, in this case both the numerical process and the analysis of
stability and convergence become more complicated,

For non-linear problems stability depends not only on the form of the
finite-difference approximation but also upon the valueé of the solution
(i.e. we have local stability). The system may be stable for some values of
t and not for others. As regards the approximation techniques, there exist
two main difficulties.

If ﬁe use the explicit finite-difference scheme for a problem of type

(2.12.2), we find it very easy to solve, but it suffers from the disadvantage
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of restriction on the time-step to maintain stability. This limitation can
be avoided by using an implicit-difference method (e.g. the Crank-Nicolson).
In this case, we are faced with a non-linear system of equations to solve,
and depending on £ in (2.12.2), the algebraic problem of finding the solution
may become difficult and one needs to use an iteration technique to evaluate
the solution (Mitchell, A.R. 1976, pp.96).

Here, we investigate briefly some of the explicit and implicit methods
and leéve aside the iteration methods to the future.

The general 6-formula corresponding to (2.12.2) can easily be obtained.

It is illustrated as follows:
I §%u)

+1_ - . . ] _8 Jj+1 i+l "i-1 X i,
vyl = k(3L 3.k, 007+ (1-0)U 0 [ 73
uain st
(1-8) [ 7 > =) (2.12.3)
h

As was pointed out, for 8=1, (2.12.3) becomes an explicit scheme, 6=0 °
leads to the fully implicit scheme and 6=1/2 is the usual Crank-Nicolson
formula,

In the case of self-adjoint form, the formulation is rather different.
Wé shall demonstrate some of the finite-difference replacements to (2.12.1).

The simplest difference approximation to (2.12.1) is

j+l ]
w)y.cad) 5% s (xudys vl (2.12.4)
PLY/ -~ K h2 Sx i s hen
o ) BT ALY, . . L . .
j jy i i j j j i 3
p(U]) ccU]) = 55 (K(U 1) (U] -U) K@Uy ). (u3-0 D} (2.12.5)

-

If we replace K(ui+i) and K(ug_i) by averaging over the interval, i.e.
”2',-"”:} visu!
+ 3 -
K(-2D) and K75
respectively, then the latter expressions invelve values of u at the grid,

and the following result is obtainable:
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. T ALIY v +Uj JuJ .
ood.cod) 22 L w2 Yol ohxed Aol
R § k h2 i+l i i-177?
(2.12.5)
which is an explicit simulation for (2.12.1). In the same way, one can
easily find the other difference scheme for the self-adjoint equation.
As we mentioned before, implicit replacement for non-linear partial
differential equations gives rise to a system of non-linear difference

equations. To establish such a system, we consider a non-linear parabolic

equation of the form,

L(u) = £(x,t,u) , (2.12.6)
where L is a linear parabolie partial differential operator. A simple
' 2
example of (2.12.6) is denoted when L = ;1 - E*ju If f(x,t,u) has
ax

polynomial form (2.12.6) is mildly non-linear, while an exponential form
for f(x,t,u) gives a strongly non-linear problemn.

The e-form for (2.12.6) becomes:

L 5, s2ui+l .
Uiﬂ W = k{e[— U3+f(1h,]k u3)1+(1 o) [ +f(ih,jk,u31*1)]}
h
(2.12.7)
Denoting p=k/h2 and expanding the central difference operators leads to
the equatiocn:
j+1 3+l j+1 3+ly j _ _ i
-epui_1+(1+2pe)ui -epU1+1 Bk.f(Ui ) = p(l-e)Ui_1+[1 2p(1 e)]ui
+p(1-e)UJ?_+1+k(1-B]f(ui) (2.12.8)
i=1,2,...,N-1.
Suppose the boundary conditions are given as:
%% =u at x=0 for t>0
' (2.12.9)
%§-= -u at x=1 for t>0

with the given initial values u(0,x)=1, Ogxgl. By using central

difference approximations to the boundary values we obtain:
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u g = u1-2hu0 and U = uN-1+2kuN . (2.12.10)

By substituting (2.12.10) into (2.12.8) and arranging in matrix form,

we find

[I-p(.l-BJB]gj+1-k(1-e)f( . [I+pe.B]lf+kef(gj) , (2.12.11)

[2(1+h) -2

~ 2 2(1+h) |

To solve the non-linear system (2.12.11), one has to employ indirect

(iterative) methods such as the Newton's or Secant iteration techniques.
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2.13 PARABOLIC EQUATIONS IN SEVERAL SPACE VARIABLES

We now consider finite-difference methods of solution for the equation

3u

== Llw (2.13.1)

where L =
i

il ~13

) ‘ ] .
. X (ai(xl,xz,...,xn,t)ggj-- C(xl’xz"f"xn’t) is a
i i
second order elliptic operator with a strictly positive and ¢ non-
negative (Mitchel, A.R. 1976, p.45).
There are two categories of finite-difference methods for several
space variable parabolic equations. Firstly the generalization of standard

methods which are presented for one dimensional problems and secondly,

splitting methods which have no single space variable analog.

i) Generalization of the standard methods

Consider the diffusion equation in two space variables which is a

particular case of (2.13.1) namely,

2 32
u ., g + ¢(x,y) . (2.13.2)

X ay

@

du

3

|

38

Suppose the solution of (2.13.2) is required in the cylinder Rx[0<tgT]
whereR is a closed connected region in the x-y plane, with continuous

boundary 3R. Appropriate initial and boundary data are provided as:

u(x,y,0) = £(x,y) t=0

u(x;Yst) g(X,Y,t) (st)eaR t>0;
where f and g are given for prescribed values of x,y,t.

In the same manner as the one dimensional case, the region R is
covered by a rectilinear grid with sides, parallel to the axes, with Ax and
Ay the grid spacings in the direction x and y and AT in the time direction.

The grid points are denoted by (X=iAx, Y=jaAy, T=nAT) where i,j and n
are integers, and i=j=n=0 is the origin, The exact and approximate values

of the solution at the grid points are denoted by ul
3

n ) .
. andW . respectively.
1,) 1,) P Y
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2 2

If we substitute the expressions for —Ei-and E—i-from the definition
X )4

of central differences (where only second order terms are retained) into
(2.13.2), we obtain the standard explicit replacement (for simplicity here

we let ¢(x,y)=0}:

n+ j
Ul )i [1+p(6 +8 )]U:.L (2.13.3)
or
n+l n n n n
Ui 5" (1- 4p)u 5P OJi-l,j+Ui+1,j*Ui,j-1+Ui,j+1) (2.13.4)

where we suppose Ax=Ay=h, AT=k and p=k/h2.

Using Taylor series expansions and defining the difference between
the exact solution of the differential and difference equations at the
mesh point (ih,jh,nk) as

n n n

el . =UT -ub ., (2.13.5)
i,j  Ti,J 1,3

then from (2.13.4) we obtain (Gane, C.R., 1976, p.23},

2 .2
n n n n o h 3 u,n
€ 3 = (1-4p)e; it P(C501,5%%01,5%%,5-1%,540 T T cgziai,j )
2 4 4
h u 3 u
kL Eu.dmnr (2.13.6)
12 x4 3y4 i,j

Equation (2.13.6) shows that the L.T.E. of the formula (2.13.4) is
0(k2+k.h2) while the neighbouring points of (ih,jh,nk) are interior
points of R, i.e. the partial derivatives of u are continuous and
uniformly bounded for all x,y,t Rx{0<tsT}.
| The stability restriction for (2.13.4) is now

AT . AT _ 2k

Ax h

Such a severe restriction makes this method of doubtful practicability.
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The backward difference scheme can also be generalized to permit an
implicit finite difference approximation which has no stability restriction,
but the resulting linear equations are no longer tridiagonal, which is not
always easy to accomplish directly. Because of poor stability properties of
the explicit scheme and the difficulty of handling the implicit methods, the

splitting technique has been introduced.

ii) Splitting methods

In the numerical treatment of parabolic differential equations, splitting
is referred to as a method of breaking down a complicated (multi-dimensional)
process into a series of simple (one-dimensional processes). Well-known
examples are the Aiternating Direction Implieit (A.D.I. in abbreviation),
the Loeally One Dimensional (L.0.D.) and the Hopscotch methods.

The A.D.I. methods which were first introduced by Peaceman and Rachford
(1955} and improved by Douglas and Rachford (1956) are a two-step process
involving the solution of tridiagonal sets of equations along lines parallel
to the x and y axes at the first and second steps respectively.

We illustrate this method with respect to the equation (2.13.2).

The fully implicit scheme for (2.13.2) is,

n+}
|
_1_slk_i._l - _,(521)“"; 5y U“*;) . (2.13.8)
’ >

We can expand (2.13.8) by substituting the values Gi and 65 from their

definition to obtain,

+1 n+1 +1_ n+1
U?,j+p +1,J U? 1 1 J)+p(

U“+1 un+1) - U} (2.13.9)

J+1 i,j
for i,j=1,2,...,N.

The compact form of (2.13.9) can be easily verified to be

(1) u™*! = " nz0 , (2.13.10)
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. 2 .2 . . . . . .
where A is a N"xXN” block tridiagonal matrix corresponding to the discretization

which in this case becomes:

D 'IN
{N D\ -IN
. N
-1 N
A= N\ \\

T
3 D=4IN' (LN+LN) s LN

L

Hence at each time step, we are required to solve a large system of linear

equations.

The effort is to break-down this large system by splitting

A=H+V where H and V arise from the representation of the respective bracketed

terms in (2.13.9).

Defining

LN

SN

0

IN 0\
and B = IN

L.

then H=21—(L+LT), V=21—(B+BT), and we now exploit this splitting of A to

devise various iteration schemes for the solution of (2.13.2).

The novel observation of Peaceman-Rachford and Douglas was as follows,

they noted that each
1) (rep)y™?
i) (Lepyu™

of the finite difference equations

(1-pvyu”

(I-pmu" ,

(2.13.11)

gives rise to a computationally feasible method requiring only the solution

of a set of tridiagonal matrix systems, and that each scheme, used on its own

was conditionally stable. However, if they are used alternately, then the

overall scheme is unconditionally stable (Gourlay, A.R. 1976, p.761) and is

clearly an ADI method where p has the role of a constant acceleration parameter.
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Douglas and Rachford (1956) proposed a new scheme introducing an

*
intermediate value H.n+1 and considered the following scheme,

(repyu ™! = (z-pvyu”
(2.13.12)

*
E.n+l+pvy-n ,

(r+pvyu™*?

which is again both unconditionally stable and computationally feasible
involving the solution of a tridiagonal system along horizontal lines for
Efn+1 and then only vertical lines for the solution of (2.13. ) which is g?+1.
It is important to note that gfn+1 has "no physical significance"” and it is
only the first estimate. Later Douglas and Rachford observed that, by the

*n+l

elimination of U in the system (2.13.12),

(Lephsp) U™ = "p2uv™ - g"

U , n>0 (2.13.13)
thus the DPR procedure (2.13.12) is equivalent to a perturbation of the
backward difference equation (2.13.10) by a term of O(ATZ). (Gourlay, A.R.
1976, p,760}. The importance here is that by perturbing an implicit scheme
(which has the required accuracy and stability properties) in a suitable way

we have obtained z scheme (2,13.13) with similar propefties, but which is far

simpler computationally. This Idea was later generalized by Douglas and Gunn

(1964) in order to realize in practice, schemes of the form

(e u™?t = By® (2.13.14)
where A = g Ai and each Ai’ i=1,2,...,q is easily inverted.
i=1
They use,
(1+A )U?I; = By - § AU"
j=2

(1+A.)gF;1 = Uty ¢ Al 192,35, (2.13.15)
R |
= —q)

and show that it is equivalent to (2.13.14) with a perturbed right hand
side (See Current Problem and Method in P.D.E.s, 1978, p.12-14, Edited by

Wait-Gladwell).



Another important point of the DPR scheme is that, it can easily be
generalized to more space dimensions.
A more general formulae of this splitting technique together with the

stability analysis and convergence will be studied in the next chapter.

68
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2.14 THE EXTRAPOLATION METHOD IN HIGHER SPACE DIMENSIONS

The extrapolation of a fully implicit scheme can also be extended to
higher space dimensions. Here we study the case of two space dimensions.

Following the analysis for the one dimensional case, and considering '
the heat equation subject to the given initial and boundary conditions, the

equation

du
5 = AU(t) (2.14.1)

arises when the spatial derivatives in equation (2.13.2) are replaced by -
finite differences. Here_g(t) is a vector of unknowns of N2 dimension and
A is a matrix of order NZXNz.

The solution of (2.14.1) can be verified to be,

U(t+AT) = exp(AT.A)U(t) | (2.14.2)

where U(0) = £, the vector of initial values |

As was mentioned earlier the fully implicit method in two dimension
results in a large system of equations whose coefficient matrix A has a

bandwidth of 2N. Thus, A can be split into two components A, and Az. Hence,

1
equation (2.14.2) becomes,

U(t+AT) = exp[(A1+A2)AT]gﬁt) (2.14.3)
which may be approximated by
U(t+AT) = exp(AT.Al)exp(AT.Az)gjt) (2.14.4)

If now, the (1,0) Padé approximation is applied over these exponentials,
then a split form of the‘totally implicit scheme can be obtained,
*
(I-AT.AI)LL = Y(t)
, . (2.14.5)
(I-AT.Az)gjt+AT) =1
*
where U 1is an intermediate vector. These two steps can be solved easily
and only tridiagonal matrices are involved. Also, the algorithm is
unconditionally stable with an accuracy of 0(AT) with a growth factor

decreasing monotonically.
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Another proposed splitting to (2.14.3) is,
%*
(I-8T.A;)U = U(t)

(I-AT.A,)U(t+2T) = U*

* ok (2.14.6)
(I-AT.Az)y_ = U(t+AT)

and (1-aT.A)T(ts24m) = U7
which is a symmetrized application of (2.14.5). Eliminating the intermediate

values in (2.14.6) results in the equations,

T(t+20T) = [1+428T (A +A))+AT? (3A2+3A2+2A A, +20,A ) JU(E)+O(ATY)  (2.14.7)

The Maclaurin expansion of (2.14.3) over the increment 2AT is

2,2 2

3
U{t+2AT) = [I+2AT(A1+A2)+2AT (A1+A2+A1A2+AZA1)]gﬁt)+O(AT ) . (2.14.8)

Now, we define two new approximations called gﬁl] and !FZ) which are
given as follows,

U (re2am) - (I-2ATA1)'1(I-2ATA2)p_(t)

2) -1 (2.14.9)
U (2+28T) = (I-28TA,)" " (I-24TA,)U(t)
and the expansion of these two new equations is simply verified to be,
1V ceaamy = [1+25T (A +A,) +48T% (AZ9A A +A2) JU(t) 40 (aT®)
(2.14.10)

and U9 (ee2am) = [1520T(A 8D #4877 (A24n A +A2) JUCE) +0(AT®)

The following linear combination of (2.14.7) and (2.14.10) is now proposed
with accuracy of O(ATZ) i.e.,

U(t+24T) = 20 - -15(2(13@(2)) . (2.14.11)

Thus a second order method can be achieved by an extrapolation of a first
order method. This novel algorithm requires four tridiagonal solutions per
time step (Lawson, J.D. and Morris J.L1l., 1977), while the Peaceman-Rachford
Technique, two tridiagonal solutions are required but it has a restriction
on AT, Similar arguments are valid for the Crank-Nicolson method. However,

for the extrapolated method one can apply a time-step at least two times larger
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than that used for the Peaceman-Rachford method.
It is also worth noting that the Peaceman-Rachford method can be achieved

by the same analysis as that for the extrapolated technique, i.e.,

u(e+aT) = exp(Sl A Dexp(aT A)exp(5 ADU(E) (2.14.12)

Using the (1,0),(1,1) and (0,1) Padé approximations in (2.14.12) we have

AT

* = + é.'I_'
(T - S ADU* = (1 + 5 ADU(E)

(2.14.13)

AT _ AT
(I - S ADU(EAT) = (1 + S5 A)U* .
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2.15 NON-UNIFORM GRID

The non-uniformity of a grid is due to two main reasons:

i)  the behaviour of the solution of the differential equations,

ii) the irregularity of the boundary of the region involved.

We shall distinguish between these two cases:-

i) Consider the heat equation in one space dimensions and suppose the
initial and boundary conditions are provided such that the solution has
behaviour displayed in Figure 2.15.1 where the solution has an exponential
decay after time t=a.

Obviously when O<tga, one needs a very small time-step to provide the

required accuracy, while after t=a, using the same time-step is not necessary.

4 U(x,t)

\4

t=a

FIGURE 2.15.1

On the other hand, 4f one applies larger time-steps at t>a, not only
is the computation speeded up, but the increased value of AT does not have
any adverse effect on the solution (which becomes more and more smooth as the
time increased). In fact, one may increase the time-step eiponentially and

still the decay solution compensates this growth. However, the usual
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procedure is to increase the time step linearly (e.g. AT =2AT1). Therefore,

2
one needs a suitable test to change the time increment whenever necessary.
To find a suitable test, let us consider a differential equation of the

form,
-;’— = L{x,t,u) (2.15.1)

By the application of Taylor's formula, one obtains,

2 .2
u(t+AT) = U(t) + AT = a“ LA 232U
2 .2
at
or k2 32
u(t+k) = U(t) + k L{x,t,u) + STt e (2.15.2)
ot
k2 a2
If the term 5" ——% is small enough, then we can write
ot

u(t+k) = u(t) + k.L(x,t,u)

which may be used to integrate the solution for the required time-step.
From (2.15.2) we can obtain a rough check on the accuracy of the approximation,
We have,

k2 82u

- —7 = 172 (U{t+k)-2U0(t)+U(t-K}) . (2.15.3)

ot
To use this estimate, we need to store the back values u(t-h) and check
the quantity (2.15.3) against some tolerance, If it is not small enough
we reduce the time-step k, and if it is too small, we increase k and so on.
(Danaee, A., 1978, p.45).
Although changing the step increment in the time-direction (parabolic

direction) in some cases is desirable, it is undesirable in the direction
of the spatial axes (elliptic direction). Since the employment of any non-
uniformity of the grid results in an increase in the complexity of the net
equations aﬁd also in view of assymetry, the difference equation has a larger
error of approximation O(h) rather than O(th (Saul,yev, 1964, p.148).

However, in practice we may have a case when the use of a non-uniform grid

is advantageous. As an example, reconsider the heat equation with the
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solution illustrated in Figure 2.15.2.

A u(x,t)

v

—

FIGURE 2,15.2

It can be seen from the behaviour of the solution that the increment AX,
should be significantly smaller in the interval x€[0,b]} and larger in x€[b,1].
In this case one needs to treat the finite difference approximation for two
different increments near xsb,

To show this treatment, let [0,1] be divided as follows:

0= Xg<XySeeeSX <X = 1
h., = x.-X. lgign {2.15.4)
i i "i-1
and h = O(hl) = ..., = O(hn)

We suppose the solution u(x,t) is sufficiently smooth and using Taylor

series gives h2 3
io_ ] u . i+l 37u . i+l 3u
u; =u, +h, , -—+ 7 + + ... (2.15.5)
i+l i i+1 o9x 21 3x2 31 Bx3
j j du hf 3%u h: 35y
ui_l =ui - hi-?*'-—z-!—'——'z'- -3--!-—3-" ‘e . (2-15.6)
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Multiplication of equations (2.15.5) and (2.15.6) by‘hi and hi+1 respectively
results in the equation,
2
. u . X
i 2 j 2 j 2 j
= u; 4+ u, - u. + 0(h).
ax”  Py(hythy ) il by (hyshy ) el gk,
(2.15.;
Accordingly, the simplest explicit finite difference scheme now becomes:
» W |
ot e R Lo o ) someny , (2u1s.8)
i i+l i i+l ivi+l
and the stability restriction
k s 1/2 m;n hi'hi+l (2.15.9)
has to be satisfied.
However, if for instance we choose h, ,=h.(1th,) then h, -h.=ih?
i+l i i i+l "1 T
and accordingly instead of (2.15.7) we shall have,
2]
9 u; : - .
e wl,) - g——u] + 0(h%)
+ + + +
3x hi(z_hi) hi(l_hi)(2_hi) hi(l_hi)
(2.15.10)

and consequently the order of accuracy of (2.15.8) increases to 0(k+h2).

For two dimensional problems, the considerations expresséd above,
can also be applied, If for instance, the initial function f(x,y) varies
particularly rapidly in some sub-domain D' of D, it is advisable and
efficient to use a finer net in D', Application of the notation illustrated
in Figure (2.15.3) and using a reiation of the type (2.15.5}-(2.15.7), one

can easily obtain a general explicit formula for two dimensional problems,

namely:
n n n n
Er SN S R U WS N S Vo 1S W V5 L2 (O
A 6 I s i ey s IR ¢ o 3 B ¢ i
i i+l i i+l j j+l j j+l

1 1
+[1-2k( +
(1) , (1) (2),,.(2)
hi .hi+1 hj +hj+1

n
;5 (2.15.11)
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and the stability restriction analogous to (2.15.9) becomes:

n{ p{1) 52 ,(2)
1 i+l j j+l
RO

hy) bl n )

k £1/2 min
i,]

(2.15.12)

(x5575.49)

(2)

hj+1

h() h(1)
i i+l

(xi_I,Yj) - (Xi+1,

Y.}

j
(xi,yj) h§2)

E

(xi’Yj _1)

FIGURE 2.15.3

ii) The Irregularity of the Boundary

We shall now consider the non-uniformity which causes a complication
not existing in one-dimensional problems.

Let the domain D of the solution be non-rectangular, as displayed in
Figure (2.15.4). Internal grid points adjacent to the boundary (e.g. A,B,C...
which are called quasi-boundary nodes) will normally require special treatment.
Three different approaches might be indicated to construct a finite difference
template at the quasi-boundary nodes. These approaches can be classified in
the following manner:

1. Solution by transfer of boundary values

2. Solution by means of linear interpolation of boundary values

3. Solution without transfer of boundary values.
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o
Al Bl N o h
B y h
Ct D Py
D E gx,y)

FIGURE 2.15.4

The first one which is the most simplest consists of taking the values
UA’UB"" as being equal to the nearest boundary values of g(x,y) to the
points. Thus, if we are working with the standard explicit scheme, the
stability criteria is pgl/4 and the error of approximation at the regular
points is 0(k+h2) and at irregular points is O(k+h).

The second method is to employ a linear ihterpolation for the irregular

points using the interior points as well as the boundary values. For example,

for the node D we may use either the following equations,

p,s U tU p.-U.+U
v, = ll—éi——‘l , u, = —’-‘-MC—B- . (2.15.13)
y X

Finally, for the third method, the standard finite difference scheme
can be applied at the interior points whilst at the quasi-boundary nodes,
irregular equation of the type (2.15.11) might be used where hgii and h§fi

correspond to P_ and p__ in Figure (2.15.4) respectively,
P > Py y P
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2.16 ITERATIVE SOLUTION TECHNIQUES

With the application of the finite-difference methods to the solution
of partial differential equations, one might have one of the following
fundamental situations.
1. In the non-linear problems, either explicit or implicit schemes results
in a non-linear or a set of non-linear equations to solve.
2. In the case of linear partial differential equations, by usiﬁg an implicit
finite-difference technique a set of (usually large} linear equations are

obtained, which may be solved by direct or indirect methods.

We shall study both situations in this section. First we consider the
iteration methods for determining the zeros of the equation
f(x} =0 , (2.16.1)
where f and X are vectors of the same dimension N. If N=1, we have a
single equation and for N>1, (2.16.1) is a system of N equations.
In general it is impossible to solve a system of equations of the

form (2.16.1) directly, and some iterative methods of solution are necessary.

Factional Iteration: This method is based on the following principle.

Let us consider equation (2.16.1) where N=1. It is clear that any

equation of this form can be written equivalently in the form

x = g(x) . (2.16.2)
If X5 is some initial estimate of a Toot @ of (2.16.2), a natural scheme
N
suggested for\\' ining the solution of (2.16.2) is to form the iterative
\
sequence, \
\ Xpal = g(xm) m=0,1,... {(2.16.3)
An important\ 't concerning the convergence of this sequence
and a proof of the é\ nce of a unique root is contained in the following
theorenm, \\
\
\\
A
\
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Theorem 2.3
Let g(x) satisfy the Lipschitz condition,
|g(x)-g(x*) |sr]x-x"] (2.16.4)
for all values x,x' in the closed interval I=[xodpx0+P] where the

Lipschitz constant A, satisfies OgAgl, and let the initial estimate x

0
be such that,
[xo-g(xo)|s(1-1)f . (2.16.5)
Then
i) all the iterates X defined by (2.16.3), lie within the
interval I, i.e.,
xo-psxmsxo+p . (2.16.6)

ii) (Existance) the iterates converges to some point, say
. . m
lim x, = (in fact |xm-alsl p)

. Ti=co
which is a root of (2.16.2), and

iii) (Uniqueness) o is the only root in [xo-p,xo+p].
For proof see E. Isaacson § H.B. Keller, 15966, p.86.
Collorary

If [g*'(x){gr<l for |x-x0]sp and (2.16,5) is satisfied, then the

conclusion of theorem 2.3 is valid.

Proof

The mean value theorem implies g(xl)-g(x2)=g'(£)(x1-x2), where A

may serve as the Lipschitz constant in (2.16.4).

Convergence Criterion

Definition 2.16.1

Let xo,xl,... be a sequence which converges to o, and em=xm-a. If

there exists a number o and a constant c#0 such that,
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IEm+1|

lim =5 =C., (2.16.7)
e €1

then o is called the order of convergence of the sequence and c the
asymptotic error constant. For o=1,2,3 the convergence is said to be

linear, quadratic and cubic respectively.

Newton-Raphson Method

Before proceeding to describe this method for a system of n equations
with n unknowns, let us consider a single non-linear equation and derive
the method from Taylors' formula. To solve the equation f(x)=0, we expand
about X to obtain,
1 2
f(x) = f(xm)+(x-xm).f'(xm)+§{x—xm) A(E), gE(xO,x). (2.16.8)
By neglecting the quadratic term, and rewriting the equation in iterative
form i.e. xExm+1, we have,
1 - = = =
f (xm).(xm+l xm]+f(xm} f(x) = 0 for m=0,1,... (2.16.9)

Thus, the Newton-Raphson method is defined by the following formulas

Xos1 = xm+6m m=1,2,...
f(xm)
- ?TT§;T . (2.16.10)
By comparison with equation (2.16.3)
fx )
g(x ) =x 4§ =x - ?772;7 , (2.16.11)

and g(xm) is called the iteration function.
To study the convergence of this method, let € be the error in the

estimate X i.e,,

€ = X -X |,
m m

then equation (2.16.8) can be written as

) e’
F ) T el T T TR
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Thus we have

1.2 ()
Emsl 2 € f'(xm) (2.16.12)
and as x X,
m
“mel 1 £7(x)
.2 2 £(x)
m .

Since € el is approximately proportional to the square of €n provided
f(x)#0 the Newton-Raphson method is said to be quadratically convergent or
to be of second order (Dalquist, G., 1976, p.223).

However, for thé convergence of the above mentioned method, a good

initial estimate must be provided. The following theorem indicates this fact.

Theorem 2.4
Suppose that f'(x)}#0, and f"(x) does not change sign in interval [a,b],
and that f(a).f(b)}<0. Then if

|f(a)
£'(a)

f(b)

<b - a -and W

<b - a,

the Newton-Raphson method converges from an arbitrary initial approximation
xOE[a,b]. That Fhe theorem is true can be seen from Figure (2.16.1). While
the iteration procedure converges from any point xoe[a,b], it may be diverged
from some points xéE[al,bl]. This is actually a drawback of the Newton-
Raphson method. |

Analogous to the single eﬁuation (2.16.8) from a Taylors' equation in
N dimensions, we have,

£(x) =_£Q§H)+f'(§ml(5:5m)+0(|§1—5ml2) (2.16.13)

where X is the iterate vector, f'{;m) is the Jacobian matrix denoted

by J, with elements

3, ()
1,97

, 1gi,jeN . (2.16.14)
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This leads to the Newton-Raphson method in N dimensions, i.e.,
Jx ) (xp -x )+ E(x ) = 0, (2.16.15)
which is a linear system of equations for x ., and if J(x ) is non-
—m+1 ~m
singular, it can be solved by a direct method (e.g. Gaussian elimination).
However, if J(Em) is a large sparse matrix an indirect or iterative method
(e.g. 5.0.R. which is defined later) is more favourable.

Inspite of rapid convergence each step of solution (2,16.15), requires
the recalculation of N2 entries of the (NxN) Jacobian matrix, and also the
solution of a set of N linear equations. Therefore, the Newton-Raphson
method is rather expensive in computational work. One may reduce the amount
of computation by a modification and evaluate J(Em) only occasionally, and

not at every step (e.g. every 5th step).

Practical Consideration of the Newton Method

Here we shall consider the practical application of the method, and
illustrate the algorithmic procedure which can be applied to (2.16.15):
1. Calculate fﬁ;ﬁ(ﬁm) and Jm=J(xm),

2. Evalute X from the system J(Em)(§m+l-xm)+§ﬁ§m)=0 and,

3. Calculate £ﬁ+1.

These cases can now arise,

a) if ||£ ., 11<<]I£ [lCe.g. HE 4 |I<|I£, [1/10), we continue with the same
Jacobian (i.e. modified Newton method).

b) if £, |I<lI£,]] goto step 2.

c) if |]£ﬁ+1||>||§ﬁ[| take x* .=x -A w where w =x . -x is found by solving
the linear system (2.16.15), and lm=h%iln=0,1,... until a reduction in

2

||§ﬁ+1|| is obtained (J. Walsh, 1976}.
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This method which involves a parameter Am is called '"damped Newton
method" {where Am can also be chosen to be 1/10m). It can be noted that,
only for Am=1, is the quadratic rate of convergence of Newton's method
maintained.

It is also worthy of note that, for some nonlinear systems of equations
the evaluation of the elements of the Jacobian matrix is either impossible
or at least computationally expensive. In such cases we can use a
functional iteration method, which does not use the Jacobian matrix at all,

or use Newton's method with the Jacobian J(Em) replaced by some approximation.

The Secant Method

The Secant method can be derived from Newton-Raphson's method by

approximating the derivative f'(xm) by the difference quotient
£(x )-£0x )

t o
f (xm) —— (2.16.16)
m “m-1
which leads to fhe following method.
From given initial approximations X and xi, the sequence XysXgyeoe
is computed recursively, i.e.,
mel - Tm T 6m
*m *m-1
where Gm = -f(xm) f(xm)_f(xm-lj , f(xm)#f(xm_l) (2.16.17)

in this case the iteration function g(xm)EGm.
The choice between the Secant method and Newton-Raphson's method
depends on the amount of work required to compute f'(x). Suppose the
amount of work to compute f'(x) is 8 times the amount of.work to compute
a value of f(x), then an asymptotic analysis can be used to motivate the rule:
If 8>0.44, then use the Secant method, otherwise, use Newton-Raphson's

method (Dahlquist, 1974, p.228).
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In the case of a system of n-nonlinear equations, we let

Yn © £ - Exp)
and 8§ =X .-X (2.16.18)
—m —m+l —m

Then considering_the truncated Taylor series (2.16.15), we obtain the system

J(x )8, =¥, -
When the Jacobian matrix J(gm) is replaced by some approximation denoted by
Bm’ then we fequire
B .8 =y (2.16.19)

m+l=m  -“m

this equation is referred to as the quasi-Newton method.

. where {BE§ -v)
P B =B - m-m m-gm , T6 40
~m

; is arbitrary with the be hoi =5 .
| = Y st choice (perhaps) . ém




86

2.17 ITERATIVE METHODS FOR LINEAR EQUATIONS

Iterative methods are frequently used for large sparse systems of
linear equations. Such systems appear in many engineering and physical
processes resulting in a boundary-value problem involving partial differential
equations. When finite-difference replacements are used to obtain an
approximate solution of such problems appearance of an aforementioned
System is inevitabie.

As an example consider the Poisson equation

32u 32
L= 5+ 5 = £(x,y) . (2.17.1)
ax 3y

I1f the five-point operator Lh is applied to obtain an approximate

solution of (2.17.1) a large system of equations Au=b is followed where,
N

M

—

L . i
N

_and N is the number of mesh points. The non-zero elements are as indicated

above,

If a direct method (e.g. Gaussian elimination) is used, then nearly
all the zero elements within the band will be destroyed and we have to store
nearly 2N3 elements instead of the SN2 in the original matrix A.

Also the algorithm of a direct method is rather complicated and non-
repetitive, Iteration methods on the other hand consist of repeated
application of a simple algorithm, but an exact answer is given only as a
limit of a sequemnce.

In some instances however, the right-hand side of (2.17.1) may depend

not only on the mesh points but also on the solution of the equation. Hence,
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in this case we are faced with a non-linear problem namely:

L(u) = f{x,y,u) S (2.17.2)
Thus, the algebraic problem, depending upon the complexity of f, may
become complicated. In this case one may linearize equation (2.17.2) by
introducing a sequence of functions {um} which satisfy the boundary

conditions and the linear partial differential equations:

Liu ) = f(x,y,um) (2.17.3)

This can be done for example, by a Newton linearization., We expand the

function f about um:

£(u ) = £ elu  -u)E ()0l (-0 )] (2.17.4)

m+1

The new linear partial differential equation now becomes,

L(u )—f'(um)um+1 = f(um)-umf'(um) s (2.17.5)

m+1
and intuitively, we obtain a linear system A'u=b' to solve.

For the indirect or iterative solution of a linear system, we may
think of a generalized linear method as one which upon application to a
linear system Au=b reduces to a feasible iteration for the soluiiOn of the
-system., For instance, the Newton method does not provide a feasible iteration
for the linear system Au=b, simply because we cannot obtain a convenient
recurrence formula to evaluate

_ -1 .
Yl ® Em'A_ (AHm'EJ (Ortega & Rhelnbolgtéli?70,

In this section we shall examine some well-known methods such as the

simultaneous and successive displacements methods.

Method of Simultaneous Displacements

The method of simultaneous displacements, which is also known as
iteration by total steps or Jacobi method is the simplest of all iterative

techniques.
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If we assume that the diagonal elements a; of A are all non-zero,

2

then the Jacobi method for Au=b proceeds as follows:

We write the system of equations as

N
-] a, .u.+
j=1 1,31 1
_ j#i . '
u, = —— i=1,2,...,N. (2.17.6)
i,i
Then in the Jacobi method, we compute a sequence of approximations
34,22,... by the formula
N .
- a., ..u., .+b,
j§1 1,375 m 4
G .
ui(m+1) = — i=1,2,...,N. (2.17.7)
: i,1
The initial approximation is often taken to be E{O)=0' Then by taking
the limit of (2.17.7) i.e., 1lim u,._.=u, it can be shown that u is a
mo (M) = =
solution of the original equation.
Inspite of its simplicity, it is seldom used because it is very
slow to converge.
Method of Successive Displacements
until

In the Jacobi method, one does not use the new values ui(m+1)

every component of the vector u has been evaluated. In the method of

successive displacements e.g. the Gauss-Seidel method, the new values are

used in the calculation as soon as they have been computed.

Suppose that, the mth iterative E{m)=(u1(m)’uZ(m)""’uN(m))T

first i-1 components ul(m+1),uz(m+1),ui_1(m+1)

E{m+1) have been determined. Then, to obtain the next component u,

the equation (2.17.7) becomes

~ of the (m+1)th iterate

and the

(m+1)’
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i-1 N

" .Zl ?1,3% (me1)” .=§+1 23,3% (m) *Ps
u, = —d J i=1,2,...,N
i(m+1) a;

(2.17.8)

It is worthy to note that here only one approximation for each uy
needs to be stored at a time.

In order to write the compact form of the Gauss-Seidel iteration, we
first write the matrix A in the split form

A = D-L-U (2.17.9)

where D,L,U are the diagonal, strictly lower triangular and strictly
upper triangular component matrices respectively. The assumption that
the diagonal elements of A are non-zero then ensures that (D-L)_1 exists
and it is easy to verify that the Gauss-Seidel iteration may be written as

(Ortega § Rheinboldt, 1970, p.Z215):
= -1 cu - “1oay b me
Begapy = (1) [V +b] = - (D-1)7" (A5, -b) m=0,1,... (2.17.10)

By a simple modification of the Gauss-Seidel method, we can improve the
rate of convergence of the method. This modification consists of

introducing a parameter « such that,

Ui me1) “i(m)*“(ﬁ;‘“i(m)) i=1,2,...,N, (2.17.11)

where ﬁi is the new value from (2.17.9) before modification, and w is
called a relazation parameter.
If we substitute the solution of {2,17.8) into (2.17.11), we cbtain,

after some rearrangement,
i-1

N
2; 1% (me1) ™ 521 35 3% mery = 03y sy oy-w 1@

. aU. + b.
jeiap 21 3@

i=1,2,...,N  (2.17.12)
which reduces to the Gauss-Seidel method for w=1. This modified method

is called The Successive Over-Relaxation (in abbreviation SOR) method.
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Here, w should be chosen so that the rate of convergence is maximized. In

its matrix form, the SOR method can be verified to be

u

LI (D-wL)-l[(l-m)D‘i-wU]Em-'-w(D-wL]-l_b_

-1
Ed-w(D-mL) (AEm'P) m=0,1,... (2.17.13)
We shall now discuss the convergence of iterative methods, We can show
that the Jacobi and Gauss-Seidel methods can be written in the standard

form,
u Bu + C m=0,1,2,... (2.17.14)

ne1 T Yy
Such iteration methods are called Stationary since no variation occurs
from iteration to iteration (i.e,, the iteration matrix B does not change

with m).

A comparison between (2.17.14) and (2.17.10) indicates that

_ -1
BGS = (D-L) "U (2.17.15)

whilst the Jacobi iteration matrix is
B, = 0™l (Lew) (2.17.16)

A relation between the errors in successive approximations can be

derived by subtracting from equation (2.16.2) the equation u=Bu+C , i.e,

u_ .-u-= B(Eﬂ‘EJ = B[B(Em_l'EJ]--- = Bm+1

—m+1 (u,-u} , (2.17.17)

—0

Now let AI’AZ""’AN denote the eigenvalues of B with the corresponding
~eigenvectors, ¢1,¢2,...¢N which are linearly independent. Therefore, the

components of the initial vector &g may be represented by

RS ogdyragptyt oty

<5‘:

[N

_ m m m
and thus ey = Yy alhl ¢1+azl2¢2+ ...+aNAN¢N . (2.17.18)

From equation (2.17.18), we indicate that the iteration (2.17.14)

is convergent if |Ai| <1, i=1,2,...,N, and we can state the following theorem.
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Theorem 2.5

A necessary and sufficient condition for a stationary iterative method,
(2.17.14) to converge from an arbitrary initial approximation u, is that

p{B) = max ]Ai(B)l <1, (2.17.19)
1gigM

where p(B) is the spectral radius of B.

If one wishes to reduce the amplitude of the error components
“j¢j in EO by a factor of 10'1 thenw iterations, where m is the smallest
number such that,

!m -k K

[x.]7 510 orm 2

J -10g10|k.|
have to be performed. J

Since the largest eigenvalue dominates, then the asymptotic rate of
econvergence for the iterative method (2.17.14) is denoted by

R = -log (o (B)) (2.17.20)

However, it is often impractical to find the eigenvalues of B, and
therefore it is difficult to apply theorem (2.5). Instead one can apply

the foilowing property of the norm-inequality on (2.17.17) and obtain

[u™ull < 1™ 1 Hul-ull < |[B]1™ ol -
The sufficient condition for convergence now becomes ||B||<1, for some

consistent matrix norm. An estimate for the error in u, can be found by

using the relation

w-u=-B(u-u ,)+B(u -u) . (2.17.21)

If the norm of B is denoted by B<l, then (2.17.21) becomes

Nog-ull ¢ 25 Negu 11 - (2.17.22)

We note that (2.17.22) is a rough estimate for checking the error but
one should also consider the effect of round-off errors in the iterative

process.
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Now, we study the norm of B in iterative procedures to find out the
condition for convergence of the various methods.

In Jacobi's method, the iteration matrix B. is defined to have the

J
elements, ai .
bi,j = ETH% i#j and bi’ifo
i,i
thus
N la, .|
[1B4l], = max ¥ Tgiil- , (2.17.23)
1gigN  j=1 23,3}
j#1

Consequently, if A is strictly diagonally dominant, then ||BJ||w<1

and the Jacobi method is convergent.

-

For the Gauss-Seidel method, we apply the subordinate matrix norm

namely,
B = max —r (2.17,24)
GS

Let y denote BGXE) since without loss of generality (2.17.9) can

be written as A=D-L-U, using lejlm we obtain,

y = BGSE = (D+L)-1u5 + y = -Lz;ai
or [y, < HEl Hy e Holl Tx] = s, HyH e, T (2.17.25)
where i-1 |ai N N . .|
s; = ) 2] and r, = ) —l
=1 lal’il j=i+1|ai il

3

Therefore we have >

U*ﬂ”ﬂhsrﬂEHw+HﬂlegiHﬂL

which results in ||Y|| T

HBGSIIm = max = max >
1sisN |Ix|], 1sisw T7S:

(2.17.26)

From equation (2.17.26) it follows that, the Gauss-Seidel iteration is

convergent when A is strictly diagonally dominant.
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In the case of S.0.R. the iteration matrix Bm is given as follows,
B = (I-ul) ™' [(1-0) T+ul]

which is the accelerated form of the Gauss-Seidel method. From the following
theorem we can show that for convergence, the parameter w must be in the range
O<w<2, |
Theorem 2.6

For the S.0.R. iteration matrix we have

| p(B) 2 fu-1f . (2.17.27)

So the method can only converge for O<w<2,

Since the determinant of a triangular matrix is the product of its
diagonal elements and (I-mL)-1 and [{l1-w)I+wU] are both triangular matrices,

hence we obtain,
det(B ) = det(I-ul) det [(1-0) I+l] = (1-w)".

On the other hand, if the eigenvalues of Bm are denoied by ll’AZ""AN’
then from det(Bm)=A1A2...XN it follows that
max |li| 2 |1-m|, O<w<2.
i

Theorem 2.7
Let A be a symmetric matrix with positive diagonal elements. Then,

the S.0.R. method converges if and only if A is positive definite and O<w<2.

Proof:

\ See Young, D.M., 1971, p.113,



94

Some Conclusive Remarks

1, 1In the finite-difference approximation of partial differential
equations, we frequently have positive matrices,

2. In practice w usually lies between 1 and 2. (The method is called
successive under relaxation if Q<w<l).

3. The optimum or best value for w denoted by mopt for the maximum

rate of convergence is given by (Young, D.M., 1971, p.169)

2

w = ———— e
opt /5
1+ l-u2

where it is the spectral radius of the Jacobi iteration matrix

(2.17.28)

D-l(L+U) associated with the matrixp,.

4, The methods which wé have studied so far are point iterative
methods. There are also some iteration techniques which
correspond to the evaluation of a group of points simultaneously.
These methods are called 'block iterative methods'. We shall
consider certain methods of block iteration as applied to the

solution of partial differential equations in more detail later.
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3.1 INTRODUCTION

One of the most important methods for the determination of a more
accurate numerical solution to the exact solution of a problem is the use of
different numerical algorithms, which give errors of different signs. For
instance, in the case of Laplace's equation in a convex-region, the finite
difference method gives an approximation from below for the first eigenvalue
whereas the variational Ritz method gives an approximation from above
(Saul,yev, 1964, p.108). Therefore, a combination of these two solutions

_gives a more accurate approximation for the exact values.

In the application of finite-difference replacement for the approximate
solution of partial differential equations, it would be desirable, if we can
obtain the error of the algorithm being used, not only by the mean of the
modulus of some estimate, but the precise values of the errors. This is
almost impossible and there is no guarantee that, the finite-difference method
will provide a solution with errors having the same sign.

However, in the case of parabolic equations we can deduce some
interesting information.

In this chapter, we study some general principles for constructing an
algorithm to provide a bilateral approximation to the solution.

“The motivation of this study is based on two theorems which are given
by Saul,yev (1964) and Gourlay (1970} where the Hopscotch Technique is
introduced. We shall give full discussion of this technique and provide the
background for the new development in Chapter VI. We also study the work of
McGuire (1970), Gane (1974} and the recent development on the techrique by

Gourlay and McKee (1978)}.
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3.2 THE HOPSCOTCH TECHNIQUE

To illustrate the essence of the hopscotch technique, we consider the

following one dimensional model equation, namely,
2
3 ]
e (3.2.1)
3x
where some boundary values together with the initial values u(x,0)=f(x) are given

It can be shown (Weinberger, H.F., 1965, p.126) that by the application
of Fourier transforms, the solution of (3.1) has the form,

Kk%n’t
e "% sin knx , (3.2.2)

u(x,t) = c

1 k

t~18

k

with the Fourier coefficients c, given by:

k

1
S = 2 J f(E)sinknEdE .
0

We assume that the series (32.2) together with its derivatives with
respect to x and t are convergent in the region under consideration.

If the finite-difference explicit form is applied i.e.
J*1 _ qonyid j j
u; T o= (1 2p)Ui+p(Ui+1+Ui_1) (3.2.3)
then for j=0 (i.e. in the first layer), we have,

. - 22, w 2 2.
Uil = a-2p) T e, e X T IAT Gin kmih e p [T o, X T AT
i k=1 X k=1 K

(sinkr(i+1)h+sinkn(i-1)h)] ;

e-kzwszT
k

c
1

[(1-2p)+2pcoskrh]sinknih , (3.2.4)

e~ 8

k

and hence the error at the point (x, t+AT) is,
j+l G K2a% (541)AT v
u(x,t+AT)-U? = z e, e - T U sinknei h - Z c
5 k=1 X k=1

e-kzﬂszT
k

[(1-2p) +2pcoskwh]sinknih

® 2 2,
e-k m JAT

[e-kzﬂzAT
k

-(1-2p)-2pcoskrh]sinkrih

22, & 4 4 2
ek ™ JAT[I—RZWZAT+E;E§%I— -...=142p-2p

1
222 4 44
a-Xx ;,h . X Ilh + ...)]sinkrih
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If we ignore the quantities of higher order of h, we obtain the error in the

form,

] 4 2, = 2.2,
u(d, (G+1)aT)-ui*t = TAT(EAT-RT) g 4 o -m KTGAT
’ 12 k=1 ¥

sinkmnih. (3.2.5)

Now let the following inequality hold everywhere in the region D=[0<x<1}x[0<tsT]

L 2. 2. 2
I e k* "™ K IAT inkmih = i%s0, (3.2.6)
k=1 5t
then provided p=AT/Ax2=k/h251/6 we may write
3 j -
Ui $ uy for k=1 . (3.2.7)

Since the coefficients on the right hand side of the formula (3.2.3) are
positive, then provided the values of the kth layer are positive, therefore
the values on the (k+1)th layer also become positive, Hence, the inequality
(3.2.7) is true for k»1,

If the inequality (3.2.6) is chénged to be negative, then the

approximate values obtained are over-estimated. But, since we know nothing
2
about the size of-§~%-(as the exact solution is not known) the examination of

at

(3.2.6) is not possible. However, for sufficiently large values of t (e.g.
tatl) i.e. for such t that the principal contribution to the solution comes

from the first harmonic, we may write (Saul,yev, 1964, p.112),

2
sign 29 = sign ¢, e © sinmx, tt,. , (3.2.8)

ot

=

since the following inequality holds for the values of t:

2 ® 2.2
lc,e”" sinmx| 2 | ] ¢ k% e KT inknx].
1 k
k=2
32u
And since sin x is positive for O<x<l, the sign of —5 can be determined
at

from the sign of ¢ Hence the following theorem can be established.

1
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Theorem 3,1

If the following inequality holds:

J; f(£)sinntdE >0 , (3.2.9)
then for sufficiently large values of t (t>t1) and for sufficiently small
h, the explicit method (3.2.3) for p£1/6 gives an approximation to the
solution of the problem (3.1), from below.

In the case of the implicit finite-difference formula i.e.,

(ezpyul opud el Yy - o (3.2.10)
an analysis similar to the explicit model can not easily be applied

(since the explicity plays an essential role}, However, we can overcome

this difficulty by the following consideration. Although using (3.2.10)

we proceed to the (k+1)th layer from kth layer, but for the analysis of

the error we may suppose that the exact values at the (k+1)th layer are

. t . , A
given and the error on the k h layer is required. Therefore an explicit

type analysis can be carried out and hence we have for the error

. 2.2, 2 2 2.2
u(isx,jan)-v) = § oo e K I sinkninp1e2p coskrh.e ™ " AT_(1,2p)e™™ K 2T
k=1
2 2. e 22,
- TATCEATh )y okt o K I inkminso (% . (3.2.11)
k=1

The equation (3.2.11) together with the same analysis as before results

in the following theorem.

Theorem 3.2
If the condition of Theorem 3.1 holds, then the implicit equation
(3.2.10) gives an approximation fo the desired solution from above.
The conclusive remarks on Theorems 3.1 and 3.2 are that: if the
initial function is positive (as is often the case), then the explicit

finite difference scheme has a tendency to give an underestimated result



100

while the implicit scheme gives an overestimated result to the solution.

Thus the implication is that, one can achieve a better accuracy from a

combination of these schemes.

" As a numerical experiment, we have solved the equation (3.2.1) where
f(x)=sinx and the behaviour of the explicit and implicit result together

with the exact solution is illustrated in Figure 3.2.1,

Aulx,t)

Exact solution

Implicit solution o

Explicit solution ——=x

W, wwmmnn

\-* _'-"‘".'—-—_.
\x "—'—-ﬂ.____'___‘___x

FIGURE 3.2.1
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3.3 IMPLICIT-EXPLICIT SCHEMES

In the previous chapter, we briefly referred to a combination of the
standard explicit and implicit schemes at alternate levels or alternate
nodes. Here we shall consider the latter combination and investigate the
accuracy, stability and convergence, in one and two dimensional problems. We
also show some advantaées of this combination compared with the explicit and
implicit schemes in linear and non-linear problems,

Consider the problem (3.2.1) in the given region which is covered by a
grid in the usual way. The algorithm consists of two steps:

At the first time step, every other point is evaluated by the explicit
scheme (3.2.3), while the remaining points are obtained by the application of
the implicit formula.

At the next time step the procedure is reversed, and this cycle is
Tepeated.

This algorithm was first presented by Saul,yev (1964, p.68) where he
reports according to the Theorems 3.1 and 3.2 that this scheme is more accurate
than the standard explicit and implicit formulae. He also indicates that this
algorithm is stable iff pgl.

In a preliminary paper, P. Gordon (1965) reconsidered the scheme and
claimed that the major difficulty was in fact the poor truncation error.

A full discussion of the scheme is given by Gourlay (1970) where the new
name Hopscoteh is given. .Gourlay showed that the scheme may be regarded as
an ADI scheme with a rather novel method of decomposing the p:oblem into two
simpler parts.

In this chapter we are primarily concerned with the Hopscotch method and

its many variants.
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3.4 THE HOPSCOTCH ALGORITHM

In order to develop the algorithm we restrict ourselves for the moment
to the linear parabolic equation

oL@+ gyt , (3.4.1)

where L is a second-order linear, elliptic differential operator in the
space variables x and y. Suppose the solution of (3.4.1} is required in
the cylinder Rx[Ost<T] where R is a closed region in x-y plane, with
continuous boundary 3R. Approximate initial and boundary values are given
on t=0 and 9Rx[0gtgT] respectively.

To apply the finite-difference approximation we discretize the region
Rx[0<t<T] in the usual way by superimposing a rectilinear grid on the region
where the mesh spacings in the space variables can be taken equal, namely,
Ax=Ay=h, and the mesh spacing in the time direction AT denoted by k. We
denote by u?’j and U?,j the exact and approximate values of the solution of
(3.4.1) at the mesh point (ih,jh,mk)=(x,y,t), i,j=0,1,...,N and m=0,1,...,
respectively.

The algorithm of Savl,yev (1969} and Gordon (1965) consists of using

alternately the simple explicit and implicit replacement of equation (3.4.1)

namely,
m+1 m m m
U, . =0, . + k(L U, .+ g, . 3.4.2
i,j i,} ( h'i,j gl,J) ( )
U™ o™ s R o™ e g™ (3.4.3)
i,} i,] h'i,} i,j

where Lh is a finite difference approximation of the linear operator L
and g?,j denoctes the value of g(x,v,t) at the mesh points.

The Hopscotch formulation consists of replacing the twe equations (3.4.2)
and (3.4.3) by a single equation which defines the algorithm locally at all

points. The following (odd-even) function is introduced by Gourlay (1970},



103

n 1 if m+i+j is odd
o ;= (3.4.4)
. 0 0 if m+i+j is even

Thus, the single Hopscotch formula can be obtained by the application of

(3.4.4) as follows:-

+1 m+ +1 m+l m m
LA AR DU A A R APE LN A AN I (3.4.5)

This algorithm changes over at succeeding steps, hence we really only
obtain answers at m+l=2n where n=0,1,..

- However, in contrast with the ADI [Peacehan-Rachford] method, the
intermediate values obtained from the odd steps are meaningful approximations
to the solution. This is why we regard (3.4.5) as advancing the calculation
from t=mk to t=(m+l)k. (Gourlay, A.R., 1970, p.377).

The novelty of the formula (3.4.5) appears if we write down two

successive equations of the type (3.4.5) as follows:

m+1 +1 m+l
U L U™ s = U7 .+ L, Us ,
i,] ,J[ h'i,j *8; ,3] 1,J [ ,J ,J
' (3.4.6)
m+2 , m+2 m+2 m+2,  m+l . mel m+l, m+l
1,570,505, 585,50 = U, 57h0; 5 (aU; 578 50

which after some algebraic elimination reduces to the following equation,

Um+2 ,J[Lh 1+2 m+g 2Um+1 (Um Um gm N

1,7 1,] h i, ®i,]
(3.4.7)
When e? 3 is zero, equation (3.4.7) reduces to the explicit scheme,
um+2 g+l S (3.4.8)

,J i,]

and consequently, for half the points an extremely simple substitution
attains the approximation required at the next time level.
Before giving the computational algorithm, let us describe the E-operator.

If LhUm+1 is a replacement which involves U?+; and its nearest
] .
m+1 m+]

nelghbourlng points along grid lines i.e. Ul+1’3 U',jil’ Lh is called an
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E-operator. Thus, an E-operator can only be achieved in the replacement of
first and second order differential terms. Such operators often occur in
the solution of partial differential equations by the application of finite-
difference approximations.

Thus, we conclude that, the Hopscotch process is explicit if Lh is an
E-operator, otherwise the algorithm is said to be implicit. We shall consider

implicit algorithms in forthcoming sections.
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3.5 GENERAL SPLITTING FORMULA AND BLOCK HOPSCOTCH SCHEMES

A general splitting formula for equation (3.4.1) is given by,

TR k(em*lL(l) m“L(Z) um+1 = " k(" (1)+n? L(z))Um

1,] i,jh i,j™h i, i3 i,j Ly
m+1 (1)m+1 m+l (2)m+l m (l)m m (2)m
+k (6, g0 +k (@, . 3.5.1
(®,385,5  *Mi,385,5 VKO 58y 5y 585 50) ( )
with the restrictions,
T+% + aw . =1
1,} 1,)
m+1 m
Myt g,y Tl
where g(l)m +g$2?m =g " Lh Lh1)+L(2) the finite difference replacement
1,) 1,].
for the differential operator LEL(1)+L(2{ and L(l) and L(Z) are ohe-dimensional
2 2
operators, namely L(l) = —Ei-and L(z) = E—E" Lﬁl) and Lﬁz) can be any
ax 3y

constant E-operator.

The odd-even Hopscotch which was described earlier can be obtained by
defining

1 if i+j+m even
o=y { (3.5.2)

0 if i+j+m odd

Other definitions can be given for B? 3 and n? ; which lead to different
» H

types of splitting.

For instance, the values o .=nW . e -1/2 ¥V i,j,m gives the Crank-
i,j 1,3 TiLj
Nicolson scheme and . . {1, if m is even
8,5 = W2+ = 4y, se mois odd
m _ m . s
ni,j =1 ai’j Y i,j,m

gives the Peaceman-Rachford method with a time step of 2k. (McGuire, R.G,,
1970, p.7).

The general formulation (3.5.1) allows us to obtain a whole class of
Hopsoctch algorithms. Thus, we consider other definitions of e?,j and “?,j
to derive soﬁe new schemes,
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Take 1, if i+m odd

%, M,5 = lo, if iwm even (3.5.3)

Hence, (3.5.1) becomes,

+1 +1  m+1l, _ m m
U ; 1 T3y U peRer U e ) (3.5

ij=1,2,...,N-1.
from which it is easily seen that this algorithm requires the solution
of a tridiagonal system of linear finite difference equations to obtain the
approximate values at points along alternating i-grid lines i.e. in the y

direction. The above method is called the Line Hopscotch scheme. One can

also define

n {1 if j+m even

i T Yo if j+m odd

to obtain in the same way a line hopscotch scheme in the x-direction.

A fast line hopsoctch algorithm can also be obtained by writing (3.5.4)

with m replaced by m+l and eliminating kem+1[L Um+1 T+;]. From the resulting
]

equation we then have

m+2 m+2 _ +] i m
X = 2075 jokes (LU seeg )

1,J ,J 1,)
which reduces to

Uw+? = 2U?+%—U? , for i+m = odd
1,] i,] 1,3
When . '
ool {1, i+m even
i,j  M,j 0, i+m odd

we have the A.D.I. Hopscotch schenme,

_k(am+1 (1) L (2) Um+1 T .+k(em,3L§1)+Bm+1 (Z)JU :

Yi, i,J b "9 +J b i, i,] i, h 3
K 8
(3.5.5)
. (1-kL§2))u?j§ = (1+kL(’))um +k(g(2)m+1 (l)m) i+m even (3.5.6)
(1- kLﬁl) m*; - (1+kL(2))Um sk e} (l)m*l (23m) i+m odd (3.5.7)

]



If we now substitute the standard finite difference replacements for Lﬁl)

and Lﬁz) in (3.5.6) and (3.5.7) i.e.

52 62
Lél) = X 12 . ¥
12 h 12

then (3.5.6) requires the solution of a tridiagonal system of equations

along alternate i-grid lines and therefore the equation (3.5.7) now becomes

an explicit process (Morris, J.Ll1. § Nicoll, I.E., p.324).
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We note there that, we can not simplify equations (3.5.6) and (3.5.7) to

obtain a fast formula as (3.4.8) for the A.D.I. hopsoctch method.

In the Figure35.1 we demonstrate different hopscotch schemes where the

symbols X and O correspond to explicit and implicit points respectively.

a) X Evaluated first with explicit

formula (3.4.2). . I

j+2 —X——0——X—
0 Evaluated later with implicit 341 I I
formula (3.4.4). . f I L
J ey Y=
The points X and O are interchanged r | ]
i i+1 i+2
at the next time step. The process
is explicit " (a) 0dd-Even Hopscotch
b) X Evaluated first by explicit ' |
formula (3.4.2). j"'z—zi(_'i('_")l{_
0 Evaluated later by implicit i+l -T-——— T-—- T—
equivalent to (3.5.4). 3 -T.__.?._ﬁ Fﬁ

This requires the solution of

a tridiagonal system of equations
(b) Line-Hopscotch
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¢) O Evaluated first by implicit formula

(3.5.6). j+2 ? % |
X Evaluated later by formula (3.5.7). X — j
This scheme also requires the T l l
AR
solution of a tridiagonal system of
i i+l i+2

equations.,

(¢) ADI-Hopscotch
FIGURE 3.5.1

The processes (b) and (c¢) in Figure 3.5.dare called Block-Hopscotch
procedures. In the case of block procedures, the way in which we choose our
block is critical for the efficiency of the method changes from one to another.
Also one procedure might be more accurate due to the implicitness of the block
as well as the cancellation of the L.T.E. terms., We shall describe these
properties later in this chapter.

Here we describe another block called "Peripheral Hopscotch" which was
first presented by Gane, C.R. (1974, p.73).

The peripherals consist of the X points, evaluated first using the
explicit formula (3.4.2) and the péripherals consisting pf the O points are
evaluated later which require the solution of a cyclic tridiagomal system
(Figure 3.5.2).

One can also derive the fast Hopscotch formula for the peripheral
pattern.

As a comparison of the computational work involved in the aforesaid
schemes, we notice that in the Peaceman-Rachaford method, the solution of a

tridiagonal system is required for each line parallel to the x (or y) axes.
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in the first sweep and the same work is involved for each line parallel to
the y (or x) axes in the second sweep of every cycle.

The Line and ADI Hopscotch methods, on the other hand, depending on
whether m+i is odd or even, (where m is the level number and i is the line
number), requires the solution of a tridiagonal system of equations for
alternative lines in the first and second sweep in every fwo step process
{(where the neighbouring lines are evaluated explicitly).

The odd-even (point) Hopscotch is completely explicit and gives the
faster method whereas the Crank-Nicolson scheme which is a fully implicit
method is much slower.

Finally, as far as programming effort is concerned, the odd-even scheme
is very easy to program while the Line and ADI Hopscotch methods are more
complex and require more programming time. Another advantage of the hopscotch

processes is the efficient use of storage and its economy in operation.

FIGURE 3,5.2
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3.6 STABILITY OF HOPSCOTCH METHODS

For stability of the method (McGuire, 1970, pp.13), we consider the
general formula (3.5.1) globally (over the entire mesh). First we introduce
some notation.

Let,

= {( ).} (3.6.1)

u, .
i,j73°1
denote the solution vector for the mesh points ordered along lines

parallel to the y axes and the vector g has the same definition. Also

let the diagonal matrices I In o and In be defined by,

1’71 2
(Ieuzm) = gm ym
1,3 1,3
3.6.2a)
n,,2m 2m  2m (
I U .= on, U,
( )1.3 M,3°1,3
8 _ 8
I2 = I--I1
(3.6.2b)
10 = I-1
2 17
where I is a block unitary matrix of (Nszz) order.
We introduce a coefficient matrix A and which is split into
submatrices as follows:
2
ADy,5 = Myl 5
- (1)
(Hg)i’j = Lh U j (3.6.3)
- (2}
and (Vg)i’J h Lh U, i3
We define also, 8 n
Al = IIH + Ilv .
(3.6.4)
- 1° n
A2 = 12H + 12V .

The global form of the general formula (3.5.1) can be written as a

two-step process:

(1+pAU" = (1-pAU™ +k(1e ()m, g (Z)m)+k(19 (1)m-1 gg(Z)m 1y

(LA™ = (1-pa Uk (10g D™ L Mg (Ml g (9 (1D, g (D

(3.6.5)



111

where p = AT/Ax2 = k/h2 and m=1,3,5,... are odd integers with y? given and
the boundary values are absorbed in the g vector.

It can be seen that the class of methods given by (3.5.1) is equivalent
to the Peaceman-Rachford procedure according to the splitting of the matrix
A given by (3.6.4). Thus, we can rewrite the previously mentioned block
method. For instance,

= =n=n=
=1, =1 =1)=1/21,

leads to the splitting A=1/2 A1 + 1/2 A, for the Crank-Nicolson scheme.

Also, 8 n n
I1 = I2 = I1 with (diag Il)i,j = ei,j .
e . M- - 1.
12 = I1 = I1 = I.I1 s

mn . . .
where ei j is a zero-one function gives,
b ]

A= (11H+12V)+(IZH+IIY)
for the ADI-Hopscotch method. The name ADI for this Hopscotch procedure is
due to the splitting of A into H and V as in the normal ADI method and then
H and V into I H,I

1772 2
For the stability of (3.6.5) we eliminate g? to obtain

H and Ilv,I V as in the true Hopscotch method.
(TR 1 Lot P LS U 8- T (3.6.6)
where g? is independent of the solution u and T is the amplification

matrix with the following values:

8 -1 8 -1 I W1 9
T = [I+p(12H+IgV)] [I+p(IIH+I?V)] [I-p(IIH+11V)][I-p(12H+IgV)]
- [I+p(IgH+IgV)]-1T[I+p(IgH+IgV) , (3.6.7)
and B, 1Nyy1-L N CI | By rMhyy 1L
T = [T+p(I H+IV)] ™ [I-p(I H+I0V) J[I-p (I H+IDV) ] [I+p (I HYIOV)] .
| | 2702 2742
(3.6.8)
Then,

™ = [1+p(IgH+IQV)]'l%m[1+p(xgH+IQV)] (3.6.9)

Hence, applying the Lz-norm gives rise to:
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I IS e scB Wy R TN TE S TR TS BN B UG
{3.6.10)

We now state Kellog's lemmas which can be used to prove the stability

of the methods.

Lemma 3.1

If w>0 and D+D* is non-negative definite, then wI+D has a bounded
inverse and

Hro) ] € 17w .

Lemma 3.2

If w>0 and D+D* is non-negative definite then the operator (mI—D)(mI+D)_1
is bounded and has norm less than or equal to unity.

Therefore, if (IgH+IgV)+(IgH+IgV)* is non-negative definite according
to Lemma 3.1, we have

epaie 1] ] 5 1 (3.6.11)

and also from Lemma 3.2 provided (12H+I?VJ+(I$H+I?V)* is non-negative

definite then ~
T]] 1,

A .
and ||T]|™sc, where c is some constant (and p is fixed). Consequently

the stability of the scheme under consideration is guaranteed, and we have:

Theorem 3.3
The Hopscotch process is stable for the solution of (3.4.1) if
8

n 0 n .
11H+IIV and 12H+12V both satisfy

(U,DiU)+(DiU,U) 3 0
where Di=IgH+12V’ i=1,2, for all real, appropriate ordered vectors U#0.
Corollary

The above condition is satisfied if (U,DiU)+(DiU,U)aO for Di=IgH,

I?V, i=1,2, which can be used for stability of (3.5.1).
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8 . .
When I1 and I?E[O,l], in other words, the entries of If and f} are zero and

one respectively, we have,

os1Manda 1% ¢ 1, i-1,2
1 1

. g_.n_ f_.n_. _ .
Now if 11—11—11 and 12—12-12-1-11 we obtain
1%9+41™ = 1.A and 1V = 1A
1+ 1 Py oA

In this case, since A is positive definite, Ai exists and we can write:

[1+p11A}'1{1-p11A] = A-i[I+pAillAi]'1[I-pAillA%]Ai = A'iAlA4

where A = [I+pA£11A£]-1{I-pAi11A£] . (3.6.12)

In the same way, we obtain

[1+pI A} 7" [I-pIA] = IWi

2
and
Y 4 ‘
T = A1A2A . (3.6.13)
Therefore
" = [I+p12A]"1¥m[1+p12A]-= {I+pIzA]-1A-5(A1A2)mA£[I+pIzA]
or

™ = [Ai(I+p12A)]_1(A1A2]m[A£(I+pIzA)] ) (3.6.14)

Also, the matrices AiIZAi and AiIlAi are non-negative definite since,
for instance, ) } } !
= ) *

A IlA (IlA } (IIA ),
when A is symmetric, since I1 (and 12) is diagonal with non-negative
elements. Therefore, AillAi and A£IZA£ are non-nggative definite,
symmetric and Kellog's 2nd lemma can be used to show that
A Il <1, i=1,2,
i

which implies that for stability, we require,
117 s b LAt aprp )< e (3.6.15)
where ¢ is a constant independent of m,

Hence we can write
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[A*(anZA)]'1 = {[I+pAiIZA!]A£}—1 = A-i[I+pA§12A5]-1

]

by the Kellog's lst lemma we find that

U1 < LA It el s (3.6.16)
since p is fixed and A is a positive definite matrix.

Therefore we may state:

Theorem 3.4

The two step process (3.5.1) is stable for the solution of (3.4.1)
if the matrix A is positive definite whence I$=I?=Il and Ig=Ig+I—I1
(Gourlay, 1970, p.380).

However, for a general class of Hopscotch process which can be
derived from the formula (3.5.1), Gourlay and McGuire (1971) have applied
the same analysis of Theorem 3.4.and shown that the general stability

Theorem is as given earlier in Theorem 3.3. But in order to cast the

Theorem 3.3 in a more workable form, the following lemma is given:

Lemma 3.3
If the NxN non-singular matrix A has n independent left eigenvectors,
then:

i) the matrices IlA and IZA also have N independent left eigenvectors,

and
ii} the null spaces of Ilﬂ and LA are disjoint.
Proof: See Gourlay (1970), p.381.

Thus, the following theorem by McGuire is immediately obtainable:

Theorem 3.5
The algorithm (3.5.1) is stable for the solution of (3.4.1) in the
case of IE,IQE{O,I} if the matrices H and V both have a full set of

independent eigenvectors, are non-singular and if the eigenvalues of the
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TV,IgH and IEV have non-negative real parts.

2] .
1=Ir1‘=11 this theorem becomes the Theorem 3.4,

matrices I?H,I
For the special case I
A simple 2x2 counter-example however, shows that, the Theorem 3.3
which indicates the sufficient condition for stability of the class (3.5.1)
is not generally applicable in this particular context.

Let the positive-definite matrix A and matrix I1 be as follows:

Therefore 0 0 5 _1 N i
. b= IIA= and D* = + D+D* =
-1 2 0 2 -1 4

which results in the eigenvalues of D+D* being 2i/§, showing that D+D* is
not non-negative definite.

To remedy this difficulty Gane, C.R.(1974, p.81) has applied a more
suitable norm and proved the stability for the class of Hopscotch process
with respect to this norm.

To describe his analysis we first give some definitions:

Definition 3.1

The M2 or mean 2nd power norm of a column vector U is denoted by

|[Q|IM' and is given as follows:
2

N '.lg -
|]_q||Mz = {(1/N) 2{1|u£|2} =N i.”HHZ . (3.6.17)

Definition 3.2

The A*-veator norm for a vector U for a positive,definite matrix

A 15 defined to be:
Hul] = ||A£9_[| , (3.6.18)
2 M,

and the Ai—matrix norm subordinate to (3.6.18) is:
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lipl| , = ||atpd . (3.6.19)
It Ilz

Now reconsidering (3.6.13), we have

T=at 3
T = A"*D,D A

where

= [I-pAiliAi]{1+pA511A5]’1 , i=1,2, .

Since A is positive definite, then Ai exists and is also positive
definite, and as mentioned earlier,

LI I becraly 4=
AT A% = (LA)*(LA%), i=1,2

and it can be shown that AiliAi, i=1,2, are non-negative definite.

Therefore, ~ } -
1FI = 1At topo syt = o H e, 1, oy 11, < 1,

(3.6.20)
since by Kellog's 2nd lemma, |]Di||51, i=1,2,,

Also, considering lemma 3.1 and 3.2 we respectively obtain,

[NV I = [Jaspat by 1), <1, (

L9234

.6.21a)

and b
HIepr Al] = [[14pA* 1A% ]|, = o (14p1,A) (3.6.21b)
A

~ since (I+pA£IlAi) is symmetrie and IIA=A_i(A£I1A£)A-£.

Now because IlA is simply composed of rows of A and »null rows, it
follows from Gerschgorin's Theorem and the structure of A resulting by
the difference replacement of (3.4.1) that,

p(IlA) s M (3.6.22)

2 2
where M is assumed bounded {e.g. if L=§—§-+ E_E then A has 4 on the

ax" oy N-1

diagonal and -1 off diagonals, hence by Theorem 3.1 p(I A)<m1n(max I [a.
=]
N-1 i=
max E [a |)=8, i,e, M=8}, It then follows from (3.6.21b) that
j=1

i, j[

||I+pI Al e < l+pM .,
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Thus, for equation (3.6.10) we obtain,

LT, < 1epM,
A

which is independent of integer m, assuming p=k/h2 remains fizxed. Then the

stability Theorem holds as follows:

Theorem 3.6

The odd-even, line and peripheral Hopsoctch processes are stable (in
the Ai norm) for the solution of equation (3.4.1) if the matrix A defined

by: hz
()5 = L

is posttive definite (Gane, C.R., 1974, p.82).
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3.7 CONVERGENCE OF THE HOPSCOTCH ALGORITHMS

The convergence of the Hopscotch processes have been discussed by
McGuire (1970) and Gane (1974). Here, we follow the analysis of the second
author and study the convergence with respect to the A -norm which can be
useful for further development.

Hence, we consider the general 2-step formula (3.5.1) and define Ll,L2

and b, . as follows:
1,]

’ m+1_(1) m+1

- (2)
Ly =% 5% "MLl

=g (1), m (2) (3.7.1)
b2 7 %,5% " " My,
m m (l)m m (Z)m m+1 (I)m 1, m+l (2)m-1
d b. . = (9, .
an 1,5 7 5,585 5,5%,5 070,585 a8, )
In addition the following also holds:
Ly -1 1)y ey o
V5,5 77 Pt 3Y, 5P 5 5] T B 57000
(2) =L 2y - 1@ o
bV 707 Bt 50030, 57R 0 ) B Y000
(3.7.2)
where A, .,B. ....,E. . are independent of U, . and o is given by (2.11.1}.
1,7 1,] 1,] 1,]
Thus, we have,
v,,@ _ 1L =
L e o Oy 3% 5P 5%1,57,50, 570,30 R 5 Y
g
LhUi,j = LUi’j + o(h%) (3.7.3)
where c ) C(i) (2)
i,j i,] i,j

Therefore, the general two step process (3.5.1) becomes:

1
(l-kLl)U?’j (14KL, )um + kb

i,j
+1 _ +1
(KL )UP"5 = (KLU o+ KBTS,

(3.7.4)

where according to L1 and L2 we can have different methods (e.g. odd-even
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or line Hopscotch). The elimination of U? 3 in (3.7.4) results in the

single formula, namely,

+1 -1 m
(l—kLl)(l—kLz)U?,j = (1+kL1)(1+kL2)U? ;R (3.7.5)
g(IJm
m m m+1 m+]
where Ri,j = 2kgi,J 0(k )+n O(k )Qk L (6 T3 +“i,j
(2)m
___“l_;+e 0(k /h )+n O(k /h ).
3t

(McGuire, 1970, p.23), and we assume enough differentiability for each

u,g,g™) and 2,
Let e? 3 denote the difference between the exact and approximate

>

solutions and the mesh points i.e.,

then, the error equation is deduced from (3.7.5) to be:

1 m

(l-kLl)(l-kLz)e ,J = (14KL,) (1+kL,)e m,J +dy (3.7.6)
where (l)m : 5g (2)m
& - 2k3L L, (3“) +2K°L (em*; ——%%l—- nT+; ~3%41—)+0(k3+kh°)
m*lock /h)+ m*lock /m3.
‘Hence, the L.T.E. of (3.5.1) denoted by d. i is,
a - o(kn®+k>/m%x3) | (3.7.7)

where ¢=2, or 1 depending on whether (i,j)} is a regular, or irregular mesh
point on the grid respectively. Here we suppose that the region under
consideration contains only the regular mesh points so that og=2.

We note that, there is a potential weakness in the Hopsoctch technique
in that consistency relation requires k to be O(hz). This is similar fo
the weakness found in the Du-Fort-Frankel scheme to which the hopscotch

algorithm can be related. This will be shown later.
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The global error equation can be found for equation (3.5.1) by

considering the whole region and written in the same manner as before,

(1-p12A)(1+p11A)E?*1 = (I-pLA) (I-pI,A)e" Lod" (3.7.8)

where m is an odd integer and I1 IZ’A are defined so that different

hopscotch algorithms are denoted. The equation (3.7.8) can also be

represented in the following form (replacing m by 2r+l),

2T _1e® L £ 10,1,2,... (3.7.9)

where T is given in (3.6.7) and

£ = (apr ) T repL ) & (3.7.10)

Thus, from (3.7.9) we have

le - Tr29+Tr-1§fTr-1£?+ +Tch -3 f2r- ) (3.7.11)

Now, if the processes are stable, we have ||T” || g¢ (constant) for all
X

r>0. Also from (3.7.10) we have

II 2r 1l|<||(1+pA£I A* [I |I(I+PA I Ai [l.llg?r+lll

where ||.]| denotes the Ai—norm.

The application of Lemma 3.1 indicates that

2r+l 2r+1
22 el 1)
A A

Hence, we can write

eI R

hile [IRIL =l et e e
A A
Thus, |1Rr]] j § ¥.c max IIQ?L-III )
A lgosr A
. 0 0.0 .
If by assumption, ||e”||=]lu -U"|]=0, then we obtain,

2r
e ™ ||

< r.c max |[a®*1]

! } (3.7.12)
A 1gosr A



121

since d] j=0(kh2+k3/h2+k3) for all i,j,m and

1871 = IR, 11 b 11857 1 =
- Ilﬂxillzllf’l'lllMz : (3.7.13)
it follows from (3.7.7) that,
IIQ?“‘llle = o(kh2+k>/m%a3), for all 231 i, (3.7.14)
Since !]A£|]2=p(A£)=[p(A)}£=(M)£, is bounded for a positive definite
matrix A, (p(A)sM was assumed for stability) therefore,
llg?g'lllis M?.ocknZak3/m2a3y (3.7.15)
It now follows from (3.7.9) and (3%&.12) that
I]E?rl[Ais r.k.c. Mo om2a? m2a?y (3.7.16)

and the convergence of (3.7.6) can be achieved provided k+0 faster
than h which means, k/h2 mist be kept constant, which is an important

matter for convergence. We now state the following theorem:

Theorem 3.7

The formula (3.5.1) for the solution of (3.4.1) is convergent in the
Ai norm with the rate of 0(k+h2) if the mesh ratio p=k/h2 is constant, and
if the processes are stable and the region of the solution deals only with
regular mesh points which guarantee the positive definiteness of the matrix

A. (Gane, 1974, p.85).

The principal part of L.T.E.

In the expression for dj j» (3.7.5) the terns involving 0(k>) and
o

O(kh ) are the same for different methods deduced from the general formula

(3.5.1). The only terms which are different are those involving O(kS/hz).

McGuire (1970). The magnitude of this term can be used for the comparison
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of the accuracy of different methods. Here we shall look at this
coefficient in the general formula (3.5.1) and cémpare different methods,

The terms involving 0(k3/h2) are as follows;:

au™ (l)m 3 (2)m
i,j m+1 1,3 m+1 i,j
2k L1L2 5t and k L (e i,j Bt *ng i,j 3t ),

(2)

where L s L ,g(l) and g are as given earlier. Considering the definition
2

of L. and L, which are given in (3.7.1)~(3.7.3) one can easily show that

1 2
aum
3 i m+1 (1) m (1) m+l (1) m  (2) m+1 (2) m (1)
2L Ly —5- = % {e 1,5 %3t "M Ny, "1, %,
eum
m+l, (2) m . (2) i,]
+"i,j ni,th } 3t (3.7.17)
Also, for the second term one obtains,
WL oL Fiok
k L (em+1 i,j . nm+1 i,j ) = 3 m+1 (1) m+1 .
i,j 9t i,j ot i,] i,] at
(2)m ag(l)m
m+1 (1) m+1 1,1 m+1 (2) m+1 N
i,] i,j Tt MHLj i,j Bt
(2)m
m+l. (2) m+l 1,1
my JLh "i.i ot }. (3.7.18)

Now for different methods, we have different values for e? j’“? j
2 ]
which results in different principal parts for the L.T.E.

For instance, the Crank-Nicolson method is achieved from (3.5.1), m

™
2
when e?*? =6 ;71/2 and m+ ; =n} 4=0- Therefore (3.7.17) becomes k3/2(Lh) kel
Hl , ’ m ]
and (3.7.18) will be k74 u—%il .
For those methods with e? j=nT T we have,
m m
3 ;5 3 gmel | om yy
2L, ~3k = 2 R AL AN —hl (3.7.19)

and a-g(l)m ag(Z)m gm
3 m+l “*i,j m+l "5 _ 1 3ml m+1 i,j 3.7.20
k Ll(ai,j ot My i, at ) k"8 ,JLh i,j 9t (3.7.20)
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Thus, for the odd-even hopscotch method (where 6? . is defined earlier),

>

the 0(k3/h2) terms of the L.T.E. is n "

u, . g. .
3,2 m+] _ 1,] i,3
k“/h Bi,jci,j( 2L T 2 T ) (3.7.21)
whilst for the Iine-hopscotch methed (3.7.19) becomes,
m m
au
3, 2.m+1 i,j i,
k“/h ei,j(Bi,j+Di,j)(2L Y 2 ot } (3.7.22)
where B, .;C. . and D, ., are given in (3.7.2). For the usual elliptic
1,17 1,) 1,]

operator, where the matrix in (3.6.3) is diagonally dominant, (3.7.22)
has a smaller magnitude than (3.7.21) which indicates that, the line

hopscotch will be more accurate than the odd-even hopscotch process.

Compensation of L.T.E. and the role of mesh ratio

Although the principal part of the Local Truncation errors illustrated
above, shows that the Crank-Nicolson scheme is more accurate than the
hopscotch processes, the value of p=k/h2 also plays a role regarding the
accuracy of the hopscotch techniques.

To show this, following Danaee (1978), we consider a simple one-
dimensional heat conduction equation (3.2.1) where the odd-even hopscotch
is employed to evaluate the approximate solution.

We now consider two successive time-steps, and find the L.T.E. at the
point where the solution is found explicitly (E) as well as where it is

found implicitly (I).

o2 A j+2 BT,
R PR B S R
. . ~ ’ H “ . ! Yo
. 1 - . . j+1 - -I "“gt -.I: .‘.E
+ - acepmp 4V Ay G bets --.'—‘ - - s .
J 'n" .'.\. ‘I L-'."'? . 'l ’iﬁ\ : " | “ : .q. : \‘
.’ N * . ’ H i .7 v 3 ;" ! s
- (] |‘/ H ., . ’ H hk L] -..l H ﬁ..
- vl T - . e i 4 —— T r—_
J i-Z2  1-1 \1 1+]  1+2 I {T3TITTAT 1 1+l 1+2  1+3

FIGURE 3.7.1
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It has been shown that (Danaee, A., 1978, p.18), the principai part

of L.T.E. at the explicit points (E) is

2 2 4
L.T.E = 202050 A, . - BgaapdU .
at +) X
(3.7.25)
while at implicit points (I}, (3.7.21) becomes
2 2 4

2,2.37u kh 2

L.T.E. = 201+2p) k(T - g-(52p aepr)2 R 4 L (3.7.26)
3t :

Ix
However, for the simple heat equation (3.2.1), we can also obtain

by differentiation,

32u B4u
—5 = (3.7.27)
ot 8x4

and substituting (3.7.25) in (3.7.23) and (3.7.24), the principal part

of (3.7.23) and (3.7.24) become:

2 4
E, = X oadop-n@u (3.7.28)
176 2
X
2 4 !
E, = 5%-{48ﬁi4p2-4p-1)3—§ . (3.7.29)

x
The smallest truncation error occurs when (3.7.28) and (3.7.29) are
minimized.

The graph of the two functions of p-in E1 and E2 are displayed in
Figure 37.2. As can be seen, at p=0.33 we obtain a more accurate result
for the solution of the heat equation.

To compare the error behaviour of the hopscotch and Crank-Nicolson
methods, we consider the previous heat example and draw the graph of the
global error for both methods (Figure 3.7.3).

As the graph shows, for small time-steps (p small), the hopscotch
procedure is more accurate than the Crank-Nicolson scheme while for large
time-step (p large), the second method provides a much more accurate solution

than the first. (We shall remember that in this case the noise effgct

appears).
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principal part of L.T.E. global error

A
F.

C-N error

\E {
2 500

'\\\ Hopscotch error

FIGURE 3.7.2 FIGURE 3.7.3

Here we conclude that, not only the stability of implicit formula in
-the hopscotch processes dominates the restruction on the stability of the
explicit formula, but it compensates the L.T.E. in the process.

Therefore, different combinations of explicit and implicit formulae
will give different L.T.E. In other words, the degree of implicitness of
thé scheme being used may alsoc play a role. We shall be considering this

matter later.
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3.8 BLOCK ITERATIVE METHODS

In all iteration methods for the solution of a linear system of equations

Au=b, considered so far, the value of each component of u is determined by

(m)
an explicit linear formula, of which (2.17.8) is typical. By explicit we
of u can be

(m) ~(m)

determined by it at its proper step of the algorithm,without the necessity

mean that the mth approximation to the component uy

of simultaneously determining a group of components of E{m)'
The implicit method or block 7terative methods are formulae by which

a group of components of E{m) are defined simultaneoﬁsly in such a way that

it is necessary to solve a linear sub-system for the whole subset of

components at once before the solution can be evaluated. The advantage of

implicit over explicit methods is that the rate of convergence of the former

may be appreciably greater at the cost of some complication in the method.
Typical examples of implicit methods are ADI and SLOR (Successive Line

Over Relaxation) which we describe here. To demonstrate the methods we begin

with a model problem of Dirichlet kind, namely,
2 2

du,3u._,, (3.8.1)
2 2

3x y :
subject to u=f(x,y)} on the boundary of the unit square Ogx,y<l. To
obtain the finite difference approximation to (3.8.1), we consider a
rectangular net which covers the square region with sides parallel to
the coordinate axes with grid spacing h. If N.h=1, the number of internal
grid points {(nodes) is (N—l)z, and if the five points formula is applied to

solve (3.8.1) at all the internal nodes, a linear system of equation Au=b

can be obtained where A is a matrix of order (N-l)2 given by a general form,
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Bl Cl
A, B C
2 . 2\ 2\ 0
SN ~
N \\ ~
A= N N (3.8.2)
\\ N .
~ ,
~ AS C
0 \\ ‘\\ N-2
i AN-1 By-1]

with the submatrices of order (n-1) as follows:

! ] 1 ]
-1 4 -1 \
. v~ ~ 0 \ 0
~ N hY
N . \\ . \
B, = SRR AL, =C o= \ . (3.8.3)
N ~
S =1 N\
0 A N \\ 0 \
L -1 4] | ~1]
1£igN-1

The vectorsu and b are given by:

_ T
U= {uy Uy geeensly ngally poeeesly nogaee Uy qeee sty )
and
_ T
I N R UL7 N T [RCTTL SV PPRIN . WIS PRIPR S
(3.8.4)

respectively {(Mitchel, A.R., 1976, p.102).

In an analogous manner to point SOR, we can define the line-SOR when
we consider the group of nodes on one line and achieve the theoretical
result as before, provided the coefficient A is block consistently ordered
and possesses property A" (or block property A}. These properties are
discussed in Varga, 1962, p,196.

For the SLOR method with Dirichlet boundary conditions, the B; in
(3.8.3) will be tridiagonal, and it will be necessary to solve subsystems

of equations of the form
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nd

AiEi-l(m+1)+BiEi(m+1)+CiBi+1(m) = Ei’ i=1,2,...,N-1,
(A;=Cy_1=0). (3.8.5)
or Bj_.tii(m.._l) = _‘_i_ , i=1,2,...,N-1 (3.8.6)

where g; is the column vector of values along the ith line and Qi (1gigN-1)

. ~ ~ N .
are known since Ei—l(m+1) and Hi+1(m) are evaluated previously. The optimum

value for the relaxation parameter now becomes

O S (3.8.7)

w ?
opt
1+/1- (o1
where pL is the spectral radius of the Jacobi line method (Young, 1971,
P.453). If the iterative matrix of line SOR is denoted by'Ei then it can

be shown (Varga, 1962, p.204) that

L cos(%ﬁ
PlLy) = —mmorm— (3.8.8)
2—cos(ﬁ

from which we can define the asymptotic rate of convergence to be

R Y ) = 2;35 Nopeo (3.8.9)

. wopt :
so that,

R(ZC )

---%RE—-z V2 Novoo (3.8.10)

R (LP* )

«© w

opt

for this model problem. In other words, for large N, the line successive
over-relaxation iterative method yields an inerease of approkimately 40 per
cent in the asymptotic rate of convergence of the point successive over-
relaxation method. An important gain achieved here is that the criterion
(3.8.10) is fixed and independent of the mesh spacing h=1/N (Varga, 1962, p.205)
Analogous to the line SOR method, one can apply a k-line SOR method for

integer k>1. A comparison of the type (3.8,10) has been made by Varga where
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where he shows that,

53}
Pt . e (3.8.11)

As shown in Cuthill and Varga (1959) and Varga (1960), it is
possiblé in many cases to perform both single and double-line over-
relaxation in approximately the same number of arithmetic operations per
mesh point as required by the point SOR method. Therefore, the increase
in rate of convergence of line-iterative methods over point-iterative
methods results in corresponding decreases in total computational effort.
However, for k-line SOR when k>1 some practical difficulties may arise which
results in a little gain in comparison with the 1ine-SOR (k=1) method which

is the most significant iterative over-relaxation method for the model problem.

Symmetric SOR method

The syrmetric SOR method (SSOR method)} .can be considered as two half
iterations. The first half iteration is the same as the SOR method, while
the second half iteration is the SOR with the equations taken in reverse

order (Young, 1971, p.461).

Thus, if u is determined from u_ by the forward SOR method, i.e.
=(m+$) -m
-1
_{m+£) =L ol (m) + {I-wl) “wec (3.8.12)

and E{m+1) from E{m+£) by backward SOR method, then we obtain

Uenay = Ulpmedy*(1-60) T6b (3.8.13)
where
I = (I-oL) (el (1-0)1)
? 1 (3.8.14)
U = (T-ub) " (ulr(1-0)T) .

Eliminating u in (3.8.12) and (3.8.13) results in the following formula,

=(m+1)
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+ mcz-m)(r-wU)‘I(I-mL)“lg_ (3.8.15)

Beme1) ~l(m)

which indicates that

U L = I-(2 -1 “15-1

w L = ~w(2-w) (I-wl) “(I-wl) "D "A
where D is the diagonal of matrix A of the linear system to be solved,
and E?D_lg. Hence, U’mLm is non-singular if O<w<2 and if A is non-singular,

The analysis of convergence and strategies for obtaining the best

value of w for the SSOR method is given by Young (1971), p.462, and it is
shown that SSOR method is convergent if and only if A is positive definite

and O<w<2,

Alternating Direction Implicit Iterative Method

As it was shown previously the Peaceman-Rachford method for solving

the heat conduction equation

2 2
_3_1_1_=3_u+3_u (3.8.16)
t 2 2
ox 3y
is given by
1 2 1 .2, n+l1 _ 1 .2 1 2
(1-§p.5x)(1-§pay)ug’j = (1+Ep6x)(1+§p6y)U2,j , (3.8.17)

after elimination of the intermediate values U?+§. The equation (3.8.17)
» v

can be taken to represent an iteration procedure which converges if

ittt
i,

i,j
for sufficiently large values of n.

gives rise to the standard five point

Laplace equation.

= 1,

(3.8.18)

2 »
1,)]

Substitution of (3.8.18) in (3.8.17)

difference replacement for the

Therefore, the Peaceman-Rachford method {(given in the

previous chapter) applied to the heat equation (3.8.16) with the boundary

conditions independent of the time, represents an iterative method for

solving the Laplace equation in a square with Dirichlet boundary conditions

(Mitchell, A.R., 1876, p.104).

The parameter p in (3.8.17) is no longer

the mesh ratio but is an Zteration parameter which may be varied from

iteration to iteration.
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For the convergence analysis of the ADI method, we write the equation
(3.8.17) for all the (N-l)2 internal grid points of the unit square to

obtain the matrix form, namely,

2 2
——— I + H)U* = I-V)u
(pm+1 )—{m+1) (Pm+1 )—{m) =
5 (3.8.19)
and (— _ ¢ 2
Pavt T ey = G 7T Py 2

respectively where Pril is the variable iteration parameter. In the
equation (3.8.19), I is the unitary mafrix of order (N-l)2 and, H and V

are commutative matrices of order (N-l)2 given by:

B 1 o[23 -g 7] 2 -1 B
B -J 23 -J -12-1
\ 0 ~ N0 0 o N 0
S A \\ \\ SN »
H= N y= Yoo N . with B = AT
A N N N Y N
N o0 * AN N
N ~ - -
0 \\ 0 \\ '\\ J 0 AY N\ 1
N ~ N A
N B] L “=J 2] | -1 2]

where B and J are of order (N-1), J is the unitary matrix of order N-1
U and b are vectors given by (3.8.4).

The two equations (3.8.19) can be given in a combined form as

Ume1) = Tner%m * & (3.8.20)
where
Tm+1=(2 1+l - mEE—r1 i1
P+l Prel m+1 m+1
and | (3.8.21)
g= =1+ E—1-mE—1+mt a1 .
Pm+1 Ppe1 m+1

For the convergence of (3.8,20) we require p(Tm+1)$1.

Ifp is constant, then T is constant for all m, and the
m+1 m+

1
convergence of (3.8.20) is guaranteed if p(T)gl.

Since H and V commute, they possess a common set of orthonormal

eigenvectors @5 (1¢r,sgN-1) with the corresponding eigenvalues given by,
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. 2w
AT,S(H) = 4 sin 5N
.. 2 sT
L s(V] = 4 sin R 1gr,s5N-1.
Hence, from the equation (3.8.20)
(2 - 4 sin® I (2— - 4 sin? ST
Prsl 2N Prel 2N
T ..a = a (3.8.22)
m+l*r,s 2 . 2 rm,, 2 . 2 sm T,s
( + 4 sin Eﬁ)(———-+ 4 sin N
P+l m+l
for lgr,sgN-1.,
and therefore the process is convergent since p(Tm+1)<1.

The variation of Poey with m, provides a substantial improvement
in the convergence of the Peaceman-Rachford method for solving Laplace's
equation in the considered square region.

The full analysis of the method together with the comparison of the
rate of convergence of the method with variable and constant iterative

parameters is given in Varga, 1962, p.p.209-217.
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3.9 HOPSCOTCH METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EOUATIONS

In a recent paper (1979), Gourlay and McKee have analysed the
iterative Hopsoctch algorithm for the solution of the elliptic partial
differential equations, in particular the Laplace eqﬁation.

ntil then it was believeq that the iterative hopscotch algorithm was
simply syrmetric successive over-relaxation for some ordering of the mesh
points. The authors show that this belief is not true and they have studied
 the properties of the hopsoctch method for the solution of the Laplace
equation in a separate way.

Here we shall consider their analysis where they prove the equivalence
of the hopsoctch and the well-known Du-Fort-Frankel schemes,

We consider the Lapléce equation on a unit square with grid points
(i&x,jdy) and suppose that the matrix equation Au=b is obtained from the
finite difference replacement of the partial differential equation. We shall

assume that A has property A and the ordering chosen is the ¢, -ordering. The

1

two step hopscotch process then can be written as follows:

I+pI AU = (I-pI,A)U + k
(I+pI,, )‘_(m) (I-pI, )_(m_l) 1 (3.9.1)
(I+P11A)y{m+1) = (I-leA)g{m) + k2
-where Ei and 52 are suitably defined.
To obtain the SSOR we first consider that, the Gl-ordering means
"relaxing" initially all mesh points when i+j is even and then all mesh
points where i+j is odd. Therefore, the Jacobi matrix takes the form
0 RT
. Thus, the SSOR method with cl-ordering becomes
R O
v, . = {r-e@ 91 a-umpad Ry +d
=(m) “‘R 0 W% 07 Zm-1) T A
T (3.9.2)
_ 0 R ;-1 00
Ymey = 117 (5 o )} Q=01+ (7 003Uy + 4y

on the other hand (3.9.1) with o.-ordering now becomes:

1
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= 1@ Oya3-l 10
Ymy = (1Pl PAY T4y ANy gy + By
o 1 (3.9.3)
T - 00
where I1 and 12 in (3.9.1) now are equivalent to
- (© A |
I1 = ( I) and I2 »I{ 0) .

The equation (3.9.3) might be written in the following form when we apply

the Jacobi method namely,

T
LI 0 00,.-1,,(1+p)I 0,  .OR
Um "1 a-ppD PR, PG o0 pm1y * Y (3.9.4a)
T
_ ..-pI O, _LOR .41, I O 00
Um) =100 PPl o) G i PGR o By * (3.9.4b)
Let
1
I 0 =1 0
b= [0 ._l“_} and D' = [l'p }
1-p 0 1

and premultiply (3.9.1a) and (3.9.1b) by D and D' respectively to obtain,

T
{10, p o0)1iffa+pI o oR ,
Sm) = {(o P - 1p & o)} { 0 __1__1) * _"L_(o 0 )} Ym-1y * B
1-p
I10 p 0 RT -1 T%EI 0 _p 00
Sme1) {(0 P " 150 0 )} { 0 (1+p)I F R 0)} Sm) * 22

(3.9.5a,
= tu)?
where Ei Db1 and 22 D b2.

It is now clear that no choice of p as a function of w can give
(3.9.2). We thus see, similar as they are, OFH is not the same as SSOR

with o, -ordering (Gourlay & McKee, 1879, p.105).

1

The Equivalence of Hopscotch and Du-Fort-Frankel Schenme

It is well known that the hopscotch scheme is a two-step implementation
of the classical Du-Fort-Frankel method (Gourlay, 1977, p.779). Here, we

shall give a formal proof which makes clear what the equivalence precisely is.
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First we consider the implicit Du-Fort-Frankel scheme for solving the

two dimensional heat equation namely:

(1+4P)U2:1 zp(un+1 3 0 Lt +u2,j_1)_(1_4p)ugz; -0

i'l’J i,j+1
(3.9.6}

The implicit analogous to (3.9.6) is given by,

+1 +1 +1 -1 -1 4_
(1+4p)U2,j-p(Ug’j_1+U2’j+1)-2p(U2_1,j U?+1 -(1- 4p)u“ -p(un u“’j+1)-o
(3.9.7)
2.2 k.2
The scheme (3.9.7) can be shown to have the L.T.E. O(k +h +{ ) ) like

D.F.F. method.

Now we give the equivalence theorem.

Theorem 3.8

Odd-even hopscotch is equivalent to the Du-Fort-Frankel scheme in
the following sense:

i) DFF must be started by using one step of OEM;

ii) DFF must only be employed on alternate grids, i.e. i+j+n even.

Proof
Consider an arbitrary point (iAx,jAy,At) at which the solution has been
calculated by the implicit 5-points formula; that is, by

11 1 1 1 1 0
Yi,5 = Trapl? it Ve, 5 0,5 0 50 s 5 (80049)

To calculate Ui j we employ the explicit formula, i.e.,

2

1 R ol 1

2 1
Ui,j = (1-4P)U&,j+p(ui+l,j Ui-l,j i,j-1+Ui,j+1)' | (3.9.9)
1 1 .
Since U, i*1,3 and Ui,jil can be calculated from (3.9.8), we can eliminate
1

U. . to obtain:
1,]

]

1 1 ol
,57Y141,5%Y, 5417511

)-(1- 4p)U 0 (3.9.10]

(1+4p)U 2p(u1 .
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This is, of course, the DFF scheme and so Ui ; can be interpreted as having
L]

been calculated by DFF started in an odd-even hopscotch fashion,

Now suppose at the point (ilx,jAy,xAT), the implicit formula has been
applied to obtain ﬂ?,j and assume that the values U?il,j and U?,jtl have all
been calculated using DFF. Then, we apply OEH and obtain U?,j from the
implicit scheme and Ugj; from the explicit scheme. Therefore, eliminating
U?,j gives the DFF scheme and so by induction on n we have shown that OEH is
equivalent to DFR subject to one provision. However, only at half of the mesh
points the solution U?,j are calculated by the implicit formula and the other
half being calculated by the explicit method. Thus, the equivalence is only
true for half the points. The values U?,j associated with the points (iaAx,jay,

xAT) calculated by the implicit method are infact calculated from the values,

ot ol and U} .
i,j+l

i,j°7i41,3
which have been previously calculated by DFF. Thus, the values of U?,' are
locally "filled-in'" by the implicit formula {Gourlay & McKee, 1979, p.106).
In the same manner one can show the equivalence of the line hopscotch

scheme with the implicit DFF method and prove the following theorem:

Theorem 3.9
| Line hopscotch is equivalent to the implicit Du-Fort-Frankel scheme in
the following sense:

1) Implicif'DFF must be started by using one step of line hopscotch,

ii) TImplicit DFF must only be employed on alternate lines, i.e. n+i even.
Proof: (see Gourlay § McKee (1979, p.106).

Optimum Parameter for Convergence

The equivalence of the hopscotch algorithm and the DFF scheme has been

used to find the optimum value of the iteration parameter p for the former
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method when it is applied to solve the equation (3.9.1), and the following

theorem is obtained.

Theorem 3.10

0dd-even hopscotch applied to the model problem (3.9.1) converges for all

p>0 and has an optimum value of p given by (for simplicity, N is taken to be

an even integer)

The equivalence of the DFF and OE hopscotch methods indicates that, we
need to examine the convergence of DFF which requires |u|<l in the equation,
(1+4p)u2 - 4pAp - (1-4p) = O (3.9.11)
where A=cos%$-+ sin%% s 1,3=1,2,...,N-1.
It can be shown that

4p]A|+{16p2A2+4(1-16p2) }

[l - 2(1+4p) when 955'='% T
(4-A7}
and that
2
[u| = 292—112 when p>p.
(1+4p)

As we observe, [u{+1 as p»0 or pre,

Also since, 2
(1+4p) fu|” - 4p[A|]u| - (1-4p) = 0,

we can show that for p<p

2
dul _ _ (ul"-{allul+1)
ap 2{u|(1+4p)-4piA

and hence we can deduce that for O<p<p there is no turning point for
and that E%%L <0. Similarly we find %l§l¢>0 for'ﬁkp<m. A graph of [ul

is shown in Figure 3.9.1.

Thus, the method converges for all p»>0.
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FIGURE 3.9.1

The optimum value of |u| for convergence is

min max {u}
p i,]
As the Figure 3.8 shows the smallest value for |u} is obtained at P=p.

However, to find the max |u| we consider that |u| is a function of i and j

i,3
and hJ|attains its maximum when p is as large as possible, i.e.

~ 1 1 o1
P

= ; - =
4(1wA2)2 4(1-(cos%+sin%pz)§ 4 sin%

The same analysis holds for line hopscotch and as given in the previous paper.

Theorem 3.11

Line hopscotch applied to the model problem (3.9.1) converges for all p>O
and has an optimum value for p given by

e (3.9.12)

. I
4#5-51n5ﬁ

Proof: See Gourlay § McKee, 1979, p.108.
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Convergence of Classes of Hopscotch Methods

It is shown (Gourlay § McKee 1979, 109} that the convergence of the
hopscotch methods can be generalised since they behave similarly. The

following lemma shows this similarly.

Lemma 3.3
Let Iﬁ be the set of NxN diagonal matrices which have precisely M of

their diagonal elements equal to 1 and (N-M) of them equal to 0. Let I1 and

I, be any two members of the set ZE. Then there exists a permutation matrix

P(PPT=p'P=I) such that 1 =P'I P and similarly

1

~ o~ _ T T _ T T
I,=11, =PP-PLP=P(I-I)P=PLpP

We now consider two hopscotch processed defined by I1 and Il as follows:

(I+pI A)U (I-leA)H

=(m) (m-1) "%y
| (3.9.13)
(I+leA)!{m+l) = (I-pIZAlg(m)+E2 .

and

(1+p1 MU, . = (I-p’flA)u X

‘{m‘l) -1 (3.9.14)
= (1-pT A8

~(m)

(I+pI A)U( 1) Y )

Substituting for I1 and I2 in {3.9.14)} from their respective relationships

to I1 and 12’ results in the following formulae;

T T T T T
P'(I+pI,PAP )Py = P (I-pI PAPIPU . +P Kk P
(3.9.15)
+PTk P
(m+1) (m)  ~2
T

Since P 1=p , (3.9.15) can be written in the form:

P (I+pI, PAPT)PY . PT(I-pIZPAPT)pg

1

(I+pILPAP)PU, . = (I-pIIPAPT)PU +Pk

{m) -1)
(3.9.16)

T
(I+pI, PAPY JPU 1y = (I-PI,PAPIPU. o +Pky

Introducing !{m)=R!{m)’ A'=PAPT, gi=Pki’ i=1,2, (3.9.16) becomes:
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(T+pI ANV 0y = (T-PTANY L gy¢+d)

(3.9.17)

(T+pLADY gy = (I-pIZA')g{mJ+92

which is of the form (3.9.13) with matrix A' instead of A. Therefore,

the following theorem holds.

Theorem 3.12

If I1 and f;fffﬂ define two hopscotch methods for a matrix A then the

g

I1 hopscotch method for A can also be regarded as an I1

=PTIP {where A' is unitary)}.

hopscotéh method for

Pt

A'=PAPT, where P is such that I1

Consequently if (3.9.13) is used to solve iteratively a linear system
of equations Au=b with A positive definite, and if the condition for
convergence depends only on the properties of A (for instance on the eigen-
values of A which is the case for odd-even and line hopscotch), then the
condition for convergence of (3.9.14) is similar to (3.9.13) when applied to
solve the same system of equations.

If the above properties of convergence hold we say A has property Q

{Gourlay § McKee) and we state the next theorem.

Theorem 3.13

If the hopscotch process converges with property { for some IfEZﬁ
then it will converge for all If52§.

It is importaﬁt to note that, the result on the rate of convergence
is different.

In the time-dependent problems, all the hopscotch methods in Iﬁ are

either stable or unstable depending whether A has property Q or not.
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3.10 THE HOPSCOTCH METHODS FOR THE SQLUTION OF PARABOLIC AND ELLIPTIC
EQUATIONS WITH MIXED DERIVATIVES

The hopscotch technique has been used by the previous author (1977) to

solve 3
3{ = L(U) + g(X:Y»t)
where 2 2 2
- d u a u 3 u
L = a(stst)_“§'+ zb(st:t)sgsh'+ c(x9Yst)_"?f » (3.10.1)
3x Y ay
subject to a>0,c>0and ac-b2 >0

in the region Rx[0gtgT] where R is a closed region of the x,y plane with
a continucus boundary O9R.
The finite difference replacement Lh for (3.10.1} in the case of

the O-E hopscotch is as follows:

2 2 2 4
L, = :%{aéx + °5y + b(o“+0 7)) (3.10.2)

whilst for the line-hopscotch (3.10.2) becomes:

2.1

_ 1, .2
L, = ;§{a6x+c5y+§beHy] (3.10.3)
where the symbols ¢ and H are defined to be

ut -uf

i+1,3+1° 1,j+1*”2.j i+1,]

Uy Uy

1,j+1'U?—1,j+1_U2,j i-1,j

ot .
1,]
UZUP .
1,]

oSt L =t L, LR (3.10.4)

i,j i:J 1'1:j- 19j'1+U2‘11j'1

T T, JURT, SO,

and ] +1:J i,j "i+1,) 1,3-1
n Tl
MO = By Y5 T ger Y (3:10-5)

The above formulations have been used for some examples and
numerical comparisons made. In Chapter VI we shall consider this
formulation in more detail and make a comparison with a new hopscotch
strategy.

The hopscotch methods are also applied to solve the elliptic

equation L(u)=-g(x,y) where L has the same definition as (3.10.1).
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3.11 NON-LINEAR EQUATIONS -AND HOPSCOTCH TECHNIQUE

One of the advantages of the hopscotch techniques which compares with
the other implicit methods is the simplicity of the former technique for
non-linear equations.

Since the hopscotch algorithms are overall an explicit model, the
problem of non-linearity can be treated more easily. This is more apparent
in the O-E hopscotch case. While the application of the implicit methods
leads to a large set of non-linear equations which must be solved by a
suitable non-linear iterative method, the use of O-F hopscotch profides a
single non-linear equation at every grid point which can be solqu much more
efficiently.

As an example Danaee (1978) has applied the O-E hopscotch to solve a
real life (chemical-reaction) problem which consists of a system of five

non-linear parabolic equations as follows:

p(T).CV(T)g—I = p(T).Fy + %{Dlmg}
(3.11.1)
84 5 i .
p(T) -st_ = O(T)-Fi + E—Z-{Di(T)p(T)hé-E_} i=2,3,4,5

where the functions Fi and the coefficients p(T),CV(T) and Di(T) are
some strong and rather complicated non-linear functions (Danaee, A., 1978,
p.37). The solution of (3.11.1) is required for t€[0,8].

The standard explicit scheme together with the Crank-Nicolson methods
have been applied to solve (3.11.1) and a comparison has been made with the
solution obtained from the O-E hopscotch scheme.

As mentioned previously, for small time-steps (p small)the hopscotch
methods gives a good approximation. Since in (3.14.1) one is bound to apply
a very small time increment to reach the required accuracy (and to avoid the
overflow which appears for large time steps because of the structure of the
functions involved), then the hopscotch technique appears to be more

efficient and economic.
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The result presented in the aforementioned reference shows that the
computation time for the Crank-Nicolson method with DT=10“3 is =3100 sec
while the comparable time for the hopscotch is 21740 sec., (by the CDC~7600).
Although the hopscotch program was not designed to be extremely efficient

the results suggest that the hopscotch method is nearly twice as fast as the

Crank-Nicolson method in this case.
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CHAPTER IV

HOPSCOTCH PROCEDURE FOR A FOURTH-ORDER
PARABOLIC PARTIAL DIFFERENTIAL EQUATION
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4.1 INTRODUCTION

The governing equation of the vibration of a thin beam which is clamped
at its ends and set into vibration, is well-known to be a fourth-order

parabolic equation, namely,

3%y o
“L+=Z=-0 (4.1.1)
3t ax

where y=y(x,t) denotes the displacement from the equilibrium posi;ion
at a distance x along the beam from one end at time t.

Various finite-difference replacements have been applied to solve
the equation (4.1.1) which can be seen in Evans, D.J. (1965), p.280,
Richtmyer § Morton (1967), p.271 and Fairweather, G. § Gourlay, A.R.,
(1966), p.1.

The hopscotch technique was also applied by Orley, D.G. § McKee, S.,
(1973) p.335 for equation (4.1.1), where several computational schemes
were discussed. However, the hopscotch schemes presented by the authors
are proved to be conditionaliy stable with the stability range no better
than that of the usual explicit scheme.

In this chapter we will show that, the hopscotch technique can be

_applied to the split form of (4.1.1) given in the book by Richtmyer &

Morton, which results in an unconditional stable procedure.
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4,2 THE HOPSCOTCH FORMULATION

Consider the equation (4.1.1) subject to the initial conditions:

y(0,t) = gy(x) ,

(4.2.1)
)4 =
for Qgxgl, and the boundary conditions
y(0,t) = £5(8),  y(L,t) = £ (¢)
5 2 (4.2.2)
3_&5:1:_)_ = po(t) s a_@ = Pl(t) s t;O.
ax 9x

Following Richtmyer (1967), we introduce two new variables u and v

such that:
3 5?
u =X v=23<X
at °* 2
ax

The equation (4.1.1) can now be rewritten as a system of two second

order parabolic equations:

du_ 3%
ot 5 2
. (4.2.3)
av . 2%
9t sz
or as a second order system
a—“’:AaZW (4.2.4)
at ;“2‘ S
X
where
= 4 - 0 -1
W = [v] and A = [1 0]

The system (4.2.3) is solved by different techniques including
the Du Fort-Frankel (by Evans, D.J.) and the explicit-implicit methods
(by Fairweather § Gourlay).

The hopscotch formulation for (4.2.3) is as follows:

W ko™ as 2™l o WPike™asW® |, 1gigN-1, w0 (4.2.5)
1 1 X 1 1 1 X1

o™ _ 1 i+m even
i 0 i+m odd



147

where w? is denoted as the approximate solution to the equation (4.2.4) at
the grid point p=(ih,mk), N is the number of mesh points in the x-direction

and 6i is as given previously.
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4.3 TRUNCATION ERROR OF THE DISCRETISED SOLUTION

To obtain the L.T.E., we consider the (m+1)St and (m+2)nd time levels
and find the principal part of the L.T.E. for an explicit and an implicit
point for both variables u and v (Danaee, 1978} as given in Figure 3.4. In

the following table, we demonstrate these error terms.

Principal part of L.E.T. Principal part of L.T.E.
for u-net for v-net
2 .4 2 .4
2 | alraeap?iudy, k2 [(1eapPy 2L 2y
O B 2.4 2 .4
o 5 5 Bt4 ax ) 8t4 9x
o0
Rl kh (1+28P2)3 v kh 1+28p2)8 u
6 4 6 ( 4
X 3ax
2 2 32 2 94 2 232 2,94
o 2K [(1+ap ) =5 (1412p ) 5] | 2k [(1+4p”) =5+ (1+12p7) ]
o 2 4 2 4
O ot 3x ot ax
wped g
23 2 2.2 2 4 34 k 2 2.2 2 4 84
SR LA awph taefph 12y | raeaph tagptph e
6 4 6 4
ax ax
TABLE (4.1)

where p=k/h2.

. As can be seen from Table (4.1) the local truncation error of the
method is O(k2+kh2) provided p is held constant. If p is not constant,
the L.T.E. becomes O(k°+kh’+k*/h*) which is of the Du Fort-Frankel type of

inconsistency with the heat equation.
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4,4 THE NUMERICAL STABILITY OF THE METHOD

The stability of the method could be discussed by two different analyses.
1. By finding the amplification matrix for the system (4.2.4) at one

point (Richtmyer method), or
2. By considering two advanced time levels and finding the matrix form

of the system (Gourlay, 1970).

Here we concentrate on the second methed and also give the amplification
matrix for the first method and show the stability of the scheme.
We consider the equations (4.2.3} and rewrite them in the form of

(4.2.5) as in

LM 12 - gt g2y
1 1 X1 1 1 X1
(4.4.1)

and .
VPpe®s?U™  for i=1,2,...,N-1.
1 1 X1

v?*l-pew*laqu*l
i i "xi

These equations can be expressed in the matrix form:

g?+1+p91T!?+1 = g?-pBOT!T

and y?+1-peng?+l = !?+pengF (4.4.2)
where the appropriate boundary conditions are considered and where
=2 1 7 Gl 7
+
1 -2 1 e‘;‘\r 0
\\‘\\\\ \\
~ >~ “
R T TR R I S
- 12 . pLa
r=0,1,2.

are (N-1)x%(N-1) matrices.

If we let ﬂ;[%}, then (4.4.2) can be further simplified as follows,

I pe.T I -p6.T
1 wm+1 0
| -pelT I pBOT S ¢

Em

(4.4.3)

where I is the unitary matrix of order (N-1),
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Therefore the two-step hopscotch process can be easily verified to be:

-1 -1
(2042 i I p92T I -pelT I pBIT I -pBOT w?h
-pezT I pelT 1 -pBlT I pBOT I
. (4.4.4)
or in compact form:
W2 (4.4.5)

Since by definition 62=BO and 6i9j=0, i#j and 3156 since the
inverse of the matrices in (4.4.4) can be easily obtained then in (4.4.5)

M becomes:

1 I-pZT2 -2pT
M o= —
(1+p2T2) 2pT I-pzT2

Given that the eigenvalues of T are Tgs s=1,2,...,N-1, then the

eigenvalue AS of M can be shown to be given by

1-p2'r2 Pt
A = > o+ 2/71 —5% |, s=1,2,...,N-1,
s 22 2.2

1+p Ty l+p T4

the modulus of which are equal to unity. Thus, it follows immediately that
.the method is unconditionally stable.

Alternatively by considering a typical Fourier term for (4.2.4} we

obtain L eJ:T .emh
-1i -0
and
1 -4psin2 %?-
+1 _
Eﬁ - .2 Bh E?
4psin =5 1
Hence, if we let d=-4psin2 %;3 for two time levels we obtain the following
result:
WM 2 6wt
=i —i

where G the amplification matrix has the form:
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1-a2 2d
1+d2 1+d2
G= 1.2 1-4°
1+d2 1+d2
1-d¢® , 2/.d

with eigenvalues u = which possess unity modulus.
1,2 2 2
1+d 1+d

Consequently the method is unconditionally stable,



4.5 EXTENSION TO THE ZnTH ORDER PARABOLIC EQUATION

In this section we consider the general form of (4.1.1) i.e.,

n 2n
3y o™t 2y
) 2n

ot Ix
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(4.5.1)

Let us suppose the appropriate initial and boundary values for (4.5.1)

th

. n . . .
are given and moreover, y€C2n (2n"" differentiable with respect to x and

nth differentiable with respect to t).

We introduce a sequence of new variables as follows:-

2
- =3y 2 3y =
u, =Y, u, = 3evey U » s U -
0 1 5t Tt n-1
: a2 aZr
and VO =y, v1 = -—%,..., vr = ——35,...,Vn_1 =
Ix 3X
Hence, the equation (4.5.1) now becomes:
2
W (-1y™1 % Vp
ot 2
X

(4.5.2)

(4.5.3)

If we suppose that the following relation holds for the derivatives

of y up to order n-1, i.e.

v 3 u
T _ T
>
ot a2x

then we obtain a new equation similar to the system (4.2.3) namely,

aun-l n+l 3 vn-—l
at = (-1)
2 3x
av 3 u
n-1 - n-1
ot axz

‘Applying the hopscotch algorithm as in the previous section, we

obtain the amplification matrix:

rT-dz n 2d~
y (D 7
1+d i+d
G =
-2d l-d2
L1+d2 1+d2 _

where d is defined earlier.

for r=1,2,...,n-1

(4.5.4)

(4.5.5)
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Therefore, the stability of the method is guaranteed when n is an
even integer and for n odd we have instability. |

Although, the assumption (4.5.3)} may not be available in reality,
nevertheless it shows that this splitting procedure can not give a suitable

algorithm for equations of odd order.

The Two-Space Variable Case

The partial differential equation

2 y] 2
3——%’ + 1% =0 where 1¥- 37 + 2 (4.5.6)
at ox 3y

arises in the study of transverse vibrations of a uniform plate and can

assume the form

oW _ 2
S.E_A Lw {(4.5.7)

where we have introduced the variables u = %%-and v = L2y where
wn[tl and A=[? 'é].

Equation (4.5.7) can be solved by the hopscotch method and as this
method is invariant with respect to the number of space dimensions, the
analysis of stability would be exactly the same, except that in the
amplification matrix G given in (4.5.5}, d=-4(sin%; + sin2 %;9 where
.Ax=Ay and p=AT/Ax2.

The block hopscotch techniques can also be applied for higher-

dimensional problems which have no analogies in the one-dimensional case.



4.6 NUMERICAL EXPERIMENT

In order to provide a comparison with previous methods, Fairweather
and Gourlay, the vibration beam problem is solved together with the initial
conditions,

y(x,0) = Z(2x-x’-1)
%%{x,O) = 0, 0gxgl
and the boundary conditions

Y(O,t) = Y(I,t) =0

32 3?
——§'Y(0,t) = —"E'Y(l,t) =0 t>0.

3X ax
The same increment is chosen as in Fairweather & Gourlay, i.e. h=0.05
and k=0.00125 (for which p=1/2. In addition, the problem was tested for
k=0.005 (i.e. p=2) to demonstrate the experimental stability and investigate
the accuracy of the method.

The solution of (4.1.1) could be found by any suitable method (e.g.
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Numerov method) to solve the second order 0.D.E., y"=f(x,y)). We have applied

the simple Taylor expansion to find the solution y and the formula is given by

mel _ om AT o+l 3
i o= v; ot U AU+ o(eT) (4.6.1)

2
since the terms g%-and g—-%-can be substituted for u and %% respectively.
at

The theoretical solution of the problem with the given initial and
boundary conditions is given by

y(x,t) = I d_ sin(2ss1)mx.cos(2s+1)°n’t. (4.6.2)
s=1
8

(25+1)5w5

In Table 4.2 the difference between the theoretical solution y given

where d_ = -

by (6.2) and the computed solution obtained by the hopscotch method are

presented. These are compared with results from other methods for t=0.02.

It is worthy to note that, although we have not applied the same integration
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procedure, these results show that using the simple Taylor expansion gives
reasonable results. However since the hopscotch technique itself has a
L.T.E. no better than O(ATZ), there is no need to apply a more accurate
procedure for y"=f(x,y). {(In the case of higher order and n-nets, the

same integration procedure can be applied as the terms of the Taylor series

are computed i.e. u, and v.).
i i 2
Similar results for the bending moment v=3—§ are quoted in Table 4.3.
ox

In Tables 4.4 and 4.5, some results for different p in a large time domain

are illustrated.
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X

Method 0.10 0.20 0.30 0.40 0.50
Expst -0.00790415 |-0.01504833 [-0.02072927 |-0.02439234 |-0.02565928
gg{ﬁ§d°f Evans 0.00000844] 0.00001416] 0.00001740 | 0.00000140 |-0.00001195
E;iﬁimgﬁ; 0.00022374| 0.00036712 | 0.00040341 | 0.00036461 | 0.00033531
Error of semi
explict -0.00003006 |-0.00006193 |-0.00006690 |-0.00005102 | 0.00001335
Error of H.O.C.M.

0.00000014| 0.00000029{ 0.00000056 | 0.00000034 |-0.00000017
Error of Hopscotchi g 00000250| 0.00000390| 0.00001370| 0.00000260 |-0.00000980
TABLE 4.2
Ax=0.05, AT=0.00125 T=0.02  (p=1/2)
X
Mothod 0.10 0.20 0.30 0.40 0.50
Exet . 0.07626211 | 0.14770388| 0.203167610.24183975 | 0.25569973
Error of Evans 1500049570 | 0.00004763 |-0.00237926 [0.00043350 | 0.00312161
-{Error of

ehtmver __ | 0.00876844 1-0.01113270 |-0.00810363 |0.00147851 | 0.00682881
Error of semi 0.00033110 | 0.00272563| 0.00169444(0.00250333 | 0.00255541
explicit
Error of H.0.C.M. | 5 46001717 {-0.00008638 |-0.00003195}0.00033881 |-0.00023174
Error of Hopscotchl j 10,0670 | 0.00004770]-0.0023793010.00043360 | 0.00312160

TABLE 4.3
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-0.001741

X
Method 0.10 0.20 0.30 0.40 0.50

Exact -0.066497 -0.131790 | -0.186191 | -0.224557 | -0.240327

splun, v

Error of Evans -0.003198 { -0.002728 | 0.009803 | 0©0.012459 | 0.014032

Error of

Richtmyer 0.002730 0.009479 0.017356 0.022981 0.022356

Error ?f seml -0.002736 0.005927 | -0.004481 | -0.002316 0.006511

explicit

Error of H.0.C.M. | 5. 002586 | -0.001507 | 0.000717 | 0©0.002196 | -0.000665

Error of Hopscotchl 5 0n3188 | -0.002727 | 0.009803 | 0.012459 | 0.014032

TABLE 4.4
Ax=0.05  AT=0.005 (p=2) T=1.0
X
Method 0.10 0.20 0.30 0.40 0.50

Exact 0.007235 0.013805 0.019068 0.022483 0.023671

solun., y"

E§§g§ ;gthod -0.000234 [-0.000595 |-0.000776 [-0.000953 [-0.001018
| Error of -0.000637 |-0.001234 1{-0.001752 |-0.002089 {-0.002203

Richtmyer

Error of semi -0.000198 {-0.000412 |-0.000673 |-0.000980 [-0.001304

explicit

Error of H.0.C.M- | 4 450015 | 0.000006 |-0.000018 {-0.000034 |-0.000035

Error of Hopscotch -0.003282 |-0.004554 }-0.005369 [-0.005644

TABLE 4.5
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4.7 CONCLUSIVE REMARKS

Since it is well-known that the application of the method leads to a
fast computational technique for the solution of P.D.E.'s, then we can
conclude that for more realistic problems (i.e. non-lingar equations, variable
~coefficients, etc.) and higher degree parabolic equations the application of
the stable hopscotch methods presented in this chapter can lead to fruitful

gains in computational efficiency.
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CHAPTER V

THE APPLICATION OF SPLITTING METHODS TO THE NUMERICAL

SOLUTION OF PARABOLIC EQUATIONS OF HIGHER ORDER




160

5.1 INTRODUCTION

In this chapter as a whole, we consider the splitting methods
considered previously to solve a higher order parabolic equation.

To begin with, we consider the equation
2 2 2 3 4

(3%-- 2 yuzlP.3u 21, (5.1.1)
X at ats x  3x
subject to the initial conditions
fl(x) x€[0,1] _
lim u = (5.1.2)
t+0 o] x%[0,1],
. du  du, _ (5.1.3)
lim rraia D
t+0 3x 0 x¢[0,1]

The equation (5.1.1)-(5.1.3) Tepresents an initial value problem of
biparabolic type.

If the initial function fl(x) and fz(x) are continuous in the
region [0,1] the exact solution of (5.1.1)-(5.1.3) is given by Saul,yev

(1964, p.184) as,

1 4t

[£,(g)-tf,(2) ]e dz. (5.1.4)

1 _x-p)?
u(x,t) = J

o
The standard simple implicit finite difference equation to solve

the above problem is as follows:

5iui sty 5iu1*1-5zu?'1
- + x41 - 5 X1 =0, (5.1.5)
k h kh

where k,h are the time and space increments respectively and § is the
central difference operator defined earlier.

The L.T.E. of (5.1.5) can be easily verified using the Taylor
expansion which indicates that the equation (5.1.5) is of order 0(k2+h2)

with the principal part as,
k2 5° Iazu ) ;_azu] 18y 5.1.6)
3 .3 21 6 ’ o
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The stability of this scheme can be analysed in the same manner as
given by N. Lowan (1957, p.17,63). The formula (5.1.5) can be expanded

for the mesh points and rewritten in matrix form, namely,

JERTL) j4l_ 3+l _ o0 i1 3 J_aqp j
pU +(1+2p)U pU .1 2Ui Ui -p (U1+2 U +6Ui 4Ui_1+Ui_2)
1 -1 -1
p(ui+1 2uJ +uJ ) (5.1.7)

where p=k/h2, 1gigN-1, 1£jsM and N is the number of mesh points of [0,1].
A compact form of (5.1.7) is as follows:
(e = rpi Al - (1-pm ! (5.1.8)

where 1 is the unit matrix and

T2 -1 7 cAmt
-1\ 2\ -1, 0 U2
~ ~ “~ i
~ ~ ~ “
T = DR \\\ and UJ = :
~ ~ ~ - !
~ ~ _'1 |
0 N
o1t 2 1
- < C'N-14

Since (I+pT) is non-singular then (5.1.8) can be expressed as:
UARENRY RN b (5.1.9)
where M=(I+PT)_1(21-p2T ) and N=(I+pT)— (I-pT).
According to Theorem (1.7) M and N have the same set of eigen-

vectors and if the eigenvalues of T,M and N are As’us and vs respectively.

We have, 2.2
2-p A 1-pA

us = '1‘:5)\—5— and \)s = F—ﬁl_z . {5.1.10)

Let us suppose y?:&f_l; therefore the three level formula (5.1.9)

can be inverted to the following two level system:

(5.1.11)

or -, (5.1.12)
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where A is the amplification matrix. For the stability of (5.1.7) we
require the spectral radius of A to be smaller than unity in modulus which
can be obtained from the following quadratic formula
xz-usx+vs =0 (5.1.13)

where x are the eigenvalues of A, As the eigenvalues of T are known it
can be shown that the roots of (5.1.13) are in the range of stability
only if pgl/2 which is no better than the usual explicit scheme.

However, by introducing a new variable ¢, we can decompose the equation

(5.1.1} into two second order parabolic equations, to give the following

system,
Let 2
3 )
=30 - =% (5.1.14)
39X
then (5.1.1) becomes: 2
3u 3 u
' 37" ¢ (a)
gt ax2
9 (5.1.15)
¢ _ 3¢ _
T xz 0 (b)

Let us denote w = { }and {8}, then the system (5.1.1)-(5.1.3) becomes,

oW
3—= + g (5.1.16)

1
[N iz

subject to the initial condition
£, (x)
[;;(xi] x€[0,1]
limw = (5.1.17)
0 Eﬂ otherwise.
The system (5.1.16) subject to the given initial condition can now be
solved by a suitable numerical method on the u and ¢ nets, provided some
appropriate boundary conditions are given. Thus, the solution of (5.1.1)

can be obtained by solving (5.1.15b) in the first step and (5.1.15a) in the

second step. Therefore, the stability of the chosen numerical method can be
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easily analysed by looking at each of the equations (5.1.15a)-(5.1.15b)
separately which are of the simple second order or heat equation form with

some constant right-hand side vector.
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5,2 NUMERICAL EXAMPLE

Consider the equation (5.1.1)-(5.1.3) and let flfx)=x(1-i), hence

fz[x)=2, with the exact solution,

(x-2)°
1 1 T4t
u(x,t) = J [z(1-z)-2t] e dz (5.2.1)
2yt 70
ISa
From equation (5.1.5d) we obtain 2

{x-2)

1 1 4t
$(x,t) = - —-—J e dg (5.2.2)

Yrt 40

The equations (5.2.1)-(5.2.2) can be simplified by changing the variable

-

y--x % and applying integration by parts, which results in,

2/t
2 b 21n b 2
ulx,t) = Lli§¥lﬁi e 7 2t 2ty e Wt Ix(1-x)-4t] . e gy,
’ " d (5.2.3)
b 2
and 2 .y
$(x,t) = - —‘j € dy, (5.2.4)
\/‘n'_ a
where a =231l ana p =X
2/t 2Vt

To solve the integral involved in the above equations, a recursive
‘procedure using the Trapezium rule is applied and the accuracy of the
summation is checked against a tolerance level of 10.6 and the result is
used as the exact values of the solution for comparison with the numerical
method.

$24d

The boundary values for the numerical method might be found from (;,11
by putting x=0 and x=1,

The hopscotch procedure is applied to evaluate the numerical solution

of (5.1,1)-(5.1.2) on two nets with the given initial condition. The

numerical and exact solution are displayed in the following tables.
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In the following tables the 1st line corresponds to the analytical solution

and the 2nd line shows the hopscotch solution obtained.

Ax=1/20, P=1, T=1
t x=0.1 x=0,2 x=0.3 x=0.4 x=0,5
0.2 -1.11233&-1 -1.188348-1 | -1.245628-1 -1.28124¢g-1 | -1.29333g-1
-6.63018&2 -3,334545-2 | -6.87645§-3 1.02379¢-2 1.61545¢g-2
0.4 -2.44245¢-1 ~2.53%942§-1 | -2.611028-1 -2.65494¢g-1| -2.66976§-1
) -2.322844-1 -2.31177§-1 | -2.29757¢§-1 -2.28637g-1| -2.28218g-1
-%.410455-1 -3.504035-1 -3.572435-1 -3.61411§-1 -3.628125-1
0.6 -3.386916&-1 -3.459208-1 | -3.51067&-1 -3.54147§-1} -3.55171g%-1
0.8 -4,196486-1 -4.,284288-1 | -4.34811§-1 -4.3867§-1 -4,399865-1
-4,192556-1 -4,2767586-1 | -4.33771§-1 -4,.374638-11 -4.38697§-1
1 -4.871576-1 |} -4,95389§-1 | -5.01353§-1 -5.04966&-1] -5.06176§-1
-4,871096-1 -4.,95294§-1 | -5.01220§-1 -5.04808g5-1] -5.06009g-1
TABLE 1
Ax=1/20, P=2, T=1
t x=0.05 x=0.15 x=0,25 x=0.35 x=0.45

0.1 -1.11233§8-1 -1.18834§-1 | -1.24562&-1 | -1.2B81245-1 -1.293335-1
-6.58884§-2 -3.25072§-2 | -5,669285-3 1.16926§-2 1.76959§-2
-2.442456-1 -2.539428-1 | -2.61102&8-1 | -2.654945-1 -2.669765~1
0.3 -2,340466-1 -2.34503%§-1 -2.343066~1 -2,339668 -1 -2.33814&-1
~-3.410458-1 -3.504036-1 | -3.572435-1 -3.614118-1 ~-3.628126-1

0.5
-3.39449G-1 -3.473485-1 | -3.530176-1 -3.564295-1 -3.575685-1
0.7 -4,1964856-1 -4,284285-1 | -4.348115-1 | -4,386875-1 | -4.39986&-1
-4,194936-1 -4,281206-1 -4,343745 -1 -4,381645-1 -4,394335 -1
0.9 -4.871575 -1 -4,95389;5-1 | -5,013535-1 -5.049665 -1 -5.06176§ -1
-4,871965 -1 -4,95453¢ -1 | -5.014336-1 | -5.05054G-1 -5,062665 -1
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5.3 THE TWO SPACE VARTABLE CASE

We now consider the equation

(g%‘; L)%W = 0 (5.3.1)

where L is the second order elliptic differential operator in 2 space
dimensions. Let us suppose the appropriate initial conditions are given,

and let the new variable be:

_ du
¢ = T Lu (5.3.2)
Therefore, (5.3.1) can be expressed as a system of two-parabolic equations:
2
du ou 3du . 3 u
—_—-lus—- (5 + J = ¢ :
ot Bt Nl ay? (5.3.3)
2 2
3% ez 28,3 5o
and 5t~ W i 2t D=0
X 3y

The system (5.3.3) can be solved by any suitable finite-difference

scheme provided the initial and boundary conditions are known.



167

5.4 THE nTH ORDER FORM OR MULTI-PARABOLIC EQUATION

Let us now consider the general biparabolic equation as given earlier,

i.e. when the equation has the following form,
9 n_
C?E -L)u=0 (5.4.1)
where L is a general elliptic differential operator in several space

dimensions and n is an integer 21.

2 2
For simplicity, Iet us concern ourselves with L = 3—2 + 3—5 in
3x 3y

(5.4.1). Then we can obtain the following form for (5.4.1);

r _ nl R S

Ifn-1) 1 -
rl{n-r)! atn T

(5.4.2)

T T
where Lr = 3—~ + ﬁ__ .

The usual parabolic and biparabolic equation can be obtained from
(5.4.2) when n=1 and n=2 respectively.

Let H be an operator of the form H = g%-- L and let Hu = ¢1, then

i+l _

H u = H¢i = %541

(5.4.3)

n-1 .

B u=Hey 2 =

Therefore, (5.4.2) becomes

n = -

Hu = H¢n_1 =0. (5.4.4)

To evaluate the solution of (5.4.4) one has a system of n-parabolic

equations to solve on n-different nets, ¢1,¢2,...,¢ and u respectively.

n-1
By seolving the last equation H¢n_1=0 and substituting in the previous one,
the solution of H¢n-2=¢n-1 can be obtained and so on. Finally, we solve
Hu=¢1. Thus, we are always involved with a single equation to solve.

Hence the stability analysis for any numerical method when applied to solve

(5.4.2)
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(5.4.2) is no more éomplicated than for the single parabolic equation.

However, the investigation must be carried out to guarantee that the

accumulated round-off errors ffoﬁ different nets remain bounded.
Problems of type (5.4.1) are called polycalorique equations by

M. Nocilescu (1954) ;id have an analytical solution which can be obtained

from the following theorem.

Theorem (5.1)

Let fb(x),fl(x),...,fn_l(x) be given continuous functions such that

2
|£,00] < M, 520,1,2,... 001, (5.4.5)

where M and K are some constant scalars and suppose that

lim u(x,t) = fo(x) (5.4.6)
t+0

and i
lim L'u = fi(x), i=1,2,...,n-1. (5.4.7)
t-0

Then, the solution u(x,t) of (5.4.1) is given by,

- et
u(x,t) = 1 J F(x,t) e 4t dg
2Vt
"where n-1 P
Fix,t) = ] SR P £ (n

For proof see Nicolescu, M. (1954}, p.266.
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5.5 ROUND-OFF ERROR IN THE COMPUTATIONAL PROCESS

Consider the equation (5.4.1) and let 22 and g? be the vectors of the
exact and approximate solution of the difference equation applied to solve
(5.4.1) respectively, at the time T=m.k, where k is the time increment, and
m is the number of steps,

Hence from the equation (5.4,3), we have

m+1

m+l m
C Ei + k'2i+l s (5.5.1)

$.

~1

where i=n-1,n-2,...,2,1,0, ¢n=0 and ¢0=u, and C is the amplification
matrix corresponding to the numerical method which has been used.

We can rewrite (5.5.1) in the following form:

m+1 m

$n-1 = Cono1
m+l _ .om m+l _ .om m
-2 = Con gty y = G R (Cey )

ﬁ+1 - g m m m
$, " = Co tk(Co,+k(Co,*. . . +k(Co, _1))...)
m+1 m m m m (5.5.2)
4 - Cgl+k(C$2+k(qg5+...+k(C§n_1))...)
and
+1 _ m+l _ oom m I
U™ = ol = Coptk (Cort. L +k(Coy 1)) ..l).

Let E? = 9?-2? be the vector of round-off errors which occur in

. m . s s
computing the values Ei after one time-step, then it is easy to show that

the round-off error of the differential equation (5.4.1) has the form:

2

n-2

et m SRS S

m
gy C £ + k.CE_1 + k

(5.5.3)

Thus, if e is the maximum normed vector of errors €55 we obtain

the result:

n

1-k
€™ < Hellg3e (5.5.4)
which is a bound on the accumulated round-off error from the solution

obtained from (n-1)-nets,
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Consequently, if ||C|[s1, the round-off error after each step has

an upper bound and the process is stable (A.M, Lowan, 1957, p.10)}.



5.6 CONCLUSION

In this chapter, the splitting strategy has been clearly demonstrated
to be an efficient approach in solving parabolic equations of higher order
as opposed to the usual approach of treating the partial differential
equations by explicit or implicit finite difference methods in situ.

In fact, for higher order equations we feel that it is the only
sensible approach to consider. The re;ult obtained from the example shows

that good agreement with the theory for large times is obtainable.
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CHAPTER VI

A NEW BLOCK HOPSCOTCH TECHNIQUE -
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6.1 INTRODUCTORY REMARKS

In Chapter III, we considered several hopscotch strategies and
demonstrated the advantages of the block hopscotch techniques over the odd-
even hopscotch scheme. As mentioned previously the basis of the hopscotch
strategy is the division of the set of grid points into two disjoint subsets
which include all the grid points in the region under consideration. The
formula for creating this subdivision is under the user's control and may
depend on the following factors:

i) the order of labelling of the points on the grid;

ii) the shape of the given region;
iii) the degree of implicitness required in the method (Gourlay, 1977,
P-777).

Here we will study these three factors which lead to a logical

development of the method and enable us to present a new pattern for block

hopscotch schemes,
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6.2 A NEW BLOCK ORDERING OF THE POINTS

Initially we introduce the basic concept of the labelling of the mesh
points, and again consider the parabolic equation (3.4.1) consisting of:

au
2t

where the initial and boundary conditions are given as before and the

= Lu + g(x,y,t) (6.2.1)

solution of (6.2.1) is required in a cylinder Rx{QO<tgT}. Suppose the
square region R is covered by some orthogonal grid system in the usual
way. Let the set of internal mesh points be denoted by Rh. Let the

disjoint subsets BL (for all 1gtgN) of Rh be such that:
N

UB, = .
. 1t
Consider the hopscotch formulation:

+1 m+1 _ m m
AR LA CUAHE A RRIE LA OV RS R R

wﬁere the mesh points {iAx, jAy) are contained in the subset B . 1220M.
By replacing m with m+l in (6.2.2) and eliminating kem+1 LhUm+1 m+1
from the resulting equation we have:

+2 m+2 +2 m+2 +1 +1
u?,j- LhUm g 5] Um R ’J[Lh A (6.2.3)

i, sJ

which according to the definition of e? ; reduces to
»

U“‘+2 Um+l o . (6.2.4)

: 1,)

when m+i+ji is odd.
The function 6 (which is called a zero-one function) is.regarded

as being a function of the time index m and of the space index vector n,

which is only defined at the mesh points and can be written as eﬁ where

n is a multi-index (nl,nz,...ns), where s is the number of space dimensions.

The fundamental relations which define the format of a hopscotch scheme is

as given previously, are the following:



m m+l

o v6 =1,
and ee™ -0 .

nn

The precise definition of Bﬁ will take the form,

ol = %{1-(-1)“] if (n,,n

n 2,-.-,

1 m, .
or = z[1+(-1)7] if (n;,n,,...,n B, .

c
n, B,
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(6.2.5)

(6.2.6)

The various choices of BL results in a different labelling of the

mesh points., For instance, the choice of eﬁ giving odd-even hopscotch

corresponds to defining

s
B, = {(nl,nz,...,ns): i£1|n1| = 0 mod(2)}. (6.2.7)

For example, the odd-even hopscotch for heat equation in two space

dimensions can be written in the compact form:

+1 m+l 2 2. m+l m 2 .2
AU L = pet (858U IeeT T
UT,J U?,J Pl 1.J(GX Gy) i,] 91,3(6x+6Y)UTsJ]
where n 1 if m+i+j is even
6, .=
1’3 ) 0 " " 11 Odd

whilst for the line hopscotch (6.2.9) becomes

m

1 if m+i is even
ij

" " 1" Odd
Here we present a new subset Bz”as follows:

n,+1

s
B, = {(nl,nz,...,ns): izl[ ; 1 = 0 mod(2)}

In this case, the values of e? j given in (6.2.9) become:
s

1if m+[3%iﬁ+[l%l is even
o .=
LI o i me 53415 is odd.

where [k] is the step function which obtains the largest integer gk.

(6.2.8)

(6.2.9)

(6.2.10)

(6.2.11)

(6.2.12)
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In Figure (6.1) the new subdivision of Rh for a two dimensional problem
is displayéd. The symbols O and X correspond to the implicit and explicit
points respectively. " As can be seen from Figure (6.1,',1)this'n_ew block
strategy consists of groups of 4-points at which the solution is evaluated
using the standard explicit and implicit formulae alternatively. As
analogous to the well-known block hopsoctch schemes we call this new scheme
"Group hopscotch". An implicit molecule of this group hopscotch method is

shown in Figure (6.2.2).
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FIGURE 6.2 .4
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6.3 FORMULATION OF THE GROUP HOPSCOTCH METHOD

Application of the five point finite difference formula to (6.2.1) at
explicit and implicit points can be easily verified (as given in Chapter III).
For simplification we let Ax=Ay and p=AT/Ax2, then the implicit formulae

for a group of four points displayed in Figure (6.2.2)results in the following:
+1 +1 +1 +1 +1 m+1

e BB = Pl a2,

(1+4 )U§+1—p(Um+1+Um+1) Um+p(Um+l+Um+1)+AT gm+1

P a c b 2 3 ‘®p ?

(1+4py U p ™™y = Pep ™ L™y pr. g1

P} b d c 4 5 Bl B

(1+4p) 0y -p (0T = ep Ul e g

U

(6.3.1)

Since the solution at the explicit points (i.e. UT+1,U2+1,...,U2+1]
are found in the first step, then the right hand side of (6.3.1) is known
and (6.3.1) can be solved for the values at points a,b,c and d. In practice,
if possible, we solve the system (6.3.1) beforehand and therefore we have a

set of explicit formulae to solve for this new block hopscotch method, namely:

U:"l = oA + 13 [u(A+C)+2i;(B+D)] ,

EE-ZB
+1 B o
U: = oB + 1 [a(B+D)+§E{A+C)] ,
P
(6.3.2)
™ o gc v B [ear0) o2 (BeD)]
¢ 1 28
28
and fh = D 7B D) AT
1 e B
28
1 =P . .
where o T+4p ° g T+dp and A,B,C and D are the right-hand side of (6.3.1)

respectively.
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To study the stability of the group hopscotch we first give the explicit

and implicit formulation in matrix form.

If we write the standard implicit formula for all the groups {four

points) of the region in matrix form, we obtain:

O_l

=

o O O o

m+1

U, .
i,j
Ui, s -1
= -p
Ui+1,j+1 0
1,541 -
=T -—m-l-l -
01U, ; 0 o
of[u; 5 5 0 0
+p
011,541 00
0] Yi-2,5+1 o 0
— -l-m.‘-l -
O1Y542,; 00
ollu. . . 0 0
i+3,j +p
1 Ui+3,j+1 0 1
Uls+2,5+1] ! e

-1 0 -flfu. . P
i,
4-1 olly,
+p
SRR | /R
0t Ulym
o 1, . ., 1™
i,j-2
L o0pYs4,5-2
o ollu ¥
i+l,j-1
0 0_ _Ui:j"'l -
AL —m+1] -
O Of1% 542 8,3
00 . g.
i+1,j+2 + AT i+l,j
00 U1+1,j+3 gi+1,j+1
O l,543 1,541

Now let us introduce new subscripts r and s which are designed

to correspond to a group of four points (i,j},(i+1,j),(i+l,j+1) and

(1,5+1).

This can be done if we let r=f£%lJ and s=E1%lJ, hence

’l‘-’)m
r,

= @t .,
s i,j

i+1,j’

and (6.4.1) can be rewritten as:

N e

o0 o

r+l,s

UT+1 yJ+17741,5+1
+1
r,s-1 C*Um +1)
N+1

r,s=1,2,...,[—== 2

)*

»

L

]

+AT g
]

~m+1

m+1

(6.4.1)

(6.4.2)
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where
f4 -1 0 -1 0 -1 0 O 6 0 0 -I
-1 4.1 0 0 00O 0 0-1 0
=lo-14-]* B lo ooo ™ C= 15006 o
-1 0-1 4 0 0-1 0] 0 0 0 0

and I is the (4x4) unitary matrix,

Equation (6.4.2) can be further simplified if we write in compact

form: i.e.,

~m+]

(Lp)T™ = T + a3 (6.4.3)

where

~J ~Jd

( l,l’U

~ ~

1,1°%,1°

~ -~ L ~7
= *
- 2,2,-oo’UZ’L,--O’UL,I,UL,Z’QQQ,UL’L) 3

=2
<l

1’2,---,

N
=[5l
and H is a block-tridiagonal matrix of order (4.[%]2) of the following form:

o B* B* C
\
\
B a B* B A B* \
LY
\\ \\ \\ 0 \ \\ \ 0 \ 0
\ A} \ N\ N\ Y \
N\
- \ _ \ \ \ _ \
H= \\ \\ \ a = \ A \ »B= \
hY N A s \\ \\ A
\ AY N\ \ \ \ AY
v \ \ \ \
\ B* : B* \
0 N 0 N 0
\ N \ \
| B8 a | . B A | A C]
(6.4.4)

and I in (6.4.3) is a unitary matrix of order H.
Now if we write the explicit formula for all the groups in the
region and simplify it by giving the compact matrix form analogous to

(6.4.3) we have,
™ - @ TPear " .

(6.4.5)
Next, let us define the diagonal matrix IiB} such that if
[I{B)Uzm]i 5 denotes the component of the vector IfB)g?m corresponding

to the spatial mesh point (iAx,jay), then
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tI(B)UZm] a2m 2m _ ZmUZm
1 .

i,j 1 j= L , for all i,j,t

where {iAx,jdy) BL and eim is defined by {6.2{5). Hence, I£B) is a block
diagonal matrix, whose N block diagonal elementslare alternately (4x4) umit
and null matrices, and whose order corresponds to the number of mesh points
in the associated sets Bn' Lef also IgB)=I—I£B).

We now define the general two step block hopscotch process globally to

be,
(I+pI(B)H)U m+l (I- pI(B)H)U +AT(I(B)"2m+1+I(B]"2m)
(I+pI(B)H)U2m+2 = 1 pI(B)H)U2m+1 AT(I(B)ﬂer-+2 gB)~m+1)’
(6.4.6)
where the data from the boundary of the plane region R have been
absorbed in the E vectors,
Equation (6.4.6) can be further simplified in the form:
U2m-!-2 - T:'U-Zm +§2m+2 (6.4.7)
where
T=(I+pI§B)H)-1(I-pIgB)H) (I+pI§B)H) 'I(I-pI:EB)H)
and
'E2m+2 - AT(I+pI(B)H) (I- pI(B)H)(I+pI(B)H) (I(B)~2m+1 (B)~2m)
AT(I+pI( )H) (I(B)~2m+2 (B)~2m+1)
In a similar manner as given previously, we can write
= (1P 7 pr Py (6.4.8)

vwhere o i )

The stability of the block hopscotch which was given by Theorem
(3.12) can now be applied by using the Ai norm which requires the matriﬁ
H to be positive-definite. However it can be easily verified that H is
positive-definite as if is a symmetric diagonally dominant matrix with

positive diagonal elements (Theorem 1.4},
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We can also deduce the stability of the new block hopscotch from the
Theorem (3.13). We need to show that a unique permutation matrix exists
r () (B)
such that P'I P=1 . For instance, we can find the matrix P to invert

the group hopscotch scheme to the odd-even (point) hopscotch scheme. As an

B)
example, if we consider, I1 to be:
q -~
1
1 0
(B} 1
I1 = 0 (6.4.9)
) 0
0 0
L 0
then P can be easily found to be:
1 0
0 0 1
1 0
_ 01 -
P = 0 1 o 0 (6.4.10)
0 1
1 0 0
L 0 1
thus §
1
. i
T, (B)) to O ®2 1
P Il P = 1 = Il (6.4.11)
0]
0 o
- 0l

which corresponds to the point hopscotch. Therefore, as the point

‘hopscotch is known to be stable, the new block hopsoctch is also stable.
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6.5 LOCAL TRUNCATION ERRORS AND CONVERGENCE OF GROUP HOPSCOTCH

The L.T.E. of a general two-step process was considered in Chapter III,

where it was shown that

a® . = oxn%+ke/mia
1,}
and further we mentioned that, for all those methods in which B? j=n? 5

the terms involving O(ks) and O(kho) are the same and only the term
containing 0(k3/h2) differs from one scheme to anothér.

In the case of the group hopscotch scheme we deduce the magnitude of the
latter term to compare the accuracy of the scheme with other hopscotch
techniques and derive the convergence property for the method.

The terms involving O(kslhz) are as follows:

m {1)m (2)m
k3L L Pi and koL, (o™ Eic;1:—’-"1_.+ m+1 Efigi__g
1°2 ot 1'%, "ot i, ot

where Ll,Lz,g(l) and g(z) are given in the general splitting formula in

Chapter III. Thus for the hopscotch procedures (6? j=n? j) we obtain:
| aur auy ,
3 i,) _ 3, mtl m i,j
2k L11'2 ot 2k ei,j Lh ei,th 1 (6.5.1)

and for the second term, we have,

m
g, .
3 m+l m+l i,]
k ei,j Lheilj 3t . (6.5.2)

Now we expand (6.5.1) and (6.5.2) at each corner of an implicit

group shown in Figure 6.2, For instance at the corner a considering

m _.m _ol+l_
i-l,j_ i,j-l_ i,j 1, we have,
n m
du, . 3 su, . 3
2 ij _ ok i 3 k
2k°L, L, —-——lat 2--5h (Ai,j+Bi,j}L‘—_Llat + O(K7) + oe-zh i) , (6.5.3)
and gm 2 Bgm s
3 m+l m+1 ij_ 2k ijq - . 2k
k 61,3 i,j t ;7_[(C1, +D1 +El,j) ot ] ;?"
m
9g. . k3 o
A 4B, )21 +0C=xh
( i) 1,3)at ﬁ;{ )
(6.5.4)



184

Therefore, the term containing O(ks/hz) at the corner (a) is:

2k3 duy 4 385 5 3,2 3
;Fr-[(Ai’j+Bi,j)( sl Lylok/n J40KDY.  (6.5.5)

In the same way, the expression (6.5.5) for the other corners of Figure 6.2

can be found to be:
‘ m m

3 au, . £. .
at corner b: i%_[(Ai,j+Di,j)( at’J - atfj)]+0(k3/h2.ﬂ}+0(k3)
m m
3 Ju, . g.
2k 3,2
at corner ¢: ;F?-[(Di,j+Ei,j)( at’J - B;‘:’J)]+0(k /h .H§+0(k3) (6.5.6)
m m
3 au. g, .
and at corner d: i%—[(Ei’j+Bi,j)( ataJ - at,J)]+o(k3/h2.ﬁ)+0(k3).

The comparison of (6.5.5) and (6.5.6) with the L.T.E. found for other
hopscotch schemes (McGuire, 1971 and Gane 1974), we observe that, all three
block hopscotch procedures have the same order of accuracy. The comparative
accuracy of the methods also depends a great deal on the nature of the
elliptic differential operator L, whose finite difference analogue is given
by (3.7.3), In particular, if L is the self-adjoint second order elliptic
operator, namely,

W = 2@, + BN -y (x,y)ulx,y,t)  (6.5.7)
ax *7<on y ey ViR, e e
where o,B and y are piecewise continuous functions in R, the closure of R,

and satisfy )
v(x,¥)>0, B(x,y)>0 and y(x,y)»0 for all (x,y)ER,

(6.5.8)
we have from (3.7.1)-(3.7.3),
|ci(g[ 2 IBi’J.+ni’3.| (6.5.9)
and |C§2| 2 1A E; ] (6.5.10)
with Bi,j and Di,j of opposite sign to Cit% and Ai,j’ Ei,j of opposite
sign to Cgfg. If further, we suppose the coefficients Ai,j’Bi,j’Di,j

and Ei 3 obtain the same values, then (6.5.8) and (6.5.9) can be rewritten:

»

s
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lcﬁf%[ 214y 58 S (6.5.10)
lcgfgl 2 1Ay o0, Sl (6.5.11)
Also we have, . )
l;, 512 13112
Therefore, we conclude that, the new hopscotch_scheme has the same
accuracy as the other block schemes, particularly for the case Lséif + QEE
ax 3y

where A, .=B. .=E, .=D. .=-1.
1,) 1,] 1,3} 1,]
However, in this new scheme, we require the number of mesh points in
the x and y directions to be an odd number. It can be seen that an even
number of mesh points leads to a half group (near the boundaries and therefore
we have to apply the odd-even hopscotch scheme for these points, which

disturbs the accuracy of the method. This is shown in the experimental

results later.

The necessity of covering the region by complete groups of points is
a disadvantage for the group hopscotch method, since specially in non-
rectilinear regions we may not be abie to do so and hence, we lose accuracy.
In this case, the line-hopscotch procedure seems to be superior.

The convergence of the new scheme can be achieved following the analysis
given in Chapter III.

Since the L.T.E. of the formula remains unchanged i.e, di’j=0(kh2+k3/h2+k3)
for 211 i,j and m, therefore,

[1a?*1) < ot onZeS /a3
A

and from (3.7.12), it follows that,

2.2,2. 2

3/2 0(k"+h /h™+h7).

||e2r[ lp# s r.k.c.m

]

Hence, provided k+0 faster than h, the convergence Theorem 3.7 also holds

for the new hopscotch scheme.
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6.6 EFFICIENCY OF THE GROUP HOPSCOTCH SCHEME

In section 3,5, we briefly mentioned the comparison of the work and
programming involved in odd-even, line hopscotch methods together with the
Peaceman~Rachford scheme. An investigation to show the number of arithmetic
operations required for different methods, is given by Gourlay and McGuire
(1971) who claimed that the odd-even hopscotch scheme is 3 times faster than
the line hopscotch and the Peaceman-Rachford is about 4 2/3 slower than the
odd-even hopscotch.

In the following table we give the nmumber of arithmetic operations
involved to evaluate the solution at the implicit points for three different

hopscotch schemes, where n is the number of mesh points in the x and y

directions.

Hopscotch Additions Multips Divisions
Methods )

2 2
0dd-Even Sn /2 3n /2 -
Group 5n2/2 4n2/2 -
Line 5.5n2/2 4.5n2/2 n2/2

TABLE 6.1

The Table 6.1 shows that, the new scheme is faster than the line
hopscotch but slightly slower than odd-even hopscotch,
As far as the storage requirement is concefned, all the methods given

in Table 6.1, are similar.
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6.7 HIGHER DIMENSIONAL PROBLEMS

The advantages of the new hopscotch strategy become apparent when we
are concerned with problems involving 3 or more dimensions. In this section,
we extend the new scheme to the three space dimensions for the heat
conduction equation, i.e.

2 2 32
— = + + 285 o(x,y,z,t) _ (6.7.1)
ot 2 2
ax y 9z

where the appropriate initial and boundary conditions are given.

The simple square molecule in two dimension (Figure 6.2) now becomes
a cubic molecule as shown in Figure 6.7.1. A molecule of implicit points is
surrounded by explicit points and vice versa. The system of equations for

the implicit molecules are as follows:

oo p R R x

(e Lp T gty = lep(Uheudel ) k. gl

.....---..---n---.;c-- ccccc 4882 aas LR R A N A N N I A I ) (6o7¢2)

U2+p[Um+Um +Um3)+k g

LI I B R R N A ] * 8 8 60T LR A N I BN O Y .. LU IR I ]

(1+6p)Uﬁ+l-p(Um+1 Um+1 Um+1 Ul;:d-p(um +Um +Um3)+k g

15 72
at the points a,b,¢,...,g and h where without loss of generality we have
denoted Ax=Ay=Az and p=AT/Ax2. The system (6.7.2) can be rewritten in a
more compact matrix form as before. Hence, we obtain:

Explicit form §F+1 = (I-p)T™k.3" ,

~ " (6.7.3)
Implicit form (Lepm T = e 3™,
and the hopscotch formula remains unchanged, namely,
epL, T = (1-pr WPk E 1 EY (6.7.4)

where
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and I1 and I2 in (6.7.4) are block-diagonal matrices whose diagonal elements-

are 8x8 null and unitary matrices alternatively.

It can be shown that H is a symmetric, diagonally dominant matrix with

positive diagonal elements, hence it is positive definite.
according to the Theorem (3.6), the hopscotch algorithm is stable,

m
case 9, .
1,]

»

»

is denoted to be:

. i+
em+1 - 1if | 2
1,3.m oif n

1]+[le]+[n;1]+m is even

" " "

odd

Therefore,

In this

It is worthy to note that, the stability of the hopscotch technique is

invariant with respect to the dimensions involved,

-------

‘;*‘ S,
E -

FIGURE 6.7.1
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6.8 IMPLICITNESS RATIO

As far as the literature is concerned, the purpose of introducing the
block hopscotch technique was to improve the accuracy over and above that
of the point hopscotch. This improvement was shown to be due to the L.T.E,
where the term 0(k3/h2) is smaller in magnitude for the block hopscotch
schemes when compared with the point scheme.

However, it is not the only factor to consider for achieving higher
accuracy. It can be seen from the experimental observations that, the
ratio of explicit points neighbouring an implicit point plays an important

role. In the following table, we demonstrate this ratio for different

schemes,
_ No. of implicit points

¥ = No. of explicit neighbouring points
Hopscotch 1-Dim | 2-Dims 3-Dims | n-Dims
Scheme
Point 1/2 1/4 1/6 1/2 n
Line - 1/2 1/4 1/2 (n-1)
Peripheral - 1/2 1/4 1/2 (n-1)
Group 1 1/2 1/3 1/n

TABLE 6.2

As can be seen from Table 6.2, the new strategy for the hopscotch
methods becomes more important when dealing with higher dimensional

problems especially, when the amount of work involved is compared.
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6.9 DEVELOPMENT OF THE GROUP HOPSCOTCH SCHEME

 This idea of groﬁping the mesh points can be applied for a larger
group than was suggested earlier as was displayed in Figure 6.2. For
instance, a group of 9 points in two space dimensions as illustrated in

Figure 69.1 can be treated in a similar implicit manner.

9 8 7
X X X
10 r N, f x 6
x h\l J.v k\)
11 5
X 0 9] X
do e f
0 X 4
12 X alo bo -
lx ZX 3K
FIGURE 6.9.1

In this group all the points a,b,...,j,k are implicit and all the
points 1,2,...,12 are evaluated by the explicit formula. The formulation
for this new group can easily be verified when the equation (6.2.1} is

considered and is as follows:

ie4p p | -p - : T ™t ]
1 \ : a a
- +4 -p t -
P P P P : 0 Uy %
-p 1+dp’ P u ,
T VU B B -
\ l - b 4
P i1+4p  -p 7P Uy :
: ' 1
P . P 1+dp -p : P U, = |, (6.9.1)
t 1
P 1 “p ldpi -p U !
———————— = = = e o e e el a e .- - -g -t~
[ R -
| P 1+4p -p U, :
!
-p I - l+4p - u !
0 : : P P -P g 4
1 ]
. : P . P 144 \
. ) P P -uh- - h*
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where

_ m+1
b = PO yes ]

_ m+1
¢b = Ug+pug +AT. gb

ceetssres e o (6.9.2)

Um+p(Um+Um)+AT m+l

and the 8-function becomes
o 1if 1+1]+[J+1]+m is odd
5N

(6.9.3)
0 " 11 " " even,

The stability of the new group scheme can be verified by the
application of the theorem (3.12), since the permutation matrix P can
be found in the same fashion as (6.4.10) which shows the equivalence of
the new group hopscotch scheme with the point hopscotch scheme and
consequently the stability of the method can be deduced immediately.
However, it is not difficult to investigate the stability directly.
| The ratio of implicitness indicated in the Table 6.2, for the new
scheme is given by the following formula:

n

wo=—2—s , ns1,2,3,..., (6.9.4)

P
where n is the number of space dimensions. The ratio (6.9.4) shows
an improvement for the latter scheme compared with the other hopscotch
schemes given in Table 6.2.

The L.T.E. of the new groﬁp hopscotch scheme can be evaluated in
the same way as given previously and the terms involving 0(k3/h2) are
as given below.

At the four corners a,c,h and k shown in Figure 6.4 the principal

parts of O(kslhz) are found respectively to be:
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2 1332 My 2
/h (Ai,j*lBi,j}[Lh at = 3t 3 s
m m
Ju, . °g. .
3,2 i,j i,j
2K/h(Ay 540y Ly e - ) o
s 2 au?’j ag? ; (6.9.5)
R N G TV e i o B
m m
and 2 X3 /m3(E. 4D, O] Tig 2
i,j i,3 Ly ot at
whereas at the points b,d,f and g we have
m m
au, . 9. .
3,2 i,j i,j
N N e e A
m m
au, . ag. .
3,2 i,j i,j
2 x/h Bi’j(Lh 5t )
s au?’j ag?,j (6.9.6)
2K /0Dy 5y e - )
3.2 a“?,j o8] j
and 2 KOE (0, = - i

and finally at the centre point e, the term 0[k3/h2) vanishes., Thus
generally speaking, the accuracy of the new scheme has the same order as
the four-point group hopscotch scheme.

Although the 9 points group hopscotch provides a slightly more
accurate approximation to the solution of the parabolic equation, the
amount of work involved to solve the system {6.9.1), now becomes more
critical, However, the numerical comparison is made for different
hopscotch schemes including the latter which will be illustrated in the
forthcoming sections.

From now on we call the scheme presented in section 6.2 as "Group 4"

and the scheme given in 6.9 as "Group 9" hopscotch schemes.
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6.10 EXTENSION OF THE GROUP STRATEGY TO PROBLEMS OF ONE SPACE DIMENSION

One of the advantages of the new block hopscotch (i.e., the group
hopscotch) scheme is the application to one-dimensional linear problems.
For instance, the scheme (6.3.1) for the heat equation in this case becomes:

(1+2p)Ui+1-pU!+1 = U]+pUiti+AT.gi+1

i+l i
. . . . . (6.10.1)
+1 +1 +1 +1
(1+2p)Ui+1-pUi = Ui+1+pU§+2+AT.gg+1

where the mesh points selection for explicit and implicit points are

displayed in Figure 6.10.1

FIGURE 6.10.1

"The system (6.10.1) can easily be solved beforehand to provide a total
explicit scheme for the new technique.

The advantages of this scheme over the point-hopscotch scheme is
due to the improvement of the L.T.E. of the group hopscotch scheme as
was shown in the two-dimensional heat equation, as well as the implicitness
ratio which in this case becomes u1=1 whereas this ratio for the point-
hopscotch was u1=1/2.

One can also apply the analogy of the group 9-hopscotch scheme to tbe
one-dimensional space problem and choose the explicit and implicit mesh

points in a manner as shown in Figure 6.10.2,
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L J

FIGURE 6.10.2

To compare the accuracy of the different hopscotch techniques in one-
2

dimensional problems, we have solved the heat equation %% =-§*% subject to
the initial values u(x,0)=sin(x) and the boundary values u(O?:)=u(1,t)=0.
The difference between the approximate solution obtained from three
different hopscotch schemes with the exact solution u(x,t)=sinx.exp(-t)
are displayed in Figure6l0.3,which indicates that as the group size

increases so does the accuracy of the approximate solution.
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N=20, h=1/N, P=l ,

2]
The error curves of point, 2-point and 3-point hopscotch
schemes at the point (x=N/2.th=mAt) are illustrated by
curves 1,2 and 3 respectively,

4.

FIGURE 6.10.3
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6.11 A COMPOSITE HOPSCOTCH SCHEME AND THE TREATMENT OF INCONSISTENCY

It was shown earlier that the principal part of the terms involving
2
0(k3/h ) in the L.T.E. for point-hopscotch and group 4-hopscotch schemes

are respectively: m n

_st (o { aui,j - gisj]
';7 i,j L 3t 3t

and
3 m m

au, ., g -
2k i,j _ i,j
hZ(Ai,j*Bi,j)[Lh it 5t )

where the terms Ai j,Bi i and Ci j are defined in (3.7.2)-(3.7.3).

For the parabolic equations with the second order elliptic partial

differential operator given by

197

2 2
Lz .2 _ (6.11.1)
2 2
ax 3y
We observe that,
A, .+B. .+C. .+D. .+E. . =0 (6.11.2)
1,] 1,) 1,}) 1,) 1,]
which in the case of Ai =E and Bi =D. ., results in
3 L) ’ >
2(A, B, ) =-0C., . . 6.11.3
( 1,] 1;3) 1,3} ( )

Consequently, if we subtract the approximate solution of the
point-hopscotch method from two times of the Group 4-hopscotch scheme,
the terms 0(k3/h2) is eliminated and therefore not only do we obtain a

more accurate result than the previous block hopscotch schemes but we

also avoid the inconsistency phenomenon which is due to the term O(kslhz),

provided (6.11.3) is satisfied in the region under considerétion.

However, for the Dirichlet boundary conditions, the equation (6.11.3)

is no 1longer true near the boundaries and although we have some improvement

in the accuracy, the inconsistency term cannot always be eliminated
completely whereas for Neumann boundary conditions satisfactory results

might prevail.



The additional computational work can be compromised by applying a
larger time step. The composite scheme can also be applied to one-
dimensional problems. To show the improvement achieved for the case of
the one-dimensional problem a comparison of the error curves with the

previous scheme is given in Figure 6 .11.1.

198



Error * q2

Curve (4) shows the error of composite hopscotch for p=2

FIGURE 6.11.1
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6.12 COMPUTATIONAL EXPERIMENTS

In the following computational experiments we consider the same
examples as gi#en by Gourlay and McGuire (1971), Gourlay and Gane (1976).
Consider the equation

ou _ 2%, 82
e i - C R (6.12.1)

t ax oy
A
in the domain Ogx,ysl when g(x,y,t) are given for two different cases

as

sin x.sin y et -4 (6.12.2)

i) g(x,y,t)

sin x.e-t/(1+y)2 - 2x - 6xy . (6.12.3)

ii) g(x,y,t)

The appropriate initial and boundary conditions are given to provide

the exact solution of the problem as:

i) u(x,y,t) = sin x.sin y LI N y2 (6.12.4)

and ii) u(x,y,t) = sin x.log(1+y)e-t + xsy + xy2 . (6.12.5)

Experiment (i)

The accuracy of the different hopscotch schemes are compared in the
following tables., At first we choese N=19 (which is the number of mesh
points in the x and y direction) which is suitable to cover the grid
points by different groups exactly. The errors at the miﬁdle mesh point
and also the maximum, minimum and average errors of different schemes are
also given in the tables. Different tables present the errors for
different mesh ratios and the time is chosen to be T=0.277 which corresponds
to 100 steps when p=1.

We also examine the accuracy of different schemes when N¥10, which
the Group 4 scheme fails to cover the mesh points completely and so the

mesh points near one of the boundary lines in each direction requires a
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different procedure which as mentioned previously disturbs the accuracy

obtained.

The errors at the middle point for different mesh ratios and for each
scheme are given in the Tables 6.5 and 6.6 respectivedy., At this time T=1

is chosen for each problem.



1st Example
N=19, P=0.125, k=0.00277, T=0.2770 sec.
Hopscotch Midpoint Max3imum Minimum Average
Schenes Error Error Error Error
Point 5.0900&6 5.4358%-6 8,61485-8 2.52335-6
Group 4 5.67436-6 6.05935-6 9.6171&-8 2.81345-6
Line 5.65796-6 6.03665-6 9.59965-8 2.80845%-6
Peripheral 5.67418-6 6.05745-6 9.6260&-8 2.81406-6
Group 9 5.86946-6 6.26515-6 9.95516-8 2.9112E-6
Composite 6.2585§-6 6.6827&-6 1.0619&-7 3.103458-6
(a)
P=0.25

Hopscotch Midpoint Maximum Minimum Average

Schemes Error Error Error Error
Point 1,6092§8-6 1.73175%-6 2,6986%-8 7.94645-7
Group 4 3.94785-6 4,22725%-6 6.71075-8 1.95565-6
Line 3.88256-6 4.16826 -6 6 64085 -8 1.93585-6
Peripheral 3.94725-6 4,21965-6 6.746456-8 1.95845 -6
Group 9 4.72815-6 5.05015-6 8.06255-8 2.34705-6
Composite 6.28656-6 6.73915-6 1.0723§-7 3.1169-6

"' (b)
P=0.,5

Hopscotch Midpoint Maximum Minimum Average

Schemes Error Error Error Error
Point -1.23215-5 1.3259 -5 2,0988;-7 6.1230 4-6
Group 4 -2,95985-6 3.28006-6 4.92006 -8 1.475856
Line 3.22035-6 3.46556-6 5.19925 -8 1.5552¢&6
Peripheral -3.23145-6 3.33845-6 4,7762 -8 1.4647 &6
Group 9 1.63365-7 6.65466 -7 4.4383% -10 1.0095§-7
Composite 6.40176 -6 7.07926 -6 1.1148 -7 3.17218-6

(c)

TABLE 6.3 (continued)
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1st Example
P=1
Hospcotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -6.8171§-5 7.30388&-5 1.16095-6 3.38515-5
Group 4 -3.0624&-5 3.275358-5 5.1536&-7 1,52156&-5
Line -3,1666&-5 3.3901&-5 5.26546-7 1,.5534&-5
Peripheral -3.06316&-5 3.31825-5 5.0959§-7 1.5171&-5
Group 9 -1.81115-5 1.98148-5 2.98335-7 8.94225%-6
Composite 6.92345-6 8.53626-6 1.3018&-7 3.42325-6
[C
p=2
Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -2.92328-4 3.12806—4 4,9901&-6 1.4511¢&-4
Group 4 -1.41735-4 1,50984§-4 2.39265-6 7.03788-5
Line -1.4591§-4 1.56025-4 2,43746-6 7.1656&-5
Peripheral -1.41758-4 1.52985-4 2.36946-6 7.0198%-5
Group 9 -9.1427§-5 9.90405-5 1.51745-6 4.5172§-5
Composite 8.8637&-6 1.63158-5 3.4233&-8 4.6090%6
(e)
P=4
Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -1.48513-3 1.5096&-3 3.68665-5 7.46505-4
Group 4 -6.13835-4 6.51045-4 9.79945-6 2.95635-4
Line -6.06323-4 6.57856-4 1.0171§-5 3.00466-4
Peripheral -6.124954 6.52748-4 9.3916 56 2,9556§-4
Group 9 -3.9641¢&-4 4,27338-4 6.29315-6 1.90145-4
Composite | 2.5742%-4 3.41025-4 4,78666-6 1.5545&-4
(£

TABLE 6.3



2nd Example

N=19, P=0.125, k=0.00277 T=0.2770 sec.

Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Errorx
Point -7.2296§-6 9,7601&6 1.05526§-7 4,1932&6
Group 4 -6.7372&6 9.447056 8.3266 &8 3.94866-6
Line -6.7509&6 9.44486-6 8.84065-8 3.9527&6
Peripheral -6.73738-6 9.4401 &6 8.3557 &8 3.9480&-6
Group 9 -6.5729&6 9,3354 66 6.4349 &-8 3.8661 586
Composite -6.2448&6 9,1339§-6 2.0198&-8 3.7039&-6

(a)
P=0.25
Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -1,0162& 5 1.18828&-5 2.08726-7 5.65085-6
Group 4 -8.1920&6 1.0452&5 1.31765/-7 4,671956-6
Line -8.2468 &6 1.0469 &5 1.40236-7 4.6885%5-6
Peripheral -8.1923 &6 1.0447 &5 1.3103§-7 4,66956-6
Group 9 -7.5348 &6 9.9417 &6 1.1463§-7 4,34195-6
Composite -6.2215 &6 9.1351 &6 3.46235-8 3.69386-6
(b)
P=0.5
" Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -2.1900&-5 2.26895-5 6.2169&-7 1.14845%-5
Group 4 -1.4013§-5 1.50295-5 3.13688-7 7.5657§&-6
Line -1.42328-5 1.52628-5 3.4754§-7 7.63235-6
Peripheral -1.40136&-5 1.5125§-5 3.1074§-7 7.55616-6
Group 9 ~-1.,1382&5 1.29768-5 2.45106&7 6.245458-6
Composite -6.125186 9.1377&6 5.66256-9 3.65828-6
(¢l

TABLE 6.4 ({continued)
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2nd Example
p=1
Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -6.89558-5 7.23636-5 1.5064 §-6 3.486548-5
Group 4 -3.7322&-5 3.8970&-5 9.46485-7 1.91538-5
Line -3.8199&-5 3.93366-5 9.56298-7 1.94206&-5
Peripheral -3.73256-5 3.89358-5 9.41355&7 1.9115&-5
Group 9 -2.6758§-5 2.80446-5 7.58148-7 1.38656-5
Composite -5.69006.6 9.51496-6 2.59216&-8 3.5873&-6
(d}
P=2
Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -2,57716&4 2.73506-4 4,.82006-6 1.28636-4
Group 4 -1,3092&-4 1.3716&-4 2.5705&-6 6.5668 -5
Line -1.3444 &4 1.40716-4 - 2.6099&-6 6.673745-5
Peripheral -1.3093%-4 1.3947 &4 2,54985-6 6.55128-5
Group 9 -8.8574 &5 9.2710&5 1.8114 &6 4.44238&5
Composite -4.1347 &6 1.1825&5 1.0194&-8 4.0284 -6
(e)
P=4
Hopscotch Midpoint Maximum Minimum Average
Schemes Error Error Error Error
Point -1.26304-3 1,28006-3 3.20658&5 6.3500&4
Group 4 -5.2810&4 5.5464 -4 8.992066 2.5526 5-4
Line -5.2173 &4 5.6265 &-4 9.251066 2.5930&-4
Peripheral -5.2683 64 5.5535 &-4 8.6510&-6 2.55206&-4
Group 9 -3.4531 &4 3.6724 6-4 5.9956 &6 1.66836&4
Composite. 2.0681 &-4 2.7761&-4 3.1624 5-6 1.2556 &4
()

TABLE 6.4

205



lst Example

N=10, P=1, T=1
Hopscotch Midpoint Maximum Minimum Average
Methods - Error Error Error Error
Point ~-1.1118&4 1.2376§-4 7.1198%-6 -6.3040§ -5
Group 4 -5.1865&5 6.2787 &5 3.1470&6 3.13165-5
Line -5,047355 6.1354 &5 3.2366 &6 2,9429§-5
Peripheral -5,28355&5 6.1237 &5 3.0225%6 2.8028%-5
Group 9 -2,5200&5 3.5082¢&5 1.34918-6 1.5253§-5
Composite 7.4475 56 2.07428-5 9.33148-8 4.6368§-6
{a)
P=2
Hopscotch Midpoint Maximum Minimum Average
Methods Error Error Error Error
Point -4.7417§-4 5.2699%-4 3.0417§-5 2.69005-4
Group 4 -2,38545-4 2.84515-4 1.4557§-5 1.4279§-4
Line -2.32975-4 2.79955-4 1.4929§-5 1.35265-4
Peripheral -2,42425-4 2,79475-4 1.4054¢-5 1.2965§-4
Group 9 -1.3216§-4 1.73958-4 8.22265-6 7.86835-5
Composite -2.9075§-6 1.01045-4 5.2946§-7 2.02098-5
(b)
P=4
Hopscotch Midpoint Maximum Minimum Average
Methods Error Error Error Error
Point -1,6761§-3 1.67645-3 1.68725-4 9.40985-4
Group 4 -1.0695§-3 1.3427§-3 6.8409¢&-5 6.42865-4
Line -1.1282§-3 1.2411§-3 6.6486§-5 6.10845§-4
Peripheral -1.1429§-3 1.1820§-3 7.0231§-5 5.9829¢&-4
Group 9 -5.9393¢-4 7.1930§-4 3.7559§-5 3.26345-4
Composite -4,6278g-4 1.01905-3 1.0622§-5 3.68825-4
(¢)

TABLE 6.5
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2nd Example
N=10, P=1, T=1
Hopscotch Midpoint Maximum Minimum Average
Methods Error Exrror Error Error .
Point -1,14008-4 1.2353g-4 8.93825-6 6.5133¢-5
Group 4 -6.39565-4 7.04665-5 5.4939§5-6 3.8365g-5
Line -6.2791§-5 7.02775-5 5.57635-6 3.6810¢-5
Peripheral -6.47985-5 7.0151§-5 5.3607;-6 3.5633¢-5
Group 9 -1,1493§-5 4.7287§-5 3.1762§-6 2.4873¢-5
Composite -1.3912§-5 2.5870§-5 8.3921g-7 1.1597§-5
(a)
=2
Hopscotch Midpoint Maximum Minimum Average
Methods Error Error Error Error
Point -4.20285-4 4.,5929¢-4 2.9078 -5 2.3879:-4
Group 4 -2.21376-4 2.55945-4 1.53008 -5 1.32225-4
Line -2,16715-4 2.53425-4 1.56425 -5 1.26018 -4
Peripheral -2.24745 -4 2.52885-4 1.48805-5 1.21306-4
Group 9 -1.3175§ -4 1.63435-4 9.835% -6 7.83745 -5
Composite -2.24515-5 9,0890% -5 4.81675-7 2.56645 -5
(b)
P=4
Hopscotch Midpoint Maximum Minimum Average
Methods Error Error Error Error
Point -1.4796 -3 1.4796§&-3 1,4582¢-4 8.17415-4
Group 4 -9.18655-4 1.13855-3 6.28418-5 5.51165-4
Line -9,7116¢&-4 1,06435-3 5.9830g-5 5.2553§-4
Peripheral -9,8442¢-4 1.0065§-3 6.3441g-5 5.1479&-4
Group 9 -5.2036§-4 6.20095-4 3.5931g-5 2.86975-4
Composite -3.57745-4 8.46425-4 5.5152¢-6 3.03528-4
(c)

TABLE 6.6
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6.13 EQUIVALENCE OF THE GROUP-HOPSCOTCH WITH THE DU-FORT-FRANKEL SCHEME

In the same manner as Gourlay & McKee (1977), we can prove the

equivalence of the new block hopscotch with the implicit Du-Fort-Frankel

scheme.

- Let us consider the two-space dimensional heat equation and rewrite

the Du-Fort-Frankel method for this equation, i.e.,

(1+4p) 111;+;-2p [

U

i+1,57°1-1,5"

+UL

1,j+1+

+1
Uj, 13- (-4 g = 0

(6.13.1)

If we apply the equation (6.13.1) for a group of four points as

displayed in Figure (6.131) and give the matrix form, we obtain:

1+4p -p
P 1edp
o -p

0

P

ol

+2p

+2p

= o o O

T hn am+l A _ =1 [T “m
0 -p Ui,j 0-10 O UinZ,j
-p 0 Ui+1,j 0 00 O Ui-l,j
. + 2p
l+#4p -p Ui+1,j+1 0 00 O Ui-l,j+l
-p 1+4p] I—Ui,j+1 i (G 0 -1 O] -Ui—2,j+1-
e B - Tt . by = -
0 -1 Ui,jJZ 0O 0 0 0O Ui,j+2
-1 0]{U. . 0 0 0 o} {u. .
i+1,j-2 + 2p i+1,j+2
0o 0 Ui+1,j-1 0 -10 O Ui+1,j+3
0 0 -Ui,j~1 _ -1 00 O] -Ui,j+3 )
- =m - T .
o 0 Ui+2,j 1-4p 7 0 P Ui,j
O 0O . .
i+3,j . P l1-4p o 0 Ui+1,j
O -1}|U. .
i+3,j+1 0 P 1-4p P Ui+1,j*1
0 O1lu. .
= Li+2,j+1] - P 9) P 1-4n] 'Ui,j+1 |

The compact form of (6.13.2) can again be written as follows:

s +1 -
(I+pA)U$,s - -ZP(Bﬁﬁ-l,s+Cﬁ?,s-

where A,B,C and'ﬁr s have the same definition as given in (6.4.2).

»

1

+1

+C*
r,s

~m-1
Ty, LT

m-1

(6.13.2)

(6.13.3)

The usual explicit and implicit replacements in the same form
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of {6.13,3) are as follows:

~ +1 - _ ~ _ ~ *N *~
Uz,s (1 pA)Ui,s p(BU§_1’5+Cﬁ$,5_1+C Ur,s«-l"B Ur+1,s) (6'13'4)

. ~ ~ ~ ~ ~ o~ =1
(TepAVUL +p(BU_ (+CUT o (eCFUD | BSU0, 0 =T, . (6.13.5)

1, -1 r, r+l,s

Now, we multiply the equations (6.13.4) and (6.13.5) by {I+pA) and
(I-pA) respectively and then add the new formulae to obtain the equation
(6.13.3). |

Hence the equivalence of the Group hopscotch and the GDFF can be

" observed which enables us to state the following theorem.

n+1th-1eve1

“u

T -
P AT N
b Y

- e

AR SRR L e R aa . -

n—lth-level

FIGURE 6.13.1

Theorem 6.1

The Group hopscotch is equivalent to the Group Du-Fort-Frankel scheme
in the following sense:

i} GDFF must be started by using one step of Group hopscotch

ii) GDFF must only be employed on alternate groups.



Optimum Parameter for Convergence
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In the same manner as §3.9 we shall prove the convergence of the new

block hopscotch scheme by considering the equivalent DFF scheme and attempt

to find the best value of p for which the convergence attains its optimum

rate.

The related analysis can be done by two different approaches:

i) Considering the GDFF for a single point, i.e.,

(1+4p)U] ;-

+1 +1
Um '+Lf;sj+1)-zpcd;'1’jfug‘nj“

i+l,j

1)-p(Um-l +Um'1

i+l,i "i,j+1

- (1-4p) UT; -0

)

(6.13.6)

and substitute the related Fourier terms into (6.13.6). From which

we obtain,

(1+4p-pC-¥CiS)u2-2p(C;/:iS)u-[{1-4p+pC)+/:TpS] =0

where C=cosch+cosph and S=sinah+singh,

and u represents the spectral radius of the iteration matrix.

(6.13.7)

We were

not able to solve (6.13,7) analytically due to its complexity to obtain

a formula similar to those presented by Gourlay § McKee (1979) for point

and line hopscotch-schemes,

ii) By matrix analysis in which the whole region is considered by the

following formula:

(x+pM) T Lo 2N (1-pMy U™ = 0

{(6.13.8)

where M and N are block matrices of order (E%lgx(ﬂélg represented below,

{ !

ol

and A,B,C ére 4x4 matrices as given in (6.13.3).

LY
N
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Since M and N are not commutative, therefore (6.13.8) can not be converted
to the quadratic equation similar to (3.9.11) and the solution of (6.13.8)
can not be verified in this way.

However, we simplified (6.13.8) to the following form
4ﬁn+1 2 -1 i -1 ﬁn-l _ :
U “-2p(I+pM) NU - (I+pM) " (I-pM)T ~ = 0 (6.13.10)

and assume A=(I+pM}_1N and B=(I+pM)-1(I-pM) are commutative (without
M and N to be such). Suppose A and v are the eigenvalues of 4 and B

respectively. Then (6.13.10) can be written as,

u2-2plu-v =0, (6.13.11)

which can be solved for u.

The resultsdeduced from (6.13.11) were nof in agreemént with the
experiments obtained from the solution of the model problem and hencefore
the assumption that AB=BA did not help to overcome the difficulty to find
an analytical form for the best value of p and the optimum value of u.

However, we expect the rate of convergence for the new hopscotch
scheme to be similar to the line-hopscotch and this is what we .observed

from the numerical experiments.



6.14 APPLICATION OF THE GROUP-HOPSCOTCH TECHNIQUE TO SOLVE PARABOLIC AND
ELLIPTIC EQUATIONS WITH MIXED DERIVATIVES

The hopscotch strategy is applied to solve parabolic and elliptic
equations with mixed derivatives by Gourlay § McKee (1977) as presented in
section 3.10. Here ﬁe shall apply the grouping strategy for such problems

and demonstrate the formulation involved together with some numerical

results and make a comparison for different approximate solutions obtained.

To begin, we start with the equation (3.10.1) and write the finite-
difference replacement for a group of four implicit points as shown in
Figure 6.14.1,

In order to write a suitable finite difference replacemeﬁt for the
nixed derivative term in (3.10.1) we choose (02;04) at the corners A and

C and (cl+c3) at the two other corners, where 01, i=1,2,3,4 are defined by

(3.10.4). ¢ ;
; D C )
8 -3

A B
1 2 .

FIGURE 6.14.1

Therefore at the corner A and C we have

212

Lh 5-35 [aai+c6;+b(cz+04)] (6.14.1)

h

whereas at the cornersB and D we have

L =% [a6i+06§+b(01+03)] (6.14.2)

h

where a,b and c are the coefficients given in (3.10.1)}.
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The matrix formulation of the group's implicit scheme for the
equation (3.10.1) leads to the same system as (6.4.2) with different

coefficient matrices as follows:

'3(a+b+c) -(a+b) 0 ~-[(c+b)
-(a-b) 2(a+b-c) -(c-b) 0
A 0 ~(c-b) 2(a+b+c)  -(a+b) ’

~{c-b) 0 -(a-b) 2(a+b-c) |
0 a+b b O 0 0 -b ¢+b)
o o 0 o0 0 0 c-b b

B = , C= . (6.14.3)

O 0 0 O 0 0 0 0
0 b a-b 0] 0o 0 0o 0

The elliptic equation with mixed derivatives can also be solved by the

Group-hopscotch scheme without any substantial difficulties.

3

Numerical Comparison

Here we solve some examples as given by Gourlay and McKee (1977)

for the new scheme and compare the results to show the accuracy obtained.

Example 1 - Parabelic equation, constant coefficients

Here the problem consists of

42 \2 52
= a5 + b=+ 5 + g(x,y,1) (6.14.4)
ax dxdy ay

3|

where a=0.1, b=0.05 and c¢=0.15 together with the initial condition

u(x,y,0) = sin(x+y) , (6.14.5)
and the boundary conditions, '

e-(a+2b+c)t

u(0,y,t) = sin y,

u(l,y,t) = e B2V gin (1ay),

u(x,0,t) = e—(a+2b+c)tsin X , (6.14.6)
u(x,1,t} = e—(a+2b+c]tsiﬁ (1+x},

and g(x,y,t) =0 .
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The theoretical solution is given by

e-(a+2b+c)t

u(x,y,t) = sin(x+y) .

The numerical calculation was carried out for N=11, and T=0.5 for

different values of p. The results are shown in Table (6.14.1).
Constant coeff. h=1/11, T=0.5

No. of Errors of Errors of Errors of
P Steps Point Hopscotch Group 4 Hopscotch Line Hopscotch
0.1 500 0.000134 0.000141 0.000120
0.5 100 0.000253 0.000133 0.000110
1 50 0.000382 0.000142 0.000079
5 10 0.000797 0.000653 0.000934

TABLE 6.14.1

Example 2 - Parabolic equation with variable coefficlients

Here the problem consists of equation (6.14.4) together with,
a-= x2/2 + yz, b = -(x2+y2)/2 and c= x2+y2/2 (6.14.7)

subject to the initial condition

u(x,y,0) = Xy + xy°

and the-boundary conditions
u(0,y,t) = 0
u(ly,t) = (yayie™™ |
u(x,0,t) = 0 (6.14.8)
u(x,1,t) = (x+x2]e-t

with g(x,y,t)=0. The theoretical solution is

u(x,y,t) = (xytxy)e .
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The numerical results for N=11 and various values of p are presented in

Table (6.14.2).

Variable coeff. h=1/11, T=0.5

p No. of Frrors of Errors of _Errors of
Steps Point Hopscotch Group 4 Hopscotch Line Hopscotch
0.1 500 0.000043 0.000002 0.000002
0.5 100 0.000087 0.000037 0.000039
1 50 0.000238 0.000149 0.000157
5 10 0.054760 0.005103 0.005661

Example 3 - Elliptic equation with constant coefficients

TABLE 6.14,2

The group hopscotch iterative scheme is applied to solve the elliptic

equation

where L is as given earlier together with a=c=1 and b=-0.5.

Lu = -g(x,y,t)

(6.14.9)

The initial

guess Ug j=1 was used and the required accuracy of 10-6 was achieved in 72
>

iterations for both the line and group hopscotch methods with the optimum

value p=l.
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6.15 CONCLUSIONS

We list below the advantages and disadvantages which have been

observed in analysing the methods.

1.

It is well-known that the hopscotch technique was established to
convert complicated problems into some straightforward computational
processes which are independent of dimensions.

However, since the first hopscotch scheme (i.e. point-hopscotch) was
not sufficiently accurate (i.e. in the case of long time steps the
accuracy dramatically decreases due to the L,T.E.) the block-hopscotch
scheme was introduced to give a more accurate solution. However by
using a block strategy, the explicitness of the method is sacrificed
and therefore the scheme becomes less efficient.

In this chapter we established a scheme which has the same order of
accuracy as the other block hopscotch schemes. Moreover, it is also
totally explicit and compatible with the point hopscotch method

although it takes slightly more computational time.

By introducing this new strategy, it seems the choice of selecting
the set BL given in §6.2, is now completed, and there would be no
other alternative for a new strategy, except to make the group larger

which obviously is not very useful,

One of the disadvantages of any hopscotch process is the Du-Fort

Frankel type of inconsistency due to the term O(kslhz) in the L.T.E.

The composite schemes were presented in §6.11 to tackle this
inconsistency, and from the results displiayed in the Tables (QLS)-(G.G),

this difficulty seems to have been overcome to some extent,

This new strategy can be applied to one-dimensional problems, which

have no analogy in the other block hopscotch methods.
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As was shown in Chapter III, since the error of the hopscotch process
changes the sign for different ratio p=AT/Ax2, therefore there exisfs

a specific value of p for which, one obtains the most accurate solution
from the scheme. This specific value of p increases for block hopscotch
schemes which allows the user to apply longer time-steps and make the
technique more efficient. This is shown'in Figure 6. where the curves
of global error at the mid-point of the one-dimenéional problem for

point,'z-point and 3-point hopscotch schemes are demonstrated.

Since the grouping strategy (particularly the Group-4 scheme) is
totally explicit it is more suitable to be used if somebody has access

to a parallel processing system.

The group-hopscotch like the other schemes can be used for open regions
(r,8) geometry and the mixed derivative case without any substantial

difficulties.

Although the new block hopscotch scheme is more beneficial in the case
of linear problems, for non-linear cases such as the chemical-reaction
problems given in §3.1, the point hopscotch method seems to be the
most straightforward scheme and easiest to apply. However, research

towards a new scheme for the non-linear case is underway.

For higher dimensional problems (e.g. 3.1) the scheme analogous to
Group 4 (which is shown in Figure 6.3) becomes more advantageous
especially if one solves the system of equations corresponding to the

implicit molecule beforehand,

The results given in Tables 6.3,6.6 indicate that the composite

hopscotch scheme is more accurate for p=2 and therefore is preferable.
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Since in this case the solutions obtained are more than twice as
accurate as the other results, henceforth the extra computational

work required can be compromised by utilising longer time-steps.

In non-rectangular regions (e.g. the circle) one needs to use
irregular groups and therefore the programming becomes more complicated
as well as the accuracy being decreased. In this case the line

hopscotch method seems to be superior.

Finally, for small time-step e.g. ATs%;sz i,e. ps%—, the point
hopscotch method is recommended while for longer time-step in which
%<p55 the composite hopscotch is the most accurate and efficient
scheme.

For very long time-step (e.g. p>10) the hopscotch procedurés are not
recommended and one should apply some other technique (e.g. Morris,

Extrapolation scheme).
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CHAPTER VII

NUMERICAL SOLUTION OF PARABOLIC EQUATIONS BY

BOUNDARY VALUE TECHNIQUES
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7.1 INTRODUCTION

The techniques that have been studied so far for the solution of
parabolic equations were accomplished by means of marching or step-by-step
procedures on an initial value problem.

In the case of elliptic equations however, jiry or boundary value
procedures are the natural ones to use. Here the consistent finite-
difference equations constitute a system of algebraic equations in as many
unknowns as there are interior mesh points in the region of interest. One
obvious diéadvantage which arises in this case is the computer storage
requirements,

In previous time this difficulty has been treated by splitting the
elliptic equations into a system of ordinary differential equations (e.g.
the method of lines} and solving the problem. In recent yéars, the
development of the high speed computer with large storage facility has led
to the direct solution of such elliptic difference equations.

Recently, attention has been focussed on converting the parabolic
equation to an equivalent elliptic form and to applying jury methods rather
than the usual step-by-step pfocedures. This process can be described as
the "Boundary Value Technique'" and can be shown to be free from row-to-row
error accumulation. This is an advantage if one is computing the solution
for large times.

The motivation for this chapter can be found in the work of Greenspan, D.

(1967), (1974), Carasso, A. (1968), and Carasso, A. § Parter, S.V. (1970).



7.2 THE BOUNDARY VALUE PROCEDURE

The problem to be considered here consists of a parabolic initial
boundary value problem, which for simplicity is chosen in one space
dimension to be

2
a2, e,

u
T 3] (7.2.1)
ax

3x

in a region R={(x,t)|05xsl, t>0}, where the solution u(x,t) of (7.2.1)
attains a known steady-state value, U(Xx) as t*= under some appropriate

initial and boundary conditions which are given as follows:

u{x,0) = fO(x) Ogxgl t=0
ufx,t) = ¢1(t] x=0, t>0 (7.2.2)
and u{x,t} = ¢2(t) x=1, t>0 .

Suppose for T sufficiently large, u(x) is a reasonable approximation to
the exact solution u(x,T) at time t=T.

The alternative approach to the marching technique (as discussed in
Chapter II and III) has been proposed by Greenspan (1967) as follows.

Consider a finite-difference approximation to the analytical problem
(7.2.1)-{7.2.2) in the open rectangle RT={{x,t)|0<x<1, 0<t<T}. Interpret
the finite-difference equations as a system of algebraic equations for the
approximation to u(x,t) at the interior mesh points of RT and imagine
solving this system, if possible, subject to the given initial and boundary
conditions, and data uéﬁtx) at t=T . Obviously one needs to be sure that
the difference scheme is such that, the inclusion of the extra data at t=T
leads to a determinate system of algebraic equations. If the scheme is
consistent with the differential equation, it is plausible that the
solution of the finite difference equations would be an approximation to
u(x,t) at the mesh points {Carasso, A. 1968, p.3).

The finite-difference replacement selected by Greenspan, is the well-

222
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known Richardson scheme which is described in Chapter II. As was shown
previously, this scheme is unconditionally unstable, when used as a marching
procedure. However, in a closed region as in the case here, the Richardson
formula does not suffer from instability when used to solve a linear
parabolic problem with time-independent coefficients.

At least one good-reason why such a method may prove useful in practice,
especially for large times is provided by its behaviour towards round-off
“error. The marching procedures tend to accumulate round-off error, whereas

"jury" problems do not. (For proof, see Carasso, 1968, p.64).

Formulation of the Boundary Value Technique

The finite difference discretization of equation (7.2.1) by the scheme

suggested by Greenspan will lead to the following formulation

ST U T IS W TO U Bk W8 e O 05 O fex. .t..U Uj_+1,j'ui-1,j)
38T " 1850050 8%

Ui,O = fo(l,Ax) (7.2.3)

UO,j = 1(J.At)

) (7.2.4)
N,

2(j,At) i=1,2,...,N-1, j=1,2,...,M-1,
where Ax=1/N and AT=T/M.
The approach suggested by Greenspan is in choosing M large and to
solve the resulting (M-1)x(N-1) system of equations simultaneously. Indeed,
the method was suggested for a general class of parabolic problems, linear
and non-linear cases where several computational ekperiments were carried out.
The complete analysis of the method was given later by Carasso, A.(1968)
where he discussed the convergence of the technique and evaluated the rate
of convergence of the method for linear problems with time-independent
coefficients to be 0(Ax2+AT2) as AT+0 , T+~ otherwise the rate of convergence

/

reduced to O(AT3 2) which is also the case for miidly non-linear problems,
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for sufficiently smooth exponentially decaying solutions.

Furthermore, he also considered the iterative solution of the problem
and obtained the optimum value for the acceleration parameter. Finally,
he gave the failure of the Boundary Value Technique to solve the parabolic

equation 2

? 2 .
= ——% + T u + sin mx,cos t O<x<1, t>0
8x

Q| o
23}~

which had been attempted by Greenspan earlier.

The aim of this chapter is to apply various iterative p;ocedures to
solve some non-linear problems by this new strategy and compare the results
with the Newton-iterative solution which was suggested by Greenspan.
Specifically, we are interested in using the hopscotch techniques, block and
point overrelaxation methods and compare the results obtained under these

special circumstances.
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7.3 ITERATIVE METHODS OF SOLUTION

We consider the equation (7.2.1)-(7.2.2) and rewrite the difference

replacement in an iterative sequence as follows:

= _opittl
B IC I AT

i+1,j‘”?-1,j)

T (7.3.1)

for i=1,2,...,N-1, j=1,2,...,M-1.

where as before p = AEE
Ax

We now consider the case when f is a linear function and rewrite
{7.3.1) using row-wise ordering of the mesh points in the region R such
that for each point the totality of the difference equations produced in

this way yields a (M-1)x (M-1) block linear system of the form

AU = b : (7.3.2)
where — -
b, Fy
E. D, F
{\ { 2\ 0
~ \\ \\ .
A= \\ N \\\ =D+E+F (7.3.3)
N \\ \F
0 b \\ n-1
A Y ~
B En-l Dn A (M-1)x(M-1)
with
zp 1 -
-1 4 1
\ R\ N 0
N\ N \\
= b = =
Di \\ \\ \\ Ei Fi ZpI(N-l)X(N-l) (7.3.4)
\\ N N
0 v o~ 1
Y1 4
B “t "PL(N-1)%(N-1)

where N=1/h and M=T/k, p=k/h2,
and b is obtained by inserting the known boundary values when applied into

equation {7.3.3). (Evans, D.J., 1980, internal report).
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When f is non-linear, the equation (7.3.4) becomes a non-linear
system of equations which can be solved by alfernative techniques such as
the Newteon method.

From the block tridiagonal structure of A, we can consider the block
iterative schemes for the solution of (7.3.2) in which each block of unknowns
consist of all the points Ui 3 in a row of the grid. Then, the block

!

simultaneous displacement method is given by

ou®* D . _eeryu® b (7.3.5)
and the block successive overrelaxation method by
+eB) U = C[epe(e-13D]0®) 4+ wb (7.3.6)

or - '
v®*D o (o) "L [P -13DJU®) & w(eur) lb

where the subscript n denotes the iteration cycle and w the block
overrelaxation parameter.

For the convergence of the block simultaneous displacement method
we require p(-D-l(E+F))$1. From the tridiagonal structure of A, it can
be shown that

PeOS{ 2P 1 ul
chosN(Zp i cosM)

o0 L (E+F)) = , 1=/, (7.3.7)

(4F?+cosz Eﬁ

and hence |p}<l. From the S.0.R. theory (Young, 1971) we can find

the optimum overrelaxation parameter w so that p(-(D+mE)-1[wF+(m-1)D])

opt

is minimised. According to the theorem given by Young (1971), we have

o = 2/{1+/1- (v2-5%)) (7.3.8)

opt
where A=y+i§ are the eigenvalues of (—D-I(E+F))contained in an elliptical

region.
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7.4 THE HOPSCOTCH FORMULATION OF THE BOUNDARY VALUE TECHNIQUE

We now consider the equation (7.2.1) and the hopscotch algorithm to
obtain the numerical solution,
The fully explicit and implicit form of equation (7.3.1) which leads

to the hopscotch algorithm can be easily verified to be

N+l _ 2
Uz,j = (Un+1 5 Un )/2 (Un il Un'j_l)/4p +h .f(xi,tj,Ug,j,
ur

1+1,j'UI'11+1,jJ
2AX ’

(7.4.1)

+1 _ +1 +1 +1 +1 2
Uni,j = UI::-!-I,] U;] 33/2- (Un L3+l Un .)/4p + h 'f(xi’tj’uril,j'

+1 +1

i+1,j i-1,3.
5= ) (7.4.2)

or in the compact form as

lowm e (7.4.3)
a-m™t = (7.4.4)
where
D -E .
\\ \\
E ~ \ 0
NN
N hY N
\ >
H= . \\ \
\\ N N\
. N -E
0 RN
- E o Dl mo1) x(M-1)
0 1/2 . 1/4p ]
Y
25y N, 0 1/4p 0
A \\ N\ \
N\ AN .
D= N\ \\ \\ E = \
\\ \\ A Y \\
h 172 \
O N ~ 0 AN
~ N\ A Y
= 172 0 (n-1)x(N-1) - 1/4P) (N-1)%(N-1

and
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+ the boundary values.

o

To write the hopscotch formulation, we rewrite the equations (7.4.3)-

(7.4.4) over 2m steps and obtain the equations

(-1,pu*™ Ilngzna,(xlp_z“»,xzp_z“*l) (7.4.5)

2n+2

(I‘IlH)H. 2n+l 2n+2

SETe MGt W ae! (7.4.6)

IHU

 and therefore
2F2n+2) =T U2n+g?n+2

(7.4.7)

where -1 1
T = (I—IIH) IH(I-IH) IIH)

I is the unitary matrix of order H, I1 and 12 are matrices with entries

of 0 and 1 such that

Il+I2 = T and 1112 =0
Let ~ -1
¥ = (I-LH)TA-1,H)
therefore T = [LH(I-LM )[1HI-1H)7'] . (7.4.8)

~ :
For convergence of the hopscotch method we require ||T||sl for some
suitable norm.

To investigate the convergence of the algorithm we define new

matrices such that

21 ' 1
¢, = 5I-I;H and C, = FI-IH
hence ) 1
1H = 3(I-2€)) and LH = 5{1-2C,)
and I-1.H = 21+C, = 3¢142¢.) I-1H = 21+C, = L(1.+2C.)
) S i TR 17 i Sy T AL My S

Therefore, T = [{I-2C2)(I+2C2)-1][(I»2C1)(1+2C1)-1] (7.4.9)
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By the application of Kellog's 2nd lemma we indicate that,

[la-cp ey, ¢ 1, [a-cpasep™l, < 1

provided (CZ+C5) and (CI+C;) are positive definite,
However, (C1+CI) can be shown to be positive definite in the

following manner,

1 1
* = _Jo - * = - *
C1+C1 2I 11H+§I IIH I Il(H+H ) (7.4.10)
and _ -
2D
\\ O
~
~
.
H+H* = N o where D is given in (7.4.4)
0 A
~
_ 2D
and therefore,
ki 7] 1T -1 B
v 0o 1 0
0 0
LY -1 1\"'1\
Q= I-Il(H+H*)= \\ and V= ™. \f - ~ .
N\ - ™ ~
0 \ ~ \\ \\
~ v -1
\ 0 ~ ™o
\ SeoS o
. V] L S0 1
(7.4.11)

To show that the block diagonal matrix Q is positive definite,
we have to show that the matrix V is positive definite.
Let Vzi[é 'i] and by the theorem (1.3) we have
f AWW,) =1 >0, s=1,2, (7.4.12)
and hence V, is positive definite. Now we apply the induction formula
since if Vi is positive definite and so is Vi+1.
Define

v

-1 “1 , (7.4.13)

i+l

u
T

= OO
1 1

Q

H

1
7 1
-

[

-1
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thus L |
AW = (RA DA ) O s=1,2,...,0"1.
n

(7.4.14)

Therefore, Q is positive definite and the condition ||T|12$1 is satisfied.
Consequently, the hopscotch iteration using the Boundary Value
Technique for the equation (7.2.1) converges.
The convergence of the block hopscotch techniques can also be

deduced by application of theorem (3.2).



7.5 NUMERICAL EXPERIMENTS

i)} As a numerical example for the one-dimensional case, we consider the

non-homogeneous, non-linear, Burger's equation,

2
dqu _ 37u du -t -t
-T-az-uﬁ-xe (1-¢ ) ,

X
subject to the initial and boundary conditions,

u(x,0) = x, Ogxgl, t=0
~u{0,t) =0,
and u(l,t) = e"t, t>0.

(7.5.1)

(7.5.2)

This example is solved by Greenspan (1974, p.144) where he applied

the generalized Newton method to solve the set of non-linear equations

obtained from the finite-difference replacement over the interior mesh

points. The exact solution of (7.5.1)-(7.5.2) is known to be u(x,t)=xe-t

and therefore the accuracy of any approximate solution can be easily

deduced.

Here we have applied various iterative methods including the

hopscotch schemes to solve this example by the Boundary Value technique.

Similar to Greenspan, we have chosen Ax=AT=1/10 and the boundary values at

T=10 is set to zero.

The iterative sequence which is considered here has the following

form:

ot Lt ZAT(UD

i,j+1 133-1

+1

+1 AT
i+1,j U?,j+ug- - EE{U:

i=1,2,...,N-1
j=1,2,...,M-1

-t. -t
where £, .=x.e J(l-e j).
i,j i

E

and n is the iteration number

Un+1 20TE;

(7.5.3)

The sequence (7.5.3) is applied in an appropriate form for block

hopscotch as well as the block S.0.R. methods. The numerical results

displayed in Table (7.1) show the iteration number, the accuracy together

with the time taken by the CDC 7600 to obtain the solution by different

methods,
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Ax=AT=0.1,  T=10, p=10, e=5x§ >
tterative tashods [AceeLo Lo of | Mxizm | Tioe in | e
Point Hopscotch 1 129 6.44856-4 6.418 5.2
A.D. Hopscotch 1 126 7.17408-4 7.882 11.9
gggiggzzﬁl 1 126  |5.67026-4 | 11.885 | 18.0
Group 4 Hopscotch | 1.1 72 2.65835-4 3.665 5.5
Line Hopscotch 1 66 8.0439g-4 4,371 6.6
Group 9 Hopscotch | 1.2 50 1,9911§-4 12.663 19,2
Peripheral S.0.R. 1,38 29 1,76385-4 4,078 6.2
Point S.0.R. 1.50 23 1.4697§-4 1.159 1.8
Line (Column) 1.50 | 24  |1.5588¢-4 1.970 3.0
S.0.R.
Group 4 S.0.R. 1.40 18 1.1181§-4 0.913 1.4
Group 9 S.0.R. 1.30 15 6.8420§-4 6.890 10.4
Line (Row) S.0.R, | 0.78 7 8.0231§-5 0.661 1
Two Line (Row) 0.8 s  [1.18975-2 15.212  |23.0
5.0.R.
Newton 1.3 8 2.7529§-2 22.374 33.9

TABLE 7.1
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Conclusive Remarks

The results given in Table (7.1) indicate that:

1. Generally speaking, the S.0,R, methods are faster than the
hopscotch iteration schemes for solving problems by using boundary
value techniques.

2. The group strategy is more beneficial in the case of the hopscotch
techniques regarding the number of iterations involved. However,
the computational time is increased significantly for the Group 9
schemes since a system of 9-equations has to be solved for every
group calling two ALGOL procedures Gauss-band which carries out
the Gaussian elimination for the system and Solve-band to solve
the decomposéd form of the equations. |

3. The Group 4 hopscotch is the most economical method amongst the
hopscotch procedures.

4., The Line (row) S.0.R. [SLOR) requires the same number of
iterations as the Newton method, while it is =34 times faster
when the computational times are compared énd ¥§.5 times faster

than the Group 4 hopscotch scheme.

ii) Two space dimensional example: Navier-Stokes Equation

State of the Problem

The 2nd example for the boundary-value technique considered here is
the two dimensional steady-state, viscous, incompressible flow in a
rectangular cavity.

Consider a square cavity DABC as shown in Figure 75.1 within which a
steady fluid motion is generated by sliding an infinitely long plate lying

on top of the cavity. Suppose that all the variables are normalised so
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that the size of the cavity is the unit square and the sliding velocity
is -1 (Greenspan, 1974, p.208) in the negative x-direction.

Let S be the square ABCD and denote-its interior by R. On R the
equation Qf motion to be satisfied are the two dimensional steady-state

Navier-Stokes equations, namely:

3y dw W Bw
ax * ay ay * ax) - 0’ Rao (7.5-4)

AV = - (7.5.5)

Aw + R(

where ¥ is the stream function, w is the vorticity, and R is a non-

negative constant called the Reynolds number.

A\y
oy
—]-l ‘p=0,'§?=-1
/' lllllllllll §-SEE A 4 J)'_Ll\l
D/ [ ¢
/ | \
b =0/ Ap = -w 'y =0
3w A 8y dw 3y dw N
— = R{—L — - _—) = hN_T =
ax - OPRG 5y Ty T O T O
/] \
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A
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/{ \
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ol Wy
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FIGURE 7.5.1: Cavity flow caused by a moving plate

If there is no fluid squeezed out of the cavity below the moving
plate, the fluid motion forms closed paths within the cavity. The
surfaces DA,AB,BC and CD are then segments of the bounding stream lines
designated by ¥=0, along which can be specified that the velocities normal
to these four surfaces are zero. On the other hand, we require that tHe

tangential velocity vanishes on all the surfaces except the top plate
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which is given as -1. Thus we obtain four additional boundary conditions

ki A, W,
X 0 on DA and (B, 3y 0 on AB and 3y -1 on CD.

The vorticity equation (7.5.4) can also be regarded as the
asymptotic time limit of the non-steady, time dependent equations and the

system (7.5.3)-(7.5.4) now becomes: .

A = -w (7.5.6)
S _ 1 % w2 du
s pho + 5x " 3y 3y 3%’ (7.5.7)

0<x<1, 0<y<1 and t>0
which is elliptic-parabolic system. This new formulation can be
solved by the marching procedures as well as by the boundary value
technique which is the scope of this subsection. In many problems of
practical concern, only the steady-state solution is the subject of

interest.

Finite Difference Solution

Numerical solutions of the equations (7.5.6-(7.5.7) have been the
subject of many investigations. The study has been attempted tc increase
the understanding of optimum solution techniques. Because of its
simplicity.’and economy a boundary value technique for problem (7.5.6)-(7.5.7)
has been emﬁloyed by Greenspan (1974) where the generalized Newton
iteration scheme has been applied to solve the system of non-linear
equations corresponding to the non-linear vorticity équation (7.5.7).

Other methods also have been attempted by Greenspan which are fully
described in his book (1974).

The hopscotch technique for the solution of the non-steady parabolic

equation together with the Bunemann Direct Method (BDM) and SOR methods

for the stream-function equation have been applied by Smith, R.E. & Kidd,A.,



236

where the comparison of the computational time involved is made with the
A.D.I. scheme.

By the experience gained from the one-dimensional Burger's equation,
we now concentrate our attention on the boundary value technique when the
relaxation schemes are used and when the Reynolds number is chosen to be
the specific values 100 and 500. The method proceeds as follows.

Let D be the rectangular parallelpiped defined by D={(x,y,t):0gxs<l,
O<y<l Ost<T}. Define R to be the interior and S8 to be the boundary of D.
Using space grid size Ax=Ay=h and time size AT=k, we construct in the
usual way the three dimensional sets of interior grid points, denoted by
Rh,k and boundary grid points, denoted by Sh,k'

We observe that (7.5.6)-(7.5.7) is a coupled system of partial
differential equations in ¢ and w, But if w is known (7.5.6) is a linear
elliptic equation in y, while if y is known, (7.5.7) is a linear parabolic
‘equation in w. Thus, the initial guésses ¢(0) and m(o) can be applied and
we construct a sequence of iterative solutions as follows:

Use m(O) in (7.5.6) to produce w(l) by solving the parabolic equation
(7.5.7) in D. We shall remember that, the solution at t=T is chosen to be
w=0 (the steady-state solution which is the essence of the technique).

(1)

can be inserted in (7.5.5) to produce w(Z) and then using

(2)

Therefore w

(2}

we find w

¥

and so on. In this way, we construct a sequence of

discrete functions

o B ™ (7.5.8)
on Rh,At and a sequence of discrete functions
oV ,@ ™ (7.5.9)

on Rh,AT+Sh,AT which will both converge (Greenspan, 1974, p.231).

For this purpose at each point of Rh AT e obtain the difference equation
s :
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w(x+h,y,tk)+¢CX-h,y,tk)+w(x,y+h,tk)+wcx.y-h.tk)-4w(x,y.tk) =
-hzw(l)(x,y,tk), k=1,2,...,m-1.  (7.5.10)

At the boundary grid points we set,

o, v{x,y,T) = w(XSY9w) P

¥(x,y,0)
¥(x,0,t) = ¥(x,1,t) = ¢(l,y,t) = O. (7.5.11)

¥(0,y,t)

The iterative solution w(x,y,tk) can now be obtained at every
step by inserting (7.5.11) whenever necessary. Here we apply the SOR
and SLOR iterative techniques to solve the stream equation.

Next step is generating the sequence m(n) on Rh,AT which requires
the values of w on Sh' These boundary conditions on the vorticity
equation can now be obtained by central differencing equation (7.5.6),
applying the boundary conditions for the stream function and by enforcing
the reflection condition at the boundary. They are as follows:

at the surface DC (Figure 7.5.1),
wM‘2¢s+¢N -

M
- W

s ? S
Ay D e

o
W
(]
o
— -y

Wl
2Ay ’

Combining these conditions results in

ZwN-ZAy
Ez;;j__ = - g .
At the surface AB we have N
¢M-2ws+wn .
Ay 5° A 5

(7.5.12)
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2wN

or —5 = U . (7.5.13)
Ay

At the surface AD and BC we can write

by gty y
‘_'_“jr‘_' »
Ax S Dy £
¢’S = 0 and ‘J’M = ‘pN » M o m N N -...._M
S S
or
24y | ]
—3 = -ug . A B (7.5.14)
Ax '

Now we can obtain the finite-difference replacement of the
vorticity equation and insert the approximate boundaries (7.5.12)-
(n)

(7.5.14) to generate the iterative solution w .

We apply the Richardson formula to solve the vorticity equation,

i.e.,
k+1 k-1 k k k k k k
W, [-w, . w, L =20, Lt . W, .. =20, LW, .
1 J i,] - l [ 1+1,J 1,] 1'1sJ + 1!]+1 1,1 1:1"'1] +
. 2AT R 2 2
Ax by
k(1) _ k(1) k _k k(1) k(1) k _k
Vi Vicny fge™iy ViVt %51
28X : Ay 28y : Ax ’

(7.5.15)
The equation (7.5.15) can be solved for m?,j at all the interior grid
points of Rh,AT+Sh,AT by any suitable method (i.e. SOR).
Here we shall apply the SOR methods for the solution of (7.5.15)

and compare the efficiency of relaxation methods with some other

techniques applied by Greenspan (1974) and Smith § Kidd (197 ).

"Upwind'' Difference Equations

The presence of advective (or convective) terms in the vorticity
equation causes some difficulties when one solves the iterative scheme

such as (715.15).
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%%—and %%-are replaced by central differences, some of

the points w(xth,y,t) and w(x,yth,t) are outside Rh

If the terms

AT To remedy this

difficulty and avoid outside points, central differences must be replaced
by one-sided differences. Now as can be seen from (7.15.15) that the
terms m? . which arise from ég-and 22-play a different role for the

1,3 Yy Ix
iteration scheme, since they may appear with different sign with the
similar term obtained from Azw and therefore the diagonal dominancy of the
system may be reduced or even lost, which leads to the divergence of the

iterative scheme. Therefore we choose the forward or backward difference

replacement as follows:

if
k ¢§+1 j'wt-l j B ”? '+1'”§ j o w§ "“?—1 j
Ai,j = ,2Ax 2= >0 then s;-*———ilz;~——i— else 3;-+ ——Jliyr——il-(7.5.l6)
and if
x w# . -wg . wg .-w# . m# .-m? .
Bi,j = 1’J;iy i,j-1 >0 then %% +-—5L%;—l:lél else %¥-+ —iilj%—mlil (7.5.17)

Thus, the term 3x " 9y 3y © X can assume four different forgs.
It is said that in (7.5.15) one always employs '"upwind differences"

(Forsythe § Wasow, 1960, p.398).

Matrix Formulation

The line Gauss-Sidel form of (7.5.15) (from which the SLOR is obtained)
is as follows:
Tay = Fy , j=1,2,...,N-1, (7.5.18)

where



_—_— _
%,j "%y
2P ¥y TPy 0
N . »
\ \ \\
. \
AT AT k
T = N » b » P.o—=— , a. .=8p.+—(|A. .|+IB
. ‘\\ ‘\\ Py xR » %5, P1'Ax ' 1,31 I
. -2
Y \ P
AN
B "y %yN1,j)
and ‘
kK _ .k k-1 k k AT,k k kK Kk
Fi,s =~y 5oy 502 (o g™y 50 a8y, 500,518,501, 50

for j,i=1,2,...,N-1 and k=1,2,...,M-1.
Thus, the SLOR method can be found by splitting up the matrix T in the

same manner as given in (7.3).

Numerical Results

We have solved the system (7.5.4)-(7.5.5) by the SOR and SLOR
methods for values of R=100 and 500 with the space and time increments
chosen to be h=1/20 and k=1/5 respectively. We have also chosen T =5

and set the boundary values at this level equal to zero.
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k
i,j

In the following table the number of ' iterations to obtain an accuracy

of 10-3 together with the time taken (by the CDC 7600) for each case are

given. The initial guesses for both systems were chosen to be zero.

D.
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Iterative Scheme Accel
used for ccel.parameter o
Reynolds No.of Time in
Number . s . . Iterations| Secs.
Stream | Vorticity | Stream | Vorticity
Func. Equ, Func. Equ.
100 SOR SOR 0.3 0.9 1 34 60.7
500 SOR SOR 0.24 0.33 252 113.9
100 ¥SLOR SLOR 0.9 1-6 33 7.2
500 ¥ SLOR SLOR 0.4 . 1 1ol 65 .25
TABLE 7.2

As can be seen from the table, the values of the acceleration

are of an under-relaxation type.

parameter were all less than one and consequently the iterative methods

The graphical schematic for each case of the table 7.2 are presented

in Figures (7.5.1)-(7.5.9).

———

*For the SLOR schemes the r

Rl WIS PR

eplacement given in P.250 is used for

e

3w

I
L=
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Stream Lines for A=100 by SOR Technique
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FIGURE 7.5.4

Vorticity curves for R=500 by SOR Technique
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FIGURE 7.5.5

Stream Lines for R=100 by SLOR Technique
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Vorticity Curves for R=100 by SLOR Technique
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7.6 CONCLUSIVE REMARKS

-

From the experiences gained in carrying out the work in this

chapter we can express our conclusions as follows.

1.

The Boundary Vaiue Technique discussed in this chapter is shown to be
a vefy attractive method for the solution of parabolic equations which
have steady-state decaying solutions. In contrast, we emphasize that
the method is less attractive if the steady-sfate solution is not
decaying. An attempt to solve a parabolic heat equation with an
asymptotic solution of unity was also made Eut the convergence
criterion was never satisfied for accuracies greater than 10-1, where
T, was. given the value 20. Obviously, one may obtain the required

accuracy by putting T_3100, but the method will no longer be efficient.

For the Navier-Stokes equation, the results displayed in Table 7.2
show that the Boundary Value Technique is faster than the generalised'
Newton method suggested by Greenspan.

A comparison was madé with the results given by Smith, R.E., § Kidd, A.
(1975) for Ax=Ay=1/16 and AT=2/10 with R=100, The number of iterations
for an accuracy of £=10"> was found to be 123 by the SOR and 62

by the SLOR method. Although we could not obtain satisfactory
convergence for e=10-4, the method seems to be compatible with the
other iterative schemes suggested by Smith et al for the fower accuracy
criteria (e.g. s=10'3).

However, one might obtain a better accuracy if the term %%-in '
Equ.(7.5.15) is replaced by,

_-1 k k+1
[-365,5 % #0157 o)

1
28T
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We also tried the Davidenko path method by solving the system
(7.5.4)-(7.5.5) for small R and using the obtained solution as an
initial guess to obtain the solutions for larger R, No improvement

in the number of iterations and accuracy was achieved by this method.
Finally, we conclude that, the Boundary Value Technique for a difficult
problem such as the Navier-Stokes equation is quite compatible with the
other techniques if the required accuracy is not too stringent.

Further topics of research in this area are improving the efficiency
and accuracy of the method and also the application of the group

hopscotch methods discussed in Chapter VI.
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