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Abstract

A morphism σ is (strongly) unambiguous with respect to a word α if there is no

other morphism τ that maps α to the same image as σ. Moreover, σ is said to be

weakly unambiguous with respect to a word α if σ is the only nonerasing morphism

that can map α to σ(α), i. e., there does not exist any other nonerasing morphism

τ satisfying τ(α) = σ(α). In the first main part of the present thesis, we wish to

characterise those words with respect to which there exists a weakly unambiguous

length-increasing morphism that maps a word to an image that is strictly longer

than the word. Our main result is a compact characterisation that holds for

all morphisms with ternary or larger target alphabets. We also comprehensively

describe those words that have a weakly unambiguous length-increasing morphism

with a unary target alphabet, but we have to leave the problem open for binary

alphabets, where we can merely give some non-characteristic conditions.

The second main part of the present thesis studies the question of whether, for

any given word, there exists a strongly unambiguous 1-uniform morphism, i. e.,

a morphism that maps every letter in the word to an image of length 1. This

problem shows some connections to previous research on fixed points of nontrivial

morphisms, i. e., those words α for which there is a morphism φ satisfying φ(α) = α

and, for a symbol x in α, φ(x) 6= x. Therefore, we can expand our examination of

the existence of unambiguous morphisms to a discussion of the question of whether

we can reduce the number of different symbols in a word that is not a fixed point

such that the resulting word is again not a fixed point. This problem is quite

similar to the setting of Billaud’s Conjecture, the correctness of which we prove

for a special case.
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Chapter 1

Introduction

The main concept of this thesis is a word (or string), i. e., a finite or infinite

sequence of symbols taken from a countable set. The starting point of formal

studies on words goes back to the beginning of the last century. At that time, Axel

Thue (1863-1922) did some mathematical research about repetitions in words and

he wrote two papers on this topic, one in 1906 [38] and one in 1912 [39]. However,

since his results were published in a rather fameless journal, some of his main

results were reproved many years later (e. g., by Morse and Hedlund [26] in 1944).

The significance of doing research on words, as a topic in its own right, was

truly appreciated by the beginning of the appearance of computers in the 1950s

(although there were a few other papers on words before that time, e. g., [23], [24],

and [25]). At that time, Schützenberger started a systematic research on theory

of codes, see [37]. Moreover, Novikov and Adian developed the theory of words as

a strong tool to find a fundamental solution to the Burnside Problem for groups,

see [1].

The studies on words as a separate topic has grown rapidly due to the inevi-

table role of words in many aspects of computers and computing such as computer

programs, logical formulas, and various kinds of application data; in fact, any se-

quence of bits in a computer is nothing but a word. As the first and still one of the

most comprehensive books on words, Lothaire [18] needs to be mentioned, which

was published in 1983 and covers many basic insights into combinatorial problems

for words. After publishing this book, the title “Combinatorics on Words” of the

book was chosen for the field of research dealing with combinatorial properties

of words and operations on words. A second volume of that book “Algebraic

Combination on Words” [19], was published in 2002 and a third volume “Applied

Combinatorics on Words” [20], was published in 2005. In the latest Mathematic

Subject Classification in the year 2010 (MSC2010), combinatorics on words is a to-

pic of its own under the section discrete mathematics related to computer science.

This classification results from the fact that the field of combinatorics on words

1



CHAPTER 1. INTRODUCTION 2

does not only have many connections to several branches of mathematics such as

semigroups, groups, number theory, probability, combinatorial topology, and dy-

namical systems, but also frequently occurs in problems of theoretical computer

science, dealing with automata and formal languages.

A natural algebraic concept related to finite words is a free monoid or semi-

group. In fact, the set A∗ containing all finite words (including the empty word ε

as the identity element) over some fixed set A of symbols – which is called an al-

phabet –, and the binary operation on words, which is the concatenation, establish

a monoid. Also, the set A+ including all finite nonempty words over the set A and

the operation concatenation establish a semigroup. Besides, words like “ab” and

“ba” are not equal. Consequently, words can be seen as discrete combinatorial or

algebraic objects in a noncommutative structure. Hence, noncommutativity and

discreteness are fundamental features of words.

In addition to the operation of concatenation, a morphism is another funda-

mental operation on words. A morphism is a function that is compatible with

the concatenation. More precisely, for any sets A,B of symbols, a morphism

from the monoid A∗ into the monoid B∗ is a mapping σ : A∗ → B∗ such that

σ(uv) = σ(u)σ(v) for all u, v ∈ A∗, and σ(ε) = ε. This definition means that the

function σ maps a word u over A to a word u′ over B by mapping each symbol

occurring in u to a word over B, and concatenates these images in accordance

with the order of the occurrences of the symbols in u. As an example of a well-

known morphism, we can point to the morphism σ′ : {a, b}∗ → {a, b}∗ that is

defined by σ′(a) := ab and σ′(b) := a. The morphism σ′ is called the Fibonacci

morphism due to the fact that the length of the words a, σ′(a) = ab, σ′2(a) = aba,

σ′3(a) = abaab, etc. equals the Fibonacci number sequence 1, 2, 3, 5, etc. Also, as

a consequence of the above definition of a morphism σ, we can say that for every

word u over any set A of symbols and, for every monoid B∗, u induces a partition

of B∗, depending on the question of whether, for any word u′ ∈ B∗, there exists

a morphism σ with σ(u) = u′. This implies that some properties of u may be

reflected by u′ if u′ is a possible morphic image of u. Consequently, many studies

have been conducted about the properties of morphisms, and those morphisms

are considered which lead to minimum loss of information about the preimage.

These studies have a deep connection to coding theory [3]. Coding theory directly

deals with the problem of the construction of a word over an alphabet B that

contains as much information as possible about another word over an alphabet

A (commonly satisfying B ⊂ A). For this purpose, coding theory uses a fixed

injective morphism mapping the words in A∗ onto selected words in B∗.
However, in this thesis, we do not wish to consider single fixed morphisms that

are applied to each word in some set. Instead, we are interested in a setting where
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several morphisms are applied to the same word. This concept is related to the

field of pattern languages. A pattern language is the set of all morphic images of

one fixed word – the common preimage of these morphic images is called a pattern

(for more information on pattern languages see, e. g., Mateescu and Salomaa [22]).

In the field of pattern languages, we might face the situation that two different

morphisms applied to a given pattern generate the same morphic image. Refer-

ring to this observation, Freydenberger, Reidenbach and Schneider [11] define the

concept of ambiguity of morphisms. For any alphabets A and B, a morphism

σ : A∗ → B∗ is said to be unambiguous with respect to a word α if there does not

exist a second morphism τ : A∗ → B∗ mapping α to the same image as σ. For

example, if we consider A := N (we always use the set of natural number N as

an infinite domain alphabet), B := {a, b} and α0 := 1 · 2 · 3 · 1 · 3 · 2 (where we

separate the symbols in α0 by a dot), then the morphism σ0, defined by σ0(1) := a,

σ0(2) := a, σ0(3) := b, is not unambiguous with respect to α0, since there exists

a different morphism τ0, given by τ0(1) := ε (i. e., τ0 maps 1 to the empty word),

τ0(2) := a, τ0(3) := ab, satisfying τ0(α0) = σ0(α0):

σ0(α0) =

σ0(1)︷ ︸︸ ︷
a

σ0(2)︷ ︸︸ ︷
a

σ0(3)︷ ︸︸ ︷
b

σ0(1)︷ ︸︸ ︷
a

σ0(3)︷ ︸︸ ︷
b

σ0(2)︷ ︸︸ ︷
a = τ0(α0) .︸ ︷︷ ︸

τ0(2)

︸ ︷︷ ︸
τ0(3)

︸ ︷︷ ︸
τ0(3)

︸ ︷︷ ︸
τ0(2)

In contrast to this, e. g., the morphism σ1 : {1, 2, 3}∗ → {a, b}∗ given by, σ1(1) := a,

σ1(2) := ab, σ1(3) := b, is unambiguous with respect to α0, as can be verified with

moderate effort.

The potential ambiguity of morphisms is not only a fundamental phenomenon

in combinatorics on words, but it also shows connections to various concepts in

computer science. This particularly holds for equality sets (and, hence, the Post

Correspondence Problem, see Harju and Karhumäki [14]), word equations (see,

e. g., Choffrut [5]) and, as mentioned, pattern languages (see Mateescu and Sa-

lomaa [22]). The equality set of two morphisms σ, τ is the set of all words α

satisfying σ(α) = τ(α), and, thus, the famous undecidable Post Correspondence

Problem (PCP) [30] is simply the emptiness problem for equality sets. In the ter-

minology related to this problem, each word α in the equality set of σ and τ is said

to be a solution to the PCP for σ and τ , and, hence, whenever we find a morphism

σ such that σ is unambiguous with respect to α, then α is a non-solution to the

PCP for σ and any other morphism τ .

In contrast to the broad and profound knowledge on coding theory, the am-

biguity of morphisms has not been studied extensively, despite its connection to

the PCP. Furthermore, insights into the ambiguity of morphisms have been used

to solve a number of prominent problems with regard to the topic of pattern
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languages (see, e. g., Reidenbach [31, 32, 33]). This results from the fact that

unambiguous morphisms have the ability to optimally encode information about

the structure of the word (in a setting where various morphisms are applied to

the same word). This shows an interesting contrast to the foundations of coding

theory (see Berstel and Perrin [3]).

Since unambiguity can, thus, be seen as a desirable property of morphisms,

the initial work on this topic by Freydenberger, Reidenbach and Schneider [11]

and most of the subsequent papers have focused on the following question:

Question 1.1. Let α be a word over an arbitrary alphabet. Does there exist a

morphism with a finite target alphabet that is unambiguous with respect to α?

In order to further qualify this question, [11] introduces two types of unambi-

guity: The first type follows our intuitive definition given above; more precisely,

a morphism σ is called strongly unambiguous with respect to a word α if there

does not exist a morphism τ satisfying τ(α) = σ(α) and, for a symbol x occurring

in α, τ(x) 6= σ(x). The second type slightly relaxes this requirement by calling σ

weakly unambiguous with respect to α if there is no nonerasing morphism τ (i. e.,

τ must not map any symbol to the empty word) showing the above properties.

Thus, e. g., our initial example morphism σ0 is weakly unambiguous with respect

to α0, but it is not strongly unambiguous. By definition, every strongly unambi-

guous nonerasing morphism is also weakly unambiguous, but – as shown by this

example – the converse does not necessarily hold.

Apart from some very basic considerations, previous research has focused on

strongly unambiguous morphisms, partly giving comprehensive results on their

existence; positive results along this line then automatically also hold for weak

unambiguity. Freydenberger et al. [11] characterise those words with respect to

which there exist strongly unambiguous nonerasing morphisms, and their charac-

teristic criterion reveals that the existence of such morphisms is equivalent to a

number of other vital properties of words, such as being a fixed point of a nontri-

vial morphism (which is defined in the next paragraph; for additional explanations

see Sections 2.3 and 3.2) or being a shortest generator of a terminal-free E-pattern

language (see Section 2.4 for the definition and Section 3.3 for more explanations).

The present thesis studies Question 1.1 from two points of view. The first

view deals with the existence of weakly unambiguous morphisms. However, since

Question 1.1 is trivial if we allow a morphism to map every letter in a word to

an image of length 1 (see Section 3.1 for additional explanations), we restrict

ourselves to length-increasing morphisms, i. e., those morphisms that map a word

to an image which is strictly longer than the word. The second view examines

Question 1.1 while we restrict our considerations to 1-uniform morphisms, i. e.,
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morphisms that map every symbol in the word to an image of length 1. Further-

more, our studies regarding the ambiguity of 1-uniform morphisms lead to some

interesting results on fixed points of nontrivial morphisms, i. e., a word α is a fixed

point of φ if φ(α) = α and, for a symbol x in α, φ(x) 6= x. These results show

some connections to Billaud’s Conjecture [4].

The present thesis is structured as follows: Chapter 2 introduces the basic

definitions and notations that we shall use in this thesis. In Chapter 3, we des-

cribe the current state of knowledge regarding the ambiguity of morphisms, and

we introduce our research questions which we shall study in this thesis. In Chap-

ter 4, we investigate the existence of weakly unambiguous nonerasing morphisms.

Subsequent to this, Chapter 5 studies the existence of strongly unambiguous 1-

uniform morphisms for arbitrary words. Furthermore, the said chapter considers

the concept of fixed points by answering a problem which is similar to Billaud’s

Conjecture. Additionally, in this chapter, we prove the correctness of Billaud’s

Conjecture for a special case not studied in the literature so far. Finally, Chapter 6

summarises the main statements of the present thesis and gives some problems

that are left open.

Most major results of this thesis have been previously published in [8] (confe-

rence version: [9]), [28] and [27].



Chapter 2

Basic notations and definitions

In order to keep this thesis self-contained, we begin the formal part of it with

some basic definitions and concepts of combinatorics on words and morphisms. A

major part of our terminology is adopted from the research on pattern languages

(cf. Mateescu and Salomaa [22]). Additionally, for notions not explained explicitly,

we refer the reader to [6, 18, 19].

2.1 Words and patterns

An alphabet A is a nonempty set of symbols, and a word (over A) is a finite

sequence of symbols taken from A. We denote the empty word by ε. The notation

A∗ refers to the set of all (empty and nonempty) words overA, andA+ := A∗\{ε}.
For the concatenation of two words w1, w2, we write w1 · w2 or simply w1w2. The

word that results from n-fold concatenation of a word w is denoted by wn. The

notation |x| stands for the size of a set x or the length of a word x. We call a word

v ∈ A∗ a factor of a word w ∈ A∗ if, for some u1, u2 ∈ A∗, w = u1vu2; moreover,

if v is a factor of w then we say that w contains v and denote this by v v w. If

v 6= w, then we say that v is a proper factor of w and denote this by v @ w. If

u1 = ε, then v is a prefix of w, and if u2 = ε, then v is a suffix of w. For any words

v, w ∈ A∗, |w|v stands for the number of (possibly overlapping) occurrences of v

in w. The symbol [. . .] is used to omit some canonically defined parts of a given

word, e. g., α = 1 · 2 · [. . .] · 5 stands for α = 1 · 2 · 3 · 4 · 5.

Let N be the set of natural numbers, and N0 := N ∪ {0}. In order to obtain

unrestricted results, we often use N an as infinite alphabet. Also, to distinguish

between a word over N and a word over a (possibly finite) alphabet Σ, we call

the former a pattern. We call any symbol in N a variable and any symbol in Σ

a letter – we often assume that Σ := {a, b, c, ...}. We name patterns with lower

case letters from the beginning of the Greek alphabet such as α, β, γ. With regard

6
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to an arbitrary pattern α, var(α) denotes the set of all variables occurring in α.

We say that α is in canonical form if α is lexicographically minimal among all

its renamings (which is formally defined in Section 2.2), where the lexicographic

order is derived from the usual order on N, i. e., 1 < 2 < 3 < . . ..

2.2 Morphisms and the concept of ambiguity

A morphism is a mapping that is compatible with concatenation, i. e., for any

alphabets A,B, σ : A∗ → B∗ is a morphism if it satisfies σ(α · β) = σ(α) · σ(β)

for all α, β ∈ A∗. A morphism σ : A∗ → B∗ is called nonerasing provided that,

for every i ∈ A, σ(i) 6= ε; otherwise, σ is an erasing morphism. If σ is nonerasing,

then we often indicate this by writing σ : A+ → B+. Also, σ is said to be injective

(on A∗) providing that, for any words α, β ∈ A∗, the equality σ(α) = σ(β) implies

α = β. A morphism σ is length-increasing (for α) if |σ(α)| > |α|, and it is called

1-uniform if, for every i ∈ A, |σ(i)| = 1. Regarding 1-uniform morphisms, a

1-uniform morphism φ : N∗ → N∗ is an alphabet reduction (for α) if φ maps α

to an image containing a smaller number of different variables. A morphism is

called a renaming if it is injective and 1-uniform. We additionally call any word v

a renaming of a word w if there is a morphism ψ that is a renaming and satisfies

ψ(w) = v. For any morphism σ, σ : A∗ → B∗, Mσ consists of those variables i ∈ A
satisfying σk(i) = ε for some k ≥ 1. This set is called the set of mortal variables of

σ. The mortality exponent of a morphism σ is defined to be the least integer t ≥ 0

such that σt(i) = ε for all i ∈Mσ. We write the mortality exponent as exp(σ) = t.

Moreover, a variable i is said expansive variable if there exist β, γ ∈ M∗
σ with

σ(i) = βaγ, a ∈ B, and |σ(i)| ≥ 2. The set of all expansive variables of σ is

denoted by Eσ.

For any alphabet Σ, for any morphism σ : N∗ → Σ∗ and for any pattern

α ∈ N+, we call σ (strongly) unambiguous with respect to α if there is no morphism

τ : N∗ → Σ∗ with τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). Moreover,

for any morphism σ : N+ → Σ+, σ is said to be weakly unambiguous with respect

to α, if there is no morphism τ : N+ → Σ+ with τ(α) = σ(α) and, for some

q ∈ var(α), τ(q) 6= σ(q). Additionally, we can call σ ambiguous with respect to α

if it is not unambiguous (or, if applicable, weakly unambiguous), but we use this

term in an informal context only.

We now introduce some terminology that is helpful when comparing two mor-

phisms that are applied to the same pattern, in terms of the positions of the

letters in their images: Let α := x1 · x2 · [. . .] · xn, xk ∈ N, 1 ≤ k ≤ n, and let

σ : var(α)+ → Σ+ and τ : var(α)+ → Σ+ be morphisms. Assume that we are

comparing σ(α) with τ(α). We say that τ(xi) is located at the position of σ(xi) in
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σ(α) if and only if

|σ(x1 · x2 · [. . .] · xi−1)| < |τ(x1 · x2 · [. . .] · xi)| ≤ |σ(x1 · x2 · [. . .] · xi)|, and

|τ(x1 · x2 · [. . .] · xi−1)| ≥ |σ(x1 · x2 · [. . .] · xi−1)|.

The following example illustrates this definition: Let α := 1 · 2 · 3, and let the

morphism σ : N+ → {a, b}+ be given by σ(1) := a, σ(2) := b and σ(3) := ab.

Furthermore, let the morphism τ : N+ → {a, b}+ be defined by τ(1) := ba,

τ(2) := b and τ(3) := b. Using the above terminology, we can say that τ(3) is

located at the position of σ(3). However, τ(1) and τ(2) are not located at the

positions of σ(1) and σ(2).

2.3 Fixed points, prolix patterns and succinct

patterns

A pattern α ∈ N∗ is a fixed point (of a nontrivial morphism) if there is a nontrivial

morphism φ satisfying φ(α) = α and, for a symbol x in α, φ(x) 6= x. Note that

the set of fixed points is equivalent to the set of prolix patterns, which is a vital

concept for research on the unambiguity of morphisms, and it is defined as follows:

We call any α ∈ N+ prolix if and only if, there exists a factorisation α =

β0γ1β1γ2β2[. . .]γnβn with n ≥ 1, βk ∈ N∗ and γk ∈ N+, k ≤ n, such that

1. for every k, 1 ≤ k ≤ n, |γk| ≥ 2,

2. for every k, 1 ≤ k ≤ n and, for every k′, 0 ≤ k′ ≤ n, var(γk) ∩ var(βk′) = ∅,

3. for every k, 1 ≤ k ≤ n, there exists an ik ∈ var(γk) such that |γk|ik = 1 and,

for every k′, 1 ≤ k′ ≤ n, if ik ∈ var(γk′) then γk = γk′ .

We call α ∈ N+ succinct if and only if it is not prolix. Thus, for example, the

pattern 1 ·2 ·3 ·2 ·4 ·2 ·1 ·5 ·5 ·4 ·2 ·1 ·1 ·2 ·3 ·2 is prolix (with β0 := ε, γ1 := 1 ·2 ·3 ·2,

β1 := ε, γ2 := 4 · 2 · 1, β2 := 5 · 5, γ3 := 4 · 2 · 1, β3 := ε, γ4 := 1 · 2 · 3 · 2, β4 := ε),

whereas 1 · 2 · 3 · 3 · 4 · 2 · 4 · 2 · 1 is succinct.

Furthermore, the set of fixed points corresponds to the set of morphically

imprimitive words: A pattern α ∈ N∗ is morphically imprimitive if there are a

strictly shorter pattern β and morphisms φ, φ′ : N∗ → N∗ satisfying φ(β) = α and

φ′(α) = β; otherwise, α is morphically primitive.
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2.4 Pattern languages

The pattern language of a pattern is the set of all its morphic images in some

fixed free monoid Σ∗, where Σ, as defined before, is an arbitrary alphabet (such

as {a, b, c}). With regard to any α ∈ N+, we distinguish between its E-pattern

language LE(α) := {σ(α)|σ : N∗ → Σ∗} and its NE-pattern language LNE(α) :=

{σ(α)|σ : N+ → Σ+}. Note that this definition usually is referred to as terminal-

free pattern languages, due to the fact that, a pattern commonly is seen as a

word in (N ∪ Σ)+, which means that the pattern also contains terminal symbols

– arbitrary symbols in Σ. Therefore, in the general case, the pattern language of

a pattern α ∈ (N ∪ Σ)+ is the set of all images of α under terminal-preserving

morphisms σ : (N ∪ Σ)∗ → Σ∗ with σ(a) = a for every a ∈ Σ. We write PatΣ

for the set of all patterns and Pattf denotes the set of all terminal-free patterns.

Moreover, we can use ePATΣ (or ePAT for short) as an abbreviation for the full

class of E-pattern languages and ePATtf,Σ (or ePATtf for short) for the class of all

terminal-free E-pattern languages (for more information on pattern languages see,

e. g., Mateescu and Salomaa [22]).

A class L of languages is indexable if and only if there exists an indexed family

(Li)i∈N0 such that L = {Li | i ∈ N0}. This means that there is a total and

computable function which, given any pair of an index i ∈ N0 and a word w ∈ Σ∗,

decides on whether or not w ∈ Li.



Chapter 3

Related literature and research

questions

In this chapter, we describe the current state of knowledge on the ambiguity of

morphisms. Moreover, we formally introduce the main problems which we shall

investigate in the present thesis.

3.1 Ambiguity of morphisms

As mentioned in Chapter 1, the ambiguity of morphisms is a new topic that has

not been studied a lot. Nevertheless, there exist three important papers in this

area that initiate a systematic research on the ambiguity of morphisms, namely by

Freydenberger, Reidenbach and Schneider [11], Freydenberger and Reidenbach [10]

and Schneider [36].

In [11], the authors introduce the question of determining for which patterns

α ∈ N+ there exists a nonempty word w in {a, b}∗ such that there is exactly one

morphism σ with σ(α) = w. In other words, for any pattern α over some alphabet

this paper asks for the existence of a morphism σ such that σ is unambiguous

with respect to α; to this end, it focuses on nonerasing morphisms σ. A first basic

result on this question demonstrates that there is no single nonerasing morphism σ

such that, for every α ∈ N+, σ is strongly unambiguous with respect to α. Hence,

strongly unambiguous nonerasing morphisms must be tailored to the structure of

the respective preimages. The main result of [11] characterises those patterns with

respect to which there is a strongly unambiguous nonerasing morphism:

Theorem 3.1 (Freydenberger et al. [11]). Let α ∈ N∗, and let Σ be an alphabet,

|Σ| ≥ 2. There exists a strongly unambiguous nonerasing morphism σ : N∗ → Σ∗

with respect to α if and only if α is succinct.

10
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The injective morphism σ which is defined in the proof of the above theorem maps

every variable k ∈ var(α), depending on some conditions, to one of the following

images:

1. ab3ka ab3k+1a ab3k+2a,

2. ba3kb ab3k+1a ab3k+2a,

3. ab3ka ab3k+1a ba3k+2b,

4. ba3kb ab3k+1a ba3k+2b.

It is also worth noting that, in a sense, [11] complements the research on the

nondeterminism of pattern languages that has been initiated by Mateescu and

Salomma [21]. This is because [11] shows that for every pattern in some class,

there exists at least one nonempty word in {a, b}∗ that has exactly one generating

morphism – this generally holds true for research on the existence of unambiguous

morphisms –, whereas, in a more general context, [21] examines the question

whether, for an arbitrary upper bound n ∈ N, there exists at least one pattern

such that each of its morphic images has at most n distinct generating morphisms.

The paper [10] investigates the ambiguity of a fixed morphism with respect

to the set of all patterns in N+, i. e., the authors ask for which patterns the

morphism is strongly unambiguous. This paper presents the first approach to a

characterisation of sets of patterns with respect to which certain fixed morphisms

are unambiguous. To this end, the authors define a so-called segmented morphism

σn : N∗ → {a, b}∗, n ∈ N, which maps each variable x ∈ N to a word that consists

of n distinct factors in ab+a:

σn(x) = abnx−(n−1)aabnx−(n−2)a...abnx−1aabnxa.

This paper then introduces the set U(σn), which consists of all those α ∈ N+

with respect to which σn is unambiguous, and it studies the relation of this set to

any U(σm), m 6= n. The studies of the paper are based on the following hypothesis:

Hypothesis 3.2. For 0 ≤ i < j, U(σi) ⊆ U(σj).

The paper [10] shows that, in contrast to the above mentioned hypothesis,

firstly, U(σn) = U(σ3) for all n ≥ 3. Secondly, the sets U(σ0), U(σ1) and U(σ2)

are strictly included in U(σ3) and, they are all incomparable. Also, the paper gives

the following characterisation of U(σn) for n ≥ 3 by defining an SCRN-partition

for α ∈ N∗, which is a partition of the variables of α into all disjoint sets S, C, R

and N such that α ∈ (N∗SC∗R)+N∗:
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Theorem 3.3 (Freydenberger et al. [10]). For every n ≥ 3,

U(σn) = U(σ3) = { α ∈ N+ | α is morphically primitive and

α has no SCRN-partition }.

The systematic research on the ambiguity of erasing morphisms is initiated by

Schneider [36], and it is continued in [35]. The paper [36] investigates the following

question: For which patterns α ∈ N+ does there exist an erasing unambiguous

morphism σ : N∗ → Σ∗? To study this question, the author defines the concept of

an ambiguity partition:

Definition 3.4 (Schneider [36]). Let α ∈ N+. We inductively define an ambiguity

partition (with respect to α):

• (∅, var(α)) is an ambiguity partition with respect to α.

• If (E,N) is an ambiguity partition with respect to α and there exists a mor-

phism φ : N∗ → N∗ that is nontrivial for N and satisfies φ(α) = πN(α) –

πN : N∗ → N∗ is a morphism with πN(x) := x if x ∈ N and πN(x) := ε if

x /∈ N – then (E ′, N ′) is an ambiguity partition with

E ′ := E ∪ {x ∈ N | φ(x) = ε},

N ′ := {x ∈ N | φ(x) 6= ε}.

The main results of [36] on ambiguity partitions show that the existence of an

ambiguity partition with respect to a pattern strongly contributes to the ambiguity

of morphisms applied to the pattern:

Theorem 3.5 (Schneider [36]). Let Σ be an alphabet. Let α ∈ N+ and let (E,N)

be an ambiguity partition with respect to α. Then every morphism σ : N∗ → Σ∗

satisfying σ(x) 6= ε for an x ∈ E is not unambiguous with respect to α.

In the case of infinite target alphabet, the existence of an ambiguity partition

characterises the ambiguity of erasing morphisms:

Theorem 3.6 (Schneider [36]). Let Σ∞ be an infinite alphabet and let α ∈ N+.

There is an unambiguous morphism σ : N∗ → Σ∗∞ with respect to α if and only if

(var(α), ∅) is not an ambiguity partition with respect to α.

The above theorem allows some conclusions to be drawn on the decidability of

the question of whether or not there exists an unambiguous morphism σ : N∗ →
Σ∗∞ for an arbitrary pattern α ∈ N+:
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Corollary 3.7 (Schneider [36]). Let Σ∞ be an infinite alphabet. Then

{α ∈ N+ | there is no unambiguous morphism σ : N∗ → Σ∗∞

with respect to α}

is decidable and the decision problem is NP-complete.

Concerning finite target alphabets, the author shows that the problem of de-

ciding the above mentioned question is NP-hard:

Corollary 3.8 (Schneider [36]). Let Σ be an finite alphabet, |Σ| ≥ 2. The problem

of deciding

{α ∈ N+ | there is no unambiguous morphism σ : N∗ → Σ∗

with respect to α}

is NP-hard.

Also, with regard to finite target alphabets, the paper [36] shows that the

existence of strongly unambiguous erasing morphisms for a given pattern can

essentially depend on the size of the target alphabet Σ of the morphism (in contrast

to Theorem 3.1):

Theorem 3.9 (Schneider [36]). Let k ∈ N and Σk,Σk+1 be finite alphabets with k

and k + 1 letters, respectively. There exists a pattern α ∈ N+ such that:

• (var(α), ∅) is not an ambiguity partition with respect to α,

• no morphism σ : N∗ → Σ∗k is unambiguous with respect to α, and

• there exists an unambiguous morphism σ′ : N∗ → Σ∗k+1 with respect to α.

Besides, some sufficient conditions on the (non-)existence of unambiguous era-

sing morphisms are given in this paper.

Reidenbach and Schneider continue studying the ambiguity of erasing mor-

phisms in [35]. To this end, they introduce moderately ambiguous morphisms,

which are a special case of ambiguous morphisms:

Definition 3.10 (Reidenbach and Schneider [35]). Let Σ be an alphabet, let α :=

i1 · i2 · [...] · in with n, i1, i2, ..., in ∈ N, and let σ : N∗ → Σ∗ be a morphism satisfying

σ(α) 6= ε. Then σ is called moderately ambiguous with respect to α provided that

there exist l2, l3, ..., ln, r1, r2, ..., rn−1 ∈ N0 such that, for every morphism τ : N∗ →
Σ∗ with τ(α) = σ(α),
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• if σ(i1) 6= ε then r1 ≥ 1,

• if σ(in) 6= ε then ln ≤ |σ(α)|,

• for every k ∈ {2, 3, ..., n− 1} with σ(ik) 6= ε, lk ≤ rk,

• for every k with 1 ≤ k ≤ n− 1, |τ(i1 · i2 · [...] · ik)| < lk+1, and

• for every k with 1 ≤ k ≤ n− 1, |τ(i1 · i2 · [...] · ik)| ≥ rk.

σ is called strongly ambiguous with respect to α if and only if it is not moderately

ambiguous with respect to α.

In order to state the main result of [35], we also need the following definition:

Definition 3.11 (Reidenbach and Schneider [35]). Let α ∈ N+. We call α morphi-

cally erasable if and only if (var(α), ∅) is an ambiguity partition for α. Otherwise,

α is called morphically unerasable.

The paper [35] shows that concerning the ambiguity of erasing morphisms,

the partition of patterns into morphically unerasable and erasable patterns has a

similar importance as the partition into succinct and prolix patterns regarding the

ambiguity of nonerasing morphisms; in other words, both partitions characterise

the (non)existence of moderately ambiguous morphisms:

Theorem 3.12 (Reidenbach and Schneider [35]). Let Σ be an alphabet, |Σ| ≥ 2,

let α ∈ N+. There exists a morphism σ : N∗ → Σ∗ that is moderately ambiguous

with respect to α if and only if α is morphically unerasable.

In addition to the above theorem, there is an interesting result in [35] with

regard to the existence of patterns with only finitely many unambiguous mor-

phisms. We now state this result by assuming that UNAMBΣ(α) denotes the set

of all σ(α), where σ : N∗ → Σ∗ is any morphism that is unambiguous with respect

to α:

Theorem 3.13 (Reidenbach and Schneider [35]). Let k ∈ N. Let Σk, Σk+1, Σk+2

be alphabets with k, k + 1, k + 2 letters, respectively. There exists an αk ∈ N+

such that

• |UNAMBΣk
(αk)| = 0,

• |UNAMBΣk+1
(αk)| = m for an m ∈ N, and

• UNAMBΣk+2
(αk) is an infinite set.
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This phenomenon differs from the research on unambiguous nonerasing mor-

phisms, where every pattern has either infinitely many or not a single unambiguous

morphism.

In the present thesis, we initially wish to investigate the existence of weakly

unambiguous nonerasing morphisms in more detail. The paper [11] introduces

the concept of weakly unambiguous morphisms, but it merely states the following

trivial observation:

Proposition 3.14 (Freydenberger et al. [11]). There is a nonerasing morphism

σ : N+ → {a, b}+ such that, for every α ∈ N+, σ is weakly unambiguous with

respect to α.

This proposition directly follows from the definitions, since every 1-uniform

morphism (i. e., a morphism that maps each variable in the pattern to a word of

length 1) is weakly unambiguous with respect to every word. Despite this im-

mediate and unexciting observation, weak unambiguity deserves further research,

since there are major fields of study that are exclusively based on nonerasing

morphisms; this particularly holds for pattern languages, where so-called none-

rasing (or NE for short) pattern languages have been intensively investigated.

We therefore exclude the 1-uniform morphisms from our considerations and study

length-increasing nonerasing morphisms instead, i. e., we deal with morphisms σ

that, for the pattern α they are applied to, satisfy |σ(α)| > |α|. Hence, we wish

to examine the following problem:

Problem 3.15. Let α ∈ N∗ be a pattern, and let Σ be an alphabet. Does there exist

a length-increasing nonerasing morphism σ : N+ → Σ+ that is weakly unambiguous

with respect to α?

Our results in the present thesis shall provide a nearly comprehensive answer to

this question, demonstrating that a combinatorially rich theory results from it. In

particular, we show that the existence of weakly unambiguous length-increasing

morphisms depends on the size of the target alphabet Σ considered. However,

unlike the above mentioned results by Schneider [36] on the existence of stron-

gly unambiguous erasing morphisms (see, in the present thesis, Corollary 3.8 in

conjunction with Theorem 3.9), we can give a compact and efficiently decidable

characteristic condition on Problem 3.15, which holds for all target alphabets that

consist of at least three letters and which describes a type of words we believe has

not been discussed in the literature so far. Interestingly, this characterisation does

not hold for binary target alphabets. In this case, we can give a number of strong

conditions, but still do not even know whether Problem 3.15 is decidable. In
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contrast to this phenomenon, it is of course not surprising that for unary target

alphabets again a different approach is required. Regarding this specification of

Problem 3.15, we shall give a characteristic condition.

In addition to weakly unambiguous morphisms, in the present thesis, we study

the existence of strongly unambiguous 1-uniform morphisms with respect to arbi-

trary patterns. More formally, we wish to investigate the following problem:

Problem 3.16. Let α ∈ N∗ be a pattern, and let Σ be an alphabet. Does there

exists a 1-uniform morphism σ : N∗ → Σ∗ that is strongly unambiguous with

respect to α?

There are two main reasons why we study this question: Firstly, any insight

into the existence of unambiguous 1-uniform morphisms improves the construction

by Freydenberger et al. [11], which provides comprehensive results on the existence

of unambiguous nonerasing morphisms (see, in the present thesis, Theorem 3.1),

but is based on morphisms that are often much more involved than required. This

can be illustrated using our initial example pattern α0 on page 3 of Chapter 1.

Here, the unambiguous morphism σ1 – which is not 1-uniform, but still very simple

– produces a morphic image of length 8, whereas the unambiguous morphism for

α0 defined in [11] (and shown on page 11) leads to a morphic image of length

162. This substantial complexity of known unambiguous morphisms has a severe

effect on the runtime of inductive inference procedures for pattern languages (as

to be described in Section 3.3). Thus, any insight into the existence of uncomplex

unambiguous morphisms is not only of intrinsic interest, but is also important

from a more applied point of view. Secondly, as shown by σ0(α0) (see Chapter 1),

the images under 1-uniform morphisms have a structure that is very close to that

of their preimages. This is because, whenever the pattern contains more different

variables than there are letters in the target alphabet, a 1-uniform morphism

reduces the complexity of the preimage by mapping certain variables to the same

image. Thus, such a morphic simplification and its potential ambiguity are a very

basic phenomenon in the combinatorial theory of morphisms. Our studies shall

suggest that Problem 3.16 is nevertheless a challenging question, and we shall

demonstrate that it is related to a number of other concepts and problems in

combinatorics on words.

3.2 Fixed points

Fixed points are a vital concept for the research on the ambiguity of morphisms,

as illustrated by, e. g., the following theorem:
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Theorem 3.17 (Freydenberger et al. [11]). Let α ∈ N∗ be a fixed point of a

nontrivial morphism, and let Σ be any alphabet. Then every nonerasing morphism

σ : N∗ → Σ∗ is not strongly unambiguous with respect to α.

In addition, we shall study fixed points separately in Section 5.3, and therefore

we discuss them in a bit more detail in the present section.

Head [15] and Hamm and Shallit [13] characterise the language of fixed points

of a given morphism in the following manner:

Theorem 3.18 (Head [15]). Let φ : N∗ → N∗ be a morphism. Then a finite

pattern α ∈ N∗ is a fixed point of φ if and only if α ∈ F ∗φ .

In the above theorem, Fφ is defined as follows:

Fφ = {φt(i) : i ∈ Aφ and t = exp(φ)}

where,

Aφ = {i ∈ N : ∃β, γ ∈ N∗ such that φ(i) = βiγ and βγ ∈M∗
φ},

and Mφ is the set of mortal variables of φ.

According to the definition of prolix patterns, the above theorem can be stated

as follows:

Theorem 3.19 (Freydenberger et al. [11]). A pattern α ∈ N+ is prolix if and only

if it is a fixed point of a nontrivial morphism φ : N∗ → N∗.

Theorem 3.19 is extended in the paper [34] by Reidenbach and Schneider.

In this paper, the authors demonstrate that the partition of N∗ into the set of

morphically primitive patterns and the set of morphically imprimitive patterns is

characteristic for various aspects related to finite words and morphisms including

fixed points:

Theorem 3.20 (Reidenbach and Schneider [34]). Let α ∈ N∗. The following

statements are equivalent:

1. α is morphically primitive.

2. α is not a fixed point of a nontrivial morphism φ : N∗ → N∗.

3. α is a succinct pattern.

4. There is an unambiguous injective morphism σ : N∗ → {a, b}∗ with respect

to α.
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5. α is a shortest generator of terminal-free E-pattern languages.

In Section 3.3, we shall address point 5 of this theorem in more detail.

Moreover, regarding the complexity of finding out whether a given finite pat-

tern is a fixed point of a nontrivial morphism, Holub [16] presents a polynomial-

time algorithm.

Although the above mentioned studies have provided, e. g., a characterisa-

tion (see Theorem 3.18) and even a polynomial-time decision procedure (see Ho-

lub [16]), many fundamental properties and the actual fabric of those words that

are not fixed points of a nontrivial morphism are not fully understood. This is

epitomised by the fact Billaud’s Conjecture (see [4]) is still largely unresolved. By

assuming that δi : N∗ → N∗ is a morphism defined by δi(i) := ε and δi(x) := x for

x ∈ N \ {i}, Billaud’s Conjecture reads as follows:

Conjecture 3.21 (Billaud [4]). Let α ∈ N∗ be a pattern with | var(α)| ≥ 3. If α

is not a fixed point of a nontrivial morphism, then there exists an i ∈ var(α) such

that δi(α) is not a fixed point of a nontrivial morphism.

Levé and Richomme [17] prove Conjecture 3.21 for a special case, where each

morphism φi (defined in the following theorem) has only one expansive variable:

Theorem 3.22 (Levé and Richomme [17]). Let α ∈ N∗ be a pattern with | var(α)| ≥
3. Assume that, for each i ∈ var(α), the pattern δi(α) is a fixed point of a nontri-

vial morphism φi : N∗ → N∗ with |Eφi | = 1. Then α is a fixed point of a nontrivial

morphism φ : N∗ → N∗ with |Eφ| = 1.

Also, regarding the validity of Conjecture 3.21, Zimmermann proves the conjec-

ture for the case that | var(α)| = 3 (see [17]). Apart from that, little is known

about this problem.

In the present thesis, we shall investigate whether alphabet reductions (i. e.,

1-uniform morphisms that map a given pattern to an image containing a smaller

number of different variables) can be given that map a pattern which is not a fixed

point of a nontrivial morphism to a pattern which is not a fixed point, either:

Problem 3.23. Let α ∈ N∗ be a pattern that is not a fixed point of a nontrivial

morphism. Does there exist an alphabet reduction φ : N∗ → N∗ such that φ(α) is

not a fixed point of a nontrivial morphism.

For example, let α := 1 · 2 · 3 · 4 · 1 · 3 · 2 · 4; if φ : {1, 2, 3, 4}∗ → {1, 2, 3, 4}∗

is a morphism with φ(1) := 1, φ(2) := 2, φ(3) := 2 and φ(4) := 4, then φ(α)

is a fixed point of a nontrivial morphism. On the other hand, ψ(α), where ψ :

{1, 2, 3, 4}∗ → {1, 2, 3, 4}∗ is a morphism given by ψ(1) := 1, ψ(2) := 1, ψ(3) := 3
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and ψ(4) := 4, is not a fixed point of a nontrivial morphism. Note that φ and ψ

are two alphabet reductions for α.

Problem 3.23 appears to be very similar to Billaud’s Conjecture (Conjec-

ture 3.21), but the latter features a different type of morphism (which, intuiti-

vely, still can be seen as an alphabet reduction). Therefore, beside studying Pro-

blem 3.23, we examine the correctness of Billaud’s Conjecture for a special case

not studied in the literature so far. This special case consists of those patterns α

in which every variable of α occurs exactly twice.

3.3 Pattern inference

Ambiguity of morphisms has some important applications in pattern languages.

As the first applications, we can refer to Reidenbach [33, 31]. In these papers,

the author investigates the inferrability of E-pattern languages from positive data

in Gold’s learning model [12]. In this model, a class of languages is said to be

inferrable from positive data if and only if a computable device (the so-called

learning strategy) which reads an arbitrary stream of words (fully enumerating

the language) converges for every language after finitely many steps, and the

output exactly represents the given language. In other words, the learning strategy

is expected to extract a complete description of a language from finitely many

examples for this language. Reidenbach [33] proves two theorems as vital tools

for examining the learnability of the class of E-pattern languages. The first one

characterises the structural properties of the shortest generators of terminal-free

E-pattern languages by a factorisation. This factorisation is the same as the one

used by Head [15] to characterise the set of fixed points of a nontrivial morphism.

Also, the same factorisation is applied in [11] to characterise those patterns with

respect to which there exists an unambiguous nonerasing morphism. Therefore,

[33] proves the following theorem regarding the shortest generators of E-pattern

languages and succinct patterns:

Theorem 3.24 (Reidenbach [33]). A pattern α ∈ N+ is succinct if and only if,

for every β ∈ N+ with LE(β) = LE(α), |β| ≥ |α|.

Before stating the second theorem of [33], we need to give some definitions. If

there exists a set Tj satisfying the conditions of the following theorem, then it is

called a telltale for Lj (with respect to (Li)i∈N0).

Theorem 3.25 (Angluin [2]). Let (Li)i∈N0 be an indexed family of nonempty

recursive languages. Then (Li)i∈N0 is inferrable from positive data if and only if

there exists an effective procedure which, for every j ∈ N0, enumerates a set Tj

such that
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• Tj is finite,

• Tj ⊆ Lj, and

• there does not exist a j′ ∈ N0 with Tj ⊆ Lj′ ⊂ Lj.

Using the concept of telltales, the second vital tool for the examination of the

learnability of ePATtf,Σ in case of Σ ≥ 3 is the following theorem:

Theorem 3.26 (Reidenbach [33]). Let Σ be an alphabet, |Σ| ≥ 2, and let α ∈ Pattf

be a succinct pattern. Let Tα = {w1, w2, ..., wn} ⊆ LΣ(α), n ≥ 1. Then Tα is a

telltale for LΣ(α) with respect to ePATtf,Σ if and only if, for every x ∈ var(α) there

exists a w ∈ Tα such that, for every morphism σ : Pattf → Σ∗ with σ(α) = w,

there is an u ∈ Σ with |σ(x)|u = 1 and |σ(α)|u = |α|x.

The above theorem, for each word in a given set, examines all of its generating

morphisms, and, hence, it deals with the ambiguity of words with respect to a

fixed pattern. From an application of Theorem 3.26, Reidenbach [33] derives that

the full class of terminal-free E-pattern languages is inferrable from positive data

if and only if the corresponding terminal alphabet does not consist of exactly two

distinct letters:

Theorem 3.27 (Reidenbach [33]). Let Σ be an alphabet. Then ePATtf,Σ is infer-

rable from positive data if and only if |Σ| 6= 2.

As the second important outcome of [33], the author proves that the posi-

tive result on terminal-free E-pattern languages over alphabets with three or four

distinct letters cannot be extended to the class of general E-pattern languages:

Theorem 3.28 (Reidenbach [33]). Let Σ be an alphabet with |Σ| ∈ {3, 4}. Then

ePATΣ is not inferrable from positive data.

As an another example of applications of ambiguity in pattern languages, we

can refer to [32] by Reidenbach. In this paper, as the main result, the author

disproves Ohlebusch and Ukkonen’s Conjecture [29] on the equivalence problem

for E-pattern languages.



Chapter 4

Weakly unambiguous morphisms

In the present chapter, we address Problem 3.15 (see page 15). Hence, we inves-

tigate the existence of weakly unambiguous nonerasing morphisms. In Proposi-

tion 3.14, Freydenberger et al. [11] discuss the existence of a nonerasing weakly

unambiguous morphism σ : N+ → {a, b}+ with respect to arbitrary patterns.

They state that by defining |σ(i)| = 1 for every i ∈ N, σ is weakly unambi-

guous with respect to every α ∈ N+. Obviously, this is a trivial observation.

However, the problem is much more interesting if σ is more general, i. e., σ is a

length-increasing morphism. Hence, we investigate the following question: For

an arbitrary pattern α ∈ N+, is there any weakly unambiguous length-increasing

morphism σ : N+ → Σ+ with respect to α, for arbitrary target alphabets Σ? Our

studies on this question shall lead to some significant results. The most remar-

kable point is probably that, in contrast to Proposition 3.14, which is satisfied for

every target alphabet Σ with at least two letters, we have to distinguish between

several sizes of Σ. Indeed, we shall demonstrate that our main result holds true

for all morphisms with |Σ| ≥ 3, but it does not hold for morphisms with binary

or unary target alphabets.

We start this chapter by giving some important definitions, and after that

we investigate the existence of weakly unambiguous length-increasing morphisms

σ : N+ → Σ+ with respect to an arbitrary pattern, for |Σ| ≥ 3, |Σ| = 2 and

|Σ| = 1 in separate sections.

4.1 Loyal neighbours

We now introduce some notions on structural properties of variables in patterns

that shall be used in the subsequent sections.

In our first definition, we introduce a concept that collects the neighbours of a

variable in a pattern.

21
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Definition 4.1. Let α ∈ N+. For every j ∈ var(α), we define the following sets:

Lj := {k ∈ var(α) | k · j v α},

Rj := {k ∈ var(α) | j · k v α}.

Moreover, if α = j . . . , then ε ∈ Lj, and if α = . . . j, then ε ∈ Rj.

Thus, the notation Lj refers to all left neighbours of variable j and Rj to all

right neighbours of j. To illustrate these notions, we give an example.

Example 4.2. We consider α := 1 · 2 · 3 · 1 · 4 · 5 · 6 · 1 · 4 · 7 · 8. For the variable

1, we have L1 = {ε, 3, 6} and R1 = {2, 4}.

We now introduce the concept of loyalty of neighbouring variables, which is

vital for the examination of weakly unambiguous morphisms.

Definition 4.3. Let α ∈ N+. A variable i ∈ var(α) has loyal neighbours (in α) if

and only if at least one of the following cases is satisfied:

1. ε /∈ Li and, for every j ∈ Li, Rj = {i}, or

2. ε /∈ Ri and, for every j ∈ Ri, Lj = {i}.

Using the above definition, we can divide the variables of any pattern into two

sets.

Definition 4.4. For any pattern α ∈ N+, |α| ≥ 2, let Sα be the set of variables

that have loyal neighbours and Eα be the set of variables that do not have loyal

neighbours in α.

Note that in Definition 4.4 the notations Sα and Eα are short for “stable”

and “(possibly) expanding”, respectively. These terms refer to the length of the

morphic images of the variables in these sets under potentially unambiguous mor-

phisms and, hence, anticipate some of the main results of the present chapter (such

as Theorem 4.10 and Corollary 4.16 below).

The following example clarifies these definitions.

Example 4.5. Let α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8. Definition 4.1 implies that

L1 = {ε}, L2 = {1}, L3 = {2, 4}, L4 = {3, 6},

L5 = {4}, L6 = {5}, L7 = {3}, L8 = {7},

R1 = {2}, R2 = {3}, R3 = {4, 7}, R4 = {5, 3},

R5 = {6}, R6 = {7}, R7 = {8}, R8 = {ε}.

According to Definition 4.3, the variables 3 and 4 do not have loyal neighbours.

Thus, due to Definition 4.4, Sα = {1, 2, 5, 6, 7, 8} and Eα = {3, 4}.
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Our subsequent remark shows that having a variable with loyal neighbours is a

sufficient, but not a necessary condition for a pattern being prolix (see Section 2.3

for the definition of prolix patterns).

Proposition 4.6. Let α ∈ N+. If Sα 6= ∅, then α is prolix. In general, the

converse of this statement does not hold true.

Proof. Let i ∈ Sα. According to Definition 4.3, one of the following cases is

satisfied:

1. ε /∈ Li and, for every j ∈ Li, Rj = {i}, or

2. ε /∈ Ri and, for every j ∈ Ri, Lj = {i}.

Let Σ be an alphabet. For every nonerasing morphism σ : N∗ → Σ∗ over α, we

define a morphism τ : N∗ → Σ∗ by, for every x ∈ var(α),

τ(x) :=



ε, x = i,

σ(x)σ(i), Case 1 is satisfied and x ∈ Li,

σ(i)σ(x), Case 1 is not satisfied, Case 2 is satisfied and x ∈ Ri,

σ(x), else .

It is easily verified that τ(α) = σ(α). Consequently, there is no strongly unambi-

guous nonerasing morphism σ with respect to α. So, according to Theorem 3.1,

α is prolix.

For the second statement of Proposition 4.6, let α := 1 · 2 · 2. Referring to the

definition of prolix patterns (see Section 2.3), it can be verified with little effort

that α is prolix, and Sα = ∅.

4.2 Weakly unambiguous morphisms with

|Σ| ≥ 3

We now make use of the concepts introduced in the previous section to compre-

hensively solve Problem 3.15 for all but unary and binary target alphabets of the

morphisms.

We start this section by giving some lemmata that are required when proving

the main results of this chapter. The first lemma is a general combinatorial insight

that can be used in the proof of Lemma 4.8 – which, in turn, is a fundamental

lemma in this chapter.

Lemma 4.7. Let v be a word and n be a natural number. If, for a word w, wn is

a proper factor of vn, then w is a proper factor of v.
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Proof. Let vn := v1 · v2 · [. . .] · vn with, for every j, 1 ≤ j ≤ n, vj = v, and let

wn := w1 · w2 · [. . .] · wn with, for every k, 1 ≤ k ≤ n, wk = w. Moreover, assume

that for every j, 1 ≤ j ≤ n, vj = pj ·sj such that pj is an arbitrary nonempty prefix

of vj and, sj is an arbitrary nonempty suffix of vj. We assume to the contrary

that w is not a proper factor of v. Consequently, for every j, 1 ≤ j ≤ n, and for

every k, 1 ≤ k ≤ n, wk 6v vj. So, we can assume that wn starts from the position

of the first letter of sq, 1 ≤ q ≤ n. Since w1 6v vq, w1 = sq · pq+1. Then, due

to w2 6v vq+1, (q + 1) ≤ n, and wn being a proper factor of vn, w2 = sq+1 · pq+2,

(q + 2) ≤ n. If we continue the above reasoning, then w(n−q) with

wn−q = sq · pq+1 · sq+1 · pq+2 · sq+2 · pq+3 · [. . .] · sn−1 · pn

is a proper factor of vn. Since pn is a prefix of vn, and wn is a proper factor of vn,

wn−q+1wn−q+2wn−q+3[. . .]wn must be a factor of sn. Consequently, wq must be a

proper factor of vn, and as a result w must be a proper factor of vn, which is a

contradiction.

We continue our studies with the following lemma, which is a vital tool for the

proof of many statements of this chapter. It features an important property of

two different morphisms that map a pattern to the same image.

Lemma 4.8. Let α ∈ N+, |α| ≥ 2, and let Σ be an alphabet. Assume that

σ : N+ → Σ+ is a morphism such that, for an i ∈ var(α), |σ(i)| ≥ 2 and, for

every x ∈ var(α) \ {i}, |σ(x)| = 1. Moreover, assume that τ is a nonerasing

morphism satisfying τ(α) = σ(α). If there exists a j ∈ var(α) with τ(j) 6= σ(j),

then τ(i) @ σ(i).

Proof. Assume to the contrary that there exists a j ∈ var(α) with τ(j) 6= σ(j),

and τ(i) 6@ σ(i).We now consider the following cases:

• τ(i) = σ(i)

According to the assumption of Lemma 4.8, there exists a j ∈ var(α) with

τ(j) 6= σ(j); hence, j 6= i. Since σ maps all variables except i to a word

of length 1 and |σ(α)| = |τ(α)|, if |τ(j)| > 1, then we must have a variable

x in α with τ(x) = ε. This is a contradiction to the fact that morphism

τ is nonerasing. If |τ(j)| = 1, then this contradicts σ(α) = τ(α), since

τ(j) 6= σ(j).

• |τ(i)| > |σ(i)|

Since σ maps all variables except i to a word of length 1 and due to the fact

that τ is nonerasing, |τ(α)| > |σ(α)|, and necessarily τ(α) 6= σ(α), which

contradicts the assumption of Lemma 4.8.
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• |τ(i)| ≤ |σ(i)| and τ(i) 6= σ(i)

Assume that α = α1 ·ip11 ·α2 ·ip22 ·[. . .]·αn ·ipnn ·αn+1 where, α2, α3, . . . , αn ∈ N+,

α1, αn+1 ∈ N∗ and, for every k, 1 ≤ k ≤ n, ik = i, pk ∈ N, i 6v αk, αn+1. It

follows from τ being nonerasing and, for every q, 1 ≤ q ≤ n+1, |σ(αq)| = |αq|
that |τ(αq)| ≥ |σ(αq)|. As a result, |τ(α1)| ≥ |σ(α1)|. Now, assume that

|τ(α1 · ip11 )| ≤ |σ(α1 · ip11 )|; thus, due to τ(α) = σ(α), τ(α1 · ip11 ) v σ(α1 ·
ip11 ). Since |τ(α1)| ≥ |σ(α1)|, this implies that τ(i1)p1 v σ(i1)p1 . Moreover,

according to the assumption of this case, τ(i) 6= σ(i). These results satisfy

the conditions of Lemma 4.7, and therefore τ(i1) @ σ(i1). However, this

contradicts τ(i) 6@ σ(i). Consequently, we must have |τ(α1 · ip11 )| > |σ(α1 ·
ip11 )|. Since |τ(α2)| ≥ |σ(α2)|, we can conclude |τ(α1·ip11 ·α2)| > |σ(α1·ip11 ·α2)|.
Using the same reasoning as above, we can show that |τ(α1 · ip11 · α2 · ip22 )| >
|σ(α1 · ip11 · α2 · ip22 )|. By extending this argument,

|τ(α1 · ip11 · α2 · ip22 · [. . .] · αn · ipnn )| > |σ(α1 · ip11 · α2 · ip22 · [. . .] · αn · ipnn )|

Due to |τ(αn+1)| ≥ |σ(αn+1)|, we can conclude that |τ(α)| > |σ(α)|, which

contradicts τ(α) = σ(α).

Consequently, in all cases, our assumption leads to a contradiction. Hence, τ(i) @

σ(i).

The next lemma, which directly results from Definition 4.3 and shall support

the proof of the main result in the present section, discusses those patterns that

have at least one square; more precisely, there exists an i ∈ N with i2 v α.

Lemma 4.9. Let α ∈ N+. If, for an i ∈ N, i2 v α, then i ∈ Eα.

Proof. Assume that i2 v α. If there exists a variable x1 ∈ var(α) \ {i} satisfying

x1 · i @ α, then {i, x1} ⊆ Li; otherwise, Li = {i, ε}. Moreover, if there exists

a variable x2 ∈ var(α) \ {i} satisfying i · x2 @ α, then {i, x2} ⊆ Ri; otherwise,

Ri = {i, ε}. We assume to the contrary that i /∈ Eα. This means that i has loyal

neighbours in α. Hence, due to Definition 4.3, we need to consider two cases. If

ε /∈ Li and, for every j ∈ Li, we have Rj = {i}, then i ∈ Li and Ri 6= {i}, which

is a contradiction. If ε /∈ Ri and, for every j ∈ Ri, Lj = {i}, then i ∈ Ri and

Li 6= {i}, and this is again a contradiction.

The subsequent characterisation of those patterns that have a weakly unam-

biguous length-increasing morphism with ternary or larger target alphabets is the

main result of this chapter. It yields a novel partition of the set of all patterns over

any sub-alphabet of N. This partition is different from the partition into prolix
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and succinct patterns, which characterises the existence of strongly unambiguous

nonerasing morphisms (see Theorem 3.1 and Proposition 4.6).

Theorem 4.10. Let α ∈ N+ with |α| ≥ 2, and let Σ be an alphabet, |Σ| ≥ 3.

There is a weakly unambiguous length-increasing morphism σ : N+ → Σ+ with

respect to α if and only if Eα is not empty.

Proof. Let {a, b, c} ⊆ Σ.

We begin with the if direction. Assume that Eα is not empty. This means

that there is at least one variable i ∈ var(α) that does not have loyal neighbours,

i. e., i ∈ Eα. Due to Definition 4.3 and Lemma 4.9, one of the following cases is

satisfied:

Case 1: i2 v α.

We define a morphism σ by σ(x) := bc if x = i and σ(x) := a if x 6= i. So,

σ(i2) = bcbc. Assume to the contrary that there is a morphism τ : N+ → Σ+ with

τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). According to Lemma 4.8,

τ(i) 6= σ(i) must be satisfied, and this means that τ(i) needs to be a proper

factor of σ(i). This implies that τ(i) = b or τ(i) = c and, as a result, τ(i2) = bb or

τ(i2) = cc. Since σ(α) does not contain the factors bb and cc, we can conclude that

τ(α) 6= σ(α), which is a contradiction. Consequently, σ is weakly unambiguous

with respect to α.

Case 2: i2 6v α, and one of the following cases is satisfied:

Case 2.1: If ε /∈ Li, then there exists a variable j ∈ Li such that Rj 6= {i}, and if

ε /∈ Ri, then there exists a variable j′ ∈ Ri such that Lj′ 6= {i}.
Case 2.2: ε ∈ Li and ε ∈ Ri.

Let σ : N+ → {a, b, c}+ be the morphism defined in Case 1. We assume to the

contrary that there is a morphism τ : N+ → Σ+ with τ(α) = σ(α) and, for some

q ∈ var(α), τ(q) 6= σ(q). Lemma 4.8 again implies that τ(i) @ σ(i) must be

satisfied. Thus, τ(i) = b or τ(i) = c.

With regard to Case 2.1, we first consider τ(i) = c and ε /∈ Li. Due to the

number of occurrences of c in σ(α), which equals the number of occurrences of i

in α, and also due to σ(i) = bc, the positions of c of τ(i) must be at the same

positions as c of σ(i) in σ(α). Therefore, the condition τ(α) = σ(α) implies that,

for every l ∈ Li, b is a suffix of τ(l), which means that b is a suffix of τ(j). However,

since Rj 6= {i}, the number of occurrences of b in τ(α) is greater than the number

of occurrences of b in σ(α). Hence, τ(α) 6= σ(α), which is a contradiction.

We now consider τ(i) = b and ε /∈ Ri. Due to the number of occurrences of b in

σ(α), which equals the number of occurrences of i in α, and also due to σ(i) = bc,

the positions of b of τ(i) are at the same positions as b of σ(i) in σ(α). Hence,
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since τ(α) = σ(α), for every r ∈ Ri, c is a prefix of τ(r) and, consequently, c is a

prefix of τ(j′). However, because of Lj′ 6= {i}, the number of occurrences of c in

τ(α) is greater than the number of occurrences of c in σ(α). This again implies

τ(α) 6= σ(α).

Case 2.2 means that α = i · α′ · i, α′ ∈ N∗. So, σ(α) = bc · σ(α′) · bc. As

mentioned above, due to Lemma 4.8, τ(i) = b or τ(i) = c. This implies that

τ(α) starts with b and ends with b, or it starts with c and ends with c. Thus,

τ(α) 6= σ(α). Hence, we can conclude that if Eα 6= ∅, then there is a weakly

unambiguous length-increasing morphism with respect to α.

We now prove the only if direction. Hence, we shall demonstrate that if there

is a weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect

to α, then Eα is not empty. Since σ is length-increasing, there exists a variable

i that is mapped by σ to a word of length more than 1. Let σ(i) := a1a2[. . .]an

with n ≥ 2 and, for every k, 1 ≤ k ≤ n, ak ∈ Σ. Assume to the contrary that Eα

is empty. Thus, due to Lemma 4.9, i2 6v α. According to Definition 4.3, one of

the following cases is satisfied:

Case 1: ε /∈ Li and, for every j ∈ Li, Rj = {i}.
From this condition, we can directly conclude that

α := α1 · l1 · i · α2 · l2 · i · [. . .] · αm · lm · i · αm+1,

with |α|i = m and, for every k, 1 ≤ k ≤ m and, for every k′, 1 ≤ k′ ≤ m + 1,

lk ∈ Li, αk′ ∈ N∗, i 6= lk and, i, lk /∈ var(αk′). Thus,

σ(α) = σ(α1)σ(l1) a1a2[. . .]an · σ(α2)σ(l2)a1a2[. . .]an

·[. . .] · σ(αm)σ(lm) a1a2[. . .]an · σ(αm+1) .

We now define a nonerasing morphism τ such that, for every k, 1 ≤ k ≤ m,

τ(lk) := σ(lk)a1, τ(i) := a2a3[. . .]an and, for all other variables in α, τ is identical

to σ. Due to the fact that, for every k, 1 ≤ k ≤ m, Rlk = {i}, we can conclude

that τ(α) = σ(α). Since τ is nonerasing, σ is not weakly unambiguous, which is a

contradiction.

Case 2: ε /∈ Ri and, for every j ∈ Ri, Lj = {i}.
We can directly conclude that

α := α1 · i · r1 · α2 · i · r2 · [. . .] · αm · i · rm · αm+1

with |α|i = m and, for every k, 1 ≤ k ≤ m and, for every k′, 1 ≤ k′ ≤ m + 1,
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rk ∈ Ri, αk′ ∈ N∗, i 6= rk, and i, rk /∈ var(αk′). So,

σ(α) = σ(α1)a1a2[. . .]anσ(r1) · σ(α2)a1a2[. . .]anσ(r2)

·[. . .] · σ(αm)a1a2[. . .]anσ(rm) · σ(αm+1) .

If we consider the nonerasing morphism τ that satisfies, for every k, 1 ≤ k ≤ m,

τ(rk) := anσ(rk) and τ(i) := a1a2[. . .]an−1 and that is identical to σ for all other

variables in α, then we can conclude that τ(α) = σ(α). Since τ is nonerasing, σ

is not weakly unambiguous. Hence, Eα = ∅ implies that σ is not weakly unambi-

guous, which contradicts the assumption. Consequently, Eα is not empty.

In order to illustrate Theorem 4.10 and its proof, we give two examples:

Example 4.11. Let α := 1 · 2 · 3 · 4 · 1 · 2 · 3. According to Definition 4.4,

Sα = {1, 2, 3} and Eα = {4}. In other words, the variable 4 does not have loyal

neighbours. We define a morphism σ by σ(4) := bc and, for every other variable

j ∈ var(α), σ(j) := a. Due to Lemma 4.8, any morphism τ with τ(α) = σ(α)

and, for a k ∈ var(α), τ(k) 6= σ(k) needs to split the factor bc. Hence, τ(1) needs

to contain c, or τ(3) needs to contain b. However, since |α|1 = 2 and |α|3 = 2 ,

|τ(α)|c > |σ(α)|c, or |τ(α)|b > |σ(α)|b. Consequently, τ(α) 6= σ(α) and as a result,

σ is weakly unambiguous with respect to α.

Example 4.12. Let α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 7 · 8 · 3. According to Definition 4.3,

all variables have loyal neighbours; in other words, Eα = ∅. Hence, it follows from

Theorem 4.10 that there is no weakly unambiguous length-increasing morphism

σ : N+ → Σ+, |Σ| ≥ 3, with respect to α.

We now give an alternative version of Theorem 4.10 that is based on regular

expressions.

Corollary 4.13. Let α ∈ N+, and let Σ be an alphabet, |Σ| ≥ 3. There is no

weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α

if and only if, for every i ∈ var(α), at least one of the following statements is

satisfied:

• there exists a partition L,N, {i} of var(α) such that α ∈ (N∗Li)+N∗,

• there exists a partition R,N, {i} of var(α) such that α ∈ (N∗iR)+N∗.

Proof. According to the definition of loyal neighbours, it is easily verified that the

first statement of Corollary 4.13 is equivalent to the first case of Definition 4.3, and

the second one is equivalent to the second case of Definition 4.3. More precisely,

the first statement is equivalent to, for every x ∈ L, Rx = {i}, and the second one
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is equivalent to, for every x ∈ R, Lx = {i}. Consequently, for every i ∈ var(α),

one of the above statements being satisfied is equivalent to Eα = ∅. Hence,

Corollary 4.13 directly follows from Theorem 4.10.

We conclude this section by determining the complexity of the decision problem

resulting from Theorem 4.10.

Theorem 4.14. Let α ∈ N+ with |α| ≥ 2, and let Σ be an alphabet, |Σ| ≥ 3. The

problem of whether there is a length-increasing morphism σ : N+ → Σ+ that is

weakly unambiguous with respect to α is decidable in polynomial time.

Proof. According to Theorem 4.10, a procedure deciding on the problem in Theo-

rem 4.14 needs to test whether Eα is empty. This can be accomplished by

first producing the sets Li and Ri for all i ∈ var(α) and then scanning these

sets for a variable that does not have loyal neighbours. The former task can

be completed in time O(|α|), and the latter task requires O(| var(α)|2) steps.

Let α := a1 · a2 · [. . .] · an with, for every i, 1 ≤ i ≤ n, ai ∈ var(α). For

example, the following algorithm produces Eα as an output in polynomial time:

1: a0 ← ε

2: an+1 ← ε

3: for i = 1 to n do

4: Lai ← Lai ∪ {ai−1}
5: Rai ← Rai ∪ {ai+1}
6: end for

7: for i = 1 to n do

8: if ε ∈ Lai then

9: E ′ ← E ′ ∪ {ai}
10: else

11: for all j such that j ∈ Lai do

12: if Rj 6= {ai} then

13: E ′ ← E ′ ∪ {ai}
14: end if

15: end for

16: end if

17: end for

18: for all k such that k ∈ E ′ do

19: if ε ∈ Rk then

20: E ← E ∪ {k}
21: else
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22: for all j such that j ∈ Rk do

23: if Lj 6= {k} then

24: E ← E ∪ {k}
25: end if

26: end for

27: end if

28: end for

29: return E

Hence, the complexity of Problem 3.15 is comparable to that of the equivalent

problem for strongly unambiguous nonerasing morphisms (this is a consequence

of Theorem 3.1 in conjunction with Theorem 3.19 and the complexity considera-

tions by Holub [16]). In contrast to this, deciding on the existence of strongly

unambiguous erasing morphisms is NP-hard (see Corollary 3.8).

4.3 Weakly unambiguous morphisms with

|Σ| = 2

As we shall demonstrate below, our characterisation in Theorem 4.10 does not

hold for binary target alphabets Σ (see Corollary 4.26). Hence, we have to study

this case separately. We do not give a characteristic condition on the existence of

weakly unambiguous length-increasing morphisms with |Σ| = 2. Instead we shall

present two criteria, namely Theorems 4.17 and 4.27, that can be interpreted

as sufficient conditions on the existence of such morphisms, and one criterion,

namely Theorem 4.24, that is a sufficient condition on their non-existence. A

comparison of these criteria, which shall be supported by a number of examples,

then facilitates insights into the rather specific type of patterns that we cannot

classify in this respect. The main result of this section is Theorem 4.17, which

requires an extensive reasoning that is based on Lemmata 4.18, 4.19, 4.20, and

4.21, and on Proposition 4.22. However, before we study the technical details of

our considerations on morphisms with binary target alphabets, we shall briefly

discuss some basic, yet vital, observations that directly result from our work in

Section 4.2.

Despite being restricted to ternary or larger alphabets, Theorem 4.10 and

its proof have two important implications that also hold for unary and binary

alphabets. The first of them shows that Eα being empty for any given pattern α

is a sufficient condition for α not having any weakly unambiguous length-increasing

morphism:
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Corollary 4.15. Let α ∈ N+, and let Σ be any alphabet. If Eα = ∅, then there is

no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to

α. In general, the converse of this statement does not hold true.

Proof. The first statement of Corollary 4.15 directly follows from the proof of the

only if direction of Theorem 4.10.

For the second statement of Corollary 4.15, we refer to the pattern α := 1 ·
2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8. It can be verified with little effort that the variables 3

and 4 do not have loyal neighbours in α. In Theorem 4.24, we demonstrate that,

nevertheless, every length-increasing morphism σ : N+ → {a, b}+ is ambiguous

with respect to α.

Hence, if we wish to characterise those patterns with respect to which there

is a weakly unambiguous morphism σ : N+ → Σ+, |Σ| ≤ 2, then we can safely

restrict our considerations to those patterns α where Eα is a nonempty set.

The second implication of Theorem 4.10 demonstrates that any length-increasing

morphism that is weakly unambiguous with respect to a pattern α must have a

particular, and very simple, shape for all variables in Sα:

Corollary 4.16. Let α ∈ N+, let Σ be any alphabet, and let σ : N+ → Σ+ be a

length-increasing morphism that is weakly unambiguous with respect to α. Then,

for every i ∈ Sα, |σ(i)| = 1.

Proof. Corollary 4.16 directly follows from the proof of the only if direction of

Theorem 4.10.

Thus, any weakly unambiguous length-increasing morphism with respect to

a pattern α must not be length-increasing for the variables in Sα. This insight

is very useful when searching for morphisms that might be weakly unambiguous

with respect to a given pattern.

As shown by Corollary 4.15, if Eα is empty, then there is no weakly unambi-

guous length-increasing morphism σ : N+ → Σ+ with respect to α. In the next

step, we give a strong necessary condition on the structure of those patterns α

that satisfy Eα 6= ∅, but nevertheless do not have a weakly unambiguous morphism

σ : N+ → Σ+, |Σ| = 2.

Theorem 4.17. Let α ∈ N+ such that Eα is nonempty. Let Σ be an alphabet,

|Σ| = 2. If there is no weakly unambiguous length-increasing morphism σ : N+ →
Σ+ with respect to α, then for every e ∈ Eα there exists an e′ ∈ Eα, e′ 6= e, such

that e · e′ and e′ · e are factors of α.

Before we can prove Theorem 4.17, we first need to introduce some technical

lemmata. Referring to Section 4.2, if i2 v α, i ∈ var(α), then there is a weakly
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unambiguous length-increasing morphism σ : N+ → Σ+, |Σ| ≥ 3, with respect

to α; this is a direct consequence of Lemma 4.9 and Theorem 4.10. We now

investigate this case for |Σ| = 2.

Lemma 4.18. Let α ∈ N+ such that, for an i ∈ N, i2 v α. Let Σ be an alphabet,

|Σ| = 2. There is a weakly unambiguous length-increasing morphism σ : N+ → Σ+

with respect to α that maps i to an image of length more than 1 and every variable

in var(α) \ {i} to images of length 1 if

(I) for every occurrence of i in α, the right or left neighbour of i is i, or

(II) for every (i′ · i) v α with i′ ∈ var(α) \ {i}, (i · i′) 6v α.

Proof. Let Σ := {a, b}.
We first prove that Condition (I) implies the existence of a weakly unambiguous

length-increasing morphism with respect to α. Let

α := α1 · ip1 · α2 · ip2 · [. . .] · αn · ipn · αn+1,

with n ∈ N, α2, α3, . . . , αn ∈ (N \ {i})+, α1, αn+1 ∈ (N \ {i})∗ and, for every j,

1 ≤ j ≤ n, pj ∈ N. It follows from Condition (I) that, for every j, pj ≥ 2. We

define a morphism σ : N+ → Σ+ by, for every x ∈ N,

σ(x) :=

ab, x = i,

b, x 6= i.

Thus, σ(α) = b·b·[. . .]·b·(ab)p1 ·b·b·[. . .]·b·(ab)p2 ·[. . .]·b·b·[. . .]·b·(ab)pn ·b·b·[. . .]·b.
We now assume to the contrary that σ is not weakly unambiguous with respect

to α. Hence, there is a morphism τ : N+ → Σ+ such that τ(α) = σ(α) and, for

some q ∈ var(α), τ(q) 6= σ(q). According to Lemma 4.8, it is required to split the

factor ab when defining τ(i). If we consider τ(i) = a, then, due to the fact that

there is no factor ak, k ≥ 2, in σ(α), τ(α) 6= σ(α). Thus, τ(i) = b. As a result,

τ(α) = τ(α1) · bp1 · τ(α2) · bp2 · [. . .] · τ(αn) · bpn · τ(αn+1). Due to τ(α) = σ(α), one

of the following cases is satisfied:

• |τ(α1)| < |σ(α1)|.

This means that there exists a variable z ∈ var(α1) with τ(z) = ε; however,

this contradicts the fact that τ is nonerasing.

• |τ(α1)| > |σ(α1)|.

Since σ(ip1) has no factor bk, k > 1, |τ(α1 · ip1)| > |σ(α1 · ip1)|. This implies

that τ(ip2) cannot be located to the left of the position of σ(ip2) in σ(α);
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otherwise, for some z ∈ var(α2), τ(z) = ε. Thus, |τ(α1 · ip1 · α2 · ip2)| >
|σ(α1 · ip1 · α2 · ip2)|. Consequently, if we continue our above reasoning, this

finally implies that

|τ(α1 · ip1 · α2 · ip2 · [. . .] · αn · ipn)| > |σ(α1 · ip1 · α2 · ip2 · [. . .] · αn · ipn)|

and there exists some variable z ∈ var(αn+1) such that τ(z) = ε. However,

this contradicts the fact that τ is nonerasing.

It follows from our reasoning on the above cases that the morphism τ does not

exist. Hence, if Condition (I) is satisfied, then σ is weakly unambiguous with

respect to α.

We now prove that Condition (II) also implies the existence of a weakly

unambiguous length-increasing morphism with respect to α. According to Condi-

tion (II), (Ri ∩ Li) \ {i} = ∅. So, by considering Condition (II), we can define a

morphism σ : N+ → Σ+ with

σ(x) =



ab, x = i,

b, x ∈ Li,

a, x ∈ Ri,

b, else.

Without loss of generality, we can assume that Condition (I) is not satisfied. So,

any two consecutive occurrences of i, which are denoted by i1 and i2, can occur

in α according to one of the following cases:

1. α = α1 · l1 · i1 · r1 · α2 · l2 · i2 · r2 · α3,

2. α = α1 · l1 · i1 · r1 · α2 · l2 · ip22 · r2 · α3,

3. α = α1 · l1 · ip11 · r1 · α2 · l2 · i2 · r2 · α3,

4. α = α1 · l1 · ip11 · r1 · α2 · l2 · ip22 · r2 · α3,

where α1, α2, α3 ∈ N∗, l1, r1, l2, r2 ∈ var(α)\{i}, i1 = i2 = i, i 6v α2, and p1, p2 > 1.

We assume to the contrary that σ is not weakly unambiguous with respect to

α. Hence, there is a morphism τ : N+ → Σ+ satisfying τ(α) = σ(α) and for some

q ∈ var(α), τ(q) 6= σ(q). According to Lemma 4.8, it is required to split the factor

ab when defining τ(i). This means that τ(i) = a or τ(i) = b. Furthermore, for all

of the above-mentioned cases, we assume that

|τ(α1 · l1)| ≥ |σ(α1 · l1)|. (4.1)
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Referring to this assumption, we now compare the position of τ(i) to that of σ(i) in

σ(α) for the above four cases. Our corresponding insights shall be applied further

below.

In Case 1, σ(α) = σ(α1) · b · ab · a · σ(α2) · b · ab · a · σ(α3). We assume that

τ(i1) = a such that a is located at the same position as a of σ(i1) in σ(α). Since τ

is nonerasing and σ(l2) = b, a of τ(i2) is located at the same position as a of σ(i2)

in σ(α) or it is located to the right of that position; otherwise, there must be a

z ∈ (var(α2) ∪ {r1, l2}) with τ(z) = ε. If the letter a of τ(i1) = a is located to the

right of the position of the letter a of σ(i1) in σ(α), due to τ being nonerasing,

the letter a of τ(i2) is located to the right of the position of the letter a of σ(i2)

in σ(α). We can apply the same reasoning to τ(i1) = b.

In Case 2, σ(α) = σ(α1) · b · ab · a · σ(α2) · b · (ab)p2 · a · σ(α3). We assume that

τ(i1) = a such that a is located at the same position as a of σ(i1) in σ(α). So,

τ(ip22 ) = ap2 . Since σ(l2 · ip22 ) = b · (ab)p2 , ap2 of τ(ip22 ) must be located to the left

or to the right of σ(l2 · ip22 ) in σ(α). However, it cannot be located to the left of

this factor, since τ is nonerasing. If τ(i1) = a and a is located to the right of the

position of the letter a of σ(i1) in σ(α), then τ(ip22 ) must be located to the right

of σ(l2 · ip22 ) using the same reasoning. An analogous reasoning can also be used

for τ(i1) = b.

In Case 3, σ(α) = σ(α1) · b · (ab)p1 · a · σ(α2) · b · ab · a · σ(α3). We assume that

τ(i1) = a. Since ap1 6v σ(ip11 ), and due to Relation (4.1), the factor τ(ip11 ) must be

located to the right position of σ(ip11 ) in σ(α). This implies that, since |τ(ip11 )| ≥ 2

and τ is nonerasing, a of τ(i2) must be located to the right of the position of the

letter a of σ(i2) in σ(α). This reasoning is also valid if τ(i1) = b.

In Case 4, σ(α) = σ(α1) ·b · (ab)p1 ·a ·σ(α2) ·b · (ab)p2 ·a ·σ(α3). We assume that

τ(i1) = a. Since ap1 6v σ(ip11 ), and due to Relation (4.1), the factor τ(ip11 ) must

be located to the right of the position of σ(ip11 ) in σ(α). This implies that, since

τ is nonerasing and there is no factor ap2 in σ(ip22 ), the factor ap2 of τ(i2) must

be located to the right of the factor (ab)p2 of σ(ip22 ) in σ(α). The same reasoning

applies to τ(i1) = b.

Now, let α := α′ · i ·α′′, i 6v α′. Since τ is nonerasing and σ maps every variable

of α′ to words of length 1, |τ(α′)| ≥ |σ(α′)|. This result satisfies Relation (4.1).

Hence, we can consider one of the above cases to investigate τ when applied to

the first occurrence of i in α. This means i 6v α1. All cases lead to the fact that

τ(i2) or τ(ip22 ) cannot be located to the left of the positions of σ(i2) or σ(ip22 ),

respectively, in σ(α). Consequently,

|τ(α1 · l1 · i1 · r1 · α2 · l2)| ≥ |σ(α1 · l1 · i1 · r1 · α2 · l2)| or

|τ(α1 · l1 · ip11 · r1 · α2 · l2)| ≥ |σ(α1 · l1 · ip11 · r1 · α2 · l2)|. (4.2)



CHAPTER 4. WEAKLY UNAMBIGUOUS MORPHISMS 35

In the next step, if we consider i2 or ip22 as i1 or ip11 , respectively, and the next

occurrence of i or ik, k > 1, as i2 or ip22 , respectively, due to Relation (4.2),

Relation (4.1) of our cases is satisfied again. Consequently, we can extend this

result to the last occurrence of i.

We now consider Cases 2, 3, and 4. In these cases, the factor τ(i2) is not

located to the left or even at the same position as σ(i2) in σ(α). Moreover, as

mentioned in Case 1, if the letter a of τ(i1) = a is located to the right of the

position of the letter a of σ(i1) in σ(α), the letter a of τ(i2) is located to the right

of the position of the letter a of σ(i2) in σ(α) – the same happens if τ(i1) = b.

Hence, since there is at least one ik, k ≥ 2, in α, by considering Cases 1, 2, 3,

and 4, which can be extended over the other occurrences of i, and due to τ being

nonerasing, |τ(α)| > |σ(α)|. Thus, the morphism τ does not exist. This implies

that σ is weakly unambiguous with respect to α.

In the following lemma, we introduce a special pattern with respect to which

there is a weakly unambiguous length-increasing morphism σ : N+ → {a, b}+.

Lemma 4.19. Let α := α1 · e ·α2 · e · [. . .] ·αn−1 · e ·αn with e ∈ Eα , α1, αn ∈ N∗,
α2, α3, . . . , αn−1 ∈ N+ and, for every j, 1 ≤ j ≤ n, e 6v αj. Suppose that there

exists a factor l · e · r v α, l, r ∈ var(α), such that l and r satisfy the following

conditions:

• there exists an occurrence of l in α such that the right neighbour and the left

neighbour of this occurrence are not e, and

• there exists an occurrence of r in α such that the right neighbour and the left

neighbour of this occurrence are not e.

If σ : N+ → {a, b}+ is a nonerasing morphism with σ(e) = bb and, for every

x ∈ var(α) \ {e}, σ(x) = a, then σ is weakly unambiguous with respect to α.

Proof. Let α := α1 ·e1 ·α2 ·e2 · [. . .] ·αn−1 ·en−1 ·αn with, for every k, 1 ≤ k ≤ n−1,

ek = e. Also, let σ(e) := b1b2 with b1 = b2 = b. Assume to the contrary that

σ is not weakly unambiguous with respect to α. So, there exists a morphism τ

satisfying τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). Lemma 4.8 implies

that τ(e) = b.

We claim that, for every k, 1 ≤ k ≤ n−1, τ(ek) is located at the same position

as the first or second b of σ(ek) in σ(α). To prove this claim, we assume to the

contrary that there exists a j, 1 ≤ j ≤ n−1, such that τ(ej) is not at the position

of the first or second b of σ(ej) in σ(α). Thus, the following cases need to be

considered:
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• τ(ej) is located to the left of the position of σ(ej) in σ(α).

If there is no occurrence of e to the left of ej in α, then τ(α) 6= σ(α). So,

assume that there is an occurrence of ej−1 to the left of ej. Since τ(ej) is

located to the left of the position of σ(ej), it must be located at the position

of the first b or the second b of σ(ej−1), or it is located to the left of the

position of the first b of σ(ej−1) in σ(α). In both cases, due to the facts that

τ is nonerasing and there exists at least one variable between ej−1 and ej,

τ(ej−1) must be located to the left of the position of σ(ej−1). Now, if we

continue the above reasoning for τ(ej−1), τ(ej−2), . . . , τ(e1), the factor τ(e1)

must be located to the left of the position of σ(e1) in σ(α); however, since

there is no occurrence of e to the left of e1 in α, τ(α) 6= σ(α).

• τ(ej) is located to the right of the position of σ(ej) in σ(α).

In this case, an analogous reasoning to that in the previous case leads to the

insight that τ(en−1) must be located to the right of the position of σ(en−1)

in σ(α), which again is a contradiction.

Hence, for every k, 1 ≤ k ≤ n − 1, τ(ek) is located at the same position as the

first or second b of σ(ek) in σ(α). This insight has two implications. The first one

is that, due to τ being nonerasing and l · e · r being a factor of α,

τ(l) = v · b1, v ∈ {a, b}∗ or

τ(r) = b2 · v, v ∈ {a, b}∗. (4.3)

The second implication is that, since for any two consecutive occurrences of e in

α, the word e · z1 · z2 · [. . .] · zn−1 · zn · e, where zj ∈ var(α) \ {e}, 1 ≤ j ≤ n, is a

factor of α, τ(zj) must satisfy the following conditions:

τ(zj) =



b2 or b2 · σ(zj) or b2 · σ(zj) · σ(zj+1) or

σ(zj) or σ(zj) · σ(zj+1), if j = 1,

b1 or σ(zj) · b1 or σ(zj−1) · σ(zj) · b1 or

σ(zj) or σ(zj−1) · σ(zj), if j = n,

σ(zj) or σ(zj+1) or σ(zj−1) or σ(zj) · σ(zj+1)

or σ(zj−1) · σ(zj) or σ(zj−1) · σ(zj) · σ(zj+1), if 1 < j < n.

(4.4)

According to the assumption of Lemma 4.19, there exist an occurrence of l and

an occurrence of r in α such that the right neighbour and the left neighbour of
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these occurrences are not e. So, by considering Condition (4.4), τ(l) and τ(r)

cannot contain any factor b. This contradicts Condition (4.3). Hence, σ is weakly

unambiguous with respect to α.

Before we continue with the next two lemmata that are required to prove

Theorem 4.17, we wish to briefly clarify their subject in an informal manner: Let

α ∈ N+, |α| ≥ 2, and let σ : N+ → Σ+ be a nonerasing morphism satisfying for a

variable e ∈ var(α), |σ(e)| > 1 and, for every i ∈ var(α)\{e}, |σ(i)| = 1. Moreover,

assume that τ is a nonerasing morphism satisfying τ(α) = σ(α). According to

Lemma 4.8, if there exists a j ∈ var(α) with τ(j) 6= σ(j), then τ(e) @ σ(e). In

the following lemmata, we examine the position of τ(e) in comparison with the

position of σ(e) in σ(α).

Lemma 4.20. Let α ∈ N+ such that Eα 6= ∅. Let e ∈ Eα with Le ∩ Re = ∅.
Let α = α1 · e1 · α2 · e2 · [. . .] · αn−1 · en−1 · αn with α1, αn ∈ N∗ and, for every k,

2 ≤ k ≤ n − 1, αk ∈ N+, |αk| ≥ 2, and, for every j, 1 ≤ j ≤ n − 1, ej = e and,

e 6v αj, αn. Let σ : N+ → {a, b}+ be any morphism satisfying

σ(x) =


ab, x = e,

b, x ∈ Le,

a, x ∈ Re,

and |σ(x)| = 1 for every x ∈ var(α) \ ({e} ∪ Le ∪Re). Assume that there exists a

nonerasing morphism τ with τ(α) = σ(α) and, for some j ∈ var(α), τ(j) 6= σ(j).

Then, for every occurrence of ei, 1 ≤ i ≤ n − 1, one of the following cases is

satisfied:

(I) τ(ei) = a, and this letter is located at the same position in σ(α) as the letter

a of σ(ei), or

(II) τ(ei) = b, and this letter is located at the same position in σ(α) as the letter

b of σ(ei).

Proof. For every i, 1 ≤ i ≤ n− 1, let σ(ei) := aibi, ai = a, bi = b. Also, for every

j, 1 ≤ j ≤ n, let αj := lj · α′j · rj, α′j ∈ (var(α) \ {e})∗, lj, rj ∈ var(α) \ {e}. Thus,

σ(α) = σ(l1) · σ(α′1) · b · a1b1 · a · σ(α′2) · b · a2b2 · [. . .] ·

σ(α′n−1) · b · an−1bn−1 · a · σ(α′n) · σ(rn).

According to Lemma 4.8, τ(e) = a or τ(e) = b. In order to prove Case (I), assume

to the contrary that there exists a k, 1 ≤ k ≤ n − 1, with τ(ek) = a, but this
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a is not located at the same position as the letter ak in σ(α). This leads to the

following cases:

• The letter a of τ(ek) is located to the left of the position of the letter ak in

σ(α).

If there is no occurrence of e to the left of ek, then τ(α) = σ(α) implies

for some variables z ∈ αk, τ(z) = ε. However, this contradicts τ being

nonerasing.

Assume that there is an occurrence of e to the left of ek. Due to the fact that

there is an occurrence of b as a left neighbour of ak in σ(α), the difference of

the position of the nearest occurrence of a to the position of ak in σ(α) is at

least 2. If τ(ek−1) is located at the position of ak−1 in σ(α), or it is located

at any of the positions of σ(αk), then this leads to |τ(αk)| ≤ (|αk| − 2) + 1

– note that “+1” results from bk−1 v τ(αk) if τ(ek−1) is located at the

position of ak−1. This means that, for some variables z ∈ αk, τ(z) = ε,

which contradicts τ being nonerasing. However, if a of τ(ek−1) is located

to the left of the position of ak−1, then we continue our above reasoning.

This argument finally leads to τ(e1) being located to the left of a1 in σ(α);

however, this means that, for some z ∈ var(α1), τ(z) = ε, which again

contradicts the fact that τ is nonerasing.

• The letter a of τ(ek) is located to the right of the position of the letter ak in

σ(α).

In this case, an analogous reasoning to that in the previous case – now consi-

dering ak, ak+1, . . . , an−1 instead of ak, ak−1, . . . , a1 – leads to an equivalent

contradiction.

To prove Case (II), assume to the contrary that there exists a k, 1 ≤ k ≤ n − 1,

with τ(ek) = b; however, b is not at the position of bk in σ(α). Then we can use

an analogous reasoning to that on Case (I).

Lemma 4.20 and its proof enable us in the following lemma to investigate the

morphism τ , which is defined in Lemma 4.20, for the variables occurring between

two consecutive occurrences of e.

Lemma 4.21. Let α ∈ N+ such that Eα 6= ∅. Let e ∈ Eα with Le ∩ Re = ∅. Let

α := α1 ·e1 ·x1 ·x2 · [. . .] ·xn ·e2 ·α2 , α1, α2 ∈ N∗, e1 = e2 = e, n > 1, and for every
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j, 1 ≤ j ≤ n, xj ∈ var(α) \ {e}. Let σ : N+ → {a, b}+ be a morphism satisfying

σ(x) =


ab, x = e,

b, x ∈ Le,

a, x ∈ Re,

and |σ(x)| = 1 for every x ∈ var(α) \ ({e} ∪ Le ∪ Re). Then, for every morphism

τ with τ(α) = σ(α) and, for some j ∈ var(α), τ(j) 6= σ(j), one of the following

cases is satisfied:

(I) For every i, 1 < i < n, τ(xi) = σ(xi), or τ(xi) = σ(xi−1) · v, v ∈ {σ(xi), ε}.

If i = 1, then τ(x1) = b·v, v ∈ {σ(x1), ε}, and if i = n, then τ(xn) = v·σ(xn),

v ∈ {σ(xn−1), ε}.

(II) For every i, 1 < i < n, τ(xi) = σ(xi), or τ(xi) = v · σ(xi+1), v ∈ {σ(xi), ε}.

If i = n, then τ(xn) = v · a, v ∈ {σ(xn), ε}, and if i = 1, then τ(x1) =

σ(x1) · v, v ∈ {ε, σ(x2)}.

Proof. Assume that τ(α) = σ(α) and, for some j ∈ var(α), τ(j) 6= σ(j). According

to Lemmata 4.8 and 4.20, regardless of the number of occurrences of e in α1 and

α2, one of the following cases is satisfied:

• τ(e1) = a, and this letter is located at the same position as the letter a of

σ(e1) in σ(α); in addition to this, τ(e2) = a, and this letter is located at the

same position as the letter a of σ(e2) in σ(α). Thus, |τ(x1 · x2 · [. . .] · xn)| =
n+ 1. So, as τ is nonerasing, |τ(xi)| ≤ 2, 1 ≤ i ≤ n.

Hence, due to τ(α) = σ(α) and τ being nonerasing, it is required to define

τ for the variables x1, x2, . . . , xn such that

– τ(x1) = b · v, v ∈ {ε, σ(x1)}, and

– for 2 ≤ j ≤ n− 1, if τ(xj−1) is not located at the position of σ(xj−1) in

σ(α), then τ(xj) = σ(xj−1) ·v, v ∈ {ε, σ(xj)}; otherwise, τ(xj) = σ(xj),

and

– if τ(xn−1) is not located at the position of σ(xn−1) in σ(α), then τ(xn) =

σ(xn−1) · σ(xn); otherwise, τ(xn) = σ(xn).

This implies that, for every i, 1 ≤ i ≤ n, τ(i) satisfies Condition (I) of the

lemma.

• τ(e1) = b, and this letter is located at the same position as the letter b of

σ(e1) in σ(α); furthermore, τ(e2) = b, and this letter is located at the same
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position as the letter b of σ(e2) in σ(α). Thus, |τ(x1 · x2 · [. . .] · xn)| = n+ 1,

which, as τ is nonerasing, implies |τ(xi)| ≤ 2, 1 ≤ i ≤ n.

Therefore, since τ(α) = σ(α) and τ is nonerasing, τ needs to be defined for

the variables x1, x2, . . . , xn such that

– τ(x1) = σ(x1) · v, v ∈ {ε, σ(x2)}, and

– for 2 ≤ j ≤ n − 1, if τ(xj−1) is not located at the position of σ(xj)

in σ(α), then τ(xj) = σ(xj) · v, v ∈ {ε, σ(xj+1)}; otherwise, τ(xj) =

σ(xj+1), and

– if τ(xn−1) is not located at the position of σ(xn) in σ(α), then τ(xn) =

σ(xn) · a; otherwise, τ(xn) = a.

Consequently, for every i, 1 ≤ i ≤ n, τ(i) satisfies Condition (II) of the

lemma.

In the following proposition, we establish a sufficient condition on the existence

of weakly unambiguous length-increasing morphisms that we shall use in the proof

of Theorem 4.17.

Proposition 4.22. Let α ∈ N+. If there exists an s ∈ Sα satisfying, for an

e ∈ Eα, s · e v α and e · s v α, then there is a length-increasing morphism

σ : N+ → {a, b}+ that is weakly unambiguous with respect to α.

Proof. According to Definition 4.3, since s ∈ Sα, one of the following cases is

satisfied:

1. ε /∈ Ls and, for every i ∈ Ls, Ri = {s}, or

2. ε /∈ Rs and, for every i ∈ Rs, Li = {s}.

Without loss of generality, we only consider the first case (since the same reasoning

can be applied for the second case). The conditions of the proposition and of Case 1

imply that there exists the following unique factorisation of α:

α = α1 · β1 · α2 · β2 · α3 · . . . · αn · βn · αn+1 ,

where n := |α|e, α1, α2, . . . , αn+1 ∈ (N \ {e})∗, and, for every k with 1 ≤ k ≤ n,

• βk = s · e · s or

• βk = s′ · e · s for an s′ ∈ var(α) ∪ {ε}.
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Note that, due to the conditions s · e v α and e · s v α , there must exist at least

one k′, 1 ≤ k′ ≤ n, with βk′ = s · e · s.
We now consider the length-increasing morphism σ : N+ → {a, b}+, given by

σ(e) := aa and, for every x ∈ var(α) \ {e}, σ(x) := b. Assume to the contrary

that there exists a morphism τ : N+ → {a, b}+ satisfying τ(α) = σ(α) and,

for a q ∈ var(α), τ(q) 6= σ(q). According to Lemma 4.8, we can conclude that

this implies τ(e) = a. Furthermore, due to s · e · s v α, τ(s) needs to contain

the letter a as a factor. However, it follows from the above factorisation of α

that |α|s > |α|e, and therefore |τ(α)|a > 2|α|e = |σ(α)|a. This contradicts the

assumption τ(α) = σ(α).

Based on the preparatory work in Lemmata 4.18, 4.19, 4.20, 4.21 and Propo-

sition 4.22, we can now verify Theorem 4.17:

Proof of Theorem 4.17. We assume to the contrary that there exists an e ∈ Eα

such that, for every e′ ∈ Eα with e′ 6= e, e · e′ or e′ · e is not a factor of α.

According to Proposition 4.22, since there is no weakly unambiguous length-

increasing morphism σ with respect to α, there exists no variable s ∈ Sα with

s · e v α and e · s v α. Thus, and due to our assumption, there is no variable

x ∈ var(α)\{e} satisfying both x ∈ Le and x ∈ Re. Since e ∈ Eα, we can therefore

conclude that at least one of the following cases is satisfied:

1. ee v α,

2. if ε /∈ Le, then there exists an l ∈ Le with Rl 6= {e} and e /∈ Ll, and if

ε /∈ Re, then there exists an r ∈ Re with Lr 6= {e} and e /∈ Rr, or

3. ε ∈ Le and ε ∈ Re.

Due to the fact that, for every x ∈ var(α)\{e}, x·e or e·x is not a factor of α, Case 1

satisfies the conditions of Lemma 4.18. Hence, there is a weakly unambiguous

length-increasing morphism σ : N+ → Σ+ with respect to α. This contradicts the

condition of Theorem 4.17, namely that there is no weakly unambiguous morphism

σ with respect to α.

Our investigation of Case 2 is based on the assumption that Case 1 is not

satisfied. This implies that l 6= e and r 6= e. As mentioned, there is no variable

x ∈ var(α) \ {e} satisfying x ∈ Le and x ∈ Re. Consequently, it follows from

Case 2 that e · l and r · e are not factors of α; in other words, e /∈ Ll and e /∈ Rr.

Also, we can conclude that l 6= r. We divide Case 2 into two parts, Part (a) and

Part (b). In Part (a) we assume that l · e · r is a factor of α, and in Part (b) we

assume that l · e · r is not a factor of α.
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Part (a) l · e · r v α.

We define a morphism σ : N+ → {a, b}+ by

σ(x) :=

bb, x = e,

a, x 6= e.

According to Lemma 4.19, σ is weakly unambiguous with respect to α, which

contradicts the condition of Theorem 4.17.

Part (b) l · e · r 6v α.

We now consider the following cases:

Case 2.1. |α|e = 1.

Hence, according to Case 2 and l·e·r 6v α, we can assume that α = . . .·k·l·k′·. . .·l·e
or α = e · r · . . . · k · r · k′ · . . ., k, k′ ∈ var(α) \ {e}. We define a morphism

σ : N+ → {a, b}+ by

σ(x) :=

bb, x = e,

a, x 6= e.

Using Lemma 4.8, it can be easily verified that σ is weakly unambiguous with

respect to α, which is a contradiction.

Case 2.2. |α|e > 1.

Consequently, according to Case 2 and l · e · r 6v α, there exists an l ∈ Le with

Rl 6= {e} and e /∈ Ll, and there exists an r ∈ Re with Lr 6= {e} and e /∈ Rr.

Therefore, we can assume that α = . . . · l · e · . . . · e · r · . . . . As mentioned above,

there is no variable x ∈ var(α) with x ∈ Le and x ∈ Re. As a result, we can define

a morphism σ by

σ(x) :=


ab, x = e,

b, x ∈ Le,

a, x ∈ Re.

(4.5)

For the other variables, we shall define the morphism σ later. Before we do this, we

shall establish some insights into the structure of α. According to Definition (4.5),

σ(l) = b and σ(r) = a. Also, due to the condition of Theorem 4.17, there exists a

nonerasing morphism τ with τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q).

Moreover, since σ(e) is the only image of length more than 1, Lemma 4.8 implies

that τ(e) = a or τ(e) = b. We first consider two special cases as follows:

• Let there be an occurrence of r (denoted by r′) such that α = α1 · r′ · α2,

α1 ∈ N∗, α2 ∈ N+ and e 6v α1. By considering the factor e·r, if τ(e) = a, then
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Lemma 4.21 and τ(α) = σ(α) imply that τ(r) = b · v, v ∈ {ε, a}. However,

according to Lemma 4.20, the letters a which are produced by τ(e) are

located at the same positions as those letters a produced by σ(e) in σ(α), and

since the length of images of all variables except e is 1, τ(r′) = σ(r′) = a must

be satisfied in order to obtain τ(α) = σ(α). This means that τ(r) 6= τ(r′),

which is a contradiction.

• Let there be an occurrence of l (denoted by l′) such that α = α1 · l′ · α2,

α1 ∈ N+, α2 ∈ N∗ and e 6v α2. If we consider the factor l · e, and if we

assume τ(e) = b, then Lemma 4.21 and τ(α) = σ(α) imply that τ(l) = v · a,

v ∈ {ε, b}. Due to Lemma 4.20, the letters b which are produced by τ(e) are

located at the same positions as those letters b produced by σ(e) in σ(α),

and since the length of images of all variables except e is 1, τ(l′) = σ(l′) = b

must hold true. Thus, τ(l) 6= τ(l′), and this is a contradiction.

By considering the above special cases, without loss of generality regarding the

different possibilities of the positions of l and r in α, let

α := α1 · e · x1 · x2 · [. . .] · xn · r · α2 · l · z1 · z2 · [. . .] · zm · e · α3, (4.6)

with α1, α2, α3 ∈ N∗, for every i, 1 ≤ i ≤ n and, for every j, 1 ≤ j ≤ m,

xi ∈ var(α), xi 6= e, xi 6= r, zj ∈ var(α), zj 6= e and zj 6= l. Also, let α2 := y1α
′
2

with y1 ∈ var(α) ∪ {ε} and α′2 ∈ N∗. Since r · e is not a factor of α, y1 6= e.

Furthermore, if we assume that y1 = r, then rr v α and, in accordance with

Lemma 4.9, r ∈ Eα. Consequently, according to Case 1, the assumption of y1 = r

leads to a contradiction. Hence, y1 6= r.

Now, we define σ for the other variables using the following algorithm, where,

for any variable x, the notation σ(x) = null shall refer to the fact that σ(x) has

not been defined yet.

1: i← n

2: while σ(xi) = b do

3: i← i− 1

4: end while

5: if σ(xi) = null then

6: σ(xi)← a

7: end if

8: i← 1

9: while σ(zi) = a do

10: i← i+ 1

11: end while
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12: if σ(zi) = null then

13: σ(zi)← b

14: end if

15: if α2 6= ε and σ(y1) = null then

16: σ(y1)← b

17: end if

18: for all x ∈ var(α) do

19: if σ(x) = null then

20: σ(x)← a

21: end if

22: end for

We now show that this definition of σ and the conditions of Case 2.2 lead to the

following contradictory statement:

Claim. The morphism σ is weakly unambiguous with respect to α.

Proof (Claim). We assume to the contrary that there exists a nonerasing mor-

phism τ satisfying τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). It follows

from Lemmata 4.8 and 4.20, that τ(e) = a or τ(e) = b which is located at the

same position as that letter a or b produced by σ(e) in σ(α). Due to the factors

e · r and l · e and due to Lemma 4.21,

τ(e) = a implies that τ(r) = b · v, v ∈ {σ(r), ε}, and (4.7)

b is a suffix of τ(l)

and

τ(e) = b implies that τ(l) = v · a, v ∈ {σ(l), ε}, and (4.8)

a is a prefix of τ(r),

since otherwise τ(α) 6= σ(α). On the other hand, we know that there exist factors

xn · r and l · z1 in α. Now, we consider the following cases:

• τ(e) = a. As a result of Implication (4.7), b is a prefix of τ(r). We consider

the factor e · x1 · x2 · [. . .] · xn · r of α. According to Lemma 4.21, τ(r) = σ(r)

or τ(r) = σ(xn) · v, v ∈ {σ(r), ε}. Since σ(r) = a and b is a prefix of

τ(r), τ(r) = σ(r) cannot be satisfied. Hence, τ(r) = σ(xn) · v, v ∈ {a, ε}.
Since b is a prefix of τ(r), σ(xn) = b. However, this implies that σ(xn) has

been assigned before running the algorithm, and this leads to the fact that

xn ∈ Le. According to the proof of Lemma 4.21, τ(xn) must be located

at the position of σ(xn−1), or in other words, τ(xn) = σ(xn−1). Thus, if
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σ(xn−1) = a, then τ(xn) = a, while Lemma 4.20 and Lemma 4.21 imply

that, due to xn ∈ Le and τ(e) = a, b is a suffix of τ(xn). So, σ(xn−1) must

equal b, which means that xn−1 ∈ Le. This argument can then be extended to

τ(xn−1) = σ(xn−2). If the value of σ for all variables xn, xn−1, . . . , x2 equals

b, since σ(x1) = a, we finally get a contradiction, because τ(x2) = σ(x1) = a,

while x2 ∈ Le, which means that b is a suffix of τ(x2). Hence, τ(e) cannot

equal a.

• τ(e) = b. Because of Implication (4.8), a is a suffix of τ(l). We consider the

factor l · z1 · z2 · [. . .] · zm · e of α. According to Lemma 4.21, τ(l) = σ(l)

or τ(l) = v · σ(z1), v ∈ {σ(l), ε}. Due to σ(l) = b, τ(l) cannot equal σ(l),

because we know that the factor a is a suffix of τ(l). Hence, τ(l) = v · σ(z1),

v ∈ {b, ε}. Since the factor a is a suffix of τ(l), σ(z1) = a follows; in other

words, τ(l) = v · a, v ∈ {σ(l), ε}. For the other variables zj, 1 ≤ j ≤ m, we

investigate the morphisms σ and τ as follows:

Assumption 1. Assume that, for every j, 1 ≤ j ≤ m, σ(zj) is not defined by

line 6 of the algorithm.

By considering this assumption, it follows from σ(z1) = a that σ(z1) has

been defined before running the algorithm, and this means that z1 ∈ Re.

So, Lemma 4.20 and Lemma 4.21 imply that, due to z1 ∈ Re and τ(e) = b,

a is a prefix of τ(z1). Moreover, as mentioned above, τ(l) = v · σ(z1),

v ∈ {σ(l), ε}. According to Lemma 4.21, τ(z1) = σ(z2), or, in other words,

τ(z1) is located at the position of σ(z2). If σ(z2) = b, then τ(z1) = b, which

contradicts the fact that a is a prefix of τ(z1). Consequently, σ(z2) must

equal a, which means that z2 ∈ Re. This discussion can be continued for

τ(z2) = σ(z3). If the value of σ for all the variables z1, x2, . . . , zm−1 equals a,

since σ(zm) = b, we finally get a contradiction, because τ(zm−1) = σ(zm) = b,

while zm−1 ∈ Re, which means that a is a prefix of τ(zm−1). Hence, τ(e)

cannot equal b.

Assumption 2. Assume that there exists a j, 1 ≤ j ≤ m− 1, such that σ(zj)

is defined by line 6 of the algorithm.

This means that σ(zj) = a. Since line 6 of our algorithm just runs once,

if σ(zj+1) = a, then zj+1 ∈ Re and we can use the above argument, which

again leads to a contradiction. So, this implies that σ(zj+1) = b. According

to Lemma 4.21, as τ is nonerasing and τ(α) = σ(α), τ(zj) = σ(zj+1) = b, or,

in other words, τ(zj) is located at the position of σ(zj+1). On the other hand,

Assumption 2 means that zj has another occurrence to the left of r in α. In

fact, there exists a k, 1 ≤ k ≤ n, with xk = zj. Hence, τ(xk) = τ(zj) = b
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and σ(xk) = σ(zj) = a. According to Lemma 4.21 and its proof, since

σ(xk) = a and τ(xk) = b, for every q, k ≤ q ≤ (n− 1), τ(xq) = σ(xq+1), and

τ(xn) = σ(r) and τ(r) = σ(y1) if α2 6= ε; otherwise, τ(r) = σ(l). If k = n,

then τ(xk) = σ(r) = a, and this contradicts τ(xk) = τ(zj) = b. As a result,

k < n. If τ(r) = σ(l) = b or τ(r) = σ(y1) = b – σ(y1) = b follows from

line 16 of our algorithm; then this contradicts the fact that a is a prefix of

τ(r), which follows from Implication (4.8). However, if σ(y1) = a, then this

implies that y1 ∈ Re or y1 = xk. Also, since σ(xk) is assigned by line 6 of

our algorithm, and due to k < n, for every q, k ≤ q ≤ (n− 1), xq ∈ Le. As

a result, xn ∈ Le.

We now consider the factor xn · r · y1. It follows from

y1 ∈ Re or y1 = xk, k < n, and

xn ∈ Le

that r ∈ Eα, and σ(y1) = a and σ(xn) = b imply that y1 6= xn. We now

denote r, xn and y1 by e′, l′ and r′, respectively; thus, l′ 6= r′. Since e′ ∈ Eα,

if r′ = e′, then e′e′ v α and we can consider Case 1 of our proof, which leads

to a contradiction. So, r′ 6= e′. Moreover, according to the definition of α,

for every i, 1 ≤ i ≤ n, xi 6= r. Consequently, xn 6= r and, hence, e′ 6= l′.

Then, since l′ · e′ · r′ v α, we can consider Part (a) of Case 2 of our proof

with

σ(x) :=

bb, x = e′,

a, x 6= e,

which leads to a contradiction, due to σ being weakly unambiguous with

respect to α. Consequently, we cannot consider τ(e) = b.

It follows from the above cases that we cannot define a morphism τ satisfying

τ(α) = σ(α). Consequently, σ is weakly unambiguous and this concludes the

proof of the Claim. (Claim)

The above claim is a direct contradiction to the assumption of Theorem 4.17.

In order to conclude our reasoning on Case 2.2, it is necessary to mention that,

instead of Factorisation (4.6) of α, we can define α such that the variable l is

located to the left of the position of r in α. More precisely, we can consider

α := α1 · e · x1 · x2 · [. . .] · xk · l · xk+1 · xk+2 · [. . .] · xn · r · z1 · z2 · [. . .] · zm · e · α2 ,

with α1, α2 ∈ N∗, for every i, 1 ≤ i ≤ n, xi 6= e 6= l and, for every j, 1 ≤ j ≤ m,

zj 6= e 6= r. However, for this factorisation a simplified version of our above
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reasoning on Factorisation (4.6) can be used in order to obtain a contradiction.

In order to investigate Case 3, we assume that Cases 1 and 2 are not satisfied.

Since ε ∈ Le and ε ∈ Re, we can write α := e ·α1 · e. We define a length-increasing

morphism σ : N+ → {a, b}+ by

σ(x) :=

ab, x = e,

a, else.

Thus, σ(α) = ab · σ(α1) · ab. According to Lemma 4.8, if σ is not weakly unam-

biguous, then there exists a nonerasing morphism τ : N+ → {a, b}+ satisfying

τ(α) = σ(α), while τ(e) @ σ(e). This implies that τ(e) = a or τ(e) = b. Conse-

quently, τ(α) = a · τ(α1) · a or τ(α) = b · τ(α1) · b which contradicts τ(α) = σ(α).

Hence, σ is weakly unambiguous with respect to α. This contradicts the condition

of Theorem 4.17, namely that there is no weakly unambiguous length-increasing

morphism σ with respect to α.

Theorem 4.17 (when compared to Theorem 4.10) provides deep insights into the

difference between binary and ternary target alphabets if the weak unambiguity

of morphisms is studied. In addition to this, it implies that whenever, for a

given pattern α ∈ N+ with Eα 6= ∅, there exists an e ∈ Eα such that, for every

e′ ∈ Eα with e′ 6= e, the factors e · e′ or e′ · e do not occur in α, then there is a

weakly unambiguous length-increasing morphism σ : N+ → Σ+, Σ = {a, b}, with

respect to α. It must be noted, though, that Theorem 4.17 does not describe a

sufficient condition for the non-existence of weakly unambiguous length-increasing

morphisms in the case of |Σ| = 2; this is easily demonstrated by the pattern 1 ·2 ·1
and further illustrated by Example 4.28.

As can be concluded from Example 4.5 and Theorem 4.10, there is a weakly

unambiguous length-increasing morphism σ : N+ → Σ+, |Σ| ≥ 3, with respect to

α = 1 · 2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8, and we can define σ by σ(3) := bc and, for every

j 6= 3, σ(j) := a. In contrast to this, the next theorem implies that there is no

weakly unambiguous morphism with respect to α if |Σ| = 2. In order to prove

this theorem, we need the following lemma.

Lemma 4.23. Let Σ be an alphabet, |Σ| = 2, and let σ : N+ → Σ+ be a morphism.

For all x1, x2 ∈ N, there exist a1, a2 ∈ Σ with a1 v σ(x1) and a2 v σ(x2) such that

a1a2 v σ(x1 · x2) and a2a1 v σ(x2 · x1).

Proof. If a1 is a prefix and a suffix of σ(x1) and a2 is a prefix and a suffix of σ(x2),

then Lemma 4.23 holds trivially true. We can therefore restrict this proof to a

situation where the first and the last letters of σ(x1) differ or the first and the
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last letters of σ(x2) differ. Let Σ := {a, b}. Without loss of generality, we can

exclusively consider σ(x1) = a · · · b, since all other cases can be dealt with in an

analogous manner.

Regarding σ(x2), we now consider the following cases:

• σ(x2) starts with a.

We define a1 := b and a2 := a. Then a1 v σ(x1) and a2 v σ(x2), and

a1a2 v σ(x1 · x2). Furthermore, since σ(x1) = a2 · · · a1, there must be a

factor a2a1 in σ(x1), which directly implies that a2a1 is also a factor of

σ(x2 · x1). Thus, Lemma 4.23 holds true for this choice of a1 and a2.

• σ(x2) starts with b and ends with b.

We define a1 := a and a2 := b. This again implies that a1 v σ(x1) and

a2 v σ(x2). Since σ(x1) = a1 · · · a2, there must be a factor a1a2 in σ(x1),

and, hence, in σ(x1 · x2). Finally, when considering the last letter of σ(x2)

and the first letter of σ(x1), we can immediately observe that a2a1 is a factor

of σ(x2 · x1).

• σ(x2) starts with b and ends with a.

We define a1 := b and a2 := a, which means that a1 v σ(x1) and a2 v σ(x2).

Since σ(x1) = a2 · · · a1 and σ(x2) = a1 · · · a2, σ(x1) contains a factor a2a1

and σ(x2) contains a factor a1a2. Consequently, both σ(x1 ·x2) and σ(x2 ·x1)

contain these factors as well.

The next result introduces a sufficient condition on the non-existence of weakly

unambiguous length-increasing morphisms σ : N+ → Σ+, |Σ| = 2. According to

Theorem 4.17, it is necessary for the non-existence of such morphisms, with respect

to a given pattern α ∈ N+ that, for every e ∈ Eα, there exists an e′ ∈ Eα, e′ 6= e,

such that e · e′ and e′ · e are factors of α. Hence, this requirement must be satisfied

in the following theorem.

Theorem 4.24. Let α ∈ N+ satisfying Eα 6= ∅. Let Σ be an alphabet, |Σ| = 2.

There is no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with

respect to α if all of the following conditions hold:

1. for every e ∈ Eα, e2 6v α, and there is exactly one e′ ∈ Eα \ {e} such that

e′ ∈ Le or e′ ∈ Re, e
′ · e · e′ 6v α, and there are s1, s2, s3, s4 ∈ Sα such that

s1 · e · e′ · s2 and s3 · e′ · e · s4 are factors of α,

2. for every e ∈ Eα, ε /∈ Re and ε /∈ Le,
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3. for any s, s′ ∈ Sα and e, e′ ∈ Eα, if (s ·e ·e′ ·s′) @ α, then, for all occurrences

of s and s′ in α, the right neighbour of s is the factor e · e′ and the left

neighbour of s′ is the factor e · e′, and

4. for any s, s′ ∈ Sα and e ∈ Eα, if (s ·e ·s′) @ α, then Rs = {e} and Ls′ = {e}.

Proof. We prove that there is no weakly unambiguous length-increasing morphism

σ : N+ → Σ+, |Σ| = 2, with respect to α. This means that, for every morphism

σ, there exists a morphism τ : N+ → Σ+ satisfying τ(α) = σ(α) and, for some

q ∈ var(α), τ(q) 6= σ(q). According to Corollary 4.16, if there exists a j ∈ Sα with

|σ(j)| > 1, then σ is not weakly unambiguous with respect to α. Consequently,

we can safely restrict our considerations to the set Eα, and we can assume that,

for every j ∈ Sα, |σ(j)| = 1. Hence, we choose an arbitrary variable e1 from Eα,

and we assume that |σ(e1)| > 1. According to the conditions of Theorem 4.24,

there is exactly one e2 ∈ Eα such that e2 ∈ Le1 or e2 ∈ Re1 . Moreover, it follows

from the conditions that s1 · e1 · e2 · s2 and s3 · e2 · e1 · s4, with s1, s2, s3, s4 ∈ Sα,

are factors of α. Let,

α := α1 · s1 · e1 · e2 · s2 · α2 · s3 · e2 · e1 · s4 · α3,

α1, α2, α3 ∈ N∗. So,

σ(α) = σ(α1) · σ(s1)σ(e1 · e2)σ(s2) · σ(α2) · σ(s3)σ(e2 · e1)σ(s4) · σ(α3).

In accordance with Lemma 4.23, there exists a factor a1a2, a1, a2 ∈ Σ, such that

σ(e1e2) = u·a1a2·v, u, v ∈ Σ∗, σ(e2e1) = u′·a2a1·v′, u′, v′ ∈ Σ∗, and a1 v σ(e1) and

a2 v σ(e2). Also, since |σ(e1)| > 1, uv 6= ε and u′v′ 6= ε. We define a nonerasing

morphism τ by τ(e1) := a1, τ(e2) := a2, τ(s1) := σ(s1)u, τ(s2) := vσ(s2), τ(s3) :=

σ(s3)u and τ(s4) := vσ(s4). Consequently, τ(s1 · e1 · e2 · s2) = σ(s1 · e1 · e2 · s2) and

τ(s3 · e2 · e1 · s4) = σ(s3 · e2 · e1 · s4). Due to the assumption, e1 and e2 can occur

in α in accordance with the following cases:

• s · e1 · e2 · s′.

If we consider τ(s) := σ(s)u and τ(s′) := vσ(s2), then τ(s · e1 · e2 · s′) =

σ(s · e1 · e2 · s′).

• s · e2 · e1 · s′.

If we consider τ(s) := σ(s)u′ and τ(s′) := v′σ(s2), then τ(s · e2 · e1 · s′) =

σ(s · e2 · e1 · s′).

• s · e1 · s′.

The definition τ(s) := σ(s)u implies that τ(s · e1 · s′) = σ(s · e1 · s′).
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• s · e2 · s′.

Defining τ(s) := σ(s)u′, we have τ(s · e2 · s′) = σ(s · e2 · s′).

Also, we define τ for every j ∈ var(α) \ {e1, e2} with j /∈ Le1 , Le2 , Re1 , Re2 by

τ(j) := σ(j). Hence, Conditions 1, 2, 3 and 4 imply τ(α) = σ(α), while τ(e1) 6=
σ(e1). Consequently, σ is not weakly unambiguous with respect to the pattern α.

Since the variable e1 is an arbitrary variable of Eα, we can conclude that there is

no weakly unambiguous length-increasing morphism σ with respect to α.

In order to illustrate Theorem 4.24, we consider a few examples:

Example 4.25. Let,

α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8 · 3 · 9 · 10,

β := 1 · 2 · 4 · 5 · 6 · 3 · 4 · 7 · 8 · 3 · 9 · 10 · 4 · 3 · 11 · 12,

γ := 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 4 · 3 · 11 · 12 · 8 · 7 · 13 · 14.

Then, according to Definition 4.4, Eα, Eβ and Eγ are nonempty (the respective

variables are typeset in bold face). Since the patterns satisfy the conditions of

Theorem 4.24, there is no length-increasing morphism σ : N+ → Σ+ that is weakly

unambiguous with respect to them (provided that |Σ| = 2).

Theorem 4.24 and Example 4.25 directly imply the insight mentioned above

that Theorem 4.10 does not hold for binary alphabets Σ:

Corollary 4.26. Let Σ be an alphabet with |Σ| = 2. There is an α ∈ N+ such

that Eα is not empty and there is no length-increasing morphism σ : N+ → Σ+

that is weakly unambiguous with respect to α.

In contrast to the previous theorem, the following result features a sufficient

condition on the existence of weakly unambiguous length-increasing morphisms

σ : N+ → Σ+, |Σ| = 2, with respect to a given pattern. This phenomenon partly

depends on the question of whether we can avoid short squares in the morphic

image.

Theorem 4.27. Let α ∈ N+, and let Σ be an alphabet, |Σ| = 2. Suppose that

• i · e · e′ @ α and i · e′ · e @ α, or

• e · e′ · i @ α and e′ · e · i @ α,

with e, e′ ∈ Eα and i ∈ var(α) \ {e, e′}. If a morphism σ : N+ → Σ+ satisfies

• |σ(e)| = 2 and |σ(e′)| = 2,
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• for every j ∈ var(α) \ {e, e′}, |σ(j)| = 1, and

• there is no x ∈ Σ with x2 v σ(α),

then σ is weakly unambiguous with respect to α.

Proof. Let Σ := {a, b}. We initially discuss the case where i · e · e′ @ α and

i · e′ · e @ α are satisfied. We define a morphism σ : N+ → Σ+ such that the

conditions of Theorem 4.27 are satisfied. This implies that σ(α) = (ab)n · v,

v ∈ {a, ε}, or σ(α) = (ba)n · v, v ∈ {b, ε}; moreover, σ(e) = ab and σ(e′) = ab or,

alternatively, σ(e) = ba and σ(e′) = ba. Consequently, σ(i · e · e′) = b · ab · ab, or

σ(i · e · e′) = a · ba · ba.

Assume to the contrary that σ is not weakly unambiguous with respect to α.

Consequently, there is a nonerasing morphism τ : N+ → Σ+ with τ(α) = σ(α)

and, for some q ∈ var(α), τ(q) 6= σ(q). Hence, if σ(e) = ab and σ(e′) = ab, then

one of the following cases is satisfied:

• |τ(e)| < |σ(e)|, which leads to the following sub-cases:

– τ(e) = a. Since τ(α) = σ(α) and i · e · e′ @ α, this implies that

τ(i) = α1b, α1 ∈ Σ∗, and τ(e′) = bα2, α2 ∈ Σ∗. Due to i · e′ · e @ α,

τ(i · e′ · e) @ τ(α). However, τ(i · e′ · e) = α1b · bα2 · a and, this means

that b2 @ τ(α), which contradicts τ(α) = σ(α).

– τ(e) = b. An analogous reasoning to that in the previous case leads to

a2 @ τ(α), which is a contradiction.

• |τ(e′)| < |σ(e′)|. The reasoning is analogous to that in the previous case.

• |τ(e)| ≥ 3 and |τ(e′)| ≥ 3. Since τ is nonerasing, |τ(α)| > |σ(α)|. This

contradicts τ(α) = σ(α).

• |τ(e)| ≥ 4 or |τ(e′)| ≥ 4. Since τ is nonerasing, |τ(α)| > |σ(α)|. This again

contradicts τ(α) = σ(α).

• |τ(e)| = 3. If τ(e) = aba, then the conditions τ(α) = σ(α) and i · e · e′ @ α

imply that τ(i) = α1b, α1 ∈ Σ∗, and τ(e′) = bα2, α2 ∈ Σ∗. Due to i·e′ ·e @ α,

τ(i · e′ · e) @ τ(α). However, τ(i · e′ · e) = α1b · bα2 · aba, and this means

that b2 @ τ(α), which contradicts τ(α) = σ(α). If τ(e) = bab, then the

conditions τ(α) = σ(α) and i · e · e′ @ α imply that τ(i) = α1a, α1 ∈ Σ∗,

and τ(e′) = aα2, α2 ∈ Σ∗. Due to i · e′ · e @ α, τ(i · e′ · e) @ τ(α). However,

τ(i · e′ · e) = α1a · aα2 · bab, and this means that a2 @ τ(α), which again

contradicts τ(α) = σ(α).

• |τ(e′)| = 3. The reasoning is analogous to that in the previous case.
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• τ(e) = τ(e′) = ba. Consequently, since τ(α) = σ(α), for every j ∈ var(α) \
{e, e′}, |τ(j)| = 1. As a result |τ(i)| = 1 and due to x2 6v σ(α), x ∈ Σ,

τ(i) = a. So, τ(i·e·e′) = τ(i·e′·e) = ababa, while σ(i·e·e′) = σ(i·e′·e) = babab.

This implies that there exists at least one variable k ∈ var(α) \ {e, e′} with

τ(k) = ε, since otherwise τ(α) 6= σ(α). This contradicts the fact that τ is

nonerasing.

The extension of this reasoning to the case where σ(e) = ba and σ(e′) = ba are

satisfied is straightforward. Hence, there is no morphism τ with τ(α) = σ(α) and,

for some q ∈ var(α), τ(q) 6= σ(q). Consequently, σ is weakly unambiguous with

respect to α. Using the same reasoning as above, it can be demonstrated that

Theorem 4.27 holds true for the case that e · e′ · i @ α and e′ · e · i @ α.

The main difference between Theorem 4.27 and Theorem 4.24 is that those

patterns α being examined in Theorem 4.27 do not satisfy Condition 3 of Theo-

rem 4.24. Thus, the two theorems demonstrate what subtleties in the structure of

a pattern can determine whether or not it has a weakly unambiguous morphism

with a binary target alphabet.

In order to illustrate Theorem 4.27, we now consider some examples. In

contrast to Example 4.25, the factors 3 · 4 and 4 · 3 of the patterns in the fol-

lowing example have an identical right neighbour or an identical left neighbour.

Example 4.28. We define a morphism σ : N+ → {a, b}+ for the given patterns

α (where the factors featured by Theorem 4.27 are typeset in bold face) as follows:

• α = 1 · 2 · 5 · 3 · 4 · 6 · 7 · 8 · 5 · 4 · 3 · 9 · 10.

σ is defined by σ(1) := a, σ(2) := b, σ(5) := a, σ(3) := ba, σ(4) := ba,

σ(6) := b, σ(7) := a, σ(8) := b, σ(9) := b and σ(10) := a.

• α = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 4 · 3 · 5 · 8 · 9.

σ is defined by σ(1) := a, σ(2) := b, σ(3) := ab, σ(4) := ab, σ(5) := b,

σ(6) := a, σ(7) := b, σ(8) := b and σ(9) := a.

• α = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 3 · 4 · 9 · 10 · 11 · 8 · 4 · 3 · 12 · 13.

σ is defined by σ(1) := b, σ(2) := a, σ(3) := ba, σ(4) := ba, σ(5) := b,

σ(6) := a, σ(7) := b, σ(8) := a, σ(9) := b, σ(10) := a, σ(11) := b, σ(12) := b

and σ(13) := a.

With reference to Theorem 4.27, it can be easily verified that, in all the above

cases, σ is length-increasing and weakly unambiguous with respect to α.
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The patterns in Example 4.28 further illustrate that the converse of Theo-

rem 4.17 does not hold true. More precisely, although for every pattern α in this

example, for every e ∈ Eα there exists an e′ ∈ Eα, e′ 6= e, such that e · e′ and

e′ · e are factors of α, there is a weakly unambiguous length-increasing morphism

σ : N+ → {a, b}+ with respect to α.

Due to Theorems 4.24 and 4.27, we expect that it is an extremely challenging

task to find an equivalent to the characterisation in Theorem 4.10 for the binary

case. From our understanding of the matter, we can therefore merely give the fol-

lowing conjecture on the decidability of Problem 3.15 for binary target alphabets.

Conjecture 4.29. Let α ∈ N+ with |α| ≥ 2, and let Σ be an alphabet, |Σ| = 2.

The problem of whether there is a weakly unambiguous length-increasing morphism

σ : N+ → Σ+ with respect to α is decidable by testing a finite number of morphisms.

The above conjecture is based on the fact that according to the Corollary 4.16,

any weakly unambiguous length-increasing morphism with respect to a pattern α

must not be length-increasing for the variables in Sα. On the other hand, increa-

sing the length of the morphic images of the variables in Eα under a morphism

σ : N+ → Σ+, |Σ| = 2, seems to increase the chance of the existence of a mor-

phism τ : N+ → Σ+ satisfying τ(α) = σ(α) and, for some i ∈ var(α), τ(i) 6= σ(i).

Consequently, we believe that if all morphisms σ with, for every e ∈ Eα and an

x ∈ N, |σ(e)| ≤ x are not weakly unambiguous with respect to α, then there does

not exist a weakly unambiguous morphism σ with |σ(e)| > x for some e ∈ Eα,

either. For all patterns, we expect a value of x = 2 to be a sufficiently large bound

for the morphisms to be tested.

4.4 Weakly unambiguous morphisms with

|Σ| = 1

It is not surprising that most of our considerations in the previous sections of this

chapter are not applicable to morphisms with a unary target alphabet. On the

other hand, Corollaries 4.15 and 4.16 also hold for this special case, i. e., for any

pattern α, every weakly unambiguous morphism must map the variables in Sα

to words of length 1, which implies that such a morphism can only be length-

increasing if Eα is not empty. Incorporating these observations, we now consider

an example.

Example 4.30. Let α1 := 1 · 2 · 3 · 4 · 1 · 2 · 3. Consequently, Eα1 = {4}. We

define a morphism σ : N+ → {a}+ by σ(4) := aa and σ(i) := a, i ∈ N \ {4}. It

can be easily verified that σ is weakly unambiguous with respect to α1. Now let
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α2 := 1 · 2 · 3 · 4 · 1 · 2 · 3 · 5 · 6. As a result, Eα2 = {4}. If we now consider the

morphism τ , given by τ(4) := a, τ(5) := aa and τ(i) := σ(i), i ∈ N \ {4, 5}, then

we may conclude τ(α2) = σ(α2). Thus, σ is not weakly unambiguous with respect

to α2.

Quite obviously, the fact that σ is weakly unambiguous with respect to α1 and

ambiguous with respect to α2 is due to 4 being the only variable in α1 that has

a single occurrence, whereas α2 also has single occurrences of the variables 5 and

6. This aspect is reflected by the following characterisation that completely solves

Problem 3.15 for morphisms with unary target alphabets.

Theorem 4.31. Let α ∈ N+, var(α) = {1, 2, 3, . . . , n}. There is no weakly unam-

biguous length-increasing morphism σ : N+ → {a}+ with respect to α if and only

if, for every i ∈ var(α), there exist n1, n2, . . . , ni−1, ni+1, . . . , nn ∈ N ∪ {0}, such

that

|α|i =
∑

j∈{1,2,...,n}\{i}

nj|α|j. (4.9)

Proof. We begin with the if direction. Assume that, for every i ∈ var(α), Equa-

tion (4.9) is satisfied. Also, assume that σ : N+ → {a}+ is an arbitrary length-

increasing morphism with |σ(i′)| > 1, i′ ∈ var(α). This means that σ(i′) = am,

m ≥ 2 and, hence,

|σ(α)| = |σ(1)||α|1 + |σ(2)||α|2 + [. . .] +m|α|i′ + [. . .] + |σ(n)||α|n.

Due to |Σ| = 1, we can prove that σ is not weakly unambiguous with respect to

α by defining a morphism τ : N+ → {a}+ with |τ(α)| = |σ(α)| and, for some

q ∈ var(α), |τ(q)| 6= |σ(q)|. We define the morphism τ such that τ(i′) := a(m−1),

and as a result,

|τ(α)| = |τ(1)||α|1 + |τ(2)||α|2 + [. . .] + (m− 1)|α|i′ + [. . .] + |τ(n)||α|n.

We need to demonstrate that

|τ(α)| − |σ(α)| = 0.

This is equivalent to:

|α|i′ = |α|1(|τ(1)| − |σ(1)|) + |α|2(|τ(2)| − |σ(2)|) + [. . .] +

|α|i′−1(|τ(i′ − 1)| − |σ(i′ − 1)|) + |α|i′+1(|τ(i′ + 1)| − |σ(i′ + 1)|)

+[. . .] + |α|n(|τ(n)| − |σ(n)|). (4.10)
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According to Equation (4.9), for Equation (4.10) to be satisfied, we define the

morphism τ , for every j ∈ var(α)\{i′} such that |τ(j)|− |σ(j)| = nj, and this can

be achieved by defining τ(j) := a(nj+|σ(j)|). Consequently, τ is given by

τ(i) :=

a|σ(i)|−1, i = i′,

a(ni+|σ(i)|), i ∈ var(α) \ {i′},

which implies that τ is nonerasing, τ(i′) 6= σ(i′), and |τ(α)| = |σ(α)|. This means

that σ is not weakly unambiguous with respect to α.

We now prove the only if direction. So, we assume that there is no weakly

unambiguous length-increasing morphism σ : N+ → {a}+ with respect to α. Let

i be an arbitrary variable of α. We define the morphism σ for the variables

x ∈ var(α) by

σ(x) :=

aa, x = i,

a, x 6= i.

The assumption of the only if direction implies that there exists a morphism τ

satisfying τ(α) = σ(α) and, for some variables q ∈ var(α), τ(q) 6= σ(q). According

to Lemma 4.8, τ(i) @ σ(i) must be satisfied. Thus, τ(i) = a. Consequently,

|σ(α)| = |σ(1)||α|1 + |σ(2)||α|2 + [. . .] + 2|α|i + [. . .] + |σ(n)||α|n

and

|τ(α)| = |τ(1)||α|1 + |τ(2)||α|2 + [. . .] + |α|i + [. . .] + |τ(n)||α|n.

It follows from |τ(α)| = |σ(α)|, that |τ(α)| − |σ(α)| = 0. Thus,

|α|1(|τ(1)| − |σ(1)|) + |α|2(|τ(2)| − |σ(2)|) + [. . .]+

(−|αi|) + [. . .] + |α|n(|τ(n)| − |σ(n)|) = 0.

This leads to

|α|i = |α|1|(τ(1)| − |σ(1)|) + |α|2(|τ(2)| − |σ(2)|)

+[. . .] + |α|i−1(|τ(i− 1)| − |σ(i− 1)|) + |α|i+1(|τ(i+ 1)| − |σ(i+ 1)|)

+[. . .] + |α|n(|τ(n)| − |σ(n)|). (4.11)

Consequently, for any variable i ∈ var(α), there exists n1, n2, . . . , nn ∈ N ∪ {0},
such that Equation (4.9) is satisfied.

Hence, we are able to provide a result on unary alphabets that is as strong

as our result in Theorem 4.10 on ternary and larger alphabets. However, while
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Theorem 4.10 needs to consider the order of variables in the patterns, it is evident

that Theorem 4.31 can exclusively refer to their numbers of occurrences.



Chapter 5

Strongly unambiguous 1-uniform

morphisms

In the present chapter, we investigate Problems 3.16 and 3.23 (see pages 16 and

18, respectively). To this end, we first study Problem 3.16, which deals with the

existence of strongly unambiguous 1-uniform morphisms. Our analysis can make

use of Theorem 3.17, which implies that an answer to Problem 3.16 is trivial

for those patterns that are fixed points of nontrivial morphisms. Hence, in our

investigation of Problem 3.16, we can safely restrict ourselves to those patterns

that are not fixed points. Moreover, to investigate Problem 3.16, we consider two

different settings: in Section 5.1 we assume that the size of Σ does not depend

on the number of variables in the pattern, and in Section 5.2 we allow Σ to be

arbitrarily chosen, subject to the number of different variables in the pattern α

(provided that |Σ| < | var(α)| remains satisfied).

Subsequent to this, in Section 5.3, we examine Problem 3.23 and its relation

to Conjecture 3.21 (Billaud’s Conjecture). Finally, we prove the correctness of

Conjecture 3.21 for a special case.

Note that, in this chapter, instead of using the term “strongly unambiguous”,

we use “unambiguous” for short. Furthermore, as already used above and in

contrast to Chapter 4, we distinguish between these patterns that are a fixed point

and those that are not a fixed point , instead of using the equivalent partition into

prolix and succinct patterns (see Theorem 3.19 for the equivalence of the concepts).

This is because, we shall expand our studies on the ambiguity of morphisms in

Sections 5.1 and 5.2 to a discussion of questions that make use of the definition of

fixed points (see Section 5.3).

57
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5.1 Fixed target alphabets

In the present section, we describe a number of conditions on the existence of

unambiguous 1-uniform morphisms σ : N∗ → Σ∗ with a fixed target alphabet

Σ, i. e., the size of Σ does not depend on the number of variables occurring in

a given pattern. While Theorem 3.1 demonstrates that the set of patterns with

an unambiguous nonerasing morphisms is independent of the size of Σ (provided

that |Σ| ≥ 2), all patterns αm := 1 · 1 · 2 · 2 · [. . .] ·m ·m with m ≥ 4 do not have an

unambiguous 1-uniform morphism σ : N∗ → Σ∗ for binary alphabets Σ. However,

such morphisms can be given for ternary (and, thus, larger) alphabets:

Theorem 5.1. Let m ∈ N, m ≥ 4, let Σ be an alphabet, and let αm := 1 · 1 · 2 · 2 ·
[. . .] ·m ·m. There exists a 1-uniform morphism σ : N∗ → Σ∗ that is unambiguous

with respect to αm if and only if |Σ| ≥ 3.

Proof. Since squares cannot be avoided over unary and binary alphabets, it can be

shown with very limited effort that there is no unambiguous 1-uniform morphism

σ : N∗ → Σ∗ with respect to any αm if Σ does not contain at least three letters.

Thue [38] gives an infinite square-free word over a ternary alphabet. Let this

word be w. Thus,

w = abcacbabcbacabcacbaca · · · .

We define a word w′ by repeating every letter of w twice. Consequently,

w′ = aabbccaaccbbaabbccbbaaccaabbccaaccbbaaccaa · · · .

We now define a 1-uniform morphism σ : N∗ → {a, b, c}∗ such that σ(αm) is a

prefix of w′. Since w is square-free, the only square factors of w′ are aa, bb and cc.

Hence, it can be easily verified that σ is unambiguous with respect to αm.

Thus – and just as for the equivalent problem on unambiguous erasing mor-

phisms (see Theorem 3.9) – any characteristic condition on the existence of unam-

biguous 1-uniform morphisms needs to incorporate the size of Σ, which suggests

that such criteria might be involved. This is further strengthened by the following

result, which establishes an analogous phenomenon for the transition from |Σ| = 3

to |Σ| ≥ 4:

Theorem 5.2. There exists an α ∈ N+ such that

• every 1-uniform morphism σ : N∗ → {a, b, c}∗ is not unambiguous with

respect to α and

• there is a 1-uniform morphism σ : N∗ → {a, b, c, d}∗ that is unambiguous

with respect to α.
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Proof. Let α := 1 · 22 · 32 · 42 · 52 · 62 · 1 · 22 · 32 · 42 · 52 · 62 · 22. We begin with

the first statement of Theorem 5.2: Assume to the contrary that there is a 1-

uniform morphism σ : N∗ → {a, b, c}∗ that is unambiguous with respect to α. If

σ(3 · 4 · 5 · 6) contains at most two different symbols, then there exists a morphism

τ with τ(α) = σ(α) and τ(x) = ε for an x ∈ {3, 4, 5, 6} (since σ(3 · 4 · 5 · 6) then

necessarily contains a square), which is a contradiction.

Hence, σ(3 · 4 · 5 · 6) must be a word over {a, b, c}. This implies that there

is an x ∈ {3, 4, 5, 6} satisfying σ(x) = σ(2). We now consider the morphism

τ : N∗ → {a, b, c}∗ given by

τ(i) :=


σ(1 · 22 · [. . .] · (x− 1)2), i = 1,

σ(i), i = 2 or x+ 1 ≤ i ≤ 6,

ε, 3 ≤ i ≤ x.

Hence, τ(α) = σ(α) and τ(x) = ε 6= σ(x). Thus, σ is not unambiguous with

respect to α, which is a contradiction.

Regarding the second statement of Theorem 5.2, we define a morphism σa,b,c,d :

N∗ → {a, b, c, d}∗ by

σa,b,c,d(i) :=



a, i ∈ {1, 4, 6},

b, i = 2,

c, i = 3,

d, i = 5.

An exhaustive search demonstrates that there is no morphism τ : N∗ → {a, b, c, d}∗

with τ(α) = σa,b,c,d(α) and τ(x) 6= σa,b,c,d(x) for an x ∈ var(α). Thus, σa,b,c,d is

unambiguous with respect to α.

Using a different construction, Reidenbach [27] demonstrates that any charac-

teristic condition on those patterns that have unambiguous 1-uniform morphisms

needs to incorporate the target alphabet size:

Theorem 5.3 (Reidenbach [27]). For every k ∈ N and for every alphabet Σ with

|Σ| ≤ k, there exist an αk ∈ N+ and an alphabet Σ′ with k < |Σ′| < | var(αk)| such

that

• there is no 1-uniform morphism σ : N∗ → Σ∗ that is unambiguous with

respect to αk and

• there is a 1-uniform morphism σ : N∗ → Σ′∗ that is unambiguous with respect

to αk.



CHAPTER 5. STRONGLY UNAMBIGUOUS 1-UNIFORM MORPHISMS 60

Therefore, due to Theorems 5.1, 5.2 and 5.3, our further results regarding

the existence of unambiguous 1-uniform morphisms are restricted to sufficient

conditions.

Our first criterion is based on (un)avoidable patterns and is, thus, related to

the above-mentioned property of the patterns αm:

Theorem 5.4. Let n ∈ N, β := r1 · r2 · [. . .] · rdn/2e and α := 1r1 · 2r1 · 3r2 · 4r2 ·
[. . .] ·n(rdn/2e) with ri ≥ 2 for every i, 1 ≤ i ≤ dn/2e. If β is square-free, then there

exists a 1-uniform morphism σ : N∗ → {a, b}∗ that is unambiguous with respect to

α.

Proof. For any n ∈ N, let A := {1, 2, 3, . . . , n}. For every q ∈ A, we define a

1-uniform morphism σ by σ(q) := a if q is odd and σ(q) := b if q is even. Thus,

σ(α) = ar1br1 ·ar2br2 ·[. . .]·x(rdn/2e) with x ∈ {a, b}. We claim that σ is unambiguous

with respect to α if β is square-free. Assume to the contrary that σ is ambiguous.

Consequently, there is a morphism τ : A∗ → {a, b}∗ with τ(α) = σ(α) and, for

an i ∈ A, τ(i) 6= σ(i). Without loss of generality, we assume that for any i′ < i,

τ(i′) = σ(i′). Thus, we can define u ∈ {a, b}∗ such that σ(α) = u · τ(i) · · · · . Let

B := {r1, r2, . . . , rdn/2e} and assume that y is the maximum number in B.

Claim. σ(α) does not contain any factor v2 such that v ∈ {apbp|p ∈ B}+.

Proof (Claim). Since β is square-free, every subpattern of it is square-free. So,

by considering the structure of σ(α), this implies that σ(α) does not contain any

factor v2 such that v ∈ {apbp|p ∈ B}+. (Claim)

Let, τ(i) = aj · bk · v · al · bm, v ∈ {apbp|p ∈ B}∗, 0 ≤ j ≤ y, 0 ≤ k ≤ y, 0 ≤ l ≤ y

and 0 ≤ m ≤ y. Furthermore, since ri ≥ 2, τ(i)2 is a factor of τ(α). Hence,

τ(α) = u · (ajbkvalbm)2 · · · ,

u 6= · · · a if j 6= 0 and, u 6= · · · b if j = 0. We now consider the following cases:

1. j 6= k, j 6= 0 and k 6= 0.

(a) v 6= ε. So, τ(α) = u · ajbkv · · · . However, the factor u · ajbkv does not

occur in σ(α), because j 6= k.

(b) v = ε.

i. l = m = 0. Hence, τ(α) = u · ajbkajbk · · · . However, due to j 6= k,

σ(α) does not have the factor u · ajbkaj, and this contradicts the

assumption τ(α) = σ(α).
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ii. l = 0 and m 6= 0. We have τ(α) = u · ajbkbmajbkbm · · · ; in other

words, τ(α) contains the factor u · ajbk+majbk+m. Let v′ = ajbk+m.

Since τ(α) = σ(α), j = (k + m) and v′ ∈ {apbp|p ∈ B}. So, τ(α)

contains the factor v′v′ which contradicts the Claim.

iii. l 6= 0. So, τ(α) = u · ajbkalbmajbkalbm · · · . However, the factor

u·ajbkal does not occur in σ(α), because j 6= k. Hence, τ(α) 6= σ(α)

and this again contradicts the assumption.

2. j = k 6= 0.

(a) l 6= m, l 6= 0 and m 6= 0. Thus, τ(α) = u · ajbjvalbm · ajbjvalbm · · · .
This means that τ(α) contains the factor bjv · albm · aj. Due to l 6= m,

this factor does not occur in σ(α), and this contradicts the assumption

σ(α) = τ(α).

(b) l = m = 0. Hence, τ(α) = u · ajbjv · ajbjv · · · . Let v′ = ajbjv. Thus,

v′v′ is a factor of τ(α) which implies that v′ ∈ {apbp|p ∈ B}+. However,

this contradicts the above mentioned claim.

(c) l = m 6= 0 and l 6= 1. We can conclude that τ(α) = u · ajbjvalbl ·
ajbjvalbl · · · . We can infer from the factor bjv · albl · aj that albl ∈
{apbp|p ∈ B}. Let v′ = ajbjvalbl. So, v′v′ is a factor of τ(α) while

v′ ∈ {apbp|p ∈ B}+, which again contradicts the mentioned claim.

(d) l = m = 1. So, τ(α) contains the factor bjva1b1 · aj which does not

occur in σ(α).

(e) l 6= 0 and m = 0. Hence, τ(α) = u ·ajbjv ·al+jbj · val · · · . However, this

contradicts the assumption σ(α) = τ(α), because of (l + j) 6= j.

(f) l = 0 and m 6= 0. This means that τ(α) has the factor u · ajbjvbm · aj.

i. v = ε. So, u · ajbj+m · aj is a factor of τ(α), and this contradicts

σ(α) = τ(α) due to j 6= (j +m).

ii. v 6= ε. Thus, we have the factor bj · vbm · aj in τ(α). However, the

number of repetitions of the last b in v plus m is larger than the

repetitions of its previous a, and such a factor does not occur in

σ(α).

3. j 6= 0 and k = 0.

(a) v 6= ε. So, ajvalbm · aj is a factor of τ(α). However, the number of

repetitions of the first a in v plus j is larger than the number of the

subsequent b, and this contradicts the structure of σ(α).

(b) v = ε. This implies τ(α) = u · aj+lbm · aj+lbm · · · .
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i. m 6= 0. Since τ(α) = σ(α), we can infer from the factor u · aj+lbm ·
aj+l that j+ l = m and as a result aj+lbm ∈ {apbp|p ∈ B}. Let v′ =

aj+lbm. So, v′v′ is a factor of τ(α); however, this again contradicts

the mentioned claim.

ii. m = 0. We can conclude that (aj+l)ri is a factor of τ(α). However,

σ(α) does not contain this factor, because we know that after ri

occurrences of a in σ(α), we have b or ε.

4. j = 0 and k 6= 0.

(a) l 6= 0. Hence, τ(α) = u · bkvalbm · bkvalbm · · · and, consequently, τ(α)

contains the factor bkvalbm+kval. Because of τ(α) = σ(α), we can

conclude that l = (m+ k) and albm+k ∈ {apbp|p ∈ B} and also τ(α) =

u · (bkvalbm+kvalbm) · (bk) · · · · . Let v′ = valbm+k. So, v′v′ is a factor of

τ(α) while v′ ∈ {apbp|p ∈ B}+. This again contradicts the mentioned

claim.

(b) l = 0. So, τ(α) = u · bkvbm · bkvbm · · · .

i. v 6= ε. As a result, bk · vbk+m · vbm is a factor of τ(α). However, the

number of repetitions of the last b in v plus k + m is larger than

the repetitions of its previous a, and such a factor does not occur

in σ(α).

ii. v = ε. We can conclude that (bk+m)ri is a factor of τ(α). However,

σ(α) does not contain this factor, because we know that after ri

occurrences of b in σ(α), we have a or ε.

5. τ(i) = ε. Due to τ(α) = σ(α), there exists an i′ > i with |τ(i′)| > 1. So, we

can consider τ(i′) = aj · bk · v · al · bm, which leads to the above cases.

Consequently, in all cases, assuming the existence of a morphism τ with τ(α) =

σ(α) and, for an i ∈ var(α), τ(i) 6= σ(i) leads to a contradiction. Thus, σ is

unambiguous with respect to α.

Our second criterion again holds for binary (and, thus, all larger) alphabets Σ.

It features a rather restricted class of patterns, which, however, are minimal with

regard to their length.

Theorem 5.5. Let n ∈ N, n ≥ 2. If n is even, then let

α := 1 · 2 · [. . .] · n · (n/2 + 1) · 1 · (n/2 + 2) · 2 · [. . .] · n · n/2,

and if n is odd, then let

α := 1 · 1 · 2 · 3 · [. . .] · n · (dn/2e+ 1) · 2 · (dn/2e+ 2) · 3 · [. . .] · n · dn/2e.
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Then α is a shortest pattern with | var(α)| = n that is not a fixed point of a

nontrivial morphism, and there exists a 1-uniform morphism σ : N∗ → {a, b}∗

that is unambiguous with respect to α.

Proof. We first briefly explain why any pattern α′ with | var(α′)| = n and |α′| < |α|
must be a fixed point of a nontrivial morphism: If | var(α′)| = n and |α′| < |α|,
then α′ must contain at least one variable z with just a single occurrence, because

all variables in α have exactly two occurrences. We can then define a morphism

φ : N∗ → N∗ by φ(z) := α′ and φ(z′) := ε for all z′ ∈ var(α′) \ {z′}. Since n ≥ 2, φ

is nontrivial, and obviously φ(α′) = α′. Hence, α′ is a fixed point of φ. At the end

of this proof, we shall show that α is not a fixed point of a nontrivial morphism,

which will then complete the proof of the first statement of the theorem.

We now consider the second statement of the theorem. We define the morphism

σ by

σ(x) :=

a, if 1 ≤ x ≤ dn/2e,

b, else .

Assume to the contrary that σ is ambiguous with respect to α. Consequently,

there exists a morphism τ : N∗ → {a, b}∗ satisfying τ(α) = σ(α) and, for some

q ∈ var(α), τ(q) 6= σ(q).

Let n be even. So,

α := 1 · 2 · [. . .] · n · (n/2 + 1) · 1 · (n/2 + 2) · 2 · [. . .] · n · n/2.

As a result,

σ(α) = an/2 · bn/2 · (ba)n/2.

Assume that α = β1β2 with

β1 = 1 · 2 · [. . .] · n

and,

β2 = (n/2 + 1) · 1 · (n/2 + 2) · 2 · [. . .] · n · n/2.

Due to the structure of α and |τ(α)| = |σ(α)|, it is easily verified that |τ(β1)| =

|σ(β1)| and, hence, τ(β1) = σ(β1). Besides, τ(β1) = σ(β1) implies that τ(β2) =

σ(β2). Since σ is a 1-uniform morphism, there exists a q ∈ var(α) such that

|τ(q)| ≥ 2. Due to τ(β1) = σ(β1), we have one of the following cases:

1. ak v τ(q) with k ≥ 2. Since q has an occurrence in β2 and ak 6v σ(β),

τ(β) 6= σ(β), and as a result, τ(α) 6= σ(α), which is a contradiction.

2. bk v τ(q) with k ≥ 2. Using the same reasoning as above, this leads to a
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contradiction.

3. τ(q) = ab. We consider the following cases:

• q < n/2. Then, due to τ(β1) = σ(β1), there exists a q′ < q satisfying

τ(q′) = ak with k ≥ 2, which according to Case 1 leads to a contradic-

tion.

• q = n/2. Due to the facts that n/2 is the last variable occurring in α

and ba must be a suffix of τ(α), this leads to a contradiction.

• q = n/2 + 1. Since τ(β2) = σ(β2), ba must be a prefix of τ(β2).

However, the variable n/2 + 1 is the first variable of β2. Consequently,

this contradicts τ(α) = σ(α).

• q > n/2 + 1. Then, due to τ(β1) = σ(β1), there exists a q′ > q

satisfying τ(q′) = bk with k ≥ 2, which according to Case 2 leads to a

contradiction.

Hence, all above cases contradict the assumption of τ(α) = σ(α).

However, if n is odd,

α := 1 · 1 · 2 · 3 · [. . .] · n · (dn/2e+ 1) · 2 · (dn/2e+ 2) · 3 · [. . .] · n · dn/2e.

Thus,

σ(α) = aa · abn/2c · bbn/2c · (ba)bn/2c.

Due to the structure of α and τ(α) = σ(α), it is easily verified that τ(1) = σ(1) =

a. This implies that an analogous reasoning to the case when n is even can also

be used for the case that n is odd. Consequently, we can conclude that σ is

unambiguous with respect to α.

What remains to explain is why α is not a fixed point of a nontrivial morphism.

Since σ is nonerasing and, as shown above, unambiguous with respect to α, this

directly follows from the contraposition of Theorem 3.17.

The following examples illustrates Theorem 5.5 and its proof: For n := 6,

α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 1 · 5 · 2 · 6 · 3, and the 1-uniform morphism σ : N∗ → {a, b}∗

with σ(1) := σ(2) := σ(3) := a and σ(4) := σ(5) := σ(6) := b is unambiguous with

respect to α. For n := 5, α := 1·1·2·3·4·5·4·2·5·3, and the respective unambiguous

morphism is given by σ(1) := σ(2) := σ(3) := a and σ(4) := σ(5) := b.

From Theorem 5.5 we can conclude that patterns α with unambiguous 1-

uniform morphisms using a binary target alphabet exist for every cardinality of

var(α) and that corresponding examples can be given where every variable occurs

just twice.
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5.2 Variable target alphabets

In order to continue our examination of Problem 3.16, we now relax one of the

requirements of Section 5.1: We no longer investigate criteria on the existence of

unambiguous 1-uniform morphisms for a fixed target alphabet Σ, but we permit

Σ to depend on the number of variables in the pattern α in question. Regarding

this question, we conjecture the following statement to be true:

Conjecture 5.6. Let α be a pattern with | var(α)| ≥ 4. There exists an alphabet

Σ satisfying |Σ| < | var(α)| and a 1-uniform morphism σ : N∗ → Σ∗ that is

unambiguous with respect to α if and only if α is not a fixed point of a nontrivial

morphism.

Due to Theorem 3.1 and also the fact that the set of succinct patterns is equi-

valent to the set of patterns which are not a fixed point of a nontrivial morphism

(see Theorem 3.19), the only if direction of Conjecture 5.6 is trivial. Moreover,

this conjecture would be trivially true if we allowed Σ to satisfy |Σ| ≥ | var(α)|.
That explains why we exclusively study the case where the number of letters in

the target alphabet is smaller than the number of variables in the pattern. From

Theorem 5.1, it directly follows that an analogous conjecture would not be true

if we considered fixed binary target alphabets (as is done in Section 5.1), since

none of the patterns αm is a fixed point of a nontrivial morphism – this can be

easily verified using Theorem 3.20 and the definition of prolix patterns. Hence,

characteristic criteria must necessarily look different in such a context. It can also

be effortlessly understood that Conjecture 5.6 would be incorrect if we dropped

the condition that α needs to contain at least 4 distinct variables, since not only

σ0, but all 1-uniform morphisms σ : N∗ → Σ∗ with |Σ| ≤ 2 are ambiguous with

respect to our example pattern α0 = 1 · 2 · 3 · 1 · 3 · 2 discussed in Chapter 1.

Technically, many of our subsequent considerations are based on the following

generic morphisms:

Definition 5.7. Let Σ be an infinite alphabet, and let σ : N∗ → Σ∗ be a renaming.

For any i, j ∈ N with i 6= j and for every x ∈ N, let the morphism σi,j be given by

σi,j(x) :=

σ(i), if x = j,

σ(x), if x 6= j.

Thus, σi,j maps exactly two variables to the same image, and therefore, for any

pattern α with at least two different variables, σi,j(α) is a word over | var(α)| − 1

distinct letters. Using this definition, we can now state a more specific version of

Conjecture 5.6:
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Conjecture 5.8. Let α be a pattern with | var(α)| ≥ 4. There exist i, j ∈ var(α),

i 6= j, such that σi,j is unambiguous with respect to α if and only if α is not a fixed

point of a nontrivial morphism.

Before we study Conjectures 5.6 and 5.8 in more detail, we establish that

they are equivalent. To this end, and also for many of our subsequent technical

considerations, we need the following concept:

Definition 5.9. Let α ∈ N∗. For any i, j ∈ N with i 6= j and, for every x ∈ N,

let the morphism φi,j : var(α)∗ → var(α)∗ be given by

φi,j(x) :=

i, if x = j,

x, if x 6= j,

and let αi,j := φi,j(α). Note that φi,j is an alphabet reduction for α.

For example, let α := 1 · 2 · 3 · 3 · 1 · 4 · 2 · 4. If we consider i := 2 and j := 4,

then α2,4 = φ2,4(α) = 1 · 2 · 3 · 3 · 1 · 2 · 2 · 2.

Using Definition 5.9, we can now address the relation between Conjectures 5.6

and 5.8:

Proposition 5.10. Let α be a pattern with | var(α)| ≥ 4. There exists an alphabet

Σ satisfying |Σ| < | var(α)| and a 1-uniform morphism σ : N∗ → Σ∗ that is

unambiguous with respect to α if and only if there exist i, j ∈ var(α), i 6= j, such

that σi,j is unambiguous with respect to α.

Proof. Since the size of the target alphabet of σi,j equals | var(α)| − 1, the if

direction is trivially true.

We now prove the only if direction. So, we assume that there exists a 1-

uniform morphism σ : N∗ → Σ∗, |Σ| < | var(α)|, that is unambiguous with respect

to α. This means that there does not exist any morphism τ : N∗ → Σ∗ such

that τ(α) = σ(α) and, for a variable q occurring in α, τ(q) 6= σ(q). Let V :=

{v ∈ var(α) | |σ(α)|σ(v) 6= |α|v}. If |V | = 2, then the only if direction holds

immediately. Otherwise, we choose two arbitrary variables i, j from V satisfying

σ(i) = σ(j). We define a morphism φ : Σ∗ → N∗ by

φ(x) :=

i, if x = σi,j(i),

σ−1
i,j (x), else.

The morphism φ exists due to the definition of σi,j, and we can directly conclude

the correctness of the following statement:

Claim 1. φ ◦ σi,j(α) = αi,j.



CHAPTER 5. STRONGLY UNAMBIGUOUS 1-UNIFORM MORPHISMS 67

According to Definition 5.9, φi,j : N∗ → N∗ is given by

φi,j(x) :=

i, if x = j,

x, else.

Since, by Definition 5.9, αi,j equals φi,j(α), we can prove the following vital fact:

Claim 2. σ(α) = σ(αi,j).

Proof (Claim 2). Due to our choice of i and j, we know that σ(i) = σ(j) is satisfied.

Furthermore, φi,j(i) = φi,j(j) = i, and therefore σ(φi,j(i)) = σ(φi,j(j)) = σ(i) =

σ(j). Hence, and since the definition of φi,j directly implies σ(x) = σ(φi,j(x)) for

every x ∈ var(α) \ {i, j}, we can conclude σ(α) = σ(φi,j(α)). Since φi,j(α) = αi,j,

this proves σ(α) = σ(αi,j). (Claim 2)

We now assume to the contrary that σi,j(α) is ambiguous. Hence, there is a

morphism τi,j : N∗ → Σ∗ satisfying τi,j(α) = σi,j(α) and, for a variable q occurring

in α, τi,j(q) 6= σi,j(q). Since σi,j is 1-uniform, this implies that there exists a

variable q′ ∈ var(α) with τi,j(q
′) = ε.

The following diagram illustrates all morphisms, patterns and words introduced

so far:

σi,j(α)

α

αi,j

σ(α)

-

-

??

6
HH

HHH
HHHH

HHH
HHHjφ

σ

τi,j σi,j φi,j σ

We now define the morphism τ : var(α)∗ → Σ∗ by

τ := σ ◦ φ ◦ τi,j.

Since we assume that τi,j(α) equals σi,j(α), Claims 1 and 2 facilitate the following

reasoning:

τ(α) = σ ◦ φ ◦ τi,j(α)

= σ ◦ φ ◦ σi,j(α)

= σ(αi,j)

= σ(α).



CHAPTER 5. STRONGLY UNAMBIGUOUS 1-UNIFORM MORPHISMS 68

Consequently, τ(α) = σ(α). As stated above, there exists a variable q′ ∈ var(α)

that satisfies τi,j(q
′) = ε, and therefore τ(q′) = σ ◦ φ ◦ τi,j(q′) = ε. On the other

hand, σ is 1-uniform, and therefore σ(q′) 6= ε. Hence, the existence of τ implies

that σ is ambiguous with respect to α, and this is a contradiction to the initial

assumption of our proof for the only if direction. Thus, σi,j is unambiguous with

respect to α.

Thus, our two conjectures are equivalent:

Corollary 5.11. Conjecture 5.6 is true if and only if Conjecture 5.8 is true.

Proof. Follows directly from Proposition 5.10.

Due to Theorem 3.17, the only if directions of Conjectures 5.6 and 5.8 hold

true immediately. In the remainder of this section, we shall therefore exclusively

study those patterns that are not fixed points. Our corresponding results yield

large classes of such patterns that have an unambiguous 1-uniform morphism, but

we have to leave the overall correctness of our conjectures open.

Conjecture 5.8 suggests that the examination of the existence of unambiguous

1-uniform morphisms for a pattern α may be reduced to finding suitable variables

i and j such that σi,j is unambiguous with respect to α. In this regard, one

particular choice can be ruled out immediately:

Proposition 5.12. Let α be a pattern, and let i, j ∈ var(α), i 6= j. If σi,j(α) is a

fixed point of a nontrivial morphism, then σi,j is not unambiguous with respect to

α.

Proof. If σi,j(α) is a fixed point of a nontrivial morphism, then, by definition,

there is a morphism φ satisfying φ(σi,j(α)) = σi,j(α) and, for a letter a in σi,j(α),

φ(a) 6= a. This implies that there must be a letter in α that is mapped by φ to

the empty word; without loss of generality, we simply assume φ(a) := ε. If we

now define τ := φ ◦ σi,j, then τ(α) = σi,j(α) and τ(x) = ε 6= σi,j(x), where x is a

variable in α satisfying σi,j(x) = a. Thus, σi,j is ambiguous with respect to α.

For example, if we consider the pattern α1 := 1 · 2 · 3 · 4 · 1 · 4 · 3 · 2 (which is

not a fixed point) and define Σ := {a, b, c}, then σ2,4(α1) equals abcbabcb (or any

renaming thereof), which is a fixed point of the morphism φ given by φ(a) := abcb

and φ(b) := φ(c) := ε. Thus, σ2,4 is ambiguous with respect to α1. However,

Proposition 5.12 does not provide a characteristic condition on the ambiguity of

σi,j, since σ2,3(α1) = abbcacbb is not a fixed point, but still σ2,3 is ambiguous with

respect to α1. Furthermore, while the ambiguity of σ2,3 results from the fact that

α1 contains the factors 2 · 3 and 3 · 2, and is therefore easy to comprehend, there
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are more difficult examples of morphisms σi,j that are ambiguous although they

do not lead to a morphic image that is a fixed point. This is illustrated by the

example α2 := 1 ·2 ·3 ·3 ·4 ·4 ·1 ·2 ·3 ·3 ·4 ·4 ·2. Here, σ2,4(α1) = abccbbabccbbb again

is not a fixed point, but σ2,4 is nevertheless ambiguous with respect to α2, since

the morphism τ given by τ(1) := abccb, τ(2) := b and τ(3) := τ(4) := ε satisfies

τ(α2) = σ2,4(α2). We therefore conclude that it seems not to be a straightforward

task to find amendments that could turn Proposition 5.12 into a characteristic

condition.

We now show that Conjecture 5.8 is correct for several types of patterns. To

this end, we need the following simple sufficient condition (which uses Defini-

tion 4.3) on a pattern being a fixed point:

Lemma 5.13. Let α ∈ N+. If there exists a variable i ∈ var(α) such that i has

loyal neighbours, then α is a fixed point of a nontrivial morphism.

Proof. Assume that Condition 1 of Definition 4.3 is satisfied. So, without loss of

generality, let

α := α1 · l1 · i1 · α2 · l2 · i2 · α3 · [. . .] · αn · ln · in · αn+1

where i1, i2, . . . , in are all occurrences of the variable i in α and, for every j,

1 ≤ j ≤ n, αj ∈ N∗, αn+1 ∈ N∗ and lj ∈ N. Also, Condition 1 of Definition 4.3

implies that, for every j, 1 ≤ j ≤ n and for every j′, 1 ≤ j′ ≤ n + 1, lj 6= i,

lj 6v αj′ . We define a morphism φ : N+ → N∗ by:

φ(x) :=


lji, if x = lj, 1 ≤ j ≤ n,

ε, if x = i,

x, else.

Hence, φ(α) = α which means that α is a fixed point of a nontrivial morphism φ.

Using an analogous reasoning as above, we can show that the lemma also holds

true when Condition 2 of Definition 4.3 is satisfied.

Using this lemma, we can now establish a class of patterns for which Conjec-

ture 5.8 holds true. All variables in these patterns have the same number of occur-

rences, and for one pair of variables they do not contain any factors as discussed

above with respect our example σ2,3:

Theorem 5.14. Let m ∈ N, m ≥ 2. Let α ∈ N+ be a pattern that is not a fixed

point of a nontrivial morphism and satisfies, for every x ∈ var(α), |α|x = m. If

there are i, j ∈ var(α), i 6= j, such that
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• there is no k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, and

• α 6= α1 · i · j · α2 · j · i · α3, α1, α2, α3 ∈ N∗,

then σi,j is unambiguous with respect to α.

Proof. Assume to the contrary that σi,j is ambiguous. So, there exists a morphism

τ : N+ → Σ∗ such that τ(α) = σi,j(α) and, for some x ∈ var(α), τ(x) 6= σi,j(x).

Since σi,j is a 1-uniform morphism, there exists a k ∈ var(α) with |τ(k)| ≥ 2. Let

uv v τ(k), u, v ∈ Σ. Due to the fact that k occurs m times in α, σi,j(α) = τ(α) =

w1 · uv · w2 · uv · [. . .] · wm · uv · wm+1 with, for every q, 1 ≤ q ≤ m + 1, wq ∈ Σ∗.

We now consider the following cases:

• σi,j(i) 6= u and σi,j(i) 6= v. This implies that there exist the variables

x1, x2 ∈ var(α), x1, x2 6= i and x1, x2 6= j, such that α = α1 · x1x2 · α2 ·
x1x2 · [. . .] · αm · x1x2 · αm+1, for every q, 1 ≤ q ≤ m + 1, αq ∈ N∗, and

σi,j(x1) = u and σi,j(x2) = v. Due to |α|x1 = |α|x2 = m, x1, x2 6v αq, for

every q, 1 ≤ q ≤ m + 1. This implies that Rx1 = {x2} and Lx2 = {x1}.
Then, according to Lemma 5.13, α is a fixed point of a nontrivial morphism

which is a contradiction to the assumption of the theorem.

• σi,j(i) = σi,j(j) = u, and u 6= v. So, we assume that α = α1 · x1x
′ · α2 · x2x

′ ·
[. . .] · αm · xmx′ · αm+1 with, x′ ∈ var(α) and, for every q, 1 ≤ q ≤ m + 1,

xq ∈ var(α), αq ∈ N∗, and σi,j(xq) = u and σi,j(x
′) = v. Additionally, since

σi,j(x
′) = v and u 6= v, we can conclude that x′ 6= i and x′ 6= j. We now

consider the following cases:

1. For every q, 1 ≤ q ≤ m, xq = i. This implies, using the same reasoning

as above, that α is a fixed point of a nontrivial morphism which is a

contradiction.

2. There exists q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq = i and xq′ = j.

This means that {i, j} ⊆ Lx2 , which contradicts the first condition of

the theorem.

• σi,j(i) = v, and u 6= v. The reasoning is analogous to that in the previous

case.

• σi,j(i) = σi,j(j) = u and v = u. Hence, we may assume that α = α1 · x1x
′
1 ·

α2 · x2x
′
2 · [. . .] · αm · xmx′m · αm+1 with, for every q, 1 ≤ q ≤ m+ 1, αq ∈ N∗,

xq, x
′
q ∈ var(α) and σi,j(xq) = σi,j(x

′
q) = u. Due to the conditions of the

theorem, the factors i · i · j, i · j · j, j · i · i and j · j · i could not be the factors

of α. Moreover, it can be observed that u · u · u 6v τ(k); otherwise, since
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τ(α) = σi,j(α), then |α|i > m or αj > m. This implies that i · j · i and j · i · j
are not the factors of α. We now consider the following cases:

1. For every q, 1 ≤ q ≤ m, xq = i and x′q = j. As a result, Ri = {j} and

Lj = {i}. According to Lemma 5.13, α is a fixed point of a nontrivial

morphism.

2. For every q, 1 ≤ q ≤ m, xq = j and x′q = i. As a result, Rj = {i} and

Li = {j}. Referring to Lemma 5.13, α is a fixed point of a nontrivial

morphism.

3. There exists a q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq · x′q = i · j
and xq′ · x′q′ = j · i. This case contradicts the second condition of the

theorem.

4. There exists a q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq · x′q = i · j
and, xq′ · x′q′ = i · i or xq′ · x′q′ = j · j. This means that {i, j} ⊆ Ri

or {i, j} ⊆ Lj which is a contradiction to the first condition of the

theorem.

5. There exists a q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq · x′q = j · i
and, xq′ · x′q′ = i · i or xq′ · x′q′ = j · j. This implies that {i, j} ⊆ Li or

{i, j} ⊆ Rj which contradicts the first condition of the theorem.

6. There exist q, q′, 1 ≤ q, q′ ≤ m, q′ 6= q, such that xq · x′q = i · i and

xq′ ·x′q′ = j ·j. Since uu v τ(k) and due to the conditions of the theorem,

it results from τ(α) = σi,j(α) that k 6= i and k 6= j, in other words,

τ(i) 6= uu and τ(j) 6= uu; otherwise, |τ(α)|u > |σi,j(α)|u. Moreover,

we may observe that if σi,j(k) v τ(k), then this implies that there

exists an x ∈ var(α) \ {i, j}, with {i, j} ⊆ Lx or {i, j} ⊆ Rx, which

is a contradiction. Thus, σi,j(k) 6v τ(k). Since τ(α) = σi,j(α), there

must be a k′ ∈ var(α), k′ 6= k, i, j, such that σi,j(k) v τ(k′), which

means that |τ(k′)| ≥ 2 or we can extend the reasoning over the other

variables. Consequently, since τ(α) = σ(α), this argumentation implies

the existence of a k′′ ∈ var(α), k′′ 6= k, i, j, such that |τ(k′′)| ≥ 2, which,

according to the above cases, leads to a contradiction.

Hence, in all cases, our assumption leads to a contradiction, and this proves the

theorem.

We wish to point out that Theorem 5.14 does not only demonstrate the cor-

rectness of Conjecture 5.8 for the given class of patterns, but additionally provides

an efficient way of finding an unambiguous morphism σi,j. For example, we can

immediately conclude from it that σ1,4 is unambiguous with respect to our above
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example pattern α1 (see page 68). Furthermore, the theorem also holds for pat-

terns with less than four different variables.

We now consider those patterns that are not a fixed point and, moreover,

contain all of their variables exactly twice (note that some of these “shortest”

patterns that are not fixed points are also studied in Theorem 5.5). We wish to

demonstrate that Theorem 5.14 implies the existence of an unambiguous σi,j for

every such pattern. This insight is based on the following lemma:

Lemma 5.15. Let α ∈ N+ be a pattern with | var(α)| > 6 and, for every x ∈
var(α), |α|x = 2. Then there exist i, j ∈ var(α), i 6= j, such that

• there is no k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, and

• α 6= α1 · i · j · α2 · j · i · α3, α1, α2, α3 ∈ N∗.

Proof. Let n := | var(α)|. Since every variable occurs exactly twice in α, it directly

follows that, for every x ∈ var(α), |Rx| ≤ 2 and |Lx| ≤ 2. By omitting the

neighbourhood sets containing ε, we have at most 2n− 2 sets of size 2. Besides, it

can be verified with little effort that α contains at most n−1 different factors i · j,
i, j ∈ var(α), i 6= j, such that j · i v α (e. g., for n := 4, α := 1 · 2 · 3 · 4 · 4 · 3 · 2 · 1
has 3 different factors i · j, i, j ∈ var(α), i 6= j, satisfying j · i v α). Assume to

the contrary that, for every i, j ∈ var(α), one of the following cases is satisfied:

• there exists k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, or

• α = α1 · i · j · α2 · j · i · α3, α1, α2, α3 ∈ N∗.

As mentioned above, the maximum number of pairs that are covered by the first

case is 2n − 2, and for the second case it is n − 1. On the other hand, since

| var(α)| = n, there exist
(
n
2

)
different pairs of variables. However, for n > 6, we

have (
n

2

)
> (2n− 2) + (n− 1),

which contradicts the assumption.

Hence, whenever a pattern α is not a fixed point, the conditions of Theo-

rem 5.14 are automatically satisfied if α contains at least seven distinct variables

and all of its variables occur exactly twice. Using a less elegant reasoning than

the one on Lemma 5.15, we can extend this insight to all such patterns over at

least four distinct variables. This yields the following result:

Theorem 5.16. Let α ∈ N+ be a pattern with | var(α)| > 3 and, for every x ∈
var(α), |α|x = 2. If α is not a fixed point of a nontrivial morphism, then there

exist i, j ∈ var(α), i 6= j, such that σi,j is unambiguous with respect to α.
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Proof. Let n := | var(α)|. For n > 6, it directly follows from Theorem 5.14 and

Lemma 5.15 that Theorem 5.16 is satisfied. Hence, we consider the following cases:

• | var(α)| = 4. The only patterns that do not satisfy the conditions of Theo-

rem 5.14 are:

α1 := 1 · 2 · 3 · 4 · 4 · 1 · 3 · 2, α2 := 1 · 2 · 3 · 4 · 4 · 2 · 1 · 3,

α3 := 1 · 2 · 3 · 4 · 2 · 1 · 4 · 3, α4 := 1 · 2 · 3 · 3 · 4 · 4 · 2 · 1,

α5 := 1 · 2 · 3 · 3 · 4 · 1 · 4 · 2, α6 := 1 · 2 · 3 · 3 · 1 · 4 · 2 · 4,

α7 := 1 · 2 · 3 · 3 · 4 · 2 · 1 · 4, α8 := 1 · 2 · 3 · 2 · 4 · 4 · 1 · 3,

α9 := 1 · 2 · 1 · 3 · 4 · 4 · 2 · 3, α10 := 1 · 2 · 3 · 1 · 4 · 4 · 3 · 2.

It can be verified with little effort that

– σ3,4 is unambiguous with respect to α1, α2, α5, α9 and α10,

– σ2,3 is unambiguous with respect to α3, α6 and α7,

– σ1,4 is unambiguous with respect to α4, α8.

• | var(α)| ∈ {5, 6}. Assume to the contrary that for every i, j ∈ var(α), i 6= j,

σi,j is ambiguous with respect to α. This implies that the conditions of

Theorem 5.14 are not satisfied. Consequently, for every i, j ∈ var(α), one of

the following cases is satisfied:

– there is a k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, or

– α = · · · i · j · · · j · i · · · .

It directly follows from the proof of Lemma 5.15 that, if var(α) = n, then

the maximum number of pairs of variables satisfying the first case is 2n− 2.

On the other hand, the number of different pairs i, j which must satisfy the

above cases is
(
n
2

)
, consequently, for any n, n ≥ 5, there exist(

n

2

)
− (2n− 2)

pairs which must satisfy the second case. So, for n = 5, since(
5

2

)
− (2 ∗ 5− 2) = 2,

there exist at least two different pairs of i, j satisfying α = · · · i · j · · · j · i · · · .
For n = 6, that amount increases to 5, due to:(

6

2

)
− (2 ∗ 6− 2) = 5.
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By investigating the all patterns α with var(α) = 5 which are containing 2

different pairs of i, j that satisfy the second case, we can conclude that there

exist i, j ∈ var(α), i 6= j, such that σi,j is unambiguous with respect to α.

Moreover, the only pattern α with | var(α)| = 6 that is not a fixed point

of a nontrivial morphism and contains 5 different pairs of i, j satisfying the

second case is α = 1 · 2 · 3 · 4 · 5 · 6 · 6 · 5 · 4 · 3 · 2 · 1, with respect to which

there exists an unambiguous 1-uniform morphisms σ1,6.

Hence, in both cases, the results contradict the assumption.

Theorem 5.16 does not only directly prove the correctness of Conjecture 5.8

for all patterns that contain all their variables exactly twice, but it also allows a

large set of patterns to be constructed for which the conjecture holds true as well.

This construction is specified as follows:

Theorem 5.17. Let α := α1 ·β ·α2 and γ := α1 ·α2 be patterns with α1, α2, β ∈ N∗,
such that

• γ and β are not a fixed point of a nontrivial morphism,

• | var(γ)| > 3 and, for every x ∈ var(γ), |γ|x = 2, or | var(β)| > 3 and, for

every x ∈ var(β), |β|x = 2, and

• var(γ) ∩ var(β) = ∅.

Then there exist i, j ∈ var(α), i 6= j, such that σi,j is unambiguous with respect to

α.

Proof. Assume that | var(γ)| > 3 and, for every x ∈ var(γ), |γ|x = 2. So, since γ

satisfies the conditions of Theorem 5.16, there exist i, j ∈ var(γ), i 6= j, such that

σi,j with target alphabet Σ1 is unambiguous with respect to γ. Also, due to β not

being a fixed point of a nontrivial morphism, there is an unambiguous 1-uniform

morphism σ : N∗ → Σ∗2, |Σ2| = | var(β)|, with respect to β. Let Σ1 ∩ Σ2 := ∅.
We now assume to the contrary that σi,j with target alphabet Σ1 ∪ Σ2 is

ambiguous with respect to α. This implies that there is a morphism τ : N∗ → Σ∗

satisfying τ(α) = σi,j(α) and, for some q ∈ var(α), τ(q) 6= σ(q).

Claim 1. There does not exist an x ∈ var(α) satisfying |τ(x)| ≥ 2 and v1v2 v τ(x),

v1 ∈ Σ1 and v2 ∈ Σ2, or v1 ∈ Σ2 and v2 ∈ Σ1.

Proof (Claim 1). Assume to the contrary that there is an x ∈ var(α) such that

|τ(x)| ≥ 2 and v1v2 v τ(x), v1 ∈ Σ1 and v2 ∈ Σ2, or v1 ∈ Σ2 and v2 ∈ Σ1. Since x

occurs at least twice in α, τ(α) = · · · · v1v2 · · · · · v1v2 · · · · . However, because of

α := α1·β·α2 and var(γ)∩var(β) = ∅, this contradicts σi,j(α) = τ(α). (Claim 1)
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Claim 2. There exists an x ∈ var(β) such that τ(x) ∈ Σ+
1 .

Proof (Claim 2). Assume to the contrary that, for every x ∈ var(β), τ(x) /∈ Σ+
1 .

Due to Claim 1, it results from τ(α) = σi,j(α) and σi,j being unambiguous with

respect to γ and β that there exist some x′ ∈ var(γ) such that τ(x′) ∈ Σ+
2 . Let

A ⊆ var(γ) be the set of all variables x′ with τ(x′) ∈ Σ+
2 . We can now define a

morphism σ′ : N∗ → Σ∗1 such that, for every k ∈ var(γ) \ A, σ′(k) = τ(k) and, for

every x′ ∈ A, σ′(x′) = ε. Consequently, due to the fact that there is no k ∈ var(γ)

with τ(k) ∈ (Σ1 ∪ Σ2)∗ \ (Σ∗1 ∪ Σ∗2), σ′(γ) = σi,j(α), which means that σi,j is

ambiguous with respect to γ. This is a contradiction. (Claim 2)

Claim 3. There exists an x ∈ var(γ) satisfying τ(x) ∈ Σ+
2 .

Proof (Claim 3). Assume to the contrary that, for every x ∈ var(γ), τ(x) /∈ Σ+
2 .

Because of Claim 1, τ(α) = σi,j(α) and σi,j being unambiguous with respect to

γ and β imply that there exists a nonempty set A ⊆ var(β) such that, for every

x′ ∈ A, τ(x′) ∈ Σ+
1 . We can now define a morphism σ′ : N∗ → Σ∗2 such that,

for every k ∈ var(β) \ {x′}, σ′(k) = τ(k) and, for every x′ ∈ A, σ′(x′) = ε.

Consequently, due to the fact that there is no k ∈ var(β) with τ(k) ∈ (Σ1 ∪Σ2)∗ \
(Σ∗1 ∪ Σ∗2), σ′(β) = σ(β), which contradicts σ being unambiguous with respect to

β. (Claim 3)

Claim 4. If |τ(q)| ≥ 2, q ∈ var(γ), and τ(q) ∈ Σ+
1 , then σi,j(i) v τ(q).

Proof (Claim 4). Assume to the contrary that σi,j(i) 6v τ(q). Let v1v2 v τ(q),

v1, v2 ∈ Σ1 \ {σi,j(i)}. Due to |γ|q = 2, τ(α) = · · · · v1v2 · · · · · v1v2 · · · · . Since

Σ1 ∩ Σ2 := ∅ and τ(α) = σi,j(α), we can conclude that γ = · · · · x1x2 · · · · · x1x2 ·
· · · , x1, x2 ∈ var(γ) \ {i, j}. Because of |γ|x1 = 2 and |γ|x2 = 2, Lemma 5.13

implies that γ is a fixed point of a nontrivial morphism, which contradicts the

assumption. (Claim 4)

According to Claims 1, 2 and 3, there exists an x ∈ var(γ) such that τ(x) ∈ Σ+
2 ,

and there exists an x′ ∈ var(β) with τ(x′) ∈ Σ+
1 . The two occurrences of x are

both in α1 or both in α2; otherwise, there does not exist an x′ ∈ var(β) such that

τ(x′) ∈ Σ+
1 . Without loss of generality, we assume that both occurrences of x are

in α1, and we also assume that x is the leftmost variable in α1 satisfying τ(x) ∈ Σ+
2

and x′ is the leftmost variable in β with τ(x′) ∈ Σ+
1 . Let x1 be the first occurrence

of x, and let x2 be the second occurrence of x. So, α1 = α11 · x1 · α12 · x2 · α13 ,

α11 , α12 , α13 ∈ N∗. Consequently, τ(α11) = σi,j(α1).
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σi,j(α) =

α =
α11 x1 α12 x2 α13 x′ α2

α1︷ ︸︸ ︷ β︷ ︸︸ ︷

σi,j(α11 )︷ ︸︸ ︷
σi,j(α1)︷ ︸︸ ︷

σi,j(β)︷ ︸︸ ︷ σi,j(α2)︷ ︸︸ ︷︸ ︷︷ ︸
τ(α11 )

︸︷︷︸
τ(x1)

︸︷︷︸
τ(x′)

Before we proceed with our proof, we define two notations. If, for variables

q, q′ in α1 (q and q′ have a same position or q′ occurs to the left of q in α1)

σi,j(q) v τ(q′) and τ(q′) in τ(α11) is located at the position of σi,j(q) in σi,j(α1),

then we write σi,j(q) ↓ τ(q′). This is illustrated by the following diagram (where

we assume that the occurrence of q′ is to the left of the occurrence of q):

σi,j(α1) = τ(α11) =

α1 =

...

...

...

...
q′ q

σi,j(q)︷︸︸︷
︸ ︷︷ ︸

τ(q′)

If the position of τ(q′) in τ(α11) is located to the right of the position of σi,j(q) in

σi,j(α1), then we write σi,j(q) 7→ τ(q′). We again give a diagram (assuming that

the occurrence of q′ is to the left of the occurrence of q) that illustrates the setting

where we use this notation:

σi,j(α1) = τ(α11) =

α1 =

...

...

...

...
q′ q

σi,j(q)︷︸︸︷
︸ ︷︷ ︸

τ(q′)

We return to our proof and recollect that α1 = α11 ·x1 ·α12 ·x2 ·α13 , x1 = x2 = x,

and τ(α11) = σi,j(α1). This implies that we have to consider the following cases:

Case 1. x = i or x = j

Due to τ(α11) = σi,j(α1), one of the following cases holds true:
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Case 1.1. There exists a variable q ∈ var(α11) to the left of x1 satisfying |τ(q)|σi,j(i) ≥
2 and σi,j(i) ↓ τ(q).

Assume that σi,j(q) ↓ τ(q).

σi,j(α1) =

α1 =
q x1 α12 x2 α13

σi,j(q)︷︸︸︷ σi,j(i)︷︸︸︷ σi,j(i)︷︸︸︷
︸ ︷︷ ︸

vτ(q)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

Let A be a set of those variables k ∈ var(γ) \ {q} satisfying σi,j(k) v τ(q). We

define a morphism σ′ : N∗ → Σ∗1 such that, for every k′ ∈ var(γ),

σ′(k′) :=


ε, if k′ ∈ A,

τ(q), if k′ = q,

σi,j(k
′), else.

Due to the facts that, for all k, k′ ∈ var(γ), k 6= k′, |γ|k = 2, and if k 6= i and

k′ 6= j, then σi,j(k) 6= σi,j(k
′), it can be verified that σ′(γ) = σi,j(γ), which is a

contradiction to σi,j being unambiguous with respect to γ.

If σi,j(q) 7→ τ(q), then, due to τ(α11) = σi,j(α1), there exists a variable q′ ∈
var(α11) to the left of q satisfying |τ(q′)| ≥ 2.

σi,j(α1) =

α1 =
q′ q x1 α12 x2 α13

σi,j(q)︷︸︸︷ σi,j(i)︷︸︸︷ σi,j(i)︷︸︸︷
︸ ︷︷ ︸

vτ(q)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

According to Claim 4, σi,j(i) v τ(q′). Besides, |γ|q′ = 2. On the other hand, |γ|q =

2 and we assume |τ(q)|σi,j(i) ≥ 2 in the present case. Consequently, |τ(α)|σi,j(i) > 4,

which contradicts τ(α) = σi,j(α).
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Case 1.2. There exist variables q, q′ ∈ var(α11) to the left of x1 satisfying σi,j(i) ↓
τ(q) and σi,j(i) ↓ τ(q′).

σi,j(α1) =

α1 =
q′ q x1 α12 x2 α13

σi,j(q′)︷︸︸︷ σi,j(q)︷︸︸︷ σi,j(i)︷︸︸︷ σi,j(i)︷︸︸︷
︸︷︷︸
vτ(q′)

︸︷︷︸
vτ(q)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

Therefore, due to τ(α11) = σi,j(α1) and τ(x) ∈ Σ+
2 , we can conclude that σi,j(q) 7→

τ(q). If σi,j(q
′) ↓ τ(q′), then σi,j(q) ↓ τ(q′). This implies that σi,j(q

′) ·w ·σi,j(q) ·w′ ·
σi,j(i) v τ(q′), w,w′ ∈ Σ∗1. Due to |γ|q′ = 2, it can be verified that γ = γ1 ·q′ ·γ2 ·q ·
γ3 ·q′ ·γ2 ·q ·γ4 with γ1, γ2, γ3, γ4 ∈ N∗ and σi,j(γ2) = w. Without loss of generality,

we assume that x = i. This implies that q 6= i, q′ 6= i and i /∈ var(γ2). Also, for

every k ∈ var(γ), |γ|k = 2. Consequently, ({q, q′} ∪ var(γ2)) ∩ (var(γ1) ∪ var(γ3) ∪
var(γ4)) = ∅. So, the structure of γ satisfies Lemma 5.13, which implies that γ

is a fixed point of a nontrivial morphism. This is a contradiction. As a result,

σi,j(q
′) 7→ τ(q′); in addition, as mentioned, σi,j(q) 7→ τ(q). Therefore, and again

because of τ(α11) = σi,j(α1), there exists a variable q′′ ∈ var(α11) to the left of q′

satisfying |τ(q′′)| ≥ 2. According to Claim 4, σi,j(i) = σi,j(j) v τ(q′′). Without

loss of generality, assume that x = i. Hence, it results from σi,j(j) v τ(q′′),

|τ(q′′)| ≥ 2 and |γ|q′′ = 2 that there is a factor k · j v γ or j · k v γ, k ∈ var(α1),

k 6= i and k 6= j, which occurring twice in γ. Consequently, we can assume

γ = γ1 · k · j · γ2 · k · j · γ3 or γ = γ1 · j · k · γ2 · j · k · γ3 where γ1, γ2, γ3 ∈ N∗ and

k, j /∈ var(γ1γ2γ3). According to Lemma 5.13, this implies that γ is a fixed point

of a nontrivial morphism, which is a contradiction.

Case 2. x 6= i and x 6= j.

Since τ(α11) = σi,j(α1), one of the following cases holds true:

Case 2.1. There exists a variable q ∈ var(α11) to the left of x1 satisfying |τ(q)|σi,j(x) =

2. Since |γ|q = 2, |τ(α)|σi,j(x) > 2, which contradicts τ(α) = σi,j(α).

Case 2.2. There exist variables q, q′ ∈ var(α11), q 6= q′, to the left of x1 satisfying

σi,j(x) ↓ τ(q) and σi,j(x) ↓ τ(q′). It results from |γ|q = 2 and |γ|q′ = 2 that

|τ(α)|σi,j(x) > 2, which is a contradiction to τ(α) = σi,j(α).

Case 2.3. There exists a variable q1 ∈ var(α11), with two occurrences named

q11 and q12 , to the left of x1 satisfying |τ(q1)|σi,j(x) = 1, σi,j(x1) ↓ τ(q11) and
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σi,j(x2) ↓ τ(q12). Due to τ(α11) = σi,j(α1), τ(x) ∈ Σ+
2 and the two occurrences of

q1 being to the left of x1, we can conclude that σi,j(q1) 7→ τ(q1).

σi,j(α1) =

α1 =
q11 q12 x1 α12 x2 α13

σi,j(q1)︷︸︸︷ σi,j(q1)︷︸︸︷
︸︷︷︸
6vτ(q1)

︸︷︷︸
6vτ(q1)

σi,j(x)︷︸︸︷ σi,j(x)︷︸︸︷
︸︷︷︸
vτ(q1)

︸︷︷︸
vτ(q1)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

We first demonstrate that the overall condition of Case 2 does not only hold for

x, but also for q1:

Claim 5. q1 6= i and q1 6= j.

Proof (Claim 5). Assume to the contrary that q1 = i or q1 = j. Without loss

of generality let q1 := i. Thus, q11 = q12 = i. On the other hand, as mentioned,

σi,j(q1) 7→ τ(q1). Thus, again because of τ(α11) = σi,j(α1), there exists a variable

k ∈ var(α11) to the left of q11 satisfying |τ(k)| ≥ 2. According to Claim 4,

σi,j(j) v τ(k). This implies that due to |γ|k = 2 there is a factor k′ · j v γ or

j · k′ v γ, k′ ∈ var(α1), k′ 6= i and k′ 6= j, which occurs twice in γ. Consequently,

we can assume γ = γ1 · k′ · j · γ2 · k′ · j · γ3 or γ = γ1 · j · k′ · γ2 · j · k′ · γ3, where

γ1, γ2, γ3 ∈ N∗ and k′, j /∈ var(γ1γ2γ3). According to Lemma 5.13, this implies

that γ is a fixed point of a nontrivial morphism, which is a contradiction.

If we assume to the contrary that q1 = j, then the same reasoning as above leads

to a contradiction. (Claim 5)

The following statement shall be the core argument of our reasoning on Case 2.3.

Claim 6. There exists a variable to the left of q11 in α11 satisfying the condition

of Case 2.3.

Proof (Claim 6). According to Claim 5, q1 6= i and q1 6= j. Besides, as mentioned

in Case 2.3, σi,j(q1) 7→ τ(q1). Consequently, applying Case 2 leads to the existence

of a variable q2 to the left of q11 satisfying σi,j(q1) ↓ τ(q2). However, a same

reasoning as in Cases 2.1, 2.2 (considering q1 instead of x) leads to a contradiction.

As a result, q2 must satisfy the condition of Case 2.3. (Claim 6)

Therefore, according to Claim 6 and Case 2.3, there exists a q2 ∈ α11 with two

occurrences named q21 and q22 , to the left of q11 with |τ(q2)|σ(i,j)(q1) = 1 and

σi,j(q2) 7→ τ(q2). Furthermore, due to a same reasoning as in Claim 5, q2 6= i and
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q2 6= j. Hence, we can again apply Claim 6. Consequently, this reasoning finally

leads to a contradiction based on Case 2.1 or 2.2 since the length of α1 is finite,

which means that, by a continued application of Claim 6, there is a qn ∈ var(α11)

not satisfying Case 2.3.

Now, assume the case that | var(β)| > 3 and, for every x ∈ var(β), |β|x = 2. It

can be verified that this case satisfies Claims 1, 2 and 3. Consequently, using an

analogous reasoning as previous case leads to a contradiction again.

Hence, there is no morphism τ satisfying τ(α) = σi,j(α) and τ(x) 6= σi,j(x), for an

x ∈ var(α), and this implies that σi,j is unambiguous with respect to α.

In order to illustrate the above statement, we consider the following example.

Let

α := 1 · 2 · 1 · 3 · 2 · 3 · 2 · 4 · 5 · 6 · 7 · 5 · 7 · 8 · 6 · 8 · 4 · 2 · 9 · 3 · 9 · 2.

We now define

α1 := 1 · 2 · 1 · 3 · 2 · 3 · 2 · 4,

α2 := 4 · 2 · 9 · 3 · 9 · 2,

β := 5 · 6 · 7 · 5 · 7 · 8 · 6 · 8,

which implies α = α1 · β · α2. Using Theorem 3.20 and the definition of prolix

patterns, it can be effortlessly verified that both β and γ = α1 · α2 are not a fixed

point of a nontrivial morphism. Furthermore, β contains four different variables,

and every x ∈ var(β) satisfies |β|x = 2. Therefore, we can apply Theorem 5.17,

which says that there are i, j ∈ var(α) such that σi,j is unambiguous with respect

to α; from the proofs of Theorems 5.14, 5.16 and 5.17, we can conclude that, for

example, i := 5 and j := 7 are a suitable choice for the definition of σi,j.

In the remainder of this section, we shall not directly address the morphism σi,j

any longer. Hence, we focus on Conjecture 5.6, and we use an approach that differs

quite significantly from those above: we consider words that cannot be morphic

images of a pattern under any ambiguous 1-uniform morphism, and we construct

suitable morphic preimages from these words. This method yields another major

set of patterns for which Conjectures 5.6 and 5.8 are satisfied.

Our corresponding technique is based on the well-known concept of de Bruijn

sequences. Since de Bruijn sequences are cyclic, which does not fit with our subject,

we introduce a non-cyclic variant:

Definition 5.18. A non-cyclic De Bruijn sequence (of order n) is a word over a

given alphabet Σ (of size k) for which all possible words of length n in Σ∗ appear
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exactly once as factors of this sequence. We denote the set of all non-cyclic De

Bruijn sequences of order n by B′(k, n). A w ∈ B′(k, n) is said to be in canonical

form if it is lexicographically minimal (with regard to any fixed order on Σ) among

all its renamings in B′(k, n).

For example, the word w0 := aabacbbcca is a non-cyclic de Bruijn sequence in

B′(3, 2) if we assume Σ := {a, b, c}. Furthermore, w0 is in canonical form if we

assume Σ to be ordered alphabetically. The introduction of a canonical form is

needed at the end of this section, where we shall provide a lower bound on the

number of patterns with unambiguous 1-uniform morphisms that can be derived

from de Bruijn sequences.

It can now be easily understood that a non-cyclic de Bruijn sequence cannot

be a morphic image of any pattern under ambiguous 1-uniform morphisms:

Theorem 5.19. Let Σ be an alphabet, and let α ∈ N+ be a pattern satisfying, for

every x ∈ var(α), |α|x ≥ 2. Let σ : N∗ → Σ∗ be a 1-uniform morphism such that,

for every u1u2 v σ(α), u1, u2 ∈ Σ, the factor u1u2 occurs in σ(α) exactly once.

Then σ is unambiguous with respect to α.

Proof. Assume to the contrary that σ is ambiguous with respect to α. Conse-

quently, there exists a morphism τ : N∗ → Σ∗ satisfying τ(α) = σ(α) and, for

some q ∈ var(α), τ(q) 6= σ(q). Since σ is a 1-uniform morphism, there exists

a q ∈ var(α) satisfying |τ(q)| ≥ 2. Hence, let v1v2 v τ(q), v1, v2 ∈ Σ. Due to

|α|q ≥ 2, this implies that τ(α) = · · · · v1v2 · · · · · v1v2 · · · · . However, this contra-

dicts the condition of the theorem stating that, for every u1u2 v σ(α), u1, u2 ∈ Σ,

the factor u1u2 occurs in σ(α) exactly once. So, σ is unambiguous with respect to

α.

This insight implies that if a pattern can be mapped by a 1-uniform morphism

to a de Bruijn sequence and has at least two occurrences of each of its variables,

then this pattern necessarily is not a fixed point. Thus, for such patterns, Conjec-

ture 5.6 holds true:

Corollary 5.20. Let Σ be an alphabet, and let α ∈ N+ be a pattern satisfying, for

every x ∈ var(α), |α|x ≥ 2. Let σ : N∗ → Σ∗ be a 1-uniform morphism such that,

for every u1u2 v σ(α), u1, u2 ∈ Σ, the factor u1u2 occurs in σ(α) exactly once.

Then α is not a fixed point of a nontrivial morphism.

Proof. According to Theorem 5.19, σ is unambiguous with respect to α. Since σ,

by definition, is nonerasing, the corollary directly follows from Theorem 3.17.

We now show how we can construct patterns that satisfy the conditions of

Theorem 5.19 and Corollary 5.20:
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Definition 5.21. Let Σ := {a1, a2, . . . , ak}. Let B′(k, 2) be the set of non-cyclic

de Bruijn sequences of order 2 over Σ. Then ΠDB(k) ⊆ N∗ is the set of all patterns

that can be constructed as follows: For every w ∈ B′(k, 2) and every letter aj in

w, all nj occurrences of aj are replaced by bnj/2c different variables from a set

Nj := {xj1 , xj2 , . . . , xjbnj/2c
} ⊆ N, such that the following conditions are satisfied:

• for every x ∈ Nj, |α|x > 1,

• for all i, i′, 1 ≤ i, i′ ≤ k, with i 6= i′, Ni ∩Ni′ = ∅, and

• for all i, 1 ≤ i ≤ k, the variables in Ni are assigned to occurrences of ai in

a way such that the resulting pattern is in canonical form.

For instance, with regard to our above example word w0 = aabacbbcca ∈ B′(3, 2),

Definition 5.21 says that, e. g., the pattern 1 · 1 · 2 · 3 · 4 · 2 · 2 · 4 · 4 · 3 is contained

in ΠDB(3).

From this construction, it directly follows that Conjecture 5.6 holds true for

every pattern in ΠDB(k):

Theorem 5.22. Let Σ := {a1, a2, . . . , ak}, k ≥ 3. Then, for every α ∈ ΠDB(k),

• var(α) contains at least k + 1 elements, and

• there exists a 1-uniform morphism σ : N∗ → Σ∗ that is unambiguous with

respect to α.

Proof. We begin this proof with the first statement of the theorem: It is obvious

that there are k2 different words of length 2 over Σ. The shortest word that

contains k2 factors of length 2 has length k2+1, which means that this is the length

of any word w ∈ B′(k, 2). Thus, there must be at least one letter in w that has at

least d(k2 + 1)/ke occurrences. Since we assume k ≥ 3, this means that this letter

has at least 4 occurrences. From Definition 5.21 it then follows that this letter is

replaced by at least two different variables when a pattern α ∈ ΠDB(k) is generated

from w. Since all other letters in w must be replaced by at least one variable, this

shows that | var(α)| ≥ k + 1. Note that from the proof of Theorem 5.23 it can be

derived that, more precisely, | var(α)| = (k − 1)bk/2c+ b(k + 1)/2c.
Concerning the second statement, we define σ by, for every j, 1 ≤ j ≤ k, and

for every x ∈ Nj, σ(x) := aj. Thus, σ is 1-uniform, and σ(α) ∈ B′(k, 2). This

implies that, for every u1u2 v σ(α), u1, u2 ∈ Σ, the factor u1u2 occurs in σ(α)

exactly once. Consequently, according to Theorem 5.19, σ is unambiguous with

respect to α.
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We conclude this section with a statement on the cardinality of ΠDB(k), de-

monstrating that the use of de Bruijn sequences indeed leads to a rich class of

patterns α with unambiguous 1-uniform morphisms, and that these morphisms,

in general, can even have a target alphabet of size much less than var(α)− 1 (as

featured by Theorem 5.22):

Theorem 5.23. Let k ∈ N. Then |ΠDB(k)| ≥ k!(k−1), and, for every α ∈ ΠDB(k),

| var(α)| = (k − 1)bk/2c+ b(k + 1)/2c .

Proof. Let B(k, n) be the set of all distinct De Bruijn sequences of order n over

alphabet Σ, and letB′(k, n) be the set of all distinct non-cyclic De Bruijn sequences

over Σ.

Claim 1. Every element of B′(k, n) has length kn + n− 1, and |B′(k, n)| = k!k
n−1

.

Proof (Claim 1). According to [7],

• every element of B(k, n) has length kn, and

• |B(k, n)| = k!k
n−1
/kn.

Let w ∈ B(k, n). Therefore, |w| = kn. Assume that w = a1a2[. . .]am, m = kn.

Since all words of length n over alphabet Σ appear exactly once in the cyclic

sequence w, this implies that, for every v,

v ∈ {am−(n−2)am−(n−3)[. . .]ama1, am−(n−3)am−(n−4)[. . .]ama1a2, [. . .],

ama1a2[. . .]an−1},

v 6v w. Consequently, by defining w′ := a1a2[. . .]ama1a2 · · · an−1, w′ satisfies De-

finition 5.18, and as a result, w′ ∈ B′(k, n). Thus, |w′| = |w| + (n − 1), and this

implies that, for every w′ ∈ B′(k, n),

|w′| = kn + (n− 1)

Besides, since w is a cyclic sequence, all words in

W := {a1a2[. . .]akn , a2a3[. . .]akna1, . . . , akna1a2, . . . , akn−1}

are equivalent, and they are counted as one sequence of B(k, n). Consequently, to

find the number of distinct non-cyclic De Bruijn sequences B′(k, n), it is sufficient

to multiply |W | = kn to the number of distinct De Bruijn sequences B(k, n).

Thus,

|B′(k, n)| = kn
k!k

n−1

kn
= k!k

n−1

.
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(Claim 1)

Now, let B′′(k, n) be the set of non-cyclic De Bruijn sequences in canonical form

of order n.

Claim 2. |B′′(k, n)| = k!(k
n−1−1)

Proof (Claim 2). Let Σ := {a1, a2, . . . , ak} and let w ∈ B′(k, n). According to

Definition 5.18, w is in canonical form if it is lexicographically minimal with regard

to Σ, a1 < a2 < . . . < ak. However, by renaming w, it can be verified that there

exist k! − 1 other sequences in B′(k, n); in other words, we can consider w as a

representative of k! element of B′(k, n). So, it directly follows from Claim 1 that

the number of non-cyclic De Bruijn sequences in canonical form of order n over Σ

is
k!k

n−1

k!
= k!(k

n−1−1).

(Claim 2)

Consequently, according to Definition 5.21,

|ΠDB(k)| ≥ k!(k−1).

We continue to prove the second part of Theorem 5.23 by the following claim:

Claim 3. Let Σ := {a1, a2, . . . , ak}. Let B′′(k, 2) be the set of non-cyclic De Bruijn

sequences in canonical form of order 2 over Σ. Then, for every w ∈ B′′(k, 2),

|w|a1 = k + 1 and, for every j, 2 ≤ j ≤ k, |w|aj = k.

Proof (Claim 3). Let ai, i 6= 1, be an arbitrary element of Σ. According to

Definition 5.18, for every w ∈ B′′(k, 2), aia1, aia2, . . . , aiai, aiai+1, . . . , aiak v w.

Hence, without loss of generality regarding the order of letters in Σ , we can assume

one of the following cases to be satisfied:

• w = w1aia1 · w2aia2 · [. . .] · wiaiai · wi+1aiai+1 · [. . .] · wkaiak · wk+1, or

• w = w1aia1 · w2aia2 · [. . .] · wiaiaiai+1 · wi+1aiai+2 · [. . .] · wk−1aiak · wk,

where, for every j, 1 ≤ j ≤ k + 1, wj ∈ Σ∗ and ai 6v wj. Since i 6= 1 and w is in

canonical form, then w1 6= ε.

In the first case, ai occurs k + 1 times. Since w1 6= ε and every word of length 2

over Σ appears exactly once in w, |Lai | = k + 1, ε /∈ Lai . Consequently, we can

conclude that there exist a sequence uai, u ∈ Σ, occurring more than once in w.

This contradict the fact that w ∈ B′′(k, 2). Thus, in accordance with the second

case, |w|ai = k. As a result, for every j, 2 ≤ j ≤ k, |w|aj = k. Hence, for every

w ∈ B′′(k, 2), |w| − |w|a1 = (k − 1)k. On the other hand, Claim 1 implies that,
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for every w ∈ B′′(k, 2), |w| = k2 + 1. This means that

|w|a1 = (k2 + 1)− ((k − 1)k) = k + 1.

(Claim 3)

Consequently, according to Definition 5.21, for every α ∈ ΠDB(k), k+1 occurrences

of a1 are replaced by b(k + 1)/2c different variables from N1 and, for every j,

2 ≤ j ≤ k, k occurrences of aj are replaced by bk/2c different variables from Nj.

Therefore,

| var(α)| = (k − 1)bk/2c+ b(k + 1)/2c ,

and this proofs the theorem.

Although we have established major sets of patterns for which Conjectures 5.6

and 5.8 hold true, we are unable to prove or refute these conjectures. However,

we can point out that they show some connections to Problem 3.23. These shall

be discussed in the next section.

5.3 Alphabet reductions and fixed points

We now turn our attention to Problem 3.23, i. e., we study whether there exists

an alphabet reduction (i. e., a 1-uniform morphism that maps a given pattern to

an image containing a smaller number of different variables) that maps a pattern

that is not a fixed point to a pattern that is not a fixed point. Therefore, in

contrast to the previous sections, we consider the set of natural number N both

as domain and target alphabets of our morphisms. As an example of an alphabet

reduction, we can mention φi,j, that is defined by Definition 5.9, and we shall use

this alphabet reduction in our next considerations many times.

We start with a general observation (which is a general case of Proposition 5.12),

that links the research on ambiguity of morphisms to the question of whether a

morphic image is not a fixed point of a nontrivial morphism:

Proposition 5.24. Let α ∈ N+. If φ : N∗ → N∗ is unambiguous with respect to

α then φ(α) is not a fixed point of a nontrivial morphism.

Proof. Assume to the contrary that φ(α) is a fixed point of a nontrivial morphism.

So, there must be a morphism ψ : N∗ → N∗ satisfying ψ(φ(α)) = φ(α) and, for a

variable u in φ(α), ψ(u) 6= u. Consequently, we have the following relation:

α -
φ

φ(α)

��
?

ψ



CHAPTER 5. STRONGLY UNAMBIGUOUS 1-UNIFORM MORPHISMS 86

We now define a morphism ϕ : N∗ → N∗ by ϕ := ψ ◦ φ. Hence,

ϕ(α) = ψ ◦ φ(α)

= φ(α).

Since ψ is not an identity morphism, ϕ is different from φ. This contradicts

the assumption of φ being unambiguous. Hence, φ(α) is not a fixed point of a

nontrivial morphism.

In general, the converse of the above proposition does not hold true. For example,

let α := 1 · 2 · 3 · 4 · 4 · 3 · 2 · 1. Thus, φ1,2(α) = 1 · 1 · 3 · 4 · 4 · 3 · 1 · 1 that

is not a fixed point of a nontrivial morphism. However, φ1,2 is ambiguous with

respect to α, because we can define a morphism ϕ satisfying ϕ(α) = φ1,2(α) by

ϕ(1) := φ1,2(1) · φ1,2(1), ϕ(2) := ε, ϕ(3) := φi,j(3) and ϕ(4) := φi,j(4).

If Conjecture 5.8 is correct, then Problem 3.23 can be answered in the affirma-

tive. This is a direct consequence of the following application of Proposition 5.24:

Corollary 5.25. Let α ∈ N+ and assume that there exist i, j ∈ var(α), i 6= j,

such that φi,j is unambiguous with respect to α. Then, αi,j is not a fixed point of

a nontrivial morphism.

Proof. Directly from Proposition 5.24.

Hence, if Conjecture 5.8 is correct then it is stronger than Proposition 5.24.

The above approach does not only facilitate a direct application of our results in

Section 5.2 on the existence of unambiguous 1-uniform morphisms to Problem 3.16,

but it also has the advantage of providing a chance of a constructive method that

might reveal which variables to map to the same image in an alphabet reduction

in order to have both preimage and image not being a fixed point of a nontrivial

morphism. However, since we are unable to prove Conjecture 5.8, we now present

in Theorem 5.28 below a non-constructive answer to Problem 3.23. This is based

on two lemmata, the first of which is a basic insight into fixed points of nontrivial

morphisms:

Lemma 5.26. Let α be a fixed point of a nontrivial morphism. Then there exists

a nontrivial morphism φ : var(α)∗ → var(α)∗ such that φ(α) = α and, for every

x ∈ var(α), if φ(x) 6= ε, then x v φ(x).

Proof. According to Section 2.3, since α is a fixed point of a nontrivial morphism,

there exists a factorisation α = β0γ1β1γ2β2[...]βn−1γnβn with n ≥ 1, βk ∈ N∗ and

γk ∈ N∗, k ≤ n, such that

1. for every k, 1 ≤ k ≤ n, |γk| ≥ 2,
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2. for every k, 1 ≤ k ≤ n, and for every k′, 0 ≤ k′ ≤ n, var(γk) ∩ var(βk′) = ∅,

3. for every k, 1 ≤ k ≤ n, there exists an ik ∈ var(γk) such that |γk|ik = 1 and,

for every k′, 1 ≤ k′ ≤ n, if ik ∈ var(γk′) then γk = γk′ .

For every k, 1 ≤ k ≤ n, let ik ∈ var(γk) be the variable satisfying Condition 3 for

γk. We now define a morphism φ : var(α)∗ → var(α)∗ by, for every x ∈ var(α),

φ(x) :=


γk, x = ik, 1 ≤ k ≤ n,

ε, x = var(γk) \ {ik}, 1 ≤ k ≤ n,

x, x ∈ var(βk), 1 ≤ k ≤ n.

Referring to Condition 1 of the above decomposition, the morphism φ is not trivial.

Also, due to Condition 2 and Condition 3, φ is indeed a morphism. Therefore, the

definition of φ implies that φ(α) = α and, for every x ∈ var(α), if φ(x) 6= ε, then

x v φ(x).

Using Lemma 5.26, we can now prove the following technical observation on

the pattern αi,j as introduced in Definition 5.9, which is required in the proof of

Theorem 5.28:

Lemma 5.27. Let α not be a fixed point of a nontrivial morphism. For any

i, j ∈ var(α), i 6= j, if αi,j is a fixed point of a nontrivial morphism φ : var(α)∗ →
var(α)∗, then φ(i) = ε.

Proof. Since αi,j is a fixed point of a nontrivial morphism φ, φ(αi,j) = αi,j. Ac-

cording to Lemma 5.26, we can assume that φ is a nontrivial morphism satis-

fying, for every x ∈ var(αi,j), if φ(x) 6= ε, then x v φ(x). Assume to the

contrary that φ(i) 6= ε. As a result, i v φ(i). Also, due to φ(αi,j) = αi,j,

|φ(i)|i = 1. Let n := |αi,j|i and αi,j := α1i1α2i2[...]αn−1inαn, where, for every k,

1 ≤ k ≤ n, αk ∈ (var(αi,j)\{i})∗ and ik = i. We now define a nontrivial morphism

φ′ : var(α)∗ → var(α)∗ by, for every x ∈ var(α),

φ′(x) :=

φ(x), x 6= j,

ψ(φ(i)), x = j,

where ψ : N∗ → N∗ is a morphism given by ψ(i) := j and ψ(x) := x, x ∈ N \ {i}.
According to the definition of αi,j, for every occurrence of j in α, there exists a k,

1 ≤ k ≤ n, such that j occurs in α at the same position as ik in αi,j. Moreover,

for every k, 1 ≤ k ≤ n, i 6v αk, and |φ(i)|i = 1. Therefore, φ′(α) = α, which is a

contradiction to the fact that α is not a fixed point of a nontrivial morphism. As

a result, φ(i) = ε.
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We now provide a comprehensive and affirmative answer to Problem 3.23 for

all alphabets that have at least six distinct variables. As mentioned above, our

corresponding proof is non-constructive, which means that it does not provide any

direct insights into the character of alphabet reductions that preserve not being

a fixed point. On the other hand, the applicability of our technique to Billaud’s

Conjecture (see below) can therefore easily be examined, and the fact that it is

not applicable allows some conclusions to be drawn on the complexity of that

conjecture.

Theorem 5.28. Let α be a pattern with | var(α)| > 5. If α is not a fixed point of

a nontrivial morphism, then there exist i, j ∈ var(α), i 6= j, such that αi,j is not a

fixed point of a nontrivial morphism.

Proof. Assume to the contrary that, for every i, j ∈ var(α), αi,j is a fixed point of

a nontrivial morphism. Therefore, due to Lemma 5.26, for every i, j, there exists

a nontrivial morphism ψ〈i,j〉 : var(α)∗ → var(α)∗ satisfying ψ〈i,j〉(αi,j) = αi,j and,

for every x ∈ var(αi,j), if ψ〈i,j〉(x) 6= ε, then x v ψ〈i,j〉(x). On the other hand, it

results from Lemma 5.27 that ψ〈i,j〉(i) = ε. Consequently, for every occurrence of i

in αi,j, there exists a variable x ∈ var(αi,j)\{i} with i v ψ〈i,j〉(x) and x v ψ〈i,j〉(x).

We assume that there exist m different variables x in αi,j and we denote them by

x1, x2, [...], xm. Since α is not a fixed point of a nontrivial morphism, for every k,

1 ≤ k ≤ m, |αi,j|xk ≥ 2. As a result, for every k, 1 ≤ k ≤ m, |ψ〈i,j〉(αi,j)|ψ〈i,j〉(xk) ≥
2.

Claim. There exists an xk, 1 ≤ k ≤ m, with at least two occurrences of ψ〈i,j〉(xk)

in ψ〈i,j〉(αi,j) such that

• one of them contains an occurrence of i as nth variable, 1 ≤ n ≤ |ψ〈i,j〉(xk)|,
which is at the same position in αi,j as an occurrence of i in α, and

• the other one contains an occurrence of i as nth variable, which is at the

same position in αi,j as an occurrence of j in α.

We illustrate the Claim in the following diagram, where β is a prefix of ψ〈i,j〉(xk)

with length (n− 1).

ψ〈i,j〉(αi,j) = αi,j =

α =

...

...

...

...

xk

xk

xk

xk

i

i

i

j

︸ ︷︷ ︸
ψ〈i,j〉(xk)

︸ ︷︷ ︸
ψ〈i,j〉(xk)

β︷ ︸︸ ︷ β︷ ︸︸ ︷
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Proof (Claim). We denote those occurrences of i in αi,j that are at the same

positions as j in α with ij. We assume to the contrary that there does not exist

any xk, 1 ≤ k ≤ m, with at least two occurrences of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j)

satisfying the following conditions:

• one of them contains an occurrence of i as nth variable, 1 ≤ n ≤ |ψ〈i,j〉(xk)|,
and

• the other one contains an occurrence of ij as nth variable.

Let Xj be a set of those variables q ∈ var(αi,j) \ {i} satisfying |ψ〈i,j〉(q)| ≥ 2 and

ij @ ψ〈i,j〉(q). Due to the above conditions, there does not exist any q′ ∈ Xj with

at least two occurrences of ψ〈i,j〉(q
′) in ψ〈i,j〉(αi,j) such that one of them contains

an occurrence of i at the same position as an occurrence of ij in the other one.

Therefore, we can define a nontrivial morphism φ : var(α)∗ → var(α)∗ over α by,

for every y ∈ var(α),

φ(y) :=


ε, y = j,

ϕ〈i,j〉(ψ〈i,j〉(y)), y ∈ Xj,

ψ〈i,j〉(y), else,

where ϕ〈i,j〉 : N∗ → N∗ is a morphism with, for every y′ ∈ var(αi,j),

ϕ〈i,j〉(y
′) =

j, y′ = ij,

y′, else.

Due to ψ〈i,j〉(i) = ε, because of the definition of ϕ〈i,j〉, and since there does not

exist any xk, 1 ≤ k ≤ m, satisfying the above mentioned conditions, it can be

verified that φ(α) = α, which contradicts the fact that α is not a fixed point of a

nontrivial morphism. Therefore, the Claim holds true. (Claim)

Henceforth, we denote those occurrences of i in ψ〈i,j〉(xk) satisfying the conditions

of the Claim by i′. Consequently, according to the Claim, there exists an xk,

1 ≤ k ≤ m, with i′ v ψ〈i,j〉(xk). Furthermore, if we wish to refer to the relation

between xk on the one hand and the variables i, j on the other hand as described

by the Claim, we say that xk is responsible for the pair 〈i, j〉.
We now study the following question: Is xk responsible for any pair of variables

of α except 〈i, j〉 (we do not distinguish between the pairs 〈i, j〉 and 〈j, i〉, in other

words, 〈i, j〉 and 〈j, i〉 are the same pairs)? If the answer is yes, for how many

pairs can this happen?

In order to answer this question, we consider the following cases:
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1. The variable i′ occurs to the right of xk in ψ〈i,j〉(xk). So, we can assume that

α = ... ·α1 ·xk ·α2 ·i ·α3 · ... ·α4 ·xk ·α5 ·j ·α6 · ..., where, for every k′, 1 ≤ k′ ≤ 6,

αk′ ∈ var(α)∗, and ψ〈i,j〉(xk) := β1 · xk · β2 · i′ · β3, β1, β2, β3 ∈ var(αi,j)
∗.

ψ〈i,j〉(αi,j) = αi,j =

αi,j =

α =

...

...

...

...

...

...

β1

α1

xk

xk

xk

β1

α4

xk

xk

xk

β2

α2

i′

i

i

β3

α3

β2

α5

i′

i

j

β3

α6

︸ ︷︷ ︸
ψ〈i,j〉(xk)

︸ ︷︷ ︸
ψ〈i,j〉(xk)

We now examine the mentioned question for the pair 〈l, r〉, l, r ∈ var(α) and

〈l, r〉 6= 〈i, j〉, by assuming that αl,r is a fixed point of a nontrivial morphism

ψ〈l,r〉. According to our discussion for 〈i, j〉, if xk is responsible for 〈l, r〉, we

need to have l′ (defined analogously to i′) in ψ〈l,r〉(xk).

We assume that l′ occurs to the right of xk in ψ〈l,r〉(xk). Therefore, one of

the following cases needs to be satisfied:

• l′ occurs to the right of i′. As a result, due to 〈l, r〉 6= 〈i, j〉, in one

occurrence of ψ〈l,r〉(xk) in ψ〈l,r〉(αl,r), we have an occurrence of i, and

in the other occurrence of ψ〈l,r〉(xk) at the same position as i, we have

j, which is a contradiction.

• l′ occurs in β2. Then, because of 〈l, r〉 6= 〈i, j〉, there exists an occur-

rence of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j) such that its β2 factor is different from

the factor β2 of the other occurrences of ψ〈i,j〉(xk) in ψ〈i,j〉(αi,j), which

is again a contradiction.

• l′ occurs at the same position as i′. However, this contradicts the fact

that 〈l, r〉 6= 〈i, j〉.

Consequently, xk can be responsible for 〈l, r〉 iff l′ occurs to the left of xk

in ψ〈l,r〉(xk). By investigating the responsibility of xk for any other pair

of variables 〈q, z〉, q, z ∈ var(α), 〈q, z〉 6= 〈i, j〉 and 〈q, z〉 6= 〈l, r〉, we can

conclude with the same reasoning as above that q′ cannot occur to the right

of xk in ψ〈q,z〉(xk). Also, by assuming that l′ occurs to the left of xk in

ψ〈l,r〉(xk), an analogous reasoning as above leads to the fact that q′ cannot

occur to the left of xk in ψ〈q,z〉(xk). Consequently, xk cannot be responsible

for any other pairs 〈q, z〉, q, z ∈ var(α), 〈q, z〉 6= 〈i, j〉 and 〈q, z〉 6= 〈l, r〉.
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2. The variable i′ occurs to the left of xk in ψ〈i,j〉(xk). An analogous reasoning

to that in the previous case implies that, firstly, xk can be responsible for

another pair of variables 〈l, r〉, 〈l, r〉 6= 〈i, j〉, iff l′ occurs to the right of

xk in ψ〈l,r〉(xk). Secondly, xk is not responsible for any other pairs 〈q, z〉,
q, z ∈ var(α), 〈q, z〉 6= 〈i, j〉 and 〈q, z〉 6= 〈l, r〉.

Consequently, due to the above cases, we can conclude that every variable

x ∈ α can at most be responsible for two pairs of variables. On the other hand,

if | var(α)| = n, the number of pairs of variables of α is
(
n
2

)
. Referring to the

assumption of the theorem, n > 5. Therefore,(
n

2

)
> 2n.

This implies that there is a pattern αi,j, i, j ∈ var(α) such that there does not

exist any variable x ∈ var(αi,j) \ {i} that is responsible for the pair 〈i, j〉, which is

a contradiction to the Claim. Thus, there exist variables i, j ∈ var(α) such that

αi,j is not a fixed point of a nontrivial morphism.

Theorem 5.28 shows that the structural property of a pattern α that eliminates

the existence of a nontrivial morphism ψ satisfying ψ(α) = α is strong enough to

also eliminate the existence of a nontrivial morphism ψ′ satisfying ψ′(φi,j(α)) =

φi,j(α) for an appropriate choice of the alphabet reduction φi,j (see Definition 5.9).

However, if we consider a different notion of an alphabet reduction, namely a

morphism δi : N∗ → N∗ defined by δi(i) := ε and δi(x) := x for x ∈ N \ {i},
then Theorem 5.28 and its proof are not sufficient to establish a result that is

equivalent to Theorem 5.28. Hence, we have to study Billaud’s Conjecture (given

as Conjecture 3.21 in the present thesis) separately. As mentioned in Section 3.2,

Theorem 3.22 provides a confirmation of the contraposition of Conjecture 3.21 for

a special case, but, apart from that, little is known about this problem. The final

result of our thesis shall demonstrate that Conjecture 3.21 is correct if patterns

are considered that contain each of their variables exactly twice:

Theorem 5.29. Let α be a pattern with | var(α)| ≥ 3 that is not a fixed point of

a nontrivial morphism. If, for every x ∈ var(α), |α|x = 2, then there exists an

i ∈ var(α) such that δi(α) is not a fixed point of a nontrivial morphism.

Proof. Assume to the contrary that, for every i ∈ var(α), δi(α) is a fixed point of

a nontrivial morphism. This implies that, for every δi(α), there exists a morphism

φi : N∗ → N∗ satisfying φi(δi(α)) = δi(α) and, for a variable q in δi(α), φi(q) 6= q.

As a result, there exists a variable y ∈ var(α) \ {i} with |φi(y)| ≥ 2. We assume
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that xx′ v φi(y), x, x′ ∈ var(α) \ {i} and x 6= x′. Thus,

δi(α) = ... · xx′ · ... · xx′ · ...,

where |δi(α)|xx′ = 2. Since α is not a fixed point of a nontrivial morphism, and

every variable occurs twice in α, α 6= ... ·xx′ · ... ·xx′ · ... . Therefore, if we, without

loss of generality, focus on just one possible order of factors in the equations below,

we can assume α to satisfy one of the following equations (note that in the present

proof, to emphasise some variables, we show them in a bold face; so, e. g., x′ = x′):

α = α1 · xx′ · α2 · xix′ · α3, where α1, α2, α3 ∈ (var(α) \ {x, x′})∗ (5.1)

α = α1 · xx′ · α2 · xiix′ · α3, where α1, α2, α3 ∈ (var(α) \ {x, x′, i})∗ (5.2)

We now investigate δx(α). Referring to the assumption, φx(δx(α)) = δx(α) and

there must exist a variable y′ ∈ var(α) with |φx(y′)| ≥ 2. Let u1u2 v φx(y
′),

u1, u2 ∈ var(α) \ {x}. Since α is not a fixed point of a nontrivial morphism, and

y′ has two occurrences in δx(α), we can conclude that one of the following cases

must be satisfied:

1. u1xu2 v α and u1u2 v α, or

2. u1xxu2 v α and u1u2 v α.

However, Case 2 does not hold true, since, according to Equations (5.1) and (5.2),

xx 6v α. Moreover, since there does not exist any variable in Equation (5.2) satis-

fying Case 1, α cannot be factorised as described by Equation (5.2). Consequently,

when applying Equation (5.1) to Case 1, and if we again, without loss of genera-

lity, focus on just one possible order of factors in the equations below, one of the

following equations needs to be satisfied:

α = ... · ixx′ · ... · xix′ · ..., where u1 = i and u2 = x′, or (5.3)

α = ... · x′′i · ... · xx′ · ... · x′′xix′...,where u1 = x′′, u2 = i, and

x′′ ∈ var(α) \ {i, x, x′}. (5.4)

In the next step, we consider δx′(α). Using an analogous reasoning to the one

above, we can conclude that there must exist a variable y′′ ∈ var(α) with |φx′(y′′)| ≥
2. Let u3u4 v φx′(y

′′), u3, u4 ∈ var(α) \ {x′}. Similarly to our explanations above,

and since in the above equations x′x′ 6v α, we can conclude that u3x
′u4 v α and

u3u4 v α. However, this condition does not hold true in Equation (5.3), due to the

fact that every variable must occur exactly twice in α. Therefore, considering α as

factorised in Equation (5.3) leads to a contradiction. In Equation (5.4), in order
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to satisfy the said condition, we need another variable x′′′ ∈ var(α)\{i, x, x′′} such

that, without loss of generality regarding the order of factors,

α = ... · x′′ix′′′ · ... · xx′ · ... · x′′xix′x′′′... , (5.5)

where u3 = i and u4 = x′′′. In other words, ix′′′ v φx′(y
′′).

We now consider δx′′(α). Using the same reasoning as above, but applied to

Equation (5.5), we need another variable x′′′′ ∈ var(α) \ {i, x, x′′, x′′′} such that,

without loss of generality regarding the order of factors,

α = ... · x′′ix′′′ · ... · x′′′′xx′ · ... · x′′′′x′′xix′x′′′... , (5.6)

where there must exist a variable y′′′ ∈ var(α) with x′′′′x v φx′′(y
′′′).

Consequently, by continuing this reasoning, we can conclude that if we wish

to construct a pattern α that satisfies our assumptions, in each step, we have to

add a new variable to α, shown in a bold face in each step. This implies that

the length of α is infinite, which is a contradiction. Therefore, there exists an

i ∈ var(α) such that δi(α) is not a fixed point of a nontrivial morphism.

We expect that even a moderate extension of Theorem 5.29 would require

a substantially more involved reasoning. We therefore conclude that the actual

nature of patterns that are not a fixed point of a nontrivial morphism, despite

our almost comprehensive result in Theorem 5.28 and the strong insights that are

mentioned in Section 3.2, is not really understood. This view is further substan-

tiated by the fact that another property of those patterns that are not a fixed

point, namely their frequency, is largely unresolved as well (see Reidenbach and

Schneider [34]).



Chapter 6

Conclusions

In Chapter 4 of the present thesis, we have demonstrated that there is a weakly

unambiguous length-increasing morphism σ : N+ → Σ+, |Σ| ≥ 3, with respect

to α ∈ N+ if and only if Eα is not empty, where Eα ⊆ var(α) consists of those

variables that have neighbour variables which are not loyal. We have shown that

this condition is not characteristic, but only necessary for the case |Σ| = 2, which

leads to an interesting difference between binary and all other target alphabets

Σ. We have not been able to characterise the existence of weakly unambiguous

length-increasing morphisms with binary target alphabets, but we have found

strong conditions that are either sufficient or necessary. Finally, for |Σ| = 1, we

have been able to demonstrate that the existence of weakly unambiguous length-

increasing morphisms σ : N+ → Σ+ solely depends on particular equations that

the numbers of occurrences of the variables in the corresponding pattern need to

satisfy. Consequently, the following problem has not been completely solved in

Chapter 4:

Open Problem 6.1. Let Σ be a binary alphabet. For which patterns is there a

weakly unambiguous length-increasing morphism σ : N∗ → Σ∗? For which patterns

is there no such morphism?

Regarding the decidability of the above problem, we have given a conjecture in

Section 4.3, which we now state as an open problem:

Open Problem 6.2. Let α ∈ N+ with |α| ≥ 2, and let Σ be a binary alphabet. Is

the problem of whether there is a weakly unambiguous length-increasing morphism

σ : N+ → Σ+ with respect to α decidable by testing a finite number of morphisms?

In Chapter 5, we have investigated the question of whether, for a given pattern

in N∗, there exists a strongly unambiguous 1-uniform morphism σ : N∗ → Σ∗. To

this end, we have considered two different settings: in Section 5.1 we have assumed

94
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Σ to be fixed, i. e., |Σ| does not depend on the number of variables in the pattern,

and in Section 5.2 we have allowed Σ to be arbitrarily chosen, subject to the

number of different variables in the pattern α in question (provided that |Σ| <
| var(α)|). Our results in Section 5.1 have revealed that it is impossible to give

a characteristic condition on those patterns that have a strongly unambiguous 1-

uniform morphism if this condition does not incorporate the size of target alphabet

Σ. Therefore, for fixed target alphabets, we have given some sufficient conditions

on the existence of such morphisms. With regard to variable alphabets Σ, we have

given two equivalent conjectures in Section 5.2, which say that such morphisms

exist if and only if the pattern is not a fixed point of a nontrivial morphism.

Our corresponding results have established major sets of patterns for which these

conjectures hold true, but we have left the overall correctness of our conjectures

open. We now state one of these conjectures as an open problem:

Open Problem 6.3. Let α be a pattern with | var(α)| ≥ 4. Do there exist an

alphabet Σ satisfying |Σ| < | var(α)| and a 1-uniform morphism σ : N∗ → Σ∗ that

is strongly unambiguous with respect to α if and only if α is not a fixed point of a

nontrivial morphism?

Moreover, in Section 5.3, we have studied whether there exists an alphabet

reduction that maps a pattern that is not a fixed point of a nontrivial morphism

to a pattern that is not a fixed point of a nontrivial morphism, either. Theo-

rem 5.28 has provided a comprehensive and affirmative answer to this problem for

all alphabets that have at least six distinct letters. Additionally, since there exist

some connections between our studies and Billaud’s Conjecture, as a final result

of this thesis, we have proved the correctness of this conjecture for those patterns

in which every variable occurs exactly twice.
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