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Unconventional pairing symmetry of layered superconductors caused by acoustic phonons
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An inevitable anisotropy of sound velocity in crystals makes the phonon-mediated attraction of electrons
nonlocal in space providing unconventional Cooper pairs with a nonzero orbital momentum. As a result of this
anisotropy, quasi-two-dimensional charge carriers weakly coupled with acoustic phonons undergo a quantum
phase transition from a conventional s-wave to an unconventional d-wave superconducting state with less
carriers per unit cell. In the opposite strong-coupling regime, rotational symmetry breaking appears as a result
of a reduced Coulomb repulsion between unconventional bipolarons dismissing thereby some constraints on
unconventional pairing in the Bose-Einstein condensation limit. The conventional acoustic phonons, and not
superexchange, are shown to be responsible for the d-wave symmetry of cuprate superconductors, where the
on-site Coulomb repulsion is large.

DOI: 10.1103/PhysRevB.77.094502 PACS number�s�: 74.20.�z, 74.25.Bt, 74.40.�k, 74.72.�h

A great number of observations, in particular, phase-
sensitive experiments,1 point to the unconventional d-wave
symmetry of cuprate and some other superconductors �for a
review, see Ref. 2�. It has been thought for a long while that
Cooper pairs in the Bardeen-Cooper-Schrieffer �BCS� theory
with the conventional electron-phonon interaction �EPI� are
singlets and their wave function is isotropic �s wave�.3 This
interaction has been thought to be local in space, so it could
not lead to a higher angular-momentum pairing. Thus, it has
gone unquestioned that the unconventional pairing requires
unconventional electron-phonon interactions with specific
optical phonons and poor screening,4–8 sometimes combined
with antiferromagnetic fluctuations9 and vertex corrections,10

or nonphononic mechanisms of pairing �e.g.,
superexchange11�, and a specific shape of the Fermi surface.

The pairing symmetry breaking is a many-body effect in
accordance with a well-known quantum mechanics
theorem,12 which states that the coordinate wave function of
two particles does not become zero �or has no nodes� in the
ground state. Hence, any superconductor should seem to be s
wave in the strong-coupling limit,13 where pairs are indi-
vidual �e.g., bipolarons14� rather than overlapping Cooper
pairs.

Here, the symmetry of the superconducting state mediated
by conventional acoustic phonons is revised. The sound-
speed anisotropy leads to a double surprise: �a� the BCS state
of layered crystals is d wave in a wide range of carrier den-
sities; �b� the strong-coupling BEC state can break the rota-
tional symmetry as well. The anisotropic EPI with acoustic
phonons is proposed as the origin of the unconventional pair-
ing owing to a giant sound-speed anisotropy in layered cu-
prate superconductors.

In the framework of the BCS theory, the symmetry of the
order parameter ��k� and the critical temperature Tc are
found by solving the linearized “master” equation,3

��k� = − �
k�

V�k,k��
��k��
2�k�

tanh� �k�

2kBTc
� . �1�

The interaction V�k ,k�� comprises the attraction −Vph�q�,
mediated by phonons, and the Coulomb repulsion Vc�q� as,

V�k,k�� = − Vph�q����D − ��k�����D − ��k���

+ Vc�q����p − ��k�����p − ��k��� , �2�

where Vph�q�=C2 /NMcl
2 is the square of the matrix element

of the electron-phonon interaction,15 divided by the square of
the acoustic-phonon frequency, �q=clq, cl is sound velocity,
M is the ion mass, N is the number of unit cells in the crystal,
and �k is the electron energy relative to the Fermi energy.
The deformation potential matrix element C is nearly q in-
dependent near the � point of the Brillouin zone in conven-
tional metals15 and near extremum points of valence and
conduction bands in doped semiconductors.16 While the va-
lidity of this approximation for cuprate superconductors has
never been discussed, it affects none of our qualitative con-
clusions. The magnitude of C is roughly the electron band-
width in rigid metallic15 or semiconducting16 lattices. The
electron momentum transfer q=k−k� or its in-plane compo-
nent has the magnitude q=21/2kF�1−cos ��1/2 for the spheri-
cal or cylindrical Fermi surface, respectively, where � is the
angle between k and k� and 	kF is the Fermi momentum.
Theta functions in Eq. �2� ���x�=1 for positive x and zero
otherwise� account for a difference in frequency scales of the
electron-phonon interaction �D and the Coulomb repulsion
�p��D, where �D and �p are the maximum phonon and
plasmon energies, respectively.

If one neglects anisotropic effects,3 replacing Vph�q� and
Vc�q� by their Fermi-surface averages, Vph�q�⇒Vph,
Vc�q�⇒Vc, then there is only an s-wave solution of Eq. �1�,
�s, independent of k. The sound-speed anisotropy actually
changes the symmetry of the BCS state. While cl is a con-
stant in the isotropic medium, it depends on the direction of
q in any crystal. The anisotropy is particulary large in lay-
ered crystals such as cuprate superconductors, where an elas-
tic stiffness constant in the a-b plane is substantially greater
than in the c direction �see Refs. 17 and 18 and references
therein�. As an example, the measured velocity of longitudi-
nal ultrasonic waves along a-b plane, c	 =4370 ms−1, is al-
most twice larger than that along c axis, c�=2670 ms−1, in
Bi2Sr2CaCu2O8+y.

18 It makes Vph�q� anisotropic,
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Vph�q� =
C2

NMc�
2 �1 + 
q	

2/q2�
, �3�

where 
= �c	
2−c�

2 � /c�
2 is the anisotropy coefficient, which is

about 2 in cuprates. Also, the Coulomb repulsion is q depen-
dent, Vc�q�=4�e2 /V�0�q2+qs

2�. In the framework of the ran-
dom phase approximation, the inverse screening radius
squared is found as qs

2=8�e2N�0� /V�0, with the density of
states �per spin� N�0� at the Fermi surface. Here, �0 is the
�in-plane� static dielectric constant of the host cuprate lattice
of the volume V.

Solving the master equation �Eq. �1�� with two-
dimensional �2D� electron spectrum, one can expand ��k�
=�m�m exp�im � and Vph,c�q�=�mVph,c�q� ,m�exp�im�
−��� in series of the eigenfunctions of the c-axis component
of the orbital angular momentum, where  and � are polar
angles of the in-plane momenta, k	 and k	�, respectively.

The solution for the m component of the order
parameter �m=0, �1, �2, . . . � is found in the form
�m=�m

�1����D− ��k��+�m
�2����p− ��k������k�−�D� with dif-

ferent values of �m
�1� and �m

�2� below and above the cutoff
energy �D, respectively. Integrating in Eq. �1� over
�k�, � �using the integral 
0

2�d� cos�m�� / �1− p cos ��
=2��1− �1− p2�1/2�m / pm�1− p2�1/2�, and finally over q�

yields the following pair of equations:

�m
�1��1 − ��m − �m�ln

1.14�D

kBTc
� + �m

�2��m ln
�p

�D
= 0, �4�

�m
�2��1 + �m ln

�p

�D
� + �m

�1��m ln
1.14�D

kBTc
= 0. �5�

Here, �m and �m are the phonon-mediated attraction and the
Coulomb pseudopotential in the m-pairing channel, given,
respectively, by

�m

�
= �m,0 +




2�
�

0

� dx�x + 1 − x�x + 2��m

x + 2
�6�

and

�m

�c
=

�̃

2
�

0

�̃ dx�x + � + 1 − �x + ���x + � + 2��m

x�x + ���x + � + 2�
, �7�

where �=N�0�C2 /NMc	
2, �=�2 /2d2kF

2�1+
�, d is the inter-
layer distance, �̃=��1+
�, �c=4e2d2N�0� /�V�0, and �
=qs

2 /2kF
2 �note that �, �c, and qs do not depend on the carrier

density since N�0� is roughly constant in the quasi-two-
dimensional Fermi gas�.

The effective attraction of two electrons in the Cooper
pair with nonzero orbital momentum turns out finite at any
finite anisotropy, 
�0, but numerically smaller than in the
s-channel �Fig. 1 �inset��, as is also seen from its analytical
expressions for s-wave pairing, m=0 ��s�, p-wave pairing,
m=1 ��p�, and for d-wave pairing, m=2 ��d�, obtained by
integrating in Eq. �6�. When the interlayer distance is much
larger than the wavelength of electrons, ��1, one obtains

�s��, �p��
�� /2�1/2 /2, and �d��p. In the opposite limit,
��1, one finds �s���1+
�, �p��
�2 /��1/2 /3, and
�d��p /5.

The Coulomb repulsion is much smaller in the unconven-
tional pairing states than in the conventional s-wave state
�Fig. 1�, which is also seen from the analytical expression for
�m �Eq. �7��. If �̃��, the repulsion constant �m drops as
1 /�m+1 in the m channel at strong screening, when ��1. It
provides a wide region with unconventional pairs in the
“�-�” parameter space, in spite of the lower values of their
electron-phonon coupling constants �Fig. 2�. Indeed, the
critical temperature for m-Cooper pairing is

Tcm = 1.14�D exp�− 1/��m − �
m
*�� , �8�

where �
m
* =�m / �1+�m ln��p /�D��, as found from Eqs. �4�

and �5�. For a fixed set of material parameters �which define
� and �c�, the physically realized superconducting instability
appears in the angular-momentum channel with the highest
Tcm. A minimum �i.e., critical� ratio � /�c for the existence of
superconductivity in the m channel is determined by the con-
dition �m=�

m
* as the function of the parameters � and �.

Naturally, the m-pairing state with the lowest value of the
critical ratio has the highest Tc. The critical d-wave surface,
� /�c=S�� ,��, defined using �m=�

m
*, is found below s-wave

and p-wave surfaces, if ��1, so that the d-wave state is
physically realized in this region of parameters, as seen from
Fig. 2.

Higher-momentum states, m�3, have even a smaller
Coulomb repulsion at large � �Eq. �7��, so that they can be
realized as well, if � is so small, that �m in Eq. �6� is almost
m independent for m�1. On the other hand, an in-plane
anisotropy of the sound velocity, compatible with the sym-
metry of the perovskite lattice, makes d-wave state more
stable compared with the higher-momentum states. Natu-
rally, if the sound speed is enhanced along the diagonal di-
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FIG. 1. �Color online� The Coulomb repulsion �m as a function
of the ratio of the electron wavelength to the screening length
squared ��=qS

2 /2kF
2�, and the electron-phonon coupling constant �m

as a function of the ratio of the electron wavelength to the inter-
plane distance squared, �=�2 /2d2kF

2�1+
� for 
=4 �inset� in s, p,
and d pairing channels. Here, �c�=�c�̃.
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rections of the in-plane primitive cell, the d-wave order pa-
rameter would be zero along diagonals of the 2D Brillouin
zone, where it changes its sign.

Using the simplest parabolic approximation for a 2D-
electron energy spectrum, we can draw some conclusions on
the carrier-density evolution of the order-parameter symme-
try. Within this approximation, kF

2 =2�dn and N�0�
=mV /2�d	2, where n=2x /� is the carrier density and x is
the doping level as in La2−xSrxCuO4 with the unit cell vol-

ume �. The ratio of the parameters �=me2� /2�	2d2�0x and
�̃=�� /8d3x�0.044 /x is independent of the carrier density,
� / �̃=4me2d /�2	2�0, which is approximately 5 for the val-
ues of m=4me and �0=10. Fixing the value of the EPI con-
stant at �=�c /12 �which corresponds to the weak-coupling
BCS regime with ��0.1 since �c is of the order of 1� and
taking �c ln��p /�D�=3, we draw the anisotropy-doping
phase diagram �Fig. 3�, with the critical lines for s, p, and d
order parameters, defined by �m=�

m
*. The state with the low-

est magnitude of the anisotropy, 
 / �1+
�1/2, is physically
realized since it has the highest Tc. At substantial doping, the
screening length becomes larger than the typical wavelength
of electrons, �→0, so that the s-wave state is the ground
state at a large number of carriers per unit cell for any an-
isotropy. On the contrary, the Coulomb repulsion is reduced
to the local interaction at a low doping, �→�, and d-wave
Cooper pairs are the ground state even at very low value of
the anisotropy �Fig. 3�. Interestingly, s and d states turn out
degenerate at some intermediate value of doping, x=xc.
Hence, there is a quantum phase transition with increasing
doping from d- to s-superconducting state, if 
�
c, and
from d to the normal state and then to the s-wave supercon-
ductor, if 
�
c �see Fig. 3�.

In the strong-coupling regime, ��1, the pairing is
individual,14 in contrast with the collective Cooper pairs.
While the Bose condensate of individual bipolarons could
break the symmetry on a discreet lattice,19,20 here I propose a
symmetry breaking mechanism, which works even in a con-
tinuum model, where the ground state, it would seem, be s
wave13 to satisfy the theorem.12

The unscreened Fröhlich EPI with optical phonons in lay-
ered ionic lattices such as cuprates has been suggested by us
as the key for pairing.14 Acting alone it cannot overcome the
direct Coulomb repulsion, but almost nullifies it since �0�1.
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�1/2= �c	
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to p state�. With increasing carrier density, there is a quantum phase
transition at x=xc from a d-wave to an s-wave superconductor,
when 
�
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�
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That allows the weaker deformation potential �Eq. �3�� to
bind carriers into real-space bipolarons, if ��0.5.14 The cor-
responding potential, V�r�=−�qVph�q�exp�iq ·r�, is nonlocal
in real space,

V�r� = − Vph����r�
d

+



4��1 + 
�1/2r3� , �9�

falling as 1 /r3 at the distance r�d between two carriers in
the plane, where Vph=C2 /Mc�

2 . While its local part
����r�=��x���y�� is negated by the strong on-site repulsion
U, the second nonlocal part provides bound pairs of different
symmetries with the binding energies �s��p��d�¯, in
agreement with the theorem.

However, there is the residual Coulomb repulsion be-
tween bipolarons vc�R�, significantly reduced by optical
phonons. If we approximate the bipolaron as a point charge
2e, then vc�R��4e2 /�0R. Since bipolarons have a finite ex-
tension �, there are corrections to the Coulomb law. The
bipolaron has no dipole moment, hence the most important
correction at large distances between two bipolarons,
R��, comes from the charge-quadrupole interaction,12

vc�R�=4e2�1���2 /R2� /�0R, where � is a number of the
order of 1, and plus and/or minus signs correspond to bipo-
larons in the same or different planes, respectively. The di-
electric screening, �0 is highly anisotropic in cuprates, where
the in-plane dielectric constant �0	 is much larger than the
out-of-plane one �0�.21 Hence, the interplane repulsion pro-
vides the major contribution to the condensation energy.
Since �2�1 /�, the repulsion of unconventional bipolarons
with smaller binding energies, �d, �p��s, is reduced com-
pared with the repulsion of s-wave bipolarons. As a result,
with increasing carrier density, we anticipate a transition
from BEC of s-wave bipolarons to BEC of more extended p-
and d-wave real-space pairs in the strong-coupling limit.

Several authors11 have remarked that superexchange, and

not phonons, is responsible for the symmetry breaking in
unconventional superconductors such as doped cuprates.
Here, I arrive at the opposite conclusion. Indeed, superex-
change interaction J is proportional to the electron hopping
integral t2 divided by the on-site Coulomb repulsion �Hub-
bard U�, J=4t2 /U, estimated as J�0.15 eV in cuprates.11

This should be compared with the acoustic-phonon pairing
interaction Vph, which is roughly the Fermi energy,
Vph�EF�4t in a metal15 or the bandwidth squared divided
by the ion-ion interaction energy of the order of the nearest-
neighbor Coulomb repulsion, Mcl

2�Vc in a doped
insulator.16 The small ratio of two interactions, J /Vph
� t /U�1 or J /Vph�Vc /U�1, and the giant sound-speed
anisotropy17,18 favor conventional EPI as the origin of the
unconventional pairing both in underdoped cuprates, where
the pairing is individual,14 and in overdoped samples appar-
ently with Cooper pairs.3

Nowadays, compelling evidence for a strong EPI has ar-
rived from isotope effects,22 more recent high resolution
angle resolved photoemission spectroscopies,23 and a num-
ber of earlier optical,24–27 neutron-scattering,28 and recent in-
elastic scattering measurements29 in cuprates. Whereas cal-
culations based on the local spin-density approximation
�LSDA� often predict negligible EPI, the inclusion of Hub-
bard U in the LSDA+U calculations greatly enhances its
strength.30 While the coupling with particular phonon modes
is quite different,23,29,30 EPI with conventional acoustic
phonons and the substantial sound-speed anisotropy explain
alone the unconventional symmetry of cuprate superconduct-
ors.
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