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Abstract. Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic
field induces specific correlations in the system accompanied by a drastic increase of emitted radiation
(superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon was
subject to a vigorous experimental and theoretical research, there remain open question, in particular,
concerning the possibility of a first order phase transition to the superradiant state from the vacuum state.
In systems of natural and charge-based artificial atom this transition is prohibited by “no-go” theorems.
Here we demonstrate numerically and confirm analytically a similar transition in a one-dimensional quan-
tum metamaterial – a chain of artificial atoms (qubits) strongly interacting with classical electromagnetic
fields in a transmission line. The system switches from vacuum state to the quasi-superradiant (QS) phase
with one or several magnetic solitons and finite average occupation of qubit excited states along the trans-
mission line. A quantum metamaterial in the QS phase circumvents the “no-go” restrictions by considerably
decreasing its total energy relative to the vacuum state by exciting nonlinear electromagnetic solitons.

1 Introduction1

The interaction of light and matter in artificial opti-2

cal media is the focus of a significant research effort3

(see e.g., [1–6]). The strong light-matter interaction in4

such systems make possible such effects as unusual pho-5

ton collapse-and-revivals [7], Schrödinger-cat states [8],6

non-classical radiation [9], unusual Casimir effect and7

pseudo-vacuum states [10]. For a subclass of these media8

with extended spatial quantum coherence (quantum meta-9

materials [11–19]) a number of novel phenomena are10

predicted, which do not have place in natural materials11

and classical metamaterials. This adds a new dimension12

to the long-standing discussion about the possibility of13

a superradiant transition in the system of atoms strongly14

interacting with electromagnetic waves in a cavity [20–26].15

In particular, reference [25] extends the “no-go” theorem16

to circuit QED with charge (but not flux) qubits.17

It was predicted [20,21] that in a cavity containing18

many two-level atoms there exists a possibility of a tran-19

sition from the vacuum state (with no photons and all20

atoms being in the ground state) to the superradiant state21

(with nonzero photon occupation number accompanied by22

? Supplementary material in the form of one pdf file from
the Journal web page at
https://doi.org/10.1140/epjb/e2017-80567-7.

a e-mail: hd-asai@aist.go.jp

atom excitations) as the light-atom interaction increases. 23

This topic remained subject of vigorous investigation ever 24

since [27,28]. Soon after this prediction it was pointed 25

out that the predicted transition is “an interesting arte- 26

fact” [22], caused by neglecting the term quadratic in 27

the electromagnetic vector potential in the light-matter 28

interaction Hamiltonian. Taking it into account elimi- 29

nates the superradiant state. This “no-go” theorem (see 30

e.g., [22–24]) was claimed not to apply to both bosonic 31

and fermionic artificial-atom arrays (in particular, in case 32

of circuit QED), at least when driven by a laser to a 33

non-equilibrium state [26,29–32]. Nevertheless in [25] the 34

theorem was restated for charge-qubit based circuit-QED 35

systems. The precise requirements to a system capable 36

of undergoing the superradiant phase transition [25,26] 37

and possible connections between the superradiance and 38

similar phenomena such as the dynamical Casimir effect 39

[33,34] or the essentially non-classical spontaneous radi- 40

ation [9,10] are still being vigorously debated, and the 41

investigation of these and related phenomena in artificial 42

structures is highly relevant. 43

A quantum metamaterial (QMM) is a globally quantum 44

coherent array of artificial atoms with a limited control 45

of their quantum state [12]. In this article we consider 46

superradiant-like transition in the presence of external 47

magnetic field in such a structure. Though the basic 48

properties of a QMM are qualitatively independent on 49

its specific realization [18,19], here we use a model of a 50

https://epjb.epj.org/
https://doi.org/10.1140/epjb/e2017-80567-7
https://doi.org/10.1140/epjb/e2017-80567-7
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Fig. 1. One-dimensional quantum metamaterial: (a) a chain
of superconducting charge qubits playing the role of artificial
atoms in a Josephson transmission line formed between two
superconducting banks connected via superconducting islands
(charge qubits). The (green) wave represent distribution of
the electromagnetic field in the structure. (b) The schematic
view of the structure. The magnetic field penetrates through
the openings between the superconducting islands. The elec-
tric and magnetic fields and the vector potential are assumed
constant within each opening.

superconducting one-dimensional QMM essentially iden-51

tical to the one of [11,16,17]: a one-dimensional chain of52

charge qubits between two superconducting banks and53

interacting with electromagnetic fields, but not directly54

with each other (Fig. 1). As the result of our numer-55

ical simulation applicable to strong field-qubit coupling56

supported by an analytical calculation, we find a phase57

transition from the vacuum state to the new quasi-58

superradiant phase, which appears when the field-qubit59

coupling induces the phase coherence of the QMM in60

the presence of an external magnetic field. This effect61

is not necessarily limited to superconducting quantum62

metamaterials and may provide additional tools for the63

investigation of meso- and macroscopic quantum coherent64

systems.65

As the field-qubit coupling increases, the vacuum state66

becomes unstable, and the system undergoes the first67

order phase transition to the state with magnetic soli-68

tons and a spatially varying occupation of the excited69

qubit states. The critical coupling strength can be reduced70

by increasing the external magnetic field Hext, which71

also generates structural transitions between states with72

different number of solitons. When cycling the external73

magnetic field around zero, the soliton number can be74

either zero or nonzero at Hext = 0 resulting in a rich75

variety of remagnetization loops associated with quan-76

tum pinning of solitons on the spatial variations of the77

qubit level occupation which, in turn, is generated by the 78

solitons themselves. 79

2 Model 80

The system in question is a quantum counterpart of the 81

standard Josephson transmission line [35] where Joseph- 82

son junctions linking two superconducting banks are 83

replaced by charge qubits (Fig. 1), i.e., small supercon- 84

ducting islands connected to both long superconduct- 85

ing banks with high-resistance tunneling junctions (R > 86

RQ ≈ 12 kΩ), and with controlled potential bias with 87

respect to the banks [36]. The quantum states of an island 88

differ by the number of extra Cooper pairs on them, and 89

are coupled to the electromagnetic field through their 90

electric charge. 91

As in [11] we describe qubits quantum-mechanically 92

while treating the electromagnetic fields in the transmis- 93

sion line classically (in line with the standard semiclassical 94

approach to atom-field interactions, valid in case of strong 95

enough fields [37]). We direct the vector potential Az 96

across the junctions (along z-axis) and assume it to be 97

constant in each “cell” between two adjacent qubits. 98

We start from the classical expression for the sys- 99

tem’s total (electromagnetic, electrostatic and Josephson) 100

energy as a function of the phases φn of the supercon- 101

ducting order parameters on the islands: Etotal =
∑
n En 102

with 103

En =
C

2

~2

4e2

[(
dφn
dt

+
πD

Φ0

dAz,n
dt

)2

+

(
dφn
dt
− πD

Φ0

dAz,n
dt

)2
]

−EJ
[
cos

(
φn +

πDAz,n
Φ0

)
+ cos

(
φn −

πDAz,n
Φ0

)]
+

8π

DL

[
Az,n+1 −Az,n

L

]2
. (1)

Here, the index n corresponds to the qubit number in 104

the chain, C is the junction capacitance, Φ0 = hc/2e is 105

the flux quantum, EJ = IcΦ0

2πc is the Josephson coupling 106

energy, Ic is the critical current of the Josephson junc- 107

tions linking the qubits to the superconducting busbars, D 108

and L are distances between the neighbouring qubits and 109

between the two superconducting banks, respectively. It is 110

convenient to use dimensionless variables: the inter-qubit 111

distance l = L/λ, vector potential az,n = πDAz,n/Φ0, 112

time τ = ωJ t and energy En = En/EJ , where the Joseph- 113

son plasma frequency ωJ = 2eIc/(~C) and the effective 114

spatial scale λ = c/ωJ . Then the energy per unit is 115

En =

(
dφn
dτ

)2

+

(
daz,n
dτ

)2

− 2 cosφn cos az,n

+β2

(
az,n+1 − az,n

l

)2

. (2)

https://epjb.epj.org/
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The quantization is performed by replacing the phases116

φn and their conjugate canonical momenta with operators117

[38] and yields the Schrödinger equation118

i~
d

dt
|Ψsn〉 = Hqubitn |Ψsn〉 = (Hqubitn,int +Hqubitn,0 )|Ψsn〉, (3)

with the qubit Hamiltonian Hqubitn,0 and field-qubit inter-119

action Hqubitn,int:120

Hqubitn,0 = −e
2

C

∂2

∂φ2n
− 2EJ cosφn, (4)

121

Hqubitn,int = 2EJ cosφn(1− cos az,n). (5)

We restrict our analysis to the two first energy lev-122

els of each island (which is justified for a realistic123

choice of charge qubit parameters). We will also neglect124

entanglement between qubits and seek the qubits’ wave125

function in the factorized form: |Ψsn〉 = Cn0 (t)e−
iE0t
~ |0〉 +126

Cn1 (t)e−
iE1t
~ |1〉.1 Then the Schrödinger equation for qubits127

reduces to128

i
d

dτ
Cn0 (τ) = s(1− cos az,n)Cn1 (τ)e−isετ ,

i
d

dτ
Cn1 (τ) = s(1− cos az,n)Cn0 (τ)eisετ , (6)

where s = EJ/~ωJ , ε is the dimensionless excitation129

energy (energy difference between the first and the ground130

levels [38]).131

Equations for the electromagnetic field in the trans-132

mission line can be derived by taking the expectation133

value of the total energy (1) in the quantum state of134

the qubit subsystem. By using Hamilton’s equations for135

the dimensionless vector potential, we derive the effective136

sine-Gordon equation for the line [11,16]:137

β2 az,n+1 + az,n−1 − 2az,n
l2

=
d2az,n
dτ2

+ Vn sin az,n

+γ
daz,n
dτ

, (7)

138

Vn(τ) =
1

2
(Cn∗0 (τ)Cn1 (τ)e−isετ +Cn0 (τ)Cn∗1 (τ)eisετ ), (8)

where we have added the phenomenological damping term139

γdaz,n/dτ (which can be introduced in the quantum140

Routh formalism [38]). This equation is quite similar to141

the standard discrete sine-Gordon equation (see e.g., in142

Ref. [39]) for a classical Josephson transmission line, but143

1 Individual qubits in our QMM can on be entangled through
their interaction mediated by the electromagnetic field in the system.
This entanglement will be negligible if the number of photons in
the field is large (see arXiv:cond-mat/0207214), and is irrelevant
to the quantum phenomena which requires only coherence such as
superradiance.

with the key difference that the “effective critical Joseph- 144

son current”, Vn, now depends on the quantum states of 145

the charge qubits. 146

3 Results 147

First we consider which state the system settles in at zero 148

magnetic field Hext = 0, imposing boundary conditions 149

Hext = (az,1 − az,0)/l = (az,N − az,N−1)/l = 0. Here N 150

is the total number of qubits in the system. Surprisingly, 151

the vacuum state with Cn1 = 0, Cn0 = 1, az,n = 0 is sta- 152

ble only for relatively weak qubit-field couplings. Then the 153

vacuum state becomes unstable, and the system evolves to 154

the quasi-superradiant state with one or several solitons 155

spontaneously arising (see Supplemental Materials for the 156

comparison with an analytical calculation.2 Even though 157

the energy of the qubit system itself and the energy of the 158

magnetic field both increase (Fig. 2c), the total energy of 159

this quasi-superradiant (QS) state decreases due to inter- 160

actions between the field and the qubits. Figure 2a shows 161

the magnetic field and vector potential distribution in the 162

QS state. Since the vector potential changes from −π to π 163

along the quantum transmission line, we conclude that a 164

magnetic field soliton carries one flux quantum similarly 165

to a usual Josephson vortex in a standard long Joseph- 166

son junction (see e.g., [40]). However, the QS state has a 167

more complex structure than a Josephson vortex, since the 168

soliton-like fields’ distribution is here accompanied with a 169

spatial modulation of qubit state occupation probabilities 170

Cn0 and Cn1 (Fig. 2b). Here the macroscopic, classical mag- 171

netic soliton depends on the quantum state of the qubits. 172

In contrast to the standard superradiant state of two-level 173

atoms in a cavity interacting with one or few modes, the 174

soliton is an essentially nonlinear magnetic field distri- 175

bution arising via a complex interaction of a very large 176

number of field-modes. 177

In zero magnetic field the transition to the QS state 178

breaks the system’s symmetry by spontaneously choosing 179

the soliton polarity (positive or negative). The external 180

magnetic field eliminates the spontaneous degeneracy of 181

the QS phase, and the transition point from the Meissner 182

state with no solitons to the soliton state is shifted: the 183

critical coupling for the transition becomes a function of 184

Hext). Figure 3 shows the evolution of the metamaterial 185

phases when varying the external magnetic field. We con- 186

sider the case when the vacuum state (az,n = 0) is stable 187

at Hext = 0, but it becomes unstable for quite a weak Hext 188

resulting in the formation of a one-soliton state (Fig. 3, 189

main panel – the remagnetization loop and magnetic field 190

distribution (A)). With a further increase of the external 191

magnetic fieldHext a sequence of the structural transitions 192

to the phases with larger numbers of solitons occur accom- 193

panied with jumps in the trapped magnetic flux Φ. When 194

the external field Hext decreases from a certain maximal 195

value, other sequence of the structural transitions occurs 196

first decreasing the number of the “positive-polarity” soli- 197

tons followed by formation and increasing the number of 198

2 See also the supplemental material for the analytical solution of
the soliton state in strong coupling limit.

https://epjb.epj.org/
https://arxiv.org/abs/cond-mat/0207214
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Fig. 2. Quasi-superradiant phase: (a) distribution of dimen-
sionless vector potential az,n and magnetic field in the
quantum Josephson transmission line. (b) Distribution of occu-
pation probabilities for ground (bottom (green) curve) and
excited (upper (magenta) curve) qubit states, the strong vari-
ation of the qubit state occupation occurs at the soliton center
resulting in pinning of the soliton. (c) Evolution of the qubit
energy Equbit, the field energy Efield, and the qubit-field inter-
action energy Eint as a function of the weak external magnetic
field Hext. Even though the field and qubit energies, Equbit and
Efield, both increase at the transition, the total energy of the
quasi-superradiant phase, Etotal, decreases due to a sharp drop
of the interaction energy, Eint. Parameters used in simulations
are: s = 1, β = 0.25, ε = π, l = L/λ = 0.05, γ = 0.25 and the
total number of qubits is 400.

the “anti-solitons” or solitons with the opposite magnetic199

field direction.Q1200

It is worth noting that, at zero external field Hext = 0,201

the system still keeps one soliton on the steady remag-202

netization curve (external (blue) loop in Fig. 3). This203

indicates that the formally stable initial Meissner state204

with zero solitons in the system is actually a metastable205

state. Thus, the vacuum state in this case is metastable206

in contrast to the QS ground state (which can be called207

the “dressed-vacuum” state) for this value of the field-208

qubit coupling. This transition is analogue of the first209

order transition associated with the vortex penetration210

into type II superconductors at lower critical field. The211

role of qubit-field coupling strength can be here compared212

to that of the critical field, at which the vortex penetration213

in the system becomes energetically profitable. Therefore,214

the transition from the vacuum to the QS phase in one-215

dimensional quantum metanaterials is the first rather than216

the second order phase transition [21].217
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Fig. 3. Remagnetization loop as a sequence of the structural
transitions: (a) evolution of the total flux Φ trapped in the
quantum transmission line as a function of the external mag-
netic field Hext. The (red) curve ABC starting at origin is the
“virgin curve” which the system passes only once after its ini-
tialization in the vacuum state at zero external field, Hext = 0.
Applying a very weak external field results in the transition
to the one-soliton phase (panel A) which then goes through a
sequence of transitions to the phases with 3 (panel B), 5 (panel
C) and 7 (panel D) solitons. On the returning branch the sys-
tem passes through the states with 5 (panel E), 3 (panel F), 1
(panel G), −3 (i.e., three anti-soliton) (panel H), −5 (five anti-
solitons) (panel I) and −7 solitons. repeated cycling of Hext

forms the steady state (blue) loop CD . . . I . . . B. Note that the
state with one soliton or one anti-soliton is the ground state at
Hext = 0 with spontaneous symmetry breaking to either 1 or
−1 soliton. All parameters are the same as in Figure 2, while
the sweeping rate dHext/dt = 2.5 × 10−4ωJΦ0/πDλ.

Finally we consider the dependence of the QS transition 218

on the sample size (the number of qubits in the quan- 219

tum Josephson transmission line). Using the same set of 220

parameters as in Figure 3, we simulate the steady remag- 221

netization curve Φ(Hext) for a shorter chain (see Fig. 4). 222

As one can see, the state at zero external field is always 223

the vacuum (or the Meissner phase) with no solitons in 224

the sample. Only at a high enough external magnetic field 225

Hext, the soliton state (here with a single soliton) can be 226

formed, but it becomes unstable with decreasing Hext (on 227

the returning branch of the remagnetization curve) before 228

Hext drops to zero. 229

Remarkably, the unusual “butterfly-like” loops simi- 230

lar to those obtained here appear in several apparently 231

different systems, including crossing vortex lattices [41], 232

magnetic vortices in nano-discs [42] and thermal atomic 233

switches [43]. For all such systems the “butterfly-like” 234

loops originate either due to a nontrivial interplay of fluc- 235

tuations with driving or due to the complex nature of 236

vortex pinning in the bulk and on surface. In our par- 237

ticular case, the QMMs provide a “quantum pinning” 238

for Josephson-like vortices on the inhomogeneity formed 239

https://epjb.epj.org/


U
nc
or
re
ct
ed

P
ro
of

Eur. Phys. J. B (2017) Vol: No Page 5 of 6

Φ
 (
Φ
0
) 

H
external

 (Φ
0
/πDλ) 

Fig. 4. “Butterfly” remagnetization curve: Φ(Hext) depen-
dence for the same parameters as in Figure 3, but for a shorter
transmission line (100 qubits). Note that there is no soliton
phase at zero external magnetic field, Φ(Hext = 0) = 0 (see
inset A for the Meissner phase). Transition to the one-soliton
phase (inset B) occurs at a relatively high magnetic field.
On the return branch, the soliton phase switches back to the
Meissner phase before the external field Hext drops to zero.

by fluctuating qubit occupation numbers of ground and240

excited states.241

4 Conclusions242

We predict a new state of matter for QMMs – the quasi-243

superradiant soliton phase – when the coupling between244

electromagnetic fields and qubits crosses a threshold,245

which can be tuned by the external fields resulting in a246

series of structural superrradiance transitions and a vari-247

ety of remagnetization loops. It is worthy of note that248

recent studies have also shown the appearance of the249

superradiant phase transition in superconducting circuit250

QED systems composed of a huge number of Joseph-251

son junctions both theoretically [44] and experimentally252

[45]. The seeming violation of the “no-go” theorem for253

charge-based circuit QED can be attributed to the more254

complex structure of qubit coupling to the field modes in255

the system.256

The analogy of the predicted effects to vortex penetra-257

tion in a wide Josephson junction can be taken further:258

the key component of both phenomena is phase coherence259

along the junction, which in case of the Josephson effect is260

provided by the superconducting coupling (i.e., dynami-261

cally), while in our case it is maintained simply due to the262

long enough decoherence time of individual qubits. It can263

be therefore extended to non-superconducting quantum264

metamaterials as well as to other meso- and macroscopic265

artificial quantum coherent systems.266
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