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The geometrical structure of the Indian elephant bell is presented and the requirements on its nor-

mal modes from group representation theory are described. These are in good agreement with the

results of a finite-element model (FEM) for a specific 16-tine case. The spectrum consists of a

sequence of families of modes lying on saturation curves, completely different from those of con-

ventional bells. Physical explanations for the occurrence of these families are presented in terms of

the tines behaving as a closed loop of coupled cantilevers with constraints from the dome. Each

family is found to consist of modes in one of two specific sequences of symmetry types. Experi-

mental measurements of the modes of this same 16-tine bell, using electronic speckle pattern inter-

ferometry (ESPI), have been made and are compared with the FEM predictions. Although the

interpretation of the interferograms is difficult in all but the simpler cases, agreement in terms of

frequencies is surprisingly good for the first few family sequences. The ESPI study also showed up

numerous harmonics and subharmonics of true normal modes, showing the system to be rather non-

linear and making comparisons with the FEM results tricky.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3681924]
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I. INTRODUCTION

Beautiful multicolored Benaresware elephant bells were

often on sale as souvenirs in the Indian pavilions at interna-

tional exhibitions in the middle decades of the last century.

They were regularly to be seen on display in United King-

dom living rooms at that time and have since become collec-

tors items. In Fig. 1 we show a typical medium-sized

example. Relatively crude, uncolored, brass bells of similar

general design are also commercially available.

In the present paper we report the results of a study of

the normal modes of these elephant bells using finite-

element modeling (FEM), group representation theory and

electronic speckle pattern interferometry (ESPI). The only

previously reported studies of elephant bells, of which we

are aware, are preliminary reports of the present work1,2 and

one by Brailsford in 1944.3 His results are of little help in

understanding these bells.

II. BELL GEOMETRY

All Indian elephant bells have the same basic design.

They consist of a more-or-less hemispherical dome from

whose rim descend roughly identical and equally spaced

tines, which have an inward curvature. There is a cast-in

handle on the top of the dome. The bell is rung by means of

a metal ball attached to the underside of the domes center by

a wire. This ball strikes the hemisphere close to the tops of

the tines, where they attach to the dome. The number of tines

can be even or odd and, in general, the larger the overall size

of the bell the greater is this number. We have found exam-

ples with almost every value from 9 up to 19. We have been

able to assemble a total of 10 different sizes of the type of

bell shown in Fig. 1, which, being characterized by an extra

band of metal where the tines join the dome, we call banded

Benaresware bells. In Fig. 2 we have taken the diameter of

this extra band as a measure of the overall size of the bell

and plotted it against the number of tines for these ten cases.

There is a convincing linear relationship between the two

variables. Other types of elephant bell do not fit well onto

this line. We have, so far, been unable to find sufficient num-

bers of any other types to test whether or not they obey simi-

lar relationships.

III. THEORETICAL CONSIDERATIONS

A. The unperturbed bell

With bells in general it is convenient to use cylindrical

polar coordinates with the z-direction chosen to lie along the

symmetry axis. We refer to displacements from equilibrium

in the ðr; h; zÞ directions as ðu; v;wÞ and follow the usual

convention of defining nodes to be points of zero displace-

ment in the radial direction. If the elephant bell did not have

inter-tine gaps it would just be another convex bell with

symmetry group C1v and subject to the same consequences.4

The vibrational patterns of Indian elephant bells are similar

to those of trumpet bells,5 bells,6 and gongs.7 Thus, the nor-

mal modes would occur in degenerate pairs with modal
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functions varying like sinðmhÞ and cosðmhÞ and having

nodal patterns consisting of m equally spaced diameters and

n circles parallel to the rim. The diameters of one member

would lie exactly mid-way between those of its partner.

Cases with zero diameters would be the exception as sin-

glets. The number pairs ðm; nÞ could be used to identify the

modes.

B. Extensional and inextensional modes

The study of bells8 and other structures with axial sym-

metry9 leads one to expect that the lowest frequency modes

will involve inextensional distortions of the bell. In other

words, if one takes a section through the bell at fixed z, the

resulting ring will contain a neutral circle whose total length

remains unchanged throughout the cycle. This means that

the radial and transverse components of the motion are

related by

uþ @v
@h
¼ 0: (1)

Thus, using the h part of the modal functions from

Sec. III A we may write u ¼ mA sinðmhÞ and v ¼ A cosðmhÞ
where A is an arbitrary constant. As m increases, the modes

will have radial components whose amplitudes become

increasingly larger than their transverse ones. One would

expect modes of this type to continue to occur as one goes to

higher frequencies, but to be supplemented by others satisfy-

ing the complementary extensibility condition

vþ @u

@h
¼ 0: (2)

This latter condition results in modes whose transverse

components are m times their radial.

C. Perturbed bell approach

For generality we assume that the elephant bell has k
tines. The set of k inter-tine gaps can be considered as a

large perturbation, with symmetry group Ckv, on a basic

convex bell. Because some, but not all, of the symmetries

of C1v have been removed, some, but not necessarily all,

of the doublets will have become split. Perrin has shown10

that, under these circumstances, most doublets do not split

unless k is rather small, although their common frequency

will change. In fact splitting occurs only when m/k is an in-

teger or a half-integer. So, for example, in a 16-tine bell

such as that shown in Fig. 1 the only doublets to split have

m¼ 8, 16, etc.

If we now regard the elephant bell as a composite sys-

tem with symmetry group Ckv, then its normal modes must

all behave like symmetry types of this group. Because of the

completeness requirement, every one of these types must

appear in the spectrum. From the character table for this

group (see Ref. 10, p. 308), when k ¼ 16 there are four sin-

glet types denoted as A1;A2;B1, and B2, whereas two types

of doublets Emð1Þ and Emð2Þ are each restricted to m in the

range 1–7. If k is odd then the character table is simpler, con-

taining no classes of types B1 or B2. The modes forming a

doublet with m ¼ 8 in the full bell now split into B1 � B2.

Although every mode of type B1 is a singlet anti-breather

and every one of type B2 a singlet anti-twister, they will both

still appear to have m ¼ 8 on the dome.

D. Coupled cantilever approach

Alternatively one could regard the elephant bell as a col-

lection of k cantilevers coupled together in a closed loop via

the dome. A similar, but much simpler, system with the

same symmetry group, and thus modes of the same symme-

try types, is a collection of particles at the vertices of a

k-fold regular polygon connected in pairs by identical

springs along the polygons sides and constrained to lie in its

plane. In this case it is possible to construct the forms of the

normal modes in detail from symmetry arguments alone.11

Because these constructions do not involve the details of the

inter-particle forces (just requiring them all to be identical),

we can reasonably expect that the elephant bell modes will

be broadly similar in forms in planes of fixed z in the region

of the cantilevers. A full set of results for the 16-tine case

are shown in Fig. 3. Only one member of each doublet pair

is included. In each diagram the arrows show the directions

of particle motion.

E. Polygon spectrum

Perrin has shown that,12 if the inter-particle forces in the

polygon are in the form of identical simple springs then,

using group representation methods alone, one can calculate
FIG. 2. (Color online) Diameter vs tine number for banded Benaresware

bells.

FIG. 1. (Color online) Sixteen-tine Benareseware elephant bell.
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the actual frequencies of the modes. When plotted they form

a very distinctive saturation curve as shown in Fig. 4 for the

16-particle case. This type of curve is, as we shall see, rather

similar to those appearing in the spectrum of the 16-tine ele-

phant bell.

IV. FINITE ELEMENT MODEL

A. Construction of the model

An elephant bell is much harder to model than a con-

ventional one because it lacks complete axial symmetry. It

does, however, have a high level of symmetry which can

be exploited. To construct a unit cell one can take a verti-

cal segment bounded by two planes defined by fixed values

of h. These should be chosen such that one touches the

left-hand side of a typical tine at its widest point and the

other touches its right-hand neighbor at the corresponding

point. The unit cell will thus contain one tine and one gap

plus the segment of the dome joining them to its pole. If

one first makes a FEM of this unit cell, then one for the

whole bell can be generated by copying it ðk � 1Þ times

while rotating about the symmetry axis through angles of

2p=k. To produce the unit cell careful measurements were

made of the dimensions and profile of a 16-tine bell. The

tines and gaps were each measured separately and averages

taken. The FEM was then produced with the LUSAS package

using thin shell elements chosen to preserve the shape of

the outside of the bell and having appropriate thicknesses.

The effect of the handle was modeled by constraining the

bell to be fixed at its edge. This also excluded rigid body

modes from the calculations. Values for density, Young’s

modulus and Poisson’s ratio for brass were taken from the

packages library.

FIG. 3. Singlet modes for 16-gon as predicted by group theory.

FIG. 4. Frequency (arbitrary scale) vs m for vibrating 16-gon.

FIG. 5. (Color online) FEM predictions of frequency (Hz) vs m.

FIG. 6. One member of each doublet pair of symmetry type Emð1Þ for

m ¼ 1� 7.
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B. Finite element results

The FEM was used to calculate the frequencies and dis-

play the modal forms for all the modes it could find up to

about 6 kHz. Results are listed in Table I. In most cases it

was easy to establish the value of m by looking at the behav-

ior of the dome. However, this did become more difficult as

m increased because evanescence set in steadily further

down the dome.13 The modes with 0 > m > 8 were all in

degenerate pairs, as expected, with interlocking nodal diam-

eters and frequencies differing by never more than 0.25 Hz.

Modes with m ¼ 0 were all singlets. Those with m ¼ 8 were

also singlets, as anticipated in Sec. III A, and no modes were

found with m > 8.

In Fig. 5 we show the predicted spectrum up to about 6

kHz. Instead of families with fixed n rising steadily and

indefinitely with m, as in a normal bell, we see family curves

reaching limiting values at m ¼ 8 in much the same way as

in Fig. 6. This clearly suggests that the modes are being

driven largely by inter-tine coupling. It was easy to see that

all the members of the lowest family had n ¼ 0, as one

would expect. The second family all appeared to have n ¼ 1

with the circle about two-thirds of the way down the tines,

although variations in the direction of vibration of the tines

as one moved around the bell made it hard to be sure if these

were true nodes in the radial direction. The third family also

appeared to have n ¼ 1, which we refer to as n ¼ 1# in

Table I. The fourth had n ¼ 2 with one circle about halfway

down and the other near the tine top. The FEM predictions

of modal forms for the first two families are shown in the

upcoming Figs. 7 and 8.

C. Allocation of symmetry types

Although the allocation of a particular FEM predicted

mode, or doublet pair of modes, to a specific symmetry

type depends primarily on its value of m, there remain at

least two possible choices in each case. To distinguish

between these one needs to consider the ways in which the

mode transforms under the various symmetry operations of

the group. However, in practice, it is possible to short-cut

this process by comparing the FEM forms with those dis-

cussed in Sec. III B for the coupled point masses. It was

fairly easy to do this for the first few saturation curve fami-

lies just by looking at the overall forms of the motions. The

FEM animation facility was particularly helpful in this pro-

cess. The results are incorporated into Table I. The first

four singlet modes predicted by FEM are shown in Fig. 9.

For ease of comparison the singlet types of the 16-gon are

repeated in Fig. 9. The doublets in the first family are

FIG. 7. FEM predictions of doublet modes of the first family (grayscale:

Black¼min displacement to white¼max displacement).

FIG. 8. FEM predictions of doublet modes of the second family (grayscale:

Black¼min displacement to white¼max displacement).
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shown in Fig. 7. Comparison with Fig. 4 shows that they

are all symmetry types Emð1Þ. Likewise, by comparison with

Fig. 10, the doublets in the second family, shown in Fig. 8,

are all of symmetry type Emð2Þ. To summarize, the first fam-

ily, with n ¼ 0, consists of types Emð1Þ plus B1 (anti-

breather), whereas the second, with n ¼ 1, contained Emð2Þ
plus B2 (anti-twister). The A1 (breather) and A2 (twister)

modes did not fit convincingly into any family. It was clear

that, in both of these families, the tines were essentially

behaving like cantilevers in their fundamental modes but,

due to the domes coupling generating a composite system,

moving in directions that varied in a systematic way as one

moved around the bell. The third family contained a repeat

of the symmetry types in the first, but now with n ¼ 1,

whereas the fourth was a repeat of the second but with

n ¼ 2.

Using the animation facility on the FEM package it

was possible to study the modes in some detail. Looking at

the members of the first ðn ¼ 0Þ family it was evident that,

while for modes for m¼ 0, 1, and 8 the motions were

exactly as predicted for the coupled masses, there were

some small deviations for other m values. If one breaks the

motion down into radial and transverse components the ra-

dial parts becomes increasingly dominant over the trans-

verse as m increases until, at m ¼ 8, it is purely radial. For

the second ðn ¼ 1Þ family the situation is reversed, with the

transverse components becoming increasingly dominant

over the radial until, at m ¼ 8, it is purely transverse. These

are precisely what are required by the inextensibility and

extensibility conditions in Eqs. (1) and (2), respectively.

Thus, the Emð1Þ and Emð2Þ modes are, respectively, inexten-

sional and extensional. The same results apply to the pairs

of higher families.

V. EXPERIMENTS

In order to compare the FEM predictions with the modes

of an actual 16-tine bell, the one used as the basis for the

model was studied using ESPI,14 a common technique uti-

lized for visualization of the vibrational modes of musical

instruments.5,15 The ESPI system used is described in detail

in Ref. 16 and operates by imaging out-of-plane vibrations

by digitally subtracting a speckle pattern interferogram of an

object illuminated by coherent radiation before the object

begins to vibrate, from one imaged subsequent to its move-

ment. The system used was constructed from discrete com-

ponents on a vibration isolated table that was inside an

anechoic chamber. The laser used was a diode-pumped fre-

quency doubled NdYVO4 with an output of 532 nm. It was

mounted on a vibration-isolated optical table inside an

anechoic chamber in order to minimize the ambient noise.

The light entered the chamber through a small hole in the

wall. All the data acquisition and analysis was performed by

a computer located outside of the chamber.

The vibrations of the bell were driven by a piezoelectric

disk mounted to either the hemispheric cap or the tines using

putty. The piezoelectric driver was connected to a high quality

function generator that produced a sine wave with frequency

FIG. 9. FEM and group theory predictions for the first four singlet modes

(grayscale: Black¼min displacement to white¼max displacement).

FIG. 10. One member of each doublet pair of symmetry type Emð2Þ for

m ¼ 1� 7.
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accuracy and precision exceeding 0.1 Hz. Additionally, the

frequency of the function generator was scanned while

observing the ESPI images in real time to ensure that no nor-

mal modes were neglected. Examples of the ESPI images of

normal modes obtained, first while viewing the bell from ver-

tically above the dome and second from a direction normal to

the symmetry axis are shown in Fig. 11.

The interpretation of fringe patterns in interferograms

of vibrating three-dimensional objects is famously difficult.

A large number of resonant frequencies were detected but

it was possible to fully identify only a few of them. In such

cases the degeneracy was always as expected from group

theory. The doublets were always split so, where required,

we quote the higher value. The lowest modes positively

identified were a ð2; 0Þ pair at 753 Hz and a ð3; 0Þ pair at

1086 Hz. The FEM results were therefore scaled to bring

the lowest ð2; 0Þ pair into agreement with experiment. This

was legitimate because of the use of standardized values

for material constants and of the averaging of the geometry

in the FEM model. Comparing the FEM and ESPI results in

frequency sequence, as included in Table I, then gave a

good match for the first few families provided one ignored

what were evidently subharmonics and harmonics of true

modes. The presence of these is clear evidence for the

system being non-linear.17 It should be noted that the meas-

ured frequency of the ð1; 0Þ pair in the first family was

only achieved by identifying their half sub-harmonics at

361.5 Hz. In the case of the third family agreement was

again good provided one omitted a whole sequence of

resonances which were exact half sub-harmonics of the

fourth family. Overall the agreement of frequencies is then

good for the first three families.

VI. CONCLUSIONS

The agreement between the FEM model and experi-

ment is impressive, although more sophisticated methods

for identifying the nodal patterns via interferometry

would give greater certainty to the type allocations. The

success of symmetry arguments in describing the overall

nature of the spectrum gives us confidence that what is

happening is indeed that the tines are behaving like can-

tilevers coupling via the dome of the bell and con-

strained by it to be of extensional or inextensional types.

A deeper study of the non-linear behavior of the bell

might be instructive.

APPENDIX

Please see Table I for a comparison of finite element

and ESPI results.

1R. Perrin, B. Deutsch, A. Robinson, R. Felce, T. R. Moore, and G. M.

Swallowe, “Normal modes of the elephant bell,” Proceedings of the Stock-
holm Music Acoustics Conference, Stockholm (2003), pp. 343–346.

2L. Chalmers, R. Perrin, B. Deutsch, T. R. Moore, and G. M. Swallowe,

“Normal modes of the elephant bell,” Proceedings of the 16th Interna-
tional Congress on Sound and Vibration, Krakow (2009).

3H. D. Brailsford, “Some experiments with an elephant bell,” J. Acoust.

Soc. Am. 15, 180–187 (1944).
4R. Perrin and T. Charnley, “Group theory and the bell,” J. Sound Vib. 31,

411–418 (1973).
5W. Kausel, D. W. Zietlow, and T. R. Moore, “Influence of wall vibrations

on the sound of brass wind instruments,” J. Acoust. Soc. Am. 128,

3161–3174 (2010).
6T. D. Rossing and A. Perrier, “Modal analysis of a Korean bell,” J. Acoust.

Soc. Am. 94, 2431–2433 (1993).
7D. W. Krueger, K. L. Gee, and J. Grimshaw, “Acoustical and vibrometry

analysis of a large Balinese gamelan gong,” J. Acoust. Soc. Am. 128,

EL8–EL13 (2010).
8T. D. Rossing and R. Perrin, “Vibrations of bells,” Appl. Acoust. 20,

41–70 (1987).
9T. Charnley, R. Perrin, V. Mohanan, and H. Banu, “Vibrations of thin

rings of rectangular cross-section,” J. Sound Vib. 134, 455–488 (1989).
10R. Perrin, “A group theoretical approach to warble in ornamented bells,”

J. Sound Vib. 52, 307–313 (1977).
11R. Perrin and G. M. Swallowe, “Zero eigenfrequencies in the vibrating

polygon,” J. Sound Vib. 174, 181–189 (1994).

TABLE I. Comparison of FEM and ESPI results.

Scaled FEM

frequency (Hz) m
Degeneracy

(S or D)

Symmetry

type n
Experimental

frequency (Hz)

730 1 D E1ð1Þ 0 723

753 2 D E2ð1Þ 0 753

1085 3 D E3ð1Þ 0 1086

1184 4 D E4ð1Þ 0 1183

1209 0 S A1 (breather) 0 1212

1226 5 D E5ð1Þ 0 1232

1247 6 D E6ð1Þ 0 1248

1257 7 D E7ð1Þ 0 1251

1260 8 S B1 (anti-breather) 0 1263

1321 1 D E1ð2Þ 1 1299

1640 2 D E2ð2Þ 1 1607

2392 3 D E3ð2Þ 1 2403

2891 0 S A2 (twister) 1 2905

2972 4 D E4ð2Þ 1 2981

3238 5 D E5ð2Þ 1 3236

3354 6 D E6ð2Þ 1 3318

3403 7 D E7ð2Þ 1 …

3417 8 S B2 (anti-twister) 1 …

3562 0 S A1 (longitudinal) 0 3671

4083 1 D E1ð1Þ 1# 4056

4251 0 S A2 (twister) 2 4235

4366 2 D E2ð1Þ 1# 4315

4818 3 D E3ð1Þ 1# 4791

5423 4 D E4ð1Þ 1# 5403

5566 0 S A1 (breather) 2 5531

5799 1 D E1ð2Þ 2 …

5890 5 D E5ð1Þ 1# 5955

6158 6 D E6ð1Þ 1# 6132

6291 7 D E7ð1Þ 1# 6233

6382 8 D B1 (anti-breather) 1# � � �

FIG. 11. ESPI images of selected modes.

J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Perrin et al.: Normal modes of the Indian elephant bell 2293

Downloaded 14 May 2013 to 158.125.34.48. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



12R. Perrin, “Group theory and the vibrating polygon,” J. Sound Vib. 25,

597–607 (1972).
13R. Perrin and H. P. W. Gottlieb, “Evanescence and Bessel functions in the

vibrating circular membrane,” Eur. J. Phys. 15, 293–299 (1994).
14R. Jones and C. Wykes, Holographic and Speckle Interferometry, 2nd ed.

(Cambridge University Press, New York, 1989), pp. 165–196.

15B. M. Deutsch, C. L. Ramirez, and T. R. Moore, “The dynamics and tun-

ing of orchestral crotales,” J. Acoust. Soc. Am. 116, 2427–2433 (2004).
16S. A. Zietlow and T. R. Moore, “Interferometric studies of a piano

soundboard,” J. Acoust. Soc. Am. 119, 1783–1793 (2006).
17N. H. Fletcher, “The nonlinear physics of musical instruments,” Rep.

Progr. Phys. 62, 723–764 (1999).

2294 J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Perrin et al.: Normal modes of the Indian elephant bell

Downloaded 14 May 2013 to 158.125.34.48. Redistribution subject to ASA license or copyright; see http://asadl.org/terms


	s1
	s2
	s3
	s3A
	cor1
	s3B
	E1
	E2
	s3C
	s3D
	s3E
	F2
	F1
	s4
	s4A
	F3
	F4
	F5
	F6
	s4B
	s4C
	F7
	F8
	s5
	F9
	F10
	s6
	APP1
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	T1
	F11
	B12
	B13
	B14
	B15
	B16
	B17

