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1. Introduction

A trapped Bose-Einstein condensate, when it is placed into rotation, will nucleate

quantized vortices in the condensate bulk, provided the rotation frequency is above

some critical value. As the rotation frequency is increased, so too is the number of

vortices [1]. Bretin et al. [2], over a decade previously, experimentally showed this with

a series of images of a condensate rotating at different frequencies. Despite the relatively

few number of vortices nucleated, it was a beautiful demonstration of the nucleation of,

and competition between, quantum vortices.

Often a Bose-Einstein condensate is trapped harmonically, in which case the

rotating condensate, provided the rotation frequency is sufficiently large, i.e. there are

enough vortices present, will possess a triangular vortex lattice [3, 4]. In such cases, it

can be shown that the ground state requires the condensate to be approximately in solid-

body rotation. Furthermore, a direct implication of the harmonic trapping potential, is

the restriction to a disk-shaped condensate and an upper limit on the rotation frequency

Ω̄: Ω̄ < ω, where ω is the frequency of the trapping potential.

A number of studies [2, 5], primarily with the aim of investigating the “ultra-

fast” rotation limit, have looked to alleviate this upper limit on the trapping potential,

through the addition of a central quartic potential. However, a consequence of imposing

a quartic potential to the existing harmonic potential, is to remove the restriction that

the shape of the condensate must remain be disk-shaped; we can now have an annular-

shaped condensate [5]. This allows for the possibility of a rotating condensate in which

the geometry is annular, and in which the vortices are nucleated in both the condensate

bulk, much as in the case of a purely harmonic trap, or are nucleated inside the annulus,

a region where the density is microscopically small, or a combination of both. These

latter possibilities gives rise to the appearance of a giant vortex [6] with circulation

greater than or equal to one.

The presence of a giant vortex breaks the solid-body rotation of the condensate

and instead there is a pure irrotational flow. A number of works have looked to the

transition from solid-body rotation to pure irrotational flow. For example, Kavoulakis

& Baym [7] have identified three distinct rotational regimes of interest: (a) a vortex

lattice (VL) regime in which the condensate is disk-shaped and possesses many vortices

that form a triangular vortex lattice (solid-body rotation), (b) a vortex lattice plus hole

(VLH) regime in which the condensate is annular-shaped but there are no (or only a

few) vortices present in the hole (so a giant vortex with a circulation of order 1), however

the condensate bulk still possesses many vortices that approximately form a triangular

lattice, and (c) a giant vortex (GV) regime in which the condensate is annular-shaped

and there is a large circulation at the origin (pure irrotational flow). Similar features

have been observed in [5], who in addition noted the conditions on the rotation frequency

and quartic trapping strength in order to transfer from a disk-shaped condensate to an

annular-shaped condensate and [8], who looked to related situations but instead with a

harmonic plus Gaussian potential.
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All of the above discussion relates to a single component condensate, however the

creation of a condensate mixture leads to a richer physical landscape [9]. The added

degrees of freedom naturally present in the system allows for competition between and

within the individual components, and between the nucleated topological defects. In this

latter case, one can see the presence of triangular vortex lattices, square vortex lattices

and vortex sheets [10] (where the vortices from each component form alternating lines).

In this paper we are instead interested in the effects that the condensate mixture

has on the geometry of the system and the resulting giant vortex competitions. The

creation of a condensate mixture - as, for example in [11, 12, 13] - leads to rotating and

non-rotating ground states in which each component may possess a different geometry,

and thus the possibility that each component possesses a different type of flow. In order

to account for these possibilities, two different trapping potentials can be considered,

either a harmonic trapping potential [14, 15, 16, 17, 18, 19] or an additional term in the

potential could be added, such as a quartic [5, 20, 21, 22, 23, 24] or a Gaussian term

[8, 25, 26, 27]. Here, we will concentrate on the simple harmonic trap as well as the

harmonic plus Gaussian trap.

In the case of a condensate mixture with a simple harmonic trapping potential,

either both components are disk-shaped or one component is a disk while the other

is an annulus [28, 9], with a simple increase in the strength of the coupling between

the condensates being an adequate control to switch between the two regimes. We

can therefore envisage a situation whereby one component is always in the VL regime

(disk-shaped and possesses solid-body rotation), while the other component, through

an increase in the coupling, transfers from VL to GV. In contrast, in the case of a

condensate mixture with a harmonic plus Gaussian trapping potential, all combinations

of disk or annular geometry are permitted [14]. This opens up the additional possibility

that both components will possess a giant vortex. This paper will investigate in detail

these transitions, and competitions between the giant vortices, in mixture condensates.

2. Energy functional

The two-component Bose-Einstein condensate at zero temperature in the mean-field

regime can be described in terms of two wave functions Ψ1 and Ψ2 respectively

representing component 1 and component 2. The energy functional of the rotating

condensate is then given by

E[Ψ1,Ψ2] =

∫ ∑
k=1,2

[
~2

2mk

|∇Ψk|2 + Vk(r)|Ψk|2 − ~Ω̄Ψ∗
kLzΨk +

Uk
2
|Ψk|4

]
+ U12|Ψ1|2|Ψ2|2d2r,

(1)

where we have assumed that the characteristic energy of the harmonic oscillator in the z

direction is large with respect to the other energy scales so that the geometry is restricted

to two dimensions. Here r = (x, y) and the harmonic plus Gaussian magnetic trapping

potential is Vk(r) = mkω
2
kr

2/2+V0 exp(−2r2/ω2
0) with trapping frequency ωk (for k = 1,
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2), energy V0 and where ω0 is the waist of the laser (taken here to be centred at the

origin). The angular momentum is in the z-axis and is defined as Lz = i[ẑ · (r×p)], for

momentum p, and the rotation frequency Ω̄ = Ω̄ez is taken to apply equally to both

components.

The energy functional (1) contains three interaction constants: Uk =√
8π~2ak/[mkazk] (k = 1, 2) representing the internal interactions in a particular

component, and U12 =
√

2π~2a12/[m12ãz] representing the interactions between the

two components. The reduced mass is defined as m−1
12 = m−1

1 + m−1
2 and the s-wave

scattering lengths are ak and a12, with azk the characteristic length of the harmonic

oscillator in the z direction, that is azk =
√

~/mkωzk, with ωz1 and ωz2 the frequencies

of the confinement in the z direction. The average of the characteristic lengths of the

harmonic oscillator in the z direction is defined as ãz = (az1 + az2)/2. To ensure a

quasi-two-dimensional condensate, ~ωzk must be large.

To simplify the analysis we set masses and trapping frequencies equal (m1 = m2 ≡
m and ω1 = ω2 ≡ ω) and non-dimensionalise the energy functional according to ω−1,

~ω and r0 =
√

~/(2m12ω) as units of time, energy and length respectively. This results

in

E[ψ1, ψ2] =

∫ ∑
k=1,2

[
1

2
|∇ψk|2 + V (r)|ψk|2 − Ωψ∗

kLzψk +
gk
2
|ψk|4

]
+ g12|ψ1|2|ψ2|2d2r,

(2)

with V (r) = r2/2+A exp(−l2r2), Ω = Ω̄/ω, A = V0/~ω, inverse waist l = (2~/mωω2
0)1/2,

gk = 2Ukm12/~2 and g12 = 2U12m12/~2. The ψ1 and ψ2 are the non-dimensionalised

wave functions that are subject to the normalisation∫
|ψk|2d2r = Nk, (3)

where Nk is the total particle number in component k. We will assume throughout that

there are only ever repulsive interactions, so that gk, g12 are always non-negative, and

that the intracomponent coupling parameters are in general distinct, making (w.l.o.g)

the stipulation that g2 ≥ g1.

3. A harmonically trapped condensate

3.1. Numerical results

We first begin by considering a purely harmonic trapping potential for which the

appropriate energy functional is given by (2) with A = 0, so that V (r) = r2/2. We keep

all parameters constant, except for the intercomponent coupling g12 and the rotation

Ω. In the following we set g1 = 1, g2 = 2 and N1 = N2 = 2000. These parameters

ensure that component 1 is always a disk, whereas component 2 can be either a disk

or an annulus, depending on the values we take for (g12,Ω). Figure 1 shows example

ground state density profiles for both components in either of these scenarios, the first

with (g12,Ω) = (0.2, 0.6), the second with (1.35, 0.6).
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Figure 1. The density profiles of component 1 (left row) and component 2 (right

row) for the harmonically trapped condensate with N1 = N2 = 2000, g1 = 1, g2 = 2,

Ω = 0.6, A = 0 and (a) g12 = 0.2 showing VL+VL and (b) g12 = 1.35 showing

VL+GV.

We see that in Figure 1(a) the two-components are disk-shaped and both contain a

triangular vortex lattice (note that these values of intercomponent coupling and rotation

impose a triangular, rather than square, lattice [28, 29]). The condensate thus possesses

a solid-body rotation in both components in this regime, which we denote by VL+VL. In

Figure 1(b), we see the development of an annulus in component 2, while component 1

remains a disk. Component 1 is therefore still in solid body rotation, whereas component

2 possesses a (small) circulation in the microscopically small density region around the

origin. We thus denote this regime by VL+GV.

3.2. Thomas-Fermi analysis

A Thomas-Fermi analysis can be used to find the critical parameters of the system,

such as the radii of the components, the chemical potentials and the circulation of the

giant vortex. If we use the replacement ψk =
√
nke

iθk (for k = 1, 2), where nk = |ψk|2
is the density and θk is the phase of component k, we are able to rewrite the non-

dimensionalised energy (2) as

E[ψ1, ψ2] =

∫ ∑
k=1,2

{
1

2
|∇
√
nk|2 +

[
V (r) +

1

2
v2
k −Ω · r × vk

]
|ψk|2 +

gk
2
|ψk|4

}
+ g12|ψ1|2|ψ2|2d2r,

(4)

where we have defined the superfluid velocity in each component as vk = ∇θk. We can

now invoke the Thomas-Fermi approximation, whereby the kinetic energy is negligible in

comparison to the other terms in the energy functional. We thus neglect terms involving
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gradients of density in Eq. (4) [∇√nk terms]. The resulting Thomas-Fermi energy ETF
is then defined as

ETF [ψ1, ψ2] =

∫ ∑
k=1,2

{[
V (r) +

1

2
v2
k −Ω · r × vk

]
|ψk|2 +

gk
2
|ψk|4

}
+ g12|ψ1|2|ψ2|2d2r.

(5)

We lead with the VL+VL state, where both components are in solid-body rotation.

Using the fact that the superfluid velocity in component k is equal to the gradient of

the phase in that same component, we are thus able to write that (v2
k/2−Ω · r× vk) =

(vk − vsb)
2/2 − Ω2r2/2, where vsb = Ω × r is the solid-body velocity, so that the

Thomas-Fermi energy reduces to ETF = Esb1 + Esb2 + EI with

Esb1 =

∫
1

2
(v1 − vsb)

2 |ψ1|2d2r, (6a)

Esb2 =

∫
1

2
(v2 − vsb)

2 |ψ2|2d2r, (6b)

EI =

∫ (
V (r)− 1

2
Ω2r2

)
(|ψ1|2 + |ψ2|2)d2r (6c)

+

∫
g1
2
|ψ1|4 +

g2
2
|ψ2|4 + g12|ψ1|2|ψ2|2d2r.

The Thomas-Fermi approximation is valid away from regions where the density

curvature becomes significant. In order for the bulk of the condensate to be in the

Thomas-Fermi limit, in general, one requires the product of the intracomponent coupling

strengths and number of bosons to be large (g̃k = Nkgk large). Furthermore, taking a

TF approximation on both component wave functions is valid provided g12 ≤
√
g1g2

(see [9] for more precise requirements). As a consequence our analysis does not cover

the region
√
g1g2 < g12.

In the first regime (VL+VL) we have solid-body rotation in both components.

In analogy to single component condensates [5] we then set v1 = v2 = vsb so that

Esb1 = 0 and Esb2 = 0 and the energy reduces simply to ETF = EI . At this level of

approximation, we have from [9], the expressions for the radii and chemical potentials.

Both components are disk-shaped, and we can write down the radii of component 1 and

component 2, respectively, as

R1 =

[
4

(1− Ω2)

(
N1g1Γ12

πΓ2

)]1/4
, (7a)

R2 =

[
4

(1− Ω2)

(
N2g2
π

+
N1g12
π

)]1/4
, (7b)

and the respective chemical potentials as

µ1 = Γ2

[
(1− Ω2)

(
N1g1Γ12

πΓ2

)]1/2
+
g12
g2

[
(1− Ω2)

(
N2g2
π

+
N1g12
π

)]1/2
,(8a)

µ2 =

[
(1− Ω2)

(
N2g2
π

+
N1g12
π

)]1/2
. (8b)
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Mason & Aftalion [9] gave an explicit expression for the value of g12 at

which the transition of component 2 from a disk to being an annulus occurs (the

miscibility/immiscibility transition). The expression is

gc12 =
N1g1

2(N1 +N2)
+

1

2

[(
N1g1

N1 +N2

)2

+
4N2g1g2
N1 +N2

]1/2
. (9)

Using the above chosen parameters (N1 = N2 = 2000, g1 = 1, g2 = 2) we find gc12 = 1.28,

which is in agreement with our numerical simulations which give gc12 ≈ 1.27. Note that

this expression is independent of Ω. However one must be careful when comparing these

two values: when g1 < g12 < gc12 the effective potential felt by component 2 at the origin

is negative so that the density for component 2 in the domain r < R1 is convex. In

particular, when g12 → gc12, the density of component 2 at and near the origin is small.

Thus, the rotating condensate is predisposed to favour the nucleation of (possibly more

than) one vortex in component 2 near the origin, and so, since the analysis to Eq. (9)

does not take into account the appearance of vortices, the rotation to some extent,

disguises the true value of g12 at which the annulus develops.

In the VL+GV state component 2 is annular and there is a giant vortex present

at the centre. A number of papers have looked at the giant vortex [5, 7, 8, 30] and

we follow their introduction of a quanta of circulation. Taking component 2 to have a

large circulation at the centre is equivalent to it possessing pure irrotational flow, for

which the velocity is just ν2/r. Here ν2 is the quantum of circulation, and we have

given it the subscript ‘2’ to associate it with component 2. Therefore we let v2 = ν2/r.

Minimisation of the free energy per particle, F = E − µ2N2, with respect to ν2 yields

ΩN2 = 2πν2

∫
|ψ2|2

r
dr. (10)

In the Thomas-Fermi limit we still have (v2
1/2−Ω ·r×v1) = (v1−vsb)

2/2−Ω2r2/2

so that under the assumption that component 1 is in solid-body rotation, Esb1 = 0, and

the energy reduces to ETF = Epf2 + ĒI with

Epf2 =

∫ (
ν22
2r2
− Ων2

)
|ψ2|2d2r, (11a)

ĒI =

∫ (
V (r)− 1

2
Ω2r2

)
|ψ1|2 + V (r)|ψ2|2d2r (11b)

+

∫ (g1
2
|ψ1|4 +

g2
2
|ψ2|4

)
+ g12|ψ1|2|ψ2|2d2r.

From this, the general profiles of the components are simply

|ψ1|2 =
1

g1Γ12

[
µ1 −

g12
g2
µ̃2 − Γ2V (r) +

1

2
Ω2r2 +

1

2r2
g12
g2
ν22

]
, (12a)

|ψ2|2 =
1

g2Γ12

[
µ̃2 −

g12
g1
µ1 − Γ1V (r)− 1

2

g12
g1

Ω2r2 − 1

2r2
ν22

]
, (12b)
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if both components co-exist and

|ψ1|2 =
1

g1

[
µ1 − V (r) + Ω2r2/2

]
, |ψ2|2 = 0, (13a)

|ψ2|2 =
1

g2

[
µ̃2 − V (r)− ν22/[2r2]

]
, |ψ1|2 = 0, (13b)

otherwise. Here, µ̃2 = µ2 + Ων2 and Γk = 1− g12/gk. Thus it remains to find the radii,

chemical potentials and the quanta of circulation for given parameters g1, g2, g12, N1,

N2, and Ω. This can be achieved by taking the normalisation conditions from (3) and

the expression that results from the minimisation of the free energy (10) for density

profiles described in (12) and (13).

We define the boundaries of the annular component 2 to be at r = R−
2 and r = R+

2 ,

with R−
2 < R1 < R+

2 . By evaluating the density in (12) at each of the boundaries

r = R−
2 and r = R1 and (13b) at r = R+

2 , we get the following expressions involving the

chemical potentials and the quanta of circulation:

µ̃2 =
1

2
R+2

2 +
ν22

2R+2

2

, (14a)

µ1 −
g12
g2
µ̃2 =

1

2
R2

1

(
Γ2 − Ω2

)
− g12

g2

ν22
2R2

1

, (14b)

µ̃2 −
g12
g1
µ1 =

1

2
R−2

2

(
Γ1 +

g12
g1

Ω2

)
+

v22
2R−2

2

. (14c)

Completion of the integrals (3) and (10), and using (14), results in the following

expressions

4N1g1Γ12

π
=
(
Γ2 − Ω2

)
R4

1 +
g12
g2

(
Γ1 +

g12
g1

Ω2

)
R−4

2

+ 4
g12
g2
ν22 log

(
R1

R−
2

)
(15a)

4N2g2Γ12

π
= − g12

g1

(
Γ2 − Ω2

)
R4

1 + Γ12R
+4

2 −
(

Γ1 +
g12
g1

Ω2

)
R−4

2

− 4ν22

[
log

(
R1

R−
2

)
+ Γ12 log

(
R+

2

R1

)]
(15b)

N2g2ΩΓ12

πν2
=

(
Γ1 +

g12
g1

Ω2

)[
log

(
R1

R−
2

)
+ 1

]
R−2

2 +
g12
g1

(
Γ2 − Ω2

)
R2

1

+ Γ12

[
log

(
R+

2

R1

)
− 1

]
R+2

2

+ ν22

[
Γ12

R+2

2

log

(
R+

2

R1

)
+

1

R−2

2

log

(
R1

R−
2

)]
, (15c)

and

ν22

(
Γ12

R+2

2

− 1

R−2

2

+
g212

g1g2R2
1

)
=
g12
g1

(
Γ2 − Ω2

)
R2

1 +

(
Γ1 +

g12
g1

Ω2

)
R−2

2 −Γ12R
+2

2 . (15d)
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Figure 2. The quanta of circulation ν2 as a function of the rotation Ω calculated

through a Thomas-Fermi analysis (15) (dashed lines) and numerically (solid lines) for

the harmonically trapped condensate with N1 = N2 = 2000, g1 = 1, g2 = 2, g12 = 1.35

and A = 0.

We numerically solve these equations for the parameter set (g1, g2, N1, N2, A) =

(1, 2, 2000, 2000, 0). In Figure 2 we plot the resulting values for ν2 as a function of Ω

with a fixed g12 = 1.35, and compare it to those values calculated from a full numerical

simulation on the coupled GP equations. One could also plot ν2 as a function of g12 for

fixed Ω, however we find that ν2 is approximately constant over a wide range of values

of g12.

4. A harmonic plus Gaussian trap

In the case of a rotating two-component condensate with a simple harmonic trapping,

as considered in Section 3, the only (symmetry preserving) geometry permitted by

the system is that where both components are disks or where one component is a

disk with the other an annulus surrounding the disk. A choice of a harmonic plus

Gaussian trapping potential, V (r) = r2/2 + A exp(−l2r2), allows us to study both the

above configurations but with the additional configuration in which both components

are annuli. This opens up the possibility that we can have giant circulations in both

components. Specifically we are interested in the relative magnitudes of the giant

circulations, something that we can investigate through an analytical Thomas-Fermi

analysis backed up by numerical simulations.

In this section we concentrate on the GV+GV regime in the Thomas-Fermi limit.

In this regime, both components have pure irrotational flow, and so as before, we now

introduce v1 = ν1/r to represent the persistent flow at the centre of component 1.
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Minimisation of the free energy per particle with respect to ν1 yields

ΩN1 = 2πν1

∫
|ψ1|2

r
dr. (16)

The energy thus reduces to ETF = Epf1 + Epf2 + ẼI with

Epf1 =

∫ (
ν21
2r2
− Ων1

)
|ψ1|2 d2r, (17a)

ẼI =

∫
V (r)

(
|ψ1|2 + |ψ2|2

)
d2r (17b)

+

∫ (g1
2
|ψ1|4 +

g2
2
|ψ2|4

)
+ g12|ψ1|2|ψ2|2 d2r,

and with Epf2 defined as previously. We set R−
2 < R−

1 < R+
1 < R+

2 and so the general

profiles of the components are simply

|ψ1|2 =
1

g1Γ12

[
µ̃1 −

g12
g2
µ̃2 − Γ2V (r)− 1

2r2

(
ν21 −

g12
g2
ν22

)]
, (18a)

|ψ2|2 =
1

g2Γ12

[
µ̃2 −

g12
g1
µ̃1 − Γ1V (r)− 1

2r2

(
ν22 −

g12
g1
ν21

)]
, (18b)

if both components co-exist and

|ψ2|2 =
1

g2

[
µ̃2 − V (r)− 1

2r2
ν22

]
, |ψ1|2 = 0, (19)

if only component 2 exists. Here, µ̃1 = µ1 + Ων1.

By evaluating the density in (18) at each of the boundaries of the annular component

1 (r = R−
1 , r = R+

1 ), noting that |ψ1|2 = 0 at r = R+
1 and r = R−

1 and equating, we get

the following expressions involving the chemical potentials and the quanta of circulation:

µ̃1 −
g12
g2
µ̃2 =

1

2
R+2

1 Γ2 + AΓ2 exp(−l2R+2

1 ) +
1

2R+2

1

(
ν21 −

g12
g2
ν22

)
, (20a)

µ̃1 −
g12
g2
µ̃2 =

1

2
R−2

1 Γ2 + AΓ2 exp(−l2R−2

1 ) +
1

2R−2

1

(
ν21 −

g12
g2
ν22

)
, (20b)

and repeating the procedure for component 2 we get

µ̃2 =
1

2
R+2

2 + A exp(−l2R+2

2 ) +
1

2R+2

2

ν22 , (21a)

µ̃2 =
1

2
R−2

2 + A exp(−l2R−2

2 ) +
1

2R−2

2

ν22 . (21b)
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Equating (20a)-(20b) and (21a)-(21b) separately then gives

ν21 = Γ2R
−2

1 R+2

1 +
g12
g2
R−2

2 R+2

2

+ 2A

{
Γ2R

−2

1 R+2

1

X1

[
exp(−l2R+2

1 )− exp(−l2R−2

1 )
]

(22a)

+
g12
g2

R−2

2 R+2

2

X2

[
exp(−l2R+2

2 )− exp(−l2R−2

2 )
]}

,

ν22 = R−2

2 R+2

2 + 2A
R−2

2 R+2

2

X2

[
exp(−l2R+2

2 )− exp(−l2R−2

2 )
]
, (22b)

where we have defined Xk = R+2

k − R
−2

k for k = 1, 2. Completion of the integrals (3),

(10) and (16), and using (20)-(21), results in the following expressions

N1g1Γ12

πΓ2

=
1

4
X1(R

+2

1 +R−2

1 )− 1

2
R+2

1 R−2

1 ln

(
R+2

1

R−2

1

)
+ AX1 exp(−l2R+2

1 )

+ A exp(−l2R−2

1 )
[
exp(−l2X1)− 1

] [
R−2

1 +
1

l2
− R+2

1 R−2

1

X1

ln

(
R+2

1

R−2

1

)]
,

(23a)

and

g1N1ΩΓ12

πν1
=

[
1

2
Γ2(R

+2

1 +R−2

1 ) + AΓ2 exp(−l2R+2

1 )

+
AΓ2R

−2

1

X1

exp(−l2R−2

1 )(exp(−l2X1)− 1)

]
ln

(
R+2

1

R−2

1

)

− Γ2X1 − AΓ2 exp(−l2R−2

1 )[exp(−l2X1)− 1]− 2AΓ2

∫ R+
1

R−
1

1

r
exp(−l2r2)dr,

(23b)

and

N1g12
π

+
N2g2
π

=
1

4
X2(R

−2

2 +R+2

2 )− 1

2
R−2

2 R+2

2 ln

(
R+2

2

R−2

2

)
+ AX2 exp(−l2X2) exp(−l2R−2

2 )

+ A exp(−l2R−2

2 )
[
exp(−l2X2)− 1

] [
R−2

2 +
1

l2
− R+2

2 R−2

2

X2

ln

(
R+2

2

R−2

2

)]
,

(23c)
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and

g12N1Ω

πν1
+
g2N2Ω

πν2
=

[
1

2
(R−2

2 +R+2

2 ) + A exp(−l2R+2

2 )

+
AR−2

2

X2

exp(−l2R−2

2 )[exp(−l2X2)− 1]

]
ln

(
R+2

2

R−2

2

)

−X2 − A exp(−l2R−2

2 )[exp(−l2X2)− 1]− 2A

∫ R+
2

R−
2

1

r
exp(−l2r2)dr.

(23d)

The above equations provide us with information on the values of ν1 and ν2. To

proceed, we first perform numerical simulations in the specific case where populations

densities and interaction strengths are equal, i.e. we set N1 = N2 = 2000 and

g1 = g2 = 1, together with A = 70, l = 0.3 and g12 = 0.8. These numerical simulations

are compared to the exact solutions of Eq.’s (22)-(23) in Fig. 3(a). One can clearly see

the analytics and numerics are in good agreement for small values of the rotation (up

to Ω = 0.25), however once this value is passed, agreement is lost. The explanation

for this is straightforward: for Ω ≤ 0.25 no vortices are nucleated in the condensate

bulk (of either component) and hence the analytical estimates above, that rely on the

assumption of pure irrotation flow, are valid. Conversely, when Ω ∼ 0.3, vortices are

nucleated in the bulk - inducing a solid body rotation - that is not accounted for in the

estimates. Further (second and third) rows of vortices are nucleated when Ω ∼ 0.4 and

Ω ∼ 0.5. A plot of the density of component 1 is shown in Fig. 4 for the case of Ω = 0.1,

0.3 and 0.5.

Therefore, to properly test our estimates we wish to avoid significant vortex

nucleation in the bulk, and furthermore to distinguish between the quanta of circulation.

To this end, a more general set of parameters is chosen: N1 = N2 = 500, g1 = 1, g2 = 2,

A = 100, l = 0.3 and g12 = 0.8. The results of these simulations are shown in Fig.

3(b) and again are compared to the exact solutions of Eq.s (22)-(23). Here we see that

agreement holds for a wider range of values of Ω. It is noted that vortices are nucleated

in the bulk condensate when Ω ∼ 0.6.

5. Conclusion

This paper has considered rotation of a two-component Bose-Einstein condensate in

cases where the trapping potential is either harmonic or harmonic plus Gaussian.

Subject to the choice of parameters and trapping potential, different geometries can

be realised, and we here concentrated on those that created an annulus in either or both

of the components. Together with the rotation, this allows for the creation of a giant

vortex, and the possibility to transition from solid-body rotation to a persistent flow as

the parameters are changed. The governing equations in the Thomas-Fermi limit for

each case are written down and numerically solved; these results are then compared with
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Figure 3. The quanta of circulation ν1 (black lines) and ν2 (blue lines) as a function of

the rotation calculated numerically (solid lines) and by solving exactly Eq.’s (22)-(23)

(dashed lines) for the condensate with a harmonic plus Gaussian trapping potential

with parameters: (a) N1 = N2 = 2000, g1 = g2 = 1, g12 = 0.8, A = 70 and l = 0.3,

and (b) N1 = N2 = 500, g1 = 1, g2 = 2, g12 = 0.8, A = 100 and l = 0.3.

a full numerical simulation of the GP equations. Through the numerical simulations we

are able to determine the competition between the giant vortices, and to establish three

distinct regimes of interest: a vortex lattice-vortex lattice regime, a vortex-lattice and

giant vortex regime, and a giant vortex-giant vortex regime.
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Figure 4. The density profiles of component 1 for the condensate with a harmonic

plus Gaussian trapping potential with parameters N1 = N2 = 2000, g1 = g2 = 1,

g12 = 0.8, A = 70 and l = 0.3 at different rotations: (a) Ω = 0.1, (b) Ω = 0.3 and (c)

Ω = 0.5.
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