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We consider the interaction of a quantum mechanical SQUID ring with a classical resonator �a parallel LC
tank circuit�. In our model we assume that the evolution of the ring maintains its quantum mechanical nature,
even though the circuit to which it is coupled is treated classically. We show that when the SQUID ring is
driven by a classical monochromatic microwave source, energy can be transferred between this input and the
tank circuit, even when the frequency ratio between them is very large. Essentially, these calculations deal with
the coupling between a single macroscopic quantum object �the SQUID ring� and a classical circuit measure-
ment device where due account is taken of the nonperturbative behavior of the ring and the concomitant
nonlinear interaction of the ring with this device.
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I. INTRODUCTION

With the now very serious interest being taken in the pos-
sibilities of creating quantum technologies such as quantum
information processing and quantum computing,1–3 much at-
tention is being focused on the application of Josephson ef-
fect devices, particularly the SQUID ring. As has been dem-
onstrated recently, with the appropriate ring circuit
parameters and operating temperature these devices can dis-
play manifestly macroscopic quantum behavior such as mac-
roscopically distinct superposition of states.4–11 In any con-
siderations of quantum technologies the role of the
environment, as coupled to the quantum object, is featured
very strongly.12–14 With regard to using superconducting sys-
tems in quantum technologies, it has been shown that Jo-
sephson weak link circuits, and in particular SQUID rings in
the quantum regime, are highly nonperturbative in nature and
can generate very strong nonlinear interactions with classical
circuit environments.15–18 In this paper we provided a dem-
onstration that this nonperturbative �nonlinear� behavior is
crucial to the understanding of the interaction of SQUID
rings with circuit environments. In this work we first con-
sider the adiabatic �ground state� interaction of a quantum
regime SQUID ring inductively coupled to a classical paral-
lel resonance LC �tank� circuit. This circuit system is shown
schematically in Fig. 1�a�. We then continue to consider en-
ergy transfer between a classical monochromatic microwave
source �the input� and this classical electromagnetic �EM�
field mode �the output� via the quantum mechanical SQUID
ring �Fig. 1�b��. Here, as in other work,19 we have modelled
this output mode as a parallel LC equivalent circuit. How-
ever, in this paper we have treated this circuit environment as
classical since we wish to explore a region of the system
parameter space, involving large input-output frequency ra-
tios, which is of current experimental significance. When
treated fully quantum mechanically, such simulations are be-
yond the reach of the computing power available to us. As

the essential result of this paper, we show that the nonpertur-
bative �nonlinear� interaction generated by the SQUID ring
is made manifest through energy conversion between the in-
put and output, even if these differ greatly in frequency. In
part this has been inspired by past experimental results where
we have demonstrated20 that very high ratio frequency down-
conversion can occur between a microwave source and a
radio frequency ��20 MHz� tank circuit via the intermediary
of a very small capacitance SQUID ring.20 In these previous
results we recorded a frequency downconversion ratio of
500:1. In recent, as yet to be presented data, this has been
improved upon by refinements in electronic technique to

FIG. 1. �a� Schematic of a �quantum regime� SQUID ring in-
ductively coupled to a driven tank circuit �two mode system�, �b�
schematic of a three mode system, classical input microwave exci-
tation source, SQUID ring, and an inductively coupled tank circuit.
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yield a ratio as high as 6500:1 between a a few GHz micro-
wave input field and a sub-MHz tank circuit. We know of no
classical nonlinear circuit device that could generate such
large ratios21 and, given the very small capacitance �niobium
point contact� SQUID rings we were using in our experi-
ments, it was clearly of interest to see whether a quantum
regime SQUID ring could lead to this massive frequency
downconversion. In a recent presentation22 we considered
this problem in the context of the persistent current qubit
circuit model introduced by Orlando et al.,23 where this
quantum element acted as the medium for coupling two clas-
sical field environments together. Specifically, the qubit was
driven by a classical electromagnetic �EM� field �the input�
which was used to pump the qubit into an excited state. To
deal with energy conversion to a dissipative output EM
mode, a quantum jumps approach was adopted to model the
decay of the excited qubit with the energy dumped into this
mode. Using this approach we were able to demonstrate
small ratio �500 MHz to 300 MHz� frequency downconver-
sion from input to output through the intermediary of the
quantum qubit loop. In this work, with a single weak link
SQUID ring as the quantum intermediary, we adopt a less
complicated model, where the SQUID ring simply follows
Schrödinger evolution without the introduction of quantum
jumps. We then show, to the limits of the computational
power available to us, that a two orders of magnitude fre-
quency downconversion �from microwave to radio frequen-
cies� is possible. In doing so we also demonstrate that the
interaction between a quantum mechanical SQUID ring and
its classical circuit environment is in no way trivial and re-
quires a detailed understanding of the nonperturbative prop-
erties of SQUID rings. We emphasize that with this result
established, and without any other obvious physical con-
straints, it seems reasonable to assume from a theoretical
viewpoint that even higher ratio frequency downconversion
could be realized if the necessary computational power were
available. At present, apart from essentially fixed frequency
masers, sources of quantum mechanical EM fields at micro-
wave frequencies are not readily available. Thus, given the
nonperturbative properties of SQUID rings in the quantum
regime, it also seems reasonable to consider how such de-
vices could manifest their quantum mechanical nature
through the interaction with classical EM fields and field
oscillator modes.

In the well known lumped component model of a quan-
tum mechanical SQUID ring �in this work one Josephson
weak link device, of effective capacitance Cs, enclosed by a
thick superconducting ring of inductance �s, with a classical
magnetic flux of �x applied to the ring� the Hamiltonian for
the ring is given by24,25

Hs =
Q̂s

2

2Cs
+

��̂s − �x�2

2�s
− �� cos�2��̂s

�0
� , �1�

where, with a circumflex denoting operators, �̂s �the mag-

netic flux threading the ring of the SQUID device� and Q̂s
�the Maxwell electric displacement flux between the elec-
trodes of the weak link� are canonically conjugate quantum

variables such that ��̂s , Q̂s�= i� with Q̂s→−i�� /��s and

��̂s�Q̂s�� /2. Here, the third term on the right-hand side of
�1� is due to the Josephson phase coherent coupling energy,
with matrix element �� /2, arising from the weak link critical
current Ic=2e�, with periodicity set by the superconducting
flux quantum �0=h /2e. We assume that the ambient tem-
perature �T� of the SQUID is such that �	s
kBT for a char-
acteristic ring oscillator frequency of 	s /2��=1/2���sCs�.
Operating in this quantum regime the time-independent
Schrödinger equation �TISE� for the SQUID ring then reads

	 Q̂s
2

2C
+

��̂s − �x�2

2�
− �� cos�2��̂s

�0
�
���� = E����� �2�

for ring eigenfunctions ���� ��=0 the ground state, �=1 the
first excited state, etc.� and ring eigenenergies E� �as shown
in Fig. 2�, these eigenenergies being �0 periodic in the ex-
ternal magnetic flux applied to the ring.

II. DYNAMICS OF A COUPLED QUANTUM SQUID
RING-CLASSICAL RESONATOR SYSTEM

A. Adiabatic regime

In the time-independent �adiabatic� case the experimen-
tally accessible state is the ground state ��=0� for which the
expectation value of the screening supercurrent flowing

around the ring is Îs��x��=−�Ĥ /��x�= ��̂s−�x� /�s�.20,24

For relatively large values of �� �and hence Ic� this ground
state screening current takes the form of a rounded sawtooth
centered on �x=�0 /2 �modulo n�0, n integer�. Thus, the
ring screening current is clearly a highly nonlinear function

of �x, as is its magnetic susceptibility s=�Îs��x�� /��x. At
�x= �n+1/2��0, n integer, the ring is in a quantum superpo-
sition, with equal coefficients, of clockwise and anticlock-
wise screening currents �equivalently flux states�. A rounded
sawtooth jump in the screening current, centered at half-
integer bias flux, correspondingly generates a narrow posi-
tive spike in s��x� at this flux value. At integer bias flux
��x=n�0� the susceptibility is a minimum, increasing mono-

FIG. 2. Plot of the eigenenergies of the SQUID ring Hamil-
tonian, found by solving the TISE, as a function of external applied
flux with �	s=0.006�0

2 /�s and ��=0.035�0
2 /�s.
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tonically to a maximum at �x= �n+1/2��0. As we have
shown, in this simple ground state model of a quantum re-
gime SQUID ring the evolution of its quantum state can be
monitored through its effect on the classical dynamics of a
measurement circuit coupled to it.15,20,24 Typically this takes
the form of a low frequency, parallel LC tank circuit induc-
tively coupled to the SQUID ring and excited at, or very
close to, its resonant frequency. The resonant frequency of
this tank circuit �	t /2�� is usually extremely low compared
with the natural oscillator frequency of the SQUID ring �with
the implicit assumption that �	t�kBT�. This configuration is
very well known and forms the basis for one type of ultra-
sensitive magnetic flux detector—the ac or radio frequency
biased SQUID magnetometer.25 With this tank circuit play-
ing the role of the classical measurement system for the
SQUID ring, a changing s��x� leads, in the ground state of
the ring, to downward shifts �due to the positive s��x�� of
the resonant frequency of the tank circuit. For this ground
state, therefore, following the change in the frequency �and
amplitude� of the tank circuit resonance allows us to extract
some information concerning the evolution of the quantum
state of the ring �i.e., the coefficients in its screening current
superposition� as a function of �x.

B. The Born-Oppenheimer approximation

Given that the oscillator frequencies of both the SQUID
ring and the �classical� tank circuit resonator are functions of
their circuit capacitances, it is, in this limit, often convenient
to introduce an approach well known in atomic physics.
These capacitances can be considered as measures of the
effective mass of each circuit �SQUID ring and tank circuit
resonator�. Crucially, for quantum regime SQUID rings these
capacitances �effective masses� will be markedly different in
magnitude, e.g., for the ring typically � a few �10−15 F and
for the tank circuit � a few �10−11 F, or more. This low
mass–high mass �here, low capacitance–high capacitance�
situation was dealt with many years ago by Born and Oppen-
heimer for nuclear-electron motion. Adopting this approach
we compute from solutions of �2� the expectation value of
the screening supercurrent in the SQUID ring �fast� and sub-
stitute this as a feedback term into the classical equation of
motion for the tank circuit �slow�. Provided that the resonant
frequency of the tank circuit is low enough, so that to an
extremely good approximation the quantum SQUID ring re-
mains adiabatically in its ground state, the equation of mo-
tion for the coupled ring-tank circuit system then reads15,24

Ct
�2�t

�t2 +
1

Rt

��t

�t
+

1

Lt
�t = Iin�t� + ���Îs��� , �3�

where Lt and Ct are, respectively, the tank circuit inductance
and capacitance, �t is the magnetic flux in the tank circuit
inductor, and Rt is the resistance of the tank circuit on reso-
nance. In this Born-Oppenheimer approximation we assume
that the ring remains in one of its instantaneous energy
eigenstates, i.e., solutions of �2�; in reality this means the
lowest energy state �the adiabatic limit�. As we have demon-
strated in the literature,26 this approximation holds very well
if the frequency of the drive is very small indeed compared

with any separations, in frequency, between the SQUID ring
energy levels. This certainly appears to be the case for radio
frequency �rf� circuits, typically used to probe single weak
link SQUID rings, as well as in their application in SQUID
magnetometry.27,28 We note that since the SQUID ring is
macroscopic in nature �as, of course, is the tank circuit� there
exists a significant back reaction between these two circuits,

as evidenced by the ���Îs��� term in �3�. In practice this
means that the SQUID ring �through the cosine in its Hamil-
tonian� generates a nonlinear dynamic in the classical circuit
environment to which it is coupled, in this case a tank circuit.
For small tank circuit drive amplitudes this manifests itself
as a frequency shift in the power spectrum of the tank circuit
as shown in Fig. 3.

III. TIME-DEPENDENT SCHRöDINGER EQUATION
DESCRIPTION—EXCHANGE REGIONS

Following the time-independent Schrödinger description
of a SQUID ring �2�, the time-dependent Schrödinger equa-
tion �TDSE� for the ring takes the form

	 Q̂s
2

2Cs
+

��̂s − �x�2

2�s
− �� cos�2��̂s

�0
�
��� = i�

����
�t

, �4�

where �x=�x
stat+��t� is now comprised of a time- depen-

dent magnetic flux ��t� together with a static component
�x

stat. The intrinsically extremely nonperturbative quantum
nature of the SQUID ring would indicate that the application
of EM fields low in frequency compared with the fre-
quency difference ��h� between adjacent energy levels in
the ring should still induce transitions between its quan-
tum levels.29 Thus for level differences of a few hundred
GHz �quite typical of quantum regime SQUID rings�, we
expect EM fields at microwave frequencies �a few GHz� to
induce transitions, provided the field amplitude is high
enough.29 As our example in this work we consider a SQUID
ring with circuit parameters commensurate with operation in

FIG. 3. Frequency shift of a 130 MHz tank circuit �Ltc=3
�10−8 H, Ctc=5�10−11 F�, coupled to the SQUID ring of Fig. 2,
as a function of external applied flux for the ring in its ground state
only �Fig. 2�a�� calculated using the Born-Oppenheimer �adiabatic�
approach.
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the quantum regime.2,30 For this we choose Cs=5�10−15 F,
�s=3�10−10 H, and ��=0.035�0

2 /�s, the latter yielding a
weak link critical current Ic�=2e�� of 2 �A. Furthermore, for
an oxide insulator, tunnel junction weak link �oxide thickness
�1 nm, oxide dielectric constant �10� in the SQUID ring,
this capacitance corresponds to junction dimensions
0.25 �m2, well within the capabilities of modern microfab-
rication technology. In turn, these dimensions imply a maxi-
mum supercurrent density in the weak link of around
4 kA cm−2, a perfectly reasonable value for current experi-
ments on quantum regime SQUID rings. The SQUID ring
circuit parameters Cs=5�10−15 F and �s=3�10−10 H lead
to a ring oscillator frequency 	s /2�=130 GHz. If we as-
sume that the �planar� SQUID ring is fabricated in niobium,
which is often the case, then this ring oscillator frequency is
small compared with the superconducting energy gap in this
material ��1000 GHz� at low reduced temperatures T /Tc,
where Tc is the superconducting critical temperature �9.2 K
for nio bium� for an operating �ambient� temperature in ex-
periment typically around 40 mK.

Using the ring circuit parameters given above we showed
in Fig. 2 the lowest few energy eigenvalues of the SQUID
ring Hamiltonian, found by solving the TISE �4�, as a func-
tion of the static applied magnetic flux �x

stat. Although such
solutions of the TISE may be adequate for modelling this
system if the EM fields frequencies are extremely small com-
pared with frequencies ��h� separating the ring energy lev-
els �i.e., in the Born-Oppenheimer approximation, above�, in
general we must solve the TDSE where time-dependent
fields are involved. This is clearly demonstrated in Fig. 4.
Here, using the ring parameters of Fig. 2, we display the time
averaged energy expectation values of the TDSE �4� as a
function of �x

stat, for an applied microwave field of frequency
13 GHz, amplitude 0.001�0 and using the first two eigen-
states of the Hamiltonian as initial conditions. As can be
seen, for this microwave frequency and amplitude there is
significant energy exchange between these time averaged en-
ergies which takes place over a very narrow range of the bias
flux �x

stat. We term these exchange regions,19,29 or equiva-
lently, transition regions. We note that at the centers of these
exchange regions the corresponding frequency differences

between the energy eigenenergies in Fig. 2 are close to inte-
ger multiples of the applied microwave frequency. At suffi-
ciently high EM frequencies and amplitudes several, or
many, exchange regions are generated with an energy spac-
ing between adjacent regions very close to �	mw, where 	mw
is the �angular� frequency of the EM field. As we have
shown in a previous presentation,19 it is in these exchange
regions that the interaction between a SQUID ring and one
or more EM fields, is significant. For example, when a field
mode, or modes, is treated quantum mechanically, entangle-
ment is generated between the ring and the mode�s�, reach-
ing �as with the strength of the interaction� a maximum in the
center of an exchange region. Given the result shown in Fig.
4, where it is clear that energy is being exchanged between
the SQUID ring and the �classical� EM field, we now con-
sider whether a similar exchange can take place between this
input field and a classical output field mode, coupled to-
gether through the ring.

We now investigate a scenario, accessible at the current
level of experimental practice,20 of a classical field input and
a classical field mode output, differing widely in frequency.
We demonstrate that energy can be exchanged via a highly
nonperturbative, quantum mechanical SQUID ring. In par-
ticular, and in line with this experimental background,20 we
consider the interaction and energy transfer via the SQUID
ring between a microwave input, acting purely as a source,
and a lower frequency, resonant circuit output. This models
the SQUID ring-tank circuit �ac-biased� magnetometer
configuration27 in a nonadiabatic EM �microwave� field. In
this paper, we assume that there is a macroscopically signifi-
cant back reaction between the tank circuit and the SQUID
ring.15,31 However, for simplicity, we assume that there is no
direct coupling between the EM input and output fields and
note that this is easy to realize experimentally.

In order to deal in a general manner with this coupled
ring-tank circuit system we can no longer assume that the
behavior of this system is adiabatic in nature. By implication,
this means that the tank circuit resonant frequency is suffi-
ciently large compared with the frequency separations be-
tween the SQUID ring levels. Hence, we can no longer in-
voke the Born-Oppenheimer approximation. The TDSE for
the system then takes the form27

	 Q̂s
2

2Cs
+

��̂s − ��x
stat + �x

mw + ��t��2

2�s
− �� cos�2��̂s

�0
�


����t�� = i�
����t��

�t
, �5�

where, as can be seen, the total external magnetic flux ap-
plied to the SQUID ring consists of static bias, microwave
excitation, and back reaction tank circuit contributions, i.e.,
�x=�x

stat+�x
mw+��t. Again, as with the Born-Oppenheimer

approximation �3�, we assume that this back reaction is mac-
roscopically significant.

Given that the SQUID ring is now allowed to follow a
Schrödinger evolution and retain its time dependence �3� in
this nonadiabatic regime, the equation of motion for the tank
circuit now becomes

FIG. 4. Time averaged energy expectation values of the ring in
the presence of a microwave source �input� at a frequency of
13 GHz using the first two energy eigenstates as initial conditions.
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Ct
�2�t

�t2 +
1

Rt

��t

�t
+

1

Lt
�t = Iin�t� + ���t��Îs�t����t�� , �6�

where

Is = −
�Ĥs

��x
=

�̂s − �x�t�
�s

.

We solve the simultaneous coupled differential equations �5�
and �6�, where the frequency ratio between input microwave
and output tank circuit modes is large ��100�. In our opinion
these results shed light on both the general problem of the
description of the quantum-classical interface and, in particu-
lar, the interaction of nonlinear devices such as SQUID rings
with their classical environments.

IV. RESULTS

As a first check of the validity of this model we compare
it with the established Born-Oppenheimer approximation for
the limiting regime where there are no microwaves applied
and the tank circuit is driven at a frequency f t so low that, to
an extremely good approximation, the SQUID ring remains
adiabatically in its ground state. This holds even though,
through solutions of �2�, a whole spectrum of ring eigen-
states is available. In order to demonstrate the correspon-
dence between these two models in the limit of low tank
circuit drive frequency, we calculate the �x

stat-dependent fre-
quency shifts f��x

stat� using the ring parameters of Fig. 2 and
a tank circuit resonant frequency 130 MHz and a �=0.01. In
Fig. 5 �as we did in Fig. 3� we show the computed ring-tank
circuit resonant frequency shift in this limit as a function of
�x

stat for both the Born-Oppenheimer approach �in blue� and
our generalized model �in red�. It is quite apparent that there
is a very high degree of agreement between the two ap-
proaches in this limit. As our example of the frequency con-
version process we consider a SQUID ring with circuit pa-
rameters used in the computed results of Figs. 2 and 4. For
the SQUID ring parameters we have chosen the characteris-

tic ring oscillator frequency to be close to 130 GHz. Refer-
ring to the computed results of Fig. 4, we again choose the
frequency for the microwave source to be 13 GHz, i.e., an
order of magnitude lower than the ring characteristic fre-
quency, and set the tank circuit resonant frequency another
two orders of magnitude lower �i.e., 130 MHz�. Within the
limits of the computational power available to us this pro-
vides us with the opportunity to demonstrate extreme
�1000:1�, quantum SQUID ring mediated, energy downcon-
version.

With the results of Fig. 5 in support, and utilizing the time
averaged energy expectation results of Fig. 4 as a guide, we
then proceeded to compute the energy transfer, via the
SQUID ring, from input field to an undriven output tank
circuit at selected flux bias points close to and within an
exchange region in Fig. 4. Our results are shown in Fig. 6 for
the region of bias flux denoted using the time averaged en-
ergy expectation values at the top �which reproduces Fig. 4�.
As can be seen, outside the exchange region there is no evi-
dence of energy conversion between the input microwave
field and the output tank circuit. However, within the ex-
change region there is very significant conversion, reaching a
maximum gain ��70 dB above background� at its center.

FIG. 5. �Color� Frequency shift of a 130 MHz tank circuit �Ltc

=3�10−8 H, Ctc=5�10−11 F�, coupled to the SQUID ring of Fig.
2, as a function of external applied flux for the ring in its ground
state only �Fig. 2� calculated using both the Born-Oppenheimer �in
blue� and the nonadiabatic �in red� approaches.

FIG. 6. �Top� Reproduction of Fig. 4 illustrating the region of
bias flux used to compute �bottom� the power gain in the tank
circuit �with respect to �x

stat=0�0�. Here, the microwave source
frequency was 13 GHz which converted into the output �tank cir-
cuit� oscillator mode of 130 MHz. As can be seen, the peak power
at the center of the exchange region is �70 dB above the back-
ground from outside the exchange region.
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The results we have presented in this paper demonstrate
that a input-output frequency downconversion of a factor of
a couple of orders of magnitude can be explained through the
simple model we have utilized. However, this does not con-
stitute a theoretical upper limit, only a practical constraint
arising from the level of computational power available to
us. We also note that by symmetry, and due to the fact that
the SQUID ring couples different frequencies together, fre-
quency upconversion via this same mechanism should also
be possible.

V. CONCLUSIONS

In this paper we have demonstrated that the interaction of
a quantum mechanical SQUID ring with classical circuit en-
vironments is nontrivial. However, in the usual approach to
the influence of a classical �and dissipative� circuit environ-
ment on the time evolution of a quantum mechanical SQUID
ring,12 it is assumed that the environment can be modelled by
a bath of linear harmonic oscillators linearly coupled to the
ring.32 This need not be the case. The highly nonperturbative
nature of the SQUID ring in the quantum regime �and other
Josephson weak link based circuits� means that the ring-

environment interaction can be very nonlinear and may lead
to unexpected results. One of these is clearly the extreme
frequency ratio conversion possible between classical fields
via a quantum mechanical SQUID ring. Since the problem of
environmental �dissipative, decohering� effects is so central
to the successful implementation of quantum technologies, it
is our opinion that for nonlinear devices such as SQUID
rings the role of the environment must be reconsidered
within this nonperturbative �nonlinear� context.

On a purely experimental level the theoretical results gen-
erated in this paper indicate that quantum SQUID rings can
be used for very large frequency ratio downconversion be-
tween classical fields. This seems to be supported by
experiment20 and may prove to be of considerable practical
significance, especially with the current interest in classical
THz communications technologies.33
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