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The driven nonlinear Duffing oscillator is a very good, and standard, example of a quantum mechanical
system from which classical-like orbits can be recovered from unravelings of the master equation. In order to
generate such trajectories in the phase space of this oscillator, in this paper we use the quantum jump unrav-
eling together with a suitable application of the correspondence principle. We analyze the measured readout by
considering the power spectra of photon counts produced by the quantum jumps. Here we show that localiza-
tion of the wave packet from the measurement of the oscillator by the photon detector produces a concomitant
structure in the power spectra of the measured output. Furthermore, we demonstrate that this spectral analysis
can be used to distinguish between different modes of the underlying dynamics of the oscillator.
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I. INTRODUCTION

There is currently intense interest being shown in the pos-
sible application of quantum devices to fields such as com-
puting and information processing �1�. The goal is to con-
struct machinery that operates manifestly at the quantum
level. In any successful development of such technology the
role of measurement in quantum systems will be of central,
indeed crucial, importance �see for example Ref. �2��. In or-
der to extend our understanding of this problem we have
recently investigated the coupling together of quantum sys-
tems that, to a good approximation, appear classical �via the
correspondence limit� but whose underlying behavior is
strictly quantum mechanical �3�. In this work we followed
the evolution of two coupled, and identical, quantized Duff-
ing oscillators as our example system. We utilized two un-
ravelings of the master equation to describe this system:
quantum state diffusion and quantum jumps which corre-
spond, respectively, to unit-efficiency heterodyne measure-
ment �or ambiquadrature homodyne detection� and photon
detection �4�. We demonstrated that the entanglement that
exists between the two oscillators depends on the nature of
their dynamics. Explicitly, we showed that while the dynam-
ics was chaoticlike the entanglement between the oscillators
remained high; conversely, if the two oscillators entrained
into a periodic orbit the degree of entanglement became very
small.

With this background we subsequently became interested
in acquiring a detailed understanding of experimental read-
outs of quantum chaoticlike systems. In this paper we have
chosen to explore the subject through the quantum jump un-
raveling of the master equation �4–6�. Here, the measured
output is easily identified, namely, a click or no click in the

photon detector. However, this measurement process is
unique in the fact that it possesses no classical analog. In-
deed, this is the case even when the system under consider-
ation may appear to be evolving along a classical trajectory.
Interestingly, despite the fact that the photon detector has no
classical analog, it is the very presence of this as a source of
decoherence that is responsible for recovering classical-like
orbits in the ��q� , �p�� phase plane �despite the fact that we
measure neither q nor p�. The subject of recovering such
chaoticlike dynamics from unravelings of the master equa-
tion has been studied in depth in the literature �7–11� and a
detailed discussion is beyond the scope of this paper. How-
ever, we note that recently in Ref. �12� resonances have been
observed in a model of a nonlinear nanomechanical resona-
tor that are absent in the corresponding classical model. In
this present work we have chosen to scale the oscillator so
that we recover orbits similar to those generated from a clas-
sical analysis.

II. BACKGROUND

In this work we study the output resulting from the mea-
surement of quantum objects where the measurement device
generates decoherence effects. In this limit the system exhib-
its dynamical behavior in terms of its expectation values very
much like those observed in its classical counterpart. In this
work we investigate the region of parameter space under
which the classical system exhibits chaotic motion. Of the
many models that could be used we have chosen the quan-
tum jump approach �4–6�. We note that this is only one of
several possible unravelings of the master equation that cor-
respond to the continuous measurement of the quantum ob-
ject considered. Our motivation for using this approach is
that the recorded output of the measurement is completely
transparent, i.e., the photon counter either registers a photon
or it does not.*Electronic address: m.j.everitt@physics.org
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In the quantum jump unraveling of the master equation
the evolution of the �pure� state vector ��� for an open quan-
tum system is given by the stochastic Itô increment equation

�d�� = −
i

�
H���dt −

1

2�
j

�Lj
†Lj − �Lj

†Lj�����dt

+ �
j
	 Lj


�Lj
†Lj�

− 1����dNj �1�

where H is the Hamiltonian, Li are the Lindblad operators
that represent coupling to the environmental degrees of free-
dom, dt is the time increment, and dNj is a Poissonian noise
process such that dNjdNk=� jkdNj, dNjdt=0, and dNj
= �Lj

†Lj�dt. These latter conditions imply that jumps occur
randomly at a rate that is determined by �Lj

†Lj�. We will find
that this is very important when explaining the results pre-
sented later in this paper. For an excellent discussion of
quantum trajectories interpreted as a realistic model of a sys-
tem that is being continuously monitored, see Ref. �4�. For
an interesting and more general discussion on the emergence
of classical-like behavior from quantum systems, see Refs.
�13,14�.

The Hamiltonian for our, standard, example system of the
Duffing oscillator is given by

H =
1

2
p2 +

�2

4
q4 −

1

2
q2 +

g

�
cos�t�q +

�

2
�qp + pq� �2�

where q and p are the canonically conjugate position and
momentum operators for the oscillator. In this example we
have only one Lindblad operator which is L=
2�a, where a
is the oscillator annihilation �lowering� operator, g is the
drive amplitude, and �=0.125 quantifies the damping.

In order to apply the correspondence principal to this sys-
tem, and recover classical-like dynamics, we have introduced

FIG. 1. Power spectra of the position x for the classical Duffing
oscillator and �q� for the quantum Duffing oscillator �=0.1. The
frequency is normalized to the drive frequency of the oscillator.

FIG. 2. Power spectra of the position �q� and photons counted
N�t� for the quantum simple harmonic oscillator in a steady state.
Here the frequency is normalized to the drive frequency of the
oscillator.

FIG. 3. Power spectrum of the measured quantum jumps N�t�
for the Duffing oscillator of Fig. 4.

EVERITT et al. PHYSICAL REVIEW E 72, 066209 �2005�

066209-2



in Eq. �2� the parameter �. For this Hamiltonian it has two
interpretations that are mathematically equivalent. First, it
can be considered to scale � itself, or, alternatively we can
simply view � as scaling the Hamiltonian, leaving � fixed, so
that the relative motion of the expectation values of the ob-
servables becomes large compared with the minimum area
�� /2� in the phase space. In either case, the system behaves
more classically as � tends to zero from its maximum value
of 1. In this work we have chosen to set �=0.1.

III. RESULTS

Let us now consider the specific example of a Duffing
oscillator with a drive amplitude g=0.3. This parameter, to-
gether with all those already specified, form the classic ex-
ample used to demonstrate that chaoticlike behavior can be
recovered for open quantum systems by using unravelings of
the master equation �3,7,9,10�. In Fig. 1 we compare the
power spectra of the classical position coordinate with that of

�q�. Here noise has been added to the classical system so as
to mimic the level of quantum noise that is present in the
stochastic elements of our chosen unraveling of the master
equation and we have solved for a realization of the Lange-
vin equation. As can be seen, for this value of � there is a
very good match between these two results. Moreover, both
display power spectra that are typical for oscillators in cha-
otic orbits.

However, it is not position that is the measured output in
this model, but the quantum jumps recorded, as a function
N�t� of time in the photon detector. As stated above, these
jumps occur randomly at a rate that is determined by �Lj

†Lj�
which, for this example, is 2��n�. Hence, the probability of
making a jump is proportional to the number of photons in
the state of the system at any one time.

We now consider a special case that occurs frequently in
the classical limit, namely, where ��� localizes approximately
to a coherent �Gaussian� state. It is apparent that for such a
state the chance of observing a jump is proportional to the
square of the distance in ��q� , �p�� of the state from the ori-

FIG. 4. �Color online� Power
spectra of �a� �q� and �b� the mea-
sured quantum jumps as a func-
tion of drive amplitude.
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FIG. 5. Example power spectra for four different drive amplitudes corresponding to the regions I to IV as marked in the power spectrum
of Fig. 4.

EVERITT et al. PHYSICAL REVIEW E 72, 066209 �2005�

066209-4



gin. In order to illustrate the implications of this, let us con-
sider a driven simple harmonic oscillator. The Hamiltonian is

Hs =
1

2
p2 +

1

2
q2 +

g

�
cos�t�q

and we note that in this special case the only effect of
�=0.1 is to scale the amplitude of the drive �again we set
g=0.3�. We now solve Eq. �1� using this Hamiltonian and
allow the system to settle into a steady state. Then, as the
phase portrait for this system simply describes a circle cen-
tered about �0, 0� we would expect the power spectra of
photons counted to be the same as those for white noise.
Indeed, this is clearly seen in Fig. 2 where we show the
power spectrum for both �a� the position operator and �b� the
measured quantum jumps.

For more complicated orbits, such as those exhibited by
the Duffing oscillator, we would expect to see some evidence
of the underlying dynamical behavior. Hence, localization of
��� from the measurement of the Duffing oscillator through
the photon detector forms a concomitant structure in the
power spectrum of the measured output. In Fig. 3 we show,
for comparison with Fig. 1�b�, such a power spectrum.

As we can see from Fig. 3 the power spectrum for this
chaotic mode of operation reveals some structure. However,
it is not clear from this picture alone how we might relate
this result to that shown in Fig. 1�b�. It is therefore reason-
able to ask if this result does indeed tell us anything about
the underlying dynamics of the oscillator. We have addressed
this point by computing the power spectrum of both �q� and
N�t� for drive amplitudes in the range 0�g�3, the results
of which are presented in Fig. 4.

Although the functional forms of these power spectra ob-
viously differ, they do clearly exhibit changes in behavior
that are coincident in the drive amplitudes of both figures.
These are identified as intervals in g labeled I, II,… in Fig. 4.

To help clarify Fig. 4 we provide in Fig. 5 explicit power
spectra of both �q� and the quantum jumps N�t� for regions
I–IV. As expected for region I in Figs. 4 and 5�a,b� we see a
strong resonance at the frequency of the drive. The broad-
band behavior characteristic of the chaotic phenomena asso-
ciated with region II is evident in Fig. 5�c� and a concomi-
tant, although different, structure in the power spectrum �Fig.
5�d�� of the detected photons. In region III of Fig. 4 we again
return to a periodic orbit. In Fig. 5�e�, the power spectrum
for �q� exhibits a peak at the drive frequency; however, the
power spectrum �Fig. 5�f�� of N�t� peaks at twice this fre-
quency. The lack of coincidence between these two figures
will be explained fully in the following text. Finally in Figs.
5�g� and 5�h� we see the power spectra of the quasiperiodic
dynamics of region IV; again the discrepancy between these
two figures is discussed below.

The mechanism through which the detection of photons
can yield significant information about the underlying dy-
namics of the system can be understood by looking at the
phase portraits of �q� and �p� associated with the regions
I–IV of Fig. 4 for those values of drive used in Fig. 5. These
are shown in Fig. 6.

FIG. 6. Example phase portraits for four different drive ampli-
tudes corresponding to the regions I to IV as marked in the power
spectrum of Fig. 4.
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For region I there is a strictly periodic response on both
power spectra at the drive frequency of the oscillator. It can
be seen from Fig. 6�a� that, because of the distance from the
origin, the chance of there being a photon counted at point A
is higher than at point B. As this occurs at the same fre-
quency as the oscillations of �q�, we have direct agreement in
the position of the resonance in each of the different spectra.

In region II, and as is clear from Fig. 6�b�, the system is
following a chaoticlike trajectory. Although the power spec-
tra differ drastically in their structure, they do both exhibit
broadband behavior that is characteristic of chaotic orbits.

As the drive amplitude is increased further, region III in
Fig. 4 is accessed as the behavior observed in region II
ceases. For this range of drive amplitudes the solution is
again a stable periodic orbit as displayed in Fig. 6�c�. How-
ever, this time, while the power spectrum of �q� exhibits a
resonance at the drive frequency, that of N�t� appears at
double this frequency. The explanation for this is simply that
the probability of detecting a photon when the orbit is in a
region of phase space near the origin, such as those marked
C in Fig. 6�c�, is less than in those further away, as in the
region D. This variation in probability occurs twice a period
and therefore produces a resonance at double the drive fre-
quency. An immediate corollary is that, by detecting a reso-
nance at either of these different frequencies in the power
spectra of N�t�, we can determine whether the oscillator is in
region I or III of Fig. 4. From our analysis in Ref. �3� it may,
in some circumstances, be advantageous to place the system
in a chaotic orbit. It is possible that this sort of analysis could
be used to increase or decrease drive amplitude as part of a
feedback and control element for quantum machinery.

Finally, the power spectrum of �q� in region IV of Fig.
6�c� is characteristic of quasiperiodic behavior. Using a simi-
lar argument to the one above, we can transfer these features
onto the spectrum of N�t�. If we compare this result with the,
albeit noisy, phase portrait of Fig. 6�d� there is clear evidence
of quasiperiodic behavior.

We have demonstrated, using the Duffing oscillator as our
example system, that the different features exhibited in the
power spectrum of the photon count can be associated with
concomitant features in the power spectrum of the position
operator �and vice versa�. We note that for any given experi-
mental system where there is a direct correspondence be-
tween the power spectrum of N and �x� the power spectrum
of N provides us with the same amount of information about
the underlying dynamics �e.g., chaotic, quasiperiodic, etc.� as
the power spectrum of �x�. We would like to emphasize that
if this direct correspondence did not exist then we would not
necessarily be able to make such an assertion. For example,
this situation might occur for a system in which there was a
high degree of symmetry in the �x�-�p� phase portrait. How-
ever, such a detailed study is beyond the scope of this paper.

IV. CONCLUSION

In this work we have shown that, via analysis of the
power spectra of the photons detected in a quantum jump
model of a Duffing oscillator, we can obtain signatures of the
underlying dynamics of the oscillator. Again, we note that
the decoherence associated with actually measuring these
jumps is that which, through localization of the state vector,
enables these classical-like orbits to become manifest. We
have also demonstrated that the power spectra of the counted
photons can be used to distinguish between different modes
of operation of the oscillator. Hence, this or some form of
time-frequency analysis could be used in the feedback and
control of open quantum systems, a topic likely to be of
interest in some of the emerging quantum technologies.
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