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ABSTRACT
The auxiliary-field quantum Monte Carlo method is reviewed.  The Hubbard-Stratonovich transfor-
mation converts an interacting Hamiltonian into a non-interacting Hamiltonian in a time-dependent
stochastic field, allowing calculation of the resulting functional integral by Monte Carlo methods.
The method is presented in a sufficiently general form to be applicable to any Hamiltonian with one-
and two-body terms, with special reference to the Heisenberg model and one- and many-band
Hubbard models.  Many physical correlation functions can be related to correlation functions of the
auxiliary field; general results are given here.  Issues relating to the choice of auxiliary fields are
addressed; operator product identities change the relative dimensionalities of the attractive and
repulsive parts of the interaction. Frequently the integrand is not positive-definite, rendering
numerical evaluation unstable. If the auxiliary field violates time-reversal invariance, the integrand is
complex and this sign problem becomes a phase problem. The origin of this sign or phase is exam-
ined from a number of geometrical and other viewpoints and illustrated by simple examples: the
phase problem by the spin 1

2 Heisenberg model, and the sign problem by the attractive SU(N)
Hubbard model on a triangular molecule with negative hopping integrals.  In the latter case, widely
studied in the Jahn Teller literature, the sign is due neither to fermions nor spin, but to frustration.
This system is used to illustrate a number of suggested interpretations of the sign problem.

1. Introduction

Much of the richness of condensed matter physics is in the diversity of the ordered low-
temperature phases that lie concealed within the interacting-electron Hamiltonian.  In
studies of these phases, whether magnetic, superconducting or more exotic, it is useful to
deal directly with the relevant order parameter field (or auxiliary field coupled to it) as
the variables of the system.  A natural method is based on functional or path integration:
the Hubbard-Stratonovich transformation (HST)1 traces out the electronic degrees of
freedom, to leave a functional integral  over these auxiliary variables.  It replaces the
Coulomb interaction between electrons by a fluctuating electric field in which non-
interacting electrons move.  It replaces the exchange interaction in a ferromagnet by a
fluctuating molecular field to which the spins respond.  This response then determines the
effective action or Hamiltonian of the auxiliary field.  This is an important tool in areas



ranging from itinerant magnetism 2 to nuclear structure;3 the functional approach to
many-body physics is highlighted by a recent text.4

Functional integration has been used for many years as an analytical tool and as a
systematic means of obtaining approximations.5,6  Computing power now available
allows Monte Carlo (MC) evaluation of the functional integrals for model Hamiltonians,
giving non-perturbative and (in principle) numerically exact results. The task of a MC
calculation in classical statistical mechanics is to find the expectation value of a function
F,

    
F =

F(x) w(x)dx
G

w(x)dx
G

,
(1)

where the weight w(x) would typically be the Boltzmann distribution in classical phase
space G.7  Because of the large dimensionality of this space, integration can only be per-
formed by random sampling of points.  A uniform random sampling is extremely ineffi-
cient for large systems, as most of phase space has exponentially small weight.  The
Metropolis algorithm therefore generates a sample of points xk from the (positive-
definite!) distribution w(x), given a means of calculating the ratio w(x)/w(y) for neigh-
boring configurations x and y.8  Then the estimator of F is

    F = limnÆ•
1
K F xkS

k = 1

K
. (2)

The eigenstates of a quantum many-body system cannot usually be sampled directly, and
less direct techniques must be used.  The term quantum Monte Carlo (qMC) covers a
large variety of techniques whose common feature is that they determine properties of
quantum systems by random sampling.9,10  This review will concentrate on the auxiliary-
field functional integral mentioned above.  The configuration space G becomes the space
of paths u(t) (with imaginary time suitably discretized) and the weight w[u] the expo-
nential of an action.  Such integrals can be evaluated by MC integration if the action is
real (and the weight therefore positive).

A serious difficulty plaguing qMC calculations is that, in many cases of interest, the
weight is not positive.  It may become negative and, in the absence of time-reversal
invariance, need not be real.  The calculation may still proceed if points are sampled from
a positive distribution, such as the modulus |w(x)| of the weight, and the sign (or phase)
s(x)=w(x)/|w(x)| is absorbed into the integrand.  This is feasible if the average sign is
close to 1.  However, the average sign often tends to zero exponentially with decreasing
temperature.  At low temperatures the integrand becomes a rapidly oscillating but
sparsely sampled function, rendering numerical averages highly unstable and unreliable.
This sign problem or, in the absence of time-reversal symmetry, phase problem, is a
major hindrance to low-temperature qMC calculations.  This review will consider a
number of interpretations of these difficulties, illustrated by simple examples.  The
problem is commonly believed to be a consequence of Fermi statistics, but it also appears
in boson and spin systems and other situations which will be examined here.



1.1. Hamiltonians

It is not the aim of this review to discuss the solution of specific model Hamiltonians, but
rather to use them to illustrate the method and its difficulties.  With this in mind, we shall
be concerned with spin Hamiltonians, such as the Heisenberg model,

    H = –B⋅ SiS
i

– JijSi⋅S jS
ij

, (3)

and fermion Hamiltonians, such as the one-band Hubbard model,

   
H = – tijcis

†c jsS
s = ↑

Ø

S
ij

+ U ni↑niØS
i

. (4)

This model was originally proposed to describe ferromagnetism in transition metals.11

(Whether the above Hamiltonian does in fact yield a ferromagnetic state for physically
realistic parameters is, three decades later, still a matter of debate.)  The Hamiltonian is
also being investigated as a candidate for high-temperature superconductivity.

The one-band Hubbard model has SU(2) symmetry: invariance under spin rotations,
i.e., unitary transformations of the ↑Ø basis.  We shall also consider certain degenerate
Hubbard models, representing many-electron atoms.  The simplest such generalization is
to allow N “flavors” of electron per site.  This leads us to the SU(N) Hubbard model12,13,

   H = – tijcia
† c jaS

a = 1

N
S
ij

+ U
N ni– N

2
2S

i
,

(5)

where
   ni = cia

† ciaS
a=1

N

(6)

is the total charge on site i.  The label a contains both orbital and spin indices.  There is
equal repulsion (U>0) or attraction (U<0) between any pair of electrons on a site.  For
N=1 this is a non-interacting system.  For N=2 this is the one-band Hubbard model (4) up
to a trivial constant and shift in the chemical potential.

We may also wish to retain spin symmetry together with orbital degeneracy, allowing
for Hund’s rule interactions between different orbitals.  This suggests the SU(N)¥SU(2)
Hubbard model, 14,15,16

    
H = – tijcias

† c jasS
s = ↑

Ø

S
a = 1

N
S
ij

+ U
4 N ni

2S
i

– I
N Si

2S
i

,
(7)

where 
   

ni = cias
† ciasS

s = ↑

Ø

S
a=1

N
 and      Si = 1

2 cias
† sstciatS

st
.S

a=1

N
 (8)

In this case a labels the orbital and s the spin.  The model was proposed originally to
describe the 3d transition metals (for which N=5).14  Here the one-band model corre-
sponds to N=1 and I=U/3.  In more realistic models there are three coupling constants,
corresponding to an intra-band repulsion, an inter-band exchange interaction and an inter-



band Coulomb interaction.17  Crystal field splitting and spin-orbit coupling will break the
orbital symmetry and introduce further parameters.

All these Hamiltonians can be written in the general form

  
H = H1 + H2 , (9)

with one-body term
   H1 = – 1

2 Km Âm + Km
* Âm

†
(10)

and two-body interaction
   H2 = – Jmn Âm

† Ân . (11)

The summation convention here is that repeated Greek indices m, n, … are summed over,
while repeated Roman indices i, j, … are not.  The single-particle operators {Âµ, µ=1…n}
form a closed algebra and act on an appropriate Hilbert space, and the coefficients Jmn are
the elements of an Hermitian matrix.  Hats are used to distinguish operators (and rarely
unit vectors) wherever there is danger of confusion.  In the Heisenberg model, these
operators are spin components {Six, S iy, S iz}, with K  the magnetic field and J the
exchange interaction.  In the one-band Hubbard model the operators could be particle-
hole operators {cis†cjt}, where i labels a Wannier orbital and s the spin eigenvalue, so that
the index µ refers to isjt.  Then K are hopping matrix elements and J, in this case a very
sparse matrix, is the on-site repulsion U.  The chemical potential may be absorbed into K
if necessary.  With a suitable free-particle basis, the Hamiltonian is general enough to
encompass (for example) the Coulomb interaction, and the Ising, Anderson and Kondo
models.  In the degenerate Hubbard models (5) and (7) we are expressing the
Hamiltonian in terms of the operators

   Âij = cia
† c jaS

a=1

N
and Âisjt = cias

† c jatS
a=1

N
respectively.

(12)

The limit NÆ∞ is then a classical limit, and 1/N expansions are possible.18,19

For notational convenience, we shall assume the operators Â µ to be Hermitian, which
we can do if necessary by doubling the basis from {Âµ} to {(Âµ+Âµ

†), i(Âµ–Âµ
†)}, and take

{Kµ} to be real and {Jmn} to be the elements of a real symmetric matrix.  Then the one
and two body terms become

   H1 = – Km Âm (13)

and
   H2 = – Jmn Âm Ân . (14)

1.2. Overview

The next section reviews the functional integral approach and discusses the calculation of
expectation values.  The formalism is expressed in a general way, applicable to any
Hamiltonian with one- and two-body terms.  In fermion systems, Green functions are



usually calculated directly from the fermion determinant.  Some expectation values can
be calculated from the auxiliary-field correlations, and the procedure is discussed.  There
is often a wide choice of auxiliary field representations.  Section 3 compares the options,
dealing in particular with the choice of auxiliary fields in the Hubbard model.  With these
preliminaries, Sections 4 and 5 discuss the origin and interpretations of the phase and
sign problems.  The phase problem can be interpreted geometrically, in terms of the
phase acquired by a quantum state as it pursues the auxiliary field.  The sign problem is
more often encountered, and a number of proposals for its interpretation and circum-
vention are reviewed.  The sign problem is commonly ascribed to Fermi statistics or to
spin. Section 6 gives a simple example, a single spinless particle on a triangular
molecules.  If the ring is frustrated (by enclosing half a flux quantum) a minus sign arises
as the particle winds round once.  This model illustrates many of the previously discussed
interpretations.  Finally, brief conclusions and prospects are given in Section 7.

2. Functional integration

A fundamental difference between the classical and quantum statistical mechanics of
interacting systems is that, in the latter, one rarely has access to the complete set of eigen-
states of the system.  Were the operators Âµ to commute, it would be possible to
diagonalize the Hamiltonian in terms of their eigenstates, which could be sampled
directly in a Monte Carlo simulation.  The Ising model is of this form.  However, for an
arbitrary Hamiltonian H with two-particle interactions, many-body matrix elements of the
form ·m|e–bH|nÒ are much more difficult to calculate than those of the form ·m|H|nÒ.  If H
only contains single-particle terms, or b is small, both types of matrix element can be
calculated.  This is the basis of the Monte Carlo algorithms described below.

2.1. The Trotter-Suzuki transformation

A d-dimensional quantum system is related to a (highly anisotropic) d+1-dimensional
classical one, of width b=1/kT in the imaginary time direction.  Several Monte Carlo
techniques rely on this observation by using the Trotter-Suzuki (TS) formula20 to divide
the imaginary-time interval 0<t≤b into a large number L of time-slices of width Dt  = b/L,
writing the density operator as the product

   exp –bH = exp –Dt HP
l=1

L
ª exp –Dt H(r)P

r = 1

p

P
l=1

L
. (15)

Here the Hamiltonian is written as a sum ∑rH(r) of a small number p (possibly 1) of terms
H(r) which are easier to deal with than the full Hamiltonian.  For example, they may be
kinetic and potential energy terms, separately diagonalizable but not mutually commut-
ing.  The error, expressed as the norm of the difference of the operators on the left and
right hand side, is O(Dt).  This follows from the Baker-Campbell-Hausdorff formula21

   exp –Dt H (1) exp –Dt H(2) = exp –Dt H(1)+ H(2) + 1
2 Dt2 H (1), H(2) + . (16)



Higher-order exponential product formulae have been proposed, for example involving
fractal decomposition, that promise faster convergence.22

The sample space in a quantum Monte Carlo calculation of this density matrix is a set
of variables inserted between each factor in Eq. (17).  These variables could be

(i) a complete set of many-body states.
(ii) an overcomplete set of many-body states.
(iii) an auxiliary field which linearizes the interaction term.

The first case leads to the world-line Monte Carlo method,23 usually in conjunction with a
checkerboard decomposition of the Hamiltonian, which will not be further discussed
here.  The second case corresponds to the coherent-state functional integral,
corresponding to integration over spin directions in the Heisenberg model.  As it is of
relevance to later discussions on the phase problem, it is elaborated below.  The third
case, in which the Hubbard-Stratonovich transformation gives an auxiliary field
functional integral, is the main topic of this review.

2.2. Coherent state integration

The coherent state functional integral24 is used extensively in the field theory of spin
models.25,26  Let us first consider the basis we might use in a finite-dimensional Hilbert
space, specifically for a spin s particle.  The obvious choice (as used in the world-line
MC method) is to choose a quantization direction n and use the set of 2s+1 eigenstates
{|mÒ, m=–s…s} of n·S as a basis.  An alternative is to fix the eigenvalue to be s and vary
the direction n over the unit sphere (called the Bloch sphere in this context).  This has a
number of useful features: the symmetry is preserved, the space is independent of s,
which appears only as a parameter in the action, and the machinery of field theory is
applicable.  Such coherent states |nÒ, obeying n·S|nÒ=s|nÒ, form an overcomplete set of
states.  For s= 1

2 , the coherent states are in one-to-one correspondence with the pure states
in the usual spinor basis:

     
n = q , j = eiy cos (q/2) e–if/2

sin (q/2) eif/2 , (18)

where the phase y represents an arbitrary choice of gauge.
To obtain the integral, a resolution of the identity, in the form

    
1 = 2s+1

4p
d cosq(t) d j(t)

0

2p

n(t) n(t)
–1

1

(19)

is introduced between each time slice t=lDt  in Eq. (20).  The partition function becomes
an integral



    Z = 2s+1
4p

dnilP
l=1

L
P

i
niL e–DtH niL–1 niL–1 ni1 ni1 e–DtH niL (21)

     Æ Dni(t )P
i

e–S[ n i(t) ] as LÆ• .  (22)

The functional integral ∫Dni(t) is an integral over all closed paths n i(t), 0≤t≤b, on the
unit sphere.  The action of the spin-s Heisenberg model (3) is the following functional of
the spin directions:

    
S[{ni(t )}] = –is SWZ[ni(t)]S

i
– sB⋅ ni(t)S

i
+ s2 Jijni(t )⋅n j(t)S

ij
dt.

0

b
(23)

The action is complex: the  Wess-Zumino (or Berry phase or Chern-Simons) term S
WZ

 is
the solid angle swept out by the spin in its motion.25,27  This follows from the phase
change sW experienced by the wave function of a spin s particle on rotation around a
solid angle W.  Spin quantization can be derived from interference between such terms,
also responsible for topological effects in low-dimensional magnets.

These integrals are in principle susceptible to Monte Carlo evaluation. However, as
the physics is in the interference between phases S

WZ
, there is necessarily a serious phase

problem.  Random sampling is not the most efficient way of computing Fourier trans-
forms.  Takano has investigated the quantum XY model in this way, but was restricted to
two time slices, in which case no area is enclosed and the phase vanishes.28  Vieira and
Sacramento, comparing a number of coherent-state representations, find that even for a
single spin the phase fluctuations cause difficulties when large numbers of time slices are
used.29  We shall see how similar effects are responsible for the sign problem in the
auxiliary-field method.

Similar coherent states can be defined for arbitrary Lie algebras of the operators Âµ,30

leading to functional integrals of the above form,31 and it is in principle possible to apply
the same method to fermion systems.  However, the large dimensionality of the space of
coherent states makes this less than convenient.  A coherent-state formulation of the one-
band U=∞ Hubbard model has been formulated, starting from the algebra of the Hubbard
operators.32,33  These coherent states are parametrized by angular variables for the spin,
angular variables for the pseudospin (pairing) operators, and Grassmann variables for the
fermionic excitations.  Such representations do not readily lend themselves to numerical
evaluation.

2.3. Auxiliary-field functional integration

The method of choice for such correlated-electron systems is the auxiliary-field
functional integral , giving the grand canonical and projector Monte Carlo methods.
Here a Hubbard-Stratonovich (HST) transformation linearizes the interaction term in
each time slice, to obtain a non-interacting system moving in a stochastic auxiliary field.1

The interaction is restored by averaging over the field.  One early reference to an
auxiliary field, and use of a transformation related to the HST, is in f4 theory.34  Another,



relatively straightforward, application is to transform classical spin models (Ising and
Heisenberg) to continuous field theories.35,36  Applications to the Heisenberg and
Hubbard models are elaborated in section 3; we shall first outline the general formalism
in which there is an interaction between variables {xµ,%µ=1…n} and refer the reader to a
number of reviews.4,37,38

The transformation relies on an identity such as

    exp Mmn xm xn = exp um xm p(u)dnu
(24)

to linearize the interaction between the xµ.  The distribution p(u) is often (but not always)
a Gaussian

    p(u) = det(4pM) –1/2 exp – 1
4 Mmn

–1umun . (25)

This presupposes that M is a positive-definite matrix (corresponding to an attractive
interaction) and that the {xµ} commute.   In that case the Gaussian integral converges, and
the result follows from completion of the square.  Although the matrices arising here are
Hermitian, acting in an n-dimensional (real or complex) vector space V, they are not
necessarily positive-definite.  We can block-diagonalize the matrix in the three orthogo-
nal subspaces V+, V0 and V–, of dimension n+, n0 and n–, where its eigenvalues are
positive, zero and negative respectively:

   

M =
M+ 0 0
0 M0 0
0 0 M–

, (26)

where M+, M0=0, M– are n+,0,–¥n+,0,– matrices restricted to the respective subspaces, with
V= V+⊕V0⊕V– and n= n ++n0+n–.  We then find a real n+-component auxiliary field uŒV+

corresponding to the attractive part of the interaction and an imaginary n–-component
auxiliary field iv, vŒV–, corresponding to the repulsive part:

    exp Mmn xm xn = exp um xm p+(u)dn+u exp ivm xm p–(v)dn–v,
(27)

    where p+(u) = det(4p M+) –1/2 exp – 1
4M+mn

–1 umun

and p–(v) = det(–4p M–)
–1/2 exp 1

4 M–mn
–1 vmvn .

(28)

In simulations, u and v will be real variables (although in analytical work the contour of v
may be deformed to pass through the imaginary saddle point).  The number of compo-
nents of the auxiliary field is the rank n++n– of the matrix.  If the interactions are local,
this may be much smaller than the order n of the matrix or the dimensionality of the
space of coherent states.  For example, in the Hubbard model auxiliary fields couple to
spin and charge densities but not to inter-site operators such as ci↑

†cj↑, i≠j.  The number of
variables scales with the number of atoms rather than its square.



We now turn to the quantum case and consider the general Hamiltonian.  If the
operators do not commute, the identity (29) cannot be applied directly.  It is instead
applied to the interaction part exp(DtJµnÂµÂn) in each time slice in Eq. (30), so that
M=DtJ. For example, with a purely attractive interaction we have

   exp Jmn Âm ÂnDt = det(4p J/Dt) –1/2 dumlP
m

exp – 1
4 Jmn

–1umlunlDt +uml ÂmDt + O Dt2

(31)

in the lth time slice.  In the limit Dt∅0, the operators can be taken to commute.  Let us
divide the interaction matrix as before into attractive and repulsive subspaces, with matri-
ces J+ and J– respectively.  The imaginary-time-dependent fields u(t)={uµ(t)} and
iv(t)={ivµ(t)} coupled to the operators Â replace the interaction term; the partition
function z[u,v] of a time-dependent free-particle Hamiltonian h(t) is then averaged over
the fields to obtain the partition function Z of the interacting system as a functional
integral.  The grand canonical MC method consists of the numerical evaluation of this
integral

     
Z =

Dn+u(t ) Dn–v(t) exp –bV0[u,v] z[u,v]

Dn+u(t) Dn–v(t) exp –bV0[u,v]
,

(32)

where we define

     

Dn+u(t ) ≡ lim
LÆ•

dumlP
m=1

n+
P
l = 1

L

Dn–v(t ) ≡ lim
LÆ•

dvm lP
m=1

n–
P
l = 1

L

(33)

with t=lD.  The normalization is rather poorly defined, but any infinite factors are
removed by the denominator if the limit L∅∞ is taken after forming the ratio.  The
Gaussian weight exp(–bV0[u,v]) is given by

    
bV0[u,v] = 1

4 J+mn
–1 um(t) un(t )–J–mn

–1 vm(t ) vn(t) dt
0

b

(34)

and the partition function of the non-interacting system in the auxiliary field is

     
z[u,v] = Tr T exp – huv(t) dt

0

b

,
(35)

where     huv(t ) = –Km–um(t)–ivm(t) Âmt. (36)



We shall call these the auxiliary partition function and auxiliary Hamiltonian respec-
tively.  The subscripts uv on h will be used where the fields need to be stated explicitly.
As before, u (v) moves in V+ (V–), the n+ (n–) dimensional positive (negative) eigenspace
of J. The time-ordering symbol T orders factors with imaginary time increasing from
right to left:

    
T exp – h(t) dt

0

b

= lim
Dt Æ0

e–Dth(b) e–Dth(2Dt )e–Dth(Dt). (37)

The notation  h (t) indicates that  h  has explicit t dependence through the auxiliary
fields; the subscript t in Âmt is a label for time-ordering purposes.  Time ordering is
required, as  h (t) and  h (t') do not commute for t≠t'.

The functional integral can be viewed in various ways.  Firstly, the partition function
is that of an auxiliary field coupled to the system, divided by that of the free auxiliary
field.  Secondly, in diagrammatic language, z[u,v] is a sum of all bubble diagrams in Fig.
1, where the full line corresponds to the propagator of Â  in the non-interacting
Hamiltonian –KµÂµ and the dashed line corresponds to the auxiliary fields.  The Gaussian
averaging then reconnects the ends of the dashed lines to recover the interacting system.

z[u,v] = 

+ + + …

+ + + …+

(a)

Z = 

+

+…++

(b)
Fig. 1.  Diagrammatic expansion of (a) the partition function of the non-interacting system in the auxiliary field

and (b) the interacting system recovered after averaging.

The HST has transformed a quantum system into a d+1-dimensional classical system.
Hertz has carried out a renormalization-group study of phase transitions in quantum
systems.39  At finite temperature, the width in the time direction is finite; at a finite-
temperature phase transition there is a crossover to the classical d-dimensional fixed point
once the correlation length exceeds this width.

In addition to finite temperature properties, auxiliary-field qMC can give information
on ground state properties. 40,41  The projector qMC method starts with a trial wave
function |YT“, assumed not to be orthogonal to the true ground state |Y0“.  The ground
state is then



   
Y0 = lim

bÆ•
e–bH YT

YT e–2bH YT

. (38)

The HST is then used to evaluate the density operator in the numerator.  In this case,
rather than being sampled over all paths (u(t), v(t)), the wave function is propagated in
imaginary time 0≤t<b.  Since the evolution operator is not unitary, in fermion systems it
is necessary to re-orthogonalize the basis states for the Slater determinants at intervals to
avoid collapse onto a Bose-condensed state.

We shall normally be assuming a continuum limit in the time direction, while
remembering that the auxiliary fields are integration variables with no intrinsic dynamics
within each time slice and not continuous functions of time.  Discretization of the func-
tional integral is equivalent to restricting the integration in the space of paths u(t) to
piecewise-constant paths

    u(t) = ul where (l–1)Dt £ t < lDt. (39)

In a fermion system, h(t) describes electrons in a random field and is itself hard to
diagonalize.  In that case, the TS formula is normally used to split the kinetic and
potential energy in each time slice t=lDt:

    exp –Dth uv(t ) = exp Dt uml+ivml Âmt exp DtK m Âmt + O Dt 2 . (40)

This is equivalent to restricting integration to paths

    u(t) = uld t–lDtS
l = 1

L

(41)

so that the electrons disperse freely, according to their kinetic energy, between random
potential energy kicks at regular intervals Dt.

A further restriction of the integration, to time-independent paths, gives the static
approximation (SA),42,43 widely used in the context of itinerant magnetism. Here the aux-
iliary field is constrained to be time-independent, and the functional integral becomes an
ordinary integral over the uµ and vµ:

    
ZSA =

dn+u dn–v exp –bV0(u,v) z(u,v)

dn+u dn–v exp –bV0(u,v)
,

(42)

where     V0(u,v) = 1
4 J+mn

–1 um un–J–mn
–1 vm vn (43)

and     z(u,v) = Tr exp –bh , (44)

where    h = –Km–um–ivm Âm . (45)



This reduces the TS decomposition of Eq. (15) to a single time slice (L=1, p=1).  The end
result is a complete diagrammatic summation as in Fig. 1 but with interaction lines
restricted to zero Matsubara frequencies.

This reduces the system to the classical statistical mechanics of an effective Hamilto-
nian VSA(u,v)=V0(u,v)–kTlnz(u,v).  For the Heisenberg model z(u,v) is simply the parti-
tion function of independent spins in magnetic fields B+ui, and the effective Hamiltonian
is easy to calculate.  For the Hubbard model it can be calculated by electronic structure
techniques, using fitted tight-binding parameters for iron.44  This then gives effective
exchange interactions between the auxiliary fields on different sites (which will in
general include many-atom terms), which can be treated by a classical MC simulation.45

Others consider the random auxiliary field as a disordered alloy and apply the coherent
potential approximation.46,47,48

A justification of the SA is the separation of time scales: transverse fluctuations of
magnetization are typically much slower than electron hopping times.  A number of diffi-
culties do arise.  Firstly, the ground state energy in the SA is the minimum of VSA(u,v).
This minimum corresponds to a variational ground state of the original Hamiltonian in
the space of uncorrelated states that (depending on the choice of auxiliary fields) may be
the Hartree-Fock state.  The SA is however correct in the high-temperature limit.  One
consequence is an underestimate of the heat capacity, which can even become nega-
tive.49,50  A second difficulty is that the transformation to a static disordered alloy has
destroyed the normal Fermi liquid behavior.51  Thirdly, as the effective Hamiltonian is
classical the high-frequency excitations are overestimated.  One can improve on the SA
either in the time domain, by adding time slices, or in the frequency domain, by including
some non-zero Matsubara frequencies.52  The recovery of the correct physical properties
with increasing number of time slices or frequencies does not seem to have been widely
studied.

2.4. Expectation values and correlation functions

There are two ways of extracting expectation values from the simulation: from the auxil-
iary Hamiltonian directly or from the auxiliary field distribution.  The former method can
be used for any expectation value, while the latter is restricted to products of operators
appearing in the interaction term.  The methods are demonstrated for a general
Hamiltonian.

We first consider the direct method.  To evaluate the thermal expectation value of an
operator  F  (in general, involving time-ordered products of operators at different times),

    
F ≡

Tr T F(t1, t 2, ) exp(–bH )
Tr T exp(–b H)

, (46)

we first convert it into the corresponding functional of the auxiliary fields, F[u, v], and
take the functional average:



     
F = F[u,v] ≡

Dn+u(t) Dn–v(t ) F[u,v] w[u,v]

Dn+u(t) Dn–v(t) w[u,v]
, (47)

where the overbar denotes functional averaging over the auxiliary field with weight

    w[u,v] = exp –bV0[u,v] z[u,v] (48)

and the functional F[u,v], the expectation value of  F  in the time-dependent fields, is

     
F[u,v] = z[u,v] –1 Tr T F exp – huv(t) dt

0

b

.
(49)

It is then in a form that allows MC averaging by importance sampling over the auxiliary
field with weight w (if the weight is positive).

There are simple expressions for the expectation values in fermion systems.  In that
case the above expectation value (50) is taken with respect to a single-particle
Hamiltonian, which can be written in the matrix form

   h(t ) = hij(t )cit
† c jtS

ij
, (51)

where the spin indices have been suppressed for notational convenience and the chemical
potential has been absorbed into the Hamiltonian.  For a time-independent single-particle
Hamiltonian

   H = Hijci
†c jS

ij
, (52)

where the matrix H has eigenvalues Ek, the trace is simple:

    Tr exp –b H = 1+exp –bEkP
k

= det 1+exp –bH . (53)

The left hand side is the trace of the density operator over a 2m-dimensional Fock space
of the electrons, while the right hand side is the determinant of an m•m matrix.  The
same identity applies to the time-dependent Hamiltonian:53,54

    
Tr T exp – h(t) dt

0

b

= det 1+T exp – h(t) dt
0

b

, (54)

where we shall use the same time-ordering symbol to order matrices chronologically in
the same way as operators.  Green functions are similarly given by the appropriate
elements of the inverse, for example

    
cic j

† = 1+T exp – h(t) dt
0

b

ij

–1
, (55)

with similar expressions for the time-dependent Green functions.54  Since electrons in the
auxiliary Hamiltonian (56) are uncorrelated, one can use the machinery of Wick’s theo-



rem to contract higher-order Green functions before taking the functional average.
Averaging over the auxiliary field then reintroduces the correlations.  This therefore
allows calculation of correlation functions and response functions in a fermion system.

The other way of extracting correlation functions requires knowledge only of the
auxiliary field and is not restricted to fermion or boson systems.  The method relies on a
close relation between correlation functions of the auxiliary field and those of the
operators.55,56  This can be seen by adding an external field z(t)=x(t)+y(t), where
x(t)ŒV+ and y(t)ŒV–, to the Hamiltonian and taking the partition function as a generating
functional for the correlations:

   H¢(t) = H – zm(t ) Âmt . (57)

The partition function of the Hamiltonian   H¢  is

     Z[z] = e–bW[z] = Z 0 T exp dt
0

b

z m(t) Âm(t) (58)

where the explicit time dependence of the operators in the above equation is

   
Âm(t) = etH Âmte–tH .

(59)

The cumulant expansion57 of the grand potential W in z gives the series

     
W [z] = W[0] – kT dt

0

b

Âm zm(t)

– 1
2kT dt1

0

b

dt2
0

b

T Âm(t1) Ân(t 2) czm(t1)zn(t2) +
(60)

where the second-order connected correlation function (or cumulant) • “c is defined by

  ABc = AB – A B . (61)

Functional derivatives with respect to x and y therefore yield correlation functions of the
Â in the usual way.  We can produce a similar expansion in the functional integral
formulation by

     

Z[z] =
Dn+u(t) Dn–v(t) exp –bV0[u,v] Tr T exp Km+um

¢ (t)+ivm
¢ (t ) Âmt dt

0

b

Dn+u(t) Dn–v(t) exp –bV0[u,v]
(62)

where    um
¢ (t) = um(t )+ xm(t) (63)

and    vm
¢ (t ) = vm(t)–i ym(t) . (64)



We now change the variables of integration in the numerator to  u'(t) and v'(t).  This is
allowed, as the space of integration is the space of paths in V+ and V– respectively; there
is simply a shift in origin by x(t) and –iy(t) respectively.58  From Eq. (65) we get

    bV0[u,v] = bV0[u¢,v¢]

+ 1
4 J+mn

–1 –2um
¢ (t) xn(t )+ xm(t) xn(t) + J–mn

–1 –2ivm
¢ (t) yn(t)+ ym(t) yn(t) dt

0

b

. (66)

This gives an expression for the partition function as a functional average (with u¢ and v¢
now relabeled u and v)

    
Z[z] = Z[0] exp 1

2 J+mn
–1 um(t) xn(t )+i J–mn

–1 vm(t) yn(t ) dt
0

b

¥ exp –1
4 J+mn

–1 xm(t) xn(t) + J–mn
–1 ym(t ) yn(t) dt

0

b

. (67)

The grand potential can be expanded in powers of z:

   

    
W [z] = W[0] – kT 1

2 dt
0

b

J+mn
–1 um+i J–mn

–1 vm zn(t)

– 1
8kT dt1

0

b

dt2
0

b

J+mx
–1 J+np

–1 ux(t 1)up(t 2)
c–J–mx

–1 J–np
–1 vx(t1)vp(t2)c zm(t 1)zn(t2)

+ 1
4kT dt J+mn

–1 + J–mn
–1 zm(t)zn(t)

0

b

+ . (68)

Comparing the expansions (69) and (70) gives us the relation we are seeking between
operator and auxiliary field correlation functions.  If we write the projection of the
operators Âµ onto the subspaces V± as Â±µ, we get a relation for the expectation values of
the operators

   
Â+m = 1

2 J+mn
–1 um

Â–m = 1
2 iJ–mn

–1 vm
. (71)

(It should be pointed out here that, although the auxiliary field v is real, its average is
imaginary when taken with respect to the complex weight w[u, v].  The expectation value
of the operator Â–µ is therefore real.)

Correlation functions are calculated similarly:

    
T Â+m(t 1) Â+n(t2) c = 1

4J+mx
–1 J+np

–1 ux(t 1)up(t 2)
c– 1

2 J+mn
–1 d(t 1–t 2)

T Â–m(t1) Â–n(t2) c = – 1
4 J–mx

–1 J–np
–1 vx(t1)vp(t 2)

c– 1
2 J–mn

–1 d(t1–t2) (72)

with higher order cumulants equal (up to a linear transformation J):



    
T Â+m(t 1) Â+w(tr) c = 2–rJ+ma

–1 J+wl
–1 ua(t 1) ul(t 2)

c

T Â–m(t 1) Â–w(t r) c = (–2i)–rJ–ma
–1 J–wl

–1 va(t 1) vl(t 2)c  (r>2). (73)

Thus in the Hubbard model, discussed in detail in Section 3.3, we can calculate spin-spin
correlation functions (corresponding to the positive subspace) and charge-charge correla-
tion functions (corresponding to the negative subspace).  Other quantities, such as inter-
site Green functions, that cannot be expressed in terms of spin and charge densities
involve the zero subspace and cannot be derived from the auxiliary field in this way.  The
first method can of course still be used here.

2.5. Non-positivity

The auxiliary-field quantum Monte Carlo method involves a numerical evaluation of
these expectation values.  This is straightforward if w  is positive-definite: the Metropolis
algorithm allows sampling of paths according to the distribution w and (if the process is
ergodic) the expectation value is given by

    F = lim
KÆ•

1
K F uk,vkS

k = 1

K
.

(74)

Here [uk, vk] represents the kth path, and the paths are sampled from the distribution w.
In a classical simulation, w is typically a Boltzmann distribution and manifestly posi-

tive.  In a quantum simulation, w is not in general positive-definite.  First noted in studies
of fermions coupled to a boson field,53 it also appears, for example, in spin10 and Jahn-
Teller59 systems.  There are two such cases: if w  can be negative, we talk of a sign
problem, and, if it is complex, we shall talk of a phase problem.  The latter case applies if
the auxiliary field breaks time-reversal invariance, for example for the v field arising
from a repulsive interaction or a u field coupled to a three-component spin.  In each case
the auxiliary Hamiltonian is complex.  However, for each path u(t), v(t) there is a
conjugate path

   u(t ) = !u(b–t )
v(t ) = –v(b–t)

. (75)

The weight of this conjugate path is the complex conjugate of that of the original path:

     
w[u, v] = Tr T exp Km+um(b–t )–ivm(b–t) Âmtdt

0

b

exp –bV0[u, v]

= Tr T exp Km+um(t )+ivm(t) Âmtdt
0

b †
exp –bV0[u, v]

= w[u, v]* . (76)

Since both a path and its conjugate appear in the integration, if a real quantity is to be
averaged only the real part of w is needed.



Non-positivity is not a formal difficulty in principle; indeed, Feynman has argued
that one should not be afraid of using negative probabilities as intermediate results.60

Why then is it a sign problem?  The difficulty is in evaluation of the integral.  It is still
evaluated by importance sampling from a positive-definite weight, usually |w|.  The sign
(or phase factor) s=w/|w| is absorbed into the integrand.  Expectation values are

     
F =

Dn+u(t) Dn–v(t) F[u,v] s[u,v] w[u,v]

Dn+u(t) Dn–v(t) s[u,v] w[u,v]
= lim

KÆ•

1
K F uk,vk s uk,vkS

k = 1

K

1
K s uk,vkS

k = 1

K , (77)

where the points are sampled from the positive distribution |w|.  (For complex weights
one can also sample from the distribution |Rew|.) The average sign (in the denominator)
typically vanishes exponentially in the low temperature limit.61  At low temperatures, the
statistics will be overwhelmed by noise.

There are other difficulties at low temperatures, related to the ill-conditioned nature
of the fermion matrix, which will not be discussed here.62  We shall return to the phase
and sign problems in Sections 4 and 5, after discussing some more concrete examples of
the formalism.

3. Examples

3.1. Coulomb interaction

Before tackling quantum systems, let us consider how auxiliary fields might be used in an
electrostatic system, where they have a clearer physical interpretation. The classical non-
relativistic partition function of a system of electrons moving in a fixed potential V(r) is
then an integral over their positions:

    
Z µ 2pmkT 3/2d3riP

i
exp – be 2

4pe0
1

ri–r j
S
i> j

+ be V(ri)S
i

.
(78)

The HST replaces the Coulomb interaction by an auxiliary electrostatic field f(r), with its
usual field energy:63

     Z µ Df r exp –b 1
2e0 —f 2d3r z[f] ,

(79)

    where z[f] = 2p mkT 3/2 d3ri exp be –if ri +V riP
i

.
(80)

There is no time-dependence here; the functional integration Df refers to the spatial
dependence of f.  We can interpret z[f] as the partition function of the electrons in an
electrostatic field, and the partition function in Eq. (81) as that of electrons and a field.
The relations in Section 2.4 then relate correlation functions of the charge density and



ie0—
2f, as expected from Poisson’s equation.  The repulsive nature of the Coulomb

interaction leads to a v-type field with a factor i in the exponent and a rapidly oscillating
integrand — a phase problem.  In a bounded system it is possible to make the interaction
attractive by adding a diagonal interaction of sufficient size that all Fourier components
are negative and the fields are real.  However, the shift is proportional to the square of the
linear dimensions of the system and enhances short-wavelength fluctuations in the field.64

The relativistic case has recently been tackled, based on the Dirac equation: the factor i
results from a Wick rotation to imaginary time, and a suitable choice of gauge eliminates
the scalar potential if in favor of a real vector potential coupled to the current.65

3.2. Heisenberg Model

The auxiliary field method has been applied to the Heisenberg model (82), to obtain the
partition function as

     
Z µ D3ui(t )P

i
exp – 1

4 Jij
–1 ui(t) ⋅u j(t )S

ij
dt

0

b

z uiP
i

 , (83)

where
      z u = Tr T exp B+u(t ) ⋅S t dt

0

b

(84)

is the partition function of a single spin in a time-dependent magnetic field.66,67,68  This of
course assumes that Jij is positive definite, which can be arranged by the addition of a
diagonal term to the Hamiltonian:

    H = –B⋅ SiS
i

– JijSi⋅S j+ NspinsJ0s(s+1)S
ij

with Jij = Jij + J0d ij,
(85)

where J0 exceeds the largest eigenvalue of –Jij.  (This causes fewer difficulties than the
equivalent correction in the Coulomb system: if the exchange interactions are of finite
range, J0 is finite in the thermodynamic limit.)  Since the field breaks time-reversal
symmetry, z[u] is complex, and useful qMC calculations of the Heisenberg model do not
use auxiliary fields.  The relations in Section 2.4 then relate correlation functions of ui to
those of 2∑jJijSj, which has a simple interpretation as the fluctuating molecular field
acting on the spin Si from its neighbors.

3.3. One-band Hubbard Model: Choice of Auxiliary Fields

There is said to be considerable ambiguity in the choice of auxiliary fields for the
Hubbard model, with one-, two-, three- and four-field methods in use.  We shall call
these 1F, 2F, 3F and 4F respectively.  (The additional freedom to apply linear transfor-
mations, for example using J–1u as the auxiliary field, is not of great concern here.)  Let
us start with the standard one-band repulsive Hubbard model (4).  The ambiguity arises
from two observations.  The first is the identity nis

2=nis, which allows description of the
interaction in terms of an arbitrary combination of spin and charge fluctuations.  The



second is the spin isotropy of ni↑niØ (which simply counts double occupancy), which
allows use of scalar or vector auxiliary fields.  This leads to a large family of
decompositions, which may even be spatially inhomogeneous.  Such exact identities
cannot affect the results if no approximations are made.  However, different formulations
will give different results once approximations are made; the choice of formulation may
also affect the convergence of a qMC calculation.

Let us first write the interaction term as

   Uni↑niØ = 1
4Uni

2 – USiz
2

(86)

where    ni = ni↑ + niØ and Siz = 1
2 ni↑ – niØ . (87)

The HST then gives the 2F auxiliary Hamiltonian69

   huv(t) = – tijcis
† c jsS

ijs
– ivi(t)ni+ui(t )SizS

i (88)

with Gaussian weight

   
exp –bV0[u,v] = exp – 1

4U ui
2(t) + 1

U vi
2(t)S

i
dt

0

b

.
(89)

The spin-spin attraction and charge-charge repulsion result in a real field u coupled to the
z component of spin and an imaginary field iv coupled to the density.

We can avoid the imaginary term (and resulting phase problem) by using the identity
nis

2=nis to rewrite the interaction as

   Uni↑niØ = 1
2Uni – 2USiz

2
.

(90)

Applying the HST to this decomposition gives the 1F auxiliary Hamiltonian43

   hu(t) = – tijcis
†c jsS

ijs
– ui(t)SizS

i (91)

where the single auxiliary field, acting as a magnetic field in the z direction, has Gaussian
weight

   
exp –bV0[u] = exp – 1

8Uui
2(t )S

i
dt

0

b

.
(92)

This has introduced spurious interaction between equal spins on one site.  Functional
integration of course repairs the damage; Keiter has shown explicitly how the diagrams
corresponding to self-interaction in the Anderson model cancel to each order.70  A sys-
tematic study71 of all possible Gaussian decompositions in the Hubbard model shows
that, to each order in the expansion for the grand potential, self-interaction gives rise to
spurious diagrams that are only canceled by higher-order diagrams.  Any truncation of



the series to a finite order will then introduce unphysical interactions, as will the SA.  For
example, the saddle-point solution is the Hartree-Fock state ui=U·2SizÒ only in 2F.  The
SA in the 2F method gives the correct partition function and leading corrections in the
Anderson model in both the atomic and band limits.72  Here Hamann38,69 found the
important paths for the large U to be those that remain close to the Hartree-Fock minima
·SzÒ=± 1

2 most of the time, with hops between the two minima.  The effective action is that
of an instanton gas with long-range interactions.  (Although the two-field method was
used, fluctuations of the v field were ignored on the grounds that they are much faster
than spin fluctuations.  This can give an incorrect temperature dependence.73)  A study of
a number of different schemes for the Anderson model fails to find one correct in all
limits.74

The above discussion suggests that the 2F method is to be preferred for analytical
work.  However, MC calculations will suffer from a phase problem as the auxiliary
Hamiltonian is complex.  This suggests that the 1F method would be more convenient for
numerical purposes.  Hirsch has taken this further, noting that the operator ni↑niØ only has
eigenvalues 0 and 1 and hence using a non-Gaussian transformation to introduce Ising
auxiliary fields ui=±a:75

   exp(–DtUni↑niØ) = 1
2 exp uiSiz – 1

2DtU niSui = ±a (93)

where    a = 2cosh–1 exp(Dt U/2) . (94)

The discrete sample space is computationally more efficient,76 and is widely used in qMC
simulations of the Hubbard model.  Again there is a degree of freedom, allowing a family
of discrete transformations with different weighting and magnitude of the two auxiliary
field values.77,78

The above decompositions appear to introduce uniaxial spin anisotropy, and one of
the tasks of functional integration is to restore the symmetry.  Approximations such as the
SA will break the symmetry,79 introducing a gap to spin waves in a Hubbard
ferromagnet.  However, even without making such approximations, we come across a
puzzling feature of the above HSTs.  Let us consider the one-band Hubbard model on a
three-dimensional lattice and assume for the moment that it has a second-order magnetic
phase transition at finite temperature, an assertion as yet unproved.  As a thought
computation, let us investigate the critical exponents.  (Hirsch has shown evidence of a
finite-temperature antiferromagnetic transition at half filling, but resorted to mean field
theory to find TN.80)  Spin isotropy implies that the critical behavior will correspond to
the d=3 Heisenberg (O (3)) universality class.  On the other hand, the HST has
transformed the system into one with a one-dimensional order parameter.  The resulting
action is a very complicated many-body functional, but the width is finite in the time
direction and interactions will be damped at large spatial separations.  This would suggest
Ising critical behavior.  Possible resolutions are that the Ising effective action may be
singular or have long-range interactions, or that there is no second-order magnetic



transition at finite-temperature.  Indeed, coupling between spin and charge fluctuations
may drive the transition first order.81

These arguments suggest we use the identity Siz
2 = Si

2/3, valid for a one-band model,
to write the interaction in the manifestly isotropic forms

    Uni↑niØ = 1
2Uni – 2

3 USi
2 = 1

4Uni
2 – 1

3USi
2 (95)

where     Si = 1
2 cis

† s st citS
st , (96)

leading to the 3F and 4F transformations respectively.82,83  The latter has a real vector
auxiliary field coupling to the total spin and an imaginary scalar field coupled to the
density:

    huv(t) = – tijcis
†c jsS

ijs
– ivi(t)n i+ui(t )⋅SiS

i
. (97)

The effective action is now explicitly isotropic and remains so even after approximations
such as the SA, or more generally after discretization in the time direction.  On the other
hand, the SA no longer gives the Hartree-Fock ground state.  In a qMC simulation, a
phase problem arises from the spins, as will be shown.  The 3F and 4F methods have
therefore rarely been used in qMC work, although results on small systems agree with
exact diagonalization.84

The difference between scalar and vector fields is well illustrated by an intermediate
method.46  The argument is that transverse spin fluctuations are slow (with characteristic
frequencies given by the spin wave spectrum), while longitudinal fluctuations are fast
(with characteristic frequencies of the order of the band width).  The interaction is there-
fore referred to a local spin quantization direction:

    Uni↑niØ = 1
2Uni – 2U ei⋅Si

2 = 1
4Uni

2 – U ei⋅Si
2

(98)

where ei is a time-independent (but site-dependent) unit vector.  The auxiliary field ui ei is
of fixed direction (but fluctuating magnitude) on each site.  The partition function Z({ei})
is calculated and averaged over the directions.  Clearly the exact partition function is
independent of our local choice of quantization axis, and the averaging is unnecessary in
an exact calculation.  In the SA the partition function does depend on the (unsigned)
directions.  This is seen most clearly by consideration of the ground state energy
ESA({ei}).  Suppose the Hartree-Fock ground state is a ferromagnet or a collinear antifer-
romagnet.  The ground state found by the 2F SA is only the Hartree-Fock state when all
the ei are collinear.  A further ambiguity arises in the Jacobian in the integral for the SA;
in 3F the volume element is d3ui, while in 1F the volume element is deidui.85  A similar
idea, involving integration over local constraints in direction, has also been used in the
first-principles spin density functional theory of the statistical mechanics of iron.86

We have so far implicitly assumed that we are looking for magnetism.  The upsurge
of interest in the Hubbard model in recent years has been due to its possible relevance to
cuprate superconductivity.  This suggests yet another decomposition into pairing opera-



tors, coupled to a particle non-conserving auxiliary field.87,88,89  A general decomposition
involving both spin and pairing operators has been proposed.90

Fermion determinants and Green functions are calculated as in Section 2.4.  For
example, the auxiliary Hamiltonian in the 4F method has matrix elements

    h isjt(t) = – tijdst+ivi(t )dstd ij+1
2ui(t)⋅s stdij+md ijdst . (99)

Now if all the ui(t) are collinear, as in 2F, the matrix is block-diagonal in spin “up” and
“down” blocks, and the determinant decouples into a product of spin “up” and “down”
determinants.  In general, with non-collinear fields, this is not possible.

For later use, we generalize the distinction between scalar and vector auxiliary fields.
To make the definitions more precise, consider the operators Âµ coupled to the auxiliary
field.  If these operators commute at equal time, such as Siz and ni in 2F, we talk of a
scalar field.  If the operators do not commute, as in 3F and 4F and the spin components
in the Heisenberg model, we talk of a vector field.

3.4. Many-band Hubbard model

Our freedom choice of auxiliary-field representation is much reduced in N-band Hubbard
models if we require the number of auxiliary fields to be independent of N .  This reduces
the freedom of choice provided by the identities in the single-band model.  Let us first
consider the attractive (negative U) SU(N) Hubbard model (5), known to have no sign
problem.  In this case we only require a one-component field ui coupling to the density on
each site; the auxiliary Hamiltonian is then

   hu
( N)(t ) = – tijcia

† c jaS
ij

– ui(t) nia – 1
2S

i
S

a = 1

N
(100)

with Gaussian weight

   
exp – NbV0[u] = exp N 1

4U ui
2(t )S

i
dt

0

b

. (101)

The auxiliary partition function of the electrons is simply related to that for N=1:

    z(N)[u] = Tr T exp – h(N)(t) dt
0

b

= z (1)[u] N . (102)

The partition function is then

    
Z =

Dui(t)P
i

exp – NbV[u]

Dui(t )P
i

exp – NbV0[u]
(103)

where   V[u] = V0[u] – kT lnz(1)[u] . (104)



The free energy must be independent of U when N=1, apart from a constant U/4 per
atom, since there is no interaction.  This is not obvious from the functional integral form.

Now the auxiliary field is time-reversal invariant, so that z(1)[u] must be real (but not
necessarily positive).  There is therefore no sign problem for N  even.  We shall see an
explicit construction of a sign problem for N odd in Section 6.  The situation is different
in the SU(N)•SU(2) Hamiltonian (105).  Since the auxiliary field couples to spin, time-
reversal invariance is broken and there is in general a phase problem.

4. The phase problem

In the general situation the auxiliary fields break time-reversal invariance and the weight
w of a path is therefore complex.  If the quantity to be averaged is real, the real part of the
weight suffices.  If the phase of a typical path is much less than π/2, as may be the case at
high temperatures, the average sign will be close to unity and the phase problem will not
seriously affect numerical convergence.  Phase fluctuations will increase with increasing
imaginary time.91

The phase of a path in the functional integral has a geometrical interpretation.  We
therefore review the theory of the geometrical (Berry) phase, 92,93 before applying it to the
functional integral.

4.1. Geometrical phases

Suppose a Hamiltonian H depends on parameters R in some parameter space F, and has
eigenstates {|n;%RÒ} for each point R:

   H(R) n; R = En(R) n; R . (106)

(One example is the Born-Oppenheimer approximation for a molecule, where R are
nuclear coordinates and H is the electron Hamiltonian; another example is a spin s parti-
cle in a magnetic field R.)  Prepare the system in the nth eigenstate |Y(0)Ò  = |n;%R(0)Ò at
time 0 and take R slowly round a closed path C in F in (real) time T.  If the state remains
non-degenerate, it will evolve nearly adiabatically.  The final state will be the same as the
initial state, the final wave function differing by a phase factor from the initial wave
function:

    Y (T ) = exp – i
h En R(t) dt

0

T
exp ig n(C) Y (0) . (107)

The first exponent is simply the dynamical phase expected from the time-dependent fre-
quency of the system.  The second exponent (whose general nature escaped attention
before the 1980s) is the Berry phase

    gn(C) = An(R)⋅dR , where An(R) = i n; R —R n; R , (108)

a geometrical property of the path in parameter space.  If the R variables are quantized,
An(R) becomes a gauge potential; if the system separates into fast and slow variables



(such as electronic and nuclear degrees of freedom), this potential appears in the Hamilto-
nian of the slow variables after elimination of the fast variables.

Aharonov and Anandan generalized Berry’s argument to non-adiabatic evolution by
viewing the dynamics in state space rather than parameter space.94  The wave function is
a vector |YÒ in Hilbert space H.  All wave functions in the ray c|YÒŒH, where |YÒ is a
fixed normalized wave function and c is a non-zero complex number, correspond to the
same state in state space P.  Points in P are therefore equivalence classes of wave func-
tions, or normalized projection operators |YÒ·Y|.  The geometrical phase depends only on
the path in state space and the curvature of that space.  It does not depend on the Hamil-
tonian, or on the adiabaticity of the evolution, or — important for our present purposes —
on whether the path is parametrized by real or imaginary time.  It is often described in the
language of fiber bundles:95 the fiber above any state in P contains the allowed wave
functions c|YÒ.  A closed path in state space need not return to a wave function of the
same point in the fiber.

4.2. Heisenberg model

The phase problem in qMC is closely related to these geometric phases.96  Let us
consider the Heisenberg model as discussed in section 3.2, where the weight of a path
involves the partition function of z[u] of independent spins in an imaginary-time-
dependent magnetic field ui(t).  This partition function is the trace of the time-evolution
operator

     
U(t) = T exp ui(t)⋅Sit dt

0

b

,P
i (109)

which is not unitary, but (in this case) has determinant 1.  It is the solution of the
differential equation

    d
dt U(t ) = ui(t)⋅SitS

i
U(t) with U(0) = 1.

(110)

As it decouples into a product of single-site operators, we only need consider the effect
on a single spin.  However, the differential equation cannot be integrated in closed form
for an arbitrary time dependence even for a single spin 1

2 .  It can be visualized as
dynamics of coherent states as unit vectors n on the Bloch sphere, as described in Section
2.2. 97  While the real-time dynamics of a spin in a real magnetic field is precession
around a field, the imaginary-time dynamics is relaxation towards the field.  In the
language of Section 4.1, Hilbert space H is C2, the space of two-component spinors, and
state space P is the (Bloch) sphere S2.  The auxiliary field u  moves in a parameter space
(or field space) F = R3.

First consider a spin 1
2 in a static field u≠0.  The ground state in the field is û, the

unit vector parallel to u .  We use |u“  to denote the corresponding normalized ground
state wave function, defined up to a phase for all non-zero u .  The time evolution operator
is then



    U(t) = eut/2 u u + e–ut /2 –u –u , (111)

which becomes an unnormalized projection onto the ground state as t∅∞.  If the initial
angle between the state n and the field u is a(0), so that |•u |n“| = cos 1

2 a(0), time
evolution is relaxation along the great circle containing n and û, with

   tan1
2a(t ) = tan1

2a(0) e–ut. (112)

u(t)

q

û(t)

n' (t)

–W

n(t)

W

Fig. 2.  The dynamics of a spin in an imaginary-time-dependent field u(t).  Full lines represent the eigenvector
n, its path on the sphere and the great circle along which it relaxes; dashed lines represent these for n'.

With a time-dependent field this becomes a pursuit problem on the sphere.  The spin
direction moves along a great circle towards the instantaneous ground state.  In general
the dynamics of the auxiliary field is discontinuous, and that of the state is non-
differentiable but continuous. The state evolution therefore describes a curve on the
sphere.  Diagonalization of the evolution operator Û(b) yields two time-dependent eigen-
states n(t) and n'(t) that describe closed paths on the sphere, enclosing solid angles W
and –W respectively, as illustrated for a conical path in Fig. 2.  The wave functions
acquires geometrical phase factors ± 1

2 W  that depends only on the solid angle ±W
enclosed by this closed path, and not on the dynamics on the path or even whether it is
parametrized by real or imaginary time.   The partition function of this path is96

    z[u] = R[u]eiW/2 + R[u]–1e–iW/2 (113)



where the real amplitude factor

    R[u] = exp 1
2u(t)⋅n(t)dt

0

b

(114)

does depend on the dynamics.  At high temperatures there is insufficient time for the spin
to evolve far; it responds to the time-averaged field, recovering the SA.  At low
temperatures, the state can follow a smooth field path almost adiabatically; the phase is
then a Berry phase.  There is thus a mapping between field paths in the auxiliary-field
integral and spin paths in the coherent-state integral of section 2.2.  The phase problem in
the auxiliary-field method is simply the Berry phase SWZ discussed there.

When the functional integral is discretized, the phase problem increases in severity
with the number L of time slices.  In the static approximation there is a single time slice,
and the spin paths are the points ±û, which do not enclose area and therefore have zero
phase.  With L=2, the spin paths are great circle arcs in the plane containing the two aux-
iliary field values, and the enclosed area and phase vanish similarly.  In algebraic terms,
this is the result that Tr exp(–bu⋅S) and Tr {exp(– 1

2 bu2⋅S) exp(– 1
2 bu1⋅S)} are real.  With

L=3 (or greater), the spin describes a spherical triangle (or polygon) which can enclose
area and have non-zero phase.98  In the continuum limit, the effective action –lnw is
highly non-local in time, but can be expanded in the auxiliary field.99  The phase mani-
fests itself as a magnetic monopole potential for this field.

4.3. Generalization

Let us now turn to the Hubbard model.  The 1F and discrete transformations described in
Section 3.3 can give a real auxiliary Hamiltonian, and therefore a real (but not necessarily
positive) weight.  The 3F and 4F methods, used to maintain symmetry, result in a com-
plex weight.  The physical picture is that a large auxiliary field making a closed path on
one site would transport the local magnetization in such a way as to give a geometrical
phase.  With more realistic on-site interactions in a many-electron atom, such as in the
SU(N)¥SU(2) Hubbard model (115), we no longer have the freedom to use a scalar field;
conversely, the interaction term ∑ania↑niaÿ breaks spin isotropy for N>1.  We are forced to
use vector fields.  There have been qMC studies of three-band Hubbard models of
cuprate superconductors, describing d orbitals on Cu sites and p orbitals on O sites.100,101

The simulations include hybridization but neglect inter-band exchange interactions, and
can therefore resort to scalar fields.  As more realistic systems are tackled in the future,
the phase problem is likely to become increasingly relevant.

Consideration of a general model with local interactions between degenerate orbitals
illustrates the need for vector fields.  In the atomic limit there is an interaction, as in Eq.
(116), but no hopping term.  If a scalar field HST is possible, all terms in the auxiliary
Hamiltonian commute and the functional integral can be replaced by an ordinary integral.
The ground state is then a single Slater determinant, the Hartree-Fock state.  This is the
correct answer for the one band Hubbard model in the atomic limit, but in general the



true ground state is not the Hartree-Fock approximation.  A vector field is therefore
required if one is to recover the correct atomic physics.

Systems such as these may suffer from more intractable phase or sign problems than
those with scalar fields for a variety of reasons.  Firstly, the phase for a spin has physical
content as discussed in Section 2.2: it encodes spin quantization and the subtleties of low-
dimensional antiferromagnets, and should therefore appear in a simulation.

Secondly, we can consider the distribution of the auxiliary field.  Since all cumulants
of operators and fields apart from the second cumulant (117) are equal up to a linear
transformation, we can encode these relations as a relation between the probability
distribution for the operators and that for the auxiliary fields.102  The field distribution is a
Gaussian convolution of the operator distribution; the latter in turn is related to the
Wigner function, a joint distribution for non-commuting variables that cannot be positive
definite.103  Let us integrate all finite-frequency Fourier components out of the functional
integral.  This gives a classical effective Hamiltonian Veff(kT∫udt) for the time-averaged
field, containing quantum corrections to VSA to all orders.14  Under certain circumstances
(a field coupled to a conserved order parameter at low temperature) the averaged auxil-
iary field weight exp(–bVeff) becomes a Wigner function.  This result, that even after
averaging out all non-zero frequency fluctuations, the weight can still be negative,
suggests a serious sign problem for vector fields.  The physical interpretation here is that
the qMC simulation is attempting to find simultaneous values for incompatible variables,
for example all components of a spin.  The sign problem is a consequence of the impos-
sibility of this quest.  It occurs if the operators coupled to the auxiliary field generate a
non-Abelian symmetry group; that is, they commute with the Hamiltonian but not with
each other.  This is necessary if the simulation is to study the total magnetization of an
isotropic model, such as the Heisenberg or Hubbard model.

Finally, let us consider the commutator of the operators appearing in the auxiliary
Hamiltonian:

   Âm(t), Ân(t ¢) ~ t –t¢ n. (118)

In this commutator the explicit time dependence of the operators is taken with respect to
the auxiliary Hamiltonian huv(t).  With a vector field, the equal-time commutator is non-
vanishing, giving n=0.  With a scalar field, n will be greater than zero and the weight
might be expected to be more “classical”.

How does the geometrical picture apply to more general Hamiltonians?  It has also
been noted in fermion systems.104  Let us suppose initially that there is only a u  field.
The time evolution operator Ûu(t) acts on wave functions in Hilbert space H. Each
(static) value of the auxiliary field then has a ground state submanifold p(u)℘P (a point if
the ground state is non-degenerate).  Then in the t∅∞ limit, the evolution projects the
state onto p.  (If there is a v field, the dynamics is partly relaxational and partly unitary.)
In a time-dependent field, the state will relax towards the instantaneous p and move along
a path in P.  If Ûu(b) is now diagonalized, its eigenstates will describe closed paths with
well-defined geometrical phases.  (Strictly, as Û is not a normal matrix, it need not have a



complete set of eigenstates if there are degenerate eigenvalues.105  We shall assume that
the eigenstates do form a complete set for almost all paths.)

5. The sign problem

When the auxiliary Hamiltonian huv(t) is real, the weight of all paths must be real.  One
example is the XY model, where the auxiliary field couples to two spin components (Sx

and S z if one wishes to keep everything real).  Others include the 1F and discrete
transformations in the Hubbard model.  However, this only guarantees that the weight is
real; it may oscillate rapidly in sign.  There remains the question of whether the average
sign of the paths remains bounded away from zero in the low-temperature limit.

5.1. Origin of the sign problem

The sign problem has been more widely discussed in the literature than the phase
problem, as complex Hamiltonians are usually avoided if possible in qMC calculations.
Blankenbecler et al, in their studies of coupled fermion-boson systems, appear to have
been the first to remark on both.53  They argued that rapidly fluctuating boson fields were
responsible for the problem.  These fluctuations are suppressed by time derivatives in the
boson action in their model.  However, no such time derivative appears in the action for
auxiliary fields and the fluctuations are correspondingly larger.

The sign problem can arise from Fermi statistics.  Loh et al considered the evolution
of the many-electron wave function in the time-dependent auxiliary field.106  Their
picture is of electron world lines encircling each other.  If the total winding number is
odd, the weight w[u, v] of the path is negative.  They argue that the number of exchanges
is proportional to the imaginary time, so that the average sign

     
sav =

Dn+u(t ) Dn–v(t) w[u,v]

Dn+u(t) Dn–v(t ) w[u,v]
(119)

should tend to zero exponentially as e–bD, where D is a constant.  This is indeed what they
find in simulations of the Hubbard model away from half filling.  Sorella has proved that
sav either remains bounded away from zero or falls exponentially to zero in the low-
temperature limit.61  He proposes ignoring the sign, taking averages with respect to |w|,
and shows that the ground state energy calculated in this way is E0–D.  Measurement of
the temperature dependence of the sign therefore allows correction of the ground state
energy.  Unfortunately, other quantities such as the pair susceptibility are incorrect at low
temperatures if the sign is neglected.106   The Hamiltonian that is being simulated is dif-
ferent from the true Hamiltonian, and may have lost some physical content.  The same
situation occurs in a very different context: path integral simulations of homonuclear
diatomic molecules on a surface.107  Here the sign reflects the Fermi or Bose statistics of
the atoms, and has a large effect for light molecules.



Some authors have discussed the sign problem in the Hubbard model, in particular in
projector qMC, in terms of wave function dynamics in Hilbert space.  With a real HST
such as the discrete transformation in Eq. (120) the wave functions remain real and we
can restrict consideration to a real Hilbert space.  As a single auxiliary field cannot
introduce correlations, the space of Slater determinants is invariant under time evolution
in an auxiliary field.  In the projector method, the starting state YT may be the Hartree
Fock ground state, which will evolve in this space under the influence of an auxiliary
field.  Functional averaging of the Slater determinants then yields the correlated many-
electron state.  Fahy and Hamann interpret this as a diffusion process (with drift and
decay terms), deriving a transport equation for the distribution f(Y ; t) of wave
functions.108  Since this equation is symmetric under inversion Y∅–Y, eigenfunctions of
the diffusion operator have even or odd parity.  The slowest decaying eigenfunction has
even parity, giving equal weight to Y and –Y, corresponding to a vanishing many-body
wave function.  The first odd-parity eigenfunction, the solution of physical interest,
decays more rapidly.  The difference between the decay rates gives the decay rate D.  The
authors have developed a positive projection method, requiring that Y not cross a nodal
surface on which it is orthogonal to a trial function.  This allows a better approximation
to the odd parity solution, and hence the correct ground state.109

Muramatsu et al interpret the sign problem in terms of topological properties of the
manifold of Slater determinants.110  The one-electron basis functions making up a Slater
determinant define a set of orthogonal axes (a point in a Stiefel manifold).  The physical
state depends only on the hyperplane spanned by these axes (a point in a Grassmannian
manifold).  The hyperplane at the t=b is projected onto the initial hyperplane.  The rota-
tion required to restore the axes to their original orientation is either proper or improper.
In the latter case, the path has negative weight.

There have been further proposals for the class of path responsible for the sign prob-
lem.  One recent suggestion is that topological solitons in the auxiliary field, antiferro-
magnetic domain walls propagating in imaginary time, have negative weight, although
this is unlikely to be a major source of the problem.111

5.2. Absence of a sign problem

There are a few systems in which the sign problem is absent, usually as a consequence of
symmetry.  One well-known example with positive weight is the negative-U Hubbard
model, as already discussed in Section 3.4: the weight (z(1)[u])N is positive for even N.  In
the half-filled positive-U Hubbard model on a bipartite lattice, with a discrete HST, the
weight is also non-negative: the fermion determinant separates into the product of spin-up
and spin-down determinants, which have the same sign due to particle-hole symmetry.112

The weight can still vanish where the fermion determinant vanishes, and care is needed to
ensure the simulation is ergodic and is not trapped inside a nodal surface.113  The negative
signs reappear away from half filling, but are not monotonic functions of the doping.54,62

Batrouni and de Forcrand have proposed a discrete HST that does yield a positive
fermion determinant z in the Hubbard model for arbitrary filling.77  However, this re-



quires the weight of one of the two discrete values of the auxiliary field to become nega-
tive.  While this does not solve the sign problem, it is at least known which field
configurations have negative weight.  In conventional simulations, this only emerges
once the determinant has been computed.

Sorella has proposed symmetrizing the HST; 114 instead of integrating over a single
sample of paths, one averages the contribution from +uµl and – uµl  in each time slice.
This is equivalent to replacing exp(uµlÂµDt) in Eq. (121) by cosh(uµlÂµDt).  The sign
problem is then absent in the limit of many time slices L ; however, as the number of
paths sampled grows as 2L, this has not yet been shown to be a practical solution.

It has recently been shown that the sign problem is absent in the grand canonical
ensemble for certain types of Hamiltonian, in which the one-body term is time-reversal
invariant and the only interactions are attractive interactions between an operator and the
its time-reversed counterpart.115  The eigenvalues of the evolution matrix then appear in
complex conjugate pairs.  Their time-reversal operation T (translated from their original
application to the nuclear shell model) has the effect

   T ci↑
† = –ciØ

† ; T ciØ
† = ci↑

†

T ci↑ = –ciØ; T ciØ = ci↑

. (122)

The usual Hubbard interaction Uni↑niÿ is therefore time-reversal invariant. An immediate
consequence of their theorem is the absence of the sign problem in the negative-U one-
band Hubbard model.  Their method suggests a solution of the phase problem in the
Heisenberg model.  The spin operators Sx and Sz change sign under the time reversal
operation but Sy  does not.  It is possible to write the isotropic spin 1

2  Heisenberg model
(with external field in the xz plane) in such a form by adding appropriate self-interactions:

    – JijSi⋅S jS
ij

= – Jij
XSixS jx+SizS jz+Jij

YSiyS jyS
ij

+ Nspins
1
2 J0

X+1
4 J0

Y , (123)

where    Jij
X= Jij + J0

Xdij and Jij
Y = Jij + J0

Y dij. (124)

In Eq. (125), J0
X
=J0

Y
 was positive and chosen sufficiently large that the matrix J

X
=J

Y

became positive-definite.  The integrand is then complex: there is a phase problem
(Section 4.2).  The alternative is to use the same positive value of J0

X
, and a sufficiently

large negative J0
Y
, so that the matrix J

Y
 is the negative block of the interaction.  The

auxiliary Hamiltonian

    huv(t) = – B x+u x(t ) Sixt + iv y(t )Siyt + Bz+uz(t) SiztS
i (126)

is then real, as the imaginary sy matrix is multiplied by an imaginary quantity.  We have
eliminated the phase problem at great cost to the esthetics and symmetry of the Hamilto-



nian.  Unfortunately, the theorem only applies to fermions in the grand canonical
ensemble and a sign problem still remains.

6. A simple example: a triangular molecule

It is sometimes stated that the sign problem is a consequence of Fermi statistics, or of
spin.  A trivial example illustrates many of the above features and interpretations of the
sign problem for a single spinless particle, albeit with frustration.  Consider the attractive
SU(N) Hubbard model (127) on a three-site lattice with periodic boundary conditions and
negative hopping integrals tij =–1 — or equivalently, positive hopping integrals and
threaded by half-integer magnetic flux.  To find the weight of paths, we only need con-
sider N=1.  We consider third filling (one particle).  The dynamics is clear: each time its
world line encircles the loop, the wave function changes sign.  We will see how an aux-
iliary field performs this transport and relate it to the foregoing discussions.

The matrix (hij) representing the auxiliary Hamiltonian (128) is

  
h =

–u1 1 1
1 –u2 1
1 1 –u3

. (129)

We can take u1+u2+u3=0 without loss of generality.  In zero field, the ground state is a
doublet of right and left traveling waves

   

+ = 1
3

1
e2pi/3

e4pi/3 , – = 1
3

1
e4pi/3

e2pi/3 (130)

of energy –1; there is an excited state of energy 2.  The auxiliary field lifts this degener-
acy.  For small fields we can restrict to the ground state doublet and transform to a
pseudospin system.  Let us define the symmetry-breaking fields

  B x= – 1
2 u2+u3

B y= 1
2 3 u3–u2

.

(131)

The auxiliary Hamiltonian in the basis |+“, |–“ is

    
h = –1 1

2 – i
2 3 u2 + 1

2 + i
2 3 u3

1
2 + i

2 3 u2 + 1
2 – i

2 3 u3 –1
= –1 –B⋅s .

(132)

(The z component of the symmetry breaking field, diagonal in the basis, corresponds to
an additional flux threading the loop rather than to an auxiliary field.)  Now if this field
takes a closed path winding once round the degeneracy, and the state follows adiabati-
cally, we have the classic example of a Berry phase.92  Figure 3 illustrates the dynamics



of the wave function; Berry gives similar examples related to nuclear motion and to
deformations of a triangular membrane.116

(|3Ò – |2Ò)/√2 (|1Ò – |2Ò)/√2 (|1Ò – |3Ò)/√2 (|2Ò – |3Ò)/√2

u 3
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u 2
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B

C

D

|2Ò

|3Ò

|1Ò

A B C D
(c)

(b)

t=0 t=b

(a)

–1

–1

–1

Figure 3.  (a) A triangular molecule.  (b) A cyclic evolution of the auxiliary field encircling the degeneracy.
(b) Evolution of the wave function.  Circles represent amplitude: a black circle is positive, a white one negative.

The figure shows a projection of the auxiliary field space {u1, u2, u 3} onto the plane
u1+u2+u3 = 0, which is normal to the line of degeneracies u1=u2=u3.  The axes Bx and By,
as defined above, are shown; Bz is not in this space.  The field is taken once round the
circle A∅B∅C∅D=A sufficiently slowly that the particle follows nearly adiabatically.
At t=0 (point A) the auxiliary field is u  = (–e,  e/2,  e/2), where e>0.  The ground state
wave function, as indicated, is (|3“–|2“)/√2.  The solution for adiabatic evolution of this
function is

   
y(t) = 2

3

sin pt /b
sin pt /b–2p /3
sin pt /b+2p/3

e(1+e/2)t . (133)



(The adiabatic assumption is not strictly necessary.  The time-dependent eigenstates for
large be restricted to the two-state system correspond to the above with a phase lag
vanishing in the adiabatic limit.)  As the field moves to B, where u  = (e/2, e/2, –e), the
amplitude shifts from site 3 to site 1, but the amplitude at site 2 remains negative.  The
crude physical picture is then of a bond being flipped round the edges of a triangle,
keeping one end fixed at each flip.  After one cycle the orientation of the bond is
reversed.  The wave function has changed sign, and the auxiliary partition function z(1)[u]
is negative.  We can therefore have negative weight in the attractive SU(N) Hubbard
model for odd N.

This system has been extensively studied in molecular physics and is the textbook
example of an Eƒe Jahn-Teller effect in triangular molecules.117  The sign change result-
ing from the adiabatic evolution of a Hamiltonian around a degeneracy in parameter
space has long been recognized,118 and the resulting fractional quantization of the
rotational-vibrational spectrum has been observed in Na3 clusters.119

Let us now analyze this instance of the sign problem in terms of the interpretations of
Sections 4 and 5.  Firstly, it appears directly as a Berry phase due to the evolution of a
Hamiltonian around a degeneracy, although recognition of this effect long predates the
Berry phase. This is, by explicit construction, the same as the evolution of a spin 1

2 in an
auxiliary field in the equatorial plane illustrated in Fig. 2.

We can also relate this to the topological interpretation described in Section 5.110  In
this case the manifold of normalized Slater determinants is the manifold of unit vectors in
three dimensions — the sphere S2 but not the Bloch sphere — and the state space is the
manifold of unoriented rays through the origin, or the sphere with antipodes identified.
The path in Figure 3 is a circle in parameter space, but (if the amplitude factor is
removed) a semicircle in Hilbert space.  At the end of the time evolution, as the ray
returns to itself a sign change in the wave function has occurred.

How does this generalize?  The example is too simple to have direct application.
However, the linear dependence of the ground state energy on the auxiliary field suggests
the possibility of symmetry breaking (in a mean field approximation), analogously to the
Jahn-Teller effect.  The extension to the Hubbard model on triangular lattices or the pos-
sible relevance to flux phases remains to be seen.  The system is also related to the sign
problem occurring in world-line qMC simulations of the Heisenberg antiferromagnet on a
triangular lattice.120  In this case the paths giving negative signs involve a sequence of
spin flips encircling a frustrated plaquette.

7. Prospects

This review article has attempted to put the extensive literature on quantum Monte Carlo
simulations, auxiliary field functional integration and the occurrence of the sign problem
into a general context.  As such, the author gives the usual apologies to those whose
relevant contributions have inadvertently been overlooked.

Some readers may have started with this paragraph to see how the sign problem has
been solved in the auxiliary-field method.  They will be disappointed.  In Section 5, we



have seen a number of situations in which the sign problem is indeed absent, and a
number of proposals for its circumvention in other cases.  Sometimes a judicious choice
of the auxiliary fields suffices, possibly at the cost of the apparent symmetry.  However,
it is likely to be a more serious impediment in systems with more complicated local inter-
actions than usually studied, specifically where Hartree-Fock does not give the true
ground state the atomic limit.  A vector auxiliary field is necessary here and a phase
problem appears to be inevitable, a consequence of the attempt of the simulation to vio-
late the uncertainty principle.  A proper understanding of the origin of this problem is
needed if it is to be alleviated and low temperature calculations performed.
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