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Collapse and revival and cat states with an N-spin system
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We discuss collapse and revival of Rabi oscillations in a system comprising a qubit and a “big spin” (made of
N qubits, or spin-1/2 particles). We demonstrate a regime of behavior analogous to conventional collapse and
revival for a qubit-field system, employing spin coherent states for the initial state of the big spin. These dynamics
can be used to create a cat state of the big spin. Even for relatively small values of N , states with significant
potential for quantum metrology applications can result, giving sensitivity approaching the Heisenberg limit.
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I. INTRODUCTION

Collapse and revival of the Rabi oscillations of a qubit,
or two-level atom, coupled to a field mode [1] provide a
remarkable and much-discussed illustration of the quantum
nature of the composite qubit-field system. The collapse of
the Rabi oscillations arises through qubit-field entanglement,
yet halfway to the revival of the oscillations the field and qubit
disentangle again, with the quantum information in their initial
states effectively swapped into their counterpart system [2].
This enables, for example, the generation of superpositions
of two (approximate) coherent states—sometimes called a cat
state—of the field [3]. The addition of further qubits has led to
the phenomena of entanglement sudden death [4–6], collapse
and revival of entanglement [6], and cat-state swapping [7].

In this work we discuss collapse and revival of the Rabi
oscillations of a qubit coupled to a “big spin” made of N qubits,
or spin-1/2 particles. We demonstrate that preparation of the
N spins in a spin coherent state—the analog of a coherent state
for a field mode—facilitates collapse and revival phenomena.
We isolate a regime of parameter space where conventional
looking collapse and revival occurs and thus a superposition
of two (approximate) spin coherent states of the big spin—a
spin cat state—emerges prior to revival, although we note that
different and interesting forms of revival dynamics occur in
other parameter regimes.

Quantum metrology [8–10] is an emerging quantum in-
formation application where entangled quantum resources are
employed to measure an unknown external potential or field
that through interaction generates a phase in the state of
the quantum resources. Enhanced measurement precision—
beyond the “standard quantum limit” achieved using the
resources one by one, or classically—is possible. In principle,
precision all the way down to the “Heisenberg limit” can be
attained. Cat states are one form of nonclassical resource with
significant potential for metrology, with spin cats enabling
enhanced magnetic field sensing [11]. We therefore assess the
ability of the states produced through spin collapse and revival
for quantum metrology, and demonstrate that accuracy close
to that of the Heisenberg limit could be attained.
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II. COLLAPSE AND REVIVAL AND CAT STATES

A. The Jaynes-Cummings model

We begin our discussion with the familiar qubit-field
dynamics. The Jaynes-Cummings (JC) model [12] for the
interaction of a bosonic field mode with a qubit, or two-level
atom, is described by the Hamiltonian

ĤJC = ωâ†â + �

2
σ̂z + λ(â†σ̂− + âσ̂+), (1)

where â† and â are the field mode creation and annihilation
operators, respectively, and σ̂z = |0〉〈0| − |1〉〈1|, σ̂+ = |0〉〈1|,
and σ̂− = |1〉〈0| are qubit operators. Assuming resonance
(� = ω), if the qubit is initially in the state |0〉 and the
field initially in a coherent state |α〉 = ||α|eiφ〉 we see the
well-known collapse and revival of oscillations of 〈σ̂z(t)〉 [solid
red line, Fig. 1(a)] and the dip in the qubit entropy at half of
the revival time [dashed green line, Fig. 1(a)].

Gea-Banacloche [2,3] has made an insightful analysis of
these features. For example, he has shown that when |α|2 � 1,
there are two initially orthogonal qubit states, |D±(0)〉 =

1√
2
(|0〉 ± e−iφ |1〉), that—to a good approximation—evolve

without entangling with the field mode:

|D±(0)〉|α〉 → |D±(t)〉e∓iλt
√

ââ† |α〉. (2)

He has also shown that at a particular time

t0 = π

λ

√
〈α|â†â|α〉 = π |α|

λ
, (3)

which is equal to half the revival time, these states coincide:
|D+(t0)〉 = |D−(t0)〉. This is known as the attractor state of
the qubit and it is independent of the initial qubit state. Since
any pure state of the qubit can be written as a superposition
of |D+(0)〉 and |D−(0)〉, it follows that any initial qubit state
will converge to the attractor state at t0. This explains the dip
in qubit entropy at half the revival time in Fig. 1(a). Since the
state of the composite qubit-field system is pure at all times,
the field must also be in a pure state at t0. For a judicious choice
of initial qubit state, the field is in a cat state at this time [3,13].

B. The qubit-big spin model

Instead of the interaction of a field mode with a two-level
atom, we consider the interaction of a system of N spin- 1
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FIG. 1. (Color online) When |ζ |2
N

� 1 � N , there is a correspon-
dence between the qubit-big spin model and the JC model. Here we
see collapse and revival of 〈σz(t)〉 (solid red line) in (a) the JC model,
and (b) the qubit-big spin model.

particles, or qubits (which we refer to as “the big spin”), with
a single spin- 1

2 particle (a qubit) via the Hamiltonian

Ĥ = ω

(
Ĵz + N

2

)
+ �

2
σ̂z + λ√

N
(Ĵ+σ̂− + Ĵ−σ̂+), (4)

where Ĵz ≡ 1
2

∑N
i=1 σ̂ (i)

z and Ĵ± ≡ ∑N
i=1 σ̂

(i)
± are operators that

act on the big spin and σ̂ (i)
z = |↑(i)〉〈↑(i) | − |↓(i)〉〈↓(i) | acts on

the individual spins that make up the big spin. The constant
term ωN

2 in (4) is not really necessary, but is convenient because
it shifts the spectrum of the big spin Hamiltonian Ĵz so that its
ground-state eigenvalue is zero.

We also introduce the operator Ĵ 2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z [which

commutes with our Hamiltonian (4)]. Dicke states |j,n − j 〉
are simultaneous eigenstates of Ĵz and Ĵ 2 with eigenvalues
n − j and j (j + 1), respectively. In what follows we restrict
to the j = N

2 eigenspace of the N -spin system. This is an (N +
1)-dimensional subspace for which the Dicke states |N

2 ,n − N
2 〉

(n ∈ {0,1, . . . ,N}) form a basis.
A spin coherent state [14,15] in the j = N

2 eigenspace is a
state in which each of the N spins is in the same pure state.
Parametrized by the complex number ζ , this spin coherent
state is

|N,ζ 〉 =
N⊗

i=1

(
1√

1 + |ζ |2
| ↓(i)〉 + ζ√

1 + |ζ |2
| ↑(i)〉

)
. (5)

There is an equivalent representation of this spin coherent
state in terms of Dicke states: |N,ζ 〉 = ∑N

n=0 Cn|N
2 ,n − N

2 〉
where

Cn = 1

(1 + |ζ |2)N/2

√
N !

(N − n)!n!
ζ n. (6)

We consider the qubit-big spin system evolving by Hamilto-
nian (4) where the big spin is initially in the spin coherent state
|N,

ζ√
N

〉 where ζ has been scaled by a factor of 1/
√

N . (This
scaling turns out to be useful when we consider N → ∞.)

Plotted in Fig. 1(b) (again assuming resonance � = ω,
qubit initially in |0〉, and initial spin coherent state |N,

ζ√
N

〉
with ζ = 4, N = 170) are 〈σ̂z(t)〉 and the linear entropy of
the qubit. The oscillations in 〈σ̂z〉 undergo a collapse and
revival that is very similar to the collapse and revival in the
JC model.

The similarities between our qubit-big spin system and the
JC model can be understood by looking at the N → ∞ limit
of the N -spin system. To see the connection, we consider an
embedding of the N -spin system in the Hilbert space of the
field mode by the linear map f that takes the Dicke state
|N

2 ,n − N
2 〉 to the Fock state |n〉:

f

∣∣∣∣N2 ,n − N

2

〉
= |n〉; (7)

f

∣∣∣∣N2 ,n − N

2

〉 〈
N

2
,m − N

2

∣∣∣∣ f † = |n〉〈m|. (8)

Restricting to the j = N
2 eigenspace of the N -spin system

and taking the N → ∞ limit we find (shown in the Appendix)
that

lim
N→∞

f
Ĵ−√
N

f † = â; lim
N→∞

f
Ĵ+√
N

f † = â†; (9)

lim
N→∞

f

(
Ĵz + N

2

)
f † = â†â. (10)

Combining these equations we see that our Hamiltonian (4)
is the same as the Jaynes-Cummings Hamiltonian (1) in the
N → ∞ limit: limN→∞ f Ĥf † = ĤJC.

Moreover, one can use the Poisson limit theorem (see the
Appendix) to show that, in the N → ∞ limit our initial spin
coherent state |N,

ζ√
N

〉 is mapped onto the field mode coherent
state:

lim
N→∞

f

∣∣∣∣N,
ζ√
N

〉
= e−|ζ |2/2

∞∑
n=0

ζ n

√
n!

|n〉. (11)

In the N → ∞ limit we see collapse and revival of 〈σ̂z〉
because both our big spin initial state and Hamiltonian are
mathematically the same as those that result in collapse and
revival in the field-qubit interaction.

This correspondence between our big spin-qubit model and
the JC model is exact in the N → ∞ limit. If N is finite, it is not
exact. In particular, when N is finite the bosonic commutation
relation [â,â†] = Î is not satisfied by the corresponding big
spin operators:[

Ĵ−√
N

,
Ĵ+√
N

]
= Î − 2

N

(
Ĵz + N

2

)
. (12)

If the correspondence with the JC model is to hold approx-
imately, we have—as a minimum requirement (since in the

bosonic case 〈[â,â†]〉 = 1 for any state)—that 〈[ Ĵ−√
N

,
Ĵ+√
N

]〉 ≈ 1
for the initial spin coherent state of the big spin. Since
〈N,ζ |(Ĵz + N

2 )|N,ζ 〉 = |ζ |2
1+|ζ |2/N , this leads to the requirement

that |ζ |2 � N . In other words, if many spin half particles
are initially aligned with the same polarization (such that
|ζ |2 � N ) and are allowed to interact with a single qubit
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via Hamiltonian (4), then this system evolves—to a good
approximation—like the JC model. If |ζ |2 ≈ N the correspon-
dence between the qubit-big spin model and the JC model
breaks down.

We make use of the correspondence when |ζ |2 � N to
propose a method of creating spin cat states. Since Gea-
Banacloche’s approximation for the field mode is valid when
1 � |α|2, we expect the same approximation to be valid
for our qubit-big spin system when 1 � |ζ |2 � N . In that
parameter regime we say that initial qubit states |D±(0)〉 =

1√
2
(|0〉 ± e−iφ|1〉) evolve without entangling with the

big spin:

|D±(0)〉|N,ζ 〉 → |D±(t)〉e∓iλt
√

Ĵ−Ĵ+/N |N,ζ 〉, (13)

and that at time

t0 = π

λ

√〈
N,

ζ√
N

∣∣∣∣
(

Jz + N

2

) ∣∣∣∣N,
ζ√
N

〉
= π |ζ |

λ

√
1 + |ζ |2

N

(14)

the qubit is in an attractor state. [Equations (13) and (14)
correspond to Eqs. (2) and (3) for the field mode, but with
â, â†, â†â, and the initial coherent state replaced by the
corresponding big spin operators and the initial spin coherent
state via Eqs. (9)–(11).] The big spin is, at this time, in a pure
state that will depend on the initial state of the qubit. For qubit
initially |0〉 = 1√

2
(|D+(0)〉 + |D−(0)〉), the big spin is, at time

t0, in the state

|ψζ 〉 = 1√
2M

[
e−iλt0

√
Ĵ−Ĵ+/N |N,ζ 〉 + e+iλt0

√
Ĵ−Ĵ+/N |N,ζ 〉

]
,

(15)

a spin cat. The M has been introduced to maintain normaliza-
tion of |ψζ 〉 since e−iλt0

√
Ĵ−Ĵ+/N |N,ζ 〉 and e+iλt0

√
Ĵ−Ĵ+/N |N,ζ 〉

are, in general, not orthogonal to each other.
Figure 2 shows F =

√
〈ψζ |ρBS(t0)|ψζ 〉, the fidelity of |ψζ 〉

against ρBS(t0), the (exact) reduced big spin state at t0, plotted
against |ζ |2/N for various values of N . As expected (given

FIG. 2. (Color online) Red indicates areas of high fidelity. Fidelity
is high when 1 � |ζ |2 � N , but also around |ζ |2/N ≈ 0.5 for certain
small values of N .

the correspondence between our big spin model and the JC
model) the fidelity is high when 1 � |ζ |2 � N . At N = 100
and |ζ |2 = 6, for example (marked by a black dot in Fig. 2),
the fidelity at t0 is high (∼0.96). This is telling us that the big
spin system is close to the cat state |ψζ 〉 at t0.

Interestingly, Fig 2 shows that this domain of high fidelity
includes relatively small values of N . At N = 40, for example
(marked by a black triangle in Fig. 2), F ∼ 0.93 at t0 for
|ζ |2 = 6. To see that this is indeed a cat state, we plot in
Fig. 3(d) its spin Wigner function [16]. A spin coherent state
is represented by a circular blob in a spin Wigner plot. A
superposition of spin coherent states would be represented by
two circular blobs with interference fringes between them.
Here, in Fig. 3(d), instead of circles, we have two crescent
shapes with interference fringes between them—clearly a cat
state, although not quite a superposition of spin coherent
states.

Also of interest in Fig. 2 are the ripples in the fidelity
outside of our 1 � |ζ |2 � N parameter regime, for example,
for low N around |ζ |2/N ≈ 0.5. A cross section of Fig. 2 at
|ζ |2/N = 0.5 is plotted in Fig. 6 [the blue (upper) line]. These
ripples are highly peaked for certain small values of N . At
N = 12, for example (marked by a black asterisk in Fig. 2),
the fidelity to the cat state |ψζ 〉 is ∼0.91 at t0. Figure 3(b)
shows the spin Wigner function of this state.

Figure 4 shows F =
√

〈ψζ |ρBS(t)|ψζ 〉, the fidelity of |ψζ 〉
against ρBS(t), the (exact) reduced big spin state, plotted
against time for N = 12,40,70,100 (with |ζ |2 = 6). Fidelity at
t0, marked by a black dot, is high in each case. As explained
above, however, although the N = 12 fidelity is high, it is in a
different domain of high fidelity than N = 40,70,100.

It is clear from Fig. 4—since the fidelity is highly oscillatory
around t0—that this method of generating a cat state is sensitive

FIG. 3. (Color online) Spin Wigner functions of ρBS(t0), the
exact reduced big spin state at t0. (a) N = 5; (b) N = 12, |ζ |2 = 6;
(c) N = 20, |ζ |2

N
= 0.16; (d) N = 40, |ζ |2

N
= 0.16. Interactive figures

showing the states in (b) and (c) are available as Supplemental
Material [17].
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FIG. 4. (Color online) Fidelity at t0 is marked by a black dot. The
fidelity around t0 is highly oscillatory. (|ζ |2 = 6 in each case.)

to the interaction time. Figure 2, on the other hand, shows that
fidelity is not very sensitive to the initial spin coherent state
parameter |ζ |2 when 1 � |ζ |2 � N .

The high fidelities that can be obtained for small values
of N are of interest for possible practical implementations of
this cat state generation technique with existing technologies.
For example, it has been shown that superconducting qubits
can be coupled by a λ(σ+σ− + σ−σ+) interaction Hamiltonian
[18–20]. Our interaction Hamiltonian (4) is composed of N

such equal interactions with a central qubit. Alternatively,
a superconducting phase qudit [21] [which emulates our
(N + 1)-dimensional j = N

2 subspace] might be coupled to
a single superconducting qubit.

Another candidate system for realizing a set of qubits
separately coupled to a single system, without direct coupling
to each other, is to use a superconducting resonator coupled
(at the antinode of its microwave field) to a number of
superconducting qubits, such as charge or transmon qubits.
Experimental demonstrations have already been made with
three or four superconducting qubits coupled to a resonator
[22,23]. In order to prevent multiple excitation of the resonator,
thus limiting it to a qubit with just two effective levels, use
of a nonlinearity to detune other level separations might be
appropriate. It is interesting to note that coherence times in
these experimental superconducting systems are already at the
point where collapse and revival phenomena can be observed
due to a single-photon Kerr effect [24], giving real promise
for the future application of these systems in metrology
scenarios.

Aside from superconducting systems, another candidate
system is any highly symmetric molecule that consists of N

spins equally coupled to a central spin. The trimethyl phosphite
molecule, for example, has nine 1H spins, all equally coupled
to a single 31P spin [25]. The tetramethylsilane molecule
has 12 1H spins equally coupled to a single 21S spin [26].
Using NMR techniques, entangled states of both of these
molecules have already been generated for use as magnetic
field sensors [25,26].

In the next section we provide some analysis to quantify
the usefulness of our spin cat states |ψζ 〉 for magnetic field
sensing.

FIG. 5. (Color online) N/F = 1 at |ζ |2 = 0, corresponding to
the standard quantum limit. The Heisenberg limit N/F = 1/N is
marked by the black grid under the colored surface.

III. MAGNETIC FIELD SENSING WITH SPIN CAT STATES

A system of N spin- 1
2 particles initially in the cat state |ψζ 〉

is allowed to interact with an unknown (classical) magnetic
field �B = By via the Hamiltonian Ĥ = γByĴy , where γ is
the gyromagnetic ratio of our N -spin system. After a time
t , our spin system is in the state |ψζ (θ )〉 = eiγBy tĴy |ψζ 〉 =
eiθĴy |ψζ 〉, where we have defined θ = γ tBy . Since γ and
t are assumed to be known, estimating θ is the same as
estimating By . The precision �θ with which we can estimate
the parameter θ is bounded by the Cramer-Rao inequality [27]
(�θ )2 � 1/F , whereF is the quantum Fisher information. For
ease of comparison between different values of N we quantify
precision by N (�θ )2 � N/F . Given that our N -spin system
evolves unitarily and is initially in pure state |ψζ 〉 we can write
the quantum Fisher information as

F = 4(�Ĵy)2 = 〈ψζ |Ĵ 2
y |ψζ 〉 − 〈ψζ |Ĵy |ψζ 〉2. (16)

In Fig. 5 we plot N/F against |ζ |2/N for different values
of N up to N = 100. If ζ = 0, our initial state |ψζ=0〉 is just a
spin coherent state and N/F = 1, the standard quantum limit.
The Heisenberg limit N/F = 1/N is marked in Fig. 5 by a
black line for each N (the grid under the colored contour plot).
We see that, especially for large N , our cat state |ψζ 〉 can allow
for magnetic field sensing close to the Heisenberg limit, even
in the 1 � |ζ |2 � N regime in which the cat state emerges
from the collapse and revival dynamics. Also in Fig. 5, we
notice the ripples in N/F at |ζ |2/N ≈ 0.5. These ripples are
most pronounced for small values of N . The green (lower) line
in Fig. 6 (which is the cross section of Fig. 5 at |ζ |2/N = 0.5)
show that the dips in N/F coincide with the peaks in fidelity
of the big spin to a cat state [the blue (upper) line]. In other
words, in this region of parameter space the cat states that are
most useful for magnetic field sensing are also the states that
can be generated with the highest fidelity by interacting the
big spin with the qubit for a time t0 via Hamiltonian (4).
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FIG. 6. (Color online) The blue (upper) line is the cross section of
Fig. 2 at |ζ |2/N = 0.5 and the green (lower) line is the cross section
of Fig. 5 at |ζ |2/N = 0.5. Peaks of fidelity coincide with troughs of
N/F .

IV. CONCLUSION

We have considered collapse and revival phenomena for
a single spin coupled to a composite big spin, identifying
a parameter regime corresponding to conventional qubit-
field mode behavior. Here the evolving system can produce
nonclassical (cat type) states of the big spin for modest values
(∼40) of N , the number of component spins in the big spin.
Such states are capable of quantum-enhanced field sensing that
approaches the Heisenberg limit. Approximate cat states can
also be generated for smaller values of N (e.g., N = 12) in a
different parameter regime. States with such small N values
are potentially accessible with current quantum technologies,
such as superconducting circuits or multispin molecules.

From a practical perspective, these states can be generated
from very straightforward initial states: The qubit is initially
in a pure state and the big spin is in a separable state of its N

component spins with each of the spins aligned (a spin coherent
state). Furthermore, any physical realization for which there is
control at the Rabi period time scale should have sufficient time
resolution to identify the time(s) at which a cat is generated.

Future work will consider in detail the robustness of the
collapse and revival and cat state generation to various forms of
decoherence. In addition, in the |ζ |2 ≈ N parameter regime it
is possible to explore other regimes of “nonstandard” collapse
and revival. These will be discussed in a forthcoming paper
[28].

APPENDIX

The J± and Jz operators, restricted to the j = N
2 subspace,

can be written as

Ĵ+√
N

=
N∑

n=0

√
(n + 1)

(
1 − n

N

) ∣∣∣∣N2 ,n + 1 − N

2

〉

×
〈
N

2
,n − N

2

∣∣∣∣ ;

Ĵ−√
N

=
N∑

n=0

√
n

(
1 − n − 1

N

) ∣∣∣∣N2 ,n − 1 − N

2

〉

×
〈
N

2
,n − N

2

∣∣∣∣ ;

Jz + N

2
=

N∑
n=0

n

∣∣∣∣N2 ,n − N

2

〉 〈
N

2
,n − N

2

∣∣∣∣ .

The linear map f takes the Dicke state |N
2 ,n − N

2 〉 to the Fock
state |n〉. Taking the N → ∞ limit of f

J±√
N

f † and f (Jz +
N
2 )f † we find

lim
N→∞

f
J+√
N

f † =
∞∑

n=0

√
(n + 1)|n + 1〉〈n| = â†; (A1)

lim
N→∞

f
J−√
N

f † =
∞∑

n=0

√
n|n − 1〉〈n| = â; (A2)

lim
N→∞

f

(
Jz + N

2

)
f † =

∞∑
n=0

n|n〉〈n| = â†â. (A3)

The right-hand sides of (A1), (A2), and (A3) are
exactly the bosonic creation, annihilation, and num-
ber operators, respectively. (This can also be seen by
taking the large N limit of the Holstein-Primakoff
transformations [29].)

We now consider the N → ∞ limit of the state f |N,
ζ√
N

〉.
We first write f |N,

ζ√
N

〉 as

f

∣∣∣∣N,
ζ√
N

〉
=

N∑
n=0

1(
1 + |ζ |2

N

)N/2

√(
N

n

) (
ζ√
N

)n

|n〉

=
N∑

n=0

[(
N

n

)
(1 − p)N−npn

]1/2

eiφn|n〉,

where p ≡ |ζ |2/N
1+|ζ |2/N . The term in the square brackets is the

binomial distribution. The Poisson limit theorem [30] states
that if N → ∞ and p → 0 such that Np → λ, then

(
N

n

)
(1 −

p)N−npn → e−λ λn

n! in this limit. For our p = |ζ |2/N
1+|ζ |2/N , it is

clear that when N → ∞ we have p → 0 and Np → |ζ |2 as
required so that

lim
N→∞

f

∣∣∣∣N,
ζ√
N

〉
=

∞∑
n=0

[
e−|ζ |2 |ζ |2n

n!

]1/2

eiφn|n〉 (A4)

= e−|ζ |2/2
∞∑

n=0

ζ n

√
n!

|n〉 (A5)

= |ζ 〉, (A6)

the coherent state of the field mode.
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