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We derive and investigate the microscopic model of the quantum magnet BiCu2PO6 using band
structure calculations, magnetic susceptibility and high-field magnetization measurements, as well
as Exact Diagonalization (ED) and Density-Matrix Renormalization Group (DMRG) techniques.
The resulting quasi-one-dimensional spin model is a two-leg antiferromagnetic ladder with frustrat-
ing next-nearest-neighbor couplings along the legs. The individual couplings are estimated from
band structure calculations and by fitting the magnetic susceptibility with theoretical predictions,
obtained using full diagonalizations. The nearest-neighbor leg coupling J1, the rung coupling J4,
and one of the next-nearest-neighbor couplings J2 amount to 120 − 150 K, while the second next-
nearest-neighbor coupling is J ′

2 ≃ J2/2. The spin ladders do not match the structural chains, and
although the next-nearest-neighbor interactions J2 and J ′

2 have very similar superexchange path-
ways, they differ substantially in magnitude due to a tiny difference in the O–O distances and in the
arrangement of non-magnetic PO4 tetrahedra. An extensive ED study of the proposed model pro-
vides the low-energy excitation spectrum and shows that the system is in the strong rung coupling
regime. The strong frustration by the next-nearest-neighbor couplings leads to a triplon branch
with an incommensurate minimum. This is further corroborated by a strong-coupling expansion up
to second order in the inter-rung coupling. Based on high-field magnetization measurements, we
estimate the spin gap of ∆ ≃ 32 K and suggest the likely presence of antisymmetric Dzyaloshinskii-
Moriya anisotropy and inter-ladder coupling J3. We also provide a tentative description of the
physics of BiCu2PO6 in magnetic field, in the light of the low-energy excitation spectra and numer-
ical calculations based on ED and DMRG. In particular, we raise the possibility for a rich interplay
between one- and two-component Luttinger liquid phases and a magnetization plateau at 1/2 of the
saturation value.

PACS numbers: 75.50.-y, 75.30.Et, 75.10.Jm, 71.20.Ps

I. INTRODUCTION

One-dimensional (1D) spin systems are in the fo-
cus of the present-day research due to a range of un-
usual low-temperature properties governed by quantum
effects. The primary 1D spin model is the uniform spin- 12
Heisenberg chain that has a peculiar gapless excitation
spectrum.1 Numerous model compounds and the large
set of theoretical tools in one dimension made extensive
comparisons between experiment and theory possible: for
example, the universal scaling of spin excitations in the
uniform spin- 12 Heisenberg chain was proposed theoreti-

cally and later confirmed experimentally.2 A number of
studies successfully extended the model by including in-
terchain couplings and discussed the trends for the or-
dering temperature depending on the topology and mag-
nitude of interchain couplings.3–5

Alterations in the chain topology lead to a dramatic
change in the magnetic properties. For example, there
are several options to switch from the gapless spectrum
of the uniform spin- 12 chain to a gapped spectrum. The
latter offers an exciting opportunity to close the spin gap
by an external magnetic field and to observe unusual
phenomena, such as Luttinger liquid (LL) physics and
the Bose-Einstein condensation of triplons in the gap-

less high-field phase.6 The simplest way to introduce a
spin gap into a 1D system is to alternate the exchange
couplings along the chain.7 Another option is the frus-
tration of the chain by next-nearest-neighbor couplings.8

Finally, several chains can be joined into a spin ladder
that shows a spin gap for an even number of legs.9 De-
spite the relatively simple chain geometries, such models
are rather difficult to realize experimentally. There is
still no experimental observation of the LL phase in the
alternating spin- 12 chain, and experimental examples of

gapped frustrated spin chains are rare.10 The quest for
spin-ladder systems was more successful. For example,
recently a remarkable mapping of high-field properties
onto the LL model in a (C5H12N)2CuBr4 compound was
performed.11–13

Combining different features of the modified chain
topology (alternation, frustration, and coupling into
a ladder), one can achieve further interesting proper-
ties. For example, frustrated spin chains with alternat-
ing nearest-neighbor couplings are predicted to exhibit
a magnetization plateau for a certain range of model
parameters.14 However, this prediction has never been
tested experimentally due to the lack of proper model
compounds. The problems with finding experimental
realizations of certain spin models call for an alterna-
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tive approach: the investigation of complex 1D models,
stimulated by real materials. In the following we show
that the recently discovered spin- 12 compound BiCu2PO6

closely corresponds to an interesting quasi-1D spin model
combining all the three aforementioned features: frus-
tration, spin-ladder geometry, and alternation of next-
nearest-neighbor exchange couplings.
Despite previous experimental and computational

studies,15–17 the microscopic model of BiCu2PO6 remains
controversial. To resolve this controversy, we apply a
range of state-of-the-art computational techniques that
reveal an accurate spin model and allow for a precise com-
parison with the experimental results. First, we analyze
the crystal structure and outline the previous reports in
Sec. II. After a brief description of the methods (Sec. III),
we proceed to extensive band structure calculations, de-
rive a consistent spin model, and discuss the non-trivial
implementation of this model in the crystal structure of
BiCu2PO6 (Sec. IV). In Sec. V, we report the magnetic
susceptibility and the high-field magnetization measure-
ments that challenge the proposed spin model and un-
ambiguously measure the spin gap. Finally, we perform
model simulations, investigate the microscopic physics of
BiCu2PO6 at low energies (Sec. VI) and in the presence
of magnetic field (Sec. VII), and conclude our study with
a brief discussion and summary in Sec. VIII.

II. CRYSTAL STRUCTURE AND MAGNETIC

PROPERTIES

The crystal structure of BiCu2PO6 (Fig. 1) shows pro-
nounced 1D features with complex ribbons running along
the b direction.18 Each ribbon is formed by dimers of
edge-sharing CuO4 plaquettes. The plaquettes of the
neighboring dimers share corners (oxygen sites), while
the next-nearest-neighbor dimers are additionally con-
nected by PO4 tetrahedra. The spatial arrangement of
the magnetic Cu atoms features both the spin-ladder and
frustrated-spin-chain geometries (see Figs. 1 and 4). The
stacking of the dimers reminds of the spin ladder with
the leg coupling J1 and the rung coupling J3.

19 Yet,
the interactions J1 follow a zigzag pattern and form a
frustrated spin chain, once the couplings between next-
nearest neighbors are considered. The situation is fur-
ther complicated by the two inequivalent Cu positions,
leading to inequivalent next-nearest-neighbor couplings
J2 and J ′

2.
20

The complex crystal structure of BiCu2PO6 led to a
controversy regarding the appropriate spin model of this
compound. Koteswararao et al.15 emphasized the spin-
ladder feature of the structural ribbons and considered
BiCu2PO6 as a system of J1 − J3 ladders that are cou-
pled by the inter-ribbon interaction J4. This interpreta-
tion prevailed in further studies, focused on the effects
of doping.17,21–23 However, band structure calculations,
reported by the same authors,15 clearly showed sizable
next-nearest-neighbor couplings J2 and J ′

2 that would in-
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FIG. 1. (Color online) Crystal structure of BiCu2PO6 with
ribbons comprising CuO4 plaquettes and PO4 tetrahedra
(top) and the spin model (bottom). Open and shaded cir-
cles denote the two inequivalent Cu positions, while the larger
dark circles label the Bi atoms. More details on the structure
are shown in Fig. 4. The model is of the spin-ladder type
and comprises four inequivalent couplings: the leg coupling
J1, the rung coupling J4, and the frustrating next-nearest-
neighbor leg couplings J2 and J ′

2. Note that the two legs of
the ladder reside on different structural ribbons.

evitably frustrate the system.

Although similar at a first glance, Mentré et al.16 sug-
gested a somewhat different spin model. Using inelas-
tic neutron scattering (INS) and band structure calcu-
lations, they showed that the ladders are formed by the
couplings J1 and J4, while the intra-ribbon interaction J3
is an inter-ladder coupling. To fit the INS data, Mentré
et al. also had to include the next-nearest-neighbor cou-
pling J2, but the difference between J2 and J ′

2 could not
be resolved.

Experimentally, BiCu2PO6 is a spin-gap material with
a singlet ground state (no long-range ordering). The
substitution of Cu by non-magnetic Zn atoms destroys
the spin gap and leads to a spin freezing.17,21 These fea-
tures are fairly general and can be assigned to a range
of simple 1D spin models (alternating chain, frustrated
chain, two-leg ladder). However, the experimental data
can not be described well by any of these models (see also
Sec. V). The previous reports15,16 evidence the combi-
nation of the ladder-type geometry and the frustration
by next-nearest-neighbor couplings. Yet, the precise way
of this combination and, more importantly, the resulting
physics remain unclear.
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III. METHODS

To evaluate the individual exchange couplings in
BiCu2PO6, we performed scalar-relativistic density func-
tional theory (DFT) band structure calculations using
the full-potential local-orbital FPLO code (version 8.00-
31).24 The calculations were done in the framework of
the local (spin) density approximation [L(S)DA], employ-
ing the exchange-correlation potential by Perdew and
Wang.25 The symmetry-irreducible part of the first Bril-
louin zone was sampled by a mesh of 512 k-points for the
crystallographic unit cell and 64 k points for the super-
cells.
Superexchange couplings in insulating Cu+2 com-

pounds are intimately related to strong electronic corre-
lations that cannot be properly treated within L(S)DA.
To account for the correlation effects, we used two ap-
proaches. First, we mapped the half-filled LDA Cu 3d
bands via an effective one-band tight-binding (TB) model
onto a Hubbard model. Then, antiferromagnetic (AFM)
exchange integrals were derived from the expression of
the second-order perturbation theory. This procedure
is referred below as the model approach. In the second
(supercell) approach, the correlation effects were treated
in a mean-field approximation within the band structure
calculations by applying the LSDA+U method.26 The
on-site Coulomb repulsion parameter Ud was varied in
the 6 − 8 eV range,27–30 while the on-site exchange pa-
rameter Jd was fixed to 1 eV. Total energies for different
types of collinear magnetic ordering were obtained within
the crystallographic unit cell and the two supercells, dou-
bled along the b or c directions. The calculated energies
were mapped onto a Heisenberg model, and individual
exchange couplings were derived. More details on the
computational procedure are given in Sec. IV.
The resulting spin model was compared to the exper-

imental results from magnetic susceptibility and high-
field magnetization measurements. Powder samples of
BiCu2PO6 were prepared by firing a stoichiometric mix-
ture of Bi2O3 (99.9 % purity), CuO (99.99 % purity),
and NH4H2PO4 (99.9 % purity) in air. The mixtures
were first annealed at 400 ◦C for 10 hours and then at
850 ◦C for 40 hours with one intermediate grinding. The
resulting samples were single-phase, as confirmed by x-
ray diffraction (STOE STADI-P diffractometer, CuKα1

radiation, transmission geometry). The magnetic suscep-
tibility was measured in fields up to 5 T in the temper-
ature range 2 − 700 K using a Quantum Design MPMS
SQUID magnetometer.
High-field magnetization measurements were per-

formed at Hochfeld-Magnetlabor Dresden at 1.4 K tem-
perature in fields up to 60 T using a pulsed magnet. De-
tails of the measurement technique are given in Ref. 31.
The curves measured on increasing and decreasing field
coincided, indicating the lack of any irreversible effects
upon magnetization of the sample.
Thermodynamic properties of the BiCu2PO6 spin

model were calculated by a full diagonalization for fi-
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FIG. 2. (Color online) Total and site-projected DOS obtained
from LDA. The vertical line at zero energy denotes the Fermi
level EF . The bands near the Fermi level primarily comprise
Cu and O states. The shading in the plot denotes the Cu-3d
states, while the dashed line represents the O 2p states.

nite lattices with N = 16 and 20 sites and periodic
boundary conditions. To obtain the low-energy excita-
tions, we performed Exact Diagonalizations (ED) using
the Lanczos algorithm that allowed to extend the sys-
tem size up to N = 36. The results are well converged
with respect to the system size even for N = 16 and
20, thus the finite-size effects for the spin model un-
der consideration are relatively small. To obtain the
magnetization process of BiCu2PO6, we have used, in
addition to ED, the Density Matrix Renormalization
Group (DMRG)32,33 method with open boundary con-
ditions with up to 128 rungs. Further details are given
in Secs. V, VI, and VII.

IV. DERIVATION OF THE SPIN MODEL

Spin models with exchange couplings derived from
DFT have been previously reported in Refs. 15 and 16.
However, the analysis remains incomplete, since the two
inequivalent next-nearest-neighbor couplings (between
crystallographically different Cu sites) were considered to
be equivalent. In the following, we apply two complemen-
tary approaches that evaluate all the relevant exchange
integrals and establish the microscopic model. Addition-
ally, we analyze in detail the structural features that
cause the unusual implementation of the ladder-type spin
lattice in BiCu2PO6.

A. LDA and model approach

Fig. 2 shows the LDA density of states (DOS) of
BiCu2PO6. The valence band spectrum is formed mainly
by copper 3d and oxygen 2p orbitals, with a sizable con-
tribution from phosphorous 3p orbitals below −3 eV.
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FIG. 3. (Color online) LDA band structure (thin blue
lines), the WF-based fit of the tight-binding model (bright
orange dots), and the contribution of the Cu dx2−y2 or-
bital (dark purple dots). The high-symmetry k-path
in terms of the reciprocal lattice parameters is as fol-
lows: Γ(0, 0, 0), X(0.5, 0, 0), S(0.5, 0.5, 0), Y (0, 0.5, 0), Γ,
Z(0, 0, 0.5), U(0.5, 0, 0.5), R(0.5, 0.5, 0.5), T (0, 0.5, 0.5). The
bands are highly dispersive along X−S, Y −Γ−Z, and U−R
which represent the leading interactions within the crystallo-
graphic bc plane and the quasi-2D nature of the system.

The states above −0.6 eV are formed by the Cu 3dx2−y2

orbital, in agreement with the expected ligand-field
splitting.34 The shapes and positions of the bands close
to the Fermi level (EF ) are somewhat different from the
N th-order muffin-tin orbital (NMTO) result of Ref. 15,
where the Cu 3dx2−y2 bands are separated from the
lower-lying bands. This difference represents a known
shortcoming of the NMTO method.35 To check our find-
ings, we repeated the calculation using the full-potential
code Wien2K. The resulting band structure is in excellent
agreement to that from FPLO. Irrespective of the com-
putational method, the LDA energy spectrum is metallic
due to the underestimation of the correlation effects in
this approximation. Experimentally, the green-colored
BiCu2PO6 is a magnetic insulator. The insulating be-
havior is readily reproduced by the LSDA+U calculations
(see Sec. IVB).

Eight Cu atoms in the crystallographic unit cell of
BiCu2PO6 give rise to eight 3dx2−y2 bands (Fig. 3). We
first fit these bands with a tight-binding model and ex-
tract the hopping parameters ti (Table I). The fitting
procedure involves Wannier functions (WF) centered on
Cu sites.36 The application of the WF technique leads to
a reliable fitting despite the slight overlap with the lower-
lying bands. We are also able to resolve the couplings J2
and J ′

2 that correspond to the same Cu–Cu vector (0, 1, 0)
but refer to different Cu sites in the structure (Fig. 1).
The hoppings are in agreement with the apparent fea-
tures of the band structure. We find strong dispersion
along the Γ − Y , Γ − Z, X − S, and U − R directions
which correspond to the crystallographic bc-plane with

TABLE I. Leading hoppings of the tight-binding model and
the resulting AFM exchange couplings. The exchange path-
ways indicated in the first column are explicitly depicted in
Figs. 1 and 4. The AFM part of the exchange integral is
obtained by mapping the transfer integrals to an extended
Hubbard model and eventually to a Heisenberg model using
JAFM

i = 4t2i /Ueff with Ueff = 4.5 eV.

Paths Cu–Cu distance ti Exchange JAFM
i

(Å) (meV) (K)

t1 3.21 146 J1 221

t2 5.17 [Cu(2)] 110 J2 125

t′2 5.17 [Cu(1)] 78 J ′
2 63

t3 2.89 123 J3 157

t4 4.91 140 J4 203

the couplings J1, J2, J ′
2, J3, and J4. The dispersions

along the other directions are less pronounced, indicative
of a quasi-2D nature of this system.
The hoppings are then introduced into a Hubbard

model with the effective on-site Coulomb repulsion Ueff =
4.5 eV.27–29,37 In the limit of strong correlations (ti ≪
Ueff) and in the half-filling regime, the low-lying excita-
tions of the Hubbard model are described by a Heisen-
berg Hamiltonian comprising AFM exchanges JAFM

i =
4t2i /Ueff. The resulting JAFM

i values are listed in Ta-
ble I. The maximum long-range hoppings tl beyond t1−t4
amount to 30 meV, thus leading to JAFM

l < 10 K. Since
the leading exchange couplings amount to 150− 250 K,
the minimal microscopic spin model can be restricted to
five interactions: J1, J2, J

′
2, J3, and J4.

A crucial fact to note at this juncture is the clear dif-
ference in the strengths of JAFM

2 and J ′AFM
2 . Geometri-

cally, the hopping paths for these exchanges are rather
similar (Fig. 4), and this structural feature led the au-
thors of Refs. 15 and 16 to assume J2 = J ′

2. In our
analysis, we find that it is essential to treat these two ex-
changes independently, otherwise the band splittings at
the Γ point would not be reproduced correctly (i.e., one
obtains four doubly-degenerate bands with J2 = J ′

2 in-
stead of the eight separate bands). Hence the frustrating
next-nearest-neighbor exchanges “alternate” along the b
axis (see Fig. 1) with J ′

2 ≃ 0.5J2. A detailed analysis of
this difference will be given in Sec. IVC.

B. LSDA+U

The model approach allows to estimate all the ex-
change couplings and to select the leading interactions
for the minimum microscopic model. This is especially
important for complex compounds with numerous and
non-trivial superexchange pathways, like in BiCu2PO6.
On the other hand, the model approach does not ac-
count for FM contributions that are relevant for short-
range interactions.28,38 To correct the leading couplings
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for the FM contributions, we use the supercell approach.
The total exchange integrals, consisting of the FM and
AFM contributions, are listed in Table II for the physi-
cally reasonable range of the Ud values and for the two
double-counting-correction (DCC) schemes. The latter
is widely believed to be a minor feature of the LSDA+U
method, but our recent studies evidenced a sizable influ-
ence of the DCC on the exchange integrals in the case of
short-range interactions.38–40

The DCC is an essential part of the LSDA+U ap-
proach, because a part of the on-site Coulomb repulsion
energy is contained in LSDA and has to be subtracted
from the total energy, after the explicit (mean-field) cor-
rection for the on-site Coulomb repulsion is included.
The two most common corrections are around-mean-field
(AMF)41 and fully-localized-limit (FLL).42 For spin- 12
magnetic insulators, the difference between AMF and
FLL was commonly believed to be minor.43 By construc-
tion, FLL looks more appropriate for the strongly local-
ized regime ti ≪ Ueff.

44 Yet, both AMF and FLL readily
reproduce the insulating state of BiCu2PO6. For exam-
ple, we find the band gap Eg ≃ 2.4 eV and the magnetic
moment of 0.81 µB at Ud = 6 eV in AMF.45 FLL yields
a somewhat lower gap Eg ≃ 1.6 eV at the same Ud value,
but the gap is readily increased up to 2.1 eV at Ud = 8 eV.
Experimental estimates ofEg are presently lacking. How-
ever, even the experimental input will hardly resolve the
ambiguity, since the Ud value cannot be estimated pre-
cisely. Then, the exchange couplings should be analyzed
in more detail.

AMF and FLL produce similar estimates for most of
the couplings: J1, J2, J

′
2, and J4 (see Table II). How-

ever, the short-range interaction J3 is highly sensitive
to the choice of the DCC. AMF suggests J3 to be a
weak coupling (either FM or AFM, depending on the
Ud value), while FLL ranks J3 as one of the leading
AFM couplings, comparable to J1 and J2. The FLL
values essentially reproduce the previously published re-
sults by Mentré et al.16 that were also obtained within
FLL but in a different band structure code. The model
approach (Table I) evaluates JAFM

i , hence the FM contri-
butions JFM

i = Ji − JAFM
i can be calculated. Following

this procedure, we find a simple microscopic argument
that supports the AMF results with weak J3. Both J1
and J3 arise from Cu–O–Cu superexchange with different
angles at the oxygen atoms: 112.2◦ and 92.0◦, respec-
tively (see the top left panel of Fig. 4). According to the
Goodenough-Kanamori rules,46 the nearly 90◦ superex-
change of J3 should yield the largest FM contribution.
This conclusion conforms to the AMF results with JFM

1 =
−45 K and JFM

3 = −135 K at Ud = 6 eV. The FLL re-
sults are opposite, JFM

1 = −36 K and JFM
3 = −16 K. As

Ud is increased up to 8 eV, all the couplings are reduced,
while the qualitative difference persists: |JFM

3 | > |JFM
1 |

in AMF, but |JFM
3 | < |JFM

1 | in FLL.

The above considerations suggest the exchange cou-
plings from AMF as a more reliable estimate for
BiCu2PO6. For relevant examples from other compounds

TABLE II. Total exchange couplings (in K) obtained from
the LSDA+U calculations. The Ud value (in eV) denotes
the Coulomb repulsion parameter of LSDA+U . The last col-
umn lists the double-counting correction scheme: around-the-
mean-field (AMF) or fully-localized-limit (FLL).

Ud J1 J2 J ′
2 J3 J4

6 176 170 90 22 154 AMF

7 145 127 73 -2 113 AMF

8 109 99 58 -15 85 AMF

6 185 166 93 141 243 FLL

with a simpler magnetic behavior, we refer the reader
to Sec. IVC. Additionally, we note that computational
results for β-Cu2V2O7 (Ref. 40) and for several other
Cu+2-compounds39 also prefer AMF. Thus, we further
rely on the AMF estimates and consider J3 as a weak
coupling. The low value of J3 compared to JAFM

3 re-
duces the 2D J1 − J4 model, obtained from the model
approach, to a quasi-1D model, depicted in the bottom
part of Fig. 1. This model basically follows the earlier
proposal by Mentré et al.16 We find a two-leg spin lad-
der with the leg coupling J1, the rung coupling J4, and
the next-nearest-neighbor frustrating couplings J2 and J ′

2

along the legs. Yet, there are two important differences
to be emphasized. First, the two next-nearest-neighbor
couplings are inequivalent and fairly different. The J2
coupling connecting the Cu2 sites is twice as large as the
coupling J ′

2 between the Cu1 sites (see Tables I and II).
Second, we can safely establish the quasi-1D nature of the
spin model, because the J3/J4 ratio is below 0.2 (com-
pare to J3/J4 = 0.55− 0.65 in Ref. 16). Both results are
very important for understanding the material.
The difference between J2 and J ′

2 clearly alters the
spin lattice. The pronounced one-dimensionality allows
to simulate the behavior of the spin model on a quan-
titative level, despite the presence of the strong frus-
tration that narrows the range of applicable simulation
techniques. Before turning to the experiments and sim-
ulations (Sec. V), we will further discuss the non-trivial
implementation of individual exchange couplings in the
crystal structure of BiCu2PO6 and provide further sup-
port for the proposed spin model.

C. Structural aspects of the magnetic exchange

The interactions J1 and J3 run between corner-sharing
and edge-sharing CuO4 plaquettes, respectively (top left
panel of Fig. 4). This geometry suggests Cu–O–Cu su-
perexchange as the leading mechanism of the coupling
and the angle at the oxygen atom as the key structural
parameter determining the exchange integral. Follow-
ing the Goodenough-Kanamori rules,46 we find that J3
with the Cu–O–Cu angle of 92.0◦ is weakly AFM or
even FM (see Table II). The pathway of J1 reveals the
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FIG. 4. (Color online) Parts of the crystal structure showing the details of individual superexchange pathways as well as the
spin-ladder (top left panel) and the frustrated-spin-chain (right panel) features. The middle panel depicts the difference in
the positions of the PO4 tetrahedra for the couplings J2 and J ′

2. Curved arrows denote the rotations of the tetrahedra in the
fictitious model structures (see text for details). The right panel shows the difference in the O1–O1 distances for J2 and J ′

2.

sizably larger angle of 112.2◦ and, consequently, a siz-
able AFM superexchange. A similar superexchange sce-
nario is found in the mineral dioptase Cu6Si6O18 · 6H2O
(green dioptase)38 and, presumably, in its anhydrous
counterpart (black dioptase). The spin lattice of diop-
tase comprises the AFM coupling Jc between corner-
sharing CuO4 plaquettes (the Cu–O–Cu angle amounts
to 107.6◦ and 110.7◦ for green and black dioptase, re-
spectively) and the FM coupling Jd between edge-sharing
plaquettes (97.4◦ and 97.3◦, respectively). More specif-
ically, Jc = 78 K and Jd = −37 K in green dioptase.38

The nature of the exchange couplings in the dioptase lat-
tice is confirmed by the magnetic structure that was di-
rectly investigated by neutron diffraction.47,48 Addition-
ally, our recent computational study of green dioptase
confirms the assignment of the exchange couplings and
yields a consistent interpretation for all available exper-
imental data.38 The reference to the closely related su-
perexchange scenario in dioptase should be taken as an
additional argument for the weakness of J3 and the re-
sulting quasi-1D character of BiCu2PO6.

In fact, one can find further examples supporting the
pronounced difference between J1 and J3. Numerous
cuprates with chains of edge-sharing plaquettes are ex-
perimental realizations of frustrated spin chains with FM
nearest-neighbor couplings. Such FM couplings arise
from the Cu–O–Cu angle close to 90◦ and typically range
from −100 K to −300 K for oxide compounds (e.g.,
Li2CuO2, Li2CuZrO4).

49,50 In BiCu2PO6, J
FM
3 is smaller

due to the folded arrangement of the plaquettes. Never-
theless, the pronounced FM contribution reduces the to-
tal exchange to a weak coupling, either FM or AFM, de-
spite the sizable AFM contribution of JAFM

3 = 176 K (cf.
Table I). The leg coupling J1 appears for the twisted con-
figuration of corner-sharing plaquettes (see Fig. 4) with
the Cu–O–Cu angle of 112.2◦. A similar configuration is
found in AgCuVO4, where the angle amounts to 112.7◦,
and a pronounced AFM exchange coupling J ≃ 300 K
is found.29 Thus, our estimates of J1 and J3 are in line
with the experience regarding other Cu compounds with
firmly established microscopic models.

All the above arguments support the quasi-1D model
with weak J3. In the following, we use this model as a
working hypothesis to interpret the magnetic behavior of
BiCu2PO6. The quasi-1D model captures the essential
physics of the material, although certain features may
require the extension of the model towards including J3
or anisotropy effects (see Sec. VI and VIII).

Taking J3 as a weak interaction, we find J4 to be
the leading coupling along the c direction. This cou-
pling runs between the CuO4 plaquettes of neighbor-
ing ribbons. The bonding between the ribbons arises
from Bi cations (bottom left panel of Fig. 4), yet Bi
does not give any sizable contribution to the states near
the Fermi level. Therefore, we assign J4 to the Cu–O–
O–Cu superexchange with the double O–O contact of
2.75 Å. Similar couplings between the disconnected cop-
per plaquettes have been reported for (CuCl)LaNb2O7

and Bi2CuO4.
39,51,52 Due to the large spatial separation

of the Cu atoms (4.91 Å), a sufficiently strong interac-
tion arises for specific configurations of the ligand or-
bitals only (see Ref. 51 for an instructive example). This
explains the strong inter-ribbon coupling along the c di-
rection, in contrast to a very weak coupling between the
structural ribbons along a where the shortest Cu–Cu dis-
tance is 4.85 Å.

Finally, we address the most puzzling feature of
BiCu2PO6, the next-nearest-neighbor couplings J2 and
J ′
2. While the other couplings can be tentatively assigned

after a careful analysis of the superexchange pathways,
the sharp difference between J2 and J ′

2 remains unex-
pected. The Cu–Cu distances for the two couplings are
the same and amount to 5.17 Å, the lattice parameter
along the b direction. On the other hand, J2 and J ′

2

correspond to different Cu positions and are inequiva-

lent by symmetry. Band structure calculations within
the model and LSDA+U approaches consistently suggest
that J ′

2/J2 ≃ 0.5 (see Tables I and II).

The couplings J2 and J ′
2 run between the copper pla-

quettes, joined by another plaquette via O1 and by a
PO4 tetrahedron via O2 (see the right panel of Fig. 4).
Thus, two different Cu–O–O–Cu channels are available.
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FIG. 5. (Color online) Wannier functions (“magnetic or-
bitals”) centered on Cu2 sites. Each orbital comprises the Cu
3dx2−y2 atomic orbital, large O1 and O2 σp-contributions,
and a smaller O3 σp-contribution.

Despite the very similar Cu–O distances and Cu–O–O
angles, there is a pronounced difference in the O1–O1
distances: 2.55 Å for J2 [the edge of the Cu1 plaque-
tte] and 2.63 Å for J ′

2 [the edge of the Cu2 plaquette].
The shorter O1–O1 distance should lead to the stronger
coupling J2, in agreement with the computational result
J ′
2 < J2. At first glance, the O2 channel looks completely

identical, because the O2–O2 distance is constrained by
the edge of the PO4 tetrahedron (2.56 Å). Nevertheless,
this channel also contributes to the difference between J2
and J ′

2.

To get a deeper insight into the mechanism of the next-
nearest-neighbor interactions, we inspect the Wannier
functions for the Cu1 and Cu2 sites. Each WF comprises
a Cu 3dx2−y2 orbital along with the σ-type p-orbitals of
the neighboring oxygens O1 and O2 (Fig. 5). We also
find small, but significant, σ-contributions from second-
neighbor oxygens O3 and O4 for the Cu2 and Cu1 WFs,
respectively. These “tail” contributions arise from the
specific orientation of the PO4 tetrahedra: one of the
O–O edges aligns along the Cu–O2 bond, i.e., the Cu2–
O2–O3 (ϕ) and Cu1–O2–O4 (ϕ′) angles approach 180◦.
Indeed, we find ϕ = 140.4◦ and ϕ′ = 159.1◦ in agree-
ment with the smaller O3 contribution of about 1.0 %,
compared to 1.7 % for O4.

Although the tail features of the WFs look tiny, they
have a strong effect on the exchange couplings. To probe
this, we constructed fictitious model structures by rotat-
ing the PO4 tetrahedra around the O2–O2 edge. Since
the tetrahedra were kept rigid, only the ϕ and ϕ′ an-
gles were varied, while other geometrical parameters re-
mained constant.53 We found that the position of the
tetrahedron leads to a dramatic change in the absolute
values of J2 and J ′

2. As the ϕ angle is increased to-
wards 180◦, the O3 contribution gets larger, and J2 con-
sequently decreases (Fig. 6). The rotation of the tetra-
hedra by 15◦ makes J2 and J ′

2 equal, while the further
rotation will switch the system to the J ′

2 > J2 regime.
The WF of Cu1 and the interaction J ′

2 are less sensitive
to the variation of the ϕ′ angle within the studied angle
range.54

Our analysis shows that the structural features beyond
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FIG. 6. (Color online) Exchange integrals J2 and J ′
2 and

the contribution of the second-neighbor oxygens (O3, O4) to
the Wannier functions, depending on the position of the PO4

tetrahedron. The dashed vertical line shows the angles in the
BiCu2PO6 structure.

the CuO4 plaquettes have a sizable effect on the exchange
couplings in Cu+2 compounds. In BiCu2PO6, the tails
of the WFs on the second-neighbor oxygens have 90◦ ori-
entation and should then reduce the AFM coupling (see
Fig. 5). This unexpected interference of the magnetic or-
bitals on the second-neighbor oxygen site is one of the mi-
croscopic reasons for the observed difference between J2
and J ′

2. It is worth noting that the role of non-magnetic
side groups was emphasized theoretically long ago,55 but
is often not taken into account adequately in a quanti-
tative description. Here, we have shown that the oxygen
orbitals play the key role, while the phosphorous atom
simply “holds” the four oxygens of the tetrahedron to-
gether. There is no appreciable phosphorous contribu-
tion at the Fermi level, and its contribution to the WF’s
is also minor (below 0.1 %). This general mechanism,
involving interacting oxygen atoms, has been recently
found in vanadium phosphates56 and deserves further in-
vestigation in the compounds comprising other transition
metals.

V. EXPERIMENTAL RESULTS

A. Magnetic susceptibility

The temperature dependence of the magnetic suscep-
tibility is shown in Fig. 7 and resembles closely the data
from Ref. 15. We find a broad maximum at T χ

max ≃ 62 K,
indicative of the predominantly AFM low-dimensional
and/or frustrated behavior. The sharp decrease in the
susceptibility below T χ

max is a signature of the spin gap.
In the low-temperature region, the 0.1 T data show a
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FIG. 7. (Color online) Magnetic susceptibility of BiCu2PO6

measured in the applied field µ0H = 5 T and the fit of the 1D
spin model with g ≃ 2.16, J1 ≃ 140K, J2 = J1, J

′
2 = 1

2
J1, and

J4 = 3

4
J1 (simulation for a finite lattice with N = 20 sites).

The inset shows the Curie-Weiss fit above 300 K.

weak upturn below 5 K. This upturn is largely suppressed
in the field of 5 T and can therefore be assigned to a para-
magnetic contribution of defects/impurities. Above 10 K,
the susceptibility is field-independent in the studied field
range µ0H ≤ 5 T.
Above 200 K, the system approaches the Curie-Weiss

regime. In order to improve previous studies,15,16 we
measured the susceptibility at high temperatures up to
700 K and fitted the data above 300 K with the expression

χ =
C

T + θ
(1)

where θ is the Curie-Weiss temperature and C =
NA(gµB)

2S(S + 1)/(3kB) is the Curie constant. Our fit
gives C = 0.447(1) emu K/mol Cu, and θ = 181(1) K (see
the inset of Fig. 7). Fitting the data with an additional
temperature-independent χ0 term leads to a small χ0,
therefore, we neglect this term in further analysis. We
establish the predominant AFM nature of the exchange
interactions with an energy scale of about 200 K. The C
value corresponds to an effective moment of 1.89(1) µB,
slightly above the ideal spin- 12 value of 1.73 µB and rather

typical for Cu+2 compounds.5,28 Since T χ
max/θ ≃ 0.3,

strong frustration should be expected.
For further analysis, we fit the magnetic susceptibility

using our microscopic spin model. Koteswararao et al.15

have shown that the data do not conform to the model of
isolated non-frustrated spin ladders. The introduction of
interladder couplings does not significantly improve the
description.57 Therefore, realistic models with frustrating
next-nearest-neighbor couplings have to be considered.
Mentré et al.16 used a frustrated J1−J2−J4 spin model
and fitted the data with J1 ≃ 140 K, J2 ≃ 0.5J1, and
J4 ≃ 0.4J1 (see also Ref. 23), but this model did not
take into account the difference between J2 and J ′

2.
Here we employ the J1−J2−J ′

2−J4 model (Fig. 1) to fit

the experimental magnetic susceptibility. This 1D frus-
trated spin model can be treated by exact diagonaliza-
tions for finite lattices or by renormalization-group tech-
niques. The former turns out to be appropriate for the
present problem due to the small finite-size effects and
will be used here for the susceptibility fit. The unit cell
comprises four inequivalent Cu2+ ions, hence the num-
ber of sites N in the finite cluster should be a multiple of
four. To fit the experimental data, we first approximate
our model by the following set of parameters J1 = J2,
J ′
2 = 1

2J2, and J4 = 3
4J1, according to Table II. The

simulations yield the reduced susceptibility χ∗ which can
be fitted to the experimentally observed χ using

χ =
NAg

2µ2
B

J1
χ∗ (2)

with only two variable parameters: g and J1. The sim-
ulations for N = 16 and N = 20 sites provide almost
identical susceptibility curves. Hence, finite-size effects
are negligible and our simulations yield accurate results
for the 1D spin model under consideration.
Our optimal fits yield J1 ≃ 140 K and g ≃ 2.16.

The fitted g value is typical for Cu+2 compounds29,58

and also conforms to the effective magnetic moment of
1.89 µB which leads to g = 2.18. The absolute value
of J1 is in remarkable agreement to the computational
estimate of 100 − 150 K (cf. Table II). The fit follows
the experimental data down to 100 K (see Fig. 7). At
lower temperatures, we find slight deviations from the
experiment. For instance, the position of the suscepti-
bility maximum T χ

max is overestimated and the theoreti-
cal curve lies slightly below the experimental data. This
shows that our model overestimates the spin gap ∆. We
shall return to this issue below in Sec. VI.
We also tried to vary the ratios of exchange integrals

and found several fits of similar quality. In particular, the
parameter set from Ref. 16 (J1 ≃ 140 K, J2 = J ′

2 ≃ 0.5J1,
and J4 ≃ 0.4J1) is also in agreement with the magnetic
susceptibility data and yields a comparable g = 2.145.
However, this parameter set does not account for the dif-
ference between J2 and J ′

2. Since, as shown above, this
difference is evidenced by two different computational ap-
proaches and has a clear structural origin, we regard the
solution J1 = J2, J

′
2 = 1

2J2, and J4 = 3
4J1 as the micro-

scopically justified parameter set for BiCu2PO6.

B. High-field magnetization and the spin gap

The low-energy physics of BiCu2PO6 is characterized
by the presence of a spin gap ∆. Previous estimates of
∆, based on the magnetic specific heat15,17 and Knight
shift,21,22 consistently suggested ∆ ≃ 35 K. The INS data
revealed a smaller gap of 2 meV (about 23 K).16 The
observed discrepancy calls for the application of further
experimental methods, especially in light of the ambigu-
ity of the specific heat and the Knight shift estimates,
which arises from the fitting expressions that depend on
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FIG. 8. (Color online) Magnetization curve of BiCu2PO6
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the character of the spin excitations and, in particular,
on the dimensionality of the system.

High-field magnetization data can provide a robust es-
timate of the spin gap. The magnetization process of
BiCu2PO6 is presented in Fig. 8. At low fields, the mag-
netization shows a weak linear increase with the field
until µ0Hc ≃ 22 T, where it bends upwards following a
much steeper linear increase at higher fields.59 The tran-
sition atHc implies the closing of the spin gap and can be
used for the numerical estimate of ∆. Similar to Ref. 31,
we take Hc as the point of the maximum curvature. We
find ∆ = gµBµ0Hc/kB ≃ 32 K, in good agreement to the
previous estimate ∆ ≃ 35 K obtained from the magnetic
specific heat and the Knight shift data.15,17,21,22

The behavior of the magnetization for small fields
needs to be discussed in more detail. In an ideal, SU(2)
invariant and defect-free gapped system, the magnetiza-
tion should be zero below Hc (see also Fig. 12 below).
Impurities give rise to a finite magnetization contribu-
tion, but this should typically saturate around 5 T at
the present low temperature of 1.4 K. Since the mea-
sured magnetization keeps increasing up to 22 T, we con-
clude that the weak linear field dependence for H < Hc

is due to the presence of weak anisotropic interactions
in BiCu2PO6. One such anisotropy, which is known60 to
give rise to a linear magnetization response in the gapped
regime of similar ladder systems, is the Dzyaloshinksy-
Moriya (DM) anisotropy.61,62 As explained in Ref. 60, an
isolated AFM dimer with a DM energy term of the form
D · (S1 × S2) admixes triplet excitations into the singlet
ground state, and this gives rise to a uniform magnetiza-
tion response of the form mu ∝ D× (D×B) even far be-
low the critical field. There is also a staggered response in
first order in D of the form ms ∝ D×B which can be de-
tected by a local probe, such as NMR experiments. Sim-
ilar features arise in the spin-ladder Cu2(C5H12N2)2Cl4

compoud.60 Hence, it is reasonable to expect that the
linear response observed for BiCu2PO6 at H < Hc stems
from the presence of the DM anisotropy.
For completeness, it is worth providing a brief dis-

cussion on the main DM vectors, based on the crystal
symmetry of BiCu2PO6 (cf. Fig. 1). First of all, a DM
anisotropy on each rung is allowed by symmetry, since
each rung comprises two inequivalent Cu sites and thus
the inversion symmetry through the middle of each rung
is lacking. The translational invariance along the b axis
(with a period of two rungs) necessitates that the DM
vectors are the same on every second rung. Furthermore,
the fact that the ac plane is a reflection (i.e., crystallo-
graphic mirror) plane63 confines the DM vectors to the b
direction. There is finally a screw axis symmetry along
b (translation along b by one rung, followed by a C2 ro-
tation around the b axis) which connects the sites of two
consecutive rungs. This last symmetry necessitates that
the DM vectors on the two consecutive rungs differ in
sign. The DM terms are also expected for other, inter-
rung couplings.
Finally, we would like to point out that the measured

magnetization data right above Hc do not show any
square root singularity (cusp) as is typical for 1D sys-
tems with a quadratic branch of magnetic excitations
above the ground state (see also Fig. 12 below). This
is probably related to the presence of the DM interac-
tions mentioned above and the inter-ladder coupling J3,
which are both expected to smooth out the singularity.
In Sec. VII below, we provide a more detailed theoret-

ical picture for the magnetization process, but first it is
essential to understand the nature of the lowest magnetic
excitations in BiCu2PO6.

VI. LOW-ENERGY EXCITATIONS FROM

EXACT DIAGONALIZATIONS

We have performed an exact diagonalization study of
the model Hamiltonian discussed above (but without DM
terms) with parameters J1 = J2 = 1, J ′

2 = 0.5, and
J4 = 0.75, using finite lattices of N = 12, 16, 20, 24, 28,
32, and 36 sites with periodic boundary conditions along
the legs (x-axis). The model is depicted in the upper
panel of Fig. 9. Apart from translations along the legs
by 2a, we also have two discrete spatial symmetries in
this model. One is a reflection through any of the rungs
(Py) and the other is a π-rotation (C2z) around the z-
axis which is perpendicular to the plane of the ladder and
passes through the center of a J1 − J4 rectangle. Instead
of the latter, we can take the generator consisting of a
translation by a, combined with a reflection along the
axis crossing the middle of all rungs.
A first strong insight into physics of this model comes

from a simple examination of the ground state expecta-
tion values of various local energy terms 〈si · sj〉. Owing
to the spatial symmetries of the problem, there are four
inequivalent bonds only. These are the bonds associated
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FIG. 9. (Color online) Top panel: The actual structure (dis-
regarding the buckling) of the present model, and in the lower
panel its topologically equivalent version obtained by flipping
the two sites of every second rung.

with the four different exchange couplings J1, J2, J
′
2, and

J4 in each unit cell. The corresponding ground state ex-
pectation values, denoted as e1, e2, e

′
2, e4, are provided

in Table III together with the total ground state energy
per site E/N = (2J1e1 + J2e2 + J ′

2e
′
2 + J4e4)/2. The

latter shows only small finite-size variations for N ≥ 16,
which points to a very short correlation length.64 More
importantly, we observe a sizably large value for the spin-
spin correlations on the rungs, e4 ≃ −0.47, which is more
than twice the values on the remaining bonds. This re-
sult tells us that the system is in the strong rung coupling
regime, despite the fact that the leg couplings J1 and J2
are comparable to the rung coupling J4.

In Fig. 10, we have superimposed the low-energy exci-

TABLE III. The ground state expectation values of the four
different bond strengths 〈si · sj〉 per unit cell and the total
energy per site E/N in units of J1.

N e1 e2 e′2 e4 E/N

12 -0.21568 -0.17868 -0.17162 -0.42632 -0.50780

16 -0.17466 -0.19499 -0.18411 -0.47136 -0.49494

20 -0.16633 -0.21940 -0.20928 -0.46032 -0.50096

24 -0.18409 -0.18626 -0.17460 -0.47234 -0.49800

28 -0.17210 -0.20336 -0.19237 -0.47127 -0.49860

32 -0.17683 -0.19716 -0.18571 -0.47132 -0.49858

tations for each system size as a function of the allowed
momentum quantum numbers so that we obtain a clear
picture of the low-energy dispersion of the model. We
observe that the lowest triplet (total spin S = 1) exci-
tations (thick open symbols) form a well-defined (coher-
ent) branch separated from the continuum by a finite gap
for k & 0.4π/(2a). This branch has an incommensurate
minimum at kmin ≃ 0.8π/(2a) at ∆ED ≃ 0.5J1. In addi-
tion to the lowest branch, we also find a second branch
which is degenerate with the first at k = π/(2a) but this
shifts quickly to higher energies into the continuum for
k < π/(2a).
Before we discuss the main implications of these results

with regard to BiCu2PO6, we would like to provide a ba-
sic microscopic description of the excitation spectrum.
To this end we perform a perturbative expansion around
the limit of isolated rungs J1 = J2 = J ′

2 = 0. We first
introduce the singlet and triplet states of a single rung
with sites 1 and 2 as |s〉 =

(

|↑↓〉 − |↓↑〉
)

/
√
2, |t1〉 = |↑↑〉,

|t−1〉 = |↓↓〉, and |t0〉 =
(

|↑↓〉 + |↓↑〉
)

/
√
2. The unper-

turbed ground state is the product state of singlets on all
rungs. Excitations arise by promoting one or more rungs
into triplet states |tm〉, with m = ±1, 0. The inter-rung
couplings have two effects. The first is that they renor-
malize the ground state energy as well as the energies in
the one-triplon sector. The second is that they induce
a finite amplitude for nearest-neighbor and next-nearest-
neighbor hoppings of triplons in the one-triplon sector.
Including the amplitude from all different processes and
exploiting the translational invariance by 2a, one finds
two separate bands of one-triplon excitations due to the
fact that we have two rungs per unit cell in the model.
Their energies relative to the renormalized ground state

energy are given by E
(2)
α,β(k) = Ak ± |Bk|, with

Ak = J4 +
12J2

1 + 3(J2 + J ′
2)

2 − 4(J2 − J ′
2)

2

16J4

+

(

J2 + J ′
2

2
+

(J2 − J ′
2)

2 − 2J2
1

8J4

)

cos k

− (J2 + J ′
2)

2

16J4
cos 2k,

Bk =
J1
2
(1 + e−ik)− J1(J2 + J ′

2)

8J4

×
(

1 + e−ik + eik + e−2ik
)

These second-order dispersions are shown in the lower
panel of Fig. 10. Although its prediction for the spin gap
is more than twice higher than the exact value (shown in
the upper panel), the second-order perturbation theory
captures well the position of the minimum and the overall
shape of the dispersion.
Next, we would like to comment that the degeneracy

of the two branches at k = 0 is not a generic feature
of the exact dispersions but an accidental feature of the
second-order expression for the given values of the ex-
change integrals. In higher orders of perturbation theory
or for slightly different parameter values, this degener-
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FIG. 10. (Color online) Top: Superimposed low-energy dis-
persions from exact diagonalizations on systems with N =12,
16, 20, 24, 28, 32, and 36 sites and for the parameters
J1 = J2 = 1, J ′

2 = J1/2, and J4 = 0.75J1 . Empty (black)
symbols denote the singlet S = 0 states, thick open (blue)
symbols denote the S = 1 states, and filled (red) symbols de-
note the S = 2 states. The solid lines are polynomial fits to
the visible parts of the lowest one-triplon excitation branches.
Bottom: The two one-triplon energy branches predicted from
second-order perturbation theory around the strong coupling
limit (cf. text). We emphasize here that the degeneracy of
the two bands at k = 0 is an accidental feature of the second-
order theory for the given values of the exchange parameters,
while the degeneracy at k = π/(2a) is a generic feature re-
lated to the fact that the model has a period a and not 2a
along the legs of the ladder (cf. text).

acy will be lifted. In contrast, the degeneracy of the two
branches at k = π/(2a) is a generic feature and persists
to all orders as seen in the exact spectra. The reason
behind this is the presence of the discrete symmetry gen-
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FIG. 11. (Color online) Top: Same as in Fig. 10 but in the
symmetry setup of the lower panel of Fig. 9. The solid line is
a polynomial fit to the visible part of the lowest one-triplon
excitation branch. Bottom: The one-triplon energy dispersion
predicted from second order perturbation theory around the
strong coupling limit (cf. text).

erator mentioned above (translation by a followed by a
reflection through the middle of all rungs). To see this,
we may start from the upper panel of Fig. 9 and exchange
the two sites of every second rung without altering the
topology of the model. This gives the equivalent model
shown in the lower panel of Fig. 9 which has period a
and not 2a. To elucidate this point, we may repeat the
strong-coupling expansion in this alternative symmetry
framework. To this end, we must take into account the
extra negative signs that arise from the antisymmetry of
the singlet rung wavefunction when flipping the two sites
of every second rung. In terms of the new momenta,
we now obtain a single one-triplon excitation band with
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energy dispersion

E(k) = J4 +
12J2

1 + 3(J2 + J ′
2)

2 − 4(J2 − J ′
2)

2

16J4
+ c1 cos k + c2 cos 2k + c3 cos 3k + c4 cos 4k (3)

where c1 = −J1+
J1(J2+J′

2
)

4J4

, c2 =
J2+J′

2

2 +
(J2−J′

2
)2

8J4

− J2

1

4J4

,

c3 =
J1(J2+J′

2
)

4J4

, and c4 = − (J2+J′

2
)2

16J4

. This dispersion is
shown in the lower panel of Fig. 11. It is clear that by
folding this back into the Brillouin zone [−π/2a, π/2a] we
shall obtain the two branches shown before in the lower
panel of Fig. 10. It is also evident in this representation
that the incommensurate nature of the dispersion arises
already in first order and is dictated by the frustrated
couplings J2 and J ′

2 which appear in the leading term in
the above expression for c2.
For completeness, we present the exact diagonalization

results in the new symmetry setup in the upper panel of
Fig. 11. Again, the overall shape of the lowest dispersion
and the position of the minimum are in agreement with
the prediction of the strong coupling expansion shown in
the lower panel.
An interesting feature which becomes better visible in

the representation of Fig. 11 is the presence of a number
of low-lying singlets for momenta close to k = π/a. These
excitations can be understood as a singlet bound state of
two triplons. Such singlet excitations could be captured
by optical experiments, such as phonon-assisted infrared
absorption. Singlet bound states of two triplons have
been observed using such techniques in cuprate ladders.65

In a broader context, the low-lying singlet at k = π/a can
be considered as a singlet mode going soft at the transi-
tion to a dimerized phase with dimers forming along the
legs.66 In the model considered, this scenario might occur
as the rung coupling J4 is reduced further.
Let us now discuss the implications of the above find-

ings for BiCu2PO6. Taking J1 ≃ 140 K from the fit
of the susceptibility we obtain for the spin gap ∆ED ≃
0.5J1 ≃ 70 K which is almost twice the value obtained
from the high-field magnetization data, or the value re-
ported by other groups.15,17,21,22 Hence, we find that the
present model of an isolated frustrated ladder overesti-
mates the value of the spin gap in BiCu2PO6, a fact
that was already suggested from the behavior of the sus-
ceptibility at low temperatures. One way to account for
this discrepancy is to include a finite interladder coupling
J3. Along the lines of the previous perturbative analy-
sis, one finds that J3 gives rise to a first-order hopping
of triplons along the y direction. As a result, the two
bands attain a common extra dispersion term of the form
−(J3/2) cosky (with ky in units of π divided by the inter-
ladder distance). This shifts the minimum of the lowest
band down by J3/2. Thus, to account for the 35 K spin
gap one would need an interladder coupling of the order
of J3 ≃ 70K in this simple approximation. However, in
the present regime we expect the perturbative calculation
to be only qualitatively correct, so that a precise deter-
mination of the interladder coupling either needs to come
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FIG. 12. (Color online) Magnetization curve of BiCu2PO6 as
obtained from DMRG and ED.

from more elaborate theoretical approaches (such as den-
sity matrix renormalization group simulations of coupled
ladders) or, ultimately, from inelastic neutron scattering
experiments on single crystals.

VII. MAGNETIZATION PROCESS FROM ED

AND DMRG

Here we revisit the magnetization process of
BiCu2PO6, in the light of the physical picture obtained
above for the lowest magnetic excitations. To this end,
we have employed Lanczos diagonalizations up to N =
32 sites with periodic boundary conditions, as well as
DMRG simulations with up to L = 128 rungs using open
boundary conditions. Some representative magnetization
curves are shown in Fig. 12. The results from the two
largest clusters treated by DMRG (L = 64, 128 rungs)
converge to a rather smooth magnetization curve. They
also give a critical field Hc almost identical to the one ob-
tained from ED for 32 sites, which further corroborates
the value of the spin gap ∆ED ≃ 0.5J1 given above.
To discuss the nature of the magnetization process

in more detail, we distinguish three different regimes,
namely the one at low magnetizations above Hc, the one
at high magnetizations as we approach the saturation
field Hsat, and the intermediate regime. The low mag-
netization regime can be qualitatively understood on the
basis of gradually filling the excitation band of Fig. 11
(bottom) with triplons as we ramp up the field above Hc.
One immediate consequence is the presence of a square-
root singularity in the magnetization right above Hc (cf.
Fig. 12) which is due to the quadratic dispersion above
the minimum. Another important ingredient in this con-
sideration is the presence of two incommensurate minima
(at k ≃ ±0.4π/a) in the triplon dispersion which, given
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FIG. 13. (Color online) One-magnon energy dispersions ob-
tained analytically (see Eq. (4)).

the local hard-core constraint of the triplons, gives four
Fermi points. Thus if the four-Fermi-point fix point is in-
deed stable, the effective low-energy theory of BiCu2PO6

at low magnetizations is a two-component LL.
In a similar way, the magnetization process close to

the saturation field can be understood starting from the
fully polarized state and gradually filling the one-magnon
excitation bands by single spin flips. Using the setup of
the lower panel of Fig. 9 and setting the energy of the
fully polarized state to zero, one obtains two one-magnon
bands which are given by the eigenvalues of the matrix

Hone-magn =

(

uk vk
vk u′

k

)

(4)

with uk = −(J4/2+ J1 + J2) + J2 cos 2k, u
′
k = −(J4/2+

J1 + J ′
2) + J ′

2 cos 2k, and vk = J4/2 + J1 cos k. The
two one-magnon bands are shown in Fig. 13. As ex-
pected, we find that each band has two minima at in-
commensurate wavevectors. In particular, the minima
of the lowest band sit at k = ±0.43131π/a, which
are close to the minimum k-points of the triplon dis-
persion of Fig. 11 (bottom). The corresponding mini-
mum energy Emin = −3.5643J1 gives the saturation field
Hsat = 3.5643J1/(gµ0µB), in agreement with the numer-
ical results of Fig. 12. By gradually filling the minimum
of the lowest one-magnon branch, we describe the mag-
netization process as we decrease the field below Hsat.
Similar to the low magnetization regime, the quadratic
dispersion around the one-magnon minimum gives rise
to a square-root singularity right below Hsat which can
be seen in our numerical results of Fig. 12. In addi-
tion, the presence of two “incommensurate” minima (at
±0.43131π/a) in the lowest one-magnon branch opens a
possibility that the appropriate low-energy effective the-
ory of BiCu2PO6 at high fields is a two-component LL.

It is presently unclear whether the possible two-
component LL phases discussed at low and high fields
form a single phase, or whether they are separated by
one or more intervening phases at intermediate mag-
netizations. Inspecting the numerical results displayed
in Fig. 12, a plateau might, for instance, occur at
M = Msat/2. The phase immediately above the plateau
also requires further investigation since there is a pos-
sibility for a one-component LL phase before we reach
the high-field two-component LL phase. Such a rich in-
terplay between one- and two-component LL phases and
plateaux is realized in the frustrated antiferromagnetic
J1 − J2 Heisenberg chain model (see, e.g., Ref. 67 and
references therein). Testing and confirming the scenario
outlined here for the physics of BiCu2PO6 in high mag-
netic fields requires a separate and more detailed investi-
gation which is, however, beyond the scope of this article.
Let us finally compare to the experimental magnetiza-

tion data of Fig. 8. Given our earlier estimate of J1 ≃
140 K from the susceptibility fit, we obtainHsat ≃ 345 T,
which is much larger than the range of fields accessible in
our experiment (Hmax = 60 T). Hence, the highest mag-
netization values reported in Fig. 8 correspond to less
than 10% of Msat. In contrast to the above theoretical
predictions, the measured magnetization does not show
any square-root singularity right above Hc. As we dis-
cussed in Sec. VB, this gives evidence for inter-ladder
coupling J3 and/or DM interactions which smooth out
the singularity.

VIII. DISCUSSION AND CONCLUSIONS

Using DFT band structure calculations, we derived the
minimum microscopic model of BiCu2PO6. This model
is based on a two-leg-ladder lattice and comprises four
antiferromagnetic exchange couplings: J1 along the legs,
J4 along the rungs, and the frustrating next-nearest-
neighbor couplings J2 and J ′

2 along the legs (Fig. 1). Al-
though such a model does not provide a complete and
quantitative description of the compound, it is a rea-
sonable compromise between the complexity of the sys-
tem and the capabilities of present-day numerical simu-
lation techniques for the evaluation of ground-state and
finite-temperature properties of frustrated quantum spin
systems. We showed that the ladder geometry leads to
strong spin correlations on the rungs, despite the siz-
able frustration and the weaker rung coupling. This
feature might explain why the simple model of the un-
frustrated spin ladder reproduces certain properties of
BiCu2PO6, especially the behavior upon the chemical
substitution.21–23 On the other hand, the reduction to
the simple ladder model cannot be justified microscop-
ically, since the frustrating coupling J2 is of the same
order as the leg and the rung couplings J1 and J4, re-
spectively. In particular, the coupling J2 has an effect
on the spin gap. The simple J1 − J4 two-leg ladder with
J4 = 3

4J1 shows a spin gap of about 0.3J1,
68 while in our
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model the gap amounts to 0.5J1. Thus, the frustration
enhances the gap in a spin ladder, similar to a conven-
tional frustrated spin chain.8

We interpret BiCu2PO6 as a system of two-leg ladders
with frustrating couplings along the legs. The absolute
values of individual exchange couplings leave an ambi-
guity to describe the system as a frustrated spin ladder
or as coupled frustrated spin chains. Indeed, the actual
system shows features of both models. On the one hand,
the strongest correlations are found on the rungs, as in
ordinary ladders. On the other hand, the correlations
along the legs are incommensurate and lead to the spin
gap, being minimal at an incommensurate position in the
Brillouin zone.
BiCu2PO6 is a peculiar spin-ladder system interesting

for future investigation. One of the exciting branches
could be high-field studies above Hc. Recent experi-
ments on (C5H12N)2CuBr4 evidenced the emergence of
the LL physics in the high-field phase of the two-leg
spin ladder.11,12 BiCu2PO6 offers an opportunity to ex-
plore similar effects in the presence of the frustration,
where the incommensurate position of the gap might
lead to a two-component LL or instabilities thereof at
fields just above Hc. Another advantage is the relative
ease of the chemical substitution that has stimulated a
range of experimental studies on Zn- and Ni-substituted
samples.21–23 Here, again, the incommensurate leg spin-
spin correlations could influence the effective interaction
mediated between the impurity-induced localized spins,
and thus lead to hitherto unobserved frustration effects.
While working on the minimal microscopic model, one

also has to understand its limitations. The main and
most severe limitation is the reduction to a purely 1D
regime by neglecting J3. In fact, our band structure cal-
culations suggest J3/J4 < 0.2, i.e., |J3| ≤ 25 K. If we
adjust J3 to account for the actual spin gap ∆ ≃ 32 K
≃ 0.2J1, a larger value is obtained (see Sec. VI). Addi-
tionally, the shape of the magnetization curve with the
linear increase right above Hc (Sec. VB) may exclude
a purely 1D scenario and point to sizable inter-ladder
couplings. Considering all these arguments, we conclude
that the inter-ladder coupling J3 is likely relevant for the
full picture, but its accurate estimate remains a chal-
lenging task. Band structure calculations equally allow
for FM or AFM J3 (Table II). Experimental estimates
would require theoretical information on a complex 2D
J1 − J2 − J ′

2 − J3 − J4 frustrated spin system with long-
range couplings J2 and J ′

2. Such a system is basically
beyond the capabilities of present-day numerical meth-
ods. Therefore, the most reasonable approach could be
analytical perturbation treatment, based on the accu-
rate results for the 1D model. We believe that this ap-
proach will help to clarify the complex magnetic behav-
ior of BiCu2PO6 and to improve the theoretical estimate
of the spin gap with respect to the experimental value
∆ ≃ 32 K.

The second limitation of our model is the lack of
anisotropy effects. In particular, the DM interactions
scale with J and can be sizable due to the strong isotropic
exchange of 100 − 150 K. The DM couplings are al-
lowed for all the bonds of the spin lattice with few re-
strictions on the arrangement of the D vectors with re-
spect to the crystal axes (see also Sec. VB). The com-
prehensive investigation of the anisotropy effects would
require electron spin resonance measurements on single
crystals along with sophisticated band structure calcula-
tions. Presently, we note that the increase in the mag-
netization below Hc (Fig. 8) is a possible signature of
the DM couplings. The non-zero Knight shift at low
temperatures21,23 may have the same origin.

In summary, our study provides a comprehensive de-
scription of isotropic exchange couplings in the spin- 12
quantum magnet BiCu2PO6. We interpret this com-
pound as a two-leg spin ladder with frustrating next-
nearest-neighbor couplings along the legs. The leg cou-
pling (J1), the rung coupling (J4), and one of the next-
nearest-neighbor couplings (J2) amount to 120− 150 K,
while the other next-nearest-neighbor coupling J ′

2 is half
of J2 due to the subtle structural differences between
the respective superexchange pathways. The complex
crystal structure of the compound leads to a non-trivial
implementation of the spin ladder with two legs resid-
ing on different structural ribbons. The proposed spin
model is a derivative of the simple two-leg spin ladder
and shows leading spin correlations on the rungs. Frus-
trating couplings increase the spin gap and induce the
incommensurate minimum of the triplon dispersion as
well as an exotic behavior in high magnetic fields. The
effects beyond our spin model include the inter-ladder
coupling and the anisotropy. Experimental data show
possible signatures of these effects and call for further
investigation of BiCu2PO6 by means of inelastic neutron
scattering and electron spin resonance measurements on
single crystals.
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Güdel, J. Stahn, K. Habicht, K. Kiefer, M. Boehm, D. F.
McMorrow, and J. Mesot, Phys. Rev. Lett., 102, 107204
(2009), arXiv:0809.0440.

14 K. Totsuka, Phys. Rev. B, 57, 3454 (1998).
15 B. Koteswararao, S. Salunke, A. V. Mahajan, I. Das-

gupta, and J. Bobroff, Phys. Rev. B, 76, 052402 (2007),
arXiv:0709.1338.
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