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We studied equally charged particles, suspended in a complex plasma, which move in a plane and interact
with a screened Coulomb potential(Yukawa type) and with an additional external confining parabolic potential
in one direction, which makes the system quasi-one-dimensional(Q1D). The normal modes of the system are
studied in the presence of dissipation. We also investigated how a perpendicular magnetic field couples the
phonon modes with each other. Two different ways of exciting the normal modes are discussed:(1) a uniform
excitation of the Q1D lattice, and(2) a local forced excitation of the system in which one particle is driven by,
e.g., a laser. Our results are in very good agreement with recent experimental findings on a finite single chain
system[Liu et al., Phys. Rev. Lett.91, 255003 (2003)]. Predictions are made for the normal modes of
multichain structures in the presence of damping.
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I. INTRODUCTION

Since the first experimental observations of the formation
of Coulomb quasilattices[1] involving highly charged dust
particles in 1994[2–4], the research field of complex plas-
mas has seen sustained growth. Complex plasmas consist of
micrometer-sized(“dust”) particles immersed in a gaseous
plasma background. Dust particles typically acquire a nega-
tive charge of several thousand elementary charges, so they
interact with each other through their strong electrostatic re-
pulsion. In the experiment, particles are trapped in a horizon-
tal layer by a shallow parabolic well, due to two electrodes,
and can be suspended in a sheath above the electrodes, where
the gravity force is balanced by the electrostatic force. When
the electrostatic energy of neighboring particles exceeds the
thermal energy by an amountG, the particles arrange them-
selves in regular, solidlike structures, i.e., Wigner crystals
[5]. The mutual Coulomb repulsion of the dust grains is
partly screened by the polarization of the surrounding plasma
particles, mostly by the gas ions which represent the major
species in the sheath. Therefore, the average interparticle po-
tential can be well represented by a Yukawa(Debye-Hückel)
potential[6].

Complex plasmas provide an additional system for the
study of classical crystalline and liquid dynamics and the
melting processes. For particle size of the order of microme-
ters the dynamical behavior can be monitored directly with
the use of optical microscopes[1].

In the present work we study thoroughly the normal
modes of a classical quasi-one-dimensional(Q1D) multi-
chain complex plasma. Such a Q1D system was recently
realized experimentally by giving a proper shape to the elec-
trodes [7,8]. Experimentally, many other quasi-one-
dimensional or strictly one-dimensional systems have been
realized over the years. Colloidal particles, suspended in
aqueous solution, can be trapped in a potential well created
by two counterpropagating laser beams which form a one-
dimensional coupled array[9]. A Coulomb chain confined in
a storage ring[10], as well as ordered electrons on micro-
channels filled by liquid helium[11], are other examples of

Q1D classical systems. The latter is one of the candidates to
be used for quantum computing[12,13]. On the atomic scale
a chainlike system can be found in compounds such as
Hg3−dAsF6 [14] and in low dimensional systems formed on
surfaces[15]. A one-dimensional chain of gas atoms ad-
sorbed by carbon nanotubes has been produced in a labora-
tory and its phonon spectrum has been calculated theoreti-
cally assuming a Lennard-Jones interaction potential[16,17].

The classical model we propose in the present paper re-
veals a nontrivial phase diagram at zero temperature and al-
lows us to calculate dispersion relations for the normal
modes, which can be directly investigated experimentally.
Several generic aspects of the model were investigated re-
cently [18]. Here, the main focus is on the normal modes of
the system and how they depend on different physical situa-
tions, e.g., frictional forces and the way they are excited. We
will make connection with recent experimental work[7,19].

The structure of the paper is as follows. We first give in
Sec. II an overview of the model, stressing the ground state
properties. In Sec. III we present what has been known so far
for the normal modes of the system, adding more results for
clarification, and then we turn to additional results with re-
spect to the presence of the gas drag(friction) with or with-
out an applied magnetic field. Finally, we turn our attention
to the forced oscillations in Sec. V, where we discuss recent
experiments on normal modes in single chain systems. Pre-
dictions for multichain configurations are presented in Sec.
VI. Finally we conclude in Sec. VII.

II. MODEL AND GENERAL PROPERTIES

We consider a system of equally charged particles with
coordinatesrWi =sxi ,yid moving in a plane and interacting with
each other through a Yukawa-type potential(the screening
length l is an external parameter which is measured in the
experiment[20]) and are confined by a parabolic potential in
they direction. The dimensionless Hamiltonian of the system
is given by
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H8 = o
iÞ j

exps− kurW i8 − rW j8ud
urW i8 − rW j8u

+ o
i

yi8
2, s1d

where H8=H /E0, k=r0/l, and rW 8=rW / r0, with r0
=s2q2/m«v0

2d1/3 as the unit of length and E0

=smv0
2q4/2«2d1/3 as the unit of energy;m andq are the mass

and the charge of the particles, respectively,« is the dielec-
tric constant of the medium the particles are moving in, and
v0 measures the strength of the confining potential. The di-
mensionless time is defined ast8=v0t. Finally, it is possible
to define a dimensionless temperature asT8=T/T0 with T0
=E0/kB=smv0

2q4/2«2d1/3kB
−1.

In our previous work[18] we investigated the ground
state and the melting of this Q1D system. We summarize
here the main results, which we will need in the next sec-
tions. At T=0 the particles crystallize in a chainlike crystal
structure, with a linear density equally distributed among the
chains. In the case of multiple chains, ifa is the separation
between two neighboring particles in the same chain, the
chains are staggered bya/2 in thex direction, because this
arrangement minimizes the electrostatic repulsion. The re-
sults for the ground state configuration are summarized in the
phase diagram depicted in Fig. 1.

The dimensionless linear density is defined asñe=nr0/a,
wheren is the number of chains. For low densities the par-
ticles crystallize in a single chain; with increasing density a
continuous transition(“zigzag” [22]) occurs and the single
chain splits into two chains. On further increasing the density
we found the remarkable behavior that the four-chain struc-
ture is stabilized before the three-chain structure. The 2→4
chain transition occurs through a “zigzag” transition of each
of the chains accompanied by a shift ofa/4 alongx. This
four-chain configuration has a relatively small stability range
after which it transits to a three-chain configuration through a
discontinuous, i.e., first order, phase transition. For higher
values of the density, the four-chain configuration again at-
tains the lowest energy. A further increase ofñe will lead to
more chains, that is six, seven, and so on. The structural
transitions are discontinuous, i.e., first order, except for the
1→2 transition.

On raising the temperature the ordered structure melts.
We studied in detail the melting for this kind of system in
Ref. [18]. Due to the anisotropy in the two directions, a
different behavior of the system in thex andy directions was
found. Two different melting temperaturesTx andTy can be
assigned. The main features of the transition from the or-
dered state to the liquid state are(i) a reentrant behavior as a
function of density;(ii ) a region in density for which the
system melts first in the unconfined direction and then in the
confined one: this regime resembles the findings of Ref.[21]
in the floating solid regime;(iii ) reentrant melting occurring
near the structural transition points. For the nearly Coulomb
limit sk=0.01d there is no evidence of anisotropic melting,
that is, the system behaves more isotropically. Furthermore,
the Coulomb system has a melting temperature which is on
average 15–20 % higher than for the screened Coulomb in-
terparticle interaction withk=1. On the other hand, for
higher values ofk, the system behaves more anisotropically
and the difference betweenTx andTy is enhanced. In the case
k=3 the melting temperature is on average 10–15 % lower
than for the casek=1.

III. NORMAL MODES

In the present paper we are interested in the normal modes
of the chain structures, and in particular how these modes are
modified in the presence of frictional forces. We will con-
sider (1) the uniformly damped motion of a normal mode,
and(2) the damped propagation of a local forced oscillation
of a single particle. For these purposes we review briefly the
normal modes in the absence of friction.

A. Dispersion relations in the absence of friction

In the absence of drag due to the ion gas and exploiting
the standard harmonic approximation, the equations of mo-
tion for small oscillations about the lattice equilibrium posi-
tions in dimensionless units are in the single chain case

d2xi8

dt82 = −
1

2o
j
U ]2U

] xi8 ] xj8
U

eq

xj8 −
1

2o
j
U ]2U

] xi8 ] yj8
U

eq

yj8,

s2ad

d2yi8

dt82 = −
1

2o
j
U ]2U

] yi8 ] xj8
U

eq

xj8 −
1

2o
j
U ]2U

] yi8 ] yj8
U

eq

yj8 − yi8,

s2bd

whereU=exps−kurWi8−rW j8ud / urWi8−rW j8u is the interparticle interac-
tion potential. Considering the translational invariance of the
system along thex direction, we search for solutions in the
form

sxn8,yn8d ~ expfiskna− vtdg, s3d

which results in

fsv2 − dbyddab,i j − Dab,i jgQb,j = 0, s4d

FIG. 1. TheT=0 structural phase diagram as a function of the
inverse screening lengthk and the densityñe. The plotted quantities
are dimensionless, as for all the figures in the paper.

PIACENTE, PEETERS, AND BETOURAS PHYSICAL REVIEW E70, 036406(2004)

036406-2



whereDab,i j is the dynamical matrix, that is, the matrix of
the second derivatives of the Yukawa potential, calculated at
the equilibrium configuration;Qb,j is the displacement of
particle j from its equilibrium position in theb direction;
sa ,bd;sx,yd, dab,i j , di j , and dby are unit matrices; in par-
ticular dby takes into account the effect of the confining po-
tential. All the frequencies are measured in units ofv0.

The number of chains determines the number of particles
in each unit cell and therefore the number of degrees of
freedom per unit cell. So ifl is the number of chains there
will be 2l branches for the normal mode dispersion curves.
Note that for ordinary bidimensional crystals there are two
acoustical branches and 2p−2 optical branches[23], if p is
the number of atomic species in the unit cell.

Solving Eq.(4) explicitly for the single chain configura-
tion, we obtain that the acoustical and optical eigenfrequen-
cies are given respectively by:

vacskd = Fñe
3o

j=1

`
exps− jk/ñed

j3
S2 +

2jk

ñe

+
j2k2

ñe
2 D

3f1 − cosskajdgG1/2

, s5ad

voptskd = F1 − ñe
3o

j=1

`
exps− jk/ñed

j3
S1 +

jk

ñe
D

3f1 − cosskajdgG1/2

, s5bd

wherek is the wave number. Numerical results for the dis-
persion relations were presented in Ref.[18].

It is interesting to notice that for the acoustical branch the
dispersion is positive, that is, the phase and group velocities
have the same sign, while for the optical branch the disper-
sion is negative, i.e., the group velocity is negative. Physi-
cally, the negative dispersion for the single chain optical
branch can be understood by considering that the electro-
static repulsion acts oppositely to the force of the confining
potential and this reduces the oscillation frequency with in-
creasingk.

Another notable feature is the softening of the optical
branch, accompanied by a hardening of the acoustical branch
at the values ofñe andk where the 1→2 structural transition
is observed(see Fig. 8 of Ref.[18]), which confirms that 1
→2 is a continuous transition.

When a magnetic field is applied in the perpendicular di-
rection to the plane in which the particles are moving, the
equations of motions are modified andẏi8vc8 is added to the
right hand side of Eq.(2a) and −ẋi8vc8 to the right hand side

of Eq. (2b), wherevW c=qBW /mc is the cyclotron frequency and
vc8=vc/v0. It is known [24] that in a classical system an
external magnetic field does not alter the statistical properties
of the system and consequently the structural properties
should be insensitive to the magnetic field strength. On the
other hand, the character of motion of the particles is altered
significantly because now thex and y motions are coupled.
The spectrum of an infinite bidimensional crystal in a mag-

netic field was obtained in Refs.[25,26]. Following Ref.
[26], the dispersion relation for our Q1D system in the pres-
ence of a perpendicular magnetic fieldB is obtained from

fsv2 − dbyddab,i j − Dab,i j + ivvcjabdi jgQb,j = 0. s6d

B. Dispersion relations in the presence of friction

In laboratory experiments on a dusty plasma the particles
experience a frictional drag due mainly to the background
neutral gas as well as ions. This drag has a significant effect
on the dispersion curves of the normal modes. In order to
compare experimental data with theory, it is necessary to
develop a theoretical model in which the structure of the
crystal as well as damping are included as essential elements.
This can be easily done by adding explicitly the friction term
in the equations of motion. For the single chain configuration
g8ẋi8 should be added to the left hand side of Eq.(2a) and
g8ẏi8 to the left hand side of Eq.(2b), whereg8=g /v0 is the
dimensionless frictional drag coefficient. Similar equations
hold naturally in multichain structures. The equations of mo-
tion for the two- and three-chain structures are reported for
completeness in Appendix A.

Proceeding as before, in this case the eigenfrequencies are
determined by

fsv2 − dby + igvddab,i j − Dab,i jgQb,j = 0. s7d

For a single chain Eq.(7) gives explicitly:

vac
2 + igvac − ñe

3o
j=1

`
exps− jk/ñed

j3
S2 +

2jk

ñe

+
j2k2

ñe
2 D

3f1 − cosskajdg = 0, s8ad

vopt
2 + igvopt − 1 + ñe

3o
j=1

`
exps− jk/ñed

j3
S1 +

jk

ñe
D

3f1 − cosskajdg = 0, s8bd

from which we obtain the solutions

vacskd = Fñe
3o

j=1

`
exps− jk/ñed

j3
S2 +

2jk

ñe

+
j2k2

ñe
2 D

3f1 − cosskajdg −
g2

4 G1/2

− i
g

2
, s9ad

voptskd = F1 − ñe
3o

j=1

`
exps− jk/ñed

j3
S1 +

jk

ñe
D

3f1 − cosskajdg −
g2

4 G1/2

− i
g

2
. s9bd

The analytical expression for the two- and three-chain eigen-
frequencies are reported in Appendix B.

In the limit of small wave numberk, we find for k / ñe
@1 that Eqs.(9a) and (9b) reduce, respectively, to
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vacskd = Fe−k/ñe
k2ñe

2
S1 −

k2a2

12
Dk2a2 −

g2

4
G1/2

− i
g

2
,

s10ad

voptskd = F1 − e−k/ñe
ñe

2k

2
S1 −

k2a2

12
Dk2a2 −

g2

4
G1/2

− i
g

2
,

s10bd

while for k / ñe!1 we find

vacskd = HF3

2
+ lnS ñe

k
D −

ñe

12
S1 +

5ñe

12
Dk2a2Gñe

3k2a2 −
g2

4
J1/2

− i
g

2
, s11ad

voptskd = H1 −F1 + lnS ñe

k
D −

ñe

k
S1 +

2ñe

k
Dk2a2G

3
ñe

3

2

k2a2

12
−

g2

4
J1/2

− i
g

2
. s11bd

The real part of the frequency corresponds to the oscilla-
tory motion while the damping in the time domain is given
by the imaginary termig /2. Note that friction also affects the
value of the frequencies of normal modes. In Fig. 2 the nor-
mal mode spectra are reported for different configurations of
the system for different values ofñe, k, andg8. We used in
our calculations values for the parameters inferred from the
experiment[7]. The behavior of the dispersion curves re-
flects rather closely the case without damping. Some addi-
tional features should, however, be stressed:(i) the effect of
friction results in general in a reduction of the frequencies of
vibration both for the longitudinal motion and for the trans-
verse one;(ii ) for very small values of the wave number the
acoustical vibrations cannot be excited, which implies that
they are overdamped; such waves can be excited only when
k.k*sñe,k ,g8d; (iii ) the softening of the optical mode at the
critical densityñe

* for the transition 1→2 depends ong8; in
particular, the presence of friction reduces the value ofñe

*

[see Fig. 2(b)].
When we include a magnetic field the damped normal

modes are determined by

fsv2 − dby + igvddab,i j − Dab,i j + ivvcjabdi jgQb,j = 0.

s12d

The corresponding dispersion curves for the single and mul-
tichain structures are reported in Fig. 3. The behavior of the
curves resembles the case without damping but with an ad-
ditional shift in frequency due to friction. Note that in this
case it is no longer possible to obtain the phonon frequencies
analytically. The anticrossing between the two branches in
the one-chain configuration is still present[see Fig. 3(b)], as
in the case without friction(see Fig. 11 of Ref.[18]). It is
remarkable that the cyclotron motion and the friction are
coupled and the magnetic field introduces a dispersion in the
imaginary part ofv as well. Now, Imsvd is no longer con-
stant as a function of the wave vector as in the case without

a magnetic field. Friction mainly alters the acoustical
branches of the magnetophonon modes for small wave vec-
tors.

IV. FORCED OSCILLATIONS IN A SINGLE CHAIN
STRUCTURE

In the experiment of Refs.[7,28–31,33] the system is set
into oscillation by an external driving force which acts on the
system continuously. The frequency of such aforced oscilla-
tion is then determined by the frequency of the driving force
and not by the resonant frequencies. This is the effective
situation in experiments where particle motions are excited
by laser manipulation, which makes it possible to excite and
test the dispersion relations of certain types of lattice wave
[27–30]; these are longitudinal waves and, most recently,
transverse waves were also observed[7,31,32]. Laser light
exerts a radiation pressure on the particles with a magnitude

FIG. 2. Dispersion curves for the normal modes in the presence
of friction for different values of parameters for a one-(a), and
three-(c) chain structure. Dependence of the acoustical and optical
branches in the one-chain case on the friction coefficient at the
critical density where the softening of the optical mode is observed
is given in (b).
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proportional to the laser intensity[33]. In these cases the
frequency is purely real since the modes are driven. What is
observed in the experiments is that as the wave propagates it
is spatially damped, which can be interpreted in term of a
complex wave number[27] k=kr + iki. Following this idea
and considering that excitations take place when the driving
frequency is close to the free frequency of the modes, we
may neglect to first approximation for the single chain struc-
ture the external force, and we look for particular solutions
of the equations of motion in the form

sxn8,yn8d ~ expfiskrna− vtdgexps− kinad s13d

as was done in Ref.[7] for theoretical calculation of the
optical branch. This yields for the acoustical and optical
branches, respectively,

vac
2 + igvac − ñe

3o
j=1

`
exps− jk/ñed

j3
S2 +

2jk

ñe

+
j2k2

ñe
2 D

3f1 − cosskrajdcoshskiajd + i sinskrajdsinhskiajdg = 0,

s14ad

vopt
2 + igvopt − 1 + ñe

3o
j=1

`
exps− jk/ñed

j3
S1 +

jk

ñe
D

3f1 − cosskrajdcoshskiajd + i sinskrajdsinhskiajdg = 0.

s14bd

Requiring the frequencyv to be real, the two equations
generate a system of two nonlinear equations, forkr andki.
The results of the calculation are reported in Fig. 4. This
approach has some limits, however. First of all, once the
laser acts on a specific particle[7], it is no longer possible to
consider all the particle as identical, i.e., the presence of an
external force breaks the symmetry of the system which is
taken into account in Eq.(13) by considering the driven par-
ticle as being atxn=0=0. Second, the convergence of the
series in Eq.(14a) and (14b) is no longer guaranteed. The
condition that must be satisfied in order to have a convergent
sum iskiaøk / ñe. As seen from Fig. 4(b), this condition is
not always satisfied(in the specific case considered in the
picture the condition for convergence iskiaø2). Note that
the dispersion curves depend strongly on the number of
terms considered in the sum at the edges of the first Brillouin
zone [Fig. 4(a)], while it is practically independent of the
number of neighbors considered in the sum in the middle of
the first Brillouin zone. The system of equations arising from
Eqs. (14a) and (14b) is not defined whenka=0 andka=p,

FIG. 3. The same as Fig. 2 but now a magnetic field of strength
vc/v0=1 is present. The insets depict the damping of magne-
tophonon modes.

FIG. 4. Dispersion relations for a single chain structure as a
function of the (a) real part and(b) imaginary part of the wave
vector. The curves show a strong dependence on the number of
nearest neighbors included in the calculations(N.N.), at the edges
of the first Brillouin zone.
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because in this case the equation for the imaginary part is
identically zero. This clearly shows the inapplicability of this
approach to obtain the phonon spectrum in the presence of
friction.

The reason for the divergence of the sums in Eqs.(14a)
and(14b) is a consequence of the fact that the last exponent
in Eq. (13) blows up for negative values ofn. This would
suggest that alternatively we should look for solutions of the
equation of motion in the form

sxn8,yn8d ~ expfiskrna− vtdgexps− kiunuad, s15d

i.e., damped waves propagating from the location of the ex-
ternal excitation. But in this case in the imaginary part in
Eqs.(14a) and(14b) the hyperbolic sine term is replaced by
exps−kiu j uad and consequently the sum gives zero. As a re-
sult, Eqs.(14a) and(14b) do not have any real solutions for
the phonon frequency, and this approach also fails.

In order to explain some recent experimental results on
the transverse modes of a finite one-dimensional chain[7],
excited by striking one particle with two counterpropagating
laser beams such that the effective force acting on the par-
ticle is I0 sin vt, with I0 the intensity of the beam, we have
followed another approach. We first consider a single finite
chain ofN particles confined in they direction. On one of the
particles a time varying force is acting. We studied the small
displacements from the equilibrium configuration of each
particle, limiting ourselves to first neighbor interactions,
which is valid forka.1. The equations of motion for such a
system are

d2xl8

dt82 + g8
dxl8

dt8
= ñe

3e−k/ñeS2 +
2k

ñe

+
k2

ñe
2Dsxl+18 + xl−18 − 2xl8d

+ F0
xe−ivtdl,N, s16ad

d2yl8

dt82 + g8
dyl8

dt8
= − ñe

3e−k/ñeS1 +
jk

ñe
Dsyl+18 + yl−18 − 2yl8d − yl8

+ F0
ye−ivtdl,N/2 s16bd

with l =1,2, . . . ,N andF0
x,y the dimensionless strength of the

driving force. In order to excite the longitudinal vibrations
we have considered a force directed alongx and acting on
one of the extremities of the chain, while to excite the trans-
verse modes the force acts on the particle in the middle of the
chain and withy component only, as was done experimen-
tally in Ref. [7]. Looking for a particular solution of Eqs.
(15) of the form

sxl8,yl8d = sAl
x,Al

yde−ivt, s17d

we obtained the following set of inhomogeneous linear equa-
tions for the displacementsAl:

b1Al−1
x + svac

2 + igvac − 2b1dAl
x + b1Al+1

x − F0
xdl,N = 0,

s18ad

b2Al−1
y + svopt

y − 1 + igvopt − 2b2dAl
y + b2Al+1

y − F0
ydl,N/2 = 0,

s18bd

where b1= ñe
3e−k/ñes2+2k / ñe+k2/ ñe

2d and b2= ñe
3e−k/ñes1

+k / ñed. The solution to these equations may easily be ob-
tained from Kramer’s rule[34,35]

Al =
Dlsvd
Dsvd

s19d

where Dsvd is the determinant of the coefficients ofAl in
Eqs. (17) and Dlsvd is the modification inDsvd resulting
when thelth column is replaced bysF0,0 ,0, . . . ,0d for the
longitudinal motion ands0,0, . . ,0 ,F0,0 , . . . ,0 ,0d for the
transverse motion, respectively.Al are complex quantities
wheng8Þ0 and the formalism developed above allows us to
calculate amplitudes and phases. The analytical expressions
for Al are reported in Appendix C.

In Figs. 5(a) and 5(b) we show the amplitudes of the
displacements for the longitudinal and transverse motions as
a function of particle position along the chain. The plots
clearly show an exponential decay. Regarding the displace-
ments in the longitudinal modes, there are edge effects,
which disappear if the particle that is excited is at the center
of the chain. In principle this cannot be realized in experi-

FIG. 5. Amplitude of the displacement of particles as a function
of the distance from the location of the driving force:(a) displace-
ments along thex direction when the excited particle is at the ex-
tremity of the chain;(b) displacements along they direction when
the excited particle is in the middle of the chain. Exponential fits to
the numerical data are shown by the dotted curves.
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ments; however, except for the first two particles the ampli-
tudes of the displacements have the same damping rate and
the same phase angles whether the excited particle is the one
at the end of the chain or the one in the middle. This is why
for all the calculations we have considered a force
F0

xe−ivtdl,N/2 instead ofF0
xe−ivtdl,N in Eq. (17).

Fitting the amplitudes to an exponential curve yieldski. In
order to find the dispersion ofkr, we calculated the wave’s
phasef as a function of the position and fitted it to a straight
line. The definition of phase velocity, as being the ratio be-
tween the frequency and the wave number, indeed yields
kra=Df. In Fig. 6 the phase angle as a function of the dis-
tance is plotted. It is interesting to observe thatkr andki are
independent of the intensity of the driving forceF0, as ex-
pected in a harmonic model, and the results do not change if
instead ofF0e

−ivt, which is a complex force, we consider a
real forceI0 sin vt, as in the experiment; what actually plays
a central role is just the driving frequency. Optical and lon-
gitudinal waves both propagate away from the excitation re-
gion; they are backward and forward, respectively. It should
be noticed that in a 1D chain with finite length one should
expect that only standing waves would be allowed; the effect
of gas damping is the suppression of the reflected wave from
the chain’s end.

It is interesting to observe that for low densities the two
calculational methods, that is, the one in which the driving
force is neglected and the one in which it is explicitly taken
into account, give the same results for the dispersion curves,
when only first neighbor interactions are included. In Fig. 7
the results of the two approaches for the optical branch are
compared. Note that outside the bond defined by the two
dotted horizontal lines the phonon mode is strongly damped.

Another remarkable effect that reflects the anisotropy of
the system is observed with increasing density: the profile of
displacements for the longitudinal mode is no longer a pure
damped exponential[see Fig. 8(a)], because reflected waves
from the chain’s end start to appear, while the amplitudes for
the transverse mode are still exponentially decaying. We can
infer that the effect of damping is not due simply to friction,
but also to the external confining potential. This is confirmed

FIG. 6. Phase angle as a function of the distance from the loca-
tion of the driving force. The calculations are done for a system of
N=29 particles. Optical and longitudinal waves both propagate
away from the excitation region; they are backward and forward,
respectively.

FIG. 7. Comparison between the standard calculation, in which
the external driving force is neglected, and the “exact” one, in
which the external driving force is explicitly considered. The region
on the left of the vertical dotted curve is the region in which the
conditionkiaøk / ñe is satisfied; the region between the horizontal
dotted curves is the region in which the sums are convergent. Note
that the two approaches give the same results in the region of
convergence.

FIG. 8. (a) Profile of the amplitudes of displacements in the
longitudinal mode as a function of the density. For high densities
the profile is no longer a simply decaying exponential.(b) Profile of
the amplitudes of displacements in the transverse mode as a func-
tion of the density in the case without friction. Even in the absence
of friction the profile is still a decaying exponential.
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by the calculation of the amplitude profile wheng8=0,
which is reported in Fig. 8(b): even in the absence of the
friction and in the case that the driving frequency is low
enough, an exponential decay of amplitudes with distance is
still found.

When we include a perpendicular magnetic field, a cou-
pling is introduced between motion along thex and alongy
direction. Apart from increased mathematical complexity, the
scheme developed before is still valid. It is possible to infer
the real part of the dispersion relations from the phase angles
and the imaginary part from the amplitude of displacements.
In the absence of friction and driving force, the optical and
acoustical branches are confined in different frequency bands
[see thin solid curves in Figs. 9(a) and 9(b)], which do not
cross each other and have a prohibited gap[18]. The optical
frequencies follow the cyclotron frequency and for very high
field strength there is no significant difference betweenvopt
and vc. The acoustical frequencies, on the other hand, de-
crease with increasing magnetic field strength. The gap be-
tween the optical branch and the acoustical one for large
magnetic field approachesvc.

In the presence of friction and driving force, there are
drastic changes in the dispersion relations. The frequencies
are no longer confined in different bands, because the fre-
quency of oscillation is that of the external force, which can
be varied continously. The results of the calculations for dif-
ferent intensities of the magnetic field are shown in Figs. 9(a)

and 9(b). There are no significant differences in the behavior
of the real part of the dispersion relations with respect to the
case without magnetic field. The imaginary dispersion rela-
tions clearly show that the waves are overdamped in the
band gap, a region where large values forkia are found.
Notice that friction reduces the slope of the acoustical branch
in the smallkra region. When the curve enters the gap region
it becomes strongly damped as is clearly seen from the insets
of Figs. 9(a) and 9(b). The optical mode is more strongly
damped for all frequencies than the acoustical one. Further-
more, the dispersion of the optical branch is strongly modi-
fied by friction, i.e., it attains a negative dispersion for all
values of the frequency.

V. COMPARISON WITH EXPERIMENT

In Figs. 10 and 11 the real and imaginary dispersion rela-
tions for the acoustical and optical modes for the single chain
configuration are presented, respectively, for different values
of the parameters.

The calculated dispersion relations are compared with the
experimental data of Ref.[7]. The experimental data are in
good agreement with the theoretical calculations, although
the system realized in the laboratory is slightly different from
the one investigated in the theory. As a matter of fact, in the
experiment the interparticle spacing was not uniform: it was
15% smaller in the center than at the chain’s end. Due to the

FIG. 9. (a) Real part of the dispersion relations for a weak
perpendicular magnetic field;(b) real part of the dispersion relations
for a strong perpendicular magnetic field. The insets show the
imaginary part of the dispersion relations.

FIG. 10. Theoretical(curves) dispersion relations for the acous-
tical mode and comparison with experimental data(symbols) from
Ref. [7] for the one-chain structure:(a) real part of the acoustical
branch;(b) imaginary part of the acoustical branch.
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strong damping this density gradient is not very important in
the forced oscillation considered. As in the case without fric-
tion, the optical mode has negative dispersion, while the lon-
gitudinal one has positive dispersion. The dispersion depends
on density and therefore on interparticle spacing. For the
acoustical mode the frequencies of vibrations increase with
decreasing interparticle distance, while for optical vibration
the frequencies decrease with increasing densities. Further-
more, for low ñe the exponential decay is stronger in both
cases, which implies a highly damped wave. These findings
can be easily explained because for smaller interparticle dis-
tance the interaction forces are larger, or in other words for
low densities the interaction between the particles is rather
weak and consequently the effect of a local perturbation is
less disruptive for the other particles. From Fig. 11(b) it is
seen that the optical mode is mostly constrained to a central
frequency band. Comparing the optical branches in the ab-
sence of friction(see Fig. 7 of Ref.[18]) with the one in the
presence of gas damping, it is observed that with damping
the wave propagates beyond the frequency band allowed in
the absence of damping. Forkra=p, vopt is always equal to
zero wheng8Þ0, independent of the experimental param-
eters. This means that in the presence of damping, the soft-
ening of the optical mode no longer signals a structural phase
transition from a single chain structure to a double chain
structure.

It is, however, interesting to study the behavior of the
dispersion relations when the density approaches the critical
value for which the continuous structural transition from the

one-chain to the two-chain structure occurs. The results are
shown in Fig. 12.

The optical branch softens when approaching the critical
density, while the acoustical branch is hardened. Notice that
at the phase transition point(i) the real part of the optical
dispersion becomes linear forkra.1.5, (ii ) there is a drastic
change of slope in the optical imaginary dispersion, and(iii )
the optical mode becomes less damped. The real and imagi-
nary acoustical dispersions are less strongly influenced near
the zigzag transition. This can be easily explained by the fact
that the zigzag transition, which is responsible for the split-
ting of the chain, acts in they direction. Therefore, signature
of the zigzag transition are more easily detected in the opti-
cal phonon mode.

VI. FORCED OSCILLATIONS IN A MULTICHAIN
STRUCTURE

In Figs. 13 and 14(a) the real and imaginary parts of the
dispersion relations for the forced oscillations of the two-
and three- chain configurations are reported, respectively. We
used the approach given in the first part of Sec. IV. There-
fore, the dispersion relations in Figs. 13 and 14 are given
only in that part of the Brillouin zone where the sums in Eqs.
14(a) and 14(b) are convergent.

FIG. 11. The same as Fig. 10 but now for the optical branch.
FIG. 12. Dispersion relations for different values of the density

approaching the critical values for which the zig-zag transition from
1 chain structure to 2 chain structure is observed:(a) optical
branches;(b) acoustical branches. In the insets the imaginary parts
of the dispersion relations are plotted.
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From Fig. 13(a) and 14(a) it is evident that there is a
remarkable difference in the optical branches between the
single chain and the two- and three-chain structures. In the
first case the optical mode has negative dispersion as stated
before, while for the two- and three- chain structures the
optical frequencies do not exhibit a monotonic behavior. This
feature can be attributed to the fact that for the single chain
configuration in the case of the transverse mode the restoring
force is only due to the parabolic confining potential, while
in the multichain configuration the restoring force depends
both on the external confinement and on the particle repul-
sion.

Figures 13(b) and 14(b) exhibit some similarities with the
single chain case:(i) for the acoustical modes the damping is
an increasing function of the driving frequency,(ii ) the opti-
cal modes are mostly constrained to a frequency band, and
(iii ) the optical modes are more strongly damped. The ap-
proach used for the calculation of the dispersion relations for
the multichain is the same considered in Sec. IV for an infi-
nite number of particles, this is why in Figs. 13 and 14 the
dispersion relations are not presented in the whole first Bril-
louin zone, but only in that range of the frequency corre-
sponding to convergent sums.

VII. CONCLUSION

The ground state and the normal modes of a Q1D multi-
chain system can be studied experimentally in a dusty
plasma, where micrometer-sized particles are externally con-
fined by electric fields in the sheath above the lower elec-
trode. The sheath conforms to the shape of the electrode, so
building up an electrode with a groove-shaped depression in
one direction allows the realization of a parabolic confining
potential and, as a consequence, the formation of a chainlike
crystal in that direction.

We investigated the structural properties and the normal
modes of such a classical Q1D system of particles interacting
through a Yukawa-type potential. The structural transitions
are of first(primarily) and second order. The normal modes
of the system were calculated first, neglecting the effects of
dissipation induced by gas drag and then considering explic-
itly the presence of friction. The normal modes consist of
longitudinal (acoustical modes) and transversal(optical
modes). The number of acoustical branches is equal to the
number of optical branches and is equal to the number of
chains in the system. In the presence of friction, the free
oscillations of the system are exponentially damped in time.
The effect of a constant magnetic field on the dispersion
relations was investigated and we found that the acoustical
and optical branches no longer cross.

Particular attention was paid to the case of forced oscilla-
tions induced by an external driving force, as was investi-
gated in the experiments. We found that earlier approaches to
calculating the phonon dispersion relations are no longer
valid. Our theoretical results were compared with experimen-
tal data and a remarkably good agreement between theory
and experiment was found.

FIG. 13. Theoretical dispersion relations for the two-chain
structure:(a) real part;(b) imaginary part.

FIG. 14. Theoretical dispersion relations for the three-chain
structure:(a) real part;(b) imaginary part.
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Finally, we made predictions for the single chain disper-
sion relations in the presence of a perpendicular magnetic
field and for the multichain dispersion relations when the
modes are excited by an external driving force. We found
some substantial differences as well as some similarities in
the dispersion relations between the single and multichain
structures.
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APPENDIX A

The equations of motion for particles in the three-chain
configuration in the presence of friction are in matrix form:

1
ẍn8

s1d

ÿn8
s1d

ẍn8
s2d

ÿn8
s2d

ẍn8
s3d

ÿn8
s3d

2 = g81
ẋn8

s1d

ẏn8
s1d

ẋn8
s2d

ẏn8
s2d

ẋn8
s3d

ẏn8
s3d

2
+1

− B1 0 − B3 0 − B5 0

0 − B2 0 − B4 0 − B6

− B3 0 − B1 0 − B3 0

0 − B4 0 − B2 0 − B4

− B5 0 − B3 0 − B1 0

0 − B6 0 − B4 0 − B2

2
31

xj8
s1d

yj8
s1d

xj8
s2d

yj8
s2d

xj8
s3d

yj8
s3d

2 sA1d

where the superscript labels the row in which the particle is
placed. The coefficients are

B1 =
ñe

3

54o j

e−3jk/ñe

j3
F2 + 6

jk

ñe

+ 9
j2k2

ñe
2 G ,

B2 = −
ñe

3

54o j

e−3jk/ñe

j3
S1 + 3

jk

ñe
D ,

B3 =
ñe

3

54o j

e−3kr12/ñe

r12
5 FS j +

1

2
D2S9kr12

ñe

+
9k2r12

2

ñe
2 + 3D

− r12
2 S1 +

3kr12

ñe
DG ,

B4 =
ñe

3

54o j

e−3kr12/ñe

r12
5 Fc3

2S9kr12

ñe

+
9k2r12

2

ñe
2 + 3D

− r12
2 S1 +

3kr12

ñe
DG ,

B5 =
ñe

3

54o j

e−3kr13/ñe

r13
3 S9kr13

ñe

+
9k2r13

2

ñe
2 + 3D ,

B6 =
ñe

3

54o j

e−3kr13/ñe

r13
5 F4c3

2S9kr13

ñe

+
9k2r13

2

ñe
2 + 3D

− r13
2 S1 +

3kr13

ñe
DG ,

wherer12=Îs j +1/2d2+c3
2 and r13=Îj2+4c3

2.
The equations of motion for the two-chain structure can

be obtained by the 434 submatrices which are included in
the top left part of the matrix in Eq.(A1): the coefficients
involved in this case areB1, B2, B3, andB4, with the substi-
tution ñe/3→ ñe/2.

In the presence of a constant magnetic fieldBW =s0,0,Bd
the equations of motions for the two- and three-chain struc-
tures are easily obtained from the equations of motion with
B=0, adding the coupling termsẏn

8sidvc8 and −ẋn
8sidvc8 to the

equations forx and y motion, respectively, for particles sit-
ting in the ith row.

Obviously, the case without gas drag is immediately re-
covered by settingg8=0.

APPENDIX B

The eigenfrequencies in the three-chain configuration are:

vac
s1d = ÎB1 − B5 − g2/4 − ig/2,

vopt
s1d = Î1 + B2 − B6 − g2/4 − ig/2,

vac
s2d = ÎB1 + B5/2 +ÎB5

2 + 8B3
2/2 − g2/4 − ig/2,

vopt
s2d = Î1 + B2 + B6/2 +ÎB6

2 + 8B4
2/2 − g2/4 − ig/2,

vac
s3d = ÎB1 + B5/2 −ÎB5

2 + 8B3
2/2 − g2/4 − ig/2,

vopt
s3d = Î1 + B2 + B6/2 −ÎB6

2 + 8B4
2/2 − g2/4 − ig/2,

where the coefficientsBn are the same as in Appendix A. In
the two-chain configuration the eigenfrequencies are

vac
s1d = ÎB1 + B3 − g2/4 − ig/2,
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vopt
s1d = ÎB2 + B4 − g2/4 − ig/2,

vac
s2d = Î1 + B1 − B3 − g2/4 − ig/2,

vopt
s2d = Î1 + B2 − B4 − g2/4 − ig/2.

In this case the coefficientsBn are obtained from the coeffi-
cients in Appendix A with the substitutionñe/3→ ñe/2.

APPENDIX C

We present the analytical expressions for the displace-
mentsAl

x,y calculated from the Kramer’s rule[Eq. (42)] in the
case of a system ofN=29 particles. The central particle at
which the driving force is acting is labeled withN=0. For
reasons of symmetryA−l

x,y=Al
x,y:

A0
x,y = sa2 − b2ds− b2 − ba+ a2ds− b2 + ba+ a2dsb4 + 4b3a

− 4b2a2 − ba3 + a4dsb4 − 4b3a − 4b2a2 + ba3 + a4dC/D,

A1
x,y = − abs− b3 − 2b2a + ba2 + a3sb3 − 2b2a − ba2 + a3d

3s− 7b6 + 14b4a2 − 7b2a4 + a6dC/D,

A2
x,y = ab2s− a6 + a5b + 5a4b2 − 4a3b3 − 6a2b4 + 3ab5 + b6d

3s− a6 − a5b + 5a4b2 + 4a3b3 − 6a2b4 − 3ab5

+ b6dC/D,

A3
x,y = − ab3s− 3b2 + a2dsa2 − b2ds− 2b2 + a2d

3sb4 − 4b2a2 + a4dC/D,

A4
x,y = − b4s− a5 + a4b + 4a3b2 − 3a2b3 − 3ab4 + b5d

3sa5 + a4b − 4a3b2 − 3a2b3 + 3ab4 + b5dC/D,

A5
x,y = − ab5s− a2 − ba+ b2ds− a2 + ba+ b2d

3sa4 − 5a2b2 + 5b4dC/D,

A6
x,y = b6sa2 − b2ds− b3 − 3b2a + a3dsb3 − 3b2a + a3dC/D,

A7
x,y = − ab7s− 2b2 + a2ds2b4 − 4b2a2 + a4dC/D,

A8
x,y = b8sb3 − 2b2a − ba2 + a3ds− b3 − 2b2a + ba2 + a3dC/D,

A9
x,y = − ab9s− 3b2 + a2dsa2 − b2dC/D,

A10
x,y = b10s− b2 + ab+ a2ds− b2 − ab+ a2dC/D,

A11
x,y = ab11s2b2 − a2dC/D,

A12
x,y = b12sa2 − b2dC/D,

A13
x,y = − ab13C/D,

A14
x,y = − b14/D,

where D=as−3b2+a2ds5b4−5b2a2+a4dsb8−8b6a2+14b4a4

−7b2a6+a8d.
In the case of displacements along thex direction, a

=v82+ ig8v8−2b, b=sñe
3/2dexps−k /nds2+2k / ñe+k2/ ñe

2d,
and C=F0

x, while in the case of displacements along they
direction, a=v82−1+ig8v8−2b, b=−sñe

3/2dexps−k / ñeds1
+k / ñed, andC=F0

y.
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